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Introduction

Over the last years high speed communication networks have been an area of intensive
research for engineers and scientists, leading to continuous improvements in technology.
Today there is a rapidly growing demand for mobile communication systems, e.g. cellular
phones or wireless computer networks, including protocols like CDMA (Code Division
Multiple Access) and (wireless) ATM (Asynchronous Transfer Mode).

Along with these developments grew, and still grows, the need for more sophisticated
methods of performance evaluation. Queueing theory provides already classical models
for analysing communication networks, e.g. [22, 23]. One subject of modern queueing
theory is matrix analytic methods [30, 31, 35]. Today research concentrates on the Batch
Markovian Arrival Process (BMAP) [24], which has been shown to be equivalent to the
Neuts process (versatile Markovian point process [29, 31]), and queueing systems with
this arrival process. The BMAP is a generalization of the Poisson process, the Markov
Modulated Poisson Process (MMPP) and the Markovian Arrival Process (MAP) [26].
The BMAP/G/1 queue has been analysed by Ramaswami [33] (there still called N/G/1
queue) and Lucantoni [24], and many variants have been studied later. A comprehensive
survey can be found in Lucantoni's tutorial [25].

There are many publications about applications of matrix analytic methods, we give three
examples:

� He�es and Lucantoni [16] used an MMPP to study the performance of a statistical
multiplexer whose input consists of a superposition of packetized voice sources and
data. They approximated the superpositioned input process by an MMPP with
suitably chosen parameters, and modeled the multiplexer as an MMPP/G/1 queue,
where the service time of a packet is its transmission time.

� Blondia [5] described the input processes into an M/1-stage in an ATM switching
element by Markovian arrival processes (MAPs) to allow bursty input tra�c. The
input bu�ers and the bus of the M/1-stage are modeled as a single server �nite
capacity multi{queueing system with non{exhaustive cyclic service. Each input
queue can then be approximated by a MAP/D/1/N queue with repeated vacations
and limited service discipline. In his analysis Blondia also allowed for a general
service time distribution.

� Choudhury, Lucantoni and Whitt [10] consider an ATM switch receiving �xed{size
ATM cells from several sources and transmitting them over an output channel in a
�rst{in{�rst{out fashion. They develop an approximation for the tail probabilities
of the steady{state waiting time, which can be used for admission control. Their
approximation is based on the analysis of the MAP/G/1 queue, where the arrival
process is a superposition of independent heterogeneous MAPs.
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The arrival processes considered so far are spatially homogeneous and hence independent
of the current state of the queueing system. But routing in modern communication
networks like ATM can be dynamic, so that the input into a node depends on the current
state of this node, e.g. the number and type of connections already assigned to that
node or the remaining available bandwidth. In ATM networks cells and frames can be
discarded to avoid congestion [38], and possible congestion can be indicated in ATM cells
to reduce the intensity of available bit rate (ABR) tra�c [38]. Routing algorithms like
e.g. \Intelligent Network based Dynamic Routing" (Siemens Austria and European Space
Agency) [2] are supposed to avoid congestion in advance and to achieve an e�cient use
of network resources.

This was our motivation to de�ne a level dependent batch Markovian arrival process
and to analyse the BMAP/G/1 queue with level dependent arrivals. There are many
publications about queueing systems with state dependent input. A comprehensive survey
is given by Dshalalow [12]. Recently Bright and Taylor [6, 7] introduced and analysed a
level dependent Quasi{Birth{Death{process (QBD) using the matrix geometric approach
for Markov chains of G/M/1 type [30]. Ramaswami and Taylor [37] generalized this
process by allowing a countable number of phases. Using these results they obtained a
new class of product{form queueing networks [36].

The BMAP/G/1 queue with level dependent arrivals is a generalization of the classical
BMAP/G/1 queue mentioned above. It also includes the �nite capacity BMAP/G/1
queue.

Summary

In the �rst part (section 1) of this paper we de�ne a level dependent batch Markovian
arrival process and derive some properties of its generator matrix and its transition prob-
abilities. We show that the transition probability matrix of the level dependent BMAP
satis�es the forward and backward di�erential equations, and hence is given by the matrix
exponential of the generator matrix.

The second part (sections 2-7) is devoted to the analysis of the BMAP/G/1 queue with
level dependent arrivals. This queueing system and the corresponding stochastic process
are introduced in section 2. To compute the limiting distribution of the queue length we
apply the common method of the embedded Markov chain [22]. In section 3 we determine
the entries of the transition matrix of the embedded Markov chain and the mean number
of arrivals during a service time.

Stability conditions for the BMAP/G/1 queue with level dependent arrivals are presented
in section 4. These conditions are obtained by applying a generalized Foster criterion [32].
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Section 5 contains the analysis of the fundamental periods of the embedded Markov
chain. In the level independent case the fundamental matrix G plays the key role in
determining the steady state distributions. In our case the fundamental periods depend
on the starting level k. So we have fundamental matrices G(k) for each level k � 1. We
derive two algorithms for computing these fundamental matrices. Further, we show that
the vectors of the mean numbers of service completions during a fundamental period are
the unique solution of an in�nite system of linear equations.

The stationary distribution of the queue length at service completion times is determined
in section 6. We apply a result from the theory of semi{Markov processes [20] to obtain
the steady state probabilities of level 0. To compute the steady state probabilities of the
remaining levels we generalize Ramaswami's formulae [34]. The limiting distribution of
the queue length at an arbitrary time is derived in section 7 by applying the key renewal
theorem.

In the third part (sections 8-10) we consider some special cases. At �rst we assume the
phase process to be level independent (section 8). In this special instance we can improve
some of our results from the general case. In particular, we derive a stronger stability
condition. We �nish this part by showing that our results coincide with those for the
classical level independent BMAP/G/1 queue [24, 33] (section 9) and the �nite capacity
BMAP/G/1 queue [4] (section 10).

Finally, we give some directions for future research.

Some of our results have already been published and are listed in the bibliography for
completeness [17, 18, 19].

Notations and conventions

Scalars (i.e. real or complex numbers) are denoted by lower case latin letters, sometimes
by lower case greek letters. In particular, i; j; k; l;m; n; r, and � are usually integers, while
t is usually a nonnegative real number (\time"). For vectors we use boldfaced lower case
latin letters and sometimes also lower case greek letters. We do not distinguish in notation
between row and column vectors. In particular, e (e1) is a column vector (sequence) of
ones and 0 is a column vector of zeros. Matrices of �nite size are denoted by upper case
latin letters, block matrices of �nite or in�nite size by calligraphic upper case letters. In
particular, I and I denote the identity matrix, O and O a matrix of zeros. When we
represent block matrices we usually omit blocks of zeros.

The components of a vector are usually denoted by the same letter as the vector, but not
boldfaced. So the ith component of a is ai. If the vector a consists of blocks, its nth block
is [a]n. The (i; j)th entry of a matrix M is marked by (M)ij and analogously the (n; �)th
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block of a block matrix M is (M)n�. If a and b are vectors, we say that a � b if and
only if ai � bi for all i. Analogously, we say that a <1e if and only if ai <1 for all i.

Stochastic processes are also marked by calligraphic upper case letters.

The set of positive integers (\natural numbers") is denoted by IN and the set of nonneg-
ative integers by IN0.

We de�ne the empty sum to be zero and the empty product to be unity. A product of
matrices shall always be arranged with the lowest index left, i.e.

Qn

i=1Ai = A1A2 � � �An.

Probabilities P(�) and moments of random variables E(Xn) are always de�ned on an
underlying probability space.

The end of a proof is marked by a box (2).
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1 The arrival process

1.1 De�nition and properties of the generator matrix

The classical Batch Markovian Arrival Process (BMAP) is de�ned by a sequence of m�m
matrices fDn : n 2 IN0g, where [24]

a) D0 has negative diagonal elements and nonnegative o�{diagonal elements,

b) Dn, n � 1, are nonnegative and

c) D =
P1

n=0Dn is an irreducible generator matrix.

The BMAP is a 2-dimensional Markov process fN(t); J(t) : t � 0g with state space
IN0 � f1; : : : ; mg, where N(t), the level, counts the number of arrivals up to time t and
J(t) is the socalled phase at time t. The number of phases, m, is usually assumed to be
�nite. The generator matrix Q of the BMAP fN(t); J(t) : t � 0g is given by

Q =

0
BBBBB@

D0 D1 D2 D3 � � �
D0 D1 D2 � � �

D0 D1 � � �
D0 � � �

. . .

1
CCCCCA

(empty entries shall represent the zero matrix O).

We will now de�ne an arrival process similar to the BMAP above, but with the additional
property, that the phase process and the arrival rates depend on the current level, i.e. on
the number of arrivals which have already taken place. Assume we are given a sequence
fJ(k) : k 2 IN0g of �nite nonempty sets with cardinalities m(k) = ]J(k), k 2 IN0, and

m := supfm(k) : k 2 IN0g <1:

For simplicity we let J(k) = f1; : : : ; m(k)g, this can be achieved by means of a suitable
bijection �(k) : J(k) ! f1; : : : ; m(k)g. The set J(k) shall be the state space of the phase
process in level k.

Further, we are given sequences fD(k)
n : n 2 IN0g of m(k) �m(k+n) matrices

D(k)
n =

�
d
(k)
n;ij

�
i=1;:::;m(k);

j=1;:::;m(k+n)

for k 2 IN0, that shall be the matrices of the arrival rates in level k. So
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a) D
(k)
0 has negative diagonal elements and nonnegative o�{diagonal elements,

b) D
(k)
n , n � 1, are nonnegative and

c)
1X
n=0

D(k)
n e = 0 ; i.e.

1X
n=0

m(k+n)X
j=1

d
(k)
n;ij = 0 ; i = 1; : : : ; m(k);

for all k. We restrict ourselves to the nontrivial case that there exists some n � 1 such
that D

(0)
n 6= O or equivalently D

(0)
0 e 6= 0, i e. there are arrivals in level zero1. This need

not hold for k � 1. Our assumptions imply that D
(0)
0 is nonsingular (corollary 1.17).

Further, we need to assume that all rates are bounded, i.e.

Assumption 1.1

�d0 := sup
n
jd(k)0;iij : k 2 IN0; i = 1; : : : ; m(k)

o
<1 :

Assumption 1.1 should be ful�lled in all applications.

The sequences fD(k)
n : n 2 IN0g enable us to de�ne for each k 2 IN0 a level dependent

BMAP (N (k);J (k)) = fN (k)(t); J (k)(t) : t � 0g with generator matrix

Q(k) =

0
BBBBBB@

D
(k)
0 D

(k)
1 D

(k)
2 D

(k)
3 � � �

D
(k+1)
0 D

(k+1)
1 D

(k+1)
2 � � �

D
(k+2)
0 D

(k+2)
1 � � �

D(k+3)
0 � � �

. . .

1
CCCCCCA

:

So Q(k) describes a time{homogeneous 2-dimensional Markov process whose �rst compo-
nent N (k)(t), the level, counts the number of arrivals during an interval of length t, and
whose second component J (k)(t) is the phase at time t. The state space of (N (k);J (k))
shall be the set of all pairs (k + n; i) with n 2 IN0 and i 2 J(k+n).

Note that the processes (N (k);J (k)) and (N (k+1);J (k+1)) are \nested" in the following
way:

Q(k) =

0
BBB@

D
(k)
0 D

(k)
1 D

(k)
2 � � �

O
O Q(k+1)

...

1
CCCA :

Thus (N (k);J (k)) is from its level n on stochastically identical to (N (k+n);J (k+n)).

1When we will consider queueing systems this condition assures that there are arrivals to the empty
system.
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1.1.1 The arrival rates

Let d(k) = (d
(k)
i )i=1;:::;m(k) denote the vector of the phase dependent mean arrival rates in

level k, i.e.

d(k) :=
1X
n=1

nD(k)
n e

for k 2 IN0. We assume the arrival rates to be bounded, i.e.

Assumption 1.2

sup
n
d(k)i : k 2 IN0; i = 1; : : : ; m(k)

o
< 1 :

Note that assumption 1.2 implies assumption 1.1 if d
(k)
0;ij <1 for all j 6= i and all k 2 IN0

(this should always be ful�lled).

The maximum arrival rate from level k on will be denoted by ��(k), i.e.

��(k) := sup
n
d(l)i : l � k; i = 1; : : : ; m(l)

o
:

Assumption 1.2 implies

��(0) = sup
�
��(k) : k 2 IN0

	
< 1 : (1.1)

1.1.2 Matrices of in�nite size

To establish some properties of the matrices Q(k) we need the following results concerning
matrices of in�nite size.

De�nition 1.3 A matrix M = (mij)i;j2IN is called bounded, if

kMk := sup
i2IN

h
jMj e1

i
i
:= sup

i2IN

1X
j=1

jmijj < 1 :

A sequence fMk : k 2 IN0g of matrices is called uniformly bounded, if there exists � <1
such that kMkk � � for all k 2 IN0.

Remark: If the matrix M is bounded, the product of M and any bounded sequence
f�0; �1; �2; : : :g of real or complex numbers �i with supi2IN0

j�ij < 1 is again a bounded
sequence (by theorem 2.6 in [27, p. 10]).
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Lemma 1.4 If M1 and M2 are bounded matrices, then M1M2 and M1 +M2 are also
bounded and

kM1M2k � kM1k � kM2k ;

kM1 +M2k � kM1k+ kM2k :

The exponential eM of a bounded matrix M exists, i.e. its entries are all �nite, and is
also bounded with

keMk � ekMk :

The �rst part of lemma 1.4 can be found in [11, p. 26]. The existence of the exponential
of a bounded matrix can also be found in [11, p. 38], its boundedness is an immediate
consequence of the �rst result:

keMk =
 1X

�=0

1

�!
M�

 �
1X
�=0

1

�!
kMk� = ekMk :

Remark: If M is a matrix of �nite size, kMk as de�ned in de�nition 1.3 is a norm. The
assertions of lemma 1.4 also hold for matrices of �nite size.

1.1.3 Properties of the generator matrix

We will need the following properties of the matrices Q(k).

Lemma 1.5 The matrices Q(k), k 2 IN0, are uniformly bounded.

Proof: Assumption 1.1 implies for all k 2 IN0 and i = 1; : : : ; m(k):

1X
n=0

m(k+n)X
j=1

jd
(k)
n;ijj = jd

(k)
0;iij+

m(k)X
j=1
j 6=i

jd
(k)
0;ijj+

1X
n=1

m(k+n)X
j=1

jd
(k)
n;ijj = 2 jd

(k)
0;iij � 2 �d0

since Q(k) is a generator matrix. Thus the lth block of jQ(k)je1 satis�es

h
jQ(k)je1

i
l
=

1X
n=0

jD(k+l)
n je � 2 �d0 e :

So the matrices Q(k) are uniformly bounded. 2



1.1 De�nition and properties of the generator matrix 9

Corollary 1.6 The exponentials of the matrices Q(k) exist, i.e. their entries are all �nite,
and are uniformly bounded.

Proof: The assertion is an immediate consequence of the lemmata 1.5 and 1.4 2

Lemma 1.7 For all j; l; n 2 IN0 with l � n it is�
(Q(k))

j
�
ln
=
�
(Q(k+l))

j
�
0;n�l

:

Proof: At �rst we note that (Q(k))
j
is a block triangular matrix, since Q(k) is block

triangular. Let l; n 2 IN0, l � n, and perform induction over j: For j = 0 the result is
obvious, and for j = 1 we have�

Q(k)
�
ln

= D
(k+l)
n�l =

�
Q(k+l)

�
0;n�l

:

Suppose the assertion is proven for j and consider j + 1:�
(Q(k))

j+1
�
ln

=
1X
�=0

�
Q(k)

�
l�

�
(Q(k))

j
�
�n

=
nX
�=l

�
Q(k)

�
l�

�
(Q(k))

j
�
�n

=
nX
�=l

�
Q(k+l)

�
0;��l

�
(Q(k+�))

j
�
0;n��

by induction assumption

=
n�lX
�=0

�
Q(k+l)

�
0�

�
(Q(k+�+l))

j
�
0;n���l

and �
(Q(k+l))

j+1
�
0;n�l

=

1X
�=0

�
Q(k+l)

�
0�

�
(Q(k+l))

j
�
�;n�l

=
n�lX
�=0

�
Q(k+l)

�
0�

�
(Q(k+l))

j
�
�;n�l

=
n�lX
�=0

�
Q(k+l)

�
0�

�
(Q(k+l+�))

j
�
0;n�l��

by induction assumption.

So
�
(Q(k))

j+1
�
ln
=
�
(Q(k+l))

j+1
�
0;n�l

and thus the assertion is proven for all j 2 IN0. 2
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Corollary 1.8 For all l; n 2 IN0 with l � n and all t � 0 it is�
eQ

(k)t
�
ln
=
�
eQ

(k+l)t
�
0;n�l

:

Proof: Lemma 1.7 implies

�
eQ

(k)t
�
ln

=
1X
j=0

tj

j!

�
(Q(k))

j
�
ln

=
1X
j=0

tj

j!

�
(Q(k+l))

j
�
0;n�l

=
�
eQ

(k+l)t
�
0;n�l

:

2

1.2 The transition probabilities

The transition probabilities of the Markov process (N (k);J (k)) will play an important role
in the subsequent analysis:

p
(k)
n;ij(t) := PfN (k)(t) = n; J (k)(t) = j j N (k)(0) = 0; J (k)(0) = ig ;

P (k)
n (t) :=

�
p
(k)
n;ij(t)

�
i=1;:::;m(k);

j=1;:::;m(k+n)

;

P(k)(t) :=

0
BBBBBB@

P
(k)
0 (t) P

(k)
1 (t) P

(k)
2 (t) P

(k)
3 (t) � � �

P
(k+1)
0 (t) P

(k+1)
1 (t) P

(k+1)
2 (t) � � �

P
(k+2)
0 (t) P

(k+2)
1 (t) � � �

P
(k+3)
0 (t) � � �

. . .

1
CCCCCCA

:

This de�nition implies that the matrices P(k)(t) are uniformly bounded.

1.2.1 Properties of the transition matrices

As in the level independent case [24] the transition matrices ful�l the Chapman{
Kolmogorov equation and the backward and forward di�erential equations.

Lemma 1.9 (Chapman{Kolmogorov equation)

The matrices P (k)
n (s+ t) and P(k)(s+ t) satisfy

P (k)
n (s+ t) =

nX
u=0

P (k)
u (s)P

(k+u)
n�u (t) ;

P(k)(s+ t) = P(k)(s)P(k)(t) :
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Proof: By conditioning on the number of arrivals during [0; s] and the phase at time s
we obtain

p
(k)
n;ij(s+ t) =

nX
u=0

m(k+u)X
l=1

p
(k)
u;il(s) p

(k+u)
n�u;lj(t) :

This yields the assertion. 2

Lemma 1.10 (Backward di�erential equations)

The matrices P (k)
n (t) are the unique solution of the backward di�erential equations

d
dt
P (k)
n (t) =

nX
u=0

D(k)
u P

(k+u)
n�u (t) (1.2)

with P
(k)
0 (0) = I and P

(k)
n (0) = O for n � 1.

Proof: By lemma 1.9 we have for �t > 0

p
(k)
n;ij(t+�t)� p

(k)
n;ij(t) =

nX
u=0

m(k+u)X
l=1

p
(k)
u;il(�t) p

(k+u)
n�u;lj(t)� p

(k)
n;ij(t)

=
nX

u=0

m(k+u)X
l=1

�
p
(k)
u;il(�t)� �(u;l);(0;i)

�
p
(k+u)
n�u;lj(t) ;

where �(u;l);(0;i) = 1 if (u; l) = (0; i) and �(u;l);(0;i) = 0 otherwise. Thus

lim
�t!0

1

�t

�
p
(k)
n;ij(t+�t)� p

(k)
n;ij(t)

�
=

nX
u=0

m(k+u)X
l=1

d
(k)
u;il p

(k+u)
n�u;lj(t) =

 
nX

u=0

D(k)
u P

(k+u)
n�u (t)

!
ij

:

So we have shown that the matrices P
(k)
n (t) ful�l the backward di�erential equations (1.2).

From the de�nition of the matrices P
(k)
n (t) we obtain immediately that P

(k)
0 (0) = I and

P
(k)
n (0) = O for n � 1.

To prove the claimed uniqueness we proceed similarly to Bellman [3, p. 167�]. Assume

there is another solution S
(k)
n (t). Equation (1.2) yields

P (k)
n (t) = �n;0I +

Z t

0

nX
u=0

D(k)
u P

(k+u)
n�u (s) ds ;

S(k)
n (t) = �n;0I +

Z t

0

nX
u=0

D(k)
u S

(k+u)
n�u (s) ds ;
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where �n;0 = 1 if n = 0 and �n;0 = 0 otherwise. Thus

P (k)
n (t)� S(k)

n (t) =
nX

u=0

D(k)
u

Z t

0

�
P

(k+u)
n�u (s)� S

(k+u)
n�u (s)

�
ds :

Lemma 1.4 implies

kP (k)
n (t)� S(k)

n (t)k �
nX

u=0

kD(k)
u k

Z t

0

kP (k+u)
n�u (s)� S

(k+u)
n�u (s)k ds :

We show that kP (k)
n (t)� S

(k)
n (t)k = 0 for all n; k 2 IN0 and all t � 0 by induction over n.

For n = 0 we obtain

kP (k)
0 (t)� S

(k)
0 (t)k � kD(k)

0 k

Z t

0

kP (k)
0 (s)� S

(k)
0 (s)k ds : (1.3)

For any t0 � 0 we have c := sup0�t�t0 kP
(k)
0 (t)�S

(k)
0 (t)k <1, because P

(k)
0 (t) and S

(k)
0 (t)

are di�erentiable. Thus from (1.3):

kP (k)
0 (t)� S(k)

0 (t)k � kD(k)
0 k c t for all 0 � t � t0:

Using this in (1.3) yields

kP (k)
0 (t)� S

(k)
0 (t)k � kD(k)

0 k
2
c

Z t

0

s ds =
c kD(k)

0 k
2
t2

2
for all 0 � t � t0:

Repeating this substitution �{times we get

kP (k)
0 (t)� S

(k)
0 (t)k �

c kD(k)
0 k

�+2
t�+2

(� + 2)!
for all 0 � t � t0:

So lim�!1 kP
(k)
0 (t) � S

(k)
0 (t)k � 0 for all 0 � t � t0 and thus, since t0 was arbitrarily

chosen, kP (k)
0 (t)� S

(k)
0 (t)k = 0 for all t � 0.

