
Request-Prediction and Hyperlink-Proposals
Methodologies and Mathematics

behind Web-Applications

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften

am Fachbereich IV der Universität Trier

vorgelegt von

Diplom-Informatiker

Ernst-Georg Haffner

November 2000





Gutachter: Prof. Dr. sc. Christoph Meinel (Universität Trier)

Prof. Dr. Michael M. Richter (Universität Kaiserslautern)

Datum der Disputation: 10. April 2001





Als ich mir vorgenommen hatte zu erkennen,
was Wissen wirklich ist, und zu beobachten,

welches Geschäft eigentlich auf der Erde getätigt wird,
da sah ich ein, dass der Mensch,

selbst wenn er seinen Augen bei Tag und Nacht keinen Schlaf gönnt,
das Tun Gottes in seiner Ganzheit nicht wiederfinden kann,

das Tun, das unter der Sonne getan wurde.
Deshalb strengt der Mensch, danach suchend, sich an

und findet es doch nicht wieder.

Kohelet 8,16-17a

Die Bibel – Einheitsübersetzung der Heiligen Schrift
(ökumenischer Text)

Danksagung

Sehr viele Menschen haben dazu beigetragen, dass diese Arbeit in der vorliegenden
Form erstellt werden konnte.

Mein Dank gilt in erster Linie Prof. Dr. Christoph Meinel, dem Direktor des In-
stituts für Telematik, für die wissenschaftliche Begleitung der Dissertation sowie dem
gesamten Stab an Mitarbeitern, die durch vielfältige Anregungen, Diskussionen und
Hinweise das Promotionsvorhaben erst möglich gemacht haben.

Die langjährige Zusammenarbeit mit Dipl.-Inform. Uwe Roth und Dipl.-Phys. An-
dreas Heuer in den projektbezogenen Anwendungsbereichen “Smart Data Server”
(SDS) und “Hyperlink-Management Systeme” (HLM) erwies sich hierbei als beson-
ders fruchtbar und resultierte darüber hinaus in einigen gemeinsamen - thematisch
relevanten - wissenschaftlichen Publikationen.

Darüber hinaus möchte ich insbesondere Dipl.-Math. oec. Torsten Becker danken
für zahlreiche Anmerkungen, Kommentare und Korrekturvorschläge formaler und in-
haltlicher Natur im Rahmen des Reviewing. Die Qualität der Arbeit konnte so deutlich
gesteigert werden.

Für das sprachliche Korrekturlesen wurde ich auf der Suche nach einer Expertin
auf diesem Gebiet sehr schnell fündig. Spontan sagte mir Ide Düro ihre Hilfe zu und
fand zahlreiche grammatikalische und stilistische Verbesserungen. Dafür herzlichen
Dank!

Mein aufrichtiger Dank gilt auch den vielen Menschen, die indirekt zur Fertigstel-
lung der Arbeit beigetragen haben. Dr. Thomas Engel als stellvertretender Instituts-
leiter wäre hier ebenso zu nennen wie etwa Rüdiger Schlegel und Giulia Bäuerlein, die
mich über viele Monate hinweg tatkräftig als wissenschaftliche Hilfskräfte unterstützt
haben. Sehr wichtig ist und war mir stets die Motivation und der Rückhalt meiner
Familie, ohne die das gesamte Promotionsvorhaben sicherlich undenkbar gewesen wäre.

Schließlich danke ich Prof. Dr. Michael M. Richter, dem Betreuer meiner Diplom-
arbeit, für seine Zusage, dieser Dissertation als Gutachter zur Verfügung zu stehen.





Abstract

Due to the breath-taking growth of the World Wide Web (WWW), the need for fast
and efficient web applications becomes more and more urgent. In this doctoral thesis,
the emphasis will be on two concrete tasks for improving Internet applications.

On the one hand, a major problem of many of today’s Internet applications may be
described as the performance of the Client/Server-communication: servers often take a
long time to respond to a client’s request. There are several strategies to overcome this
problem of high user-perceived latencies; one of them is to predict future user-requests.
This way, time-consuming calculations on the server’s side can be performed even
before the corresponding request is being made. Furthermore, in certain situations,
also the pre-fetching or the pre-sending of data might be appropriate. Those ideas will
be discussed in detail in the second part of this work.

On the other hand, a focus will be placed on the problem of proposing hyperlinks to
improve the quality of rapid written texts, at first glance, an entirely different problem
to predicting client requests. Ultra-modern online authoring systems that provide
possibilities to check link-consistencies and administrate link management should also
propose links in order to improve the usefulness of the produced HTML-documents.
In the third part of this elaboration, we will describe a possibility to build a hyperlink-
proposal module based on statistical information retrieval from hypertexts.

These two problem categories do not seem to have much in common. It is one
aim of this work to show that there are certain, similar solution strategies to look
after both problems. A closer comparison and an abstraction of both methodologies
will lead to interesting synergetic effects. For example, advanced strategies to foresee
future user-requests by modeling time and document aging can be used to improve the
quality of hyperlink-proposals too.





Zusammenfassung

Aufgrund des atemberaubenden Wachstums des Internets seit der Einführung des
World-Wide-Web Dienstes (WWW) wird auch der Bedarf an effizienten Webanwen-
dungen zunehmend dringlicher. Die vorliegende Arbeit konzentriert sich hierbei auf
zwei spezielle Aspekte moderner Internetanwendungen.

So erfordert die Client/Sever-Kommunikation im “Netz der Netze” eine beson-
dere Aufmerksamkeit aufgrund des potentiell kritischen Antwortzeitverhaltens. Zur
Reduktion der Wartezeiten für die Benutzer existieren dabei eine Reihe von Strate-
gien, darunter die “Request-Prediction”, die Vorhersage künftiger Benutzeranforderun-
gen, die eines der beiden Hauptthemen dieser Arbeit darstellt. Korrekte Vorhersagen
können dabei helfen, aufwendige Rechenarbeit auf Serverseite oder gar das Übertra-
gen von Daten zu initiieren, bevor die entsprechende Anfrage durch den Anwender
überhaupt gestellt wird.

Das zweite Schwerpunktthema der Arbeit befasst sich mit der automatisierten
Generierung von Vorschlägen für Hyperlinks, den sogenannten “Hyperlink-Proposals”.
Dabei werden Wege aufgezeigt, wie man existierende oder künftige Redaktionssys-
teme für Websites im Internet oder Intranet durch die Ergänzung um ein “Hyperlink-
Proposal Modul” (HPM) aufwerten könnte. Das vorgestellte Verfahren basiert auf der
statistischen Informations-Extraktion aus den Online-Texten und lehnt sich dabei an
die Technik des “fallbasierten Schließens”, des “Case-Based-Reasoning” (CBR), an.

Zunächst scheinen diese beiden Aspekte von Webanwendungen kaum Gemein-
samkeiten aufzuweisen. Im Gegensatz dazu versucht die vorliegende Arbeit gerade
nachzuweisen, dass ein tieferes Verständnis beider Anwendungsfelder nicht nur ähn-
liche methodologische Lösungsstrategien aufdeckt, sondern darüber hinaus auch Wege
aufzeigt, wie mögliche Synergieeffekte genutzt werden können.





Kurzfassung

Das rasante Wachstum des Internets seit der Einführung des World-Wide-Web Dienstes
(WWW) erfordert eine performante Infrastruktur und effiziente Softwarelösungen,
um die informationstechnischen Herausforderungen angemessen bewältigen zu können.
Hierbei müssen verschiedene Paradigmen moderner Webapplikationen berücksichtigt
werden.

So ist die Client/Server-Kommunikation im Internet grundsätzlich durch variieren-
de und unzuverlässige Bandbreiten und Auslastungen der Netzwerke geprägt. Die zu-
grundeliegenden Technologien weisen naturgemäß aufgrund der globalen Verbreitung
sehr unterschiedliche Entwicklungsstadien auf. Mannigfaltige Informationen unter-
schiedlichster Qualität finden sich in allzu chaotischer Verteilung im “Netz der Netze”
auf diversen Systemen, Datenbanken, Plattformen. Allein die Festlegung auf gemein-
same Kommunikationsprotokolle macht den Datenaustausch erst möglich.

Dem steht - im Allgemeinen - eine relativ hohe Erwartungshaltung auch und ge-
rade des ungeübten Anwenders entgegen: Informationen sollen einfach, präzise, mit
beachtlicher Qualität und insbesondere schnell auf Anfrage verfügbar sein.

Ausgehend von dieser Basis behandelt die vorliegende Arbeit primär zwei spezielle
Themen aus bedeutsamen Bereichen der Webanwendungen: Request-Prediction, die
Vorhersage von Benutzeranforderungen, sowie Hyperlink-Proposals, das Vorschlagen
von Hyperlinks für die Texterstellung von Online-Autoren.

Der Prediction-Ansatz verfolgt hierbei unterschiedliche Ziele. Zum einen sollte sich
das vom Einzelbenutzer wahrgenommene Antwortzeitverhalten des Servers merklich
verbessern ohne dabei in der Gesamtbilanz Leistungseinbußen für andere Teilnehmer zu
erzeugen. Zum anderen kann eine Modellierung des Benutzerprofils selbst Erkenntnisse
über die Natur des Anforderungsverhaltens a posteriori erbringen, die als Grundlage
für angemessenes Design von Webinhalten dienen mag.

Die Idee zur Generierung von Link-Vorschlägen für Hypertexts beruht auf dem
Urgedanken des WWW, nämlich dass verwandte Informationsinhalte durch einfache
Mausklicks miteinander in Beziehung gebracht werden können und sollten. Der zen-
trale und sehr einfache Mechanismus basiert hierbei auf den sogenannten Hyperlinks,
Referenzen auf weitere relevante Adressen, die das Navigieren im WWW erst zum
“Surfen” machen.1 Das in dieser Arbeit vorgestellte automatische Erzeugen von der-
artigen Links als Vorschläge zur Ergänzung von Hypertexts sollte einen kleinen Beitrag

1Für die vorliegende Arbeit sind nur Links, deren Zieladressen weitere Hypertexts darstellen, von
besonderem Interesse. Referenzen zu graphischen, akustischen oder anderen multimedialen Zielob-
jekten werden dabei nicht gesondert berücksichtigt, obgleich ihre Bedeutung im WWW zunehmend
steigt.

i



ii

dazu leisten, die Vernetzungsdichte von Dokumenten zu erhöhen und damit ebenso die
Brauchbarkeit der Inhalte zu steigern.

Die vorliegende Arbeit gliedert sich in 4 Hauptteile. Im ersten Teil wird neben
einer Einführung in die Thematik Basiswissen vermittelt, das sowohl die methodi-
schen Grundsätze als auch das Umfeld und die konkreten Einsatzgebiete der später
vorgestellten Entwicklungen und Anwendungen verdeutlichen soll.

Der zweite Teil ist dem Thema “Request-Prediction” gewidmet. Hier werden in
mehreren Kapiteln Grundlagen, eine exemplarische Implementation sowie die Auswer-
tung eines einfachen Modells zur Vorhersage von Benutzeranfragen im Internet ge-
liefert. Darüber hinaus werden fortgeschrittene Modellerweiterungen diskutiert. Eine
Zusammenfassung der wichtigsten Verfahren und Erkenntnisse findet sich im folgenden
Abschnitt Request-Prediction.

Der Bereich des “Hyperlink-Proposals” wird im dritten Teil der Arbeit behandelt.
Als methodische Ausgangsbasis zur Entwicklung eines Moduls zur Generierung von
Linkvorschlägen dient der Forschungsbereich des fallbasierten Schließens, oder Case-
Based-Reasoning (Grundlagen hierüber sind in Abschnitt 3.1 des Haupttextes zu fin-
den). Ein kompaktes Resümee der wichtigsten Erkenntnisse wird im übernächsten
Abschnitt Hyperlink-Proposals innerhalb dieser Zusammenfassung thematisiert.

Das überraschende Ergebnis der Gegenüberstellung beider Anwendungsgebiete, die
auf den ersten Blick nur geringe Gemeinsamkeiten aufweisen, findet sich im vierten Teil
der vorliegenden Dissertation. Ein Extrakt der bedeutendsten Analyseergebnisse und
mögliche Synergieeffekte werden im letzten Abschnitt Synthese vorgestellt.

Aufgrund der formal unterschiedlichen Anwendungsgebiete werden die bedeutsam-
sten Referenzen für Request-Prediction und Hyperlink-Proposals getrennt in den je-
weiligen Hauptabschnitten behandelt. Das gemeinsame Literaturverzeichnis findet sich
am Ende des vierten Teils.

Die beiden Anhänge enthalten kommentierten Quellcode für mögliche Implementa-
tionen eines Testszenarios für die Benutzervorhersage und bedeutsame Extrakte eines
Moduls zur Generierung von Hyperlink-Vorschlägen. Eine Besprechung der jeweiligen
Algorithmik findet sich für die Request-Prediction in den Kapiteln 5 und 6 sowie für
den Bereich des Hyperlink-Proposals in Kapitel 8.

Request-Prediction

Die zum Teil erheblichen Wartezeiten bei Webanwendungen auf eine Antwort des Ser-
vers nach Absendung einer Anforderung von der Client-Seite können auf den Anwen-
der sehr störend wirken. Eine Möglichkeit zur Verbesserung des Antwortzeitverhaltens
kann darin bestehen, künftige Benutzeranforderungen vorherzusehen. Aufwendige Re-
chenoperationen etwa können so bereits auf der Serverseite stattfinden, bevor eine ent-
sprechende Anfrage von Seiten des Anwenders stattgefunden hat. Einen noch stärkeren
Effekt kann das Client-Programm durch Prefetching von Daten erzielen. Ein analoger
Mechanismus auf der Server-Seite kann ebenfalls Daten im Voraus an den Klienten
senden, allerdings nur als Antwort auf eine (initiale) Anfrage des Anwendersystems.

Insbesondere das Übertragen von noch nicht angeforderten Informationen birgt
jedoch enorme Risiken mit negativen Effekten auf die Netzwerk- und Systemlast für



iii

den Fall, dass die Vorhersage unzutreffend ist.

Ausgangspunkt der Überlegungen in Kapitel 4 sind deshalb generelle Vorausset-
zungen, die als Basis für alle hierauf aufbauenden Verfahren dienen können. Eine
besondere Rolle für die Herleitung konkreter Vorhersage-Formeln spielen dabei eben-
so verschiedene Kostenbetrachtungen. Die voraussichtlich verursachten Kosten für
die Bereitstellung und Übertragung von Datensätzen mit und ohne den Einsatz von
Prediction-Techniken werden einander gegenübergestellt und verglichen (4.3). Hieraus
ergeben sich - je nach gewähltem Ansatz - unterschiedliche Schwellwerte für die Wahr-
scheinlichkeit, dass ein bestimmter Datensatz innerhalb einer Session2 angefordert wer-
den wird. Nur bei Überschreiten dieses Wertes kann die Vorhersage durch frühzeitige
Berechnungen bzw. Datenübertragungen kostenmindernd eingesetzt werden.

Die Anforderungswahrscheinlichkeiten selbst ergeben sich hierbei unmittelbar aus
den bedingten Wahrscheinlichkeiten für künftige Requests unter Berücksichtigung des
bisherigen Nutzerverhaltens (4.4.2.1). Dieser Ansatz ist etwas allgemeiner als das
üblicherweise eingesetzte Markov-Modell (3.2), damit es sich nicht allein für die Vor-
hersage von HTTP3-Anforderungen eignet, sondern allgemeiner für unverlinkte Da-
tensätze einsetzbar ist. Als Beispiel hierfür sei der Smart-Data-Server (SDS) angeführt,
der in 2.1 beschrieben und charakterisiert wird.

Ein besonderes Problem im Umfeld von Prediction-Algorithmen ergibt sich aus der
Schwierigkeit einer angemessenen Bewertung der Praxistauglichkeit des jeweiligen An-
satzes. Aufgrund der hohen Risiken bei inkorrekter Vorhersage ist die Probeeinführung
eines derartigen Systems in der späteren Einsatzumgebung oft unangebracht.

Anstatt dessen modellieren wir ein Testszenario, in dem unterschiedliches Benut-
zerverhalten simuliert und über diverse Parameter gesteuert und kontrolliert werden
kann. Dabei gehen wir davon aus, dass bestimmte Elemente einer Session teilweise
vorhersehbar (“semi-random”) und andere so sehr vom Zufall abhängig sind, dass sie
keine signifikant höheren a priori Wahrscheinlichkeiten gegenüber den verbleibenden
Elementen aufweisen (“random”). Demgemäß wirken sich die systematisch eingestell-
ten Parameter wie der Random Factor und die Density unterschiedlich auf verschie-
dene Requests innerhalb einer Session aus. Mit ersterem lässt sich die Bedeutung des
Zufalls steuern, während letzterer für die mittlere Anforderungshäufigkeit innerhalb
einer Benutzersitzung verantwortlich zeichnet. Zusammen mit den Einstellungen für
Umfang und Anteil an teilweise vorherzusagenden Elementen sowie den sich aus den
Kostenbetrachtungen ergebenden Wahrscheinlichkeitsschwellwerten erhalten wir so ei-
ne naheliegende und relativ natürliche Modellierung des Nutzerverhaltens. Details
hierzu sind im Abschnitt 5.1 zu finden.

Aus den verschiedenen Wertezuweisungen der beschriebenen Parameter ergibt sich
eine unterschiedliche Qualität des Prediction-Ansatzes. Zur Quantifizierung dieser
Ergebnisse dient dabei die Prediction Quality (PQ), die primär als Quotient aus kor-
rekten Vorhersagen und der Anzahl aller Versuche betrachtet werden kann. Hierbei
zeigt sich deutlich, dass der Zufälligkeitsanteil in den Benutzeranforderungen nicht zu
groß werden darf, damit der Einsatz von Vorhersage-Algorithmen sinnvoll bleibt. Eine
detaillierte Diskussion dieser und weiterer Ergebnisse ist in Abschnitt 5.3 aufgeführt.

2Zur Diskussion des Session-Begriffs sei auf 4.3.1 verwiesen.
3Hypertext Transfer Protocol, das Kommunikationsprotokoll des WWW [HTTP]



iv

Obgleich die Vorhersage-Qualitäten des beschriebenen Ansatzes bereits ermutigend
sind, lässt sich das Benutzerverhalten mit einem fortgeschritten Modell noch angemes-
sener abbilden. Hierbei spielt die Zeit und das Altern von Datensätzen eine enorme
Rolle. Es erscheint adäquat, dass sich die Bedeutung gewisser Informationen und
damit ebenso das Anforderungsverhalten der Benutzer von Serverdaten mit der Zeit
verändert. Durch die Einführung einer Request-Change Probabilty (RCP ) in die Gene-
rierungsalgorithmik wird dem Rechnung getragen. Die temporären Verhaltensschwan-
kungen lassen sich somit in Grundzügen modellieren. Eine Diskussion dieser Aspekte
findet sich in 6.1. Hier werden ebenfalls die verbesserten Formeln für die Kostenbe-
trachtung hergeleitet und der Time Factor eingeführt, der als variabler Kontrollpunkt
zur praktischen Umsetzung dieses Ansatzes dient. Die Prediction Ergebnisse werden
dabei auf die gleiche Weise wie im Standard-Fall bewertet.

Darüber hinaus dienen Webserver-Logs a posteriori zur objektiven Bestätigung
der theoretischen Ergebnisse mittels geeigneter Parametereinstellungen. Ein außer-
gewöhnliches Resultat ergibt sich hierbei aus der Rückermittlung möglicher Parameter
für das Benutzermodell. Aus den Vorhersage-Ergebnissen lassen sich somit quantifizier-
bare Rückschlüsse auf das Anforderungsverhalten ziehen. Für das künftige Informati-
onsdesign von Websites können derartige Charakterisierungen von sehr großem Wert
sein. Eine Gesamtevaluation des zeitmodellierenden Ansatzes findet sich unter 6.4, der
den zweiten Teil der Arbeit abschließt.

Hyperlink-Proposals

Es lassen sich zahlreiche Möglichkeiten ersinnen, wie die Erzeugung von Linkvor-
schlägen automatisiert werden könnte. In dieser Arbeit wählen wir einen relativ un-
gewöhnlichen Weg, indem wie diese Aufgabenstellung als eine mögliche Anwendung
des bereits erwähnten fallbasierten Schließens (CBR) verstehen. Die Texte von Online-
Autoren werden dabei als Problemstellung modelliert, während die hierin aufscheinen-
den Hyperlinks als Lösungen dieser Situation begriffen werden. Das Expertenwissen,
repräsentiert durch eine Fallbasis, dient dazu, eine neue Problemkonstellation dadurch
zu klassifizieren, dass die Lösungsansätze ähnlicher Fälle übernommen oder transferiert
werden, um das aktuelle Problem lösen.

Diese klassische Ausgangssituation des CBR wird jedoch nur in den Grundzügen
angewendet, weil zahlreiche besondere Aspekte im Umfeld von Hyperlink-Proposals
eine andere Vorgehensweise nahe legen. So muss etwa beachtet werden, dass Links
in Hypertexts sehr unterschiedliche Funktionalität besitzen können. Reine Navigati-
onsverweise werden üblicherweise von Online-Redaktionssystemen automatisch erzeugt
(vgl. 2.2.2), andererseits kann Metawissen über externe Seiten bei der Erzeugung dies-
bezüglicher Hyperlinks kaum verlässlich Verwendung finden.4

Im Gegensatz zu Diagnosesystemen, einem klassischen Anwendungsgebiet des CBR,
spielt die Vermittlung des Prozesses an den Benutzer, wie das Programm, ausgehend
von den Symptomen bis hin zur endgültigen Diagnose gelangt, eine untergeordnete

4Der Begriff “extern” impliziert hierbei Zieladressen, deren Domainname außerhalb der Kontrolle
des aktiven Redaktionssystems liegt und bei denen möglicherweise nicht einmal die Verfügbarkeit für
die nahe Zukunft gewährleistet ist, geschweige denn, dass umfangreiches Metawissen über diese Seiten
zur besseren Klassifikation ausgenutzt werden könnte.



v

Rolle. Außerdem verursachen fehlerhafte oder nur unzureichend qualifizierte Link-
vorschläge keine Kosten, die mit unzutreffenden Diagnosen vergleichbar wären. Dem
steht eine rasche Verfügbarkeit von Vorschlägen gegenüber, die ohne großen Pflege-
aufwand im Bereich der Wissensbasis mit akzeptablen Trefferquoten erreicht werden
muss. Dieser Aspekt erwächst aus dem Paradigma von Webanwendungen, dass Inhal-
te sehr zeitnah bereitzustellen sind und die verwendeten Systeme nur unter Einsatz
vergleichsweise geringer personeller Ressourcen betrieben werden können.

Die Modellierung eines Hyperlink-Proposal Moduls (HPM) auf der Basis von CBR
weicht dementsprechend auch sehr stark von den traditionellen Vorgehensweisen ab
und lässt sich kaum gewinnbringend in das Umfeld von Diagnosesystemen transferieren.

Im Abschnitt 7.2 wird ein Ansatz zum Design eines HPM hergeleitet, der im we-
sentlichen aus zwei Phasen besteht. In einer Klassifikationsphase werden die Merkmale
von Texten in Form von Attributsvektoren mit einer Relevanzmatrix multipliziert, die
die Bedeutung der einzelnen Attribute für die Zuordnung zu den im System bekannten
Links beinhaltet. Als Ergebnis ergibt sich ein Vektor, dessen Elemente als Wahr-
scheinlichkeiten dafür interpretiert werden können, dass die zugehörigen Links auch
brauchbar für den zu klassifizierenden Text sind. Das HPM wird nur dann eine gewisse
Anzahl dieser Proposals absteigend sortiert für den Online-Autor anbieten, wenn ge-
wisse Schwellwerte überschritten sind, die die Verwendung der Hyperlinks nahe legen.
Die Lernphase neuer Hypertexts zusammen mit ihren Links beinhaltet zunächst einen
Klassifikationsprozess des reinen Textes, von dessen Ergebnis das weitere Vorgehen
abhängt. Nur solche Verweise müssen “gelernt” werden, die das System nicht ohne-
hin bereits korrekt klassifiziert. Das Lernen selbst bedeutet dabei eine Veränderung
der Gewichte innerhalb der Relevanzmatrix, so dass im Ergebnis der zu lernende Link
gerade den Klassifikationsschwellwert erreicht. Eine unmittelbar nachfolgende (erneu-
te) Klassifikationsphase würde somit das gewünschte Resultat zeitigen. Es ist wichtig
anzumerken, dass hierbei die Vorschläge zusätzlicher Links, die sich nicht im Aus-
gangstext finden, zunächst keine Anpassung der Gewichte nach sich ziehen. Vielmehr
werden wir auf diesen Aspekt im folgenden Abschnitt Synthese genauer eingehen.

In der Praxis treten Lernen und Klassifizieren gemeinsam in Erscheinung. Der
Autor von Hypertexts erfährt die Klassifikation seines Elaborates in Form von Link-
vorschlägen, die er verwerfen oder in seine Arbeit einbauen kann, was zugleich einen
Lernschritt nach sich zieht. Dies gilt ebenso für neu zu erstellende Links, die bis zu
diesem Zeitpunkt nicht vorgeschlagen werden konnten. Weiter unten werden wir auf
diesen dynamischen Aspekt erneut und detaillierter eingehen.

Ein Punkt, der bisher unerwähnt geblieben ist, betrifft das Informations-Retrieval
von Hypertexts. Auf welcher Basis wird der Attributsvektor, der einen Text re-
präsentiert, erzeugt? Die genauer Beantwortung dieser Frage ist Aufgabe des Ab-
schnitts 8.1. Zwei grundlegend verschiedene Ansätze könnten hier gewählt werden.
Entweder findet diese Informationsextraktion auf der Basis einer komplexen semanti-
schen Repräsentation des Textes statt (z.B. mittels “semantischer Netzwerke”), oder
aber anhand statistischer Kenndaten auf syntaktischer Ebene.5

5Natürlich ist auch eine Kombination denkbar und de facto beinhaltet eine semantische Re-
präsentation in der Regel auch die entsprechenden syntaktischen Analysemethoden.



vi

Aufgrund des bereits erwähnten Paradigmas haben wir uns dazu entschlossen, ein
schnelles, vollautomatisiertes Informations-Retrieval einem höher qualifizierten seman-
tischen Verfahren vorzuziehen, das zwar im Endeffekt Vorschläge von höherer Qualität
liefern könnte, doch zu einem für Webanwendungen kaum zu bezahlenden Preis: einem
hohen, zeitaufwendigen Anteil an Benutzer-Interaktion.6

ImWesentlichen wird ein Hypertext demgemäß durch Informationen über die Auto-
renschaft, den zugehörigen Bereich innerhalb der Website, den Gültigkeitszeitraum so-
wie weiteren leicht zu ermittelnden Kenndaten, die das betreibende Redaktionssystem
zur Verfügung stellt, repräsentiert. Der größte Anteil an Elementen des Attributsvek-
tors resultiert jedoch aus der Schlüsselwort-Extraktion. Hierbei wird das Aufscheinen
von Wörtern innerhalb von bestimmten Hypertags (z.B. <TITLE> . . . </TITEL>)
gewichtet und aufsummiert, wobei auch Stoppwortlisten Anwendung finden. Der so
entstandene Vektor modelliert automatisch einen Text auf einer statistischen Basis,
die zwar im allgemeinen eine gute Repräsentation liefert, im Einzelfall jedoch auch
erheblich von der semantischen Ausrichtung abweichen kann.

Eine Besonderheit des vorgestellten HPM - die Implementierung wird in Kapitel 8
beschrieben - ergibt sich aus den dynamischen Größen des Attributsvektors und des
möglichen Klassifikationsvektors: Innerhalb der Lernphase können beide Dimensio-
nen wachsen und diesem Umstand müssen ebenso die verwendeten Datenstrukturen
Rechnung tragen. Für überschaubare Websites stellt dies kein allzu gravierendes Pro-
blem dar, während umfangreiche Dokumentensammlungen hier an die Grenzen von
Systemressourcen stoßen. Im folgenden Abschnitt werden wir hierauf kurz eingehen
und einen Lösungsweg skizzieren, der sich - unter anderem - aus gewissen Synergieef-
fekten mit dem Feld der Request-Prediction ergibt.

Synthese

Bei näherer Betrachtung lässt sich der erste Eindruck, nämlich dass die beiden For-
schungsfelder von Request-Prediction und Hyperlink-Proposals kaum Gemeinsamkei-
ten aufweisen, nicht weiter aufrecht erhalten. Tatsächlich sind nicht nur sehr abstrakte
Ansätze wie Lernprozesse und Klassifikationsphasen einander ähnlich, sondern de facto
weisen auch implementatorische Details bis hin zu nahezu identischen Datenstruktu-
ren wie z.B. der Relevanz- bzw. Memory Matrix große Gemeinsamkeiten auf. Hieraus
ergeben sich unmittelbar zwei Fragestellungen, die in 10.1 genauer untersucht werden:
Wodurch entsteht diese Gemeinsamkeit und wie lässt sie sich in Form von Synergie
ausnutzen?

Die erste Antwort ergibt sich aus der Betrachtung der Problemkonstellation von
einer höheren Abstraktionsebene aus. Hier erweisen sich Request-Prediction und
Hyperlink-Proposals als verschiedene Objekte einer einzigen Klasse von Webanwen-
dungsgebieten, die sich mit kognitiven Algorithmen lösen lassen. Unter 10.2 sind wei-
tere Beispiele dieser Gruppe aufgelistet.

Die Frage nach möglichen Synergieeffekten lässt sich anhand eines Beispiels un-
mittelbar plausibel machen. Wenn sich der fortgeschrittene Ansatz der Request-

6Im Einzelfall mag sogar diese Rechnung aufgehen: Wenn das System nicht allein Linkvorschläge ge-
nerieren, sondern umfangreiches, unternehmensweites Informationsmanagement betreiben muss, kann
sich unter Umständen selbst enormer Pflegeaufwand wieder rechtfertigen lassen.



vii

Prediction, bei dem Zeit und Dokumentalterung modelliert werden, als erfolgverspre-
chend für die Vorhersage von Benutzeranforderungen zeigt, so kann eine Übertragung
auf das Gebiet der Linkvorschläge ebenfalls eine Verbesserung erwarten lassen. De
facto bedeutet die Einführung des Zeitfaktors für die Prediction eine Anpassung von
Gewichten für Elemente, die gerade nicht angefordert worden sind. Der Transfer dieser
Idee auf den HPM-Ansatz führt somit zu einer Betrachtung auch von Linkvorschlägen,
die ebenfalls nicht zu klassifizieren sind. Als Term aus dem Bereich der Kognition
könnte hier das “Vergessen” angeführt werden. Eine Übertragung der Zeitmodellie-
rung auf Hyperlink-Proposals führt also zu einer Erweiterung des Lernalgorithmus, bei
dem nicht zu klassifizierende Links zur Reduktion von Gewichten in der Relevanzmatrix
führen. Obgleich dieses Konzept eine geradlinige Verbesserung des Grundalgorithmus
darstellt, so mag dennoch verwundern, dass es ebenso als eine Modellierung von Zeit
und Dokumentenalterung begriffen werden kann.

Es darf erwartet werden, dass sich in Zukunft weitere Synergieeffekte in dieser
Form auch für andere Bereiche von Webanwendungen ergeben, die nicht allein zu einer
Verbesserung in den Ergebnissen der jeweiligen Algorithmen führen, sondern darüber
hinaus das Verständnis vom Wesen der entsprechenden Methodologien erweitern und
vertiefen.



viii



Contents

I Basics 1

1 Introduction 3

1.1 Request-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hyperlink-Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Advanced Internet Applications 9

2.1 The Smart Data Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Properties of the SDS . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Optimizing Communication Performance . . . . . . . . . . . . . 10

2.2 Online Authoring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 General Requirements . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 DAPHNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2.1 General Characteristics . . . . . . . . . . . . . . . . . . 12

2.2.2.2 System Architecture . . . . . . . . . . . . . . . . . . . . 13

2.3 Hyperlink Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Concepts of MHLM . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Theoretical Basics and Concepts 17

3.1 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 CBR Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 The CBR Algorithm and Some Refinements . . . . . . . . . . . . 18

3.1.3 The Ratio Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3.1 Discussion of similarity . . . . . . . . . . . . . . . . . . 19

3.1.3.2 Advanced CBR-algorithm . . . . . . . . . . . . . . . . . 21

3.1.4 Learning Parameters of CBR . . . . . . . . . . . . . . . . . . . . 22

3.1.5 CBR Formula Derivation . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Terminology of Markov-Chains . . . . . . . . . . . . . . . . . . . 25

3.2.2 Discrete Markov-Chains . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Example of Efficient Markov-Chain Calculations . . . . . . . . . 26

II Request-Prediction 27

4 Request-Prediction Theory 29

ix



x CONTENTS

4.1 Basic Preferences of Request-Prediction . . . . . . . . . . . . . . . . . . 29

4.2 Prediction Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Derivation of Prediction Thresholds . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Cost Functions and Thresholds in General . . . . . . . . . . . . . 31

4.3.2 Pre-Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 Pre-Fetching (and Pre-Sending) . . . . . . . . . . . . . . . . . . . 34

4.3.4 Piggyback Transmission . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.5 Multiple Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Determination of Request Probability . . . . . . . . . . . . . . . . . . . 35

4.4.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 The Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2.1 Formula Derivation . . . . . . . . . . . . . . . . . . . . 35

4.4.2.2 An example for clarification . . . . . . . . . . . . . . . . 37

5 A Request-Prediction Scenario 39

5.1 Modeling Randomness and Semi-Randomness . . . . . . . . . . . . . . . 39

5.1.1 Introduction to the Idea of Semi-Randomness . . . . . . . . . . . 39

5.1.2 Modeling Semi-Randomness and Randomness . . . . . . . . . . . 40

5.2 Module Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 The Session Generator Module . . . . . . . . . . . . . . . . . . . 41

5.2.2 The Prediction Module . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Evaluation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Test Volume and Training Phase . . . . . . . . . . . . . . . . . . 43

5.3.2 Impact of Random Factor R and Density D . . . . . . . . . . . . 43

5.3.3 Summarized Results . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Critical Aspects of Request Prediction . . . . . . . . . . . . . . . . . . . 45

5.4.1 Identification of Similar Requests . . . . . . . . . . . . . . . . . . 45

5.4.2 Network Contradictions . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 Server-Side versus Client-Side . . . . . . . . . . . . . . . . . . . . 46

5.4.4 Use of Additional Information . . . . . . . . . . . . . . . . . . . . 46

6 Advanced Prediction Approaches 47

6.1 Modeling Time and Document Aging . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Derivation of the Time Formulas . . . . . . . . . . . . . . . . . . 48

6.1.2 Extensions of the Basic Algorithm . . . . . . . . . . . . . . . . . 49

6.1.3 Example of the Extended Algorithm . . . . . . . . . . . . . . . . 50

6.2 Implementation of the Advanced Model . . . . . . . . . . . . . . . . . . 51

6.2.1 The Extended Generator Module . . . . . . . . . . . . . . . . . . 51

6.2.2 The Extended Prediction Module . . . . . . . . . . . . . . . . . . 52

6.3 Results of the Prediction Scenario . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Introduction to the Test Scenario . . . . . . . . . . . . . . . . . . 52

6.3.2 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.2.1 The standard parameters A, B, D and R . . . . . . . . 53

6.3.2.2 The time factor τ . . . . . . . . . . . . . . . . . . . . . 53

6.3.2.3 The request change probability ξ . . . . . . . . . . . . . 53

6.3.2.4 The threshold value δ . . . . . . . . . . . . . . . . . . . 55



CONTENTS xi

6.3.2.5 Interference of the controlling parameters R, τ , ξ . . . 57

6.4 Verification of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.1 Evaluation of Real User Logs . . . . . . . . . . . . . . . . . . . . 57

6.4.2 Investigation of unknown parameters . . . . . . . . . . . . . . . . 57

III Hyperlink-Proposals 61

7 Hyperlink-Proposal Theory 63

7.1 Hyperlink-Proposal Research . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Modeling of a Hyperlink-Proposal Module . . . . . . . . . . . . . . . . . 65

7.2.1 Methodological Approach for Generating Links . . . . . . . . . . 65

7.2.2 Representing Hypertexts as Cases . . . . . . . . . . . . . . . . . 65

7.2.3 The Classification Phase . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.4 The Learning Phase . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.4.1 The proportional distribution . . . . . . . . . . . . . . . 69

7.2.4.2 The constant distribution . . . . . . . . . . . . . . . . . 69

7.2.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.4.3.1 Weight adaptation with proportional distribu-
tion . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.4.3.2 Weight adaptation with constant distribution . 72

7.3 Delimitation of CBR and the presented HPM . . . . . . . . . . . . . . . 73

7.3.1 General Comparison Aspects . . . . . . . . . . . . . . . . . . . . 73

7.3.2 Example of a Critical Learning Phase . . . . . . . . . . . . . . . 74

8 Implementation of the Proposal-Module 77

8.1 Knowledge Retrieval of Hypertexts . . . . . . . . . . . . . . . . . . . . . 77

8.1.1 Modeling of the HPM in General . . . . . . . . . . . . . . . . . . 78

8.1.2 Keyword Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1.3 Author Information . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.4 Document Validation . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.5 Departmental Information . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Hyperlink-Proposal Module Implementation . . . . . . . . . . . . . . . . 80

8.2.1 General Concepts and Ideas . . . . . . . . . . . . . . . . . . . . . 80

8.2.2 An Exemplary Java Implementation . . . . . . . . . . . . . . . . 81

9 Hyperlink-Proposal Evaluation 83

9.1 General Evaluation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Measurement Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.2.1 Quantified Cumulating Recall . . . . . . . . . . . . . . . . . . . . 84

9.2.2 Quantified Cumulating Precision . . . . . . . . . . . . . . . . . . 85

9.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.3.1 General Evaluation Concepts . . . . . . . . . . . . . . . . . . . . 85

9.3.2 Graphical Results of the Evaluation-Domains . . . . . . . . . . . 86



xii CONTENTS

IV Similarities and Synergy 93

10 Structural Interdependencies 95
10.1 Abstraction and Generalization . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Cognitive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.3 Synergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.3.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.2 Advanced HPM modeling . . . . . . . . . . . . . . . . . . . . . . 99
10.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11 Summary and Outlook 103

Bibliography 106

V Appendix 115

A Prediction-Modules Sourcecode 117
A.1 C-Sourcecode of the Generator Module . . . . . . . . . . . . . . . . . . . 117
A.2 C-Sourcecode of the Prediction-Module . . . . . . . . . . . . . . . . . . 120
A.3 C-Code of the Time-Modeled Generator Module . . . . . . . . . . . . . 125
A.4 C-Code of the Time-Modeled Prediction-Module . . . . . . . . . . . . . 129

B Hyperlink-Proposal Sourcecode 135
B.1 Java-Sourcecode of an Hyperlink Proposal Module . . . . . . . . . . . . 135

Index 147



List of Figures

2.1 System architecture of DAPHNE . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Learning phase of CBR-systems . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Classifying phase of CBR-systems . . . . . . . . . . . . . . . . . . . . . 19

6.1 Influence of ξ and τ towards PQ . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Results of different ξ and τ values . . . . . . . . . . . . . . . . . . . . . 54
6.3 Prediction Quality for ξ = 0.0 . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Prediction Quality with different threshold settings and time factors . . 56
6.5 Total number of prediction tries . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Prediction Quality of user-request for different threshold values . . . . . 58
6.7 Time factor τ dependent results for real user logs with unknown ξ . . . 58
6.8 Comparison between test results and real log results . . . . . . . . . . . 59

7.1 Measuring the quality of proposals: “recall” and “precision” . . . . . . . 64
7.2 Learning and classifying applied to the hyperlink context . . . . . . . . 66
7.3 Principle structure of a statistical-based hyperlink-proposal algorithm . 71

8.1 Timeline to calculate validation . . . . . . . . . . . . . . . . . . . . . . . 80

9.1 Quantified Cumulating Recall (ACM, AACE, W3C) . . . . . . . . . . . 86
9.2 Quantified Cumulating Recall (TI-FHG, ACM) . . . . . . . . . . . . . . 87
9.3 Quantified Cumulating Precision (ACM, AACE, W3C) . . . . . . . . . . 88
9.4 Quantified Cumulating Precision (TI-FHG, W3C) . . . . . . . . . . . . 88
9.5 Proposal Qualities of TI-FHG . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6 Proposal Qualities of ACM . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.7 Proposal Qualities of W3C . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiii





List of Tables

4.1 Ingredients of cost function γ . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Measuring values (MV) for the prediction analysis . . . . . . . . . . . . 43
5.2 Prediction results with different share of predictable values (for R = 0.1) 44
5.3 Influence of the random factor upon prediction quality (for δ = 0.95) . . 44
5.4 Importance of the density factor (for R = 0.1 and P = 103) . . . . . . . 45

7.1 Relevance adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1 Distribution of keyword weights . . . . . . . . . . . . . . . . . . . . . . . 79

10.1 Similarities between hyperlink-proposal and request-prediction processing 97

xv





Table of Symbols

Symbol Description Page

A Length of the artificial (generated) session vector 32

B Number of predictable elements of a generated session vector 32

C Set of contradictory attributes 21

D Density as global controling parameter for session generation 40

E Abbrevation variable for a term concerning fulfilled attributes de-
fined in (3.8)

23

F Set of fulfilled attributes 21

H Hypertext representated as a case 66

I Number of initial training sessions within the test runs 43

L Hyperlink-vector representing the solutions as part of a case 66

M Number of possible solutions of a classification (CBR) 21

N Number of different attribute classes (CBR) 21

P Number of prediction sessions within the test runs 43

R Random-factor as global controling parameter for session genera-
tion

40

S Vector representing probabilities of possible solutions for a classi-
fication step

67

T Taw text represented as attribute (problem) vector 66

W Abbrevation variable for a term concerning contradictory at-
tributes defined in (3.9)

23

�s User session as binary vector 31

α Factor for common attributes to calculate similarity 20

β Factor for contradictory attributes to calculate similarity 20

Γ, γ Cost functions for sessions and single requests, overview table (4.1) 32

δ Threshold value; for attributes denoted as δj , for problem classes
denoted as δi

21

ε Small value to guarantee a classification below a corresponding
threshold

100

ζ Attribute separation function 69

η Attribute comparison function 69

κ Abbrevation term used for the derivation of distribution functions 69

λ Limitation value for reasonable request prediction calcualtion 33

ξ Request change probability used for advanced request prediction 48

ρ Abbrevation term used for the derivation of distribution functions 69

τ Time tactor used for advanced request prediction 48

φ Probability for generated session vector elements to become 1 40

ϕ Memory Matrix as core of the request prediction module 36

χ Abbrevation term used for the derivation of distribution functions 69

ψ Relevance Matrix as core of an Hyperlink Proposal Module (HPM) 66

ω Relevance Matrix used for CBR 21

∆ Value for chaning the relevance weights within a learning phase 70

∇ Abbrevation term used for the derivation of advanced prediciton
formulas

48





Part I

Basics

1





Chapter 1

Introduction

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

Thomas Stearns Eliot, Little Gidding
from “Four Quartets” (1943)

Due to the breath-taking growth of the World Wide Web (WWW), the need for
high quality, fast and efficient applications has become more urgent. On the one hand,
user-perceived latency has to be reduced in order to provide multimedia information.
On the other, the hyperlink-structure of the web is very important and the diversity
of data sources can only be achieved by appropriate links between web-pages.

