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Zusammenfassung

Zur Bewertung von Finanzmarktprodukten, die nicht liquide gehandelt werden, be-

nötigen Händler ein Preismodell, das zuvor an Marktdaten kalibriert wurde. Für die

Entwicklung eines Optimierungsalgorithmus, der das auftretenden Kalibrierungspro-

blem löst, sind vor allem zwei Voraussetzungen zu nennen.

Zunächst ist seit der Erfindung des Modells von Black und Scholes im Jahre

1973 eine Entwicklung zu komplizierteren Modellen mit zum Beispiel stochasti-

scher Volatilität oder lokaler Volatiliät zu beobachten. Diese Entwicklung erfordert

eine möglichst flexible Methode zur Approximation der Modellpreise. Änderungen

der Modellstruktur sollten durch möglichst wenige Änderungen der Implementie-

rung realisierbar sein. In diesem Zusammenhang ist die Monte Carlo Simulation in

Kombination mit einem Diskretisierungsverfahren zur approximativen Lösung der

stochastischen Differentialgleichung eine gute Wahl. Bekanntermaßen ist jedoch die

Konvergenzgeschwindigkeit der Monte Carlo Methode sehr langsam, was in direk-

tem Widerspruch zur zweiten Voraussetzung an den Algorithmus steht. Damit das

entwickelte Programm in der Praxis angewendet werden kann, muss die Preisbewer-

tung zeitnah stattfinden können.

Aus diesem Grund ist eines der beiden Hauptziele dieser Arbeit die Beschleuni-

gung des Kalibrierungsalgorithmus. Zunächst ist es wünschenswert Methoden der

differenzierbaren Optimierung zur Lösung des Kalibrierungsproblems zu verwenden,

da diese sich durch hohe Konvergenzgeschwindigkeiten auszeichnen, vor allem im

Vergleich zu ableitungsfreien Verfahren. Es wird sich aber zeigen, dass die Zielfunk-

tion im Allgemeinen nicht differenzierbar ist, so dass diese durch zweimal stetig dif-

ferenzierbare Polynome angenähert werden muss. Des Weiteren wird sich herausstel-

len, dass die Berechnung des Gradienten der Zielfunktion, der für den Optimierungs-

algorithmus erforderlich ist, effizient über eine adjungierte Gleichung berechnet wer-

den kann. Vor allem im Vergleich zum häufig verwendeten Finiten Differenzen Ver-

fahren führt die Adjungierte zu einer deutliche Effizienzsteigerung. Darüberhinaus

werden verschiedene andere Methoden entwickelt, beschrieben und angewendet, wie

zum Beispiel ein Multi Layer Verfahren. Die Idee dabei ist die Approximation der

Zielfunktion zu Beginn der Optimierung mit sehr grober Genauigkeit, d.h. mit weni-

gen Monte Carlo Simulationen, wenigen Zeitschritten für die Diskretisierung der sto-

chastischen Differentialgleichung und einem großen Glättungsparameter, und diese

Genauigkeit während der Optimierung sukzessive zu eröhen. Vor allem in Fällen, in

denen der gewählte Startwert nicht bereits nahe beim Optimum liegt, erweist sich

diese Technik als sehr hilfreich. Des Weiteren führt das Speichern möglichst vie-

ler Zufallszahlen für die Realisierung der Brownschen Zuwächse im Arbeitsspeicher

sowie die Parallelisierung der Monte Carlo Simulation zu einer deutlichen Beschleu-

nigung des Algorithmus. So kann z.B. eine Kalibrierung mit 100, 000 Simulationen,



einer Schrittweite von ∆t = 5×10−3 und einem Glättungsparamter von ǫ = 3.1×10−3

durch eine Kombination der vorgestellten Techniken von zunächst 1.5 Stunden auf

6 Minuten reduziert werden. Für den Fall, dass die zu bestimmenden Parameter

stückweise zeitabhängig auf 10 Zeitintervallen gewählt werden, kann sogar eine Re-

duktion von 5.5 Stunden auf lediglich 10 Minuten erreicht werden.

Des Weiteren widmet sich diese Arbeit einer zweiten Fragestellung. Wie oben

beschrieben, werden die Optionspreise mit Hilfe der Monte Carlo Simulation, der

Diskretisierung der zugrundeliegenden stochastischen Differentialgleichung und der

Ausglättung von Nichtdifferenzierbarkeitsstellen approximiert. Daraus resultieren

folglich drei Fehlerquellen: der Monte Carlo, der Diskretisierungs- und der Glättungs-

fehler. Obwohl eine Lösung des approximierenden Problems intuitiv auch eine Lösung

des eigentlichen Problems annähert, ist dies im Allgemeinen keineswegs der Fall.

Ziel ist es also, zu zeigen, dass eine Folge von kritischen Punkten erster Ord-

nung, erzeugt durch Lösen des Optimierungsproblems mit zunehmender Anzahl von

Monte Carlo Simulationen sowie Diskretisierungsschritten und einem abnehmenden

Glättungsparameter gegen einen kritischen Punkt erster Ordnung des eigentlichen

Problems konvergiert. Dies kann erwartungsgemäß nur unter bestimmten Voraus-

setzungen gezeigt werden, im konkreten Fall z.B. unter der Bedingung, dass die

Koeffizienten der Differentialgleichung Lipschitz stetig sind.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Financial derivatives have gained considerable importance in the last decade which

is for instance reflected in the development at the EUREX, one of the world’s

largest derivatives exchanges. From 1998 to 2008 the number of traded contracts

increased from approximately 250 million to 2,200 million (figure 1.1). But not only
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Figure 1.1: Total number of traded contracts at the EUREX from 1998 to 2008 in million.

the number of products, also the variety grew in a remarkable way. In addition to

plain vanilla call and put options, exotic products like barrier options or cliquets,

just to name but a few, are frequently traded. As traders in the banks need accurate

pricing information, it is required that the pricing model has been adapted to the

market, i.e. the model has to be calibrated to a set of liquidly traded instruments.

In a simple Black-Scholes model (Black and Scholes [1973]) for example, the task

would be to choose the volatility parameter, such that market prices are accurately

predicted by the model. For plain-vanilla call or put options, this problem can

be solved explicitly (see also Lemma 2.23). However, smile and skew patterns of

1



2 CHAPTER 1. INTRODUCTION

market prices have led to generalizations of the Black-Scholes model: stochastic

volatility models, local volatility models, models based on jump diffusion or even

combinations of those are nowadays used by practitioners. As a consequence, the

calibration method becomes as crucial as the pricing model itself.

Considering that the fair price of a call option depends on uncertain future

changes of the underlying, e.g. the stock, it might be tempting to use stochastic

optimization methods to solve the arising calibration problem. Hamida and Cont

[2005] for instance set up an evolutionary algorithm. Practitioners seem to prefer

these methods as well as derivative free algorithms. Mikhailov and Nögel [2004]

compared the generalized reduced gradient method implemented in Microsoft Excel

with simulated annealing for the calibration of Heston’s stochastic volatility model

(Heston [1993]). However, these methods are well known to converge very slow.

Alternatively one can make use of the large variety of deterministic optimization

algorithms in combination with suitable numerical methods for the approximation

of the pricing models, as closed form solutions are only rarely available. In this

context Sachs and Schu [2007], Sachs and Strauss [2008], Coleman et al. [1999] or

Kindermann et al. [2008] discretize the associated pricing partial (integro) differen-

tial equation and embed the approximation within the calibration framework. For

the few cases where the distribution of the underlying pricing model is known, fast

fourier transformation indeed is fast (see for instance Kilin [2007]). Gerlich et al.

[2006] achieve a very good performance for the calibration of Heston’s model, where

they use the closed-form solution in a feasibility perturbed sequential quadratic pro-

gram algorithm. These highly specialized methods on the one hand lead to quickly

converging algorithms. On the other hand it is often hard or even impossible to

adapt the resulting codes to changes of the model dynamics—in particular if the

number of stochastic drivers of the model increases.

Moreover, if flexibility and ease of implementation come into play, a calibration

based on Monte Carlo in combination with a discretization of the corresponding

stochastic differential equation (SDE) may be the method of choice, since it can be

programmed rather quickly and allows to switch easily the model dynamics, even if

the dimension of the problem increases. The drawback, however, is the well-known

slow convergence of the Monte Carlo method. In particular, if the number of model

parameters is large, the calibration may take several hours until convergence of

the method is achieved. This holds true especially if the gradient of the objective

function is computed via finite differences. Hence it is desirable to search for more

efficient ways to compute the gradients.

In this context, the Likelihood Ratio Method is based on differentiating the

probability density defined by the model for the underlying stock dynamics. An

introduction to this method is for instance given in Broadie and Glasserman [1996].

Unfortunately, this method requires the probability density of the model dynamics
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which is only known for a few financial market models. The Pathwise Method (see

for instance Glasserman [2003] pp. 386 ff. or Broadie and Glasserman [1996]) is

based on the closed-form solution of the model defining the dynamics of the un-

derlying. In absence of such a solution formula, the pathwise method leads to the

sensitivity equation, which suffers from the same computational effort as the finite

difference approach. A totally different but evolving approach is automatic differen-

tiation (AD), introduced for instance in Griewank and Corlis [1991]. However, tests

show that the reverse mode of AD leads to highly specialized codes, which is hard

to adapt to changing model dynamics. Giles and Glasserman [2006] demonstrate

how an adjoint method can be used to significantly reduce the computation time

for option sensitivities in a Libor market model. Furthermore, Giles [2007] shows

that the development of adjoint codes can be assisted by making use of AD, but

that the automatically derived backward equations are less efficient than their hand-

coded counterparts. Motivated by the potential performance gains it seems to be

advantageous to apply adjoint methods within a Monte Carlo calibration framework.

However, in most applications the option payoff or the coefficients of the stochastic

differential equations describing the financial market model are unfortunately not

differentiable everywhere such that gradient methods as well as the adjoint calculus

are not immediately applicable to Monte Carlo approximations of the calibration

problem. This is the case for e.g. the constant elasticity of variance-model (Cox

[1996]), the Heston model (Heston [1993]), the Hull-White stochastic volatility

model (Hull and White [1987]), the 3/2-model (Lewis [2000]) or the SABR-model

of Hagan et al. (Hagan et al. [2002]).

Thus, after applying Monte Carlo and discretizing the underlying stochastic dif-

ferential equation, an application of differentiable optimization methods and the

adjoint calculus requires to smooth out potential non-differentiabilities. This in

summary leads to an approximation of the original calibration problem based on

three error sources, which raises the question, if a solution of this problem is an

approximation of a solution of the true problem. Rubinstein and Shapiro [1993]

prove convergence in the sense of a first order critical point for an approximation

based on only Monte Carlo. Shapiro [2000] proves convergence under the assump-

tion that the optimization problem produces a global minimum. The case of an

optimization problem that produces a complete set of solutions has been examined

by Robinson [1996]. Bastin et al. [2006] consider additional second order optimality

conditions and stochastic constraints. However, the literature does not provide any

convergence theory if the approximation is based on multiple error sources.
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1.2 Summary of the Thesis

This thesis introduces a calibration problem for financial market models based on a

Monte Carlo approximation of the option payoff and a discretization of the under-

lying stochastic differential equation. As motivated above, it is desirable to benefit

from fast deterministic optimization methods to solve this problem. To be able to

achieve this goal, possible non-differentiabilities are smoothed out with an appro-

priately chosen twice continuously differentiable polynomial. On the basis of this so

derived calibration problem, this work is essentially concerned about two issues.

First, the question occurs, if a computed solution of the approximating problem,

derived by applying Monte Carlo, discretizing the SDE and preserving differentiabil-

ity is an approximation of a solution of the true problem. Unfortunately, this does

not hold in general but is linked to certain assumptions. It will turn out, that a

uniform convergence of the approximated objective function and its gradient to the

true objective and gradient can be shown under typical assumptions, for instance

the Lipschitz continuity of the SDE coefficients. This uniform convergence then al-

lows to show convergence of the solutions in the sense of a first order critical point.

Furthermore, an order of this convergence in relation to the number of simulations,

the step size for the SDE discretization and the parameter controlling the smooth

approximation of non-differentiabilites will be shown. Additionally the uniqueness

of a solution of the stochastic differential equation will be analyzed in detail.

Secondly, the Monte Carlo method provides only a very slow convergence,

namely O(1/
√

M) where M is the number of simulations. The numerical results

in this thesis will show, that the Monte Carlo based calibration indeed is feasible if

one is concerned about the calculated solution, but the required calculation time

is too long for practical applications. Thus, techniques to speed up the calibration

are strongly desired. As already mentioned above, the gradient of the objective

is a starting point to improve efficiency. Due to its simplicity, finite differences is

a frequently chosen method to calculate the required derivatives. However, finite

differences is well known to be very slow and furthermore, it will turn out, that

there may also occur severe instabilities during optimization which may lead to the

break down of the algorithm before convergence has been reached. In this manner

a sensitivity equation is certainly an improvement but suffers unfortunately from

the same computational effort as the finite difference method. Thus, an adjoint

based gradient calculation will be the method of choice as it combines the exact-

ness of the derivative with a reduced computational effort. Furthermore, several

other techniques will be introduced throughout this thesis, that enhance the effi-

ciency of the calibration algorithm. A multi-layer method will be very effective in

the case, that the chosen initial value is not already close to the solution. Variance

reduction techniques are helpful to increase accuracy of the Monte Carlo estimator
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and thus allow for fewer simulations. Storing instead of regenerating the random

numbers required for the Brownian increments in the SDE will be efficient, as de-

terministic optimization methods anyway require to employ the identical random

sequence in each function evaluation. Finally, Monte Carlo is very well suited for a

parallelization, which will be done on several central processing units (CPUs).

These techniques to increase efficiency of a Monte Carlo based calibration algo-

rithm, were developed in two papers, Käbe, Maruhn, and Sachs [2009] and Giese,

Käbe, Maruhn, and Sachs [2007]. In the first, also the question of convergence has

been briefly treated.

1.3 Outline

This thesis is structured as follows. Chapter 2 introduces some basic theory which

will be frequently referred to throughout this thesis. The first parts contains impor-

tant results from the area of probability theory, stochastic processes and stochastic

differential equations. On the basis of this, some fundamental concepts of math-

ematical finance will be explained in the second part. Finally, important results of

numerical analysis, in particular optimization, will be explained.

In the third chapter the calibration problem will be defined, beginning with a

continuous version. Subsequently the underlying stochastic differential equation will

be discretized with an Euler-Maruyama scheme in combination with a Monte Carlo

approximation of the expected value. To be able to benefit from fast converging

deterministic optimization methods, the differentiability of the objective function has

to be ensured as a third step. The particularly chosen algorithm will be introduced

in the last part.

Thus, the derivation of the approximating calibration problem described above

results in three sources of errors, namely the Monte Carlo error, the time discretiza-

tion error and the smoothing error. Consequently, the fourth chapter analyzes the

convergence behavior of a solution of the approximating problem towards a solution

of the true optimization problem. The first part deals with the existence and unique-

ness of solutions of the stochastic differential equation under various assumptions.

The second part contains a prove of first order optimality under conditions, that

preliminarily allow to show a uniform convergence of the objective functions as well

as the corresponding gradients.

The fifth chapter then considers the calculation of the objective’s gradient.

Initially, the finite difference method, which is a simple but expensive way to ap-

proximate the gradient, will be explained. As a first improvement the second part

introduces the sensitivity equation. As this method suffers from the same complexity

as the finite difference approximation, the third part will subsequently show how the

calculation can be sped up with an adjoint method before the fourth part approves
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this numerically. To round the topic out, alternative approaches like automatic

differentiation are briefly explained and discussed in the last part.

Chapter 6 introduces a number of computational methods and techniques to

reduce the overall calibration time. The first section deals with methods of variance

reduction, that reduce the Monte Carlo estimator’s variance which consequently

allows for a smaller number of simulations. Secondly, a multi layer method will

be introduced, where the idea is to increase the accuracy of the objective function

evaluations during optimization. The third section then explains the idea of storing

the random numbers instead of regenerating them every time they are needed which

is finally followed by parallelizing the algorithm.

The seventh chapter presents numerical results to determine the efficiency and

the theoretical coherence of the Monte Carlo calibration method developed in this

thesis.

As the adjoint method presented in chapter 5 is not immediately applicable if

one leaves the model class of diffusion processes and allows for the possibility of

jumps, chapter 8 shows that transforming the model allows a significant adjoint-

based calibration speedup.

Finally, chapter 9 summarizes this thesis with an an outlook on potential future

work.



Chapter 2

Theoretical Background

This chapter introduces the basic theory which will be frequently referred to through-

out this thesis. Section 2.1 starts with an introduction to probability theory, stochas-

tic processes and stochastic differential equations. On the basis of this, some fun-

damental concepts of mathematical finance will be explained in section 2.2. The

last part finally contains important results of numerical analysis, in particular opti-

mization.

2.1 Fundamentals of Stochastic Processes

Throughout this thesis the existence of a probability space (Ω,F , P) will be as-

sumed, where F is the sigma algebra over the set Ω 6= ∅ and P an adequate

probability measure. In this manner, an event E ∈ F is said to happen almost

surely (a.s.) if it happens with probability one, thus if P(E ) = 1.

Let T be a set with T ⊂ R+. A family (Ft)t∈T of sigma algebras is called

filtration if Fs ⊂ Ft , ∀s ≤ t. Heuristically one can say that the filtration Ft

contains all information available up to time t. A mapping τ : Ω → T ∪ {∞} is

called stopping time if {ω ∈ Ω : τ(ω) ≤ t} ⊂ Ft for a given filtration (Ft)t∈T .

Consider a measurable space (Ξ, Σ). A family (Xt)t∈T of random variables with

Xt : (Ω,F) → (Ξ, Σ) is called stochastic process. For practical applications, (Ξ, Σ)

is often chosen as (Rm,Bm), where Bm is the Borel sigma algebra. Furthermore,

for a fixed ω ∈ Ω, Xt(ω) : Ω → R
m describes a path of the stochastic process. An

important example for stochastic processes is the Brownian motion:

Definition 2.1. Let (Ω,F , P) be a probability space with filtration (Ft)t∈T . A

stochastic process (Wt)t∈T is called Brownian motion if

(i) W0 = 0 (a.s.) .

(ii) The increments Wt − Ws are independent from Fs , ∀s, t ∈ T 0 ≤ s < t.

7
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(iii) Wt −Ws are independent and normally distributed with mean 0 and variance

t − s, i.e. Wt − Ws ∼ N(0, t − s), ∀s, t ∈ T 0 ≤ s < t.

Furthermore, a stochastic process (Wt)t∈T with Wt = (W 1
t , ..., W m

t ) is a multidi-

mensional Brownian motion, if (W 1
t )t∈T , ..., (W m

t )t∈T are independent Brownian

motions. Brownian motions are alternatively called Wiener processes.
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Figure 2.1: Some Brownian paths (left side) and two dimensional motion of a particle in
a container filled with gas (right side).

Four different paths of a Brownian motion are illustrated in figure 2.1 on the left

side. This special stochastic process was named after the Scottish botanist Robert

Brown who analyzed the motion of pollen through a microscope in 1827. This has

been modelled with a two dimensional Brownian motion on the right side of figure

2.1.

Financial market models are often and in particular in this thesis formulated

on the basis of Ito stochastic differential equations. For their introduction, the Ito

stochastic integral is a crucial issue. As a first step, this integral can be defined for

processes which are simple predictable.

Definition 2.2. A process (Ht)t∈R+ is called simple predictable if there exists a

bounded and Ftn measurable process (Zn)n=1,...,N such that

Ht(ω) =

∞∑

n=0

Zn(ω)I(tn ,tn+1](t) with 0 = t0 ≤ ... ≤ tn → ∞

and

I(tn ,tn+1](t) =

{
1 ; t ∈ (tn, tn+1]

0 ; else.

The name arises from the observation, that the value of the process over the whole

interval (tn, tn+1] is already known in tn. Consequently, (Ht)t∈R+ is often also called
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step processes or elementary processes. In this simple case, it is natural to set

t∫

0

Hs(ω)dWs(ω) =

∞∑

n=0

Zn(ω)(Wtn+1∧t(ω) − Wtn∧t(ω))

where tn ∧ t := min(tn, t). To extend this integral to a broader class of processes

or functions consider the following definition.

Definition 2.3. A function f : [0, T ]× Ω → R belongs to the set L2
T if

(i) f is jointly L× F measurable.

(ii)
T∫
0

E (f (t, ·)2)dt <∞.

(iii) E (f (t, ·)2) <∞ for each 0 ≤ t ≤ T.

(iv) f (t, ·) is Ft measurable for each 0 ≤ t ≤ T.

where L is the sigma algebra of Lebesgue measurable subsets of R.

As one now can show that the set of simple predictable functions is dense in

L2
T equipped with the norm ‖f (T , ·)‖ :=

√∫ T

0
E (f (t, ·)2)dt (Kloeden and Platen

[1999], Lemma 3.2.1), every L2
T function can be approximated by a simple pre-

dictable function to any accuracy. Thus for an arbitrary function f ∈ L2
T there

exists a sequence of simple predictable functions fn which approximate f in the

above defined norm, i.e.

t∫

0

E ((fn(t, ·) − f (t, ·))2)dt → 0 (n → ∞).

The Ito stochastic integral with respect to a Brownian motion can now be defined

in the following way.

Definition 2.4. (Ito Stochastic Integral) Let (Wt)t∈[0,T ] be a Brownian motion

and f ∈ L2
T . The Ito stochastic integral is defined as

t∫

0

f (t, ·)dWt := lim
n→∞

t∫

0

fn(t, ·)dWt

with fn a sequence of simple predictable functions satisfying

t∫

0

E ((fn(t, ·) − f (t, ·))2)dt → 0 (n → ∞).
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This integral has the following important properties:

Lemma 2.5. For a function f ∈ L2
T it holds true that:

(i) E

((
t∫
0

f (s, ·)dWs

)2
)

=
t∫
0

E
(
f (s, ·)2

)
ds (Ito isometry),

(ii) Xt(ω) :=
t∫
0

f (s,ω)dWs has almost surely continuous paths.

Proof. (i) Kloeden and Platen [1999] p. 84

(ii) Arnold [1973] pp. 96 f.

A combination of a white noise containing this so defined Ito stochastic integral

and an ordinary differential equation is a stochastic differential equation, defined in

the following.

Definition 2.6. Let Wt = (W 1
t , ..., W L

t )T be a L-dimensional vector of Brownian

motions and a : [0, T ] × R
L → R

L as well as b : [0, T ] × R
L → R

L × R
L. The

following equation is called stochastic differential equation:

dXt = a(t, Xt)dt + b(t, Xt)dWt , X0 = c , 0 ≤ t ≤ T <∞

or componentwise

dX l
t = al(t, Xt)dt +

L∑

j=1

bl ,j(t, Xt)dW j
t , l = 1, ..., L.

This SDE can also be written in integral form:

Xt = X0 +

t∫

0

a(s, Xs)ds +

t∫

0

b(s, Xs)dWs ,

where the first integral is the standard Riemann integral and the second the stochas-

tic Ito integral defined above. Xt is called an Ito process, a(t, Xt)dt drift and

b(t, Xt)dWt diffusion.

Note that the literature alternatively provides the Stratonovich integral. With-

out loss of generality and due to the fact that finance theory uses Ito’s calculus

almost exclusively, it will always be referred to Ito’s stochastic differential equation

throughout this thesis.

A direct consequence of Lemma 2.5 (ii) is the path continuity of an Ito process:
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Lemma 2.7. Let
√
|a|, b ∈ L2

T and Xt an Ito process, i.e.

Xt(ω) = X0(ω) +

t∫

0

a(s,ω)ds +

t∫

0

b(s,ω)dWs(ω).

Xt has almost surely continuous paths.

Proof. Define A(t,ω) :=
∫ t

0 a(s,ω)ds and B(t,ω) :=
∫ t

0 b(s,ω)dWs(ω). By defini-

tion A(·,ω) is continuous and Lemma 2.5 (ii) provides the path continuity of B(·,ω)

almost surely. Consequently Xt has almost surely continuous paths.

Skorokhod [1965] proved the existence of a SDE solution under relatively mild

conditions, namely the continuity of the coefficients and an additional linear growth

constraint.

Theorem 2.8. Consider

dXt = a(t, Xt)dt + b(t, Xt)dWt , X0 = c , 0 ≤ t ≤ T (2.1)

and suppose that the following conditions hold:

(i) The mappings a(t, ·) and b(t, ·) are continuous for t ∈ [0, T ].

(ii) There exists a constant G > 0 such that ∀t ∈ [0, T ] and y ∈ R
L

‖a(t, y)‖ + ‖b(t, y)‖ ≤ G(1 + ‖y‖),

where ‖ · ‖ is a vector or respectively matrix norm, for instance the Euclidian

norm ‖y‖ :=
∑n

i=1 y2
i for y ∈ R

n or ‖Y ‖ :=
∑n,m

i ,j=1 Y 2
ij for Y ∈ R

n×m.

Then (2.1) has almost surely a bounded solution.

Proof. Skorokhod [1965] pp. 59 f.

As the uniqueness of such a solution is a more complex issue, section 4.1 will

address this in detail.

In the context of stochastic processes and stochastic differential equations, the

Ito formula is certainly one of the most important results.

Theorem 2.9. (Ito Formula) Consider a stochastic process (Xt)t∈T following the

SDE

dXt = a(t, Xt)dt + b(t, Xt)dWt
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with
√
|a|, b ∈ L2

T and a mapping f : T × R
L → R

m with continuous partial

derivatives ∂f (s,Xs )
∂s

, ∂f (s,Xs)
∂Xs

and ∂2f (s,Xs )
∂X 2

s
. Then, f follows the integral equation

f (t, Xt) = f (0, X0) +
t∫
0

(
∂f (s,Xs )

∂s
+ a(s, Xs)

∂f (s,Xs )
∂Xs

+ 1
2b(s, Xs)

2 ∂2f (s,Xs )
∂X 2

s

)
ds +

t∫
0

b(s, Xs)
∂f (s,Xs )

∂Xs
dWs

or in differential form

df (t, Xt) =
(

∂f (t,Xt )
∂t

+ a(t, Xt)
∂f (t,Xt )

∂Xt
+ 1

2b(t, Xt)
2 ∂2f (t,Xt)

∂X 2
t

)
dt

+b(t, Xt)
∂f (t,Xt)

∂Xt
dWt .

Proof. See for instance Kloeden and Platen [1999] pp. 92 ff.

The following two inequalities are additional important results, which will be-

come helpful for the convergence analysis in chapter 4.

Lemma 2.10. (Gronwall Inequality) Let α,β : T → R integrable with

0 ≤ α(t) ≤ β(t) + L

t∫

0

α(s)ds

for t ∈ T and L > 0. Then

α(t) ≤ β(t) + L

t∫

0

eL(t−s)β(s)ds.

Proof. e.g. Kloeden and Platen [1999] pp. 129 ff.

Theorem 2.11. (Jensen’s Inequality) Let X an integrable random variable taking

values in I ⊂ R. For every convex function f and every concave function g defined

on I it is essential that

f (E (X )) ≤ E (f (X ))

and

g(E (X )) ≥ E (g(X )).

Proof. Bauer [2002] p. 23.

In the area of probability theory, there exists a large variety of different kinds of

convergence concepts. For the analysis in chapter 4, first and foremost the following

two definitions will be used.
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Definition 2.12. (Convergence Almost Surely) A sequence of random variables

(Xn)n is said to converge almost surely to a random variable X if

P
({
ω ∈ Ω : lim

n→∞
|Xn(ω) − X (ω)| = 0

})
= 1.

It is written

Xn −→
n→∞

X (a.s.).

This convergence is also called convergence with propability one.

Definition 2.13. (Convergence in Distribution) A sequence of random variables

(Xn)n with distribution functions Fn converge in distribution to a random variable

X with distribution F if

lim
n→∞

Fn(x) = F (x), ∀x ∈ R.

This convergence is denoted by Xn ⇒ X.

The following theorem addresses the permutability of limit and integral.

Theorem 2.14. (Lebesgue’s Dominated Convergence Theorem) Let fn, f :

Ω → R
m ∪ {∞} measurable and fn −→n→∞ f (a.s.). If there exists an additional

integrable function g defined on Ω with |fn| ≤ g , ∀n ∈ N one obtains

lim
n→∞

∫

Ω

fndP =

∫

Ω

fdP.

Proof. Bauer [1992] p. 96.

In this thesis, the expected value occurring in the call price formula (see Def-

inition 2.20) will be approximated with Monte Carlo simulation. The idea of this

method is the estimation of a random variables’ expected value by calculating the

mean of a large number of realizations. This is motivated by the law of large

numbers:

Theorem 2.15. (Law of Large Numbers)

Let (Xn)n be a sequence of independent and identically distributed random variables

and suppose that E (X1) exists. Then it holds

lim
M→∞

1

M

M∑

m=1

Xm = E (X1) (a.s.).

Proof. Bauer [2002] pp. 86 ff.

The determination of the quality of such an estimator is frequently realized by

bias and root mean square error.
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Definition 2.16. (Bias / Root Mean Square Error) Let X̂ be an estimator of

E (X ). The accuracy of this estimator can be calculated via the bias

E
(
X̂ − X

)

and the root mean square error

√
E

((
X̂ − X

)2
)

.

In particular the Monte Carlo estimator is unbiased as

E

(
1

M

M∑

m=1

Xm

)
=

1

M

M∑

m=1

E (Xm) =
1

M

M∑

m=1

E (X1) = E (X1). (2.2)

A detailed overview on the mentioned topics can be found in Bauer [2002], Bauer

[1992], Feller [1970a], Feller [1970b] or Karatzas and Shreve [1991] for probability

theory, stochastic calculus and Brownian motions, Kloeden and Platen [1999] or

Arnold [1973] for stochastic differential equations and Glasserman [2003] for Monte

Carlo simulation.

2.2 Financial Markets

On the basis of section 2.1 some fundamental concepts of financial markets will be

explained in the following. Initially, several typical assumptions are stated.

Remark 2.17. The following properties of financial markets are assumed to hold

in the latter of this section:

(i) The market is liquid, i.e. arbitrary amounts of assets are always available.

(ii) Market participants can sell assets they do not hold. This is called short

selling.

(iii) It is possible to buy fractional quantities of assets.

(iv) There are no transaction costs, no dividend yields and no arbitrage, i.e. riskless

returns.

Some assumptions may be contrary to intuition like the absence of transaction

costs but they are required to model the real world. Under these assumptions the

considered financial market model can be introduced.

Definition 2.18. Let (Ω,F , P) be a probability space, (Wt)t∈[0,T ] a L-dimensional

Brownian motion and (Ft)t∈[0,T ] the augmented filtration generated by (Wt)t∈[0,T ]
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under an equivalent martingale measure Q. The financial market model is generated

by the stochastic processes (Bt)t∈[0,T ] and (St)t∈[0,T ] = (S1
t , ..., SL

t )T
t∈[0,T ] defined

as the solution of the L + 1 dimensional system of stochastic differential equations:

dSt = rStdt + σlStdWt S0 ∈ (0,∞) 0 ≤ t ≤ T (2.3)

dBt = rBtdt B0 ∈ (0,∞) 0 ≤ t ≤ T . (2.4)

r is the risk free rate, i.e. the premium of a risk free bond (Bt)t∈[0,T ] and σl the

volatility of the l-th stock (S l
t)t∈[0,T ].

