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Preface
The optimal control of hyperbolic systems is an important problem

in engineering. In this book, a self{contained exposition of the problem
is given, a numerical method for the time{optimal control of hyperbolic
systems is presented and a convergence analysis is made. Numerical ex-
amples are given for the problem of the rotating Euler{Bernoulli beam.

The method is based on the theory of moment problems. In the al-
gorithm, the numerical solution of certain Volterra equations plays an
important role. The ideas of the method are also related to paramet-
ric programming. A special feature of the convergence analysis is the
detailed investigation of the properties of the sequence of optimal value
functions of the discretized parametric auxiliary problems.

Moreover, the optimal value function of the original problem is in-
vestigated thoroughly.

Vorwort
Die optimale Steuerung hyperbolischer Systeme ist ein wichtiges Pro-

blem in den Ingenieurwissenschaften. Wir stellen das Problem dar
und schlagen ein numerisches Verfahren f�ur die zeitoptimale Steuerung
hyperbolischer Systeme vor. F�ur dieses Verfahren entwickeln wir eine
Konvergenzanalyse. F�ur das Problem des rotierenden Euler{Bernoulli
Balkens geben wir numerische Beispiele.

Der Algorithmus basiert auf der Theorie der Momentenprobleme. In
dem Verfahren spielt die L�osung gewisser Volterra{Gleichungen zweiter
Art eine wichtige Rolle. Die Ideen des Verfahrens h�angen auch mit
der parametrischen Optimierung zusammen. Die ausf�uhrliche Unter-
suchung der Eigenschaften der Folge der Optimalwertfunktionen der
diskretisierten Probleme ist eine Besonderheit der Analyse. Die Opti-
malwertfunktion des Ausgangsproblems wird ebenfalls gr�undlich unter-
sucht.



2



Contents

1 Introduction 5
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Method . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Example of the Euler{Bernoulli Beam . . . . . . . . 7

2 Hyperbolic Systems 9
2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Existence of a Unique Solution . . . . . . . . . . . . . . . 11
2.3 Example: The Euler{Bernoulli Beam . . . . . . . . . . . 13

2.3.1 Ay = yxxxx . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The Series Representation of the Solution . . . . 21

2.4 Reachable Set and Moment Problems . . . . . . . . . . . 23
2.4.1 Characterization of the Reachable Set . . . . . . . 23
2.4.2 Example: The Euler{Bernoulli Beam . . . . . . . 26

3 Moment Problems in Hilbert Space 29
3.1 Example: The Euler{Bernoulli Beam . . . . . . . . . . . 34

4 The Computation of Hj = (S�)�1fj 37
4.1 Volterra Operators with Finite Rank Kernel . . . . . . . 38

4.1.1 Example: The Torque at the Axis of the Beam . . 40
4.1.2 Numerical Examples . . . . . . . . . . . . . . . . 45

5 Numerical Solution of Problem PN 53

6 Optimal Value Functions 73
6.1 Continuity and Uniform Convergence . . . . . . . . . . . 75

6.1.1 Notation and Assumptions . . . . . . . . . . . . . 75
6.1.2 The Problem . . . . . . . . . . . . . . . . . . . . 79

3



4 CONTENTS

6.1.3 The Discretized Problem . . . . . . . . . . . . . . 79
6.1.4 Solvability of problem P1(T ) . . . . . . . . . . . 80
6.1.5 Continuity of the Value Function for the Original

Problem . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.6 Continuity of the Value Function for the Discretized

Problem . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.7 Uniform Convergence of the Value Functions for

the Discretized Problems . . . . . . . . . . . . . . 92
6.2 Di�erentiability of the Value Function for the Discretized

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 The Parameter Derivative of Hj(T ) . . . . . . . . 95
6.2.2 The Derivative of the Value Function . . . . . . . 96
6.2.3 Euler{Bernoulli beam: !1 is decreasing . . . . . 105

6.3 Is the Optimal Value Function of P1 Di�erentiable? . . . 106
6.3.1 An Example . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Su�cient Conditions for Di�erentiability and Lip-

schitz Continuity of ! . . . . . . . . . . . . . . . 108

7 Time{Optimal Control 123
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 The Discretized Problem . . . . . . . . . . . . . . . . . . 125
7.4 Sensitivity with respect to � . . . . . . . . . . . . . . . . 126
7.5 A Newton{Bisection Algorithm . . . . . . . . . . . . . . 127

7.5.1 A Regularization Method . . . . . . . . . . . . . 127
7.5.2 Newton{Bisection Method . . . . . . . . . . . . . 131

7.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . 133
7.7 Discretization Re�nement . . . . . . . . . . . . . . . . . 137

7.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . 137
7.7.2 Sensitivity with respect to N and k . . . . . . . . 138
7.7.3 Sensitivity with respect to N , k and h . . . . . . 143



Chapter 1

Introduction

1.1 The Problem

In this book, the control of a system is studied whose evolution in time
is governed by a linear partial di�erential equation.

For given initial conditions and control functions, the solution can
be expressed as a series, where the eigenfunctions and the eigenvalues
of an operator which appears in the partial di�erential equation occur.

Due to the series representation of the solution, the control functions
that steer the system from the given intial state to a desired terminal
state can be characterized as the solution set of an in�nite system of
moment equations. This approach via moment problems has originally
been given by Russel (see [39]). It is also considered in [3]. We con-
sider exact control, that is the terminal state that we want to reach is
prescribed exactly.

We consider the problem of time{optimal control subject to an upper
bound on the L2{norm of the image of an a�ne linear operator applied
to the control function.

1.2 The Method

We present a numerical method for the solution of the problem of time{
optimal control stated above, that is based on the properties of the value
function of a certain parametric auxiliary problem.

In this auxiliary problem, the controlling time is the parameter. The
moment equations are taken as equality constraints, and the L2{norm
combined with the a�ne linear operator that occurs in the de�nition
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6 CHAPTER 1. INTRODUCTION

of the inequality constraint of the problem of time{optimal control is
taken as the objective function.

Since for the optimal controlling time, the inequality constraint in
the problem of time{optimal control is active, the optimal value of the
auxiliary problem with the optimal controlling time as �xed parameter
is known. This fact is the foundation of the basic idea of the method,
which is due to Krabs: It is to �nd the optimal controlling time as
the point, where the optimal value function of the parametric auxil-
iary problem attains a certain known value, so basically, the optimal
controlling time is determined as the root of a certain function.

To analyse this approach, it is interesting to consider the regularity
of the optimal value function. The corresponding results presented here
are original. The investigations are related to the results about the
marginal function in parametric programming, see for example [51],
[29], [13].

We show the continuity of the value function. For the computations,
the system of moment equations is truncated to obtain a �nite number of
equality constraints. In this way, a sequence of optimal value functions
corresponding to the discretized problems is generated. We show that
this sequence converges uniformly to the optimal value function fo the
original problem. The proof is based on Dini's Theorem.

We show that under weak assumptions, the optimal value functions
of the discretized problems are three times di�erentiable. The proof is
based on the implicit function theorem. The �rst and the second deriva-
tive are easy to compute, once the solution of the discretized problem is
known. Hence we can use Newton's method to compute approximations
for the optimal controlling time. A combination with a bisection ap-
proach yields a method that converges globally quadratically. Since the
evaluation of the second derivative is also cheap, it makes sense to ap-
ply higher order methods too, such as Halley's method. A combination
with a bisection approach yields global cubic convergence.

We present a su�cient condition for the di�erentiability of the opti-
mal value function of the original problem. If the optimal controls are
pointwise uniformly bounded, the optimal value function of the original
problem is Lipschitz.
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1.3 The Example of the Euler{Bernoulli Beam

For our computational examples, we consider the problem of the con-
trol of a rotating beam, which is a classical problem of control theory
that has been studied in numerous papers. An Euler{Bernoulli beam is
considered whose movement is controlled by a torque at the axis of the
rotation.

The control function is the angular acceleration. It is assumed to
be a square integrable function of time, that is we work in the Hilbert
space L2[0; T ].

The problem is to control the beam from a given intial state to a
prescribed terminal state, for example to rotate it by a given angle in
such a way that at the end of the controlling time, no vibrations occur
and the beam is completely at rest.

The torque is computed from the control function by applying a linear
Volterra{operator of the second kind. For the inequality constraint we
require that the L2{norm of the torque function is less than or equal to
a given bound. This has a physical interpretation as a constraint on the
energy that is used to steer the beam.

For the solution of each of the corresponding discretized auxiliary
problems, a number of Volterra{equations has to be solved which is
equal to the number of moment equations. This is the most time{
consuming part of the computation.

The kernel in the Volterra{equations is given as a series. For the
solution of the Volterra{equations, we use the fact that the truncated
kernel has �nite rank, hence we can obtain an approximate solution
through the solution of a linear initial value problem. For the numer-
ical solution, we can use an implicit scheme, where due to the special
structure of the matrix the corresponding systems of linear equations
can be solved analytically.

We analyse the convergence of the computed approximations of the
optimal controlling time as the number of moment equations and the
number of terms in the truncated kernel increase and the stepsize in the
numerical integration decreases.

Now we mention some of the papers where the rotating beam has
been studied:

In [41], optimal control on a �xed time interval under L1{constraints
is considered, and an algorithm is given, that is based on Galerkin ap-
proximations and ordinary di�erential equations.
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In [25], the problem of time{optimal control of a rotating beam as
described above is considered. In [24], the exact controllability of the
system is shown, using a trigonometric inequality by Ingham. For the
numerical solution, Krabs proposes a secant method. No numerical
examples are given.

In [42], a beam with interior damping of Voigt{type is considered and
a method for feedback stabilization is given. This approach is given for
a more general case in [40].

In [8], a chain of serially connected Euler{Bernoulli beams is studied
and it is shown that uniform exponential stabilization can be achieved
by stabilizing at one end point of the composite beam.

In [27], [28] networks of beams are considered.



Chapter 2

Hyperbolic Systems

In this chapter, we consider systems that are governed by partial dif-
ferential equations of the hyperbolic type. We prove a result about the
existence of a unique solution that depends continuously on the initial
data.

As an example, we consider the partial di�erential equation of the
Euler{Bernoulli beam. We give a representation of the solution as a
series.

2.1 The Problem

Consider a system that is described by an evolution equation of the
second order in time of the form

d2y(t)

dt2
+Ay(t) = R(t); t � 0 (2.1)

with initial conditions

y(0) = y0; dy(0)=dt = y1: (2.2)

Now we introduce the formal setting. Let H be a Hilbert space over
the �eld of real numbers. Let (�j)j2IN be an orthonormal Schauder basis
of H. Let (�j)j2IN be a sequence of numbers that are greater than zero.

Let c = (cj)j2IN be a sequence of real numbers and r 2 IR. De�ne

kckr =
0
@ 1X
j=1

jcjj2(�j)r
1
A

1=2

: (2.3)
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We de�ne the space of sequences

l2r = f(cj)j2IN : kckr <1g : (2.4)

We also use the notation kckl2r = kckr.
De�ne the subspace of H

Wr =

8<
:f 2 H : f =

1X
j=1

cj�j; kfkWr := k(cj)j2INkr <1
9=
; : (2.5)

It is evident that W0 = H.
We consider a linear operator A from Wr to Wr�2 that is given by

A(
1X
j=1

cj�j) =
1X
j=1

�jcj�j: (2.6)

Obviously, for all h 2 Wr we have

kAhkWr�2
= khkWr (2.7)

The operator A has a pure point spectrum and the eigenfunctions
(�j)j2IN with the corresponding strictly positive eigenvalues (�j)j2IN .

In the applications, the operator A will usually be given as a dif-
ferential operator and the spectrum has to be computed somehow. In
this section, we started with the eigenfunctions for the sake of ease of
exposition. The approach in this section is close to the presentation in
[3].

For T > 0, de�ne the space L2(0; T ;Wr) of measurable functions
g : (0; T ) 7! Wr such that

kgkL2(0;T ;Wr) :=

 Z T

0
kg(t)k2Wr

dt

!1=2

<1 (2.8)

and the space C(0; T ;Wr) of continuous functions d : [0; T ] 7! Wr with
the norm kdkC(0;T ;Wr) := maxt2[0;T ] kd(t)kWr .