Now assume kP (k)
u (t)� S

(k)
u (t)k = 0 for all u � n; k 2 IN0, t � 0, then

kP (k)
n+1(t)� S

(k)
n+1(t)k �

n+1X
u=0

kD(k)
u k

Z t

0

kP (k+u)
n+1�u(s)� S

(k+u)
n+1�u(s)k ds

= kD(k)
0 k

Z t

0

kP (k)
n+1(s)� S

(k)
n+1(s)k ds :

By the same argument as above we obtain kP (k)
n+1(t)�S

(k)
n+1(t)k = 0 for all t � 0. Altogether

we have P
(k)
n (t) = S

(k)
n (t) for all n; k 2 IN0 and all t � 0. 2
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Lemma 1.11 (Forward di�erential equations)

The matrices P
(k)
n (t) are the unique solution of the forward di�erential equations

d
dt
P (k)
n (t) =

nX
u=0

P (k)
u (t)D

(k+u)
n�u (1.4)

with P
(k)
0 (0) = I and P

(k)
n (0) = O for n � 1.

Proof: Lemma 1.9 yields for �t > 0

p
(k)
n;ij(t+�t)� p

(k)
n;ij(t) =

nX
u=0

m(k+u)X
l=1

p
(k)
u;il(t) p

(k+u)
n�u;lj(�t)� p

(k)
n;ij(t)

=
nX

u=0

m(k+u)X
l=1

p
(k)
u;il(t)

�
p
(k+u)
n�u;lj(�t)� �(u;l);(n;j)

�
;

where �(u;l);(n;j) = 1 if (u; l) = (n; j) and �(u;l);(n;j) = 0 otherwise. Thus

lim
�t!0

1

�t

�
p
(k)
n;ij(t +�t)� p

(k)
n;ij(t)

�
=

nX
u=0

m(k+u)X
l=1

p
(k)
u;il(t) d

(k+u)
n�u;lj =

 
nX

u=0

P (k)
u (t)D

(k+u)
n�u

!
ij

:

So we have shown that the matrices P
(k)
n (t) ful�l the forward di�erential equations (1.4).

The de�nition of the matrices P
(k)
n (t) implies that P

(k)
0 (0) = I and P

(k)
n (0) = O for n � 1.

The proof of the claimed uniqueness is essentially the same as for the backward di�erential
equations (lemma 1.10) and will just be given for completeness. Assume there is another

solution S
(k)
n (t). From (1.4) we obtain

P (k)
n (t) = �n;0I +

Z t

0

nX
u=0

P (k)
u (s)D

(k+u)
n�u ds ;

S(k)
n (t) = �n;0I +

Z t

0

nX
u=0

S(k)
u (s)D

(k+u)
n�u ds ;

where �n;0 = 1 if n = 0 and �n;0 = 0 otherwise. Thus

P (k)
n (t)� S(k)

n (t) =
nX

u=0

Z t

0

�
P (k)
u (s)� S(k)

u (s)
�
dsD

(k+u)
n�u :

Lemma 1.4 implies

kP (k)
n (t)� S(k)

n (t)k �
nX

u=0

Z t

0

kP (k)
u (s)� S(k)

u (s)k ds kD(k+u)
n�u k :
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We show that kP (k)
n (t)� S

(k)
n (t)k = 0 for all n; k 2 IN0 and all t � 0 by induction over n.

For n = 0 we obtain

kP (k)
0 (t)� S

(k)
0 (t)k �

Z t

0

kP (k)
0 (s)� S

(k)
0 (s)k ds kD(k)

0 k : (1.5)

For any t0 � 0 we have c0 := sup0�t�t0 kP
(k)
0 (t)� S(k)

0 (t)k <1, and so

kP (k)
0 (t)� S

(k)
0 (t)k � c0 t kD(k)

0 k for all 0 � t � t0:

Using this in (1.5) yields

kP (k)
0 (t)� S

(k)
0 (t)k � c0

Z t

0

s ds kD(k)
0 k

2
=

c0 kD
(k)
0 k

2
t2

2
for all 0 � t � t0:

Repeating this substitution �{times we get

kP (k)
0 (t)� S

(k)
0 (t)k �

c0 kD(k)
0 k

�+2
t�+2

(� + 2)!
for all 0 � t � t0:

So lim�!1 kP
(k)
0 (t) � S

(k)
0 (t)k � 0 for all 0 � t � t0 and thus, since t0 was arbitrarily

chosen, kP (k)
0 (t)� S(k)

0 (t)k = 0 for all t � 0.

Now assume kP (k)
u (t)� S

(k)
u (t)k = 0 for all u � n; k 2 IN0, t � 0, then

kP (k)
n+1(t)� S

(k)
n+1(t)k �

n+1X
u=0

Z t

0

kP (k)
u (s)� S(k)

u (s)k ds kD(k+u)
n+1�uk

=

Z t

0

kP (k)
n+1(s)� S

(k)
n+1(s)k ds kD

(k+n+1)
0 k :

By the same argument as above we obtain kP (k)
n+1(t)�S

(k)
n+1(t)k = 0 for all t � 0. Altogether

we have P
(k)
n (t) = S

(k)
n (t) for all n; k 2 IN0 and all t � 0. 2

Corollary 1.12 The matrices P(k)(t) satisfy

d
dt
P(k)(t) = Q(k)P(k)(t) = P(k)(t)Q(k)

and P(k)(0) = I.

Proof: The assertion follows immediately from lemmata 1.10 and 1.11. 2

Remark: Corollary 1.12 implies that the matrices d
dt
P(k)(t) are bounded, because P(k)(t)

and Q(k) are bounded.
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The forward di�erential equations assure that P
(k)
n (t), n 2 IN0, is a proper distribution

(cf. Feller [13, p. 451�]):

Lemma 1.13 The number of arrivals in time t is �nite with probability 1, i.e.

1X
n=0

P (k)
n (t) e = e

for all k 2 IN0 and all t � 0.

Proof: Let

s
(k)
N (t) :=

NX
n=0

P (k)
n (t)e ;

with components s
(k)
N;i(t), i = 1; : : : ; m(k), then

s
(k)
N;i(t) = PfN (k)(t) � N j N (k)(0) = 0; J (k)(0) = ig ;

and so the sequence fs
(k)
N (t) : N 2 IN0g is componentwise nondecreasing and bounded

by e. Thus limN!1 s
(k)
N (t) � e exists. To prove the assertion we need to show that

limN!1 s
(k)
N (t)� e = 0.

Lemma 1.11 yields

d
dt
s
(k)
N (t) =

NX
n=0

nX
u=0

P (k)
u (t)D

(k+u)
n�u e

and so (since s
(k)
N (0) = e)

s
(k)
N (t)� e =

Z t

0

d
ds
s
(k)
N (s) ds =

NX
n=0

nX
u=0

�Z t

0

P (k)
u (s) ds

�
D

(k+u)
n�u e :

The matrix U =
� R t

0
P

(k)
u (s) ds

�
k;u2IN0

is bounded, because

1X
u=0

Z t

0

P (k)
u (s) e ds =

Z t

0

1X
u=0

P (k)
u (s) e ds �

Z t

0

e ds = te :

Therefore the matrix UQ(k) is bounded and this implies that the series

1X
n=0

nX
u=0

�Z t

0

P (k)
u (s) ds

�
D

(k+u)
n�u e
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converges absolutely. So we can apply the theorem of Fubini:

lim
N!1

s
(k)
N (t)� e =

1X
n=0

nX
u=0

�Z t

0

P (k)
u (s) ds

�
D

(k+u)
n�u e

=
1X
u=0

1X
n=u

�Z t

0

P (k)
u (s) ds

�
D

(k+u)
n�u e

=
1X
u=0

�Z t

0

P (k)
u (s) ds

� 1X
n=0

D(k+u)
n e

= 0

since
P1

n=0D
(k+u)
n e = 0 for all u. 2

Remark: The forward di�erential equations need not hold for a general Markov process
[13, p. 472]. In our case they do, because we are considering a counting process (cf. proof
of lemma 1.11). Lemma 1.13 relies on the boundedness of the arrival rates which implies
the boundedness of the matrices Q(k).

1.2.2 Computation of the transition matrices

Now we are able to determine the matrices P
(k)
n (t).

Theorem 1.14 The matrices P
(k)
n (t) are given by

P (k)
n (t) =

1X
j=0

tj

j!

�
(Q(k))

j
�
0n

=
�
eQ

(k)t
�
0n

and

P (k)
n (t) =

1X
j=0

tj

j!

�
(Q(0))

j
�
k;n+k

=
�
eQ

(0)t
�
k;n+k

:

Proof: De�ne R
(k)
n (t) :=

P1
j=0

tj

j!
((Q(k))

j
)0n. Di�erentiation yields

d
dt
R(k)
n (t) =

1X
j=1

tj�1

(j � 1)!

�
(Q(k))

j
�
0n

=
1X
j=1

tj�1

(j � 1)!

nX
l=0

�
Q(k)

�
0l

�
(Q(k))

j�1
�
ln

=
1X
j=1

tj�1

(j � 1)!

nX
l=0

D(k)
l

�
(Q(k+l))

j�1
�
0;n�l

by lemma 1.7
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=
nX
l=0

D
(k)
l

1X
j=0

tj

j!

�
(Q(k+l))

j
�
0;n�l

=
nX
l=0

D
(k)
l R

(k+l)
n�l (t) :

So the matrices R
(k)
n (t) satisfy the backward di�erential equations (1.2) and the condition

R(k)
n (0) =

�
(Q(k))

0
�
0n

=

�
I if n = 0
O if n � 1

:

Lemma 1.10 implies R
(k)
n (t) = P

(k)
n (t). Corollary 1.8 yields the second assertion. 2

Corollary 1.15 The transition matrix P(k)(t) is given by

P(k)(t) = eQ
(k)t :

Proof: The assertion follows immediately from theorem 1.14 and corollary 1.8. 2

Corollary 1.16 The matrix P
(k)
0 (t) satis�es

P
(k)
0 (t) = eD

(k)
0 t :

Proof: The assertion follows immediately from theorem 1.14 and ((Q(k))
j
)00 = (D

(k)
0 )

j
. 2

This result implies an important property of the matrix D
(0)
0 .

Corollary 1.17 The matrix D
(0)
0 is nonsingular.

Proof: For all c 2 RI m(0)
the unique solution of the di�erential equation d

dt
u(t) = D

(0)
0 u(t)

and u(0) = c is given by u(t) = eD
(0)
0 tc [3, p. 167�]. Corollary 1.16 yields u(t) = P (0)

0 (t) c.

From our assumption D
(0)
0 e 6= 0 we obtain limt!1 P

(0)
0 (t) = O (because there are

arrivals) and so limt!1 u(t) = limt!1 eD
(0)
0 tc = 0. Theorem 13.2.1 in Bellman [3, p. 250]

states that all characteristic roots of D
(0)
0 have negative real parts, i.e. di�er from zero.

Thus D
(0)
0 is nonsingular. 2

Remark: The proof of corollary 1.17 shows that all characteristic roots of D
(0)
0 have

negative real parts. Thus D
(0)
0 is a stability matrix [3, p. 251].
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1.3 The mean number of arrivals

The vector of the phase dependent mean number of arrivals in time t, n(k)(t) with com-

ponents n
(k)
i (t), i = 1; : : : ; m(k), is de�ned by

n(k)(t) =
1X
n=1

nP (k)
n (t) e :

Theorem 1.18 The vector n(k)(t) of the phase dependent mean number of arrivals in
time t is given by

n(k)(t) =

2
6664

1X
j=1

tj

j!

�
Q(0)

�j�1
0
BBB@

d(0)

d(1)

d(2)

...

1
CCCA
3
7775
k

=

2
6664

1X
j=1

tj

j!

�
Q(k)

�j�1
0
BBB@

d(k)

d(k+1)

d(k+2)

...

1
CCCA
3
7775
0

:

Proof: Theorem 1.14 and assumption 1.2 yield

n(k)(t) =
1X
n=1

nP (k)
n (t)e =

1X
n=1

n
1X
j=0

tj

j!

�
(Q(0))

j
�
k;n+k

e

=
1X
j=1

tj

j!

1X
n=1

n
1X
�=0

�
(Q(0))

j�1
�
k�

�
Q(0)

�
�;n+k

e

=
1X
j=1

tj

j!

1X
n=1

n
n+kX
�=k

�
(Q(0))

j�1
�
k�
D

(�)
n+k��e

=
1X
j=1

tj

j!

1X
n=1

n
nX

�=0

�
(Q(0))

j�1
�
k;k+�

D
(k+�)
n�� e

=
1X
j=1

tj

j!

1X
�=0

1X
n=�

n
�
(Q(0))

j�1
�
k;k+�

D
(k+�)
n�� e

=
1X
j=1

tj

j!

1X
�=0

�
(Q(0))

j�1
�
k;k+�

 
1X
n=0

nD(k+�)
n e+ �

1X
n=0

D(k+�)
n e

!

=
1X
j=1

tj

j!

1X
�=0

�
(Q(0))

j�1
�
k;k+�

d(k+�)

=

2
664

1X
j=1

tj

j!
(Q(0))

j�1

0
BB@

d(0)

d(1)

d(2)

: : :

1
CCA
3
775
k

:
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Further, we obtain for k 2 IN0 by applying lemma 1.7

n(k)(t) =

2
64 1X

j=1

tj

j!

�
Q(0)

�j�1 0B@
d(0)

d(1)

...

1
CA
3
75
k

=
1X
n=k

1X
j=1

tj

j!

�
(Q(0))j�1

�
kn
d(n)

=
1X
n=k

1X
j=1

tj

j!

�
(Q(k))j�1

�
0;n�k

d(n) =

2
64 1X

j=1

tj

j!

�
Q(k)

�j�1 0B@
d(k)

d(k+1)

...

1
CA
3
75
0

:

2

In the level independent case the mean number of arrivals in time t equals the fundamental
arrival rate (the inner product of the stationary distribution of the phase process and the
vector of the phase dependent mean arrival rates) times t [31, p. 283]. This does not hold
in our case, because the arrival rates and the phase process change according to the levels.
We can only give an upper bound for the mean number of arrivals in time t.

Theorem 1.19 The mean number of arrivals in time t satis�es

n(k)(t) � ��(k)te :

Proof: Theorem 1.18 implies that n(k)(s) is di�erentiable for all s 2 [0; t]. Lemma 1.11
yields

d
ds
n(k)(s) = d

ds

1X
n=0

nP (k)
n (s)e =

1X
n=0

n
nX

u=0

P (k)
u (s)D

(k+u)
n�u e :

This series converges absolutely (since the power series in theorem 1.18 converges abso-
lutely), so we obtain

d
ds
n(k)(s) =

1X
u=0

1X
n=u

nP (k)
u (s)D

(k+u)
n�u e

=
1X
u=0

P (k)
u (s)

1X
n=0

(n + u)D(k+u)
n e

=
1X
u=0

P (k)
u (s)d(k+u)

� ��(k)
1X
u=0

P (k)
u (s) e = ��(k)e :

Thus

n(k)(t) =

Z t

0

d
ds
n(k)(s) ds � ��(k)te :

2
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2 The queueing system

If we use the level dependent BMAP de�ned in section 1 as the input process to a single
server queueing system with a general service time distribution we obtain the BMAP/G/1
queueing system with level dependent arrivals. It is described by the stochastic process
(Y;J ) = fY (t); J(t) : t � 0g, where Y (t) is the number of customers in the system
(waiting or in service) at time t, henceforth referred to as the level, and J(t) is the phase
of the arrival process at time t. So the state space YY of (Y;J ) is

YY =
1[
k=0

�
fkg � J(k)

�
:

If Y (t) = k, then arrivals occur according to (N (k);J (k)). The arrival of a batch of
size � � 1 implies an increase of the level by �, while a service completion results in a
decrease of the level by 1. The �rst e�ect corresponds to a state change in (N (k);J (k)),
the second e�ect causes that arrivals occur now according to (N (k�1);J (k�1)). In order to
keep the phase of the arrival process at a service completion time we need to assume that
J(k) � J(k�1). This assures that a service completion does not change the phase i of the
arrival process, but the interarrival time \restarts" with a new rate, viz. �d

(k�1)
0;ii instead

of �d(k)0;ii.

Assumption 2.1

J(k) � J(k+1) for all k 2 IN0 :

Then m(0) � m(k) for all k 2 IN0 and so m = supfm(k) : k 2 IN0g = m(0) <1.

In the ATM context the phases correspond to di�erent input sources (e.g. CBR{, VBR{,
ABR{tra�c). Then assumption 2.1 means that we do not allow additional input sources
if the level (i.e. the current load) increases. This should be a reasonable assumption.

Let H(t) be the cumulative distribution function of the service time distribution and let
��1 denote the mean service time, i.e.

��1 =

Z 1

0

t dH(t) :

We are interested in the steady state distribution of the queue length at an arbitrary time,
i.e. the limiting distribution of the stochastic process (Y;J ). To compute this limiting
distribution we apply the common method of the embedded Markov chain (cf. e.g. [22,
pp. 167�]).
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3 The embedded Markov chain

If we observe the process (Y;J ) immediately after service completion times T� , � 2 IN0

(with T0 := 0), i.e. at T�+, only, we obtain a discrete time{homogeneous Markov chain2

(X ;J ) := fX�; J� : � 2 IN0g := fY (T�+); J(T�+) : � 2 IN0g

with state space YY . But actually we have only m(k+1) phases in level k: If the process is
in level k immediately after a service completion time T� , i.e. (Y (T�+); J(T�+)) = (k; i),
it was in level k + 1 just before T�, i.e. (Y (T��); J(T��)) = (k + 1; i), and so the arrival
process is still in the same phase i 2 J(k+1). Thus we can partition YY in two disjoint sets

XX :=
1[
k=0

�
fkg � J(k+1)

�
;

XXc := YY nXX =

1[
k=0

�
fkg � (J(k) n J(k+1))

�
:

Assumption 2.1 implies that XX � YY . In applications XX will be irreducible if the sets J(k)

are suitably chosen. Otherwise it su�ces to consider the irreducible subsets of XX and
to add all other states to XXc. For simplicity we restrict ourselves to the case that XX is
irreducible:

Assumption 3.1 We assume XX to be irreducible.

So XX is closed and irreducible, while XXc (if not empty) is open and transient.

3.1 The transition probabilities

The transition probability matrix of the embedded Markov chain (X ;J ) is

~P(x) =

0
BBBBBB@

~B0(x) ~B1(x) ~B2(x) ~B3(x) � � �
~A
(1)
0 (x) ~A

(1)
1 (x) ~A

(1)
2 (x) ~A

(1)
3 (x) � � �

~A
(2)
0 (x) ~A

(2)
1 (x) ~A

(2)
2 (x) � � �

~A
(3)
0 (x) ~A

(3)
1 (x) � � �
. . . . . .

1
CCCCCCA

:

The blocks ~Bn(x) and ~A
(k)
n (x) are of size m(0) �m(n) and m(k) �m(k+n�1), respectively,

with their (i; j)th entries given by3

2To avoid an overwhelming notation we denote the phase process of the embedded Markov chain also
by J . So (Y ;J ) is a continuous time process, while (X ;J ) is a discrete time process.

3We use the notation ~Bn(x) instead of ~A
(0)
n (x) to stress the di�erent character of these probabilities

and to adopt the notation of Lucantoni [24] for the classical BMAP/G/1 queue as far as possible.
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�
~Bn(x)

�
ij

= PfX�+1 = n; J�+1 = j; T�+1 � T� � x j X� = 0; J� = ig

= PfN (0)(T�+1 � T�) = n+ 1; J (0)(T�+1 � T�) = j; T�+1 � T� � x j
N (0)(0) = 0; J (0)(0) = ig

(3.1)

and�
~A(k)
n (x)

�
ij

= PfX�+1 = k + n� 1; J�+1 = j; T�+1 � T� � x j X� = k; J� = ig

= PfN (k)(T�+1 � T�) = n; J (k)(T�+1 � T�) = j; T�+1 � T� � x j
N (k)(0) = 0; J (k)(0) = ig

(3.2)

for n 2 IN0, k 2 IN , x � 0 and all � 2 IN0 (since (X ;J ) and (N (k);J (k)) are time{
homogeneous).

Note that ( ~Bn(x))ij = 0 for (0; j) 2 XXc, i.e. j 2 J(0) n J(1), and ( ~A
(k)
n (x))ij = 0 for

(k + n� 1; j) 2 XXc, i.e. j 2 J(k+n�1) n J(k+n).

The Laplace{Stieltjes transforms of these probabilities are de�ned by

A(k)
n (s) :=

Z 1

0

e�sx d ~A(k)
n (x) and Bn(s) :=

Z 1

0

e�sx d ~Bn(x)

for Re(s) � 0. Further, we de�ne the matrices

A(k)
n := A(k)

n (0) = ~A(k)
n (1) ; Bn := Bn(0) = ~Bn(1) and P := ~P(1) :

Conditioning on the duration of the service time we obtain

~A(k)
n (x) =

Z x

0

h
P (k)
n (t) j O

i
dH(t) ; (3.3)

where [P
(k)
n (t) j O] denotes the matrix of size m(k) � m(k+n�1) consisting of P

(k)
n (t) and

m(k+n�1) �m(k+n) columns of zeros.

Lemma 1.13 yields that
1X
n=0

A(k)
n e = e (3.4)

for all k 2 IN .
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If all moments of the service time distribution exist, we can derive another expression for
the matrices A

(k)
n .

Theorem 3.2 If the moments hj := E[Hj] exist for all j 2 IN0, the matrices A
(k)
n are

given by

A(k)
n =

1X
j=0

hj
j!

h�
(Q(k))

j
�
0n
j O
i
:

Proof: Using theorem 1.14 we obtain

Z 1

0

P (k)
n (t) dH(t) =

Z 1

0

1X
j=0

tj

j!

�
(Q(k))

j
�
0n
dH(t)

=
1X
j=0

Z 1

0

tj

j!
dH(t)

�
(Q(k))

j
�
0n

=
1X
j=0

hj
j!

�
(Q(k))

j
�
0n
:

Equation (3.3) yields

A(k)
n =

Z 1

0

h
P (k)
n (t) j O

i
dH(t) =

1X
j=0

hj
j!

h�
(Q(k))

j
�
0n
j O
i
:

2

We can now also determine the matrices Bn.

Lemma 3.3 The matrix sI �D
(0)
0 is nonsingular for all s with Re(s) � 0.

