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Zusammenfassung 

Für die Evaluierung als auch für die Optimierung hydrologischer Einzugsgebietsmodelle wird 

gewöhnlich auf statistische Abweichungsmaße zurückgegriffen, um den „Unterschied“ 

zwischen der gemessenen und der simulierten Abflusszeitreihe zu quantifizieren. Die 

Reduktion des Informationsgehaltes von hydrologischen (Modell-) Zeitreihen durch die 

Verwendung dieser Abweichungsmaße ist jedoch, verglichen mit dem Umfang an 

Informationen, die man aus ihnen zum Zwecke der Modellidentifikation und –kalibrierung 

gewinnen möchte, sehr hoch. Es ist bekannt, dass der mit der Verwendung von 

aggregierenden Gütemaßen einhergehende Informationsverlust ein limitierender Faktor bei 

der Untersuchung von Modellen bzw. Modellzeitreihen ist und ein wichtiges Element der 

Modellunsicherheit darstellt, da sich sehr unterschiedliche Modellrealisationen mit nahezu 

identischem Gütemaß (z. B. r² oder RMSE) erzeugen lassen. Um den hierdurch induzierten 

Probleme bei der Modellidentifikation und Modelloptimierung zu begegnen, stellt die 

vorliegende Arbeit in drei aufeinander aufbauenden Studien einen Ansatz zur 

Modellevaluation vor, der auf der Verwendung von Selbstorganisierenden Merkmalskarten 

(SOM; Kohonen, 2001) basiert.  

Bei SOM handelt es sich um ein künstliches neuronales Verfahren zur unüberwachten 

Klassifikation hochdimensionaler Daten, welches bisher sehr Erfolgreich zur 

Mustererkennung, wie z. B. bei der Sprachanalyse, eingesetzt wurde. Die zu untersuchenden 

Eingangsdatensätze werden dabei entsprechend der Ähnlichkeit in ihren Mustern auf 

benachbarten Positionen eines zweidimensionalen Rasters abgebildet. Die Neuronen 

genannten Elemente der SOM ergeben nach dem iterativen Training ein diskretes, d. h. 

datenkomprimiertes, Abbild der hochdimensionalen Eingangsdaten. Mittels verschiedener 

Visualisierungsmethoden lassen sich auf diese Weise Aufschlüsse über Häufigkeiten, Muster 

und Zusammenhänge in komplexen Datensätzen gewinnen. Ungeachtet ihres Potenzials 

haben SOM in der hydrologischen Modellierung, im Vergleich zu anderen Methoden 

künstlicher neuronaler Netze, nur wenig Beachtung erfahren. Die vorliegende Arbeit soll 

daher Einblicke und Anregungen bezüglich vorhandener als auch potenzieller 

Einsatzmöglichkeiten von SOM auf dem Gebiet der hydrologischen Modellierung liefern. 

Die erste Studie (Appendix A) demonstriert, dass es möglich ist, die Ergebnisse einer Monte-

Carlo Simulation mit einem Wasserhaushaltsmodell (4000 Simulationen mit jeweils über 

17400 Zeitschritten) nach Ähnlichkeiten in ihren zeitlichen Mustern zu Ordnen. Hierbei kann 

sehr trennscharf zwischen verschiedenen Modellrealisationen unterschieden werden. Dies 



versetzt den Anwender in die Lage, genaueren Aufschluss über bestimmte Aspekte des 

Verhaltens einzelner Parameter zu gewinnen, als dies z. B. mit Streudiagrammen möglich 

wäre. 

Hierauf aufbauend, wird in der zweiten Studie (Appendix B) eine wesentliche Verbesserung 

des bestehenden Ansatzes eingeführt, die es ermöglicht, die Ergebnisse der SOM im 

hydrologischen Kontext zu interpretieren. Hierzu kommen die von Gupta et al. (2008) und 

Yilmaz et al. (2008) vorgeschlagenen Signature Indices zur Anwendung, welche den 

„Unterschied“ zwischen simulierter und gemessener Zeitreihe in hydrologisch 

interpretierbarer Weise definieren. Dadurch ist es u. a. möglich, mittels SOM gestützter 

Auswertung Aussagen über die hydrologischen Funktionen der unterschiedlichen 

Modellparameter zu treffen, ohne Vorkenntnisse der Modellstruktur zu besitzen. 

Den vorangehenden Ansatz aufgreifend, stellt die dritte Studie (Appendix C) eine 

vergleichende Analyse der hydrologischen Einzugsgebietsmodelle NASIM (Hydrotec, 2005), 

LARSIM (Bremicker, 2000) und WaSIM-ETH (Schulla und Jasper, 2001) vor. Unter 

Verwendung geeigneter Indices, welche Informationen über die Abbildung von 

Spitzenabflüssen extrahieren, wird untersucht, inwieweit die Modelle in der Lage sind, die 

Hochwasserereignisse in der gemessenen Zeitreihe zu reproduzieren. Hierbei wird 

insbesondere die Möglichkeit zu einer vergleichenden Auswertung der gewonnenen Daten 

ausgenutzt. 

Die drei veröffentlichten Studien zeigen, dass man die Eigenschaften der SOM in Verbindung 

mit geeigneten Visualisierungsmethoden gezielt ausnutzen kann, um Informationen über 

bestimmte Aspekte des Verhaltens hydrologischer Modelle zu gewinnen. Neben der 

Gewinnung qualitativer Informationen über die Funktion und die Sensitivität von 

Modellparametern ist es vor allem möglich, diejenigen Modellergebnisse und Parametersätze 

zu identifizieren, welche die gemessene Abflussganglinie am Pegel, gemäß der jeweils 

angewendeten Kriterien, ‚am besten’ repräsentieren. Dies kann, wie Appendix C zeigt, ggf. 

sogar modellübergreifend durchgeführt werden. Die im Rahmen der vorliegenden Arbeit 

gewonnenen Ergebnisse ermutigen dazu, weitere Untersuchungen zu möglichen 

Anwendungen von SOM in der hydrologischen Modellierung anzustellen. 

 



 



 



Contributions of Self-Organizing Maps to an improved 
understanding of watershed models and dynamic systems 

 

1 Introduction 

1.1 The problem of watershed modelling 

 

As far as the laws of mathematics refer to reality, they are not certain; 

and as far as they are certain, they do not refer to reality. 

Albert Einstein 

 

Models are simplified abstract representations which are devised to help in making statements 

about more or less tangible objects or processes. Model building as a progressive, iterative 

process founded on qualitative and/or quantitative observations which, depending on our 

understanding, starts with a perceptual model of the subject. Further formalization, which 

should also include the definition of system elements, boundaries and fluxes leads to the 

conceptual model that can take diverse shapes, e.g. verbal models or diagrams, however, this 

conceptual model still does not necessarily include the explicit relationship between the 

system elements. These come into play when the symbolic model is formulated by means of 

mathematical expressions which subsequently can be subjected to further reasoning and used 

in computerized numerical models. The latter finally allows for the making of testable 

deterministic predictions of a complex dynamical system like catchments (Gupta et al., 2008). 

For the hydrological modelling of river catchments a broad range of deterministic simulation 

models are available, each of them offering different degrees of complexity in process 

description and spatial discretization. The different approaches to deterministic model 

building can generally be attributed to one of the following philosophies (Wagener et al., 

2007; Schoups et al., 2008; cf. Klemeš, 1983): 

• The upward or reductionist approach, which seeks to explicitly account for as much 

of the spatial structure and the known physical processes of the natural system as 

possible. Models that belong to this category “explain” the behaviour of the natural 

system and therefore are often referred to as “physically based” models.  
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• The downward, or parsimonious approach follows the principle of Occam’s razor 

which advocates that a model should be not more complex than absolutely necessary 

to account for the behaviour of the integrated response of the natural system. 

Although, the governing equations of these lumped conceptual models have to obey 

the principles of mass- and energy conservation, this “effective” representation of the 

system behaviour does not provide an explanation of the processes. However, it is, in 

general, equally capable of satisfactorily predicting the system response such that the 

limitations of these models rather lie in their inability to use prior knowledge on the 

system (see e.g. Franchini and Pacciani, 1991; Gan and Biftu, 2003). 

According to Brown and Heuvelink (2005, p.5) environmental models can be characterized as 

“inherently imperfect” which ultimately provides the reason for why the model structure is 

afflicted with uncertainty: Each deterministic environmental model, irrespective of its 

conceptualization and complexity, necessarily constitutes a simplified abstract representation 

of the natural dynamical processes. It has therefore to be stressed that the perceived 

“imperfectness” of environmental models is strongly relativized depending on the point of 

view that one assumes: In a use-oriented context, such as engineering, for example, a model is 

considered as a tool for solving certain problems. Here, any lack of accuracy in the model 

results is necessarily perceived as imperfectness. From a more scientific point of view, 

however, a model is nothing but the formulation of a hypothesis on the functioning and the 

description of a specific system. The confidence that can be attributed to its results acquire a 

different meaning and serve primarily as a means through which the underlying model 

hypothesis can be tested (Savanije, 2009). 

The reductionist downward approach to environmental modelling is constrained by 

mathematical and computational tractability on one hand as well as the incompleteness of 

knowledge with respect to certain phenomena on the other hand (Klemeš, 1983). In practice, 

the mathematical tractability is alleviated with pertinent simplifications (see e.g. Dooge, 

2005) while the gap of knowledge is often filled with “unverified assumptions” (Klemeš, 

1983 p.7) which preferably refer to the homogeneity and time invariance of patterns and 

processes and ultimately undermine the physical plausibility of the model. Despite 

considerable advances, common process descriptions in hydrological modeling still do not 

account for many phenomena that may occur at the catchment scale, e.g. macropore flow or 

the release of mainly “old“ water during storm events (Sivapalan, 2005). The difficulties of 

modeling hydrological processes at the catchment scale, however, obviously originate at a 

more fundamental level: Let alone the fact that many process theories and governing 
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equations that constitute our models essentially have been derived at the laboratory scale, it is 

important to recognize that catchment models are confronted with gaps between the scale at 

which the observations are made and the scale at which these processes actually occur 

(Sivapalan, 2005). In absence of a theoretical framework for lumping small scale processes 

for spatially heterogeneous units, it is merely an assumption that the physical equations as 

well as their parameters can be applied in identical manner across different scales (Beven, 

1989). Despite all sophistication in model building, the bottom line is that in the presence of 

heterogeneity, self-organization, non-linearity and scale dependence of natural system 

processes current modeling approaches cannot establish the intended close physical reference 

to the natural system.1 In consequence, “physically based models” can equally be treated as 

“lumped conceptual models” because their constituent equations and parameters inevitably 

have to remain “effective” representations of the system variables and processes (Beven, 

1989, 2000). As any measurements to determine physically based parameters and boundary 

conditions tend to be devalued to point estimates that are likely to be invalid to represent a 

particular variable at the desired scale (Zehe and Blöschl, 2004; Kavetski et al. 2003) it is 

very hard – if not impossible – to define a unique best parameter a priori. A second reason for 

the non-uniqueness of model parameters also originates from the predominantly non-linear 

interactions between the coupled elements of the model structure as well as from uncertainties 

in the input data, including measurement error and noise. That way, at least when trying to 

solve the inverse problem for highly complex models, many degrees of freedom of the model 

are confronted with relatively few degrees of constraint, especially when the observation data 

is limited (Brown and Heuvelink, 2005). 

In accordance with current standards, modelers attempt to solve this problem inversely by 

means of calibration, which is commonly based on the comparison of model generated input-

state-output simulations with observed historical data (Sorooshian and Gupta, 1995). In this 

respect, the process of model calibration is linked to model evaluation, inasmuch as the 

analysis of the model output data is being used to draw conclusions about the model structure. 

In this regard, a model output which has a high degree of similarity to the observed system 

behaviour will always corroborate the model and its constituent hypothesis and vice-versa. 

The problem, however, lies in how such a comparison can be carried out and how its results 

can be interpreted (Gupta et al., 2008). 

                                                 
1 In view of these fundamental difficulties, Sivapalan (2005) and similarly Troch et al. (2009), among others, 
argue that the current theory of catchment hydrology is facing an impasse. Hauhs and Lange (2008, 2006) come 
to the conclusion that our physical modeling paradigm is not capable of representing the complex and interactive 
behavior of natural systems, which is also attributed to biological interactions. 
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1.2 Model calibration and evaluation 

In their simplest but most powerful form, calibration as well as the evaluation of a model is 

done visually because a trained expert is able to simultaneously discern various characteristics 

of the data and relate them to the hydrological context. This approach usually involves the 

comparative analysis of a number of different data characteristics that constitute the behaviour 

of the system and which, in turn, have to be satisfactorily reproduced by the model (i.e. a 

model and a corresponding set of parameters) in order to be acceptable (‘behavioural’). (It is 

thereby often assumed that a model is suitable to represent the future behaviour of the system 

if its results are consistent with historical data. According to Oreskes and Belitz (2001), 

however, this widespread assertion is a fallacy because fitting the model to historical data 

might introduce a bias towards an existing trend. In particular, the assertion of ‘validity’ 

implies an unjustified legitimacy. Brown & Heuvelink (2005) point out that, ultimately, the 

model could still be ‘right’ for the wrong reasons). It follows that model calibration is 

inherently a multi-objective problem that requires at least the evaluation of more than one 

performance measure to ensure sufficient discriminatory power, even if the model produces 

only a single output time series (Gupta et al., 1998). Different strategies have been proposed 

to support and condition parameter identification by using complementary sources of 

information which can be classified according to Madsen (2003) as 

• “multi-variable measurements”, such as ground water measurements (Lamb et al., 

1998) or combinations of different data sources (Ambroise et al., 1995; Gallart et al., 

2007), 

• “multi-site measurements”, e.g. soil moisture observations (Franks et al., 1998), 

• “multi-response modes” which evaluate the performance during different stages of the 

hydrological process using separate objective functions (Boyle et al., 2000). 

Further, it is worth mentioning the work of Seibert and McDonnell (2003), who demonstrate 

how qualitative knowledge of the catchment behaviour can be included in the calibration 

process in order to yield a more realistic representation of the system. Interestingly, the 

inclusion of expert knowledge results in lower performance measure values (compared to a 

simple calibration against observed discharge) but better overall performance.  

The multi-objective approach has already become a standard technique in optimization (Yapo 

et al., 1998; Madsen, 2003; Vrugt et al., 2003b) uncertainty assessment (Vrugt et al., 2003a) 

and evaluation (Gupta et al., 1998; Boyle et al., 2000; Wagener et al., 2003b) of hydrological 
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models. The use of multiple measures of performance implies that the optimum solution is not 

uniquely defined and consists of a Pareto set of parameters/model realizations that represent 

the different trade-offs among the objectives. Current multi-objective optimization techniques 

(Vrugt et al., 2003a, 2003b) effective and efficiently allow finding a Pareto optimal set of 

solutions. This provides valuable information on the capabilities of the model in reproducing 

the data. However, extracting the Pareto solution is not the only way that interesting insights 

into the model behaviour can be gained: By examining the model performance during 

different stages of the hydrological process (Boyle et al., 2000; Wagener et al., 2004) and 

particularly the temporal variability of parameter estimates (Wagener et al., 2003a; Beck, 

1986) it became possible to relate model performance to individual model components. Since 

the inability of a model to reproduce the whole time series with a single parameter set may be 

indicative of structural model errors, this allowed testing the underlying model hypothesis 

(Gupta et al., 1998; Wagener et al., 2003a, Lin and Beck, 2007). The information regarding 

the functioning and the capabilities of the model finally provides guidance for potential model 

improvements.  

An exciting new point of view for model evaluation also emerges from the application of 

Fourier and Wavelet transformation (e.g. Torrence and Compo, 1998) to model input and 

output time series. This approach particularly allowed to inspect the degree of model 

consistency in terms of temporal dynamics and scale dependence (e.g. Clemen, 1999; Labat et 

al., 2000; Lane, 2007; Montanari and Toth, 2007; Schaefli and Zehe, 2007). 

Model evaluation is tightly related to the field of model uncertainty estimation. Current 

literature includes a plethora of techniques to address the different kinds of model uncertainty, 

ranging from pseudo-likelihood ratios (Beven and Binley, 1992), Bayesian methods (e.g. 

Thiemann, 2001; Vrugt et al., 2002; Kavetski et al., 2003; Misirli et al., 2003), Markov chain 

Monte-Carlo approaches (e.g. Kuczera and Parent, 1998; Vrugt et al., 2003a, 2003b), data 

assimilation techniques (Vrugt et al., 2005; Bulygina and Gupta, 2009), including particle 

filters and ensemble Kalman filters (Moradkhani et al., 2005; Weerts and El Serafy, 2006). 

Many of the aforementioned techniques are used in operational forecasting frameworks where 

they are geared towards minimizing the bias and the uncertainty in the model simulations 

(Gupta et al., 2008). Details concerning their application, however go beyond the scope of this 

work, which merely focuses on methods that help in the gaining of further insights into the 

patterns of model behaviour in order to test the underlying model hypothesis. 
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1.3 Inadequacy of statistical performance measures 

Evaluation, as well as calibration methods that rely on a quantification of the ‘difference’ 

between the simulation and the measurements, commonly resort to regression based statistical 

measures of fit as the primary method of information extraction (Legates an McCabe Jr, 1999; 

Willmott et al., 1981; Nash and Sutcliffe, 1970). Hereafter, the terms ‘performance measure’ 

and ‘objective function’ will be used in identical manner to denote these measures. The 

pitfalls of using such measures are well known (e.g. see Hall, 2001; Lane, 2007; Schaefli and 

Gupta, 2007; Kavetski et al., 2003): Many objective functions imply assumptions about the 

statistical error properties that are often violated when they are used to quantify the degree of 

agreement between measured and simulated time series. This includes that the errors are 

either not normally distributed, do not have a mean of zero, show autocorrelation or 

heteroscedasticity. Kavetski et al. (2003) vividly demonstrates that the assumption of an 

inadequate error model can have devastating effects on parameter estimates. Most 

importantly, however, the nature of the ‘information’ we extract from the input-output data by 

means of these measures deserves critical attention: By putting data in the context of common 

statistical measures of fit, we allow primarily for a correlative evaluation of the data; e.g., the 

correlation coefficient informs about the percentage of the observed variance that can be 

explained by the model simulation, but conveys little or no information that relates directly to 

the hydrological context of the data (such as water balance, or velocity of the rainfall-runoff 

response). The use of statistics like the ‘Nash Sutcliffe Efficiency’ (Nash and Sutcliffe, 1970), 

for example, has virtually become a natural part of our daily modelling practice. However, we 

are often disregarding the fact that the ‘Nash Sutcliffe Efficiency’ measures the model 

performance relative to the observed mean value. The usefulness of the observed mean as a 

reference therefore varies strongly depending on whether the observed time series is 

characterized by fluctuations around a constant mean or by a strong seasonality. In any case it 

becomes evident that the ‘Nash Sutcliffe Efficiency’ can provide neither an absolute nor an 

interpretable measure of model performance. The majority of the quadratic error based 

performance measures2 does not provide much better properties (Schaefli and Gupta, 2007). 

To a certain extent, the choice of performance measures can be made such that the evaluation 

places a certain emphasis on particular parts of the hydrograph (Gupta et al., 1998). Even so, 

statistical measures of performance still have in common that the information which is 

                                                 
2 An exhaustive list of currently used statistical performance measures in hydrological sciences is provided at the 
URL https://co-public.lboro.ac.uk/cocwd/HydroTest/index.html
The site offers the possibility for online comparison of measured and simulated time series. 

 6 

https://co-public.lboro.ac.uk/cocwd/HydroTest/index.html


potentially contained in a model time series as well as in its errors, is aggregated into a single 

numerical value, regardless of the characteristics of the time series and the actual pattern of 

the error. If, in order to sufficiently describe all relevant information which is contained in the 

model data, a vector of the dimension ℜdata >> 1 is required, it follows that projecting the 

model data to a measure with the ℜmeasure = 1 entails a substantial loss of information. The 

paradoxical attempt to determine a whole set of model parameters by using only one objective 

function or likelihood function clearly constitutes an ill-conditioned problem (Fig. 1) because, 

in addition to the abovementioned loss of information, a one-dimensional measure is 

insufficient to constrain a model with many degrees of freedom (Gupta et al., 2008).  

Model output data
dimension

ℜdata

Performance 
measure dimension

ℜ1

Parameter 
dimension

ℜparameter

Model output data
dimension

ℜdata

Performance 
measure dimension

ℜ1

Parameter 
dimension

ℜparameter

 

Fig. 1. Determining a set of model parameters using only one objective function (modified 

after Gupta et al. 2008). 

In consequence, essentially different model results can be obtained with close to identical 

performance measure values such that model realizations may arguably appear to be 

equifinal3, i.e. equally acceptable in reproducing the observed system behaviour (Beven and 

Binley, 1992; Beven and Freer, 2001; cf. Bertalanffy, 1969) as a consequence of the approach 

that has been used to discern them. The parameter sets that produce these equally acceptable 

results, however, will appear as non-unique and can be widely scattered throughout the 

parameter space (irrespective of the discriminatory power of the performance measure?). 

                                                 
3 Long before the seminal paper by Beven and Binley (1992) the term „equifinality“ was used by Ludwig von 
Bertalanffy in the context of General System Theory (Bertalanffy, 1969). He defines equifinality as “the 
tendency towards a characteristic final state from different initial states and in different ways based upon 
dynamic interaction in an open system attaining a steady state” (p. 46) as opposed to the behaviour of closed 
systems in which the final state is defined by the initial condition and the process (cf. pp. 131ff). 

 7



It is commonly accepted that this non-uniqueness of model parameters relates to model 

structural errors, input data uncertainty as well as measurement errors and –noise. However, it 

is as well important to recognize that the lack of discriminatory power of the measures which 

are used to compare simulated and observed time series potentially implies an additional 

drawback for the estimation of model parameters as well as for the analysis and evaluation of 

hydrological models (Lane, 2007; Wagener, et al., 2003b; Yapo, et al., 1998). The multi-

objective approach to parameter estimation and optimization alleviates to some extent the 

problem which is related to the dimensionality of the data. However, commonly used statistics 

do not provide the information which is needed for a diagnostic evaluation of model 

behaviour (Gupta et al., 2008). 

Diagnostic model evaluation is a fundamental step in the iterative model building and 

identification process that requires adequate tools that guide the modeller towards targeting 

the causes of ‘unsatisfactory’ model behaviour. Because variance-based statistical measures 

fail to extract and relate the information contained in the model time series data to 

characteristics that are interpretable and meaningful in the context of the hydrological theory, 

they offer only minimal diagnostic support when used at the front end of various model 

evaluation frameworks. In response to this, Gupta et al. (2008) and Yilmaz et al. (2008) 

recently proposed the concept of a diagnostic evaluation approach rooted in information 

theory, in which a set of measures is used to characterize various theoretically relevant system 

functions and process behaviours. The term “Signature Indices” is introduced to distinguish 

these measures from conventional variance based performance measures that lack 

relationships to the underlying hydrological theory. Yilmaz et al. (2008) propose a set of such 

Signature Indices to help guide the diagnostic process of model evaluation in a meaningful 

and interpretable way, inasmuch as these measures correspond to four major hydrological 

functions of the watershed: overall water balance, vertical redistribution, temporal 

redistribution and spatial redistribution. 

1.4 Confronting high-dimensional data distributions 

Because the evaluation of environmental and hydrological models is inevitably confronted 

with non-uniqueness, model realizations (i.e. parameters) and their corresponding objective 

function values have to be represented using probability distributions. However, in view of 

the often highly non-linear interdependences between model parameters that include 

compensating effects and threshold behaviour, the possibilities of classical statistical methods 

of system identification are often limited. In addition, these methods are subject to many 
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statistical assumptions that mostly do not apply (Wagener et al., 2001). Alternatively, Monte-

Carlo simulation provides a robust method to gather information on the model response with 

respect to variations of the parameter (Melching, 1995). This method uses repetitive model 

simulation runs on the basis of randomly sampled parameters in order to determine an 

empirical probability distribution of the model output. In cases where no prior knowledge on 

the distribution of feasible parameters is available, a uniform random distribution within 

plausible ranges has to be assumed. The problem with Monte-Carlo simulations is the number 

of model runs which theoretically would be required to attain a statistically satisfying 

sampling density of the parameter space. The reason is that the region of interest in the 

parameter space with dimension n can be seen as a hypercube with the side length l and the 

volume ln. Substituting the side length with the number of samples we deem appropriate along 

each axis of the parameter space and n with the number of model parameters it becomes 

evident that, in the vast majority of studies on model performance, the required number of 

model runs becomes prohibitive, even if assuming a run-time of only one second per model 

execution. More advanced approaches (e.g. Kuczera and Parent, 1998) exist that resort to 

Markov Chain Monte Carlo (MCMC) methods in order to approximate an unknown 

distribution (e.g. parameter distributions) by means of stochastic simulation. The most widely 

used building block herein is the Metropolis-Hastings algorithm (Metropolis, 1953; Hastings, 

1970) which requires prior definition of a proposal distribution for the sampling. With a poor 

choice of this initial distribution, however, the algorithm looses its efficiency and converges 

only slowly which often makes its application to environmental models, where a priori 

knowledge on distributions is generally scarce, somewhat difficult (Vrugt et al., 2003b). 

