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to morph, verb, (third-person singular simple present morphs, present participle mor-
phing, simple past and past participle morphed)

1. Shortening of metamorphose: to change in shape or form.

2. (colloquial) To undergo dramatic change in a seamless and barely noticeable
fashion.
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Abstract

Large scale non-parametric applied shape optimization for computational fluid dynamics is consid-
ered. Treating a shape optimization problem as a standard optimal control problem by means of a
parameterization, the Lagrangian usually requires knowledge of the partial derivative of the shape
parameterization and deformation chain with respect to input parameters. For a variety of reasons,
this mesh sensitivity Jacobian is usually quite problematic. For a sufficiently smooth boundary, the
Hadamard theorem provides a gradient expression that exists on the surface alone, completely
bypassing the mesh sensitivity Jacobian. Building upon this, the gradient computation becomes
independent of the number of design parameters and all surface mesh nodes are used as design
unknowns in this work, effectively allowing a free morphing of shapes during optimization.

Contrary to a parameterized shape optimization problem, where a smooth surface is usually cre-
ated independently of the input parameters by construction, regularity is not preserved automatically
in the non-parametric case. As part of this work, the shape Hessian is used in an approximative
Newton method, also known as Sobolev method or gradient smoothing, to ensure a certain regu-
larity of the updates, and thus a smooth shape is preserved while at the same time the one-shot
optimization method is also accelerated considerably. For PDE constrained shape optimization, the
Hessian usually is a pseudo-differential operator. Fourier analysis is used to identify the operator
symbol both analytically and discretely. Preconditioning the one-shot optimization by an appropriate
Hessian symbol is shown to greatly accelerate the optimization.

As the correct discretization of the Hadamard form usually requires evaluating certain surface
quantities such as tangential divergence and curvature, special attention is also given to discrete
differential geometry on triangulated surfaces for evaluating shape gradients and Hessians.

The Hadamard formula and Hessian approximations are applied to a variety of flow situations. In
addition to shape optimization of internal and external flows, major focus lies on aerodynamic design
such as optimizing two dimensional airfoils and three dimensional wings. Shock waves form when
the local speed of sound is reached, and the gradient must be evaluated correctly at discontinuous
states. To ensure proper shock resolution, an adaptive multi-level optimization of the Onera M6
wing is conducted using more than 36, 000 shape unknowns on a standard office workstation,
demonstrating the applicability of the shape-one-shot method to industry size problems.
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Zusammenfassung

Der Gegenstand dieser Arbeit ist die hochdimensionale nicht-parametrische angewandte Formop-
timierung für die numerische Strömungssimulation. Wird ein Formoptimierungsproblem durch eine
Parametrisierung wie ein gewöhnliches nichtlineares Optimierungsproblem behandelt, so benötigt
die Lagrange–Funktion Kenntnis der partiellen Ableitungen der Parametrisierung und der Deforma-
tionskette bezüglich der Eingabeparameter. Aus verschiedensten Gründen sind diese Mesh- oder
Metriksensitivitäten für gewöhnlich sehr problematisch. Für eine hinreichend glatte Oberfläche bie-
tet das Hadamard–Theorem einen Ausdruck für den Gradienten, welcher ausschließlich auf der
Oberfläche der Form existiert und die Metriksensitivitäten komplett umgeht. Darauf aufbauend wird
die Berechnung des Gradienten unabhängig von der Anzahl der Variablen und im Rahmen dieser
Arbeit werden alle Oberflächenknoten des Gitters als Unbekannte benutzt, wodurch effektiv ein
freies Morphing der Form während der Optimierung ermöglicht wird.

Im Gegensatz zu einem parametrisierten Formoptimierungsproblem, bei dem die Glattheit der
Oberfläche fast immer unabhängig von den Eingabeparametern entsprechend der Konstruktion
der Parameterisierung gewährleistet ist, muss die Regularität bei dem nicht-parametrischen Ansatz
nicht zwingend erhalten bleiben. In dieser Arbeit wird die Hesse–Abbildung des Formoptimierungs-
problems in einem approximativen Newton–Verfahren, auch bekannt als Sobolev–Verfahren oder
Gradientenglätten, genutzt, um die Regularität der Updates sicherzustellen und somit eine glatte
Oberfläche zu erhalten, wodurch gleichzeitig die Optimierung in One-Shot deutlich beschleunigt
wird. Für Optimierungsprobleme mit PDEs ist die Hesse–Abbildung gewöhnlich ein Pseudo-Diffe-
rentialoperator. Fourieranalysis wird benutzt, um das Symbol des Operators sowohl analytisch als
auch diskret zu bestimmen. Es wird gezeigt, wie eine Präkonditionierung des One-Shot Verfahrens
durch ein entsprechendes Symbol der Hesse–Abbildung die Optimierung stark beschleunigt.

Da die korrekte Diskretisierung der Hadamard–Form für gewöhnlich die Auswertung von Ober-
flächengrößen wie Tangentialdivergenz oder Krümmung benötigt, liegt besonderes Augenmerk auf
diskreter Differentialgeometrie zur Auswertung des Formgradienten und der Hesse–Abbildung auf
unstrukturierten, triangulierten Oberflächen.

Die Hadamard–Form und die Hesse–Approximationen werden auf eine Vielfalt von Strömungs-
situationen angewendet. Neben der Formoptimierung von internen und externen Strömungen liegt
der eigentliche Anwendungsschwerpunkt im aerodynamischen Entwurf, zum Beispiel die Optimie-
rung zweidimensionaler Profilquerschnitte und dreidimensionaler Flügel. Schockwellen bilden sich
aus, wenn die lokale Schallgeschwindigkeit erreicht wird, und der Gradient muss an einem un-
stetigen Zustand richtig ausgewertet werden. Um eine korrekte Auflösung der Schockwelle zu ge-
währleisten, wird eine adaptive multi-level Optimierung am Onera M6 Flügel mit mehr als 36.000
Unbekannten auf einer gewöhnlichen Workstation durchgeführt, was auch die Anwendbarkeit der
Methodik auf Probleme industriellen Ausmaßes demonstriert.
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Chapter 1

Introduction

1.1 Paradigms in Shape Optimization

As a special field of optimization subject to partial differential equations (PDEs), shape optimization
and control of fluids has seen steady research interest over the past decades. Especially in aero-
dynamic design, the transition from simulation alone to a coupled simulation and optimization is
progressing continuously. Although heuristic and derivative free optimization methods are still used
in practice, only structure exploiting gradient based methods are efficient enough for optimizing
industry size large scale systems.

Two major advancements in the field of derivative based general PDE constraint optimization and
its application to aerodynamic design have been the introduction of gradient computation via adjoint
calculus [23, 29, 40, 50] and the optimization in one-shot [27, 31, 66, 72, 73]. A good overview on
applying general control theory to fluid control problems can also be found in [32]. When consider-
ing the special sub-class of shape optimization problems and fluid flow, such problems are almost
always interpreted as a general non-linear optimization problem via a parameterization. By choos-
ing a finite set of design parameters, such as the popular Hicks–Henne functions [35], B-splines,
free-form deformation, or general computer aided design (CAD) software, the shape optimization
problem is reduced to a standard optimization problem in finite dimensions. Thus, a parameteri-
zation is also a discretization. This means that the Lagrangian of the parameterized shape opti-
mization problem is studied without considering the original nature of the problem, and possibilities
for shape optimization structure exploitation are therefore neglected. Even worse, the Lagrangian
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1 Introduction

system of a parameterized shape optimization problem requires knowledge of so called mesh sen-
sitivities, i.e. the partial derivatives of the PDE constraint and objective functions with respect to the
parameterization.

Discretizing the flow equations by e.g. finite volumes or finite elements results in a dependence
of the state residual on the positions of the volume nodes. During shape optimization, the volume
mesh must somehow be made to fit the new surface, which results in a perturbed volume mesh.
Consequently, the mesh deformation mapping becomes part of the total parameterization chain and
must also be differentiated. This chain is also shown in figure 1.1. The propagation of the deformed

Design

Vector

Surface

Nodes

Volume

Nodes
Flow State

Objective

Function

Figure 1.1: Mesh deformation chain for parameterized shape optimization.

surface into the volume mesh is often subject to solving additional PDEs or, mostly in case of a CAD
approach, a proprietary black box. Also, high fidelity computational fluid dynamics (CFD) software
is very complex, and computing the derivative of a flow solver residual with respect to volume
mesh node positions is also very challenging. Thus, one is frequently forced into finite differencing.
This, however, can become extremely time consuming because a perturbed volume mesh must
be made for each design parameter. For complex three dimensional aircraft configurations, these
deformed meshes are very costly to create. Being dense matrices, the resulting Jacobians are
also very memory consuming. Although computing these sensitivities can be acceptable for a
very limited number of design parameters such as span, sweep angle, and twist, they very quickly
become prohibitive for large scale deformations, effectively preventing any morphing of shapes.
Furthermore, they tend to make the one-shot approach inefficient in terms of total CPU wall-clock-
time to solution. One of the ideas that make one-shot such a fast optimization procedure is to
trade an exact state and adjoint solution for more optimization steps and hence more gradient
evaluations. This produces a speed-up only under the assumption that a gradient evaluation is
numerically inexpensive compared to a forward and adjoint flow solution, which is no longer the
case when one has to compute such mesh sensitivities.

Possible remedies mentioned in the literature are the treatment of the whole shape parameteri-
zation chain via algorithmic or automatic differentiation (AD) [24, 25] or introducing limited and local
area of influences for volume mesh nodes and their perturbations. Sometimes, it is also possible
to exploit special properties of structured meshes [41, 55]. However, there can be complexity prob-
lems and memory limitations when trying to apply a reverse mode AD on sophisticated flow solvers,
especially if the code heavily depends on pointers. Also, for AD one needs complete access to the
software sources, which can be problematic. Limiting the area of influence of perturbed volume
nodes enforces sparsity in the Jacobian, but often the resulting derivative is not very accurate. Ei-
ther way, one is quite limited in the possible deformations and useable structured meshes. Thus,
the reachable shapes are very limited, resulting in a narrow search space.

General shape optimization, as pioneered in [70] and later studied as an aspect of geometry
in [11], allows ignoring the parameterization step altogether and conduct a gradient derivation with-
out considering discrete aspects at all. The Hadamard theorem states that for sufficiently smooth
boundaries, the gradient of a shape optimization problem exists on the surface alone, thus analyt-
ically bypassing the volume mesh altogether. This is a profound advantage for large scale shape
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1.1 Paradigms in Shape Optimization

optimization in general and one-shot shape optimization in specific. The analytic expression of the
Hadamard form can be evaluated very quickly wherever desired, making the gradient computation
indeed independent of the number of design parameters. It is thus possible to use the position of
each mesh surface node as a design parameter, utilizing extraordinary possibilities of shape defor-
mations and morphing. It also supports the full optimization speed-up by one-shot methods nicely,
possibly helping advanced aerodynamic optimizations such as Pareto curve computations [59] and
optimization under uncertainties [67]. Additionally, the non-parametric approach is inherently suited
for multi-level optimization and local adaptivity, as the Hadamard form can be evaluated at any
surface point desired, independent of mesh topology changes between optimization steps. In-
terestingly, the non-parametric paradigm is seldom used in aerodynamic design, except to show
optimality of certain rotationally symmetric ogive shaped bodies in supersonic, irrotational, invis-
cid potential flows [33]. Furthermore, the non-parametric approach is also used to derive optimal
shapes in a viscous Stokes flow [49]. Although certain non-parametric shape optimization ideas
are present in the literature [10, 15, 46, 47], it is almost never applied in any actual optimization.

Also, there is the effect of loss of regularity. While the parametric approach ensures a smooth
shape for any choice of design parameters, this is no longer the case when considering the non-
parameterized infinite dimensional shape optimization problem. The parameterization determines
the regularity class of which shapes are constructed, and in a general non-parametric shape op-
timization approach, the desired regularity class must be enforced otherwise. Imagining a simple
steepest descent algorithm, it is easy to see that updates must be in the same regularity space as
the original shape. Consequently, the gradient based update must be manipulated to maintain regu-
larity. When applicable, the gradient can be thought of as the Riesz representative of the derivative,
and the regularity of the gradient depends on the appropriate scalar product used in the underlying
space. This procedure is sometimes also called gradient smoothing or Sobolev gradient method
[41, 69], and thus questions about the appropriate space, i.e. scalar product, arise. As it turns
out, the scalar product induced by the shape Hessian is an excellent choice because it not only
cures the loss of regularity, but it also greatly accelerates the optimization as the Sobolev steepest
descent method essentially becomes Newton’s method, i.e. an SQP method.

Thus, the loss of regularity in specific and gradient based optimization in general rises questions
about efficient Hessian computations and approximations. Literature on shape Hessians for pa-
rameterized problems is rare, possibly because the parameterization camouflages the structure of
shape Hessians. The application of non-parameterized shape Hessians in a preconditioned con-
jugate gradient iteration for image segmentation is studied in [36, 37]. Also, shape Hessians and
optimality conditions for shape optimization problems are considered in [16, 17, 18] with various ap-
plications in liquid metal shaping, electrical impedance tomography, and general elliptic problems.
In general, shape Hessians are quite complex objects even for problems that appear manageable at
first glance. They also no longer satisfy the Hadamard form of a scalar product of the normal com-
ponent with a perturbation direction on the boundary. Thus, more accessible approximations are
usually advantageous. For a PDE constrained optimization problem the shape Hessian usually is a
pseudo-differential operator, and the effect of such a pseudo-differential operator on the regularity
of the shape update must be studied. Another advantage of infinite dimensional shape optimization
is the applicability of Fourier analysis to problems of moderate complexity, which allows the identi-
fication of the pseudo-differential operator order governing the Hessian. This, in return, defines the
amount of re-smoothing that must be applied in the Sobolev smoothing step, i.e. by the Hessian
approximation. Fourier tracking of perturbations has for example also been used in [2, 3, 4, 28, 61]
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1 Introduction

for similar purposes.

Summarizing the above, it can be said that shape optimization is a field with a surprisingly strong
gap between first optimizing analytically followed by a discretization of the expressions versus first
discretizing and then optimizing the discrete problem. Very recently, this gap is studied in [6], where
both approaches are unified in the finite element context. The optimize-then-discretize approach
by using shape differentiation techniques and the Hadamard formula of the shape gradient as part
of the present work has considerable advantages over a discretization by parameterization as it
bypasses all volume mesh deformations of the problem, enables very fast gradient evaluations for
an arbitrary number of design parameters, and makes a Hessian analysis much more accessible.
Thus, large scale morphing of shapes by a one-shot optimization is possible. Correct gradient
evaluations and Hessian approximations require discretizing surface quantities, such as tangential
divergence and curvature, on unstructured meshes, thereby creating an interesting bridge between
optimization with PDE constraints and other research fields such as computer graphics and discrete
differential geometry.

1.2 Aim and Scope of this Work

An exhaustive analysis of a PDE constrained shape optimization problem requires a well-posed
model, i.e. weak solutions for the geometries under consideration exist. Additionally, the set of
solutions over the family of admissible domains needs to be compact such that there is a solution of
the shape optimization problem. Once the existence of an optimal shape is established, methods to
compute it can be discussed. The desire to use efficient gradient based methods naturally leads to
the question of shape differentiability. Therefore, the family of solutions under consideration should
be Lipschitz continuous with respect to boundary variations such that a shape sensitivity analysis
can be conducted.

For the compressible Navier–Stokes equations with constant temperature, the well-posedness
and existence of optimal shapes is established in [53]. There, it is first stated that assuming the
existence of a domain and corresponding flow solution of finite internal energy, the drag minimiza-
tion problem has a solution. Afterwards, the existence is ensured by constructing one such domain.
The question of shape differentiability is answered in [51] using small perturbations of the so-called
approximate solutions, which are determined from Stokes problems.

The aim and scope of this work, however, is to study how the information can be used to im-
prove a given design numerically. Less focus lies on analytical existence and uniqueness of critical
shapes. Therefore, a formal shape sensitivity analysis is conducted, followed by a study of the
shape Hessian and an actual numerical optimization for a variety of problems in computational fluid
dynamics and aerodynamic design. Special attention lies on the industrial applicability to very large
scale shape optimization problems. This work is also used to study accelerating the one-shot ap-
proach for shape optimization problems by preconditioning, i.e. Hessian approximation, based on
pseudo-differential operator approximation by Fourier analysis. Where possible, this is conducted
analytically, otherwise discrete substitutes are considered. Thus, not only the applicability of infinite
dimensional shape calculus to discrete problems is shown, but also the possible acceleration of the
optimization procedure by analytically exploiting the structure of shape optimization problems.
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1.3 Structure of this Work

1.3 Structure of this Work

The structure of this work is as follows: Chapter 2 is used to give a very brief overview about differ-
ential geometry. The purpose of this chapter is to prepare for chapter 3, i.e. special attention is given
to introducing terms and definitions which are seldom encountered in the context of general PDE
constrained optimization, such as tangential gradient, tangential divergence, and a variety of other
lemmas and definitions. Combining many results scattered in the literature, chapter 3 then tries
to give a complete overview about shape sensitivity analysis, i.e. shape differentiation techniques,
especially when a PDE constraint is present. Special attention is given to providing the expres-
sions in general formulations, as often in the literature, simplifications for standard Laplacian based
problems, i.e. elliptic PDEs, are made, which prohibit application to the mixed parabolic/hyperbolic
PDEs governing fluid flow. Chapter 4 is then used to give a brief overview on fluid dynamics. It
not only introduces the PDEs governing the problems considered afterwards, but also shows what
kind of objective functions are physically relevant for the different flow regimes of viscous, inviscid,
compressible, and incompressible flows. One important fact is that in an inviscid compressible flow,
a shape producing a shock-free flow solution can always be assumed to be drag optimal.

The following chapters 5 to 9 are then used to conduct the actual shape sensitivity analysis, Hes-
sian approximation, and numerical optimization for a variety of CFD problems. The problems are
studied in order of increasing difficulty of shape differentiation and not according to the sophistica-
tion of the fluid model, which is why the incompressible Navier–Stokes equations are considered
before potential flow. First, chapter 5 considers shape optimization and Stokes fluids. This makes
a very good introduction, as the optimal shape of the energy dissipation problem is known to be a
rugby ball of 60◦ front and back angle, creating a perfect validation test-case for numerics. Due to
its self-adjoint nature, the energy dissipation problem in a Stokes flow also allows for a very ele-
gant Hessian derivation, and consequently this Hessian derivation is measured against the Fourier
operator identification, familiarizing these concepts with a well structured example application. The
chapter concludes by showing the optimization speed-up based on the Fourier symbol identification.
By considering the incompressible Navier–Stokes equations in a general setting, the next chapter 6
both increases the complexity of the fluid model and the objective functions. Since the incom-
pressible Navier–Stokes equations describe a very wide range of flow phenomena with numerous
opportunities for application, very general objective shape functionals are considered. Since they
are no longer self-adjoint as in the Stokes case, it is interesting to observe what kind of objective
shape functionals allow consistent adjoint calculus. Due to their complex nature, the Fourier Hes-
sian analysis is conducted in the discrete, again greatly accelerating a variety of optimizations. The
chapter concludes with optimizing a variety of flow situations, such as internal flows through pipes
or external flows around obstacles in the fluid. In chapter 7, the classical inverse design or pressure
matching is considered. Assuming one has an intuition about what the pressure distribution on a
good airfoil should be, a shape must be found which produces the desired pressure distribution in a
potential flow. After a non-parametric shape sensitivity analysis is conducted, the shape Hessian is
derived for star-shaped domains, and the optimization can again be greatly accelerated by a proper
Hessian identification.

Starting with chapter 8, compressible flow models are considered. Since the density is assumed
variable now, shock waves and discontinuities in the flow states form when the local speed of
sound is reached. Evaluating the shape derivative at discontinuous states does not appear to be
problematic, and after a detailed derivation of the shape gradient in Hadamard form, a variety of in-
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1 Introduction

dustry size aerodynamic shape optimization problems is considered. Here, the compressible Euler
equations are used to model the fluid. Starting with supersonic two dimensional non-lifting airfoil
optimizations, the chapter concludes with a three dimensional adaptively refined multi-level tran-
sonic Onera M6 wing optimization consisting of more than 36, 000 design parameters and multiple
shock waves on the surface. Special attention is also given to discrete differential geometry and the
correct evaluation of the shape gradient and Hessian approximations on triangulated unstructured
surface meshes. The work concludes with chapter 9, where a formal shape differentiation for the
compressible Navier–Stokes equations is conducted. Including viscosity makes a shape differen-
tiation considerably more complex. Therefore, a frozen viscosity approach is used, meaning the
shape differentiation is conducted for the mean flow of an averaged turbulent flow only. The thesis
concludes with a summary in chapter 10.
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Chapter 2

Differential Geometry

2.1 Basic Concepts

This chapter is used to give a very brief overview about differential geometry, preparing for the
shape sensitivity analysis in chapter 3. Special attention is given to introducing terms and definitions
which are seldom encountered in the context of general PDE constrained optimization, such as
tangential gradient, tangential divergence, and a variety of other lemmas and definitions. More
details can for example be found in [13, 71] or in numerous other works.

Definition 2.1.1 (Immersion). Let U be an open subset of Rn. A function h : U → Rn+k is called
immersion, if h ∈ C∞ and rank(Dh(x)) = n for all x ∈ U.

Definition 2.1.2 (Submanifold of Rm, Parameterization, Chart, Co-Dimension). A set Ω ⊂ Rm

is called d-dimensional submanifold of Rm if for each x ∈ Ω there exists an open neighborhood
U1(x) ⊂ Rm and an injective immersion h : U2 → Rm with U2 ⊂ Rd open and with continuous
inverse mapping h−1 : h(U2)→ U2 such that

h(U2) ⊂ U1 ∩ Ω.

Furthermore, h is called (local) parameterization, h−1 is called map, and the pair (h−1, h(U2)) is
called chart. Thus, x ∈ Ω ⊂ Rm is given by x = h(ξ1, ..., ξd ) for (ξ1, ..., ξd ) ∈ U2 ⊂ Rd . The value
m − d is called co-dimension.
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2 Differential Geometry

Definition 2.1.3 (Atlas). For a submanifold Ω of Rm the set of all charts covering Ω is called atlas

A :=
⋃
α∈I

{(h−1
α , Uα)},

where I is some index set.

Remark 2.1.4 (Surface of a Submanifold). For a d-dimensional submanifold Ω of Rm the boundary
is defined by

Γ := ∂Ω := Ω̄ \ int Ω,

where Ω̄ is the closure and int Ω is the interior of Ω. In the following, for ξ = (ξ1, ..., ξd−1, ξd ), the
interior is thought to be given by ξd > 0, while the boundary is thought to be given by ξd = 0. Thus,
the short notation h(ξ, 0) is used in the following instead of h(ξ1, ..., ξd−1, 0) when referring to the
boundary of Ω.

Definition 2.1.5 (Tangent Space). Let Ω be a d-dimensional submanifold of Rm. Let (g, U) be a
chart with x ∈ U. The space tangent to Ω at x is then defined as

TxΩ := span({Dh(ξ, 0)ei : i = 1, ..., d − 1}),

where x = h(ξ, 0). Here, ei denotes the unit vectors in Rd .

Lemma 2.1.6 (Unit Normal Field on ∂Ω). For a regular surface ∂Ω, the unit normal field at x =
h(ξ, 0) on ∂Ω is given by

n(x) =
Dh(ξ, 0)−T ed

‖Dh(ξ, 0)−T ed‖
.

Proof. The tangent space is given by

TxΩ = span(Dh(ξ, 0)ei , i = 1, ..., d − 1),

i.e. one (non-unit) tangent direction is given by τi := Dh(ξ, 0)ei . Hence,

〈τi , Dh(ξ, 0)−T ed〉 = 〈Dh(ξ, 0)ei , Dh(ξ, 0)−T ed〉
= 〈Dh(ξ, 0)−1Dh(ξ, 0)ei , ed〉
= 〈ei , ed〉
= 0 ∀i = 1, ..., d − 1

is normal to the tangent space.

Definition 2.1.7 (Vector Field). Let Ω ⊂ Rm be open. A (differentiable) mapping V : Ω → Rm is
called a (differentiable) vector field.

Definition 2.1.8 (Directional Derivative, Gateaux-Derivative). Let Ω be a submanifold of Rm and
f : Ω → Rk differentiable. Furthermore, let c : (−ε, ε) → Ω be a differentiable curve with c(0) = x
and ċ(0) = v. We then call

∂f (x)
∂v

:= Df (x)v :=
d
dt t=0

f (c(t))

the directional derivative of f in direction v, or alternatively the Gateaux-derivative. It is possible to
show that the above definition does not depend on the particular choice of c.
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Definition 2.1.9 (Tangential Gradient, Tangential Divergence, Curvature). For a d-dimensional sub-
manifold Ω ⊂ Rm and a function f ∈ C2(Ω, R), the tangential gradient of f is defined as the orthog-
onal projection of the classical gradient onto the tangent space:

∇Ωf := PT (∇f ) =
d−1∑
i=1

∂f
∂τi

τi ∈ Rd−1,

where τi forms an orthonormal basis of the tangent space. For a differentiable vector field V , the
tangential divergence is defined by

divΩ V :=
d−1∑
i=1

〈
∂V
∂τi

, τi

〉
∈ R.

This definition is independent of the choice of the orthonormal basis of the tangent space. Further-
more, the curvature is defined as the tangential divergence of the unit normal field:

κ := divΩ n.

Remark 2.1.10. In the following, we assume that all submanifolds Ω are of co-dimension 1, such
that the normal is unique and {n, τ1, ..., τd−1} forms an orthonormal basis of Rd . The gradient ∇f
can then be expressed in this basis:

∇f = 〈∇f , n〉n +
d−1∑
i=1

〈∇f , τi〉τi .

Assuming f also exists in a neighborhood of Ω, such that ∂f
∂n exists, then the tangential gradient is

equivalently given by

∇Ωf = ∇f − ∂f
∂n

n

and likewise

divΩ V = div V − 〈DVn, n〉.

Lemma 2.1.11. Tangential gradient and tangential divergence are related to each other just like
their ordinary counterparts, i.e. for a differentiable scalar function f and a differentiable vector field
V one has

divΩ fV = 〈∇Ωf , V 〉 + fdivΩ V .

Proof. A simple computation shows

〈V ∂f
∂τi

, τi〉 =
d−1∑
j=1

V j ∂f
∂τi

τ j
i = 〈 ∂f

∂τi
τi , V 〉 = 〈∇Ωf , V 〉,
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where upper indices denote vector components. Furthermore,

divΩ fV =
d∑

i=1

〈
∂fV
∂τi

, τi

〉
=

d−1∑
i=1

〈V ∂f
∂τi

, τi〉 + f
〈
∂V
∂τi

, τi

〉
= 〈∇Ωf , V 〉 + fdivΩ V .

Lemma 2.1.12. Let Ω be a d-dimensional submanifold with boundary Γ. For a differentiable scalar
function f and a differentiable vector field V , the following relation holds on the boundary

div fV = f div V +
∂f
∂n
〈V , n〉 + 〈∇f , VΓ〉

where

VΓ :=
d−1∑
i=1

〈V , τi〉

is the tangential component of V .

Proof.

div fV = f div V + 〈∇f , V 〉

= f div V +

〈
∂f
∂n

n +
d−1∑
i=1

∂f
∂τi

τi , V

〉

= f div V +
∂f
∂n
〈V , n〉 + 〈∇f , VΓ〉.

Definition 2.1.13 (Tangential Jacobian Matrix). Similar to definition 2.1.9, the tangential Jacobian
matrix for a differentiable vector valued function V is defined as

DΩV = [∇ΩVi ]Ti ,

i.e. the rows of the tangential Jacobian are the tangential gradients of the respective component
functions.

Remark 2.1.14. Similar to remark 2.1.10, there also exists the equality

DΩV =

[
d−1∑
k=1

∂Vi

∂τk
τk

]T

i

=
[
∇Vi −

∂Vi

∂n
n
]T

i
= DV − DVnnT

should the required derivative in normal direction exist. This property is needed later in lemma 3.3.7.
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2.2 Integration over Submanifolds

2.2 Integration over Submanifolds

Definition 2.2.1 (Integral Over Submanifolds). Let Ω be a d-dimensional compact submanifold in
Rm with finite open atlas

Ω ⊂
l⋃

j=1

hj (Mj )

such that Ωj := hj (Mj ) and a corresponding partition of unity

l∑
j=1

rj (x) = 1

with rj infinitely continuously differentiable with compact support ⊂ Ωj for all j . Then, the integral
over Ω is defined by∫

Ω

g dΩ :=
l∑

j=1

∫
Ωj

grj dΩ :=
l∑

j=1

∫
Mj

g(hj (s))rj (hj (s))
√

det(Dhj
T Dhj )(s) ds

=:
∫
M

g(h(s))
√

det(DhT Dh)(s) ds,

(2.1)

where Dhj is the Jacobian of hj .

Definition 2.2.2 (Minor, Cofactor Matrix). For a matrix A ∈ Rm×m the ij-minor

[A]ij ∈ Rm−1×m−1

is defined as the matrix, which results from removing the i-th row and j-th column. The cofactor
matrix M(A) is defined by

M(A) :=
[
(−1)i+j det([A]ij )

]
ij ∈ Rm×m.

The entries of the cofactor matrix are the subdeterminants of A. For an invertible matrix A, Cramer’s
rule results in

M(A) = det(A)A−T .

Lemma 2.2.3 (Integral Over the Surface of Submanifolds). Let Ω be as in the definition 2.2.1. The
integral over the surface of Ω is then given by∫

∂Ω

g dS =
∫
B0

g(h(s))| det Dh|‖ (Dh)−T ed‖ ds, (2.2)

where B0 = {ξ ∈ Rd : ‖ξ‖ ≤ 1, ξd = 0} is the intersection of the open d-dimensional unit ball with
the ξd = 0 hyperplane and ed is the d-th unit vector.
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Proof. Let B := {ξ ∈ Rd : ‖ξ‖ ≤ 1} ⊂ Rd be the open unit Ball in Rd . The unit ball is segmented
by a cut with the ξd = 0 hyperplane in

B+ := {ξ ∈ B : ξd > 0}
B− := {ξ ∈ B : ξd < 0}
B0 := {ξ ∈ B : ξd = 0}.

Without loss of generality, one can assume that the interior of Ωj is given by

int Ωj = hj (B+)

and consequently the boundary is given by

∂Ωj = hj (B0),

i.e. ∂Ωj = {hj (ξ, 0) : (ξ, 0) := (ξ1, ..., ξd−1, 0) ∈ B0}. Hence, for a proper computation of the surface
integral it is necessary to project the integration density

det(Dhj
T Dhj )

of the volume case above to the (ξ, 0)-hyperplane, i.e. dropping the last column and last row from
the matrix, which is the dd-minor [Dhj

T Dhj ]dd of Dhj
T Dhj . By the definition of the cofactor-matrix,

the determinant of the dd-minor is exactly the mdd -entry of the cofactor-matrix M(Dhj
T Dhj ). Thus,

the proper integration density for the surface integral is given by

√
mdd =

√
eT

d M(Dhj
T Dhj )ed

=
√

eT
d M(Dhj

T )M(Dhj )ed

=
√
‖M(Dhj )ed‖2

2

= ‖M(Dhj )ed‖2

= | det(Dhj )|‖Dh−T
j ed‖2,

where in the last line the property M(A) = det(A)A−T was used. Hence, the corresponding boundary
integral is given by ∫

∂Ω

g dS :=
l∑

j=1

∫
∂Ωj

grj dS

=
l∑

j=1

∫
B0

grj (hj (s))| det Dhj |‖
(
Dhj
)−T ed‖ ds

= :
∫
B0

g(h(s))| det Dh|‖ (Dh)−T ed‖ ds,

where s = (ξ, 0) = (ξ1, ..., ξd−1, 0).
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Remark 2.2.4 (Alternative Representations). Since M(A) = det (A)A−T , the boundary integral can
also be expressed as ∫

∂Ω

g dS =
∫
B0

g(h(s))‖M(Dh(s))ed‖ ds.

Analogously, the outer normal is given by

n(x) =
M(Dh(ξ, 0))ed

‖M(Dh(ξ, 0))ed‖2
.
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Chapter 3

Shape Sensitivity Analysis

3.1 Shape Optimization and Hadamard Theorem

The main purpose of this chapter is to derive the general expression of shape derivatives. Most
of them are known from the literature [1, 8] and especially [11, 70]. However, listing them here
will create a much more consistent work. The first part of this section formally defines a shape
optimization problem. Approaches for deforming shapes are discussed next. Finally, the Hadamard
formula for the shape derivative is elaborated. This formula provides a very efficient way of solving
shape optimization problems numerically, as an analytic expression about how to deform the shape
in order to improve the objective function is given. The focus lies on first order derivatives, but an
exemplified shape Hessian derivation can be found in section 5.2 later on.

Definition 3.1.1 (Shape Functional, Shape Optimization Problem). A real-valued shape functional
J is defined by

J : P(Rd )→ R
Ω 7→ J(Ω),

and a shape optimization problem is given by

min
Ω

J(Ω).
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3 Shape Sensitivity Analysis

For a real valued shape functional J and a vector valued shape functional c, a constrained shape
optimization problem is likewise given by

min
(u,Ω)

J(u, Ω)

s.t. c(u, Ω) = 0.

Here, u is called the state variable. Compared to a classical optimization problem, Ω takes the role
of the control variable.

Definition 3.1.2 (Deformed Submanifold). Let Tt : (t , x) 7→ Tt (x) with t ∈ R be a family of bijective
mappings. Let Ω be a closed submanifold with boundary Γ. A deformed submanifold Ωt is given by

Ωt := Tt (Ω) = {Tt (x0) : x0 ∈ Ω} .

For x ∈ Γ parameterized by x = h(ξ, 0) the point xt on the deformed boundary Γt of Ωt is parame-
terized by

xt = Tt (h(ξ, 0)) =: ht (ξ, 0).

It remains to define the actual deformation by choosing Tt . In the literature, two approaches are
most common: the perturbation of identity and the speed method.

Definition 3.1.3 (Perturbation of Identity). Choosing Tt [V ] as

Tt [V ](x) = x + tV (x)

results in a deformation according to the perturbation of identity.