Functions g 2 L2(0; T ;Wr) can be represented in the form

g(t) =
1X
j=1

gj(t)�j;

with gj 2 L2(0; T ) and
P1

j=1 kgjk2L2(0;T )�rj <1.
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Let D(0; T ) be the set of in�nitely di�erentiable real{valued functions
on [0; T ] whose support is a compact subset of (0; T ). For j 2 IN , let
dgj=dt be the generalized derivative (in the sense of distributions) of gj.

Then for  2 D(0; T ) we have
dgj
dt

( ) = �
Z T

0
gj(t) 

0(t) dt:

This implies the inequality�����dgjdt ( )
�����
2

� kgjk2L2(0;T )k 0k2L2(0;T ):

De�ne

dg

dt
=

1X
j=1

dgj
dt
�j;

dg

dt
( ) =

1X
j=1

dgj
dt

( )�j; for  2 D(0; T ):

Hence we see that dg=dt is a well{de�ned continuous map from D(0; T )
into Wr satisfying the equality

dg

dt
( ) = �

Z T

0
g(t) 0(t) dt:

Let R 2 L2(0; T ;Wr�1), y0 2 Wr, y1 2 Wr�1. We are looking for a
solution of our evolution equation with values in the space Wr that is
continuous with respect to t.

2.2 Existence of a Unique Solution

A function y 2 C(0; T ;Wr) is said to be a solution of the problem (2.1),
(2.2) if the sum d2y=(dt2)+Ay is an element of the space L2(0; T ;Wr�1)
and equal to R and the initial conditions hold as equalities in the spaces
Wr and Wr�1 respectively. Let me remind the reader of the fact that
we have assumed (2.6).

Theorem 2.2.1 (see Theorem III.2.1.,[3], p.154)
Let R 2 L2(0; T ;Wr�1), y0 2 Wr, and y1 2 Wr�1.
Then there exists a unique solution of problem (2.1), (2.2) and the

map
(R; y0; y1) 7! (y; dy=dt)

of space L2(0; T ;Wr�1)�Wr�Wr�1 to the space C(0; T ;Wr)�C(0; T ;Wr�1)
is continuous.
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which implies that

jyj(t)j2�rj � 3jy0j j2�rj + 3jy1j j�r�1j + 3kRjk2L2(0;T )T�r�1j : (2.13)

Hence y(t) 2 Wr for all t 2 [0; T ].
Equation (2.12) implies that

jdyj(t)=dtj �
q
�jjy0j j+ jy1j j+ kRjkL2(0;T )

p
T;

thus we have

jdyj(t)=dtj2 � 3�j jy0j j2 + 3jy1j j2 + 3TkRjk2L2(0;T )
which implies that

jdyj(t)=dtj2�r�1j � 3jy0j j2�rj + 3jy1j j2�r�1j + 3T�r�1j kRjk2L2(0;T ): (2.14)

Hence dy(t)=dt 2 Wr�1 for all t 2 [0; T ].
Moreover, the series (2.9) converges in Wr uniformly in t, t 2 [0; T ].

Therefore, inequality (2.13) and the Weierstrass theorem imply that the
function y is continuous in t in the norm ofWr. Analogously, we see that
dy=dt is a continuous function from [0; T ] into Wr�1. Equality (2.13) as
an equality in the space L2(0; T ;Wr�1) and equalities (2.2) as equalities
in the spaces Wr, Wr�1 respectively follow directly from (2.10).

To see that the solution is uniquely determined, note that every
solution can be represented in the form (2.9), and the coe�cients have
to solve the initial value problems (2.10).

Since the unique solution of (2.10) is given by (2.11), the uniqueness
of the solution of (2.1), (2.2) follows.

Inequality (2.13) implies

kyk2L2(0;T ;Wr)
� 3ky0k2Wr

+ 3ky1k2Wr�1
+ 3TkRk2L2(0;T ;Wr�1)

(2.15)

and inequality (2.14) implies

kdy=dtk2L2(0;T ;Wr�1)
� 3ky0k2Wr

+ 3ky1k2Wr�1
+ 3TkRk2L2(0;T ;Wr�1)

(2.16)

and the asserted continuity follows. 2

2.3 Example: The Euler{Bernoulli Beam

In this section we want to apply Theorem 2.2.1 to the partial di�erential
equation describing the Euler{Bernoulli beam. In particular, we want
to give a representation of its solution as a series.
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The treatment given in the previous section depends on the expansion
in the eigenfunctions. To use this approach numerically for a particu-
lar operator the eigenfunctions have to be computed somehow. Then
it has to be shown that the eigenfunctions form a complete orthonor-
mal system. For some operators (e.g. of Sturm{Liouville type), this is
guaranteed by general results.

In this section, we want to work with the Hilbert space L2(0; l). So
we have to show that the operator A corresponding to our example has a
pure point spectrum and that the eigenfunctions form a basis of L2(0; l).
Fortunately, for this particular example, it is possible to compute the
eigenfunctions and the eigenvalues of A analytically. The asymptotic
behaviour of the eigenvalues can be described very accurately.

2.3.1 Ay = yxxxx

Let l > 0 be given. In this section we consider the operator

Ay(x) = d4y(x)=dx4;

and we want to compute the eigenfunctions contained in the set

D(A) = fz 2 C(4)([0; l]) with z(0) = z0(0) = 0 = z00(l) = z000(l)g:
Lemma 2.3.1 Eigenfunctions z1, z2 corresponding to di�erent eigen-
values �1 6= �2 are orthogonal in L2(0; l), i.e.Z l

0
z1(x)z2(x) dx = 0:

All eigenvalues are strictly positive.

The �rst assertion of Lemma 2.3.1 follows from the equation

�2

Z l

0
z1(x)z2(x) dx =

Z l

0
z1(x)z

(4)
2 (x) dx

= z1(x)z
(3)
2 (x)jl0 �

Z l

0
z
(1)
1 (x)z

(3)
2 (x) dx

= �z(1)1 (x)z
(2)
2 (x)jl0 +

Z l

0
z
(2)
1 (x)z

(2)
2 (x) dx

=
Z l

0
z
(2)
1 (x)z

(2)
2 (x) dx

= �1

Z l

0
z1(x)z2(x) dx:
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By partial integration, we can also see that

�1

Z l

0
z1(x)

2 dx =
Z l

0
(z(2)1 (x))2 dx:

Since z1 6= 0, due to the de�nition of D(A) this implies �1 > 0. 2
For � > 0, we examine the di�erential equation z(4)(x) = �z(x). The

general solutions of this di�erential equation is

z(x) = A sin(�1=4x) +B cos(�1=4x) + C sinh(�1=4x) +D cosh(�1=4x);

with coe�cients A, B, C, D. (Using the Wronskian, it can be shown
that sin, cos, sinh, cosh are linearly independent functions and hence
we have a basis of the space of solutions.)

The conditions z(0) = z0(0) = 0 yield the equations B = �D and
A = �C. Hence the eigenfunctions have to be of the form

z(x) = A(sin(�1=4x)� sinh(�1=4x)) +B(cos(�1=4x)� cosh(�1=4x));

which implies that for the derivatives we have

z00(l) = A�1=2(� sin(�1=4l)�sinh(�1=4l))�B�1=2(cos(�1=4l)+cosh(�1=4l));
z000(l) = A�3=4(� cos(�1=4l)�cosh(�1=4l))+B�3=4(sin(�1=4l)�sinh(�1=4l)):
The conditions z00(l) = 0 = z000(l) yield a linear system for the coe�cients
A, B. A solution z 6= 0 can only exist, if the determinant of this system
equals zero, that is if

(� sin(�1=4l)� sinh(�1=4l))(sin(�1=4l)� sinh(�1=4l))

�(� cos(�1=4l)� cosh(�1=4l))2 = 0;

which is equivalent to the equation

cos(�(1=4)l) cosh(�(1=4)l) = �1
(on account of cos2+sin2 = 1, cosh2� sinh2 = 1).

Hence the eigenvalues of A are the positive solutions of the equation

cos(�1=4l) + 1= cosh(�1=4l) = 0:

Lemma 2.3.2 The function

F (x) = cos(x) + 1= cosh(x)
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has a countable number of positive roots.
Let (xj)j2IN denote the strictly increasing sequence of roots.

Let yj = j� � �=2 and �1 = �=2, �j = arcsin(1= cosh(yj�1)) for j � 2.
If j is uneven, we have xj 2 (yj; yj + �j).
If j is even, we have xj 2 (yj � �j; yj).

Proof If j is uneven, for x 2 [yj + �j; yj+1 � �j+1] we have

F (x) < maxf� sin(�j);� sin(�j+1)g+ 1= cosh(yj)

= maxf�1= cosh(yj�1);�1= cosh(yj)g+ 1= cosh(yj)

= �1= cosh(yj) + 1= cosh(yj)

= 0:

Hence F has no root on the interval [yj + �j; yj+1 � �j+1].
If j is even, for x 2 [yj; yj+1] we have

F (x) � 0 + 1= cosh(x) > 0:

Hence F has no root on the interval [yj; yj+1].
For all j 2 IN , we have

F (yj) = cos(j� � �=2) + 1= cosh(yj) = 1= cosh(yj) > 0:

If j is uneven, we have

F (yj + �j) = cos(yj + �j) + 1= cosh(yj + �j)

= � sin(�j) + 1= cosh(yj + �j)

< � sin(�j) + 1= cosh(yj�1)
� 0:

If j is even, we have

F (yj � �j) = cos(yj � �j) + 1= cosh(yj � �j)

= sin(��j) + 1= cosh(yj � �j)

< � sin(�j) + 1= cosh(yj�1)
� 0:

Since the function F is continuous, the existence of zeros of F in the
intervals (yj; yj + �j), (yj � �j; yj) respectively follows from the interme-
diate value theorem.

We have the derivative F 0(x) = � sin(x)� tanh(x)= cosh(x).
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If j is uneven, for x 2 (yj; yj + �j) we have

F 0(x) � � sin(yj + �j)� tanh(yj)= cosh(yj + �j)

= � cos(�j)� tanh(yj)= cosh(yj + �j)

< 0:

Hence F is strictly decreasing on (yj; yj + �j) and has at most one root
on this interval.

If j is even, for x 2 (yj � �j; yj) we have

F 0(x) � � sin(yj � �j)� 1= cosh(yj � �j)

� cos(�j)� 1= cosh(�)

�
q
1� 1= cosh2(yj�1)� 1= cosh(�)

�
q
1� 1= cosh2(�=2) � 1= cosh(�)

> 0:

Hence F is strictly increasing on (yj � �j; yj) and hence F has at most
one root on this interval. 2

For the eigenvalues �j of A we have �1=4j l = xj, hence �j = (xj=l)4.

Remark 2.3.1 The numbers xj can be computed numerically by using
Newton's method applied to the function F (yj + �) with the zero as the
starting point. Note that for j � 12 we have �j � 10�14, hence for
j > 12 the numbers yj are good approximations of the xj.