Thus, in this model each stock follows a Black-Scholes SDE (Black and Scholes

[1973]). In the latter of this work, this will be expanded to a more general model

which also contains stochastic or local volatility models. In addition to the stocks

and bonds, the considered market provides the possibility to buy or sell European

options.

Definition 2.19. (European Call/Put Option) A European call (put) option is

the right to buy (sell) an underlying, e.g. stock, at a given future time T, called

maturity, for a given price K, denoted as strike.

To understand how market participants benefit from call or put options, consider two

companies closing a contract for a product delivery after N years. If for instance

the delivering company accounts in Euro and the receiving company pays in US

dollar, the first should be aware of changing exchange rates. However, as a put

option provides the right to sell dollar for a fixed amount of Euros after N years,

such an option can be used to hedge against exchange rate fluctuations. Though

buying this right is not for free, this price is known whereas the future exchange

rate fluctuations are uncertain.

The question then arises, what is the fair price, denoted as C (St , t) of such an

option. The fundamental theorem of asset pricing (e.g. Karatzas and Shreve [1998])

states, that an arbitrage-free price of a European call/put option with maturity T

and strike K is given by the discounted expected future payoff of the option:

Definition 2.20. (Price of a European Call/Put Option)

The price of a European call/put option under the risk neutral measure is defined

as
Call: C (S0, 0) = e−rTEQ(max (ST − K , 0))

Put: P(S0, 0) = e−rTEQ(max (K − ST , 0))

where T is the maturity and K the strike of option.

In the selected situation of Definition 2.18 a solution formula for C (S0, 0) exists.

This will be derived in the following. Note that P(S0, 0) can be treated analogously.
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Consider a portfolio Πt containing b(t) bonds as well as s(t) stocks at time t

and one sold option C (St , t). The value of this portfolio in t can thus be calculated

via

Πt = b(t)Bt + s(t)St − C (St , t). (2.5)

This portfolio is assumed to be self financing, which implies that

dΠt = b(t)dBt + s(t)dSt − dC (St , t). (2.6)

Hence, portfolio shifts from stocks to bonds and vice versa can exclusively be fi-

nanced from the existing portfolio. Additionally, this portfolio is riskless, i.e.

dΠt = rΠtdt (2.7)

with the same premium as the bond. If the portfolio rate would differ from the rate

of the bond, this would allow arbitrage. The following Lemma now describes the

price of the option as the solution of a partial differential equation (PDE).

Lemma 2.21. Consider the portfolio Πt from (2.5). The option price C (St , t)

follows the partial differential equation

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
− rC = 0. (2.8)

Proof. Definition 2.18 describes St as an Ito process following the Black-Scholes

SDE. Ito’s Lemma (Theorem 2.9) now provides that

dC =

(
∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2

)
dt + σS

∂C

∂S
dW . (2.9)

Inserting (2.3), (2.4) and (2.9) in (2.6) leads to

dΠt =
(
brB + srS − ∂C

∂t
− rS ∂C

∂S
− 1

2σ
2S2 ∂2C

∂S2

)
dt

+
(
sσS − σS ∂C

∂S

)
dW .

(2.10)

Due to (2.7) any randomness has to be eliminated in (2.10). This can be achieved by

choosing s = ∂C
∂S

. Note that this implies to choose the number of stocks according

to the sensitivity of the option price with respect to the stock price, which is called

delta hedging. On the other hand it follows from (2.7) and (2.5) that

dΠt = rΠtdt = r

(
bB +

∂C

∂S
S − C

)
dt. (2.11)
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Identifying (2.11) with (2.10) provides

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
− rC = 0.

which means the proof of the statement.

Due to the equivalence of the Black-Scholes SDE (2.3) and the above PDE, (2.8)

is denoted as Black-Scholes PDE. If one introduces boundary conditions, the Black-

Scholes formula which provides a solution for (2.8) can be proven subsequently.

These boundary and final conditions are

C (0, t) = 0, C (S , t) −→
S→∞

S , C (S , T ) = max(S − K ).

It is clearly true that the call price at maturity T has to be equal to the payoff

max(S − K , 0). If today’s stock price is zero, nobody would be willing to buy the

option for any positive price and for a fixed strike the option price should converge

to S0 if the latter converges to infinity.

Theorem 2.22. The Black-Scholes PDE (2.8) with boundary condition C (0, t) =

0, C (S , t) −→
S→∞

S and final condition C (S , T ) = max(S − K ) has the solution

C (S , t) = SΦ(d1) − Ke−r(T−t)Φ(d2), S > 0, 0 ≤ t ≤ T (2.12)

with Φ(x) the distribution function of the standard normal distribution, i.e.

Φ(x) =
1√
2π

x∫

−∞

e−
y2

2 dy

and d1 and d2 defined as

d1 =
ln(S/K ) + (r + 1

2σ
2)(T − t)

σ
√

T − t
, d2 =

ln(S/K ) + (r − 1
2σ

2)(T − t)

σ
√

T − t
.

Proof. Black and Scholes [1973]

Hence, the Black-Scholes price of a European call option, depends on the cur-

rent value of the underlying S0, also called the spot, option maturity T , strike K ,

interest rate r and volatility σ. For trading purposes, this implies that the option

price changes with changing spot. To avoid this, consider the following Lemma,

which describes a bijective mapping between a given Black Scholes call price C and

volatility σ assuming arbitrage bounds which will be explained subsequently. First,

the cost of a call option should never be more than today’s value of the stock.

Otherwise, one could sell an option for C and buy the stock for S0. If the value of
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the stock has exceeded the strike at maturity, the stock is sold to the option holder

for K . Otherwise, the option will not be exercised. In any case, one gains at least

C − S0 for selling the option and buying the stock. Furthermore the option price

should not be less than max(S − Ke−r(T−t), 0). To be more precise, assuming the

opposite the option would provide a return of max(er(T−t)S − K , 0) at maturity.

Thus, today’s value is this discounted future value, i.e. max(S − Ke−r(T−t), 0). If

this is larger than the price, buying the option is worth it in any situation. Now

consider the lemma addressing the relation between price and volatility.

Lemma 2.23. Under the assumption that max(S0 −Ke−r(T−t), 0) ≤ C ≤ S0 for a

known Black Scholes price C the mapping

σ → C (σ) − C

has a unique root.

Proof. Consider the case that σ = 0. It holds by definition of d1 and d2 that

d1 = d2 = ∞ and thus Φ(d1) = Φ(d2) = 1. For σ = ∞ it follows analogously that

d1 = ∞ and d2 = −∞ and consequently Φ(d1) = 1 as well as Φ(d2) = 0. Inserting

this in the solution formula (2.12) provides

CBS(σ) − C
BS

=

{
S − Ke−r(T−t) − C

BS ≤ 0 ; σ = 0

S − C
BS ≥ 0 ; σ = ∞.

Thus σ → CBS(σ) − C
BS

has at least one root. For the uniqueness, it remains to

show that CBS(σ) is monotone. Consider therefore that

Φ′(d1) =
1√
2π

e−
d2
1
2 , Φ′(d2) =

1√
2π

e−
d2
2
2 . (2.13)

It can be seen, that

Φ′(d1)

Φ′(d2)
= e−

1
2 (d2

1−d2
2) = e−

1
2 (d1−d2)(d1+d2).

As d1 − d2 = σ
√

T − t and d1 + d2 = 2 ln(S/K)+2r(T−t)

σ
√

T−t
it holds that

Φ′(d1)

Φ′(d2)
= K

e−r(T−t)

S

and thus

SΦ′(d1) = Ke−r(T−t)Φ′(d2). (2.14)
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Thus
∂CBS(σ)

∂σ
= SΦ′(d1)

∂d1

∂σ
− Ke−r(T−t)Φ′(d2)

∂d2

∂σ
.

Inserting (2.14) and

∂d1

∂σ =
σ2(T−t)

√
T−t−(ln(S/K)+r(T−t)+ 1

2 σ2(T−t))
√

T−t

σ2(T−t)

∂d2

∂σ =
−σ2(T−t)

√
T−t−(ln(S/K)+r(T−t)− 1

2 σ2(T−t))
√

T−t

σ2(T−t)

provides
∂CBS(σ)

∂σ
= SΦ′(d1)

(
∂d1

∂σ
− ∂d2

∂σ

)
= S

√
T − tΦ′(d1)

which is strictly positive due to (2.13) which completes the proof.

Thus for every call price, there exists a unique volatility parameter σ, called

implied volatility. In a sticky-strike scenario, the implied volatility does not change

for a fixed strike and changing spot. Similarly in a sticky-moneyness situation, a

constant difference of spot and strike, the so called moneyness, leads to a constant

implied volatility. As these situations can be observed in many markets, the implied

volatility provides more stability than the Black Scholes option price. Supported

by Lemma 2.23, practitioners therefore trade implied volatilities. An example of a

whole set of implied volatilities will be given in section 7.1.

A more detailed introduction to the topic of financial markets is given in Karatzas

and Shreve [1998].

2.3 Numerical Optimization

Generally speaking, optimization describes the minimization or maximization of a

function, for example the least squares difference of model and market prices for

European call options, which is the scope of this thesis. Subsequently, important

basics of numerical optimization will be explained.

Consider initially the unconstrained optimization problem

min
x∈RP

f (x)

where f : R
P → R. The following definitions summarize the basic concepts of local

and global minima:

Definition 2.24. Let f : X → R with X ⊂ R
P . A point x∗ ∈ X is denoted as

(i) global minimizer if f (x∗) ≤ f (x), ∀x ∈ X.

(ii) local minimizer if there exists a neighborhood U(x∗) of x∗ such that f (x∗) ≤
f (x), ∀x ∈ X ∩ U(x∗).
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(iii) strict global minimizer if f (x∗) < f (x), ∀x ∈ X , x 6= x∗.

(iv) strict local minimizer if there exists a neighborhood U(x∗) of x∗ such that

f (x∗) < f (x), ∀x ∈ X ∩ U(x∗), x 6= x∗.

The Taylor series expansion is important for the study of local minimizers.

Theorem 2.25. (Taylor Series Expansion) Let I ⊂ R be a subset, f : I → R

k-times continuously differentiable and a ∈ I . Then, it holds for all x ∈ I :

f (x) =

n∑

k=0

f (k)(a)

k!
(x − a)k + O

(
(x − a)n+1

)
.

Proof. Forster [1999] p. 226 f.

If the function f is smooth, there are efficient ways, to identify local minimizers.

This is motivated by the following two Theorems.

Theorem 2.26. If x∗ is a local minimizer of f and f continuously differentiable then

∇f (x∗) = 0.

Proof. Nocedal and Wright [1999], p. 15.

A point satisfying Theorem 2.26 is called critical point first order or stationary

point. A sufficient condition for a local minimizer is provided by the following

definition.

Theorem 2.27. Suppose that f is twice continuously differentiable, ∇f (x∗) = 0

and ∇2f (x∗) positive definite.Then x∗ is a strict local minimizer.

Proof. Nocedal and Wright [1999] p. 16.

In contrast to these conditions for unrestricted problems, the first order necessary

optimality condition in the restricted case

min
x∈X

f (x) (2.15)

where X ⊂ R
P nonempty, convex and closed, is as follows:

Theorem 2.28. Let f continuously differentiable and X nonempty, convex and

closed. If x∗ is a local minimizer of (2.15) it follows that

∇f (x∗)T (x − x∗) ≥ 0 ∀ x ∈ X .

This condition is called variational inequality.
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Proof. Assume that x∗ ∈ X is a local minimizer and

∇f (x∗)T (x − x∗) < 0

for a x ∈ X . Consider a second point x̃ := x∗ + c(x − x∗) for c ∈ [0, 1]. As

X is convex, it holds that x̃ ∈ X . An application of the Taylor series expansion

(Theorem 2.25) now provides

f (x̃) = f (x∗) + c∇f (x∗)T (x − x∗) + O(c).

∇f (x∗)T (x − x∗) is negative and thus

f (x̃) < f (x∗)

for a sufficiently small c > 0 which is contrary to the local minimizer assumption.

For practical applications often the more general formulation of an optimization

problem subject to equality and inequality constraints on the variables is considered:

min
x∈RP

f (x)

s.t. ci(x) = 0, i = 1, ..., m

ci(x) ≤ 0, i = m + 1, ..., m + n

(2.16)

with f : R
P → R, c : R

P → R
m+n. To take the constraints into account the

Lagrangian function is a linear combination of these involving additional Lagrange

multipliers:

Definition 2.29. (Lagrangian Function) Consider f and c from (2.16). L : R
P ×

R
m+n → R with

L(x ,λ) := f (x) +

m+n∑

i=1

λici (x)

is called Lagrangian function and λ ∈ R
m+n denoted as Lagrange multiplier (vector).

To be able to define optimality conditions, the following set of active inequality

constraint indices and the subsequent linear independence constraint qualification

are fundamental.

Definition 2.30. (Active Set) The active set A(x) at any feasible x consists of

the equality constraints and those indices of the inequality constraint for which

ci (x) = 0, i.e.

A(x) :=

{
i = 1, ..., m

}
∪
{

i ∈ {m + 1, ..., m + n}
∣∣∣∣ ci (x) = 0

}
.
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Those components of c(x) for which ci (x) = 0 are called active, the others conse-

quently inactive.

Definition 2.31. (Linear Independence Constraint Qualification) It is said that

the linear independence constraint qualification (LICQ) holds for a point x and the

active set A(x) if the set of active constraint gradients {∇ci(x), i ∈ A} is linearly

independent.

Now the necessary first order optimality conditions for (2.16) can be introduced.

They will be crucial for the derivation of the optimization method to solve the

considered calibration problem in section 3.4.

Theorem 2.32. (Karush-Kuhn-Tucker) Assume that x∗ is a local minimizer of

(2.16), that the function f and c are continuously differentiable and that the LICQ

holds at x∗. Then there exists a Lagrange multiplier vector λ∗ ∈ R
m+n such that

the following conditions are satisfied

∇xL(x∗,λ∗) = 0

ci(x
∗) = 0 i = 1, ..., m

ci(x
∗) ≤ 0 i = m + 1, ..., m + n

λ∗i ci(x
∗) = 0 i = m + 1, ..., m + n

λ∗ ≥ 0 i = 1, ..., m.

These conditions are called Karush-Kuhn-Tucker (KKT) conditions.

Proof. Nocedal and Wright [1999] pp. 323 ff.

The books of Nocedal and Wright [1999], Geiger and Kanzow [2002] or Bonnans

et al. [2003] provide a detailed overview on the topic of optimization.



Chapter 3

An Optimization Problem for

the Calibration of Financial

Market Models

In this chapter the calibration problem for the calibration of standard European

call options will be defined, beginning with a continuous version. Subsequently a

discretized version will be introduced in the second part, obtained by applying Monte

Carlo simulation and a discretization scheme to approximate the SDE solution. As a

third step, the differentiability of the objective function will be ensured. In particular,

this will be achieved by smoothing non-differentiabilities with a twice continuously

differentiable polynomial. The chosen optimization method will be introduced in

the last part.

3.1 Calibration Problem

The focus lies in the calibration of the parameter vector x = (x1, ..., xP)T ∈ R
P of

an equity-type stock price model, which will be defined later in this chapter, to a

given set of European call options (Definition 2.19) with pricing formula (Definition

2.20)

C (x) := e−rTEQ(max (ST (x) − K , 0)).

The dynamics of the underlying stock are described by a L+1-dimensional system

of stochastic differential equations

dYt(x) = a(x , Yt(x))dt + b(x , Yt(x))dWt , Y0 ∈ (0,∞) , 0 ≤ t ≤ T (3.1)

dBt = rBtdt, B0 ∈ (0,∞).

23
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Here Wt := (W 1
t , ..., W L

t )T is a L-dimensional vector of Brownian motions, Bt

a riskless bond and thus r > 0 the corresponding risk-free rate. The mappings

a : R
P × R

L → R
L and b : R

P × R
L → R

L × R
L satisfy conditions, such that a

solution of (3.1) exists. A more detailed analysis on this topic follows in section

4.1. The dimensions of a and b differ, because the possible correlation between the

components of Wt is incorporated in b. Thus, a(x , Yt(x))dt denotes the compo-

nentwise integral al(x , Yt(x))dt , l = 1, ..., L and b(x , Yt(x))dWt is to understood

in the sense of
∑L

j=1 bj,l(x , Yt(x))dW j
t like already introduced in Definition 2.6.

As the first component of the solution Yt of (3.1) describes the dynamics of the

underlying stock, it is denoted as St to keep the usual notation in the finance

literature:

Yt = [St , Y
2
t , ..., Y L

t ]T , 0 ≤ t ≤ T .

The general structure of (3.1) covers many interesting models in the finance sec-

tor, for instance the well known Heston stochastic volatility model (Heston [1993])

dSt = (r − δ)Stdt +
√

vtStdW 1
t , S0 ∈ (0,∞) , 0 ≤ t ≤ T (3.2)

dvt = κ(θ − vt)dt + σ
√

vt(ρdW 1
t +

√
1 − ρ2dW 2

t ) , v0 ∈ (0,∞)

with L = 2, Y 1
t = St denoting the stock-price at time t, δ is the dividend yield and

Y 2
t = vt is the variance, following a mean-reversion process with mean-reversion

speed κ, mean-reversion level θ, volatility σ and correlation coefficient ρ. In this

process, the variance vt tends to a long term variance level θ with speed κ. This

model is strongly related to the interest rate model of Cox, Ingersoll and Ross

(Cox et al. [1985]), where the same mean reverting square root process has been

used. Other models covered by (3.1) are for instance the Black-Scholes model with

constant volatility (Black and Scholes [1973]), the stochastic volatility models of

Stein and Stein [1991] or Hull and White [1987], the stochastic interest rate model

of Vasicek [1977] or the local volatility model (e.g. Dupire [1994]).

Apart from the concrete model choice, it is usually necessary to employ a set of

feasible vectors X ⊂ R
P , which for instance may contain lower and upper bounds

for every single parameter:

lbp ≤ xp ≤ ubp , p = 1, ..., P .

It might occur, that additional constraints need to be employed. Feller [1951]

proved for instance that a process following the Cox, Ingersoll and Ross model stays

positive, if the Feller constraint 2κθ ≥ σ2 — alternatively denoted as Novikov

condition — is employed. An example for such a process is Heston’s variance

process. This may help avoiding problems with the stock price process crossing

over to the imaginary domain (see Section 3.3 for a more detailed discussion). Note
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that the Feller constraint as well as the box constraints lead to a convex and compact

set. Hence, the first assumption for the calibration problem is stated here:

(A.1) X 6= ∅ is a convex and compact subset of R
P .

This assumption will be helpful for the convergence analysis in chapter 4 and is also

not restrictive due to the comments above.

Let C i
obs denote the observed market price and C i(x) the model price of an

option with maturity Ti and strike Ki for a set of options i = 1, ..., I . Note, that

Ti and Ki are not necessarily different. If one now defines the objective function as

a least squares function, the calibration problem can be formulated as follows:

min
x∈X

f (x) :=
I∑

i=1

(
C i (x) − C i

obs

)2

where C i (x) = e−rTi EQ (max(STi
(x) − Ki , 0)) , i = 1, ..., I

s.t. dYt(x) = a(x , Yt(x))dt + b(x , Yt(x))dWt , Y0 > 0

0 ≤ t ≤ T , T := max
i=1,...,I

Ti .

(P)

The next section deals with a first approximation of this problem.

3.2 Discretization of the Problem

For the solution of the problem (P) the calculation of the expectation functional

EQ(·) is a key point. For some models, fitting the notation of (3.1), (semi-)closed

form solutions are available, for example for Heston’s modell (3.2) (see Heston

[1993]). However, in most cases there exists no such explicit solution formula, so

that numerical methods come into play. According to the discussion in chapter 1,

a Monte Carlo simulation is considered here for the approximation of the expected

value functional. Following the law of large numbers (Theorem 2.15), one obtains

EQ(max(ST (x) − K , 0)) ≈ 1

M

M∑

m=1

(max(sm
T (x) − K , 0)), (3.4)

for M sufficiently large, where sm
T denotes the m-th random sample or realization of

the solution of (3.1) for m = 1, ..., M .

The remaining question then is, how to calculate these realizations. Obviously,

if one knows the joint distribution defined by the modell (3.1), one can sample

directly from this distribution. This is the fact in the Black-Scholes modell for in-

stance, where the stock price process follows a geometric Brownian motion (see

also Example 5.12). Unfortunately, in most cases, this is not possible, such that

alternative methods become desirable. Broadie and Kaya [2006], generate samples
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recursively form parts of the system of SDEs and thus receive a realization of the

exact distribution. The advantage certainly is the relatively high convergence order.

Broadie and Kaya achieve an order of O(s−
1
2 ) compared to O(s−

1
3 ) for an Euler dis-

cretization in combination with Monte Carlo simulation (Duffie and Glynn [1995])

where s is the computational budget. Due to the complexity and the lack of compu-

tational speed this method cannot be recommended for practical implementations

(Andersen [2007]).

Alternatively the SDE solution can be approximated with discretization schemes.

The simplest time discrete approximation scheme is the Euler-Maruyama scheme

(EMS). For a given time discretization

0 = τ0 < ... < τN = T ,

step size ∆tn := (τn+1 − τn) and ∆Wn := (Wn+1 − Wn) for n = 0, ..., N − 1

the increments of the vector of Brownian motions, the solution of the iterative

Euler-Maruyama scheme

ym
n+1(x) = ym

n (x) + a(x , ym
n (x))∆tn + b(x , ym

n (x))∆Wn , m = 1, ..., M (3.5)

is an approximation of the exact solution YT (e.g. Kloeden and Platen [1999]).

The simplest choice for the step size would be an equidistant h > 0, such that

∆tn = h , n = 0, ..., N − 1. However, in practice is is often required to fit different

points in time Ti , i = 1, ..., I with

0 = τ0 < ... < τN1 = T1 < τN1+1 < ... < τN2 = T2 < ... < τNI
= TI = T .

Thus at least a different step size for every interval [Ti , ..., Ti+1], which means

choosing ∆tn = hi > 0 , i = 1, ..., I , might become necessary. In this context, let

∆t := maxn=0,...,N−1(∆tn).

On the one hand, a big advantage of the EMS is its implementability. Changing

the model requires only few adaptions of the implementation. This suits perfectly

the discussion of Monte Carlo simulation above. On the other hand, there exist

other schemes with a higher rate of convergence, like the explicit or the implicit

Milstein scheme. Without loss of generality, this work focuses on the EMS, as all

steps are transferable to many other discretization schemes.

Reconsider that ∆Wn := (Wn+1 − Wn) denote the increments of the vector

of Brownian motions. These increments are normally distributed with mean zero

and variance ∆tn (see Definition 2.1). In practice, the generation of sequences of

random numbers on the computer, that follow a given distribution, leads to pseudo

random numbers, as most generators naturally deliver deterministic instead of really

random sequences. Section 6.3 will give a more detailed analysis on this topic.
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Summarizing, i.e. applying (3.4) and (3.5) to problem (P), leads to

min
x∈X

fM,∆t :=
I∑

i=1

(
C i

M,∆t(x) − C i
obs

)2

where C i
M,∆t(x) := e−rTi 1

M

M∑
m=1

(
max(sm

Ni
(x) − Ki , 0)

)
, i = 1, ...I

s.t. ym
n+1(x) = ym

n (x) + a(x , ym
n (x))∆tn + b(x , ym

n (x))∆W m
n

ym
0 = Y0, n = 0, ..., N − 1, N := max

i=1,...,I
Ni , m = 1, ...M .

(PM,∆t)

This problem is denoted with two lower indices to underline the dependency of the

number of Monte Carlo simulations M and the maximal discretization step size ∆t.

An immediate application of smooth optimization methods to this problem might

lead to two main difficulties: positivity of the SDE solution and differentiability of

the objective function. The next section deals with these two problems.

3.3 Preserving Positivity and Differentiability

A closer look to (PM,∆t) reveals that fast converging gradient based methods are

not immediately applicable.

Firstly, if one considers a square-root process, like in the Heston model (3.2),

one has to take care of the process crossing over to the imaginary domain, like the

following Lemma shows for the example of a mean reverting process:

Lemma 3.1. Consider the mean reverting β-process

dvt = κ(θ − vt)dt + σvβ
t dWt , v0 > 0, 0 ≤ t ≤ T (3.6)

where 1
2 ≤ β ≤ 1 and κ, θ,σ > 0. Then

(i) the solution (vt)t of (3.6) takes with probability 1 an infinite time to reach

zero if either 1
2 < β ≤ 1 or β = 1

2 and 2κθ ≥ σ2.

(ii) the solution (vt)t of (3.6) reaches zero with probability 1 in finite time if

β = 1
2 and 2κθ < σ2.

Proof. Mao et al. [2006], pp. 5 ff.

This result can be helpful when solving models including such a mean reverting

β-process, as a negative value for vt would imply problems with taking the square

root. Thus for β = 1
2 the Feller condition 2κθ ≥ σ2 can be applied albeit for the

cost of restricting the set of parameter values. Unfortunately, the Feller condition

does not help if it is applied to the process from Lemma 3.1 discretized with the

Euler-Maruyama scheme:
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Lemma 3.2. Consider the Euler-Maruyama discretized mean reverting β-process

with β = 1
2

vn+1 = vn + κ(θ − vn)∆t + σ
√

vn∆Wn, v0 > 0, n = 0, ..., N − 1.

If vn > 0 the conditional probability that vn+1 < 0 is strictly positive for any chosen

discretization step size ∆t.

Proof. e.g. Lord et al. [2006].

As a consequence of this, practitioners truncate the process in zero: yn = 0,

if yn < 0 or reflect it: yn = −yn, if yn < 0, see e.g. Gatheral [2004]. From

a mathematical point of view, there may be better positivity preserving methods.

Lord et al. [2006] introduce a technique called full truncation, which they apply to

Heston’s stochastic volatility model. This means replacing selected values of vn by

the truncated counterparts max(0, vn), denoted as v+
n :

Sn+1 = Sn + (r − δ)Sn∆tn +
√

v+
n St∆W 1

n

vn+1 = vn + κ(θ − v+
n )∆tn + σ

√
v+
n (ρ∆W 1

n +
√

1 − ρ2∆W 2
n ).

They compared this scheme with several others, for instance the partial trun-

cation of Deelstra and Delbaen [1998] and received a significantly lower bias and

even more a root mean square error (Definition 2.16) of the same size as an exact

scheme. The computation time compared to other positivity preserving schemes is

the same.

Secondly, a closer look reveals, that C i
M,∆t(x) is not differentiable due to the

maximum function. There are several ways to deal with this problem. Firstly, one

might apply methods of non-differentiable optimization, e.g. methods based on the

subgradient (Geiger and Kanzow [2002]), or stochastic search algorithms, which do

not require any gradient information. However, as these methods are well known to

converge very slowly, it is desirable to use smooth optimization algorithms. Thus

the non-differentiability is smoothed out with an adequate polynomial πǫ:

πǫ(x) :=





0 , x ≤ −ǫ
− 1

16ǫ3 x
4 + 3

8ǫx
2 + 1

2x + 3ǫ
16 , −ǫ < x < ǫ

x , x ≥ ǫ.

(3.7)

A comparison of coefficients shows, that for a given smoothing parameter ǫ > 0,

(3.7) is the polynomial with the smallest degree, which is a twice continuously dif-

ferentiable approximation of the maximum function. The drawback of this approach

is the approximation error. The following lemma quantifies this error.
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Lemma 3.3. For πǫ from (3.7) it holds true that

‖max(x , 0) − πǫ(x)‖∞ =
3

16
ǫ.

Proof. By definition of πǫ one has

|max(x , 0) − πǫ(x)| = 0, ∀x ∈ (−∞,−ǫ] ∪ [ǫ,∞).

A simple extreme value analysis shows that |max(x , 0)−πǫ(x)| attains its maximum

at x = 0 (see also figure 3.1). Thus

sup
x∈R

|max(x , 0) − πǫ(x)| = | − πǫ(0)| =
3

16
ǫ.

In addition, the mappings a and b in the SDE may not be differentiable, e.g.

due to positivity preserving schemes like full truncation, which have been introduced

above. Thus these mappings are smoothed with a polynomial similar to (3.7).

Figure 3.1 shows the effect of smoothing the maximum as well as the absolute value

function (if reflection instead of truncation is applied) — each with an adequate

polynomial.
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Figure 3.1: Smoothing property of polynomial πǫ(x) (blue line) from (3.7) to maximum
function (green line) and a similar polynomial to absolute value function for ǫ = 0.5 (red
diamonds) and −1 ≤ x ≤ 1.

For the convergence analysis in the latter of this thesis, not only the error term

‖max(x , 0) − πǫ(x)‖∞ but the resulting errors of the smoothed and unsmoothed

coefficient functions, namely ‖aǫ(x , y) − a(x , y)‖∞ and ‖bǫ(x , y) − b(x , y)‖∞ will

be important. To be able to derive preferably arbitrary convergence results, the
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following assumption is stated

(A.2)
‖aǫ(x , y) − a(x , y)‖2

∞+‖bǫ(x , y) − b(x , y)‖2
∞ ≤ ψ(ǫ)

with ψ : R+ → R and lim
ǫ→0

ψ(ǫ) = 0.

Several financial market models, for instance the Stein-Stein model (Stein and

Stein [1991]), which will be used for the numerical convergence results in chapter

7, have coefficient functions with a linear structure such that the error ψ(ǫ) can be

drilled down to the smoothing error from Lemma 3.3 and is thus of order O(ǫ2).

However, the above introduced Heston model (3.2) would provide a coefficient error

order of O(ǫ) due to the introduced square root function. This result is based on

the Hölder continuity of the square root function (see also Remark 4.5).

To facilitate notation no difference will be made between the resulting three

polynomials and smoothing parameters ǫ in the following. Replacing max(·), a(·)
and b(·) by their smoothed counterparts πǫ(·), aǫ(·) and bǫ(·) the optimization

problem can now be written as follows:

min
x∈X

fM,∆t,ǫ(x) :=
I∑

i=1

(
C i

M,∆t,ǫ(x) − C i
obs

)2

where C i
M,∆t,ǫ(x) := e−rTi 1

M

M∑
m=1

(
πǫ(s

m
Ni ,ǫ

(x) − Ki)
)
, i = 1, ..., I

s.t. ym
n+1,ǫ(x) = ym

n,ǫ(x) + aǫ(x , ym
n,ǫ(x))∆tn + bǫ(x , ym

n,ǫ(x))∆W m
n

ym
0 = Y0, n = 0, ..., N − 1, N := max

i=1,...,I
Ni , m = 1, ...M .

(PM,∆t,ǫ)

Note that the SDE in the problem above is the discretized counterpart of

dYt,ǫ(x) = aǫ(x , Yt,ǫ(x))dt + bǫ(x , Yt,ǫ(x))dWt . (3.9)

If a and b are already twice continuously differentiable, so that smoothing is not

necessary, it will still be referred to aǫ and bǫ for the sake of readability. In this case,

the smoothing parameter is zero. Consequently the second assumption is stated as

follows:

(A.3)

πǫ : R → R, C i
M,∆t,ǫ : X → R, i = 1, ..., I , aǫ : X × R

L → R
L and

bǫ : X × R
L → R

L × R
L are twice continuously differentiable on

R, X , X × R
L, respectively.