Proof: Let C be the set of characteristic roots of D
(0)
0 . Then sI �D

(0)
0 is nonsingular for

all s =2 C. In the proof of corollary 1.17 we saw that all characteristic roots of D
(0)
0 have

negative real parts. Thus C \ fs : Re(s) � 0g = ;. 2

Theorem 3.4 The Laplace{Stieltjes transforms Bn(s) are given by

Bn(s) =
�
sI �D

(0)
0

��1 n+1X
l=1

D
(0)
l A

(l)
n+1�l(s)

for Re(s) � 0.
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Proof: By (3.1) the (i; j)th entry of ~Bn(x) is�
~Bn(x)

�
ij
= PfN (0)(T�+1 � T�) = n+ 1; J (0)(T�+1 � T�) = j; T�+1 � T� � x j

N (0)(0) = 0; J (0)(0) = ig :

Given X� = 0 the period T�+1 � T� consists of an idle{period and a service time. The
idle{period is ended by the arrival of a batch of l customers. So during the service time
exactly n + 1� l customers have to arrive to achieve N (0)(T�+1 � T�) = n + 1. Suppose
the idle period is of length u and the service time of length t� u for some t � x. Then

~Bn(x) =

Z x

t=0

Z t

u=0

P
(0)
0 (u)

n+1X
l=1

D
(0)
l

h
P

(l)
n+1�l(t� u) j O

i
H(t� du) dt ;

and so

d
dx

~Bn(x) =

Z x

0

P
(0)
0 (u)

n+1X
l=1

D
(0)
l

h
P

(l)
n+1�l(x� u) j O

i
H(x� du) :

So we obtain

Bn(s) =

Z 1

x=0

e�sx
Z x

u=0

P
(0)
0 (u)

n+1X
l=1

D
(0)
l

h
P

(l)
n+1�l(x� u) j O

i
H(x� du) dx

=

Z 1

u=0

Z 1

x=u

e�sx P
(0)
0 (u)

n+1X
l=1

D
(0)
l

h
P

(l)
n+1�l(x� u) j O

i
H(dx� u) du

(by the theorem of Fubini [14, p. 122]).

The substitution v = x� u yields

Bn(s) =

Z 1

u=0

e�su P
(0)
0 (u)

n+1X
l=1

D
(0)
l

Z 1

v=0

e�sv
h
P

(l)
n+1�l(v) j O

i
H(dv) du

=

Z 1

0

e�(sI�D
(0)
0 )u du

n+1X
l=1

D
(0)
l A

(l)
n+1�l(s)

(by corollary 1.16 and (3.3)).

By lemma 3.3 sI � D
(0)
0 is nonsingular for all s with Re(s) � 0. For these s we also

know that all characteristic roots of (sI �D
(0)
0 ) have positive real parts (by the theorem

of Gerŝgorin [28, p. 146]), and thus limu!1 e�(sI�D
(0)
0 )u = O [3, p. 250,251]. So we have

Bn(s) =
�
sI �D

(0)
0

��1 n+1X
l=1

D
(0)
l A

(l)
n+1�l(s)

for all Re(s) � 0. 2
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Corollary 3.5 The matrices Bn are given by

Bn = �D(0)
0

�1
n+1X
l=1

D
(0)
l A

(l)
n+1�l :

Proof: The assertion follows immediately from theorem 3.4. 2

Remark: Corollary 3.5 implies that the (i; j)th entry of�D(0)
0

�1
D

(0)
l gives the probability

for an idle period starting in phase i to end in phase j with an arrival of a batch of size l.

Equation (3.4) yields

1X
n=0

Bne = �D(0)
0

�1
1X
n=0

nX
l=0

D
(0)
l+1A

(l+1)
n�l e = �D(0)

0

�1
1X
l=0

D
(0)
l+1

1X
n=l

A
(l+1)
n�l e

= �D(0)
0

�1
(�D(0)

0 )e = e : (3.5)

3.2 The mean sojourn times

We are now able to determine the mean time (that passes in the embedding semi{Markov
process (Y;J )) between two consecutive transitions � and �+1 in the embedded Markov
chain (X ;J ), depending on (X�; J�) = (k; i). According to Ramaswami [33] in the
level independent case, we will call this the mean sojourn time of the embedded Markov
chain (X ;J ) in (k; i) (though this term is sometimes misleading) and denote it by �k =
(�ki)i=1;:::;m(k) .

Theorem 3.6 The vectors �k are given by

�0 = �D
(0)
0

�1
e+ ��1e ;

�k = ��1e ; k � 1:

Proof: Using (3.3) we obtain for k � 1

�k = � d
ds

1X
n=0

A(k)
n (s)e

���
s=0

= �
1X
n=0

d
ds

Z 1

0

e�sx
h
P (k)
n (x) j O

i
dH(x) e

���
s=0

=
1X
n=0

Z 1

0

x
h
P (k)
n (x) j O

i
e dH(x) =

Z 1

0

x
1X
n=0

h
P (k)
n (x) j O

i
e dH(x)

= ��1e by lemma 1.13.
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Theorem 3.4 yields

�0 = � d
ds

1X
n=0

Bn(s)e
���
s=0

= � d
ds

1X
n=0

�
sI �D

(0)
0

��1 n+1X
l=1

D
(0)
l A

(l)
n+1�l(s)e

���
s=0

=
�
sI �D

(0)
0

��2 1X
n=0

nX
l=0

D
(0)
l+1A

(l+1)
n�l (s)e

���
s=0

+
�
sI �D

(0)
0

��1 
� d

ds

1X
n=0

nX
l=0

D
(0)
l+1A

(l+1)
n�l (s)e

! ���
s=0

= D
(0)
0

�2
1X
l=0

1X
n=l

D
(0)
l+1A

(l+1)
n�l e+

�
sI �D

(0)
0

��1 
� d

ds

1X
l=0

1X
n=l

D
(0)
l+1A

(l+1)
n�l (s)e

!���
s=0

= D
(0)
0

�2
1X
l=0

D
(0)
l+1

1X
n=0

A(l+1)
n e +

�
sI �D

(0)
0

��1 1X
l=0

D
(0)
l+1

 
� d

ds

1X
n=0

A(l+1)
n (s)e

!���
s=0

= D
(0)
0

�2
1X
l=0

D
(0)
l+1e�D

(0)
0

�1
1X
l=0

D
(0)
l+1�l+1

= D
(0)
0

�2
�
�D

(0)
0 e
�
�D

(0)
0

�1
��1
�
�D

(0)
0 e
�

= �D(0)
0

�1
e + ��1e :

2

Remark: The mean time between two consecutive transitions in the embedded Markov
chain (X ;J ) is a mean service time, plus a mean idle time if (X ;J ) was in level 0. Since

h
P

(0)
0 (t)e

i
i
= Pfidle time > t j N (0)(0) = 0; J (0)(0) = ig

corollaries 1.16 and 1.17 yield that the vector of the phase dependent mean idle times is

Z 1

0

P
(0)
0 (t)e dt =

Z 1

0

eD
(0)
0 te dt = �D(0)

0

�1
e :
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3.3 The mean number of arrivals during a service time

The vector of the mean number of arrivals during a sojourn time of the embedded Markov
chain (X ;J ) in (k; i) is given by

~b :=
1X
n=1

nBn�1e for k = 0; (3.6)

a(k) :=
1X
n=1

nA(k)
n e for k � 1 (3.7)

with components ~bi, i = 1; : : : ; m(0), and a
(k)
i , i = 1; : : : ; m(k), respectively. So, for k = 0

~b is the phase dependent mean number of arrivals during an idle period and the following
service time, while for k � 1 a(k) is the phase dependent mean number of arrivals during
a service time which started in level k 4. Further, let

b =
1X
n=1

nBne (3.8)

with components bi, i = 1; : : : ; m(0), then we will see that ~b = b + e.

We can obtain the phase dependent mean number of arrivals during a service time which
started in level k by conditioning on the duration of the service time:

a(k) =

Z 1

0

n(k)(t) dH(t) : (3.9)

Theorem 3.7 If hj = E[Hj] exists for all j 2 IN , the vectors a(k) are given by0
B@

a(1)

a(2)

...

1
CA =

1X
j=1

hj
j!

�
Q(1)

�j�1 0B@
d(1)

d(2)

...

1
CA :

Proof: Theorem 1.18 together with lemma 1.5 and assumption 1.2 yield0
B@

a(1)

a(2)

...

1
CA =

Z 1

0

0
B@

n(1)(t)
n(2)(t)

...

1
CA dH(t) =

Z 1

0

1X
j=1

tj

j!

�
Q(1)

�j�1 0B@
d(1)

d(2)

...

1
CA dH(t)

=
1X
j=1

hj
j!

�
Q(1)

�j�1 0B@
d(1)

d(2)

...

1
CA :

2

4Lucantoni [24] uses the notation � instead of a(k).
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Theorem 3.8 The mean number of arrivals during a service time satis�es

a(k) � ��(k)��1e :

Proof: Equation (3.9) and theorem 1.19 imply

a(k) =

Z 1

0

n(k)(t) dH(t) �

Z 1

0

��(k)te dH(t) = ��(k)��1e :

2

Knowing the vectors a(k) we can also determine ~b.

Theorem 3.9 The vector of the phase dependent mean number of arrivals during an idle
period and the following service time is given by

~b = b+ e

with

b = �D(0)
0

�1
d(0) �D

(0)
0

�1
1X
k=1

D
(0)
k a(k) � e :

Proof: At �rst, we have

~b =
1X
n=1

nBn�1e =
1X
n=1

(n� 1)Bn�1e+
1X
n=1

Bn�1e = b+ e :

Further, corollary 3.5 implies

~b =
1X
n=1

nBn�1e =
1X
n=1

n

 
�D(0)

0

�1
nX
l=1

D
(0)
l A

(l)
n�le

!

= �D(0)
0

�1
1X
l=1

D
(0)
l

1X
n=l

nA
(l)
n�le

= �D(0)
0

�1
1X
l=1

D
(0)
l

 
1X
n=0

nA(l)
n e+

1X
n=0

lA(l)
n e

!

= �D(0)
0

�1

 
1X
l=1

D
(0)
l a(l) +

1X
l=1

lD
(0)
l e

!

= �D(0)
0

�1
1X
l=1

D
(0)
l a(l) �D

(0)
0

�1
d(0) :

2



29

Theorem 3.10 The mean number of arrivals during an idle period and the following
service time satis�es

~b � ��(0)�0 :

Proof: Let Ui(t) be the cumulative distribution function of an idle period starting in
phase i, then theorem 1.19 implies

~bi =

Z 1

0

n
(0)
i (t) d(Ui �H)(t) �

Z 1

0

��(0)t d(Ui �H)(t) = ��(0)�0i :

Thus ~b � ��(0)�0. 2

4 Stability

Before computing the stationary distribution of the embedded Markov chain (X ;J ) we
need to derive some conditions for its existence, i.e. for the stability of the embedded
Markov chain.

The classical level independent BMAP/G/1 queue is stable, i.e. the embedded Markov
chain is ergodic and the limiting distribution of the queue length exists, if and only if
the mean number of arrivals during a service time is less than 1 [33, Th. 2.2.11]. So we
can suppose that the level dependent BMAP/G/1 queue is stable if the supremum of

all mean numbers of arrivals during a service time (a
(k)
i ) is less than 1. This can easily

be seen by considering a superior level independent BMAP/G/1 queue with arrival rate
��(0) = sup

�
��(k) : k 2 IN0

	
and applying theorem 3.8.

Further, the M/G/1 queue with state dependent arrivals is stable if the supremum of all
but �nitely many mean numbers of arrivals during a service time is less than 1 [40]. This
suggests that it su�ces to consider the limit superior of the sequence fa(k) : k 2 IN0g.
In fact we will obtain a corresponding stability condition for the BMAP/G/1 queue with
level dependent arrivals.

We have partitioned the state space of the embedded Markov chain (X ;J ) in two sets XX
and XXc, where XX is closed and irreducible while XXc is (if not empty) open and transient
(cf. section 3). We will call the embedded Markov chain (positive) recurrent if the class XX
is (positive) recurrent. Since (X ;J ) is aperiodic, positive recurrence ensures the existence
of an unique stationary distribution which is strictly positive on XX and zero on XXc [9, Th.
6.2.1, p. 152]. In this case we will also call the embedded Markov chain ergodic. For the
rest of this section we will assume without loss of generality that XXc = ;.
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Let us �rst state a generalized Foster criterion [32, Th. 2 + Th. 4]:

Theorem 4.1 Let fZn : n 2 IN0g be an irreducible and aperiodic time{homogeneous
Markov chain with state space IN0. De�ne i := E[Zn+1 � Zn j Zn = i] for i 2 IN0.

a) If jij <1 for all i 2 IN0 and lim supi!1 i < 0 then fZn : n 2 IN0g is ergodic.

b) If jij < 1 for all i 2 IN0 and there exists N 2 IN such that i � 0 for all i � N
then fZn : n 2 IN0g is recurrent.

This result enables us to derive a �rst stability condition for the BMAP/G/1 queue with
level dependent arrivals.

Theorem 4.2 If lim supk!1maxi=1;:::;m(k) a
(k)
i < 1 then the embedded Markov chain

(X ;J ) is positive recurrent.

Proof: De�ne ki := E[X�+1 �X� j X� = k; J� = i], then ki � �1 for all k; i. Further,
by theorem 3.9

0i = E[X�+1 j X� = 0; J� = i] =
1X
n=1

n
h
Bne

i
i
= bi

= �
h
D

(0)
0

�1
d(0)
i
i
�

"
D

(0)
0

�1
1X
k=1

D
(0)
k a(k)

#
i

� 1 :

Theorem 3.8 and (1.1) yield

1X
k=1

D
(0)
k a(k) �

1X
k=1

D
(0)
k
��(k)��1e � ��(0)��1

1X
k=1

D
(0)
k e < 1 � e :

Thus j0ij <1 for all i = 1; : : : ; m(0). For k � 1

ki = E[X�+1 j X� = k; J� = i]� k =
1X
n=0

(n+ k � 1)
h
A(k)
n e
i
i
� k

= a
(k)
i � 1 :

So jkij <1 for all k 2 IN0, i = 1; : : : ; m(k), and lim supk!1maxi=1;:::;m(k) a
(k)
i < 1 implies

that lim supk!1maxi=1;:::;m(k) ki < 0. By theorem 4.1a (X ;J ) is positive recurrent. 2

Corollary 4.3 If there exists some N 2 IN such that maxi=1;:::;m(k) a
(k)
i � 1 for all k � N

then the embedded Markov chain (X ;J ) is recurrent.
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Proof: If we de�ne ki as in the proof of theorem 4.2 and apply theorem 4.1b we obtain
that (X ;J ) is recurrent. 2

The stability conditions derived so far have the disadvantage to rely on the vectors a(k),
which are (in general) not easy to compute. So we would like to have a stability condition
which only relies on the arrival rates and the service rate (or the mean service time).

Corollary 4.4 If there exists some N 2 IN such that ��(N) < � ( ��(N) � �) then the
embedded Markov chain (X ;J ) is positive recurrent (recurrent).

Proof: By theorem 3.8 a
(k)
i � ��(k)��1 for all i = 1; : : : ; m(k). The de�nition of the

maximum arrival rates ��(k) implies that ��(N) � ��(k) for all k � N and so

lim sup
k!1

max
i=1;:::;m(k)

a(k)i � lim sup
k!1

��(k)��1 � ��(N)��1 < 1

in the �rst case and

max
i=1;:::;m(k)

a
(k)
i � ��(k)��1 � ��(N)��1 � 1

for all k � N in the second case. Thus theorem 4.2 and corollary 4.3 yield the assertion.
2

5 The fundamental periods

In the level independent case the fundamental matrix G plays the key role in determining
the steady state distributions (at service completion times and at arbitrary times) [24]. A
fundamental period is the �rst passage time from level k to level k � 1 in the embedded
Markov chain.

In our case the �rst passage time from level k to level k�1 in the embedded Markov chain
(X ;J ), i.e. the fundamental period, depends on the starting level k. De�ne ( ~G

(k)
l (x))ij to

be the probability that the �rst passage from state (k; i) to (k � 1; j) occurs in exactly l
transitions, i.e. service completions, not later than time x, and that (k � 1; j) is the �rst

state visited in level k � 15. Formally, ( ~G
(k)
l (x))ij is de�ned by�

~G
(k)
l (x)

�
ij

:= Pf X�+l = k � 1; J�+l = j; T�+l � T� � x;
8r = 1; : : : ; l � 1 : X�+r 6= k � 1 j X� = k; J� = i g :

5Do not confuse this notation with G
(r)
jj0 (k;x) in Neuts [31, p. 79] or ~G

(r)
jj0 (k;x) in Lucantoni [24] in

the level independent case, which are the corresponding probabilities for going from level i+ r to i.
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Let ~G
(k)
l (x) be the m(k) � m(k�1) matrix with entries ( ~G

(k)
l (x))ij and let G

(k)
l (s) be its

Laplace{Stieltjes transform. Further, de�ne the joint transform G(k)(z; s) by

G(k)(z; s) =
1X
l=1

zlG
(k)
l (s) =

1X
l=1

zl
Z 1

0

e�sx d ~G
(k)
l (x)

for jzj � 1 and Re(s) � 0, and the matrices G
(k)
l and G(k) by

G
(k)
l = G

(k)
l (0) = ~G

(k)
l (1) ; G(k) = G(k)(1; 0) =

1X
l=1

G
(k)
l

for k � 1. So (G(k))ij is the probability that starting in state (k; i) level k � 1 will be
reached and the �rst state visited there is (k � 1; j).

By conditioning on the �rst state visited after (k; i) we can obtain a functional equation for
the matrices G(k) and the joint transforms G(k)(z; s) analogously to the level independent
case.

Lemma 5.1 The Laplace{Stieltjes transforms G
(k)
l (s) satisfy

G
(k)
1 (s) = A

(k)
0 (s) ;

G
(k)
l (s) =

l�1X
�=1

A(k)
� (s)

X
l1;:::;l��1

l1+:::+l�=l�1

 
�Y

j=1

G
(k+��j)
lj

(s)

!
; l � 2

for Re(s) � 0.

Proof: The de�nition of ~G
(k)
1 (x) implies ~G

(k)
1 (x) = ~A

(k)
0 (x) and hence G

(k)
1 (s) = A

(k)
0 (s).

For l � 2 the �rst transition will bring us to a level greater than or equal to k (otherwise
we would visit the level k � 1 in the �rst step, since the process is skip{free downward).

So we have l � 1 transitions left to reach level k � 1 for the �rst time. If A(k)
� took us to

level k+��1, G
(k+��1)
l1

will bring us to level k+��2 for the �rst time in exactly l1 steps,

G
(k+��2)
l2

to k + � � 3 for the �rst time in exactly l2 steps and so forth until we �nally
reach level k � 1 for the �rst time in exactly l � 1 steps. Note that we did not visit level
k � 1 before, because the process is skip{free downward. In matrix notation this gives

~G
(k)
l (x) =

l�1X
�=1

xZ
t=0

tZ
u=0

d ~A(k)
� (u)

X
l1;:::;l��1

l1+:::+l�=l�1

t�uZ
v1=0

t�u�v1Z
v2=0

: : :

t�u�
��1P

�=1
v�Z

v�=0

 
�Y

j=1

d ~G
(k+��j)
lj

(vj)

!
dt :
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Thus, for l � 2

G
(k)
l (s) =

l�1X
�=1

A(k)
� (s)

X
l1;:::;l��1

l1+:::+l�=l�1

 
�Y

j=1

G
(k+��j)
lj

(s)

!
:

2

Theorem 5.2 The joint transforms G(k)(z; s) satisfy

G(k)(z; s) = z
1X
n=0

A(k)
n (s)

 
nY
i=1

G(k+n�i)(z; s)

!
(5.1)

(here the empty product
Q0

i=1 � shall be the identity matrix I).

Proof: Lemma 5.1 yields

G(k)(z; s) =

1X
l=1

zlG
(k)
l (s)

= zA
(k)
0 (s) +

1X
l=1

zl+1
lX

�=1

A(k)
� (s)

X
l1;:::;l��1
l1+:::+l�=l

 
�Y

j=1

G
(k+��j)
lj

(s)

!

= zA
(k)
0 (s) + z

1X
�=1

A(k)
� (s)

1X
l=�

zl
X

l1;:::;l��1
l1+:::+l�=l

 
�Y

j=1

G
(k+��j)
lj

(s)

!

= zA
(k)
0 (s) + z

1X
�=1

A(k)
� (s)

�Y
j=1

0
@ 1X

lj=1

zljG
(k+��j)
lj

(s)

1
A

= zA
(k)
0 (s) + z

1X
�=1

A(k)
� (s)

 
�Y

j=1

G(k+��j)(z; s)

!

= z
1X
�=0

A(k)
� (s)

 
�Y

j=1

G(k+��j)(z; s)

!
:

2

Corollary 5.3 The matrices G(k), k � 1, satisfy

G(k) =
1X
�=0

A(k)
�

 
�Y

j=1

G(k+��j)

!
:
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Proof: Because of G(k) = G(k)(1; 0), the assertion follows immediately from theorem 5.2.
2

As an immediate consequence of their de�nition the fundamental matrices G(k) are sub-
stochastic, i.e. G(k)e � e. If the embedded Markov chain (X ;J ) is recurrent6 they are
also stochastic, because the probability to reach level k� 1 from any state in level k is 1.

Theorem 5.4 The fundamental matrices G(k) are stochastic, i.e. G(k)e = e for all
k 2 IN , if and only if the embedded Markov chain (X ;J ) is recurrent.

Proof: Let us �rst prove that (X ;J ) is recurrent if G(k)e = e for all k 2 IN . Since
(X ;J ) is irreducible on XX and the state space of fJ� : � 2 IN0g is �nite, it su�ces to
show that a return from level 0 to level 0 occurs with probability 1 [9, Th. 3.3.16, p. 131].
By conditioning on the �rst state visited after leaving level 0 we obtain

Pf9� � 1 : X� = 0 j X0 = 0; J0 = ig

=
h
B0e

i
i
+

"
1X
n=1

Bn

 
n�1Y
l=0

G(n�l)

!
e

#
i

=
h
B0e

i
i
+

"
1X
n=1

Bne

#
i

= 1 :

Thus (X ;J ) is recurrent.

Conversely, if (X ;J ) is recurrent, suppose there exist k 2 IN and i 2 J(k) such that
[G(k)e]i < 1. Since (X ;J ) is irreducible and recurrent on XX, a transition from (k; i) to all
(k � 1; j) 2 XX must occur with probability 1 [9, L. 3.3.11, p. 129]. But

Pf9� � 1 : X� = k � 1; J� = j j X0 = k; J0 = ig

� Pf9� � 1 : X� = k � 1 j X0 = k; J0 = ig =
h
G(k)e

i
i
< 1 :

Thus G(k)e = e for all k 2 IN . 2

6Remember that we called the embedded Markov chain recurrent if it is recurrent on XX (cf. sect. 4).



5.1 Computation of the fundamental matrices 35

5.1 Computation of the fundamental matrices

5.1.1 Algorithm 1

To derive explicit expressions for the matrices G(k) we consider the taboo{probabilities
(V

(n;k)
l )ij that starting in state (k+n; i) we reach (k; j) after exactly l transitions without

visiting level k� 1 in between. Note that (V
(n;k)
l )ij does not describe a �rst passage time.

