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Abstract

The subject of this thesis is a homological approach to the splitting theory of
PLS-spaces, i.e. to the question for which topologically exact short sequences

0→ X
f−→ Y

g−→ Z → 0

of PLS-spaces X,Y, Z the map g admits a right inverse. We show that the
category (PLS) of PLS-spaces and continuous linear maps is an additive
category in which every morphism admits a kernel and a cokernel, i.e. it
is pre-abelian. However, we also show that it is neither quasi-abelian nor
semi-abelian. As a foundation for our homological constructions we show the
more general result that every pre-abelian category admits a largest exact
structure in the sense of Quillen [25]. In the pre-abelian category (PLS) this
exact structure consists precisely of the topologically exact short sequences
of PLS-spaces. Using a construction of Extk-functors due to Yoneda [41], we
show that one can define for each PLS-space A and every k ≥ 1 a covariant
additive functor

ExtkPLS(A,−) : (PLS)→ (AB)

and a contravariant additive functor

ExtkPLS(−, A) : (PLS)→ (AB)

inducing for every topologically exact short sequence of PLS-spaces a long
exact sequence of abelian groups and group morphisms. These functors are
studied in detail and we establish a connection between the functors ExtkPLS

and the functors ExtkLS for LS-spaces. Through this connection we arrive at
an analogue of a result for Fréchet spaces which connects the functors Proj1

and Ext1 and also gives sufficient conditions for the vanishing of the higher
Extk. Finally, we show that ExtkPLS(E,F ) = 0 for k ≥ 1 whenever E is a
closed subspace and F is a Hausdorff quotient of the space of distributions,
which generalizes a result of Wengenroth [40] that is itself a generalization
of results due to Domański and Vogt [9].
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Zusammenfassung

In der vorliegenden Arbeit wird ein homologischer Ansatz für die Splittingth-
eorie von PLS-Räumen vorgestellt, die sich mit der Frage beschäftigt, für
welche topologisch exakten kurzen Sequenzen

0→ X
f−→ Y

g−→ Z → 0

von PLS-Räumen X,Y, Z die Abbildung g eine stetige lineare Rechtsinverse
besitzt. Wir zeigen, dass die Kategorie (PLS) der PLS-Räume und steti-
gen linearen Abbildungen prä-abelsch ist, also jeder Morphismus in (PLS)
sowohl einen Kern als auch einen Kokern besitzt. Gleichzeitig zeigen wir,
dass diese Kategorie weder quasi-abelsch noch semi-abelsch ist. Um eine
Grundlage für homologische Konstruktionen in (PLS) zu schaffen, zeigen wir
das allgemeinere Ergebnis, dass jede prä-abelsche Kategorie eine maximale
Exaktheitsstruktur im Sinne von Quillen [25] besitzt. In der prä-abelschen
Kategorie (PLS) besteht diese maximale Exaktheitsstruktur gerade aus den
topologisch exakten kurzen Sequenzen von PLS-Räumen. Indem wir eine
Konstruktion der Extk-Funktoren benutzen, die auf Yoneda [41] zurückgeht,
zeigen wir, wie für jeden PLS-Raum A und jedes k ≥ 1 ein additiver kovari-
anter Funktor

ExtkPLS(A,−) : (PLS)→ (AB)

und ein additiver kontravarianter Funktor

ExtkPLS(−, A) : (PLS)→ (AB)

derart definiert werden können, dass sie für jede topologisch exakte kurze Se-
quenz von PLS-Räumen eine lange exakte Sequenz von abelschen Gruppen
und Gruppenhomomorphismen induzieren. Wir untersuchen diese Funk-
toren im Detail und stellen eine Verbindung zwischen den Funktoren ExtkPLS

und den Funktoren ExtkLS für LS-Räume her. Diese Verbindung erlaubt uns
für PLS-Räume die Entsprechung eines Ergebnisses für Fréchet Räume zu
zeigen, welches die Funktoren Ext1 und Proj1 verbindet und zusätzlich hin-
reichende Bedingungen für das Verschwinden der höheren Extk-Gruppen
angibt. Zum Abschluss zeigen wir ExtkPLS(E,F ) = 0 für k ≥ 1, falls E ein
abgeschlossener Unterraum und F ein Hausdorff Quotient des Raumes der
Distributionen sind. Dies verallgemeinert ein Ergebnis von Wengenroth [40],
welches selbst auf Resultaten von Domański und Vogt [9] beruht.
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Chapter 1

Introduction

In the context of linear functional analysis, the so-called splitting theory is
concerned with the following problem: Characterize the pairs (Z,X) of lo-
cally convex spaces X and Z such that for every topologically exact sequence
of locally convex spaces and continuous linear maps

0→ X
f−→ Y

g−→ Z → 0 (1)

the map g admits a right inverse, in which case one says that the sequence
(1) splits. Recall that the above sequence is topologically exact if f is a
topological embedding and g an open surjection with f(X) = g−1({0}).
The map g admits a right inverse if and only if the map

L(Z, g) : L(Z, Y )→ L(Z,Z), h 7→ g ◦ h

is surjective, which can also be formulated in terms of the exactness of the
sequence

0→ L(Z,X)
L(Z,f)−−−−→ L(Z, Y )

L(Z,g)−−−−→ L(Z,Z)→ 0.

Hence, the splitting problem for the sequence (1) is the question wether the
functor L(Z,−) preserves the exactness of this sequence. This makes the
splitting problem a natural candidate for the methods of homological alge-
bra, especially derived functors, which measure to what degree an additive
functor preserves exactness.

The first to use homological methods for the splitting problem in the con-
text of functional analysis, and the one who introduced homological methods
to functional analysis, in general, was Palamodov in 1968 [22, 23]. Using
injective resolutions, he computed for a locally convex space A the right de-
rived functors Extk(A,−) of the functor L(A,−) which acts from the (non-
abelian) category of locally convex spaces to the category of vector spaces
and associates with a locally convex space X the vector space of continu-
ous linear maps L(A,X). The vector space Ext1(Z,X) then characterizes

1



2 CHAPTER 1. INTRODUCTION

the splitting of topologically exact sequences of the form (1), i.e. one has
Ext1(Z,X) = 0 if and only if every exact sequence (1) splits. Starting in the
eighties, the splitting theory for Fréchet spaces, i.e. for sequences of the form
(1) were X,Y, Z are Fréchet spaces, was reinvented and developed further
by Vogt [36, 37] with a strong emphasis on the functional analytic aspects.
The classical splitting result for Fréchet spaces is due to Vogt and Wagner
[35] and states that Ext1(E,F ) = 0 whenever E is a Fréchet space with
(DN), F is a Fréchet space with (Ω), and one of them is nuclear. This led
to important results about the structure of nuclear Fréchet spaces like, e.g.,
for subspaces and quotients of the space s of rapidly decreasing sequences.
The splitting theory for Fréchet spaces has been further refined by Frerick
and Wengenroth [11, 40] and is now rather complete.

A PLS-space is a locally convex space that arises as the projective limit
of a sequence of strong duals of Fréchet-Schwartz spaces. This class con-
tains many spaces arising in classic analytic problems like Fréchet-Schwartz
spaces, spaces of real analytic functions, spaces of holomorphic functions
and smooth functions, spaces of distributions, and various spaces of ultra-
differentiable functions and ultradistributions which are important for the
theory of partial differential equations. For topologically exact sequences

0→ X
f−→ Y

g−→ Z → 0

of PLS-spaces X,Y, Z the splitting problem has been investigated by dif-
ferent authors, but the theory is far from being complete. In [9] Vogt and
Domanski, and Wengenroth in [40] obtained splitting results for X being a
Hausdorff quotient of the space of distributions D′(Ω) and Z being a sub-
space of D′(Ω) as well as for the case where Z is isomorphic to the space
of all sequences. The dissertation of Kunkle [17] deals with the case where
X and Z are so-called power series Köthe PLS-sequence spaces and gives
a nearly complete solution in this case. In [4] Bonet and Domański give,
under some mild assumptions, a complete solution for the splitting problem
when Z is a Fréchet-Schwartz space. In all the mentioned papers the authors
obtain their results using functional analytic arguments only und make use
of an ad-hoc definition Ext1

PLS(Z,X) = 0 when every sequence of the form
(1) splits. This lack of using homological methods is due to the fact that
one cannot define the right derived functors in the sense of Palamodov of
the functors L(A,−) and L(−, A) for the category of PLS-spaces since it
neither has enough injective nor enough projective objects (in fact there are
also other obstacles to this construction; see chapter 2).

The aim of this thesis is a homological approach to the splitting theory of
PLS-spaces. For this purpose we will show that one can define for each
PLS-space A and every k ≥ 1 a covariant additive functor

ExtkPLS(A,−) : (PLS)→ (AB)
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and a contravariant additive functor

ExtkPLS(−, A) : (PLS)→ (AB)

inducing for every topologically exact sequence 0 // X // Y // Z // 0
of PLS-spaces a long algebraically exact sequence

0→ L(A,X)→ L(A, Y )→ L(A,Z)→ Ext1
PLS(A,X)→ Ext1

PLS(A, Y )→

Ext1
PLS(A,Z)→ Ext2

PLS(A,X)→ . . . ,

respectively a long algebraically exact sequence

0→ L(Z,A)→ L(Y,A)→ L(X,A)→ Ext1
PLS(Z,A)→ Ext1

PLS(Y,A)→

Ext1
PLS(X,A)→ Ext2

PLS(Z,A)→ . . .

of abelian groups and group morphisms. Unlike in the categories of locally
convex spaces, Fréchet spaces or Banach spaces, these Extk-functors will not
be constructed as derived functors by using injective or projective resolutions
since these are not available in the category of PLS-spaces. Instead, we use
a construction of the groups ExtkPLS(Z,X) that is due to Yoneda [41] and
define these groups in terms of equivalence classes of topologically exact
sequences of the form

0→ X → Yk−1 → Yk−2 → . . .→ Y1 → Y0 → Z → 0.

This approach, which does neither depend on injective nor projective res-
olutions, is not so well suited for a direct calculation of the Extk-groups
as the one using derived functors. Nevertheless, it allows, under mild as-
sumptions, to connect the vanishing of ExtkPLS(Z,X) with the vanishing of
ExtkLS(Zn, Xm) in the category of LS-spaces, where Zn andXm are LS-spaces
giving rise to the PLS-spaces Z and X, respectively. These ExtkLS-groups
in turn can be investigated through the well-established splitting theory for
Fréchet spaces simply by a duality argument.

In the first chapter we introduce the fundamental notions of category the-
ory with which we will be concerned. Our basic setting will be that of
a pre-abelian category, i.e. an additive category in which every morphism
admits a kernel and a cokernel. We recall some important properties of
a pre-abelian category, like, e.g., the existence of pushouts and pullbacks.
Then, we introduce the notion of an exact category in the sense of Quillen
[25], of which the well-treated class of quasi-abelian categories is a special
case. A kernel-cokernel pair in an additive category is a pair of composable
morphisms

X
f−→ Y

g−→ Z
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such that f is a kernel of g and g is a cokernel of f . An exact category
(A, E) is an additive category A together with a distinguished class E of
kernel-cokernel pairs which are subject to certain stability properties. The
class E is then called an exact structure and its elements are called short
exact sequences. The notion of an exact category is very useful, since it al-
lows the construction of almost the complete toolset of homological algebra,
like the derived category and (total) derived functors. The class of all split
exact kernel-cokernel pairs provides the smallest exact structure on every
additive category. Of course, this exact structure is not very profitable. Es-
pecially with respect to the splitting problem one is rather interested in a
largest exact structure. It is quite often the case that the class of all kernel-
cokernel pairs is an exact structure. This is the case for every quasi-abelian
category, like the categories of locally convex spaces, Fréchet spaces, and
Banach spaces. However, this unfortunately fails in general. Especially, we
will show in the second chapter that it fails for the category of PLS-spaces.
For this category we will have to work with an exact structure that is a
proper subclass of all kernel-cokernel pairs. To arrive at this exact structure
for PLS-spaces we will prove in the second section of the first chapter the
far more general result that every pre-abelian category C admits a largest
exact structure E . This is a joint result with Sven-Ake Wegner and is the
main subject of the article [31].

In the second chapter we look into the structure of the category (PLS) of
PLS-spaces and continuous linear maps. We will show that every morphism
f : X → Y in (PLS) admits a kernel and a cokernel and that therefore (PLS)
is a pre-abelian category. The cokernel of f in (PLS) though will turn out to
be the canonical morphism Y → C(Y/f(X)) to the Hausdorff-completion
of the quotient Y/f(X). As a consequence of this, the notion of a topo-
logically exact sequence 0 → X → Y → Z → 0 of PLS-spaces differs from
the categorical notion of a kernel-cokernel pair. In the classical categories
appearing in the context of functional analysis, these two notions always co-
incide. In fact, Palamodov uses the properties of a kernel-cokernel pair for
his homological constructions in quasi-abelian and semi-abelian categories.
The kernel-cokernel pairs in (PLS) though, do not admit Palamodov’s ap-
proach, in fact we will show that the category (PLS) is neither quasi-abelian
nor semi-abelian. As a pre-abelian category however, it has a largest exact
structure, as shown in the first chapter, and it turns out that this exact
structure EPLS is none other than the class of topologically exact sequences
of PLS-spaces. Therefore, the topologically exact sequences of PLS-spaces,
in which one is ultimately interested from a functional analytic point of view,
is well-behaved enough to allow a meaningful homological approach to the
splitting problem, which is the subject of the last two chapters.

In the third chapter we will give a short introduction to the Yoneda-Ext-
functors for exact categories. We will introduce the terminology neces-
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sary for the Extk-functors and the long exact sequences described above.
In the second section of this chapter we will provide characterizations of
Extk(Z,X) = 0 that do not use the, rather unwieldy, description of the
elements of Extk(Z,X) as equivalence classes, but use properties of ex-
act sequences. For example, one has the familiar characterization that
Ext1(Z,X) = 0 if and only if every exact sequence 0 → X → Y → Z → 0
splits. In the case k > 1 the characterizations are somewhat more complex.

In the last chapter we will apply the homological constructions of the third
chapter to the exact category (PLS, EPLS) and then investigate more closely
the functors ExtkPLS. In the first section we show that the vanishing of
the Extk-groups is a three space property and then establish a connection
between the functors ExtkPLS for PLS-spaces and the functors ExtkLS for LS-
spaces. We show that ExtkLS(Z,X) is isomorphic to ExtkPLS(Z,X) if Z and X
are LS-spaces and that for the vanishing of ExtkPLS(Z,

∏
n∈NXn), where the

Xn are LS-spaces, it is sufficient that ExtkLS(Zn, Xm) = 0 for all n,m ∈ N,
where the Zn are the LS-spaces giving rise to the PLS-space Z. In the sec-
ond section we will apply the results of the first section to the canonical
resolution

0→ X →
∏
n∈N

Xn →
∏
n∈N

Xn

of a PLS-space X and arrive at an analogue of a result for Fréchet spaces that
connects the functors Proj1 and Ext1 and also yields sufficient conditions for
the vanishing of the higher Extk (see [40, Proposition 5.1.5]). More precisely,
we will show that if (Xn)n∈N is a sequence of LS-spaces giving rise to a PLS-
space X and (Zm)m∈N is a sequence of LS-spaces giving rise to a PLS-space
Z such that Proj1(X) = 0 and ExtkPLS(Zm, Xn) = 0 for all n,m ∈ N and 1 ≤
k ≤ k0, where 1 ≤ k0 ≤ ∞, then there is an isomorphism Ext1

PLS(Z,X) ∼=
Proj1(Y), where Y is a spectrum of spaces of continuous linear maps, and
in addition one has ExtkPLS(Z,X) = 0 for 2 ≤ k ≤ k0. This reduces, under
the (mild) assumption Proj1(X) = 0, the problem of the vanishing of the
higher Extk-groups in the category of PLS-spaces to the problem of the
vanishing of the higher Extk-groups in the category of LS-spaces. The latter
problem is accessible by a duality argument. Finally, we will show in the
last section that for k ≥ 2 the group ExtkPLS(E,F ) always vanishes if E is
a closed subspace of the space of distributions D′(Ω) and F is a Hausdorff
quotient of D′(Ω). By using the long exact sequences, this also yields a new
proof of a splitting result for PLS-spaces due to Wengenroth [40], which is
based on the work of Domański and Vogt [9] and states Ext1

PLS(E,F ) = 0
in the above setting. Alltogether, we have shown that for k ≥ 1 the groups
ExtkPLS(E,F ) always vanish for subspaces E and quotients F of D′(Ω).
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Chapter 2

Pre-abelian and Exact
Categories

The use of homological methods in functional analysis was started by Palam-
odov [22, 23], re-invented by Vogt [38] and expanded by many others (see
the book of Wengenroth [40] for detailed references and concrete applica-
tions). What distinguishes the homological algebra in functional analysis
from the classical one used in the purely algebraic context (as presented
in, e.g., [7, 18, 20, 39]), is the fact that its categories are not abelian. Re-
call that an additive category A with kernels and cokernels is abelian, if
for every morphism f : X → Y the induced morphism f̄ : coim f → im f is
an isomorphism. The additive categories that are important for functional
analysis, like, e.g., locally convex spaces, Banach spaces or Fréchet spaces,
almost never fulfill this property. For example in the category of locally
convex spaces and continuous linear maps, the induced morphism f̄ of a
continuous linear map f : X → Y is given by

f̄ : X/f−1({0})→ f(X), x+ f−1({0}) 7→ f(x),

and it is easy to see that f̄ is an isomorphism if and only if f is open onto
its range.