This smoothing may have a welcome side effect regarding the existence and

uniqueness of solutions of the SDE. On the other hand, it affects the convergence

behavior of the objective function, because there is a third error besides the Monte-

Carlo and the discretization error, namely the smoothing error. Both observations
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are being examined in chapter 4, whereas the next section finally deals with the

numerical solution of (PM,∆t,ǫ).

3.4 Sample Average Approximation

The literature provides several ways to deal with the minimization of a function like

fM,∆t,ǫ(x) from (PM,∆t,ǫ), e.g. stochastic approximation or sample average approx-

imation (SAA). For reasons already explained in section 1.1 and section 3.3 it is

desirable to make use of fast deterministic optimization methods. In this manner the

idea of SAA, which is sometimes also called sample-path optimization (e.g. Robin-

son [1996]), is to fix the random vector during optimization, such that fM,∆t,ǫ(x)

becomes a deterministic function. In addition, since the non-differentiabilities of

problem (PM,∆t) have been smoothed out, the use of fast converging gradient

based optimization algorithms is possible. Reconsider that if the smoothing step

would not have been taken, one would have to apply methods of non-differentiable

optimization, which are for instance based on subgradients (e.g. Geiger and Kanzow

[2002], chapter 6). Note again, that these methods converge very slowly.

Before solving (PM,∆t,ǫ) one should recall that it is a nonlinear least squares

problem with a special structure, which will be explained in the following. Defining

R(x) = [Ri(x)]
I

i=1 :=
[
C i

M,∆t,ǫ(x) − C i
obs

]I
i=1

(3.11)

the objective function of (PM,∆t,ǫ) can be written as the squared 2-norm of this

residual vector R(x) ∈ R
I , that is fM,∆t,ǫ(x) = ‖R(x)‖2

2. An efficient way to

calculate the gradient and even the Hessian is shown in the following Lemma.

Lemma 3.4. Let Assumption (A.3) hold and consider fM,∆t,ǫ(x) = ‖R(x)‖2
2 with

R defined in (3.11) and let JR : R
P → R

I×P with JR(x) := [ ∂
∂xp

Ri(x)]I ,Pi ,p=1 denote

the Jacobian of R. Then the gradient is defined as

∇fM,∆t,ǫ(x) = 2JR(x)TR(x)

and the Hessian can be approximated through

∇2fM,∆t,ǫ(x) ≈ 2JR(x)T JR(x).

Proof. The first equation holds by definition. As the functions C i
M,∆t,ǫ(x) are twice

continuously differentiable (see assumption (A.3)) the exact formula for the Hessian

is

∇2fM,∆t,ǫ(x) = 2JR(x)T JR(x) + 2

I∑

i=1

Ri (x)∇2Ri (x).
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If the residuals Ri(x) are small, that is the model fits the market data well, the so

called Gauss-Newton approximation

∇2fM,∆t,ǫ(x) ≈ 2JR(x)T JR(x), (3.12)

which has been derived by leaving out the second term, can be expected to be of

good quality.

In this case one is able to obtain good approximations of the Hessian by only

making use of first order derivative information. Chapter 5 deals with the analysis

of several ways how to compute this Jacobian.

Based on the computed first and second order derivatives, one can now apply

nonlinear optimization algorithms to the solution of the subproblems (PM,∆t,ǫ). Ger-

lich et al. [2006] show that feasibility perturbed sequential quadratic programming

methods in combination with a Gauss-Newton approximation (3.12) of the Hessian

perform very well for typical calibration problems in finance. However, infeasible

sequential quadratic programming codes or interior point methods might also yield

a good choice (see for example Forsgren et al. [2002] or Boggs [1995]).

In this work, a line-search sequential quadratic programming method has been

chosen to solve (PM,∆t,ǫ). As the name indicates, it is a combination of a local

convergent sequential quadratic programming (SQP) method in combination with

a line-search technique to globalize the convergence behavior. Before considering

the line-search approach, the SQP method will be briefly introduced. A detailed

description is for instance given by Nocedal and Wright [1999] (chapter 18) or Geiger

and Kanzow [2002] (chapter 5). Consider the inequality-constrained optimization

problem

min
x∈RP

F (x) s.t. c(x) = 0, d(x) ≤ 0 (3.13)

with F : R
P → R, c : R

P → R
m and d : R

P → R
n, which has already been

introduced in section 2.3. The KKT conditions (see Theorem 2.32) for this problem

are
∇xL(x ,λ,µ) = 0

c(x) = 0

d(x) ≤ 0

µTd(x) = 0

µ ≥ 0,

where L(x ,λ,µ) : R
p × R

m × R
n → R is the Lagrangian function of F , namely

L(x ,λ,µ) := F (x) +
m∑

i=1

λici (x) +
n∑

i=1

µidi (x)
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with Lagrange multipliers λ ∈ R
m and µ ∈ R

n. Note that the notation here differs

from the one used in section 2.3 in denoting the inequality constraints with d and

the corresponding Lagrange multiplier with µ. Consequently, a solution x of (3.13)

fulfills in particular the conditions

∇xF (x) + Jc(x)Tλ+ J∗
d (x)Tµ∗ = 0

c(x) = 0

d∗(x) = 0.

(3.14)

Jc is the Jacobi matrix of the equality constraints c , d∗ denotes the active inequality

constraints and J∗
d and µ∗ the corresponding Jacobi matrix and Lagrange multiplier

respectively. Applying Newton’s method to solve (3.14), leads to the iteration




xk+1

λk+1

µ∗
k+1


 =




xk

λk

µ∗
K


+




∆xk

∆λk

∆µ∗
k




where (∆xk , ∆λk , ∆µ
∗
k )T is the solution of the linear system of equations




Hk Jc(xk )T J∗
d (xk )T

Jc(xk )T 0 0

J∗
d (xk )T 0 0







∆xk

∆λk

∆µ∗
k


 =

−




∇xF (x) + Jc(x)Tλ+ J∗
d (x)Tµ∗

c(x)

d∗(x)


 .

Hk is an approximation of the Hessian of the Lagrangian function ∇2
xxL(x ,λ,µ).

Subtracting Jc(x)Tλ+J∗
d (x)Tµ∗ on both sides shows that this equation is equivalent

to 


Hk Jc(xk)
T J∗

d (xk)
T

Jc(xk)
T 0 0

J∗
d (xk )T 0 0







∆xk

λk+1

µ∗
k+1


 = −




∇xF (x)

c(x)

d∗(x)




which in turn are the KKT conditions of the quadratic problem

min
∆xk

∇F (xk )T∆xk + 1
2∆xT

k Hk∆xk

s.t.
Jc(xk )T∆xk + c(xk) = 0

J∗
d (xk )T∆xk + d∗(xk ) = 0.

As the set of active inequality constraints is unknown at the very beginning of the

optimization, the idea of the SQP algorithm lies in the solution of the corresponding
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quadratic problem including all constraints

min
∆xk

∇F (xk )T∆xk + 1
2∆xT

k Hk∆xk

s.t.
Jc(xk )T∆xk + c(xk ) = 0

Jd(xk )T∆xk + d(xk ) ≤ 0.

(3.15)

Algorithm 1 shows the resulting pseudocode of the SQP method.

Algorithm 1 SQP Method

1: Choose (x0,λ0,µ0) ∈ R
p × R

m × R
n

2: Set k=0
3: while Convergence is not satisfied do
4: Solve the quadratic problem (3.15) and receive ∆xk , λk+1, µk+1

5: Set xk+1 = xk + ∆xk and k = k + 1
6: end while

Unfortunately this SQP method converges only locally, i.e. only for starting

values close enough to a stationary point. To globalize this algorithm two classes

of techniques can be utilized, trust-region and line-search based methods. The idea

of trust-region is to add an additional constraint of the form ‖W∆x‖ ≤ ∆ to the

quadratic problem. ∆ is the trust-region radius and W a scaling matrix. A more

detailed introduction is given for instance in Conn et al. [2000]. The line-search

framework has been chosen in this work, where the iterates are calculated via

xk+1 = xk + αkdk

where dk is a direction in R
P and αk the size of the step that is taken in this

direction.

The additional problem of ensuring feasibility is solved by adding a penalty term

to the objective function. In terms of (3.13), this means that the merit function

Θγ(x) := F (x) + γ
(
‖e(x)#‖

)

with e(x) = (c(x), d(x))T ∈ R
m+n the combined vector of equality and inequality

constraints and

ei(x)# =

{
ci (x) i = 1, ..., m

max(di−m(x), 0) i = m + 1, ..., n

replaces the original objective F (x). By definition, this function penalizes infeasi-

bility as the values of ‖c(x)‖ as well as ‖max(d(x), 0)‖ increase with increasing

degree of infeasibility. Bonnans et al. [2003], p. 295 suggest an adaptive choice of

the penalty parameter γ, showed in algorithm 2.
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Algorithm 2 Penalty Parameter Update

1: Choose γ > 0
2: if γk−1 ≥ 1.1(‖γk‖ + γ) then
3: γk = 1

2 (γk−1 + ‖λk‖ + γ)
4: else
5: if γk−1 ≥ ‖λk‖ + γ then
6: γk = γk−1

7: else
8: γk = max(1.5γk−1, ‖λk || + γ
9: end if

10: end if

This rule takes into account, that the penalty parameter has to fullfill the con-

dition

γk ≥ ‖λk‖

to make dk a descent direction (Bonnans et al. [2003], Proposition 17.1, p. 293).

In fact, this condition has to be imposed with some safeguard, i.e.

γk ≥ ‖λk‖ + γ

for some γ > 0. The constants 1.1 and 1.5 can be replaced by any constant greater

1.

Furthermore, the step size αk is chosen adaptively to decrease the merit function

Θγ . In particular, αk is calculated by the Armijo step size rule, defined in algorithm

3. The interpretation of this step size choice is as follows. If the initially chosen

Algorithm 3 Armijo

1: The iterates xk and direction dk are given
2: Choose αmax > 0 and β, ξ ∈ (0, 1)
3: if Θγ(xk + αmaxdk ) − Θγ(xk ) ≤ ξαmax∇Θγ(xk )Tdk then
4: αk = αmax

5: else
6: Set lk = 1
7: while Θγ(xk + αmaxβ

lk dk) − Θγ(xk ) > ξαmaxβ
lk∇Θγ(xk )Tdk do

8: lk = lk + 1
9: end while

10: αk = αmaxβ
lk

11: end if

step xk + αmaxdk decreases Θγ sufficiently, this step is being taken. If not, the

initial step size αmax is decreased by the factor βlk until a sufficient decrease of the

merit function has been reached. The sufficiency is tested via the so called Armijo

condition

Θγ(xk + αmaxdk) − Θγ(xk ) ≤ ξαmax∇Θγ(xk)
T dk .
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All together, the line-search SQP algorithm is defined in algorithm 4.

Algorithm 4 Line-Search SQP Method

1: Choose (x0,λ0,µ0) ∈ R
p ×R

m ×R
n, αmax > 0 and β, ξ ∈ (0, 1) for Armijo and

γ > 0 for the penalty update
2: Calculate ∇F (x0), Jc(x0), Jd (x0) and H0 ≈ ∇2

xxL(x0,λ0,µ0)
3: Set k=0
4: while Convergence is not satisfied do
5: Solve (3.15) and receive (∆xk ,λk+1,µk+1)
6: Adapt γk with algorithm 2
7: Choose αk with algorithm 3
8: Set xk+1 = xk + αk∆xk and k = k + 1
9: Calculate ∇F (xk ), Jc(xk ), Jd (xk)

10: end while

In any case the main effort of the algorithm will be the evaluation of the objective

function of (PM,∆t,ǫ) and its gradient since any evaluation of fM,∆t,ǫ requires to

perform M numerical solutions of the stochastic differential equations in (PM,∆t,ǫ).

In this context note that it is sufficient for the evaluation of the objective to simulate

the SDEs once until t = T and to pick the stock prices at the maturities Ti

(see figure 3.2), instead of simulating them again for each call option C i . As

a consequence, all option prices — for different maturities and strikes — can be

calculated in one sweep from one path. The effect of this technique can be estimated

by 1
2TI (TI + 1), which is a factor of 15 for maturities between 0 and 5 years for

example.
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Figure 3.2: Graphical illustration of one simulated stock price path (blue line) and those
prices (red diamonds) which can be picked along the path to evaluate the functions C

i
M,∆t,ǫ.



Chapter 4

Convergence of the

Approximating Problem

In the previous chapter the discretized optimization problem (PM,∆t,ǫ) has been de-

rived by approximating the expectation functionals via Monte Carlo, discretizing the

SDEs with the Euler-Maruyama scheme and smoothing out the non-differentiabilities

of the objective function. This results in three sources of errors, namely the Monte

Carlo error, the time discretization error and the smoothing error. Though it fol-

lows from intuition, that a solution of (PM,∆t,ǫ) is an approximation of (P), this

statement does not hold for arbitrary problems in mathematical theory.

Consequently, this chapter analyzes the convergence behavior of a solution of

(PM,∆t,ǫ) towards a solution of (P) and is structured as follows. The first part

deals with the uniqueness of solutions of the stochastic differential equation under

various assumptions. The second part contains a pointwise convergence analysis

in a simplified optimization problem framework. On the basis of this, the uniform

convergence of a solution of (PM,∆t,ǫ) to a solution of (P) can be shown, which

finally allows to prove first order optimality.

4.1 Uniqueness of Solutions to Stochastic Differen-

tial Equations

In section 3.1 the stochastic differential equation (3.1) on page 23

dYt(x) = a(x , Yt(x))dt + b(x , Yt(x))dWt , Y0 ∈ (0,∞) , 0 ≤ t ≤ T

has been introduced. As noted very briefly in section 3.1, a and b have to fulfill

conditions, that a solution of (3.1) exists. The pure existence has been addressed

37
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in Theorem 2.8 under relatively nonrestrictive assumptions like the path continuity.

But like in the theory of ordinary differential equations, the uniqueness of such a

solution is desirable. Consider therefore the following definition:

Definition 4.1. Let (Yt)t∈[0,T ] be a solution of (3.1). If for every second solution

(Ỹt)t∈[0,T ]:

P

(
sup

0≤t≤T

∥∥∥Ỹt − Yt

∥∥∥ > 0

)
= 0,

Yt is a pathwise unique solution.

Unfortunately the assumptions of Theorem 2.8 do not seem to allow for a unique-

ness proof. Kloeden and Platen [1999] showed the existence (Theorem 4.5.3, pp.

131 ff.) of a pathwise unique solution under heavier assumptions, like the Lip-

schitz continuity of the coefficient functions. This is being addressed in section

4.1.1. However, there exist models with coefficient functions which do not fulfill

a Lipschitz condition. Yamada and Watanabe [1971] provide a uniqueness proof

under relaxed conditions (section 4.1.2). These conditions cover for instance, the

case with Lipschitz continuous drift and Hölder continuous diffusion. Unfortunately,

this result is restricted to the case of an indeed multidimensional model but with

autonomous components. In this manner, a uniqueness result can be derived from

the weak convergence proof of Mikulevicius and Platen [1991] in section 4.1.3.

As a first step, models with drift and diffusion that provide uniformly bounded

Lipschitz constants are observed.

4.1.1 Lipschitz Continuous Coefficients

The crucial assumption for the standard existence and uniqueness result is the Lips-

chitz continuity of the coefficient functions. Though not every model has Lipschitz

continuous coefficients, there is a wide variety of models that do fulfill this assump-

tion, e.g. the models of Stein and Stein [1991] or Vasicek [1977]. Furthermore,

the smoothed version of a square-root process, which has been introduced above,

obtains Lipschitz continuous coefficients for a positive smoothing parameter ǫ > 0,

due to the fact that the smoothing polynomial keeps the process away from reach-

ing zero. Figure 4.1 displays the Lipschitz property of the function fǫ(x) =
√
πǫ(x)

with πǫ from (3.7). A simple but tedious calculation shows, that fǫ has a Lipschitz

constant of order L(ǫ) = O(ǫ−
1
2 ). Consequently Kloeden and Platen’s theorem

for the existence of a pathwise unique solution assuming the Lipschitz property is

stated below.

Theorem 4.2. Let (Yt)t∈[0,T ] be a solution of

dYt = a(x , Yt)dt + b(x , Yt)dWt , Y0 ∈ (0,∞). (4.1)
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Figure 4.1: fǫ(x) =
p

πǫ(x) for ǫ = 1.0 (blue line) , ǫ = 0.5 (red line) and ǫ = 0.0 (green

line) on the left and corresponding upper bound
|
√

πǫ(x)−
√

πǫ(x+h)|
h

on the right.

If the Lipschitz condition:

There exists a constant L > 0 such that ∀t ∈ [0, T ] and y , y ∈ R
L

‖a(x , y) − a(x , y)‖ + ‖b(x , y) − b(x , y)‖ ≤ L‖y − y‖

holds, Yt on [0, T ] is a pathwise unique solution.

As the Lipschitz constant may depend on the smoothing parameter ǫ, the proof

provided by Kloeden and Platen [1999], pp. 131 ff., is modified and presented to

clarify this dependence.

Proof. Let (Yt)t∈[0,T ] and (Ỹt)t∈[0,T ] be two solutions of (4.1), i.e.

Yt = Y0 +

T∫

0

a(x , Yt)dt +

T∫

0

b(x , Yt)dWt

Ỹt = Y0 +

T∫

0

a(t, Ỹt)dt +

T∫

0

b(t, Ỹt)dWt .

The goal is to show that E (‖Ỹt − Yt‖2) = 0. As it yet may occur that the second

moments are not finite the following truncation procedure will be used:

IN(t) =

{
1 ; ‖Ys(ω)‖, ‖Ỹs(ω)‖ ≤ N for 0 ≤ s ≤ t

0 ; otherwise.
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It holds by definition that

E

(∣∣∣IN(t)‖Ỹt − Yt‖
∣∣∣
2
)

= E



∣∣∣∣∣∣
IN(t)

t∫

0

IN(s)‖a(x , Ỹs) − a(x , Ys)‖ds

+ IN(t)

t∫

0

IN(s)‖b(x , Ỹs) − b(x , Ys)‖dWs

∣∣∣∣∣∣

2

 .

Making use of the fact that (a + b)2 ≤ 2(a2 + b2) and the Ito isometry (Lemma

2.5 (i)) it follows

E

(∣∣∣IN(t)‖Ỹt − Yt‖
∣∣∣
2
)

≤ 2E




∣∣∣∣∣∣
IN(t)(

t∫

0

IN(s)‖a(x , Ỹs) − a(x , Ys)‖ds

∣∣∣∣∣∣

2



+ 2E




∣∣∣∣∣∣
IN(t)(

t∫

0

IN(s)‖b(x , Ỹs) − b(x , Ys)‖dWs

∣∣∣∣∣∣

2



≤ 2

t∫

0

E

(∣∣∣IN(s)‖a(x , Ỹs) − a(x , Ys)‖
∣∣∣
2
)

ds

+ 2

t∫

0

E

(∣∣∣IN(s)‖b(x , Ỹs) − b(x , Ys)‖
∣∣∣
2
)

ds.

Now the Lipschitz continuity provides

E

(∣∣∣IN(t)‖Ỹt − Yt‖
∣∣∣
2
)

≤ 4L2

t∫

0

E

(∣∣∣IN(s)‖Ỹs − Ys‖
∣∣∣
2
)

ds. (4.2)

Finally an application of the Gronwall inequality (Lemma 2.10) with L = 4L2,

α(t) = E (|IN(t)‖Ỹt − Yt‖|2) and β(t) = 0 leads to

E

(∣∣∣IN(t)‖Ỹt − Yt‖
∣∣∣
2
)

= 0.

This means that IN(t)‖Yt‖ = IN(t)‖Ỹt‖ (a.s.) for each t ∈ [0, T ] due to Jensen’s

inequality (Theorem 2.11). As Lemma 2.5 (ii) provides the continuity of the sample

paths, they are bounded almost surely. Thus, choosing N sufficiently large provides
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P(Yt 6= Ỹt) = 0 for each t ∈ [0, T ] and consequently

P({t ∈ D; Yt 6= Ỹt}) = 0

where D is a countable and dense subset in [0,T ]. As the solutions are continuous

and coincide on any countable and dense subset of [0,T ] they must coincide almost

surely on [0, T ].

Consequently, if one considers for instance the Heston model, where the coef-

ficients are Lipschitz continuous for ǫ > 0, this uniqueness result certainly suffices

for a fixed smoothing parameter. Unfortunately, this does not hold true for the

unsmoothed version, and thus not in the limit ǫ → 0. So other results would be

desired, if one would like to have uniqueness for instance in the context of the

convergence analysis in chapter 4.

4.1.2 Uniqueness under Yamada’s Condition

Yamada and Watanabe [1971] presented an alternative uniqueness result for a SDE

solution. This result differs from the one presented above in the sense that the

Lipschitz assumption could be relaxed. The new assumption is called the Yamada

condition.

Definition 4.3. (Yamada Condition) Let (Wt)t∈[0,T ] = (W 1
t , ..., W L

t )t∈[0,T ] be a

L-dimensional Brownian motion and (Yt)t∈[0,T ] the solution of the L-dimensional

system of SDEs

dYt = a(x , Yt)dt + b(x , Yt)dWt (4.3)

with a : X × R
L → R

L and b : X × R
L → R

L × R
L such that a(x , Yt) =

(a1(x , Y 1
t ), ..., aL(x , Y L

t ))T as well as

b(x , Yt) = diag(b1(x , Y 1
t ), ..., bL(x , Y L

t ))

=




b1(x , Y 1
t ) 0 0 ... 0

0 b2(x , Y 2
t ) 0 ... 0

...
...

...
. . .

...

0 0 ... bL(x , Y L
t )




.

If there exists a positive increasing function β : [0,∞) → [0,∞) with

|bi(x , y) − bi(x , y)| ≤ β(|y − y |) ∀y , y ∈ R, i = 1, ..., L
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and
δ∫

0

β−2(z)dz = ∞

with an arbitrarily small δ > 0, and a positive increasing concave function α :

[0,∞) → [0,∞) such that

|ai(x , y) − ai (x , y)| ≤ α(|y − y |) ∀y , y ∈ R, i = 1, ..., L

with
δ∫

0

α−1(z)dz = ∞

with an arbitrarily small δ > 0, the SDE (4.3) is said to fulfill the Yamada Condition.

With the help of this condition Yamada and Watanabe could proof the following

uniqueness result.

Theorem 4.4. In the situation of Definition 4.3 the pathwise uniqueness holds for

the solution of the stochastic differential equation (4.3).

Proof. Yamada and Watanabe [1971] pp. 164 ff.

Note in this context that the mapping fǫ(x) =
√
πǫ(x) is globally Hölder con-

tinuous with factor 1
2 for all ǫ ≥ 0:

Remark 4.5. The maximum function and the smoothed maximum function are ob-

viously Lipschitz continuous, whereas the Lipschitz constant of the plain maximum

function deals as an upper bound for the smoothed maximum function (see also

figure 3.1). In particular, the Lipschitz constant is 1. Thus it holds for x , y ∈ R

|πǫ(x) − πǫ(y)| ≤ |x − y |, ∀ǫ ≥ 0.

Moreover, the square root function is Hölder continuous with factor 1
2 , i.e.

(√
x −√

y
)2

=
∣∣√x −√

y
∣∣ ∣∣√x −√

y
∣∣ ≤

∣∣√x −√
y
∣∣ ∣∣√x +

√
y
∣∣ = |x − y |

and thus |√x − √
y | ≤

√
|x − y |. Summarizing, the mapping f (x) =

√
πǫ(x) is

Hölder continuous with factor 1
2 , as it holds

|
√
πǫ(x) −

√
πǫ(y)| ≤

√
|πǫ(x) − πǫ(y)| ≤

√
|x − y |, ∀ǫ > 0.

Consequently the square root fulfills the assumption for the function β and

linear functions the assumption for α. Thus, a model following the dynamics of

(4.3) with a Hölder continuous diffusion and a Lipschitz continuous drift possesses
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a pathwise unique solution. The special square root case of the constant elasticity

of variance-model (Cox [1996])

dSt = (r − δ)Stdt + σ
√

StdWt

is an example for such a model. Nevertheless, the assumption of L uncoupled SDEs

is very restrictive. Multidimensional financial market models often obtain quite

naturally a dependence of the single SDE components, as it can be observed for

instance in the case of variance (e.g. Heston (3.2)) or interest rate processes (e.g.

Vasicek [1977]).

As a further alternative, a uniqueness result can be derived from the weak

convergence proof of the Euler scheme by Mikulevicius and Platen [1991].

4.1.3 Uniqueness by Mikulevicius and Platen

Mikulevicius and Platen [1991] proved a weak convergence result for the Euler-

Maruyama scheme applied to SDEs of the form (3.1). A similar proof allows a

uniqueness result, as it will be shown subsequently. First of all consider the following

definition:

Definition 4.6. Let l ∈ (0, 1) ∪ (1, 2) ∪ (2, 3) and Hl
T the space of continuous

functions u on [0, T ]× R
L posessing continuous derivatives ∂r

∂t
∂s

∂x
for all 2r + s < l

such that

‖u‖l
T :=

∑
2r+s≤⌊l⌋

sup
(v ,x)∈[0,T ]×RL

∣∣∣ ∂r

∂t
∂s

∂x
u(v , x)

∣∣∣

+
∑

2r+s=⌊l⌋
sup

(v ,x),(v ,x′ )∈[0,T ]×RL

| ∂
r

∂t
∂

s

∂x
u(v ,x)− ∂

r

∂t
∂

s

∂x
u(v ,x′)|

|x−x′|l−⌊l⌋

+
∑

0<l−2r−s<2

sup
(v ,x),(v ′ ,x)∈[0,T ]×RL

| ∂
r

∂t
∂

s

∂x
u(v ,x)− ∂

r

∂t
∂

s

∂x
u(v ′,x)|

|v−v ′|
1
2

(l−2r−s)
.

Hl denotes the corresponding space for functions that are time independent and

‖u‖l the corresponding norm.

Now, with the help of the sets Hl
T and Hl the uniqueness result can be stated.

Theorem 4.7. Let (Yt)t∈[0,T ] a solution of

dYt = a(x , Yt)dt + b(x , Yt)dWt , Y0 ∈ (0,∞) (4.4)
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and B(x , y) := b(x , y)b(x , y)T . If

〈B(x , y)η, η〉 ≥ c |η|2, c > 0, ∀η, y ∈ R
L (4.5)

a, b ∈ Hl
T for l ∈ (0, 1) ∪ (1, 2) ∪ (2, 3) (4.6)

g ∈ Hl for l ∈ (0, 1) ∪ (1, 2) ∪ (2, 3) (4.7)

(Yt)t∈[0,T ] is a pathwise unique solution.

Proof. Let (Yt)t∈[0,T ] and (Ỹt)t∈[0,T ] be two solutions of (4.4), i.e.

Yt = Y0 +

T∫

0

a(x , Yt)dt +

T∫

0

b(x , Yt)dWt

Ỹt = Y0 +

T∫

0

a(x , Ỹt)dt +

T∫

0

b(x , Ỹt)dWt

and D the diffusion operator

D :=
L∑

i=1

ai

∂

∂yi

+
1

2

L∑

i ,j=1

Bij

∂2

∂yiy2
j

.

Due to assumptions (4.5)-(4.7) It follows from Ladyzenskaja et al. [1968] (Theorem

5.2, p. 320) that there exists a unique solution v ∈ Hl+2
T of the parabolic partial

differential equation
∂

∂t
v + Dv = 0 (4.8)

with final condition

v(T , y) = g(y) (4.9)

and

‖v‖l+2
T ≤ K |g |l+2.

An application of the Ito formula (Theorem 2.9) provides

v(t, Yt) = v(0, Y0) +
t∫
0

∂
∂s

v(s, Ys) +
L∑

i=1

ai(x , Ys)
∂

∂yi
v(s, Ys)

+ 1
2

L∑
i ,j=1

Bij(x , Ys)
∂2

∂yiy
2
i

v(s, Ys )ds +
t∫
0

L∑
i=1

bi (x , Ys)
∂

∂yi
v(s, Ys)dWs
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and the same for Ỹt

v(t, Ỹt) = v(0, Y0) +
t∫
0

∂
∂s

v(s, Ỹs) +
L∑

i=1

ai (x , Ỹs)
∂

∂yi
v(s, Ỹs)

+ 1
2

L∑
i ,j=1

Bij(x , Ỹs)
∂2

∂yi y
2
i

v(s, Ỹs)ds +
t∫
0

L∑
i=1

bi (x , Ỹs)
∂

∂yi
v(s, Ỹs)dWs .

Inserting this result in E (|v(t, Yt) − v(t, Ỹt)|) in combination with an application

of the triangle inequality provides

E
(∣∣∣v(t, Yt) − v(t, Ỹt)

∣∣∣
)
≤

E

(∣∣∣∣
t∫
0

∂
∂s

v(s, Ys ) + Dv(s, Ys )ds −
t∫
0

∂
∂s

v(s, Ỹs ) + Dv(s, Ỹs )ds

∣∣∣∣
)

+E

(∣∣∣∣
t∫
0

L∑
i=1

(
bi(x , Ys)

∂
∂yi

v(s, Ys ) − bi (x , Ỹs)
∂

∂yi
v(s, Ỹs)

)
dWs

∣∣∣∣
)

.

As the first term on the right side is equal to zero because of (4.8) and the expected

value of an Ito integral is equal to zero one receives

E
(∣∣∣v(t, Yt) − v(t, Ỹt)

∣∣∣
)

= 0.

The final condition (4.9) provides

E
(∣∣∣g(YT ) − g(ỸT )

∣∣∣
)

= E
(∣∣∣v(T , YT ) − v(T , ỸT )

∣∣∣
)

= 0.

As one is free to choose g(x) = x and T has been chosen arbitrarily, this means

that Yt = Ỹt (a.s.) for each t ∈ [0, T ]. Thus it holds

P({t ∈ D; Yt 6= Ỹt}) = 0

where D is a countable and dense subset in [0,T ]. As the solutions are continuous

(Lemma 2.5 (ii)) and coincide on any countable and dense subset of [0, T ] they

must coincide almost surely on [0, T ].

Note that this theorem contains two critical assumptions, i.e. (4.5) and (4.6).

Considering Heston’s model (3.2), (4.5) requires that

〈
b(x , y)b(x , y)Tη, η

〉
≥ c |η|2, c > 0, ∀η, y ∈ R

L.

The possibly smoothed version of Heston’s model yields

bǫ(x , y) =

(
y1

√
πǫ(y2) 0

σρ
√
πǫ(y2) σ

√
1 − ρ2

√
πǫ(y2)

)
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and thus

bǫ(x , y)bǫ(x , y)T =

(
y2
1πǫ(y2) σρy1πǫ(y2)

σρy1πǫ(y2) σ2πǫ(y2)

)
.

The left side of (4.5) is defined as the quadratic form of bǫ(x , y)Tbǫ(x , y) which is

by definition equal to the quadratic form of bǫ(x , y)bǫ(x , y)T .

However for the determinant of this matrix it holds that

det(bǫ(x , y)bǫ(x , y)T ) = σ2
√

1 − ρ2y2
1πǫ(y2)

2

which is not strictly positive for all y ∈ R
2 and thus (4.5) is not arbitrarily fulfilled.