Vrugt et al. (2003b) developed an optimization algorithm that overcomes these problems by 

using an adaptive MCMC scheme. 

A common method to analyze a Monte-Carlo simulation with a hydrological model is to 

calculate a set of objective functions for each model output time series relative to some 

historical observation (here it is assumed that only one time series per model execution is 

examined). As mentioned above, this is equivalent to projecting the time series to a lower 

dimensional ‘objective function space’ (assuming that the number of objective functions is 

much smaller than the number of elements in each time series vector). In a one- or two-

dimensional case the results can easily be visualized using scatterplots and response surfaces, 

respectively. However, if three or more objective functions are used one commonly has to 

resort to orthogonal projections to individual axes or planes of the objective function space 

and the results get much more difficult to comprehend and to visualize. Due to the non-linear 
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behaviour of dynamical models of natural systems and the limitations inherent to the observed 

data, the resulting response surface generally eludes any mathematical description. For this 

reason, considerable research has been directed towards algorithms that allow finding the 

global optimum of response surfaces from complex environmental models (for an overview 

see Sorooshian and Gupta, 1995; Gupta et al., 2003; Duan et al., 2003). The difficulties in 

developing such automated calibration techniques originate from the following properties of 

the model response surface (Duan et al., 1993; Sorooshian and Gupta, 1995): 

• There may be more than one main region of convergence. 

• Each of these regions may contain possibly uncountable local optima at various 

distances from the best solution. Optima can be found at multiple scales. 

• The model response surface may not be smooth nor continuous. 

• The parameters may show highly nonlinear interdependence as well as varying 

degrees of sensitivity. 

• The model response surface near the optimum is often non-convex. 

Considering these characteristics it becomes clear that solving this optimization problem may 

be difficult or even impossible using local or derivative based search methods and that it may 

be impossible to obtain a unique solution of optimal parameters. With the Shuffled Complex 

Evolution algorithm (SCE-UA) Duan et al. (1992) presented an effective and efficient global 

optimization method. Its success in a wide range of applications can be attributed to a hybrid 

strategy that combines elements of deterministic, evolutionary and stochastic exploration of 

the model response surface which ultimately demonstrates that the key to an effective 

automatic calibration technique lies in finding an effective way to gather and use information 

from the model response surface.  

Similarly, model evaluation is confronted with the multi-dimensionality and complexity of the 

model response. In the first place, as mentioned above, model evaluation as well as automatic 

calibration rely on a projection of the original model output time series data to a lower 

dimensional ‘objective function space’. This first, basic step defines the context in which the 

model outputs are analyzed while at the same time performing a lossy compression of the data 

which is intended to exclusively preserve what is assumed to be the important information in 

it (Gupta et al., 2008). Although the focus of model evaluation is a different one, the example 

of the Shuffled Complex Evolution algorithm also illustrates what lies at the heart of the 

model identification and model evaluation problem: As the original model response – and the 
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projection of the model output into an objective function space respectively – is 

multidimensional it eludes any analytical description that could be used for further reasoning 

on model performances and trade-offs between different modelling objectives. Hence, model 

evaluation is essentially concerned with gathering and organizing the information contained 

in the entire multidimensional data distribution that constitutes the output from a high number 

of model runs. In order to make the results comprehensible to the human being, a further, 

essential component of model evaluation is the visualization of the extracted information. 

1.5 Underlying hypothesis 

As exposed in the preceding sections, the properties of environmental models and the data 

produced by them suggest that a major key towards improving our abilities to gain insight into 

the patterns of model behaviour with the aim of testing the underlying model hypothesis may 

lie in 

• enhancing the abilities to discriminate between different model output time series (as 

commonly used aggregating statistics lead to ambiguous results),  

• using meaningful similarity measures that help in making inferences about the model 

structure (as statistical measures do not refer to the hydrological context), 

• Finding effective ways of capturing and visualizing complex high-dimensional data 

distributions (as they potentially may provide all relevant information on the model 

behaviour). 

1.6 Goals of this study 

Based on three consecutive studies the present work proposes an alternative approach towards 

hydrological model evaluation that aims at taking into account the goals that have been 

formulated in Sect. 1.5. A central position in these studies is occupied by the application of 

Self-Organizing Maps (SOM; Kohonen, 2001) which is used to represent and to analyze high-

dimensional data obtained from Monte-Carlo simulations with distributed hydrological 

watershed models.  

The aim of the present work is to demonstrate that the application of Self-Organizing Maps 

has very high potential to address fundamental issues of model evaluation: It is shown that the 

clustering and classification of model time series by means of SOM can provide useful 

insights into model behaviour. In combination with the diagnostic properties of Signature 

Indices (Gupta et al., 2008; Yilmaz et al., 2008) SOM provides a novel tool for interpreting 
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the model parameters in the hydrological context and identifying parameter sets that 

simultaneously meet multiple objectives, even if the corresponding model realizations belong 

to different models. In this context, it is interesting to note that the SOM based method 

presented in this work in some aspects aims at similar objectives as the Parameter 

Identification Method based on the Localization of Information (PIMLI) developed by Vrugt 

et al. (2001; 2002). The PIMLI method attempts to find disjunctive subsets of the 

observations that contain the most information for the different model parameters. PIMLI thus 

provides a diagnostic instrument that helps in differentiating between parameters and model 

concepts. In contrast to the SOM based method, PIMLI approaches the model evaluation 

problem more from the observations than the model itself. It uses a sequential optimization 

methodology that merges the ideas of generalized sensitivity analysis (GSA; Spear and 

Hornberger, 1980), Bayesian recursive estimation (BARE; Thiemann et al., 2001) and the 

Metropolis algorithm (Metropolis et al., 1953) for efficient sampling. 

 

2 Self-Organizing Maps and their application in hydrological sciences 

A Self-Organizing Map (SOM; Kohonen, 2001) consists of an unsupervised learning neural 

network algorithm which is applied to extract an “archetypal” (Sang et al., 2008, p. 1194) set 

of characteristics that describe a high-dimensional data set. In the process, it performs a 

nonlinear projection of high-dimensional input-data onto a lower dimensional plane. Thereby, 

in a sense, it mimics a working principle of the cerebral cortex (and other structures of the 

brain) where multi-dimensional stimuli are assigned to two-dimensional arrays of neurons in a 

topology preserving manner, i.e. similar stimuli are mapped onto nearby regions. The stimuli 

that are presented to the SOM, however, consist of data vectors from a larger data set, which 

is referred to in the following as the training data set. SOM is capable of discerning and 

categorizing the range of data patterns that occur in the training data which render it a popular 

tool in exploratory data analysis (Kaski, 1997; Vesanto, 2000). Unlike the more common 

artificial neural network techniques, as for example feed-forward multilayer perceptrons 

(MLP, for a comprehensive overview of current artificial neural network approaches the 

reader is referred to Haykin, 1999) SOM has no output function and is therefore conceived as 

a clustering and data-compression technique. In an iterative training procedure SOM produces 

a smooth mapping of vectorial input data items on a discrete grid of map units which are also 

referred to as neurons or nodes. Commonly the neurons are arranged on a rectangular, two-

dimensional grid with hexagonal topology (Fig. 2). This hexagonal configuration has the 
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advantage that, in contrast to a rectangular topology, the lateral distances towards each 

neighbouring neuron are equal.  

 

Fig. 2. Configurations of the SOM grid. 

Depending on the scope of the SOM application, it is also possible to use other shapes than a 

rectangular, e.g. a toroidal grid. Analogous to the functioning of the cerebral cortex, nearby 

locations on this mapping are attributed similar data patterns. Most notably, in contrast to 

clustering methods, such as k-means clustering (see Kohonen, 2001), SOM is topology 

preserving – a distinctive feature of the cerebral cortex – which is why similar patterns are 

projected onto contiguous locations. Accordingly, the distance between two nodes on the 

mapping is proportional to the dissimilarity of the data items attributed to them. However, 

because the number of neurons on the map is always inferior to the number of data items that 

are presented to the map in the course of the training, each neuron is attributed a small subset 

of the training data set with similar properties. Note that each neuron is characterized by a 

reference- or codebook vector that can be interpreted as the cluster centroid of the data items 

that were attributed to its corresponding map unit during the training. At this point, SOM is 

closely related to vector quantization (see Kohonen, 2001) and data-compression techniques 

as through its reference vectors a SOM provides a discrete approximation of the high-

dimensional distribution of the training data. The application of an SOM usually comprises 

four consecutive steps: 

• Normalization of the input data: Prior to the training the input data has to be 

normalized in order to avoid that variables with predominantly high values exert a 

disproportionate influence compared to other variables. Most commonly the variables 

are scaled to values having zero mean and variance of one. (see Appendix B, Sect. 

2.4). 
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• Dimensioning and initialization: Generally dimensions of the map, i.e. the side lengths 

and the number of neurons on a map, can be freely adjusted to the requirements of the 

particular application. In many cases, however, an heuristic procedure (Vesanto et al., 

2000) is used where the number of neurons on the map is Nm 5= , with N being the 

number of items in the training data. Further, the side lengths of the map are 

determined based on the ratio of the two biggest eigenvalues of the training data 

covariance matrix (see Appendix B, Sect. 2.4). 

• Iterative training: During the iterative training of an SOM each vectorial input data 

item, which is picked randomly from the training data set, is attributed to the neuron 

whose reference vector has the smallest Euclidean distance from it. This neuron is 

referred to as the “best-matching-unit” (BMU). Subsequently, depending on their 

distance from the BMU and the number of elapsed training cycles, the reference 

vectors in the neighbourhood are updated. These consecutive steps of each training 

cycle represent a competitive and an adaptive learning process. The mapping finally 

“self-organizes” and converges upon repeated cycling through the input data set. The 

training process is explained in detail in Sect. 2.1 of Appendix A and in Sect. 2.3 of 

Appendix B. 

• Post-processing: A wide range of techniques is available that help with the 

comprehending of the resulting map by visualizing its reference vectors in different 

ways. This way, the clustering structure, the data distribution or correlations between 

individual variables can be illustrated. A concise review of the existing methods is 

provided by Vesanto (1999). However, depending on the scope of the SOM 

application, the post-processing of the map can be extended to subsequent cluster 

analysis of reference vector properties (e.g. Obayashi and Sasaki, 2003; Reusser et al., 

2008), derivation of probability density functions (Gutiérrez et al., 2005; Kim et al., 

2006), likelihood estimation (Kim et al., 2006) or local modelling (Vesanto, 1997; 

Principe et al., 1998; Hsu et al., 2002). An SOM may also be used in hybrid 

approaches along with other ANN where it serves as a pre-processor for clustering the 

input data domain (Abrahart and See, 2000; Moradkhani, 2004; Jain and Srinivasulu, 

2006) 

The most notable properties of the mappings produced by the SOM algorithm can be 

summarized as follows:  
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• The SOM provides a discrete approximation of the input data space such that the 

reference vectors follow the distribution of the input data. As the reference vectors 

represent local conditional expected values of the data the SOM can be seen as 

essentially equivalent to a discretized form of principal curves (Kaski, 1997; Haykin, 

1999), i.e. a generalization of the principal component analysis. Principal component 

analysis (PCA) can be used to determine the axes of a linear sub-space that preserve a 

maximum of the variance of the data. However, as these axes are linear, PCA cannot 

account properly for curved or arbitrarily shaped data distributions which are 

frequently encountered e.g. when evaluating the results of Monte-Carlo experiments 

with environmental models. In conjunction with SOM PCA is often used to visualize 

the training process and to show how the reference vectors adapt to the distribution of 

the training data (Fig. 3). Principle curves constitute a generalized form of PCA: 

Instead of projecting the data into a linear subspace, the principle curves span a non-

linear sub-space using smooth curves that are formed by the mean value of all data 

points that project to it. Thus, each point on a principal curve constitutes a conditional 

expectation value. 

• The topology preservation has the advantage that it allows to see the data which is 

used for the training in context. 

• Patterns in the input data that occur more frequently are mapped onto a larger area of 

the map. 

• The SOM has visually appealing properties that facilitates the comprehension of the 

data. 

Oja et al. (2002) reports that from the introduction of the SOM algorithm in 1981 until 2001 

more than 5300 papers have been published that either apply the algorithm, have benefited 

from SOM or contain an analysis of it. Within the period of 1988 until 1999 Oja et al. (2002) 

predominantly recorded diverse applications in fields such as image and video processing, 

pattern recognition, mathematical applications, artificial intelligence, engineering in biology 

and medicine, coding, speech, control, signal processing, circuits, documentation as well as 

business and administration. Since 2001 more than 2000 additional papers on SOM have been 

published4, this may also include findings from other disciplines.  

                                                 
4 The bibliography is available in BibTeX format at the URL http://www.cis.hut.fi/nnrc/refs/
Following this reference, 7718 works have been based on SOM until 30.05.2007 (last update of the page). 
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Although applications of artificial neural networks (ANN) are already subject to intensive 

research in environmental modelling and the water resources field (see Minns and Hall (2005) 

as well as Govindaraju and Ramachandra Rao (2000) for an overview) it can well be assumed 

that SOM has not yet found this widespread popularity. Yet, numerous possibilities for 

applications are evident which is also exemplified by the existing applications of SOM in 

hydrology in neighbouring disciplines. In this regard, Kalteh et al. (2008) report a steady 

increase in the use of SOM in the water resources area in the recent years which, last but not 

least, is also due to the robustness and the outlier- as well as noise tolerant properties of the 

method (Allinson and Yin, 1999). 

 

Fig. 3. Visualization of reference vector positions (+) in relation to the training data. 

In a rather general sense, the SOM is one of several methods that can be used for time series 

clustering (Warren Liao, 2005), process monitoring (Alhoniemi et al., 1999; Simula et al., 

1999), time series forecasting (Simon et al., 2005) or local time series modelling, as already 

mentioned above. 

In one of the earliest applications to hydrological issues Boogaard et al. (1998) explored the 

clustering of discharge patterns of the Mekong river based on monthly averaged discharges 

from 1925 to 1986 on a 6 × 6 SOM grid. Their preliminary study unexpectedly resulted in a 
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physically meaningful classification of different annual discharge characteristics. They further 

applied the SOM successfully to analyze daily records of ecological and hydrochemical 

parameters which allowed for an ecological classification of 9 lakes. Similarly, Lischeid 

(2003, 2006) reports a very successful application of an SOM to analyze spatial and temporal 

trends in hydrochemical groundwater data. As a consequence, the approach is being used 

within the groundwater quality monitoring network of the Bavarian Geological Survey. In a 

similar context, Peeters et al. (2007) developed a new variant of the SOM algorithm 

(GEO3DSOM) which allowed to explicitly incorporating three-dimensional knowledge on the 

data. 

SOM-based analysis concisely captures the spatial and temporal variability in climatological 

phenomena and lends itself for a wide range of applications in meteorology and synoptic 

climatology (see also Hewitson and Crane, 2002; Sang et al., 2008). Lin and Chen (2006) 

apply an SOM to precipitation data from 154 rain gauges in Taiwan, with a total of 5920 

annual rainfall observations, in order to identify homogeneous regions for regional frequency 

analysis. Based on 17 input variables (gauge latitude, gauge longitude, elevation, mean annual 

rainfall, standard deviation of annual rainfall and mean monthly rainfall for every month) and 

a map with 12 × 12 neurons they obtained eight homogeneous regions. They further 

compared the SOM results with the k-means and Ward’s clustering method and conclude that 

these techniques were outperformed by the SOM approach in terms of membership accuracy. 

Kalteh and Berndtsson (2007) explore the use of an SOM both for the regionalization and 

interpolation of precipitation in northern Iran, a region with considerable complexity in the 

precipitation mechanism. In their approach, classification of rainfall data is performed using 

an unsupervised SOM whereas for the subsequent interpolation a supervised SOM is applied. 

They conclude that the SOM is capable of finding regions with similar precipitation 

mechanisms and can be used to accurately interpolate rainfall data. Gutierrez et al. (2005) 

present an interesting application from the field of meteorology: They use SOM to 

characterize atmospheric patterns for the downscaling of atmosphere-ocean multi-model 

ensemble forecasts. To this end, probability density functions (PDF) for particular phenomena 

are derived directly from the SOM of climatological reanalysis data which are subsequently 

combined with a representation of local precipitation regime. Thus a probabilistic numerical 

precipitation forecast for a given station is achieved using PDF derived from a SOM of 

climatological reanalysis data. Using these PDF they were further able to derive an entropy-

based measure of the predictability for the downscaled forecast. 
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In the context of watershed- as well as land surface modelling various researchers achieved 

remarkable results using the SOM in hybrid approaches where it is being used to divide the 

input data domain into distinct regions of event types which are subsequently represented by 

separate models. This way, Abrahart and See (2000) performed a grouping of hydrologic 

event types based on six hours of previous flow data and an SOM consisting of 8 × 8 map 

units which was used to implement a multi-model approach using separate ANN for different 

clusters. The results outperformed an ANN which was run on the entire data and an 

autoregressive moving average (ARMA) model. Similarly, Jain and Srinivasulu (2006) 

explored the use of a one-dimensional SOM model for decomposing the rainfall-runoff data 

space into different classes. The SOM is subsequently coupled to different ANN (feed-

forward MLPs) as well as conceptual approaches in order to model the individual, fragmented 

rainfall-runoff relationships. One of the most interesting applications in this area is the Self-

Organizing Linear Output mapping network (SOLO) developed by Hsu et al. (2002). The 

SOLO uses a SOM-based classification of rainfall-runoff patterns in combination with local 

linear regressions. The six input variables for the training of a 15 × 15 SOM consisted of area 

averaged rainfall data for three days along with the corresponding discharge measurements. 

After the training was accomplished the authors found that the resulting map provided insight 

into the different stages of the rainfall-runoff process in the catchment such that different 

regions on the map represented meaningful temporal characteristics of the process which 

could be classified into base flow region, increasing rainfall region, peaking hydrograph 

region, quick recession and slow recession region (cf. Boyle et al., 2000). They fitted separate 

piece-wise linear regression functions for the data projected onto the individual neurons 

which was used to perform one-day ahead predictions of streamflow. The performance of 

SOLO was subsequently compared to an autoregressive model with exogenous inputs (ARX), 

a multi-layer feed-forward network (MFN), a recurrent neural network (RNN) and to a 

conceptual rainfall-runoff model (SAC-SMA). The authors found that the SOLO as well as 

the MFN were capable of outperforming the remaining approaches. More recently, 

Abramowitz et al. (2006, 2007) used the SOLO approach by Hsu et al. (2002) to characterize 

and quantify the systematic output error of a land surface model as a function of its 

meteorological input data. Similarly, Abramowitz et al. (2008) applied an SOM to cluster 

time steps with similar meteorological condition in order to examine the conditional bias of 

land surface models; and to evaluate multi-model independence (Abramowitz and Gupta, 

2008). Another hybrid architecture was presented by Moradkhani et al. (2004) who developed 

the Self-Organizing Radial Basis (SORB) function for one-step ahead forecasting of daily 
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streamflow. SORB primarily resorts to a Gaussian Radial Basis function (RBF, see Haykin, 

1999; Govindaraju and Zhang, 2000). The center and spread parameters, however, which are 

required for the Gaussian transfer function were derived using an SOM. This is because, 

according to the principles of SOM, the reference vectors represent local conditional 

expectations and can thus be regarded as centers. Further, the spread parameters were 

calculated from the mapping based on the density of data items that were attributed to each 

map unit, i.e. the distance of all data items from its corresponding reference vector. (Note that, 

this way, Moradkhani et al. (2004) successfully capitalized on the statistical properties of the 

reference vectors). In terms of forecasting accuracy, SORB was found to provide superior 

performance compared to a linear regression model, a feed-forward MLP and a SOLO (Hsu et 

al., 2002).  

Apart from rainfall-runoff modelling itself, SOM has also been successfully applied in the 

context of modelling or inferring physical and hydrological properties of catchments. Schütze 

et al. (2005) developed an enhanced Self-Organizing map architecture that includes multiple 

input-output relationships (entitled SOM-MIO) and, based on a linear interpolation scheme, 

the possibility to generate continuous outputs. The SOM-MIO proved capable of 

approximating the Richards equation and even performed its inverse solution with outstanding 

accuracy. The authors report that the different tasks did not require additional training and 

that, in simulating a laboratory irrigation experiment, the SOM-MIO demonstrated improved 

performance compared to a numerical simulation model. Further, Huang et al. (2003) present 

a framework for transferring model parameters from data-rich areas to data sparse areas which 

is illustrated with the b-parameter of the Variable Infiltration Capacity (VIC) model. Their 

methodology is based on a two-stage approach: In a first step a SOM and successive k-means 

clustering is used to categorize soil data sets. Subsequently a supervised neural network along 

with a Bayesian regularization scheme is applied to each of these clusters in order to establish 

nonlinear relationships between the soil information and model parameters. Islam and Kothari 

(2000) introduce a methodology based on SOM to characterize the spatial distribution of soil 

moisture and soil texture from remote sensing data. The spatial structure of 21,204 soil 

moisture measurements with a spatial resolution of 200 m is represented in a map of 49 

neurons. The authors highlight that this mapping is capable of preserving the second order 

statistical properties of the data and that the preservation of spatial information in the map 

allows reconstructing the soil moisture map at different scales of aggregation. They further 

exploit the relationship between the space-time evolution of brightness temperature data and 

soil types in order to identify soil types using SOM and a sequence of remotely sensed 
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images. In this approach the input data for the SOM consists of (irregular) time series of 

brightness temperature data for each pixel. Although, in their study, the number of neurons 

used for the SOM is based on the number of known soil classes, Islam and Kothari (2000) 

point out that their approach does not necessarily rely on this a priori knowledge. The trained 

SOM of only three nodes clusters the brightness temperature time series into distinct 

categories that represent the archetypal dry-down characteristics of different soil textural 

classes. A comparison of their SOM generated map of soil textural classes revealed very close 

correspondence to the observations. A similar approach was later used by Chang (2001) to 

infer soil hydraulic properties. With the aim of developing practical measures for soil quality 

Mele and Crowley (2008) use SOM to examine the interrelationship between various 

biochemical signatures of microbial communities, genetic signatures and various soil 

chemical, physical and biological parameters. They conclude that SOM provides an intuitive 

means that could assist land managers to examine and interpret complex relationships in soil 

analysis data. 

The abovementioned studies indicate that SOM can serve as a valuable tool in a variety of 

stand-alone and hybrid approaches for modelling the patterns or dynamics of environmental 

systems. Far less attention, however, has been directed towards applying SOM for the 

evaluation of the complex behaviour of deterministic simulation models. Reusser et al. (2008) 

demonstrate an interesting approach in this field which, apart from Appendix A, B and C, at 

present remains the only publication in this field. They analyze the temporal dynamics as well 

as the type of model error by using an SOM for the assessment of multiple performance 

measures from a moving window approach (cf. Wagener et al., 2003a). The assessment 

resorts to a set of performance measures which are calculated for a time-variable window, 

yielding a vector of performance measures for each time step. Subsequent thinning of these 

vectors is carried out in order to remove measures that show temporal correlation. The 

remaining measures are interpreted using synthetic peak error functions and SOM for further 

data reduction and classification of error types. Although impressive diagnostic possibilities 

of this approach have been demonstrated, the interpretation of the results appears to be rather 

cumbersome. 

 

3 Three studies towards hydrological model evaluation using Self-Organizing 
Maps 

In the three studies presented in this work a SOM is used to obtain a topologically ordered 

classification and clustering of model generated time series. 
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In the first study (Appendix A5) SOM is used to differentiate the spectrum of simulated time 

series obtained from Monte-Carlo simulations with the distributed conceptual watershed 

model NASIM (Hydrotec, 2005). This first contribution is primarily geared towards 

circumventing the lack of discriminatory power which is inherent to aggregating statistical 

performance measures. What is therefore explored is whether a SOM can be applied to yield a 

topologically ordered mapping of model output time series according to the similarity in the 

temporal patterns of their residuals. To this end, the properties of the SOM mapping are 

examined by relating its elements to statistical performance measures and to the parameter 

values that have been used to generate the model results. Further, the SOM is used to identify 

those model realizations among the set of Monte-Carlo realizations that most closely 

approximate the temporal pattern of the measured time series. The result is analyzed and 

compared with the manually calibrated model as well as with the result of a single-objective 

Shuffled Complex Evolution algorithm (SCE-UA, Duan et al., 1992) which is used to 

minimize the RMSE. The results confirm that it is possible to successfully train an SOM even 

if the dimensionality of the individual data items is very high. In the present case, each input 

data item (and consequently each reference vector) represents a time series consisting of more 

than 17,400 time steps. It is illustrated that, irrespective of this high dimensionality, very 

individual properties of the training data time series were attributed to each element of the 

resulting 22 × 15 SOM such that the mapping preserves the correlation structure of various 

statistical measures of performance. It is further shown that, the proposed SOM application is 

capable of revealing information about parameter sensitivities as well as parameter 

interactions that has not been available when using scatter plots for model evaluation. The 

model realizations obtained by using the same mapping in order to identify the model 

realizations that most closely approximate the observations largely outperformed the result of 

the SCE-UA application as well as the manual calibration. These findings provide another 

indication of the high discriminatory power which is supported by the Self-Organizing map 

and thus encourages its further use for model evaluation purposes. 