In this chapter we will briefly introduce the basic types of additive categories
appearing in the context of functional analysis, especially in the theory of
locally convex spaces. Our starting point will be the notion of a pre-abelian
category, i.e. of an additive category with kernels and cokernels. Then we
introduce the concept of an exact category in the sense of Quillen [25].
This is an additive category in which a distinguished class of short exact
sequences (a so-called exact structure) is specified and which allows for the
construction of almost the complete homological toolset, as long as one re-
mains within this exact structure. The most prominent special case of an
exact category is that of a quasi-abelian category, which we also introduce
together with the weaker notion of a semi-abelian category. In the second

7



8 CHAPTER 2. PRE-ABELIAN AND EXACT CATEGORIES

section of this chapter we show that every pre-abelian category admits a
largest exact structure. As a consequence of this, meaningful homological
algebra is not only possible in the well-treated context of quasi-abelian and
semi-abelian categories, but in the much broader context of pre-abelian cate-
gories. We will use this maximal exact structure in the subsequent chapters,
when dealing with PLS-spaces.

2.1 Pre-abelian Categories

We assume that the reader is familiar with fundamental categorical concepts,
like that of additive categories, kernels, cokernels, pullbacks and pushouts.
Familiarity with basic category theory as presented, e.g., in Weibel [39,
Appendix A] should suffice for a complete understanding of the categorical
arguments used in the text.

Definition 2.1.1. An additive category C is called pre-abelian, if every mor-
phism in C has a kernel and a cokernel.

In the whole section, C denotes a pre-abelian category. For a morphism
f : X → Y in C, we will always denote its kernel by kf : ker f → X and
its cokernel by cf : Y → cok f . Furthermore, we adopt the notation of
Richman, Walker [27] and call a morphism f a kernel, if it is the kernel of
some morphism g : Y → Z. Dually, we call f a cokernel, if it is the cokernel
of some morphism h : W → X. It is easy to see that f is a kernel if and
only if it is a kernel of its cokernel and dually f is a cokernel if and only
if it is a cokernel of its kernel. An image of f is a kernel of a cokernel of
f and will be denoted by if : im f → Y . Dually, a coimage of f , which
will be denoted by cif : X → coim f , is a cokernel of a kernel of f . In
Schneider’s notation [30, Definition 1.1.1] a morphism f : X → Y in C is
called strict if the induced morphism f̄ : coim f → im f is an isomorphism.
From his remarks in [30, Remark 1.1.2] it follows that a morphisms f is
a strict epimorphism if and only if it is a cokernel and that f is a strict
monomorphism if and only if it is a kernel. Note that strict morphisms are
called homomorphisms by Wengenroth [40] in analogy to the notation of
Köthe [16, p. 91] for the category of locally convex spaces (see also Meise,
Vogt [19, p. 307]). As noted by Kelly [15, p. 126] a morphism in a pre-
abelian category is a cokernel if and only if it is a regular epimorphism in
his terminology. Clearly, the notations of Schneiders and Kelly are more
general than those of Richman, Walker. However, the latter notation will
turn out to be the most convenient one for our purpose in this treatise.

An important property of pre-abelian categories is the existence of pullbacks
and pushouts. Given two morphisms f : X → Z, g : Y → Z having the same
codomain Z, the pullback (P, pX , pY ) of f and g can be constructed as the
kernel-object of the morphism ( f, −g ) : X × Y → Z, together with the
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composition of the kernel-morphism followed by the canonical morphisms
from the product to X, resp. to Y . Dually, the pushout (S, sX , sY ) of
two morphisms f : W → X, g : W → Y having the same domain W , can be
obtained as the cokernel-object of the morphism

(
f
−g
)

: W → X×Y , together
with the composition of the morphisms from X, resp. from Y , to the product
and the cokernel-morphism. We will call a commutative diagram

P
pX
��

pY // Y
sY
��

X sX
// S

a pullback square, if (P, pX , pY ) is a pullback of sX and sY . It will be called
a pushout square if (S, sX , sY ) is a pushout of pX and pY .

For later use we note the following lemma about kernels and cokernels of
parallel arrows in pullback and pushout squares, which is a well-known result
(see, e.g., [27, Theorem 5]):

Lemma 2.1.2.
i) If g : Y → Z, t : T → Z are morphisms in C and (P, pT , pY ) is their

pullback, then there is a morphism j : ker g → P making the diagram

ker g
j // P

pT //

pY
��

PB

T

t
��

ker g
kg
// Y g

// Z

commutative and being a kernel of pT .

ii) If f : X → Y , t : X → T are morphisms in C and (S, sT , sY ) is their
pushout, then there is a morphism c : S → cok f making the diagram

X
f //

t
��

PO

Y

sY
��

cf // cok f

T sT
// S c

// cok f

commutative and being a cokernel of sT .

A pair (f, g) of composable morphisms X
f−→ Y

g−→ Z is called a kernel-
cokernel pair if f is a kernel of g and g is a cokernel of f . In many important
categories in functional analysis, like that of locally convex spaces, Banach
spaces or Fréchet spaces, respectively, the kernel-cokernel pairs coincide with
the topologically exact sequences, i.e. the sequences of continuous linear
maps

0→ X
f−→ Y

g−→ Z → 0
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such that f is injective and open onto its range, g is an open surjection and
f(X) = g−1({0}). However, this need not be the case in every category. For
example, we will see in the second chapter that in the category of PLS-spaces
and continuous linear maps the class of topologically exact short sequences
is a proper subclass of the kernel-cokernel pairs.

The construction of the diverse tools of homological algebra in additive
categories, like, e.g., derived functors, spectral sequences and the derived
category, requires some basic stability properties of kernel-cokernel pairs.
The essence of what a “good class” of kernel-cokernel pairs should have, was
captured by Quillen [25] and is contained within the following definition:

Definition 2.1.3. Let A be an additive category. If a class E of kernel-
cokernel pairs on A is fixed, an admissible kernel is a morphism f such that
there exists a morphism g with (f, g) ∈ E . Admissible cokernels are defined
dually. An exact structure on A is a class E of kernel-cokernel pairs which
is closed under isomorphisms and satisfies the following axioms.

(E0) For each object X, idX : X → X is an admissible kernel.

(E0)op For each object X, idX : X → X is an admissible cokernel.

(E1) If f : X → Y and f ′ : Y → Y ′ are admissible kernels, then f ′ ◦ f is an
admissible kernel.

(E1)op If g : Y → Z and g′ : Z → Z ′ are admissible cokernels, then g′ ◦ g is an
admissible cokernel.

(E2) If f : X → Y is an admissible kernel and t : X → T is a morphism,
then the pushout

X
f //

t
��

PO

Y
sY
��

T sT
// S

of f and t exists and sT is an admissible kernel.

(E2)op If g : Y → Z is an admissible cokernel and t : T → Z is a morphism,
then the pullback

P
pT //

pY
��

PB

T

t
��

Y g
// Z

of g and t exists and pT is an admissible cokernel.

An exact category is an additive category A together with an exact structure
E ; the kernel-cokernel pairs in E are called short exact sequences.

Note, that the above definition of an exact category is self-dual, i.e. (C, E) is
an exact category if and only if (Cop, Eop) is an exact category, which allows
for reasoning by dualization.
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The most prominent cases of exact categories, especially in the context of
functional analysis, are those pre-abelian categories whose exact structure
consists of all kernel-cokernel pairs. These categories are called quasi-abelian
and have been studied independently and under different names by several
authors, see the historical remarks in Rump [29, section 2]. Quasi-abelian
categories are the natural starting point for the use of homological methods
in functional analysis since the categories of topological vector spaces and
locally convex spaces as well as several important subcategories, like Fréchet
or Banach spaces, are all quasi-abelian (but not abelian). The main subject
of this treatise though, the category of PLS-spaces, is not a quasi-abelian
category, as will be shown in the second chapter.

The usefulness of the notion of an exact category is based on the fact that
its definition yields the prerequisites necessary to prove the diverse diagram
lemmas of homological algebra, like, e.g., the five-, nine-, horseshoe- and
snake-lemma. This in turn yields almost the complete homological toolset,
as it allows the construction of the derived category (see [21]) and the notion
of (total) derived functors in the sense of Grothendieck-Verdier [33]. A
comprehensive and self-contained exposition of the theory of exact categories
can be found in the article of Bühler [5]. We will refer to this article for
most of the results about exact categories.

With regard to applications, it is of special importance that classical derived
functors can be defined in the familiar way for exact categories:

Remark 2.1.4 (Derived Functors). The theory of classical derived func-
tors, see, e.g., Cartan-Eilenberg [7], Mac Lane [18] or Weibel [39] for the
abelian case and Palamodov [22, 23] and Wengenroth [40] for the non-abelian
cases used in the theory of locally convex spaces, can also be adapted to the
more general setting of exact categories.

First note that the notion of injective and projective objects in an exact cat-
egory is made with regard to the exact structure, i.e. an object I of an exact
category (C, E) is called injective, if for every admissible kernel f : X → Y
every morphism X → I factors as

X

��

f // Y

~~}
}

}

I

and one says that the category C has enough injectives if for every object X
there exists an admissible kernel X → I into an injective object I. The no-
tions of projective objects and of enough projectives are defined dually. Let
then (C, E) be an exact category with enough injectives and let F : C → A
be an additive functor to an abelian category A. In analogy to the abelian
case, one can show that every object X of C has an injective resolution
X ↪→ I• and that this resolution is well-defined up to homotopy equivalence
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(see [5, Proposition 12.3 and Theorem 12.9]). As a consequence, the com-
plexes F (I•) and F (J•) are chain homotopy equivalent for any two injective
resolutions X ↪→ I• and X ↪→ J•. One can therefore define the right derived
functors of F as

RiF (X) = H i(F (I•))

on the objects. Given a morphism f : X → Y in C and injective reso-
lutions X ↪→ I• and Y ↪→ J•, the morphism f extends uniquely up to
chain homotopy equivalence to a chain map f• : I• → J•, which then in
turn yields a morphism RiF (f) : RiF (X)→ RiF (Y ). The uniqueness prop-
erty of the chain map f• also gives RiF (g ◦ f) = RiF (g) ◦ RiF (f) and
RiF (idX) = idRiF (X), which shows that RiF : C → A is a functor.

Given a short exact sequence 0→ X → Y → Z → 0 one can show, with the
help of the horseshoe lemma for exact categories (see [5, Theorem 12.9]),
the existence of a long exact sequence

. . .→ Ri−1F (Z)→ RiF (X)→ RiF (Y )→ RiF (Z)→ Ri+1F (X)→ . . .

of objects and morphisms in A. In addition, the functor R0F is left-exact,
i.e. it sends elements of the exact structure E to left-exact sequences in A,
such that the connected sequence (RiF )i≥0 forms a universal δ-functor in
the sense of Grothendieck [12]. In the terminology of Palamodov [23], a
left-exact functor is called injective. Moreover, if F is left-exact, there is
an isomorphism of functors R0F ∼= F and the RiF measure the failure of
F to be exact. If F sends admissible kernels to monomorphisms, i.e. F
is semi-injective in the terminology of Palamodov [23], one can also define
the additional right derived functor F+ : C → A in the above setting. This
functor measures the failure of F to be left-exact, i.e. F is left-exact if and
only if F+ vanishes. Dually to the above, one can define the left derived
functors of an additive functor, if the category C has enough projectives.

Note that for the above construction of the derived functors one does not
necessarily need an exact structure. Palamodov [22, 23] introduced them
in the weaker context of semi-abelian categories. A pre-abelian category is
called semi-abelian, if for every morphism f : X → Y the induced morphism
f̄ : coim f → im f is both a monomorphism and an epimorphism. Every
quasi-abelian category is semi-abelian (see [30, Corollary 1.1.5.]) and for a
long time all the known examples of semi-abelian categories in the literature
also enjoyed the property of being quasi-abelian. This lead Raikov [26]
to conjecture that every semi-abelian category is quasi-abelian, i.e. that
the kernel-cokernel pairs of a semi-abelian category always form an exact
structure. That this is not the case is contained in the article [3] of Bonet
and Dierolf, who show that the category of bornological locally convex spaces
and continuous linear maps is a counterexample to Raikov’s conjecture (see
also [31, Example 4.1] for a discussion of this counterexample). Later, Rump
[29] constructed a purely algebraic counterexample.
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2.2 The Maximal Exact Structure of a Pre-abelian
Category

Our basic tool for the investigation of the splitting theory of PLS-spaces will
be Extk-functors and the associated long exact sequence. In the context of
pre-abelian categories, one way to construct these is as the derived functors
of the functor Hom (see, e.g., [23, 37, 40]) in the way of 2.1.4. For this,
the minimal prerequisites are that the category in question is semi-abelian
and has enough injectives. When one does not have these, as is the case
for PLS-spaces (see chapter 2), one can nonetheless construct Extk-functors
and the long exact sequence, but the properties of an exact structure will
then be needed.

In every additive category A the class of split exact sequences, i.e. the kernel-
cokernel pairs (f, g) such that g has a right inverse, form an exact structure
and this is contained within every other exact structure on A (see [5, Lemma
2.7 and Remark 2.8]), hence it is the minimal exact structure. Of course,
this exact structure does not yield much useful information. Especially for
splitting theory, i.e. the question which elements of an exact structure are
the split exact ones, it is rather pointless. Of much more interest is the
existence of maximal exact structures, as for example the class of all kernel-
cokernel pairs in the case of quasi-abelian categories. In this section we will
show that every pre-abelian category C admits a largest exact structure E
in such a way, that C is quasi-abelian if and only if E consists of all kernel-
cokernel pairs. This result is a joint work with Sven-Ake Wegner and is the
main subject of the article [31].

In the whole section, C denotes a pre-abelian category. The following def-
inition will be essential for this section and was introduced by Richman,
Walker [27, p. 522].

Definition 2.2.1.

i) A cokernel g : Y → X in C is said to be semi-stable, if for every pullback
square

P
pT //

pY
��

PB

T

t
��

Y g
// X

the morphism pT is also a cokernel.

ii) A kernel f : X → Y in C is said to be semi-stable, if for every pushout
square

X
f //

t
��

PO

Y
sY
��

T sT
// S
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the morphism sT is also a kernel.

The notion of a semi-stable cokernel coincides with that of a totally regular
epimorphism, as defined by Kelly [15, p. 124] in the case of a pre-abelian
category. Kelly remarks that this notion was defined by Grothendieck (un-
der a different name), see [15, p. 124].