Basically, the overall aim of this work is to provide practical usable concepts and
methodologies to improve web-applications. Concretely, two special areas of remark-
able importance are being analyzed and examined: Request-Prediction and Hyperlink-
Proposals. At first glance, they have hardly anything in common. We will show in
the fourth part of this work that in fact, the prediction and the proposal modules
follow the same rules and can be modeled with a similar mathematical approach and
a common methodology.

1.1 Request-Prediction

Let us first have a closer look at Request-Prediction (RP). This is a very exiting topic.
We try to foresee things that might happen in the future. People often have the
problem that they could behave more efficiently if they were able to know what the
future would bring. For instance, it would make a man rich, if he could foresee the
numbers of the upcoming Saturday-lottery. Or let us take the weather forecast: it is
very important for certain areas to know the weather of the future, but due to the

3



4 CHAPTER 1. INTRODUCTION

chaotic behavior of the climate only a few days can be computed with enormous effort.

In part II of this work we try to answer the question: which documents will the
user request in the near future? Or, more specific: what are the probabilities of future
user requests?

To answer these questions, we do need a mathematical model. This is a typical
means of proceeding. Most of the interesting1 problems that the Computer Science is
able to solve have to be transferred into formal representations.

For the RP we were looking for a rather simple model as a result of the following
consideration: if the model is simple it is also - hopefully - easy, fast and efficiently
to implement and therefore, may soon be tested. So we decided to start with the
evaluation of a simple model and refine it stepwise instead of constructing a rather
complex model in the beginning. This serves only the overall aim: we want to find
algorithms for practical improvements of web-applications. Proceeding this manner,
we followed the famous saying (cited from [CB95]):

Keep it simple! If it’s complex, it’s probably wrong.

There is another very important requirement for our model: it should not only
be simple but also easy extensible and, thus, very flexible. It is clear that we used a
rather straightforward mathematical model without considering possible implementa-
tion difficulties. For example, the central data-structure of our RP-model is - firstly
- a symmetric matrix. Certainly, nobody would ever implement a symmetric matrix
without sparing nearly half the memory by changing the representation so that double
entries were only stored once.2

The core idea of the model is based on the consideration: RP is possible because the
request-behavior of the users is not simply random but - at least partially - computable
from former request-behavior. In chapter 4 we will find additional requirements for
RP to become appropriate.

The simplicity of the model forced us to use a rather ordinary statistical approach.
One the one hand, we calculate conditional probabilities from the relative frequencies
of the former requests. On the other, we compute the individual cost thresholds
depending on network and system load and the costs of the prediction-algorithm itself.
Finally, we compare the results from both sides to decide whether prediction is -
currently or in general - for the server a good idea or not.

But to decide this question correctly, it is not sufficient at all to have an adequate
model. The next step is to find an appropriate algorithm derived from the model.
Next, this algorithm has to be tested. In the area of prediction the testing is very
hard. To be able to measure the quality of the algorithm we could simply run RP on
a test-server, but the results would not be representative. Either the request-numbers
would be too low or not randomly chosen. Then, the evaluation results would not
be true for the general case. Therefore, we modeled the user request-behavior in an
additional test-scenario. Presumably, this modeling is much more interesting than
the modeling of the prediction-algorithm itself. Within our own test-scenario with

1In the sense that these problems are not too simple.
2Of course, there could be other constraints to consider so that it might make sense to store most

of the matrix elements twice.



1.2. HYPERLINK-PROPOSALS 5

generated (virtual-) user-requests, it is possible to start millions of test-runs and the
general usability of the result depends only on the universality of the request-modeling.

How can one imagine the modeling of those requests? In fact, there are two extreme
positions: either the requests are quite random or completely foreseeable.3 So it is
important that the parameters of the request-generation allows both extreme request-
models and - smoothly - everything in between. The general usability of the RP, thus,
can be fixed depending on the randomness-degree of the requests. In section 5.1 we
will speak here of semi-randomness. In practice, the algorithm must be able to provide
indicators that help to find out if the use of prediction does make sense in a specific
context. Request-behavior depends on several factors, e.g. the kind of provided data
on the server-side, the clientele of users that poses requests to the server, or external
events. For instance, company messages can influence stock-data values and thus lead
to higher system-loads on stock-data servers.

To be honest, it is not sufficient to have a single parameter to model user-request
behavior. In fact, we do need several additional parameters. There is, for instance,
the density. This factor describes the average frequency of requests within a session.
Furthermore, for the advanced modeling of RP (section 6.1), we have to provide a
request-change-probability to find evaluation results for the modeling of time and doc-
ument aging.

However, it is not enough to model the RP and test it within a test-scenario.
How can we be sure that the modeling has been correct? Certainly, the model of the
user-behavior is straightforward and clear, but an insecurity remains. Therefore, we
decided to test the algorithm with aid of real request-logs a posteriori. Even though
the RP is modeled for use in the Smart Data Server (described in section 2.1) - a
universally usable server for web-applications that has been designed originally as
stock-data server - it can also be applied to classical web-servers.4 Our RP-modeling
does not consider possibly existing hyperlinks that change the a priori probabilities of
subsequent requests but works for general data-requests. By the way, this is the reason
why we did not model RP as kind of path-profiling (more information on that topic
can be found in section 4.2).

To additionally verify the RP-modeling, we took real web-server logs, transferred
the content into an abstract representation and fed the test-scenario with the real logs
as if they were generated artificially! The evaluation results were very promising, but
we got supplementary information: we could extract the virtual parameter setting of
the real-logs, the randomness, the density and so forth. We will analyze those details
in chapter 6.

1.2 Hyperlink-Proposals

The second focus of this works lays on proposing hyperlinks as a tool for online authors
to enhance their texts. Hyperlinks are the key structure of the WWW and one main
reason for the enormous success of the Internet. They improve substantially the quality
of hypertexts. With hyperlinks it is easy to explore the diverse information sources of

3In the sense that always the same requests during the sessions take place.
4Providing [HTTP]



6 CHAPTER 1. INTRODUCTION

the web.

Hyperlinks provide a kind of coherence between two hypertexts.5 In reality, a lot
of coherence or similarities might exist between texts because there are potentially
manifold relations between the (possibly abstract) objects described by them.

In general, hyperlinks suggest a similarity between two documents depending on - at
least - one property. But the world consists of several different categories of properties
so that hyperlinks form a multi-dimensional network between HTML-pages.

Let us consider the following example. An HTML-page about number theory might
contain links to sites describing the generation of prime numbers. This would be a kind
of “topic-coherence”. Additionally, other links might point to further pages of the same
author (with different content). Such hyperlinks would denote a “personal-coherence”.
This is one reason why it is very hard to provide high-quality proposals for hyperlinks
of a given text.

In general, we distinguish between two different approaches for suggesting links,
the semantic model approach and the statistical approach. The former one tries to
model the real world by building object-networks with semantic data while the latter
one reduces the content of a text to a few statistical values.

We chose the second approach because it is much easier to retrieve information on
statistical base and this process can be achieved automatically by computer programs.
Certainly, the proposal-quality of the semantic model approach is much better, but
this kind of processing requires a good deal more user interaction.

We live in a world - especially concerning web-applications - where everything has
to run very fast. It is almost impractical to administer the semantic network in time.
Even a company can presumably not manage to keep its semantic model up to date.
Information flows too fast and in too large an amount. If it takes too long to generate
the semantic model it might not be quite appropriate when it is finished or - even
worse - the company might not exist anymore!

For the statistical approach, the step of retrieving relevant information from the
texts is very important. Usually, the knowledge is abbreviated to weighted keywords,
authors names, expiration date and other kind of meta-data. HTML-files provide
the possibility to distinguish between title, headline, body and meta-tags so that the
existing keywords can be weighted according to their position within the document.
Section 8.1 will discuss the information retrieval in detail.

Starting from the (statistical) “information-essence” of the hypertexts the question
remains how to propose acceptable hyperlinks for those texts? It would have been
possible to model this process with the aid of Neural Nets. We decided to go another
way by regarding the process to find hyperlinks as a kind of Case-Based Reasoning
(CBR)6.

In CBR, expert-knowledge is represented in form of a case-base, where selected
cases are stored. Cases are represented as problems together with their solutions.
A new problem can thus be solved by finding the most similar case in the case-base
and transferring its solution to the solution of the new problem. This is a kind of
classification. The process of storing new cases into the case-base can be regarded as
learning.

5We do not focus here on the diverse links to CGI-scripts, images or other targets.
6CBR will be explained in section 3.1.



1.2. HYPERLINK-PROPOSALS 7

From our point of view, CBR represents the expert knowledge clearer and in a form
which is better to verify than neural networks do. Furthermore, the basic structures
and elements of CBR - at least for our modified version - are fast and efficient to
implement.

The problem of CBR is that the similarity between cases is very important. A
reasonable maintenance of the case-base is hard to provide in the area of proposing
hyperlinks due to the fast growing and strongly varying contents of the data sources.
The amount of information is hard to handle and for the most part there is not enough
time to select the best representing cases to store them within the case-base.

Therefore, we decided to only rudimentarily transfer the concepts of CBR to model
our hyperlink-proposal module (HPM).7

This seems - perhaps - to be appropriate because we are not diagnosing human
diseases8 but we only want to provide link proposals ordered by their probability of
usability for a concrete context.

The results might not be as precise as classical CBR could yield, but our approach
is - as we argued for the RP-model - very flexible and easy to extend. Furthermore,
due to the concept of dynamically increasing matrices we can avoid some of the CBR-
difficulties of our simplification.9 Nevertheless, especially for rather small websites,
one can expect quite convenient proposal results using the methodology that will be
presented later on.

The idea to regard the main tasks of the HPM as learning and classifying prob-
lems resembles the view of the RP approach. In chapter 10, we will describe some
synergy-effects between the RP and the HPM. Furthermore, those concepts are also
transferable to other web-applications.

In the following chapter 3, we present some standard web-applications that are the
basis for the discussed research areas of RP and HPM.

Part II of this work presents the derivation, implementation and improvements
of the RP approach. Part III deals with the aspects all around the HPM. Part IV
contains the synergy-results and the final summary and outlook chapter.

Some concrete programming code is listed in the appendices of part V (Appendix-A
for the RP and Appendix-B for the HPM, respectively).

7The design and the key elements of this HPM can be found in section 7.2, while 7.3 outlines the
main differences between our model and CBR.

8Diagnose-systems are a famous operational area of CBR.
9See 8.2 for details.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Advanced Internet Applications

Measure what is measurable,
and make measurable what is not so.

Galileo Galilei, Quoted by I. Gordonand and S. Sorkin,
“The Armchair Science Reader” New York (1959)

In this chapter, we will highlight briefly some general concepts of advanced Inter-
net applications as a platform for the prediction-theory (part II) and the hyperlink-
proposal techniques (part III).

At first, we will describe the architecture of a complex data server to improve
the information flow for the Internet. Basically, the derived prediction formulas of
chapter 4 are evolved for server types like the one described in 2.1.

The second section, then, places the emphasis on an online authoring system de-
veloped at the Institute of Telematics to provide an appropriate methodology for sup-
porting web authors. It is necessary to describe the functionality of such systems to
comprehend the handling of hyperlink-proposal tools (section 2.2).

Finally, we will present in section 2.3 the working environment with hyperlinks and
we will sketch a concrete hyperlink-management system as basis for the hyperlink-
proposal module of section 7.2.

2.1 The Smart Data Server

2.1.1 Properties of the SDS

Due to the very fast growing of the Internet, especially the World Wide Web (WWW),
there is also an increasing amount of data and information flow between several servers
and clients. Therefore, also the need for central systems to collect and distribute
information from heterogeneous data sources is growing.

The “Smart Data Server” (SDS) as a general framework for distributed function-
ality has been constructed to fulfill these needs. The SDS is able to connect different

9



10 CHAPTER 2. ADVANCED INTERNET APPLICATIONS

data sources and improve information exchange. The system serves as middle tier in
a three tier architecture [RHE99b]. It can work together with several C/S compo-
nents and structures and is a pure Java implementation. The overall idea is to put
intelligence on the server-side to increase the efficiency of the communication with the
clients.

Similar approaches can be found in Satoshi Hirona’s HORB, an object-oriented
request-broker [Dua96]. Also the idea of the common request broker architecture
(CORBA) is related [OMG]. In this approach, several resources can be distributed
over the network. DCOM [Bro97] and Java’s RMI [SUN] also resemble the basic ideas
of the SDS.

In general, the main concepts of the SDS can be summarized as:

• Modularity

The SDS consists of three different classes of modules. Action-layer modules and service-
layer modules belong to the core of the SDS. The function-layer modules carry out the
different application tasks of the system. They work independently from each other and
can be exchanged easily.

If the SDS operates as a portfolio-management system1 or as a medical server is decided
by the different function-layer modules.

• Flexibility

The SDS is designed as a very flexible system to connect several different databases.
It can be regarded as a kind of universal adapter where the different data structures
come together with minimal effort. Instead of designing end-to-end adapters for each
data-format, it is sufficient to build one adapter for the SDS of each of the corresponding
databases.

Furthermore, the SDS comes with its own database service-layer module, so that it is -
basically - not restricted to relational databases.

• Scalability

A very exiting property of the SDS is its scalability. If the system load reaches criti-
cal values, one possibility is to clone the SDS and thus provide additional computation
power. While, normally, servers are only scalable by providing machines of higher per-
formance or other kind of hardware or operation system architectures the SDS provides
additional possibilities.

Its communication language allows to simply transfer requests to other SDS (e.g. clones
of itself) so that their computing power can be used to reduce the latency for the server
response.

Additionally, this flexibility helps to overcome problems of geographic or topologic dis-
tances between databases or even security problems.

More information about this topic can also be found in [RHE99a].

2.1.2 Optimizing Communication Performance

The SDS as a platform for distributed functionality provides several possibilities to reduce user
perceived latency.

We will briefly discuss three general techniques to improve communication and data ex-
change between clients and servers as conceptually designed for the SDS.

1Originally, the SDS has been developed as a controlling system in the financial sector. Later on,
its general conception could be extended to a multitude of other application areas.



2.1. THE SMART DATA SERVER 11

• Prediction

There are several possibilities to overcome the problem of high user perceived latencies af-
ter requesting a document. One idea is to predict future requests. Thus, time-consuming
calculations on the server-side can be done before a request is made. If the server is very
“sure” that certain documents will be requested in the near future, the corresponding
data can be sent to the client (or pre-fetched by the client) even though the user does
not recognize it.

• Minimization

To overcome the disadvantages of wrongly predicted user requests the SDS provides a
scheme to reduce the transferred data by investigating superfluous or redundant data.

This idea is reversed to a general trend of Client/Server-communication. While normally
two- and three-tier architectures [Dic95] in opposition to central computing often transfer
a maximum of data from the server to the client for future manipulating and working
on it, it can be sufficient - especially for the Internet usage - to do the opposite. Sending
only exactly the data the client can use should improve C/S-communication and reduce
network load and - as prediction should do - user perceived latency.

Therefore, this method is based on an idea opposite to prediction: instead of sending
more data than requested, it could be useful - in some cases - to send less!

For instance, the display resolution of the client hardware might be a strong limitation for
the amount of data the server should return. If there is no further use of the information
it would be senseless to send more data than the client can present. Certainly, the two
methods are equivalent: the client tells the server either how much data can be evaluated
or what resolution can be found on its side, in both cases the “smart” server has to work
on the data to return a minimal amount of values.

• Request Optimization

Request Optimization is a method to improve C/S-communication that depends highly
on the type and structure of the transferred data. The implementation as module of
the SDS, therefore, is explained here only exemplary as part of a stock-data services
application.

To be able to fulfill very different client requirements, the SDS provides several func-
tions with optional features. For instance, moving average trend indicators, a “Relative
Strength Index” (RSI), a “Moving Average Convergence/Divergence” system (MACD)
and “Bollinger Bands” can all be calculated on server-side or on client-side, respectively.

Request Optimization in this context means that it should be decided dynamically
whether the server or the client calculates the trend indicators. On the one hand, the
well-known data lack of the first 38 days of the 38-day moving average is a result of the
client-side calculation while the server-side can response with all requested data. On the
other hand, it would be superfluous to start an SDS-request, for instance an MACD trend
indicator, that could simply be calculated from the stock-data values already available
on the client-side.

For more information on the two latter communication optimization strategies for the SDS
we refer to [HRE00b].

Certainly, the prediction aspects will be discussed in detail in part II of this work. In chap-
ter 4, the used prediction theory is derived. Chapter 5 provides the concrete implementation of
the concepts and its evaluation in general. Finally, in chapter 6 advanced models and concepts
with modeling of time and document aging are discussed.



12 CHAPTER 2. ADVANCED INTERNET APPLICATIONS

2.2 Online Authoring Systems

2.2.1 General Requirements

With the growing of the number of web-pages on the Internet also distributed online authoring
and publishing, especially in enterprises, is gaining more and more importance. In particular,
the WWW has provided the protocol and thus pushed the infrastructure that is needed for
realizing the ambitious visions. Now, it is possible for users to perform online collaborative
authoring directly from their workplace (see for instance [LZO98] or [MPS98]).

Besides the use of editing web-pages, online authoring systems can also be applied to
intranets of companies. Not seldom, they can play the role of a document management system.

The critical aspects of such systems come to the surface depending on the (large) amount
of diverse (documentation) information sources and on complex and manifold role structures
of users.

Another important aspect of online authoring systems is the separation of content and
layout. Several authors should provide the relevant information to the system and by using
templates or style sheets the system must produce acceptable HTML-results, statically or
dynamically.

Furthermore, a strict role-based access control is very important to guarantee high quality
results and at the same time information security is granted [Wan99].

2.2.2 DAPHNE

2.2.2.1 General Characteristics

At the Institute of Telematics a web-based online authoring and publishing system, called
DAPHNE (Distributed Authoring and Publishing in a Hypertext and Networked Environment),
has been developed as a modern tool to provide information based on Internet-technology.
DAPHNE is a distributed collaborative authoring and publishing tool [HZE99]. The system
offers the following operating features:

• DAPHNE differs from other approaches or other web authoring publishing systems by
- under most circumstances - employing strictly standardized and open hypertext tech-
nology [OW96]. Components that incorporate standard applications such as word pro-
cessors or Internet services into DAPHNE have been developed

• Authoring and publishing of multilingual documents is supported by the online authoring
system

• DAPHNE allows the structuring of various information sources by employing a structural
element, i.e. departmental information

• It offers a workflow with access control: various roles are supported by DAPHNE and
each role is assigned with a fixed set of actions; for instance, content examiners can
examine and approve documents. By means of assigning actions and departmental in-
formation to roles an efficient workflow system with access control mechanism has been
built (see also [ZHH99])

• DAPHNE can assure a common layout for all documents of a web site

• The system is “open”, i.e. DAPHNE is designed to work with documents in any formats
and for multiple purposes (web publishing, document management)

• It is very flexible, i.e. users can use any software they prefer to generate the content for
documents that are processed by DAPHNE



2.3. HYPERLINK MANAGEMENT 13

Figure 2.1: System architecture of DAPHNE

2.2.2.2 System Architecture

DAPHNE is a web-based system with Client-Server structure. On the server-side, DAPHNE
employs a database to manage dynamical text and image documents with several status values.
Basically, web browsers are used as clients.

For document processing (e.g., writing, modifying, etc.), authors can choose any commer-
cial software they prefer by configuring the application MIME/TYPE in the web browsers.
The communication within DAPHNE between server and client is based on HTTP2. An au-
thentication mechanism restricts login into the system and work with it to authorized users
only. The facilities of the system depend on the role of the user. The system architecture of
DAPHNE is illustrated by Figure 2.1.

DAPHNE server programs are mostly CGI-programs. The system stores meta data of docu-
ments, user data, and further information in a relational database, while documents themselves
are managed by the file system. The main functions of DAPHNE’s server programs include
user management and access control, data parsing/metadata collecting, file uploading, edit-
ing, substitution, delete, content examination, interface generating, layout management and
HTML-generation.

Based on its system architecture and the basic functions, DAPHNE is capable of supporting
distributed web authoring and publishing.

Detailed information about the online authoring tool DAPHNE can be found in [HZE99].
Further information about the role-based access control is provided in [ZHH99].

2.3 Hyperlink Management

2.3.1 General Considerations

Since the introduction of the WWW-service to the Internet in the early 90’s, the popularity
of the “Net of nets” is growing rapidely. A main reason for this growth is the user-friendly

2Hypertext Transfer Protocol, [HTTP]



14 CHAPTER 2. ADVANCED INTERNET APPLICATIONS

possibility to explore the World Wide Web by simply clicking on hyperlinks within the HTML-
pages presented by the browsers.

Therefore, the role of the links is very important. The term Hypertext itself can be defined
as follows:

Hypertext is a database that has active cross-references and allows the reader to
‘jump’ to other parts of the database as desired.

This definition originates from Shneidermann. Further information about his view can be
found in [Shn89].

It is necessary to provide practical usable tools for generating hypertext. An early example
of such a hypertext-system is Xanadu from Ted Nelson [XAN].

Besides the well-known standard of hypertexts, also other approaches are possible. For
instance HyTime3, a norm (ISO/IEC 10744) that defines a technical standard for open Hyper-
media [HyT].

2.3.2 Concepts of MHLM

The Institute of Telematics developed a system for managing hyperlinks as part of a project
supported by the “Stiftung für Innovation, Rheinland-Pfalz”.

It was the aim of the project to provide a system that allows the flexible administration
of hyperlinks for multi-lingual documents. We called this system the Multi-lingual Hyperlink-
Management System, MHLM.

Below, we present some essential features and concepts of MHLM for providing hyperlink
administration. Detailed information about this topic can be found in a technical report of the
Institute of Telematics [RHH99].

The main data-structure of the MHML is the PURI. The core and central identifier of a
document is its Uniform Resource Identifier, short URI. We extended this sight by adding
specific properties that we called peculiarities. Thus, a document is identified by the URI and
several peculiarities. The common data-structure is, therefore, the PURI.

Examples of kinds of peculiarities are listed below.

• Language

A document can be provided in several languages. To be able to identify two files that
provide the same content in different languages, we decided to model the language as a
peculiarity of the document.

• Status

As described in 2.2.2, the reviewing-status of a document can contain several steps.
An author may generate a file that is examined by the department manager. Only if he
accepts the document, it is transferred to the web-administrator of the company. Finally,
it is exported to the Internet.

To model the different states of a text we regard the status as a peculiarity of the
document.

• Version

Certainly, the content of a document might become - partially or in the whole - obsolete.
The concept of the PURIs allows to model the version of a document as peculiarity, so
that different versions of the same text have the URI in common, but differs - at least -
in their version peculiarity.

3Hypermedia/Time-based structuring language, [HyT]



2.3. HYPERLINK MANAGEMENT 15

The MHLM is a pure Java implementation where the PURIs are defined as vectors that
contain the URI as one attribute.

To manage hyperlinks it is necessary to model relationships between PURIs. So we defined
a link as a data-structure that provides a source and a target PURI. Additionally, a default-
description (the link-label) and some further technical elements are attached, for instance the
specific position of the link within a document or a field to denote whether the link is broken,
i.e. the target PURI is not valid any more.

Three important tasks of a hyperlink-management system in general and of the MHLM in
specific are listed below.

• Link-Consistency

To provide consistency of hyperlinks within a website is a very straining job. Every move
of a document or deletion assumes that the corresponding links within all other pages
and within the moved page are changed so that they remain consistent.

The PURIs of the MHLM provide excellent prerequisites to change documents and verify
the consistency of the links.

We have to distinguish between internal and external links4. For the former ones, a very
specific consistency check can be made and both, target and source, might be changed.
For the latter ones, the link verification consists in checking the existence of the external
documents.

Additional difficulties arise for the multi-lingual case: a link-change in a document entails
that all documents with same content in different languages, i.e. documents with the same
URI and common peculiarities besides the language-peculiarity, are changed according
to the first one. Here, it is very important to check whether the target-link points to
a document of the same language or not. In the first case, for different link-changes
the target-document has to be transferred to the corresponding document of another
language to provide multi-lingual consistency.

• Generation of Navigational Links

The automatic generation of navigational links within a website is mostly the task of an
online authoring system (described in 2.2).

Again, changes concerning the hyperlinks of a document or the moving of a file to a
different location can cause several link adaptations of other documents. Therefore,
MHLM provides a multitude of tools to provide navigational link generation on the base
of additional data, e.g. departmental information.

• Link-Proposals

Perhaps the most difficult task of a hyperlink-management system consists of proposing
high quality links for the web-author of a text. Mostly, an author does not know the
complete website or appropriate external links so that it would improve the quality of the
produced hypertexts enormously if a hyperlink-proposal module (HPM) would generate
suggestions.

We will analyze this task in detail in part III of this work where we also present a solution
strategy and a concrete implementation of an HPM together with its evaluation.

Basically, we generated the hyperlink-proposal module described in chapter 8 as part of
the MHLM. Certainly, also the usage for the online authoring system DAPHNE (2.2.2) is
appropriate.

4Internal links point to documents within the same domain while external links point to different
domains not under “one’s own” control.



16 CHAPTER 2. ADVANCED INTERNET APPLICATIONS



Chapter 3

Theoretical Basics and Concepts

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan Turing, from his paper on the “Turing test”
The Bell Labs Cafeteria, New York (1943)

3.1 Case-Based Reasoning

3.1.1 CBR Terminology

Research in the area of Case-Based Reasoning1 (CBR) began in the early years of the last
decade [Aha91]. CBR-systems are well known means of representing knowledge in form of
cases. Each case can be regarded as a problem together with its solution. A problem consists
of its description in form of attributes and one or more solutions which refer to it. A typical
environment of CBR is the area of diagnostics. Here, the attributes are the symptoms and the
solution is the diagnosis [AW92b] (see also [Ric92] for further information and [RW91] for a
detailed analysis of the PATDEX/2 CBR-system).

In general, CBR-systems store their case in a knowledge database called case- base. To
solve a new problem, CBR-systems try to find the most similar cases in the case-base. Next, the
solutions of this result are transferred to the new problem or are simply regarded as solutions
of it. The former systems are called case-adaptation systems while the latter ones are denoted
as case-matching systems.

If we consider the set of problems P = {P1, P2, . . . Pn} as problem-base and the set of
solutions S = {S1, S2, . . . Sm} as solution classes, then the process to associate one or more
solutions Si1 , Si2 , . . . to a given problem Pi can be regarded as a classification process.

In general, a case is a 2-tuple C = (P,�s) of a problem description and a (mostly binary)
vector of solutions.

Remarkable attempts have been made to find out how to store only really usable cases (to
avoid storage overflow) and how to learn to adapt the rules to compare cases for calculating
their similarities [Joh97].

1Certain methods and algorithms are also known as Case-Based Learning (CBL). For simplicity,
we will always speak of CBR in this elaboration.

17



18 CHAPTER 3. THEORETICAL BASICS AND CONCEPTS

Figure 3.1: Learning phase of CBR-systems

CBR work can be divided into two different phases. The first process, the learning phase,
builds up the case-base with reasonable cases, e.g. problems together with their solutions (see
Figure 3.1). The quality of the resulting case-base is better particularly after the learning
phase if the corresponding cases cover the scope of the problem.

The second process, the classification phase, compares a new problem with the existing
problems of the cases in the case-base. The solution of the most similar case found is a good
proposition for a solution of the new problem (illustrated by Figure 3.2).

In practice, both phases are combined. The learning of new cases (new knowledge) will
continue as long as the (real) solutions of formerly posed problems are being recognized. A
good overview on CBR-principles can be found in [KL95].

3.1.2 The CBR Algorithm and Some Refinements

The simplest method to represent expert-knowledge with CBR can be achieved by the following
processing, the Simple-CBR2:

1. Storing cases for training into an empty case-base CB

2. Classify a new problem Pi by simply finding the most similar problem of a case
C within the case-base CB and

3. Take the solutions of the corresponding case C as solutions for Pi

Therefore, it is necessary to find and learn good training-cases first. It is seldom a good
idea to put every new case into the case-base. On the one hand it is difficult and inefficient to
store too much cases. On the other hand the learning effect might be critical: a classification
of a new case could probably change the classification of formerly presented cases and thus
change the learning process.3

The disadvantages of the Simple-CBR algorithm are summarized below:

2The Simple-CBR is also called Case-Based Learning Algorithm 1 (CBL1). For details see [Haf93]
3. . . and who knows if the new classification might be better or worse than the old one?



3.1. CASE-BASED REASONING 19

Figure 3.2: Classifying phase of CBR-systems

• The Simple-CBR is storage-intensive and time-consuming due to the storage of
all training-cases

• The algorithm is not able to treat erroneous data appropriately: every new case
can change the whole classification process

• Simple-CBR can not distinguish between important and irrelevant attributes
of problems

• The quality of the algorithm depends on the quality of the problem-comparison
mechanism, the similarity measurements

Furthermore, David Aha showed that non-numeric attributes are hard to model and that
the expert-knowledge stored in form of cases in the case-base is not represented appropriately
[Aha91].

Several improvements have been made to overcome the difficulties discussed above. The
most important changes are the heuristics to store only the “usable” cases in the case-base
within the training-phase. Also the introduction of the Relevance Matrix to represent the
importance of certain problem attributes for the classification to the concerning solutions was
a critical change in the CBR algorithm (see also [Sal88]).

We will come back to the Relevance Matrix in section 3.1.3.2.

3.1.3 The Ratio Model

3.1.3.1 Discussion of similarity

In section 3.1.1 we mentioned the importance of the similarity-measurement between different
problems. But what is similarity?

In the late 70’s the classical mathematical similarity-measurements have been criticized.
The canonical Cartesian comprehension of similarity as a kind of geometrical distance between



20 CHAPTER 3. THEORETICAL BASICS AND CONCEPTS

objects in space4 posed many problems concerning the psychological view on similarity.
Amos Tverski showed that the three fundamental properties of the geometrical understand-

ing of similarity could not be fulfilled psychologically [Tve77]:

• Reflexivity: The similarity between an object and itself is not always “1” if the proba-
bility of re-identification of the object is not 100 percent. In the real world, an object
can hardly ever been identified without any doubt.

• Symmetry: A son may be similar to his father but not vice versa! The psychological
similarity is seldom symmetric.

• Transitivity: Even though the playing power of a chess-player 1 may be similar to another
player 2 and his/her strength may be similar to a third one, it is very improbable that
also player 1 and player 3 mostly draw their games. Similarity is too complex to be
simply transitive, at least from the viewpoint of psychology.

To overcome these troubles, Tverski proposes Feature-Matching as an adequate method of
comparing objects.

Every object Ox can be represented by a set of attributes Ax. The class of similarity func-
tions to measure the similarity between two objects Ox and Oy must fulfill the two conditions
below (whereas the function F simply weights the cardinality of its three parameter sets and
Ax, Ay, Az denote the attribute sets of the corresponding objects Ox, Oy, Oz):

1. Matching: sim(Ox, Oy) = F (Ax ∩ Ay, Ax \Ay, Ay \Ax)

2. Monotony: sim(Ox, Oy) ≥ sim(Ox, Oz) ⇐⇒

• Ax ∩ Ay ⊇ Ax ∩ Az

• Ax \Ay ⊆ Ax \Az

• Ay \Ax ⊆ Az \Ax

One advantage of this modeling is a general usability of the similarity function: Not only
numerical representations of object attributes can be treated but also every attribute descrip-
tion as set of elements can be modeled (i.e. a symbolic representation).

The following function simR would be a good candidate to model similarity adequately
and thus fulfilling the requirements above:

simR(Ox, Oy) =
f(Ax ∩ Ay)

f(Ax ∩ Ay) + αf(Ax \Ay) + β(Ay \Ax)
α, β ≥ 0, α+ β > 0 (3.1)

for all classes of “natural” functions f . According to Amos Tverski equation (3.1) is called
the ratio model [Tve77].

In the following, we will use a slightly simplified version of simR (3.1):

simS(Ox, Oy) =
αf(Ax ∩Ay)

αf(Ax ∩ Ay) + βf(Ax \Ay ∪ Ay \Ax)
α > 0, β ≥ 0 (3.2)

To be able to decide whether an attribute Oj ∈ Ax∩Ay or not for numeric valued attribute
representations it would not be appropriate to use simply the mathematical equality.

If the attribute might be “heartbeat-frequency” than the values “98.7” and “99.1” might
be rather similar and thus belong to the set of common attributes Ax ∩ Ay. But this would
not be true if these values denoted the date of income for the tax declaration.

4Mathematicians call this structure a metric.



3.1. CASE-BASED REASONING 21

Nevertheless, as a possible attribute-comparison function η to calculate the equality of two
numeric attribute-values Oj

x and O
j
y where N denotes the number of different attribute-classes:

∀j ∈ {1, 2, . . .N} : Oj
x ∈ Ax ∧Oj

y ∈ Ay

we can choose the straightforward settings of equation (3.3). All numeric modeled at-
tributes ranges from zero to an attribute dependent maximum M j.