Definition 3.1.4 (Speed Method). For a sufficiently smooth vector field V , where

V : R× Ω→ Rd

(t , x) 7→ V (t , x),

the speed method considers the flow equation

dx
dt

= V (t , x), x(0) = x0

and defines the family of bijective mappings as

Tt [V ](X ) := x(t , X ).

Thus, the speed method allows non-constant perturbation fields V .

Remark 3.1.5. Both approaches are special cases of one another. They are equivalent for first
order shape derivatives but not for higher derivatives.
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Definition 3.1.6 (Shape Differentiability, Shape Derivative). Let D ⊂ Rd open and Ω ⊂ D measur-
able. Let V be a continuous vector field. A shape functional J is called shape differentiable at Ω, if
the Eulerian derivative

dJ(Ω)[V ] := lim
t→0+

J(Ωt )− J(Ω)
t

, Ωt := Tt (Ω)

exists for all directions V and the mapping V 7→ dJ(Ω)[V ] is linear and continuous. The expression
dJ(Ω)[V ] is called the shape derivative of J at Ω in direction V .

The key ingredient for computing shape derivatives very efficiently is the so-called Hadamard
formula.

Theorem 3.1.7 (Hadamard Theorem). Let J be shape differentiable as in definition 3.1.6. Then the
relation

dJ(Ω)[V ] = dJ(Γ)[〈V , n〉n]

holds for all vector fields V ∈ Ck (D̄; Rd ).

Proof. See proposition 2.26, pages 59–60, in [70].

Remark 3.1.8. In reference [70], the Hadamard theorem actually states the existence of a scalar
distribution

g(Γ) ∈ D−k (Γ),

such that the shape gradient G(Ω) ∈ D−k (Ω, Rd ) is given by

G(Ω) = γ∗Γ(g · n),

where γ∗Γ is the adjoint of the trace operator on Γ. Here, however, it is always assumed that G(Ω) is
an integrable function, i.e. Ω has piecewise smooth boundaries. Then the shape gradient g is much
more conveniently expressed by

dJ(Ω)[V ] =
∫
Γ

〈V , n〉 g dS.

The requirement of piecewise smooth boundaries can for example be seen in equation (3.5).
The general strategy for solving the aerodynamic shape optimization problem considered in this

work is to derive g and then conduct a gradient based optimization by discretizing g and tracking
the shape by conducting updates of the type

Γi+1 = {x + 〈V (x), n(x)〉n(x)g(x) : x ∈ Γi}.

Since g is known analytically and does not involve dependencies on the discretization of the do-
main, i.e. the mesh, the above update is numerically extremely cheap while also allowing maximal
freedom in the deformability of the shape. Because the unit normal n changes with the shape in
each iteration, updates of the above type also have the interesting side-effect that the shape Γi in
iteration i is only expressed in terms of a deformation of the shape Γi−1 from iteration i − 1 and not
from the initial shape Γ0.

Before the shape gradient g is derived for aerodynamic shape optimization problems in chapter 5
to 9, shape calculus from the literature [1, 8] and especially [11, 70] is listed.
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3.2 Hadamard Formula for Volume Objectives

When considering shape functionals of the type

J(Ω) =
∫
Ω

f dA,

the integration formula in definition 2.2.1 is much more convenient. Using this definition, the integral
over the deformed domain Ωt can be brought back to the original domain.∫

Ωt

f dA =
∫
Ω

f (Tt (x))
√

det DT T
t DTt (x) dA(x)

=
∫
Ω

f (Tt (x))| det DTt (x)| dA(x).

The bijective mapping Tt is assumed to preserve the orientation of Γ, i.e. det DTt (x) ≥ 0 for all
x ∈ Ω, and the absolute is discarded in the following. For differentiation with respect to t , the
derivative of the determinant is required.

Lemma 3.2.1 (Derivative of the Determinant). Let

A : R → Rn×n

t 7→ A(t)

be a matrix valued function on R with differentiable component functions. The derivative of the
determinant is then given by

d(det(A(t)))
dt

= tr(A′(t)A−1(t)) det A(t).

Proof. Let ai denote the columns of the matrix, i.e. A(t) = [a1, ... , an]. Leibniz formula for determi-
nants results in

d(det(A(t)))
dt

=
d
dt

∑
σ

s(σ) a1σ(1) · · · · · an σ(n)

=
∑
σ

s(σ)(a′1σ(1) · a2σ(2) · · · · · an σ(n) + ...

... + a1σ(1) · · · · · an−1,σ(n−1) · a′n,σ(n))

=
n∑

i=1

det (a1, ... , ai−1,
dai

dt
, ai+1, ... , an).

Hence, for a matrix A(t) with A(t0) = I one has

d det(A(t))
dt t=t0

=
n∑

i=1

a′ii (t0) = tr(A′(t0)).
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Using B(t) := A(t)A−1(t0)⇒ B(t0) = I results in

d
(
det(A(t)) det(A−1(t0))

)
dt t=t0

= (det(B))′ (t0)

= tr(B′(t0)) = tr(A′(t0)A−1(t0)).

(3.1)

Futhermore, the product rule provides

d
dt t=t0

(
det(A(t)) det(A−1(t0))

)
=
(

d
dt t=0

det(A(t))
)

det(A−1(t0))

+ det(A(t0))
(

d
dt t=t0

det(A−1(t0))
)

=
(

d
dt t=0

det(A(t))
)

det(A−1(t0)).

(3.2)

Taking (3.1) and (3.2) together, one has

d
dt

det(A(t)) = tr(A′(t)A−1(t)) det(A(t)).

Lemma 3.2.2 (Derivative of the Deformation Determinant). The derivative of the determinant of the
perturbation of identity approach is given by:

d
dt t=0

det DTt (x) = div V (x). (3.3)

Proof. Using lemma 3.2.1, one has

d
dt

det A(t) = tr
(

dA(t)
dt

A(t)−1
)

det A(t).

Since DT0(x) = I, we have

d
dt t=0

det DTt (x) = tr
(

dDTt (x)
dt t=0

)
= tr (DV (x))

= div V (x).

Theorem 3.2.3 (Divergence Theorem). Let Ω be compact with piecewise smooth boundary Γ. If
F is a continuously differentiable vector field on a neighborhood of Ω, then the following relation
holds: ∫

Ω

div F dA =
∫
Γ

〈F , n〉 dS.
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Proof. The expression follows immediately from integration by parts. See also proposition 7.6.1
and theorem 13.1.2 in [5].

Lemma 3.2.4 (Hadamard Formula for Volume Objective Functions). For a general volume objective
function f : Ω→ R, not depending on a PDE constraint or the shape of Ω, i.e.

J(Ω) =
∫
Ω

f dA,

the shape derivative is given by

dJ(Ω)[V ] =
∫
Γ

〈V , n〉f dS.

Proof. By definition one has

dJ(Ω)[V ] : =
d
dt t=0

J(Ωt ) :=
d
dt t=0

∫
Ωt

f (x) dA(x)

=
d
dt t=0

∫
Ω

f (Tt (x)) det(DTt (x)) dA(x).

Swapping differentiation and integration and applying lemma 3.2.2 leads to

dJ(Ω)[V ] =
∫
Ω

d
dt t=0

f (Tt (x)) det(DTt (x)) dA(x)

=
∫
Ω

〈∇f (x), V (x)〉 + f (x)div V (x) dA(x). (3.4)

Chain rule backwards results in

dJ(Ω)[V ] =
∫
Ω

div (f (x)V (x)) dA(x).

The final boundary formula can now be found using the divergence theorem 3.2.3. However, this
requires piecewise smooth boundaries:

dJ(Ω)[V ] =
∫
Γ

〈V , n〉 f dS. (3.5)

3.3 Hadamard Formula for Surface Objectives

The Hadamard formula for surface integrals is considerably more complex than the one for domain
integrals. Comparison of equations (2.1) and (2.2) shows that the more complex integration density
will create new terms in the gradient formula. Also, surface integrals often depend on additional
geometric quantities such as the outer normal n, which must also be differentiated.
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Lemma 3.3.1 (Perturbed Surface Integral). The surface integral over the perturbed surface Γt is
given by ∫

Γt

g dΓt =
∫
Γ

g(Tt (x))‖M(DTt (x))n(x)‖2 dΓ(x),

where n is the unit normal of the unperturbed boundary Γ.

Proof. The perturbed submanifold Γt can be described by

ht (ξ, 0) := Tt (h(ξ, 0)). (3.6)

According to remark 2.2.4, the surface integral is given by∫
∂Ωt

g dSt =
∫
B0

g(ht (s))‖M(Dht (s))ed‖2 ds.

The chain rule results in

Dht (ξ, 0) = D[Tt (h(ξ, 0))] = DTt (h(ξ, 0))Dh(ξ, 0) (3.7)

and

M(Dht (ξ, 0)) = M(DTt (h(ξ, 0)Dh(ξ, 0)))

= M(DTt (h(ξ, 0)))M(Dh(ξ, 0)).

Using the alternative representation of the normal,

‖M(Dht (s))ed‖2 = ‖M(DTt (h(ξ, 0)))M(Dh(ξ, 0))ed‖2

= ‖M(DTt (h(ξ, 0)))‖M(Dh(ξ, 0))ed‖2n(h(ξ, 0))‖2

= ‖M(Dh(ξ, 0))ed‖2‖M(DTt (h(ξ, 0)))n(h(ξ, 0))‖2.

Thus, ∫
∂Ωt

g dSt =
∫
B0

g(Tt (h(s))‖M(DTt (h(s)))n(h(s))‖2‖M(Dh(s))ed‖2 ds

=
∫
∂Ω

g(Tt (x))‖M(DTt (x))n(x)‖2 dΓ(x),

where again s = (ξ, 0) and x = h(s).

Remark 3.3.2 (Alternative Representation). Due to the definition of the cofactor matrix, the per-
turbed surface integral can also be written as∫

∂Ωt

g dSt =
∫
∂Ω

g(Tt (x))‖M(DTt (x))n(x)‖2 dΓ(x)

=
∫
∂Ω

g(Tt (x))| det DTt (x)|‖(DTt (x))−T n(x)‖2 dΓ(x).

Since we assume the deformation mapping Tt does not change the orientation of Ωt relative to Ω,
we can assume det DTt > 0 in subsequent considerations.
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Lemma 3.3.3 (Derivative Through Matrix Inverse). Let A(t) ∈ Rm×m be a matrix where each entry
is a differentiable function such that A(t)−1 exists for some interval I ⊂ R. The derivative of the
matrix inverse with respect to t is then given by

d
dt

A(t)−1 = −A(t)−1 dA(t)
dt

A(t)−1.

Proof. Let aij (t) be the component functions of A(t) and let ajk (t) be the components of A(t)−1, i.e.:

δik =
m∑

j=1

aij (t)ajk (t)

⇒ 0 =
m∑

j=1

daij (t)
dt

ajk (t) + aij (t)
dajk (t)

dt

⇒ 0 =
dA(t)

dt
A(t)−1 + A

dA(t)−1

dt
.

Lemma 3.3.4 (Preliminary Shape Derivative for Surface Objectives). For g ∈ C(T (Γ)), where T (Γ)
is a tubular neighborhood of Γ such that ∇g is defined on Γ, the preliminary shape derivative, not
yet in Hadamard form, for the surface integral is given by

d
dt t=0

∫
Γt

g dSt =
∫
Γ

〈∇g, V 〉 + g ·
(
div V − 〈DVn, n〉

)
dS

=
∫
Γ

〈∇g, V 〉 + gdivΓ V dS.

Proof. For simplicity reasons, perturbation of identity is assumed. The alternative representation
from remark 3.3.2 provides:

d
dt t=0

∫
∂Ωt

g dSt

=
∫
∂Ω

d
dt t=0

(g(Tt (x)) det DTt (x)‖(DTt (x))−T n(x)‖2) dΓ(x).

Furthermore,

γ(t) := DT−T
t n = ((I + tDV )T )−1n

gives

d
dt t=0

‖γ(t)‖2 =
d
dt t=0

(
d∑

i=1

γi (t)2

) 1
2

=
1

‖γ(0)‖2

(
γT (0)

d
dt t=0

γ(t)
)

.
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3.3 Hadamard Formula for Surface Objectives

Due to lemma 3.3.3 one has

γ(0) = n
d
dt t=0

γ(t) = −I−1 d
dt t=0

(I + tDV )T I−1n

= −DV T n.

Thus,

d
dt t=0

‖γ(t)‖2 = −nT DV T n = −〈DVn, n〉.

Using det DT0 = det I = 1 and the product rule, the above results in

d
dt t=0

∫
∂Ωt

g dSt =
∫
∂Ω

[
d
dt t=0

(g(Tt ) det DTt )
]

n − g · 〈DVn, n〉 dS

=
∫
∂Ω

〈∇g, V 〉 + g ·
(
div V − 〈DVn, n〉

)
dS,

where formula (3.3) for the determinant was used again. The final expression follows with re-
mark 2.1.10.

3.3.1 Shape Derivatives of Geometric Quantities

Before the construction of the Hadamard formula for surface objectives is finished, a shape sensi-
tivity analysis of some geometric quantities, especially the outer normal n, is conducted. While the
derivative of the normal is needed for many objective functions and PDE constraints in itself, the
resulting tangential Stokes formula makes the Hadamard expression for a surface functional quite
convenient to derive.

Lemma 3.3.5 (Unit Normal on Perturbed Domain). The unit normal on the perturbed domain Ωt is
given by

nt (Tt (x)) =
(DTt (x))−T n(x)
‖(DTt (x))−T n(x)‖2

.

Proof. According to lemma 2.1.6, the unit normal on the perturbed domain is given by

nt (x) =
Dht (ξ, 0)−T ed

‖Dht (ξ, 0)−T ed‖
.

Using equations (3.6) and (3.7) results in

nt (Tt (x)) =
(DTt (h(ξ, 0)))−T (Dh(ξ, 0))−T ed

‖(DTt (h(ξ, 0)))−T (Dh(ξ, 0))−T ed‖

=
(DTt (x))−T n(x)
‖(DTt (x))−T n(x)‖

,

where lemma 2.1.6 was used again for the unperturbed domain.
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Lemma 3.3.6 (Preliminary Shape Derivative of the Unit Normal). The preliminary shape derivative
of the unit normal is given by

dn[V ](x) :=
d
dt t=0

nt (Tt (x)) = 〈n, (DV (x))T n(x)〉n(x)− (DV (x))T n(x).

Proof. Since DT0(x) = I, the quotient rule simplifies to

dn[V ](x) :=
(

d
dt t=0

[
(DTt (x))−T n(x)

])
− n(x)

(
d
dt t=0

‖(DTt (x))−T n(x)‖2

)
.

Using lemma 3.3.3, the above transforms to

dn[V ](x) = n(x)
(

d
dt t=0

‖(DTt (x))−T n(x)‖2

)
− (DV (x))T n(x).

For any vector v (t), where the components are differentiable functions, the chain rule gives

d
dt t=0

‖v (t)‖2 =
d
dt t=0

(∑
i

vi (t)2

) 1
2

=
〈v (0), v ′(0)〉
‖v (0)‖2

.

Hence, for v (t) = (DTt (x))−T n(x) one has v (0) = n(x) and again due to lemma 3.3.3 we have
v ′(0) = (DV (x))T n(x), resulting in

d
dt t=0

‖DTt (x)n(x)‖2 = 〈n(x), (DV (x))T n(x)〉,

which gives the desired expression.

Unfortunately, lemma 3.3.6 does not yet fulfill the Hadamard form, and additional transformations
using tangential Jacobians from definition 2.1.13 are required.

Lemma 3.3.7. The shape derivative of the normal is equivalently given by

dn[V ] = − (DΓV )T n.

Proof. Assuming that the perturbation field V extends into a tubular neighborhood, we have

DΓV = DV − DVnnT

due to remark 2.1.14. Likewise,

(DΓV )T n = (DV )T n − n (DVn)T n = −dn[V ]

due to lemma 3.3.6.

Lemma 3.3.8. The local shape derivative of the normal dn[V ] at a point x lies in the tangent space
TxΩ.
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3.3 Hadamard Formula for Surface Objectives

Proof.

〈dn[V ], n〉 =〈− (DΓV )T n, n〉
=〈− (DV )T n + n (DVn)T n, n〉

=−
(
(DV )T n

)T
n +
(
n (DVn)T n

)T
n

=− nT DVn + nT (DVn)

=0.

Remark 3.3.9. The tangential Jacobian of the unit normal field n(x) at a point x lies in the tangent
space TxΩ, i. e.

0 = DM1 = DM
(
n(x)T n(x)

)
= 2 (DMn(x)) n(x) = 2〈∇Mn, n〉,

meaning DMn ⊥ n. This result is needed in the following lemma 3.3.10.

Lemma 3.3.10. For a perturbation normal to the boundary Γ, i.e. Ṽ := 〈V , n〉n or equivalently
〈Ṽ , τ〉 = 0 for a vector τ ∈ TxΩ, we have

dn[Ṽ ] = −∇Γ〈Ṽ , n〉.

Proof. Let {τi ∈ TxΩ : 1 ≤ i ≤ d − 1} be an orthonormal basis of the tangent space and let the
unit normal be given by n with components nk . By definition 2.1.9 one has

∇Γ〈Ṽ , n〉 =
d−1∑
i=1

∂〈Ṽ , n〉
∂τi

τi

=
d−1∑
i=1

∂

∂τi

[
d∑

k=1

Ṽk nk

]
τi

=
d−1∑
i=1

[
d∑

k=1

∂Ṽk

∂τi
nk + Ṽk

∂nk

∂τi

]
τi .

According to remark 3.3.9, the variation of the normal in tangent directions is perpendicular to the
normal, and with the particular choice of Ṽ , the second part vanishes. This results in

∇Γ〈Ṽ , n〉 =
d−1∑
i=1

d∑
k=1

∂Ṽk

∂τi
nkτi

= (DΓṼ )T n = −dn[Ṽ ].

The idea now is to apply the preliminary shape derivative of lemma 3.3.4 to the divergence the-
orem of lemma 3.2.3. However, the preliminary gradient expression requires certain derivatives for
which the functional under consideration must extend into a tubular neighborhood of Γ. Unfortu-
nately, this is not true for the outer normal n, such that an extension of the normal into a tubular
neighborhood is needed.
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Remark 3.3.11. When considering the shape functional

J(g, Γ) =
∫
Γ

g(ϕ, n) dS,

where

g : Rd × Rd → R
(ϕ,ψ) 7→ g(ϕ,ψ)

is a sufficiently smooth function, the preliminary gradient for surface objectives, lemma 3.3.4, re-
quires the existence of the total derivative 〈∇g(ϕ,ψ), V 〉. For the expression g(ϕ, n) this existence
is not given and a smooth unitary extension N of the unit normal n into a tubular neighborhood of
Γ is needed. Just as in remark 3.3.9, this extension satisfies

0 = D 1 = D
(
N (x)TN (x)

)
= 2 (DN (x))N (x) = 2〈∇N ,N〉

in the domain Ω. For more details see [70]. A popular choice for this extensionN is the normalized
gradient of the signed distance function∇b/‖∇b‖ due to the applicability in level-set methods [36].
The tangential Stokes formula can now be used to perform an integration by parts on surfaces to
arrive at more convenient expressions for surface shape functionals.

Lemma 3.3.12 (Tangential Stokes Formula). Let g be a real valued differentiable function on Γ and
v be a differentiable vector valued function on Γ. Then the following relation holds:∫

Γ

gdivΓ v + 〈∇Γg, v〉 dS =
∫
Γ

κ g 〈v , n〉 dS.

Proof. Applying the Hadamard formula for volume objectives, lemma 3.2.4, to the left side of the
divergence theorem, lemma 3.2.3 and the preliminary gradient expression of lemma 3.3.4 to the
right side, the expression∫

Γ

〈V , n〉div F dS =
∫
Γ

〈∇〈F ,N〉, V 〉 + 〈F , n〉 (divΓ V ) + 〈F , dn[V ]〉 dS

is created. The shape derivative of the normal dn[V ] enters due to the chain rule. Choosing V = N
and applying lemma 3.3.7 result in∫

Γ

div F dS =
∫
Γ

〈∇〈F ,N〉,N〉 + 〈F ,N〉 (divΓN ) dS,

because DNN = 0. The above now transforms into∫
Γ

div F dS =
∫
Γ

〈DFn, n〉 + 〈F , n〉κ dS.

Because divΓ F = div F − 〈DFn, n〉, the desired expression is created by choosing F := g · v for a
scalar g and a vector v .
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3.3 Hadamard Formula for Surface Objectives

3.3.2 Shape Derivatives of General Surface Objectives

Using the tangential Stokes formula, the preliminary gradient expression from lemma 3.3.4 can now
be brought into Hadamard form.

Lemma 3.3.13 (Hadamard Formula for Surface Objectives). For a general surface objective func-
tion g : T (Γ)→ R, which is independent of the shape and for which ∂g

∂n exists, the shape derivative
for the surface objective

J(Ω) :=
∫
Γ

g dS

is given by

dJ(Ω)[V ] =
∫
Γ

〈V , n〉
[
∂g
∂n

+ κg
]

dS,

where κ = divΓ n is the tangential divergence of the normal, i.e. the additive mean curvature of Γ.

Proof. Starting form the preliminary gradient of lemma 3.3.4, the derivative is given by

d
dt t=0

∫
∂Ωt

g dSt =
∫
∂Ω

〈∇g, V 〉 + g
(
div V − 〈DVn, n〉

)
dS

=
∫
∂Ω

〈∇g, V 〉 + gdivΓ V dS.

The desired expression is immediately created due to the tangential Stokes formula, lemma 3.3.12
and the tangential quantities from definition 2.1.9 and remark 2.1.10.

Lemma 3.3.14 (Hadamard Formula of the Shape Derivative of the Normal). Let the objective func-
tion be given by

J(g, Γ) :=
∫
Γ

g(ϕ, Dϕ, n) dS,

where g : Rd × Rd×d × Rd → R, (ϕ, ζ,ψ) 7→ g(ϕ, ζ,ψ) is a sufficiently smooth functional. The
shape derivative of the above expression is then given by

dJ(g, Γ)[V ] =
∫
Γ

〈V , n〉
[
DϕgDϕ n + DζgD2ϕ n + κ

(
g − Dψg n

)
+ divΓ

(
Dψg

)T
]

dS.

Proof. To ensure applicability of the Hadamard formula for boundary integrals, lemma 3.3.13, the
objective

J(g, Γ) :=
∫
Γ

g(ϕ, Dϕ,N ) dS
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is considered. Here, N is a unitary extension of the normal into Ω just as in remark 3.3.11. By
construction, the extension fulfillsN = n and dN [V ] = dn[V ] on Γ. The chain rule and lemma 3.3.13
then provide

dJ(g, Γ)[V ] =
∫
Γ

〈V , n〉
[
〈∇g(ϕ, Dϕ,N ), n〉 + κg(ϕ, Dϕ, n)

]
+ Dψg(ϕ, Dϕ, n) dn[V ] dS.

The chain rule also leads to

〈∇g(ϕ, Dϕ,N ), n〉 = Dg(ϕ, Dϕ,N )n

=
(
Dϕg(ϕ, Dϕ,N )Dϕ + (Dζg(ϕ, Dϕ,N )D2ϕ + Dψg(ϕ, Dϕ,N )DN

)
n

= Dϕg(ϕ, Dϕ,N )Dϕ n + Dζg(ϕ, Dϕ,N )D2ϕ n + Dψg(ϕ,N )DNN
= Dϕg(ϕ, Dϕ,N )Dϕ n + Dζg(ϕ, Dϕ,N )D2ϕ n,

where the third part vanishes due to remark 3.3.11. Let Ṽ := 〈V , n〉n be the perpendicular compo-
nent of V . Applying lemma 3.3.10 and inserting the above results in

dJ(g, Γ)[Ṽ ] =
∫
Γ

〈Ṽ , n〉
[
DϕgDϕ n + DζgD2ϕ n + κg

]
− Dψg∇Γ〈Ṽ , n〉 dS.

The tangential Stokes formula, lemma 3.3.12, gives∫
Γ

−Dψg∇Γ〈Ṽ , n〉 dS =
∫
Γ

−κ〈Ṽ , n〉Dψg n + 〈Ṽ , n〉divΓ

(
Dψg

)T dS,

which results in

dJ(g, Γ)[Ṽ ] =
∫
Γ

〈Ṽ , n〉
[
DϕgDϕ n + DζgD2ϕ n + κ

(
g − Dψg n

)
+ divΓ

(
Dψg

)T
]

dS.

According to the Hadamard theorem 3.1.7, the shape derivative depends only on the normal com-
ponent of V . Hence, one has

dJ(g, Γ)[Ṽ ] = dJ(g, Γ)[V ],

and the above becomes the desired expression.

Remark 3.3.15. Two objective functions often encountered are

J1(ϕ1, Γ) :=
∫
Γ

〈ϕ1, n〉 dS

J2(ϕ2, Γ) :=
∫
Γ

〈∇ϕ2, n〉 dS,
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3.3 Hadamard Formula for Surface Objectives

where ϕ1 is a vector and ϕ2 is a scalar. As seen in remark 4.1.12 in chapter 4, J1 and J2 are
closely related to the viscous and inviscid parts of the aerodynamic drag. Using the notation from
lemma 3.3.14, one has for J1

g(ϕ, ζ,ψ) = 〈ϕ,ψ〉
Dϕg = ψT

Dζg = 0

Dψg = ϕT .

Thus, the shape derivative is given by

dJ1(ϕ1, Γ)[V ] =
∫
Γ

〈V , n〉
[
nT Dϕ1n + κ

(
ϕT

1 n − ϕT
1 n
)

+ divΓ ϕ1
]

dS

=
∫
Γ

〈V , n〉
[
〈Dϕ1n, n〉 + divΓ ϕ1

]
dS.

For J2 one has

g(ϕ, ζ,ψ) = 〈ζ,ψ〉
Dϕg = 0

Dζg = ψT

Dψg = ζT ,

and the shape derivative is analogously given by

dJ2(ϕ2, Γ)[V ] =
∫
Γ

〈V , n〉
[
nT D2ϕ2n + κ

(
〈∇ϕ2, n〉 − Dϕ2n

)
+ divΓ∇ϕ2

]
dS

=
∫
Γ

〈V , n〉
[
〈D2ϕ2n, n〉 + divΓ

(
∇Γϕ2 +

∂ϕ2

∂n
n
)]

dS

=
∫
Γ

〈V , n〉
[
〈D2ϕ2n, n〉 + κ

∂ϕ2

∂n
+ divΓ∇Γϕ2

]
dS.

Finally, for the objective

J3(ϕ3, Γ) :=
∫
Γ

〈∇ϕ3, n〉p dS

one has

g(ϕ, ζ,ψ) = 〈ζ,ψ〉T

Dϕg = 0

Dζg = p〈ζ,ψ〉p−1ψT

Dψg = p〈ζ,ψ〉p−1ζT ,
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and lemma 3.3.14 provides

dJ(ϕ3, Γ)[V ] =
∫
Γ

〈V , n〉
[
p〈∇ϕ3, n〉p−1nT D2ϕ3n + κ

(
〈∇ϕ3, n〉p − p〈∇ϕ3, n〉p−1Dϕ3n

)]
dS

+
∫
Γ

〈V , n〉divΓ

(
p〈∇ϕ3, n〉p−1∇ϕ3

)
dS.

Furthermore, there is the equality

divΓ

(
p〈∇ϕ3, n〉p−1∇ϕ3

)
=divΓ

(
p〈∇ϕ3, n〉p−1

(
∇Γϕ3 +

∂ϕ3

∂n
n
))

=divΓ

(
p〈∇ϕ3, n〉p−1∇Γϕ3

)
+ p〈∇ϕ3, n〉p−1∂ϕ3

∂n
κ,

which results in

dJ(ϕ3, Γ)[V ] =
∫
Γ

〈V , n〉
[
p〈∇ϕ3, n〉p−1〈D2ϕ3n, n〉 + κ〈∇ϕ3, n〉p + divΓ

(
p〈∇ϕ3, n〉p−1∇Γϕ3

)]
dS.

3.4 Shape Derivatives and State Constraints

Definition 3.4.1 (Material Derivative, Local Derivative). Let ut solve a PDE constraint on the per-
turbed domain Ωt = Tt [V ](Ω) and let xt := Tt (x) be a shifted boundary point. The material derivative
is then defined as the total derivative

du[V ](x) :=
d
dt t=0

ut (xt ),

and the local shape derivative is defined as the partial derivative

u′[V ](x) :=
d
dt t=0

ut (x).

Remark 3.4.2. A straight forward linearization of the PDE boundary conditions usually results in an
expression for the material derivative. The general strategy when deriving shape derivatives is to
first transfer the problem back to the original boundary before computing the limit, resulting in the
need to compute the local shape derivative. The chain rule combines both by the relation:

du[V ] = u′[V ] + 〈∇u, V 〉.

Thus, if the right hand side of the boundary condition does not depend on the geometry, one has

dub[V ] = 〈∇ub, V 〉.
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In the presence of a state constraint, i.e.

min
(u,Ω)

J(u, Ω) :=
∫
Ω

f1(u) dA +
∫
Γ

f2(u) dS

subject to

L(u) = uf in Ω

Lb(u) = ub on Γ,

where f1, f2, uf , and ub do not depend on the shape, the chain rule immediately results in

dJ(u, Ω) :=
∫
Γ

〈V , n〉
[

f1(u) +
∂f2(u)
∂n

+ κf2(u)
]

dS

+
∫
Ω

∂f1(u)
∂u

u′[V ] dA +
∫
Γ

∂f2(u)
∂u

u′[V ] dS

subject to

L(u) = uf in Ω

Lb(u) = ub on Γ

∂L(u)
∂u

u′[V ] = 0 in Ω

Boundary condition for u′[V ] on Γ.

The above does not yet fulfill the Hadamard form that can now be found by the adjoint approach.
Crucial for the adjoint approach is knowing the boundary conditions of the linearized problem which
determines the local shape derivative u′[V ] of the state.

Lemma 3.4.3 (Shape Derivative of the Dirichlet Boundary Condition). Suppose the state u is given
as the solution of a PDE of the form

L(u) = uf in Ω

u = ub on ∂Ω,

such that uf and ub do not depend on the geometry of Ω, e.g. the unit normal n. The local shape
derivative under the perturbation V is then given as the solution of the problem

∂L(u)
∂u

u′[V ] = 0 in Ω

u′[V ] = 〈V , n〉∂(ub − u)
∂n

on Γ,

where Γ is the variable part of the boundary of ∂Ω.

Proof. The linearization in Ω is straight forward. Taking the total derivative of the boundary condition
results in

du[V ] = dub[V ] on Γ.
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Using definition 3.4.1, the above can be transformed to

u′[V ] + 〈∇u, V 〉 = du[V ] = dub[V ] = 〈∇ub, V 〉
⇒ u′[V ] = 〈∇ (ub − u) , V 〉 .

The usual orthogonality argument gives the desired expression

u′[V ] = 〈V , n〉
(
∂ (ub − u)

∂n

)
.

Lemma 3.4.4 (Shape Derivative of the Slip Boundary Condition). The slip-boundary condition is
often encountered in fluid dynamics, especially when an inviscid fluid is modeled:

〈u, n〉(x) = 0 on Γ.

The local shape derivative then satisfies the boundary condition

〈u′[V ], n〉 = −〈DuV , n〉 − 〈u, dn[V ]〉

= −〈V , n〉
〈
∂u
∂n

, n
〉

+ 〈u,∇Γ〈V , n〉〉 ,

where the second part of the identity holds for a perturbation in normal direction only and can be
brought into Hadamard form using lemma 3.3.12.

Proof. The derivation is analog to lemma 3.4.3 using the product rule and the extension of defini-
tion 3.4.1 for a vector valued state u:

du[V ] = u′[V ] + 〈Du, V 〉.

Lemma 3.4.5 (Shape Derivative of the Neumann Boundary Condition). Suppose the state u is
given as the solution of a PDE of the form

L(u) = uf in Ω

∂u
∂n

= ub on ∂Ω,

such that uf and ub do not depend on the geometry of Ω, e.g. the unit normal n, etc. The local
shape derivative under the perturbation V is then given as the solution of the problem

∂L(u)
∂u

u′[V ] = 0 in Ω

∂u′[V ]
∂n

= 〈∇ub, V 〉 − 〈D2uV , n〉 − 〈∇Γu, dn[V ]〉

= 〈V , n〉
[
∂ub

∂n
− ∂2u
∂n2

]
+ 〈∇Γu,∇Γ〈V , n〉〉,

where the second identity holds for the orthogonal component of the perturbation field only.

44



3.4 Shape Derivatives and State Constraints

Proof. The Neumann boundary condition at xt = Tt (x) on the deformed domain Ωt reads

ub ◦ xt = 〈∇ut , nt〉 ◦ xt

= 〈∇ut , nt〉 ◦ Tt (x)

= 〈(∇ut ) ◦ Tt (x), nt (xt )〉.

The chain rule results in

∇(ut ◦ Tt (x)) = ((∇ut ) ◦ Tt (x))T · DTt (x)

= (DTt (x))T · [(∇ut ) ◦ Tt (x)] ,

and the boundary condition becomes

ub(xt ) = 〈(DTt (x))−T ∇(ut ◦ Tt (x)), nt (xt )〉
= (∇(ut (xt )))T DTt (x)−1 · nt (xt ).

The total derivative with respect to t now yields the material derivative of ut (xt ). Using lemma 3.3.3
results in:

dub[V ] = (∇du[V ])T n + (∇u)T (−DV ) n + 〈∇u, dn[V ]〉,

which results in

∂du[V ]
∂n

= dub[V ]− 〈∇u, (−DV ) n〉 − 〈∇u, dn[V ]〉.

Using the relationship

du[V ] = u′[V ] + 〈∇u, V 〉
dub[V ] = 〈∇ub, V 〉
dn[V ] = −∇Γ〈V , n〉,

we have

∂du[V ]
∂n

=
∂u′[V ]
∂n

+ 〈D2uV , n〉 + 〈∇u, DVn〉,

and the above can now be expressed in terms of the local shape derivatives:

∂u′[V ]
∂n

= 〈∇ub, V 〉 − 〈D2uV , n〉 − 〈∇u, dn[V ]〉.

