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Chapter 1

| ntroduction

This work is concerned with the numerical solution of optimization problems that
arise in the context of ground water modeling. Ground water hydraulic and quali-
ty management is a field of wide interest that has not yet received much attention
from the optimization community. The optimization problems considered in this work
are discretized optimal control problems. As such, they exhibit a particular structure
which is due to the partitioning of variables and to the infinite dimensional nature of
the original problems. In these problems there are two sets of variables, state and
control variables. This partitioning introduces structure that can be efficiently used
in optimization algorithms. Originally, the variables are functions, and the constraint
functionsinvolve partia differential equations. For anumerical solution, these haveto
be discretized which is another source of structure. Our goal is to make efficient use
of this structure.

But mathematical theory cannot always be exploited to full extent. Practicality
may for instance enforce the usage of external, off-the-shelf software. This is the
situation we encounter for one of our applications. In this case study, usage of external
software excludes some problem formulations and, consequently, certain mathemati-
cal approaches to the problem. Moreover, structureis lost in the reduced, black—box,
approach that we use. Additionally, errors are introduced into the objective function
through the numerical treatment in the codes. One is well advised to refrain from
taking higher derivatives, and special care has to be taken in using first—order infor-
mation obtained through finite—differencing. Also, rather large error margins must be
accounted for which are induced through simplifications in the modeling and through
the data situation. Methods for noisy functions are appropriate. The treatment of our
first practical applicationislaid out in Chapters 2, 3, and 4.

Two main examples are our guideline through thiswork. We deal with another ap-
plication in ground water modeling in the subsequent chapters, Chapters 5, 6, and 7.
It is approached from a different angle. A self—coded discretization allows to perform
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2 A. BATTERMANN

all computations that are necessary for the so called full-system approach. A com-
mon method for nonlinearly constrained nonlinear optimization problems is sequen-
tial quadratic programming (SQP). In SQP methods a sequence of linearly constrained
quadratic subproblems is solved. The solution of a subproblem can be done by as-
sembling all relevant equations in one large system and solving them simultaneously.
In this full-system approach, the solution of a subproblem requires the solution of a
linear system. In order to build a practical algorithm, it is crucia to be able to solve
the linear systems efficiently. We therefore concern ourselves with preconditionersto
accelerate the iterative solution of the linear systems. These preconditioners are block
preconditioners. Their block structureis similar to that of the original system in order
to alow its exploitation.

Both applications were brought to our attention by the industrial partner in this
project, Technol ogieberatung Grundwasser und Umwelt (TGU). TGU GmbH isacom-
pany of consulting engineers for ground water and water resources on whose experi-
ence we could draw in this project. The project with the working title “Mathematical
Optimization Methods for the Remediation of Ground Water Contaminations’ was
financed by the foundation Stiftung Rheinland—Pfalz fur Innovation.

1.1 Scope

Thiswork is concerned with the numerical solution of optimization problemsfrom the
ground water management context. The guideline to thiswork is provided by two ex-
amples. Both examples are taken from the ground water modeling context, and both
are problems of optimal control that are governed by partia differential equations.
Despite these common grounds, the example problems require different solution tech-
niques. One reason is their different formulation. The choice of problem formulation
is for both problems motivated in the following. Also, the optimization approaches
and main findings are delineated.

Problem formulations An optimization problem can usually be posed in various,
mathematically equivalent, ways. These mathematical formulations differ in the type
of constraints and optimization variables. Different formulations are obtained by using
parts of the constraintsto eliminate variables, or by exposing variablesto the optimiza-
tion and introducing coupling constraints. Such problem formulations can have agreat
impact on how the optimization problem can be solved efficiently. The coupling of
variables and the structure corresponding to a given problem formulation can make
some formulations more suitable for certain optimization methods. The formulations
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together with the choice of particular solution algorithms also determine to which ex-
tent, and of which content, problem information has to be provided to the optimization
algorithm. Problem formulation issues are addressed in various places for particular
problems and in the general optimization literature. See e.g. [36, Ch. 7]. The two
problem formulations that figure in this work are the all-at—once and black—box for-
mulation, respectively. We frame our first application as a black—box problem, while
the second is solved in its all—-at—once formulation.

We present the formulations for the real, possibly nonlinear, equality—constrained
optimization problem

H;i% f(o,u) st c(o,u) =0. (2.1.2)

The objective function of problem (1.1.1) is f, f : IR™ x IR* — IR. The constraints
arec, c : IR™ x IR* — IR™ for appropriate integers m and & of which m is usually
by far the larger in our context. In (1.1.1), ¢ € IR™ represents the state variables, and
u € IR* representsthe control variablesfor aproblem of optimal control. The equation
c(¢,u) = 0 stands for the state equation. The state equation isin our context typically
a discretized partial differential equation whose solution requires considerable com-
putational effort.

Theformulation (1.1.1) is called the all-at—once formulation of the problem. Both
states and controls are viewed as variables. Under appropriate differentiability as-
sumptions on objective f and constraints ¢, the implicit function theorem can be used
to obtain areduced formulation. If there exist (¢, v) that satisfy the state equation, and
if the partial derivative c, (4, u) of ¢ with respect to ¢ is nonsingular, it is possible to
eliminate the state equation from (1.1.1) by defining ¢ implicitly asafunction ¢(u) of
u by the equation ¢(¢(u), ) = 0. Then one obtains the black—box formulation of the
problem (1.1.1) as

min F(u) = £($(u), u).

Obviously, the number and type of variables and constraints change with the prob-
lem. Measured in number of variables and constraints, the all-at—once formulation
istypically by far the largest problem. The black—box formulation typically leads to
the smallest problem. But the expense of a single function evaluation is typically sig-
nificantly higher for the black—box formulation than for the all—-at—once formulation.
This is due to the fact that the objective function in the black—box case requires the
evaluation of ¢(u), the implicitly defined function. This evaluation often corresponds
to the solution of nonlinear systems. The increasein cost of function evaluations when
switching from the all-at—once to the black—box case also carries over to the deriva-
tives. Availability and, in second line, ease of derivative computations can have consid-
erable impact on the choice of problem formulation. So can the size of the quantities
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involved. Sometimes the constraints c(¢, ) = 0 are so large that they cannot be in-
corporated into a given implementation of an optimization algorithm. This is often
the case when the constraints represent discretized partial differential equations, and
software packages are brought into service to treat the constraints. It is also possible
that, given software to treat the constraints, the software cannot solve the adjoint equa-
tion. However, aswe seein the following paragraph, the adjoint solve is a prerequisite
for the all-at—once approach. We are given external software for the equation solve
in our first application. Itsinability to perform the adjoint solve excludes the all—at—
once approach. There is an additiona point in favor of the black—ox approach for
applications with expensive constraints. Within an optimization agorithm based on
the all—-at—once formulation, progress towards optimality and progress towards feasi-
bility with respect to the state equation have to be made simultaneously. Meanwhile,
only feasibleiterates with respect to the original constraintsc(¢, u) = 0 are considered
in the course of optimization with the black—box approach. If the main computational
expense is the equation solve, then, upon premature termination, one does not want to
end up with an infeasible iterate.

General framework Thetwo applicationsthat we are concerned with in the present
work are derived as infinite-dimensional problems. Numerically, we dea with their
discretizations, of course. But since structureisinherited from the infinite—dimensional
setting, we introduce some conceptsin that setting. We refrain from rigorously formu-
lating these concepts here. For an introduction to the infinite-dimensional problems
and differentiability properties within a Hilbert space framework see e.g. [23], [46],
[84].
Consider the general optimization problem

(I}(n)r}l) F(x,Y) st. C(Xx,)Y)=0, (1.1.2)

where X’ and Y are functions in some Hilbert spaces X and Y, where F maps the
functionsto thereal line, and where C stands for a differential equation with valuesin
some Hilbert space D. We call X the state variable and Y the control variable. The
state equation C(X', V) = 0 governsthe optimization problem. Typically, the solution
of the (discretized) state equation, the so called equation solve, dominates the cost of
one step of an optimization method.

The linearization of the state equation is given by

Cx(X,Y)(6X) + Cy(X, V) (6Y) = 0,

0X € X, Y € Y. Subscripts denote differentiation, in this instance in the Fréchet
sense. The partia derivative Cx(X,)), abbreviated Cy, is a linear function in the
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increment § X'. We assume throughout this part that all differentiation that we perform
isjustified and that al quantitiesinvolved do exist.

Under appropriate differentiability assumptions on the state equation, a reduced
formulation can be obtained for the optimization problem (1.1.2) viatheimplicit func-
tion theorem: If the partial Fréchet derivative of C with respect to X’ at a solution
pair (Xo, Vo), Cx(Xo, Vo)(.), has a bounded inverse, then the state equation is locally
uniquely solvable. A function X’ () can locally be implicitly defined by this solution.
The implicitly defined function X' () is continuously Fréchet differentiable and the
derivativeis

Xy(V) = —C X (), D) Cy(X (D), D). (1.13)

Thisimplicit definition allows the reduced formulation
min F(¥) = F(X(¥), V) (11.4)

which is equivalent to (1.1.2). Using the chain rule, the derivative of the reduced
problem (1.1.4) is, using (1.1.3), computed as

Fy(¥) = —(CxH (X (D), V) Cy(X(V), D)) Fa(X, V) + Fy(X,¥).  (LL5)

Formula (1.1.5) is used in the sensitivity equation method to compute the gradient of
the reduced problem (1.1.4). The superscript * signifies the adjoint operator which is
defined with respect to the considered inner product on the relevant Hilbert space. The
null space of the linearized constraints has a representation via the linear operator W,

WX, V) = < —C?(%J;)Cy(x,y) ) .

With this, the gradient f"y(y) of the reduced problem in (1.1.5), which is also called
the reduced gradient of the original problem (1.1.2), can be seen to obey

B =wa (253

In addition to the sensitivity equation method for the computation of the reduced gra-
dient there is the adjoint equation method, usually derived by rewriting (1.1.5) as

Fy(V) = ~Co(X D), M) (Cx(X(V), )°) " Fal(X, V) + Fy(X, ).

The adjoint variables P()) are elements of D*, the dua of D, and defined as the
solution of the adjoint equation

(Cx(X(), V) P) = —Fx(X,)). (1.16)
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In an all-at—once approach, all variables, state, control, and adjoint, are simultaneously
solved for. Consequentially, the adjoint solveis a prerequisite for such an approach.

It follows directly from the representation (1.1.6) that the reduced gradient can be
written as

Fy() = Cp(X (D), V)" P) + Fy(X, D).

The adjoint equation is linear in the adjoint variables P for given ). Despite the line-
arity, the adjoint equation method is not always the method of choice. The adjoint
Cy(X(Y),Y)™ may differ considerably from Cy,(X'()), Y), and while Cy, istypically
readily available to the user as part of the linearized state equation, the adjoint C5; is
typically not. In many cases, the computation of Cy; is difficult. Thus, not only the
cost of solving the adjoint equation must be taken into account, but also the cost of
implementing such solvers.

We are dealing with such a problem in Chapters 2, 3, and 4 of the present work.
Our industrial partner relies on external software for the equation solve. This software
can be used to furnish the evaluation of the state equation in dependence of the current
control. The adjoint equation cannot be solved by the software package asis. Our goal
in this application is not to newly code the equation solve and, additionally, the adjoint
solve. Our goal isto provide optimization tools within the given setting.

Applicable optimization routines We use given software that solves the equations
underlying the optimization. The matrix representing the discretization of the state
eguation is not explicitly stored. Instead, only equations are solved to furnish the
desired state variables. Thus, it is not possible to extract the matrix from the code.
This means that the discrete counterpart of Cy (X', ) is not available, but only the
discrete version of (Cx(X,Y))"1Cy(X,Y). This piece of information could open up
the possibility to build an approximation to the discrete version of the reduced Hessian
of (1.1.2),

W(X, V) Vi F(X,Y) WX, D). (117)

The exact (discretized) reduced Hessian
WX, D) Vi (F(X, D) + P(X,V)*C(X, D)) W(X,D) (1L18)

is not available because it necessarily involves the adjoint variables. If C(X,)) is
linear in X, the quantities (1.1.7) and (1.1.8) coincide. The reduced Hessian, or its
approximation, could be used for a Newton approach. In our opinion, thisis not ad-
visable even if (1.1.7) and (1.1.8) coincide. Instead, we aready handle first—order
information, obtained via finite—differencing, with special care. A rather large error
margin must be admitted for. Thisis due to ssimplificationsin the modeling and to the
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gparsedata. The black—box type use of external software additionally introduces severe
inaccuracies into the function. Nonsmoothness of the problem, in combination with
severa local minimathat have large regions of attraction, see Section 4.3, easily traps
conventional optimization agorithms. Such algorithms, e.g. globalized quasi—Newton
methods, are usually based on the assumption of fully accuratefunctions, i.e., accuracy
in the order of machine epsilon. They are not designed to deal with noisy functions.
For this, the Implicit Filtering algorithm is appropriate. This method furnishesreliable
results while investing only a small budget of function evaluations. We also employ
the Nelder—M ead agorithm, a classical direct search method which typically also only
reguires alow number of function evaluations.

As was mentioned before, ground water hydraulic and quality management prob-
lems have not yet received much attention from the optimization community. Few
approaches to such problems are reported in the literature. A review of severa ap-
proaches to problems arising in this context, [24], [40], [41], [68], [83], is done in
Section 2.3. To our knowledge, optimization methods for noisy functions have not
yet been employed in the ground water modeling context. The treatment of our first
application is developed and justified throughout Chapters 2, 3, and 4.

Outline of the two problems Our first application is a ground water quality man-
agement problem. Heated water is, after use for cooling purposes, reinjected into
the ground. This leads to an increase in temperature at a set of drinking water wells
which are located downstream relative to the injection well. German law, the Wasser-
haushaltsgesetz, requires that anthropogenic changes of ground water properties be
minimized. In this regulation is the requirement that drinking water be provided at
the lowest temperature that is possible under undisturbed conditions. Our goal is to
control the temperature at the drinking water wells. This is done via the optimiza-
tion objective to minimize a quadratic function. The quadratic involves the pumping
rates at a set of barrier wells as an approximate measure of cost. In addition, alinear
combination of the pumping rates and the temperature at the drinking water wellsis
taken into account. Thisisapenalty for increased temperature. The temperature at the
drinking water wells is obtained via the solution of the partial differential equations
modeling ground water flow and heat transport in an aquifer.

Our second application is a ground water hydraulic management problem. Like
the first problem, it is formulated as an optimal control problem governed by a partial
differential equation. The boundary control problem occurs as amixing problem when
extracting ground water that originates from two different water bodies. A quadratic
objective function models pumping cost and treatment cost for contaminated water.
The constraint is the partial differential equation that models ground water flow in
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an aquifer. The discretization of this problem is a quadratic programming problem
with linear constraints. We approach this problem from a different angle than the first
problem. A self—coded discretization enables usto pursue a full-system approach. For
this approach, treated in Chapters 5, 6, and 7, we now provide the background.

KKT systems The optimization problems that we are concerned with are originally
infinite—-dimensional problems like (1.1.2). The variables are functions, and the con-
straint functionsinvolve the solution of differential equations. The numerical solution
of the problems requires a discretization of the variables. We then apply a finite—
dimensional optimization method. A common choice for the numerical solution of the
equality constrained problem

{(IbliI)l f(o,u) st c(o,u) =0, (2.2.9
where
f:R™"™ 5 R, c¢:R"* 5 R" ¢ecR™ ueclRF,

for appropriate m, k € IN, are sequential quadratic programming methods (SQP).
The basic idea of SQP methodsisto model a nonlinear, nonlinearly constrained, prob-
lem at a given approximate solution by a quadratic, linearly constrained, subproblem.
The solution to the subproblem is used to improve upon the current approximate solu-
tion. Thisprocessisiterated to create a sequence of approximationsthat, under certain
assumptions, will converge to an optimizer of (1.1.9). Sequential quadratic program-
ming, with an appropriate choice of quadratic subproblem and update strategy, can
be viewed as the “extension of Newton's method and of quasi-Newton methods to
the constrained optimization setting” [12]. Sequential quadratic programming is not
so much a single method, but rather a conceptual method from which numerous spe-
cific algorithms have evolved. A vast body of literature is testimony to this. For an
overview seee.g. [12]. The success of SQP methods depends on the existence of rapid
and accurate algorithms for solving quadratic programs. We will see in the follow-
ing short recapitulation of the sequential quadratic programming approach that here
preconditioning comesin.

The so called full sequential quadratic programming method iterates on the full
set of variables, i.e., state, control, and Lagrange multipliers. The Lagrangian function
corresponding to problem (1.1.9) is, with amultiplier A € IR™, given by

L(¢,u, ) = f(,u) + A" c(6,u).

It isoften required in the derivation of sequential quadratic programming methods that
the second-order sufficient conditions for a minimum of problem (1.1.9) are satisfied,
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seeeg. [12], [36, Ch. 3]. Our decision variable is naturally partitioned into the state
and control variables, ¢ and u. We refer to the pair (¢, u) aso as z. Because z is
naturally partitioned we dlightly strengthen the requirement that the gradient of the
constraints with respect to z have linearly independent columns.

Assumption 1.1.1 Assumethat f,c € C?(IR™"*). Let for aminimizer z, =: (., u.)
of problem (1.1.9) the following hold.

1. Thematrix V 4c(z,) isinvertible.

2. The Hessian of the Lagrangian function with respect to the variables z = (¢, u)
isat the optimizer symmetric positive definite on the null space of the linearized
constraints V,¢(z.)7, i.e,

2T V2 L(z, A) x>0 Yo #0 st V,e(z) 'z =0.

Assumption 1.1.1 guarantees that z, is an isolated local minimum of (1.1.9) and
that a unique multiplier vector \, existswith

V.L(z, \) = Vo f(2:) + AV,e(2,) = 0. (1.1.10)

In the algorithm, such a minimizer z, and the corresponding multiplier \, are usu-
ally approximated via the sequential solution of so called KKT systems. This can be
derived with the help of Newton’s method in the following way.

The system composed of thefirst order necessary optimality conditionsfor (1.1.9),
i.e., (1.1.10), and of the constraintsis given by the equations

Ly(d,u,N) = fo(o,u) +ci(d,u) A =0, (1.1.112)
L N) = fu(yu)+ (6w A =0, (11.12)
Ly(¢,u, ) = c(¢,u) = 0. (1.1.13)

Newton's method

S¢
V%qb,u,)\)L((b’ u, A) ( Sy ) = _V(¢7U,A)L(¢,U, )\)

Sx

can be applied in order to solve the system of optimality conditions (1.1.11) — (1.1.13).
In that instance, the system

L¢¢ L¢u CZ: S¢ f¢ + Cg; A
Lyy Ly, cr sy | == futct X |, (1.1.19)

cp¢ ¢ O S c
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with all quantities evaluated at the current point (¢., u., Ac), iSthen solved in consecu-
tive steps. An obvious update strategy, compare [12], is with some step length « to set
(D4 Ugs Ay) = (P, Ue; Ac) + @ (84, Sus S2)-

We note that (1.1.14) are the necessary and sufficient optimality conditions for the
guadratic minimization problem

T T
min L [ 5¢ Loo Lou \ (50 ) [ fo 59
(8¢55u) 2 Sy Luq) Luu Sy fu Su
c T
(1) ()
Cu Sy

provided that the second partial derivative L,, of the Lagrangian function with respect
to state and control (¢, u),

subject to

Lss L
L,=| 7% ~¢u ) , (1.1.15)
( Lu¢ Luu

is positive definite on the null space of the linearization (¢, | ¢, ) of the constraints.

In this work, we denote the linearly equality constrained quadratic programming
problem in standard form, corresponding to a subproblem within a general sequential
guadratic programming method, as

T T
(0 (2 12)(2)-(6) () e

A¢ + Bu =b. (1.1.17)

subject to

We usually consider A to represent a discretized partial differential equation, corres-
ponding to what was referred to as equation solve above. Thus, a solve with A is
typically expensive and can be assumed to dominate overall computational cost. Also,
A can be taken to be nonsingular. The matrix B represents the influence of the control
u. The dimensions of the quantities are

Lyy € R™ ™, Ld,u,Lfd, € R™* L, € Rk Aec R™™ Be R™F
peER™ uelRF, ce R™, d€ IRF, be R™.

In our context, m is the number of state variables. It is typically considerably larger
than the number & of control variables. Thisisespecially true since we consider bound-
ary control problems. We also use C' = (A | B) to refer to the constraints (1.1.17).
With this notation, the null space of the constraintsis handily written with the help of

W = ( _‘4[_13 ) . (1.1.18)
k
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This null space representation is canonical for problems of optimal control. The re-
duced Hessian H of (1.1.16) s.t. (1.1.17) isgiven as the projection of (1.1.15) onto the
null space of the constraints,

H=WTL,W=BT"ATLyyA'B— LA 'B—BT"A "Ly, + L,,. (1119)

The existence of solutions of the quadratic programming problem (1.1.16) sit.
(1.1.17) is guaranteed if the matrix in (1.1.15) is positive semidefinite and if the ob-
jective function is bounded from below on the set of feasible points. In this case, the
necessary and sufficient optimality conditions for problem (1.1.16) st. (1.1.17) are
given by the so called KKT conditions, seee.g. [36, Ch. 3],

L¢¢ L¢u AT ¢ —C
Ly Ly, BT u |=1| —d |. (1.1.20)
A B 0 A b

Consistently throughout this work, we refer to the system matrix of (1.1.20) as K,

L¢¢ L¢u AT

K=| L, L. BT |. (1.1.21)
A B 0

The dimension of K is 2m + k for which we will consistently use N. We set the

following three requirements on K and the submatrices of the KKT system. These are
not in full correspondence to Assumption 1.1.1, but present a relaxation.

Assumption 1.1.2 Let for the system K in (1.1.21) and its submatrices hold:

1. K isnonsingular.
2. K issymmetric.

3. Aisnonsingular.

The second item of Assumption 1.1.2 is an immediate consequence of the require-
ment that f and ¢ be twice continuously differentiable. Note that we do not require
symmetric positive definiteness of Ly, Ly, OF L,,. The third item states solvability
of the state equation and corresponds to the first item of Assumption 1.1.1.

Note that we do not set the requirement corresponding to the second item of As-
sumption 1.1.1 throughout our treatment. The vast majority of our results need not
requirethat L,, is symmetric positive definite on the null space of the constraints C,
i.e., that the reduced Hessian is symmetric positive definite. Neither do we require that
L,, beinvertible and that consequently the Schur complement of K exist. We will see
in Chapter 6 that these assumptions are commonly made in the literature. Properties
of the KKT system that can be derived from Assumption 1.1.2 and that are relevant for
our treatment are assembled in Section 5.2.1.



12 A. BATTERMANN

Preconditioning From the foregoing short recapitulation it followsthat in each step
of sequential quadratic programming methods, alinear system

Kz=r (1.1.22)

with K € RM*N (N = 2m + k) symmetric indefinite has to be solved. It is crucial
for overall performance to do that efficiently. Whenever discretizations of partial dif-
ferential equations are involved, the KKT systems generally tend to large dimensions
and exhibit a specific sparse structure. The use of iterative solversis usually advocated
under these circumstances. Iterative methods are advantageous in that they do not
require to assemble and store the entire system K, but, instead, only a matrix—vector
multiplication K v per iteration. Common choicesare so called Krylov subspace meth-
ods. Two especially well-known Krylov subspace methods are the conjugate gradient
routine, see e.g. [39], and the generalized minimum residual method, GMRES [70].
Typicaly, if no restart occurs, Krylov subspace methods generate iterates

z; € xo + IC;(K,10) = span {Klro}j__; ,

where IC; (K, r) denotesthe Krylov subspace of order j generated by K and theinitial
residua rg. Initial residua meansthat ro = K o — r for astarting guess . A number
of Krylov subspace methods, most prominently the conjugate gradient, the minimum
residual, and the generalized minimum residual algorithms, are N—step proceduresin
exact arithmetic in that they stop with the exact solution of (1.1.22) after at most N
iterations. Thisisin general judged atoo high computational expense. It is customary
to regard Krylov subspace methods as genuinely iterative procedures with termination
based upon an iteration maximum and the residual norm ||r;||. Convergence analysis
is the basis for the construction of preconditioners. Preconditioners are often that
convergence—enhancing tool that rendersiterative methods efficient. The genera issue
in preconditioning isto construct a system that is equivalent to the original system and
that is easier to solve. The ideal preconditioner can be thought of to approximate the
inverse of the original system matrix. But the use of the exact inverse is in general
prohibitively expensive. Clearly, cost and effectiveness of a preconditioner have to be
weighted against each other.

Our interest in this work is the construction of block preconditioners. Block pre-
conditioners are e.g. considered in [5], [7], [34], [49], [54], [69], [73], [74]. This
previous related work is reviewed in Chapter 6. Block preconditioners are here to be
understood such that the preconditioners are composed of blocks and that they main-
tain the block structure of the original system. This alows to exploit that structure
to computational advantage and to specifically address the problematic parts of the
origina system. In the ideal case, the blocks in the preconditioner are the inverses
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of the submatrices of the original system (or of products of the submatrices). But it
can usually not be assumed that the exact solution is affordable. In the general case,
the preconditioner for the full system is composed of preconditioners for the subma-
trices. Such block preconditioners, composed of preconditioners for submatrices, can
generally be adapted to specific applications by incorporating known effective precon-
ditioners for subsystems of the system matrix.

The preconditioner proposed in thiswork isfor suitable P, and Py given by

0o o PT
K=| o pPy BT |.
Py B 0

Obviously, the structure of K iswell captured in K. The preconditioner is indefinite
like the original K in (1.1.21). Thus, all eigenvalues of the preconditioned system
K~'K lie on one side of the origin. They are also well separated from the origin.
The preconditioned system is not normal, i.e., not unitarily diagonalizable. Although
convergence behavior of iterative methods is in the nonnormal case not necessarily
well described by the eigenvalues, eigenvalue information does prove useful for the
systenm K~'K. An upper limit to the number of GMRES steps is the degree of the
minimum polynomial of the system.

A clear—cut analysis of the minimum polynomial is performed for the case where
the exact constraints C' are maintained. This corresponds to the choice P4 = A.
Realistically, the admission of approximate constraints P4 ~ A in the preconditioner
is highly desirable. The relaxation to admit P, is a generalization of previous work
and represents an important step towards computational efficiency. The eigenvalue
analysisisdisturbed in this case, but can be qualitatively maintained.

The starting point for analyzing the eigenvalue distribution is to consider the case
where the exact constraints are maintained, P, = A. In thissituation, the eigenvalues
of the preconditioned system are the desired eigenvalue 1 and at most & eigenvalues
that are distinct from 1. The key observation is that the request eigenvalue 1 has high
algebraic multiplicity 2m and low geometric multiplicity 2. This delays convergence
of the generalized minimum residual method by only one step. Theremaining k& eigen-
values are those of P, 'H. The matrix H, see (1.1.19), is the reduced Hessian of the
underlying quadratic programming problem (1.1.16) sit. (1.1.17). Choosing Py = H
lets GMRES terminate with the exact solution (in exact arithmetic) after 3 steps. The
cheaper and computationally sensible choice Py = I can be shown to permit captur-
ing of an invariant subspace of the system after at most k£ + 2 steps. In comparison to
theamost NV stepsthat are needed by Krylov subspace methods on the ill—conditioned
original system, k£ + 2 steps, with £ < m, represent major improvement. The pre-
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conditioner is especially successful if the number £ of controlsissmall. For instance,
expectations can be set high with boundary control problems.

1.2 Overview

The present work is structured as follows.

In Chapter 2 the basisis laid for the first application considered in thiswork. The
relevant equations are derived. The partial differential equations model flow and heat
transport in aporous medium. Commonly used simplifications are explained that make
the equations practical to handle. The application is formulated as a problem of op-
timal control that is governed by partial differential equations. Also, the choice of
formulation is justified. A review, by no means complete, of previous approaches to
the combination of aquifer simulations with optimization is appended.

Anticipatory to the numerical results for the application that are presented in the
subsequent chapter, we state in Chapter 3 that a conventional smooth optimizer is easi-
ly trapped in this application’s landscape. We turn our attention to two specialized
optimization routines, Implicit Filtering and the Nelder—Mead algorithm. These we
employ for the considered application. The routines are presented along with theoreti-
cal background concerning inaccurate function evaluations.

In Chapter 4 our first practical application is described in—depth with its hydro-
geologic features. Subsequently, the numerical setting of the discrete optimization
problem is explored. Thisistied to software issues. To the codes that are used to solve
the partial differential equations underlying the optimization we refer as the simula-
tion codes. The smulation codes are briefly reviewed to explain their main features.
Finally, the optimization results for the case study are described and analyzed.

We address our second application in the consecutive chapters. In our numerical
treatment of thisapplication, all ingredientsfor the full-system approach are provided.
This enables us to solve the linear quadratic control problem via the solution of one
linear system, the KKT system. For the linear solve, we use iterative methods — but
only in conjunction with an effective preconditioner. Chapter 5 is devoted to the ana-
lysis of the preconditioner that we propose upon the solution of large sparse KK T-like
systems with features similar to that of our application. The preconditioner’s cost and
effects are discussed, this including implementational issues and considerations for
the choice of subpreconditioners. As prerequisites, preconditioning and a number of
Krylov subspace methods are reviewed.

A review of several preconditioners for symmetric indefinite systems is added in
the following chapter, Chapter 6. An abundance of literature can be found, both con-
cerning all—purpose preconditioners and application—specific preconditioners. We do
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not pretend to attempt acomplete survey. Neverthel ess, besides pointing to all-purpose
preconditioners that are suitable for indefinite systems, we refer to a large group of
block preconditionersthat are designed in asimilar way as the preconditioner of Chap-
ter 5. A number of the assembled preconditioners are consequently examined in detail .

The derivation of the application, a ground water hydraulic problem, is done in
Chapter 7. Its discretization is a quadratic function governed by a linear partial dif-
ferential equation. The KKT system is then set up. The solution to the optimization
problem is discussed. The numerical performance of the preconditioner analyzed in
Chapter 5 is compared to anumber of preconditionersreviewed in the preceding chap-
ter. Also treated at large is the preconditioner’s performance on this example problem
in several configurations of subpreconditioners.

In addition to the summarizing commentsin Sections 4.3 and 7.3, conclusions are
drawn in Chapter 8. Possible extensionsto thiswork are sketched, both in terms of the
applications and of the specific optimization approaches.

Finally, the Appendix is designed to provideinformation about aquifersand ground
water flow and to relate some of the basic definitions and assumptions used in the
derivation of the common model.
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Chapter 2

An Optimal Control Problem

In this chapter we derive and state an optimal control problem governed by partial
differential equations. The motivation behind this problem is the application that we
addressin Chapter 4 and only briefly delineate here: Our focusis on the drinking water
supply of aregion. The considered zone is the recharge zone for a cluster of drinking
water wells. Within this zone lies an industrial zone with several additional wells,
mostly also extracting water. Besides, reinjection of heated water into the ground
occurs, this causing a temperature anomaly in the ground water. The goal is to hold
low increases in the ground water temperature at the water supply wells. Control will
be exerted via selected wells.

In this chapter we derive how the problem described above in very short terms
can be model ed mathematically. The model involvestwo partial differential equations.
One partial differential equation models the ground water motion. The second partial
differential equation models heat transport in water and soil. In the general formu-
lation, ground water flow and heat transport in the ground are interdependent. The
problem thus requires the solution of a coupled system of two partial differential equa-
tions. In order to derive a practical formulation, several simplifications are introduced
which we devel op throughout the chapter.

2.1 Ground Water Flow

This section dealswith the basic law governing the motion of ground water in aquifers.
Only saturated flow is considered, and al variables and parameters have an average
meaning in a porous medium regarded as a continuum. The flow equation is based on
Darcy’s law and a continuity equation. The combination of these two describes flow
in an aquifer. The mathematics of this section can be understood without a hydrologic
derivation of the equations. Neverthel ess, the most important notions, e.g. the continu-
um approach and the hydraulic approach as well as Darcy’s law, can be looked up in
the Appendix. Also addressed there is the range of validity of Darcy’s law.

17
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The Flow Equation

The basic differential equation for ground water flow in aquifersis given by

0
S0 5;0(2,9,2,1) =V - (K (2,9, 2) Vo(2,y, 2,1)) + @’ (z,y,2,1), (2.11)

where (z,y, z) € Q C IR® are the spatial variablesand ¢ € [0, t,] denotes time. The
solutionto Equation (2.1.1) isthe piezometrichead ¢, ¢ = ¢(x, y, z,t). The coefficient
K which dependson the spatial variables (z, y, z) isacoefficient of proportionality and
is called hydraulic conductivity. The hydraulic conductivity expresses the ease with
which afluid istransported through a porous medium. Depending on both medium and
fluid properties, the hydraulic conductivity K can be ascalar or a (3 x 3)—tensor with
values that are constant or that vary in space. Compare the Appendix. The specific
storativity Sy of the porous medium of an aquifer is the volume of water released
from storage or added to it in a unit volume of aquifer per unit change in piezometric
head. Theterm ¢%(z, v, z,t) accounts for sources and sinks of water in the considered
domain.

For a homogeneous isotropic medium, the hydraulic conductivity K (z,y, z) isa
scalar value depending on the spatial variables, kf(x,y, z) € IR. In case of constant
hydraulic conductivity K or k¢, Equation (2.1.1) reducesto

0
SO a¢(x7ya Zat) = kf A¢(J), y727t) + d¢($, Y, z, t) (212)

with the Laplace operator A¢ = V - (Vo).

When both fluid and solid are assumed to be incompressible, the storage term S
in Equations (2.1.1) and (2.1.2) vanishes. This also happens when the flow is steady.
In that instance, the time-dependent equation (2.1.2) reduces to the L aplace equation,

kf A(b(xa Y, Z) = _(jtﬁ(x’ Y, Z)' (213)

Solution of any of the Equations (2.1.1) to (2.1.3) allows to compute so called
Darcy velocity vp,

UD(xa Y, z, t) = —K(.’IT, Y, Z) qu(x, Y, z, t)
Since flow takes place only through part of the porous medium, the remaining part

being occupied by the solid (compare the Appendix), the effective porosity n is needed
to determine the field velocity v,

1 1
U(CC,y,Z,t) = EUD(xayazat) = _EK(a:ayaZ) V¢(xayazat)

In this work, we do not distinguish between effective and total, or average, porosity,
but, for simplification, aways refer to the effective porosity 7.
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Problem—Oriented Simplifications

In this part those problem—oriented simplifications are summarized which allow to
develop a practical ground water flow model. See also the Appendix.

<& The continuum approach is employed, i.e., al variables and parameters have an
average meaning in a porous medium that is regarded as a continuum.

< Incompressibility of fluid and soil as well as constant density and viscosity of
the fluid are assumed.

These two important assumptions are aready incorporated into the preceding equa-
tions. Another important simplification allowsto reduce the three-dimensional partial
differential equation to an equation in two dimensions.

< The Dupuit assumption for an unconfined aquifer is also known as the hydraulic
approach. It is equivalent to assuming that equipotential surfaces are strictly
vertical. Thisis based on the fact that flow in aquifersis essentially horizontal.
For ajustification see the Appendix. We write

h(z,y,t) = é(z,y,.,t) (z,y) € Q,te[0,t].

Thus, Equation (2.1.1) can be reduced to

S T he,t) = V- (K(ey) Vhie g, ) + o) (214)

with spatia variables (z,y) € Q@ C R* andtimet € [0,¢;]. The solution to Equa-
tion (2.1.4) is the piezometric head h, h = h(z,y,t). As before, compare also the
Appendix, ¢"(z,y,t) accounts for sources and sinks, S is a storage coefficient, and
K(z,y) isthe hydraulic conductivity. Analogous changes apply to Equations (2.1.2)
and (2.1.3). For a homogeneous isotropic medium, write

S %h(w, y,t) =V - (kf(z,y) Vh(z,y,1) + ¢" (2, y,1) . (2.1.5)

If flow is steady, time—-dependency vanishes so that Equation (2.1.5) reducesto
V- (ks(2,y) Vh(z,y, 1) = —¢"(2,9.t) . (2.1.6)
Thedistribution of h = h(z, y, t) in an aquifer is obtained by solving Equation (2.1.4)

subject to appropriate boundary and initial conditions. Knowledge of A then allowsto
compute the field velocity v, with porosity n as before,

U(.T,y,t) = _%K(a:ay) Vh(.’L',y,t). (217)
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Further Conditions

Each of the Equations (2.1.1) to (2.1.3) and (2.1.4) to (2.1.6) presented in this section
is a partia differential equation which describes a class of phenomena. To obtain
a particular solution corresponding to a specific problem, it is necessary to provide
supplementary information. These must include:

<& The geometry of the domain in which the considered flow takes place.
<& Values of al relevant physical coefficients.

<& Specifications of the initial conditions to describe the initial state of the fluid in
the considered flow domain.

<& Specifications of the boundary conditions to describe how the fluid in the con-
sidered domain interacts with its surroundings.

Initial conditions are the specification of A at al points within the domain 2 at
some initial time ¢, usually taken ast = 0. This can be written, with Ay a known
function, as h(z, y,0) = ho(z,y) in .

Boundary conditions describe the flow on the boundary of the considered domain.
Three main types of boundary conditions are generally distinguished, the Dirichlet
boundary conditions, Neumann boundary conditions, and the mixed or Cauchy bound-
ary conditions. See the Appendix also. We consider boundary parts I'p, I'y, and
| with I'pNI'y NIy = @, I'pUI'yUT'y = 0. Let hD(x,y,t), hN(.T,y,t),
and hys(z,y,t) be real—vaued functions defined on I'p x [0,%], T'x % [0,%], and
[y x [0, ¢1], respectively. Then Equation (2.1.4) is, complete with boundary and ini-
tial conditions, given in the following form.

S2h(z,y,t) = V- (K(x,y) Vh(z,y,t))

+q"(z,y,t) (z,y,t) € Q x[0,t]
hz,y,t) = hp(z,y,t) (z,9,t) € I'p x [0, ]
%h(m,y,t) = hy(z,y,t) (z,y,t) e Ty x [0,¢1]  (2.1.8)
h(z,y,t)
-l-a%h(a:,y,t) = hu(z,y,t) (xz,y,t) € Tpr x [0, 4]
hz,y,0) = ho(z,y) (z,y) € Q

2.2 Heat Transport

We now address the partial differential equation that describes heat transport in an
aquifer. The main mechanisms affecting thistransport are heat conduction, convection,
and hydrodynamic dispersion. Convective heat transport is described on the basis
of the ground water flow introduced in Section 2.1. This requires knowledge of the
flow regime prior to solving the transport equation. In the general case, temperature
changes can influence fluid and soil properties. Variations in the temperature field
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cause changes in the liquid's density and viscosity. These, in turn, affect the flow
regime that depends on these properties. Thus we are faced with a coupled system of
two partial differential equations. Its numerical solution isin most cases impractical.
We introduce and justify those simplifications that entail the sequential solve of the
eguations. Subsequently, a comparison is drawn between the equations that model
heat and solute transport in an aquifer. This comparison leads to a discussion of the
eguation parameters that are relevant for the application in Chapter 4. The parameters
determine the character of the partial differential equations under consideration, this
being the last point discussed in this section.

The Transport Equation

The main mechanisms affecting heat transport in a porous medium are heat conduc-
tion, convection, and hydrodynamic dispersion. Heat conduction is the thermal ex-
change between water and solid in the aquifer. The model that is developed here is
based on the commonly made assumption that, through conduction, an initial differ-
ence in temperature between fluid and solid disappears instantaneously. Convection
describes heat transport with the flow of water. The term advection is used synony-
mously to convection in thiswork. This phenomenon can be described on the basis of
the average flow of ground water. Also, conduction can be described on the macro-
scopic level. On the microscopic level, because of the shape of the interconnected
pore space, velocity variations in magnitude and direction occur that cause a spread-
ing of particles. This is called mechanical dispersion or convective diffusion. The
term hydrodynamic dispersion is used to denote on the macroscopic level the spread-
ing that results from both mechanical dispersion and molecular diffusion. However,
heat transport through molecular diffusion can for a porous medium flow in general
be neglected. Its contribution is of interest only for flow velocities well below those
that are usually exhibited, compare e.g. [71, p. 22]. The presentation in this sectionis
based on [9, Ch. V1], [25, Ch. 10.3], [28], [57, Ch. 4.2], [76], [ 77].
The equation modeling heat transport in an aquifer is given by

%T(x, y,z,t) = =V - (k(T) T (z,y,2,t)v(x,y, 2, 1))

(2.2.1)
+V - (D(v) VT (z,y,2,1)) +§" (2,9, 2,1)

with spatial variables (z,v, z) € Q C IR® andtimet € [0, ,]. The solution to (2.2.1)
is the temperature 7', T = T(z,y, z,t). Sources and sinks of heat are modeled by
the term 47 = ¢7(z,y, 2,t). The first—order term in (2.2.1) describes the convective
transport, and the second—order term models the dispersive phenomena. The ground
water flow enters the equation through the velocity v, v = v(z, y, 2, t), directly in the
convective term. The flow regime also influences the dispersive term viathe effective
heat dispersion coefficient of Equation (2.2.1), compare [77],

I. (2.2.2)
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In (2.2.2), )\ isthe effective thermal conductivity of the aquifer with units [.J/sm K],
paCa 1S the heat capacity of the aquifer with units [J/m?K], and D, = D,.(v) isthe
tensor of hydrodynamic dispersion with units [m?/s]. The coefficient x(T') in Equa-
tion (2.2.1) isgiven by
T
w(1) = "Puenl). (223)
PaCa
Here, p,c, is the heat capacity of water with units [J/m?K]. The heat capacity of
the aquifer p,c, is the average of the heat capacities of water p,c, and solid p,c,,
weighted with the porosity n, see e.g. [25, p. 278],

PaCa = N PuwCuw + (1 — 1) pscs .

Since the density p,, of water depends on the temperature 7', we write p,, = py,(T)
and denote the dependency by (7). Not only the density p,, of water, but also its
kinematic viscosity v,, depends on the temperature 7', so that v, = v,,(T") dso. We
recall the definition of hydraulic conductivity K, compare the Appendix, in the homo-
geneous, isotropic case as the scalar

kf — Pw g kO )

Uy

Thus, we denote K which was known to depend on the spatial variables, i.e,, K =
K(z,y,z), now as K(z,y,2,T) = K(.,T). We see with this symbolic notation
that (2.1.1) and (2.2.1) are interdependent and that their combination

Sozd() = V- (K(.T)Vé())+ad*()
() = —LK(,T)V() (2.2.4)

A1) = =V-(W(T)T()v(.)+ V- (D) VT(.) +47(.)

constitutes a coupled system of two partial differential equations with nonconstant
coefficients. The numerical solution of such a system is currently in most cases im-
practical. Compare e.g. [498], [67].

In this short description of the coupled system we have so far neglected initial
conditions and boundary conditions. Of course, initial and boundary conditions are
necessary to solve the partial differential equationsin (2.2.4). This leads to an addi-
tional point requiring a simplification of the considered equations. In practice, many
parameter values and boundary conditions are unknown. For instance, the natural tem-
perature distribution of ground water cannot be determined exactly. Instead, in view
of the accessible data and of numerical practicality, a ssmplified model is considered.
Thisis now addressed.

Problem—Oriented Simplifications

In this part we describe those problem—oriented simplifications which allow to devel op
a practical heat transport model for the determination of anthropogenic temperature
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anomaliesin ground water. Facts assembled in [25], [71], [76], [77] justify the simpli-
fications for the application that we have in mind. The most important simplifications
focus on the coupling between flow and temperature.

< Density effects due to temperature changes are not considered. That means that
the density p,, is constant.

<& Changesin viscosity due to temperature changes are negligibly small. Thus, the
viscosity v, IS constant.
This alows the decoupling of the two partial differential equations in (2.2.4). We
consider the hydraulic conductivity as dependent on the spatial variables alone, i.e.,
K = K(z,y, z), and we consider the coefficient x defined in (2.2.3) to be constant.

In addition, we make several assumptions that have implications on the modeling
and on the numerical treatment of the problem. The specific characteristics of heat
transport in the subsurface, including lack of data, usually require problem—oriented
simplifications in both model concepts and model dimensionality.

<& Heat storage and conductivity, i.e., interchanges with the atmosphere and the
aquifer basis, can be represented by a term for sources and sinks. Also, heat
exchange processes in the cover layer, e.g. due to anthropogenic influences, can
be represented by aterm for sources and sinks of heat.

<& Dueto the exponential decay of temperature changes with increasing depth be-
low ground and to the long—term nature of thermal processes in ground water it
isin general admissible to equate the natural ground water temperature with the
annually averaged air temperature.

<& Dueto the exponential decay of temperature changes with increasing depth be-

low ground and to the long—term nature of thermal processes in ground water

it isin general admissible to neglect the vertical dimension and treat the heat
transport process in two spatial variablesin the horizontal plane.

<& Temperature anomalies in ground water require several years to decades to de-

velop. Thisjustifiesto rely on successive flow fields that are averaged over time.

It is for instance in [27, Ch. 9] established that the effective perturbation depth of

temperature fluctuations at the Earth’s surface is on the order of 10m. No appreciable

temperature changesin response to seasonal variationsare exhibited in our application.

The application of these smplificationsto (2.2.1) leads to
5Tz, y,t) ==V (T(z,y,t)v(z,y,1))
+V - (D(v) VT (2,y,t)) + a* (z,y,1)
with spatial variables (z,y) € 2 C IR* andtimet € [0, ¢;]. The coefficients are
_ N PuCu

Ae
= D(v) =D,
k="l D) = D) + 2

(2.2.5)

I (2.2.6)

with D, (v) defined by

1 2 2 _
Deo(v) = — apv, +arv, (of X ozT)vvay . (227)
”U“ (aL - CYT)Uwa ar vy + af, Uy
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In (2.2.5), ar stands for transversal dispersion length and «;, for longitudinal disper-
sion length. The quantities v, and v, are the entries of the velocity vector v. Compare
e.g.[9, Ch. 7], [25, Ch. 10.3], [57, p.65ff.], [ 71, p. 19ff.].