Recall that a morphism g : Y → Z is called a retraction, if there exists a
morphism r : Z → Y with g◦r = idZ , i.e. if it admits a right inverse. Dually,
a morphism f : X → Y is called a coretraction, if there exists a morphism
l : Y → X with l ◦ f = idX , i.e. if it admits a left inverse. Because retrac-
tions are stable under pullbacks, coretractions are stable under pushouts,
isomorphisms are stable under both and because pullbacks and pushouts
are transitive, we obtain the following:

Remark 2.2.2.
i) In the situation of 2.2.1, pT and sT are again semi-stable.

ii) Retractions are semi-stable cokernels.

iii) Coretractions are semi-stable kernels.

iv) Isomorphisms are semi-stable cokernels and semi-stable kernels.

If C is a full additive subcategory of the category (TVS) of topological vector
spaces and continuous linear maps that contains the ground field K, it is
easily seen that every kernel f : X → Y of a morphism g : Y → Z in C is
an injective map and that the kernel object X is algebraically isomorphic to
g−1({0}). In contrast, a cokernel g : Y → Z of f need not be algebraically
isomorphic to the quotient Z/f(Y ), it does not even need to be surjective
(see 3.1.5.(ii) for an example). However, if g is semi-stable we can at least
establish surjectivity:

Proposition 2.2.3. Let C be a pre-abelian category that is a full additive
subcategory of the category (TVS) containing the ground field K. Then
every semi-stable cokernel g : Y → Z in C is surjective.

Proof. Suppose g is not surjective. Choose z0 ∈ Z with z0 /∈ g(Y ). Then
the mapping φz0 : K → Z, λ 7→ λz0 is linear and continuous, hence it is a
morphism in C. The pullback (P, pY , pK) of φz0 and g in (TVS) is the space
P = {(y, λ) ∈ Y ×K | g(y) = φz0(λ) } together with the restrictions pY and
pK of the projections to P . Since z0 /∈ g(Y ) we have P = g−1({0})×{0} and
therefore pK(P ) = {0}. The pullback (Q, qY , qK) of φz0 and g in C factors
as follows

Q qK

��

qY

$$

µ

��?
?

?

P
pK //

pY
��

K
φz0��

Y g
// Z
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for a unique morphism µ : Q → P . Then qK(Q) = {0}, hence it is not an
epimorphism in C, in contradiction to g being a semi-stable cokernel.

For later use we recall the following stability properties of semi-stable kernels
and cokernels which will be essential for the proof of 2.2.5 and are due to
Kelly.

Proposition 2.2.4. (Kelly [15, Proposition 5.11 and 5.12]) Let f : X → Y
and g : Y → Z be morphisms in C. Put h := g ◦ f : X → Z.

i) If f and g are semi-stable cokernels, then h is a semi-stable cokernel.

ii) If f and g are semi-stable kernels, then h is a semi-stable kernel.

iii) If h is a semi-stable cokernel, then g is a semi-stable cokernel.

iv) If h is a semi-stable kernel, then f is a semi-stable kernel.

Let us remark that 2.2.4 can be proved in an elementary way by very slight
modifications of the proofs of Schneiders [30, Propositions 1.1.7 and 1.1.8]
and by using the fact that in a diagram of the form

X
f //

a
��

Y
g //

b
��

PB

Z

c
��

X ′
f ′
// Y ′

g′
// Z ′

the left-hand square is a pullback if and only if this is true for the exterior
rectangle (cf. Kelly [15, Lemma 5.1]).

We will now show that C admits a largest exact structure E . The proof of
[E1op] in the following was inspired by that of Keller [14, Proposition after
A.1].

Theorem 2.2.5. If C is a pre-abelian category then the class

E =
{

(f, g) | (f, g) is a kernel-cokernel pair, f is a semi-

stable kernel and g is a semi-stable cokernel
}

is an exact structure on C. Moreover, E is maximal in the sense that all exact
structures on C are contained in it. In the notation of Richman, Walker [27,
p. 524] the pairs in E are called stable.

Proof. We show that E is closed under isomorphisms. Let (f, g) ∈ E and let

X
f //

iX
��

Y
g //

iY
��

Z

iZ
��

X ′
f ′
// Y ′

g′
// Z ′
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be a commutative square in C with isomorphisms iX , iY and iZ . Then
(f ′, g′) belongs to C. In fact, every commutative square

E
h //

φ
��

F

ψ
��

E′
h′
// F ′

in C with isomorphisms φ and ψ is a pullback square as well as a pushout
square, hence f ′ is a semi-stable kernel and g′ a semi-stable cokernel by
2.2.2.(i) and it is easy to see that f ′ is the kernel of g′. This shows (f ′, g′) ∈ E .

By Bühler [5, Remark 2.4] (cf. Keller [14, App. A]) the axioms in the defi-
nition of exact category are somewhat redundant and it is in fact enough to
check the axioms [E0], [E0]op, [E1]op, [E2] and [E2]op in order to show that
E is an exact structure.

[E0] and [E0]op are satisfied by 2.2.2.(iv).

[E2]op: Since C is pre-abelian, the pullback of any two morphisms is defined.
Let (f, g) ∈ E , assume that

P
pT //

pY
��

PB

T

t
��

Y g
// Z

is a pullback square. According to 2.1.2.(i) we get a kernel k : X → P of pT
such that

X
k // P

pT //

pY
��

PB

T

t
��

X
f
// Y g

// Z

is commutative. Since g is a semi-stable cokernel, the same is true for pT by
2.2.2.(i). Hence, the first row in the above diagram is a kernel-cokernel pair.
Moreover, pY ◦ k = f and thus by 2.2.4.(iv) the morphism k is a semi-stable
kernel, which shows (k, pT ) ∈ E .

[E2]: Since C is pre-abelian, the pushout of any two morphisms does exist.
The pair (f, g) is in E if and only if (gop, fop) is in Eop. Then [E2] follows
from [E2]op by duality.

[E1]op: Let (f, g), (f ′, g′) ∈ E be pairs such that g′ ◦ g is defined and let
k : K → Y be a kernel of g′ ◦ g. Then g′ ◦ g is a semi-stable cokernel by
2.2.4.(i) and (k, g′ ◦g) is a kernel-cokernel pair. Thus it remains to be shown
that k is a semi-stable kernel.

Since g′ ◦ g ◦ k = 0, there exists a unique α : K → X ′ with f ′ ◦ α = g ◦ k.
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Claim A. The diagram

K
α //

k
��

(1)

X ′

f ′
��

Y g
// Z

is a pullback square.

Let lY : L→ Y and lX′ : L→ X ′ be morphisms with f ′ ◦ lX′ = g ◦ lY . Then
g′ ◦ g ◦ lY = g′ ◦ f ′ ◦ lX′ = 0, hence there exists a unique η : L → K with
lY = k ◦η. This yields f ′ ◦ lX′ = g ◦ lY = g ◦k ◦η = f ′ ◦α◦η and from this it
follows lX′ = α◦η since f ′ is a monomorphism. Since k is a monomorphism,
the morphism η is unique with this property, hence (1) is a pullback square.
Thus, Claim A is established.

Claim B. Let (f, g) ∈ E and

P
pR //

pY
��

PB

R

r
��

Y g
// Z

be a pullback square. Then (
(−pR

pY

)
, ( r, g )) ∈ E .

By 2.1.2.(i) we have a commutative diagram

X
k // P

pR //

pY
��

PB

R

r
��

X
f
// Y g

// Z

such that k is a kernel of pR and by [E2]op the pair (k, pR) is in E . We show
that

X
f //

k
��

(2)

Y
ωY
��

P
(−pRpY )

// R⊕ Y

is a pushout, where ωY denotes the canonical morphism. Let lY : Y → L and
lP : P → L be morphisms such that lY ◦f = lP ◦k. Then (lY ◦pY −lP )◦k = 0
holds and there is a unique morphism γ : R→ L with γ ◦ pR = lY ◦ pY − lP
since pR is the cokernel of k. This in turn gives rise to a unique morphism
µ : R ⊕ Y → S with γ = µ ◦ ωR and lY = µ ◦ ωY , where ωR denotes the
canonical morphism. We compute lP = lY ◦pY −γ◦pR = lY ◦pY −µ◦ωR◦pR =
µ ◦ (ωY ◦ pY − ωR ◦ pR) = µ ◦

(−pR
pY

)
. The uniqueness of µ follows from the

fact that γ is unique and that pR is an epimorphism. Hence, (2) is a pushout
and therefore

(−pR
pY

)
is a semi-stable kernel. It remains to be shown that
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( r, g ) is a cokernel of
(−pR

pY

)
since then the claim follows by [E2]. We show

that the pullback diagram in Claim B is also a pushout. Let lR : R → L
and lY : Y → L be morphisms with lY ◦ pR = lY ◦ pY . Then we have
lY ◦ f = lY ◦ pY ◦ k = lR ◦ pR ◦ k = 0, hence the universal property of the
cokernel g gives rise to a unique morphism λ : Z → L with lY = λ ◦ g. In
addition, we have lR ◦ pR = lY ◦ pY = λ ◦ g ◦ pY = λ ◦ r ◦ pR and therefore
lR = λ ◦ r since pR is an epimorphism. This establishes Claim B.

As a consequence of Claim B we know that the pair (p, q) of morphisms
p :=

(−α
k

)
: K → X ′ ⊕ Y and q := ( f ′, g ) : X ′ ⊕ Y → Z belongs to E . We

put r :=
(
f ′ 0
0 idY

)
and obtain the commutative diagram

X ′
f ′ //

ωX′
��

(3)

Z

ωZ
��

X ′⊕ Y r
// Z ⊕ Y

where ωX′ and ωZ are the canonical morphisms.

Claim C. (3) is a pushout square.

Let lX′⊕Y : X ′ ⊕ Y → L and lZ : Z → L be morphisms in C such that
lZ ◦ f ′ = lX′⊕Y ◦ ωX′ . Denote lY := lX′⊕Y ◦ ωY where ωY : Y → Z ⊕ Y is
the canonical morphism. We have δ := ( lZ , lY ) : Z ⊕ Y → L and thus

lX′⊕Y ◦ ωX′ = lZ ◦ f ′ = δ ◦ ωZ ◦ f ′ = δ ◦ r ◦ ωX′ ,
lX′⊕Y ◦ ωY = δ ◦ ωY = δ ◦ ωY ◦ πY ◦ r ◦ ωY

= δ ◦ (idZ⊕Y − ωZ ◦ πZ) ◦ r ◦ ωY = δ ◦ r ◦ ωY

where πY : Z ⊕ Y → Y and πZ : Z ⊕ Y → Z are the canonical morphisms.

Hence the universal property of the coproduct yields lX′⊕Y = δ ◦ r. The
uniqueness of δ follows from the universal property of the coproduct, which
yields Claim C.

Now, r is a semi-stable kernel and by 2.2.4.(iii) the composition r ◦ p is also
a semi-stable kernel. We put σ :=

(−g
idY

)
and obtain

r ◦ p =
(
f ′ 0
0 idY

)(−α
k

)
=
(−f ′◦α

k

)
=
(−g◦k

k

)
= σ ◦ k.

Since r ◦ p is a semi-stable kernel, it follows from 2.2.4.(iv) that k is a semi-
stable kernel, which yields that (k, g′ ◦ g) ∈ E and thus that E is an exact
structure on C.
It remains to check the maximality of E . Let E ′ be a second exact structure
on C and let (f, g) ∈ E ′. If

P
pT //

pY
��

PB

T

t
��

Y g
// Z
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is a pullback square, the morphism pT is an admissible cokernel by [E2op]
and as such a cokernel, which shows that g is semi-stable. Analogously,
one can show with [E2] that the morphism f is a semi-stable kernel, hence
(f, g) ∈ E . This shows E ′ ⊆ E .
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Chapter 3

PLS-spaces

PLS-spaces are a special class of locally convex spaces that are defined as
the projective limit of a sequence of strong duals of Fréchet-Schwartz spaces.
It is the smallest class of locally convex spaces that contains all the duals
of Fréchet-Schwartz spaces and is closed with respect to taking closed sub-
spaces and countable products. Moreover, it contains the Fréchet-Schwartz
spaces itself. This class also contains many natural examples arising in the
field of analysis, like the spaces of real analytic functions, the spaces of holo-
morphic functions and the smooth functions, the spaces of distributions and
various spaces of ultradifferentiable functions and ultradistributions, which
are important for the theory of partial differential equations. An overview
of the theory of PLS-spaces and its field of applications can be found, e.g.,
in the survey article of Domański [8].

In this chapter, we will investigate the structure of the category (PLS) of
PLS-spaces and continuous linear maps. We will limit ourselves only to
those properties necessary for the construction of basic homological tools,
like, e.g., the existence of kernels and cokernels. A major difficulty in this
context arises from the fact that a Hausdorff quotient of a PLS-space is not
necessarily again a PLS-space. We will show that as a consequence of this,
the category (PLS) is neither quasi-abelian nor semi-abelian, but only pre-
abelian. As a pre-abelian category however, it is endowed with the maximal
exact structure of 2.2.5, and we will provide a characterization of this exact
structure in functional analytic terms. This exact structure, which will turn
out to be quite natural, will permit a homological treatment of the splitting
theory of PLS-spaces, which will be the subject of the last two chapters.

3.1 The Category of PLS-spaces

In what follows, we will use the notations of Wengenroth [40]. First, let us
recall the concept of a locally convex projective spectrum and the projective
limit of such a spectrum:

21
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Remark and Definition 3.1.1. A locally convex projective spectrum X
consists of a sequence (Xn)n∈N of locally convex spaces and continuous linear
maps Xn

m : Xm → Xn, that are defined for n ≤ m, such that

i) Xn
n = idXn for all n ∈ N,

ii) Xk
n ◦Xn

m = Xk
m for k ≤ n ≤ m.

For two projective spectra X = (Xn, X
n
m) and Y = (Yn, Y

n
m) a morphism

f : X → Y of locally convex projective spectra is a sequence (fn)n∈N of con-
tinuous linear maps fn : Xn → Yn such that fn ◦Xn

m = Y n
m ◦ fm for n ≤ m,

i.e. the diagram

Xm
fm //

Xn
m ��

Ym

Y nm��
Xn fn

// Yn

is commutative. A sequence

0→ X f−→ Y g−→ Z → 0

of projective spectra X = (Xn, X
n
m),Y = (Yn, Y

n
m),Z = (Zn, Z

n
m) and mor-

phisms of spectra is called exact, if for all n ∈ N the sequences

0→ Xn
fn−→ Yn

gn−→ Zn → 0

are topologically exact. The projective limit of a projective spectrum X is
the set

Proj(X ) := {(xn)n∈N ∈
∏
n∈N

Xn |Xn
m(xm) = xn for all m ≥ n},

equipped with the topology induced by the product topology, which makes
it a locally convex space. For a morphism of projective spectra f : X → Y,
the map

Proj(f) : Proj(X )→ Proj(Y), (xn)n∈N 7→ (fn(xn))n∈N

is linear and continuous and its easy to see that Proj(g◦f) = Proj(g)◦Proj(f)
and Proj(idX ) = idProj(X ). Therefore, the rule which maps a projective spec-
trum X to the projective limit Proj(X ) and a morphism of spectra f : X → Y
to the map Proj(f) is a functor acting on the category of locally convex pro-
jective spectra with values in the category of locally convex spaces.

For the projective limit Proj(X ) of a projective spectrum X = (Xn, X
n
m) we

will denote by Xk
∞ the canonical morphism

Xk
∞ : Proj(X )→ Xk, (xn)n∈N 7→ xk

to the k-th component. Furthermore, a locally convex projective spectrum
X = (Xn, X

n
m) is called strongly reduced if for every n ∈ N there is an m ∈ N

such that
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Xn
m(Xm) ⊆ Xn

∞(Proj(X )),

where the closure is taken in Xn.