Formally, (V
(n;k)
l )ij is de�ned by�

V
(n;k)
l

�
ij

:=

PfX�+l = k; J�+l = j; 8r = 1; : : : ; l � 1 : X�+r 6= k � 1 j X� = k + n; J� = ig :

Let V
(n;k)
l be the m(k+n) �m(k) matrix with entries (V

(n;k)
l )ij.

Lemma 5.5 The matrices G
(k)
l and G(k) are given by

G
(k)
l = V

(0;k)
l�1 A

(k)
0 ; l � 1;

G(k) =
1X
l=0

V
(0;k)
l A

(k)
0 :

Proof: Since the process is skip{free downward we can reach level k�1 only from level k,
if we started in k and did not visit k�1 in between. So we have to be back in level k after
l�1 transitions without visiting k�1 in between and then go to k�1 for the �rst time. 2

So we need to determine the matrices V
(0;k)
l .

Lemma 5.6 The matrices V
(n;k)
l satisfy

V
(0;k)
0 = I ;

V
(n;k)
0 = O for n � 1 ;

V
(0;k)
1 = A

(k)
1 ;

V
(1;k)
1 = A

(k+1)
0 ;

V
(0;k)
l =

lX
i=1

A
(k)
i V

(i�1;k)
l�1 for l � 2 ;

V
(n;k)
l =

l�nX
i=0

A
(k+n)
i V

(n+i�1;k)
l�1 for 1 � n � l; l � 2 ;

V
(n;k)
l = O for n > l � 1 :
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Proof: The equations for V
(n;k)
0 , V

(0;k)
1 and V

(1;k)
1 are obvious, the one for V

(n;k)
l ,

n > l � 1, is an immediate consequence of the process being skip{free downward. The
other two equations are easily obtained by conditioning on the state reached after the
�rst transition. 2

Lemma 5.6 shows that the matrices V
(n;k)
l are the analogues to the lower semi{convolutions

of the matrices An, n 2 IN0, in the level independent case [1].

Remark: We can summarize lemma 5.6 as follows:

V
(n;k)
0 = �n;0I ;

V
(0;k)
l =

lX
i=1

A
(k)
i V

(i�1;k)
l�1 for l � 1 ;

V
(n;k)
l =

8>>><
>>>:

l�nX
i=0

A
(k+n)
i V

(n+i�1;k)
l�1 ; 1 � n � l

O ; n > l � 1

;

where �n;0 = 1 if n = 0 and �n;0 = 0 otherwise. Using matrix notation these equations
can be written as

V
(0;k)
l =

�
A

(k)
1 ; A

(k)
2 ; : : : ; A

(k)
l

�
0
BBB@

V
(0;k)
l�1

V
(1;k)
l�1
...

V
(l�1;k)
l�1

1
CCCA for l � 1 ;

V
(n;k)
l =

�
A

(k+n)
0 ; A

(k+n)
1 ; : : : ; A

(k+n)
l�n

�
0
BBB@

V
(n�1;k)
l�1

V
(n;k)
l�1
...

V
(l�1;k)
l�1

1
CCCA for 1 � n � l :

So for l � 1 0
BBBBBB@

V
(0;k)
l

V
(1;k)
l

V
(2;k)
l
...

V
(l;k)
l

1
CCCCCCA

=

0
BBBBBB@

A
(k)
1 A

(k)
2 : : : A

(k)
l

A
(k+1)
0 A

(k+1)
1 : : : A

(k+1)
l�1

A
(k+2)
0 : : : A

(k+2)
l�2

. . .
...

A
(k+l)
0

1
CCCCCCA

0
BBB@

V
(0;k)
l�1

V
(1;k)
l�1
...

V
(l�1;k)
l�1

1
CCCA : (5.2)
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Notation: For l 2 IN the (l + 1)� l block matrices A(k)
l are de�ned by

A(k)
l :=

0
BBBBBB@

A
(k)
1 A

(k)
2 : : : A

(k)
l

A
(k+1)
0 A

(k+1)
1 : : : A

(k+1)
l�1

A
(k+2)
0 : : : A

(k+2)
l�2

. . .
...

A
(k+l)
0

1
CCCCCCA

(5.3)

(empty entries shall represent the zero matrix O).

Lemma 5.7 The matrices V (0;k)
l are given by

V
(0;k)
l =

"
l�1Y
i=0

A(k)
l�i

#
0

;

where [�]0 denotes the 0th block of the vector.

Proof: Applying (5.2) recursively we obtain0
BBB@

V
(0;k)
l

V
(1;k)
l
...

V
(l;k)
l

1
CCCA =

 
l�1Y
i=0

A(k)
l�i

!
V

(0;k)
0

and so

V
(0;k)
l =

"
l�1Y
i=0

A(k)
l�i

#
0

since V (0;k)
0 = I by lemma 5.6. 2

Now we have explicit expressions for the matrices G(k)
l and G(k).

Theorem 5.8 The matrices G
(k)
l and G(k) are given by

G
(k)
l =

"
l�2Y
i=0

A(k)
l�1�i

#
0

A
(k)
0 ; l � 1 ;

G(k) =
1X
l=0

"
l�1Y
i=0

A(k)
l�i

#
0

A
(k)
0 :

Proof: The assertion follows immediately from lemmata 5.5 and 5.7. 2
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5.1.2 Algorithm 2

Let us now de�ne the taboo{probabilities (W
(n;k)
l )ij to be the probability that starting in

state (k; i) we reach (k + n; j) after exactly l transitions without visiting level k � 1 in

between. Formally, (W
(n;k)
l )ij is de�ned by�

W
(n;k)
l

�
ij

:=

PfX�+l = k + n; J�+l = j; 8r = 1; : : : ; l � 1 : X�+r 6= k � 1 j X� = k; J� = i g :

Further, W
(n;k)
l shall be the m(k)�m(k+n) matrix with entries (W

(n;k)
l )ij. Then W

(0;k)
0 = I

and W
(n;k)
0 = O for all n � 1.

Lemma 5.9 The matrices G
(k)
l and G(k) are given by

G
(k)
l = W

(0;k)
l�1 A

(k)
0 ; l � 1;

G(k) =
1X
l=0

W
(0;k)
l A

(k)
0 :

Proof: Analogous to the proof of lemma 5.5. 2

Lemma 5.10 The matrices W
(n;k)
l satisfy

W
(n;k)
1 = A

(k)
n+1 for n � 0;

W
(n;k)
l =

n+1X
i=0

W
(i;k)
l�1 A

(k+i)
n+1�i for n � 0; l � 2:

Proof: The equation for W
(n;k)
1 is obvious. By conditioning on the state reached after

l � 1 transitions we obtain the second equation. 2

Lemma 5.10 shows that the matrices W
(n;k)
l are the analogues to the upper semi{

convolutions of the matrices An, n 2 IN0, in the level independent case [1].

Remark: In matrix notation lemma 5.10 can be summarized in the following way :

W
(n;k)
l =

�
W

(0;k)
l�1 ;W

(1;k)
l�1 ; : : : ;W

(n+1;k)
l�1

�
0
BBB@

A
(k)
n+1

A
(k+1)
n

...

A
(k+n+1)
0

1
CCCA ; l � 1;
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and so for l � 1�
W

(0;k)
l ;W

(1;k)
l ; : : : ;W

(n;k)
l ; : : :

�

=
�
W

(0;k)
l�1 ;W

(1;k)
l�1 ; : : : ;W

(n;k)
l�1 ; : : :

�
0
BBBBBBBB@

A
(k)
1 A

(k)
2 : : : A

(k)
n+1 : : :

A
(k+1)
0 A

(k+1)
1 : : : A

(k+1)
n : : :

A
(k+2)
0 : : : A

(k+2)
n�1 : : :

. . .
...

A
(k+n+1)
0 : : :

. . .

1
CCCCCCCCA

=
�
W

(0;k)
l�1 ;W

(1;k)
l�1 ; : : : ;W

(n;k)
l�1 ; : : :

�
A(k)
1 (5.4)

with A(k)
1 being the matrix of in�nite size given by (5.3).

Lemma 5.11 The matrices (A
(k)
1 )l are bounded and k(A

(k)
1 )lk � 1 for all l 2 IN0.

Proof: At �rst, k(A
(k)
1 )0k = kIk = 1. For l = 1 we have

1X
n=1

A(k)
n e = e� A

(k)
0 e � e ;

1X
n=0

A(k+i)
n e = e for all i � 1;

thus k(A(k)
1 )k = 1. Lemma 1.4 implies k(A(k)

1 )lk � k(A(k)
1 )kl = 1 for all l 2 IN . 2

These results enable us to derive a second set of explicit expressions for the matrices G
(k)
l

and G(k).

Theorem 5.12 The matrices G
(k)
l and G(k) are given by

G
(k)
l =

��
A(k)
1

�l�1�
00

A
(k)
0 ; l � 1 ;

G(k) =
1X
l=0

��
A(k)
1

�l�
00

A
(k)
0 =

��
I � A(k)

1

�0�
00

A
(k)
0 ;

where
�
I � A(k)

1

�0
is the minimal nonnegative solution of

�
I � A(k)

1

�
Z = I.
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Proof: Applying (5.4) recursively we obtain�
W

(0;k)
l ;W

(1;k)
l ; : : : ;W

(n;k)
l ; : : :

�
=
�
I; O;O; : : :

��
A(k)
1

�l
:

Thus W
(0;k)
l =

�
(A(k)

1 )
l
�
00

and lemma 5.9 implies

G
(k)
l =

��
A(k)
1

�l�1�
00

A
(k)
0 and G(k) =

1X
l=0

��
A(k)
1

�l�
00

A
(k)
0 :

Let us now consider the Markov chain with state space f�g [
�S1

l=k(flg � J(l))
�
, where

� shall be an absorbing state, and transition matrix

T =

0
BBB@

1 0T 0T : : :

A
(k)
0 e

0 A
(k)
1

...

1
CCCA :

Here all states (l; i), l � k, are transient. Then S :=
P1

l=0 (A
(k)
1 )

l
satis�es (I�A(k)

1 )S = I

and S(I �A(k)
1 ) = I. Further, S is the minimal nonnegative solution of (I �A(k)

1 )Z = I
(by proposition 6.1.8 in [9, p. 146]). 2

5.2 The mean number of service completions

Once we know the fundamental matrices G(k) we can also determine the mean number of
service completions during a fundamental period starting in phase i of level k, which we
will denote by c

(k)
F;i, and the mean duration7 t

(k)
F;i of a fundamental period starting in (k; i).

If the embedded Markov chain (X ;J ) is positive recurrent, all c
(k)
F;i and t

(k)
F;i are �nite. Let

c
(k)
F = (c

(k)
F;i)i=1;:::;m(k)

8 and t
(k)
F = (t

(k)
F;i)i=1;:::;m(k).

Lemma 5.13 If the embedded Markov chain (X ;J ) is positive recurrent, the vectors c
(k)
F

of mean numbers of service completions during a fundamental period starting in level k
satisfy the equation

c
(k)
F = e +

1X
l=1

A
(k)
l

 
l�1Y
j=1

G(k+l�j)

!
c
(k)
F +

1X
�=1

1X
l=1

A
(k)
�+l

 
l�1Y
j=1

G(k+�+l�j)

!
c
(k+�)
F :

7The duration again refers to the time that passes in the embedding semi{Markov process (Y ;J ).
8Lucantoni [24] uses the notation � instead of cF
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Proof: The z-transform of the number of service completions during a fundamental
period starting in level k is given by G(k)(z; 0) =

P1
l=1G

(k)
l zl. Thus

c
(k)
F = @

@z
G(k)(z; s)

��� z=1
s=0

e : (5.5)

Di�erentiation in (5.1) yields

@
@z
G(k)(z; s)

=
1X
�=0

A(k)
� (s)

 
�Y

j=1

G(k+��j)(z; s)

!

+ z
1X
�=1

A(k)
� (s)

�X
l=1

 
l�1Y
j=1

G(k+��j)(z; s)

!�
@
@z
G(k+��l)(z; s)

� �Y
j=l+1

G(k+��j)(z; s)

!
:

Since we assumed (X ;J ) to be positive recurrent, G(k+�)e = e for all � (theorem 5.4).
Thus

c
(k)
F = @

@z
G(k)(z; s)

��� z=1
s=0

e

=
1X
�=0

A(k)
�

 
�Y

j=1

G(k+��j)

!
e

+
1X
�=1

A(k)
�

�X
l=1

 
l�1Y
j=1

G(k+��j)

!�
@
@z
G(k+��l)(z; s)

��� z=1
s=0

� �Y
j=l+1

G(k+��j)

!
e

= G(k)e +
1X
�=1

A(k)
�

�X
l=1

 
l�1Y
j=1

G(k+��j)

!�
@
@z
G(k+��l)(z; s)

��� z=1
s=0

�
e

by corollary 5.3

= e+
1X
�=1

A(k)
�

�X
l=1

 
l�1Y
j=1

G(k+��j)

!
c
(k+��l)
F (5.6)

= e+
1X
l=1

1X
�=l

A(k)
�

 
l�1Y
j=1

G(k+��j)

!
c
(k+��l)
F

= e+
1X
l=1

1X
�=0

A
(k)
�+l

 
l�1Y
j=1

G(k+�+l�j)

!
c
(k+�)
F

= e+
1X
l=1

A
(k)
l

 
l�1Y
j=1

G(k+l�j)

!
c
(k)
F +

1X
�=1

1X
l=1

A
(k)
�+l

 
l�1Y
j=1

G(k+�+l�j)

!
c
(k+�)
F :

2
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Remark: Equation 5.6 can also be obtained by conditioning on the state reached after
the �rst service completion and adding the mean of all numbers of service completions
during the fundamental periods required to reach level k � 1.

We can solve the system of equations given in lemma 5.13 if the supremum of all c(k)F;i is
�nite. This should be ful�lled in all applications.

For k � 1 and � � 0 let the m(k) �m(k+�) matrices M (k;�) be

M (k;0) := I �
1X
l=1

A
(k)
l

 
l�1Y
j=1

G(k+l�j)

!
;

M (k;�) := �
1X
l=1

A
(k)
�+l

 
l�1Y
j=1

G(k+�+l�j)

!
; � � 1 :

If the embedded Markov chain (X ;J ) is positive recurrent and supk2IN; i=1;:::;m(k) c
(k)
F;i <1,

lemma 5.13 yields

M (k;0)c
(k)
F +

1X
�=1

M (k;�)c
(k+�)
F = e : (5.7)

Furthermore, we de�ne a sequence fMn : n 2 INg of n� n block{triangular matrices by

M1 := M (1;0) ;

Mn+1 :=

0
BBB@

M (1;n)

Mn

...
M (n;1)

O � � � O M (n+1;0)

1
CCCA =

0
BBB@

M (1;0) M (1;1) � � � M (1;n)

M (2;0) � � � M (2;n�1)

. . .
...

M (n+1;0)

1
CCCA

for n � 1.

Lemma 5.14 The matrix of in�nite size M :=M1 is bounded9.

Proof: The matrices G(k) are sub{stochastic10. Thus the kth block of jMj e1 satis�es

h
jMj e1

i
k

=
1X
�=0

jM (k;�)j e

9Cf. de�nition 1.3
10If the embedded Markov chain is (positive) recurrent they are even stochastic (theorem 5.4), but we

do not require that here.
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� Ie +
1X
l=1

A
(k)
l

 
l�1Y
j=1

G(k+l�j)

!
e+

1X
�=1

1X
l=1

A
(k)
�+l

 
l�1Y
j=1

G(k+�+l�j)

!
e

� e +
1X
l=1

A
(k)
l e+

1X
�=1

1X
l=�

A
(k)
l+1e

= e +
1X
l=1

A
(k)
l e+

1X
l=1

lX
�=1

A
(k)
l+1e

= e +
1X
l=1

A
(k)
l e+

1X
l=1

lA
(k)
l+1e

= e +
1X
l=1

lA
(k)
l e

= e + a(k)

� e + ��(0)��1e

by theorem 3.8 and (1.1). So the matrix M is bounded. 2

Lemma 5.15 The matrices Mn are nonsingular and their inverses are given by

M�1
1 =

�
M (1;0)

��1
;

M�1
n+1 =

0
BBBBB@

M�1
n �M�1

n

0
B@

M (1;n)

...
M (n;1)

1
CA�M (n+1;0)

��1

O � � � O
�
M (n+1;0)

��1

1
CCCCCA ; n � 1 :

If the embedded Markov chain (X ;J ) is positive recurrent and supk2IN; i=1;:::;m(k) c
(k)
F;i <1,

then M is invertible, and the matrix M0 := M�1
1 is bounded and the unique bounded

inverse of M.

Proof: To prove the �rst part of the lemma we start by showing that the matrices M (k;0)

are nonsingular.

By corollary 1.16 P
(k)
0 (t) = eD

(k)
0 t. So P

(k)
0 (t) is nonsingular [3, p. 170] and nonnegative,

thus there must be a positive entry in each row. Therefore A
(k)
0 =

R1
0
[P

(k)
0 (t) j O] dH(t)

(by (3.3)) has a positive entry in each row and so"
1X
l=1

A
(k)
l e

#
i

=
h
e� A

(k)
0 e
i
i
< 1 for all i = 1; : : : ; m(k). (5.8)



44 5 THE FUNDAMENTAL PERIODS

Hence
h
(I � M (k;0))e

i
i
=
hP1

l=1A
(k)
l e
i
i
< 1 for all i = 1; : : : ; m(k). This implies that

M (k;0) is strictly diagonally dominant and therefore nonsingular [28, p. 146] with

�
M (k;0)

��1
=

1X
�=0

 
1X
l=1

A
(k)
l

 
l�1Y
j=1

G(k+l�j)

!!�

: (5.9)

Since the matrices Mn are block{triangular with nonsingular blocks on their diagonal,
they are also nonsingular. Now we proceed by induction: M1 = M (1;0) and so M�1

1 =
(M (1;0))�1. Suppose M�1

n is known, then

Mn+1 �

0
BBBBB@

M�1
n �M�1

n

0
B@

M (1;n)

...
M (n;1)

1
CA�M (n+1;0)

��1

O � � � O
�
M (n+1;0)

��1

1
CCCCCA

=

0
BBB@

M (1;n)

Mn

...
M (n;1)

O � � � O M (n+1;0)

1
CCCA �

0
BBBBB@

M�1
n �M�1

n

0
B@

M (1;n)

...
M (n;1)

1
CA�M (n+1;0)

��1

O � � � O
�
M (n+1;0)

��1

1
CCCCCA

=

0
BBBB@

In �MnM
�1
n

0
B@

M (1;n)

...
M (n;1)

1
CA�M (n+1;0)

��1
+

0
B@

M (1;n)

...
M (n;1)

1
CA�M (n+1;0)

��1

O � � � O I

1
CCCCA

= In+1 ;

where In denotes the identity matrix consisting of n� n blocks of appropriate size.

To prove the second part we �rst establish that the matricesM�1
n are nonnegative. Equa-

tion (5.9) implies that (M (k;0))�1 is nonnegative for all k 2 IN , thereforeM�1
1 = (M (1;0))�1

is nonnegative. Now suppose M�1
n is nonnegative, then M�1

n+1 is also nonnegative, be-
cause �M (�;n+1��)), � = 1; : : : ; n, and (M (n+1;0))�1 are nonnegative and the product of
nonnegative matrices is again nonnegative.

Let C
(n)
F be the column vector with block entries c

(1)
F ; : : : ; c

(n)
F and CF := C

(1)
F , then

� := kCFk1 = supfc(k)F;i : k 2 IN; i = 1; : : : ; m(k)g < 1 :
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Equation (5.7) implies MnC
(n)
F � e for all n 2 IN . Denote the (r; �)th block of M�1

n by

M 0
n;r�. Since M

�1
n is nonnegative, we obtain C

(n)
F �M�1

n e, i.e.

�e � c
(r)
F �

nX
�=1

M 0
n;r�e

for all n 2 IN and r = 1; : : : ; n. So CF �M0e1, i.e.

�e � c
(r)
F �

1X
�=1

M 0
1;r�e

for all r 2 IN and

�e � sup
n2IN

nX
�=1

M 0
1;n�e :

Thus M0 is bounded.

Altogether we have
M0 �M = M�1

1 �M1 = I1

and
M�M0 = M1 �M�1

1 = I1 :

So M is invertible and by theorem 3.1.2 in [15, p. 54], M0 is the unique inverse of M in
the space of bounded linear operators on the space of bounded complex sequences `1. 2

Theorem 5.16 If the embedded Markov chain (X ;J ) is positive recurrent and supfc(k)F;i :

k 2 IN; i = 1; : : : ; m(k)g < 1, the vectors c
(k)
F of mean numbers of service completions

during a fundamental period starting in level k are the unique solution of the linear system
of equations of lemma 5.13 and are given by0

BBB@
c
(1)
F

c(2)F

c
(3)
F
...

1
CCCA = M0 e1 :

Proof: Let again CF be the column sequence consisting of the vectors c
(1)
F ; c

(2)
F ; : : :. Since

supfc(k)F;i : k 2 IN; i = 1; : : : ; m(k)g <1, lemmata 5.13 and 5.14 imply that MCF = e1.
So the assertion follows from lemma 5.15. 2

We can now also determine the mean duration of a fundamental period. As one would
expect, it is the mean service time ��1 times the mean number of service completions
during a fundamental period c

(k)
F .
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Theorem 5.17 If the embedded Markov chain (X ;J ) is positive recurrent, the vector t
(k)
F

of the phase dependent mean duration of a fundamental period starting in level k is given
by

t(k)F = ��1c(k)F :

Proof: Let S
(k)
�;i be the random variable of the service time of the �th customer served and

C
(k)
F;i be the random variable of the number of service completions during a fundamental

period starting in level k, phase i. Then the random variables S
(k)
1;i ; S

(k)
2;i ; : : : are indepen-

dent and identically distributed, and C
(k)
F;i is a stopping time for S

(k)
1;i ; S

(k)
2;i ; : : :. Further,

E[S
(k)
1;i ] = ��1 < 1 and E[C

(k)
F;i ] = c

(k)
F;i < 1, since (X ;J ) is positive recurrent. Wald's

equation [39, p. 59] implies

t
(k)
F;i = E

2
64
C
(k)
F;iX

�=1

S
(k)
�;i

3
75 = E

h
C

(k)
F;i

i
� E
h
S
(k)
1;i

i
= c

(k)
F;i �

�1 :

2
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6 The queue length at service completion times

The distribution of the queue length11 at service completion times is the stationary dis-
tribution of the embedded Markov chain (X ;J ), if the latter one is ergodic12.

