
Amortized Analysis of
Exponential Time- and

Parameterized Algorithms:
Measure & Conquer and
Reference Search Trees

Daniel Binkele-Raible

June 10, 2010

Dissertation

zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften

Dem Fachbereich IV der Universität Trier vorgelegt

2

Zusammenfassung

Diese Arbeit diskutiert die algorithmische Handhabbarkeit schwieriger kombinatorischer
Probleme. Grundsätzlich betrachten wir NP-schwere Probleme. Für diese Art von
Problemen ist es unmöglich Polynomialzeit-Algorithmen zu finden (modulo P 6= NP).
Mehrere algorithmische Ansätze existieren bereits, um diesem Dilemma zu entkommen.
Darunter befinden sich (randomisierte) Approximations-Algorithmen und Heuristiken.
Obwohl diese in annehmbarer Zeit eine Lösung liefern, ist diese im allgemeinen nicht
optimal. Falls wir Optimalität voraussetzen dann gibt es nur zwei Methoden die dies
gewährleisten: Exponentialzeit-Algorithmen und parameterisierte Algorithmen. Der er-
ste Ansatz versucht Algorithmen zu finden, die intelligenter handeln als ein trivialer Al-
gorithmus, der einfach alle Lösungskandidaten aufzählt. Typischerweise benötigt solch
ein naiver Aufzählungsansatz eine Laufzeit von O∗(2n). Deshalb ist die prinzipielle Auf-
gabe Algorithmen zu entwerfen, die eine Laufzeit der Form O∗(cn), wobei c < 2 gilt,
garantieren.
Der zweite Ansatz betrachtet einen weiteren Parameter k neben der Gröe der Eingabe n.
Dieser Parameter soll weitere Information über das Problem zu Verfügung stellen und
überdies eine typische Charakteristik beschreiben. Die Standard- Parameterisierung
sieht k als eine obere (beziehungsweise untere) Schranke für die Grösse der Lösung im
Fall eines Minimierungsproblems (beziehungsweise Maximierungsproblems). Eine pa-
rameterisierter Algorithmus sollte dann in der Lage sein das Problem in einer Laufzeit
f(k) · nβ zu lösen, wobei β eine Konstante und f unabhängig von n ist. Prinzipiell
versucht diese Methode die kombinatorische Komplexität bezüglich des Parameters k zu
messen, falls dies überhaupt möglich ist. Grundannahme hierbei ist, dass k relativ klein
ist verglichen mit der kompletten Eingabegrösse.
In beiden Gebieten ist der Entwurf von Verzweigungs-Algorithmen eine Standard- Tech-
nik. Diese Algorithmen lösen das Problem indem sie auf eine ausgeklügelte Art und
Weise den Lösungsraum traversieren. Schrittweise wählen sie ein Objekt aus der Eingabe
aus und schaffen zwei neue Teilprobleme, eines in dem das Objekt der zukünftigen
Lösung zugesprochen wird, und ein weiteres in dem es aus dieser Lösung ausgeschlossen
wird. In beiden Fällen kann es sein, dass durch die Fixierung dieses einen Objekts weit-
ere ebenfalls fixiert werden. Ist dies der Fall dann ist die Anzahl der besuchten möglichen
Lösungen kleiner als der gesamte Lösungsraum. Diese besuchten Lösungen können
als Suchbaum betrachtet werden. Um die Laufzeit solcher Algorithmen zu bestimmen
benötigt man eine Methode die scharfe obere Schranken bezüglich der Suchbaumgrösse
bereitstellt. Zu diesem Zweck wurde im Bereich der Exponentialzeit-Algorithmen eine
mächtige Methode entwickelte, die sich Measure&Conquer nennt. Sie wurde bereits er-
folgreich auf viele Probleme angewandt, insbesondere auf Probleme wo andere Versuche
fehlschlugen die triviale Laufzeitschranke zu unterbieten.
Im Gegensatz dazu ist Measure&Conquer im Bereich der parameterisierten Algorithmen
kaum bekannt. Diese Arbeit wird verschiedene Beispiele präsentieren wo diese Methode
in diesem Bereich angewandt werden kann. Darber hinaus werden Exponentialzeit-
Algorithmen für harte Probleme vorgestellt, die Measure&Conquer anwenden. Ein weit-
ere Aspekt ist, dass eine Formalisierung (und Generalisierung) des Begriffes Suchbaum

3

gegeben wird. Es wird gezeigt, dass für bestimmte Probleme diese Formalisierung sehr
nützlich ist.

In Kapitel 2 wird in die Technik des Measure&Conquer eingeführt. Wir identifizieren die
Unterschiede zwischen der klassischen Methode der Suchbaumgrössenabschätzung und
Measure&Conquer. Zu diesem Zweck behandeln wir mehrere Fallbeispiele.

Kapitel 3 umreisst das Problem Max-2-Sat. Dieses Problem verlangt nach einer
Wahrheitswertzuweisung der Variablen, welche die grösstmögliche Anzahl an Klauseln
einer bool’schen Formel in KNF erfüllt. Ebenfalls enthält jede Klausel höchstens zwei
Literale. Es wird ein Algorithmus präsentiert, der eine Laufzeit von O∗(2

K
6.2158) für Max-

2-Sat garantiert, wobei K die Anzahl der Klauseln darstellt. Diese Laufzeit wurde
erreicht indem man heuristische Prioritäten bezüglich der Variablen, auf der verzweigt
wird, anwendet. Die Implementierung dieser heuristischen Prioritäten ist recht einfach,
obwohl sie signifikante Auswirkungen auf die Laufzeiten haben. Die Laufzeitanalyse
verfolgt den Measure&Conquer-Ansatz.

In Kapitel 4 wird das NP-schwere Problem einen Spannbaum mit einer grösstmöglichen
Anzahl interner Knoten betrachtet. Dieses Problem ist eine Generalisierung des bekannt
Hamiltonian Path Problems. Wir geben Algorithmen basierend auf Dynamischem-
Programmieren für den allgemeinen und gradbeschränkten Fall an, die eine Laufzeit
der Form O∗(cn), c ≤ 3, haben. Das Hauptresultat jedoch ist ein Verzweigungsalgo-
rithmus für Graphen mit Maximalgrad drei. Dieser benötigt nur polynomiellen Platz
und eine Laufzeit von O∗(1.8669n), wobei n die Anzahl der Knoten im Graphen ist.
Wir zeigen ebenfalls eine Laufzeit von O(2.1364knO(1)), wenn es das Ziel ist einen
Spannbaum mit mindestens k internen Knoten zu finden. Beide Laufzeiten werden mit
der Measure&Conquer-Methode gezeigt, wobei der zweite Fall eine neuartige Anwen-
dungsweise dieser Methode zur Analyse von parameterisierten Algorithmen darstellt.

Kapitel 5 beschreibt einen Algorithmus für das Problem einen gerichteten Spannbaum
mit möglichst vielen Blättern zu finden. Diese Art von Spannbaum ist ebenfalls bekannt
als out-branching. Der Algorithmus verfolgt das Branch-and-Reduce-Paradigma und er-
reicht eine Laufzeit von O∗(1.9044n). Da die Eingabe auf gerichtete Graphen erweitert
wird und wir die Laufzeit primär bezüglich der Anzahl der Knoten abschätzen, unter-
scheidet sich dieser Algorithmus und seine Laufzeitanalyse von demjenigen aus Kapitel 6
erheblich.

Kapitel 6 umfasst das Problem einen Spannbaum mit möglichst vielen Blättern zu finden.
Dieses ist NP-schwer. Wir stellen einen Algorithmus vor der einen Spannbaum mit
mindestens k Blättern in höchstens O∗(3.4581k) Schritten findet. Diese Laufzeitab-
schätzung, vor einem parameterisierten Hintergrund, wird mittels Measure&Conquer
bewältigt. Analysieren wir denselben Algorithmus bezüglich der Anzahl der Knoten n
erreichen wir eine Laufzeit von O∗(1.8961n).

Kapitel 7 behandelt das Problem eine maximale irredundante Menge zu finden. Ob-
wohl es eine klare Verwandschaft zum bekannten Dominating Set Problem gibt, ist
es bisher nicht gelungen die triviale Schranke mittels Aufzählung, nämlich O∗(2n), zu

4

unterbieten. Wir erreichen dieses Ziel indem wir einen parameterisierten Algorithmus
mit Laufzeit O∗(3.069k) entwerfen und hierauf aufbauend ein WIN/WIN-Konzept ver-
wenden. Wir nutzen abermals Measure&Conquer um die Laufzeitschranke für diesen Al-
gorithmus zu bestimmen. Es hat ebenfalls den Anschein, dass dieser Umweg über einen
parameterisierten Algorithmus wichtig ist, da eine direkte Adaption die 2n-Schranke
nicht unterschreitet.

In Kapitel 8 wird ein Exponentialzeit-Algorithmus für das Power Dominating Set
Problem entwickelt. Das Power Dominating Set Problem ist eine Erweiterung des
bekannten Dominierungsproblem auf Graphen, in einer Weise, dass wir es mit einer
zweiten Propagationsregel anreichern: Zu einem gegebenen Graphen G(V,E) ist eine
Menge P ⊆ V eine power-dominierende Menge falls jeder Knoten nach der erschöpfenden
Anwendung der folgenden zwei Regeln observiert ist. Erstens ist ein Knoten v observiert
falls v ∈ P oder er einen Nachbarn in P hat. Zweitens wird ein unobservierter Knoten
u observiert, falls er einen observierten Nachbarn hat, dessen Nachbarschaft bis auf u
bereits observiert ist. Es wird gezeigt, dass Power Dominating Set auf kubischen
Graphen NP-schwer bleibt. Es wird ein Algorithmus entwickelt, der dieses Problem
mit einer Laufzeit von O∗(1.7548n) löst. Hierfür nutzen wir die formalisierte Version des
Begriffes Suchbaum, was wir Referenzsuchbaum nennen. Diese Suchstruktur beinhaltet
globale, nicht-lokale Zeiger.

Kapitel 9 untersucht das Problem Maximum Acyclic Subgraph. Einen grösst-
möglichen azyklischen Teilgraphen zu finden gehört zu den Problemen, die sich aus der
Sichtweise der parameterisierten Komplexität schwer bewältigen lassen. Wir beschränken
uns hier auf spezielle Graphklassen. Genauer gesagt konzipieren zwei effizient Al-
gorithmen (einer ist ein Exponentialzeit-Algorithmus, der andere ist parameterisiert)
für sogenannte (1, ℓ)-Graphen, eine Graphklasse die kubische Graphen enthält. Die
Laufzeiten betragen O∗(1.2133m) beziehungsweise O∗(1.2471k). Beide Laufzeiten wer-
den mittels der Measure&Conquer-Methode gezeigt. Ebenfalls spielt der hier eingeführte
Begriffe eines Referenzsuchbaumes eine wichtige Rolle um diese Laufzeiten zu erreichen.
Für kubische Graphen erhält man leicht besser Laufzeiten, nämlich O∗(1.1798m) und
O∗(1.201k). Eine Konsequenz hieraus ist, dass Cubic Directed Feedback Vertex
Set in O∗(1.282n) Schritten lösbar ist.

5

Abstract

This work addresses the algorithmic tractability of hard combinatorial problems. Ba-
sically, we are considering NP-hard problems. For those problems we can not find a
polynomial time algorithm (modulo P 6= NP). Several algorithmic approaches already
exist which deal with this dilemma. Among them we find (randomized) approximation
algorithms and heuristics. Even though in practice they often work in reasonable time
they usually do not return an optimal solution. If we constrain optimality then there
are only two methods which suffice for this purpose: exponential time algorithms and
parameterized algorithms. In the first approach we seek to design algorithms consuming
exponentially many steps who are more clever than some trivial algorithm (who simply
enumerates all solution candidates). Typically, the naive enumerative approach yields
an algorithm with run time O∗(2n). So, the general task is to construct algorithms
obeying a run time of the form O∗(cn) where c < 2.
The second approach considers an additional parameter k besides the input size n. This
parameter should provide more information about the problem and cover a typical char-
acteristic. The standard parameterization is to see k as an upper (lower, resp.) bound
on the solution size in case of a minimization (maximization, resp.) problem. Then a
parameterized algorithm should solve the problem in time f(k) ·nβ where β is a constant
and f is independent of n. In principle this method aims to restrict the combinatorial
difficulty of the problem to the parameter k (if possible). The basic hypothesis is that
k is small with respect to the overall input size.
In both fields a frequent standard technique is the design of branching algorithms. These
algorithms solve the problem by traversing the solution space in a clever way. They fre-
quently select an entity of the input and create two new subproblems, one where this
entity is considered as part of the future solution and another one where it is excluded
from it. Then in both cases by fixing this entity possibly other entities will be fixed.
If so then the traversed number of possible solution is smaller than the whole solution
space. The visited solutions can be arranged like a search tree. To estimate the run
time of such algorithms there is need for a method to obtain tight upper bounds on the
size of the search trees. In the field of exponential time algorithms a powerful technique
called Measure & Conquer has been developed for this purpose. It has been applied
successfully to many problems, especially to problems where other algorithmic attacks
could not break the trivial run time upper bound.
On the other hand in the field of parameterized algorithms Measure & Conquer is almost
not known. This piece of work will present examples where this technique can be used in
this field. It also will point out what differences have to be made in order to successfully
apply the technique. Further, exponential time algorithms for hard problems where
Measure & Conquer is applied are presented. Another aspect is that a formalization
(and generalization) of the notion of a search tree is given. It is shown that for certain
problems such a formalization is extremely useful.

In Chapter 2 we introduce the technique of Measure & Conquer. We identify the differ-
ences between the classical method of search tree estimation and Measure & Conquer.

6

We provide several case studies for this purpose.

Chapter 3 outlines the problem Max-2-Sat. In MaxSat we ask for an assignment
of the variables which satisfies the maximum number of clauses for a boolean formula
in CNF. We present an algorithm yielding a run time upper bound of O∗(2

K
6.2158) for

Max-2-Sat (each clause contains at most 2 literals), where K is the number of clauses.
The run time has been achieved by using heuristic priorities on the choice of the variable
on which we branch. The implementation of these heuristic priorities is rather simple,
though they have a significant effect on the run time. The analysis follows the Measure
& Conquer paradigm.

In Chapter 4 we consider the NP-hard problem of finding a spanning tree with a
maximum number of internal vertices. This problem is a generalization of the famous
Hamiltonian Path problem. Our dynamic-programming algorithms for general and
degree-bounded graphs have running times of the form O∗(cn) (c ≤ 3). The main result,
however, is a branching algorithm for graphs with maximum degree three. It only needs
polynomial space and has a running time of O(1.8669n) when analyzed with respect to
the number of vertices. We also show that its running time is 2.1364knO(1) when the goal
is to find a spanning tree with at least k internal vertices. Both running time bounds
are obtained via a Measure & Conquer analysis, the latter one being a novel use of this
kind of analysis for parameterized algorithms.

Chapter 5 presents an algorithm for the problem of finding a directed spanning tree
with the maximum number of leaves. This kind of spanning tree is also known as out-
branching. The algorithm follows the branch-and-reduce-paradigm and achieves a run
time of O∗(1.9044n). As the input is generalized to directed graphs and its running
time is analyzed primarily with respect to the number of vertices, the structure of the
algorithm and its run time estimation differs notably from the one in chapter 6.

Chapter 6 covers the problem of finding a spanning tree in an undirected graph with
a maximum number of leaves. It is known to be NP-hard. We present an algorithm
which finds a spanning tree with at least k leaves in time O∗(3.4581k). The estimation
of the run time is done by using Measure & Conquer in a parameterized setting. By
analyzing the same algorithm with respect to the number of vertices n we show a run
time upper bound of O∗(1.8961n).

Chapter 7 addresses the problem of finding a maximum irredundant set. Although this
problem is closely related with the famous Dominating Set problem up to now the
trivial enumeration bound of O∗(2n) has not been broken yet. Here this goal is achieved
by designing a parameterized algorithm with run time O∗(3.069k) and by further on
using this algorithm in a WIN/WIN-approach. Once more we extensively use Mea-
sure&Conquer to derive the run time for this parameterized algorithm. Also it seems
that this detour via a parameterized algorithm is indeed crucial to break the 2n-Barrier,
as a direct interpretation of this algorithm fails to break the trivial upper bound.

In Chapter 8 an exponential time algorithm for the power dominating set problem
is developed. The Power Dominating Set problem is an extension of the well-known

7

domination problem on graphs in a way that we enrich it by a second propagation rule:
Given a graph G(V,E) a set P ⊆ V is a power dominating set if every vertex is observed
after we have applied the next two rules exhaustively. First, a vertex v is observed
if v ∈ P or it has a neighbor in P . Secondly, if an observed vertex has exactly one
unobserved neighbor u, then also u will be observed as well. We show that Power
Dominating Set remains NP-hard on cubic graphs. We designed an algorithm solv-
ing this problem in time O∗(1.7548n) on general graphs. To achieve this we use the
formalized version of the notion of search trees called reference search trees providing
non-local pointers.

Chapter 9 considers Maximum Acyclic Subgraph. Finding a maximum acyclic sub-
graph is on the list of problems that seem to be hard to tackle from a parameterized
perspective. We restrict our attention to special graph classes. More precisely, we
develop two quite efficient algorithms (one is exact exponential-time, the other param-
eterized) for so-called (1, ℓ)-graphs, a class containing cubic graphs. The run times are
O∗(1.2133m) and O∗(1.2471k), respectively, determined both by the usage of the Mea-
sure & Conquer technique. Also the introduced notion of reference search trees plays an
important key role in achieving this run time. We derive slightly better run times for
cubic graphs, namely O∗(1.1798m) and O∗(1.201k). As a consequence Cubic Directed
Feedback Vertex Set can be solved in O∗(1.282n) steps.

8

Preface

The dissertation at hand emerged during my employment at the group of Prof. Dr.
Henning Fernau at the University of Trier. I have been working there as a research
assistant from May 2006 until October 2009. During this time several publications
evolved. Not all of them contribute to this dissertation. As I have focused on search
trees in this dissertation only those publications who can be classified into this field have
been considered. In the following list they are marked with a ✧-symbol. Each item in
the list states the authors, the title and where it was published.

• The paper ‘The Complexity of Probabilistic Lobbying‘ (G. Erdélyi, H. Fernau, J.
Goldsmith, N. Mattei, D. Raible and J. Rothe [39]) appeared in the proceedings
of Algorithmic Decision Theory (ADT09).

• The paper ‘Kernel(s) for Problems with No Kernel: On Out-Trees with Many
Leaves’ (H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh and Y.
Villanger [48]) appeared in the proceedings of the Symposium on the Theoretical
Aspects in Computer Science (STACS09).

• The paper ‘Exact Exponential-Time Algorithms for Finding Bicliques in a Graph‘
(H. Fernau, S. Gaspers, D. Kratsch, M. Liedloff and D. Raible [49]) appeared in
the proceedings of the Cologne-Twente Workshop (CTW09).

✧ The paper ‘Exact and parameterized Algorithms for Max Internal Spanning Tree’
(H.Fernau, S. Gaspers and D. Raible [50]) appeared in the proceedings of the Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science (WG09).

• The paper ‘An exact algorithm for the Maximum Leaf Spanning Tree problem‘(H.
Fernau, A. Langer, M. Liedloff, J. Kneis, D. Kratsch, D. Raible and P. Ross-
manith [51]) appeared in the proceedings of the International Workshop on Pa-
rameterized and Exact Computation (IWPEC09).

• The paper ‘Alliances in graphs: a complexity-theoretic study‘ (H. Fernau and D.
Raible [53]) appeared in the proceedings vol.II of the International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM07).

✧ The paper ‘Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of
Cubic Graphs‘ (H. Fernau and D. Raible [54]) appeared in the proceedings of the
Workshop on Algorithms and Computation (WALCOM08).

• The paper ‘A Parameterized Perspective on Packing Paths of Length Two‘ (H.
Fernau and D. Raible [55]) appeared in the proceedings of Combinatorial Opti-
mization and Applications (COCOA08) and as a journal version [56] in the Journal
on Combinatorial Optimization.

• The paper ‘Packing Paths: Recycling Saves Time‘ (H. Fernau and D. Raible [57])
appeared in the proceedings of the Cologne-Twente Workshop (CTW09).

9

✧ The paper ‘Searching Trees: an Essay‘ (H. Fernau and D. Raible [58]) appeared in
the proceedings of Theory and Applications of Models of Computation (TAMC09).

✧ The paper ‘A New Upper Bound for Max-2-SAT: A Graph-Theoretic Approach‘
(D. Raible and H. Fernau [133]) appeared in the proceedings of Mathematical
Foundations of Computer Science (MFCS08).

✧ The paper ‘Power Domination in O∗(1.7548n) Using Reference Search Trees‘ (D.
Raible and H. Fernau [134]) appeared in the proceedings of the International Sym-
posium on Algorithms and Computation (ISAAC08)

✧ The paper ‘A Faster Exact Algorithm for the Directed Maximum Leaf Spanning
Tree Problem‘ (D. Raible and H. Fernau [136]) appeared in the proceedings of the
Computer Science Symposium in Russia (CSR10)

✧ The paper ’A Parameterized Route to Exact Puzzles: Breaking the 2-Barrier
for Irredundance’ (Daniel Binkele-Raible, Ljiljana Brankovic, Henning Fernau,
Joachim Kneis, Dieter Kratsch, Alexander Langer, Mathieu Liedloff and Peter
Rossmanith [8]) apperad in the Proceedings of the International Conference on
Algorithms and Complexity (CIAC10)

Finally, I would like to thank Henning Fernau for his valuable and friendly advice. I
have benefit a lot from our common work. I thank all my colleagues at the University of
Trier for the nice and productive atmosphere. Also I thank all my co-authors for sharing
their ideas with me. A very special dedication goes out to Maria Teresa Binkele.

How to read this thesis?

The first two chapters are introductory chapters. Chapter one gives an overview of known
techniques of how to cope with NP-hard problems. A focus is placed on exponential-
time- and parameterized algorithms. Here the reader also finds the basic definitions
which are used. It provides also an introduction to run time estimation of branch&reduce
algorithms as well as the important definition of reference search trees. Chapter two
provides a gentle introduction to branch&reduce algorithms, Measure&Conquer and its
parameterized pendant. Chapter two is the bases for all sections which are subsumed in
the subsequent part I. In part I (Parameterized)Measure&Conquer is applied to a variety
of problems. Thus, it is recommended to first read chapter two before one proceeds to
part I. Part II contains two sections where reference search trees play an important role.
Therefore they cannot be read independently from section 1.4 in chapter one. Moreover,
the run time analysis also uses Measure&Conquer.

10

Contents

1. Introduction & Basic Definitions 15
1.1. Hard Combinatorial Optimization Problems 15

1.1.1. Approximation Algorithms . 15
1.1.2. Heuristics . 16
1.1.3. Randomized Algorithms . 16
1.1.4. Moderate Exponential Time Algorithms 17
1.1.5. Parameterized Algorithms . 18

1.2. Notation & Terminology . 20
1.2.1. Graph-Theoretic Notions . 20
1.2.2. Notions from Satisfiability . 21

1.3. Estimating running times . 22
1.4. Reference Search Trees . 24

2. Measure&Conquer 29
2.1. Case Study: A Search Tree Algorithm for Vertex Cover 29
2.2. Case Study: A Search Tree Algorithm for Dominating Set 32
2.3. Case Study: Parameterized Measure & Conquer for Nonblocker 36

2.3.1. A Simple Approach . 36
2.3.2. An Approach with a fine-grained Measure 39

2.4. Case Study: Connected Vertex Cover . 42
2.5. Case Study: Edge Dominating Set . 48
2.6. Obtaining The Weights . 53

2.6.1. Local Search . 53
2.6.2. Convex Programming . 54

I. Measure&Conquer applied to Exponential-Time- and Parame-

terized Algorithms 57

3. A New Upper Bound for Max-2-SAT 61
3.1. Introduction . 61

3.1.1. Our Problem . 61
3.1.2. Results So Far . 61
3.1.3. Our Results . 62
3.1.4. Problem Statement . 62

3.2. Reduction Rules & Basic Observations 62

11

Contents

3.3. The Algorithm . 65
3.3.1. Heuristic Priorities . 66
3.3.2. Key Ideas . 67

3.4. The Analysis . 67
3.4.1. Gvar has High Maximum Degree 68
3.4.2. Gvar has Maximum Degree Four 68
3.4.3. The 4- 5- and 6-regular case . 72
3.4.4. The Cubic Case . 78

3.5. Combining Two Approaches . 81
3.5.1. General Exposition . 81
3.5.2. 5-regular Branches in the Combined Approach 82
3.5.3. Analysis of the 6- 4- and 3-phase in the Combined Approach . . . 84

3.6. Conclusion . 87

4. Exact and Parameterized Algorithms for Max Internal Spanning Tree 89
4.1. Introduction . 89
4.2. The Problem on General Graphs . 91
4.3. Subcubic Maximum Internal Spanning Tree 93

4.3.1. Observations . 93
4.3.2. Reduction Rules . 94
4.3.3. Triangles . 96
4.3.4. The Algorithm . 98
4.3.5. An Exact Analysis of the Algorithm 98
4.3.6. A Parameterized Analysis of the Algorithm 104

4.4. Conclusion & Future Research . 110

5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree 111
5.1. Introduction . 111

5.1.1. Known Results. 111
5.1.2. Our Achievements. 112
5.1.3. Preliminaries, Terminology & Notation 112
5.1.4. Basic Idea of the Algorithm . 113

5.2. The Polynomial Part . 113
5.2.1. Halting Rules . 113
5.2.2. Reduction rules . 114

5.3. The Exponential Part . 115
5.3.1. Branching rules . 115
5.3.2. Correctness of the algorithm . 115
5.3.3. Analysis of the Run Time . 118

5.4. Conclusions . 124
5.4.1. An Approach Using Exponential Space 124
5.4.2. Résumé . 124

6. Parameterized Measure&Conquer for k-Leaf Spanning Tree 127

12

Contents

6.1. Introduction. 127
6.1.1. Our Contributions. 128
6.1.2. Terminology. 128
6.1.3. Overall Strategy. 128

6.2. Reduction Rules & Observations. 129
6.2.1. Reduction Rules. 129
6.2.2. Observations. 131

6.3. The Algorithm. 134
6.3.1. Correctness. 134
6.3.2. Run Time Analysis. 139

6.4. An Exact Exponential Time Analysis . 141
6.5. Conclusions. 142

7. Breaking the 2n-Barrier for irredundance 145
7.1. Introduction . 145
7.2. Preliminaries and a Linear Kernel . 146

7.2.1. A Linear Kernel . 147
7.2.2. Basic Facts . 148

7.3. Measure & Conquer Tailored To The Problem 149
7.3.1. Reduction Rules . 149
7.3.2. The Algorithm . 152

7.4. Conclusions . 160

II. Applications of Reference Search Trees 163

8. An Exact Exponential Time Algorithm for Power Dominating Set 167
8.1. Introduction . 167

8.1.1. Discussion of Related Results . 168
8.1.2. New Results . 168
8.1.3. Terminology and Notation . 169

8.2. NP-hardness of Planar Cubic Power Dominating Set 169
8.3. An Exact Algorithm for Power Dominating Set 171

8.3.1. Annotated Power Dominating Set 171
8.3.2. Algorithm . 172

8.4. Conclusion and Further Perspectives . 180

9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic
Graphs 183
9.1. Introduction and Definitions . 183

9.1.1. Our problems . 183
9.1.2. Motivation. 183
9.1.3. Discussion of related results. 184
9.1.4. Our contributions. 185

13

Contents

9.1.5. Fixing terminology. 185
9.2. The Algorithm . 185

9.2.1. Preprocessing . 185
9.2.2. Reduction Rules . 187
9.2.3. The Concrete Algorithm . 189

9.3. The Analysis . 189
9.3.1. Analyzing the Reduction Rules 191
9.3.2. Analyzing the Algorithm . 195

9.4. Reparameterization . 205
9.5. Conclusions . 205
9.6. Recursions and run times . 207

9.6.1. The maximum degree three case 207

10.Conclusion 209

11.Appendix 213
11.1. Code For Local Search . 213

11.1.1. Meshsearch.m . 214
11.1.2. Mshlp . 215

11.2. AMPL Code for Convex Programming 216

14

Chapter 1.

Introduction & Basic Definitions

1.1. Hard Combinatorial Optimization Problems

Throughout this work the main task is to design efficient algorithms for combinatorial
optimization problems. Generally, efficiency will be measured with respect to the input
size n of the particular instance of the problem. An algorithm which consumes O(n2)
time is widely considered as efficient. Generally, algorithms whose run time can be upper
bounded by O(nc) (c is a constant) are accepted to be efficient. They are said to have
a polynomial run time. Regardlessly, there are numerous optimization problems arising
from applications which resist to be efficient in the above sense. For these problems only
algorithms whose run times are upper bounded by expressions of the form O(cn) are
known. For these kind of problems we try to design algorithms which are efficient in a
broader sense.

In this section we assume the reader is conscious of basic concepts of classical com-
plexity theory (i.e. theory of NP-hardness) as described in C. H. Papadimitriou [127].
In 1971 S. Cook [29] showed NP-hardness of the satisfiability problem (SAT). He re-
duced non-deterministic Turing acceptance to SAT via a polynomial time re-
duction. Since then NP-hard problems basically are seen as practical infeasible. One
year later in 1972 R.M. Karp [97] presented 21 further problems which he proved to
be NP-hard. Among them where prominent problems like Feedback Arc Set, Set
Cover, Vertex Cover, Steiner Tree and 3-Sat. Afterwards many interesting
problems, many of them evolving from practical applications, where proven to be NP-
hard, see M. R. Garey and D. S. Johnson [77] for an overview until 1979.
There evolved many follow-up lines of research which promise to be a way out of this
dilemma. See the book of J. Hromkovič [94] for a gentle and far more detailed introduc-
tion to the following fields.

1.1.1. Approximation Algorithms

This approach tries to circumvent the inefficiency problem for NP-hard problems by
relaxing the constraint that solution must be optimal. Here we are satisfied if we are
given some solution which differs from the optimal solution by some percentage in quality.
For example if in case of an minimization problem we can guarantee that an approximate
solution is at most greater in cost by a constant factor of, say, c := 1.5. On the one hand

15

Chapter 1. Introduction & Basic Definitions

we give up the aim of optimality but on the other we constrain the algorithm to a have
a polynomial run time. There are also examples where we can get as close as possible to
an optimal solution. For any given ǫ > 0 we can find an approximate solution differing
by a factor of ǫ and still consuming only polynomial time. Nevertheless, in many cases
we only can achieve a run time of O(n

c
ǫ), such that the exponent rapidly grows in ǫ.

Regrettably, this approach fails for certain problems in the sense that any polynomial
time algorithm cannot provide a constant factor approximation. For example, for Set
Cover a factor of only log n is possible (assuming P 6= NP). This deficiency is often
not acceptable in practice.
For a detailed introduction into the field we refer to [3, 154].

1.1.2. Heuristics

A heuristic in a broad sense is a simple algorithm following a transparent and straight-
forward strategy. Usually, one cannot make any statements about the quality of the
solution. Beyond that in many cases a proper upper bound on the run time can be
given. The main idea is that the heuristic behaves well on typical instances of the op-
timization problem at hand. A very basic heuristic is local search. Starting from some
initial solution we proceed on and on by picking some neighboring solution of higher
quality. What exactly the neighborhood consists of is problem dependent. One further
advantage lies in its simplicity which permits an easy implementation process.
Another advantage is that they follow a very general strategy which can be applied to a
vast number of different optimization problems. Heuristics with this property are often
referred to as meta-heuristics. Two well-known meta-heuristics are simulated annealing
and genetic algorithms. Both strategies imitate some real optimization process.
Simulated annealing emulates a thermodynamic process. It can be viewed as a clever
way of applying local search. To prevent the algorithm to get stuck in a local optimum
it is allowed to move to a worse solution with some probability. This probability of
deterioration of solution quality is dependent on the thermodynamic process.
Genetic Algorithms imitate the natural selection process of individuals in nature. Start-
ing from a set of solutions at each stage a process of evolution is applied. Existent
solutions are paired (or combined) resulting in new solutions. Also spontaneous mu-
tations of a solutions (i.e. small changes) are possible at this point. After this part
the solutions are evaluated using a fitness function. Only those solutions survive whose
fitness is greater than a given threshold.
As a good starting point into the field of heuristics we propose [81, 117].

1.1.3. Randomized Algorithms

Randomized Algorithms can be seen as deterministic algorithms who get as an additional
input a sequence s of random bits. The algorithm will make choices depending on s.
Moreover, a randomized algorithm can be seen as a set of algorithms where one randomly
is chosen for the given input (depending on the sequence s).
There are two kinds of randomized algorithms. So-called Monte-Carlo algorithms return

16

1.1. Hard Combinatorial Optimization Problems

an answer which is dependent on the random bits in polynomial time. A Las-Vegas
algorithm always returns the correct answer but its run time may vary. We can express
it this way: In a Monte-Carlo algorithm the out-put is a random variable and in a Las-
Vegas algorithm the run time is a random variable.
A randomized algorithm maybe more efficient and more practical than the best known
deterministic counterparts. One could seek to de-randomized such an algorithm. But it
is not known if this is possible without paying a great amount of resources. Moreover,
a fact which is quite crucial in our case: Up to now no polynomial time randomized
algorithm for a NP-hard problem is known ([94]). See also [121, 118] for introductory
books.
A way out of this maybe randomized approximation algorithms. Here the approximation
ratio can be seen as a random variable. This seems to make sense if a problem resisted
the approximation approach. Then it possibly can be made tractable by additionally
using randomization. See the book [3] for a good starting point.

1.1.4. Moderate Exponential Time Algorithms

All algorithmic approaches up to now were seeking to establish tractability for NP-hard
problems by making compromises. Either we relax the requirement that a returned
solution is optimal or we get a solution with some uncertainty. But if we insist on a
certain optimal solution then an exponential time algorithm seems to be unavoidable.
Once one has accepted that forNP-hard problems there is no polynomial time algorithm
modulo the assumption P 6= NP, one seeks to lower the constant c in the run time
O∗(cn) (which is the standard form for a vast number of problems). The standard
vertex selection problem is to find a subset of vertices V ′ ⊂ V for a given graph G(V,E)
smallest in cardinality and with a certain property. Enumerating all such subsets results
in the trivial brute force algorithm with run time O∗(2n). Quite early at the time where
NP-completeness theory was established researchers have experienced that for some
problems this is not a run time lower bound:

✩ E. Horowitz and S. Sahni [93] designed an algorithm for binary Knapsack with
a run time of O∗(2

n
2
n) ⊆ O∗(1.414n).

✩ M. Held and R. M. Karp [91] presented an algorithm solving Traveling Sales
Man in O(2n) steps whereas the naive algorithm needs n! ≈ nn/en steps.

✩ E.L. Lawler [109] was able to enumerate all maximal independent sets inO∗(1.4423n).
By this 3-coloring could be solved within the same time bound. Additionally,
he solved chromatic number in O∗(2.4423n).

✩ R.E. Tarjan and A.E. Trojanowski [148] stated a run time upper bound for max-
imum independent set of O∗(1.2599n).

✩ Satisfiability was the subject of B. Monien and E. Speckenmeyer [120]. In case
of 3-Sat a run time of O∗(1.6181n) was shown.

17

Chapter 1. Introduction & Basic Definitions

Regardlessly, many important and famous problems resisted to be solvable faster than
their trivial algorithm. Only recently progress was made which is due to new algo-
rithmic techniques. Some problems own the characteristic of a certain non-locality
like Maximum Leaf Spanning Tree and Feedback Vertex Set. For others like
Dominating Set unexpectedly for a long time there had not been any improvement.
These problems now admit run times of O∗(1.8966n) (H. Fernau et al. [51]), O∗(1.7548n)
(F.V. Fomin et al. [64]) and O∗(1.5048) (J. M. M. van Rooij et al. [153], respectively).
The authors used an approach for run time estimation which is called Measure&Conquer.
We provide a case study in chapter 2 for the purpose of a gentle introduction to the field.
Consider also the PhD Thesis of S. Gaspers [78] and M. Liedloff [112] (in french) for an
overview of the topic.
Finally, let us mention a bit about the practicality of exact exponential algorithms. For
the sake of practicality we hope for a small base term c. If we can a achieve that c = 1.2
then 1.2n < n3 for n ≤ 69 and 1.2n < n4 for n ≤ 101. Usually, algorithms which are
based on a branching procedure even behave more favorable in the average case. The
stated run time refers to a worst case scenario. It is often very hard to even come up
with an example instance where the run time bound is tight for the given algorithm. In
almost all cases there is a notable gap between run time upper bound of the algorithm
and the particular lower bound of it. Thus, if c is small enough then the algorithm
contributes to the tractability of the problem in practice.
To further lower the constant c some authors took an approach called Exponential Time
Approximation. Here again we relax the condition of optimality. But we gain by low-
ering the bases c. See M. Cygan and M. Pilipczuk [31] and Fürer et al. [75] for some
discussions on bandwidth concerning this topic. Further see Cygan et al. [30] dealing
with weighted set cover and exponential time approximation.

1.1.5. Parameterized Algorithms

This approach like the previous one seeks to solve problems to optimality. But beyond
that it also takes also the particular problem into account. In exponential time algorith-
mics all that matters is the input size n. In parameterized complexity analysis we also
take into account a parameter k. This parameter should capture further information
of the problem. This parameter can be, just to mention a few examples, the treewidth
of the given graph, an upper (lower) bound on the solution size, the number of leaves
in a spanning tree or the chromatic number of the given input graph. There are even
occasions when graph parameters like the vertex cover number are subject to parame-
terization (J. Fiala et al. [60], M.R. Fellows et al. [46]).
Now one wishes to measure the complexity of the problem not only in the input size n
but also with respect to the parameter k. Assume that the function in n and k which
measures this complexity is only slowly growing in n, say 4k2n2. Then the problem is
tractable for small values of k. So, the right choice of the parameter is crucial for this
approach to succeed. We now provide some brief and formal introduction.

Definition 1.1.1. A parameterized problem is a subset P ⊆ Σ∗ × Σ∗.

18

1.1. Hard Combinatorial Optimization Problems

In this definition Σ is the alphabet for coding the problem. For convenience we only
consider problems P ⊆ Σ∗ × N as only such problems are subject of this thesis.

Definition 1.1.2 (Fixed Parameter Tractability). A parameterized problem P is fixed-
parameter tractable if there is an algorithm that correctly decides for an input (I, k) ∈
Σ∗ × N, whether (I, k) ∈ P in time f(k) · nc. Here n is the input size (n = |I|), k the
parameter, c a fixed constant independent of k and n, and f is an arbitrary function
independent of n.

By FPT we denote the class of all fixed-parameter tractable problems. If for an in-
stance (I, k) we have (I, k) ∈ P then it is a YES-instance and otherwise a NO-instance.
An algorithm satisfying the requirements of Definition 1.1.2 is called a parameterized
algorithm.

Equivalently, one can define the class of fixed-parameter tractable problems as follows:
strive to find a polynomial-time transformation that, given an instance (I, k), produces
another instance (I ′, k′) of the same problem, where |I ′| and k′ are bounded by some
functions h(k) and g(k).

Definition 1.1.3. A kernelization for a problem P is a polynomial time algorithm with
the following properties:

1. It transforms any instance (I, k) to an instance (I ′, k′)

2. k′ ≤ g(k)

3. |I ′| ≤ h(k)

4. (I, k) is a YES-instance if and only if (I ′, k′) is a YES-instance

Here h and g are arbitrary functions which are not dependent on n. The instance (I ′, k′)
will be called the kernel.

Kernelization informally can be viewed as a kind of pre-processing providing also an
upper bound on the size of the resulting instance (with respect to k). We mention that
through out this document g will always be the identity. As mentioned we have the
following relation

Lemma 1.1.1 ([35]): A problem is in FPT if and only if it admits a kernel.

Consequently, there are two methods of showing that a problem belongs to FPT . It
follows also that for every problem two lines of improvement open up. Firstly, try to
improve on the function f(k) in the run time upper bound f(k) ·nc of the parameterized
algorithm which decides the problem. Improving means to find a function f which is
only slowly increasing. Secondly, try to improve on h which gives an upper bound on
the kernel.
Nevertheless, there is a not negligible number of problems who resisted any algorithmic

19

Chapter 1. Introduction & Basic Definitions

attack in order to show their FPT membership. For this purpose a complexity hierarchy
based on FPT has been introduced:

FPT ⊆ W [1] ⊆W [2] ⊆ . . . ⊆W [Sat] ⊆W [P] ⊆ XP

To complete the hierarchy we also need a kind of reduction, the parameterized reduction.
It is basically the standard many-one reduction with an additional constraint. Roughly
speaking, the solution size of the instance created by the reduction must be upper
bounded by some function only depending on k. There is a strong evidence that all
these subset inclusions are strict. Thus, there should be problems in W [1] \ FPT . It is
commonly believed that short turing acceptance (does a Turing Machine halt in k
steps?) is not in FPT . Actually, it is the defining problem for W [1]. So, whenever we
can find a parameterized reduction from a W [1]-hard problem to a unclassified problem
we can assume that it is not in FPT .
Valuable introductions are the books of R. G. Downey and M. R. Fellows [35], J. Flum
and M. Grohe [62] and R. Niedermeier [125]. The latter one provides a more algorithmic
access to the topic. The second book focuses more on complexity theoretical issues.

1.2. Notation & Terminology

1.2.1. Graph-Theoretic Notions

Undirected Graphs

An undirected graph is denoted as G(V,E) where V is the set of vertices and E ⊆
{{u, v}|u, v ∈ V } are the edges. Let n := |V | and m := |E|. The (open) neighborhood
of a vertex v ∈ V in G is NG(v) := {u | {u, v} ∈ E} and its degree is dG(v) := |NG(v)|.
The closed neighborhood of v is NG[v] := NG(v) ∪ {v} and for a set V ′ ⊆ V we let
NG(V ′) :=

(
⋃

u∈V ′ NG(u)
)

. We omit the subscripts of NG(·), dG(·), and NG[·] when
G is clear from the context. A path P of length ℓ is a sequence of vertices p1 . . . pℓ
such that {pi, pi+1} ∈ E for 1 ≤ i < ℓ. In a simple path we have that the vertices are
pairwise different. A cycle of length ℓ is simple path of length ℓ such that {p1, pℓ} ∈ E
additionally holds. A subcubic graph has maximum degree at most three. For some
V ′ ⊆ V let EV ′(v) := {{u, v} ∈ E | u ∈ V ′} and E(V ′) =

⋃

v∈V ′ EV ′(v). For some

Ẽ ⊆ E we set V (Ẽ) :=
⋃

e∈Ẽ e. G[V ′] = G(V ′, E(V ′)) and G[E ′] = G(V (E ′), E ′) are
the graphs induced on V ′ and E ′, respectively.

Directed Graphs

We consider directed multigraphs G(V,A) in the course of our later algorithms, where
V is the vertex set and A the arc set. From A to V we have two kinds of mappings: For
a = (u, v) ∈ A, init(a) denotes the vertex at the end of the arc a and ter(a) at the tip, i.e.,
init(a) = u and ter(a) = v. A cycle of length ℓ in a directed graph is a sequence of arcs
a1, . . . , aℓ such that ter(ai) = init(ai+1) for 1 ≤ i < ℓ and ter(aℓ) = init(a1). An undi-
rected cycle is an acyclic arc set in G(V,A) which is a cycle in the underlying undirected

20

1.2. Notation & Terminology

graph Gu(Vu, Eu := {{u, v} | (u, v) ∈ A}). A directed path of length ℓ in G is a set of
pairwise different vertices v1, . . . , vℓ such that (vi, vi+1) ∈ A for 1 ≤ i < ℓ. An undirected
path is an arc set in G(V,A) which is a path in Gu. However, mostly graphs considered
are directed graphs without loops and multiple arcs. Let G be a directed graph with
the set of vertices V (G) and the set of arcs A(G). Let v, w ∈ V (G). If (w, v) ∈ A(G),
we say that w is an entering neighbor of v and v is a leaving neighbor of w. The in-
neighborhood of a vertex v ∈ V is N−

V ′(v) = {u ∈ V ′ | (u, v) ∈ A} and, analogously,
its out-neighborhood is N+

V ′(v) := {u ∈ V ′ | (v, u)}. The in- and out-degrees of v are
d−V ′(v) := |N−

V ′(v)| and d+V ′(v) := |N+
V ′(v)| and its degree is dV ′(v) := d−V ′(v) + d+V ′(v). If

V ′ = V then we might suppress the subscript. For V ′ ⊆ V we let N+(V) :=
⋃

v∈V ′ N+(v)
and N−(V ′) is defined analogously.
We distinguish between two kinds of arc-neighborhoods of a vertex v which are A−(v) :=
{a ∈ A | ter(a) = v} (the ingoing arcs) and A+(v) := {a ∈ A | init(a) = v} (the out-
going arcs). We have an in- and outdegree of a vertex, that is d−(v) := |A−(v)| and
d+(v) := |A+(v)|. We set NA(v) := A−(v) ∪ A+(v). We also define a neighborhood
for arcs a AN(a) := {NA(u) ∪ NA(v) \ {a} | a = (u, v)} and for A′ ⊆ A we set
AN(A′) :=

⋃

a′∈A′ AN(a′). For V ′ ⊆ V we set A(V ′) := {a ∈ A | ∃u, v ∈ V ′, init(a) =
u, ter(a) = v}.
Given a graph G = (V,A) and a graph G′ = (V ′, A′), G′ is a subgraph of G if V ′ ⊆ V
and A′ ⊆ A. The subgraph of G induced by a vertex set X ⊆ V is denoted by G(X)
and is defined by G(X) = (X,A′) where A′ = A(X). The subgraph of G induced by
an arc set Y ⊆ A is denoted by G(Y) and is defined by G(Y) = (V (Y), Y) where
V (Y) = {u ∈ V | ∃(u, v) ∈ Y ∨ ∃(v, u) ∈ Y }.

1.2.2. Notions from Satisfiability

Let V (F) be the set of variables of a given Boolean formula F . For v ∈ V (F) by v̄ we
denote the negation of v. If v is set, then it will be assigned the values true or false.
By the word literal, we refer to a variable or its negation. A clause is a disjunction of
literals. We represent clauses by sets of literals (e.g., {x, ȳ}). Likewise, we could view
a formula as a multi-set of clauses. If l is a literal and C is a clause, then we say that
l occurs in C if l ∈ C. Likewise, we say that l occurs in a formula F if l ∈ C for a
clause C ∈ F . A variable x occurs positively (or negatively) in F if x ∈ C for some
C ∈ F (or x̄ ∈ C for some C ∈ F). The variable x occurs only positively in F if x occurs
positively in F and x̄ does not occur in F . Accordingly, we may express that x occurs
only negatively in F . If (x ∈ C ∨ x̄ ∈ C), we also say that x appears in C; we also write
x ∈ V (C) for short. We consider formulas in conjunctive normal form (CNF), that is
a conjunction of clauses. We allow only 1- and 2-clauses, i.e., clauses with at most two
literals.

The weight of v, written #2(v), refers to the number of 2-clauses in which v appears,
i.e., in which v or v̄ occurs. For a set U ⊆ V (F) we define #2(U) :=

∑

u∈U #2(u). A set
A of literals is called assignment if for every v ∈ A it holds that v̄ 6∈ A. Loosely speaking
if l ∈ A for a literal l, then l receives the value true. We allow the formula to contain

21

Chapter 1. Introduction & Basic Definitions

truth-clauses of the form {T } that are always satisfied. Furthermore, we consider a
Max-2-Sat instance as multiset of clauses. A variable x ∈ V (F) is a neighbor of v,
written x ∈ N(v), if they appear in a common 2-clause. Let N [v] := N(v) ∪ {v}. The
variable graph Gvar(V,E) is defined as follows: V = V (F) and E = {{u, v} | u, v ∈
V (F), u ∈ N(v)}. Observe that Gvar is an undirected multigraph and that it neglects
clauses of size one. We can therefore employ graph-theoretic notions like Gvar[U] for
U ⊆ V , referring to the multigraph induced by the vertex set U , or N(x) or N [x]
referring to the open or closed neighborhood of x. Observe that #2(v) denotes the
degree of v in Gvar , and that #2(V) is just twice the number of edges in Gvar. We will
not distinguish between the words “variable” and “vertex”. Every variable in a formula
corresponds to a vertex in Gvar and vice versa. By writing F [l], we mean the formula
which emerges from F by setting the literal l to true the following way: First, substitute
all clauses containing l by {T }, then delete all occurrences of l̄ from any clause and
finally delete all empty clauses from F . Notice that empty clauses cannot be satisfied.
F [l̄] is defined analogously: we set l to false. Let us illustrate these definitions with a
small example.
Let F = {x1, x̄3}, {x̄1, x2}, {x̄3, x̄2}, {x2, x̄4}, {x1, x4}, {x̄1} then
F [x1] = {T }, {x2}, {x̄3, x̄2}, {x2, x̄4}{T } and
F [x̄1] = {x3}, {T }, {x̄3, x̄2}, {x2, x̄4}, {x4}{T }
The expression F [l1, . . . , lk] where the li’s are literals is defined recursively:
F [l1, . . . , lk] = F [l1][l2, . . . , lk].

1.3. Estimating running times

Run-time estimates of exponential-time algorithms (as being typical for search tree algo-
rithms) have only relatively recently found renewed interest, obviously initiated by the
steadily growing interest in parameterized complexity theory and parameterized (and
exact exponential-time) algorithms. Yet, the basic knowledge in this area is not very
new. This is possibly best exemplified by the textbook of Mehlhorn [116]. There, to
our knowledge, the very first parameterized algorithm for the vertex cover problem was
given, together with its analysis, much predating the advent of parameterized algorith-
mics. This algorithm is quite simple: if any edge e = {v1, v2} remains in the graph,
produce two branches in the search tree, one putting v1 into the (partial) cover and the
other one putting v2 into the cover. In both cases, the parameter k upper bounding the
cover size is decremented, and we consider G[V \{vi}] instead of G in the recursive calls.
Given a graph G together with an upper bound k on the cover size, such a search tree
algorithm produces a binary search tree of height at most k; so in the worst case, its
size (the number of leaves) is at most 2k. Namely, if T (k) denotes the number of leaves
in a search tree of height k, the described recursion implies T (k) ≤ 2T (k − 1), which
(together with the anchor T (0) = 1) yields T (k) ≤ 2k.

This reasoning generalizes when we obtain recurrences of the form:

T (k) ≤ α1T (k − 1) + α2T (k − 2) + · · ·+ αℓT (k − ℓ) (1.1)

22

1.3. Estimating running times

Algorithm 1 Simple time analysis for search tree algorithms, called ST-simple

Input(s): a list α1,. . . , αℓ of nonnegative integers, the coefficients of inequality (1.1)
Output(s): a tight estimate ck upper bounding O∗(T (k))

1: Consider inequality (1.1) as equation:

T (k) = α1T (k − 1) + α2T (k − 2) + · · ·+ αℓT (k − ℓ)

2: Replace T (k − j) by xk−j, where x is still an unknown to be determined.
3: Divide the equation by xk−ℓ {This leaves a polynomial p(x) of degree ℓ}.
4: Determine the largest positive real zero (i.e., root) c of p(x).
5: return ck.

for the size T (k) of the search tree (which can be measured in terms of the number of
leaves of the search tree, since that number basically determines the running time of a
search tree based algorithm).

More specifically, αi is a natural number that indicates that in αi of the
∑

j αj overall
branches of the algorithm, the parameter value k got decreased by i. Notice that,
whenever ℓ = 1, it is quite easy to find an estimate for T (k), namely αk

1 . A recipe for
the more general case is contained in Alg. 1. Why does that algorithm work correctly?
Please observe that in the simplest case (when ℓ = 1), the algorithm does what could
be expected. We only mention here that

p(x) = xℓ − α1x
ℓ−1 − · · · − αℓx

0

is also sometimes called the characteristic polynomial of the recurrence given by Eq. 1.1,
and the base c of the exponential function that Algorithm 1 returns is called the branch-
ing number of this recurrence. Due to the structure of the characteristic polynomial, c
is the dominant positive real root.

Alternatively, such a recursion can be also written in the form

T (k) ≤ T (k − a1) + T (k − a2) + · · ·+ T (k − ar). (1.2)

Then, (a1, . . . , ar) is also called the branching vector of the recurrence. A (a1, . . . , ar)-
branch describes a recursive algorithm which generates recursively r problems where the
complexity measure of the i-th problem has been reduced by an amount ai, i.e., the
algorithm induces a recursion of the form as in equation 1.2.

As detailed in [82, pp. 326ff.], a general solution of an equation

T (k) = α1T (k − 1) + α2T (k − 2) + · · ·+ αℓT (k − ℓ)

(with suitable initial conditions) takes the form

T (k) = f1(k)ρk1 + · · ·+ fℓ(k)ρkℓ ,

where the ρi are the distinct roots of the characteristic polynomial of that recurrence,
and the fi are polynomials (whose degree corresponds to the multiplicity of the roots

23

Chapter 1. Introduction & Basic Definitions

(minus one)). As regards asymptotics, we can conclude T (k) ∈ O∗(ρk1), where ρ1 is the
dominant root.

The exact mathematical reasons can be found in the theory of polynomial roots, as
detailed in [82, 61, 83, 106, 107]. It is of course also possible to check the validity
of the approach by showing that T (k) ≤ ρk for the obtained solution ρ by a simple
mathematical induction argument.

Due to case distinctions that will play a key role for designing refined search tree
algorithms, the recurrences often take the form

T (k) ≤ max{f1(k), . . . , fr(k)},

where each of the fi(k) is of the form

fi(k) = αi,1T (k − 1) + αi,2T (k − 2) + · · ·+ αi,ℓT (k − ℓ).

Such a recurrence can be solved by r invocations of Alg. 1, each time solving T (k) ≤
fi(k). This way, we get r upper bounds T (k) ≤ cki . Choosing c = max{c1, . . . , cr} is
then a suitable upper bound.

Eq. (1.1) somehow suggests that the entities aj that are subtracted from k in the
terms T (k − aj) in Eq. (1.2) are natural numbers. However, this need not be the case,
even in the case that the branching process itself suggests this, e.g., taking vertices
into the cover to be constructed. How do such situations arise? Possibly, during the
branching process we produce situations that appear to be more favorable than the
current situation. Hence, we could argue that we take a certain credit on this future
situation, this way balancing the current (bad) situation with the future (better) one.
Interestingly, this approach immediately leads to another optimization problem: How
to choose the mentioned credits to get a good estimate on the search tree size? We will
describe this issue in more detail in a separate section. This sort of generalization is the
backbone of the search tree analysis in exact exponential algorithms, where the aim is,
say in graph algorithms, to develop non-trivial algorithms for hard combinatorial graph
problems with run-times estimated in terms of n (number of vertices) or sometimes
m (number of edges). One typical scenario where this approach works is a situation
where the problem allows for nice branches as long as large-degree vertices are contained
in the graph, as well as for nice branches if all vertices have small degree, assuming
that branching recursively generates new instances with degrees smaller than before, see
[67, 73, 134, 151]

1.4. Reference Search Trees

We will formalize a search scheme for combinatorial optimization problems. These
problems can usually be modeled as follows. We are given a triple (U ,S, c) such that
U = {u1, . . . , un} is called the universe, S ⊆ P(U) := {M | M ⊆ U} is the solution
space and c : P(U)→ N is the value function. Generally we are looking for a S ∈ S such
that c(S) is minimum or maximum. We then speak of a combinatorial minimization

24

1.4. Reference Search Trees

(maximization, resp.) problem. The general search space is P(U).
The set vector (svQ) of a set Q ∈ P(U) is a 0/1-vector indexed by the elements of U
such that: svQ[i] = 1 ⇐⇒ ui ∈ Q. We write svQ ∈ S when we mean Q ∈ S. A solvec
is a 0/1/⋆-vector.
We define the following partial order � on solvecs s1, s2 of length n:

s1 � s2 ⇐⇒ ∀1 ≤ i ≤ n : (s1[i] = ⋆⇒ s2[i] = ⋆)

∧(s1[i] = 0)⇒ (s2[i] ∈ {0, ⋆})
∧(s1[i] = 1)⇒ (s2[i] ∈ {1, ⋆})

If s1 � s2 then s2 can be transformed to s1 by replacing an entry s2[i] = ⋆ by s1[i]. In the
following we think of a solvec s2 as a partial solution of a combinatorial problem. The
fact s1 � s2 implies that s2 can be extended to s1, i.e. {i | s2[i] = 1} ⊆ {i | s1[i] = 1},
{i | s2[i] = 0} ⊆ {i | s1[i] = 0} and {i | s2[i] = ⋆} ⊇ {i | s1[i] = ⋆}.
A out-tree is a directed tree D(V, T) with root r ∈ V such that all arcs are directed
from the father-vertex to the child-vertex. For a vertex u ∈ V the term STu refers to
the sub-tree rooted at u.

Definition 1.4.1. A reference search tree (rst) for a combinatorial minimization (max-
imization, resp.) problem (U ,S, c) is a directed graph D(V, T ∪ R ∪ L) together with a
injective function label : V → {(z1, . . . , zn) | zi ∈ {0, 1, ⋆}} with the following properties:

1. D(V, T) is an out-tree.

2. D(V, T ∪R ∪ L) is acyclic.

3. Let u, v ∈ V (D) then u is a descendant of v in D(V, T) iff label(u) � label(v).

4. For any set vector svQ of a set Q ∈ P(U) with Q ∈ S and a vertex v ∈ V (D) such
that svQ � label(v) we have either one of the following properties:

a) There exists a vertex x ∈ V (STv) such that there is an arc (x, y) ∈ L,
(y, x) 6∈ L and we have that there is a 0/1-vector h with h � label(y),
c(h) ≤ c(svQ) (c(h) ≥ c(svQ), resp.), h ∈ S and y ∈ V (STv).

b) There exists a vertex x ∈ V (STv) such that there is an arc (x, y) ∈ R
and we have that there is a 0/1-vector h with h � label(y), c(h) ≤ c(svQ)
(c(h) ≥ c(svQ), resp.) h ∈ S and y 6∈ V (STv).

In item 4 of Definition 1.4.1 we suppose that the label of v represents a partial solution.
Now if svQ � label(v) this means that label(v) can be extended to the set vector svQ.
It is possible that such a set vector does not have to be considered as a solution.
How can a rst be exploited algorithmically? It is important to see that in a rst all
the information for finding an optimal solution is included. In a branching algorithm
we often skip a solution s due to local exchange arguments. So, if s � label(u) for a
sub-tree STu we skip s if we can find a solution in STu which is no worse. This fact
is reflected by item 4a. Here a solution svQ � label(v) is skipped if a local reference

25

Chapter 1. Introduction & Basic Definitions

(x, y) exists, i.e., y ∈ V (STv). Thus, we find the alternative solution in the same sub
tree attached to v ∈ V (D). These kind of local references are implicitly made by any
branching algorithm beating the 2n-barrier. Observe that svQ � label(v), h � label(v)
and h � label(y) where h is the alternative solution. Thus, the 0/1-entries in label(v)
are also contained in svQ and h.
Nevertheless, we try to extend this current ad-hoc notion of search trees: In a reference
search tree we also have the possibility to make a reference to another subtree STf
with label(f) 6� label(v) where such a solution could be found, see Figure 1.1 for an
illustration. In STf it might also be the case that we have to follow a reference once more.
So, the only obstacle seems to be that, if we follow reference after reference, we end up
in a cycle. But this is prevented by item 2. of Definition 1.4.1. An algorithm building up
an rst can eventually benefit by cutting of branches and introducing references instead.
In the rest of this document we use the following convention: a local reference is an arc
(x, y) ∈ L and a global reference an arc (x, y) ∈ R. The word reference refers to both
kinds.

The Nodes of the Reference Search Tree The nodes of the rst V (D) represent
choices made concerning the, say, blank objects in the input. These could be vertices in
some graph for which we have not decided whether they are part of the future solution
or not. So, each node of V (D) represents exactly one choice for such an object. These
choices can be due to branching or to applying reduction rules. Hence there is a 1-to-1
correspondence between V (D) and the application of reduction rules and branchings.
According to this we will speak of full nodes and flat nodes, i.e. full nodes have two chil-
dren in D(V, T), flat nodes only one. In particular, full nodes correspond to a branching
operation and flat nodes to the application of a reduction rule. Observe that nodes
where reference pointers start are flat. If we encounter an object v where a choice has
been already made in the current node q of the search tree we can find a second node
dv ∈ V (D) which represents the choice made on v, i.e., label(dv) contains a 0/1-entry at
the position of v whereas for the father of d this is not true. That is we must have that
label(q) � label(dv). We can find dv by simply going up the search tree starting from
q. We sometimes indicate this relation by writing dqv, whereas we omit the superscript
where it is clear from the context. By p(dqv) we denote the parent of dqv in the reference
search tree D(V, T), i.e., the only entering neighbor of dqv.

Drawing the Reference Search Tree. The correctness proofs proceed to some extent
in a graphical way. For this we draw the out-tree (the search tree without references)
D(V, T) in the plane with x- and y-coordinates. If u is a point in the plane then posx(u)
denotes its x- and posy(u) its y-coordinate.

Definition 1.4.2. It is possible to draw an out-tree D(V, T) satisfying three properties:

1. Firstly, if v ∈ V (D) is a father of u ∈ V (D) then posy(v) > posy(u).

2. Secondly, let v ∈ V (D) have two children uv, uv̄, i.e., it is a full node. The child
uv̄ corresponds to the branch where we decided that some object v is excluded, in

26

1.4. Reference Search Trees

uv we decided to include v in to the future solution. We want D to be drawn such
that for all z ∈ STuv̄

we have posx(v) > posx(z) and for all z′ ∈ STuv
we have

posx(z′) > posx(v). Hence we may speak of uv̄ as the left and uv as the right child
of v. According to this we will refer to them as l(v) and r(v), respectively.

3. Thirdly, let v ∈ V (D) be a flat node with its only child vc. Then we require that
posx(v) = posx(vc).

A drawing of an out-tree in the plane satisfying these properties will be called proper.

The idea behind a proper drawing of a reference tree is that if we are inserting global
references, say, strictly pointing from the left to the right then the overall structure
remains acyclic.

Lemma 1.4.1: Let D(V, T ∪ R ∪ L) be a directed graph such that D(V, T) is an out-
tree. If all arcs in R are pointing from the left to right (right to left, resp.) with respect
to x-coordinate and for all arcs (x, z) ∈ L we have posy(x) ≥ posy(z) in the proper
drawing of D(V, T) then D(V, T ∪ R ∪ L) is acyclic.

Proof. Assume, w.l.o.g, all arcs in R point from the left to the right. Firstly, suppose
there is a cycle C ⊂ T∪R in D(V, T∪R∪L). The existence of such a cycle C implies that
there is at least one r ∈ R which must point from the right to the left, a contradiction.
Secondly, suppose there is a cycle C ⊂ T ∪ L in D(V, T ∪ R ∪ L). If there is at least
one (a, b) ∈ L ∩ C with posy(a) > posy(b) the existence of such a cycle would imply
an arc (x, z) ∈ L ∩ C with posy(x) < posy(z), a contradiction. If for all (a, b) ∈ L ∩ C
we have posy(a) = posy(b) we must have a cycle of length two. Thus, there are arcs
(a, b), (b, a) ∈ L violating Definition 1.4.1.4a.
Thirdly, suppose there is a cycle C ⊂ T ∪R∪L in D(V, T ∪R∪L) such that C ∩R 6= ∅
and C ∩ L 6= ∅. Let C = (c1, c2)(c2, c3) . . . (cℓ−1, cℓ) and, w.l.o.g, (c1, c2) ∈ R. C can be
partitioned the following way: C = S1S2 . . . St such that
a) for i ≡ 1 mod 2 we have Si ⊆ R
b) for i ≡ 0 mod 2 we have Si ⊆ T ∪ L.
Let Si = (si1, s

i
2)(s

i
2, s

i
3) . . . (s

i
|Si|−1, s

i
|Si|

). Consider S2 ⊆ T ∪ L and let (a, b) ∈ S1 and

(p, q) ∈ S2. Then we have that posx(a) < posx(p) and posx(a) < posx(q) due to item 2
in Definition 1.4.2. By an inductive argument it can be proven that for all (p, q) ∈ St

and for all 1 ≤ j < t with Sj ∈ R and (a, b) ∈ Sj we have posx(a) < posx(p) and
posx(a) < posx(q). Especially, we can deduce that posx(c1) < posx(st|St|

). On the other

hand note that st|St|
= cℓ and due to C being a cycle c1 = cℓ. Thus, we also have

posx(c1) = posx(st|St|
), a contradiction.

Thus, item 2 of Definition 1.4.1 is easily proven if we can show that some algorithm is
inserting global references pointing in only one horizontal direction and local references
pointing downwards, i.e., for all arcs (x, z) ∈ L we have posy(x) ≥ posy(z) in the proper
drawing. Also we must show that: (a, b) ∈ L ⇒ (b, a) 6∈ L. Local references point
strictly downwards if for all arcs (x, z) ∈ L we have posy(x) > posy(z) in the proper
drawing.

27

Chapter 1. Introduction & Basic Definitions

s

STf

STu

STy

Figure 1.1.: The left child y of the subtree rooted at u (called STu) is deleted from the
search space. Instead we add a reference (u, f) to the root of STf . Here we
have to assure that every solution in the sub tree STy is no better than at
least one solution in STf .

28

Chapter 2.

Measure&Conquer

The search tree method is one of the most applied techniques in the design of exponential-
time algorithms. They play an important role in parameterized and non-parameterized
exponential-time algorithmics. It can be seen as an intelligent way of traversing the
solution space of a combinatorial problem. The efficiency of such algorithms is in direct
relation to the size of the traversed solution space. Generally, we try to argue that
certain parts of the solution space can be neglected as we will find equivalent solutions
in the considered parts. We now explain this concept by the following case study:

2.1. Case Study: A Search Tree Algorithm for Vertex

Cover

We are considering the following problem
Vertex Cover
Given: G(V,E).
Task: Find V ′ ⊆ V such that for all e ∈ E we have V ′ ∩ e 6= ∅ and |V ′| is minimum.

A very simple and intuitive algorithm is Algorithm 2, which has already been described
in an intuitive manner in section 1.3:

Algorithm 2 SimpVC(G(V,E),Sol)

1: if ∃e = {u, v} ∈ E then
2: S1=SimpVC(G[V \ {u}],Sol ∪ {u}).
3: S2=SimpVC(G[V \ {v}],Sol ∪ {v}).
4: if |S1| < |S2| then
5: return S1

6: else
7: return S2

8: end if
9: else

10: return Sol
11: end if

If we invoke the procedure in the manner SimpV C(G(V,E), ∅) it will return a min-
imum vertex cover. This algorithm uses the fact that every edge e = {u, v} must be

29

Chapter 2. Measure&Conquer

covered by u or v. This means that if Sol ⊆ V is a solution to the problem then either
u ∈ Sol or v ∈ Sol. This fact is used in steps 5 and 6. We solve the problem by creating
two new problems of smaller size as either u or v are deleted from the input graph. We
call this a recursive algorithm. Thus, the maximum recursion depth is n and the number
of created subproblems is 2n. These subproblems can be viewed as the leaves of a tree,
where the internal vertices correspond to the non-terminating calls of SimpVC. We call
this search structure a search tree. We will show that with only some more effort we can
achieve a search tree size of only O(1.3803n). We introduce the notion of a reduction
rule.

Definition 2.1.1. A reduction rule is a polynomial-time algorithm, which, given an
problem instance I, returns a second instance I ′ such that

1. size(I) ≥ size(I ′).

2. From any optimal solution S ′ for I ′ an optimal solution S for I can be constructed
in polynomial time .

As an example we state the following reduction rule:

Deg1: Let e = {u, v} ∈ E such that d(u) = 1. Then delete u and the edges incident to v

The correctness of this rule can be proven the following way. Let I ′ be the instance
created by Deg1 and S ′ be any optimal solution for I ′. Let S = S ′ ∪ {v}. Then S is a
vertex cover. We claim that S is an optimal solution for the original instance I. Let S∗

be any optimal solution for I with |S∗| < |S|. W.l.o.g, we can assume that v ∈ S∗ as
otherwise u ∈ S∗. Then simply exchange v and u. Let H := S∗ \ {u} then H is a vertex
cover for I ′. As |H| < |S ′| this contradicts the optimality of S ′.

This is a rather theoretical point of view. The above rule can also be explained in a
more algorithmic fashion. Whenever there is an optimal solution S for I with u ∈ S
then S̃ := S \ {u} ∪ {v} is also an optimal solution. This due to the fact that u only
covers {u, v}, which v also covers (and possibly even more edges). Coming from this
algorithmic point of view one can also state the reduction rule this way.

Deg1’: Let e = {u, v} ∈ E such that d(u) = 1. Then adjoin v to the solution, delete u
and the edges incident to v

This means that by Deg1’ we fix some vertex to be in the optimal solution. The
reduction rules throughout this dissertation will be presented in this algorithmic manner.
Nevertheless, they will obey Definition 2.1.1.
Let us now consider Algorithm 3.

In Algorithm 3 we recognize the typical structure of a recursive algorithm. Firstly,
upon entering the procedure a set of reduction rules will be carried out exhaustively.
We find this part in the first line. Then there is a check if the instance is already empty
or, in some cases, if the instance is solvable in polynomial time. This relates to line
two. Afterwards the algorithm considers a finite number of recursions. This can be

30

2.1. Case Study: A Search Tree Algorithm for Vertex Cover

Algorithm 3 SimpVC2(G(V,E),Sol)

1: Apply Deg1’ exhaustively.
2: if ∃e = {u, v} ∈ E with d(u) ≥ 2 then
3: S1 =SimpVC2(G[V \ {u}],Sol ∪ {u}).
4: S2 =SimpVC2(G[V \ {N [u]}],Sol ∪N(u)).
5: if |S1| < |S2| then
6: return S1

7: else
8: return S2

9: end if
10: else
11: return Sol.
12: end if

observed in lines three and four. Algorithms which obey this structure are often called
Branch&Reduce Algorithms.
We now come to the correctness of Algorithm 3. We above already showed that Deg1’
applied to any instance is correct. If there is no edge then we are done and we can
return the constructed solution Sol. If there is a edge {u, v} such that d(u) = d(v) = 1
this would contradict the fact that Deg1’ has been applied exhaustively. Therefore, the
remaining interesting case is the one which applies in the if-statement in line two. The
two recursive calls are based on the following fact. If u is not in the optimal solution
then every neighbor must be contained there. Otherwise an edge remains uncovered.
As we are looking for a minimum solution the procedure returns the smaller solution
obtained from the recursive calls (i.e. the smaller set out of {S1, S2}).
We now come to the complexity. The reduction rule phase only consists in applying
Deg1’. This can be done in O(n) steps by simply checking whether each vertex has one
or more than one neighbor. Now the two recursive calls are the part where exponential
growth in the running time comes from. In the case u is adjoined to the solution n is
decreased by one. In the second call where N(u) is adjoined n decreases by three. This
due to the fact that d(u) ≥ 2. Hence, this implies a branching vector of the form (1, 3)
whose characteristical polynom has the as the biggest positive root 1.4656. Hence, the
number of generated subproblems is O(1.4656n).