Since 〈∇u, n〉 = 0, we have ∇u = ∇Γu, and with the usual orthogonality argument the boundary
condition can be expressed as

∂u′[V ]
∂n

= 〈V , n〉
[
∂ub

∂n
− ∂2u
∂n2

]
+ 〈∇Γu,∇Γ〈V , n〉〉,
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3 Shape Sensitivity Analysis

where the last part can be brought into Hadamard form using lemma 3.3.12, i.e.∫
Γ

〈∇Γ〈V , n〉,∇Γu〉 dS =
∫
Γ

−〈V , n〉divΓ∇Γu + κ〈V , n〉〈∇Γu, n〉 dS

=
∫
Γ

〈V , n〉
[
κ〈∇Γu, n〉 −∆Γu

]
dS.

Remark 3.4.6. Note that in the setting considered in the above lemma 3.4.5, it can be possible
that the problem does not possess a unique solution u. However, this has no consequence for the
shape derivative of the Neumann boundary condition.

Remark 3.4.7. A simpler formula than lemma 3.4.5 can be given in the special case of the standard
Laplace problem

−∆u = uf in Ω

∂u
∂n

= ub on ∂Ω.

The Laplace-Beltrami operator

∆Γu := divΓ∇Γu = ∆u − κ∂u
∂n
− ∂2u
∂n2

provides

∂2u
∂n2 = −∆Γu − uf − κub

which results in

∂u′[V ]
∂n

= divΓ

(
〈V , n〉∇Γu

)
+ 〈V , n〉

(
∂ub

∂n
+ κub + uf

)
.

For more details see [70].
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Chapter 4

Fluid Mechanics

4.1 Derivation of the State Equations

Before considering shape optimization in fluids, this chapter is used to give a brief overview about
partial differential and integral equations governing fluid flow. First, the governing equations are
derived in a general setting. Afterwards, possible simplifications of inviscid or incompressible flows
are introduced. More detailed overviews about the derivation of the state equations can for example
also be found in [7, 20]. The derivation of the partial differential and integral equations describing
fluids are a direct consequence of the continuum hypothesis, conservation of mass, conservation
of momentum, and conservation of energy.

For consistency reasons with the literature the nomenclature is redefined. For example, t is
now used to denote the physical time as opposed to being responsible for the amount of shape
deformation, for which the symbol was used in chapter 3.

Definition 4.1.1 (Intensive and Extensive Quantity). A physical property is called intensive if it is
scale invariant, meaning it does not depend on the system size or the amount of material in the
system. Examples of intensive properties are temperature, density, or specific energy. By contrast,
a property is called extensive if it does depend on scale, such as mass, length, volume, enthalpy,
or energy. Let φ be an intensive quantity. The corresponding extensive quantity ϕ is then given by

ϕ =
∫
M

ρφ dA, (4.1)

where M is a control volume under consideration and ρ is the fluid density.
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4 Fluid Mechanics

Remark 4.1.2 (Reynolds Transport Theorem). The Reynolds transport theorem is a three-dimen-
sional generalization of the Leibniz integral rule for differentiation under the integral sign. It relates
the change of extensive quantities to the change of intensive quantities by

dϕ
dt

=
∫
M

∂

∂t
(ρφ) dA +

∫
∂M

〈ρφ · (u − ub), n〉 dS,

where ϕ is the extensive quantity under consideration and φ is the corresponding intensive quantity.
The fluid density is denoted by ρ, and the fluid velocity is given by u. The velocity of the control
surface ∂M is given by ub. More details can be found in [7].

Lemma 4.1.3 (Conservation of Mass). Let M ⊂ Ω be an arbitrary control volume. The conservation
of mass results in the first state equation∫

M

∂ρ

∂t
+ div (ρu) dA = 0. (4.2)

Proof. The mass m of a fluid contained in the volume M is given by

m =
∫
M

ρ dA,

thus, when comparing the above with equation (4.1), one can see that mass is the extensive quantity
corresponding to the intensive quantity φ = 1. The mass of the fluid in a fixed control volume is
considered to be conserved, resulting in

0 =
dm
dt

=
d
dt

∫
M

ρ dA.

Considering a fixed control volume, i.e. ub = 0, a straight application of the Reynolds transport
theorem results in

0 =
dm
dt

=
∫
M

∂ρ

∂t
dA +

∫
∂M

〈ρu, n〉 dS.

The desired expression follows with remark 3.2.3.

Lemma 4.1.4 (Conservation of Momentum). The conservation of momentum results in the second
state equation governing fluid flow:∫

M

∂

∂t
(ρui ) + div (−Ti + ρuiu) +

∂p
∂xi

dA =
∫
M

ρgi dA, (4.3)

where i = 1, 2, 3 are the three spacial dimensions and Ti ∈ R3 is the corresponding stress tensor
row describing the distortion of the control volume M under forces. The fluid pressure is denoted
by p. Also, gi is the volume force in the i-th coordinate direction.

48



4.1 Derivation of the State Equations

Proof. Newton’s second law states that the change of momentum equals the sum of all active
forces: ∑

g̃ =
d(mu)

dt
=

d
dt

∫
M

ρu dA,

where g̃ are the total forces acting on the control volume M. Hence, remark 4.1.2 is applicable with
φ := ui and results in (∑

g̃
)

i
=
∫
M

∂

∂t
(ρui ) dA +

∫
∂M

〈ρuiu, n〉 dS.

However, the total forces g̃ acting on the control volume also depend on the pressure and stresses
contained within the fluid. In order to arrive at a closed system of equations, the internal quantities
pressure and stress on the boundary ∂M of the control volume must be related to the external
forces g̃: ∑

g̃ =
∫
M

ρg dA +
∫
∂M

〈σ, n〉 dS ∈ R3. (4.4)

Here, g is the volume force and σ ∈ R3×3 is the corresponding stress tensor describing the internal
friction and pressure. The stress tensor σ can now be split into two terms:

σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

 σ11 + p σ12 σ13

σ21 σ22 + p σ23

σ31 σ32 σ33 + p

−
 p 0 0

0 p 0
0 0 p


=: T− p · I.

The second part containing the pressure p is called mean hydrostatic stress tensor, volumetric
stress tensor, or mean normal stress tensor and is responsible for a change of volume of the
control volume M. The first part part T is called stress deviator tensor and results in a distortion
of the control volume M. Thus, the preliminary conservation of momentum for the i-th coordinate
direction becomes ∫

M

∂

∂t
(ρui ) dA +

∫
∂M

〈−Ti + ρuiu + p · ei , n〉 dS =
∫
M

ρgi dA,

where ei is the i-th unit vector. The desired expression follows with remark 3.2.3.

Definition 4.1.5 (Newtonian Fluid). In order to close the momentum equations, the stress tensor T
must be related to the other variables. Let the strain tensor of the fluid be given by

S =
1
2

[(
∇u + (∇u)T ) + λ (div u) · I

]
where I ∈ R3×3 is the identity matrix and λ = −2

3 is the bulk viscosity. For Newtonian fluids the
following assumptions are generally made:

• The stress tensor T is a linear function of the strain S.

• The fluid is isotropic.
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4 Fluid Mechanics

• A fluid at rest does not distort control volumes.

The last assumption links the equations of fluid dynamics to hydrostatics. As a consequence, the
stress tensor must be divergence free, i.e. div T = 0 for a fluid at rest. For a Newtonian fluid it is
therefore often assumed that

T := τ := 2µS,

where µ is the shear or dynamic viscosity of the fluid, which is related to the kinematic viscosity ν
by

ν =
µ

ρ
.

Viscosity describes the ratio of viscous forces to inertia forces. Dynamic viscosity µ and bulk vis-
cosity λ are closely related to the Lamé coefficients in linear elasticity. A wide array of real world
fluids are considered to be Newtonian such as water, air, and oil. Examples for non-Newtonian
fluids are polymer solutions, blood, paint, quicksand, toothpaste, and ketchup. Thus, for Newtonian
fluids the conservation of momentum in the i-th coordinate direction is given by∫

M

∂

∂t
(ρui ) +

3∑
j=1

[
∂

∂xj

(
−µ
(
∂ui

∂xj
+
∂uj

∂xi
+

2
3

(div u) δij

))
+
∂(ρuiuj )
∂xj

]
+
∂p
∂xi

dA =
∫
M

ρgi dA, (4.5)

where δij is the Kronecker symbol.

Lemma 4.1.6 (Conservation of Energy). The conservation of energy results in the following equa-
tion of state: ∫

M

∂

∂t
(ρE) + div (ρHu − κ∇T − Tu) dA =

∫
M

ρgu dA,

where H is the enthalpy, T the absolute static temperature, and κ is the thermal conductivity of the
fluid.

Proof. The total energy per unit mass E of a fluid is given by kinetic energy and internal energy e

E = e +
1
2
‖u‖2 = e +

1
2

(
u2

1 + u2
2 + u2

3

)
.

The change of energy in a control volume equals the work performed by exterior forces plus heat
supply:

d
dt

∫
M

ρE dA =
∫
M

ρgu dA

︸ ︷︷ ︸
work performed by volume forces

−
∫
∂M

qn dA

︸ ︷︷ ︸
heat supply over the boundary

+
∫
∂M

(T− p · I) un dS

︸ ︷︷ ︸
work performed by surface forces

.

Fourier’s law of heat conduction states that

q = −κ∇T ,

where κ is the thermal conductivity of the fluid and T is the absolute static temperature. Applying
the Reynolds transport theorem 4.1.2 with φ = E results in∫

M

∂

∂t
(ρE) dA +

∫
∂M

〈ρEu, n〉 dS =
∫
M

ρgu dA +
∫
∂M

κ∇Tn dS +
∫
∂M

(T− p · I) un dS.
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4.1 Derivation of the State Equations

The energy equation is often rewritten in terms of total enthalpy H

H := E +
p
ρ
⇒ p = ρH − ρE , (4.6)

which eliminates the pressure p:∫
M

∂

∂t
(ρE) dA +

∫
∂M

〈ρHu, n〉 dS =
∫
M

ρgu dA +
∫
∂M

κ∇Tn dS +
∫
∂M

Tun dS.

The desired expression follows with remark 3.2.3.

The conservation of mass, momentum, and energy results in five equations for the seven un-
knowns ρ, u, p, E , and T . Hence, additional closure assumptions must be made, linking pressure
p and temperature T to the unknowns ρ, u, and E .

Definition 4.1.7 (Perfect Gas). A gas is said to be perfect or ideal if the pressure is given by the
relation

p = ρRT ,

where R is the specific gas constant. Furthermore, the specific heat capacity is the measure
of the heat energy required to increase the temperature of a unit quantity of a substance by a
certain temperature interval. For a compressible body, one may distinguish between heat capacity
at constant volume cv and heat capacity at constant pressure cp. For an ideal gas, the heat capacity
is constant with temperature resulting in

R = cp − cv ,

and the internal energy is related to the temperature by

e = cv T .

Since E = e + 1
2‖u‖

2, the above results in

p = ρR
E − 1

2‖u‖
2

cv
=

R
cv
ρ

(
E − 1

2
‖u‖2

)
.

Introducing the adiabatic exponent γ as

γ =
cp

cv
⇒ R

cv
= γ − 1,

one arrives at the final equation linking the pressure to the unknowns:

p = (γ − 1)ρ
(

E − 1
2
‖u‖2

)
.

Closing the circle, the temperature can thus also be expressed as T = p
Rρ .
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4 Fluid Mechanics

Remark 4.1.8 (Speed of Sound, Mach Number). A very important property is the speed of sound.
As the fluid velocity approaches the local speed of sound, shock waves begin to form, and the
equations of state are then dominated by their hyperbolic nature. For a perfect gas, the speed of
sound c is given by

c =
√
γRT =

√
γR

1
cv

e =
√
γ(γ − 1)(E − ‖u‖2) =

√
γ

p
ρ

.

The local Mach number M is then given by

M =
‖u‖

c
.

Remark 4.1.9 (Scaling, Non-Dimensionalization). Different scales can lead to similar fluid flow:
Flow around a sphere of radius r1 = 10 m with a velocity of 10 km/h will be the same as flow around
a sphere of radius r2 = 1 m with a velocity of 100 km/h. This is often exploited in experiments
when smaller models are used in wind tunnels. The Navier–Stokes equations are thus often non-
dimensionalized. The subscript∞ denotes the respective value in the farfield:

p∞ = 1 reference pressure

ρ∞ = 1 reference density

T∞ = 1 reference temperature

c∞ =
√
γ

p∞
ρ∞

=
√
γ reference speed of sound

u∞ = M∞a∞ = M∞
√
γ reference velocity

µ∞ =
ρ∞u∞L

Re∞
=

M∞
√
γ

Re∞
reference dynamic viscosity.

Additionally, M∞ is the freestream Mach number and

Re =
ρuL
µ

is the Reynolds number where L is the characteristic length scale. Furthermore, the thermal con-
ductivity is non-dimensionalized by

κ∞ =
γµ∞

(γ − 1)Pr
,

where Pr is the Prandtl number. As a consequence, the non-dimensional gas constant reduces to

R =
p
ρT

= 1.

Usually, the Reynolds number Re, Prandtl number Pr , Mach number M, adiabatic exponent γ, and
the reference length L are externally given, defining the flow conditions to simulate.
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4.1 Derivation of the State Equations

Remark 4.1.10 (Sutherland Law). The viscosity of a fluid is often decreasing with temperature,
which is modeled by Sutherland’s formula

µ = µ∞

(
T

T∞

) 3
2 T∞ + S

T + S
,

where S is the Sutherland temperature, usually 110.4 K for air.

Taking everything together results in the compressible Navier–Stokes equations.

Definition 4.1.11 (Compressible Navier–Stokes Equations). The compressible Navier–Stokes equa-
tions for a Newtonian fluid are given by ∫

M

∂ρ

∂t
+ div (ρu) dA = 0 (4.7)

∫
M

∂

∂t
(ρui ) +

3∑
j=1

[
∂

∂xj

(
−µ
(
∂ui

∂xj
+
∂uj

∂xi
+

2
3

(div u) δij

))
+
∂(ρuiuj )
∂xj

]
+
∂p
∂xi

dA =
∫
M

ρgi dA (4.8)

∫
M

∂

∂t
(ρE) + div

(
ρHu − κ∇T +

[
−µ
(
∇u + (∇u)T +

2
3

(div u) · I
)]

u
)

dA =
∫
M

ρgu dA.

(4.9)

Note that equation (4.8) is also of divergence type when written in vectorial form using the Kronecker
symbol for the pressure. The dynamic viscosity µ is given by the Sutherland law. The boundary
condition for the velocity on fluid obstacles usually is

u = 0 on Γ0.

Appropriate boundary conditions for the heat fluxes and on inlets/outlets will be provided later on
based on the situation to be simulated.

Remark 4.1.12 (Forces in Fluids). Equation (4.4) can also be used to compute the force a fluid
exerts on an immersed body with boundary ∂M. According to (4.4), the force a solid body exerts
on the fluid is given by

F =
∫
M

ρg dA +
∫
∂M

〈σ, n〉 dS ∈ R3.

According to Newton’s third law of motion, the sign switches when considering the force the fluid
exerts on the solid body, and in a Newtonian fluid without body forces, the fluid force in the i-th
coordinate axis is thus given by

Fi =

∫
∂M

〈−T + p, n〉 dS


i

=
∫
∂M

 3∑
j=1

(
−µ
(
∂ui

∂xj
+
∂uj

∂xi
+

2
3

(div u) δij

))
nj

 + pni dS. (4.10)
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4.2 Simplifications

There are many simplifications making the complex governing equations more accessible. Two
assumptions most often used are incompressibility and diminishing viscosity, i.e. inviscid flow.

4.2.1 Incompressible Flow

Definition 4.2.1 (Incompressible Fluid). A fluid is considered incompressible if the density ρ does
not change in time, i.e.

dρ(x(t), t)
dt

= 0.

Here, it is also assumed that the density is constant in space.

When using the above assumption and omitting Sutherland’s law, the conservation of mass (4.7)
and momentum (4.8) for a Newtonian fluid become∫

M

ρdiv u dA = 0

∫
M

ρ
∂

∂t
ui − µ∆ui + ρu∇ui +

∂p
∂xi

dA =
∫
M

ρgi dA.

For an incompressible flow the conservation of mass and momentum already create a closed sys-
tem of equations. The energy of the fluid can be computed using equation (4.9) after the above
equations have been solved for u and p. Since the incompressible equation cannot develop shock
waves, the above system is often written as a partial differential equation:

Definition 4.2.2 (Incompressible Navier–Stokes Equations). The incompressible Navier–Stokes
equations are given by

ρ
∂

∂t
u − µ∆u + ρu∇u +∇p = ρg in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−.

(4.11)

Here, ∂Ω = Γ = Γ+
d
∪ Γ0

d
∪ Γ−. The inflow is given by Γ+ and the surface of any obstacles in the

fluid is given by Γ0. The boundary condition on Γ0 is the no-slip boundary condition of a viscous
fluid. The outflow condition on Γ− is chosen such that mass conservation holds. This is the natural
boundary condition for finite element discretizations. When enclosed flows are considered, i.e.
Γ− = ∅, the missing boundary condition results in the pressure being defined only up to an additive
constant. Omitting the time derivative results in the steady state Navier–Stokes equations.

Since the energy equation decouples from the conservation of mass and momentum, there exists
a convenient representation of the kinetic energy loss of an incompressible fluid. In order to derive
the dissipation rate of kinetic energy into heat, the following result is needed:
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4.2 Simplifications

Lemma 4.2.3. Let u solve the incompressible Navier–Stokes equations (4.11). It then follows that∫
Ω

u(u∇u) dA = 0.

Proof. ∫
Ω

u(u∇u) dA =
1
2

∫
Ω

u ∇
(
‖u‖2) dA−

∫
Ω

u (u × rot u) dA

= −1
2

∫
Ω

div u‖u‖2 dA +
1
2

∫
Γ

‖u‖2u · n dS

= 0.

Lemma 4.2.4 (Energy Dissipation in an Incompressible Fluid). In the absence of body forces g, the
dissipation of kinetic energy into heat in a viscous incompressible flow is given by

Ėu :=
∂

∂t
Eu = −µ

3∑
i ,j=1

∫
Ω

(
∂ui

∂xj

)2

dA. (4.12)

Since the above value is always negative, one can see that in an incompressible flow, heat is never
converted back into kinetic energy.

Proof. The kinetic energy Eu is given by

Eu =
1
2

m‖u‖2 =
1
2

∫
Ω

3∑
i=1

ρu2
i dA

⇒ Ėu =
∫
Ω

3∑
i=1

ui (ρu̇i ) dA.

Inserting the incompressible Navier–Stokes equations without body forces for ρu̇i , one arrives at

Ėu =
∫
Ω

3∑
i=1

ui (µ∆ui − ρu∇ui −
∂p
∂xi

)dA.

Using integration by parts on the pressure term, the equation becomes

Ėu =
∫
Ω

3∑
i=1

(µui∆ui − uiρu∇ui − ui
∂p
∂xi

) dA

=
∫
Ω

3∑
i=1

[
µui∆ui − uiρu∇ui +

∂ui

∂xi
p
]

dA−
∫
Γ

3∑
i=1

puini dS.
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4 Fluid Mechanics

Furthermore,
∑3

i=1
∂ui
∂xi

= 0 because of the divergence freedom and
∑3

i=1 puini = 0 because of the
no-slip boundary condition, which leads to

Ėu =
∫
Ω

3∑
i=1

[µui∆ui − uiρu∇ui ] dA.

With lemma 4.2.3 this becomes:

Ėu =
∫
Ω

3∑
i=1

µui∆ui dA.

Swapping over ∆ and eliminating the boundary integrals because of the no-slip boundary condition
results in:

Ėu = −µ
3∑

i ,j=1

∫
Ω

(
∂ui

∂xj

)2

dA.

The above formula has both advantages and disadvantages when compared to using forces
according to equation (4.10). On the one hand, the value of (4.12) depends on the size of the
simulation domain Ω, making results from two different domains difficult to compare: Considering
an obstacle in a fluid channel, the value of (4.12) will increase when a longer channel is simulated,
although the force the fluid exerts on any obstacle should stay the same. Also, in case of multiple
obstacles, (4.12) does not allow identifying the contribution each obstacle has to the total energy
loss. On the other hand, the shape differentiation of a volume objective function is much more
straight forward than the shape differentiation of a surface functional such as (4.10). This is es-
pecially true for higher order derivatives. Hence, for considerations on shape optimization in fluids
later on, (4.12) will be considered first.

Remark 4.2.5. The incompressible Navier–Stokes equations still possess several numerical dif-
ficulties. The missing time derivative in the conservation of mass requires at least semi-implicit
solution strategies. The divergence freedom of u results in the fact that the discretization of u and
p cannot be chosen independently. Instead, a stable discretization without checkerboarding must
satisfy the inf-sup condition [30, 76], and the resulting discrete saddle-point problem is hard to solve
iteratively. Last, a low viscosity µ, i.e. a high Reynolds number Re, results in an emphasis on the
non-linearity. Unless the resulting turbulence is not averaged in some way, the equation does no
longer have a stable steady state, and all turbulent length scales must be resolved in the compu-
tational grid. For most flow phenomena of interest, the computational power of present and future
computers does not suffice to resolve turbulence. The problems due to turbulence can be avoided
by dropping the non-linearity from the momentum conservation, resulting in the Stokes equation.
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4.2 Simplifications

Definition 4.2.6 (Incompressible Stokes Equations). Using the same notation as in definition 4.2.2,
the incompressible Stokes equations are given by

−µ∆u +∇p = ρg in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−.

(4.13)

Due to the simplified momentum conservation, the Stokes equations are only applicable to very
viscous “creeping” flows or inside boundary layers. However, the simplicity and linearity allows for
a detailed mathematical analysis.

4.2.2 Inviscid Flow

The other alternative to remove turbulence and boundary layers as described in remark 4.2.5 is by
neglecting viscosity altogether.

Definition 4.2.7 (Compressible Euler Equations). The compressible Euler equations result from
dropping the viscous terms from the compressible Navier–Stokes equations. For a Newtonian fluid
they are given by ∫

M

∂ρ

∂t
+ div (ρu) dA = 0 (4.14)

∫
M

∂

∂t
(ρui ) +

3∑
j=1

[
∂(ρuiuj )
∂xj

]
+
∂p
∂xi

dA =
∫
M

ρgi dA (4.15)

∫
M

∂

∂t
(ρE) + div (ρHu) dA =

∫
M

ρgu dA. (4.16)

Note that in addition to setting the dynamic viscosity to zero, the temperature diffusion is also
removed from the energy equation. The solid wall boundary condition for an inviscid fluid is given
by the non-permeability or “slip” condition

〈u, n〉 = 0.

Since turbulence is a result of low viscosity, it at first appears counter-productive to remove the
viscous terms altogether. However, the slip condition on solid walls removes boundary layers and
hence eliminates turbulence. Additionally, the compressible Euler equations no longer possess a
unique solution. The physically relevant solution has to be chosen such that entropy is increasing
when crossing shock waves. Technically, however, most numerical schemes feature a vanishing
viscosity approach such that the physically correct solution is automatically found.
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Remark 4.2.8 (Euler Equations, Flux Functions). The compressible Euler equations, definition 4.2.7,
can also be written in the following way:

∂U
∂t

+ div F =
∂U
∂t

+
3∑

k=1

∂Fk

∂xk
= 0 ∈ R5, (4.17)

where the “inviscid fluxes” Fi are given by

F1 :=
(
ρu1, p + ρu2

1 , ρu1u2, ρu1u3, u1(E + p)
)T

F2 :=
(
ρu2, ρu1u2, p + ρu2

2 , ρu2u3, u2(E + p)
)T

F3 :=
(
ρu3, ρu1u3, ρu2u3, p + ρu2

3 , u3(E + p)
)T

.

The vector of conserved variables is given by

U := (ρ, ρu, ρE)T ,

and

Up := (ρ, u, E)T

is the vector of primitive variables.

Remark 4.2.9 (Euler Flux Jacobians). Applying the chain rule on (4.17), the conserved variables U
can be made visible

0 =
3∑

k=1

∂Fk

∂xk
=

3∑
k=1

∂Fk

∂U
∂U
∂xk

=
3∑

k=1

∂Fk

∂Up

∂Up

∂U
∂U
∂xk

=
3∑

k=1

∂Fk

∂Up

[
∂U
∂Up

]−1 ∂U
∂xk

=:
3∑

k=1

Ak
∂U
∂xk

.

The Euler flux Jacobians Ak are given by

A1 :=


0 1 0 0 0

(γ − 1)H − u2
1 − c2 (3− γ)u1 −(γ − 1)u2 −(γ − 1)u3 γ − 1

−u1u2 u2 u1 0 0
−u1u3 u3 0 u1 0

u1[(γ − 2)H − c2] H − (γ − 1)u2
1 −(γ − 1)u1u2 −(γ − 1)u1u3 γu1



A2 :=


0 0 1 0 0

−u1u2 u2 u1 0 0
(γ − 1)H − u2

2 − c2 −(γ − 1)u1 (3− γ)u2 −(γ − 1)u3 γ − 1
−u2u3 0 u3 u2 0

u2[(γ − 2)H − c2] −(γ − 1)u1u2 H − (γ − 1)u2
2 −(γ − 1)u2u3 γu2



A3 :=


0 0 0 1 0

−u1u3 u3 0 u1 0
−u2u3 0 u3 u2 0

(γ − 1)H − u2
3 − c2 −(γ − 1)u1 −(γ − 1)u2 (3− γ)u3 γ − 1

u3[(γ − 2)H − c2] −(γ − 1)u1u3 −(γ − 1)u2u3 H − (γ − 1)u2
3 γu3

 ,
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4.2 Simplifications

where H := E + p
ρ is the enthalpy, see also equation (4.6), and c =

√
γp
ρ is the speed of sound

according to remark 4.1.8.

Remark 4.2.10 (Incompressible Euler Equations). It is also possible to assume an inviscid and
incompressible flow simultaneously, which leads to the incompressible Euler equations

ρ
∂

∂t
u + ρu∇u +∇p = ρg in Ω

div u = 0

u = u+ on Γ+

〈u, n〉 = 0 on Γ0

pn = 0 on Γ−.

However, when considering the dissipation of kinetic energy into heat for an incompressible flow
according to equation (4.12), one can see that

Ėu ≡ 0.

Hence, a body immersed in an inviscid, incompressible fluid does not experience any force at all.
Unfortunately, this is also true when the compressible equations are used to simulate an essentially
incompressible flow. As such, the Euler equations only produce physically meaningful forces when
compressibility effects are relevant, meaning the speed of the fluid is close to or exceeds Mach 1.0
and compression shock waves form.

4.2.3 Potential Flow

The final simplification is that of potential flow. When an inviscid fluid is also considered to be
irrotational, meaning

rot u = 0,

one can show that there exists a velocity potential φ such that u = −∇φ. More information can
for example be found in [43]. Using the irrotational assumption in the inviscid mass conservation
div u = 0, one arrives at the equation for potential flow:

Definition 4.2.11 (Potential Flow). Potential flow is given by

−∆φ = 0 in Ω

∂φ

∂n
= 0 on Γ0

φ = φ0 on Ω \ Γ0.

This is now a scalar equation based on the inviscid conservation of mass. The boundary value φ0

creates the necessary potential difference between inflow and outflow. It is possible to recover the
pressure once the above equation is solved for φ. However, due to the limitations as discussed in
remark 4.2.10, potential flow can mostly be used in inverse design only, meaning finding shapes
that produce a desired pressure profile.

In the following chapters, both fluid dynamics and shape optimization will be combined with spe-
cial attention on fast numerical procedures. However, first a very brief overview on finite volume
methods for conservation laws will be given.
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4.3 Numerical Schemes for Conservation Laws

In this section, some aspects of solving the flow equations discretely will be presented from the
literature, especially [44, 82]. Special attention is given to finite volume schemes for compressible
fluid dynamics. The DLR flow solver TAU, which is used in chapter 8, is also based on a finite
volume discretization. However, in the incompressible case, chapter 5 and 6, a finite element based
flow solver is used. Compared to the compressible case, finite element methods are more straight
forward applicable to incompressible fluid dynamics, but for convection dominant high Reynolds-
number flows they usually require some kind of stabilization.

4.3.1 The Finite Volume Method

For simplicity reasons, a general scalar conservation law of the type

∂u
∂t

+
∂f (u)
∂x

= 0 (4.18)

will be considered. The discretization of the space-time domain is given by a cartesian grid

(xj , tn) := (j∆x , n∆t), j ∈ Z, n ∈ N0.

A discrete cell or finite control volume is then defined by the interval

[xj− 1
2
, xj+ 1

2
] := [xj −

1
2
∆x , xj +

1
2
∆x ],

and the discretized state ûj at node j is thought of as an approximation of the cell-averaged value
of the function u

û(xj , t) ≈ 1
∆x

x
j+ 1

2∫
x

j− 1
2

u(x , t) dx .

The integral representation of the conservation law (4.18) provides

x
j+ 1

2∫
x

j− 1
2

u(x , tn+1) dx =

x
j+ 1

2∫
x

j− 1
2

u(x , tn) dx −

 tn+1∫
tn

f (u(xj+ 1
2
, t)) dt −

tn+1∫
tn

f (u(xj− 1
2
, t)) dt


for each finite control volume [xj− 1

2
, xj+ 1

2
]. Hence, a numerical scheme should reproduce this prop-

erty, which gives rise to the following definition.

Definition 4.3.1 (Conservative Scheme). A numerical scheme is called conservative if the following
relation holds

ûn+1
j = ûn

j −
∆t
∆x

[
F (ûn

j−p, ûn
j−p+1, ..., ûn

j+q)− F (ûn
j−p−1, ûn

j−p, ..., ûn
j+q−1)

]
,
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4.3 Numerical Schemes for Conservation Laws

where lower indices denote the spacial dimension and upper indices denote time. In short notation
the above reads

ûn+1
j = ûn

j −
∆t
∆x

[
F (ûn; j)− F (ûn; j − 1)

]
.

Finally, the numerical flux F is given as the approximation of the average flux at position xj+ 1
2

during
the time interval [tn, tn+1]

F (ûn; j) ≈ 1
∆t

tn+1∫
tn

f (u(xj+ 1
2
, t)) dt .

Remark 4.3.2. Often, the numerical flux F depends only on one left and right neighbor. Thus,
one frequently has the situation p = 0 and q = 1 in definition 4.3.1 above. This leads to the more
common expression

ûn+1
j = ûn

j −
∆t
∆x

[
F (ûn

j , ûn
j+1)− F (ûn, ûj )

]
=: ûn

j −
∆t
∆x

[
Fj+ 1

2
− Fj− 1

2

]
.

Definition 4.3.3 (Consistent Scheme). A finite volume scheme is call consistent, if the numerical
flux function F satisfies for all u ∈ Rm

F (u, u, ..., u) = f (u)

and is Lipschitz-continuous, i.e. for an arbitrary u ∈ Rm fulfills

‖F (ûj−p, ûj−p+1, ..., ûj+q)− f (u)‖ ≤ C max
−p≤i≤q

‖ûj+i − u‖

for all ûj+i in a neighborhood of u with C independent of u.

Remark 4.3.4. The first condition in definition 4.3.3 basically states that constant functions must be
integrated correctly and is in fact necessary for the Lipschitz-continuity. One can show that a con-
sistent finite volume scheme must also satisfy the discrete conservation property of definition 4.3.1.
As a consequence, shock waves will be captured at correct positions during computation. For more
details see [44].

Unless special provisions are taken, numerical schemes for conservation laws tend to produce
spurious oscillations when the solution of the conservation law features discontinuities and shock
waves. Thus, it is little surprising that the total variation of the computed solution must be dimin-
ishing in order to achieve convergence of the scheme, which is stated by Lax-Wendroff’s theorem
later on.

Definition 4.3.5 (Total Variation). The total variation of a function u is given by

TV(u) := sup


N∑

j=1

|u(ξj )− u(ξj−1)| : ξ0 < ξ1 < ... < ξN , N ∈ N

 .

For the discrete case, the total variation of a vector, i.e. the piecewise constant approximation of the
state ûn at time n, the total variation is given by

TV(ûn) :=
∞∑

j=−∞
|ûn

j+1 − ûn
j |.
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4 Fluid Mechanics

Using the total variation, the theorem of Lax–Wendroff now ensures the approximation property
of finite volume schemes.

Theorem 4.3.6 (Lax–Wendroff). Let a sequence of meshes

(x`j , t`n) := (jh`, nk`), j ∈ Z, n ∈ N0, ` ∈ N

be given, such that h` → 0 and k` → 0 for ` → ∞. Let (û`)`∈N be a sequence of solutions
generated by a conservative and consistent scheme on the respective mesh. Furthermore, let the
sequence (û`)`∈N converge to a locally integrable function u∗ such that for each finite set [a, b] ×
[0, T ] the relation

lim
`→∞

T∫
0

b∫
a

|û`(x , t)− u∗(x , t)| dxdt = 0

holds. Additionally, let the total variation be uniformly bounded, such that for each T > 0 there
exists an R > 0 with

TV(û`(., t)) < R

for all 0 ≤ t ≤ T and all ` ∈ N. The limit function u∗ is then a weak solution of the conservation
law.

Proof. See for example theorem 12.1 in [44].

Remark 4.3.7. The Lax–Wendroff theorem neither states that convergence occurs at all nor that the
computed solution of the conservation law is the physically correct solution. To ensure convergence
to a physically relevant solution, more considerations are necessary, some of which are based on
monotonicity conditions.

Remark 4.3.8 (Monotonicity Preservation). For some flow velocity c > 0, the linear convection
equation

∂u
∂t

+ c
∂u
∂x

= 0, t > 0, x ∈ R (4.19)

with initial condition u(x , 0) = u0(x) is fulfilled by the function

u(x , t) = u0(x − ct).

Thus, if u(x , 0) has some monotonicity in x , then u(x , t) is also monotonic for all t > 0. Numerical
schemes for such a conservation law should therefore also preserve monotonicity.

Theorem 4.3.9 (Godunov’s Order Barrier Theorem). Linear one-step second-order accurate nu-
merical schemes for the convection equation (4.19) cannot be monotonicity preserving unless

c
∆t
∆x
∈ N.

Proof. See chapter 9.2 in [82].