Oj ∈ [0 . . .M j ] or Oj ∈ {0, 1, . . . ,M j} :

η(Oj
x, O

j
y) := 1−

|Oj
x −Oj

y|
M j + 1

(3.3)

If Oj
x and O

j
y are equal then η(O

j
x, O

j
y) = 1 and η(Oj

x, O
j
y) becomes rather small for more

different attribute values.

Additionally, a threshold δj is needed for every attribute class to decide whether the sim-
ilarity between the settings of Oj

x and O
j
y belongs to the set of common attributes of Ox and

Oy, i.e. O
j
x, O

j
y ∈ Ax ∩ Ay or not.

This is extremely important. Otherwise, distinguishing between equal attributes and others
in the ratio model (3.2) can not be accomplished.

Only similarity values exceeding δj are counted as “equal”, the others as “different”. We
use the term F for fulfilled attributes and C for contradictory attributes as shown in (3.4):

∀j ∈ {1, 2, . . .N} :
Oj
x, O

j
y ∈ F := Ax ∩ Ay ⇐⇒ η(Oj

x, O
j
y) ≥ δj

Oj
x, O

j
y ∈ C := (Ax ∪ Ay) \ F ⇐⇒ η(Oj

x, O
j
y) < δj

(3.4)

3.1.3.2 Advanced CBR-algorithm

In the case of numerical representation of attributes it is also appropriate to weight the relevance
of every attribute for the classification to all of the solutions. This leads us to the Relevance
Matrix ω already mentioned in 3.1.2.

TheM rows belong to the several solutions known within the case-base and the N columns
are corresponding to the different attribute properties.

ω =




ω11 ω12 · · · ω1N
ω21 ω22 · · · ω2N
...

...
. . .

...
ωM1 ωM2 · · · ωMN




ω fulfills the condition:5

∀i ∈ {1, 2, . . . ,M} :
N∑
j=1

ωij = 1 ∧ ωij ≥ 0 (3.5)

Every ωij represents the importance of attribute j for the classification to the solution i.
With the relevance matrix ω we can refine the Simple-CBR approach mentioned in 3.1.2

to a usable CBR-algorithm, the Advanced-CBR:

5In 3.2.1 we will call this property stochastic.



22 CHAPTER 3. THEORETICAL BASICS AND CONCEPTS

1. (a) Initializing the relevance weights of ω to:

∀i ∈ {1, 2, . . .M}, ∀j ∈ {1, 2, . . .N} : ωij =
1

M j + 1

(b) Storing the training-cases into the empty case-base CB and adapting the
weights of ω so that all training-cases are classified correctly. This step
must be repeated for all training-cases!a

2. Classify a new problem Pi by finding the most similar problem of a case C
within the case-base CB considering the attribute similarities computed by the
function η and the relevance weights of the attributes

3. Take the solutions of the corresponding case C as solutions for Pi

aThis is a very critical process. In general it works pretty well but for several application
areas the training steps must be limited to avoid running into endless loops; in [Haf93] a
detailed description of such problems and possibilities to overcome them are provided.

Certainly, the relevance weights together with the case-base as used in the refined approach
are modeling expert knowledge much more appropriate than the Simple-CBR approach of
section 3.1.2 did.

3.1.4 Learning Parameters of CBR

According to the ratio model presented in section 3.1.3 and the description of the numeric
attribute calculation and weighting by the relevance matrix ω we can see several parameters
that can be learnt during the learning phase of the refined CBR-algorithm.

First of all, the relevance adaptations themselves can be regarded as a learning step. During
the training-phase at the very beginning of Case-Based Reasoning there are several weight
adaptations. In section 3.1.5 we will come to a general derivation of the adaptation formulas
for the relevance weights.

Then, the parameters α and β of the (slightly simplified) ratio model (3.2) are subject of
learning considerations.

Furthermore, the thresholds δi to decide whether the differences between two numerical
attributes are small enough to be regarded as belonging to the set of common attributes of
two objects are changeable.

It is even more important than the thresholds δj to determine the similarity between two
attribute values of the same attribute class j are the thresholds δi for every solution class. These
values represent the importance of the similarity comparison to accept the solution proposal
of the corresponding classes i ∈ {1, 2, . . .M}. Only similarity-comparisons that exceeds the
threshold can be regarded as “learnt”. In section 3.1.5 we will derive formulas to determine
acceptable weight changes of ω depending on δi.

An adaptation of the threshold values δi themselves has crucial effects on the learning speed
and the learning quality. A detailed analysis of this kind of impact can be found in [Haf93].

The most important rule of the CBR-learning step in our context is a result of common
sense and longtime practical experience:

CBR-Rule : Within the learning phase the adapted parameters, especially
the relevance weights, should be only minimally changed, i.e.
the change must be so small that the classification of the corre-
sponding cases just fits exactly and the threshold δi is exceeded
minimally.



3.1. CASE-BASED REASONING 23

Again, the impact to the learning process of breaking the “CBR-Rule” can be found in
[Haf93].

3.1.5 CBR Formula Derivation

If we take the learning rule of section 3.1.4 as major strategy to evolve a CBR-approach
usable for the area of hyperlink-proposals (described in detail in chapter 7 and the subsequent
chapters) we can derive the formulas for the changes in the relevance matrix ω.

Let us consider the similarity between two (numerical modeled) problems Px and Py. How
can this similarity be determined?

The similarity calculation have to be done between all cases in the case-base CB and a
new problem must be classified according to the refined CBR-algorithm mentioned on page 22.

At first, one have to decide whether the attributes of Px and Py belong to Ax ∩Ay or not.
According to the definition (3.3) we can use the function η:

∀j ∈ {1, 2, . . .N} : η(P j
x , P

j
y ) > δj � P j

x , P
j
y ∈ Ax ∩Ay � P j

x , P
j
y ∈ F

η(P j
x , P

j
y ) ≤ δj � P j

x , P
j
y /∈ Ax ∩ Ay � P j

x , P
j
y ∈ C

(3.6)

For simplicity, we will write j ∈ AF or j ∈ AC to denote that the corresponding problem
descriptions P j

x , P
j
y ∈ F or P j

x , P
j
y ∈ C respectively. These values have to be multiplied with

the relevance matrix ω to judge whether the similarity of certain attributes is important for
the corresponding solutions or not.

Thus, according to the refined ratio model (3.2) we get:

sim(Px, Py) =

α
∑

j∈AF
ωij · η(P i

x, P
i
y)

α
∑

j∈AF
ωij · η(P i

x, P
i
y) + β

∑
j∈AC

ωij(1− η(P i
x, P

i
y))

(3.7)

With formula (3.7) it is easy to determine the similarities between two problems and thus
calculate the most similar case in the case-base CB during the classification phase.

For the learning phase we need to adapt at least the weights of ω. A change of the
parameters α, β or the threshold values δi leads to different approaches (details about this
point can be found in [Haf93]).

Within the learning phase let us consider a case C = (Px, �s).

The storage of this case into CB only make sense if the similarities between Px and all the
problems Py of cases within CB are smaller than a certain threshold δi where i ∈ {1, 2, . . .M}.
If this is not the case the relevance values have to be adapted, i.e.:

sim(Px, Py) = δi +∆ with ∆ > 0

For simplicity and clearness, we should use the following abbreviations:

E =
∑
j∈AF

ωij · η(P j
x , P

j
y ) (3.8)

W =
∑
j∈AC

ωij · (1− η(P j
x , P

j
y )) (3.9)



24 CHAPTER 3. THEORETICAL BASICS AND CONCEPTS

As a result of the learning rule described on page 22 we want to change the relevance weights
so that the corresponding classification results in exactly the threshold δi for the solution class
i, i.e.:

sim(Px, Py) =
αE

αE + βW = δi +∆ (3.10)

It is important to understand the differences between δi and δ
j . The former describes the

probability of a classification to be associated with the corresponding solution while the latter
one means a similarity between two values of the same attribute for two different problem
descriptions.

Equation (3.10) can be achieved by changing the importance of E- and W-values:

δi =
α(E −∆F )

α(E −∆F ) + β(W +∆C)
(3.11)

where ∆F denotes that weights of attributes within F (the fulfilled attributes) must be
reduced in order to fulfill the condition above and ∆C means that contradicting values (within
C) have to be increased due to condition (3.10).

Therefore, the term learning can be seen as a kind of “error-correction” for a wrong clas-
sification.

The resolution of (3.11) towards ∆C results in:

∆C =
1− δi
δi

· α
β
· (E −∆F )−W (3.12)

This means, that the absolute values of α and β are unimportant, only their relationship
counts.6

In the next step we present a possibility to determine the new weights of the relevance
matrix ω in dependence of ∆F . Finally, we derive the calculation of the value.

A typical setting for the new weights ω′
ij with a proportional distribution is shown in (3.13).

For other distribution strategies like constant, polynomial or exponential we refer to [Haf93].

ω′
ij =




ωij · E−∆F
E : P i

x, P
i
y ∈ F

ωij · W+∆C
W : P i

x, P
i
y ∈ C

(3.13)

The derivation of the value ∆F is remaining. Due to the stochastic-property of ω (see
equation (3.5)) we can derive:

∑
j∈AF

ωij ·
E −∆F
E +

∑
j∈AC

ωij ·
W +∆C
W = 1 (3.14)

The substitution of ∆C with equation (3.12) results in:

∑
j∈AF

ωij ·
E −∆F
E +

∑
j∈AC

ωij ·
W +

1−δj
δj

· αβ · (E −∆F )−W
W = 1 (3.15)

After a simplification we get:

E −∆F
E ·

∑
j∈AF

ωij +
1− δj
δj

· α
β
· E −∆F

W ·
∑
j∈AC

ωij = 1 (3.16)

6Certainly, this becomes clear if we divide both numerator and denominator of the right side of
equation (3.2) by α.



3.2. MARKOV CHAINS 25

And the transformation towards ∆F yields to:

∆F = E − 1
1
E ·

∑
j∈AF

ωij +
1−δj
δj

· αβ ·
1
W ·

∑
j∈AC

ωij
(3.17)

With (3.17) a straightforward learning process of CBR is completely described.
In chapter 7 we will derive a slightly different set of formulas because we modeled the

hyperlink-proposal systems not exactly as a kind of Case-Based Reasoning system.

3.2 Markov Chains

3.2.1 Terminology of Markov-Chains

In this section we will briefly present some theory of Stochastic Modeling, especially the idea
of Markov-Chains, because this is very important for the area of predicting future user events.
Furthermore, we will outline the main differences between our prediction approach (presented
in chapter 4) and Markov-Chain modeling.

A short summary of attempts that have already been made to use these ideas for predicting
web requests can be found in section 4.2.

A stochastic process can be regarded as a - mostly infinite - collection of random variables.
This collection is indexed as shown in the following:

Stochastic process: {X(t) : t ∈ T }
X(t) describes a random variable for each t belonging to the index set T . In general, X(t)

may be a vector of random variables. The set T can be for instance:

T = [0,∞) or T = {0, 1, . . .}

Mostly, the index t means “time” and therefore, the sets above stand for continuous-time
or discrete-time modeling. But also other meanings of t are thinkable.

Possible values of X(t) will be called states and the term {X(t) = x} means, that the
process X(t) is in state x at time, or epoch t. With other words: the event {X(t) = x} has
occurred.

In the following, we will always consider the case of discrete-time modeling. For further
details there is a lot of literature, see e.g. [Wol89].

3.2.2 Discrete Markov-Chains

A stochastic process as described in 3.2.1 is called a Markov-Process if it has the following
Markov-Property:

Markov-Property Given the present state of a stochastic process the
future evolution of the process is independent of the
past evolution of the process.

This is the fundamental axiom of the Markov-Chain theory. As we will see in subsec-
tion 3.2.3, it is possible to efficiently calculate the probabilities of future events when they can
be modeled as Markov-Processes.

Admittedly, we think that in the case of predicting user-requests of general data-sets (not
only HTML-pages) a modeling as Markov-Process would not be appropriate even though the
calculations could be simplified (compare also the general considerations of 1.1).



26 CHAPTER 3. THEORETICAL BASICS AND CONCEPTS

In general, a sequence of random values of the form {X(t) : t ∈ {1, 2, . . .}} is called a
Discrete Markov-Chain if it has the Markov-Property:

P (X(t+ 1) = i | X(t), X(t− 1), . . . , X(0)) = P (X(t+ 1) = i | X(t))
∀t ∈ {0, 1, . . .} ∀i ∈ {0, 1, . . .}

The probabilities P are also called the one-step transition probabilities. When we think of
independent probabilities, i.e. independent of the time t then we can construct the one-step
transition probability matrix P :

P = (Pij) with: Pij = P (X(t+ 1) = j | X(t) = i) ∀i, j ∈ {0, 1, . . .}
Because the entries of P are probabilities, it is easy to see that the following property

holds:

∀i ∈ {1, 2, . . .} :
∑

j∈{0,1,...}
Pij = 1 (3.18)

Matrices with the property (3.18) are called stochastic. In section 4.4.2.1 we will see that
the matrix used for our prediction scenario is similar to the transition probability matrix7 and
can easily be transformed into a stochastic matrix, even though our model can not be described
as discrete Markov-Chain.

With the Markov-Property, it can be proved that the n-step transition matrix P (n) that is
the further guessing of probabilities for future events X(t+n) is equal to the n-th power of P :

∀n ∈ {1, 2, . . .} : P (n) = Pn (3.19)

We will use this property to simplify the calculations of example 3.2.3.

3.2.3 Example of Efficient Markov-Chain Calculations

Let us consider the one-step transition matrix P to calculate the future weather forecast (for
example “rainy” and “sunny”):

P =

(
0.3 0.7
0.5 0.5

)
For instance, P11 = 0.3 means that the probability for rainy weather tomorrow is 0.3,

assumed that today is rainy weather.
What about the weather the day after tomorrow? Equation (3.19) guarantees that we just

have to multiply the one-step transition matrix P to P 2:

P 2 =

(
0.3 0.7
0.5 0.5

)
·
(
0.3 0.7
0.5 0.5

)
=

(
0.44 0.56
0.4 0.6

)

Certainly, this generates the same probability as if we would have taken the result of P (1)

as input for the calculation of P (2). The probability, that the day after tomorrow will be a
rainy day, under the condition that it is raining today, is 0.44.

As stated earlier, our prediction modeling is based on the idea that all former requests
could possibly change the probability for future ideas. Therefore, our approach does not fulfill
the Markov-Property. Nevertheless, there are in general several similarities in modeling future
user-behavior.

7We will call this matrix Memory Matrix.



Part II

Request-Prediction

27





Chapter 4

Request-Prediction Theory

When you have eliminated the impossible,
whatever remains, however improbable,

must be the truth.

Sir Arthur Conan Doyle, The sign of four
from “The Adventures of Sherlock Holmes” (1887)

4.1 Basic Preferences of Request-Prediction

The Request-Prediction Theory - that is, the laws of Request-Prediction - is founded on some
fundamental principles. These principles, or axioms1 as we will call them, are usually not
mentioned in scientific literature but they are most important.

Below, we will use the expression of requesting data-sets. Otherwise, the use of the term
“data record” or “document” might imply that we are talking about a data-server or a web
server, respectively.

The basic idea of prediction theory is embodied in the first - and most important - of the
axioms:

Axiom 1 : The probability for a request of a data-set in the future can be
computed by previous request behavior.

This statement is not trivial at all. It is the fundament of all further request-prediction
efforts. We want to stress explicitly that there is not only a coherence between past and future
user-behavior but that this behavior can be predicted accurately. The axiom does not say that
the request-probability for a specific user action must be calculated only on base of former
request behavior of the same user. All past requests can be input data for future request
behavior calculations.

Humans mostly tend to retain their request behavior, but this psychological argument
depends on the quality of the presented data and the personal interests. If one of these

1We use the term “axiom” here not in the strict mathematical sense but rather to emphasize on
the importance of the corresponding requirements for predicting user-requests.

29



30 CHAPTER 4. REQUEST-PREDICTION THEORY

parameters change, the request behavior might also change. Furthermore, it will become
boring to request pages, whose content does not change. We will come back to this problem
in section 6.1.

We do not aim to determine here whether such kind of prediction should actually be
happening on the client-side or on the server-side. A brief discussion of this topic can be found
in section 5.4.3.

The following axiom is nearly as essential as the first axiom. Here, a main requirement for
predictions is declared:

Axiom 2 : Results of predicted requests can be calculated beforehand.

If we can not take advantage of predictions by pre-calculations or some kinds of pre-
actions they are senseless for our theory even though they could be predicted correctly. A
simple example for this problem is the request of real-time stock data: even though one can
foresee that certain stock values will be requested in the (near) future it would be senseless
to make any pre-calculations because the data must be up-to-date at the moment of request2.
Some problems concerning Axiom 2 with regard to proxy systems are implicitly discussed in
[CDF98] and [KLM97] (see also [CI98]).

The third axiom serves as a connection between the first two axioms. It restricts the
applicability of prediction technology considerably.

Axiom 3 : Prediction of user-requests and pre-calculation of requested data
increases the subjective performance of the client-server commu-
nication.

The main focus of request-prediction research is the impression on the user - thus we use
the term “subjective” - who is made to feel that his waiting time has been reduced. Such
improvements for the individual user may not be achieved at the expense of the rest of the
Internet community, though. Therefore, is it not enough to speak of reducing user-perceived
latency.

Prediction can only be recommended where all three axioms are valid. A wrong use of
prediction algorithms can lead to a deterioration of network and system load. So we will learn
(e.g. in section 5.4.2) that predictive algorithms should be used in a very defensive way and
that the overall gain is as important as the user specific improvements.

Unfortunately, only few parts of the Internet communication fit the requirements of the
described axioms. But prediction algorithms will improve only those services where all three
axioms are fulfilled. The possible advantages of predicting future user-requests are enormous,
though. Beside early calculation of complex functions also large retrievals of different databases
in advance are possible. Furthermore, the results of those computations can be sent from the
server to the client before they are requested. The user will perceive the response of the data-
requests as if they were stored locally (pre-fetching or pre-sending). Right where the potential
chances are the best, also the risks are the most dangerous ones: incorrectly predicted requests
that lead to pre-sending or pre-fetching cause higher network and system load and can worsen
the perceived latency for all users.

4.2 Prediction Research

The notion of predicting future events originates from compiler construction (branch-prediction)
and is now being applied to Internet applications [JK98]. Many attempts have already been

2Certainly, other kinds of pre-actions might be appropriate, e.g. preparation of server resources and
network bandwidth.



4.3. DERIVATION OF PREDICTION THRESHOLDS 31

made to find the best and most efficient algorithms for fulfilling prediction needs (e.g. [Bes96]).
Discrete Markov-Chain models were used as a basis for one of the Web’s first algorithms of
prediction [KW97]. Their concept is to store the frequency of user-requests and to apply the
adequate statistical model. Later, these ideas were extended to a Continuous Markov-Chain
approach [KW98] and to Path Profiling [SKS98] which focuses on the order of document de-
mands and the resulting request path. By using predictions, average latency and system load
may be reduced but several risks may result from inaccurate data prediction. The negative
effects of incorrect predictions are discussed in [CB98] and [CDF98]. Performance modeling in
general is described in [EY99].

Our first prediction-approach (mentioned in [HRE99a]) is based on an idea of Padmanabhan
and Mogul [PM96]. We have improved this straightforward approach to model time and
document aging [HRE00a].

As mentioned in section 4.1, the prediction of user-requests in general aims at reducing
user-perceived latency. A central term in most of the existing prediction algorithms is the
session. Even though the session cannot be justified on the basis of the standard WWW
protocol HTTP3, it is very important to group several requests together. In general, a session
is regarded as a time period of about 30 minutes [SKS98]. During such a session, a user
can request several documents (or other kinds of data-packets). The main goal of prediction
aims at foreseeing some of the upcoming requests during the same session on the base of the
requests that have been made already. Therefore, standard prediction-algorithms generate
relative probabilities for future document requests on the basis of the relative frequencies of
requests in the past.

Certainly, there are also some other approaches, but the perhaps most straightforward one
simply stores the actual user-requests at first and then calculates probabilities for future request
wishes. The former process is a (rather simple) kind of learning phase, while the latter one can
be called a classification phase. We will come back to this kind of modeling in section 10.2.

If we do not consider maintaining the correct request order, a straightforward mathematical
conception of a session will lead to a vector �s. Every request of a document corresponds to an
element of �s. The size of the vector corresponds to the number of documents that should be
part of the prediction algorithm (predictable documents). Details about finding the appropriate
documents and criteria whether prediction should be made will be discussed in the following
section.

4.3 Derivation of Prediction Thresholds

There are two different aspects of the derivation of prediction formulas. On the one hand we
have to calculate the probabilities for requests of data-sets. We will highlight this topic in
section 4.4.

On the other hand, we need a threshold value depending on the request-probability to find
out whether the prediction-action (e.g. “pre-calculation” or “pre-fetching”) can economize the
cost function for the requests. We emphasize this point in the following subsections.

4.3.1 Cost Functions and Thresholds in General

To calculate the profit of prediction we will focus on the aspect of pre-calculation (of time
intensive operations), on pre-fetching (of data from server to client) and on piggyback trans-
mission (of meta data together with requested data)4. The early transfer of data to the client
initiated by the server (if possible), also called pre-sending, is analogous to the pre-fetching
process.

3See [HTTP] for definition details.
4Further details on this kind of transmission can be found in [CKR98] and [BC98].



32 CHAPTER 4. REQUEST-PREDICTION THEORY

Function Description

γR Resource costs that can not be reduced by prediction methods (e.g. re-
trieving real-time stock-data values)

γA Avoidable costs that can be spared by correctly predicting the corre-
sponding requests (e.g. calculating moving average values)

γT Transmission costs (divided into γC and γS)

γC Part of γT , the costs to connect to a remote host (might be a server
or a client computer)

γS Part of γT , the costs to transmit data that depends on the size of
the transferred data-sets (assuming the use of the Internet-Protocol
(IP))

γB Book-keeping costs of the prediction algorithm itself (e.g. probability
calculations)

Table 4.1: Ingredients of cost function γ

The following method for calculating the cost functions and the thresholds corresponds
to many known approaches (e.g. [KLM97], [JK98]). A central term in the area of request-
prediction is the session �s as a sequence of user-requests within a fixed time span T . A
customary value would be T = 30 minutes (e.g. [SKS98]). The function γ investigating the
cost of a session �s consists of several parts. For our approach we need the specifications
described in Table 4.1.

Furthermore, we think of a server S as a pool of A data-sets di as mentioned in 4.1.

S = {d1, d2, . . . , dA} A ∈ N

Certainly, only potentially predictable data-sets are counted. To be able to derive the
probability threshold for the prediction algorithms for a specific session �s we have to divide
the data-sets of S into two parts: the ones that could be predicted and those that could not.
Without loss of generality, the first B data-sets d1, d2, . . . , dB could be predicted, where B ≤ A.

In general, the regular5 cost function Γr for a session �s can be described as:

Γr(�s) =

A∑
i=1

γr(di) · pi (4.1)

where the data-set di will be requested with a probability of pi during the session �s and
thus produces a regular cost of γr.

The use of prediction algorithms to reduce the request costs changes the equation (4.1) to
(4.2). We call this function Γp (and γp evaluates to the corresponding costs of a single data-set
di, respectively):

Γp(�s) =
B∑
i=1

γp(di) +
A∑
i=1

γB(di) +
A∑

i=B+1

γp(di) · pi (4.2)

The cost calculations for sessions with use of prediction algorithms consist of three parts.
For di ∈ {1, 2, . . . ,B} the probability part (pi) disappears because those data-sets could be
predicted and therefore their request-probability is 1. The second term models the book-
keeping prediction costs for all data-sets independent of a successful prediction. The third
term is the same term as before (for di ∈ {B + 1,B + 2, . . . ,A}).

5without using prediction methods



4.3. DERIVATION OF PREDICTION THRESHOLDS 33

To get a threshold for prediction-actions depending on the request-probabilities pi we have
to compare the costs of every data-set di from equation (4.1) to the costs calculated by equation
(4.2). On basis of this consideration we get two conditions:

γp(di) < γr(di) ∀i ∈ {1, 2, . . . ,B} (4.3)

what means that for correctly predicted data-requests prediction must always be an ad-
vantage. Additionally, for the remaining data-sets a certain threshold λ must not be exceeded:

A∑
i=B+1

(γp(di)− γr(di)) < λ (4.4)

This term results from the requirements of Axiom 3 (defined on page 30). Not only the
predicted requests must be kept in mind, but also the cost considerations for the not-predicted
elements play an important role. The condition (4.4) can only be verified a posteriori because
it is impossible to determine the value without knowing exactly which data-sets were requested.
Prediction must be deactivated if condition (4.4) can not be guaranteed.6

In the following, we will derive concrete equations for the different possibilities of prediction-
actions (pre-fetching, pre-calculation etc.)

4.3.2 Pre-Calculation

In the case of pre-calculation as prediction-action the cost function Γ consists of resource costs
γR and avoidable costs γA (see Table 4.1 for a description of the cost terms). Then, the
equation (4.1) looks as follows:

Γr(�s) =

A∑
i=1

(γR(di) + γA(di)) · pi (4.5)

The arising costs are simply the sum of resource costs and avoidable costs (from the per-
spective of prediction algorithms). For instance, sorting of data takes a certain amount of time,
thus producing costs (γR). Deteriorating effects for the user arise when system load is high.
If a server could manage to sort data when system load is low, the corresponding avoidable
costs (γA) would depend on the moment of computation. Therefore, only γA can be reduced
by means of prediction.

Making use of prediction the cost function Γp (derived from equation (4.2)) looks as follows:

Γp(�s) =
B∑
i=1

γR(di) +
A∑
i=1

γB(di) +
A∑

i=B+1

(γR(di) + γA(di)) · pi (4.6)

The share of γB arises as a result of prediction calculations which have to be made, re-
gardless of whether they will be needed later on or not. The avoidable costs of dB+1, . . . , dA,
however, can then be ignored (“correctly predicted”7).

Analogous to the considerations in 4.3.1, prediction only makes sense if (4.6) is smaller
than (4.5) for any data-set di with i ∈ {1, . . . ,B}. Thus, the threshold for the probability value
can be calculated as:

6Certainly, the concrete setting of λ depends on several prediction system aspects and can not be
evaluated in general.

7For the derivation of the request-probability threshold the importance of the share of correctly
predicted requests is not too high due to the consideration of the book-keeping costs γB . Nevertheless,
the condition (4.4) is an appropriate de facto limit for the reasonable usage of prediction algorithms.



34 CHAPTER 4. REQUEST-PREDICTION THEORY

γp(di) < γr(di) ∀i ∈ {1, 2, . . . ,B} ⇒ (4.7)

γR(di) + γB(di) < (γR(di) + γA(di)) · pi ∀i ∈ {1, 2, . . . ,B} ⇒ (4.8)

pi >
γR(di) + γB(di)

γR(di) + γA(di)
=
1 + γB(di)

γR(di)

1 + γA(di)
γR(di)

=
1 + So(di)

1 + Sf (di)
∀i ∈ {1, 2, . . . ,B} (4.9)

So describes the Prediction-Overhead that has to be small in comparison to Sf , the System
Flexibility, for a low threshold.

The equation (4.9) describes a threshold (later also called δ8) for the request-probability
of a data-set di for prediction to make sense. This means, if the request-probability exceeds
the value of (4.9) the (successful!) usage of prediction can economize costs and otherwise
presumably not!

Analogous to (4.4) we find the additional a posteriori condition:

A∑
i=B+1

γB(di) < λ (4.10)

We will come back to the practical consequences of the condition (4.10) when describing
the prediction algorithm in 4.4.2.

4.3.3 Pre-Fetching (and Pre-Sending)

The cost equation for a session �s in case of the prediction-action pre-fetching on the client-side
(or pre-sending on the server-side, respectively) looks like this:

Γr(�s) =

A∑
i=1

(γR(di) + (γ
C(di) + γS(di)) + γA(di)) · pi (4.11)

where the change towards equation (4.5) consists of the additional transmission costs, the
size-independent connection costs γC (also called Routing-Overhead) and the transferring costs
γS . For simplicity, in our model each data-set di is requested (and sent) for itself. If more than
one data-set is transferred at once, the modeling of the data-sets di has to be adapted so that
the calculations will be similar to the case of single data-set sendings. For detailed analyses of
transmission costs see also [JK98].

With the usage of pre-fetching, that is transmission of data not yet requested, the cost
function can be calculated as:

Γp(�s) =
B∑
i=1

γR(di) +
A∑
i=1

γB(di) +
A∑

i=B+1

(γR(di) + (γ
C(di) + γS(di)) + γA(di)) · pi (4.12)

where d1, d2, . . . , dB could be predicted (analogous to (4.2)). It is assumed here that cor-
rectly pre-fetched data produces no transmission costs.

8Certainly, the threshold δ depends on the cost calculation of data-set di. But for simplicity we
will leave the index δi to signal that this threshold can also be set individually (e.g. for pessimistic
strategies δ > pi ∀i ∈ {1, . . . ,A}).



4.4. DETERMINATION OF REQUEST PROBABILITY 35

Again, we can easily investigate the threshold value of (4.11) and (4.12):

pi >
γR(di) + γB(di)

γR(di) + γC(di) + γS(di) + γA(di)
∀i ∈ {1, 2, . . . ,B} (4.13)

We see that the request-probability has to be higher if the system resources are much more
expensive than the transmission costs. On the other side, the gain of correctly pre-fetched (or
pre-sent) data-sets is much higher than in case of pre-calculation (4.3.2).

4.3.4 Piggyback Transmission

While sending requested information additional data can be piggybacked upon the transferred
ones. But as we will see in section 5.4, it is not advisable to send very large packets of data
due to serious network problems. Only if the volume of piggybacked information is reduced
to a very small part, very interesting mechanisms are possible (see [CKR98] and [BC98] for
details).

In this essay, we will not focus on the piggyback transmission because our main interest for
predicting future user-requests is for larger amount of raw data (often not even HTML-pages9)
where the piggybacking approach is not appropriate.

4.3.5 Multiple Preprocessing

It would be most effective to combine the advantages of the prediction-actions presented in 4.3.2
and 4.3.3. This is possible on the server side, yet a persistent connection between client and
server must be granted. The server can then send not yet requested data in the idle time
of the client so the information is local available when needed. Unfortunately, this solution
causes problems with proxy-cache-servers between client and data-server. Due to this impact
on practical implementations of multiple preprocessing we do not go into details for that topic.
General considerations on this point can also be found in [CKR98].

4.4 Determination of Request Probability

4.4.1 The Mathematical Model

There are many known ways to determine the request-probabilities for HTML-pages described
in the literature, for instance Path-Profiling [SKS98]. The tree-like connections between doc-
uments via hyperlinks make a Markov-Model approach adequate [KW97]. Besides a modeling
of stochastic processes as discrete Markov-Chains ([Bes96] and [Bes95]) there are also exami-
nations for a continuous Markov-Chain approach [KW98]. In the general case where there are
no hyperlinks between requested data-sets we have to work with Conditional Probabilities.

4.4.2 The Basic Algorithm

4.4.2.1 Formula Derivation

The requests of a user session �s is modeled - without considering the order or repeating requests
- as a binary A-vector of data-set indices:

�s = (si) with: si =

{
1 : data-set di was requested by the client
0 : data-set di was not requested

To store the relative frequencies of requests, e.g. the number of requests for every document
depending on the requests of all the other documents, we need - at least - a quadratic matrix

9Compare also the explanations of section 1.1



36 CHAPTER 4. REQUEST-PREDICTION THEORY

with the dimension of the number of predictable documents. We call this matrix the Memory
Matrix ϕ. In the case where the request order is irrelevant, the matrix ϕ is also symmetric.10

For efficiency, the relative probabilities are not stored directly in ϕ, but they are calculated
from the relative frequencies at the moment when they are needed (some details about the
implementation of the matrix can be found in 5.2).

The predicted data-sets are not treated in the same way as real requests, so that the
Memory Matrix tends to “forget” the coherence between the data-sets.

ϕ = (ϕij) with 1 ≤ i, j ≤ A

At first, ϕ has to be initialized as 0-matrix:

ϕ0 = (ϕij) where ϕij = 0 ∀ 1 ≤ i, j ≤ A (4.14)

Within every session �s the matrix ϕ is calculated to ϕ′, so that the elements of ϕ represent
the frequencies of data requests, depending on requests from other data-sets (rows and columns
of the matrix).

ϕ′ = (ϕ′
ij) where ϕ′

ij =

{
ϕij + 1 : si = 1 ∧ sj = 1

ϕij : si %= 1 ∨ sj %= 1
(4.15)

The conditional probability pi, stating that di will be requested, if dj has been requested
during the same session �s can then been calculated as:

pi(di|dj) =
ϕij
ϕjj

(4.16)

This formula expresses that the probability for a data request can be derived from the
request frequencies so far (according to Axiom 1 defined in section 29).

However, we do not focus on the efficiency of that algorithm in this stage but use it as a
(general) basis to model prediction in a test scenario. An interesting aspect is the modeling of
user vectors in such a scenario.

We propose here an additional requirement (analogous to 4.4) to be able to fulfill Axiom
3 (of page 30) potentially:

A∑
i=1

ϕii '
A∑
i=1

A∑
j=i+1

ϕij (4.17)

The sum of values on the main axis, that represents the frequencies of all requests, should
be much smaller than the sum of “connected” data requests. If this can not be guaranteed
prediction-algorithms will presumably not work due to missing affiliation between the requested
data.

But condition (4.17) only helps to find out specific reasons for low quality prediction results.
It is not a strict constraint. Furthermore, equation (4.10) gives a condition for rating the
performance of the prediction algorithm a posteriori. Several limits (denoted as λ) are possible.
While comparing the same prediction algorithm for different sets of data, the quotient λ

A−B
can be regarded as a kind of measuring element, the lower the better. But λ does not say
anything about the quality of the prediction process itself.

10This is true only for the most simple case. Later on, we will model time and document aging and
the resulting matrix will not be symmetric any longer (see 6.1)



4.4. DETERMINATION OF REQUEST PROBABILITY 37

4.4.2.2 An example for clarification

To demonstrate the work of the basic algorithm we give the following simple example. Let us
presume A and the Memory Matrix ϕ to be:

A = 4 ∧ ϕ =



5 3 3 2
3 6 2 1
3 2 4 4
2 1 4 5




Here, according to (4.16), the conditional probability for data-set d4 to be requested, if
data-set d1 has already been requested during the same session �s amounts to:

pi(d4|d1) =
ϕ41

ϕ11
=
2

5

Furthermore, the session �s should look as follows:

�s =



1
0
0
1




After the complete learning step (4.15) the new matrix ϕ′ will be:

ϕ′ =



6 3 3 3
3 6 2 1
3 2 4 4
3 1 4 6




We can see, that the relative request-probability has changed now:

pi(d4|d1) =
3

6
=
1

2

This means, that presumably in 50 percent of all cases data-set d4 will be requested, if
data-set d1 has already been requested within �s.

More advanced and complex modeling of prediction will follow in section 6.1.



38 CHAPTER 4. REQUEST-PREDICTION THEORY



Chapter 5

A Request-Prediction Scenario

Alice came to a fork in the road. ‘Which road do I take?’ she asked.
‘Where do you want to go?’, responded the Cheshire cat.

‘I don’t know.’ Alice answered. ‘Then,’ said the cat, ’it doesn’t matter.’

Lewis Caroll, Alice in Wonderland (1865)

To be able to derive prediction algorithms adequately it is very important to describe in
detail the underlying prediction model that we will call here the Prediction Scenario.

In the first step, the meaning of this scenario helps to explain the reasons for special
assumptions and derivation of formulas (as in chapter 4).

Later on, the prediction scenario itself can be implemented to sustain an appropriate
platform for testing one’s prediction algorithms. This is much better than “real-life” tests where
the critical aspects and errors in the prediction consideration lead directly to a deterioration
of system and network performance. Obviously, the final step has to be the implementation of
the prediction modules in existing server architectures to verify the testing results and drawing
advantage of the prediction theory. Then, eventually, testing under real-life conditions is
necessary.

In our case, this server architecture is the Smart-Data-Server introduced in section 2.1.

5.1 Modeling Randomness and Semi-Randomness

5.1.1 Introduction to the Idea of Semi-Randomness

Requests of data can be divided into two classes: predictable requests and random requests.
The reason for that classification lies in the different a priori request-probability. Predictable
requests are often based on measurable personal facts of certain importance for a user so that
the request-probability is not purely random, but semi-random.

Let us consider the case of financial data - especially of stock-data values - as a first example.
It is obvious that the customer of a bank wants to be informed about the values of shares that
are part of her/his personal portfolio. Perhaps all stock-data values are of a certain interest
but those of the personal portfolio are of a special interest. For security reasons, it might
not be possible to access portfolio data. But when the proposed method is used, accessing
the portfolio is not even necessary! It is sufficient to take into account that there is potential
semi-random data to provide.

39



40 CHAPTER 5. A REQUEST-PREDICTION SCENARIO

For another example we should have a look at great sports events, for instance the “Football
World Cup”. The preliminary rounds are mostly more interesting for people that have the
same nationality as the football players on the playground. Here too, pure randomness in the
television-quotes can not be found.

There are also examples with no objective semi-randomness. Weather forecasts can be of
extremely high interest for someone who plans to renew the roof of her/his house but there are
no measurable facts that can be used by algorithms to predict the high interest in such data.
Of course, the distinction between random and semi-random requests is not very sharp. There
can be practical cases where no real difference between both types of a priori probability exist.
Nevertheless, it is still important to model random and semi-random requests in a different
way.

5.1.2 Modeling Semi-Randomness and Randomness

To test our prediction algorithms of chapter 4, we build a test scenario where the session
vectors are generated with a Randomizer-Module. As in section 4.3.1, we can say that the first
B elements of the session A-vectors (d1, . . . , dB) are considered as semi-random or predictable,
the others (dB+1, . . . , dA) as random or casual.

�s =




d1
...
dB
dB+1

...
dA




Within the prediction scenario, we can identify the request for a data-set with the corre-
sponding element of the session vector �s and thus get:

di ∈ {0, 1} and di = 1 ⇐⇒ di has been requested during session �s

We are controlling the generation of these binary values with two global parameters: the
random factor R and the density D with:

R ∈ [0, 1] and D ∈ {1, . . . ,A}

The random factor R controls the probabilities of all values of the generated session vector
�s. R = 1 means pure randomness with a constant probability (of 1

2 ) for all elements of �s.
R = 0 means no randomness where the first B elements of �s are always set to 1, all other
values are set to 0.