The Polynomial Time Solvable Case

A further run time improvement comes from identifying a graph class where Vertex
Cover is polynomial time solvable. We consider graphs with maximum degree two.
Clearly, this class consist exactly of simple paths and cycles of length ℓ, which we abbre-
viate by Pℓ = p1 . . . pℓ and Cℓ = c1 . . . cℓ. For this class it is straightforward to see that
the sets (

⋃

0≤i≤⌊ℓ/3⌋−1 p2+3·i) ∪ {pℓ−1} and (
⋃

0≤i≤⌊ℓ/3⌋−1 c2+3·i) ∪ {cℓ−1}, respectively, are
solutions. Basically, starting from the second vertex we take every third vertex into the
solution. With this knowledge we realize that Algorithm 4 is correct.

31

Chapter 2. Measure&Conquer

Algorithm 4 SimpVC3(G(V,E),Sol)

1: Apply Deg1’ exhaustively.
2: if ∀v ∈ V : d(v) ≤ 2 then
3: Solve the instance in polynomial time.
4: else
5: if ∃e = {u, v} ∈ E with d(u) ≥ 3 then
6: S1 =SimpVC3(G[V \ {u}],Sol ∪ {u}).
7: S2 =SimpVC3(G[V \ {N [u]}],Sol ∪N(u)).
8: if |S1| < |S2| then
9: return S1

10: else
11: return S2

12: end if
13: else
14: return Sol.
15: end if
16: end if

The run time of Algorithm 4 improves as we can assume that d(u) ≥ 3 in the recursive
calls. By the discussion of this part with respect to Algorithm 3 we see that this time a
(1, 4) branching vector can be exhibited. Therefore, the number of generated subprob-
lems can be bounded from above by O(1.3803n). We also mention that by reduction
rule Deg1’ the graphs appearing in step 3 of Algorithm 4 are 2-regular, i.e., the graph
consists of cycle components.
We have seen that with some moderate effort it is possible to design an algorithm which
breaks to trivial bound of 2n (which simply enumerates all vertex subsets). With refined
case distinctions, more sophisticated branching rules and a Measure&Conquer-Analysis
the run time of the search tree algorithm has been improved toO∗(20.287n) ⊆ O∗(1.2202n)
by F.V. Fomin, F. Grandoni and D. Kratsch [74].

2.2. Case Study: A Search Tree Algorithm for

Dominating Set

We come to a second problem:

Dominating Set
Given: G(V,E).
Task: Find a minimum subset D ⊆ V such that for all u ∈ V we have N [u] ∩D 6= ∅.
Alternatively, we also could say that every vertex u 6∈ D must have a neighbor in D. A
set D with this property is called a dominating set.
Now we could think of applying the same branching strategy as in the case of Vertex
Cover. So we might pick a vertex v ∈ V and argue that either v must be in the

32

2.2. Case Study: A Search Tree Algorithm for Dominating Set

dominating set we look for or one of its neighbors. As the degree of v could be very
large, say d(v) = 3, this implies a branching vector of the form (1, . . . , 1) of length
d(x) + 1, i.e., (1, 1, 1, 1) in our case. Thus, the run time upper bound is far from being
less then O∗(2n). Here we have to take another approach: Measure&Conquer (see [74]).
In this approach, the complexity of an algorithm is not analyzed with respect to n = |V |
(or m = |E|) for a graph instance G = (V,E). Rather, one chooses a tailored measure,
call it µ, which should reflect the progress of the algorithm. Nevertheless, in the end
we desire an upper bound of the form cn. Hence, we must assure that there is some
constant ℓ such that µ ≤ ℓn during the whole algorithm. Then, a proven upper bound
cµ entails the desired upper bound cℓn.

A simple algorithm

We will focus on the following annotated variant of Dominating Set.

Annotated Dominating Set
Given: G(V,E) and two disjunctive subsets A, I ⊆ V .
Task: Find a minimum set D ⊆ V \I such that for all u ∈ V we have N [u]∩(D∪A) 6= ∅.
The sets A and I can be interpreted in the following way. The set A consists of vertices,
which are predetermined to be part of the future dominating set. The set I is composed
of vertices, which do not appear there. We might think of the vertices in A as active
and the ones in I as inactive. We also see that each instance of Dominating Set is
also an instance of Annotated Dominating Set. Here the sets A and I are empty.
We give an algorithm for Annotated Dominating Set using less than 2n steps.

It branches on vertices by deciding whether they should be in the solution (ac-
tive) or not (inactive). Regarding this we call them active and inactive. A ver-
tex for which this decision has not been made is called blank. If a vertex is active,
then its neighbors and itself are dominated. Let DO := {v ∈ V | v is dominated},
ND := V \ DO, BLND = {v ∈ V | v is blank & not dominated }, INND = {v ∈ V |
v is inactive & not dominated }, INDO = {v ∈ V | v is inactive & dominated } and
BLDO = {v ∈ V | v is blank & dominated }.
We first give a set of reduction rules:

RR1: If there is u ∈ INND such that N(u)∩ (BLDO∪BLND) = {q} then set q active.

RR2: Let u ∈ BLDO such that |N(u) ∩ ND| ≤ 1 then set u inactive

RR3: Let u ∈ BLND such that all v ∈ N(u) are inactive, then u becomes active

RR4: Let u ∈ BLND such that all v ∈ N(u) are dominated. Then u becomes inactive

If we assume that RRi is always carried out before RR(i+1) the next proposition holds.

Proposition 2.2.1: The reduction rules are sound and after their exhaustive applica-
tion we have the next two properties:

1. For all u ∈ BLDO we have |N(u) ∩ ND| ≥ 2.

2. For all u ∈ BLND we have that |N(u) ∩ND| ≥ 1.

33

Chapter 2. Measure&Conquer

Algorithm 5 A simple algorithm for Dominating Set

1: Apply the reduction rules exhaustively.
2: if possible choose a v ∈ BLND such that |N(v) ∩ (BLND ∪ INND)| ≥ 2. then
3: Binary branch on v (i.e., set v active in one branch, inactive in the other)
4: else if possible choose a v ∈ BLDO such that |N(v)∩ (BLND∪ INND)| ≥ 3. then
5: Binary branch on v.
6: else
7: Solve the remaining instance in polynomial time using an edge cover algorithm.
8: end if

Proof. We begin with the soundness of the rules. In RR1 the vertex q is the only blank
neighbor of u. Hence, q is the only vertex which can dominate u and thus it must be
active. We turn to RR2. If |N(u) ∩ ND| = 0 then all vertices in N [u] are dominated.
There is no need for u being active. If N(u) ∩ ND = {q} then observe that there must
be some t ∈ N [q] which is blank and t 6= u (✶). If q is blank then one can choose t = q.
If q is inactive then RR1 assures (✶). But then any solution where u is active can be
transformed to an equal sized solution where u is inactive. Simply set t active and u
inactive. In RR3 no vertex different from u can dominate it and thus u must be set
active. In RR4 u will only dominate itself. Due to the higher priority of RR3 there
must be some t ∈ N(u) ∩ BLDO. If u is active in some solution S then we get an
equivalent solution S ′ be setting t active and u inactive.
Property one is assured by RR2 and property two by RR4.

Now Algorithm 5 which solves Annotated Dominating Set is introduced.

A Polynomial Time solvable Case

In step 7 of Algorithm 5 we claim that the remaining instance can be transformed into
an Edge Cover-instance. The task in Edge Cover is to identify a set Ẽ ⊆ E
minimum in cardinality such that V = V (Ẽ). This problem can be solved by matching
techniques: Firstly, compute in O(n3) a maximum matching M ⊂ E. Let E ′ := M . Sec-
ondly, if there is a u ∈ V with u 6∈ V (M) then simply adjoin one of its incident edges to
E ′. When this procedure ends E ′ is the desired edge cover, see J. Plesńık [128] for details.

We first recognize that in step seven every vertex u ∈ BLND∪BLDO can dominate at
most two vertices possibly including itself. Thus, |N [u] ∩ ND| ≤ 2. On the other hand
due to proposition 2.2.1 we must have |N [u] ∩ ND| ≥ 2 and therefore |N [u] ∩ ND| = 2.
Now create an edge cover instance GEC = (V (EEC), EEC) the following way:

For all v ∈ BLND with N(v) ∩ (BLND ∪ INND) = {q}, adjoin e = {v, q} to EEC and
let α(e) = v; for all v ∈ BLDO with N(v) ∩ (BLND∪ INND) = {x, y}, note that x 6= y,
put e = {x, y} into EEC and (re-)define α(e) = v.
If C is a minimum edge cover of GEC we can extract a solution for the original problem:
set all v active where v = α(e) for some e ∈ C.

34

2.2. Case Study: A Search Tree Algorithm for Dominating Set

The Exponential Part

Now we come to the analysis of the branching process in steps 3 and 5. We now define
our measure:

µ = |BLND|+ ω · (|INND|+ |BLDO|) ≤ n

Let nbl = |N(v) ∩ BLND| and nin = |N(v) ∩ INND|.
In step 3 we recurse on two cases by setting v to be active in one and to be inactive in
the other.
v becomes active: We first reduce µ by one as v vanishes from µ. Then all vertices in
N(v)∩BLND will be dominated and hence moved to the set BLDO. Thus, µ is reduced
by an amount of nbl ·(1−ω). In the same way the vertices in N(v)∩INND are dominated.
Therefore, these do not appear in µ anymore. Hence, µ is lowered by ninω.
v becomes inactive: We reduce µ by (1− ω), as v is moved from BLND to INND.
Hence, the branching vector is:

(1 + nbl(1− ω) + ninω, (1− ω)) (2.1)

where nbl + nin ≥ 2 due to step 2.

In step 4, we have chosen v ∈ BLDO for branching. Here, we must consider that in the
first and second branch we only get ω as reduction from v (v disappears from µ). But
the analysis with respect to N(v) ∩ (BLND ∪ INND) remains valid. Thus,

(ω + nbl(1− ω) + ninω, ω) (2.2)

is the branching vector with respect to nbl + nin ≥ 3 due to step 3.

Unfortunately, depending on nbl and nin we have an infinite number of branching vectors.
But it is only necessary to consider the worst case branches. For (2.1) these are the ones
with nbl + nin = 2 and for (2.2) the ones where nbl + nin = 3. For any other branching
vector, we can find one among those giving a worse upper bound. Thus, we have a
finite set of recurrences R1(ω), . . . , R7(ω) depending on ω. The next task is to choose
ω in a way such that the maximum root of the evolving characteristic polynomials is
minimum. In this case we easily see that ω := 0.5. Then the worst case branching vector
for (2.1) and (2.2) is (2, 0.5). Thus, the number of leaves of the search tree evolving from
this branching vector can be bounded by O∗(1.9052µ). Thus, our algorithm breaks the
2n-barrier using a simple measure.

Refining The Measure One might argue that we should use a more elaborated measure
to get a better upper bound:

µ′ = |BLND|+ ω1 · (|INND|) + ω2 · (|BLDO|)

Under µ′, (2.1) becomes (1 + nbl(1− ω2) + ninω1, (1− ω1));(2.2) becomes (ω2 + nbl(1−
ω2) + ninω1, ω2).

35

Chapter 2. Measure&Conquer

The right choice for the weights turns into a tedious task. In fact, if ω2 = 0.637 and
ω1 = 0.363, then we get an upper bound of O∗(1.8899µ′

). Nevertheless, the current best
upper bound is O(1.5048n), see [153].

Generally, one wants the measure to reflect the progress made by the algorithm best
possible. This leads to more and more complicated measures with lots of weights to be
chosen. So at a certain point, this task cannot be done by hand and is an optimization
problem of its own. It can only be solved in reasonable time with the help of a computer.
We will give some details on this in section 2.6.

The approach of using non-standard measures for estimating the complexity of exact
exponential time algorithms is called Measure&Conquer. With this technique it was
possible to prove run time upper bounds O∗(cn) with c < 2 for several hard vertex
selection problems. Among these problems (where for years nothing better than the
trivial 2n-algorithm was known) are many variants of Dominating Set [67] like Con-
nected or Power Dominating Set [73, 134] and Feedback Vertex Set [64].
The methodology resulted in simplifying algorithms (Independent Set [72]) and in
speeding up existent non-trivial ones (Dominating Set [67, 151], Independent Dom-
inating Set [79] and Max-2-Sat [133]). This approach also served for algorithmically
proving upper bounds on the number of minimal dominating [70] and feedback vertex
sets [64].

2.3. Case Study: Parameterized Measure & Conquer for

Nonblocker

It is known that Dominating Set parameterized by the size of solution set is W [1]-
hard [35]. Thus, it is not likely that there is an FPT -algorithm for this problem. In
lieu thereof we rather consider the so-called dual nonblocker of Dominating Set.
Consequently we call N ⊂ V a nonblocker set if V \N is a dominating set.

k-Nonblocker
Given: A graph G(V,E), and the parameter k.
We ask: Is there a nonblocker set N ⊆ V such that |N | ≥ k.

In our section 2.3 we will exhibit an algorithm solving this problem inO∗(3.07k). Thereby
we demonstrate how to transfer the Measure&Conquer-approach to parameterized algo-
rithmics.

2.3.1. A Simple Approach

Every dominating set D can be portioned into the sets D≥1 := {v ∈ D | (N(v) \N [D \
{v}]) 6= ∅} and D0 := D \ D≥1. Let also NB(D) := V \ D be the corresponding
Nonblocker set.

36

2.3. Case Study: Parameterized Measure & Conquer for Nonblocker

Lemma 2.3.1: Suppose N is a maximum Nonblocker set. If D := V \ N then the
following holds:

1. There are no u, v ∈ D0 such that {u, v} ∈ E.

2. There is no u ∈ D0 and h ∈ D≥1 such that {u, h} ∈ E.

3. There are no u, v ∈ D0 and no h ∈ N such that {u, h}, {v, h} ∈ E.

Proof. 1. Assume the contrary. Then let D′ = D \ {u}. D′ is a dominating set such
that v ∈ D′

≥1 and |D′| = |D| − 1. Thus NB(D′) > NB(D) = N , a contradiction
to the maximality of N .

2. Let D′ = D \ {u}. Then analogously has in the previous item D′ is a dominating
set such that NB(D′) > NB(D), a contradiction.

3. Consider D′ = (D \ {u, v}) ∪ {h} Then D′ is a dominating set with h ∈ D′
≥1

and |D′| < |D|. Hence, again the contradictory implication NB(D′) > NB(D)
follows.

By Lemma 2.3.1 we directly can justify the next local optimization rules (OR):

OR1 If there are u, v ∈ D0 such that {u, v} ∈ E then set D := D\{u} and N := N∪{u}.

OR2 If there are u ∈ D0 and h ∈ D≥1 such that {u, h} ∈ E then set D := D \ {u} and
N := N ∪ {u}.

OR3 If there are u, v ∈ D0 and h ∈ N such that {u, h}, {v, h} ∈ E then set D :=
(D \ {u, v}) ∪ {h} and N := (N \ {h}) ∪ {u, v}.

The Algorithm We first present Algorithm 6:

In the algorithm the vertices in the set I are predetermined not to be dominating and
A contains vertices who will be dominating. Observe that in what follows we will use
the same notation as in section 2.2, i.e. the active vertices are in D, the inactive in N
and D = A as well as N = I.

We use the a complexity measure which is inspired by the Measure&Conquer-Approach:

κ(A, I) = k − ωnb · |I| − (1− ωnb) · |A| where ωnb = 0.5

It is very important that no step of Algorithm 6 ever increases κ(A, I). The next
lemma suffices to show this.

Lemma 2.3.2: Step 3 of Algorithm 6 and the optimization rules (OR) do not increase
κ(A, I).

Proof. Note that step 3 only adds vertices from V \ (A ∪ I) either to A or I. This only
decreases κ(A, I). As ωnb = (1− ωnb) the claim follows for the optimization rules.

37

Chapter 2. Measure&Conquer

Algorithm 6

Input: A connected graph G(V,E) and the parameter k.
Output: A Nonblocker set N ⊆ V such that |N | ≥ k if it exists.
A← ∅, I ← ∅.
SolveNB(A,I)

Procedure: SolveNB(A, I)

1: If there is u ∈ I such that N [u] ⊆ I then halt and answer NO.
2: if κ(A, I) ≤ 0 then
3: Greedily augment A to a dominating set D.
4: Determine the sets D≥1, D0 and N := NB(D).
5: Apply OR1, OR2 and OR3 exhaustively resulting in the sets D∗ and N∗ :=

NB(D∗).
6: return YES.
7: else
8: Choose a vertex v ∈ V \ (A ∪ I).
9: Recursively consider SolveNB(A ∪ {v}, I) and SolveNB(A, I ∪ {v}).
10: end if

As we stop the algorithm in step 6 we must be able to determine in polynomial time
if a nonblocker set extending I exists.

Lemma 2.3.3: In step 6 of Algorithm 6 N∗ := NB(D∗) is a Nonblocker set such that
|N∗| ≥ k.

Proof. Let u ∈ D∗
≥1 then choose an arbitrary v ∈ N(u) \ N [D∗ \ {v}] and fix v to

be the private neighbor of u denoted pn(u), i.e., pn(u) = v. Note that this private
neighbor must exists by definition. By OR1 and OR2 we see that for all z ∈ D∗

0 we
have N(z) ⊆ N . Also |N(z)| ≥ 1 as we have no isolated vertices. By OR3 we have
that N(z) \ N [D∗

0 \ {z}] = N(z). Thus, choose some v ∈ N(z) \ N [D∗
0 \ {z}] and let

p̃n(z) = v, i.e., v is a private neighbor of z with respect to D∗
0. Then the following holds:

k ≤ ωnb · |N | + (1− ωnb) · |D| ≤ ωnb · |N∗|+ (1− ωnb) · |D∗|
= ωnb · |N∗|+ (1− ωnb) · |D∗

≥1|+ (1− ωnb) · |D∗
0|

(∗1)
= ωnb · |N∗|+ (1− ωnb) ·

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+ (1− ωnb) ·

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

(∗2)
= ωnb ·

∣

∣

∣

∣

∣

∣

N∗ \ (
⋃

u∈D∗
≥1

pn(u) ∪
⋃

u∈D∗
0

p̃n(u))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N∗ \ (
⋃

u∈D∗
≥1

pn(u) ∪
⋃

u∈D∗
0

p̃n(u))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

= |N∗|

38

2.3. Case Study: Parameterized Measure & Conquer for Nonblocker

Note that in (∗1) and (∗2) we used the fact that by privD∗(x) :=

{

pn(x) : x ∈ D∗
≥1

p̃n(x) : x ∈ D∗
0

an

injective function is defined.

The run time of algorithm 6 can easily seen to be O∗(4κ(∅,∅)) as the algorithm entails
a branching vector of the form (0.5, 0.5).
The question is if from this a run time of O∗(4k) follows. We provide the following
discussion:
We followed a more general approach of how to measure the running time in a parameter
k than in the, say, traditional way where during the branching process usually recursive
calls will be made with parameters k′ < k where k′ is an integer. Our point of view
is that we are given an initial budget k. During the execution of the algorithm this
budget will be decremented due to obtained structural information. This structural
information does not necessarily refer to the case that some objects are fixed to be in
the future solution. It can comprise much more (i.e degree-one vertices, four-cycles).
In our case we also counted the objects who were determined not to be in the future
solution, namely the dominating vertices. We allow to count such structural information
only fractional. Clearly, we have to show that the budget never increases on applying
reduction rules. This has been done in our case with Lemma 2.3.2. We even have to
guarantee that the measure decreases in case of recursive calls. In our case this easily
can be observed. But additionally once our budget has been consumed we must be able
to give an appropriate answer in polynomial time. As in general we counted more than
only future solution objects this might become a hard and tedious task. In our case this
was handled by Lemma 2.3.3. If we are able to fulfill all the recited conditions we can
prove a running time of the form O∗(ck).

By the above discussion we can conclude that Algorithm 6 solves k-Nonblocker in
time O∗(4k).

2.3.2. An Approach with a fine-grained Measure

We first state a new more detailed measure. Note that we use the notation of section 2.2.

Ψ(A, I) = k − ωnb1|INND| − ωnb2|INDO| − ωd|BLDO| − (1− ωnb2)|A|

where ωd = 0.2725, ωnb1 = 0.4550 and ωnb2 = 0.7275. We will use Ψ(A, I) to measure the
complexity of the now presented Algorithm 7. Note that Algorithm 7 is a parameterized
version of Algorithm 5 in section 2.2. The main differences are the lines 2-7 where the
algorithm is stopped once our measure ψ(A, I) ≤ 0. The next lemma justifies this.

Lemma 2.3.4: In step 6 of Algorithm 6 N∗ := NB(D∗) is a Nonblocker set such that
|N | ≥ k.

Proof. Let the functions pn : D∗
≥1 → N and p̃n : D∗

0 → N be defined as in Lemma 2.3.3.
Also note that Lemma 2.3.2 is valid with respect Ψ(A, I). Then the following holds:

39

Chapter 2. Measure&Conquer

Algorithm 7 A simple algorithm for Nonblocker

1: Apply the reduction rules RR1-RR4 from section 2.2 exhaustively in the order
given by their increasing numbers.

2: If there is u ∈ I such that N [u] ⊆ I then halt and answer NO.
3: if ψ(A, I) ≤ 0 then
4: Greedily augment A to a dominating set D.
5: Determine the sets D≥1, D0 and N := NB(D).
6: Apply OR1, OR2 and OR3 exhaustively which results in the dominating set D∗

and N∗ = NB(D)..
7: return YES.
8: else
9: if possible choose a v ∈ BLND such that |N(v) ∩ (BLND ∪ INND)| ≥ 2. then
10: Binary branch on v (i.e., set v active in one branch, inactive in the other)
11: else if possible choose a v ∈ BLDO such that |N(v) ∩ (BLND ∪ INND)| ≥ 3.

then
12: Binary branch on v.
13: else
14: Solve the remaining instance in polynomial time using an edge cover algo-

rithm resulting in a dominating set D.
15: Apply OR1, OR2 and OR3 exhaustively on D which results in the dominating

set D∗ and N∗ = NB(D).
16: end if
17: end if

40

2.3. Case Study: Parameterized Measure & Conquer for Nonblocker

k ≤ ωd|BLDO|+ ωnb1|INND|+ ωnb2|INDO|+ (1− ωnb2)|A|
= ωd(|BLDO ∩D|+ |BLDO ∩N |)) + ωnb1|INND|+ ωnb2|INDO|+ (1− ωnb2)|A|
≤ (1− ωnb2)(|BLDO ∩D|+ |A|) + ωnb2(|BLDO ∩N | + |INND|+ |INDO|)
✯

≤ (1− ωnb2)|D|+ ωnb2|N | ≤ (1− ωnb2)|D∗|+ ωnb2|N∗|
= ωnb2 · |N∗|+ (1− ωnb2) · |D∗

≥1|+ (1− ωnb2) · |D0|

= ωnb2 · |N∗|+ (1− ωnb2) ·

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+ (1− ωnb2) ·

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

= ωnb2 ·

∣

∣

∣

∣

∣

∣

N∗ \ (
⋃

u∈D∗
≥1

pn(u) ∪
⋃

u∈D∗
0

p̃n(u))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N∗ \ (
⋃

u∈D∗
≥1

pn(u) ∪
⋃

u∈D∗
0

p̃n(u))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
≥1

pn(u)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

u∈D∗
0

p̃n(u)

∣

∣

∣

∣

∣

∣

= |N∗|

Note that in ✯ we used the fact that ((BLDO ∩ D) ∪ A) ⊆ D and ((BLDO ∩ N) ∪
INND ∪ INDO ⊆ N .

Before we provide the run time analysis we show that the reduction rules RR1-RR1
do not increase Ψ(A, I). In each case we state the total decrease in Ψ(A, I):

RR-1: A vertex q ∈ (BLDO ∪ BLND) is set active, thus, the decrease is at least
(1− ωnb2)− ωd = 0.

RR-2: A vertex u ∈ BLDO is set inactive yielding an decrease of ωnb2 − ωd = 0.455.

RR-3: A vertex u ∈ BLND is set active yielding a decrease of (1− ωnb2) = 0.2725.

RR-4: A vertex u ∈ BLND is moved to INND yielding a decrease of ωnb1 > 0.

Run Time Analysis We will provide a run time analysis similar to the one in section 2.2
but with respect to Ψ(A, I). Let v be the vertex chosen by Algorithm 7 in step 9 or 11,
respectively. Let nbl = |N(v) ∩ BLND| and nin = |N(v) ∩ INND|.

a) The vertex v was chosen in step 9 The branching vector is
((1− ωnb2) + nblωd + nin(ωnb2 − ωnb1), ωnb1). Note also that nbl + nin ≥ 2.

b) The vertex v was chosen in step 11 The branching vector is
((1−ωnb2−ωd) +nblωd +nin(ωnb2−ωnb1), ωnb2−ωd). Note also that nbl +nin ≥ 3.

41

Chapter 2. Measure&Conquer

Now by considering only finitely many branching vectors we can determine the run
time. Therefore the run time discussion entails that Algorithm 7 solves k-Nonblocker
in O∗(3.07k) steps.

In this section we demonstrated how a direct algorithm solving k-Nonblocker can be
derived. The main ingredient was to use a measure which was adapted to the problem.
It especially reflected that every dominating vertex is related to an exclusive vertex in
the nonblocker set. Due to this relation we were able to decrement out initial budget
even in the case when a vertex has been set active, i.e., it was made dominating. This
case seemed to be the main obstacle for deriving such a direct algorithm. Running the
algorithm of [153] on the kernel for k-Nonblocker of F. Dehne et al. [34] provides an
algorithm with running time O∗(1.50881.75k) ⊆ O∗(2.045k). Nevertheless, Algorithms 6
and 7 are the first direct approaches solving k-Nonblocker.

2.4. Case Study: Connected Vertex Cover

In this section we will present a parameterized algorithm for connected vertex cover.
Given a graph G(V, e) a set V ′ ⊆ V of minimum cardinality has to be found such that
V ′ is a vertex cover which is connected at the same time. More formally:

Connected Vertex Cover (CVC)
Given: G(V,E), and the parameter k.
We ask: Find V ′ ⊆ V such that for all e ∈ E we have V ′ ∩ e 6= ∅, |V ′| ≤ k and G[V ′]
is connected.

On this topic there has been done already numerous work. We only mention two articles:
The one of H. Fernau and D. Manlove [52] and the other of D. Mölle, S. Richter and P.
Rossmanith [119] who achieved run times of O∗(2.9316k) and O∗(2.7606k), respectively.
Both approaches are based on listing all minimal vertex covers of size up to k. Then in
a second step they add additional vertices to the vertex cover to receive connected sets.
The same approach is also followed here. But in contrast we also use a more flexible
measure which enables us to better balance the two phases.
As in the course of the forthcoming recursive algorithm vertices will be fixed to belong
to the future solution we focus on an annotated version of the above problem:

Annotated Connected Vertex Cover (ACVC)
Given: G(V,E), a subset Q ⊆ V , and the parameter k.
We ask: Find V ′ ⊆ V such that for all e ∈ E we have V ′ ∩ e 6= ∅, |V ′| ≤ k, Q ⊆ V ′ and
G[V ′] is connected.

The next lemma will help us to justify some of the branching rules of the forthcoming
algorithm.

Lemma 2.4.1: Let V ′ be a connected vertex cover and assume that t ∈ V ′ is not
a cut-vertex. If Gt := G[V ′ \ {t}] consists of exactly two components V ′

1 and V ′
2 and

N(t) ⊆ V ′, then there is a connected vertex cover V ′′ with t 6∈ V ′′ and |V ′′| ≤ |V |.

42

2.4. Case Study: Connected Vertex Cover

Proof. Observe that V ′
1 ∪ V ′

2 is a vertex cover by N(t) ⊆ V ′. If it is also connected then
the claim is shown. Otherwise as t is not a cut-vertex there must be another vertex
z 6∈ V ′ such that V ′

1 ∪ V ′
2 ∪ {z} is a connected vertex cover.

Reduction Rules We introduce the following reduction rules:

Deg1: Let u ∈ V \Q such that N(u) = {v}. Then delete u and set Q := Q ∪ {v}.
CutVertex: Let u ∈ V \ Q such that G[V \ {u}] contains at least two components.
Then set Q := Q ∪ {u}.
Deg2a: Let u ∈ V \Q such that d(u) = 2. Then delete u and set Q := Q ∪N(u).
Contract: If there are u, v ∈ Q such that {u, v} ∈ E then contract {u, v} (substituting
double edges by simple ones).

Deg2b: Let u ∈ Q such that N(u) = {x1, x2} ∩ Q = ∅. Then delete u and introduce
the edge {x1, x2}.

Lemma 2.4.2: The reduction rules are sound.

Proof. In the following arguments, let C be a solution to ACVC of minimum cardinality.

Deg1: Any connected vertex set C with u ∈ C (and necessarily v ∈ C) is not minimum
as C \ {u} is smaller.

CutVertex: Otherwise, we cannot reach a connected solution.

Deg2a: We will show that in all cases, N(u) ⊆ C and u 6∈ C holds without loss of
generality, hence validating that we set Q := Q ∪N(u). (a) If u 6∈ C, then clearly
N(u) ⊆ C, since C is a vertex cover. So, suppose (b) u ∈ C. Due to Lemma 2.4.1
in order to falsify our claim, N(u) ⊆ C must be false, i.e., there is one h ∈ N(u)\C.
Since C is connected and u ∈ C, h is unique. Note that N(h) ∩ (C \ {u}) 6= ∅ by
Deg1. Thus, (C \ {u}) ∪ {h} is a connected vertex cover of the same cardinality,
leading us back to case (a).

Contract: Let G′ be the graph obtained by applying the reduction rule. It is a straight
forward task to show that G′ contains a solution of size at most k to ACVC iff G
does.

Deg2b: Let G′ be the graph evolved from the application of the rule. If C ′ is a
connected vertex cover for G′ then |C ′ ∩ {x1, x2}| ≥ 1. Thus, C ′ ∪ {u} is a
connected vertex cover for G of size |C| + 1. If C is a connected vertex cover
for G then |C ∩ {x1, x2}| ≥ 1. Thus C \ {u} is connected vertex cover for G′.

Let Bij := {u ∈ V \Q | |N(u) ∩Q| = i, |N(u)| = j} and B≥
ij :=

⋃

i′≥i

j′≥j

Bi′j′.

Note that in a reduced instance B01 = B11 = B02 = B12 = B22 = ∅ due to reduction rules
Deg1, CutVertex and Deg2a. Now, we can present Algorithm 8.

43

Chapter 2. Measure&Conquer

Observe that we can solve CVC by calling Algorithm 8 for all h ∈ V with the sets
Q = {h} and I = ∅.

Correctness The lemma below is needed as an intermediate step towards showing
correctness of Algorithm 8.

Lemma 2.4.3: In step 8 of Algorithm 8 we always have that a) Q 6= ∅ and b) G is
connected.

Proof. The claim is true for the first invocation of Algorithm 8 as we have Q = {h} for
some h ∈ V .
a) Note that the only reduction rules who actually delete vertices from Q are contract
and Deg2b. In the first case an edge consisting of two vertices from Q is contracted.
Thus, afterwards Q contains at least one vertex. In the second case note that Deg2b
only is applied in step 1 in a very restricted setting. The set I has been constructed in
step 15 of the last recursive call. By this I ⊂ Q in the current call of Algorithm 8. Also
in the previous recursive call any u ∈ I had a neighbor v (the branching vertex) such
that there is some d ∈ N(v)∩Q. Note that the vertex d is not affected by step 1. Thus,
in step 2 Q 6= ∅.
b) Otherwise, step 4 failed.

Lemma 2.4.4: Algorithm 8 solves ACVC correctly.

Proof. By Lemma 2.4.2 the reduction rules are sound. We now show that if no case in
Phase I applies then the Steiner-Tree-Algorithm in Phase II can be used. Firstly, if the
first part of the or-statement in step 4 applies then the size of the vertex cover is greater
than k. Note that any Contract or Deg2b-application implicitly puts a vertex (which
is not present in the current graph) in the final vertex cover. Thus, we correctly answer
NO. Secondly, if V = Q then by Contract and Lemma 2.4.3.b) we have |V | = 1. Thus,
we have trivial instance and can return YES.
Otherwise there is a vertex h ∈ V \ Q. Additionally we can require that N(v) ∩ Q 6= ∅
by Lemma 2.4.3. If there is at least one such vertex h where N(h) 6⊆ Q then we have
h ∈ ⋃ ℓ≥3

z<ℓ
Bzℓ due to the reduction rules. Thus, some case in Phase I applies. If for

all such h we have N(h) ⊆ Q then Q is an independent vertex cover by Contract.
The final task is to find some minimum cardinality set B ⊆ V \ Q such that G[Q ∪ B]
is connected. This is exactly the Steiner-Tree problem and therefore we can apply an
appropriate existing algorithm for this task in Phase II.
Any branching is exhaustive except the ones in step 13 and step 20.
Consider step 13. Note that here we skipped the possibility that 1.) v, x1, x2 ∈ Q and
2.) v ∈ Q x1, x2 6∈ Q. 1.) Suppose that v, x1, x2 ∈ C where C is an solution to ACVC.
By Lemma 2.4.1 we find a second in cardinality no worse solution C̃ where v 6∈ C̃. Now
C̃ can be found in the first branch a) where v is deleted. Thus the possibility in 1.) can
be skipped. 2.) can be skipped as {x1, x2} must be covered.
We turn to step 20. Here in the last recursive call d) we delete r and therefore any
solution C with v, b, c, r ∈ C is not considered. But notice once more by Lemma 2.4.1 a

44

2.4. Case Study: Connected Vertex Cover

Algorithm 8 An Algorithm for Annotated Connected Vertex Cover

Input: A connected graph G(V,E), a subset Q ⊆ V , an integer k and a vertex set I.
Output: A set V ′ ⊂ V such that Q ⊆ V ′, G[V ′] is connected and V ′ is a vertex cover.
Procedure: SolveCVC(G,Q,k,I)

1: Apply Deg2b on every u ∈ I (delete u and add {x1, x2} where N(u) = {x1, x2}).
2: I := ∅.
3: Apply the reduction rules CutVertex, Deg1, Deg2a and Contract exhaustively

with priorities corresponding to the given order.
4: if |Q| + #{Contract applications} + #{Deg2b applications} > k or G(V,E) is

disconnected then
5: return NO

6: else if V = Q then
7: return YES.
8: else if ∃v ∈ B≥

14 such that N(v) ∩ (V \Q) 6= ∅ then {Begin Phase I}
9: Branch binary by a.) setting Q := Q ∪ {v}

b) deleting v and setting Q := Q ∪N(v).
10: else if B13 ∪ B23 6= ∅ then
11: Choose v ∈ (B13 ∪ B23) according to the next priorities:
12: 1. v ∈ B13 and {x1, x2} ∈ E where N(v) \Q = {x1, x2}.

13:

a) Delete v, Q := Q ∪ {x1, x2}
b) Delete x2, Q := Q ∪ {v, x1} ∪N(x2)
c) Delete x1, Q := Q ∪ {v, x2} ∪N(x1).

14: 2. ∃u ∈ (N(v) \Q) : d(u) = 3

15:

Branch binary by a.) setting Q := Q ∪ {v}
b) deleting v, setting I := {u | u ∈ N(v) ∧ |N(u) \ {v}| = 2 ∧ N(u) ∩ Q = ∅}
and Q := Q ∪N(v).

16: 3. v ∈ B23

17:

Choose u ∈ (N(v) \Q) and branch binary by
a.) setting Q := Q ∪ {u}
b) deleting u and setting Q := Q ∪N(u).

18: 4. v ∈ B13 and thus N(v) \Q = {b, c}.
19: 4.1 ∃r ∈ N(b) ∩N(c) where r 6= v.

20:

a) Delete v, Q := Q ∪ {b, c}
b) Delete b, Q := Q ∪ {v} ∪N(b)
c) Delete c, Q := Q ∪ {v, b} ∪N(c)
d) Delete r, Q := Q ∪ {v, b, c} ∪N(r)

21: 4.2 N(b) ∩N(c) = ∅.

22:

a) Delete v, Q := Q ∪ {b, c}
b) Q := Q ∪ {v, b}
c) Delete b, Q := Q ∪ {v, c} ∪N(b)
d) Delete b, c, Q := Q ∪ {v} ∪N(b) ∪N(c)

23: else {Begin Phase II}
24: Apply the Steiner-Tree-Algorithm of [9] with Q as the terminal set.
25: end if

45

Chapter 2. Measure&Conquer

solution C̃ no greater in size is guaranteed with v 6∈ C̃. C̃ is found in the recursive call
a) in step 20.

Run Time Analysis We use a rather simple measure:

φ(V,Q) := k − ω · |Q| − c where ω < 1

Here c = #{Contract applications}+ #{Deg2b applications}, i.e., it counts the num-
ber of Contract and Deg2b applications. Observe that c counts the number of vertices
of the original instance fixed to be in Q which are not present anymore in the current
instance. Therefore, a decrease of the initial budget k by an amount of c is justified.

Lemma 2.4.5: The reduction rules do not increase the measure φ(V,Q)

Proof. Observe that the deletion of a vertex u ∈ V \ Q leaves φ(V,Q) unchanged and
its addition to Q decreases the measure. Thus, the claim is true for Deg1, Deg2a and
CutVertex. After the application of Contract or Deg2b the set Q decreased by one
element. On the other hand c went up by one. Hence, there is a decrease of (1−ω).

Here we like to point out the following observation: Once we have φ(V,Q) < 0 during
our algorithm, line 4 of Algorithm 8 applies and YES is returned. Thus, φ(V,Q) indeed
can be used to derive a run time of the form O∗(ck).

Phase II By Björklund et al. [9] the Steiner Tree problem can be solved in time
O∗(2ℓ) where ℓ = |Q| is the number of given terminals. But note that by

φ(V,Q) := k − ω · ℓ− c ≥ k − ω · ℓ− (k − ℓ) = (1− ω) · ℓ

we can upper bound step 24 in Algorithm 8 by O∗(2
1

1−ω
φ(V,Q)). Observe that we used

the fact k − ℓ ≥ c which is due to step 4.

Phase I We further have to find the correct branching vectors in case we are branching
in Algorithm 8:

Step 9 For v ∈ Bij , we derive the branching vector (i · (1 − ω) + ω, (j − i) · ω), where
i ≥ 1, j ≥ 4 and i < j. Observe that we only have to consider branching vectors
up to j = 4. Any branching vector where j > 4 is dominated by on of the latter.

Step13 We have that d(x1) ≥ 3 and thus by deleting x1 in case c) at least one further
vertex y 6∈ {v, x2} is adjoined to Q, i.e., |N(x1) \ {v, x2}| ≥ 1 . Analogous ar-
guments hold for x2 in case b). Thus a (1 + ω, 2 + ω, 2 + ω) branching vector is
entailed. Note that in any branch Contract can be applied.

46

2.4. Case Study: Connected Vertex Cover

Step 15

1. Assume v ∈ B13. Then let {u, z} = N(v) \Q. By the previous priority there
is no edge {u, z} ∈ E. Then let u ∈ Bs3 where 0 ≤ s ≤ 2. Then the following
branching vectors are entailed if s ≥ 1: ((1 − ω) + ω, 2ω + (1 − ω)) and if
s = 0 : ((1−ω) +ω, ω+ 1). Note that in the last derived branching vector in
the second case Deg2b applies in the next recursive call as I 6= ∅.

2. Assume v ∈ B23. Consider {u} = N(v) \Q, u ∈ Bs3. By the same analysis as
in the previous case we arrive at the following branching vectors:
If s ≥ 1, (2 · (1− ω) + ω, ω + (1− ω)) and
if s = 0, (2 · (1− ω) + ω, 1).

Step17 Note that d(u) ≥ 4 due to step 15 and due to step 9 N(u)∩Q = ∅. Hence, the
branching vector (ω, 4ω+2 · (1−ω)) is entailed. Note the application of Contract
in the second part of the branch.

Step 20 Note by the previous branching cases d(b) ≥ 4, d(c) ≥ 4 and (N(b)∪N(c))∩Q =
∅. Firstly, suppose N(r) ∩ Q 6= ∅ then a branching vector (2ω, 2 + 2ω, 3 + 2ω, 3)
follows due to the application of Contract with respect to r in the second and
third part of the branching. Secondly, if N(r) ∩Q = ∅ we get a branching vector
(2ω, 1 + 3ω, 2 + 3ω, 3 +ω). Note that the additional amount of ω in the last entry
is due to the fact that |N(r) \ ({c, b} ∪Q)| ≥ 1 which is due to Deg2a.

Step 22 This case entails a straight-forward (2ω, 2, 2 + 3ω, 1 + 6ω) branching vector as
N(b) ∩N(c) = {v}.

On the basis of the above discussion we get the next lemma

Lemma 2.4.6: Connected Vertex Cover can be solved in time O∗(2.4882k) and
O∗(1.8698n) .

Proof. By choosing ω = 0.23956 the maximum branching number of the above branching
vectors is 2.4882. Additionally, by the choice of ω the run time of Phase II can be upper
bounded by O∗(2.4882k). To achieve the run time upper bound in terms of n we use a
method of [139]: By invoking Algorithm 8 for every 1 ≤ k′ ≤ n/2+α where α = 0.1842n
and by iterating over any non-separating independent set with maximum size n/2 − α
we get the bound of O∗(1.8658n).

In this case study we have seen that we some moderate effort we could achieve an
improved run time for a already broadly studied problem. This was possible even though
the basic method did not change substantially. We first branched towards creating a
vertex cover and then in a second phase additional vertices had to be added for the
sake of connectivity. This case study showed what an impact a proper chosen measure
can have for the understanding of the problem and the designed algorithm. Let us also
mention the cases which determine the run time: 1. Step 9 with j = 4 and i = 1 and 2.
Phase II.

47

Chapter 2. Measure&Conquer

2.5. Case Study: Edge Dominating Set

In a further case study we show how to use a problem-tailored measure to improve the
parameterized run time of an already considered problem. We focus on:

k-Edge Dominating Set (k-EDS)
Given: G(V,E), and the parameter k.
We ask: Find E ′ ⊆ E such that for all e ∈ E we have e ∩ (

⋃

e′∈E′ e′) 6= ∅, |E ′| ≤ k and
E is minimal.

Note that in the definition of k-EDS we required that any solution is also minimal. This
is no restriction as this variant is polynomial time equivalent to the variant where this
property is dropped. Also note that the size of a minimum (and thus minimal) edge
dominating set equals the size of a minimum maximal matching [18, 115, 158]. In fact
a minimal edge dominating set can be transformed to a maximal matching of the same
size in polynomial time (✷).
Note that any solution E ′ to k-EDS has the property that V (E ′) is a vertex cover of size
at most 2|E ′|. This fact was used by Fernau [47] to design an O∗(2.6181k)-algorithm.
This algorithm is based on enumerating all minimal vertex covers of size no more than
2k. A similar exponential time algorithm was developed by J.M.M. van Rooij and H.
L. Bodlaender [152] consuming O∗(1.3226n) time. We basically analyze a parameterized
variant of their algorithm enriched by two special branching cases. Thus, during the
course of the algorithm we handle a set L of vertices which is supposed to be covered by
the final edge dominating set. Therefore we present an annotated version of k-EDS.

k-Annotated Edge Dominating Set (k-AEDS)
Given: G(V,E), a set L ⊆ V , and the parameter k.
We ask: Find E ′ ⊆ E such that for all e ∈ E we have e ∩ (

⋃

e′∈E′ e′) 6= ∅, |E ′| ≤ k,
L ⊂ (

⋃

e′∈E′ e′) and E ′ is minimal (with respect to the edge-domination-property).

As indicated above (✷) the next problem is polynomially equivalent to k-AEDS:

k-Annotated Maximal Matching (k-AMM)
Given: G(V,E), a set L ⊆ V , and the parameter k.
We ask: Find M ⊆ E such that L ⊂ (

⋃

e′∈M e′), |M | ≤ k and M is a maximal matching
in G(V,E).

In the forthcoming algorithm k-AMM will be the base problem.

We call a given annotated instance redundant if G[V \L] exclusively consists of com-
ponents C1, . . . , Cℓ which are either single vertices or edges, i.e., these components are
K1’s and K2’s.

Lemma 2.5.1 ([47]): A minimum cardinality solution to a redundant instance of k-
AEDS without edge-domination-minimality can be found in polynomial time.

Note that a solution to k-AEDS might not exist. The set L might constrain that every
augmenting set E ′ ⊃ L which is an edge dominating set is not minimal.
We now present Algorithm 9. The Algorithm follows the strategy to list all minimal
vertex covers V C of size at most 2k until a redundant instance is reached. This redundant

48

2.5. Case Study: Edge Dominating Set

instance will be solved in polynomial time using Lemma 2.5.1 yielding a solution S ⊆ E.
If S is not minimal then V C was not the right choice and we can answer NO. Otherwise
S can be transformed to a solution of k-AMM. Details will be clarified in Lemma 2.5.3.

Algorithm 9 An Algorithm for Independent k-Edge Dominating Set, a.k.a. k-maximal
Matching

Input: A Graph G(V,E) and the parameter k.
Output: YES if a solution to k-AMM exists, NO otherwise.

SolveEDS(G,∅,∅)
Procedure: SolveEDS(G,U ,Us)

1: if λ(G,U, Us) ≤ 0 then
2: return NO

3: else if ∃v ∈ V \ (U ∪ Us) such that dG[V \(U∪Us)](v) ≥ 3 then {Begin Phase I}
4: Branch by a) U := U ∪ {v} and b.) Delete v, U := U ∪N(v)
5: else if ∃ a cycle component p1, . . . , pℓ, ℓ ≥ 4 in G[V \ (U ∪Us)] then {Begin Phase

II}
6: if ℓ = 4 then
7: Branch a.) Delete p2, p4, U := U ∪ {p1, p3} b) Delete p1, U := U ∪ {p2, p4}
8: else if ℓ = 6 then
9: Branch a) U := U ∪ {p1, p4} b) Delete p4, U := U ∪ {p1, p3, p5} c) Delete p1,

U := {p2, p6}
10: else
11: Branch a.) U := U ∪ {p1} b) Delete p1, U := U ∪ {p2, pℓ}
12: end if
13: else if ∃ a path component p1, . . . , pℓ, ℓ ≥ 4 in G[V \ (U ∪ Us)] then
14: Branch a.) U := U ∪ {p3} b) Delete p3, U := U ∪ {p2, p4}
15: else if ∃ a path or cycle component p1, . . . , p3 in G[V \ (U ∪ Us)] then
16: Branch a.) Us := Us ∪ {p2} b) Delete p2, U

s := Us ∪ {p1, p3}
17: else
18: Solve the problem in polynomial time using a maximum matching algorithm.
19: end if

49

Chapter 2. Measure&Conquer

Correctness We first point out that any recursive branching step in Algorithm 9 is
exhaustive except the one in step 7. Here case a) should be considered. Additionally to
p1 also p3 is adjoined to U which has to be justified. Note that if p3 6∈ U then it follows
that p2, p4 have to be adjoined yielding a non-minimal solution. If both p1, p3 ∈ U then
p2, p4 have to be deleted for the sake of minimality.

Notice also that vertices that are not taken into the vertex cover during the enumera-
tion phase (and hence go into the complement, i.e., an independent set) can be deleted
whenever it is guaranteed that all their neighbors (in the current graph) are moved into
the vertex cover.

Let Xℓ(B) := {{p1, . . . , pℓ} | p1, . . . , pℓ is a path component in G[V \ B]}. For exam-
ple, X1(B) collects the isolated vertices in G[V \ B]. In a sense, ℓ = 1 is the smallest
meaningful value of ℓ; however, the case ℓ = 0 will be useful as a kind of boundary case
in the following.

Then the measure is defined as follows:

λ(G,U, Us) := 2k − ω · |U | − (2− ω)|Us|
−χ(∀v ∈ V \ (U ∪ Us) : dG[V \(U∪Us)](v) ≤ 2)·

(
∑

i≥0 γi · |X i(U ∪ Us)|)

where ω = 0.8909, γ0 = γ1 = 0, γ2 = 1, γ3 = 0, γ4 = 0.2365 and γj = 0.3505 for j ≥ 5.
Note that the initial budget 2k is only decreased by adjoining vertices to U or Us.
To show the correctness of the algorithm it remains to show that steps 1 and 18 are
correct. This is done by the next two lemmas.

Lemma 2.5.2: If in step 1 of Algorithm 9 λ(G,U, Us) < 0 then there is no annotated
k-maximal matching M extending L := U ∪ Us with |M | ≤ k.

Proof. Suppose the contrary and let M be a solution to k-AMM. Let VM = (
⋃

e′∈M e′)
and note that L ⊆ VM (where here L = U∪Us). Let m : V → V be the partial matching
function induced by M that easily extends to sets by setting m(B) = {m(v) | v ∈ B}.
If λ(G,U, Us) < 0 happens after a recursive call of Phase I, then 2k < ω · |U | < |U | ≤
|VM |.
So we should discuss in details if λ(G,U, Us) < 0 happens after a recursive call of the
second Phase. Since M is a maximal matching, we know that for each i ≥ 2 and for
all paths p1, . . . , pi ∈ X i(U ∪ Us), there exists some 1 ≤ j ≤ i such that pj ∈ VM .
Hence, |X i(U ∪ Us)| ≤ |V (X i(U

⋃

Us)) ∩ VM | (✮1). Consider now u ∈ Us; then there
exists a path p1, p2, p3 in G[V \ U]. Firstly, suppose u = p1. Thus, u has been adjoined
to Us in case b) of step 16. Since p2 got deleted, p2 6∈ VM . Let m(u) be the distinct
vertex u is matched to under M . By p2 6∈ VM we have m(u) ∈ U . Thus, summing
up for u and m(u) the vertices are counted by two in VM whereas we decremented λ
by ω + (2 − ω) = 2. (✮2). Secondly, if u = p2 then if m(p2) ∈ U the same reasoning
applies. Otherwise, w.l.o.g., m(p2) = p1. Then, in λ both vertices were counted by a
fraction of (2 − ω) where in VM they both together have been counted by two (✮3).
This seems to be an invalid argument at first glance, but will be justified below. All

50

2.5. Case Study: Edge Dominating Set

this has to be considered more formally. Notice that, since we are in Phase II, the term
χ(∀v ∈ V \ (U ∪ Us) : dG[V \(U∪Us)](v) ≤ 2) equals one.

2k < ω · |U |+ (2− ω)|Us|+ (
⋃

i≥0

γi · |X i(U ∪ Us)|)

✮1,✮4

≤ ω · |U |+ (2− ω)|Us|+ (
⋃

i≥2

γi · |V (X i(U ∪ Us)) ∩ VM |)

✮5≤ ω · |U ∩ VM |+ (2− ω)|Us ∩ VM |+ (
⋃

i≥2

|V (X i(U ∪ Us)) ∩ VM |)

✮2/✮3

≤ |U ∩ VM |+ |(Us ∩m(U)) ∩ VM |+ |(Us \m(U)) ∩ VM |+
|m(Us) \ U)|+ (

⋃

i≥2

|V (X i(U ∪ Us)) ∩ VM |)

≤ |VM |

We were also using that γ0 = γ1 = 0 (✮4) and that M covers U ∪ Us (✮5). Now, let us
explain the second last inequality in more detail. Observe that any vertex t from Us is
counted by an amount of one in |VM | but by an amount of (2−ω) in λ. Thus, this might
violate the inequality. Note that m(t) ∈ (U ∪ (m(Us) \ U)). Either t finds its partner
in U or in the vertices in m(Us) which are not matched to a vertex in U . Therefore the
drop of (1 − ω) with respect to t is compensated by the increase due to m(t). In other
words,

(1− ω)|Us| = (1− ω)(|Us ∩m(U)| + |Us \m(U)|) ≤ (1− ω)(|U |+ |m(Us) \ U |).

Also note the set equality (Us \m(U)) = (m(Us) \ U). For the last inequality to hold
we mention that m(Us) ⊆ VM .

Lemma 2.5.3: In step 18 the instance is polynomial time solvable.

Proof. Let L = U ∪ Us. First note that at this point the instance is redundant. Then
by Lemma 2.5.1 we can compute an minimum size edge set E ′ which covers L and is an
edge dominating set. If E ′ is not minimal with respect to the edge domination property
then along the search tree we made a wrong choice on L. Then we can safely answer
NO. Otherwise we apply the following transformation. Pick a component C of at least
two edges in G[E ′] which necessarily forms a star with center v. Let e = {u, v} ∈ C and
due to edge-domination-minimality there is a z ∈ NG(u) such that z 6∈ V (E ′). Then
substitute {u, v} by {z, u}. Observe that the resulting edge set still covers L and is
also edge-dominating. Finally, this procedure results in a set E ′′ which is a maximal
matching (as it also is an edge dominating set) which additionally covers L. Clearly,
|E ′| = |E ′′| is true. If |E ′′| ≤ k, then we can answer YES and NO otherwise.

51

Chapter 2. Measure&Conquer

Run Time Analysis We will consider each step in Algorithm 9 where recursive calls
are made:

Step 4 Here we adjoin one vertex in the first and three vertices in the second branching
case to U . Thus, a branching vector (ω, 3 · ω) is entailed.

Step 7 Here we adjoin two vertices in the first and two vertices in the second branching
case to U . Thus, a branching vector (2 · ω, 2 · ω) can be derived.

Step 9 Here we adjoin two vertices in the first, three vertices in the second and two
vertices in the third branching case to U . In the first case also two K2’s in G[V \
(U∪Us)] are produced and thus |X2| is increased by two. Thus, a branching vector
(2 · ω + 2, 3ω, 2ω) can be deduced.

Step 11 ℓ = 5 or ℓ ≥ 7: In the first case we adjoin a vertex to U , but also create a
path with ℓ − 1 vertices which means that |Xℓ−1| increases by one. The second
case adjoins to vertices to U and creates a path with ℓ − 3 vertices. This yields
the branching vector (ω + γℓ−1, 2ω + γℓ−3).

Step14 The first case puts one vertex into U and creates a path with two vertices and
another one with ℓ − 3 vertices. On the other hand, a path with ℓ vertices is
destroyed. The second case puts two vertices into U , creates a path with ℓ − 4
vertices and destroys one with ℓ vertices. This yields as branching vector (ω−γℓ +
1 + γℓ−3, 2ω − γℓ + γℓ−4).

Step 16 The first case increases |Us| by one the second by two and hence (2−ω, 2·(2−ω))
is the corresponding branching vector.

Note that in Phase I the paths in G[U ∪ Us] are not counted in λ. This is important as
otherwise due to branching in step 4 of Algorithm 9 a P5 can result in a P4 by vertex
deletion. Due to this the measure would be raised by an amount of γ5− γ4 > 0 and the
given branching vector would not be appropriate. Note that upon entering Phase II λ
is not increased. By the above run time analysis we can conclude the next theorem. We
point out that once again only a finite set of branching vectors has to be considered.
Namely, in the run time analysis of steps 11 and 14 we can restrict our considerations
only to cases where ℓ ≤ 9.

Theorem 2.5.4: Edge Dominating Set can be solved in time O∗(1.54332k) ⊆
O∗(2.3819k) consuming polynomial space.

The last run time analysis showed once more that with an appropriate measure a
better run time can be proven. Also due to this method the case where there is a cycle
of length six in G[V \ (U ∪ Us)] (step 9 in Algorithm 9) has been identified as critical.
Therefore, a special branching rule for this case has been invented. This is a further
point where we gained on run time.

52

2.6. Obtaining The Weights

2.6. Obtaining The Weights

In the Measure&Conquer-approach of analyzing search trees one always ends up with
a set of recurrences depending on some variables ω1, . . . , ωl (also called weights). Each
recurrences represents a search tree which evolves from it. The size of a search tree
generated by the algorithm is estimated by the greatest positive non-complex root of
the characteristical polynomial (we always will refer to this root). Thus, given a set of
characteristical polynomials P1(ω1, . . . , ωℓ), . . . , Ph(ω1, . . . , ωℓ) the task is to find assign-
ments to the weights such that maximum root of the polynomials is minimized.
We give this problem a name:

Polynomial MinWeight (PMW)
Given: A set of polynomials P1(ω1, . . . , ωℓ), . . . , Ph(ω1, . . . , ωℓ) of the form Pi(ω1, . . . , ωl) =
1 − (

∑ni

j=1 x
−(fi(ω1,...,ωℓ))) (where fi is linear) and a set of linear constraints C on the

weights.
Task: Find an assignment to ω1, . . . , ωℓ which obeys C such that

max
1≤i≤h

{root(Pi(ω1, . . . , ωℓ))}

is minimum.

Here root() returns the largest non-complex root of the polynomial given as argument.
The specific form of the polynomials is due to fact that they are derived from branching
algorithms. The number ni expresses how many subproblems have been created.

The functions fi correspond to the branching vectors. If we have a branching vector
(ω1, ω2 + 1−ω3) then f1 = ω1 and f2 = 1 +ω2−ω3. Generally, these functions have the
form fi = C +

∑ℓ
i=1 ci · ωℓ where the C and the ci’s are constants.

One way of obtaining good weights is to use local search (as already briefly introduced in
chapter 1.1.2). Starting from initial weights, we examine the direct neighborhood to see
if we can find an weight assignment which provides a better upper bound. In practice,
this approach works quite well, especially if we use compiled programs. Then an amount
of hundreds of characteristic polynomials and several weights can be handled. There is
also a formulation as a convex program [78]. For this problem class there are efficient
solvers available. An alternative is the approach of Eppstein [38]. We will consider the
first two approaches in more detail.

2.6.1. Local Search

Local Search is a simple but in practice powerful meta-heuristic.The basic ingredient is
that we start from some initial assignment to the weights. Then we calculate the root
of each polynom Pi(ω1, . . . , ωℓ). The maximum root is the current solution. This is the
value of the assignment. We then try to locally improve this solution by marginally
varying the weight assignments. The current solution can be interpreted as a point in
R

ℓ. Around this point we create a local mesh of finite radius, see Figure 2.1. Every
point in this mesh will be seen as possible assignment. We calculate the value of that
point. If none of these values is smaller than the current value, we create a finer mesh.

53

Chapter 2. Measure&Conquer

Figure 2.1.: The finite mesh around a current solution.

Otherwise we take the point with the smallest value as current solution. We apply this
procedure a finite number of times.
To fulfill this task we use a simple matlab program whose usage is described in Ap-
pendix 11.1.

2.6.2. Convex Programming

A very general technique to determine the weights in a measure is to use convex pro-
gramming which first was used by S. Gaspers [78]. We will show how PMW can be
modeled by a convex program. Remember that in PMW we are given a set of polyno-
mials obeying a certain form:

Pi(ω1, . . . , ωℓ) = 1− (

ni
∑

j=1

x−(fi(ω1,...,ωℓ))

We derive the following convex program Γ:

min z

subject to

Ci : 1 ≥
ni
∑

j=1

2−z(fi(ω1,...,ωℓ)) ∀1 ≤ i ≤ n

and the given constraints C

Clearly, the target function is convex. By deriving the second derivative of the con-
straints we see that also they are convex as it is strictly positive.

Proposition 2.6.1: Let λ1, . . . , λℓ be a weight assignment to ω1, . . . ωℓ.
Then α = max1≤i≤h{root(Pi(λ1, . . . , λℓ))} ⇐⇒ λ1, . . . , λℓ together with z := log2(α) is
a solution to Γ such that at least one constraint Ci is tight.

54

2.6. Obtaining The Weights

Proof. ⇒: Let αi := root(Pi(λ1, . . . , λℓ)).

0 = 1−
ni
∑

j=1

2− log2(αi)(fi(λ1,...,λℓ)) = 1−
ni
∑

j=1

α
−(fi(λ1,...,λℓ))
i

≤ 1−
ni
∑

j=1

α−(fi(λ1,...,λℓ))

= 1−
ni
∑

j=1

2−log2(α)(fi(λ1,...,λℓ))

⇐: Let 1 ≤ t ≤ n such that Ct is tight and z′ is the value of the objective function.

1−
ni
∑

j=1

2−z′(fi(λ1,...,λℓ)) ≥ 1−
nt
∑

j=1

2−z′(fi(λ1,...,λℓ)) = 0

Thus, root(Pi(λ1, . . . , λℓ) ≤ 2−z′. It follows 2−z′ = max1≤i≤h{root(Pi(λ1, . . . , λℓ))}.

By Proposition 2.6.1 we see that PMW can be solved by means of convex program-
ming. We used the AMPL-language to formulate the convex program. Then a standard
solver like MINOS or IPOPT can be used to solve the program to optimality. Never-
theless, if the convex program involves several hundreds of inequalities then the system
noticeable slows down. Due to practical purposes we derive a second tighter formulation
Γ′ of PMW. Due to their specific form the functions fi can be expressed as gi + Ki

where gi does not contain a constant independent of the ωi’s and Ki is such a constant.
Let Γ′ be the following convex program:

min z

subject to

Bi z ≥ ωi ∀1 ≤ i ≤ ℓ

Ci : 1 ≥
ni
∑

j=1

2−(gi(ω1,...,ωℓ)) +

ni
∑

j=1

2−Ki·z ∀1 ≤ i ≤ n

and the given constraints C

Proposition 2.6.2: If for all 1 ≤ i ≤ ℓ we have 0 ≤ ωi ≤ 1 as additional constraints
then Γ has a solution with objective value h iff the same holds for Γ′.

Proof. ⇒: Let ω1, . . . , ωℓ, z be a solution for Γ. Then let ω′
i = ωi · z. As 0 ≤

ωi ≤ 1 the constraints Bi in Γ′ hold. Moreover
∑ni

j=1 2−(gi(ω
′
1,...,ω

′
ℓ
)) +

∑ni

j=1 2−Ki·z =
∑ni

j=1 2−z(gi(ω1,...,ωℓ)) +
∑ni

j=1 2−Ki·z =
∑ni

j=1 2−z(fi(ω1,...,ωℓ)) ≤ 1⇐: If ω1, . . . , ωℓ, z is a solu-

tion for Γ′ then ω̃i = ωi/z, z is a solution for Γ:
∑ni

j=1 2−z(fi(ω̃1,...,ω̃ℓ)) =
∑ni

j=1 2−z(gi(ω̃1,...,ω̃ℓ))+
∑ni

j=1 2−Ki·z =
∑ni

j=1 2−(gi(ω1,...,ωℓ)) +
∑ni

j=1 2−Ki·z ≤ 1

55

Chapter 2. Measure&Conquer

Now in many cases the additional constraint 0 ≤ ωi ≤ 1 naturally arises from the
problem structure. Therefore this is no real limitation. See Appendix 11.2 where a
convex program of the form of Γ′ has been implemented. This convex program finds the
optimal weights for the recurrences derived for Algorithm-5 in chapter 2.2.

56

Part I.

Measure&Conquer applied to
Exponential-Time- and Parameterized

Algorithms

57

2.6. Obtaining The Weights

59

Chapter 2. Measure&Conquer

60

Chapter 3.

A New Upper Bound for Max-2-SAT:
A Graph-Theoretic Approach

3.1. Introduction

3.1.1. Our Problem

MaxSat is an optimization version of the well-known decision problem Satisfiability,
or SAT for short: given a Boolean formula in conjunctive normal form (CNF), we ask
for an assignment to the variables which satisfies the maximum number of clauses.
Applications for MaxSat range over such fields as combinatorial optimization, artificial
intelligence and database-systems as mentioned in [102]. We put our focus on Max-
2-Sat, where every formula is constrained to have at most two literals per clause, to
which problems as Maximum Cut [84, 129] and Maximum Independent Set [129]
are reducible. Therefore, Max-2-Sat is NP-complete.

3.1.2. Results So Far

An upper bound of O∗(2
K
6) has been achieved by A. S. Kulikov and K. Kutzkov in

[105] consuming only polynomial space. They build up their algorithm on the one of by

A. S. Kulikov and K. Kutzkov [104](O∗(2
K

5.88)) and A. Kojevnikov and A. S. Kulikov [102]

who were the first who used a non-standard measure yielding a run time of O∗(2
K
5.5).

This result as well as the one obtained in this chapter has been out-dated by S. Gaspers
and G. B. Sorkin [80]. That paper gives a further slight improvement for Max-2-Sat,

exhibiting an algorithm with run time O∗(2
K

6.321). The main idea extends the present
results by allowing for the creation of non-Max-2-Sat instances by certain reduction
rules. So, strictly speaking, it leaves the realm of Max-2-Sat. Otherwise, this new
paper uses the same type of analysis applied in this chapter.
If we measure the complexity in the number n of variables the current fastest and single
algorithm beating the 2n trivial upper bound is the one of R. Williams [156] having
run time O∗(2

ω
3
n), where ω < 2.376 is the matrix-multiplication exponent. A drawback

of this algorithm is its requirement of exponential space. A. Scott and G. B. Sorkin

[143] presented a O∗(2(1− 2
(d+1)

)n)-algorithm consuming polynomial space, where d is the
average degree of the variable graph. Max-2-Sat has also been studied with respect

61

Chapter 3. A New Upper Bound for Max-2-SAT

to approximation (T. Hofmeister [92] and M. Lewin, D. Livnat, U. Zwick [110]) and
parameterized algorithms (J. Gramm, E. A. Hirsch, R. Niedermeier, P. Rossmanith [84]
and J. Gramm and R. Niedermeier [85]).

3.1.3. Our Results

The major result we present is an algorithm solving Max-2-Sat in time O∗(2
K

6.2158).
Basically, it is a refinement of the algorithm in [102], which also in turn builds up on
the results of [84]. The run time improvement is twofold. In [102] an upper bound of
O∗(1.1225n) is obtained if the variable graph is cubic. Here n denotes the number of
variables. We could improve this to O∗(1.11199n) by a more accurate analysis. Secondly,
in the case where the maximum degree of the variable graph is four, we choose a variable
for branching according to some heuristic priorities. These two improvements already
give a run time of O∗(2

K
6.1489). Moreover, we like to point out that these heuristic

priorities can be implemented such that they only consume O(n) time. A. S. Kulikov
and K. Kutzkov [104] improve the algorithm of A. Kojevnikov and A. S. Kulikov [102] by
having a new branching strategy when the variable graph has maximum degree five. Now
combining our improvements with the ones from [104] gives a run time of O∗(2

K
6.2158).

3.1.4. Problem Statement

Finally, we formally define the problem which firms the basis of this chapter.

Max-2-Sat
Given: A formula in CNF with only 1- and 2-clauses.
Task: Find an assignment satisfying the maximum number of clauses.

3.2. Reduction Rules & Basic Observations

We state (without proof) well-known reduction rules from previous work [84, 102]:

RR-0 Delete empty clauses.

RR-1 Replace any 2-clause C with x, x̄ ∈ C, for a variable x, with {T }.

RR-2 If for two clauses C,D and a variable x we have C\{x} = D\{x̄}, then substitute
C and D by C \ {x} and {T }.

RR-3 If a variable x occurs only positively (negatively, resp.) then consider F [x] (F [x̄],
resp.) instead of F .

RR-4 Suppose that l is a literal and that it occurs in at least one 1-clause. If l̄ does
not occur in more 2-clauses than l in 1-clauses, then consider F [l] instead of F .

62

3.2. Reduction Rules & Basic Observations

RR-5 Let x1 and x2 be two variables, such that x1 appears at most once in another
clause without x2. In this case, we call x2 the companion of x1. RR-3 or RR-4
will set x1 in F [x2] to α and in F [x̄2] to β, where α, β ∈ {true, false}. Depending
on α and β, the following actions will be carried out:

If α = false, β = false, then consider F [x̄1] instead of F .

If α = true, β = true, then consider F [x1] instead of F .

If α = true, β = false, substitute every occurrence of x1 by x2.

If α = false, β = true, substitute every occurrence of x1 by x̄2.

For example, if F = {{x}, {x̄}}, then RR-2 would produce the new formula F ′ =
{{}, {T }}, which would be further reduced to F ′′ = {{T }} by RR-0. Obviously, we
can consider an instance as solved if all clauses that the formula contains are of the form
{T }.
We introduce a new reduction rule:

RR-6: Let e ∈ E(Gvar) such that Gvar − e contains a component Co of at most eight
vertices. If Ce is the clause corresponding to e with literal u ∈ Ce such that u ∈ Co, do
the following:
1. Let S1 be an assignment with respect to Co such that the maximum number a of
clauses is satisfied under the restriction that u becomes true.
2. Let S2 be an assignment with respect to Co such that the maximum number b of
clauses is satisfied under the restriction that u becomes false.
If b ≥ a + 1 then consider F [S2] instead of F . Otherwise consider F [S1] instead of F .

Lemma 3.2.1: RR-6 is sound.

Proof. Let S be an assignment for F such that the maximum number z of clauses is
satisfied. If u is false under S, w.l.o.g, we can assume that S restricted to Co is S2 (as
S2 satisfies the maximum number of clauses in Co). Analogously, if u is true under S
then S restricted to Co is S1. Note that if u becomes true then Ce is satisfied.

1. Case b ≥ a + 1: If u becomes true under S then set the variables in Co according
to S2. This yields an assignment S ′ which satisfies at least z − (a + 1) + b ≥ z
clauses.

2. Case b < a+1: If u becomes false under S then set the variables in Co according to
S1. This yields an assignment S ′′ which satisfies at least z− b+ a ≥ z clauses.