Henceforth we will assume that (X ;J ) is ergodic. Let x = (x0;x1;x2; : : :) with blocks
xk = (xki)i=1;:::;m(k) be its stationary distribution, i.e.

xki = lim
�!1

PfX� = k; J� = i j X0 = l; J0 = jg

for all k; l 2 IN0 and i = 1; : : : ; m(k), j = 1; : : : ; m(l). Since the set XXc is transient we
already know that xki = 0 for all (k; i) 2 XXc, i.e. i 2 J(k) n J(k+1).

From xP = x we obtain

xk = x0Bk +
k+1X
�=1

x�A
(�)
k+1�� : (6.1)

Unfortunately equation (6.1) is not feasible for determining x, since the matrices A
(�)
0

need not be invertible. But the components xk, k � 1, of x can be computed by a
recursion analogous to the one developed by Ramaswami for the level independent case
[34]. This recursion has the additional advantage to be numerically stable, because all
matrices involved are nonnegative.

Theorem 6.1 The vectors xk, k � 1, satisfy

xk =

 
x0

�Bk +
k�1X
i=1

xi �A
(i)
k+1�i

!�
I � �A(k)

1

��1
;

where

�A(k)
n =

1X
�=n

A(k)
�

 
��n�1Y
j=0

G(k+��1�j)

!
and �Bk =

1X
�=k

B�

 
��k�1Y
j=0

G(��j)

!
:

11By queue length we mean the number of customers in the system, including the one in service.
12Cf. section 4
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Proof: For k � 1 we consider the Markov chain embedded at epochs of visits to the levels
0; : : : ; k. Since we assumed (X ;J ) to be ergodic, the embedded chain is also positive
recurrent and its transition probability matrix Pk is (cf. [8])

Pk =

0
BBBBBBBB@

B0 B1 B2 � � � Bk�1
�Bk

A
(1)
0 A

(1)
1 A

(1)
2 � � � A

(1)
k�1

�A
(1)
k

A
(2)
0 A

(2)
1 � � � A

(2)
k�2

�A
(2)
k�1

A
(3)
0 � � � A

(3)
k�3

�A
(3)
k�2

. . .
...

...

A
(k)
0

�A
(k)
1

1
CCCCCCCCA

:

This structure of Pk is due to the fact that the process is skip{free downward. The entries
of column k of Pk give the probabilities to reach level k or a higher level and then to return
to k in the original Markov chain. Theorem 8.15 in [8, p. 166]13 implies that

(x0; : : : ;xk)Pk = (x0; : : : ;xk) :

So we obtain

xk = x0
�Bk +

kX
i=1

xi �A
(i)
k+1�i ;

or equivalently

xk
�
I � �A(k)

1

�
= x0

�Bk +
k�1X
i=1

xi �A
(i)
k+1�i :

The matrix A
(k)
0 + �A

(k)
1 is stochastic, and in the proof of lemma 5.15 we have seen that

A
(k)
0 has a positive entry in each row. Thus all row sums of �A

(k)
1 are less than 1 and so

I � �A
(k)
1 is nonsingular [28, p. 146]. 2

Remark: The matrix (I � �A
(k)
1 )�1 in theorem 6.1 can be computed by

�
I � �A

(k)
1

��1
=

1X
�=0

�
�A
(k)
1

��
:

So it only remains to determine the vector x0. To do so, we proceed similarly to the level
independent case [24], [33]. First we note that x0i is the reciprocal of the mean recurrence

13Theorem 8.15 in [8] implies: If P =

�
C D

E F

�
, where C is of size (k + 1) � (k + 1), then Pk =

C +D(
P
1

n=0 F
n)E. Thus, if x = (a; b), where a is of size k + 1, with xP = x, then aC + bE = a and

aD + bF = b, so aPk = aC + aD(
P
1

n=0 F
n)E = aC + (b� bF )(

P
1

n=0 F
n)E = aC + bE = a.
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time of the state (0; i) in the Markov chain (X ;J ) [9, p. 158]. Now we consider the
embedded Markov chain at its visits to level 0 only. Let ( ~Kl(x))ij be the probability that
the �rst passage from state (0; i) to state (0; j) occurs in exactly l transitions not later
than time x, and that (0; j) is the �rst state visited in level 0. Formally, ( ~Kl(x))ij is
de�ned by�
~Kl(x)

�
ij

:=

PfX�+l = 0; J�+l = j; T�+l � T� � x; 8r = 1; : : : ; l � 1 : X�+r 6= 0 j X� = 0; J� = ig :

Note that ( ~Kl(x))ij = 0 for all (0; j) 2 XXc, i.e. j 2 J(0) n J(1). Let ~Kl(x) be the matrix
with entries ( ~Kl(x))ij for i; j = 1; : : : ; m(0), and de�ne the transform matrices Kl(s) and
K(z; s) by

Kl(s) =

Z 1

0

e�sx d ~Kl(x) ;

K(z; s) =
1X
l=1

zlKl(s) =
1X
l=1

zl
Z 1

0

e�sx d ~Kl(x)

for jzj � 1 and Re(s) � 0. Further, let

Kl = Kl(0) = ~Kl(1) and K = K(1; 0) =
1X
l=1

Kl :

So (K)ij is the probability that starting in state (0; i) the next state visited in level 0 is
(0; j). Since we assumed (X ;J ) to be positive recurrent, K is stochastic. Furthermore, K
is the transition probability matrix of the �nite state Markov chain embedded at epochs
of visits to level 0. Thus there exists a probability vector � such that �K = �.

Let cB;i be the mean number of transitions between two consecutive visits to level 0 if
the last state visited in level 0 was (0; i). So cB;i is the phase dependent mean number of
service completions during a busy period. Then cB = (cB;i)i=1;:::;m(0)

14 is given by

cB = @
@z
K(z; s)

��� z=1
s=0

e :

Further, let tB;i be the mean time15 between two consecutive visits to level 0 if the last
state visited in level 0 was (0; i), and let tB = (tB;i)i=1;:::;m(0) . Then we have

tB = � @
@s
K(z; s)

��� z=1
s=0

e :

14Lucantoni [24] uses the notation �� instead of cB .
15Again we mean the time passing in the embedding semi-Markov process (Y ;J ).
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Ramaswami [33, Th. 3.2.11] has shown that in the level independent case the vector x0

is given by

x0 =
�

h�; cBi
; (6.2)

where h�; �i denotes the inner product (\dot product") of two vectors. This is a general
result for positive recurrent semi{Markov processes [20, Th. 2.9, Th. 2.11(a)] and hence
also holds in our case. We only need to determine the matrix K and the vector cB.

Theorem 6.2 The joint transform K(z; s) is given by

K(z; s) =
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j

 
j�1Y
i=0

G(j�i)(z; s)

!

for jzj � 1 and Re(s) � 0.

Proof: Analogously to the proof of lemma 5.1 we obtain K1(s) = B0(s) and

Kl(s) =
l�1X
n=1

Bn(s)
X

l1;:::;ln�1
l1+:::+ln=l�1

nY
i=1

G
(n+1�i)
li

(s)

for l � 2. Thus

K(z; s) =
1X
l=1

Kl(s) z
l

= zB0(s) +
1X
l=1

lX
n=1

Bn(s)
X

l1;:::;ln�1
l1+:::+ln=l

 
nY
i=1

G
(n+1�i)
li

(s)

!
zl+1

= zB0(s) + z
1X
n=1

Bn(s)

 
nY
i=1

G(n+1�i)(z; s)

!

(cf. proof of theorem 5.2)

= z
�
sI �D

(0)
0

��1
D

(0)
1 A

(1)
0 (s)

+ z
1X
n=1

 �
sI �D

(0)
0

��1 nX
j=0

D
(0)
j+1A

(j+1)
n�j (s)

! 
nY
i=1

G(n+1�i)(z; s)

!

by theorem 3.4

= z
�
sI �D

(0)
0

��1 � 1X
n=0

D
(0)
1 A(1)

n (s)

 
nY
i=1

G(n+1�i)(z; s)

!
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+
1X
j=1

1X
n=j

D
(0)
j+1A

(j+1)
n�j (s)

 
nY
i=1

G(n+1�i)(z; s)

!�

= z
�
sI �D

(0)
0

��1 �
D

(0)
1

1X
n=0

A(1)
n (s)

 
nY
i=1

G(n+1�i)(z; s)

!

+
1X
j=2

D
(0)
j

1X
n=0

A(j)
n (s)

 
nY
i=1

G(n+j�i)(z; s)

! 
n+j�1Y
i=n+1

G(n+j�i)(z; s)

!�

= z
�
sI �D

(0)
0

��1 �
D

(0)
1

1X
n=0

A(1)
n (s)

 
nY
i=1

G(n+1�i)(z; s)

!

+
1X
j=2

D
(0)
j

1X
n=0

A(j)
n (s)

 
nY
i=1

G(n+j�i)(z; s)

! 
j�1Y
i=1

G(j�i)(z; s)

!�

=
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j z

1X
n=0

A(j)
n (s)

 
nY
i=1

G(n+j�i)(z; s)

! 
j�1Y
i=1

G(j�i)(z; s)

!

=
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j G(j)(z; s)

 
j�1Y
i=1

G(j�i)(z; s)

!

by theorem 5.2

=
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j

 
j�1Y
i=0

G(j�i)(z; s)

!
:

2

Corollary 6.3 The matrix K is given by

K = �D(0)
0

�1
1X
j=1

D
(0)
j

 
j�1Y
i=0

G(j�i)

!
:

Proof: Since K = K(1; 0), the assertion follows immediately from theorem 6.2. 2

Remark: The matrix �D(0)
0 K =

P1
l=1D

(0)
l

Ql�1
�=0G

(l��) has an interpretation analogous
to the one of D[G] =

P1
l=0DlG

l in the level independent case [24, p. 16]. Consider the
arrival process (N (0);J (0)) at a time epoch t0 during an idle period, and let J (0)(t0) = i.
During the in�nitesimal time interval (t0; t0 + dt), (N (0);J (0)) could stay in phase i, or

could change to phase j 0 6= i without an arrival with probability (D
(0)
0 )ij0dt, or it could

change to phase h with an arrival of a batch of size l � 1 with probability (D
(0)
l )ihdt.
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That arriving batch initiates a busy period which ends in phase j with conditional
probability (

Ql�1
�=0G

(l��))hj. If we exclude the time interval corresponding to this busy

period, we obtain a transition from i to j with probability (
P1

l=1D
(0)
l

Ql�1
�=0G

(l��))ijdt.

The matrix
P1

l=0D
(0)
l

Ql�1
�=0G

(l��) = �D(0)
0 K + D

(0)
0 can therefore be considered as the

in�nitesimal generator of a Markov process obtained by excluding the busy periods.

Hence K = I � D
(0)
0

�1P1
l=0D

(0)
l

Ql�1
�=0G

(l��) is the corresponding transition probability
matrix.

Now we can also determine the mean number of service completions during a busy period
and the mean time between two consecutive visits to level 0.

Corollary 6.4 The vector of the phase dependent mean number of service completions
during a busy period is

cB = �D(0)
0

�1
1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)

!
c
(j�l)
F :

Proof: Since we assumed (X ;J ) to be positive recurrent, G(j) is stochastic for all j
(theorem 5.4). Theorem 6.2 yields

cB

= @
@z
K(z; s)

��� z=1
s=0

e

=
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)(z; s)

!�
@
@z
G(j�l)(z; s)

� j�1Y
i=l+1

G(j�i)(z; s)

!���� z=1
s=0

e

= �D(0)
0

�1
1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)

!
c
(j�l)
F by (5.5).

2

The mean time between two consecutive visits to level 0 is just the mean idle time plus
the mean number of service completions during a busy period times the mean service
time.

Corollary 6.5 The vector of the phase dependent mean time between two consecutive
visits to level 0 is

tB = �D(0)
0

�1
e+ ��1 cB :
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Proof: Analogously to the proof of corollary 6.4 we obtain

tB

= � @
@s
K(z; s)

��� z=1
s=0

e

=
�
sI �D

(0)
0

��2 1X
j=1

D
(0)
j

 
j�1Y
i=0

G(j�i)(z; s)

! ���� z=1
s=0

e

�
�
sI �D

(0)
0

��1 1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)(z; s)

!�
@
@s
G(j�l)(z; s)

� j�1Y
i=l+1

G(j�i)(z; s)

!���� z=1
s=0

e

= D
(0)
0

�2
1X
j=1

D
(0)
j e+D

(0)
0

�1
1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)

!�
�t(j�l)F

�

= D
(0)
0

�2
�
�D(0)

0 e
�
� ��1D

(0)
0

�1
1X
j=1

D
(0)
j

j�1X
l=0

 
l�1Y
i=0

G(j�i)

!
c
(j�l)
F

(by theorem 5.17)

= �D(0)
0

�1
e + ��1 cB (by corollary 6.4):

2

If we de�ne the load � of the queueing system by the mean number of arrivals during a
service time16, we have

� = x0b+
1X
k=1

xka
(k) ;

with b and a(k) de�ned in (3.8) and (3.7). Now the probability that a departing customer
leaves an empty system behind is equal to 1� �.

Theorem 6.6 The steady state probability of level 0 satis�es

x0e = 1� � :

Proof: Using (6.1) we obtain

1X
k=0

k xke =
1X
k=0

k

 
x0Bke +

k+1X
�=1

x�A
(�)
k+1��e

!

16If the system was empty before, the load is given by the mean number of arrivals during an idle
period and the following service time minus the one which is in service.
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= x0

1X
k=0

kBke +
1X
k=0

k
kX

�=0

x�+1A
(�+1)
k�� e

= x0b+
1X
�=0

1X
k=�

k x�+1A
(�+1)
k�� e

= x0b+
1X
�=0

x�+1

 
1X
k=0

kA
(�+1)
k e +

1X
k=0

�A
(�+1)
k e

!

= x0b+
1X
�=0

x�+1a
(�+1) +

1X
�=0

� x�+1e

= x0b+
1X
�=1

x�a
(�) +

1X
�=1

� x�e�
1X
�=1

x�e

= �+
1X
�=1

� x�e� (1� x0e) :

Thus 1� x0e = �. 2

Summary: The vector x of the queue length distribution at service completion times (in
equilibrium) can be computed as follows:

x0 =
�

h�; cBi
;

where � is the stationary distribution of the Markov chain de�ned by the matrix K, and
cB is given by corollary 6.4. Further, for k � 1,

xk =

 
x0

�Bk +
k�1X
i=1

xi �A
(i)
k+1�i

!�
I � �A

(k)
1

��1
;

with the matrices �A
(k)
n and �Bk de�ned in theorem 6.1.
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7 The queue length at an arbitrary time

The steady state distribution of the queue length17 at an arbitrary time is the limiting dis-
tribution of the process (Y;J ), if the embedded Markov chain (X ;J ) is positive recurrent
(cf. section 4).

Henceforth we will assume that (X ;J ) is positive recurrent. Let y = (y0;y1;y2; : : :),
yk = (yki)i=1;:::;m(k) be the limiting distribution of fY (t); J(t) : t � 0g, i.e.

yki = lim
t!1

PfY (t) = k; J(t) = i j Y (0) = l; J(0) = jg

for all k; l 2 IN0 and i = 1; : : : ; m(k), j = 1; : : : ; m(l).

The components yk of y can be obtained by applying the key renewal theorem [9, p. 295],
similarly to the level independent case [33].

Theorem 7.1 The vector y0 is given by

y0 = �
1

��1 � x0D
(0)
0

�1
e
x0D

(0)
0

�1
:

Proof: At �rst we note that (P
(0)
0 (t))ij is monotone nonincreasing and by corollary 1.16

continuous. Thus, by proposition 9.2.16(c) in [9, p. 296], (P
(0)
0 (t))ij is directly Riemann

integrable for all i; j = 1; : : : ; m(0).

We consider PfY (t) = 0; J(t) = i j Y (0) = 0; J(0) = jg and condition on the state at
the last service completion time before t, which must be a state in level 0. Say this last
return to level 0 occurs at time u � t, and let R(0;j);(0;�)(u) be the mean number of visits
to state (0; �) up to time u, given (0; j) at time 0. So R(0;j);(0;�)(u) is a Markov renewal
function [9, p. 319]. Then

PfY (t) = 0; J(t) = i j Y (0) = 0; J(0) = jg =
m(0)X
�=1

Z t

0

�
P

(0)
0 (t� u)

�
�i
dR(0;j);(0;�)(u) :

If we consider the embedded Markov chain (X ;J ) at its visits to level 0 only, we obtain
a Markov renewal process with state space f1; : : : ; m(0)g. Now the key renewal theorem
for Markov renewal processes with �nite state space [9, p. 331] yields

y0i =

0
@m(0)X

�=1

�� tB;�

1
A
�1

m(0)X
j=1

�j

�Z 1

0

P (0)
0 (t) dt

�
ji

:

17By queue length we mean the number of customers in the system, including the one in service.
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Using corollaries 1.16 and 1.17 we obtainZ 1

0

P
(0)
0 (t) dt = �D(0)

0

�1
: (7.1)

Corollary 6.5 and (6.2) imply

y0 =
�

��D(0)
0

�1
e+ ��1h�; cBi

�
�D(0)

0

�1
�

= �
1

� �
h�;cBi

D
(0)
0

�1
e+ ��1

�

h�; cBi
D

(0)
0

�1

= �
1

�x0D
(0)
0

�1
e+ ��1

x0D
(0)
0

�1
:

2

In a similar way we can also determine the steady state probabilities of the levels k � 1.

Theorem 7.2 For k � 1 the vector yk is given by

yk =
1

��1 � x0D
(0)
0

�1
e

kX
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt :

Proof: We consider PfY (t) = k; J(t) = i j Y (0) = 0; J(0) = jg and condition on

the state at the last service completion time before t. Again, P
(k)
n (t) is directly Riemann

integrable for all n 2 IN0 and so is
P1

n=0 xnP
(k)
n (t). The limit theorem for Markov renewal

processes [9, p. 334] yields

yki =

1

hx; �i

m(0)X
j=1

x0j

Z 1

t=0

Z t

x=0

�
1�H(t� x)

� kX
l=1

m(0)X
�=1

�
P

(0)
0 (x)

�
j�

�
D

(0)
l P

(l)
k�l(t� x)

�
�i
dx dt

+
1

hx; �i

kX
l=1

m(l)X
j=1

xlj

Z 1

0

�
P

(l)
k�l(t)

�
ji

�
1�H(t)

�
dt ;

where � = (�0; �1; �2; : : :) and �ki is the mean time between two consecutive transitions in
the embedded Markov chain (X ;J ), as de�ned in theorem 3.6. Again, h�; �i denotes the
inner product of two vectors. In matrix{vector notation we have

yk =
x0

hx; �i

Z 1

t=0

Z t

x=0

�
1�H(t� x)

� kX
l=1

P
(0)
0 (x)D

(0)
l P

(l)
k�l(t� x) dx dt

+
kX
l=1

xl
hx; �i

Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt :
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At �rst,

Z 1

t=0

Z t

x=0

�
1�H(t� x)

� kX
l=1

P
(0)
0 (x)D

(0)
l P

(l)
k�l(t� x) dx dt

=

Z 1

x=0

Z 1

t=x

�
1�H(t� x)

� kX
l=1

P
(0)
0 (x)D

(0)
l P

(l)
k�l(t� x) dt dx

=

Z 1

x=0

P
(0)
0 (x) dx

Z 1

t=0

�
1�H(t)

� kX
l=1

D
(0)
l P

(l)
k�l(t) dt

= �D(0)
0

�1
kX
l=1

D
(0)
l

Z 1

t=0

�
1�H(t)

�
P

(l)
k�l(t) dt ;

by (7.1). For hx; �i we obtain

hx; �i = x0

�
�D

(0)
0

�1
e+ ��1e

�
+

1X
k=1

xk�
�1e = �x0D

(0)
0

�1
e+ ��1

1X
k=0

xke

= �x0D
(0)
0

�1
e+ ��1 :

Altogether we have

yk =
1

hx; �i

kX
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt

=
1

�x0D
(0)
0

�1
e + ��1

kX
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt :

2

Summary: The vector y of the queue length distribution at an arbitrary time can be
computed by

y0 = �
1

��1 � x0D
(0)
0

�1
e
x0D

(0)
0

�1
and

yk =
1

��1 � x0D
(0)
0

�1
e

kX
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt

for k � 1.
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8 A special case: Level independent phase process

Let us consider the special case when only the arrival rates dependent on the current
level, but the phase process is level independent.

Assumption 8.1 Suppose J(k) = J(0) =: J, i.e. m(k) = m <1, and

D(k) :=
1X
n=0

D(k)
n = D(0) =: D

for all k 2 IN0.

Let D(k)(z) denote the z{transform of the matrices D
(k)
n , n 2 IN0, i.e.

D(k)(z) =
1X
n=0

D(k)
n zn ; jzj � 1:

The vector d(k) of the phase dependent mean arrival rates in level k (as de�ned in section
1) is then given by

d(k) = d
dz
D(k)(z)

���
z=1

e :

8.1 The arrival process

At �rst we will show that under assumption 8.1 all phase processes fJ (k)(t) : t � 0g
are stochastically identical, so that we can speak of just one phase process. Then the
phase process possesses a stationary probability distribution, which we will denote by �
according to the level independent case [24]. This enables us to obtain further results for
the BMAP/G/1 queue with level dependent arrivals in this special case.

8.1.1 The generator matrices

Assumption 8.1 implies the following properties of the matrices Q(k):

Lemma 8.2 For all k; l; j 2 IN0 it is

1X
n=l

�
(Q(k))j

�
ln

= Dj :
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Proof: At �rst we note that (Q(k))j is bounded (lemmata 1.5 + 1.4). For j = 0 the
assertion is obvious, and for j = 1 we have

1X
n=l

�
Q(k)

�
ln

=
1X
n=0

D(k+l)
n = D

for all k; l 2 IN0. Suppose the assertion holds for j and consider j + 1:
1X
n=l

�
(Q(k))j+1

�
ln

=
1X
n=l

nX
�=l

�
Q(k)

�
l�

�
(Q(k))j

�
�n

=
1X
n=0

nX
�=0

D(k+l)
�

�
(Q(k+�+l))j

�
0;n��

by lemma 1.7

=
1X
�=0

1X
n=�

D(k+l)
�

�
(Q(k+�+l))j

�
0;n��

=
1X
�=0

D(k+l)
� Dj by assumption

= DDj = Dj+1 :

Thus the assertion holds for all k; l; j 2 IN0. 2

Corollary 8.3 For all k; l 2 IN0 it is
1X
n=l

�
eQ

(k)t
�
ln

= eDt :

Proof: By Corollary 1.6 the matrix{exponential of Q(k) is bounded. Lemma 8.2 yields
1X
n=l

�
eQ

(k)t
�
ln

=
1X
n=l

1X
j=0

tj

j!