The density D describes the average share of values set to 1 within the session vectors for
the highest randomness (R = 1). D plays no role if R equals to 0. Thus, the importance of D
increases with an increasing value of R.

In general, the probability φ of the elements of the generated session vectors to become 1
follow the condition below:

φ(di = 1) =



1 +R · (DA − 1) : 1 ≤ i ≤ B

R · DA : B + 1 ≤ i ≤ A
(5.1)

Therefore, a random factor of R = 1 generates the probabilities:

φ(di = 1) =
D
A : ∀i ∈ {1, 2, . . . ,A} (5.2)



5.2. MODULE IMPLEMENTATION 41

whereas a random factor of R = 0 leads to:

φ(di = 1) =



1 : 1 ≤ i ≤ B

0 : B + 1 ≤ i ≤ A
(5.3)

With both controlling parameters R and D, we will prove to model our prediction scenario
adequately so that the testing results of the algorithm are applicable to the real-life usage of
the prediction-actions.

5.2 Module Implementation

5.2.1 The Session Generator Module

To verify the quality of the derived prediction formulas (see section 4.3.1), we implemented the
Randomizer-Module (also called the Session Generator Module) to generate artificial session
vectors.

The program can be called with the following parameters (in parenthesis the variable name
within the source code is appended):

• A (slen)

Length of the sessions to be generated

• B (nump)
Number of predictable elements of a session

• R (rf)

Random factor

• D
Density, the number of settings within the session vector for R = 1.0

The program produces its results to the standard output of the operating system as input
for subsequent processing steps.

Within the session generating loop, random numbers are produced and compared to a
calculated boundary. For predictable elements (first B elements of the session vector), this
boundary is called boundary pred and calculated by formula (5.1). In the same formula, the
computing of boundary rand for the semi-random elements is described.

All values exceeding the boundary lead to a “1” within the generated session vector. All
others result in a “0” and mean “no request of the corresponding data set”.

For reasons of run-time efficiency, the generation of the predictable and the semi-random
elements happen in two different “for-loops”. As result the session vectors are given as one
line of output for each of them.

An exemplary main procedure of a C-programming language source code can be found in
appendix A.1.

5.2.2 The Prediction Module

The implementation of the predicting module within the test scenario is more complex than
the generating module. In the following, we describe briefly the procedures and the parameters
to start the program. A coding example with C-programming language syntax can be found
in appendix A.2.



42 CHAPTER 5. A REQUEST-PREDICTION SCENARIO

Both programming modules, the generator and the predictioner, can be combined on the
shell by piping the output of the generator as input for the predictioner. Certainly, also real
logs can be processed by exchanging the generator.

The predicting program consists of the following procedures (for the detailed description
of the input and output specification we refer to the source code in the appendix A.2).

• init phi

Initializes the matrix ϕ for subsequent processing steps.

• evaluate prediction

To verify the prediction quality this function compares the predicted probabilities with
the real settings within the presented session vector. The evaluation is measured accord-
ing to four aspects: The number of correctly predicted requests grp, requests that were
predicted but did not happen gwp, those that were not predicted but occurred gwn, and
finally, requests with a low probability that did not occur grn. Certainly, also the overall
number of predictions gtotal is very important. The most critical value is gwp, because
wrongly predicted requests lead to a higher system load and - in case of pre-fetching or
pre-sending of data - also to a higher network load.

• learn request and learn session

These are the procedures that change the memory matrix ϕ by adding the relative
frequencies of the data sets. The derivation of the used formulas can be found in sec-
tion 4.4.2.

• predict with and predict session

The classification algorithms calculate a probability for the requests. Only those are
predicted that exceed the threshold δ. The setting of this threshold is discussed at the
end of this section.

• main

The main procedure accepts three parameters. Beside the session vector length and the
threshold δ also the number of training sessions is possible. The evaluation of the model
showed that this distinction is not needed. At the beginning, the probabilities seldom
exceed the threshold and thus produce no predictions. Special training sessions are,
therefore, hardly needed.

After checking the parameters and initializing the variables, the main procedure runs
into a loop reading new sessions (e.g. generated by the randomizer module). For non-
training sessions the classification routine is called by predict session. At the end of each
loop-run, the session is “learnt”. Finally, the calculated evaluation results are given to
the standard output.

As part of the Smart Data Server architecture, the implementation of the prediction module
leads to an SDS-workflow module (2.1).

As mentioned earlier, a very critical point in generating request-prediction is to take care
of the different costs. Not only the system costs for the prediction itself must be taken into
account, but also the network load and the server load for wrongly predicted documents. These
considerations are very important especially for making pre-fetches.

Within the testing scenario, the costs are given in advance. In the real life, those cost
calculations are not very easy to obtain. As part of a project supported by the “Stiftung Inno-
vation” of Rhineland-Palatinate, the Institute of Telematics is working on efficient extensions
of the Smart Data Server with increased performance towards intelligent data routing. Here,
load balancing plays an important role. With such a module, also the costs of calculations can
be obtained by measuring their running time.



5.3. EVALUATION OF THE MODEL 43

MV Description

OP Overall sum of predictions (of whole sessions)

CP sum of correctly predicted settings
(“1” in the prediction vector corresponded to “1” in the session vector)

WP sum of wrongly predicted settings
(“1” in the prediction vector corresponded to “0” in the session vector)

CN sum of correctly prediction of non-settings
(“0” in the prediction vector corresponded to “0” in the session vector)

WN sum of wrongly prediction of non-settings
(“0” in the prediction vector corresponded to “1” in the session vector)

Table 5.1: Measuring values (MV) for the prediction analysis

The advanced implementation of the prediction module to map time and aging is given in
section 6.2.2.

5.3 Evaluation of the Model

5.3.1 Test Volume and Training Phase

Our results are based on thousands of test-runs with different settings of the global parameters
A,B,D,R, and of the number of initial training sessions I terminating with P prediction
sessions. Each run generated a session vector �s. Elements of �s that are set to 1 represent a
data-request. In our scenario the order of those requests is not modeled. Thus, every di = 1
of �s could potentially be the first request of �s as the base for a prediction of the rest. For
this reason, we generated several prediction calculations, one for each “1” in �s without using
information about the settings of the other elements. Certainly, the session vector �s changes
the Memory Matrix ϕ only once!

The prediction algorithm as presented in section 4.4.2 produces a probability for every
element of �s. Any calculated value exceeding the system dependent threshold pi has to be
considered as “predicted”. In our test scenario we used the (constant) thresholds δ := 0.95
and δ := 0.85 as reasonable settings for pi. The complete prediction vector has been compared
afterwards with the “real” session vector. After several test-runs we evaluated the values
presented in Table 5.1.

High values of WP must be viewed as critical because they can cause enormous negative
side effects whereas high values of WN are not critical. However, they are a signal for inefficient
prediction mechanisms. The ratio PQ = CP

WP is called the Prediction Quality.

The first results during the test-runs were rather surprising. We had been thinking that it
would be a good idea to settle a training phase at the beginning of the tests to fill the Memory
Matrix with reasonable values. Astonishingly, the predictive correctness in the training phase
had no significant effect on the results of the predicting phase. The main reason for this is
that prediction will not occur if the corresponding line of the Memory Matrix ϕ is 0. This is
always the case at the beginning of the training phase.

5.3.2 Impact of Random Factor R and Density D
The following tables show some test results with different global parameter settings. We begin
with variable values of B and two different settings of δ (Table 5.2).



44 CHAPTER 5. A REQUEST-PREDICTION SCENARIO

A B D P δ PQ OP CP WP CN WN

103 100 102 103 0.95 0.5 9917 5505 10386 9.8 · 106 101956

103 101 102 103 0.95 3.6 18045 52986 14896 1.7 · 107 282609

103 102 102 103 0.95 8.9 99084 657088 74200 8.9 · 107 9178672

103 100 102 103 0.85 0.6 9921 6591 10499 9.7 · 106 100870

103 101 102 103 0.85 5.9 18066 136187 22934 1.8 · 107 199408

103 102 102 103 0.85 10.1 98997 8.6 · 106 858014 8.8 · 107 1195560

Table 5.2: Prediction results with different share of predictable values (for R = 0.1)

A B D R P PQ OP CP WP CN WN

102 101 101 0.0 105 ∞ 99990 899910 0 9.0 · 106 0

102 101 101 0.1 105 10.3 99942 22170 2146 8.9 · 106 894584

102 101 101 0.2 105 4.7 100081 5174 1108 8.9 · 106 929835

102 101 101 0.3 105 2.5 99912 2498 1003 8.9 · 106 942867

102 101 101 0.4 105 1.3 100058 1246 977 8.9 · 106 958507

102 101 101 0.5 105 0.7 100039 658 894 8.9 · 106 968370

102 101 101 0.6 105 0.4 99891 339 911 8.9 · 106 972688

Table 5.3: Influence of the random factor upon prediction quality (for δ = 0.95)

We can see here that the prediction quality PQ increases with the share of predictable
elements B. The threshold value of δ = 0.95 seems to be too pessimistic, especially for high
values of B. Nevertheless, the absolute value of wrongly predicted requests is rather low. It
depends not only on the system cost conditions (as defined in 4.3.1) but on the “long time
request-behavior” of the users. Certainly, therefore the kind of presented data on the server-
side plays an important part in the decision if a rather pessimistic or an optimistic prediction
strategy is the best.

The importance of the random factor R is presented in Table 5.3. It is obvious that low
values of R lead to very good prediction conditions, but even a random factor of R = 0.4 is
not acceptable because there are almost as many wrongly predicted requests (WP) as correctly
predicted ones (CP). Higher values of R (e.g. R > 0.4) do not make sense for prediction
algorithms any more. Requests are then too casual and prediction modules do not have the
chance to predict future requests correctly and should be turned off.

The density D is variable in the Table (5.4), again with different settings of the threshold
δ. The density factor D shows a very interesting impact on the prediction quality PQ. For
very low values of D, PQ is very good. This becomes clearer if we regard D as a kind of
unpredictable part of a session vector. But when D reaches very high values, nearly as high as
A, the part of “randomly” correctly predicted (CP) requests increases as well. Thus, D can be
viewed as a key parameter of the whole prediction process.

5.3.3 Summarized Results

The main and most evident test results are summarized below.

• There is a strong relationship between the randomness of session vectors and therefore
of user-request behavior and the possibility to predict upcoming events. Prediction itself



5.4. CRITICAL ASPECTS OF REQUEST PREDICTION 45

A B D δ PQ OP CP WP CN WN

103 101 100 0.95 8.7 9003 1429 165 8.9 · 106 72473

103 101 101 0.95 5.8 9383 4421 760 9.3 · 106 81480

103 101 102 0.95 3.6 18045 52986 14896 1.8 · 107 282609

103 101 103 0.95 10.6 107887 1.1 · 106 101682 9.6 · 107 1.1 · 107
103 101 100 0.85 9.1 8997 71477 7871 8.9 · 106 2425

103 101 101 0.85 8.9 9401 74515 8418 9.3 · 106 11386

103 101 102 0.85 5.9 18053 136187 22934 1.8 · 107 199408

103 101 103 0.85 10.6 106939 1.1 · 106 101687 9.6 · 107 1.1 · 107

Table 5.4: Importance of the density factor (for R = 0.1 and P = 103)

should be turned off if the amount of semi-random data (B, Table 5.2) is becoming too
small due to the negative side effects of wrong prediction.

• Even a moderate value of the random factor R leads to a catastrophic prediction profit
(Table 5.3).

• Increasing the amounts of semi-random elements (B) and decreasing the density (D) to
a very low value has a desirable effect upon the prediction results1.

• As we stated above, the number of training sessions is of no significant importance for
the correctness of the ensuing prediction. In addition, we found that even the amount
of session vectors in the prediction phase plays no important role for the quality of the
prediction.

• The threshold δ that is determined by the calculated value pi of equation (4.9) controls
the prediction results in a decisive manner. But lowering the threshold values does not
only lead to a better result of correct hits (CP) but also accounts for the increasing
amounts of the very negative wrong prediction (WP). Therefore, a pessimistic strategy
requires probabilities that are higher than the calculated threshold pi.

To evaluate the quality of the prediction values we must have a closer look at the prediction
quality PQ-quotient. All values with PQ < 1.0 are evidently not preferable. We found that
in practice, PQ > 5.0 is a good signal to improve user perceived performance with prediction
methods.

5.4 Critical Aspects of Request Prediction

5.4.1 Identification of Similar Requests

The main idea of prediction is based upon the fact that future requests can be derived from
the user behavior so far (Axiom 1 defined on page 29). This idea can only be applied if similar
requests are grouped together. Two extreme positions should be avoided:

• Two requests of the same data-set are not identified due to different function parameters.
For instance, cookies complicate the cacheability of documents in proxy-cache servers
[Lau98]. The argument is applicable for functional parametric calls (CGI-scripts). A

1In “real-life”, the density D depends on the average session length - that is the number of user-
requests per session - and the number of presented data-sets A that define the length of the session
vector �s.



46 CHAPTER 5. A REQUEST-PREDICTION SCENARIO

prediction algorithm must take into account that there are possibly some irrelevant2

parameters in function requests.

• Two seemingly identical requests can lead to very different server answers. Information
about the newest weather forecast, about stock quotations or train departures can be
very different even though all parameters are identical.

Nevertheless, the identification of similar requests is most important for every implementation
of request-prediction algorithms. Much effort has to be made in order to check whether user-
requests are really the same or not.

In most cases, the answer to this question can only be found by analyzing intensively the
possibilities to request (the same) server-data on the one hand and the kind of offered data on
the other.

5.4.2 Network Contradictions

It seems to be evident that the transmission of a few but big TCP-packets is much more efficient
than the transfer of several small packets of the same volume in the sum (for TCP protocol
definition see [Ste94]). But this is not true. Big packets can cause troubles with router buffers,
so that they are transferred more slowly than many small ones [CB98]. This means while
prefetching data from a server the whole set should be transmitted in “equal proportions”. We
called this strategy defensive.

The defensive use of pre-sending or pre-fetching data decreases the contradictory network
problems and finally leads to higher performance.

The request strategy can be part of the client application or can be controlled from the
server-side, respectively. Further details can be found in [CB98].

5.4.3 Server-Side versus Client-Side

We have not mentioned so far (in chapter 4) where the prediction should happen, on the client-
side or on the server-side. In (4.3.5) we showed that a combination of both might be the best
thing. The server can use as base of its prediction not only the requests of one user, but of
all users ever connected to it. Especially at the beginning of the learning process, it is very
helpful to have a large database as foundation of the prediction [SKS98].

One can argue against the rule “only clients can connect to servers but not vice versa” that
the use of persistent connections blurs the sharpness of this aspect.

This kind of connections cause many other difficulties to the network environment. There-
fore, their discussion is not within the scope of this work. For some details on this topic see
[CDF98].

5.4.4 Use of Additional Information

Axiom 1 (defined on page 29) proclaims coherence between user-requests in the past and in
the future. It is psychologically obvious that (human) users tend to request from the same
data-servers several times (personal habits) if they are content with the presentation of the
information. Those who are interested in stock quotations are looking for any information avail-
able about shares of their personal portfolio. It would be very effective to use that additional
information while predicting the next requests. An online-authoring systems like DAPHNE
(as presented in 2.2.2) could provide several information categories. But there are a lot of legal
and security questions to be answered before such data can be used.

Furthermore, such a situation for prediction algorithms can not be discussed in general but
depends strongly on the kind of predicted data.

2If we only take into consideration the prediction algorithms.



Chapter 6

Advanced Prediction Approaches

I returned, and saw under the sun, that the race is not to the swift,
nor the battle to the strong, neither yet bread to the wise,

nor yet riches to men of understanding, nor yet favor to men of skill;
but time and chance happen to them all.

Kohelet; 9,11

The Hebrew Names Version of the World English Bible (HNV),
based on the American Standard Version

6.1 Modeling Time and Document Aging

With regard to our former prediction scenario (chapter 5), we will focus on document requests
without considering either the order of requests or multiple requests per session. Thus, a user-
session can be regarded as a binary vector �s. The whole test scenario, therefore, consists of
two parts, a Randomizer-Module that was able to generate session vectors randomly and a
Prediction-Module that needs uncompleted session vectors (at the beginning of a session) and
that is able to predict the missing requests of the currently running user session.

The most interesting part of the Randomizer-Module (also called the Session Generator
Module is the setting of the parameters for controlling the structure of the session vectors.
It must be possible to model both a very stringent user-behavior and a very random one.
Also, the average number of requests per session must be variable to receive general and useful
results. But the most important idea for the refinement of the prediction scenario of chapter 5
that we present here is an explicitly modeling of time and of document aging.

It is not only the generator module that has to be adapted to implement time modeling.
The prediction module has to be refined as well. Therefore, the prediction module works in
two different ways:

• An incoming (incomplete) session vector describing the beginning of a session is math-
ematically multiplied with a Memory Matrix ϕ (described in detail in section 4.4.2).
From the result of this multiplication a vector which contains the probability for every
document to be requested during the current session can be derived easily. This step
can also be called classification phase1.

1For a detailed discussion of regarding this step as a “classification step” we refer to section 10.2.

47



48 CHAPTER 6. ADVANCED PREDICTION APPROACHES

• In the learning phase, the prediction module stores a (complete) session vector with the
real document requests in the matrix ϕ in order to improve future speculations.

The elements of the Memory Matrix ϕ represent frequencies of former requests and weights
for future requests. In order to model time and document aging only the learning phase must
be refined. In section 6.1.1, we derive a method to do this by “forgetting” former requests
step by step. The longer the time span since the last request is, the higher is the degree of
forgetting.

6.1.1 Derivation of the Time Formulas

To extend the scenario of 4.3.1 as described on page 31, we will first repeat the main ideas up
to the following aspect.

Every user session �s is described as a binary A-vector of requests with:

�s =




d1
...
dB
dB+1

...
dA




where the first B elements of �s are predictable or semi-random, the other elements are
random requests and are not predictable. To control the generation of session vectors we use
two important parameters.

• R is the random factor (or indicator): R ∈ [0, 1] where R = 1.0 indicates totally random
requests and R = 0.0 indicates no random.

• The density D ∈ {1, . . . ,A} describes the average number of single document requests
per session (for details see 5.1.2).

Accordingly, the probability φ for elements of �s to become 1 (=requested) has been de-
scribed already in section 5.1.2. For simplicity of reading this section, we repeat the equation
(5.1) here as formula (6.1).

φ(di = 1) =



1 +R · (DA − 1) : 1 ≤ i ≤ B

R · DA : B + 1 ≤ i ≤ A
(6.1)

This formula contains no time modeling factor. To implement a time factor τ in a prediction
algorithm that is supposed to make any sense for an automatically generated number of user-
requests in a testing scenario, we need an additional factor ξ, called the Request-Change-
Probability for the generation of data.

ξ ∈ [0, 0.5] simulates the different possibilities for user-behavior. To express that there is
no constant pattern in the request demands, ξ should be set to ξ := 0.5. This means that
the conditional probability to request a data-set di during a session is independent from any
requests that have taken place before. If ξ is set to 0.0 then a change in the request behavior
is out of the question and if a data-set di is requested in one session, it must be requested in
all subsequent sessions too.

A straightforward integration of the new factor ξ into the formula (6.1) is shown in the
following. As abbreviation we set

∇ := 1 +R ·
(
D
A − 1

)
(6.2)



6.1. MODELING TIME AND DOCUMENT AGING 49

The new probabilities φj for session �sj now depend on the values of the previous session
�sj−1:

φj(dji = 1) =



1 + 2 · ξ · (∇− 1) : 1 ≤ i ≤ B ∧ dj−1

i = 1

∇ · 2 · ξ : 1 ≤ i ≤ B ∧ dj−1
i = 0

R · DA : B + 1 ≤ i ≤ A

(6.3)

The random part of the probability setting (B + 1 ≤ i ≤ A) has not changed. To derive
the formula for the first B probability values φj of �sj we consider the case where the former
value shows a requests, that is dj−1

i = 1. The new probability must become greater with an

increasing value of ξ. On the one hand, for ξ = 0.0 the probability of dji = 1 is thus equal to
1. On the other hand the probability value has to be the same as before if ξ = 0.5.

To understand the concrete use of ξ in formula (6.3) we can also take into account the
following consideration for the data-sets {d1, . . . , dB}. The probability φj for a new data-
request in session �sj under the condition that the same request in session �sj−1 has taken place
already should be equal to the current probability to become 1 in the session vector added to
the probability to become 0 multiplied with a factor depending on ξ. This can be written for
every data-set d ∈ {d1, . . . , dB} as:

φ(dj = 1|dj−1 = 1) = ∇+ (1−∇) · (1− 2 · ξ) = 1 + 2 · ξ · (∇− 1) (6.4)

Thus we get:

φ(dj = 1|dj−1 = 1) ∈ [∇, 1] (6.5)

Analogous we find:

φ(dj = 1|dj−1 = 0) = 2 · ξ · ∇ (6.6)

φ(dj = 1|dj−1 = 1) ∈ [0,∇] (6.7)

The overall sum of the probabilities must be the same as before, thus it is easy to see that
the following equation (6.8) is true:

∇ · φ(dj = 1|dj−1 = 1) + (1−∇) · φ(dj = 1|dj−1 = 0) = ∇ (6.8)

If we keep in mind that ∇ = φ(di = 1) for di ∈ {1, . . . ,B} (see formulas (6.1) and (6.2) for
details) we can rewrite equation (6.8) to (6.9):

φ(dj−1 = 1) · φ(dj = 1|dj−1 = 1) + φ(dj−1 = 0) · φ(dj = 1|dj−1 = 0) = φ(dj = 1) (6.9)

Formula (6.9) resembles then the well-known Theorem of the total probability (see [GKH86]
for further information on that topic).

With the new probability values we can generate time dependent binary vectors for the
prediction test scenario.

6.1.2 Extensions of the Basic Algorithm

To describe the extensions for the prediction algorithms of 4.4.2, we compare the components
of the program with the new extensions. The core of the prediction algorithm is a symmetric
Memory Matrix ϕ. Every row and column corresponds to an available data-set on server-side,
for instance a document on a web-server.



50 CHAPTER 6. ADVANCED PREDICTION APPROACHES

The classification of an (incomplete) session vector �s can be obtained by multiplying the
matrix ϕ with �s resulting in a vector that represents the probabilities of the corresponding doc-
uments to be requested. Only values exceeding a system-dependent threshold δ (derived from
the probability pi of equation (4.9)) will lead to a prediction of the corresponding document
request (details to determine this threshold can be found in 4.3.1).

A new session vector �s = (di) changes the memory of the prediction module by increasing
the corresponding values (“weights”) in ϕ = (ϕij):

ϕ′ = (ϕ′
ij) where ϕ′

ij =

{
ϕij + 1 : di = 1 ∧ dj = 1

ϕij : di %= 1 ∨ dj %= 1
(6.10)

In order to model time and aging of documents we extend the algorithm by introducing the
time factor τ ∈ [0, 1] (first mentioned in 6.1.1). This number describes the absolute decrease
of the probability values not requested for every time unit since the last request was made.
We denote the time unit since the last request of a data-set di as εi. For web applications, a
typical time unit consists of one day. Other time units are possible, but to model time in our
proposed scenario it is not important to know the exact duration of one unit. The value of a
document not requested is decreased by the time factor τ multiplied with the number of time
units since the last request was made. Thus we get:

ϕ′ = (ϕ′
ij) where ϕ′

ij =




ϕij + 1 : di = 1 ∧ dj = 1

max {ϕij − τ · εj , 0} : di = 1 ∧ dj = 0

ϕij : di %= 1

(6.11)

The resulting Memory Matrix ϕ′ is not symmetric any more. According to 4.4, ϕ serves
as base for the prediction of documents. When ϕ is multiplied with a session vector we will
obtain the conditional probabilities of all documents available. Usually, one will start with
a session vector with only one entry which does not equal to zero. After that, the next and
most probable documents may be predicted. Even though ϕ is not symmetric any more, the
prediction algorithm works quite the same way as before (as described in 4.4.2).

6.1.3 Example of the Extended Algorithm

The learning phase and formula (6.11) should be illustrated by a simple example. Let us
consider the following settings: A = 3, τ = 0.1, ε1 = ε2 = ε3 = 1 day (e.g. the last request on
all documents is one day old).

Let us suppose the current Memory Matrix ϕ to be:

ϕ =


 33.0 11.1 21.8
74.1 409.0 50.5
10.3 0.1 16.0




The session vector is given as �s =


 1
0
1


. In that case, the resulting matrix after a

learning step would look like:

ϕ′ =


 34.0 11.0 22.8
74.1 409.0 50.5
11.3 0.0 17.0




Only the first and the last row have changed. Every element in the first and the last row
that corresponds to a “1” in the session vector has been increased by 1. Every element that



6.2. IMPLEMENTATION OF THE ADVANCED MODEL 51

corresponds to a “0” has been decreased by τ · εi = 0.1. If such a value were to drop below
“0”, the new value would remain “0”. The reason for this lies in the fact that the relevance
of a document which has not yet been requested should not influence the prediction of other
requests in the classification phase, since such a request could still take place later during the
same session.

6.2 Implementation of the Advanced Model

6.2.1 The Extended Generator Module

The session generator module for the advanced modeling is more complex than the standard
approach (described in 5.2). The additional parameters require a kind of memory, while the
simple version generates new values without considering old ones.

The possible parameters are (the first four of them are the same as before):

• A (slen)

Length of the sessions to be generated

• B (nump)
Number of predictable elements of a session

• R (rf)

Random factor

• D
Density, the number of settings within the session vector for R = 1.0

• Length of a time session (lent)

This is needed only for the subsequent prediction operation. After lent sessions, a mark
is set to the output which can be understood as a time section break, e.g. a new day has
begun. The time factor of the predictioner requires such time sections to be modeled
adequately.

• ξ (RCP)

The Request-Change-Probability presented in 6.1.1.

• Number of test runs (runs)

This is required for modeling the user behavior, because the probabilities of sessions now
depend on former settings.

In contrast to the standard implementation of the generator described in section 5.2.1, two
different boundaries for the calculation of the session vector entries in the case of predictable
elements are needed. So, instead of using boundary pred, the extended implementation work
with boundary set 1 and boundary set 0 respectively, depending on the setting of the preceding
session. Therefore, also an additional memory is needed, stored in the array lastvalues.

For the semi-random elements, the modeling of time does not influence the generation of
the session vectors and thus remains the same as in the simple version of the generator.

The documented source code for the implementation of the advanced model can be found
in the appendix A.3.



52 CHAPTER 6. ADVANCED PREDICTION APPROACHES

6.2.2 The Extended Prediction Module

Also the predictioner module has to be extended in order to adequately model time and aging
of data sets. As we did in section 5.2.2, we give in the following a short description of the used
functions.

• init phi

Does not only initializes the matrix ϕ but also the array lasv[] that is needed to store the
preceding session vector in order to apply the extended learning procedures (described
in 6.1.1).

• evaluate prediction, predict with and predict session

Those procedures are the same as for the standard modeling of the predictioner module.

• learn timeline and learn timesession

The learning routines had to be extended to take care of different time sections. The
recognition of a time mark (that corresponds for instance to a new day) leads to an
adaptation of the matrix elements. According to the time factor, the entries of ϕ within
the same row of a requested data set are decreased if they are not part of the current
session vector.

• main

The main procedure is called with an additional parameter: the time factor. This value
can control the resulting prediction quality, as we will see in 6.3. The main procedure
reads the standard input, makes a prediction for every element set to 1 of the session
vector, evaluates the prediction quality and finally uses the session vector as input for
the learning process.

It is important to see that ϕ is not symmetric anymore and that the entries of ϕ are now
floating point numbers instead of integers. Within this modeling, the matrix must not become
too large because we need to store the elements as doubles2.

As result of the predicting process, the module denotes the overall prediction quality of
the testing runs together with the global evaluation of the measuring variables grp, gwp, grn
and gwn respectively, as mentioned in 5.2.2.

The interesting parts of the C-programming language code can be found in the appendix A.4.

6.3 Results of the Prediction Scenario

6.3.1 Introduction to the Test Scenario

We initiated millions of test-runs with different settings as for session generation and prediction
parameters. To be able to compare the results, we will, in this section, present only settings
with a session vector length of A = 125, a predictable part of B = 50 and a density value of
D = 25 while the other parameters R, ξ, the threshold δ and the time factor τ were variable.

In the next section (6.3.2), we will work with real logs and additional test settings to reflect
the proposed ideas. Due to the time modeling factors τ and ξ it has been necessary to re-start
every test setting several times. The reason for this becomes clear when we consider a value
of ξ = 0.0. Evidently, the first B values of all session vectors within one test-run are the same.
We will only be able to achieve the overall statistical distribution of session values adequately,
if the same test settings are run several times.

2Those are floating point numbers with double precision.



6.3. RESULTS OF THE PREDICTION SCENARIO 53

As a means of measuring the accuracy of the prediction algorithm we proposed the pre-
diction quality PQ as quotient of correctly predicted and wrongly predicted values (analogous
to 5.3.1).

Again, PQ > 5 is a supposition for applying prediction as a possibility to improve the
performance of the Client/Server-communication.

6.3.2 Analysis of the Results

6.3.2.1 The standard parameters A, B, D and R
In section 5.3, the settings of A,B,D and R were being analyzed. In general, the absolute
value of A is not important for testing the relative effect of the other parameters, especially
with regard to the PQ-factor. Naturally, a high value of B leads to better prediction results,
since the share of random values decreases.

In our tests, we analyzed different settings of B and quotients of B
A , but to realize the

relevant points of our results we restrict ourselves to B
A = 0.2.

The threshold value δ for probabilities that lead to a prediction of the corresponding
document is calculated on the basis of system-dependent factors and the kind of prediction
strategy (see section 5.3.2). For our simulation, we have tested several settings. If not described
otherwise, the results presented in this section are based on a threshold value of δ = 0.95.

It is clear that for high values of the random factor R a high B
A value will obtain much

better results than for lower ones. It is also important to understand the influence of the density
D on the PQ-factor. In general, D controls the absolute number of correctly and of wrongly
predicted requests because prediction guesses are made only for the “1”s in the session vector
and D determines the share of such settings. Furthermore, we can confirm the observation
that the prediction quality decrease is more than linear with the value of the random factor R
growing.

6.3.2.2 The time factor τ

The modeling of time and document aging by using the time factor τ resulted in an improved
performance of the prediction qualities. Figure 6.1 shows a strongly increasing PQ with an
increasing time factor for low values of the request change probability ξ. For high values of ξ,
the influence of τ disappears. The figure is based on a fixed random value of R = 0.2.

Nevertheless, it should be mentioned that the absolute number of predictions is much lower
with high values of τ . This can be explained by improved prediction accuracy: even though
there are less prediction tries, the resulting quality is much better. This means that the time
factor is able to control the prediction strategy. On the one hand, similar to the threshold δ, a
high setting of τ leads to a pessimistic algorithm with only a few but very good predictions. On
the other hand, a low value of τ or of the threshold δ allows much more prediction proposals
which are then of a low quality. We will come back to this problem in 6.3.2.4.

The advantage of the time factor τ in contrast to the threshold value δ is evident: The
former can be set individually for every data-set available while the latter must be calculated
from system-dependent resources (see 4.3.1 for a discussion of threshold dependencies).

6.3.2.3 The request change probability ξ

It was clear from the very beginning that the role of the request change probability ξ is as
important as the random factor R is. Both parameters control the structure and entropy of
the generated session vectors. A low value of ξ can even improve the prediction quality much
more. While decreasing values of R increase the PQ factor polynomial, ξ can improve the
quality exponentially. Figure 6.2 shows the prediction qualities of some settings of ξ for a
random value of R = 0.3.



54 CHAPTER 6. ADVANCED PREDICTION APPROACHES

4

6

8

10

12

14

16

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

PQ

ξ value

τ = 0.0

�

�

�
�

�

�
τ = 0.1+

+

+
+

+

+
τ = 0.2

�

�

�
� �

�

Figure 6.1: Influence of ξ and τ towards PQ

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5

PQ

Time factor τ

ξ = 0.1�

�
� � � �

�
ξ = 0.2

+ + + + + +

+
ξ = 0.3

� � � � � �

�
ξ = 0.4

× × × × × ×

×
ξ = 0.5

) ) ) ) ) )

)

Figure 6.2: Results of different ξ and τ values



6.3. RESULTS OF THE PREDICTION SCENARIO 55

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

PQ

Random value R

τ = 0.0

� � � � �

�
τ = 0.1

+

+

+
+

+

+
τ = 0.2

�

�

�

�
�

�
τ = 0.3

×

×

×
×

×

×

Figure 6.3: Prediction Quality for ξ = 0.0

In both figures (6.1 and 6.2) we have omitted the case where ξ = 0.0 because the prediction
quality is naturally highly increasing for such a value and even a logarithmic integration of the
values is not sufficient to obtain an acceptable graph.

Figure 6.3 shows several time factor and random settings for a vanishing value of ξ. Here
again, the influence of the time factor decreases with high values of the random factor.

6.3.2.4 The threshold value δ

Every prediction algorithm must deal with a sort of threshold: What is a minimum value
of the probability for future user-requests to process a pre-calculation or a pre- fetching?3

We proposed a model where thresholds result directly from system- and document-dependent
parameters in 4.3.1. This means that the threshold can not be set deliberately. Nevertheless,
we will see that the influence of this variable is enormous. In the next paragraph, we will
present a possibility for overcoming the problem of fixed threshold-settings. Figure 6.4 signals
prediction qualities in dependence of time factors and threshold settings (for R = 0.1).

In Figure 6.4 the absolute PQ-values are shown and it is interesting to see that high
thresholds lead to better prediction results, but only for time factors of τ > 0.0. What the
graphics do not show is the absolute number of prediction tries (illustrated by Figure 6.5, the
variable parameters are the same as in Figure 6.4, 105 test-runs for each setting).

Here, the graphical results are inverse to those of Figure 6.4. High threshold values prevent
the prediction algorithm from making good - or bad - guesses for future requests. Thus, the
costs4 for good prediction quality consist in comparatively low numbers of correct guesses.
This aspect must be kept in mind when proposing certain settings for prediction algorithms.
If the costs of wrongly predicted pre-fetches are too high, even good prediction qualities would
not be acceptable because of the worrying number of wrong guesses.

3A brief analysis of the third possibility, piggybacking information can be found in 4.3.4. More
details on this topic can be found in [CKR98].

4A further discussion of prediction costs can also be found in [CI98].



56 CHAPTER 6. ADVANCED PREDICTION APPROACHES

11

12

13

14

15

16

17

18

19

20

21

0 0.2 0.4 0.6 0.8 1

PQ

Time Factor τ

δ = 0.3

�

�

�

�
�

�

�
δ = 0.5

+

+

+

+
+

+

+
δ = 0.8

�

�

�
� �

�

�
δ = 0.9×

×

× × × ×

×

Figure 6.4: Prediction Quality with different threshold settings and time factors

100000

1000000

10000000

0 0.2 0.4 0.6 0.8 1

N
u
m
b
er
o
f
P
re
d
ic
ti
o
n
s

Time Factor τ

δ = 0.3

�

�

�
�

� �

�
δ = 0.5

+

+
+

+ +

+
δ = 0.8

�

�
�

� �

�
δ = 0.9

×

×
× × × ×

×

Figure 6.5: Total number of prediction tries



6.4. VERIFICATION OF THE MODEL 57

6.3.2.5 Interference of the controlling parameters R, τ , ξ

There are some interesting observations beyond the isolated analysis of the single parameters.
One aspect is the growing importance of τ and R while ξ decreases near zero (as illustrated
by Figure 6.1 on page 54).

The question is: What can be done with such information? Our idea was to re-investigate
those parameters from prediction results of real user logs. In 6.4, we will present those results.
It is easier to find the best settings for τ if an exact or even only a vague impression of factors
like R or like ξ can be assumed.

This leads us directly to a kind of hybrid approach: While trying to predict user-requests
as accurately as possible the same requests are analyzed a posteriori to find the best parameter-
settings of τ and ξ. Anticipating that user-behavior will be, in general, statistically constant
- if the server information offer has not changed fundamentally - these parameter-settings can
be used to predict the upcoming sessions. Otherwise, if the parameter results are too bad and
do not show any solid, constant user-behavior, the prediction can be stopped completely.

6.4 Verification of the Model

6.4.1 Evaluation of Real User Logs

We extracted user-requests from some log files of a web-server5 to verify our model. The first
thing we did with the logs was a transformation to session6 vectors without considering the
request order. We randomly selected A = 125 server documents in relation to the simulations
of section 6.3 with an unknown share of potentially predictable data, but we set B = 125 to
receive results with high importance of ξ.

As average density we found D = 6 with a high variance. To simulate different system-
environment characteristics we applied several settings of the threshold δ in the prediction
model. Figure 6.6 shows a selection of the a posteriori prediction quality PQ in dependence
of the threshold.

The most obvious observation is the irregular behavior of the curves. For some time factors
(e.g. τ = 0.5) a lower threshold resulted in a better prediction quality, while normally high
thresholds obtain the best results. For all these threshold settings the condition of PQ > 5
was not fulfilled.

It is interesting to look at the relationship between PQ and τ for a fixed threshold of
δ = 0.6. Figure 6.7 can thus be compared to Figure 6.2 on page 54 with an unknown implicit
ξ value in the data.

The progression of the curve in Figure 6.7 corresponds to a low ξ value. If the implicit
request change probability ξ was higher, the curve would be more similar to a straight line. In
the real logs, under the conditions described, the best prediction results can be achieved with
a time factor of τ = 0.1.

6.4.2 Investigation of unknown parameters

The combination of R and ξ makes it very difficult to determine their values directly from
the log files. Both parameters influence the prediction quality enormously, though not in the
same way. Even though it is easy to determine the average number of requests in a log file,
the standard deviation or the empirical variance, there is no easy or evident way to determine
the settings of R or ξ without conducting test-runs in the prediction scenario.

5We used log files of selected homepage-requests on the web-server of the Computer Science De-
partment of the University of Trier.

6Again, we used as time span of a session 30 minutes proposed by [SKS98].