A locally convex space X is called an LS-space, if there exists a Fréchet-
Schwartz space Y such that the strong dual Y ′ is isomorphic to X. In the
terminology of Meise and Vogt [19], LS-spaces are called (DFS)-spaces. We
will denote by (LS) the category of LS-spaces and continuous linear maps.
The class of LS-spaces is stable with respect to closed subspaces, Hausdorff
quotients, and finite products (see [10, §14]). For a morphism f : X → Y in
(LS) the inclusion f−1({0}) ↪→ X is therefore a kernel of f in (LS) and the
quotient map Y → Y/f(X) is a cokernel of f in (LS). As a consequence,
the category (LS) has the same kernels, cokernels and products as the quasi-
abelian category (LCS) of Hausdorff locally convex spaces and continuous
linear maps. Since the pullback is a kernel of the product and the pushout
is a cokernel of the product (see 1.1.), the category (LS) also has the same
pullbacks and pushouts as (LCS). This in turn implies that the category
(LS) is itself quasi-abelian.

PLS-spaces are defined as the projective limits of LS-spaces:

Definition 3.1.2. A locally convex space X is called a PLS-space, if there
exists a strongly reduced projective spectrum X = (Xn, X

n
m), consisting of

LS-spaces Xn, such that Proj(X ) ∼= X.

We will denote by (PLS) the category of PLS-spaces and continuous linear
maps. Note that it follows from the definition of the projective limit that
PLS-spaces are automatically Hausdorff and complete. In the rest of this
section we will look into the properties of this category. The basic result is:

Proposition 3.1.3. (PLS) is a pre-abelian category.

For the proof of the above we will need the following:

Lemma 3.1.4. (Wengenroth [40, Theorem 3.3.1]) For a projective spectrum
of locally convex spaces X = (Xn, X

n
m) the following are equivalent:

i) The morphism

σX :
∏
n∈N

Xn →
∏
n∈N

Xn, (xn)n∈N 7→ (Xn
n+1(xn+1)− xn)n∈N

is open onto its range.

ii) For all n ∈ N and all U ∈ U0(Xn) there exists m ≥ n such that
Xn
m(Xm) ⊆ Xn

∞(Proj(X )) + U .

iii) For every exact sequence

0→ X f−→ Y g−→ Z → 0

of projective spectra of locally convex spaces the induced morphism
Proj(g) : Proj(Y)→ Proj(Z) is open onto its range.
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Proof of 3.1.3. The product of two PLS-spaces is easily seen to be a PLS-
space, hence (PLS) is a full additive subcategory of the category (LCS) of
locally convex spaces and continuous linear maps. In addition, closed sub-
spaces of PLS-spaces are again PLS-spaces (see [9, Proposition 1.2]). For a
morphism of PLS-spaces f : X → Y the closed subspace f−1({0}) is there-
fore again a PLS-space, hence the inclusion f−1({0}) ↪→ X is a kernel of
f in (PLS). This shows that the the category (PLS) has kernels and that
these kernels coincide with those of (LCS). It remains to be shown that
every morphism of (PLS)-spaces has a cokernel. In order to show this we
will first establish the following:

Claim: Let X be a PLS-space and A ⊆ X be a subspace of X. The
Hausdorff-completion of X/A is a PLS-space.

Since X/A is the associated Hausdorff space of X/A, we can assume A to
be a closed subspace. Let X = (Xn, X

n
m) be a strongly reduced spectrum of

LS-spaces with Proj(X ) = X and define An := Xn
∞(A) and Anm := Xn

m|Am .
Then A = (An, A

n
m) is a strongly reduced spectrum of LS-spaces with

Proj(A) = A. Define then the LS-space Yn := Xn/An and

Y n
m : Xm/Am → Xn/An, x+Am 7→ Xn

m(x) +An

for m ≥ n, which is well-defined since Xn
m ◦Xm

∞ = Xn
∞. Then Y = (Yn, Y

n
m)

is a strongly reduced spectrum of LS-spaces. For n ∈ N the sequence

0→ An
in−→ Xn

qn−→ Yn → 0,

where in is the inclusion and qn the quotient map, is exact, hence it induces
an exact sequence

0→ A i−→ X q−→ Y → 0

of projective spectra. Since the functor Proj is semi-injective (see [40, 3.3]),
the induced sequence of projective limits

0→ A
Proj(i)−−−−→ X

Proj(q)−−−−→ Proj(Y) (1)

is algebraically exact and Proj(i) is open onto its range. The spectrum A is
strongly reduced, hence it has the property (ii) of 3.1.4, which yields that
Proj(q) is open onto its range. Then the morphism

j : X/A→ Proj(Y)

with j(x+A) = (Xn
∞(x)+An)n∈N, induced by the sequence (1), is also open

onto its range and therefore an isomorphism onto its range. Since j(X/A)
is obviously dense in Proj(Y) and because Proj(Y) is a complete space, it
follows that it is isomorphic to the Hausdorff-completion of X/A and it is a
PLS-space by construction. This establishes the claim.
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Let then f : X → Y be a morphism of PLS-spaces. If t : Y → T is a
morphism of PLS-spaces with t ◦ f = 0, there is a unique continuous linear
map λ : Y/f(X) → T with t = λ ◦ q, where q denotes the quotient map.
Since T is a complete Hausdorff space, the morphism λ extends uniquely
to the Hausdorff-completion C(Y/f(X)), i.e. there is a unique morphism
λ̃ : C(Y/f(X))→ T making the diagram

X
f // Y

q //

t
##GGGGGGGGGG Y/f(X)

λ

���
�
�

j // C(Y/f(X))

λ̃
wwp p p p p p p

T

commutative. This shows that the morphism j ◦ q : Y → C(Y/f(X)) is a
cokernel of f in the category (PLS). �

Remark 3.1.5.

i) The proof of 3.1.3 immediately shows that complete quotients of PLS-
spaces by closed subspaces are again PLS-spaces, which is a well-known
result (see, e.g., [9, Prop. 1.2]).

ii) There exist PLS-spaces X having a closed subspace A ⊆ X, such that
the quotient X/A is not complete and therefore not a PLS-space. In
fact, any non-surjective linear partial differential operator with con-
stant coefficients P (D) : D′(Ω) → D′(Ω), for an open subset Ω ⊆ Rd,
which is surjective as an operator P (D) : C∞(Ω) → C∞(Ω) induces
such an example since the kernel-object kerP (D) is then a closed sub-
space of D′(Ω) with Proj1 6= 0 (cf. [40, 3.4.5]). This in turn implies
that the quotient D′(Ω)/ kerP (D) is not a complete space by [9, 1.4].
Note that it is only possible to construct an operator with the above
properties for dimension d > 2, as was shown by Kalmes in [13] (thus
solving an old conjecture of Trèves). See example 12 in the same paper
for a concrete example of such an operator in the case d ≥ 3.

iii) Since (PLS) does not reflect the cokernels of the category (LCS), it
also has different coimages and images. Let f : X → Y be a morphism
in (PLS). The coimage of f , i.e. the cokernel of its kernel, is the
canonical morphism X → C(X/f−1({0})) to the completion of the
quotient, which arises as the composition of the quotient map followed
by the morphism into the completion. The image of the morphism f ,
i.e. the kernel of its cokernel, is the inclusion f(X) ↪→ Y .

iv) Since a morphism in a pre-abelian category is an epimorphism if and
only if its cokernel-object is zero and it is a monomorphism if and only
if its kernel-object is zero, it follows that the epimorphisms of (PLS)
are those with dense image and the monomorphisms are the injective
ones.
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v) The pullback of two morphisms f : X → Z, g : Y → Z in (PLS) is the
kernel of the morphism p : X × Y → Z with p(x, y) = f(x) − g(y),
together with the restrictions of the projections onto the components.
Since (PLS) reflects the kernels of (LCS), the pullback in (PLS) coin-
cides with the usual pullback of locally convex spaces. On the other
hand, the pushout of two morphisms f : X → Y , g : X → Z in (PLS)
is the cokernel of the morphism s : X → Y ×Z with s(x) = (f(x), g(x))
together with the compositions of the inclusions of Y and Z into the
product and the cokernel morphism. Therefore, the pushout of f and
g in (PLS) is the Hausdorff-completion S := C((Y × Z)/s(X)) of the
quotient (Y ×Z)/s(X) together with the canonical morphisms Y → S
and Z → S. This shows, in particular, that the pushout in (PLS)
coincides with the pushout in (LCS) if and only if (Y × Z)/s(X) is a
complete Hausdorff space.

The above remark (ii) shows that there are cokernels in the category (PLS)
that are not surjective and by 2.2.3 these cokernels cannot be semi-stable.
This implies that (PLS) is not a quasi-abelian category, as is erroneously
stated in [40, Proposition 5.3.1], where the cokernels of (PLS) that are not
semi-stable are neglected and only topologically exact sequences of PLS-
spaces are used. We will explain in the next section why these are just the
right sequences to consider and why the other results about PLS-spaces in
[40] remain untouched. But not enough that (PLS) fails to be quasi-abelian,
a slight modification of the proof of 2.2.3 also reveals that it has even weaker
properties:

Proposition 3.1.6. The category (PLS) is not semi-abelian.

Proof. Let X be a PLS-space that has a closed subspace A ⊆ X, such that
the quotient X/A is not complete (see 3.1.5.(ii) for an example) and let
Y := C(X/A) be its completion. Then the canonical morphism c : X → Y
is open onto its range with dense range, but is not surjective. Let y0 ∈ Y
with y0 /∈ c(X) and define

f : X × C→ Y, (x, λ) 7→ c(x)− λy0.

Then f is a morphism of PLS-spaces and its kernel is

f−1({0}) = {(x, λ) | c(x) = λy0} = A× {0}.

By remark 3.1.5.(iii), the coimage-object of the morphism f is the comple-
tion C((X ×C)/(A× {0})) = Y ×C and the coimage of f is the morphism
cif (x, λ) = (c(x), λ). Furthermore, f(X×C) is dense in Y , hence the image
of f is the identity on Y . The canonical factorization of the morphism f in
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(PLS) then is

X × C
cif
��

f // Y

Y × C
f̄

// Y

idY

OO

with f̄(y, λ) = y − λy0. Since f̄(y0, 1) = 0, this map is not injective and
is therefore not a bimorphism in (PLS), showing that this category is not
semi-abelian.

In quasi-abelian and semi-abelian categories one can make homological con-
structions, as those of Palamodov [22, 23] on the class of all kernel-cokernel
pairs, which are then called the “short exact sequences” of these categories.
However, since the category (PLS) is neither quasi-abelian nor semi-abelian,
its class of kernel-cokernel pairs does not allow these constructions. In addi-
tion to these problems from the categorical point of view, the kernel-cokernel
pairs are also not the “short exact sequences” that one would want from the
functional analytic point of view since they do not coincide with the topolog-
ically exact short sequences. Of course, every topologically exact sequence

0→ X → Y → Z → 0

is a kernel-cokernel pair, but there are more kernel-cokernel pairs in (PLS)
than just these: Consider again a PLS-space X that has a closed subspace
A ⊆ X such that the quotient X/A is not complete and let C(X/A) be its
completion. If c : X → C(X/A) is the canonical morphism and i : A→ X is
the inclusion, then

A
i−→ X

c−→ C(X/A)

is a kernel-cokernel pair by 3.1.3. However, the above pair of morphisms
does not form a topologically exact sequence since c is not a surjection.
In the next section we will show that one does not need to bother oneself
with the particular kernel-cokernel pairs described above and that the class
of topologically exact short sequences of PLS-spaces are also the natural
“short exact sequences” of PLS-spaces from a categorical point of view.

3.2 The Maximal Exact Structure of (PLS)

The category (PLS) is pre-abelian, as we have shown in the previous section,
and therefore the class of all stable kernel-cokernel pairs is its maximal exact
structure by 2.2.5. Since (PLS) is not quasi-abelian, it is a proper subclass
of its kernel-cokernel pairs. As it turns out, this exact structure is just what
one would want for short exact sequences from the functional analytic point
of view:
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Proposition 3.2.1. The class EPLS of topologically exact sequences

0 // X // Y // Z // 0

of PLS-spaces X,Y, Z and continuous linear maps is the maximal exact
structure of the pre-abelian category (PLS).

Proof. The maximal exact structure E of (PLS) is the class of stable kernel-
cokernel pairs by 2.2.5. Since a semi-stable cokernel in (PLS) has to be
surjective by 2.2.3, it follows from the particular form of the kernels and
cokernels in (PLS) that every stable kernel-cokernel pair in (PLS) is a topo-
logically exact sequence, hence E ⊆ EPLS.

On the other hand, let 0 → X
f−→ Y

g−→ Z → 0 be a topologically ex-
act sequence of (PLS)-spaces and continuous linear maps. For a morphism
t : T → Z, the pullback of t and g in (PLS) coincides with the one in (LCS)
by 3.1.5.(v), hence g is semi-stable as this is true for every cokernel in the
quasi-abelian category (LCS). For a morphism t : X → T we can form the
pushout (S, sY , sT ) of f and t in the category (LCS) and obtain a commu-
tative diagram

0 // X

t
��

f // Y
sY
��

g // Z // 0

0 // T sT
// S c

// Z // 0

whose rows are topologically exact sequences. Since being a complete Haus-
dorff space is a three space property (see [28, Prop.1.3]), it follows from
3.1.5.(v) that (S, sT , sY ) is also a pushout in the category (PLS), which
shows that f is a semi-stable kernel.

The above shows that the topologically exact sequences of PLS-spaces are
the “right” exact sequences to consider in the category (PLS) when us-
ing homological constructions, in contrary to the numerous quasi-abelian
categories appearing in functional analysis like locally convex spaces, Ba-
nach spaces and Fréchet spaces, where the notions of “topologically exact
sequence” and “kernel-cokernel pair” always coincide. The fact that the
topologically exact short sequences of (PLS) form an exact structure, is also
the reason why the results about PLS-spaces in [40] remain valid. Almost all
constructions that are possible in quasi-abelian categories, can also be made
in exact categories without leaving the exact structure and the particular
constructions in [40] remain within the exact structure EPLS. Hence, being
quasi-abelian is not necessary. Only the properties of an exact structure are
used.



Chapter 4

Yoneda Ext-functors in
Exact Categories

An extension of an object X by another object Z in an abelian category is
a short exact sequence 0 // X // Y // Z // 0 . Two such extensions are
called equivalent if they fit into a commutative diagram of the form

0 // X // Y

��

// Z // 0

0 // X // Y ′ // Z // 0.

In 1934, Baer [2] defined an addition on the class Ext1(Z,X) of equiva-
lence classes of extensions of abelian groups, named after him, in such a
way that Ext1(Z,X) becomes an abelian group. Cartan and Eilenberg [7]
introduced the higher Extk-groups as a connected sequence of group valued
bifunctors (Extk(−,−))k≥0, which could be defined in any abelian category
having either enough injective or enough projective objects. Yoneda [41]
then showed that the groups Extk(Z,X) could also be defined without in-
jectives or projectives in terms of equivalence classes of exact sequences of
the form

0→ X → Yk−1 → Yk−2 → . . .→ Y1 → Y0 → Z → 0.

With further work done by Schanuel and (independently) Buchsbaum [6],
this led to the connected sequence of group-valued bifunctors Extk(−,−) for
arbitrary abelian categories.

These constructions of the Extk-groups, named after Yoneda, can also be
done for the more general setting of exact categories. The proofs can essen-
tially be carried over from the abelian case (see, e.g., [20]) by substituting
the basic diagram lemmas of exact categories (see [5]) for their abelian coun-
terparts. The exposition of Mitchell [20] will also serve as a basis of the short
introduction to the Yoneda Ext-functors for exact categories, which we will

29
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give in this chapter.

In pre-abelian categories the construction of Yoneda Ext-groups was done
first by Richman, Walker [27]. Note that their construction is a special case
of the one for exact categories when considering the maximal exact structure
2.2.5.