A consequence of Godunov’s theorem is that any numerical discretization scheme should only
be of first order in the vicinity of discontinuities, e.g. shock waves. Since higher order accuracy is
generally desired in smooth regions of the flow, Godunov’s theorem has given rise to higher order
methods that employ flux and slope limiters at shock positions. These limiters are thus required to
reduce the approximation order of any numerical scheme to 1 in the vicinity of shocks.
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4.3 Numerical Schemes for Conservation Laws

4.3.2 The Jameson–Schmidt–Turkel Scheme

Due to Godunov’s theorem, any flow discretization must be of first order in the vicinity of discon-
tinuities, which can be achieved by flux and slope limiters. Another approach is to start from an
unstable central second order scheme and add a non-linear stabilization term, which usually leads
to a version of the Jameson–Schmidt–Turkel (JST) scheme [42].

The domain Ω is discretized into a finite number of non-overlapping control volumes Ωi ,j , and the
approximation ûi ,j of the flow state is assumed to reside in the center of each control volume. The

ûi ,j

xi ,j

xi+1,j

xi+1,j+1
xi ,j+1

s1

s2

s3

s4

Figure 4.1: Cell-centered finite volume discretization.

situation is also illustrated in figure 4.1. The conservation law in integral formulation provides

0 =
∫
Ω

∂u
∂t

+ div f (u) dA =
ni∑

i=1

nj∑
j=1

∫
Ωi ,j

∂u
∂t

+ div f (u) dA

=
ni∑

i=1

nj∑
j=1

∫
Ωi ,j

∂u
∂t

dA +
∫
∂Ωi ,j

f (u)n dS

due to the divergence theorem. Thus, an approximation of u on the faces of each finite control
volume is needed. Assuming the approximation û to be constant inside each control volume, the
value of û on the face is given by

ûi ,j+ 1
2

=
1
2

(
ûi ,j + ûi ,j+1

)
ûi ,j− 1

2
=

1
2

(
ûi ,j + ûi ,j−1

)
ûi+ 1

2 ,j =
1
2

(
ûi ,j + ûi+1,j

)
ûi− 1

2 ,j =
1
2

(
ûi ,j + ûi−1,j

)
,
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which leads to

0 =
ni∑

i=1

nj∑
j=1

[
∂ûi ,j

∂t
|Ωi ,j | + f (ûi ,j− 1

2
)s1 + f (ûi+ 1

2 ,j )s2 + f (ûi ,j+ 1
2
)s3 + f (ûi− 1

2 ,j )s4

]
.

Here, the face vectors si are orthogonal to the edges of Ωi ,j . By not normalizing them, the corre-
sponding integral over each of the edges can be computed straight forward. Thus, the equation can
be integrated in time until a steady state is reached by solving for each control volume

∂ûi ,j

∂t
= − 1
|Ωi ,j |

Qi ,j ,

where

Qi ,j =
[
f (ûi ,j− 1

2
)s1 + f (ûi+ 1

2 ,j )s2 + f (ûi ,j+ 1
2
)s3 + f (ûi− 1

2 ,j )s4

]
.

Remark 4.3.10. One can show that the above central discretization scheme is of 2nd order and
thus violates Godunov’s theorem. In order to ensure stability, a certain degree of numerical viscosity
has to be added by conducting flux updates of the type

∂ûi ,j

∂t
= − 1
|Ωi ,j |

Qi ,j +
1
|Ωi ,j |

Di ,j .

The dissipative flux Di ,j is usually given by

Di ,j = di+ 1
2 ,j + di− 1

2 ,j + di ,j+ 1
2

+ di ,j− 1
2

with di ,j being

di+ 1
2 ,j = αi+ 1

2 ,j

(
ε(2)

i+ 1
2 ,j

(
ûi+1,j − ûi ,j

)
− ε(4)

i+ 1
2 ,j

(
ûi+2,j − 3ûi+1,j + 3ûi ,j − ûi−1,j

))
.

The other directions are given analogeously. The coefficients ε(2)
i ,j and ε(4)

i ,j are adaptive coefficients
determining the amount of 1st and 3rd order numerical dissipation. They usually depend on the
pressure discontinuity of the respective finite volume. The coefficient αi ,j is usually chosen with
respect to the discrete time-step size. For more details, especially concerning accelerating the
convergence to a steady state by local and adaptive time-stepping and the treatment of boundary
conditions, see [7].
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Chapter 5

Shape Optimization and Stokes Fluids

5.1 Problem Introduction and First Order Calculus

The self-adjoint nature of the Stokes equations creates an ideal introductory problem for studying
shape Hessians. This shape optimization problem is also mentioned in [46] and makes for a perfect
test-case for validating numerics, since the optimal shape is analytically known to be similar to a
pointed prolate spheroid, e.g. a rugby ball, with 60◦ front and back angle [49, 50]. After defining
the objective function and conducting first order calculus, the Stokes case will be used as a model
problem for studying shape Hessians with respect to accelerating numerical shape optimization.
Two dimensional considerations have already been published in parts in [61].

The novelty of this chapter lies in the detailed analysis of the shape Hessian for a Stokes fluid,
lemma 5.2.2. Furthermore, knowledge of the correct shape Hessian is used to validate a Fourier
mode operator symbol approximation both analytically and discretely, which is used to greatly ac-
celerate applied shape optimization. Therefore, the following Stokes shape optimization problem is
considered:

Definition 5.1.1 (Stokes Problem). The Stokes problem consists of minimizing the energy dissipa-
tion of kinetic energy (4.12) into heat in a Stokes flow (4.13) in absence of body forces.

min
(u,p,Ω)

J(u, p, Ω) :=
∫
Ω

µ

3∑
i ,j=1

(
∂ui

∂xj

)2

dA

subject to
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−µ∆u +∇p = 0 in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−

Vol = V0.

The last constraint, Vol = V0, means preserving the volume and prevents a degeneration of the
shape. In order to formulate a minimization problem, the sign in the objective function has been
switched compared to (4.12). The domain is shown in figure 5.1.

Γ+

Γ0

Γ+

Γ0

Γ0

Γ0

Γ−

Ω

Figure 5.1: A possible layout of the domain.

Lemma 5.1.2 (Shape Derivative of the Stokes Problem). The shape derivative for a variation of the
shape of a fluid obstacle Γ0 for the Stokes problem is given by

dJ(u, p, Ω)[V ] = −µ
∫
Γ0

〈V , n〉
3∑

k=1

(
∂uk

∂n

)2

dS.

The expression does not involve an adjoint state, which is a consequence of the self-adjoint nature
of the problem.

Proof. Linearizing the state equation according to section 3.4 results in the following partial differ-
ential equation for the local shape derivatives u′[V ] and p′[V ]:

−µ∆u′[V ] +∇p′[V ] = 0 in Ω

div u′[V ] = 0

u′[V ] = 0 on Γ+

u′[V ] = −〈V , n〉∂u
∂n

on Γ0

p′[V ]n − µ∂u′[V ]
∂n

= 0 on Γ−.

(5.1)
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The outflow boundary Γ− does not feature the local shape derivative of the normal dn[V ] since the
fluid obstacle Γ0 is assumed to be deformed only. Furthermore, the preliminary gradient according
to section 3.4 is given by

dJ(u, p, Ω)[V ]

=
∫
Γ0

〈V , n〉µ
3∑

i ,j=1

(
∂ui

∂xj

)2

dS +
∫
Ω

µ
3∑

i ,j=1

2
(
∂ui

∂xj

)(
∂u′i [V ]
∂xj

)
dA

= µ

∫
Γ0

〈V , n〉‖∇u‖2 dS + 2µ
3∑

i=1

−∫
Ω

(∆ui )u′i [V ] dA +
∫
Γ

(
∂ui

∂n

)
u′i [V ] dS

 ,

where Γ = Γ+ ∪ Γ0 ∪ Γ− disjoint. Replacing ∆ui by the state equation results in:

dJ(u, p, Ω)[V ]

= µ

∫
Γ0

〈V , n〉‖∇u‖2 dS + 2
3∑

i=1

∫
Ω

− ∂p
∂xi
· u′i [V ] dA + µ

∫
Γ

(
∂ui

∂n

)
u′i [V ] dS

 .

Another integration by parts and using div u′[V ] = 0 gives

dJ(u, p, Ω)[V ] = µ
∫
Γ0

〈V , n〉‖∇u‖2 dS +

+2

∫
Ω

p div u′[V ] dA +
3∑

i=1

∫
Γ

−pu′i [V ]ni + µ
(
∂ui

∂n

)
u′i [V ] dS


= µ

∫
Γ0

〈V , n〉‖∇u‖2 dS + 2
3∑

i=1

∫
Γ

−pu′i [V ]ni + µ
(
∂ui

∂n

)
u′i [V ] dS


= µ

∫
Γ0

〈V , n〉‖∇u‖2 dS + 2
3∑

i=1

∫
Γ

(
µ

(
∂ui

∂n

)
− pni

)
u′i [V ] dS

 .

Using the boundary conditions u′[V ] = 0 on Γ+ and pni − µ∂ui
∂n = 0 on Γ−, the above transforms to

dJ(u, p, Ω)[V ] = µ
∫
Γ0

〈V , n〉‖∇u‖2 dS + 2
3∑

i=1

∫
Γ0

(
µ

(
∂ui

∂n

)
− pni

)
u′i [V ] dS

 ,

and due to the boundary condition u′[V ] = −〈V , n〉∂u
∂n on Γ0, one arrives at

dJ(u, p, Ω)[V ] = −µ
∫
Γ0

〈V , n〉‖∇u‖2 dS + 2
3∑

i=1

∫
Γ0

〈V , n〉p∂ui

∂n
ni dS

 .
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Since the divergence freedom is also valid at the boundary, the last term can be dropped, and one
arrives at

dJ(u, p, Ω)[V ] = −µ
∫
Γ0

〈V , n〉‖∇u‖2 dS = −µ
∫
Γ0

〈V , n〉
3∑

k=1

(
∂uk

∂n

)2

dS

due to the boundary conditions for u.

5.2 Shape Hessian Analysis

Since very fast gradient based optimization procedures require Hessian information, the shape
Hessian for the Stokes problem is now derived using the concept of repeated differentiation, i.e.
the shape gradient is differentiated again using the same techniques. A good overview about the
practical derivation of shape Hessians can for example also be found in [74]. The shape Hessian
for the Stokes problem will require the following pseudo-differential operator.

Definition 5.2.1 (Divergence Free Dirichlet-to-Neumann Map). Using the same setting as in defi-
nition 5.1.1, let the operator S be defined by

Sψ =
∂ϕ

∂n Γ0

,

where ψ : Γ0 → Rd . Also, ϕ : Ω→ Rd and ϕp : Ω→ R are the solution of

−µ∆ϕ +∇ϕp = 0 in Ω

div ϕ = 0

ϕ = 0 on Γ+

ϕ = −ψ on Γ0

ϕpn − µ∂ϕ
∂n

= 0 on Γ−.

Lemma 5.2.2 (Shape Hessian for the Stokes Problem). Using repeated differentiation, the shape
Hessian for the Stokes problem is given by

d2J(u, p, Ω)[V , W ] =
∫
Γ

〈W , n〉

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 div V dS

+
∫
Γ

〈W , n〉 ∂
∂n

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 〈V , n〉 dS

+
∫
Γ

〈W , n〉

〈
∇

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 , VΓ

〉
dS

+
∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

∂ui

∂n
S
∂ui

∂n
〈W , n〉

]
dS,

where S is the pseudo-differential operator from definition 5.2.1 above.
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5.2 Shape Hessian Analysis

Proof. Undoing the final step (3.5) in lemma 3.2.4, the gradient for the Stokes problem can be
transformed back to a volume integral:

dJ(u, p, Ω)[V ] = −µ
∫
Γ0

〈V , n〉‖∇u‖2 dS

= −µ
∫
Γ

〈V , n〉‖∇u‖2 dS

=
∫
Ω

div

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
V

 dA.

To derive the shape Hessian, let W be another sufficiently smooth perturbation vector field and let
Ωt [W ] := {x + tW (x) : x ∈ Ω} be given by another perturbation of identity. Hence, the second
deformation Tt [W ] fulfills:

Tt [W ](x) = x + tW (x)

T0[W ](x) = x ⇒ DT0[W ](x) ≡ I
d
dt t=0

Tt [W ](x) = W (x)

(5.2)

Furthermore, let

ϕ(t , x) := div

−µ 3∑
i ,j=1

(
∂ut

i (x)
∂xj

)2
V (x)

 ,

where ut and pt is the solution of the Stokes equations on the perturbed domain Ωt [W ]. Hence, for
the shape Hessian, the limit

d
dt t=0

∫
Ωt [W ]

ϕ(t , x) dA(x) =
d
dt t=0

∫
Ω

ϕ(t , Tt [W ](x)) det(DTt [W ](x)) dA(x)

must be computed. The multiplication and total derivative rule immediately result in

d2J(u, p, Ω)[V , W ] :=
d
dt t=0

∫
Ωt [W ]

ϕ(t , x) dA(x)

=
∫
Ω

[
d
dt t=0

ϕ(t , Tt [W ](x))
]

det(DT0[W ](x)) + ϕ(0, T0[W ](x))
[

d
dt t=0

det(DTt [W ](x))
]

dA(x)

=
∫
Ω

[
∂

∂x
ϕ(0, T0[W ](x))

d
dt t=0

Tt [W ](x) +
∂

∂t t=0
ϕ(t , T0[W ](x))

]
det(DT0[W ](x))

+ ϕ(0, T0[W ](x))
[

d
dt t=0

det(DTt [W ](x))
]

dA(x).
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5 Shape Optimization and Stokes Fluids

Using (5.2), the above transforms to

d
dt t=0

∫
Ωt [W ]

ϕ(t , x) dA(x)

=
∫
Ω

∂

∂x
ϕ(0, x)W +

∂

∂t t=0
ϕ(t , x) + ϕ(0, x)

[
d
dt t=0

det(DTt [W ](x))
]

dA(x).

Using the derivative of the deformation determinant, lemma 3.2.2, and regrouping results in

d
dt t=0

∫
Ωt [W ]

ϕ(t , x) dA(x)

=
∫
Ω

〈∇xϕ(0, x), W (x)〉 + ϕ(0, x)div W (x) +
∂

∂t t=0
ϕ(t , x) dA(x),

where the first part is now an analogon to equation (3.4), leading to

d2J(u, p, Ω)[V , W ] =
∫
Γ

〈W (x), n(x)〉 ϕ(0, x) dS(x) +
∫
Ω

∂

∂t t=0
ϕ(t , x) dA(x).

Computing the derivative of the second part provides

∫
Ω

∂

∂t t=0
ϕ(t , x) dA(x) =

∫
Ω

∂

∂t t=0
div

−µ 3∑
i ,j=1

(
∂ut

i (x)
∂xj

)2
V (x)

 dA(x)

=
∫
Ω

div

−2µ
3∑

i ,j=1

(
∂ui (x)
∂xj

)
∂u′i [W ](x)

∂xj

V (x)

 dA(x)

=
∫
Γ

〈V (x), n(x)〉

−2µ
3∑

i ,j=1

(
∂ui (x)
∂xj

)
∂u′i [W ](x)

∂xj

 dS(x),

where u′[W ] again solves the linearized Stokes equations (5.1), only this time for perturbation W .
Combining everything together leads to the preliminary expression

d2J(u, p, Ω)[V , W ]

=
∫
Γ

〈W , n〉 div

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
V

 dS

+
∫
Γ

〈V , n〉

−2µ
3∑

i ,j=1

(
∂ui

∂xj

)
∂u′i [W ]
∂xj

 dS

=I1 + I2.
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5.2 Shape Hessian Analysis

Here, I1 stems from a variation of the geometry and I2 stems from a variation of the state u. Although
the above expression is already a boundary integral, the desired structure of a scalar product of the
Hessian and the two perturbation directions V and W is not yet visible and more manipulations are
required.

Using lemma 2.1.12 on I1 results in

I1 =
∫
Γ

〈W , n〉 div

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
V

 dS

=
∫
Γ

〈W , n〉

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 div V dS

+
∫
Γ

〈W , n〉 ∂
∂n

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 〈V , n〉 dS

+
∫
Γ

〈W , n〉

〈
∇

−µ 3∑
i ,j=1

(
∂ui

∂xj

)2
 , VΓ

〉
dS,

and for I2 one has due to the no-slip condition for u

I2 =
∫
Γ

〈V , n〉

−2µ
3∑

i ,j=1

(
∂ui

∂xj

)
∂u′i [W ]
∂xj

 dS =
∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

〈
∇ui ,∇u′i [W ]

〉]
dS

=
∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

〈
∂ui

∂n
n +

d−1∑
k=1

∂ui

∂τk
τk ,∇u′i [W ]

〉]
dS

=
∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

〈
∂ui

∂n
n,∇u′i [W ]

〉]
dS =

∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

∂ui

∂n
∂u′i [W ]
∂n

]
dS.

Unfortunately, the above expression already is a boundary integral. Hence, integration by parts
cannot be used easily to remove the normal derivative from the variation. Since the shape derivative
of the Dirichlet boundary condition, lemma 3.4.3, does not make any statement concerning the
(normal) derivative of the perturbation ∂u′i [W ]

∂n , the above expression can only be further manipulated
by introducing a pseudo-differential operator. Using the divergence free Dirichlet-to-Neumann map
from definition 5.2.1, the local shape derivative can also be expressed as

∂u′[W ]
∂n

= S〈∇u, W 〉 = S
∂u
∂n
〈W , n〉.

Thus, I2 is given by

I2 =
∫
Γ

〈V , n〉

[
−2µ

3∑
i=1

∂ui

∂n
S
∂ui

∂n
〈W , n〉

]
dS.

Combining I1 and I2 creates the desired expression.

71



5 Shape Optimization and Stokes Fluids

Remark 5.2.3. The structure of the shape Hessian depends on the deformation approach. Using
speed method, the perturbation fields V and W will be time-dependent which introduces additional
acceleration terms, see equation (5.2). Also, it is in general not possible to write shape Hessians
as a scalar product of the normal components of the two perturbation directions. Since discrete
Hessians are almost always symmetric, the non-symmetry casts some doubts on the applicability
of the analytic shape Hessian without further considerations. Furthermore, the two perturbation
directions V and W are not interchangeable, meaning the shape Hessian is not symmetric and the
presence of the pseudo-differential operator S results in a loss of regularity during the optimization.

5.3 Loss of Regularity, Sobolev Gradient, and Newton Direction

Definition 5.3.1 (Hilbert Space). A vector space H combined with a scalar product 〈., .〉 is denoted
Hilbert space, if the pairing (H, d(., .)) is a complete metric space. The metric d(., .) is induced by
the scalar product 〈., .〉.

Definition 5.3.2 (Sobolev Space). For d ≥ 1, Ω ⊂ Rd open, p ∈ [1, +∞], and s ∈ N, the Sobolev
space W s,p(Ω) is defined by

W s,p(Ω) := {f ∈ Lp(Ω) : ∀|a| ≤ s, ∂a
x f ∈ Lp(Ω)},

where a = (a1, · · · , ad ), |a| := a1 + · · · + ad , and ∂a
x f := ∂a1

x1 · · · ∂
ad
xd f weak.

Remark 5.3.3. The above definition of Sobolev spaces can be extended to real and negative expo-
nents. For more details on Sobolev spaces see [5].

Let q ∈ W 1,2 be the control of a standard optimization problem. The steepest descent optimiza-
tion method is defined by updating according to the sequence

qk+1 = qk − αk∇f (qk ),

where αk is the steplength. Since a differentiable solution in W 1,2 is desired, the update ∇f (qk )
must be an element of W 1,2 for all k . Thus, a Sobolev gradient ∇S f is defined as the Riesz-
representative of the directional derivative in W 1,2

Df (q)h = 〈∇S f (q), h〉W 1,2 ∀h ∈ W 1,2.

Consequently, the Sobolev steepest descent is given by

qk+1 = qk − αk∇S f (qk ), (5.3)

which ensures that all updates of the control remain in the same regularity class. If the scalar
product of the Sobolev space relates to the scalar product of the canonical space L2 by

〈φ,ψ〉W 1,2 = 〈Mφ,ψ〉L2 ,

then the Sobolev gradient can be computed from the ordinary L2 gradient by

∇S f = M−1∇f , (5.4)
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thus solving an additional linear system is required. Consequently, the Sobolev steepest de-
scent (5.3) results in updates according to Newton’s direction if the scalar product of the Hilbert
space is induced by the Hessian of the problem.

For a shape optimization problem, the control q can be associated with the boundary Γ of the
domain. However, as seen in lemma 5.2.2, the Hessian of a shape optimization problem need
not be symmetric. Thus, it is problematic to define a scalar product based on this Hessian. The
strategy now is to identify the amount of regularity lost when using ∇f instead of ∇S f for a shape
optimization problem and choosing the smoothing operator M in equation (5.4) to re-introduce this
regularity. This difference is responsible for the phenomenon of loss of regularity in shape optimiza-
tion procedures. Essentially, the order of the pseudo-differential operator inside the Hessian must
be identified, for which Fourier analysis is employed.

5.4 Operator Symbols and Fourier Analysis

In this section, Fourier analysis similar to [2, 3, 4] will be used to identify the pseudo-differential
operator nature of the Hessian. The method is for example also employed in [34]. The Stokes
problem will serve as an example application of the procedure.

Definition 5.4.1 (Symbol of an Operator). Considering a sinusoidal perturbation q̃(x) = q̂eiωx of
the control q, the pseudo-differential operator nature of the Hessian H can be seen by comparing
the input q̃ with the output Hq̃. For example, if

Hq̃ = iωq̂eiωx = iωq̃

then Σ(ω) := iω is the symbol of the Hessian, and this corresponds to a classical differential operator
of order +1. If, for example, one has

Hq̃ = −ω2q̂eiωx = −ω2q̃

then Σ(ω) := −ω2 is the symbol of the Hessian, and this corresponds to a classical differential
operator of order +2. However, if

Hq̃ = |ω|q̂eiωx = |ω|q̃,

then H is a pseudo-differential operator of order +1.

Lemma 5.4.2. The Hessian of the Stokes shape optimization problem is a pseudo-differential op-
erator with the symbol

Σ(ω) := ±
√
ω2

1 + ω2
2

in three dimensions or

Σ(ω) := ±|ω1|

in two dimensions.
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Proof. Assuming flow over a flat plate, the domain Ω is considered to be given by

Ω = {(x1, x2, x3) ∈ R3 : x3 ≥ 0}.

Thus, at the boundary Γ = {(x1, x2, x3) ∈ R3 : x3 = 0}, the outer normal is given by

n = (0, 0, 1)T ,

and a complex valued oscillation of the two dimensional flat plate is described by

x3 = α(x1, x2) := ei(ω1x1+ω2x2),

where i is the imaginary unit. Using this setting, a disturbed gradient from lemma 5.1.2 is given by

G̃ :=− 2µ
3∑

k=1

∂uk

∂n
∂u′k [α]
∂n

=− 2µ
3∑

k=1

∂uk

∂x3

∂u′k [α]
∂x3

due to the flat initial domain under consideration. To identify the symbol of the Hessian, the mapping

Sα := −2µ
3∑

k=1

∂uk

∂x3

∂u′k [α]
∂x3

must now be characterized. Furthermore, the perturbed states u′[α] and p′[α] are also considered
to be oscillatory:

u′k [α] = ûk ei(ω1x1+ω2x2)eω3x3

p′[α] = p̂ei(ω1x1+ω2x2)eω3x3 .

The second part not containing the imaginary unit i will lead to some more convenient expressions
later on. The no-slip boundary condition on x3 = 0 leads to

u′k [α] = ûkαe0,

which results in

ûk = −∂uk

∂x3
6= 0. (5.5)

However, the linearized Stokes PDE must also be solved inside the domain. Applying the Laplace
and gradient operator on the disturbances u′[α] and p′[α] is equivalent to

A


û1

û2

û3

p̂

α(x1, x2)eω3x3 = 0,
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5.5 Application

where A is given by

A :=


µ(ω2

1 + ω2
2 − ω2

3) 0 0 iω1

0 µ(ω2
1 + ω2

2 − ω2
3) 0 iω2

0 0 µ(ω2
1 + ω2

2 − ω2
3) ω3

iω1 iω2 ω3 0

 .

This is only non-contradictory to the consequences of the boundary condition (5.5), if the linearized
system matrix A does not have full rank, which means the determinant of A must vanish:

det(A) =
[
µ
(
ω2

1 + ω2
2 − ω2

3

)]2 (
ω2

1 + ω2
2 − ω2

3

) != 0

⇒ ω3 = ±
√
ω2

1 + ω2
2 .

Hence, it is possible to remove ω3 from the equations and the local shape derivative of the velocity
is given by

u′k [α] = −∂uk

∂x3
αe±
√
ω2

1+ω2
2x3

⇒ ∂u′k [α]
∂x3 x3=0

=
[
−∂

2uk

∂x2
3
∓ ∂uk

∂x3

√
ω2

1 + ω2
2

]
α,

and the operator S is given by

S = −2µ
3∑

k=1

∂uk

∂x3

[
−∂

2uk

∂x2
3
± ∂uk

∂x3

√
ω2

1 + ω2
2

]
. (5.6)

In two dimensions, one can assume ω2 ≡ 0 and the symbol becomes

±|ω1|,

which is the symbol of a pseudo-differential operator of order +1 closely related to the Dirichlet-to-
Neumann map.

Crucial for this method is finding the roots of the characteristic polynomial of the linearized state
equation. For the Stokes case, this is manageable. However, as discussed later on, this polynomial
is considerably more complex in case of the Navier–Stokes equations.

5.5 Application

Knowledge of the Hessian operator symbol will now be used to accelerate the actual optimization
of the shape of an obstacle in a Stokes fluid. First, the in-house flow solver will be discussed briefly.
Afterwards, the analytic derivation of the shape Hessian will be repeated discretely, resulting in a
re-smoothing procedure for a Sobolev or approximative Newton-method which greatly accelerates
the numerical optimization scheme.
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5.5.1 Flow Solver

The two dimensional Stokes equations are discretized by mixed Taylor–Hood finite elements. The
velocities are discretized using a six node triangular element with quadratic ansatz functions while
the pressure exists on standard three node triangular elements using linear ansatz functions. This
leads to a linear system of the type [

A B∗

B 0

](
u
p

)
= 0,

where A is the symmetric discrete diffusion operator and B is the divergence operator. Both A and
B∗ also contain the inflow and no-slip boundary conditions but not B, as the divergence freedom
must be valid everywhere, including the boundary nodes. This is denoted by the symbol B∗ instead
of BT . Since the outflow boundary condition is the natural finite element boundary condition, no
special treatment is necessary. Due to the saddle-point structure, this system is surprisingly difficult
to solve iteratively without carefully constructed preconditioners. Here, the system is solved using
a sparse direct linear solver such as [12].

5.5.2 Discrete Hessian Symbol

The real valued analogon to the complex valued Fourier mode α is a perturbation of the type

q̃ω(x) = sin(2πωx).

When the perimeter of Γ is denoted with `, one can see that a standing wave on Γ can be expressed
by

q̃ω(ϕ) = sin(2πω
ϕ

`
),

where ϕ is the parameterization of the curve. This perturbation is called the “input signal”. Thus, a
deformed domain is of the type

Γε[q̃ω] = {x(ϕ) + εq̃ω(ϕ)n(ϕ) : ϕ ∈ [0, `]} .

The shape Hessian in direction [q̃ω] is the limit

d2J(u, p, Γ)[V ][q̃ω] = lim
ε→0

dJ(uε, pε, Γε)[V ]− dJ(u, p, Γ)[V ]
ε

,

which is replaced by finite differences and called the “output signal”. Assuming a standard differen-
tial operator, the output signal can be interpreted as

d2J(u, p, Γ)[V ][q̃ω](ϕ) =
2n∑

k=1

ck (ϕ)
dk q̃ω
dϕk (ϕ)

=

(
n∑

k=0

(−1)k c2k (ϕ)
(

2πω
`

)2k
)

sin(2πω
ϕ

`
)

+

(
n∑

k=1

(−1)k−1c2k−1(ϕ)
(

2πω
`

)2k−1
)

cos(2πω
ϕ

`
).
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That means, the output signal is first split in a wave that oscillates in phase, which corresponds to
the sin-part, and a wave that oscillates out of phase, which corresponds to the cos-part. Next, the
value of each sum is determined: For this, the above discrete shape Hessian is evaluated multiple
times with different values for ω, and the change in amplitude of the output signal is observed.

Assuming a Hessian symbol of Σ(ω) = ω2, which is a standard differential operator, the procedure
works as follows: For two input oscillations of frequencies ω and 2ω, the respective output signals
are computed. Because the symbol is real valued, both output signals should have the same
phase as the respective input oscillations. The exponent of the symbol can then be approximated
by the amplitude of the output signals. Under the assumption of Σ(ω) = ω2, the output signal
corresponding to the input oscillation of 2ω should have an amplitude four times stronger than the
output signal corresponding to the input oscillation of ω.

However, the behavior of pseudo-differential operators can also be observed nicely. If one ob-
serves an output signal that is oscillating in the same phase as the input signal but with an amplitude
that scales linearly with the input frequency, one can conclude that the symbol of the discrete op-
erator must be |ω| as the discrete approach translates the imaginary part of the fourier mode to
phase shifts. This comparison is now conducted for the Stokes equations:

Flow around a circular obstacle in a channel is considered. Parts of the initial geometry and
fluid velocity are depicted in figure 5.2. A parabolic inflow profile is used, such that the Reynolds

Figure 5.2: Initial domain for the Stokes problem. Color denotes speed.

number would be Re = 80 in a Navier–Stokes fluid. The initial circle consists of 500 surface nodes.
The position of each of these nodes is the control of the optimization problem. Due to the Taylor–
Hood finite elements, 500 additional velocity nodes are also present on each mid-section of the
surface triangles. However, these nodes are not part of the design unknowns, as each side of the
Taylor–Hood triangles must remain a straight line. For a proper Hessian analysis, oscillations of
high frequency are required, and the state must be computed correctly, resulting in the need of 500
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5 Shape Optimization and Stokes Fluids

design parameters. However, due to the Hadamard form of the shape derivative, evaluating the
shape gradient at 500 or more nodes is no problem at all.

First, a sin-wave of frequency ω = 50 and with amplitude ε = 0.002 is modulated onto the circle.
The phase portrait of incoming and outgoing wave is presented in figure 5.3. One can clearly see
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Figure 5.3: Incoming and outgoing wave for the Stokes problem.

how the output signal consists of a single wave of opposite phase compared to the input wave.
Therefore, the cos-part of the output signal must be zero, which precisely matches the analytical
prediction in lemma 5.4.2. Next, the input frequency is halved to 1

2ω = 25. As a consequence, the
maximum amplitude decreases by almost exactly a factor of 2. Thus, the symbol of the discrete
Hessian is |ω| as output amplitude scales linearly with input frequency. The actual waves are
presented in figure 5.4. Altogether, one can see that the discrete method matches the analytical
prediction from lemma 5.4.2 extremely well.
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Figure 5.4: Amplitude of the Stokes problem response scales linearly with the input frequency.

78



5.5 Application

5.5.3 Optimization

A good Hessian approximation for the Stokes problem must mimic a pseudo-differential operator
with symbol |ω|. In two dimensions, the shape boundary Γ is a line, and finite differences can very
efficiently be used to approximate standard differential operators, e.g. operators with symbols 1, iω,
−ω2. Three dimensional flow around a two dimensional surface with the need for a two dimensional
operator approximation on an unstructured surface mesh will be discussed in chapter 8. For a
true pseudo-differential operator with symbol |ω|, a discretization using finite differences is not
straight forward. A symbol which can easily be approximated using finite differences is ω2, and
this corresponds to the tangential Laplace operator, also known as Laplace–Beltrami operator ∆Γ.
Thus, the discrete Hessian is approximated by

Hh ≈ k∆h
Γ + I, (5.7)

where I ∈ Rm×m is the identity matrix for m surface mesh nodes and k is a smoothing parame-
ter. Including the identity ensures coercivity of the operator and has led to superior results during
application. The matrix ∆h

Γ is given by the central difference stencil

gi−1 − 2gi + gi+1

h2 ,

where gi denotes the gradient or any other surface quantity to smooth at node i on the surface. If
τ` and τr denote the tangent left and right of node i , i.e.

τ` :=
xi − xi−1

‖xi − xi−1‖2

τr :=
xi+1 − xi

‖xi+1 − xi‖2
,

then h = ‖1
2 (τ` + τr )‖. The smoothing parameter k allows some fine tuning. Using the symbol ω2

instead of |ω| effectively results in an under-smoothing of low frequencies and in an over-smoothing
of high frequencies. Since in the discrete setting the maximum frequency that can be represented
depends on the number of nodes defining the surface, one can assume a finite range of frequen-
cies [0,ωmax]. Consequently, the smoothing parameter k can be chosen such that the average
smoothing of the operators |ω| and kω2 + 1 are the same on average:

ωmax∫
0

kω2 + 1 dω !=

ωmax∫
0

β|ω| dω.

Solving the above for k results in

k =
3
2βωmax − 3

ω2
max

, (5.8)

where

β = −2µ
2∑

i=1

(
∂ui

∂x2

)2

(5.9)
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5 Shape Optimization and Stokes Fluids

as seen in equation (5.6) after dropping one spatial dimension. Assuming that resolving a single
wave properly requires two to four mesh nodes, a surface mesh of 200 design parameters would
lead to a value of ωmax between 50 and 100. Hence, ωmax = 75 is used.

A Sobolev method based on this preconditioning is now compared with an unpreconditioned
one, i.e. standard steepest descent. Since the unpreconditioned steepest descent algorithm is not
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Figure 5.5: Convergence rates of the preconditioned and unpreconditioned Stokes problem.

level independent, the number of variable boundary nodes is reduced to 200 as with 500 variable
nodes discussed earlier a direct comparison of the preconditioned and the non-preconditioned
iterations would not have been possible. The steplength d for the unpreconditioned iteration was

Figure 5.6: Final shape for the preconditioned Stokes problem.

constant with d = 0.02, which was found to be the maximum steplength useable with 200 variable
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5.5 Application

boundary nodes. The steplength for the preconditioned iteration was chosen to be d = 0.25, and
a backtracking linesearch was used to determine convergence. The backtracking linesearch has
reported optimality in iteration 12. This means a saving of 94% if iteration 200 is accepted as
optimal in the unpreconditioned case. The history of the optimization is presented in figure 5.5.