�
(Q(k))j

�
ln

=
1X
j=0

tj

j!

1X
n=l

�
(Q(k))j

�
ln

=
1X
j=0

tj

j!
Dj = eDt :

2

Let Q(k)(z) denote the transform matrix

Q(k)(z) :=

0
BBBBBB@

D
(k)
0 D

(k)
1 z D

(k)
2 z2 D

(k)
3 z3 � � �

D
(k+1)
0 D

(k+1)
1 z D

(k+1)
2 z2 � � �

D
(k+2)
0 D

(k+2)
1 z � � �

D
(k+3)
0 � � �

. . .

1
CCCCCCA

:
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Lemma 8.4 The matrices Q(k)(z), k 2 IN0, are uniformly bounded for all jzj � 1, i.e.
there exists � <1 such that kQ(k)(z)k � � for all k 2 IN0 and all jzj � 1.

Proof: Assumption 1.1 implies for all k 2 IN0, i = 1; : : : ; m and all jzj � 1:

1X
n=0

mX
j=1

jd(k)n;ijz
nj � jd(k)0;iij+

mX
j=1
j 6=i

jd(k)0;ijj+
1X
n=1

mX
j=1

jd(k)n;ijj = 2 jd(k)0;iij � 2 �d0 < 1

since Q(k) is a generator matrix. Thus the lth block of jQ(k)(z)je1 satis�es

h
jQ(k)(z)je1

i
l
=

1X
n=0

jD(k+l)
n znje � 2 �d0 e :

So the matrices Q(k)(z) are uniformly bounded for all jzj � 1. 2

Corollary 8.5 The exponential of the matrix Q(k)(z) exists for all jzj � 1, i.e. its entries
are all �nite.

Proof: By lemma 8.4 Q(k)(z) is bounded, and so by lemma 1.4 the matrix exponential

eQ
(k)(z) exists for all jzj � 1. 2

Lemma 8.6 For all j; l; n 2 IN0 with l � n it is�
(Q(k)(z))

j
�
ln
=
�
(Q(k+l)(z))

j
�
0;n�l

for all jzj � 1.

Proof: The proof is completely analogous to the proof of lemma 1.7. For j = 0 the result
is obvious, and for j = 1 we have�

Q(k)(z)
�
ln

= D
(k+l)
n�l z

n�l =
�
Q(k+l)(z)

�
0;n�l

:

Suppose the assertion is proven for j and consider j + 1:�
(Q(k)(z))

j+1
�
ln

=
nX
�=l

�
Q(k)(z)

�
l�

�
(Q(k)(z))

j
�
�n

=
nX
�=l

�
Q(k+l)(z)

�
0;��l

�
(Q(k+�)(z))

j
�
0;n��

by assumption

=
n�lX
�=0

�
Q(k+l)(z)

�
0�

�
(Q(k+�+l)(z))

j
�
0;n���l
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and

�
(Q(k+l)(z))

j+1
�
0;n�l

=
n�lX
�=0

�
Q(k+l)(z)

�
0�

�
(Q(k+l)(z))

j
�
�;n�l

=
n�lX
�=0

�
Q(k+l)(z)

�
0�

�
(Q(k+l+�)(z))

j
�
0;n�l��

by assumption.

So
�
(Q(k)(z))

j+1
�
ln
=
�
(Q(k+l)(z))

j+1
�
0;n�l

and thus the assertion is proven for all j 2 IN0.

2

Corollary 8.7 For all l; n 2 IN0 with l � n and all t � 0 it is�
eQ

(k)(z) t
�
ln
=
�
eQ

(k+l)(z) t
�
0;n�l

:

Proof: Lemma 8.6 implies

�
eQ

(k)(z) t
�
ln

=
1X
j=0

tj

j!

�
(Q(k)(z))

j
�
ln

=
1X
j=0

tj

j!

�
(Q(k+l)(z))

j
�
0;n�l

=
�
eQ

(k+l)(z) t
�
0;n�l

:

2

8.1.2 The phase process

We are now able to show that the transition probabilities of the phase process do not
depend on the current level.

Theorem 8.8 The transition probabilities of the phase processes fJ (k)(t) : t � 0g are
given by

PfJ (k)(t) = j j J (k)(0) = ig =
�
eDt
�
ij
; i; j = 1; : : : ; m

for all k 2 IN0.

Proof: From theorem 1.14 and corollary 8.3 we obtain

1X
n=0

P (k)
n (t) =

1X
n=0

�
eQ

(0)t
�
k;n+k

= eDt
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for all k 2 IN0. Thus for any l 2 IN0

PfJ (k)(t) = j j N (k)(0) = l; J (k)(0) = ig

=
1X
n=0

PfN (k)(t) = n+ l; J (k)(t) = j j N (k)(0) = l; J (k)(0) = ig

=
1X
n=0

�
P (k+l)
n (t)

�
ij

=
�
eDt
�
ij

and therefore

PfJ (k)(t) = j j J (k)(0) = ig

=
1X
l=0

PfJ (k)(t) = j j N (k)(0) = l; J (k)(0) = igPfN (k)(0) = l j J (k)(0) = ig

=
�
eDt
�
ij

1X
l=0

PfN (k)(0) = l j J (k)(0) = ig =
�
eDt
�
ij

for all k 2 IN0. 2

So assumption 8.1 implies that the processes fJ (k)(t) : t � 0g are stochastically identical
for all k 2 IN0. Henceforth we will denote the phase process by fJ(t) : t � 0g. Let R(t)
be its transition probability matrix, i.e.�

R(t)
�
ij

= PfJ(t) = j j J(0) = ig; i; j = 1; : : : ; m :

Corollary 8.9 The transition probability matrix R(t) of the phase process fJ(t) : t � 0g
is given by

R(t) = eDt :

Proof: The assertion follows immediately from theorem 8.8. 2

Corollary 8.10 The matrix D is the generator matrix of the phase process fJ(t) : t � 0g.

Proof: Corollary 8.9 implies d
dt
R(t)jt=0 = D and thus D is the generator matrix of

fJ(t) : t � 0g. 2

By assumption 3.1 the phase process is irreducible. Thus there exists a unique stationary
probability vector � such that �D = 0 and �R(t) = �.

This enables us to de�ne the mean arrival rate (or fundamental arrival rate [24]) �(k) in
level k by

�(k) := �d(k) = �
1X
n=1

nD(k)
n e :
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8.1.3 The transition probabilities

In section 1 we considered the transition probabilities P
(k)
n (t) of the level dependent BMAP

(N (k);J (k)) = fN (k)(t); J (k)(t) : t � 0g. Their z{transform P (k)(z; t) and the phase
dependent mean number of arrivals in time t, n(k)(t), can now be de�ned by

P (k)(z; t) =
1X
n=0

P (k)
n (t) zn ;

n(k)(t) = @
@z
P (k)(z; t)

���
z=1

e :

Theorem 8.11 The z{transforms P (k)(z; t) are given by0
BBB@

P (0)(z; t)
P (1)(z; t)
P (2)(z; t)

...

1
CCCA = eQ

(0)(z) t

0
BBB@

I
I
I
...

1
CCCA

and

P (k)(z; t) =
1X
n=k

�
eQ

(0)(z) t
�
kn

=
1X
n=0

�
eQ

(k)(z) t
�
0n

for jzj � 1.

Proof: The backward di�erential equations (lemma 1.10) yield:

@
@t
P (k)(z; t) =

1X
n=0

�
@
@t
P (k)
n (t)

�
zn =

1X
n=0

nX
u=0

D(k)
u P

(k+u)
n�u (t) zn :

The matrices Q(k) and P(k)(t) are bounded, thus by lemma 1.4 Q(k)P(k)(t) is bounded

and so the series
P1

n=0

Pn

u=0D
(k)
u P

(k+u)
n�u (t) zn converges absolutely for all jzj � 1. This

implies:

@
@t
P (k)(z; t) =

1X
u=0

1X
n=u

D(k)
u P

(k+u)
n�u (t) zn =

1X
u=0

D(k)
u zu P (k+u)(z; t)

=
�
D

(k)
0 ; D

(k)
1 z;D

(k)
2 z2; : : :

�
0
BBB@

P (k)(z; t)
P (k+1)(z; t)
P (k+2)(z; t)

...

1
CCCA :
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Thus

@

@t

0
BBB@

P (0)(z; t)
P (1)(z; t)
P (2)(z; t)

...

1
CCCA =

0
BBB@

D
(0)
0 D

(0)
1 z D

(0)
2 z2 � � �

D
(1)
0 D

(1)
1 z � � �

D
(2)
0 � � �

. . .

1
CCCA
0
BBB@

P (0)(z; t)
P (1)(z; t)
P (2)(z; t)

...

1
CCCA

= Q(0)(z)

0
BBB@

P (0)(z; t)
P (1)(z; t)
P (2)(z; t)

...

1
CCCA :

Further, we have P (k)(z; 0) = I for all k 2 IN0. By lemma 8.4 the matrix Q(0)(z) is
bounded and by corollary 8.5 its exponential exists for all jzj � 1. Therefore the unique
solution of the above di�erential equation is given by0

BBB@
P (0)(z; t)
P (1)(z; t)
P (2)(z; t)

...

1
CCCA = eQ

(0)(z) t

0
BBB@

I
I
I
...

1
CCCA

for jzj � 1. The second equation follows by applying corollary 8.7. 2

By di�erentiating P (k)(z; t)e with respect to z we obtain the result for n(k)(t) given in
theorem 1.18. The mean number of arrivals in time t is now �n(k)(t).

Let �d
(k)
i denote the maximum arrival rate in phase i from level k on, i.e.

�d
(k)
i := sup

n
d
(l)
i : l � k

o
;

and let �d(k) be the vector with components �d
(k)
i , i = 1; : : : ; m.

Theorem 8.12 The mean number of arrivals in time t satis�es

�n(k)(t) � ��d(k)t :

Proof: In the proof of theorem 1.19 we have seen that

d
ds
n(k)(s) =

1X
u=0

P (k)
u (s)d(k+u) :
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Thus

d
ds
�n(k)(s) � �

1X
u=0

P (k)
u (s) �d(k) = �R(s) �d(k) = ��d(k)

for all s � 0. Hence

�n(k)(t) =

Z t

0

d
ds
�n(k)(s) ds � ��d(k)t :

2

8.2 The embedded Markov chain

Assumption 8.1 implies that the state space of the embedded Markov chain (X ;J ) is the
set XX = YY de�ned in section 3. Thus the embedded Markov chain is irreducible.

8.2.1 The transition matrix

Let us de�ne the joint transform matrices of the entries ~A
(k)
n (x) and ~Bn(x) of the transition

probability matrix ~P(x) by

A(k)(z; s) :=
1X
n=0

zn A(k)
n (s) =

1X
n=0

zn
Z 1

0

e�sx d ~A(k)
n (x) ;

B(z; s) :=
1X
n=0

znBn(s) =
1X
n=0

zn
Z 1

0

e�sx d ~Bn(x)

for jzj � 1 and Re(s) � 0. Further, we de�ne the matrices

A(k) := A(k)(1; 0) =
1X
n=0

A(k)
n and B := B(1; 0) =

1X
n=0

Bn :

Equations (3.4) and (3.5) imply that A(k) and B are stochastic.

Theorem 8.11 enables us to determine the joint transform matrices A(k)(z; s) and the
matrices A(k).

Theorem 8.13 The transform matrices A(k)(z; s) are given by0
BBB@

A(1)(z; s)
A(2)(z; s)
A(3)(z; s)

...

1
CCCA =

Z 1

0

e�steQ
(1)(z) t

0
BBB@

I
I
I
...

1
CCCA dH(t)

for jzj � 1 and Re(s) � 0.
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Proof: Using (3.3) we obtain

A(k)(z; s) =
1X
n=0

znA(k)
n (s) =

1X
n=0

zn
Z 1

0

e�st P (k)
n (t) dH(t)

=

Z 1

0

e�st
1X
n=0

znP (k)
n (t) dH(t) =

Z 1

0

e�st P (k)(z; t) dH(t) :

Theorem 8.11 yields0
B@

A(1)(z; s)
A(2)(z; s)

...

1
CA =

Z 1

0

e�st

0
B@

P (1)(z; t)
P (2)(z; t)

...

1
CA dH(t) =

Z 1

0

e�steQ
(1)(z) t

0
B@

I
I
...

1
CA dH(t)

for jzj � 1 and Re(s) � 0. 2

Corollary 8.14 The matrices A(k) satisfy A(k) = A(1) =: A for all k 2 IN and

A =

Z 1

0

eDt dH(t) :

Proof: Theorem 8.13 and corollary 8.3 imply

A(k) = A(k)(1; 0) =

Z 1

0

1X
n=k�1

�
eQ

(1) t
�
k�1;n

dH(t) =

Z 1

0

eDt dH(t)

for all k 2 IN (note that we number the rows and columns of eQ
(1) t beginning with 0). 2

Corollary 8.15 The stationary probability distribution � of the phase process is also the
stationary vector of the matrix A, i.e. �A = �.

Proof: Since �D = 0, corollary 8.14 yields

�A =

Z 1

0

� dH(t) = � :

2

The matrix A is the transition matrix of the phase process in the embedded Markov chain
(X ;J ), if the queueing system was not empty after the last service completion, i.e.

PfJ�+1 = j j X� = k; J� = ig = (A)ij for k � 1:

So � is the stationary probability distribution of the phase process in the embedded
Markov chain (X ;J ), if the queueing system was not empty after the last service com-
pletion.
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We can now determine the joint transform B(z; s) and the matrix B.

Theorem 8.16 The joint transform matrix B(z; s) is given by

B(z; s) =
�
sI �D

(0)
0

��1
z�1

1X
l=1

D
(0)
l zlA(l)(z; s)

for jzj � 1 and Re(s) � 0.

Proof: Using theorem 3.4 we obtain

B(z; s) =
1X
n=0

Bn(s) z
n =

�
sI �D

(0)
0

��1 1X
n=0

nX
l=0

D
(0)
l+1A

(l+1)
n�l (s) z

n

=
�
sI �D

(0)
0

��1 1X
l=0

1X
n=l

D
(0)
l+1A

(l+1)
n�l (s) z

n

=
�
sI �D

(0)
0

��1 1X
l=0

D
(0)
l+1 z

l A(l+1)(z; s)

for all jzj � 1 and Re(s) � 0. 2

Corollary 8.17 The matrix B is given by

B =
�
I �D

(0)
0

�1
D
�
A :

Proof: Theorem 8.16 implies

B = B(1; 0) = �D(0)
0

�1
1X
l=1

D
(0)
l A = �D(0)

0

�1
�
D �D

(0)
0

�
A =

�
I �D

(0)
0

�1
D
�
A :

2

Note that �B 6= �, i.e. � is not the stationary distribution of the Markov chain de�ned
by B. The matrix B is the transition matrix of the phase process during an idle time
and the following service time. This period must contain an arrival time, and so it is
not independent of the arrival process (N (0);J (0)), i.e. it is not independent of the phase
process.
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8.2.2 The mean number of arrivals

The vectors a(k) and b (cf. section 3) can be obtained by di�erentiating A(k)(z; s)e and
B(z; s)e with respect to z. Doing so, we obtain the results given in theorems 3.7 and 3.9.

Theorem 8.18 The mean number of arrivals during a service time satis�es

�a(k) � ��d(k)��1 :

Proof: Theorem 8.12 implies

�a(k) =

Z 1

0

�n(k)(t) dH(t) �

Z 1

0

��d(k)t dH(t) = ��d(k)��1 :

2

8.3 Stability

In the special case of assumption 8.1 we can improve the stability condition for the
BMAP/G/1 queue with level dependent arrivals given in theorem 4.2. To do so, we need
to generalize a result of Pakes [32, Th. 1] which was the key to theorem 4.1.

Let Pkl, k; l 2 IN0, denote the (k; l)th block of the transition matrix P. Then P0l = Bl

for all l 2 IN0, Pkl = A
(k)
l�k+1 for l � k � 1 � 0, and Pkl = O otherwise.

Theorem 8.19 If there exists some N 2 IN and nonnegative vectors �k <1e, k 2 IN0,
such that

a) e��k � �k for all k � N ,

b) �
1X
l=0

Pkl�l � ��k � 1 for all k � N ,

c) �
1X
l=0

Pkl�l < 1 for all k = 0; : : : ; N � 1,

then the embedded Markov chain (X ;J ) is positive recurrent.
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Proof: Let P
[n]
kl denote the (k; l)th block of Pn. De�ne Rkl := e�Pkl for k; l 2 IN0, and

R := (Rkl)k;l2IN0, and let R
[n]
kl denote the (k; l)th block of Rn. Then R is the transition

matrix of the discrete Markov chain (X 0;J 0) obtained by starting with the stationary
distribution of fJ(t) : t � 0g and applying the transition matrix P.

We will �rst show that (X 0;J 0) is positive recurrent, proceeding similarly to Pakes [32,
Th. 1]. Let zl = (zli)i=1;:::;m be the lth block of the limiting distribution of (X 0;J 0). Then

limn!1R
n = (ezl)k;l2IN0, i.e. limn!1R

[n]
kl = ezl for all k; l 2 IN0, and (X 0;J 0) is positive

recurrent if and only if there exists some (l; i) such that zli > 0 (and hence zli > 0 for all
(l; i) 2 XX) [13, pp. 389 + 393].

Let

�k := �
1X
l=0

Pkl�l for k = 0; : : : ; N � 1,

then �k <1 by assumption. Further, de�ne the sequences �
[n]
k for n 2 IN and k 2 IN0 by

�
[1]
k := �k and �

[n+1]
k :=

1X
l=0

R
[n]
kl �l :

Then

�
[n+2]
k =

1X
l=0

1X
�=0

R
[n]
k�R�l�l

=
N�1X
�=0

R
[n]
k�e�

1X
l=0

P�l�l +
1X

�=N

R
[n]
k�e�

1X
l=0

P�l�l

�
N�1X
�=0

R
[n]
k�e�� +

1X
�=N

R
[n]
k�e(��� � 1) (by assumption)

�
N�1X
�=0

R
[n]
k�e�� +

1X
�=N

R
[n]
k� �� �

1X
�=0

R
[n]
k�e +

N�1X
�=0

R
[n]
k�e (by assumption)

�
N�1X
�=0

R[n]
k�e(1 + ��) + � [n+1]

k � e : (8.1)

So �
[n+1]
k < 1e implies �

[n+2]
k < 1e, and from �

[1]
k = �k < 1e we get �

[n]
k < 1e for all

n 2 IN . Applying (8.1) recursively we obtain

�
[n+2]
k �

nX
r=1

N�1X
�=0

R
[r]
k�e(1 + ��) + �

[2]
k � ne ;
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so
1

n
�
[n+2]
k �

1

n

nX
r=1

N�1X
�=0

R
[r]
k�e(1 + ��) +

1

n
�
[2]
k � e ;

and letting n!1

0 �
N�1X
�=0

ez�e(1 + ��)� e :

Thus

e �
N�1X
�=0

ez�e(1 + ��)

and hence there must be some (l; i), l 2 f0; : : : ; N � 1g, such that zli > 0. So (X 0;J 0) is
positive recurrent.

Now, for k � 1 let (a
(k)
R )i = E[X 0

n+1 �X 0
n j X

0
n = k; J 0n = i]. Then a

(k)
R can be considered

to be the vector of the phase dependent mean numbers of arrivals in (X 0;J 0) during a
service time starting in level k � 1. Thus, for k � 1

a
(k)
R =

1X
n=1

nRkne =
1X
n=1

ne�A(k)
n e :

Further, let �
(k)
R be the mean number of arrivals in (X 0;J 0) during a service time starting

in level k � 1. Then �
(k)
R = �

(k)
R a

(k)
R , where �

(k)
R denotes the stationary distribution of the

phase process of (X 0;J 0) in level k. So, for k � 1

�
(k)
R = �

(k)
R a

(k)
R =

1X
n=1

n�A(k)
n e

and therefore �(k)
R = �a(k).

In our original process the mean number �� of arrivals during a time period which corre-
sponds to the length of a service time but starts at an arbitrary time is given by

�� =

Z 1

0

�n(k)(t) dH(t) = �a(k) = �
(k)
R :

Hence (X ;J ) evolves in the same way as (X 0;J 0) and so the positive recurrence of (X 0;J 0)
implies the positive recurrence of (X ;J ). 2

Theorem 8.20 If lim supk!1 �a(k) < 1 then the embedded Markov chain (X ;J ) is pos-
itive recurrent.
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Proof: Again we proceed similarly to Pakes [32, Th. 2]. Since lim supk!1 �a(k) < 1 there
exist " > 0 and N 2 IN such that �a(k) � 1�" for all k � N . De�ne �k :=

k
"
e for k 2 IN0,

then

e��k =
k

"
e�e =

k

"
e = �k

for all k 2 IN0. Further, for k � N :

�
1X
l=0

Pkl�l = �
1X

l=k�1

A
(k)
l�k+1

l

"
e

=
1

"
�

1X
l=0

lA
(k)
l e+

k � 1

"
�

1X
l=0

A
(k)
l e

=
1

"
�a(k) +

k � 1

"
�

1

"
(1� ") +

k � 1

"

=
k

"
� 1 =

k

"
�e� 1 = ��k � 1 ;

and for k = 1; : : : ; N � 1:

�
1X
l=0

Pkl�l = �
1X

l=k�1

A
(k)
l�k+1

l

"
e =

1

"
�
�
a(k) + (k � 1)e

�

�
1

"
�
�
��(0)��1e+ (N � 1)e

�
(by theorem 3.8 and (1.1))

=
1

"

�
��(0)��1 + (N � 1)

�
< 1 :

Finally, theorems 3.9 and 3.10 imply

�
1X
l=0

P0l�l = �
1X
l=0

Bl

l

"
e =

1

"
�b �

1

"
�
�
��(0)�0 � 1

�
< 1 :

Theorem 8.19 yields that (X ;J ) is positive recurrent. 2

Again we can derive a weaker stability condition which only relies on the arrival rates and
the service rate.

Corollary 8.21 If lim supk!1 �(k) < � then the embedded Markov chain (X ;J ) is posi-
tive recurrent.