To obtain the eigenfunctions, we choose B = �1. The equation
z00(l) = 0 yields

A = (cos(�
1=4
j l) + cosh(�

1=4
j l))=(sin(�

1=4
j l) + sinh(�

1=4
j l)) =: j:

Thus we have the eigenfunctions

'j(x) = j(sin(�
(1=4)
j x)� sinh(�(1=4)j x))� cos(�(1=4)j x) + cosh(�(1=4)j x):

(2.17)
Since cosxj = �1= cosh xj, we have

cos(xj) + cosh(xj) = cosh(xj)� 1= cosh(xj)

= (cosh2(xj)� 1)= cosh(xj)

= sinh2(xj)= cosh(xj):
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Moreover, we have

sin(xj) = (�1)j+1
q
1 � cos2(xj)

= (�1)j+1
q
1 � 1= cosh2(xj)

= (�1)j+1
�q

cosh2(xj)� 1
�
= cosh(xj)

= (�1)j+1 sinh(xj)= cosh(xj):

Hence we can conclude that

j = (sinh2(xj)= cosh(xj))=((�1)j+1 sinhxj= cosh xj + sinh xj)

= sinh(xj)=(cosh(xj)((�1)j+1= cosh xj + 1))

= sinh(xj)=(cosh(xj) + (�1)j+1):

For j uneven, this yields

j = sinh(xj)=(cosh(xj) + 1)

= tanh(xj=2)

and for j even, we have

j = sinh(xj)=(cosh(xj)� 1)

= coth(xj=2):

Hence Lemma 2.3.2 implies that if j is uneven, we have

j 2 [tanh(j�=2� �=4); 1]

and if j is even, we have

j 2 [1; coth((j � 1)�=2)]:

Thus we see that the sequence (j)j2IN converges to 1 very fast.

Lemma 2.3.3 For the functions 'j de�ned in (2.17) we have

Z l

0
'j(x)

2 dx = l:

Proof We have
R l
0 'j(x)

2 dx = l
R 1
0 'j(tl)

2 dt.
If j is uneven, we have

'j(tl) = tanh(xj=2)(sin(xjt)� sinh(xjt))� cos(xjt) + cosh(xjt):
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Using the program Mathematica, we obtain the formulaZ
1

0

(tanh(w=2)(sin(wt)� sinh(wt))� cos(wt) + cosh(wt))2 dt

=
2w + 2w cosh(w)� 4 sin(w) + sin(2w) + sinh(w)� 4 cos(w) sinh(w) + cos(2w) sinh(w)

4w cosh2(w=2)

=
2
�
2w(cosh(w) + 1) + sin(w)(�4 + 2 cos(w)) + sinh(w)(2cos2(w)� 4 cos(w))

�
4w(cosh(w) + 1)

= 1 +
2
�
sinh(w)(2 cos2(w)� 4 cos(w)) + sin(w)(�4 + 2 cos(w))

�
4w(cosh(w) + 1)

= 1 +

�
sinh(w)(cos2(w)� 2 cos(w)) + sin(w)(�2 + cos(w))

�
w(cosh(w) + 1)

= 1 +
1

w
tanh(w=2)

�
cos2(w)� 2 cos(w) +

sin(w)

sinh(w)
(�2 + cos(w))

�
:

For j uneven, we have

sin(xj) =
q
1 � cos2(xj) =

q
1� 1= cosh2(xj) = tanh(xj):

For w = xj, this implies the equation

cos2(w)� 2 cos(w) +
sin(w)

sinh(w)
(�2 + cos(w))

= cos2(w)� 2 cos(w) +
1

cosh(w)
(�2 + cos(w))

= cos2(w)� 2 cos(w)� cos(w)(�2 + cos(w))

= 0:

Thus for j uneven, we see that
R 1
0 'j(tl)

2 dt = 1.
If j is even, we have

'j(tl) = coth(xj=2)(sin(xjt)� sinh(xjt))� cos(xjt) + cosh(xjt):

Again using Mathematica, we obtain the formulaZ
1

0

(coth(w=2)(sin(wt)� sinh(wt))� cos(wt) + cosh(wt))2 dt

=
�2w+ 2w cosh(w)� 4 sin(w)� sin(2w) + sinh(w) + 4 cos(w) sinh(w) + cos(2w) sinh(w)

4w sinh2(w=2)

=
2w(cosh(w)� 1) + sin(w)(�4� 2 cos(w)) + sinh(w)(4 cos(w) + 2 cos2(w))

2w(cosh(w)� 1)
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yields the number 1:00000000, so Formula (2.18) is more suitable for
numerical purposes than (2.17).

Let
�j(x) = 'j(x)=

p
l: (2.19)

Then Lemma 2.3.3 implies that the functions (�j)j2IN form an orthonor-
mal system.

The question remains: Is the sequence (�j)j2IN a Schauder basis of
L2(0; l)? A positive answer follows from a result in Chapter 1, 16 in
[31]: Using an approach that is based on �nite di�erences, it is shown
that Parseval's equation holds, that is

for all f 2 L2(0; l) we have
Z l

0
f2(x) dx =

1X
j=1

 Z l

0
f(x)�j(x) dx

!2

:

(2.20)
Since the sequence (�j)j2IN is an orthonormal system, (2.20) is equiva-
lent to its completeness.

Thus the operator A satis�es the assumptions of Section 2.1 for the
Hilbert space H = L2(0; l).

Remark 2.3.2 The eigenfunctions �j appear in many papers (see for
example [41], [24]). However, the intervals containing the eigenvalues �j
in Lemma 2.3.2 and the simple representations of the j that are very
useful for numerical purposes seem to be new.

2.3.2 The Series Representation of the Solution

Let D > 0. The number D measures the sti�ness of the beam. The
Euler{Bernoulli beam is de�ned by the initial boundary value problem

d2y(x; t)

(dt)2
+D

d4y(x; t)

(dx)4
= R(x; t); x 2 [0; l]; t � 0: (2.21)

with initial conditions

y(x; 0) = y0(x); dy(x; 0)=dt = y1(x) (2.22)

and boundary conditions

y(0; t) = y0(0; t) = 0 = y00(l; t) = y000(l; t): (2.23)

The proof of Theorem 2.2.1 implies that for the solution of this problem,
we have a representation as a series.
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In the physical formulation, we have D = EI=m, where E is Young's
modulus of the material, I is the moment of inertia of the cross section
and m is the mass per unit length.

Let H = L2(0; l). Assume that R 2 L2(0; T ;H), y0 2 W1, y1 2 H.
Let

Rj(t) =
Z l

0
R(x; t)�j(x) dx;

y0j =
Z l

0
y0(x)�j(x) dx;

y1j =
Z l

0
y1(x)�j(x) dx:

Let �j , �j and A be as in 2.3.1. The operator DA has the eigenvalues
D�j . We have

ff 2 H : f =
1X
j=1

cj�j; kfk2W1
= D

1X
j=1

jcjj2�j <1g = W1:

Obviously, W2 �W1.

Lemma 2.3.4 Let f 2 C(4)(0; l) with f(0) = f 0(0) = 0 = f 00(l) =
f 000(l). Then f 2 W2.

Proof Similar as in the proof of Lemma 2.3.1, we can show that

f̂(j) :=
Z l

0
f(x)�j(x) dx =

1

�j

Z l

0
f(x)�

(4)
j (x) dx

=
1

�j

Z l

0
f (4)(x)�j(x) dx

=:
1

�j
(̂f (4))(j):

Since f (4) 2 L2(0; l), we have
�
(̂f (4))(j)

�
j2IN 2 l20.

Hence (�j f̂(j))j2IN =
�
(̂f (4))(j)

�
j2IN 2 l20. Thus f 2 W2. 2

Let yj(t) = y0j cos(
q
D�j t) + y1j sin(

q
D�jt)=

q
D�j

+
Z t

0
Rj(� ) sin(

q
D�j(t� � ))=

q
D�j d�:
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Then

y(x; t) =
1X
j=1

yj(t)�j(x) (2.24)

is the unique solution of our problem in C(0; T ;H) in the sense of The-
orem 2.2.1.

2.4 Reachable Set and Moment Problems

In this section, we de�ne the reachable set and characterize it in terms
of a moment problem. From another point of view, this means that
we characterize the set of successful controls as the solution set of a
moment problem. Again we follow the treatment given in [3], Chapter
III.

2.4.1 Characterization of the Reachable Set

Let H, A and Wr be as in Section 2.1. Let U be a Hilbert space, B
a bounded linear operator from U to Wr�1 and U = L2(0; T ;U). We
consider the control system

d2y(t)

dt2
+Ay(t) = Bu(t); t � 0; u 2 U (2.25)

with initial conditions

y(0) = y0; dy(0)=dt = y1: (2.26)

De�nition 2.4.1 The reachable set R(T; y0; y1) from y0, y1 at time
T is the set of all points of the form (y(T ); dy(T )=dt) 2 Wr � Wr�1,
where y is the solution of (2.25) (2.26) for some u 2 U .
Each element of the reachable set R(T; y0; y1) can be uniquely repre-
sented in the form

y(T ) =
1X
j=1

yj(T )�j; dy(T )=dt =
1X
j=1

 
dyj(T )

dt

!
�j: (2.27)

We have

ky(T )kWr = k(yj(T ))j2INkr and kdy(T )=dtkWr�1
= k(dyj(T )=dt)j2INkr�1:
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Therefore, the set R(T; y0; y1) is isometric to the set

R̂(T; (yj0)j2IN ; (yj1)j2IN) � l2r � l2r�1 consisting of the pairs of sequences
((yj(T ))j2IN ; (dyj(T )=dt)j2IN) corresponding to
(y(T ); dy(T )=dt) 2 R(T; y0; y1).

Let y(t; u; y0; y1) denote the solution of system (2.25), (2.26). Then
we have

y(t; u; y0; y1) = y(t; 0; y0; y1) + y(t; u; 0; 0)

=: S0(t)(y0; y1) +K0(t)u:

In this way, we have de�ned bounded linear operators
S0(t) : Wr �Wr�1 !Wr and K0(t) : U ! Wr where

S0(t)(y0; y1) =
1X
j=1

�
y0j cos(

q
�jt) + y1j sin(

q
�jt)=

q
�j
�
�j and

K0(t)u =
1X
j=1

�Z t

0
(Bu(� ))j sin(

q
�j(t� � ))=

q
�j d�

�
�j:

Here, the functions (Bu(� ))j are de�ned by the relation

Bu(� ) =
1X
j=1

(Bu(� ))j�j:

For the time{derivative, we have

dy(t; u; y0; y1)=dt = dy(t; 0; y0; y1)=dt+ dy(t; u; 0; 0)=dt

=: S1(t)(y0; y1) +K1(t)u;

with S1(t) : Wr �Wr�1 !Wr�1 and K1(t) : U ! Wr�1 where

S1(t)(y0; y1) =
1X
j=1

�
�y0j

q
�j sin(

q
�jt) + y1j cos(

q
�jt)

�
�j and

K1(t)u =
1X
j=1

�Z t

0
(Bu(� ))j cos(

q
�j(t� � )) d�

�
�j:

Thus we have the reachable set

R(T; y0; y1) = f(S0(T )(y0; y1)+K0(T )u; S1(T )(y0; y1)+K1(T )u) : u 2 Ug:
We are mainly interested in the set

R(T ) := R(T; 0; 0) = f(K0(T )u;K1(T )u) : u 2 Ug:
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De�ne the corresponding set of coordinate sequences

R̂(T ) = R̂(T; (0)j2IN ; (0)j2IN )
= f(((K0(T )u)j)j2IN ; ((K1(T )u)j)j2IN) : u 2 Ug:

At this point, we need the fact that the topological dual space of Wr is
W�r. We de�ne the linear operator B� :W�r+1 ! U by the relation

 (Bv) = hv;B� iU ; v 2 U; 2 W�r+1:

In particular, (Bv)j = hv;B��jiU , v 2 U , j 2 IN .

For ((yj(T ))j2IN ; (dyj(T )=dt)j2IN) 2 R̂(T ) we have

yj(T ) =
Z T

0
(Bu(� ))j sin(

q
�j(T � � ))=

q
�j d�

=
Z T

0
sin(

q
�j(T � � ))=

q
�jhu(� ); B��jiU d� and(2.28)

dyj(T )=dt =
Z T

0
cos(

q
�j(T � � ))hu(� ); B��jiU d�: (2.29)

Trigonometric identities imply that the system of equations (2.28) and
(2.29) is equivalent to the equations

sin(
p

�jT )
p

�jyj(T ) + cos(
p

�jT )
dyj(T )

dt
=

Z T

0

cos(
p

�j�)hu(�);B
��jiU d�

� cos(
p

�jT )
p

�jyj(T ) + sin(
p

�jT )
dyj(T )

dt
=

Z T

0

sin(
p

�j�)hu(�); B
��jiU d�:

Hence we can state the following theorem.