According to [49], the optimal shape is similar to a pointed prolate spheroid with 60◦ front and
back angle. The computation with preconditioning matches this very well, whereas without precon-
ditioning or an improper choice of ωmax the rear end is computed slightly too round. This can also
be seen in the value of the unpreconditioned objective function shown in figure 5.5, which is slightly
higher than the preconditioned one. The computed optimal wedge shape with preconditioning is
shown in figure 5.6. Since the volume constraint is also given by∫

int Γ0

1 dA,

it is very easy to see that the shape derivative of the volume constraint is constant 1. Thus, a de-
generation of the shape is prevented by keeping the volume constant, which is done by a projection
step in normal direction after each shape optimality update. After one update of the boundary, the
flow domain is simply remeshed with unstructured triangular Taylor–Hood elements.
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Chapter 6

Shape Optimization and Navier–Stokes
Fluids

6.1 Problem Introduction and First Order Calculus

This chapter extends shape optimization for Stokes fluids to the nonlinear incompressible Navier–
Stokes equations. The Navier–Stokes problem is no longer self-adjoint, such that the shape deriva-
tive will now require solving an adjoint PDE. Parts of the results of this chapter have already been
published in [61, 62]. When it comes to incompressible Newtonian fluids such as water or air moving
considerably slower than the local speed of sound, the incompressible Navier–Stokes equations are
considered to describe a wide variety of real world problems properly. As such, many more objec-
tive functions than the energy dissipation, equation (4.12), can be relevant for practical application.
For this reason, the Navier–Stokes shape optimization problem will be considered in a more general
problem setting. In the literature, the problem is seldom considered from a pure shape optimization
point of view, except for [38], where the existence of the shape gradient for specific objective func-
tions is shown using surprisingly weak regularity assumptions, and [51, 52, 54], where many details
on the differentiability and existence of optimal domains can be found.

Definition 6.1.1 (Navier–Stokes Problem). Using the same notation as before, the Navier–Stokes
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6 Shape Optimization and Navier–Stokes Fluids

problem is given by

min
(u,p,Ω)

J(u, p, Ω) :=
∫
Ω

f (u, Du, p) dA +
∫
Γ0

g(u, Dnu, p, n) dS (6.1)

subject to

−µ∆u + ρu∇u +∇p = ρG in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−.

(6.2)

Here, f : Rd ×Rd×d ×R→ R and g : Rd ×Rd ×R×Rd → R are assumed to be continuously dif-
ferentiable in each argument. They form the volume and surface part of the objective function. The
outflow boundary condition on Γ− is the finite element “do nothing” outflow condition that naturally
arises due to integration by parts during the finite element matrix assembly. It is also needed to sat-
isfy the conservation of mass of the fluid. Due to the no-slip boundary condition on Γ0, the tangent
derivative of the velocities is zero, and it is sufficient to consider the derivative in normal direction
Dnu := Du · n on Γ0 only. In order to keep the notation readable, components of the Jacobian are
denoted as follows:

Du =:
[
aij
]

ij ∈ Rd×d

Dnu = Du · n =
∂u
∂n

=: [bi ]i ∈ Rd .

Since the pressure has no explicit boundary condition on Γ0 but is implicitly linked with the veloc-
ity, the following restriction needs to be imposed on g, the boundary part of the objective, such that
one can later arrive at a consistent adjoint boundary condition: The surface part g is chosen such
that there exists a functional λ : Ω→ Rd satisfying the following conditions on Γ0:

λi =
1
µ

∂g
∂bi
∀i = 1, ... , d

〈λ, n〉 = −∂g
∂p

.

Remark 6.1.2. The restriction on the surface part g is less limiting than it might appear. A conse-
quence is that for a force minimization, the forces should be chosen in line with the state equation,
i.e. since the state equation describes a viscous fluid, the objective function should also include the
viscous forces. For a drag minimization at zero angle of attack, one has according to remark 4.1.12

g(u, Dnu, p, n) = −µ∂u1

∂n
+ pn1,

which leads to
∂g
∂p

= n1

∂g
∂bi

= −µδ1,i ,
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6.1 Problem Introduction and First Order Calculus

and the above is satisfied with λi = −δ1,i . The inclusion of higher derivatives on the velocities within
the objective (6.2) is possible, but further limits the allowed surface functionals g and will not be
considered.

Theorem 6.1.3 (Shape Derivative in Sensitivity Formulation). The shape derivative of (6.1) and
(6.2) in sensitivity formulation is given by:

dJ(u, p, Ω)[V ] =∫
Γ0

〈V , n〉f (u, Du, p) dS (6.3)

+
∫
Ω

(
d∑

i=1

∂f
∂ui

u′i [V ]

)
+

 d∑
i ,j=1

∂f
∂aij

∂u′i [V ]
∂xj

 +
∂f
∂p

p′[V ] dA (6.4)

+
∫
Γ0

〈V , n〉
[
D(u,b,p)g(u, Dnu, p, n) · n + κg(u, Dnu, p, n)

]
dS (6.5)

+
∫
Γ0

(
d∑

i=1

∂g
∂ui

u′i [V ]

)
+

 d∑
i ,j=1

∂g
∂bi

∂u′i [V ]
∂xj

nj

 +
∂g
∂p

p′[V ] dS (6.6)

+
∫
Γ0

d∑
i=1

∂g
∂ni

dni [V ] dS, (6.7)

where u′[V ] and p′[V ] are given as the solution of the linearized Navier–Stokes equations

−µ∆u′[V ] + ρ
(
u′[V ]∇u + u∇u′[V ]

)
+∇p′[V ] = 0 in Ω

div u′[V ] = 0

with boundary conditions

u′i [V ] = −〈V , n〉∂ui

∂n
on Γ0 (6.8)

u′i [V ] = 0 on Γ+ (6.9)

p′[V ]ni − µ〈∇u′i [V ], n〉 = 0 on Γ−. (6.10)

Proof. Formal shape differentiation of (6.1) and (6.2) according to chapter 3 and lemma 3.3.14. The
boundary condition on Γ0 is given by lemma 3.4.3. Since the other boundaries are considered fixed,
one does not have to consider differences between the material and the local shape derivative, and
a linearization is straight forward.

For the adjoint formulation of the shape derivative further discussions including adjoint functionals
λ : Ω→ Rd and λp : Ω→ R are necessary.

Lemma 6.1.4. For a sufficiently smooth, arbitrary λ : Ω→ Rd and λp : Ω→ R the relation

0 =
∫
Ω

d∑
i=1

−µ∆λi − ρ

 d∑
j=1

∂λj

∂xi
uj +

∂λi

∂xj
uj

− ∂λp

∂xi

 u′i [V ] dA (6.11)
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6 Shape Optimization and Navier–Stokes Fluids

−
∫
Ω

d∑
i=1

∂λi

∂xi
p′[V ] dA (6.12)

+
∫
Γ

d∑
i=1

µ∂λi

∂n
+ ρ

d∑
j=1

(
λjujni + λiujnj

) u′i [V ] dS (6.13)

+
∫
Γ

λp

d∑
i=1

u′i [V ]ni dS +
∫
Γ

d∑
i=1

λinip′[V ] dS +
∫
Γ

d∑
i=1

−µλi
∂u′i [V ]
∂n

dS (6.14)

holds.

Proof. Multiplying the volume part of the linearized Navier–Stokes equations with an arbitrary λ
and λp results in

0 =
∫
Ω

d∑
i=1

λi

−µ∆u′i [V ] + ρ

 d∑
j=1

u′j [V ]
∂ui

∂xj
+ uj

∂u′i [V ]
∂xj

 +
∂p′[V ]
∂xi

 dA

+
∫
Ω

λpdiv u′[V ] dA.

Integration by parts gives∫
Ω

d∑
i=1

−µλi∆u′i [V ] dA =
∫
Γ

d∑
i=1

−µ
(
λi
∂u′i [V ]
∂n

− u′i [V ]
∂λi

∂n

)
dS

+
∫
Ω

d∑
i=1

−µu′i [V ]∆λi dA.

Likewise, due to div u′[V ] = 0,∫
Ω

d∑
i ,j=1

λiu′j [V ]
∂ui

∂xj
dA =

∫
Γ

d∑
i ,j=1

λiu′j [V ]uinj dS −
∫
Ω

d∑
i ,j=1

∂λi

∂xj
u′j [V ]ui dA. (6.15)

Note that in the above equation the index on the local shape derivative is j and not i . To derive the
desired expression, the indices i and j must be switched. Integration by parts on the second part of
the linearized convection results in∫

Ω

d∑
i ,j=1

λiuj
∂u′i [V ]
∂xj

dA =
∫
Γ

d∑
i ,j=1

λiuju′i [V ]nj dS −
∫
Ω

d∑
i ,j=1

∂λi

∂xj
uju′i [V ] dA. (6.16)

The pressure variation provides∫
Ω

d∑
i=1

λi
∂p′[V ]
∂xi

dA =
∫
Γ

λinip′[V ] dS −
∫
Ω

d∑
i=1

∂λi

∂xi
p′[V ] dA,
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and the divergence constraint provides∫
Ω

λp

d∑
i=1

∂u′i [V ]
∂xi

dA =
∫
Γ

λp

d∑
i=1

u′i [V ]ni dS −
∫
Ω

d∑
i=1

∂λp

∂xi
u′i [V ] dA.

Summarizing the above creates the desired expression.

Using lemma 6.1.4, it is now possible to derive the adjoint right hand side in the volume:

Lemma 6.1.5 (Adjoint Right Hand Side, Volume). The adjoint equation must fulfill in the domain Ω:

−µ∆λi − ρ
d∑

j=1

(
∂λj

∂xi
uj +

∂λi

∂xj
uj

)
− ∂λp

∂xi
=
∂f
∂ui
−

d∑
j=1

∂

∂xj

∂f
∂aij

div λ =
∂f
∂p

.

Proof. Due to equations (6.11) – (6.14) summing to zero, they can be added to the preliminary
gradient (6.3) – (6.7). Integration by parts on equation (6.4) yields

∫
Ω

(
d∑

i=1

∂f
∂ui

u′i [V ]

)
+

 d∑
i ,j=1

∂f
∂aij

∂u′i [V ]
∂xj

 +
∂f
∂p

p′[V ] dA

=
∫
Γ

d∑
i ,j=1

∂f
∂aij

u′i [V ]nj dS (6.17)

+
∫
Ω

d∑
i=1

 ∂f
∂ui
−

d∑
j=1

∂

∂xj

∂f
∂aij

 u′i [V ] dA +
∫
Ω

∂f
∂p

p′[V ] dA, (6.18)

and a direct comparison between the above and equations (6.11) and (6.12) reveals the required
adjoint right hand side in Ω. Note that this has introduced a new boundary term.

Lemma 6.1.6 (Adjoint Boundary Condition at Inflow). The adjoint boundary condition on the inflow
boundary Γ+ is given by

λ = 0

λp free.

Proof. Since the inflow velocity is fixed and independent of the shape of the fluid obstacle, we have
u′[V ] = 0 on Γ+. Hence, the only term appearing on Γ+ is the normal variation of u′[V ] and the
pressure variation p′[V ] from equation (6.14):∫

Γ+

d∑
i=1

λinip′[V ] dS +
∫
Γ+

d∑
i=1

−µλi
∂u′i [V ]
∂n

dS,

which is removed by λ = 0 on Γ+.
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Lemma 6.1.7 (Adjoint Boundary Condition at No-Slip). The adjoint boundary condition on the no-
slip boundary Γ0 is given by

λi =
1
µ

∂g
∂bi
∀i = 1, ... , d

〈λ, n〉 = −∂g
∂p

λp free.

Proof. The sensitivities on Γ0 are equations (6.17), (6.6), (6.13), and (6.14):∫
Γ0

d∑
i ,j=1

∂f
∂aij

u′i [V ]nj dS

+
∫
Γ0

(
d∑

i=1

∂g
∂ui

u′i [V ]

)
+

 d∑
i ,j=1

∂g
∂aij

∂u′i [V ]
∂xj

 +
∂g
∂p

p′[V ] dS

+
∫
Γ0

d∑
i=1

µ∂λi

∂n
+ ρ

d∑
j=1

(
λjujni + λiujnj

) u′i [V ] dS

+
∫
Γ0

λp

d∑
i=1

u′i [V ]ni dS +
∫
Γ0

d∑
i=1

λinip′[V ] dS +
∫
Γ0

d∑
i=1

−µλi
∂u′i [V ]
∂n

dS.

Using the no-slip boundary condition and the boundary condition for the local shape derivative, the
above transforms to∫

Γ0

〈V , n〉

− d∑
i=1

 ∂g
∂ui

+ µ
∂λi

∂n
+ λpni +

d∑
j=1

∂f
∂aij

nj

 ∂ui

∂n

 dS

+
∫
Γ0

(
d∑

i=1

∂g
∂bi

∂u′i [V ]
∂n

)
+

(
∂g
∂p

+
d∑

i=1

λini

)
p′[V ] dS

+
∫
Γ0

d∑
i=1

−µλi
∂u′i [V ]
∂n

dS,

where the first part now also enters the gradient (6.3) – (6.7). Expressing ∇ui in local coordinates
on the boundary results in

∇ui = 〈∇ui , n〉n +
d∑

j=1

〈∇ui , τj〉τj ,

hence

∂ui

∂xj
=
∂ui

∂n
nj ⇒ 0 = λp

d∑
i=1

∂ui

∂n
ni
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due to the mass conservation on Γ0. Consequently, λp does not receive a boundary condition. The
remaining sensitivities can be eliminated by

λi =
1
µ

∂g
∂bi
∀i = 1, ... , d

〈λ, n〉 = −∂g
∂p

.

In order to arrive at a complete adjoint system, the boundary conditions for the adjoint variables
at the outflow boundary are also needed:

Lemma 6.1.8 (Adjoint Boundary Condition at Outflow). The adjoint boundary condition on the out-
flow boundary Γ− is given by

µ
∂λi

∂n
+ ρ

 d∑
j=1

λjujni + λiujnj

 + λpni = 0.

Proof. Inserting equation (6.10) into equations (6.11) – (6.14), the remaining sensitivity is∫
Γ−

d∑
i=1

µ∂λi

∂n
+ ρ

d∑
j=1

(
λjujni + λiujnj

) u′i [V ] dS

+
∫
Γ−

λp

d∑
i=1

u′i [V ]ni dS.

Hence, the required boundary condition is

µ
∂λi

∂n
+ ρ

 d∑
j=1

λjujni + λiujnj

 + λpni = 0.

Theorem 6.1.9 (Shape Derivative for the General Navier–Stokes Problem). The shape derivative
in Hadamard form for the problem under consideration is given by

dJ(u, p, Ω)[V ] =∫
Γ0

〈V , n〉f (u, Du, p) dS

+
∫
Γ0

〈V , n〉
[
D(u,b,p)g(u, Dnu, p, n) · n + κg(u, Dnu, p, n)

]
dS

+
∫
Γ0

〈V , n〉

− d∑
i=1

 ∂g
∂ui

+ µ
∂λi

∂n
+

d∑
j=1

∂f
∂aij

nj

 ∂ui

∂n

 dS
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+
∫
Γ0

〈V , n〉
[
(divΓ∇ng)− κ〈∇ng, n〉

]
dS,

where ∇ng denotes the vector consisting of components ∂g
∂ni

. Furthermore, u and p solve the
incompressible Navier–Stokes equations

−µ∆u + ρu∇u +∇p = ρG in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−,

and λ and λp solve the adjoint incompressible Navier–Stokes equations

−µ∆λi − ρ
d∑

j=1

(
∂λj

∂xi
uj +

∂λi

∂xj
uj

)
− ∂λp

∂xi
=
∂f
∂ui
−

d∑
j=1

∂

∂xj

∂f
∂aij

in Ω

div λ =
∂f
∂p

with boundary conditions

λ = 0 on Γ+

λi =
1
µ

∂g
∂bi

on Γ0

〈λ, n〉 = −∂g
∂p

on Γ0

µ
∂λi

∂n
+ ρ

 d∑
j=1

λjujni + λiujnj

 + λpni = 0 on Γ−.

Proof. The adjoint boundary conditions are derived in lemma 6.1.6, 6.1.7, and 6.1.8. The adjoint
right hand side is derived in lemma 6.1.5, and removing the shape derivative of the normal is
described in lemma 3.3.14 and remark 3.3.15.

Lemma 6.1.10 (Incompressible Navier–Stokes Fluid Forces). When considering flow around an
airfoil or any other obstacle, one does not want to make a new mesh in case the airfoil has a
different angle of attack. Instead, most flow solver rotate the coordinate system internally. This
leads to a rotated form of equation (4.10). For drag at angle of attack α, the incident vector a is
given by

a := (cosα, 0, sinα)T .

The first component denotes chord direction, the second span direction, and the third wing thick-
ness. The drag force an incompressible Navier–Stokes fluid exerts on Γ0 is given by

FD :=
∫
Γ0

−µ 〈Dnu, a〉 + p〈n, a〉 dS.
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The gradient of FD is then given by

dFD(u, p, Ω)[V ] =
∫
Γ0

〈V , n〉

[
−µ(Dn)2ua +

∂p
∂n
〈a, n〉 −

3∑
i=1

µ
∂λi

∂n
∂ui

∂n

]
dS

+
∫
Γ0

〈V , n〉 [divΓ (−µDua + pa)] dS

with adjoint boundary condition λ = −a on Γ0.

Proof. Here, the function g is given by

g := −µ〈Dnu, a〉 + p〈n, a〉.

Furthermore,

〈∇g, n〉 = −µ(Dn)2ua +
∂p
∂n
〈n, a〉

∂g
∂ui

= 0

∇ng = −µDua + pa

∂g
∂p

= 〈a, n〉

∂g
∂b

= −µa,

where (Dn)2ua refers to the second normal derivative tensor of u, e.g.

(Dn)2ua =
3∑

i ,j ,k=1

ni
∂2uk

∂xi∂xj
njak .

The structure of the gradient and the adjoint boundary conditions are a direct consequence of
theorem 6.1.9. Note that for this specific function, the terms κg(u, Dnu, p, n) and κ〈∇ng, n〉 cancel
each other.

6.2 Example Application

6.2.1 Energy Dissipation

As an example application, the optimization of a channel filled with water in two dimensions is
considered. The objective is to minimize the dissipation of kinetic energy into heat, as given by
equation (4.12).

Definition 6.2.1 (Energy Dissipation Problem in a Navier–Stokes Fluid). In the absence of body
forces, minimizing the viscous energy dissipation in a Navier–Stokes fluid results in the following
problem

min
(u,p,Ω)

J(u, p, Ω) :=
∫
Ω

µ
3∑

i ,j=1

(
∂ui

∂xj

)2

dA
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subject to

−µ∆u + ρu∇u +∇p = 0 in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−

Vol = V0.

The volume constraint Vol = V0 will be considered discretely.

Lemma 6.2.2 (Gradient of the Navier–Stokes Energy Dissipation Problem). The shape gradient for
the viscous energy dissipation problem in a Navier–Stokes fluid is given by

dJ(u, p, Ω) =
∫
Γ0

〈V , n〉

[
−µ

2∑
i=1

∂λi

∂n
∂ui

∂n
+
(
∂ui

∂n

)2
]

dS (6.19)

subject to

−µ∆u + ρu∇u +∇p = 0 in Ω

div u = 0

u = u+ on Γ+

u = 0 on Γ0

pn − µ∂u
∂n

= 0 on Γ−

−µ∆λi − ρ
d∑

j=1

(
∂λj

∂xi
uj +

∂λi

∂xj
uj

)
− ∂λp

∂xi
= −2µ∆ui in Ω

div λp = 0

λ = 0 on Γ+

λ = 0 on Γ0

µ
∂λi

∂n
+ ρ

 2∑
j=1

λjujni + λiujnj

 + λpni = 0 on Γ−.

Proof. A comparison with equation (6.1) shows that

f (u, Du, p) = µ
2∑

i ,j=1

(
∂ui

∂xj

)2

g(u, Dnu, p, n) = 0,
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6.2 Example Application

which results in

∂f
∂aij

= 2µaij = 2µ
∂ui

∂xj

∂f
∂ui

= 0.

According to lemma 6.1.9, the adjoint equation is given by

−µ∆λi − ρ
d∑

j=1

(
∂λj

∂xi
uj +

∂λi

∂xj
uj

)
− ∂λp

∂xi
=
∂f
∂ui
−

d∑
j=1

∂

∂xj

∂f
∂aij

= −2µ∆ui in Ω

div λp =
∂f
∂p

= 0

with boundary conditions

λ = 0 on Γ+

λi =
1
µ

∂g
∂bi

= 0 on Γ0

〈λ, n〉 = −∂g
∂p

= 0 on Γ0

µ
∂λi

∂n
+ ρ

 2∑
j=1

λjujni + λiujnj

 + λpni = 0 on Γ−.

Both conditions on Γ0 are satisfied by λ = 0, and consequently the gradient is given by

dJ(u, p, Ω)[V ] =
∫
Γ0

〈V , n〉

µ 2∑
i ,j=1

(
∂ui

∂xj

)2
 dS

+
∫
Γ0

〈V , n〉

− 2∑
i=1

µ∂λi

∂n
+

2∑
j=1

∂f
∂aij

nj

 ∂ui

∂n

 dS

=
∫
Γ0

〈V , n〉

[
µ

2∑
i=1

(
∂ui

∂n

)2
]

dS

+
∫
Γ0

〈V , n〉

− 2∑
i=1

µ∂λi

∂n
+

2∑
j=1

2µ
∂ui

∂xj
nj

 ∂ui

∂n

 dS

=
∫
Γ0

〈V , n〉

[
−µ

2∑
i=1

∂λi

∂n
∂ui

∂n
+
(
∂ui

∂n

)2
]

dS.
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6.2.2 Flow Solver

The flow solver from section 5.5.1 is extended to the Navier–Stokes equations, which introduces
two new difficulties: the non-linearity and the need for an adjoint solver. Often, the non-linearity is
treated in a Picard or Uzawa based approach, meaning that basically the non-linear term is lagged
one iteration behind, resulting in the need to subsequently solve Oseen problems. This is also
the case in the SIMPLE iteration. Usually, such methods converge only linearly, but are also only
weakly dependent or possibly even independent of the initial guess. However, the adjoint system
is based on the “proper” linearization of the system. Since the adjoint solver requires knowledge of
the proper Jacobian of the Navier–Stokes system anyway, the non-linearity can as well be solved
using Newton’s method. An exact Newton method converges quadratically but is quite sensitive to
the initial guess. For high Reynolds number flows finding a suitable starting solution can be quite
problematic. Newton’s method requires computing updates according to[

A(uk , pk ) B∗(uk , pk )
B(uk , pk ) 0

](
δu
δp

)
= −c(uk , pk ),

(
uk+1

pk+1

)
=
(

uk

pk

)
+
(
δu
δp

)
,

where A(uk , pk ) now contains both the discretized diffusion operator as well as the linearized con-
vection operator and thus is no longer symmetric. Here, c denotes the residual of the discrete
Navier–Stokes equations. The big advantage of using a matrix based exact Newton method lies in
the ability to very easily create a discrete adjoint solver by simply solving the system[

A B∗

B 0

]T (
λ
λp

)
= rhs⇔

[
AT BT

B∗T 0

](
λ
λp

)
= rhs, (6.20)

where rhs is the partial derivative of the discretized objective function. The Navier–Stokes shape
gradient in equation (6.19) basically shows how to combine state and adjoint variables to form the
gradient. However, the derivation of the shape gradient is based on an all analytic setting. Since the
boundaries are part of the discrete adjoint system (6.20), the block B∗ has zero rows for nodes with
prescribed velocities, whereas B does not. Hence, the analytic no-slip boundary condition λ = 0 on
Γ0 will not be precisely kept, creating a discrepancy between the analytic shape derivative and the
discrete adjoint solver. It was not possible to evaluate the shape gradient in the needed precision
using such a discrete adjoint solution. As such, the off-diagonal blocks in (6.20) where modified to
precisely enforce the adjoint viscous wall boundary condition λ = 0. More information on discrete
adjoint Navier–Stokes solvers can be found in [63].

6.2.3 Flow Through a Pipe

As a first test-case, the shape of a tube connecting two points is optimized. The geometry is shown
in figure 6.1. The channel has a cross section of 1.0 and the viscosity is µ = 1

400 . The inflow
velocity profile is parabolic up to a maximum value of u1 = 1.5. The fluid enters the channel on the
bottom left side. With a constant density of ρ = 1.0, the average mass influx results in a Reynolds
number of 400 using the channel width as reference length. The Reynolds number is close to the
maximum such that the Newton iteration converges, with the flow probably becoming instationary
for higher Reynolds numbers. Each of the sharp bends creates a strong stationary vortex in the flow
with the streamlines shown in figure 6.2. As a consequence, the initial tube has a comparatively
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6.2 Example Application

Figure 6.1: The initial tube. The middle area is the unknown to be found, the remainder outside is
considered fixed. Color denotes pressure.

Figure 6.2: Magnification of the initial tube. Strong counter vortices develop after the bends. Color
denotes speed.

strong pressure gradient, resulting in a distinct pressure loss of the flow, see figure 6.1. A straight
forward steepest descent algorithm using a fixed step length and the shape derivative is used as
an optimization procedure. The perturbation direction is chosen as V = δ · n, i.e. in each iteration
each boundary node is shifted into the direction of the normal at that node. Thus, the boundary
nodes follow a curved path during the optimization. In order to prevent a degeneration of the tube,
the initial volume is preserved, which is enforced by a projection step after each shape update, just
like in the Stokes case. The optimized tube is shown in figure 6.3. The initial channel has a net loss
of kinetic energy into heat of J = 0.9077, which is reduced to J = 0.4308, a reduction by 52.54%.

6.2.4 Flow through a T-Connection

Before returning to smoothing and Hessian approximations, a T-junction is optimized. Inlet and
outlet are positioned such that the flow enters on the bottom and must be redirected by 90◦, leaving
the pipe system on the left and right. The initial geometry is shown in figure 6.4 and the optimized
in figure 6.5. A considerable amount of the channel after the actual fork is fixed, such that the
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6 Shape Optimization and Navier–Stokes Fluids

Figure 6.3: Pressure distribution optimized tube. The pressure loss is almost completely removed.

optimization cannot circumvent a net turning of 90◦, and the flow has to exit parallel to the x-axis.
The inflow profile is quadratic and the average mass influx results in a Reynolds number of Re = 100
with the channel cross-section as reference area. The initial junction has a net loss of kinetic energy
into heat of J = 0.9208, which is reduced to J = 0.6900, a reduction by 25.05%. The total area
occupied by the fluid was enforced to stay the same during the whole optimization.

Figure 6.4: Initial T-connection. The fluid is entering on the bottom. Color denotes speed.

Figure 6.5: Optimized T-connection.
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6.3 Hessian Approximation and Sobolev Optimization

Hessian approximation and smoothing procedures for Sobolev descent methods for aerodynamic
shape optimization, i.e. an obstacle in a channel, are now considered. Unfortunately, the pres-
ence of adjoint equations and the non-linear convection operator make a similar analysis as in
lemma 5.2.2 non-trivial. In two dimensions, the gradient from equation (6.19) is given by

G = −µ
2∑

k=1

∂λk

∂x2

∂uk

∂x2
+
(
∂uk

∂x2

)2

= −µ
2∑

k=1

∂uk

∂x2

[
∂λk

∂x2
+
∂uk

∂x2

]
.

The perturbed gradient for a flat domain Ω = {(x1, x2) : x1 ∈ R, x2 ≥ 0} is given by

G̃ = −µ
2∑

k=1

∂u′k [α]
∂x2

(
∂λk

∂x2
+
∂uk

∂x2

)
+
∂uk

∂x2

(
∂λ′k [α]
∂x2

+
∂u′k [α]
∂x2

)
,

where α = eiω1x1 is again an oscillation of the boundary with i being the imaginary unit. The local
shape derivatives are assumed to have the following structure:

u′k [α] = ûk eiω1x1eω2x2

p′[α] = p̂eiω1x1eω2x2

λ′k [α] = λ̂k eiω1x1eω2x2

λ′p[α] = λ̂peiω1x1eω2x2 .

Applying the linearized Navier–Stokes equations to u′[α] and p′[α] alone results in a linear system −µ
(
−ω2

1 + ω2
2

)
+ ρ∂u1

∂x1
+ ρu1iω1 + ρu2ω2 ρ∂u1

∂x2
iω1

ρ∂u2
∂x1

−µ
(
−ω2

1 + ω2
2

)
+ ρ∂u2

∂x2
+ ρu1iω1 + ρu2ω2 ω2

iω1 ω2 0

 ,

of which the determinant must again vanish. The determinant of the above is given by

µω4
2 − ρu2ω

3
2 +
(
−µω2

1 − ρ
∂u1

∂x1
− ρu1iω1 − µω2

1

)
ω2

2

+
(

iρ
∂u2

∂x1
ω1 + iω1ρ

∂u1

∂x2
+ ρu2ω

2
1

)
ω2 + µω4

1 + ρ
∂u2

∂x2
ω2

1 + ρu1iω3
1 .

For finding the operator symbol, the root in terms of ω2 must now be found. However, for a poly-
nomial of fourth order in complex coefficients, the roots are no longer elegantly given. Thus, the
discrete approach is again used for the Navier–Stokes problem.

Flow around a circular obstacle in a channel is considered. Parts of the domain and the fluid are
shown in figure 6.8. The Reynolds number is kept at 80, resulting in a steady state laminar flow.
The circle is discretized using 1000 surface mesh nodes with variable positions, and a sin-wave
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Figure 6.6: Incoming and outgoing wave for the Navier–Stokes problem.

of amplitude 0.002 and an angular frequency of ω = 50 is modulated onto this circle. Due to the
Taylor–Hood discretization, there are also 500 fixed nodes on the mid-sides. A comparison of the in-
put and output signal is given in figure 6.6. One can again see that both input and output signal stay
in phase, which again points to either a differential operator of even order, or a pseudo-differential
operator very similar to the Stokes problem. Observed next is the scaling of the amplitude when
the input frequency is halved to 1

2ω = 25. Similar to the Stokes problem, one can see the ampli-
tude of the output signal scaling linearly with the frequency of the input signal. The corresponding
waves are shown in figure 6.7. Thus, the discrete Hessian for the Navier–Stokes problem is also a
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Figure 6.7: Amplitude of the Stokes problem response scales linearly with the input frequency.

pseudo-differential operator of symbol |ω| just as in the Stokes problem. Unfortunately, the discrete
approach cannot reveal the dependence of the symbol of the Hessian and the Reynolds number. It
is thus entirely possible that the behavior of the Hessian for the Navier–Stokes equations changes
significantly with the occurrence of turbulence.

The preconditioner is again based on the available information concering the Hessian. In the
Stokes problem, the outer derivative of the gradient, equation (5.6) after dropping one dimension,
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6.3 Hessian Approximation and Sobolev Optimization

Figure 6.8: Initial shape of the Navier–Stokes problem. Color denotes speed.

Figure 6.9: Optimal shape of the Navier–Stokes problem. Color denotes speed.
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was used as the variable coefficient β in (5.9). In the Navier–Stokes case, this outer derivative is
more complex, as it now involves the costate also. Therefore, the constant factor

k =
3
2ωmax − 3
ω2

max
(6.21)

is used in the Laplace–Beltrami preconditioner (5.7). In order to again be able to compare the
speed-up with the unpreconditioned iteration, the number of variable surface mesh nodes is re-
duced from 1000 to 100. This results in a value of ωmax between 25 and 50 which was kept
fixed at 30. The initial and optimized shapes are shown in figure 6.8 and 6.9. The preconditioned
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Figure 6.10: Convergence rates of the preconditioned Navier–Stokes problem.

optimization requires 71 steps till convergence using a steplength of d = 0.06, and the unpre-
conditioned optimization requires around 350 iterations using a steplength of d = 0.005, which is
the longest steplength possible. The resulting optimal ogive shape is astonishing ship-like. Also,
the preconditioned iteration requires only 20% of the unpreconditioned gradient steps. That is, for
the Navier–Stokes problem, preconditioning reduces the computational effort by 80%. The precise
comparison of the convergence history is plotted in figure 6.10. To prevent a degeneration of the
shape, a volume constraint was again enforced by a discrete projection step in the direction of the
shape derivative of the volume after each shape update.
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Chapter 7

Potential Flow Pressure Tracking

7.1 Introduction

Potential flow pressure matching is a classical inverse design aerodynamic problem. Due to the
simplifications of potential flow, remark 4.2.10, a meaningful drag value cannot be computed in po-
tential flow. Thus, this flow model is almost always used in an inverse design setting, i.e. given a
surface pressure distribution, a corresponding airfoil is to be found which produces this pressure
field. Although potential flow is essentially the Laplace equations, the strong geometric dependen-
cies of the pressure matching objective function make a shape differentiation surprisingly difficult,
especially when compared to the self-adjoint Stokes energy dissipation problem. Part of this re-
search has already been published in [19]. As mentioned in definition 4.2.11, the flow is modeled
as the gradient of some potential φ. In order to reconstruct the pressure from the velocity ∇φ,
Bernoulli’s principle is used:

Remark 7.1.1 (Bernoulli’s Principle). Bernoulli’s principle for incompressible, inviscid flows states
that along a streamline

1
2
‖u‖2 + g +

p
ρ

= const,

where g is the gravitational potential. A similar version exists for compressible inviscid flows.

Thus, velocity and pressure can be linked together, which creates the following shape optimiza-
tion problem.
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Definition 7.1.2 (Potential Flow Pressure Tracking). The potential flow pressure tracking problem
is given by

min
(φ,Ω)

J(φ, Ω) :=
∫
Γ0

1
2

(
〈∇φ, τ〉 − p0

)2 dS (7.1)

subject to

−∆φ = 0 in Ω

∂φ

∂n
= 0 on Γ0

φ = φ0 on Γ+ ∪ Γ−,

(7.2)

where φ0 is used to create the necessary potential difference between inflow, outflow, and airfoil
surface. The target surface pressure distribution is denoted by p0. A two dimensional domain Ω is
assumed, such that there is only one tangent vector τ .

Lemma 7.1.3 (Shape Derivative for Potential Flow Pressure Tracking). The shape derivative for
potential flow pressure tracking in two dimensions is given by

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2 +
∂λ

∂τ

∂φ

∂τ

]
dS,

where λ solves the adjoint equation

−∆λ = 0 in Ω

∂λ

∂n
=
∂

∂τ

(
∂φ

∂τ
− p0

)
on Γ0

λ = 0 on Γ+ ∪ Γ−.