Proof: Remember that �(k) = �d(k) and �a(k) � ��d(k)��1 (theorem 8.18). So we start by
showing that lim supk!1 �d(k) = lim supk!1 d(k). The de�nition of �d(k) implies �d(k) � d(k)

for all k 2 IN0 and so lim supk!1 �d(k) � lim supk!1 d(k).
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Let �c := lim supk!1 �d(k) with components �ci, i = 1; : : : ; m, then there are sequences

fki;ngn2IN � IN0 such that limn!1
�d
(ki;n)
i = �ci for i = 1; : : : ; m. Thus for any "i > 0

there exists some Ni 2 IN such that j �d
(ki;n)
i � �cij <

"i
2
for all n � Ni. Further, since

�d
(ki;n)
i = supfd(r)i : r � ki;ng, there is ri;n � ki;n with jd

(ri;n)
i � �d

(ki;n)
i j < "i

2
for all n 2 IN .

This implies for all n � Ni:���d(ri;n)i � �ci

��� � ���d(ri;n)i � �d
(ki;n)
i

���+ ��� �d(ki;n)i � �ci

��� < "i :

So we have limn!1 d
(ri;n)
i = �ci for i = 1; : : : ; m, and thus lim supk!1 d(k) � �c. Altogether,

lim supk!1 �d(k) = lim supk!1 d(k).

Now theorem 8.18 yields

lim sup
k!1

�a(k) � lim sup
k!1

��d(k)��1 = lim sup
k!1

�d(k)��1 = lim sup
k!1

�(k)��1 < 1

and therefore (X ;J ) is positive recurrent by theorem 8.20. 2

8.4 The queue length at service completion times

The stationary distribution of the embedded Markov chain (X ;J ), i.e. the distribution
of the queue length at service completion times, can be computed according to theorem
6.1 and equation (6.2). The sum of the components xk, k 2 IN0, is just the stationary
distribution of the phase process at service completion times, which we will denote by ~�.

Theorem 8.22 The stationary distribution of the phase process at service completion
times is given by

~� =
�
� x0D

(0)
0

�1
DA+ �

��
I � A+ e�

��1
:

Proof: By de�nition of the stationary distribution, ~� =
P1

k=0 xk. Equation (6.1) implies

~� =
1X
k=0

xk =
1X
k=0

 
x0Bk +

k+1X
�=1

x�A
(�)
k+1��

!

= x0B +
1X
�=0

1X
k=�

x�+1A
(�+1)
k��

= x0

�
I �D

(0)
0

�1
D
�
A+

1X
�=0

x�+1A by corollaries 8.17 and 8.14

= �x0D
(0)
0

�1
DA+

1X
�=0

x�A

= �x0D
(0)
0

�1
DA+ ~�A
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and so
~�(I � A) = �x0D

(0)
0

�1
DA :

Because xk, k 2 IN0, is a probability distribution, ~�e =
P1

k=0 xke = 1. Thus

~�(I � A+ e�) = � � x0D
(0)
0

�1
DA :

Since A is the transition matrix of a �nite state Markov chain with stationary distribution
� (corollary 8.15), I � A+ e� is nonsingular [20, Th. 2.13] and therefore

~� =
�
� � x0D

(0)
0

�1
DA
��

I � A+ e�
��1

:

2

8.5 The queue length at an arbitrary time

The distribution of the queue length at an arbitrary time, i.e. the limiting distribution
y = (y0;y1;y2; :::) of the stochastic process (Y;J ) = fY (t); J(t) : t � 0g, is given by
theorems 7.1 and 7.2. We will now show that in the case of assumption 8.1 the vector �
is the marginal distribution of the phase process fJ(t) : t � 0g.

Theorem 8.23 The stationary distribution � of the phase process fJ(t) : t � 0g is also
its marginal limiting distribution.

Proof: The marginal limiting distribution of the phase process fJ(t) : t � 0g is
P1

k=0 yk.
Theorem 7.2 yields�

��1 � x0D
(0)
0

�1
e
� 1X

k=1

yk

=
1X
k=1

kX
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt

=
1X
l=1

1X
k=l

�
xl � x0D

(0)
0

�1
D(0)

l

�Z 1

0

P (l)
k�l(t)

�
1�H(t)

�
dt

=
1X
l=1

�
xl � x0D

(0)
0

�1
D

(0)
l

�Z 1

0

eDt
�
1�H(t)

�
dt

by corollary 8.9

=
��

� � x0D
(0)
0

�1
DA
��

I � A+ e�
��1

� x0

�Z 1

0

eDt
�
1�H(t)

�
dt

� x0D
(0)
0

�1
�
D �D

(0)
0

� Z 1

0

eDt
�
1�H(t)

�
dt
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by theorem 8.22. First we note that �(I � A + e�) = �, so �(I � A + e�)�1 = �, and
�eDt = �. Further, D(I � A + e�) = D(I � A), and since AD = DA by corollary 8.14,
D(I � A + e�) = (I � A + e�)D. This implies

�
��1 � x0D

(0)
0

�1
e
� 1X

k=1

yk

= �

Z 1

0

eDt
�
1�H(t)

�
dt

� x0D
(0)
0

�1
DA
�
I � A+ e�

��1 Z 1

0

eDt
�
1�H(t)

�
dt

� x0D
(0)
0

�1
D

Z 1

0

eDt
�
1�H(t)

�
dt

= ��1� � x0D
(0)
0

�1
DA
�
I � A+ e�

��1 Z 1

0

eDt
�
1�H(t)

�
dt

� x0D
(0)
0

�1
D
�
I � A

��
I � A+ e�

��1 Z 1

0

eDt
�
1�H(t)

�
dt

= ��1� � x0D
(0)
0

�1
D

Z 1

0

eDt
�
1�H(t)

�
dt
�
I � A+ e�

��1
:

Partial integration [21, Th. 8.10, pp. 209f] yieldsZ 1

0

DeDt
�
1�H(t)

�
dt = eDt

�
1�H(t)

����1
0
�

Z 1

0

eDt d
�
1�H(t)

�
= �I +

Z 1

0

eDt dH(t) = �I + A

by corollary 8.14. Further, e�(I � A + e�) = e�. Thus

�
��1 � x0D

(0)
0

�1
e
� 1X

k=1

yk

= ��1� + x0D
(0)
0

�1
�
I � A

��
I � A+ e�

��1
= ��1� + x0D

(0)
0

�1
�
I � A+ e�

��
I � A+ e�

��1
� x0D

(0)
0

�1
e�
�
I � A+ e�

��1
= ��1� + x0D

(0)
0

�1
� x0D

(0)
0

�1
e� :
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So we obtain by applying theorem 7.1

1X
k=0

yk = �
1

��1 � x0D
(0)
0

�1
e
x0D

(0)
0

�1

+
1

��1 � x0D
(0)
0

�1
e

�
��1� + x0D

(0)
0

�1
� x0D

(0)
0

�1
e�
�

=
��1 � x0D

(0)
0

�1
e

��1 � x0D
(0)
0

�1
e
� = � :

2

Ramaswami [33, L. 3.3.1] and Lucantoni [24, p. 29] have shown, that in the level inde-
pendent case ��1 � x0D0

�1e = ��1. This does not hold in our case (with � being �(0) or
any suitable combination of the �(k)), as we can see from the following simple example.
Suppose arrivals in level 0 occur according to a Poisson process with rate � > 0, and
there are no arrivals in all other levels k � 1. So m = 1, D

(0)
0 = ��, D(0)

1 = � and all

other D
(k)
n = 0. Then a departing customer always leaves an empty system behind and

so x0 = 1. Thus ��1 � x0D
(0)
0

�1
e = ��1 + ��1.
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9 The level independent BMAP/G/1 queue

The classical level independent BMAP/G/1 queue has been analysed by Ramaswami [33]
and Lucantoni [24]. We want to compare our results with theirs.

Assumption 9.1 Suppose J(k) = J(0) =: J, i.e. m(k) = m < 1, and D
(k)
n = D

(0)
n = Dn

for all n; k 2 IN0.

In this case it is also Q(k)(z) = Q(0)(z) =: Q(z) for all k 2 IN0 and jzj � 1. Further, we
have D(k)(z) = D(0)(z) =: D(z) and d(k) = d(0) =: d as well as �(k) = �(0) =: � for all
k 2 IN0.

Now we can simplify some of our results for this special instance.

Lemma 9.2 For all l 2 IN0 it is

1X
n=l

�
eQ(z) t

�
ln

= eD(z) t :

Proof: Since

1X
n=l

�
eQ(z) t

�
ln

=
1X
n=l

1X
j=0

tj

j!

�
(Q(z))j

�
ln

=
1X
j=0

tj

j!

1X
n=l

�
(Q(z))j

�
ln

it su�ces to show that
1X
n=l

�
(Q(z))j

�
ln

= (D(z))j (9.1)

for all j 2 IN0. This is obviously true for j = 0, so assume (9.1) holds for j and consider
j + 1:

1X
n=l

�
(Q(z))j+1

�
ln

=
1X
n=l

nX
�=l

�
(Q(z))j

�
l�

�
Q(z)

�
�n

=
1X
�=l

1X
n=�

�
(Q(z))j

�
l�
Dn��z

n��

= (D(z))jD(z) = (D(z))j+1 :

Thus (9.1) holds for all j 2 IN0, and so the assertion is proven. 2
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9.1 The arrival process and the embedded Markov chain

Theorems 8.11 and 8.13 together with lemma 9.2 yield

P (z; t) := P (k)(z; t) = eD(z) t for all k 2 IN0 (9.2)

and

A(z; s) := A(k)(z; s) =

Z 1

0

e�sxeD(z) t dH(t) for all k 2 IN (9.3)

in accordance with the results of Lucantoni [24, pp. 7, 11]. So the transition probabilities

do not dependent on the current level. Let Pn(t) := P
(k)
n (t) and An := A

(k)
n for all

k; n 2 IN0 (k 2 IN respectively).

Now we can also determine the mean number of arrivals.

Theorem 9.3 The vectors of the phase dependent mean numbers of arrivals in time t
and during a service time are given by

n(t) := n(k)(t) = �te� (eDt � I)(e� �D)�1d

and
a := a(k) = ���1e� (A� I)(e� �D)�1d

for all k 2 IN0 (k 2 IN respectively).

Proof: The vector of the phase dependent mean numbers of arrivals in time t is given by

n(t) = @
@z
P (z; t)

���
z=0

e =
1X
j=0

tj

j!
d
dz
(D(z))j

���
z=0

e :

Because of De = 0 we obtain

n(t) =
1X
j=1

tj

j!
Dj�1D0(z)

���
z=0

e =
1X
j=1

tj

j!
Dj�1d :

So Dn(t) = (eDt � I)d and �n(t) = t�d = t�, thus

(e� �D)n(t) = �te� (eDt � I)d :

Since D is the generator matrix of a �nite state Markov process with stationary distribu-
tion �, D�e� is nonsingular [20, Th. 2.13]. Further, (e��D)e = e, so (e��D)�1e = e,
and (e� �D)(eDt � I) = �DeDt +D = (eDt � I)(e� �D). This implies

n(t) = �te� (eDt � I)(e� �D)�1d :
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Now

a =

Z 1

0

n(t) dH(t) =

Z 1

0

�te dH(t)�

Z 1

0

(eDt � I) dH(t) (e� �D)�1d

= ���1e� (A� I)(e� �D)�1d

by corollary 8.14. 2

Theorem 9.3 implies �n(t) = �t and �a = ���1. By theorem 8.20 and corollary 8.21 the
BMAP/G/1 queue is stable, i.e. the embedded Markov chain (X ;J ) is positive recurrent,
if � < �. Ramaswami has shown that this condition is not only su�cient, but also
necessary [33, Th. 2.2.16]. Henceforth we will assume that � < �.

9.2 The fundamental period

We will now show that our algorithms for computing the fundamental matrix G := G(k)

for all k 2 IN are equivalent to the corresponding algorithms for the classical BMAP/G/1
queue derived by Baum [1]. At �rst we state the de�nition of the upper and lower semi{
convolution of a sequence of matrices [1].

De�nition 9.4 Let A denote the sequence fA0; A1; A2; : : :g.

a) For k 2 IN0 the sequence
[�k]A = f[�k]A0;

[�k]A1;
[�k]A2; : : :g with

[�0]A0 = I;
[�0]Aj = O for j � 1;
[�1]Aj = Aj for j � 1;
[�k]Aj = O for 0 � j < k;

[�k]Aj =

jX
l=k�1

[�k�1]Al Aj�l for j � k � 1

is called the kth upper semi{convolution of A with itself.

b) For k 2 IN0 the sequence [�k]A = f[�k]A0; [�k]A1; [�k]A2; : : :g with

[�0]A0 = I;

[�0]Aj = O for j � 1;

[�1]Aj = Aj for j � 1;

[�k]Aj = O for j > k � 1;

[�k]Aj =

jX
l=0

Al [�k�1]Aj�l for 0 � j � k, k � 1

is called the kth lower semi{convolution of A with itself.
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The matrices Gl := G
(k)
l for all k 2 IN are then given by [1]:

Gl = [�l�1]Al�1A0 = [�l�1]Al�1A0 ; l � 1:

So we need to show that the matrices Al := A
(k)
l and A1 := A

(k)
1 for all k 2 IN (cf.

section 5) satisfy
hQl�1

i=1Al�i

i
0
= [�l�1]Al�1 and

�
(A1)

l�1
�
00
= [�l�1]Al�1 for all l 2 IN .

Lemma 9.5 The matrices Al satisfy"
l�1Y
i=1

Al�i

#
�

= [�l�1]Al�1��

for all l 2 IN and � = 0; : : : ; l � 1.

Proof: For l = 1 the assertion is true (the empty product
Q0

i=1 � shall be the identity
matrix I), so suppose it holds for l and consider l + 1:

"
lY

i=1

Al+1�i

#
�

=

"
Al

lY
i=2

Al+1�i

#
�

=

"
Al

l�1Y
i=1

Al�i

#
�

:

Since [�l�1]Al = O we obtain for � = 0

"
lY

i=1

Al+1�i

#
0

=
l�1X
n=0

An+1 [�l�1]Al�1�n =
lX

n=0

An [�l�1]Al�n = [�l]Al ;

and for � > 0"
lY

i=1

Al+1�i

#
�

=
l��X
n=0

An [�l�1]Al�1�(��1+n) =
l��X
n=0

An [�l�1]Al���n = [�l]Al�� :

So the assertion holds for all l 2 IN and � = 0; : : : ; l � 1. 2

Lemma 9.6 The matrix A1 satis�es�
(A1)

l�1
�
0�

= [�l�1]Al�1+�

for all l 2 IN and � � 0.
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Proof: For l = 1 the assertion is obviously true, so suppose it holds for l and consider
l + 1:

�
(A1)

l
�
0�

=
�+1X
n=0

�
(A1)

l�1
�
0n
A�+1�n =

�+1X
n=0

[�l�1]Al�1+nA�+1�n

=
l+�X

n=l�1

[�l�1]AnAl+��n = [�l]Al+� :

So the assertion holds for all l 2 IN and � � 0. 2

Theorem 9.7 The matrices Gl are given by

Gl =

"
l�1Y
i=1

Al�i

#
0

A0 = [�l�1]Al�1A0 and

Gl =
�
(A1)

l�1
�
00
A0 = [�l�1]Al�1A0

for all l 2 IN .

Theorem 9.7 is a restatement of our theorems 5.8 and 5.12 and lemma 4.2 in [1].

Let g denote the stationary probability vector of G, i.e. gG = g and ge = 1. We can
now also determine the phase dependent mean number of service completions during a
fundamental period, cF := c

(k)
F for all k 2 IN . This result is due to Neuts [31, Th. 3.1.1,

p. 126] and Ramaswami [33, Th. 2.3.1].

Theorem 9.8 The phase dependent mean number of service completions during a fun-
damental period is given by

cF =
�
I �G+ eg

��
I � A+ (e� a)g

��1
e :

Proof: Neuts [31, p. 127] proved that the matrix (I � A + (e � a)g) is nonsingular. So
we only need to show that cF = (I �G+ eg)(I �A+ (e� a)g)�1e is the solution of the
system of linear equations given in lemma 5.13:

e+
1X
l=1

AlG
l�1cF +

1X
�=1

1X
l=1

A�+lG
l�1cF

= e+
1X
�=0

1X
l=�

Al+1G
l��cF
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= e+
1X
l=0

lX
�=0

Al+1G
l��cF

= e+
1X
l=0

Al+1

lX
�=0

Gl��
�
I �G+ eg

��
I � A+ (e� a)g

��1
e :

Now,
Pl

�=0G
l��(I �G) = I �Gl+1 and

Pl

�=0G
l��eg = (l + 1)eg. Thus

e+
1X
l=1

AlG
l�1cF +

1X
�=1

1X
l=1

A�+lG
l�1cF

= e+
1X
l=0

Al+1

�
I �Gl+1 + (l + 1)eg

��
I � A+ (e� a)g

��1
e

=
�
I � A+ (e� a)g + (A� A0)� (G� A0) + ag

��
I � A + (e� a)g

��1
e

by corollary 5.3

=
�
I �G+ eg

��
I � A + (e� a)g

��1
e = cF :

So lemma 5.13 and theorem 5.16 yield the assertion. 2

9.3 The queue length distribution

The stationary distribution x = (x0;x1;x2; : : :) of the queue length at service completion
times can be computed recursively by Ramaswami's formulae (theorem 6.1). In the case
of assumption 9.1 this yields the algorithm given by Lucantoni [24, p. 25]. Further, our
result for the joint transform K(z; s) (theorem 6.2) coincides with the one of Lucantoni
[24, p. 15]. Corollary 6.4 and theorem 9.8 imply that the vector of the phase dependent
mean number of service completions during a busy period, cB, is given by

cB = �D0
�1

1X
j=1

Dj

j�1X
l=0

GlcF

= �D0
�1

1X
j=1

Dj

j�1X
l=0

Gl
�
I �G+ eg

��
I � A+ (e� a)g

��1
e

= �D0
�1

1X
j=1

Dj

�
I �Gj + jeg

��
I � A+ (e� a)g

��1
e

= �D0
�1
�
D �D[G] + dg

��
I � A+ (e� a)g

��1
e ;

where D[G] =
P1

j=0DjG
j. This is also the result of Lucantoni [24, p. 16].
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Theorem 9.9 The z-transform X(z) =
P1

k=0 xkz
k of x satis�es

X(z)
�
zI � A(z; 0)

�
= �x0D0

�1D(z)A(z; 0)

for jzj � 1.

Proof: Equation (6.1) and theorem 8.16 imply

X(z) =
1X
k=0

xkz
k =

1X
k=0

x0Bkz
k +

1X
k=0

kX
�=0

x�+1Ak��z
k

= x0B(z; 0) +
1X
�=0

1X
k=�

x�+1Ak��z
k

= �x0D0
�1z�1

1X
l=1

Dlz
lA(z; 0) +

1X
�=0

x�+1z
�A(z; 0)

= �x0D0
�1z�1

�
D(z)�D0

�
A(z; 0) + z�1

�
X(z)� x0

�
A(z; 0)

= �x0D0
�1z�1D(z)A(z; 0) + z�1X(z)A(z; 0) :

So X(z)(zI � A(z; 0)) = �x0D0
�1D(z)A(z; 0). 2

It remains to show that our results for the limiting distribution y = (y0;y1;y2; : : :) of the
queue length at an arbitrary time coincide with those of Lucantoni [24, p. 18]. At �rst
we note that

��1 � x0D0
�1e = ��1

as shown by Ramaswami [33, L. 3.3.1] and Lucantoni [24, p. 29] (cf. section 8.5).

Theorem 9.10 The z-transform Y (z) =
P1

k=0 ykz
k of y satis�es

��1Y (z)D(z) = X(z)(z � 1)

for jzj � 1.

Proof: Theorems 7.1 and 7.2 yield:

��1Y (z)D(z)

= ��1
1X
k=0

kX
l=0

ylDk�lz
k
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=
1X
k=0

�
� x0D0

�1
�
Dkz

k

+
1X
k=1

kX
l=1

lX
�=1

�
x� � x0D0

�1D�

�Z 1

0

Pl��(t)
�
1�H(t)

�
dtDk�lz

k

= �x0D0
�1D(z)

+
1X
l=1

1X
k=l

lX
�=1

�
x� � x0D0

�1D�

�Z 1

0

Pl��(t)
�
1�H(t)

�
dtDk�lz

k

= �x0D0
�1D(z) +

1X
l=1

lX
�=1

�
x� � x0D0

�1D�

�Z 1

0

Pl��(t)
�
1�H(t)

�
dt zlD(z)

= �x0D0
�1D(z) +

1X
�=1

1X
l=�

�
x� � x0D0

�1D�

�Z 1

0

Pl��(t)
�
1�H(t)

�
dt zlD(z)

= �x0D0
�1D(z) +

1X
�=1

�
x� � x0D0

�1D�

�Z 1

0

P (z; t)z�
�
1�H(t)

�
dtD(z)

= �x0D0
�1D(z) +

1X
�=1

�
x� � x0D0

�1D�

�
z�
Z 1

0

eD(z) tD(z)
�
1�H(t)

�
dt

by (9.2). Partial integration [21, Th. 8.10, pp. 209f] yieldsZ 1

0

eD(z) tD(z)
�
1�H(t)

�
dt = eD(z) t

�
1�H(t)

����1
0
�

Z 1

0

eD(z) t d
�
1�H(t)

�
= �I +

Z 1

0

eD(z) t dH(t) = �I + A(z; 0)

by (9.3). Thus

��1Y (z)D(z)

= �x0D0
�1D(z) +

1X
�=1

�
x� � x0D0

�1D�

�
z�
�
A(z; 0)� I

�

= �x0D0
�1D(z) +

�
X(z)� x0 � x0D0

�1(D(z)�D0)
��

A(z; 0)� I
�

= X(z)
�
A(z; 0)� I

�
� x0D0

�1D(z)A(z; 0)

= X(z)
�
A(z; 0)� I

�
+X(z)

�
zI � A(z; 0)

�
by theorem 9.9

= X(z)(z � 1) :

2
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This result coincides with the one of Lucantoni [24, p. 18]. Note that Y (z) is uniquely
determined by theorem 9.10 for jzj < 1, since D(z) is nonsingular for jzj < 1 (by the
theorem of Gerŝgorin [28, p. 146]). Further, theorem 8.23 yields Y (1) = �.

So we have seen that our results for the BMAP/G/1 queue with level dependent arrivals
include the classical results for the level independent BMAP/G/1 queue.

10 The �nite capacity queue

A special case of the BMAP/G/1 queue with level dependent arrivals is the �nite capacity
queue. This is of great importance for applications, especially when considering systems
with limited bu�ering memory where the loss probability is an important performance
measure.