Nevertheless this theorem implies an alternative uniqueness results in comparison

to section 4.1.1 and 4.1.2.

4.2 Convergence to a Stationary Point of the True

Problem

The discretization of the true optimization problem (P) raises the question if a solu-

tion of the resulting discretized problem (PM,∆t,ǫ) is an approximation of a solution

of (P) for appropriately chosen number of Monte Carlo Simulations, discretization

step size and smoothing parameter. To be more precise, if xk ∈ X is a solution

derived by solving (PM,∆t,ǫ) with the triplet (Mk , ∆tk , ǫk) ∈ N × R+ × R+, the so

obtained sequence (xk )k has a subsequence which converges to a limit point x∗ ∈ X

for Mk ↑ ∞, ∆tk ↓ 0 and ǫk ↓ 0, due to the fact that X is compact. It is desirable,

that this limit point x∗ is a solution of problem (P). The following example shows,

that this unfortunately does not hold in general.

Example 4.8. Consider for instance the minimization of f (x) = x2 over [−1; 1]

(see figure 4.2). f attains its global minimum at x∗ = 0. By contrast, the ap-

proximating objective fM(x) = x2 − 2M−1 sin(Mx2) possesses many local min-

ima. The number even increases with increasing parameter M, as it is shown

in figure 4.2. Consequently, minimization with increasing M may lead to a se-

quence that does not converge to x∗, though a uniform convergence of the ob-

jective functions, namely supx∈R
|fM(x) − f (x)| ≤ M−1, can be observed. It is

shown later, that not only the uniform convergence of the objectives but also

of the gradients is a crucial assumption. This assumption is violated here, as

supx∈R
|∇fM(x) − ∇f (x)| = supx∈R

|4 cos(Mx2)| = 4. Furthermore, this exam-

ple emphasizes, that solving (PM,∆t,ǫ) for fixed M, ∆t and ǫ can lead to local

minimizers that are not close to local minimizers of (P). An application of e.g.

fminsearch in MatLab to find a minimum of f10 starting at x0 = −1 finds a solution

at x∗
10 = −0.8562.
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Figure 4.2: f (x) = x
2 (blue line) , fM(x) = x

2 − 2M−1 sin(Mx
2) for M = 10 (green line)

and M = 50 (red line) and minimum of f10(x) (green star) found by fminsearch in MatLab.

Monte-Carlo techniques are well-known tools and have been applied in many

different fields of applications. Consequently the literature provides a large amount

of results on the convergence of a solution of a Monte Carlo based optimization

problem to a solution of the corresponding expected value problem. Considering for

instance

min
x∈X

{h(x) := E (H(x ,ω))}

and the corresponding SAA problem

min
x∈X

{hM(x) :=
1

M

M∑

m=1

h(x ,ωm)}

Rubinstein and Shapiro [1993] show that hM converges uniformly to h on X under

the assumption that h(·,ω) is almost surely dominated integrable (see also Definition

4.15 below) and continuous on X . Based on this they were able to demonstrate the

convergence of the sequence of solution of hM to a solution of h in the sense of a first

order critical point. Shapiro [2000] proves convergence under the assumption that

the optimization problem produces a global minimum. The case of an optimization

problem that produces a complete set of solutions has been examined by Robinson

[1996]. In comparison to these results, Bastin et al. [2006] additionally considers

second order optimality conditions and stochastic constraints.

However, the approximation of (P) via (PM,∆t,ǫ) in this work depends on three

errors, Monte-Carlo, discretization and smoothing error. It will turn out that a

uniform convergence of the objective functions and corresponding gradients of (P)

and (PM,∆t,ǫ) with respect to these three errors allows to prove optimality conditions.

Thus, the subsequent analysis is structured as follows. Section 4.2.1 deals with the
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analysis under which assumptions a pointwise convergence of the approximating to

the original objective function holds. Secondly, the uniform convergence of solutions

of (P) and (PM,∆t,ǫ) can be shown, where this pointwise convergence is one of the

keypoints. Section 4.2.3 then addresses first order optimality.

Before the pointwise convergence and uniform convergence analysis can be

stated, this is examined for a simplified problem compared to (P) (page 25), namely

min
x∈X

g(x) := E (G(x ,ω))

where G(x ,ω) = max(ST (x ,ω) − K , 0)

s.t. dYt(x ,ω) = a(x , Yt(x ,ω))dt + b(x , Yt(x ,ω))dWt(ω).

(P1)

This problem corresponds to (P) in the sense that the market prices and thus

the least squares differences have been skipped. Additionally the objective now

only contains one call price. As it will be usefull, the dependence of the random

variables on the random vector ω is denoted explicitly here. Applying the smoothing

technique to (P1) leads to

min
x∈X

gǫ(x) := E (Gǫ(x ,ω))

where Gǫ(x ,ω) = πǫ(ST ,ǫ(x ,ω) − K )

s.t. dYt,ǫ(x ,ω) = aǫ(x , Yt,ǫ(x ,ω))dt + bǫ(x , Yt,ǫ(x ,ω))dWt(ω).

(P1
ǫ)

If one now discretizes the stochastic differential equation with the Euler-Maruyama

scheme, one receives

min
x∈X

g∆t,ǫ(x) := E (G∆t,ǫ(x ,ω))

where G∆t,ǫ(x ,ω) = πǫ(sN ,ǫ(x ,ω) − K )

s.t. yn+1,ǫ(x ,ω) = yn,ǫ(x ,ω) + aǫ(x , yn,ǫ(x ,ω))∆tn

+bǫ(x , yn,ǫ(x ,ω))∆Wn(ω).

(P1
∆t,ǫ)

An additional approximation of the expected value function with Monte Carlo finally

provides

min
x∈X

gM,∆t,ǫ(x) := 1
M

M∑
m=1

(G∆t,ǫ(x ,ωm))

where G∆t,ǫ(x ,ωm) = πǫ(sN ,ǫ(x ,ωm) − K )

s.t. yn+1,ǫ(x ,ωm) = yn,ǫ(x ,ωm) + aǫ(x , yn,ǫ(x ,ωm))∆tn

+bǫ(x , yn,ǫ(x ,ωm))∆Wn(ωm).

(P1
M,∆t,ǫ)

As a first step, the pointwise convergence of the objective function of (P1
M,∆t,ǫ)

to the objective of (P1) will be shown in the next section.
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4.2.1 Pointwise Convergence of the Objective Functions

This part deals with the pointwise convergence of gM,∆t,ǫ(x) to g(x) with respect

to M ,∆t and ǫ. Therefore the total approximation error can be split up into three

parts,

|gM,∆t,ǫ(x) − g(x)| ≤ |gM,∆t,ǫ(x) − g∆t,ǫ(x)| =: E1

+ |g∆t,ǫ(x) − gǫ(x)| =: E2

+ |gǫ(x) − g(x)| =: E3

namely the Monte Carlo error E1, the discretization error E2 and the smoothing

error E3. In the following, these three error components will be analyzed and even a

convergence order will be presented. Note that this analysis is restricted to the case

of Lipschitz continuous coefficients. Thus, the following assumption is stated.

(A.4)

There exist constants La,y (ǫ),Lb,y (ǫ) > 0 such that

∀t ∈ [0, T ], y , y ∈ R
L : ‖aǫ(x , y) − aǫ(x , y )‖ ≤ La,y (ǫ)‖y − y‖

∀t ∈ [0, T ], y , y ∈ R
L : ‖bǫ(x , y) − bǫ(x , y )‖ ≤ Lb,y (ǫ)‖y − y‖.

Additionally, the coefficients have to fulfill a growth condition

(A.5)
There exists a constant G > 0 such that ∀x ∈ X and y ∈ R

L

‖aǫ(x , y)‖ + ‖bǫ(x , y)‖ ≤ G(1 + ‖y‖).

4.2.1.1 Smoothing Error

The first aim is to analyze the error E3 = |gǫ(x) − g(x)| of the smooth approxi-

mation, which is done in the following theorem. Consider therefore the stochastic

differential equation (3.9) formulated as integral equation

Yt,ǫ = Y0 +

t∫

0

aǫ(x , Ys,ǫ)ds +

t∫

0

bǫ(x , Ys,ǫ)dWs . (4.12)

Theorem 4.9. If the Lipschitz property (A.4) and the error estimation (A.2) hold,

the smoothing error can be bounded by

E3 = |gǫ(x) − g(x)| ≤ C
√(

1 + L2
y (ǫ)

)
ψ(ǫ) + Cǫ2,

for a suitable choice of the constant C, Ly (ǫ) := max(La,y (ǫ),Lb,y (ǫ)) and ψ(·)
from (A.2).
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Proof. As it follows from the definition of (P1) and (P1
ǫ) that

E3 = |gǫ(x) − g(x)| = |E (πǫ(ST ,ǫ(x ,ω) − K )) − E (π(ST (x ,ω) − K ))|

the triangle inequality yields by inserting π(ST ,ǫ(x ,ω) − K )

|E (πǫ(ST ,ǫ(x ,ω) − K )) − E (π(ST (x ,ω) − K ))|
≤ E (|πǫ(ST ,ǫ(x ,ω) − K ) − π(ST ,ǫ(x ,ω) − K )|)
+ E (|π(ST ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|).

The first term can be bounded from above as Lemma 3.3 shows that

‖πǫ(x) − π(x)‖∞ = sup
x∈R

|πǫ(x) − π(x)| =
3

16
ǫ (4.13)

and thus

E (|πǫ(ST ,ǫ(x ,ω) − K ) − π(ST ,ǫ(x ,ω) − K )|) = O(ǫ2) (4.14)

where the fact has been exploited that there is an O(ǫ) probability that smoothing

is required, i.e. ST ,ǫ ∈ [−ǫ, ǫ]. For the second term let for a fixed x ∈ X

Z (T ) = E
(
‖YT ,ǫ(x ,ω) − YT (x ,ω)‖2

)
.

Without loss of generality, one may assume the existence of the second order mo-

ments as one could make otherwise use of a truncation technique like in the proof

of Theorem 4.2. If one now exploits the fact that (a + b)2 ≤ 2(a2 + b2) and the

Ito isometry (Lemma 2.5(i)) one receives by inserting the integral equation (4.12)

Z (T ) ≤ 2

T∫

0

E (‖aǫ(x , Yt,ǫ(x ,ω)) − a(x , Yt(x ,ω))‖2)dt

+ 2

T∫

0

E (‖bǫ(x , Yt,ǫ(x ,ω)) − b(x , Yt(x ,ω))‖2)dt.

The triangle inequality provides furthermore that

Z (T ) ≤ 4
T∫
0

E (‖aǫ(x , Yt,ǫ(x ,ω)) − aǫ(x , Yt(x ,ω))‖2)dt

+ 4
T∫
0

E (‖aǫ(x , Yt(x ,ω)) − a(x , Yt(x ,ω))‖2)dt

+ 4
T∫
0

E (‖bǫ(x , Yt,ǫ(x ,ω)) − bǫ(x , Yt(x ,ω))‖2)dt

+ 4
T∫
0

E (‖bǫ(x , Yt(x ,ω)) − b(x , Yt(x ,ω))‖2)dt.
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Due to the Lipschitz property (A.4) it holds true that

4

T∫

0

E (‖aǫ(x , Yt,ǫ(x ,ω)) − aǫ(x , Yt(x ,ω))‖2)dt

+ 4

T∫

0

E (‖bǫ(x , Yt,ǫ(x ,ω)) − bǫ(x , Yt(x ,ω))‖2)dt

≤ 8L2
y (ǫ)

T∫

0

E
(
‖Yt,ǫ(x ,ω) − Yt(x ,ω)‖2

)
dt

where Ly (ǫ) := max(La,y (ǫ),Lb,y (ǫ)). Exploiting assumption (A.2) provides

4

T∫

0

E (‖aǫ(x , Yt(x ,ω)) − a(x , Yt(x ,ω))‖2)dt

+ 4

T∫

0

E (‖bǫ(x , Yt(x ,ω)) − b(x , Yt(x ,ω))‖2)dt

≤ 4Tψ(ǫ).

Thus one has in summary

Z (T ) ≤ 8L2
y (ǫ)

T∫

0

Z (t)dt + C1ψ(ǫ).

One can now apply Gronwall’s Lemma (Lemma 2.10), which provides

Z (T ) ≤ C1ψ(ǫ) + 8L2
y (ǫ)e

LTC1ψ(ǫ)

T∫

0

e−Lttdt.

Thus Z (T ) can be bounded from above by

Z (T ) ≤ C2

((
1 + L2

y (ǫ)
)
ψ(ǫ)

)
.

Consequently, an application of Jensen’s inequality (Theorem 2.11) in combination

with the Lipschitz continuity of π(·) provides

E (|π(ST ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|) = O
(√(

1 + L2
y (ǫ)

)
ψ(ǫ)

)
.
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Summarizing the two estimates leads to

E3 = |gǫ(x) − g(x)| = |E (πǫ(ST ,ǫ(x ,ω) − K )) − E (π(ST (x ,ω) − K ))|
= O

(√(
1 + L2

y (ǫ)
)
ψ(ǫ) + ǫ2

)
.

4.2.1.2 Discretization Error

The second error term E2 occurs due to the discretization of the stochastic differ-

ential equation. One has by definition that

E2 = |g∆t,ǫ(x ,ω) − gǫ(x ,ω)| = |E (πǫ(sN ,ǫ(x ,ω) − K )) − E (πǫ(ST ,ǫ(x ,ω) − K ))| .

Kloeden and Platen [1999] provide a convergence proof assuming a Lipschitz con-

dition for a simple discretization of ST (x ,ω). Following this, it is essential that

E (|sN ,ǫ(x ,ω) − ST ,ǫ(x ,ω)|) ≤ C∆t
1
2 ,

for an additionally considered and fixed smoothing parameter ǫ ≥ 0 under the Lips-

chitz assumption (A.4). Together with the Lipschitz property of πǫ the discretization

error E2 can thus be bounded from above by

E2 ≤ C∆t
1
2 . (4.15)

As C from (4.15) depends on the corresponding Lipschitz constants La,y (ǫ),Lb,y (ǫ)

from assumption (A.4) which itself depends on the smoothing parameter, E2 is

expected to reveal a relation O(l(ǫ)∆t
1
2 ), with some functional l. The following

contains a detailed analysis on the discretization error to determine this functional.

Consider therefore the stochastic differential equation formulated as integral

equation (4.12). The associated Euler-Maruyama discretized version can be inter-

polated continuously in the following way:

yt,ǫ(x ,ω) = Y0 +

t∫

0

aǫ(x , yχ(s),ǫ(x ,ω))ds +

t∫

0

bǫ(x , yχ(s),ǫ(x ,ω))dWs(ω) (4.16)

where χ(s) = n, ∀s ∈ [τn, τn+1) and n = 0, ..., N − 1. In this case it is yτn ,ǫ = yn,ǫ

as it holds true that

yτn ,ǫ − yτn−1,ǫ =

τn∫

τn−1

aǫ(x , yχ(s),ǫ)ds +

τn∫

τn−1

bǫ(x , yχ(s),ǫ)dWs

= aǫ(x , yn−1,ǫ)∆tn−1 + bǫ(x , yn−1,ǫ)∆Wn−1.
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Figure 4.3 shows the continuity of the interpolation for a Black-Scholes example.
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Figure 4.3: Discrete Black Scholes path (blue diamonds) with µ = 0.1, σ = 0.2, ∆t = 0.25
and interpolated values (green line) for t ∈ [0.25, 0.5].

To proof an order of E2, the following Lemma by Kloeden and Platen [1999] is

required.

Lemma 4.10. Suppose that the growth condition (A.5) and the Lipschitz continuity

(A.4) hold. Then Yt,ǫ the solution of (4.12) satisfies

E (‖Yt,ǫ − Y0‖2) ≤ C2(1 + ‖Y0‖2)teC1t

for t ∈ [0, T ], ǫ ≥ 0 and positive constants C1 and C2.

Proof. Kloeden and Platen [1999] provide the proof in Theorem 4.5.4, where in

fact the constants C1 and C2 do not depend on the inserted smoothing parameter

ǫ.

Now the theorem considering E2 can be stated.

Theorem 4.11. Suppose that the Lipschitz continuity (A.4) and the growth con-

dition (A.5) hold. The discretization error can be estimated in the following way:

E2 = |g∆t,ǫ(x) − gǫ(x)| ≤ CLy (ǫ)∆t
1
2

where Ly (ǫ) := max(La,y (ǫ),Lb,y (ǫ)).

Proof. It holds true by definition that

|g∆t,ǫ(x) − gǫ(x)| = |E (πǫ(sN ,ǫ(x ,ω) − K )) − E (πǫ(ST ,ǫ(x ,ω) − K ))|
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which can be estimated in the following way

|E (πǫ(sN ,ǫ(x ,ω) − K )) − E (πǫ(ST ,ǫ(x ,ω) − K ))| ≤ E (|sN ,ǫ(x ,ω) − ST ,ǫ(x ,ω)|)

as πǫ is Lipschitz continuous where the Lipschitz constant of π deals as an upper

bound (see also figure 3.1). Now let

Z (T ) := E
(
‖yN ,ǫ(x ,ω) − YT ,ǫ(x ,ω)‖2

)

where again the existence of the second order moments can be assumed without

loss of generality (see also the proofs of Theorem 4.2 and Theorem 4.9). Inserting

the solution of yN ,ǫ and YT ,ǫ as well as skipping the dependency from x and ω to

facilitate notation leads to

Z (T ) = E



∥∥∥∥∥∥

T∫

0

aǫ(x , Yt,ǫ) − aǫ(x , yχ(t),ǫ)dt

+

T∫

0

bǫ(x , Yt,ǫ) − bǫ(x , yχ(t),ǫ)dWt

∥∥∥∥∥∥

2

 .

Ito isometry (Lemma 2.5(i)) and (a + b)2 ≤ 2(a2 + b2) together yield

Z (T ) ≤ 2

T∫

0

E
(∥∥aǫ(x , Yt,ǫ) − aǫ(x , yχ(t),ǫ)

∥∥2
)

dt

+ 2

T∫

0

E
(∥∥bǫ(x , Yt,ǫ) − bǫ(x , yχ(t),ǫ)

∥∥2
)

dt.

The assumed Lipschitz property of aǫ and bǫ allows the following estimate:

Z (T ) ≤ 2L2
a,y(ǫ)

T∫

0

E
(∥∥Yt,ǫ − yχ(t),ǫ

∥∥2
)

dt + 2L2
b,y(ǫ)

T∫

0

E
(∥∥Yt,ǫ − yχ(t),ǫ

∥∥2
)

dt

which can be combined to

Z (T ) ≤ 4L2
y (ǫ)

T∫

0

E
(∥∥Yt,ǫ − yχ(t),ǫ

∥∥2
)

dt

with Ly (ǫ) := max(La,y (ǫ),Lb,y (ǫ)). After all Lemma 4.10 yields similar to Kloeden
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and Platen [1999] pp. 343 f.

Z (T ) ≤ C1L2
y (ǫ)∆teC2∆t .

If one now estimates the exponential term with the first two terms of the exponential

series, namely 1 + C2∆t, this expression can be bounded from above as ∆t is

assumed to converge to 0. Hence Z (T ) ≤ C1L2
y (ǫ)∆t. From the definition of

Z (T ) it follows with Jensen’s inequality (Theorem 2.11), namely with

E (‖yN ,ǫ(x ,ω) − YT ,ǫ(x ,ω)‖)2 ≤ E (‖yN ,ǫ(x ,ω) − YT ,ǫ(x ,ω)‖2)

that

E (‖yN ,ǫ(x ,ω) − YT ,ǫ(x ,ω)‖) = O(Ly (ǫ)∆t
1
2 ).

Due to the Lipschitz continuity of πǫ it follows finally that

E2 = |g∆t,ǫ(x) − gǫ(x)| = O(Ly (ǫ)∆t
1
2 )

which means the proof of the statement.

4.2.1.3 Monte Carlo Error

The Central Limit Theorem is the crucial result to analyze the Monte Carlo Error.

Theorem 4.12. (Central Limit Theorem) Let (Xm)m a sequence of indepen-

dent and identically distributed, square integrable real valued random variables with

expectation µ variance σ2. Then it holds true that

√
M

(
1

M

M∑

m=1

Xm − µ

)
⇒ N(0,σ2).

Proof. Bauer [2002]

This means that for a fixed variance σ2 with increasing number of simula-

tions ( 1
M

∑M

m=1 Xm − µ) decreases faster than
√

M increases which provides the

well known result that the Monte Carlo approximation behaves asymptotically like

O(1/
√

M). Consider now the first error term E1 = |gM,∆t,ǫ(x) − g∆t,ǫ(x)| with

gM,∆t,ǫ(x) =
1

M

M∑

m=1

πǫ(sN ,ǫ(x) − K )

and

g∆t,ǫ(x) = E (πǫ(sN ,ǫ(x) − K )) .
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For fixed ∆t, ǫ ≥ 0 it holds by an application of the central limit theorem, that

√
M |gM,∆t,ǫ(x) − g∆t,ǫ(x)| ⇒ N(0,σ2

∆t,ǫ),

where σ2
∆t,ǫ is the variance of πǫ(sN ,ǫ(x ,ω) − K ) which certainly depends on the

chosen ∆t and ǫ. Thus, as the goal is to decrease the overall error with increasing

number of simulations as well as decreasing discretization step size and smoothing

parameter, one has to make sure that σ2
∆t,ǫ is at least bounded for ∆t → 0 and

ǫ→ 0. This is supported by the following Lemma

Lemma 4.13. Under the Lipschitz assumption (A.4) and the coefficient error as-

sumption (A.2) the variance can be bounded by

Var (πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )) ≤ C
(
(1 + L2

y (ǫ))ψ(ǫ) + L2
y (ǫ)∆t + ǫ4

)

for a suitably chosen constant C > 0.

Proof. The variance is defined as

Var (|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|)
= E

(
|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|2

)

− E (|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|)2
.

(4.17)

As the second term on the right side is nonnegative, the variance can be bounded

from above by simply considering the first term:

Var (|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|)
≤ E

(
|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|2

)
.

As π(·) is Lipschitz continuous with Lipschitz constant 1, one can estimate the term

on the right side exploiting this fact together with (a + b)2 < 2a2 + 2b2, Jensen’s

inequality and (4.14) by

E
(
|πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|2

)

≤ 2E
(
|πǫ(sN ,ǫ(x ,ω) − K ) − π(sN ,ǫ(x ,ω) − K )|2

)

+ 2E
(
|π(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )|2

)

≤ 2E
(
|sN ,ǫ(x ,ω) − ST (x ,ω)|2

)
+ Cǫ4.
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An application of the triangle inequality provides furthermore

E
(
|sN ,ǫ(x ,ω) − ST (x ,ω)|2

)

≤ 2E
(
|sN ,ǫ(x ,ω) − ST ,ǫ(x ,ω)|2

)
+ 2E

(
|ST ,ǫ(x ,ω) − ST (x ,ω)|2

)
.

Making use of Jensen’s inequality allows to estimate the first term with the squared

discretization error E2 and the second with the squared smoothing error E3, already

bounded from above in section 4.2.1.1 and 4.2.1.2. Thus

Var (πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )) = O
(
(1 + L2

y (ǫ))ψ(ǫ) + L2
y (ǫ)∆t + ǫ4

)
.

which proofs the statement.

Hence one has in summary under suitable assumptions the following result:

Corollary 4.14. Considering that the assumptions (A.2), (A.4) and (A.5) hold

and that additionally the Lipschitz constants from (A.4) are uniformly bounded,

i.e. bounded for all ǫ ∈ R+, x ∈ R
P and y ∈ R

L, the total approximation error

|gM,∆t,ǫ(x) − g(x)| has the following order:

|gM,∆t,ǫ(x) − g(x)| = O
(
1/

√
M +

√
∆t +

√
ψ(ǫ)

)
. (4.18)

Proof. The boundedness of the Lipschitz constants provides that

lim
∆t → 0

ǫ → 0

Var (πǫ(sN ,ǫ(x ,ω) − K ) − π(ST (x ,ω) − K )) = 0

due to Lemma 4.13 as the terms Ly (ǫ)ψ(ǫ) as well as Ly (ǫ)∆t now converge to

zero. Thus, the proof follows directly from an additional application of Theorem

4.9, Theorem 4.11.

In the special case of coefficient functions with a linear structure such that

ψ(ǫ) = Cǫ2 and uniformly bounded constants Ly (ǫ), the total error is hence of the

order O(1/
√

M+∆t
1
2 +ǫ). In this situation the choice ∆tk = c1/Mk , ǫk = c2/

√
Mk

drives all three error components with the same speed to zero, and hence does not

waste numerical effort in the reduction of one error, while another one still dominates

the total error. This will numerically be confirmed for the test case of the Stein-Stein

model in chapter 7.

4.2.2 Uniform Convergence

With the help of the pointwise convergence from the previous section, a uniform

convergence can be shown, if two additional propositions hold, namely the continuity
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of g and the epicontinuity of gM,∆t,ǫ. For the latter an additional Lipschitz condition

will be required:

(A.6)

There exist constants La,x(ǫ),Lb,x(ǫ) > 0 such that

∀t ∈ [0, T ], x , x ∈ R
P : ‖aǫ(x , y) − aǫ(x , y)‖ ≤ La,x(ǫ)‖x − x‖

∀t ∈ [0, T ], x , x ∈ R
P : ‖bǫ(x , y) − bǫ(x , y)‖ ≤ Lb,x(ǫ)‖x − x‖

The first Lemma deals with the continuity of g where the dominated integrability

of {πǫ(ST (x ,ω) − K ), x ∈ X} is a crucial issue:

Definition 4.15. A family {F (x ,ω), x ∈ X} is dominated by a Q-integrable func-

tion, if there exists a function F (ω) with EQ(F (ω)) <∞ and |F (x ,ω)| ≤ F (ω) for

all x ∈ X and Q-almost every ω.

Under this assumption, the continuity of g can be easily proved:

Lemma 4.16. Consider that assumption (A.3), namely the continuity of πǫ holds

and furthermore, that {πǫ(ST (x ,ω) − K ), x ∈ X} is dominated integrable. Then,

g is already continuous.

Proof. Given a sequence (xk )k with xk → x∗ one has by definition that

lim
k→∞

g(xk) = lim
k→∞

E (πǫ(ST (xk ,ω))) .

An application of Lebesgue’s dominated convergence theorem (Theorem 2.14) yields

due to the dominated convergence of πǫ(ST (x ,ω) − K )

lim
k→∞

E (πǫ(ST (xk ,ω))) = E

(
lim

k→∞
πǫ(ST (xk ,ω))

)
.

Finally, the continuity of πǫ(·), in particular

E

(
lim

k→∞
πǫ(ST (xk ,ω))

)
= E (πǫ(ST (x∗,ω))) = g(x∗)

proves the statement.

Besides this Lemma, the epicontinuity of gM,∆t,ǫ will be necessary to be able to

proof the desired uniform convergence result. This requires harder assumptions, as

it will be shown in the following Lemma:

Lemma 4.17. Considering that the Lipschitz continuity (A.4) and (A.6) hold with

uniformly bounded Lipschitz constants in ǫ ∈ R+, x ∈ R
P and y ∈ R

L, the mapping

gM,∆t,ǫ is epicontinuous, i.e. for M large enough and for all ∆t, ǫ ≥ 0:

lim
δ→0

sup
x∈U(x0 ,δ)

∣∣gM,∆t,ǫ(x) − gM,∆t,ǫ(x
0)
∣∣ = 0
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where U(x0, δ) is a neighborhood of x0 ∈ X with radius δ.

Proof. Choose x , x0 ∈ X and consider

E
(∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x

0,ω)
∥∥2
)

.

Inserting the interpolated integral equation (4.16) yields

E
(∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x

0,ω)
∥∥2
)

= E



∥∥∥∥∥∥

T∫

0

aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x

0,ω))dt

+

T∫

0

bǫ(x , yχ(t),ǫ(x ,ω)) − bǫ(x
0, yχ(t),ǫ(x

0,ω))dWt

∥∥∥∥∥∥

2

 .

Making use of the Ito isometry (Lemma 2.5(i)) and the fact that (a+b)2 ≤ 2(a2+b2)

provides

E



∥∥∥∥∥∥

T∫

0

aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x

0,ω))dt

+

T∫

0

bǫ(x , yχ(t),ǫ(x ,ω)) − bǫ(x
0, yχ(t),ǫ(x

0,ω))dWt

∥∥∥∥∥∥

2



≤ 2

t∫

0

E (‖aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x

0,ω))‖2)dt

+ 2

t∫

0

E (‖bǫ(x , yχ(t),ǫ(x ,ω)) − bǫ(x
0, yχ(t),ǫ(x

0,ω))‖2)dt.

In the latter only the first term on the right side is considered, as the second one

can be treated analogously. The triangle inequality yields

2

t∫

0

E (‖aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x

0,ω))‖2)dt

≤ 4

t∫

0

E (‖aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x ,ω))‖2)dt

+ 4

t∫

0

E (‖aǫ(x
0, yχ(t),ǫ(x ,ω)) − aǫ(x

0, yχ(t),ǫ(x
0,ω))‖2)dt.
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The assumed Lipschitz continuity of aǫ with respect to both variables leads to

4

t∫

0

E (‖aǫ(x , yχ(t),ǫ(x ,ω)) − aǫ(x
0, yχ(t),ǫ(x ,ω))‖2)dt

+ 4

t∫

0

E (‖aǫ(x
0, yχ(t),ǫ(x ,ω)) − aǫ(x

0, yχ(t),ǫ(x
0,ω))‖2)dt

≤ 4

T∫

0

L2
a,x(ǫ)

∣∣x − x0
∣∣2 dt +

T∫

0

L2
a,y (ǫ)4E

(∥∥yχ(t),ǫ(x ,ω)) − yχ(t),ǫ(x
0,ω)

∥∥2
)

dt.

Summarizing where b is treated in analogy to a yields

E
(∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x

0,ω)
∥∥2
)

≤ 8TL2
x(ǫ)

∣∣x − x0
∣∣2 + 8L2

y (ǫ)

T∫

0

E
(∥∥yχ(t),ǫ(x ,ω)) − yχ(t),ǫ(x

0,ω)
∥∥2
)

dt

where Lx(ǫ) := max(La,x(ǫ),Lb,x(ǫ)) and Ly (ǫ) := max(La,y (ǫ),Lb,y (ǫ)). An ap-

plication of the Gronwall Lemma in combination with the boundedness of the Lip-

schitz constants thus leads to

E
(∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x

0,ω)
∥∥2
)
≤ C1

∣∣x − x0
∣∣2 .

which provides with help of the Doob inequality that

E

(
sup

x∈U(x0,δ)

∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x
0,ω)

∥∥2

)

≤ 4 sup
x∈U(x0,δ)

E
(∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x

0,ω)
∥∥2
)

≤ C2 sup
x∈U(x0,δ)

∣∣x − x0
∣∣2 .