58 CHAPTER 6. ADVANCED PREDICTION APPROACHES

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

PQ

Time Factor τ

δ = 0.55

�

�

�
�

� � �
� � � � �

�
δ = 0.66

+

+
+

+ +
+ + + + + + +

+
δ = 0.78

�

�
�

�
� � � � � � � �

�

Figure 6.6: Prediction Quality of user-request for different threshold values

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0 0.2 0.4 0.6 0.8 1

PQ

Time factor τ

unknown value for ξ

�

�

�

� �

�
� � � � � �

�

Figure 6.7: Time factor τ dependent results for real user logs with unknown ξ



6.4. VERIFICATION OF THE MODEL 59

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

0 0.2 0.4 0.6 0.8 1

PQ

Time factor τ

test results

�

� � � � � � � � � �

�
real logs

�

�

�

� � � � � � � �

�

Figure 6.8: Comparison between test results and real log results

We know from section 6.3.2.4 that high thresholds show the most significant quality dif-
ferences corresponding to the setting of τ . Therefore, we used a threshold value of δ = 0.95 to
determine ξ and R, without even considering system-dependent costs. Certainly, this works
only a posteriori and not while the prediction algorithm is actually running.

We started our test-runs with the settings described in 6.4.1 to find the best correspondence
to the results found for the real logs. As a rule of thumb one can say that for every fixed value
of ξ there can be found a corresponding value of R to obtain a predefined prediction quality
PQ - and vice versa. But if we try to match also the absolute number of right (or wrong)
guesses, only very few settings of R and ξ can be used.

Beginning with a great grid of values (R ∈ {0.0, 0.1, . . . , 1.0}, ξ ∈ {0.0, 0.1, . . . , 0.5}) it
becomes clear very fast that the best parameter settings to meet our conditions lay in the area
of R ∈ [0.8, 0.9] and ξ < 0.1. The next step is the exact determination of both factors. Here,
the really obtained prediction quality is the decisive factor. As a result we found ξ = 0.0703
and R = 0.885. The time factor dependent curve we found in the test scenario and the
corresponding values of the real server logs is shown in Figure 6.8.

The resulting difference between the test setting and the real server logs was very small
(< 0.5 PQ). For the use of prediction algorithm in every environment we propose to determine
the unknown parameters as we did in the section. Herewith, we come one step further to one
aim of all prediction ideas: reducing user perceived latency.



60 CHAPTER 6. ADVANCED PREDICTION APPROACHES



Part III

Hyperlink-Proposals

61





Chapter 7

Hyperlink-Proposal Theory

The history of human knowledge has so uninterruptedly shown that to collateral, or incidental,
or accidental events we are indebted for the most numerous and most valuable discoveries,

that it has at length become necessary, in any prospective view of improvement,
to make not only large, but the largest allowances for inventions that shall arise by chance,

and quite out of the range of ordinary expectation.

Edgar Allan Poe, The Mystery of Marie Roget
A sequel to “The Murders in the Rue Morgue” (1841)

After the general considerations about proposing hyperlinks in the introducing section
(1.2) and the brief discussion of the special requirements of Hyperlink-Management Systems
(in section 2.3) we come in this chapter to a derivation of a concrete Hyperlink-Proposal Module
(HPM) based on some fundamental ideas of Case-Based-Reasoning (CBR, described in detail
in section 3.1).

At first, we will highlight the research that have already been done on that area (described
in section 7.1). Then, we describe a concrete, straightforwardmodeling of a Hyperlink-Proposal
Module based on CBR in 7.2. Finally, it is necessary to delimit our approach to a direct CBR
modeling and to discuss some of the differences in detail (7.3).

7.1 Hyperlink-Proposal Research

It is very important yet difficult to provide high-quality hyperlinks for a HTML-document.
Hyperlinks dramatically improve content quality by presenting related work, contradictory
positions, further information or simply by the continuation of the next page or by giving
similar navigational information [Ric98]. The question of how a web author can easily find
such information remains, though.

Research on the area of hyperlinks has been carried out since the introduction of the World
Wide Web service to the Internet. Kaindl et. al. present a compact history of the progress
made so far [KKD99]. Link retrieval research aims at generating hyperlinks if not completely
automatically, at least with as little user interaction as possible. Very serious problems arise,
though, when trying to retrieve hyperlinks of texts on a statistical base without any semantic
knowledge. The results are of low quality [Glu89].

Allan classified link types into three major groups: manual, automatic and pattern-matching
[All96]. The idea is to retrieve at least the easy-to-find links of the two latter groups and leave

63



64 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

Figure 7.1: Measuring the quality of proposals: “recall” and “precision”

most of the former one to the user. This consideration is very useful even though it contains
a disadvantage: the classification only works a posteriori.

We will focus on retrieving “automatic” links on a statistical base with approved methods
(e.g. [Teb98] or [Ret99]). A different yet very promising approach is Chang’s HieNet. A
description of this system can be found in [Cha93].

In the following, we will describe the generation of hyperlink-proposals on base of some
CBR-similar techniques and we will focus on the mechanisms to retrieve the corresponding
knowledge from the hypertexts. Good examples for classical solutions without using CBR can
be found in [MS93] or [ANR89].

It is a very complex task to measure the quality of hyperlink-proposal algorithms. Cleary
and Bareiss mention as important factors the recall, the share of acceptable proposals of all
good (or appropriate) links (AL) and the precision, the share of acceptable proposals of all
proposed links (PL) [CB96]. Therefore, the recall R can be described with:

R =
9{AL ∩ PL}

9{AL}

and the precision P with:

P =
9{AL ∩ PL}
9{PL}

Certainly, those shares do only make sense if both sets AL and PL are not empty. Other-
wise, recall and precision are not defined. Figure 7.1 should clarify the meaning of recall and
precision.

Often, the quality of proposals in detail is only measurable by human experts. In general,
the dilemma of hyperlink-retrieval is that a fully automated generation of links on a statistical
base (see also [GZ93]) leads to relatively bad results in terms of precision and recall, while
semantic approaches with very good results require a high degree of user interaction [PMH97].
If hyperlink retrieval is to be used as a tool for supporting web authors in easily adding up
links, it would not be appropriate to require the time consuming formulation of a complete
model of the semantic dependencies of a text. Web authors and users (readers) of hypertexts
can also be supported without a generation of links. Zellweger et. al. introduce the concept of
Fluid Links as a convenient way to deal with temporarily visible information [ZCM98].

The hyperlink-proposal module presented here can easily be adapted as part of a web
authoring system like DAPHNE (section 2.2.2, further information can be found in [HZE99]). It
is also appropriate to extend hyperlink management systems such as Microcosm [HDH96] with
CBR-methods. Another possibility would be the use of CBR in combination with Distributed
Link Services (DLS) presented by Carr et. al. in [CHH98].



7.2. MODELING OF A HYPERLINK-PROPOSAL MODULE 65

7.2 Modeling of a Hyperlink-Proposal Module

7.2.1 Methodological Approach for Generating Links

In this chapter, we present a hyperlink-proposal system where all links that are part of any
hypertext can be proposed no matter whether the target document is part of the system or
not. Storing the possible hyperlinks is not enough, though. Of major importance is the fact
that the system must store the relationship between the text and the associated links. This
step is called a learning process. Therefore, the database can also be called a knowledge-base.
The quality of this knowledge-base depends on the quality of the learning process: How can
the information of the texts be combined with appropriate hyperlinks?

One possibility would be the human teacher. A person or a group of persons could derive
the important information of the document manually. This process is very cost- and time-
consuming and is not feasible in practice. Most of today’s learning algorithms conquer the
problem of high quality knowledge retrieval by extracting some information automatically on
the basis of advanced heuristics. The learning process itself evaluates the relevance of the
extracted information.

At first, the learning algorithm treats a text with hyperlinks as if it does not contain any link
and derives the relevant information. Next, it proposes one or more hyperlinks and compares
the result to the hyperlinks that the document in fact contains. By using this method, the
learning process can be carried out without any human teacher. A disadvantage arises from
the strong relationship between the quality of the learning process and the quality of the initial
documents. Furthermore, only those hyperlinks can be proposed that are already known to
the system and at the very beginning of the learning process there are no links to be proposed
at all.

Our idea is to model the hyperlink generation problem as a kind of CBR-system (as de-
scribed in section 3.1) and to use some experiences of CBR-research to retrieve high quality
links as proposals for the web author. The written texts of the web authors are regarded as
the problems and the hyperlinks within are the solutions. A complete hypertext can thus be
viewed as a case. In the learning process, (statistical) text attributes are stored together with
their attached hyperlinks into the knowledge-base, in the CBR-environment also called the
case-base. In the classifying step, raw texts are presented to the system which proposes hyper-
links for the text as solutions. A possible a posteriori classification to evaluate the quality of
the proposals is illustrated in Figure 7.2. We will come back to this idea in 9.1.

Furthermore, every new hypertext generates an additional solution - namely the link that
refers to itself. We designed the CBR-model for the hyperlink environment with further dif-
ferences to the classical approach. The cases are not stored explicitly into case-base but more
implicitly without a strong relation between problem and solution. Only the importance of
certain attributes for the affiliated solutions are represented in a weighted relevance matrix.
The differences are discussed in section 7.3.

7.2.2 Representing Hypertexts as Cases

Cases are the most important data-structures of CBR-systems. Our approach provides a
modeling of hypertexts as cases, where several textual attributes form the problem vector and
the hyperlinks represent the corresponding solutions.

The raw text (without hyperlinks) as a whole is regarded as an information source to
propose useful hyperlinks. At the current stage, there is no possibility to provide link proposals
exactly for a concrete sentence of the text but all proposals together belong to the whole text.

In a further version of the HPM we plan to propose links not only by direct request but also
continuously: Then, the proposals belong with a higher probability to the current paragraph
and sentence the editor is actually working on.



66 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

Figure 7.2: Learning and classifying applied to the hyperlink context

If we denote the main properties or attributes of the raw text within a hypertext H with
T , and the links with L, then H can be regarded as the case: H = (T ,L). T represents
the text in form of an attribute vector where the elements correspond to certain properties
of the corresponding text, e.g. keywords, author information and so on. This data-structure
will be the result of the knowledge-retrieval process described in detail in section 8.1. The
hyperlink representation in form of the binary vector L consists of links known to the system.
Every element set to “1” in L means that the corresponding hyperlink can be found within
T . Every element of L represents a target document (within the set of local documents of
the own web-server or not)1 and the corresponding default description. This description can
be derived from the used online authoring system (if generated with such a tool) or from the
concrete labeling of the first occurrence of the link (otherwise). Certainly, the user of the HPM
can change the default labeling of the hyperlinks.

If the system currently provides a pool of Lmax links, then the actual size of L is Lmax.
The hyperlinks known to the HPM are increasing steadily, therefore also L has to be adapted
dynamically (the consequences of this concept for the implementation of HPM are explained
in detail in chapter 8).

Analogously, also the size of the vector T is changing dynamically, but as we will explain
in section 8.1, T is not a binary vector. Attributes can also be fulfilled partially. We denote
the current size of T with Tmax.

The core of our HPM consists of a relevance matrix ψ where the number of rows Lmax and
the number of columns Tmax have to be increased dynamically. Every entry ψij corresponds to
the importance of the attribute j for the appearance of the hyperlink i, the “solution”. Both
sets, the attributes and the solutions, can take up additional elements any time (e.g. keywords
in new HTML-texts and the hyperlinks within). In the sections 7.2.3 and 7.2.4 we will see
how to calculate with these data-structures. In chapter 10 we will come back to the described
modeling and we will compare the methodologies to the prediction concepts (described in
chapter 4).

1Links that refer to documents within the own web site are also called internal links, otherwise
they are external.



7.2. MODELING OF A HYPERLINK-PROPOSAL MODULE 67

The sum of all relevance values of ψ according to the derived hyperlink-proposals must
always fulfill the following normalizing condition:

∀i, 1 ≤ i ≤ Lmax :

Tmax∑
j=1

ψij = 1 (7.1)

Matrices with this property are also called stochastic (see 3.2.1 for details). With (7.1) it
will be possible to use elementary linear algebra to calculate the probabilities to be suitable to
a presented text for all provided hyperlinks within the knowledge-base.

7.2.3 The Classification Phase

As we have seen in section 7.2.2, a case H consists of a pair of vectors, the problem T and
the solution L: H = (T ,L). The aim of the classification phase is to find the (unknown)
solutions of a presented problem, i.e. to investigate the corresponding link-vector L for the
presented text attributes T to form a hypertext H. Thus, the classification phase should
supply a resulting Lmax-vector S where the elements of S contain the probabilities that the
corresponding hyperlink is applicable to the text T . These proposed links are presented to the
user in descending order of their request-probability.

To classify a problem T we first have to separate the attribute values of T with the threshold
vector δ = (δj), thus using the attribute separation function ζ. In the style of section 3.4 we
want to speak of fulfilled attributes and contradictory attributes and thus use again the sets F
and C:

ζ(T ) = (ζj(T j)) where ζj(T j) :=

{
T j : T j ≥ δj � T j ∈ F
0 : T j < δj � T j ∈ C ∀ 1 ≤ j ≤ Tmax (7.2)

The threshold-elements δj control whether an attribute is fulfilled or not. It is not possible
to abandon the separation step: The whole learning algorithm presented in 7.2.4 could then
possibly not determine the new relevance results. The meaning of the sets F and C has slightly
changed: In our modeling high values within the attribute vector T are regarded as “fulfilled”
themselves while the classical CBR-approach only measures the similarity between two different
attribute settings.

Analogously to (3.7) we will use the term j ∈ T F to denote that T j ∈ F and j ∈ T C

respectively.

Finally, ζ(T ) simply has to be multiplied with the relevance matrix ψ to obtain the proposal
vector S indicating whether and in what degree the corresponding links Li are useful to improve
the quality of T or not.

S := ψ · ζ(T ) (7.3)

An additional threshold value2 δ can control whether the probability values of S should be
regarded as corresponding solutions (proposals) or not. Nevertheless, our HPM presents the
proposals exceeding δ in descending order of their probability. We thought of a maximum of
20 proposals as useful in practice. This proceeding implies an additional (implicit) threshold
if more than 20 hyperlinks exceed the threshold value.

2Also a threshold vector δ = (δi) would be a good idea, where the different link-proposals could be
qualified individually. We left this modeling to a further development phase of our HPM.



68 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

Si Li Actions to be done

0 0 nothing

0 1 relevance adaptation (learning)

1 0 nothing (adaptation in later version, see 10.3 for details)

1 1 nothing

Table 7.1: Relevance adaptation

7.2.4 The Learning Phase

In the learning phase, the relevance-indicating values of ψ have to be adapted so that the
classification (as described in section 7.2.3) of a raw text (the “problem”) T for a given case
H = (T ,L) would result in a probability vector S with the property that all elements of S
where the corresponding values of L are set to “1”, are really exceeding the threshold value δ.

For this learning step, it could be necessary to increase both the number of rows Lmax and
the number of columns Tmax within ψ dynamically. All new (dynamically generated) relevance
values are then initialized with the values 1

Tmax
to fulfill condition (7.1).

To be able to learn the new case H = (T ,L) its attribute-separated problem ζ(T ) has to
be classified. The resulting proposal vector S is then compared, element for element, to the
real solution vector L of H. Four cases have to be distinguished in each comparison of the
corresponding vector elements i (Table 7.1).

The process of learning involves a change in the relevance values of ψ. If a suggested
probability is too low so that the corresponding link will not appear on the proposal list of the
HLM-system (second case of Table 7.1), the weight of the corresponding relevance entries in
ψ must be increased. To fulfill condition (7.1), the remaining weights have to be decreased by
the same amount.3

In the basic version of our HPM implementation, an element “0” in L did not lead to an
adaptation of entries in ψ.

Let the i-th element of L correspond to a hyperlink that should be classified within the
learning phase and that is not classified with the current weights.4

Then, the result ci of the multiplication of the (attribute-separated) raw text ζ(T ) would
not exceed the threshold δ:

∑
j∈T F

ψij · ζj(T j) =: ci ≤ δ (7.4)

Due to the learning rule of CBR (described on page 22) ψ must be adapted to ψ′ so that
we obtain:

∑
j∈T F

ψ′
ij · ζj(T j) = δ (7.5)

Now, there a several possibilities to change the weights of ψ to achieve the result of equation
(7.5).

3In the classical CBR-approach at this step a conflict is possible: What can be done if all elements
(or too much) of the presented problem-vector expect an increasing of weights? In our implementation
due to the dynamically increasing attributes this conflict can be omitted (see also the example described
in section 7.3.2).

4Otherwise, the learning process would be superfluous, or - it has already been done!



7.2. MODELING OF A HYPERLINK-PROPOSAL MODULE 69

The most simple and straightforward ones are the proportional distribution and the constant
distribution, both presented in the following subsequent sections. For further distribution ideas
see [Haf93].

7.2.4.1 The proportional distribution

If the missing values of the weights are distributed according to the height of their current
value and the current weights are natural, i.e. ci > 0 and χ :=

∑
j∈T C

ψij > 0, then the new

values of the corresponding link i relevance weights should be set to:

∀j ∈ T F : ψ′
ij = ψij ·

δ

ci
(7.6)

Otherwise, if the weights are not natural, other kinds of distribution might be possible,
e.g. the “constant distribution” discussed in 7.2.4.2.

At first, we have to verify that the classification leads exactly to the threshold value δ for
the settings of (7.6):

∑
j∈T F

ψ′
ij · ζj(T j) =

∑
j∈T F

δ

ci
· ψij · ζj(T j) =

δ

ci
· ci = δ � (7.7)

Due to the stochastic-property (7.1) of ψ we find:

ψ′
ij =




ψij · δ
ci

: T j ∈ F

ψij · χ+ρ
χ : T j ∈ C

(7.8)

where ρ = (1− δ
ci
) ·

∑
j∈T F

ψij

The proof of the stochastic property is rather clear:

∀i ∈ {1, 2, . . . Lmax} :
∑Tmax

j=1 ψ′
ij =

∑
j∈T F ψ′

ij +
∑

j∈T C ψ′
ij

=
∑

j∈T F ψij · δ
ci
+
∑

j∈T C ψij · χ+ρ
χ

= δ
ci

∑
j∈T F

ψij +

P

j∈T C
ψij+(1− δ

ci
)
P

j∈T F
ψij

P

j∈T C
ψij

∑
j∈T C

ψij

= δ
ci

∑
j∈T F

ψij +
∑

j∈T C
ψij + (1− δ

ci
)

∑
j∈T F

ψij

=
∑

j∈T C ψij +
∑

j∈T F ψij

= 1 �

(7.9)

7.2.4.2 The constant distribution

Let us denote κ =
∑

j∈T F
ζj(T j) as abbreviation. It is always true that κ > 0, because attributes

are not fulfilled, i.e. do not belong to F , if their value is “0”. Furthermore, the set C must not



70 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

be empty. If this is the case, there is no possible weight distribution. See also 7.3 for general
limitations of the presented approach.

Here, we are deriving the constant value ∆ that describes the changes of the relevance
weights ψij for j ∈ F to “learn” the classification of the link corresponding to i:∑

j∈T F ψ′
ij · ζj(T j) = δ

⇐⇒
∑

j∈T F (ψij +∆) · ζj(T j) = δ

⇐⇒
∑

j∈T F ψij · ζj(T j) +
∑

j∈T F ∆ · ζj(T j) = δ

⇐⇒ ci +∆ ·
∑

j∈T F ζj(T j) = δ

⇐⇒ ci +∆ · κ = δ

� ∆ = δ−ci
κ

(7.10)

Therefore, for the new settings of ψ′ we get (analogously to (7.8)):

ψ′
ij =




ψij +
δ−ci
κ : T j ∈ F

ψij −

P

j∈T F

δ−ci
κ

P

j∈T C
1 : T j ∈ C

(7.11)

We still need to provide the proof that the stochastic property is also for ψ′ true:

∀i ∈ {1, . . . , Lmax} :
∑Tmax

j=1 ψ′
ij =

∑
j∈T F ψ′

ij +
∑

j∈T C ψ′
ij

=
∑

j∈T F

(
ψij +

δ−ci
κ

)
+
∑

j∈T C


ψij −

P

j∈T F

δ−ci
κ

P

j∈T C
1




=
∑

j∈T F ψij +
∑

j∈T F
δ−ci
κ +

∑
j∈T C ψij −

∑
j∈T F

δ−ci
κ ·

P

j∈T C
1

P

j∈T C
1

=
∑

j∈T C ψij +
∑

j∈T F ψij

= 1
(7.12)

due to the stochastic property of ψ �

After such a learning step has been taken, hyperlinks for new documents can be proposed
by using the knowledge-base in the classification phase (see 7.2.3).

In general, the user of the hyperlink-management system (HLM, 2.3) accepts or rejects
a proposal of the classification algorithm and thus plays the role of a human teacher. The
learning algorithm must compare the proposal of the system to the reaction of the human user
and thus adapt the relevance values according to the proposed algorithm. Figure 7.3 shows
the described ideas in graphic form.



7.2. MODELING OF A HYPERLINK-PROPOSAL MODULE 71

Figure 7.3: Principle structure of a statistical-based hyperlink-proposal algorithm

In practice, the learning and the classification steps are combined so that the system is
able to make proposals even though the knowledge-base is still rather small.

A description of an implementation and an evaluation of the described principle can be
found in the chapters 8 and 9.

In chapter 10, we will come back to the main ideas of this approach and we will show
that these algorithms can be improved by drawing parallels from the - at first glance - quite
different field of request-prediction.

7.2.4.3 Examples

Starting from the relevance matrix:

ψ =


 0.3 0.4 0.3
0.2 0.1 0.7
0.7 0.3 0.0




we consider the attribute vector:

T =


 0.9
0.2
0.8




and the attribute thresholds δ1 = 0.7, δ2 = 0.75 and δ3 = 0.8.

Then, according to (7.3), the classification of the attribute-separated T leads to:

S := ψ · ζ(T ) =


 0.3 0.4 0.3
0.2 0.1 0.7
0.7 0.3 0.0


 ·


 0.9
0.0
0.8


 =


 0.51
0.74
0.63






72 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

Let the classifying threshold be: δ = 0.7 and the link-vector L that is to be “learnt”:

L =


 0
1
1




The classification of link 1 corresponds to the first line of Table 7.1 (on page 68) because
of: S1 = 0.51 < 0.7 = δ. For the link 2 we find: S2 = 0.74 > 0.7 = δ and L2 = 1, therefore, we
have case four of Table 7.1. Only the link 3 leads to an adaptation of ψ:

S3 = 0.63 < 0.7 = δ, but L3 = 1. We show in the following both learning strategies, the
proportional and the constant one.

7.2.4.3.1 Weight adaptation with proportional distribution According to
equation (7.8) we find for the example settings:

ψ′
ij =




ψij · δ
ci
=ψij · 0.7

0.63 : j ∈ T F = {1, 3}

ψij · χ+ρ
χ =ψij · 0.3−

1
9 ·0.7

0.3 : j ∈ T C = {2}
for i = 3

This leads to the new matrix:

ψ′ =


 0.3 0.4 0.3
0.2 0.1 0.7
0.778 0.222 0.0




In case of the proportional distribution the “old” value ψij plays an important role. We
can see in this example, that the value of 0.0 can not be increased with the proportional
distribution strategy. Nevertheless, it is easy to see that the resulting matrix ψ′

ij fulfills the
stochastic property.

7.2.4.3.2 Weight adaptation with constant distribution For the constant dis-
tribution of the additional relevance weights we come to the following results. The starting
point is equation (7.11):

ψ′
ij =




ψij +
δ−ci
κ =ψij +

0.7−0.63
1.7 : j ∈ T F = {1, 3}

ψij −

P

j∈T F

δ−ci
κ

P

j∈T C
1 =ψij − 2· 0.071.7

1 : j ∈ T C = {2}

which leads to the resulting matrix:

ψ′ =


 0.3 0.4 0.3
0.2 0.1 0.7
0.741 0.218 0.041




Again, it is easy to see that the stochastic property can still be provided.
In contrast to the proportional distribution the result seems to be more natural. For our

implementation of the HPM we found that the proportional distribution poses more problems
due to the manifold 0-values in ψ. Therefore, we placed the emphasis in an early step on the
constant distribution. In section 7.3.2 we present an example where the constant distribution
strategy leads to extreme weights and how to overcome such problems. Furthermore, the
overall proposal results evaluated in chapter 9 are rather promising.



7.3. DELIMITATION OF CBR AND THE PRESENTED HPM 73

7.3 Delimitation of CBR and the presented HPM

7.3.1 General Comparison Aspects

It is very important to outline the differences between the proposed HPM and the classical
Case-Based-Reasoning systems (already described in 3.1). One major difference has been
mentioned in 7.2.1 already. Usually, a new problem has to be compared with the cases of the
case-base to find the most similar one. Then, its solution is transferred to the new problem.

We are not comparing explicitly all cases of the knowledge-base with the new problem.
Instead, we transfer directly the importance of attributes for the corresponding solutions of
the stored cases to the new problem by multiplying the relevance matrix ψ with the new
problem vector T .

Therefore, we lose degrees of freedom concerning the learning algorithm. Detailed analyses
of dynamical learning algorithms for Case-Based Reasoning systems can be found in [Haf93].
One modeling problem, for instance, consists of the possibility for relevance weights to become
smaller than 0.0. This situation is illustrated by the example of section 7.3.2.

In general, our proposed approach seems to be simpler and faster and the results are not too
poor (see the usability evaluation of the algorithms in chapter 9). But we left the possibility
to extend the system later to implement more sophisticated algorithms with more complex
learning rules.

Another difference is the understanding of cases themselves. Normally, a case consists of
a problem together with its solution. In the HPM, also the new document (as part of the
problem) generates a new hyperlink that points to itself (as an additional solution). This is
very important for future classification steps but it has no meaning for the current problem
solving.

Some of the main advantages and disadvantages of CBR for hyperlink-proposal use are
listed below. On the one hand, there are the following advantages of using CBR to built a
HPM:

• CBR research proves serviceable for extended use (several years) and for use in many
areas

• It requires no special user interaction
• The learning process takes place implicitly (i.e. while the user accepts or rejects a link
proposal)

• Core functions of CBR are fast and easy to implement

• CBR-systems “learn” to adapt personalized link favorites
• Due to the case model all kinds of (typed) links can be found - not only those that point
to documents on the local web side

• The link proposal system can be applied to existing web sites by filling the case-base
with hypertexts

• CBR can be used in conjunction with other methods (e.g. the concept model of [CB96])
• It is not restricted to language characteristics as described in [KKD99]5

• Link proposals of CBR do not determine non-ambiguous sources of the hyperlinks so
that the same keyword can (implicitly) generate more than one link for the hypertext6

5We based our studies on English and German documents. For the latter, we have an additional
restriction: only words with beginning capitalized letter (beside the first word of a sentence) are
regarded as potential keywords. In German nouns always start with a capitalized letter.

6The number of keywords varied between five and hundred.



74 CHAPTER 7. HYPERLINK-PROPOSAL THEORY

On the other hand, there are also some disadvantages of the CBR-similar approach:

• The proposed links do not belong to a small fragment of text but to the whole page so
that special link positions must be adapted manually

• CBR generates (many!) link proposals ordered by the probability of their usefulness.
Therefore, the classical measurements of recall and precision cannot simply be applied

• The quality of the proposals depends on the structure of the case-base. If it is empty,
the system cannot make any proposals. If it overflows, some cases will be “forgotten”

7.3.2 Example of a Critical Learning Phase

In paragraph 7.2.4.3.2 we mentioned already that there are potentially problems for certain
weight distribution strategies. Especially, when there are very few attributes the process to
distribute the weights becomes rather unexpected.

Let us consider, for instance, a case where the attribute vector looks like this:

T =




0.93
0.84
0.88
0.84
0.96
0.99
0.89




For the given attribute thresholds ∀ 1 ≤ j ≤ Tmax : δ
j = 0.8 all existing attribute would

be classified as “fulfilled” and thus ∀ 1 ≤ j ≤ Tmax : T j ∈ F .
Such a situation poses problems to the learning algorithm: if there are any links that are

not proposed already it would not be possible to change any weights of ψij to increase the
resulting value. To fulfill the stochastic property it would be necessary to decrease the weights
of contradictory attributes, but in the given vector T there are no such attributes! In [Haf93]
these weight changes are called impossible requirements.

Nevertheless, it is very improbable that T does not propose all of the existing links al-
ready. Furthermore, in our modeling of the hyperlink-proposing scenario only few links can be
proposed (for instance the 20 links with the highest classification results). It would be an ap-
propriate solution for the described problem to limit the number of links to be classified. Then,
the weights of the remaining solutions could serve to be decreased for fulfilling the stochastic
property.

There is another critical situation, although very improbable, it could happen that relevance
weights become negative.

Let the relevance matrix be:

ψ =


 0.4 0.3 0.3
0.1 0.1 0.8
0.4 0.4 0.2




Furthermore, let the separated attribute vector be:

ζ(T ) =


 0.7
0.7
0.0






7.3. DELIMITATION OF CBR AND THE PRESENTED HPM 75

The classification results, herewith, in:

S = ψ · ζ(T ) =


 0.4 0.3 0.3
0.1 0.1 0.8
0.4 0.4 0.2


 ·


 0.7
0.7
0.0


 =


 0.49
0.14
0.56




The link 2 should be classified with a threshold δ = 0.77.
The constant weight distribution strategy, thus, leads to the new matrix:

ψ′ =


 0.4 0.3 0.3
0.55 0.55 −0.1
0.4 0.4 0.2




The value ψ′
23 = −0.1 has become negative due to the high threshold value δ and the rather

low attribute values. For δ = 0.7, for instance, the resulting value of ψ′ would be: ψ′
23 = 0.0.

What could be the meaning of such a relevance weight? The existence of a certain attribute
preserves the corresponding link from being proposed. Even though this kind of modeling is
possibly manageable we can omit this critical situation within our scenario. As stated earlier,
for our HPM we increase both the number of rows (corresponding to the number of known
links Lmax) and the number of columns (corresponding to the number of textual attributes
Tmax) dynamically.

Additional rows are necessary to treat hyperlinks that were extracted from the texts to
model the learning phase adequately.

New columns are the result of the classification phase: if new important keywords are
recognized they lead to additional columns (see section 8.1.2 for details).

With such dynamically increasing matrices it is easy to overcome the problem of negative
weights. Every additional column decreases the probability for weights to become very small.
Furthermore, an additional column can be modeled as part of the learning phase. If the new
column corresponds to a keyword attribute it is very simple to add an appropriate keyword
(for T j that is not part of the current text and thus belong to T j ∈ C. If necessary, more than
one additional column can be added.

The practice of our HPM shows that negative weights are very improbable and they did
not occur outside of our testing laboratory.



76 CHAPTER 7. HYPERLINK-PROPOSAL THEORY



Chapter 8

Implementation of the
Proposal-Module

Whole and unity; thing or entity or being.
Every whole is a unity and every unity that is divisible is a whole.
For example, the primitive concepts, the monads, the empty set,

and the unit sets are unities but not wholes.
Every unity is something and not nothing.

Any unity is a thing or an entity or a being.
Objects and concepts are unities and beings.

Kurt Gödel, recorded by Hao Wang
in “A Logical Journey” MIT Press (1996)

After the derivation of the formulas to provide both a classifying phase and a learning
phase in chapter 7 we come in this chapter to a description of a concrete implementation.

A very important part of the whole process is the transformation of hypertexts into an
attribute vector representation. Section 8.1, thus, describes the process of retrieving knowledge
from texts. Details of the module implementation are discussed in section 8.2. The evaluation
and the refining of the measurement terms are provided in chapter 9.

8.1 Knowledge Retrieval of Hypertexts

A very crucial question in the context of our CBR-similar Hyperlink-Proposal Module (HPM)
is the transformation of the problem into certain attributes that represent it. Therefore, it is
necessary to retrieve the relevant information of the corresponding hypertexts. In the following
subsections, we present a technique for knowledge retrieval that is based on statistical and
syntactical considerations. As described in 7.2, a problem is modeled as a Tmax-vector T
where Tmax denotes the number of attributes used to describe the problem. Every element
of T must be normalized into the interval [0,1]. The solutions of a case are also represented
that way. Here, we speak of an Lmax-vector L, which is mostly a binary vector with the i-th
element set to 1 if and only if the solution corresponding to i solves the Problem T , and 0
otherwise. The variable Lmax is the number of all solutions available from the relevant case-
base. Obviously, a problem T can have up to Lmax solutions. In the presented concept, the

77



78 CHAPTER 8. IMPLEMENTATION OF THE PROPOSAL-MODULE

solutions are hyperlinks within the (problem-)files. Therefore, a text T is represented with
Tmax attributes and can contain up to Lmax hyperlinks L.

To specify the attributes of hypertexts we chose the following settings (if available):

• Every important (weighted) keyword of the document is regarded as an attribute
• Every author of the document forms an attribute
• The creation date and the expiration date of a document are subsumed to one attribute
validation

• The publishing state1 and the version are combined to form the attribute availability

• The department information is one attribute structure, but we set the restriction that
each document must not belong to more than one department

Thus, we made a statistical approach to apply our HPM scenario. Semantic methods could
have been modeled at this point too. An evaluation of our settings will be given in chapter 9.

8.1.1 Modeling of the HPM in General

Our idea was the straightforward, relatively simple adaptation of the CBR-concept to the con-
text of hyperlink management systems (HLM) and the evaluation of its potentials. Our HPM
should only be one possibility to propose links and it must collaborate with other methods. As
the environment to implement a prototype version we selected an HLM-system as presented
in [HHR99] where problems arising from different supported languages were also modeled.

As already mentioned in the beginning of this section, we choose the keywords of the
documents to specify the attributes of hypertexts. Other types of meta-data can also be
used here (e.g. author information, creation date, expiration date) if the document has been
generated with an online authoring tool, e.g. DAPHNE (see description in section 2.2.2).

The following subsections describe in detail the methods to derive information from texts,
especially from hypertexts.

8.1.2 Keyword Extraction

A very difficult problem is the extraction of keywords from a document on the basis of statistical
distribution [CB93]. We decided to carry out a full text analysis with a special treatment of
HTML-tags. All words beside HTML tags, comments and the stopwords (e.g. a multilingual
list from CD-ISIS [CDI99]) were treated as potential keywords.

Beside the classical stopwords we regard in the context of hyperlink management also terms
like “homepage” and the company’s name as unusable for classification of whole web pages by
keywords. A “word” in this context is a sequence of letters without special characters (e.g.
hyphens). The following Table 8.1 shows the - arbitrary chosen - weights we attached to every
word in a text depending on its relative position between tags. These settings reflect that
keywords in titles or headlines are more important than those in the body. In the next version
of our HPM, the weights of the keywords should also be part of the learning process.

The number of occurrences of a word in a document multiplied with the settings of Table 8.1
results in an absolute weight. Words within the anchor-tag for hyperlink references (HREF)
are not considered because their information results already in a concrete link.

Only the words that exceed a minimum threshold δD (depending upon the document
length) are treated as keyword attributes. In addition - if there are too many keywords -
only the ones with the highest weights are selected. At the end all weights are proportionally
transformed into the interval [0,1]. Thus, all weights are divided by the maximum value among
them.

1Allowed states are for instance: generation in progress, reviewed, exported to the Internet, pub-
lished. For further details see also 2.2.2.



8.1. KNOWLEDGE RETRIEVAL OF HYPERTEXTS 79

Position within tag Weight

<TITLE> 100

<META> (description) 50

<H1> 5

<H2> 4

<H3> 3

<H4> 2

<BODY> 1

<A HREF> 0

Table 8.1: Distribution of keyword weights

Some essential points of the keyword extraction are:

• Keyword extraction does not consider ambiguities in the meaning of the words that are
spelled the same

• Abridgments and acronyms can be defined in the text itself and will thus be treated like
stopwords

• Even if two texts only have few keywords in common, they can share their solutions in
the HPM

• The use of full form lexicons for treating different kinds of word-flexion [Spr92] should
be applied in the future

8.1.3 Author Information

If the author of an HTML document is known, this information will form an additional attribute
for the corresponding text representation. If there is more than one author, the system is able
to take care of the varying relevance of the different authors (e.g. the first author is weighted
by 1

1 , the second by
1
2 , the third by

1
3 and so on; or all authors are weighted by 1 in case of

alphabetically sorted authors).
This information is retrieved from the corresponding online authoring system (for instance

the system “DAPHNE” described in 2.2.2).

8.1.4 Document Validation

The idea to consider the age of an HTML-file to form an attribute arises from the perception
that the relevance of the content depends on its creation and expiration time. This is also true
for the links contained in these documents. To get a linear value between 0.0 and 1.0 for the
validation of a file, we calculate the distance in time between the current time (“now”) and
the lifetime of the document. There are three possibilities as described in Figure 8.1.

1. If the creation time or the publishing time of a document represented as T is in the past
and the expiration time is in the future (T2 = “now”), the validation value ν of T will
result in:

ν = 1.0 (8.1)



80 CHAPTER 8. IMPLEMENTATION OF THE PROPOSAL-MODULE

Figure 8.1: Timeline to calculate validation

2. If the publishing time of T is in the future, e.g. T is not yet visible in the Inter-
net/Intranet (T1 = “now”) the validation ν is calculated as:

ν =
TE − T1
TC − T1

(8.2)

3. If the document is already obsolete, the validation attribute of the corresponding docu-
ments will obtain the following value (T3 = “now”):

ν =
T3 − TC
T3 − TE

(8.3)

Further information about this topic can also be found in [HHR00].

8.1.5 Departmental Information

If possible, additional information of the document structure is also used as an attribute for the
problem representation. Here, the idea is that those documents that are positioned “deeper”
in the (tree) structure of a website obtain a lower value as those on the top level. The usability
of links with regard to the structure depends on how general the contents of the concerned
web pages are. It is more probable that links on the top level are not as specific as those in
other positions, even though this is not always true. Very often, files all over the website refer
to the document-root of the tree (the “home-link”).

Again, the departmental information can mostly not be retrieved from the HTML-files
and the directory structures themselves, but only with the aid of the corresponding online
authoring system that provided the departmental information (see also [ZHH99]).