From now on we will only consider reduced formulas F . This means that to a given
formula F we apply the following procedure: RR-i is always applied before RR-(i+1),
each reduction rule is carried out exhaustively and after RR-6 we restart again with
RR-0 if the formula changed. For example, before we ever apply Rule RR-4, we know
that whenever we find a literal l that occurs in a 1-clause, then there is no 1-clause that
equals {l̄} due to RR-2. A formula for which this procedure does not restart will be
called reduced.
Concerning the reduction rules we have the following properties:

63

Chapter 3. A New Upper Bound for Max-2-SAT

Lemma 3.2.2 ([102] Lemma 3.1):

1. If #2(v) = 1, then v will be set.

2. For any u ∈ V (F) in a reduced formula F we have #2(u) ≥ 3.

3. If the variables a and x are neighbors and #2(a) = 3, then in at least one of the
formulas F [x] and F [x̄], the reduction rules set a.

We need some auxiliary notions:

Definition 3.2.1. A sequence of distinct vertices a1, v1, . . . , vj , a2 (j ≥ 0) is called a
lasso if #2(vi) = 2 for 1 ≤ i ≤ j, a1 = a2, #2(a1) ≥ 3 and Gvar[{a1, v1, . . . , vj, a2}] is a
cycle.
A quasi-lasso is a lasso with the difference that #2(vj) = 3. A lasso is called 3-lasso
(resp. 4-lasso) if #2(a1) = 3 (#2(a1) = 4, resp.). A 3-quasi-lasso (4-quasi-lasso, resp.)
is a quasi-lasso with #2(a1) = 3 (#2(a1) = 4, resp.).

Lemma 3.2.3: 1. Let v, u, z ∈ V (F) be pairwise distinct with #2(v) = 3 such that
there are clauses C1, C2, C3 with u, v ∈ V (C1) ∩ V (C2) and v, z ∈ V (C3). Then
either v is set or the two common edges of u and v will be contracted in Gvar by
the reduction rules.

2. The reduction rules delete the variables v1, . . . , vj of a lasso (quasi-lasso, resp.)
and the weight of a1 drops by at least two (one, resp.).

Proof. 1. If v is not set it will be substituted by u or ū due to RR-5. The emerging
clauses C1, C2 will be reduced either by RR-1 or become 1-clauses. Also we have
an edge between u and z in Gvar as now the variables u, z ∈ V (C3).

2. We give the proof by induction on j. In the lasso case for j = 0, there must be
a 2-clause C = {a1, ā1}, which will be deleted by RR-1, so that the initial step
is shown. So now j > 0. Then on any vi, 1 ≤ i ≤ j, we can apply RR-5 with
any neighbor as companion, so, w.l.o.g., it is applied to v1 with a1 as companion.
RR-5 either sets v1, then we are done with Lemma 3.2.2.1 (namely, since the
neighbor v1 of a1 is set, the weight of a1 drops by one; moreover, Lemma 3.2.2.1
sets v2, . . . , vj one after the other, so that finally the weight of a1 drops again by
one), or v1 will be substituted by a1. By applying RR-1, this leads to the lasso
a1, v2, . . . , vj , a2 in Gvar and the claim follows by induction. In the quasi-lasso case
for j = 0, the arguments from above hold. For j = 1, item 1. yields the claim.
For j > 1, the inductive argument from the lasso case can be transferred to the
quasi-lasso situation.

64

3.3. The Algorithm

3.3. The Algorithm

The Measure We set di(F) := |{x ∈ V (F) | #2(x) = i}|. To measure the run time,
we choose the measure γ defined as follows:

γ(F) =
n
∑

i=3

ωi · di(F) with ω3 = 0.94165, ω4 = 1.80315, ωi =
i

2
for i ≥ 5.

The number of clauses K in a formula upper bounds the number of edges in the variable
graph, which in turn equals half of the sum of all di(F). Hence, γ(F) never exceeds the
number of clauses K in the corresponding formula. So, by showing an upper bound of
cγ(F) we can infer an upper bound cK . We set ∆3 := ω3, ∆i := ωi − ωi−1 for i ≥ 4.
Concerning the ωi’s we have ∆i ≥ ∆i+1 for i ≥ 3 and ω4 ≥ 2 ·∆4. For a more detailed
view on the Measure&Conquer-approach we refer to [74]. Note that the measure only
differs from the one used in [102] by the choice of coefficients. We will see later that
graphs with maximum degree three can be handled quite more efficiently than the general
case. This fact is represented in the measure as the ∆i increase with decreasing index i.
We point out that no reduction rule and no branching step will ever increase γ.

Proposition 3.3.1: Let F be a Max-2-Sat-instance. Then γ(F) > γ(F [x]) (γ(F) >
γ(F [x̄]), resp.) and no reduction rule increases γ.

Proof. Note that in RR-0 - RR-2 no 2-clause is added and thus γ cannot increase
due to applying this rules. W.l.o.g. we examine only F [x]. Note the number of 2-
clauses in F [x] is no more than in F . Thus, the measure cannot increase. With this
observation it follows immediately that RR-3, RR-4 and RR-6 do not increase γ. The
same is also true for the first to cases of RR-5. In the last two cases we actually are
identifying x1 and x2 (x1 and x̄2, resp.) to a new vertex d in Gvar and remove the
resulting loops immediately afterwards (either a loop is a 1-clause or RR-1 applies.).
Note that #2(d) ≤ #2(x1) and #2(d) ≤ #2(x2) and the resulting formula F ′ has one
variable less. Thus γ(F ′) < γ(F).

The Basic Strategy The algorithm presented proceeds as follows: After applying the
above-mentioned reduction rules exhaustively, it will branch on a variable v. That is, we
will reduce the problem to the two formulas F [v] and F [v̄]. In each of the two branches,
we must determine by how much the original formula F will be reduced in terms of
γ(F). Reduction in γ(F) can be due to branching on a variable or to the subsequent
application of reduction rules.
By an (a1, . . . , aℓ)-branch, we mean that in the i-th branching case of the algorithm γ(F)
is reduced by an amount of at least ai, i.e., the branching vector of the recurrence implied
by the algorithm is (a1, . . . , aℓ). The i-th component of a branch refers to the search tree
evolving from the i-th branching case (i.e., ai). By writing ({a1}i1 , . . . , {aℓ}iℓ)-branch we
mean a (a11, . . . , a

i1
1 , . . . , a

1
ℓ , . . . , a

iℓ
ℓ)-branch where asj = aj with 1 ≤ s ≤ ij . A (a1, . . . , aℓ)-

branch dominates a (b1, . . . , bℓ)-branch if ai ≥ bi for 1 ≤ i ≤ ℓ, i.e., the branching number
of (a1, . . . , aℓ) is no greater than the one of (b1, . . . , bℓ).

65

Chapter 3. A New Upper Bound for Max-2-SAT

3.3.1. Heuristic Priorities

Heuristic priorities guide the choice of variables to branch on by either setting them true
or false. One possible priority is to prefer branching at variables of high degree (weight)
in Gvar; further refinements of this strategy are presented below.

If the maximum degree of Gvar is four, variables v with #2(v) = 4 will be called limited
if there is another variable u appearing with v in two 2-clauses (i.e., we have two edges
between v and u in Gvar). We call such u, v a limited pair. Note that also u is limited
and that at this point by RR-5 no two weight 4 variables can appear in more than two
clauses together. Any vertex which is not limited is called unlimited.
We call u1, . . . uℓ a limited sequence if ℓ ≥ 3 and ui, ui+1 with 1 ≤ i ≤ ℓ− 1 are limited
pairs. A limited cycle is a limited sequence with u1 = uℓ.
To obtain an asymptotically fast algorithmic behavior we introduce heuristic priorities,
concerning the choice of the variable used for branching:

Heuristic Priorities (HP):

1. Choose any v with #2(v) ≥ 7.

2. Choose any v with #2(v) = 6, preferably with #2(N(v)) < 36.

3. Choose any v with #2(v) = 5, preferably with #2(N(v)) < 25.

4. Choose any unlimited v with #2(v) = 4 and a limited neighbor.

5. Choose the vertex u1 in a limited sequence or cycle u1, . . . , ul.

6. Pick a limited pair u1, u2. Let c ∈ N(u1) \ {u2} with s(c) := |N(c) ∩ (N(u1)|
maximum. If s(c) > 1, then choose a vertex in N(u1) \ {u2, c}, else choose u1.

7. From Y := {v ∈ V (F) | #2(v) = 4, ∃z ∈ N(v) : #2(z) = 3 ∧N [z] 6⊆ N [v]} choose
v, preferably such that #2(N(v)) is maximum.

8. Choose any v, with #2(v) = 4, with #2(N(v)) minimum.

9. Choose any v, with #2(v) = 3, such that there is a ∈ N(v), which forms a triangle
a, b, c and b, c 6∈ N [v] (we say v has pending triangle a, b, c).

10. Choose any v, such that we have a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch.

In Section 3.4.4 we will show that we can always choose v ∈ V (F) with the claimed
properties in item 10. So, our list of HP catches all cases. From now on v denotes the
variable picked according to HP.

Some further comments on priorities 6 and 7 may be in order here. By definition of
an open neighborhood, s(c) does not count c, nor u1. Since at this stage, all variables,
who are neighbored to a weight 4 variable, have weight 3, s(c) ≤ 2. The two cases that
are considered are either s(c) = 2 or s(c) < 2. In the first case, the chosen vertex (from
N(u1) \ {u2, c}) is unique as u1 has exactly three neighbors due to being limited.
The set Y defined in priority 7 contains weight 4 variables u with an weight 3 neighbor
z such that z has a private neighbor with respect to u.

66

3.4. The Analysis

3.3.2. Key Ideas

The main idea is to have some priorities on the choice of a weight 4 variable such that
the branching behavior is beneficial. For example limited variables tend to be unstable
in the following sense: If their weight is decreased due to branching they will be reduced
due to Lemma 3.2.3.1. This means we can get an amount of ω4 instead of ∆4. In a
graph lacking limited vertices we want a variable v with a weight 3 neighbor u such that
N [u] 6⊆ N [v]. This means that u should have a private neighbor with respect to v. In
the branch on v where u is set (Lemma 3.2.2.3) we can gain some extra reduction (at
least ∆4) from N [u] \N [v].
If we fail to find a variable according to priorities 5-7 we show that either v as four
weight 4 variables and that the graph is 4-regular, or otherwise we have two distinct
situations which can be handled quite efficiently.
Further, the most critical branches are when we have to choose v such that all variables
in N [v] have weight ωi. Then the reduction in γ(F) is minimal (i.e., ωi + i · ∆i). We
analyze this regular case together with its immediate preceding branch. Thereby we
prove a better branching behavior compared to a separate analysis. In [143] similar
ideas were used for Max-2-CSP.
We are now ready to present our algorithm, see Alg. 10. Reaching step 7 we can rely on
the fact that Gvar has at least 10 vertices. We call this the small component property
(scp) which is crucial for some cases of the analysis. Namely, small components can be
solved with an arbitrary algorithm, affecting only multiplicative constants that do not
matter in the O∗-notation.

Algorithm 10 An algorithm for solving Max-2-Sat.

Procedure: SolMax2SAT(F)

1: Apply SolMax2SAT on every component of Gvar separately.
2: Apply the reduction rules exhaustively to F .
3: Search exhaustively on any sub-formula being a component of at most 9 variables.
4: if F = {T }. . .{T } then
5: return |F |
6: else
7: Choose a variable v according to HP.
8: return max{SolMax2SAT(F [v]), SolMax2SAT(F [v̄])}.
9: end if

3.4. The Analysis

In this section, we investigate the cases when we branch on vertices picked according to
items 1-10 of HP. For each item we will derive a branching vector which upper bounds
this case in terms of K. In the rest of section 3.4 we show:

Theorem 3.4.1: Algorithm 10 has a run time of O∗(2
K

6.1489).

67

Chapter 3. A New Upper Bound for Max-2-SAT

Regular Branches We call a branch h-regular if we branch on a variable v such that
for all u ∈ N [v] we have #2(u) = h. In a non-regular branch we can find a u ∈ N(v)
with #2(u) < #2(v).

3.4.1. Gvar has High Maximum Degree

3.4.1.1. Priority 1

If #2(v) ≥ 7, we first obtain a reduction of ω7 because v will be deleted. Secondly, we
get an amount of at least 7 ·∆7 as the weights of v’s neighbors each drops by at least one
and we have ∆i ≥ ∆i+1. Thus, γ is reduced by at least 7 in either of the two branches
(i.e., we have a ({7}2)-branch).

The following Priorities are analyzed in a way that we assume that they are non-regular
branches. We dedicate an extra section to regular branches. Note that we already
handled h-regular branches for h ≥ 7 above.

3.4.1.2. Priorities 2 and 3

Choosing v ∈ V (F) with #2(v) = 6, there is a u ∈ N(v) with #2(u) ≤ 5 due to non-
regularity. Then by deletion of v, there is a reduction by ω6 and another of at least
5∆6 + ∆5, resulting from the dropping weights of the neighbors. Especially, the weight
of u must drop by at least ∆5. This leads to a ({6.19685}2)-branch. If #2(v) = 5, the
same observations as in the last choice lead to a reduction of at least ω5 + 4 ·∆5 + ∆4.
Thus we have a ({6.1489}2)-branch.

3.4.2. Gvar has Maximum Degree Four

We often will stress the fact that in a reduced formula for every v ∈ V (F) we have
#(v) ≥ 3 due to Lemma 3.2.2.2. Any variable violating this property will be set or
replaced by another variable (see RR-5).

3.4.2.1. Priority 4

Let u1 ∈ N(v) be the limited variable. The vertex u1 forms a limited pair with some u2,
see Figure 3.1(a).

After branching on v, the variable u1 has weight at most 3. At this point, u1 appears
only with one other variable z in a 2-clause. Then, RR-5 is applicable to u1 with u2 as
its companion. According to Lemma 3.2.3.1, either u1 is set or the two edges of u1 and
u2 will be contracted. In the first case, we receive a total reduction of at least 3ω4+2∆4,
in the second of at least 2ω4+4∆4 (even if di = h, for some i ∈ {1, 2, 3}, since ω4 ≥ 2∆4).
A proper estimate is a ({2ω4 + 4∆4}2)-branch, i.e., a ({7.0523}2)-branch.

68

3.4. The Analysis

3.4.2.2. Priority 5

If u1, . . . , uℓ is a limited cycle, then ℓ ≥ 10 due to scp. By RR-5 this yields a (10ω4, 10ω4)-
branch. If u1, . . . , uℓ is a limited sequence, then due to Priority 4 the neighbors of u1
lying outside the sequence have weight 3. By RR-5, the branch on u1 is a ({3ω4+2ω3}2)-
branch, i.e., a ({7.29275}2)-branch.

3.4.2.3. Priority 6

At this point every limited variable u1 has two neighboring variables y, z with weight 3
and a limited neighbor u2 with the same properties (due to priorities 4 and 5). We now
examine the local structures arising from this fact and by the values of |N [y]\N [u1]| and
|N [z] \N [u1]|. W.l.o.g., we only discuss the cases when |N [y] \N [u1]| ≤ |N [z] \N [u1]|.

1. We rule out |N [y] \N [u1]| = |N [z] \N [u1]| = 0 (see Figure 3.1(b)) due to scp.

2. |N [y]\N [u1]| = 0, |N [z]\N [u1]| = 1: Then, N(y) = {u2, z, u1}, N(u2) = {u1, y, s1}
and N(z) = {u1, y, s2}, see Figure 3.1(c). In this case we branch on z, as z is the
only vertex that is neighbor of u1 but not of u2. Thus, s(y) = 2 > s(z) = 1.
Then due to RR-5 y and u1 disappear; either by being set or replaced. Thereafter
due to RR-1 and Lemma 3.2.2.1 u2 will be set. Additionally we get an amount of
min{2∆4, ω4, ω3+∆4} from s1, s2. This depends on whether s1 6= s2 or s1 = s2 and
in the second case on the weight of s1. If #2(s1) = 3 we get a reduction of ω3 + ∆4

due to setting s1 and scp. In total we have at least a ({2ω4 + 2ω3 + 2∆4}2)-branch.

3. |N [y] \N [u1]| = 1, |N [z] \N [u1]| = 1: Here two possibilities occur, depending on
the neighbor of u1 present in N(y): (a) N(y) = {u1, u2, s1}, N(z) = {u1, u2, s2},
N(u2) = {u1, y, z}, see Figure 3.1(d): Then w.l.o.g., we branch on z. After setting
z the vertices u1, u2 and y will disappear either by being set or replaced by another
variable due to RR-5 or Lemma 3.2.2.2. Similarly to item 2. we obtain a ({2ω4 +
2ω3 + 2∆4}2)-branch.
(b) N(y) = {u1, z, s1}, N(z) = {u1, y, s2}, see Figure 3.1(e): W.l.o.g., we branch
on z. Basically we get a total reduction of ω4+2ω3+2∆4. That is 2ω3 from y and z,
ω4 from u1 and 2∆4 from s2 and u2. In the branch where y is set (Lemma 3.2.2.3),
we additionally get ∆4 from s1 and ω4 from u2 as it will disappear (Lemma 3.2.2.2).
This is a (2ω4 + 2ω3 + 2∆4, ω4 + 2ω3 + 2∆4)-branch.

4. |N [y]\N [u1]| = 1, |N [z]\N [u1]| = 2, see Figure 3.1(f): We branch on z and due to
RR-5 the variables u1, u2 and y will disappear. This yields a ({2ω4+2ω3+2∆4}2)-
branch.

5. |N [y] \N [u1]| = 2, |N [z] \N [u1]| = 2, see Figure 3.1(g): In this case we choose u1
for branching. Essentially, we get a reduction of 2ω4 +2ω3. In the branch setting z
we receive an extra amount of 2∆4 from z’s two neighbors outside N(u1). Hence,
we have a (2ω4 + 2ω3 + 2∆4, 2ω4 + 2ω3)-branch.

69

Chapter 3. A New Upper Bound for Max-2-SAT

We have at worst a (2ω4 + 2ω3 + 2∆4, ω4 + 2ω3 + 2∆4)-branch, i.e., a (7.2126, 5.40945)-
branch.

v

u1

u2
h

d1 d2

d3

(a) HP 4

y

z

u1 u2

(b) HP 6.1

s1
s2

y

z

u1 u2

(c) HP 6.2

s1

s2

y

z

u1 u2

(d) HP 6.3(a)

s1

s2

y

z

u1 u2

(e) HP 6.3(b)

s1

s2

y

z

u1 u2

(f) HP 6.4

s1

s2

y

z

u1 u2

(g) HP 6.5

v u1

u0

u2

u3

u4

(h) HP 7:3-path

v u1

u0

u2

u3

(i) HP 7:4-path

Figure 3.1.: Local structures that arise when branching in a variable multi-graph of
maximum weight four. These structures appear in heuristic priorities 4, 6,
and 7 as indicated.

3.4.2.4. Priority 7

We need further auxiliary notions:

Definition 3.4.1. A 3-path for an unlimited weight 4 vertex v is a sequence of vertices
u0u1 . . . ulul+1 forming a path, such that 1 ≤ l ≤ 4, ui ∈ N(v) for 1 ≤ i ≤ l, #2(ui) = 3
for 1 ≤ i ≤ l and u0, ul+1 6∈ N(v), see Figure 3.1(h) for the case l = 3. A 4-path for
an unlimited weight 4 vertex v is a sequence of vertices u0u1 . . . ul forming a path, such
that 2 ≤ l ≤ 4, #2(ui) = 3 for 1 ≤ i ≤ l−1,#2(ul) = 4 and u0 6∈ N(v), see Figure 3.1(i)
for the case l = 3.

Due to the absence of limited vertices, every vertex v, chosen due to Priority 7, must
have a 3- or 4-path.

3-path

70

3.4. The Analysis

u0 6= uℓ+1 If u0 6= ul+1 we basically get a reduction of ω4 + lω3 + (4 − l)∆4. In
the branch where u1 is set, u2 . . . ul will be also set due to Lemma 3.2.2.1.
Therefore, we gain an extra amount of at least 2∆4 from u0 and ul+1, leading
to a (ω4 + lω3 + (6− l)∆4, ω4 + lω3 + (4− l)∆4)-branch.

u0 = uℓ+1 In F [v] and in F [v̄], u0u1 . . . ulul+1 is a lasso such that l ≥ 2 (RR-5).
So by Lemma 3.2.3.2, u1, . . . , ul are deleted and the weight of u0 drops by 2.
If #2(u0) = 4 this yields a reduction of lω3 + ω4. If #2(u0) = 3 the reduction
is (l + 1)ω3 but then u0 is set. If N [u0] \ N [v] is not empty then we obtain
a reduction of ∆4 in addition due to setting u0. Otherwise there is a unique
r ∈ N(u0) \ {u1, . . . , ul} with r ∈ N(v) \ {u1, . . . , ul}. If #2(r) = 4 we get
a ({2ω4 + (l + 1)ω3 + (3 − l)∆4}2)-branch. If #2(r) = 3, then r is set. As
(4− l) ≤ 2 and by applying the same arguments to r which previously where
applied to u0 we get at least a ({ω4 +(l+1)ω3+(5− l)∆4}2)-branch. Observe
that we used the fact that ω4 ≥ 2∆4.

4-path We get an amount of ω4 + (l − 1)ω3 + (5 − l)∆4 by deleting v. In the branch
where u1 is set we get a bonus of ∆4 from u0 due to the decreasing degree of u0 in
Gvar. Further ul will be deleted completely. Hence we have a (2ω4 + (l − 1)ω3 +
(5− l)∆4, ω4 + (l − 1)ω3 + (5− l)∆4)-branch.

The first branch is worst for l = 1, the second and third for l = 2 (as l = 1 is impossible
by definition). Thus, we have a ({7.2126}2)-branch for the second and a (7.0523, 5.3293)-
branch for the first and third case which is sharp, i.e., the branching number for the
branching vector (7.0523, 5.3293) is 2

K
6.1489 .

3.4.2.5. Priority 8

Lemma 3.4.2: If we have chosen a variable v with #2(v) = 4 according to Priority 8,
such that #2(N(v)) < 16, then we have two distinct situations, see Figures 3.2(a) and
3.2(b).

Proof. Note that when we are forced to pick a variable v according to Priority 8, then
either v has four neighbors of weight 4 or for every weight 3 neighbor z we have N [z] ⊆
N [v]. Namely, if #2(N(v)) < 16, then v has a neighbor of weight 3, since neighbors of
lower weight would have been set or replaced: notice that the set Y defined in HP 7
must be empty. It follows that, for every weight 3 neighbor z, we have N [z] ⊆ N [v] due
to the choice of v according to HP.

Let N4 (resp. N3) be the set of weight 4 (3, resp.) neighbors of v. We analyze different
cases induced by the cardinality |N3|.
— If N3 = {b}, then there are vertices a, c ∈ N4, such that b ∈ N(a) and b ∈ N(c). We
must have a ∈ N(c), or else a would violate our assumption: it would be a variable with
#2(a) = 4 and it would have a neighbor, namely b, with #2(b) = 3 and N(b) 6⊆ N(a).
Thus, we get the situation of Figure 3.2(a).
— Consider N3 = {b, c}. Case (1): b and c are neighbors. If b, c ∈ N(a) for a ∈ N4,
we have a situation as depicted in Figure 3.2(b). Otherwise, b ∈ N(a) and c ∈ N(d)

71

Chapter 3. A New Upper Bound for Max-2-SAT

v
a

b

c

d

(a) N3 = {b}

v
a

b

c

d

(b) N3 = {b, c}

v

a

b

c

d

(c) N3 = {b, c}

v

a

(d) |N3| = 3 case b)

v

a

(e) |N3| = 3 case a)

Figure 3.2.: Local structures that arise when branching in a variable multi-graph of
maximum weight four, ctd.

for a, d ∈ N4. But then, Priority 7 applies to both a and d, which is a contradiction to
the fact that Alg. 10 is already in Priority 8. Case (2): b and c are not neighbors, it
can be easily observed that we must have the situation in Figure 3.2(c), where Priority
7 applies to a and d, also a contradiction.
— a) If |N3| = 3 and no vertex fromN3 is neighbored to the weight 4 vertex a ∈ N(v)\N3

then the situation in Figure 3.2(d) emerges. It is easily seen that RR-6 applies to this
case, a contradiction
b) If there is a vertex from N3 neighboring a then it is easy to verify that we must have
situation 3.2(e) in Figure 3.1. But then Priority 7 applies to a.
If |N3| = 4, then clearly N [v] forms a component of five vertices which cannot appear
after step 3 of Alg. 10.

In Figure 3.2(a) in either branch F [v] or F [v̄], the variables a, b, c form a 3-quasi-lasso,
so by Lemma 3.2.3.2 we get a reduction of ω3 + 3ω4 + ∆4 = 4ω4.
In Figure 3.2(b) in both branches the variables a, b, c form a 3-lasso, so by Lemma 3.2.3.2
b, c are deleted and a is set due to Lemma 3.2.2.1. We get a reduction of ω4 + 2ω3 from
this. If d 6∈ N(a) we additionally get 2∆4, otherwise ω4. Altogether, we reduce γ(F) by
at least 2ω4 + 2ω3 + 2∆4 in each of the both branching cases.

3.4.3. The 4- 5- and 6-regular case

The part of the algorithm when we branch on variables of weight h 6= 4 will be called
h-phase. Branching according to priorities 4-8 is the 4-phase, according to priorities 9
and 10 the 3-phase. In the following we have 4 ≤ h ≤ 6. The case h ≥ 7 has been
already covered by Priority 1. Later on also a special section is devoted to the case
h = 3. Any h-regular branch which was preceded by a branch from the (h + 1)-phase
can be neglected. This situation can only occur once on each path from the root to
a leaf in the search tree. Hence, the run time is only affected by a constant multiple.

72

3.4. The Analysis

We now classify h-regular branches: An internal h-regular branch is a h-regular branch
such that another h-regular branch immediately follows in the search tree in at least
one component. A final h-regular branch is a h-regular branch such that no h-regular
branch immediately succeeds in either of the components. When we are forced to do
an h-regular branch, then according to HP the whole graph must be h-regular at this
point.

Observation 3.4.3: If a branch is followed by a h-regular branch in one component, say
in F [v], then in F [v] any u ∈ V (F) with #2(u) < h will be reduced.

Due to Observation 3.4.3 every vertex in N(v) is completely deleted by the reduction
rules in F [v].

3.4.3.1. Internal h-regular branches

Proposition 3.4.4: O∗(1.1088K) upper bounds any internal h-regular branch.

Proof. By Observation 3.4.3 for h = 4 this yields at least a (5ω4, ω4 + 4∆4)-branch if in
exactly one component a h regular branch follows. The vertex v must have been chosen
due to Priority 8. Thus, v has 4 different weight 4 neighbors. If both components
are followed by an h-regular branch we get a total reduction of 5ω4 in both cases. The
same way we can analyze internal 5- and 6-regular branches. This yields (3ω5, ω5+5∆5)-,
({3ω5}2)-, (3ω6, ω6+6∆6)- and ({3ω6}2)-branches as for any v ∈ V (F) we have |N(v)| ≥
2. Note that we can have multiple edges as v is chosen due to HP 2 or 3.

3.4.3.2. Final h-regular branches

We will consider branches which are immediately followed by a h-regular branch in at
least one component. In this component of the branch we can delete any variable in
N(v) additionally due to Observation 3.4.3. The Propositions 3.4.5 and 3.4.6 will explore
by how much we additionally can decrement γ(F) in the corresponding component in
case h ∈ {5, 6}. Let kij denote the number of weight j variables occurring i times in a
2-clause with some v ∈ V (F) chosen for branching. Observe that it is impossible that
|j − i| ≤ 1 due to RR-5.

Proposition 3.4.5: Let v ∈ V (F) be the variable chosen due to HP such that #2(v) =
5. If this branch is followed by a 5-regular branch in one component, then we can
decrement γ(F) by at least ω5 + ω4 in addition to the weight of v in that component.

Proof. According to [104] we must have the following relation:

k13 + k14 + k15 + 2k24 + 2k25 + 3k35 = 5 (3.1)

We now have to determine an integer solution to (3.1) such that ω3k13 +ω4k14 +ω5k15 +
ω4k24 + ω5k25 + ω5k35 is minimal. We can assume k14 = k15 = 0 as we have ω3 < ω4 <
ω5. For any solution violating this property we can find a smaller solution by setting
k′13 = k13 + k14 + k15, k

′
14 = 0 and k′15 = 0 and keeping the other coefficients. The same

73

Chapter 3. A New Upper Bound for Max-2-SAT

way we find that k25 = 0 must be the case as ω4 < ω5.
If k13 ≥ 2 we set k′13 = k13 − 2⌊k13

2
⌋, k′24 = k24 + ⌊k13

2
⌋ and keep the other coefficients.

By 2ω3 > ω4 this is a smaller solution. Now suppose k13 = 1, then we have k24 = 0 in
a minimal solution as ω3 + ω4 > ω5 (i.e., if k24 ≥ 1 we set k′13 = 0, k′24 = k24 − 1 and
k′35 = k35 + 1). But then no k35 could satisfy (3.1). Thus, we have k13 = 0. Then the
only integer solution is k24 = 1 and k35 = 1. Hence, the minimal reduction we get from
N(v) is ω5 + ω4.

Proposition 3.4.6: Let v ∈ V (F) be the variable chosen due to HP such that #2(v) =
6. If this branch is followed by a 6-regular branch in one component, then we can
decrement γ(F) by at least ω6 + ω4 in addition to the weight of v in that component.

Proof. In this case the following relation holds:

k13 + k14 + k15 + k16 + 2k24 + 2k25 + 2k26 + 3k35 + 3k36 + 4k46 = 6 (3.2)

We now have to determine an integer solution to (3.2) such that ω3k13 +ω4k14 +ω5k15 +
ω6k16 +ω4k24 +ω5k25 +ω6k26 +ω5k35 +ω6k36 +ω6k46 is minimal. As ω3 < ω4 < ω5 < ω6

we conclude that k1ℓ = 0 for 4 ≤ ℓ ≤ 6, k2ℓ′ = 0 for 5 ≤ ℓ′ ≤ 6 and k36 = 0. We also
must have k13 ≤ 1 as in the previous proof. By 2ω4 > ω6 and the same arguments we
must have k24 ≤ 1. By (3.2) we also have k35 ≤ 2 and k46 ≤ 1.
If k13 = 0 the only integer solutions under the given restrictions are k35 = 2 and k24 =
1, k46 = 1. If k13 = 1 the only integer solution is k35 = 1, k24 = 1. Thus, the minimal
amount we get by reduction from N(v) is ω6 + ω4 due to ω6 + ω4 < 2ω5 and ω6 + ω4 <
ω3 + ω5 + ω4

We now analyze a final h-regular ({b}2)-branch with its preceding (a1, a2)-branch. The
final h-regular branch might follow in the first, the second or both components of the
(a1, a2)-branch. So, the combined analysis would be a ({a1 + b}2, a2), a (a1, {a2 + b}2)-
and a ({a1 + b}2, {a2 + b}2)-branch. For any final h-regular we will apply a combined
analysis with its preceding branch.

Proposition 3.4.7: Any final h-regular branch (h ∈ {5, 6}) considered together with
its preceding branch can be upper bounded by O∗(1.1172K).

Proof. We will apply a combined analysis for both branches. Due to Observation 3.4.3
N(v) will be deleted in the corresponding component of the preceding branch. The
least amount we can get by deleting N(v) is ω5 + ω4 in case h = 5 and ω6 + ω4 in case
h = 6 (due to Propositions 3.4.5 and 3.4.6). Hence, we get four different branches: A
({3ω5 +ω4 + 5∆5}2, ω5 + 5∆5)-, a ({3ω6 +ω4 + 6∆6}2, ω6 + 6∆6)-, a ({3ω5 +ω4 + 5∆5}4)-
and a ({3ω6 + ω4 + 6∆6}4)-branch, respectively.

Proposition 3.4.8: Any final 4-regular branch considered with its preceding branch
can be upper bounded by O∗(2

K
6.1489) ≈ O∗(1.11933K).

74

3.4. The Analysis

Proof. We must analyze a final 4-regular branch together with any possible predecessor.
These are all branches derived from priorities 4-8.

Internal 4-regular branch The two corresponding branches are a ({6ω4 +4∆4}2, ω4 +
4∆4)-branch and a ({6ω4 + 4∆4}4)-branch.

Priorities 4, 5 and 8 are all dominated by a ({2ω4 + 4∆4}2)-branch. Analyzing these
cases together with a succeeding final 4-regular branch gives a ({3ω4+8∆4}2, 2ω4+4∆4)-
branch and a ({3ω4 + 8∆4}4)-branch.

Priority 6 Subcases 2, 3(a) and 4 of our non-regular priority-6 analysis can be analyzed
similarly to priorities 4, 5 and 8 as they have branching vectors which dominate ({2ω4 +
4∆4}). We now analyze the remaining subcases.
Subcase 1 Here we deal with small components which are directly solved without any
branching. Therefore we get a ({3ω4 + 2ω3 + 4∆4}2) -branch in the combined analysis.
Consider now cases 3(b) and 5. Let u1, u2 be the chosen limited pair. Due to HP, the
variable u2 has two weight 3 neighbors p1 and p2. Thus, if a final 4-regular branch is
following in these cases, then we get an additional reduction of 2ω3 (with respect to the
component of the branch). This means that N [{u1, u2}] will be reduced. For both cases
we derived a non-symmetric branch, e.g., an (a, b)-branch with a 6= b. Depending on
whether the final 4-regular branch follows in the first, the second or both components
we derive three combined branches: a) ({3ω4 + 4ω3 + 4∆4}2, 2ω3 +ω4 + 2∆4), b) (2ω3 +
2ω4 + 2∆4, {3ω4 + 4ω3 + 4∆4}2)- and c) ({3ω4 + 4ω3 + 4∆4}2, {3ω4 + 4ω3 + 4∆4}2). As

O∗(2
K

6.1489) does not properly upper bound a) we need a further discussion. Thus we
will consider two subcases. Remember that in the first component of a) some weight 3
neighbor t ∈ {z, y} of v is set where v ∈ {z, y} \ {t}
Subcase 3(b).1. First suppose that N(z) \ (N(u1) ∪ N(u2)) = ∅ and N(y) \ (N(u1) ∪
N(u2)) = ∅, see Figure 3.3(a). Then by either branching on y or z we get a ({2ω4+4ω3}2)-
branch. Note that all the vertices in Figure 3.3(a) will disappear due to the reduction
rules. In this case the combined analysis is similar to priorities 4, 5 and 8.
Subcase 3(b).2. Secondly, w.l.o.g., we have N(z)\(N(u1)∪N(u2)) 6= ∅, see Figure 3.3(b)
and 3.3(c). In Figure 3.3(b) we might have picked y = v or z = v for branching. But
observe that in both cases in the branch where the particular weight 3 neighbor t is set
(t = s if v = z and t = z if v = y) such that in this component a 4-regular branch follows
we have a at least a reduction of 2ω4 + 5ω3. This entails a ({3ω4 + 5ω3 + 4∆4}2, ω4 +
2ω3 + 2∆4)-branch (called a′)) in the combined analysis instead of a). If the case in
Figure 3.3(c) applies, then, w.l.o.g., we branch on z and we have t = s. Then in the
branch where s is set, s, y and u1 will be reduced due to RR-5 and N [u2] \ {u1} due
to the fact that a 4-regular branch follows. Thus, the derived branch is the same as for
the case of Figure 3.3(b).
Subcase 5 As the vertices in N(u1) ∪N(u2) cannot form a component, w.l.o.g., we find
a variable q ∈ N(z) \ (N(u1) ∪N(u2). In this case we branch on u1. Now in the branch
where we set z (i.e., z = t) such that a 4-regular branch follows in that component
we get at least ω3 from q in addition to 2ω4 + 4ω3 from N(u1) ∪ N(u2). We have a
({3ω4 + 5ω3 + 4∆4}2, 2ω4 + 2ω3)-branch (called a′′)) in the combined analysis instead of

75

Chapter 3. A New Upper Bound for Max-2-SAT

z

y

u1 u2

p1

p2

(a) Subcase 3(b).1

z

y

u1 u2s

p1

p2

(b) Subcase 3(b).2

z

y

u1 u2
s

p1

p2

(c) Subcase 3(b).2

Figure 3.3.: Situations arising in Priority 6

#2(u0), #2(ul+1) left component right component both components
#2(u0) = 3 ({2ω4 + 6ω3 + 4∆4}2, (ω4 + 6ω3, ({2ω4 + 6ω3 + 4∆4}2,

#2(ul+1) = 3 ω4 + 4ω3) {2ω4 + 6ω3 + 4∆4}2) {2ω4 + 6ω3 + 4∆4}2)
#2(u0) = 3 ({3ω4 + 5ω3 + 4∆4}2, (ω4 + 5ω3 + ∆4, ({3ω4 + 5ω3 + 4∆4}2,

#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 5ω3 + 4∆4}2) {2ω4 + 5ω3 + 4∆4}2)
#2(u0) = 4 ({4ω4 + 4ω3 + 4∆4}2, (ω4 + 4ω3 + 2∆4, ({4ω4 + 4ω3 + 4∆4}2,

#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 4ω3 + 4∆4}2) {2ω4 + 4ω3 + 4∆4}2)

Table 3.1.:

a).

Both branches replacing a) have an upper bound of O∗(2
K

6.1489).
Priority 7 Let o be the number of weight 4 vertices from N(v). If in one component a
final 4-regular branch follows, then the worst case is when o = 0 as any weight 4 vertex
would be deleted and ω4 > ω3. On the other hand, if there is a component without an
immediate 4-regular branch succeeding, then the worst case appears when o is maximal
(i.e., o = 4) as ω3 ≥ ∆4. So in the analysis we will consider for each case the particular
worst case even though both together never appear.

3-path with u0 6= ul+1: First if there is a weight 4 variable in N(v) we have at worst the
following branches: a) ({3ω4+5ω3+4∆4}2, ω4+ω3+3∆4), b) (ω4+ω3+5∆4, {3ω4+3ω3+
4∆4}2) and c) ({3ω4 +5ω3 +4∆4}2, {3ω4 +3ω3 +4∆4}2). Any of those is upper-bounded

by O∗(2
K

6.1489). Now suppose for all y ∈ N(v) we have #2(y) = 3. Table 3.1 captures the
derived branches for certain combinations. Here we will also consider the weights of u0
and ul. Any entry is upper bounded byO∗(2

K
6.1489) except α) ({2ω4+6ω3+4∆4}2, ω4+4ω3)

the left upper entry and β) (ω4 + 4ω3 + 2∆4, {2ω4 + 4ω3 + 4∆4}2) the middle entry of
the last row.
For U ⊆ V (F) we define E3(U) := {{u, z} | u ∈ U,#2(u) = 3, z 6∈ U}. The set E3(U)
contains the edges with one endpoint in U , such that this endpoint has weight 3, and
the other endpoint is outside U . The next claim shows that we can do better in cases α
and β.

Claim: 1. Suppose for all y ∈ Q := N(v)∪{u0, ul+1} we have #2(y) = 3. Then there
must be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y

′) = 3.

2. Suppose for all y ∈ N(v) we have #2(y) = 3 and #2(u0) = #2(ul+1) = 4. Then

76

3.4. The Analysis

there must be some y′ ∈ V \ (N(v) ∪ {u0, ul+1}) with #2(y
′) = 3.

Proof. 1. Assume the contrary. For any 1 ≤ l ≤ 4 (the length of the 3-path), we have
|E3(Q∪ {v})| ≤ 10 which is sharp for l = 1. Due to scp, there is a weight 4 vertex
r adjacent to some vertex in Q. Observe that we must have r ∈ Y (where Y is
defined in HP 7) as either there is u ∈ N(v) with u ∈ N(r) (and clearly v 6∈ N(r)
as N(v) consists of weight 3 variables) or, w.l.o.g., u0 ∈ N(r) but u1 6∈ N(r).
Furthermore, r has 4 weight 3 neighbors from Q due to the choice of v according
to HP and our assumption. Hence we must have |E3(Q ∪ {v, r})| ≤ 6 due to r
being incident to four vertices from Q. Using the same arguments again we find
some r′ ∈ Y with |E3(Q∪{v, r, r′})| ≤ 2. Again, due to scp, we find a r′′ ∈ Y with
4 weight 3 neighbors where at most two are from Q, a contradiction.

2. Assume the contrary. Observe that u0, ul+1 ∈ Y (u1 and ul have v as private
neighbor and u1 ∈ N(u0), ul ∈ N(ul+1)) and due to the choice of v both have 4
weight 3 neighbors which must be from N(v). From |E3(N [v])| ≤ 8, it follows that
|E3(N [v] ∪ {u0, ul+1})| = 0 which contradicts scp.

Due to the last claim and Observation 3.4.3 we have a ({2ω4 +7ω3 +4∆4}2, ω4 +4ω3)-
branch (α′)) instead of case α) and a (ω4 + 4ω3 + 2∆4, {2ω4 + 5ω3 + 4∆4}2)-branch (β ′))

instead of case β). Both are upper-bounded by O∗(2
K

6.1489).
3-path with u0 = ul+1: In the case of a 3-path such that u0 = ul+1, the branch with l = 2
is dominated by all other choices. Since this is a ({7.21}2)-branch we refer to priorities
4, 5 and 8 from above.
4-path: In this case, we have the following worst-case branches for l = 2: a) ({3ω4 +
4ω3 + 4∆4}2, ω4 +ω3 + 3∆4), b) (2ω4 + ω3 + 3∆4, {3ω4 + 3ω3 + 4∆4}2), c) ({3ω4 + 4ω3 +

4∆4}2, {3ω4 + 3ω3 + 4∆4}2). The cases a) and c) are not upper bounded by O∗(2
K

6.1489)
and hence need further discussion.
Suppose there is a vertex y ∈ D := N(v) ∪ {u0, . . . , ul−1} with weight 4. Then by
Observation 3.4.3 we have branches a′) ({4ω4 + 3ω3 + 4∆4}2, ω4 + ω3 + 3∆4) and c′)
({4ω4 + 3ω3 + 4∆4}2, {3ω4 + 3ω3 + 4∆4}2) instead of a) and c) which are both upper-

bounded by O∗(2
K

6.1489). For the remaining case we need the next proposition.

Claim: Suppose for all y ∈ D we have #2(y) = 3. Then there must be some y′ ∈
V \ (D ∪ {v, ul}) with #2(y

′) = 3.

Proof. Assume the contrary. Observe that if l ≥ 3 then ul ∈ Y due to ul−2 6∈ N(ul). If
l = 2 and u0 6∈ N(u2) then also ul ∈ Y holds. Let us assume that l ≥ 2 and ul ∈ Y as
the remaining case, l = 2 and ul 6∈ Y , will be treated separately.
Now due to the choice of v we have that ul must be adjacent to v, ul−1 and to two further
weight 3 vertices in D. Thus, for any 2 ≤ l ≤ 4 we always have |E3(D ∪ {v, ul})| ≤
8 − (2(l − 1) + 2) = 8 − 2l (✱). Therefore and as D ∪ {v, ul} can not be a component
we have l < 4. There must some weight 4 vertex r 6∈ D ∪ {v, ul} adjacent to some
weight 3 vertex b ∈ D as we have no small components and ul only has v as weight 4
neighbor. Note that r ∈ Y , as either b 6= u0 and v 6∈ N(r), or b = u0 but u1 6∈ N(r).

77

Chapter 3. A New Upper Bound for Max-2-SAT

Due to the choice of v, r must have at least three weight 3 neighbors. Hence l = 2 due
to (✱). If r has 4 weight 3 neighbors then (D ∪ {v, ul, r}) forms a component which is
a contradiction. Hence, we have |E3(D ∪ {v, ul, r})| = 1 and therefore we find again
some r′ ∈ Y \ (D ∪ {v, ul, r}) which is adjacent to at least 3 weight 3 vertices where at
most one is from D. Thus, there must be some weight 3 vertex in V \ (D ∪ {v, ul}), a
contradiction.
Now suppose l = 2 and u0 ∈ N(u2) and let N(u0) = {z, u1, u2}. If z 6∈ N(u2) then
u2 ∈ Y and the first part of the proof applies. Now suppose z ∈ N(u2). Then #2(z) = 3
and it follows that z ∈ N(v) and |E3({D ∪ {v, u2}})| ≤ 2. Now due to scp we can find
an r ∈ Y \ (D ∪ {v, ul}) which is adjacent to at least three weight 3 vertices where only
two can be from D ∪ {v, ul}, a contradiction.

If for all y ∈ D we have #2(y) = 3 from the last claim and Observation 3.4.3 we can
derive two branches a′′) ({3ω4 + 5ω3 + 4∆4}2, ω4 + ω3 + 3∆4) and c′′) ({3ω4 + 5ω3 +

4∆4}2, {3ω4 + 5ω3 + 4∆4}2) which are upper-bounded by O∗(2
K

6.1489).

3.4.4. The Cubic Case

3.4.4.1. Priority 9

Observe that when we have arrived at this point, the graph Gvar must be 3-regular
and each variable has three different neighbors, due to Gvar being reduced and due to
Lemma 3.2.2.2. Also, any 3-regular graph has an even number of vertices, because we
have 3n = 2m. Thus: (∗) Any branching must be of the form (2iω3, 2jω3) for some
1 ≤ i, j. Also, branching on any variable will at least result in a (4ω3, 4ω3)-branch (see
Lemma 3.2.2.2). Note that any u ∈ N(v) will be either set in F [v] or in F [v̄], due to
Lemma 3.2.2.3.

Lemma 3.4.9: Any triangle that exists in Gvar after Priority 8 must be pending with
respect to some vertex v.

Proof. Consider some triangle △ = {a, b, c}. Due to scp, w.l.o.g., a has a neighbor
x 6∈ {b, c}. If △ is not pending with respect to x, then, w.l.o.g., b ∈ N(x). After Priority
8, no vertex has weight 4 (or more). Due to scp, x must have a third neighbor which is
not c. Due to Lemma 3.2.2.2 c must have another neighbor v (which is not x). Since
neither a nor b are neighbors of v, △ is pending with respect to v.

Thus, if we find a triangle in Priority 9 then it must be pending due to Lemma 3.4.9.

Lemma 3.4.10: Let v have a pending triangle a, b, c and N(v) = {a, p, q}. Then by
branching on v, we have an (6ω3, 8ω3)-branch.

Proof. In F [v] and F [v̄], the variables a, b, c form a 3-quasi-lasso. Therefore, due to
Lemma 3.2.3.2, w.l.o.g., only b remains in the reduced formula with #2(b) = 2. Also,
in both branches, q and p are of weight two and therefore deleted. This is a already a
total of six deleted variables. Note that N({q, p}) ∪ {q, p} ⊆ {v, a, b, c, q, p} contradicts
scp, see Figure 3.4(a). Therefore, w.l.o.g., there is a variable z ∈ N(q) such that z 6∈

78

3.4. The Analysis

a

b c

p
v

q

(a) A pending
triangle

z y

v

ab

c

d

f

(b) Setting two
neighbors of v

Figure 3.4.: Explaining (6ω3, 8ω3)-branches, see the proofs of Lemmas 3.4.10 and 3.4.11

{v, a, b, c, q, p}. So, in the branch where q is set, also z will be deleted. Thus, seven
variables will be deleted. The claim follows with (∗).

3.4.4.2. Priority 10

From now on, due to HP, Gvar is triangle-free (see Lemma 3.4.9) and cubic. We show
that if we are forced to choose a vertex v to which none of the priorities 1-9 fits, we can
choose v such that we obtain either a (6ω3, 8ω3)- or a (4ω3, 10ω3)-branch.

Lemma 3.4.11: Let v be a vertex in Gvar and N(v) = {a, b, c}. Suppose that, w.l.o.g.,
in F [v] a, b and in F [v̄] c will be set when branching according to Priority 10. Then, we
have a (6ω3, 8ω3)-branch.

Proof. If |(N(a) ∪ N(b)) \ {v}| ≥ 3, then by setting a and b in F [v], five variables will
be reduced. Together with v and c, this is a total of seven. If |(N(a)∪N(b)) \ {v}| = 2,
then we must face a situation as depicted in Fig. 3.4(b) (note the absence of triangles).
Observe that if z = y (z = c, resp.) then also z 6= c (z 6= y, resp.) due to scp.
Then in F [v] due to Lemma 3.2.2.1 v, a, b, c, d, f, z, y will be deleted. This are at least
seven variables. In F [v̄] at least five variables disappear due to c being set and |N(c) \
{v, a, b}| ≥ 1. Thus, we have a (6ω3, 8ω3)-branch due to (∗).

Lemma 3.4.12: Consider branching according to Priority 10. If for any v ∈ V (F),
all its neighbors are set in one branch (say, in F [v]), we can perform a (6ω3, 8ω3)- or a
(4ω3, 10ω3)-branch.

Proof. If |N({a, b, c}) \ {v}| ≥ 5, then in F [v], 9 variables are deleted, so that we have
a (4ω3, 10ω3)-branch. Otherwise, either one of the two following situations must occur:

a) There is a variable y 6= v, such that N(y) = {a, b, c}, see Figure 3.5(a). Then branch
on b. In F [b̄] v, y, a, c, z will disappear (due to RR-5 and Lemma 3.2.3.1). In F [b], due z
being set, additionally a neighbor f 6∈ {a, b, c, v, y, z} of z will be deleted as the vertices
a, b, c, v, y, z do not form a component by scp. This is a total of seven variables. By (∗),
a (6ω3, 8ω3)-branch is implied in the worst case.

b) There are variables p, q, such that |N(p) ∩ {a, b, c}| = |N(q) ∩ {a, b, c}| = 2. W.l.o.g.,

79

Chapter 3. A New Upper Bound for Max-2-SAT

v

a

b

c

y

z

(a) Case a)

v

a

b

c

p

q

h1
h2

h3
h4

(b) Case b):
|{h1, h2, h3, h4}| = 2,
Subcase 1

v

a

b

c

p
q

h1

h2

h3

h4

(c) Case b):
|{h1, h2, h3, h4}| = 2,
Subcase 2

a

b

c

p

q
v

hj hi
(d) Case b):
|{h1, h2, h3, h4}| = 2,
Subcase 2, a special
case

Figure 3.5.: Situations that may arise in Lemma 3.4.12, when all neighbors of v are set
in one branch.

{a, b} ⊆ N(p). Two subcases arise:
Subcase 1: W.l.o.g., {b, c} ⊆ N(q), see Figure 3.5(b). Let h1, h2, h3, h4 be the hitherto
unnamed neighbors of a, p, q, c, resp., that must exist due to Lemma 3.2.2.2.
Subcase 2: {a, b} ⊆ N(q), see Figure 3.5(c). Let h1, h2, h3, h4 be the hitherto unnamed
neighbors of p, q, c, resp., that must exist due to Lemma 3.2.2.2.
We will argue for both subcases in the following and point out where we distinguish
between them. In both subcases, in the branch F [v], the variables a, b, c, p, q will be set
(Lemma 3.2.2.1). Let H = {h1, h2, h3, h4}. If |H| ≥ 3 then at least nine variables are
deleted in F [v]. This gives a (4ω3, 10ω3)-branch due to (∗). Otherwise, we have |H| = 2
due to degree restrictions. Therefore |{v, a, b, c, p, q} ∪H}| = 8.
Now, consider Subcase 1. Due to triangle-freeness we must have h1 = h3 and h2 = h4
or h1 = h4 and h2 = h3. On the other hand, there is z ∈ N({v, a, b, c, p, q} ∪H) due to
scp. Hence, at least nine variables vanish in F [v] due to the setting of the H-vertices
(Lemma 3.2.2.1), which again entails a (4ω3, 10ω3)-branch due to (∗).
In Subcase 2, if |H| = 2 then there is a hj with hj /∈ {hi | i = 1 . . . 4; i 6= j}. It
follows that we have the special situation from Figure 3.5(d). We see at once that RR-6
applies to this situation, which cannot be at that point. If we do not find such a hj ,
then, w.l.o.g., h1 = h2 and h3 = h4, and we can argue as in Figure 3.5(b) to get a
(4ω3, 10ω3)-branch.

We remark that Theorem 4.2 of [102] contains also an alternative but less detailed

80

3.5. Combining Two Approaches

proof of case b) of the previous proof1

Having arrived at Priority 10 we try to find a variable v such that Lemma 3.4.11
applies. If we fail to do so, then v is covered by Lemma 3.4.12. Due to the last three
lemmas, branchings according to priorities 9 and 10 are upper bounded by O∗(2

K
6.1489).

Especially, the (4ω3, 10ω3)-branch is sharp, i.e, the branching number is 2
K

6.1489 . Measured
in n (the number of variables) the running time of these two priorities is upper-bounded
by O∗(1.11199n).

3.5. Combining Two Approaches

3.5.1. General Exposition

A. S. Kulikov and K. Kutzkov [104] achieved a run time of O∗(2
K

5.88). This was obtained
by speeding up the 5-phase by a concept called ’clause learning’. As in our approach the
3- and 4-phase was improved, we will show that if we use both strategies we can even
beat our previous run time bound. This means that in HP we substitute Priority 3 by
their strategy with one exception: we prefer variables v with a non-weight-5 neighbor
(✮). Forced to violate this preference we do a simple branching of the form F [v] and
F [v̄].
For the analysis we redefine the measure γ(F): we set ω3 = 0.9521, ω4 = 1.8320,
ω5 = 2.488 and keep the other weights. We call this measure γ̃(F). We will reproduce
the analysis of [104] briefly with respect to γ̃(F) to show that their derived branches for

the 5-phase are upper bounded by O∗(2
K

6.2158). It also can be checked that this is also
true for the branches derived for the other phases by measuring them in terms of γ̃(F),
see section 3.5.3.

Let kij denote the number of weight j variables occurring i times in a 2-clause with some
v ∈ V (F) chosen for branching. Note that i ≤ j − 2 due to RR-5. Then we must have:

k13 + k14 + k15 + 2k24 + 2k25 + 3k35 = 5

If F ′ is the formula obtained by assigning a value to v and by applying the reduction
rules afterwards we have:

γ̃(F)− γ̃(F ′) ≥ 5∆5 + ω5 + (ω3 −∆5)k13 + (∆4 −∆5)k14 + (
ω4

2
−∆5)2k24

+(∆4 −∆5)k25 + (
ω5

2
− 3

2
∆5)2k35

= 5.768 + 0.2961k13 + 0.2239(k14 + k25) + 0.26 · 2(k24 + k35)

Basically we reduce γ̃(F) by at least ω5 + 5∆5. Now the coefficients of the kij in the
above equation express how the reduction grows if kij > 0.

1Actually, in [102] it is claimed that branching on v in the situation of Figure 3.5(d) entails a
(4ω3, 10ω3)-branch. But in F [v] (where v, a, b, c are set) it is possible that only v, a, b, c, p, q, hi, hj

will disappear. However, a (8ω3, 8ω3)-branch can be shown.

81

Chapter 3. A New Upper Bound for Max-2-SAT

case one component both components upper bound
k15 = 5 ({7ω5 + 5∆5}2, ({7ω5 + 5∆5}4) O∗(1.0846K)

ω5 + 5∆5)
k13 = 1, k15 = 4 ({6ω5 + ω3 + 5∆5}2 {6ω5 + ω3 + 5∆5}4) O∗(1.0878K)

, ω5 + 4∆5 + ω3)
k25 = 1, k15 = 3 ({6ω5 + 5∆5}2, ({6ω5 + 5∆5}4) O∗(1.0914K)

ω5 + 3∆5 + (ω5 − ω3))

Table 3.2.:

If k13 + k14 + 2k24 + k25 + 2k35 ≥ 2 we are done as γ̃(F)− γ̃(F ′) ≥ 6.2158.
If k13 = 1 and k15 = 4 then [104] stated a

(5∆5 + ω5 + (ω3 −∆5), 5∆5 + ω5 + (ω3 −∆5) + 2∆5)-branch and for

k25 = 1 and k15 = 3 a (5∆5 + ω5 + (∆4 −∆5), 5∆5 + ω5 + (∆4 −∆5) + ω3)-branch.

If k14 = 1 and k15 = 4 a branching of the kind F [v], F [v̄, v1], F [v̄, v̄1, v2, v3, v4, v5] is
applied, where {v1, . . . , v5} = N(v). From this follows a

(5∆5 + ω5 + (∆4 −∆5), 4∆5 + ω5 + ∆4 + ω4 + 3∆4 + ∆5, 5ω5 + ω4)- and a

(ω5 + 4∆5 + ∆4, ω5 + 4∆5 + ∆4 + ω4 + 4∆5, 5ω5 + ω4 + 3∆5)-branch.

This depends on whether v1 has at least three neighbors of weight less than 5 in F [v̄] or
not. We observed that we can get a additional reduction of ∆5 in the third component
of the first branch as N [v] cannot be a component in V (F) after step 3 of Alg. 10. The
original amount of 5ω5 + ω4 exclusively comes from the vertices in N [v]. This yields a
(4∆5 + ω5 + ∆4, 5∆5 + ω5 + 4∆4 + ω4, 5ω5 + ω4 + ∆5)-branch.

The analysis of the 5-regular branch (i.e., k15 = 5) proceeds the same way as in the simple
version of the algorithm except that we have to take into account the newly introduced
branches, see Sec. 3.5.2. Due to (✮) the case where k15 = 1 also only happens when the
graph is 5-regular.

Theorem 3.5.1: Max-2-SAT can be solved in time O∗(2
K

6.2158) ≈ O∗(1.118K).

The following subsections provide the details missing in the general exposition above.

3.5.2. 5-regular Branches in the Combined Approach

Internal 5-regular branches yield the same recurrences as in the simple approach. Final
5-regular branches must be analyzed together with their immediate preceding branch.
Thus they have to be analyzed together with the introduced branches of [104].
Table 3.2 captures some cases (k15 = 5; k13 = 1, k14 = 4; k25 = 1, k15 = 3). For
the case k14 = 1 and k15 = 4 there are two recurrences for the branching of the form
F [v], F [v̄, v1], F [v̄, v̄1, v2, v3, v4, v5]. The first recurrence (A) assumes that v1 has at least
three neighbor of weight less than five in F [v̄]:

(A) (5∆5 + ω5 + (∆4 −∆5), 4∆5 + ω5 + ∆4 + ω4 + 3∆4 + ∆5, 5ω5 + ω4 + ∆5).

82

3.5. Combining Two Approaches

Branch-type components combined branch upper bound
(A) (1) ({6ω5 + ω4 + 5∆5}2, O∗(1.0912K)

5∆5 + ω5 + (∆4 −∆5) + ω4 + 3∆4 + ∆5,
5ω5 + ω4 + ∆5)

(A) (2) (5∆5 + ω5 + (∆4 −∆5), {6ω5 + ω4 + 5∆5}2, O∗(1.1094k)
5ω5 + ω4 + ∆5)

(A) (3) (5∆5 + ω5 + (∆4 −∆5), O∗(1.1175K)
5∆5 + ω5 + (∆4 −∆5) + ω4 + 3∆4 + ∆5,

{6ω5 + ω4 + 5∆5 + ω3}2)
(B) (1) ({6ω5 + ω4 + 5∆5}2, O∗(1.0894K)

5∆5 + ω5 + (∆4 −∆5) + ω4 + 4∆5,
5ω5 + ω4 + 3ω3)

(B) (2) (5∆5 + ω5 + (∆4 −∆5), {6ω5 + ω4 + 5∆5}2, O∗(1.1052K)
5ω5 + ω4 + 3ω3)

(B) (3) (5∆5 + ω5 + (∆4 −∆5), O∗(1.1159K)
5∆5 + ω5 + (∆4 −∆5) + ω4 + 4∆5,
{6ω5 + ω4 + 5∆5 + 3ω3}2)

(A)/ (1) + (2)/ ({6ω5 + ω4 + 5∆5}4, ω5 + 4∆5 + ∆4) O∗(1.1126K)
(B) (1) + (3)/

(2) + (3)
(A)/ (1) + (2) + (3) ({6ω5 + ω4 + 5∆5}6) O∗(1.0936K)
(B)

Table 3.3.: The second column indicates after which components a final 5-regular branch
immediately follows.

(B) (ω5 + 4∆5 + ∆4, ω5 + 4∆5 + ∆4 + ω4 + 4∆5, 5ω5 + ω4 + 3ω3).

(B) captures the remaining case. Both branches have three components. Table 3.3
captures the combined analysis of a immediately following final 5-branch and branches
(A) and (B). This depends on whether the final 5-regular branch follows after the first
(1), the second (2) or the third (3) component or in any combination of them.
We would like to comment the recurrences in the third row of Table 3.3. Here we get a
reduction of ω3 in addition to 5ω5 +ω4 from v, v1, . . . , v5 in the third part of the branch.
This additional amount comes from clauses C such that |C ∩ {v, v1 . . . , v5}| = 1. Due
to scp, N [v] is not a component and thus at least one further variable must be deleted.

The next proposition serves for covering the remaining branching cases, which can
precede a final 5-regular branch.

Proposition 3.5.2: Let v ∈ V (F) be the variable chosen for branching by Alg. 10
such that #2(v) = 5. Assume v induces a solution to Equation (3.1) in Section 3.4.3
such that it is different from k13 = 1, k15 = 4; k15 = 5; k25 = 1, k15 = 3; k14 =
1, k15 = 4 (⋆). If a 5-regular branch follows in one component we have at least a
({3ω5+ω4+5∆5}2, ω5+3∆5+2∆4)-branch and if it follows in both a ({3ω5+ω4+5∆5}4)-

83

Chapter 3. A New Upper Bound for Max-2-SAT

branch in the combined analysis.

Proof. If a component is followed by a final 5-regular branch the least amount we get
by reduction from N(v) is ω5 + ω4. This refers to the case k35 = 1 and k24 = 1 which
follows from Proposition 3.4.5.
The least reduction from N(v) without a following final 5-regular branch can be found
as follows: Consider any solution of Equation (3.1) expect the ones in (⋆). Among them
find one which minimizes

∆3k13 + ∆4k14 + ∆5k15 + (∆4 + ∆3)k24 + (∆5 + ∆4)k25 + (∆5 + ∆4 + ∆3)k35 (3.3)

Clearly, k13 = 0 because ∆3 > ∆5. We could decrease the amount of reduction by
decreasing k13 by one and by increasing k15. Let k′13 and k′15 be the new values. Observe
that we might end up in the case k′15 = 5 but only if we started from k13 = 1; k15 = 4.
This is forbidden as this excluded due to (⋆).
For the same reason we can assume k24 = 0 as we have ∆4 + ∆3 > ∆5 + ∆4 and the
above modifications apply. In the case where k24 = 1; k15 = 3 we end up in the case
k′25 = 1; k′15 = 3. We can rule out this case because k14 = 2; k15 = 3 is a smaller solution
than k24 = 1; k15 = 3.
As we are excluding (⋆) we must have k15 ≤ 4. If k15 = 4 we conclude that either k14 = 1
or k13 = 1. These solutions are forbidden (see (⋆)). Thus we must have k15 ≤ 3.
If k35 = 1 then there is a better solution as ∆5 + 2∆4 < ∆5 + ∆4 + ∆3: set k′35 = 0, k′15 =
k15 + 1, k′14 = k14 + 2 and keep the other coefficients. Note that in this case we must
have k15 ≤ 2 otherwise 3k35 + k15 > 5. This assures that the new solution is different
from the ones in (⋆)(even in case k′15 = 3). Therefore it follows that k35 = 0.
Now suppose k25 = 2, then k15 = 1 holds because ∆5 < ∆4. But then k′25 = 1, k′15 =
2, k′14 = 1 is a no worse solution. Thus k25 ≤ 1.
If k25 = 1 then with k15 = 2 and k14 = 1 this is minimal under this condition (since
k15 = 3 is forbidden (⋆)). Suppose k25 = 0, then clearly the best solution is k15 = 3 and
k14 = 2. Both solutions provide a reduction of 3∆5 + 2∆4 which is minimal.
Now we analyze a final 5-regular branch and a branch different from (⋆) satisfying
Equation (3.1). If the final 5-regular branch follows in only one component then we have
at least a ({3ω5 + ω4 + 5∆5}2, ω5 + 3∆5 + 2∆4)-branch in the combined analysis. If it
follows in both, then a ({3ω5 + ω4 + 5∆5}4)-branch upper-bounds correctly.

Due to Proposition 3.5.2 we can upper-bound the final 5-regular branches whose pre-
decessors are different from k13 = 1, k15 = 4; k15 = 5; k25 = 1, k15 = 3; k14 = 1, k15 = 4
by O∗(1.1171K) in their combined analysis.

3.5.3. Analysis of the 6- 4- and 3-phase in the Combined Approach

Here we provide the run times under γ̃(F) for the cases we did not consider in Sec-
tion 3.5. The run time has been estimated with respect to γ̃(F). Names will refer to
the corresponding ones in the analysis of Alg. 10.

84

3.5. Combining Two Approaches

case branch upper bound

Internal 6-regular (3ω6, ω6 + 6∆6) O∗(1.0978K)
({3ω6}2) O∗(1.0802K)

Internal 5-regular (3ω5, ω5 + 5∆5) O∗(1.1112K)
({3ω5}2) O∗(1.0974K)

Internal 4-regular (5ω4, ω4 + 4∆4) O∗(1.103K)
({5ω4}2) O∗(1.079K)

Table 3.5.: Internal h-regular cases (h ∈ {4, 5, 6}) an their upper bounds.

3.5.3.1. Non-regular Branches

In Table 3.4 we find the derived recurrences for each priority of HP if we have a non-
regular branch. You can find them together with their run times. Priority 3 is not
considered as the 5-phase has been analyzed in Sections 3.5 and 3.5.2.

Priorities branch upper bound

Priority 1 (7, 7) O∗(1.1042K)

Priority 2 ({ω6 + 5∆6 +∆5}2) O∗(1.118K)

Priority 4 ({2ω4 + 4∆4}2) O∗(1.102K)

Priority 5 ({3ω4 + 2ω3}2) O∗(1.1099K)

Priority 6 (2ω4 + 2ω3 + 2∆4, ω4 + 2ω3 + 2∆4) O∗(1.1143K)

Priority 7
3-path, u0 6= ul+1 (ω4 + ω3 + 5∆4, ω4 + ω3 + 3∆4) O∗(1.1172K)
3-path, u0 = ul+1 ({ω4 + 3ω3 + 3∆4}2) O∗(1.1K)

4-path (2ω4 + ω3 + 3∆4, ω4 + ω3 + 3∆4) O∗(1.1165K)

Priority 8 ({2ω4 + 2ω3 + 2∆4}2) O∗(1.1K)

Priority 9 (8ω3, 6ω3) O∗(1.1105K)

Priority 10 (8ω3, 6ω3) O∗(1.1105K)
(4ω3, 10ω3) O∗(1.118K)

Table 3.4.: The non-regular cases

3.5.3.2. Regular Branches

Table 3.5 captures the run times of any internal 6, 5 or 4-regular branch. Table 3.6
considers final 4 or 6-regular branches together with their preceding branches. Note
that final 5-regular branches have been considered in section 3.5.2. The case where
we have chosen v due to Priority 7 such that v has a 3-path with u0 6= ul is treated
separately.

3-path Finally we consider the case when a variable chosen to Priority 7 has a 3-path
with u0 6= ul+1. The cases a) ({3ω4+5ω3+4∆4}2, ω4+ω3+3∆4), b) (ω4+ω3+5∆4, {3ω4+
3ω3 + 4∆4}2) and c) ({3ω4 + 5ω3 + 4∆4}2, {3ω4 + 3ω3 + 4∆4}2) are upper-bounded by
O∗(1.1152K), O∗(1.1159K) and O∗(1.1147K). Table 3.7 captures the branches together

85

Chapter 3. A New Upper Bound for Max-2-SAT

Preceding branch branch upper bound

Final 6-regular Branch

Any 6-phase branch ({3ω6 + ω4 + 6∆6}2, ω6 + 6∆6) O∗(1.11K)
({3ω6 + ω4 + 6∆6}4) O∗(1.105K)

Final 4-regular Branch

Internal 4-regular ({6ω4 + 4∆4}2, ω4 + 4∆4) O∗(1.1115K)
({6ω4 + 4∆4}4) O∗(1.1003K)

Priorities 4,5 and 8 ({3ω4 + 8∆4}2, 2ω4 + 4∆4) O∗(1.1115K)
Cases 2,3(a),4 of Priority 6 ({3ω4 + 8∆4}4) O∗(1.117K)

Priority 6
Case 1 ({3ω4 + 2ω3 + 4∆4}2) O∗(1.07K)

Case 5,3(b)
b) and ({2ω4 + 2ω3 + 2∆4, {3ω4 + 4ω3 + 4∆4}2) b) O∗(1.109K)

c) of the analysis ({3ω4 + 4ω3 + 4∆4}4) c) O∗(1.1143K)

Case 3b), case a′) of the analysis ({3ω4 + 5ω3 + 4∆4}2, ω4 + 2ω3 + 2∆4) O∗(1.1145K)
Case 5, case a′) of the analysis ({3ω4 + 5ω3 + 4∆4}2, 2ω4 + 2ω3) O∗(1.1140K)

Priority 7
Case of a 4-path

Case b) (2ω4 + ω3 + 3∆4, {3ω4 + 3ω3 + 4∆4}2) O∗(1.1155K)
Case a′) ({4ω4 + 3ω3 + 4∆4}2, ω4 + ω3 + 3∆4) O∗(1.1156K)
Case c′) {4ω4 + 3ω3 + 4∆4}2, {3ω4 + 3ω3 + 4∆4}2) O∗(1.115K)
Case a′′) ({3ω4 + 5ω3 + 4∆4}2, ω4 + ω3 + 3∆4) O∗(1.1152K)
Case c′′) ({3ω4 + 5ω3 + 4∆4}2, ({3ω4 + 3ω3 + 4∆4}2) O∗(1.1147K)

Case of a 3-path with u0 = ul+1 similar to priorities 4,5 and 8

Table 3.6.: The final h-regular cases (h ∈ {4, 6}) and their combined analysis

86

3.6. Conclusion

#2(u0), #2(ul+1) left component right component both components

#2(u0) = 3 case α instead (ω4 + 6ω3, ({2ω4 + 6ω3 + 4∆4}2,
#2(ul+1) = 3 {2ω4 + 6ω3 + 4∆4}2) {2ω4 + 6ω3 + 4∆4}2)
upper bounds O∗(1.1075K) O∗(1.1136K)

#2(u0) = 3 ({3ω4 + 5ω3 + 4∆4}2, (ω4 + 5ω3 +∆4, ({3ω4 + 5ω3 + 4∆4}2,
#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 5ω3 + 4∆4}2) {2ω4 + 5ω3 + 4∆4}2)
upper bounds O∗(1.1136K) O∗(1.1138K) O∗(1.1143K)

#2(u0) = 4 ({4ω4 + 4ω3 + 4∆4}2, case β instead ({4ω4 + 4ω3 + 4∆4}2,
#2(ul+1) = 4 ω4 + 4ω3) {2ω4 + 4ω3 + 4∆4}2)
upper bounds O∗(1.1088K) O∗(1.1088K)

Table 3.7.:

with their run times in the combined algorithm if for all y ∈ N(v) we have #2(y) = 3.
We have a ({2ω4+7ω3+4∆4}2, ω4+4ω3)-branch for case α′) which O∗(1.1132K) properly
upper bounds. We also have a (ω4 + 4ω3 + 2∆4, {2ω4 + 5ω3 + 4∆4}2)-branch for case
β ′) such that it is upper-bounded by O∗(1.1142K). Any branch where #(v) ≥ 7 has an
upper bound of O∗(1.1041K).