Proof. A formal differentiation according to chapter 3 results in

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

(
∂φ

∂τ
− p0

)
〈∇φ′[V ], τ〉 dS

+
∫
Γ0

(
∂φ

∂τ
− p0

)
〈∇φ, τ ′[V ]〉 dS,

where according to remark 3.4.7, the local shape derivative φ′[V ] is given by

−∆φ′[V ] = 0 in Ω

∂φ′[V ]
∂n

= divΓ

(
〈V , n〉∇Γφ

)
on Γ0

φ′[V ] = 0 on Γ+ ∪ Γ−.
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According to lemma 3.3.8, the local shape derivative of the normal dn[V ] lies in the tangent plane.
Thus, the local shape derivative of the tangent lies in the normal plane. Consequently,

〈∇φ, τ ′[V ]〉 = 〈∇φ, εn〉 = ε〈∇φ, n〉 = 0

due to the boundary conditions for φ on Γ0. Therefore, the part of the gradient due to a variation
of the tangent vanishes. Unfortunately, the objective function needs the derivative of φ′[V ] in tan-
gent direction, but the boundary conditions only provide information about the derivative in normal
direction. Thus, an adjoint equation is needed. Multiplication with an arbitrary λ results in

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

(
∂φ

∂τ
− p0

)
∂φ′[V ]
∂τ

dS

+
∫
Ω

−λ∆φ′[V ] dA.

Integration by parts and Green’s formula provide

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

−
∫
Γ0

∂

∂τ

(
∂φ

∂τ
− p0

)
φ′[V ] dS

+
∫
Γ

−λ∂φ
′[V ]
∂n

+ φ′[V ]
∂λ

∂n
dS +

∫
Ω

−φ′[V ]∆λ dA

=
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

φ′[V ]
[
− ∂

∂τ

(
∂φ

∂τ
− p0

)
+
∂λ

∂n

]
dS

+
∫
Γ

−λ∂φ
′[V ]
∂n

dS +
∫
Ω

−φ′[V ]∆λ dA,

where Γ = Γ0 ∪ Γ+ ∪ Γ−. Thus, if λ solves the adjoint equation

−∆λ = 0 in Ω

∂λ

∂n
=
∂

∂τ

(
∂φ

∂τ
− p0

)
on Γ0

λ = 0 on Γ+ ∪ Γ−,
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the shape derivative becomes

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

−λ∂φ
′[V ]
∂n

dS.

The boundary condition for φ′[V ] now provides

dJ(φ, Ω)[V ] =
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

−λdivΓ

(
〈V , n〉∇Γφ

)
dS

=
∫
Γ0

〈V , n〉
[(

∂φ

∂τ
− p0

)(
∂2φ

∂τ∂n
− ∂p0

∂n

)
+ κ

1
2

(
〈∇φ, τ〉 − p0

)2
]

dS

+
∫
Γ0

〈V , n〉〈∇Γλ,∇Γφ〉 dS,

due to integration by parts on Γ0. The desired expression follows immediately due to the two
dimensional domain Ω.

7.2 Local Coordinates and Shape Hessian

In contrast to the Stokes case in section 5.2, a shape Hessian analysis will be conducted in local co-
ordinates, i.e. a two dimensional star-shaped domain Ω is considered. This has the advantage that
the derivation is more straight forward than using the shape differentiation techniques of chapter 3.
For first order calculus, expressions for star-shaped domains can most of the time be interpreted
on more general and three dimensional domains, too. Unfortunately, hopes that this would also be
true for the Hessian did not come true.

Definition 7.2.1 (Star-shaped Domain). A domain Ω is said to be star-shaped if the boundary Γ is
given by

Γ := {r (ϕ)er (ϕ) : ϕ ∈ [0, 2π]},

where er (ϕ) = (sinϕ, cosϕ)T . Thus, the boundary is a curve C with a parameterization c given by

c(ϕ) = r (ϕ)er (ϕ),ϕ ∈ [0, 2π].

A perturbed star-shaped domain is then given by

Γε := {(r (ϕ) + εr̃ (ϕ)) er}

with r (0) = r (2π), which corresponds to a perturbation of identity using V = r̃ er and a curve
parameterized by cε.
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Remark 7.2.2 (Perturbed Line Integral). For a curve C, the line integral of f over C is given by

∫
C

f (s) ds =

b∫
a

f (c(ϕ))‖c′(ϕ)‖ dϕ,

where c : [a, b] → C is an arbitrary bijective parameterization of C. Thus, for shape optimization
on star-shaped domains, the expression

d
dε ε=0

2π∫
0

fε(cε(ϕ))‖c′ε(ϕ)‖ dϕ

must be computed, which is possible using standard differentiation techniques. For a star-shaped
domain, a direct computation reveals

‖c′ε‖ =
(
r ′2 + r2 + 2ε

(
r r̃ + r ′r̃ ′

)
+ ε2r̃ ′2 + ε2r̃2) 1

2 ,

where r ′ denotes a differentiation with respect to arc length, e.g.

r ′ =
∂r
∂ϕ

.

Switching differentiation and integration, the expression

∂

∂ε ε=0
‖c′ε‖ =

r r̃ + r ′r̃ ′√
r ′2 + r2

will be needed.

Remark 7.2.3 (Geometric Quantities on Perturbed Star-Shaped Domains). A straight forward com-
putation reveals for the normal nε and the tangent τε on a perturbed star-shaped domain cε:

nε =
rer − r ′e′r + ε

(
r̃ er − r̃ ′e′r

)√
r ′2 + r2 + 2ε (r r̃ + r ′r̃ ′) + ε2r̃ ′2 + ε2r̃2

τε =
r ′er + re′r + ε

(
r̃ ′er + r̃ e′r

)√
r ′2 + r2 + 2ε (r r̃ + r ′r̃ ′) + ε2r̃ ′2 + ε2r̃2

.

Note that depending on the definition of what is outside and inside, which direction the tangent
vector is pointing, and due to the periodicity of er , the signs may differ. The appropriate quantities
on an unperturbed star-shaped domain are easily attainable by setting ε = 0. Consequently, on a
star-shaped domain, one also has

er =
r√

r2 + r ′2
n +

r ′√
r2 + r ′2

τ .

The curvature of a curve parameterized by c is given by

κ =
〈c′′, c′⊥〉
‖c′‖3 ,
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which results in

κ =
r ′′r − 2r ′2 − r2(√

r2 + r ′2
)3

for a star-shaped domain. Finally, a straight forward computation also reveals

〈V , n〉 =
〈

r̃ er ,
rer − r ′e′r√

r2 + r ′2

〉
=

r̃ r√
r2 + r ′2

=
1
‖c′‖

r̃ r ,

since eT
r e′r = 0.

Remark 7.2.4 (Potential Flow Shape Gradient on Star-Shaped Domains). Using the expressions
from remark 7.2.3, it is possible to express the shape derivative from lemma 7.1.3 for a star-shaped
domain by

dJ(φ, Ω)[r̃ ] =−
2π∫

0

r̃ r〈∇λ,∇φ〉 dϕ

+

2π∫
0

(
∂φ

∂τ
− p0

)[
r̃ eT

r D2u τ − 〈∇p0, r̃ er 〉
] (

r2 + r ′2
) 1

2 dϕ

+

2π∫
0

1
2

(
∂φ

∂τ
− p0

)2 r r̃ + r ′r̃ ′√
r2 + r ′2

dϕ.

Lemma 7.2.5 (Shape Hessian for Potential Flow Pressure Tracking on Star-Shaped Domains). A
preliminary expression for the shape Hessian for potential flow pressure tracking on a star-shaped
domain is given by

d2J(φ, Ω)[r̃1][r̃2]

=−
2π∫

0

r̃1r̃2〈∇λ,∇φ〉 dϕ

−
2π∫

0

r̃1r
[
〈∇λ′[r̃2],∇φ〉 + r̃2eT

r D2λ∇φ + 〈∇λ,∇φ′[r̃2]〉 + r̃2eT
r D2φ∇λ

]
dϕ

+

2π∫
0

(
〈∇φ′[r̃2], τ〉 + r̃2eT

r D2φ τ − 〈∇p0, r̃2er 〉
) (

r̃1eT
r D2φ τ − 〈∇p0, r̃1er 〉

)√
r2 + r ′2

+
(
∂φ

∂τ
− p0

)
d
dε ε=0

([
r̃1eT

r D2φε τε − 〈∇p0,ε, r̃1er 〉
]√

r2
ε + r ′ε

2
)

dϕ
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+

2π∫
0

(
∂φ

∂τ
− p0

)(
〈∇φ′[r̃2], τ〉 + r̃2eT

r D2φ τ − 〈∇p0, r̃2er 〉
) r r̃1 + r ′r̃ ′1√

r2 + r ′2

+
1
2

(
∂φ

∂τ
− p0

)2 d
dε ε=0

 rεr̃1 + r ′ε r̃
′
1√

r2
ε + r ′ε

2

 dϕ.

Note that the terms which still need to be differentiated will vanish close to the optimum, because

∂φ

∂τ
− p0 ≈ 0

if p0 is reachable.

Proof. Let a second perturbation of the star-shaped domain be given by

rε := r + εr̃2.

The shape Hessian is then the limit

d2J(φ, Ω)[r̃1][r̃2] =
d
dε ε=0

− 2π∫
0

r̃1rε〈∇λε,∇φε〉 dϕ

+

2π∫
0

(
∂φε
∂τε
− p0,ε

)[
r̃1eT

r D2uε τε − 〈∇p0,ε, r̃1er 〉
] (

r2
ε + r ′ε2

) 1
2 dϕ

+

2π∫
0

1
2

(
∂φε
∂τε
− p0,ε

)2 rεr̃1 + rε′r̃ ′1√
r2
ε + r2

ε
′

dϕ

 .

According to definition 3.4.1, the local shape derivatives are given by

d
dε ε=0

〈∇λε,∇φε〉 = 〈∇λ′[r̃2],∇φ〉 + r̃2eT
r D2λ∇φ + 〈∇λ,∇φ′[r̃2]〉 + r̃2eT

r D2φ∇λ.

A straight forward standard differentiation results in the desired expression.

The preliminary expression for the shape Hessian of the potential flow pressure matching prob-
lem, lemma (7.2.5), is astonishing complex for a problem based on the Laplacian. This complexity
arises due to the objective function being a surface functional with strong dependence on geomet-
ric quantities such as the tangent τ . Also, the desired tangent derivative results in the need for an
adjoint variable, which must be considered when deriving the Hessian. For this reason, the Stokes
shape Hessian was considered first in chapter 5. Although considering a star-shaped domain al-
lows a more straight forward differentiation, the resulting expression is of a complexity that is hardly
applicable.
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ξ2 x2

ξ1 x1
q

Ω Ω

Figure 7.1: Method of Mapping

7.3 Method of Mapping and Fourier Analysis

In order to further study the Hessian, a slightly simplified problem is considered. The left part of
figure 7.1 is imagined as the physical domain, which is thought of as being a part of the free air
stream along a geometric detail of an airplane which is aligned with the ξ1-axis. The shape of the
boundary is supposed to be described by the function q(ξ1). In order to simplify the problem, the
physical domain is mapped onto the computational domain on the right hand side of figure 7.1 by
appropriately stretching it in the vertical direction, such that one can write

(x1, x2) =
(
ξ1,

ξ2 − q(ξ1)
1− q(ξ1)

)
,

and the potential φ from definition 7.1.2 is thought of as φ(x(ξ)). That means the Neumann condition
in the physical plane at the shape boundary {(ξ1, ξ2) | ξ2 = q(ξ1)}

0 =
∂φ

∂n
=
∂φ

∂ξ1

∂q
∂ξ1
− ∂φ

∂ξ2

is mapped to the boundary condition

0 =
∂q
∂ξ1

∂φ

∂ξ1
−

1 +
(
∂q
∂ξ1

)2

1− q2

∂φ

∂x2
. (7.3)

For the purpose of simplification, the shape q is assumed to be almost a straight line, such that

squared expressions like q2 and
(
∂q
∂ξ1

)2
can be neglected. Furthermore, the tangential velocity ∂φ

∂x1

can be assumed to be constant, e.g. 1. This results in the approximative boundary condition

∂φ

∂x2
=
∂q
∂x1

. (7.4)

The complete problem formulation in the computational domain is then
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Definition 7.3.1 (Potential Flow Pressure Tracking with Method of Mapping). The potential flow
inverse design problem using the method of mapping is given by

min
(φ,q)

J(φ(q), q) :=
∫
Γ0

(
∂φ(x1, x2)
∂x1

− p0(x1)
)2

dx1 (7.5)

subject to

−∆φ = 0 in Ω

∂φ

∂n
=
∂q
∂x1

on Γ0

φ = φ0 on Γ+ ∪ Γ−.

(7.6)

Strictly speaking, the above problem in definition 7.3.1 is no longer a shape optimization prob-
lem, and a detailed analysis of such problems can for example be found in [75]. However, it is
analytically much more accessible and still closely related to the original shape optimization prob-
lem, lemma 7.1.3. For example, the resulting adjoint equation is almost the same as the adjoint
equation for the proper shape optimization problem.

Lemma 7.3.2 (Derivative of Potential Flow Pressure Tracking with Method of Mapping). Choosing
φ0 = x1, the derivative of the potential flow pressure tracking using the method of mapping is given
by

∇qJ(φ(q), q) =
∂λ(φ(q))
∂x1

,

where λ solves the adjoint equation

−∆λ = 0 in Ω

∂λ

∂n
=

∂

∂x1

(
∂φ

∂x1
− p0

)
on Γ0

λ = 0 on Γ+ ∪ Γ−.

Proof. The Lagrangian is given by

L(φ, q,λ,λ1,λ2)

=J(φ, q) +
∫
Ω

λ(−∆φ) dA +
∫
Γ0

λ1

(
∂φ

∂n
− ∂q
∂x1

)
dS +

∫
Γ+∪Γ−

λ2(x1)(φ(x1)− x1) dx1.

Inserting the objective function and using Green’s second identity provides

L(φ, q,λ,λ1,λ2)

=
∫
Γ0

(
∂φ(x1, x2)
∂x1

− p0(x1)
)2

dx1 +
∫
Ω

(−∆λ)φ dA

+
∫
∂Ω

−λ∂φ
∂n

+ φ
∂λ

∂n
dS +

∫
Γ0

λ1

(
∂φ

∂n
− ∂q
∂x1

)
dS +

∫
Γ+∪Γ−

λ2(x1) (φ(x1)− x1) dx1.
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The adjoint boundary value problem is derived from the expression for perturbations φ̃

0 =
d
dε ε=0

L(φ + t · φ̃, q,λ,λ1,λ2)

=
∫
Γ0

(
∂φ

∂x1
− p0(x1)

)
∂φ̃

∂x1
dx1 +

∫
Ω

(−∆λ)φ̃ dA

+
∫
∂Ω

−λ∂φ̃
∂n

+ φ̃
∂λ

∂n
dS +

∫
Γ0

λ1
∂φ̃

∂n
dS +

∫
Γ+∪Γ−

λ2 · φ̃ dS.

Integration by parts and re-grouping provides

0 =
[(

∂φ

∂x1
− p0(x1)

)
φ̃

]1

0
+
∫
Γ0

φ̃

[
− ∂

∂x1

(
∂φ

∂x1
− p0(x1)

)
+
∂λ

∂n

]
+ (λ1 − λ)

∂φ̃

∂n
dx1

+
∫
Ω

(−∆λ)φ̃ dx +
∫

Γ+∪Γ−

−λ∂φ̃
∂n

+ φ̃
∂λ

∂n
+ λ2 · φ̃ dS.

On the boundary Γ+ ∪ Γ−, not affected by the design q, the velocity potential φ is subject to a
Dirichlet boundary condition. Thus, the state φ is fixed, and consequently φ̃ = 0 on Γ+ ∪ Γ−, which
simplifies the last integral in the equation above. Focussing on different perturbations φ̃ results in
the adjoint equations:

• A perturbation φ̃ in Ω results in

−∆λ = 0 in Ω.

• Perturbations with fixed Dirichlet value 0 and variable Neumann values give

λ = λ1 on Γ0

−λ = 0 on Γ+ ∪ Γ−.

• A perturbation in all respects with the exception of the corner points gives

∂λ

∂n
=

∂

∂x1

(
∂φ

∂x1
− p0

)
on Γ0.

Now, the adjoint boundary value problem reads completely

−∆λ = 0 in Ω

∂λ

∂n
=

∂

∂x1

(
∂φ

∂x1
− p0

)
on Γ0

λ = 0 on Γ+ ∪ Γ−,

which is exactly the same adjoint boundary condition as in the proper shape optimization problem,
lemma 7.1.3.
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For the design equation, e.g. the gradient, the Lagrangian is also perturbed in direction q, which
means

0 =
d
dt t=0

L(φ, q + t · q̃,λ,λ1,λ2) =
∫
Γ1

−λ1
∂q̃
∂x1

dS

= − [λ1q̃]10 +
∫
Γ1

∂λ1

∂x1
q̃ dx1 =

∫
Γ1

∂λ1

∂x1
q̃ dx1.

Thus, the gradient on Γ0 is given by

∇qJ(φ(q), q) =
∂λ1(φ(q))
∂x1

=
∂λ(φ(q))
∂x1

.

It is now possible to study the pseudo-differential operator nature of the Hessian similar to sec-
tion 5.4.

Lemma 7.3.3 (Hessian Symbol of Potential Flow Pressure Tracking using Method of Mapping). The
Hessian for potential flow pressure tracking using method of mapping is a second order differential
operator with symbol

∂

∂q
∇qJ(φ(q), q) =

∂

∂q
∂λ

∂x1 Γ0

(x1) = ±ω2
q .

Proof. An arbitrary Fourier mode for q is assumed, i.e.

q = eiωqx1 ⇒ ∂q
∂x1

= iωqeiωqx1 .

Also, the solution of the forward problem is assumed to be of the form

φ(x1, x2) = reiω1x1+iω2x2 ,

resulting in

∂φ

∂n Γ0

=
∂φ

∂x2 Γ0

= iω2reiω1x1

∂2φ

∂x2
1 Γ0

= −ω2
1reiω1x1 .

Using the boundary condition on Γ0, design q and state φ can be linked together:

iωqeiωqx1 = iω2reiω1x1 , ∀x1 ∈ R.

For x1 = 0 this means, in particular, ω2 = ωq/r and thus also ω1 = ωq . The differential equation
−∆φ = 0 in Ω gives

0 = (ω2
1 + ω2

2)reiω1x1+iω2x2 ⇔
ω2

q

r2 + ω2
q = 0,
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which means r = ±i . The adjoint solution is assumed to be of similar form

λ(x1, x2) = seiθ1x1+iθ2x2 ⇒ ∂λ

∂n Γ0

=
∂λ

∂x2 Γ0

= iθ2seiθ1x1 ,

and the Neumann boundary condition of the adjoint problem provides

iθ2seiθ1x1 = ω2
1reiω1x1 , ∀x1 ∈ R.

With the same arguments as above, one also has

θ2 =
ω2

1r
is

= ±
ω2

q

s
θ1 = ω1 = ωq .

The adjoint differential equation in Ω results in

0 = θ2
1 + θ2

2 ⇔
ω4

q

s2 + ω2
q = 0⇔ s = ±iωq .

Thus,

∂λ

∂x1 Γ0

(x1) = ±ω2
qeiθ1x1 = ±ω2

qq,

the symbol of a second order differential operator.

Contrary to the Stokes case as described in lemma 5.4.2, where the Hessian was a pseudo-
differential operator of order +1, the Hessian here is a differential operator of second order, and the
Laplace–Beltrami preconditioner, equation (5.7), should provide a very good Hessian approxima-
tion.

7.4 Numerical Results

7.4.1 Panel Solver

For the optimizations the state equation is discretized by an aerodynamic panel solver, which is
similar to a boundary element method. Using Green’s second identity, the Laplace equation for the
volume can be transformed into an integral equation on the boundary of the wing. Similar to finite
elements, the potential φ is discretized as a finite linear combination of ansatz functions, resulting
in a small, dense, and linear system to be solved. Any additional boundary conditions for the free
stream velocity on Γ+ ∪ Γ− are embedded in the ansatz functions. To further ensure a physically
meaningful solution and to allow a proper prediction of lift, the trailing edge stagnation point is
prescribed by a slightly modified boundary condition, thus introducing lift via circulation similar to
the Kutta–Joukowski theorem. For further information about the solver, the aerodynamics, and on
how to ensure a physical solution that matches experimental measurements, see [43]. To avoid any
discrepancies with the analytical adjoint equation as derived above, the adjoint of the state equation
was taken as the transpose of the discrete linear state equation, i.e. adjoint in Rn with the standard
scalar product.
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Figure 7.2: Initial NACA0012 airfoil and target NACA4412 airfoil

7.4.2 Numerical Pressure Fitting

The aim is to match pressure distributions generated by different NACA 4 digit airfoils. The initial
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Figure 7.3: Optimization history for potential flow pressure tracking.

shape is the symmetrical NACA0012 airfoil, and the pressure distribution generated by the cam-
bered NACA4412 profile is to be matched. Figure 7.2 illustrates this. A detailed description of the
NACA shapes can be found in [39]. Although local coordinates like star-shaped domains and the
method of mapping have been discussed previously, the numerical results are again achieved by
evaluating the shape derivative on each surface node. As an optimization procedure, the Laplace–
Beltrami Hessian approximation, equation (5.7), is used in an approximative SQP method with
Armijo linesearch. Convergence history and the effects of preconditioning can be seen in figure 7.3.
The resulting optimal shapes are shown in figure 7.4.
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Figure 7.4: Resulting optimal shapes. Without preconditioning, the shapes and pressure distribu-
tions degenerate.
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Chapter 8

Shape Optimization and Euler
Equations

8.1 Introduction

The compressible Euler equations are of considerable importance when it comes to industry size
application. Although the viscosity of the fluid is neglected, and consequently there are no boundary
layers or turbulence, the compressibility of the gas is taken into full account. Since most flows of
industrial importance, such as turbomachinery flow through turbines or compressors, external flow
around an aircraft in cruise conditions, or flow around rockets and projectiles, are high speed flows
where compressibility is dominating viscous effects, neglecting viscosity is acceptable. Due to
the hyperbolic nature of the integral equations, shock waves often occur, requiring sophisticated
numerical schemes.

Since problems of this kind are mostly large scale and feature complex geometries, the ease
and straight forward applicability of the Hadamard formula of the shape derivative for almost any
discretization resolution makes this an ideal application area for numerical procedures based on the
Hadamard formula. Here, the focus lies on problems of the aerodynamic type, e.g. drag minimiza-
tion of a fluid obstacle. However, with industry applicability in mind, the number of constraints to
consider considerably increases: in addition of maintaining lift, the aircraft must also withstand the
forces, resulting in constraints on the material stiffness, if not a consideration of a full fluid/structure
coupling. Some two dimensional results of this chapter have already been published in [57, 58].
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8 Shape Optimization and Euler Equations

Definition 8.1.1 (Inviscid Fluid Forces). To handle variations in the angle of attack more easily, most
flow solvers compute the forces in a rotated coordinate system. For the inviscid Euler equations,
this leads to the following expression:

Fa :=
1

Cref

∫
Γ0

Cp〈n, a〉 dS,

where Cref is the reference length, usually the airfoil chord, and Cp is the non-dimensional pressure,
defined as

Cp =
2(p − p∞)
γM2
∞p∞

.

The subscript∞ is used to denote the appropriate farfield value. Note that the pressure coefficient
Cp should not be confused with the heat capacity at constant pressure cp. Choosing a as

a1 = (cosα, 0, sinα)T ,

where the first component is again chord wise, the second span wise, and the third wing thickness
wise, results in the drag coefficient CD, and choosing a as

a2 = (− sinα, 0, cosα)T

results in the lift coefficient CL where α is the angle of attack.

Definition 8.1.2 (Euler Problem). Minimizing the drag coefficient for a lifting aircraft without body
forces is given by

min
(ρ,u,E ,Ω)

CD(ρ, u, E , Ω) (8.1)

subject to ∫
Ω

div (ρu) dA = 0

∫
Ω

3∑
j=1

[
∂(ρuiuj )
∂xj

]
+
∂p
∂xi

dA = 0

∫
Ω

div (ρHu) dA = 0

〈u, n〉 = 0 on Γ0

CL ≥ CL0

L :=
∫
Γ0

1 dS ≤ L0

I :=
∫
Γ0

(y − yc)2 dS ≥ Ix0

Vol = V0.

(8.2)
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Here, the first three constraints are the Euler equations, and the pressure p and likewise Cp is linked
to the conserved variables

U := (ρ, ρu, ρE)T

by the perfect gas law

p = (γ − 1)ρ
(

E − 1
2
‖u‖2

)
.

The condition 〈u, n〉 = 0 is the Euler slip boundary condition on the aircraft surface Γ0. The
farfield boundary conditions are usually more complex involving characteristics and are thought
of as treated by the flow solver discretely. Condition CL ≥ CL0 means the optimal aircraft must
maintain lift, condition L ≤ L0 penalizes the surface area and prevents an increase in perimeter,
condition I ≥ Ix0 is a substitude model for the bending stiffness around the contour center of mass
yc above the x-axis, and constraint Vol = V0 is the usual volume constraint. Usually, not all of these
constraints will be used at the same time, but without any of them, the solution will either degener-
ate into a flat line or will not be of any practical relevance. Also, the bending stiffness constraint is a
substitude model valid in two dimensions only.

For two dimensional applications there is also the additional constraint of the leading edge being
fixed at (0, 0)T and the trailing edge being fixed at (1, 0)T . Otherwise, the optimization changes the
reference length Cref of the airfoil, which would lead to a wrong non-dimensionalization of the flow
quantities.

Intrigued by practical advantages, the shape derivative, although usually not called that way in
this community, has long been sought after by both academia, [15] and [23], and industry [77, 78,
79, 80, 81]. Assuming a non-lifting body in a supersonic potential flow, the optimal shape, the so-
called Haack or Sears–Haack body, is known to be ogive-like [33], making the non-lifting supersonic
case a good test-case for validating numerics. When it comes to numerical application, the problem
is seldom treated from a true shape optimization perspective, except in [3, 4] for pressure tracking
or in [10]. None of the approaches above have so far been successfully applied on a large scale
drag reduction problem.

8.2 First Order Calculus

Lemma 8.2.1 (Euler Shape Derivative). For an angle of attack α with corresponding rotation vector
a, let pa be given by pa := p · a ∈ R3. Then the derivative of the functional

J(U, Ω) =
∫
Γ0

〈pa, n〉 dS
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is given by

dJ(U, Ω)[V ]

=
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ divΓ (pa − λUHu)
]

dS (8.3)

=
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ κ〈pa, n〉
]

+ 〈pa − λUHu, dn[V ]〉 dS, (8.4)

where U are the conserved variables solving the Euler equations in the domain Ω, and p is linked
to U by the perfect gas assumption. Additionally, UH is the vector of conserved variables with the
last component replaced by ρH. The adjoint variables λ are given as the solution of

−AT
1
∂

∂x1
λ− AT

2
∂

∂x2
λ− AT

3
∂

∂x3
λ = 0 in Ω

〈(λ2,λ3,λ4)T , n〉 = −〈a, n〉 on Γ0.

Here, Ak are the Euler flux Jacobians from remark 4.2.9. The adjoint boundary conditions on the
farfield boundaries are assumed to be kept by the flow solver discretely. Based on the choice of a,
this gradient expression can both be used for the drag or lift functional.

Proof. A formal differentiation according to lemma 3.3.13 results in

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n + κ〈pa, n〉

]
+ 〈pa, dn[V ]〉 + 〈p′a[V ], n〉 dS.

The variation of the normal is given by remark 3.3.15, resulting in

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n + (divΓ pa)

]
+ 〈p′a[V ], n〉 dS. (8.5)

To remove the remaining local shape derivative of the pressure p′a[V ], adjoint calculus will be con-
ducted as in [23, 29]. Let the conserved variables U be given by

U := (ρ, ρu, ρE)T

and the primitive variables Up by

Up := (ρ, u, E)T .

Almost all density based finite volume flow solvers for compressible fluid dynamics operate on
conserved variables. Hence, a linearization of the Euler state equations results in a linearization in
terms of conserved variables U ′[V ]:

U ′[V ] =
(
ρ′[V ], (ρu)′ [V ], (ρE)′ [V ]

)T ,
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which are given as the solution of the linearized Euler equations. Using the non-conservative form
of the Euler equations given by remark 4.2.9, the Euler state constraint can also be written by

3∑
k=1

Ak
∂U
∂xk

= 0.

The forward linearization of the above leads to

3∑
k=1

∂

∂xk

(
Ak U ′[V ]

)
= 0.

The boundary conditions of the local shape derivatives are described in lemma 3.4.4:

〈u′[V ], n〉 = −〈V , n〉
〈
∂u
∂n

, n
〉

+ 〈u, dn[V ]〉 (8.6)

on the wing Γ0. Multiplication by an arbitrary λ = (λ1,λ2,λ3,λ4,λ5) and integration by parts gives

0 =
∫
Ω

3∑
k=1

λ
∂

∂xk

(
Ak U ′[V ]

)
dA

= −
∫
Ω

3∑
k=1

(
∂

∂xk
λ

)
Ak U ′[V ] dA +

∫
∂Ω

3∑
k=1

λnk Ak U ′[V ] dS

= −
∫
Ω

3∑
k=1

AT
k

(
∂λ

∂xk

)
U ′[V ] dA +

∫
∂Ω

3∑
k=1

λnk Ak U ′[V ] dS. (8.7)

Looking at (8.7), one can see that if λ solves the adjoint equation

−AT
1
∂

∂x1
λ− AT

2
∂

∂x2
λ− AT

3
∂

∂x3
λ = 0 in Ω

then the volume integrals will vanish. According to [23, 29], the matrices

T :=
[

0 n1
ρ

n2
ρ

n3
ρ 0

γ−1
2 (u2

1 + u2
2 + u2

3) (1− γ)u1 (1− γ)u2 (1− γ)u3 γ − 1

]
and

T ∗ :=
[
ρ ρu1 ρu2 ρu3 ρH
0 n1 n2 n3 0

]
satisfy the condition

3∑
k=1

nk Ak = T ∗T T
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8 Shape Optimization and Euler Equations

on the boundary Γ0 of the airfoil. The local shape derivative to remove is p′[V ], which must be
linked to the local shape derivative of the conserved variables U ′[V ]. This is given by the relation

p′[V ] = CU ′[V ], (8.8)

where C is given by

C :=
(
γ − 1

2
(u2

1 + u2
2 + u2

3), (1− γ)u1, (1− γ)u2, (1− γ)u3, γ − 1
)

,

which is exactly the second row of T . Thus, using (8.8) one arrives at

TU ′[V ] =
( ∑3

k=1 nk u′k [V ]
p′[V ]

)
(8.9)

and

λT ∗T = (λUH , (λ2,λ3,λ4) n) ,

where

UH = (ρ, ρu, ρH)T

is the vector of conserved variables with the last component replaced by ρH. Using the above in
equation (8.7) results in

0 =
∫
Γ

λ

3∑
k=1

nk Ak U ′[V ] dS =
∫
Γ

λT ∗
T
TU ′[V ] dS

=
∫
Γ

λUH〈u′[V ], n〉 + (λ2,λ3,λ4)np′[V ] dS.

The linearized Euler slip boundary condition on the airfoil is given by equation (8.6) and provides

0 =
∫
Γ

λ
3∑

k=1

nk Ak U ′[V ] dS

=
∫
Γ

〈V , n〉
[
−λUH

〈
∂u
∂n

, n
〉]

+ λUH〈u, dn[V ]〉 + (λ2,λ3,λ4) np′[V ] dS.

Adding the above to the preliminary gradient (8.5) results in

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ (divΓ pa)
]

+ 〈p′a[V ], n〉 − λUH〈u, dn[V ]〉 + (λ2,λ3,λ4)np′[V ] dS

=
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ (divΓ pa)
]

+ p′[V ]
[
〈a, n〉 + (λ2,λ3,λ4)n

]
− λUH〈u, dn[V ]〉 dS.
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8.3 Optimization Strategy

Thus, the pressure variation will vanish using the following adjoint boundary condition

〈(λ2,λ3,λ4)T , n〉 = −〈a, n〉,

which means the gradient is given by

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ (divΓ pa)
]
− λUH〈u, dn[V ]〉 dS.

Using lemma 3.3.14 and remark 3.3.15 results in

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ κλUH〈u, n〉 + divΓ (pa − λUHu)
]

dS.

The Euler slip boundary condition 〈u, n〉 = 0 eliminates the curvature term, leading to

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ divΓ (pa − λUHu)
]

dS,

which creates the first expression. Application of lemma 3.3.14 in reverse provides

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉
[
∂pa

∂n
n − λUH

〈
∂u
∂n

, n
〉

+ κ〈pa − λUHu, n〉
]

+ 〈pa − λUHu, dn[V ]〉 dS,

and the second expression is created due to 〈u, n〉 = 0.

Remark 8.2.2 (Signs). When applying the Euler gradient formula from lemma 8.2.1, all signs will
have to be checked discretely, as all of them depend on conventions, such as if the normals are
fluid pointing or not, if the adjoint solver defines the Lagrangian using plus or minus, if the method
chosen to compute curvature denotes left or right bends with different signs, etc.

8.3 Optimization Strategy

The Euler shape optimization problem is considerably more complex, not only because the objective
function is a surface functional, but also because the lift constraint again depends on the solution
of a partial differential equation. Hence, a simple projection approach as used previously for pre-
serving the volume constraints is no longer feasible. Although penalty methods have been applied
successfully, it was decided to switch to a full approximative reduced SQP method as in [27], which
is based on partially reduced SQP methods established in [64, 65].

Remark 8.3.1 (SQP Method for Equality Constraint Optimization). For a standard optimization prob-
lem

min
(u,q)

f (u, q) (8.10)
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8 Shape Optimization and Euler Equations

subject to

c(u, q) = 0

d(u, q) = 0
(8.11)

the Lagrangian is defined as

L(u, q,µ, ν) := f (u, q) + 〈µ, c(u, q)〉 + 〈ν, d(u, q)〉.

Here, c symbolizes the PDE constraint, i.e. the Euler equations, and d symbolizes other constraints
such as lift and volume. Under the assumption of linear independence constraint qualification
(LICQ), i.e.