Theorem 2.4.1 The reachable set R(T ) is isometric to the set R̂(T ),
which is equal to the set of all pairs of sequences ((�j)j2IN ; (�j)j2IN ) for
which the moment problem

sin(
q
�jT )

q
�j�j + cos(

q
�jT )�j =

Z T

0
cos(

q
�j� )hu(� ); B��jiU d�

� cos(
q
�jT )

q
�j�j + sin(

q
�jT )�j =

Z T

0
sin(

q
�j� )hu(� ); B��jiU d�:

is solvable with some u 2 U .
If we want to control our system to the zero position, we ask whether

the relation

0 2 R(T; y0; y1) = (S0(T ); S1(T )) +R(T )
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holds. This is equivalent to the relation

�(S0(T ); S1(T )) 2 R(T ):
Due to Theorem 2.4.1 and the de�nition of S0 and S1, this is in turn
equivalent to the statement that the moment problemq

�jy
0
j =

Z T

0
sin(

q
�j� )hu(� ); B��jiU d� (2.30)

�y1j =
Z T

0
cos(

q
�j� )hu(� ); B��jiU d� (2.31)

is solvable with some u 2 U .

2.4.2 Example: The Euler{Bernoulli Beam

Let A be as in Section 2.3.1. For the Euler{Bernoulli beam, we have
H = L2(0; l), U = IR, U = L2(0; T ). For v 2 IR, Bv = �xv 2 L2(0; l).

Hence we consider the initial boundary value problem

d2y(x; t)

dt2
+D

d4y(x; t)

dx4
= �xu(t); x 2 [0; l]; t � 0: (2.32)

with initial conditions (2.22) and boundary conditions (2.23).
We have (Bv)j = �v R l0 x�j(x) dx, with �j as de�ned in (2.19).

Lemma 2.4.1 (cf. [24], p.451) Let �j be de�ned as in (2.19). ThenZ l

0
x�j(x) dx =

2q
l�j

: (2.33)

Proof With 'j as de�ned in (2.17) we haveZ l

0
x�j(x) dx = (1=�j )

Z l

0
x�

(4)
j (x) dx

= (1=�j )

 
x�

(3)
j (x)jl0 �

Z l

0
�
(3)
j (x) dx

!

= (1=�j )
�
��(2)j (x)jl0

�
= (1=�j )�

(2)
j (0)

= (1=(�j
p
l))'(2)

j (0)

= (1=(�j
p
l))2

q
�j

=
2q
l�j

2
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Hence we have
(Bv)j = �2v=(

q
l�j): (2.34)

We are looking for a control function u for which at time T , the
system satis�es the end conditions

y(x; T ) = 0; dy(x; T )=dt = 0; x 2 [0; l]:

Due to (2.30), (2.31) this requirement to the control function is equiv-
alent to the conditions

Z T

0
sin(

q
D�j� )u(� ) d� = ��j

p
l
p
D

2

Z l

0
y0(x)�j(x) dx; (2.35)

Z T

0
cos(

q
D�j� )u(� ) d� =

q
�j
p
l

2

Z l

0
y1(x)�j(x) dx; j 2 IN:(2.36)

Thus the feasible controls must solve the above trigonometric moment
problem. The above equations can also be considered as a countable
number of equality constraints for the control functions.

For the sake of completeness, we state the series{representation of
the solution for the Euler{Bernoulli beam:

y(x; t) = (2.37)

1X
j=1

�
y0j cos(

q
D�j t) + y1j sin(

q
D�jt)=

q
D�j

�
�j

�
1X
j=1

 
2

�j
p
lD

Z t

0
u(� ) sin(

q
D�j (t� � )) d�

!
�j:
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Chapter 3

Moment Problems in Hilbert

Space

As we have seen, the controls that steer a hyperbolic system of the type
considered in Chapter 2 from a given initial state to a given target state
can be described as the elements of the solution set of a certain trigono-
metric moment problem. To develop and analyse an algorithm that
uses this fact numerically, we need some results about general moment
problems in Hilbert space, that are presented in this chapter.

Usually in the literature solutions of moment problems with minimal
norm are considered. For our application, we need the more general
case of an objective function that is given by the norm of the image of
the control under an a�ne linear transformation.

Let H be a Hilbert space. Let (fj)j2IN be a sequence of elements of H
and (cj)j2IN a sequence of scalars. The corresponding moment problem
is to �nd a point f 2 H such that

hf; fjiH = cj for all j 2 IN: (3.1)

De�nition 3.0.2 (see [50]) A sequence (fj)j2IN is called a Bessel se-
quence, if for all f 2 H we have

1X
j=1

jhf; fjiH j2 <1:

The sequence is called a Riesz{Fischer sequence, if the moment prob-
lem (3.1) has a solution for all (cj)j2IN 2 l20.

The moment space of (fj)j2IN is the space

f(hf; fjiH)j2IN : f 2 Hg :

29
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For the proof of (ii) given in [50], the following Theorem is used.

Theorem 3.0.3 (see Theorem 2, p. 151 in [50]) Let (fj)j2IN be a
sequence of elements of the Hilbert space H, (cj)j2IN be a sequence of
scalars and m > 0. The following statements are equivalent:

(i) There exists w 2 H with kwkH � m and hw; fjiH = cj ; (j 2 IN).
(ii) For all N 2 IN , (a1; :::; aN)T 2 IRN we have the inequality

j
NX
i=1

aicij � mk
NX
i=1

aifikH:

Proof Statement (i) implies for all N 2 IN , (a1; :::; aN)T 2 IRN the
inequality

j
NX
i=1

aicij = j
NX
i=1

aihw; fiiH j � jhw;
NX
i=1

aifiiH j

� kwkH k
NX
i=1

aifikH � mk
NX
i=1

aifikH :

Assume now that statement (ii) holds.
Let Y denote the closure of spanffj ; j 2 INg. De�ne a linear functional
� of H by �(

P1
j=1 ajfj) =

P1
j=1 ajcj, and �(f) = 0 for f 2 Y ?. Condi-

tion (ii) implies that � is bounded with k�k � m. The Riesz representa-
tion theorem implies the existence of w 2 H such that �(f) = hw; fiH
for all f 2 H. Since kwkH � m, w is a point as required in (i). 2

In the sequel we use the following easy statements.

Statement 3.0.1 For u,w 2 H with hu�w;wiH = 0, we have kwkH �
kukH. If u 6= w, we have kwkH < kukH .
This is easily seen from

0 � ku�wk2H = kuk2H � 2hu;wiH + kwk2H = kuk2H � 2kwk2H + kwk2H =

kuk2H � kwk2H :2
Statement 3.0.2 Let (xj)j2IN be a sequence of elements of H.

Then limj!1 kxj�xkH = 0 if and only if limj!1 kxjkH = kxkH and
(xj)j2IN converges weakly to x.

The assertion follows from the fact that for all j 2 IN , we have

kxj � xk2H = kxjk2H � 2hx; xjiH + kxk2H : 2
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For the numerical solution of problems with moment equations as
equality constraints we replace the in�nite system

hf; fjiH = cj (j 2 IN)

by the sequence of �nite systems

hf; fjiH = cj (j 2 f1; :::; Ng);
with N 2 IN .

Consider now the optimization problem

P1 : minkSu� bk2H s.t. hu; fjiH = cj (j 2 IN);

with b 2 H and a continuous bijective linear map S : H ! H. For the
numerical solution, this problem is replaced by a sequence of problems
with a �nite number of equality constraints. The discretized problems
can be solved by solving a �nite system of linear equations.

Theorem 3.0.4 (see [25], p. 153) Let S : H ! H be a continuous
bijective linear map, b 2 H, (c1; c2; :::; cN)T 2 IRN and f1; :::; fN 2 H be
linearly independent. The problem

PN : minkSu� bk2H s.t. hu; fjiH = cj; j 2 f1; :::; Ng
has a unique solution uN that satis�es the equality

SuN � b =
NX
j=1

�jHj; with Hj = (S�)�1fj

and the coe�cients �j that solve the linear system

NX
j=1

hHi;HjiH�j = ci � hb;HiiH ; i 2 f1; :::; Ng: (3.2)

Here S� denotes the adjoint of the operator S.

Proof Since the functionsH1; :::;HN are linearly independent, the Gram
matrix (hHi;HjiH)Ni;j=1 is positive de�nite. Hence the linear system (3.2)
has a unique solution. Therefore

hSuN � b;HiiH =
NX
i=1

�jhHi;HjiH
= ci � hb;HiiH ; i 2 f1; :::; Ng
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and Statement 3.0.1 implies kSu� � bkH < kSu� bkH. We have

kSu� � bk2H � lim inf
N!1

kSuN � bk2H = lim
N!1

�N � kSu� � bk2H ;
hence limN!1 kSuN�bkH = kSu��bkH, and limN!1hSuN�Su�;HjiH =
0 for all j 2 IN , and Statement 3.0.2 implies the assertion. 2

Remark It is not necessary to assume that the space H is separable.

3.1 Example: The Euler{Bernoulli Beam

In Section 2.4.2 we have seen that the controls for which the end con-
ditions

y(x; T ) = 0; yt(x; T ) = 0; x 2 [0; l] (3.3)

hold, satisfy the trigonometric moment equations (2.35), (2.36).
We want to consider the problem of a rotating Euler{Bernoulli beam,

where the beam rotates about an axis through its �xed end. Problems
of the control of rotating Euler{Bernoulli beams have been considered
in numerous papers, see for example [25], [26], [41], [21], [5], [42], [30].

Let  (t) be the angle of rotation at time t. Then we have the addi-
tional initial conditions

 (0) =  0;  
0(0) =  1 (3.4)

for the initial angle  0 and the initial angular velocity  1. The control
is the angular acceleration u =  00. The transverse vibrations of the
beam are described by equation (2.32).

We want to steer the beam to a position of rest, so we have the
additional end condition that the angular velocity at time T be zero,

 0(T ) = 0: (3.5)

If we prescribe the angle where the beam comes to rest, we have also
the end condition

 (T ) =  2: (3.6)

The end condition (3.5) is equivalent to the moment equationZ T

0
u(t) dt = � 1 (3.7)

and the end condition (3.6) is equivalent to the moment equationZ T

0
tu(t) dt =  0 �  2: (3.8)
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So the controls steering the system to the desired end state are the
solutions of the moment problem consisting of the equations

Z T

0
sin(

q
D�j� )u(� ) d� = ��j

p
l
p
D

2

Z l

0
y0(x)�j(x) dx; (3.9)

Z T

0
cos(

q
D�j� )u(� ) d� =

q
�j
p
l

2

Z l

0
y1(x)�j(x) dx; j 2 IN(3.10)Z T

0
u(t) dt = � 1 and if (3.6) is prescribed (3.11)Z T

0
tu(t) dt =  0 �  2: (3.12)

The controllability of the system (2.22), (2.23), (3.4), (2.32) (3.3), (3.5),
(3.6) is equivalent to the solvability of the moment problem (3.9), (3.10),
(3.11), (3.12).

This approach to controllability via moment problems has been stud-
ied by Krabs in [23]. Earlier, Russel has considered this approach (see
[39]).

The basic idea of the proofs is to show that an inequality of the type
that appears in Theorem 3.0.2 (iii) holds. For trigonometric moment
problems, this can sometimes be done using the results of Ingham given
in [16]. Before these results can be applied, the problem has to be trans-
formed to a complex trigonometric moment problem. This approach is
given in detail in [23], Chapter 1.

Theorem 3.1.1 For T > 0, the functions

f1; t; sin(
q
D�jt); cos(

q
D�jt); j 2 INg

form a Riesz{Fischer sequence in L2(0; T ).

Proof See Section 1.2.3 in [23].2

Theorem 3.1.2 For T > 0, the functions

f1; t; sin(
q
D�jt); cos(

q
D�jt); j 2 INg

form a Bessel sequence in L2(0; T ).