Based on the same data, the second study Appendix B6 proposes an improvement to the 

previous approach. This is achieved by linking the SOM to the abovementioned Signature 
                                                 
5 Herbst, M., and Casper, M. C.: Towards model evaluation and identification using Self-Organizing Maps, 
Hydrology and Earth System Sciences, 12, 657-667, 2008. 
http://www.hydrol-earth-syst-sci.net/12/657/2008/hess-12-657-2008.pdf
 
6 Herbst, M., Gupta, H. V., and Casper, M. C.: Mapping model behaviour using Self Organizing Maps, 
Hydrology and Earth System Sciences, 13, 395-409, 2009. 
http://www.hydrol-earth-syst-sci.net/13/395/2009/hess-13-395-2009.pdf
 

 21

http://www.hydrol-earth-syst-sci.net/12/657/2008/hess-12-657-2008.pdf
http://www.hydrol-earth-syst-sci.net/13/395/2009/hess-13-395-2009.pdf


Index concept by Gupta et al. (2008) which defines the similarity between data items in a 

meaningful and hydrologically interpretable way. Instead of working directly with the model 

output time series, these are converted to vectors of five Signature Index values each, using 

the Signature Indices proposed by Yilmaz et al. (2008). Once the training is accomplished, 

every neuron of the map represents the Signature pattern of the model realizations that have 

been projected to it in the course of the training. It is demonstrated that, this way, the map 

becomes interpretable in terms of different hydrological characteristics and thereby illustrates 

the trade-offs in model behaviour. Similar to the previous approach (Appendix A) this 

mapping is capable of providing preliminary insights into model parameter sensitivities. In 

addition, however, it is shown that it also allows interpreting the parameter function in the 

hydrological context, even in the absence of prior knowledge on the model structure. Also, the 

set of model realizations that most closely approximate the observed discharge time series (in 

terms of Signature Index pattern) compares favourably to the model realization obtained by 

minimizing the RMSE using the SCE-UA algorithm. Thus, the results of the second study 

(Appendix B) indicate that relevant parts of the information contained in the simulated time 

series can be extracted and reproduced in an efficient and interpretable way by linking the 

Signature Index concept to the SOM. In addition, by reducing the amount of data processed in 

the SOM training, the computational burden has been shrunk immensely. 

The third contribution (Appendix C7) presents a comparative analysis of the distributed 

hydrological watershed models NASIM (Hydrotec, 2005), LARSIM (Bremicker, 2000) and 

WaSIM-ETH (Schulla and Jasper, 2001), following an approach similar to the second study 

(Appendix B). Using five specifically conceptualized indices that extract data on peak 

discharge characteristics it is examined in how far the individual models are capable of 

reproducing flood events present in the observed discharge time series. Again, the set of 

model realizations that most closely approximate the observed discharge time series is 

determined and compared to reference simulations obtained by implementing a simple 

calibration strategy by means of the SCE-UA algorithm. The results obtained for NASIM and 

WaSIM-ETH represent the characteristics of the observed time series with similar or partially 

superior accuracy, compared to the reference simulations, whereas LARSIM is clearly 

outperformed. However, it is shown that the poor results for LARSIM are attributable to an 

obvious incompatibility of LARSIM with respect to the constraints imposed by applying the 

                                                 
7 Herbst, M., Casper, M., Grundmann, J., and Buchholz, O.: Comparative analysis of model behaviour for flood 
prediction purposes using Self-Organizing Maps, Natural Hazards in Earth System Sciences, 9, 373-392, 2009. 
http://www.nat-hazards-earth-syst-sci.net/9/373/2009/nhess-9-373-2009.pdf
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five index measures. The relative differences between the individual model performances 

essentially remain intact when the selected model realizations are applied to a validation event 

with extreme peak discharge. However, in this case, none of the selected models proves 

capable of properly representing it.  

In particular, this study takes advantage of the fact that the SOM allows for a simultaneous 

evaluation of the data obtained from the three models. The results highlight that each of the 

models has a very specific behaviour with respect to the representation of peak discharges 

such that only very few realizations can be characterized as essentially equivalent in terms of 

the indices. It is argued that the possibility of a direct comparison of model behaviour 

properties lends itself for potential applications, e.g. in a model ensemble framework where 

realizations from different models are selected according to the specific requirements of the 

modelling situation. 

 

4 Discussion, conclusions and further directions 

The abovementioned results demonstrate the utility and versatility of SOM for model 

evaluation purposes. In summary, they indicate: 

• advantages of a SOM-based evaluation of Monte-Carlo simulation results in 

comparison to common methods such as scatterplots and objective function response 

surfaces, in particular with a view to identifying and understanding parameter 

sensitivities (see Appendix A and B); 

• the possibility of using SOM to identify the set of model realizations (among the 

Monte-Carlo data) that most closely approximate the observed discharge time series in 

terms of hydrologically relevant characteristics which, however, can be tailored to fit 

the requirements of the particular application (Appendix B); 

• that SOM can be used for a direct, and relatively objective, comparison of the 

performances of different model structures (Appendix C). 

Based on what is already known about the properties of SOM, it can thus be concluded that 

these findings corroborate the underlying hypothesis of this work (Sect. 1.5). 

The studies presented here, however, only constitute a first step towards using SOM in the 

context of model evaluation. Nevertheless, the results of the studies as well as the 

achievements of other researchers encourage a more systematic exploration of its potential in 

this field. In this respect, SOM offers many aspects and interesting offshoot directions that 
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deserve further investigation. In principle, there are two promising fields for future efforts: On 

one hand, the properties of SOM generated mappings and their relationship to more 

established methods is not yet fully understood. More insights into similarities and differences 

of the techniques are needed in order to bring about systematic developments of new 

approaches in conjunction with SOM. On the other hand, the current literature on the 

application of SOM in the context of environmental modelling does not take into account the 

more recent developments of self-organizing neural architectures. Thus, given the promising 

results that have been reported with the ‘classic’ SOM, there is probably an interesting 

potential for future developments. 

4.1 Scope for further research on the classic SOM 

With respect to the ‘classic’ SOM, a systematic investigation towards gaining a better 

comprehension of SOM should start with a careful examination of the effects of the data 

normalization which is carried out prior to the training (see Appendix B, Sect. 2.4): The 

normalization of simulated data to values having zero mean and a variance of one is very 

likely to have immense effects on model evaluation because it causes every time step of a 

time series to have equal importance when used in combination with e.g. least squares 

statistics (pers. comm. Hoshin V. Gupta, 30.4.2008). Finding more answers on this issue will 

thus shed new light on the first study (Appendix A). Interestingly, the transformation of 

discharge time series prior to the evaluation has a parallel in the λ-transformation used in 

conjunction with the heteroscedastic maximum likelihood error (HMLE; Sorooshian and 

Dracup, 1980). The HMLE assumes the variance to vary with the magnitude of flow and the 

λ-transformation is used herein to stabilize the residual variance across the ranges of flow 

(Yapo et al., 1996). With regard to the SOM training itself, the role of the learning rate 

parameter, the neighbourhood function and the similarity measure (see Appendix B, Sect. 2.3) 

should be examined in more detail so as to improve the properties of the SOM for a specific 

application. Further, it needs to be elucidated to what extent and under which circumstances 

the SOM and identification of the best-matching unit can be used to assist model uncertainty 

estimation or optimization strategies. To this end, the statistical properties of SOM should 

come into play. This issue hitherto has found only marginal attention in this context. Kim et 

al. (2006) among others, however, already demonstrated that probability densities and 

likelihoods can be estimated from the SOM. Another important point is that the Signature 

Indices used in Appendix B (and also those indices used in Appendix C) by no means make a 

claim to completely cover all relevant information contained in the data. This leads to a 

 24 



consideration of model in- and output data in the context of information theory: Very little is 

known concerning the requirements of a ‘parsimonious’ description of model behaviour, i.e. 

how to exclude redundant information on model behaviour. Transferred to the SOM context 

this means that further research on the development of SOM-based applications in the field of 

hydrological modelling will inevitably be confronted with the question of what constitutes a 

sufficient and informative metric (how many ‘indices’ – generally speaking – are required to 

extract a non-redundant ‘fingerprint’ of a simulated time series?) and the question concerning 

the number of neurons required to capture all characteristics of model behaviour. This again 

leads to the more general problems of time series data mining: Defining and identifying the 

information content of the data constitutes the key towards a more meaningful and precise 

application of SOM and all other frameworks for the evaluation and analysis of hydrological 

models. 

Some further motivation to investigate SOM-based local modelling may arise from the field 

of engineering science, where Principe et al. (1998) present an interesting approach, quite 

similar to the one introduced by Hsu et al. (2002): They perform non-linear time series 

modelling on a SOM which is used to represent the reconstructed state space of the observed 

system. To this end, the phase-space of the input signal is reconstructed by means of delay 

embedding. Following Takens’ theorem (Takens, 1981; Sauer et al., 1991) it is possible to 

reconstruct the state space of a chaotic dynamical system from a sequence of observations by 

means of delay embedding, i.e. a sequence of state vectors is created from a given time series 

x(t), where the current state is x(t) = [x(t – (N – 1)τ), x(t – (N – 2)τ),…,x(t)]T, given that the 

delay τ and N is known. Subsequently, the SOM is trained to form a discretized representation 

of the input state space and fitting of local linear models is performed directly over a matched 

neighbourhood of the SOM neurons. The difficulty of phase-space embedding lies in 

determining the optimal embedding parameters τ and N, i.e. the delay time and the embedding 

dimension. Additionally, in order that method be effective it is required that the observed 

system displays chaotic behaviour. Interestingly, Sivakumar et al. (2000) provides 

“preliminary evidence” (Sivakumar et. al., 2000, p. 407) of the existence of chaos in monthly 

rainfall-runoff data from the Swedish Göta basin and successfully performed non-linear 

prediction using the concept of phase-space embedding for reconstructing the attractor of 

hydrological time series, however, without employing the effective SOM-based technique to 

represent the state space. In order to perform non-linear prediction also Walter et al. (1990) 

propose the use of SOM in conjunction with a discretization of the state space. Thus, there is 

some evidence that may encourage further work in this field. 
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4.2 Developments in self-organizing neural architectures 

So far, all studies (known to the author of this thesis) in the context of SOM and modelling 

have been based on the application of the ‘classic’ SOM architecture (or derivatives of the 

same) which has already been proposed in the early 1980s (Kohonen, 2001). Since the 1990s, 

however, a series of interesting developments in the field of self-organizing neural algorithms 

have been reported which may as well give rise to improved applications and novel 

perspectives in environmental modelling. On one hand, a tendency towards generalizing the 

SOM can be noted, with a view to expanding its fields of application: With the Adaptive-

Subspace SOM (ASSOM) Kohonen (1995) himself introduced a new SOM architecture in 

which each neuron, instead of a reference vector, represents a subspace. He demonstrated that 

the ASSOM automatically forms wavelet- and Gabor-type filters when trained with displaced 

or moving input patterns and thus lends itself for invariant feature detection. An extreme case 

of generalization can be seen in the development of modular network SOMs (mnSOM; 

Tokunaga et al., 2005) in which the reference vectors are replaced by functional modules 

which can even contain another SOM (SOM²; Furukawa, 2005). On the other hand, efforts 

have been directed towards loosening the constraints of a rigid, two-dimensional grid 

topology in which the number of neurons is considered to be constant. An exhaustive review 

of the confusing wealth of publications available on these SOM developments and their 

offspring is far beyond the scope of this work. In the context of the abovementioned studies 

and of the present work, however, it is worth mentioning some developments, in particular 

those which make use of growing neural networks. These are unsupervised or supervised 

learning networks in which the number of neurons is not pre-defined but evolves during the 

training process, forming a multidimensional graph-like representation of the data space. This 

architecture was dubbed Growing Neural Gas (GNG; Fritzke, 1994). In contrast to the related 

Neural Gas algorithm presented by Martinetz (1993), which is a vector quantization method 

where only the neighbourhoods are adaptively defined during the training, a GNG is 

developing additional nodes and connections in the course of the training process and is 

therefore able to learn topological relations of a given training data set (Fritzke, 1995b). A 

striking parallel to the aims of Hsu et al. (2002) or perhaps Schütze et al. (2005) can be seen 

in the work of Fritzke (1995a): Following the basic ideas of GNG he proposes an incremental 

network model for supervised learning where each unit is associated to a local linear mapping. 

The error information obtained during the training is used in order to determine where to 

insert new neurons, whereas the local linear models are interpolated from the neighbours. The 

author has demonstrated that the so-called GNG-LLM network can be applied to perform 
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function approximations. By introducing a criterion for the removal of “useless” neurons 

Fritzke (1997) developed a self-organizing network algorithm which is even capable of 

following non-stationary distributions. 

The fields of application for GNG (and related methods) are basically the same as for the 

classic SOM. The primary advantage of incremental neural networks, and specifically of 

GNG, is that, in contrast to SOM, the number of neurons, which is proportional to the 

preserved amount of potential information, and the dimensionality of the target space is not 

required to be defined a priori. As the “true” information content of the data which is 

processed, e.g. in time series modelling, remains unclear it is always desirable to obtain a non-

redundant representation of the training data distribution. Hence, GNG based methods may 

provide some advantages as they produce small and well-generalizing networks (Fritzke, 

1994). A self-organizing network algorithm with the capability to follow non-stationary 

distributions might lend itself for interesting applications in recursive model uncertainty 

estimation strategies where successively new information has to be processed. 
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Abstract. The reduction of information contained in model
time series through the use of aggregating statistical perfor-
mance measures is very high compared to the amount of in-
formation that one would like to draw from it for model iden-
tification and calibration purposes. It has been readily shown
that this loss imposes important limitations on model identifi-
cation and -diagnostics and thus constitutes an element of the
overall model uncertainty. In this contribution we present an
approach using a Self-Organizing Map (SOM) to circumvent
the identifiability problem induced by the low discrimina-
tory power of aggregating performance measures. Instead, a
Self-Organizing Map is used to differentiate the spectrum of
model realizations, obtained from Monte-Carlo simulations
with a distributed conceptual watershed model, based on the
recognition of different patterns in time series. Further, the
SOM is used instead of a classical optimization algorithm
to identify those model realizations among the Monte-Carlo
simulation results that most closely approximate the pattern
of the measured discharge time series. The results are an-
alyzed and compared with the manually calibrated model
as well as with the results of the Shuffled Complex Evo-
lution algorithm (SCE-UA). In our study the latter slightly
outperformed the SOM results. The SOM method, however,
yields a set of equivalent model parameterizations and there-
fore also allows for confining the parameter space to a region
that closely represents a measured data set. This particular
feature renders the SOM potentially useful for future model
identification applications.

1 Introduction

Information from existing or additional observed sources is
crucial to decrease model uncertainty. Model evaluation and
model identification usually resort to aggregating statistical

Correspondence to:M. Herbst
(herbstm@uni-trier.de)

measures to compare observed and simulated time series
(Legates and McCabe Jr., 1999). In this context these mea-
sures involve considerable problems (Yapo et al., 1998; Lane,
2007): many objective functions imply assumptions about
the error properties that are often violated when dealing with
the agreement between measured and simulated time series:
very often the errors are (1) not normally distributed, (2) do
not have a mean of zero, (3) show autocorrelation or (4) are
heteroscedastic. To certain extent, the choice of performance
measures can be made such that the evaluation makes cer-
tain emphasis on different parts of the hydrograph (Gupta et
al., 1998). Yet aggregating measures of performance have in
common that the information contained in the errors is aggre-
gated into a single numerical value, regardless of the charac-
teristic and the actual pattern of the error. In consequence,
essentially different model results can be obtained with close
to identical performance measure values although the param-
eter sets used to generate them are widely scattered through-
out the parameter space. Therefore the information conveyed
by aggregating goodness-of-fit measures is likely to be insuf-
ficient to unambiguously differentiate between a number of
alternative model realizations (and thus cannot give evidence
of their equivalence, i.e. equifinality) (Gupta et al., 2003;
Beven and Binley, 1992). This lack of discriminatory power
imposes limitations on model identification and constitutes
an important source of model uncertainty (Wagener et al.,
2003). In contrast, one strong point of the manual calibration
procedure resides on the ability to use various complemen-
tary information sources, e.g. river discharge, groundwater
level or soil moisture observations (Franks et al., 1998; Lamb
et al., 1998; Seibert, 2000; Ambroise et al., 1995). In the first
instance, however, its success is due to the simultaneous eval-
uation of numerous different characteristics related to a time
series (Gupta et al., 2003) which allows for a much better
extraction of information from the available data. Multiple-
criteria approaches that seek to emulate this strategy to some
extent have therefore considerably improved model identifi-
ability. Important examples of successful applications of this
strategy can be found e.g. in Gupta et al. (1998), Boyle et
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al. (2000), Vrugt et al. (2003) and Wagener et al. (2004). Yet
model identification methods that depend on common sta-
tistical approaches might still not be able to extract enough
information relevant to this task (Gupta et al., 2003). An ex-
citing new point of view for model evaluation and identifica-
tion that tackles these shortcomings emerges from the trans-
formation of the existing data into the frequency domain and
the wavelet domain (e.g. Clemen, 1999; Lane, 2007; Monta-
nari and Toth, 2007).

In order to improve model identifiability (as proposed by
Gupta et al., 1998; Yapo et al., 1998; Boyle et al., 2000)
and the extraction of information from existing data we in-
troduce an approach that, in a sense, emulates the visual as-
sessment of model hydrographs. To circumvent the ambigu-
ity induced by standard objective functions a Self-Organizing
Map (SOM) (Kohonen, 2001) is used to represent the spec-
trum of model realizations obtained from Monte-Carlo simu-
lations with a distributed conceptual watershed model based
on the recognition of different patterns of model residual time
series.

Self-Organizing maps have found successful practical ap-
plications in speech recognition, image analysis, catego-
rization of electric brain signals (Kohonen, 2001) as well
as process monitoring (Alhoniemi et al., 1999; Simula et
al., 1999) and local time series modelling (Vesanto, 1997;
Principe et al., 1998; Cho, 2004). Similarly diverse are the
currently emerging applications of SOM in the field of hy-
drology: Examples for the analysis of hydrochemical data
can be found in Peeters et al. (2007) and Lischeid (2006).
Scḧutze et al. (2005) apply a variant of the SOM to approx-
imate the Richards equation and its inverse solution. Hsu et
al. (2002) successfully performed system identification and
daily streamflow predictions with the Self-Organizing Lin-
ear Output Mapping Network (SOLO). They used a SOM
to control local regression functions according to the stage
of the rainfall-runoff process. Kalteh and Berndtsson (2007)
use SOM for the interpolation of monthly precipitation.

In Sect. 2.1 of this contribution we summarize the princi-
ples and advantages of SOM and describe how this method
is applied to yield a topologically ordered mapping of model
output time series according to the similarity in the tempo-
ral patterns of their residuals obtained through Monte-Carlo
simulations. The properties of this “semantic map” of model
realizations will be examined by relating the map elements
(i) to the standard performance measures of the associated
model runs and (ii) to the parameter values that have been
used to generate the model results. It is shown that a SOM
is capable of giving visual insights into the parameter sen-
sitivity and the operating of the model structure. Moreover,
in the second part of this article these properties are used
to introduce an application of the Self-Organizing Map for
parameter identification purposes. The SOM is used to iden-
tify those model realizations among a given set of Monte-
Carlo simulations results that most closely approximate the
pattern of the measured time series, i.e. the “zero-residual”

realization. The result will be analyzed and compared with
the manually calibrated model as well as with the result of
the single-objective Shuffled Complex Evolution algorithm
(SCE-UA, Duan et al., 1993).

2 Methods

2.1 The Self-Organizing Map

The Self-Organizing Map is a type of artificial neural net-
work (ANN) and unsupervised learning algorithm that is
used for clustering, visualization and abstraction of multi-
dimensional data. Unlike other types of ANN it has no out-
put function. Instead it maps vectorial input data items with
similar patterns onto contiguous locations of a discrete low-
dimensional grid of neurons in a topology-preserving man-
ner. Therefore its output can be compared to a semantic map:
nearby locations on the map are attributed similar data pat-
terns. Each of the map’s neurons becomes “sensitized” to
a different domain of the patterns contained in the vectorial
training data items, i.e. the map units act as decoder for dif-
ferent types of patterns contained in the input data (Kohonen,
2001).

Each input data itemx∈X is considered as a vector

x = [x1, x2, . . . , xn]T ∈ <
n (1)

with n being the dimension of the input data space. A fixed
number ofk neurons indexedi is arranged on a regular grid
G with each neuron being associated to a weight vector

mi = [µi1, µi2, . . . , µin]T ∈ <
n (2)

also called reference vector, which has the same dimen-
sionality as the input vectorsx∈X. These weights connect
each input vectorx in parallel to all neurons ofG. More-
over the neurons are connected to each other. In our case
this interconnection is defined on a hexagonal grid topology.
The training of the SOM now comprises the following steps
(Fig. 1):

1. The components of themi are initialized with a se-
quence of values from points on the plane spanned by the
two greatest eigenvectors of the data distribution. This pro-
cedure assures a faster and more reliable convergence of the
algorithm (Kohonen, 2001).

2. Randomly pick an input vector samplex∈X and com-
pute the Euclidean distance

‖x − mi‖ =

√√√√ n∑
j=1

(
xj − mij

)2 (3)

betweenx and each of the reference vectorsmi (as a measure
of similarity, generally any other metric can be applied as
well) and find the neuronc(x) with a reference vectormc

such that

‖x − mc‖ = min
i

{‖x − mi‖} (4)

Hydrol. Earth Syst. Sci., 12, 657–667, 2008 www.hydrol-earth-syst-sci.net/12/657/2008/



M. Herbst and M. C. Casper: Model evaluation with SOM 659

(0;0;1)

(1;1;3)

(1;2;4)

(2;3;4)

(3;3;5)

(2;5;5)

(3;5;6)

(1;3;1)

(2;4;2)

4.08

2.71

2.00

1.41

0.82

1.00

0.58

3.16

2.38

Step 2:
randomly pick input vector 
xєX - here: x=(3;4;6),
calculate Euclidean distance to 
each reference vector, find BMU

(0;0;1)

(1;1;3)

(1;2;4)

(2;3;4)

(3;3.2;5)

(2.2;4.8;
5.2)

(3;4.5;6)

(1;3;1)

(2;4;2)

x=
(3;4;6)

Step 1:
Initialize reference 
vectors of the units
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BMUBMU

Fig. 1. The basic steps of the SOM algorithm.

c is then called the best-matching unit (BMU) and defines the
image of the samplex on the mapG.

3. The nodes that are within a certain distance of the “win-
ning neuron”c are updated according to the equation

mi (t + 1) = mi (t) + α (t) hci (t) [x (t) − mi (t)] (5)

wheret is the number of the iteration step andmi(t) is the
current weight vector which is updated proportionally to the
difference[x(t)−mi(t)]. hci(t) determines the degree of
neighbourhood between the winning neuronc and neuroni
for an inputx∈X, i.e. the rate of adaptation in the neighbour-
hood aroundc. This function is required to be symmetric
aboutc and decreasing to zero with growing lateral distance
from c (Haykin, 1999). Commonly the Gaussian function

hci (t) = exp

(
−

‖rc − r i‖
2

2σ 2 (t)

)
(6)

is used, whereas‖rc − r i‖
2 denotes the lateral distance be-

tween the winning neuron and the neuroni.
σ (t) defines the width of the topological neighbourhood,

which is also monotonically decreasing witht . It is required
thathci(t)→ 0 for t→∞. In Eq. (5) α(t) is called the learn-
ing rate factor (0<α(t)<1) which proportionally to the iter-
ation stept monotonically decreases the rate of change of
the weight vectors. According to Kohonen (2001) an ex-
act choice of the function is not relevant. With Eq. (5) the
training acquires adaptive and cooperative properties through
which the weightsmi are updated to move closer towards the
winning neuron, similar to an elastic net (Kohonen, 2001).

4. Repeat steps 2 and 3 with the next data vectorx until a
fixed number of iterations is reached.

Upon repeated cycling through the training data the map-
ping from the continuous input spaceX onto the spatially

discrete output spaceG acquires the following properties
(Haykin, 1999):

– The reference vectorsmi “follow” the distribution of
the input data vectors such that the mapG provides a
discrete approximation to the input spaceX. This is as
well the reason why dimensionality reduction and data
compression properties can be attributed to the SOM.
The fix number of weight vectorsmi can be interpreted
as pointers for their corresponding neuron into the input
spaceX, hence the elements ofmi can be interpreted
as coordinates of the image of this neuron in the input
space.