Ground water flow enters the equation through the velocity v as defined in (2.1.7).
Sources and sinks of heat are modeled by the term ¢”(.). The solution & to (2.1.5)
is, under the assumptions stated above, independent of the temperature field 7. This
allows the sequentia treatment of the two equations.

In order to define a solvable problem, Equation (2.2.5) must be complemented with
initial and boundary conditions. Three main types of boundary conditions are distin-
guished, Dirichlet, Neumann, and mixed boundary conditions. Consider boundary
partSFD, Ty, and 'y, with I'pNTyNTy = @, I'pUll'y Uy = 0f2. Consider also
real—valued functions Tp (z, y, t), Tn(z,y,t), and Ty, (z, y,t) defined onT'p x [0, 4],
Iy x [0,%1],and T’y x [0, ¢1], respectively. Then Equation (2.2.5) takes the following
form.

2T (z,y,t) = =V - (kT (z,y,t)v(z,y,1))
+V - (D(v) VT (z,y,1))
+(]T($,y,t) ($,y,t) € Q X [Oatl]
T(z,y,t) = Tp(z,y,t) (z,y,t) € Tp x [0,1] (228)
2T(z,y,t) = Tn(z,y,t) (z,y,t) €Ty x [0,t]]
T(z,y,t)
+%T(IE’ yat) = TM(xa Y, t) ($, y’t) €'y X [O’tl]
T(mayao) = To(l',y) (',an) € Q

The combination of Equations (2.2.8) and (2.1.8) that allows the sequential solve can
now be cast in the following form. First, compute the piezometric head » from the
flow equation.

SEn(z,y,t) = V- (K(z,y) Vh(z,y,t))

+q"(x,y,1) (z,y,t) € 2 x [0,1]
h(z,y,t) = hp(z,y,1) (z,y,t) € Tp x [0,14]
Zh(z,y,t) = hy(z,y,1) (z,y,t) € Ty x [0, 1]
h(z,y,1)
+ah(z,y,t) = hu(z,y,t) (z,y,t) € Tar X [0,14]
h(z,y,0) = ho(z,y) (z,y) € Q

Second, determine the field velocity v.

v(z,y,t) = —EELVh(z,y,1) (z,y,t) € 2% [0, 1]
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Third, get the desired temperature distribution as the sol ution of the transport equation.

ST (x,y,t) = =V - (kT(z,y,t)v(z,y,1))
+V - (D(v) VT (z,y,1))
+qAT(xayat) (xayat) € Q X [Oatl]
T(z,y,t) = Tp(z,y,1) (z,y,t) € 'p x [0, 1]
%T(l‘: yvt) = TN(xa yat) (*Ta yat) € I_\N X [Oatl]
T(z,y,t)
+%T(m,y,t) = Ty(z,y,t) (z,y,t) € T'pr x [0, 4]
T(z,y,0) = To(z,y) (z,y) € Q

We have now established the equation modeling heat transport in that form that we
use in our numerical treatment. The numerical treatment is described in Chapter 4.
This includes a description of the software code that we use to solve the transport
equation. The code has been designed for solute transport. The justification for its use
follows.

Heat ver sus Solute Transport

This part addresses the partial differential equations that model heat and solute trans-
port in an aguifer, respectively. We will see that the two equations are similar and that
anumerical model that solves one of the equations can be readily adapted to solve the
other equation aswell. Compare [8, Ch. 10.7], [25, Ch. 10.3], [71, p. 19f.].

Heat transport was already investigated above. Recall that the main mechanisms
affecting heat transport in a porous medium are heat conduction, convection, and hy-
drodynamic dispersion. The equation that models heat transport in an aquifer is, ne-
glecting initial and boundary conditions, given by

27() = =V - (kT()v(.)) + V- (D) VT(.) +§7(.). (2.2.9)

The solution to (2.2.9) is the temperature 7'(.). The ground water flow enters the
equation through the velocity v(.) directly in the convective part and also viathe tensor
D.(v) of hydrodynamic dispersion defined in Equation (2.2.7). Notation is used in
this section as before. The coefficients x and D(v) are defined in Equation (2.2.6).
We recall that n denotes porosity, that ). is the effective thermal conductivity of the
aquifer with units[.J/sm K], and that p,c,, and p,c, are the heat capacity of water and
of the aquifer, respectively, with units [J/m?*K].

The movement of a solute in an aquifer is determined by three main mechanisms,
by diffusion, convection, and dispersion. Again, we use the term advection synony-
mously to convection. In addition to these main physical phenomena there will in
general be other physical, chemical, and biological reactions. These are usually taken
into account with aterm ¢* for sources and sinks of mass. A tracer is a water—soluble
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substance that does not affect the physical and chemical properties of water. Thetrans-
port of atracer is described by

%C(.) =-V-(C)v(.)+V-((dI+ D.(v))VC(.))+ ¢(.). (2.2.10)
Here, C standsfor volumetric solute concentrationin mobile phase with units[kg/m?],
while d isthe coefficient of molecular diffusion with units [m?/s].

The preceding Equation (2.2.10) is the basis for the numerical model underlying
the transport model MI'3D. This is the transport model that we used in our numerical
experiments. It isdescribed in detail in Section 4.2.

Transport of heat energy in ground water is thus described in (2.2.9) by convec-
tive transport and a phenomenon similar to dispersion of a solute. Compare Equa-
tions (2.2.9) and (2.2.10). The dispersive part comprises the thermal conductivity of
both phases, fluid and solid, corresponding to molecular diffusion in the solute trans-
port case, and a “fictive” thermal conductivity that is caused by velocity variations of
flow in the pore space, leading to amixing due to aguifer inhomogeneities. The disper-
sive transport rates of heat and solute transport are comparable, see [71, p. 20]. This
alowsto adjust input to the solute transport model through replacing d by A./paca-

In a domain where convective transport is dominant, the simultaneous transport of
solute and heat shows a retardation of the heat front versus the front of a conservative
tracer. Thisis due to the heat capacity of the aquifer. The relationship between the
velocities of the heat and tracer fronts can be estimated with the help of the porosity
n of the aquifer and of the heat capacities p,c,, and p,c, of water and the aquifer,
respectively. Compare [25, Ch. 10.3], [71, p. 21]. A numerical solute transport model
can be adapted to heat transport by taking into account aretardation factor. The factor
that translates sol ute transportation time into temperature transportation timeis

PaCa
N PoCo

Rt:

which approximately takes the value 2 in our computations.

We have now already begun to discuss the parameters that we used in our numer-
ical experiments. The application and the results of the numerical experiments are
described in detail in Chapter 4. Since all parameters have now been introduced we
will at this point discuss the parameter choice. This determines the character of the
eguations of interest as the subsequent discussion points out. We list here the soil pa-
rameters and hydrothermal parameters used in the example problem. The problem of
data procurement was already addressed. In general, data is expensive and difficult
to acquire, for instance through field experiments and measurements. The considered
regions are usually quite large, say, tens or hundreds of square kilometers, so that
one will often have to work with average values. Several average values for different
types of soil, e.g. for longitudinal and transversal dispersion lengths, are listed in [57,
p. 69f.], [76]. See dso [71, p. 22f.]. For the aquifer of our application, formed of
gravel, we use the values of Table 2.2.1.
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Table 2.2.1: Soil and hydrothermal parameters of the application.

ke =~ 107%m?  soil permeability
p o~ 1.3-107°EL  dynamic viscosity of water (at 7 = 10°C)
n @~ 30% porosity of aquifer
pw ~  1000£%  density of water (at T = 10°C)
puCw =~ 41851 heat capacity of water
ps ~ 265055  density of solid (quartz) (at T = 10°C)
¢ ~ 0.7 ;jj = specific heat of solid (quartz)
pscs ~  1.8—4-  heat capacity of solid
PaCa ~ 2557 heat capacity of aguifer
Ae R~ 2L effective thermal conductivity of solid
o O~ 10m longitudinal dispersion length
ar ~ 1m transversal dispersion length

Classification of the Equations

The parameter choice allows to classify the partial differential equations that govern
the optimization problem stated in Section 2.3. Equations (2.1.1) and (2.2.1) and their
two—dimensional versions, Equations(2.1.4) and (2.2.5), respectively, are linear partial
differential equations of second order. Second-order equations are usually classified
as hyperbolic, parabolic, or elliptic. See e.qg. [44, p. 40ff.]. This classification is both
of theoretical interest and of practical significance. For instance, it is typically ineffi-
cient to use that numerical treatment on a parabolic partial differential equation that is
efficient for a hyperbolic equation. Compare Section 4.2.

This classification is now applied to the equations at hand. We denote the spa-
tial variables (z,y) by X € , and, as before, time by ¢ € [0,¢;]. If the spatial
derivative is written with the subscript X and the time derivative with the subscript ¢,
Equation (2.1.8) takes the form

Shi(X,t) =V (K(X)Vh(X,1)) + ¢"(X,1). (2.2.11)

Thissimplifiesto
V- (K(X)Vh(X)) = —¢"(X) (2.2.12)

in the stationary case. Should the hydraulic conductivity be independent of the loca-
tion, Equation (2.2.12) becomes

K Ah(X) = —¢"(X).

In that case, the equation, which is essentialy the Laplacian, is obvioudly elliptic.
Even if the tensor K (X') depends on the spatia variables, it isin any case symmetric
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and thus diagonalizable. It can be transformed to diagonal form, so that with positive
hydraulic conductivitiesthe condition for elliptic equationsstill holdsin the considered
region.
In the nonstationary case (2.2.11), assuming isotropic conditions, we find that the
eguation
S’U,t = kf(X) “Uxx + qh(X) s

isparabolic. The classification is unchanged under anisotropic conditions.
The equation modeling heat transport in an aquifer, Equation (2.2.1), is with the
nomenclature introduced above given as

Ty(X,t) = =V - (kT(X,t)v(X,t) + V- (D(v) VT(X, 1) + ¢" (X,t) (2.2.13)

with spatial variables X and time ¢. Classifying this equation according to what has
been delineated for second—order equations one would call (2.2.13) parabolic. (There
is no second time—derivative u;; and no mixed derivative ux;.) Recall that the heat
equation is a typical example for a parabolic equation. However, this classification
does not adequately mirror the typical properties of (2.2.13). In the considered appli-
cation, the convective part of the heat transport equation is usually dominant. Compare
what is said about heat versus solute transport at the end of the preceding paragraph.
The diffusion/dispersion part, which is the second—order term, is typically of minor
importance. The coefficient D(v) can under normal circumstances be assumed to be
smaller than « by at least two orders of magnitude. Thus, the linear convective part of
Equation (2.2.13) is dominant, giving the transport equation hyperbolic character.

2.3 Statement of the Optimal Control Problem

In this section we state the optimal control problem in the formulation that we are
concerned with. The application that we have in mind was delineated at the beginning
of this chapter and is described in detail in Chapter 4. A review of other approaches
to ground water management problems in the literature is appended to our problem
formulation. This discussion of different approaches motivates again our chosen ap-
proach. We treat the application of Chapter 4 in a black—box formulation. We have
discussed our situation in the Introduction already. In our case, only the equation solve
is provided for by the given software, and the matrices of the discretization are not
readily available.

We do not at this point intend to specify in detail the control that will be exer-
cised. Recall that any control istied to wells and their stress rates. The derivation
of the basic law governing the motion of ground water in aquifersin Section 2.1 and
the problem—oriented simplifications led to Equation (2.1.8). Since this equation is
two—dimensional in space, the influence of wells on the flow regime enters (2.1.8)
through the term ¢"(z, y, t) that accounts for sources and sinks of water in the consid-
ered domain. In afully three-dimensional treatment of Equation (2.1.1), the influence
of wells would be modeled through boundary conditions in three-dimensional space.
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In the two—dimensional view, however, the wells can only be considered as an “inner
boundary condition” and are modeled through ¢”(.).

In Section 2.2, considering the basics of transport in a porous medium and problem—
oriented simplifications furnished the partial differential equation that models heat
transport in an aquifer. Equation (2.2.8) is phrased in two—dimensional space. Sources
and sinks of temperature within in the domain are accounted for by ¢% (x, y, t).

Thus, the control u that will be exercised enters the differential equations via the
terms ¢"(.) and ¢”'(.) which account for sinks and sources of water and temperature,
respectively. These we denote by ¢"(z, y, t; u(x,y,t)) and ¢* (z, v, t; u(x,y,t)). The
control u, which describes well action in our application, is composed of two parts.
Wewriteu(z, y,t) = (up(z,y,t), ur(z,y,t)), or, in short-hand, u(.) = (un(.), ur(.)).
The first component which we call the flow component enters the partial differential
equation that determines the flow regime. Since the flow must be known in order to
solve the heat equation, it implicitly enters the heat equation. Explicitly considered in
the transport equation, however, is only the temperature component of the control.

We areinterested in controlling the temperature 7" in the considered region by using
the barrier wells for pumping. We do not want to set a particular target temperature
or particular pumping rates. Instead, we treat desired pumping rates as targets by
absorbing them into an objective function of tracking-type rather than to treat them
as constraints and fixed bounds. The control directly enters the objective function via
some cost or penaty term. The temperature also enters the objective function. The
flow regimeis currently not explicitly considered in the objective function,

J(u(.), T(.)) = (u() —u’(),u(.) —u'() + (w,T())-

Viewing the piezometric head h and the temperature 7" as independent variables,
i.e., independent of u, the optimal control problem can be cast in aform that isusually
referred to as all-at—once formulation. In such formulation, one seeks to minimize the
objective function with respect to the variables 7" and u,

iy 7T

under constraints. These constraintsinclude for our application the sequential solution
of two partial differential equations. Other constrained formulations are encountered
in the following review of other efforts to deal with ground water management issues.

Alternative to viewing state and control variables as independent is considering
the temperature 7' as dependent on the control «. If the temperature is considered
as dependent on the control, it will enter the objective function as T'(.) = T'(u)(.)
in symbolic notation, or, with all arguments filled in, as T'(z, y, t; u(z,y,t)). The
temperature 7" isin this version implicitly defined via the control «. Thisleadsto an
unconstrained optimization problem. It is usually called black—box formulation. See
Figure 2.3.1.

It is appropriate at this point to mention that, athough the formulation is very
genera in this chapter, we are not dealing with decision variables v and 7" that are
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truly functions. Instead, we are effectively only dealing with their discrete versions.
The control u is the finite—~dimensional input to a ssmulation code, and 7' is furnished
as the solution to such a code.

We use a black—box formulation in the numerical treatment of our example prob-
lem. It was derived in the introductory Chapter 1 why this is the way to go in the
setting of our first application. In this project, given software codes furnish the equa-
tion solve only. Our goa is to provide tools for optimization in this setting. The
application is described in Chapter 4, the numerical results specifically in Section 4.3.
The combined effects of simplifications in modeling, difficult data procurement, and
the sequential use of off-the—shelf software codes lead to inaccuracy in the function
evaluation. Also, nonsmoothness is observed. Special methods for optimization are
thus required to which we turn in Chapter 3.

Figure 2.3.1: The optimal control problem in black—box formulation.

min J (u(), 7(; ()
where T(.;u(.)) is defined through
S %h(m, y,t) = V- (K(z,y) Vh(z,y,t))
+q"(x, y, t; un(z, y, 1)) (z,y,t) € 2 x [0, 1]
h(z,y,t) = hp(z,y,1) (z,y,t) € I'p x [0, 4]
2h(z,y,t) = hn(z,y,t) (xz,y,t) € 'y x [0,t4]
h(z,y,1)
-l-a%h(a:,y,t) = hy(z,y,t) (z,y,t) € T'pr x [0, 4]
h(z,y,0) = ho(z,y) (z,y) € Q)
v(z,y,t) = —@ Vh(z,y,t) (z,y,t) € Q x[0,t]
al(@,yt) = =V (sT(x,y.t)v(z,y,t))
+V - (D(v) VT (z,y,t))
+q" (z,y, t; ur(x,y, 1)) (z,9,t) € Q x [0,14]
T(xz,y,t) = Tp(x,y,t) (z,y,t) € Tp x [0, 1]
%T(m,y,t) = Ty(z,y,t) (z,y,t) € Ty x [0, 4]
T(z,y,1)
+%T(a¢,y,t) = Ty(z,y,t) (z,y,t) € T'pr x [0, 4]
T(z,y,0) = To(z,y) (z,y) € Q)
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Before shifting our focus to specialized optimization routines, we review optimiza-
tion approaches to ground water management that can be found in the literature. In
recent years, as Wagner [81] states in a 1995 review article, “the aquifer simulation
model has been combined with techniques of optimization to addressimportant ground
water management problems.” The combined simulation and optimization model ams
at accounting for the complex behavior of the ground water system and identifying the
best management strategy under consideration of the management objectives and con-
straints. Simulation—optimization ground water management model s have been devel -
oped for a variety of applications. The applicationsinclude the restoration of contam-
inated ground water and the control of aquifer hydraulics. Ground water management
models are commonly divided into ground water hydraulic management and in ground
water quality management. Ground water hydraulic management treats quantitative
aspects and is concerned only with the underlying flow. Ground water quality man-
agement generally encompasses flow and transport modeling. The article [81] points
to studies dealing with stochastic and combinatorial approachesto ground water man-
agement. Our review focuses on methods for continuous variables. 1ssues specific to
the simulation are absent in our review.

In several studies of ground water hydraulic and of ground water quality manage-
ment models dating back to the eighties, linear optimization methods are used. We
briefly review the papers [16], [40], [68]. Pelka and Bogacki set up alinear model to
solve ground water quantity management problems in [68]. Their two—-dimensional
ground water flow model is realized numerically with finite elements. The finite ele-
ment mass matrix arising from the flow discretization is assembled explicitly asafull
matrix. It is, together with the matrices accounting for box constraints on the piezo-
metric head h, box constraints on the well stress rates u, and linear constraints on u,
then put together in one large system. In case of alinear objective function the solution
is handled in a straightforward way with the well-known simplex algorithm for linear
programming. Seee.g. [22]. Nonlinear objectivefunctionsare dealt with by repeatedly
linearizing the function and repeatedly performing the linear optimization. Computa-
tions are presented for the stationary case. As the authors remark, this approach can
be extended to the transient case, but this seems impractical. Matrices arising from the
discretization of differential equations tend to large dimensions as the grid is refined,
and the sheer size of the systems makes them difficult to handle.

Similarly, avariant of the simplex algorithm solves the linear programming prob-
lem of the ground water hydraulic management model set up by Chau in [16]. Also
using finite elementsin the flow simulation, alinear program is devel oped with equal-
ity constraints arising through the discretized flow equation and with inequality con-
straints on drawdown, water demand, and hydraulic gradient.

A different linear model, also solved with a variant of the smplex algorithm, is
developed by Gorelick in [40]. The simulator isin this case two—dimensional as well.
It is a combination of a finite—difference flow code and a method—of—characteristics
solute transport model. The simulator is used to set up the so called * concentration re-
sponse matrix” which is then the constraint matrix of alinear programming problem.
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Thismatrix is obtained as the simulator output to a series of so called unit sourceinjec-
tions. Thisislinearly independent and normalized decision variableinput. It describes
the influence of pollutant sources to contaminant concentrations at certain observation
wells over time. The optimization objective is to maximize solute disposal rates while
maintaining a given ground water quality at the observation wells. Numerical prob-
lems are reported with the method of characteristics of the solute transport model. The
solutionsto the solute transport model had to be smoothed out in order to be usable in
the optimization problem. Multiple period source management is considered in [40],
but computational problems are encountered due to the size of the considered systems.

According to Bear and Sun [10], a new direction for the planning in ground water
remediation is introduced with [41] in 1984. Gorelick, Voss, Gill, Murray, Saunders,
and Wright combine nonlinear optimization software with a numerical simulator. The
simulator is SUTRA, a very genera two—dimensional finite—element simulation model
for ground water flow and transport which is available from the United States Geol og-
ical Service. Itisusedin[41] for the simulation of ground water flow with nonreactive
single species transport for afluid of constant density. Like in our work, the flow and
transport equations are thus discoupled and solved sequentially. Moreover, likein our
work, the ssmulator is used in a black—box manner. It is called repeatedly in the course
of optimization to furnish the function evaluations.

The nonlinear optimization software used in [41] is caled a “development ver-
sion” of M NOS by the authors. An overview of the methods employed by M NOS
can be found in the book of Gill et al. [36]. The current features of the software
package are highlighted at ht t p: / / www. sbsi - sol - opti m ze. com M NOS
is a software package for solving large—scale optimization problems where objective
and constraint functions may be linear or nonlinear. The nonlinear functions should be
smooth but need not be convex. For nonlinear objective functions combined with linear
constraints, M NOS uses a reduced—gradient method with quasi-Newton approxima-
tions to the reduced Hessian. For problems with nonlinear constraints, M NOS uses a
projected Lagrangian method. It solves a sequence of subproblems in which the con-
straints are linearized and the objectiveis an augmented L agrangian which involvesall
nonlinear functions. M NOS makes use of nonlinear function and gradient values. If
some of the gradients are unknown, they are estimated by finite differences.

As mentioned above, the ssmulator is treated as a subroutine that is caled by the
optimization procedure for function and Jacobian evaluations. The authors stressthree
noteworthy features of this approach. First, it is quite general in that it can be easi-
ly extended to more complex systems (involving e.g. complicated chemistry and heat
transport aswell asviscosity and density changes which requireto solve acoupled sys-
tem of equations) as soon as asimulation model for such systemsisaccessible. Thisis
of course true in our work also. We are not limited to a special simulator, and nonlin-
earity constitutes no impediment to the employed optimization routines. Second, the
simulation model is a separately testable module. Numerical difficulties in the sim-
ulation can be worked out prior to usage within an optimization framework. While
thisistruein principle, numerical problemsdo still occur with heavily used simulation
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software, and are likely for self—coded simulation codes. Also, the sequential use of
different simulation codes can entail uncontrollabletruncation errors. Thethird feature
isthat, because the simulation model is a separate module, a numerical approximation
of the Jacobian can be easily obtained. While it is true that finite—differencing can be
effectively used to obtain an approximation to first—order information, the validity of
this information must be carefully investigated. We treat this aspect in the following
Chapter 3. We do not want to assume that derivative information acquired through
finite—differencing is fully accurate. This, however, isimplicit in the investigations of
Gorelick et al. in[41].

Considered in [41] are hypothetical systems with different objective functions, lin-
ear and quadratic. One example is to determine the minimum total pumping rate
needed to reduce contaminant concentration below agiven quality standard at specified
locationsin the domain. The objectives are considered in conjunction with nonnegati-
vity constraints on the control » and inequality constraints on the simulation outcome.
The simulation constitutes a nonlinear transformation of pumping rates « into con-
centrations at specified locations. No nonsmoothness is reported in the examples. A
typical iteration history is not given. The number of admitted function evaluations has
ahigh average of about 300.

A comparable approach is pursued by Xiang, Sykes, and Thomson in 1996. They
perform acase study in [83] concerning optimal remedia pumping for a contaminated
aquifer. The objective isto minimize total pumping while removing two ground water
contaminant species to a sufficient extent. The problem is formulated with a simple
linear objective function, the sum of the pumping rates, under box constraints on the
pumping rates and with upper bounds on the contaminant concentration. Contami-
nant concentration is computed with afinite-difference model. The software package
NPSOL developed by Gill, Murray, Saunders, and Wright is employed to solve the
optimization problem. It is a software package for solving constrained, possibly non-
linear, optimization problems. Like with M NGS, the current features of the software
package are highlighted at the site htt p: / / www. sbsi - sol -opti m ze. com
and an overview of the methods employed by M NOS can be found in the book of
Gill et a. [36]. The objective and constraint functions should be smooth. The code
uses an SQP algorithm for an augmented Lagrangian merit function. The user must
provide subroutines that define the objective and nonlinear constraint functions. Their
gradients, if not provided, are approximated by finite differences. Gradients are not
provided in this case study.

Xiang et al. note that various forms of numerical problems can occur inthe smula-
tion. These are primarily attributed to the presence of advective termsin the transport
equation. These numerical inaccuracies may have significant impact on the valid-
ity of a simulation and thus on the validity of optimization. The authors note that
those numerical problems can significantly affect the smoothness properties required
by the optimization tools that they employ, and that this may hinder the proper per-
formance of the optimization. Moreover, convexity and smoothness of the quantities
are generaly difficult to determine. In this study nonconvexity and nonsmoothness
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is observed in a number of instances. Nevertheless, Xiang et al. can report on fast
improvement in the first steps of the employed optimization routine. This study also
observes significant slowdown in iterative improvement within the optimization pro-
cess asthe concentrations are lowered. Thisisattributed to numerical inaccuraciesdue
to smaller fractional concentration values. The authors note that further investigations
concerning the convex and smooth properties and the effects of numerical problemsin
ground water simulation on optimization are worthwhile, as distinct point in favor of
our pursued approach.

Bear and Sun stress in [10] that in most previous studies on ground water reme-
diation, well stress rates and well locations are considered time—independent decision
variables. Ground water flow is often approximated as steady, but solute transport pro-
cessesin aquifersare not. Thus, Bear and Sun remark that constant pumping and injec-
tion strategies may fail to yield optimal remediation resultsin atransient ground water
regime. In order to deal with changesin pumping rates over time, Culver and Shoe-
maker introduce a time—varying control law for water resource management problems
in[24]. In this approach, a set of derivativesis computed to which we have no access.
Also, because we only have very limited information about changes in boundary con-
ditions over time, werestrict our analysisto steady—state pumping rates. In[24] likein
many other studies, all wells are assumed to be installed at the beginning of clean—up
time. Embarking from the observation that the process of determining well locations
isignored, Bear and Sun [10] formulate a multi—stage optimization problem. Thisis
appropriate for their application which also happens to have a still considerably larger
time horizon than is present in our application. Well locations, in any case, are not
subject to optimization in our application. It isnot in many other applications aso. In
many cases, the selection of pumping sitesis not based primarily on the hydrogeol ogy
of the aquifer system. Practical considerations such as a desire to use existing wells
(which istruefor our application, see Chapter 4), land ownership, site access, legal is-
sues, or preferred local hydrogeol ogic conditions restrict those areas where wells may
be situated, compare e.g. [16], [41]. Moreover, the choice of pumping locations used
in aspecific analysisis only done within the limits of the spatial discretization dictated
by the mesh and leads to a problem with discrete variables. We thus do not pursue this
issue.
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Applicable Optimization Routines

A genera algorithm for nonlinear optimization will generaly be inefficient if applied
to problems with special features. Certain problem characteristics have a great impact
on ease of optimization, e.g. the form of constraints, if there are any, and problem
size. For some problems exploiting the sparsity in the problem data leads to significant
improvement in efficiency. Thisisimportant e.g. in our second application, a ground
water hydraulic management problem that we treat in the later chapters, Chapters 5,
6, and 7. One of the fundamental properties of problem functions with respect to ease
of optimization is differentiability. Asageneral rule, algorithmstend to become more
successful and robust as more information is provided.

Most optimization software is designed to solve smooth problems. Thisisthe case
that we call typical and addressin Section 3.2. Methods intended for smooth problems
cannot be the method of choice when derivative informationisunreliable. Thelatter is
afact for the practical application that we deal with here. This application is described
in detail in Chapter 4. It is aready referred to in Section 3.2 to establish the grounds
for those methods that are the topic of this chapter, methods for noisy functions.

We perceive the noisy optimization problem as

min f: R" — R, (3.0.1)

z€IR™

where the objective, f, is composed of a smooth part, f, with asimple form, e.g. a
convex quadratic, and a perturbation, ¢,

f=f+e, feC'(RY),¢pecLl®R"). (3.0.2)
It is assumed that the noise ¢ is“much smaller” than the smooth part,

max [p(z)| < max |f(z)].

The study of optimization methods that do not require gradients is an active re-
search areq, e.g. [52]. The Implicit Filtering Algorithm described in Section 3.4 isless
than ten years old. Some of the methods are classic, however, like for example the

35
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Nelder—Mead algorithm. See Section 3.3. Many derivative—free methods examine a
simplex of points in IR™ at each iteration and then change the simplex in response.
The fundamental idea is that through an organized sampling enough information is
collected to approximate the gradient by differences, and that the accuracy in the dif-
ference approximation can be used to analyze the convergence. Care must be taken for
problems of the form (3.0.1) not to make the difference increments so small as to at-
tempt to differentiate the noise. The goal isto extract as much information as possible
from the smooth part f without wasting effort in a futile attempt to minimize the noise
. A general method for nonsmooth functions will in general be inefficient in terms
of speed and reliability when the objective does have additional smoothness properties
and should therefore be used only when there is no suitable alternative available. A
substantial disadvantage of direct search methodsisthat few, if any, guarantees can be
made concerning convergence. Often, these methods were devel oped to solve special-
ized problems and may be of very limited general usefulness. Their heuristic natureis
reflected by alarge number of parameters to be selected, and their performance often
crucially depends on the choice of these parameters.

The optimization routines that we employ for the application introduced in Chap-
ter 4 aredescribedin Sections 3.2, 3.3, and 3.4, respectively. Theoretical and numerical
properties of the different algorithms are considered. Before turning to these methods,
we address auxiliary issues.

3.1 LineSearch and Gradient Approximation

Line search procedures and gradient approximations are common tools in the opti-
mization of smooth functions. We introduce the basic concepts in this section. Also
covered are extensions of these concepts to the nonsmooth case.

3.1.1 LineSearch Procedures

There are few optimization algorithms that do not utilize aline search procedure. Pro-
vided that the objectivefunction is sufficiently smooth, onewill usually for the solution
of the unconstrained optimization problem

min f(z) (f : R" — IR) (3.1.1)

T€IR™

by an iterative processin each step compute a descent direction p satisfying
Vf(z.)"p < 0. (3.1.2)

Note that in case x. is not an optimizer or a saddle point, the negative gradient,
-V f(z.), constitutes a descent direction. The condition (3.1.2) guarantees for a suf-
ficiently small positive scalar § descent in the objective function, i.e., there exists a
0 > 0 such that

F(ze+0p) < f(ze). (313)
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There are severa ways to use the information contained in (3.1.2). One way is the
method of line searches. The question answered by aline search procedureis. Given
adescent direction p, how to choose ) to get an “acceptable” new iterate

Ty =T+ Ap?

For adiscussion of what is “acceptable” in this context, a classic referenceis e.g. [26,
p. 116ff.]. There aretwo main pointsto be considered in order to set up an efficient line
search algorithm. One isto prevent very small decreases in the function value relative
to the step lengths. Thusit isrequired that the average rate of decrease from z. to =,
be at least some prescribed fraction of theinitial rate of decrease in that direction, i.e.,
pick a € (0, 1) and choose A, from among those scalars satisfying A > 0 and

e+ Ap) < f(z) +a- AV f(z)7p. (3.14)

Condition (3.1.4) isreferred to as “ sufficient decrease condition”. The second point is
to prevent very small steps relative to the initial rate of decrease in the function value.
For thisit isrequired that the rate of decrease of the function valuein directionp at =,
be at least some prescribed fraction of the rate of decreaseinp at z., i.e.,

Vi) p>B- Vi) p (3.1.5)

for somefixed constant 3 € («, 1).

Conditions(3.1.4) and (3.1.5) are based on work of Armijo, compare[26, p. 116ff.].
They lead to globally convergent algorithms. Computational experience has shown
that it is not advisable to accurately solve the one—-dimensional optimization problem

m(sin f(z.+ dp)

that can be derived from (3.1.3). The exact minimization is called Cauchy rule. In-
stead, it is common practice now to follow a backtracking strategy, e.g. the Armijo
rule. See e.g. [26, p. 126ff.], [52, p. 40ff.]. If the starting parameter A = 1 failsto
satisfy the criterion in use, one repeatedly reduces the step size and tests for sufficient
decrease. Thisisdetailed in Figure 3.1.1.

The considerations related so far apply to the smooth case, in particular the suf-
ficient decrease condition (3.1.4) for steepest descent and related algorithms. With
this background, one can analogously define a sufficient decrease condition for direct
search algorithms. Compare [52, p. 138]. Direct search algorithms are intended to
solve the minimization problem (3.1.1) for nondifferentiable functions f by only com-
paring function values, i.e., without computing or explicitly approximating the deriva-
tive. In Section 3.1.3 we introduce the ssimplex gradient, a concept that generalizes
finite—difference approximations. The simplex gradient D(f : S) of f evaluated on a
simplex S isatool for the analysis of direct search methods. By lack of a search direc-
tion p in such methods, the anal ogue of the smooth sufficient decrease condition (3.1.4)
reads

f(@s) < f(ze) = al[D(f = S)|I*. (3.1.6)
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Figure 3.1.1: Armijo line search strategy

Armijo line search strategy

Preprocessing Step:

Initialize starting point x, descent direction p.
Find function valuef ( x) .

Evaluate Vf (x) Tp.

Seta € (0,1/2).

Setp € (0,1).

Algorithm:

SetO'():l.

Evauatef (x + o9 p).

WHILEf (X + 09 p) - f(X) <aoy VF(x)TpDO
og—og+1

Evaluatef (x + oo p).
END WHILE

Set A =op-p.

Evaluatef (x + A p).

WHILEf (X + X p) - f(X) >aAVf(x)TpDoO
A= Ap

Evauatef (x + A p).
END WHILE

3.1.2 TheFinite-Difference Gradient

We now turn to the finite—difference gradient and recall some of its properties as an
approximation to the analytic gradient. We will see that the quality of the approxima-
tion deteriorates when dealing with noisy functions. Thisis considered here only for

the one—dimensional case.

Recall that the first derivative f'(x) of a smooth function f : IR — IR can be
replaced by three different stencils, the forward or right difference D;' f(z), the back-
ward or left difference D}, f(z), and the central or symmetric difference D f(x).

These are defined as, see e.g. [45, p. 43],

Dy f(z) = 5 (f(z+h) = f(2)),
Dy f(z) = 5 (f(z)—f(@—h))

Dif(z) = o (fla+h)—flz—h)).

The quality of the difference schemes is not identical. Consider the function f on a

closed set Q C IR.
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Lemma3.1.1 Let [z — h,z + h] C Q. For the forward, backward, and central differ-
ences the following estimates hold,

Dif(z)=f'(x)+hR, R<i|fllezq), f€CHQ),
Dif(z) = f'(@) + 2R, R<1|flesqy, fE€CHQ) .

Thisresult assertsthat, for suitable f, the forward and backward differences are first—
order accurate, and the central differences are second—order accurate, i.e.,

Dif(z) = f'(z) = O(h), [e€C*Q),
Dif(z) - f'(z) = O(h*), feC*Q).

In the presence of errorsin the function evaluations, finite—difference approxima-
tions must be handled with special care. Compare e.g. [50, p. 75ff.], [52, p. 17f.].
Suppose that only functions can be evaluated and that gradients must be computed
with differences. Suppose in addition that the functions are inaccurate, i.e., suppose
that not the “true” function value f(z) isfurnished, but only f(z) in conjunction with
some error ¢(x), compare Equation (3.0.2),

A

fz) = f(z) + ¢(2) . (8.17)

Then the (forward) difference approximation to f’ at x with increment A is given by
the sum of the forward difference of f and of the forward difference of ¢,

Dif(x) = ;(fz+h) - f(2))

i (fz+h) +o(@+h) - f(z) - p(2))
= Djf(z)+ 3 (p(z +h) — p(z))
= Dy f(z) +Djo(z).

Assuming that the noise ¢ is essentially bounded on the considered interval by some
constant ¢, i.e., ¢ € L®(Q), ¢(z) < ||lo|l=(q) < €, the quality of the approximation
is

f'(z) = D f(a) = O(h+ 7).
The quantity A +¢/h isminimized when h = y/e. Thismeansthat very large and very
small difference steps h can lead to strongly unreliable results. For instance, if ¢(z)
is aresult of floating—point round—off in full machine precision, i.e., ¢ ~ 10715, the
analysis indicates that 4 ~ 10~ is a reasonable choice. One would not want to use
larger steps in order to achieve maximum accuracy, and likewise taking a (too small)
step like h ~ 10~ isnot advisable.

For the application that we introduce in Chapter 4, ¢(x) is not floating—point
round—off in the order of machine precision. It is considerably larger than 10~1°.
Assuming an error margin of 1% for the output of the computational model, an upper
range e is estimated to be of size 10~3. Thisisdiscussed in detail in Section 4.1.2.
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The above discussion implicitly assumed ||z|| ~ 1. If thisis not the case, ~ should
be scaled to reflect that. Thus,
h =] Ve

is appropriate. This, with typical values ||z|| ~ 1072 in the application, leads to step
sizes h not smaller than 10~%. Smaller values will furnish unreliable results.

3.1.3 The Simplex Gradient

Several direct search methods, e.g. the Nelder—Mead algorithm, compare Section 3.3,
examine a simplex of points at each iteration. A helpful tool for the analysis of such
methods is the simplex gradient. It can also be used for the interpretation of Implicit
Filtering, compare Section 3.4. The following material is taken from [13] and [52].

Definition 3.1.2 A simplex S € IR" is the convex hull of » 4+ 1 points z; € IR"
(=1,...,n+1). Thepoint z; isthe j—th vertex of S. The simplex can be written as
an x (n+ 1) —matrix, where the (n + 1) column vectors are the vertices,

S = ($1,$2,...In+1) .
Then x n—matrix of simplex directionsis
V:V(S) = (CCQ—.’E1,5C3—CC1,...,CC7H,1—331) = (Ul,...,’l]n).

The simplex S is said to be nonsingular when the corresponding matrix of simplex
directions V(S) isnonsingular. The simplex diameter d(S) is

d(S)=_ max |lz; —zj|e.

T 1<ij<n+l
Two oriented lengths are given by

o1(8) =, max [lz1 — zjlle, o (S) = min_|lz; -zl

e here employ the /2—vector norm
1 & 2 T n
||v||gz=—2vi, v=(v1,...,v,) €IR",
ni4
and use the induced matrix norm. The ¢2—condition number

(V)= VIe - IV e

isreferred to as the ssimplex condition number. The vector of objective function differ-
encesd(f : S) isgiven by

§(f:8) = (f(x2) — flm1), flas) — f(@1), -, f(@nga) — (1))
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Note that the matrix of simplex directions and the vector of objective function
differences depend on which of the verticesis labeled z;. We assume throughout this
section that the vertices are ordered according to their objective function values in
increasing order, i.e.,

Definition 3.1.3 Let S be a nonsingular simplex with verticesz; ( = 1,...,n). The
smplex gradient D(f : S) is

D(f:8)=VTs5(f:9).

This definition of the simplex gradient is motivated by the following first—order
estimate, see [51], [52, Lemma6.2.1].

Theorem 3.1.4 Let S beasimplex. Let V f be Lipschitz continuousin a neighborhood
of S with Lipschitz constant 2L. Then there is a positive constant K which depends
onlyon L st.

[V f(z1) = D(f : S)lle < K £(V) 01(5)-

The analogue of Theorem 3.1.4 for objective functions of type (3.0.2) is given in
the following theorem, see [51], [52, Lemma 6.2.2]. Obviously, depending on the size
of the noise on the considered simplex, the quality of the approximation can be worse
by orders of magnitude than in the case without noise. The influence of the noise
is reduced when o is for the current simplex larger than the noise. However, this
also necessarily adversely affects the approximation estimate. Thus, in approaching
an optimizer it is necessary that the noise diminish faster than simplex sizein order to
get agood approximation.

Theorem 3.1.5 Let S be a nonsingular simplex. Let f satisfy (3.0.2). Let Vf be
Lipschitz continuous in a neighborhood of S with Lipschitz constant 2L. Then thereis
a positive constant K which dependsonly on L sit.

I95(a) = D7 < )l < K r(V) (o) + 1z )
o+ (5)

Typically, in unconstrained optimization, the size of the gradient can be used to
monitor progress of the iteration. One naturally asks what the consequences of asmall
simplex gradient are. The following theorem shows that a small ssmplex gradient is
necessary for a good approximation, but by far not sufficient in the noisy setting.

Theorem 3.1.6 Let f satisfy (3.0.2). Let Vf be continuously differentiable in a com
pact set  C IR™. Assume that the smooth part f has a unique critical point z* in
(. Then there is a positive constant K s.t. for any simplex S C @ with vertices z;
( =1,...,n) thefollowing estimate holds,

Jor = ') < Ko (1D : 1+ V) (205 + 1212200}
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All resultsrelated so far deal with theforward difference simplex gradient. We now
define the central difference simplex gradient. The quality of the information obtained
from the central simplex gradient is higher than that of the forward. Applying cen-
tral differences, the numerical scheme is less sensitive to noise than in the one-sided
derivative case. Analogous results are well known for finite—difference approxima-
tions to the gradient, see Section 3.1.2.

Definition 3.1.7 LetS beanonsingular simplexin IR"™ withverticesz; (i = 1,...,n+
1) and smplex directions v; = x4 — 21 (j = 1,...,n). The reflected simplex
R = R(S) isthesmplexwith verticesz; andr; = z; —v; (j = 1,...,n). Thecentral
simplex gradient D¢ (f : S) isdefined as

De(f:S) == (D(f:S)+D(f : R)) .

N | —

Note that inthecasen = 1 and 2o = 21 + h we have r, = 1 — h. Hence the
forward difference smplex gradient for S and R reads

D(f+8) = 1 ([ +h) = f(@), DU+ R) = —(f(es =) = (@),

and

Do(f:S) = Dol(f : R) = %(f(xlikh) ~ F(ar— )

isthe usual central difference.

For the central difference simplex gradient, second—order anal ogues to the preced-
ing Theorems 3.1.4, 3.1.5, and 3.1.6, can be proven. However, the requirements to
reach these results are stronger. Not only the first, but also the second derivative of the
smooth part of the objective is for these results required to be Lipschitz continuous.
Compare Lemma 3.1.1. We state these results without further comment.

Theorem 3.1.8 Let S bea nonsingular simplex. Let V2 f be Lipschitz continuousin a
neighborhood of SUR(.S) with Lipschitz constant 3L. Then thereisa positive constant
K which dependsonly on L sit.

IVf(z1) = Do(f = S)llee < K (V) 0%(S).

Theorem 3.1.9 Let S be a nonsingular simplex. Let f satisfy (3.0.2). Let V2f be
Lipschitz continuousin a neighborhood of S U R(.S) with Lipschitz constant 3L. Then
there is a positive constant K which dependsonly on L sit.

IV £(z1) = De(f : S)lle < K 5(V) (03(5) N @7(;()5)) |
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Theorem 3.1.10 Let f satisfy (3.0.2). Let V2f be continuously differentiable in a
compact set Q C IR". Assume that the smooth part f has a unique critical point z* in
Q. Then thereis a positive constant K s.t. if asimplex S and itsreflection R are both
subsets of (), then the following estimate holds,

lz1 =27l < Ko <||Dc(f P S)le + K(V) (ai(S) + @%@)) :

The assumptions of Theorem 3.1.10, complemented with a sequence of uniformly
well—conditioned simplices and decaying noise and oriented length,

=0

k . ky _ . ||<P||Sk
£(V(S%) < M vk, lim 0, (S%) =0, lim o (5%)

allow to conclude convergence to z* from a sequence of small central simplex gradi-
ents. See[52, Th.6.2.9].

Usage of central differencesis advantageousin another respect. One has informa-
tion on the values of f at enough points to make an important qualitative judgement.

In order to evaluate a central ssimplex gradient, f must be sampled at z; and at the
pointszy £v; (j =1,...,n). If

flzy) < fla +tv;) Vi=1,...,n (3.12.9

then the validity of using the simplex gradient as a descent direction or as a measure
of stationarity is questioned. Condition (3.1.9) is called stencil failure. Stencil failure
is used as a termination criterion in the implementation of the Implicit Filtering algo-
rithm. Thisis based on a result from [13], see also [52, Th. 6.2.9]. It shows that in
the case of stencil failure the gradient of the smooth part f of the objective is already
small.

3.2 A Typical Optimization Code

The unconstrained minimization problem isto minimize areal—valued function f of n
variables. Thisgenerally meansthe search for alocal minimizer, i.e., for apoint z* st.

f(z®) < flz) Veze{z: |z -2 <€

for an appropriate norm ||.|| and an appropriate scalar e > 0. It is standard to express
this problem as
min f(x) (3.2.1)

z€IR™
andtoreferto f, f : IR™ — IR, asthe abjective function.

The classical way to solve such problems (3.2.1) is to use methods like steepest
descent and Newton's method or variations thereof in connection with a line search
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strategy. This approach requires that f be sufficiently smooth and is based on the
optimality conditions, see e.g. [36], [52].

The approach can fail if the objective function has discontinuities or irregularities.
Such nonsmooth effects can be caused, for example, by truncation error or noise in
the internal calculations for f. We lay down in Chapter 4 that noise is present in our
application, its cause a combination of modeling, data, and implementational issues.
Thisisadistinct hint that the smooth approach may not work for this problem. More-
over, only function values are at our disposal in the application, and no analytic first—
or second—order information. Derivative information is customarily approximated via
finite differences with small increments h, compare e.g. [52, pp. 17ff., 112ff.]. This
is a feasible approach under the assumption that the function evaluation is accurate
to machine precision. In the case where only function evaluations are available and
where these must be assumed to be inaccurate, finite—difference approximations must
be handled with special care. See Section 3.1.2. This s the reason why the smooth
approach does not furnish usable results for our application.