Proof See [22], Theorem II.2.8.2
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Note that for all functions y0, y1 2 C(4)(0; l), Lemma 2.3.4 implies
that the numbers on the right hand side of the moment equations (3.9),
(3.10) form a sequence in l20. Hence Theorem 3.1.1 implies the following
result.

Theorem 3.1.3 For T > 0, y0, y1 2 C4(0; l), the moment problem
(3.9), (3.10), (3.11), (3.12) has a solution u in L2(0; T ).



Chapter 4

The Computation of

Hj = (S�)�1fj

As the title indicates, in this chapter we consider a computational as-
pect. The reader who is more interested in theoretical considerations
can skip this and the next chapter and continue with Chapter 6. How-
ever, the numerical examples presented here are important since they
show that the theory developed up to now can be used for computations.

As we have seen in Theorem 3.0.4, the computation of the solution
of the discretized problem PN requires the knowledge of the functions
Hj = (S�)�1fj , j 2 f1; :::; Ng.

Numerically, this means that we have to solve the equations

S�Hj = fj ; j 2 f1; :::; Ng:

In the applications, the Hilbert space H will often be L2(0; T ). In this
chapter, we show how for this space we can solve the equations if S is
a Volterra{type operator with a �nite rank kernel.

This is motivated by our example, the Euler{Bernoulli beam where
the torque at the axis is given by a Volterra{type operator with a kernel
that is given as an in�nite series. The truncated series is a �nite rank
kernel.

37
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4.1 Volterra Operators with Finite Rank Kernel

Let a number � > 0 be given. Let K and f be continuous functions on
the interval [0; T ]. We consider an operator of the form

Su(t) = �u(t)�
Z t

0
K(t� s)u(s) ds; t 2 [0; T ]: (4.1)

Then we have the adjoint

S�u(t) = �u(t)�
Z T

t
K(s� t)u(s) ds:

This can easily be seen using Fubini's theorem on the square [0; T ]�[0; T ]
(see [24], (3.9)). We want to �nd a function u such that

S�u(t) = f(t); t 2 [0; T ]: (4.2)

For this purpose, we start with a transformation to the standard form
of Volterra{equations of the second kind.

Lemma 4.1.1 If v 2 C(0; T ) is the continuous solution of the linear
Volterra equation of the second kind

v(x)�
Z x

0

K(x� y)

�
v(y) dy =

f(T � x)

�
; x 2 [0; T ] (4.3)

then u(x) := v(T � x) satis�es the equation

�u(x)�
Z T

x
K(y � x)u(y) dy = f(x); x 2 [0; T ]:

Proof Since K and f are continuous, equation (4.3) has a unique
continuous solution (see Theorem 3.1 in [35]). Using the substitution
formula we get the equation

v(T � x)�
Z T�x

0
(K(T � x� y)=�)v(y) dy

= u(x)�
Z x

T
(K(s� x)=�)v(T � s) (�ds)

= u(x)�
Z T

x
(K(s� x)=�)u(s) ds:

Since f(T � (T � x)) = f(x), the assertion follows. 2
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Now assume that the Kernel K has the representation

K(x� y)=� = �
nX
i=1

Pi(x)Qi(y); (4.4)

with continuous functions Pi and Qi, i.e. that K is a �nite rank kernel.
In this case, the solution of the equation (4.3) can be computed by
means of the solution of an initial value problem in IRn.

Theorem 4.1.1 (see [35], Theorem 1.1, p.9) Let

k(t; s) = �
nX
i=1

Pi(t)Qi(s): (4.5)

Assume that Pi, Qi and a given function g are continuous in [0; T ].
Then the linear equation

v(t)�
Z t

0
k(t; s)v(s) ds = g(t)

has a solution

v(t) = g(t)�
nX
i=1

Pi(t)yi(t);

where the yi are the solutions of the system

y0i(t) = Qi(t)fg(t)�
nX
j=1

Pj(t)yj(t)g; i 2 f1; :::; ng

y(0) = 0:

Thus equation (4.2) has the solution

u(x) = v(T � x) = f(x)=� �
nX
i=1

Pi(T � x)yi(T � x); (4.6)

where the yi are the solutions of the initial value problem

y0i(t) = Qi(t)ff(T � t)=��
nX
j=1

Pj(t)yj(t)g; i 2 f1; :::; ng

y(0) = 0:
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4.1.1 Example: The Torque at the Axis of the Beam

The torqueM(t) at the axis of the beam at time t for a control function
u is given by the equation

M(t) = (�+ l3=3)u(t) +
Z l

0
xytt(x; t) dx

(see [24], (1.2)). The control of a rotating beam with torque of minimal
norm has also been studied in [4].

The di�erential equation (2.32) and the boundary condition (2.23)
implyZ l

0
xytt(x; t) dx = �u(t)

Z l

0
x2 dx�D

Z l

0
xyxxxx(x; t) dx

= �u(t)l3=3 �D

"
xyxxx(x; t)jl0�

Z l

0
yxxx(x; t) dx

#

= �u(t)l3=3 �Dyxx(0; t)

Hence M(t) = �u(t)�Dyxx(0; t).
The series representation (2.37) implies

yxx(0; t) =
1X
j=1

(y0j cos(
q
D�jt) + y1j sin(

q
D�jt)=

q
D�j

+
Z t

0

�2u(� )q
l�j

sin(
q
D�j (t� � ))=

q
D�j d� )�jxx(0)

with �j as in (2.19). According to (2.17), we have 'jxx(0) = 2
q
�j,

hence �jxx(0) = 2
q
�j=

p
l. Thus we have

M(t) = �u(t)�D
1X
j=1

[
2
q
�jp
l
y0j cos(

q
D�jt) +

2p
D
p
l
y1j sin(

q
D�j t)

� 4

l
q
D�j

Z t

0
u(� ) sin(

q
D�j (t� � ) d� ]:

We de�ne the function b by

b(t) = D
1X
j=1

2
42
q
�jp
l
y0j cos(

q
D�jt) +

2p
D
p
l
y1j sin(

q
D�j t)

3
5
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and the function K by

K(t) = D
1X
j=1

�4
l
q
D�j

sin(
q
D�jt): (4.7)

Then we see thatM(t)+b(t) is given by an operator S of the form (4.1),

M(t) + b(t) = Su(t) = �u(t)�
Z t

0
K(t� s)u(s) ds:

The series in the de�nition of K converges absolutely and uniformly.
Thus K is continuous. For numerical computations, we approximate
the kernel by a �nite sum. For this purpose we de�ne

KN (t) =
p
D

NX
j=1

�4
l
q
�j

sin(
q
D�jt); (4.8)

SNu(t) = �u(t)�
Z t

0
KN (t� s)u(s) ds:

We want to compute the solution u of the equation

S�Nu = f: (4.9)

For a continuous right hand side f , this equation has a continuous so-
lution. Using the resolvent kernel (see [35], p.36), it is easy to show
that for N large enough, this solution is arbitrarily close in the sense of
the maximum norm on [0; T ] to the continuous solution of the Volterra
equation with the kernel K.

A trigonometric identity implies that KN (x� y)=�

=
�pD
l�

NX
j=1

4q
�j

�
sin(

q
D�jx) cos(

q
D�jy)� cos(

q
D�jx) sin(

q
D�jy)

�
:

We de�ne

P2i�1(t) = 1
�
sin(

q
D�j t); Q2i�1(t) =

4
p
D

l
q
�j

cos(
q
D�j t)

P2i(t) = �1
�
cos(

q
D�jt); Q2i(t) =

4
p
D

l
q
�j

sin(
q
D�jt):
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We can write the di�erential equations (4.10), (4.11) in the form

y0 = r � 1

�
Ay:

Let

q2i�1 = 4
p
Dp
�j
cos(

q
D�jt); q2i = 4

p
Dp
�j
sin(

q
D�j t);

p2i�1 = sin(
q
D�jt); p2i = � cos(

q
D�j t):

Then A = qpT and r = (f(T � t)=�)q.

The trapezoidal method for the solution of the initial value problem
yields

yk+1 = yk +
h

2
(rk � 1

�
Akyk + rk+1 � 1

�
Ak+1yk+1):

Hence

 
I +

h

2�
Ak+1

!
yk+1 = yk +

h

2
(rk + rk+1 � 1

�
Akyk)

= yk +
h

2
(rk + rk+1)� h

2�
(pTk yk)qk

=: bk+1;

which implies the equation

yk+1 = bk+1 +
h

2�
�k+1qk+1; (4.15)

with

�k+1 =
pTk+1bk+1

�1� h(pTk+1qk+1)=(2�)
:

The following �gures show the truncated kernel K100 for
D 2 f1; 10; 100; 1000g. The values where computed on an equidistant
grid consisting of 1000 points.
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Figure 4.1.1
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Figure 4.1.1. The Graph of K100 on the interval [0; 1] for l = 1, D = 1, 10, 100, 1000.

To obtain the angular acceleration u from the torque function M =
Su� b, we have to solve the equation

Su =M + b:
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The following tables give the values Hi(t) = (S�)�1fi and the values
S�Hi(t)�zi(t), where S�Hi(t) was computed using numerical integration
with a Newton{Cotes formula. For the numerical integration, the same
grid points as for the solution of the initial value problem were used.

For Table 4.1.1, we used the parameter values � = 10, T = 1, N =
100 and h = 2�12.

Table 4.1.1

D = 1
H0(t) S�H0(t)� z0(t)

t = 0:00 0:093854 0:813E � 07
t = 0:25 0:093910 0:621E � 07
t = 0:50 0:096116 0:362E � 07
t = 0:75 0:098787 0:120E � 06
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:100050 �0:122E � 08
t = 0:25 0:036975 0:475E � 07
t = 0:50 �0:072568 0:368E � 07
t = 0:75 �0:090958 0:295E � 07
t = 1:00 0:004938 0:000E + 00

D = 10
H0(t) S�H0(t)� z0(t)

t = 0:00 0:097782 �0:480E � 06
t = 0:25 0:094919 �0:164E � 06
t = 0:50 0:099202 0:419E � 06
t = 0:75 0:093816 0:439E � 06
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:099942 0:156E � 05
t = 0:25 0:023960 �0:542E � 06
t = 0:50 �0:088891 �0:746E � 06
t = 0:75 �0:065404 �0:118E � 05
t = 1:00 0:058260 0:000E + 00
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D = 100
H0(t) S�H0(t)� z0(t)

t = 0:00 0:095617 �0:768E � 05
t = 0:25 0:096455 0:477E � 05
t = 0:50 0:098427 �0:571E � 05
t = 0:75 0:094023 �0:419E � 05
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:100028 0:902E � 05
t = 0:25 0:079595 0:959E � 05
t = 0:50 0:025289 �0:451E � 05
t = 0:75 �0:039950 �0:330E � 05
t = 1:00 �0:088044 0:000E + 00

D = 1000
H0(t) S�H0(t)� z0(t)

t = 0:00 0:099944 �0:314E � 04
t = 0:25 0:093691 0:104E � 04
t = 0:50 0:099816 �0:433E � 04
t = 0:75 0:093637 �0:347E � 04
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:099876 �0:132E � 05
t = 0:25 0:074517 �0:922E � 05
t = 0:50 0:005809 0:719E � 06
t = 0:75 �0:066274 0:144E � 04
t = 1:00 �0:099795 0:000E + 00

For Table 4.1.2, we change the value of N to N = 50 and leave the other
parameters as before, � = 10, T = 1 and h = 2�12.
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Table 4.1.2

D = 1
H0(t) S�H0(t)� z0(t)

t = 0:00 0:093854 0:722E � 07
t = 0:25 0:093910 0:127E � 07
t = 0:50 0:096116 0:243E � 07
t = 0:75 0:098787 0:711E � 07
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:100050 0:201E � 08
t = 0:25 0:036975 0:353E � 07
t = 0:50 �0:072568 0:198E � 07
t = 0:75 �0:090958 0:109E � 07
t = 1:00 0:004938 0:000E + 00