8.2 Hyperlink-Proposal Module Implementation

We implemented a first version of the algorithm as described in section 7.2 to propose links on
the basis of an existing HLM-system written in Java [HHR99]. Here, the links are represented
as objects with source document and target document as variables. Every link has its own
description and refers to a default label. For simplicity, the generated link proposals supply
only one (default) description.

8.2.1 General Concepts and Ideas

From the very beginning it was clear that we should provide and implement the HPM as part of
a universal hyperlink-management system (such as the HLM described in 2.3). A standalone



8.2. HYPERLINK-PROPOSAL MODULE IMPLEMENTATION 81

version would not be able to treat the manifold additional information such as author or
departmental information adequately even though this might be a good idea in general.

Nevertheless, we needed in an early step already useful results to see if our ideas were
practical. Therefore, we decided to scan existing websites. The HLM-import-functions should
read several international known websites (e.g. “www.acm.org”) and treat them as if they were
part of the HLM internal structure. Certainly, most of the additional information was not
available.

The next step was very exiting. We extracted the hyperlinks from the scanned hypertext
and run the classification step from the raw texts. Afterwards, in the learning step, we com-
pared the proposed links to the really existing hyperlinks within the original pages and the
HPM “learnt” the corrects solutions. The results of these evaluation steps are provided in
chapter 9.

The whole HLM-packet is a pure Java implementation. Our HPM is one module of the
packet. It is based on the data structures such as “Meta” and “Link” that we sketch below
briefly. We omit here a detailed description of the implementation of these concepts and refer
to [RHH99]. A short introduction to this topic can also be found in 2.3.

Furthermore, we needed to program some additional features in order to treat the imported
website adequately. For instance, we associated a “default-author” to the new HTML-files.

A rather unusual concept of our modeling are the dynamically increasing rows and columns
of the matrix ψ. Even though they help to manage difficulties in the learning step (as described
in 7.3.2), they lead to a slightly more complicated implementation.

One the one hand, we can not use static data structures because the number of rows and
columns are not limited. On the other hand, the system load increases dramatically if the
growth of the matrix ψ can not be controlled.

In a further step of the implementation, we will not use the array structure any more, but
we will decide heuristically which text attributes (that form the columns) and which hyperlinks
(that form the rows) are appropriate and which are not. Furthermore, we sketch briefly the
idea of decreasing the matrix rows and columns again in the outlook.

8.2.2 An Exemplary Java Implementation

To illustrate the derived concepts of the HPM we present our shortened implementation in form
of Java source code in the appendix B.1. This is a simplified version of the main programming
code for use in the HLM-project as mentioned above. Some important parts of the class
definition with variables and methods are discussed below.

The matrix psi (ψ) is used a central data structure with dynamically increasing number
of rows and columns. In Java, the implementation for such a kind of array is rather simple.
The only difficulty consists in taking into consideration the different sizes of this structure in
subsequent programming steps. For instance, the number of rows and columns of the matrix
between learning and classifying could have been changed.

A text (with or without hyperlinks) is represented as its meta-object (“Meta”), not only
containing a reference to the content of the text itself, but also to some meta information,
e.g. the author(s), a description, creation and expiration date and so on. For simplicity and
clearness of studying the sources, only two special attribute treatments - besides the most
important keyword attributes - are left in the code of the appendix: the document validation
(8.1.4 validity and the departmental information (8.1.5) departmental structure.

An object class “Link” represents a hyperlink that points to a document. A link consists
of its description (label) and certain properties, for instance the language or the version. The
link can receive its label as the description of the first occurrence of the hyperlink within a
document or directly by the author.



82 CHAPTER 8. IMPLEMENTATION OF THE PROPOSAL-MODULE

The most interesting methods of the HPM class are “classify” and “learn”:

• classify

This method takes a meta-object (text) as input and results in a link list, where all
elements exceed the class threshold probability. The list is sorted in descending order
by the value of the corresponding probabilities of the links.

• learn

The “learn”-method takes a meta-object and a list of links as input parameters. The aim
of the learning process is to adapt the weights within ψ so that a subsequent classification
process would result in - at least - the given link list. Additional proposals are acceptable
at this point.2

The concrete weight adaptation of ψ is realized within the method changeWeights. It is
called for a complete row of ψ that corresponds to a single link. The sum of all weights within
a row must remain exactly 1 after each learning step in order to fulfill the stochastic property
of (7.1).

The method zeta performs the function ζ defined in formula (7.2). It separates the attribute
values into fulfilled and contradictory elements. Only the former values remain while the latter
ones are reset to 0.

The core of the information retrieval task is done by the method retrieveAttributeVector.
The keywords of the given text are weighted according to their position within HTML-tags3.
Those weights build up the resulting vector together with some additional attributes (as men-
tioned above).

Further information especially on the basic data structures of the hyperlink-management
objects can be found in [RHH99].

2Even though the overall number of proposals must be limited in order to be practically usable for
online authors.

3This step is performed by the subroutine getKeywordWeight. The basis of this function is the
weighting task described in section 8.1.



Chapter 9

Hyperlink-Proposal Evaluation

There are problems to whose solution I would attach
an infinitely greater importance than to those of mathematics,

for example touching ethics, or our relation to God,
or concerning our destiny and our future;

but their solution lies wholly beyond us
and completely outside the province of science.

Johann Carl Friedrich Gauss, quoted by J. R. Newman
in “The World of Mathematics”, New York (1956)

In chapter 7 we derived the theory to build a Hyperlink-Proposal Module (HPM) and in
chapter 8 we discussed a concrete development of such an HPM.

In this chapter, we try to measure the usability of the proposed links. At first, we discuss
some general aspects of the evaluation in section 9.1. Then, we refine the classical measurement
terms in section 9.2 and finally, the evaluation results are presented in section 9.3.

9.1 General Evaluation Aspects

For an advanced evaluation of the presented model on base of a large amount of data we
tested the system “a posteriori” on existing web pages.1 The advantage of this processing is
the “real-life” usability of the approach. The disadvantage arises from missing data: world
wide well-known web-pages that we scanned from the net do not provide helpful information
as author, validity, structure and others as presented in section 8.1. In section 9.3 we will
compare the results of those websites with our own web-presence (“www.ti.fhg.de”) where we
could use some of the additional information.

To evaluate the quality of the HPM, we extracted the links within several HTML-files,
classified the raw texts using our model, and finally compared the classification results to the
existing hyperlinks according to the learning and classifying steps demonstrated in 7.2.2.

Certainly, the HPM produces many proposals, arranged according to the probability of
their usefulness. The user should be able to scroll in the proposal list. In terms of the classical
measurements of recall and precision this is rather problematic. What are the “appropriate”
hits? A web author can, for instance, select several links from the proposal list and can create

1We mentioned this idea already in section 8.2.

83



84 CHAPTER 9. HYPERLINK-PROPOSAL EVALUATION

additional links herself/himself as well. It would be neither correct to count all proposals made
nor to ignore the additional ones. We will highlight this problem in 9.2.

Due to these difficulties, we decided to split the results of our web scans into several
parts. There are no unequivocal recall and precision values. Nevertheless - compared to some
results so far (e.g. Cleary et al. [CB96]) - we think that our approach may be used highly
advantageously and may obtain implicitly a very good recall and a high precision.

For a general evaluation of the proposal-quality we provide some important aspects of the
presented HPM that should be kept in mind as a summary.

• The HPM is easy to use because it provides proposals without any prior user interaction
(i.e. no construction of semantic models etc.)

• All link proposals belong to the whole document. Therefore, the web author has to
replace the links if she/he wants to have it at a specific position within the text. This is
an inconvenience of the current implementation that will be reduced in further versions
(see also 7.3 for some ideas to overcome this problem)

• The HPM can only propose links as accurate as the corresponding data in the case-base.
It can never propose a hyperlink which has not already been learnt

• The system makes many proposals, ordered by the probability of their usefulness. An
evaluation in terms of recall and precision is, therefore, rather problematic

Next, we will highlight the measurement methods to quantify the proposal-quality of the
HPM.

9.2 Measurement Refinements

Due to the difficulties in determining the quality of link suggestions we introduced new terms
on base of the probabilities of the link proposals.

The classical terms to measure the proposal-quality are the recall, the share of appropriate
proposals of all good links, and the precision, the share of appropriate proposals of all proposals.
A detailed explanation of these terms has been provided already in section 7.1. Beside these,
Cleary and Bareiss mention ease of use and thoroughness as important factors of link proposals
[CB96].2

9.2.1 Quantified Cumulating Recall

The Quantified Cumulating Recall (QCR) is derived from the term recall, that denotes the
share of appropriate links among all “good links” of the hypertext. The term is explained in
detail in section 7.1.

The idea is to extend the meaning of the “recall” as a dynamically growing factor. If applied
not only to every link in a given hypertext but to several documents, the QCR becomes an
increasing curve. The gradient of that curve signals the recall-share of the proposals as one
measurement of the quality of the HPM results.

Usually, the QCP is presented as a two-dimensional curve in a Cartesian coordinate-system.
The x-axis denotes the number of documents classified. The corresponding value on the y-axis
is summarizing all recall-values of the documents classified so far, where, certainly, the recall
of each document belongs to the interval [0, 1]. Therefore, we can speak of the “quantified
cumulating recall”. For the calculation of the recall we do not count those links that are not
yet known to the system and therefore in principle not suggestible. Such a modeling would
not be “fair” to the HPM. Nevertheless, each new document generates a virtual hyperlink to

2We will focus mainly on the refined recall and precision measurements as described in chapter 7.



9.3. EVALUATION RESULTS 85

itself so that the HPM could propose this link even though it might not be contained in any
hypertext known to the system.

At the beginning, the corresponding knowledge-base must not contain any specific informa-
tion about the documents of the website that is to be “learnt”. This would generate extremely
good proposal results that are unobtainable in practice. Normally, the QCR of the first docu-
ment results in the value “zero”.3 Evidently, the main-diagonal would be the maximum-result
of the proposal-quality.

Further information can also be found in the following description of the QCP (9.2.2).

9.2.2 Quantified Cumulating Precision

Analogous to the QCR (9.2.1), we also refined the term “precision”. As described in 7.1, the
precision signals the usefulness of the proposed links.

Again, we see that the process of learning has an elementary influence on the quality of
the precision and therefore, we summarize the precision of all documents classified so far.

It would also be possible to denote the single precision of every new document in graphic
form, but the resulting curve could veil the real changes in the classifying process. In fact, it
is very important to clarify the influence of the learning steps on the quality of the proposal
results. For practical use, it might be most important to realize how fast the learning of new
topics works.

For documents, where no proposals could be generated, we treat the recall and the precision
as 0, even though this situation is really better than proposing only wrong links. Our real-
world evaluation shows that it is very improbable - except for the very beginning - to receive
no link proposals from the HPM. Therefore, the setting of precision and recall in the case of
no proposals is statistically insignificant.

Section 9.3 presents the evaluation of our HPM implementation and demonstrates the QCR
and the QCP by means of several examples.

9.3 Evaluation Results

9.3.1 General Evaluation Concepts

We decided to choose the web-pages of some well-known institutions to evaluate the proposal-
qualities of the HPM. Additionally, we compared those results where no special information
of online authoring systems were available for our testing to our own web-presence.4

In the graphical representation of our testing results, we show the link proposal results in
terms of QCR and QCP for the following websites, respectively:

• Association for Computing Machinery (ACM)
http://www.acm.org

• The World Wide Web Consortium (W3C)

http://www.w3c.org

• Association for the Advancement of Computing in Education (AACE)
http://www.aace.org

3Even though this is not a strict rule. If the knowledge-base already contains general information,
it is possible that the classifying steps return link proposals may be appropriate.

4Even for our own web-pages we used only some additional information and not all the features
available from DAPHNE (2.2.2). Therefore, those testing results could certainly be reconstructed with
other online authoring systems.



86 CHAPTER 9. HYPERLINK-PROPOSAL EVALUATION

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
R
ec
a
ll

Number of documents

ACM
AACE
W3C
MAX

Figure 9.1: Quantified Cumulating Recall (ACM, AACE, W3C)

• Institute of Telematics (TI-FHG)
http://www.ti.fhg.de

We decided to analyze the first ninety pages of each of the websites above beginning with the
document root and scanned in breadth-first-search manner. Only HTML-files were considered
and for the external web scans only the keyword attributes were available.

For the scan of (TI-FHG) we did not begin with the document root, but with the “no
frames” root page to get comparable results to the external web scans.

Furthermore, we only followed the hyperlink references within the same domain, but we
stored all of the links within the pages as potential solutions for the HPM so that even external
links could be proposed.

All of the subsequent web-scans took place in the last quarter of 1999.

9.3.2 Graphical Results of the Evaluation-Domains

The results in terms of QCR and QCP (as defined in 9.2) of our implementation of the HPM
are illustrated in Figure 9.1.

Here, the external QCR evaluation of ACM, AACE and W3C is described. Evidently, the
proposal-quality is not constant. In the beginning, where only a few documents are classified
and learnt, the AACE pages perform the best proposals.

From the fortieth document on, the ACM QCR is much better and AACE recalls are very
poor up to the fiftieth document. The W3C-pages are not classified as good as the other ones
due to the manifold links. Furthermore, the site-index pages of W3C are part of the set of
HTML-files to be classified. Those pages disturb the algorithm because the content of the
keywords can not lead to all the hyperlinks within the pages. Therefore, also the subsequent
pages are classified less accurately.

In the next graphics, we compare the QCR of the best-performing external website (ACM)
to the scan of TI-FHG with usage of some additional information (Figure 9.2).

We can see that the resulting QCR-curves are rather similar. The classifying steps of the
TI-FHG pages are more efficient than the ACM ones from the very beginning, but this picture



9.3. EVALUATION RESULTS 87

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
R
ec
a
ll

Number of documents

TI-FHG
ACM
MAX

Figure 9.2: Quantified Cumulating Recall (TI-FHG, ACM)

changes between the 45th and the 70th document. Here, the ACM learning and classifying
steps are very good and the TI-FHG pages contain summary-pages and overview-files, where
lots of hyperlinks can be found that are not always derivable from the textual context.

In general, textual pages with many keyword-attributes that are set (i.e. many high values
in the attribute vector) and rather few hyperlinks perform much better HPM results than those
with only a few keywords but manifold links.

In the next two figures, we show the corresponding QCP results of the presented pages.
We start again with a comparison of the external websites (Figure 9.3).

In general, most of the QCP-curves are not as high as the QCR ones. A system like the
HPM proposes several hyperlinks according to the probability of the usefulness for the given
text represented by the attribute vector.

For the precision of the proposals it is necessary that most of the presented links are
appropriate for the given text. For instance, if we considered more than 20 proposals per
document the recall would extremely increase while the precision would decrease.

In Figure 9.4 we compare the precision of the best-performer W3C according to QCP to
the TI-FHG proposals.

It is obvious that the additional information from the online authoring system leads to
higher QCP-values, while the QCR-values are rather high anyway. Even at the beginning of
the classification process the TI-FHG pages perform very good.

To be able to analyze the overall quality of the proposals it is necessary to compare the QCR
and the QCP-curves in a common graph. The result for TI-FHG is presented in Figure 9.5.

It is easy to see here that the QCP-values are higher than the QCR-values. In general, we
can say that the usage of additional information leads to much better precision than recall.
The recall-values themselves are rather high, but not necessarily much better than the results
of web-scans without additional data.

The QCR- and the QCP-curves for the ACM web-scans (illustrated by Figure 9.6) demon-
strate a typical result of the HPM for keyword-attributes.

The ACM pages contain relatively much information per link so that the QCR (and thus
the single recall-values) are acceptable. But due to the missing additional information the



88 CHAPTER 9. HYPERLINK-PROPOSAL EVALUATION

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
P
re
ci
si
o
n

Number of documents

W3C
AACE
ACM
MAX

Figure 9.3: Quantified Cumulating Precision (ACM, AACE, W3C)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
P
re
ci
si
o
n

Number of documents

TI-FHG
W3C
MAX

Figure 9.4: Quantified Cumulating Precision (TI-FHG, W3C)



9.3. EVALUATION RESULTS 89

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
R
ec
a
ll
/
P
re
ci
si
o
n

Number of documents

QCR
QCP
MAX

Figure 9.5: Proposal Qualities of TI-FHG

precision performs not as well. The HPM proposes most of the good links, but too much
additional links that might not be appropriate.5

Furthermore, Figure 9.6 shows that the discrepancy between recall and precision is growing
with the time. The reason for this is laying in the architecture of the HPM. At the very
beginning, only few links are proposed while with the growing case-base also the number of
proposals increases. Certainly, for the current version of the HPM we count only the first 20
proposals as acceptable. But the possibility to scroll in the proposal list make this processing
obsolete. It is not feasible in practice that the user has to search in a proposal-list that contains
too much links. Therefore, the QCP is so important that it qualifies the QCR.

In Figure 9.7, another possibility is shown. The QCP- and the QCR-curves are rather
similar. Thus, the proposal-qualities of the W3C-pages are not too good. Due to many
overview-pages and index-documents the quality of the proposals in terms of QCR becomes
rather poor. The HPM is not able to determine the correct, good links.

But here another point is very important. Even though HPM provides hyperlink proposals,
the probabilities are not too high. Therefore, the number of relevant proposals that exceed the
probability threshold is rather low.

This is a good combination of circumstances for the precision value. The relative number
of good proposals within all proposals is much better than in the case of ACM. In other words,
the HPM “recognizes” that there are difficulties in classifying the hypertexts and therefore
proposes only few hyperlinks.

In general, there are several other interesting relations found in our testing results. A
change of the threshold δ can lead to very high-quality proposals but also to a faster “forgetting”
of former cases. If we re-classify cases that have been learnt before, the probability amount does
not reach the number of real links, however. A great number of attributes (e.g. keywords) help
to find very subtle proposals, but the handling of the relevance matrix becomes inconvenient.

Furthermore, we also compared the highest proposal probabilities of links that were part
of a hypertext to those that were not. All in all, we found a high correlation between the

5There is another possibility: a hyperlink might be appropriate even though it can not be found
within an existing page.



90 CHAPTER 9. HYPERLINK-PROPOSAL EVALUATION

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
R
ec
a
ll
/
P
re
ci
si
o
n

Number of documents

QCR
QCP
MAX

Figure 9.6: Proposal Qualities of ACM

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Q
u
a
n
ti
fi
ed
C
u
m
u
la
ti
n
g
R
ec
a
ll
/
P
re
ci
si
o
n

Number of documents

QCR
QCP
MAX

Figure 9.7: Proposal Qualities of W3C



9.3. EVALUATION RESULTS 91

complexity and the length of a text and the quality of the suggested links. In some cases, a
proposed link that was no part of the hypertext might have been an appropriate supplement.

Even though the results of the HPM are rather promising, there is still much ground to be
covered to become perfect.



92 CHAPTER 9. HYPERLINK-PROPOSAL EVALUATION



Part IV

Similarities and Synergy

93





Chapter 10

Structural Interdependencies

Now here, you see, it takes all the running you can do, to keep in the same place.
If you want to get somewhere else, you must run at least twice as fast as that!

Lewis Caroll, Alice and the White Queen
in “Through the Looking Glass” (1872)

While the preceding chapters analyzed and discussed the concepts and implementation
strategies for Request-Prediction (part II) and Hyperlink-Proposals (part III) in detail, we will
emphasize in this chapter the common methodological and mathematical background of both
areas.

Section 10.1, therefore, leads to an abstraction and a generalization of the presented RP-
model and the HPM to highlight the similarities on a higher level of view.

Furthermore, we will see (in section 10.2) that well-known methodologies1 embed both
kinds of web-applications. From this point of view, it is easy to imagine manifold areas to
apply similar concepts with promising concepts.

Finally, the section on synergy (10.3) returns to the concrete researches and sketches how to
use the knowledge of the common conceptual background to derive implementation advantages.
As an adequate example, the idea of “modeling time and document aging” of RP is transferred
into terms of proposing-hyperlinks and the improvement possibilities of the HPM are discussed.

10.1 Abstraction and Generalization

A closer analysis of the tasks of proposing hyperlinks and predicting user-requests leads to as-
tonishingly similar results. Abstractly spoken, the core function of both algorithms is the stor-
age and structuring of information and the completion of partially given data in a foreseeing-
step.

In the area of RP, the continuation of a starting user-session is to be predicted while
the HPM helps an online author in completing a hypertext by proposing appropriate links.
With other words, HPM tries to foresee the necessary user actions of generating hyperlinks.
Certainly, the foreseeing-step pre-requests appropriate and well-structured databases in both
cases to compute high-quality results.

1Originally derived from concepts of Artificial Intelligence.

95



96 CHAPTER 10. STRUCTURAL INTERDEPENDENCIES

Another more mathematical or algorithmic generalization of RP and HPM brings to light
further similarities. Both solution strategies achieve their results by calculating probabilities
which are based on statistically retrieved data. Moreover, existing information can be stored
in a matrix that fulfills the stochastic-property2 (described in 3.2.1).

As we will discuss in section 10.2, both, RP and HPM, execute the classification task by
multiplying a vector with that matrix. The elements of the resulting vector lead (directly or
after a few computation steps) to values that can be interpreted as probabilities which is very
important.

Certainly, differences arise where the matrix and the vector elements are modeled. When
searching for hyperlinks, this is a very difficult task: extracting appropriate keywords to retrieve
important text attributes for later analyzing steps is rather delicate. Too many keywords will
result in a very large matrix and thus in a long duration of the calculation process. Too few
or even false keywords, though, may lead to a wrong classification and inappropriate link-
proposals. In the case of predicting user-requests, the modeling of a session-vector is a rather
simple and straightforward task. The decision and selection of potentially predictable data on
the server-side is often made beforehand.

Nevertheless, the calculation of costs for incorrectly predicted or pre-fetched data is highly
complex.3 And even though wrongly proposed-hyperlinks are somehow disturbing, wrongly
predicted information-packets of RP can cause enormous network and system load and thus
pose a much higher danger than the HPM results.

Table 10.1 shows a short and abstract characterization of the main tasks of predicting
user-requests and proposing links for hypertexts. The major differences arise in modeling the
complexity of the corresponding problem in order to achieve appropriate vectors.

Yet it is very important to see that we could speak in both cases of learning and classifying
tasks. We will come back to this aspect in section 10.2.

Naturally, the RP concept of chapter 4 could have been modeled in a different way where
the similarities to the HPM would not have been as evident as discussed in this section. With
the same argument, also the modeling of the HPM could be different. On the base of a semantic
network the finding of appropriate links would mainly be a kind of searching in the net and
retrieving semantic coherence.

Nevertheless, every straightforward concept for both algorithms provides - finally - statis-
tical results with measurable probabilities. The concrete implementation does not contradict
this statement. In the following section (10.2), we will go even an abstraction-step further and
find out that both, RP and HPM belong to a larger class of web-applications4 with a general
problem-modeling and the corresponding solution-strategies in common. A summary of the
comparison between RP and the HPM can be found in [HRH00a].

10.2 Cognitive Algorithms

As mentioned in the preceding section, the algorithms of RP and HPM can both be described
in terms of learning and classifying. In Computer-Science, there are several different basic
concepts and methods for the design of algorithms. A well known technique is for instance
divide-and-conquer. The general idea of this methodology is to divide a complex problem into
several at least slightly simpler sub-problems.

Another strategy related to divide-and-conquer is recursion. Here, an algorithm calls itself
with a simplified set of parameters. Certainly, the design of these programs must be carefully

2In the strict sense only the basic version of the RP matrix fulfills the stochastic-property. The
advanced solution leads to a more complex structure of the matrix.

3See 5.2.2 for a possible solution strategy of this problem.
4The described ideas are not limited to web-programs, but the focus of this work places the emphasis

on this class of applications.



10.2. COGNITIVE ALGORITHMS 97

Phase Step Hyperlink-Proposals Request-Prediction

Retrieval of
knowledge

Keyword extraction
of hypertexts and
attached links

Different document requests
during the same session (with
or without taking care of the
order)

Learning
phase

Storing of
knowledge

Vectorization of key-
word attributes and
storage of values in a
relevance matrix

Transforming sessions into
(mostly binary) vectors and
storing their values in a mem-
ory matrix

Recognition
of informa-
tion

Generating attributes
(keywords) from texts
(without considering
link information)

Interpreting the first client re-
quest as ignition for calcula-
tion of relative frequencies

Classi-
fication
phase

Calculation
of (likely)
candidates

Multiplying the rele-
vance matrix with the
new attribute vector
and thus getting link-
relevance-probabilities
→ generating link-
proposals

Multiplying the memory ma-
trix with the current session-
vector and thus getting rel-
ative probabilities for other
documents to be requested
soon → generating request-
prediction

Table 10.1: Similarities between hyperlink-proposal and request-prediction processing

prepared. Endless loops has to be avoided by adding exact ending-conditions.

The class of greedy-algorithms operates as set-increasing strategies where a good solution
can be approximated. Furthermore, there are the manifold solution strategies where the prob-
lems are modeled as trees, e.g. tree search- and traversal methods. Those concepts are explained
in detail in [Knu88]. A good overview can also be found in [Mei91].

Moreover, the research area of Artificial Intelligence (AI) also categorizes algorithms by
terms of cognitive science. A central aspect hereof is knowledge. Knowledge retrieval and
storage in knowledge bases is regarded as a kind of learning.

Certainly, not every algorithm that stores a “0” in a database “learns”. Learning can
happen by acquiring knowledge, by recognizing legalities or rules, or by analogous deduction
where the similarity plays an important part.

In fact, the term of “learning” should only be applied to systems that are able to transform
complex, unstructured, incomplete, inconsistent or incorrect input into simple, well structured,
complete, consistent or error free output based on a dynamically changing knowledge base. This
transformation can be called classification5. Expert systems, for instance, fulfill most of the
described requirements.

Expert systems can be analytic or synthetic. A good example of the former is a diagnose
system that works on the base of existing data while a planing system that is able to deduct
new data corresponds to the latter.

Mostly, expert systems are very large, complex programs that have to be attended and
maintained during a long time span in order to become absolutely reliable. They can store the
knowledge of human experts either explicitly or implicitly. Detailed information on the whole
topic of AI-principles in general and especially on expert systems can be found in [Ric89].

5The term originates from pattern-recognition research. See for instance [HB90].



98 CHAPTER 10. STRUCTURAL INTERDEPENDENCIES

The idea to propose hyperlinks with expert systems might be appropriate. A synthetic
modeling would be able to generate new links on base of the textual information while an ana-
lytical modeling would propose links that were learnt before. Even though our HPM described
in part III of this work can not be regarded as an expert system due to its simplicity and lack
of some needed properties, it is an analytic tool that performs learning and classification tasks.

Just as the HPM, also the RP can be described in terms of learning and classifying.
An incomplete session is to be completed on base of former requests. The learning consists
in storing the data requests from the client. From that point of view, proposing links and
predicting requests belong to the same class of algorithms.

We will call algorithms that can be described adequately in terms of learning and classifying
as cognitive algorithms. There are several further web-applications which might be appropriate
for this kind of modeling. Certainly, the main ideas and concepts that were used to implement
straightforward solutions for RP and HPM can also be applied to the following examples:

• Intelligent mail filters

Here, the learning consists of recognizing user action: Which mails belong to which
folders? The classification step would result in automatically structuring incoming mails
into the corresponding folders.

• Web searching algorithms

An area where Intelligent Agents or Mobile Agents are well suited is web searching.
They too can belong to the class of cognitive algorithms. Learning means understanding
the meaning of the user requests while the classification results in consistent search
outcomes.6

• Name services

An interesting idea is the use of predictive methods for naming services on the Internet.
Analytic cognitive algorithms can help to improve the response times by pre-checking
the consistence of domain names. Actually, the caching methods of these servers are not
too complex.

• Intelligent data routing

The Institute of Telematics is currently working on an advanced Smart Data Server
(2.1) project with intelligent data transfer routing for the web7. The idea of considering
the actual server loads to re-route certain client requests can be modeled with cognitive
algorithms. The learning consists in measuring current response-times and deducing the
reasons. The classification would result in an efficient request routing.

The strategy of modeling cognitive algorithms leads to potential improvements of manifold
web-applications due to synergy-aspects. As we will see in the following section (10.3), this
synergy does not only consist of sharing algorithms for data manipulation and complex objects
with general usable methods, but also of higher modeling levels. Thus, ideas to improve one
cognitive algorithm can - potentially - be an advantage for most of the others too.

10.3 Synergy

10.3.1 General Considerations

Even though the conceptions of RP and HPM are rather similar on an abstract level of view
due to the common methodology of cognitive algorithms the question remains: Are there

6Further information on mobile or intelligent agents can be found in [EK98].
7Certainly, also intranet solutions or even general C/S-applications are also possible.



10.3. SYNERGY 99

any further concrete advantages of recognizing similarities between link-proposals and request-
prediction?

Obviously, additional synergy effects should be the result of such a situation. We will
illustrate this by applying an advanced strategy of RP to improve the HPM. In section 6.1 we
described some elementary ideas to model time and document aging for Request-Prediction.
Here, the entries of the memory matrix were adapted so that not recently used data-sets led
to a decreasing value of the corresponding elements.

What could this mean in the area of proposing hyperlinks? Time also influences the
meaning of links. While writing a text about big sports events an HPM could propose a
hyperlink that points to a page of the Olympic Games 2000 in Sydney. But what about
proposals in the next year? Other interesting links might become more appropriate due to the
actual focus of interest.

In general, even though the content behind certain links might still be a good reason to
propose an old hyperlink too, a newer one is probably better. In other words, the modeling of
time for hyperlink proposals leads to a decreasing relevance of attributes for links that have not
been chosen for a longer time duration. At the same time this would have been the result of
directly transferring the technical implementation of RP time modeling to the area of hyperlink
proposals: matrix elements that are not part of fulfilled attributes for recent classification tasks
have to be decreased.

While considering document aging, the RP modeling became more appropriate and the
prediction results improved. Below, we want to show how the idea of modeling time could be
applied to the concrete HPM derivation and we will briefly sketch some further improvement
possibilities.

10.3.2 Advanced HPM modeling

In general, there are two main concept improvements while modeling time and aging for the
HPM. At first, we will discuss an extension of the dynamically growing matrix ψ. Then, we
will go into more details to adapt the learning algorithm of the HPM to specifically also forget
the relevance of certain links.

In chapter 8, we saw that the increasing number of rows and columns does not only solve
some problems concerning the CBR-like modeling but also poses new difficulties. Nevertheless,
the data structure of ψ has to be limited. To do this, we mentioned some encouraging concepts
dealing with priorities of attributes, for instance a limited number of keywords.

The idea to model time can here be applied by also shrinking the matrix ψ. If a link becomes
“too old”, its corresponding row within the matrix ψ can be deleted. The critical age of link
depends on its recently selected proposal and on the systems storage limits. If a hyperlink is
of no use anymore, it should be deleted from the “memory”, and thus be “forgotten”.

Additionally, also the number of columns could be decreased depending on the deleted rows.
If certain attributes mainly serve to classify links that are not available anymore, it would be
quite obvious to also delete the corresponding attribute columns of the matrix ψ. Naturally,
only keyword attributes should be deleted. Here, further experiences have to be made to ade-
quately shrink the matrix in order to “forget” former relevance weights for hyperlink proposals.

The other concept to model time for the HPM consists in extending the learning procedure
described in section 7.2.4. During the learning phase the relevance weights of ψ are changed
to ψ′ so that the threshold δ is reached for all links that have to be “learnt” (see also equa-
tion (7.4)). In the case of additionally considering superfluous proposals we want that a link
corresponding to the i-th element of the link vector L should not reach the threshold δ:∑

j∈T F

ψ′
ij · ζj(T j) < δ (10.1)



100 CHAPTER 10. STRUCTURAL INTERDEPENDENCIES

In this equation, ζ is the function that separates the attribute values so that a distinction
between fulfilled attributes F and contradictory attributes C is possible (ζ is defined by (7.2)).
Actually, according to Table 7.1 on page 68 (row 2) this learning task is only accomplished for
links that should be proposed but which were not classified yet.

It would be an adequate transfer of time modeling to also learn links of the third row
of Table 7.1. This means that links which are proposed but not necessarily useful should be
treated too by fulfilling the learning equation (10.1), i.e. the classification actually results in a
value too high. In that case, the weights of the fulfilled attributes F must be decreased and
those of the contradictory ones C must be increased in order to reduce the classification values.

This step seems to be interesting but the time modeling component is not easy to see. A
straightforward transforming of the RP idea for HPM usage results in a adaptation of matrix
weights for links that are not learnt. The aim is to reduce the relevance of attributes for the
proposal of links that are not currently useful. This situation corresponds to the rows 1 and
3 of Table 7.1. Due to an immense calculation overhead it is not feasible to change all those
relevance weights for the dynamically increasing matrix ψ. Instead, only those of the third row
are adapted because here the relevance values are too high.

To derive the corresponding weight adaptations we choose again a constant distribution
for the dispersal of weights. As defined in section 7.2.4.2, we abbreviate:

κ =
∑
j∈T F

ζj(T j)

Now, we are deriving the constant value ∆ that describes the changes of the relevance
weights ψij for j ∈ F to “forget” the classification of link corresponding to i:∑

j∈T F ψ′
ij · ζj(T j) < δ

=⇒
∑

j∈T F ψ′
ij · ζj(T j) = δ − ε

⇐⇒
∑

j∈T F (ψij −∆) · ζj(T j) = δ − ε

⇐⇒
∑

j∈T F ψij · ζj(T j)−
∑

j∈T F ∆ · ζj(T j) = δ − ε

⇐⇒ ci −∆ ·
∑

j∈T F ζj(T j) = δ − ε

⇐⇒ ci −∆ · κ = δ − ε

� ∆ = ci−δ+ε
κ

(10.2)

With the small value ε > 0 the influence of the “forgetting” can be controlled. ε must not
be zero because the corresponding link would still be proposed.8 In general, ε could have been
applied for the derivation in section 7.2.4.2 too and thus it could have influenced the learning
speed. Details on the idea to control the learning speed can be found in [Haf93].

Using formula (10.2) we find for the new settings of ψ′:

ψ′
ij =




ψij − ci−δ+ε
κ : T j ∈ F

ψij +

P

j∈T F

ci−δ+ε

κ

P

j∈T C
1 : T j ∈ C

(10.3)

8Certainly, also a modeling where ε < 0 might make sense. We will come soon back to this idea.



10.3. SYNERGY 101

10.3.3 Example

As an example, we review the settings of section 7.2.4.3. Here, the starting relevance matrix
consisted of the following elements:

ψ =


 0.3 0.4 0.3
0.2 0.1 0.7
0.7 0.3 0.0




Let us take the following attribute vector to be classified:

T =


 0.9
0.9
0.2




and the attribute thresholds δ1 = δ2 = δ3 = 0.8.
Then, according to (7.3), the classification would lead to:

S := ψ · ζ(T ) =


 0.3 0.4 0.3
0.2 0.1 0.7
0.7 0.3 0.0


 ·


 0.9
0.9
0.0


 =


 0.63
0.27
0.90




In addition, the classifying threshold might be δ = 0.75 and the link-vector L:

L =


 1
0
0




A comparison of S and L shows:

• S1 must be learnt according to the classical method described in section 7.2.4.

• S2 is not proposed and does not need to be classified (L2 = 0). This situation corresponds
to the first row of Table 7.1.

• S3 is proposed (0.9 > δ) but the corresponding entry of L3 = 0. Here, the modeling of
time grips. This link should be “forgotten” according to (10.3).

As calculated before c3 =
∑

j∈T F
ψ3j · ζj(T j) = 0.9.

The value of κ results in: κ =
∑

j∈T F
ζj(T j) = 1.8.

ε should be a small value, for instance ε := 0.03.
Thus, the third row (i = 3) of the matrix ψ has to be changed to:

ψ′
3j =




ψ3j − c3−δ+ε
κ = ψ3j − 0.9−0.75+0.03

1.8 = ψ3j − 0.1 : j ∈ T F = {1, 3}

ψ3j +

P

j∈T F

c3−δ+ε
κ

P

j∈T C
1 = ψ3j +

0.2
1 = ψ3j + 0.2 : j ∈ T C = {2}

Thus, ψ′ would result in:9

ψ′ =


 0.3 0.4 0.3
0.2 0.1 0.7
0.6 0.2 0.2




9Without taking care of the classical learning step for the first row.



102 CHAPTER 10. STRUCTURAL INTERDEPENDENCIES

A new classification would yield to:

S := ψ · ζ(T ) =


 0.3 0.4 0.3
0.2 0.1 0.7
0.6 0.2 0.2


 ·


 0.9
0.9
0.0


 =


 0.63

0.27
0.72




Therefore, the former classification of L3 has been “forgotten” (0.72 < δ = 0.75). Naturally,
also an approach where the relevance values are more slightly changed so that is would take
several “forgetting-steps” to no longer classify the link, might be appropriate. Here, a lot of
research has still to be done.

The first evaluation steps of the advanced approach were very promising, even though
long-term studies have to validate the advantages of the extended HPM.

Especially the setting of ε is rather important. It can be compared to the time factor τ
of section 6.1.1, where the advanced prediction formulas were derived and in the subsequent
sections evaluated.

We think that several further concept-improvements in the area of cognitive algorithms
will lead to more efficient and faster web applications (as sketched in 10.2) in the future.



Chapter 11

Summary and Outlook

It is not the fruits of scientific research that elevate man and enrich his nature,
but the urge to understand, the intellectual work, creative or receptive.

Albert Einstein, from “Ideas and Opinions” (1954)

The overall aim of this work is to present conceptual ideas and techniques for improving
web applications. We placed the emphasis mainly on two concrete tasks, namely predicting
future user requests and proposing links for hypertexts.

In the first part, we gave a general introduction to the main aspects of both research
fields and presented fundamental basics for the solution of these problems. To support the
endeavors of this doctoral thesis, we described concrete web applications that can be improved
by prediction of user requests or proposals of hyperlinks. Therefore, chapter 2 placed the
emphasis on online authoring tools and a smart server application.

Markov Chains are a well known mathematical conception for modeling request-prediction.
We sketched briefly the main ideas and outlined the differences to our modeling in part II of
the onhand work.

A useful strategy for hyperlink-proposals is given by the technique of Case-Based Reasoning
(CBR). We focused on the principal ideas of CBR and transferred some of them to our modeling
of a hyperlink-proposal module (HPM) presented in the third part of this work.