4.1 The Long Exact Sequence

In this section we give a brief exposition of the Yoneda Ext-functors for
exact categories as these will provide the basic tool for our investigation of
the splitting theory of PLS-spaces in the next chapter. For the proofs we
will mostly refer to the abelian counterparts found in [20]. The basic aim
will be to introduce the notions that are necessary for the following result:

Theorem 4.1.1. Let (C, E) be an exact category and let A be an object of
C. For k ≥ 1 there are covariant additive functors

Extk(A,−) : C → (AB) ,

{
X 7→ Extk(A,X)

α 7→ Extk(A,α)
,

inducing for every short exact sequence 0→ X → Y → Z → 0 a long exact
sequence

0→ Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)
δ0−→ Ext1(A,X)→

Ext1(A, Y )→ Ext1(A,Z)
δ1−→ Ext2(A,X)→ . . .→ Extk−1(A,Z)

δk−1−−−→

Extk(A,X)→ Extk(A, Y )→ Extk(A,Z)
δk−→ Extk+1(A,X)→ . . .

of abelian groups and group morphisms. Dually, there are contravariant
functors

Extk(−, A) : C → (AB) ,

{
Z 7→ Extk(Z,A)

γ 7→ Extk(γ,A)
,

inducing for every short exact sequence 0→ X → Y → Z → 0 a long exact
sequence

0→ Hom(Z,A)→ Hom(Y,A)→ Hom(X,A)
δ∗0−→ Ext1(Z,A)→

Ext1(Y,A)→ Ext1(X,A)
δ∗1−→ Ext2(Z,A)→ . . .→ Extk−1(X,A)

δ∗k−1−−−→

Extk(Z,X)→ Extk(Y,A)→ Extk(X,A)
δ∗k−→ Extk+1(Z,A)→ . . .

of abelian groups and group morphisms.

The long exact sequences of the above theorem entail many useful corol-
laries. For example, it follows immediately that the vanishing of Extk is a
three space property. Another important consequence is that, given a short
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exact sequence 0→ X → Y → Z → 0 with Ext1(A, Y ) = 0, the vanishing of
Ext2(A,X) implies Ext1(A,Z) = 0. Dually, if Ext1(Y,A) = 0 then the van-
ishing of Ext2(Z,A) implies Ext1(X,A) = 0. Hence, when asking whether
the vanishing of Ext1 is passed on to quotients or subspaces, it is natural
to consider the functor Ext2, as will be done in chapter 4 for the space of
distributions.

For objects X, Z the groups Extk(Z,X) in the above theorem are con-
structed as collections of equivalence classes of exact sequences of the form

0→ X → Yk−1 → Yk−2 → . . .→ Y1 → Y0 → Z → 0.

In an exact category a sequence as above is called exact if it can be written as
a composition of elements of the exact structure, i.e. of short exact sequences:

Definition 4.1.2. Let (C, E) be an exact category. A sequence

E : 0→ X
fk−→ Yk−1

fk−1−−−→ Yk−2 → . . .→ Y1
f1−→ Y0

f0−→ Z → 0

is called exact, if every morphism fl factors as fl = ml ◦ el for an admissible
cokernel el : Yl → Il and an admissible kernel ml : Il → Yl−1 such that
(ml, el−1) ∈ E for 0 ≤ l ≤ k (treat X as Yk and Z as Y−1). In addition, k is
called the length of the sequence E.

Note that if (C, E) is the exact category (PLS, EPLS) described in the last
chapter, the above notion of an exact sequence of length k coincides with
the usual notion of a topologically exact sequence of length k since the exact
structure EPLS consists by 3.2.1 of the sequences 0 → F → G → H → 0 of
PLS-spaces F,G,H that are topologically exact.

On the class of all exact sequences of length k who start with X on the left
and end with Z on the right, one can then define an equivalence relation in
the following way:

Definition 4.1.3. Let (C, E) be an exact category and let

E : 0→ X
fk−→ Yk−1

fk−1−−−→ Yk−2 → . . .→ Y1
f1−→ Y0

f0−→ Z → 0

be an exact sequence in C. We then call X the left-end of E and Z the right-
end of E. A morphism with fixed ends φ : E → E′ between exact sequences
E and E′ of length k is a commutative diagram

E : 0 // X // Yk−1

φk−1��

// Yk−2
//

φk−2��

. . . // Y1
//

φ1��

Y0

φ0��

// Z // 0

E′ : 0 // X ′ // Y ′k−1
// Y ′k−2

// . . . // Y ′1
// Y ′0

// Z ′ // 0.

For X,Z ∈ Ob(C) we define Ek(Z,X) to be the exact sequences of length
k with right end Z and left end X. On Ek(Z,X) we define the following
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equivalence relation:

E ∼ E′ ⇔ There is a sequence E = E0, E1, . . . , El−1, El = E′ of

elements of Ek(Z,X), so that for every 0 ≤ i ≤ l − 1

there is either a morphism Ei → Ei+1 with fixed ends

or a morphism Ei+1 → Ei with fixed ends.

We define

Extk(Z,X) = Ek(Z,X)/ ∼

and denote by [E] the equivalence class of E in Extk(Z,X).

Note that for an exact sequence E ∈ E1(Z,X) a morphism with fixed ends
is a diagram of the form

E : 0 // X // Y
γ
��

// Z // 0

E′ : 0 // X // Y ′ // Z // 0.

(1)

In this case the short five lemma for exact categories (see [5, Corollary 3.2])
states that γ is an isomorphism. Therefore, for two elements E and E′ one
has E ∼ E′ if and only if they fit into a diagram of the form (1). This shows
that Ext1(Z,X) is indeed the well-known class of extensions of X by Z.

A logical difficulty, even in the classical case of abelian categories, arises
from the fact that Extk(Z,X) may not be a set. Of course, if the category
C is small, i.e. the class of its objects is a set, then Extk(Z,X) will be a set.
Likewise, if the category (C, E) has enough injectives or enough projectives,
then Extk(Z,X) will always be a set since then the Extk-functors can also
be constructed as the derived functors of Hom, which take values in the
category of sets (see the remark after 4.1.7). In addition, it can be shown
that Ext1(Z,X) is always a set, provided that the category C possesses
either a generator or a cogenerator. Since in every full subcategory of the
topological vector spaces (TVS) the ground field K is a generator, this will
usually be the case in a functional analytic setting. However, in order to not
restrict ourselves to any particular class of exact categories we introduce the
notion of a big abelian group. This is defined in the same way as an ordinary
abelian group, except that the underlying class need not be a set. We are
prevented from talking about “the category of big abelian groups” because
the class of morphisms between a given pair of big abelian groups need not
be a set. They form only a so-called quasi-category (cf. [1]). We will not
burden the reader with the theory of quasi-categories, but nevertheless we
will talk about kernels, cokernels, images, etc., for big abelian groups. These
can be defined in the same set-theoretic terms in which the corresponding
notions for ordinary abelian groups are defined. Nor will we be kept from
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speaking of a big abelian group valued functor from a category, and a natural
transformation of two such functors, since all of these can be defined for
quasi-categories. Hence, from now on the term group will be understood to
mean big group and we will denote the quasi-category of big abelian groups
by (AB).

In order to define an addition on Extk(Z,X), we need first to introduce
pullback- and pushout-constructions for exact sequences of arbitrary length:

Remark and Definition 4.1.4. Let (C, E) be an exact category, let X and
Z be two objects of C and let

E : 0→ X
fk−→ Yk−1

fk−1−−−→ Yk−2 → . . .→ Y1
f1−→ Y0

f0−→ Z → 0

be an exact sequence of length k. For a morphism γ : Z ′ → Z we find a
commutative diagram

P

pY0

��

pZ′ //

PB

Z ′

γ

��

// 0

I1

m1 ��@@@@@@

i
>>~~~~~~

E : 0 // X
fk
// Yk−1

// . . . // Y1 f1
//

e1
??~~~~~~

Y0 f0
// Z // 0,

where f1 = m1 ◦ e1 is the canonical factorization of the morphism f1,
(P, pY0 , pZ′) is the pullback of f0 and γ and where i is the kernel of pZ′

induced by 2.1.2. The axioms of an exact category show that (i, pZ′) ∈ E .
Then the sequence

Eγ,P : 0→ X
fk−→ Yk−1

fk−1−−−→ Yk−2 → . . .→ Y1
i◦e1−−→ P

pZ′−−→ Z ′ → 0

is also exact. In addition, one can show that this pullback-construction does
preserve the equivalence relation ∼ , therefore the mapping

Extk(Z,X)→ Extk(Z ′, X), [E] 7→ [Eγ,P ] =: [E]γ

is well-defined.

By duality we find for every morphism α : X → X ′ a commutative diagram

E : 0 // X

α

��

PO

fk // Yk−1

sYk−1

��

ek−1

##GGGGGGG

fk−1 // Yk−2
// . . . // Y0

f0 // Z // 0,

Ik−1

mk−1

;;wwwwwww

0 // X ′ sX′
// S

c

;;vvvvvvv
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where fk−1 = mk−1 ◦ ek−1 is the canonical factorization of the morphism
fk−1, (S, sYk−1

, sX′) is the pushout of fk and α and with (sX′ , c) ∈ E . Then
the sequence

ES,α : 0→ X ′
sX′−−→ S

mk−1◦c−−−−−→ Yk−2 → . . .→ Y1
f1−→ Y0

f0−→ Z → 0

is also exact and the mapping

ExtkE(Z,X)→ ExtkE(Z,X
′), [E] 7→ [ES,α] =: α[E]

is well-defined.

Using these operations one can now define an addition on Extk(Z,X):

Remark and Definition 4.1.5 (Baer-sum). Given two exact sequences
E, F ∈ Ek(Z,X) the component-wise direct sum of objects and morphisms

E ⊕ F : 0→ X ⊕X
fk⊕f ′k−−−−→ Yk−1 ⊕ Y ′k−1 → . . .→ Y0 ⊕ Y0

f0⊕f ′0−−−−→ Z ⊕ Z → 0

is again an exact sequence (see [5, Proposition 2.9]). In addition, it is easy to
show that this construction is well-behaved with respect to the equivalence
relation ∼ and that therefore the mapping

⊕ : Extk(Z,X)× Extk(Z,X) → Extk(Z ⊕ Z,X ⊕X)

([E], [F ]) 7→ [E ⊕ F ]

is well-defined. For an object X let

∆X =
(

idX
idX

)
: X → X ⊕X and ∇X = ( idX , idX ) : X ⊕X → X

denote the canonical morphisms. Then it follows from the above and 4.1.4
that the mapping

+: Extk(Z,X)× Extk(Z,X) → Extk(Z,X)

([E], [F ]) 7→ ∆X [E ⊕ F ]∇Z

is well-defined. [E] + [F ] is called the Baer-sum of [E] and [F ]. It makes
Extk(Z,X) an abelian group.

The neutral element of Extk(Z,X) is given by the equivalence class [0] of
the exact sequence

0→ X
( 1
0 )
−−→ X ⊕ Z ( 0, 1 )−−−→ Z → 0

for n = 1 and by the equivalence class of the exact sequence

0→ X
idX−−→ X → 0→ . . .→ 0→ Z

idZ−−→ Z → 0

for k > 1. The additive inverse of a given equivalence class [E] is the class
(− idX)[E].
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It is easy to see that for [E] ∈ Extk(Z,X) one has

idX [E] = [E] = [E] idZ , (α′ ◦ α) = α′(α[E]), [E](γ ◦ γ′) = ([E]γ)γ′,

whenever these are defined. In addition, it can be shown that the operations
[E] 7→ [E]γ and [E] 7→ α[E] are group morphisms with respect to the Baer-
sum, so one actually has a covariant abelian-group-valued additive functor

Extk(A,−) : C → (AB) ,

{
X 7→ Extk(A,X)

α 7→ Extk(A,α)
,

where Extk(A,α) is for a morphism α : X → X ′ defined as

Extk(A,α) : Extk(A,X)→ Extk(A,X ′), [E] 7→ α[E]

and a contravariant abelian-group-valued additive functor

Extk(−, A) : C → (AB) ,

{
Z 7→ Extk(Z,A)

γ 7→ Extk(γ,A)
,

where Extk(γ,A) is for a morphism γ : Z ′ → Z defined as

Extk(γ,A) : Extk(Z,A)→ Extk(Z ′, A), [E] 7→ [E]γ.

We have now introduced almost all the terms appearing in the long ex-
act sequences 4.1.1, the only thing remaining is the definition of the con-
necting morphisms δk : Extk(A,Z) → Extk(A,X) and δ∗k : Extk(A,Z) →
Extk(A,X). We will remedy this shortly, but before this we have to say
something about the composition of exact sequences:

Remark 4.1.6. Given two exact sequences

E : 0 // X
fn // Yn−1

// . . . // Y0
f0 // Z // 0

F : 0 // Z
f ′m // Y ′m−1

// . . . // Y ′0
f ′0 // Z ′ // 0

such that E is of length n with right-end Z and F is of length m with
left-end Z, then the composed sequence

EF : 0 // X
fn // . . . f1 // Y0

f0 ��??????
f ′m◦f0 // Y ′m−1

f ′m−1 // . . .
f ′0 // Z ′ // 0

Z
f ′m

<<zzzzzz

is an an exact sequence of length m+n. It can be shown that this composi-
tion is well-behaved with respect to the equivalence relation ∼ and that the
pairing

σ : Extn(W,X)× Extm(Z,W ) → Extm+n(Z,X)

([E], [F ]) 7→ [EF ] =: [E][F ]

is bilinear with respect to the Baer-sum.
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With the help of the above we can finally define the connecting morphisms:

Remark and Definition 4.1.7. Given a short exact sequence

E : 0→ X
f−→ Y

g−→ Z → 0

we obtain for A ∈ Ob(C) the connecting morphisms

δ0 : Hom(A,Z)→ Ext1(A,X), γ 7→ [E]γ

δ∗0 : Hom(X,A)→ Ext1(Z,A), α 7→ α[E]

of degree zero and the connecting morphisms

δk : Extk(A,Z)→ Extk+1(A,X), [F ] 7→ [E][F ]

δ∗k : Extk(X,A)→ Extk+1(Z,A), [H] 7→ [H][E]

of degree k ≥ 1. That the latter ones are group morphisms is a consequence
of 4.1.6.

We now have gathered all that is necessary for the long exact sequence 4.1.1.
Let us remark that the so-called Schanuel lemma (see [20, Lemma 4.1]) is
crucial for the proof of the exactness of this sequence. This lemma states
that a composition [E][F ] of equivalence classes is zero if and only if [E]
can be written as [E] = [G]γ with γ[F ] = [0], or equivalently, if [F ] can be
written as [F ] = α[H] with [E]α = [0]. The rest of the proof of 4.1.1 is a
straightforward calculation.

In addition, let us remark that one can show that the collections of connected
functors (Extk(A,−))k≥0 and (Extk(−, A))k≥0 form universal δ-functors in
the sense of Grothendieck [12] when one defines Ext0(A,−) as Hom(A,−)
and Ext0(−, A) as Hom(−, A). Therefore, if the exact category (C, E) has
enough injectives, it follows from the fact that universal δ-functors are
unique up to an isomorphism of δ-functors that the functors Extk(A,−) are
isomorphic to the derived functors of Hom(A,−) and, if (C, E) has enough
projectives, the functors Extk(−, A) are isomorphic to the derived functors
of Hom(−, A). Especially one has

Extk(Z,X) ∼= Rk Hom(Z,X)

in every exact category having either enough injectives or enough projec-
tives. A direct construction of the above isomorphism of abelian groups can
also be found in [20, VII.7].

4.2 The Characterization of Extk(Z,X)=0

In this section we will provide characterizations of Extk(Z,X) = 0 using
only the representants of the equivalence classes forming this group. These
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characterizations will be the basis for our investigation of the splitting theory
of the exact category ((PLS), EPLS) in the next chapter.

As one would expect, the vanishing of the Ext1-group is strongly connected
with the splitting of short exact sequences. To see this, let us recall the
definition of the latter:

Remark and Definition 4.2.1. In any exact category (C, E) it is easy to
show that for a short exact sequence

E : 0→ X
f−→ Y

g−→ Z → 0

the following are equivalent:

i) f has a left inverse.

ii) g has a right inverse.

iii) There is a commutative diagram

0 // X
( 1
0 )
// X ⊕ Z

β
��

( 0, 1 ) // Z // 0

0 // X
f

// Y g
// Z // 0

such that β is an isomorphism.