3.6. Conclusion

We presented an algorithm solving Max-2-Sat in O∗(2
K

6.2158), with K the number of
clauses of the input formula. This is currently the end of a sequence of polynomial-
space algorithms each improving on the run time, strictly staying within the realm of
Max-2-Sat: beginning with O∗(2

K
2.88) which was achieved by [126], it was subsequently

improved to O∗(2
K

3.742) by [85], to O∗(2
K
5) by [84], to O∗(2

K
5.217) by [99], to O∗(2

K
5.5) by

[102], to O∗(2
K

5.88) by [104] and finally to the hitherto fastest upper bound of O∗(2
K
6)

by [105]. Our improvement has been achieved due to heuristic priorities concerning the
choice of the variable for branching in case of a maximum degree four variable graph.
As [104] improved the case where the variable graph has maximum degree five, it seems
that the only way to speed up the generic branching algorithm is to improve the max-
imum degree six case. Our analysis also implies that the situation when the variable
graph is regular is not that harmful. The reason for this that the preceding branch must
have reduced the problem size more than expected. Thus considered together these two
branches balance each other. Though the analysis is to some extent sophisticated and
quite detailed the algorithm has a clear structure. The implementation of the heuristic
priorities for the weight 4 variables should be a straightforward task.

87

Chapter 3. A New Upper Bound for Max-2-SAT

88

Chapter 4.

Exact and Parameterized Algorithms
for Max Internal Spanning Tree

4.1. Introduction

Motivation.

We investigate the following problem:

Max Internal Spanning Tree (MIST)
Given: A graph G = (V,E) with n vertices and m edges.
Task: Find a spanning tree of G with a maximum number of internal vertices.

MIST is a generalization of the famous and well-studied Hamiltonian Path problem.
Here, one is asked to find a path in a graph such that every vertex is visited exactly once.
Clearly, such a path, if it exists, is also a spanning tree, namely one with a maximum
number of internal vertices. Whereas the running time barrier of 2n has not been broken
for general graphs, there are faster algorithms for cubic graphs (using only polynomial
space). It is natural to ask if for the generalization, MIST, this can also be obtained.
A second issue is if we can find an algorithm for MIST with a running time of the
form O∗(cn). The very näıve approach gives only an upper bound of O∗(2m). A
possible application could be the following scenario. Suppose you have a set of cities
which should be connected with water pipes. The possible connections between them
can be represented by a graph G. It suffices to compute a spanning tree T for G.
In T we may have high degree vertices that have to be implemented by branching
pipes. These branching pipes cause turbulences and therefore pressure may drop. To
minimize the number of branching pipes one can equivalently compute a spanning tree
with the smallest number of leaves, leading to MIST. Vertices representing branching
pipes should not be of arbitrarily high degree, motivating us to investigate MIST on
degree-restricted graphs.

Previous Work.

It is well-known that the more restricted problem, Hamiltonian Path, can be solved
within O(n22n) steps and exponential space. This result has been independently ob-
tained by R. Bellman [5], and M. Held and R.M. Karp [91]. The Traveling Sales-

89

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

man problem (TSP) is very closely related to Hamiltonian Path. Basically, the same
algorithm solves this problem, but there has not been any improvement on the running
time since 1962. The space requirements have, however, been improved and now there
are O∗(2n) algorithms needing only polynomial space. In 1977, S. Kohn et al. [101] gave
an algorithm based on generating functions with a running time of O(2nn3) and space
requirements of O(n2) and in 1982 R.M. Karp [96] came up with an algorithm which
improved storage requirements to O(n) and preserved this run time by an inclusion-
exclusion approach.

D. Eppstein [37] studied TSP on cubic graphs. He could achieve a running time of
O(1.260n) using polynomial space. K. Iwama and T. Nakashima [95] could improve
this to O(1.251n). A. Björklund et al. [10] considered TSP with respect to degree-
bounded graphs. Their algorithm is a variant of the classical 2n-algorithm and the space
requirements are therefore exponential. Nevertheless, they showed that for a graph with
maximum degree d there is a O∗((2− ǫd)n)-algorithm. In particular for d = 4 there is a
O(1.8557n)- and for d = 5 a O(1.9320n)-algorithm.

MIST was also studied with respect to parameterized complexity. The (standard)
parameterized version of the problem is parameterized by k, and asks whether G has a
spanning tree with at least k internal vertices. E. Prieto and C. Sloper [131] proved a
O(k3)-vertex kernel for the problem showing FPT -membership. By the same authors
[130, 132] the kernel size has been improved to O(k2) and in F.V. Fomin et al. [65, 66]
to 3k. Parameterized algorithms for MIST have been studied in [28, 65, 66, 132](N. Co-
hen et al., F.V. Fomin et al., E. Prieto and C. Sloper). E. Prieto and C. Sloper [132]
gave the first FPT algorithm, with running time 24k log k ·nO(1). This result was improved
by N. Cohen et al. [28] who solve a more general directed version of the problem in time
49.4k · nO(1). The fastest algorithm has running time 8k · nO(1) [65, 66].
G. Salamon [141] studied the problem considering approximation. He could achieve a 7

4
-

approximation. A 2(∆−2)-approximation for the node-weighted version is a by-product.
Cubic and claw-free graphs were considered by G. Salamon and G. Wiener [142]. They
introduced algorithms with approximation ratios 6

5
and 3

2
, respectively.

Our Results

Two algorithms are presented:

(a) A dynamic-programming algorithm solving MIST in time O∗(3n). We extend
this algorithm and show that for any degree-bounded graph a running time of
O∗((3− ǫ)n) with ǫ > 0 can be achieved.

(b) A branching algorithm solving the maximum degree 3 case in time O(1.8669n).
The space requirements are only polynomial in this case. We also analyze the
same algorithm from a parameterized point of view, achieving a running time of
2.1364knO(1) to find a spanning tree with at least k internal vertices (if the graph
admits such a spanning tree). The latter analysis is novel in a sense that we use a
potential function analysis—Measure&Conquer—in a way that, to our knowledge,

90

4.2. The Problem on General Graphs

is much less restrictive than any previous analysis for parameterized algorithms
that were based on the potential function method.

Notions and Definitions.

For a (partial) spanning tree T ⊆ E let internal(T) be the set of its internal (non-leaf)
vertices and leaves(T) the set of its leaves. An i-vertex u is a vertex with dT (u) = i
with respect to some spanning tree T , where dH(u) := {{u, v} | {u, v} ∈ H} for any
H ⊆ E. The tree-degree of some u ∈ V (T) is dT (u). We also speak of the T -degree
dT (v) when we refer to a specific spanning tree. A Hamiltonian path is a sequence of
pairwise distinct vertices v1, . . . , vn from V such that {vi, vi+1} ∈ E for 1 ≤ i ≤ n − 1.
A triangle in graph is a subgraph of the form G({a, b, c}, {{a, b}{b, c}{a, c}}).

4.2. The Problem on General Graphs

We give a simple dynamic-programming algorithm to solve MIST within O∗(3n) steps.
Here we build up a table M [I, L] with I, L ⊂ V such that I∩L = ∅. The set I represents
the internal vertices and L the leaves of some tree with vertex set I ∪ L in G. If such a
tree exists then we have M [I, L] = 1 and otherwise a zero-entry. In the beginning, we
initialize all table-entries with zeros. In the initializing phase we iterate over all e ∈ E
and set M [∅, e] = 1. Note that every edge is a tree with two leaves and no internal
vertices. To compute further entries we use dynamic programming in stages 3, . . . , n.
Stage i consists in determining all table entries indexed by all I, L ⊆ V with |I|+ |L| = i
and I ∩ L = ∅ such that G[I ∪ L] is connected and M [I, L] = 1. We obtain the table
entries of stage i by inspecting the non-zero entries of stage (i− 1). If |I|+ |L| = i− 1
and M [I, L] = 1 then for every x ∈ N(I ∪ L) consider any possibility of attaching x as
a leaf to the tree formed by I ∪ L. There are two possibilities:

a) x is adjacent to an internal vertex, then set M [I, L ∪ {x}] = 1, and

b) x is adjacent to a leaf y then set M [I ∪ {y}, (L \ {y}) ∪ {x}] = 1.

Recursively this can be expressed as follows:

M [I, L] =







1 :∃x ∈ L ∩N(I) : M [I, L \ {x}] = 1
1 :∃x ∈ L, y ∈ N(x) ∩ I : M [I \ {y}, (L ∪ {y}) \ {x}] = 1
0 : otherwise

(4.1)

Here we use the fact that, if we delete a leaf x of a tree T , then there are two possibilities
for the resulting tree T ′: Either T ′ has the same internal vertices as T but one leaf less,
or the father y of x in T has become a leaf as dT (y) = 2. These are exactly the
two cases which are considered in Eq. (4.1). The number of entries in M is at most
∑

A,B⊆V
A∩B=∅

1 =
∑

D⊆V

∑

C⊆D 1 = 3|V |.

Lemma 4.2.1: Max Internal Spanning Tree can be solved in time O∗(3n).

91

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

∆ 3 4 5 6 7 8
Running Time 2.9680 2.9874 2.9948 2.9978 2.9991 2.9996

Table 4.1.: Running times for graphs with maximum degree ∆.

Bounded Degree

We are particularly interested in solving MIST on graphs of bounded degree. The next
lemma is due to [10].

Lemma 4.2.2: An n-vertex graph with maximum vertex degree ∆ has at most βn
∆ +n

connected vertex sets with β∆ = (2∆+1 − 1)
1

∆+1 .

In particular, n refers to the connected sets of size one, which is {{x} | x ∈ V }. Thus,
the number of all connected sets of size greater than one is βn

∆. Using this we prove:

Lemma 4.2.3: For any n-vertex graph with maximum degree ∆ there is an algorithm
that solves MIST in time O∗(3(1−ǫ∆)n) with ǫ∆ > 0.

Proof. As Lemma 4.2.2 bounds the number of connected subsets of V , we would like to
skip unconnected ones. This is guaranteed by the approach of dynamic programming in
stages. Let C consist of the sets F ⊆ V such that G[F] is connected and |F | ≥ 2. Then
the number of visited entries of M [I, L] with |I|+ |L| ≥ 2 and I ∪ L ∈ C in all stages is
at most

∑

A⊆V
A∈C

∑

I⊆A
I∈C

1 ≤
∑

A⊆V
A∈C

β
|A|
∆ ≤

n
∑

i=0

(n

i

)

βi
∆ = (β∆ + 1)n

The visited entries M [I, L] where |I|+ |L| = 1 is n. As β∆ < 2 for any constant ∆, this
shows Lemma 4.2.3. Table 4.1 gives an overview on the running times for small values
of ∆.

A näıve approach to solve the degree restricted version of MIST is to consider each
edge-subset. The running time is O∗(2

∆
2
n) where ∆ is the maximum degree. Compared

to Table 4.1, we see that for every ∆ ≥ 4, this näıve algorithm is slower. A further
slight improvement for ∆ = 3 provides the next observation. The line graph Gl of G
has maximum degree four and hence there are no more than β

|V (Gl)|
4 connected vertex

subsets. Clearly, G then has no more than β
|E(G)|
4 connected edge subsets. Having

already a partial connected solution TE ⊆ E we only branch on edges {u, v} with u ∈ TE
and v 6∈ TE . Thus, the run time is O∗(β

3
2
n

4) = O(2.8017n). We can easily generalize this

for arbitrary degree ∆ to O∗(β
∆
2
n

2∆−2).

92

4.3. Subcubic Maximum Internal Spanning Tree

4.3. Subcubic Maximum Internal Spanning Tree

4.3.1. Observations

Let tTi denote the number of vertices u such that dT (u) = i for a spanning tree T . Then
the following proposition can be proved by induction on nT := |V (T)|.
Proposition 4.3.1: In any spanning tree T , 2 +

∑

i≥3(i− 2) · tTi = tT1 .

Due to Proposition 4.3.1, MIST on subcubic graphs boils down to finding a spanning
tree T such that tT2 is maximum. Every internal vertex of higher degree would also
introduce additional leaves.

Lemma 4.3.2: [131] An optimal solution To to Max Internal Spanning Tree is
a Hamiltonian path or the leaves of To are independent.

The proof of Lemma 4.3.2 shows that if To is not a Hamiltonian path and there are
two adjacent leaves, then the number of internal vertices can be increased in polynomial
time. Therefore, if some spanning tree T is not a Hamiltonian path then we can assume
that its leaves induce an independent set. In the rest of the chapter we assume that To
is not a Hamiltonian path due to the next lemma.

Lemma 4.3.3: Hamiltonian Path can be solved in time O(1.251n) on subcubic
graphs.

Proof. Let G = (V,E) be a subcubic graph. Run the algorithm of [95] to find a Hamil-
tonian cycle. If it succeeds G clearly also has a Hamiltonian path. If it does not succeed
we have to investigate if G has a Hamiltonian path whose end points are not adjacent.
Let u, v ∈ V (G) be two non-adjacent vertices. To check whether G has a Hamiltonian
path uPv, we check whether G′ = (V,E ′), where E ′ := E∪{{u, v}}), has a Hamiltonian
cycle. If G′ has maximum degree at most 3, then run the algorithm of [95]. Otherwise,
choose a vertex of degree 4, say u, and two neighbors x, z of u distinct from v. As
{u, v} belongs to every existent Hamiltonian cycle of G′ (otherwise G has a Hamiltonian
cycle, too), every Hamiltonian cycle of G′ avoids {u, x} or {u, z}. Recursively check
if (V,E ′ \ {{u, x}}) or (V,E ′ \ {{u, z}}) has a Hamiltonian cycle. This recursion has
depth at most 2 since G′ has at most 2 vertices of degree 4. The Hamiltonian Cycle
algorithm of [95] is executed at most 4(n(n− 1)/2−m) times. This algorithms runs in
O∗(2(31/96)n) ⊆ O∗(1.2509n) steps.

At this point we prove an auxiliary lemma used for the analysis of the forthcoming
algorithm.

Lemma 4.3.4: Let T be a spanning tree and u, v ∈ V (T) two adjacent vertices with
dT (u) = dT (v) = 3 such that {u, v} is not a bridge. Then there is a spanning tree
T ′ ⊃ (T \ {{u, v}}) with |internal(T ′)| ≥ |internal(T)| and dT ′(u) = dT ′(v) = 2.

Proof. By removing {u, v}, T is separated into two parts T1 and T2. The vertices u and
v become 2-vertices. As {u, v} is not a bridge, there is another edge e ∈ E\T connecting

93

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

T1 and T2. By adding e we lose at most two 2-vertices. Then let T ′ := (T \{{u, v}})∪{e}
and it follows that |internal(T ′)| ≥ |internal(T)|.

4.3.2. Reduction Rules

Let E ′ ⊆ E. Then, ∂E ′ := {{u, v} ∈ E \ E ′ | u ∈ V (E ′)} are the edges outside E ′

that have a common end point with an edge in E ′ and ∂VE
′ := V (∂E ′)∩ V (E ′) are the

vertices that have at least one incident edge in E ′ and another incident edge not in E ′.
In the course of the algorithm we will maintain an acyclic subset of edges F which will be
part of the final solution. The following invariant will always be true: G[F] consists of a
tree T and a set P of pending tree edges (pt-edges). Here a pt-edge {u, v} ∈ F is an edge
with one end point u of degree 1 and the other end point v 6∈ V (T), see Figure 4.1(a)
where {x, v} is a pt-edge. G[T ∪ P] will always consist of 1 + |P | components.

Next we present a sequence of reduction rules. Note that the order in which they are
applied is crucial. We assume that before a rule is applied the preceding ones were
carried out exhaustively.

Bridge: If there is a bridge e ∈ ∂E(T), then add e to F .

DoubleEdge: If there is a double edge delete one of them which is not in F

Cycle: Delete any edge e ∈ E such that T ∪ {e} has a cycle.

Deg1: Let u ∈ V \ V (F) with d(u) = 1. Then add its incident edge to F .

Pending: If there is a vertex v that is incident to dG(v)− 1 pt-edges, then remove its
incident pt-edges.

ConsDeg2: If there are edges {v, w}, {w, z} ∈ E \ T such that dG(w) = dG(z) = 2,
then delete {v, w}, {w, z} from G and add the edge {v, z} to G.

Deg2: If there is an edge {u, v} ∈ ∂E(T) such that u ∈ V (T) and dG(u) = 2, then
add {u, v} to F .

Attach: If there are edges {u, v}, {v, z} ∈ ∂E(T) such that u, z ∈ V (T), dT (u) = 2,
1 ≤ dT (z) ≤ 2, then delete {u, v}, see Fig. 4.1(a)

Attach2: If there is a vertex u ∈ ∂VE(T) with dT (u) = 2 and {u, v} ∈ E \T such that
v is incident to a pt-edge, then delete {u, v}.

Special: If there are two edges {u, v}, {v, w} ∈ E \ F with dT (u) ≥ 1, dG(v) = 2, and
w is incident to a pt-edge, then add {u, v} to F . See Fig. 4.1(b).

We mention that ConsDeg2 is the only reduction rule which can create double edges.
In this case DoubleEdge will delete one of them which is not in F . It will be assured
by the reduction rules and the forthcoming algorithm that at most one can be part of
F .

94

4.3. Subcubic Maximum Internal Spanning Tree

u

v

x
z

(a)

u v w

(b)

Figure 4.1.: Light edges may be not present. Double edges (dotted or solid, resp.) refer
to edges which are either T -edges or not, resp. Edges attached to oblongs
are pt-edges.

Lemma 4.3.5: The reduction rules stated above are sound.

Proof. Let To ⊃ F be a spanning tree of G with a maximum number of internal vertices.
The first four rules are correct for the purpose of connectedness and acyclicity of the
evolving spanning tree.

Pending is correct as the other edge incident to v (which will be added to P by a
subsequent Deg1 rule) is a bridge and needs to be in any spanning tree.

ConsDeg2 Let G′ be the graph after the reduction rule was applied. We implicitly
assume that we can add {w, z} to To ⊃ F which is an optimal solution for G. If
{w, z} 6∈ To then {v, w} ∈ To. Then we can simply exchange the two edges giving

a solution T̃o with {w, z} ∈ T̃o and tTo

2 ≤ tT̃o

2 . By contracting the edge {w, z} we
receive a solution T ′

o such that |internal(T ′
o)| = |internal(To)| − 1.

Now suppose T ′
o is a spanning tree for G′. If {v, z} ∈ T ′

o then let To = T ′
o \

{{v, z}}∪{{v, w}, {w, z}}. To is a spanning tree forG and we have |internal(To)| =
|internal(T ′

o)| + 1. If {v, z} 6∈ T ′
o then by connectivity dT ′

o
(z) = 1. Let To =

T ′
o ∪ {{v, w}} the |internal(To)| = |internal(T ′

o)|+ 1.

Deg2 Since the preceding reduction rules do not apply, we have dG(v) = 3. Assume u
is a leaf in To. There is exactly one incident edge, say {v, z}, z 6= u, that is not
pending such that it is contained in the single cycle in G[T ∪ {{u, v}}]. Define
another spanning tree T ′

o ⊃ F by setting T ′
o = (To ∪ {{u, v}}) \ {v, z}. Since

|internal(To)| ≤ |internal(T ′
o)|, T ′

o is also optimal.

Attach If {u, v} ∈ To then {v, z} 6∈ To due to the acyclicity of To and as To is connected.
Then by exchanging {u, v} and {v, z} we obtain a solution T ′

o with at least as many
2-vertices.

Attach2 Suppose {u, v} ∈ To. Let {v, p} be the pt-edge and {v, z} the third edge
incident to v (that must exist and is not pending, since Pending did not apply).
Since Bridge did not apply, {u, v} is not a bridge. Firstly, suppose {v, z} ∈ To.
Due to Lemma 4.3.4, there is also an optimal solution T ′

o ⊃ F with {u, v} 6∈ T ′
o.

Secondly, assume {v, z} 6∈ To. Then T ′ = (To \ {{u, v}})∪ {{v, z}} is also optimal
as u has become a 2-vertex.

95

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

Special Suppose {u, v} 6∈ To. Then {v, w}, {w, z} ∈ To where {w, z} is the third edge
incident to w. Let T ′

o := (To \ {{v, w}}) ∪ {{u, v}}. In T ′
o, w is a 2-vertex and

hence T ′
o is also optimal.

4.3.3. Triangles

In this section we will argue that triangles in G can be contracted to one vertex such
that at least one optimal solution is preserved.

Triangle: Let a1, a2, a3 form a triangle. Then contract them into one vertex r.

If a1, a2, a3 ∈ V form a triangle D then let QD := {v ∈ V (D) | |NT (v) \D| = 1} for a
given spanning tree T . Vertices a, b, c form an ℓ-triangle if |QD| = ℓ.

Lemma 4.3.6: Let T̂ be an optimal spanning tree and let D = {a1, a2, a3} ⊆ V form
a triangle. Then we can assume the following:

a) If D is a 1-triangle then |D ∩ L(T̃)| = 1, see Figure 4.2(g)

b) If D is a 2- or

c) a 3-triangle then, w.l.o.g, |D ∩ L(T̃)| = 0, see Figures 4.2(h) and 4.2(i).

Proof. Due to Lemma 4.3.2 we have |D ∩ L(T̂)| ≤ 1 (❆).

a) W.l.o.g. |NT (a3) \ D| = 1 then a1 and a2 must be attached to a3. They must be
attached as in Figure 4.2(g) by (❆).

b) Suppose D has one T̂ -leaf. W.l.o.g, |NT (a2) \ D| = |NT (a1) \ D| = 1 and with
a3 ∈ L(T̂) being attached to a1. Due to (❆) we have {a2, a1} ∈ E(T̂), see Figure 4.2(a).
Then exchange {a2, a1} with {a2, a3} and obtain the situation in Figure 4.2(c) with one
more 2-vertex.

c) W.l.o.g., suppose a3 ∈ L(T̂) and thus {a1, a3}, {a2, a3} 6∈ E(T̂), but {a2, a1} ∈ E(T̂)
by (❆), see Figure 4.2(b). Exchange {a2, a1} with {a2, a3} and {a3, v} with {a1, a3}
(✭) arriving at a spanning tree T̂ with the situation in Figure 4.2(c). The vertices
a1, a2, a3 are now 2-vertices but note that v could loose this property and become a
T̂ -leaf. Observe that if in this case v had a T̂ -leaf as a neighbor (❀) (possibly they occur
both in a further triangle D′) then due Lemma 4.3.2 the number of internal vertices
could be increased, a contradiction .
We also have to show that a), b) and c) are not violated with respect to D′ in T̂ where
v ∈ V (D′). Observe that D′ cannot be a 1-triangle in T̂ due to connectivity. If D′

is a 2-triangle in T̂ then due optimality reasons and (❆) D′ must be of the form as in
Figure 4.2(h) with, w.l.o.g, v = a3. Thus, after the exchange in (✭) D′ is a 1-triangle
and obeys a).
If D′ is 3-triangle in T then due to optimality and by (❆) and (❀) it is of the form as in
Figure 4.2(i) (as the situation in Figure 4.2(b) is not possible by (❀)).

96

4.3. Subcubic Maximum Internal Spanning Tree

a1

a2

a3

(a)

a1

a2

a3

v

(b)

a1

a2

a3

(c)

z1 z2

z3

(d)

z1 z2

z3

(e)

z1 z2

z3

(f)

z1

z1
z2

a1 a2

a3

(g)

z1

z1
z2

a1 a2

a3

(h)

z1

z1
z2

a1 a2

a3

(i)

Figure 4.2.: Dotted edges belong to the tree T . Light edges maybe present or not.

If x = a1 in Figure 4.2(i) then after the modifications in (✭) D′ is a 2-Triangle obeying
b). If, w.l.o.g., x = a3 then after the modification in (✭) also exchange the edge {a1, a2}
by {a3, a2} (i.e., delete {a1, a2} from T̂ and add {a3, a2} to T̂). Then D′ is a 2-triangle
obeying b).

The next lemma shows the soundness of the Triangle rule.

Lemma 4.3.7: Let G′ be the graph evolving from a Triangle application on a triangle
D in a graph G.

1. G′ has a spanning tree T ′
o with at least k internal vertices ⇒ G has a spanning

tree To with at least k + 2 internal vertices.

2. G has an optimal spanning tree To with at least k + 2 internal vertices ⇒ G′ has
a spanning tree T ′

o with at least k internal vertices.

Proof. 1. Let r be the vertex in G′ created by Triangle from a triangle D in G.
We will consider the three different cases for the number of T -edges neighboring r,
which can be seen in Figures 4.2(d), 4.2(e) and 4.2(f), resp.. These situations can
be transformed to the ones seen in Figures 4.2(g), 4.2(h) and 4.2(i), resp.. Thus,
we obtain a spanning tree for G with a newly created triangle D.
Let us mention that it is possible that |E(D) ∩ E(To)| = 1, i.e., when Trian-
gle was applied in G to D already some edge of E(D) was contained in T .
(|E(D) ∩ E(To)| ≥ 2 impossible due to acyclicity and Cycle). This is not a
problem for the transformations from Figure 4.2(d) to Figure 4.2(g) and from Fig-
ure 4.2(f) to Figure 4.2(i) as any edge pre-selection can be extended to the shown

97

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

situations. It only will lead to a problem when we transform from Figure 4.2(e)
into Figure 4.2(h) and we are faced with the situation in Figure 4.2(a) after re-
constructing the triangle. Then regardlessly transform to Figure 4.2(h) as the
current partial solution never can be extended to an optimal one (Lemma 4.3.6
and Figure 4.2(a)).

2. D has to be an ℓ-triangle with 1 ≤ ℓ ≤ 3. Note that due to Lemma 4.3.6.a)
in a 1-triangle exactly one 1-vertex appears and thus we have the situation in
Figure 4.2(g). Due to Lemma 4.3.6.b) and c) 2- and 3-triangles contain no 1-
vertices. Thus, we have the situations in Figures 4.2(h) and 4.2(i). Hence, these
cases are exhaustive for any optimal solution. They can be transformed to the
situations in Figures 4.2(d), 4.2(e) and 4.2(f), respectively, by contracting D.

The Triangle rule appears to be quite powerful. Nevertheless, in our run time anal-
ysis of the forthcoming algorithm this rule is of no importance. No asymptotical run
time improvement can be achieved. Regardless, we think this rule is quite effective for
practical purposes. If used this rule should directly succeed Special in priority.

4.3.4. The Algorithm

The algorithm we describe here is recursive. It constructs a set F of edges which are
selected to be in every spanning tree considered in the current recursive step. The
algorithm chooses edges and considers all relevant choices for adding them to F or
removing them from G. It selects these edges based on priorities chosen to optimize the
running time analysis. Moreover, the set F of edges will always be the union of a tree T
and a set of edges P that are not incident to the tree and have one end point of degree
1 in G (pt-edges). We do not explicitly write in the algorithm that edges move from P
to T whenever an edge is added to F that is incident to both an edge of T and an edge
of P . To maintain the connectivity of T , the algorithm explores edges in the set ∂E(T)
to grow T .

If |V | > 2 every spanning tree T must have a vertex v with dT (v) ≥ 2. Thus initially
the algorithm creates an instance for every vertex v and every possibility that dT (v) ≥ 2.
Due to the degree constraint there are no more than 4n instances. After this initial phase,
the algorithm proceeds as described in Algorithm 1.

4.3.5. An Exact Analysis of the Algorithm

By a Measure & Conquer analysis taking into account the degrees of the vertices, their
number of incident edges that are in F , and to some extent the degrees of their neighbors,
we obtain the following result.

Theorem 4.3.8: MIST can be solved in time O(1.8669n) on subcubic graphs.

Let D2 := {v ∈ V | dG(v) = 2, dF (v) = 0}, Dℓ
3 := {v ∈ V | dG(v) = 3, dF (v) = ℓ} and

D2∗
3 := {v ∈ D2

3 | NG(v) \ NF (v) = {u} and dG(u) = 2}. Then the measure we use for

98

4.3. Subcubic Maximum Internal Spanning Tree

Algorithm 1: An Algorithm solving Maximum Internal Spanning Tree

Data: A subcubic graph G = (V,E) a tree T ⊆ E.
Result: A spanning tree T ′ with the maximum number of internal vertices such

that T ′ ⊇ T .

Carry out each reduction rule exhaustively in the given order (until no rule1

applies).
If ∂E(T) = ∅ and V 6= V (T), then G is not connected and does not admit a2

spanning tree. Ignore this branch.
If ∂E(T) = ∅ and V = V (T), then return T .3

Select {a, b} ∈ ∂E(T) with a ∈ V (T) according to the following priorities (if4

such an edge exists):
case a) There is an edge {b, c} ∈ ∂E(T).5

b) dG(b) = 2.6

c) b is incident to a pt-edge.7

d) dT (a) = 1.8

Recursively solve the two instances where {a, b} is added to F or removed9

from G respectively, and return the spanning tree with most internal
vertices of the two returned ones.

otherwise10

Select {a, b} ∈ ∂E(T) with a ∈ V (T). Let c, x be the other two neighbors11

of b. Recursively solve three instances where
(i) {a, b} is removed from G,12

(ii) {a, b} and {b, c} are added to F and {b, x} is removed from G, and13

(iii) {a, b} and {b, x} are added to F and {b, c} is removed from G.14

Return the spanning tree with most internal vertices of the three returned15

ones.

99

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

our running time bound is

µ(G) = ω2 · |D2|+ ω1
3 · |D1

3|+ ω2
3 · |D2

3 \D2∗
3 |+ |D0

3|+ ω2∗
3 · |D2∗

3 |

with the weights ω2 = 0.3193, ω1
3 = 0.6234, ω2

3 = 0.3094 and ω2∗
3 = 0.4144.

Let ∆0
3 := ∆0∗

3 := 1− ω1
3, ∆1

3 := ω1
3 − ω2

3, ∆1∗
3 := ω1

3 − ω2∗
3 , ∆2

3 := ω2
3, ∆2∗

3 := ω2∗
3 and

∆2 = 1 − ω2. We define ∆̃i
3 := min{∆i

3,∆
i∗
3 } for 1 ≤ i ≤ 2, ∆ℓ

m = min0≤j≤ℓ{∆j
3}, and

∆̃ℓ
m = min0≤j≤ℓ{∆̃j

3}.
The proof of the theorem uses the following result.

Lemma 4.3.9: None of the reduction rules increase µ for the given weights.

Proof. Bridge, Deg1, Deg2 and Special add edges to T . Due to the definitions of Dℓ
3

and D2∗
3 and the choice of the weights it can be seen that µ only decreases. In case of

Pending due to Bridge and Deg1 note that for the vertex v from the reduction rule
we have d(v) − 1 ≤ dF (v), i.e., at most one edge incident with v is not in F . Thus, v
has at least weight zero in µ. After the application of Pending it has weight zero. In
ConsDeg2 a degree 2 vertex is removed from the graph and hence µ decreases by ω2.
It is also easy to see that the deletion of edges {u, v} 6∈ T with dT (u) ≥ 1 and dT (v) = 0
is safe with respect to u and v. The weight of u and v can only decrease due to this
(as it can be seen in case of the rules DoubleEdge, Cycle, Attach and Attach2).
Nevertheless, the rules which delete such kind of edges might cause that a v ∈ D2

3 \D2∗
3

will be in D2∗
3 afterwards. Thus, we have to prove that in this case the overall reduction

is enough. A sufficient criterion that the described scenario takes place is if a degree 2
vertex x is created with x 6∈ ∂V (T). Cycle may create vertices of degree 2, but all of
them are in ∂V (T). The only further reduction rule which may create vertices of degree
2 not in ∂V (T) is Attach when d(v) = 3 (where v is mentioned in the rule definition).
The minimum reduction then is ω2

3 + ∆2 − 2 · (ω2∗
3 − ω2

3) > 0. It can be checked that no
other reduction rule creates degree 2 vertices not contained in ∂V (T).

Proof. (of Theorem 4.3.8) As the algorithm deletes edges or moves edges from E \ F
to F , cases 1–3 do not contribute to the exponential function in the running time of
the algorithm. It remains to analyze cases 4 and 5, which we do now. Note that after
applying the reduction rules exhaustively, we have that for all v ∈ ∂VE(T), dG(v) = 3
(Deg2) and for all u ∈ V , dP (u) ≤ 1 (Pending).

4.(a) Obviously, {a, b}, {b, c} ∈ E \ T , and there is a vertex d such that {c, d} ∈ T ; see
Figure 4.3(a). We have dT (a) = dT (c) = 1 due to the reduction rule Attach. We
consider three cases.

dG(b) = 2. When {a, b} is added to F , Cycle deletes {b, c}. We get an amount
of ω2 and ω1

3 as b drops out of D2 and c out of D1
3 (Deg2). Also a will be

removed from D1
3 and added to D2

3 which amounts to a reduction of at least
∆̃1

3. When {a, b} is deleted, {b, c} is added to T (Bridge). By a symmetric
argument we get a reduction of ω2 + ω1

3 + ∆̃1
3 as well. In total this yields a

(ω2 + ω1
3 + ∆̃1

3, ω2 + ω1
3 + ∆̃1

3)-branch.

100

4.3. Subcubic Maximum Internal Spanning Tree

dG(b) = 3 and there is one pt-edge incident to b. Adding {a, b} to F decreases
the measure by ∆̃1

3 (from a) and 2ω1
3 (deleting {b, c}, then Deg2 on c). By

Deleting {a, b} we decrease µ by 2ω1
3 and by ∆̃1

3 (from c). This amounts to a
(2ω1

3 + ∆̃1
3, 2ω

1
3 + ∆̃1

3)-branch.

dG(b) = 3 and no pt-edge is incident to b. Let {b, z} be the third edge incident
to b. In the first branch the measure drops by at least ω1

3 + ∆̃1
3 from c and a

(Deg2), 1 from b (Deg2). In the second branch we get ω1
3 +∆2. Observe that

we also get an amount of at least ∆̃1
m from q ∈ NT (a) \ {b} if dG(q) = 3. If

dG(q) = 2 we get ω2. It results a (ω1
3+∆̃1

3+1, ω1
3+∆2+min{ω2, ∆̃

1
m})-branch.

Note that from this point on, for all u, v ∈ V (T) there is no z ∈ V \ V (T) with
{u, z}, {z, v} ∈ E \ T .

4.(b) As the previous case does not apply, the other neighbor c of b has dT (c) = 0, and
dG(c) ≥ 2 (Pending). Additionally, observe that dG(c) = 3 due to ConsDeg2
and that dP (c) = 0 due to Special, see Figure 4.3(b). We consider two subcases.

dT (a) = 1. When we add {a, b} to F , then {b, c} is also added due to Deg2. The
reduction is at least ∆̃1

3 from a, ω2 from b and ∆0
3 from c. When {a, b} is

deleted, {b, c} becomes a pt-edge. There is {a, z} ∈ E \ T with z 6= b, which
is subject to a Deg2 reduction rule. We get at least ω1

3 from a, ω2 from b,
∆0

3 from c and min{ω2, ∆̃
1
m} from z. This is a (∆̃1

3 + ∆0
3 +ω2, ω

1
3 + ∆0

3 +ω2 +
min{ω2, ∆̃

1
m})-branch.

dT (a) = 2. Similarly, we obtain a (∆2∗
3 + ω2 + ∆0

3,∆
2∗
3 + ω2 + ∆0

3)-branch.

4.(c) In this case, dG(b) = 3 and there is one pt-edge attached to b, see Figure 4.3(c).
Note that dT (a) = 2 can be ruled out due to Attach2. Thus, dT (a) = 1. Let z 6= b
be such that {a, z} ∈ E \ T). Due to the priorities, dG(z) = 3. We distinguish
between the cases where c, the other neighbor of b, is incident to a pt-edge or not.

dP (c) = 0. First suppose dG(c) = 3. Adding {a, b} to F allows a reduction of 2∆1
3

(due to case 4.(b) we can exclude ∆1∗
3). Deleting {a, b} implies that we get

a reduction from a and b of 2ω1
3 (Deg2 and Pending). As {a, z} is added

to F we reduce µ(G) by at least ∆̃1
m as the state of z changes. Now due to

Pending and Deg1 we include {b, c} and get ∆0
3 from c. We have at least a

(2∆1
3, 2ω

1
3 + ∆̃1

m + ∆0
3)-branch.

If dG(c) = 2 we consider the two cases for z also. These are dP (z) = 1 and
dP (z) = 0. The first entails (ω1

3 + ∆1∗
3 , 2ω

1
3 + ∆̃1

3 +ω2 + ∆̃2
m). Note that when

we add {a, b} we trigger Attach2 and by deleting {a, b} all edges incident to
c become bridges. The second is a (∆1

3 + ∆1∗
3 , 2ω

1
3 + ∆0

3 + ω2 + ∆̃2
m)-branch.

dP (c) = 1. Let d 6= b be the other neighbor of c that does not have degree 1.
When {a, b} is added to F , {b, c} is deleted by Attach2 and {c, d} becomes
a pt-edge (Pending and Deg1). The changes on a incur a measure decrease
of ∆1∗

3 and those on b, c a measure decrease of 2ω1
3. When {a, b} is deleted,

{a, z} is added to F (Deg2) and {c, d} becomes a pt-edge by two applications

101

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

of the Pending and Deg1 rules. Thus, the decrease of the measure is at least
3ω1

3 in this branch. In total, we have a (∆1∗
3 + 2ω1

3, 3ω
1
3)-branch here.

4.(d) Now, dG(b) = 3, b is not incident to a pt-edge, and dT (a) = 1. See Figure 4.3(c).
There is also some {a, z} ∈ E \ T such that z 6= b. Note that dT (z) = 0, dG(z) =
3 and dP (z) = 0. Otherwise either Cycle or cases 4.(b) or 4.(c) would have
been triggered. From the addition of {a, b} to F we get ∆1

3 + ∆0
3 and from its

deletion ω1
3 (from a via Deg2), ∆2 (from b) and at least ∆0

3 from z and thus, a
(∆1

3 + ∆0
3, ω

1
3 + ∆2 + ∆0

3)-branch.

5. See Figure 4.3(d). The algorithm branches in the following way: 1) Delete {a, b}, 2)
add {a, b}, {b, c}, and delete {b, x}, 3) add {a, b}, {b, x} and delete {b, c}. Observe
that these cases are sufficient to preserve an optimal solution. We can disregard
the case when b is a leaf (i.e., {a, b} ∈ T and {b, c}, {b, x} 6∈ T). Note that we
can obtain a no worse solution T ∗ := (T \ {a, b}) ∪ {b, x} where {a, b} 6∈ T (which
refers to case a)). Observe that a is a 2-vertex in T ∗ and T ∗ is indeed a tree by
{b, c}, {b, x} 6∈ T .
Due to Lemma 4.3.4 we also disregard the case when b is a 3-vertex as {a, b} is not
a bridge. Thus by branching in this manner we find at least one optimal solution.

The reduction in the first branch is at least ω2
3 + ∆2. We get an additional amount

of ω2 if d(x) = 2 or d(c) = 2 from ConsDeg2. In the second branch we have
to consider also the vertices c and x. We distinguish between three situations for
h ∈ {c, x}:
α) dG(h) = 2.

β) dG(h) = 3, dP (h) = 0.

γ) dG(h) = 3, dP (h) = 1.

We will only analyze branch 2) as 3) is symmetric. We first get a reduction of
ω2
3 + 1 from a and b. We reduce µ due to deleting {b, x} by:

α) ω2 + ∆̃2
m by Pending.

β) ∆2.

γ) ω1
3 + ∆̃2

m by Pending and Deg1.

Next we examine the amount by which µ will be decreased by adding {b, c} to F .
We distinguish between the cases α, β and γ:

α) ω2 + ∆̃2
m.

β) ∆0
3.

γ) ∆̃1
3.

For h ∈ {c, x} and W ∈ {α, β, γ} let 1h
W be the indicator function which is set to

one if we have situation W at vertex h. Otherwise it is zero. Now the branching
vector can be stated the following way :
(ω2

3 + ∆2 + (1x
α + 1c

α) · ω2,

102

4.3. Subcubic Maximum Internal Spanning Tree

a c

b

z

(a)

a c

b

z

(b)

a c

b

z

(c)

a c
b

x
y

(d)

Figure 4.3.: Light edges may be not present. Double edges (dotted or solid, resp.) refer
to edges which are either T -edges or not, resp. Edges attached to oblongs
are pt-edges.

Figure 4.4.: A sketch of a lower bound example graph family for our MIST algorithm.

ω2
3 +1+1x

α · (ω2 +∆̃2
m)+1x

β ·∆2 +1x
γ · (ω1

3 +∆̃2
m)+1c

α · (ω2 +∆̃2
m)+1c

β ·∆0
3 +1c

γ · ∆̃1
3),

ω2
3 + 1 + 1c

α · (ω2 + ∆̃2
m) + 1c

β ·∆2 + 1c
γ · (ω1

3 + ∆̃2
m) + 1x

α · (ω2 + ∆̃2
m) + 1x

β ·∆0
3 + 1x

γ · ∆̃1
3)

The amount of (1x
α + 1c

α) · ω2 comes from possible applications of ConsDeg2.

Observe that every instance created by branching is smaller than the original in-
stance in terms of µ. Together with Lemma 4.3.9 we see that every reduction step of
the algorithm never increases µ. Now if we evaluate the upper bound for every given
branching tuple for the given weights we can conclude that MIST can be solved in time
O∗(1.8669n) on subcubic graphs.

4.3.5.1. How Good is Our Run Time Estimate?

Clearly, such a question cannot be answered in an absolute fashion, since this immedi-
ately touches the famous P-NPproblem. However, it might be possible to provide lower
bound examples, i.e., graph (families) that require Ω(cn) running time of our algorithm
on graphs of order n.

Theorem 4.3.10: There is a family of graphs s.t. our algorithm proposed for solving
MIST needs Ω(4

√
2
n
) time, with 4

√
2 ≥ 1.189.

103

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

Proof. Instead of giving a formal description of the graph family, consider Fig. 4.4.
Assume that the bold edges are already in the tree. Then, the dark blue vertices are

the current leaves of the tree. W.l.o.g., the algorithm would consider to take one of
the two edges connecting the upper dark blue vertex with light blue vertices into the
tree. If the selected edge is not inserted into the tree, then the chosen dark blue vertex
will become of degree two and hence the tree expands due to the degree two rule. In
either case, the degree two rule will then integrate three more vertices into the tree.
All in all, four vertices have been put into the tree in either branch, and we arrive at
a situation that is basically the same as the one we started with, so that the argument
repeats. Hence, when we start with a graph with 4n + 2 vertices, then there will be
one branching scenario that creates a binary search tree of height n. This shows the
claim.

4.3.6. A Parameterized Analysis of the Algorithm

For general graphs, the smallest known kernel has size 3k. This can be easily improved
to 2k for subcubic graphs.

Lemma 4.3.11: MIST on subcubic graphs has a 2k-kernel.

Proof. Compute an arbitrary spanning tree T . If it has at least k internal vertices,
answer YES. Otherwise, tT3 + tT2 < k. Then, by Proposition 4.3.1, tT1 < k + 2. Thus,
|V | ≤ 2k.

Applying the algorithm of Theorem 4.3.8 on this kernel for subcubic graphs shows
the following result.

Corollary 4.3.12: Deciding whether a subcubic graph has a spanning tree with at least
k internal vertices can be done in time 3.4854knO(1).

However, we can achieve a faster parameterized running time by applying a Mea-
sure&Conquer analysis which is customized to the parameter k. We would like to put
forward that our use of the technique of Measure&Conquer for a parameterized algorithm
analysis goes beyond previous work as our measure is not restricted to differ from the
parameter k by just a constant. We first demonstrate our idea with a simple analysis.

Theorem 4.3.13: Deciding whether a subcubic graph has a spanning tree with at least
k internal vertices can be done in time 2.7321knO(1).

Proof. Note that the assumption that G has no Hamiltonian path can still be made due
to the 2k-kernel of Lemma 4.3.11: the running time of the Hamiltonian path algorithm
is 1.2512knO(1) = 1.5651knO(1). The running time analysis of our algorithm relies on the
following measure:

κ := κ(G,F, k) := k − ω · |X| − |Y | − k̃,
where X := {v ∈ V | dG(v) = 3, dT (v) = 2}, Y := {v ∈ V | dG(v) = dT (v) ≥ 2} and
0 ≤ ω ≤ 1. Let U := V \ (X ∪ Y) and note that k in the definition of κ never changes

104

4.3. Subcubic Maximum Internal Spanning Tree

in any recursive call of the algorithm. The variable k̃ counts how many times the reduc-
tion rules ConsDeg2 and Pending have been applied upon reaching the current search
tree node. Note that by an ConsDeg2 the number of internal vertices of the original
instance goes up by one. If Pending is applied a vertex v ∈ Y will be moved to U in
the evolving instance G′ even though v will be internal in the original instance G. This
would increase κ if k̃ would not balance this. Note that a vertex which has already been
decided to be internal, but that still has an incident edge in E \ T , contributes a weight
of 1− ω to the measure. Or equivalently, such a vertex has been only counted by ω.
Consider the algorithm described earlier, with the only modification that that the algo-
rithm keeps track of κ and that the algorithm stops and answers YES whenever κ ≤ 0.
None of the reduction and branching rules increases κ. The explicit proof for this will
skipped as it is subsumed by Lemma 4.3.16 which deals with a refined measure. We
have that 0 ≤ κ ≤ k at any time of the execution of the algorithm.
In step 4, whenever the algorithm branches on an edge {a, b} such that dT (a) = 1
(w.l.o.g., we assume that a ∈ V (T)), the measure decreases by at least ω in one branch,
and by at least 1 in the other branch. We speak of a (ω, 1)-branch. To see this, it
suffices to look at vertex a. Due to Deg2, dG(a) = 3. When {a, b} is added to F , vertex
a moves from the set U to the set X . When {a, b} is removed from G, a subsequent
application of the Deg2 rule adds the other edge incident to a to F , and thus, a moves
from U to Y .

Still in step 4, let us consider the case where dT (a) = 2. Then condition (b) (dG(b) = 2)
of step 4 must hold, due to the preference of the reduction and branching rules: condition
(a) is excluded due to reduction rule Attach, (c) is excluded due to Attach2 and (d)
is excluded due to its condition that dT (a) = 1. When {a, b} is added to F , the other
edge incident to b is also added to F by a subsequent Deg2 rule. Thus, a moves from
X to Y and b from U to Y for a measure decrease of (1−ω) + 1 = 2−ω. When {a, b} is
removed from G, a moves from X to Y for a measure decrease of 1− ω. Thus, we have
a (2− ω, 1− ω)-branch.

In step 5, dT (a) = 2, dG(b) = 3, and dF (b) = 0. Vertex a moves from X to Y in
each branch and b moves from U to Y in the two latter branches. In total we have a
(1 − ω, 2 − ω, 2 − ω)-branch. By setting ω = 0.45346 and evaluating the branching
numbers, the proof follows.

This analysis can be improved by also measuring vertices of degree 2 and vertices
incident to pt-edges differently.

Theorem 4.3.14: Deciding whether a subcubic graph has a spanning tree with at least
k internal vertices can be done in time 2.1364knO(1).

The proof of this theorem follows the same lines as the previous one, except that we
consider a more detailed measure:

κ := κ(G,F, k) := k − ω1 · |X| − |Y | − ω2|Z| − ω3|W | − k̃, where

• X := {v ∈ V | dG(v) = 3, dT (v) = 2} is the set of vertices of degree 3 that are
incident to exactly 2 edges of T ,

105

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

• Y := {v ∈ V | dG(v) = dT (v) ≥ 2} is the set of vertices of degree at least 2 that
are incident to only edges of T ,

• W := {v ∈ V \ (X ∪ Y) | dG(v) ≥ 2, ∃u ∈ N(v) st. dG(u) = dF (u) = 1} is the set
of vertices of degree at least 2 that have an incident pt-edge, and

• Z := {v ∈ V \W | dG(v) = 2, N [v] ∩ (X ∪ Y) = ∅} is the set of degree 2 vertices
that do not have a vertex of X ∪ Y in their closed neighborhood, and are not
incident to a pt-edge.

We immediately set ω1 := 0.5485, ω2 := 0.4189 and ω3 := 0.7712. Let U := V \ (X ∪
Y ∪ Z ∪W). We first have to show that the algorithm can be stopped whenever the
measure drops to 0 or less.

Lemma 4.3.15: Let G = (V,E) be a connected graph, k be an integer and F ⊆ E
be a set of edges that can be partitioned into a tree T and a set of pending edges P .
If none of the reduction rules applies to this instance and κ(G,F, k) ≤ 0, then G has a
spanning tree T ∗ ⊇ F with at least k internal nodes.

Proof. Since the vertices in X ∪ Y are internal in any spanning tree containing F , it is
sufficient to show that there exists a spanning tree T ∗ ⊇ F that has at least ω2|Z|+ω3|W |
more internal vertices than T .

The spanning tree T ∗ is constructed as follows:

1. Greedily add a subset of edges A ⊆ E \ F to F to obtain a spanning tree T ′ of G.

2. While there exists v ∈ Z with neighbors u1 and u2 such that dT ′(v) = dT ′(u1) = 1
and dT ′(u2) = 3, then set A := (A \ {v, u2}) ∪ {u1, v} (❃).

This procedure finishes in polynomial time as the number of internal vertices increases
each time such a vertex is found. Call the resulting spanning tree T ∗.

By connectivity of a spanning tree, we have:

Fact 1: If v ∈ W , then v is internal in T ∗.

Note that F ⊆ T ∗ as no vertex of Z is incident to an edge of F . By the construction
of T ∗, we have the following (❃).

Fact 2: If u, v are two adjacent vertices in G but not in T ∗, such that v ∈ Z and u, v
are leafs in T ∗, then v’s other neighbor has T ∗-degree 2.

Let Zℓ ⊆ Z be the subset of vertices of Z that are leafs in T ∗ and let Zi := Z \Zℓ. As
F ⊆ T ∗ and by Fact 1, all vertices of X ∪ Y ∪W ∪ Zi are internal in T ∗. Let P denote
the subset of vertices of N(Zℓ) that are internal in T ∗. As P might intersect with W and
for u, v ∈ Zℓ, N(u) and N(v) might intersect (but u 6∈ N(v) because of ConsDeg2), we
assign an initial potential of 1 to vertices of P . By definition, P ∩ (X ∪ Y) = ∅. Thus
the number of internal vertices in T ∗ is at least |X|+ |Y |+ |Zi|+ |P ∪W |. To finish the
proof of the claim, we show that |P ∪W | = |W \P |+ |P ∩W |+ |P \W | ≥ ω2|Zl|+ω3|W |.

106

4.3. Subcubic Maximum Internal Spanning Tree

Decrease the potential of each vertex in P ∩W by ω3. Then, for each vertex v ∈ Zℓ,
decrease the potential of each vertex in Pv = N(v) ∩ P by ω2/|Pv|. We show that the
potential of each vertex in P remains positive. Let u ∈ P and v1 ∈ Zℓ be a neighbor of
u. Note that dT ∗(v1) = 1. We distinguish two cases based on u’s tree-degree in T ∗.

dT ∗(u) = 2

u ∈ W : Then by connectivity {u, v1} 6∈ T ∗ and u is incident to only one vertex
out of Zℓ, namely v1. Again by connectivity h ∈ N(v1) \ {u} is a internal
vertex. Thus, the potential is 1− ω3 − ω2/2 ≥ 0.

u 6∈ W : u is incident to at most 2 vertices of Zℓ (by connectivity of T ∗), its
potential remains thus positive as 1− 2ω2 ≥ 0.

dT ∗(u) = 3

u ∈ W : Because u ∈ W is incident to a pt-edge, it has one neighbor in Zℓ

(connectivity of T ∗), which has only internal neighbors (by Fact 2). The
potential of u is thus 1− ω3 − ω2/2 ≥ 0.

u 6∈ W : u has at most two neighbors in Zℓ, and both of them have only inner
neighbors due to Fact 2. As 1− 2ω2/2 ≥ 0, u’s potential remains positive.

Thus, we have shown that |P ∩W | + |P \W | ≥ ω2|Zl| + ω3|W | from which the claim
follows.

We also show that reducing an instance does not increase its measure.

Lemma 4.3.16: Let (G′, F ′, k′) be an instance resulting from the exhaustive applica-
tion of the reduction rules to an instance (G,F, k). Then, κ(G′, F ′, k′) ≤ κ(G,F, k).

Proof. Cycle: If the reduction rule Cycle is applied to (G,F, k), then an edge in
∂E(T) is removed from the graph. Then, the parameter k stays the same, and
either each vertex remains in the same set among X, Y, Z,W, U , or one or two
vertices move from X to Y , which we denote shortly by the status change of a
vertex u: {X} → {Y }(ω1−1). The value of this status change is (−1)−(−ω1) ≤ 0.
As the value of the status change is non-positive, it does not increase the measure.

DoubleEdge Suppose between u and v is a double edge. Then as mentioned before
at most one of them belongs to T . The possible transitions for u (and v) are
{X} → {Y }(ω1 − 1) if dT (u) = 2 and dG(u) = 3, {U} → {U}(0) if dT (u) = 1
and dG(u) = 3, {U} → {Z}(−ω2) if dG(u) = 3 and dT (u) = 0, {U} → {U}(0) if
dG(u) = 2 and dT (u) = 1, {Z} → {U}(ω2) if dG(u) = 2 and dT (u) = 0. Now in
the last case we must have dG(v) = 3 and dT (v) = 0 or dG(v) = 3 and dT (v) = 1.
Thus, in the first case the combined status change is {Z, U} → {U,Z}(0). In the
second case immediately afterwards Bridge will be applied and the status change
is {Z, U} → {U, Y }(ω2 − 1)

107

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

Bridge: If Bridge is applied, then let e = {u, v} with u ∈ ∂VE(T). Vertex u is either
in U or in X , and v ∈ U ∪ Z ∪W . If v ∈ U , then v ∈ U after the application of
Bridge, as v is not incident to an edge of T (otherwise reduction rule Cycle would
have applied). In this case, it is sufficient to check how the status of u can change,
which is {U} → {Y }(−1) if u has degree 2, {U} → {X}(−ω1) if dG(u) = 3 and
dT (u) = 1, and {X} → {Y }(ω1 − 1) if dG(u) = 3 and dT (u) = 2. If v ∈ Z, then
v moves to U as u necessarily ends up in X ∪ Y . The possible status changes are
{U,Z} → {Y, U}(ω2−1) if dG(u) = 2, {U,Z} → {X,U}(ω2−ω1), if dG(u) = 3 and
dT (u) = 1, and {X,Z} → {Y, U}(ω1+ω2−1) if dG(u) = 3 and dT (u) = 2. If v ∈ W ,
v ends up in X or Y , depending on whether it is incident to one or two pt-edges.
The possible status changes are then {U,W} → {Y,X}(ω3 − 1 − ω1), {U,W} →
{Y, Y }(ω3 − 2), {U,W} → {X,X}(ω3 − 2 · ω1), {U,W} → {X, Y }(ω3 − ω1 − 1),
{X,W} → {Y,X}(ω1 + ω3 − 1− ω1), and {X,W} → {Y, Y }(ω1 + ω3 − 2).

Deg1: If Deg1 applies, the possible status changes are {U} → {W}(−ω3) and {Z} →
{W}(ω2 − ω3). Note that Bridge is applied before.

Pending: In Pending, the only possible status change {W} → {U} has positive value,
but the measure κ still decreases as k̃ also increases by 1.

ConsDeg2: Similarly, in ConsDeg2, a vertex in Z ∪ U disappears, but k̃ increases
by 1.

Deg2: In Deg2, the possible status changes with respect to u, v are {U} → {Y }(−ω2),
{U,Z} → {Y, U}(ω2 − 1), and {U,W} → {Y,X}(ω3 − 1− ω1).

Special: In Special, the possible status changes with respect to u, v are {U,Z} →
{X,U}(ω2 − ω1) and {X} → {Y }(ω1 − 1).

Attach. In Attach, u moves from X to Y . Thus the status change for u is {X} →
{Y }(ω1−1). Taking into account the status of v ∈ NV \T (u) another status change
is {X,U} → {Y, Z}(ω1 − 1 − ω2) in case dG(v) = 3 and dF (v) = 0. Observe that
v ∈ Z is not possible as u ∈ X .

Attach2 The only status change happens for u: {X} → {Y }.

Proof. (of Theorem 4.3.14) Table 4.2 outlines how vertices a, b, and their neighbors move
between U , X , Y , Z, and W in the branches where an edge is added to F or deleted
from G in the different cases of the algorithm. For each case, the worst branching vector
is given.

add delete branching tuple
Case 4.(a), dG(b) = 2

108

4.3. Subcubic Maximum Internal Spanning Tree

a b c

a : U → X a : U → Y
b : Z → U b : Z → U (1 + ω1 − ω2, 1 + ω1 − ω2)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is incident to a pt-edge

a b c

a : U → X a : U → Y
b : W → Y b : W → Y (2 + ω1 − ω3, 2 + ω1 − ω3)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is not incident to a pt-edge

a b c

a : U → X a : U → Y
(2 + ω1, 1 + ω2)b : U → Y b : U → Z

c : U → Y

Case 4.(b), dT (a) = 1

a b c

a : U → X a : U → Y
(1 + ω1 − ω2, 1 + ω3 − ω2)b : Z → Y b : Z → U

c : U →W

Case 4.(b), dT (a) = 2

a b c

a : X → Y a : X → Y
(2− ω1 − ω2, 1− ω1 − ω2 + ω3)b : Z → Y b : Z → U

c : U →W

Case 4.(c)

a b c

a : U → X a : U → Y
(2ω1 − ω3, 2)b : W → X b : W → Y

c : U →W

Case 4.(d)

a b c

a : U → X a : U → Y
(ω1, 1 + ω2)b : U → Z

Case 5, dG(x) = dG(c) = 3 and there is q ∈ (X ∩ (N(x) ∪N(c)), w.l.o.g. q ∈ N(c)

a b c

x a : X → Y a : X → Y
(2− ω1, 3− 2ω1, 1− ω1 + ω2)b : U → Y b : U → Z

(2nd branch)
q : X → Y

Case 5, dG(x) = dG(c) = 3

a b c

x a : X → Y a : X → Y
(2− ω1 + ω2, 2− ω1 + ω2, 1− ω1 + ω2,)b : U → Y b : U → Z

109

Chapter 4. Exact and Parameterized Algorithms for Max Internal Spanning Tree

c/x : U → Z
There are 3 branches; 2 of them (add) are symmetric.

Case 5, dG(x) = 2 or dG(c) = 2 and

a b c

x a : X → Y a : X → Y
(2− ω1, 2− ω1, 2− ω1)b : U → Y b : U → Z

When {a, b} is deleted, ConsDeg2 additionally decreases k by 1
and removes a vertex of Z.

Table 4.2.: Analysis of the branching for the running time of Theorem 4.3.14

The tight branching numbers are found for cases 4.(b) with dT (a) = 2, 4.(c), 4.(d),
and 5. with all of b’s neighbors having degree 3. The respective branching numbers are
(2 − ω1 − ω2, 1 − ω1 − ω2 + ω3), (2ω1 − ω3, 2), (ω1, 1 + ω2), and (1 − ω1 + ω2, 2 − ω1 +
ω2, 2− ω1 + ω2). They all equal 2.1364.

4.4. Conclusion & Future Research

We have shown that Max Internal Spanning Tree can be solved in time O∗(3n).
This result has been out-dated by Nederlof [123] by providing a O∗(2n) polynomial-space
algorithm for MIST which is based on the principle of Inclusion-Exclusion and on a new
concept called “branching walks”.

We focused on algorithms for MIST that work for the degree-bounded case, in partic-
ular, for subcubic graphs. The main novelty is a Measure&Conquer approach to analyze
our algorithm from a parameterized perspective (parameterizing by the solution size).
We are not aware of many examples where this was successfully done without cashing
the obtained gain at an early stage, see M. Wahlström [155]. More examples in this
direction would be interesting to see. Further improvements on the running times of our
algorithms pose another natural challenge.

A related problem worth investigating is the generalization to directed graphs: Find
a directed tree, which consist of directed paths form the root to the leaves with as few
leaves as possible. Which results can be carried over to the directed case?

110

Chapter 5.

A Faster Exact Algorithm for the
Directed Maximum Leaf Spanning Tree
Problem

5.1. Introduction

We investigate the following problem Directed Maximum Leaf Spanning Tree
(DMLST)
Given: A directed graph G(V,A).
Task: Find a directed spanning tree for G with the maximum number of leaves.

Alternatively, we can find an out-branching with the maximum number of leaves. Here
an out-branching in a directed graph is a spanning tree T in the underlying undirected
graph, but the arcs are directed from the root to the leaves, which are the vertices of
out-degree zero with respect to T . The terms out-branching and directed spanning tree
are equivalent.

5.1.1. Known Results.

The undirected version of the problem already has been widely studied with regard to
its approximability. There is a 2-approximation running in polynomial time by R. Solis-
Oba [145]. In almost linear time H.-I. Lu and R. Ravi [113] provide a 3-approximation.
P.S. Bonsma and F. Zickfeld [15] could show that the problem is 3

2
-approximable when

the input is restricted to cubic graphs. J. Daligault and S. Thomassé [33] described a
92-approximation algorithm together with an O(k2)-kernel for the Directed Maxi-
mum Leaf Spanning Tree problem.
This problem has also drawn notable attention in the field of parameterized algorithms.
Here the problem is known as directed k-leaf spanning tree where k is a lower bound on
the number of leaves in the directed spanning tree. The algorithm of J. Kneis, A. Langer
and P. Rossmanith [98] solves this problem in time O∗(4k). Moreover, in J. Daligault et
al. [32] an upper-bound of O∗(3.72k) is achieved. The same authors could also analyze
their algorithm with respect to the input size n. This implies a run time upper bound
of O∗(1.9973n). D. Raible and H. Fernau [135] improved this run time to O∗(3.4575k)
in the more special case of undirected graphs.

111

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

F.V. Fomin, F. Grandoni and D. Kratsch [73] gave an exact, non-parameterized al-
gorithm with run time O∗(1.9407n) for the undirected version. H. Fernau et al. [51]
improved this upper bound to O∗(1.8966n). I. Koutis and R. Williams [103] could de-
rive a randomized O∗(2k)-algorithm for the undirected version. Using an observation
of V. Raman and S. Saurabh [137] this implies a randomized algorithm with run time
O∗(1.7088n).

5.1.2. Our Achievements.

The main result in this paper improves the current best upper of O∗(1.9973n) by [32].
We can achieve a new bound of O∗(1.9044n). Our algorithm is inspired by the one
of [51]. However, this algorithm cannot be simply transferred to the directed version.
Starting from an initial root the algorithm grows a tree T . The branching process takes
place by deciding whether the vertices neighbored to the tree will become final leaves or
internal vertices. A crucial ingredient of the algorithm was also to create floating leaves,
i.e., vertices which are final leaves in the future solution but still have to be attached to
the T , the tree which is grown. This concept has been already used in [51] and partly
by [32]. In the undirected case we guarantee that in the bottleneck case we can generate
at least two such leaves. In the directed version there is a situation where only one can
be created. Especially for this problem we had to find a workaround.

5.1.3. Preliminaries, Terminology & Notation

A subgraph H(VH, AH) of G is called a directed tree if there is a unique root r ∈ VH
such that there is a unique directed path P from r to every v ∈ VH \ {r} under the
restriction that its arc set obeys A(P) ⊆ AH . Speaking figuratively, in a directed tree
the arcs are directed from the parent to the child. If for a directed tree H = (VH , AH)
that is a subgraph of G(V,A) we have V = VH we call it spanning directed tree of G.
The terms out-tree and out-branching are sometimes used for directed tree and spanning
directed tree, respectively. The leaves of a directed tree H = (VH , AH) are the vertices
u such that d−VH

(u) = dVH
(u) = 1. In leaves(H) all leaves of a tree H are comprised

and internal(H) := V (H) \ leaves(H). The unique vertex v such that N−
VH

(u) = {v}
for a tree-vertex will be called parent of u. A vertex v ∈ VH such that dVH

(v) ≥ 2 will
be called internal. Let T (VT , AT) and T ′(VT ′, AT ′) be two trees. T ′ extends T , written
T ′ � T , iff VT ⊆ VT ′ , AT ⊆ AT ′ . Simplistically, we will consider a tree T also as a set
of arcs T ⊆ A such that G(T) is a directed tree. The notions of � and leaves(T) carry
over canonically.
An arc-cut set is a set of arcs B ⊂ A such that G(A \ B) is a digraph which is not
weak connected. We suppose that |V | ≥ 2. The function χ() returns 1 if its argument
evaluates to true and 0 otherwise.

112

5.2. The Polynomial Part

5.1.4. Basic Idea of the Algorithm

First we formally re-define our problem:
Rooted Directed Maximum Leaf Spanning Tree (RDMLST)
Given: A directed graph G(V,A) and a vertex r ∈ V .
Task: Find a spanning directed tree T ′ ⊆ A such that |leaves(T ′)| is maximum and
d−T (r) = 0.

Once we have an algorithm for RDMLST it is easy to see that it can be used to solve
DMLST. As a initial step we will consider every vertex as a possible root r of the final
solution. This yields a total of n cases.
Then in the course of the algorithm for RDMLST we will gradually extend an out-
tree T ⊆ A, which is predetermined to be a subgraph in the final out-branching.
Let VT := V (T) and V T := V \ VT . We will also maintain a mapping lab : V →
{free, IN,LN,BN,FL} =: D, which assigns different roles to the vertices. If lab(v) = IN
then v is already fixed to be internal, if lab(v) = LN then it will be a leaf. If lab(v) = BN
then v already has a parent in T , but can be leaf or internal in the final solution. Such
vertices are called branching nodes. In general we will decide this by branching on such
BN-vertices. If lab(v) = FL then v is constrained to be a leaf but has not yet been
attached to the tree T . Such vertices are called floating leaves. If lab(v) = free then
v 6∈ VT and nothing has been fixed for v yet. For a label Z ∈ D and v ∈ V we will often
write v ∈ Z when we mean lab(v) = Z. Vertices in IN or LN will also be called internal
nodes or leaf nodes, respectively. A given tree T ′ defines a labeling VT ′ → D to which
we refer by labT ′ : Let INT ′ := {v ∈ VT ′ | d+T ′(v) ≥ 1}, LNT ′ := {v ∈ VT ′ | d+G(v) = 0} and
BNT ′ = VT ′\(INT ′∪LNT ′). Then for any ID ∈ D\{FL, free} we have IDT ′ = lab−1(ID).
We always assure that labT and lab are the same on VT . The subscript might be hence
suppressed if T ′ = T . If T ′ ≻ T , then we assume that INT ⊆ INT ′ and LNT ⊆ LNT ′. So,
the labels IN and LN remain once they are fixed. For the remaining labels we have the
following possible transitions: FL → LN, BN → {LN, IN} and free → D \ {free}. Let
BNi = {v ∈ BN | d+(v) = i}, freei = {v ∈ free | d−(v) = i} for i ≥ 1, BN≥ℓ := ∪nj=ℓBNj

and free≥ℓ := ∪nj=ℓfreej.

5.2. The Polynomial Part

5.2.1. Halting Rules

First we specify halting rules. If one of these rules applies the algorithm halts. Then it
either returns a solution or answers that none can be built in the according branch of
the search tree.

(H1) If there exists a v ∈ free ∪ FL with d−(v) = 0. Halt and answer NO.

(H2) If BN = ∅. Halt. A spanning tree has been constructed if free ∪ FL = ∅. If so
return |LN|.

113

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

(H3) If there is a bridge e := (u, v) ∈ A \ T which splits the graph in at least two
connected components of size at least two and v ∈ FL. Halt and answer NO.

5.2.2. Reduction rules

We state a set of six reduction rules in the following. Similar reduction rules for the
undirected version have already appeared in [51, 135]. We assume that the halting rules
are already checked exhaustively

(R1) Let v ∈ V . If lab(v) = FL then remove N+
A (v). If lab(v) = BN then remove

N−
A (v) \ T .

(R2) If there exists a vertex v ∈ BN with d+(v) = 0 then set lab(v) := LN.

(R3) If there exists a vertex v ∈ free with d(v) = 1 then set lab(v) := FL.

(R4) If v ∈ LN then remove NA(v) \ T .

(R5) Let u ∈ BN such that N+
A (u) is a an arc-cut set. Then lab(u) := IN and for all

x ∈ N+(u) ∩ FL set lab(x) := LN, and for all x ∈ N+(u) ∩ free set lab(x) := BN.

(R6) If there is an arc (a, b) ∈ A with a, b ∈ free and G(A\{a, b}) consist of two strongly
connected components of vertex-size at least two. Then contract (a, b) such that
the new vertex is free. both vertices.

Proposition 5.2.1: The reduction rules are sound.

Proof. (R1) A floating leaf v cannot be a parent anymore. Thus, it is valid to remove
N+

A (v). If v ∈ BN then v already has a parent in T . Thus, no arc in N−(v) \ T
will ever be part of a tree T ′ � T .

(R2) The vertex v cannot be a parent anymore. Thus, setting lab(v) := LN is sound.

(R3) The vertex v must be a leaf in any tree T ′ � T .

(R4) The only arcs present in any tree T ′ � T will be NA(v)∩ T . Thus, NA(v) \ T can
be removed.