We are in this section concerned with a subroutine that is designed to work the
classical way, the subroutine UNCIVND, part of the software package NIVS. Although
module UNCIVND itself uses multiple subroutines that are quite general, few choices
are given to the user of module UNCMND. This version of the code is designed to be
easy to use. We first describe the subroutine “asis’ and then point out where we went
deeper into the code than intended for the user. Modifications to the code were made
hoping to put it to use for the practical application that we consider.

Module UNCVND is designed to minimize a smooth nonlinear function f of n
variables. The routine uses a quasi—Newton agorithm with line search to minimize
the function. For an introduction to quasi—-Newton methods see e.g. [26, Chs. 6, 8].
Line searches are treated in Section 3.1.1. The specifics of the methods are not of
importancein this context.

Only function values have to be supplied for use in the routine. A subroutine to
furnish the function value at any point must be given by the user. An analytic derivative
is not required. It is assumed that the function values can be obtained accurately,
i.e., to a precision determined by computer arithmetic. First—order derivative values
are obtained by finite—differencing. The algorithm computes an approximation to the
second derivative matrix of the nonlinear function using quasi—Newton techniques. A
quadratic model of the nonlinear objective function is minimized to obtain a search
direction, and an approximate minimum of the nonlinear function along the search
directionisfound using aline search.

When applied to the application described in Chapter 4, shortcomings of the rou-
tine are obvious. One minor problem isthat thereisno provision to restrict the number
of function evaluations — although the user is asked to indicate whether the objective
function is expensive to evaluate in which case it is customary to measure compu-
tational cost in terms of function evaluations. As usua in smooth optimization, a
maximum number of iterationsis set. Thisvalue is even preset. One iteration of the
optimization method usually requires ten function evaluations. An additional, more
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important problem with the code is that the user has no control over the increment A
that is used to compute the finite—difference approximations. UNCMND uses an inter-
nally computed step size for the finite—differencing. This step sizeis small, usually of
size 1071, Input changes that small are not read by the simulation code, thus leading
to afinite—difference gradient identical to zero. No progress can be made at all.

It is not an option to change either the scaling of the input to the simulation code
asto make changes of size 10~1° or smaller relevant or to just change the current input
reading routine such that changes of size 101 and smaller are read. Asis explained
in Section 4.1.2, an error margin of about 0.1% in the input values must be assumed
for our application. This error margin is relative to the input size and not an absolute
value. Considering the usual size of the input data, input changes of size 1071° are
not relevant. Asislaid down in Section 4.1.2, only changes of size 10~* or larger are
relevant. Thus, ssmply scaling the data, routine UNCMND would work with too small
difference increments and be trapped by variationsin the noise .

Due to this situation we leave this level of the code intended for the user. The
lower—evel subroutines, as mentioned before, are more general than the upper—evel
interface. One addition made by us was a function evaluation count in order to keep
track of the expense of the computations. The most important change that we intro-
duced into this setting wasto leave the “ fully accurate function” setting that isassumed
in the condensed code. The function was newly declared to carry a relative noise of
size 107°. This change leads to increments i € [1073, 10~*] for the finite—difference
computations. Thus, the entries of the finite—difference gradient stay quite large as
must be expected. A “typical” convergence criterion, e.g. the requirement that the
finite—difference gradient be of size of numerical roundoff, can hardly be satisfied.
Convergence criteria for gradient—based iterative methods are usually tied to the size
of the gradient. Terminating the iteration when the norm of the gradient at the current
iterate is sufficiently small relative to the gradient at the starting point is reasonable
under standard assumptions, compare [52, p. 21]. But for our application, such a cri-
terion cannot be satisfied. In our numerical experiments, the relaxed criterion 103
for the size of the finite—difference gradient was never satisfied, even less a “typical”
criterion of the order of machine epsilon. Relaxing this criterion even more to 101,
for instance, alows to stop due to this criterion, but no considerable progress of the
algorithm is possible under these circumstances. Another stopping criterion isthe step
size near a solution. Although a small difference between consecutive iterates is in
general not sufficient for convergence, compare [26, Ch. 6.3], this criterionisused in
the code as well to indicate possible stagnation of the algorithm. Typically, the algo-
rithm stopped when the relaxed criterion 10~2 for the difference between consecutive
steps was met, or else when a prescribed number of iterations was exhausted. Progress
was made thanks to fine-tuning below user—evel. But the overal performance of the
algorithm was clearly inferior to that of the routines described in the sections below,
the Implicit Filtering and the Nelder—M ead algorithms.

Extensive testing was done with this routine in the early stages of optimization for
the considered application. In subsequent work, we were able to plot optimization
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landscapes for the application. To obtain such a landscape, all but two of the opti-
mization variables are fixed. The function value isthen plotted against the two varying
values. See Figure 4.3.16 in Section 4.3. The landscape with its nondifferentiable rim
shows that the routine presented in this section is very likely to fail on the application
of interest. Also, the landscape shows distinct local minima with rather large basins
of attraction. One problem, very distinctly observable for this routine and also present
with the Nelder—Mead algorithm, is sensitivity to the starting point. The routine that
isemployed here, not designed as a global optimization routine, islikely to be trapped
in local minima.

In summary, a code like UNCIVND, designed to solve the unconstrained minimiza-
tion problem (3.2.1) with a smooth objective f and not designed to deal with noisy
functions, is despite the fine—tuning not suitable for our application. This motivates
us to pay attention to methods that can deal with noisy functions described by Equa-
tion (3.0.2). The Nelder—-Mead and Implicit Filtering algorithms are the topic of the
following sections, Sections 3.3 and 3.4, respectively.

3.3 TheNelder—Mead Algorithm

The Nelder—Mead simplex algorithm, first published in 1965 [64], is a popular direct
search method for multidimensional unconstrained optimization. The Nelder—Mead
algorithm attempts to minimize a scalar—valued nonlinear function f of n real vari-
ables using only function values. This means that derivatives of the objective function
are neither computed nor explicitly approximated. The agorithm thusfallsin the gen-
eral class of direct search methods. For a discussion of these methods and references
seee.g. [52].

Upon start on a nondegenerate simplex, the Nelder—Mead algorithm maintains
at each step a nondegenerate simplex, a fact which makes the method well defined.
See [55]. In each iteration, one or more test points are computed along with the as-
sociated function values, and the iteration terminates with a new simplex such that
the function values at its vertices satisfy some form of descent direction compared to
the previous simplex. Typically, the Nelder—Mead algorithm requires only one or two
function evaluations per iterations, compare [55], and is considered “ cheap” in terms of
function evaluations. Thisisavery attractive feature when function evaluations are ex-
pensive or time—consuming as is the case in many industrial applications. In addition,
compare[55], the Nelder—Mead algorithm typically produces significant improvement
in the first few iterations. Under performance considerations, this constitutes another
important feature. In many applications, as is the case in our example problem, the
search for an optimum is spurious. Due to time and computing restrictions, a per-
centual improvement of some performance measure is all one can reasonably expect
in practice. Also contributing to the widespread usage of the Nelder—Mead algorithm
isitssimplicity.

We now informally describe the steps that are done in an iteration of the Nelder—
Mead algorithm. A compressed version of the algorithm can be found in Figure 3.3.6.
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The ideaisto change the ssmplex form according to information gathered by compar-
ing function valuesin an organized way.

Let anondegenerate simplex S be givenand itsn + 1 verticesz1, . .., z,1 € IR".
Compare Definition 3.1.2. The objective function f is evaluated at the vertices, and
the vertices sorted according to their objective function values in increasing order,
f(z1) < f(zo) < ... < f(xpy1). Compare (3.1.8). We call x; the best vertex and
z,+1 the worst. The specifics of the sort and tie-breaking rules are purported not to
have large impact. See [13], [55]. The algorithm attempts to replace the worst vertex
Zn41 With anew point of the form

z(0) =(14+6)T —dxpnt1, (3.31)

where z isthe centroid of the convex hull of the vertices z, o, . . ., x,, i.€,
> ;. (3.3.2)

The value of ¢ is selected from a sequence of parameters
—1 <0 <0 < pe < 0 < 0

corresponding to rules that we describe now.

Reflection Thefirst step isto reflect the worst vertex z,,.; at the centroid z givenin
Equation (3.3.2). SeeFigure 3.3.1for thereflection. Thereflected point z, iscomputed
as

T =T+ 0(%—2nt1) =(1+0)%— 0Tny1,
where p is called the reflection coefficient. We have §, = p. The objective f isevalu-
ated at z, and the result compared to the other function values.

Figure 3.3.1: Reflection of simplex with p = 1.

In case

the reflected point is accepted as the new vertex and the step is complete. Otherwise
proceed with the next trial point by either performing an expansion or a contraction.
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Expansion Incase
far) < fl2),
i.e., when the function value in the reflected point is smaller than in the best vertex,
even more progress might be made by expanding the smplex along the search direc-
tion. See Figure 3.3.2. With y the expansion coefficient, 5. = px. The expanded
vertexis given as
ze =T+ x(x, —27)

=T 40X (T — Tns1)

=(1+0xX)T—0XTnt1-
If there is further improvement in the objective function value,

flze) < flan),

x. IS accepted as the new vertex. Otherwise, x,, .1 isreplaced by z,.

Figure 3.3.2: Expansion of ssimplex with y = 2.

Contraction Incase
f(zr) > flzn),

acontraction is performed. This can be done as an outside or inside contraction.

Outside Contraction If
f(-Tn) < f(xr) < f(mn—f-l)a

an outside contraction is performed. See Figure 3.3.3. The outside contraction point
Zoe 1S Qiven by
Toe =T+ (. — )
=Z+70(T— Tns1)
=(1+07)T— 07 %n+1,
with ~ the contraction coefficient and §,. = p+y. In case

f(@oe) < flar),
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the outside contraction is accepted and determines the new vertex. Otherwise, a shrink
step is done. See below.

Figure 3.3.3: Contraction of simplex withy = 0.5.

Inside Contraction In case the function value of the reflected point is larger than
that of the worst vertex,

f(xr) Z f(xn+1) 3
it is possible that the current simplex already contains the minimum. Thus, an inside

contraction is performed. We use the contraction coefficient v with negative sign, see
Figure 3.3.4. Theinside contraction point, z;., corresponding to é;. = —~, isgiven by

Tie =2 =Y (T = Tpy1) = (1 =) T+ YTy -

If the inside contraction furnishes a point that is better than the worst vertex,

f(l‘zc) < f(‘rn—l—l),

then x,, ., isreplaced by z;.. Otherwise, a shrink step is done. See below.

According to these rules, in each iteration of the Nelde—Mead algorithm a new
point is determined which obeys Equation (3.3.1) and which forms a new simplex
together with the n better vertices. Problems can occur, however, if a contraction is
done and neither outer nor inner contraction improve the function value. A shrink step
isthen performed.

Shrink Incase

f(xzc) > f(xn—kl) ) f(‘roc) > f(‘rn—H) )

ashrink step isdone. Only the best vertex 1 iskept and all adjoining edges are cut by
aratio determined through a parameter 0. See Figure 3.3.5.

Changes in the simplex are determined by the parameter values p, x, v, and o.
According to Nelder and Mead [64] these must satisfy the conditions

0>0, x>1, x>0, 0<vy<l, O0<o<l.
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Figure 3.3.4: Contraction of simplex with vy = —0.5.

Figure 3.3.5: Shrinking of simplex.

In practice, the following combination is common choice,

1
2 2
We now address the issue of convergence of the Nelder—Mead algorithm. Despite

its widespread use, few theoretical results are known for the original Nelder-Mead
algorithm asisstated in [55]. Theoriginal Nelder—Mead algorithm usesthe difference

f(@ni1) — fl1) (3.3.3)

in function values as termination criterion. Near to the minimum, the best and the
worst function values will be close to each other, this motivating to monitor (3.3.3).
The algorithm stops when (3.3.3) becomes smaller than a predetermined tolerance
e > 0.

For three decades since the publication of the original paper [64], the few known
facts consisted mainly of negative results. In [60], McKinnon constructs a family of
functions containing strictly convex functions with up to three continuous derivatives
causing the Nelder—Mead algorithm to converge to a nonstationary point. In [55], La-
garias et al. present convergence results for the Nelder—Mead algorithm when applied

1
Q:17 X:27 YT=35 0=
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to strictly convex functionsin one or two variables. In higher dimensions, the Nelder—
Mead algorithm cannot be guaranteed to converge to a minimizer. Despite this lack
of satisfying convergence results, the performance of the Nelder—Mead algorithm in
practiceis generally good, as confirm severa authors, e.g. [52], [55].

Motivated by the counterexample by McKinnon [60], Kelley [51] proposes a test
for sufficient decrease which, if passed for the entire iteration, will guarantee con-
vergence of the Nelder-Mead algorithm to a stationary point for smooth objective
functions. Failure of this condition indicates potential stagnation. It is this sufficient
decrease condition and the notion of the simplex gradient that the following results are
based on. We cast the main properties of the iteration in the form of an assumption.

Assumption 3.3.1 Let for all stepsk =1,2,... (k € IN) thefollowing hold.
<& The simplex S* is nonsingular.

< The vertices are in each step ordered according to the objective function values
in increasing order. Compare Equation (3.1.8).

< The average function value f* on the vertices of S* is reduced in each iteration.

Assumption 3.3.1 is satisfied by the Nelder—Mead iterates if the initial simplex
directionsare linearly independent and if no shrink steps are taken. When starting with
anonsingular simplex S°, the nonsingularity of each of thesimplices S*, (k = 1,2, .. .,
k € IN)isaresult from[55]. Thereduction of the averagefunction valueisprovidedin
the Nelder—Mead algorithm aslong as no shrink step isdone. By reflection, expansion,
and by contraction, the worst vertex is replaced by a new vertex with a better function
value. Thus, the average function value

1 n+1

Z f(zi) (3.34)

i:n-l—l =

isreduced. Thisis considered as progress in the iteration. Note that a Nelder—Mead
iteration not necessarily resultsin areduction in the best function value.

Based on the average function vaue f and the idea of line search procedures,
compare specifically Equation (3.1.6) in Section 3.1.1, a sufficient decrease condition
can be formulated for the Nelder—Mead a gorithm,

S = fF < —a||D(f: SM). (3.3.5)

Here, o > 0 is asmall parameter, typically o = 10~%. Compare [51], [52]. Condi-
tion (3.3.5) uses the simplex gradient D(f : S), this being justified by the approxima-
tion of the gradient V f by the smplex gradient, see Theorem 3.1.4.

Under the assumptions of Theorem 3.1.4 for the sequence of Nelder—Mead sim-
plicesit can be shown for sufficiently smooth objective functions f that accumulation
points of the Nelder—Mead iterates are critical pointsfor f.
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Theorem 3.3.2 Let a sequence {S*}¢° , of simplices satisfy Assumption 3.3.1. Let for
this sequence the gradient V f be Lipschitz continuous in a neighborhood of each of
the S* with Lipschitz constants 2L*. Let the sequence of Lipschitz constants { L¥}¢°
be uniformly bounded. Assume that the sequence { f*}2°, of average function values
on S* is bounded below. Then if the sufficient decrease condition (3.3.5) holds for all
but finitely many £ and if

lim k(V (S*)) o, (S*) =0, (3.3.6)

k—00

then any accumulation point of the simplicesisa critical point of f.

An analogous result can be deduced for perturbed functions. Compare Theo-
rem 3.1.5. The result for noisy functions f that satisfy (3.0.2) with a smooth part
[ reflects that the resolution is limited by the size of the noise ¢. As soon as o, (S*)
is smaller than [||| e (s#), N0 more information on the smooth part f can be obtained

by evaluating f at the vertices of S*.

Theorem 3.3.3 Let a sequence of simplices satisfy Assumption 3.3.1. Let V f be Lip-
schitz continuous in a neighborhood of S* with Lipschitz constants 2L*. Let the Lip-
schitz constants {L*}$2 ; be uniformly bounded. Assume that the sequence {f*}52,
of average function values on S* is bounded below. Then if the sufficient decrease
condition (3.3.5) holds for all but finitely many £ and if

. o]l oo (5
lim k(V(S*)) <a+(5k) + %) —0, (3.3.7)

then any accumulation point of the simplicesisa critical point of f.

Both Theorems 3.3.2 and 3.3.3 impose, in addition to the conditions discussed
above, a condition on the simplex condition number. Conditions (3.3.6) and (3.3.7)
prevent that the simplex condition can grow unbounded. This is motivated by Theo-
rem 3.1.6 and by the counterexample of McKinnon [60]. However, a large simplex
condition number is not per se an occurrence which hasto be prevented. The ability of
the Nelder—Mead simplicesto vary in shape presents a substantial advantage over other
direct search methods, compare [52]. In the noisy case, compare Theorem 3.3.3, the
situation is even more complex. Not only the simplex condition number, but also the
size of the noise ¢ playsarelevant role. Asone expects, alarge error makes fulfillment
of condition (3.3.7) difficult.
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Figure 3.3.6: The Nelder—Mead algorithm

The Nelder—Mead algorithm

Preprocessing Step:
Set number maxeval of admissible function evaluations.
Set termination tolerancet ol for convergence criterionf (X,,,1) - (x1) <tol .

Algorithm:
Initialize starting simplex S and its vertices X1, . .., X, 41-
Find corresponding function valuesf (x;).
Sort vertices according to objective function values in increasing order.
WHILE f (Xpq1)-f(Xy)>tol DO
Compute X and X,.
refl ect:If maxeval isexceeded, exit.
Evauatef (x,).
Iff (x1) <f(x;)<f(xy),replacex, ., by x,.. Gotosort.
expand: If maxeval isexceeded, exit.
If f (x,) <f(x1), computex, and evaluate f (x.).
If f (xe) <f(x,), replacex,,; withx.. Gotosort .
If f (xe) >f(x,), replacex,,,; withx,. Gotosort .
contract outside: If maxeval isexceeded, exit.
Iff (X,) <f(x;) <f(Xny1), cOmputex,. and evaluatef (X,.).
Iff (Xoc) < (X,), replace x,, 1 withx,.. Gotosort .
If f (x.) >f(x,),gotoshrink.
contract inside:If maxeval isexceeded, exit.
If f (x,) >f (X,.1), compute x,;. and evaluate f (x;.).
Iff (X;e) <f (Xpi1), replacex,, .1 withx,.. Gotosort .
If f (Xic) > T (Xni1), gotoshri nk.
shri nk: If maxeval isexceeded, exit.
For2 <i<mn+1:Setx; =X;— (X;— X1)/2. Computef (X;).
sort : Sort vertices according to obj. function valuesin increasing order.
END WHILE

3.4 Implicit Filtering

We now examine an algorithm for the optimization of noisy functions that is consid-
erably younger than the Nelder—Mead algorithm. The Implicit Filtering algorithm,
originally formulated in 1991, is described in [38]. Implicit Filtering in its simplest
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unconstrained form is the steepest descent algorithm with difference gradients. The
difference increment is reduced in size as the iteration progresses so that in fact the
algorithm is a repeated call of steepest descent. The algorithm can be viewed as an
extension of the projected gradient algorithm, see e.g. [52, p. 91f.], for it can easily
be adapted to incorporate bound constraints. For problemsthat are sufficiently smooth
near aminimizer, it is aso possible to obtain faster convergence in the terminal phase
of the iteration by incorporating quasi—Newton methods, see [19].

Implicit Filtering has been developed for a particular class of optimization prob-
lems. The objective functions under focus are composed of a smooth part and a per-
turbation which we refer to as noise. Compare Equation (3.0.2). Thisis appropriatein
the setting of our example problem, where noise is introduced into the model function
through two circumstances. First, any datafor the considered problem isrelevant only
within an error margin of about 0.1%, causing noise in the output that may be as large
as 1%. See Section 4.1.2. Second, the cost function eval uation involves the sequential
black—box type use of two software codes, MODFLOW and MI'3D, for the solution of
the discrete flow and transport equations. This introduces severe round—off error that
makes acquiring derivative information a delicate task.

Our first issue in this section is the description of the basic algorithm and its analy-
siswith the tool developed in Section 3.1.3. We subsequently address the constrained
version of the algorithm and discuss implementational issues.

In its ssmplest unconstrained form, the implicit filtering algorithm is the steepest
descent algorithm with difference gradients. The difference gradient being only an
approximation, the computed steepest descent direction may fail to be a descent direc-
tion, and the line search may fail. The remedy which coins this algorithm is to reduce
in size the difference increment as the iteration progresses. So the basic algorithm
is to perform steepest descent repeatedly at different scales h. This is done using a
finite—difference gradient D;, in combination with an Armijo line search. Compare
Section 3.1.1 for the line search. The procedure requires a decreasing and finite se-
quence of difference steps {h;}, that are called scales. On each scale, the iteration
terminates after stencil failure, compare Section 3.1.3, after line search failure due to
exceeding amaximum number of backtracking steps, compare Section 3.1.1, after ex-
ceeding a maximum number of steps, or upon satisfying a predetermined termination
tolerance

IDaf (@) < 7h.

We now turn back to the ssmplex gradient for the analysis of the algorithm. Let
x € IR" be given and a differenceincrement A > 0. Let S(x, h) be the right simplex
from z with edges having length 4. This means that S(z, h) has the vertices = and
x+he; (i=1,...,n), wheree; € IR™ denotesthe i—th unit vector. So V' = I,,,, and
(V) = 1. Inthis case, the central difference gradient D¢ f, compare Definition 3.1.7,
and the central simplex gradient D, (f : S(z, h)) coincide,

D; f(x) = De(f : S(x,h)).
In this section we denote by S* the simplex on the current scale iy, i.e., S* = S(x, hy).
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Since hy, = o, (S*) and k(V*) = 1, Theorem 3.1.5 implies not only the convergence
result for the Nelder—Mead algorithm in Theorem 3.3.3, but aso the convergence re-
sult in Theorem 3.4.1. Among the assumptions for this result is, like in the previous
section, the requirement that the noise decay fast near the solution.

Theorem 3.4.1 Let hy, — 0 ask — oo. Let z;, be the iterates of the Implicit Filtering
algorithm. Assume that there is no line search failure for all but finitely many £. If the
requirement

tm (4} + 1210

lim o) =0 (3.4.1)

holds, then any limit point of the sequence of iterates {x; } 32, isacritical point of the
smooth part f.

Proof: If either the sufficient decrease condition

f(xe+ ADnf(ze)) < flze) + - M| Dpf(zo)|?
holds, compare Equation (3.1.4) in Section 3.1.1, or if stencil failure occurs,

f(xl) < min f(xl + hej),

j=1,...,n
compare Equation (3.1.9) in Section 3.1.3, for all but finitely many &, then
thf(l‘k) = Dc(f : Sk) — 0.

Hence, using the condition (3.4.1) above and, under appropriate differentiability as-
sumptions, Theorem 3.1.9,

This shows that limit points of the sequence of iterates {z;}3>, are critical for the
smooth part f. O

Apart from the algorithm’s conception as optimizer for noisy functions it has an
additional attractive feature in that it can be easily adapted to accommodate simple
box constraints. The consideration of such simple constraints is often particularly
appropriate when dealing with industrial problems where the optimum may not be
known but where often a good knowledge exists about “reasonable” size of input or
where certain restrictions apply to admissible input. In our example problem, thisis
not necessary. Although a*reasonable” input range should in principle be obeyed, this
is not violated in the computations anyway, compare Section 4.3. Nevertheless, we
use the algorithm in its constrained implementation. We abbreviate Implicit Filtering
for Constrained Optimization as IFFCO. IFFCO is designed to find the optimizer of
functions of the special form (3.0.2) subject to smple box constraints. Recall theform
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of the objective that has been introduced at the beginning of this chapter, (3.0.2). This
we now consider onasimple set Q ¢ IR",

f=r+¢, [eCUQ),pel™Q).
The box constraints are determined by the hyperbox @,
Q={reR":I'<2'<u" Vi=1,...,n}, (3.4.2)

which is defined viathe upper and lower bounds /* and u* on the i-th variable. We will
throughout this section assume that ¢ is bounded and denote its diameter by dg, dg =

max{u‘ — I*}. The problem description is thus with the objective f, f : R" — R,

1;%16121 f. (34.3)

It isstill assumed that the noise be small in magnitude relative to the smooth part,
max |¢(z)| < max |f(x)].

IFFCO initsbasic formisthe call of the projected—gradient algorithm, repeated at dif-
ferent scales h. The complete algorithm is given in Figure 3.4.1. Additional steps are
necessary if a quasi—Newton routine is integrated. The so called scales are a decreas-
ing and finite sequence of difference steps {4} ,. The call of the projected—gradient
routine is iterated with h; for i = 1,...,m. On each scale, the projected—gradient
algorithm is terminated when

|z —P(z — Dy f ()| < 7hs .

The parameter 7 controls the termination tolerance. In this termination criterion, P
denotes the projection onto the feasible set (),

. ut 1t >l
Plx) =< ' I'<z' <, (3.4.49)
Iro < al

The projection can lead to degeneracy of the current simplex. In that instance, the
iterates of IFFCO cannot be shown to obey the results of Theorem 3.4.1.

The noise ¢ in (3.0.2) can cause the observable sum f to have local minima. This
traps conventional (local) optimization algorithms. One way to avoid such local min-
imais to apply afilter to f, compare [38]. By refining the filter as an iteration pro-
gresses, one can hopeto find aminimizer of f up to the accuracy allowed by the noise
in the observation. Thisisbeing mimicked by Implicit Filtering. The finite—difference
gradient based method is applied for a scale h, the scale is decreased after conver-
gence, and the gradient based method is applied again. The differencing is used to
step over the noise ¢ at varying levels of resolution. Obviously, alocal minimum of
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the unperturbed function can at best be identified up to the accuracy permitted by the
perturbation. The algorithm cannot be guaranteed to find even alocal minimum.

The question of a proper termination criterion for IFFCO has not yet been satisfy-
ingly answered. A bypassisto allow for restarting the algorithm with the previously
computed solution. This leads to the concept of a minimum at all scales. The min-
imum at all scales is a point which is left unchanged by IFFCO, i.e., a point which
cannot be improved upon by the algorithm at all considered scales A1, . . ., hy,.

Definition 3.4.2 The point z is called a minimum at all scales for f if the projected—
gradient routine leaves x invariant for all A = hq, ..., Ay,

Such a minimum at al scales is computed by applying IFFCO and restarting, if
necessary, until each call to the projected—gradient routine leaves the current point
unchanged. Definition 3.4.2 ignores how the result of the projected—gradient algorithm
is tied to the current termination criterion which mainly depends on 7. Heuristicaly,
an initial 7 that is small could lead to entrapment in alocal minimum. However, if 7
istoo large, no progress can be made. The projected—gradient algorithm terminates on
entry if the convergence criterion istoo weak.

The goal to find a minimum at all scales rather than a global minimum or a lo-
cal minimum reflects those problems that have motivated the development of Implicit
Filtering. These are problems where the function evaluations must be assumed to be
inaccurate. Spikes and deep valleysin the function surface are likely to be due to noise
in the function, and it is not desirable to stop at one of these locations. A relation
between a minimum at all scales and the global minimum of the smooth part f can be
established. Under rather strong assumptions on the decay of the error near the global
minimum, it is shown in [38] that a minimum at all scalesis afirst—order estimate of
the global minimum.

In the last part of this section we address implementational issues. The algo-
rithm has been implemented as a FORTRAN code under the name | FFCO by a work
group at the Center for Research in Scientific Computation (CRSC) at North Car-
olina State University. The current code alows to use the finite-difference based
gradient projection method on its own or in conjunction with two quasi-Newton meth-
ods to have a descent direction computed. The updates SR1 and BFGS are provided
for. We used SR1 in our computations. An Armijo line search method is integrated
in | FFCO. The code, documented in [17] and [37], is available at the web address
http://ww&4. ncsu. edu/ eos/ users/c/ctkell ey/ww timhtn . An
additional feature of the Implicit Filtering algorithm isits potential for parallelization.
This can be done by simply performing those function evaluationsin parallel that are
needed for the finite—difference gradient.

The algorithm has several iterative parameters and requires algorithmic decisions
in its implementation. One issue is the termination tolerance 7, denoted ast ol in
the compressed version of the algorithm in Figure 3.4.1. The performance of Implicit
Filtering can be very sensitive to this termination tolerance. Small values of t ol will
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lead to stagnation of the algorithm, and large values of t ol will entail premature ter-
mination. The choicet ol = 1 served best in our application. Another very important
choiceisthe range for the scales. The sequence of scalesis at best a guess at the level
of noisein the problem. Thisis inherent to the considered problem class, because the
true error margin cannot be known. If severa of the scales are smaller than the level
of noise, the line search will fail. Work at these scales is wasted. For our application,
afinitedifference increment smaller than 10~ cannot be expected to furnish usable
results. Sincethe starting scale 0.5 is the default, the range for the scalesis [0.5, 10 4]
in our computations.

Figure3.4.1: | FFCO

| FFCO : Version without restarts

Preprocessing Step:

Set range[m nh,maxh] for finite difference h.

Set number maxi t of admissibleiterations.

Set number maxeval of admissible function evaluations.

Set number maxcut of admissible backtracking stepsin line search.
Set termination tolerancet ol

for convergence criterion |[x — P(x — Dpf (x) )| <tol -h.

Algorithm:
Initialize starting point x.
Find corresponding function valuef ( x) .
Initialize h to maxh.
WHILE h > m nh po
Calculate finite difference gradient D f ( X) .
WHILE e no stencil failure occurs
e no line search failure occurs
e NBXi t isnot exceeded
e naxeval isnot exceeded
e nAXcut isnot exceeded
e conv. criterion isnot satisfied DO
Perform line search.
Update x.
Evaluate conv. criterion.
END WHILE
Reduceh.
END WHILE




Chapter 4

A Practical Application

We have developed an optimal control problem governed by partial differential equa-
tions in Chapter 2. See Section 2.3 specifically. The underlying partial differential
eguations which model flow and transport in porous media are introduced in Sec-
tions 2.1 and 2.2, respectively. The optimal control problem has been devel oped with
the practical application in mind to which we turn now.

In Section 4.1 we describe the problem at hand with its hydrogeol ogic features.
Subsequently, the numerical setting of the discrete optimization problem is explored.
Each function evaluation in the course of optimization constitutes a solve of the un-
derlying partial differential equations. We turn to the simulation codes in Section 4.2.
Their black—box type use determines the problem formulation and accounts for nu-
merical problems. Optimization results which have been obtained with the Implicit
Filtering and Nelder—Mead algorithms are given in Section 4.3.

4.1 The Setting

This section is devoted to the first application to which our industrial partner turned
our attention. An abstract formulation of the application is set up in Chapter 2, and the
basisfor its numerical handling within an optimization framework islaid in Chapter 3.
Here, we depict the specific application for the first time. Its hydrogeologic features
are supplemented by their respective tranglation within a numerical scheme. The grid
is defined, and results of the simulation are presented. A simulation constitutes one
function evaluation within an optimization framework. The optimization goal is de-
fined in Section 4.1.2. Along with this goes the description of the numerical setting.

4.1.1 TheHydrogeologic Setting

Our overall concern is the drinking water supply of the region shown in Figure 4.1.1.
We now describe in short terms the main hydrogeol ogic features of this region. These
have been provided by Technol ogieberatung Grundwasser und Umwelt GmbH, acom-
pany of consulting engineers for ground water and water resources.

59
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Figure 4.1.1: The considered region.

Tl

The water bearing zone of the considered region is dominated by a stream in its
northern part. The considered region istherecharge zonefor acluster of drinking water
wells which are located in its western part. The drinking water wells are extracting
about 5.4 millionm? per year. Within the considered region also lies an industrial zone
with several additional wells, mostly extracting water for industrial purposes. One
company, however, does not only extract water for use within their cooling system, but
also reinjects the same amount of heated water into the ground. Thisisaconsiderable
2.4 million m? per year. The temperature of the reinjected water is approximately 5°C
higher than the temperature of ground water in its vicinity. Reinjection of the heated
water leads to a temperature anomaly in the ground water. An overall temperature
increase of about 1°C' occurs at the drinking water well nearest to the infiltration well.
This increase is attributed to the effects of the infiltration. Concerns are raised due
to the judicia requirement that anthropogenic changes of ground water properties be
minimized. The location of the drinking water wells and the infiltration well within
the grid is shown in Figure 4.1.2. That figure depicts a coarse grid set up to reflect the
shape of the considered region.

The aquifer of principal interest isformed of gravel. The water level is under nor-
mal hydrological conditions approximately 10m below ground surface. The aquifer
has an average thickness of 10 — 12m. Its base is arelatively impermeable clay layer.
The gravel forms an aquifer of good to very good hydraulic conductivity. The hy-
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Figure 4.1.2: Well location within the grid.

A I nfiltration Well

Extraction Well

draulic conductivity is of size 5 - 1073 m/s. Local variations in conductivity occur.
But it it not possible to perform accurate measurements of these variations. Similar
statements hold for other soil parameters. For instance, in laboratory tests, only a
range was determined for porosity, 25% to 35%. We use the values of Table 4.1.1in
our computations. Data procurement presents a serious problem. In generd, reliable
and accurate datais expensive and difficult to get, for instance through field or |abora-
tory experiments and measurements. Theregionsthat are investigated for hydrological
purposes are usually quite large, often encompassing tens or hundreds of square kilo-
meters, so that one often has to work with average values. We have to do so as well.
For different types of soil, severa average parameter values, e.g. for longitudinal and
transversal dispersion lengths, are listed in [57, p. 69f.], [76]. See dso [71, p. 22f.].
In Table 4.1.1, we list the most important soil and hydrothermal parameters that are
used in our application. For the significance of the different parameters compare Sec-
tions 2.1, 2.2, and 4.2. In Section 2.2, severa parameters were discussed already. See
specifically Table 2.2.1.

We now turn to additional features of the considered region. These relate to the
boundary conditions of the discrete flow and transport models. A uniform grid repre-
sents the considered region in Figure 4.1.6. Different symbols denote the three kinds
of boundary conditions that occur in the flow model. Boundary conditions for the
transport model are shownin Figure4.1.7.

For low to medium water height in the stream, the aguifer is unconfined. Con-
fined conditions will occur only in the vicinity of the stream when the stream has high
water. The aquifer is hydraulically connected to the stream via the riverbed which
exhibits high permeability. Thus, the stream has dominant influence on the water sup-
ply of the region. Thisinfluence is determined by hydraulic properties of the riverbed
and the difference between piezometric head in the aquifer and water height in the
river. The hydraulic properties of the riverbed are reflected in the discrete model by
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Table4.1.1: Main soil and hydrothermal parameters of the application.

ko

n

10719m?2  soil permeability
30% porosity of aquifer

Q

Q

puCe ~ 41852 heat capacity of water

paCa =~ 2.5HL-  heat capacity of aquifer
ap R~ 10m longitudinal dispersion length
ar & 1im transversal dispersion length

the leakage factor whichissetto 5 - 1079 1/s for all river nodes of the grid. In mathe-
matical terms, the river imposes mixed boundary conditions. Compare the Appendix.
A ground water flux into the considered region occurs from the south. The flux is
assumed to be a constant 51/s for every km of the boundary. This corresponds to
Neumann boundary conditions for this part of the boundary. For the remaining part
of the boundary, fixed potentials are assumed. Prescribed potentials lead to Dirichlet
boundary conditions. In addition, one has to deal with recharge rates, e.g. due to pre-
cipitation. Whilein athree-dimensional setting this constitutes a boundary condition,
in the two—dimensional model it is, like the influence of wells, considered in aterm for
sources and sinks of water. Recharge rates are estimated to be auniform 6 1/ (s - km?)
for the entire region.

The flow simulation is done by MODFLOW The code is described in Section 4.2. In
Figure 4.1.3, equipotential lines are plotted. The curvature of the lines indicates that
the extraction wells, compare Figure 4.1.2, dominate the flow regime in that part of
the region. This dominant influence is also obvious in Figure 4.1.4 which shows the
flow regime in the center of the considered region. The main flow direction is west.
However, the influence of the river in the north is considerable, and local variationsin
the main flow direction occur due to the wells. The infiltration well in the eastern part
of the center part as well as the extraction wells are clearly distinguishable. For the
location of the wells compare a'so Figure 4.1.2.

For the transport simulation, MI'3D is used. See Section 4.2 for a description of
the code. The infiltration well is given an initial temperature 1°C' in excess over the
temperature of the remaining domain. We view temperature changes as percentual.
Boundary conditions differ from those of the flow model in that there are no Dirichlet
boundary conditions. The river and the fixed flow potentials impose mixed boundary
conditions for the transport model, and the inflow from the southern boundary gives
rise to Neumann boundary conditions. The boundary conditionsfor the computational
model are shown schematically in Figure 4.1.7.
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Figure 4.1.3: Equipotential lines of the
flow model.

Figure 4.1.4: Flow regime in center
part of the considered region.
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Figure 4.1.5: Development of temperature at drinking water wells. Percentual temper-

atureincreasein °C versustimein months.
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We now describe the simulation outcome in the original setting. In Figure 4.1.5,
temperature increase at the drinking water wells is given. Well VT is nearest to the
infiltration well. ThewellsV and IV are aligned horizontally downstream. Obviously,
the further away a given observation point is from the infiltration well, the longer it
takes for the plume to reach this point, and the smaller the temperature increase is
in general. The temperature development at the drinking water wells shown in Fig-
ure 4.1.5 is of primary concern for the optimization. Compare Section 4.1.2. The
time frame of the figure corresponds to twenty years. Tracer traveling time from the
infiltration well to the first extraction well 1V lies between 28 and 34 months. Thissig-
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nifiesthat after thistime span 50% of final concentration at thiswell can be measured.
Incorporating the retardation factor of 2, this trandlates to a temperature increase by
50% of final temperature increase at this well about 60 months after ¢ = 0. Thisis
confirmed in Figure 4.1.5. Temperature increase is delayed and smaller in value at
wells V and IV. We see an increase of 0.15 at the drinking water well that is nearest
to the infiltration well. Considering the temperature increase at the infiltration well of
about 5°C', the model accounts for about 75% of the increase exhibited at the drinking
water well. Thisis within sensible margins because seasonal fluctuations in recharge
and river data are not taken into account. Note that at all locations a steady state is
reached after about twelve years. This justifiesto use steady—state well pumping rates
for the optimization.

Figure 4.1.6. Boundary conditions for Figure 4.1.7: Boundary conditions for
the flow model. the transport model.
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Apart from the main influence of the infiltration and extraction wells, develop-
ment of the plume within the region aso depends on the influence of inflow from the
river in the north and on the recharge occurring on the southern boundary. Also, ad-
ditional wells influence the flow regime. The development of the plume is shown in
Figures 4.1.8 and 4.1.9 for a time horizon of five and twenty years. The inflow from
the river in the north is visible in the slight bend of the plume. The plume has not yet
taken on its final shape after five years. There are no visible changes to its extension
any more after twelve years. This is what one expects after seeing the temperature
evolution at the drinking water wellsin Figure 4.1.5. Note that these computations are
done for the original, uncontrolled, case. A detailed analysis and comparison with the
case where acontrol isexercised is donein Section 4.3.
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Figure4.1.8:

Temperature plume after 5 years.
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Figure 4.1.9: Temperature plume after 20 years.
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4.1.2 The Optimization Goal and Numerical Setting

Theoverall goal for the optimization isto minimizetemperatureincreasein thevicinity

of the drinking water wells at low control cost. The drinking water wells are the wells

in the western part of the considered region. Control canin our model be exercised via

four wells placed between the infiltration well and the drinking water wells. Compare

Figure4.3.1. The control is exercised by varying the stress rates of these barrier wells.
The objective function for the applicationis

min  J(u) = (u,u) + (w,T), (4.1.2)

uclR4
where v € IR* is the control variable and where T', dependent on the control, is the
temperaturedistributionin the domain at final simulationtimet;. Thisisunderstood as
adiscrete problem, i.e., ' = T'(z, y,t1) € IR™ isthe solution to a discretized version
of the state equation described in Section 2.3. Compare Figure 2.3.1. Here, m € IN
is the number of grid points. The nonzero entries of the weight vector w(z, y) arethe
stress rates of the drinking water wells. The controls u are the steady—state pumping
rates of the barrier wells.

This objective function models two different aspects. One godl is to prevent high
temperature risesin the drinking water wells. This aspect is taken care of with the part
(w,T) in Equation (4.1.1). Thisterm alows a weighting of the temperature at these
points. Another important point is the cost of any action taken. Thisis modeled with
the product (u, u) which takes into account the cost of running the barrier wells.

The objective function (4.1.1) for the application depends on the control « both
directly and implicitly viathe state 7', T = T'(u). The decision variables u are the
well stress rates which influence the flow regime in the considered region. On the
basis of the flow regime, the transport is determined, its output being the state 7. The
corresponding computations are done by MODFLOWand MT3D.

This setting comprises numerical difficulties. One problem is the implicit defini-
tion of the stateI" and its computation viasoftware codes. Thus, no analytic gradient is
readily available for use within the optimization. Likewise, no analytic second—order
information isavailable. Thisfailure can often be helped — within certain margins that
relate to machine precision — viafinite—difference approximationsto the gradient and
possibly even the Hessian. The problematic point isin our case that the function eval-
uations cannot be considered accurate. The effects on finite—differencing are described
in detail in Section 3.1.2 above.

The claimed inaccuracy is due partly to the use of software, partly to modeling is-
sues and data procurement. We use two external software codes for the equation solve.
The simulation codes use numerical schemesthat are overall first—order accurate. The
flow simulation is second—order accurate in space and first—order accurate in time.
The transport code is first—order accurate only both in space and time. In addition,
the sequential use of the two codes entails rounding errors that cannot be controlled.
In the ground water modeling setting, severe inaccuracies are also introduced through
modeling and data issues. Two partial differential equations describe the phenomena
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of ground water flow and of heat transport with the ground water. The partial differ-
ential equations are simplifications of a complex reality. Often, boundary and initial
conditions are difficult to handle. Numerous influences overlap, and only the most
important can be considered in the numerical model without losing practicability. In
addition, data procurement is costly. In practice, soil parameters and boundary and
initial conditions may have to be estimated. Even the relevant data cannot in general
be measured to an accuracy that might be desirable from a computational standpoint.
Piezometric heads, for example, are in general not measured more accurately than in
the em—range. From a practical standpoint, this might often be fully satisfying, how-
ever. In this setting, we assume an error margin of about 1% for the output of the
computational model. Input to the optimization problem in its black—box formulation
are only the control variablesu. These stand for well stress rates for which we assume
an error margin of about 0.1%.

In the remainder of this section it is explored what the assumed error margins
account for in terms of the objective function. The consequences for numerical opti-
mization routines are discussed in Chapter 3. As described there, the application we
deal withis perceived as

min f: R" — R.

zE€IR™

The objective f is assumed to be the sum
f=r+¢

of a smooth part f with a simple form, e.g. a convex quadratic, and a perturbation ¢
which we refer to as “noise”. Wetake f € C'(IR") and ¢ € L*(IR"). It is assumed
that the noise ¢ is*“much smaller” than the smooth part, i.e.,

max |p(z)| < max | f(z)].

An estimate of the typical sizee of the norm of theerror, ||¢||, helpsin dealing with
the inaccuracy. Compare Section 3.1.2. Theinput values u are typically of size 102.
Assuming an error in these values of about 0.1%, a O—calculation leads to an error of
size 1019 for the control part uTu of the objective function (4.1.1). Here, O stands
for the Landau symbol, see e.g. [45]. The weighting vector w aso typically is of size
10~2. Since the weighting vector contains the stress rates of the drinking water wells,
the error associated with it is comparableto the error in the control variables, i.e., 1075.
Therange for the temperature part in the objective function is considerably larger than
for the stress rates that have just been discussed. In the uncontrolled case, temperature
at thedrinking water wellsliesbetweenthevalues10~! and 10~ in the controlled case
between 10~2 and 10~°. Considering an average value of 10~3 asrelevant and an error
of about 1% induced through the combined effects of modeling, data procurement, and
the numerical treatment, a O—calculation for the second part w” ¢ leads to an error of
size 10~°. In combination with a multiplicative factor ¢ = 10% which is applied to
both parts of the objective function, an absolute upper bound ¢ ~ 10~3 can be set



68 A. BATTERMANN

on the norm ||¢||. Thisis, relative to typical function values with two to four digits,
anoise of 0.001% to 0.00001% in the objective function. Because ||u|| ~ 1072, the
results of Section 3.1.2 advise us to use difference increments 4 € [1073,107%] in
finite—differencing.

In summary, we are faced with an optimization problem with errors in the func-
tion evaluation. First—and second—order information, if appropriate, must be approx-
imated via finite differences. This approximation must be performed within ranges
determined by the error margin of the model and the data. The situation is rendered
even more difficult by the fact that function evaluations are costly. One function eval-
uation correspondsto the simulation of the flow and the transport processes, i.e., to the
sequential solve of two partial differential equations.

This setting poses structural problems to most optimization algorithms and codes.
We have thus concerned ourselves with severa possibilities to address the problem
in question. One choice was an optimization code that can be considered typical for
smooth optimization, a quasi—Newton algorithm with line search. It obtains first—order
information, if not provided, by finite—differencing under the assumption of accuracy
in the order of machine precision. Its deficiencies in the situation of our applica-
tion is described in Section 3.2. An alternative are methods for nonsmooth functions
and methods that are specifically designed for noisy problems. In our numerical ex-
periments, the Nelder—Mead algorithm, see Section 3.3, and Implicit Filtering, see
Section 3.4, are used. Not until the numerical treatment of the underlying partial dif-
ferential equationsin the software codesis described we turn to the presentation of the
numerical results.

4.2 The Simulation Codes

Throughout this chapter we consider an optimal control problem that is governed by
partial differential equations. The optimization problem is given in Figure 2.3.1 in
the unconstrained formulation that we use. The partia differential equations model
ground water flow and heat transport in an aquifer, respectively. It can be justified to
solve the two equations sequentially. Despite the possibility of sequentially solving
the equations, the computational cost of the solve is the determining factor in our
application and in similar applications. A solve of the governing partia differential
eguations is what we call a “simulation”. In each step of an iterative method that
is intended to find a solution to the optimal control problem, a simulation has to be
performed.