Thus, with Jensen inequality, it is essential that

E

(
sup

x∈U(x0 ,δ)

∥∥yN ,ǫ(x ,ω) − yN ,ǫ(x
0,ω)

∥∥
)

≤ C sup
x∈U(x0 ,δ)

∣∣x − x0
∣∣2 . (4.20)

If one now considers

sup
x∈U(x0,δ)

∣∣gM,∆t,ǫ(x) − gM,∆t,ǫ(x
0)
∣∣
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it follows from the definition of gM,∆t,ǫ(x) that

sup
x∈U(x0 ,δ)

∣∣gM,∆t,ǫ(x) − gM,∆t,ǫ(x
0)
∣∣

= sup
x∈U(x0 ,δ)

∣∣∣∣∣
1

M

M∑

m=1

πǫ(sN ,ǫ(x ,ωm) − K ) − 1

M

M∑

m=1

πǫ(sN ,ǫ(x
0,ωm) − K )

∣∣∣∣∣ .

Again, the triangle inequality in combination with sup(a + b) ≤ sup(a) + sup(b)

provides

sup
x∈U(x0,δ)

∣∣∣∣∣
1

M

M∑

m=1

πǫ(sN ,ǫ(x ,ωm) − K ) − 1

M

M∑

m=1

πǫ(sN ,ǫ(x
0,ωm) − K )

∣∣∣∣∣

≤ 1

M

M∑

m=1

sup
x∈U(x0,δ)

∣∣πǫ(sN ,ǫ(x ,ωm) − K ) − πǫ(sN ,ǫ(x
0,ωm) − K )

∣∣ .

As πǫ is Lipschitz continuous, it holds true that

1

M

M∑

m=1

sup
x∈U(x0,δ)

∣∣πǫ(sN ,ǫ(x ,ωm) − K ) − πǫ(sN ,ǫ(x
0,ωm) − K )

∣∣

≤ 1

M

M∑

m=1

sup
x∈U(x0,δ)

∣∣sN ,ǫ(x ,ωm) − sN ,ǫ(x
0,ωm)

∣∣

which converges due to the Law of Large Numbers (Theorem 2.15):

1

M

M∑

m=1

sup
x∈U(x0,δ)

∣∣sN ,ǫ(x ,ωm) − sN ,ǫ(x
0,ωm)

∣∣

−→
M→∞

E

(
sup

x∈U(x0,δ)

∣∣sN ,ǫ(x ,ω) − sN ,ǫ(x
0,ω)

∣∣
)

.

With the help of (4.20) this term can be estimated in the following way:

E

(
sup

x∈U(x0,δ)

∣∣sN ,ǫ(x ,ω) − sN ,ǫ(x
0,ω)

∣∣
)

≤ C
∣∣x − x0

∣∣ .

Taking the limit over δ finally provides for M large enough and for all ∆t, ǫ ≥ 0

lim
δ→0

sup
x∈U(x0,δ)

∣∣gM,∆t,ǫ(x) − gM,∆t,ǫ(x
0)
∣∣

≤ lim
δ→0

E

(
sup

x∈U(x0,δ)

∣∣sN ,ǫ(x ,ω) − sN ,ǫ(x
0,ω)

∣∣
)

= 0.
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Now, the uniform convergence can be shown in the following Theorem.

Theorem 4.18. Consider that the assumptions (A.2)-(A.6) hold. If additionally

the Lipschitz constants are uniformly bounded in ǫ ∈ R+, x ∈ R
P and y ∈ R

L and

{πǫ(ST (x ,ω) − K ), x ∈ X} is dominated integrable it is essential that

lim
k→∞

sup
x∈X

|gMk ,∆tk ,ǫk
(x) − g(x)| = 0.

Proof. Given an arbitrary x0 ∈ X and a neighborhood U(x0, δ0) it holds true that

sup
x∈U(x0,δ0)

|gMk ,∆tk ,ǫk
(x) − g(x)| ≤ sup

x∈U(x0 ,δ0)

∣∣gMk ,∆tk ,ǫk
(x) − gMk ,∆tk ,ǫk

(x0)
∣∣

+
∣∣gMk ,∆tk ,ǫk

(x0) − g(x0)
∣∣

+ sup
x∈U(x0 ,δ0)

∣∣g(x0) − g(x)
∣∣ .

Due to Corollary 4.14, Lemma 4.16 and Lemma 4.17 all three terms can be bounded

from above. Moreover it holds certainly true that ∪x0∈XU(x0, δ0) ⊃ X . As X is

convex there exists a finite number of points x1, ..., xJ and a corresponding finite cov-

ering of X, namely U(x1, δ1), ..., U(xJ , δJ) such that it is essential for every U(xj , δj)

that

lim
k→∞

lim
δj→0

sup
x∈U(xj ,δj )

|gMk ,∆tk ,ǫk
(x) − g(x)| = 0, j = 1, ..., J.

Thus, it holds true that

lim
k→∞

sup
x∈X

|gMk ,∆tk ,ǫk
(x) − g(x)|

≤
J∑

j=1

lim
k→∞

lim
δj→0

sup
x∈U(xj ,δj )

|gMk ,∆tk ,ǫk
(x) − g(x)|

= 0.

This Theorem proves the uniform convergence of gM,∆t,ǫ to g . Certainly, this

is desired for fM,∆t,ǫ and f which in particular can be deduced from the above

Theorem, as already mentioned in the very beginning of this section.

Remark 4.19. Consider the objective functions of the problems (P) and (PM,∆t,ǫ).
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Due to the binomial formula it holds true that

|fM,∆t,ǫ(x) − f (x)| =

∣∣∣∣
I∑

i=1

(
C i

M,∆t,ǫ(x) − C i
obs

)2 −
I∑

i=1

(
C i(x) − C i

obs

)2
∣∣∣∣

≤
I∑

i=1

2
∣∣C i

obs

∣∣ ∣∣C i
M,∆t,ǫ(x) − C i (x)

∣∣

+
I∑

i=1

∣∣C i
M,∆t,ǫ(x)2 − C i (x)2

∣∣ .

An application of the triangle inequality provides furthermore

|fM,∆t,ǫ(x) − f (x)| ≤
I∑

i=1

2
∣∣C i

obs

∣∣ ∣∣C i
M,∆t,ǫ(x) − C i(x)

∣∣

+
I∑

i=1

∣∣C i
M,∆t,ǫ(x)

∣∣ ∣∣C i
M,∆t,ǫ(x) − C i(x)

∣∣

+
I∑

i=1

∣∣C i (x)
∣∣ ∣∣C i

M,∆t,ǫ(x) − C i(x)
∣∣

which in summary means that

|fM,∆t,ǫ(x) − f (x)| ≤
I∑

i=1

∣∣C (x)
∣∣ ∣∣C i

M,∆t,ǫ(x) − C i(x)
∣∣ (4.21)

where C (x) = maxi=1,...,I (max(C i
M,∆t,ǫ(x), C i (x), C i

obs)).

Thus, the uniform convergence of fM,∆t,ǫ to f requires the uniform convergence

of C i
M,∆t,ǫ(x) to C i (x) for every i = 1, ..., I and the continuity of C (x). The first

one can be ensured by applying Theorem 4.18 for every option i = 1, ..., I . As

C i
M,∆t,ǫ(x) and C i(x) are additionally continuous (Assumption (A.3) and Lemma

4.16) the following corollary can be stated:

Corollary 4.20. Consider that the assumptions (A.2)-(A.6) hold. If additionally

the Lipschitz constants are uniformly bounded in ǫ ∈ R+, x ∈ R
P and y ∈ R

L and

{πǫ(STi
(x ,ω) − Ki), x ∈ X} are dominated integrable for i = 1, ..., I it is essential

that

lim
k→∞

sup
x∈X

|fMk ,∆tk ,ǫk
(x) − f (x)| = 0.

Proof. From Theorem 4.18 it follows that

lim
k→∞

sup
x∈X

∣∣C i
Mk ,∆tk ,ǫk

(x) − C i (x)
∣∣ = 0, i = 1, ..., I .

As Remark 4.19 shows that

lim
k→∞

sup
x∈X

|fMk ,∆tk ,ǫk
(x) − f (x)| ≤ lim

k→∞
sup
x∈X

I∑

i=1

∣∣C (x)
∣∣ ∣∣C i

M,∆t,ǫ(x) − C i (x)
∣∣



64 CHAPTER 4. CONVERGENCE

with C (x) = maxi=1,...,I (max(C i
M,∆t,ǫ(x), C i (x), C i

obs)) this proves the statement

due to Assumption (A.3) and Lemma 4.16.

As the next section deals with first order optimality, the same result for the

objectives gradients ∇fMk ,∆tk ,ǫk
(x) and ∇f (x) will be required. Obviously, making

analogous assumptions as for Corollary 4.20 will allow for a similar result. However,

as already discussed in section 3.3, the mapping π(·) is not differentiable for ST = K .

But as the event {ST = K} has probability zero (e.g. Glasserman [2003] p. 388),

π(STi
(·,ω) − Ki ) is at least almost surely differentiable.

For additional assumptions in analogy to (A.2), (A.4), (A.5) and (A.6) consider

the gradient components

∂

∂xp

C i
M,∆t,ǫ(x) =

1

M

M∑

m=1

π′
ǫ(s

m
Ni ,ǫ(x ,ω) − Ki)

∂

∂xp

sm
Ni ,ǫ(x ,ω)

where

∂
∂xp

ym
n+1,ǫ = ∂

∂xp
ym
n,ǫ +

[
∂
∂y

aǫ(x , ym
n,ǫ)

∂
∂xp

ym
n,ǫ + ∂

∂x
aǫ(x , ym

n,ǫ)∆x
]
∆tn

+
[

∂
∂y

(
bǫ(x , ym

n,ǫ)∆W m
n

)
∂

∂xp
ym
n,ǫ + ∂

∂x

(
bǫ(x , ym

n,ǫ)∆W m
n

)
∆x
]

ηm
0 = 0, n = 0, ..., N − 1, m = 1, ..., M , N := max

i=1,...,I
Ni .

The following assumptions are consequently stated:

(A.7)

‖ ∂
∂xp

aǫ(x , y) − ∂
∂xp

a(x , y)‖2
∞+‖ ∂

∂xp
bǫ(x , y) − ∂

∂xp
b(x , y)‖2

∞ < ψ′
x(ǫ)

with ψ′
x : R → R and lim

ǫ→0
ψ′

x(ǫ) = 0 for p = 1, ..., P .

‖ ∂
∂y

aǫ(x , y) − ∂
∂y

a(x , y)‖2
∞+‖ ∂

∂y
bǫ(x , y) − ∂

∂y
b(x , y)‖2

∞ < ψ′
y (ǫ)

with ψ′
y : R → R and lim

ǫ→0
ψ′

y (ǫ) = 0 for p = 1, ..., P .

(A.8)

There exist constants L′
y (ǫ),L′

x (ǫ) > 0 such that

∀t ∈ [0, T ], y , y ∈ R
L, x , x ∈ R

P , p = 1, ..., P :

‖ ∂
∂xp

aǫ(x , y) − ∂
∂xp

aǫ(x , y)‖ + ‖ ∂
∂xp

bǫ(x , y) − ∂
∂xp

bǫ(x , y)‖
+‖ ∂

∂y
aǫ(x , y) − ∂

∂y
aǫ(x , y )‖ + ‖ ∂

∂y
bǫ(x , y) − ∂

∂y
bǫ(x , y )‖

≤ L′
y (ǫ)‖y − y‖ and

‖ ∂
∂xp

aǫ(x , y) − ∂
∂xp

aǫ(x , y)‖ + ‖ ∂
∂xp

bǫ(x , y) − ∂
∂xp

bǫ(x , y)‖
+‖ ∂

∂y
aǫ(x , y) − ∂

∂y
aǫ(x , y)‖ + ‖ ∂

∂y
bǫ(x , y) − ∂

∂y
bǫ(x , y)‖

≤ L′
x(ǫ)‖x − x‖
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(A.9)

There exists constants G′
y ,G′

x > 0 for p = 1, ..., P such that

∀x ∈ X and y ∈ R
L : ‖ ∂

∂xp
aǫ(x , y)‖ + ‖ ∂

∂xp
bǫ(x , y)‖ ≤ G′

x(1 + ‖y‖)
∀x ∈ X and y ∈ R

L : ‖ ∂
∂y

aǫ(x , y)‖ + ‖ ∂
∂y

bǫ(x , y)‖ ≤ G′
y (1 + ‖y‖).

On the basis of these, a result in analogy to Corollary 4.20 can be stated:

Corollary 4.21. In the situation of Corollary 4.20 consider that additionally the

families { ∂
∂xp
πǫ(STi

(x ,ω) − Ki), x ∈ X} are almost surely dominated integrable

for i = 1, ..., I and p = 1, ..., P and that the above stated assumptions for the

coefficients derivatives (A.7)-(A.9) hold true. If additionally Ly (ǫ) and L′
y (ǫ) are

uniformly bounded in ǫ ∈ R+, x ∈ R
P and y ∈ R

L, it is thus essential that

lim
k→∞

sup
x∈X

‖∇fMk ,∆tk ,ǫk
(x) −∇f (x)‖ = 0.

Proof. An application of the triangle inequality provides for every ∂
∂xp

fM,∆t,ǫ and

p = 1, ..., P that

∣∣∣∣
∂

∂xp

fMk ,∆tk ,ǫk
(x) − ∂

∂xp

f (x)

∣∣∣∣

=

∣∣∣∣∣

I∑

i=1

2
(
C i

Mk ,∆tk ,ǫk
(x) − C i

obs

) ∂

∂xp

C i
Mk ,∆tk ,ǫk

(x)

−
I∑

i=1

2
(
C i (x) − C i

obs

) ∂

∂xp

C i (x)

∣∣∣∣∣

≤ 2

I∑

i=1

∣∣∣∣C
i
Mk ,∆tk ,ǫk

(x)
∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − C i(x)
∂

∂xp

C i (x)

∣∣∣∣

+ 2

I∑

i=1

∣∣∣∣
(

∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − ∂

∂xp

C i(x)

)
C i

obs

∣∣∣∣ .

For the first summand, one can derive the estimate

∣∣∣∣C
i
Mk ,∆tk ,ǫk

(x)
∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − C i (x)
∂

∂xp

C i(x)

∣∣∣∣

≤
∣∣C i

Mk ,∆tk ,ǫk
(x)
∣∣ ·
∣∣∣∣
∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − ∂

∂xp

C i (x)

∣∣∣∣

+

∣∣∣∣
∂

∂xp

C i(x)

∣∣∣∣ ·
∣∣C i

Mk ,∆tk ,ǫk
(x) − C i (x)

∣∣ .
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Summarizing, this yields

∣∣∣∣
∂

∂xp

fMk ,∆tk ,ǫk
(x) − ∂

∂xp

f (x)

∣∣∣∣

≤ 2
∣∣C i

Mk ,∆tk ,ǫk
(x)
∣∣ ·
∣∣∣∣
∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − ∂

∂xp

C i (x)

∣∣∣∣

+ 2

∣∣∣∣
∂

∂xp

C i (x)

∣∣∣∣ ·
∣∣C i

Mk ,∆tk ,ǫk
(x) − C i (x)

∣∣

+ 2

I∑

i=1

∣∣∣∣
(

∂

∂xp

C i
Mk ,∆tk ,ǫk

(x) − ∂

∂xp

C i (x)

)
C i

obs

∣∣∣∣ .

As Lemma 4.16 together with the dominated integrability assumptions ensured the

continuity of ∂
∂xp

C i(x) these three terms converge uniformly to zero as the assump-

tions here allow the application of Corollary 4.20 also to the gradients such that

one obtains in summary

lim
k→∞

sup
x∈X

∣∣∣∣∇f i
Mk ,∆tk ,ǫk

(x) −∇f (x)
∣∣∣∣

2
= 0 (a.s.).

As the final step, the optimality will be analyzed in the next section.

4.2.3 First Order Optimality

To answer the question on first order optimality reconsider the necessary optimality

condition from Theorem 2.28

∇f (x∗)T (x − x∗) ≥ 0 ∀ x ∈ X

and let (xk )k∈IN ⊂ X a sequence of points derived by solving (PM,∆t,ǫ) with

(Mk , ∆tk , ǫk), where (Mk)k ⊂ N+, (∆tk)k ⊂ R+ and (ǫk)k ⊂ R+ are sequences

with Mk → ∞, ∆tk → 0, ǫk → 0. Each of these points fulfills the variational

inequality following Theorem 2.28. Due to computational error, i.e. running an

optimization algorithm on the computer only leads to an approximation of the true

minimizer, this optimality condition is only satisfied approximately. Thus, setting

(γk)k ⊂ R+, γk → 0 a sequence of error tolerances one has

∇fMk ,∆tk ,ǫk
(xk)

T (x − xk ) ≥ −γk , ∀ x ∈ X , k = 1, ... . (4.25)

Note that, since fMk ,∆tk ,ǫk
depends on the random Brownian increments ∆W m

n ,

the iterates xk are also random variables. However, this dependence of xk on the

random samples is not expressed explicitly to facilitate notation. As X is convex
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and compact, there exists a subsequence (xkl
)l which has a limit point x∗ in X. The

following theorem shows that x∗ almost surely is a critical point of first order for f .

Theorem 4.22. Let (Mk )k ⊂ N+, (∆tk )k ⊂ R+, (ǫk)k ⊂ R+ and (γk )k ⊂ R+

be given sequences with Mk → ∞, ∆tk → 0, ǫk → 0 and γk → 0 and assume

that (xk )k∈IN ⊂ X is a sequence of points satisfying (4.25). Suppose Assump-

tions (A.1)-(A.9) hold true and additionally {πǫ(STi
(x ,ω) − Ki), x ∈ X} as well

as { ∂
∂xp
πǫ(STi

(x ,ω) − Ki ), x ∈ X} are dominated integrable for i = 1, ..., I and

p = 1, ..., P. If the Lipschitz constants are uniformly bounded in ǫ ∈ R+, x ∈ R
P

and y ∈ R
L, every limit point x∗ ∈ X of (xk)k satisfies the first order optimality

condition

∇f (x∗)T (x − x∗) ≥ 0 ∀ x ∈ X

for problem (P).

Proof. Let x∗ be a limit point of (xk )k and assume that (xkl
)l∈IN is a subsequence

converging to x∗. The existence of such a limit point is ensured by Assumption

(A.1), namely the compactness of X . In the following, to facilitate notation, it will

not be distinguished between xk and the corresponding subsequence converging to

x∗.

As a first step Corollary 4.20 shows, that fM,∆t,ǫ converges uniformly to f on X

(a.s.) . To be more precise one obtains

lim
k→∞

sup
x∈X

|fMk ,∆tk ,ǫk
(x) − f (x)| = 0 (a.s.).

In analogy Corollary 4.21 leads to

lim
k→∞

sup
x∈X

∣∣∣∣∇f i
Mk ,∆tk ,ǫk

(x) −∇f (x)
∣∣∣∣

2
= 0 (a.s.).

Hence, for all δ1 > 0 one can choose K1 > 0 such that

||∇fMk ,∆tk ,ǫk
(xk) −∇f (xk )||2 < δ1 ∀ k > K1 (a.s.). (4.26)

Furthermore, the continuity of ∇f implies that

∀ δ2 > 0 ∃K2 > 0 such that ||∇f (xk) −∇f (x∗)||2 < δ2 ∀ k > K2. (4.27)
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Thus, based on (4.26) and (4.27), one obtains for all k > K := max(K1, K2)

||∇fMk ,∆tk ,ǫk
(xk ) −∇f (x∗)||2

≤ ‖∇fMk ,∆tk ,ǫk
(xk ) −∇f (xk )‖2 + ||∇f (xk ) −∇f (x∗)||2

< δ1 + δ2 =: δ ∀k > K (a.s.)

But this means that taking limits (k → ∞) on both sides of the inequality (4.25)

provides

∇fMk ,∆tk ,ǫk
(xk )T (x − xk) ≥ −γk ∀ x ∈ X (a.s.),

which implies that

∇f (x∗)T (x − x∗) ≥ 0 ∀ x ∈ X .

Thus, x∗ is a first order critical point of f .

Summarizing, the convergence of a sequence of first order critical points, derived

by solving (PM,∆t,ǫ) with the triplet (Mk , ∆tk , ǫk) ∈ N × R+ × R+, to a critical

point first order of (P) is ensured under reasonable assumptions like the Lipschitz

continuity of the SDE’s coefficient functions and their first order derivatives. Section

4.2.1 provides an order of this convergence, namely O(1/
√

M +
√

∆t +
√
ψ(ǫ)).

Numerical results will be provided for the example of the Stein-Stein model in

chapter 7, which confirm the theoretical results of this chapter. Note that the

Heston model (3.2), introduced in the beginning of this thesis, does not fulfill the

required assumptions.



Chapter 5

Efficient Calculation of the

Objective’s Gradient

In any gradient based optimization method the algorithm requires for the compu-

tation of the derivative of the residual vector for the solution of the least squares

problem. Unless the gradient can be calculated analytically, a simple but expensive

way is the use of finite difference approximations. Especially in cases where the cal-

culation of the objective function is expensive, as in a Monte Carlo framework like

the one under observation in this work, this method results in a high computational

effort. Furthermore, an inadequate choice of the step size for the finite difference

quotient can lead to severe problems.

Initially, an overview to finite differences is given in section 5.1. As a first

improvement section 5.2 introduces the sensitivity equation. Unfortunately, this

approach leads in fact to the exact gradient but suffers from the same computational

effort as the finite difference approach. Thus, it will be shown in section 5.3 how

the calculation can be sped up with an adjoint method. The fourth part approves

this numerically. To round the topic out, alternative approaches like automatic

differentiation are briefly explained and discussed in the last part.

5.1 Gradient Calculation and Finite Differences Ap-

proximation

As mentioned in section 3.4, the optimization problem (PM,∆t,ǫ) is solved with a

line-search SQP algorithm. This method is based on first and second order derivative

69



70 CHAPTER 5. EFFICIENT GRADIENT CALCULATION

information of the objective function

fM,∆t,ǫ(x) :=

I∑

i=1

(
C i

M,∆t,ǫ(x) − C i
obs

)2
.

In Lemma 3.4, fM,∆t,ǫ has already been transformed to the squared 2-norm of a

residual vector R : R
P → R

I :

R(x) = [Ri(x)]Ii=1 =
[
C i

M,∆t,ǫ(x) − C i
obs

]I
i=1

. (5.1)

Thus, the objective function can be written as

fM,∆t,ǫ(x) = ‖R(x)‖2
2.

Defining the Jacobi matrix of the residual vector JR : R
P → R

I×P as

JR(x) :=

[
∂

∂xp

Ri(x)

]I ,P

i ,p=1

,

the gradient of the objective function can be calculated through

∇fM,∆t,ǫ(x) = 2JR(x)T R(x) (5.2)

as described in Lemma 3.4. Thus the calculation of ∇fM,∆t,ǫ has been boiled down

to the calculation of the Jacobian JR . A simple, but expensive way is the use of

finite difference approximations.

Lemma 5.1. Let R : R
P → R

I be the vector valued function

R(x) =

[
e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni

(x) − Ki)
)
− C i

obs

]I

i=1

,

and ep denote the p-th unit vector (0, ..., 0, 1, 0, ..., 0)T ∈ R
P . Given Assumption

(A.3) and h > 0

[
∂

∂xp

Ri(x)

]I ,P

i ,p=1

≈
[
Ri (x + hep) − Ri (x)

h

]I ,P

i ,p=1

, (5.3)

is an approximation of the true Jacobian with order O(h).

Proof. A Taylor series expansion (see Theorem 2.25) provides

Ri(x + hep) = Ri(x) + h
∂

∂xp

Ri(x) + O(h)
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and an isolation of ∂
∂xp

Ri leads to

∂

∂xp

Ri (x) =
Ri(x + hep) − Ri(x)

h
+ O(h).

Both, the above introduced forward scheme as well as the corresponding back-

ward scheme:

[
∂

∂xp

Ri(x)

]I ,P

i ,p=1

≈
[
Ri(x) − Ri(x − hep)

h

]I ,P

i ,p=1

,

overestimate a change of gradient on one side of the point under observation.

Therefore the central finite difference approximation is often considered:

[
∂

∂xp

Ri (x)

]I ,P

i ,p=1

≈
[
Ri(x + hep) − Ri(x − hep)

2h

]I ,P

i ,p=1

.

This scheme is more stable compared to the forward or backward scheme, but the

computational effort is doubled as Ri (x) is now replaced by Ri(x − hep). Thus this

work focuses on the forward scheme. The computational effort is addressed in the

following remark.

Remark 5.2. As ∇fM,∆t,ǫ(x) = 2JR(x)TR(x) due to Lemma 3.4, the computa-

tional effort for JR = [ ∂
∂xp

Ri(x)]I ,Pi ,p=1 instead of ∇fM,∆t,ǫ is considered. Every single
∂

∂xp
Ri (x) requires the calculation of Ri(x) and Ri(x +hep) for p = 1, ..., P. Keeping

Ri (x) in memory, each of these P + 1 residual vectors itself requires the solution

of the underlying stochastic differential equation which results in L multiplications

for aǫ(x , ym
n (x))∆tn and L2 multiplications for bǫ(x , ym

n (x))∆W m
n for each of the

M simulations and each of the N time steps. As it could be motivated at the end

of section 3.4 that solving the SDE only once provides all option prices, the re-

sulting computational complexity of the forward finite difference scheme is of order

O((P + 1)MN(L + L2)).

Consequently, the computation time for the finite difference approximation scales

linearly in the number of parameters. This will also be shown in the numerical results

in section 5.4.

Besides this high computational effort, the correct choice of the step size h > 0

can be a critical issue, as already mentioned in the very beginning. The rate of

convergence O(h) suggests to choose h as small as possible. On the other hand,

a widely known optimal choice for h is the square root of the machine accuracy

divided by the second derivative (see e.g. Nocedal and Wright [1999], pp. 166

ff.), where the machine accuracy is 10−15 on a double precision system. However,
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in practice both approaches may lead to severe problems. Table 5.1 shows results

for two finite differences based gradient approximations in direction of the mean

reversion speed parameter θ in the Heston model (3.2) for a varying set of parameter

values. Following the rule for the optimal choice of h explained above would lead

h Finite Differences h Finite Differences

1.0e-01 4.5702644e-01 1.0e-01 1.2364214e+00
1.0e-02 2.1809812e-01 1.0e-02 1.6345058e+00
1.0e-03 -8.6920392e-01 1.0e-03 2.1654201e+00
1.0e-04 -2.6063369e+00 1.0e-04 7.2584657e-01
1.0e-05 3.0741435e+01 1.0e-05 -1.2348351e+01
1.0e-06 1.8494888e+02 1.0e-06 -3.3469893e+01
1.0e-07 4.4476847e+02 1.0e-07 3.0128138e+02
1.0e-08 -1.1492117e+02 1.0e-08 2.6195569e+03
1.0e-09 -4.5257191e+02 1.0e-09 1.5295545e+03
1.0e-10 -2.9722253e+03 1.0e-10 -1.1503288e+04
1.0e-11 -4.2431821e+02 1.0e-11 -2.8594760e+04
8.2e-12 * -3.5369871e+02 1.0e-12 -3.5064154e+03
1.0e-12 -1.8970325e+01 8.0e-13 * -2.6152544e+03
1.0e-13 3.6540770e+01 1.0e-13 7.9288603e+02
1.0e-14 7.0637940e+01 1.0e-14 1.2934459e+03

Exact 3.6826311e+01 Exact 1.3332680e+03

Table 5.1: Derivative evaluation via finite differences for the volatility in the Heston model
with 10,000 simulations for varying sets of parameter values.

to h = 8.2 × 10−12 for the test case on the left side and to h = 8.0 × 10−13 on

the right side. Both choices lead to derivative values which are totally inaccurate

in comparison to the exact derivative. Additionally, it is also not possible to find a

preliminary fixed h which would lead to a good approximation for both test cases.

These results illustrate on the one hand the problem of finding an optimal step

size h. On the other hand they additionally exhibit the enormous fluctuation range

of a finite differences based gradient approximation. The proposed convergence

behavior from Lemma 5.1 seems to be restricted to a small interval of step size

values. In fact, such severe instabilities may lead to a breakdown of the calibration

algorithm before convergence has been reached, especially when solving ill-posed

problems. A first improvement of the gradient calculation in this manner is the

sensitivity equation.

5.2 Exact Derivative via the Sensitivity Equation

One of the mentioned two crucial disadvantages of the finite difference method

introduced above, is that it is only an approximation. Furthermore the quality of

the approximation is uncertain and like shown above even severe instabilities might

occur. Thus, an exact method to calculate the derivatives is desired.
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Reconsider, that the derivatives of Ri (x) in direction xp for i = 1, ..., I and

p = 1, ..., P are required. By definition it holds true that

∂

∂xp

Ri(x) = e−rTi
1

M

M∑

m=1

π′
ǫ(s

m
Ni ,ǫ(x) − Ki)

∂

∂xp

sm
Ni ,ǫ(x). (5.4)

As π′
ǫ can be calculated analytically:

π′
ǫ(x) :=





0 , x ≤ −ǫ
− 1

4ǫ3 x
3 + 3

4ǫx + 1
2 , −ǫ < x < ǫ

1 , x ≥ ǫ,

(5.5)

only ∂
∂xp

sm
Ni ,ǫ

(x), i.e. the derivative of the SDE solution with respect to the pa-

rameters, is required. These expressions are called sensitivities. The corresponding

stochastic differential equation providing ∂
∂xp

sm
Ni ,ǫ

as its solution is consequently de-

noted as sensitivity equation:

Definition 5.3. (Sensitivity Equation) Consider the EMS discretized stochastic

differential equation

ym
n+1(x) = ym

n (x) + aǫ(x , ym
n (x))∆t + bǫ(x , ym

n (x))∆W m
n ,

ym
0 = Y0, n = 0, ..., N − 1, m = 1, ..., M , N := max

i=1,...,I
Ni .

Taking derivatives with respect to x in direction ∆x in this SDE leads to the

sensitivity equation

ηm
n+1(x) = ηm

n (x) +
[

∂
∂y

aǫ(x , ym
n (x))ηm

n (x) + ∂
∂x

aǫ(x , ym
n (x))∆x

]
∆tn

+
[

∂
∂y

(bǫ(x , ym
n (x))∆W m

n ) ηm
n (x) + ∂

∂x
(bǫ(x , ym

n (x))∆W m
n )∆x

]

ηm
0 = 0, n = 0, ..., N − 1, m = 1, ..., M , N := max

i=1,...,I
Ni

(5.6)

where ηm
n ∈ R

L is defined as

ηm
n (x) :=

[
ξm
n (x), η2,m

n (x), ..., ηL,m
n (x)

]T

:=

[
∂

∂x
sm
n (x)∆x ,

∂

∂x
y2,m
n (x)∆x , ...,

∂

∂x
yL,m
n (x)∆x

]T

in analogy to the definition of ym
n and the quantities ∂

∂x
aǫ,

∂
∂x

(bǫ∆W ) ∈ R
L×P as

well as ∂
∂y

aǫ,
∂
∂y

(bǫ∆W ) ∈ R
L×L denote the Jacobians of aǫ, bǫ∆W with respect

to the variables x and y.

Obviously, (5.4) in combination with the sensitivity equation (5.6) provides the

Jacobi matrix:
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Theorem 5.4. Let R : R
P → R

I be the vector valued function

R(x) =

[
e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni

(x) − Ki )
)
− C i

obs

]I

i=1

with

ym
n+1(x) = ym

n (x) + aǫ(x , ym
n (x))∆t + bǫ(x , ym

n (x))∆W m
n ,

ym
0 = Y0, n = 0, ..., N − 1, m = 1, ..., M , N := max

i=1,...,I
Ni .