– From Eq. (5) immediately follows the topological or-
dering property of the mapping computed by the SOM
such that the location of a neuron on the gridG repre-
sents a particular domain of pattern in the input data.
Moreover, this ordering property at the same time pro-
vides fault and noise tolerant abilities of the mapping
(see also Allinson and Yin, 1999). The local interac-
tions between the neurons provide for the smoothness
of the map.

– Patterns in the input spaceX that occur more frequently
are mapped onto a larger area in the output spaceG.

– A SOM has the ability to select a best set of features
for approximating an underlying nonlinear distribution
corrupted by additive noise. Hence SOM provides a dis-
crete approximation of principle curves, i.e. a general-
ization of principal component analysis.

In the second part of this contribution we make use of the
fact that the SOM can also be applied to project an input data
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Table 1. Statistical goodness-of-fit measures calculated for the model output (Qobs: observed discharge, Qsim: simulated discharge).

Name Description Formula

BIAS Mean error 1
N

N∑
k=1

(
Qobs− Qsimk

)
RMSE Root of mean squared error

√
1
N

N∑
k=1

(
Qobs− Qsimk

)2
CEFFlog Logarithmized Nash-Sutcliffe coefficient of efficiency

N∑
k=1

(ln(Qobs)−ln(Qsimk))
2

N∑
k=1

(
ln(Qobs)−ln(Q̄obs)

)2

IAg Willmott’s index of agreement 1−

N∑
k=1

(Qobs−Qsimk)
2

N∑
k=1

(∣∣Qsimk−Q̄obs
∣∣+∣∣Qobs−Q̄obs

∣∣)2
(Willmott, 1981, 1982) 0≤IAg≤1

MAPE Mean average percentual error 100
N

N∑
k=1

1
Qobs

∣∣Qsimk − Qobs
∣∣

VarMSE Variance part of the mean squared error

√
1
N

N∑
k=1

(
Qobs−Q̄obs

)2
−

√
1
N

N∑
k=1

(
Qsim−Q̄sim

)2
1
N

N∑
k=1

(Qobs−Qsim)2

Rlin Coefficient of determination

N∑
k=1

[(
Qsim−Q̄sim

)(
Qobs−Q̄obs

)]
√

N∑
k=1

(
Qsim−Q̄sim

)2 N∑
k=1

(
Qobs−Q̄obs

)2

vectory onto the discrete output space that has not been part
of the training data manifold. This means that according to
Eq. (4) a neuronc(y) with reference vectormc(y) is activated
for which∥∥y − mc(y)

∥∥ = min
i

{‖y − mi‖} (7)

The “image”c(y) of the projected data itemy then represents
the domain of input data patterns fromX that is most similar
to y. Moreover, as the number of neuronsk is much smaller
than the number of vectors used for the training, this neuron
will be ‘sensitized’ and associated to a number of input data
patterns fromX which will represent the domain of input
data patterns that is closest toy.

2.2 Experimental setup

In our example 4000 residual time series (i.e. the element-
wise difference between the simulated and the observed time
series vectors) constituted the input data vectors of the train-
ing data set. The model time series were obtained from 4000
Monte Carlo simulations (see Sect. 2.3) with the distributed
conceptual watershed model NASIM running at hourly time
steps over a period of two years, i.e. each input data vec-
tor consisted of 17 472 elements. Before the training, nor-
malization of the data after Eq. (8) was carried out to avoid
that high data values (vector elements) dominate the train-
ing because of their higher impact on the Euclidean distance

measure Eq. (3) (Vesanto et al., 2000). Each element of the
input data vectors is normalized to a variance of one and zero
mean value using the linear transformation

x′
= (x − x̄) /σx . (8)

The dimensions of the SOM were determined using a heuris-
tic algorithm (see Vesanto et al., 2000). A coarse training
period of 500 iterations with a large radius for the neigh-
bourhood function was performed followed by a fine tuning
period comprising 100 000 training cycles with short neigh-
bourhood radius. In order to compare the results of the afore-
mentioned Monte-Carlo simulation and the properties of the
SOM, seven measures of performance, listed in Table 1, were
calculated for each model run. Consecutively, a reference
data set, which has not been part of the training data, consist-
ing of the time series of observed data was projected onto the
SOM according to Sect. 2.1. The resulting time series from
this experiment were finally evaluated visually as well as by
means of different diagnostic plots. For the model realiza-
tions that had been associated with each map element (as a
consequence of the training) the means of the correspond-
ing performance measure values were calculated for each
measure individually. The map element for which such a
mean value is maximum (or minimum according to the mea-
sure) is marked as the performance optimum of the corre-
sponding objective function. To determine a common opti-
mum (i.e. balance point) for the seven different performance

Hydrol. Earth Syst. Sci., 12, 657–667, 2008 www.hydrol-earth-syst-sci.net/12/657/2008/



M. Herbst and M. C. Casper: Model evaluation with SOM 661

Fig. 2. Distribution of the mean values of each performance measure from Table 2 over the SOM lattice.

optima on the map, each optimum is considered as a mass
point with unit weight on the SOM grid. The common opti-
mum is calculated as geometric center of mass resulting from
the locations of the seven objective function optima. The x-
coordinatexopt of the common optimum forn optima is cal-
culated using Eq. (9)

xopt =

∑
wixi∑
wi

, i = 1. . .n (9)

wherexi are the x-coordinates of the individual optima on the
SOM grid. Heren=7 andwi = 1 for all i. The y-coordinate
yopt is determined accordingly. To ascertain whether the type
of data used for the training exerts any influence on the SOM
result the experiments were repeated with a SOM trained on
discharge time series instead of residual time series. The
SCE-UA algorithm (Duan et al., 1993) for the model opti-
mization was run with a maximum of 10 000 iterations and
5 complexes (with 5 points each). For successful termination
a change of less than 0.05% of the performance criterion in
three consecutive loops was imposed.

2.3 NASIM model and data

NASIM is a distributed conceptual rainfall-runoff model
(Hydrotec, 2005). It uses non-linear storage elements to
simulate the soil water balance on spatially homogeneous
units with respect to soil and land use, which themselves
are subdivided into soil layers. NASIM is being commer-
cially distributed since the mid-eighties and since then has
found widespread application, e.g. in communal water re-
sources management throughout Germany. The details of the
model are beyond the scope of this contribution. Instead, we
adopt the decision-maker’s point of view and treat the model

Table 2. Free NASIM model parameters of the Monte-Carlo simu-
lation with their respective parameter ranges.

Name Description Range

RetBasis Storage coefficient for 0.5–3.5
baseflow component [h]

RetInf Storage coefficient for 2.0–6.0
interflow component [h]

RetOf Storage coefficient for surface runoff 2.0–6.0
from unsealed surfaces [h]

StFFRet Storage coefficient for 2.0–6.0
surface runoff from urban areas [h]

hL Horizontal hydraulic conductivity factor 2.0–8.0
maxInf Maximum infiltration factor 0.025–1.025
vL Vertical hydraulic conductivity factor 0.005–0.105

as a black-box. Seven parameters were selected for Monte-
Carlo random sampling (Table 2). A priori knowledge was
used to confine the parameter space: the fixed parameters as
well as the ranges of the free parameters were chosen to be
identical to those that participated in the course of a man-
ual expert calibration for the test watershed. The bounds
reproduce the plausible parameter space for this catchment.
No pre-imposed correlation between model parameters has
been assumed. The input data for the model was taken from
the 129 km2 low-mountain range test watershed “Schwarze
Pockau” Saxony (Germany), situated near the border to
Czechoslovakia and tributary of the Freiberger Mulde, a sub-
basin of the Elbe River. The period from 1 November 1994
to 28 October 1996 with hourly discharge and precipitation
measurements was chosen to drive the Monte-Carlo simula-
tion.
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Fig. 3. Distribution of the mean values of each model parameter from Table 1 over the SOM lattice.

3 Results

In the first part of this section the properties of the SOM
trained on residual time series and the relation of its elements
to the traditional performance measures are examined. The
second part is dedicated to testing the projection of measured
data onto the SOM.

3.1 Testing the properties of the SOM

After the training each neuron of the 22×15 SOM is expected
to be activated by a narrow domain of residual patterns from
the input data manifold. The neurons and their respective lo-
cation on the map are identifiable by index numbers. As the
number of neurons is still much smaller than the number of
model realizations used for the training, each neuron repre-
sents a set of Monte-Carlo model realizations that are char-
acterized through similar temporal patterns with respect to
their residuals or discharge values respectively. Because of
the topographic ordering principle neighbouring map units,
in turn, are expected to be “tuned” to similar residual pat-
terns as well. Because the model realizations used for the
training can be referenced by their corresponding index num-
ber on the map, the ordering principles of the “semantic
map” represented by the SOM can be examined. To this end,
the means of different performance measures as well as the
mean values of the model parameters on each map element
are calculated according to Sect. 2.2. This allows to assess
the properties of the map’s ordering principle with respect to
well known attributes such as (a) the distribution of perfor-
mance measures and (b) the distribution of different model
parameter values over the map lattice. Referring to (a) seven
performance measures have been calculated for each model

realization (Table 1). For each of them individual SOM lat-
tices were colour-coded according to the mean of the perfor-
mance measure of the model runs associated with each map
unit. Figure 2 shows the distribution of the performance mea-
sures from Table 1 on the SOM lattice. The same procedure
was repeated for the values of the free parameters such that
the distribution of mean parameter values can be shown for
each parameter individually (Fig. 3). In each lattice of Figs. 2
and 3 the positions of the neurons remain identical such that
each map element refers to identical model realizations in
both figures.

As a striking feature of Fig. 2 it can be seen that, without
providing explicit information about the performance mea-
sures with the training data, the different performance values
are not distributed randomly across the map but significantly
relate to different regions of the lattices. To interpret Fig. 2 it
is important to notice that warm colours always correspond
to high mean values and vice-versa, irrespective of whether
this quality is associated with high or low goodness of fit. As
to Fig. 3, a visibly ordered relation of the map regions to dif-
ferent parameter values can only be stated for two parameters
(RetInf and maxInf), whereas the values of RetOf, StFFRet
and vL do not appear to relate to any ordering principle. A
similar random pattern can be observed for the two remain-
ing parameters (RetBasis and hL) throughout wide areas of
the map. As can be seen from the locally ordered colour dis-
tribution, some intercalated areas in these lattices markedly
display again a relationship between the parameter values
and map locations (which stand for a certain domain of sim-
ulated time series pattern). To facilitate the interpretation of
these findings we compared Fig. 3 with scatterplots of perfor-
mance measures. Figure 4 indicates that only the parameters
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Fig. 4. Scatterplots of RMSE values for each of the examined NASIM parameters.

Table 3. Summary of the parameter values of the 11 model real-
izations associated to the Best-Matching map Unit when the time
series vector of observed discharges is projected onto the SOM.

RetBasis RetInf RetOf StFFRet hL maxInf vL

min 0.699 4.336 2.379 2.202 2.191 0.107 0.008
max 3.143 4.787 5.731 5.581 6.540 0.134 0.105
mean 1.756 4.555 4.278 3.548 4.674 0.122 0.065

RetInf and maxInf are sensitive with reference to the RMSE.
Scatterplots for the remaining objective functions in Table 1
yielded comparable results. From the aforementioned find-
ings we infer that the locally ordered parameter mean values
in Fig. 3 (RetBasis and hL) indicate that the corresponding
parameters are subject to interaction with other parameters.
Results identical to Figs. 2 and 3 were obtained by training a
SOM on discharge time series instead of residual values.

3.2 Projecting the observed time series onto the SOM

To locate the best-matching unit (BMU) of the measured
discharge (i.e. zero-residual) time series on the map, ac-
cording to Sect. 2.1, an input vector consisting of elements
with value 0 is constructed. Subsequently, in order to be

Table 4. Comparison of model performances for results obtained
from manual calibration, optimization with SCE-UA and the SOM
application. In case of the SOM mean values of 11 results are given.

BIAS RMSE CEFFlog IAg MAPE VARmse Rlin

manual 0.32 1.58 0.50 0.86 42.36 0.01 0.75
calibration
SCE-UA 0.10 1.25 0.49 0.91 36.37 0.06 0.83
optimization
SOM 0.13 1.34 0.30 0.88 40.71 0.19 0.81
(means)

projected properly along with the training data, the transfor-
mation Eq. (8) is carried out using the normalization parame-
ters obtained from the input data set. In Fig. 5 the location of
the resulting vector is displayed on top of the performance
measure distributions shown in Fig. 2 (black dot). Addi-
tionally, the location of the common optimum for the seven
performance measures, determined according to Sect. 2.2, is
marked (white cross). Figure 6 shows the positions of the
different optima on the SOM. It can be seen that the posi-
tion of the BMU neither coincides with any of the expected
objective function optima nor with the common optimum
location of the seven performance measures. Additionally,
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Fig. 6. Determination of the common optimum location (balance
point) as the geometric center of mass resulting from the locations
of the seven obejective function optima on the SOM. Each optimum
has unit weight. Here the RMSE and Rlin optima coincide on the
same position.

Table 3 summarizes the parameter values of the 11 model re-
alizations that are associated to the BMU for representing the
model time series that are most “similar” to a “perfect match”
(i.e. the zero-residual case). By comparing these parameters

of the corresponding model runs to the ranges in Table 2 it
becomes obvious that, with the exception of RetInf and max-
Inf, all parameter values span the full range of the Monte-
Carlo sampling bounds. All model realizations attached to
this BMU have in common that only the mentioned param-
eter values appear to be narrowly constrained to values be-
tween 4.336 and 4.787 for RetInf and 0.107 and 0.134 for
maxInf, respectively. The resulting model outputs for these
11 realizations are shown in Fig. 7c along with the total enve-
lope range of all 4000 simulation outputs in the background
and the observed discharge. In order to better point out the
differences between the hydrographs only the characteristic
time period from 14 January 1995 to 21 October 1995 is re-
produced. It can be seen that, compared to the whole set of
Monte-Carlo outputs, these realizations obviously comprise
a compact subset of “similar” time series. Additionally, the
model results obtained from an expert manual calibration and
the single-objective automatic calibration using the SCE-UA
algorithm (Duan et al., 1993) with the RMSE as objective
function (Table 1) are shown in Fig. 7. Although the SOM
procedure, unlike the manual calibration, emphasizes all fea-
tures of the hydrograph equally, the time series associated
to the BMU of the measured discharge appear to outperform
the result of the expert calibration (Fig. 7a). As expected, the
RMSE of the SCE result is smaller than the corresponding
values for the BMU results and the manual calibration time
series, respectively (Table 4). The same holds true for most
of the remaining performance measures such that, in terms of
objective function values, the result of the SCE optimization
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simulation, i.e. the area which is spanned by all model time series for the bounds given in Table 2.

(Fig. 7b) outperforms the BMU realizations as well as the
manual calibration. The RMSE of the SCE-optimized model
equals the lowest RMSE value obtainable from the given set
of Monte-Carlo realizations. The corresponding hydrograph
provides a reasonable representation of the measured time se-
ries, except for some deficits in the reproduction of the peak
discharges. The SCE-optimized model and the realizations
from the BMU display noticeable differences in the repro-
duction of the peak discharges and recession limbs. Though,
the SCE result, based on a visual examination, slightly out-
performs the SOM method. The training on discharge data
time series yields identical results with respect to the position
of the BMU on the SOM as well as the model realizations
that were associated to it.

4 Discussion and conclusions

The performance measures that are linked to the map in
Fig. 2 already indicate that very individual properties of the
training data time series can be attributed to each element of
the Self-Organizing Map. Furthermore, from the patterns of
the performance measures on Fig. 2 it can be seen that certain
correlation structures inherent to these statistical measures

appear to be reflected by the map. Henceforth, we deduce
that the information that can be extracted by these aggregat-
ing statistical measures is assimilated and preserved by the
SOM. The findings with respect to Fig. 3, corroborated by
Fig. 4 and Table 3, demonstrate that the SOM application
is capable of revealing information about parameter sensi-
tivities and, to a certain degree, parameter interactions. We
consider these results an indication of the high discrimina-
tive power of the SOM application with respect to the char-
acteristics of different simulated discharge time series. This
is because we were not able to obtain similar findings with
traditional methods that are based on the evaluation of per-
formance measures, e.g. parameter response surfaces for dif-
ferent objective functions.

These useful aspects of the method are complemented by
the findings of the second experiment: it demonstrates that
the information which is processed by the SOM allows dif-
ferentiating the spectrum of model realizations, given with
the Monte-Carlo data, such that a rather narrowly confined
set of model time series which are similar to the observed
time series can be identified. Based on a visual examination
of the resulting hydrographs, the SCE optimization seems
to slightly outperform the results of the SOM. Standard
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objective function values for these time series also suggest
a higher accuracy of the results obtained by application of
the SCE algorithm. In contrast to the SCE algorithm the
resolution of the SOM method is dependent upon the num-
ber of model time series that participated in its training. It
should be borne in mind that, compared to the number of
model parameters, the results given in Fig. 7c are still based
on a rather small number of model data items for the SOM
training. The results could therefore improve when a more
densely sampled dataset is used for the training. Neverthe-
less the model realizations that have been attributed to the
BMU already exhibit qualities similar to the result which was
based on optimization with the SCE algorithm. The differ-
ences between these realizations might further be attributed
to the fact that the SOM training does not tend to put em-
phasis on particular hydrograph features, which however can
be expected when using RMSE as optimization criterion. A
strong point of the SOM procedure is its ability to provide
a number of alternative model realizations that approximate
the measured time series equally well. This allows for con-
fining the parameter space to a region that closely represents
a measured data set and renders the SOM potentially useful
for future model identification applications. Most notably it
has to be pointed out that the SOM method does not depend
on aggregating statistical measures. Consequently the “simi-
larity” represented in the SOM is not directly quantifiable in
traditional terms. Instead, it rather accounts for the complex-
ity that is inherent to time series data and which cannot be
reduced to a rank number. Although the method is determin-
istic and the results are entirely reproducible, the resulting
time series (Fig. 7c) can be further judged only subjectively.
The fact that the experiments yielded identical results when
the training was carried out using discharge data underpins
the stability of the SOM method.

The discriminatory power of the SOM that has been
demonstrated in this article also highlights that uncertainty
induced by the properties of the performance measure should
be included in the discussion of model uncertainties and
equifinality, because any statement on model behaviour de-
pends on our possibilities to differentiate between model
time series.
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Abstract. Hydrological model evaluation and identification
essentially involves extracting and processing information
from model time series. However, the type of information
extracted by statistical measures has only very limited mean-
ing because it does not relate to the hydrological context of
the data. To overcome this inadequacy we exploit the di-
agnostic evaluation concept of Signature Indices, in which
model performance is measured using theoretically relevant
characteristics of system behaviour. In our study, a Self-
Organizing Map (SOM) is used to process the Signatures ex-
tracted from Monte-Carlo simulations generated by the dis-
tributed conceptual watershed model NASIM. The SOM cre-
ates a hydrologically interpretable mapping of overall model
behaviour, which immediately reveals deficits and trade-offs
in the ability of the model to represent the different functional
behaviours of the watershed. Further, it facilitates interpre-
tation of the hydrological functions of the model parameters
and provides preliminary information regarding their sensi-
tivities. Most notably, we use this mapping to identify the
set of model realizations (among the Monte-Carlo data) that
most closely approximate the observed discharge time se-
ries in terms of the hydrologically relevant characteristics,
and to confine the parameter space accordingly. Our results
suggest that Signature Index based SOMs could potentially
serve as tools for decision makers inasmuch as model real-
izations with specific Signature properties can be selected
according to the purpose of the model application. More-
over, given that the approach helps to represent and analyze
multi-dimensional distributions, it could be used to form the
basis of an optimization framework that uses SOMs to char-
acterize the model performance response surface. As such it
provides a powerful and useful way to conduct model identi-
fication and model uncertainty analyses.

Correspondence to:M. Herbst
(herbstm@uni-trier.de)

1 Introduction

Diagnostic model evaluation and identification aim at elu-
cidating the extent to which the model is able to represent
the observed system behaviour and identifying the reasons
why its response is inconsistent with the observations (Gupta
et al., 2008). This task – a fundamental step in the iterative
model building and identification process – requires adequate
tools that guide the modeller towards isolating the causes of
“unsatisfactory” model behaviour such that changes to the
parameters or the model structure can be made accordingly
(Wagener et al., 2003b; Gupta et al., 2008). Model evaluation
is commonly based on the comparison of model generated
input-state-output simulations with observed historical data.
In its simplest, but most powerful, form this is done visually
in the course of manual calibration, because a trained expert
is able to simultaneously discern various characteristics of
the data and relate them to the hydrological context.

Already considerable progress has been made in formal-
izing the diagnostic process of model identification. Rec-
ognizing that manual calibration usually involves the evalu-
ation of a number of different aspects of the time series, it
follows that model calibration is inherently a multi-objective
problem that requires the evaluation of more than one per-
formance measure to ensure sufficient discriminatory power,
even if the model produces only a single output time series
(Gupta et al., 1998). And of course, complementary sources
of information such as ground water measurements or soil
moisture observations, among others, can be used in this pro-
cess (Ambroise et al., 1995; Franks et al., 1998; Lamb et al.,
1998; Seibert et al., 2000; Gallart et al., 2007). By measuring
the model performance during different stages of the model
response Boyle et al. (2000) and Wagener et al. (2003a) were
able to relate model performance to individual model compo-
nents. In this way, it became possible to extract information
regarding the functioning and capabilities of the model from
its output time series, which consequently allowed testing
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of the underlying model hypothesis. Hence, the inability
of a model to reproduce the whole time series with a sin-
gle parameter set can be indicative of structural model errors
(Gupta et al., 1998; Wagener et al., 2003b; Lin and Beck,
2007). However, errors in the forcing data as well as in the
parameterization are also frequent causes of temporal param-
eter variability.

Even so, evaluation methods that rely on a quantification
of the “difference” between the simulation and the measure-
ments commonly resort to regression based statistical mea-
sures of fit as the primary method of information extraction
(Legates an McCabe Jr., 1999; Willmott et al., 1981; Nash
and Sutcliffe, 1970). The pitfalls of using such measures are
well known (e.g. see Hall, 2001; Lane, 2007; Schaefli and
Gupta, 2007). However, when dealing with model evalua-
tion in a diagnostic sense, the nature of the ‘information’ we
extract from the input-output data by means of these mea-
sures deserves critical attention. Gupta et al. (2008) point out
that different types of information can be extracted depend-
ing on the context in which the data is placed. By putting
data in the context of common statistical measures of fit, we
allow primarily for a correlative evaluation of the data; e.g.,
the correlation coefficient informs about the percentage of
the observed variance that can be explained by the model
simulation, but conveys little or no information that relates
directly to the hydrological context of model/data, e.g. a bias
in the water balance, or in the velocity of the rainfall-runoff
response.

Because variance-based statistical measures fail to extract
and relate the information contained in the model time series
data to characteristics that are interpretable and meaningful
in the context of the hydrological theory, they offer only min-
imal diagnostic support when used at the front end of various
model evaluation frameworks. In response to this, Gupta et
al. (2008) and Yilmaz et al. (2008) recently proposed the con-
cept of a diagnostic evaluation approach rooted in informa-
tion theory, in which a set of measures is used to characterize
various theoretically relevant system functions and process
behaviours. The term “Signature Indices” is introduced to
distinguish these measures from conventional variance based
performance measures that lack relationships to the underly-
ing hydrological theory. Yilmaz et al. (2008) propose a set of
such Signature Indices to help guide the diagnostic process
of model evaluation in a meaningful and interpretable way,
inasmuch as these measures correspond to four major hy-
drological functions of the watershed: overall water balance,
vertical redistribution, temporal redistribution and spatial re-
distribution.

In complementary work, Herbst and Casper (2008) pro-
pose a model evaluation approach that circumvents the low
discriminatory power of statistical performance measures
(Gupta et al., 2003), while maximally exploiting the po-
tential information in the data, by use of the power of
Self-Organizing Maps (SOMs) (Kohonen, 2001). A Self-
Organizing Map consists of an unsupervised learning neu-

ral network algorithm that performs a non-linear mapping of
the dominant structures present in a high-dimensional data
field onto a lower-dimensional grid. The SOM has found di-
verse applications in fields such as pattern recognition, image
analysis (Kohonen, 2001), exploratory data analysis (Kaski,
1997; Vesanto, 2000a) in geo-spatial (Lourenço, 2005) as
well as hydrochemical data (Boogaard et al., 1998; Lis-
cheid, 2006; Peeters et al., 2007), process monitoring (Al-
honiemi et al., 1999; Simula et al., 1999), local time se-
ries modelling (Vesanto, 1997) and time series forecasting
(Simon et al., 2005). Applications related to hydrological
modelling remain far less numerous, albeit rather diverse:
Kalteh and Berndtsson (2007) use SOMs for the interpola-
tion of monthly precipitation; Lin and Chen (2006) apply
SOMs for regional precipitation frequency analysis; Schütze
et al. (2005) use an extension of the SOM to approximate
the Richards equation and its inverse; Huang et al. (2003),
and similarly Rajanayaka et al. (2003), apply SOMs to clus-
ter and categorize soil data sets in a framework for estimat-
ing model parameters in data-sparse areas; Chang (2001) ex-
plores the use of SOMs to infer physical and hydraulic soil
properties based on remotely sensed brightness temperature
data; Mele and Crowley (2008) apply an SOM to examine
the interrelationship between different bio-indicators and hy-
drological soil properties.