To perform a simulation, two software codes are used. Thefirst is a flow mode,
MODFL OW and the second is a transport model, MT3D. MODFLOWis as amodel espe-
cialy well known by many people working on practical applications in ground water
modeling. In 1997, a college textbook [27, Ch. 7.4] calls the code which was released
in 1984 “the de facto standard code for aquifer smulation.” MI'3D isin numerous
respects written such as to conform with MODFLOW The two codes use an identical
spatial discretization, for instance, and data transfer between the codesis provided for.
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The company with which we consult on this project and from which this applied prob-
lem originates has acquired experience with both codes. The results are trusted within
a rather large error margin. It seems preferable to the engineers of this company to
use relatively simple, but well-known, implementations rather than to work with so-
phisticated, state of the mathematical art, ssimulation codes. Our goal in this part of
the project is not to choose the latest and most reliable codes but to provide tools for
optimization built on the given ssmulation setting.

In this section we describe the two codes that our numerical experiments are based
on. For both codes the discretization method is described along with their overall ca-
pacities. Both are finite—difference FORTRAN codes. Common to all finite—difference
methodsistheideato replacethe differential quotientsin adifferential equation by dif-
ference quotients and to subsequently solve the discretized equations. For atreatment
of accuracy and stability for finite—difference-schemessee e.g. [80].

421 TheFlow Code

Theflow codeis called MODFL OWwhich stands for modular flow model. MODFLOWis
athree-dimensional finite-difference ground water flow model. It hasamodular struc-
ture which alowsit to be easily modified to adapt the code for a particular application.
The software is distributed by the United States Geological Survey (USGS). The orig-
inal code was developed with an extensive User's Guide and released in 1984. This
version was superseded in 1988 [59]. It is currently the most used numerical model in
the U.S. Geological Survey for ground water flow problems. The code has been sup-
ported strongly by the U.S. Geological Survey and is readily available. MODFLOWis
written in FORTRAN77. A detailed documentation for MODFLOWis contained in [59].
MODFLOWis a three—dimensional flow model in that the three-dimensional region of
interest is considered as a stack of different layers. The layers should be chosen such
that flow conditions are relatively homogeneous within each layer. Then the hydraulic
approach, compare Section 2.1 and the Appendix, can be applied for each layer. Ex-
change processes between the different layers are taken into account. MODFLOWsim-
ulates steady and nonsteady flow in anirregularly shaped flow system in which aquifer
layers can be confined, unconfined, or acombination of confined and unconfined. Flow
from external stresses, such as flow to wells, areal recharge, evapotranspiration, flow
to drains, and flow through river beds, can be smulated. Specified head and specified
flux boundaries can be simul ated as can a head dependent flux across the model’s outer
boundary. The latter allows water to be supplied to a boundary block in the modeled
area at arate proportiona to the current head difference between a “source” of water
outside the modeled area and the boundary block.

The aquifer system is discretized into a mesh of blocks, or cells, the locations of
which are described in terms of rows, columns, and layers. For a single-layer model
like it is appropriate for our application this is visualized in Figure 4.2.1. The rec-
tangular discretization results from a grid of mutually perpendicular lines that may be
variably spaced. The formulation is block—centered, i.e., the point where the hydraulic
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Figure 4.2.1: Spatial discretization in MODFLOWand MTI'3D.

head is calculated, the node, is placed at the center of the cell. Compare Figure 4.2.2.
The chemical and hydraulic parameters such as hydraulic conductivities are assumed to
be uniform over the extent of the cell. It istheresponsibility of the user to subdividethe
flow region into blocks in which the medium properties can be assumed to be uniform.
Simulation time in the flow model is divided into so called stress periods. These are
time periods during which all external stress parameters, i.e., sink and source data, are
constant. Stress periods are divided into time stepsif the simulation is transient.
The ground water flow equation

S %h(x,y,t) =V - (K(z,y) Vh(z,y,1)) + ¢"(z,9,t) (4.2.1)
is solved using afinite-difference approximation. Thisis easily traced with arecourse
to the derivation of the equation as a combination of Darcy’s law and a continuity
equation. Through this we go now. For simplicity we assume a subdivision of the
domain into squares. We abbreviate the intervals of size Az in xz—direction and of size
Ay in y—direction by As where appropriate.

The piezometric head is denoted h; ; at node (i,5), ¢ = 1,...,I;j = 1,...,J).
The discrete hydraulic gradient has the entries

hit1 — hig
Az
for the change in z-direction between the neighboring nodes (i, j), (i + 1, j) and
hiji1 — hij
Ay

for the change in y—direction between the neighboring nodes (i, 5 + 1), (i,7). The
values K;1/,; of the hydraulic conductivity between the neighboring nodes (i, j),
(i +1,7) areknown. Flow between the nodes (3, 5), (i + 1, j) isgiven by

Riv1.i — hy s
Qiv1/2, = — 441725 # Ay z, (4.2.2)
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where z isthe vertical extension of the considered cell, so that Ay z isthe area perpen-
dicular to the flow. A visualization isfound in Figure 4.2.2. Analogous to the flow in
x—direction, flow in y—direction between cells (i, 5 + 1), (¢, 7) isgiven by

hijy1 — hig
Gijr12 = —Kijpi0 - ———— Az 2.
i,j+1/ i,5+1/ Ay

Figure 4.2.2: Flow between adjacent cellsin MODFLOW

cell (4, 5) cell (1 +1,7)

° > @
Qi+1/2,j

As

The continuity equation states that the excess of inflow over outflow for the cell
must equal the mass of water accumulated in the cell over the considered time span.
Inflow from external sources to the cell (and outflow to external sinks) must be taken
into account, a discretized version of which can be written as

thj = qu hij + nyd-
Inflow from external sources can either be dependent on the head in the cell or be
independent of it, therefore the split into the terms ¢¢, ¢™?. The spatially discretized
flow equation (4.2.1) can be written as
Ahyg b Az A
Sij AL Az Ayz = —(Gij1/2 + Gij—1/2 + Git1/2,5 + Gim1/2,5) + G;; AT AY z.

Thiswe transform to

Sij e = Kigyije - =ar = + Kijo2 - ™5
hit1,j—hi; hi—1j—hi;
+Ki+1/2,j : T (As)? + Ki—1/2,j : T (As)?

+q§lj hij + ij-
Here, S;; is the specific storativity of cell (4, j), and AA’? is the finite-difference ap-
proximation to the time derivative of the piezometric head to which we turn now.
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We define a subdivision of the considered time interval, where for simplicity we
again assume equidistant intervals of length At. The approximation to the time deriva-
tive of the piezometric head at time t,,, is given by

m m—1
At At ’

where A} denotes the piezometric head at time step m, m = 0,..., M. Theimplicit
Euler scheme which is unconditionally stable leads to the set of equations

S.. h%"i—h?{_l = K.. hzz+1 z +K ha,z—1 hmz
tJ At - 63+1/2° T (As)? ij-1/2 " " (As)?

R =R Ry =R
+Ki+1/2,j (As)z +Kz 1/2,5 ° (As)

+a™ hij + ¢

ind,m

This scheme is accurate of order O(At) + O(A?s) for sufficiently smooth solutions
h to (4.2.1). Simple transformations show that a linear system in the unknowns h;;
(t=1,...,I;7=1,...,J) hasto be solved for each time step.

4.2.2 TheTransport Model

As atransport model, MT3D is used. MI'3D stands for Modular Three-Dimensional
Transport Model. The software originates from the Environmental Protection Agency
(EPA) of the United States and is distributed by the Center for Subsurface Modeling
Support (CSMoS) of the Robert S. Kerr Environmental Research Laboratory. The
code, written in FORTRANY7, is documented in [67]. MI'3D can be utilized for ava-
riety of hydrologic settings. The model allowsfor several different transport boundary
conditions. These include e.g. confined, unconfined or variably confined and uncon-
fined aquifer layers, specified concentration or mass flux boundaries, and the solute
transport effects of external sources and sinks such as wells, drains, rivers, areal dis-
charge and evapotranspiration. MI3D has been designed as a solute transport model,
i.e., to simulate advection, dispersion and chemical reactions of dissolved constituents
in ground water systems. In our numerical tests, MT3D is adapted to simulate heat
transport. Since the partial differential equations modeling heat and solute transport
are similar, the adaptation is readily done with the correct choice of parameters. This
procedureisjustified in Section 2.2.

It is assumed by the model that changes in the concentration or temperature field
will not significantly affect the flow field. This is equivalent to assuming that the
partial differential equations for flow and transport are not coupled. Then, the trans-
port equation can be solved independently of the flow equation. MT3D can be used
in conjunction with any block—centered finite—difference flow model, in particular in
conjunction with MODFL OWwhich is described above. In our numerical experiments,
MODFLOW s used to generate the velocity field of the ground water system under in-
vestigation. Like MODFLOW MI'3D uses a modular structure and can be considered
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a three—dimensional model in that it admits several layers with different soil proper-
ties. MODFLOWand MI3D use an identical spatial discretization. The aquifer system
is discretized into a mesh of cells described in terms of rows, columns, and layers as
we have seen above. Compare Figure 4.2.1. Both use a block—centered formulation.
Chemical and hydraulic parameters are assumed to be uniform over the extent of the
cell. Tempora discretization is not identical for the two codes, though. Simulation
time in the flow model is in the transient case divided into time steps. Due to the
implicit time stepping scheme, the size of the time step is not restricted by stability
considerations. In the transport model, simulation is based on the flow regime pro-
vided by the flow model, and on an explicit transport solution. The length of the time
step used for the head solution may be too large for the transport solution. There are
stability criteria associated with the | atter that we address below. Each time step of the
flow solution is therefore further divided into smaller time increments during which
the flow is considered to be constant. The small time increments are called transport
steps. Since only the transport step is needed in this section, we denote it by At like
the time step of the flow model.

For the discretization of the transport equation there are two basic choices in the
code. Oneis a“pure’ finite—difference scheme, pure in that a finite—difference ap-
proximation is used for all parts of the transport equation. The alternative is a method
of characteristics. These approaches differ in how they treat the advective part of the
transport equation, compare (2.2.5),

%T(xa yat) =V- (HT(x’y’t) U(JZ, y’t)) + V- (D(U) VT(x,yat)) + qT(x: yat)'

The dispersive, second—order, part is discretized with fully explicit centra finite dif-
ferences, and the term accounting for sources and sinks is incorporated in a straight-
forward way. The advective term isthe numerically difficult part,

V. (KT(l‘,y,t) ’U(.T,y,t))

4.2.3
= 5o 6 T(2,y. 1) va(w,y, 1) + 5, 6T (2, y,) vy(2, y, 1) 23

Here, v, (z, y, t) and v, (z, y, t) denote the z— and y—directions of the velocity vector v.
Compare Equation (2.1.7). The velocity can be computed from the piezometric head
h, adiscretized version h;; (1 = 1,...,1;5 = 1,...,J) of which is furnished by the
flow code. The z—velocity at the cell interfaces between nodes (i, 5), (i +1, j) isgiven
by, compare (4.2.2),
1 hivi;— hij
Uziy1/a,; = _E Ki+1/2,j : %

Analogoudly, we define v,,_, , . as the velocity in z—direction between nodes (i —
1,5), (4,5) and vy, ,, vy, .., , aSthecorresponding velocitiesin y—direction between
nodes (7’7] - 1)’ (7”.7) and (Za])’ (Za] + 1)

Depending on the flow direction the quantity 7,

T,

ZTit1/2,5

is defined,

i+1/2,5

= ﬂ,j if U$i+1/2,j > 0, T$i+1/2,]‘ = ,‘Ti+1,j if U$i+1/2,j < 0, (424)
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and T, T

xi_—1/2,j’ T?/i,j—1/2’ _3/¢,j+1/2
neglecting x, can be written as

- (UT)wi—l/z,]‘ + (UT)yi,j+1/2 - (UT)yi,j—l/Q
Ax Ay '

are defined analogously. A discrete version of (4.2.3),

(vT)

Tit1/2,j

(4.2.5)

Here we abbreviate v\, . 1%, »; = (VT )4, ,,; @1din an analogous way the quan-
tities vz, ), Toi_1yny0 VyigiajoLyigiaser @A vy, oy, Ty, This upstream weighting
scheme is used for the spatial discretization in the “pure” finite-difference method.

With an explicit time stepping,

m-+1 m
(ATij )m+1 — Tij - Tij
At At ’

the advective part of the transport equation becomes

T;r]n—f—l - TTZ?% — ((UT);Z-}-I/?,‘]' - (UT)Z—l/zj + (UT)Z;,]‘+1/2 o (,UT)ZiL,j—lﬂ)
At As ’
or, equivalently,
Tt = m At 7)™ 7)™ 7)™ 7)™ 426
Z] - Z] +,{' A_S ((’U )zi+1/2,j - (U )xi_l/z,]’ + (U )yi,j+1/2 - (U )yi,j—l/Z). ( "= )

The scheme (4.2.6) can only be stable if

K i—z max(vg, vy) < 1, (4.2.7)
a condition which we refer to as Courant condition. Compare [80, Ch. 5.7]. Consis-
tency is of order O(At) + O(As).
The second basic choice for the evaluation of the advective term is a method of
characteristics. Thisis based on a mgjor property of hyperbolic equations, observable
for instance for the one-way wave equation

v+ av, =0,v(x,0) = f(z) (a>0,2€ R,t>0),

aone—dimensional model problem. The solution v(z,t) = f(x — at)(z € IR,t > 0)
is constant along any characteristic curve, z — at = const. The solution is trand ated
to the right with propagation velocity a > 0 in spatial domain with time. In the code,
an approach referred to as (plain) method of characteristics, a modified method of
characteristics, and a hybrid method of characteristics are implemented.

Common to these approachesis the use of a particle-tracking technique to approx-
imate the advective component of the transport process. Since any particle-tracking
technique requiresthe evaluation of velocity at an arbitrary point from hydraulic heads
that are calculated at nodal points, it isnecessary to use avel ocity interpolation scheme.
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The one used in this model is piecewise linear. For a point (z,, y,) within cell (4, j)
one interpolates the z—vel ocity component by, compare (4.2.2),

= (5= 27) Gic1yzg + (5 + 570) G2y

and the y—velocity component analogously. With the velocity field known, a numer-
ical tracking scheme can be used to move particles from one position to another to
approximate the advection of the contaminant or heat. Usually, the first—order Euler
algorithmis used for particle tracking,

g™ = 2™ AL v (2™ ™),y =y 4 Ay (2™ ™).

Here, ™!, y™*! are the particle coordinates at the new time level, 2™, y™ are the
particle coordinates at the previous time level, and v, (z™, y™), v, (™, y™) are the z—
and y—components of the Darcy velocity vector evaluated at (2™, y™). As before, At
isthe size of the transport step. An upper bound for the size of the transport step, At,
is determined from the Courant condition (4.2.7),

N |

At < y¢ As min(—, —).
Vg Uy

The Courant number ¢ represents the number of cells a particle is allowed to move
in any direction in one transport step, i.e.,

m+1

|y
Ay

T <y, 2| < e

| Ax
A uniform step size At is used for all moving particles during each transport step in
the particle-tracking calculations. For particles located in areas of relatively uniform
velocity, the first—order Euler algorithm usually has sufficient accuracy. For particles
located in areas of strongly converging or diverging flow, near wells, for instance, a
first—order algorithm may not be sufficiently accurate unless the transport step At is
very small. For these circumstances, a higher—order algorithm is provided with the
fourth—order Runge—Kutta method.

The practical implementation of the method of characteristics places either a con-
stant number of particles in each cell or determines a number of particles for a cell
according to its importance for advective transport. The importance is measured in
terms of temperature changesin the vicinity of the cell relative to overall temperature
changes. Thisis more efficient numerically than the constant number of particles. An
update of particle placement and temperature distribution is done for the cells after
each transport step in which the particles are moved through the domain according
to the interpolated velocities. After the evaluation of the advection—driven term of the
transport equation, the remaining parts are solved based on the partially computed new
temperature profile, and a weighted update is done for the temperature distribution at
the current time step.
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Alternative to the just presented method of characteristics, the code uses a modi-
fied method of characteristics that requires less computational effort. In the modified
method of characteristics, rather than moving particlesforward with the flow, a particle
located at node (4, j) at the end of the current time step is tracked backward. Temper-
ature in the cell (4, 7) is then set to the temperature valid at initial particle location.
This is calculated via the linear interpolation (4.2.8). This method, despite special
provisions for sources and sinks, requires considerably less effort than the method of
characteristics. However, it furnishes usable results only either on relatively coarse
gridsfor uniform flow or on relatively fine grids.

Due to these features, a combination of the method of characteristics and the
modified version is provided for in the transport code, the so called hybrid method
of characteristics. In the description of the numerical resultsin Section 4.3 we refer to
this hybrid method as method of characteristics without further notice. The decision
which method should be used (method of characteristics or modified method of char-
acterigtics) is, assuming a uniform grid and arelatively uniform dispersion coefficient,
based on the socalled mesh Peclet number P. The modified method of characteristics
loses accuracy for high flow velocities. This is measured via ||v||; in the code. We
denote that node by (i, jo) that furnishes maximal flow velocity over the entire (dis-
cretized) domain. A coarse spatial discretization As makesthe computational effort of
the method of characteristics acceptable, and a large dispersion coefficient increases
overall computational effort. The mesh Peclet number P is defined as

P= ”Uio,jo”OO As
bl
D(Uioyjo)

where (ig, jo) is the node at which the largest velocity component is computed. The
mesh Peclet number suggests to use the method of characteristics if large and the
modified method of characteristics if small. If P > 10 or if P < 0.1, one method
is chosen in the code for the entire domain. Otherwise the choice is done cell-wise
according to the importance of the considered cell for advective transport. This is
measured in terms of temperature changesin the vicinity of the cell relative to overall
temperature changes.

4.3 Numerical Results

Having fully described the application along with the simulation codes and the chosen
optimization routines, we are now in a situation to assemble the numerical results.
Recall the objective function for the application,

min  J(u) = (u,u) + (w,T), (4.31)

uc IRk

where u € IR* is the control variable and T = T'(u,t;) € IR™ is the temperature
distribution in the domain at time ¢;. The weight vector w contains as nonzero entries
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the stress rates of the drinking water wells. The number of grid pointsism € IV.
The decision variables u are the stress rates of the barrier wells located between the
infiltration well and the drinking water wells. See Figure 4.3.1. We assume that the
top of the grid lies in northern direction and accordingly describe well location. The
drinking water wells are referred to aswells 111, 1V, V', and VI. Well VI is the one
nearest to the infiltration well, well V' lies next to well VI in a horizontal line, well
1V lies north of well V', and well III is farthest away from the infiltration well. In
the objective function, the temperatures at the drinking water wells are weighted with
their respective stressrates. These are 0.0325[m?/s] at well VI, 0.0119[m?/s] at well
V, 0.0440[m?/s] at well IV, and 0.0461[m?>/s] at well III. The remaining entries of
the weighting vector w are zero so that the decision is based solely on control cost and
temperature distribution at the drinking water wells.

Figure 4.3.1: Well location within the grid.

Drinking water well

A Barrier Well

A Infiltration Well

dldldld

In the simulation and ensuing optimization, gridsof size 14 x 14, 28 x 28, 42 x 42,
56 x 56, and 70 x 70 are used. The number of nodesranges between 196 and 4, 900. See
Table 4.3.1. The mesh sizes correspond to distances of 250m, 125m, 83.3m, 62.5m,
and 50m, respectively, in the application. The computations are instationary. Thetime
horizon for the optimization is twenty years. We equate 360 daysto one year. Using a
time horizon of twenty yearsisjustified because an equilibrium is reached well within
this time period. Compare Figure 4.1.5. After about twelve years of ssmulated time,
a steady state is reached at the drinking water wells. For the flow simulation, 60 time
steps of length 120 days are used. For each time step of the flow simulation, 150 time
steps are used in the transport simulation. The time step of the transport simulation
is called a transport step. Each simulation thus requires 9000 transport steps. The
simulation isin the uncontrolled case described already in Section 4.1. The controlled
case is discussed below.

We now turn to the optimization results. As mentioned before, the Implicit Fil-
tering and Nelder—Mead algorithms are employed for this task. They are tested for
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Table 4.3.1: Number of nodesfor different grid sizes.

gridsize | 14 | 28 | 42 | 56 | 70
#of nodes || 196 | 784 | 1,764 | 3,136 | 4,900

different grids and starting values. Results are presented and interpreted for various
combinations and parameter settings.

The Nelder—Mead algorithm is described in Section 3.3. We make use of a self—
coded FORTRAN implementation. The modifications advocated by Kelley [51] are
incorporated. Thelmplicit Filtering algorithmis described in Section 3.4. Seethat sec-
tion for full references. In our numerical tests, the FORTRAN implementation | FFCO
of Implicit Filtering is put to use. See [17] for handling. This implementation takes
box constraints on the decision variables into account, i.e., in our case it allows to set
upper and lower bounds on the well rates. This can prove practical in many applica-
tions. In our application, for instance, dueto capacity restrictions, too large stressrates
for the barrier wells cannot be accepted. However, the capacity bounds that are set
in our computations are generally not attained. In very few instances only one of the
decision variablestakes on these extreme values. Thisrare occurrenceis attributableto
the bad numerical performance of one discretization scheme that can be selected in the
transport code, the method of characteristics. We address the results obtained with this
discretization method at the end of this section. First, we describe the results obtained
when an upwind scheme is employed in the transport code. With this scheme, none
of the decision variables reaches the preset capacity bounds. Thus, even though box
constraints areincorporated in | FFCO, we consider the treatment of our application as
unconstrained optimization.

In Figure 4.3.2 we see the development in | FFCO iterations over thefirst 20 func-
tion evaluations. Computations are shown for all grids. For the optimization on the
different grids identical starting points are chosen. The starting point for the iteration
isug = 0. A first observation is that the corresponding function values are not identi-
cal on the different grids. Also, there is not a consistent development in the function
values at the origin with grid refinement. See Table 4.3.2. This point we discuss now,
before addressing results of the optimization.

Table 4.3.2: Function values at uq = 0 for different grid sizes.

gridsize|] 14 | 28 | 42 | 5 | 70
J(0) || 1469.5940 | 945.0380 | 728.02555 | 1484.6681 | 1289.7369

The differences are due to finite-dimensional effects and they are also present in
very simple example models. We set up a simplification of the application to detect
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Figure4.3.2: Developmentin | FFCO iterations. Function valuesversus num-
ber of function evaluationsfor different grids.

1400 - 4

N (14 x 14) - grid
1200 — (28 x 28) - grid b
: — . (42x42) - grid

(56 x 56) — grid

) (70 x 70) - grid
1000 N E

800

600

400

200

the main influence. In this ssimplified model, the location of the wells is maintained.
The shape of the domain and all boundary conditions for the flow and the transport
equations are strongly ssimplified. Parameter values are also strongly simplified. For
instance, for the hydraulic conductivity one average value is used over the entire re-
gion. Flow in the simplified model takes place from fixed potentials on the eastern
boundary of the domain to fixed potentials on the western boundary of the domain.
The river which dominates flow in the northern part of the domain for the full appli-
cation is taken out of the model. Thus, the flow profile is considerably simpler than in
the full application described so far, and local influences are by far smaller in size.
The objective function is still given by (4.3.1). At the point uy = 0, only the tem-
perature part of the objective function is nonzero. In the simplified model like in the
full application, at u, there are significant changesin the temperatures computed at the
extraction wells for the different grids. While the overall reduction in temperature at
al considered locations over the first three grids may be attributed to a better approx-
imation of the underlying continuous problem, the increase in function value due to
temperature rises on the grid with 56 x 56 nodes is surprising. This can be explained
by scrutinizing the finite—-dimensional model. The location of the wells within the re-
gion isfor each grid recomputed from the exact location. Thus the distances between
the grid positions of theinfiltration well and the extraction wells vary. These distances
along with the average distance and a weighted distance are given in Table 4.3.4. The
weighted distance is determined analogously to the weighting via w in the cost func-
tion (4.3.1). A comparison between the change in cost given in Table 4.3.3 and the



80 A. BATTERMANN

change in the weighted distance reveals that the unexpected increase in cost on the
(56 x 56)—grid cannot be solely, but certainly to alarge part, attributed to well loca-
tion.

Table 4.3.3: Temperature increase at extraction wells and value of cost function at
origin on different grids for simplified application model.

gidsize|| VI | Vv | I | Il | J(0) | change
14 0.575 | 0.687 | 0.18100 | 0.201 || 4640.010
28 0.392 | 0.556 | 0.03220 | 0.245 || 3544.610 | —23.6%
42 0.310 | 0.475 | 0.01210 | 0.180 || 2795.690 | —21.1%
56 0.317 | 0.486 | 0.01590 | 0.209 || 2990.180 | +7.0%
70 0.300 | 0.462 | 0.00923 | 0.194 || 2793.452 | —6.6%
84 0.316 | 0.449 | 0.00811 | 0.159 || 2603.964 | —6.8%

Table 4.3.4: Distance between infiltration and extraction wells on different grids. Ef-
fects on cost for simplified application model.
gidsize|| Vi | Vv | v | 1l | @ |weighted | change
14 1500.0 | 1250.0 | 2015.0 | 1520.7 || 1571.4 222.4
28 1500.0 | 1250.0 | 2140.0 | 1750.0 || 1660.0 | 238.5 | +7.2%
42 1499.4 | 1249.5 | 2180.0 | 1749.3 || 1669.6 240.2 +0.7%
56 1501.3 | 1187.5 | 2139.4 | 1688.1 || 1629.1 234.9 —2.2%
70 1500.0 | 1200.0 | 2164.5 | 1750.5 || 1653.8 | 239.0 | +1.7%
84 1501.8 | 1209.3 | 2141.3 | 1711.4 | 1641.0 | 236.3 | +1.1%

Similar effects occur in the full application, amplified through a complex flow pro-
file. This motivates usto consider the full application for two different sets of well lo-
cations. First we hold on to thewell location considered so far in which the coordinates
of the wells within the region are for each grid recomputed from the exact location.
Here, the distances between the infiltration well and the extraction wells vary. Second,
we aso work with “equidistant” wells. This signifies that the distances between the
infiltration well and the extraction wells are identical on all grids. The optimization
results for that second case are shown only later in this presentation, though. In the
ensuing treatment, due to the effects just explained, we show the optimization results
for the full application on the different grids on a logarithmic scale. The qualitatively
similar behavior on the different gridsis still clearly visible. Compare Figures 4.3.3
and 4.3.4.

It was mentioned already that we consider function evaluations as expensive in our
application and in similar applications, where each function evauation involves the
solution of partial differential equations. For the CPU time required on a Sun Ultra 60
(1 CPU) for our application see Table 4.3.5. A doubling of the number of subintervals
inonespatial direction leadsto an increasein the overall number of nodesby afactor of
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Figure 4.3.3: Development in | FFCO Figure 4.3.4: Development in | FFCO
iterations over 100 function evalua- iterations over 100 function evalua-
tions. Function values versus num- tions. Function values on logarithmic
ber of function evaluations for differ- scal e versus number of function evalu-
ent grids. ations for different grids.
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4. Thisis clearly reflected in the reported computation times that grow proportionally.
The simulation times for the considered grid sizes range between less than a minute
for the coarsest grid and more than ten minutes for the two largest grids. Simulation
times for very difficult applications are typically much higher, but our work here is
conceptional. Anticipation of high cost was one reason to choose the Nelder—Mead
algorithm which is usually considered as economical in terms of function evaluations,
see [55]. Dueto cost considerations we typically stop iterating after about 50 function
evaluations, sometimes only after 100. An optimization run on the (56 x 56)—grid,
admitting 50 function evaluations, aready takes more than 8 hours of computation
time. Typicaly, progressis fast in the first steps of | FFCO. In the cases where more
function evaluations were admitted, considerable improvement in the cost function
was never achieved. Compare e.g. Figures 4.3.2 and 4.3.3.

Table 4.3.5: CPU time required for simulation of full application on different grids.

gridsize | 14 | 28 | 42 | 56 | 70
timeins || 42 | 151 | 353 | 614 | 798

The Nelder—Mead algorithm typically also exhibits fast decrease in the first itera-
tions. For the same starting point o, = 0 asfor the Implicit Filtering iterations shown
in Figure 4.3.2, Nelder—Mead iterations are shown in Figure 4.3.5. As observed above
for the Implicit Filtering outcome on different grids, the solutions computed by the
Nelder—Mead agorithm are not identical on the different grids. Finite—-dimensional
effects, especially well location, are for alarge part responsible for this outcome. Con-
sidering a so the assumed inaccuracy in the function it would be very surprising to see
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high fidelity in the computed coordinates.

But the computed solutions are of practical use. First, they indicate that extraction
of heated water at the barrier wellsisasensiblething to do. Temperatureincrease at the
extraction wellsis reduced significantly due to action of the barrier wells. This result
is visualized in Figures 4.3.10 through 4.3.13. Infiltration of cold water, aternative
to the extraction of heated water, has proven less effective. Also, the computed stress
rates for the barrier wells are sensible from a practical point of view in that they arein
the same range as the rate at the infiltration well. Asathird point, the solutions can be
used to practical advantagein that they reveal with mesh refinement which barrier well
isof most importance. Thisisthe well situated on the same horizontal grid line as the
infiltration well. A typical result, this one furnished by the Nelder—Mead algorithm on
the (42 x 42)—grid for a budget of 50 function evaluations and a given infiltration of
0.02735[m?/s] of warm water, isto extract 0.0256[m?/s] from the barrier well located
on the same horizontal grid line as the infiltration well, 0.00398[m?/s] from the well
located north of this one, 0.00192[m?/s] from the well located immediately south of
the first, and to infiltrate about the same amount of cold water, 0.00279[m?3/s], via
the southernmost barrier well. Similar conclusions as described above for the Nelder—
Mead outcome can be drawn from the solutions computed by the Implicit Filtering
routine. For the same mesh and an identical budget of function evaluations, | FFCO
suggests to extract 0.0260[m?/s] from the barrier well located on the same horizontal
grid line astheinfiltration well, 0.00504[m?/s] from the northern well, 0.00293[m3/s]
from the well located immediately south of the first, and to infiltrate 0.00216[m? /s,
via the southernmost barrier well. The differences between the stress rates computed
by the Implicit Filtering and Nelder—-Mead algorithms are often of size 10~3, and of
size 10~ for thefiner grids for the most used barrier well.

The (42 x 42)—grid is the most appropriate for our application of all considered
grids. The “real-ife” distance of about 80m that corresponds to this number of grid
points already represents avery good resolution of the considered region, but the prob-
lem sizeis still practical to handle in terms of computation time.

Table 4.3.6: Function values at computed solutions (I FFCO and Nelder—Mead with
50 function evaluations) for different grid sizes.
gridsize | 14 | 28 | 42 | 56 | 70
Je1rrco || 208.355 | 167.504 | 107.111 | 150.041 | 121.036
Jonvm || 232.985 | 166.569 | 108.060 | 162.423 | 122.645

The computed solutions differ between the two algorithms and, for each algorithm,
for different grids. Moreover, when starting from different positions, it must be ex-
pected that the Nelder—Mead algorithm detects different local minima. This can be
observed in Figure 4.3.7. The routine wanders off into very different directions for
different starting values. The Implicit Filtering routine, in contrast, stops at points
that are relatively close to each other compared to the Nelde—Mead outcome. See
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Figure 4.3.6. This makes a conceptional difference between the Nelder—Mead and Im-
plicit Filtering routines apparent: Implicit Filtering is designed to “filter” noise and,
by computing finite differences with large increments, to avoid local minima. The
Nelder—Mead may use large increments as well, but is not designed to get a “global”
picture of the problem. Compare Sections 3.3 and 3.4.

Figure4.3.5: Development in Nelder—Mead iterations. Function valuesversus
number of function evaluationsfor different grids.
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In reference to the very different directions that the Nelder—Mead algorithm em-
barks on with different starting points see aso the optimization landscape of our ap-
plication in Figure 4.3.16. This landscape was obtained with computations on the
IBM SP2. Computing activity was partially supported by an allocation from the North
Carolina Supercomputing Center. To obtain such a landscape, al but two of the op-
timization variables are fixed. The function values are then plotted against the two
varying values. The landscape clearly shows that distinct local minima with large re-
gions of attraction exist. These can capture the Nelder—Mead iterates. This did not
happen with | FFCO iteratesin our experiments.

In Figure 4.3.8, the flow profile of the application is shown for the uncontrolled
case. The figure shows the center part only because it is of main interest. The upper
and lower part of the domain are cut away. The infiltration well in the eastern part
of the domain is easily detectable from the flow profile, as are the extraction wellsin
the western part. Note that considerable inflow to the extraction wells occurs from the
river in the northern part of the domain, and note also that inflow from the infiltration
well takes place both to northern and southern direction. The flow profile is changed
when the computed control is exercised. In Figure 4.3.9, the flow profile is given for
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Figure 4.3.6: Development in | FFCO Figure 4.3.7: Development in Nelder—
iterations.  Function values versus Mead iterations. Function values ver-
number of function evaluationsfor dif- sus number of function evaluations for
ferent starting points. different starting points.

the control computed by | FFCO on the (28 x 28)—grid. While the flow profile is
practically unchanged in the outermost parts of the domain, the influence of the barrier
wellsis clearly visible in the central part of the considered domain. Direct flow from
theinfiltrationwell to the extraction wellsisimpeded. The heated water isin large parts
attracted by the barrier wells. Here, the three upper wells play the most important role,
most notably the well that islocated on the same horizontal line asthe infiltration well.
Thisis obvious when considering the location of the wells, compare Figure 4.3.1, and
the flow profile for the uncontrolled case. Thisfact is clearly reflected in the solutions
that the optimization routines furnish.

Figure 4.3.8: Flow profile in uncon- Figure4.3.9: Flow profilein controlled

trolled casefor (28 x 28)—grid. case (I FFCO) for (28 x 28)—grid.
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In Figures 4.3.10 and 4.3.11, the development of the plume is depicted at times
t = 5a and t; = 20a. These computations are done for the uncontrolled case on the
grid with 42 x 42 nodes. It can be seen that the heat plume extends well beyond the
extraction wells after an infiltration time of twenty yearswhen no control is performed.
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For the control computed by | FFCO for this grid, the controlled case is shown in
Figures 4.3.12 and 4.3.13. After five years, the plume is visibly smaller than in the
uncontrolled case, and not only isits overall extension smaller than before, but also its
core. The same holds for the time span of twenty years.

Figure 4.3.10: Temperature plume af- Figure 4.3.11: Temperature plume af-
ter 5 years in uncontrolled case on ter 20 years in uncontrolled case on
(42 x 42)—grid. (42 x 42)—grid.

Figure 4.3.12: Temperature plume af- Figure 4.3.13: Temperature plume af-
ter 5 years with control computed by ter 20 years with control computed by

| FFCO for (42 x 42)—grid. | FFCO for (42 x 42)—grid.

We now turn to the results for the equidistant well coordinates, where the absolute
distances between the wells do not vary for different grids. The first observation is
that the function values J(0) at the origin do no longer exhibit the large jumpsthat are
exhibited with the original well coordinates. Compare Tables 4.3.2 and 4.3.7. With
the exception of the coarsest grid, the value J(0) is consistently growing with mesh
refinement.

The optimization with | FFCO aso exhibits consistent results. The optimal func-
tion values computed for the different grids decrease with mesh refinement. This can
be observed for both optimization routines, i.e., for the Nelder—M ead algorithm aswell
as for | FFCO. See Figures 4.3.14, 4.3.15, and Table 4.3.7. Despite this consistency
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Table 4.3.7: Function values at origin and at solution computed by | FFCO and
Nelder—Mead after 50 function evaluations for different grid sizes with equidistant
well coordinates.
gridsize | 14 | 28 | 42 | 5 | 70
J(0) | 1469.594 | 1353.404 | 1401.406 | 1430.984 | 1433.351
JeNM 232.985 | 201.948 | 174.289 | 150.561 | 138.461
Jorrrco || 208.355 | 195.360 | 172.446 | 150.541 | 140.298

with mesh refinement, the stress rates computed by the two routines are not consider-
ably closer to each other than in the case where the well locations vary. An interesting
result is furnished both by I FFCO and the Nelder—Mead algorithm for the (70 x 70)—
grid, where both suggest to extract heated water from the northern wells (0.0136 and
0.0293 (NM), 0.0095 and 0.0289 (I FFCQO)), and to infiltrate cold water into both south-
ern barrier wells (0.00322 and 0.00429 (NM), 0.00182 and 0.00434 (I FFCO)). These
values are computed after about 50 function evaluations. In all other computations
with the upwind routine, both with the original and the equidistant well coordinates, it
is consistently suggested by the optimization routines to extract water from three wells
and to infiltrate a considerably smaller amount only at the southernmost well.

Figure 4.3.14: Developmentin| FFCO Figure 4.3.15: Development in NM it-

iterations over 50 function evaluations. erations over 50 function evaluations.

Function values on logarithmic scale Function values on logarithmic scale

versus number of function evaluations versus number of function evaluations

for equidistant wells on different grids. for equidistant wells on different grids.
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The last set of results that we mention is furnished by employing the method of
characteristics to solve the transport equation. Working with the original well coordi-
nates, we observe again that the cost function value at the origin changes considerably
with mesh refinement. These changes are even larger in absolute value than for the
upwind scheme. See Table 4.3.8. Also, the function values for the computed solutions
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differ widely and do not show a consistent development. Another observation is that
| FFCO, which furnished in general better results than the Nelder—Mead algorithm, is
outperformed by the latter when the method of characteristicsisused. Thisisprobably
dueto very poor gradient information. While derivative information is always poor in
this application, it is considerably less reliable when the method of characteristics is
used than when the upwind scheme is employed. In those cases where the Nelder—
Mead algorithm is significantly better than | FFCO, gradient information can almost
not be used. | FFCO isthen trapped at one of those points that are used for the initial
gradient approximation, typically in a corner of the hyperbox that is admitted for the
optimization with | FFCQO. In this case, and only in this case, one (or more) of the de-
cision variables takes on the extreme value admitted. This numerical scheme did not
furnish usable results for our application.

Table 4.3.8: Function values at origin and at solution computed by | FFCO and
Nelder—Mead after 50 function evaluationsfor different grid sizes with method of char-
acteristics (MOC).

gridsize | 14 | 28 | 42 | 56 | 70
J(0)upwina || 1469.594 | 945.038 | 728.026 1484.668 | 1289.737

change —35.69% | +22.96% | +103.93% | —13.13%
J(0)moc 563.361 | 833.926 | 482.313 1206.019 | 998.490

change +48.03% | —42.16% | +150.05% | —17.21%
Jo NM 25.131 45.772 44.952 61.513 51.703
Jw1FFCO 47.164 50.507 164.893 81.278 53.523

In conclusion, specialized optimization routines are useful tools in the given set-
ting. The optimization landscape with its nondifferentiable rim shows that optimiza-
tion algorithms using first— and second—order information under the assumption of
smoothness encounter difficulties. It is highly advisable in this setting to use methods
that either take special care in the finite—differencing or forego derivative information.

The Nelder—Mead algorithm does the latter. It achieves good progress with few
function evaluations. But the algorithm is sensitive to the starting point and can easily
be trapped in one of the local minimawhich have large regions of attraction. The con-
ception of the Nelder—Mead algorithm does not invite parallelization. Parallelization,
however, holds promise for Implicit Filtering.

| FFCO gave good resultsfor the application. With alow number of function eval-
uations, considerable progress was achieved. In all constellations which were consid-
ered in the numerical experiments, twenty function eval uations allowed good progress.
The expense of fifty function evaluations might still be justifiable. Thisistrue for any
expensive application that exhibits the iteration history seen in this section, and even
more in our application, where inaccuracy introduced through modeling, data, and
software issues will not permit to capture the exact minimum.
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Figure 4.3.16: Optimization landscape for the application on the (42 x 42)—grid. Func-
tion valuesfor x4, xz varying with z, x, fixed at origin.




Chapter 5

An I ndefinite Preconditioner for KKT
Systems

We now turn to our second example problem, motivated by an application in ground
water modeling likethefirst. Likewise, it isformulated as an optimal control problem
governed by a partia differential equation. Its discretization is a quadratic program-
ming problem with linear constraints. Quadratic problems with linear constraints are
frequent in optimization. In Chapter 1 we have seen that such problems have to be
solved for example as subproblems within a sequential quadratic programming ap-
proach. The system matrices arising in the discretization of partial differential equa-
tions are generally sparse and tend to large dimensions so that generaly iterative
solversare used. It iscrucial for overall performance that the iterative solution is done
efficiently, and so preconditioners as convergence—enhancing tools comeinto play.

In the present chapter we analyze an indefinite preconditioner which can be ad-
vantageously used within the iterative solution of large and sparse KKT systems. A
number of other preconditioners for symmetric indefinite systems is reviewed in the
following Chapter 6. Our application is derived in Chapter 7. The preconditioner of
the present chapter is, together with related preconditioners, tested on this example
problem of ground water hydraulic management. The linear systems under considera-
tion are solved iteratively with the Krylov subspace methods MINRES [66] and GM -
RES [70]. Numerical results for the elliptic model problem are shown in Section 7.3.
A condensed analysis of the indefinite preconditioner can be found in [7].

We start the present chapter with an introduction to preconditioning and areview of
some Krylov subspace methods, Section 5.1. Convergence analysisis also addressed
for those Krylov subspace methods that are employed in the numerical tests. The advo-
cated preconditioner is presented in Section 5.2. There, some observations concerning
the KKT system are related. Basic findings about the preconditioner are stated and its
cost is discussed. The effects of the preconditioner on the eigenvalue distribution of
the system, and, as a consequence, on the performance of iterative solvers, are studied
in Sections 5.3 and 5.4.

89
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5.1 Review of Preconditioningand of someKrylov Sub-
space M ethods

In this part of the present work we are concerned with preconditioners for linear sys-
tems that frequently arise in optimization. The so called KKT matrices have been
introduced in Chapter 1. The matrices under consideration exhibit the special struc-

ture
K=| Ly L4 B” (5.1.1)
A B 0

that we aready encountered in the derivation of sequential quadratic programming
methods. In each step of such methods, alinear system

Kz=r (5.1.2

with K € IRV*N symmetric indefinite has to be solved, and it is crucial for overall
performance to do that efficiently.

The system matrices K are generally sparse and tend to large dimensions. The use
of iterative solversis usualy advocated under these circumstances. Iterative methods
are advantageous in that they do not require to assemble the entire system K, but,
instead, only a matrix—vector multiplication K v per iteration. Common choices are so
called Krylov subspace methods. These methods generate iterates

z; € Kj(K,ro) = span {Kl 7"0};_01,
where K; (K, ry) denotes the Krylov subspace of order j generated by K and the ini-
tial residual r,. A number of these methods is addressed in this section, specifically
MINRES [66] and GMRES [70]. The methods differ e.g. in their applicability. While
MINRES sreserved for symmetric, possibly indefinite, systemslikee.g. (5.1.1), GM-
RES accepts general linear systems.

Several Krylov subspace methods, most prominently the conjugate gradient, mini-
mum residual, and generalized minimum residual methods, are N—step procedures in
exact arithmetic. This means that they stop with the exact solution of (5.1.2) after at
most NV iterations. But order of N iterations are in general judged a too high com-
putational expense. It is customary to regard Krylov subspace methods as genuinely
iterative procedures with termination based upon an iteration maximum and the resid-
ual norm ||r;||. Evaluation of such methods invariably focuses on how fast the iterates
converge. Convergence anaysis for Krylov subspace methods is well understood for
normal matrices, compare e.g. [43]. For nonnormal matrices, it isan area of active re-
search, see e.g. [14], [30], [43], [62]. Convergence analysisis addressed below in this
section aswell. Usually, convergence analysisis done for the “worst case”, i.e., asser-
tionsusually hold for all right hand sidesr in (5.1.2) and all starting guesses z,. Thus,
known bounds on the residual are not necessarily descriptive of actual convergence
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behavior even in the normal, well-understood, case. But they can provide intuition
of what constitutes ‘good’ and ‘bad’ eigenvalue distribution. As such, convergence
analysisis the basis for the construction of preconditioners. Preconditioners are often
that convergence—enhancing tool that renders iterative methods efficient.

Review of Preconditioning

The general issue in preconditioning is to construct a system that is equivalent to the
original system and that iseasier to solve. Theideal preconditioner can be— thisisnot
amust — thought of to approximate the inverse of the original system matrix. Use of
the exact inverseisin general prohibitively expensive. Clearly, cost and effectiveness
of a preconditioner have to be weighted against each other.