A short exact sequence is called split exact if it satisfies the above properties.

The property iii) shows that a short exact sequence E in an exact category is
split exact if and only if [E] = [0] in the corresponding Ext1-group. There-
fore, the vanishing of this group characterizes the splitting of short exact
sequences:

Proposition 4.2.2. Let (C, E) be an exact category. For X,Z ∈ Ob(C) the
following are equivalent:

i) Ext1(Z,X) = 0.

ii) Every exact sequence 0 // X // Y // Z // 0 is split exact.

For k > 1 the equivalence relation ∼ needed for the definition of Extk(Z,X)
is rather unwieldy and does, at first sight, not seem very useful for calcu-
lations. The following characterization of [E] = [0], which is also a con-
sequence of the Schanuel lemma (see [20, VII, Lemma 4.1]), improves this
situation:

Lemma 4.2.3 ([20], VII, Theorem 4.2). Let (C, E) be an exact category
and [E] ∈ Extk(Z,X). The following are equivalent:

i) [E] = [0].
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ii) There is an F ∈ Ek(Z,X) and a sequence E → F ← 0 of morphisms
with fixed ends, i.e. there is a commutative diagram with exact rows

E : 0 // X // Yn−1
//

��

Yn−2

��

// . . . // Y1
//

��

Y0

��

f0 // Z // 0

F : 0 // X //Wn−1
//Wn−2

// . . . //W1
//W0

// Z // 0

0: 0 // X X

OO

// 0

OO

// . . . // 0

OO

// Z

OO

Z // 0.

iii) There is a G ∈ Ek(Z,X) and a sequence E ← G → 0 of morphisms
with fixed ends, i.e. there is a commutative diagram with exact rows

E : 0 // X // Yn−1
// Yn−2

// . . . // Y1
// Y0

f0 // Z // 0

G : 0 // X // Vn−1

��

OO

// Vn−2

��

OO

// . . . // V1

��

OO

// V0

��

OO

// Z // 0

0: 0 // X X // 0

OO

// . . . // 0 // Z Z // 0.

The above characterization of [E] = [0] using morphisms with fixed ends also
gives a very useful characterization of [E] = [0] using only a representant E
of this equivalence class. This characterization already appeared in the work
of Yoneda [41] for abelian categories. We nonetheless provide a proof of it
in the setting of exact categories since Yoneda’s terminology widely differs
from the one commonly used today.

Lemma 4.2.4. Let (C, E) be an exact category. For every exact sequence

E : 0 // X
fn // Yn−1

fn−1// Yn−2
// . . . // Y1

f1 // Y0
f0 // Z // 0

in C with n > 1 the following are equivalent:

i) [E] = 0.

ii) There is a commutative diagram with exact rows

E : 0 // X
fn // Yn−1

fn−1//

φn−1��

Yn−2
//

φn−2��

. . . // Y1
f1 //

φ1��

Y0

φ0��

f0 // Z // 0

F : 0 // X gn
// Vn−1 gn−1

// Vn−2
// . . . // V1 g1

// V0
// 0.

iii) There is a commutative diagram with exact rows

E : 0 // X
fn // Yn−1

fn−1//

φn−1��

Yn−2
//

φn−2��

. . . // Y1
f1 //

φ1��

Y0
f0 // Z // 0

F : 0 // X gn
// Vn−1 gn−1

// Vn−2
// . . . // V1 g1

// Y0
// 0.
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iv) There is a commutative diagram with exact rows

F : 0 // Vn−1
gn−1//

φn−1��

Vn−2

φn−2��

// . . . // V1
g1 //

φ1��

V0

φ0��

g0 // Z // 0

E : 0 // X
fn
// Yn−1

fn−1

// Yn−2
// . . . // Y1 f1

// Y0 f0
// Z // 0.

v) There is a commutative diagram with exact rows

F : 0 // Yn−1
gn−1// Vn−2

φn−2��

// . . . // V1
g1 //

φ1��

V0

φ0��

g0 // Z // 0

E : 0 // X
fn
// Yn−1

fn−1

// Yn−2
// . . . // Y1 f1

// Y0 f0
// Z // 0.

Proof. (i)⇒(ii) If E is an element of En(Z,X) with [E] = 0, there is by 4.2.3
a sequence E → F ← 0 of elements of En(Z,X) and morphisms with fixed
ends, i.e. there is a commutative diagram with exact rows

E : 0 // X
fn // Yn−1

fn−1 //

φn−1
��

Yn−2

φn−2
��

// . . . // Y1
f1 //

φ1
��

Y0

φ0
��

f0 // Z // 0

F : 0 // X gn
//Wn−1 gn−1

//Wn−2
// . . . //W1 g1

//W0 g0
// Z // 0

0: 0 // X X

gn

OO

// 0

OO

// . . . // 0

OO

// Z

ψ0

OO

Z // 0.

Therefore, ψ0 is a right inverse of the morphism g0. Let then fk = mf
k ◦ e

f
k

and gk = mg
k ◦ e

g
k be the canonical factorizations of the morphisms fk and

gk and let φ̃k be the unique morphism with φk−1 ◦ mf
k = mg

k ◦ φ̃k and

φ̃k ◦ efk = egk ◦ φk+1 for k = 1, . . . , n − 1, which are inductively obtained as
the induced morphisms between the cokernels or the kernels in the short
exact sequences forming the longer exact sequences, respectively. Then we
have the commutative diagram with exact rows

0 // K2

mf2 //

φ̃2

��

Y1

ef1
!!DDDDDD

φ1

��

f1 // Y0
f0 //

φ0

��

Z // 0

K1

mf1

==zzzzzz

φ̃1��
K ′1

mg1

  BBBBBB

0 // K ′2 mg2

//W1

eg1
>>||||||

g1
//W0 g0

// Z // 0

induced by the upper right corner of the previous diagram. Since g0 has a
right inverse, we know by 4.2.1 that mg

1 has a left inverse. Choose a left
inverse h : W0 → K ′1 and define µ := h ◦ φ0. This yields
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mg
1 ◦ µ ◦m

f
1 = mg

1 ◦ h ◦ φ0 ◦mf
1 = mg

1 ◦ h ◦m
g
1 ◦ φ̃1 = mg

1 ◦ φ̃1

and therefore µ ◦mf
1 = φ̃1 since mg

1 is a monomorphism. Then the diagram

E : 0 // X
fn // Yn−1

fn−1 //

φn−1
��

Yn−2

φn−2
��

// . . . // Y1
f1 //

φ1
��

Y0

µ
��

f0 // Z // 0

F ′ : 0 // X gn
//Wn−1 gn−1

//Wn−2
// . . . //W1

eg1

// K ′1
// 0

is commutative, which shows (ii).

(ii)⇒(iii) Let

K1
mf1

!!BBBBB

0 // K2

mf2 //

ψ̃2 ��

Y1

ef1
==|||||

ψ1��

f1 // Y0
f0 //

ψ0��

Z // 0

0 // K ′2 mg2

// V1 g1
// V0

// 0

be the commutative diagram with exact rows induced by the right hand side
of the diagram of the assumption and the canoncial factorizations of the
morphisms of this diagram. Since g1 is an admissible cokernel, the pullback
(P, pY0 , pV1) of ψ0 and g1 exists and we have a commutative diagram with
exact rows

K ′2
k // P

pV1
��

pY0 // Y0

ψ0

��
K ′2 mg2

// V1 g1
// V0.

Since ψ0 ◦ f1 = g1 ◦ ψ1 the universal property of the pullback gives rise to a
unique morphism λ : Y1 → P with f1 = pY0 ◦ λ and ψ1 = pV1 ◦ λ. Then we
also have

pV1 ◦ λ ◦m
f
2 = ψ1 ◦mf

2 = mg
2 ◦ ψ̃2

pY0 ◦ λ ◦m
f
2 = f1 ◦mf

2 = 0 = pY0 ◦ k ◦ ψ̃2

and therefore λ ◦ mf
2 = k ◦ ψ̃2 by the universal property of the pullback.

This shows that the diagram with exact rows

0 // K2

mf2 // Y1

λ
��

f1 // Y0
// 0

0 // K ′2 k
// V1 pY0

// Y0
// 0
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is commutative and it fits together with the rest of the diagram of the as-
sumption to give the desired commutative diagram.

(iii)⇒(i) Let [E] be an element of Extn(Z,X). If the diagram of the as-
sumption is commutative, then the diagram

E : 0 // X
fn // Yn−1

φn−1��

fn−1// Yn−2

φn−2��

// . . . // Y1

φ1��

f1 // Y0

(φ00 )��

f0 // Z // 0

F : 0 // X gn
// Vn−1 gn−1

// Vn−2
// . . . // V1

( g10 )
// V0 ⊕ Z

( g0, 1 )
// Z // 0

0: 0 // X X

gn
OO

// 0

OO

// . . . // 0

OO

// Z

ωZ
OO

Z // 0

is also commutative, which shows [E] = 0.

By following the dual arguments of the proofs (i)⇒(ii)⇒(iii)⇒(i) one can
analogously show (i)⇒(iv)⇒(v)⇒(i).

The above directly yields a characterization for the vanishing of the higher
Ext-groups which does not involve the equivalence relation ∼:

Corollary 4.2.5. For an exact category (C, E), k > 1 and X, Z ∈ Ob(C)
the following are equivalent:

i) Extk(Z,X) = 0.

ii) Every exact sequence

0 // X // Yk−1
// Yk−2

// . . . // Y1
// Y0

// Z // 0

in C has the equivalent properties of lemma 4.2.4.

We note the following for later use:

Proposition 4.2.6. Let (C, E) be an exact category and let X be an object
of C such that Ext2(Z,X) = 0 for all objects Z of C. Then Extk(Z,X) = 0
for k ≥ 2 and all objects Z of C.

Proof. We prove the assertion by induction on k. For k > 2 let

E : 0→ X → Yk−1 → Yk−2 → . . .→ Y1
f1−→ Y0 → Z → 0

be an exact sequence and let f1 = m1 ◦ e1 be the canonical factorization of
f1 into an admissible epimorphism e1 : Y1 → I1 and an admissible monomor-
phism m1 : I1 → Y0. Then we also have the exact sequence of length k − 1

Ẽ : 0→ X → Yk−1 → Yk−2 → . . .→ Y1
e1−→ I1 → 0.
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By induction we have Extk−1(I1, X) = 0, hence there exists a commutative
diagram

Ẽ : 0 // X // Yk−1

��

// Yk−2

��

// . . . // Y1

��

// I1
// 0

F̃ : 0 // X // Vk−1
// Vk−2

// . . . // V1
// 0

by 4.2.4. Then one also has the commutative diagram with exact rows

E : 0 // X // Yk−1

��

// Yk−2

��

// . . . // Y1

��

// Y0

��

// Z // 0

F : 0 // X // Vk−1
// Vk−2

// . . . // V1
// 0 // 0,

which shows [E] = [0] by 4.2.4 and thus Extk(Z,X) = 0.



Chapter 5

Extk-functors for PLS-spaces

The splitting theory of PLS-spaces is concerned with the following prob-
lem: Characterize the pairs (Z,X) of PLS-spaces X and Z such that every
topologically exact sequence

0→ X → Y → Z → 0 (1)

is split exact. The problem is of special interest if one of the spaces X or Z
is a classical PLS-space, like the space of distributions D′(Ω) or the space
of analytic functions A(Ω). The splitting theory of PLS-spaces has been
investigated by different authors (see, e.g., [9, 40, 4, 17]), but the theory is
far from being complete. Up to now, the splitting problem was investigated
by using an ad-hoc definition of Ext1

PLS(Z,X) = 0, i.e. one uses the splitting
characterization of 4.2.2 as a definition of Ext1

PLS(Z,X) = 0. The abstract
tools of the third chapter applied to the pre-abelian category (PLS) and
the maximal exact structure EPLS of 3.2.1 show that one gets, in analogy
to locally convex spaces, Banach spaces or Fréchet spaces, abelian group
valued functors ExtkPLS. In this way, every exact sequence (1) splits, if and
only if the group Ext1

PLS(Z,X) is trivial.

In this last chapter we will investigate the functors ExtkPLS more closely. In
the first section we will establish a connection between the functors ExtkPLS
for PLS-spaces and the functors ExtkLS for LS-spaces. Amongst other things,
we will show that for the vanishing of ExtkPLS(Z,

∏
n∈NXn), where the Xn

are LS-spaces, it is sufficient that ExtkLS(Zn, Xm) = 0 for all n,m ∈ N, where
the Zn are LS-spaces giving rise to the PLS-space Z. In the second section
we will apply these results to the canonical resolution

0→ X →
∏
n∈N

Xn
σX−−→

∏
n∈N

Xn

of a PLS-space X to arrive at an analogue of a result for Fréchet spaces,
which connects the functors Ext1 and Proj1 and also gives sufficient condi-
tions for the vanishing of the higher Extk (see [40, Proposition 5.1.5]). In

43
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the last section we make use of this result and compute for k ≥ 2 the groups
Ext2

PLS(E,F ) for a closed subspace E and a Hausdorff quotient F of the
space of distributions D′(Ω). This in turn yields a new proof of a result of
Wengenroth [40, Theorem 5.3.8], which states that Ext1

PLS(E,F ) = 0 in the
above setting.

5.1 ExtPLS and ExtLS

We have seen in the second chapter that the class of all topologically exact
sequences 0 → X → Y → Z → 0 of PLS-spaces X,Y, Z form the maximal
exact structure EPLS of the pre-abelian category (PLS) of PLS-spaces and
continuous linear maps. Applying 4.1.1 to the exact category (PLS, EPLS)
gives us for each PLS-space A the covariant additive functors

ExtkPLS(A,−) : (PLS)→ (AB) ,

{
X 7→ ExtkPLS(A,X)

α 7→ ExtkPLS(A,α)
,

and the contravariant additive functors

ExtkPLS(−, A) : (PLS)→ (AB) ,

{
X 7→ ExtkPLS(A,X)

α 7→ ExtkPLS(A,α)
,

which induce for every short exact sequence of PLS-spaces the covariant and
contravariant long exact sequences of 4.1.1.

An immediate consequence of these long exact sequences is that the vanish-
ing of ExtkPLS is a three space property:

Proposition 5.1.1. Let 0 → X → Y → Z → 0 be a topologically exact
sequence of PLS-spaces and continuous linear maps and let A be a PLS-
space. Then for all k ≥ 1 we have

i) ExtkPLS(A,X) = 0 and ExtkPLS(A,Z) = 0 imply ExtkPLS(A, Y ) = 0,

ii) ExtkPLS(X,A) = 0 and ExtkPLS(Z,A) = 0 imply ExtkPLS(Y,A) = 0.

Proof. The covariant long exact sequence 4.1.1 reads

. . .→ ExtkPLS(A,X)→ ExtkPLS(A, Y )→ ExtkPLS(A,Z)→ . . . ,

which immediately shows (i). Analogously, (ii) follows from the contravari-
ant long exact sequence.

Note that the assertion (i) in the above proposition was already shown in the
case k = 1 by Domański and Vogt [9, Proposition 1.12] under the additional
assumption that the PLS-space A is ultrabornological.

Since the Extk-functors and long exact sequences of 4.1.1 are defined for
every exact category, they are defined for every quasi-abelian category. Es-
pecially, they are defined for the category (LS) of LS-spaces and continuous
linear maps. In the rest of this section we will investigate the connection
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between the functors ExtkLS and ExtkPLS. Recall that a short exact sequence
of projective spectra and morphisms

0→ X f−→ Y g−→ Z → 0

consists of connected topologically exact sequences of locally convex spaces

of the form 0 → Xn
fn−→ Yn

gn−→ Zn → 0 on all steps of the spectra. It has
been shown by Domański and Vogt that every short exact sequence of PLS-
spaces arises as the projective limit of a short exact sequence of projective
spectra (see [9, section 1]):

Lemma 5.1.2. Given an exact sequence of PLS-spaces

0→ X
f−→ Y

g−→ Z → 0 (1)

there are strongly reduced spectra X , Y, Z of LS-spaces and a sequence

0→ X → Y → Z → 0 (2)

which is exact in the category of locally convex spectra such that (1) is
the projective limit of the sequence (2). Moreover, if X̃ , Ỹ, Z̃ are strongly
reduced spectra of LS-spaces having X, Y , Z as projective limits we can
take either Y = Ỹ or X and Z as subsequences of X̃ and Z̃.