{∇(u,q)c1, · · · ,∇(u,q)cnc ,∇(u,q)d1, · · · ,∇(u,q)dnd}

is linear independent, the necessary optimality conditions are given by

∇uL = 0

∇qL = 0

c(u, q) = ∇µL = 0

d(u, q) = ∇νL = 0.

Applying Newton’s method on the above optimality conditions results in the SQP updates
Huu Huq (Duc)T (Dud)T

Hqu Hqq (Dqc)T (Dqd)T

Duc Dqc 0 0
Dud Dqd 0 0




∆u
∆q
∆µ
∆ν

 =


−∇uL
−∇qL
−c
−d

 , (8.12)

where

(uk+1, qk+1,µk+1, νk+1)T = (uk , qk ,µk , νk )T + (∆u, ∆q, ∆µ, ∆ν)T .

Remark 8.3.2 (Reduced SQP Method). Approximating the Hessian matrix in equation (8.12) by[
Huu Huq

Hqu Hqq

]
≈
[

0 0
0 B

]
and assuming (Duc)−1 exists, a block elemination reduces (8.12) to[

B D̃d

(D̃d )T 0

](
∆q
∆ν

)
=
(
−∇qL + (Dqc)T (Duc)−T∇uL
−d + (Dud)(Duc)−1c

)
,

where D̃d is given by

D̃d := (Dqd)T − (Dqc)T (Duc)−T (Dud)T . (8.13)

Replacing ∆ν with νk+1 = νk + ∆ν results in the system[
B D̃d

(D̃d )T 0

](
∆q
νk+1

)
=
(
−∇q f + (Dqc)T (Duc)−T∇uf
−d + (Dud)(Duc)−1c

)
,
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8.4 Discrete Differential Geometry

and the reduction operator (8.13) applied to the scalar function f provides

D̃f = ∇q f − (Dqc)T (Duc)−T∇uf ,

resulting in the system[
B D̃d

(D̃d )T 0

](
∆q
νk+1

)
=
(

−D̃f

−d + (Dud)(Duc)−1c

)
. (8.14)

Remark 8.3.3 (rSQP Method for Aerodynamic Shape Optimization). System (8.14) can be further
transformed. Since the adjoint flow solver computes

(Duc)T λd = (Dud)T ,

equation (8.14) becomes [
B D̃d

(D̃d )T 0

](
∆q
νk+1

)
=
(

−D̃f

λdc − d

)
. (8.15)

For further applications here, the columns of the reduced derivative operator D̃ consist of the dis-
cretized shape gradients of the respective constraint di , and the reduced Hessian B is approximated
by the Laplace–Beltrami operator plus identity, equation (5.7), where k determines the amount of
Sobolev smoothing. System (8.15) can either be solved directly, or after a block elemination:

D̃T
d B−1D̃dνk+1 = d − λdc − D̃T

d B−1D̃f

B∆q = −D̃f − D̃dνk+1.

Note that if the state equation is solved sufficiently, i.e. c ≈ 0, the λd -term can be neglected.

8.4 Discrete Differential Geometry

Since the drag objective function is a surface functional with dependence on the geometry, the
discrete evaluation of the two equivalent versions of the Euler shape derivative, equation (8.3)
and (8.4), requires approximating differential geometric quantities on discrete surface meshes. Sim-
ilarly, the shape Hessian approximation by equation (5.7) in three dimensions also requires solving
a PDE on a meshed, discrete, curved surface. Therefore, this section will discuss evaluating these
quantities. Interestingly, much of the literature about these subjects stems from computer graphics
and computer vision [22, 45] as well as signal and image processing [48] and not PDE constraint
optimization.

Since there is much more literature avaliable concerning curvature computations on two di-
mensional unstructured surface meshes than methods for computing tangential divergence, for-
mula (8.4) is discretized although strictly it does not fulfill the Hadamard form. However, as dis-
cussed later, the normal variation dn[V ] can be computed conveniently, and thus formula (8.4) was
chosen over formula (8.3). Also, when evaluating the analytic expression of the shape gradient at
each surface node, an uneven nodal distribution is not taken into account. Moving a vertex will cre-
ate a much larger deformation of the shape the longer the connecting edges are. Thus, the analytic
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8 Shape Optimization and Euler Equations

xk
βi

γiθi

xi
xi+1

T

P(xk )

x̃

Figure 8.1: Leading edge wing tip of the Onera M6 wing. Surface triangle patches P(xk ) around
center nodes xk shown in light blue. Patch P consists of triangles T with center nodes
x̃ . Vertices around xk are labeled xi counter-clockwise. Surface normals shown in red.

expression (8.4) must be appropriately discretized. For a triangulated surface the shape derivative
is given by

dJ(U, Ω)[V ] =
∫
Γ0

〈V , n〉g dS =
∑
T∈Γ0

∫
T

〈V , n〉g dS.

In the discrete, a finite dimensional vector expression for the shape derivative is needed. Since each
component of this vector is to be associated with a surface node, the above expression must be
filtered into components using appropriate discrete perturbation directions Vk . A possible choice
for Vk is a linear hat function over the surface triangle patch P(xk ) given by center node xk , i.e.
Vk (xi ) = 0 and Vk (xk ) = n(xk ) with linear interpolation in between. This provides for the k -th
component of the discrete gradient vector ∇J(U)

[∇J(U)]k =
∑

T∈P(xk )

∫
T

〈V , n〉g dS

=
∑
T∈Γ0

〈Vk (x̃T ), n(x̃T )〉g(x̃T )|T |,
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8.4 Discrete Differential Geometry

where the integral was replaced by a straight forward central node quadrature rule. Here, |T | is
the area of the triangle T . Because g also contains curvature, the expression g(x̃T ) requires a
curvature approximation at cell centers, which is surprisingly convenient.

8.4.1 Curvature Evaluation

In two dimensions, curvature can easily be computed according to its definition 2.1.9:

κ := divΓ n =
d−1∑
k=1

〈
∂n
∂τk

, τk

〉
=
〈
∂n
∂τ

, τ
〉

.

Due to the integration procedure described above, curvature is required at the mid-point of a surface
panel, where in two dimensions, surface edges and surface faces are the same and denoted panel.
According to the definition above, curvature at the panel mid-point is approximated by

κ(x̃) ≈
〈

ni+1 − ni

‖xi+1 − xi‖
, τ
〉

=
〈ni+1 − ni , xi+1 − xi〉
‖xi+1 − xi‖2 ,

where ni is the fluid pointing normal at xi , and the panel is the line between xi and xi+1.
Theoretically, it is also possible to compute curvature similarly on an unstructured curved surface

of a three dimensional problem. However, this would require reconstruction of the two tangent vec-
tors, because usually the surface nodes will no longer form a basis of the tangent space. Instead,
a similar strategy as in [56] is followed.

Definition 8.4.1 (Weingarten Matrix, Second Fundamental Tensor). Let τ 1 and τ 2 be the directions
of an orthonormal coordinate system in the tangent plane of x. The Weingarten matrix, or second
fundamental tensor, II is defined by

II := [Dτ 1n, Dτ 2n] =
[

∂n
∂τ 1 τ

1 ∂n
∂τ 2 τ

1

∂n
∂τ 1 τ

2 ∂n
∂τ 2 τ

2

]
.

The derivative of the normal in any tangent direction τ is then given by

Dτn = II · τ ,

which should not be confused with the derivative of the normal under a shape perturbation dn[V ].

Remark 8.4.2 (Second Fundamental Tensor on Surface Triangle). Using the notation as in fig-
ure 8.1, the second fundamental tensor II on a surface triangle T is given by

II
(
〈e1, τ1〉
〈e1, τ2〉

)
=
(
〈n(xi )− n(xk ), τ1〉
〈n(xi )− n(xk ), τ2〉

)
II
(
〈e2, τ1〉
〈e2, τ2〉

)
=
(
〈n(xi+1)− n(xi ), τ1〉
〈n(xi+1)− n(xi ), τ2〉

)
II
(
〈e3, τ1〉
〈e3, τ2〉

)
=
(
〈n(xk )− n(xi+1), τ1〉
〈n(xk )− n(xi+1), τ2〉

)
,

(8.16)

125



8 Shape Optimization and Euler Equations

where the edges are given by

e1 := xi − xk

e2 := xi+1 − xi

e3 := xk − xi+1.

Remark 8.4.3 (Curvature Computation on Unstructured Triangular Meshes). According to [56],
curvature can be computed by the following algorithm, where contrary to [56] in the applications

Algorithm 1 Curvature Computation
1: for all Surface mesh nodes x do
2: Construct (τ 1, τ 2) orthonormal in the tangent plane of x
3: end for
4: for all Faces f do
5: Compute edges and difference of normal ∆n
6: Solve equation (8.16) for II using least squares
7: for all Vertex p touching the face do
8: Re-express II in terms of (τ 1, τ 2)
9: Weight by ωf ,p and add to vertex curvature

10: end for
11: end for
12: for all Vertices do
13: Divide accumulated II by accumulated sum of weights
14: Compute principal curvatures κ1, κ2 as eigenvalues of II
15: Compute mean curvature κ
16: end for

here, the weight ωf ,p is chosen as the area of the face f divided by the sum of the squares of the
lengths of the two edges going into the point which is weighted:

ωf ,p =
A

l21 + l22
.

Also, the normal difference ∆n is weighted in the same way. This weightening is thought of to
account for highly distorted surface triangles. Note that the above algorithm already provides a per
face value of curvature.

8.4.2 Shape Derivative of the Normal

Due to the integration over mid-points, the variation of the face normal dnT [Vk ] is required for
computing the derivative information for node xk .

Lemma 8.4.4. For a face T , i.e. surface triangle consisting of the vertices xk , xi , and xi+1 (see
figure 8.1), the variation dnT [Vk ](xk ) of the face normal nT in direction Vk = n(xk ) is given by

dnT [Vk ](xk ) =
nk × (xi − xi+1)

|T |
,

where × denotes the vector cross-product.
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8.4 Discrete Differential Geometry

Proof. Not considering normalization, the initial face normal is given by

nT := (xk − xi+1)× (xi − xk ) .

Using Vk as above, the patch center node xk is moved in direction nk , the normal at node xk . This
movement is reduced linearly to zero for xi and xi+1. Hence, a finite perturbation of xk in direction
Vk results in

xεk := xk + εnk ,

and a new normal to the face T ε is given by

nεT :=
(
xεk − xi+1

)
×
(
xi − xεk

)
.

Thus, the difference quotient is given by

nεT − nT

ε
=

(
xεk − xi+1

)
×
(
xi − xεk

)
− (xk − xi+1)× (xi − xk )

ε

=
xεk × xi + xi+1 × xεk − xk × xi − xi+1 × xk

ε

=
ε (nk × xi ) + ε (xi+1 × nk )

ε
= (nk × xi )− (nk × xi+1)

=nk × (xi − xi+1) .

The desired formula follows with normalization.

Alternatively, the shape derivative of the normal can also be computed quite efficiently using finite
differences, as neither a perturbation of the PDE state nor a disturbed surface or volume mesh is
needed. Only the patch under consideration must be perturbed, which is very efficient.

8.4.3 Gradient Validation

In this section, the analytic gradient expressions are briefly compared with the classical approach
using the standard formula

dJ
dq

(u(q), q) =
∂J
∂q
− λT ∂c

∂q
, (8.17)

where the mesh sensitivity Jacobian ∂c
∂q is computed via finite differences, or full finite differences

involving the state equation PDE. The shape gradient is evaluated in each surface mesh node
according to the numerical quadrature approach as described above, and the new shape is found
by moving the surface node in normal direction accordingly. Other perturbation directions can be
used by simply computing the projection 〈V , n〉. A comparison between the shape derivative and
(8.17) can be seen in figure 8.2 for a two dimensional test-case. Supersonic flow at Mach 2.0
around a NACA0012 airfoil at zero angle of attack is considered. Shape derivative and classical
Lagrangian based derivative using finite differences for the mesh sensitivity Jacobian are found to
match extremely well.
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Figure 8.2: Comparison of the shape and classical reference derivative for a symmetric NACA0012
profile at Mach 2.0 and 0◦ angle of attack. Node 0 is lower side trailing edge, node 100
is leading edge, and node 200 is upper side trailing edge.

One of the standard test-cases for three dimensions is the Onera M6 wing. At the usual flow
conditions of Mach 0.83 and 3.01◦ angle of attack, the wing develops two interacting shock waves
on the upper side, and the shape derivative must be evaluated at discontinuous states. A compar-
ison of the shape derivative and a validation with finite differences is shown in figure 8.3. Unlike
the two dimensional validation, the reference solution here is created using complete or “full” finite
differences, including the PDE state equation. Thus, for the finite difference gradient at all 18, 285
surface mesh nodes, a Core2Duo E6600 (single thread) processor needed 2.5 days computational
time.

8.4.4 Laplace–Beltrami Operator

Before an actual optimization can be conducted, the Laplace–Beltrami preconditioner (5.7) needs
to be computed. For two dimensional flow around airfoils, this is relatively straight forward: The
surface of the airfoil is a planar graph, and the usual finite difference stencil for the Laplace problem
can simply be applied. Left and right neighbors are given by the edges of the airfoil surface, and
thus finite differencing is conducted in the tangent plane.

In three dimensions, a more sophisticated operator discretization using unstructured triangular
surface meshes is needed. A detailed finite element analysis for the Laplace–Beltrami operator on
arbitrary surfaces can be found in [14]. The strategy employed here corresponds to the Laplace–
Beltrami operator discretization in [48]. Similar to other discrete differential geometry operators,
construction of the discretized Laplace–Beltrami operator differs greatly depending on explicit or
implicit representations of the surface. Since shapes for aerodynamic shape optimization are all
explicitly given by the triangulated CFD mesh, the area averaged Laplace–Beltrami discretization
for explicit surfaces from [48] is used. For a surface node xk with surrounding triangle patch P, as
shown in figure 8.1, the Laplace–Beltrami operator is approximated by

∆Γg(xk ) ≈ 1
|P|

∫
P

∆Γg(x) dS(x)
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8.4 Discrete Differential Geometry

Figure 8.3: Validation of the shape derivative in three dimensions on an Onera M6 wing with 18, 285
design parameters. Inflow velocity Mach 0.83 and 3.01◦ angle of attack. Top finite
differences, bottom shape derivative.
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= − 1
|P|

∫
P

〈∇Γ,∇Γg〉 dS

= − 1
|P|

∫
∂P

〈∇Γg, n∂P〉 d`

= − 1
|P|
∑
T∈P

∫
∂P∩T

〈∇Γg, n∂P〉 d`

= − 1
|P|
∑
T∈P

∇Γg(xk ) [xi − xi+1]⊥ ,

since∇Γg is assumed constant in T . Also note that⊥—and likewise n∂P—means perpendicular to
the boundary ∂P in the tangent space of the surface, as otherwise there would be an extra degree
of freedom. As usual when employing finite elements, g is assumed to consist of nodal weights and
linear ansatz functions:

g
T
(x) = g(xk )ϕk (x) + g(xi )ϕi (x) + g(xi+1)ϕi+1(x).

Since the ansatz functions are linear, their contour lines in T are parallel to the opposite edge, and
since the gradient is perpendicular to the contour lines, the following relation holds:

∇Γϕk =
1

2|T |
[xi+1 − xi ]⊥

∇Γϕi =
1

2|T |
[xk − xi+1]⊥

∇Γϕi+1 =
1

2|T |
[xi − xk ]⊥ .

Thus, the tangential gradient ∇Γg is given by

∇Γg(x)
T

=
1

2|T |

(
g(xk ) [xi+1 − xi ]⊥ + g(xi ) [xk − xi+1]⊥ + g(xi+1) [xi − xk ]⊥

)
=

1
2|T |

(
g(xk ) [xi+1 − xk + xk − xi ]⊥ + g(xi ) [xk − xi+1]⊥ + g(xi+1) [xi − xk ]⊥

)
=

1
2|T |

(
−g(xk ) [xk − xi+1]⊥ − g(xk ) [xi − xk ]⊥ + g(xi ) [xk − xi+1]⊥ + g(xi+1) [xi − xk ]⊥

)
=

1
2|T |

(
(g(xi )− g(xk )) [xk − xi+1]⊥ + (g(xi+1)− g(xk )) [xi − xk ]⊥

)
,

a constant expression for all x in T . Thus, for the Laplace–Beltrami operator one has

∆Γg(xk )

=− 1
|P|
∑
T∈P

1
2|T |

(
(g(xi )− g(xk )) [xk − xi+1]⊥ + (g(xi+1)− g(xk )) [xi − xk ]⊥

)
[xi − xi+1]⊥ .
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Since the area of T is proportional to the sine of any angle of the triangle one has

∆Γg(xk ) = − 1
|P|
∑
T∈P

(g(xi )− g(xk )) cot(θi ) + (g(xi+1)− g(xk )) cot(γi ).

Since γi = βi+1, an index shift in the second part of the sum results in

∆Γg(xk ) =− 1
|P|
∑
T∈P

(g(xi )− g(xk )) cot(θi ) + (g(xi )− g(xk )) cot(βi )

=
1
|P|
∑
T∈P

(cot(θi ) + cot(βi )) (g(xk )− g(xi )) .

The above equation is assembled into a matrix, and the discrete Laplace–Beltrami preconditioner (5.7)
is factorized using a direct sparse linear solver. The effect on the gradient is illustrated in figure 8.4

Figure 8.4: Effects of the Laplace–Beltrami preconditioner (5.7) on the drag gradient for k =
0, 10−2, 10−1, 100 on the Onera M6 wing.

for the Onera M6 wing at Mach 0.83 and angle of attack α = 3.01◦.

8.5 Airfoil Optimizations

All of the following two and three dimensional optimizations have been conducted using the DLR
flow solver TAU, a hybrid unstructured vertex centered finite volume flow solver for viscid and inviscid
compressible flow [21, 26, 68]. For inviscid computations, TAU features both a continuous and
hand-discrete adjoint, while for viscous computations, only a discrete adjoint mode is avaliable.
TAU is also one of the production codes of Airbus, making the following computations examples
of real world applications. TAU also consists of several auxiliary routines for mesh partitioning
for parallel computations and a mesh deformation routine. The auxiliary programs are connected
using a common Python interface. The surface mesh is perturbed as discussed above, and the
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8 Shape Optimization and Euler Equations

Figure 8.5: Initial NACA0012 airfoil at Mach 2.0. The blunt nose body produces a strong detached
bow shock. Color denotes pressure.

Figure 8.6: Optimized airfoil for Mach 2.0 at zero angle of attack. The blunt nose has become sharp,
producing a much weaker attached shock wave. Color denotes pressure.
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8.5 Airfoil Optimizations

built-in TAU mesh deformation tool fits the volume cells accordingly. Unfortunately, the built-in mesh
deformation tool is optimized for smooth deformations using few design parameters. Using the
shape derivative to perturb all surface mesh nodes can occasionally overwhelm the TAU mesh
deformation, sometimes resulting in zero volume or distorted cells. In such cases, re-meshing is
advisable.

8.5.1 Supersonic NACA Airfoil

A simple two dimensional problem that demonstrates the features of Euler flow drag reduction is
that of a symmetric airfoil in supersonic flow, e.g. the cross-section of a vertical fin or stabilizer.
The supersonic setup, as opposed to subsonic, is advantageous for testing purposes for several
reasons. Physical drag is always present and substantially higher than numerical drag, optimal
shapes for the different constraints are known beforehand [33], and it is easier to capture drag
correctly using coarser grids. In subsonic flow, physical drag may disappear, leading to many

Figure 8.7: Optimization history for the supersonic NACA0012 optimization on different meshes.

possible local optima, and good grid resolution is needed in the area of the weaker shock, the
position of which changes during the optimization run. Also, the shock wave is detached from the
airfoil, meaning although there is a discontinuity in the state, it is not at the surface where the shape
derivative must be evaluated. The optimization history for different mesh resolutions is shown in
figure 8.7, and the shapes are shown in figure 8.5 and figure 8.6. The geometry definition for
standard four digit NACA airfoils can be found in [39]. On the finest level, the airfoil is discretized
using 400 surface mesh nodes, of which 398 are variable. The leading edge and trailing edge
are fixed, such that the airfoil chord remains at (0, 0) and (1, 0) and does not interfere with non-
dimensionalization. Also, the volume of the airfoil is fixed at the initial NACA0012 value of 8.2160 ·
10−2. After initializing the forward solution with 278 iterations, the shape is optimized in a one-
shot sense using three forward and adjoint flow solver iterations per optimization step. The optimal
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8 Shape Optimization and Euler Equations

shape is reached after about 150 iterations of the rSQP method as described in remark 8.3.3. The
reduced Hessian B is approximated by the Laplace–Beltrami preconditioner (5.7).

8.5.2 Mesh Independence

Although the flow solver is not completely mesh independent when computing the state and adjoint
variables, a careful selection of the various parameters such as the number of inner iterations, the

Figure 8.8: Coarse NACA0012 mesh and third refinement for testing mesh independent optimiza-
tion convergence.

optimization step length, and the amount of gradient smoothing can lead to a potentially mesh res-
olution independent optimization convergence behavior, as can be seen in figure 8.7. The precise
settings used in the optimization are listed in table 8.1. The first column shows the number of flow

Unknowns Initial Forward Initial Adjoint Inner Forward Inner Adjoint Smoothing
98 158 128 3 3 4.0
198 182 215 3 3 2.0
398 278 404 3 3 0.5

Table 8.1: Parameters used in the mesh independency study

solver iterations needed to reach a primal residual of 10−7. The second column shows the number
of adjoint flow solver iterations needed to reach an adjoint residual of 10−4 for the lift adjoint. Thus,
the flow solver convergence rate is not mesh independent. Nevertheless, during the one-shot op-
timization, the number of inner flow solver iterations can be kept constant at three for both primal
and adjoint solver. The smoothing factor for the two dimensional Laplace–Beltrami preconditioner,
equation (5.7), had to be adapted, and the respective value for k is shown in the last column. Inter-
estingly, the smoothing parameter here features the same monotonicity behavior as in the Stokes
case, equation (5.8).

Hence, the Laplace–Beltrami Hessian approximation has the potential for mesh independent
convergence, which is highly desireable for the optimizations of wings and aircrafts in three dimen-
sions, where the number of shape parameters increases significantly. Two of the initial meshes for
the mesh independency study are shown in figure 8.8.
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8.5 Airfoil Optimizations

8.5.3 Transonic Lifting RAE2822 Airfoil

One of the classical examples for aerodynamic shape optimization is the optimization of the RAE-
2822 airfoil in transonic cruise condition of Mach 0.73 and 2◦ angle of attack. The initial lift is to
be maintained. Due to its popularity, this test-case is sometimes simply denoted by “case 9”. At
these flow conditions, it is assumed the shock wave of the upper side can be completely removed
by optimization. Thus a shock free solution is considered optimal. Unlike the other examples
where the aim was a drastic deformation of the shape, here only small modifications to the airfoil
surface are required. Usually for “case 9”, a mesh consisting of 128 surface nodes is used, which is
deformed by Hicks–Henne functions [35] enforcing the airfoil thickness to remain constant at each
chord point during the optimization. This test-case has been re-created using the shape derivative
for all surface nodes. The final shape is shown in figure 8.9 and is shock free. After fixing the

Figure 8.9: Optimal shape for the RAE2822 transonic cruise “case 9” optimization. The standard
mesh is a C-type mesh using 128 surface nodes. The optimized solution is shock free
on this mesh. Color denotes pressure.

leading and trailing edge, 126 variable surface nodes remain. Instead of the constant thickness by
Hicks–Henne parameterization, a constant volume is enforced. The initial lift of CL = 7.817 ·10−1 is
increased to CL = 7.831 · 10−1, a very slight increase by 0.2%, while the drag is reduced by 49.4%,
from CD = 6.547 · 10−3 to CD = 3.295 · 10−3. The optimization requires again 100 steps with 20
inner iterations for each of the flow solvers, i.e. the primal flow solver and the two adjoint flow solver
for drag and lift.

Additionally, a much finer mesh with 512 surface nodes is also considered. Initial flow field and
optimized flow field are shown in figure 8.10 and figure 8.11. The optimization history is shown in
figure 8.12. Using a proper tuning of all parameters, the optimal solution can be found in a mere
28 optimization steps with 40 inner iterations for each of the flow solvers. Although the optimal
shape on this finer mesh features a very weak shock wave on the upper side, the computed drag
value of CD = 2.721 · 10−3 is lower than the optimal solution on the coarser mesh. In total, the
drag has been reduced by 62.9%, while lift has increased to CL = 7.828 · 10−1, an increase by
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8 Shape Optimization and Euler Equations

Figure 8.10: Initial RAE2822 airfoil at Mach 0.73 and 2◦ angle of attack. Under these cruise con-
ditions, the airfoil features a strong shock wave on the upper side. Color denotes
pressure.

Figure 8.11: Optimized RAE2822 airfoil. The upper side shock wave is greatly reduced. Color
denotes pressure.
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Figure 8.12: Optimization history for the transonic RAE2822 optimization with 510 variable surface
mesh nodes.

0.1%. Before the one-shot optimization is started, the primal solution is initialized by 580 iterations.
The adjoint solution for the drag is initialized by 945 adjoint flow solver iterations. Initializing the lift
adjoint requires 1348 iterations.

8.6 Onera M6 Wing Optimization

One of the standard test-cases in three dimensions is the Onera M6 wing. In cruise condition of
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Figure 8.13: Multilevel optimization history for the Onera M6 wing. One drag count dc is a scaling
of 10−4 and one lift count lc is a scaling of 10−2.
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8 Shape Optimization and Euler Equations

Figure 8.14: Initial Onera M6 wing at Mach 0.83 and 3.01◦ angle of attack. The wing develops two
interacting shock waves on the upper side, so called λ-shock waves. The wing surface
consists of 18, 285 nodes. Color denotes pressure.

Figure 8.15: Optimized Onera M6 wing. The shock waves are completely removed. Color denotes
pressure.
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8.6 Onera M6 Wing Optimization

Mach 0.83 and 3.01◦ angle of attack, the wing develops two interacting shock waves on the upper
side, sometimes also called λ-shock due to the visual shape of the merging shock waves. A multi-
level optimization is considered, and the coarser mesh consists of 18, 285 surface nodes. In total,
this mesh results in 541, 980 state unknowns for the Euler equations. After refinement, the next
finer mesh features 36, 806 surface nodes and 1, 486, 315 Euler state unknowns. Simulation and
optimization is conducted only on one half of the wing, the entire wing is then created by mirroring
at the symmetry plane. Initial and optimal wing are shown in figure 8.14 and figure 8.15. Starting
on the coarser mesh, an initial drag value of CD = 7.52 · 10−3 and lift value of CL = 2.65 · 10−1 is
computed. Lift and the initial volume of V0 = 63.6 are used as a constraint. A multi-level optimization
is beneficial, because usually mesh refinement is based on better resolving shock waves, which are
removed due to optimization. The planform is considered fixed, because otherwise, the TAU mesh
deformation tool for the volume mesh very frequently produces meshes of bad quality with inverted
or almost zero cells. The optimization history for the multilevel optimization is shown in figure 8.13.
The respective meshes are shown in figure 8.16.
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8 Shape Optimization and Euler Equations

Figure 8.16: Initial solution, optimal solution with refinement based on initial solution, and optimal
solution with refinement during optimization.
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Chapter 9

Compressible Navier–Stokes Equations

9.1 Introduction

After considering viscous incompressible fluids in chapter 6 and inviscid compressible fluids in chap-
ter 8, this chapter seeks to combine both and considers the compressible Navier–Stokes equations,
i.e. a viscous and compressible fluid. Presently, the compressible Navier–Stokes equations are con-
sidered the ultimate fluid model. They are assumed to correctly model all single phase fluid flows
of matching stress tensor. Usually, the often used perfect gas assumption is the limiting factor in
applicability, as at hypersonic speeds or in chemically active fluids, the chemistry must be modeled
also. Contrary to the Euler equations considered in chapter 8, the compressible Navier–Stokes
equations reproduce fluid boundary layers, flow separation, and consequently turbulence. Unfor-
tunately, they are correspondingly complex and both analytically inaccessible and numerically very
difficult to solve. Since high Reynolds number fluid phenomena are of very different time- and space
scales, e.g. fast, small-scale turbulent motion versus large-scale, almost steady mean flow, resolv-
ing all fluid phenomena would require a prohibitively fine discretization. This is also called direct
numerical simulation (DNS) and is almost always used to calibrate substitute turbulence models in
simple domains. Since almost all flows of industrial importance are high Reynolds number flows,
the compressible Navier–Stokes equations are almost always averaged in time and space. Usually,
this is accomplished by the so-called Reynolds averaging, which ignores density fluctuations, but
other averaging approaches including density variations exist, such as Favre averaging. Unfortu-
nately, averaging introduces new unknowns in the eddy viscosity, and the resulting compressible
Reynolds averaged Navier–Stokes equations (RANS) require additional turbulence modeling. Most
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9 Compressible Navier–Stokes Equations

turbulence models turn out to be analytically non-differentiable, such as the wall boundary condi-
tion of the k -ω model, or introduce excessively complex expressions. For this reason, a shape
differentiation for the RANS equations is conducted only around the mean flow ignoring the eddy
viscosity and Sutherland’s law. This is sometimes also called frozen viscosity approach, meaning
the derivative is made for the original compressible Navier–Stokes equations in a DNS fashion, but
during application the averaged, i.e. turbulent, values are used.

Definition 9.1.1 (RANS Equations). The original compressible Navier–Stokes equations are given
by definition 4.1.11. To simplify differentiation, they will be re-written in differential form using the
variables (ρ, u, T ). Note that this is different from both the standard conserved variables (ρ, ρu, ρE)
and the standard primitive variables (ρ, u, p). Not considering external body forces g, they are given
by

3∑
k=1

(
uk
∂ρ

∂xk
+ ρ

∂uk

∂xk

)
= 0 (9.1)(

ρ

3∑
k=1

uk
∂ui

∂xk

)
+ (γ − 1)

∂

∂xi
(ρT )−

3∑
k=1

∂

∂xk
(µ∗σik ) = 0 (9.2)(

ρ
3∑

k=1

uk
∂T
∂xk

)
+ (γ − 1)ρT

3∑
k=1

∂uk

∂xk
−

3∑
j ,k=1

µ∗
∂uk

∂xj
σjk −

3∑
k=1

∂

∂xk

(
κ∗
∂T
∂xk

)
= 0. (9.3)

The transition from definition 4.1.11 is straight forward, and more information can be found in [9].
The continuity equation is given by (9.1), momentum conservation is given by (9.2) in the three
spatial dimensions i = 1, 2, 3, and (9.3) denotes the energy equation. For the Newtonian fluids
considered here, the strain tensor σ is given by

σkj = σjk =
∂uk

∂xj
+
∂uj

∂xk
−

(
2
3

3∑
m=1

∂um

∂xm

)
δkj , (9.4)

see also definition 4.1.5, and the pressure is given by

p = RρT .

Using an appropriate non-dimensionalization, the pressure is more conveniently given by

p = (γ − 1)ρT . (9.5)

Here, values marked by ∗ denote the total quantities, i.e. the mean and averaged turbulent value,
such as the total eddy viscosity

µ∗ = µ + µturb,

and the total heat conduction

κ∗ :=
γ

Re

(
µ

Pr
+
µturb

Prturb

)
,

where Re is the Reynolds number and Pr is the Prandtl number. A formula for these quantities
depend on the chosen turbulence model, which links these turbulent quantities to the remaining
variables and the geometry of the domain by some additional algebraic or differential equations.

142



9.2 First Order Calculus

9.2 First Order Calculus

In this section, the shape derivative for the force optimization problem in a compressible Navier–
Stokes fluid is constructed. Special attention is paid to finding an expression that can easily be
evaluated. For more theoretical details, especially concerning existence and uniqueness, see [51,
52, 54]. Especially in [51], a general framework for the analysis of inhomogeneous elliptic-hyperbolic
equations such as the compressible Navier–Stokes equations is established, and an analysis is
performed for small perturbations of the so-called approximate solutions, which are determined
from Stokes problems. Furthermore, the existence of optimal shapes of the isothermal Navier–
Stokes equations is shown in [52] using generalized solutions for the Navier–Stokes equations.
Also, from a standard, non shape calculus point of view, the problem has also been studied in [29]
for a thin shear-layer approximation of the viscous stress tensor or in [41].

Definition 9.2.1 (Compressible Navier–Stokes Shape Optimization Problem). As a shape optimiza-
tion problem, the aerodynamic or fluid forces on a solid body are again considered. Contrary to the
Euler problem, definition 8.1.1, the viscous part of the forces, i.e. the skin friction, must now be
included in the objective function, resulting in the following shape optimization problem

min
(u,p,Ω)

J(u, p, Ω) :=
∫
Γ0

3∑
i=1

aipni −
3∑

i ,k=1

akµ
∗σkini dS =

∫
Γ0

〈pa, n〉 − 〈µ∗σa, n〉 dS (9.6)

subject to
3∑

k=1

(
uk
∂ρ

∂xk
+ ρ

∂uk

∂xk

)
= 0(

ρ
3∑

k=1

uk
∂ui

∂xk

)
+ (γ − 1)

∂

∂xi
(ρT )−

3∑
k=1

∂

∂xk
(µ∗σik ) = 0(

ρ
3∑

k=1

uk
∂T
∂xk

)
+ (γ − 1)ρT

3∑
k=1

∂uk

∂xk
−

3∑
j ,k=1

µ∗
∂uk

∂xj
σjk −

3∑
k=1

∂

∂xk

(
κ∗
∂T
∂xk

)
= 0.

(9.7)

The equality in (9.6) holds due to symmetry of σ. Additionally, the following boundary conditions
are considered:

u = a on Γ+ (9.8)

u = 0 on Γ0 (9.9)

T = T∞ =
1

γ(γ − 1)M2
∞

on Γ+ (9.10)

T = TB = T∞

(
1 +

γ − 1
2M2
∞

)
on Γ0 (9.11)

〈∇T , n〉 = 0 on Γ0 (9.12)

ρ = 1 on Γ+, (9.13)

where M∞ is the free stream Mach number. Equation (9.8) is the usual normalized inflow bound-
ary condition in a rotated coordinate system, and equation (9.9) is the standard viscous no-slip
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boundary condition. Boundary condition (9.11) is the isothermal wall temperature condition, i.e.
fixed Dirichlet boundary condition for the temperature on the wing. An alternative to the isothermal
temperature wall boundary condition is the adiabatic wall temperature boundary condition (9.12),
specifying zero temperature flux over the aircraft surface. Isothermal and adiabatic wall temperature
boundary conditions are mutually exclusive and never used at the same time.