In the context of watershed modelling, Hsu et al. (2002)
successfully performed daily streamflow predictions using an
SOM to identify different rainfall-runoff stages to which lo-
cal regression functions are assigned – a similar approach is
used by Abramowitz et al. (2006) to characterize the system-
atic component of land surface model output error in a flux
correction technique for land surface models (Abramowitz et
al., 2007). Abramowitz and Gupta (2008) also use an SOM
to evaluate multi-model independence. A further applica-
tion to land surface modelling is presented by Abramowitz
et al. (2008) who use SOM to cluster time steps with similar
meteorological condition in order to examine the conditional
bias of land surface models. Reusser et al. (2008) present
another interesting approach in the field of model evaluation.
They analyze the temporal dynamics as well as the type of
model error by using SOM for the assessment of multiple
performance measures from a moving window approach.

In a rather general sense, the SOM is one of several meth-
ods that can be used for time series clustering (Warren Liao,
2005). Recently, Herbst and Casper (2008) used an SOM-
based approach in this sense, to obtain a topologically or-
dered classification and clustering of the temporal patterns
present in model outputs obtained from Monte-Carlo simula-
tions. This allowed the authors to differentiate the spectrum
of simulated time series with a high degree of discrimina-
tory power. The work shows that the SOM can provide in-
sights into parameter sensitivities, while helping to constrain
the model parameter space to the region that best represents
the measured time series. However, the Herbst and Casper
(2008) approach shares a shortcoming of methods based on
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Table 1. NASIM model parameters of the Monte-Carlo simulation with their respective parameter bounds.

Name Description Unit Lower Bound Upper Bound

RetBasis Storage coefficient factor for baseflow component [–] 0.5 3.5
RetInf Storage coefficient factor for interflow component [–] 2.0 6.0
RetOf Storage coefficient factor for surface runoff from unsealed surfaces [–] 2.0 6.0
StFFRet Storage coefficient factor for surface runoff from urban areas [–] 2.0 6.0
hL Horizontal hydraulic conductivity factor [–] 2.0 8.0
maxInf Maximum infiltration factor [–] 0.025 1.025
vL Vertical hydraulic conductivity factor [–] 0.005 0.105

statistical goodness-of-fit measures – because the clustering
into SOM nodes is not based on patterns/properties that have
direct hydrological relevance, the map is not easy to interpret.
Further, because the SOM training involves use of entire (po-
tentially very long and/or high-dimensional) time series the
computational costs are rather high.

The main goal of this paper is to explore how the Herbst
and Casper (2008) SOM-based approach can be improved
by linking it to the Signature Index concept (Gupta et al.,
2008), which defines the similarity between data items in
a more meaningful (hydrologically relevant) way. So, in-
stead of working directly with the data time series, the SOM
training is conducted on the set of Signature Indices intro-
duced by Yilmaz et al. (2008), computed from each of the
Monte-Carlo simulation time-series generated by the dis-
tributed conceptual hydrological model. In this context, it
is interesting to note that the SOM based method presented
in this paper in many aspects aims at similar objectives as
the Parameter Identification Method based on the Localiza-
tion of Information (PIMLI) developed by Vrugt et al. (2001,
2002). The PIMLI method attempts to find disjunctive sub-
sets of the observations that contain the most information
for the different model parameters. It thus provides a diag-
nostic instrument that helps differentiating between param-
eters and model concepts. In contrast to the SOM based
method PIMLI is a sequential optimization methodology that
approaches the model evaluation problem more from the ob-
servations than the model itself.

The manuscript is organized as follows; following a brief
overview of the model and the data used (Sect. 2.1), we dis-
cuss how the hydrologically relevant Signature Indices are
computed from model output time series (Sect. 2.2). Sec-
tion 2.3 presents a brief discussion of the concept and prop-
erties of the Self-Organizing Map, followed by a discussion
of the training process (Sect. 2.4). The results are presented
in Sect. 3 followed by a discussion (Sect. 4) of possible rea-
sons for the differences between the findings presented in this
contribution and the results previously published by Herbst
and Casper (2008). We conclude with suggestions for other
possible applications, and try to illuminate the method in the
context of existing model evaluation and optimization meth-
ods.

2 Methods

2.1 Model and data

This work employs the same model and data used by Herbst
and Casper (2008). Monte-Carlo simulations of hourly
stream flow, over a period of approximately two years, were
generated using the distributed conceptual watershed model
NASIM; see Hydrotec (2005) for details. The model uses
a spatial discretization based on sub-catchments. For the
“Schwarze Pockau” watershed preprocessing of spatial data
resulted in 71 sub-catchments with a mean size of approxi-
mately 1.8 km2. These are further subdivided into spatially
homogeneous units with respect to soil and land use. Each
of these elementary spatial units is again vertically divided
into soil layers. All lateral flow components that result from
the processes within the elementary units are aggregated on
the sub-catchment scale. The NASIM parameters examined
in this study (Table 1) are unit less factors that modify in-
ternal parameter values that are either based on global de-
fault values or have been determined individually for each
sub-basin in the course of the spatial data preprocessing:
The internal values modified by RetOf are determined in the
course of the preprocessing depending on the slope in each
sub-basin, while the internal RetInf, RetBas, StFFRet are set
to global values. The internal values of maxInf as well as
vL are determined according to soil type. The model has
been distributed commercially since the mid-eighties, and
has found widespread application in water resources man-
agement throughout Germany.

In this work, we adopt the decision-maker’s point of view,
treat the model as a black-box, and try to understand its
functioning via the methods presented in this paper. The
test watershed is the low-mountain range 129 km2 catchment
“Schwarze Pockau” Saxony (Germany), a tributary of the
Freiberger Mulde (Elbe sub-basin) situated near the border
to Czech Republic.

The data consist of hourly precipitation and streamflow
measurements at gaging station “Zöblitz”. We focus on the
period from 1 November 1994 to 28 October 1996 and use
the preceding one-year as a warm-up period, for a total of
17 472 simulation time steps. A total of 4000 simulation runs
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were generated by randomly varying seven of the model pa-
rameters (Table 1), all related to the soil water balance and
vertical redistribution of flow components, over their feasible
ranges. Because appropriate prior information on parameter
(or rather factor) distributions was missing uniform distri-
butions were assumed. The variation of these factors dur-
ing the Monte-Carlo simulation was performed with global
values for all sub-catchments. The ranges for the free pa-
rameter factors and the values for the fixed parameter factors
were set based on prior knowledge acquired via manual ex-
pert calibration to the test watershed. We assume that these
values represent the plausible parameter space for this water-
shed with very high probability.

2.2 Signature indices

The Signature Indices used in this work were designed with a
view to providing generally applicable and meaningful mea-
sures of model performance that can provide information
helpful in detecting and isolating causes of model inadequa-
cies, thereby providing guidance towards model improve-
ments (Yilmaz et al., 2008). Unlike standard statistical mea-
sures of fit these Signature Indices are rooted in the context
of the hydrological theory underlying our conceptual repre-
sentation of the watershed. The reason for multiple indices
is that each is designed to target different (complementary)
aspects of model/system behavior (see Gupta et al., 2008).
Following the concepts and mathematical formulation pre-
sented by Yilmaz et al. (2008), we focus on five Signature
Indices that provide information about the following intrin-
sic watershed characteristics:

– overall water balance

– vertical soil moisture redistribution

– behaviour of long-term baseflow

Because none of the model parameters investigated in this
paper control the streamflow routing and timing, we do not
consider here the fourth intrinsic water shed characteristic –
temporal redistribution of flow – but details can be found in
Yilmaz et al. (2008).

The first Signature Index focuses on the long-term input-
output behaviour of the system (volume balance), and there-
fore measures the percent bias in overall runoff (%BiasRR).
This index is strongly controlled by the evapotranspiration
process and any factors that influence the amount of water
available for evapotranspiration. The index should therefore
be sensitive to the model components and parameters that
control these processes. It is computed as

%BiasRR=

∑
t

(Qsimt − Qobst )∑
t

Qobst
× 100. (1)

where Qsim and Qobs denote the simulated and the observed
flow respectively. The next four Signature Indices are derived

from the flow exceedance probability curve (also known as
flow duration curve, FDC), to represent watershed charac-
teristics that act on short to intermediate time scales. Be-
cause the FDC characterizes a watershed’s tendency to pro-
duce flows of different magnitudes, it is informative regard-
ing the vertical redistribution of water within the soil column.
Different sections of the flow duration curve can therefore
be associated with the occurrence of fast, intermediate and
slow runoff responses. Because construction of the FDC in-
volves loss of timing information, these indices should be
generally insensitive to output timing errors. For catchments
with quick (slow) runoff response we expect the FDC mid-
segment slope to be steeper (flatter).

The percent error in the FDC mid-segment slope is given
by %BiasFDCm:

%BiasFDCm= (2)(
log(Qsimi) − log(Qsimj )

)
−
(
log(Qobsi) − log(Qobsj )

)(
log(Qobsi) − log(Qobsj )

) × 100

wherei andj denote the lower and the upper threshold of
flow exceedance probability that define the mid-segment of
the flow duration curve. The volume of water corresponding
to the high flow segment is also useful in a diagnostic con-
text; this property is measured as the percent error in FDC
high-segment volume %BiasFHV:

%BiasFHV=

∑
h

(Qsimh − Qobsh)∑
h

(Qobsh)
× 100 (3)

whereh denotes the indices of all discharge values with ex-
ceedance probabilities lower than 0.02. Similarly, the vol-
ume of water corresponding to long-term base flow is mea-
sured as the percent error in the FDC low-segment volume
%BiasFLV:

%BiasFLV= (4)
L∑

l=1
(log(Qsiml) − log(QsimL)) −

L∑
l=1

(log(Qobsl) − log(QobsL))

L∑
l=1

(log(Qobsl) − log(Qobsl))

× 100

wherel denotes the index of the discharge values within the
boundaries of the low flow segment with the index of its low-
est value beingL. Note that this index is computed according
to Yilmaz et al. (2008) using a log transform of the flows to
increase the sensitivity to very low flows. In principle, this
index should be sensitive to components/parameters that in-
fluence base flow recession rates, as well as those that con-
trol the demand for evapotranspiration loss from the stream
and/or the lower zone storage. The fourth FDC-based Signa-
ture Measure is the percent bias in median of the log trans-
formed discharges %BiasFMM
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%BiasFMM= (5)
log(Qsimmedian) − log(Qobsmedian)

log(Qobsmedian)
× 100

where Qsimmedian and Qobsmedian denote the median value
of the observed and the simulated flow respectively. %Bi-
asFMM characterizes differences in the mid-range flow lev-
els between simulated and observed discharge. We observed,
during this study, that this index is sensitive to errors in the
recession limb of the flow hydrograph, specifically in the re-
gion of its inflection point.

Note that these indices achieve diagnostic value because a)
the functions they measure must be represented in the model
to enable proper reproduction of the system behaviour and
b) they relate to aspects of the model structure/behavior that
act on different time scales. However, we make no claim
that this set of indices is comprehensive in representing the
various characteristics that describe the behaviour of a water-
shed; in this regard, much research on Signature Index design
and selection still needs to be done.

Based on the examination of the FDC for the observed
discharge, the flow exceedance probability thresholds used
in the definition of %BiasFHV, %BiasFDCm and %BiasFLV
were subjectively set toi=20% andj=55% respectively. Ac-
cordingly, the indexl in Eq. (4) denotes all discharge values
with flow exceedance probabilities higher than 55%. Based
on Eq. (1)–(5) the characteristics of a simulated time series of
discharges can be described in a hydrologically meaningful
way by a vector consisting of five Signature Indices.

2.3 The Self-Organizing Map

The Self Organizing Map is an artificial neural network tech-
nique designed to help in extracting structure from high-
dimensional data sets (e.g. see Kohonen, 2001; Haykin,
1999; Kaski, 1997). Kohonen (2001) provides an exhaus-
tive discussion of the algorithm and its properties. An
SOM consists of a regular gridG of k neurons; in our
case the neurons were arranged on a two-dimensional hexag-
onal grid, although other variants are common (Kohonen,
2001). LetX represent a set of Signature Index vectors,
x= [x1, x2, . . . , xn]T ∈ <

n with n=5, that has been calcu-
lated according to Sect. 2.2 for a set of simulated discharge
time series. Correspondingly, each neuroni = 1. . .k of G is
represented through a reference vector

mi = [µi1, µi2, . . . , µin]T ∈ <
n (6)

whose dimensionn equals the number of elements in an input
data vectorx ∈ X. Typically, the reference vectorsmi are
initialized to small random values. However, to assure faster
and more reliable convergence of the map, we initialize the
mi along the two greatest principal component eigenvectors
of the data (Kohonen, 2001). The SOM is trained iteratively:

In the first step an input data itemx ∈ X is randomly selected
and the Euclidean distance

di =

√√√√ n∑
j=1

(
xj − mij

)2
i = 1 . . . k; j = 1. . .n (7)

betweenx and each reference vectormi is computed (of
course, any appropriate metric can be used as a measure
of similarity). The “winning neuron” (also called the best-
matching unit, BMU, ofx) is the map elementc whose ref-
erence vectormc has the smallest distancedc to x and thus
satisfies the condition

dc = min
i

{|x − mi |} i = 1. . .k. (8)

In the next step the reference vectormc (which corre-
sponds to our current best-matching unit) and all reference
vectors of its neighbouring neurons are updated according to

mi (t + 1) = mi (t) + α (t) hci (t) [x (t) − mi (t)] (9)

wheremi(t) is the current weight vector at iteration stept .
Thus, the rate of change for each node of the map is scaled
by three factors: a) the difference (x(t) − mi(t)) between
the input data setx and the prototype vectormi b) the size
of a neighbourhood functionhci which decreases monotoni-
cally to zero witht and with distance from the winning neu-
ron and c) a learning rate factorα(t) which gradually lowers
the height of the neighbourhood function as the iteration ad-
vances. Forhci it is common to use the Gaussian function

hci (t) = exp

(
−

‖rc − r i‖
2

2σ 2 (t)

)
(10)

whereσ (t) defines the width of the topological neighbour-
hood, and bothσ (t) in Eq. (10) andα(t) in Eq. (9) decrease
monotonically witht . Note that an exact choice of the func-
tion α(t) is not required (Kohonen, 2001). In this way, the
SOM combines elements of competitive and adaptive learn-
ing. Repeated cycling through the training steps causes dif-
ferent nodes and regions of the map to be “tuned” to spe-
cific domains of the input space. Importantly, the enforced
local interaction between the SOM nodes, implemented by
Eq. (9), results in the map gradually developing an ordered
and smooth representation of the input data space (Kaski,
1997).

As an alternative to the sequential approach expressed
by Eq. (9), this work used Kohonen’s “batch-training” al-
gorithm (Vesanto, 2000b) to speed up the training process.
Here, in each training step the data set is partitioned accord-
ing to the Voronoi regions of themi . Instead of sequen-
tially running through all data items in each training cycle
the whole data setX is presented to the map as a whole at
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each training cycle. The reference vectors are updated ac-
cording to the weighted average of the data samples

mi(t + 1) =

N∑
l=1

hci(t)xl

N∑
l=1

hci(t)

(11)

wherec is the index number of the BMU of data setxl , and
N is the number of data samples. This variant of the training
does not make use of the learning rate factorα(t).

The adaptive and competitive learning process of the SOM
along with its ability to provide a visualization of the data
mapped onto a two-dimensional grid confers properties to
the SOM which make it especially interesting for exploratory
data analysis (Kaski, 1997). It results in an ordered repre-
sentation of complex (i.e. multi-dimensional) data in which
items associated with neighbouring nodes of the grid are
characterized by similar patterns/properties, which facilitates
the perception of structures inherent to the data. Further,
patterns that occur more frequently in the input space are
mapped onto a larger area. Additionally, the final reference
vectors form a discrete approximation of the input data dis-
tribution by representing local conditional expected values of
the data. They can thus be seen as essentially equivalent to
a discretized form of principal curves (Kaski, 1997; Haykin,
1999). Consequently, depending on the scope of its applica-
tion, SOM can be used to disclose the clustering structure of
the data, or be interpreted as a dimensionality reduction or
data compression method.

Finally, the SOM also allows the projection of an input
data itemy (in our study a vector of Signature Indices) that
has not been part of the training data onto the output space.
This means that according to Eq. (8) the neuronc(y) with
reference vectormc(y) is determined that satisfies the condi-
tion∥∥y − mc(y)

∥∥ = min
i

{‖y − mi‖} i = 1. . .k. (12)

Neuronc(y) then represents the domain of input data pat-
terns (i.e. Signature Index patterns) fromX that is most sim-
ilar to y. In turn, the data itemsXc ⊂ X which are attributed
to c are those among the training data items that are most
similar toy with respect to the criterion given by Eq. (7) and
Eq. (12).

2.4 Data preparation and training

In this work, the training data setX for the SOM was ob-
tained by computing the five aforementioned Signature In-
dices for each of the 4000 model output time series obtained
with NASIM as described in Sect. 2.1 and 2.2. Prior to the
training, each Signature Index was normalized to a value hav-
ing zero mean and variance of one using the linear transfor-
mation

x′
= (x − x̄)

/
σx (13)

so that high index values do not exert a disproportionate in-
fluence on the training via Eq. (7). The number of neurons,
i.e. map units, was determined using the heuristic equation
m = 5

√
N whereN=4000 is the total number of data items

in X. The side lengths of the map are calculated based on the
ratio of the two biggest eigenvalues of the covariance matrix
of X (Vesanto et al., 2000). The training was conducted in
two consecutive steps. First, a coarse training period of 500
iterations was performed, using a large radius for the neigh-
bourhood function. Subsequently a fine tuning period com-
prising 10000 training cycles was performed using a small
neighbourhood radius. A hexagonal grid was chosen to help
preserve proper topologic relationships. A simple measure of
the “quality” of the map is the “quantization error” (Vesanto,
2000a), which represents the average distance of each data
vectorxp to its corresponding BMUmc(p) , calculated as:

d̄ =
1

N

N∑
p=1

∥∥xp − mc(p)

∥∥ (14)

whereN is the total number of data itemsX used for training,
andp is the index of the data items.

According to Eqs. (1)–(5) the Signature Index values as-
sociated with the time series of observed discharges Qobs
maps asy=[0 0 0 0 0]T into the Signature Index space. Using
the transformation Eq. (13) that has been applied to the train-
ing data and Eq. (12) the map elementc(y) and its related
data itemsXc were determined that correspond to the Sig-
nature Index vector of the time series of observed discharges
y=[0 0 0 0 0]T . We will refer to c(y) as the “best-matching
unit” (BMU) of the observed data.

As an independent reference point for this result, we
used the Shuffled Complex Evolution optimization algorithm
(Duan et al., 1992) to find a model realization (parameter
set) that minimizes the Root Mean Squared Error (RMSE) of
the simulated discharge time series. The SCE-UA algorithm
was run with 5 complexes (5 points each) and a maximum of
10 000 iterations. For successful termination a change of less
than 0.05 percent of the RMSE in three consecutive loops
was imposed.

As a further reference point we conducted a SOM train-
ing according to Herbst and Casper (2008), using the dis-
charge time series from the Monte-Carlo simulation as train-
ing data. The preprocessing was carried out similarly, apply-
ing the abovementioned transformation Eq. (13) to each time
step of the training data set. For further details regarding this
training please see Herbst and Casper (2008).

3 Results

3.1 Properties of the map

The resulting map of Signature Indices consists of
25×13=325 neurons, a number considerably smaller than the

Hydrol. Earth Syst. Sci., 13, 395–409, 2009 www.hydrol-earth-syst-sci.net/13/395/2009/



M. Herbst et al.: Mapping model behaviour 401

Fig. 1. Distribution of reference vector Signature properties. Note
that in each plot the colours are scaled individually.

Fig. 2. Component planes of the SOM rescaled according to the
normalized absolute values of the reference vectors clearly highlight
the locations of individual Signature Index optima on the map.

total number of data items used for training. Consequently,
every neuron represents a set of simulation runs and their
respective Signature Index patterns. As the reference vec-
tors of the map are readily accessible, the properties of the
individual nodes, with regard to their Signature Index char-
acteristics, can be evaluated: The de-normalized reference
vectors represent the “prototype patterns” by which the in-
dividual neurons are activated. Further, we take advantage
of the fact that the input data items attributed to each neuron
via the training are referenced. Because each input data item
is linked to a parameter set and its resulting simulated time
series, the neurons of the map can be evaluated with respect
to the model parameters and the properties of the time series.
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Fig. 3. The distribution of Signature Index properties on the map
displayed as bar-plots and the location of the best-matching unit
(BMU) on the map. The bars are individually scaled over the range
of each Signature Index such that the topmost position of each bar
marks its absolute maximum and vice versa. Details on properties
of the model realizations projected onto node 53 and 74 are exem-
plified in Fig. 4.

In Fig. 1 the Signature properties of the reference vectors
are visualized using component planes, i.e. by means of con-
gruent, colour coded subplots that display the distribution of
each reference vector component (i.e. each Signature Index)
separately. Note that in each plot the colours are scaled in-
dividually. These distributions represent the Signature Index
pattern of the Monte-Carlo model realizations. Figure 1 also
highlights the trade-offs between different Signature Indices

www.hydrol-earth-syst-sci.net/13/395/2009/ Hydrol. Earth Syst. Sci., 13, 395–409, 2009



402 M. Herbst et al.: Mapping model behaviour

dd/mm/1995

Q
 [m

³/s
]

14/01 11/03 06/05 01/07 26/08 21/10
0

5

10

15

20

25

Flow  exceed. probab. %

Q
 [m

³/s
]

0 50 100
10-1

100

101

102

dd/mm/1995

Q
 [m

³/s
]

14/01 11/03 06/05 01/07 26/08 21/10
0

5

10

15

20

25

Flow  exceed. probab. %

Q
 [m

³/s
]

0 50 100
10-1

100

101

102

envelope of all simulations
observed discharge
SOM results

%BiasRR
%BiasFDCm
%BiasFHV

%BiasFLV
%BiasFMM

Node 53: Node 74:

d

a c

b

Fig. 4. Examples for Signature Index properties on different loca-
tions of the map (see Fig. 3): Comparison of hydrographs and flow
duration curves for the observed discharge and the model realiza-
tions projected onto each of the two nodes.

and therefore reveals which capabilities in reproducing the
characteristics of the measured time series are mutually ex-
clusive. To accentuate the location of individual Signature
Index optima on the map Fig. 2 shows the component planes
rescaled according to normalized absolute values of the ref-
erence vectors. Here, it becomes evident that the model op-
tima, with respect to the Signature Indices, are in part mu-
tually exclusive. Figure 3 further summarizes the character-
istics of the reference vectors: here the Signature Indices of
each reference vector are presented as bar-plots where each
of the five color-coded bars corresponds to one of the Sig-
nature Indices. Note that the bars are individually scaled
over the pertinent range of each Signature Index such that the
topmost position of each bar marks its absolute maximum
and vice versa. From Fig. 3 it can easily be discerned that
the model realizations for which all Index values are closest
to zero are projected to the neurons located around the left
lower third of the map. (The location of the BMU accord-
ing to Sect. 2.4 will be determined in the following section).
The lower and lower right region of the map is dominated
by model realizations with negative Index values regarding
%BiasFDC and %BiasFHV which gradually switch over to
positive values towards the upper left segment of the map. It
is evident from Fig. 1 and 3 that the SOM provides a smooth
mapping of the Signature Index properties such that neigh-
bouring locations on the map bear similar characteristics with
respect to the Signature Indices. The simulations that are rep-
resented by the neurons located in the upper left corner of the
map (e.g. node 53 in Fig. 3) show positive values of %Bi-
asRR, %BiasFDCm and %BiasFHV while at the same time

Fig. 5. Mean values of each model parameter for the simulations
projected onto the individual map elements.

the values of %BiasFLV and %BiasFMM are among the low-
est of the training data set. The hydrograph- and exceedance
probability plots in Fig. 4a and b confirm that such Signa-
ture characteristics are indicative of model realizations with
runoff components that react predominantly faster than the
measured discharge time series whereas the quick recession
of flow translates into volume errors in the intermediate flow
components (i.e. higher and narrower flow hydrographs fol-
lowing storm events). Additionally, the positive deviation in
overall water balance compared to the measured streamflow
(i.e.h̃igh %BiasRR) combined with underestimation of low-
flow volume corroborates that, on average, too much volume
of flow is allocated to peak discharges. Note that the barplots
as well as the component planes (Fig. 1) represent the relative
scale of the Signature Indices.