When symmetric positive definite preconditioning is applied for symmetric K,

PIKPTpPly =Pty (5.1.3)

the symmetry of the original K is maintained in the preconditioned matrix P~' K P~T.
Of course, P is taken to be nonsingular, so that (5.1.2) and (5.1.3) are equivalent.
Straightforward incorporation of preconditioning into Krylov subspace methodswould
replace the matrix—vector multiplication K v by P~' K P~Tw so that a solve with P7,
the multiplication with K, and a solve with P would be performed. When symmetric
positive definite preconditioning is incorporated into Krylov subspace methods, these
can be rewritten such that in each iteration one solve with M must be done where
M = PPT. For adetailed derivation of how to use M instead of its factors within
MINRES see e.g. [3]. It can be advantageous that the factors P, PT need not be
explicitly known. The matrix M aswell as P may be referred to as the preconditioner.
Much of theresearch in preconditioning for indefinitelinear systemsisdedicated to
symmetric positive definite preconditioning, see e.g. [5], [34], [69], [74], [75]. These
works are reviewed in Section 6.1. For symmetric, but highly indefinite systems like
the KKT system (5.1.1), “this restriction on a preconditioner is rather unnatural” [31].
Instead, one would like to be able to admit a preconditioner that isindefinite like K is.
Thisisdonee.g. in[31], [54]. In that instance, consider the generally preconditioned

system
Pi'KPR" PLx=P;'r (5.1.4)

which is for nonsingular P;,, Pr equivalent to (5.1.2). The preconditioned system
matrix P; 'K P, T isfor P;, # Py in general nonsymmetric. In this case, methods for
nonsymmetric matrices are needed, e.g. GMRES. Special cases of (5.1.4) are left—and
right—sided preconditioning, obtained by setting P = I and P;, = I, respectively.
Much of the general research in preconditioning is dedicated to linear algebrais-
sues and to specific applications. For an overview see e.g. [43]. Classical precon-
ditioning methods are for instance incomplete factorization methods. For a specific
examplein ground water modeling, the effects of several preconditionersderived from
incomplete decompositions are studied in [56]. Another classical idea is to employ
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splittings of the system matrix. We briefly review several important preconditioners of
that type in Section 6.1. Thisis not our focus, however.

A main feature of our approach is that we are interested in constructing block pre-
conditioners that maintain the structure of the original system and allow to exploit
that structure to computational advantage. In general, the effectiveness of a precon-
ditioner depends on the particular system the preconditioner is used for. There are
some preconditioners, for example the preconditioner constructed by an incomplete
LU—-decomposition, or a truncated series approach, e.g. [63], that are designed with-
out taking into account the structure of the matrix. Their usage can be highly effective,
but this is not necessarily the case. Sometimes such preconditioners cannot be used
because of the sheer size of the considered systems. If the matrices are very large,
usually only the blocks are computed, and they are not really assembled into an entire
system matrix. It is possible even that the blocks themselves are not explicitly known,
and that only their action on vectors can be computed. These instances may exclude
the use of general preconditioners. Another argument in favor of block precondition-
ersis that matrices that arise in the solution of optimal control problems are highly
structured. For one, they exhibit the specia (3 x 3)—structure of (5.1.1), and generally
their blocks have special features, too. Matrices A arising from the discretization of
partial differential equations have special structure, and their features have been stud-
ied by numerous authors. Therefore, we do not attempt to use preconditioners of such
genera design, but focus on preconditioners that take advantage of the specia form
and features.

The preconditioner proposed in this work is composed of blocks and, for suitable

P, and Py, given as
0 o0 P}
R:(o B{BT)
Py, B 0

Intheideal case, P, and Py areinversesfor the submatrices of the original system or
for products of submatrices. But it cannot in general be assumed that exact solves are
affordable. We also account for the general case where the preconditioner for the full
system is composed of preconditioners for the submatrices. Such block precondition-
ers, composed of preconditionersfor submatrices, can generally be adapted to specific
applications by incorporating known effective preconditioners for subsystems of the
system matrix. Thisline of thinking can also be found in the works[3], [5], [34], [49],
[69]. See Chapter 6.

Brief Review of Some Krylov Subspace M ethods

Asabasisfor the topics that we focus on in Sections 5.3 and 5.4, we now review some
Krylov subspace methods. In this section we do not use the notation (5.1.2), but the
notation that is generally used for linear systems. We are interested in solving

Az =b (5.1.5)
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with A € IR™*" nonsingular. We dso use ||z|| = ||z||s = V2Tz and (z,y) = 2T y.

Iterative methods are especially suited for the solution of large sparse linear sys-
tems (5.1.5) because they do not require to assemble the entire system A, but, instead,
only a matrix—vector multiplication A v per iteration. Basic iterative methods are the
Jacobi and Gauss-Seidel iterations, e.g. [39, Ch. 10.1]. A difficulty associated with
these methods is their dependence on parameters that are sometimes hard to choose
properly. Thisdifficulty is overcome with the well-known conjugate gradient method,
seee.g. [39, Ch. 10.2], which dates back to 1952. Numerous so called Krylov subspace
methods have since evolved which can be viewed as generalizations of the conjugate
gradient method.

By construction of the method, the conjugate gradient method really solves

Ax =y, (5.1.6)

wherer, istheinitial residual, ro = b— A zy. Since we do not want to restrict ourselves
to the starting vector x, = 0, we apply the conjugate gradient method to (5.1.5) with
b replaced by . The exact solution to (5.1.6) we denote by z,. If no restarts are
performed, the conjugate gradient and all other Krylov subspace methods generate
iterates -
z; € Kj(A,ro) = span {Al TO}Z—O ,

the Krylov subspace of order j generated by A and the initial residual r,. While
the conjugate gradient method is well—defined only for symmetric positive definite
matrices, MINRES and SYMMLQ [66] have been derived for symmetric, possibly
indefinite, systems, and GMRES [ 70] solves general linear systems.

The derivation of the conjugate gradient method, e.g. [39, Ch. 9.3], can be based on
the fact that for positive definite matrices A the problem to solve (5.1.6) is equivalent
to the minimization problem

mingepe F(z) = (z, Az) — (z,70) - (5.1.7)

The problem (5.1.7) has, in the positive definite case, the unique solution z = A~ 1ry.
In each step the conjugate gradient method computes the iterate z; in the Krylov
subspace C; (A, 7o) which minimizes F' over KC;(A, 7o), i.e, the iterate z; solves

MiNgek;(a,r0) F() . (5.1.8)
Thisisequivalent to solving
(Az; —1o,v) =0 Yo € K;(A,70). (5.1.9

The conjugate gradient method thus minimizes the error e = z, — x in A—norm ||.|| 4
over the current Krylov space,

F(z;) = mingex, (a,00) F (@) = mingeic (o) 3 (T — 2, Az, — 2)) . (5.1.10)



94 A. BATTERMANN

The A—norm is defined only for symmetric positive definite matrices. Also, if A is
not positive definite, then (5.1.6) and (5.1.7) are not equivalent. In fact, (5.1.7) does
not have a solution if A has negative eigenvalues, and it may not have a solution if A
is only positive semidefinite. Even though in this case the foregoing derivation is not
applicable, one can try to extend the conjugate gradient method by trying to compute
the iterates z; as a solution of (5.1.9). This leads to SYMMLQ. This method tries
to compute the so called Galerkin approximation to the solution z, of (5.1.5) over
the Krylov subspace KC;(A, o) even for indefinite A, i.e., the solution z; to (5.1.9).
Unfortunately, (5.1.9) need not have asolution for indefinite A. Thisiswhy SYMMLQ
uses a closely related iterate that coincides with the Galerkin approximation when an
invariant subspace is encountered. We do not discussimplementational issues here, for
that we refer the reader to the original works and others. A starting point is e.g. [43].
If A is positive definite, then (5.1.9) always has a unique solution. In that instance,
SYMMLQ is equivalent to the conjugate gradient method.

An dternative to SYMMLQ is MINRES, this based on the minimum residual ap-
proximation to the exact solution. In each step, this method computes the unique
solution z; € IC;(A, o) to

welé?(ijll,ro) lro — Az||. (5.1.11)

MINRES and SYMMLQ are tailored to the symmetric, possibly indefinite, case.
Their implementation relies on the Lanczos Tridiagonalization, see e.g. [39, Ch. 9.1],
that effectively allows to compute the new iterate via a three-term recurrence. Its
extension to the general, nonsymmetric case is the Arnoldi process, see e.g. [39,
Ch. 9.3]. The method whose iterates satisfy the optimality condition (5.1.11) in each
stepj =0,1,...for genera A iscaled GMRES.

Satisfying (5.1.11) or generating iterates with smallest possible error in anorm that
isindependent of the starting guessisfor general A impossibleviaasimplethree-term
recurrence, [43, Ch. 6]. The recurrences of GMRES entail an increase in storage re-
quirement throughout the iterations. If storageis exhausted, aremedy can beto restart
GMRES. Also, additional methods have been developed for general A to overcome
the long recurrences of GMRES, e.g. QMR [33]. These methods have the possibility
of failure which can be aleviated by allowing for growth in work and storage within
the iteration. For a discussion of numerical properties of methods for general A see
e.g. [62].

In this work, see Section 7.3, MINRES and GMRES are used. For these we now
discuss convergence.

Convergence Analysis

As Krylov subspace methods whose iterates satisfy the optimality condition (5.1.11),
MINRES and GMRES are n—step procedures. Despite the finite termination property,
rounding errors may lead to a loss of orthogonality among theoretically orthogonal
vectors, and finite termination is not mathematically guaranteed. Moreover, when
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these iterative solvers are applied, n is usualy so large that O(n) iterations repre-
sent an unacceptable amount of work. As a consequence, it is customary to regard
the methods as genuinely iterative techniques with termination based upon an iteration
maximum and the residual norm. With this point of view, the rate of convergence be-
comes important. Before investigating more specialized convergence results, we state
the result on the finite termination of these Krylov methods.

The convergence of Krylov subspace methods with optimal iterates is related to
polynomial approximation problems. This relation is based on the special representa-
tion of Krylov subspaces as

Ki(A,v) = {p(A) |p € T, 1}, (51.12)

where I1;, denotes the space of all polynomials of degree £ or less. The conjugate
gradient method and its generalizations iterate on Krylov subspaces of increasing di-
mension that eventually are invariant subspaces of the system matrix A. A subspace X
of IR™ isan invariant subspace for A if and only if AX = X B for some B € R™*™,
where the m columns of X € IR™*™ span X'. This means that the action of A on the
m~—dimensional subspace X is completely determined by B. If ry € X, thenry = Xc¢
holdsfor somec € IR", sothat Ax = ry can be solved by solving By = cfory € IR™,
and setting the solution to x = Xy. Thus the problem of dimension n x n is reduced
to an (m x m)—system which can result in quite a computational advantage. So the
plan isto find the smallest invariant subspace containing r.

One of the featuresthat the conjugate gradient, minimum residual, and generalized
minimum residual methods have in common is their finite convergence. The finite
termination of Krylov minimum residual methods follows from the optimality condi-
tion (5.1.11) and the fact that after at most n iterations the characteristic polynomial
of A (of degree at most n) can furnish the zero residual. SYMMLQ computes the
Galerkin approximation (5.1.9) and can be shown to also furnish a zero residua after
at most n steps. Thisfollows by observing that Krylov subspaces of maximal dimen-
sion are invariant subspaces for the generating matrix, i.e., that the implication

ARy e Kp(A,v) = A e Kp(4,v) VI>k

holds. The proofs are elementary and can be found e.g. in [3].

Convergence Resultsfor MINRES

Our interest in this section are symmetric indefinite system matrices for which we use
the following notation. If A € IR™" is nonsingular symmetric indefinite, then all
eigenvalues of A are contained in two intervals on the real line, one on the positive,
one on the negative part. The spectrum is denoted by A(A) = A. We set

, (5.1.13)

> >

A=max |\, A=min|)\|, k=
AeA XEA
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and « denotes the spectral condition number of A. In addition let \; denote the i—th
largest eigenvalue, i.e.,

)\12---2)‘Z>0>)\l+12---2)\n-

The minimization property (5.1.11) of MINRES and the representation (5.1.12) imply
the following result, seee.g. [2], [79].

Theorem 5.1.1 Let A € IR™™ be symmetricand A = {)\,..., A\, } denote its spec-
trum. If z; are minimum residual approximations to the solution of Az = r, on a
Krylov sequence, then the following estimate holds for the corresponding residuals,

74l < min max [p(Ai)] [Ioll, (5.1.14)

ent i=1,...n

where H} stands for the space of all polynomials of degree 5 or less which are normal-
izedto 1 at the origin.

The proof relies on the fact that for symmetric matrices A there exists a similarity
transformation such that A = VDVT with V orthonormal and with D a diagonal
matrix that contains the eigenvalues of A. Since V' is orthonormal, and since p(A) =
Vp(D)V?T holdsfor every polynomial p,

lrill = llro = Az
— mi A
min || p(A) 7o |

J
= min || p(D)V 7ol
pEHj

< i ' .
- ;relhrj} SHax [p(A:)| 7ol

As adirect implication, it can be shown that if A has only [/ distinct eigenvalues,
A symmetric indefinite, then MINRES terminates in [ steps. This follows easily by
properly normalizing the characteristic polynomial.

Theorem 5.1.2 Let A € IR™ ™ be nonsingular symmetric indefinite with [ distinct
eigenvalues. If z; € K;(A,ro) are minimum residual approximations of ., then
[[72]] = 0.

Theorem 5.1.2 shows that the iterative process stops after [ steps if the system
matrix has | distinct eigenvalues. If this number [ is small compared to the dimension
of the system, we have a large computational gain. This result on its own already
motivates preconditioning to affect the eigenvalue distribution of the system matrix.

The convergence analysis of minimum residual approximations is closely related
to the Chebyshev approximation problem, see e.g. [2]. It alows for instance the de-
duction of the following standard convergence estimate, e.g. [79].
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Theorem 5.1.3 Let A € IR"*" be nonsingular symmetric indefinite. If z; € IC;(A, ro)
are minimum residual approximations of z.., then theresidualsr; = r, — A z; obey

o — 1\ L2l
Il <2(55) 7 lioll

where « is the condition number of A. Here, |j/2| denotes the largest integer less or
equal to j/2.

If the intervals containing the eigenvalues of A are of equal size and if they have
the same distance from the origin, and if the eigenvalues are equally distributed, then
Theorem 5.1.3 gives agood description of the convergence behavior of MINRES. Dis-
tribution and clustering of the eigenvalues are important for the convergence of the
method. If there are few well-separated clusters of eigenvalues, then the prediction
will be pessimistic, and sharper results can be derived. If there are few negative eigen-
values, then the following result is of interest.

Theorem 5.1.4 Let A € IR™*™ be nonsingular symmetric indefinite with eigenvalues
)‘12)\22---2)‘l>0>)‘l+1Z---E)\n-
If z; are minimumresidual approximations of z, on C;(A, o), then

o= (VE—T1Y
||Tj+nz||é2<H lm ><ﬁ+1> [[7oll

=041

for j > 0, wherex = A /A,

The proof is performed via the construction of a specific polynomial that “singles
out” the negative eigenvalues. Thisresult is of interest if there are only few negative
eigenvalues, so that the estimate can be established after a small number of iterations,
and if the negative eigenvalues are not too small, because otherwise the factor [T(\; —
Ai)/|Ai| islarge. This situation does not occur in our application. We have included
this result because it gives the idea that isolating some eigenvalues can make sensein
special situations in order to establish refined convergence results of this flavor. See
e.g. [3, Th. 4.3.11]. In the following section we will see arefined analysis of thiskind
for the general case, Theorem 5.1.6.

Convergence Resultsfor GMRES

We now turn to the general, not necessarily symmetric, case. The following paragraph
can be easily reformulated to account for complex coefficient matrices. We restrict
ourselves to the case with real entries. The eigenvalues of a real nonsingular matrix
A € IR™" can be considered to be ordered according to their absolute values,

Ml >...> [l > 0.
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Bounds can be derived for normal matrices such that the residual norm of the GMRES
iterates is completely determined by the eigenvalues of the matrix. The bounds are
sharp in the sense that there always exists aright hand side r so that these bounds are
attained, i.e., the bounds account for worst—case behavior. For nonnormal matrices,
there seems at this time no known way to describe how good the approximation will
be in terms of simple properties of the coefficient matrix. Compare e.g. [30]. The
analysis of the convergence behavior of Krylov subspace methodsis an area of active
research, seee.g. [14], [30], [43], [58], [62].

While the bounds on the residual are as worst—case bounds not necessarily des-
criptive of actual convergence behavior even in the normal, well-understood, case,
they can provide intuition of what constitutes good and bad eigenvalue distribution.
As such, convergence analysisis the basis for the construction of preconditioners.

The property (5.1.11) is for general A the so called minimization property of the
j—th GMRES iterate. As aconsequence, compare (5.1.14) ,

731l = min [[p(A)rol|2 < min [|p(A)]] [|rol2, (5.1.15)
pelll el

J p J

holds for general A. Asbefore, IT;. is the space of all polynomials of degree & or less
that are normalized at the origin. The minimization property of the GMRES iterates
and itsimplication in (5.1.15) can be used advantageously for convergence estimates.
If Aisdiagondizable, A =V DV ™!, (5.1.15) impliesthe bound

I7ill2 < £(V) min_max_|[p(A:)]|{[7o]l>- (5.1.16)
pelll i=1,...,n

=1,...,

Here, k(V) = |V||-||V ||z isthe spectral condition number of the matrix V' of eigen-
vectors of A. If Aisnormal, (V') = 1. It was mentioned above that the Chebyshev
approximation problem can be exploited in the symmetric case. Likewise, if A isdia
gonalizable and if the eigenvalues are real, the minimization problemin (5.1.16) isan
approximation problem on the real line. In fact, if A isnormal with real eigenvalues,
(5.1.16) reducesto the situation encountered in Theorem 5.1.1. The situationisconsid-
erably more difficult for nonsymmetric matrices as an approximation problem in the
complex plane. Upper bounds for (5.1.16) have been derived for the diagonalizable
and for the defective case. For references see[14].

In addition to the elgenval ue—based bounds there are two other prominent proposi-
tions on how to estimate GMRES convergence. See [30] for references. Oneis based
on the field of values, W(A) = {27 Az | z € IR",||z| = 1}. The bound requires
to solve an approximation problem on W (A). The other proposition is based on the
e—pseudospectrum of amatrix, A((A) ={z € C | z € A(A+ E), ||E|| < €}. Inthis
case, an approximation problem on A (A) must be solved.

Embree [30] states that each of the three bounds can be accurate, but that each
can be miseading also. All fail to accurately describe convergence if nonnormality is
associated mainly with only part of the spectrum. Thisis the case for various constel-
lations of the indefinite preconditioner as we see in Section 5.4. We have found that
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in the ideal case a well-known result is descriptive of convergence behavior on the
preconditioned system. This result gives an upper bound on the number of possible
iterations. It is closely related to Theorem 5.1.2. In the original paper [70, Prop. 2],
Saad and Schultz showed that in exact arithmetic GMRES requires at most d,,;,, itera
tions, where d,;,, 1S the degree of the minimum polynomial of A. This meansthat the
number of iterationsis small if the spectrum of A consists of a small number of non—
defective elgenvalues of high multiplicity. The assertion followsfast from (5.1.11) and
the observation (5.1.15) with an appropriate standardization of the minimum polyno-
mial.

Let )\; bethe distinct eigenvalues of A with multiplicity m; > 0@ =1,...,kg) In
the minimum polynomial. Then

kdq

i=1
is the degree of the minimum polynomial of A, and the m; are characterized as the
smallest positive integer n such that

ker(A — \I)™ = ker(A — \I)™.

This showsthat the multiplicity m; of the eigenvalue )\; in the minimum polynomial is
the geometric multiplicity of the eigenvalue );, while its multiplicity in the character-
istic polynomial isits algebraic multiplicity. The minimum polynomial of A is given
by

kq
TL(A — Ay,
i=1

The result by Saad and Schultz [ 70, Prop. 2] reads as follows.

Theorem 5.1.5 Let d,,;,, be the degree of the minimum polynomial of A. For any right
hand side b and initial guess z,, GMRES terminates in exact arithmetic the iteration
on (5.1.6) in at most d,;;, iterationswith the solution z,, ., = ..

Theorem 5.1.5 states that in the given situation the Krylov subspace K, . aready
contains all necessary information. This is obvious from the following observation. If
apolynomial p of degree d,;,, existss.t. p(A) = 0, and if d,;,, iSthe minimum degree
to furnish this zero, then the Krylov subspaces /4, 11 and ICy, ., coincide because
linear dependency of the powers A' ry is reached,

min

Amin—1

= span {Alro} =Kq .

1=0 min °

Amin

Ka,,.,+1 = span {Alro}l o

If eigenvalues are clustered in intervals, convergence can be expected to be faster
thanin the case where they are spread out. By constructing polynomialsthat are related
to the minimum polynomial, Campbell, Ipsen, Kelley, and Meyer set up a qualitative



100 A. BATTERMANN

model for the convergence behavior of GMRES in [14]. The model that is set up
in [14] distinguishes between clusters of eigenvalues and outliers. It supposes that
GMRES first processes the outliers. This may differ from actual residual reduction,
which is why the model offers rather a qualitative than a quantitative description of
actua GMRES convergence behavior. By accounting for outliers and clusters, this
model can be of use in the case where a known eigenvalue distribution is disturbed.

Suppose that there exists a single cluster of n — m eigenvalues, m < n, with
center = 1 and radius p. The outliers are those m eigenvalues that are not associated
with the cluster. Let d be the degree of the minimum polynomial associated with the
outlying eigenvalues \; (j = 1,...,m). The model asserts that, once the outlying
eigenvalues have been processed, residual reduction depends mainly on the cluster
radius.

Theorem 5.1.6 (Prop. 4.1in[14]) Given p > 0, determine m, 0 < m < n, St
Amat, - - -5 A arethe clustered eigenvalues and the remaining m eigenvalues are the
outliers, i.e.,

Nitjoma C{z: 2 =1 <p}, AL C{z:[2-1]>p}.

Let m; > 0 be the multiplicity of the outlier A; ( = 1,...,m) in the minimum poly-
nomial of A, and letd = 3°7", m;. Then for any right hand side b and initial guess z,
the bound

I7aall < e 7ol

holds with a constant ¢ independent of /.

The assertion says that residual reduction is delayed in the model if there are many
outliers or outliers with high multiplicity in the minimum polynomial. The number
of additional iterations for processing the cluster depends mainly on the cluster radius
p. Convergence requiresthat p < 1, thisimplying that the eigenvalue zero is always
considered an outlier. The cluster radius p isinterpreted as an asymptotic convergence
factor by Campbell et al., and the constant ¢ as an asymptotic error constant. This
constant can be viewed as aproduct ¢ = p d™ ¢, where ¢, reflects the nonnormality of
A, while p stands for the cluster size as before, and ¢ for the (relative) distance of the
outliers from the cluster,

0 = max max
le—1l=p1<j<m |\

Thus, when A isnormal, the choice ¢ < §™ isfeasible, and when A is diagonalizable,
the choice ¢ < (V) §™ is feasible, where (V') is the spectral condition number of
the matrix of eigenvectorsof A.



CHAPTER 5 101

5.2 ThePreconditioner K

This part is concerned with an indefinite preconditioner for linear systems

Kz=r (5.2.1)
with a system matrix K of the specific block structure
K=| Ly Lu BT |. (5.2.2)
A B 0

We have described in Chapter 1 the setting that we are interested in, the solution of dis-
cretized problems of optimal control by sequential quadratic programming methods.
Each step of such a method requires the solution of a quadratic programming problem
with linear constraints. See Equations (1.1.16), (1.1.17). The necessary and sufficient
optimality conditions for this problem are given by the KKT conditions (1.1.14), in-
volving a system K as given in (5.2.2). Since we are interested in optimal control
problems that are governed by partial differential equations, the so called equation
and adjoint solves must both be provided for in this approach. The matrix A and its
transpose, accounting for equation and adjoint solve, are in this setting assumed to be
the computationally most expensive parts of the system (5.2.2). In general, the sys-
tems (5.2.2) are large and sparse, this due to the fact that matrices arising from the
discretization of partia differential equations tend to large dimensions and are highly
structured.

For the blocks of such systems K that we are interested in we make a blanket
assumption which is natural in the considered setting. This assumption, along with
notation that is used throughout the remainder of thiswork, isgivenin Section 5.2.1.

The preconditioner that is proposed in this work is composed of blocks and, for
suitable P, and Py, given by

0 0 Pf
K=| 0 Py BT |.
P, B 0

The preconditioner mimics the structure of the KKT system (5.2.2), and, intuitively,
is agood approximation to K for suitable P4 and Py . At this point of the exposition
we only require nonsingularity of the preconditioners P,, Py for the submatrices.
All further requirements on P, and Py that are needed for special cases are framed
accurately below.

The analysis of the preconditioner is done throughout Sections 5.2, 5.3, and 5.4.
The eigenvalue distribution of the resulting system is addressed, and al so the important
question whether the application of K is practicable. These two issues — effects and
cost — in genera represent opposing tasks. First facts about the preconditioner are
stated in Section 5.2.2. Subsequently, the cost of the preconditioner is examined. This
isrelated to implementational issues, see Section 5.2.3.
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521 Preliminariesonthe KKT System
This section is devoted to preliminary remarks concerning the KKT system K,
K=| Ly Lw BT |, (5.2.3)
A B 0

that we areinterested in. We also relate the blanket assumption on the blocks of K that
isvalid throughout the following treatment. We use the additional notation

_ _ [ Lgg Lgu _(-AT'B
C=(A|B), Lzz_<Lu¢ L) W_< WD) 629

The matrix W isthe null space representation for the constraints C' which is canonical
for problems of optimal control. Neither W nor A~!B are commonly computed or
stored. With this notation, the reduced Hessian H of the underlying quadratic pro-
gramming problem, compare Chapter 1, is readily seen to be

H=W"L,W=BT"A"TLyyA"'B— L,A"'B—-BT"A "Ly, + Ly,. (525)

The question of nonsingularity of H is closely related to nonsingularity of the entire
system K aswe see below. At thispoint of the exposition we also recall the dimensions
of the involved matrices,

A, Lyy € R™™, B, Ly, € R™*, L,y € RF*™, L, € IRF*k. (5.2.6)
Here, m, k € IN, wheretypicaly £ < m. Weuse N = 2m + k.

For the system K in (5.2.3) and its blocks we make the following assumption
throughout. Compare Assumption 1.1.2.

Assumption 5.2.1 Let for the system K in (5.2.3) and its submatrices be valid:
1. K isnonsingular.
2. K issymmetric.

3. Alisnonsingular.

As pointed out in Chapter 1, the second item of Assumption 5.2.1 isan immediate
consequence of differentiability requirements on the underlying functions. If these
are twice continuously differentiable, Ly and L, are symmetric and L, = L.
The third item states solvability of the state equation. If A is nonsingular, the matrix
C = (A | B) of constraints hasfull rank. Thefirst item of Assumption 5.2.1, provided
that C' has full rank, is equivalent to requiring nonsingularity of the reduced Hessian
H in (5.2.5). SeeLemma5.2.2 and [35, Cor. 3.1].
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Note that we do not set the requirement corresponding to the second item of As-
sumption 1.1.1 throughout our treatment. The vast majority of our results need not
require that ,, is symmetric positive definite on the null space of the constraints
C. This would be the symmetric positive definiteness of H. Neither do we assume
that L,, be invertible and that consequently the Schur complement S of K exist,
S = —CL;}CT. Even less we assume that the upper left block L,, be symmetric
positive definite throughout. If this can be assumed, however, it is easy to see that the
system K isindefinite with m + k positive eigenvalues and m negative eigenval ues,

L., CT\ (L, 0)\/[ L} 0 L, CT
c o) \c I 0 -—CrL;lcT o I /-

To find out about the eigenvalue distribution of K, assuming only full rank of the
constraints, we apply congruence transformations. We see that the nonsingularity of
K isin this case equivalent to nonsingularity of the reduced Hessian H. From

I 0 0 L¢¢ L¢u AT I —A'B 0
—(A'B)YT I 0 Lup Ly BT 0o I 0
0 0 At A B 0 0 0 AT
Loy (Log | Lug) W 1
— T (L
- | w (in) H 0 (5.2.7)
1 0 0
one can see immediately the following statement.

Lemmab.2.2 Let A be nonsingular. The system K in (5.2.3), with dimensions as
in (5.2.6), isinvertible if and only if the reduced Hessian H in (5.2.5) isinvertible.

Additional transformations give information about the inertia of the KKT system.
Compare[35, Th. 3.1]. Premultiplying (5.2.7) by

1, 0 0
0 0 I
—3Lsy  Im  —(Lgg|Lug) W

and postmultiplying with the transpose, we obtain that K can be transformed into

0 I 0
I 0 0 |. (5.2.8)
0 0 H

The 2m + k eigenvalues of (5.2.8) arethe £ eigenvalues of the reduced Hessian H and
+1 and —1, these with multiplicity m. Hence, by Sylvester’slaw of inertia, the matrix
K hasm + n, positive eigenvalues, m + n_ negative eigenvalues and n, eigenval-
ues equal to zero, where n,, n_, ny are the numbers of positive, negative and zero
eigenvaluesof H, respectively. Assumingthat H issymmetric positive definite, K has
m + k positive eigenvalues and m negative eigenval ues.
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5.2.2 Inverseand Iteration Matrix

In this section we start by introducing the inverse of K, composed of preconditioners
for submatrices. Also, the preconditioned system is explicitly denoted. The precondi-

tioner, werecall, is
o o PT
f(:( 0 Py BT). (5.2.9)
Py, B 0

Lemma5.2.3 Let Assumption 5.2.1 hold. Let P4 and Py be nonsingular. The inverse
of the preconditioner K isgiven by

i P.'BP;'B"P,T —P;'BP;' P!
K= -P;'BTP;T P;! 0
PyT 0 0

Knowledge of K ! allows to explicitly denote the preconditioned system.

Lemmab5.2.4 Let Assumption 5.2.1 hold. Let P, and Py be nonsingular. Denote
D=—P;'B, I, =P;'A, I, = P;TA", 0, = I, — I,.

The preconditioned system matrix X 1K is given by

DP; (D"Lyy+Lyg) + s D(Pyg'(D"Lgy+Ly) — I;) —DPy'BT0Y
( Pt (D"Lgg+ Lug) P (D"Lgu+ Lun) —Py'B"0Y )
Py Lyy T 1
In the special case wherethe ideal preconditioner for A ischosen, i.e., P, = A, the
structure of the preconditioned system matrix becomes apparent. Other special cases,
leading to an even simpler structure, are discussed in Section 5.3.3.

Lemmab.2.5 Let Assumption 5.2.1 hold. Let Py be nonsingglar, let P4, = A. Use
the notation D = —A ! B. The preconditioned system matrix K 'K is given by

DPg (D"Lys+Lyg) + Im D(Pg'(D"Lyy+Lyy) — Ix) 0
P! (D™Lyg+Lug) P! (D"Lgu+Lua) 0
AiTL¢¢ AiTLd,u Im
The right—preconditioned system K ~' K isthe transpose of the left—preconditioned
system KK, (KK~)T = KK, in case Py is symmetric. Thisis true in both
cases Py, = A and P4 ~ A. The preconditioned system isnot normal in general,

KK Y KK YW =KK'K'K#K'KKK'= (KK )TKK™".
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5.2.3 Preconditioner Solves

Preconditioning can only be useful if the gain due to a better eigenvalue distribution
is not offset by computationally expensive matrix operations. In this section it is des-
cribed how solves with the preconditioned system matrix X~ K can be done in an
efficient way. Thisisfirst stated for the general case with preconditioners P, and Py
and then also for a specific choice of the preconditioners.
In order to solve
K'Kz=r+

with an iterative solution method in each iteration the action of K 'K on a vector z
has to be computed, see e.g. [2, p. 158ff.]. This can be achieved by the successive
solution of three linear subsystems and is described in the following.

Lemmab5.2.6 Let Assumption 5.2.1 hold. Let P4, Py be nonsingular. The matrix—
vector product 3
K'Kz=ux, (5.2.10)

can be carried out at the cost of solving three linear subsystems, with matrices Py,
PT, and Py, respectively.

Proof: Letz = (21,22,23)T Withz; € IR™, 2z, € IR*, 23 € R™, and let z =
($1,$2,£E3)T with 1 € IR™, x5 € Rk, r3 € IR™.

Since Equation (5.2.10) isequivalent to K = = K =, and since K « can be rewrit-
ten Kz = Kz + (K — K) z, we can compute the action of the matrix K—'K on a
vector x by solving

K(,—2)=(K-K)z (5.2.11)

forz = x, —r andthensettingz, = x+z. Thesolution z = x, —x of system (5.2.11)
can be computed by successively solving the linear systems

PZ; zZ3 = L¢¢ T+ L¢u To + (A — PA)T T3
Pyzy = Luyx1+ (Lyuw — Pg)xo — BTz (5.2.12)
PAZl = (A—PA).Z'l—BZQ,

f0r23,22,and21. O

We see that in order to have a practical algorithm, isis necessary not only to solve
with the preconditioners P, P, and Py at moderate cost, but also to be able to apply
the preconditioners. In case theideal preconditioner P;' = A~ ischosen, and in case
Py ischosen as L, (this choice being discussed, along with others, in Section 5.3.3),
system (5.2.12) smplifiesto

AT 23 = L¢¢ 1 + L¢u To, Lyyzo= Lu¢ T, — BT,Zg, Az = —B 2.

In the considered setting one can assume that solving with A, or with its precon-
ditioner P4, dominates the computations. Then the application of the preconditioner
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K requires essentially one solve with A, or with its preconditioner P, respectively,
and one solve with AT, or with its preconditioner P7, respectively, in each step of an
iterative solution method.

5.3 EigenvalueDistribution

By left preconditioning with K, the linear system (5.2.1), K = = r, ismodified to
K'Kz=7, (5.3.1)

where 7 = K~'r. With P, and Py appropriately chosen in K, Equation (5.2.9),
the system matrix favorably changes its eigenvalue distribution. If the ideal precon-
ditioner Py, = A isused, it can be shown that at least 2m of the eigenvalues of the
preconditioned system K~'K are 1. The remaining & eigenvalues are those of the
(k x k)-system P,'H, see Theorem 5.3.1. It can be shown that in case Py = A
the preconditioned system has under natural assumptions only real eigenvalues. This
aspect istreated in Lemma5.3.2.

With the choice of the ideal preconditioner P, = A, the N x N-system K 'K
has at most k£ + 2 distinct eigenvalues. Thisis not necessarily maintained in case of an
approximate preconditioner P4, =~ A. Thus, the clear—cut analysisin Theorem 5.3.1
for the ideal preconditioner P4 = A is perturbed in the case of approximate con-
straints P4. An auxiliary result in Lemma 5.3.3 alows the qualitative statement in
Theorem 5.3.5.

5.3.1 Eigenvalue Distribution with Exact Equation Solve

In this section, the eigenval ue distribution of the preconditioned system K ' K isana-
lyzed for the choice P4 = A.

Theorem 5.3.1 Let Assumption 5.2.1 hold. Let Py benonsingular, let Py = A. Let p;
be the eigenvalues of the preconditioned system K 'K and let )\; be the eigenvalues
of Pp'H—-I,(i=1,...,N=2m+k,j=1,...,k). For the ;1; we obtain

,U/z:/\z+1 (7;21,...,]{5),
=1 (i=k+1,...,N). (5.3.2)
Proof: Write K~'K = F + Iy with theidentity Iy € RY*N (N = 2m + k) and
DS DR 0
F=| s R o]. (5.3.3)
T U 0

Here, we use the notation
D= —AilB, T= AiTL¢¢, U= AiTLqm ,
S=—-Py'BYATLyy + Py' Ly, (5.3.4)
R = —P};lBTA—TL(,)u + PglLuu —I.
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The nonzero eigenvalues of F' are given by the solution to the set of equations

DSv+DRs = Av, (5.35)
Sv+Rs = As, (5.3.6)
Tv+Us = A\w. (5.3.7)

From (5.3.6) wededuce D Sv+D Rs = A D s, sothat with A # O itfollowsv = D s.
From (5.3.6) wethusget S D s+ R s = A s, which showsthat all nonzero eigenvalues A
of F' areeigenvaluesof S D+ R. To seethat all eigenvaluesof S D+ R are eigenvalues
of F, let A beanonzeroeigenvalueof S D+ R, i.e, S D s+ Rs = \s. Inthissituation
definev := Dsand w := § (T'v + U s). Then Equations (5.3.5), (5.3.6), and (5.3.7)
hold.

With the definition in (5.3.4), the matrix S D + R coincides with P;'H — I, see
Equation (5.2.5), because

SD+ R= Pﬁl <BTA7TL¢¢AilB — Lu¢A71B - BTA?Tquu + Luu) — I
= PI;I H-1,.

Then p isan eigenvalueof K 'K if and only if for 2 € IRY therelation
K 'Kz =(F+1Iy)z=px

holds, and so Assertion (5.3.2) is established. O

The matrix F' that has just been introduced has interesting properties. It is easy to
see from the structure of F' in (5.3.3), defined viaits entries in (5.3.4), that F' has at
most m + k nonzero eigenvalues. The zero eigenvalue has an algebraic multiplicity
of at least m. In the case that we choose Py = H we obtain that F' has only the zero
eigenvalue. Itsalgebraic multiplicity isthen 2m + k. Its geometric multiplicity isonly
2. See Section 5.4. The nonnormality of F iseasily checked, FFT # FTF.

To supplement the facts that have been found out about the eigenvalues of the
preconditioned system K 'K, we now relate a result stating that the preconditioned
system K 'K incase P4 = A hasunder additional assumptionsonly real eigenvalues.
The proof follows easily from the findings of Theorem 5.3.1. In case of approximate
constraints P, = A, the preconditioned system will not in general have real eigenval-
ues.

Lemma5.3.2 Let Assumption 5.2.1 hold. Let Py be nonsingular and symmetric, let
Py = A. Assume that either Py or H or both are symmetric positive definite. Then
the preconditioned system K ~! K hasreal eigenvalues.

Proof: In this situation it follows from Theorem 5.3.1 that the eigenvalues y; of

K'K aregivenby land 14+ X, (i = 1,...,k;j = 1,...,2m + k), where \; are the
eigenvalues of P, H — I,. If either Py or H or both are symmetric positive definite,



108 A. BATTERMANN

then P;'H — I, is similar to a symmetric matrix which is necessarily diagonalizable
and hasreal eigenvalues. This provesthe assertion. O

The assumption of symmetric positive definiteness of the reduced Hessian H isin
the optimization setting closely related to assuming that oneis already closeto amini-
mizer. Thisisoften not satisfied. But it isnot farfetched to require a preconditioner Py
to be symmetric positive definite. For instance, the cheap variant Py = 1, discussed
below, already constitutes a symmetric positive definite preconditioner.

5.3.2 Eigenvalue Distribution with Approximate Equation Solve

One expects for an appropriately chosen preconditioner P, of A that the eigenval-
ues of the generally preconditioned system matrix in Lemma 5.2.4 behave similarly
to those of the ideally preconditioned system in Theorem 5.3.1. This statement in
Theorem 5.3.5 is anticipated in the following lemma.

Lemmab.3.3 Let Assumption 5.2.1 hold. Let P, and Py be nonsingular. Let F be
defined by (5.3.3), (5.3.4) with A replaced by Ps. Let i; (i = 1,...,N = 2m + k)
be the eigenvalues of F' + Iy, let X; (j = 1,..., k) bethe eigenvalues of P;;' H — I,
where the perturbed reduced Hessian H is defined to be

H=B"P{"LysP{'B — LyyP3'B — BT Py Ly + Ly . (5.3.8)
The eigenvalues 1i; obey

i =N+ 1 (i=1,...,k),
i =1 (i=k+1,...,N).

Proof: Inanalogy to Equation (5.3.4), the perturbed quantities D, S, R, T, and U are

D=-P'B, T=P;"Lys, U= P, Ly,
S =Py (B"P;"Lyy — Luy),
R=-P,'B"P,"Lyy + Py'Lyy — L.

The matrix F is given by

DS DR 0

F—( S R o) . (5.3.9)
T U 0

Similar to the preceding proof to Theorem 5.3.1 it can be shown that there are at most &

nonzero eigenvalues of F' and that these k coincide with the eigenvaluesof Py, ' H — I,

The assertion follows. O
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The statementsthat have been made following the proof to Theorem 5.3.1 concern-
ing F in (5.3.3) carry over to the newly defined F'.

All statements that have been made so far solely relied on linear algebra argu-
ments, and it was only required that the preconditioners be nonsingular. For the
statement below that relates the eigenvalues of the generally preconditioned system
(Ps = A, Py # A) to those of the ideally preconditioned system (P, = A) we pose
more stringent assumptions on the preconditioners.

To start with, we fix notation that is consistently used within this paragraph and
has been partly introduced so far.

Notation 5.3.4 The spectrum of a matrix G € IR (I € IN) is denoted by A(G).

The letters p; and A; may be used for the eigenvalues (i = 1, ...,1). The eigenvalues
are ordered according to their absolute values, i.e., |\;| > ... > |X\]. The spectral
condition number of G, measured with respect to the 2—norm ||.||2 := ||.||, is denoted

by k(G). Weterm G or E a perturbation of G, where consistently we write
G=G+FE

for some “ small” matrix E € IR™. If \; are the eigenvalues of G, we call ); the
eigenvalues of G. Theidentity matrix in IR"*! is denoted by I,. We additionally define
for a preconditioner P of G the perturbed identities I; and approximate zeros O,

Iq = P3G, It, .= PTG,
0¢:=P;'G—1, 0f:=P;7G" —
We can now phrase the rel ation between the eigenval ues of the preconditioned sys-

tem matrix f{ ~1 K and the eigenval ues of thelow—dimensional convergence-governing
system P, H — I, for the general case.

Theorem 5.3.5 Let Assumption 5.2.1 hold. Let P be nonsingular, let P4 be a pre-
conditioner for A. Let)\ ( = 1,..., k) be the eigenvalues of PHlH I, where H
isgivenin (5.3.8). Then for the e|gen\/alue5uZ (t=1,...,N = 2m+ k) of the pre-
conditioned system K ! K we have the following bound. For all e4 > 0 thereexistsa
scalar §4 suchthat if || A — P4|| < 04 thenit holds

—es <|i—XN—1]< eq (i=1,...,k),
—e4  <|p—1< e (F=k+1,...,N).

Proof: Interpret K 1K in Lemmab5.2.4 as a perturbation of the matrix F' + Iy,

K'K=F+1Iy+E,
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where I isdefined in (5.3.9), and where E is, with 0 4, 0%, asin Notation 5.3.4,

04 0  P,'BP;'B"0,
E= 0 0 —Py BT0Y | . (5.3.10)
0 0 04

If A — P, is sufficiently small in norm, then the norm of 0, and the norm of 0
are small also because these continuously depend on the matrix entries. Using the
structure of E in (5.3.10), we can thus estimate || E'|| by some constant § > 0 which
continuously depends on 64. The assertion follows with the fact that the eigenvalues
of the full preconditioned system are continuous functions of the entries of £. This
is phrased as a qualitative perturbation theorem e.g. in [78, Th. IV.1.1]: Let A be an
eigenvalue of G of algebraic multiplicity ». Then for any norm||.|| and all sufficiently
small e > 0 thereisad > 0 st.if ||E|| < d,thedisk D(\,e) ={C € : |( — A| <€}

contains exactly r eigenvalues of the perturbed matrixG = G + E. a

Theorem 5.3.5 is the generalization of Theorem 5.3.1 to the case with an approxi-
mation P, to A. The main assertion is that the eigenvalues of the generally precondi-
tioned system (P4 ~ A) behave quantitatively similar to those of the ideally precondi-
tioned system (P4 = A). Note that this has been formulated without a requirement on
Py except nonsingularity, this due to the fact that the product P;; 'H does not turn up
in the error matrix E' in (5.3.10). Often, the small number & (k < m) of eigenvalues
of the low—dimensional system Pglﬁ will aready lead to significant improvement in
the preconditioned iteration versus the original case. If thisis not yet satisfying, more
stringent requirements on Py might have to be met.

If we choose Pj; to be the exact preconditioner, then this means, allowing agenera
preconditioning for A through P, that P,;* = H~' for H in (5.3.8).

Theorem 5.3.6 Let Assumption 5.2.1 hold. Let Py = H,andlet P, bea precondi-
tioner for A. Then for the eigenvalues i; of K~! K we have the following bound. For
all e4 > 0 thereexistsa scalar 04 suchthat if ||[A — P42 < d4 then

_€A§|ﬂi_1‘§6A (7’:11,2m+k)

Proof: If Py = H, then the eigenvalues \; of P;'H — I, vanish. Theorem 5.3.5
yields the simplified estimate that is stated above. O

Naturally, the question of a quantitative bound on the perturbation in the eigenval -
ues arisesin this context. However, any general perturbation bound on the eigenvalues
of amatrix has to be pessimistic because it must account for ill—conditioned behavior.
See the theorem by Elsner, e.g. [29], [78, Th. IV.1.3]. Possible are changes with the
N-th root of the error, and so are changes that are proportional to the error itself. The
latter istruein the normal case, compare Section 5.1, but can be valid in the nonnormal
case aswell. A bound by Henrici, see [78, Th. 1V.1.9], phrased in terms of departure
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from normality, provides a transition between these cases. For a discussion of the
effects of nonnormality see also [15], [43]. We have not found genera quantitative
bounds to provide useful information for the systems that we consider.

Asthe last point in this section, we relate an easy extension to a result in the case
of exact constraints, P4, = A. The following corollary to Lemma 5.3.2 is immediate
by considering Lemma 5.3.3.

Corollary 5.3.7 Let Assumption 5.2.1 hold. Let Py be nonsingular and symmetric,
Let P, be nonsingular. Let H be defined by (5.3.8). Let F' be defined by (5.3.9).
Assume that either Py or H or both are symmetric positive definite. Then the matrix
F + I hasreal eigenvalues.

5.3.3 Eigenvalue Distribution for Special Choicesof Py

The case with the ideal preconditioner P4 = A was treated in depth already in Sec-
tion 5.3.1. The overal result in this situation is that the eigenvalues of the precondi-
tioned system are, with high multiplicity, the value 1, and the eigenvalues of P;'H.
We now consider important special cases of this situation.

Po=Aand Pyg=H

The case where both preconditioners P, and Py are chosen asthe ideal precondition-
ersfor A and H, respectively, has mostly theoretical character. For completeness we
state the result in this case too.

Theorem 5.3.8 Let Assumption 5.2.1 hpld. Let Py = A and Py = H. Then all the
eigenvalues y; (i = 1,...,2m + k) of K 'K equal 1.