The second part of this elaboration dealt with a detailed discussion of predicting future
client requests to reduce user perceived latency without producing too heavy a network or
system load.

To do this, we first derived concrete formulas to develop an algorithm for performing
prediction tasks. From the very beginning, we emphasized the problem of evaluating such an
implementation.

Therefore, we modeled a testing scenario too, where user sessions could be generated au-
tomatically. The idea was to have thousands of test runs for improving our approach without
actually risking network or system overload. Furthermore, we wanted to model different situ-
ations: By changing the controlling parameters such as the random factor we could study the
different behavior of our Request-Prediction (RP) implementation.

The test runs resulted in the recognition that the usefulness of prediction strongly depends
on the kind of presented data on the server side and the request behavior of the user clientele.

103



104 CHAPTER 11. SUMMARY AND OUTLOOK

Even though the developed RP-approach has been quite useful already, we presented in
chapter 6 an extended version where time and document aging has been modeled. The idea
was that the importance of relations between data sets on server side and the meaning of the
content itself should lose importance with the progression of time.

Here, we adapted additional parameters for the testing scenario such as the request change
probability to model time more adequately. Also the RP-algorithm had to be changed in order
to consider document aging. After this, the advanced approach could also be controlled by a
time factor.

It was in by no means enough to validate the approach by evaluating the results of the test
runs within our scenario. But rather we took real user logs to verify the usefulness of the RP
modeling a posteriori. Those results were quite encouraging.

The other main focus of this work is on hyperlink-proposals. Part III discussed all aspects
of our HPM modeling. Chapter 7 presented a derivation of the formulas for the HPM based on
the concept of CBR. It was important to highlight also the differences between our approach
and the established techniques successfully used in several areas, for instance to run diagnose
systems.

The view of learning and classifying led us later on to an abstraction of the concepts.
The implementation of the HPM, as part of a hyperlink managing system was the main topic
of chapter 8. We found several critical aspects of our modeling that could be solved by a
dynamically increasing matrix. Certainly, also the risks of that concept had to be considered.

Even though the statistical knowledge retrieval of hypertexts poses several disadvantages,
we chose it for reasons of feasibility. It is not appropriate to leave the user with maintaining
semantic networks for retrieving highest quality link proposals. Instead, we found as a practical
solution that our HPM proposes links of rather good quality by completely automatically
retrieving the information of texts. Probably today’s web applications should require as little
user interaction as possible.

After the presentation of RP in part II and the HPM in part III, chapter 10 started the
fourth and last part with a very exiting idea: Having a closer look at both research areas - even
though very different at first glance - they could be proved as similar on a higher abstraction
level.

Therefore, we briefly sketched the opinion that algorithms (for web applications) with ap-
propriate modeling of learning and classifying belong to a common class of cognitive algorithms.
As an example, we presented some web applications and sketched their possible modeling in
terms of learning and classifying.

It should be possible and adequate to transfer conceptual and - probably - technical im-
provements of one approach to another of the same class of algorithms. To underline and verify
this thought we took the HPM of part III and discussed its improvement by modeling of time
and document aging - derived from the RP-approach.

Even though not too simple, we found very promising conceptual improvements of the HPM
extending the learning algorithm itself and the technical aspect of the dynamically growing
matrix. Hopefully, those synergy effects can also help to shift other existing web applications
to a higher level of quality or to develop new ones.

Naturally, we have to keep in mind that even though the comparison of different topics
of modern Internet applications is very useful and advantageous, certain differences always
remain and that some difficult parts of their problem aspects are, as a rule, quite unique.

For the future we plan not only to find more synergy effects between members of the
same class of web applications, but also to solve concrete problem aspects of the existing
implementations.

For instance, as part of a project supported by the “Stiftung für Innovation” of Rhineland-
Palatinate we are constructing efficient and high-performance extensions to the Smart Data
Server (SDS) presented in section 2.1.



105

One idea here is intelligent data routing. To do this, we need to retrieve reliable information
for the development of a load balancing module. With such a tool also the concept of the
prediction module could be improved. The calculation of costs for certain operations could
then happen not only statically, but dynamically with every request the user performs. Thus,
the cost calculation on base of results of an efficient load balancing module might become much
better than the guesses so far.

In the area of the HPM an improvement can be the dynamical proposal of hyperlinks
while the user is editing a text. These proposals would reflect more accurately the concrete
paragraph or even the sentence the author is actually working on. Furthermore, the concept
of a dynamically growing and shrinking matrix has to be elaborated on, in order to become
quit efficient.

The observant reader may think that for the described improvement ideas of both research
areas, RP and HPM, the concept of dynamics plays an important role. This might be - even
though only slightly - another synergy effect of the similarity between both web applications.
May the future bring more of such effects.



106 CHAPTER 11. SUMMARY AND OUTLOOK



Bibliography

[Aha91] David W. Aha. Case-Based Learning Algorithms. Proceedings of the DARPAWork-
shop on Case Based Reasoning, Morgan Kaufmann, 1991. 147-157

[AKA91] David W. Aha, Dennis Kibler, Marc K. Albert. Instance-Based Learning Algo-
rithms. Machine Learning 6, 1991. 37-66

[All96] James Allan. Automatic Hypertext Link Typing. Proceedings of the Seventh ACM
Conference on Hypertext, Hypertext ’96, 1996. 42-52

[And89] John Robert Anderson. Kognitive Psychologie. Spektrum der Wissenschaft Verlags-
gesellschaft, 1989

[ANR89] Michael H. Andersen, Jakob Nielsen, and Henrik Rasmussen. A Similarity-Based
Hypertext Browser for Reading the UNIX Network News. Hypermedia, 1(3), 1989.
255-265

[AS83] Dana Angluin, Carl H. Smith. A Survey of Inductive Inference: Theory and Meth-
ods. Computing Surveys 15, 1983. 237-269

[ASS87] Harold Abelson, Gerald Jay Sussman, Julie Sussman. Structure and Interpretation
of Computer Programs. Fifth reprinting. MIT Press, 1987

[AW91a] Klaus-Dieter Althoff, StefanWeß. Case-Based Knowledge Acquisition, Learning and
Problem Solving for Diagnostic Real World Tasks. Proceedings of the European
Knowledge Acquisition Workshop, EKAW-91, Crieff, Scottland, 1991

[AW91b] Klaus-Dieter Althoff, Stefan Weß. Fallbasiertes Problemlösen in Expertensystemen
- begriffliche und inhaltliche Betrachtungen, SEKI Working Paper SWP-91-03, Uni-
versität Kaiserslautern, 1991

[AW92a] Klaus-Dieter Althoff, Stefan Weß. Ähnlichkeit in PATDEX. Proceedings of the
Workshop: Ähnlichkeit von Fällen beim fallbasierten Schließen, SEKI Working
Paper SWP-92-11, Universität Kaiserslautern, 1992

[AW92b] Klaus-Dieter Althoff, Stefan Weß. Case-Based Reasoning and Expert System De-
velopment. Schmalhofer, Strube, Wetter (Hrsg.), Contemporary Knowledge Engi-
neering and Cognition, Springer Verlag, 1992

[AWB92] Klaus-Dieter Althoff, Stefan Weß, Brigitte Bartsch-Spörl, Dietmar Janetzko, Frank
Maurer, Angi Voß. Fallbasiertes Schließen in Expertensystemen: Welche Rolle spie-
len Fälle für wissensbasierte Systeme? KI-Künstliche Intelligenz, 4, FBO-Verlag,
1992

[BC98] Paul Barford, Mark Crovella. Generating Representative Web Workloads for Net-
work and Server Performance Evaluation. Proceedings of the International Con-
ference on Measurement and Modeling of Computer Systems, SIGMETRICS98,
ACM, 1998. 151-160

107



108 BIBLIOGRAPHY

[Ber90] Mark Bernstein. An apprentice that Discovers Hypertext Links. Proceedings of the
First European Conference on Hypertext, ECHT-90, 1990

[Bes95] Azer Bestavros. Using Speculation to Reduce Server Load and Service Time on the
WWW. Proceedings of the International Conference on Information and Knowledge
Management, CIKM95, ACM, 1995. 403-410

[Bes96] Azer Bestavros. Speculative Data Dissemination and Service to Reduce Server Load,
Network Traffic and Service Time in Distributed Information Systems. Proceedings
of the World Conference on Open Learning and Distance Education, ICDE’96, New
Orleans, Louisiana, 1996. 180-189

[Boe92] Katy Börner. Ein allgemeines Modell zur Speicherung episodischen Wissens und
separat lernbare Ähnlichkeitsmaße. Positionspapier, 1992

[Bro97] Nat Brown. Distributed Component Object Model Protocol - DCOM/1.0. Microsoft
Coperation, 1997

[CB93] R. J. Chitashvili, R. H. Baayen. Word Frequency Distributions of Texts and Cor-
pora as Large Number of Rare Event Distributions. QL. Hrebicek, G. Altmann.
Quantitative text analysis, Quantitative linguistics, Vol. 52, WVT Trier, 1993

[CB95] William R. Cheswick, Steven M. Bellovin. Firewalls and Internet Security, Repelling
the Wily Hacker. Addison-Wesley, Massachusetts, 1995. ISBN 0-201-63357-4

[CB96] Chip Cleary, Ray Bareiss. Practical Methods for Automatically Generating Typed
Links. Proceedings of the Seventh ACM Conference on Hypertext, Hypertext ’96,
ACM, 1996. 31-41

[CB98] Mark Crovella, Paul Barford. The Network Effects of Prefetching. Conference on
Computer Communications, IEEE Infocom, 1998. 1232-1240

[CDF98] Ramon Caceres, Fred Douglis, Anja Feldmann, Gideon Glass, Michael Rabinovich.
Web Proxy Caching: The Devil is in the Details. Workshop on Internet Server
Performance, Madison, WI, 1998. 11-15

[CDI99] CD/ISIS. Wageningen Agricultural University Library.
http://www.bib.wau.nl/isis/docum.html (multilingual), 1999

[CF82] Paul R. Cohen, Edward A. Feigenbaum. The Handbook of Artificial Intelligence.
Volume 3. Pitman, 1982

[Cha93] Daniel T. Chang. HieNet: A User-Centered Approach for Automatic Link Gen-
eration. Proceedings of the Fifth ACM Conference on Hypertext, Hypertext ’93,
ACM, 1993. 145-158

[CHH98] L. A. Carr, W. Hall, S. Hitchcock. Link Services or Link Agents? Proceedings of
the Ninth ACM Conference on Hypertext, Hypertext ’98, ACM, 1998. 113-122

[CI98] Pei Cao, Sandy Irani. Cost-Aware WWW Proxy Caching Algorithms. Proceedings
of the USENIX Symposium on Internet Technologies and Systems, 1998. 193-206

[CKR98] Edith Cohen, Balanchander Krishnamurthy, J. Rexford. Improving End-to-End
Performance of the Web Using Server Volumes and Proxy Filters. Proceedings
of the International Conference on Applications, Technologies, Architectures and
Protocols for Computer Communication, SIGCOMM98, ACM. 1998. 241-253

[Dep96] J. Depp. Developing CGI Applications with Perl. WILEY-VCH, 1996

[Dic95] A. Dickmann. Two-Tier versus Three-Tier Applications. Informationweek 553,
13/95. 74-80



BIBLIOGRAPHY 109

[Dua96] Nick N. Duan. Distributed Database Access in a Corporate Environment Using Java.
Computer Network and ISDN Systems 28, 1996. 1149-1156

[EK98] Elizabeth A. Kendall, P. V. Murali Krishna, Chirag Pathak, C. B. Suresh. Pat-
terns of Intelligent and Mobile Agents. Proceedings of the Second International
Conference on Autonomous agents, ACM, 1998. 92-99

[EY99] Stephen Erickson, Danying Yi. Modelling the Performance of a Large Multi-Tiered
Application. American Management Systems, AMS Center For Advanced Technol-
ogy, 1999

[GA96] Jim Griffioen, Randy Appleton. The Design, Implementation, and Evaluation of a
Predictive Caching File System. CS-Department University of Kentucky, CS-264-
96, 1996

[GK79] Leo A. Goodman, William H. Kruskal. Measures of Association for Cross Classifi-
cations. Springer New-York, 1979

[GKH86] Gottwald, Künster, Hellwich, Kästner (Hrsg.). Handbuch der Mathematik. Veb Bib-
liographisches Institut, Leipzig, 1986. ISBN: 3-8166-0015-8

[Glu89] Robert J. Glushko. Design Issues for Multi-Document Hypertexts. Proceedings of
the 2nd ACM Conference on Hypertext, Hypertext’89, ACM, Pittsburgh, PA, 1989.
51-60

[GZ93] J. Gordesch, A. Zapf. Computer-Aided Foramtion of Concepts. L. Hrebicek, G.
Altmann (eds.). Quantitative text analysis, Quantitative linguistics, Vol. 52, WVT
Trier, 1993

[Haf93] Ernst-Georg Haffner. Analyse dynamischer Lernregeln für Case-Based Learning
Systeme. Diploma Thesis, AG Expertensysteme, Universität Kaiserslautern, 1993

[HB90] F. Hönes, R. Bleisinger, A. Dengel. Intelligent Word-based Text Recognition. Pro-
ceedings of the Symposium on Advances in Intelligent Systems, Machine Vision
and System Integration, Boston, MA, 1990

[HDH96] W. Hall, H. Davis, G. Hutchings. Rethinking Hypermedia: The Microcoms Ap-
proach. Kluwer Academic Publishers, 1996

[HHR00] Ernst-Georg Haffner, Andreas Heuer, Uwe Roth, Thomas Engel, Christoph Meinel.
Advanced Studies on Link- Proposals and Knowledge-Retrieval of Hypertexts with
CBR. Proceedings of the International EC-Web Conference, ECWeb2000, Green-
wich, United Kingdom, Springer-Verlag LNCS 1875, 2000. 378-396

[HHR99] Andreas Heuer, Ernst-Georg Haffner, Uwe Roth, Zhongdong Zhang, Thomas
Engel, Christoph Meinel. Hyperlink Management System for Multilingual Web-
sites. Proceedings of the Asia Pacific Web Conference, APWEB ’99, 1999.
http://www2.comp.polyu.edu.hk/ apweb99/

[HRE00a] Ernst-Georg Haffner, Uwe Roth, Thomas Engel, Christoph Meinel. Modeling Time
and Document Aging for Request Prediction - One Step Further. Symposium on
Applied Computing, ACM, SAC2000, Como, Italy, 2000. 984-990

[HRE00b] Ernst-Georg Haffner, Uwe Roth, Thomas Engel, Christoph Meinel. Optimizing Re-
quests for the Smart Data Server. Proceedings of the International Conference on
Applied Informatics, IASTED, AI2000, Innsbruck, Austria, 2000. 481-486

[HRE99a] Ernst-Georg Haffner, Uwe Roth, Thomas Engel, Christoph Meinel. A Semi-Random
Prediction Scenario for User Requests. Proceedings of the Asia Pacific Web Con-
ference, APWEB99, 1999. 11-18



110 BIBLIOGRAPHY

[HRE99b] Ernst-Georg Haffner, Uwe Roth, Thomas Engel, Christoph Meinel. Vorhersage von
Benutzeranforderungen im WWW. 7. GI-Workshop Adaptivität und Benutzermod-
ellierung in interaktiven Softwaresystemen, ABIS’99, Magdeburg, 1999. 283-294

[HRH00a] Ernst-Georg Haffner, Uwe Roth, Andreas Heuer, Thomas Engel, Christoph Meinel.
What do Hyperlink-Proposals and Request-Prediction have in Common? Proceed-
ings of the International Conference on Advances in Information Systems, AD-
VIS2000, Izmir, Turkey, SPringer-Verlag LNCS 1909, 2000. 285-293

[HRH00b] Ernst-Georg Haffner, Uwe Roth, Andreas Heuer, Thomas Engel, Christoph Meinel.
Link Proposals with Case-Based Reasoning Techniques. World Conference on the
WWW and Internet, AACE, WebNet‘00, San Antonio, Texas, USA, 2000. 233-239

[HTML] HTML - HyperText MarkUp Language. http://www.w3.org/MarkUp/

[HTTP] HTTP - HyperText Transfer Protocol. http://www.w3.org/Protocols/

[HyT] International Organization for Standardization. HyTime Standard Materials. 1992-
1997. http://www.hytime.org

[HZE99] Andreas Heuer, Zhongdong Zhang, Thomas Engel and Christoph Meinel. DAPHNE
- Distributed Authoring and Publishing in a Hypertext and Networked Environ-
ment. Proceedings of the “Initiative Information und Kommunikation der wis-
senschaftlichen Fachgesellschaften in Deutschland”, IuK99 - Dynamic Documents,
Jena, 1999.

[Jan91] Klaus P. Jantke. Monotonic and Non-monotonic Inductive Inference. New Gener-
ation Computing 8, 1991. 349-360

[Jan92] Klaus P. Jantke. Case-Based Learning in Inductive Inference. Proceedings of the
5th ACM Workshop on Computational Learning Theory, COLT-92, 1992. 218-223

[Java] Java. http://www.javasoft.com/

[JB81] Klaus P. Jantke, Hans-Rainer Beick. Combining Postulates of Naturalness in In-
ductive Inference. ELK 17, 1981 8/9. 465-484

[JK98] Zhimei Jiang and Leonard Kleinrock. An Adaptive Network Prefetch Scheme. IEEE
Journal on Selected Areas in Communications, 16(3), 1998. 358-368

[Joh97] Daeyeon Joh. CBR in a Changing Environment. Proceedings of the Second Inter-
national Conference on Case-Based Reasoning, ICCBR-97, LNAI 1266, Springer-
Verlag, 1997. 53-62

[JWM93] Dietmar Janetzko, Stefan Weß, Erica Melis. Goal Driven Similarity Assessment.
Hans-Jürgen Ohlbach (Hrsg.), Proceedings of the German Workshop on Artificial
Intelligence, GWAI-1992, LNAI 671, Springer-Verlag, 1993

[KKD99] Hermann Kaindl, Stefan Kramer, Papa Samba Niang Diallo. Semiautomatic Gen-
eration of Glossary Links: A Practical Solution. Proceedings of the Tenth ACM
Conference on Hypertext, Hypertext ’99, ACM, 1999. 3-12

[KLM97] Thomas Kroeger, Darrell Long, Jeffrey Mogul. Exploring the Bounds of Web La-
tency Reduction from Caching and Prefetching. Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems, 1997. 13-22

[KL95] J. Kolodner, D. Leake. A Tutorial Introduction to Case-Based Reasoning. Case-
Based Reasoning. AAAI Press, the MIT Press, 1995

[KM79] Albert K. Kurtz, Samuel T. Mayo. Statistical Methods in Education and Psychology.
Springer-Verlag, 1979



BIBLIOGRAPHY 111

[Knu88] Donald E. Knuth. The Art of Computer Programming. Vol 1. Fundamental Algo-
rithms. Addison-Wesley, Reading, Mass. 2nd ed. 1998. ISBN 0-201-03809-9

[Kol83] Janet L. Kolodner. Reconstructive Memory: A Computer Model. Cognitive Science,
7, 1983. 281-328

[Kop91] Helmut Kopka. LaTex - Eine Einführung. Addison-Wesley, 1991

[KW97] Achim Kraiss, Gerhard Weikum. Vertical Data Migration in Large Near-Line Doc-
ument Archives Based on Markov-Chain Predictions. Proceedings of the 23rd In-
ternational Conference on Very Large Databases, VLDB, Athens, Greece, 1997.
246-255

[KW98] Achim Kraiss, Gerhard Weikum. Integrated Document Caching and Prefetching
in Storage Hierarchies Based on Markov-Chain Predictions. The VLDB Journal,
Springer-Verlag, 7(3), 1998. 141-162

[Lau98] Simon St. Laurent. Cookies. McGraw-Hill, 1998

[LZO98] C. Liu, X. Zhou, M. Orlowska. Issues in Workflow and Web-Based Workflow Sys-
tems. Proceedings of the Asia Pacific Web Conference, APWeb98, World Wide
Web: Technologies and Applications, Beijing, China, 1998

[Mei91] Christoph Meinel. Effiziente Algorithmen: Entwurf und Analyse. Leipzig: Fach-
buchverlag, 1991

[MM96] Jose M. Martinez, Francisco Moran. Catalog: a WWW Gateway for DBMSs. World
Conference on the WWW and Internet, AACE WebNet’96, San Francisco, Califor-
nia, USA, 1996. http://aace.virginia.edu/aace/conf/webnet/proc96index.html

[MPS98] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, H. Singh.Webwork: Meteors Web-
Based Workflow Management System. Journal of Intelligent Information Systems,
10(2), 1998. 1-30

[MS93] C. Marshall, F. Shipman. Searching for the Missing Link: Discovering Implicit
Structure in Spatial Hypertext. Proceedings of the Fifth ACM Conference on Hy-
pertext, Hypertext ’93, ACM, 1993. 217-230

[OMG] Object Management Group. http://www.omg.org

[OW96] K. Osterbye, U. K. Wiil. The Flag Taxonomy of Open Hypermedia Systems. Pro-
ceedings of the Seventh ACM Conference on Hypertext, Hypertext ’96, ACM, 1996.
129-139

[PM96] V.N. Padmanabhan, J.C. Mogul. Using Predictive Prefetching to Improve World
Wide Web Latency. Proceedings of the International Conference on Applications,
Technologies, Architectures and Protocols for Computer Communication, SIG-
COMM96, ACM, 1996. 26-36

[PMH97] C. Petrou, D. Martakos, S. Hadjiefthymiades. Adding Semantics to Hypermedia
Towards Link’s Enhancement and Dynamic Linking. Hypertext - Information Re-
trieval - Multimedia ’97, HIM 1997, Universitaetsverlag Konstanz, 1997

[Ret99] Jean-Hugues Rety. Structure Analysis for Hypertext with Conditional Linkage. Pro-
ceedings of the Tenth ACM Conference on Hypertext, Hypertext ’99, ACM, 1999.
135-136

[Ric88] Elain Rich. KI-Einführung und Anwendungen. MC Graw Hill, 1988

[Ric89] Michael M. Richter. Prinzipien der Künstlichen Intelligenz. B. G. Teubner
Stuttgart, 1989



112 BIBLIOGRAPHY

[Ric90] Michael M. Richter. Konnektionismus. Vorlesungsskriptum Universität Kaiser-
slautern, 1990

[Ric91] Michael M. Richter. Lernende Systeme. Vorlesungsskriptum Universität Kaiser-
slautern, 1991

[Ric92] Michael M. Richter. Classification and Learning of Similarity Measures. Proceed-
ings der Jahrestagung der Gesellschaft für Klassifikation. Opitz, Lassen, Klar
(Hrsg.), Studies in Classification, Data Analysis and Knowledge Organisation,
Springer-Verlag, 1992

[Ric98] F. J. Ricardo. Stalking the Paratext: Speculations on Hypertext Links as Second
Order Text. Proceedings of the Ninth ACM Conference on Hypertext, Hypertext
’98, ACM, 1998. 142-151

[RHE99a] Uwe Roth, Ernst-Georg Haffner, Thomas Engel, Christoph Meinel. An Approach to
Distributed Functionality - the Smart Data Server. World Conference on the WWW
and Internet, AACE WebNet’99, Honolulu, Hawaii, USA, 1999. 931-936

[RHE99b] Uwe Roth, Ernst-Georg Haffner, Thomas Engel, Christoph Meinel. The Smart Data
Server: A New Kind of Middle-Tier. Internet and Multimedia Systems and Appli-
cations, IASTED IMSA’99, Nassau, Bahamas, 1999. 361-365

[RHH99] Uwe Roth, Ernst-Georg Haffner, Andreas Heuer, Thomas Engel, Christoph Meinel.
Hyperlink Management System - HLM. Technical Report 99-05, Institute of Telem-
atics, 1999

[RW91] Michael M. Richter, Stefan Weß. Similarity, Uncertainty and Case-Based Reasoning
in PATDEX. Boyer, R.S. (Ed.), Automated Reasoning, Essays in Honor of Woody
Bledsoe, Kluwer Academic Publishers, 1991

[Sal88] Steven Salzberg. Exemplar-Based Learning: Theory and Implementation. Technical
Report, TR 10-88, Cambridge, MA, Harvard University, Center for Research in
Computing Technology, 1988

[Sch82] Roger C. Schank. Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press, New York, 1982

[Shn89] Ben Shneiderman. Reflections on Authoring, Editing, and Managing Hypertext. In
E. Barret, The Society of Text, 1989. 115-131

[SKS98] S. Schechter, M. Krishnan, and M. D. Smith. Using Path Profiles to Predict HTTP
Requests. 7th International World Wide Web Conference, Brisbane, Qld., Australia,
1998. 457-467

[Spr92] Richard Sproat. Literary and Linguistic Computing. Vol.8, No. 3, Morphology and
Computation, The MIT Press, 1992. 113-130

[Sri97] Prashant Sridharan. Advanced Java Networking. Prentice-Hall, 1997

[Sta91] Michael Stadler. Vergleich von Fallbasierten, Induktiven und Statistischen Lernver-
fahren für die Klassifikation. Diploma Thesis, Universität Kaiserslautern, 1991

[Ste94] W. Richard Stevens. TCP/IP Illustrates. Volume 1: The Protocol, Addison-Wesley,
1994

[SUN] Sun Microsystems Inc. 901 San Antonio Road, Palo Alto, CA 94303 USA, 1994-
2000, http://www.sun.com

[SW86] Craig Stanfill, David Waltz. Toward Memory-Based Reasoning. Communications of
the ACM, 29 (12), 1986. 1213-1229



BIBLIOGRAPHY 113

[Teb98] John Tebbutt. Finding links. Proceedings of the Ninth ACM Conference on Hyper-
text, Hypertext ’98, ACM, 1998. 299-300

[Tve77] Amos Tverski. Features of Similarity. Psychological Review, 1977. 327-352

[Wan99] Weigang Wang. Team-and-Role-based Organizational Context and Access Control
for Cooperative Hypermedia Environments. Proceedings of the Tenth ACM Confer-
ence on Hypertext, Hypertext ’99, ACM, 1999. 37-46

[Wes91] Stefan Weß. PATDEX/2 - ein System zum Adaptiven, Fallfokussierenden Lernen
in Technischen Diagnosesituationen. SEKI Working Paper, SWP91/01, Universität
Kaiserslautern, 1991

[Wes93] Stefan Weß. PATDEX - Ein Ansatz zur Wissensbasierten und Inkrementellen
Verbesserung von Ähnlichkeitsurteilen in der Fallbasierten Diagnostik. Proceedings
der 2. Deutschen Tagung Expertensysteme, XPS-93, Springer-Verlag, 1993

[WPA92] Stefan Weß, J. Paulokat, K.-D. Althoff. Fallbasiertes Schließen - ein Überblick.
Technical Report, Fachbereich Informatik, Universität Kaiserslauten, 1992

[Wol89] Ronald W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall,
Englewood Cliffs, New Jersey 07632, 1989

[XAN] PROJECT XANADU. The Original Hypertext Project. http.//www.xanadu.net

[ZCM98] P. Zellweger, B.-W. Chang, J. Mackinlay. Fluid Links for Informed and Incremental
Link Transitions. Proceedings of the Ninth ACM Conference on Hypertext, Hyper-
text ’98, ACM, 1998. 50-57

[ZHH99] Zhongdong Zhang, Ernst-Georg Haffner, Andreas Heuer, Thomas Engel and
Christoph Meinel. Role-based Access Control in Online Authoring and Publishing
Systems vs. Documentation Hierarchy. Proceedings of the International Conference
on Documentation, SIGDOC ’99, ACM, 1999. 193-198



114 BIBLIOGRAPHY



Part V

Appendix

115





Appendix A

Prediction-Modules Sourcecode

This appendix presents an exemplary implementation of the prediction scenario of part II of
this work. The commented code segments are formulated with the C-programming language
syntax. For the hyperlink-proposals, we present in appendix B an implementation model with
use of the Java syntax.

A.1 C-Sourcecode of the Generator Module

In the following, the commented C-programming language source code of the Session Generator
Module, also called the Randomizer-Module, is presented. The extended version with modeling
of time and document aging can be found in section A.3.

// Session Generator

// Randomizer-Module

// part of the prediction testing scenario

// standard modeling

// debugging code excluded

#include <stdio.h>

#include <stdlib.h>

main (int argc, char **argv) {

// generator program

int slen, nump, density, value;

// slen : length of the generated session vectors

// nump : number of predictable values of the session

// slen - nump is the number of (semi-)random values

// density: number of settings for total random sessions

// value : concrete session setting (0 or 1)

double rf, boundary_pred, boundary_rand;

// rf : random factor (ranges from 0.0, no randomness to 1.0

// , total randomness)

// boundary_pred, boundary_rand

// : variables to calculate the concrete setting (0 or 1)

// from the random values, boundary_pred is for the

// predictable one (first nump values)

// and boundary_rand for the random ones (rest of the session)

117



118 APPENDIX A. PREDICTION-MODULES SOURCECODE

long num_vec, i, j;

// num_vec : number of session vectors to be generated

// i, j : inner and outer loop variables

// verify parameters

if (argc != 6) {

fprintf(stderr, "Usage: %s <slen> <nump> <rf> <density> <# of vectors>\n",

argv[0]);

exit(1);

}

// slen = length of session vectors

if (sscanf(argv[1], "%d", &slen) != 1) {

fprintf(stderr, "Error: could not read \"slen\"\n");

exit(2);

}

if (slen < 0) {

fprintf(stderr, "Error: \"slen\" must not be negative (%d)\n", slen);

exit(3);

}

// nump = number of predefined settings for rf = 0.0

if (sscanf(argv[2], "%d", &nump) != 1) {

fprintf(stderr, "Error: could not read \"nump\"\n");

exit(4);

}

if (nump < 0 || nump > slen) {

fprintf(stderr, "Error: \"nump\" not in range {0,..,%d} (%d)\n",

slen, nump);

exit(5);

}

// rf = random factor range [0.0,1.0]

if (sscanf(argv[3], "%lf", &rf) != 1) {

fprintf(stderr, "Error: could not read \"rf\"\n");

exit(6);

}

if (rf < 0.0 || rf > 1.0) {

fprintf(stderr, "Error: \"rf\" not in range [0.0,1.0] (%.2lf)\n", rf);

exit(7);

}

// density = number of settings for rf = 1.0

if (sscanf(argv[4], "%d", &density) != 1) {

fprintf(stderr, "Error: could not read \"density\"\n");

exit(8);

}

if (density < 0 || density > slen) {

fprintf(stderr, "Error: \"density\" not in range {0,..,%d} (%d)\n",

slen, density);

exit(9);

}



A.1. C-SOURCECODE OF THE GENERATOR MODULE 119

// num_vec = number of vectors to be calculated

if (sscanf(argv[5], "%ld", &num_vec) != 1) {

fprintf(stderr, "Error: could not read \"number of vectors\"\n");

exit(10);

}

if (num_vec < 0) {

fprintf(stderr,

"Error: \"number of vectors\" must not be negative (%ld)\n",

num_vec);

exit(11);

}

// calculating the boundaries for settings (0,1) depending on the

// random values for predictable and random parts of the session vector

boundary_pred = 1.0 + rf*((double)density/(double)slen - 1.0);

boundary_rand = (double)density/(double)slen*rf;

// generating session vectors and printing the result on stdout

// for postprocessing

for (i = 0; i < num_vec; i++) {

// generation of the first nump values

for (j = 0; j < nump; j++) {

// checking random value

if (boundary_pred > rand()/(RAND_MAX+1.0)) {

value = 1;

} else {

value = 0;

}

printf("%d", value);

}

// second loop for performance reasons (no comparisons)

for (j = nump; j < slen; j++) {

// checking boundary for random value

if (boundary_rand > rand()/(RAND_MAX+1.0)) {

value = 1;

} else {

value = 0;

}

printf("%d", value);

}

printf("\n");

}

exit(0);

}



120 APPENDIX A. PREDICTION-MODULES SOURCECODE

A.2 C-Sourcecode of the Prediction-Module

The standard version of the prediction module is illustrated in the following. The advanced
version can be found in A.4.

// Prediction-Module

// predicts and evaluate the test sessions

// part of the prediction testing scenario

// standard modeling

// debugging code excluded

#include <stdio.h>

#include <stdlib.h>

// ***********************************************

// fixed testing scenario settings

// ***********************************************

// MAX_VAL describes the length of the session vector

#define MAX_VAL 10000

// fixed value for positive requests

#define SETTING ’1’

// define double "zero" for comparisons

#define DZERO 0.0000001

// caution: the max value of unsigned short is system dependend

// this is also a limit for the number of requests

#define INIT_VAL 0

// definition of the memory matrix phi

unsigned short phi[MAX_VAL][MAX_VAL];

// actual session vector length

int global_session_length;

// fixed threshold delta

double global_threshold;

// number of traing-vectors

int global_trainings;

// global counters

long grp = 0, grn = 0, gwp = 0, gwn = 0;

// grp : number of correctly predicted requests

// grn : number of data sets that were not requested and not predicted

// gwp : number of incorrectly predicted requests

// gwn : number of requests that were not predicted

// global number of request-predictions

long gtotal = 0;



A.2. C-SOURCECODE OF THE PREDICTION-MODULE 121

// ***********************************************

// helping sub-routines

// ***********************************************

init_phi () {

// initialization of the matrix phi

int i,j;

for (i = 0; i < global_session_length; i++) {

for (j = 0; j < global_session_length; j++) {

phi[i][j] = INIT_VAL;

}

}

return 0;

}

// ***********************************************

// procedures for prediction tasks

// ***********************************************

evaluate_prediction (char vector[], double result[], int position) {

// compare prediction with real vector to calcualte the prediction quality

// result is the output of the prediction, vector the "real" session vector

char c;

int i, rp = 0, wp = 0, rn = 0, wn = 0;

gtotal++;

for (i = 0; i < global_session_length; i++) {

if (i == position) continue;

// prediction check

if (result[i] >= global_threshold) {

if (vector[i] == SETTING) {

// right positive prediction

rp++;

} else {

// wrong positive prediction

wp++;

}

} else {

if (vector[i] == SETTING) {

// wrong negative prediction

wn++;

} else {

// right negative prediction

rn++;

}

}

}

// update global counters

gwp += wp;

gwn += wn;

grp += rp;

grn += rn;



122 APPENDIX A. PREDICTION-MODULES SOURCECODE

return 0;

}

learn_request (char vector[], int number) {

// the session vector is "added" to the matrix phi at line "number"

// this routine is needed for learn_session

int i = 0;

char c;

while ((c = vector[i++]) != ’\0’ && c != ’\n’) {

if (c == SETTING) phi[number][i-1] ++;

}

}

predict_with(int value, double result[]) {

// make a prediction with predefined setting on value

// the array (vector) result is changed

// this function is needed for predict_session

int i;

double main_diag = (double)phi[value][value];

// no prediction possible

if (main_diag < DZERO) return 1;

for (i = 0; i < global_session_length; i++) {

result[i] = (double)phi[value][i] / main_diag;

}

return 0;

}

predict_session(char vector[], double result[]) {

// make a prediction with elements set to 1 of vector

int i = 0;

char c;

while (c = vector[i++]) {

if (c == SETTING) { // only a 1 within the s-vector leads to a prediction

if (!predict_with(i-1, result))

evaluate_prediction (vector, result, i-1);

}

}

return 0;

}

learn_session(char vector[]) {

// store vector into the memory matrix phi

int i = 0;

char c;



A.2. C-SOURCECODE OF THE PREDICTION-MODULE 123

while (c = vector[i++]) {

if (c == SETTING) learn_request(vector, i-1);

}

return 0;

}

// ***********************************************

// main prediction program

// ***********************************************

main (int argc, char **argv) {

// predictioner program

char vector [MAX_VAL+1];

// storage for the current session vector

double result [MAX_VAL+1];

// storage for the probability vector result from the classification step

char c;

// variable for the current vector elements

int actual_vector = 0;

// counter for the number of vectors

// *******************

// checking parameters

// *******************

if (argc < 4) {

fprintf(stderr,

"Usage: %s <session vector length> <threshold> <training runs>\n",

argv[0]);

exit (1);

}

// verifying the session vector length

if ((sscanf(argv[1], "%d", &global_session_length)) != 1) {

fprintf(stderr, "ERROR: can not read vector length (%s)\n", argv[1]);

exit (2);

}

if (global_session_length < 0 || global_session_length > MAX_VAL) {

fprintf(stderr,

"ERROR: session vector length not in range {0,..,%ld} (%d)\n",

MAX_VAL, global_session_length);

exit (3);

}



124 APPENDIX A. PREDICTION-MODULES SOURCECODE

// verifying the prediction threshold (delta)

if ((sscanf(argv[2], "%lf", &global_threshold)) != 1) {

fprintf(stderr, "ERROR: can not read threshold (%s)\n", argv[2]);

exit (4);

}

if (global_threshold < 0.0 || global_threshold > 1.0) {

fprintf(stderr,

"ERROR: prediction threshold not in range [0.0,1.0] (%.2lf)\n",

global_threshold);

exit (5);

}

// verifying the number of traning runs

if ((sscanf(argv[3], "%d", &global_trainings)) != 1) {

fprintf(stderr, "ERROR: can not read number of training runs \

(%s)\n", argv[3]);

exit (6);

}

if (global_trainings < 0) {

fprintf(stderr, "ERROR: number of training runs must not be negative \

(%d)\n",

global_trainings);

exit (7);

}

// *******************

// starting prediction

// *******************

// initializing the memory matrix

init_phi();

// read in line after line from standard input

while (fgets(vector, MAX_VAL, stdin)) {

// make a prediction with all 1s of vector

if (actual_vector++ > global_trainings) predict_session(vector, result);

// memorize vector

learn_session(vector);

}

// printing the overall prediction result of the test runs

printf("Total Predictions = %ld Prediction Quality = \

%4.2lf Threshold = %2.4lf",

gtotal, (double)grp/gwp, global_threshold);

printf(" RP = %03ld WP = %03ld RN = %03ld WN = %03ld\n",

grp, gwp, grn, gwn);

exit(0);

}



A.3. C-CODE OF THE TIME-MODELED GENERATOR MODULE 125

A.3 C-Code of the Time-Modeled Generator Module

At this point, the commented source code of the advanced Generator Module is presented. The
standard version can be found in A.1.