(R5) As N+
A (v) is an arc-cut set, setting v ∈ LN would cut off a component which

cannot be reached from the root r. Thus, v ∈ IN is constrained.

(R6) Let G∗ be the graph after contracting (a, b). If G∗ has a spanning tree with k
leaves, then also G. On the other hand note that in every spanning tree T ′ � T
for G we have that a, b ∈ IN and (a, b) ∈ T ′. Hence, the tree T# evolved by
contracting (a, b) in T ′ is a spanning tree with k leaves in G∗.

114

5.3. The Exponential Part

5.3. The Exponential Part

5.3.1. Branching rules

If N+(internal(T)) ⊆ internal(T) ∪ leaves(T), we call T an inner-maximal directed
tree. We make use of the following fact:

Lemma 5.3.1 ([98] Lemma 4.2): If there is a tree T ′ with leaves(T ′) ≥ k such that
T ′ � T and x ∈ internal(T ′) then there is a tree T ′′ with leaves(T ′′) ≥ k such that
T ′′ � T , x ∈ internal(T ′′) and {(x, u) ∈ A} ⊆ T ′′

See the Algorithm 2 which describes the branching rules. As mentioned before, the
search tree evolves by branching on BN-vertices. For some v ∈ BN we will set either
lab(v) = LN or lab(v) = IN. In the second case we adjoin the vertices N+

A (v) \ T as
BN-nodes to the partial spanning tree T . This is justified by Lemma 5.3.1. Thus, during
the whole algorithm we only consider inner-maximal trees. Right in the beginning we
therefore have A({r} ∪N+(r)) as a initial tree where r is the vertex chosen as the root.

We also introduce an abbreviating notation for the different cases generated by branch-
ing: 〈v ∈ LN; v ∈ IN〉 means that we recursively consider the two cases were v becomes
a leaf node and an internal node. The semicolon works as a delimiter between the dif-
ferent cases. Of course, more complicated expression like 〈v ∈ BN, x ∈ BN; v ∈ IN, x ∈
LN; v ∈ LN〉 are possible, which generalize straight-forward.

5.3.2. Correctness of the algorithm

In the following we are going to prove a lemma which is crucial for the correctness and
the run time.

Lemma 5.3.2: Let T ⊆ A be a given tree such that v ∈ BNT and N+(v) = {x1, x2}.
Let T ′, T ∗ ⊆ A be optimal solutions with T ′, T ∗ � T under the restriction that labT ′(v) =
LN, and labT ∗(v) = IN and labT ∗(x1) = labT ∗(x2) = LN.

1. If there is a vertex u 6= v with N+(u) = {x1, x2}. Then |leaves(T ′)| ≥ |leaves(T ∗)|.

2. Assume that d−(xi) ≥ 2 (i = 1, 2). Assume that there exists some u ∈ (N−(x1) ∪
N−(x2)) \ {v, x1, x2} such that labT ∗(u) = IN. Then |leaves(T ′)| ≥ |leaves(T ∗)|.

Proof. 1. Let T+ := (T ∗\{(v, x1), (v, x2)})∪{(u, x1), (u, x2)}. We have labT+(v) = LN
and u is the only vertex besides v where labT ∗(u) 6= labT+(u) is possible. Hence,
u is the only vertex where we could have labT ∗(u) = LN such that labT+(u) = IN.
Thus, we can conclude |leaves(T+)| ≥ |leaves(T ∗)|. As T ′ is optimal under the
restriction that v ∈ LN it follows |leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|.

2. W.l.o.g. we have u ∈ N−(x1) \ {v, x2}. Let q ∈ N−(x2) \ {v} and T+ :=
(T ∗ \ {(v, x1), (v, x2)}) ∪ {(u, x1), (q, x2)}. We have labT+(v) = LN, labT+(u) =
labT ∗(u) = IN and q is the only vertex besides v where we could have labT ∗(q) 6=

115

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

Algorithm 2: An Algorithm for solving RDMLST

Data: A directed graph G = (V,A) and a directed tree T ⊆ A.
Result: A spanning directed tree T ′ with the maximum number of leaves such

T ′ � T
Check if a halting rule applies.1

Apply the reduction rules exhaustively.2

if BN1 6= ∅ then3

Choose some v ∈ BN1.4

Let P = {v0, v1, . . . , vk} be a path of maximum length s.t. (1) v0 = v, (2) for5

all 1 ≤ i ≤ k − 1 d+
Pi−1

(vi) = 1 (where Pi−1 = {v0, . . . , vi−1}) and (3)

P \ free ⊆ {v0, vk}
if d+

Pi−1
(vk) = 0 then

6

Put v ∈ LN (B1)7

else8

〈v ∈ IN, v1, . . . , vk ∈ IN; v ∈ LN〉 (B2)9

else10

Choose a vertex v ∈ BN with maximum out-degree.11

if a) d+(v) ≥ 3 or b)(N+(v) = {x1, x2} and N+(v) ⊆ FL) then12

〈v ∈ IN; v ∈ LN〉13

& in case b) apply makeleaves(x1, x2) in the 1st branch. (B3)14

else if N+(v) = {x1, x2} then15

if for z ∈ ({x1, x2} ∩ free) we have |N+(z) \N+(v)| = 0 (B4.1) or16

N+
A (z) is an arc-cut set (B4.2) or17

N+(z) \N+(v) = {v1}. (B4.3) then18

〈v ∈ IN; v ∈ LN〉 (B4)19

else if N+(v) = {x1, x2}, x1 ∈ free, x2 ∈ FL then20

〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN; v ∈ LN〉21

& apply makeleaves(x1, x2) in the 2nd branch. (B5)22

else if N+(v) = {x1, x2}, x1, x2 ∈ free, ∃z ∈ (N−(x1) ∩N−(x2)) \ {v} then23

〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ LN〉 (B6)24

else if N+(v) = {x1, x2}, x1, x2 ∈ free, |(N−(x1) ∪N−(x2)) \ {v, x1, x2}| ≥ 225

then
〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ LN; v ∈26

LN〉
& apply makeleaves(x1, x2) in the 3rd branch. (B7)27

else28

〈v ∈ IN; v ∈ LN〉 (B8)29

116

5.3. The Exponential Part

Procedure makeleaves(x1, x2)

begin1

∀u ∈ [(N−(x1) ∪N−(x2)) \ {x1, x2, v}] ∩ free set u ∈ FL;2

∀u ∈ [(N−(x1) ∪N−(x2)) \ {x1, x2, v}] ∩ BN set u ∈ LN;3

end4

labT+(q) (i.e., it is possible that labT ∗(q) = LN and labT+(q) = IN). Therefore
|leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|.

5.3.2.1. Correctness of the Different Branching Cases

First note that (H2) takes care of the case that indeed an out-branching has been built.
If so the number of its leaves is returned.

Below we will argue that each branching case in Algorithm 2 is correct in a way
that it preserves at least one optimal solution. Cases (B4) and (B8) do not have to be
considered in detail as these are simple binary and exhaustive branchings.

(B1) Suppose there is an optimal extension T ′ � T such that labT ′(v) = labT ′(v0) = IN.
Due to the structure of P there must be an i, 0 < i ≤ k such that (vj, vj−1) ∈ T ′

for 0 < j ≤ i, i.e., v, v1, . . . vi−1 ∈ IN and vi ∈ LN. W.l.o.g., we choose T ′ in
a way that i is minimum but T ′ is still optimal (✛). By (R5) there must be a
vertex vz, 0 < z ≤ i, such that there is an arc (q, vz) with q 6∈ P and q ∈ V (T ′).
Now consider T ′′ = (T ′ \ {(vz−1, vz)})∪ {q, vz}. In T ′′ the vertex vz−1 is a leaf and
therefore |leaves(T ′′)| ≥ |leaves(T ′)|. Additionally, we have that z − 1 < i which
is a contradiction to the choice of T ′ (✛).

(B2) Note that lab(vk) ∈ {BN,FL} is not possible due to (R1) and, thus, lab(vk) = free.
By the above arguments from (B1) we can exclude the case that v, v1, . . . vi−1 ∈ IN
and vi ∈ LN (i ≤ k). Thus, under the restriction that we set v ∈ IN, the only
remaining possibility is also to set v1, . . . vk ∈ IN.

(B3) b) When we set v ∈ IN then the two vertices in N+(v) will become leaf nodes
(i.e., become part of LN). Thus, Lemma 5.3.2.2 applies (Note that (R5) does
not apply and therefore (N−(x1) ∪ N−(x2)) \ {v, x1, x2} 6= ∅ as well as d(xi) ≥ 2
(i = 1, 2)). This means that that every vertex in (N−(x1) ∪N−(x2)) \ {v, x1, x2}
can be assumed a to be leaf node in the final solution. This justifies to apply
makeleaves(x1, x2).

(B5) The branching is exhaustively with respect to v and x1. Nevertheless, in the
second branch makeleaves(x1, x2) is carried out. This is justified by Lemma 5.3.2.2
similarly as in (B3)b). By setting v ∈ IN and x1 ∈ LN, x2 will be attached to v
as a LN-node and (R5) does not apply.

117

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

(B6) In this case we neglect the possibility that v ∈ IN, x1, x2 ∈ LN. But due to
Lemma 5.3.2.1 a no worse solution can be found in the recursively considered case
where we set v ∈ LN. This shows that the considered cases are sufficient.

(B7) Similarly, as in case (B3) we can justify by Lemma 5.3.2.2 the application of
makeleaves(x1, x2) in the third branch.

Further branching cases will not be considered as their correctness is clear due to ex-
haustive branching.

5.3.3. Analysis of the Run Time

5.3.3.1. The Measure

To analyze the run time we follow the Measure&Conquer-approach (see [74]) and use
the following measure:

µ(G) =

n
∑

i=1

ǫBN
i |BNi|+

n
∑

i=1

ǫfreei |freei|+ ǫFL|FL|

The concrete values are ǫFL = 0.2251, ǫBN
1 = 0.6668, ǫBN

i = 0.7749 for i ≥ 2, ǫfree1 =
0.9762 and ǫfree2 = 0.9935. Also let ǫfreej = 1 for j ≥ 3 and
η = min{ǫFL, (1− ǫBN

1), (1− ǫBN
2), (ǫfree2 − ǫBN

1), (ǫfree2 − ǫBN
2), (ǫfree1 − ǫBN

1), (ǫfree1 − ǫBN
2)} =

ǫfree1 − ǫBN
2 = 0.2013.

For i ≥ 2 let ∆free
i = ǫfreei − ǫfreei−1 and ∆free

1 = ǫfree1 . Thus, ∆free
i+1 ≤ ∆free

i with ∆free
s = 0

for s ≥ 4.

5.3.3.2. Run Time Analysis of the Different Branching Cases

In the following we state for every branching case by how much µ will be reduced.
Especially, ∆i states the amount by which the i-th branch decreases µ. If v is the vertex
chosen by Algorithm 2 then it is true that for all x ∈ N+(v) we have d−(x) ≥ 2 by (R5)
(✜).

(B2) 〈v ∈ IN, v1, . . . , vk ∈ IN, v ∈ LN〉
Recall that d+

Pk−1
(vk) ≥ 2 and vk ∈ free by (R1). Then we must have that

v1 ∈ free≥2 by (R5).

1. v becomes IN-node; v1, . . . , vk become IN-nodes; the free vertices in N+(vk)
become BN-nodes, the floating leaves in N+(vk) become LN-nodes:
∆1 ≥ ǫBN

1 +
∑k

i=2 ǫ
free
1 + χ(v1 ∈ free2) · ǫfree2 + χ(v1 ∈ free≥3) · ǫfree3 + 2 · η

2. v becomes LN-node; the degree of v1 is reduced:
∆2 ≥ ǫBN

1 +
∑3

i=2 χ(v1 ∈ freei) ·∆free
i

118

5.3. The Exponential Part

The greatest branching number 1.7542 evolves from the case where k = 1, d−(v1) ≥
4, d+(v1) = 2 and for all u ∈ N+(v1) we have u ∈ free1.

(B3) 〈v ∈ IN; v ∈ LN〉.
Case a)

1. v becomes IN-node; the free out-neighbors of v become BN-nodes; the FL
out-neighbors of v becomes LN-nodes:

∆1 ≥ ǫBN
2 +

∑

x∈N+(v)∩free≥3
(1−ǫBN

2)+
∑

x∈N+(v)∩free2
(ǫfree2 −ǫBN

2)+
∑

y∈N+(v)∩FL ǫ
FL

2. v becomes LN-node; the in-degree of the free out-neighbors of v is decreased;
∆2 ≥ ǫBN

2 +
∑3

i=2 |N+(v) ∩ freei| ·∆free
i

The greatest branching number 1.9044 evolves from the cases where d+(v) = 3 and
|N+(v) ∩ FL|+ |N+(v) ∩ free≥4| = 3.

Case b)
Recall that v is a BN of maximum out-degree, thus d+(z) ≤ d+(v) = 2 for all
z ∈ BN. On the other hand BN1 = ∅ which implies BN = BN2 from this point
on. Hence, we have N+(v) = {x1, x2}, d−(xi) ≥ 2, (i = 1, 2) and |(N−(x1) ∪
N−(x2)) \ {v, x1, x2}| ≥ 1 by (✜), in the following branching cases. Therefore
the additional amount of min{ǫfree1 − ǫFL, ǫBN

2 } in the first branch is justified by
the application of makeleaves(x1, x2). Note that by (✜) at least one free-node
becomes a FL-node, or one BN-node becomes a LN-node. Also due to (R1) we
have that N+(xi)∩BN = ∅. From this case the branching number 1.719 is derived.

1. v becomes IN-node; the FL out-neighbors of v become LN-nodes; the vertices
in [N−(x1) ∪ N−(x2) \ {v, x1, x2}] ∩ BN become LN-nodes; the vertices in
[N−(x1) ∪N−(x2) \ {v, x1, x2}] ∩ free become FL-nodes.
∆1 ≥ ǫBN

2 + 2 · ǫFL +min{ǫfree1 − ǫFL, ǫBN
2 }

2. v becomes LN; ∆2 ≥ ǫBN
2 .

(B4) 〈v ∈ IN; v ∈ LN〉.
(B4.1): 1. v becomes IN-node; z becomes LN-node by (R1), (R2) or both; The

vertex q ∈ {x1, x2} \ {z} becomes LN-node or BN-node (depending on
q ∈ FL or q ∈ free)
∆1 ≥ ǫBN

2 + ǫfree2 + min{ǫFL, (ǫfree2 − ǫBN
2)}

2. v becomes LN-node;
∆2 ≥ ǫBN

2

(B4.2): 1. v becomes IN-node; N+
A (z) is an arc-cut. Thus, z becomes IN-node as

(R5) applies; The vertex q ∈ {x1, x2}\{z} becomes LN-node or BN-node
(depending on q ∈ FL or q ∈ free)
∆1 ≥ ǫBN

2 + ǫfree2 + min{ǫFL, (ǫfree2 − ǫBN
2)}

119

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

2. v becomes LN-node;
∆2 ≥ ǫBN

2

Cases (B4.1)/(B4.2) provide a branching number of 1.717. Note that in all
following branching cases we have N+(xi) ∩ free1 = ∅ (i = 1, 2) by this case.

(B4.3): We have |N+(z) \N+(v)| = 1. Thus, in the next recursive call after the first
branch and the exhaustive application of (R1), either (R6), case (B2) or (B1)
applies. (R5) does not apply due to (B4.2) being ranked higher. Note that
the application of any other reduction rule does not change the situation. If
(B2) applies we can analyze the current case together with its succeeding one.
If (B2) applies in the case we set v ∈ IN we deduce that v0, v1, . . . , vk ∈ free
where z = v0 = x1 (w.l.o.g., we assumed z = x1). Observe that v1 ∈ free≥2

as (B4.2) does not apply.

1. v becomes IN-node; x1 becomes LN-node; x2 becomes LN- or BN-node
(depending on whether x2 ∈ free or x2 ∈ FL); the degree of v1 drops:

∆11 ≥ ǫBN
2 + χ(x1 ∈ free≥3) · ǫfree3 + χ(x1 ∈ free2) · ǫfree2 +

χ(x2 ∈ free≥3) · (ǫfree3 − ǫBN
2) + χ(x2 ∈ free2) ·

(ǫfree2 − ǫBN
2) + χ(x2 ∈ FL) · ǫFL +

3
∑

i=2

χ(v1 ∈ freei) ·∆free
i

2. v becomes IN-node, x1, v1 ∈ IN, . . . , vk become IN-nodes; the free vertices
in N+(vk) become BN-nodes, the floating leaves in N+(vk) become LN-
nodes:

∆12 ≥ ǫBN
2 + χ(x1 ∈ free≥3) · ǫfree3 + χ(x1 ∈ free2) · ǫfree2 +

χ(x2 ∈ free≥3) · (ǫfree3 − ǫBN
2) + χ(x2 ∈ free2) · (ǫfree2 − ǫBN

2) +

χ(x2 ∈ FL) · ǫFL + χ(v1 ∈ free2) · ǫfree2 + χ(v1 ∈ free≥3) · ǫfree3 +

k
∑

i=2

ǫfree1

+2η

3. v becomes LN-node: the degrees of x1 and x2 drop:

∆2 ≥ ǫBN
2 +

max
h∈{1,2}

d−(xh)

∑

ℓ=2

2
∑

j=1

χ(xj ∈ freeℓ) ·∆free
ℓ

The worst case branching number from above is 1.897. It is created by two
cases with k = 1: 1. x2 ∈ free≥4, d

−(v1) ≥ 4, d+(v1) = 2, d−(x1) ≥ 4 and
2. x2 ∈ FL, d−(v1) ≥ 4, d+(v1) = 2, d−(x1) ≥ 4

If case (B1) applies to v1 the reduction in both branches is as least as great
as in (B4.1)/(B4.2).

120

5.3. The Exponential Part

If (R6) applies after the first branch (somewhere in the graph) we get ∆1 ≥
ǫBN
2 + (ǫfree2 − ǫBN

1) + ǫfree1 + min{ǫFL, (ǫfree2 − ǫBN
2)} and ∆2 ≥ ǫBN

2 . Here the
amount of ǫfree1 in ∆1 originates from an (R6) application. The corresponding
branching number is 1.644.

(B5) 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN; v ∈ LN〉
1. v and x1 become IN-nodes; x2 becomes a LN-node; the vertices in N+(x1) ∩

free become BN-nodes; the vertices in N+(x1) ∩ FL become LN-nodes;

∆1 ≥ ǫBN
2 + ǫfree2 + ǫFL +

∑

x∈N+(x1)∩free
(ǫfree2 − ǫBN

2) +
∑

x∈N+(x1)∩FL
ǫFL

2. v becomes IN-node; x1 becomes LN-node; x2 becomes LN-node; after apply-
ing makeleaves(x1, x2) the vertices in [N−(x1) ∪ N−(x2) \ {v, x1, x2}] ∩ BN
become LN-nodes and the vertices in [N−(x1) ∪ N−(x2) \ {v, x1, x2}] ∩ free
become FL-nodes:

∆2 ≥ ǫBN
2 + ǫfree2 + ǫFL + min{ǫfree1 − ǫFL, ǫBN

2 }
3. v becomes LN: ∆3 ≥ ǫBN

2

The amount of min{ǫfree1 − ǫFL, ǫBN
2 } in the second branch is due to (✜) and the

application of makeleaves(x1, x1). The greatest branching number 1.8871 evolves
from the case where N+(x1) ⊆ free, d+(x1) = 2, d−(x1) = 2 and N+(x1) \ {v} ⊆
free1.

(B6) 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ LN〉 The branching vector can be
derived by considering items 1,2 and 4 of (B7) and the reductions ∆1,∆2 and ∆4

in µ obtained in each item.

(B7) 〈v ∈ IN, x1 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ IN; v ∈ IN, x1 ∈ LN, x2 ∈ LN; v ∈ LN〉
Note that if N+

A (x1) or N+
A (x2) is an arc-cut set then (B4.2) applies. Thus, all the

branching cases must be applicable.

Moreover due to the previous branching case (B4.3) we have |N+(x1) \N+(v)| =
|N+(x1) \ {x2}| ≥ 2 and |N+(x2) \N+(v)| = |N+(x2) \ {x1}| ≥ 2 (✱).

Note that N−(x1) ∩N−(x2) = {v} due to (B6).

For i ∈ {1, 2} let fli = |{x ∈ N+(xi) \ N+(v) | x ∈ FL}|, fr≥3
i = |{u ∈

N+(xi) \N+(v) | u ∈ free≥3}| and fr2i = |{u ∈ N+(xi) \N+(v) | u ∈ free2}|.
Observe that for i ∈ {1, 2} we have (fli + fr≥3

i + fr2i) ≥ 2 due to (✱).

1. v becomes IN; x1 becomes IN; x2 becomes BN; the free out-neighbors of x1
become BN; the FL out-neighbors of x1 become LN;

∆1 ≥ ǫBN
2 + χ(x1 ∈ free≥3) + χ(x1 ∈ free2) · ǫfree2 +

χ(x2 ∈ free≥3) · (ǫfree3 − ǫBN
2) + χ(x2 ∈ free2) · (ǫfree2 − ǫBN

2) +

(fl1 · ǫFL + fr≥3
1 · (ǫfree3 − ǫBN

2) + fr21 · (ǫfree2 − ǫBN
2))

121

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

2. v becomes IN; x1 becomes LN; x2 becomes IN; the free out-neighbors of x2
becomes BN; the FL out-neighbors of x2 become LN;

∆2 ≥ ǫBN
2 + (

2
∑

i=1

[χ(xi ∈ free≥3) · ǫfree3 + χ(xi ∈ free2) · ǫfree2]) +

(fl2 · ǫFL + fr≥3
2 · (ǫfree3 − ǫBN

2) + fr22 · (ǫfree2 − ǫBN
2))

3. v becomes IN; x1 becomes LN; x2 becomes LN; the free in-neighbors of x1
become FL; the BN in-neighbors of x1 become LN; the free in-neighbors of
x2 become FL; the BN in-neighbors of x2 become LN:

∆3 ≥ ǫBN
2 + [

2
∑

i=1

(χ(xi ∈ free≥3) · ǫfree3 + χ(xi ∈ free2) · ǫfree2)] +

max{2, (d−(x1) + d−(x2)− 4)} ·min{ǫfree1 − ǫFL, ǫBN
2 }

Note that the additional amount of max{2, (d−(x1) + d−(x2) − 4)} · {ǫfree2 −
ǫFL, ǫBN

2 } is justified by Lemma 5.3.2.2 and by the fact that d−(xi) ≥ 2 and
N−(x1) ∩ N−(x2) = {v} due to (B6). Thus, we have |N−(x1) ∪ N−(x2) \
{x1, x2, v}| ≥ max{2, (d−(x1) + d−(x2)− 4)}.

4. v becomes LN; the degrees of x1 and x2 drop:

∆4 ≥ ǫBN
2 +

max
ℓ∈{1,2}

{d−(xℓ)}

∑

j=2

2
∑

i=1

(χ(d−(xi) = j) ·∆free
j)

The following cases determine branching numbers between 1.9043 and 1.9044:
1. d−(x1) = d+(x1) = 2, d−(x2) = 4, d+(x2) = 2, fr21 = fr22 = 2
2. d−(x1) = d−(x2) = 3, d+(x1) = d+(x2) = 2, fr21 = fr22 = 2
3. d−(x2) = d+(x2) = 2, d−(x1) = 4, d+(x1) = 2, fr21 = fr22 = 2

(B8) Observe that in the second branch we can apply (R6). Due to the non-applicability
of (R5) and the fact that (B7) is ranked higher in priority we have |(N−(x1) ∪
N−(x2)) \ {v, x1, x2}| = 1. Especially, (B6) cannot be applied by which we derive
that N−(x1)∩N−(x2) = {v}. Thus, due to this we have the situation in Figure 5.1.

So, w.l.o.g, there are arcs (q, x1), (x1, x2) ∈ A (and possibly also (x2, x1) ∈ A),
where {q} = (N−(x1) ∪ N−(x2)) \ {v, x1, x2}, because we can rely on d−(xi) ≥ 2
(i = 1, 2) by (✜).

1. Firstly, assume that q ∈ free.

122

5.3. The Exponential Part

a) v becomes IN; x1 and x2 becomes BN:

∆1 ≥ ǫBN
2 + 2 · (ǫfree2 − ǫBN

2)

b) The arc (q, x1) will be contracted by (R6) when we v becomes LN, as x1
and x2 only can be reached by using (q, x1):

∆2 ≥ ǫBN
2 + ǫfree1 .

The branching number here is 1.606.

2. Secondly, assume q ∈ BN. Then q ∈ BN2 due to the branching priorities.

a) v becomes IN; x1 and x2 become BN:

∆1 ≥ ǫBN
2 + 2 · (ǫfree2 − ǫBN

2)

b) Then after setting v ∈ LN, rule (R5) will make q internal and subse-
quently also x1:

∆2 ≥ ǫBN
2 + ǫfree2 + ǫBN

2 .
This amount is justified by the changing roles of the vertices in N+(q)∪
{q}.

1.499 is the right corresponding branching number.

q
x1 x2

v

Figure 5.1.: The only situation which can occur in branching case (B8). The blue arc is
contained in T , the dotted one maybe present or not.

By the above case analysis we are able to conclude:

Theorem 5.3.3: Directed Maximum Leaf Spanning Tree can be solved inO∗(1.9044n)
steps.

The proven run time bound admits only a small gap to the bound of O∗(1.8966n) for
the undirected version. It seems that we can benefit from degree two vertices only on a
small scale in contrast to the undirected problem version. Speaking loosely if v ∈ BN2

and x ∈ N(v)\T we can follow a WIN/WIN approach in the undirected version. Either
d(x) is quite big then we will add many vertices to BN or FL when v and subsequently x
become internal. If d(x) is small, say two, then by setting v ∈ LN the vertex x becomes
a FL-node. This implies also an extra reduction of the measure. We point out that in
the directed case the in- and out-degree of a vertex generally is not related. Thus, the
approach described for the undirected problem remains barred for the directed version.

123

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

5.4. Conclusions

5.4.1. An Approach Using Exponential Space

The algorithm of J. Kneis et al. [98] can also be read in an exact non-parameterized way.
It is not hard to see that it yields a run time of O∗(2n). Alternatively, keep the cases
(B1) and (B2) of Algorithm 2 and substitute all following cases by a simple branch on
some BN-node. Using n as a measure we see that O∗(2n) is an upper bound.
We are going to use the technique of memoization to obtain an improved run time. Let
SGα := {G(V ′) | V ′ ⊆ V, |V ′| ≤ α · n} where α = 0.141. Then we aim to create the
following table L indexed by some G′ ∈ SGα and some VBN ⊆ V (G′) where the entries
are from

L = {T̃ | T̃ is directed spanning tree for G′
BNwith root r′}

(where G′
BN = (V (G′)∪ {r′, y}, A(G′)∪ ({(r′, y)} ∪u∈VBN

(r′, u)) and r′, y are new ver-
tices):

L[G′, VBN] = T ′ such that |leaves(T ′)| = minT̃⊆L |leaves(T̃)| .

Entries where such a directed spanning tree T̃ does not exits (e.g. if VBN = ∅) get the
value ∅. This table can be filled up in time O∗(

(

n
α·n

)

· 2αn · 1.9044αn) ⊆ O∗(1.8139n).
This run time is composed of enumerating SGα, then by cycling through all possibilities
for VBN and finally solving the problem on instance G′

BN with Algorithm 2.

Theorem 5.4.1: Directed Maximum Leaf Spanning Tree can be solved in time
O∗(1.8139n) consuming O∗(1.6563n) space.

Proof. Run the above mentioned O∗(2n)-algorithm until |Gr| ≤ α · n with Gr := V \
internal(T). Then let T e = L[Gr, V (Gr) ∩ BNT]. Note that the vertex r ∈ V (T e)
must be internal and y ∈ leaves(T e). By Lemma 5.3.1 we can assume that A({r} ∪
N+(r)) ⊆ T e. Now identify the vertices BNT ∩ V (T e) with V (Gr) ∩ BNT and delete
r an y to a directed spanning tree T̂ for the original graph G. Or more formally let
T̂ := T ∪ (T e \ A({r} ∪N+(r)). Observe that T̂ extends T to optimality.

Note that in the first phase we cannot substitute theO∗(2n)-algorithm by Algorithm 2.
It might be the case that (R6) generates graphs which are not vertex-induced subgraphs
of G.

5.4.2. Résumé

The paper at hand presented an algorithm which solves the Directed Maximum Leaf
Spanning Tree problem in time O∗(1.9044n). Although this algorithm follows the
same line of attack as the one of [51] the algorithm itself differs notably. The approach
of [51] does not simply carry over. To achieve our run time bound we had to develop
new algorithmic ideas. This is reflected by the greater number of branching cases.

124

5.4. Conclusions

125

Chapter 5. A Faster Exact Algorithm for Directed Maximum Leaf Spanning Tree

126

Chapter 6.

Parameterized Measure&Conquer for
k-Leaf Spanning Tree

6.1. Introduction.

We address the following problem in graphs:
k-Leaf Spanning Tree
Given: An undirected graph G(V,E), and the parameter k.
We ask: Is there a spanning tree for G with at least k leaves?.

The problem has a notable applicability in the design of ad-hoc sensor networks [11,
150](J. Blum et al., M. Thai et al.). In this area it might be referred to as Connected
Dominating Set. A spanning tree with k leaves is equivalent to a connected dom-
inating set with n − k vertices. The k-leaf spanning tree problem already has
been widely studied with regard to its approximability. R. Solis-Oba [145] obtained
a 2-approximation running in polynomial time. In almost linear time H.-I. Lu and
R. Ravi [113] provided a 3-approximation. P.S. Bonsma and F. Zickfeld [15] could show
that the problem is 3

2
-approximable when the input is restricted to cubic graphs.

Concerning parameterized algorithms, a sequence of papers culminated in the one
of J. Kneis, A. Langer and P. Rossmanith [98]. This fairly simple branching algo-
rithm achieves a run time of O∗(4k). Prior to this there were run time achievements by
P.S. Bonsma et al. [14] of O∗(9.49k), by V. Estivill-Castro et al. [40] of O∗(8.12k) and
by P.S. Bonsma and F. Zickfeld [16] of O∗(6.75k). These bounds all have been obtained
by using combinatorial arguments. The best kernelization result is due to [40] where
they exhibited a kernel size of 3.75k . I. Koutis and R. Williams [103] could derive a
randomized O∗(2k)-algorithm for the undirected version. H. Fernau et al. [51] gave an
algorithm with run time O∗(1.8966n) for undirected graphs.

There is also a directed version of the problem: Find an out-branching with k leaves.
Here an out-branching in a directed graph is a tree in the underlying undirected graph.
But the arcs are directed from the root to the leaves, which are the vertices of out-degree
zero. The algorithm of J. Kneis, A. Langer and P. Rossmanith [98] solves also this
problem in time O∗(4k). Moreover, in Daligault et al. [32] an upper-bound of O∗(3.72k)
is stated. We are in the unusual situation that the run time for search tree algorithms
for the directed case is no worse than the one obtained in the undirected case. By using
rules that are specific for the undirected case, we are able to derive improved run times

127

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

valid for the undirected case only.

6.1.1. Our Contributions.

We developed the simple and elegant algorithm of [98] further. The run time improve-
ment of O∗(3.4581k) is due to two reasons: 1. We could improve the bottleneck case by
new branching rules. 2. Due using amortized analysis, we were able to prove a tighter
upper-bound on the run time. For this we use a non-standard measure which in its
form is quite related to the Measure&Conquer-approach in exact, non-parameterized
algorithmics, see Fomin, Grandoni and Kratsch [74]. Notice however that there are only
few examples for using Measure&Conquer in parameterized algorithmics. In addition,
we analyze our algorithm with respect to the number of vertices and obtain also small
improvements for the Minimum Connected Dominating Set problem. This seems
to be the first attempt to analyze the same algorithm both with respect to the standard
parameter k and with respect to the number of vertices n. We mention that the ap-
proaches of [32, 51] is going to some extent into the same direction. The basic scheme of
the algorithms is similar. Nevertheless, our run time shows that our results are different.
Moreover, the first paper does not make use of Measure&Conquer techniques and the
second follows a non-parameterized route.

6.1.2. Terminology.

An edge {x, y} might also be abbreviated as x y. An edge cut set is a subset Ê ⊂ E
such that G[E \ Ê] is not connected. A tree is a subset of edges T ⊆ E such that G[T]
is connected and cycle-free. A spanning tree is a tree such that

⋃

e∈T e = V . A tree
T ′ extends another tree T if T ⊆ T ′. We will write T ′ ≻ T . A bridge e ∈ E leaves
G[E \ {e}] disconnected. For any E ′ ⊆ E let leaves(E ′) := {v ∈ V | dE′(v) = 1} and
internal(E ′) := {v ∈ V | dE′ ≥ 2}.

6.1.3. Overall Strategy.

In the rest of the chapter, we address the following annotated version of our problem:
Rooted k-Leaf Spanning Tree
Given: An undirected graph G(V,E) a root vertex r ∈ V , and the parameter k.
We ask: Is there a spanning tree T for G with |leaves(T)| ≥ k with dT (r) ≥ 2?.

An algorithm solving this problem will also solve k-leaf spanning tree (with a poly-
nomial delay) by considering every v ∈ V as the root. All throughout the algorithm we
will maintain a tree T ⊆ E whose vertices are VT :=

⋃

e∈T e. Let V T := V \ VT . T will
be seen as predetermined to be part of the solution. During the course of the algorithm,
T will have two types of leaves. Namely, leaf nodes (LN) and branching nodes (BN).
The first mentioned will also appear as leaves in the solution. The latter ones can be
leaves or internal vertices. Generally, we decide this by branching as far as reduction

128

6.2. Reduction Rules & Observations.

rules do not enforce exactly one possibility. Internal nodes (IN) are already determined
to be non-leaves in T .

The algorithm will also produce a third kind of leaves: floating leaves (FL). These are
vertices from V T which are already determined to be leaves, but are not attached to the
tree T yet. If a vertex is neither a branching node nor a leaf node nor a floating leaf nor
an internal node we call it free. We will refer to the different possible roles of a vertex
by a labeling function lab : V → {IN,FL,BN,LN, free} := D. A given tree T ′ defines
a labeling VT ′ → D to which we refer by labT ′ . Let INT ′ := {v ∈ VT ′ | dT ′(v) ≥ 2},
LNT ′ := {v ∈ VT ′ | dV T ′

(v) = 0, d(v) = 1} and BNT ′ = VT ′ \ (IN ∪ LN). Then for any

ID ∈ D \ {FL, free} we have IDT ′ = lab−1(ID). We always ensure that labT and lab
are the same on VT . The subscript might be suppressed if T ′ = T . If T ′ ≻ T , then we
assume that INT ⊆ INT ′ and LNT ⊆ LNT ′. So, the labels IN and LN remain once they
are fixed. For the other labels, we have the following possible transitions: FL → LN,
BN→ {LN, IN} and free→ D \ {free}. Subsequently, we assume |V | > 4.

6.2. Reduction Rules & Observations.

6.2.1. Reduction Rules.

We assume that reduction rule (i) is applied before (i+1). The rules (1)-(3) also
appeared in previous work [51].

(1) If there is an edge e ∈ E \ T with e ⊆ VT , then delete e.

(2) Every u ∈ BN with d(u) = 1 becomes a leaf node and every u ∈ free with d(u) = 1
becomes a floating leaf.

(3) Let u ∈ BN. If the removal of EV T
(u) in G[V \FL] or G[V] creates two components

then u becomes internal.

(4) Let u, v be free and assume that there is a bridge {u, v} ∈ E \ T in G[V], where
C1, C2 are the two components created by deleting {u, v}. If |V (C1)| > 1 and
|V (C2)| > 1 then contract {u, v}. The new vertex is also free.

(5) Delete {u, v} ∈ E if u and v are floating leaves.

(6) Delete {u, v} ∈ E \ T if dV (u) = 2, u ∈ BN and a) dV (v) = 2, or b) v ∈ FL.

(7) Delete {u, v} if u ∈ BN with d(u) = 2, NV T
(u) = {v} and dVT

(v) ≥ 2, see Fig-
ure 6.1(a).

(8) If u, x1, x2 form a triangle, x1 is free and {h} = N(x1) \ {x2, u} such that d(h) = 1,
see Figure 6.1(b). Then x1 becomes a floating leaf and h will be deleted.

(9) Let h ∈ V T be a free vertex such that a) NV T
(h) = {q} and d(q) = 1 or b)

dV T
(h) = 0, see Figure 6.1(c). Then h becomes a floating leaf and q is deleted in

case a).

129

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

u

q

v

(a) RR(7)

uh

x1 x2

(b) RR(8)

h

q

(c) RR(9)

Figure 6.1.: Bold edges are from T . Dotted edges may be present or not.

Lemma 6.2.1: The reduction rules are sound.

Proof. Let T ′ be a spanning tree with T ′ ≻ T such that |leaves(T ′)| ≥ k.

(1) Any edge e ∈ E \ T with e ⊆ VT added to T would introduce a cycle.

(2) In this case v must be a leaf node due to its degree constraint.

(3) If EV T
(u) is an edge cut set in G[V], then u must be internal as we are looking for

a spanning tree. Assume EV T
(u) is a edge cut set in G[V \ FL] but not in G[V].

If labT ′(u) = LN then there must be a z ∈ FL with dT ′(z) ≥ 2. Thus, z ∈ INT ′ , a
contradiction.

(4) Let G′ be the graph which emerges by contracting {u, v}. Then we have dT ′(u) ≥ 2
and dT ′(v) ≥ 2 due to reasons of connectivity. By contracting {u, v} in T ′, we get
a solution for G′. If G′ has a spanning tree T ∗ ≻ T with k leaves, then clearly the
same is true for G.

(5) If {u, v} is part of a solution T ′ then T ′ ∼= K2. This contradicts |V | > 2.

(6.a) Suppose e := {u, v} ∈ T ′ and u and v are not leaves. By removing e, u and v
become leaves and T ′ is split in two components T ′

1 and T ′
2. As e is not a bridge

there is some e′ := {a, b} ∈ E \ T such that T ∗ = T ′
1 ∪ T ′

2 ∪ {e′} is connected. Due
to adjoining e′ at most two leaves will become internal. Hence, |leaves(T ∗)| ≥
|leaves(T ′)|. It is possible that lab(a) = FL. But if it was true that for every such
edge e′ one of its endpoints is a floating leaf, then we could apply (3) as EV T

(v)
would be an edge cut set in G[V \FL]. If e := {u, v} ∈ T ′ and u or v is a leaf then
the proof of (6.b) applies.

(6.b) Suppose e := {u, v} ∈ T ′. As e is not a bridge by (3) and (4) there is an
e′ = {v, x} ∈ E \ T ′ with x 6= u and x 6∈ FL. Let T ∗ := (T ′ \ {e}) ∪ {e′}. Note
that |leaves(T ∗)| ≥ |leaves(T ′)| as u is a leaf in T ∗ and x is internal.

(7) Let q ∈ NVT
(v)\{u} and assume e := {u, v} ∈ T ′. Then e′ := {v, q} 6∈ T ′ as q ∈ VT .

Let T ∗ = (T ′ \ {e}) ∪ {e′}. Then |leaves(T ∗)| ≥ |leaves(T ′)| as labT ∗(u) = LN.

(8) Let G∗ be the reduced graph. In T ′ x1 must be internal. Observe that we can assume
that dT ′(x1) = 2 (✾). Otherwise, {u, x1}, {x1, x2}, {x1, h} ∈ T ′, {u, x2} 6∈ T ′ and,

130

6.2. Reduction Rules & Observations.

w.l.o.g., u is internal as |V | > 4. Then simply delete {x1, x2} from T ′ and adjoin
{u, x2}. This way we can ensure (✾). Due to (✾) we have that G∗ has a spanning
tree with k leaves iff G has one.

(9.a) Note that we have dT ′(h) = 2 since otherwise T ′ contains a cycle. Let G∗ be the
reduced graph. Analogously as in (8), we can show that G∗ has a spanning tree
with k leaves iff G has one.

(9.b) If dT ′(h) > 1, then T ′ would possess a cycle.

Lemma 6.2.2: Reduction rule (1) does not create bridges in E \ T .

Proof. Suppose an edge e = {u, v} 6∈ T is deleted by (1) and a second e′ = {x, y} ∈ E\T
becomes a bridge in G[E \ {e}]. Then G′ := G[E \ {e, e′}] consists of two components
G1 and G2 such that, w.l.o.g., r, x ∈ V (G1) and y ∈ V (G2). Thus, there is a simple
path P = rh1 . . . hly in G such that hi 6= x, y (1 ≤ i ≤ l) and there is a 1 ≤ j ≤ ℓ with,
w.l.o.g., hj = u and hj+1 = v. As u, v ∈ VT there is a simple path P ′ in G1[T] from u

to v such that e, e′ 6∈ E(P ′). Let P̂ = rh1 . . . hj−1P
′hj+2 . . . hℓy. P̂ is a path in G′ which

connects r and y omitting e and e′. Thus, e′ is not a bridge in G[E \ {e}].

From now on we assume that G is reduced due to the given reduction rules.

6.2.2. Observations.

If N(internal(T)) ⊆ internal(T) ∪ leaves(T), we call T an inner-maximal tree.

Lemma 6.2.3 ([98] Lemma 4.2): If there is a tree T ′ with leaves(T ′) ≥ k such that
T ′ � T and x ∈ internal(T ′) then there is a tree T ′′ with leaves(T ′′) ≥ k such that
T ′′ � T , x ∈ internal(T ′′) and {{x, u} ∈ E} ⊆ T ′′

By the above lemma we can restrict our attention to inner-maximal spanning trees.
And in fact the forthcoming algorithm will only construct such trees. Then for a v ∈
internal(T) we have that EV (v) ⊆ T as by Lemma 6.2.3 we can assume that T is
inner-maximal. Thus, in the very beginning we have T = EV (r).

Lemma 6.2.4: Let v ∈ BNT and NV T
(v) = {u}. Then u is free and dV T

(u) ≥ 2.

Proof. Note that dV (v) = 2. Moreover, u 6∈ IN ∪ BN ∪ FL due to T ’s inner-maximality,
(1) and (6.b). Thus, u is free. If dV T

(u) = 0 then (9.b) could be applied. If dV T
(u) = 1

then either we can apply (3) (if {u, v} is a bridge) or (6.a) or (7) depending on whether
dVT

(u) ≥ 2 or not.

We are now going to define some function co : BN→ V . For v ∈ BN, let

co(v) =

{

v : dV T
(v) ≥ 2

u : NV T
(v) = {u}

Note that co is well defined on a reduced instance as we have dV T
(v) ≥ 1 (otherwise

it becomes a leaf node (2)). Note that we have dV T
(co(v)) ≥ 2. Either dV T

(v) ≥ 2

131

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

or dV T
(v) = 1. In the latter case, Nfree(v) = NV T

(v) = {u}, such that dV T
(u) ≥ 2 by

Lemma 6.2.4. This property will be used frequently.
The next lemma has been shown by [98] and is presented using the introduced defini-

tions of this chapter.

Lemma 6.2.5 ([98] Lemma 5): Let v ∈ BNT such that NV T
(v) = {u}. If there is no

spanning tree T ′ ≻ T with k leaves and labT ′(v) = LN, then there is also no spanning
tree T ′′ ≻ T with k leaves, labT ′′(v) = IN and labT ′′(u) = LN.

Observe that for a vertex v with co(v) 6= v once we set lab(v) = IN then it is also valid
to set lab(co(v)) = IN. By Lemma 6.2.5 we must only ensure that we also consider the
possibility lab(v) = LN.

A Further Reduction Rule With the assertion of Lemma 6.2.4 we state another re-
duction rule:

(10) Let w ∈ BN with x1 ∈ Nfree(w) such that a free degree one vertex q is attached to
x1. Further, if

a) there exists v ∈ BN with NV T
(v) = {x1, x2} and {x1, x2} ∈ E, see Fig-

ure 6.2(a), or

b) there exists v ∈ BN with co(v) 6= v and NV T
(co(v)) = {x1, x2}, see Fig-

ure 6.2(c), then set lab(v) = LN.

Lemma 6.2.6: Rule (10) is sound.

Proof. a). Let T ′ ≻ T be a spanning tree with labT ′(v) = labT ′(co(v)) = IN. Consider
T ∗ := (T ′\{x1 v, x2 v})∪{w x1, x1 x2}, see Figures 6.2(a) and 6.2(b). As labT ′(x1) =
labT ∗(x1) = IN and labT ∗(v) = LN we have |leaves(T ∗)| ≥ |leaves(T ′)|. Hence, we
do not have to consider lab(v) = lab(co(v)) = IN.

b) We can skip the possibility lab(v) = lab(co(v)) = IN. Assume the contrary. In that
case consider T ∗ := (T ′ \ {v co(v)}) ∪ {x1w}, see Figures 6.2(c) and 6.2(d), with
|leaves(T ∗)| ≥ |leaves(T ′)| as x1 must be internal. Note that labT ∗(v) = LN.

The next lemmas refer to the case where there is a v ∈ BNT with dV T
(co(v)) = 2. In

the following we use the abbreviation N := {co(v), x1, x2}.
Lemma 6.2.7: Let T ⊆ E be a given tree such that v ∈ BNT and N(co(v)) = {x1, x2}.

Let T ′, T ∗ be optimal spanning trees under the restrictions T ′ ≻ T , T ∗ ≻ T , labT ′(v) =
LN, labT ∗(v) = labT ∗(co(v)) = IN and labT ∗(x1) = labT ∗(x2) = LN.

1. If there is a z ∈ ((N(x1) ∩N(x2)) \ N), then |leaves(T ′)| ≥ |leaves(T ∗)|.

2. If co(v) = v, y ∈ N(x2)\N , z ∈ N(x1)\N with labT ∗(z) = IN, then |leaves(T ′)| ≥
|leaves(T ∗)| .

132

6.2. Reduction Rules & Observations.

w

v

x1

x2

q

(a) RR(10.a)

w

v

x1

x2

b

(b) RR(10.a)

w

v

x1

x2

co(v)

q

(c) RR(10.b)

w

v

x1

x2

b

co(v)

(d) RR(10.b)

Figure 6.2.: Bold edges are from T . Dotted edges may be present or not.

3. If co(v) 6= v and if there is a z ∈ ((N(x1) ∪N(x2)) \ N) with labT ∗(z) = IN, then
|leaves(T ′)| ≥ |leaves(T ∗)|.

Proof. 1. Firstly, suppose co(v) = v. Consider T+ := (T ∗ \{v x1, v x2})∪{z x1, z x2},
see Figures 6.3(a) and 6.3(b). We have labT+(v) = LN and z can be the only
vertex besides v where labT+(z) 6= labT ∗(z). Thus, z could be the only vertex
with labT+(z) = IN and labT ∗(z) = LN. Therefore, |leaves(T ′)| ≥ |leaves(T+)| ≥
|leaves(T ∗)|. Secondly, if co(v) 6= v then consider T# := (T ∗\{v co(v), co(v) x2})∪
{z x1, z x2} instead of T+.

2. Consider T+ := (T ∗ \ {v x1, v x2}) ∪ {z x1, y x2}, see Figures 6.3(c) and 6.3(d).
We have labT+(v) = LN and at most for y we could have labT ∗(y) = LN and
labT+(y) = IN. Hence, |leaves(T ′)| ≥ |leaves(T+)| ≥ |leaves(T ∗)|.

3. W.l.o.g., z ∈ N(x1) \ N . Consider T# := (T ∗ \ {v co(v)}) ∪ {z x1}. We have
labT#(v) = LN and therefore |leaves(T ′)| ≥ |leaves(T#)| ≥ |leaves(T ∗)|.

Lemma 6.2.8: Let T ⊆ E be a given tree such that v ∈ BNT and N(co(v)) = {x1, x2}.
Let T ′, T ∗ be optimal spanning trees under the restrictions T ′ ≻ T , T ∗ ≻ T , labT ′(v) =
LN, labT ∗(v) = labT ∗(co(v)) = IN and labT ∗(x1) = LN.

1. If co(v) = v, {x1, x2} ∈ E, N(x2) \ FL = {v, x1} and if there is a z ∈ N(x1) \ N
with labT ∗(z) = IN, then |leaves(T ′)| ≥ |leaves(T ∗)|.

2. If co(v) 6= v, N(x2) \ FL ⊆ {co(v), x1} and if there is a z ∈ N(x1) \ N with
labT ∗(z) = IN, then |leaves(T ′)| ≥ |leaves(T ∗)|.

3. If labT ∗(x2) = IN, dT ∗(x2) = 2, EV T
(v) is not a edge cut-set in G and if there is a

z ∈ N(x1) \ N with labT ∗(z) = IN, then |leaves(T ′)| ≥ |leaves(T ∗)|.

133

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

Proof. 1. Consider T+ := (T ∗ \ {v x1, v x2})∪{x1 x2, z x1}. Note that labT+(v) = LN
and x1 is the only vertex where we have labT ∗(x1) = LN and labT+(x1) = IN.
Observe that T+ is indeed a spanning tree. It is impossible that we have created
a cycle, because x1 is the only non-FL neighbor of x2 in T+. Thus, |leaves(T ′)| ≥
|leaves(T+)| ≥ |leaves(T ∗)|.

2. Consider T# := (T ∗ \ {v co(v)}) ∪ {z x1} instead of T+ from item 1.

3. First assume co(v) = v. Consider T+ := (T ∗ \ {v x1, v x2}) ∪ {z x1}, see Fig-
ures 6.3(e) and 6.3(f). T+ is a forest consisting of two trees T+

1 and T+
2 , where v

and x2 have become leaf nodes. Thus |leaves(T+)| − 2 = |leaves(T ∗)|. As EV T
(v)

is not a edge cut-set there is some e ∈ E \ (T+∪EV (v)) such that T++ := T+∪{e}
is connected. Furthermore, T+ has at most two leaf nodes more than T++ as
the addition of e might turn at most two leaf nodes into internal nodes. Thus as
labT++(v) = LN, |leaves(T ′)| ≥ |leaves(T++)| ≥ |leaves(T ∗)|.
If co(v) 6= v then consider T# := (T ∗ \ {v co(v), co(v) x2}) ∪ {z x1} instead of
T+. As EV T

(v) is not an edge cut-set, {v, co(v)} is not a bridge. Thus, there is
an e ∈ E \ (T# ∪ {{v, co(v)}}) such that |leaves(T# ∪ {e})| ≥ |leaves(T ∗)| and
T# ∪ {e} is a spanning tree where v is LN-node.

In [98] the bottleneck case was when branching on a vertex v ∈ BN with at most two
non-tree neighbors, that is dV T

(v) ≤ 2. The last two lemmas dealed with this case. If
the bottleneck case also matches the conditions of Lemma 6.2.7 or 6.2.8 we either can
skip some recursive call or decrease the yet to be defined measure by an extra amount.
Otherwise we show that the branching behavior is more beneficial. This is a substantial
ingredient for achieving a better run time upper bound.

6.3. The Algorithm.

We are now ready to present Algorithm 4. We mention that if the answer YES is
returned a k-leaf spanning tree can be constructed easily. This will be guaranteed
by Lemma 6.3.1. For the sake of a short presentation of the different branchings, we
introduce the following notation 〈b1; b2; . . . ; bn〉 called a branching. Here the entries bi
are separated by a semicolon and stand for the different parts of the branching. They
will express how the label of some vertices change. For example: 〈v ∈ LN; v, co(v) ∈ IN〉.
This stands for a binary branching where in the first part we set lab(v) = LN and in the
second lab(v) = lab(co(v)) = IN.

6.3.1. Correctness.

6.3.1.1. Branchings

When we set lab(v) = IN then we also set T ← T ∪ {{u, v} ∈ E | u 6∈ VT}. This is
justified by Lemma 6.2.3. If we set lab(v) = LN, then we delete {{u, v} ∈ E | {u, v} 6∈ T}
as these edges will never appear in any solution.

134

6.3. The Algorithm.

Algorithm 4: An algorithm solving k-Leaf Spanning Tree

Data: A graph G = (V,E), k and a tree T ⊆ E.
Result: YES if there is a spanning tree with at least k leaves and NO otherwise.

if κ(G) ≤ 0 or |BN|+ |LN| ≥ k then1

return YES2

else if G[V \ FL] is not connected or BN = ∅ then3

return NO4

else5

Apply the reduction rules exhaustively6

Choose a vertex v ∈ BN of maximum degree7

if dV T
(co(v)) ≥ 3 then8

〈v ∈ LN; v, co(v) ∈ IN〉 (B1)9

else if NV T
(co(v)) = {x1, x2} then10

Choose v according to the following priorities:11

case ({x1, x2} ⊆ FL) or (B2.a)12

(x1 free & dV T \N (x1) = 0) or (B2.b)13

(x1 free & NV T \N (x1) = {z} & (dV T \N (z) ≤ 1 or z ∈ FL)) (B2.c)14

〈v ∈ LN; v, co(v) ∈ IN〉 (B2)15

case x1 free, x2 ∈ FL or (B3.a)16

x1, x2 free, NFL
(x2) ⊆ {x1, co(v)} or (B3.b)17

x1, x2 free & dV T \N (x2) = 1 (B3.c)18

〈v ∈ LN; v, co(v) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉 (B3)19

and apply makeleaves(x1, x1) in the 2nd branch20

case x1, x2 free & ∃z ∈ ⋂i=1,2NFL\N (xi)21

〈v ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN; v, co(v), x1, co(x1) ∈ IN〉22

(B4)23

otherwise24

〈v ∈ LN; v, co(v) ∈ IN, x1, x2 ∈ LN; v, co(v), x2, co(x2) ∈ IN, x1 ∈25

LN; v, co(v), x1, co(x1) ∈ IN〉 (B5)
and apply makeleaves(x1, x2) in the 2nd branch26

Procedure makeleaves(x1, x2)

begin1

∀u ∈ [(N(x1) ∪N(x2)) \ {N}] ∩ free set u ∈ FL;2

∀u ∈ [(N(x1) ∪N(x2)) \ {N}] ∩ BN set u ∈ LN;3

end4

135

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

v

x1

x2

z

(a) Lemma 6.2.7.1

v

x1

x2

z

(b) Lemma 6.2.7.1

v

x1 x2

z y

(c) Lemma 6.2.7.2

v

x1 x2

z y

(d) Lemma 6.2.7.2

v

x1 x2

z y

(e) Lemma 6.2.8.3

v

x1 x2

z y

(f) Lemma 6.2.8.3

Figure 6.3.: Bold edges are from T . Dotted edges may be present or not.

In every branching of our algorithm, the possibility that lab(v) = LN is considered.
This recursive call must be possible as otherwise (3) would have been triggered before.
Now consider the case co(v) 6= v. If the recursive call for lab(v) = LN does not suc-
ceed, then we consider lab(v) = IN. Due to Lemma 6.2.5 we immediately can also set
lab(co(v)) = IN. This fact is used throughout the branchings (B1)-(B5). Nonetheless, in
the branchings (B1), (B2), (B3) and (B5) every possibility for v, x1 and x2 is considered
in one part of the branching, i.e., these are exhaustive branchings. But in (B3) and (B5)
the procedure makeleaves() is invoked and (B4) is not exhaustive. We will go through
each subcase and argue that this is correct in a way that at least one optimal solution
is preserved.

B3.a) In the second part of the branch, every vertex in (N(x1) ∪ N(x2)) \ {N} can
be assumed to be a leaf node in the solution. Otherwise, due to Lemmas 6.2.7.2
and 6.2.7.3, a solution, which is no worse than the neglected one, can be found in
the first part of the branch when we set lab(v) = LN. Therefore the application of
makeleaves(x1, x1) is correct.

B3.b) There is a z1 ∈ NFL\N (x1) (by (3)). If co(v) = v then we must have {x1, x2} ∈ E
due to (3). Thus, either Lemma 6.2.8.1 or 6.2.8.2 apply (depending whether

136

6.3. The Algorithm.

co(v) = v or not). As in the previous item it follows that the application of
makeleaves(x1, x1) is correct.

B3.c) Let z1 ∈ NFL\N (x1) and T̃ ≻ T be an optimal spanning tree solution extending T
such that labT̃ (v) = labT̃ (co(v)) = IN and labT̃ (x1) = LN. If labT̃ (x2) = LN then
Lemmas 6.2.7.2 and 6.2.7.3 apply. This means in the branch setting v, co(v) ∈
IN, x1 ∈ LN, we can assume that vertices in (N(x1 ∪ N(x2)) \ N are leaves, i.e,
we can adjoin them to FL or LN. If labT̃ (x2) = IN then we must have dT̃ (x2) = 2.
Thus, Lemma 6.2.8.3 applies. This can be seen as follows.
Let us recall the situation: labT̂ (v) = labT̂ (co(v)) = IN, labT̂ (x1) = LN and
labT̂ (x2) = IN. Thus, dT̂ (x2) = 2. EV T

(v) is not an edge cut set in G[V] nor in
G[V \ FL] due to (3).

Let us reconsider the proof of Lemma 6.2.8.3, especially how T++ is created in
case co(v) = v. We join two subtrees T+

1 and T+
2 by an edge e := {x, y} ∈

E \ {T+, EV (v)}. In our algorithm we additionally have a labeling. So, it might
be that lab(x) = FL. As our algorithm never turns a floating leaf into an internal
node, it never will add e. Thus, we would not find T++. But also observe that if
for every such edge joining T+

1 and T+
2 this holds then EV T

(v) is an edge cut set
in G[V \ FL].
If co(v) 6= v we also look for an edge e := {x, y} ∈ E \ {T+, EV (v)} to join two
trees. If this is not possible this also would imply that {v, co(v)} is an edge cut
set in G[V \ FL].
In both cases this cannot happen by (3). Thus, we can choose e in a way that
lab(x) 6= FL and lab(y) 6= FL. This shows that Lemma 6.2.8.3 indeed can be
applied. Thus, in the second part of the branch we can assume that every vertex in
N(x1)\N is a leaf. Any solution which violates this assumption can be substituted
by a no worse one where v ∈ LN which is assured by Lemma 6.2.8.3. This justifies
to call makeleaves(x1, x1).

(B4) does not consider the possibility that lab(v) = IN and lab(x1) = lab(x2) = LN.
Here we refer to Lemma 6.2.7.1, which states that a no worse solution can be found
when we set lab(v) = LN.

(B5) If co(v) = v then by (3) N(xi) \ {v} 6= ∅, if co(v) 6= v then analogously
⋃2

i=1N(xi) \ N 6= ∅. Then due to Lemmas 6.2.7.2 and 6.2.7.3 an application
of makeleaves(x1, x2) is valid. Note that Lemmas 6.2.7.2 and 6.2.7.3 can also be
read with exchanged roles between x1 and x2.

6.3.1.2. The Measure

To derive an upper-bound on the run time for our algorithm, we use the measure

κ(G) := k − ωf · |FL| − ωb · |BN| − |LN| with ωb = 0.5130 and ωf = 0.4117.

137

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

κ(G) is defined by a tree T and a labeling (which both are to be built up by our
algorithm). Thus, we use a subscript when we are referring to this, i.e., κ(G)T .
When our algorithm returns YES, then T might still not be a spanning tree. We first
have to attach all the floating leaves to T . It is possible that a branching node turns
into a internal node and thus κ(G) increases. The next important lemma shows if we
take all the floating leaves and branching nodes into account then κ(G) decreases.

Lemma 6.3.1: If for a given a labeling κ(G) ≤ 0, then a spanning tree T̂ with
|leaves(T̂)| ≥ k can be constructed in polynomial time.

Proof. Delete the vertices in FL and compute a depth-first spanning tree DT for the
remaining graph starting from T . Then simply attach the vertices from FL to one of its
neighbors in DT . This way we obtain a spanning tree T̂ ≻ T . Let LBN = BNT ∩ LNT̂

and IBN = BNT \ LBN. For c ∈ IBN let Tc be the subtree rooted at c in T̂ . Clearly,
|leaves(Tc)| ≥ 1 (✸). Observe that every vertex v ∈ FL ∪ LBN now has weight zero.
Thus, κ(G)T̂ was decreased by (1− ωf) or (1− ωb), resp., with respect to κ(G)T due to

making v a leaf node. Due to the next inequality we have |leaves(T̂)| ≥ k.

k − |LNT̂ | = κ(G)T̂ ≤ κ(G)T − |LBN| · (1− ωb) + |IBN| · ωb − |FL| · (1− ωf)

≤ κ(G)T + |IBN| · ωb −
∑

c∈IBN
|leaves(Tc)| · (1− ωf)

≤ κ(G)T + |IBN| · (ωb + ωf − 1) ≤ κ(G)T ≤ 0 (by (✸))

Next we consider the interaction of the reduction rules with the measure.

Lemma 6.3.2: An exhaustive application of the reduction rules never increases κ(G).

Proof. Rule (2) decreases κ(G) by 1 − ωb or ωf . The deletion of an edge from E \ T
can cause a change in κ(G) only in one way: a branching node can become a leaf node.
Then κ(G) is decreased by 1−ωb. If one of (1), (5), (6) and (7) is applied then exactly
such an edge is deleted. If (10) is applied then a vertex v ∈ BN becomes a leaf node.
Thus, one or more edges are deleted and therefore κ(G) is not increasing. In (3) there
is a vertex u ∈ BN which becomes internal. Thus, κ(G) increases by ωb. Moreover,
there is a second vertex q ∈ NV T

(u). If q is free then it becomes a branching node and
κ(G) decreases by ωb. Thus, κ(G) does not change if we sum up both amounts. If q is a
floating leaf then it becomes a leaf node. Thus κ(G) decreases by 1 − ωf − ωb > 0. As
in (4) an edge with with two free vertices is contracted such that the resulting vertex
is also free, κ(G) remains the same. In (8) a free vertex becomes a floating leaf and a
vertex h with degree one is deleted. As we have h ∈ FL, κ(G) does not change. Rule
(9.a) can be analyzed analogously. In (9.b) a free vertex turns in a floating leaf and
κ(G) decreases by ωf .

138

6.3. The Algorithm.

6.3.2. Run Time Analysis.

In our algorithm the changes of κ(G) are due to reduction rules or branching. In the
first case Lemma 6.3.2 ensures that κ(G) will never increase. In the second case we
have reductions of κ(G) of the following type. When a vertex v ∈ BN is made a leaf
node (i.e., we set lab(v) = LN) then κ(G) will drop by an amount of (1 − ωb). On the
other hand when v becomes an internal node (i.e., we set lab(v) = IN) then κ(G) will
increase by ωb. This is due to v not becoming a leaf. Moreover, the free neighbors of v
become branching nodes and the floating leaves become leaf nodes, due to Lemma 6.2.3.
Therefore κ(G) will be decreased by ωb and 1− ωf , respectively. We point out that the
weights ωb and ωf have to be chosen such that κ(G) will not increase in any part of a
branching of our algorithm.

Analyzing the Different Branching Cases
(B1) Let i := |NV T

(co(v))∩FL| and j := |NV T
(co(v))∩ free|. Note that i+ j ≥ 3. Then

the branching vector is: (1− ωb, i · (1− ωf) + j · ωb − ωb).

(B2) a) The branching vector is (1− ωb, 2 · (1− ωf)− ωb).

b) When we set lab(v) = lab(co(v)) = IN the vertex x1 will become a leaf node due
to (1). The branching vector is (1 − ωb, 1 + min{1 − ωf , ωb} − ωb). The vertex
x2 contributes an amount of min{1 − ωf , ωb} depending on whether x2 ∈ FL or
x2 ∈ BN.

c) Firstly, suppose that z ∈ FL.

1. d(z) = 1:

a) co(v) = v: If {x1, x2} 6∈ E then either (9.a) or (3) applies (depending
whether dVT

(x1) > 1). If {x1, x2} ∈ E then there is z1 ∈ NVT
(x1) \ {v}

as otherwise (8) applies. But then (10.a) applies.

b) co(v) 6= v: If dVT
(x1) = 0 then either (8) or (4) applies (depending

whether {x1, x2} ∈ E). If dVT
(x1) > 0 then (10.b) applies.

2. d(z) ≥ 2 : After setting lab(v) = lab(co(v)) = IN and applying (1) exhaus-
tively we have d(x1) = 2 and x1, x2 ∈ BN afterwards. Observe that adding an
edge to T does not create a bridge. The same holds for rule (1) (Lemma 6.2.2).
Thus, rules (3) or (4) are not triggered before the rules with lower priority.
As (2) and (5) do not change the local setting with respect to x1 and z (6.b)
will delete {x1, z}, leading to a (1− ωb, 1 + min{1− ωf , ωb} − ωb) branch.

The case that z ∈ free can be seen by similar arguments. Observe that dG(z) ≥ 2 by
(2). In the part where we set v, co(v) ∈ IN we obtain a tree T ′ := T ∪EV T

(co(v)).
Then rule (1) will delete edges incident to x1 such that dV (x1) = 2 and x1 ∈ BNT ′ .
1. If dT ′(z) ≥ 2 then (7) deletes {x1, z}.
2. If dT ′(z) = 1 then by dG(z) ≥ 2 and dV T \N (z) ≤ 1 we deduce that dG(z) = 2
before setting v, co(v) ∈ IN. Note that x2 6∈ N(x) as x2 ∈ VT ′. Hence, (6.a)

139

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

deletes {x1, z} afterwards.
Hence we have a (1−ωb, 1 + min{1−ωf , ωb}−ωb) branch. We point out that it is
guaranteed that no reduction rule triggered after (1) of lower priority than (6) and
(7) will change the local situation with respect to x1 and z (note Lemma 6.2.2).

Remark 6.3.3: From this point on, w.l.o.g., for a free vertex xi, i = 1, 2, we have:

1. dV T \N (xi) ≥ 2 or

2. NV T \N (xi) = {zi} such that dV T \N (zi) ≥ 2 and zi 6∈ FL.

If dV T \N (xi) = 0 then (B2.b) would apply. If dV T \N (xi) = 1 and 2. would fail, then case
(B2.c) applied.

Remark 6.3.4: Note that if 2. applies to xi, then when we set lab(v)) = lab(co(v)) = IN
we have that co(xi) = zi after the application of the reduction rules. In this sense (with
a slight abuse of notation) we set co(xi) = xi if case 1. applies and co(xi) = zi if case 2.
applies.

(B3) If xi is free let fli := |(N(co(xi)) \ N) ∩ FL| and fri := |(N(co(xi)) \ N) ∩ free|.

Due to Remark 6.3.3 we have fli + fri ≥ 2.

a) Note that we must have that S := NFL(x1) \ N 6= ∅ due to (3). If co(v) = v, then
also N(xi) \ {v} 6= ∅ (i = 1, 2) due to (3). Hence, in the second branch for every
q ∈ S we get ωf if lab(q) = free as we set lab(q) = FL in makeleaves(x1, x1). If
lab(q) = BN, we set lab(q) = LN in makeleaves(x1, x1) and receive 1 − ωb. We
have the following reduction in κ(G) for the different parts of the branching.

v ∈ LN: 1− ωb.

v ∈ IN, co(v) ∈ IN, x1 ∈ LN: 1 + min{ωf , 1− ωb}+ 1− ωf − ωb

v, co(v), x1, co(x1) ∈ IN: 1− ωf + fl1(1− ωf) + fr1 · ωb − ωb.

Remark 6.3.5: Note that from this point we have that x1 and x2 are free.

b) Note that we must have that S := NFL(x1) \N 6= ∅ due to (3). Analogously as in a)
we obtain min{ωf , 1 − ωb} in addition from N(x1) \ N in the second part of the
branch. Thus, we have the branching vector

(1− ωb, 1 + min{ωf , 1− ωb}+ ωb − ωb, ωb + fl1(1− ωf) + fr1 · ωb − ωb)(✧)

.

Remark 6.3.6: Observe that from now on there is always a vertex
zi ∈ NFL\N (xi) (i = 1, 2) due to the previous case.

c) This entails the same branch as in (✧).

140

6.4. An Exact Exponential Time Analysis

(B4) Due to Lemma 6.2.7.1 a

(1− ωb, 1 + fr2 · ωb + fl2 · (1− ωf)− ωb, ωb + fr1 · ωb + fl1 · (1− ωf)− ωb)-branch

can be derived.

(B5) In this case
⋂

i=1,2NFL\N (xi) = ∅ is true as otherwise (B4) applies. This means for
i = 1, 2 there are two different vertices zi ∈ NFL\N (xi) (Remark 6.3.6). Due to (B3.c)
we have dV T \N (xi) ≥ 2. Thus, in the second part we additional get (fr1 + fr2) · ωf . If
fri = 0 we get an amount of 1− ωb by Remark 6.3.6.

v ∈ LN: 1− ωb.

v, co(v) ∈ IN, x1, x2 ∈ LN: 2 + (fr1 + fr2) · ωf + (max{0, 1− fr1}+ max{0, 1− fr2}) ·
(1− ωb)− ωb

v, co(v), x2, co(x2) ∈ IN, x1 ∈ LN: 1 + fl2 · (1− ωf) + fr2 · ωb − ωb

v, co(v), x1, co(x1) ∈ IN: ωb + fl1 · (1− ωf) + fr1 · ωb − ωb.

We have calculated the branching number for every mentioned recursion such that 2 ≤
fri + fl1 ≤ 5, i = 1, 2, with respect to ωb and ωf . The branching number of any other
recursion is upper-bounded by one of these. We mention the bottleneck cases which
attain the given run time:
Cases (B3.b)/(B3.c) and Case (B5) such that dV T \N (xi) = 2 and a) fl1 = fl2 = 0,
fr1 = fr2 = 2, b) fr1 = 2, fl1 = 0, fr2 = fl2 = 1; Compared to [32] case (B5) has
been improved. We can find at least two vertices which are turned from free vertices to
floating leaves or from branching nodes to leaf nodes. In [32] only one vertex with this
property can be found in the worst case. Thus, due to the previous case analysis and
the fact that the reduction rules can be executed in polynomial time, we can state our
main result:

Theorem 6.3.7: k-Leaf Spanning Tree can be solved in time O∗(3.4581k).

6.4. An Exact Exponential Time Analysis

We stated the run time of Alg 4 in terms of k where k is the number of leaves in the
spanning tree.