Proof: This result follows from Theorem 5.3.1 using the fact that for Py = H all
eigenvaluesof P, ' H—1I vanish. Thereforeall eigenvalues; of K~ K areof sizel. O

In this special case all eigenvalues of the preconditioned system are 1 — although
K 1K, compare Lemma5.2.5, is not the identity or anywhere near to it component—
wise. Although a preconditioner can often be perceived as an approximate inverse, this
need not bethe case. Inthe case considered herewealso havethat E = 0 and K 'K =
F + I, where dl eigenvalues of F' vanish. The zero eigenvalue of F' has algebraic
multiplicity 2m + k whereas its geometric multiplicity is considerably smaller. We
will seein Section 5.4, specifically in Lemma 5.4.4, that the minimum polynomial of
the preconditioned system isin this case of degree 3 only. In this case, GMRES can —
in exact arithmetic — be shown to encounter an invariant subspace of the system matrix
after three steps which is confirmed in the numerical tests. See Section 7.3.

The drawback that accompanies the nice result that all eigenvalues of the precon-
ditioned system are 1 and that only three steps are necessary for GMRES is the fact
that this choice of preconditioner is very expensive. Although H is “small” and the
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solve with it should not be prohibitive in case H can be computed explicitly, it is just
this assembly of the matrix that might not be possible. In case it is only possible to
solve with the submatrices involved or to apply them, e.g. if the matrices A and B are
not readily available, H cannot be computed explicitly. Instead, a solve with H then
requires solveswith A and A” and islikely to be very expensive.

Another approach isto use P, = A and a preconditioner Py =~ H. Thiscould for
example be a preconditioner for the reduced Hessian from a quasi—Newton approach.
The cost might also be reduced by choosing P, = H in case agood preconditioner P4
for A isavallable. Compare Theorem 5.3.6. Alternatively, preconditioners Py ~ H
and P, ~ A could be chosen independently from each other.

PA=AandPH=Luu

Instead of the expensive choice Py = H, acheap variant, if applicable, can be to take
Py = L,,. Often, L,, can be derived from the user—defined cost function, when the
constraints depend in a nonlinear way only on the controls u but not the states ¢. In
this case we also have Ly, = 0. Then we obtain the statement of Theorem 5.3.10.
First we give the corresponding result for the case where Py = L,, and where the
off—diagonal entries of the upper left block are nonzero, Ly, # 0, Lys # 0.

Theorem 5.3.9 Let Assumption 5.2.1 hold. Set Py = L,,, and Py = A. Let \; (j =
1,..., k) betheeigenvalues of L, H—1I. For the eigenvalues y; of the preconditioned
system K ~' K we obtain

i =1 (i=Fk+1,....2m+k).

Proof: Thesituationisaspecial case of Theorem 5.3.1. Under the assumptions stated
we obtain for the quantitiesin (5.3.4) that

D= —A_lB, T= A_TL¢¢, U= A_TL¢U ,
§= =Ly, (BTA™" Lyy — Luy),
R=—LBTATL,,.

Thisresultsin
LaoH—I,=SD+R=L,(B"A TLyyA'B—~BT"A "Ly, — LA 'B),
which yields the statement of the theorem. O
Note that in this case the matrix representation for K~'K = F + Iy + E with
E =0 and F givenin (5.3.3) hasthe special form
( DL;J(DTL¢¢+LU¢) + I, DL;;DTL¢U 0

Ly (D Ly + Lug) Ly D" Ly + 1
A_TL¢¢ A_TL¢U I,
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We now turn to the case where in addition the mixed entries L, L,, are zero.
Then the eigenvalues of the preconditioned system are immediately deduced from the
matrix representation.

Theorem 5.3.10 Let Assumption 5.2.1 hold. Assume in addition that L, = 0 and
Ly =0 StPy =1L, and Py = A. Let \; (j = 1,...,k) be the eigenvalues of
L, BT AT L,,A~' B. For the eigenvalues y1; of the preconditioned system K ' K we
obtain

i =X+ 1 (i=1,...,/€),

i =1 (i=k+1,....2m+k).

Proof: Thesituationisaspecial caseof Theorem 5.3.1 and of theimmediately preced-
ing Theorem 5.3.9. Under the assumptions stated we obtain for the quantitiesin (5.3.4)

D=-A"'"B, T=A"Ly, U=0, S=—-L,'B"A "Ly, R=0.
Thisresultsin
Py'H—Iy=SD+R=1L_ B A TLyA'B,

which yields the statement of the theorem. O

Note that in this case the matrix representation for KK = f + Iy + E iseven
simpler than in the situation stated above. Asbefore, £ = 0 and F' = F. Moreover, F'

in (5.3.3) reducesto
DS 0 O
F = S 0 0.
T 0 0
Thus, the preconditioned system is
) DL ID"Lyy + I, 0 0
KK = L;&DTLW Iy, 0 .
AiTLqﬁ(b 0 I,

Its spectrum is obviously composed of the eigenvalue 1 (with algebraic multiplicity of
at least m + k instead of m as previously noted for the other cases), and of the eigen-
vauesof DL, D" L4 + I,,,. For completeness we add the following lemma which
states that the nonzero eigenvalues of DL, D" L,, and L} D" Lss D areidentical.

Lemma5.3.11 Let P4 € IR™ ™ and Py € IR*** benonsingular. Let B € IR™**, let
Lyy € R™ ™, letk < mfor k,m € IN. Inthissituation,

A(Pg'BTP,TLysP,'B) U {0} = A(P,'BP;'BT"P, T Lyy) .
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Proof: Thematrix Py'BP;'BTP;"L,, € R™ ™ has, due to the dimension of its
factor Py, at most k possibly nonzero eigenvalues. We use the notation D = P;'B
again. The possibly nonzero eigenvaluesof DP;' DT L, areidentical to the nonzero
eigenvalues of P;' DT LyyD € IR¥**. The nonzero eigenvalues of Py DT Ly, D are,
with 2 € IR*, determined by the equation P;* D™ LysD & = A z. Premultiplying this
equation by D, one obtains DP;'D" L,y = Ay, wherey € IR™ is defined to be
y = Dx. Thus, al nonzero eigenvalues of P D™ L,,D are nonzero eigenvalues of
the larger matrix DPy;' DT L. O

Pa=Aand Py =1

A variant even cheaper than the one considered in the immediately preceding section
isto take Py = I. Again, the situation is a specia case of Theorem 5.3.1.

Theorem 5.3.12 Let Assumption 5.2.1 hold. Set Py = I, and P4 = A. Let ); bethe
eigenvaluesof H (j = 1, ..., k). For the eigenvalues ; of the preconditioned system
K~1K we obtain

,UJZZ/\Z (Z:L,k),

i =1 (i=k+1,....2m+k).

At first sight it is not clear why the identity could be a sensible preconditioner for
the reduced Hessian. However, it is cheap, as already noted, and readily available.
Also, in terms of expected performance, the number of eigenvalues distinct from 1 is
small as before. See also Section 6.3.

5.4 Expected Performance

In this section we address the benefits that can be achieved for iterative methods,
specifically for GMRES [70], by preconditioning a system K of the structure (5.2.2)
with the indefinite preconditioner K that we investigate. To this end recall the re-
sults assembled in Section 5.1, specifically Theorem 5.1.5. In the origina paper [70,
Prop. 2], Saad and Schultz showed that in exact arithmetic GMRES requires at most
dmin iterations, where d,,;, is the degree of the minimum polynomial of the system
matrix. Thus, an upper limit on the iteration number is provided which can be con-
siderably smaller than N. The result says that the number of iterations is small if
the spectrum consists of a small number of non—defective eigenvalues of high multi-
plicity. We will now apply this theorem to the system preconditioned with K. See
Equation (5.2.9) for the preconditioner K. In case the constraints are maintained ac-
curately in the preconditioner, the preconditioned system has at most £ + 1 distinct
eigenvalues. Specifically it is shown in our Theorem 5.3.1 that in case P4 = A the
preconditioned system K~'K has only k eigenvalues distinct from 1. These k val-
ues are the eigenvalues of P,,' H — I;. Thisleads usto closely inspect the minimum
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polynomial of the preconditioned system. It is seen that the eigenvalue 1 has algebraic
multiplicity 2m, but geometric multiplicity 2. Thus the assertion of Theorem 5.4.1.

Theorem 5.4.1 Let Assumption 5.2.1 hold. Let Py be nonsingular, let P4 = A.
GMRESwill in exact arithmetic terminate the iteration on the preconditioned system
K 'Kz = K 'r after at most k + 2 iterations.

Proof: The eigenvalue 1 of the matrix K 'K € RN*N, N = 2m + k, has the
multiplicity 2m in the characteristic polynomial. To get insight into the degree of the
minimum polynomial of the preconditioned system K ! K, we investigate the matrix
polynomial

B

k
(K'K —1y) - H Ni+1)Iy)=F-J[(F = NIy). (5.4.1)
=1 =1
Here, the \; (i = 1,..., k) are the eigenvalues of the matrix P;'H — I, = 0. We
definefor! =1,2,...,k (k € IN) the matrix polynomial

1
pa(0m) = [I(0n — Nili) (5.4.2)

=1

so that for I = k we have the characteristic polynomial p, ;. of the matrix 0. By the
theorem of Hamilton—Cayley it follows

k
Pak(0n) = [](0m — Ailk) = Opxa - (5.4.3)

=1

Thefollowing equality holds for the matrix polynomial in (5.4.1) with matrices 7}, Uy
as defined below in (5.4.5),

k D -pyx(0g)-S D-prr(0n)-R 0
F-TI(F=XI) = pi0m)-S  p@m)-R 0 |. (544
=1 Tk Uk 0

Thisleads with (5.4.3) to the result
(K7'K — In)? - TIE (KK — (A + 1)Iy)

= F2 . Hf::l(F - )\ZIN)

DS DR 0 0 0 O
= S R 0 N O 0 0 = ONXN .
T U 0 T, Up O

Since this matrix polynomial has degree k + 2 and annihilates K~ K, and since
the minimum polynomial is the polynomia of minimum degree to annihilate K ' K,



116 A. BATTERMANN

the minimum polynomial of K1 K alsoisof degree k + 2 or less. With Theorem 5.1.5
the assertion follows.

The equality in (5.4.4) can be deduced by induction as given in the remainder of
the proof. We define additional matricesT; and U, (I = 1, ..., k) viatherecursion

T():Ta
Uy="U.
’ 4.
T, =T,-1(DS — NIy) + U1 S, (549)
U =T_1 DR+ U_1(R— NIy).
The assertion to be proven by induction is
D -pyi-1(0n)-S D-pyymi(0w)-R 0
pai—1(0m) - S pai—1(0m)-R 0 JIF = Nilw)
T Ui+ 0 =l
D p)\l( ) S D pM(O ) R 0
= P (0m) - S p(0m)-R 0 - 11 (F = X\ilw)
7} Ul 0 1=l+1
For [ = 1 onefinds the identity
k
F- I1(F = X\Iy)
=1
DS DR 0 DS — \1I,, DR 0 P
= S R 0 S R— M1 0 JL(F = NI)
T, Uy O T U M1, | 2
D(SD+R—-M\I,)S D(SD+R- )\1 m)R 0 f
(TD +U)S — \T (TD+U)R AlU 0/ =
D-pri(0n)-S D-pr1(0n)-R 0 k
= p)\l(O ) S p)\l(O ) R 0 H(F_)\zIN)
T U, 0 =2
Thestepfrom/ — 1tol,
Dp)\l 1( )S Dp)\l 1(0 )R 0 DS—)\lIm DR 0
v 1(0m)-S p1(0g)-R 0 S R-NI, O
T U1 0 T U 1,

pi(0m) - S P (0mr) - 0

D- pu( ) S D- p,\l(o )- R 0
R ;
T U, 0
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follows due to the identity

D 'p/\,l—l(QH) -S-DS — )\l -D 'p)\,l—l(()H) . S+D 'p/\,l—l(aH) ‘R.S
= D -py1(0m) - (SD+ R—NIy) - S
= D -pyn(0g)-S.

inthe (1, 1)—entry. Similar manipulationsapply inthe (1, 2), (2, 1), and (2, 2)—entries.
O

The straightforward extension of the preceding theorem to “ GMRES stops after &,
iterations on the preconditioned system” for the case where P,'H — I, has kg < k
distinct eigenvalues can only be done under additional assumptions. This statement
presupposes that either P;; or H or both are symmetric positive definite. See Theo-
rem 5.4.3. However, the following immediate statement can be made.

Corollary 5.4.2 Let Assumption 5.2.1 hold. Let Py be nonsingular, let Py = A. Let
N (@ =1,..., kg kg < k) denote all distinct eigenvalues of P, H — I,,.. Let m; > 0
(¢t = 1,...,ky) be their respective multiplicity in the minimum polynomial, and let
Zfil m; = dyin < k. GMRESWIll in exact arithmetic terminate the iteration on the
preconditioned system K~ K z = K~ r after at most d,;, + 2 iterations.

Proof: Again, we consider the polynomial (5.4.1). Sincem; (i = 1,...,ky) are
the multiplicitiesin the minimum polynomial of the distinct eigenvalues \;, it follows
aready pj 4., (0r) = 0 for the polynomial defined in (5.4.2), so that

kq 0O 0 O
F-TI[F-xD™=[0 0 o |.
i=1 Tk Uk 0

With the arguments used in the proof to Theorem 5.4.1 the assertion follows. a

In case the convergence—governing systemisdiagonalizable, the number of distinct
eigenvalues already tells the whole story.

Theorem 5.4.3 Let Assumption 5.2.1 hold. Let Py be nonsingular and symmetric, let
P, = A. Let either Py or H or both be symmetric positive definite. Let \; denote
the distinct eigenvalues of P;'H — I, (i = 1,...,kq; kg < k). In exact arithmetic,
GMRESwill terminate the iteration on the preconditioned system K 'Kz = K~ 'r
after at most k&, + 2 iterations.

Proof: Sinceit isassumed that either Py or the reduced Hessian H is symmetric pos-
itive definite, P,' H is diagonalizable as the product of a symmetric and a symmetric
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positive definite matrix. Thus we are in the diagonalizable case, and the minimum
polynomial of 0y = P,'H — I isalready given by

. ka
p/\:kd(OH) = H(OH - )\z]k)

1=1

The assertion follows. O

The first situation discussed in Section 5.3.3 is where both ideal preconditioners,
P, = A, Py = H, areused. Then, 0y is the zero matrix and thus has the mini-
mum polynomial identical to zero with the single eigenvalue 0. Then, three steps are
sufficient to build the solution in the appropriate Krylov spaces.

Lemmab5.4.4 Let Assumption 5.2.1 hold. Let Py = H,let P4 = A. In exact arith-
metic, GMRES will terminate the iteration on the preconditioned system K~'K = =
K~'r after at most 3 iterations.

The assumptions of Corollary 5.4.2 are not sufficient to obtain the result that the
Krylov subspace generated by the preconditioned system and the preconditioned initial
residual, (K 'K, K 'rq), has at most dimension k, + 2, where k4 is the number of
distinct eigenvalues of the preconditioned system. Also, symmetry alone of Py is not
sufficient. Thisis discussed in detail in Section 6.3.

The foregoing discussion has shown that in exact arithmetic GMRES will take no
more than d,,;, + 2 steps to solve the preconditioned system (5.3.1) when the exact
subpreconditioner P4, = A isemployed. The degree d,,;,, of the minimum polynomial
of the (k x k)-system Py'H iscrucial. Of course, d,;, is usualy not known. If Py
or H are symmetric positive definite, the number of distinct eigenvalues of P;'H is
sufficient to know. However, thisis usually not known either. In any of the considered
cases, no more than £ + 2 steps are taken, where k is the number of control variables
and thus considerably smaller than the system’sdimension N = 2m + k.

We have seen in Section 5.3 that the situation is considerably more involved when
the exact constraints are replaced by approximations, Py # A, P4 ~ A. The few
convergence results that are known for the general case are, because they account for
the general case, likely to be very pessimistic.



Chapter 6

Additional Preconditioning Strategies

In this chapter we are concerned with issues that are closely related to the precondi-
tioner investigated in the preceding chapter. We start with a review of several pre-
conditioners, Section 6.1. Some of these are general—{purpose preconditioners, and
others are designed within specific settings that are related to our background. Three
symmetric positive definite block preconditioners are reviewed in Section 6.2. These
are derived and analyzed in [5] before a background almost identical to ours. These
preconditioners prove in their ideal versions less effective for our problem than the in-
definite K. See Chapter 7. Nevertheless, they can be judged advantageousin that they
maintain the symmetry of the system. Next, in Section 6.3, we are concerned with the
indefinite preconditioner that has been analyzed in [49].

6.1 Brief Review of Some Preconditioners

In this section and in the following, several of the presented preconditioners differ
from the preconditioner K of the preceding chapter in theway they are applied. Again,
compare also Section 5.1, we give a brief review of preconditioning which also serves
to fix notation.

In the numerical solution of large sparse linear systems

Kz=nr, (6.12.2)

K € IRM*Y  an efficient preconditioner can be the “most important part of an iterative
algorithm” as states e.g. [1]. The general issue in preconditioning is to construct a
system that is equivalent to the original system and at the same time easier to solve.
Equivaentto (6.1.1) with nonsingular P, and Py, the generally preconditioned system
isusually written as

PI'KPR" Py =Pl (6.1.2)

Even for asymmetric original system K, the preconditioned system matrix P, ' K P~
isinthe general case nonsymmetric. We have so far focused our attention on left—sided

119
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preconditioning, i.e., we set P, = I in the previous chapter and considered
Pi'Kz=P;'r.

A common choice, however, especially when dealing with an originally symmetric
system matrix K, istwo-sided preconditioning, e.g. [5]. Instead of the original sys-
tem (6.1.1), the equivalent system

PKPTpPlz=p 1ty (6.1.3)

is considered which is obtained from (6.1.2) with the choice P, = Pg. This pre-
conditioned system is still symmetric which is often considered advantageous. The
approach (6.1.3) is aso known as positive definite preconditioning because often the
matrix M = PP7, positive definite by construction, is then referred to as the precon-
ditioner instead of P. Thisisjustified becausethe matrices P~' K P~T and M 'K are
similar, i.e., have identical spectra.

Classical preconditioning methods are for instance incompl ete factorization meth-
ods. Sparsity of a matrix is easily lost within a factorization process, see e.g. [2,
Ch. 1.4]. The idea of incomplete factorization methods is to reject those “fill-n” en-
tries which either occur in positions outside an accepted sparsity pattern or which are
small relative to some chosen entries. Thisis referred to as incomplete factorization
by position or by value, respectively, and related e.g. in [2, Ch. 7].

Decompositions, whether complete or incomplete, can be used as a preconditioner
in various ways. Consider for example the Bunch—Parlett factorization, see e.g. [39,
Ch. 4.4], of asymmetric indefinite matrix K. Thisfactorization gives

K =1ILDL™I7, (6.1.4)

with IT a permutation matrix, L lower triangular, and D block—diagonal with blocks of
sizel x1 and2x2. Onepossibility isto have that decomposition computed for K for a
chosen level of fill-in. Numerical results are reported e.g. in [31]. Another possibility
isto havethat decomposition computed for an approximationto K, e.g. [34]. Based on
afactorization (6.1.4), an incomplete decomposition, modified to fit the requirements
of amultigrid framework, is derived in [72].

Another classical ideaisto employ splittings of the system matrix. Splittings based
on the diagonal and triangular parts of K are used to derive basic iterative methods
(and their block versions), for instance Jacobi, Gauss—Seidel, and SOR [2, Chs. 5,
6.5]. A related ideais pursued in [32] to construct a block SOR preconditioner for the
indefinite KKT matrix arising within the considered interior—point method.

Nash and Sofer [63] are concerned with preconditioning reduced matrices by a
truncated series approach. For a numerical experience with this approach see [18].

It was already pointed out in the preceding chapter, Section 5.1, that we do not
attempt to use preconditioners of such general design, but focus on preconditioners
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that take advantage of the special form and features of the systems. We are interested
in constructing block preconditioners that maintain the structure of the original system
and alow to exploit that structure to computational advantage. This line of thinking
can aso be found in the works [3], [5], [34], [49], [54], [69], [73], [74] which we
review in the sequel.

The relation between the eigenvalues of the entire system K and the eigenvalues
of its upper left block and the singular values of the constraints C' is investigated by
Rusten and Winther [69]. They are concerned with the solution of a saddle point
problem. This gives rise to a system of similar structure as the KKT matrix. For
the solution of that system with MINRES, Rusten and Winther use block—diagonal
preconditioners. Silvester and Wathen [74], [75], are also motivated by saddle point
problems. Their subpreconditionersaretailored to their specific application. A similar
approach is pursued in [73] within amultigrid framework.

Gill, Murray, Poncelebn, and Saunders [34] follow the idea to use preconditioners
composed of blocks, which allows to specifically address problematic blocks in the
original system. Gill et al. are motivated by interior—point methods. We briefly point
out where the obvious focus isin the design of preconditioners for such methods.

In the presence of bound constraints

$>0,u>0 (6.1.5)

for thelinearly equality—constrained quadrati c programming problem in standard form,
(1.1.16) subject to (1.1.17), interior—point methods are attractive solution methods,
especialy for large-scale problems. Unlike active set methods which usually move
along the boundary of the set {(¢,u) | ¢ > 0,u > 0}, interior—point methods, as
suggested by the name, generate iterates (¢, u) that are in the interior, i.e., satisfy
¢ >0, u> 0. Seeeg. [82] for an overview of interior—point methods. We briefly
sketch the KKT systemsthat are set up in primal—dual Newton interior—point methods
and barrier methods for the solution of the quadratic programming problem (1.1.16)
st. (1.1.17) and (6.1.5).

The construction of a primal—dual Newton interior—point methods is based on so
called perturbed KKT conditions which give rise to a nonsymmetric system. The non-
symmetric system, however, can be reduced to a symmetric system

L,+D CT
(6.1.6)
C 0

by variableelimination. Seee.g. [32] for astablereduction. Thematrix D isadiagonal
matrix which, as variables ¢; or u,; approach the bound, hasincreasingly larger entries.
Similar systems (6.1.6) are constructed when using e.g. logarithmic barrier func-
tions for the solution of the quadratic programming problem (1.1.16) st. (1.1.17)
and (6.1.5). During the iteration, the barrier parameter is adjusted and causes the en-
triesin D to grow, because, as before, large quantities are added to the diagonal of L,
asvariables ¢, or u; approach the bound. For details on the barrier method see [82].
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Growth in the entries of the upper diagonal of (6.1.6) causes computational prob-
lems which can be overcome by appropriately addressing the large entries. This leads
to major improvement if the constraints C' are smple. But thisis not sufficient if the
constraintsare not simplewhich isusually the case in the control context. Comparethe
preceding chapter. Preconditioners are derived in [34] which first try to overcome the
problemsinduced by the large entries, and only then can try to take the constraintsinto
account. See also the work [5] which distinguishes several cases for the bound con-
straints (6.1.5), namely “state and control constraints’, “only state constraints’, “only
control constraints’, and “no constraints’. The symmetric positive definite precondi-
tionersderived in [5], analyzed in detail in [3], are described in Section 6.2.

Also motivated by interior—point methods are Oliveira and Sorensen [65]. They
choose to partition the matrix according to the size of the problematic entriesto derive
a preconditioner.

All block preconditioners that we reviewed so far are symmetric positive definite.
For symmetric, but highly indefinite systems like the KKT system that is constantly
considered in this work, “this restriction on a preconditioner is rather unnatural” [31].
Instead, one would like to be able to admit a preconditioner that isindefinite like K is.
Thisisdonee.g. in[31], [49], [54]. Freund [31] advocates indefinite preconditioning
over positive definite preconditioning. Incomplete decompositions are used in this
work like, as mentioned above, by Freund and Jarrein [32]. Seealso[72].

Klawonn [54] is interested in saddle point problems with a penalty term. For such
problems, an indefinite preconditioner is presented in [54]. Thisis either a left or a
right preconditioner, and the subpreconditioners on the diagonal are complemented
with the exact constraint matrix. For a similar situation, a block—diagonal symmetric
positive definite preconditioner is analyzed in [53].

Another indefinite preconditioner, termed “ constraint preconditioner”, is analyzed
in [49]. See Section 6.3. This section will conclude our review of preconditioners.
Before turning to the detailed reviews of Sections 6.2 and 6.3, we comment briefly on
two additional works, [47], [61], that are concerned with preconditioners.

Theideal preconditioner is often thought of to approximate the inverse of the orig-
inal system matrix. Thisisnot amust, however, as we already noted. Murphy, Golub,
and Wathen [61] show that for matrices

T
(g %) (6.1.7)

of KKT formwith G € IR™*™ nonsingular, C1, Cy € IR™ "™ (n > m), the blockdiago-
nal preconditioner
G 0 S =-0,GICT (6.1.8)
O _S ? - 2 1 bl . -
furnishes a preconditioned system that has at most four distinct eigenvalues, three if

nonsingular. Furthermore, if the system is nonsingular, the eigenvalues are of ssmple
multiplicity in the minimum polynomial so that Krylov subspaces can (in exact arith-



CHAPTER 6 123

metic) capture the exact solution to a linear program with this preconditioned system
matrix within three steps.

The note [61] is extended to the case with nonzero lower entry C3 by Ipsen [47].
It is shown that the preconditioner (6.1.8), with the Schur complement S appropri-
ately modified to S = C3 — CoG~'CT, can be derived from a (scaled block) LU—-
decomposition of the system.

The proposed preconditioner can be of use when inexpensive approximations of G
and of the (negative) Schur complement S are available. Thismight bethe casein some
applications. Thenitisstill to check how the preconditioner performsif itisnot used in
itsaboveideal version, but with approximate entries. No experiences are related in the
cited papers[47], [61]. Also, the assumption that G be nonsingular excludesthe use of
the proposed preconditioner for numerous applications arising in optimization. There,
C; = Cy iscommon, and often C'3 = 0. It is often assumed that GG be positive definite
on the null space of the constraints, but considerably less often that G be positive
definite on the entire space. 1n our application, for instance, see Chapter 7, aboundary
control problem, the upper left block isnot invertible. Nevertheless, interesting insight
is provided by the notes [47], [61]. Compare our analysis for the special case that we
investigate for our preconditioner in Lemma5.4.4.

6.2 ThreePostive Definite Preconditioners

We consider three symmetric positive definite preconditioners in this section. These
preconditioners were derived and analyzed in [3] and [5]. The preconditioners are
taken up again in [6], where new results on the eigenvalue distribution of the ideally
preconditioned systems accompany the numerical comparison to the indefinite precon-
ditioner K of Chapter 5.

We refer to the preconditionersas Py, P, and P; likeit isdonein these works. The
three preconditioners are composed of submatrices, in the general case of precondi-
tioners for the submatrices only, and in this sense closely related to the preconditioner
K. These preconditioners are designed to work on systems of the structure

K = 0 L, BT |. (6.2.1)
A B 0
We are in thiswork effectively interested in the case
L¢,¢ L¢u AT

K=| Ly Lu. B" |, (6.2.2)
A B 0

however. One of the preconditioners considered in this section, P, can be extended
to the case with nonzero mixed entries Ly, L4 in a straightforward way. The other
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two, P, and P,, are considered in their original versions. We also investigate the
consequences of nonzero mixed entries Ly, L.

The blocksin (6.2.1) and (6.2.2) are taken to obey Assumption 5.2.1. In addition,
we assume throughout the sections dealing with P, and P, that L4, and L,,, be sym-
metric positive definite. Should that not be true, adaptations can be thought of. (Itis
not true for the boundary control problem that we consider in Chapter 7. There, Ly
isonly symmetric positive semidefinite. But L, is very simple in that application; it
is ascaled identity in its nonsingular part. Thus, its preconditioner is taken to be L
with the zeros on the diagonal changed to ones.) We repeat the dimensioning of the
guantitiesinvolved, Equation (5.2.6),

Lyy € R™™, Ly, € RM*, Li = L,y € R*™, A€ R™™, Be R™*.

As was defined in (1.1.19), the reduced Hessian H corresponding to the full system
in (6.2.1) isgiven by

H=B"ATLyyA 'B— LA 'B—B"A Ly, + Ly,.
Obviougly, the reduced Hessian that correspondsto the system (6.2.2) is

H=BT"ATLyyA 'B+ Ly,.

6.2.1 TheFirst Preconditioner

The first preconditioner is given by itsinverse (P})~! as

—-1/2
Ly 0 0
(P = 0 Ly 0
0 0 LpaAl

Thisleads in the case of blockdiagonal upper left part described in (6.2.1) to the pre-
conditioned system

I 0 I

_ T 71/2
0 I, La?BTAT Ly,
I LY A'BL,Y? 0

This system has at most 2k + 3 distinct eigenvalues, [6, Th. 2.3]. In exact arithmetic,
this constitutes an upper limit to the number of steps MINRES may take. Compare
Section 5.1.

In the case of nonzero mixed entries, (6.2.2) is preconditioned to

I Loy LouLyt? I
L;&/QLu(bL;(;/Q In L;&/2BTA7TL;{;
In LY?A-'BL,1/? 0
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In general, L;(;/ > L712 and A=, A= can not be computed exactly. To derive a

practicable preconditioner, it is assumed that preconditioners P, and P, of L,, and
Ly, respectively, are available and that an approximate inverse P;' of A is known.
This leads to thefirst preconditioner in ageneral form which is given by

Pyt 0 0
Pt=| 0 P! 0 :
0 0 PP

The preconditioned KKT matrix is then for the case (6.2.2) given by

- — - - - -T
P 'LyP," P;'L.P;" P;/'B"P,"P,

P, 'LysP, " P,'Le Pyt P,'PyTATP,
PIP'AP;" PIP,'BP,T 0

Benefits can be expected from the preconditioner if the singular values of the matrix
G=L/ A 'BL, (6.2.3)

in theideal case, or of its approximate counterpart G = Pd,T P;'B P, T inthe general
case, are of moderate size. This can be shown to hold under certain assumptions on
the submatricesof K. See[5].

Application of the First Preconditioner The application of the preconditioner P;
can be done as follows. Consider avector z = (21, 29, 2z3)7 with entries z; € IR™,
2y € IRF, 23 € IR™, and denote z = (z1, 79, 23)T with entriesz, € IR™, 2, € IRF,
z3 € IR™. The transformed vector z = P 'z can be computed by solving the linear
systems

$1:P¢_121, JL'QIPu_lZQ,, 33‘3:P$PA_123.

Likewise, w = Pz, where w = (wy, wy, ws)” with entriesw, € IR™, w, € IRF,
ws € IR™, can be computed by solving the linear systems

-T T —T pT
’U]1:P¢ Iy, wgzpu T2, , w3:PA P¢.’L'3.

Of course, we never compute the inverses of matrices, but solve the corresponding
systems.

6.2.2 The Second Preconditioner

The second preconditioner P, isintheideal version given by itsinverse as

—-1/2
Ly, 0 0
(P;)" = 0 L 0
—1/2 1/2 41 -1 1/2 41
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and transforms system (6.2.1) into the blockdiagonal matrix

I 0 0
0 I, 0 )
0 0 —(In, + GGT)

where G on the lower diagonal is givenin (6.2.3). Aswas mentioned for P;, benefits
can be expected if the singular values of G are of moderate size. In the case of theideal
preconditioner Py, the preconditioned system has at most k£ + 2 distinct eigenvalues,
[6, Th. 2.4].

A general version of this preconditioner would read

P! 0 0
0 Pt 0 :
( —P;' —P,Py'BP* PPy’ )

For sake of a brief presentation we will not further pursue this general form with pre-
conditioners for the submatrices. Even for K in (6.2.1) with blockdiagona upper
part, the generally preconditioned system is not blockdiagonal any more. Nonzero
off—diagonal entries in the preconditioned system have a contaminating effect on the
eigenvalue distribution compared to the ideally preconditioned case. Note also that the
application of the second preconditioner in itsideal version to the system K in (6.2.2),
i.e., with nonzero L., Lg,, already leadsto the full system

I, K2,12 K2,13
(K2T,12 I K2,23)
K313 Ky Ko
with G from (6.2.3) in the entries

K2712 = L;;/Zququ;ul/Z ’ K2713 = _L;(;/2L¢u led ’ K2723 = _K27:12 ,
Kyss = —(Im+ (GGT)) + G Ky 1y + K515 GT.

Application of the Second Preconditioner The application of the preconditioner
P, can be done as follows. Denote by z the vector z = (21, 29, 23)T with z; € IR™,
2 € R*, 23 € R™, let 2 = (21,29, 73)" Witha, € R™, 1, € IRF, 23 € IR™. The
transformed vector 2 = P, 'z can be computed as follows.

.T1:P¢_121, .Z‘QZPU_IZQ, $3:P¢PXI(23—BPU_2.Z‘2)—.T1.
We can computew = P, Tz for w = (wy, wy, ws)” withw, € IR™, w, € IR*, and
ws € IR™, by solving the linear systems
’LU1:P¢TT(£E1—CC3), w3:PXTP$.fE3, UJQ:PuiT(l'Q—PJTBTw:J,).

Assuming that the preconditioners for L, and L, can be applied efficiently and
that, therefore, the cost of solving with P, and its transpose dominates the other com-
putations, we can see that the application of P, ! is essentially not costlier than the
application of P, *.
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6.2.3 TheThird Preconditioner

A third preconditioner has been considered in [5], essentially transforming the spec-
trum of K into the spectrum of the reduced Hessian H of the underlying quadratic
programming problem. Compare Section 5.2.1 for the corresponding transformations,
specifically Lemma 5.2.2. This preconditioner was designed for blockdiagonal upper
part in K just as P, and P, compare [5], but has a straightforward extension to the
case of nonzero L4, Lg,. The preconditioner Ps is, with this additional modification,
giveninitsideal version by itsinverse as

—BTA-T I (BTA_TL¢¢—LU¢)A_1
(P~ = 0 0 At (6.2.4)
I 0 —1/2 LgpA™!
and transforms K in (6.2.2) such that the blockdiagonal system
H 0 0
0 0 I, (6.2.5)
0 I, O

isobtained. The eigenvalues of this preconditioned system arem 1's, m —1's, and the
eigenvalues of H, [3, Section 6.4.2], [6, Th. 2.4]. A genera version P; of (6.2.4) is

~BTP;" Iy (B™Py"Loy—Lug) Py’
0 0 Pt
I, 0 —1/2 L4y P!

Additional preconditioning of the preconditioned system (6.2.5) involving the re-
duced Hessian H is possible. Obviously, when My = Py Py isa preconditioner for
H, one can transform (6.2.5) into the equivalent system

P;'HPZT 0 0
0 0 In.|.
0 I 0

See [63] for a discussion of how to precondition the reduced Hessian and [18] for
numerical experiments based on this. Compare aso [11], where the additional precon-
ditioning step isinspired by a quasi—Newton framework.

Application of the Third Preconditioner The application of the preconditioner P
can be donein the following way. Note that the vector x is partitioned differently from
zandw. Letz = (21, 20, 23)T Withz; € IR™, 2 € IR*, 23 € IR™, letz = (21, 79, 23)T
with z; € IR* z, € IR™,z3 € IR™. The transformed vector z = P; 'z can be
computed as follows,

1

Tog = P;123 , X3 =21 — 5 L¢¢.’L‘2 y xr1 = 29 + BTPXT <L¢¢a:2 — Zl) - Lu¢ Z2.



128 A. BATTERMANN

Using one additional array ¢ in the implementation, we need to compute the product
with Lg4 only once. After solving for z, as before, set ¢ = L,z to obtain
1
xlzzl—it, $3:ZQ+BTPZT(t—Zl)—Lu¢$2.

Since the componentsin z; are no longer needed after solving the system z3 = Psxo,
an additional array ¢ is not really needed; we can overwrite z; with Ly, Py ' 23.

The application of the transpose of the third preconditioner can bedonein asimilar
way. We can compute w = P; "z, where w = (wy, w, ws)” withw; € IR™, wy €
IRF, ws € IR™, by setting w, = x; and then solving the linear systems

1
t:PA,ZlBﬂ?l, w1=:v3—t, T.U3:PA_T(.’EQ-FL(ms(t—§$3)—L¢u$1).

In this case an additional array ¢ for the implementation is necessary.

Note that a single application of this preconditioner requires essentially the double
amount of work of the preconditioners P;, P,, and K. Thisis due to the fact that
the application of P; ' involves both A=! and A", and that the same is true for its
transpose P; ©. Assuming that the cost of solving with A or with its preconditioner P4
dominates the computations, we can see that the cost of the application of P; isessen-
tially twice the cost of applying the other preconditioners that have been considered.
Thisistruein the case where each solve with A or its approximation and A7 requires
the call of aroutine (or an entire software package) and where this routine dominates
the computations. This case must often be assumed for practical applications. If, how-
ever, it is such that matrices are set up and a decomposition of A is computed, the
situation is changed. Then the (expensive) decomposition is done once, and the ensu-
ing solves with the factors of A will in general not dominate. Thisis what we seein
the numerical results for our application in Section 7.3, where this disadvantage of P;
isnot very pronounced.

From the above presentation of the solve with the preconditioner M3 = P3P
one aready concludes that two solves with P4 and two solves with its its transpose
are the expense one has to pay. This is confirmed by the matrix representation of
My = (P5) T(P)

DDT D My I, 0 0
Myt = DT 0 Msg |+| 0 Ly 0 |,

with entries

M3 = —(D(DTLgy—Luy) +1/2Lgg) AL,
Mso3 = (DTLgy—Lyy)A™Y,
Msss = AT((LggD — Lou) (D Lgg—Lug) + 1/4L2,) A7,

where D = A~'B asbefore. Thisrepresentation of A3 shows that the cost of M3 can
never be less than two solves with P, (or A) and two solveswith P (or A™) because
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intheentry M 33 thesefour factorsare present. When z = (21, 2, 23)7 withz; € R™,
29 € Rk, z3 € IR™, and w = (wl,wQ,wg)T with w; € IR™, wy € Rk, ws € IR™,
then the solve of M3 w = z for w will require that these four solves are performed
sequentially, starting with w;.

6.3 TheConstraint Preconditioner

An indefinite preconditioner for KKT systems has been suggested by Keller, Gould
and Wathen in [49]. This preconditioner istermed “ constraint preconditioner” in [49]
because the constraints are retained without modification in the preconditioner.

Thesituationin[49] issimilar to the situation underlying Chapter 5. See Chapter 1.
For the quadratic programming problem

1
min ¢(z) = éxTGx +¢'2 (6.3.1)

subject to
Cx =b, (6.3.2)

the associated KK T conditions

EDE() e

have to be solved, i.e., alinear system
gs=r, (6.3.49)

with a system matrix G of the structure given in (6.3.3). The dimensioning of the
guantitiesinvolved is similar to that in Section 5.2. See specifically (5.2.6). Since we
are effectively considering a (2 x 2)-block matrix here instead of the (3 x 3)-system
of Section 5.2, m + k is abbreviated asn in this section,

Ge RV, Ce R z€ IR", g€ IR".

Notethat thusk = n —m. Itisassumed that £ isanonnegativeinteger, so that n > m.
In analogy to Assumption 5.2.1 it is throughout this section required that the fol-
lowing holds for the blocks of (6.3.3). These are the assumptions of [49].

Assumption 6.3.1 For the submatricesof G in (6.3.3) let be valid:
1. G € R™"™issymmetric.

2. C € R™ ™ has full rank.
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The preconditioner suggested in [49] for linear systems (6.3.3) is

M CT
M:< oo ) (6.3.5)

where C' isas above, and the symmetric matrix M is supposed to approximate G. Note
that the constraints C' of the original system (6.3.3) are preserved in the preconditioner
without changes. This corresponds to the choice P4 = A in our preconditioner K
which makes our treatment more general in that respect. We have seenin Chapter 5 that
major difficulties arise when the preconditioner is only approximate (P4, ~ A). Our
resultsin Theorem 5.3.1 are recovered for the constraint preconditioner. See below.

The blanket assumption for M is only symmetry. For most results of interest
in[49], however, it isnecessary that M be symmetric positivedefinite on the null space
of the constraints. Thisis the symmetric positive definiteness of the reduced Hessian.
Eigenvalue boundsfor the preconditioned system are stated effectively in [49] only for
the case where M is symmetric positive definite even on the entire space IR".

Thestructure of M in (6.3.5) isnear to that of our preconditioner K . In considering
(3 x 3)-block systemsinstead of 2 x 2, we allow for more degrees of freedom. In the
notation of [49], our subpreconditioner M necessarily has the structure

0 0
M = ( o P, ) . (6.3.6)

This appearsless generd at first sight. However, we consider different choicesfor Py,
eg. Py = H and Py = L,,. Compare Section 5.3.3. The choices considered in
that section are more appropriate for some settings than M = diag(G) or M = I,,,
these being the only choices which are treated in [49]. If G is diagonally dominant,
for instance, M = diag(G) might aready give an excellent preconditioner. Likewise,
M = I,, can bethe source of significant improvement within the preconditioned solve,
merely due to the fact that at most k& + 1 distinct eigenvalues (in exact arithmetic, of
course) are left. However, there are situations, e.g. when Ly, is not negligible, where
these choices are not good enough, motivating us to pursue different options in our
preconditioner. Also, using a preconditioner of the structure (6.3.6) is the key to the
efficient implementation of K. Compare Section 5.2.3. The application of the con-
straint preconditioner requires different techniques. In terms of the iterative method,
the work [49] has precursors in the studies [20] and [42]. The so called conjugate
gradient iteration on the reduced system is derived below.

Discussion of the Constraint Preconditioner

We use this section to go through results for the eigenvalue distribution of the pre-
conditioned system M~1G with G in (6.3.3) obeying Assumption 6.3.1 and M given
in (6.3.5). These resultsin [49] have been derived with an orthogona decomposition
QR of the null space of the constraints. This factorization is not being used in actual
computations, however.
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Let
QR=(Y\Z)(1§>

be an orthogonal factorization of C*, where R € IR™ ™ is upper triangular, where
Y € R™™, and where Z € IR™* is a basis for the null space N'(C) of C. Thus,
CZ=0andY?Y =1,,YY' =22 =1,,72"7Z=1,,7Z"Y =0. Also, RT = CY.
With the help of such an orthogonal factorization the following is observed in [49], an
analogueto Theorem 5.3.1.

Theorem 6.3.2 (Th. 2.1in [49]) Let G obey Assumption 6.3.1, let Z be a basisfor the
null space of the constraints. If G is preconditioned by M in (6.3.5) with M symmet-
ric, then the preconditioned system M~1G has an eigenvalue 1 with multiplicity 2m,
and the remaining eigenvalues are given by the solution to the generalized eigenvalue
problem ZT'GZz = \ZT M Zz.

Keller, Gould and Wathen [49] a so find that these remaining £ eigenvalues are real
in case that either the reduced Hessian, Z7' G Z, or the projection of the preconditioner
onto the null space of the constraints, Z7 M Z, or both, are symmetric positive defi-
nite. Thisisin analogy to Lemma 5.3.2. Due to the specia structure (6.3.6) of the
subpreconditioner in the upper left of K, we require in Lemma 5.3.2 only that Py be
symmetric positive definite. Thisis natural in our setting. In general, we work with

the null space representation
~A"'B
v=(07)

compare (1.1.18), that is canonical for problems of optimal control. With this repre-
sentation, the requirement that W7 MW symmetric positive definite for M in (6.3.6)
isequivalent to Py being symmetric positive definite.

These results were achieved under quite general assumptions. Eigenval ue bounds,
however, are only given for the case where M is not only symmetric positive definite
on the null space of the constraints, but on the entire IR™.

Consequentially, convergence of iterative methods on the preconditioned system
is scrutinized in the work [49]. Statements are expressed with the help of Krylov
subspaces

K(M™'G, M ry) (6.3.7)

generated by the preconditioned system M~1G and theinitia preconditioned residual
M~1ry, wherery = r — Gs, istheinitial residual determined by the starting guess
so. Thisis based on the original finding by Saad and Schultz [70], reformulated in
Theorem 5.1.5. Compare Section 5.4. We now state the results in [49] and point out
the analogies in our work.

Theorem 6.3.3(Th. 3.2in [49]) Let Assumption 6.3.1 hold, let m = n. If G ispre-
conditioned by M, then the Krylov subspace (6.3.7) is of dimension at most 2.
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Thisisunderstood to hold for any right hand side » and initial guess s,. The asser-
tion is easily seen to be true upon realizing that withm = n, £k = 0 in Theorem 5.4.1.

Theorem 6.3.4 (Th. 3.5in [49]) Let Assumption 6.3.1 hold, let m < n. Let Z be a
basis for the null space of C, let M be symmetric and Z7 M Z symmetric positive
definite. If G is preconditioned by M, then the Krylov subspace (6.3.7) is of dimension
at most £ + 2.

Thisisthe assertion of our Theorem 5.4.1, proven in [49] only under the additional
assumption that M be symmetric and that Z7 M Z be symmetric positive definite. This
additional assumption is not necessary to get the desired result. Under this additional
assumption, however, the convergence-governing system (ZX M Z)~1ZTGZ is nor-
mal, and it can be shown that the dimension of the Krylov subspace (6.3.7) is effec-
tively determined by the number of distinct eigenvalues of (ZTM2) 1ZTGZ. See
Theorem 5.4.3. This is not yet true without the assumption that Z'GZ or Z* M Z
or both be symmetric positive definite. Thus, Theorem 3.7 in [49] which lacks this
assumption has to be complemented with it. It is shown in the following example
that Z7 M 7 must be symmetric positive definite in order to determine the dimension
of (6.3.7) viathe number of distinct eigenvaluesof (2" MZ)~'ZTGZ.