Lemma 9.2.2 (Linearized Continuity Equation). Linearizing the continuity equation (9.1) results in
the following expression

0 =
∫
Ω

3∑
k=1

(
λρu′k [V ]

∂ρ

∂xk
− ρ′[V ]

∂

∂xk

(
λρuk

)
+ λρρ′[V ]

∂uk

∂xk
− u′k [V ]

∂

∂xk
(λρρ)

)
dA

+
∫
∂Ω

3∑
k=1

(
λρukρ

′[V ]nk + λρρu′k [V ]nk
)

dS,

where λρ is a sufficiently smooth arbitrary multiplicator.

Proof. A linearization of the continuity equation (9.1) results in

div (ρu′[V ]) + div (ρ′[V ]u)

=
3∑

k=1

(
u′k [V ]

∂ρ

∂xk
+ uk

∂ρ′[V ]
∂xk

+ ρ′[V ]
∂uk

∂xk
+ ρ

∂u′k [V ]
∂xk

)
= 0,

and multiplication of the linearized continuity equation with an arbitrary λρ and integration by parts
results in the desired expression.

Lemma 9.2.3 (Linearized Strain Tensor, Volume). For sufficiently smooth arbitrary multiplicators
λui , the following relation holds

∫
Ω

3∑
i ,k=1

∂λui

∂xk
σ′ik [V ] dA

=
∫
Ω

−
3∑

i ,k=1

(
∂2λui

∂x2
k

+
∂2λuk

∂xi∂xk
− 2

3
∂2λuk

∂xk∂xi

)
u′i [V ] dA

+
∫
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3∑
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(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)
u′i [V ] dS.
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Proof. The definition of the strain tensor, equation (9.4), results in∫
Ω

3∑
i ,k=1
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Integration by parts and regrouping provides∫
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Lemma 9.2.4 (Linearized Strain Tensor, Surface). For sufficiently smooth arbitrary multiplicators
λui , the following relation holds∫

∂Ω
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i ,k=1

λuiσ
′
ik [V ]nk dS

=
∫
∂Ω

3∑
i ,k=1

(
λui nk + λuk ni −

2
3
δik

3∑
m=1

λum nm

)
∂u′i [V ]
∂xk

dS.
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Proof. Inserting equation (9.4) and regrouping results in
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Lemma 9.2.5 (Linearized Momentum Equation). Linearizing the momentum equation (9.2) under
the frozen viscosity assumption results in the following expression
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∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)
+ λuiρuk nk

]
u′i [V ] dS

+
∫
∂Ω

3∑
i=1

(γ − 1)
(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)

dS

+
∫
∂Ω

−µ∗
3∑

i ,k=1

(
λui nk + λuk ni −

2
3
δik

3∑
m=1

λum nm

)
∂u′i [V ]
∂xk

dS,

where λui are sufficiently smooth arbitrary multiplicators.
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Proof. The linearized momentum equation (9.2) is given by

0 =
3∑

k=1

(
ρ′[V ]uk

∂ui

∂xk
+ ρu′k [V ]

∂ui

∂xk
+ ρuk

∂u′i [V ]
∂xk

)

+ (γ − 1)
(
∂ρ′[V ]
∂xi

T +
∂ρ

∂xi
T ′[V ] + ρ′[V ]

∂T
∂xi

+ ρ
∂T ′[V ]
∂xi

)
−

3∑
k=1

µ∗
∂

∂xk
σ′ik [V ].

A multiplication of the momentum equation with λui for i = 1, 2, 3 and integration by parts provides

0 =
∫
Ω

3∑
k=1

[
λuiρ

′[V ]uk
∂ui

∂xk
+ λuiρu′k [V ]

∂ui

∂xk
− u′i [V ]

∂

∂xk

(
λuiρuk

)]
dA

+
∫
Ω

(γ − 1)
[
−ρ′[V ]

∂

∂xi
(λui T ) + λui

∂ρ

∂xi
T ′[V ] + λuiρ

′[V ]
∂T
∂xi
− T ′[V ]

∂

∂xi
(λuiρ)

]
dA

+
∫
Ω

3∑
k=1

µ∗σ′ik [V ]
∂λui

∂xk
dA

+
∫
∂Ω

(
3∑

k=1

λuiρuk u′i [V ]nk

)
+ (γ − 1)

(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)

dS

+
∫
∂Ω

−
3∑

k=1

µ∗λuiσ
′
ik [V ]nk dS.

Summing the momentum equations over i = 1, 2, 3 and regrouping leads to

0 =
∫
Ω

3∑
i=1

[(
3∑

k=1

λui uk
∂ui

∂xk

)
+ (γ − 1)

(
λui

∂T
∂xi
− ∂

∂xi
(λui T )

)]
ρ′[V ] dA (9.14)

+
∫
Ω

3∑
i ,k=1

λuiρ
∂ui

∂xk
u′k [V ] dA (9.15)

+
∫
Ω

3∑
i ,k=1

[
− ∂

∂xk

(
λuiρuk

)]
u′i [V ] dA (9.16)

+
∫
Ω

3∑
i=1

(γ − 1)
(
λui

∂ρ

∂xi
− ∂

∂xi
(λuiρ)

)
T ′[V ] dA (9.17)

+
∫
Ω

3∑
i ,k=1

µ∗σ′ik [V ]
∂λui

∂xk
dA (9.18)

+
∫
∂Ω

3∑
i=1

[(
3∑

k=1

λuiρuk nk

)
u′i [V ] + (γ − 1)

(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)]

dS (9.19)
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+
∫
∂Ω

−
3∑

i ,k=1

µ∗λuiσ
′
ik [V ]nk dS. (9.20)

Very similar to the incompressible case, there is again a summation over two different indices i
and k in (9.15) and (9.16) for the local shape derivatives of the velocity. In the incompressible
case, equations (6.15) and (6.16), this has been dealt with by another integration by parts, which is
convenient there, since the resulting additional terms are removed due to div u′[V ] = 0. Since this
is no longer true in the compressible case, the second integration by parts is omitted. Exchanging
indices in equation (9.15) and regrouping results in

0 =
∫
Ω

3∑
i=1

[(
3∑

k=1

λui uk
∂ui

∂xk

)
+ (γ − 1)

(
λui

∂T
∂xi
− ∂

∂xi
(λui T )

)]
ρ′[V ] dA

+
∫
Ω

3∑
i ,k=1

[
λukρ

∂uk

∂xi
− ∂

∂xk
(λuiρuk )

]
u′i [V ] dA

+
∫
Ω

3∑
i=1

(γ − 1)
[
λui

∂ρ

∂xi
− ∂

∂xi
(λuiρ)

]
T ′[V ] dA

+
∫
Ω

3∑
i ,k=1

µ∗σ′ik [V ]
∂λui

∂xk
dA

+
∫
∂Ω

3∑
i=1

[(
3∑

k=1

λuiρuk nk

)
u′i [V ] + (γ − 1)

(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)]

dS

+
∫
∂Ω

−
3∑

i ,k=1

µ∗λuiσ
′
ik [V ]nk dS.

Contrary to the Euler case, the linearized strain tensor σ′[V ] contains another set of derivatives,
such that an additional integration by parts is needed. Applying lemma 9.2.3 provides

0 =
∫
Ω

3∑
i=1

[(
3∑

k=1

λui uk
∂ui

∂xk

)
+ (γ − 1)

(
λui

∂T
∂xi
− ∂

∂xi
(λui T )

)]
ρ′[V ] dA

+
∫
Ω

3∑
i ,k=1

[
−µ∗

(
∂2λui

∂x2
k

+
∂2λuk

∂xi∂xk
− 2

3
∂2λuk

∂xk∂xi

)
+ λukρ

∂uk

∂xi
− ∂

∂xk
(λuiρuk )

]
u′i [V ] dA

+
∫
Ω

3∑
i=1

(γ − 1)
[
λui

∂ρ

∂xi
− ∂

∂xi

(
λuiρ

)]
T ′[V ] dA

+
∫
∂Ω

3∑
i ,k=1

[
µ∗
(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)
+ λuiρuk nk

]
u′i [V ] dS
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9.2 First Order Calculus

+
∫
∂Ω

3∑
i=1

(γ − 1)
(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)

dS

+
∫
∂Ω

−
3∑

i ,k=1

µ∗λuiσ
′
ik [V ]nk dS.

It remains to remove the strain tensor variation on the boundary ∂Ω from the first integration by
parts. Applying lemma 9.2.4 results in

0 =
∫
Ω

3∑
i=1

[(
3∑

k=1

λui uk
∂ui

∂xk

)
+ (γ − 1)

(
λui

∂T
∂xi
− ∂

∂xi
(λui T )

)]
ρ′[V ] dA

+
∫
Ω

3∑
i ,k=1

[
−µ∗

(
∂2λui

∂x2
k

+
∂2λuk

∂xi∂xk
− 2

3
∂2λuk

∂xk∂xi

)
+ λukρ

∂uk

∂xi
− ∂

∂xk
(λuiρuk )

]
u′i [V ] dA

+
∫
Ω

3∑
i=1

(γ − 1)
[
λui

∂ρ

∂xi
− ∂

∂xi

(
λuiρ

)]
T ′[V ] dA

+
∫
∂Ω

3∑
i ,k=1

[
µ∗
(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)
+ λuiρuk nk

]
u′i [V ] dS

+
∫
∂Ω

3∑
i=1

(γ − 1)
(
λuiρ

′[V ]Tni + λuiρT ′[V ]ni
)

dS

+
∫
∂Ω

−µ∗
3∑

i ,k=1

(
λui nk + λuk ni −

2
3
δik

3∑
m=1

λum nm

)
∂u′i [V ]
∂xk

dS,

creating the desired expression.

Lemma 9.2.6 (Linearized Energy Equation). Linearizing the energy equation (9.3) under the frozen
viscosity assumption results in the following expression

0 =
∫
Ω

3∑
k=1

[
λT uk

∂T
∂xk

+ (γ − 1)λT T
∂uk

∂xk

]
ρ′[V ] dA

+
∫
Ω

3∑
k=1

[
λTρ

∂T
∂xk
− (γ − 1)

∂

∂xk
(λTρT )

]
u′k [V ] dA

+
∫
Ω

3∑
j ,k=1

µ∗
[
∂

∂xj
(λTσjk ) +

∂

∂xj

(
λT

∂uj

∂xk

)
+
∂

∂xj

(
λT
∂uk

∂xj

)
− 2

3
∂

∂xk

(
λT
∂uj

∂xj

)]
u′k [V ] dA

+
∫
Ω

[
−κ∗∆λT +

3∑
k=1

(
(γ − 1)λTρ

∂uk

∂xk
− ∂

∂xk
(λTρuk )

)]
T ′[V ] dA
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+
∫
∂Ω

3∑
k=1

(γ − 1)λTρTnk u′k [V ] dS

+
∫
∂Ω

−µ∗
3∑

j ,k=1

(
λTσjk nj + λT

∂uj

∂xk
nj + λT

∂uk

∂xj
nj −

2
3
λT
∂uj

∂xj
nj

)
u′k [V ] dS

+
∫
∂Ω

[
κ∗
∂λT

∂n
+

3∑
k=1

λTρuk nk

]
T ′[V ]− κ∗λT

∂T ′[V ]
∂n

dS,

where λT is a sufficiently smooth arbitrary multiplicator.

Proof. The linearization of the energy equation (9.3) is given by

0 =

[
3∑

k=1

(
ρ′[V ]uk

∂T
∂xk

+ ρu′k [V ]
∂T
∂xk

+ ρuk
∂T ′[V ]
∂xk

)]

+(γ − 1)

[
3∑

k=1

(
ρ′[V ]T

∂uk

∂xk
+ ρT ′[V ]

∂uk

∂xk
+ ρT

∂u′k [V ]
∂xk

)]

−

 3∑
j ,k=1

(
µ∗
∂u′k [V ]
∂xj

σjk + µ∗
∂uk

∂xj
σ′jk [V ]

)− κ∗∆T ′[V ].

Multiplication by λT , integration by parts, and Green’s second identity lead to

0 =
∫
Ω

3∑
k=1

[
λTρ

′[V ]uk
∂T
∂xk

+ λTρu′k [V ]
∂T
∂xk
− T ′[V ]

∂

∂xk
(λTρuk )

]
dA

+
∫
Ω

(γ − 1)
3∑

k=1

[
λTρ

′[V ]T
∂uk

∂xk
+ λTρT ′[V ]

∂uk

∂xk
− u′k [V ]

∂

∂xk
(λTρT )

]
dA

+
∫
Ω

 3∑
j ,k=1

(
µ∗u′k [V ]

∂

∂xj
(λTσjk )− µ∗λT

∂uk

∂xj
σ′jk [V ]

)− κ∗T ′[V ]∆λT dA

+
∫
∂Ω

(
3∑

k=1

λTρuk T ′[V ]nk

)
+ (γ − 1)

(
3∑

k=1

λTρTu′k [V ]nk

)
−

3∑
j ,k=1

µ∗λT u′k [V ]σjk nj dS

+
∫
∂Ω

κ∗
(

T ′[V ]
∂λT

∂n
− λT

∂T ′[V ]
∂n

)
dS = 0.

Regrouping results in

0 =
∫
Ω

3∑
k=1

[
λT uk

∂T
∂xk

+ (γ − 1)λT T
∂uk

∂xk

]
ρ′[V ] dA
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+
∫
Ω

3∑
k=1

λTρ
∂T
∂xk
− (γ − 1)

∂

∂xk
(λTρT ) +

 3∑
j=1

µ∗
∂

∂xj
(λTσjk )

 u′k [V ] dA

+
∫
Ω

[
−κ∗∆λT +

3∑
k=1

(
(γ − 1)λTρ

∂uk

∂xk
− ∂

∂xk
(λTρuk )

)]
T ′[V ] dA

+
∫
Ω

−
3∑

j ,k=1

µ∗λT
∂uk

∂xj
σ′jk [V ] dA

+
∫
∂Ω

3∑
k=1

(γ − 1)λTρTnk − µ∗
3∑

j=1

λTσjk nj

 u′k [V ] dS

+
∫
∂Ω

[
κ∗
∂λT

∂n
+

3∑
k=1

λTρuk nk

]
T ′[V ]− κ∗λT

∂T ′[V ]
∂n

dS.

Since the strain tensor linearization still contains derivatives, lemma 9.2.3 must be used again,
providing ∫

Ω

3∑
j ,k=1

λT
∂uk

∂xj
σ′jk [V ] dA

=
∫
Ω

3∑
j ,k=1

[
− ∂

∂xj

(
λT

∂uj

∂xk

)
− ∂

∂xj

(
λT
∂uk

∂xj

)
+

2
3
∂

∂xk

(
λT
∂uj

∂xj

)]
u′k [V ] dA

+
∫
∂Ω

3∑
j ,k=1

[
λT

∂uj

∂xk
nj + λT

∂uk

∂xj
nj −

2
3
λT
∂uj

∂xj
nj

]
u′k [V ] dS.

Thus, the linearized energy equation becomes after regrouping

0 =
∫
Ω

3∑
k=1

[
λT uk

∂T
∂xk

+ (γ − 1)λT T
∂uk

∂xk

]
ρ′[V ] dA

+
∫
Ω

3∑
k=1

[
λTρ

∂T
∂xk
− (γ − 1)

∂

∂xk
(λTρT )

]
u′k [V ] dA

+
∫
Ω

3∑
j ,k=1

µ∗
[
∂

∂xj
(λTσjk ) +

∂

∂xj

(
λT

∂uj

∂xk

)
+
∂

∂xj

(
λT
∂uk

∂xj

)
− 2

3
∂

∂xk

(
λT
∂uj

∂xj

)]
u′k [V ] dA

+
∫
Ω

[
−κ∗∆λT +

3∑
k=1

(
(γ − 1)λTρ

∂uk

∂xk
− ∂

∂xk
(λTρuk )

)]
T ′[V ] dA

+
∫
∂Ω

3∑
k=1

(γ − 1)λTρTnk u′k [V ] dS
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+
∫
∂Ω

−µ∗
3∑

j ,k=1

(
λTσjk nj + λT

∂uj

∂xk
nj + λT

∂uk

∂xj
nj −

2
3
λT
∂uj

∂xj
nj

)
u′k [V ] dS

+
∫
∂Ω

[
κ∗
∂λT

∂n
+

3∑
k=1

λTρuk nk

]
T ′[V ]− κ∗λT

∂T ′[V ]
∂n

dS,

which is the desired expression.

Lemma 9.2.7 (Shape Derivative for the Compressible Navier–Stokes Equations). The shape deriva-
tive of the fluid forces acting on an immersed obstacle is given by

dJ(ρ, u, T , Ω)[V ]

=
∫
Γ0

〈V , n〉

[
3∑

i=1

(
ai
∂p
∂n

ni − λρρ
∂ui

∂n
ni

)
−

3∑
i ,k=1

aiµ
∗∂σik

∂n
nk

]
dS

+
∫
Γ0

〈V , n〉 divΓ

(
pa− µ∗σa

)
dS

+
∫
Γ0

〈V , n〉
3∑

i ,k=1

[
−µ∗

(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)]
∂ui

∂n
dS

+
∫
Γ0

〈V , n〉κ∗∂λT

∂n
∂(TB − T )

∂n
dS

in case of isothermal walls, T = TB, and

dJ(ρ, u, T , Ω)[V ]

=
∫
Γ0

〈V , n〉

[
3∑

i=1

(
ai
∂p
∂n

ni − λρρ
∂ui

∂n
ni − λT p

∂ui

∂n
ni

)
−

3∑
i ,k=1

aiµ
∗∂σik

∂n
nk

]
dS

+
∫
Γ0

〈V , n〉 divΓ

(
pa− µ∗σa

)
dS

+
∫
Γ0

〈V , n〉
3∑

i ,k=1

[
−µ∗

(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)]
∂ui

∂n
dS

+
∫
Γ0

〈V , n〉
3∑

i ,k=1

µ∗
(
λTσik ni + λT

∂ui

∂xk
ni + λT

∂uk

∂xi
ni −

2
3
λT
∂ui

∂xi
ni

)
∂uk

∂n
dS

+
∫
Γ0

〈V , n〉κ∗λT

[
∂2T
∂n2 − κ〈∇ΓT , n〉 + ∆ΓT

]
dS,

in case of adiabatic walls, ∂T
∂n = 0. Here, κ∗ is the total thermal conductivity of the fluid, and κ is the

curvature. In either case, the adjoint velocity viscous wall boundary condition is

λui = −ai on Γ0,
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9.2 First Order Calculus

where a is given by a = (cosα, 0, sinα)T with α being the angle of attack. For isothermal walls Γ0,
the adjoint temperature boundary condition is

λT = 0 on Γ0,

and for adiabatic walls Γ0 it is given by

∂λT

∂n
= 0 on Γ0.

For prescribed density, velocity, and pressure in the farfield, the adjoint farfield boundary conditions
are given by

λρ = 0

λui = 0

λT = 0.

Proof. The objective function is of the type scalar product of vector times normal, and a formal
differentiation according to lemma 3.3.14 immediately results in

dJ(ρ, u, T , Ω)[V ] =
∫
Γ0

〈V , n〉

[
3∑

i=1

ai
∂p
∂n

ni −
3∑

i ,k=1

aiµ
∗∂σik

∂n
nk

]
dS (9.21)

+
∫
Γ0

〈V , n〉 divΓ

(
pa− µ∗σa

)
dS (9.22)

+
∫
Γ0

3∑
i=1

aip′[V ]ni −
3∑

i ,k=1

aiµ
∗σ′ik [V ]nk dS. (9.23)

Due to the frozen viscosity assumption and not including Sutherland’s law, viscosity variations
µ∗′[V ] are not considered. Adjoint calculus is again needed to transform the last part of the above
equation into Hadamard form. The results from lemmas 9.2.2, 9.2.5, and 9.2.6 are made such
that the adjoint equations in Ω can easily be read from them. Thus, when (λρ,λui ,λT )T fulfills the
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following adjoint equations in Ω

0 =
3∑

j=1

[
− ∂

∂xj

(
λρuj

)
+ λρ

∂uj

∂xj
+

(
3∑

k=1

λuj uk
∂uj

∂xk

)

+(γ − 1)
(
λuj

∂T
∂xj
− ∂

∂xj
(λuj T )

)
+ λT uj

∂T
∂xj

+ (γ − 1)λT T
∂uj

∂xj

]
0 =λρ

∂ρ

∂xi
− ∂

∂xi
(λρρ) + λTρ

∂T
∂xi
− (γ − 1)

∂

∂xi
(λTρT )

+
3∑

k=1

[
−µ∗

(
∂2λui

∂x2
k

+
∂2λuk

∂xi∂xk
− 2

3
∂2λuk

∂xk∂xi

)
+ λukρ

∂uk

∂xi
− ∂

∂xk
(λuiρuk )

]

+
3∑

k=1

µ∗
[
∂

∂xi
(λTσik ) +

∂

∂xi

(
λT

∂ui

∂xk

)
+
∂

∂xi

(
λT
∂uk

∂xi

)
− 2

3
∂

∂xk

(
λT
∂ui

∂xi

)]

0 =− κ∗∆λT +
3∑

j=1

[
(γ − 1)

(
λTρ

∂uj

∂xj
+ λuj

∂ρ

∂xj
− ∂

∂xj

(
λujρ

))
− ∂

∂xj
(λTρuj )

]
,

where i = 1, 2, 3, all volume integrals will vanish. Hence, only the remaining boundary parts have
to be considered. For prescribed farfield density, velocity, and temperature, one has

ρ′[V ] = 0

u′i [V ] = 0

T ′[V ] = 0

in the farfield Γ+ ∪ Γ−. Consequently, the adjoint farfield boundary conditions can be read from
lemmas 9.2.2, 9.2.5, and 9.2.6:

λρ = 0

λui = 0

λT = 0.

It remains to consider variations on the solid wall Γ0. According to equation (9.5), the pressure is
given by

p = (γ − 1)ρT .

Consequently, the pressure variation is given by

p′[V ] = (γ − 1)ρ′[T ]T + (γ − 1)ρT ′[V ]. (9.24)

Since there are many different ways of how flow solvers handle the farfield boundary conditions,
the farfield adjoint boundary conditions will not be considered here. Instead, they are assumed to
be implemented correctly in whatever adjoint flow solver is used. Merging the boundary integrals of
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9.2 First Order Calculus

lemmas 9.2.2, 9.2.5, and 9.2.6 with the preliminary gradient (9.21) – (9.23) and inserting the no-slip
boundary condition u = 0 on Γ0 together with the pressure variation (9.24) results in

dJ(ρ, u, T , Ω)[V ]

=
∫
Γ0

〈V , n〉

[
3∑

i=1

ai
∂p
∂n

ni −
3∑

i ,k=1

aiµ
∗∂σik

∂n
nk

]
dS

+
∫
Γ0

〈V , n〉 divΓ

(
pa− µ∗σa

)
dS

+
∫
Γ0

3∑
i=1

aip′[V ]ni −
3∑

i ,k=1

aiµ
∗σ′ik [V ]nk dS

+
∫
Γ0

3∑
k=1

λρρu′k [V ]nk dS

+
∫
Γ0

3∑
i ,k=1

[
µ∗
(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)]
u′i [V ] dS

+
∫
Γ0

3∑
i=1

λui nip′[V ]−
3∑

i ,k=1

µ∗λuiσ
′
ik [V ]nk dS

+
∫
Γ0

3∑
k=1

(γ − 1)λTρTnk u′k [V ] dS

+
∫
Γ0

−µ∗
3∑

i ,k=1

(
λTσik ni + λT

∂ui

∂xk
ni + λT

∂uk

∂xi
ni −

2
3
λT
∂ui

∂xi
ni

)
u′k [V ] dS

+
∫
Γ0

κ∗
∂λT

∂n
T ′[V ]− κ∗λT

∂T ′[V ]
∂n

dS.

Note that for contributions from the momentum equations, the preliminary expression containing the
strain tensor variation σ′[V ] was used, which is more convenient in this case due to the same ex-
pression already being present in the preliminary gradient. Also, just as in the incompressible case,
it becomes obvious that arbitrary objective functions will not always lead to consistent adjoint bound-
ary conditions. Here, due to equation (9.24), the objective function matches the state linearization
in such a way that the pressure variation is created on the boundary, and the multiplicators λui

can be chosen such that both the inviscid pressure contribution and the viscous contributions are
eliminated at the same time by the boundary condition

λui = −ai .

For badly chosen objective functions, there is the potential danger that density variations ρ′[V ]
and velocity variations u′[V ] cannot be removed by the same multipliers. The no-slip boundary
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9 Compressible Navier–Stokes Equations

condition for the velocities is a Dirichlet boundary condition, and according to lemma 3.4.3 the
velocity variation is given by

u′i [V ] = −〈V , n〉∂ui

∂n
.

Taking everything together, the preliminary gradient becomes

dJ(ρ, u, T , Ω)[V ]

=
∫
Γ0

〈V , n〉

[
3∑

i=1

(
ai
∂p
∂n

ni − λρρ
∂ui

∂n
ni − λT p

∂ui

∂n
ni

)
−

3∑
i ,k=1

aiµ
∗∂σik

∂n
nk

]
dS

+
∫
Γ0

〈V , n〉 divΓ

(
pa− µ∗σa

)
dS

+
∫
Γ0

〈V , n〉
3∑

i ,k=1

[
−µ∗

(
∂λui

∂xk
nk +

∂λuk

∂xi
nk −

2
3
∂λuk

∂xk
ni

)]
∂ui

∂n
dS

+
∫
Γ0

〈V , n〉
3∑

i ,k=1

µ∗
(
λTσik ni + λT

∂ui

∂xk
ni + λT

∂uk

∂xi
ni −

2
3
λT
∂ui

∂xi
ni

)
∂uk

∂n
dS

+
∫
Γ0

κ∗
∂λT

∂n
T ′[V ]− κ∗λT

∂T ′[V ]
∂n

dS,

which almost fulfills the Hadamard form except for the temperature variations T ′[V ]. In case of an
isothermal wall, the temperature is subject to a Dirichlet boundary condition

T = TB on Γ0.

Thus, lemma 3.4.3 applies again, resulting in

T ′[V ] = 〈V , n〉∂(TB − T )
∂n

.

Consequently, the boundary condition for λT is

λT = 0 on Γ0.

In case of an adiabatic wall, the temperature is subject to a Neumann boundary condition

∂T
∂n

= 0 on Γ0,

and lemma 3.4.5 applies, resulting in∫
Γ0

∂T ′[V ]
∂n

=
∫
Γ0

〈V , n〉
[
−∂

2T
∂n2 + κ〈∇ΓT , n〉 −∆ΓT

]
dS,

where κ is the curvature. Consequently, the adjoint boundary condition is given by

∂λT

∂n
= 0,

which creates the desired expressions.
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9.3 Primal and Adjoint Variables

Remark 9.2.8. The shape derivative for the drag reduction problem, lemma 9.2.7, can be adapted
to lift instead of drag simply by replacing the incident vector a accordingly. Also, the shape derivative
requires knowledge of the normal derivative of the strain tensor

∂σik

∂n
,

which consists of velocity derivatives of second order. Accurately computing second order deriva-
tives of flow unknowns can be problematic for certain finite volume schemes.

9.3 Primal and Adjoint Variables

The construction of the shape derivative in lemma 9.2.7 was conducted using the primal variables
ρ, u, and T , and consequently, the corresponding adjoint variables are λρ, λu, and λT . However,
most flow solvers operate on the conserved variables ρ, ρu, and ρE , and when run in adjoint mode,
it is not immediately clear how to use their respective adjoint variables λρ, λρu, and λρE . However,
since an adjoint variable corresponds to a primal equation, and not a primal variable, the set of
adjoint variables is actually independent of the primal unknowns.

Lemma 9.3.1 (Primal and Adjoint Variables). The shape derivative is independent of the choice of
primal variables.

Proof. Let the conserved and primitive variables in two dimensions be given by

U = (ρ, ρu, ρE)T

Up = (ρ, u, p)T

UT = (ρ, u, T )T .

Furthermore, let M1 and M2 be given by

M1 :=
∂Up

∂U
=


1 0 0 0
−u1

ρ
1
ρ 0 0

−u2
ρ 0 1

ρ 0
(γ−1)‖u‖2

2 (1− γ)u1 (1− γ)u2 (γ − 1)



M2 :=
∂Up

∂UT
=


1 0 0 0
0 1 0 0
0 0 1 0

(γ − 1)T 0 0 (γ − 1)ρ

 ,

such that the following relation holds

M2U ′T[V ] = M1U ′[V ] = U ′p[V ],

since

p′[V ] = (γ − 1)ρ′[V ]T + (γ − 1)ρT ′[V ].
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9 Compressible Navier–Stokes Equations

Let λ solve the formal adjoint system used in the shape derivative, lemma 9.2.7, based on UT

∂J
∂UT

+ λT ∂c
∂UT

= 0.

Consequently, the adjoint system corresponding to a primal formulation in U is constructed by
multiplication with M3 := ∂UT

∂U = M−1
2 M1

∂J
∂UT

M3 + λT ∂c
∂UT

M3 = 0

⇔ ∂J
∂U

+ λT ∂c
∂U

= 0,

which is equivalently solved by the same set of variables λ.
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Chapter 10

Conclusions and Outlook

10.1 Summary

The aim of this work was to conduct a shape sensitivity analysis followed by a study of the shape
Hessian and an actual numerical optimization for a variety of large scale shape optimization prob-
lems in computational fluid dynamics. The Hadamard form of the shape gradient played a crucial
part in numerical structure exploitation for applied shape optimization. Being able to express the
gradient on the surface bypassed all of the problematic partial derivatives, i.e. mesh sensitivity Ja-
cobians, of a shape optimization problem that is considered as a standard optimal control problem
by parameterization. Since the one-shot approach achieves a major speed-up by trading few exact
descent steps for many inexact ones, the discretized Hadamard gradient also greatly supported
the one-shot approach. Furthermore, the gradient evaluation is truly independent of the number of
design parameters, which made using all mesh surface nodes in the optimization possible, enabling
large scale deformations and morphing of shapes.

When using a parameterization, the resulting shapes are usually smooth by construction, mean-
ing that for any choice of design parameters, the resulting shapes are in a desired regularity class.
Unfortunately, this is no longer true in case of a non-parametric shape optimization based on the
Hadamard formula where one needs to make sure the updates maintain regularity of the shape.
Interpreting the gradient as the Riesz representative of the derivative, one has to compute this rep-
resentative in the desired regularity space. Sometimes also called Sobolev gradient method, such
a gradient smoothing essentially turns a steepest descent method into an approximative Newton
method. Thus, the shape Hessian of the problem is a very good candidate for the re-smoothing
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10 Conclusions and Outlook

procedure. Fortunately, the Hadamard form of the shape gradient also allows a better analysis of
the Hessian, which would otherwise be camouflaged by parameterization. The Hessian of a PDE
constraint shape optimization problem usually is a pseudo-differential operator, and this work stud-
ied Fourier analysis to determine the symbol of the Hessian. A Hessian approximation based on its
symbol could be used to greatly accelerate a wide variety of shape optimization problems in fluid
dynamics, up to the adaptively refined multi-level optimization of a complete Onera M6 wing with
more than 36, 000 design parameters using an unstructured surface mesh and the compressible
Euler equations. Special attention was also given to the correct evaluation of the Hadamard form
and the surface shape Hessian approximation, as this usually requires discrete differential geom-
etry on unstructured, triangulated surfaces. The work concludes with a formal extension to the
compressible Navier–Stokes equations using a frozen eddy viscosity approach.

10.2 Future Work

New possibilities created by using the Hadamard form of the shape gradient are very profound.
Being able to conduct large scale morphing of shapes very effectively opens new and fascinat-
ing opportunities for optimization. Transition from the Onera M6 wing to a complete aircraft, i.e.
wing-body-nacelle configurations, is straight forward. After defining new constraints, basically only
the input mesh must be changed. Optimization under uncertainties and aero-structure coupling
can also be envisioned. Preliminary studies for aero-structure interaction are considered in [60],
where the application of new and very fast single instruction multiple data graphics processing units
(GPUs) for numerical optimization was also studied.

Naturally, the formal considerations for the compressible Navier–Stokes equations should also be
applied in an actual numerical optimization. However, for perfecting large scale morphing of shapes,
more robust volume mesh deformations are needed. Since a re-meshing in the volume after most
of the surface updates is infeasible, the procedure to match the volume mesh to the new surface
must be able to create quality meshes for large deformations, even though the mesh deformation is
no longer part of the derivative chain. With the present industrially applied mesh deformation tools,
problems with bad quality and zero or negative volume cells are frequently encountered when the
planform changes too dramatically. The sharp trailing edge also frequently creates troubles with
volume mesh deformation. It can be expected that this behavior worsens when the anisotropic
boundary layer cells are included in a viscous and compressible fluid such as the compressible
Navier–Stokes equations. Automatic mesh refinement and boundary layer discretization is also
problematic in this context.

Another open question is turbulence. While an analytic derivation for the RANS equations is
possible around mean flow, i.e. frozen eddy viscosity, the shape derivation of most—if not all—
turbulence models is rather problematic. Algebraic and one equation models usually have non-
differentiable switchings in the volume, and two equation models usually have problematic boundary
conditions, especially the k -ω model. In general, turbulence models often have discrete expressions
in the viscous wall boundary conditions which is highly contra productive for the all analytic shape
differentiation and the Hadamard theorem. In fact, some turbulent boundary conditions are only
defined discretely. One remedy could be making automatic or algorithmic differentiation better
aware of shape optimization problems. This probably requires more studies of the gap between
discrete, i.e. parameterized, and analytic shape optimization.
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10.2 Future Work

Additionally, free surface flows could be considered. When designing ship hulls, surface wave
patterns need to be considered, and the interaction between the free fluid surface and the shape
of the immersed body can lead to a fascinating coupling. Including buoyancy also results in a
fluid-structure interaction to be considered during optimization. Furthermore, shape optimization
in general can be considered a free surface problem, thus coupled approaches with free interface
problems can lead to considerable synergies.
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