D = 10
H0(t) S�H0(t)� z0(t)

t = 0:00 0:097782 �0:520E � 06
t = 0:25 0:094919 �0:235E � 06
t = 0:50 0:099202 0:146E � 06
t = 0:75 0:093816 0:239E � 06
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:099942 0:153E � 05
t = 0:25 0:023960 �0:502E � 06
t = 0:50 �0:088891 �0:748E � 06
t = 0:75 �0:065404 �0:121E � 05
t = 1:00 0:058260 0:000E + 00
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D = 100
H0(t) S�H0(t)� z0(t)

t = 0:00 0:095617 �0:722E � 05
t = 0:25 0:096455 0:532E � 05
t = 0:50 0:098427 �0:537E � 05
t = 0:75 0:094023 �0:411E � 05
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:100028 �0:111E � 05
t = 0:25 0:079595 0:520E � 05
t = 0:50 0:025289 �0:660E � 06
t = 0:75 �0:039950 0:495E � 06
t = 1:00 �0:088044 0:000E + 00

D = 1000
H0(t) S�H0(t)� z0(t)

t = 0:00 0:099944 �0:289E � 04
t = 0:25 0:093690 0:110E � 04
t = 0:50 0:099815 �0:396E � 04
t = 0:75 0:093637 �0:312E � 04
t = 1:00 0:100000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:099876 0:166E � 06
t = 0:25 0:074517 �0:939E � 05
t = 0:50 0:005809 0:308E � 07
t = 0:75 �0:066275 0:145E � 04
t = 1:00 �0:099795 0:000E + 00

Now we change the value of �. Note that with decreasing values of �,
the approximation errors increase. Table 4.1.3 contains the values for
N = 50, � = 1, T = 1 and h = 2�12. For D = 1000, the errrors become
quite large so that the parameter value � = 1 appears to be a lower
bound for computations with the stepsize h = 2�12 for D = 1000.
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Table 4.1.3

D = 1
H0(t) S�H0(t)� z0(t)

t = 0:00 0:592661 0:522E � 06
t = 0:25 0:505152 �0:123E � 06
t = 0:50 0:647049 0:615E � 07
t = 0:75 0:882986 0:651E � 06
t = 1:00 1:000000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 1:007443 0:241E � 07
t = 0:25 0:359598 0:347E � 06
t = 0:50 �0:735773 0:192E � 06
t = 0:75 �0:913761 0:106E � 06
t = 1:00 0:049381 0:000E + 00

D = 10
H0(t) S�H0(t)� z0(t)

t = 0:00 0:991446 �0:523E � 05
t = 0:25 0:507202 �0:218E � 05
t = 0:50 0:980079 0:147E � 05
t = 0:75 0:512083 0:256E � 05
t = 1:00 1:000000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 1:001801 0:153E � 04
t = 0:25 0:273718 �0:475E � 05
t = 0:50 �0:878003 �0:740E � 05
t = 0:75 �0:665288 �0:121E � 04
t = 1:00 0:582597 0:000E + 00
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D = 100
H0(t) S�H0(t)� z0(t)

t = 0:00 0:534325 �0:639E � 04
t = 0:25 0:848073 0:531E � 04
t = 0:50 0:796741 �0:511E � 04
t = 0:75 0:564493 �0:335E � 04
t = 1:00 1:000000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:984125 �0:112E � 04
t = 0:25 0:862619 0:526E � 04
t = 0:50 0:320507 �0:561E � 05
t = 0:75 �0:362338 0:538E � 05
t = 1:00 �0:880438 0:000E + 00

D = 1000
H0(t) S�H0(t)� z0(t)

t = 0:00 0:623301 �0:201E � 03
t = 0:25 0:741808 0:160E � 03
t = 0:50 0:865530 �0:379E � 03
t = 0:75 0:962083 �0:335E � 03
t = 1:00 1:000000 0:000E + 00

H8(t) S�H8(t)� z8(t)
t = 0:00 0:866093 0:429E � 06
t = 0:25 0:930710 �0:914E � 04
t = 0:50 0:288906 0:266E � 05
t = 0:75 �0:570488 0:146E � 03
t = 1:00 �0:997954 0:000E + 00
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Chapter 5

Numerical Solution of

Problem PN

In this chapter, we consider the numerical solution of problem PN based
on Theorem 3.0.4 for the example of the rotating Euler{Bernoulli beam.

The eigenvalues �j = (xj=l)4 are computed by Newton's method as
described in Remark 2.3.1. Table 5.0.4 contains the numbers x21; :::; x

2
10

that appear as factors in the frequencies in the trigonometric functions.
Due to Lemma 2.3.2, we have the approximation ((2j � 1)�=2)2 for x2j .

Table 5.0.4

x21 3:51601526850015
x22 22:0344915646668
x23 61:6972144135491
x24 120:901916052306
x25 199:859530116803
x26 298:555530967730
x27 416:990786056605
x28 555:165247555763
x29 713:078917978976
x210 890:731797198301

The fact that these numbers grow rather fast causes numerical di�cul-
ties, since for large values of D (i.e. for rather sti� beams), functions
occur that oscillate wildly.

The eigenfunctions �j = 'j=
p
l are computed as in equation (2.18).
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The Fourier coe�cients

aj :=
Z l

0
y0(x)�j(x) dx; bj :=

Z l

0
y1(x)�j(x) dx

are computed with a Newton{Cotes rule. For our implementation, we
used the following notation.

c�1 =  0;

c0 = � 1;

cj = �0:5�(j+1)=2

p
l
p
D a(j+1)=2 for j uneven,

cj = 0:5
q
�j=2

p
l bj=2 for j even.

z�1(t) = t;

z0(t) = 1;

zj(t) = sin
�q

�(j+1)=2D t
�
for j uneven,

zj(t) = cos
�q

�j=2D t
�
for j even.

With this notation, our moment equations have the form

Z T

0
u(t)zj(t) dt = cj: (5.1)

We have to approximate the Gram matrix Z T

0
Hi(t)Hj(t) dt

!
ij

:

For this purpose, we start with the computation of the values

Hi(xj); j 2 f0; :::;mg (5.2)

on an equidistant grid xj = j=m, j 2 f0; :::;mg by the method described
in Section 4.1.1.

For our numerical experiments, we have �rst solved the corresponding
initial value problem (4.10), (4.11) with subroutine D02BBF from the
NAG library which is an implementation of a Runge{Kutta method.
For a sti�ness check of the system we used subroutine D02BDF, which
indicated that the system is not sti�.
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Figure 5.0.2 shows the graphs of the functions H1 and H8 for l = 1,
� = 10, D = 1 and D = 1000. The values where computed on an
equidistant grid of 4096 points on the interval [0; 1].

Figure 5.0.3
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Figure 5.0.3. The �rst 100 grid points of H8 for D = 1000.

The graph of H8 for D = 1000 shown in Figure 5.0.2 illustrates that
it is reasonable to use a very �ne grid. It appears to deserve a closer
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inspection. Figure 5.0.3 shows the corresponding values for the �rst
100 grid points. The computed points of the graph are connected with
straight lines.

With the computed approximations of the values (5.2), we computed
the scalar products

R T
0 Hi(t)Hj(t) dt with a Newton{Cotes formula. In

our implementation, we have used a generalized Simpson rule. On ac-
count of the oscillations of the functions Hi we used a large number of
grid points (e.g. m = 4096).

The linear System (3.2) for the coe�cients �j was solved with sub-
routine F04AMF from the NAG library, that uses a QR{decomposition.
Our implementation is based on the program given in [48].

We used the initial data  0 = �2,  1 = 0, y0 = y1 = 0. So initially
the beam is at rest at the angle �2 and we have cj = 0 for j > 0. The
end conditions were  (T ) =  0(T ) = 0. So we steer the beam to a
position of rest at angle 0.

We used the data T = 1, l = 1 and � = 10.

We worked with the truncated kernel K100. The values Hi(xj), i 2
f�1; 0; 1; :::; 8g were computed on an equidistant grid of 4096 points.
We solved the problem

PM : min
Z T

0
(Su(t)� b(t))2 dt

s:t:
Z T

0
u(t)zj(t) dt = cj; j 2 f�1; 0; 1; :::;Mg

for the values M = 8 and D 2 f1; 10; 100; 1000g. The optimal value of
PM is denoted by !(M).

Figure 5.0.4 shows the torque functions
PM

i=�1 �iHi(t) for the com-
puted coe�cients �i. The functions were evaluated on an equidistant
grid consisting of 4096 points.

Comparable computational results based on the method of moments
have apparently not been given in the literature.
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Table 5.0.5 contains the computed values !(M) and the coe�cients
� of the computed solutions shown in Figure 5.0.4.

Table 5.0.5

D = 1 D = 10
!(8) 207332 6009:18
��1 �103666:175179571 �3004:58945797609
�0 51833:0875930414 1502:29472911265
�1 �7387:45765146898 �341:906396775370
�2 �38992:5646651368 �304:056798382331
�3 �23:4998299900517 �61:5554967928653
�4 �1085:98318319345 17:8441219573877
�5 �577:027488395252 �24:2019121243438
�6 �367:678732746883 3:96767012563677
�7 �170:881646232623 �10:3312672492900
�8 162:642036446255 �5:30577791657202

D = 100 D = 1000
!(8) 5161:4080 5135:2056
��1 �2580:70401126334 �2567:60280778742
�0 1290:35200572575 1283:80140389871
�1 �25:6857050234166 �25:9077843943739
�2 �113:613699310472 �55:7137423930246
�3 �19:8970650795290 �6:86843851751824
�4 4:39266402485629 �2:31573968024444
�5 �5:00963386143109 �1:553989245281026E � 2
�6 3:50273269829957 �0:409739976397877
�7 �0:211644877802561 1:834163567310364E � 3
�8 0:840416830934177 �2:960031395761198E � 2

We continue our parameter studies by choosing a smaller value of �,
namely � = 1. The other parameters are l = 1, T = 1, M = 8. Figure
5.0.5 shows the value of the torque functions for D = 1, 10, 100, 1000
computed on a grid of 4096 equidistant points.
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Figure 5.0.6
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Figure 5.0.6. The Graph of the torque functions on [0; 1] for � = 1 and M = 6

Table 5.0.6 contains the computed values !(M) and the coe�cients
� of the computed torque functions

PM
i=�1 �iHi shown in Figures 5.0.5

and 5.0.6.
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Table 5.0.6

D = 1
M = 6 M = 8

!(M) 1953:70223 1956:26899
��1 �976:851116 �978:134493
�0 488:425558 489:067227
�1 �69:5594830 �69:6424391
�2 �361:318889 �361:757994
�3 �0:216388267 �0:215504078
�4 �11:7394866 �11:7031530
�5 �5:73562417 �5:69064187
�6 �3:65546229 �3:62682958
�7 �1:64946679
�8 1:57022874

D = 10
M = 6 M = 8

!(M) 100:124008 100:142664
��1 �50:0620038 �50:0713322
�0 25:0310037 25:0356670
�1 �6:11269044 �6:11406356
�2 �4:99746687 �5:00032853
�3 �0:876674650 �0:877990826
�4 0:264965246 0:265310299
�5 �0:383831551 �0:385099796
�6 6:319181767E � 2 6:339439690E � 2
�7 �0:171560367
�8 �8:816897422E � 2
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D = 100
M = 6 M = 8

!(M) 85:3989837 85:3989925
��1 �42:6994919 �42:6994963
�0 21:3497455 21:3497469
�1 �2:95876032 �2:95874899
�2 �3:92199904 �3:92200512
�3 �0:165040869 �0:165041769
�4 6:751015501E � 2 6:750941322E � 002
�5 �5:201929151E � 2 �5:201631680E � 002
�6 3:862737539E � 2 3:862424872E � 002
�7 �6:697841442E � 004
�8 4:146153767E � 003

D = 1000
M = 6 M = 8

!(M) 85:3640599 85:3640944
��1 �42:6820300 �42:6820472
�0 21:3410155 21:3410233
�1 �4:66253217 �4:66252954
�2 �1:70433837 �1:70434809
�3 �7:206619944E � 2 �7:206734396E � 2
�4 6:832755733E � 2 6:832426489E � 2
�5 6:074123826E � 3 6:074410399E � 3
�6 �3:305413956E � 2 �3:305523040E � 2
�7 1:408419035E � 3
�8 �8:173360917E � 3

If the initial data are changed to  0 = �4,  1 = 0, and the other
parameters are chosen as before as � = 1, l = 1, T = 1, M = 6, the
coe�cients �i of the torque functions with minimal norm are twice the
coe�cients of the solutions corresponding to the initial data  0 = �2,
and the optimal value is four times the optimal value corresponding to
the initial data  0 = �2.