Given Assumption (A.3), the derivative of Ri can be computed via

∂

∂xp

Ri(x) = e−rTi
1

M

M∑

m=1

π′
ǫ(s

m
Ni ,ǫ(x) − Ki)ξ

m
Ni ,ǫ(x)

with ξm
Ni ,ǫ

(x) the first component of the solution of (5.6)

Proof. The derivative of Ri(x) in direction of an increment ∆x can be expressed

as ∂
∂x

Ri(x)∆x where particularly for ∆x = ep with ep ∈ R
P the p-th unit vector it

holds true that
∂

∂x
Ri (x)ep =

∂

∂xp

Ri (x).

Thus, solving (5.6) with ∆x = ep, p = 1, ..., P provides ∂
∂xp

sm
Ni ,ǫ

and together with

(5.4) the gradient.

By definition, Theorem 5.4 provides the exact gradient which is a clear advantage

in comparison to the finite difference method. Unfortunately, the computational

effort of both methods is almost identical:

Remark 5.5. Following Theorem 5.4 the calculation of

∂

∂xp

Ri(x) = e−rTi
1

M

M∑

m=1

π′
ǫ(s

m
Ni ,ǫ(x) − Ki)ξ

m
Ni ,ǫ(x)

requires the solution of the sensitivity equation (5.6) for every ∆x = ep, p = 1, ..., P.
∂
∂y

aǫ(x , ym
n (x)) ∈ R

L×L and ηm
n ∈ R

L lead to L2 multiplications to build their

product. The same holds for ∂
∂y

(bǫ(x , ym
n (x))∆W m

n ) ηm
n (x). As ∆x is chosen as

ep, the results of ∂
∂x

aǫ(x , ym
n (x))∆x as well as ∂

∂x
(bǫ(x , ym

n (x))∆W m
n )∆x are simply

the p-th columns of ∂
∂x

aǫ(x , ym
n (x)) ∈ R

L×P respectively ∂
∂x

(bǫ(x , ym
n (x))∆W m

n ) ∈
R

L×P . Finally ∂
∂y

aǫ(x , ym
n (x))ηm

n ∈ R
L and ∂

∂x
aǫ(x , ym

n (x))∆x ∈ R
L are multiplied

with the scalar ∆tn leading to L multiplications for each. Thus the total complexity

of solving the sensitivity equation is of order O(L2 + L). This has to be done P

times, i.e. for each parameter ep. Again, like in Remark 5.2, (5.6) can be solved
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in one sweep. Neglecting the evaluation of π′ for (5.4) leads consequently to a

computational effort of order O(PMN(L2 + L)) which scales linearly in P similar to

the finite difference scheme.

Concluding, it would be desirable to have an exact method which produces a

significantly less computational effort. This will be provided by the adjoint equation

in the next section.

5.3 Adjoint Equation

An efficient method to calculate the gradient which is well known from optimization

with partial differential equations is the adjoint equation. It has been introduced into

finance literature by Giles and Glasserman in their paper Smoking Adjoints (Giles

and Glasserman [2006]). In this, the adjoint equation has been used to calculate

sensitivities in a Libor market model. Additionally Giles [2007] uses the adjoint

in an automatic differentiation framework (see also section 5.5.3). In the following

theorem, the adjoint equation will be derived for the optimization problem (PM,∆t,ǫ)

and consequently applied in a calibration framework with stochastic differential

equations.

Theorem 5.6. Let R : R
P → R

I be the vector valued function

R(x) =

[
e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni

(x) − Ki)
)
− C i

obs

]I

i=1

with

ym
n+1(x) = ym

n (x) + aǫ(x , ym
n (x))∆t + bǫ(x , ym

n (x))∆W m
n ,

ym
0 = Y0, n = 0, ..., N − 1, m = 1, ..., M , N := max

i=1,...,I
Ni .

Given Assumption (A.3) the derivative of Ri can be computed via

R ′
i (x) =

e−rTi

M

M∑

m=1

Ni−1∑

n=0

(λm,i
n+1)

T

[
∂

∂x
aǫ(x , ym

n )∆tn +
∂

∂x
(bǫ(x , ym

n )∆W m
n )

]

where λm,i
n ∈ R

L results from the adjoint equation

λm,i
n =

[
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
]T
λm,i

n+1,

n = Ni − 1, Ni − 2, ..., 1, m = 1, ..., M ,

λm,i
Ni

=
[(
π′

ǫ(s
m
Ni

(x) − K )
)
, 0, ..., 0

]
∈ R

L.

(5.7)
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Proof. For the derivation of the adjoint equation, each of the M × N recursive

sensitivity equations (5.6) is initially multiplied with vectors λm
n+1 ∈ R

L, which will

be determined later. Summarizing over all time steps n = 0, ..., N − 1 leads to

N−1∑
n=0

(λm
n+1)

Tηm
n+1

−
N−1∑
n=0

(λm
n+1)

T
[
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
]
ηm
n

=
N−1∑
n=0

(λm
n+1)

T
[

∂
∂x

aǫ(x , ym
n )∆tn + ∂

∂x
(bǫ(x , ym

n )∆W m
n )
]
∆x

ηm
0 = 0, m = 1, ..., M .

(5.8)

Since ηm
0 = 0, the second summation on the left hand side can start at n = 1,

which is also convenient for the first sum, since an index shift yields

N−1∑

n=0

(λm
n+1)

T ηm
n+1 =

N∑

n=1

(λm
n )T ηm

n =
N−1∑

n=1

(λm
n )Tηm

n + (λm
N )Tηm

N .

If one uses this equality and merges the two first sums of (5.8) into one, one obtains

for (5.8) the equation

N−1∑
n=1

[
(λm

n )T − (λm
n+1)

T
(
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
)]
ηm
n

+(λm
N )T ηm

N =
N−1∑
n=0

(λm
n+1)

T
[

∂
∂x

aǫ(x , ym
n )∆tn + ∂

∂x
(bǫ(x , ym

n )∆W m
n )
]
∆x

ηm
0 = 0, m = 1, ..., M , N := max

i=1,...,I
Ni .

(5.9)

It can be easily seen, that, if it is required that the vectors λm
n satisfy recursively

the relation

λm
n =

[
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
]T
λm

n+1

n = N − 1, ..., 1, m = 1, ..., M

(5.10)

then the first term in brackets in (5.9) vanishes and one obtains

(λm
N )Tηm

N =
N−1∑

n=0

(λm
n+1)

T

[
∂

∂x
aǫ(x , ym

n )∆tn +
∂

∂x
(bǫ(x , ym

n )∆W m
n )

]
∆x . (5.11)

Note that in the so-called adjoint equation (5.10) the recursion for λm
n runs back-

wards. Hence a final condition for the adjoint variable has to be specified, where

one is free to choose this. If one recalls the form of the derivative (5.4), one realizes
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that the following choice

λm,i
Ni

= [(π′
ǫ(sNi

(x) − K )) , 0, ..., 0] ∈ R
L

substituted in (5.4) together with (5.11) yields the expression

R ′
i (x)∆x = e−rTi

1

M

M∑

m=1

(
π′

ǫ(s
m
Ni

(x) − Ki)
)
ξm
Ni

= e−rTi
1

M

M∑

m=1

(λm,i
Ni

)Tηm
Ni

.

Replacing the expression for λm,i
Ni
ηm
Ni

from equation (5.11) leads to

R ′
i (x)∆x = e−rTi 1

M

M∑
m=1

Ni−1∑
n=0

(λm,i
n+1)

T
[

∂
∂x

aǫ(x , ym
n )∆tn

+ ∂
∂x

(bx(x , ym
n )∆W m

n )
]
∆x

which proves the statement.

The computational effort is as follows.

Remark 5.7. As shown in Remark 5.5, one adjoint step has the complexity O(L2)

multiplications, since λm,i
n+1 ∈ R

L. A closer look reveals, that the adjoint has to be

resolved for every maturity due to the final condition. Following the idea on page

36, namely to simulate the SDE only once for all maturities, one is able to exploit

the fact that some maturities Ti and hence Ni may be identical and then so are the

adjoint values. Thus, let

I := {i : Ni 6= Nj ∀ j = 1, ..., i − 1}

be a set of different maturities indices. The computational complexity of (5.7) is

thus O(MN |I|L2). The cost for

R ′
i (x) =

e−rTi

M

M∑

m=1

Ni−1∑

n=0

(λm,i
n+1)

T

[
∂

∂x
aǫ(x , ym

n )∆tn +
∂

∂x
(bǫ(x , ym

n )∆W m
n )

]
(5.12)

is MN |I|PL. Summarizing, the adjoint method yields a computational complexity

of O(MN |I|(L2 + PL)) which does not scale linearly in P, like the finite difference

scheme and the sensitivity equation do, but still scales strongly in P due to the part

in brackets in (5.12).

Following Theorem 5.6 and Remark 5.7 one would have to solve the adjoint

equation backwards for every varying maturity and the computational effort still

scales in P albeit not linearly. However, there is a way to boil down the computa-

tional effort even further. The first remark aims at the backward solves.
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Remark 5.8. Consider again the adjoint equation (5.7) for the i-th option with

maturity Ti and strike Ki :

λm,i
n =

[
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
]T
λm,i

n+1

λm,i
Ni

=
[(
π′

ǫ(s
m
Ni

(x) − K )
)
, 0, ..., 0

]
∈ R

L

n = Ni − 1, Ni − 2, ..., 1 i = 1, ..., I .

As it will be discussed subsequently, one can calculate the adjoints pathwise, so

that one may leave out the upper index m for the sake of readability. If one sets for

abbreviation

Gn :=

[
I +

∂

∂y
aǫ(x , yn)∆tn +

∂

∂y
(bǫ(x , yn)∆Wn)

]T

,

and

Π′
i = π′

ǫ(sNi
(x) − K )

the adjoint can be written as

λi
n = Gnλ

i
n+1

λi
Ni

= Π′
ie

T
1

n = Ni − 1, Ni − 2, ..., 1, i = 1, ..., I .

Consider again the set of different maturities indices I. Instead of solving this

adjoint equation |I| times, the following is suggested. Let µi ,l
n ∈ R

L be the solution

of
µl

Ni−1
= GNi−1 ...GNi−2GNi−1µ

l
Ni

µl
Ni

= eT
l

n = Ni − 1, Ni − 2, ..., Ni−1

which is the same recursion as the adjoint, but starting at Ni with the l-th unit

vector µl
Ni

= eT
l and stopping at the next lower maturity Ni−1. This leads to a

sequence of basis solutions µi
n ∈ R

L defined through

µl
n :=

[
µl ,1

0 , ...,µl ,1
N1

, ...,µ
l ,|I|
N|I|−1+1, ...,µ

l ,|I|
N|I|

]T

for l = 1, ..., L. All required adjoint variables can now be calculated by simply

building linear combinations with these basis solutions as it holds for a given maturity

Ni , that

λi
n = (λi

n+1)
Tµi

n

n = 0, ..., Ni − 1

λi
Ni

= Π′
ie

T
1

Note that one has here L instead of |I| solves of the adjoint equation, where usually
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the number of maturities |I| strongly dominates the dimension of the SDE.

Additionally one can exploit possible structure of the derivatives with respect to

x in

R ′
i (x) =

e−rTi

M

M∑

m=1

Ni−1∑

n=0

(λm,i
n+1)

T

[
∂

∂x
aǫ(x , ym

n )∆tn +
∂

∂x
(bǫ(x , ym

n )∆W m
n )

]

to further decrease the scaling of the computational effort with P, as shown in the

next Remark.

Remark 5.9. Remark 5.7 states that the computational effort for the term in

brackets above is O(PL). This effort can even further be reduced. Consider the

case that xp = [x1
p , ..., xB

p ]T ∈ R
B with

xp(t) = xb
p ; t ∈ [Tb−1, Tb); b = 1, ...B and x(T ) = xB

p .

In particular this means that xp is chosen piecewise constant on B time intervals

[Tb−1, Tb) for b = 1, ..., B. Consequently it holds for the partial derivative with

respect to the p-th parameter on the b-th subinterval that

∂

∂xb
p

aǫ(x , ym
n )∆tn =

∂

∂xb
p

(bǫ(x , ym
n )∆W m

n ) = 0, ∀n with τn < tb−1 or τn ≥ tb.

Thus on every subinterval [τb−1, ...,b ) there exist exactly one b ∈ {1, ..., B} with

non vanishing corresponding derivative of the coefficients, i.e. ∂
∂xb

p
aǫ(x , ym

n ) and
∂

∂xb
p
(bǫ(x , ym

n )∆W m
n ) have local support. Increasing the number of intervals does

consequently not increase the required effort to evaluate R ′
i (x).

The following remark deals with the resulting computational complexity

Remark 5.10. Following Remark 5.7, the computational effort of the adjoint equa-

tion is of order O(MN |I|L2). As one now has L instead of |I| solves, the total effort

of the adjoint method is reduced to O(MNL(L2 +PL)) which should be significantly

less, as the number of maturities can be expected to dominate the dimension of

the SDE. Furthermore, if one considers in summary P parameters which are chosen

piecewise constant on B subintervals resulting from Q different parameter types, i.e.

P = BQ, the complexity for the adjoint method is O(MNL(L2 + BQL)). As it has

been shown above, that B can be erased from the formula, the effort in summary

is O(MNL(L2 + QL)). Compared to the finite difference scheme the ratio is

Finite Differences

Adjoint Equation
=

(BQ + 1)MN(L2 + L)

MNL(L2 + QL)
.

Omitting the 1 in the first term in brackets in the enumerator and adding a Q to the
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right term in brackets in the denominator helps to estimate this term from below

with
(BQ + 1)MN(L2 + L)

MNL(L2 + QL)
≥ BQMN(L2 + L)

MNLQ(L2 + L)
= B.

Thus the number of subintervals is a lower bound for the speed up, provided by the

adjoint method in comparison to the finite differences approximation.

Note that the structure of this derivative calculation allows to calculate the

adjoints pathwise, meaning that one can calculate the values for ym
n for fixed m

forward and directly afterwards the values for λm
n backwards. Hence, this pathwise

structure makes it easy to store the Brownian increments ∆W m
n during the forward

sweep and to reuse them immediately afterwards in the backwards computation. In

comparison to finite differences this is an additional advantage as it is usually not

possible to store the Brownian increments ∆W m
n for all m and n. See also section

6.3 for a more detailed discussion.

5.4 Numerical Results

To fully assess the potential speedup of the introduced method, time dependent

Heston parameters κt , θt ,σt and ρt for 0 ≤ t ≤ T are introduced. In particular

piecewise constant parameters on [tb−1, tb), b = 1, ..., B are chosen, i.e.

κt = κb ; t ∈ [tb−1, tb) ; b = 1, ...B and κ(T ) = κB ,

θt = θb ; t ∈ [tb−1, tb) ; b = 1, ...B and θ(T ) = θB ,

σt = σb ; t ∈ [tb−1, tb) ; b = 1, ...B and σ(T ) = σB ,

ρt = ρb ; t ∈ [tb−1, tb) ; b = 1, ...B and ρ(T ) = ρB ,

(5.13)

where 0 = t0 < t1 < ... < tB = T is a suitable discretization of the time interval

[0, T ] into B subintervals. In the examples below the points t1, ..., tB will be chosen

as maturities Ti of the options listed in Table 7.1. For the time-dependent param-

eters the notation of a vector x ∈ R
P can be retained by arranging the elements of

x in the following way

x = (v0,κ1, ...,κB , θ1, ..., θB ,σ1, ...,σB , ρ1, ..., ρB)T ∈ R
P . (5.14)

This only changes the calculation of the adjoint equation slightly in that one has to

replace the previously constant xi by its corresponding value on the subinterval.

Table 5.2 shows the computing time for one gradient evaluation via adjoint equa-

tion compared to the finite differences scheme for varying number of subintervals

B and thus varying number of parameters P . As it could have been expected, the

computing time for the finite-difference based gradient evaluation increases linearly

whereas the adjoint equation almost stays constant. Thus, the ratio of these two
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B P Fin. Diff. Adjoint Ratio

1 5 15 10 1.5
2 9 25 11 2.3
3 13 35 11 3.2
4 17 46 12 3.8
5 21 56 12 4.7
6 25 66 13 5.1
7 29 75 14 5.4
8 33 85 14 6.1
9 37 96 15 6.4
10 41 107 15 7.1

Table 5.2: Computing time in seconds for
one gradient evaluation via adjoint equation
compared to the finite differences scheme
for B subintervals or P parameters with
M = 100, 000, ∆t = 5×10−2 and ǫ =
3.1×10−3 .
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Figure 5.1: Computing time in seconds
for one gradient evaluation via adjoint
equation (blue line) compared to the fi-
nite differences scheme (red line) with
M = 100, 000, ∆t = 5×10−2 and
ǫ = 3.1×10−3 .

increases at an almost linear rate. On 10 subintervals and thus with 41 parame-

ters, the adjoint is 7.1 times faster, than the finite difference scheme. Figure 5.1

illustrates this behavior graphically.

5.5 Alternative Approaches

The above introduced approaches to derive the objectives gradient are certainly not

the only existing techniques. Though gradient calculation is certainly a broad topic

and though it is not the goal of this work, a brief overview to other approaches

including a short discussion on there applicability is given in the following.

5.5.1 Likelihood Ratio Method

The Likelihood Ratio Method is based on differentiating the probability density

defined by the model for the underlying stock dynamics. An introduction to this

method is for instance given in Broadie and Glasserman [1996] or Glasserman [2003]

pp. 401 ff. Consider the following example from Broadie and Glasserman [1996]

pp. 271-272.

Example 5.11. (Black-Scholes Vega) Let

C = e−rTE (max(ST − K , 0)) (5.15)

be the price of a European Call Option with

dSt = (r − δ)Stdt + σStdWt



82 CHAPTER 5. EFFICIENT GRADIENT CALCULATION

where r is the risk-free rate, δ the dividend yield and σ the volatility. The pricing

formula (5.15) can also be written as

C = e−rT

∞∫

0

max(x − K , 0)g(x)dx (5.16)

where g(x) is the probability density of ST . If the goal for example is to calculate

the Black-Scholes Vega ∂C/∂σ, i.e. the derivative of the call price C with respect to

the volatility σ, one can under some standard smoothness assumptions interchange

the derivative and the integral. Consequently (5.16) leads to

∂C

∂σ
= e−rT

∞∫

0

max(x − K , 0)
∂g(x)

∂σ
dx .

Making use of the fact that ∂ ln(g) = ∂g
g

yields

∂C

∂σ
= e−rT

∞∫

0

max(x − K , 0)
∂ ln(g(x))

∂σ
g(x)dx

= e−rTE

(
max(ST − K , 0)

∂ ln(g(ST ))

∂σ

)
. (5.17)

As it is well known that the probability density of St is given by

g(x) =
1

xσ
√

2Tπ
e−

1
2 d(x)2

d(x) =
ln(x/S0) − (r − δ − 1

2σ
2)T

σ
√

T

the derivative of ln(g(x)) with respect to σ can easily be calculated. Substituting

this result in (5.17) then leads to the exact Black-Scholes Vega, which only depends

on the simulated value for ST .

Note that the likelihood ratio method just like the sensitivity or the adjoint

equation leads to the exact derivative. Nevertheless, the probability density of the

model dynamics is a crucial issue. Unfortunately, this density is not known for

many financial market models, such that this method is only feasible for a few

chosen situations.

5.5.2 Direct Pathwise Derivatives

A different approach, which is often introduced together with the Likelihood Ra-

tio Method is the Pathwise Method (see for instance Glasserman [2003] pp. 386
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ff. or Broadie and Glasserman [1996]). The following example from Broadie and

Glasserman [1996] shows the functionality.

Example 5.12. In the situation of Example 5.11, ST can be calculated via

ST = S0e
(r−δ− 1

2 σ2)T+σ
√

TZ (5.18)

where Z is a standard normal random variable. Thus one has

∂ST

∂σ
= ST (−σT +

√
TZ ).

A simple transformation of (5.18) provides

ln(ST/S0) = (r − δ − 1

2
σ2)T + σ

√
TZ

which leads to

∂ST

∂σ
=

ST

σ

(
ln(ST /S0) − (r − δ +

1

2
σ2)T

)
.

The Black-Scholes Vega is defined as

∂C

∂σ
=

∂C

∂ST

∂ST

∂σ
.

Though the maximum function is not differentiable for ST = K, this event has

probability zero. Thus

∂C

∂ST

= e−rT1{ST >K} (a.s.).

Consequently the Black-Scholes Vega is

∂C

∂σ
=

∂C

∂ST

∂ST

∂σ
= e−rT ST

σ

(
ln(ST/S0) − (r − δ +

1

2
σ2)T

)
1{ST >K}.

Thus, with the simulated value of ST in memory, the derivative can be calculated.

As this example shows, this method is based on the closed-form solution of

the model defining the dynamics of the underlying. In absence of such a solution

formula, the pathwise method leads to the sensitivity equation, introduced in Section

5.2.

5.5.3 Automatic Differentiation

A totally different but evolving approach is automatic differentiation, sometimes

also called algorithmic differentiation. For a brief explanation consider the following
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simple example function f : R
2 → R:

f (x1, x2) = x1x2 + sin(x1). (5.19)

As a first step one defines the real valued auxiliary variables x3, x4, x5 in the following

way:

x3 = x1x2

x4 = sin(x1)

x5 = x3 + x4.

The derivatives with respect to x1 and x2 can now easily be calculated

∂
∂xi

x3 = x1
∂

∂xi
x1 + x2

∂
∂xi

x2

∂
∂xi

x4 = cos(x1)
∂

∂xi
x1

∂
∂xi

x5 = ∂
∂xi

x3 + ∂
∂xi

x4, i = 1, 2.

(5.20)

(5.20) thus provides the gradient of f from (5.19). This is denoted as the forward

mode of AD. As it requires to solve (5.20) for every component of the vector x,

its computational effort behaves asymptotically like finite differences and is thus

very large. In this context the reverse mode reduces this effort significantly. Let

u = (x1, x2) the vector of independent variables, y = (x3, x4, x5) the vector of

dependent variables and define a function φ : R
5 → R

3 with

φ(u, y) = y(u) =




x3

x4

x5


 =




φ3(x1, x2)

φ4(x1, ..., x3)

φ5(x1, ..., x4)


 =




φ3(u)

φ4(u, x3)

φ5(u, x3, x4)


 (5.21)

Clearly f from (5.19) can be written as

f (u) = eT
3 y(u)

with e3 = (0, 0, 1)T . Thus the derivative of f with respect to the independent

variables u in direction v can be calculated through

∂f

∂u
v = eT ∂y

∂u
v .

From (5.21) it follows
∂y

∂u
v =

∂φ

∂u
v +

∂φ

∂y

∂φ

∂u
v

which yields

∂y

∂u
=

(
I − ∂φ

∂y

)−1
∂φ

∂u
.
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If one now lets λ ∈ R
3 the solution of

(
I − ∂φ

∂y

T
)
λ = e3 (5.22)

it holds
∂f

∂u
= λT ∂φ

∂u
. (5.23)

Moreover, a closer look on the definition of φ in equation (5.21) reveals that (I −
∂φ
∂y

T
) ∈ R

3×3 is an upper triangular matrix. Backward substitution then provides

the solution of (5.22) in only 3 steps. However, tests show that the automatically

derived codes for the reverse mode of AD are not competitive to the handcoded

counterparts (see for instance Giles [2007]).





Chapter 6

Computational Reduction of

the Calibration Time

Chapter 5 was related to speeding up the calibration via an adjoint equation. In

contrast to this more theoretical method, the following chapter deals with a number

of computational methods and techniques to reduce the overall calibration time.

The first section deals with methods of variance reduction, as a smaller variance

of the Monte Carlo estimator allows for a smaller number of simulations and thus

speeds up the calibration. The second section contains a multi layer method, where

the idea is to have coarse evaluations of the objective function at the beginning of

the optimization and finer ones at the end. The third section then explains the idea

of storing the random numbers instead of regenerating them every time they are

needed which is finally followed by parallelizing the algorithm on several processors.

6.1 Variance Reduction

The concept of variance reduction is understood to be a group of methods to

reduce the variance of the Monte Carlo estimator and thus reduce the number of

required Monte Carlo simulations in order to achieve a certain accuracy. In this work

antithetic sampling and control variates are explained shortly. For a more detailed

information see e.g. Glasserman [2003].

87
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6.1.1 Antithetic Sampling

For a brief explanation of antithetic sampling consider the simple Black-Scholes

SDE example

C = E (max(ST − K , 0))

dSt = (r − δ)dt + σStdWt

where the discounting with e−rT in the call price formula has been skipped for sim-

plicity reasons. By definition, the increments of the Brownian motion are N (0, ∆t)

distributed. Thus, for the discrete version given by

CM =
1

M

M∑

m=1

(max(Sm
N − K , 0))

Sm
n+1 = Sm

n (r − δ)∆t + σSm
n ∆W m

n , n = 0, ..., N − 1, m = 1, ..., M

one simulates N (0, 1) distributed random numbers and multiplies them with
√

∆t to

receive N (0, ∆t) distributed random numbers for the Brownian increments ∆W m
n .

By definition of the standard normal distribution it holds that, if Z is standard

normally distributed so is −Z . Furthermore −Z is the reflection of Z around the

origin. Consequently, one simulates the antithetic path through replacing ∆W m
n

with its negative counterpart −∆W m
n , i.e.

S̃m
n+1 = S̃m

n (r − δ)∆t + σS̃m
n (−∆W m

n ).

The call price is then the mean of the resulting two prices:

C as
M =

1

M

M∑

m=1

1

2

(
max(Sm

N − K , 0) + max(S̃m
N − K , 0)

)
.

Figure 6.1 displays the effect for this Black-Scholes example. Obviously, the com-

bined estimator (orange line) has a significantly lower variance than the standard

estimator (blue line) and is thus a better approximation to the exact price (green

line).

To analyze the computational complexity of this method, it is important to note

preliminarily that the random normal deviate for S̃m
N , i.e. −∆W m

n can be received

by only changing the sign of ∆W m
n , which has already been calculated for Sm

N .

If one neglects this difference in computing time, the computational effort for Sm
N

and S̃m
N is the same. Thus, the complexity of the antithetic sampling estimator is

assumed to be twice compared to the plain estimator. Hence, for the analysis of

the effective variance reduction, it is reasonable to consider a plain estimator with
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Figure 6.1: Standard (blue line) , antithetic (red line) , combined (orange line) and exact
(green line) Black-Scholes call price with (r − d) = σ = 0.2.

twice the number of simulations

CM =
1

2M

2M∑

m=1

max(Sm
N − K , 0).

For the variance of this estimator it holds true that

Var(CM) = Var

(
1

2M

2M∑

m=1

max(Sm
N − K , 0)

)

=
1

4M2

2M∑

m=1

Var (max(Sm
N − K , 0))

as the Sm
N are independent identically distributed and Var(aX ) = a2Var(X ) for a

real number a and a random variable X . Certainly max(Sm
N −K , 0) is equal to zero

if the stock price is smaller than the strike price and thus

Var(CM) =
1

4M2

2M∑

m=1

Var (Sm
N − K ) 1(Sm

N
>K) =

1

4M2

2M∑

m=1

Var (Sm
N ) 1(Sm

N
>K)

as Var(X + a) = Var(X ). Without loss of generality it is assumed that the stock

prices for all paths are larger than the strike. As the Sm
N are independent identically

distributed, it is essential that

Var(CM) =
1

2M
Var (SN) .
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Analogously the variance of the antithetic sampling estimator is

Var(C as
M ) =

1

4M2

M∑

m=1

Var
(
max(Sm

N − K , 0) + max(S̃m
N − K , 0)

)
.

As it holds by definition that Var(X +Y ) = Var(X )+Var(Y )+Cov(X , Y ) it follows

that

Var(C as
M ) =

1

4M2

M∑

m=1

Var (Sm
N ) 1(Sm

N
>K) + Var

(
S̃m

N

)
1(S̃m

N
>K)

+ Cov(Sm
N , S̃m

N )1(Sm
N

>K)1(S̃m
N

>K).

Again it is assumed that Sm
N > K and S̃m

N > K for all m = 1, ..., M . Hence

Var(C as
M ) =

1

2M
Var(SN) +

1

2M
Cov(SN , S̃N).

Thus Var(C as
M ) − Var(CM) behaves asymptotically like Cov(SN , S̃N). The variance

of the antithetic sampling estimator is hence less than the variance of the plain esti-

mator, if Cov(SN , S̃N) is negative. The negativity of the covariance is by definition

equivalent to

E
(
SN S̃N

)
< E

(
SN

)
E
(
S̃N

)
.

Thus, the more close the mapping of the SDE is to linear, the higher is the

variance reduction via antithetic sampling.

6.1.2 Control Variates

In contrast to antithetic sampling, control variates is a more complex variance

reduction technique. For the explanation reconsider the Monte Carlo estimator for

an arbitrary random variable Y:

E (Y ) ≈ 1

M

M∑

m=1

Ym. (6.1)

Assuming the availability of a second random variable Ỹ with known expected

value E (Ỹ ) which has the same distribution as Y, it is possible to calculate the

corresponding sample mean

1

M

M∑

m=1

Ym − β(Ỹm − E (Ỹ ))
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with a chosen constant β ∈ [−1; 1]. Just as (6.1), this estimator is unbiased (see

also (2.2) on page 14) as

E

(
1
M

M∑
m=1

Ym − β(Ỹm − E (Ỹ ))

)
= E

(
1
M

M∑
m=1

Ym

)

− β

(
E

(
1
M

M∑
m=1

Ỹm

)
− E (Ỹ )

)
.

In case of the objective function in (PM,∆t,ǫ) the expression

C i
M,∆t,ǫ = e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ − Ki )

)

ym
n+1,ǫ = ym

n,ǫ + aǫ(x , ym
n,ǫ)∆tn + bǫ(x , ym

n,ǫ)∆W m
n

is replaced by

C i ,cv
M,∆t,ǫ : = e−rTi 1

M

M∑
m=1

(
πǫ(s

m
Ni ,ǫ

− Ki) − β
(
πǫ(s̃

m
Ni ,ǫ

− Ki) − E (π(S̃Ti
− Ki))

))

ym
n+1,ǫ = ym

n,ǫ + aǫ(x , ym
n,ǫ)∆tn + bǫ(x , ym

n,ǫ)∆W m
n

ỹm
n+1,ǫ = ỹm

n,ǫ + ãǫ(x , ỹm
n,ǫ)∆tn + b̃ǫ(x , ỹm

n,ǫ)∆W m
n .

Note that for the sampled Monte Carlo control variate process the smoothed version

πǫ(s̃
m
Ni ,ǫ

−Ki ) is used whereas the expected value is calculated with the help of the

unsmoothed process π(S̃Ti
− Ki). One has to accept the resulting approximation

error as the objective function has to fulfill the differentiability requirements on the

one hand (see section 3.3) and the expected value is only known for the unsmoothed

process on the other hand.