// Session Generator

// Randomizer-Module

// part of the prediction testing scenario

// extended modeling of time and document aging

// debugging code excluded

#include <stdio.h>

#include <stdlib.h>

// limit for the number of generated session vectors

#define MAXVEC 100000

main (int argc, char **argv) {

// extended generator program

int slen, nump, density, value, runs, ri;

// slen : length of the generated session vectors

// nump : number of predictable values of the session

// slen - nump is the number of (semi-)random values

// density : number of settings for total random sessions

// value : concrete session setting (0 or 1)

// runs : number of test runs

// ri : variable to count the current run

double rf, boundary_set, boundary_rand, roh;

// rf : random factor, ranges from 0.0, no randomness

// to 1.0, total randomness

// boundary_pred, boundary_rand

// : variables to calculate the concrete setting (0 or 1)

// from the random values, boundary_pred is for the

// predictable one (first nump values)

// and boundary_rand for the random ones (rest of the session)

// roh : help variable to store parts of the boundary calculation

double boundary_set_1, boundary_set_0, RCP;

// boundary_set_1, boundary_set_0

// : the boundary for the decision whether a floating value should

// become 0 or 1 depends on the value before, therefore we do need

// two different boundaries

// RCP : the request change probability (models user behavior)

long num_vec, i, j, lent;

// num_vec : number of session vectors to be generated

// i, j : inner and outer loop variables

// lent : length of a time section (this is only needed for subsequent

// processing steps, a section break for the time factor)



126 APPENDIX A. PREDICTION-MODULES SOURCECODE

int lastvalues[MAXVEC];

// stores the last session vector to be able to deal with RCP

// verify parameters

if (argc != 9) {

fprintf(stderr, "Usage: %s<slen> <nump> <rf> <density> \

<#vectors> <lent> <RCP> <runs>\n",

argv[0]);

exit(1);

}

// slen = length of session vectors

if (sscanf(argv[1], "%d", &slen) != 1) {

fprintf(stderr, "Error: could not read \"slen\"\n");

exit(2);

}

if (slen < 0 || slen >= MAXVEC) {

fprintf(stderr, "Error: \"slen\" not within {0,..,%ld}\n", MAXVEC);

exit(3);

}

// nump = number of predefined settings for rf = 0.0

if (sscanf(argv[2], "%d", &nump) != 1) {

fprintf(stderr, "Error: could not read \"nump\"\n");

exit(4);

}

if (nump < 0 || nump > slen) {

fprintf(stderr, "Error: \"nump\" not in range {0,..,%d} \

(%ld)\n", slen, nump);

exit(5);

}

// rf = random range [0.0,1.0]

if (sscanf(argv[3], "%lf", &rf) != 1) {

fprintf(stderr, "Error: could not read \"rf\"\n");

exit(6);

}

if (rf < 0.0 || rf > 1.0) {

fprintf(stderr, "Error: \"rf\" not in range [0.0,1.0] (%.2lf)\n", rf);

exit(7);

}

// density = number of settings for rf = 1.0

if (sscanf(argv[4], "%d", &density) != 1) {

fprintf(stderr, "Error: could not read \"density\"\n");

exit(8);

}

if (density < 0 || density > slen) {

fprintf(stderr, "Error: \"density\" not in range {0,..,%d} (%ld)\n",

slen, density);

exit(9);

}



A.3. C-CODE OF THE TIME-MODELED GENERATOR MODULE 127

// num_vec = number of vectors to be calculated

if (sscanf(argv[5], "%ld", &num_vec) != 1) {

fprintf(stderr, "Error: could not read \"number of vectors\"\n");

exit(10);

}

if (num_vec < 0) {

fprintf(stderr, "Error: \"number of vectors\" must no be negative\

(%ld)\n",

num_vec);

exit(11);

}

// lent = length of a time section

if (sscanf(argv[6], "%ld", &lent) != 1) {

fprintf(stderr, "Error: could not read \"lent\"\n");

exit(12);

}

if (lent <= 0) {

fprintf(stderr, "Error: \"lent\" must be positive (%ld)\n", lent);

exit(13);

}

// RCP = probabilty to change values

if (sscanf(argv[7], "%lf", &RCP) != 1) {

fprintf(stderr, "Error: could not read \"RCP\"\n");

exit(14);

}

if (RCP < 0.0 || RCP > 0.5) {

fprintf(stderr, "Error: \"RCP\" not in range [0..0.5] (%.2lf)\n", RCP);

exit(15);

}

// runs = number of testing runs

if (sscanf(argv[8], "%d", &runs) != 1) {

fprintf(stderr, "Error: could not read \"runs\"\n");

exit(16);

}

if (runs <= 0) {

fprintf(stderr, "Error: \"runs\" must be positive (%ld)\n", runs);

exit(17);

}

// setting random combined values

// for detailed information of these formulas see chapter 6

roh = 1.0 + rf*((double)density/(double)slen - 1.0);

boundary_set_1 = 1.0+roh*RCP*2.0-2.0*RCP;

boundary_set_0 = 2.0*roh*RCP;

boundary_rand = (double)density/(double)slen*rf;

for (ri = 1; ri <= runs; ri++) {

// outermost loop counts the test runs



128 APPENDIX A. PREDICTION-MODULES SOURCECODE

boundary_set = roh;

// this boundary corresponds to the former modeling

// (without time and aging)

// and is still used for the first session of each test run

// generating session vectors

// at first the predictable elements

for (i = 0; i < num_vec; i++) {

if (i % lent == 0 && i > 0) {

// set a mark for subsequent prediction task

// simulates a time span, e.g. another day

// (as sign for the time factor)

for (j = 0; j < slen; j++) printf("-");

printf("\n");

}

// generation of the first nump values

for (j = 0; j < nump; j++) {

// checking random value

if (i) {

// from the second session of each run the modeling

// the RCP requires the value of the last request

// to calucalte the probabilty of the next

if (lastvalues[j] == 0) {

boundary_set = boundary_set_0;

} else {

boundary_set = boundary_set_1;

}

}

// this calucaltion is the same as for the standard modeling

// (without time and aging)

if (boundary_set > rand()/(RAND_MAX+1.0)) {

value = 1;

} else {

value = 0;

}

// remember the last setting

lastvalues[j] = value;

printf("%d", value);

}

// for the random settings of the session vector nothing has changed

for (j = nump; j < slen; j++) {

// checking random value

if (boundary_rand > rand()/(RAND_MAX+1.0)) {

value = 1;

} else {

value = 0;

}



A.4. C-CODE OF THE TIME-MODELED PREDICTION-MODULE 129

printf("%d", value);

}

printf("\n");

}

}

exit(0);

}

A.4 C-Code of the Time-Modeled Prediction-Module

Here, the programming code of the advanced prediction module with modeling of time and
aging can be found. Identical procedures to the standard approach are omitted to increase the
readability of the code.

// Prediction-Module

// predicts and evaluate the test sessions

// part of the prediction testing scenario

// advanced modeling time and document aging

// debugging code excluded

// ***********************************************

// fixed testing scenario settings

// ***********************************************

// MAX_VAL describes the length of the session vector

#define MAX_VAL 10000

// MINUMUM for matrix values

#define MINIMUM 0.0001

// fixed value for positive requests

#define SETTING ’1’

// define double "zero"

#define DZERO 0.0000001

// caution: the max value of unsigned short is system dependend

// this is also an (unchecked) limit for the number of requests

#define INIT_VAL 0.0

// definition of the memory matrix phi

double phi[MAX_VAL][MAX_VAL];

// definition of the last access session vector

long lasv[MAX_VAL];

// actual session vector length

int global_session_length;

// fixed threshold delta

float global_threshold;



130 APPENDIX A. PREDICTION-MODULES SOURCECODE

// number of traing-vectors

int global_trainings;

// global counters

long grp = 0, grn = 0, gwp = 0, gwn = 0;

// grp : number of correctly predicted requests

// grn : number of data sets that were not requested and not predicted

// gwp : number of incorrectly predicted requests

// gwn : number of requests that were not predicted

// global number of request-predictions

long gtotal = 0;

// global time factor

double timefactor;

// counter for time sections

long timecounter = 0L;

// ***********************************************

// helping sub-routines

// ***********************************************

init_phi () {

// initialization of the matrix phi

int i,j;

for (i = 0; i < global_session_length; i++) {

for (j = 0; j < global_session_length; j++) {

phi[i][j] = INIT_VAL;

}

}

for (i = 0; i < global_session_length; i++) lasv[i] = 0L;

return 0;

}

// ***********************************************

// procedures for prediction tasks

// ***********************************************

// evaluate_prediction(char vector[], double result[], int position)

// predict_with(int value, double result[])

// predict_session(char vector[], double result[])

// all those functions are the same as for the simplified version

learn_timeline (char vector[], int number) {

// learning of a request while considering the time modeling

// the function is needed for learn_timesession

int i = 0;

long timespans;

char c;



A.4. C-CODE OF THE TIME-MODELED PREDICTION-MODULE 131

while ((c = vector[i]) != ’\0’ && c != ’\n’) {

if (c == SETTING) phi[number][i] ++;

else {

// the timing factor is only applied to 0s of the session vector

timespans = timecounter - lasv[i];

phi[number][i] -= timespans*timefactor;

if (phi[number][i] < MINIMUM) phi[number][i] = INIT_VAL;

}

i++;

}

}

learn_timesession(char vector[]) {

// store vector into the memory matrix phi

int i = 0;

char c;

while (c = vector[i++]) {

if (c == SETTING) learn_timeline(vector, i-1);

}

return 0;

}

// ***********************************************

// main prediction program

// ***********************************************

main (int argc, char **argv) {

// predictioner program

char vector [MAX_VAL+1];

// storage for the current session vector

double result [MAX_VAL+1];

// storage for the probability vector result from the classification step

char c;

// variable for the current vector elements

int actual_vector = 0;

// counter for the number of vectors

// *******************

// checking parameters

// *******************

if (argc < 5) {

fprintf(stderr,

"Usage: %s <svector length> <threshold> \

<training runs> <timefactor>\n",

argv[0]);

exit (1);

}



132 APPENDIX A. PREDICTION-MODULES SOURCECODE

// verifying the session vector length

if ((sscanf(argv[1], "%d", &global_session_length)) != 1) {

fprintf(stderr, "ERROR: can not read vector length (%s)\n", argv[1]);

exit (2);

}

if (global_session_length < 0 || global_session_length > MAX_VAL) {

fprintf(stderr, "ERROR: session vector length not in range \

{0,..,%ld} (%d)\n",

MAX_VAL, global_session_length);

exit (3);

}

// verifying the prediction threshold (delta)

if ((sscanf(argv[2], "%lf", &global_threshold)) != 1) {

fprintf(stderr, "ERROR: can not read threshold (%s)\n", argv[2]);

exit (4);

}

if (global_threshold < 0.0 || global_threshold > 1.0) {

fprintf(stderr, "ERROR: prediction threshold not in range [0.0,1.0] \

(%.2lf)\n",

global_threshold);

exit (5);

}

// verifying the number of training runs

if ((sscanf(argv[3], "%d", &global_trainings)) != 1) {

fprintf(stderr, "ERROR: can not read number of training runs \

(%s)\n", argv[3]);

exit (6);

}

if (global_trainings < 0) {

fprintf(stderr, "ERROR: number of training runs must not be negative \

(%d)\n",

global_trainings);

exit (7);

}

// verifying the time factor

if ((sscanf(argv[4], "%lf", &timefactor)) != 1) {

fprintf(stderr, "ERROR: can not read the time factor (%s)\n", argv[3]);

exit (8);

}

if (timefactor < 0.0) {

fprintf(stderr, "ERROR: time factor must not be negative \

(
exit (9);

}

// *******************

// starting prediction

// *******************

// initializing the memory matrix

init_phi();



A.4. C-CODE OF THE TIME-MODELED PREDICTION-MODULE 133

// read in line after line from standard input

while (fgets(vector, MAX_VAL, stdin)) {

// verifying the time mark

if (vector[0] == ’-’) {

timecounter++;

continue;

}

// make a prediction with all 1s of vector

if (actual_vector++ > global_trainings) predict_session(vector, result);

// memorize vector

learn_timesession(vector);

}

// printing the overall prediction result of the test runs

printf("Total Predictions = %ld Prediction Quality = \

%4.2lf Time factor = %4.2lf",

gtotal, (double)grp/gwp, timefactor);

printf("Threshold = %2.4f RP = %03ld WP = %03ld RN = %03ld WN = %03ld\n",

global_threshold, grp, gwp, grn, gwn);

exit(0);

}



134 APPENDIX A. PREDICTION-MODULES SOURCECODE



Appendix B

Hyperlink-Proposal Sourcecode

B.1 Java-Sourcecode of an Hyperlink Proposal Module

In the following, the commented Java source code for an Hyperlink Proposal Module HPM is
presented. For simplicity, we only show the core functionalities of the HPM object.

/∗∗
∗ Hyperlink Proposal Module HPM
∗ Main Class
∗
∗ @version 1.0.0
∗ @since JDK 1.1
∗/

class HPM {

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ definition of global constants
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

// thresholds for attributes and classification
// validity attribute
private static final double VALATTRIB DEFAULT = 0.7;
// departmental structure attribute
private static final double STRATTRIB DEFAULT = 0.7;
. . .
private static final double KEYWATTRIB DEFAULT = 0.4;
private static final double CLASSIFICATION DEFAULT = 0.85;

// special attributes
private static final int SPEC ATTRIBS =

<number of special attributes>;
private static final String ATT STRUCTURE =

"Departmental Structure";
private static final String ATT VALIDITY =

"Validity";
. . .

135



136 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE

// value to equalize computation inexactness
private static final double EQUALIZER = 0.000001;

// default maximum number of proposals
private static final int MAX PROPOSALS = 20;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ definition of private class variables
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

// thresholds for attributes and classification
// validity attribute threshold
private double valattrib threshold = VALATTRIB DEFAULT;
// departmental structure attribute threshold
private double strattrib threshold = STRATTRIB DEFAULT;
// keyword attribute threshold
private double keywattrib threshold = KEYWATTRIB DEFAULT;
// link classification threshold
private double class threshold = CLASSIFICATION DEFAULT;

// core datastructure: the relevance matrix, dynamically growing
private Matrix psi = null;

// a link-list: base for the classification results
private LinkList links = new LinkList();

// the attribute list as vector
private Vector attributes = new Vector();

// flag for local or remote use of the HPM
boolean local = true;

// URI of remote website as base for the HPM
String base = null;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ set and get methods to manipulate private variables
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

/∗∗
∗ Retrieve threshold for the validity attribute
∗ @param
∗ @return double validity attribute threshold between 0.0 and 1.0
∗/
public double getValAttrib() {

return valattrib threshold;
}



B.1. JAVA-SOURCECODE OF AN HYPERLINK PROPOSAL MODULE 137

/∗∗
∗ Retrieve threshold for the departmental structure attribute
∗ @param
∗ @return double departmental structure attribute threshold
∗ between 0.0 and 1.0
∗/
public double getStrAttrib() {

return strattrib threshold;
}

. . .

/∗∗
∗ Retrieve threshold for the keyword attribute
∗ @param
∗ @return double keyword attribute threshold between 0.0 and 1.0
∗/
public double getKeywAttrib() {

return keywattrib threshold;
}

/∗∗
∗ Retrieve class threshold
∗ @param
∗ @return double class threshold between 0.0 and 1.0
∗/
public double getClassThreshold() {

return class threshold;
}

/∗∗
∗ Set threshold for the validation attribute
∗ @param double threshold for the validation attribute
∗ @return
∗/
public void setValAttrib(double threshold) {

valattrib threshold = threshold;
return;

}

/∗∗
∗ Set threshold for the departmental structure attribute
∗ @param double threshold for the dep. structure attribute
∗ @return
∗/
public void setStrAttrib(double threshold) {

strattrib threshold = threshold;
return;

}

. . .



138 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE

/∗∗
∗ Set threshold for the keyword attribute
∗ @param double threshold for the keyword attribute
∗ @return
∗/
public void setKeywAttrib(double threshold) {

keywattrib threshold = threshold;
return;

}

/∗∗
∗ Set class threshold
∗ @param double class threshold
∗ @return
∗/
public void setClassThreshold(double threshold) {

class threshold = threshold;
return;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ usefule private methods
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

/∗∗
∗ Initializes the internal variables called by class constructors
∗ @param
∗ @return
∗/
private void initializeData() {

// the matrix is defined for two initial columns (see below)
psi = new Matrix(0, SPEC ATTRIBS);

// the attribute list starts with the validity and the
// document type entries as minimum
attributes.addElement(ATT VALIDITY);
attributes.addElement(ATT STRUCTURE);
. . ..

return;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ attribute manipulating methods
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/



B.1. JAVA-SOURCECODE OF AN HYPERLINK PROPOSAL MODULE 139

/∗∗
∗ adding a new keyword to the system
∗ @param Keyword the new keyword to be added
∗ @return
∗/
private void addKeyword(Keyword w) {

// adding keyword to the list of attributes
attributes.addElement(w);

// preparing the new column for the matrix
double[] newcol = new double[links.linkCount()];

// new columns are initialized by zero
for (int i = 0; i < newcol.length; i++) newcol[i] = 0.0;

// adding a corresponding column to the matrix
try {

psi.addCol(newcol);
} catch (Exception e) {

System.out.println ("Error adding a new keyword: " + e);
}
return;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ link (solution) manipulating methods
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

/∗∗
∗ adding a new link to the system
∗ @param Link the new link to be added
∗ @return
∗/

private void addLink(Link l) {
// verifying links for efficiency
if (!isValidLink(l, local, links)) return;

// adding the new link to the current link list
links.addLink(l);

// preparing a new link weight row for the matrix
double[] newrow = new double[psi.getColCount()];

// initializing the new row with same weights for all attrbiutes
for (int i = 0; i < newrow.length; i++) {

newrow[i] = 1/(double)newrow.length;
}



140 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE

// adding a corresponding row to the matrix
try {

psi.addRow(newrow);
} catch (Exception e) {

System.out.println ("Error adding a new link: " + e);
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Matrix or vector manipulating methods
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

/∗∗
∗ the attribute separation method that distinguished between fulfilled and
∗ contradictory attributes by resetting the latter ones to 0
∗ @param Vector the attribute vector
∗ @return Vector the resulting separated attribute vector
∗/

private Vector zeta (Vector attVec) {
Vector result = attVec.clone();

// every attribute is compared to the corresponding
// threshold value

// the special attributes are treated first
if (result.get(0) < valattribthreshold)

result.set(0, new Double(0.0));
if (result.get(1) < strattribthreshold)

result.set(0, new Double(0.0));
. . .

// then the keyword attributes thresholds are compared
for (int i = SPEC ATTRIBS - 1; i < result.length(); i++) {

if (result.get(i) < keywattribthreshold)
result.set(i, new Double(0.0));

}
return result;

}

/∗∗
∗ a simple information retrieval method based on
∗ statistical properties of the corresponding text
∗ @param Meta the text represented by its meta-object
∗ @return Vector the attribute vector (not yet separated into
∗ fulfilled and contradictory attributes)
∗/

private Vector retrieveAttributeVector (Meta text) {
// the resulting attribute vector
Vector result = new Vector();



B.1. JAVA-SOURCECODE OF AN HYPERLINK PROPOSAL MODULE 141

// initializing the resulting vector
for (int i = 0; i < attributes.size(); i++)

result.add(new Double(0.0));

// retrieving the list of all keywords
DocKeyword keywordList[] =

text.getKeywords().getArrayOfDocKeywords();

try {
// the special attributes are treated first
result.set(0, getValAttribute(text));
result.set(1, getStrAttribute(text));
. . .

// the retrieval of the keyword attributes
for (int i = SPEC ATTRIBS - 1; i < attributes.size(); i++) {
// compare known attributes to the list of
// keywords appearing in the text
for (int j = 0; j < keywordList.length; j++)
if (((Keyword)KeywordList[j]).equals(attributes.elementAt(i)))

result.set(i, getKeywordWeight(keywordList[j]));
}

} catch (Exception e) {
System.out.println ("Error retrieving information from text: " + e);

}
return result;

}

/∗∗
∗ adapting the relevance weights of matrix psi (within the given row)
∗ to map the learning changes adequately
∗ @param row the row of psi that is to be changed
∗ @param Meta the text as base for the chaning
∗ @result
∗/

private void changeWeights (int row, Meta text) {
double result = 0.0;
// constructing a list with fulfilled attributes indexes
int fulfilledIndexes[] = getFulfilledAttributeIndexes(text);
int fulfillatt = fulfilledIndexes.length;

try {
// investigating the (constant distributed) weight change
// for the fulfilled attributes that is to be added
double addingValue =

missingClassificationValue(row, text) / fulfillatt;

// ... and analogous for the contradictory attributes
double substractingValue =

addingValue ∗ fulfillatt / (attributes.size()-fulfillatt);



142 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE

// check all attributes and make the relevance adaptation
// depending on whether the attributes belong
// to the set of fulfilled ones or not
for (int i = 0; i < attributes.size(); i++) {

if (belongsToArray(fulfilledIndexes, i)) {
// the weight adaptation for the fulfilled attributes
psi.setEntry(row, fulfilledIndexes[i],

psi.getEntry(row, fulfilledIndexes[i]) + addingValue);
} else {
// the weight adaptation for the contradictory attributes
psi.setEntry(row, contradictoryIndexes[i],

psi.getEntry(row,contradictoryIndexes[i])
-substractingValue);

}
}

} catch (Exception e) {
System.out.println ("Error in changing the relevance weights: " + e);

}
return;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Main cognitive methods, learning and classifying
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/
/∗∗
∗ The classification method takes a text (represented by its meta-object)
∗ and retrieves link probabilities exceeding the threshold ordered
∗ by their probability to be useful as hyperlinks for the text
∗ @param Meta the text represented by its meta-object
∗ @return LinkList the list of links to be proposed
∗/

public LinkList classify(Meta text) {
// declaring the result vector with probabilities
// for each link
Vector probability vector = null;

// result finally contains the proposed links
// orderd by their probability
LinkList result = new LinkList();

// verifying the status of the
// dynamically growing matrix psi
psi.checkIntegrity ();

// core classification process
try {

probability vector =
psi.multiply(zeta(retrieveAttributeVector(text)));

} catch (Exception e) {
System.out.println ("Error in core classification: " + e);

}



B.1. JAVA-SOURCECODE OF AN HYPERLINK PROPOSAL MODULE 143

// the probabilities have to be compared to the
// class threshold and the final resulting link list is built
try {

// a proposal list contains indexes of Links within psi
// together with their probability
ProposalList proplist = new ProposalList();
for (int i = 0; i < links.linkCount(); i++) {

double probabilty = probabilty vector.get(i);

// result beyond threshold leads to a proposal
if (probability + EQUALIZER > class threshold) {

proplist.addElement(i, probability);
}

}

// order the links according to their probability
proplist.sortIndexes();

// generating the final result linklist
for (int i = 0;

i < min(proplist.proposalsCount(), MAX PROPOSALS);
i++) result.addLink(links.getLink(proplist.getLinkIndex(i)));

} catch (Exception e) {
System.out.println ("Error in calculating link proposals: " + e);

}
return result;

}

/∗∗
∗ The main learning method takes a text as input (represented by its meta-object)
∗ and adapts the relevance weights so that a subsequent classification step would
∗ result in the given linklist
∗ @param Meta the text represented by its meta-object
∗ @param LinkList the list of links that are to be classified
∗ @return
∗/

public void learn(Meta text, LinkList propLinks) {
// The first step consists of updating the relevance matrix psi
// so that all links within the link list are known to the system.

// The number of rows of the matrix is increased dynamically.
updateRelevanceMatrix(text, propLinks);

// an a priori classification step is needed to compare
// the results to the given list of links
LinkList classLinks = classify(text);

// finally, all the matrix weigths are updated that belong
// to links (rows) where a link should be proposed
// but is not classified yet
for (int i = 0; i < links.linkCount(); i++) {



144 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE

// find out, if the current link is within
// the proposed or the classified list
Link currentLink = links.getLink(i);
boolean linkIsProposed = propLinks.isElement(currentLink);
boolean linkIsClassified = classLinks.isElement(currentLink);

// case treatment
if (linkIsProposed && linkIsClassified) {

// the current link is proposed and classified,
// the learning algorithm has nothing to do,
// but it might be adequate to do some statistics
. . .

} else if (!linkIsPropoased && linkIsClassified) {
// in the first step of the development of the HPM
// this case was not considered; it is a result of
// the synergy to see that in this case
// document aging can be modeled
. . .

} else if (linkIsPropoased && !linkIsClassified) {
// the real learning case; the matrix weights
// have to be adpated
changeWeights (i, text);

} else {
// corresponds to: !linkIsProposed && !linkIsClassified
// again, this is not learning case

}
}
return;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ HPM Constructors
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗/

/∗∗
∗ Neutral HPM constructor for local classification
∗ (local website, no special URI-base)
∗ @param
∗ @return
∗/

public HPM () {
initializeData();
local = true;

}



B.1. JAVA-SOURCECODE OF AN HYPERLINK PROPOSAL MODULE 145

/∗∗
∗ External use of the HPM (for remote sites)
∗ @param String a URI as base for the subsequent
∗ classifcation steps
∗ @return
∗/

public HPM (String URI) {
initializeData();

local = false;
base = new String(URI);

}
}



146 APPENDIX B. HYPERLINK-PROPOSAL SOURCECODE



Index

A
AACE, 86
abstraction, 95, 104
abstraction-step, 96
ACM, 86, 87
action, 12, 29, 95
action-layer, 10
adaptation, 15, 22, 52, 68, 72, 78, 82, 100
AI-Principles, 97
algorithm, 4, 5, 17–19, 30–32, 34, 36, 37,

39–44, 46, 48–50, 53, 55, 59, 65,
67, 70, 71, 73, 80, 86, 95–99, 102–
104

alice, 39, 95
analysis, 17, 22, 55, 57, 78, 95
appearance, 66
architecture, 9–11, 13, 39, 89
area, 3, 4, 7, 17, 22, 23, 25, 32, 63, 73, 95,

97–99, 102, 104, 105
attribute, 17, 19–24, 65–69, 71, 73–75, 77–

82, 86, 87, 89, 96, 97, 99–101
attribute-comparison, 21
attribute-value, 21
author, 5, 6, 12–15, 63–66, 78, 79, 81, 83,

84, 95, 105
average, 5, 11, 31, 32, 40, 45, 47, 48, 57
axiom, 25, 29, 30, 33, 36, 46

B
basis, 7, 9, 31, 33, 36, 53, 65, 78, 80, 82
Bible, 47
boundary, 41, 51
breadth-first-search, 86

C
calculation, 11, 22–26, 30, 32–34, 42, 51,

84, 96, 97, 100, 105
case-adaptation, 17
case-base, 6, 7, 18, 19, 21–23, 65, 73, 89
Case-Based-Reasoning (CBR), 63, 73
CBR-algorithm, 23

CBR-concept, 65, 78
CBR-model, 65
CBR-system, 17, 65, 73
chess-player, 20
class, 10, 20–22, 24, 81, 82, 96–98, 104
client-side, 11, 30, 34, 46
coherence, 6, 29, 36, 46
communication, 10, 11, 13, 30
computer, 4, 6, 57
context, 11, 22, 77, 78
correctness, 43, 45
cross-references, 14

D
DAPHNE, 12, 13, 15, 46, 64, 78, 85
data-server, 29, 46
data-set, 25, 29, 32–37, 40, 45, 48–50, 53,

99
data-structure, 4, 14, 15, 65, 66
database, 10, 13, 14, 17, 30, 46, 65, 95, 97
deduction, 97
default-description, 15
department, 14, 57, 78
derivation, 22, 24, 31, 33, 39, 42, 63, 77, 99,

100, 104
development, 67, 83, 105
dilemma, 64
distribution, 24, 52, 69, 72, 74, 75, 78, 100
divide-and-conquer, 96
document-root, 80

E
Einstein, 103
element, 4, 7, 15, 20, 31, 33, 36, 40, 41, 43–

45, 48, 50–52, 66–68, 77, 82, 96,
99

end-to-end, 10
entity, 77
evaluation, 4, 5, 11, 42, 52, 71, 73, 77, 78,

81, 83–86, 102
examination, 35

147



148 INDEX

expert, 7, 22, 97, 98
expert-knowledge, 6, 18, 19

F
flexibility, 10
football, 40
foreseeing (,→ Prediction)
framework, 9
frequency, 4, 5, 31, 35, 36, 42, 48, 97
function-layer, 10

G
generalization, 95, 96
goal, 31

H
heuristics, 19
HLM-import-functions, 81
HLM-project, 81
HLM-system, 68, 78, 80
HTML, 6, 14, 35, 66, 79, 80, 86
hyperlink, 5–7, 9, 14, 15, 35, 63–68, 70, 73,

75, 78, 81, 83, 84, 86, 87, 89, 95,
98, 99, 104, 105

hyperlink-management, 9, 14, 15, 63, 70,
80, 82

hyperlink-proposal, 7, 9, 15, 23, 25, 63–65,
67, 71, 73, 74, 77, 83, 95, 97, 103

hypermedia, 14
hypertext, 6, 12, 14, 15, 64–67, 73, 77, 78,

81, 84, 85, 89, 91, 95, 97, 104
hypertext-system, 14

I
image, 6, 13
implementation, 4, 7, 11, 15, 35, 36, 39, 41–

43, 46, 51, 66, 68, 71, 72, 77, 81,
84–86, 95, 96, 99, 104

indicator, 5
information, 5–7, 9–14, 17, 35, 43, 46, 49,

57, 63–66, 77–83, 85–87, 95–98,
104, 105

infrastructure, 12
intelligence, 10
interface, 13
Internet, 9, 11–13, 30, 104
Internet-Protocol (IP), 32

K
keyword, 6, 73, 75, 78, 79, 81, 82, 86, 87,

96, 97, 99
keyword-attribute, 87
knowledge, 6, 7, 17, 22, 63–65, 77, 95, 97,

104
knowledge-base, 65, 70, 71, 73, 85
knowledge-retrieval, 66

L
language, 10, 14, 15, 41, 52, 73, 78, 81
latency, 3, 10, 11, 30, 31, 103
layout, 12, 13
link (,→ hyperlink)
link-proposal (,→ hyperlink-proposal)

M
maintenance, 7
Markov-chain, 25, 26
Markov-process, 25
Markov-property, 25
matrix, 4, 7, 19, 21–24, 26, 35–37, 42, 43,

48–50, 52, 66, 67, 72–75, 81, 89,
96, 97, 99–101, 105

meta-data, 78
meta-object, 81, 82
meta-tag, 6
methodology, 7, 9, 96, 98
model, 4–7, 11, 14, 15, 19–23, 25, 26, 31,

34–37, 39–42, 47, 48, 50–53, 55,
63–67, 73–75, 81, 83, 84, 96, 98–
101, 103, 104

multimedia, 3

N
network, 4, 6, 11, 30, 35, 39, 42, 46, 96, 103

O
object, 20, 81
occurrence, 66, 78, 81
online-authoring, 46
optimization, 11
overhead, 100

P
packet, 35, 46



INDEX 149

parameter, 5, 20, 22, 23, 30, 41–44, 46, 47,
51–53, 55, 57, 59, 103, 104

parameter-settings, 57

past, 25, 29, 46, 79

pattern, 48

pattern-recognition, 97

peculiarity, 14, 15

performance, 10, 30, 31, 36, 42, 45, 53

piggyback, 31, 35, 55

platform, 9, 10, 39

portfolio-management, 10, 39

pre-calculation, 30, 33, 35, 55

pre-checking, 98

pre-fetching, 11, 30, 31, 34, 35, 42, 46, 55,
96

pre-sending, 30, 42, 46

precision, 64, 74, 84, 85, 87–89

Prediction, 3–5, 9, 11, 25, 26, 29–37, 39–53,
55–57, 59, 66, 95, 96, 98, 99, 102,
103, 105

Prediction-action, 33–35

Prediction-algorithm, 4, 31, 36

Prediction-theory, 9

probability, 4, 5, 7, 20, 24–26, 29, 31–33,
36, 37, 40, 42, 43, 45, 47–51, 53,
55, 57, 65, 67, 68, 74, 75, 82–84,
87, 89, 96, 97, 104

problem, 3, 4, 6, 7, 10, 11, 17–20, 22–24,
30, 35, 46, 53, 55, 63, 65, 67, 68,
72–75, 77, 78, 80, 83, 84, 96, 97,
99, 103, 104

problem-comparison, 19

problem-modeling, 96

problem-vector, 68

procedure, 41, 42, 52, 99

program, 13, 41, 42, 49, 81, 96, 97

programming, 7, 42, 81

project, 14, 42, 98, 104

property, 6, 10, 14, 20, 21, 26, 66–70, 72,
74, 82

proposal, 3, 6, 7, 22, 53, 64, 65, 67, 68, 70–
74, 80, 82–85, 87, 89, 99, 100, 103,
105

proposal-list, 89

proposal-quality, 6, 84–86, 89

protocol, 12, 31, 46

prototype, 78

proxy, 30

proxy-cache, 35, 45

Q
QCP (Quantified Cumulating Precision), 89
QCP-curves, 87
QCP-values, 87
QCR (Quantified Cumulating Recall), 87
QCR-curves, 86, 89
QCR-values, 87
quality, 4, 5, 12, 15, 18, 19, 29, 36, 41, 42,

44, 45, 52, 53, 55–59, 63–65, 67,
74, 83–85, 87, 89–91, 104

R
random, 4, 5, 25, 26, 39–41, 43–45, 47–49,

51, 53, 55, 103
Randomizer-module, 47
randomness, 39, 40, 44
randomness-degree, 5
recognition, 52, 97, 103
refinement, 47, 77
relationship, 15, 24, 44, 57, 65
relevance, 19, 21–24, 51, 65–75, 79, 89, 97,

99–102
report, 14
request, 4, 5, 10, 11, 25, 26, 29–33, 35, 36,

39–51, 53, 57, 65, 97, 98, 103–105
request-behavior, 4, 5
request-broker, 10
Request-Change-Probability (ξ), 51
request-generation, 5
request-modeling, 5
Request-Prediction (,→ Prediction)
request-probability, 29, 31–35, 37, 39
requirement, 4, 20, 29, 30, 33, 36, 63
resolution, 11, 24
response-time, 98
retrieval, 6, 30, 63–65, 77, 82, 97, 104
Rhineland-Palatinate, 104
RP-algorithm (,→ Prediction-algorithm)
RP-theory (,→ Prediction-theory)

S
SDS (,→ Smart Data Server)
semi-randomness, 40, 41, 45, 51
separation, 12, 67
server, 4, 5, 9–11, 13, 30–33, 35, 39, 42, 45,

46, 57, 98, 103, 104
server-side, 10, 11, 44, 96
service, 63
service-layer, 10



150 INDEX

session, 5, 31, 32, 34–37, 40–45, 47–53, 57,
95, 97, 98, 103

session-vector, 96, 97
similarity, 6, 7, 17, 19–24, 26, 67, 95–97, 99,

105
similarity-comparison, 22
similarity-measurement, 19
Smart Data Server (SDS), 9–11, 42
solution, 17–19, 21–23, 64, 65, 67, 73, 74,

77–79, 86, 98
specification, 32, 42
stochastic-property, 69
stock-data, 5, 11, 32, 39
stopword, 78, 79
storage, 17, 19, 23, 95, 97, 99
strategy, 11, 15, 23, 24, 34, 44–46, 53, 72,

95–99, 103
structure, 5, 7, 10–12, 20, 47, 53, 71, 74,

80–82, 96, 99
symmetry, 4, 36, 49, 50, 52
synergy, 95, 98, 99, 104, 105
syntax, 41
system, 9, 12, 17, 25, 30, 46, 63, 64, 73, 78,

85, 97–99
system-environment, 57
system-load, 5

T
target-document, 15, 65, 66, 80
target-link, 15
TCP-packet, 46
test-scenario, 4, 5
three-tier, 11
threshold, 4, 21–24, 31–35, 42–45, 50, 52,

53, 55–59, 67–69, 71, 72, 74, 75,
78, 82, 89, 99, 101

time, 5, 7, 11, 12, 26, 30–32, 35, 36, 43, 44,
47–53, 55–57, 59, 64, 66, 79, 80,
95, 97, 99–102, 104

training, 18, 19, 22
transmission, 31, 32, 34, 35, 46
tree, 35, 80, 97

U
universality, 5
usability, 5, 7, 20, 73, 80, 83, 85, 87, 103,

104
user, 4–6, 10–13, 25, 29–31, 33, 35, 36, 39,

45–48, 51, 57–59, 63, 64, 66, 67,
70, 73, 83, 84, 89, 95, 98, 103–105

user-behavior, 5, 29, 47, 57
user-request, 5, 25, 30–32, 35, 44–46, 48,

55, 57, 58, 95, 96
user-session (,→ session)

V
validation, 79–81
vector, 15, 17, 25, 31, 36, 40–45, 47–53, 57,

65–68, 73, 74, 77, 82, 96, 97, 99,
101

verification, 15

W
web-administrator, 14
web-application, 5–7, 98
web-author, 15
web-page, 12, 83, 85
web-server, 5, 57, 66
website, 15, 80, 81, 83, 85–87
weight, 20–24, 48, 68–70, 72–75, 78, 79, 82,

99, 100
word, 12, 73, 78, 79
word-flexion, 79
workflow, 12
WWW (Word Wide Web), 13



Tabellarischer Bildungsgang

Name: Ernst-Georg Alfons Haffner

Geburtsdatum: 30.11.1966
Gebutsort: Hermeskeil

1973-1977 Besuch der Grundschule Gusenburg
1977-1986 Besuch des Gymnasiums Hermeskeil

Abschluss: Abitur

1986-1987 Grundwehdienst

1987-1993 Studium der Informatik an der Universität Kaiserslautern
Februar 1993 Diplom der Informatik

1993-1997 Angestellter der zentralen IT-Abteilung eines Fensterherstellers
betraut mit dem Design, der Entwicklung und Wartung von com-
putergestützter Anwendungssoftware zur Auftragsabwicklung und
zur automatisierten Fensterproduktion

1997-2001 Wissenschaftlicher Mitarbeiter im Institut für Telematik in Trier
unter der Betreuung von Prof. Dr. Christoph Meinel