Model realizations projected onto a neuron in the lower
left part of the map (e.g. node 74 in Fig. 3), on the other
hand, display a very different behaviour, as exemplified in
Fig. 4c and d: From the combination of negative %Bi-
asFDCm and %BiasFHV in conjunction with positive %Bi-
asFLV and close to zero %BiasRR, it immediately becomes
comprehensible that these simulations are marked by overall
underestimation of peak flows, delayed recession of flow and
overestimation of volume in the low flow component.

We further calculated the mean values of each model pa-
rameter of the simulations that have been attributed to the in-
dividual map elements: Figure 5 shows the distribution of the
model parameter values that correspond to the Signature In-
dices given in Fig. 1 and 2. Here, conformities or similarities
with the patterns of Fig. 1 will point at high correlations be-
tween parameter values and Signature Indices. Because the
Signature Indices represent meaningful hydrological charac-
teristics, these figures indirectly reveal the function of each
parameter in the hydrological context. (Notice that in each
lattice the positions of the neurons remain identical). Com-
paring the patterns of Signature Indices and parameter values
over the map suggests that the parameter maxInf (= “max. in-
filtration rate”) predominantly exerts a high influence on the
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Fig. 6. Comparison of SOM trained on simulated discharge time
series(a) and the SOM trained on Signature Indices(b) by means
of Signature Index mean values for the simulations which are at-
tributed to each node. The black dot indicates the position of the
BMU of the measured discharge time series. In(c) the SOM based
on Signature Indices is represented by the mean values of four sta-
tistical performance measures – the root mean square error (RMSE),
the Nash-Sutcliffe coefficient of efficiency (CEFF), Willmott’s In-
dex of Aggreement (IAg) and the correlation coefficient (Rlin) –
that were calculated calculated over the sets of model realizations
that are projected onto each neuron.

runoff bias %BiasRR. Likewise, parameter RetInf obviously
controls the velocity of the runoff reaction, i.e. the vertical
distribution of flow components, and the volumina allocated
to high flows as can be observed by the good correspondence
with the pattern of %BiasFDCm and %BiasFHV. The pa-
rameters RetOf, StFFRet and vL on the other hand display
an irregular, “noisy” pattern in the distribution of parame-
ter values over the map which does not correspond to any of
the patterns present in the Signature Indices. Parameter hL
shows the same irregular pattern over wide parts of the map
but also presents isolated areas where the parameter values
seem to be closely related to the ordered structure of the map
(whose structure is governed by Signature Index properties).
The aforementioned results lead us to infer that this pattern is
likely to be indicative of partial parameter sensitivity, i.e. pa-
rameter interaction involving threshold behaviour. The pat-
tern displayed by RetOf, StFFRet and vL, on the other hand,
can only be explained if changes made to these parameters
either did not relate to any of the Signature Indices or if the
effect of these parameters were strongly tied to other param-
eter values in a highly nonlinear way.

Finally, we compare the ordering principle of the time se-
ries map computed by Herbst and Casper (2008) to the cur-
rent map based on Signature Indices. For the former case,
the mean values of the individual Signature Indices are cal-
culated over the sets of time series that are projected onto
each neuron of the map. Similar to the component plane vi-
sualization in Fig. 1 these mean Signature values are sub-
sequently used to colour the map (Fig. 6a). Accordingly,
the mean values of the Signature Indices are determined for
the neurons of the Signature Index map in order to allow for
proper comparability (Fig. 6b). (Note that the de-normalized
reference vectors only refer to the properties of the neuron
which are acquired during the training, whereas the element-
wise mean values of the data items refer to the properties of
the data which is projected onto these neurons). In Fig. 6 it
is clearly noticeable that the arrangement of the data items
on both maps agrees very well with respect to %BiasFDC,
%BiasFMM and, to some extent, %BiasFHV. The compo-
nents %BiasRR and %BiasFLV show almost identical pat-
terns on both maps, which however are inversely arranged in
each case.

In order to gain insight into the relationship between the
ordering structure of the current SOM of Signature Indices
and common statistical performance measures the mean val-
ues of the root mean square error (RMSE), the Nash-Sutcliffe
coefficient of efficiency (CEFF; Nash and Sutcliffe, 1970),
Willmott’s Index of Aggreement (IAg; Willmott, 1981) and
the correlation coefficient (R2) are calculated over the sets of
model realizations that are projected onto each neuron of the
Signature Indices SOM. Not surprisingly, the results (Fig. 6c)
reveal that the structure of the SOM based on Signature In-
dices translates into an ordered pattern of the four statisti-
cal objective functions on the map. These patterns, however,
show close correlations. According to Fig. 2, 6b and c, it is
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Fig. 7. Comparison of model realizations for the BMU corresponding to the observed discharge time series.(a) The results of the SOM
training on Signature Indices are contrasted to(b) the training on entire time series vectors and(c) the solution obtained by minimizing the
RMSE using SCE-UA.

not possible to establish a clear relationship between the Sig-
nature Indices and the performance measures. With regard to
the position of the optima on both mappings, it can be seen
that the BMU in Fig. 6b does not coincide with the optima of
the performance measures in Fig. 6c.

3.2 Projection of measured discharge time series onto the
map

In Fig. 3 we also mark the location of the BMU of Qobs
which was determined according to Sect. 2.4. Figure 3 shows
that the BMU identifies a neuron with a reference vector
that represents a compromise in minimizing all Signature In-
dices. In the following, we will further examine the model-
realizations which are attributed to the BMU by virtue of
the training process: Fig. 7a shows the 9 hydrographs re-
trieved from the BMU of the SOM training on Signature In-
dices along with the observed time series and the envelope
of the entire Monte-Carlo data set. As can be seen, these hy-
drographs comprise rather similar model realizations, com-
pared to the total range of Monte-Carlo simulations. In con-
trast, Fig. 7b shows the 7 time series obtained from iden-
tifying the BMU on a SOM that was trained on the entire
time series of the model outputs (as per Herbst and Casper,
2008), without previously converting them to Signature In-
dices. Finally, Fig. 7c offers a comparison with the result
obtained from minimizing the RMSE using SCE-UA (Duan
et al., 1992). The time series that result from the training

on Signature Indices are not as densely bundled within the
total range of Monte-Carlo simulations than their counter-
parts from Fig. 7b. However, they offer a close approxima-
tion to the observed time series, which according to visual
examination of the data appears to outperform the SCE-UA
algorithm, at least during peak discharges. We further sub-
ject these results to a closer examination and also compare
the flow duration curves that correspond to the BMU sim-
ulations of both training types to the SCE-optimized model
and the observed discharges (Fig. 8). Within the range of
the available Monte-Carlo output, the model realizations that
correspond to the BMU of the SOM trained on Signature In-
dices (Fig. 8a) yield a rather close approximation to the flow
exceedance probability characteristics of the measured data,
with the exception of the low flows. The same holds true
for the results obtained from the training on time series. The
most notable differences regarding the flow duration curves
affect the exceedance probability range between 10 and 20%,
where the training on time series leads to better results, and
all values below 2% exceedance probability, where the re-
alizations obtained from the Signature Index trained SOM
perform slightly better.

With respect to the BMU it is further insightful to inspect
the quantization error of the observed data, calculated after
Eq. (14), in order to get a rough measure on the quality of the
BMU estimate: The average quantization error of the Signa-
ture Index map is 0.31, whereas the distance‖xc − mc‖ for
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Fig. 8. Comparison of flow duration curves for simulations at-
tributed to the BMU.

the BMU of the observed data (Qobs) on this map amounts
to 1.1. This means that, in terms of the Signature Indices, the
average distances between the model simulations and their
corresponding BMU are not very much smaller compared to
the dissimilarity between the reference vector of the BMU
and the observed discharges. Consequently the observed dis-
charge time series cannot be exceedingly different from the
time series of the training data set and shows good correspon-
dence with its BMU.

Comparing the Signature Index ranges of the model re-
alizations projected to this BMU to the ranges of the entire
Monte-Carlo data set (Fig. 9) the similarity of the simulations
on this node, in terms of Signature Indices, as well as the
compromise involved with minimizing the Signature Indices
by identifying the BMU becomes visible. For all models the
range of variation in overall water balance (%BiasRR) ap-
pears to be almost negligible when compared to the ranges of
the remaining Signature Indices. The Signature Indices cal-

Fig. 9. Comparison of individual Signature Index ranges for the
BMU-realizations corresponding to the SOM training on Signature
Indices and the training on time series. Additionally, the Signature
Indices obtained from minimizing the RMSE using the SCE-UA
algorithm are displayed.

culated for the simulations attributed to the BMU of the SOM
trained on time series, on the other hand, also show only
moderate variation. Marked differences in the behaviour of
these simulations, however, can be stated regarding the per-
cent error in the FDC low-segment volume %BiasFLV. Here,
the results obtained from the BMU of the SOM based on
Signature Indices outperform the corresponding model real-
izations from the time series map. The result obtained by
minimizing the RMSE using the SCE-UA algorithm displays
Signature Index properties that are very similar to both of the
aforementioned BMU realizations. Interestingly, the SCE-
UA results perform slightly worse with respect to %BiasFHV
and markedly better with respect to %BiasFLV, compared to
most of the BMU realizations. This finding, however, does
not fully coincide with the result suggested by the position
of the RMSE optimum relative to the BMU: According to
Fig. 6b and c the results for %BiasFLV are generally sup-
posed to deteriorate towards the position of the RMSE op-
timum which lies approximately three map units above the
BMU.

In Fig. 10 the normalized range of parameter values re-
trieved from the BMUs of the SOM trained on Signature In-
dices and the SOM trained on time series are shown. Here,
it can be seen that in the first case identifying the BMU
only leads to strongly constrained parameters regarding Ret-
Inf and maxInf, albeit their corresponding means are some-
what different. As expected, these findings correspond well
to the arrangement of parameter values on the map in Fig. 5,
where only RetInf and maxInf display an entirely ordered
pattern. The parameters RetBasis and hL, on the other hand
only appear to be constrained for the realizations obtained
from the time series trained SOM. This finding can most
likely be explained with the parameter ranges being linked
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Fig. 10. Normalized ranges of parameter values retrieved from
the BMUs of the SOM trained on Signature Indices and the SOM
trained on time series.

to the location of the BMU, which in case of parameter hL
coincides with a map region that lacks an orderly pattern with
respect to the parameter values. The corresponding position
of the BMU for the training on time series obviously falls
into a map region where this is not the case and consequently
its range in Fig. 10 is narrowly constrained.

4 Discussion and conclusions

The abovementioned results of our study are the product of
two combined approaches: The Signature Measures serve
to extract information from model time series data and, at
the same time, considerably reduce the amount of data to be
dealt with within the SOM algorithm. Gupta et al. (2008) and
Yilmaz et al. (2008) argue the hydrological relevance and di-
agnostic value of such information for tracking inadequacies
in watershed models and for guiding appropriate model im-
provements. By using the measures presented in Sect. 2.2,
each time series is projected into a five-dimensional Signa-
ture Index Space. The underlying assumptions of our study,
common to many multi-criteria evaluations, are that the Sig-
nature Indices are equally relevant and that the model is ca-
pable of reproducing the Signature Index spaces. The role
of the Self-Organizing Map, in the second step of our ap-
proach, is to produce a discretized (and consequently data-
compressed) mapping of the distribution in the Signature In-
dex space onto a two-dimensional plane such that the patterns
of hydrologically relevant information from a great number
of model realizations can be conveyed in a comprehensive
manner. In addition, the distribution of hydrologically rel-
evant model properties is also linked to the corresponding
parameter space that produced the model time series. The
difference to the approach by Herbst and Casper (2008) lies
in processing the raw time series data into informative indi-
cators of hydrological model behaviour. Because in this step

the number of elements in each data item is reduced from
several thousand time steps to 5 Signature Indices the di-
mensionality and thus the computational burden of training
the Self-Organizing Map has been shrunk immensely such
that 10 000 training cycles can now be completed in several
minutes instead of requiring several days (all computations
have been carried out on a 2×Dual-Core Opteron™ Server
running at 2.59 GHz).

The high degree of correspondence in Signature patterns
on both SOMs shown in Fig. 6 clearly suggests that the Sig-
nature Indices have been successfully extracted and have re-
produced relevant parts of the information contained in the
simulated time series. This, in a sense, points at a high de-
gree of equivalence regarding the discriminatory power of
the two SOM approaches and underscores the efficiency of
using Signature Indices for SOM training on model output
data. The comparison of Fig. 6a and b as well as Fig. 9 sug-
gests that the SOM trained with time series data and the SOM
based on Signature Indices most notably differ with respect
to the representation of the long-term behaviour of the sys-
tem. From the comparison of Fig. 6b and c it further becomes
apparent that an SOM trained on the statistical performance
measures used in Fig. 6c most probably would have extracted
less independent “information” from the model data.

As some of the Signature Indices are derived from the
flow exceedance probability curve it goes without saying
that, despite their diagnostic value, not all Signature Indices
are completely independent. On the other hand, it has been
demonstrated that the way these measures covary for a given
set of simulations can reveal much about the behaviour of
the model. Most notably, model deficits and trade-offs in
representing different watershed functions can immediately
be visualized using adequate techniques for reproducing the
SOM.

Herbst and Casper (2008) have already shown that prelim-
inary information on parameter sensitivities can be provided
by training a SOM on model output data. Using the SOM in
conjunction with Signature Indices additionally allows us to
interpret the function of individual model parameters in the
context of hydrological theory even when completely ignor-
ing the model structure.

The results from Sect. 3.1 have shown that the ability of a
SOM to process and visualize multidimensional data can be
exploited successfully for comprehending model behaviour
in the hydrological context. Therefore, the SOM approach
presented in this contribution also potentially constitutes a
valuable tool for decision makers in as much as model re-
alizations with specific Signature properties can be selected
according to the purpose of the model application (an exam-
ple is given in Fig. 4).

Furthermore, in a way analogous to Herbst and Casper
(2008), the measured discharge time series has been pro-
jected onto the SOM. Because a model is generally not ca-
pable of perfectly reproducing all aspects of the observed
data, a quantization error of 1.1 for the BMU of the measured
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discharge time series appears to be acceptable compared to
the average quantization error of the map. Note that a com-
parison between the average quantization errors achieved
with the Signature Index SOM and the SOM trained on time
series is not very meaningful due to extremely different di-
mensionalities of the input data spaces. The results given in
Sect. 3.2 indicate that using the Signature Indices has positive
effects on the way the SOM can be used to discriminate be-
tween different model realizations which consequently bring
about improvements regarding the use of the SOM to identify
the model results which most closely approximate a given
time series. These improvements are probably attributable
to the fact that using a set of Signature Indices for the SOM
training (theoretically) attributes equal weights to the indi-
vidual characteristics considered by them. When training
on time series, however, the influence of particular events
(e.g. high flow periods) on the SOM training is proportional
to their frequency in the data. Thus, although only 4000
model simulations were available, the selection of the “op-
timal” models on the basis of a SOM trained on Signature
Indices was sufficiently effective (and efficient) that, based
on visual examination, the optimization using SCE-UA is
outperformed. Of course, as only 4000 model realizations
were used, the parameter space was quite sparsely sampled,
and adding more data items to the training data set could eas-
ily help to refine these results. Because, in a general sense, a
SOM can be understood as a means for capturing and analyz-
ing multi-dimensional distributions it seems to be well suited
for use in model identification and model uncertainty analy-
sis. Based on the aforementioned results we suggest that the
present SOM approach may constitute an initial step towards
an alternative framework for model analysis and optimiza-
tion. Further research could therefore, among other topics,
be dedicated towards finding efficient re-sampling strategies
to explore the parameter space. As to the aspect of using the
SOM for multi-criteria optimization, it should be borne in
mind that determining the BMU of the measured time series
is equivalent to converting a multi-objective optimization to
a single-criterion problem by means of weighting the objec-
tive function (Zadeh, 1963; Madsen, 2003). This might be of
importance in cases where the multi-criteria Pareto front is
non-convex; i.e. in general finding the BMU might not pro-
vide a genuine multi-criteria solution.

The Signature Indices used here by no means make a
claim to completely cover all relevant information contained
in the data and a series of other hydrological Signatures
are easily imaginable, such as e.g. measures related to the
representation of the snow cover or the height and tim-
ing of peak discharges. Just as little is known concerning
the requirements of a “parsimonious” description of model
behaviour/excluding redundant information on model be-
haviour. Therefore, further research on the development of
SOM-based applications in the field of hydrological mod-
elling will inevitably be confronted with the question of what
constitutes a sufficient and informative metric/set of Signa-

ture Measures and the question concerning the number of
neurons required to describe the behaviour of a model. This
again leads to the more general problems of time series data
mining. Defining and identifying the information content of
the data constitutes the key towards a more meaningful and
precise application of SOM and all other frameworks for the
evaluation and analysis of hydrological models.
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Abstract. Distributed watershed models constitute a key
component in flood forecasting systems. It is widely rec-
ognized that models because of their structural differences
have varying capabilities of capturing different aspects of the
system behaviour equally well. Of course, this also applies
to the reproduction of peak discharges by a simulation model
which is of particular interest regarding the flood forecasting
problem.

In our study we use a Self-Organizing Map (SOM) in com-
bination with index measures which are derived from the
flow duration curve in order to examine the conditions un-
der which three different distributed watershed models are
capable of reproducing flood events present in the calibration
data. These indices are specifically conceptualized to extract
data on the peak discharge characteristics of model output
time series which are obtained from Monte-Carlo simula-
tions with the distributed watershed models NASIM, LAR-
SIM and WaSIM-ETH. The SOM helps to analyze this data
by producing a discretized mapping of their distribution in
the index space onto a two dimensional plane such that their
pattern and consequently the patterns of model behaviour can
be conveyed in a comprehensive manner. It is demonstrated
how the SOM provides useful information about details of
model behaviour and also helps identifying the model param-
eters that are relevant for the reproduction of peak discharges
and thus for flood prediction problems. It is further shown
how the SOM can be used to identify those parameter sets
from among the Monte-Carlo data that most closely approx-
imate the peak discharges of a measured time series. The re-
sults represent the characteristics of the observed time series
with partially superior accuracy than the reference simula-

Correspondence to:M. Herbst
(herbstm@uni-trier.de)

tion obtained by implementing a simple calibration strategy
using the global optimization algorithm SCE-UA. The most
prominent advantage of using SOM in the context of model
analysis is that it allows to comparatively evaluating the data
from two or more models. Our results highlight the individu-
ality of the model realizations in terms of the index measures
and shed a critical light on the use and implementation of
simple and yet too rigorous calibration strategies.

1 Introduction

In the course of climate change the expected increase in the
occurrence of meteorological conditions that trigger extreme
flood events has raised the demand for operational flood man-
agement and flood forecasting systems, also in small- to
medium-sized catchments (Kundzewicz et al., 2007; Merz
and Didzun, 2005). A key component of these systems
is very often represented by spatially distributed determin-
istic hydrological modelling systems whose properties and
concepts have been subject to extensive research during the
HORIX project. This project aims at developing an oper-
ational expert system for flood risk management in meso-
scale watersheds considering prediction uncertainty (Disse et
al., 2008) and forms part of the national research programme
RIMAX (RIsk MAnagement of eXtrme flood events) which
is dedicated to developing and implementing instruments to-
wards improved flood risk management (Merz et al., 2007).
An important aspect of the HORIX project is also to examine
to what extent and under which circumstances different hy-
drological modelling systems support the prediction of (ex-
treme) flood events in river catchments (Disse et al., 2007).

The discharge simulations that are produced using deter-
ministic hydrological models are subject to different types of
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uncertainties which stem from the fact that every model is
necessarily a conceptual and hence simplified representation
of the natural system (e.g. Klemeš, 1983; Bossel, 2004; Siva-
palan, 2005). As a consequence of this simplification, mod-
els are often not capable of covering the entire behavioural
domain of the natural system with only one set of model
parameters (Wagener et al., 2003). It is therefore recog-
nized that models, because of their structural differences,
have varying capabilities of capturing different aspects of the
system behaviour equally well (Fenicia et al., 2007). In addi-
tion, the behavioural domain which can be reproduced by a
model is further determined via calibration on historical dis-
charge measurements which, in general, strives to account
for the mean behaviour of the natural system although auto-
matic calibration techniques (Duan et al., 2003) can empha-
size, to some degree, different features of the data, depending
on the performance measure which is chosen for the evalua-
tion (Gupta et al., 1998). This, as a matter of course, excludes
extreme events. Moore and Doherty (2005), however, have
shown that the predictive capability of a model can be en-
hanced if weights are associated to those observations with
the highest information content with respect to the required
prediction. In order to maximize the probability that high dis-
charge events can be simulated with a model it consequently
appears reasonable to adapt the calibration strategy such that
model performance in the domain of high discharges is em-
phasized.

In our study we use a Self-Organizing Map (SOM; Koho-
nen, 2001) in combination with index measures which are
derived from the flow duration curve in order to examine the
conditions under which three different distributed watershed
models are capable of reproducing flood events present in the
calibration data.

A Self-Organizing Map consists of an unsupervised learn-
ing neural network algorithm that performs a non-linear map-
ping of the dominant structures present in a high-dimensional
data field onto a lower-dimensional grid. SOM has found al-
most countless applications in fields such as pattern recogni-
tion, image analysis (Kohonen, 2001) and exploratory data
analysis (Kaski, 1997). However, applications related to
hydrological modelling still seem to be the exception (see
Minns and Hall, 2005). It has been used by Herbst et
al. (2009) and Herbst and Casper (2008) for overall model
evaluation and model identification purposes. Very recently,
a SOM has been used by Reusser et al. (2008) to analyze the
temporal dynamics of model behaviour. Kalteh et al. (2008)
provide an overview of SOM applications in hydrological
modelling.

In previous work in this field Herbst and Casper (2008)
used the SOM to obtain a topologically ordered classification
and clustering of the temporal patterns present in model out-
puts obtained from Monte-Carlo simulations. This clustering
of entire time series allowed the authors to differentiate the
spectrum of simulated time series with a high degree of dis-
criminatory power and shows that the SOM can provide in-

sights into parameter sensitivities, while helping to constrain
the model parameter space to the region that best represents
the measured time series. The major shortcoming of this ap-
proach, however, was that, in the hydrological context, the
underlying criteria of this mapping (“pattern”) did not pro-
vide meaningful information on the trade-offs of model be-
haviour. In order to improve the extraction of information in
terms of interpretable time series features (see also Boyle et
al., 2000) Herbst et al. (2009) linked the SOM approach to
the Signature Index concept by Gupta et al. (2008). Using
the Signature Indices presented by Yilmaz et al. (2008), the
dissimilarities between measured and simulated time series
could now be expressed in hydrologically meaningful terms
referring e.g. to water balance, mean runoff reaction velocity
and the volume associated to long term base flow. Conse-
quently, the SOM of these Signature Indices provided a con-
cise summary of model behaviour which can potentially be
used for model diagnostics. The present study follows a simi-
lar approach, however, with a more specific focus: The index
measures we use to compare the simulated and the observed
runoff were designed with the sole purpose of extracting dif-
ferent characteristics in the reproduction of peak flow and
do not strictly follow the Signature Index concept by Gupta
et al. (2008). A SOM of these indices is used to represent
the spectra of model realizations obtained from Monte-Carlo
simulations with the distributed watershed models NASIM
(Hydrotec, 2005), LARSIM (Bremicker, 2000) and WaSIM-
ETH (Schulla and Jasper, 2001) and subsequently analyze
the individual trade-offs of model behaviour in the peak flow
domain. It is demonstrated how the SOM of indices provide
useful information about specific details of model behaviour
and also helps identifying the model parameters that are rel-
evant for the reproduction of peak discharges. It is further
shown how the SOM can be used to identify those parame-
ter sets from among the Monte-Carlo data that most closely
approximate the peak discharges of a measured time series.
At the first stage of this work (Sect. 3.1) the proposed tech-
nique is applied to each of the three models individually. At
the second stage (Sect. 3.2) we directly compare the model
realizations which were obtained from the three models with
respect to the proposed criteria. The discriminatory power of
the SOM is again used to identify those model realizations
that most closely match the given set of criteria; however
these realizations are selected from three different modelling
systems. In order to assess to what extent constraints on the
parameters contribute to enhancing the predictive capabili-
ties of the three models to discharges that exceed the range
of the calibration data, the parameter sets obtained from the
SOM are applied to an extreme historical flood event which
has not been part of the calibration data. The paper concludes
with a discussion of the potential and the shortcomings of the
presented approach (Sect. 4).
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2 Methods and material

2.1 Models and data

In the present study we examine the results of 12 000 Monte-
Carlo simulations of hourly discharge over a period of ap-
proximately two years. The time series were generated us-
ing the distributed watershed models NASIM, LARSIM and
WaSIM-ETH, i.e. for each of the models we carried out 4000
simulations for the same test catchment based on input data
for the period from 1 November 1994 to 28 October 1996.
The test watershed (Fig. 1) is the 129 km2 low-mountain
range catchment “Schwarze Pockau” in Saxony (Germany),
a tributary of the Freiberger Mulde (Elbe sub-basin) situated
near the border to Czech Republic. The catchment extends
from the ridges of the Erzgebirge (Ore Mountains) at approx-
imately 980 m.a.s.l. northward to the runoff gaging station
“Zöblitz” at 440 m.a.s.l. The mean discharge at this station
is 2.31 m3/s while the highest discharge ever measured was
recorded on 13.08.2002 with 160 m3/s. The return period
for events of this magnitude is estimated to 200 a. About
40% of the catchment is covered with forest. The dominant
soil type is a sandy loamy cambisol. The availability of dis-
charge measurements from this catchment, especially during
the extreme event of August 2002, render this catchment a
good data source to investigate the capabilities of hydrologi-
cal models of reproducing extreme discharges.