It can be shown that for an optimal choice of β the variance of the combined

control variate estimator is smaller than for the original one, if the correlation be-

tween Y and Ỹ , i.e. πǫ(STi ,ǫ − Ki) and πǫ(S̃Ti ,ǫ − Ki ) is high:

Theorem 6.1. Let Sm
t,ǫ, S̃m

t,ǫ the first components of the solutions of

ym
n+1,ǫ = ym

n,ǫ + aǫ(x , ym
n,ǫ)∆tn + bǫ(x , ym

n,ǫ)∆W m
n

respectively

ỹm
n+1,ǫ = ỹm

n,ǫ + ãǫ(x , ỹm
n,ǫ)∆tn + b̃ǫ(x , ỹm

n,ǫ)∆W m
n .

For the Monte Carlo estimator

C i
M,∆t,ǫ = e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ − Ki)

)
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the control variate estimator

C i ,cv
M,∆t,ǫ = e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ − Ki ) − β

(
πǫ(s̃

m
Ni ,ǫ − Ki) − E (π(S̃Ti

− Ki ))
))

has minimal variance for

β∗ =
Cov(πǫ(S

m
Ni ,ǫ

− K ),πǫ(S̃
m
Ni ,ǫ

− K ))

Var(πǫ(S̃m
Ni ,ǫ

− K ))
. (6.2)

In particular the variance of this estimator is

Var(C i ,cv
M,∆t,ǫ) =

(
1 − ρ2

)
Var(C i

M,∆t,ǫ) (6.3)

where ρ is defined as the correlation coefficient between the two payoffs πǫ(S
m
Ni ,ǫ

−K )

and π(S̃m
Ni ,ǫ

− K ).

Proof. Glasserman [2003], p. 186 f.

Consequently, if the correlation between π(STi
− Ki) and π(S̃Ti

− Ki ) is high,

one can conclude, that both random variables act similar. Thus, the error in the

approximation of E (π(S̃Ti
− Ki)) should be similar to the error when approximat-

ing E (π(STi
− Ki)). In the extreme case, where both processes are identical,

the covariance would be equal to one and the variance would be zero. Obvi-

ously both Monte Carlo processes in the control variate estimation formula would

erase each other and C i ,cv
M,∆t,ǫ would be equal to E (π(S̃Ti

− Ki )). In other words,
1
M

∑M

m=1 π(S̃m
Ti

− Ki) − E (π(S̃Ti
− Ki )) serves as a control for the approximation

error in E (π(STi
− Ki)) weighted with the corresponding correlation. However, the

effect of control variates decreases strongly with a decreasing correlation of the two

processes because the correlation enters quadratically into the formula. The clear

restriction is the knowledge of a process with high correlation to the primary process

and well-established expected value formula.

6.1.3 Comments on the Gradient Calculation

Note that the above introduced variance reduction techniques change the objective

function. Of course, this change has an effect on the objectives first and second

order derivatives which have to be calculated for the solution of the calibration

problem. Chapter 5 deals with the topic of these derivatives with respect to the

underlying parameters. Reconsidering the objective function of (PM,∆t,ǫ)

C i
M,∆t,ǫ(x) = e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ(x) − Ki)

)
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it holds

∂

∂xp

C i
M,∆t,ǫ(x) = e−rTi

1

M

M∑

m=1

(
π′

ǫ(s
m
Ni ,ǫ(x) − Ki)

∂

∂xp

sm
Ni ,ǫ(x)

)
.

It turns out, that the introduced variance reduction techniques lead to a similar

structure of the objective. Recall the call price formula provided by antithetic sam-

pling

C i ,as
M,∆t,ǫ(x) = e−rTi

1

M

M∑

m=1

1

2

(
πǫ(s

m
Ni ,ǫ(x) − Ki) + πǫ(s̃

m
Ni ,ǫ(x) − Ki)

)
.

Thus the gradient is just a combination of two objective functions similar to the

one in (PM,∆t,ǫ). The same observation can be made with control variates. Recon-

sidering the control variate estimator

C i ,cv
M,∆t,ǫ(x) := e−rTi

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ(x) − Ki )

− β
(
πǫ(s̃

m
Ni ,ǫ(x) − Ki) − E (π(S̃Ti

(x) − Ki))
))

the gradient is

∂

∂xp

C i ,cv
M,∆t,ǫ(x) = e−rTi

1

M

M∑

m=1

(
π′

ǫ(s
m
Ni ,ǫ(x) − Ki )

∂

∂xp

sm
Ni ,ǫ(x)

− ∂

∂xp

β
(
πǫ(s̃

m
Ni ,ǫ(x) − Ki) − E (π(S̃Ti

(x) − Ki))
)

− β

(
π′

ǫ(s̃
m
Ni ,ǫ(x) − Ki )

∂

∂xp

s̃m
Ni ,ǫ(x)

− ∂

∂xp

E (π(S̃Ti
(x) − Ki))

))
.

Usually ∂
∂xp
β can be calculated with gradient information on πǫ(s

m
Ni ,ǫ

− Ki) and

πǫ(s̃
m
Ni ,ǫ

− Ki) (see also Theorem 6.1). ∂
∂xp

E (π(S̃Ti
− Ki)) can be evaluated with

finite differences for instance, which only slightly increases the calculation time, as

the evaluation of E (π(S̃Ti
− Ki)) can usually be done very fast.

Summarizing, antithetic sampling and control variates keep the general structure

of the objective function. Consequently, the adjoint technique can be applied by

adding adjoint equations similar to the standard ones, e.g. for the antithetic SDE.

Thus, these variance reduction methods have been neglected for the derivation of

the adjoint equation. Of course, in practical implementations they can be applied,

if possible and helpful.
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The above introduced variance reduction method speeds up the calibration via

decreasing the calculation time for the objective function. The Multi-Layer ap-

proached in the next section aims on the optimization algorithm.

6.2 Multi Layer

Generally, one can expect to choose an initial value for the optimization algorithm

which is far away from the optimum, except from cases of recalibration. Thus, the

approximation error of the model prices with respect to the market prices, i.e. the

objective function value, can be expected to be comparably large at the beginning

of the optimization. Consequently the requirement to evaluate the model prices

with high accuracy is relatively weak at the first iterations and increases during

the optimization process due to the fact that the overall approximation error of

the function evaluation should be dominated by the approximation error of the

model prices to the market prices at the beginning of the optimization process.

Additionally, the total approximation error can be decomposed into three parts,

namely the Monte-Carlo, the discretization and the smoothing error:

as it has already been described in section 6.2. This motivates to start the

optimization with relatively few simulations, a large discretization step size and a

large smoothing parameter, i.e. a coarse layer, and to increase the accuracy during

optimization. The resulting algorithm is shown in algorithm 5.

Algorithm 5 Multi Layer

1: Choose Q layers (Mq|∆tq |ǫq), q = 1, ..., Q
2: Start optimization at layer (M1, ∆t1, ǫ1) and determine point x1

3: for q=2 to Q do
4: Given initial point xq−1, optimize at layer (Mq|∆tq |ǫq)
5: and determine an approximately stationary point xq

6: end for

The effect of this method can be described as follows. The optimization on the

q-th layer starting with xq−1 should lead to a value closer to the optimum than

xq−1, namely xq . Thus the number of iterations on the next finer layer decreases

significantly compared to an optimization starting with xq−1. This effect carries on

from layer to layer and should reduce the overall calibration time.

Note, that the effect of this method is supported by variance reduction tech-

niques, like antithetic sampling or control variates introduced above, as these meth-

ods allow for fewer simulations and thus coarse layers can be chosen even coarser.
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6.3 Storing Random Numbers

Solving the stochastic differential equation in (PM,∆t,ǫ) requires the generation of

random numbers for the brownian increments. As described in section 3.4 the

idea of sample average approximation is to keep this random number sequence

identical during the optimization. Thus, every time the objective function has to be

evaluated, which is at least once per iteration of the optimization algorithm, these

random numbers have to be regenerated. Before explaining the idea of storing the

numbers, a brief introcution will be given into the topic of their generation. The

book of Gentle (Gentle [2003]) gives a detailed overview on this topic.

Reconsider that the solution of the SDE

ym
n+1,ǫ = ym

n,ǫ + aǫ(x , ym
n,ǫ)∆tn + bǫ(x , ym

n,ǫ)∆W m
n

from (PM,∆t,ǫ) requires the simulation of the Brownian increments ∆W m
n for every

time step n = 1, ..., N and every simulation m = 1, ..., M . By definition of the

Brownian motion, these increments are normally distributed with mean 0 and vari-

ance ∆tn. To implement the simulation of independently and N (0, ∆tn) distributed

random numbers, it is made use of the fact, that if a random number X is N (0, 1)

distributed, it holds that X
√

∆tn is N (0, ∆tn) distributed. Thus one may set

∆W m
n = Zm

n ∆tn, n = 1, ..., N m = 1, ..., M

where Zm
n ∼ N (0, 1). Consequently the simulation of N × M independently and

standard normally distributed random numbers is required.

At first sight, the question arises, how to simulate randomness on a computer.

There are some approaches that make use of random events occurring in the real

world. For instance, measuring atomic decay leads to a Bernoulli distribution. John

Walker implemented this at Fourmilab. A file containing a random sequence can be

obtained at http://www.fourmilab.ch/hotbits. A similar approach has been

followed by Toshiba. They developed a PCI board that measures thermal noise in

a semiconductor. This board is called RandomMaster.

However, though the so generated sequences are truly random, the number of

distributions is strongly restricted to the distribution defined by a natural event,

that can be measured with the help of a computer. Additionally, these techniques

seem inapplicable for a daily use. Consequently, practitioners often consider so

called pseudo random number generators. These are deterministic programs, that

calculate a sequence of numbers, with statistical properties, which are quite close to

the true randomness. Examples may be found on the numerical recipes homepage:

http://www.nr.com.

What many generators have in common, is that the numerical effort for the
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evaluation of the numbers for the Brownian increments is a multiple of the effort

necessary to evaluate the rest of the stochastic differential equation. Consequently,

for the calculation of the SDE solution, the random number generation is the main

effort. Combining this with the already mentioned fact, that the random num-

ber sequence is fixed during optimization raises the expectation that storing and

reading the random numbers out of the system memory is significantly faster on

a usual Desktop-PC than regenerating them in each function evaluation. Unfortu-

nately, the system memory of such a usual Desktop-PC is limited. Considering for

instance a SDE evaluation of a two dimensional model with option maturities up

to 5 years, a time step every day and 1,000,000 simulations requires the calculation

of 3,650,000,000 numbers. This amounts to approximately 27 GB in a double pre-

cision framework. As storing and reading on a hard drive is no alternative due to

transfer rate limitations, the idea is to store as many numbers as possible in system

memory and regenerate further numbers if required. The effect of this technique

than depends on the ratio of the available system memory to the size of the random

sequence.

Table 6.1 shows calculation times for one function evaluation, 100 call options

in this case, with regeneration (first row) in comparison to storing and reading

(second row). In this example, 10,000 simulations and a discretization step size of

1st Further
evaluation evaluations

Without Storing 21067276 21067276
With Storing 21067276 8391305

Table 6.1: Comparison of calculation time (µs) for one function evaluation, i.e. 100 call
prices, with and without storing random numbers for M = 100, 000 and ∆t = 5 × 10−3.

∆t = 10−3 have been used. This amounts to 1563MB of required memory. Thus,

as the computer obtains 2GB RAM, all numbers could be stored. In the test case

with storing, the numbers are generated and stored during the first evaluation and

read during the further evaluations. Consequently, the calculation times for the first

evaluation equals in both tests, whereas the further evaluations are 2.5 times faster

in the storing and reading case. This effect is expected to decay, when the ratio of

required to available memory increases. Section 7.3 will show, how this speed up

carries on to the calibration.

6.4 Parallelization

Parallel Computing may be defined as the distribution of a number of jobs on dif-

ferent calculation units. Consider for example the exercise to calculate function

values for two different sets of parameters. As these jobs are clearly independent of
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each other, they can easily be distributed on two different computers. This would

then take half the computation time of the sequential way on one computer, if one

neglects for example the overhead of communication between the two computers.

This simple example makes clear, that the synchronous computation of large jobs,

which only requires few information such that communication overhead is negli-

gible, can be very efficient to save computation time. Especially in times, where

the increase of computing power of Desktop PCs has slowed down, parallelization

becomes more and more important.

However, it is not always as easy to split a job into several subjobs, like in the

simple example above. Usually, one would have to solve the question, which part of

the program can be distributed on several processors. In this thesis, the exercise is

to solve the calibration problem. On the one hand, due to its sequential structure,

the optimization algorithm itself cannot be arranged in several parallel jobs. On the

other hand, the Monte-Carlo method is very well suited for the parallel computation,

as the different simulations are independent of each other such that one has a Single

Instruction Multiple Data (SIMD) structure. Instead of e.g. M simulations on one

computer, one could easily calculate 1
n
M simulations on each of n computers.

As briefly described above, one differs between the parallelization on several

CPUs in several computers and the parallelization on several CPUs in one computer.

The first is usually realized with the Message Passing Interface (MPI) standard. The

competition lies in passing all necessary information from one to the other computer.

This becomes easier, if all CPUs are built in one PC. In this situation, all CPUs share

the same memory. Consequently, this is denoted as shared memory parallelization.

OpenMP is a common library to realize the shared memory parallelization. See for

instance Scott et al. [2005] for a detailed introduction in parallel computing.

As the goal is more a feasibility study than a perfect parallel implementation,

this thesis focuses on OpenMP. All parallel tests in this section are done on one

computer containing 8 AMD Opteron 870 processors with 2.0GHz each and 16GB

RAM. The efficiency of a parallel program can be analyzed by its parallel efficiency :

Definition 6.2. (Parallel Efficiency)

The parallel efficiency is the ratio of calculation time on 1 CPU and the n-th of the

calculation time on n CPUs:

Parallel Efficiency =
Calculation Time on 1 CPU

n × Calculation Time on n CPUs
.

Consequently, if the parallelization would perfectly scale, i.e. synchronous com-

putation on n CPUs leads to a n times faster calculation time, this would result in

a parallel efficiency of 100%.

Test runs (table 6.2) for one function evaluation with 100,000 simulations and

a discretization step size of 5×10−3 show a strong decrease in computation time
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and thus a high parallel efficiency from 98% on 2 CPUs to 88% on 8 CPUs. This

Number Computation Parallel Speed
of CPUs Time (µs) Efficiency Up

1 31069451 — —
2 15834206 98.11% 1.96
3 11362625 91.15% 2.73
4 8502939 91.35% 3.65
5 7203398 86.26% 4.31
6 5771182 89.73% 5.38
7 5036708 88.12% 6.17
8 4376403 88.74% 7.10

Table 6.2: Comparison of calculation time (µs) for one function evaluation, i.e. 100 call
prices, on 1 to 8 CPUs for M = 10, 000 and ∆t = 10−3.

validates the expectation, that the Monte Carlo method is very well suited for

parallel computing. Furthermore, these high parallel efficiencies result in a almost

linear scaling speed up with increasing number of CPUs of up to 7.1 on 8 CPUs.

Section 7.3 deals with the parallel calibration.



Chapter 7

Numerical Results

In this chapter numerical results are presented which underline the performance

and the theoretical coherence of the Monte Carlo calibration method developed

so far. First the chosen market data and additional settings for this chapter are

introduced. Section 7.2 then illustrates for the example of the Stein-Stein model

that the solutions of (PM,∆t,ǫ) converge to those of (P). The last part is then

devoted to a detailed analysis of the speed-ups obtained for the calibration of a

lognormal variance model by applying all techniques and methods introduced in

this thesis.

7.1 Calibration Set Up

For all test cases the financial market model is calibrated to a set of 100 European

call options on the S&P 500 index taken from Andersen and Brotherton-Ratcliffe

[1997/1998]. The data is illustrated in table 7.1 in the form of implied volatilities,

H
H

H
HH

K
T

0.175 0.425 0.695 0.940 1.000 1.500 2.000 3.000 4.000 5.000

0.85 0.190 0.177 0.172 0.171 0.171 0.169 0.169 0.168 0.168 0.168
0.90 0.168 0.155 0.157 0.159 0.159 0.160 0.161 0.161 0.162 0.164
0.95 0.133 0.138 0.144 0.149 0.150 0.151 0.153 0.155 0.157 0.159
1.00 0.113 0.125 0.133 0.137 0.138 0.142 0.145 0.149 0.152 0.154
1.05 0.102 0.109 0.118 0.127 0.128 0.133 0.137 0.143 0.148 0.151
1.10 0.097 0.103 0.104 0.113 0.115 0.124 0.130 0.137 0.143 0.148
1.15 0.120 0.100 0.100 0.106 0.107 0.119 0.126 0.133 0.139 0.144
1.20 0.142 0.114 0.101 0.103 0.103 0.113 0.119 0.128 0.135 0.140
1.30 0.169 0.130 0.108 0.100 0.099 0.107 0.115 0.124 0.130 0.136
1.40 0.200 0.150 0.124 0.110 0.108 0.102 0.111 0.123 0.128 0.132

Table 7.1: Market data: Implied volatilities for S&P 500 index options taken from Andersen
and Brotherton-Ratcliffe [1997/1998].

99
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as explained in section 2.2. Like in Andersen and Brotherton-Ratcliffe the riskfree

interest rate is chosen as r = 0.06, the dividend yield as δ = 0.0262 and it is

assumed that the initial stock price is normalized to S0 = 1. Figure 7.1 illustrates

the volatility surface graphically. The market data shows a so called volatility smile.
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Figure 7.1: Graphical illustration of market data from tabular 7.1.

This means, that the prices of at-the-money options, i.e. options with strikes close

to the actual stock price (spot), is lower than the price of in- or out-of-the-money

calls, which are options with a strike lower or higher than the actual spot.

All test runs are realized on a desktop PC with an Intel Core2 Duo CPU E7300

with 2.66GHz and 2GB system memory (RAM). Note that both cores are only

used in a parallel setting, which will be denoted explicitly. The code has been

implemented in C++ and antithetic sampling (section 6.1.1) has been applied in all

tests. As a first step, the convergence behavior of solutions of (PM,∆t,ǫ) to solutions

of (P) will be analyzed in the next section.

7.2 Numerical Validation of the Convergence

According to Theorem 4.22 every limit point of approximately stationary points of

problem (PM,∆t,ǫ) is a stationary point of the true calibration problem (P) if among

others (A.1)-(A.9) are satisfied. To verify this convergence behavior, the test case

of calibrating the model of Stein and Stein [1991]

dSt = (r − δ)Stdt + vtStdW 1
t , S0 ∈ (0,∞) , 0 ≤ t ≤ T

dvt = κ(θ − vt)dt + σ(ρdW 1
t +

√
1 − ρ2dW 2

t ) , v0 ∈ (0,∞)

to the set of call options listed in Table 7.1 is chosen. This model is particularly

suited for the convergence analysis, as it on the one hand fullfills the Lipschitz and
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growth assumption required by Theorem 4.22. On the other hand it is possible

to derive a closed form solution for the price of call options (see Stein and Stein

[1991]), which in turn allows to compare the outcome of a Monte Carlo calibration

with an accurate closed-form calibration:

Lemma 7.1. Define

A = − κ

σ2
B =

θκ

σ2
C = − x

σ2t
.

The variable x contained in C is a dummy variable for a subsequent integral defini-

tion. Furthermore let

a =
√

(A2 − 2C )

b = −A
a

L = −A − a
(

sinh(aσ2t)+b cosh(aσ2t)
cosh(aσ2t)+b sinh(aσ2t)

)

M = B
(

b sinh(aσ2t)+b2 cosh(aσ2t)+1−σ2

cosh(aσ2t)+b sinh(aσ2t) − 1
)

N = a−A
2a2

(
a2 − AB2 − B2a

)
σ2t + B2(A2−a2)

2a3

(2A+a)+(2A−a)e2aσ
2t

(A+a+(a−A)e2aσ2t)

+ 2AB2(a2−A2)eaσ
2 t

a3(A+a+(a−A)e2aσ2t
− 1

2 ln
(

1
2

(
A
a

+ 1
)

+ 1
2

(
1 − A

a

)
e2aσ2t

)

and

I = e

„

Lv2
0

2 +Mv0+N

«

.

As I depends on x included in C, I is replaced by I (x). For the special case, that

the drift (r − δ) = 0, the option price is given by

C (t, St , vt) = (2π)−1S
− 3

2
t

∞∫

−∞

I

((
x2 +

1

4

)
t

2

)
e ix ln(St )dx .

and

C (t, St , vt) = e−(r−δ)tC (Ste
−(r−δ)t).

Proof. Stein and Stein [1991] pp. 743 ff.

The calibration problem now consists of identifying the unknown parameters x =

(v0,κ, θ,σ, ρ)T . The set X of feasible parameters x is described by suitably chosen

lower and upper bounds on the parameters. The imposed lower and upper bounds

assure the compactness of the feasible set and limit the parameter combinations to

practically relevant values. For the example here the bounds

0.0001 ≤ v0 ≤ 2.0, 0.05 ≤ κ ≤ 2.0, 0.0001 ≤ θ ≤ 2.0,

0.0001 ≤ σ ≤ 4.0, −0.985 ≤ ρ ≤ 0.985,
(7.1)

where chosen, which in summary leads to a nonempty, convex and compact set
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X satisfying Assumption (A.1). Since the parameter x1 = v0 is the start value of

the stochastic variance differential equation, the Stein-Stein dynamics (7.1) at first

sight do not seem to fit into the general model framework (3.1). However, the

simple transformation ṽt := vt/v0 yields the equivalent model dynamics

dSt = (r − δ)Stdt + v0ṽ
+
t StdW 1

t ,

dṽt = κ
(

θ
v0
− ṽ+

t

)
dt + σ

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, ṽ0 = 1,

with start values that are independent of the model parameters x ∈ R
P . Though

it is clearly true, that the applied positivity preserving scheme full truncation (see

section 3.3) is not required due to Lemma 3.1, it is indeed required in the Euler-

Maruyama discretized case. Therefore, full truncation has already been involved in

the continuous Stein-Stein model.

In terms of the general model dynamics (3.1), these stochastic differential equa-

tions can be expressed by setting P = 5, L = 2, x = (v0,κ, θ,σ, ρ)T , y = (y1, y2)
T

and choosing the maps a : X × R
2 → R

2, b : X × R
2 → R

2 × R
2 as

a(x , y) :=

(
(r − δ)y1

κ( θ
v0
− y+

2 )

)

b(x , y) :=

(
v0y

+
2 y1 0

σρ σ
√

1 − ρ2

)
.

Obviously, the maps a and b are not continuously differentiable on X × R
2. To

eliminate the non-differentiabilities introduced by the square root, the spline function

defined in (3.7) is used to obtain the smooth approximations

aǫ(x , y) :=

(
(r − δ)y1

κ( θ
v0
− πǫ(y2))

)

bǫ(x , y) :=

(
v0πǫ(y2)y1 0

σρ σ
√

1 − ρ2

)

of the maps a, b. Hence the smoothness Assumption (A.3) is fulfilled such that one

can make use of derivative-based optimization methods to identify approximately

stationary points.

Within each iteration of the optimization algorithm the Jacobian of the residual

function (5.1) and hence the gradient of the objective is computed via the adjoint

method (Theorem 5.6). For the implementation the Jacobians of aǫ and bǫ∆W are
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necessary:

∂
∂y

aǫ(x , y) =

(
r − δ 0

0 −κπ′
ǫ(y2)

)

∂
∂x

aǫ(x , y) =

(
0 0 0 0 0

−κ θ
v2
0

θ
v0
− πǫ(y2)

κ
v0

0 0

)

∂
∂y

bǫ(x , y)∆W =

(
v0πǫ(y2)∆W 1 v0π

′
ǫ(y2)y1∆W 1

0 0

)

∂
∂x

bǫ(x , y)∆W =

(
πǫ(y2)y1∆W 1 0 0 0 0

0 0 0 σ∆W σ∆̃W

)

where ∆W = ρ∆W 1 +
√

1 − ρ2∆W 2 and ∆̃W = ∆W 1 − ( ρ√
1−ρ2

)∆W 2.

The optimization is started with initial values v0 = 0.16, κ = 0.6, θ = 0.16,

σ = 0.4, ρ = −0.7 and iterate with Algorithm 4 until the first order optimality con-

ditions are satisfied with accuracy 10−6. Table 7.2 shows the calibration results for

four different sets of Monte Carlo samples, discretization step sizes and smoothing

parameters (M , ∆t, ǫ) in comparison to the results based on the solution formula.

The last two rows contain information on the LSQ value based on the Monte Carlo

M=1,000 M=10,000 M=100,000 M=1,000,000 Closed
x ∆t = 5×10−1 ∆t = 5×10−2 ∆t = 5×10−3 ∆t = 5×10−4 Form

ǫ = 3.1×10−2 ǫ = 1×10−2 ǫ = 3.1×10−3 ǫ = 1×10−3

κ 0.79748 1.24537 1.23913 1.24941 1.21877
θ 0.10557 0.11242 0.11660 0.10607 0.10812
σ 0.15374 0.16987 0.17298 0.18026 0.17608
ρ -0.80274 -0.64010 -0.63283 -0.62404 -0.62356
v0 0.11549 0.11030 0.11444 0.11838 0.11892

E 6.211e-05 3.226e-05 3.513e-05 3.081e-05 —
E∗ 5.424e-04 4.327e-05 3.186e-05 3.108e-05 3.068e-05

Table 7.2: Calibration results for the case of the Stein-Stein model with several Monte
Carlo layers and closed form solution.

function evaluations

E :=

I∑

i=1

∣∣C i
M,∆t,ǫ(x) − C i

obs

∣∣2

and the corresponding “true” LSQ value, which results from the evaluation of call

prices with the closed form solution on the basis of the calibrated Monte Carlo

parameters:

E∗ :=

I∑

i=1

∣∣C i (x) − C i
obs

∣∣2 .

Table 7.2 clearly illustrates the convergence of the solutions of problem (PM,∆t,ǫ) as
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one increases the number of Monte Carlo simulations M and reduces the discretiza-

tion step size ∆t as well as the smoothing parameter ǫ. To be more precise, the

computed stationary points of (PM,∆t,ǫ) converge to a stationary point of the true

optimization problem (P) computed via a benchmark calibration based on closed

form solutions (right column in table 7.2). This is supported by figure 7.2, which

shows E for varying values of the mean reversion speed and level, i.e. κ and θ around

the optimal value derived by a closed form based calibration. The remaining pa-
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Figure 7.2: Monte Carlo based LSQ values (solid surface) for varying values of mean
reversion speed and level around the optimum derived by a closed form calibration in
comparison to the LSQ values based on the closed form solution (meshed surface).

rameters are fixed at the closed form optimum. Obviously, the Monte Carlo based

LSQ values (solid surface) converges to the closed form LSQs (meshed surface).

Consequently, this also numerically confirms the theoretical result of Theorem 4.22.

Furthermore, the least squares error as well as the computed stationary point

for the case M = 10, 000, ∆t = 5×10−2, ǫ = 1×10−2 seems to already lead to a

good approximation. However, a closer look reveals, that the “true” LSQ value E∗

becomes slightly worse when increasing the Monte Carlo accuracy to M = 100, 000,

∆t = 5×10−3 and ǫ = 3.1×10−3, such that the results in the second row are better

than it can be generally expected. For practical applications, the approximation

in the third row certainly suffices. If one increases the accuracy even further to

M = 1, 000, 000, ∆t = 5×10−4, ǫ = 1×10−3, the results listed in Table 7.2 (right)
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show virtually no difference to the optimal values obtained via the calibration based

on closed form solutions. Moreover these conclusions also hold for the prices of

exotic options. Table 7.3 shows prices for a 5 years up-and-out call with spot

S0 = 1, strike K = 0.9 and barrier U = 1.2. Just as for the calibrated parameters,

the barrier price for M=100,000, ∆t = 1×10−3 and ǫ = 3.1×10−3 is close to the

exact price.

M=1,000 M=10,000 M=100,000 M=1,000,000 Closed
∆t = 5×10−1 ∆t = 5×10−2 ∆t = 5×10−3 ∆t = 5×10−4 Form
ǫ = 3.1×10−2 ǫ = 1×10−2 ǫ = 3.1×10−3 ǫ = 1×10−3

1.5381e-02 1.3314e-02 1.2720e-02 1.3378e-02 1.3163e-02

Table 7.3: Barrier Prices for a 5 years up-and-out call with spot S0 = 1, strike K = 0.9
and barrier U = 1.2.

To illustrate the order of the above shown convergence derived in section 4.2,

table 7.4 displays the error coefficients |fk(xk ) − f (x∗)|, |fk (xk )−f (x∗)|
1/

√
M

as well as

|fk (xk )−f (x∗)|
1/M . Here fk (xk ) is the optimal value obtained by solving (PM,∆t,ǫ) with Mk ,

Layer |fk (xk) − f (x∗)| |fk (xk )−f (x∗)|
1/

√
M

|fk (xk )−f (x∗)|
1/M

M=1,000
∆t = 5×10−1 3.1430e − 05 3.1430e − 04 3.1430e − 03
ǫ = 3.1×10−2

M=10,000
∆t = 5×10−2 1.5800e − 06 4.9964e − 05 1.5800e − 03
ǫ = 1×10−2

M=100,000
∆t = 5×10−3 4.4500e − 06 4.4500e − 04 4.4500e − 02
ǫ = 3.1×10−3

M=1,000,000
∆t = 5×10−4 1.3000e − 07 1.3000e − 04 1.3000e − 01
ǫ = 1×10−3

Table 7.4: Error analysis for the results in table 7.2.

∆tk and ǫk . Note that ∆t and ǫ have been chosen relative to M as described at the

end of section 4.2, namely ∆tk = 500/Mk and ǫk = 1/
√

Mk . Thus O(1/
√

M) =

O(∆t
1
2 ) = O(ǫ). It can be observed, that |fk (xk ) − f (x∗)| converges to zero,

|fk (xk )−f (x∗)|
1/M converges to infinity and |fk (xk )−f (x∗)|

1/
√

M
converges to a constant which

determines the theoretical convergence order result of O(1/
√

M + ∆t
1
2 + ǫ).

Having confirmed the theoretical viability of the Monte Carlo calibration method

for the benchmark case of the Stein-Stein model as well as the convergence behavior,

the following section contains results to analyze the calibration speed.
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7.3 Analysis of the Calibration Speed

One of the main advantages of a calibration via Monte Carlo is its flexibility with

respect to changes of the model dynamics (3.1). Usually a small change of the

Euler discretization code suffices to take the altered dynamics into account. This is

also the case for the next test example, a stochastic volatility model with lognormal

distribution of the variance

dSt = (r − δ)Stdt +
√

v+
t StdW 1

t , S0 > 0

dvt = κ(θ − v+
t )dt + σv+

t

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, v0 > 0.

(7.2)

As in the Stein-Stein model (7.1) the lognormal variance model parameters

are given in the form of the initial variance v0, the mean reversion speed κ, the

mean reversion level θ, the volatility of variance σ and the correlation ρ. However,

although the dynamics of (7.2) and the Stein-Stein model (7.1) or the Heston

model (3.2) look very similar, to the knowledge of the author there does not exist a

closed-form solution for the price of a European call option in model (7.2). Hence

alternative calibration methods like the one proposed in this thesis are necessary.