With the admissible choicesn = 4, m = 1,

42 —-42 35 0 0
| —42 39 =30 0 s | o
G= 35 =30 20 0 |’ ¢ = 0|’ (6.38)
0 0 0 -1 1
7 000 1 00
0 -3 00 010
M = 0o 05 0| and Z = 00 1| (6.3.9
0 001 0 00O

convergence of GMRES on the preconditioned system MG is governed by the
eigenvalues of the matrix

6 -6 5
S=(Z"M2)""(Z"GZ) = ( 14 —13 10 ) : (6.3.10)
7T —6 4
The matrix S has the single eigenvalue A = —1 with multiplicity . = 3. Theorem 3.7
in [49] asserts that the dimension of the Krylov subspace K(M~1G, b) is at most 3,
which is the number of distinct eigenvalues of S, i.e., 1, augmented by 2. One finds,
however, that with M~1ry = b = (1,1,1,1,1)%, the associated Krylov subspace of
order 4,

Ki(M™'G,b) = {b,(M~'G)b, (M~'G)?, (M'G)%}, (6.3.11)

is spanned by b and (5,11,5,1, 1), (=11, =23, 11,1, -3)7, (17,35,17,1, =5),
and has dimension 4.
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Preconditioned Conjugate Gradientson the Reduced System

Upon use of the constraint preconditioner, one has to deal with
M™Gs = M1, (6.3.12)

where G isgiven in (6.3.3) and obeys Assumption 6.3.1, and where the preconditioner
M with M symmetric, M ~ G, isdefined in (6.3.5). Since both the original system
G and the preconditioner M are symmetric indefinite, it is not obviousthat thereisan
iterative solution method other than those designed for general systems, e.g. GMRES,
to solve the preconditioned linear system. Interestingly, the solution of the precon-
ditioned linear system can be done with a conjugate gradient routine. The treatment
in [42] of the so called conjugate gradient iteration on the reduced system is the ba-
sis for the work in [49]. Elements of the work in [42] can aready be found in [20]
and [21]. It will be subsequently pointed out what the focus of the works[20] and [21]
is. We now go through the derivation of the conjugate gradient iteration on the reduced
system, recalling that the goal is to solve the quadratic programming problem (6.3.1)
st. (6.3.2). This can be accomplished via the solution of the associated KKT sys-
tem (6.3.3).

Let W denote a matrix that spans the null space V' (C) of the constraints C, i.e.,
W satisfies CW = 0. Thus, the columns of C7 together with the columns of 17 span
the entire IR™*". It iswell known that both

wwrw)*w?, I1,-cTcch)tc (6.3.13)

are projections onto the null space of C'. The representation (1.1.18) for the null space
of C' is often encountered in problems of optimal control, where a partitioning of the
variables into state and control variablesis natural. Other choices for the null space
representation are possible, compare [42]. A common strategy is an orthonormal fac-
torization, requiring the computation of (sparse) L@ factors of C. We will not explore
these issues in depth. We mean 17 in this section to be some null space representation
which is not necessarily the natural one for control problems.

Employing anull space representation W, any solution z* to (6.3.2) can be written
as the sum of normal component C7'z}, and tangential component Wz},

v =CTal + Wajy (6.3.14)
for somez}, € IR™, 3, € IRF. The constraints (6.3.2) yield
CCTzl + CWayy, = CCTxl, = b,

and these normal equations determine x7,. Substituting z* into the objective func-
tion (6.3.1), omitting the now constant term z ¢, the remaining 7}, solves the reduced
problem

1
min §x7V;,HxW + gy Tw . (6.3.15)
Tw
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In (6.3.15), H € IR*** isthe reduced Hessian, and g, € IR* isthe reduced gradient,
H=WTGW, gw=WT(GCTz} - g).

Assuming that G of the quadratic program (6.3.1) is positive definite on the null space
of the constraints, i.e., that H is positive definite, (6.3.15) is equivalent to

Figure 6.3.1: Preconditioned conjugate gradients on reduced system.

Preconditioned conjugate gradientson reduced system.

applied for the solution of the quadratic program (6.3.1) s.t. (6.3.2) via the reduced
system (6.3.16).

Preprocessing Step:

Chooseinitia point zy .

Compute initial reduced residua ry = Hxw + gw -

Compute initial preconditioned residual as solution of Pyyw = rw .
Set v = —yw-

Set termination tolerancet ol .

Algorithm:
WHILE 7, yw >t ol DO
— Twyw
Compute o = T How -

Set ryw < zw + avy.
Computeryf; = rw + aHuw .

Solve Py, =iy

Compute 6 = (i) iy
ryw
Set Vw < —y;/ + ﬁ’l)w.
Set yw + iy
Set ryy < 14l
END WHILE
Postprocessing Step:
Compute Wy .
Setz =CTxe + Way.
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The linear system (6.3.16) can be solved with the conjugate gradient routine. Sub-
stitution of the solution into (6.3.14) yields an (approximate) solution of the quadratic
program (6.3.1) s.t. (6.3.2). This strategy corresponds to computing the normal com-
ponent C”z}, of the solution z* exactly and the tangential component W 3, approxi-
mately.

The conjugate gradient routine for the linear system (6.3.16) is called conjugate
gradient routine for reduced systems or projected conjugate gradient routine. This
name stems from the fact that the iteration can be performed fully with the “reduced”
quantities, i.e., fully on the projection space N (C). Often, the practical application
of the conjugate gradient routine requires the use of a preconditioner. We therefore
assume at this point that a preconditioner Py € IRF** for the reduced Hessian H is
available. In order to be applicable within the conjugate gradient routine, Py must
be symmetric positive definite. The algorithm in its preconditioned form is given in
Figure 6.3.1. The origina versionis recovered with the choice Py = I.

The conjugate gradient routine can also be written in the so called expanded form.
Compare Figure 6.3.2. In that case, the original quantities are used within the iter-
ation, e.g. ¢ and G instead of the reduced gradient gy and the reduced Hessian H.
Straightforward rewriting of the quantities in that routine leads to a preconditioner
W P,'WT € R™*" for the full residual r instead of P;;* for the reduced residual ryy .

The discussion of the preconditioner Py for the reduced Hessian H = WTGW
in [42] assumes that the preconditioner is formed as

Pt =Wrmw)!

with M chosen s.t. the product W MW is symmetric positive definite. This precon-
ditioner Pj;* is supposed to approximate the ideal preconditioner H ' whose usage is
typically out of question due to cost considerations.

The choice of a preconditioner for reduced systems is discussed in detail from a
numerical linear algebra point of view in [63]. In such way, the choices M = I,
and M = diag(G) are addressed in [42]. Even with these smple choices, due to
the need of the null space basis W, the application of the preconditioner can easily
dominate overall computational cost. The preconditioner is applied once in each step
of the conjugate gradient routine. In the notation of Figure 6.3.2, in each iteration the
preconditioned residual y* has to be computed as

yt = WwpPwhrt, (6.3.17)

It is stated in [42] that the conjugate gradient method for reduced systems can
be considered an effective method for computing the solution to the quadratic pro-
gramming problem (6.3.1) s.t. (6.3.2). The need for a null space matrix W, however,
constitutes a main drawback. An aternative is derived in [42] to avoid this null space
representation.

In the case G = I, the preconditioned residual y* in (6.3.17) is given as, com-
pare (6.3.13),

yt=WWTW)'whrt = (1, — cT(CcCT)*C)rt. (6.3.18)
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Figure 6.3.2: Preconditioned conjugate gradients on reduced system. Expanded form.

Preconditioned conjugate gradientson reduced system. Expanded form.

applied for the solution of the quadratic program (6.3.1) s.t. (6.3.2).

Preprocessing Step:

Chooseinitia point z that satisfiesthe constraints Cx = b.
Computeinitia residua r = Gz — g.

Computeinitial preconditioned residual y = W P Wr.
Setv = —y.

Set termination tolerancet ol .

Algorithm:
WHILE rTy >t ol DO

T
Compute o = -7 2-.
Setxr + x4+ av.
Computert = r + aGw.

Computeyt = WP WTrt,

Compute 3 = %
Setv <+ —yt + fu.
Sety + y™.
Setr < rt.
END WHILE
This can be expressed as

yt=rt - C"2t, (6.3.19)
where the vector 2zt isthe solution of
CCTzt =Cr™. (6.3.20)

Noting that (6.3.20) are normal equations, it followsthat z* is the solution of the least
squares problem
min ||+ — T4,

and that the desired residual y* is the corresponding residual. This approach can be
implemented using a Cholesky factorization of CC7.
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Equivalent to (6.3.19) in combination with (6.3.20), and without the use of a null
space basis W, y and the auxiliary quantity z* can be determined as the solution of

the augmented system
I C7 * +
(0 0><g+>:<7"0>. (6.3.21)

If the preconditioner M ischosens.t. M and W MW are symmetric positive definite,
then formula (6.3.18) for the preconditioned residual becomes

yt = WWITMW) Wit = (M — cT(CMCT)C)r,

and the generadlization of (6.3.21) is

<%%T><Zi>:<rg) (6.3.22)

Note that (6.3.22) does not make use of anull space representation W of A/ (C'). How-
ever, the system (6.3.22) hasto be solved in each step of the preconditioned conjugate
gradient routine in order to perform the preconditioning step. This can be cost effec-
tive only if solves with the constraints C = ( A | B ) are affordable and if M is
simple. If the solvewith M isnot considerably simpler that the solve with the origina
G, one obviously has not gained much. For instance, if M istheideal preconditioner,
the preconditioned system M~'G = I has (in exact arithmetic) only the single de-
sired eigenvalue 1. This eigenvalue has algebraic multiplicity m + n and geometric
multiplicity 1, and the iterative solver will terminate after one step. Unfortunately, the
preconditioning step within the iterative solver requires the solution of alinear system
with M = @G, and nothing iswon. This shows very nicely that preconditioning is no
free lunch.

The computation of the preconditioned residual y* in Equation (6.3.17) via the
system (6.3.22) can give rise to significant round—off error, particularly as the conju-
gate gradient iterates approach the solution. Thisis studied intensively in [42], and
as aremedy iterative refinement techniques are proposed. These techniques lead to a
residual update strategy for the augmented system approach. See [42] for details.

The approach in [42] — preconditioned conjugate gradients on the reduced sys-
tem with safeguards to prevent significant numerical round—off — is the basis for the
work by Keller, Gould and Wathen in [49]. The work [49] is concerned with the solu-
tion of systems (6.3.4) with a system matrix G of the structure (6.3.3) that obeys As-
sumption 6.3.1. The solution of these systemsis done in [49] with the preconditioned
conjugate gradient routine described in [42]. As was stated earlier, the computation
of the preconditioned residual 3 in (6.3.17), necessary in each iteration, is often the
most expensive computational factor within the algorithm. Likeit issuggested in [42],
Keller, Gould and Wathen [49] avoid the explicit use of a null space representation W
of N(C). Instead, they compute y* by means of a symmetric indefinite factorization
of the system matrix of (6.3.22). This can be performed using the MA27 package of
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the Harwell Subroutine Library. System (6.3.22) can often, asis stated in [49], be fac-
tored efficiently by using MA27 when M isasimple matrix block, whereas the direct
application of the routine to the original system (6.3.3) may be limited by space re-
guirements as well astime for large enough systems. As away out, Keller, Gould and
Wathen are investigating a new implementation approach based on an adaptation of
MA 27 such that an incompl ete factorization of the upper left block M or G ispossible.

It was already mentioned that parts of the work sketched above can also be found
in[20] and [21]. Coleman [20] considers the application of preconditioned conjugate
gradients, projected onto the null space of the constraints, in the setting of linearly
constrained optimization. In this setting, especialy in large dimensions, it might be
prohibitive both to search for anull space basis and to explicitly form the reduced Hes-
sian. Thisrendersthe search for a preconditioner difficult. See [63] for considerations
of this problem. It is observed in [20] that the preconditioning step for the reduced
system (6.3.16) can be performed via the solution of an augmented system (6.3.22)
with M a preconditioner for G. Coleman presents three basic solution techniques
for (6.3.22), the so called full space, range space, and null space approaches, each
involving a different factorization of the system matrix in (6.3.22).

Coleman and Verma [21] further pursue the idea to use preconditioned conjugate
gradients on the reduced system in the linearly constrained optimization setting. In
order to facilitate the preconditioning step in (6.3.22), in their framework the factor-
ization of the system matrix in (6.3.22), Coleman and Verma investigate numerically
the consequences of using approximations to both G and C'. This is performed by
setting “small” matrix entries to zero, based on adropping tolerance. It is observed in
the numerical experiments that computational efficiency, space and time requirements
al initially improve as the dropping tolerance is increased from zero up to an optimal
point. From this point on overall computing time begins to rise because the quality of
the approximation degrades. The optimal point was seen as dependent on the specific
problem.



Chapter 7
A Ground Water Modeling Problem

In this chapter, we treat our second example problem which is motivated by problems
of ground water modeling. We consider an optimal control problem that is governed by
apartial differential equation. We derive the example problem and state the equations
relevant to the approach, Section 7.1. In the subsequent section, Section 7.2, we sketch
the discretization and then turn to the finite—-dimensional solution of the optimization
problem. The discretized problem is a quadratic programming problem with linear
constraints. The finite—-dimensional solution is found via the solution of the so called
KKT system. The solution of this system is done with iterative solution methods. The
Krylov subspace methods GMRES and MINRES are employed. However, the solution
of the original system with these methods is highly impractical, which is why we turn
to preconditioning. The numerical performance of the preconditioner K analyzed in
Chapter 5 isfor anumber of choicesfor the subpreconditionerstested on this example
problem. It is additionally compared to the performance of the preconditioners of
Section 6.2. See Section 7.3 for the assembled numerical results.

In the example problem, we assume homogeneous and isotropic conditions in the
porous medium domain for which the continuum approach is employed. The domain
is considered to be fully saturated. Flow is governed by Darcy’s law and a continuity
eguation. For detailssee[8], [9]. A combination of these two equations with appropri-
ate boundary conditions leads to the stationary partial differential equation that is the
governing state equation of this problem. Compare Section 2.1 and the Appendix.

7.1 TheOptimal Control Problem

We consider a boundary control problem defined on a rectangular domain. It occurs
as amixing problem when extracting ground water that originates from two different
water bodies. The problem can be formulated as the linear quadratic problem

min {% i, vX(x) do +ny Jp, u(z) $(z, 2) dz + B Jr, ¢*(x, 2) da

(éu) ; (7.1.1)
+m Jrg 590, 2) dz + 15 [, u(T) Uy dx}
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subject to the state equation

Ag(z, 2)
(z,2)
o(z,2)
(0, 2)

(@, %)

Here, the domain 2 and its boundary partsT'; (i = 1,. .., 6) are defined by

Q
Iy
I
s

el

an

1

d

0
0
P4
s

in Q,
on I'ul'3uTy,

on
on

F4a
F6a

(u(z) — ¢(z,z)) on I'y.

(0,2) x (0,2),

{(z,2) : z € [0, 7]},
{(2,2) 1z € (T9, 7]}, T4
{(z,0): x €]0,7]},

isaccordingly givenasu = u(z).

Iy

L's

{(z,2) : z € (71, 7o)},

{(z,2): 2 €0,2]},
,2) 1z €10,2]}.

{(0

The geography of the domain is shown in Figure 7.1.1. The variable ¢ denotes the
state, and u is the control variable. The domain is two—dimensional and presents a
vertical cut. Thus, ¢ = ¢(z, z). The control « acts on the boundary part I, only, and

Figure 7.1.1: The geography of the domain 2.

{11l
0, %) = o2 (,7)
Iy Ty I's
Ts Q Iy
Iy
(0,0) (,0)

L I N N

We now explain the derivation of the problem and the different terms in the cost
function (7.1.1). This is due to private communications with engineers from TGU
GmbH, our industrial partner. As stated above, we are dealing with a mixing problem
upon the extraction of ground water that originates from two different water bodies.
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Oneis astream and the other a surface water body in reclaimed land. The motivation
behind the problem is the controlled flooding of T'; for use as arelief basin when the
water level is high in the stream. Thus the height of water on I'; is considered as the
control. The stream is, averaged over time, represented by the constant potential ¢, on
I'y. Leakage from the overlying surface water on I'; occurs inversely proportional to
the layer thickness d and the difference in piezometric head in the overlying surface
water, u, and on the boundary I'; of 2, ¢. Thisleads to mixed boundary conditions.
Ground water is extracted from a perfect well on I's. The potential on I'q isheld on a
fixed value ¢g, ¢ < ¢4. No—flow conditions are imposed on the boundary parts Iy,
I, and Is.

We assume the water coming in from I'; to be of worse quality than that comingin
from I'y, thus requiring treatment. Treatment cost for the water extracted via the well
is assumed to rise quadratically with inflow from I'5. In addition, pumping cost arises
if the water level u deviatesfrom afixed level u, onI's. Thisis cost of exercising the
control. Pumping cost for the well, proportional to the amount of water extracted on
I'g, and pumping height ¢, isrelevant aswell. The goal isto minimizetotal cost while
holding the state on I's on afixed potential, ¢¢, through pumping out of the well. This
is described, with appropriate choices of the cost parameters g; (i = 1,2, 3), by

min {81 fr, Q3(6(x,2), ula)) do + s fy, (u(z) — u,)?da

(@) (7.13)
+Bs Jr, Qs(9(0,2)) (b5 — b6) dZ} :

The cost function (7.1.3) is dominated by the treatment cost for the water extracted
on I'g. It is manly the water flux infiltrating on I'y, ()5, that determines this cost.
Pumping cost arisesif the water level u deviatesheavily from afixed level u,. Pumping
cost for the well, proportional to the amount of extracted water, (s, and pumping
height ¢, is given in the last term of the cost function (7.1.3).

The cost function (7.1.3) can be written entirely in terms of state, ¢, and control,
u. To do this, we refer to the size of the domain in z—, y—and z—direction by z, 7, and
zZ, respectively. The width of T’y is denoted by 7, — z;. We refer to the height d of the
bounding layer only through afactor «, given as « = ko/d, where k; is the hydraulic
conductivity on I';. Hydraulic conductivity in the domain €2 is denoted by k. The
flow @, from I’y into Q isinapoint (z, z) given by

Qa(o(x, 2),u(x)) = kg 350(,2) - (To —71) -
= a(u(z) —¢(x,2) (Ta—71) - ¥ x € (Z1, To)

and flow from Q into T's in apoint (0, z) isgiven by

Qo(6(0,2) = ks 5-6(0,2) 25 z€[0.7].

Using the abbreviations & = o - (T, — 71) - 7 and k; = ky - Z - §, the objective
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function (7.1.3) is equivaent to

min {41 Jr, @ (u(2) = 6(3,2))* o+ By Jr, (u(e) — w)* da
+Bs Ji ki (67 — ) £6(0,2)dz } .

The formulation (7.1.4), in turn, allows to state the problem in a standard formulation
for linear quadratic control problems

min (% [, v (@) dz+ 15 Jr, u(@) 6(z,2) do + % fr, 6%(2,2) do
+n4 Jrg a%q&((), z)dz +ns [p, u(x) U, d:c}

subject to (7.1.2). In this formulation of the objective, which has already been stated
in (7.1.1), the constant term 3, [, u2 dz has been omitted because it is irrelevant for
the optimization. The parametersy; (i = 1,...,5) are

m =2(81 6%+ Ba) ,mp = =251 &%,y = 261 &%,y = Ba iy (b5 — P6) 75 = =20 -

The constants used in the computations, as proposed by engineers from TGU GmbH,
are

(7.1.4)

Br=28s2/m",8,=0.18%/m?, B=0.28%s/m>,
ky=05m/s,a=5-10"1/s,
¢4 = 20m, ¢ = 10m, ¢y = 30m , u, = 21m,
Z=10m,x=s;-2,y =1m,

so that, e.g. for sy = 2,

$ $ $ $

m = 0.45 $ o = —0.25-2 my = 0.25— s = 20.0—, 75 = —0.2—.
m3 m3 m m3

7.2 TheDiscretized Problem

We define auniform grid on the domain €2, containing m grid points. The piezometric
head, ¢, isdefined on all grid vertices, i.e., ¢ € IR™. Therearen grid points, n < m,
for the boundary I's. The control « is defined on £ of the grid vertices of the boundary
[y, i.e, u € IRF with k < n. We apply a second order finite difference discretization
to the problem (7.1.1) sit. (7.1.2). Thisis derived in detail for the case £ = n in the
following Section 7.2.1. Thecase k = 1 is considered in Section 7.2.2, and the cases
k =2and k = 4 aretreated in Section 7.2.3.

The resulting finite dimensional problem is to minimize a quadratic function F'
under linear constraints on state and control,

(;Illn) F((bh, uh) s.t. A(bh + Bup, = b. (721)
hsUh

The discrete objective function can be written as

F(on,up) = % Up Hy up+n2 0 Hey uh+% ép Hpp dn+nac’ dp+ns d uy . (7.2.2)
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The discrete Lagrangian is given by
L(n,un, An) = F(¢n,un) + Aj (Ady + Buy, — b).

Note that for this quadratic problem the second partial derivatives Ly, Ly, and L,,, of
the Lagrangian coincide with Hy,, Hy, and H,,,, respectively.

Applying the first order optimality conditions (Karush—Kuhn-Tucker conditions,
seee.g. [36, Ch. 3]), the system

M3 Loy M2 Loy A" P —Mc
2 Lu¢> T Luu BT Up, = s d (723)
A B 0 An b

has to be solved, where

¢ € R™, up € IR, \, € R™, c€ R™, d € IR*, b € R™,
Lss € R™™, L, € R** Ly, € R™*, A€ R™™, Be R™*.

If A isinvertible, the discrete state equation A¢, + Bu, = b can be solved for ¢y,
én(up) = A~ (b — Buy,). Thus, one can define the equivalent unconstrained problem

min J(up) = F(¢n(un), un) (7.2.4)

In order to get the gradient, g, of the unconstrained problem (7.2.4), the state and the
costate equations must be solved exactly. This means that for a given control u,, the
following set of equations hasto be satisfied,

3 L¢¢ AT on | —mc—1"n2 Lqm Up
A 0 )\h - b— Buh )
Then the gradient of (7.2.4), also referred to as the reduced gradient of (7.2.1), can be
computed as
gn = BT Xy + m1 Lyyup + 1o Lgudp + 15 d.

This quantity can be used to monitor progress of the iteration. The Hessian of the
discrete unconstrained problem (7.2.4), the reduced Hessian of (7.2.1), is given by

H=mB" AT Ly A" B gLy A" B—naB" A™" Ly, +m1 Ly

7.2.1 TheFinite Difference Discretization

We now consider the finite difference scheme for the discrete problem (7.2.1). The
variables in the discretization grid are organized like it is given in Figure 7.2.1, with
the reference point ¢; ; being located in the center. Thefirst point, ¢,;, islocated inthe
lower left corner of the discretization grid, and the bottom points are thus numbered
®11, - -+, P1n,. Thelast variableis ¢, , , located in the upper right corner of the grid.
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Figure 7.2.1: The organization of the variables.

¢i+1,j

¢i,j71 4~7 ¢i,j+1

¢i—1,j

The dimensions are given as follows. The number of subintervalsin z—direction
and in z—directionis s, and s,, respectively. Here, s, = s; - s, for astretching factor
sy € IN. Similarly, the number of points in z—direction and in z—direction is n,,
n, = s, + 1, and n,. The number of state variablesism, m = n, - n,, and the number
of control variablesis k. The number of discretization points for I'; is g;, and the
number of pointsfor I'; isn, n = g, — g1.

In this formulation, the number »n of points for I'; is equal to the number £ of
control variables. The state variable ¢, adjoint variable ), and control variable uy,
are organized in vectorsin the following way,

1,1 AL

b1,2 AL,2

: : w

¢1:nm )\lynm u2
¢ = | P21 , An=| Aa RUSS

: : )

¢n2,1 )\nz,l "

¢nz’nm )\nz:nm

The mesh size h is determined by the number s, of subintervalsin z—direction and
thus given by 4 = 1/nz. In the domain Q2 we use for the state equation A¢ = 0 the
five—point discretization of the Laplacian of order O(h?),

4 1
72 bij + 72 (Giji1+ ij1+ di1;+ biv1;) =0. (7.2.5)
On the boundary parts "4 and I, the piezometric head is fixed to

(bi,nm = ¢4, QSZ',I = ¢6 (l = 1, e ,nz). (726)

On top and bottom of the domain, auxiliary points ¢y,; and ¢, ; are introduced for
the discretization of the normal derivative. OnI'5, the difference formula

1
ﬁ(‘ﬁoj_(sz)zo =2...,n, — 1),
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leads to the discrete boundary condition

4 1
—73 b1, + = (1,41 + D11 +2¢2;) =0. (7.2.7)

OnT'; and on I3, the condition a%‘/’ = 0 leadsin asimilar way to

1 ) .
ﬁ(¢n;+1,j_¢nz_1,j) =0 (.7 :2""7917 and.? :.92+17"'7nx_1)7

which is used to arrive at

4 1
0 Pn, i+ = (n.js1 + On,jm1 +2hp,—15) =0. (7.2.8)

Finally, on I'; the control has to be considered in the boundary condition

1 :
o Gnsis = On1) =0 (g = b0g) (=gi+1g) (729

The resulting equation is

4 + 2ah 1 2a
T bn, g+ = (rojr1+ Gnej 1+ 200, 15) + ujg =0. (7210

h

Equations (7.2.5), (7.2.6), (7.2.7), (7.2.8), and (7.2.10) alow to formulate the dis-
cretized state equation
A qSh + B Up = b.

Thematrix A isgivenin Figure 7.2.2. ltsentriesp, ¢, r, s are

—4 —4 4+ 2ah 1 -1
:ﬁ’ QZT’ T = — a.r]d S = —.

p h2 7 h2

In the lowest diagonal block, ¢ occupiesthe placesii fori =g, +1,..., g, 1.€, then
places corresponding to the boundary T's.
The matrix B isthus

O(nmfl)nz +g1,n

2x
= 7 In,n )

B
h

Onm —g2,n

and the right hand side b is, according to the definition of A and B, givenin (7.2.11).
Thetermn, [r, é, ds inthe cost functional is represented on the discrete level by the
dot product 7, T ¢5,. The stencil

%(@1—%2):0 (i=1,...,n;)
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Figure 7.2.2: Thematrix A of the discretization.
0 0
p T 2r
rop 2r
0 s 0
0 s 0 0
T p T T
T TP T
0 0 0
0 0 0 ’
T p T T
r r op r
0 0 s 0
0 0
2r r p T
2r r p T
0 0 s

is used to arrive at the vector ¢, also givenin (7.2.11). Theterm s [r, uu, ds inthe
cost functional is represented on the discrete level by the dot product 75 d”u,. Thus,
d is the vector of ones multiplied by the scalar 75 u,,. The right hand side of the KKT

system is given by

o 1
0 -1
: 0
0 :
-1 —¢6 1 —0 1 Tt
b:ﬁ : , C:hﬁ : , d:ﬁ : . (7.210)
P4 1 5 Uy
0 -1
: 0
0 .
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The matrices Ly, Lg,, and Ly, all representing integration on the boundary I';, are

O(nw—l)nz—kgl,n

1
Luu = In,n7 L¢u = - In,n )
n
Onx—gz,n
and
. Otng—1)ntg1,(ne—Dnatgr Oma—1ynatgrn Oma—1)natgrng—g
Lyy = n On,(na—1)n.+g1 Inn On,np—gs
0"3:*92;(”@*1)7%"‘91 Onzfgz,n 0”m*92,”w*92

7.2.2 The Caseof a Uniform Control

With the problem formulation derived above, a non—uniform control is computed, i.e.,
the piezometric head is not constant over the boundary I';. Although the computed
inclination of the surface water body is small this solution is not physical. We thus
turn to another formulation where we only compute one single control, which never-
theless acts on all of I';. The analytic problem is still (7.1.3) subject to (7.1.2), but
supplemented with the additional constraint

u(z,z) =u (z,z) €Ty.

Again, we define a uniform grid on the domain €2, containing m grid points. The
piezometric head, ¢, isdefined on all grid vertices, i.e., ¢ € IR™, and the single-valued
control u; € IR acts on al piezometric heads, ¢,,, j_4, (j = g1 + 1,...,¢2), Onthe
boundary I';. That is, we now treat the case £ = 1. A second order finite difference
discretization, basically identical to the discretization in Section 7.2.1, is applied. The
main change occursin (7.2.9) and (7.2.10), whereu;_,, (j = ¢1+1, ..., g») isreplaced
by the single scalar u;. Note that although n is still the number & of discretization
points on I'y, the number of control variables is now 1. Thus, the dimension of the
system K is2m + 1, with

onh € R, up € R, \pb € R™, ce IR™, de€ IR, be IR™,
Lyp € R™™, Ly, € R, Ly, € R™, A€ R™™, B e IR™.

Only the matrices A and L, are unchanged by the transition to a single control. The
matrix B isreplaced by

O(nmfl)nz+gl

2
:_a lln ;

B
h

0“90*92
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where 1,, denotes the vector of ones of length n. Accordingly,

1 O(nm—l)nz+g1
n

Onw_g2

Notethat althoughd € IR, thelinear term s d” u,, inthe discrete cost functional (7.2.2)
stays the same. The transition to a single control  requires a second look on the
weighting of the termsin the cost functional. Because the line integralson I'; and '
requirethefactors1/n and 1/n,, respectively, we have to omit the factor 1/n in ¢ now
to reflect the integration. This is analogous to the treatment of L., and L, .

7.2.3 TheCaseof a Fixed Number of Controls

Apart from the problem formulationsin Sections 7.2.1 and 7.2.2, another formulation
issensible. One can think of afixed number £ of different cells for the surface water
body in reclaimed land. We consider the casesk = 2 and £ = 4. Thisleadsto a
fixed number £ of control variables. The analytic problem is given by the objective
function (7.1.3) subject to the state equation (7.1.2), which has to be supplemented
with the additional constraints

wz,z)=w (=1,...,k)

forz € [z1,%s),1.€, (z,2) € Ts.

As before, a uniform grid with m grid pointsis defined, and the piezometric head
¢ isin IR™ The k-valued control v € IR* acts on al piezometric heads, ¢,_;
(j=g1+1,...,91+n)ontheboundary I',. Recall that g; + n = g,. A second order
finite difference discretization is applied. It is basically identical to the discretization
Section 7.2.1. The main change occurs in (7.2.9) and (7.2.10), where u;_4, (j =
g1+ 1,....9) isreplaced by u;_g, (j = g1+ (—1) -3 +1,...,0+ 1) for
Il =1,...,k. Notethat n is still the number of discretization pointson I'y, and that the
number of control variablesis k. Thus, the dimension of the system K is2m + k. The
matrices A and L, are unchanged by the transition to a control « € IR*. The former
Ly, isfor k = 2 replaced by

O(nxfl)anrgl,Z

I 1 ]ln/Q 0n/2
pu = —
n 0n/2 Hn/Q
Onm_g252

where 1,, denotes the vector of ones of length n. Accordingly,

1 2
Luu:EIka’ and B:TnLqm
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If &k =4,
O(nﬁfl)nz+g1,4
]ln/4 On/4 On/4 On/4
1 On/4 ]]-n/4 0n/4 0n/4
Lo =~
n 0n/4 On/4 11n/4 0n/4
On/4 0n/4 0n/4 nn/4
Onw—gz,4

7.3 Numerical Results

We now turn to the numerical results obtained for the example problem treated in Sec-
tion 7.1. We investigate mainly the situation £ = n. There, the number of controls
increases as the grid is refined. In terms of the numerics, thisis the most interesting
case, athough the cases £ = 1,2, and 4 are not easy to handle either. We add the
results for these cases after a detailed discussion of the case k = n. For this situation,
the preconditioner K is in various constellations tested intensively. Different subpre-
conditionersare used. Theindefinite preconditioner is also compared to the symmetric
positive definite preconditionersreviewed in Section 6.2.

Aslaid downin Section 7.2, auniform grid is defined on the domain €2, containing
m grid points. The piezometric head, ¢, is defined on all grid vertices, i.e., ¢ € IR™.
There are n grid points, n < m, for the boundary I's. The control u is defined on
k of the grid vertices of the boundary Ty, i.e., u € IR* with k¥ < n. A second order
finite—difference discretization is applied to the problem (7.1.1) st. (7.1.2). The dis-
cretization isdescribed in Section 7.2.1. Theresulting finite dimensional problemisto
minimize a quadratic function F' under linear constraints on state and control. Com-
pare Equations (7.2.1) and (7.2.2). The parametersy; (i = 1,...,5) are incorporated
into the matrices and vectors, respectively, as denoted in (7.2.3).

With grid refinement, the linear systems grow fast. In our numerical experiments
we can currently consider n, = 4, 8, 16, 32, 64, and 128, discretization points in
vertical direction. The dimension N of the entire system is given as 2m + k. For
n, = 8,16,...,256 discretization points in the horizontal and £ = n controls, this
correspondsto systems K of dimension 94 x 94 up to 66434 x 66434. Thus, the systems
grow fast to large dimensions, and it is in genera advantageous, if not crucial, to
exploit their sparsity structure. The nonzero structure of the full system K is depicted
in Figure 7.3.1.

Compare Table 7.3.1 for the dimension of K and its nonzero entries nnz in abso-
lute and relative figures. The relative number of nonzero entries in the system matrix
decreases by afactor of 4 with each doubling of the number of grid pointsin one spatial
direction.
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Figure 7.3.1: Sparsity structure of K (k = n).
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Table 7.3.1: Dimension and sparsity of K for k = n.

nz‘ nz‘ n‘ m‘ NH nnz‘nnzin%
4 8 4 45 94 366 4.100
8| 16 8 153 314 1374 1.394
16 | 32 16 561 1138 5310 0.410
32 64 | 32 2145 | 4322 20862 0.112
64 | 128 | 64 | 8385 | 16834 82686 0.029
128 | 256 | 128 | 33153 | 66434 || 329214 0.007

The conditioning of the system can be seenin Table 7.3.2. Obviously, the condition
number «(K') increases considerably asthe mesh size h approaches zero. Thisdepends
mainly on the conditioning of the submatrix A. It deteriorates as the mesh size h
is decreased. The conditioning of the remaining submatrices B, Ly, Lg,, and Ly
remains unchanged as the grid refines. It is obvious from the structure of the matrices,
however, that the eigenvaluesand singular valuesof B, Ly, Lg,, and L4, moveto zero
as the mesh size decreases. The combination of these effects leads to an unfavorable
eigenvalue distribution in the assembled system. This is the reason for the rapidly
increasing spectral condition number x(K) that is exhibited in Table 7.3.2.

The small eigenvalues of K decrease to zero, and the large eigenvalues increase
as the mesh is refined. This effect is clearly visible in Figure 7.3.2, where for four
different discretizations the positive eigenvalues of K are plotted on a logarithmic
scale along with the negative eigenvaluesin absolute value.

Asthe size of K and its condition number increase, the performance of iterative
solvers on the linear system K = = r deteriorates considerably. In our numerical ex-
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Table 7.3.2: Condition numbersof K and A (k = n).

n, N k(K) K(A)
4 94 1356.03 47.974
8| 314 11238.04 | 192.475

16 | 1138 || 94713.87 | 770.496

32 | 4322 || 832836.00 | 3082.586

periments, the KK T system is solved with the Krylov subspace methods MINRES [66]
and GMRES [70]. On the original system K, MINRES diverges, and GMRES takes
an unacceptably high number of steps. The number of required stepsis almost as high
asthe dimension NV of the linear system. See Table 7.3.3 for the iteration and floating
point operation numbers. Note that due to the increasing work and storage require-
ments of GMRES iterations the machine was able only to perform the computations
up to the discretization n, = 32. The high computational effort of the unprecondi-
tioned iterative solution, due to the unfavorable eigenvalue distribution of K depicted
in Figure 7.3.2, motivates the use of preconditioners. Discretizationsup to n, = 128
can be considered in the preconditioned cases.

Table 7.3.3: Iteration and operation count for GMRES on the original K (k = n).

n, 4 8 16 32
N 94 314 1138 4322
iterations 88 294 1028 3666
Megaflops | 2.73 | 93.44 | 4,015.24 | 191,291.60

The implementation of GMRES used in the numerical experimentsrequiresonly to
furnish aroutine for matrix—vector multiplication. Thus, explicitly storing the system
matrix isnot necessary. Only the smaller subblocksare used, e.g. A and B. To perform
the solve with the preconditioner, we proceed like it is described in Section 5.2.3.
We deal analogously with MINRES and the preconditioners P, P, and P; from [5].
Compare Section 6.2. The stopping criterion for all iterative proceduresis athreshold
value of 10~° for the l,—residual. All computations are done with Matlab, Version 5.3
on a Sun Ultra 60.

Iteration counts for GMRES and MINRES, employing the considered precondi-
tioners K, P, P,, and P3, are given in Tables 7.3.4 and 7.3.8. The corresponding
operation counts can be found in Tables 7.3.5 and 7.3.9.

Thefirst set of computations, Tables 7.3.4 and 7.3.5, is dedicated to a comparison
between the different preconditioners. The preconditioner K analyzed in this work
is compared to the preconditioners Py, P, and P; from [5]. In this set of compu-
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Figure 7.3.2: Eigenvalues of origina system K for n, = 4, 8, 16, and 32 (k = n).
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tations, exact inverses for the submatrices are used, usually obtained via (complete)
LU—-decompositions. Weuse P4 = A for K and P;, P,, and P, in al these com-
putations. For K, we consider both the ideal case P = H, and, due to cost issues,
also the cheap version Py = I. As afirst observation we note that, as predicted by
theory in Section 5.3.3, only three GMRES iterations are necessary for the ideal ver-
sion of K with P, = A and Py = H. Since the ided version of K requires the
reduced Hessian H, it is desirable to use more accessible versions of Py aso. Upon
use of Py = I, the iteration count is only marginally higher, and still constant over
al considered discretizations. Similarly, a constant number of iterations seems to be
sufficient upon use of P;. The number of iterations increases with mesh refinement
when P; and P, are used. Theoretical results are cited in Section 6.2 that provide an
upper limit to the number of MINRES steps. Theselimitsare 2k + 3 and &+ 2 stepsfor
systems preconditioned with P, and P, respectively, in the ideal cases. These results
hold for the case with zero off—diagonal entries L,,, and L., i.€., they are not strictly
applicable to this example. Here, the number of stepsin case £ = 4 surpasses the
upper limit. This can be explained with effects of finite—precision arithmetic and of
nonzero Lg,, L,4. In all other cases (k > 8), the performance of MINRES is at least
as favorable as predicted by the upper iteration limit. The application of P; allows
faster solutions than P, and P,, but it cannot beat K. The preconditioner K allows
to solve the system with a smaller number of iterations than the other preconditioners.
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Table 7.3.4: Iterations of GMRES on origina system K and on preconditioned system
K~'K with constellations Py = A, Py = H and Py, = A, Py = I. Iterations of
MINRES on the systems preconditioned with P;, P, and P; in their ideal versions,

Py, =A.Indlcases k = n.

n, 4| 8] 16| 32 64 | 128
N 94 | 314 | 1138 | 4322 | 16834 | 66434

K | 88 | 294 | 1028 | 3666 | * | *
K(Py=APy=H)| 3| 3 3 3 3 3
K(Pi=APyr=1I)| 4] 4 4 4 4 4
P (Pyi=A) 18] 20] 25] 30 42 63

Py (Py=A) 16] 19] 22| 25 34 A7

Py (Pyi=A) 5] 6 8 8 8 8

Table 7.3.5: Computational effort of GMRES iterations on origina K and on pre-
conditioned system K ' K in Megaflops. Computational effort of MINRES iterations
with preconditioners P;, P, and P intheir ideal versions, P, = A. Inal casesk = n.

n, 4 8| 16| 32 64 128
N 94| 3141138 ] 4322 | 16834 66434
K [2.73]93.44 | 4K [ 191K | * | *

K(Py=AP;=H)[003] 0.25] 2.90 | 38.52 [ 548.30 | 8,091.43
K(Pi=APg=1) | 004| 027] 2.61 | 30.77 | 418.49 | 5,976.46

P, (Py=A4) 0.12 | 0.73 | 6.41 | 64.48 | 779.12 | 10,226.02
P, (Py=A) 0.11 | 0.71 | 5.94 | 58.66 | 708.18 | 9,118.92
P;(Py=A) 0.05| 0.42 | 4.33 | 44.86 | 528.83 | 6,850.00

Besides iterations, consider also the computational effort. The computational effort is
measured with flops, see Table 7.3.5. Although only three steps are taken with K em-
ploying Py = H, thisis not the recommended option. The choice Py = I, requiring
four steps, is considerably cheaper. Also cheaper than K with P; = H is P3 with
eight steps. Nevertheless, K, especially initsredistic version with Py = I, compares
favorably to the symmetric positive definite preconditioners.

We have noted before that, as predicted by theory, only three GMRES iterationsare
necessary for the ideal version of K (P4 = A, Py = H). The preconditioned system
has the single eigenvalue 1 with the geometric multiplicity 3. The appropriate Krylov
subspaceisvery well captured after threeiterations on the preconditioned system. This
is obvious from the steep drop that occurs both for the norms of the residual ||| and
the error ||e|| in the third iteration. Note also that the norm of the reduced gradient ||g||
of the underlying optimization problem (7.2.1) is practicaly zero. See Table 7.3.6.



154 A. BATTERMANN

Typically, no such steep dropsin residual, error, and gradient norm occur upon closure
with athreshold value of 10~¢ for the residual. Compare Table 7.3.7.

Table 7.3.6: Performance of GMRES for idea K with Py = A, Py = H (k =n).

n, || #it | CPUins |l le]l gl

41 3 [4.0-1072]1.0-107*[39-107*[1.0-107"
81 3 [9.0-102|24-10*]12-102[43-10"
16| 3 |49-107'|[5.0-107™ | 1.1-107" | 2.4-107"
321 3 [40-10° |1.8-107"|7.8-10"" | 3.3-1071°
64| 3 [4.2-10' |1.8-107 [6.4-1071° [4.5-107°
128 | 3 [53-102 [48-10" | 44-10° [49.10 ™

Table 7.3.7: Performance of GMRESfor K with Py = A, Py = I (k = n).

n, | #it| CPUIns | ||r] le] g

41 4 [40-1072|15-10%]15-10°|7.5-10°°
8 5 [1.1-107"|2.7-1077|5.1-107% | 1.7-10°°
6 5 [51-1071]1.7-1077]6.3-107%|1.4-107°
32 4 |34-10° [48-10¢[35-10*|56-107°
64| 4 [32.10" [1.8-10°¢]27-10%[29-10°
128 4 [35-102 [66-107]1.9-10*[15-10°°

General versions of the preconditioner K are tested in the second set of computa-
tions that is described in Tables 7.3.8 and 7.3.9. Theidea version, with P4, = A and
Py = H we have seen before, and also the case Py = 1. We also consider the choice
Py = L,, here which furnishes results only dightly different to Py = I. Thisisno
surprise because in this application L., is ascaed identity. Note that due to this, the
case Py = diag(Ly,) that is of interest in Section 6.3 need not be specifically consid-
ered. The computations furnish the expected results: Use of the identity instead of the
reduced Hessian causes GMRES to take more steps, but the higher number of stepsis
easily offset by the lower cost of individual iterations.

In these three constellations, P, is, as before, the (complete) LU—-decomposition
of A. In the remaining computations, an approximation P, to A is employed. This
approximationisan incomplete LU—decomposition of A. Itisused inconjunctionwith
Py = I and with Py = H. The matrix H, see Equation (5.3.8), is an approximation
to the reduced Hessian in that it is built with P4 instead of A. For the approximation of
A viaitsincomplete decomposition we use different drop tolerances. The incomplete
LU—-decomposition is a built—in Matlab routine. It is computed in the same (column-
oriented) manner as the LU factorization except that after each column of L and U
has been calculated, al entries in that column smaller in magnitude than the local
drop tolerance are set to zero in the factors L or U. The local drop tolerance is the
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user—defined drop tolerance multiplied by the norm of the column of A.

Table 7.3.8: Iterations of GMRES on original system K and on preconditioned system

K~'K for different variants and combinations of the subpreconditioners Py and Py.
Inall cases, k = n.

n, 41 8| 16| 32 64 | 128
N 94 | 314 | 1138 | 4322 | 16834 | 66434
K | 88 294 | 1028 | 3666 | * | *
(Py=A,Pg=H) 31 3 3 3 3 3
(Py= A, Py = Ly, ) 5 4 4 4 4 4
(Pa=APy=1) 41 5 5 4 4 4
(Py=ILU(A,10°),Py=H)| 3| 3 3 4 6 8
(Py=ILU(A107%),Pg=H)| 3| 4 4 6 10 16
(Pa=1ILU(A,103),Py=H)| 4| 5 7| 11 20 37
(Py=1ILU(A,102),Py=H)| 6| 8 13| 24 44 82
(Pya=1ILU(A,107°),Pg=1) || 4| 6 7 7 10 14
(P4 =1LU(A,107%), Py =1) 5 7 9 10 15 24
(Py=ILU(A,107%), Py =1) 5 9 13 17 28 50
(Py=ILU(A,107%), Py =1) 8| 14 21 32 50 92

With P, instead of A, additional iterations are necessary in comparison to theideal
case to reach the stopping criterion. This must be expected and is obvious already for
the smallest drop tolerance 10-°. The effect is more pronounced for the larger drop
tolerances of 10~ to 10~2. The influence of the approximation is even stronger for
Py = I. Consistently, more iterations are needed than in the case Py = H. But
this does not consistently require more work. See Table 7.3.9 for the correspond-
ing operation count. For an incomplete LU—decomposition of A with drop tolerance
10—*, the choice Py = I furnishes lower computational cost than Py = H. Over-
al lowest computational cost is achieved in this set of experiments for the constella-
tion Py = ILU(A,1073), Py = H. For the choices Py = I and Py = H there
are different optimal drop tolerances for the incomplete decomposition. In al these
computations, the number of iterations increases as the grid refines. The incomplete
decompositions of A are not good enough to achieve mesh—independent convergence.
They do, however, furnish very usable alternatives to the ideal case. The most expen-
sive of the considered incomplete decompositionswith adrop tolerance of 10~° allows
already cheaper solvesthan any version with P, = A.