Remark 5.1.3. The above lemma also implies that being an LS-space is a
three space property in the category (PLS), i.e. given a short exact sequence

0→ X
f−→ Y

g−→ Z → 0 (1)

of PLS-spaces with X, Z being LS-spaces it follows that Y is also an LS-
space. In fact, 5.1.2 gives strongly reduced projective spectra X , Y, Z such
that (1) arises as the projective limit of a short exact sequence

0→ X → Y → Z → 0

of locally convex spectra, and since X and Z are LS-spaces one can take
X , Z to be the constant spectra X = (X, idX), Z = (Z, idZ). This yields a
commutative diagram with exact rows

0 // X
f // Y

Y 1
∞��

g // Z // 0

0 // X
f1
// Y1 g1

// Z // 0

where the lower row is the first step of the exact sequence of projective
spectra and consists therefore only of LS-spaces. The five lemma for exact
categories (see [5, Corollary 3.2]) then implies that Y 1

∞ is an isomorphism,
hence Y is an LS-space.
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The above connection between the short exact sequences of PLS- and LS-
spaces yields the following result, which will be crucial for our further inves-
tigation:

Proposition 5.1.4. Let X be an LS-space, Z a PLS-space and

E : 0 // X
fn // Yn−1

fn−1// Yn−2
// . . . // Y1

f1 // Y0
f0 // Z // 0

an exact sequence of PLS-spaces. If Z = (Zn, Z
n
m) is a strongly reduced

spectrum with Proj(Z) = Z, there exists n0 ∈ N and an exact sequence

H : 0 // X
gn//Wn−1

gn−1//Wn−2
// . . . //W1

g1 //W0
g0 // Zn0

// 0

of LS-spaces with [E] = [H]Zn0
∞ .

The proof of the above will also make use of the following factorization
lemma for morphisms of short exact sequences:

Lemma 5.1.5 ([5], Proposition 3.1). Let (C, E) be an exact category and
let

0 // X ′
f ′ //

a
��

Y ′
g′ //

b
��

Z ′

c
��

// 0

0 // X
f
// Y g

// Z // 0

be a commutative diagram with exact rows. Then there is a commutative
diagram with exact rows

0 // X ′
f ′ //

a
��

(1)

Y ′
g′ //

b′
��

Z ′ // 0

0 // X m
// D

e //

(2)b′′
��

Z ′

c
��

// 0

0 // X
f
// Y g

// Z // 0,

such that the diagrams (1) and (2) are pullback as well as pushout squares
and b′′ ◦ b′ = b.

Proof of 5.1.4. First, we decompose the exact sequence E into short exact
sequences of PLS-spaces

(1) 0 // X
fn // Yn−1

en−1// In−1
// 0,

(2) 0 // Ik
mk// Yk−1

ek−1// Ik−1
// 0 for 2 ≤ k ≤ n− 1,

(3) 0 // I1
m1 // Y0

f0 // Z // 0.
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By 5.1.2 there exist strongly reduced spectra X , Yn−1, In−1 of LS-spaces
and a sequence

0→ X → Yn−1 → In−1 → 0 (I)

which is exact in the category of locally convex spectra such that (1) is
the projective limit of (I). Furthermore, we can take X to be the constant
spectrum X = (X, idX)n∈N. The fact that (1) arises as the projective limit
of (I) implies that we have a commutative diagram with exact rows

0 // X
fn // Yn−1

Y 1
n−1,∞��

en−1 // In−1

I1n−1,∞��

// 0

0 // X
fn,1
// Yn−1,1 en−1,1

// In−1,1 // 0,

where the lower row is the first step of the sequence (I) of projective spectra
of LS-spaces and where the vertical arrows are the canonical morphisms
from the projective limits to the respective steps.
Again, use 5.1.2 to find strongly reduced spectra Ĩn−1, Yn−2, In−2 of LS-
spaces and an exact sequence of projective spectra

0→ Ĩn−1 → Yn−2 → In−2 → 0 (II)

such that (2), in the case k = n−1, is the projective limit of (II) and choose
Ĩn−1 as a subsequence of In−1. As before, we find a commutative diagram
with exact rows

0 // In−1

I
m0
n−1,∞��

mn−1 // Yn−2

Y
m0
n−2,∞��

en−2 // In−2

I
m0
n−2,∞��

// 0

0 // In−1,m0 mn−1,m0

// Yn−2,m0 en−2,m0

// In−2,m0
// 0,

where the lower row is the m0-th step of the sequence (II) for an m0 ≥ 1 such
that the connecting morphism from the space In−1,m0 (belonging to the sub-

sequence Ĩn−1 of In−1) to the space In−1,1 is defined. Let (Sn−2, sYn−2 , sIn−1)
be the pushout of mn−1,m0 and the connecting morphism I1

n−1,m0
of the

spectrum In−1, then we get a commutative diagram of LS-spaces with exact
rows

0 // In−1,m0

POI1n−1,m0
��

mn−1,m0// Yn−2,m0

sYn−2

��

en−2,m0 // In−2,m0
// 0

0 // In−1,1 sIn−1

// Sn−2 cn−2

// In−2,m0
// 0.
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Define Wn−1 := Yn−1,1, Wn−2 := Sn−2, gn := fn,1 and gn−1 := sIn−1 ◦en−1,1,
then the extended diagram

0 // X
fn // Yn−1

Y 1
n−1,∞

��

en−1 $$IIIIIIIII
fn−1 // Yn−2

sYn−2
◦Ym0
n−2,∞

��

en−2 // In−2

I
m0
n−2,∞

��

// 0

In−1

I1n−1,∞
��

mn−1

::uuuuuuuuu

In−1,1
sIn−1

$$HHHHHHHHH

0 // X gn
//Wn−1

en−1,1

::vvvvvvvvv

gn−1

//Wn−2 cn−2

// In−2,m0
// 0

is commutative with exact rows and its lower row is an exact sequence of
LS-spaces. Proceding inductively in this way, we get a commutative diagram
with exact rows

E : 0 // X
fn // Yn−1

��

fn−1 // Yn−2

��

// . . . // Y1

��

f1 // Y0

��

f0 // Z

Z
n0∞��

// 0

H : 0 // X gn
//Wn−1 gn−1

//Wn−2
// . . . //W1 g1

//W0 g0
// Zn0

// 0

for an n0 ∈ N, whose lower row consists of LS-spaces. Let then

0 // I0
//

��

Y0
//

��

Z

Z
n0∞��

// 0

0 // I0, k0
//W0

// Zn0
// 0

be the right end of this commutative diagram, then lemma 5.1.5 yields a
commutative diagram with exact rows

0 // I0
//

��

Y0
//

��

Z // 0

0 // I0, k0
// D //

PB
��

Z

Z
n0∞��

// 0

0 // I0, k0
//W0

// Zn0
// 0,

such that the lower-right square is a pullback. This in turn shows that the
diagram with exact rows

E : 0 // X
fn // Yn−1

��

fn−1 // Yn−2

��

// . . . // Y1

��

f1 // Y0

��

f0 // Z // 0

E′ : 0 // X gn
//Wn−1 gn−1

//Wn−2
// . . . //W1

g1 !!CCCCCC
// D

��
PB

// Z

Z
n0∞��

// 0

H : 0 // X gn
//Wn−1 gn−1

//Wn−2
// . . . //W1 g1

//W0 g0
// Zn0

// 0
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is commutative, which implies [E] = [E′] = [H]Zn0
∞ . �

A first consequence of the above proposition 5.1.4 is that for two LS-spaces
the Extk-group considered in the category (LS) coincides with that in (PLS):

Corollary 5.1.6. If X, Z are LS-spaces, then there is an isomorphism of
abelian groups

ExtkLS(Z,X) ∼= ExtkPLS(Z,X)

for all k ∈ N.

Proof. For two LS-spaces X, Z and k ∈ N the map

φk : ExtkLS(Z,X)→ ExtkPLS(Z,X), [E] 7→ [E]

is well-defined, and, since the Baer-sum is constructed on the represen-
tants of the equivalence classes, it is a group morphism. The surjectiv-
ity of φk follows from the proof of 5.1.4 which shows how we can write
[E] ∈ ExtkPLS(Z,X) as [E] = [H]Zn0

∞ for an exact sequence H of LS-spaces
whose left-end is X and it is clear from the construction that we can take
Zn0
∞ to be the identity on Z, in the case of Z being an LS-space. It remains

to check the injectivity of φk. Let [E] ∈ ExtkLS(Z,X) with φk([E]) = [0]. In
the case k = 1 it follows from the fact that being an LS-space is a three space
property in (PLS) (see 5.1.3) that [E] = [0]. For k > 1 we know by 4.2.4
that φk([E]) = [0] is equivalent to the existence of a commutative diagram
with exact rows

E : 0 // X
fk // Yk−1

fk−1//

��

Yk−2
//

��

. . . // Y1
f1 //

��

Y0

��

f0 // Z // 0

F : 0 // X gk
// Vk−1 gk−1

// Vk−2
// . . . // V1 g1

// V0
// 0

such that Vk−1, . . . , V0 are PLS-spaces. The proof of 5.1.4 shows that we
then can construct a commutative diagram with exact rows

F : 0 // X
gk // Vk−1

��

gk−1 // Vk−2

��

// . . . // V1

��

g1 // V0

��

// 0

F̃ : 0 // X
g̃k

// Ṽk−1 g̃k−1

// Ṽk−2
// . . . // Ṽ1 g̃1

// Ṽ0
// 0

such that Ṽk−1, . . . , Ṽ0 are LS-spaces. The composition of these two diagrams
shows that [E] = [0] in ExtkLS(Z,X), hence φk is injective and therefore an
isomorphism of abelian groups.

A second consequence of 5.1.4 is that for the vanishing of ExtkPLS(Z,X),
where X is an LS-space, it suffices that all the ExtkLS(Zn, X) vanish. Note
that this was already observed in the case k = 1 by Kunkle in his dissertation
[17, Proposition 2.11].
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Corollary 5.1.7. Let X be an LS-space, Z a PLS-space and Z = (Zn, Z
n
m)

a strongly reduced spectrum with Proj(Z) = Z. Then ExtkLS(Zn, X) = 0
for all n ∈ N implies ExtkPLS(Z,X) = 0.

Proof. For [E] ∈ ExtkPLS(Z,X) we find by 5.1.4 an n0 ∈ N and an equivalence
class [H] ∈ ExtkLS(Zn0 , X) with [E] = [H]Zn0

∞ . As we have seen in the last
chapter, the map

ExtkPLS(Zn0 , X)→ ExtkPLS(Z,X), [F ] 7→ [F ]Zn0
∞

is a group morphism. Since ExtkPLS(Zn0 , X) and ExtkLS(Zn0 , X) are isomor-
phic by 5.1.6 and we have ExtkLS(Zn0 , X) = 0 by assumption, it follows that
[E] = [H]Zn0

∞ = [0]Zn0
∞ = [0].

The above result also implies the following:

Proposition 5.1.8. If (Xn)n∈N is a sequence of LS-spaces, Z a PLS-space
and Z = (Zn, Z

n
m) is a strongly reduced spectrum with Z = Proj(Z) and

ExtkLS(Zn, Xm) = 0 for all n,m ∈ N, then

ExtkPLS(Z,
∏
n∈N

Xn) = 0.

Proof. By 5.1.7 we have
∏
n∈N ExtkPLS(Z,Xn) = 0. Let [E] be an element

of ExtkPLS(Z,
∏
n∈NXn), then for all l ∈ N the pushout construction of 4.1.4

yields a commutative diagram

E : 0 //
∏
n∈N

Xn

πl
��

fk // Yk−1

��

fk−1 // Yk−2
// . . . // Y0

f0 // Z // 0

El : 0 // Xl
// Sl // Yk−2

// . . . // Y0 f0
// Z // 0.

Since
∏
n∈N ExtkPLS(Z,Xn) = 0, we have for all l ∈ N a commutative diagram

with exact rows

El : 0 // Xl
// Sk //

��

Yk−2
//

��

. . . // Y1
f1 //

��

Y0
f0 //

��

Z // 0

F : 0 // Xl
// V k−1
l

// V k−2
l

// . . . // V 1
l

// V 0
l

// 0

by 4.2.4. The countable product of topologically exact sequences is again a
topologically exact sequence (algebraic exactness is clear and the topological
properties only depend on finitely many factors), hence the rows of the
commutative diagram

E : 0 //
∏
n∈N

Xn
fk // Yk−1

��

fk−1 // Yk−2
//

��

. . . // Y0
f0 //

��

Z // 0

0 //
∏
n∈N

Xn //
∏
n∈N

V k−1
n //

∏
n∈N

V k−2
n // . . . //

∏
n∈N

V 0
n // 0

are exact. By 4.2.4 this implies [E] = 0.
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5.2 The connection between ExtkPLS and Proj1

For Fréchet spaces, there is a close connection between Extk and the derived
functors of Proj. Under conditions which are often fulfilled in relevant cases,
one can show for two Fréchet spaces X, Z that there is an isomorphism
Ext1(Z,X) ∼= Proj1(Y), where Y = (L(Z,Xn),L(Z,Xn

m)) is a projective
spectrum of spaces of continuous linear maps (see [40, Proposition 5.1.5]). In
this section we will show that the formalism of the long exact sequence 4.1.1
and the results about ExtkPLS obtained so far yield an analogous result for
PLS-spaces. Note, that the connection between the vanishing of Ext1(Z,X)
and the vanishing of Proj1(Y) for PLS-spaces is a known result of Kunkle
(see [17, Corollary 2.8 and Corollary 2.9]), who established it by using the
splitting characterization of Ext1(Z,X) = 0 and who then made use of this
connection to get splitting results for power series spaces of PLS-type. This
connection between Ext1 and Proj1 is also used by Bonet and Domański in
[4]. We will improve Kunkle’s result by showing the isomorphy Ext1(Z,X) ∼=
Proj1(Y) for PLS-spaces, even if both do not vanish, and we will bring in
the higher Extk-groups to arrive at a complete analogue of [40, Proposition
5.1.5] for PLS-spaces.

Let X be a PLS-space and let X = (Xn, X
n
m) be a strongly reduced spectrum

with Proj(X ) = X. Since X is strongly reduced, it satisfies the condition

∀n∈N ∀U∈U0(Fn) ∃m≥n Xn
m(Xm) ⊆ Xn

∞(Proj(X )) + U.

Therefore, it follows from 3.1.4 that the morphism

σX :
∏
n∈N

Xn →
∏
n∈N

Xn, (xn)n∈N 7→ (Xn
n+1(xn+1)− xn)n∈N

is open onto its range. Since the PLS-space X = Proj(X ) is the kernel
object of the morphism σX , the so-called canonical resolution

0→ X →
∏
n∈N

Xn
σX−−→

∏
n∈N

Xn

of X is a topologically exact sequence. The first derived functor of Proj
evaluated at X , which can be identified with the space

Proj1(X ) =
∏
n∈NXn/ imσX ,

measures the failure of surjectivity of the map σX , i.e. one has Proj1(X ) = 0
if and only if σX is surjective, which is equivalent to

0→ X →
∏
n∈N

Xn
σX−−→

∏
n∈N

Xn → 0

being an exact sequence. Then it follows directly from the long exact se-
quence 4.1.1 that for Proj1(X ) = 0 the vanishing of the space Proj1(Y),
with Y = (L(Z,Xn),L(Z,Xn

m)), is a necessary condition for the vanishing
of Ext1

PLS(Z,X):
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Proposition 5.2.1. Let X, Z be PLS spaces and let X = (Xn, X
n
m) and

Z = (Zn, Z
n
m) be strongly reduced projective spectra with Proj(X ) = X and

Proj(Z) = Z. If Proj1(X ) = 0 and Ext1
PLS(Z,X) = 0, then Proj1(Y) = 0,

where Y = (L(Z,Xn),L(Z,Xn
m)).