More generally, with y0 = y1 = 0 if the initial data are changed from
 0,  1 to � 0, � 1, the coe�cients of the optimal torque functions are
also multiplied with �.
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It is interesting to compare the torque functions shown in Figure
5.0.5 with the torque functions Su� b generated by control functions u
that solve the problem

min
Z 1

0
u(t)2 dt

s:t:
Z T

0
u(t)zj(t) dt = cj; j 2 f�1; 0; 1; :::;Mg:

Let �(M) denote the value of this problem. This problem has an objec-
tive function of a simpler structure than problem PM and can be solved
much easier numerically, since the costly computation of the functions
Hj is not necessary.

Figure 5.0.7
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Figure 5.0.7. The torque functions for angular acceleration with minimal norm on [0; 1].
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Figure 5.0.7 shows the torque functions for the same data that were
used for Figure 5.0.5. It illustrates that in a way the complicated ob-
jective function kSu � bk2 causes a regularization with respect to the
torque: If we compute a control which yields a torque with minimal
norm, we obtain torque functions that have small amplitudes as in Fig-
ure 5.0.5, in particular for large values of D.

In contrast to this situation, the amplitudes of the torque functions
in Figure 5.0.7 increase with D. In particular the oscillations of the
torque function for D = 1000 are quite large, the amplitudes are much
larger than the amplitudes of the oscillations the torque function with
minimal norm.

Table 5.0.7 contains the computed values �(M) and the coe�cients
� of the computed angular accelerations u(t) =

PM
i=�1 �izi(t), whose

torque functions are shown in Figure 5.0.7.
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Table 5.0.7

D = 1 D = 10
�(8) 2087:16098 55:6682732
��1 �1043:58049 �27:8341366
�0 521:790244 13:9170683
�1 �74:4871941 �2:97140438
�2 �393:218466 �2:62657523
�3 �0:233322869 �0:586711805
�4 �10:7646631 0:170027871
�5 �5:77927821 �0:228272220
�6 �3:68251580 3:742168640E � 2
�7 �1:71553359 �9:693928866E � 2
�8 1:63281080 �4:978427570E � 2

D = 100 D = 1000
�(8) 48:1362100 48:0344568
��1 �24:0681050 �24:0172284
�0 12:0340525 12:0086142
�1 �0:139243278 �0:146157153
�2 �0:448045127 �0:206815186
�3 �0:200262182 �6:103085798E � 2
�4 4:409224883E � 2 �2:028476554E � 2
�5 �5:035384095E � 2 �7:565543740E � 5
�6 3:519265082E � 2 �1:397195681E � 3
�7 �2:235204329E � 3 �1:193747558E � 5
�8 8:864417848E � 3 3:730507036E � 4
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Except for the value of �, we use the same data as for Figure 5.0.4.
Figure 5.0.10 shows the graphs of the torque functions for � = 100,
l = 1, T = 1, M = 8, N = 100, h = 2�12.

Figure 5.0.10
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Figure 5.0.10. The Graph of the torque functions on [0; 1] for � = 100.
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Now we investigate how the optimal value of Problem PM changes,
if the number N of terms in the truncated series for the kernel K is
changed. We use the data l = 1, T = 1, M = 8, h = 2�14.

Table 5.0.8

� = 1
D = 1 D = 10 D = 100 D = 1000

N = 1 1908 98:67 84:16 84:11
N = 2 1950 99:90 85:20 85:17
N = 3 1954 100:07 85:34 85:30
N = 4 1955 100:11 85:37 85:34
N = 5 1956 100:13 85:39 85:35
N = 100 1956 100:14 85:40 85:36

� = 10
D = 1 D = 10 D = 100 D = 1000

N = 1 206832 5998 5152 5125
N = 2 207266 6007 5160 5133
N = 3 207313 6009 5161 5135
N = 100 207332 6009 5164 5135

Note that the numbers in Table 5.0.8 increase with N .
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For D = 1 and D = 10, the movement has a simple structure. The
beam moves once to the right{hand side and once to the left{hand side.
The �rst movement is due to the acceleration and the second part of
the movement is due to the negative acceleration in the second half of
the time{interval.

For D = 100 and D = 1000, the movement is much more compli-
cated, since the tip of the beam oscillates more often. Note that the
maximal amplitudes occur at the beginning and at the end of the move-
ment.



Chapter 6

Optimal Value Functions

In Chapter 5 we have considered the numerical solution of Problem PN
for a �xed steering time. For the example of the Euler{Bernoulli beam,
Problem PN is the problem of the computation of a control function
for which the corresponding torque function has minimal L2{norm and
which satis�es a truncated system of moment equations. The torque
function is given by the image of the control function under a Volterra
operator.

Problem PN appeared as a discretization of Problem P1. Theorem
3.0.5 guarantees the strong convergence of the solutions of PN to the
solution of P1 for N ! 1. For all these problems, one �xed Hilbert
space is considered, which corresponds to the fact that the steering time
T is �xed.

To check the stability of the model, it is useful to examine the be-
haviour of the optimal value as a function of T . This sensitivity analysis
is particularly important since it is related to problems of time{optimal
control.

In this chapter, we examine the behaviour of the optimal value func-
tions of PN and P1. We also analyse how the sequence of optimal value
functions of the Problems PN converges to the optimal value function
of P1.

For Problem P1 with the complete countable set of moment equa-
tions as equality constraints, we show that the optimal value is a con-
tinuous function of the steering time T . So we consider P1 as a time{
parametric program. A particular di�culty in the analysis of such time{
parametric programs is due to the fact that in a natural way not only one
�xed Hilbert space but a whole parametric family of spaces depending

73



74 CHAPTER 6. OPTIMAL VALUE FUNCTIONS

on the controlling time occurs.
To prove the continuity of the value function of P1, we use the

following scheme which is used in parametric optimization (see [13]).
First we show that the solutions of P1 are uniformly bounded with
respect to T . We use this fact to prove that the value function is lower
semicontinuous. Then we introduce a dual problem and show that the
dual solutions are also uniformly bounded. This fact allows us to prove
that the value function is upper semicontinuous.

In a similar way, we can show that the value function of Problem PN
is continuous.

Using Dini's Theorem, we show that on a given time{interval, the
sequence of optimal value functions corresponding to the problems PN
converges uniformly to the optimal value function of the original prob-
lem. This result is important for the stability of the numerical approach
via the moment equations. It guarantees that for a given accuracy, a
truncation level N exists that allows to approximate the optimal value
function of problem P1 by the optimal value function of problem PN
on a whole time{interval with that accuracy.

Our problem di�ers from the standard minimum norm problem be-
cause instead of the L2{norm of the control function we allow for a more
general objective function which is given by the L2{norm of the image
of the control function under an a�ne linear map.

The numerical examples in Chapter 5 have illustrated that for the
rotating Euler{Bernoulli beam, this approach makes sense since mini-
mizing the L2{norm of the torque instead of the L2{norm of the angular
acceleration yields controls for which the corresponding torque functions
look much nicer (see Figures 5.0.4 and 5.0.7).

Due to the generality of the objective function, the analysis is more
complicated than for the standard minimumnorm problem. A transfor-
mation of our objective function to the norm as the standard objective
function yields a problem that di�ers from the standard minimumnorm
problem because the right|hand side of the moment equations depends
on the time{parameter T . This means that the results that are given in
[23] for the standard minimum norm problem are not applicable. For
example, for the objective function considered here in general the op-
timal value function is not necessarily decreasing. Hence the results
presented here are original and cannot be obtained as conclusions from
the results about the standard minimum norm problem.

If the objective function of Problem PN is given by a Volterra{
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For u 2 Z(0; T ), instead of kuj[minfT1;T2g;maxfT1;T2g]k(T1;T2) we write

kuk(T1;T2); analogously, for u, v 2 Z(0; T ) we use the notation hu; vi(T1;T2).
For our analysis it is essential, that we do not work in only one space,

but use a whole (time{)parametric family of spaces.
For all T 2 (0; T ], let ST : Z(0; T )! Z(0; T ) be a continuous linear

map that is bijective and for which the following equality holds for all
u 2 Z(0; T ):

ST (uj[0;T ]) = (S
T
u)j[0;T ]: (6.1)

As an example for ST consider the Volterra operator with a constant
� > 0 and kernel K 2 C(0; T ):

(STu)(t) = �u(t)�
Z t

0
K(t� s)u(s) ds: (6.2)

The adjoint operators of ST and S�1T are denoted by S�T , (S
�1
T )�

respectively. In example (6.2) we have

(S�Tu)(t) = �u(t)�
Z T

t
K(s � t)u(s) ds:

Lemma 6.1.1 For all T 2 [0; T ] for all y 2 Z(0; T ) we have

S�1T (yj[0;T ]) = (S�1
T
y)j[0;T ]:

Moreover kS�Tk = kSTk � kS
T
k and k(S�1T )�k = kS�1T k � kS�1

T
k.

Proof. Let y 2 Z(0; T ), T 2 [0; T ]. Let u1 = (S�1
T
y)j[0;T ] and u2 =

S�1T (yj[0;T ]).
Then STu2 = yj[0;T ] and (6.1) implies

STu1 = ST ((S
�1
T
y)j[0;T ]) = (S

T
(S�1
T
y))j[0;T ] = yj[0;T ] = STu2:

Hence u1 = u2.
For u 2 Z(0; T ), de�ne ~u 2 Z(0; T ) by ~uj[0;T ] := u, ~uj

(T;T ]
= 0. Then

kuk(0;T ) = k~uk
[0;T )

. Hence (6.1) implies kSTuk(0;T ) = kS
T
~uk(0;T ) �

kS
T
~uk

(0;T )
� kS

T
kk~uk

(0;T )
= kS

T
k kuk(0;T ). Thus kSTk � kS

T
k. The

inequality kS�1T k � kS�1
T
k follows analogously. The equality kSTk =

kS�Tk is always valid (see [37] p. 90). 2
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We assume that for all u 2 Z(0; T ) and Tj 2 (0; T ] (j 2 IN) with
limj!1 Tj = T we have

lim
j!1

�S�Tj(u(�T=Tj))
�
(�Tj=T )�

�
S�T (u(�T=T ))

�
(�T=T )


(0;T )

= 0:

(6.3)
For the example of the Volterra operator in (6.2) we have for all u 2
Z(0; T ) and t 2 [0; T ]

�
S�T (u(�T=T ))

�
(t) = �u(tT=T )�

Z T

t
K(s� t)u(sT=T ) ds

= �u(tT=T )� T

T

Z T
tT =T

K(xT=T � t)u(x) dx

hence we conclude that for all y 2 [0; T ] we have

�
S�T (u(�T=T ))

�
(yT=T ) = �u(y)� T

T

Z T
y

K((x� y)T=T )u(x) dx:

Let

Dj(y) =
�
S�Tj(u(�T=Tj))

�
(�Tj=T ) �

�
S�T (u(�T=T ))

�
(�T=T )

=
Z T
y

�
T

T
K((x� y)

T

T
)� Tj

T
K((x� y)

Tj

T
)
�
u(x) dx:

Then H�older's inequality implies that

Dj(y)
2 �

Z T
y

(u(x))2 dx
Z T
y

�
T

T
K((x� y)

T

T
)� Tj

T
K((x� y)

Tj

T
)
�2
dx:

Since the function K is uniformly continuous on [0; T ], limj!1 Tj = T
implies that

max
t2[0;T ]

����TT K(t
T

T
)� Tj

T
K(t

Tj

T
)
����! 0 (j !1)

hence

lim
j!1

Z T
0

Dj(y)
2 dy = 0;

thus (6.3) is valid.
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Let (zj)j2IN 2 (Z(0; T ))IN be a sequence of functions, b 2 Z(0; T )
and c 2 l2.