The rainfall data consists of spatially interpolated, hourly
precipitation fields with a resolution of 1 km2 which were
generated based on daily measurements from three gaging
stations and hourly measurements from one gaging station
within the area (Fig. 1). Additionally, gaging stations from
outside the test-catchment (not shown in Fig. 1) were in-
cluded in order to assure proper conditions at the bound-
aries of the field. First, a two-dimensional external drift krig-
ing (EDK 2D) is carried out on the daily measurements to
get the estimate of the daily areal precipitation. In order to
account for the temporal characteristics of the precipitation
field additionally a separate EDK 2D is performed on the
hourly precipitation measurements. Subsequently, the daily
measurements are disaggregated according to the temporal
distribution of the interpolated hourly precipitation. In both
interpolations the square root of the elevation was used as
drift parameter. EDK 2D was also applied in order to gener-
ate the spatio-temporal fields of wind speed, however, in this
case elevation data determined the drift in a linear way. For
the interpolation of global radiation and relative air humidity
measurements a two-dimensional ordinary kriging was used.
Streamflow was measured at the outlet of the catchment at
gaging station “Z̈oblitz”.

Because appropriate prior information on parameter distri-
butions was missing the Monte-Carlo simulations were run
using uniform random sampling. The corresponding param-
eter ranges as well as the fixed parameters were set based
on prior knowledge acquired via manual expert calibration
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Fig. 1. The “Schwarze Pockau” low-mountain range catchment.

to the test watershed. It is assumed that these values rep-
resent the plausible parameter space for this watershed with
very high probability. All parameters are related to the soil
water balance and the vertical redistribution of flow compo-
nents respectively. Parameters related to flood routing have
not been considered for the Monte-Carlo simulation.

In the following, we give a brief outline of the model
structures that were used for our study. Each of the mod-
els has found widespread application in different fields of
hydrological modelling, including operational flood forecast-
ing, throughout Germany and other countries. LARSIM and
NASIM are distributed and operated commercially.

2.1.1 NASIM

NASIM (Hydrotec, 2005) is a conceptual distributed model
that uses a spatial discretization based on sub-catchments.
For the “Schwarze Pockau” watershed the pre-processing of
spatial data resulted in 71 sub-catchments with a mean size
of approximately 1.8 km2. These are further subdivided into
spatially homogeneous units with respect to soil and land
use. Each of these elementary spatial units is again verti-
cally divided into soil layers. All vertical processes that re-
late to soil and land use (soil moisture accounting, including
interception, evapotranspiration, infiltration etc.) are calcu-
lated on the elementary unit scale. The resulting three lat-
eral flow components are subsequently aggregated on the
sub-cachment scale each passing an individual linear stor-
age. Two of them, the interflow and surface flow, are in a
prior step transformed by convolution with the time-area re-
lationship to integrate sub catchment characteristics into the
process of flow accumulation.

An outline of the principle elements of the model structure
is given in Fig. 2. Note that the NASIM parameters exam-
ined in this study are unit less factors that modify the actual
internal parameter values and act on the sub-catchment scale.
The internal values are either based on global default values
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Table 1. NASIM model parameters used for the Monte-Carlo simulation and their parameter (factor) ranges.

Name Description Factor Range Internal Range Unit

RetBasis Storage coefficient factor for baseflow component 0.5–3.5 500a [h]
RetInf Storage coefficient factor for interflow component 2.0–6.0 50a [h]
RetOf Storage coefficient factor for surface runoff from unsealed surfaces 2.0–6.0 1.8–5.7b [h]
StFFRet Storage coefficient factor for surface runoff from urban areas 2.0–6.0 16a [min]
hL Horizontal hydraulic conductivity factor 2.0–8.0 1.5a [mm]
maxInf Maximum infiltration rate factor 0.025–1.025 11, 23, 30c [mm/h]
vL Vertical hydraulic conductivity factor 0.005–0.105 11, 23, 30c [mm/h]

a fix value, not determined via pre-processing
b depending on sub-catchment slope
c depeding on soil type

hL

FC

maxInf
ET PPT

RetBas

RetInfvL

RetOf

PPTET

StFFRet

f(time,Area)

Q

Inf.

WP

Θmax

Θmax = max. soil moisture

FC = field capacity

WP = wilting point

Fig. 2. Simplified schematic representation of the NASIM model
structure; only those elements are reproduced that are considered in
the scope of the present study. Parameters that have been subject to
variation in the course of the Monte-Carlo simulation are printed in
italic Times New Roman.

or have been determined individually for each sub-basin in
the course of the spatial data pre-processing. The variation
of these factors during the Monte-Carlo simulation, however,
was performed with global values for all sub-catchments. Ta-
ble 1 provides an overview of the calibration factors, internal
values and their corresponding ranges. The parametermaxInf
determines the maximum infiltration rate of the soil-moisture
storage whereas the drainage is controlled byvL. The factors
RetOf, RetInf andRetBasscale the storage coefficients for
the quick, intermediate and the slow flow component, respec-
tively. In the context of simulating flood events parameterhL
potentially adopts a crucial role by determining the separa-
tion of exess flow into quick “overland flow” and interme-
diate “interflow” component. A special feature in NASIM
is the representation of fast flow components from impervi-
ous urban areas whose retention is influenced by parameter
StFFRet. However, in the Schwarze Pockau catchment only
6.6% of the area belongs to this land use type. Thus a domi-
nant influence of this parameter is not expected. The internal

values modified byRetOf are determined in the course of
the pre-processing depending on the slope in each sub-basin,
while the internalRetInf, RetBas, StFFRetare set to global
values. The correspondents ofmaxInf as well as well asvL
are determined according to soil type. The ranges of calibra-
tion factors and internal parameter values of the Monte-Carlo
simulation with NASIM are given in Table 1.

2.1.2 LARSIM

LARSIM (Bremicker, 2000) is operated using the same spa-
tially distributed input data. However, in our study, a raster
based spatial discretization with a resolution of 1 km was
chosen. LARSIM considers coupled land use and soil com-
partments on a regular grid but does not explicitly account
for the spatial distribution of soil and land use related field
capacities on the sub-catchment scale. Instead, the amount of
water which is allowed to infiltrate per time step is given as
the difference between effective rainfall and overland flow.
The sum of field capacity and air capacity yield the max-
imum soil moisture content. LARSIM then simulates the
soil moisture balance using a variable contributing area func-
tion, similar to the approach implemented by the Xinanjiang
model (Zhao, 1977): The proportion of contributing satu-
rated areas is calculated as a function of mean soil water
content and a conceptual parameterBSF (which is an ex-
ponent that controls the shape of the contributing saturated
area function, see Fig. 3). The resulting total amount of satu-
rated flow is subsequently partitioned into a quick and a slow
sub-component,Qof andQof2, depending on the threshold
parameterA2. Discharge from lateral drainageQi (“inter-
flow”) as well as vertical percolationQb is represented using
non-linear, empirical relationships such that essentially all
flow components are controlled by the soil moisture storage
and the actual soil moisture content: in Fig. 3Wz denotes
the minimum soil moisture content to generate interflow (it
is considered a constant and set to 0.7 mm). The parame-
tersDmin andDmax determine the minimum and maximum
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amount of lateral drainage from the soil-moisture storage (in
mm/d) which is further governed by the actual soil-moisture
contentW0. Percolation into groundwater per time stepQb

is linearly controlled by parameterβ. All flow components
are subsequently forwarded to linear storage elements be-
fore they reach the river channel. The parametersEQD and
EQD2 determine the storage coefficients that correspond to
the sub-components of saturated flowQof andQof2 respec-
tively. They are linear scaling factors of the time of concen-
tration in a sub-basin which is determined in the course of
the pre-processing, i.e. they are proportional to the retention.
For our study, the remaining storage coefficients are consid-
ered constant. The parameter ranges used to carry out the
Monte-Carlo simulation are given in Table 2. The parameter
values were identical for all sub-catchments during each run
of the Monte-Carlo simulation.

2.1.3 WaSIM-ETH

WaSIM-ETH 6.4 version 2 (Schulla and Jasper, 1998) is op-
erated with a raster based spatial discretization identical to
the one used by LARSIM.

Infiltration of water into the soil is calculated for each
grid cell following Peschke (1987). The remaining amount
of water constitutes the surface flow componentQd . Sub-
sequently, soil water transport is simulated using the 1-D
Richards differential equation on homogeneous soil columns
which are determined by the spatial discretization. Soil
hydraulic parameterization was carried out following the
van Genuchten modelling scheme (Van Genuchten, 1976).
The upper and lower boundary conditions are given by the
amount of infiltrating water and the depth of the groundwa-
ter layer respectively. Lateral drainageQi results from the
water balance calculations on the soil columns and is gener-
ated whenever the suction in the soil column falls below a
given threshold (ψm=3.45 m). The drainage density param-
eterdr directly determines the amount of interflow which
can be generated per time step. It expresses the drainage
density of the (sub-)catchment as well as the anisotropy with
regard to the vertical and horizontal hydraulic conductivities
(Schulla and Jasper, 1998). For the simulations of our test
catchment, however, no sub-basins were defined. A simple
ground water model with a single linear storage approach is
used to generate the slow discharge componentQb. The sub-
sequent concentration of the flow components is simulated
using single linear storages and time-area functions on the
catchment scale. The parameterskd andki denote the stor-
age coefficients of the surface runoff and the lateral flow, re-
spectively. The resulting total discharge is calculated as the
superposition of the flow components. A rough outline of the
model is presented in Fig. 4. The parameter ranges for the
Monte-Carlo simulation with WaSIM-ETH are reproduced
in Table 3. Again, the parameter values remained identical
for all sub-catchments during each simulation run.
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Fig. 3. Simplified schematic representation of the LARSIM model
structure; only those elements are reproduced that are considered in
the scope of the present study. Parameters that have been subject to
variation in the course of the Monte-Carlo simulation are printed in
italic Times New Roman.

As the focus of the present model evaluation lies on the
reproduction of high discharges, the generation and concen-
tration of flow through the model is considered to be the most
important process here. Accordingly, the choice of model pa-
rameters for the Monte-Carlo simulation includes all parts of
the particular model structures that seem to be most mean-
ingful in this context. The resulting differences in the de-
grees of freedom between the models are considered here as
an inevitable consequence of the particular model structure.
In addition, it has to be taken into account that the number of
available parameters can be strongly put into perspective by
individual parameter sensitivities and by parameter interac-
tion. In other words, model complexity is not a prerequisite
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Table 2. LARSIM model parameters used for the Monte-Carlo simulation and their parameter ranges.

Name Description Unit Range

EQD Calibration factor for storage coefficient of fast runoffQof [–] 100–5000
EQD2 Calibration factor for storage coefficient of fast runoffQof2 [–] 10–1000
BSF Calibration factor of the “soil moisture” – saturated area function, variable contributing area approach [–] 0.05–1.0
β Drainage coefficient for deep storage [1/d] 0.03–0.05
Dmin Minimum lateral drainage from soil storage [mm/h] 0–5.0
Dmax Maximum lateral drainage from soil storage [mm/h] 0–5.0
A2 Repartitioning factor for saturation overland flow and fast subsurface runoff [mm/h] 0.8–3.0

Table 3. WaSIM-ETH model parameters used for the Monte-Carlo
simulation and their parameter ranges.

Name Description Unit Range

kd Storage coefficient for surface runoff [h] 0.1–40
ki Storage coefficient for lateral flow [h] 0.1–100
dr Drainage density/anisotropy parameter [1/m] 0.5–100

for good model performance (see e.g. Gan and Biftu, 2003).
Thus, we see no strong reason to assume that a model would
have less capabilities of reproducing certain runoff character-
istics due to its degrees of freedom, even more as the present
study focuses on a very specific aspect of model behaviour.

2.2 Derivation of index measures from the flow duration
curve

In order to capture information on different characteristics of
model behaviour within a specific domain of flow response
we follow an approach which is adapted from the work of
Gupta et al. (2008) and Yilmaz et al. (2008): Five index mea-
sures are derived based on the evaluation of simulated and
observed flow duration curve properties. In contrast to com-
monly used statistical objective functions (e.g. see Legates
and McCabe Jr., 1999) the “Signature Indices” presented
by Yilmaz et al. (2008) constitute hydrologically meaningful
measures of system response. In this respect, the indices we
use differ from the concept proposed by Gupta et al. (2008)
insofar as their diagnostic relation to different elements of the
model structure as well as to the natural system is less obvi-
ous. In order to analyze the reproduction of flood events in
detail the indices were conceptualized to focus solely on the
characteristics of discharge events with an exceedance proba-
bility below a given threshold which is derived from the flow
duration curve (Fig. 5). In our study this specific threshold
is determined by visual examination of the slope of the ob-
served flow duration curve which, in our example, shows a
marked increase at 2%. The remaining section of the flow
duration curve is further subdivided at 0.42%, following the

saturated zone

PPT ET

f(k(ψ),dr,…)

Qd

Qi

Qb

Q

kd

ki

Fig. 4. Simplified schematic representation of the WaSIM-ETH
model structure – only those elements are reproduced that are con-
sidered in the scope of the present study. Parameters that have been
subject to variation in the course of the Monte-Carlo simulation are
printed in italic Times New Roman.

same approach (Fig. 5). For each of these subsections indi-
vidual index measures are calculated according to Eqs. (1)
and (2). According to Yilmaz et al. (2008), the percent dif-
ference in slope of a flow duration curve segment relative to
the observations is given as

%BiasFDC =(
log(Qsimi)− log(Qsimj )

)
−
(
log(Qobsi)− log(Qobsj )

)(
log(Qobsi)− log(Qobsj )

) ·100 (1)
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Fig. 5. Derivation of index measures from the upper 2% section of
the flow duration curve (FDC).

wherei andj denote the thresholds that define a segment of
the flow duration curve; Qsim being the simulated discharges
and Qobs being the corresponding observations. Given the
observed flow duration curve in Fig. 5 we define the slope
of the lower section of the flow duration curve segment%Bi-
asFDClow as%BiasFDC with i=2 andj=0.42. Accordingly,
the slope of the upper section of the flow duration curve seg-
ment %BiasFDChigh is defined as%BiasFDCwith i=0.42
andj=0. Further, the percentage of bias in the flow duration
curve high volume segment is calculated based on Yilmaz et
al. (2008) as

%BiasFHV =

∑
h

(Qsimh −Qobsh)∑
h

(Qobsh)
· 100 (2)

whereh denotes the index of all discharge values with ex-
ceedance probabilities higher thani and lower thanj . Again,
we define the bias for the lower flow duration curve segment
volume%BiasFHVlow as%BiasFHVwith i=2 andj=0.42.
Correspondingly, we define%BiasFHVhigh as %BiasFHV
with i=0.42 andj=0. In addition, the percentage of error in
maximum peak discharge%DiffMaxPeakis determined after
Eq. (3).

%DiffMaxPeak =
QsimH −QobsH

QobsH
· 100 (3)

with the index number of the highest element of the flow du-
ration curve beingH.

As none of the model parameters that are subject to varia-
tion in the Monte-Carlo simulation is related to flood routing
or exerts a significant influence on the timing of the discharge
peaks we refrained from examining potential time lags be-
tween the simulated data and the observations. However, in
a more general model evaluation problem, this might be a
recommendable procedure.
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Fig. 6. The iterative training process of SOM (Herbst and Casper,
2008).

2.3 Self-organizing maps

SOM is an unsupervised learning neural network algorithm
that is applied to high-dimensional data sets in order to cate-
gorize the range of data patterns that occur in it and to extract
a set of characteristics that describe its multidimensional dis-
tribution. A SOM essentially performs a non-linear mapping
of vectorial input data items onto a discrete, low-dimensional
grid. Most commonly a two-dimensional, rectangular grid
with hexagonal topology is used. In contrast to common
Vector Quantization methods or k-Means clustering, SOM
is topology preserving, i.e. nearby locations on this mapping
are attributed to similar data patterns. Likewise, the distance
between two nodes on the mapping is proportional to the dis-
similarity of the data items they represent. Each input data
item x of the training data setX that has to be examined
is considered as a vectorx= [x1, x2, . . . , xn]T ∈<

n, with n
being the dimension of the input data space. LetX repre-
sent a set of index vectors calculated according to Sect. 2.2,
thusn=5. A SOM consists of a fixed number ofk neurons
that are arranged on a regular grid whose dimensions can
be determined by means of heuristic algorithms, if no other
preferences are made. Throughout this paper the terms “neu-
ron”, “node” and “map unit” are used synonymously. Fig-
ure 6 provides a schematic representation of the process of
self-organization which, in the following, is explained based
on the paper by Herbst et al. (2009).:

Each neuroni is represented through a reference vector

mi = [µi1, µi2, . . . , µin]
T

∈<
n (4)

whose dimensionn equals the number of elements in an in-
put data vectorx ∈X. Typically, the reference vectorsmi

are initialized to small random values. However, in order to
assure faster and more reliable convergence of the map, we
initialize themi along the two greatest principal component
eigenvectors of the data (Kohonen, 2001). In the classic se-
quential training the SOM is trained iteratively: In the first
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step an input data itemx∈X is randomly selected and the
Euclidean distance

di =

√√√√ n∑
j=1

(
xj −mij

)2
i = 1. . .k; j = 1. . .n (5)

betweenx and each reference vectormi is computed (the-
oretically any appropriate metric can be used as a measure
of similarity). The “winning neuron” (also called the best-
matching unit BMU ofx) is the map elementc whose refer-
ence vectormc has the smallest distancedc to x with

dc = min
i

{‖x − mi‖} . (6)

In the next step the reference vectormi and all of its neigh-
bouring neurons are updated according to

mi (t + 1) = mi (t)+ α (t) hci (t) [x (t)− mi (t)] (7)

wheremi(t) is the current weight vector at iteration stept .
Thus, the rate of change for each node of the map is scaled
by three factors: a) the difference (x(t)−mi(t)) between the
input data setx and the prototype vectormi b) the size of a
neighbourhood functionhci which decreases monotonically
to zero with t and with distance from the winning neuron
and c) a learning rate factorα(t) which gradually lowers
the height of the neighbourhood function as the iteration ad-
vances. Forhci it is common to use the Gaussian function

hci (t) = exp

(
−

‖rc − r i‖
2

2σ 2 (t)

)
(8)

whereσ (t) defines the width of the topological neighbour-
hood, and bothσ (t) andα(t) decrease monotonically with
t . Note that an exact choice of the functionα(t) is not re-
quired (Kohonen, 2001). Repeated cycling through the train-
ing steps causes different nodes and regions of the map to be
“tuned” to specific domains of the input space. Importantly,
the enforced local interaction between the SOM nodes re-
sults in the map gradually developing an ordered and smooth
representation of the input data space (Kaski, 1997).

In this work, however, we used Kohonen’s “batch-
training” algorithm (Vesanto, 2000) to speed up the training
process. Here, in each training step the data set is partitioned
according to the Voronoi regions of themi . Instead of se-
quentially running through all data items in each training cy-
cle the whole data setX is presented to the map as a whole
at each training cycle. The reference vectors are updated ac-
cording to the weighted average of the data samples

mi(t + 1) =

N∑
l=1
hci(t)xl

N∑
l=1
hci(t)

(9)

wherec is the index number of the BMU of data setxl , and
N is the number of data samples. This variant of the training
does not make use of the learning rate factorα(t).

In the course of the training the reference vectors are
“tuned” to the different patterns contained in the input data.
The final reference vectors form a discrete approximation of
the input data distribution. Thus, patterns that occur more
frequently in the input space are mapped onto a larger area.
Note that, as the number of neurons – and consequently the
number of reference vectors – is much smaller than the num-
ber of data items used for the training, SOM can also be seen
as a data compression method.

In our study we also make use of the fact that, once its
training is finished, the SOM can be applied to project an
input data vectory onto the map which has not been part of
the training data set. This means that according to Eq. (6)
the neuronc(y) with reference vectormc(y) is determined for
which∥∥y − mc(y)

∥∥ = min
i

{‖y − mi‖} . (10)

Neuronc(y) then represents the domain of input data patterns
from X that is most similar toy. It follows that the set of
data itemsX̂⊂X which is attributed toc(y) represents those
training data items that are most similar toy with respect to
the criterion given by Eqs. (5) and (10). The neuron c(y) is
called the “best-matching unit” (BMU) ofy.

2.4 Data preparation and training of the SOM

For each of the 4000 time series obtained by running a
Monte-Carlo simulation (Sect. 2.1) a set of five index mea-
sures was calculated according to Eqs. (1–3) (Sect. 2.2). The
procedure was carried out for each of the three models.

Prior to the SOM training, each index was normalized to
a value having zero mean and variance of one using a linear
transformation such that high index values do not exert a dis-
proportionate influence on the training. The side lengths of
the map as well as the initial reference vectors were deter-
mined by means of a heuristic algorithm involving the calcu-
lation of the two biggest eigenvalues of the covariance matrix
of the data (Vesanto et al., 2000). For more details on the data
preparation and the training please see Herbst et al. (2009).

At the first stage of our study the three data sets were
treated individually. Subsequently, the data preparation and
the training were repeated with the combined data set of all
three models.

For the SOM training as well as for a part of the eval-
uation procedures the “SOM Toolbox for MATLAB™”
(Helsinki University of Technology,http://www.cis.hut.fi/
projects/somtoolbox/) was used.

2.5 Evaluation of SOM results

Generally, the number of neurons on the maps is much
smaller than the number of data sets used for the training. As
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a consequence of this, every neuron represents a set of sim-
ulation runs and their respective index value pattern. In the
following, we evaluated the index properties of the individual
nodes by de-normalizing the reference vectors of the maps.
Each of the nodes/reference vectors represent the mean index
value properties of a small sub-set of model data used for the
training. In the following, these reference vector index values
are visualized by means of a small, coloured bar plot for each
node. In a bar plot visualization the position of the BMU can
easily be identified by the map unit with the “flattest” bars.
Note that the height of the individual bars is scaled relative
to the range of the corresponding index. Also colour coding
of the index values is used, whereas the same map grid is
reproduced five times with a colouring corresponding to the
distribution of the individual index values (so-called compo-
nent planes).

As a result of the self-organizing process that takes place
in the course of the training, the data items which are grouped
to such a sub-set have similar properties with regard to their
five index values. Due to the topological properties of the
mapping the distance between two nodes on the map is
roughly a function of the dissimilarities between the data sets
attributed to these nodes. Please note that, to some extent,
the SOM embodies statistical properties, e.g. the number of
reference vectors on a map that display a certain type of qual-
ity is proportional to the number of data sets with that prop-
erty. As a simple measure of the quality of the mapping the
“quantization error” (Kohonen, 2001)̄d is calculated using
Eq. (10).

d̄ =
1

N

N∑
p=1

∥∥xp − mc(p)

∥∥ (11)

It represents the average distance of each data vectorxp of
theN input data items contained in the training dataX to
its associated BMU reference vectormc(p), with p being the
index of the data items (not to be confused with the index
values of Sect. 2.2!).

We further take advantage of the possibility to label the
input data items that are attributed to each neuron via the
training. That way, each input data item is linked to a model
parameter set and its original simulated time series. Thus,
the neurons of the map can be evaluated with respect to the
model parameters, e.g. by calculating the mean values of
each parameter for the individual map units. The distribu-
tion of parameter values over the map is again visualized by
means of colour coding. In doing so, the same map grid is re-
produced for each parameter, however, with different colour-
ing according to the distribution of parameter values. In the
following, this type of visualization is referred to as parame-
ter plane. Corresponding patterns on a component plane and
parameter plane indicate that an index value is governed to a
large extent by a particular parameter. Moreover, an irregu-
lar pattern on the parameter plane is indicative of parameter

insensitivity, according to the components which were used
to train the map.

For each map grid (i.e. for each model) the BMU of the
measured discharge time series is determined according to
Eq. (10). Following Sect. 2.2 (Eqs. 1–3) the time series of
observed dischargesQobs maps asy=[0 0 0 0 0]T into the
index space. We then calculate the quantization error of the
BMU

d̄BMU =
1

n

N̂∑
r=1

∥∥x̂r − mc(y)

∥∥ (12)

in order to obtain a rough indicator of how close the data
itemsx̂r∈X̂ with r = 1. . .N̂ which are attributed to the BMU
c(y) of the observation (Eq. 10) approximate the observation
(represented byy=[0 0 0 0 0]T ). In Eq. 11N̂ denotes the
number of data items in̂X. Note, that it is possible to iden-
tify a BMU for any data set that has the same dimensionality
as the input data, irrespective of its distance from the obser-
vations.