Exponential Time Analysis. Fomin, Grandoni and Kratsch [73] gave an exact exponential-
time algorithm with run timeO∗(1.9407n). Based on and re-analyzing the parameterized
algorithm of Kneis, Langer and Rossmanith [98], this was improved to O∗(1.8966n),
see [51]. We can show further (slight) improvements by re-analyzing our parameterized
algorithm. Therefore, we define a new measure:

τ := n− ω̃f · |FL| − ω̃b · |BN| − |LN| − |IN| with ω̃b = 0.2726 and ω̃f = 0.5571.

141

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

The remaining task is quite easy. We only have to adjust the branching vectors we
derived with respect to κ(G) to τ .
(B1) : (1− ω̃b, i · (1− ω̃f) + j · ω̃b + 1− ω̃b).

(B2) a) : (1− ω̃b, 2 · (1− ω̃f) + 1− ω̃b).

(B2) b)/c) : (1− ω̃b, 1 + min{1− ω̃f , ω̃b}+ 1− ω̃b).

(B3) a) : (1− ω̃b, 1 + min{ω̃f , 1− ω̃b}+ 1− ω̃f + 1− ω̃b,
f l1 · (1− ω̃f) + fr1 · ω̃b + 1− ω̃b + 1− ω̃f + 1).

(B3) b)/c) : (1− ω̃b, 1 + ω̃f + ω̃b + 1− ω̃b,
co(x1) 6= x1 ω̃b + fl1 · (1− ω̃f) + fr1ω̃b + 1− ω̃b + 2).

(B3) b)/c) : (1− ω̃b, 1 + fr1 · ω̃f + max{0, 1− fr1} · (1− ω̃b) + ω̃b + 1− ω̃b,
co(x1) = x1 ω̃b + fl1 · (1− ω̃f) + fr1 · ω̃b + 1− ω̃b + 1).

(B4) : (1− ω̃b, 1 + fr2 · ω̃b + fl2 · (1− ω̃f) + 1− ω̃b + 1,

ω̃b + fl1 · (1− ω̃f) + fr1 · ω̃b + 1 + 1− ω̃b.

(B5) : (1− ω̃b, 2 + 1− ω̃b + (fr1 + fr2) · ω̃f+
(max{0, 1− fr1}+ max{0, 1− fr2}) · (1− ω̃b),
2 + 1− ω̃b + fl2 · (1− ω̃f) + fr2 · ω̃b,
ω̃b + 1− ω̃b + 1 + fl1 · (1− ω̃f) + fr1 · ω̃b)

Note that in cases (B3) b) and (B3) c) we were making a case distinction based upon
co(x1). If co(x1) 6= x1 then in the branch where we set v, co(v), x1, co(x1) ∈ IN we
can decrease τ by one more as co(x1) can be counted additionally. If co(x1) = x1 then
fr1 · ω̃f + max{0, 1 − fr1} · (1 − ω̃b) is the least amount by which τ is reduced due to
the application of makeleaves(x1, x1).
It can be checked that every branching number of the above recursions is upper bounded
by O∗(1.8961τ).

Theorem 6.4.1: Maximum Leaf Spanning Tree can be solved in O∗(1.8961n).

6.5. Conclusions.

Parameterized Measure & Conquer. Amortized search tree analysis, also known as
Measure & Conquer, is a big issue in exact, non-parameterized algorithmics. Although
search trees play an important role in exact parameterized algorithmics, this kind of
analysis has been rather seldom applicable. Good examples are the papers of Fernau
and Raible [54], which deals with Maximum Acyclic Subgraph, the analysis of 3-
Hitting-Set in Wahlström’s PhD Thesis [155] and the amortized analysis of cubic
vertex cover by Chen, Kanj and Xia [22]. This result contributes to this topic. Let us
emphasize the difference to the, say, non-parameterized Measure&Conquer and to this
case. Usually if a measure µ, which is used to derive an upper bound of the form c|V |,
is decreased to zero then we immediately have a solution. Almost all time this is quite

142

6.5. Conclusions.

clear because then the instance is polynomial-time solvable. Now if the parameterized
measure κ(G) is smaller than zero then in general a hard sub-instance remains. Also
κ(G) has been decreased due to producing floating leaves, which are not attached to the
tree yet. Thus, it is crucial to have Lemma 6.3.1, which ensures that a k-leaf spanning
tree can be indeed constructed. Beyond that, it is harder to show that no reduction rules
ever increase κ(G). As vertices which have been counted already partly (e.g., because
they belong to FL∪BN) can be deleted, κ(G) can even increase temporally. Concerning
the traditional approach this is a straight-forward task and is hardly ever mentioned.
It is a challenge to find further parameterized problems where this, say, parameterized
Measure & Conquer paradigm can be applied.

As there is a linear kernel [40] we can first kernelize the input graph in polynomial
time. The kernel size is no more than 3.75k. Thus, run our algorithm on the kernel
yields a run time upper-bound of O(3.4581k + poly(n)). Notice that the right choice for
ωf and ωb is quite crucial. For example, setting ωf = ωb = 0.5 only shows a run time
upper-bound of O∗(3.57k). To find these beneficial values, a local search procedure was
executed on a computer. It is worth pointing out that our algorithm is quite explicit.
This means that its statement to some extent lengthy but on the other hand easier to
implement. The algorithm does not use compact mathematical expressions which might
lead to ambiguities in the implementation process.

143

Chapter 6. Parameterized Measure&Conquer for k-Leaf Spanning Tree

144

Chapter 7.

Breaking the 2n-Barrier for
irredundance

7.1. Introduction

A set I ⊆ V is called an irredundant set of a graph G = (V,E) if each v ∈ I is either
isolated in G[I], the subgraph induced by I, or there is at least one vertex u ∈ V \ I
with N(u) ∩ I = {v}, called a private neighbor of v. An irredundant set I is maximal
if no proper superset of I is an irredundant set. The lower irredundance number ir(G)
equals the minimum cardinality taken over all maximal irredundant sets of G; similarly,
the upper irredundance number IR(G) equals the maximum cardinality taken over all
such sets.

In graph theory, the irredundance numbers have been extensively studied due to their
relation to numerous other graph parameters. An estimated 100 research papers [43]
have been published on the properties of irredundant sets in graphs, e.g., [2, 13, 27, 42,
41, 45, 90, 12, 108, 25]. For example, if D ⊆ V is an (inclusion-wise) minimal dominating
set, then for every v ∈ D there is some minimality witness, i.e., a vertex that is only
dominated by v. In fact, a set is minimal dominating if and only if it is irredundant and
dominating [26]. Since each independent set is also an irredundant set, the well-known
domination chain ir(G) ≤ γ(G) ≤ α(G) ≤ IR(G) is a simple observation. Here, as
usual, γ(G) denotes the size of a minimum dominating set, and α(G) denotes the size of
a maximum independent set in G. It is known that γ(G)/2 < ir(G) ≤ γ(G) ≤ 2·ir(G)−1,
see [89].

Determining the irredundance numbers is NP-hard even for bipartite graphs [90].
They can be computed in linear time on graphs of bounded treewidth [7], but the
fastest currently known exact algorithm for general graphs is the simple O∗(2n) brute-
force approach enumerating all subsets.

Since there has been no progress in the exact exponential time area, it is tempting
to study these problems from a parameterized complexity viewpoint. The hope is that
the additional notion of a parameter, e.g., the size k of the irredundant set, allows for a
more fine-grained analysis of the running time, maybe even a running time polynomial
in n and exponential only in k: It has been known for a while (see, e.g., [137]) that
it is possible to break the so-called 2n-barrier for (some) vertex-selection problems by
designing parameterized algorithms that run in time O∗(ck) for some c < 4 by a “win-

145

Chapter 7. Breaking the 2n-Barrier for irredundance

win” approach: either the parameter is “small” (k < n/2 + ǫ for an appropriate ǫ > 0)
and we use the parameterized algorithm, or we enumerate all

(

n
n/2−ǫ

)

< 2n subsets.

Unfortunately, the problem of finding an irredundant set of size k is W [1]-complete
when parameterized in k as shown by Downey et al. [36], which implies that algorithms
with a running time of O(f(k)poly(n)) are unlikely. However, they also proved that the
parameterized dual, where the parameter is k′ := n− k, admits a problem kernel of size
3k′2 and is therefore in FPT (but the running time has a superexponential dependency on
the parameter). What’s more, in order to break the 2n-barrier for the unparameterized
problems, we can also use the dual parameter. Therefore in this paper we study the
parameterized problem (following the notation of [36]) Co-Maximum Irredundant
Set (Co-MaxIR):

Co-Maximum Irredundant Set (Co-MaxIR)
Given: A graph G(V,E), and the parameter k.
We ask: Is there a set N ⊆ V such that |N | ≤ k and V \N is a irredundant set..

Our contribution. Our first contribution is a kernel with 3k vertices for Co-MaxIR.
In particular, this improves the kernel with 3k2 vertices and the corresponding running
time of O∗(8k2) of [36].

Secondly, we present an algorithm which trades the generality for improved running
time and solves Co-MaxIR in time O∗(3.069k). Although the algorithm surprisingly
simple, a major effort is required to prove the running time using a non-standard measure
and a Measure&Conquer-approach. While nowadays Measure&Conquer is a standard
technique for the analysis of moderately exponential time algorithms (see, e.g., [69]), it
is still seldom used in parameterized algorithmics.

Finally, as a direct consequence of the above algorithms, we obtain the first exact expo-
nential time algorithm breaking the 2n-barrier for computing the irredundance numbers
on arbitrary graphs with n vertices, a well-known open question (see, e.g., [71]).

7.2. Preliminaries and a Linear Kernel

The following alternative definition of irredundance is more descriptive and eases under-
standing the results in this paper: The vertices in an irredundant set can be thought of
as kings, where each such king ought to have his very own private garden that no other
king can see (where “seeing” means adjacency). Each king has exactly one cultivated
garden, and all the other private neighbors degenerate to wilderness. It is also possible
that the garden is already built into the king’s own castle. One can easily verify that
this alternate definition is equivalent to the formal one given above.

Definition 7.2.1. Let G = (V,E) be a graph and I ⊆ V an irredundant set. We call
the vertices in I kings, the set consisting of exactly one private neighbor for each king
we call gardens, and all remaining vertices wilderness. If a king has more than one
private neighbor, we fix one of these vertices as a unique garden and the other vertices

146

7.2. Preliminaries and a Linear Kernel

as wilderness. If a vertex v ∈ I has no neighbors in I, we (w.l.o.g.) say v has an internal
garden, otherwise the garden is external. We denote the corresponding sets as K,G,W.
Note that K and G are not necessarily disjoint, since there might be kings with internal
gardens. Kings with external gardens are denoted by Ke and kings with internal garden
by Ki. Similarly, the set of external gardens is Ge := G \ K. In what follows these sets
are also referred to as “labels”.

7.2.1. A Linear Kernel

By using a crown reduction, see [24, 44], we can show:

Theorem 7.2.1: Co-MaxIR admits a kernel with at most 3k vertices.

Proof. Let G = (V,E) be a graph and let I be an irredundant set of size at least n− k
in a graph G.

We use a crown reduction, see [24, 44]. A crown is a subgraph G′ = (C,H,E ′) =
G[C ∪H] of G such that C is an independent set in G, H contains all neighbors of C in
G (i.e., H separates C from V \ (H ∪ C)), and such that there is a matching M of size
|H| between C and H .

We first show that if G contains a crown (C,H,E ′), then G contains a maximum
irredundant set I such that I ⊇ C and H ⊆ V \ I. Assume that this is wrong. So, we
have a solution I and let I = Ki ∪ Ke be an arbitrary partition of I into internal and
external kings. Let Ge ∈ V \ I be an arbitrary set that can serve as a set of gardens
for Ke. Let W = V \ (I ∪ Ge). Let Ki

C = Ki ∩ C. We find partners of Ki
C in H by

the matching M , formally by considering Ki
C
M = Ki

C ∩ V (M), to which the matching
associates a set HM

i ⊆ H with |Ki
C
M | = |HM

i |.
Let IH = H ∩ I = H ∩ (Ki ∪ Ke). These are the kings in the so-called head H . Let

GH = H ∩ Ge. These are the external gardens in the head. The corresponding kings
(which are in N [H]) are denoted by KH .

Clearly, (IH ∪ GH) ∩ HM
i = ∅, as well as IH ∩ GH = ∅. K(H) := Ki

C∪̇IH∪̇KH

comprise the kings that interfere with H ∪ C. Interfere means that either a king is a
vertex in the head, has its garden (private neighbor) in the head or the internal kings
situated in the crown C.
Moreover, |K(H)| = |Ki

C∪̇IH∪̇KH | = |Ki
C
M ∪̇IH∪̇KH |+ |Ki

C \ Ki
C
M | ≤

|HM
i | + |IH∪̇KH | + |Ki

C \ Ki
C
M | ≤ |H| + |Ki

C \ Ki
C
M | ≤ |C|. Observe that every vertex

in v ∈ Ki
C
M has its distinct partner in u ∈ H such that also u ∈ W. The partner u can

be found via the matching M . Now note that (I \K(H))∪C gives another irredundant
set not smaller than I.

It remains to show that we can always find a large crown in G = (V,E) if |V | > 3k.
Let L be a maximal matching in G. We claim that if |L| > k, then we can safely

answer NO. Assume that I is a maximum irredundant set in G. Let I = Ki ∪ Ke be an
arbitrary partition of I into internal and external kings. Let Ge ∈ V \ I be an arbitrary
set that can serve as a set of gardens for Ke. LetW = V \ (I∪Ge). In general,W∩V (L)

147

Chapter 7. Breaking the 2n-Barrier for irredundance

causes no trouble for the following counting argument. More formally, let us assign a
weight w(x) = 1 to such wilderness vertices x ∈ W.

If x ∈ Ki, then let w(x) := 0. Observe that the vertex y matched to x by L lies in W.
So, consider x ∈ (Ke ∪ Ge). Let us assign a weight of 1

2
to each such vertex. Notice that

|V | − |I| =
∑

x∈V w(x). Moreover, |L| ≤ ∑x∈V (L) w(x) according to the fact for every

{u, v} ∈ L we have w(u) + w(v) ≥ 1. Hence, if |L| > k, then |V | − |I| > k, so that we
can answer NO as claimed.

Hence, L contains at most k edges if G contains an irredundant set of size at least
n− k. This reasoning also holds for maximal matchings that contain no L-augmenting
path of length three, a technical notion introduced in [24]. The demonstration given
in [24, Theorem 3] shows the claimed kernel bound.

The above theorem already shows that Co-MaxIR allows fixed-parameter tractable
algorithms with a running time exponential in k, namely O∗(8k), which is a new contri-
bution.

7.2.2. Basic Facts

Our algorithm for the irredundance number recursively branches on the vertices of the
graph and assigns each vertex one of the four possible labelsKi,Ke,Ge,W, until a labeling
that forms a solution has been found (if one exists). If I is an irredundant set of size
at least n − k, then is is easy to see that |G \ K| + |W| ≤ k and |Ke| = |K \ G| ≤ k,
which indicates a first termination condition. Furthermore, one can easily observe that
for any irredundant set I ⊆ V the following simple properties hold for all v ∈ V : (1) if
|N(v)∩K| ≥ 2 then v ∈ K∪W; (2) if |N(v)∩G| ≥ 2 then v ∈ G∪W; (3) if |N(v)∩K| ≥ 2
and |N(v) ∩ G| ≥ 2 then v ∈ W. Additionally, for all v ∈ Ki, we have N(v) ⊆ W.

This gives us a couple of conditions the labeling has to satisfy in order to yield an
irredundant set: each external garden is connected to exactly one external king and vice
versa. Once the algorithm constructs a labeling that cannot yield an irredundant set
anymore the current branch can be terminated.

Definition 7.2.2. Let G = (V,E) be a graph and let Ki,Ke,Ge,W ⊆ V be a labeling
of V . Let V = V \ (Ki ∪ Ke ∪ Ge ∪ W). We call (Ki,Ke,Ge,W) valid if the following
conditions hold, and invalid otherwise.

1. Ki,Ke,Ge,W are pairwise disjoint,

2. for each v ∈ Ki, N(v) ⊆ W,

3. for each v ∈ Ke, N(v) ∩ (Ge ∪ V) 6= ∅,

4. for each v ∈ Ke, |N(v) ∩ Ge| ≤ 1,

5. for each v ∈ Ge, N(v) ∩ (Ke ∪ V) 6= ∅, and

6. for each v ∈ Ge, |N(v) ∩ Ke| ≤ 1.

148

7.3. Measure & Conquer Tailored To The Problem

As a direct consequence, we can define a set of vertices that can no longer become
external gardens or kings without invalidating the current labeling:

NotG := { v ∈ V | the labeling (Ki,Ke,Ge ∪ {v},W) is invalid }
NotK := { v ∈ V | the labeling (Ki,Ke ∪ {v},Ge,W) is invalid }

It is easy to see that NotK and NotG can be computed in polynomial time, and since
vertices in NotG∩NotK can only be wilderness, we can also assume that NotG∩NotK = ∅
.

7.3. Measure & Conquer Tailored To The Problem

We use a more precise annotation of vertices: In the course of the algorithm, they will
be either unlabeled U , kings with internal gardens Ki, kings with external gardens Ke,
(external) gardens Ge, wilderness W, not being kings NotK,, or not being gardens NotG.
We furthermore partition the set of vertices V into active vertices

Va = U ∪ NotG ∪NotK ∪ { v ∈ Ke | N(v) ∩ Ge = ∅ } ∪ { v ∈ Ge | N(v) ∩ Ke = ∅ }

that have to be reconsidered, and inactive vertices Vi = V \ Va. This means that the
inactive vertices are either from W, Ki or paired-up external kings and gardens. Define
Kea := Ke ∩ Va and Kei := Ke ∩ Vi (and analogously Gea := Ge ∩ Va and Gei := Ke ∩ Vi).

We use the next non-standard measure

ϕ(k,Ki,Ke,Ge,NotG,NotK,W, Va) = k−|W|−|Gei|−ωℓ(|Kea|+|Gea|)−ωn(|NotG|+|NotK|),

where NotG and NotK are taken into account. We will later determine the weights ωℓ

and ωn to optimize the analysis, where 0 ≤ ωn ≤ 0.5 ≤ ωℓ ≤ 1 and ωn + ωℓ ≤ 1. If the
measure changes we will describe in words how the measure changes in each case.

Although we are looking for a maximal irredundant set, we can likewise look for a
complete labeling L = (Ki

L,GeLi ,Ke
L
i ,WL) that partitions the whole vertex set V =

Ki
L ⊎GeLi ⊎Ke

L
i ⊎WL into internal kings, external kings and gardens, as well as wilder-

ness. Having determined L, IL = Ke
L
i ⊎Ki

L should be an irredundant set, and conversely,
to a given irredundant set I, one can compute in polynomial time a corresponding com-
plete labeling.

7.3.1. Reduction Rules

Let us first present the reduction rules that we employ in Table 7.1. The lower the
number the higher the priority of the rule, i.e. lower numbered rules are applied before
higher numbered ones.

Lemma 7.3.1: The rules listed in Table 7.1 are sound and do not increase the measure.

149

Chapter 7. Breaking the 2n-Barrier for irredundance

1. If V contains a vertex x ∈ Ki and a neighbor u ∈ (Ge ∪Ke ∪Ki) ∩N(x), then
return NO.

2. a) If V contains a vertex x with two neighbors u, v where x ∈ Ke and u, v ∈ Ge,
then return NO.
b) If V contains a vertex x with two neighbors u, v where x ∈ Ge and u, v ∈ Ke,
then return NO.

3. If V contains an isolated vertex v ∈ (Ge ∪ Ke), then return NO.

4. If V contains an isolated vertex v ∈ (NotK ∪ NotG), then put v into W,
decreasing the measure by 1− ωn.

5. If V contains an isolated vertex u ∈ U , then put u into Ki and set Va = Va\{u}.

6. Delete an edge between two external kings or two external gardens.

7. a.) Delete an edge between a Ke- and a NotG-vertex.
b.) Delete an edge between a Ge- and a NotK-vertex.

8. Remove any edges incident to vertices in W.

9. a) Delete an edge between two NotK-vertices.
b) Delete an edge between two NotG-vertices.

10. If u ∈ U such that N(u) = {v} for some v ∈ U , then put u into Ki and set
Va = Va \ {u}.

11. If u ∈ Ki, then put its neighbors N(u) into W and set Va = Va \ N(u); this
decreases the measure by |N(u)|.

12. a) If V contains two neighbors u, v such that u ∈ Gea and v ∈ U ∪NotG with
either d(u) = 1 or d(v) = 1, then put v into Ke, and make u, v inactive;
b) If V contains two neighbors u, v such that u ∈ Kea and v ∈ U ∪NotK with
either d(u) = 1 or d(v) = 1, then put v into Ge, and make u, v inactive;
this decreases the measure by 1− ωℓ if v ∈ U and otherwise by 1− ωℓ − ωn.

13. a) If V contains a vertex v with two neighboring gardens such that v ∈ U (i.e.,
|N(v) ∩ Ge| ≥ 2), then set v ∈ NotK; if v ∈ NotG, then set v ∈ W.
b) If V contains a vertex v with two neighboring kings such that v ∈ U (i.e.,
|N(v) ∩ Ke| ≥ 2), then set v ∈ NotG; if v ∈ NotK, then set v ∈ W.
This decreases the measure by ωn or (1− ωn), respectively.

14. Assume that V contains two inactive neighbors u, v where u ∈ Ke and v ∈ Ge,
then put all x ∈ (N(u) ∩ U) into NotG, all x ∈ (N(u) ∩ NotK) into W, all
x ∈ (N(v) ∩ U) into NotK and all x ∈ (N(v) ∩NotG) into W.
The measure decrease for each vertex x is ωn if x ∈ ((N(u) ∪N(v)) ∩ U) and
1− ωn if x ∈ (N(u) ∩ NotK) ∪ (N(v) ∩NotK).

Table 7.1.: Extensive list of reduction rules.
150

7.3. Measure & Conquer Tailored To The Problem

Proof. (1)/(2) Otherwise the labeling is not valid, i.e, it violates items 2, 4 or 6 of
Definition 7.2.2.

(3) An isolated vertex v ∈ (Ge∪Ke) cannot be paired with a second vertex, i.e., items 3
and 5 of Definition 7.2.2 are violated.

(4) As an isolated vertex v ∈ (NotK∪NotG) cannot be paired it must be wilderness as
otherwise items 3 and 5 of Definition 7.2.2 are violated.

(5) An isolated vertex u ∈ U can be made an internal king such that any labeling
remains valid (Def. 7.2.2).

(6)-(9) Consider a complete labeling L for the graph G′ obtained after the reduction
rule has been applied. Adding the edge which was deleted by one of the rules keeps
L valid according to Def. 7.2.2.

(10) Consider a complete valid labeling L extending the current one (i.e. V̄ = ∅) such
that |W|+ |Ge| is minimum. Note that if v ∈ W we have that u in Ki as otherwise
we can decrease the number of wilderness and garden vertices. If v ∈ Ki then we
have u ∈ W. Then by setting v ∈ W and u ∈ Ki we obtain a solution of equal
size. Thus, v ∈ Ge∪Ke. If v ∈ Ke, w.l.o.g, we can assume that u ∈ Ge is the paired
garden vertex. Then making v a wilderness vertex and u an internal king yields
an equivalent labeling. If v ∈ Ge the argumentation is analogously.

(11) To keep the labeling valid according item 2 of Def. 7.2.2 this has to be done.

(12) a) If d(u) = 1 then the only possibility not to violate item 5 of Def. 7.2.2 in a
complete labeling is to put v ∈ Ki. If d(v) = 1 then, w.l.o.g., we can put v in Ke

and pair it with u as the labeling remains valid. Case b) follows analogously.

(13) a) If u ∈ U then putting u into K violates item 4 of Def. 7.2.2. If u ∈ NotG then as
u also cannot be a king we can label u as wilderness. Case b) follows analogously.

(14) By items 4 and 6 of Def. 7.2.2 no vertex in (N(v)∩U) can be a king and no vertex
in (N(u) ∩ U) a garden. The same items justify to put all x ∈ (N(u) ∩ NotK) ∪
(N(v) ∩ NotG) into W.

As 0 ≤ ωn ≤ 0.5 ≤ ωℓ ≤ 1 and ωn + ωℓ ≤ 1 no reduction rule increases the measure
ρ.

Lemma 7.3.2: In a reduced instance, a vertex v ∈ NotK ∪ NotG may have at most
one neighbor u ∈ Ge ∪ Ke; more precisely, if such u exists, then u ∈ Ge if and only if
v ∈ NotG and d(v) ≥ 2 (Thus, v must have a neighbor z that is not in Ge ∪ Ke).

151

Chapter 7. Breaking the 2n-Barrier for irredundance

Proof. Consider, w.l.o.g., v ∈ NotG.
Assume that u ∈ N(v)∩ (Ge ∪Ke) exists. Note that the alternative u ∈ Ke is resolved

by Reduction Rule 7. Hence, u ∈ Ge. If v had no other neighbor but u, then Reduction
Rule 12 would have triggered. So, d(v) ≥ 2. Let z ∈ N(v) \ {u}. If the claim were false,
then z ∈ Ge ∪Ke. The case z ∈ Ke is ruled out by Reduction Rule 7. The case z ∈ Ge is
dealt with by Reduction Rule 13. Hence, z /∈ Ge ∪ Ke.

7.3.2. The Algorithm

Now consider Algorithm 11.

7.3.2.1. Correctness of the Algorithm

Lemma 7.3.3: In each step of a recursive call of CO-IR in Algorithm 11 there are no
two neighbors u, v such that u ∈ Kea and v ∈ Gea in the given labeled graph.

Proof. Clearly the statement holds for the initial input graph. The only reduction rule
which could create such a situation is Rule 12. But here the two vertices u, v will be
immediately inactivated. In each line where recursive calls are made in Algorithm 11 it
is easily checked if such a situation as described could occur. If so, the affected pair u, v
is removed from Va in every case.

Lemma 7.3.4: Whenever our algorithm encounters a reduced instance, a vertex v ∈ Ge
obeys N(v) ⊆ U ∪NotG. Symmetrically, if v ∈ Ke, then N(v) ⊆ U ∪ NotK.

Proof. Consider z ∈ N(v), where v ∈ Ge. N(v) 6⊆ U ∪ NotG is ruled out by reduction
rules and the previous lemma: (a) z ∈ Ge violates Rule 6.

(b) z ∈ Ke violates the invariant shown in Lemma 7.3.3. (c) z ∈ NotK violates Rule 7.
(d) z ∈ W violates Rule 8. The case where v ∈ Ke follows analogously.

Note that the irredundance numbers can be computed in polynomial time on graphs
of bounded treewidth, see [149, Page 75f.], and the corresponding dynamic programming
easily extends also to labeled graphs, since the labels basically correspond to the states
of the dynamic programming process.

Comments on the Algorithm and the Labeling Since (NotK ∪ NotG ∪ U) ⊆ Va, we
have obtained a complete labeling once we leave our algorithm in Line 4, returning YES.
During the course of the algorithm, we deal with (incomplete) labelings L = (Ki, Ge, Ke,
NotG, NotK, W, Va), a tuple of subsets of V that also serve as input to our algorithm,
preserving the invariant that V = Ki ⊎ Ge ⊎ Ke ⊎ NotG ⊎ NotK ⊎ W ⊎ U . A complete
labeling corresponds to a labeling with NotG = NotK = U = Va = ∅. We say that
a labeling L′ = (Ki

′, Ge′, Ke
′, NotG ′, NotK′, W ′, V ′

a) extends the labeling L = (Ki,
Ge, Ke, NotG, NotK, W, Va) if Ki ⊆ Ki

′, Ge ⊆ Ge′, Ke ⊆ Ke
′, NotG ⊆ W ′ ∪ Ke

′,
NotK ⊆ W ′ ∪ Ge′, W ⊆ W ′, V ′

a ⊆ Va. We also write L ≺G L′ if L′ extends L. We
can also speak of a complete labeling extending a labeling in the sense described above.
Notice that reduction rules and recursive calls only extend labelings (further).

152

7.3. Measure & Conquer Tailored To The Problem

Algorithm 11 An algorithm for Co-MaxIR.

Algorithm CO-IR(G, k,Ki,Ke,Ge,NotG,NotK,W, Va):
Input: Graph G = (V,E), k ∈ N, labels Ki, Ke, Ge, NotG, NotK, W, Va ⊆ V
Output: YES if a co-irredundant set CI ⊆ V such that |CI| ≤ k exists.

01: Consecutively apply the procedure CO-IR to components containing Va-vertices.
02: Apply all the reduction rules exhaustively.
03: if ϕ(k,Ki,Ke,Ge,W,NotG,NotK, Va) < 0 then return NO.
04: if Va = ∅ then return YES.
05: if maxdegree(G[Va]) ≤ 2 then solve the remaining instance by
dynamic programming.
06: if NotG 6= ∅ then
07: choose v ∈ NotG; if ∃z ∈ N(v) ∩ Ge then I := {v, z} else I := ∅.
08: return CO-IR(G, k,Ki,Ke ∪ {v},Ge,NotG \ {v},NotK,W, Va \ I) or

CO-IR(G, k,Ki,Ke,Ge,NotG \ {v},NotK,W ∪ {v}, Va \ {v});
09: if NotK 6= ∅ then
10: choose v ∈ NotK; if ∃z ∈ N(v) ∩ Ke then I := {v, z} else I := ∅.
11: return CO-IR(G, k,Ki,Ke,Ge ∪ {v},NotG,NotK \ {v},W, Va \ I) or

CO-IR(G, k,Ki,Ke,Ge,NotG,NotK \ {v},W ∪ {v}, Va \ {v});
12: if there is an unlabeled v ∈ V with exactly two neighbors u, w in G[Va],

where u ∈ Gea and w ∈ Kea then
13: return CO-IR(G, k,Ki,Ke ∪ {v},Ge,NotG,NotK,W, Va \ {v, u}) or

CO-IR(G, k,Ki,Ke,Ge ∪ {v},NotG,NotK,W, Va \ {v, w});
14: if Kea ∪ Gea 6= ∅ then
15: Choose some v ∈ Kea ∪ Gea of maximum degree.
16: if v ∈ Kea then
17: return

∃u ∈ N(v) : CO-IR(G, k,Ki,Ke,Ge ∪ {u},NotG,NotK,W, Va \ {u, v})
18: else then
19: return

∃u ∈ N(v) : CO-IR(G, k,Ki,Ke ∪ {u},Ge,NotG,NotK,W, Va \ {u, v})
20: else Choose v ∈ U of maximum degree, preferring v with some u ∈ N(v) of degree
two.
21: return CO-IR(G, k,Ki,Ke,Ge,NotG,NotK,W ∪ {v}, Va \ {v})

or CO-IR(G, k,Ki ∪ {v},Ke,Ge,NotG,NotK,W, Va \ {v})
or ∃u ∈ N(v) : CO-IR(G, k,Ki,Ke ∪ {v},Ge ∪ {u},NotG,NotK,W, Va \ {u, v})
or ∃u ∈ N(v) : CO-IR(G, k,Ki,Ke ∪ {u},Ge ∪ {v},NotG,NotK,W, Va \ {u, v})

153

Chapter 7. Breaking the 2n-Barrier for irredundance

Notice that ≺G is a partial order on the set of labelings of a graph G = (V,E).
The maximal elements in this order are precisely the complete labelings. Hence, the
complete labeling LI corresponding to a maximal irredundant set I is maximal, with
ϕ(k, LI) ≥ 0 iff |I| ≥ |V | − k. Conversely, given a graph G = (V,E), the labeling
LG = (∅, ∅, ∅, ∅, ∅, ∅, V) is the smallest element of ≺G; this is also the initial labeling that
we start off with when first calling Algorithm 11. If L, L′ are labelings corresponding
to the parameter lists of nodes n, n′ in the search tree such that n is ancestor of n′ in
the search tree, then L ≺G L′. The basic strategy of Algorithm 11 is to exhaustively
consider all complete labelings (only neglecting cases that cannot be optimal). This way,
also all important maximal irredundant sets are considered.

Correctness

Lemma 7.3.5: If ϕ(k,Ki,Ke,Ge,W,NotG,NotK, Va) < 0, then for weights 0 ≤ ωn ≤
0.5 ≤ ωℓ ≤ 1 with ωn + ωℓ ≤ 1 and for any complete labeling L = (Ki

L,GeLi ,Ke
L
i ,WL)

extending the labeling Λ := (Ki, Ke, Ge, NotG, NotK, W, Va) we have
ϕ(k,Ki

L,GeLi ,Ke
L
i , ∅, ∅,WL, ∅) < 0.

Proof.

1 Kea → Ke
L
i −ωl

2 Gea → GeLi 1− ωl

3 NotG → Ke
L
i −ωn

4 NotG → WL 1− ωn

5 NotK → GeLi 1− ωn

6 NotK →WL 1− ωn

7 U → WL 1

8 U → Ki
L 0

9 U → Ke
L
i 0

10 U → GeLi 1

We give a table for every possible label transition from
Λ to its extension L. Note that Algorithm CO-IR only
computes such solutions. All entries except two cause a
non-increase of ϕ. The entries number 1 and 3 expose
an increase in ϕ. By the problem definition, there exists
a bijection f : Ke

L → GeL. So for a vertex v in Ke
L
i ∩Kea

we must have f(v) ∈ U∪NotK by Lemma 7.3.4. Taking
now into account the label transition of f(v) which must
be of the form U → GeLi or NotK → GeLi , we see that
a total decrease with respect to v and f(v) of at least
1 − ωn − ωl ≥ 0 can be claimed. If v ∈ NotG ∩ Ke

L
i

then by arguing analogously we get a total decrease of
at least 1 − ωl − ωn ≥ 0 as by the reduction rules 7, 8
and 9 we have f(v) ⊆ U ∪NotK ∪ Ge.

Lemma 7.3.6: Assume that there is an unlabeled vertex v, which has exactly two
neighbors vG ∈ Ge and vK ∈ Ke in G[Va]. In the corresponding branching process, we
may then omit the case v ∈ W.

Proof. We are looking for an inclusion-maximal irredundant set. Hence, only the posi-
tions of the kings matter, not the positions of the gardens. So, in particular we cannot
insist on the garden of vK being placed on some neighbor u of vK different from v. In this
sense, any solution that uses v as wilderness can be transformed into a no worse solution
with v ∈ Ge: Simply pair up v and vK , turning the hitherto garden of vK into wilderness.
So, no optimum solution is lost by omitting the case v ∈ W in the branching.

154

7.3. Measure & Conquer Tailored To The Problem

Lemma 7.3.7: Algorithm 11 correctly solves Co-MaxIR.

Proof. The algorithm correctly answers NO in line 3 by Lemma 7.3.5. If Va = ∅ in line
4 we can deduce k ≥ |W| + |Gei| from the definition of the measure ρ. Thus, we can
correctly answer YES. The recursive calls in lines 8, 11, 17, 19 and 21 are all exhaustive
branchings and therefore no optimum solution is neglected. In the call in line 13 we do
not consider the possibility of setting v ∈ W which is justified by Lemma 7.3.6.

7.3.2.2. Run Time Analysis

Theorem 7.3.8: Co-MaxIR can be solved in time O∗(3.069k).

Proof. The correctness of the algorithm has been reasoned above already. In particular,
notice Lemma 7.3.5 concerning the correctness of the abort.

For the running time, we now provide a partial analysis leading to recurrences that
estimate an upper bound on the search tree size T (ϕ, h), where ϕ denotes the measure
and h the height of the search tree. The claimed running time would then formally
follow by an induction over h.

1. Assume that the algorithm branches on some vertex v ∈ NotG, the case v ∈ NotK
being completely analogous. By reduction rules, N(v) ⊆ U ∪ Gea ∪ NotK.

a) If N(v) ⊆ U ∪NotK, we derive the following branch in the worst case:
T (ϕ, h) ≤ T (ϕ− (1−ωn), h− 1) + T (ϕ− (ωℓ− ωn), h− 1). This follows from
a simple branching analysis considering the cases that v becomes wilderness
or that v becomes a king. See also Table 7.2 where the entries (1a)#1 and
(1a)#2 correspond to the reduction of the first and second branch.

b) Assume now that N(v) ∩ (Gea) 6= ∅ and let u ∈ N(v) ∩ Gea. Lemma 7.3.2
ensures that there can be at most one element in N(v)∩Ge and that d(v) ≥ 2.
Due to Reduction Rule 12, d(u) ≥ 2.

i. First assume that d(u) = 2, i.e., N(u) = {v, x}. Then, we arrive at the
following recursion: T (ϕ, h) ≤ T (ϕ− (2− ωℓ − ωn), h− 1) + T (ϕ− (1−
ωℓ + ωn), h − 1), see entries (1bi.#1) and (1bi.#2) of Table 7.2. This
is seen as follows. By setting v ∈ W, due to Reduction Rule 8, u will
be of degree one and hence will be paired with its neighbor x due to
Reduction Rule 12. If x ∈ U , the measure decreases by 2 − ωl − ωn. If
x ∈ NotG, it decreases by 2− ωl − 2ωn. But then by Lemma 7.3.2 there
is y ∈ N(x) \ {u} such that y ∈ NotK ∪ U . Then by Reduction Rule 12
y is moved to W ∪ NotG giving some additional amount of at least ωn.
Note that y 6= v as v ∈ NotG.
If we set v ∈ Ke, then u and v will be paired by Reduction Rule 14 and
decrease ϕ by an amount 1−ωℓ−ωn. Thereafter, the other neighbor x of
u will become a member of NotK or ofW due to rule 14., depending on its
previous status. Moreover, there must be a further neighbor z ∈ U∪NotK

155

C
h
ap

te
r
7.

B
re
ak

in
g
th
e

2n
-B

ar
ri
er

fo
r
ir
r
e
d
u
n
d
a
n
c
e

Weight 1 0 0 1 ωℓ ωℓ ωn ωn 0 −−−
Case W Ki (Kei) Gei Kea Gea NotG NotK (U) measure diff. ≥
(1a)#1 +v −v 1− ωn

(1a)#2 +v −v ωℓ − ωn

(1bi)#1 +v +x +u −u −v −x 2− ωn − ωℓ

(1bi)#2 +{v, x} +u −u −v,+z +x −x,−z 1 + ωn − ωℓ

(1bii)#1 +v −v 1− ωn

(1bii)#2 +v +u −u −v,+z +{x1, x2} −{x1, x2, z} 1 + 2ωn − ωℓ

(2a)#1 +v +vG −vG +N(vG) \ Ge −v 1− ωℓ + 2 · ωn

(2a)#2 +vK +v −vK +N(vK) \ Ke −v 1− ωℓ + 2 · ωn

(2b)#1 +{v, vK} +{vG, x} −vK −vG +N(vG) \ {v} −x (x ∈ N(vK) \ {v}) −v 2− 2ωℓ + ωn

(2b)#2 +{vK , x} +{v, vG} −vK −vG −x ∈ N(vG) \ {v} +N(vK) \ {v} −v 2− 2ωℓ + ωn

(2c)#1 +{v, vK} +{vG, x} −vK −vG +N(vG) \ {v} −x (x ∈ N(vK) \ {v}) −v 2− 2ωℓ + ωn

(2c)#2 +vK +v −vK +N(vK) \ Ke −v 1− ωℓ + ωn

(3)#j +u +v −v +N(u) \ {v} +N(v) \ {u} −u 1− ωℓ + d(v) · ωn

(4a)#1 +(N(u) ∪ {v}) +u −(N(u) ∪ {v}) 2
(4a)#2 +N(v) +v −N [v] d(v)
(4a)#j +v +u +N(v) \ {u} +N(u) \ {v} −N [v] ∪N(u) 1 + d(v) · ωn

(4a)#j +u +v +N(u) \ {v} +N(v) \ {u} −N [v] ∪N(u) 1 + d(v) · ωn

(4b)#1 +(N(u) ∪ {v}) +u −(N(u) ∪ {v}) 1
(4b)#2 +N(v) +v −N [v] d(v)
(4b)#j +v +u +N(v) \ {u} +N(u) \ {v} −N [v] ∪N(u) 1 + (d(v) + 1) · ωn

(4b)#j +u +v +N(u) \ {v} +N(v) \ {u} −N [v] ∪N(u) 1 + (d(v) + 1) · ωn

Table 7.2.: Overview over different branchings; symmetric branches due to exchanging roles of kings and gardens are not
displayed. Neither are possibly better branches listed.

15
6

7.3. Measure & Conquer Tailored To The Problem

of v (by Lemma 7.3.2 and the fact that u is the unique Gea neighbor) that
will become member of NotG orW due to rule 14. This yields the claimed
measure change if z 6= x as we get an additional decrease of ϕ of at least
2ωn. If z = x, then z is in U and the vertex will be put into W resulting
in a decrease of ϕ of one. Thus, the recursively considered instance has
complexity T (ϕ− (2− ωℓ − ωn), h− 1) ≤ T (ϕ− (1− ωℓ + ωn), h− 1).

ii. Secondly, assume that d(u) ≥ 3 (keeping the previous scenario otherwise).
This yields the following worst-case branch: T (ϕ, h) ≤ T (ϕ−(1−ωn), h−
1) + T (ϕ− (1− ωℓ + 2ωn), h− 1), see entries (1bii.#1) and (1bii.#2) of
Table 7.2, where x1, x2 ∈ N(u) and z ∈ N(u).

This is seen by a similar (even simpler) analysis as all vertices in N(v)∪
N(u) get relabeled by rule 14. Note that all z ∈ N(v) ∩ N(u) ⊆ U get
labeled W in the second branch.

We will henceforth not present the recurrences for the search tree size in this
explicit form, but rather point to Table 7.2 that contains the same information.
There, cases are differentiated by writing Bj for the jth branch.

2. Assume that all active vertices are in U ∪ Ge ∪ Ke, with Gea ∪ Kea 6= ∅. Then, the
algorithm would pair up some v ∈ Gea ∪Kea. First note that by Lemma 7.3.4 and
the fact that NotG ∪ NotK = ∅ we have N(v) ⊆ U .
Assume that there is an unlabeled vertex v that has exactly two neighbors vG ∈ Ge
and vK ∈ Ke. Observe that we may skip the possibility that v ∈ W due to
Lemma 7.3.6. Details of the analysis are contained in Table 7.2.

(a) Assume d(vG) ≥ 3 and d(vK) ≥ 3. Then, the worst-case recursion given
in Table 7.2 arises. The two branches v ∈ Ke and v ∈ Ge are completely
symmetric: e.g., if v ∈ Ke, then it will be paired with vG (by inactivating
both of them), and Reduction Rule 14 will put all (at least two) neighbors
of N(vG) \ Ge into NotG, and symmetrically all neighbors of N(vK) \ Ke into
NotK in the other branch.

(b) Assume that vG and vK satisfy d(vG) = 2 and d(vK) = 2. Then, the recursion
given in Table 7.2 arises. Assume first that vG and vK do not share another
neighbor. Then, when v is put into Ke, then v is paired up with vG. Since
the degree of vK will then drop to one by Reduction Rule 6, vK must have
its garden on the only remaining neighbor s. This will be achieved with
Reduction Rule 12. Observe that at this point we must have s ∈ U . Therefore,
all in all the measure decreases by 2 · (1−ωℓ); moreover, we turn at least one
neighbor of vG into a NotK-vertex giving a reduction of ωn.

Secondly, it could be that vG and vK share one more neighbor, i.e., N(vG) =
N(vK) = {q, v}. If q has any further neighbor z, then z ∈ U (confer Reduction
Rule 13). Otherwise these vertices form a small component that is handled
in line 5, since it has maximum degree two, which is a contradiction to the

157

Chapter 7. Breaking the 2n-Barrier for irredundance

current case. Thus, as q is paired with vK the vertex z is turned into a NotK-
vertex.
The branch where we set v ∈ Ge is symmetric.

(c) We now assume that N(v) = {vK , vG}, d(vG) ≥ 3, and d(vK) = 2. Then, the
worst-case recursion given in Table 7.2 arises. This can be seen by combining
the arguments given for the preceding two cases.

3. Assume that all active vertices are in U ∪ Ge ∪ Ke, with Gea ∪ Kea 6= ∅. Note
that N(v) ⊆ U Then, the algorithm tries to pair up some v ∈ Gea ∪ Kea of
maximum degree. There are d(v) branches for the cases labeled (3)#j. Since the
two possibilities arising from v ∈ Gea ∪Kea are completely symmetric, we focus on
v ∈ Gea. Exactly one neighbor u of v ∈ Gea will be paired with v in each step, i.e.,
we set u ∈ Ke. Pairing the king on u with the garden from v will inactivate both u
and v. Then, reduction rules will label all other neighbors of v with NotK (they can
no longer be kings), and symmetrically all other neighbors of u with NotG. Note
that N(u)\(Ke∪{v}) 6= ∅, since otherwise a previous branching case or Reduction
Rules 13 or 12 would have triggered. Thus, there must be some q ∈ N(u) ∩ U .
From q, we obtain at least a measure decrease of ωn, even if q ∈ N(v). This results
in a set of recursions depending on the degree of v as given in Table 7.2.

4. Finally, assume Va = U . Since an instance consisting of paths and cycles can be
easily seen to be optimally solvable in polynomial time, we can assume that we
can always find a vertex v of degree at least three to branch at. Details of the
analysis are contained in in Table 7.2. There are d(v) branches for each of the
cases (4x)#j.

There are two cases to be considered: (a) either v has a neighbor u of degree two
or (b) this is not the case.

The analysis of (a) yields the recursion given in Table 7.2. The first term can be
explained by considering the case v ∈ W. In that case, Reduction Rules 8 and 10
trigger with respect to u (as d(u) = 2) and yield the required measure change.
Thus, u is put into Ki and N(u) in W. Notice that all vertices have minimum
degree of two at this stage due to Reduction Rule 10 and the fact that Va = U .
In the case where v ∈ Ki, the neighbors of v are added to W, yielding the second
term.

The last two terms are explained as follows: We simply consider all possibilities
of putting v ∈ Ke ∪ Ge and looking for its partner in the neighborhood of v. Once
paired up with some u ∈ N(v), the other neighbors of {u, v} will be placed into
NotK or NotG, respectively.

In case (b), we obtain the recursion given in Table 7.2. This is seen by a slightly
simplified but similar argument to what is written above. Notice that we can
assume that d(v) ≥ 4, since the case when d(v) = 3 (excluding degree-1 and
degree-2 vertices in N(v) that are handled either by Reduction Rule 10 or by the

158

7.3. Measure & Conquer Tailored To The Problem

previous case) will imply that the graph G[Va] is 3-regular due to our preference
to branching on high-degree vertices. However, this can happen at most once
in each path of the recursion, so that we can neglect it with respect to the O∗-
notation. Also note that for the vertices u and v which are paired up we have
d(v) + d(u)− 2 ≥ d(v) + 1 as d(u) ≥ 3.

Finally, to show the claimed running time, we set ωℓ = 0.7455 and ωn = 0.2455 in the
recurrences. If the measure drops below zero, then we argue that we can safely answer
NO, as shown in Lemma 7.3.5.

Further Discussion of the Branching Cases We shall now show that out of the infinite
number of recurrences in cases (3) and (4) that we derived for Co-MaxIR, actually only
finitely many need to be considered.

Case (3)#j For this case we derived a recurrence of the following form where i := d(v).

T (ϕ, h)≤ i · T (ϕ− ((1− ωℓ) + i · ωn, h− 1)

≤ i · 3.069k−((1−ωℓ)+i·ωn)

= 3.069k · f(i)

The first inequality should follow by induction on the height h of the search tree,
while this entails T (ϕ, h) ≤ 3.069k if f(i) ≤ 1 for all i. We now discuss f(i) =
i · 3.069−((1−ωℓ)+i·ωn).

We had a closer look at the behavior of this function f(i). Its derivative with
respect to i is:

3.069(−0.2545−0.2455i) − 0.2455 · i · 3.069(−0.2545−0.2455i) · log(3.069)

The zero of this expression is at

z = 2000/491/ log(3.069) ≈ 3.6325

We validated that this is indeed a saddle point of f , and f is strictly decreasing
from there on, yielding a value f(z) < 0.9998 for z ≥ 4. Hence, it is enough to
look into all recursions up to i = 4 in this case as also f(3) < 0.988.

Case4a#j We further have to look into:

T (ϕ, h) ≤ T (ϕ− i, h− 1) + 2 · i · T (ϕ− (1 + i · ωn), h− 1) + T (ϕ− 2, h− 1)

Hence, we have to discuss for i ≥ 3

f(i) = 3.069−i + 2 · i · 3.069−(1+i·ωn) + 3.069−2.

We find that f(3) < 1 and f(4) < 1 and that a saddle-point of f(i) is between 3
and 4 (namely at 3.2) and f is strictly decreasing from 4 on. So, from i = 4 on,
all values are strictly below one.

159

Chapter 7. Breaking the 2n-Barrier for irredundance

Case4b#j Finally, we investigate

T (ϕ, h) ≤ T (ϕ− i, h− 1) + 2 · i · T (ϕ− (1 + (i+ 1) · ωn), h− 1) + T (ϕ− 1, h− 1)

So, investigate for i ≥ 4 the function

f(i) = 3.069−i + 2 · i · 3.069−(1+(i+1)·ωn) + 3.069−1.

Again, we found that the saddle-point of f is between 3 and 4 and that f is strictly
decreasing from 4 on, with f(4) < 0.998.

Corollary 7.3.9: IR(G) can be computed in time O∗(1.96n).

Proof. This can be seen by the balancing “win-win” approach described above, exhaus-
tively testing irredundant candidate sets up to size n

2
−ǫ where ǫ = 0.1001·n and running

Algorithm 11 with all parameters k ≤ n
2

+ ǫ.

7.4. Conclusions

We presented a parameterized route to the solution of a yet unsolved question in exact
algorithms. More specifically, we obtained a algorithm for computing the irredundance
number running in time less than O∗(2n) by devising appropriate parameterized algo-
rithms (where the parameterization is via a bound k on the co-irredundant set) running
in time less than O∗(4k).

The natural question arises if one can avoid this detour to parameterized algorith-
mics to solve such a puzzle from exact exponential-time algorithmics. A possible non-
parameterized attack on the problem is to adapt the measure ϕ. Doing this in a straight-
forward manner, we arrive at a measure ϕ̃ :

ϕ̃(n,Ki,Ke,Ge,W,NotG,NotK, Va) = n−|W|−|Gei|−|Kei|−ω̃ℓ(|Kea|+|Gea|)−ω̃n(|NotG|+|NotK|)

It is quite interesting that by adjusting the recurrences with respect to ϕ̃ a run time
less then O∗(2n) was not possible to achieve. For example, the recurrences under (1a)
and (1bii) translate to T̃ (ϕ, h) ≤ T̃ (ϕ − (1 − ω̃n), h − 1) + T̃ (ϕ − (ω̃ℓ − ω̃n), h − 1)
and T̃ (ϕ, h) ≤ T̃ (ϕ− (1 − ω̃n), h − 1) + T̃ (ϕ − (2 − ω̃ℓ + 2ω̃n), h − 1). Now optimizing
over ω̃ℓ, ω̃n and the maximum over the two branching numbers alone we already arrive
at a run time bound of O∗(2.036n) (whereas ω̃ℓ = 1.13 and ω̃n = 0.08). Thus, the
parameterized approach was crucial for obtaining a run time upper bound better than
the trivial enumeration barrier O∗(2n). Observe that for these particular problems,
allowing a weight of ω̃ℓ ∈ [0, 2] is valid, while usually only weights in [0, 1] should be
considered.

It would be interesting to see this approach used for other problems, as well. Some of
the vertex partitioning parameters discussed in [149] seem to be appropriate.

We believe that the Measure&Conquer-approach could also be useful to find better
algorithms for computing the lower irredundance number.

160

7.4. Conclusions

More broadly speaking, we think that an extended exchange of ideas between the field
of Exact Exponential-Time Algorithms, in particular the Measure&Conquer-approach,
and that of Parameterized Algorithms, could be beneficial for both areas. In our case,
we would not have found the good parameterized search tree algorithms if we had not
been used to the Measure&Conquer-approach, and conversely only via this route and the
corresponding way of thinking we could break the 2n-barrier for computing irredundance
numbers.

161

Chapter 7. Breaking the 2n-Barrier for irredundance

162

Part II.

Applications of Reference Search Trees

163

7.4. Conclusions

165

Chapter 7. Breaking the 2n-Barrier for irredundance

166

Chapter 8.

An Exact Exponential Time Algorithm
for Power Dominating Set

8.1. Introduction

We study an extension of Dominating Set. The extension originates not from an
additional required property of the solution set (e.g., Connected Dominating Set)
but by adding a second rule. To be precise we look for a vertex set, called power
dominating set, such that every vertex is observed according to the next two rules:

Observation Rule 1 (OR1): A vertex in the power domination set observes itself and
all of its neighbors.
Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is adjacent
to d − 1 observed vertices, then the remaining unobserved neighbor becomes observed
as well.

By skipping the second rule we would exactly arrive at Dominating Set. The second
rule is responsible for the non-local character of the problem as it implements a kind of
propagation. Due to this propagation mechanism a vertex can observe another vertex at
arbitrary distance. Also the sequence of OR2 applications can be arbitrary but leading
to the same set of observed vertices. Indeed, many arguments relying on the locality
of Dominating Set fail. There is no transformation to Set Cover and thus the
algorithm of Fomin, Gradoni and Kratsch [74] for Dominating Set cannot simply be
applied.
The problem occurs in the context of monitoring electric power networks. One wishes to
place a minimum number of measurement devices (so called phase measurement units
(PMU)) at certain points in the network to measure the state variables, which are fed
back to the central control. The state of a power system is expressed in terms of state
variables, such as voltage at a load and phase angle at a generator. In that sense OR2
stands for Kirchhoff’s law. See also D.J. Brueni and L.S. Heath [17] for a more technical
overview of the applicability of the problem.
In this way, we arrive at the definition of the central problem:

Power Dominating Set (PDS)
Given: An undirected graph G = (V,E), and the parameter k.
We ask: Is there a set P ⊆ V with |P | ≤ k which observes all vertices in V with

167

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

respect to the two observation rules OR1 and OR2?.

8.1.1. Discussion of Related Results

The study of PDS was initiated by T.W. Haynes et al. [88] where they showed NP-
hardness and gave a first polynomial time algorithm for trees. J. Guo et et al. [86] and
J. Kneis et al. [100] studied this problem independently with respect to parameterized
complexity. They proved W [2]-hardness if the parameter is the size of the solution by
reducing Dominating Set to PDS. As a by-product it turns out that PDS is still
NP-hard on graphs with maximum degree four and that there is a lower bound for any
approximation ratio of Ω(log n) modulo standard complexity assumptions. Additionally,
they showed fixed-parameter tractability of PDS with respect to tree-width, where [86]
also gave a concrete algorithm. The authors of [86] achieve this by transforming PDS
into an orientation problem on undirected graphs. The problem was also studied in the
context of special graph classes like interval graphs (C.-S. Liao and D.-T. Lee [111])
and block graphs (G. Xu et al. [157]) where linear time algorithms where obtained.
A. Aazami and M.D. Stilp [1] raised the approximation lower bound to Ω(2log1−ǫ n) and
gave an O(

√
n)-approximation for planar graphs. On the other hand also domina-

tion problems have been studied in exact algorithmics. F.V. Fomin, F. Gradoni and
D. Kratsch [74] gave a O∗(1.5137n)-algorithm for Dominating Set where they use the
power of the Measure&Conquer-approach. This could be improved by J.M.M. van Rooj
and H.L. Bodlaender [151] to O∗(1.5134n) and thereafter by J.M.M. van Rooj et al. [153]
to O∗(1.5048n). F.V. Fomin, F. Gradoni and D. Kratsch [73] showed that the variant
Connected Dominating Set can be solved in time O∗(1.9407n). Under the alter-
native name Maximum Leaf Spanning Tree this upper bound could by updated
to O∗(1.8966n) by H. Fernau et al. [51]. D.J. Brueni and L.S. Heath [17] showed that
there exists a power dominating set of size at most ⌈n/3⌉ for a graph with at least three
vertices. By cycling through all the candidate sets this implies an algorithm with run
time O∗(1.89n).

8.1.2. New Results

First, we show that PDS remains NP-hard for cubic graphs. As PDS is polynomial
time solvable for max-degree-two graphs and NP-hardness was shown for max-degree-
four graphs [86, 100], this result closes the gap in-between. Furthermore, this justifies
to follow a branching strategy even in the case of cubic graphs. Note that it is not
always true that generally NP-hard graph problems remain NP-hard for cubic graphs.
Feedback Vertex Set is a problem where as with PDS cycles play a role (see [86]).
But in contrast to general graphs, it is solvable in polynomial time on cubic graphs [146].
Secondly, we present an algorithm solving PDS in time O∗(1.7548n), which improves
upon the simple enumeration based algorithm with run time upper bound O∗(1.89n).
The run time analysis proceeds in an amortized fashion using the Measure&Conquer-
approach (see chapter 2). Furthermore, we use the concept of a reference search tree.
In an ordinary search tree we usually cut off branches due to local structural conditions.

168

8.2. NP-hardness of Planar Cubic Power Dominating Set

av1av2

av3 cv1

cv2

cv3q3

q2

q1zv Figure 8.1.: The gadget Tv. The vertices q1, q2, q3 correspond
to vertices of the form cz i of some other gadget
Tz such that z ∈ V .

In a reference search tree we also will cut off branches if we can point to another node of
the search tree where we can find no worse solutions. This node must not be a neighbor
of the current node but can be anywhere in the search tree, as long as the overall search
structure remains acyclic.

8.1.3. Terminology and Notation

A possible solution set will be denoted P . We call a vertex v ∈ V \ P directly observed
by u ∈ N(v) if u is in the solution, i.e., u ∈ P . The vertex v ∈ V \ P will be called
indirectly observed by u ∈ V \P if v is observed due to the application of OR2 onto u.

8.2. NP-hardness of Planar Cubic Power Dominating

Set

We will reduce Planar Cubic Vertex Cover to planar cubic PDS. Due to
[76] Vertex Cover remains NP-complete on planar cubic graphs. For any planar
cubic graph G(V,E) and any v ∈ V we can denominate the neighbors of v as follows:
N(v) = {nv1 , nv2 , nv3}.
The reduction works as follows: Given a planar cubic graph G(V,E) introduce for every
v ∈ V the gadget Tv depicted in Figure 8.1, which consists of the vertices in the dotted
square. For any {u, v} ∈ E we can find 1 ≤ b, c ≤ 3 such that u = nvb and v = nuc

. By
introducing the edge {cv b, cu c} we finally get G′(V ′, E ′) which is planar and cubic.

Lemma 8.2.1: G has a vertex cover of size ≤ k iff G′ has a PDS of size ≤ k.

Before proving Lemma 8.2.1, we exhibit some properties of a PDS P for G′ on which
we can rely on.

Lemma 8.2.2: If G′ has a PDS P with |P | ≤ k then there is also a PDS P ′ with
|P ′| ≤ |P | such that for all gadgets Tv we have:

1. |V (Tv) ∩ P ′| ≤ 1.

2. If |V (Tv) ∩ P ′| = 1 then V (Tv) ∩ P ′ = {zv} and {zv} is a PDS for G′(N [V (Tv)]).

3. If |V (Tv) ∩ P ′| = 0 then avi is indirectly observed by cvi, 1 ≤ i ≤ 3, and zv is
indirectly observed by av1.

Proof.

169

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

av1av2

av3 cv1

cv2

cv3q3

q2

q1zv

(a)

av1av2

av3 cv1

cv2

cv3q3

q2

q1zv

(b)

av1av2

av3 cv1

cv2

cv3q3

q2

q1zv

(c)

cv b cu c

av b au c

(d)

Figure 8.2.: Observed vertices are depicted as filled squares.

1,2: Let P be an arbitrary PDS for G′ such that |P | ≤ k and r := |P ∩ (∪v∈V zv)| is
maximum. Assume that Tv ∩ P 6= ∅ but zv 6∈ P . Set P ′ = (P \ V (Tv)) ∪ {zv}.
Independently of the vertices in P ′ \ {zv}, due to zv ∈ P ′ and by exhaustively
applying OR2, the vertices avi, qi and cvi (1 ≤ i ≤ 3) will be observed.

As G′ \ V (Tv) only interacts via the qi’s with Tv and as they are also observed in
the mentioned manner, P ′ must be a PDS. But we have |P ′∩ (∪v∈V zv)| > r which
is a contradiction. This shows 1) and 2).

3: To show 3) observe the following. If |G[Tv] ∩ P ′| = 0 then Tv must be observed
by using OR2 and therefore there must be a cvi which is indirectly observed by a
vertex outside V (Tv). If only one of the cvi’s is indirectly observed (necessarily by
qi) then observation cannot propagate further by OR2 as any cvi would have two
unobserved neighbors within Tv. To be explicit, in case cv1 is observed the two
vertices are av1, cv2, in case cv2 we have av2, cv1 and in case cv3 the vertices av3, av1
are unobserved. Thus there are unobserved vertices in Tv and P is not a PDS. Now
we must rule out that there are exactly two vertices cvi, cvj being each observed
by qi and qj . There are exactly three possibilities for this which are depicted in
Figures 8.2(a), 8.2(b) and 8.2(c) where we also applied OR2 exhaustively. In any
case some unobserved vertices remain. Note that if in Figure 8.2(c) also cv3 is
observed then an OR2 application is triggered on av1 which observes zv. Then
due to another OR2 application on cv3 observation reaches av3 and hence Tv is
observed showing 3).

Lemma 8.2.1. ⇒: Let S be a vertex cover with |S| ≤ k for G. Let V = {v1, . . . , vn}.
We want to point out that for every vertex in u ∈ V \ S we have N(u) ⊆ S. Otherwise,
S is not a vertex cover. Now construct a PDS P the following way. For every v ∈ S

170

8.3. An Exact Algorithm for Power Dominating Set

add the vertex zv of Tv to P . Observe that any gadget Tv with v ∈ P is now completely
observed after applying OR2 exhaustively (independent of the vertices in P \ {v} by
Lemma 8.2.2.2). We also can apply OR2 to the cv i such that their neighbor qi’ outside
Tv will be observed. If v 6∈ S then due to N(v) ⊆ S and our last observation we have
that any avi is indirectly observed by qi. Then by OR2 observation propagates to all
other vertices in Tv analogously as in Lemma 8.2.2.3.
⇐: Let P be a PDS with |P | ≤ k for G′. Due to Lemma 8.2.2.2 we assume that, w.l.o.g.,
P = {z1, . . . , zℓ} with ℓ ≤ k. Also due to Lemma 8.2.2.3 in a gadget Tvt with t > ℓ
the corresponding vertices cvti are indirectly observed by qi. Now suppose that V C :=
{v1, . . . , vℓ} is not a vertex cover in G. This means there is an edge {u, v} ∩ V C = ∅
(✻). Thus, there must be some cv b and cu c (1 ≤ b, c ≤ 3) with {cv b, cu c} ∈ EG′, see
Figure 8.2(d). Since u, v 6∈ V C and, thus, u, v 6∈ P (due to (✻)) and by Lemma 8.2.2.3
follows that cv b is indirectly observed by cu c and vice versa, see Figure 8.2(d). This is a
contradiction to the definition of OR2.

As the gadget Tv is planar the graph G′ posses the same property. According to
Lemma 8.2.1 we can conclude

Corollary 8.2.3: PDS remains NP-hard on planar cubic graphs.

8.3. An Exact Algorithm for Power Dominating Set

8.3.1. Annotated Power Dominating Set

8.3.1.1. Definitions

Annotation. In what follows we assume that the vertices of the given graph G(V,E)
are annotated. To be precise we have a function s which assigns a label to every vertex:

s : V (G)→ {active, inactive, blank}.
An active (inactive, resp.) vertex has already been determined to be (not to be, resp.)
part of P . For a blank vertex this decision has been not made yet. We will abbreviate
the three attributes by (a), (i) and (b). We also define A := {v ∈ V (G) | s(v) = (a)},
I := {v ∈ V (G) | s(v) = (i)} and B := {v ∈ V (G) | s(v) = (b)}.
For any given set A we can determine which vertices are already observed by applying
exhaustively OR1 and OR2. Due to this we introduce

s′ : V (G)→ {(o)bserved, (u)nobserved}
and the sets O := {v ∈ V (G) | s′(v) = (o)} and U := V (G) \ O. By O we will always
refer to the set of observed and by U to the set of unobserved vertices (with respect
to the current partial solution P). The state of a vertex v is the tuple (s(v), s′(v)).
During the course of the algorithm the states of the vertices (i.e., the labels s, s′) will be
modified in a way that they represent choices already made.

171

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

v

(a)

v1
v2 v3

v4
v5v6

v7

(b)

�
�
�
�

��
��
��
��

u

y

z

v

(c)

Figure 8.3.: Filled vertices are observed, white vertices are unobserved. Round vertices
are blank, square vertices are inactive. Shaded vertices are active.

Special Neighborhoods. We set N⋆(v) := {w | {w, v} ∈ E, s′(w) = (u)} and d⋆(v) :=
|N⋆(v)|. N⋆(v) represents the unobserved neighbors of v. Let ∆⋆(G) := maxv∈B d

⋆(v)
and M(G) = {v ∈ B | d⋆(v) = ∆⋆(G)}. Thus, in M(G) we find those blank vertices
with the maximum number of unobserved neighbors.
We define N (i)(v) = N⋆(v)∩I and d(i)(v) = |N (i)(v)|. In N (i)(v) we find those unobserved

neighbors of v, which are additionally inactive. We will write d⋆G(v), N⋆
G(v), d

(i)
G , N

(i)
G (v),

sG(v) and s′G(v) when we are referring to a particular annotated graph G by which the
functions are induced. We omit the subscript when it is clear from the context. A vertex
v ∈ V (G) such that s′(v) = (o) and d⋆(v) = 2 will be called a trigger, see Figure 8.3(a).
A triggered path between v1, vk ∈ V (G) with s(v1) = s(vk) = (b), s′(v1) = s′(vk) = (u)
is a path v1, . . . , vk such that s(vi) = (b), s(vi) = (u) and d⋆(vi) ≤ 2, or vi is a trigger
for 1 < i < k. In Figure 8.3(b) the vertices v1, . . . , v6 form a triggered path. A triggered
cycle is a triggered path with v1 = vk. Observe that for all u ∈ O we have d⋆(u) 6= 1
due to OR2.

8.3.2. Algorithm

In this section we present reduction rules and the algorithm. Their correctness and run
time will be analyzed in the next section.

Reduction Rules. We state the following reduction rules:

Isolated: Let v ∈ O ∩ B such that d⋆(v) = 0 then set s(v)← (i).

TrigR: Let v ∈ V be a trigger and s(v) = (b). Then set s(v)← (i).

Blank2: Let v ∈ V (G) with d⋆(v) ≤ 2, v ∈ B ∩ U , y ∈ N⋆(v) and s(y) = (i). Then set
s(v)← (i).
Obs3: Let v ∈ V (G) such that v ∈ B ∩ U , d⋆(v) ≤ 1 and y ∈ N(v) with y ∈ I ∩O and
d⋆(y) ≥ 3. Then set s(v)← (i).

Trig2: Let v ∈ V (G) such that v ∈ B ∩ U and d⋆(v) ≤ 1. If there is a trigger u with
N⋆(u) = {v, y} and y ∈ I ∩ U then set s(v) = (i).

In [88] it is shown that we can assume that for all v ∈ P we have d(v) ≥ 3. But observe
that for degree-2 vertices there is no valid contraction rule, see Figure 8.3(c). If we

172

8.3. An Exact Algorithm for Power Dominating Set

deleted u and connected x and y observation would propagate to z due to OR2. We
are now ready to state Algorithm 12:

Algorithm 12 An exact algorithm for Power Dominating Set

1: Apply OR2 exhaustively.
2: Apply Isolated, TrigR, Blank2, Obs3 and Trig2 exhaustively.
3: Select form M(G) a vertex v according to the priorities:
4: a) s(v) = (u). {We prefer unobserved vertices}

b) d(i)(v) < d⋆(v) {We prefer vertices such that not all unobserved neighbors
are inactive}

5: if d⋆(v) ≥ 4 then
6: Branch on v by setting 1) s(v)← (i) and 2) s(v)← (a) in either of the branches.
7: else if d⋆(v) = 3 then
8: Branch on v: 1) s(v)← (i) and 2) s(v)← (a) and for all u ∈ N⋆(v) with s(u) = (b)

set s(u)← (i).
9: else if d⋆(v) ≤ 2 then

10: Branch on v by setting 1) s(v)← (i) and 2) s(v)← (a) in either of the branches.
11: end if

8.3.2.1. Correctness

We will prove correctness of Algorithm 12 and the reduction rules using the concept of a
reference search tree (see Definition 1.4.1). Intuitively, this is quite appropriate for our
problem at hand. In PDS the second propagation rule OR2 gives the problem a non local
character, which will be reflected by item 4.(b) of Definition 1.4.1. We have to define
U := V (G), S := {S ⊆ V (G) | S is a PDS for G} and c(Y) = |Y | for every Y ∈ P(U).
The function label : V (D) → {(e1, . . . , en) | ei ∈ {(a), (i), (b)}} then expresses which
vertices are no more blank, i.e., are active or inactive. Here (a) refers to 1, (i) to 0 and
(b) to the ⋆-symbol defined in the function label of Definition 1.4.1. According to this
we set ¯(a) = (i) and (̄i) = (a). Thus, referring to Definition 1.4.2 when we set s(v)← (i)
then we are excluding the vertex v from the future solution. By setting s(v) ← (a) it
will be included. The subsequent correctness proofs proceed as follows: Every time we
skip a possible solution we show that we can insert a reference to some node u ∈ V (D)
of the search tree such that we can find a solution z with label(z) � label(u) which is no
worse. Additionally, we show that the global references always point from the left to the
right (with respect to the x-coordinate) and the local references point downwards in the
proper drawing of D(V, T). This way we assure acyclicity of the final rst D(V, T ∪R∪L)
which is implicitly built up by the algorithm using Lemma 1.4.1.

173

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

v

y

(a)

�
�
�
�v

y

(b)

�
�
�
�

v

y

(c)

(d)

Figure 8.4.: Filled vertices are observed, white vertices are unobserved. Round vertices
are blank, square vertices are inactive. Shaded vertices are active.

Correctness Proofs.