Again the lower and upper bounds (7.1) have been chosen. To clearly illustrate

the achieved speed up of the applied techniques, e.g. the adjoint equation, the

parameters are chosen to be time constant in a first example and time dependent

on 10 subintervals in a second test case (see also (5.13) on page 80). Consequently,

the L2-penalty term

B∑

b=2

(κb − κb−1)
2 +

B∑

b=2

(θb − θb−1)
2 +

B∑

b=2

(σb − σb−1)
2 +

B∑

b=2

(ρb − ρb−1)
2,

multiplied by a suitable regularization parameter µ > 0 has been added to the objec-

tive function to reduce the ill-conditioning resulting from the increasing number of

parameters with increasing number of subintervals. Table 7.5 shows the calibration

times for time constant parameters (B=1) and time dependent parameters on B=10

subintervals. However, as calibration times of several hours or even days are unac-

M=1,000 M=10,000 M=100,000 M=1,000,000
Method ∆t = 5×10−1 ∆t = 5×10−2 ∆t = 5×10−3 ∆t = 5×10−4

ǫ = 3.1×10−2 ǫ = 1×10−2 ǫ = 3.1×10−3 ǫ = 1×10−3

Time Constant: B=1

Plain MC. 00:00:01 00:01:02 01:30:10 125:41:14

Time Dependent: B=10

Plain MC. 00:01:38 00:11:17 05:31:33 245:51:37

Table 7.5: Calibration times (hh:mm:ss) for several Monte Carlo layers with time constant
and time dependent parameters on B=10 subintervals.
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ceptable for practical applications, these results show, that additional techniques to

speed up the calibration are strongly required. As a first step, it will be shown, how

the methods introduced in chapter 5 and chapter 6 effect the calibration run. The

concrete speed up will be displayed in the latter of this section.

Section 6.3 has introduced the idea of storing the random numbers created to

simulate the Brownian increments in system memory instead of regenerating them

every time they are needed. Table 7.6 shows a calibration run with regenerated

random numbers every time they are required on the left side and with stored

random numbers on the right side. It can be observed, that the iterations run is

Iter. ‖∇xL(x)‖2 ‖R(x)‖2
2 Iter. ‖∇xL(x)‖2 ‖R(x)‖2

2

0 3.9390e + 00 1.1704e + 00 0 3.9390e + 00 1.1704e + 00
1 3.6096e + 00 8.4981e − 01 1 3.6096e + 00 8.4981e − 01
2 3.3842e + 00 6.7835e − 01 2 3.3842e + 00 6.7835e − 01
3 2.9785e + 00 5.4147e − 01 3 2.9785e + 00 5.4147e − 01
4 2.5218e + 00 4.1864e − 01 4 2.5218e + 00 4.1864e − 01
5 2.0573e + 00 3.1395e − 01 5 2.0573e + 00 3.1395e − 01
...

...
...

...
...

...
29 1.1177e − 05 3.3574e − 05 29 1.1177e − 05 3.3574e − 05
30 5.6682e − 06 3.3574e − 05 30 5.6682e − 06 3.3574e − 05
31 4.2508e − 06 3.3574e − 05 31 4.2508e − 06 3.3574e − 05
32 2.1867e − 06 3.3574e − 05 32 2.1867e − 06 3.3574e − 05
33 1.6352e − 06 3.3574e − 05 33 1.6352e − 06 3.3574e − 05
34 8.4909e − 07 3.3574e − 05 34 8.4909e − 07 3.3574e − 05

Table 7.6: Iterations tabular for calibration with stored random numbers (right side) and
with regenerated random numbers (left side) with M=10, 000, ∆t = 5×10−2 and ǫ =
1×10−2 .

identical, as it has been expected.

Certainly, this behavior cannot be observed for a calibration with adjoint equation

in comparison to a finite difference based optimization, as shown in tabular 7.7.

Nevertheless the iterations tabulars show virtually no difference. Both optimizations

converge up to a LSQ value of 3.44×10−5 and a 2-norm of the Lagrangian of

2.37×10−6.

Furthermore the resulting solutions, displayed in table 7.8, are identical. Thus,

both methods lead to the same solution in the same number of iterations, as it

would have been desired.

Table 7.9 illustrates the iterations tabular of a straight forward calibration with

M=100, 000, ∆t = 5×10−3 and ǫ = 3.1×10−3 on the left side taking 40 iterations

to find a solution. The right side of this table indeed shows the iterations tabular of

a multi layer calibration on 3 layers (M |∆t|ǫ), namely (1, 000|5×10−2|3.1×10−3),

(10, 000|5×10−2|3.1×10−3) and (100, 000|5×10−2|3.1×10−3). It can be observed,

that the optimization on the coarser layers lead to a better starting value for the
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Iter. ‖∇xL(x)‖2 ‖R(x)‖2
2 Iter. ‖∇xL(x)‖2 ‖R(x)‖2

2

0 4.0916e + 00 1.2075e + 00 0 4.0916e + 00 1.2075e + 00
1 3.7016e + 00 8.4380e − 01 1 3.7016e + 00 8.4380e − 01
2 3.4594e + 00 6.9289e − 01 2 3.4594e + 00 6.9289e − 01
3 3.0594e + 00 5.5514e − 01 3 3.0594e + 00 5.5514e − 01
4 2.6214e + 00 4.3286e − 01 4 2.6214e + 00 4.3286e − 01
5 2.1781e + 00 3.2719e − 01 5 2.1781e + 00 3.2719e − 01
...

...
...

...
...

...
35 8.3016e − 02 1.8364e − 04 35 8.3016e − 02 1.8364e − 04
36 2.0367e − 02 4.2407e − 05 36 2.0367e − 02 4.2407e − 05
37 2.1715e − 03 3.4529e − 05 37 2.1716e − 03 3.4529e − 05
38 2.0160e − 04 3.4427e − 05 38 2.0165e − 04 3.4427e − 05
39 6.7396e − 06 3.4426e − 05 39 6.7406e − 06 3.4426e − 05
40 2.3719e − 07 3.4426e − 05 40 2.3695e − 07 3.4426e − 05

Table 7.7: Iterations tabular for calibration with gradient evaluation via finite differences
(left side) compared to adjoint equation (right side) with M=100, 000, ∆t = 5×10−3 and
ǫ = 3.1×10−3 .

x Fin. Diff. Adjoint

κ 1.71931 1.71931
θ 0.03253 0.03253
σ 3.04830 3.04828
ρ -0.72567 -0.72567
v0 0.01288 0.01288

Table 7.8: Calibration results from a finite differences based optimization in comparison
to an adjoint based optimization with M=100, 000, ∆t = 5×10−3 and ǫ = 3.1×10−3 .

finer layers such that finally only 5 iterations on the finest layer are required instead

of 40 as in the single layer example. This leads to shorter calibration times, as it

will be shown subsequently.

Indeed, table 7.10 now shows calculation times, for combinations of techniques

introduced in chapter 5 and chapter 6 measured in hours, minutes and seconds

(hh:mm:ss). Initially, the idea of storing random numbers instead of regenerating

them has been applied. In section 6.3, where it has been introduced, the speed

up per function evaluation was 2.5 if all numbers fit into memory (table 6.1 on

page 96). Certainly, this speed up is only a limit of the possible speed up realized

during calibration as the numbers are generated and stored during the first function

evaluation. Thus, the more iterations the optimization takes, the closer will the

speed up be to 2.5. In the concrete test example the calibration speed up lies

between 1.7 and 2.0. For example a time constant calibration with M = 100, 000,

∆t = 5×10−3 and ǫ = 3.1×10−3 could be reduced from 01:30 hours to 50 minutes.

Considering the results with an additional application of the adjoint equation one

can observe that in the time constant case the calculation time increases slightly

which is contrary to intuition. This is due to the fact, that storing the random
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Iter. ‖∇xL(x)‖2 ‖R(x)‖2
2 Iter. ‖∇xL(x)‖2 ‖R(x)‖2

2

0 4.0916e + 00 1.2075e + 00 M = 1, 000 ∆t = 5×10−3 ǫ = 3.1×10−3

1 3.7016e + 00 8.4380e − 01 0 2.8285e + 00 1.8954e + 00
2 3.4593e + 00 6.9290e − 01 1 2.3471e + 00 1.0302e + 00
3 3.0593e + 00 5.5515e − 01 2 1.8970e + 00 5.7040e − 01

4 2.6213e + 00 4.3286e − 01
...

...
...

5 2.1780e + 00 3.2719e − 01 23 1.2012e − 02 1.6107e − 04
6 1.7687e + 00 2.3730e − 01 24 5.6549e − 04 1.5776e − 04
7 1.4013e + 00 1.6212e − 01 25 8.9727e − 06 1.5775e − 04
8 1.0772e + 00 1.0125e − 01 M = 10, 000 ∆t = 5×10−3 ǫ = 3.1×10−3

9 7.9669e − 01 5.3958e − 02 0 1.9121e − 02 2.0904e − 04
10 2.9423e − 01 6.0677e − 03 1 2.3572e − 02 5.3147e − 05
11 2.3452e − 02 6.8155e − 04 2 2.1980e − 02 4.7663e − 05
...

...
...

...
...

...
33 7.5276e − 02 2.5595e − 04 7 9.2068e − 06 2.9952e − 05
34 7.8941e − 02 2.2516e − 04 8 2.3848e − 06 2.9951e − 05
35 8.2992e − 02 1.8358e − 04 9 4.4286e − 07 2.9951e − 05
36 2.0354e − 02 4.2400e − 05 M = 100, 000 ∆t = 5×10−3 ǫ = 3.1×10−3

37 2.1726e − 03 3.4529e − 05 0 5.6441e − 02 1.0264e − 04
38 2.0192e − 04 3.4427e − 05 1 2.1337e − 02 4.4687e − 05
39 6.8887e − 06 3.4426e − 05 2 1.0369e − 03 3.4462e − 05

Table 7.9: Iterations tabular for calibration on 1 Monte Carlo layer with M=100, 000,
5×10−3 and ǫ = 3.1×10−3 (left side) and on 3 layers (M|∆t|ǫ), namely (1, 000|5×10−2 |3.1×
10−3), (10, 000|5×10−2 |3.1×10−3) and (100, 000|5×10−2 |3.1×10−3) (right side).

numbers is more effective in the finite difference than in the adjoint case as it has

already been described after Remark 5.10. This is also reflected by the gradient

evaluation time with stored random numbers, which is illustrated in table 7.11. The

finite difference method becomes relatively faster in comparison to the results in

table 5.2 if the random numbers are stored. Nevertheless, the full speed up of the

adjoint equation becomes obvious with an increasing number of parameters through

time dependency on e.g. B=10 subintervals. In this example, the adjoint calculation

is approximately 4 times faster, which matches the factor in table 7.11.

As it could have been expected from table 7.9, the multi layer method signifi-

cantly accelerates the calibration. Considering for instance the time dependent case

with M=100,000, ∆t = 5×10−3 and ǫ = 3.1×10−3, the calibration time has been

reduced from 1:34 hours to 12 minutes.

As a final step, the parallel computation on 2 CPUs further speeds up the

optimization process. The concrete acceleration factor varies from test to test, as

the parallelization changes the calibration run. Nevertheless, for instance the test

calibration with M=100,000, ∆t = 5×10−3 and ǫ = 3.1×10−3 could be reduced

from 12 minutes to 6 in the time dependent case or from 1 minute to 5 seconds in

the time constant case.

So far, all speed ups can be achieved on a standard Dual Core Desktop PC.
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M=1,000 M=10,000 M=100,000 M=1,000,000
Methods ∆t = 5×10−1 ∆t = 5×10−2 ∆t = 5×10−3 ∆t = 5×10−4

ǫ = 3.1×10−2 ǫ = 1×10−2 ǫ = 3.1×10−3 ǫ = 1×10−3

Time Constant: B=1

Plain MC 00:00:01 00:01:02 01:30:10 125:41:14
+Storing 00:00:01 00:00:37 00:49:25 125:15:25
+Adjoint 00:00:01 00:00:54 01:34:48 121:40:21
+Multi Layer 00:00:01 00:00:25 00:12:19 10:56:12
+2CPUs 00:00:01 00:00:05 00:06:07 7:38:46

Time Dependent: B=10

Plain MC 00:01:38 00:11:17 05:31:33 245:51:37
+Storing 00:01:21 00:06:42 02:28:30 245:17:12
+Adjoint 00:00:26 00:01:41 00:49:44 81:38:25
+Multi Layer 00:00:08 00:00:56 00:34:55 18:20:15
+2CPUs 00:00:01 00:00:48 00:10:36 14:17:59

Table 7.10: Calculation Times for several Monte Carlo grids with time constant and time
dependent parameters on B=10 subintervals and combinations of different methods to
speed up the calibration.

B P Fin. Diff. Adjoint Ratio

1 5 7 9 0.8
2 9 13 10 1.3
3 13 18 10 1.8
4 17 23 11 2.1
5 21 28 12 2.3
6 25 33 12 2.8
7 29 39 12 3.2
8 33 44 13 3.4
9 37 49 13 3.8
10 41 54 14 3.9

Table 7.11: Computing time in seconds for one gradient evaluation via adjoint equation
compared to the finite differences scheme for B subintervals or P parameters with M =
100, 000, ∆t = 5 × 10−2 and ǫ = 3.1 × 10−3 and stored random numbers.

Summarizing a time constant calibration with 100,000 simulations could be accel-

erated from 1.5 hours to 6 minutes or from 5.5 hours to 10 minutes in the time

dependent case.



Chapter 8

Extension to Jump Diffusion

Indeed it has been shown so far that adjoints significantly speedup the Monte Carlo

calibration of financial market models in a diffusion setting (3.1). However, the

method presented in chapter 5 is not immediately applicable if one leaves the model

class of diffusion processes and allows for the possibility of jumps. In this setting

stock price paths and hence the payoff of the standard options Ci may be not

differentiable with respect to parameters like e.g. jump probabilities. On first sight

this seems to prevent the application of adjoints in the presence of jump diffusions.

However, as it will be seen in the remainder of this section, a suitable decomposition

of the sensitivity calculation into the diffusion and jump part may provide the desired

smoothness and consequently allows a significant adjoint-based calibration speedup.

8.1 The Bates Model

Without loss of generality the analysis in the following will focus on the Bates

model (Bates [1996]). This model has been chosen since it admits a semi-closed

form solution for plain vanilla options — just like the Stein-Stein model — which

serves as a good benchmark for the sensitivities. Within the Bates model the stock

price (St)t under the risk-neutral measure is driven by the stochastic differential

equations

dSt = (r − δ − λJβ)Stdt + φ
√

vtStdW 1
t + Std

Dt∑

d=1

Vj (8.1)

dvt = κ(θ − vt)dt + σ
√

vt(ρdW 1
t +

√
1 − ρ2dW 2

t ) (8.2)

where in comparison to the models introduced in chapter 7 φ serves as a multiplier

that absorbs the initial condition of the variance process. In addition the model

allows for the random number of Dt independent jumps Vj up to time t with

111
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lognormal distribution ln(1+Vj) ∼ N(µJ ,σ
2
J), where (Dt)t denotes an independent

Poisson process with intensity λJ and β = exp(µJ + σ2
J/2) − 1 is a drift correction

factor.

The calibration problem is now composed of choosing the model parameters

x = (κ, θ,σ, ρ,φ,λJ ,µJ ,σJ) (8.3)

in a suitable set X ⊂ R
8 such that

min
x∈X

f (x) :=
I∑

i=1

(
C i (x) − C i

obs

)2

where C i(x) = e−rTi EQ (max(STi
(x) − Ki , 0))

s.t. dSt = (r − δ − λJβ)Stdt + φ
√

vtStdW 1
t + Std

∑Dt

d=1 Vj

dvt = κ(θ − vt)dt + σ
√

vt(ρdW 1
t +

√
1 − ρ2dW 2

t ).

A combination of Monte Carlo, EMS and smoothing nondifferentiabilities together

with a separation of the jump and diffusion with the help of Ito’s formula (Theorem

2.9) part leads to the approximation

min
x∈X

fM,∆t,ǫ(x) :=
I∑

i=1

(
C i

M,∆t,ǫ(x) − C i
obs

)2

where C i
M,∆t,ǫ(x) := e−rTi 1

M

M∑
m=1

(
πǫ(s

m
Ni ,ǫ

(x) − Ki)
)

s.t. sm
Ni ,ǫ

= um
Ni ,ǫ

e
P

Dm
Ni

d=1 µJ+σJZ
m
d , Dm

Ni+1
= Dm

Ni
+ F−1

i (Um
i )

um
n+1,ǫ = um

n,ǫ + (r − δ − λJβ)um
n,ǫ∆tn + φ

√
πǫ(vm

n,ǫ)u
m
n,ǫ∆W 1,m

n

vm
n+1,ǫ = vm

n,ǫ + κ(θ − πǫ(v
m
n,ǫ))∆tn

+σ
√
πǫ(vm

n,ǫ)
(
ρ∆W 1,m

n +
√

1 − ρ2∆W 2,m
n

)
.

Here, sm
Ni

denotes the approximation of STi
in the m-th path, which is computed

in two steps. First the pure diffusion process denoted by um
n , vm

n is simulated on

a small step time grid t0 = τ0 < ... < τN = T . Secondly, the independent jump

term is added for each of the standard option maturities Ti based on a large step

simulation of the Poisson process (Dt)t on the time intervals (TNi
, TNi+1). This large

step simulation can be obtained by drawing independent uniform random numbers

Um
i and plugging them into the inverse of the distribution function Fi (·) associated

with the probability law

Q(DTi+1 − DTi
= d) =

(λJ (Ti+1 − Ti))
d

d !
e−λJ(Ti+1−Ti ).

The relative size of each of the Dm
Ni

jumps is determined as eµJ+σJZ
m
d with indepen-
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dent N(0, 1)-distributed deviates Zm
d .

Unfortunately the cumulative distribution function Fi is not continuous and thus

not differentiable. This makes a calibration of the model with efficient algorithms

very hard if not impossible. However, to avoid these problems one can make use of

a reformulation of the call price functional based on the independence of the jump

and diffusion part in the following way:

C i (x) = e−rTi EQ

(∑∞

d=0
max(STi

(x) − Ki , 0)1{DTi
=d}
)

= e−rTi

∑∞

d=0
Q(DTi

= d)EQ (max(STi
(x) − Ki ), 0|DTi

= d) .

Since the probabilities Q(DTi
= d) quickly converge to zero, the first few summands

of this series approximate their limit very well. Exploiting this idea in combination

with a smoothing of the maximum function leads to the following model reformu-

lation:

C i
M,∆t,ǫ(x) = e−rTi

d∑

d=0

Q(DTi
= d)

1

M

M∑

m=1

πǫ(s
m,d
Ni ,ǫ

(x) − Ki)

sm,d
Ni ,ǫ

= um
Ni ,ǫe

Pd
ν=1 µJ+σJZ

m
ν

um
n+1,ǫ = um

n,ǫ + (r − δ − λJβ)um
n,ǫ∆tn + φ

√
πǫ(vm

n,ǫ)u
m
n,ǫ∆W 1,m

n

vm
n+1,ǫ = vm

n,ǫ + κ(θ − πǫ(v
m
n,ǫ))∆tn

+ σ
√
πǫ(vm

n,ǫ)
(
ρ∆W 1,m

n +
√

1 − ρ2∆W 2,m
n

)
.

Since the probabilities Q(DTi
= d) are smooth with respect to the jump intensity,

one can conclude that this Monte Carlo estimator is continuously differentiable with

respect to all model parameters xi defined in (8.3). This allows to apply for instance

the line-search SQP method from algorithm 4 for the solution of the calibration

problem.

8.2 Adjoint Equation

Furthermore, the gradient of the objective function can efficiently be computed with

the help of the adjoint method introduced in Theorem 5.6.

Theorem 8.1. Let R : R
P → R

I be the vector valued function

R(x) =


e−rTi

d∑

d=0

Q(DTi
= d)

1

M

M∑

m=1

πǫ(s
m,d
Ni

(x) − Ki ) − C i
obs




I

i=1
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with

sm,d
Ni ,ǫ

= um
Ni ,ǫe

Pd
ν=1 µJ+σJZ

m
ν

um
n+1,ǫ = um

n,ǫ + (r − δ − λJβ)um
n,ǫ∆tn + φ

√
πǫ(vm

n,ǫ)u
m
n,ǫ∆W 1,m

n

vm
n+1,ǫ = vm

n,ǫ + κ(θ − πǫ(v
m
n,ǫ))∆tn

+ σ
√
πǫ(vm

n,ǫ)
(
ρ∆W 1,m

n +
√

1 − ρ2∆W 2,m
n

)
.

Setting the vector and matrix-valued maps aǫ : X × R
2 → R

2, bǫ : X × R
2 →

R
2 × R

2,

aǫ(x , y) :=

(
(r − δ − λJβ)y1

κ(θ − πǫ(y2))

)

bǫ(x , y) :=

(
φ
√
πǫ(y2)y1 0

σ
√
πǫ(y2)ρ σ

√
πǫ(y2)(1 − ρ2)

)
,

the derivative of Ri can be computed via

R ′
i (x) =

e−rTi

M

M∑

m=1

Ni−1∑

n=0

(λm,i
n+1)

T

[
∂

∂x
aǫ(x , ym

n )∆tn +
∂

∂x
(bǫ(x , ym

n )∆W m
n )

]

where λm,i
n ∈ R

L results from the adjoint equation

λm,i
n =

[
I + ∂

∂y
aǫ(x , ym

n )∆tn + ∂
∂y

(bǫ(x , ym
n )∆W m

n )
]T
λm,i

n+1,

n = Ni − 1, Ni − 2, ..., 1, m = 1, ..., M ,

λm,i
Ni

=
[∑d

d=0 Q(DTi
= d)

(
π′

ǫ(s
m
Ni

(x) − K )
)
, 0, ..., 0

]
∈ R

L.

(8.4)

Proof. Reconsidering that ξm
Ni

is the first component of ηm
Ni

, the final condition in

(8.4) allows in analogy to the proof of Theorem 5.6 for

R ′
i (x)∆x = e−rTi




d∑

d=0

Q(DTi
= d)

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ(x) − Ki)

)



′

= e−rTi

d∑

d=0

Q ′(DTi
= d)

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ(x) − Ki )

)

+ e−rTi

d∑

d=0

Q(DTi
= d)

1

M

M∑

m=1

(
π′

ǫ(s
m
Ni ,ǫ(x) − Ki)

)
ξm
Ni
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= e−rTi

d∑

d=0

Q ′(DTi
= d)

1

M

M∑

m=1

(
πǫ(s

m
Ni ,ǫ(x) − Ki)

)

+ e−rTi
1

M

M∑

m=1

(λm,i
Ni

)Tηm
Ni

which proves the statement.

8.3 Numerical Results

This section analyzes the speedup that can be achieved for a gradient evaluation

based on the adjoint equation in Theorem 8.1. Just like in section 7.3, a variant of

the above introduced Bates model (8.1) with lognormal distribution of the variance

and piecewise constant mean reversion speed κt , mean reversion level θt , volatility

of variance σt and correlation ρt (see also (5.13) on page 80) is introduced, to

illustrate the flexibility of the framework.

dSt = (r − δ − λJβ)Stdt + φ
√

vtStdW 1
t + Std

∑Dt

d=1
Xj

dvt = κt(θt − vt)dt + σt

√
vt

(
ρtdW 1

t +
√

1 − ρ2
t dW 2

t

)
.

Again, though the model dynamics have only been slightly changed to the log-

normal distribution of the variance, this now prevents the derivation of a semi-closed

form solution for the price of standard calls, such that approximation methods like

the one introduced in this thesis are required.

B P Fin. Diff. Adjoint Ratio

1 8 25 9 2.8
2 12 43 9 4.8
3 16 60 10 6.0
4 20 77 11 7.0
5 24 94 12 7.8
6 28 111 13 8.5
7 32 128 13 9.8
8 36 146 14 10.4
9 40 163 15 10.9
10 44 180 16 11.2

Table 8.1: Computing time in seconds for
one gradient evaluation via adjoint equation
compared to the finite differences scheme for
B subintervals or P parameters with M =
100, 000, ∆t = 5×10−2 and ǫ = 3.1×10−3 .
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Figure 8.1: Computing time in seconds for
one gradient evaluation via adjoint equa-
tion (blue line) compared to the finite differ-
ences scheme (red line) with M = 100, 000,
∆t = 10−3 and ǫ = 10−3.

Table 8.1 and figure 8.1 illustrate the computation time for a gradient evaluation
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via adjoints compared to a simple finite difference approximation for the parameter

vector defined in (8.3)

As expected, the computation time for the gradient evaluation via finite differ-

ences grows linearly in the number of model parameters. Thus each iteration of an

optimization algorithm solving the calibration problem will become more and more

costly as one increases the number of model parameters. In contrast the adjoint

framework for the jump diffusion process leads to stable computation times that are

nearly independent of the number of model parameters.



Chapter 9

Conclusions

9.1 Summary

A calibration problem for financial market models based on Monte Carlo simula-

tion and discretization of the underlying stochastic differential equation with an

Euler-Maruyama scheme has been introduced. As it is desirable to benefit from

fast deterministic optimization methods to solve the arising optimization problem,

possible non-differentiabilities have been smoothed out with a twice continuously

differentiable polynomial. On the basis of the so derived calibration problem, this

work was essentially concerned about two issues.

First, it could have been shown, that a sequence of computed stationary points

of the sample average approximation problem, derived by increasing the number of

Monte Carlo simulations and reducing the discretization step size and the smoothing

parameter, converges to a solution of the true problem in the sense of a first order

critical point. To show this, initially a pointwise convergence of the two objective’s

has been shown via a decomposition of the overall approximation error into the

Monte Carlo, the discretization and the smoothing error. This result, together with

an epicontinuity proof allowed to show a uniform convergence of the approximating

and the true objective functions on the feasible set. As a last step, a similar result on

the objective’s gradients facilitates the optimality proof. In particular, this proof was

based on assumptions like the Lipschitz continuity of the SDE coefficient functions.

These theoretical results haven been determined by numerical results in chapter 7

for the benchmark example of the 2 dimensional Stein Stein model. Additionally, the

theoretically proven convergence order of O(1/
√

M +∆t
1
2 + ǫ) has been confirmed

in numerical tests.

The second main task of this work was to speed up the Monte Carlo calibration

as computation times of several hours or even days occurring without any special

effort are not feasible for practical applications. It turns out that a calculation of
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the objective’s gradient via an adjoint equation provides a noticeable reduction of

the computational effort in comparison to the frequently chosen finite difference

method. In particular, this method is independent on an increasing number of

parameters, when they are chosen to be piecewise constant on several intervals. In

comparison to this, the complexity of a finite difference approximation scale linear

in the number of parameters. Thus, the derived speed up scaled at an almost linear

rate. Furthermore, this adjoint method yields the exact gradient and thus stabilizes

the calibration process. Moreover, several other techniques have been introduced

throughout this thesis, that enhance the efficiency of the optimization algorithm.

A Multi Layer technique, i.e. starting on a coarse Monte Carlo layer and increasing

accuracy during optimization, was very effective in the case, that the chosen initial

value is not already close to the solution. Storing instead of regenerating the random

numbers required for the Brownian increments in the SDE led to a further speed

up. Finally, the parallelization of the option price evaluation proved itself to be very

well suited for a parallelization. In particular a combination of this techniques yields

a reduction from e.g. 1.5 hours to 6 minutes in the time constant parameters case

with M = 100, 000, ∆t = 5×10−3 and ǫ = 3.1×10−3 or from 5.5 hours to 10

minutes for the same setting but with parameters chosen to be time dependent on

10 intervals, which is a significant reduction of the computation time, especially as

this speed up could have been achieved on a standard Desktop PC.

9.2 Future Work

The tendency for higher dimensional and more complicated models already described

in the introduction leads to stronger requirements on the chosen methods to ap-

proximate the corresponding solution. The presented thesis is one step on this road,

but nevertheless additional effort reduction techniques are desirable.

Firstly, the fact that storing the random numbers leads to a speed up of the

Monte Carlo simulation motivates to concentrate for instance on this part of the

option price evaluation, namely the random number generation. A frequently applied

method is the so called Quasi Monte Carlo where the idea is to replace the pseudo

random number generator by an alternative one, which allows for fewer simulations

to achieve a certain accuracy. This idea is for instance introduced in Packham and

Schmidt [2009] or Glasserman [2003].

Another technique available in the literature, that turned out to be very efficient

for option pricing, is the Multi Level Monte Carlo introduced in Giles [2006]. This

method calculates the expected value of the options future payoff in a telescope sum

on several levels, similar to the layers introduced in section 6.2, such that paths

with large errors eliminate each other. Additionally the number of Monte Carlo

simulations is calculated in dependence of the estimators variance. An immediate
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implementation of this method in the presented calibration algorithm could lead

to instabilities, as changing parameters would lead to changing levels and number

of Monte Carlo simulations which means changing the objective function in every

iteration. However, keeping the levels identical during several sequenced iterations,

maybe in combination with a Multi Layer approach, should lead to a significant

reduction of the calibration time.

Finally, the parallelization of the Monte Carlo option price evaluation was very

effective. Thus, increasing the number of processors raises the expectation of a

strong decrease in calibration time. In this manner, the parallelization on graphics

cards (GPUs) is a hot topic. First tests showed an incredible speed up but also led to

problems with single precision while calculating the finite difference approximation

of the gradient. This is due to the fact that most of the GPUs are not capable for

double precision. Consequently, the implementation of an adjoint equation could

prove itself to be helpful.
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S. Mikhailov and U. Nögel. Heston’s stochastic volatility model implementation,

calibration and some extensions. In P. Wilmott, editor, The Best of Wilmott

1: Incorporating the Quantitative Finance Review, pages 401–412. Wilmott, P.,

2004.

V. Mikulevicius and E. Platen. Rate of convergence of the euler approximation for

diffusion processes. Mathematische Nachrichten, 151:233–239, 1991.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations

Research. Springer, 1999.

N. Packham and W. Schmidt. Latin hypercube sampling with dependence and

applications in finance. Journal of Computational Finance, 2009. (accepted).

S.M. Robinson. Analysis of sample-path optimization. Mathematics of Operations

Research, 21(3):513–528, August 1996.

R.Y. Rubinstein and A. Shapiro. Discrete Event Systems. John Wiley, 1993.

E.W. Sachs and M. Schu. Reduced order models (pod) for calibration problems

in finance. In K. Kunisch, G. Of, and O. Steinbach, editors, Proceedings of

ENUMATH 2007, the 7th European Conference on Numerical Mathematics and

Advanced Applications, Graz, Austria, September 2007, Numerical Mathematics

and Advanced Applications, pages 735–742, September 2007.



BIBLIOGRAPHY 129

E.W. Sachs and A.K. Strauss. Efficient solution of a partial integro-differential

equation in finance. Applied Numerical Mathematics, 58(58):1687–1703, 2008.

L.R. Scott, T. Clark, and Bagheri.B. Scientific parallel computing. Princeton Uni-

versity Press, 2005.

A. Shapiro. Stochastic programming by monte carlo simulation methods. Stochastic

Programming E-Print Series, 2000.

A.V. Skorokhod. Studie in the theory of random processes. Dover Publications,

1965.

E. M. Stein and J. C. Stein. Stock price distributions with stochastic volatility: An

analytical approach. The Review of Financial Studies, 4:727–752, 1991.

O. Vasicek. An equilibrium charaterization of the term structure. Journal of Finan-

cial Economics, 5:177–188, 1977.

T. Yamada and S. Watanabe. On the uniquenes of solutions of stochastic differential

equations. Journal of Mathematics of Kyoto University, 11(1):155–167, 1971.