Proof. Since Proj1(X ) = 0, the canonical resolution

0→ X →
∏
n∈N

Xn
σX−−→

∏
n∈N

Xn → 0

is a short exact sequence. Applying the functor L(Z,−) to this sequence
yields the long exact sequence

0→ L(Z,X)→
∏
n∈N
L(Z,Xn)

σY−−→
∏
n∈N
L(Z,Xn)→ Ext1

PLS(Z,X)→ . . .

by 4.1.1. Then Ext1
PLS(Z,X) = 0 implies that the map σY is surjective,

hence Proj1(Y) = 0.

Remark 5.2.2. Note that in the analogue of the above proposition 5.2.1 for
Fréchet spaces [40, Proposition 5.1.5.] the assumption Proj1(X ) = 0 is not
explicitly stated, as it is always fulfilled for Fréchet spaces (see [37, Lemma
1.1]).

Keeping in mind the above remark, the long exact sequence 4.1.1 and the
results of the first section of this chapter now give the complete analogue of
[40, Proposition 5.1.5] for PLS-spaces:

Theorem 5.2.3. LetX, Z be PLS spaces and X = (Xn, X
n
m), Z = (Zn, Z

n
m)

strongly reduced projective spectra with Proj(X ) = X and Proj(Z) = Z. If
we have

a) Proj1(X ) = 0,

b) ExtkLS(Zn, Xm) = 0 for all n,m ∈ N and all 1 ≤ k ≤ k0,

for a 1 ≤ k0 ≤ ∞, then

i) Ext1
PLS(Z,X) ∼= Proj1(Y) with Y = (L(Z,Xn),L(Z,Xn

m)),

ii) ExtkPLS(Z,X) = 0 for all 2 ≤ k ≤ k0.

Proof. The assumption Proj1(X ) = 0 yields that the canonical resolution

0→ X →
∏
n∈N

Xn
σX−−→

∏
n∈N

Xn → 0

ofX is a short exact sequence. Applying the functor L(Z,−) to this sequence
gives the long exact sequence

0→ L(Z,X)→
∏
n∈N
L(Z,Xn)→

∏
n∈N
L(Z,Xn)→ Ext1

PLS(Z,X)→ . . .

→ Extk−1
PLS(Z,

∏
n∈N

Xn)→ ExtkPLS(Z,X)→ ExtkPLS(Z,
∏
n∈N

Xn)→ . . .
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of abelian groups. By proposition 5.1.8 we have ExtkPLS(Z,
∏
n∈NXn) = 0 for

1 ≤ k ≤ k0, which implies ExtkPLS(Z,X) = 0 for 2 ≤ k ≤ k0. Furthermore,
it follows from the exactness of the sequence

0→ L(Z,X)→
∏
n∈N
L(Z,Xn)

σY−−→
∏
n∈N
L(Z,Xn)→ Ext1

PLS(Z,X)→ 0

that Ext1
PLS(Z,X) is isomorphic to the cokernel of σY , which is just the

space Proj1(Y).

5.3 ExtPLS for the Space of Distributions

We have briefly mentioned in the last chapter, that the long exact sequence
4.1.1 gives a natural answer to the question when the splitting property
Ext1

PLS(H,G) = 0 is passed on to quotients of G and to subspaces of H:
Given a short exact sequence

0→ X
f−→ Y

g−→ Z → 0

of PLS-spaces and continuous linear maps, one gets for each PLS-space E
the covariant long exact sequence

. . .Ext1
PLS(E, Y )→ Ext1

PLS(E,Z)→ Ext2
PLS(E,X)→ Ext2

PLS(E, Y )→ . . .

and the contravariant long exact sequence

. . .Ext1
PLS(Y,E)→ Ext1

PLS(X,E)→ Ext2
PLS(Z,E)→ Ext2

PLS(Y,E)→ . . .

of 4.1.1. This gives the following implications:

Ext1
PLS(E, Y ) = 0, Ext2

PLS(E,X) = 0 =⇒ Ext1
PLS(E,Z) = 0,

Ext1
PLS(E, Y ) = 0, Ext2

PLS(E, Y ) = 0 =⇒ Ext1
PLS(E,Z) ∼= Ext2

PLS(E,X).

Dually, the second of the above long sequences gives analogous results for
Ext1

PLS(X,E). Therefore, it is natural to consider the functor Ext2 in this
context.

In this section we will compute for k ≥ 2 the groups ExtkPLS(E,F ) for a
closed subspace E and a Hausdorff quotient F of the space D′(Ω) of distri-
butions on an open subset Ω ⊆ Rn (in the sense of L. Schwartz). This in turn
gives, by application of the above reasoning, a new proof of a splitting the-
orem for the space of distributions due to Wengenroth [40, Theorem 5.3.8],
that states Ext1

PLS(E,F ) = 0 in the above setting. This result is itself an
improvement of a result by Domański and Vogt [9, Theorem 2.1 and Theo-
rem 3.1], who showed that Ext1

PLS(E,D′(Ω)) = 0 and Ext1
PLS(D′(Ω), F ) = 0

for a closed subspace E of D′(Ω) and a Hausdorff quotient F of D′(Ω).

We will make use of the isomorphy D′(Ω) ∼= (s′)N to get this results , where
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s′ is the strong dual of the space s of rapidly decreasing sequences. This
isomorphism was discovered by Valdivia [32] and (independently) Vogt [36].
We will only work on the right-hand side of this isomorphism and will there-
fore use the abbreviation D′ := (s′)N.

Another tool for our investigation will be the following connection between
exact sequences of LS-spaces and Fréchet-Schwartz spaces, which contains
only well-known facts (see [19, Theorem 25.19 and Theorem 26.4]):

Proposition 5.3.1. For a sequence of LS-spaces and continuous linear maps

0→ X
f−→ Y

g−→ Z → 0 (1)

the following are equivalent:

i) (1) is topologically exact,

ii) The dual sequence 0 // Z ′
g∗ // Y ′

f∗ // Y ′ // 0 of Fréchet Schwartz
spaces is topologically exact.

Furthermore the sequence (1) is split exact if and only if the dual sequence
is split exact.

The Yoneda-Ext-functors introduced in the third chapter can be constructed
for every exact category and they coincide with the derived functors of
L(A,−), L(−, A) if these can be defined. For the quasi-abelian categories
(F) of Fréchet spaces and (FS) of Fréchet-Schwartz spaces we will denote
the respective Yoneda-Ext-functors by ExtkF and ExtkFS. The above result
5.3.1 allows us to access the vanishing of ExtkLS(Zn, Xm) by dualizing to the
catagory of Fréchet-Schwartz spaces:

Proposition 5.3.2. For two LS-spaces X,Z and k ≥ 1 the following are
equivalent:

i) ExtkFS(X ′, Z ′) = 0,

ii) ExtkLS(Z,X) = 0.

Proof. For k = 1, this is already stated in 5.3.1. For k > 1, assume that
ExtkFS(X ′, Z ′) = 0 and let

E : 0→ X → Yk−1 → Yk−2 → . . .→ Y1 → Y0 → Z → 0

be an exact sequence of LS-spaces. By 5.3.1 the dual sequence

E′ : 0→ Z ′ → Y ′0 → Y ′1 → . . .→ Y ′k−2 → Y ′k−1 → X ′ → 0

of Fréchet-Schwartz spaces is also exact. Since ExtkFS(X ′, Z ′) = 0, there is
by 4.2.4 a commutative diagram with exact rows

E′ : 0 // Z ′ // Y ′0
//

��

Y ′1
//

��

. . . // Y ′k−2
//

��

Y ′k−1

��

// X ′ // 0

F ′ : 0 // Z ′ // V0
// V1

// . . . // Vk−2
// Vk−1

// 0
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consisting of Fréchet-Schwartz spaces. Dualizing this diagram again to the
category (LS), we get a commutative diagram with exact rows

F : 0 // V ′k−1
//

��

V ′k−2

��

// . . . // V ′1
//

��

V ′0

��

// Z // 0

E : 0 // X // Yk−1
// Yk−2

// . . . // Y1
// Y0

// Z // 0

of LS-spaces. Then 4.2.4 yields [E] = [0]. This shows i)⇒ii). Analogously
one shows ii)⇒i).

We have seen in 5.2.3 that the vanishing of the groups ExtkLS(Zn, Xm) is, un-
der mild assumptions, sufficient for the vanishing of ExtkPLS(Z,X) for k ≥ 2.
The above proposition will allow us to access the vanishing of ExtkLS(Zn, Xm)
by first dualizing to the catagory of Fréchet-Schwartz spaces and then apply-
ing the well-established splitting theory for the category of Fréchet spaces.
In the case X ∼= D′ this is also possible for k = 1:

Remark 5.3.3. Due to Domański and Vogt one has Ext1
PLS(E,D′) = 0 for

every closed subspace E of D′ (see [9, Theorem 3.1]). This result can also be
obtained by making use of 5.3.1 and 5.1.8 : Since E is a closed subspace ofD′,
there is a strongly reduced projective spectrum E = (En, E

n
m) consisting of

closed subspaces of s′ such that Proj(E) = E. Because of 5.1.8, it is enough
to show Ext1

LS(En, s
′) = 0 for all n ∈ N. By 5.3.1 a short exact sequence of

LS-spaces splits if and only if the dual sequence of Fréchet-Schwartz spaces
splits and it is a well-known result of Vogt and Wagner [35] that one has
Ext1

F(s, E′n) = 0 in the category (F) of Fréchet spaces. Being a Schwartz
space is a three space property in (F) (see [28, Proposition 3.7]), hence one
also has Ext1

FS(s, E′n) = 0 in the category (FS) of Fréchet-Schwartz spaces
and thus Ext1

LS(En, s
′) = 0.

To compute the higher ExtkPLS-groups for subspaces and quotients of D′ we
make use of the following lemma:

Lemma 5.3.4. Let E,F be two Fréchet-Schwartz spaces such that F is
nuclear. Then ExtkFS(E,F ) = 0 for k ≥ 2.

Proof. In the category of Fréchet spaces one knows ExtkF(E,F ) = 0 for
k ≥ 2, which is a result of Vogt [37, Theorem 1.2 and Corollary 1.3]. For
k = 2, let

H : 0→ F → Y1 → Y0 → E → 0

be an exact sequence of Fréchet-Schwartz spaces. Since Ext2
F(E,F ) = 0,

there is by 4.2.4 a commutative diagram with exact rows

H : 0 // F // Y1
//

��

Y0
// E // 0

G : 0 // F // V1
// Y0

// 0
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for a Fréchet space V1. Being a Schwartz space is a three space property in
the category of Fréchet spaces, hence V1 is a Fréchet-Schwartz space. By
4.2.4 the above diagram implies [H] = [0], hence Ext2

FS(E,F ) = 0. Then
4.2.6 shows ExtkFS(E,F ) = 0 for k ≥ 2.

Proposition 5.3.5. Let E and F be PLS-spaces such that E is isomor-
phic to a subspace of D′ and F is isomorphic to a quotient of D′. Then
ExtkPLS(E,F ) = 0 for k ≥ 2.

Proof. There is a strongly reduced spectrum E = (En, E
n
m) consisting of

closed subspaces of s′ with Proj(E) = E and a strongly reduced spectrum
F = (Fn, F

n
m) consisting of Hausdorff quotients of s′ with Proj(F) = F .

Since the space D′ is ultrabornological and since this property is stable with
respect to taking quotients, the space F is also ultrabornological, which im-
plies Proj1(F) = 0 by [9, Theorem 1.1]. By 5.3.1 we have Ext1

LS(En, Fm) = 0
if and only if Ext1

FS(F ′m, E
′
n) = 0 in the category (FS) of Fréchet Schwartz

spaces. Since being a Schwartz space is a three space property in the
category (F ) of Fréchet spaces, it is enough to show Ext1

F(F ′m, E
′
n) = 0.

Here, the classical splitting result for subspaces and quotients of the space
s due to Vogt and Wagner [34, 35] yields Ext1

F(F ′m, E
′
n) = 0 since F ′m is a

closed subspace of s and E′n is a Hausdorff quotient of s. Hence, we have
Ext1

LS(En, Fm) = 0 for all n,m ∈ N. For k ≥ 2 we know by 5.3.4 that
ExtkFS(F ′m, E

′
n) = 0 for all n,m ∈ N since the E′n are nuclear Fréchet spaces.

By 5.3.2 one also has ExtkLS(En, Fm) = 0 for k ≥ 2 and all n,m ∈ N.
Applying theorem 5.2.3 yields ExtkPLS(E,F ) = 0 for k ≥ 2.

Together with the long exact sequences, the above also gives the already
mentioned new proof of the splitting theorem for subspaces and quotients of
the space of distributions [40, Theorem 5.3.8], i.e. one has Ext1

PLS(E,F ) = 0
in the above setting. Hence, we see that all ExtkPLS-groups do vanish:

Theorem 5.3.6. Let E and F be PLS-spaces such that E is isomorphic to
a subspace of D′ and F is isomorphic to a quotient of D′. Then one has
ExtkPLS(E,F ) = 0 for k ≥ 1.

Proof. We have shown the assertion of the theorem for k ≥ 2 in 5.3.5, it
remains to show the case k = 1. By 5.3.5 we have Ext1

PLS(E,D′) = 0 and
by [9, Theorem 2.1] there is a topologically exact sequence

0→ D′ → D′ → F → 0

of PLS-spaces. Applying the functor L(E,−) yields the long exact sequence

. . . // Ext1
PLS(E,D′) // Ext1

PLS(E,F ) // Ext2
PLS(E,D′) // . . .

of abelian groups and group morphisms. We have Ext2
PLS(E,D′) = 0 by

5.3.5, hence the exactness implies Ext1
PLS(E,F ) = 0.
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Remark 5.3.7.
i) If in the above theorem 5.3.6 the space E is ultrabornological one can

also prove 5.3.6 using the contravariant long exact sequence of 4.1.1.
In fact, by [9, Theorem 3.1] there is a topologically exact sequence

0→ E → D′ → D′ → 0

in the case of E being an ultrabornological subspace and one also has
Ext1

PLS(D′, F ) = 0 by [9, Theorem 2.1]. Applying the functor L(−, F )
yields the long exact sequence

. . . // Ext1
PLS(D′, F ) // Ext1

PLS(E,F ) // Ext2
PLS(D′, F ) // . . .

of abelian groups. By 5.3.5 we have Ext2
PLS(D′, F ) = 0, hence the

exactness of this sequence also implies Ext1
PLS(E,F ) = 0.

ii) It follows from 5.3.5, 5.3.6, and the long exact sequences that one also
has ExtkPLS(Z,X) = 0 for k ≥ 2 if eitherX,Z are both closed subspaces
ofD′, withX ultrabornological, or ifX,Z are both Hausdorff quotients
of D′.

iii) Given two PLS-spaces X,Z one can also consider the abelian groups
ExtkLCS(Z,X), where (LCS) is the quasi-abelian category of locally
convex spaces. Since (LCS) has enough injective objects, these groups
can also be computed as the derived functors of L(Z,−) (see [23]
or [40]). Assuming the continuum hypothesis, the above remark ii)
gives an example where the groups ExtkPLS(Z,X) and ExtkLCS(Z,X)
do not coincide: The space of all sequences ω is a closed subspace of
D′ and the space of finite sequences ϕ is a closed subspace of D′ that
is ultrabornological, hence ii) yields Ext2

PLS(ω, ϕ) = 0. However, it is
a result of Wengenroth [40, Proposition 5.1.13] that Ext2

LCS(ω, ϕ) 6= 0
under the continuum hypothesis.
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