Suppose the bu�er has N � 1 waiting places available, so there can be up to N customers
in the system. Further, arrivals shall occur according to a level dependent BMAP de�ned
by a family of sequences fD(k)

n : n 2 IN0g (cf. section 1). Then D(k)
n = O for all n > N �k

(in particular for k > N). This queueing system is always stable, because the state space
YY of the stochastic process (Y;J ) is �nite:

YY =
N[
k=0

�
fkg � J(k)

�
:

The level independent BMAP/G/1/N queue has been analysed by Blondia [4] using the
method of the embedded Markov chain. He determines the stationary distribution x of
the queue length at service completion times by solving the �nite system of equations
xP = x and the normalising condition xe = 1. He also derives the limiting distribution y
of the queue length at an arbitrary time by computing the conditional joint distribution
of the queue length and the remaining service time for the customer that is in service,
given that the server is busy. We will show that his and our approach yield the same
results for the distributions x and y.
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10.1 The arrival process

Suppose arrivals occur according to a BMAP with generator matrix

Q =

0
BBBBB@

D0 D1 D2 D3 � � �
D0 D1 D2 � � �

D0 D1 � � �
D0 � � �

. . .

1
CCCCCA

and transition probabilities Pn(t), n 2 IN0, with P (z; t) = eD(z) t (cf. section 9).

Using our approach this BMAP/G/1/N queue can be described by a BMAP/G/1 queue
with level dependent arrivals, whose arrival process is de�ned by

D(k)
n = Dn for k = 0; : : : ; N � 1 and n = 0; : : : ; N � k � 1,

D
(k)
N�k =

1X
n=N�k

Dn for k = 0; : : : ; N ,

D(k)
n = O otherwise.

The nonzero part of the matrix Q(0) is then given by (note that D
(N)
0 = D)

Q(0) =

0
BBBBBB@

D0 D1 � � � DN�1 D
(0)
N

D0 � � � DN�2 D
(1)
N�1

. . .
...

...

D0 D
(N�1)
1

D
(N)
0

1
CCCCCCA

=

0
BBBBBB@

D
(0)
N

D(1)
N�1QN�1 ...

D
(N�1)
1

D

1
CCCCCCA

:

Lemma 10.1 For n 2 IN0 the nth power of Q(0) satis�es

�
Q(0)

�n
=

0
BBBBBB@

Q
[n]
N

Q
[n]
N�1

�
QN�1

�n
...

Q[n]
1

Dn

1
CCCCCCA

;

where

Q
[n]
N�k =

n�1X
�=0

N�1X
l=k

�
(QN�1)

n�1��
�
kl
D

(l)
N�lD

� :



86 10 THE FINITE CAPACITY QUEUE

Proof: For n = 0 and n = 1 the assertion is obviously true. So suppose it holds for n
and consider n+ 1:

Q
[n+1]
N�k =

N�1X
l=k

�
(QN�1)

n
�
kl
D

(l)
N�l +Q

[n]
N�kD

=
N�1X
l=k

�
(QN�1)

n
�
kl
D(l)

N�l +
n�1X
�=0

N�1X
l=k

�
(QN�1)

n�1��
�
kl
D(l)

N�lD
�+1

=
N�1X
l=k

�
(QN�1)

n
�
kl
D

(l)
N�l +

nX
�=1

N�1X
l=k

�
(QN�1)

n��
�
kl
D

(l)
N�lD

�

=
nX

�=0

N�1X
l=k

�
(QN�1)

n��
�
kl
D

(l)
N�lD

� :

So the assertion holds for all n 2 IN0. 2

Corollary 10.2 The transition probability matrices P
(k)
n (t) are given by

P (k)
n (t) = Pn(t) =

�
eQN�1t

�
k;k+n

for k = 0; : : : ; N � 1 and n = 0; : : : ; N � k � 1.

Proof: Lemma 10.1 and theorem 1.14 imply

P (k)
n (t) =

�
eQN�1t

�
k;k+n

=
�
eQt
�
k;k+n

= Pn(t)

for k = 0; : : : ; N � 1 and n = 0; : : : ; N � k � 1. 2

10.2 The embedded Markov chain

We will now show that our approach yields the same embedded Markov chain as obtained
by Blondia [4], whose transition probability matrix is given by (we mark its entries with
an upper case B for distinction):

~PB(x) =

0
BBBBB@

~BB
0 (x) ~BB

1 (x) ~BB
2 (x) � � �

P1
n=N�1

~BB
n(x)

~AB
0 (x) ~AB

1 (x) ~AB
2 (x) � � �

P1
n=N�1

~AB
n(x)

~AB
0 (x) ~AB

1 (x) � � �
P1

n=N�2
~AB
n(x)

. . . � � �
...

~AB
0 (x)

P1
n=1

~AB
n(x)

1
CCCCCA :
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Note that the state space of the embedded Markov chain is

XX =
N�1[
k=0

�
fkg � J(k)

�
=
n
(k; i) : k = 0; : : : ; N � 1; i = 1; : : : ; m

o
;

because there cannot be more than N � 1 customers in the system immediately after a
service completion. The matrices ~AB

n(x) and ~BB
n(x) are given by

~AB

n(x) =

Z x

0

Pn(t) dH(t) ;

~BB

n(x) =
n+1X
l=1

( ~Ul � ~AB

n+1�l)(x) ;

where the (i; j)th entry of ~Ul(x) is the probability that an idle period which started in
phase i is ended by the arrival of a batch of size l and phase j not later than time x. The
Laplace{Stieltjes transform Ul(s) of ~Ul(x) is given by (cf. theorem 3.4):

Ul(s) = (sI �D0)
�1Dl :

Theorem 10.3 The transition probability matrices ~P(x) and ~PB(x) are equal.

Proof: We need to show that ( ~P(x))kn = ( ~PB(x))kn for all k; n = 0; : : : ; N � 1, i.e.

~Bn(x) = ~BB

n(x) for n = 0; : : : ; N � 2;

~BN�1(x) =
1X

n=N�1

~BB

n(x) ;

~A(k)
n (x) = ~AB

n(x) for k = 1; : : : ; N � 1 and n = 0; : : : ; N � k � 1;

~A(k)
N�k(x) =

1X
n=N�k

~AB

n(x) for k = 1; : : : ; N � 1:

Corollary 10.2 implies ~A
(k)
n (x) = ~AB

n(x) for n = 0; : : : ; N�k�1. Lemma 10.1 and theorem
1.14 yield

P
(k)
N�k(t) =

�
eQ

(0)t
�
kN

=
1X
j=0

tj

j!

�
(Q(0))j

�
kN

=
1X
j=1

tj

j!

j�1X
�=0

N�1X
n=k

�
(QN�1)

j�1��
�
kn
D(n)

N�nD
� ;
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while

1X
n=N�k

Pn(t) =
1X

n=N�k

�
eQt
�
k;k+n

=
1X

n=N

1X
j=0

tj

j!

�
Qj
�
kn

=
1X
j=1

tj

j!

1X
n=N

�
Qj
�
kn
:

So it su�ces to show that

j�1X
�=0

N�1X
n=k

�
(QN�1)

j�1��
�
kn
D

(n)
N�nD

� =
1X

n=N

�
Qj
�
kn

(10.1)

for all j 2 IN . For j = 1 we have

N�1X
n=k

�
(QN�1)

0
�
kn
D

(n)
N�nD

0 = D
(k)
N�k =

1X
n=N�k

Dn =
1X

n=N

�
Q
�
kn
:

Suppose (10.1) holds for j and consider j + 1:

jX
�=0

N�1X
n=k

�
(QN�1)

j��
�
kn
D

(n)
N�nD

�

=

j�1X
�=0

N�1X
n=k

N�1X
l=k

�
QN�1

�
kl

�
(QN�1)

j���1
�
ln
D

(n)
N�nD

� +
N�1X
n=k

�
(QN�1)

0
�
kn
D

(n)
N�nD

j

=
N�1X
l=k

�
QN�1

�
kl

j�1X
�=0

N�1X
n=l

�
(QN�1)

j���1
�
ln
D

(n)
N�nD

� +D
(k)
N�kD

j

=
N�1X
l=k

�
QN�1

�
kl

1X
n=N

�
Qj
�
ln
+

1X
l=N�k

DlD
j

=
N�1X
l=k

�
Q
�
kl

1X
n=N

�
Qj
�
ln
+

1X
l=N

�
Q
�
kl

1X
n=N

�
Qj
�
ln

by lemma 8.2

=
1X
l=k

�
Q
�
kl

1X
n=N

�
Qj
�
ln

=
1X

n=N

�
Qj+1

�
kn
:

Thus (10.1) holds for all j 2 IN and so ~A
(k)
N�k(x) =

P1
n=N�k

~AB
n(x).

Now theorem 3.4 implies Bn(s) = BB
n(s) for n = 0; : : : ; N � 2 and

BN�1(s) =
�
sI �D

(0)
0

��1 NX
l=1

D
(0)
l A

(l)
N�l(s) ;
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where A
(N)
0 (s) =

P1
n=0A

B
n(s) describes the evolution of the phase process during a service

time (note that P
(N)
0 (t) = eDt =

P1
n=0 Pn(t)). So

BN�1(s) =
�
sI �D0

��1 N�1X
l=1

Dl

1X
n=N�l

AB

n(s) +
�
sI �D0

��1
D

(0)
N

1X
n=0

AB

n(s)

=
�
sI �D0

��1 N�1X
l=1

Dl

1X
n=N�l

AB

n(s) +
�
sI �D0

��1 1X
l=N

Dl

1X
n=0

AB

n(s)

=
�
sI �D0

��1 1X
l=1

Dl

1X
n=N�l

AB

n(s) with A�(s) � O for � < 0

=
�
sI �D0

��1 1X
l=1

Dl

1X
n=N

AB

n�l(s)

=
�
sI �D0

��1 1X
n=N

nX
l=1

DlA
B

n�l(s)

=
�
sI �D0

��1 1X
n=N�1

n+1X
l=1

DlA
B

n+1�l(s) =
1X

n=N�1

BB

n(s) :

Altogether we have ~P(x) = ~PB(x). 2

10.3 The queue length distribution

Theorem 10.3 implies that our approach yields the same embedded Markov chain as
obtained by Blondia [4]. Consequently, both approaches give the same results for the
queue length distribution at service completion times. This implies that the results for
the queue length distribution at an arbitrary time also coincide:

Theorem 10.4 The limiting distribution of the queue length at an arbitrary time is given
by

y0 = �
1

��1 � x0D0
�1e

x0D0
�1 ;

yk =
1

��1 � x0D0
�1e

kX
l=1

�
xl � x0D0

�1Dl

� k�lX
�=0

A�

�
Q�1

N�1

�
�+l;k

�
�
Q�1

N�1

�
lk

!

for k = 1; : : : ; N � 1;

yN = � �
N�1X
k=0

yk :
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Proof: Theorem 7.1 yields

y0 = �
1

��1 � x0D
(0)
0

�1
e
x0D

(0)
0

�1
= �

1

��1 � x0D0
�1e

x0D0
�1

by de�nition of the matrices D
(k)
n for this case.

By corollary 1.17 D0 is nonsingular and hence QN�1 is also nonsingular. This enables us
to simplify our results for yk, k � 1 (theorem 7.2). Partial integration [21, Th. 8.10, pp.
209f] yields for k = 1; : : : ; N � 1 and l = 1; : : : ; k:Z 1

0

P
(l)
k�l(t)

�
1�H(t)

�
dt

=

Z 1

0

�
eQN�1t

�
lk

�
1�H(t)

�
dt by corollary 10.2

=

�
eQN�1tQ�1

N�1

�
1�H(t)

����1
0
�

Z 1

0

eQN�1tQ�1
N�1 d

�
1�H(t)

��
lk

= �
�
Q�1

N�1

�
lk
+

N�1X
�=0

Z 1

0

�
eQN�1t

�
l�
dH(t)

�
Q�1

N�1

�
�k

= �
�
Q�1

N�1

�
lk
+

kX
�=l

Z 1

0

P��l dH(t)
�
Q�1

N�1

�
�k

= �
�
Q�1

N�1

�
lk
+

k�lX
�=0

A�

�
Q�1

N�1

�
�+l;k

;

where A� = AB
� by theorem 10.3. Thus

yk =
1

��1 � x0D0
�1e

kX
l=1

�
xl � x0D0

�1Dl

� k�lX
�=0

A�

�
Q�1

N�1

�
�+l;k

�
�
Q�1

N�1

�
lk

!

for k = 1; : : : ; N � 1 by theorem 7.2. Finally, theorem 8.23 implies
PN

k=0 yk = � and

therefore yN = � �
PN�1

k=0 yk. 2

Remark: Blondia gives the same results for y0 and yN [4, eq. (18),(20)]. For yk, k =
1; : : : ; N � 1, he obtains [4, before eq. (19)] yk = Pbusy �!�k(0), where (in our notation)

Pbusy =
��1

��1 � x0D0
�1e

;

�!�k(s) = �x0D0
�1

kX
l=1

DlHk�l(s) +
kX
l=1

xlHk�l(s) ;
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Hn(s) = �

 
nX

�=0

A�Rn��(s)�H�(s)Rn(s)

!
;

1X
n=0

Rn(s) z
n =

�
D(z) + sI

��1
for Re(s) � 0 and jzj < 1;

H�(s) =

Z 1

0

e�st dH(t) :

Thus

�!�k(s) = �
kX
l=1

�
xl � x0D0

�1Dl

� k�lX
�=0

A�Rk�l��(s)�H�(s)Rk�l(s)

!
;

and so

yk =
1

��1 � x0D0
�1e

kX
l=1

�
xl � x0D0

�1Dl

� k�lX
�=0

A�Rk�l��(0)�Rk�l(0)

!
:

From

Q =

0
BBBBBB@

D0 � � � DN�1 DN � � �
. . .

...
...

D0 D1 � � �

D0 � � �
. . .

1
CCCCCCA

=

0
BBBBBB@

DN � � �

QN�1
...
D1 � � �

D0 � � �
. . .

1
CCCCCCA

we obtain (Q�1
N�1)�n = Rn��(0) for � = 0; : : : ; N�1 and n = �; : : : ; N�1. Thus Blondia's

result coincides with ours of theorem 10.4.
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Directions for future work

In this paper we de�ned a level dependent batch Markovian arrival process and analysed
the BMAP/G/1 queue with level dependent arrivals. We derived analytical results for
the queue length distributions at service completion times and at an arbitrary time.

Future research could start with the following ideas:

a) The results of this paper give rise to numerical algorithms for computing the queue
length distributions. To implement these algorithms one needs to think about the
appropriate truncation of sequences and matrices of in�nite size. Numerical algo-
rithms are needed to use the BMAP/G/1 queue with level dependent arrivals for
the performance evaluation of communication systems. The results could then be
compared with simulations.

b) The BMAP/G/1 queue with level dependent arrivals can be extended by allowing
the service time distribution to depend on the state of the queueing system at
the beginning of a service. This would not change the structure of the transition
probability matrix ~P(x) of the embedded Markov chain. But our derivations of the
mean sojourn times (theorem 3.6) and the mean duration of a fundamental period
(theorem 5.17) would not longer hold. These vectors were needed to determine the
queue length distribution at an arbitrary time (theorems 7.1 and 7.2).

c) The level dependent batch Markovian arrival process can be generalized by allowing
an in�nite number of phases. It might then be possible to extend the results of
Ramaswami and Taylor concerning product{form queueing networks [36].



REFERENCES 93

References

[1] Dieter Baum. A matrix convolution calculus and BMAPs. In D. Baum, J. Hofmann,
and N. M�uller, editors, Developments in matrix analytical performance assessment,
Technical Report 98-04, Universit�at Trier, Mathematik/Informatik, pages 91{106,
1998.

[2] Luigi Bella, Ferial Chummun, Marco Conte, Gerhard Fischer, and Josef Rammer.
Performance evaluation of dynamic routing based on the use of satellites and intelli-
gent networks. Wireless Networks, 4:167{180, 1998.

[3] Richard Bellman. Introduction to matrix analysis. McGraw{Hill, New York, 2nd
edition, 1970.

[4] Chris Blondia. The N/G/1 �nite capacity queue. Commun. Statist.-Stochastic Mod-
els, 5(2):273{294, 1989.

[5] Chris Blondia. Performance evaluation of an M/1-stage in an ATM switching element.
Performance Evaluation, 15:1{20, 1992.

[6] L. Bright and P. G. Taylor. Calculating the equilibrium distribution in level{
dependent Quasi{Birth{and{Death processes. Commun. Statist.-Stochastic Models,
11(3):497{525, 1995.

[7] L. Bright and P. G. Taylor. Equilibrium distributions for level{dependent Quasi{
Birth{and{Death processes. In S. R. Chakravarthy and A. S. Alfa, editors, Matrix
analytic methods in stochastic models, pages 359{375. Marcel Dekker, New York,
1996.

[8] Erhan C� inlar. Markov renewal theory. Adv. Appl. Prob., 1:123{187, 1969.

[9] Erhan C� inlar. Introduction to stochastic processes. Prentice{Hall, Englewood Cli�s,
1975.

[10] Gagan L. Choudhury, David M. Lucantoni, and Ward Whitt. Squeezing the most
out of ATM. IEEE Trans. Commun., 44:203{217, 1996.

[11] Richard G. Cooke. In�nite matrices and sequence spaces. Dover Publications, New
York, 1955.

[12] Jewgeni H. Dshalalow. Queueing systems with state dependent parameters. In J. H.
Dshalalow, editor, Frontiers in queueing, pages 61{116. CRC Press, Boca Raton,
1997.



94 REFERENCES

[13] William Feller. An introduction to probability theory and its applications, volume I.
Wiley, New York, 3rd edition, revised printing, 1968.

[14] William Feller. An introduction to probability theory and its applications, volume II.
Wiley, New York, 2nd edition, 1971.

[15] Robin Harte. Invertibility and singularity for bounded linear operators. Marcel
Dekker, New York, 1988.

[16] Harry He�es and David M. Lucantoni. A Markov modulated characterization of
packetized voice and data tra�c and related statistical multiplexer performance.
IEEE J. Select. Areas Commun., 4:856{868, 1986.

[17] Jens Hofmann. The BMAP/G/1 queue with level dependent arrivals and its station-
ary distribution. Technical Report 97-22, Universit�at Trier, Mathematik/Informatik,
1997. Also available on
http://www.informatik.uni-trier.de/Reports/1997.html.

[18] Jens Hofmann. The BMAP/G/1 queue with level dependent arrivals. In D. Baum,
J. Hofmann, and N. M�uller, editors, Developments in matrix analytical performance
assessment, Technical Report 98-04, Universit�at Trier, Mathematik/Informatik,
pages 79{89, 1998.

[19] Jens Hofmann. Stability conditions for the BMAP/G/1 queue with level dependent
arrivals. Technical Report 98-18, Universit�at Trier, Mathematik/Informatik, 1998.
Also available on http://www.informatik.uni-trier.de/Reports/1998.html.

[20] Je�rey J. Hunter. On the moments of Markov renewal processes. Adv. Appl. Prob.,
1:188{210, 1969.

[21] R. L. Je�ery. The theory of functions of a real variable. Dover, New York, 1985.

[22] Leonard Kleinrock. Queueing systems, Volume I: Theory. Wiley, New York, 1975.

[23] Leonard Kleinrock. Queueing systems, Volume II: Computer Applications. Wiley,
New York, 1976.

[24] David M. Lucantoni. New results on the single server queue with a batch markovian
arrival process. Commun. Statist.-Stochastic Models, 7(1):1{46, 1991.

[25] David M. Lucantoni. The BMAP/G/1 queue: A tutorial. In L. Donatiello and
R. Nelson, editors, Models and techniques for performance evaluation of computer
and communication systems, pages 330{358. Springer, Berlin, 1993.



REFERENCES 95

[26] David M. Lucantoni, Kathleen S. Meier-Hellstern, and Marcel F. Neuts. A single
server queue with server vacations and a class of non{renewal arrival processes. Adv.
Appl. Prob., 22:676{705, 1990.

[27] Ivor J. Maddox. In�nite matrices of operators. Springer, Berlin, 1980.

[28] Marvin Marcus and Henryk Minc. A survey of matrix theory and matrix inequalities.
Dover, New York, 1992.

[29] Marcel F. Neuts. A versatile Markovian point process. J. Appl. Prob., 16:764{779,
1979.

[30] Marcel F. Neuts. Matrix{geometric solutions in stochastic models: An algorithmic
approach. John Hopkins, Baltimore, 1981. Also published by Dover Publications,
New York, 1994.

[31] Marcel F. Neuts. Structured stochastic matrices of M/G/1 type and their applications.
Marcel Dekker, New York, 1989.

[32] A. G. Pakes. Some conditions for ergodicity and recurrence of Markov chains. Oper.
Res., 17:1058{1061, 1969.

[33] V. Ramaswami. The N/G/1 queue and its detailed analysis. Adv. Appl. Prob.,
12:222{261, 1980.

[34] V. Ramaswami. A stable recursion for the steady state vector in Markov chains of
M/G/1 type. Commun. Statist.-Stochastic Models, 4(1):183{188, 1988.

[35] V. Ramaswami. Matrix analytic methods: A tutorial overview with some extensions
and new results. In S. R. Chakravarthy and A. S. Alfa, editors, Matrix analytic
methods in stochastic models, pages 261{296. Marcel Dekker, New York, 1996.

[36] V. Ramaswami and P. G. Taylor. An operator{analytic approach to product{form
networks. Commun. Statist.-Stochastic Models, 12(1):121{142, 1996.

[37] V. Ramaswami and P. G. Taylor. Some properties of the rate operators in level{
dependent Quasi{Birth{and{Death processes with a countable number of phases.
Commun. Statist.-Stochastic Models, 12(1):143{164, 1996.

[38] Erwin Rathgeb and Eugen Wallmeier. ATM | Infrastruktur f�ur die Hochleistungs-
kommunikation. Springer, Berlin, 1997. In German.

[39] Sheldon M. Ross. Stochastic processes. Wiley, New York, 1983.

[40] H. Schellhaas. Computation of the state probabilities in M/G/1 queues with state
dependent input and state dependent service. OR Spektrum, 5:223{228, 1983.



Tabellarischer Bildungsgang

Name: Jens Hofmann

Geburtsdatum, {ort: 03. Juni 1968, Bad Homburg vor der H�ohe

1974 - 78 Besuch der Grundschule in Duisburg{Gro�enbaum
1978 - 79 Besuch des Mercator{Gymnasiums in Duisburg
1979 - 87 Besuch des Friedrich{Spee{Gymnasiums in Geldern,

Abschlu�: Abitur

1987 - 88 Grundwehrdienst

1988 - 95 Studium der Mathematik an der Universit�at Trier
1991 - 92 Studium an der University of Bristol
Februar 1995 Diplom im Studiengang Angewandte Mathematik

April 1995 - M�arz 1999 Wissenschaftlicher Mitarbeiter im Lehrgebiet \Stochastische
Modellierung und Rechnernetze" bei Prof. Dr. Baum in der
Abteilung Informatik der Universit�at Trier