After assembling and analyzing the results for the preconditioned iterative proce-
dures, we now turn to the results of the optimization problem. The computed flow
profile is given in Figure 7.3.3. Driven by the fixed potentials on 'y and I'g, flow
takes place from the stream on the right to the left hand side of the considered do-
main, where a perfect well extractswater. Controlled inflow occurson I'y. Thisinflow
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Table 7.3.9: Computational effort corresponding to Table 7.3.8 in Megaflops.

n, 4 8| 16| 32 64 128
N 94| 3141138 ] 4322 16834 | 66434
K [2.73]93.44 | 4K [ 191K * *
Py=APg=H 0.03 | 0.25 | 2.90 | 38.52 [ 548.30 | 8,091.43
Py=A, Pg =Ly 0.04 | 0.24 | 2.48 | 30.75 | 418.43 | 5,976.24
Py=APy=1 0.04 | 0.27] 2.61 | 30.77 | 418.49 | 5,976.46
Py=ILU(10 °), Py =H | 0.04 | 0.37| 4.35 | 54.77 | 581.04 | 5,274.11
Py=ILU(10 %), Py =H | 0.04 | 0.40 | 4.06 | 41.62 | 395.67 | 3,782.59
Py=1LU(107%), Py = H | 0.05 | 0.39 | 3.44 | 32.86 | 336.50 | 3,547.27
Py =1ILU(1072), Py = H || 0.06 | 0.39 | 3.47 | 37.23 | 409.94 | 4,690.98
Py=TILU(107°), Py =1 [0.05] 0.45] 4.74 | 52.58 | 541.59 [ 4,820.23
Py=TLU(10 %), Py =1 [0.06] 0.48 ] 4.80 | 42.36 | 387.13 | 3,674.33
Py=1LU(103),Py =1 | 0.06 | 0.53 | 4.45 | 36.58 | 357.82 | 3,746.87
Py=TLU(107%), Py =1 | 0.08 | 0.63 | 5.00 | 44.89 | 434.35 | 4,961.86

is strongest on the left hand side of the considered boundary part I';. See aso Fig-
ures 7.3.4 and 7.3.5. Figure 7.3.4 shows the flow in x—direction, and Figure 7.3.5
shows the flow in z—direction. The maximum velocity in z—direction is about four
times stronger than the maximum velocity in z—direction.

The solutionsto the considered problem are given in Table 7.3.10 for different lev-
elsof grid refinement. Weusen, = 4,8, ..., 128 discretization points in the vertical.
This corresponds, due to the specia choice of discretization, to just as many control
variablesu; (1 = 1,...,n;n = 4,8,...,128). The size of the full system K ranges
from 94 x 94 to 66434 x 66434 variables. The computed controls «; on the left hand
side and u,, on the right hand side of the boundary I'; are given in Table 7.3.10. Also,
the arithmetic average of the controls is computed. In the right columns of the table,
the inflow (), over the boundary I'y and the extraction Q¢ on I'g are given. The value
of the cost function is called F' in the table. A decrease in the computed values for
the control can be seen with grid refinement. Accordingly, less inflow occurs on I's.
Smaller amounts of water are extracted on I's. In the sum, the cost function increases
with grid refinement for this example problem. In Table 7.3.11, relative changesin the
considered quantitiesare shown. Therate of changein the different quantitiesisdimin-
ished significantly with decreasing mesh size h. This can be viewed as an indication
for convergence to a mesh—ndependent solution.

After this detailed discussion of the numerical resultsin case k = n we go briefly
through the cases of Sections 7.2.2 and 7.2.3. The nonzero structure of K in case of a
single control is given in Figure 7.3.6. The conditioning of the system matrix is better
in case of asingle control than in the case k = n. Nevertheless, the condition number
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Figure 7.3.3: Flow profile.
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k(K) dtill increases considerably as the mesh size A is diminished. The condition
numbers of K and its submatrix A are givenin Table 7.3.12.

As can be expected, the iterative solvers performance on this system K isnot sig-
nificantly different from the case £ = n. On the origina system, GMRES takes an
unacceptably high number of steps that is almost as large as the dimension of the sys-
tem. On that same system, MINRES diverges. See Table 7.3.13 for theiteration count.
The two largest systems (n, = 64, 128) cannot be solved due to space restrictions. On
the preconditioned system K 'K with ideal subpreconditioners P, = A, Py = H,
GMRES takes three steps like in the previously considered situation, £ = n. As be-
fore, MINRES is tested with the preconditioners P, P,, and P3. They all do better
thaninthecase k = n, P, and P, with only nineto twelveiterationsfor all considered
grids, and P; with only three iterations. See Table 7.3.13 for these results. Analogous
statements hold for the cases £k = 2 and k£ = 4. Similar to the solver’s performance,
analogies can be drawn for the computed solutions. The parameters that have been
computed for the case k = 1, differ from the corresponding values for £ = n in Ta
ble 7.3.10 typically by lessthan 0.1%. The single control v in case k = 1 is compared
to the arithmetic average of the control vector in case £ = n. Similar statements can
be made for thecases k = 2 and k = 4.

In summary, the results are very encouraging in two respects. For one, a problem
from ground water modeling was formulated as a mathematical optimization problem.
Specifically, we consider it as a boundary control problem governed by a partial dif-
ferential equation. The results obtained for the practical application exhibit decreasing
relative change with refined grids. One can hopeto theoretically investigate the control
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Figure 7.3.4: Flow in z—direction.
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Figure 7.3.5: Flow in z—direction.
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Table 7.3.10: Parameters of the problem (k£ = n).

Ty U1 Unp % 21 U F Q2 Qs
4| 26.219 | 22.822 | 24.535 —138.874 | 1.941 | —37.149
8 || 25.715 | 22.464 | 24.140 —125.566 | 1.923 | —33.689
16 || 25.383 | 22.282 | 23.914 —118.798 | 1.908 | —31.916
32 || 25.190 | 22.189 | 23.792 —115.384 | 1.899 | —31.019
64 || 25.084 | 22.142 | 23.729 —113.668 | 1.894 | —30.567
128 || 25.028 | 22.117 | 23.697 | —112.808 | 1.891 | —30.340

Table 7.3.11: Relative changein the parameters of the problem (k = n).

n, Uq Up, % i U F Q2 Qs
4 —8 1.92% | 1.57% 1.61% 9.58% | 0.93% | 9.31%
8 —+ 16 1.29% | 0.81% 0.94% 5.39% | 0.78% | 5.26%
16 — 32 || 0.76% | 0.42% 0.51% 2.87% | 0.47% | 2.81%

32 — 64 || 0.42% | 0.21% 0.26% 1.49% | 0.26% | 1.46%

64 — 128 || 0.22% | 0.11% | 0.13% | 0.76% | 0.16% | 0.74%

Table 7.3.12: Condition numbersof K and A (k = 1).

n, N k(K) k(A)
4 91 377.42 47.974
8| 307 2016.56 | 192.475

16 | 1123 || 15488.79 | 770.496
32 | 4291 || 176902.40 | 3082.586

problem for existence and uniqueness of an optimal control.

Second, the problem was solved via its KKT system which sent us to explore ef-
ficient preconditioning techniques. Our focus are block preconditioners to exploit the
structure of the system. The analysis of the indefinite preconditioner in Chapter 5.2
showsthat it has interesting properties that are backed by the numerical results. Inits
ideal version (P4 = A, Py = H), three steps of preconditioned GMRES are sufficient
to stop with avery small residual for all considered grid sizes. With Py = A, Py =1
four steps furnish the iterative solution. The indefinite preconditioner compares favor-
ably to the investigated symmetric positive definite preconditioners. Theideal version
of K, with exact solutions for the constraints, is not desirable from a computational
standpoint, though. Relaxation to approximate solutions requires more steps, but usu-
ally admits considerable computational savings. It is subpreconditioners P, that fur-
nish a usable alternative to the ideal case.
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Figure 7.3.6: Structure of K for k = 1.
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Table 7.3.13: Iterations of preconditioned GMRES and MINRES (k = 1). GMRESIs
used on system preconditioned with K and MINRES on systemswith Py, P, P;.

n, 4] 8| 16| 32 64| 128
N 91 | 307 | 1123 | 4291 [ 16771 | 66307

K 83 ]286 | 991 | 3589 | * | *
K(Py=APy=H)| 3| 3 3 3 3 3
K(Py=APy=1I)| 3| 3 3 3 3 3
P (Ps=A) 9] 9 9] 10 11 11

P, (Py=A) 0] 10] 11] 11 11 13

Py (Py=A) 3] 3 3 3 3 3

Table 7.3.14: Computational effort corresponding to Table 7.3.13 in Megaflops.

n, 4 8] 16| 32 64 128
N 91| 3071123 ] 4291 [ 16771 ] 66307
K [2.36 [ 86.52 | 4K [ 181K | * | *

K(Py=APy=H)|0.03] 023 2.29 | 29.12 | 394.69 | 5,680.48
K(Pi=APy=1) [[0.03] 022 2.25| 28.86 | 392.60 | 5,663.73
P (Py=A) 0.07 [ 0.41] 3.50 | 38.91 | 477.36 [ 6, 321.30
P,(Py=A) 0.07 | 0.44 | 3.86 | 40.19 | 477.60 | 6,461.49
P;(Pys=A) 0.03 | 0.30 | 2.85 | 33.59 | 430.37 | 5,965.80




Chapter 8

Conclusions and Outlook

This work is concerned with the numerical solution of optimization problems which
arise in the context of ground water hydraulic and quality management. The opti-
mization problems considered in this work are discretized optimal control problems,
governed by (discretized) partial differential equations. We treat two applications in
thiswork. These were brought to our attention by our industrial partner in this project,
a consulting company for ground water and water resources.

Our first applicationis aground water quality management problem. Heated water
is, after use for cooling purposes, reinjected into the ground. Thisleadsto an increase
in temperature at a set of drinking water wells which are located downstream relative
to the injection well. German law, the Wasserhaushaltsgesetz, requires that anthro-
pogenic changes of ground water properties be minimized. In this regulation is the
requirement that drinking water be provided at the lowest temperature that is possible
under undisturbed conditions. Our goal is to control the temperature at the drink-
ing water wells. This is done via the optimization objective to minimize a quadratic
function. The quadratic involves the pumping rates at a set of barrier wells which
IS an approximate measure of cost. As a penalty for increased temperature, a linear
combination of the pumping rates and the temperature at the drinking water wellsis
additionally taken into account.

In this case study, practicality enforces the usage of external, off-the-shelf soft-
ware. Our industria partner relies on software that furnishes the evaluation of the state
eguation in dependence of the current control. The adjoint equation is not solved by
this software package. Our goal in this application is not to newly code the equation
solve and, additionally, the adjoint solve. Our goal is to provide optimization tools
within the given setting.

The black—box type use of external software introduces severe inaccuracies into
the function. Nonsmoothness of the problem easily traps conventional optimization

161
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algorithms. Such algorithms generally require smoothness of the involved functions
and are usualy also based on the assumption of accuracy in the order of machine
epsilon. In addition to the before mentioned inaccuracy, large error margins are in
the case of our application induced through simplifications in the modeling and the
sparse data that is typical for such applications. In dealing with our problem, one
is well advised to refrain from taking higher derivatives and to pay close attention
when abtaining first—order information through finite—differencing. Methods for noisy
functions are appropriate for our application. To our knowledge, such methods have
not yet been used in the context of ground water modeling.

Specialized optimization routines are useful tools in the given setting. The opti-
mization landscape with its nondifferentiable rim shows that optimization algorithms
using first— and second—order information under the assumption of smoothness en-
counter difficulties. It ishighly advisable in this setting to use methods that either take
special carein the finite—differencing or entirely forego derivative information.

The Nelder—Mead agorithm does the latter. It isaclassical direct search method
which typically only requires alow number of function evaluations. At low computa-
tional expense, the Nelder—Mead algorithm achieves good progress. But the algorithm
is sensitive to the starting point and can easily be trapped in one of the local minima
of the problem which have large regions of attraction. Moreover, in view of possible
extensions and future work, it is disadvantageous that the conception of the Nelder—
Mead algorithm does not invite parallelization. Parallelization, in contrast, does hold
promise for Implicit Filtering.

The Implicit Filtering algorithm does the former. It isin its simplest unconstrained
form the steepest—descent algorithm with difference gradients. The difference incre-
ment is reduced in size as the iteration progresses so that in fact the algorithm is a
repeated call of steepest descent. | FFCO, an implementation of Implicit Filtering,
furnishes reliable results for the application while investing only a small budget of
function evaluations.

It was mentioned above that parallelization holds promise for Implicit Filtering.
Implicit Filtering is readily implemented in parallel by simply performing those func-
tion evaluations in parallel that are needed for the difference gradient. A parallel im-
plementation of | FFCO exists[17]. It was used in [4] for the case study of Chapter 4
and the simulation codes described in that chapter. Future work on the application is
anticipated in [4]. For one, an extension to three—dimensional geometry is of interest.
The single-layered depth—integrated model set up in thiswork is justified because the
considered region is relatively homogeneous in hydrogeol ogic terms. Nevertheless, a
multi-layer model is likely to enhance the simulation. Moreover, the treatment laid
out in thiswork is not limited to quadratic objective functions — a multitude of other,



CONCLUSIONS 163

more complicated objective functions describe practical problems driven by similar
dynamics — and not to the simulation codes that are currently used. Other codes can
be treated similarly. More general codes might be used, e.g. codes that can solve the
coupled flow and transport equations. In reality, density and viscosity of the fluid do
depend on the temperature. Certainly, an extension can aso be thought of in terms
of the optimization routine. The study of optimization methods that do not require
gradientsis an active research area. For pointersto the literature see e.g. [52].

Our second application is a ground water hydraulic management problem. Like
the first problem, it is formulated as an optimal control problem governed by a partial
differential equation. Thisboundary control problem, defined on arectangular domain,
occurs as a mixing problem when extracting ground water that originates from two
different water bodies. One is a stream, the other a surface water body in reclaimed
land. The motivation behind the problem is the controlled flooding of land for use
as arelief basin when the water level is high in the stream. The height of water in
the relief basin is considered as the control. The question is raised which height is
advantageous. The answer must take into account that leakage from the overlying
surface water occurs into the ground water body and that this incoming water is not
of good quality. It requires treatment. A quadratic objective function models pumping
and treatment costs.

The discretization of this problem is a quadratic programming problem with linear
constraints. Quadratic problems with linear constraints are frequent in optimization.
In the Introduction it was laid out that for instance such problems have to be solved
as subproblems within a sequential quadratic programming approach. The solution of
such linear quadratic problems can be found via the solution of the associated KKT
system. In this instance, al variables, state, control, and adjoint, are considered as
independent variables and simultaneously solved for. We can perform all necessary
computations for this example with a self—coded discretization.

Whenever discretizations of partial differential equations are involved, the KKT
systems generally tend to large dimensions and exhibit a specific sparse structure. The
use of iterative solversis usually advocated under these circumstances. Direct meth-
ods typically involve decompositions of the system matrix. Storage issues are much
worked on. Iterative methods are advantageous in that they do not require to assemble
the entire system K. Instead, only a matrix—vector multiplication K v per iteration is
necessary. Common choices are so called Krylov subspace methods. Two especialy
well-known Krylov subspace methods are the conjugate gradient and the general-
ized minimum residual method. We employ the latter, GMRES, and also MINRES, a
method tailored to the symmetric indefinite case.

The solution of the original system K with these methodsis impractical. Almost
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N steps are needed by the employed methods on the original system. Here, N isthedi-
mension of the system and al so the maximum number of stepsin exact arithmetic. This
isatoo high computational expense. Consequentially, we concern ourselves with pre-
conditioners to accelerate the iterative solution of the linear systems. Preconditioners
attempt to improve on the spectral properties of the iteration matrix such that the total
number of stepsrequired to solve the linear system within some tolerance is decreased
substantially. Specifically, our concern are block preconditioners, e.g. the precondi-
tioners K, P;, P, and P; of Chapters 5 and 6. The preconditioners are composed of
blocks and maintain the block structure of the original system. In such manner they al-
low to exploit that structure to computational advantage and to specifically addressthe
problematic parts of the original system. Ideally, the blocks in the preconditioner are
theinverses of the submatrices of the original system or of products of the submatrices.
But it can usually not be assumed that an exact solution is affordable, not even with
the submatrices. In the contrary, we must assume that the submatrix A arises from the
discretization of a partial differential equation and that it is the computationally most
expensive part of the system. Thus, we also account for the general case where the
preconditioner for the full system is composed of preconditionersfor the submatrices.
The preconditioners can be perceived to approximate the respective inverses.

Severa preconditioners for the symmetric indefinite KKT systems are reviewed,
symmetric positive definite preconditioners and indefinite preconditioners. The ana-
lysis of theindefinite preconditioner K in Chapter 5 showsthat it hasinteresting prop-
erties backed by the numerical results. When this preconditioner is employed, the pre-
conditioned systemis not normal. Although convergence behavior of iterative methods
isin the nonnormal case not necessarily well described by the eigenvalues, eigenvalue
information does prove useful for the system preconditioned with K.

A clear—cut analysis of the minimum polynomial is performed for the case where
the exact constraints are maintained. This corresponds to the choice P4, = A asa
block in the preconditioner K, Equation (5.2.9). In this case, the solve with A is done
exactly. Redlistically, the admission of approximate constraints in the preconditioner
is highly desirable. This corresponds to the relaxation P4 =~ A. Then, the solve with
A isdoneonly approximately. Thisrelaxation isageneralization of previouswork and
representsan important step towards computational efficiency. The eigenvalueanalysis
is disturbed in this case, but can be qualitatively maintained. It is acknowledged that
more effort must be invested to fully grasp the effects of approximate constraints.

The case where the exact constraints are maintained is the starting point for analyz-
ing the eigenvalue distribution. Then the eigenvalues of the preconditioned system are
the desired eigenvalue 1 and at most £ eigenvalues distinct from 1. The request eigen-
value 1 has high agebraic multiplicity 2m and low geometric multiplicity 2. This
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delays convergence of GMRES by only one step. The remaining & eigenvalues are
those of a low—dimensional subsystem involving the reduced Hessian of the under-
lying quadratic programming problem. The ideal version of the indefinite precondi-
tioner lets GMRES terminate with the exact solution after 3 steps. A considerably
cheaper and computationally more sensible choice can be shown to permit capturing
of an invariant subspace of the system after at most & + 2 steps. Almost N steps,
N = 2m + k, are needed by the employed methods on the original system. In com-
parison, k + 2 steps, with k£ < m, represent major improvement. The improvement
is even more pronounced since the upper bound is typically considerably underbid by
the actual number of steps. The preconditioner is especially successful if the number
k of controlsis small. The numerical experience acquired so far is encouraging, and
expectations can be set high with boundary control problems.

Two additional aspects deserve mindfulness. One, we have formulated a problem
from ground water modeling as a mathematical optimization problem. Specifically, a
boundary control problem governed by a partial differential equation was set up. The
control problem can be theoretically investigated for existence and uniqueness of an
optimal control. However, if existence and uniqueness of an optimal control are shown
for this specific example, an extension will be possible only to very special cases. Most
commonly, the complicated geometries of real applications are prohibitive to such
analyses. In addition it is desirable to incorporate the before mentioned uncertainty.
The uncertainty inherent to ground water modeling problems, induced through the
modeling and the typically sparse data, is not yet regarded.

Two, the problem was solved viaits KKT system which sent us to explore efficient
preconditioning techniques. Our focus is the construction of block preconditioners,
i.e., preconditioners composed of blocks maintaining the structure of the original sys-
tem. In theideal case, the blocks in the preconditioner are the inverses of the subma-
trices of the original system. However, it can usually not be assumed that an exact
equation solve is affordable. Approximate solutions must be accounted for. This cor-
responds to the general case where the preconditioner for the full system is composed
of preconditioners for the submatrices. Here, further contributions and research are
promising. Such block preconditioners, composed of preconditionersfor submatrices,
can generally be adapted to specific applications by incorporating known effective pre-
conditioners for subsystems of the system matrix. Thisis certainly a viable approach
to that area of activeresearch identified in [43], “generalizing application—specific pre-
conditionersto a broader setting”.
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Appendix

This appendix is designed to provide the reader who is not familiar with ground water
flow with some of the basic definitionsrelated to aquifers and with some basic assump-
tions used in the derivation of the common model. The presentation is based on the
book by Bear [9].

Ground Water and Aquifers

The purpose of this section is to introduce some of the basic definitions related to
aquifers and to focus the attention on the flow of water in the saturated zone. The
concept of essentially horizontal flow in aquifers, the so called hydraulic approach, is
introduced as a powerful simplification justified in most situations of flow in aquifers.

Classifications

Ground Water, or subsurface water, is aterm used to denote al the waters found be-
neath the surface of the ground. An aquifer isageologic formation that contains water
and permits significant amounts of water to move through it under ordinary field con-
ditions. Other common terms are ground water reservoir or water bearing zone.

Subsurface formations containing water may be divided vertically into several hor-
izontal zones according to the relative proportion of the pore space that is occupied by
water. Essentially one distinguishes between the zone of saturation in which all pores
are completely filled with water, and an overlying unsaturated zone in which the pores
contain both gases (mainly air and water vapor) and water. The term ground water is
in general used to denote the water in the zone of saturation.

The saturated zone can be bounded from above either by an impervious formation
or by a water table. Aquifers can be classed as confined or unconfined, depending
upon the presence or absence of awater table. A confined aquifer is one bounded from
above and from below by impervious formations. In awell just penetrating such an
aquifer, the water level will rise above the base of the upper confining formation. This
water level is called the piezometric head. The piezometric head is usually denoted
by ¢. Itisafunction of space and time, ¢ = ¢(z,y, z,t). A phreatic (or unconfined)
aquifer isone in which awater table, a phreatic surface, serves as its upper boundary.
The phreatic surface is an imaginary surface, a al points of which the pressure is

Al
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atmospheric. Aquifers, whether confined or unconfined, that can lose or gain water
through either or both of the formations bounding them from above or below are called
leaky aquifers. Although these bounding semipervious formations have a relatively
high resistance to the flow of water through them, over the large horizontal areas of
contact involved, significant quantities of water may leak through them into or out
of an aguifer. The amount and direction of leakage is governed in each case by the
difference in piezometric head that exists across the semipervious formation.

A porous medium domain is said to be homogeneousif its permeability isthe same
at al its points. Otherwise, the domain is said to be heterogeneous or inhomogeneous.
If the permeability at a considered point is independent of direction, the medium is
said to be isotropic at that point. If the permeability does depend on the direction, the
medium is called anisotropic. Similar considerations apply to the hydraulic conductiv-
ity defined below.

Continuum Approach to Flow through Porous M edia

In an aquifer, flow takes place through a complex network of interconnected pores.
However, when dealing with flow in an aquifer, the microscopic flow pattern inside
individual pores is usually not considered. Instead, some fictitious average flow is
considered which takes place in the porous medium comprising the aquifer. Thisis
called the continuum approach. The obvious reason for employing the continuum ap-
proach in flow through a porous medium isthat it is practically impossible to describe
in any exact manner the complicated geometry of the solid surfaces that bound the
flowing fluid. Consequently, a solution at the microscopic level is precluded.

A porous medium is defined as a portion of space occupied by heterogeneous ma-
terial, at least one of the phases being a persistent, possibly deformable, solid phase.
The solid phaseis called the solid matrix. The domain whichisnot occupied by asolid
matrix isreferred to asthe pore space. From the point of view of fluid flow through the
porous medium, only the effective pore space is of interest. The effective pore space
isthat part of the interconnected pore space that does not contain any dead—end pores.
In dead—end pores no flow occurs.

For the continuum approach it is necessary that the solid matrix, and hence the pore
space, be distributed throughout the domain occupied by aporous medium. Solid must
be present within each representative elementary volume. The representative elemen-
tary volume is an essential step in passing from the microscopic level to the macro-
scopic level at which only averaged phenomena are considered. The representative
elementary volume can be derived asfollows. Let U (X') denote avolume of a spatial
domain centered at a point whose position vector is X. Let £ denote the amount of
some extensive property of the material system contained in U. The (average) density
pof E over U attimet isdefined by

_ Elux

p(X, ;U (X)) 00X
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In generdl, p isafunction of size, shape and orientation of U (X) at time¢. In order to
make p depend on X only, avolume U = U, must be selected that is bounded between
two spheres U, = (7/6) and U,qp = (7/6) such that for U, it holds

3 3
lmin lmaw

8p(X, t; UO(X))

A 6)12,5, < Up < (m/6)

3
lmaz :

If arange for U, can be found that is common to all points within a given spatia
domain R, one can define afield p(X, ¢) throughout R and treat R as a continuum for
the property E. The length [(E) in the range l,,in, < I(E) < lma. 1S caled the scale
of continuity of £ in R. If R isamultiphase system, it can be treated as a continuum
in describing a process involving a set of properties E in it, provided a common scale
of continuity exists for all the properties E. The volume U, is then the representative
elementary volume of the material system within R. Certainly /,,,, must be much
smaller than the dimensions of R, and /,,;, must be much larger than the size of an
individual pore.

Thus, by employing the definition of arepresentative elementary volume the actual
medium is replaced by afictitious continuum in which values of any property may be
assigned to any single point. The values assigned to a point x in the continuum, the
macroscopic level of description, are averaged ones. The averaged values are taken
over the representative elementary volume centered at .

Hydraulic Approach to Flow in Aquifers

In general, flow through a porous medium is three-dimensional. However, since the
geometry of most aquifersis such that they are thin relative to their horizontal dimen-
sions, e.g. tens or hundreds of meters as compared to thousands of meters, a simpler
approach can be justified, cf. [9, p. 26ff.]. According to this approach it can be as-
sumed that the flow in the aquifer is everywhere essentially horizontal (or that it may
be approximated as such), neglecting vertical flow components. Flow that isessentially
horizontal is called aquifer type flow. The assumption of horizontal flow isstrictly true
and not only an assumption for flow in ahorizontal, homogeneous, isotropic, confined
aquifer of constant thickness and with fully penetrating wells. The approximation is
still good when the thickness of the aquifer variesin such away that the variations are
much smaller than the average thickness.

Whenever justified on the basis of the geometry, i.e., thickness versus horizontal
length, and the flow pattern, the assumption of horizontal flow greatly simplifies the
mathematical analysis of the flow in the aguifer. The assumption of horizontal flow is
equivalent to assuming vertical equipotentials ¢ = ¢(z, y,t). The error introduced in
this assumption is small in most cases of practical interest, cf. [9, p. 28ff.]. We seein
the following discussion how the aguifer flow equations are derived by averaging the
basic three-dimensional flow equations along the thickness of the aguifer, using the
assumption of vertical equipotential surfaces. This procedure is called the hydraulic
approach.
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The assumption of essentially horizontal flow failsin regions where the flow has a
large vertical flow component as, for example, in the vicinity of partially penetrating
wells or outlets in the form of springs, rivers, etc. However, even in these cases, at
some distance from the source or the sink, the assumption of essentially horizontal
flow isvalid again. Asasimple rule, one may assume aquifer—type flow at distances
larger than 1.5 to 2 times the thickness of the aquifer at that vicinity. See eqg. [9,
pp. 28ff., 80ff.]. At smaller distances, equipotentials are no more vertical. Theflow is
three—dimensional and must be treated as such. Because of itssimplicity and relatively
small error involved, the assumption of essentially horizontal flow is usually applied
also to those relatively small parts of an investigated region where it is not strictly
applicable. One must, however, be careful in making use of results derived for these
parts of an investigated region.

The assumption of essentially horizontal flow can be applied also to leaky aquifers.
When the hydraulic conductivity of the aquifer ismuch larger than that of the semiper-
meable layer, and the thickness of the first is much larger than that of the latter, it
follows that the flow in the aguifer is essentialy horizontal, whileit is essentially ver-
tical in the semipermeable layer. Compare[8, p. 26].

The assumption that the flow is essentially horizontal in unconfined aquifersisthe
basis for the Dupuit assumption presented bel ow.

Ground Water Flow

This section deals with the basic law governing the motion of ground water in aquifers
and with the porous matrix and aquifer properties appearing in thislaw. Only saturated
flow is considered here. In saturated flow, water completely fills the pore space of the
considered porous medium domain. The continuum approach introduced above is
employed, and all variables and parameters have aready their average meaning in a
porous medium regarded as a continuum. The presentation follows[9, Ch. 1V].

Darcy’sLaw

Darcy’s law governs the motion of ground water in aquifers. It was derived in exper-
iments in its one-dimensional form and can be extended to three-dimensional flow.
In combination with the continuity equation presented below and further conditions,
Darcy’s law completely describes flow in an aquifer.

Empirical One-Dimensional Form

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand fil-
tersin connection with the fountains of the city of Dijon, France. From his experiments
he concluded that the rate of flow @, i.e., volume of water per unit time, is

<& proportional to the cross—sectional area A normal to the flow,
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<& proportional to the differencein height ; — hs
(measured with respect to some geometric fixed point),

< inversely proportional to the length [ of the filter.
The combination of these conclusionsisthe Darcy formula

Q=K M. (A.1.1)
The coefficient K of proportionality is discussed below. In Equation (A.1.1), h isthe
piezometric head, and h; — h, isthe difference in piezometric head across the filter of
length /. The piezometric head describesin terms of head of water the sum of pressure
and potential energy of the fluid per unit weight. Thus, the quantity (h; — ho)/l can be
interpreted as hydraulic gradient. Taking / to be unit length, we denote the hydraulic
gradient by VA . Defining the specific discharge, ¢, asthe volume of water flowing per
unit time through a unit cross—sectional area normal to the direction of flow,

q=Q/A,
we obtain as another form of Darcy’slaw
qg=—KVh. (A.1.2

Darcy’s law (A.1.1) can be extended to flow through an inclined porous medium
column. The porous medium is assumed to be homogeneous.  For this extension,
define the piezometric head ¢ as the sum of pressure head and elevation head,

p=z+"L (A.13)
v

The length z in (A.1.3) represents the elevation head. The elevation head is potential
energy per unit weight of water. The quotient p/~ appearing in (A.1.3) is called the
pressure head. Pressure is denoted by p and the specific weight of water by ~v. The
pressure head representsthe pressure energy per unit weight of water of specific weight
~ a that point. For a compressible fluid under isothermal conditions, the specific
weight depends on pressure, v = «(p). The pressure head is defined by

p_ [ ds
Y /Po v(s)
Under most circumstances, however, the dependency of v on p can be neglected. For
incompressible fluids, the specific weight does not depend on pressure.
With the definition of ¢ in (A.1.3), the equations

Q=K M, ¢=—-KV¢ (A.1.4)
hold in analogy to (A.1.1) and (A.1.2). Note that flow takes place from a higher to a
lower piezometric head and not from a higher to alower pressure.
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The energy loss ¢ = ¢1 — ¢ is due to friction in the flow through the porous
medium. Actually, flow takes place only through part of the cross—sectional area A of
the column of porous medium that is considered for the derivation of Darcy’slaw. The
remaining part is occupied by the solid matrix. The portion of the area A available to
flowisn, A, wheren, denotesthevolumetric (or average) areal porosity. Accordingly,
the field velocity v of flow through the column is defined as, see [8, p. 23],

Q q
= —. A.15
n,A n, ( )

V=

In some instances, the volumetric porosity n, heeds to be complemented by the con-
cept of effective porosity, n.. The effective porosity n, is determined with respect to
the flow through the medium, n, < n,. Thisis of importance when part of the fluid in
the pore space is immobile, e.g. when the flow takes place in a medium where adhe-
sion playsarole or when the porous matrix includes alarge portion of dead—end pores.
Then we write
o= -4
" neA  n.

Note that both the specific discharge ¢ and the field velocity v (or simply velocity)
are averaged values, their definition justified by the continuum approach. They will in
general not coincide with the actual local velocity of the fluid at the microscopic level.

Extension of Darcy’sLaw

The experimentally derived equation of motion in the form of Darcy’slaw (A.1.4) is
limited to one-dimensional flow of a homogeneous incompressible fluid. When the
flow isthree-dimensional, the generalization of (A.1.4) and (A.1.5) is

g=-KV¢, v= ni (A.1.6)

Here, v isthe velocity vector, ¢ the vector of specific discharge, and V ¢ the hydraulic
gradient, all with componentsinthedirectionsz, y, z of Cartesian coordinates. The co-
efficient K isdiscussed below. The extension of the one-dimensional equation (A.1.4)
of motion to three-dimensional flow isjustified in [8, p. 104].

Range of Validity

As the specific discharge, ¢, increases, the relationship between this discharge and the
hydraulic gradient V¢ gradually deviates from the linear relationship that is expressed
by Darcy’s law (A.1.6). Therefore it is necessary to define a range of validity for
Darcy’slinear law.

In flow through conduits, the Reynolds number Re is used as a criterion to distin-
guish between laminar flow occurring at low velocities and turbulent flow occurring
at higher velocities. The Reynolds number is a dimensionless number expressing the
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ratio of inertial to viscous forces acting on the fluid. By analogy, a Reynolds number
is defined also for flow through porous media by

ql
=
Here, [ is some representative length of the porous matrix and v is the kinematic vis-
cosity of thefluid.

Bear [9, p. 66], states that most ground water flow occurs at Reynolds numbers
Re well within the laminar flow range. In this range the linear Darcy law (A.1.6) is
applicable. Although flow at large Re may sometimes occur, and athough there may
also exist alower limit to the validity of Darcy’s law, this phenomenon is accordingly
considered to be of no significance in aquifer flows of practical interest. In both ap-
plicationsthat are worked through in thisthesis, the Reynolds numbers are well bel ow
10, i.e,, in the laminar range.

Re

Hydraulic Conductivity

The coefficient of proportionality appearing in the various forms of Darcy’s law dis-
cussed above is called hydraulic conductivity. Depending on whether the underlying
porous medium is isotropic or anisotropic, the hydraulic conductivity K is either a
scalar or a (3 x 3)—tensor. Depending on whether the underlying porous medium is
homogeneous or heterogeneous, the hydraulic conductivity K is either a constant or
variesin space.

An isotropic medium is a medium in which the permeability is independent of
direction. Then the hydraulic conductivity can be defined using (A.1.6) as the specific
discharge per unit hydraulic gradient. Itisascalar with dimension /¢, where! denotes
unit length and ¢ unit time. (In German literature, the hydraulic conductivity in the
isotropic case is in general denoted by k¢, while in English literature the upper case
letter K isused, cf. [9], [57].)

The hydraulic conductivity expresses the ease with which a fluid is transported
through a porous matrix. It is, therefore, a coefficient which depends on both matrix
and fluid properties. Therelevant fluid propertiesare density p and kinematic viscosity
v. Therelevant solid matrix properties are mainly grain or pore size distribution, shape
of pores or grains, tortuosity, specific surface and porosity. These determine the per-
meability &, of the porous matrix which hasdimension /2. (Typical values of hydraulic
conductivity and permeability for varioustypes of soil are givenine.g. [9, p. 68], [57,
p. 42].) In a homogeneous medium, ky = const. In a heterogeneous medium, the
permeability variesin space and must be conceived as kg = ko(x, y, z). The hydraulic
conductivity can be expressed as

kf(xa Y, Z) = % k’o(.ﬁC, Y, Z):

where g denotes the gravitational constant. We write k;(z,y, z) = k; in the ho-
mogeneous case because then the hydraulic conductivity is independent of the spatial
variables.
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Under anisotropic conditions, the hydraulic conductivity is a (3 x 3)—matrix. In
a homogeneous medium, the entries are constant; in an inhomogeneous medium, the
coefficients may vary in space.

Dupuit Assumption for an Unconfined Aquifer

An unconfined aquifer is defined above as an aquifer in which a water table, the
phreatic surface, serves as its upper boundary. The phreatic surface is an imaginary
surface at all points of which the pressure is atmospheric. The piezometric head ¢
varies from point to point within an unconfined aquifer. Except for special cases like
water at rest, the phreatic surface is not strictly horizontal and equipotential surfaces
are not strictly vertical. Then ¢ = ¢(z, y, z,t) must be derived by solving a partial
differential equation in the three-dimensional zyz space. The Dupuit assumption dis-
cussed below is equivalent to assuming horizontal flow. This allows the reduction of a
three—dimensional partial differential equation to atwo—dimensional one and isthusa
powerful tool.

In steady flow without accretion in the vertical zz plane, the phreatic surface is
a streamline. At every point P along this streamline, the specific discharge is in a
direction s tangent to the streamline and is given by Darcy’s law as

¢ =—K % =—-K % = —K sin(0) (A17)
because along the phreatic surfacep = 0 and ¢ = z. See Equation (A.1.3). Dupuit
based his assumption in 1863 on the observation that in most ground water flows the
slope of the phreatic surfaceisvery small. Slopesof 0.1% or 1% are often encountered.
The Dupuit assumption can be phrased in the following form: The slope 8 in (A.1.7)
isnegligibly small, i.e.,
0~0.

Thus, sin(#) can bereplaced by tan() = dh/dz. Theassumption of small # isequiv-
alent to assuming that equipotential surfaces are vertical and that the flow is essentially
horizontal. This meansthat ¢ = ¢(z) rather than ¢ = ¢(x, z). It iscommon in this
case to denote the piezometric head by & rather than by ¢. Compare Equations (A.1.3)
and (A.1.1). Thus, the Dupuit assumption leadsto the specific discharge in z—direction
being expressed by

dh

r — —-K N = .
q o =0

In general, the head h depends on both = and y so that

oh o Oh

QLI::_K_a Qy: 8ya

e h = h(z,y).

The Dupuit assumption may be considered as a good approximation in regions where
6 isindeed small and the flow is essentially horizontal. The error that isintroduced is
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in general small. For adiscussion see e.g. [9, p. 77f.], [8, p. 363]. The important ad-
vantage gained by employing the Dupuit assumptionisthat ¢ = ¢(z, y, 2) isreplaced
by h = h(z,y), so that z does not appear as an independent variable. Also, since at a
point on the free surface p = 0 and ¢ = h, we assume that the vertical line through the
point is also an equipotential line on which ¢ = h = const. The Dupuit assumption
cannot be applied in regions where the vertical flow component is not negligible.

Note that in general ¢ and A vary not only in space but also with time so that
¢ = d(x,y,2,t)and h = h(z,y,1).

Continuity Equation

Darcy’s law, governing the flow of water in confined and unconfined aquifers, has
been presented in the previous section. An additional law we have to invoke is that
of conservation of matter. This takes here the form of a continuity equation. The
distribution of ¢ = ¢(z, y, z, t) in an aquifer is obtained by solving the combination of
Darcy’s law and this equation subject to appropriate boundary and initial conditions.
In order to state the continuity equation, one has to distinguish between different types
of aquifers. For the derivation of the continuity equation we refer to [9, Ch. V].

Aquifer Storativity

The continuity equation derived in this section comprises a storage term and an ex-
pression describing the flow. It is the storage term we turn to now.

The specific storativity Sy of the porous medium of an aquifer is the volume of
water 0U,, released from storage or added to it in aunit volume §U,, of aquifer per unit
change in piezometric head §¢,

68U,
T 50,06

So

Accordingly, one can define a storativity S for a confined aguifer as the volume
oU,, of water released from storage or added to it per unit horizontal area A of aguifer
and per unit decline or rise of piezometric head §¢,

68U,
T A

The storativity for a confined agquifer mainly depends on water and matrix compressi-
bility.

A storage coefficient can also be defined for an unconfined aquifer. Consider a
unit (horizontal) area A of an unconfined aquifer. The volume of water stored in an
unconfined aquifer is indicated by the water table. If, as a result of the flow in the
aquifer, avolume of water leavesthis areain excess of the volume of water entering it,
the water table drops. The storativity S for an unconfined aquifer can be defined in the
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same way as for a confined aquifer, except that here the drop 64 is of the water table,

U,

o= Abh

Basic Continuity Equation

The basic continuity equation for three-dimensional flow in a porous medium is usu-
ally developed using a control volume U of dimensions dzx, dy, dz centered at some
point P(z,y, z). Thisis called Eulerian Approach, see[9, p. 89ff.]. A balance for the
mass of water entering, leaving and being stored in the box can then be written. The
excess of inflow over outflow per unit time and per unit volume around P is expressed
by —V(pq). Here, pg" = p(gz,qy, q.) denotes the mass flux of water of density p
around point P per unit area per unit time. By the principle of mass conservation, in
the absence of sources and sinks of mass, this excess of mass must equal the mass of
water accumulated per unit time and per unit volume of porous medium around P. The
mass balance can be written as

dpn, _ Opqy  Opgy | Opg,
o - or "oy T o)

or, equivalently, in the form

apny,
ot

Fluid compressibility is low. Compare [57, p. 38]. We assume ground water to be
incompressible. Neglecting fluid compressibility, the constant density p can be omit-
ted in (A.1.8). Taking into account the relationship between the porosity n, and the
specific storativity Sy, Equation (A.1.8) reducesto
0

So a—f + V- (pg) =0. (A.1.9
When the flow is steady, d¢ /0t = 0, or when both fluid and solid are incompressible,
Sp = 0 and p = const., the mass balance (A.1.8) reducesto

V-qg=0.

+V-(pg) = 0. (A.1.8)

This states volume continuity.

The next step is to introduce the equation of motion (A.1.6) into the continuity
equation (A.1.9). See[9, p. 92f ], [8, p. 205]. The continuity equation (A.1.8) can be
written in terms of the single variable ¢ as

99

V- (KV¢) =Sy T (A.1.10)
For a homogeneous isotropic medium, (A.1.10) reducesto
kr Ap =Sy 99 (A.1.11)

ot
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with the Laplace operator A¢ = V - (V¢). Findly, if the flow is steady or when both
fluid and solid are assumed to be incompressible, the storagetermin (A.1.11) vanishes.
The time—dependent equation (A.1.11) then reduces to the L aplace equation

ky A¢ = 0. (A.1.12)

Equations (A.1.8) to (A.1.12) have been developed for a domain without sources
or sinks. If sourcesor sinks are present, they must be represented by an additional term
on the left—hand side of (A.1.8). The sink or source term expresses the rate at which
mass of water is added per unit time and unit volume of porous medium around P.

Further Conditions

Each of the equations presented in the previous sectionis a partial differential equation
that describes a class of phenomena. To obtain a particular solution corresponding to a
specific problem, it isnecessary to provide further specificationsthat are not contained
in the equations. These must include:

<& The geometry of the domain in which the considered flow takes place.
< Values of al relevant physical coefficients.

< Initial conditions which describe the initial state of the fluid in the considered
flow domain.

< Boundary conditions describing how the fluid in the considered domain interacts
with its surroundings.

Initial conditions are the specification of the piezometric head ¢ at al points within the
domain at some initial time ¢, usually taken ast = 0. We denote the domain by €,
Q, C IR?. Initial conditions are usually written, with f,(.) on 2, aknown function, as

d(x,y,2,0) = ho(z,y,2) INQy.

We now examine the boundary conditions in more detail. These describe the flow
on the boundary of the considered domain. Three main types of boundary conditions
are generally distinguished, the Dirichlet boundary conditions, the Neumann bound-
ary conditions, and the mixed (or Cauchy) boundary conditions. The main types of
boundary conditions encountered in flow through porous media can be grouped ac-
cording to these distinctions. We consider boundary parts I'p, I'y, and ', with
LpNTyNTe=0,TpUlyULle = 0. We consider as known real—valued functions
folz,y,z,t), fn(z,y,2,t),and fo(x,y, z,t) definedon T'p % [0, ¢1], Ty x [0, ¢4], and
[ x [0, 4], respectively.

<& The boundary of prescribed potentia correspondsto a Dirichlet boundary value
problem. A boundary of this kind occurs whenever the flow domain is adjacent
to abody of open water. The boundary is then an equipotential surface that can
vary withtime or be constant. Since the piezometric head isthe sameat all points
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of an open water body, this piezometric head is al so the boundary condition at all
points on the interface between a porous medium and the water body. Inthistype
of boundary value problem, the piezometric head ¢ is prescribed for all points of
the boundary I'p, i.€e.,

(b(x,y,z, t) = fD(xay: Zat) (xayaza t) € FD X [Oatl] .

The boundary of prescribed flux leads to a Neumann boundary value problem.
For such a boundary, the flux normal to the boundary surface is prescribed,

(@550 = Inlm.ozt) (5,7,0) € Ty x 0,6]

A specia case of this type of boundary is the impervious boundary, where the
flux normal to the boundary vanishes everywhere. This can be expressed as a
homogeneous Neumann boundary condition. In addition to the obvious case of
an impervious boundary, such a condition is aso encountered along a streamline
that is used as a boundary of a flow domain, and along a water divide in an
aquifer.

The semipervious boundary accounts for mixed boundary conditions. Thistype
of boundary condition occurs when the porous medium domain isin contact with
awater body or another porous medium domain, but arelatively thin semipervi-
ous layer separates the two domains. An example is when a clogged river bed
serves as a boundary for the flow domain. Let ¢, as before, denote the piezomet-
ric head in the considered domain, and f that in the external domain. Assuming
that no storage occurs in the semipervious layer, then the flux through that layer
is, normal to the boundary of the considered domain,

0

%Qs(xayazat) = %(fc‘(xay’z’t) - ¢($’ya Z’t)) ($,y, Z’t) € 1-‘C’ X [O’tl] .

The factor ¢ isthe resistance of the semipermeable layer, equal to the ratio of its
thickness to its hydraulic conductivity.

The unsteady phreatic surface with accretion and the seepage face both are
boundaries of prescribed potential.
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