The data items on the BMUc(y) of a map also correspond
to one or more model parameter sets which are subsequently
used to simulate an extreme flood event from August 2002
that has not been part of the Monte-Carlo data set. As a
reference, we visually compare these simulations to the re-
sults we obtained by using the shuffled complex evolution
optimization algorithm (SCE-UA, Duan et al., 1992) to find
a parameter set that minimizes the root of the mean squared
error (RMSE) for the same period of time for which a simple,
model specific, weighting scheme after Casper et al. (2009)
is used. This scheme basically applies a higher weight to all
time steps with a discharge higher than three times the mean
discharge (Q>3MQ).

3 Results

3.1 SOMs generated from the individual model data sets

Although from each of the models the same amount of data
items was processed, the maps for NASIM, LARSIM and
WaSIM-ETH slightly differ in number of neurons and side
lengths which is caused by the initialization of the maps ac-
cording to Sect. 2.4. The overall quantization errord̄ (Eq. 11)
for the three mappings ranges between 0.236 (NASIM) and
0.278 (WaSIM-ETH). Thus, it can be assumed that the SOM
provides a good fit of the model data. The distributions of ref-
erence vector properties over the map support that the model
data has been arranged by similarity over the maps. No void,
i.e. interpolative, units are present. In the following, an ac-
count of the results for the individual models is given. Note
that, as to the simulated time series illustrations, only a repre-
sentative period of the entire simulated time series is repro-
duced in the following in order to assure better readability
of the figures. Representations of the flow duration curve
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 7. NASIM: Distribution of index properties on the map dis-
played as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

(FDC), however, always refer to the full length of simulated
discharge time series.

3.1.1 NASIM

The bar plot (Fig. 7) reveals that a significant proportion of
simulation runs which were attributed to the upper half of the
map underestimated all five properties that are represented by
the indices. The increase of%BiasFDChigh from the left to
the right hand side implies a general increase in peak runoff
reaction in this direction of the map. The remaining index
components generally tend to smaller negative or positive
values towards the lower part and the right hand side of the
map. From the values of%DiffMaxPeakin Fig. 7 it imme-
diately becomes obvious that only very few simulations ex-
ceeded the measured peak discharge.

A comparison of the parameter plane Fig. 8a with the com-
ponent plane Fig. 8b indicates that the increase in peak runoff
reaction%BiasFDChigh is largely influenced by parameter

Fig. 8. NASIM: (a) Parameter plane, i.e. mean values of each model
parameter for the simulations projected onto the individual map el-
ements.(b) Distribution of reference vector (i.e. indices) properties
on the map. The position of the BMU is marked.

hL in combination with the parameter for the retention of
“overland flow”, RetOF. Figure 8a also reflects that param-
eterRetOf remains insensitive with respect to the indices as
long ashL has high values. According to Sect. 2.1, this be-
haviour is evident because the generation of “overland flow”
is overridden byhL. Moreover,RetInf, which governs the re-
tention of water allocated to interflow, with high probability
exerts an influence on the increase in%BiasFHVlow, which
consequently provides a rather simple explanation for the po-
sition of the BMU on the map. Further, it can be seen from
Fig. 8a that parametermaxInf is – at best – only partially sen-
sitive. vL, RetBasisandStFFRetare insensitive here because
they are linked to the generation of “base flow” and runoff
from urban or impervious areas which for the “Schwarze
Pockau” catchment only comprise 6.6% of the total area.

Correspondences in the distribution patterns in Fig. 8b re-
veal significant correlations between the indices with respect
to the behaviour of NASIM. However, each component plane
is scaled separately. Therefore, the individual optima of the
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Fig. 9. NASIM: (a) Flow duration curves (upper 2% section): Sim-
ulations corresponding to the BMU compared to the observed dis-
charge and the results of an optimization approach using SCE-UA.
(b) Time series corresponding to the BMU compared to the ob-
served discharge.

indices still do not coincide on the same map location. The
scales of the component planes additionally give insight into
the true lengths of the bar plots in Fig. 7.

The quantization error for the BMU of the observed dis-
charge time series, calculated according to Eq. (11), yields
d̄BMU=0.85, which suggests that the observations are located
somewhat off the model data obtained from the Monte-Carlo
Simulation. Nevertheless, from the simulation results in
Fig. 9a it can be seen that the parameter sets that were re-
trieved from the BMU associated to the observed runoff re-
produce the characteristics of the measured FDC with very
high accuracy. However, this requirement is also satisfied
surprisingly well by the reference simulation which was ob-
tained using the SCE-UA algorithm in combination with a
simple weighting scheme. Notwithstanding, the time series
of simulated discharge (Fig. 9b) shows that, with the excep-

Fig. 10. NASIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

tion of only a few events, the runoff peaks could be repro-
duced well. As the FDCs grow almost congruent towards the
ordinate it does not surprise that a part of the simulation runs
attributed to the BMU performs equally well during the vali-
dation event compared to the SCE-UA reference simulation,
yet none of the model realizations is able to reach the peak
flow (Fig. 10).

3.1.2 LARSIM

Figure 11 shows that LARSIM, contrary to NASIM, tends
to overestimate almost the entire set of indices whereas for
at least the lower third of the map this tendency is very pro-
nounced. Lower or negative index values as well as sporadic
underestimation of runoff reaction (%BiasFDChigh) and –
volume (%BiasFHVlow), are largely recorded in the upper
regions. The only index, however, which is constantly over-
estimated throughout the data set is the runoff reaction during
all time steps corresponding to the lower section of the FDC,
%BiasFDClow. The maximum peak discharge, expressed by
%DiffMaxPeak, is also overestimated throughout large por-
tions of the model data.

Towards the right hand corners a marked increase
in %BiasFDChigh is superimposed to the comparatively
monotonous pattern of index combinations. From Fig. 12a
it can be seen that parameterEQD2 decreases in the same
direction, which most likely reveals a main control for the
runoff reaction in the fastest portion of flow. Likewise, the
error in maximum peak flow, which is expressed by%Diff-
PeakMax,grows strongly positive towards the lower right
hand corner. The volume allocated to flow corresponding to
the lower branch of the FDC (%BiasFHVlow), and partially
also%BiasFHVhigh, increases towards the lower left corner
of the map (Fig. 12b) which, according to Fig. 12a, indicates
that these features are likely to be governed by parameter
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 11. LARSIM: Distribution of index properties on the map
displayed as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

EQD. As to the remaining parameters, no further correlations
with indices are clearly apparent, although at least parameter
A2 shows a marked sensitivity with respect to data sets allo-
cated to the right hand side of the mapping which points to
some degree to an interaction betweenEQDand/orEQD2as
well asA2.

The influence ofEQD2 on %BiasFDChigh can easily be
explained following Sect. 2.1: AsEQD2 is a scaling factor
for the retention of the “fast” saturated flow componentQof2,
it largely controls the volume per time step which is allocated
to peak discharges. Its sensitivity, however, depends on the
threshold parameterA2 which at the same time governs the
function of storage coefficientEQD. As documented by the

Fig. 12. LARSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual
map elements.(b) Distribution of reference vector (i.e. indices)
properties on the map. The position of the BMU is marked (top left
corner of the map.

corresponding scales of the component planes in Fig. 12b,
the sensitivity of%DiffMaxPeak and%BiasFDChigh is ex-
tremely high. But also the volumes%BiasFHVlow and%Bi-
asFHVhigh seem to react with sharp gradients on changes of
EQD andEQD2. Following Sect. 2.1 it does not surprise
that the “base flow” storage coefficientβ as well asDmin or
evenDmax do not show any apparent sensitivity according to
Fig. 12a. However, the lack of sensitivity with respect to pa-
rameterBSF, which controls the generation of saturated flow
via a variable contributing area approach, is unexpected and
does not lend itself to a straightforward explanation.

The impression that LARSIM does not seem to be capa-
ble of simultaneously meeting the constraints imposed by the
five indices is already conveyed by Fig. 11. The compara-
tively high quantization error for the BMU of the observed
discharge time series̄dBMU=1.1 and the fact that this BMU
is located on an extremely marginal position in the upper left
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Fig. 13. LARSIM: (a) Flow duration curves (upper 2% section):
Simulations corresponding to the BMU compared to the observed
discharge and the results of an optimization approach using SCE-
UA. (b) Time series corresponding to the BMU compared to the
observed discharge.

hand corner of the map further corroborates this finding. The
resulting model behaviour is illustrated in Fig. 13a and b.
The envelope of the simulations in Fig. 13a shows that, in ac-
cordance with Fig. 11, a significant proportion of simulation
runs (i.e. parameter combinations) is potentially capable of
reaching sufficiently high and even excessive peak discharge
values. However, the constraints linked to the lower (0.42–
2%) part of the FDC counteract this behaviour with very high
probability and force the position of the BMU (Fig. 11) to-
wards the upper left hand side of the map. This finding is
further supported by the results obtained by using the SCE-
UA optimization algorithm (Duan et al., 1992) to minimize
the RMSE of the simulated time series. In addition, the sharp
gradients and extreme overestimation of%DiffMaxPeakand
%BiasFDChigh in reaction to changes ofEQD andEQD2as
well as the position of the simulation envelope in relation to

Fig. 14. LARSIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

the observations (Fig. 13a) point at that the ranges allowed to
these parameters in the course of the Monte-Carlo simulation
are disproportionate. Consequently, the BMU parameter sets
comprise high values for bothEQDandEQD2, apparently in
order to compensate for an excess in fast runoff components.
This excess could have been triggered by of the settings for
parameterA2 and/or overly high values for parameterBSF.
The model realizations selected by using the BMU criterion
display some kind of “plateau behaviour” which is illustrated
by the decrease in slope towards the upper end of the FDC
(Fig. 13a) and indicates deficits in discharge volume genera-
tion for runoff peaks. These deficits also manifest themselves
with regard to the time series results for the training period
(Fig. 13b) and, even more, for the extreme event of August
2002 (Fig. 14). Here, the model realizations that were at-
tributed to the BMU perform even worse than the reference
simulation which was obtained using the SCE-UA algorithm
and hardly reach about 50 m3/s peak flow compared to ap-
proximately 160 m3/s of observed peak discharge.

3.1.3 WaSIM-ETH

Regarding the WaSIM-ETH model realizations, the indices
used to examine the model behaviour show a marked corre-
lation and a general gradient extending from the upper left
to the lower right corner (Fig. 15). Nevertheless, the index
ranges covered by the Monte-Carlo simulation with WaSIM-
ETH are quite individual and comprise negative as well as
positive values. Thus, the upper third of the map is generally
characterized by underestimation of the indices which grad-
ually fades to high index values towards the lower right hand
side of the map such that the lowest index values (i.e. the
model realizations that best “fit” the observations), and thus
the BMU, can be found only a few nodes below the centre of
the map.
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%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

BMU

Fig. 15. WaSIM: Distribution of index properties on the map
displayed as bar plots and the position of the best-matching unit
(BMU). Note that the bars have individual relative scales.

Contrary to the other models we examined, from a visual
comparison of Fig. 16a and the component planes (Fig. 16b)
it is not possible to isolate any straightforward relationship
between individual model parameters and indices, although
each of the parameters we included in the Monte-Carlo sim-
ulation shows a marked sensitivity with respect to the index

Fig. 16. WaSIM: (a) Parameter plane, i.e. mean values of each
model parameter for the simulations projected onto the individual
map elements.(b) Distribution of reference vector (i.e. indices)
properties on the map. The position of the BMU is marked.

measures. However, to some extent, the parameter planes
themselves (Fig. 16a) display correlated patterns, e.g. the
map units with high values forki suspiciously coincide with
the map units for which parameterkdacquires predominantly
low values. As to the general behaviour of the WaSIM-ETH
model structure with respect to the indices, it can be stated
that low values for parameterkd anddr in combination with
intermediateki values redound to an increase of peak flow.

From these findings we infer that all three model param-
eters are equally important for matching the five index mea-
sures and that parts of the model structure exhibit a strongly
interacting, maybe even equifinal behaviour. That way, the
effect of one parameter can be compensated to some extent
by a combination of the other parameters. This would also
provide some explanation for the fact that the BMU is located
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Fig. 17. WaSIM: (a) Flow duration curves (upper 2% section):
Simulations corresponding to the BMU compared to the observed
discharge and the results of an optimization approach using SCE-
UA. (b) Time series corresponding to the BMU compared to the
observed discharge.

in a map region where all three parameters are subject to
considerable alterations. It finally results that the parameter
sets associated to the BMU can be divided into two groups
with strongly contrasting values: The first group has low val-
ues with respect tokd and simultaneously high values fordr
while the second group displays highkd values in combina-
tion with low values fordr. The respective index measures,
however, turned out to be quite similar.

With d̄BMU=0.76 the quantization error of the BMU model
realizations that correspond to the time series of measured
discharges is the smallest among the three models and indi-
cates that these parameter sets match the observed behaviour
of the system relatively well. This is further supported by the
rather central position of the BMU on the map. The model
realizations which are retrieved from the BMU thus result
in a rather accurate representation of the FDC characteris-

Fig. 18. WaSIM: Results for the validation event August 2002
(BMU realizations and SCE-UA, RMSE).

tics, especially regarding the highest runoff values (Fig. 17a)
whereas the FDC of the SCE-UA reference simulation adopts
a steeper trajectory and hits the ordinate somewhat above the
FDC of the observations. The model time series (Fig. 17b)
finally exemplify that the BMU model realizations were ob-
tained using parameter sets from disjoint regions of the pa-
rameter space. The peaks, however, are reproduced very
well, with the exception of only a few minor runoff events. In
contrast, the peak of the validation event (Fig. 18) is strongly
underestimated by all model realizations, whereas only one
half of the BMU model realizations exceed the peak flow of
the SCE-UA reference simulation.

3.2 Results generated from SOM of the joint model data
set

According to the initialization procedure (Sect. 2.4) the num-
ber of neurons on a map does not increase linearly with the
number of data items used for the training. Therefore, the
proportion of data items to the number of map units results
somewhat higher for the SOM trained on the joint data set
than for the SOMs we discussed in the previous section. The
overall quantization error̄d=0.38 (Eq. 10) of this SOM re-
sult appears to be sufficiently low so as to characterize the
mapping as a very good approximation of the model data.

In Fig. 19a the neurons of the map are reproduced as pie
charts in order to illustrate the distribution of data items from
the different models on the SOM. These represent the per-
centage of data from each model that has been attributed to
the neurons via the training. In Fig. 19b the same pie charts
are scaled using the number of data items on each map unit
in order to simultaneously visualize the distribution of data
quality and quantity on the map. The void regions on the map
indicate interpolative units where the data items are clearly
disjoint and characterized by marked differences with regard
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Fig. 19. Comaparison of NASIM, LARSIM and WaSIM:(a) The
neurons of the SOM are reproduced as pie charts that represent the
percentage of data from each model that has been attributed to the
neurons via the training.(b) same as (a) but displayed as a “hit his-
togram”, i.e. the size of the pie charts is proportional to the number
of data items attributed to the corresponding neuron.

to their indices. With the exception of some very isolated
occurrences there are no nodes on the map that are simul-
taneously populated with model realizations from all three
models. The same holds true for simultaneous occurrences
of NASIM and LARSIM realizations on a node. Close to
the center of the map the nodes are predominantly popu-
lated with mixtures of model realizations from LARSIM and
WaSIM-ETH as well as WaSIM-ETH and NASIM. Follow-
ing the theory of Self-Organizing Maps (Sects. 2.3 and 2.5),
it can be assumed that these model realizations display equiv-
alent characteristics with respect to the indices we used to de-
scribe them. The distances between the nodes further allow
inferring that the differences between NASIM and LARSIM
in terms of index characteristics are stronger than the dif-
ferences between realizations of NASIM and WaSIM-ETH
or LARSIM and WaSIM-ETH, which is most importantly
highlighted by the fact that hardly any node is populated at
the same time with realizations from NASIM and LARSIM.
The neurons close to the bottom of the map, on which si-
multaneous occurrences of LARSIM and WaSIM-ETH can
be found, point at sporadic extremes of WaSIM-ETH model
behaviour. Figure 19b further exemplifies that similarities
between model realizations from the three models only oc-
cur with rather low probability. Moreover, it can be seen that
the data items are distributed with a higher density around the
upper margin of the map. There are two potential possibili-
ties that lend themselves to explain this phenomenon: When
the multidimensional data distribution is rapidly thinning to-

BMU

%BiasFDClow

%BiasFDChigh

%BiasFHVlow

%BiasFLVhigh

%DiffMaxPeak

Fig. 20. SOM of the combined data from all models in bar plot
illustration.

wards its margins it can not always be covered entirely by the
SOM reference vectors. Consequently, the remaining data
sets are attributed to the nearest, marginal nodes. Otherwise,
this type of distribution could indicate that the corresponding
model realizations are indeed very similar compared to the
remaining data set and thus attributed to the same neuron.

The aforementioned individuality of model realizations is
further demonstrated by the bar plot of the map (Fig. 20)
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which compares the index characteristics that distinguishes
the models. The mapping shows a very distinct organiza-
tion of data properties: Predominantly underestimated index
values on the upper part gradually fade to overestimated in-
dices in the lower part. The model characteristics that are
captured in this representation of the map correspond exactly
with Figs. 7, 11 and 15. The position of the BMU which
represents the most likely location of the measured time se-
ries on the map, is already roughly identifiable from the bar
plots in Fig. 20 and coincides, according to Fig. 19a, with
the map region in which the neurons are simultaneously pop-
ulated with data from the models NASIM and WaSIM-ETH.
Thus, these models can be characterized as equivalent, of
course, only according to the criteria which have been im-
posed in our study to discriminate between individual model
realizations.

The model realizations allocated to the BMU partly corre-
spond with the BMU realizations which have been identified
using the mappings of the individual data sets. However, as
a consequence of the map dimensions, a somewhat higher
number of model realizations are attributed to this BMU.
Nevertheless, it can be seen from the FDC plot in Fig. 21a
and from Fig. 21b and c that these model realizations still
represent the characteristics of the observed discharge time
series very well. A distinctive feature of the model realiza-
tions obtained from NASIM (Fig. 21b) is the partial overesti-
mation of peak discharge which is why a better performance
of these realizations with respect to the extreme flood event
from August 2008 can be expected, compared to the results
from Sect. 3.1. This effect, however, can not be influenced
deliberately and must be attributed to the wider range of data
items on the BMU.

4 Discussion and conclusion

Similar to Herbst et al. (2009) our study is based on a com-
bined approach: While the indices adopt the function of per-
formance measures (rather than Signature Measures, accord-
ing to their underlying theory, see Gupta et al., 2008) the
Self-Organizing Map serves as a tool to analyze and visual-
ize the data which is obtained through them.

The indices we used were conceptualized to extract data
on very specific characteristics of model behaviour accord-
ing to the focus of our study. These characteristics are rep-
resented by a choice of FDC-based indices that are intended
to focus on the reproduction of peak discharges. They con-
sequently have to be understood as an example of a model
evaluation problem. Of course, the choice of indices can be
tailored, according to the individual goals of the model anal-
ysis. This also includes a weighting of individual indices
or measures in order to put more emphasis on specific time
series features. However, we did not make use of this op-
tion and preferred to weight all indices with 1 instead. Thus,
our study shares the underlying assumptions of the work by

Fig. 21. (a)Flow duration curves (upper 2% section): Simulations
corresponding to the BMU of the SOM trained on the combined
model data compared to the observed discharge and the results of
an optimization approach using SCE-UA.(b) Time series of the
model NASIM corresponding to the BMU of the SOM trained on
the combined model data compared to the observed discharge.(c)
Time series of the model WaSiM-ETH corresponding to the BMU
of the SOM trained on the combined model data compared to the
observed discharge.

Herbst et al. (2009), namely that the index or performance
measures are equally relevant and that the model is capable
of reproducing them.

The SOM helps to analyze the data obtained via the in-
dices by producing a discretized (and thus data-compressed)
mapping of their distribution in the index space onto a two
dimensional plane such that their pattern and consequently
the patterns of model behaviour can be conveyed in a com-
prehensive manner. This is achieved by different visualiza-
tion techniques (see also Vesanto, 1999) and importantly by
linking the model properties to the corresponding parameter
space. In a sense, the SOM helps to turn the data extracted
via the indices into information on model behaviour which
subsequently can be used in the decision making process.
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The results from Sects. 3.1 and 3.2 clearly demonstrate
that a SOM can be used to cluster model output data accord-
ing to different (time series) characteristics. Although the
indices used in our study are not fully independent (finally
they are all derived from the FDC) they effectively helped
differentiating the simulation results obtained from the wa-
tershed models NASIM, LARSIM and WaSIM-ETH. It has
been demonstrated that the clustering of model output data
provides useful insights, such as a preliminary sensitivity
analysis and a general characterization of model behaviour
regarding the reproduction of peak discharges. In addition,
the presented approach allows identifying the model param-
eters and -time series that best approximate the observations
with respect to a given set of constraints embodied by the in-
dices. This is achieved by determining the BMU of the index
vector that corresponds to the observations, which involves
identifying the reference vector that minimizes the Euclidean
distance to the observations vector. This procedure, com-
monly used in many SOM applications, deserves critical at-
tention as it implies converting a multi-objective optimiza-
tion to a single-objective problem (e.g. Madsen 2003) which
does not always permit to find the optimal solution of a multi-
objective problem (Zadeh, 1963; see also Gupta et al., 1998).

Notwithstanding, the results obtained for the BMU of the
NASIM map and the WaSIM-ETH map represent the char-
acteristics of the observed time series with similar or par-
tially superior accuracy compared to the results we obtained
by implementing a simple calibration strategy by means of
the optimization algorithm SCE-UA. This finding, on one
hand, is partly owed to the fact that the SCE-UA optimiza-
tion algorithm, in contrast to the SOM approach, allows to
globally searching the parameter space with potentially in-
finite resolution. On the other hand, the poor results with
respect to the BMU of the LARSIM map are attributable to
the constraints that were imposed by applying the five index
measures. These constraints turned out to be overly rigorous
to be simultaneously satisfied by the LARSIM model and
are probably incompatible with its general behaviour. Con-
sequently, the given set of indices avoided that its potential
could be exploited to the full extent. At this point it has to be
stressed that an accurate reproduction of runoff events in the
first place depends on the quality of the precipitation input
data. However, as to this aspect, the results obtained with the
three models give no reason for concern. Besides the infor-
mation on model behaviour that can be extracted using the
SOM approach, one of its strengths has to be seen especially
in the ability to extract a set of model parameters that meet
a set of very specific criteria (which e.g. could have been
imposed by decision makers). The corresponding parameter
ranges, in turn, constitute a potential key for the assessment
of parameter uncertainties.

Regarding the simulation of the extreme flood event (11–
15 August 2008) our approach did not yield clear improve-
ments compared to the much simpler SCE-UA calibration
strategy. Thus, it has to be put into question whether the

predictive abilities of hydrological models can be enhanced
using this approach. In contrast, the results rather indicate
that the ability of a model to “extrapolate” to behavioural do-
mains beyond the calibration data can be exploited with a
higher probability if the model realizations match or overes-
timate the highest section of the FDC. Another, rather self-
evident conclusion from the LARSIM result is that a suc-
cessful calibration strategy always has to consider the pecu-
liarities of model behaviour. However, this behaviour is also
largely determined by the parameters which, in the scope of
our study, are considered as constant, among other important
influences such as the input data. Thus, the parameterization
used for the LARSIM model deserves further critical analy-
sis in order to elucidate its behaviour.

The most prominent advantage of the SOM in the context
of model analysis is that it allows to simultaneously evalu-
ating the data from two or more models. Using a SOM in
combination with an appropriate set of “measures” that help
extracting specific information from time series, model re-
alizations that satisfy a given set of criteria can be selected
from among various model structures at a time. As only
similar data items are attributed to the same map unit (see
Sects. 2.3 and 2.5) the distribution in Fig. 19a, on one hand,
highlights the individuality of the different model data sets
with regard to their behaviour which is expressed through
characteristic combinations of index values. On the other
hand, it provides a vivid evidence of the high discriminatory
power of the SOM approach.

The possibility of a direct comparison of model behaviour
properties lends itself for a series of potential applications,
e.g. in a model ensemble framework: The proportion of
“equivalent” model realizations in a data set obtained from
the results of an ensemble simulation, in turn, could serve
as a “proxy” for the independence of model structures. That
way, a set of model realizations or model structures that to-
gether cover a broader range of measured system behaviour
than each individual model (e.g. model realizations that em-
phasize different sections of the FDC) could be determined
and constitute the base of a (multi-)model ensemble applica-
tion (Fenicia et al., 2007).
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