Lemma 8.3.1: Let us fix an annotated PDS instance G(V,E) that corresponds to
some node q ∈ V (D) in the reference search tree. Let u ∈ V (G) with u ∈ I ∩ O and
d⋆G(u) ≥ 3. Then dqu ∈ D(V, T) is a full node.

Proof. Suppose the contrary. Due to d⋆G(u) ≥ 3 none of the reduction rules in Algo-
rithm 12 have set s(u) ← (i). The only remaining possibility is the second part of
the branch in step 8 of Algorithm 12. Now suppose by setting s(v) ← (a) for some
v ∈ V (G) the algorithm has set also s(u) ← (i) and s′(u) = (o) implicitly. We now
examine the situation right before this happened. This situation is reflected by some
annotated graph G′(V,E). We must have d⋆G′(v) = 3 and s′G′(u) = (u). Suppose at this
point s′G′(v) = (u). From this it follows that d⋆G′(u) ≥ 4 due to our premise. But this
contradicts the choice of v as branch vertex. Therefore we must have s′G′(v) = (o). But
once more this contradicts the choice of v since we have s′G′(u) = (u) at that point (as
step 8 applied u should have been observed by v directly).

Lemma 8.3.2: Applying Blank2, Obs3, Trig2, TrigR, Isolated and step 8 of Al-
gorithm 12 is correct.

Proof. We will prove the following:
1) For every vertex v ∈ V (G) with s(v) = (i) either p(dv) is a full node or if it is flat there
is a node h ∈ V (D) such that p(dh) is a full node and we inserted a reference (p(dv), h)
where h = r(p(dh)). Additionally, we require that if there is a solution represented by
the solvec t � label(p(dv)) with t(v) = (a) (i.e., t ∈ STr(p(dv))), we can find a no worse

174

8.3. An Exact Algorithm for Power Dominating Set

solution represented by solvec z (i.e., c(z) ≤ c(t)) such that z � label(h).
2) Every reference is pointing from the left to the right in the proper drawing of D(V, T).
As step 8 makes use of this fact, it will be proven in parallel. The proof is by induction
on the height s of the search tree. In case s = 0 nothing is to show. If s > 0 we will
distinguish between the different operations:

Blank2 Let q be the current search tree node and, w.l.o.g.,
label(q) = (e1,. . . ,el−1,(b),. . . ,(b)) such that el corresponds to v and e1 to y (with
v and y we are referring to the definition of Blank2). Suppose Blank2 applies to
v and p(dqy) is a full node (see Figure 8.4(a)). Suppose there is a solution
k := (e1, . . .,el−1,(a),el+1,. . . ,en) � label(q) as indicated in Figure 8.4(b). Then
also k′ := (ē1, . . . , el−1, (i), el+1, . . . , en) is a solution (due to d⋆(v) ≤ 2 and OR2,
see Figure 8.4(c)). Hence we insert a reference (q, r(p(dqy))) as k′ � label(r(p(dqy)))
which is pointing from the left to the right. This reference means that we can find
a no worse solution compared to k. We find this solution in the sub search tree
STr(p(dqy)) as k′ � label(r(p(dqy))) or else we have to follow another reference to the
right. Therefore we can skip the possibility of setting s(v)← (a).
If p(dqy) is a flat node than due to the induction hypothesis there must be a refer-
ence (p(dqy), h) such that h ∈ V (D) is the right child of p(h) ∈ V (D) which is a full
node and (p(dqy), h) points from the left to the right. We can rule out the solution
k again as k′ is no worse. Due to (p(dqy), h) also k′ is skipped as there must be a
alternative solution z with label(z) � h such that z is no worse than k′. Thus we
can insert the reference (q, h) pointing also from the left to the right.

Trig2 The proof is completely analogous to the first item.

Obs3 From Lemma 8.3.1 we have that y is a full node. The correctness follows now
analogously to the first part of the first item.

TrigR Let N⋆(v) = {x, y} and q ∈ D(V) be the current search tree node before
applying TrigR and let, w.l.o.g., label(q) = (e1, . . . , el, (b), . . . , (b)), e1 corresponds
to y and el+1 to v. Let P be a solution which contains v (i.e. s(v) = (a)) such that
svP � label(q). a) Suppose that, w.l.o.g., s(y) = (b). Then P could be replaced
by P ′ = P \ {v} ∪ {y}. Thus, by s(y) = (b) we can set s(v)← (i) as we will find
a solution which is no worse later in the sub search tree STl(q).
b) Now suppose s(x) = s(y) = (i). If there is a solution corresponding to k :=
(e1, . . . , el, (a), el+2, . . . , en) � label(q) then also k′ := (ē1, . . . , el, (i), el+1, . . . , en)
is one which is no worse. If p(dqy) is a full node we have that k′ � label(r(p(dqy)))
and we insert a reference (q, r(p(dqy))). If p(dqy) is a flat node there is a reference
(p(dqy), h

′). Analogously as in the cases before we can insert (q, h′).

Isolated As every vertex in N [v] is already observed it is valid to exclude v from a
minimum solution. Thus, we can set s(v)← i.

175

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

Step 8 We only have to consider the second part of the branch. Here we set s(v)← (a)
and for all u ∈ N⋆(v) with s(u) = (b) also s(u) ← (i). Thus, we have to argue
that indeed the neighbors of v could have been set inactive.

Let N⋆(v) = {a, b, c}. We make a case distinction concerning d(i)(v). Let G the
current annotated graph and q ∈ D(V) be the current search tree node before
branching and let label(q) = (e1, . . . , el, (b), . . . , (b)), where the entries e1 corre-
sponds to v, e2 to a and e3 to b. Therefore we have e1 = (b). Assume there is a
PDS P ∋ v with svP � label(q).

d
(i)
G (v) = 0: If |P ∩ N⋆(v)| ∈ {2, 3} then also P \ {v} is a PDS due to OR2. If,

w.l.o.g, P ∩N⋆(v) = {a} then also P ′ := P \ {v} ∪ {b} is a PDS where P ′ is
covered by the first part of the branch where we set s(v)← (i).

d
(i)
G (v) = 1: The only cases |P ∩ N⋆(v)| = 1 and |P ∩ N⋆(v)| = 2 can be handled

analogously to the case d(i) = 0.

d
(i)
G (v) = 2: W.l.o.g., P ∩ N⋆(v) = {a}. Let q1 ∈ V (D) be the node such that

s(v) = a is set and q2 ∈ V (D) such that s(a) = (i) is set, i.e. q1 = r(q) and
q2 is the only child of q1.
Assume there is a PDS corresponding to k := ((a), (a), (i), e4, . . . , en) �
label(q1); By OR2 k′ := ((i), (a), (a), e4, . . . , en) is then a solution, too. Sup-
pose p(dqb) is a full node. Then k′ � label(r(p(dqb))) and hence we insert
a reference (q1, r(p(d

q
b))). If p(dqb) is a flat node there must be a reference

(p(dqb), h
′). Then insert (q1, h

′).

The global references inserted by Blank2, Trig2, case b) of TrigR, Obs3 and Step 8

in case d
(i)
G (v) = 2 are pointing all from the left to the right in the proper drawing of

D(V, T).
Local references which point downwards are inserted by case a) of TrigR, Isolated and

Step 8 in cases d
(i)
G (v) = 1 and d

(i)
G (v) = 2. It can be checked easily that for an inserted

local reference (a, b) ∈ L we have (b, a) 6∈ L.
This ensures acyclicity of D(V, T ∪ R ∪ L) by Lemma 1.4.1 and, thus, also the cor-

rectness.

Note that the reduction rules treated in Lemma 8.3.2 are not valid on their own. They
are only correct because they are referring to solutions which Algorithm 12 definitely will
consider. In other words, if we are given an annotated graph G, where the annotation
is not due to Algorithm 12 we cannot apply these reduction rules.

8.3.2.2. Run Time Analysis

The Measure. We define the following sets:

Î = {v ∈ I | s′(v) 6= (o), ∃u ∈ N⋆(v) : s(u) = (b)},
Ô = (O ∩B), B̂ = B ∩ U .

Here Î comprises the inactive vertices, which are not observed such that they have at

176

8.3. An Exact Algorithm for Power Dominating Set

least one unobserved neighbor which is blank. In Ô we find the observed vertices for
which we have not yet decided if there are active or not. Also for any v ∈ Ô we have
d⋆(v) ≥ 3 (Isolated, OR2 and TrigR). B̂ contains the unobserved blank vertices. The
measure we use in our run time estimation is the following one:

ϕ(G) = |B̂|+ β · |Ô|+ γ · |Î| with β = 0.51159, γ = 0.48842

The Different Branching Cases. We will now analyze the different branchings in
Algorithm 12. In general we can find integers ℓ, k with ℓ + k = d⋆(v) such that ℓ =
|N⋆(v) ∩ Î| and k = |N⋆(v) ∩ B̂|.

d⋆(v) ≥ 4: The first case is when we have chosen a vertex v with d := d⋆(v). We will
explicitly analyze the case when d = 4. We show that any case occurring for d > 4 is
run time upper bounded by some case when d = 4. First we will distinguish between
the circumstances that s′(v) = (o) and s′(v) = (u).

s′(v) = (u) In the branch where we set s(v) ← (a) we get a reduction in ϕ(G) of 1 +
ℓ · γ + k · (1 − β). This is due to v becoming observed and active, the vertices in
N⋆(v)∩ Î becoming inactive and observed and N⋆(v)∩ B̂ becoming observed and
blank. In the branch setting s(v) ← (i) we reduce ϕ(G) by at least (1 − γ) (we
obtain a greater reduction if v drops out of Î). As (1 − β) < γ the worst case is
the branch (1 + 4(1− β), 1− γ) which is upper bounded by O∗(1.6532n).

s′(v) = (o) In the branch where we set s(v)← (a) we get a reduction in ϕ(G) of β + ℓ ·
γ + k · (1− β). Here we get only a reduction of β from v as it is already observed.
In case s(v)← (i) the reduction is again β as v drops out of Ô. As (β+4(1−β), β)
is the worst branch we have a upper bound of O∗(1.7548n).

We examine now cases with d > 4. Here the worst case is analogously when k = d. But
it is also no worse as the case when k = 4 and d = 4, which was already considered.

d⋆(v) = 3: We first focus on the case where ℓ ≤ 2. As we get a reduction of one for
every vertex in N⋆(v) ∩ B̂ the worst case is when ℓ = 2. Now if s′(v) = (u) then this
results in a (2+2 ·γ, 1−γ) branching. If s′(v) = (o) we have a (β+2 ·γ+1, β)-branching.
O∗(1.7489n) is an upper bound for both.

Now due to the priorities in step 4 of Algorithm 12 we select a vertex v such that ℓ = 3
with least priority.

We first examine the case where s′(v) = (u) and ℓ = 3. Now suppose for all u ∈ N⋆(v)
we have N⋆(u)∩B = {v} (✪). Then in the branch s(v)← (i) we get an additional
amount of 3 · γ. This is due to the fact that the vertices in N⋆(v) will drop out
of Î as v is their only unobserved neighbor which is blank. Hence, we have a
(1 + 3 · γ, (1− γ) + 3 · γ) branch.
Conversely, there is a u ∈ N⋆(v) with N⋆(u) ∩ B = {v, u1, . . . , us} and s ≥ 1 (❂).

177

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

If s′(u1) = (o) then due to TrigR and OR2 we can not have d⋆(u1) ≤ 2. Due to
the choice of v d⋆(u1) > 4 is not possible and, thus, d⋆(u1) = 3. In s(v) ← (a) u
will become a trigger and is reduced away from ϕ(G) due to TrigR. This means
we have a (1 + 3 · γ + β, 1− γ) branch.
If s′(u1) = (u) then we have d⋆(u1) = 3 due to Blank2 and the choice of v. Also
it holds that d⋆(u1) = d(i)(u1) = 3 again by the choice of v. Hence in s(v) ← (a)
the ⋆-degree of u1 drops by one. Therefore Blank2 applies on u1 and it will not
appear in ϕ(G) anymore which leads to a (2 + 3 · γ, 1 − γ) branch. O∗(1.6489n)
upper bounds both possibilities.

The second possibility for v is s′(v) = (o), yielding a (β + 3 · γ, β + 3 · γ)-branch for
case (✪). In case of (❂), s′(u1) = (o) is necessary or otherwise, we contradict the
choice of v (d⋆(u1) ≥ 3), or Blank2 applies to u1 (d⋆(u1) ≤ 2). Again we have
d(i)(u1) = 3 by the choice of v. Hence, this gives a (2β + 3γ, β)-branch, as by
setting s(v) ← (a) u1 becomes a trigger and therefore TrigR applies. An upper
bound for both cases is O∗(1.7488n).

d⋆(v) ≤ 2: Note that at this point by Isolated, TrigR and OR2 we must have
s′(v) = (u). We first show an auxiliary lemma:

Lemma 8.3.3: In step 10 of Algorithm 12 we have:

1. For all u ∈ V with d⋆(u) ≥ 3 it follows that s(u) = (i).

2. Let v ∈ V (G) with s(v) = (b) and s′(v) = (u) chosen for branching then:

a) For all u ∈ N⋆(v) : s(u) = (b).

b) If d⋆(v) ≤ 1 then for all u ∈ N(v) \N⋆(v) : s(u) = (i) and d⋆(u) = 2.

3. O = O ∩ I. (O ∩B = ∅, alternatively).

Proof. 1. Otherwise, we have a contradiction to the choice of v.

2. a) Otherwise, Blank2 applies.

b) Note that s′(u) = (o). Suppose s(u) = (b) then either TrigR or OR2 applies
(d⋆(u) ≤ 2) or we have a contradiction to the choice of v (d⋆(u) ≥ 3). From
s(u) = (a) it follows that s′(v) = (o), a contradiction. If we had d⋆(u) ≥ 3
and s(u) = (i) then Obs3 applies. This contradicts s(v) = (b).

3. Let u ∈ O \ I then d⋆(u) ∈ {0, 1, 2} is ruled out by Isolated, OR2 and TrigR. If
d⋆(u) ≥ 3 then from item 1. it follows that u ∈ I, a contradiction.

Let v be the vertex chosen in step 9 of Algorithm 12. Let G̃ := G[B] and note that
B = B̂ due to Lemma 8.3.3.3. G̃ consists of paths and cycles formed by vertices in B̂ due

178

8.3. An Exact Algorithm for Power Dominating Set

to Lemma 8.3.3.2a and the fact that for all z ∈ B we have d⋆(z) ≤ 2 (see Figure 8.4(d)).
The vertex v belongs to one of those components.

Explore G the following way:

1. For all u ∈ B̂ set visited(u)← f .

2. If there is u ∈ N⋆(v) with visited(u) = f then set visited(v)← t and v ← u.

3. If there is t ∈ N(v) with t ∈ O (due to Lemma 8.3.3.2b u is a trigger) such that
N⋆(t) = {v, u} and visited(u) = f then set visited(v)← t and v ← u.

4. If one of the steps 3 or 4 applied goto 2.. Else set visited(v)← t and stop.

Let W := W1 ∪W2 where W1 := {u ∈ B̂ | visited(u) = t} and W2 := {u ∈ O | N⋆(u) =
{x1, x2}& visited(xi) = t (1 ≤ i ≤ 2)}. W1 comprises the visited vertices in B̂.

Proposition 8.3.4: Let u, v ∈ W1

1. If there is a solution P respecting the current annotation such that v ∈ P then
u 6∈ P .

2. If there is a solution P respecting the current annotation such that v 6∈ P then,
w.l.o.g., u 6∈ P .

Proof. The vertex set W induces a path or a cycle in G containing at least two vertices
from B̂ (as long |V (G)| > 2). Either v has a blank neighbor or and due to Lemma 8.3.3.2b
it has a trigger as neighbor. Now observe that any vertex in W1 is equally likely to be set
active: Once there is an active vertex from W1 the whole vertex-set W will be observed
due to OR2. Also any additional trigger t′ 6∈ W2 which is a neighbor of some v′ ∈ W1

only depends on v′ being observed.
Considering the branch s(v) ← (a) due to exhaustively applying OR2 for any v′ ∈ W
we have N(v′) ⊆ O afterwards. Hence W will drop out of B̂ but will also not be included
in Ô due to Isolated. Thus there is a reduction of |W | ≥ 2.
In case s(v) ← (i) due to applying Blank2 and Trig2 we have that W ⊂ I \ Î
(Lemma 8.3.3.2a/2b) and thus a reduction of |W |.

Summing up we have a (2, 2) branch which we upper bound by O∗(1.415n). This
enables us to conclude

Theorem 8.3.5: Power Dominating Set can be solved in time O∗(1.7548n).

We like to comment that Algorithm 12 achieves a run time of O∗(1.6212n) on cubic
graphs. This can be seen by modifying the general analysis. Simply choose β = 0.8126
and γ = 0.3286 and skip the part where d⋆(v) ≥ 4.

179

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

NP-hardness of the case d⋆(v) ≤ 2. Note that the instances occurring at this point
of Algorithm 12 are still NP-hard to solve. There is a simple reduction from cubic
PDS. For any vertex v with N(v) = {nv1, nv2, nv3}, create a triangle Cv = jv1, jv2, jv3.
If {u, v} ∈ E we find 1 ≤ b, c ≤ with u = nvb and v = nuc. Then connect free vertices
juc ∈ Cu and jvb ∈ Cv with an inactive trigger, i.e introduce an observed and inactive
vertex tr and edges {jub, tr}, {jvc, tr}. This leads to a graph Ģ. Now the following is
true for a PDS P for Ģ: A triangle Cu is observed iff a) V (Cu) ∩ P 6= ∅ or b) Two
vertices of Cu, w.l.o.g. jv1, jv2, are indirectly observed from vertices outside Cu and jv3
is indirectly observed by jv2.
With this property it is easy to show that G has a size k PDS iff Ģ has one. So in step
10 of Algorithm 12, we have no alternative to continue with the branching as we can
not expect a polynomial time algorithm for this case.

8.4. Conclusion and Further Perspectives

Speed-Up With Exponential Space. If we do not restrict ourselves to polynomial
space consumption a we can achieve a speed-up for Algorithm 12 using the memoiza-
tion technique (see also [68]). We precompute optimal solutions for all vertex induced
subgraphs G′ such that ϕ(G′) ≤ ω · n where ω = 0.059. For such a graph we have
|V (G′)| ≤ c · ω · n where c = max{1/γ, 1/β} = 2.0475. For each subset S ⊆ V with
|S| ≤ c ω n and for all Θ ⊆ S we compute the entries of the following table:

T [S,Θ] = min

{

|P ′| : P
′ is a PDS for G[S] s.t.∀v ∈ Θ : s′(v) = (o)

& ∀v ∈ S : s(v) = (b) & ∀v ∈ S \Θ : s′(v) = (u)

}

So, Θ is supposed to be an already observed subset of vertices in G[S]. As |S| ≤ c ωn
there are O∗(

(

n
c ωn

)

) subgraphs to be inspected. For any such subgraph there are 2cωn

possibilities to choose Θ. Thus, the size of the table is O∗(
(

n
cωn

)

· 2cωn) ⊆ O∗(1.5719n).
By solving each of these instances by using the algorithm of [17] which enumerates
all vertex subsets of S of maximum size ⌈cωn/3⌉, we spend 1.89cωn steps for any
induced subgraph G[S] with predetermined observation pattern Θ. Thus we need
O∗(

(

n
ωn

)

3.78cωn) ∈ O∗(1.6975n) steps for building up a the table T .
Let RG = V (G) \ {v ∈ O | N [v] ⊆ O}. Once we arrived at a graph G with |RG| ≤ cωn
it follows that ϕ(G[RG]) ≤ ωn. Thus, in Algorithm 12, we can look up the rest of
the solution by inspecting the table entry which is determined by RG and RG ∩ O, i.e.
T [RG, RG∩O]. Thus Algorithm 12 will run in O∗(1.7548(1−ω)ϕ(G)) ⊆ O∗(1.7548(1−ω)n) ⊆
O∗(1.6975n). It is important to notice that we ignored the fact that there might be active
and inactive vertices in G[RG]. The correctness follows from the fact that the state of
observation of G[V (G)\RG] is independent of how G[RG] is observed. Also any solution
for G[RG] which ignores the labels active and inactive cannot be worse than one that
does not.
By choosing ω = 0.0337. the same algorithm solves cubic PDS in O∗(1.5954n) steps
using O(1.49456n) space.

180

8.4. Conclusion and Further Perspectives

Theorem 8.4.1: By allowing an exponential amount of space Power Dominating
Set can be solved in time O∗(1.6975n) and on cubic graphs in time O∗(1.5954n).

Notice that this type of speed-up relies on the fact that no branching or reduction rule
ever changes the (underlying) graph itself, but rather, the existing graph is annotated.
This property is also important when designing improved algorithms with the help of
reference search trees, since it might be tricky to argue to find a solution not worse than
the ones to be expected in a particular branch of a search tree somewhere else in the
tree, when the instance is (seemingly) completely changed.
Also note that the table T has also to take into account the measure. It is not sufficient
to build up T for all S ⊆ V such that |S| ≤ λn for some constant λ. A set of λn vertices
will generally have a weight less than λn under the measure ϕ. Put it another way:
Algorithm 12 is analyzed with respect to ϕ. If the rest graph has weight z under ϕ then
it usually will have drastically more vertices than z. This is caused by the fact that the
weight of each vertex is often less than one.
As the run time of Algorithm 12 is measured in terms of ϕ, T should have a entry
for every S ⊆ V with ϕ(G[S]) ≤ λn. Then as soon as the graph in the course of
Algorithm 12 has weight less than λn under ϕ we can look up the solution in T . Hence,
the runtime is O∗(1.7548(1−λ)ϕ(G)) as ϕ(G) ≤ λn.

Résumée. We designed an exact algorithm for Power Dominating Set consuming
O∗(1.7548n) time. To achieve this we made intensive use of the concept of a reference
search tree. This means that we where able to cut off branches by referring to arbitrary
locations in the search tree where one can find equivalent solutions. Maybe the term
search-DAG expresses this property also quite well. We proved the correctness of a
reduction rule whose application was critical for the run time. We expect that we can
exploit reference search trees further by designing exact algorithms for non-local prob-
lems or improving existent ones (e.g., Connected Dominating Set/Connected
Vertex Cover or Max Internal Spanning Tree). For this kind of problems it
seems we are not allowed to delete vertices due to selecting vertices into the solution or
not. We rather have to label them. Many algorithms come to decisions by respecting
them. We rather try to make use of them. Let x be a labeled vertex not selected into
the solution and y an unlabeled vertex. Suppose by re-labeling x (taking x into the
solution) and excluding y from the solution we have a solution which is no worse to
the possibility of taking y into the solution. Then we can skip this last possibility by
inserting a reference. We imagine that this arguing is also possible when several vertices
are involved.

181

Chapter 8. An Exact Exponential Time Algorithm for Power Dominating Set

182

Chapter 9.

Exact Algorithms for
Maximum Acyclic Subgraph on
a Superclass of Cubic Graphs.

9.1. Introduction and Definitions

9.1.1. Our problems

We consider the problem of finding large acyclic subgraphs in directed graphs. More
formally, we consider the following problem:

Maximum Acyclic Arc-Induced Subgraph MAAS
Given: a directed graph G(V,A), and the parameter k.
We ask: Is there a subset A′ ⊆ A, with |A′| ≥ k, which is acyclic.

The Vertex-induced problem version of MAAS is called Maximum Acyclic Vertex-
Induced Subgraph MAVS

9.1.2. Motivation.

Both the feedback vertex set and the feedback arc set problems were on the
list of 21 problems that was presented by R. M. Karp [97] in 1972, exhibiting the first
NP-complete problems ever. These problems have numerous applications [59], ranging
from program verification, VLSI and other network applications to graph drawing, where
in particular the re-orientation of arcs in the first phase of the Sugiyama approach to
hierarchical layered graph drawing is equivalent to Directed Feedback Arc Set
(DFAS), see [6, 147].

Mostly, we focus on a class of graphs that, to our knowledge, has not been previously
described in the literature. Let us call a directed graph G = (V,E) (1, ℓ)-graph if, for
each vertex v ∈ V , its indegree d−(v) obeys d−(v) ≤ 1 or its outdegree d+(v) satisfies
d+(v) ≤ 1 (i.e, ∀v ∈ V : min{d−(v), d+(v)} ≤ 1.). In particular, graphs of maximum
degree three are (1, ℓ)-graphs. Notice that MAAS, restricted to cubic graphs, is still
NP-complete.

For some applications from graph drawing (e.g., laying out “binary decision diagrams”
where vertices correspond to yes/no decisions) even the latter restriction is not so severe

183

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

at all. Having a closer look at the famous paper of I. Nassi and B. Shneiderman [122]
where they introduce structograms to aid structured programming (and restricting the
use of GOTOs), it can be seen that the resulting class of flowchart graphs is that of
(1, ℓ)-graphs. Namely, a certain position of the structogram is either branching out
(resulting from the very start of if-then-else statements, case statements, loops) or it is
collecting several branches of the program (basically, at the end of the aforementioned
statements). Here, we can derive a further application of our algorithms: for debugging
purposes, a programmer might want to output values of variables etc., but she wants
to place these watchdog program fragments at only a few number of places, still being
able to survey the run of the program in each possible case. This means, in particular,
that one fragment should be inserted in each loop of the program, which corresponds to
identifying small feedback arc sets (or feedback vertex sets, depending on how we model
the watchdogs) within the flowchart graph of the program code.

Cubic graphs also have been discussed in relation to approximation algorithms: A. New-
man [124] showed a factor 12

11
-approximation.

This largely improves on the general situation, where only a factor of 2 is known [6].
We point out that finding a minimum feedback arc set (in general directed graphs) is
known to possess a factor logn log logn-approximation, see [59], and hence shows an
approximability behavior much worse than MAAS.

9.1.3. Discussion of related results.

MAAS on general directed graphs can be solved in time and space O∗(2k) and O∗(2n),
shown by V. Raman and S. Saurabh in [138], with n being the number of vertices. The
same authors show a run time of O∗(4k) for MAAS requiring only polynomial space in
[137]. J. Chen, Y. Liu, S. Lu., B. O’Sullivan and I. Razgon [23] showed that Directed
Feedback Vertex Set ∈ FPT . In contrast to MAAS, it still admits a fairly vast
run time of O∗(4kk!). This easily translates to a parameterized algorithm for DFAS.
As an aside, let us mention that this makes finding feedback arc sets one of the few
known natural examples where the problem and its parameterized dual are in FPT .
This is not true for the vertex case: It is not hard to see that MAVS on general graphs
is W[1]-complete.1

Likewise, I. Razgon [140] provided an exact (non-parameterized)O∗(1.9977n)-algorithm
for Feedback Vertex Set (FVS), which translates to a DFAS-algorithm with the
same base, but measured in m (where m, as usual, denotes the number of arcs in the
given graph instance).

The complexity picture changes when one considers undirected graphs. The task of
removing a minimum number of edges to obtain an acyclic graph can be accomplished
in polynomial time, basically by finding a spanning forest. The task of removing a

1Hardness follows by observing that I ⊆ V is an independent set in a given undirected graphG = (V,E)
if and only if I induces an acyclic graph in the digraph D = (V,A), where A contains both (u, v)
and (v, u) for each edge {u, v} ∈ E. For membership in W[1], construct a nondeterministic TM that
first guesses a vertex set and then verifies its acyclicity, all in time f(k), where k gives the size of
the vertex set, see [19].

184

9.2. The Algorithm

minimum number of vertices to obtain an acyclic graph is (again) NP-complete, but
can be approximated to a factor of two, see V. Bafna et al. [4], and is known to be
solvable in O∗(5k) with J. Chen et al. [20] being the leading party in a run time race.
Also, exact algorithms have been derived for this problem by F. V. Fomin et al. [63].

9.1.4. Our contributions.

As we have described, feedback set problems are quite hard on directed graphs from a
parameterized perspective. Our main technical contribution is to derive a parameter-
ized O∗(1.2471k)-time and polynomial space algorithm for MAAS on (1, ℓ)-graphs. On
cubic graphs the run time reduces to O∗(1.201k). We also derive an exact algorithm for
MAAS on (1, ℓ)-graphs and as a by-product another for directed feedback vertex
set on cubic graphs with run times O∗(1.2133m) and O∗(1.282n), respectively.

The algorithms that we present for these special graph classes possess quite a simple
overall structure, but the analysis is quite intricate and seems to offer a novel way of
amortized search tree analysis that might be applicable in other situations in parame-
terized algorithmics, as well. We therefore use the notion of reference search trees intro-
duced in section 1.4. It is also one of the fairly rare applications of the Measure&Conquer
paradigm [74] in parameterized algorithmics. Moreover, as testified in [87], there are only
quite few problems on directed graphs ever approached from the viewpoint of parame-
terized complexity; the present problem adds to this list.

9.1.5. Fixing terminology.

A subset S of V (G) (A(G), resp.) is a directed Feedback Vertex Set (directed Feedback
Arc Set, resp.), if every directed cycle C of G contains at least one vertex (arc, resp) of
S, i.e., V (C)∩S 6= ∅ (A(C)∩S 6= ∅, resp.). We call the complement V (G)\S (A(G)\S,
resp.) of S an acyclic vertex subset (acyclic arc subset, resp.) of G because it induces an
acyclic subgraph of G. A maximum acyclic vertex subset (maximum acyclic arc subset,
resp.) is the complement of a minimum directed feedback vertex set (minimum directed
feedback arc set, resp.).
We call an arc (u, v) a fork if d+(v) ≥ 2 (but d−(v) = 1) and a join if d−(u) ≥ 2 (but
d+(u) = 1). With MAS, we refer to a set of arcs of the original graph which is acyclic
and is viewed as a partial solution.

9.2. The Algorithm

9.2.1. Preprocessing

Firstly, we can assume that our instance G(V,A) forms a strongly connected component.
Every arc not in such a component can be taken into a solution, and two solutions of
two such components can be simply joined.

In [59, 124], a set of preprocessing rules is already mentioned:

185

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

Pre-1: For every v ∈ V with d−(v) = 0 or d+(v) = 0, delete v and NA(v), take NA(v)
into MAS and decrement k by |NA(v)|.

Pre-2: For every v ∈ V with NA(v) = {(i, v), (v, o)}, v 6= i and v 6= o, delete v and
NA(v) and introduce a new arc (i, o). Decrease k by one.

These preprocessing rules will be carried out exhaustively. Afterwards, the resulting
graph has no vertices of degree less than three.

Definition 9.2.1. An arc g is an α-arc if it is a fork and a join and if it is contained in
at least two cycles.

Because G is strongly connected, there are no α-arcs which are in no cycle. For every
arc g which is a fork and a join one can determine if it is an α-arc the following way.
Find the smallest cycle Cg which contains g via BFS. If g is contained in a second cycle
C ′

g, then there is an arc a ∈ Cg with a 6∈ C ′
g. So for all a ∈ Cg, remove a and restart

BFS, possibly finding a second cycle.

We need the next lemma, which is a sharpened version of [124, Lemma 2.1] and follows
the same lines of reasoning.

Lemma 9.2.1: Any two non-arc-disjoint cycles in a (1, ℓ)-graph with minimum degree
at least 3 share an α-arc.

Proof. Suppose cycles C1 and C2 share a path P = u1 . . . uℓ. We show that at least one
arc of P must be an α-arc. Suppose (for the purpose of contradiction) that every arc
(ui, ui+1) with 1 ≤ i ≤ ℓ − 1 is not an α-arc. By induction on i, 1 ≤ i ≤ ℓ − 1, we
show that any (ui, ui+1) is a join. For i = 1 this is clear as C1 and C2 both enter P at
u1. This means that two arcs point towards u1 and by the (1, ℓ)-property we have that
(u1, u2) is a join. Now suppose the claim holds for any (uj, uj+1) with j ≤ i. Consider
the vertex ui+1. Because we have d(ui+1) ≥ 3, there must be another arc a incident to
ui+1 with a 6∈ A(P). As (ui, ui+1) is a join but not an α-arc, it follows that a = (v, ui+1)
for some v ∈ V . Hence, (ui+1, ui+2) is a join. Especially (uℓ−1, uℓ) is a join. But on
the other hand it must also be a fork. This is due to the two arcs a1, a2 leaving uℓ
(init(a1) = init(a2) = uℓ) such that a1 ∈ A(C1 \ C2) and a2 ∈ A(C2 \ C1). Thus,
(uℓ−1, uℓ) is an α-arc which contradicts our assumption.

We partition A in Aα containing all α-arcs and Aᾱ := A \ Aα. By Lemma 9.2.1, the
cycles in G[Aᾱ] must be arc-disjoint. This justifies the next preprocessing rule.

Pre-3 Let C be a cycle contained in G[Aᾱ]. Pick an arbitrary a ∈ C, adjoin C \ {a} to
MAS and decrease k by |C| − 1. In G, delete the arc set of C.

After exhaustively applying the preprocessing rules in the given order up to the point
where non of them applies, every cycle has an α-arc. Observe also that Pre-3 will
remove any loop.

186

9.2. The Algorithm

9.2.1.1. A Simple Algorithm

For v ∈ V with A−(v) = {a1, . . . , as} (A−(v) = {c}, resp.) and A+(v) = {c} (A+(v) =
{a1, . . . , as}), it is always better to delete c than one of a1, . . . , as. Therefore, we adjoin
a1, . . . , as to MAS, adjusting k accordingly. Having applied this rule on every vertex,
we adjoined the set {(u, v) ∈ A | min{d+(u), d−(v)} = 1} to MAS and therefore the
next lemma is valid.

Lemma 9.2.2: If for (u, v) ∈ A we have min{d+(u), d−(v)} = 1 then, w.l.o.g, we can
assume (u, v) ∈MAS.

So, the next task is to find S ⊆ Aα with |MAS ∪ S| ≥ k so that G[MAS ∪ S] is
acyclic. We have to branch on the α-arcs, deciding whether we take them intoMAS or
if we delete them. The preprocessing rules give us another simple brute-force algorithm
for MAAS: Within the preprocessed graph with m arcs, there could be at most m/3
arcs that are α-arcs. It is obviously sufficient to test all possible 2m/3 ≤ 1.26m many
possibilities of choosing α-arcs to be put into the (potential) feedback arc set.
We also can use the 2-approximation of [6] to get a kernel of size 2k. The solution
AS ⊆ A which is returned by this approximation algorithm is analyzed with respect to
the input A. This means we have derived that |A|

|AS |
≤ 2. If |AS| ≥ k, we stop, and

otherwise we know that |A| ≤ 2k. In the latter case, we apply preprocessing and cycle
again through all subsets S ⊆ Aα. Now due to m ≤ 2k, this takes O∗(1.5875k) steps. In
the remainder of this chapter, we are going to improve on this algorithm by introducing
reduction rules that can deal with appropriately defined weighted instances that are
produced by branching and that are tailored to work with the Measure&Conquer
approach.

9.2.2. Reduction Rules

9.2.2.1. The Overall Strategy

There is a set of reduction rules from [124] for cubic graphs which also work for (1, ℓ)-
graphs. We want to use the power of these reduction rules also in our algorithm. For the
purpose of measuring the complexity of the algorithm, we will deal with two parameters
k and k′, where k measures the size of the partial solution and k′ will be used for purposes
of run-time estimation: We do not account the arcs in Aᾱ immediately into k′. For every
branching on an α-arc, we count only a portion of them into k′.

More precisely, upon first seeing an arc b ∈ Aᾱ within the neighborhood AN(g) of an
α-arc g on which we branch, we will count b only by an amount of ω, where 0 < ω < 0.5
will be determined later. So, we will have two weighting functions wk and wk′ for k and
k′ with wk(a) ∈ {0, 1} and wk′(a) ∈ {0, (1−ω), 1} with a ∈ A, indicating each how much
of the arc has not been counted into k, or k′ respectively, yet. In the very beginning, we
have wk(a) = wk′(a) = 1 for all a ∈ A and in the course of the algorithm wk(a) ≤ wk′(a).
For a set A′ ⊆ A, we define wk′(A

′) :=
∑

a′∈A′ wk′(a
′) and wk(A

′) accordingly.
Observe that for a ∈ A we have a ∈ MAS iff wk(a) = 0. Notice that the arc set A

may change due to reduction rules; more specifically, some arcs will be deleted. However,

187

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

MAS is also containing possibly deleted arcs, i.e., it is always referring to the originally
given graph instance.
α-arcs which we take into MAS will be called red. However, we will describe situa-

tions with the reduction rules where the label red could be also carried by non-α-arcs,
indicating the former existence of a red α-arc “at that position.” Therefore, the label
red of some arc will not get lost, although that arc might turn from an α-arc to a non-
α-arc (for example, by applying the very first reduction rule from below). The very last
sentence of Rule RR-3 makes names of α-arcs dominant in the following sense: Every
α-arc in the original graph has a specific name. In the course of the algorithm, the arc
need no longer be an α-arc (for example due to arc deletions) but will still carry the
name of the original α-arc. This is assured by RR-3 as if the arc which is contracted
was an α-arc, then the remaining arc will carry its name (even though it need not to be
necessarily an α-arc). We say it carries an α-name. The very same also holds for red
arcs. They necessarily carry α-names because we will only branch on α-arcs.

9.2.2.2. Reduction Rules for Weighted Arcs

The set of reduction rules from [124] must be adapted and modified to deal with weighted
arcs. In addition, we define a predicate contractible (that can be tested in linear time)
for all a ∈ A as follows.

contractible(a) =

{

0 : wk(a) = 1, ∃ cycle C with a ∈ C and wk(C \ {a}) = 0
1 : else

The meaning of this predicate is the following: if contractible(a) = 0, then a is the only
remaining arc of some cycle, which is not already determined to be put into MAS.
Thus, a has to be deleted. To compute contractible(a) we simply look for a cycle in
G[(MAS ∩A(G)) ∪ {a}].

In the following, RR-(i-1) is always carried out exhaustively before RR-i, cf. the
procedure Reduce() in Fig. 9.1(b). Moreover, for simplicity we always indicate the
handling of wk and MAS, although in many cases the corresponding deduction has
already been performed, for example, because the corresponding arcs refer to non-α-
arcs of the original instance. However, as long as only arc deletions are involved, we
refrain from mentioning that Aα and Aᾱ might need updating with each rule.

RR-1 For v ∈ V with d−(v) = 0 or d+(v) = 0, take NA(v) into MAS, delete v and
NA(v) and decrease k by wk(NA(v)) and k′ by wk′(NA(v)).

RR-2 If for g ∈ A, we have contractible(g) = 0, then delete g.

RR-3 For v ∈ V with NA(v) = {a, b} let z = arg max{wk′(a), wk′(b)} and y ∈ NA(v) \
{z}. Contract y, decrement k by wk(y), k′ by wk′(y). If y was red, then z becomes
red. Modify Aα and Aᾱ accordingly, i.e., delete y from Aᾱ and move z from Aᾱ to
Aα if z has become an α-arc by this contraction. Finally, if z has become red only
because y had been red or if y carried an α-name and z not (or both), rename z
as y (and make according modifications to Aα, Aᾱ and MAS if necessary).

188

9.3. The Analysis

We point out that, due to RR-3, also non-α-arcs may become red. But it is still true for
a α-arc a that a ∈MAS iff a is red. Further notice that, due to RR-2, the contractible
predicate is always true (i.e., one) for subsequent reduction rules and need not be tested
in the following.

RR-4 Let C be a cycle contained in G[Aᾱ]. Pick an arbitrary a ∈ C with wk(a) = 1,
adjoin C \ {a} to MAS and decrease k by wk(C \ {a}) and k′ by wk′(C \ {a}).
Delete the arc set of C in G.

RR-5 If a, b ∈ A form an undirected 2-cycle then let z = arg min{wk′(a), wk′(b)}, de-
crease k by wk({a, b}), k′ by wk′(z), take both arcs from the undirected 2-cycle
into MAS and delete z.

RR-6 Having C = {(u, v), (v, w), (u, w)} ⊆ A (an undirected 3-cycle), decrease k by
wk(C), k′ by wk′((u, w)), take C into MAS and delete (u, w).

RR-7 Delete the single α-arc g in any remaining necessarily directed 2- or 3-cycle.

In Section 9.3.1 we will show the correctness of the reduction rules. This deferral is
due to the fact that the correctness of RR-3 is dependent on the branching strategy, in
particular when it comes to setting wk(z) = 0 on (new) red α-arcs z.

9.2.3. The Concrete Algorithm

We now are putting together the reduction rules and the branching strategy. The ob-
tained algorithm is Algorithm 13. In particular, notice that when YES is returned in one
leaf of the search tree, then the set variableMAS would contain the corresponding solu-
tion in terms of the arcs of the original input graph. Let AU

α := {a ∈ Aα | a is non-red}.

9.3. The Analysis

In this section we want to show that Algorithm 13 traverses a reference search tree (see
chapter 1.4). Algorithm 13 simply branches on α-arcs g of G. Either it deletes g or
it is taken into MAS. In the second case g will be called red. Also, we can rely on
the fact that every time we meet a red α-arc that there has been a branch on it. After
the branching, the reduction rules will be exhaustively carried out in the subsequent
recursive call.
Maximum Acyclic Arc-Induced Subgraph can be modeled as a combinatorial

maximization problem. In the following description and in the rest of the chapter we
are referring to the instance created by the exhaustive application of the preprocessing
rules. The universe U is the set Aα which comprises all α-arcs in G. Let D(U, T) be the
out-tree build up by Algorithm 13. The label-function is induced by the current partial
solution in some node u of the search tree. Hence, any such u will be mapped to a solvec
svu. The vector svu has length |Aα|. For g ∈ Aα, we find the following situations:

189

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

Algorithm 13 A parameterized algorithm for Maximum Acyclic Arc-Induced
Subgraph on (1, ℓ)-graphs

1: Apply the preprocessing rules exhaustively.
2: MAS← Aᾱ, k′ ← k, k ← k − wk(Aᾱ), wk(Aᾱ)← 0
3: Sol3MAS(MAS,G(V,A),k,k′,wk′,wk)

Procedure: Sol3MAS(MAS,G(V,A),k,k′,wk,wk′):

1: (MAS,G(V,A),k,k′,wk,wk′)← Reduce(MAS,G(V,A),k,k′,wk,wk′)
2: if k ≤ 0 then
3: return YES

4: else if there is a component C with at most 9 arcs then
5: Test all possible solutions for C.
6: else if there is an α-arc g ∈ AU

α then
7: if not Sol3MAS(MAS,G[A \ {g}],k,k′,wk,wk′) then
8: k ← k−1, k′ ← k′−wk′(g), wk(g)← wk′(g)← 0,MAS←MAS ∪AN(g)∪{g}.
9: for all a ∈ AN(g) do
10: Adjust wk′, see Figure 9.1(a).
11: end for
12: return Sol3MAS(MAS,G(V,A),k,k′,wk,wk′)
13: else
14: return YES

15: end if
16: else
17: return NO

18: end if

190

9.3. The Analysis

Adjust wk′:

1: if wk′(a) = 1 then
2: if ∃b ∈ (AN(a) \ (AN(g)∪{g})) with

wk′(b) = 0 then
3: k′ ← k′ − 1, wk′(a) ← 0, k ← k −

wk(a) wk(a)← 0 (case a.)
4: else
5: k′ ← k′−ω, wk′(a)← (1−ω), k ←

k − wk(a), wk(a)← 0
(case b.)

6: end if
7: else
8: k′ ← k′ − (1− ω), wk′(a)← 0.

(case c.)
9: end if

(a)

Procedure:
Reduce(MAS ,G(V,A)),k,k′,wk,wk′):

1: repeat
2: cont ← false
3: for i=1 to 7 do
4: Try to apply RR-i.
5: if RR-i applied then
6: cont ← true; break;
7: end if
8: end for
9: until cont=false

10: return
(MAS,G(V,A),k,k′,wk,wk′)

(b)

Figure 9.1.: 9.1(a): In case a., we set wk′(a) = 0, because there will not be any other
neighboring non-red α-arc of a. In case b., this might not be the case, so we
count only a portion of ω. In case c., we will prove that wk′(a) = (1 − ω)
and that there will be no other non-red neighboring α-arc of a, see Theorem
9.3.4.5.

1. If svu[g] = 1, then g ∈ MAS (i.e., g is red).

2. If svu[g] = 0, then g 6∈ MAS (i.e., g has been deleted).

3. If svu[g] = ⋆, then there had been no branching on g yet.

The value function will be c(q) = |{i | q[i] = 1}| (i.e., the number of ones in the solvec
q). The solution space S are all subsets S ⊆ Aα which leave G[Aᾱ ∪ S] acyclic.

9.3.1. Analyzing the Reduction Rules

We start with listing some simple properties of reduced instances.

Lemma 9.3.1: After the application of Reduce(), see Figure 9.1(b), we are left with

1. a (1, ℓ)-graph

2. such that no cycle is without an α-arc,

3. no directed or undirected 2- or 3-cycle remains and

4. no v ∈ V with d(v) = 2 or min{d−(v), d+(v)} = 0.

191

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

5. Every red arc carries an α-name.

6. Every α-arc created by RR-3 carries an α-name.

Proof. 1. Since deleting arcs preserves the (1, ℓ)-property, the only critical reduction
rule is RR-3. Here we contract an arc a = (u, v) with d−(u) = 1 or d+(u) = 1.
Both cases do not violate the (1, ℓ)-property.

2. Note that after the exhaustive application of RR-4, any cycle has at least one
α-arc.

3. After the exhaustive application of RR-5 and RR-6 there are no undirected 2-
or 3-cycles, respectively, left. Observe that any directed 2- or 3- cycle has at most
one α-arc. Then by RR-7 these α-arcs will be deleted.

4. Due to RR-1 theres is no v ∈ V with min{d−(u), d+(v)} = 0. By RR-3 we have
d(u) ≥ 3.

5. When a red arc g is created by branching g is a α-arc. Due to the dominance of
α-names in RR-3 it keeps its name.

6. If (u, v), (v, t) give rise to a α-arc (u, t) due to RR-3, then before an arc (j, v)
or (v, j) must have been deleted before (as our instance is preprocessed). Hence,
(u, v) or (v, t) was an α-arc and by this (u, t) will carry a α-name.

Lemma 9.3.2: Alg. 13 either puts a selected α-arc g into MAS, or it deletes g. If
arcs are deleted, reduction rules can be triggered in the subsequent recursive call. This
can be also due to triggering RR-2 after putting g into MAS. No reduction rule adds
a non-red α-arc into the partial solution MAS.

Proof. In the case where g is deleted we immediately trigger RR-1, as we always have
a graph with minimum degree 3 in any node of the search tree, see Lemma 9.3.1.4.
Subsequently, other reduction rules might be triggered. If there is a cycle C with wk(C \
g) = 1 then there must be another arc b ∈ C \ g with wk(b) = 1. By taking g intoMAS
we trigger RR-2, which deletes b. If such a cycle C does not occur we never trigger any
reduction rule by taking g into MAS. The last point can be seen with moderate effort
by inspecting the reduction rules one after the other.

Lemma 9.3.3: The reduction rules are sound with respect to Alg. 13.

Proof. Basically, we show the soundness of the reduction rules by proving that they
guarantee item 4(a) of Definition 1.4.1. We will not go in to detail in each case as this
will follow implicitly from our arguing. An exception will be RR-3. This reduction rule
will also make use of item 4(b) of the definition. It is the only reduction rule that will
actually insert global references into the search tree.

RR-1 A vertex v ∈ V with d−(v) = 0 or d+(v) = 0 cannot be entered and left by a
cycle, so the incident arcs are not part of any cycle.

192

9.3. The Analysis

RR-2 If an α-arc is not contractible, it must be deleted because it is the only arc not
in MAS for some cycle, so RR-2 is correct.

RR-3 For a vertex v with NA(v) = {a, b}, we have to delete at most one arc from
{a, b} in order to cut a cycle. So, we can take one into MAS and contract it.
But additionally we must be sure if the arc we want to contract is not the last
remaining arc on a cycle, which is not inMAS. This check has already been done
by RR-2.

Notice that our rule RR-3 differs from the similar one in [124] by the fact that red
arcs and α-names are dominant. It is possible that we create an new α-arc (w, v)
by this rule, (w, v) being red. The arc (w, v) could evolve out of two arcs (w, t)
and (t, v) the first being red, the second carrying an α-name. This is justified by
the following claim:

Claim: If an α-arc (w, v) was created by merging a red arc (w, t) and a non-red
arc (t, v), then, w.l.o.g., (w, v) ∈ MAS (i.e., (w, v) is red).

Proof. To prove the claim we now are going to show that Algorithm 13 traverses a
reference search tree (see chapter 1.4) where the global references are inserted by
RR-3. The arc (w, t) carries an α-name by Lemma 9.3.1.5. If (t, v) does not carry
an α-name it is predetermined to be inMAS and the claim is correct. Thus, both
carry an α-name which can be found in U . Let P := wtv be a directed path.

In the present search node N1 ∈ V (D) of the search tree, just before the merging
of (t, v) and (w, t), w.l.o.g, we have label(N1) = (e1, . . . , ey, ⋆, . . . , ⋆). W.l.o.g.,
it is of the form where ei ∈ {0, 1} for 1 ≤ i ≤ y. We assume that e1 corre-
sponds to (w, t) and ey+1 to (t, v). If (w, v) would not be an α-arc in G, then
we do not have to branch and the reduction rule is correct. But (w, v) is such
a seemingly new α-arc. To destroy any cycle passing through P , we have to
delete at most one arc of P . So, deleting (t, v) would be equivalent to deleting
(w, t), i.e., the solvecs (e1, . . . , ey, 0, ⋆, . . . , ⋆) and (ē1, . . . , ey, 1, ⋆, . . . , ⋆) are equiv-
alent in the sense that any solution (e1, . . . , ey, 0, ey+2, . . . , eℓ) can be replaced by
(ē1, . . . , ey, 1, ey+2, . . . , eℓ) and vice versa.

Now, if we follow the path from the present node N1 of the search tree to the root,
we find the node N ′ where (w, t) was set to be red, (i.e., N ′ = dN1

(w,t) speaking in

terms of chapter 1.4). By the last point of Lemma 9.3.2 we know that red arcs have
been created by branching. Thus, p(N ′) is a full node, i.e., there is N2 ∈ V (D)
which is the right child of p(N ′) in the search tree (i.e., r(p(N)′) = N2) which
considers the deletion of (w, t) and a second child (namely N ′) considering the
addition of (w, t) to MAS. We have label(N2) = (ē1, e2, . . . , ex, ⋆, . . . , ⋆) where
x ≤ y. Thus, we have (ē1, . . . , ey, 1, ⋆, . . . , ⋆) � label(N2). Summarizing, we have
that if there is some ϕ1 := (e1, . . . , ey, 0, ey+2, . . . , eℓ) ∈ S then it follows that
ϕ2 := (ē1, . . . , ey, 1, ey+2, . . . , eℓ) ∈ S, too. Also, c(ϕ1) = c(ϕ2) holds. Con-
sequently, as label(ϕ2) � label(N2), we do not have to consider the possibility

193

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

(e1, . . . , ey, 0, ⋆, . . . , ⋆) in the current search tree node N1. The global reference in-
serted this way into D is (N1, N2). By this the deletion of (t, v) has been neglected
and only its addition to MAS was considered.

Up to this point, we have shown items 1, 3, and 4 of Definition 1.4.1. We now prove
that D(V, T ∪ R) is acyclic. Now consider the definition of a proper drawing of
D(V, T) (Definition 1.4.2). In this sense excluding an α-arc from the future solution
(or equivalently adjoining it toMAS) is making it red, including it means deleting
it. Hence, we have posx(N1) < posx(N ′) and posx(N ′) < posx(N2). Therefore the
global reference (N1, N2) is pointing from the left to the right in the drawing. This
is true for any global reference as they are only inserted by RR-3. By Lemma 1.4.1
the overall structure D(V, T ∪R) is acyclic and therefore RR-3 is sound.

The proof of the claim was quite lengthy but is needed to analyze the interactions
between the reduction rules and the branching strategy later on. It surely also
applies in the case when we merge a red arc (t, v) with a non-red arc (w, t) such
that (w, v) becomes an α-arc. The case where two red arcs are merged correctly
creates a single red arc.

RR-4 By Lemma 9.2.1 the considered cycle contains no α-arc. Thus, any of its arcs is
equally likely to be deleted.

RR-5 Let u, v ∈ V be the endpoints of an undirected 2-cycle. W.l.o.g., there are arcs
a1, a2 with init(a1) = init(a2) = u and ter(a1) = ter(a2) = v. The arcs a1, a2 can
not be α-arcs, so it is safe to take them into MAS. For any arc set P we have:
P ∪ {a1} is a cycle iff P ∪ {a2} is a cycle. This means we can, w.l.o.g., erase a2 as
long as any cycle C containing a1 will be cut by an arc different form a1. This is
assured because we put a1 into MAS.

RR-6 If we have (u, v), (v, w), (u, w) ∈ A, there must be also (a, u), (w, b) ∈ A and
w.l.o.g., (v, c) ∈ A, because of the absence of vertices of degree less than three.
The arcs (u, v), (v, w), (u, w) are not α-arcs, so their exclusion from MAS must
not be considered. For any arc set P we have: P ∪ {(u, v), (v, w)} is a cycle iff
P ∪ {(u, w)} is a cycle. Thus, if we take care only of cycles passing through (u, v)
and (v, w) we also cover those passing through (u, w). This justifies the deletion
of (u, w) similarly as in the previous item.

RR-7 Any directed cycle must contain an α-arc due to RR-4’s higher priority. Cycles
of length 2 or 3 cannot contain more than one α-arc due to their structure. Thus,
this unique α-arc must be deleted.

Note that RR-2 and RR-7 cut off branches in the reference search tree which do not
provide any solution. Thus, any kind of reference can be omitted. RR-4 inserts local
references as only one possible arc deletion of the at most |C| is considered. This local
reference points downward. RR-1 puts arcs into MAS. Any solution which omits one
of these arcs can be improved locally and hence can be skipped. RR-5 and RR-6 also

194

9.3. The Analysis

put arcs into MAS. If such an arc (a, b) does not carry an α-name this can be done
without any inserted reference. If (a, b) carries an α-name then due to skipping the
possibility of its deletion a local reference can be inserted as it is no α-arc in the current
graph.

9.3.2. Analyzing the Algorithm

Observe that the handling of the second parameter k′ is only needed for the run-time
analysis and could be avoided when implementing the algorithm. Thus, the branching
structure of the Alg. 13 is quite simple, as expressed in the following:

9.3.2.1. Combinatorial Observations.

While running the algorithm we have k ≤ k′. Now, substitute in line 2 of Sol3MAS of
Algorithm 13 k by k′. If we run the algorithm, it will create a search tree Tk′. The search
tree Tk of the original algorithm must be contained in Tk′, because k ≤ k′. If |Tk′| ≤ ck

′
,

then it follows that also |Tk| ≤ ck
′
= ck, because in the very beginning, k = k′. So in the

following, we will state the different recurrences derived from Algorithm 13 in terms of
k′. For a good estimate, we have to calculate an optimal value for ω.

Theorem 9.3.4: In every node of the search tree, after applying Reduce(), we have

1. For all a = (u, v) ∈ Aᾱ with wk′(a) = (1 − ω), there exists a red fork (u′, u) or a
red join (v, v′).

2. For all non-red a = (u, v) ∈ Aᾱ with wk′(a) = 0, we find a red fork (u′, u) and a
red join (v, v′). We will also say that a is protected (by the red arcs).

3. For all red arcs d = (u, v) with wk′(d) = 0, if we have only non-red arcs in
NA(u) \ {d} (NA(v) \ {d}, resp.), then d is a join (d is a fork, resp.).

4. For each red arc d = (u, v) with wk′(d) = 0 that is not a join (fork, resp.), if there
is at least one red arc in NA(u) \ {d} (in NA(v) \ {d}, resp.), then there is a red
fork (red join, resp.) in G[NA(u)] (G[NA(v)], resp.).

5. Let g ∈ AU
α then for all a ∈ AN(g), we have: wk′(a) > 0.

6. For all g ∈ AU
α we have wk′(g) = 1.

Proof. We use induction on the depth of the reference search tree. Clearly, all claims
are trivially true for the original graph instance, i.e., the root node. This is also easily
verified for the situation obtained after a first exhaustive application of the reduction
rules as no red arcs are produced.

Now consider the reference search tree which is built up. More generally, we can
associate to each node with out-degree at least two in the reference search tree a reduced
instance (so, no reduction rules apply). These are exactly the nodes where Alg. 13 was
branching.

195

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

We are going to argue on these instances with our induction argument.
As induction hypothesis, we assume that the claim is true for all reference search tree

nodes up to depth n. Let us discuss a certain reference search tree node s at depth n+1.
Let G = (V,A) be the graph instance associated with s. Let k and k′ be the parameter
values at node s. Let s̄ be the immediate predecessor node of s in the search tree. We
will refer with Ḡ = (V̄ , Ā), k̄, k̄′ to the corresponding instance and parameter values.
Notice that each claim has the form ∀a ∈ A : X(a) =⇒ Y (a). Here, X and Y express
local situations affecting a. Therefore, we have to analyze how X(a) could have been
created by branching. According to Lemma 9.3.2, we have to discuss what happens (1)
if a certain α-arc had been put intoMAS and (2) if reduction rules were triggered. As
a third point, we must consider the possibility that X(a) is true both in the currently
observed reference search tree node s and in its predecessor, but that Y (a) was possibly
affected upon entering s.

Exemplary, we will give a very detailed proof of the very first assertion. The other
parts can be similarly shown, so that we only indicate the basic steps of a complete
formal proof.

1. Consider an arc a = (u, v) ∈ Aᾱ with wk′(a) = (1− ω). This situation could have
been due to three reasons:

(A) In node s̄, we branched at an arc d̄ ∈ AN(ā) with wk̄′(ā) = 1, see Figure
9.2(a) (where d = (w, u)). We consider here the case that d̄ is turned red. Namely,
according to case b. of the procedure “Adjust” (see Figure 9.1(a)), wk′(a) = (1−ω).
Since we only branch at α-arcs, d̄ is even both a fork and a join. As detailed in
(B), ā could give rise to a ∈ V by a sequence of RR-3-applications in possible
combination with other rule applications, such that wk′(a) = (1−ω). As described
in (C), d̄ will yield, as a red neighbor of ā, again by a (possibly empty) sequence
of reduction rule applications, in particular of RR-3-applications, a fork or join
that is neighbor of a in G as required. (B) In node s̄, we branched at some arc c.
We consider here the case that (possibly due to a following application of RR-2)
some arc b is deleted (possibly b = c). This triggers some reduction rules. How
could the situation have been created by reduction rule applications ? The only
possibility is to (eventually) use RR-3. All other reduction rule delete arcs.

In that case, there would have been two neighbored arcs a′, a′′ in Ḡ with
max{wk̄′(a

′), wk̄′(a
′′)} = (1− ω). Hence, at least one of these arcs, say a′, actually

carried the weight (1−ω). In actual fact, there could have been a whole cascade of
RR-3–applications along a path P in Ḡ (P consists of a sequence of subsequently
neighbored arcs from Āᾱ), eventually leading to a, but by an easy inductive argu-
ment one can see that there must have been some ā ∈ Āᾱ within this cascade to
which the induction hypothesis applies, so that we conclude that, in Ḡ, ā has a
neighboring arc d̄ that is a fork or a join. Since d̄ is a fork or a join, it cannot be
neighbor to two arcs from the path P (as long as P and d̄ do not induce a cycle.
Then RR-3 will create a loop or a 2-cycle and RR-4 or RR-7 will delete d̄. This
is handled in (C)).

196

9.3. The Analysis

Therefore, w.l.o.g., ā is the first arc on P (without predecessors on P), and d̄ is
a fork. After the sequence of RR-3-applications on P (possibly interrupted by
reduction rules not affecting P), a has been created with d̄ as a neighboring red
fork. We will show in (C) that the fork d̄ will eventually lead to a fork d that is
neighbor of a in G.

(C) We consider the scenario that already in node s̄, wk̄′(a) = (1−ω). By induction
hypothesis, assume that (w.l.o.g.) a = (u, v) has a neighbored red fork d̄ = (u′, u).
If d̄ is deleted by using reduction rules, then u would have (intermediately) in-
degree zero, so that RR-1 triggers on a, contradicting our very scenario in G that
we are discussing. Therefore, the local situation could only change by applications
of RR-3 involving d̄. If those mergers refer to neighbors of d̄ via the tip of d̄, then
either a is directly deleted or merged with d̄. Both possibilities would destroy the
scenario we discuss, since a would disappear. Therefore, such mergers could be
only via the tail of d̄. Since d̄ is red, a merger with d̄ will be red, as well. Moreover,
this merger would be also a fork. Again by an easy induction, one can conclude
that the neighbor d of a in G that results from a sequence of mergers using rule
RR-3 on a path ending at d̄ in Ḡ would be a red fork as required.

2.-4. We will actually prove points 2. through 4. by a parallel induction. To improve
readability of our main argument, we refrain from giving all possible details how,
in particular, the employment of RR-3 may affect (but not drastically change) the
situation. This means that we do not discuss the possibility that the premise of
the statement(s) was true at some reference search tree node s̄, but the conclusion
might no longer hold due to intermediate applications of reduction rules.

2. How can a = (u, v) ∈ Aᾱ with wk′(a) = 0 have been created ?

Firstly, it could be due to a RR-3–contraction with a non-red arc t with wk′(t) = 0.
But then t was not protected, which is a contradiction to the induction hypothesis.
Secondly, it could be due to branching on a neighboring α-arc b, say b = (v, w)
with b a join, in two different ways:
(1) either we branched at b at a point of time when wk′(a) = (1 − ω) (case c. of
Procedure “Adjust”, see Figure 9.1(a)), or (2) we branched at b when wk′(a) = 1
(case a., see Figure 9.1(a)). The case wk′(a) = 0 is impossible as by induction a is
protected.

In case (1), there must have been a red arc e incident to a by item 1 of our property
list, see Figure 9.2(b). The arc e is not incident to v, since it must be a fork. Hence,
e = (y, u). This displays the two required red arcs (namely b and e) in this case.
In case (2), a was created by case a. of Procedure “Adjust.” Obviously, b is red
after branching. Since we have branched according to case a., there is another arc
h incident with a (but not with b) such that wk′(h) = 0. There are four subcases
to be considered:

(a) h = (u, u′) is not red, see Figure 9.2(c). By induction (item 2.), there must be
a red fork arc (u′′, u). Hence, a is protected.

197

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

u

v

w

y

(a)

e

y

b

w

a

u v

(b)

u’

h b

w

a

u v
u’’

(c)

u’

h

c

a

u v

b

w
u’’

(d)

u’

h a

u v

b

w
u’’

(e)

u’

h a

u v

b

w
u’’

(f)

b

wu’

h a

u v

(g)

u vw

(h)

u vw

(i)

Figure 9.2.: Dotted lines indicate red arcs.

(b) h = (u, u′) is red, see Figure 9.2(d). Consider all other arcs incident to u. Since
we are dealing with reduced instances and by the (1, ℓ)-property, there must be
exactly one of the form c = (u′′, u), since otherwise u would be a source. Suppose
h is the only red arc in NA(u). Then this contradicts item 3. Now, suppose c is
not red. Then there is a red arc of the form (u, ū). By item 4. c must be also red,
a contradiction, Therefore, c is the red fork which protects a.
(c) h = (u′, u) is not red. All other arcs incident to u could be of the form (u′′, u),
see Figure 9.2(e). Since h must be protected, by induction, a should be red,
contradicting our assumption on a. Thus, all these arcs are of the form (u, u′′), see
Figure 9.2(f). This contradicts item 2., since there is no red join protecting h.

(d) h = (u′, u) is red, see Figure 9.2(g). Suppose h is not a fork. Then, all other
arcs incident with u beside a and h are of the form (ũ, u). If none of them is red
we have a contradiction concerning item 3. If one of them is red, then by item 4.,
a is red, which contradicts our assumptions. Hence, h is a fork, so that a will be
protected.

3. How could d have been created ? If it had been created by branching, then there
are two cases: (1) d was put into MAS; (2) d was neighbor of an arc b which we
put into MAS. The deletion of b would result in a deletion of d.
In case (1), the claim is obviously true. In case (2), let, w.l.o.g., u be the common
neighbor of b and d. After putting b into MAS, there will be a red arc (namely
b), incident to u, so that there could be only non-red arcs incident with v that
have the claimed property by induction. Hence, the premise for d is not true with
respect to u.
If d has been created by reduction rules, it must have been through RR-3. So,
there have been (w.l.o.g.) two arcs (u, w) and (w, v) with wk′-weights zero. One
of them must be red. W.l.o.g., assume that (u, w) is red. If (w, v) is also red, see

198

9.3. The Analysis

Figure 9.2(h), then the claim holds by induction. If (w, v) is not red, see Figure
9.2(i), then (w, v) must be protected due to item 2. Hence, the premise is falsified
for d with respect to the vertex v.

4. We again discuss the possibilities that may create a red d with wk′(d) = 0.
If d was created by taking it into MAS during branching, then d would be both
fork and join in contrast to our assumptions.
If we branch in the neighborhood of d, then the claim could be easily verified
directly. Finally, d could be obtained from merging two arcs e = (u, w), f = (w, v)
with wk′(e) = wk′(f) = 0. If both e and f are red, the claim follows by induction.
If only f is red and e is non-red, then there is a red fork, which protects e by
item 2. Again, by induction the claim follows. The case where only e is red is
symmetric.

5. Assume the contrary. Discuss a neighbor arc a of g with wk′(a) = 0. W.l.o.g., we
have a = (u, v), g = (v, w) and b = (z, v).
If a is not red, then g must be red due to item 2., contradicting g ∈ AU

α . If a is
red, then discuss another arc b that is incident to the common endpoint of a and
g. If there is no red b, then the situation contradicts item 3. So, there is a red b.
This picture contradicts item 4.

6. Here we must consider α-arcs which are created by RR-3. As a matter of principle
this situation has the following property: We have two arcs (u, t) and (t, v) such
that u is a join and v is a fork. This RR-3–application became possible because
an arc a incident to t had been deleted in a previous reduction step. Now a must
be either of the form (r, t) or (t, r). Thus, either (u, t) or (t, v) was an α-arc before
a’s deletion. W.l.o.g., we assume (u, t) was this α-arc.

We now induce on the number n of RR-3–applications involving an α-arc. Clearly,
for n = 0 the claim holds. Suppose now it is also true for some n. Now (u, t) is
an α-arc. If (u, t) is not red then by induction hypothesis we have wk′((u, t)) = 1.
Hence, after the RR-3 application we have wk′((u, v)) = 1. If (u, t) was red then
the emerging α-arc (u, v) is also red and hence the premise does not apply.

We would like to stress the fact that the dominance of the red arcs is crucial especially
for Theorem 9.3.4.6. Without this dominance, it would be possible to generate non-red
α-arcs by RR-3 such that their wk′-weight is smaller than one. We give an example:
Let (u, v) be a red α-arc such that exactly (v, z1), (v, z2) are additionally incident to v.
If all three arcs have wk′-weight smaller one then by deleting (v, z1) and applying RR-3
we would obtain an (non-red) α-arc with weight smaller one. This would affect the run
time as we will see in the next section.

199

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

u

v

(a)

u

v

(b)

u

v

(c)

u

v

(d)

Figure 9.3.: Dotted undirected lines indicate arcs which can be directed in both ways.

9.3.2.2. Estimating the Running Time for Max-Degree-3 Graphs.

For an arc a ∈ AN(g), where g is an α-arc, let ANecl(a) := AN(a) \ (AN(g) ∪ {g}). In
Algorithm 13, depending on in which case of Figure 9.1(a) (procedure ”Adjust”) we end
up with, we decrement k′ by a different amount for each arc a ∈ AN(g) in the case that
we put g into MAS. Due to 9.3.4.6 for the arc g we can decrement k′ by one. We can
be sure that we may decrement k′ by at least (1− ω) for each neighbor a ∈ AN(g) due
to item 5. of Theorem 9.3.4.

If we do not put g into MAS, we delete g and AN(g) immediately afterwards by
RR-1, decrementing k′ accordingly (by wk′(AN(g))). Moreover, if case b. applies to
a ∈ AN(g), we know that the two arcs d, e ∈ ANecl(a) obey wk′(d) ·wk′(e) > 0 (observe
that we do not have triangles). By deleting a, no matter whether RR-1 or RR-3 applies
to d and e (this depends on the direction of the arcs), we can decrement k′ by an extra
amount of at least (1− ω), cf. the handling of k′ by these reduction rules. This is true
even if V (d), V (e) ⊆ V (AN(g)) as we will argue in the following claim.

Proposition 9.3.5: Let a ∈ AN(g) for some g ∈ AU
α which matches case b. Then we

get a reduction of at least 2− ω with respect to a in case of deleting g.

Proof. Note that if for all a ∈ AN(g) we have that V (ANecl(a)) ⊆ V (AN(g)), then
A(V (AN(g))) is a component of 9 arcs, see Figure 9.3(a), which are handled separately
in line 5 of Alg. 13. We now examine the case where there are a1, a2 ∈ AN(g) with
ANecl(a1) ∩ ANecl(a2) 6= ∅ and case b. applies to both. Let a1, . . . , aℓ (with 2 ≤ ℓ ≤ 4)
be a maximal sequence of arcs from AN(g) such that ANecl(ai) ∩ ANecl(ai+1) 6= ∅
(1 ≤ i ≤ ℓ − 1). The arcs in

⋃ℓ
i=1ANecl(ai) form a directed or an undirected path

P as indicated in Figure 9.3 (for ℓ = 2 see Figure 9.3(b), for ℓ = 3 see Figure 9.3(c)
and for ℓ = 4 see Figure 9.3(d)). Let s0, s1, . . . , sℓ, sℓ+1 be the vertices of P . Observe
that we must have s0 6= sℓ+1 for any ℓ ∈ {2, 3, 4}. In case ℓ ∈ {2, 3}, s0 = sℓ+1 would
imply a directed or undirected 2- or 3-cycle which contradicts Lemma 9.3.1. If ℓ = 4
then A(V (AN(g))) is a component which was already excluded. Summarizing P is a
undirected path of ℓ+ 1 arcs having each wk′-weight at least (1− ω).Suppose there is a
vertex of P which is a source or a sink after deleting AN(g) ∪ {g}. Then, it is rather
obvious that RR-1 will delete all arcs of P . This yields a reduction of (ℓ+ 1) · (1− ω)
with respect to P . Thus, we can say that we get a reduction of at least (2− ω) for each
ai. If no vertex of P is a source or a sink after the deletion of AN(g) ∪ {g} then P is

200

9.3. The Analysis

α-arc g a. b. c. b′.
MAS 1 ω (1− ω) ω

Deletion 1 (2− ω) (1− ω) 1

Table 9.1.: Summarizes by which amount k′ can be decreased for a ∈ AN(g), subject to
if we take g into MAS or delete g and to the case applying to a.

also directed. Therefore, RR-3 yields a reduction of ℓ(1−ω) for P . Now considering all
paths of this form, which occur in

⋃

a∈AN(g)ANecl(a) finally proves the proposition.

Let i denote the number of arcs a ∈ AN(g) for which case a. applies. In the analogous
sense j stands for the case b. and q for c. For every positive integer solution of i+j+q = 4,
we can state a total of 15 recursions T1, . . . , T15 according to Table 9.1 depending on ω
(ignoring the last column for the moment). Find an overview of those recurrences in
Table 9.2(a). For every Ti and for a fixed ω, we can calculate a constant ci(ω) such that
for the branching number c of Ti we have c ∈ O∗(ci(ω)k). We want to find a ω with
subject to minimize max{c1(ω), . . . , c15(ω)}. We numerically obtained ω = 0.1687 so
that max{c1(ω), . . . , c15(ω)} evaluates to 1.201, see Table 9.2(a) for an overview of the
involved recurrences.

The dominating cases are when i = 0, j = 0, q = 4 (T5) and i = 0, j = 4, q = 0 (T15).
We conclude that MAAS on graphs G with ∆(G) ≤ 3 can be solved in O∗(1.201k).
Measuring the run time in terms of m := |A| the same way is also possible. Observe
that if we delete an α-arc, we can decrement m by one more. By adjusting T1, . . . , T15
according to this and by choosing ω = 0.2016, we derive an upper bound of O∗(1.1798m),
see Table 9.2(b) for an overview.

Theorem 9.3.6: MAS can be solved in O∗(1.1798m) and O∗(1.201k) on max-degree-3
graphs.

9.3.2.3. A speed-up for the max-degree-3 case.

We will obtain a slightly better bound for the search tree by a precedence rule, aiming
to improve recurrence T5. If we branch on an α-arc g according to this recurrence, for
all a ∈ AN(g) we have wk′(a) = (1−ω). Such α-arcs will be called α5-arcs. We add the
following rule: branch on α5-arcs with least priority. Let l := |AU

α |.
Lemma 9.3.7: Branching on an α5-arc, we can assume:

⌊

1
5−4ω

k′
⌋

≤ l <
⌈

1
4−4ω

k′
⌉

.

Proof. If l ≥
⌈

1
4(1−ω)

k′
⌉

, then by deleting AU
α , we decrement k′ by at least l·4(1−ω) ≥ k′,

returning YES. If l <
⌊

1
1+4(1−ω)

k′
⌋

, then by taking AU
α into MAS , we decrement k′ by

at most l · (1 + 4(1− ω)) < k′, returning NO.

Employing this lemma, we can find a good combinatorial estimate for a brute-force
search at the end of the algorithm. This allows us to conclude:

201

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

Theorem 9.3.8: MAAS is solvable in time O∗(1.1995k) on maximum-degree-3-graphs.

Proof. So using Lemma 9.3.7, in general we can find an integer b ≥ 1 such that l =
⌈

1
4(1−ω)

k′ − b
⌉

(⋆). Again, if we decided to delete AU
α , we decrement k′ by at least

l · 4(1 − ω), so that afterwards k′ ≤ b4(1 − ω). If k′ ≥ k > 0, we have to step back and
take some arcs of AU

α into MAS. For any such arc we can decrement k′ by one more
than by deleting it. Finally, we have to find at most ⌈b4(1− ω)⌉ arcs from AU

α , which
we can take in to MAS without causing any cyclicity.

For this we have
(

l
⌈b4(1−ω)⌉

)

choices, which is biggest for l = 2 ⌈b4(1− ω)⌉. So for this

representation of l and with (⋆) we find that 2⌈b4(1− ω)⌉ =
⌈

1
4(1−ω)

k′ − b
⌉

.

Thus, the two inequalities 2b4(1 − ω) ≤ k′

4(1−ω)
− b+ 1 and 2b4(1 − ω) + 1 ≥ k′

4(1−ω)
− b

hold, which imply

1

4(1− ω)(9− 8ω)
k′ + 1 ≥ b ≥ 1

4(1− ω)(9− 8ω)
k′ − 1.

Hence, the number of choices can be upper bounded asymptotically by

O∗

((

2
(9−8ω)

k′

1
(9−8ω)

k′

))

⊆ O∗
(

4
1

(9−8ω)
k′
)

.

We mention that we have to take care of the case where k′ = l. In this case we have
to check whether G[(MAS ∩ A(G)) ∪ AU

α] is acyclic and give the appropriate answer.
Then the above mentioned run time for recurrence T5 can be assumed. For ω = 0.1723
we get an improved run time of O∗(1.1995k), where again recurrences T5 and T15 are
dominating. Further note that we can not make use of Lemma 9.3.7 when we measure
the run time in terms of m.

Corollary 9.3.9: Directed Feedback Vertex Set on max-degree-3 graphs is solv-
able in O∗(1.282n).

Proof. We argue that MAAS and Directed Feedback Vertex Set are equivalent
for graphs of degree at most three. If A is a feedback arc set, then we can remove instead
the set S of vertices the arcs in A are pointing to in order to obtain a directed feedback
vertex set with |S| ≤ |A|. Conversely, if S is a directed feedback vertex set, then we can
assume that each vertex v ∈ S has one ingoing and two outgoing arcs or two ingoing
and one outgoing arc; in the first case, let av be the ingoing arc, and in the second case,
let av be the outgoing arc. Then, A = {av | v ∈ S} is a feedback arc set with |A| ≤ |S|.
By m ≤ 3

2
n O∗(1.1798

3
2
n) is a run time upper bound.

9.3.2.4. Estimating the run time for (1, ℓ)-graphs.

There is a difference to maximum degree 3 graphs, namely the entry for case b. in case of
deletion in Table 9.1. For a ∈ AN(g) it might be the case that |AN(a)\(AN(g)∪{g})| ≥

202

9.3. The Analysis

3. When we delete g and afterwards a by RR-1, then whether RR-1 nor RR-3 applies
(due to the lack of sources, sinks or degree two vertices in AN(a) \ (AN(g)∪ {g})). Let
{x} = V (a) \ V (g). Then we say case b̃. applies to a iff case b. applies and: 1) d(x) = 3
or 2) a is the only in- or out-arc of x.
If the conditions 1. and 2. do not hold but case b. applies we speak of case b′.
Thus the mentioned entry should be 1 for b′. As long as |AN(g)| ≥ 5 the reduction in
k′ is great enough for the modified table, but for the other cases we must argue more
detailed. We introduce two more reduction rules, where the first two are similar to an
already mentioned one in [124].

RR-8 Let x, u, v ∈ V such that (x, u), (u, v) ∈ A and d−(u) = d−(v) = 1. Depending on
the next cases do the following:

1. a) The arc (u, v) is non-red or b) both arcs (x, u), (u, v) are red: Contract
(u, v) to a vertex.

2. The arc (u, v) is red, (x, u) is non-red and d−(x) = 1: Contract (x, u) to a
vertex.

See Figure 9.4(a) for an illustration of RR-8.

RR-9 Let x, u, v ∈ V such that (x, u), (u, v) ∈ A and d+(x) = d+(u) = 1. Depending on
the next cases do the following:

1. a) The arc (x, u) is non-red or b) both arcs (x, u), (u, v) are red: Contract
(x, u) to a vertex.

2. The arc (x, u) is red, (u, v) is non-red and d+(v) = 1: Contract (u, v) to a
vertex.

RR-10 For a red g′ ∈ Aα with wk′(g
′) > 0, set k′ ← k′ − wk′(g

′) and wk′(g
′)← 0.

We also add the next rules to Algorithm 13.

a) In Figure 9.1(b) let the for-loop in line 3 run up to i = 10.

b) Prefer α-arcs g such that |AN(g)| is maximum for branching in line 6 of Algo-
rithm 13.

c) Forced to branch on g ∈ AU
α with |AN(g)| = 4, choose an α-arc with the least

occurrences of case b′.

Lemma 9.3.10: 1. The reduction rules RR-8 and RR-9 are sound and do not
violate Theorem 9.3.4.

2. RR-10 is sound and does not invalidate Theorem 9.3.4.

203

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

Proof. 1. We exemplary focus on RR-8 as the soundness of RR-9 can be proven
analogously. Let G′ be the graph after the contraction of the corresponding arc.
Firstly, assume case 1.a.) matches. In any solution where (u, v) is deleted it can
be substituted by (x, u). If (x, u) is non-red this clearly can be done. If (x, u) is
red, then by Lemma 9.3.2 we already branched on (x, u). If N1 ∈ V (D) is the
current search tree node then in the sub-tree r(p(dN1

(x,u))) (see chapter 1.4) an in

cardinality equivalent solution can be found where (x, u) is deleted and (u, v) not.
Analogously as in the proof of RR-3 no cycles are introduced into the reference
search tree as the inserted global references point from left to right. In case 1.b)
(u, v) is red and hence will not be deleted. Then any arc set is a solution for G iff
it is for G′.
Note that in both cases any vertex that is incident to a fork or join (red fork or
join, resp.) in G has also this property in G′. Thus, items 1− 4 in Theorem 9.3.4
remain valid in G′. As (u, v) is not an α-arc item 6. is not violated. Suppose item
5. is violated by the contraction. Thus, (x, u) ∈ AU

α and there is an arc (v, z) in G
with wk′((v, z)) = 0. By item 2. of Theorem 9.3.4 (u, v) must be red in G. This
contradicts the fact that either case 1.a) or case 1.b) matches.
Secondly, assume case 2.) matches. Let y be the unique in-neighbor of x. Now let
(y, x) take the role of (x, u), and (x, u) the role of (u, v). Then the proof for the
case 1.a) also applies.

2. As RR-10 only manipulates weights of red arcs items 1 − 4 remain valid and no
solution will be excluded. As RR-10 only applies to red α-arcs also items 5 and
6 are not violated.

Lemma 9.3.11: We can omit branching on arcs g ∈ AU
α with |AN(g)| = 4 such that

there are four occurrences of case b′.

Proof. Let g = (u, v) and suppose the contrary holds. Clearly, d+(v) = 2. For the arc
(v, a) case b′ must match, see Figure 9.4(b). This means that d+(a) = 1 and d−(a) ≥ 3
due to having case b′. If we had d−(a) = 1 then case b̃ applied to a. Thus, d+(a) = 1.
For the distinct arc r = (a, y) assume we have d+(y) > 1, see Figure 9.4(b).
Thus r must be an non-red α-arc (otherwise, RR-10 could be applied due to having
case b′ and therefore wk′(r) > 0). Also we must have |AN(r)| = 5 by d−(a) ≥ 3.
This contradicts the choice of the α-arc g, because we would have preferred r as also
wk′(r) = 1 (Theorem 9.3.4.6).
Now we discuss the case d+(y) = 1. Let s be the distinct out-neighbor of y. Only if
d+(s) > 1, (a, y) is red and (y, s) non-red prevents RR-9 from being applied. Thus, (y, s)
is an non-red α-arc, where case b̃. applies to (a, y) with respect to (y, s), a contradiction
as we would have preferred (y, s).

Let x, y, z denote the occurrences of cases a., b′ and c. To upper bound the branchings
according to α-arcs g with |AN(g)| ≥ 5, we put up all recurrences resulting from integer
solutions of x+y+z = 5. Note that we also use the right column of Table 9.1. To upper

204

9.4. Reparameterization

x u v
(a) RR-8 applies to (v, w). The double-directed arc indi-
cates that exactly one direction must occur.

u v

a y

(b) The contradicting situation in
the proof of Lemma 9.3.11

Figure 9.4.:

bound branchings with |AN(g)| = 4, we put up all recurrences obtained from integer
solutions of x + y + z = 4, except when x = z = 0 and y = 4 due to Lemma 9.3.11.
Additionally, we have to cover the case where we have three occurrences of case b′ and one
of case b̃. (T [k] ≤ T [k−(1+4ω)]+T [k−(5−ω)] and T [m] ≤ T [m−(1+4ω)]+T [m−(6−ω)],
resp.).

Theorem 9.3.12: On (1, ℓ)-graphs with m arcs, MAAS is solvable in timeO∗(1.2133m)
(ω = 0.3534) and O∗(1.2471k) (ω = 0.3333), respectively.

9.4. Reparameterization

M. Mahajan, V. Raman and S. Sidkar [114] have discussed a rather general setup for
re-parameterization of problems according to a “guaranteed value.” In order to use
their framework, we only need to exhibit a family of example graphs where Newman’s
approximation bound for MAAS is sharp. For a concrete example for the following
construction, we refer to Fig. 9.5. Consider Gr(Vr, Ar), r ≥ 2, with Vr = {(i, j) | 0 ≤
i < r, 0 ≤ j ≤ 7}, and Ar contains two types of arcs:
1. ((i, j), (i, (j + 1) mod 8) for 0 ≤ i ≤ r and 0 ≤ j ≤ 7.
2a. ((i, j), ((i+ 1) mod r, (1− j) mod 8) for 0 ≤ i < r and j = 1, 2.
2b. (((i+ 1) mod r, (1− j) mod 8, (i, j)) for 0 ≤ i < r and j = 3, 4.
For r = 2 we find an example in Figure 9.5. Gr is cubic with |Vr| = 8r and |Ar| = 12r.
Its α-arcs are ((i, 0), (i, 1)) and ((i, 4), (i, 5)) for 0 ≤ i < r. Since we have to destroy all
‘rings’ as described by the arcs from 1., any feasible solution to these instances require
r arcs to go into the feedback arc set. Also r arcs suffice, namely ((0, 4), (0, 5)) and
((i, 0), (i, 1)) for 0 < i < r, giving the ‘tight example’ as required in [114] to conclude:

Corollary 9.4.1: For any ǫ > 0, the following question is not fixed-parameter tractable
unless P = NP: Given a cubic directed graph G(V,E) and a parameter k, does G
possess an acyclic subgraph with at least

(

11
12

+ ǫ
)

|E|+ k many arcs ?

9.5. Conclusions

We presented algorithms for solving Maximum Acyclic Arc-Induced Subgraph
first on general graphs, and then more specific on (1, ℓ)-graphs, which form a super-

205

Chapter 9. Exact Algorithms for Maximum Acyclic Subgraph on a Superclass of Cubic Graphs

(1,0)
(1,1)

(1,2)

(1,3)

(1,4)
(1,5)

(1,7)

(1,6)

(0,0)
(0,1)

(0,2)

(0,3)

(0,4)
(0,5)

(0,7)

(0,6)

Figure 9.5.: The graph Gr(Vr, Ar) for r = 2

class of cubic graphs. In contrast to the algorithms themselves, the analysis concerning
correctness and run time is rather involved.

In the case of (1, ℓ)-graphs, the analysis was accomplished in an amortized fashion
showing quite a better run time than by a naive analysis. This kind of analysis is also
applied in terms of ’parameterized’ run time. This is one of the few occasions where this
seems to be possible. We think that at least for problems on special graph classes (e.g.,
cubic graphs), one can find further examples. We have used the concept of a reference
search tree which generalizes ordinary search trees. It has been first introduced in [134]
in order to solve a dominating set variant (named Power Dominating Set) in time
O∗(1.7548n). Using this concept, we showed the correctness of one reduction rule (RR-
3) which is crucial for the run time improvement. We would like to point out that the
validity of this rule depends on the algorithm. It is not valid on its own. We are looking
forward to solve more problems using this concept. It seems that especially problems are
suited where we cannot simply delete a vertex once the decision has been made whether
to take it into the solution or not. For example problems where the solution must be
connected (e.g., Max Internal Spanning Tree or Connected Dominating Set)
or (directed) feedback problems on general graphs.
One might ask if the algorithm for (1, ℓ)-graphs is extensible to arc-weighted graphs. We
point out that there is no natural generalization as the α-arcs loose their dominance. In
Figure 9.4(b), for example, it could make sense not delete the arc (u, v), but instead to
delete the incoming arcs of u (as the weight of (u, v) could be greater than the weight
sum of the incoming arcs).

Coming back to the feedback problems considered in this chapter, there are quite a
few natural questions to ask:

1. The break of the 2n- resp. 2m-barrier for DFVS and DFAS do not offer huge
improvements at the moment. So, the quest is for better algorithms in these cases.

2. Also, the algorithm needing time 2n for DFAS (based on dynamic programming,
see [138]) has not yet been improved below that barrier. Is this possible with our
techniques?

3. Does DFAS allow for any improvements over the previously published algorithm

206

9.6. Recursions and run times

(for DFVS) in [23]? For example, if there were an O∗(210k) algorithm for this
problem, then the two-sided attack on exact problems described in [20] would
yield an O∗(2((10∗1)/(10+1))n)-, i.e., an O(1.88n)-algorithm for DFAS thanks to the
O∗(2k)-algorithm for MAAS from [138].

9.6. Recursions and run times

9.6.1. The maximum degree three case

In column five and six of Table 9.2(a) we state the 15 recurrences necessary for solving
the parameterized version of MAAS on maximum degree 3 graphs, which we needed
to estimate the run time in Theorems 9.3.6. They are derived from the positive integer
solutions of i+j+q = 4. Here and in the following, we write k although strictly speaking
we refer to k′. Similarly, the last two columns of Table 9.2(a) displays the recurrences
for the exact, non-parameterized case (measured in m).

207

C
h
ap

te
r
9.

E
x
ac
t
A
lg
or
it
h
m
s
fo
r
M
ax

im
u
m

A
cy
cl
ic
S
u
b
gr
ap

h
on

a
S
u
p
er
cl
as
s
of

C
u
b
ic
G
ra
p
h
s Table 9.2.:

(a)

No. j q i Derived recursion with respect to k Upper bnd. Derived recursion with respect to k Upper bnd.

1 0 0 4 T [k] ≤ T [k − 4] + T [k − 5] O∗(1.1674k) T [m] ≤ T [m− 5] + T [m− 5] O∗(1.1487m)

2 0 1 3 T [k] ≤ T [k − (4− ω)] + T [k − (5− ω)] O∗(1.1745k) T [m] ≤ T [m− (5− ω)] + T [m− (5− ω)] O∗(1.156m)

3 0 2 2 T [k] ≤ T [k − (4− 2ω)] + T [k − (5− 2ω)] O∗(1.1822k) T [m] ≤ T [m− (5− 2ω)] + T [m− (5− 2ω)] O∗(1.168m)

4 0 3 1 T [k] ≤ T [k − (4− 3ω)] + T [k − (5− 3ω)] O∗(1.191k) T [m] ≤ T [m− (5− 3ω)] + T [m− (5− 3ω)] O∗(1.1709m)

5 0 4 0 T [k] ≤ T [k − (4− 4ω)] + T [k − (5− 4ω)] O∗(1.201k) T [m] ≤ T [m− (5− 4ω)] + T [m− (5− 4ω)] O∗(1.1798m)

6 1 0 3 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.167k) T [m] ≤ T [m− (6− ω)] + T [m− (4 + ω)] O∗(1.151m)

7 1 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.174k) T [m] ≤ T [m− (6− 2ω)] + T [m− 4] O∗(1.158m)

8 1 2 1 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.1817k) T [m] ≤ T [m− (6− 3ω)] + T [m− (4− ω)] O∗(1.165m)

9 1 3 0 T [k] ≤ T [k − (5− 4ω)] + T [k − (4− 2ω)] O∗(1.191k) T [m] ≤ T [m− (6− 4ω)] + T [m− (4− 2ω)] O∗(1.173m)

10 2 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.171k) T [m] ≤ T [m− (7− 2ω)] + T [m− (3 + 2ω)] O∗(1.155m)

11 2 1 1 T [k] ≤ T [k − (6− 3ω)] + T [k − (3 + ω)] O∗(1.179k) T [m] ≤ T [m− (7− 3ω)] + T [m− (3 + ω)] O∗(1.163m)

12 2 2 0 T [k] ≤ T [k − (6− 4ω)] + T [k − 3] O∗(1.187k) T [m] ≤ T [m− (7− 4ω)] + T [m− 3] O∗(1.171m)

13 3 0 1 T [k] ≤ T [k − (7− 3ω)] + T [k − (2 + 3ω)] O∗(1.181k) T [m] ≤ T [m− (8− 3ω)] + T [m− (2 + 3ω)] O∗(1.164m)

14 3 1 0 T [k] ≤ T [k − (7− 4ω)] + T [k − (2 + 2ω)] O∗(1.19k) T [m] ≤ T [m− (8− 4ω)] + T [m− (2 + 2ω)] O∗(1.173m)

15 4 0 0 T [k] ≤ T [k − (8− 4ω)] + T [k − (1 + 4ω)] O∗(1.201k) T [m] ≤ T [m− (9− 4ω)] + T [m− (1 + 4ω)] O∗(1.1798m)

(b)

No. z y x Derived recursion with respect to k Upper bnd. Derived recursion with respect to m Upper bnd.

1 0 0 4 T [k] ≤ T [k − 4] + T [k − 5] O∗(1.1674k) T [m] ≤ T [m− 5] + T [m− 5] O∗(1.149m)

2 0 1 3 T [k] ≤ T [k − (4− ω)] + T [k − (5− ω)] O∗(1.1766k) T [m] ≤ T [m− (5− ω)] + T [m− (5− ω)] O∗(1.157m)

3 0 2 2 T [k] ≤ T [k − (4− 2ω)] + T [k − (5− 2ω)] O∗(1.187k) T [m] ≤ T [m− (5− 2ω)] + T [m− (5− 2ω)] O∗(1.166m)

4 0 3 1 T [k] ≤ T [k − (4− 3ω)] + T [k − (5− 3ω)] O∗(1.1986k) T [m] ≤ T [m− (5− 3ω)] + T [m− (5− 3ω)] O∗(1.1176m)

5 0 4 0 T [k] ≤ T [k − (4− 4ω)] + T [k − (5− 4ω)] O∗(1.2118k) T [m] ≤ T [m− (5− 4ω)] + T [m− (5− 4ω)] O∗(1.1.2133m)

6 1 0 3 T [k] ≤ T [k − (5− ω)] + T [k − (4 + ω)] O∗(1.167k) T [m] ≤ T [m− (6− ω)] + T [m− (4 + ω)] O∗(1.15m)

7 1 1 2 T [k] ≤ T [k − (5− 2ω)] + T [k − 4] O∗(1.176k) T [m] ≤ T [m− (6− 2ω)] + T [m− 4] O∗(1.159m)

8 1 2 1 T [k] ≤ T [k − (5− 3ω)] + T [k − (4− ω)] O∗(1.1862k) T [m] ≤ T [m− (6− 3ω)] + T [m− (4− ω)] O∗(1.168m)

9 1 3 0 T [k] ≤ T [k − (5− 4ω)] + T [k − (4− 2ω)] O∗(1.1978k) T [m] ≤ T [m− (6− 4ω)] + T [m− (4− 2ω)] O∗(1.178m)

10 2 0 2 T [k] ≤ T [k − (6− 2ω)] + T [k − (3 + 2ω)] O∗(1.171k) T [m] ≤ T [m− (7− 2ω)] + T [m− (3 + 2ω)] O∗(1.155m)

11 2 1 1 T [k] ≤ T [k − (6− 3ω)] + T [k − (3 + ω)] O∗(1.18k) T [m] ≤ T [m− (7− 3ω)] + T [m− (3 + ω)] O∗(1.164m)

12 2 2 0 T [k] ≤ T [k − (6− 4ω)] + T [k − 3] O∗(1.191k) T [m] ≤ T [m− (7− 4ω)] + T [m− 3] O∗(1.174m)

13 3 0 1 T [k] ≤ T [k − (7− 3ω)] + T [k − (2 + 3ω)] O∗(1.1179k) T [m] ≤ T [m− (8− 3ω)] + T [m− (2 + 3ω)] O∗(1.163m)

14 3 1 0 T [k] ≤ T [k − (7− 4ω)] + T [k − (2 + 2ω)] O∗(1.19k) T [m] ≤ T [m− (8− 4ω)] + T [m− (2 + 2ω)] O∗(1.173m)

15 4 0 0 T [k] ≤ T [k − (8− 4ω)] + T [k − (1 + 4ω)] O∗(1.195k) T [m] ≤ T [m− (9− 4ω)] + T [m− (1 + 4ω)] O∗(1.176m)

20
8

Chapter 10.

Conclusion

This thesis has two main contributions: Firstly, we defined a search structure called
reference search tree which goes beyond ordinary ad-hoc search trees. Secondly, it was
shown that the Measure&Conquer method from the field of exact exponential time al-
gorithms could also be applied to several problems in parameterized algorithmics. We
call this Parameterized Measure&Conquer.

Reference Search Trees: In order to break the trivial enumeration barrier (which is 2n in
case of graph-vertex problems) we aim to cut off whole branches in the search tree tra-
versed by an algorithm. The justification for such a cut-off of a sub tree ST is that any
solution found in ST is worse than some solution the algorithm actually finds. Usually in
a recursive call we have a set of already fixed objects, i.e., they are either predetermined
to be part of the future solution or not. Then there is a set of non-fixed objects on which
decisions will be made. These decisions are made in a recursive manner as either their
inclusion as also their exclusion from the future solution is considered. Suppose there
are two non-fixed objects u and v. Often we can argue the following way for a concrete
problem: We do not have to consider the inclusion of u as any solution extending this
fixed set is no better than to extend the set which evolves by excluding u and including
v. In this sense we cut off the subtree where the exclusion of u is considered. Instead we
(figuratively) insert a (local) reference to the sub tree emerged by the fixing of u and v
in the above way. Observe that this exchange argument only involved non fixed objects
whereas already fixed ones are not touched. As a consequence the inserted reference only
points to some node in the search sub tree generated by the current recursive instance.
Suppose in the above scenario u is already fixed in a way that it is excluded. If we can
guarantee that there also has been (or will be) a recursive call which considers also the
inclusion of u we can argue as above. The difference is that we leave the current recursive
call and refer to a previous one (which lies further down on the stack). Therefore we call
references of this type global. Note that we run into trouble if we have a dependency
cycle with respect to the inserted references. Then an optimal solution might be skipped
without justification. As long as we are inserting local references this problem cannot
occur. This is because every such local reference points to a node further down in the
current sub tree. To have a cycle consisting of local references there must be at least one
pointing upwards, which by definition is impossible. Now with global references this re-
striction has been relaxed, they also can point upwards. To circumvent such dependency
cycles we constrain them to point either left-right or right-left in the proper drawing of

209

Chapter 10. Conclusion

the (reference) search tree. Frankly speaking, this means that exchange arguments can
only be allowed in one direction. For example we skip a solution where some object u
is excluded by making a reference to a solution where u is included. Then further on
we cannot skip a solution where some object u is included by making a reference to a
solution where u is excluded.
Nevertheless, we showed that this enriched kind of search tree can be useful to speed up
algorithms for problems with non-local character. We considered Power Dominating
Set and Maximum Acyclic Subgraph. These two problems do not have a local
character like Dominating Set or Vertex Cover as we cannot argue that for any
vertex v at least one vertex from N [v] must be in the solution.
So, one future research direction is to find further (non-local) problems where the special
structure of reference search trees can be exploited. Especially, problems with some kind
of propagation rule are of interest.

Parameterized Measure&Conquer Nowadays the the technique of amortized run time
estimation (called Measure&Conquer) for branch&reduce algorithms is well-established.
Figuratively, the main difference to the traditional way can be described as follows. For
a graph-vertex-selection problem we are usually given a budget of n coins. We can think
of these n coins as equally distributed among the vertices. In the traditional way of
run time estimation once a vertex is fixed to be included or excluded from the future
solution the corresponding coin is removed. This indicates that the problem complexity
decreased by one. It turned out that this kind of measuring the problem complexity was
not powerful enough to break the 2n-barrier for a lot of graph-vertex-selection problems.
In Measure&Conquer we also can take only away a fraction of a coin without actually
fixing the corresponding vertex v. This often is justified by the fact that we obtained
more structural information. This should help us to reduce the problem complexity
above-average in a future branch involving v.
As in parameterized algorithmics search trees are a common technique one would expect
this technique to carry over nicely. In fact there are some serious obstacles. Firstly, we
are only given a budget of k coins which usually is an upper bound of the solution (in
case of a minimization problem). In contrast to the n coins above these cannot as easily
be located unless the solution itself already is known. Also if we count some fraction of
one of the k coins in advance we have to argue that indeed this whole coin has to be
spent. A fraction now and the rest in a future branch. This can often be done with the
help of structural information which is highly problem dependent. However, there are
some rules which all chosen measure in this document had to obey. Let

γ(G) = k −
∑

i≥1

ωi · χi(G)

where 0 ≤ ωi ≤ 1 is a weight. χi(G) is an indicator function for some property and
k remains fixed. γ(G) represents the general form of all measure for parameterized
problems in this thesis. During the execution of the algorithm the following properties
should be true for γ(G):

210

1. The application of any reduction does not increase the value of γ(G).

2. In any recursive call the value of γ(G) must decrease.

3. If γ(G) ≤ 0 then in polynomial time we have to determine if we have a YES- or
NO-instance.

In the chapters about this topic we were arguing that this way actually a run time bound
of the form O∗(ck) can be given.
A promising line of research is to find further problems where the use of such a measure
results in a run time speed-up. In particular it is of interest if the compression phase for
iterative-compression algorithms (see [144] for an introduction) can be improved for some
problems. There are problems where also this compression phase takes exponential time.
As an example we state the Feedback Vertex Set problem on undirected graphs (see
J. Chen et al. [21]). If the input graph is degree restricted then it is very likely that the
use of a measure provides a significant speed-up. Intuitively, this is due to special graph
structures that often arise due to rather small degree of the vertices. This constitutes
another field of algorithmic research.

211

Chapter 10. Conclusion

212

Chapter 11.

Appendix

11.1. Code For Local Search

In this section we describe how to use the matlab program meshsearch which can be
found in section 11.1.1. It is used to obtain a weight assignment in the Measure&Conquer
approach. But it also can be used to minimize any given function via local optimization.
The first five arguments are:

1. The function in ℓ variables to be minimized.

2. The size of the mesh around the current solution. Or alternatively the half of the
side length of a unit hypercube in R

ℓ with the current solution as midpoint.

3. This parameter defines how fine the measure should be. It determines in how many
equally steps in every direction will be taken.

4. How many rounds local optimization will be applied.

5. A check-function which assures certain consistencies a solution should have. The
arguments are given to the check-function as a list.

The rest of the arguments (i.e. 6 to ℓ + 5) consists of the given starting weights. An
example:

meshsearch(@func,0.2,4,10,@check,0.5,0.6)

Here we want to optimize the function func with two arguments. The starting values
are 0.5 and 0.6. Beginning from the starting value the mesh expands in every of the
four directions by an amount of 0.2. As it is a two-dimensional problem we can go in
positive and negative directions for each of the two coordinates. The mesh will consist
of every point (0.5 + q1 · (0.2/4), 0.6 + q2 · (0.2/4)) such that 0 ≤ q1, q2 ≤ 4.
The next matlab function func will represent the seven recursions which upper bound
the run time of Algorithm 5:

function RT = func(w1,w2)

loes=[];

for i=0:2

213

Chapter 11. Appendix

f=@(x) 1-x^-(1+i*(1-w2)+(2-i)*w1)-x^-(1-w1);

z=fzero(f,2);

loes=[loes z];

end;

for i=0:3

f=@(x) 1-x^-(w2+i*(1-w2)+(3-i)*w1)-x^-(w2);

z=fzero(f,2);

loes=[loes z];

end;

erg=max(loes);

RT=erg;

The next procedure implements a simple test whether the given arguments are strictly
between zero and one:

function RT = check(args)

RT=true;

n=length(args);

for i=1 : n

if(args(i) >1 | args(i)<0)

RT=false;

end;

end;

11.1.1. Meshsearch.m

function RT = meshsearch(varargin)

n=nargin;

args=varargin;

func=args{1};

rad=args{2};

intvs=args{3};

check=args{5};

argsvec=[];

for i=6:n

argsvec=[argsvec args{i}];

end

min=[inf 0 0];

for i=1:args{4}

locvec=[zeros(1,length(argsvec))];

%display(argsvec);

out=mshlp(func,rad,intvs,argsvec,locvec,1,check);

214

11.1. Code For Local Search

display(out);

if(out(1)<min(1))

min=out;

else

rad=rad/10;

display(rad);

end;

argsvec=out(2:length(out));

end;

RT=min;

11.1.2. Mshlp

function RT = mshlp(f,rad,intvs,argsvec,locvec,j,check)

if(j>length(argsvec))

argus=argsvec+locvec;

%fcheck=curry(check);

br=check(argus);

if(br)

func=curry(f);

for i=1:length(argus)

func=func(argus(i));

end;

RT1=func;

else

RT1=inf;

end;

RT2=argus;

RT=[RT1 RT2];

else

min=inf;

argus2=zeros(1,length(argsvec));

for i=0:intvs

stp=(rad/intvs)*i;

hlpzeros=[zeros(1,j-1) stp zeros(1,length(locvec)-j)];

locvec2=locvec+hlpzeros;

out=mshlp(f,rad, intvs,argsvec,locvec2,j+1,check);

min2=out(1);

215

Chapter 11. Appendix

if(min2<min)

min=min2;

argus2=out(2:length(out));

end;

end;

for i=0:intvs

stp=(rad/intvs)*i*(-1);

hlpzeros=[zeros(1,j-1) stp zeros(1,length(locvec)-j)];

locvec2=locvec+hlpzeros;

out=mshlp(f,rad, intvs,argsvec,locvec2,j+1,check);

min2=out(1);

if(min2<min)

min=min2;

argus2=out(2:length(out));

end;

end;

RT=[min argus2];

end;

11.2. AMPL Code for Convex Programming

In this section we state AMPL-Code which models a program of the second formin
section 2.3. The Convex Program is derived form the recursions of Algorithm 5. The
optimal value for z is 0.9182958341 and therefor the run time of Algorithm 5 is at most
O∗(20.9182958341n) ⊂ O∗(1.8899n).

var z>=0;

var w1>=0;

var w2>=0;

#--

minimize Obj: z;

#--

subject to C1: w1<=1;

subject to C2: w2<=1;

subject to C3: z<=1;

subject to C4: z>=w1;

subject to C5: z>=w2;

216

11.2. AMPL Code for Convex Programming

#---

subject to Line4 {i in 0..3}:

2^(-w2)+2^(-w2-3*w1+i*w1+i*w2)*2^(-i*z) <=1;

subject to Line2 {j in 0..2}:

2^(w1)*2^(-z)+2^(-2*w1+j*w2+j*w1)*2^(-z-z*j) <=1;

217

Chapter 11. Appendix

218

Bibliography

[1] A. Aazami and M. D. Stilp. Approximation algorithms and hardness for domina-
tion with propagation. In Approximation, Randomization, and Combinatorial Op-
timization Algorithms and Techniques (APPROX-RANDOM), volume 4627 of Lec-
ture Notes in Computer Science, pages 1–15. Springer, 2007. (Cited on page 168.)

[2] R. B. Allan and R. Laskar. On domination and independent domination numbers
of a graph. Discrete Mathematics, 23(2):73–76, 1978. (Cited on page 145.)

[3] G. Ausiello, P. Creczenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation; Combinatorial Optimization Problems
and Their Approximability Properties. Springer, 1999. (Cited on pages 16 and 17.)

[4] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM Journal of Discrete Mathematics,
12:289–297, 1999. (Cited on page 185.)

[5] R. Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, 1962. (Cited on page 89.)

[6] B. Berger and P. W. Shor. Approximation algorithms for the maximum acyclic
subgraph problem. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 236–243, 1990. (Cited on pages 183, 184 and 187.)

[7] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal
subgraphs of decomposable graphs. Journal of Algorithms, 8(2):216–235, 1987.
(Cited on page 145.)

[8] Daniel Binkele-Raible, Ljiljana Brankovic, Henning Fernau, Joachim Kneis, Di-
eter Kratsch, Alexander Langer, Mathieu Liedloff, and Peter Rossmanith. A pa-
rameterized route to exact puzzles: Breaking the 2-barrier for irredundance. In
Tiziana Calamoneri and Josep Dı́az, editors, Algorithms and Complexity, 7th In-
ternational Conference, CIAC 2010, Proceedings, volume 6078 of LNCS, pages
311–322. Springer, 2010. (Cited on page 10.)

[9] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius:
fast subset convolution. In Symposium on Theory of Computation (STOC), pages
67–74. ACM Press, 2007. (Cited on pages 45 and 46.)

219

Bibliography

[10] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling salesman
problem in bounded degree graphs. In L. Aceto, I. Damg̊ard, L. A. Goldberg,
M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, International
Colloquium on Automata, Languages and Programming I (ICALP), volume 5125
of LNCS, pages 198–209. Springer, 2008. (Cited on pages 90 and 92.)

[11] J. Blum, M. Ding, A. Thaeler, and X. Cheng. Connected dominating set in sensor
networks and manets. In Handbook of Combinatorial Optimization, volume B,
pages 329–369. Springer, 2005. (Cited on page 127.)

[12] B. Bollobás and E. J. Cockayne. Graph-theoretic parameters concerning domina-
tion, independence, and irredundance. J. Graph Theory, 3:241–250, 1979. (Cited
on page 145.)

[13] B. Bollobás and E. J. Cockayne. On the irredundance number and maximum
degree of a graph. Discrete Mathematics, 49:197–199, 1984. (Cited on page 145.)

[14] P. S. Bonsma, T. Brueggemann, and G. J. Woeginger. A faster FPT algorithm
for finding spanning trees with many leaves. In B. Rovan and P. Vojtáś, editors,
Mathematical Foundations of Computer Science (MFCS), volume 2747 of Lecture
Notes in Computer Science, pages 259–268. Springer, 2003. (Cited on page 127.)

[15] P. S. Bonsma and F. Zickfeld. A 3/2-approximation algorithm for finding spanning
trees with many leaves in cubic graphs. In H. Broersma, T. Erlebach, T. Friedetzky,
and D. Paulusma, editors, International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 5344 of LNCS, pages 66–77. Springer, 2008.
(Cited on pages 111 and 127.)

[16] P. S. Bonsma and F. Zickfeld. Spanning trees with many leaves in graphs without
diamonds and blossoms. In E. S. Laber, C.F. Bornstein, L. T. Nogueira, and
L. Faria, editors, Latin American Symposium on Theoretical Informatics (LATIN),
volume 4957 of LNCS, pages 531–543. Springer, 2008. (Cited on page 127.)

[17] D. J. Brueni and L. S. Heath. The PMU placement problem. SIAM Journal of
Discrete Mathematics, 19:744–761, 2006. (Cited on pages 167, 168 and 180.)

[18] R. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10 approximation algorithm
for a generalization of the weighted edge-dominating set problem. Journal of
Combinatorial Optimization, 5:317–326, 2001. (Cited on page 48.)

[19] M. Cesati. The Turing way to parameterized complexity. Journal of Computer
and System Sciences, 67:654–685, 2003. (Cited on page 184.)

[20] J. Chen, H. Fernau, Y. A. Kanj, and G. Xia. Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM Journal on Computing,
37:1077–1108, 2007. (Cited on pages 185 and 207.)

220

Bibliography

[21] J. Chen, F.V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008. (Cited
on page 211.)

[22] J. Chen, I. A. Kanj, and G. Xia. Labeled search trees and amortized analysis: im-
proved upper bounds for NP-hard problems. In T. Ibaraki, N. Katoh, and H. Ono,
editors, International Symposium on Algorithms and Computation (ISAAC), vol-
ume 2906 of Lecture Notes in Computer Science, pages 148–157, 2003. (Cited on
page 142.)

[23] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm
for the directed feedback vertex set problem. In R.E. Ladner and C. Dwork, editors,
Symposium on Theory of Computing (STOC), pages 177–186. ACM, 2008. (Cited
on pages 184 and 207.)

[24] B. Chor, M. Fellows, and D. Juedes. Linear kernels in linear time, or how to save
k colors in O(n2) steps. In International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), pages 257–269, 2004. (Cited on pages 147 and 148.)

[25] E. J. Cockayne, P. J. P. Grobler, S. T. Hedetniemi, and A. A. McRae. What makes
an irredundant set maximal? J. Combin. Math. Combin. Comput., 25:213–224,
1997. (Cited on page 145.)

[26] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller. Properties of hereditary
hypergraphs and middle graphs. Canad. Math. Bull., 21(4):461–468, 1978. (Cited
on page 145.)

[27] E. J. Cockayne and C. M. Mynhardt. Irredundance and maximum degree in graphs.
Combin. Proc. Comput., 6:153–157, 1997. (Cited on page 145.)

[28] N. Cohen, F.V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo. An algorithm
for finding k -vertex out-trees and its application to k-internal out-branching prob-
lem. In Hung Q. Ngo, editor, Computing and Combinatorics (COCOON), volume
5609 of LNCS, pages 37–46. Springer, 2009. (Cited on page 90.)

[29] S. Cook. The complexity of theorem proving procedures. In Symposium on Theory
of Computing (STOC), pages 151–158, 1971. (Cited on page 15.)

[30] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of
weighted set cover. Information Processing Letters, 109(16):957–961, 2009. (Cited
on page 18.)

[31] M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. In S. Albers,
A. Marchetti-Spaccamela, Y. Matias, S.E. Nikoletseas, and W. Thomas, editors,
International Colloquium on Automata, Languages and Programming I (ICALP),
volume 5555 of LNCS, pages 304–315. Springer, 2009. (Cited on page 18.)

221

Bibliography

[32] J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT algorithms and kernels for
the directed k-leaf problem. Journal of Computer and System Sciences, 2009.
http://dx.doi.org/10.1016/j.jcss.2009.06.005. (Cited on pages 111, 112, 127, 128
and 141.)

[33] J. Daligault and S. Thomassé. On finding directed trees with many leaves. In
J. Chen and F.V. Fomin, editors, International Workshop on Parameterized and
Exact Computation (IWPEC), volume 5917 of LNCS, pages 86–97. Springer, 2009.
(Cited on page 111.)

[34] F. Dehne, M. Fellows, H. Fernau, E. Prieto, and F. Rosamond. Nonblocker: pa-
rameterized algorithmics for minimum dominating set. In J. Štuller, J. Wieder-
mann, G. Tel, J. Pokorný, and M. Bielikova, editors, Software Seminar (SOFSEM),
volume 3831 of Lecture Notes in Computer Science, pages 237–245. Springer, 2006.
(Cited on page 42.)

[35] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
(Cited on pages 19, 20 and 36.)

[36] R. G. Downey, M. R. Fellows, and V. Raman. The complexity of irredundant sets
parameterized by size. Discrete Applied Mathematics, 100:155–167, 2000. (Cited
on page 146.)

[37] D. Eppstein. Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms & Applications, 7:131–140, 2003. (Cited on page 90.)

[38] D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Symp. Discrete
Algorithms (SODA), pages 781–790. ACM and SIAM, January 2004. (Cited on
page 53.)

[39] G. Erdélyi, H. Fernau, J. Goldsmith, N. Mattei, D. Raible, and J. Rothe. The
complexity of probabilistic lobbying. In F. Rossi and A. Tsoukiàs, editors, Al-
gorithmic Decision Theory (ADT), volume 5783 of LNCS, pages 86–97. Springer,
2009. (Cited on page 9.)

[40] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond. FPT is
P-time extremal structure I. In H. Broersma, M. Johnson, and S. Szeider, editors,
Algorithms and Complexity in Durham (ACiD), volume 4 of Texts in Algorithmics,
pages 1–41. King’s College Publications, 2005. (Cited on pages 127 and 143.)

[41] O. Favaron. Two relations between the parameters of independence and irredun-
dance. Discrete Mathematics, 70(1):17–20, 1988. (Cited on page 145.)

[42] O. Favaron. A note on the irredundance number after vertex deletion. Discrete
Mathematics, 121(1-3):51–54, 1993. (Cited on page 145.)

222

Bibliography

[43] O. Favaron, T. W. Haynes, S. T. Hedetniemi, M. A. Henning, and D. J. Knis-
ley. Total irredundance in graphs. Discrete Mathematics, 256(1-2):115–127, 2002.
(Cited on page 145.)

[44] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in
fpt. In International Workshop on Graph-Theoretic Concepts in Computer Science
(WG), volume 2880 of LNCS, pages 1–12. Springer, 2003. (Cited on page 147.)

[45] M. R. Fellows, G. Fricke, S. T. Hedetniemi, and D. P. Jacobs. The private neighbor
cube. SIAM J. Discrete Math., 7(1):41–47, 1994. (Cited on page 145.)

[46] M.R. Fellows, D. Lokshtanov, N. Misra, F.A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In S.H. Hong, H. Nagamochi,
and T. Fukunaga, editors, Algorithms and Computation, International Sympo-
sium (ISAAC), volume 5369 of LNCS, pages 294–305. Springer, 2008. (Cited on
page 18.)

[47] H. Fernau. Edge dominating set: efficient enumeration-based exact algorithms.
In H. L. Bodlaender and M. Langston, editors, International Workshop on Pa-
rameterized and Exact Computation (IWPEC), volume 4169 of Lecture Notes in
Computer Science, pages 142–153. Springer, 2006. (Cited on page 48.)

[48] H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger.
Kernel(s) for problems with no kernel: On out-trees with many leaves. In S. Al-
bers and J.Y. Marion, editors, Symposium on Theoretical Aspects of Computer
Science (STACS), volume 09001 of Dagstuhl Seminar Proceedings, pages 421–
432. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2009. (Cited on page 9.)

[49] H. Fernau, S. Gaspers, D. Kratsch, M. Liedloff, and D. Raible. Exact exponential-
time algorithms for finding bicliques in a graph. In S. Cafieri, A. Mucherino,
G. Nannicini, F. Tarissan, and L. Liberti, editors, Cologne-Twente Workshop on
Graphs and Combinatorial Optimization (CTW), pages 205–209, 2009. (Cited on
page 9.)

[50] H. Fernau, S. Gaspers, and D. Raible. Exact and parameterized algorithms for max
internal spanning tree. In C. Paul and M. Habib, editors, International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), volume 5911 of LNCS,
pages 100–111, 2009. (Cited on page 9.)

[51] H. Fernau, A. Langer, M. Liedloff, J. Kneis, D. Kratsch, D. Raible, and P. Ross-
manith. An exact algorithm for the maximum leaf spanning tree problem. In
J. Chen and F.V. Fomin, editors, International Workshop on Parameterized and
Exact Computation (IWPEC), volume 5917 of LNCS, pages 161–172. Springer,
2009. (Cited on pages 9, 18, 112, 114, 124, 127, 128, 129, 141 and 168.)

223

Bibliography

[52] H. Fernau and D. F. Manlove. Vertex and edge covers with clustering properties:
Complexity and algorithms. Journal on Discrete Algorithms, 7:149–167, 2009.
(Cited on page 42.)

[53] H. Fernau and D. Raible. Alliances in graphs: a complexity-theoretic study. In J.
van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel, H. Sack, F. Plášil, and
M. Bieliková, editors, Software Seminar (SOFSEM), Proceedings Vol. II, pages
61–70. Institute of Computer Science ASCR, Prague, 2007. (Cited on page 9.)

[54] H. Fernau and D. Raible. Exact algorithms for maximum acyclic subgraph on a
superclass of cubic graphs. In S.-I. Nakano and Md. S. Rahman, editors, Workshop
on Algorithms and Computation (WALCOM), volume 4921 of Lecture Notes in
Computer Science, pages 144–156. Springer, 2008. (Cited on pages 9 and 142.)

[55] H. Fernau and D. Raible. A parameterized perspective on packing paths of length
two. In B. Yang, D.-Z. Du, and C. An Wang, editors, Combinatorial Optimization
and Applications (COCOA), volume 5165 of Lecture Notes in Computer Science,
pages 54–63. Springer, 2008. (Cited on page 9.)

[56] H. Fernau and D. Raible. A parameterized perspective on pack-
ing paths of length two. Journal of Combinatorial Optimization, 2008.
http://dx.doi.org/10.1007/s10878-009-9230-0. (Cited on page 9.)

[57] H. Fernau and D. Raible. Packing paths: Recycling saves time. In S. Cafieri,
A. Mucherino, G. Nannicini, F. Tarissan, and L. Liberti, editors, Cologne-Twente
Workshop on Graphs and Combinatorial Optimization (CTW), pages 79–83, 2009.
(Cited on page 9.)

[58] H. Fernau and D. Raible. Searching trees: an essay. In J. Chen and S. B. Cooper,
editors, Theory and Applications of Models of Computation (TAMC), volume 5532
of Lecture Notes in Computer Science, pages 59–70. Springer, 2009. (Cited on
page 10.)

[59] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In D.-Z.
Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, volume
Supplemenent Volume A, pages 209–258. Kluwer Academic Publishers, 1999. Also
AT&T Technical Report No. 99.2.2. (Cited on pages 183, 184 and 185.)

[60] J. Fiala, P. A. Golovach, and J. Kratochv́ıl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. In J. Chen and S. B. Cooper, edi-
tors, Theory and Applications of Models of Computation (TAMC), volume 5532
of Lecture Notes in Computer Science, pages 221–230. Springer, 2009. (Cited on
page 18.)

[61] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008. (Cited on page 24.)

224

Bibliography

[62] J. Flum and M. Grohe. Parameterized Complexity Theory. Text in Theoretical
Computer Science. Springer, 2006. (Cited on page 20.)

[63] F. V. Fomin, S. Gaspers, and A. V. Pyatkin. Finding a minimum feedback set
in time O(1.7548n). In H. L. Bodlaender and M. Langston, editors, International
Workshop on Parameterized and Exact Computation (IWPEC), volume 4169 of
Lecture Notes in Computer Science, pages 184–191. Springer, 2006. (Cited on
page 185.)

[64] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–
307, 2008. (Cited on pages 18 and 36.)

[65] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear ver-
tex kernel for maximum internal spanning tree. CoRR, abs/0907.3208, 2009.
http://arxiv.org/abs/0907.3208. (Cited on page 90.)

[66] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for
maximum internal spanning tree. In Y. Dong, D.-Z. Du, and O.H. Ibarra, editors,
Algorithms and Computation, International Symposium (ISAAC), volume 5878 of
LNCS, pages 275–282. Springer, 2009. (Cited on page 90.)

[67] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination – a
case study. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, International Colloquium on Automata, Languages and Programming I
(ICALP), volume 3580 of Lecture Notes in Computer Science, pages 191–203.
Springer, 2005. (Cited on pages 24 and 36.)

[68] F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and
analysis of exact (exponential) algorithms. Technical Report 307, Department of
Informatics, University of Bergen, 2005. (Cited on page 180.)

[69] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for
the analysis of exact algorithms. Journal of the ACM, 56(5), 2009. (Cited on
page 146.)

[70] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov. Combinatorial
bounds via measure and conquer: Bounding minimal dominating sets and appli-
cations. ACM Transactions on Algorithms, 5(1), 2008. (Cited on page 36.)

[71] F. V. Fomin, K. Iwama, D. Kratsch, P. Kaski, M. Koivisto, L. Kowalik,
Y. Okamoto, J. van Rooij, and R. Williams. 08431 open problems – moder-
ately exponential time algorithms. In F. V. Fomin, K. Iwama, and D. Kratsch,
editors, Moderately Exponential Time Algorithms, number 08431 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany. (Cited on page 146.)

225

Bibliography

[72] F.V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple

O∗(20.288) independent set algorithm. In Symposium on Discrete Algorithms
(SODA), pages 18–25. ACM Press, 2006. (Cited on page 36.)

[73] F.V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set
faster than 2n. Algorithmica, 52(2):153–166, 2008. (Cited on pages 24, 36, 112,
141 and 168.)

[74] F.V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5), 2009. (Cited on pages 32, 33, 65,
118, 128, 167, 168 and 185.)

[75] M. Fürer, S. Gaspers, and S.P. Kasiviswanathan. An exponential time 2-
approximation algorithm for bandwidth. In J. Chen and F.V. Fomin, editors,
International Workshop on Parameterized and Exact Computation (IWPEC), vol-
ume 5917 of LNCS, pages 173–184. Springer, 2009. (Cited on page 18.)

[76] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM Journal of Applied Mathematics, 32(4):826–834, 1977. (Cited on
page 169.)

[77] M. R. Garey and D. S. Johnson. Computers and Intractability. New York: Free-
man, 1979. (Cited on page 15.)

[78] S. Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds.
PhD thesis, Department of Computer and Information Science, University of
Bergen, Norway, 2008. (Cited on pages 18, 53 and 54.)

[79] S. Gaspers and M. Liedloff. A branch-and-reduce algorithm for finding a mini-
mum independent dominating set in graphs. In International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 4271 of LNCS, pages 78–
89, 2006. (Cited on page 36.)

[80] S. Gaspers and G. B. Sorkin. A universally fastest algorithms for Max 2-Sat,
Max 2-CSP, and everything in between. In Symposium on Discrete Algorithms
(SODA), pages 606–615. ACM Press, 2009. (Cited on page 61.)

[81] F.W. Glover and G.A. Kochenberger, editors. Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science.
Springer, 2003. (Cited on page 16.)

[82] R. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Reading,
MA: Addison-Wesley, 3. edition, 1989. (Cited on pages 23 and 24.)

[83] J. Gramm. Fixed-Parameter Algorithms for the Consensus Analysis of Ge-
nomic Data. Dissertation, Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, 2003. (Cited on page 24.)

226

Bibliography

[84] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. Worst-case up-
per bounds for MAX-2-SAT with an application to MAX-CUT. Discrete Applied
Mathematics, 130:139–155, 2003. (Cited on pages 61, 62 and 87.)

[85] J. Gramm and R. Niedermeier. Faster exact solutions for MAX2SAT. In Algo-
rithms and Complexity, 4th Italian Conference (CIAC), volume 1767 of Lecture
Notes in Computer Science, pages 174–186. Springer, 2000. (Cited on pages 62
and 87.)

[86] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and complexity
results for power domination in graphs. In Fundamentals of Computation The-
ory, International Symposium (FCT), volume 3623 of Lecture Notes in Computer
Science, pages 172–184. Springer, 2005. (Cited on page 168.)

[87] G. Gutin and A. Yeo. Some parameterized problems on digraphs. The Computer
Journal, 51(3):363–371, 2008. (Cited on page 185.)

[88] T. W. Haynes, S. Mitchell Hedetniemi, S. T. Hedetniemi, and M. A. Henning.
Domination in graphs applied to electric power networks. SIAM Journal on Dis-
crete Mathematics, 15(4):519–529, 2002. (Cited on pages 168 and 172.)

[89] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domina-
tion in Graphs, volume 208 of Monographs and Textbooks in Pure and Applied
Mathematics. Marcel Dekker, 1998. (Cited on page 145.)

[90] S. T. Hedetniemi, R. Laskar, and J. Pfaff. Irredundance in graphs: a survey.
Congr. Numer., 48:183–193, 1985. (Cited on page 145.)

[91] M. Held and R. M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of the Society for Industrial and Applied Mathematics, 10:196–210,
1962. (Cited on pages 17 and 89.)

[92] T. Hofmeister. An approximation algorithm for MAX-2-SAT with cardinality
constraint. In G. Di Battista and U. Zwick, editors, European Symposium on
Algorithms (ESA), volume 2832 of Lecture Notes in Computer Science, pages 301–
312. Springer, 2003. (Cited on page 62.)

[93] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack
problem. J. ACM, 21(2):277–292, 1974. (Cited on page 17.)

[94] J. Hromkovič. Algorithmics for Hard Problems. Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. Springer, 2001.
(Cited on pages 15 and 17.)

[95] K. Iwama and T. Nakashima. An improved exact algorithm for cubic graph TSP.
In Guohui Lin, editor, Computing and Combinatorics (COCOON), LNCS, pages
108–117. Springer, 2007. (Cited on pages 90 and 93.)

227

Bibliography

[96] R. M. Karp. Dynamic programming meets the principle of inclusion-exclusion.
Information Processing Letters, 1(2):49–51, 1982. (Cited on page 90.)

[97] R.M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations. Plenum Press, 1972. (Cited on pages 15 and 183.)

[98] J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with
many leaves. In S.-H. Hong, H. Nagamochi, and T. Fukunaga, editors, Inter-
national Symposium on Algorithms and Computation (ISAAC), volume 5369 of
Lecture Notes in Computer Science, pages 270–281. Springer, 2008. (Cited on
pages 111, 115, 124, 127, 128, 131, 132, 134 and 141.)

[99] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Algorithms based on the
treewidth of sparse graphs. In D. Kratsch, editor, International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), volume 3787 of Lecture
Notes in Computer Science, pages 385–396. Springer, 2005. (Cited on page 87.)

[100] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Parameterized power domina-
tion complexity. Information Processing Letters, 98(4):145–149, 2006. (Cited on
page 168.)

[101] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the trav-
eling salesman problem. In Proceedings of the 1977 Annual Conference (ACM77),
pages 294–300. Association for Computing Machinery, 1977. (Cited on page 90.)

[102] A. Kojevnikov and A. S. Kulikov. A new approach to proving upper bounds for
MAX-2-SAT. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
11–17. ACM Press, 2006. (Cited on pages 61, 62, 64, 65, 80, 81 and 87.)

[103] I. Koutis and R. Williams. Limits and applications of group algebras for parameter-
ized problems. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S.E. Nikoletseas,
and W. Thomas, editors, International Colloquium on Automata, Languages and
Programming I (ICALP), volume 5555 of LNCS, pages 653–664. Springer, 2009.
(Cited on pages 112 and 127.)

[104] A. S. Kulikov and K. Kutzkov. New bounds for max-sat by clause learning. In
V. Diekert, M. V. Volkov, and editors A. Voronkov, editors, Computer Science
— Theory and Applications, International Symposium on Computer Science in
Russia (CSR), volume 4649 of LNCS, pages 194–204. Springer, 2007. (Cited on
pages 61, 62, 73, 81, 82 and 87.)

[105] A. S. Kulikov and K. Kutzkov. New upper bounds for the problem of maximal
satisfiability. Journal of Discrete Mathematics and Applications, 19(2):155–172,
2009. (Cited on pages 61 and 87.)

[106] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoret-
ical Computer Science, 223:1–72, 1999. (Cited on page 24.)

228

Bibliography

[107] O. Kullmann. Fundaments of Branching Heuristics, volume 185 of Frontiers in
Artificial Intelligence and Applications, chapter 7, pages 205–244. IOS Press, 2009.
(Cited on page 24.)

[108] R. Laskar and J. Pfaff. Domination and irredundance in graphs. Technical Report
Techn. Rep. 434, Clemson Univ., Dept. of Math. SC., 1983. (Cited on page 145.)

[109] E.L. Lawler. A note on the complexity of the chromatic number problem. Inf.
Process. Lett., 5(3), 1976. (Cited on page 17.)

[110] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In William Cook and Andreas S. Schulz,
editors, Integer Programming and Combinatorial Optimization (IPCO), volume
2337 of Lecture Notes in Computer Science, pages 67–82. Springer, 2002. (Cited
on page 62.)

[111] C.-S. Liao and D.-T. Lee. Power domination problem in graphs. In International
Conference on Computing and Combinatorics (COCOON), volume 3595 of Lecture
Notes in Computer Science, pages 818–828. Springer, 2005. (Cited on page 168.)

[112] M. Liedloff. Algorithmes exacts et exponentiels pour les problemes NP-difficiles :
domination, variantes et generalisations. PhD thesis, LITA, University of Metz
(France), 2007. (Cited on page 18.)

[113] H.-I. Lu and R. Ravi. Approximating maximum leaf spanning trees in almost linear
time. Journal of Algorithms, 29:132–141, 1998. (Cited on pages 111 and 127.)

[114] M. Mahajan, V. Raman, and Sikdar S. Parameterizing MAXNP problems above
guaranteed values. In H. L. Bodlaender and M. Langston, editors, International
Workshop on Parameterized and Exact Computation (IWPEC), volume 4169 of
Lecture Notes in Computer Science, pages 38–49. Springer, 2006. (Cited on
page 205.)

[115] D. F. Manlove. Minimaximal and maximinimal optimisation problems: a partial
order-based approach. PhD thesis, University of Glasgow, Computing Science,
1998. (Cited on page 48.)

[116] K. Mehlhorn. Graph algorithms and NP-completeness. Heidelberg: Springer, 1984.
(Cited on page 22.)

[117] Z. Michaelewicz and D.B. Fogel. How to solve it: Modern Heuristics, volume 57.
Springer, 2nd edition, 2004. (Cited on page 16.)

[118] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005. (Cited on
page 17.)

229

Bibliography

[119] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. Theory of Computing Systems,
43:234–253, 2008. (Cited on page 42.)

[120] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Dis-
crete Applied Mathematics, 10:287–295, 1985. (Cited on page 17.)

[121] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. (Cited on page 17.)

[122] I. Nassi and B. Shneiderman. Flowchart techniques for structured programming.
ACM SIGPLAN Notices, 12, 1973. (Cited on page 184.)

[123] J. Nederlof. Fast polynomial-space algorithms using mobius inversion: Improving
on steiner tree and related problems. In S. Albers, A. Marchetti-Spaccamela,
Y. Matias, S.E. Nikoletseas, and W. Thomas, editors, International Colloquium
on Automata, Languages and Programming I (ICALP), volume 5555 of LNCS,
pages 713–725. Springer, 2009. (Cited on page 110.)

[124] A. Newman. The maximum acyclic subgraph problem and degree-3 graphs. In
M. X. Goemans, K. Jansen, J. D. P. Rolim, and L. Trevisan, editors, Approxi-
mation, Randomization and Combinatorial Optimization (APPROX-RANDOM),
volume 2129 of Lecture Notes in Computer Science, pages 147–158. Springer, 2001.
(Cited on pages 184, 185, 186, 187, 188, 193 and 203.)

[125] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. (Cited on page 20.)

[126] R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36:63–88, 2000. (Cited on page 87.)

[127] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. (Cited
on page 15.)

[128] J. Plesńık. Equivalence between the minimum covering problem and the maximum
matching problem. Discrete Mathematics, 49:315–317, 1984. (Cited on page 34.)

[129] S. Poljak and Z. Tuza. Maximum cuts and largest bipartite subgraphs. In Cook,
László Lovász, and P. Seymour, editors, Combinatorial Optimization, volume 20
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 181–244, 1995. (Cited on page 61.)

[130] E. Prieto. Systematic Kernelization in FPT Algorithm Design. PhD thesis, The
University of Newcastle, Australia, 2005. (Cited on page 90.)

[131] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing FPT-
algorithms—the case of k-internal spanning tree. In Proceedings of Workshop
on Algorithms and Data Structures (WADS), volume 2748 of Lecture Notes in
Computer Science, pages 465–483. Springer, 2003. (Cited on pages 90 and 93.)

230

Bibliography

[132] E. Prieto and C. Sloper. Reducing to independent set structure – the case of k-
internal spanning tree. Nordic Journal of Computing, 12(3):308–318, 2005. (Cited
on page 90.)

[133] D. Raible and H. Fernau. A new upper bound for max-2-sat: A graph-theoretic
approach. In E. Ochmanski and J. Tyszkiewicz, editors, Mathematical Foundations
of Computer Science (MFCS), volume 5162 of Lecture Notes in Computer Science,
pages 551–562. Springer, 2008. (Cited on pages 10 and 36.)

[134] D. Raible and H. Fernau. Power domination in O∗(1.7548n) using reference search
trees. In S.-H. Hong, H. Nagamochi, and T. Fukunaga, editors, Algorithms and
Computation, International Symposium (ISAAC), volume 5369 of Lecture Notes
in Computer Science, pages 136–147. Springer, 2008. (Cited on pages 10, 24, 36
and 206.)

[135] D. Raible and H. Fernau. An amortized search tree analysis for k-leaf spanning
tree. In J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe, editors,
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), volume 5901 of LNCS, pages 672–684. Springer, 2010. (Cited
on pages 111 and 114.)

[136] D. Raible and H. Fernau. A faster exact algorithm for the directed maximum leaf
spanning tree problem. In Computer Science Symposium in Russia (CSR), 2010.
to appear. (Cited on page 10.)

[137] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems
and their duals in tournaments. Theoretical Computer Science, 351(3):446–458,
2006. (Cited on pages 112, 145 and 184.)

[138] V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for
two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters,
104(2):65–72, 2007. (Cited on pages 184, 206 and 207.)

[139] V. Raman, S. Saurabh, and S. Sikdar. Improved exact exponential algorithms
for vertex bipartization and other problems. In M. Coppo et al., editors, Italian
Conference on Theoretical Computer Science (ICTCS), volume 3701 of Lecture
Notes in Computer Science, pages 375–389. Springer, 2005. (Cited on page 47.)

[140] I. Razgon. Computing minimum directed feedback vertex set in O(1.9977n). In
G.F. Italiano, E. Moggi, and L. Laura, editors, Theoretical Computer Science,
10th Italian Conference (ICTCS), pages 70–81. World Scientific, 2007. (Cited on
page 184.)

[141] G. Salamon. Approximation algorithms for the maximum internal spanning tree
problem. In L. Kucera and A. Kucera, editors, Mathematical Foundations of Com-
puter (MFCS), volume 4708 of LNCS, pages 90–102. Springer, 2007. (Cited on
page 90.)

231

Bibliography

[142] G. Salamon and G. Wiener. On finding spanning trees with few leaves. Information
Processing Letters, 105(5):164–169, 2008. (Cited on page 90.)

[143] A.D. Scott and G.B. Sorkin. Linear-programming design and analysis of fast
algorithms for Max 2-CSP. Discrete Optimization, 4(3-4):260–287, 2007. (Cited
on pages 61 and 67.)

[144] C. Sloper. Techniques in Parameterized Algorithm Design. PhD thesis, Depart-
ment of Computer and Information Science, University of Bergen, Norway, 2005.
(Cited on page 211.)

[145] R. Solis-Oba. 2-approximation algorithm for finding a spanning tree with max-
imum number of leaves. In G. Bilardi, G. F. Italiano, A. Pietracaprina, and
G. Pucci, editors, European Symposium on Algorithms (ESA), volume 1461 of
LNCS, pages 441–452. Springer, 1998. (Cited on pages 111 and 127.)

[146] E. Speckenmeyer. On feedback vertex sets and nonseparating independent sets in
cubic graphs. Journal of Graph Theory, 3:405–412, 1988. (Cited on page 168.)

[147] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109–
125, 1981. (Cited on page 183.)

[148] R.E. Tarjan and A.E. Trojanowski. Finding a maximum independent set. SIAM
J. Comput., 6(3):537–546, 1977. (Cited on page 17.)

[149] J. A. Telle. Vertex Partitioning Problems: Characterization, Complexity and Al-
gorithms on Partial k-Trees. PhD thesis, Department of Computer Science, Uni-
versity of Oregon, USA, 1994. (Cited on pages 152 and 160.)

[150] M. T. Thai, F. Wang, D. Liu, S. Zhu, and D.-Z. Du. Connected dominating sets in
wireless networks different transmission ranges. IEEE Trans. Mobile Computing,
6:1–10, 2007. (Cited on page 127.)

[151] J. M. M. van Rooij and H. L. Bodlaender. Design by measure and conquer, a faster
exact algorithm for dominating set. In Susanne Albers and Pascal Weil, editors,
Symposium on Theoretical Aspects of Computer Science (STACS), volume 08001
of Dagstuhl Seminar Proceedings, pages 657–668. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.
(Cited on pages 24, 36 and 168.)

[152] J. M. M. van Rooij and H. L. Bodlaender. Exact algorithms for edge domination.
In M. Grohe and R. Niedermeier, editors, Parameterized and Exact Computation,
Third International Workshop (IWPEC), volume 5018 of LNCS, pages 214–225.
Springer, 2008. (Cited on page 48.)

232

Bibliography

[153] J. M. M. van Rooij, J. Nederlof, and T.C. van Dijk. Inclusion/exclusion meets
measure and conquer. In A. Fiat and P. Sanders, editors, European Symposium on
Algorithms (ESA), volume 5757 of LNCS, pages 554–565. Springer, 2009. (Cited
on pages 18, 36, 42 and 168.)

[154] V.V. Vazirani. Approximation Algorithms. Springer, 2001. (Cited on page 16.)

[155] M. Wahlström. Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. PhD thesis, Department of Computer and Information Science,
Linköpings universitet, Sweden, 2007. (Cited on pages 110 and 142.)

[156] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theoretical Computer Science, 348(2-3):357–365, 2005. (Cited on page 61.)

[157] G. Xu, L. Kang, E. Shan, and M. Zhao. Power domination in block graphs.
Theoretical Computer Science, 359(1–3):299–305, 2006. (Cited on page 168.)

[158] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal of
Applied Mathematics, 38(3):364–372, June 1980. (Cited on page 48.)

233

Bibliography

234

L E B E N S L A U F

PERSÖNLICHE ANGABEN

Name: Daniel Binkele-Raible

Staatsangehörigkeit: deutsch

Geburtsdatum: 08.09.1976

Geburtsort: Villingen-Schwenningen

SCHULAUSBILDUNG

1983–1987 Grundschule (Karlschule) in VS-Schwenningen

1987–1993 Progymnasium St. Ursula in VS-Villingen

1993–1996 Gymnasium am Deutenberg in VS-Schwenningen

ZIVILDIENST

1996–1997 Zivildienst im Mobilen Sozialen Hilfsdienst der Arbeit-
erwohlfahrt, Schwarzwald-Baar

BERUFSAUSBILDUNG

1997–1999 Berufsausbildung zum ’Industrietechnologen Fachrich-
tung Datentechnik Schwerpunkt Wirtschaft’ bei der
Siemens AG, München

HOCHSCHULAUSBILDUNG

Okt. 1999 – Sept. 2001 Vordiplom in Informatik, Universität Tübingen

Okt. 2001 – Juli 2002 Hauptstudium der Informatik, Freie Universität Berlin

Aug. 2002 – Mai 2006 Hauptstudium der Informatik, Universität Tübingen

Mai 2006 – Okt. 2009 Doktorand/Wissenschaftlicher Mitarbeiter, Arbeits-
bereich Theoretische Informatik, Universität Trier,
Doktorvater: Prof. Dr. Henning Fernau

235