For � 2 IR [ f1g and e 2 l2 we de�ne the set
U(T; �; e)

= fu 2 Z(0; T ) : kSTu�bk2(0;T) � �2 and hu; zji(0;T ) = ej for all j 2 INg:
We make the following assumptions:
A0 A number � 2 IR is given such that the set U(T ; �; c) is nonempty.
A1 There exist constants T , M , P > 0 such that for all N 2 IN ,

(a1; :::; aN) 2 IRN we have

(1=M)(
NX
i=1

a2i )
1=2 � k

NX
i=1

aizik(0;T )

� k
NX
i=1

aizik
(0;T )

� P (
NX
i=1

a2i )
1=2:

For trigonometric moment problems, the validity of the inequality in
A1 can sometimes be veri�ed with the help of a result of Ingham (see
[16]). Usually (e.g. in [47], Lemma 4.1, p.120 and [22] (II.2.11)) in the
theory of moment problems a similar inequality for one �xed space is
considered; in contrast to the present work the parametric aspect is not
taken into account. Condition A1 is equivalent to the statement that
for all T 2 [T; T ], the functions zi form a Riesz{basis of the closure of
their linear span. This means that the family (zi)i2IN is isomorphic to
an orthonormal basis of the closure of its linear span (see [3], p.26 or
[50], p.30). Condition A1 is also equivalent to the statement that for all
T 2 [T; T ], the Gram{matrix

�
hzi; zji(0;T )

�1
i;j=1

generates a linear bounded invertible operator on l2. Riesz{bases can
also be characterized in terms of biorthogonal sequences (see [50], The-
orem 9, p. 32).

Using Lemma 6.1.1, it is easy to prove that Assumption A1 implies
the following Lemma.
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Lemma 6.1.2 Let M̂ = M kS
T
k, P̂ = PkS�1

T
k. For T 2 [T; T ], j 2

IN de�ne Hj(T ) = (S�T )
�1zj. Then for all N 2 IN , (a1; :::; aN) 2 IRN ,

T 2 [T; T ] we have

(1=M̂ )(
NX
i=1

a2i )
1=2 � k

NX
i=1

aiHi(T )k(0;T ) � P̂ (
NX
i=1

a2i )
1=2:

The assertion of Lemma 6.1.2 means that the sequence (Hj(T ))j2IN is

a Bessel sequence with bound P̂
2
and a Riesz{Fischer sequence with

bound 1=M̂
2
(see Theorem 3.0.2).

6.1.2 The Problem

For T 2 [T; T ] de�ne the parametric optimization problem P1(T ):

minkSTu� bk2(0;T ) s.t. hu; zji(0;T ) = cj for all j 2 IN:
Let !(T ) denote the value of P1(T ).

Note that in the theory of moment problems (e.g. in [47] ), usually
instead of kSTu � bk2(0;T ) the objective function kuk2(0;T ) is considered
that yields so called normal solutions.

6.1.3 The Discretized Problem

Since P1(T ) has an in�nite number of equality constraints, for numer-
ical purposes it is necessary to examine a discretized problem PN (T ),
where only the �rst N equality constraints of problem P1(T ) are con-
sidered.

For T 2 [T; T ], N 2 IN de�ne the parametric optimization problem
PN (T ):

minkSTu� bk2(0;T ) s.t. hu; zji(0;T ) = cj for all j 2 f1; :::; Ng:

Let !N (T ) denote the value of PN (T ). Then for all T 2 [T; T ], we have
!N+1(T ) � !N (T ).

The solution of problem PN (T ) is characterized in Theorem 3.0.4
which is restated here with the notation of the parametric case.

Lemma 6.1.3 Let T 2 [T; T ], N 2 IN . For j 2 f1; :::; Ng, de�ne
Hj(T ) = (S�T )

�1zj. De�ne �N(T ) = (�Ni (T ))
N
i=1 2 IRN as the solution
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Lemma 6.1.2 implies that for all N 2 IN , (a1; :::; aN) 2 IRN , we have
the inequality

k
NX
i=1

aiHi(T )k(S;T ) � k
NX
i=1

aiHi(T )k(0;T )

� P̂

 
NX
i=1

a2i

!1=2

:

This implies that for all y 2 IRN , we have

yTy � P̂
2
yT (GN (S; T ))

�1 y:

Thus we have

NX
i=1

�
hu;Hi(T )i(S;T )

�2
= UT

NUN

� P̂
2
UT
N (GN (S; T ))

�1 UN

= P̂
2
�TNGN (S; T )�N

= P̂
2kuNk2(S;T )

� P̂
2kuk2(S;T ):

Since this inequality holds for all N 2 IN , the assertion follows. 2

Lemma 6.1.5 For all T 2 [T; T ] there exists an element v�(T ) of the
closure of spanfHi(T ) : i 2 INg such that for all i 2 IN the equality

hv�(T );Hi(T )i(0;T ) = ci � hb;Hi(T )i(0;T ) (6.4)

is valid. Moreover, u�(T ) = S�1T (v�(T ) + b) is the unique solution of
P1(T ).

Proof. Let T 2 [T; T ], N 2 IN be given and let
GN (T ) = (hHi(T );Hj(T )i(0;T ))Nij=1. De�ne

VN = (ci � hb;Hi(T )i(0;T ))Ni=1 2 IRN :

As in Lemma 6.1.3, let

�N (T ) = (GN (T ))
�1VN ; vN(T ) =

NX
i=1

�Ni (T )Hi(T ):
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We introduce a dual problem for P1(T ) and show that the corre-
sponding dual solutions are also uniformly bounded on [T; T ]. We use
this fact to show that ! is upper semicontinuous.

Lemma 6.1.6 (Uniform boundedness of the primal solutions) The
solutions of P1(T ) are uniformly bounded on [T; T ], that is there exists
r 2 IR, such that for all T 2 [T; T ] we have

ku�(T )k(0;T ) � r:

Proof. Let T 2 [T; T ]. Let (T ) be de�ned as in the proof of Lemma
6.1.5. Then due to Lemma 6.1.4 we have

q
(T ) =

 1X
i=1

(ci � hb;Hi(T )i(0;T ))2
!1=2

� kckl2 +
 1X
i=1

hb;Hi(T )i2(0;T )
!1=2

� kckl2 + P̂kbk(0;T )
� kckl2 + P̂kbk

(0;T )
=: R:

Since v�(T ) is a weak cluster point of the sequence (vN(T ))N2IN due to
the lower semi{continuity of k � k2(0;T ) we have

kv�(T )k2(0;T ) � M̂
2
(T ) � M̂

2
R2:

According to Lemma 6.1.5, we have

u�(T ) = S�1T (v�(T ) + b):

By Lemma 6.1.1, this yields the inequality

ku�(T )k(0;T ) � kS�1T k (kv�(T )k(0;T )+ kbk(0;T ))
� kS�1

T
k (M̂R+ kbk

(0;T )
) =: r;

and the assertion follows. 2

Lemma 6.1.7 (Lower semicontinuity) The function ! is lower semi-
continuous on [T; T ].
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Proof. Let T 2 [T; T ] and a sequence (Tl)l2IN 2 [T; T ]IN converging to
T be given. For k 2 IN , let uk = u�(Tk) 2 Z(0; Tk). Due to Lemma
6.1.6 there is r 2 IR such that for all k we have: kukk(0;Tk) � r.

De�ne ~uk(�) = uk(�Tk=T ) 2 Z(0; T ). Then
k~ukk

(0;T )
= (T=Tk)

1=2kukk(0;Tk) � (T=Tk)
1=2r:

Hence the sequence (~uk)k2IN is bounded. Thus there exists a subse-
quence that converges weakly to a point ~u� 2 Z(0; T ). Assume without
restriction that the whole sequence (~uk)k2IN is weakly convergent.

We have uj(�) = ~uj(�T=Tj). De�ne w�(�) = ~u�(�T=T ). Let ~zjl =
zl(�Tj=T ) 2 Z(0; T ). For all l 2 IN we have cl = huj; zli(0;Tj) =

(Tj=T )h~uj; ~zjl i(0;T )
.

Let ~z�l (�) = zl(�T=T ) 2 Z(0; T ). Then
lim
j!1

k~zjl � ~z�l k(0;T )
= 0:

For �xed l 2 IN , this can be seen as follows. Let � > 0 be given. Then
there exists g 2 C(0; T ) such that

Z T
0

(g(x)� zl(x))
2 dx < �2

(see (9.7) in [49]). Since g is uniformly continuous on [0; T ], there exists
a number n1(�) such that for all j > n1(�)

Z T
0

(g(xTj=T )� g(xT=T ))2 dx < �2:

Moreover, we have

Z T
0

(zl(xTj=T )� g(xTj=T ))
2 dx = (T=Tj)

Z Tj

0
(zl(t)� g(t))2 dt � �2T=T

and Z T
0

(zl(xT=T )� g(xT=T ))2 dx � �2T=T :

Hence Minkowski's inequality implies

(
Z T
0

(zl(xTj=T )� zl(xT=T ))
2 dx)1=2 � 3�

q
T=T:
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Hence for all l 2 IN
h~u�; ~z�l i(0;T )

= lim
j!1

h~uj; ~z�l i(0;T )
= lim

j!1
h~uj ; ~zjl i(0;T )

= lim
j!1

(T=Tj)cl = (T=T )cl:

Hence we have

hw�; zli(0;T ) = (T=T )h~u�; ~z�l i(0;T )
= (T=T )(T=T )cl = cl:

Thus we have w� 2 U(T;1; c) and hence !(T ) � kSTw� � bk2(0;T ).
The function u 7! kuk(0;T ), Z(0; T ) ! IR is sequentially weakly

lower semicontinuous (as the supremum of sequentially weakly contin-
uous functions, see [37], Prop. 1.5.12).

Let ~b(�) = b(�T=T ). Let vj = STjuj � b 2 Z(0; Tj) and ~vj(�) =

vj(�Tj=T ) 2 Z(0; T ). Let v� = STw��b and ~v�(�) = v�(�T=T ) 2 Z(0; T ).
For f 2 Z(0; T ), let f̂j(�) = f(�T=Tj) 2 Z(0; Tj) and f̂(�) = f(�T=T ) 2
Z(0; T ). Then

hf; ~vji
(0;T )

= hf; (STjuj)(�Tj=T )i(0;T )
� hf; b(�Tj=T )i

(0;T )
:

We have

hf; (STjuj)(�Tj=T )i(0;T )
= hf̂j ; (STjuj)i(0;Tj)(T=Tj)
= hS�Tj f̂j ; uji(0;Tj)(T=Tj)
= h(S�Tj f̂j)(�Tj=T ); ~uji(0;T )

:

Thus assumption (6.3) and the weak convergence of the sequence (~uj)j2IN
imply

lim
j!1

hf; (STjuj)(�Tj=T )i(0;T )
= h(S�T f̂)(�T=T ); ~u�i(0;T )

= hS�T f̂ ; w�i(0;T )(T=T )
= hf̂ ; STw�i(0;T )(T=T )
= hf; (STw�)(�T=T )i

(0;T )
:

Moreover, since kb(�Tj=T )� ~b(�)k
(0;T )

! 0 (j !1) we have

lim
j!1

hf; b(�Tj=T )i
(0;T )

= hf;~bi
(0;T )

:



86 CHAPTER 6. OPTIMAL VALUE FUNCTIONS

Thus we can conclude that

lim
j!1

hf; ~vji
(0;T )

= hf; (STw� � b)(�T=T )i
(0;T )

= hf; ~v�i
(0;T )

;

so the sequence (~vj)j2IN converges weakly to ~v�.
Thus we have

!(T ) � kv�k2(0;T )
= (T=T )k ~v�k2

(0;T )

� (T=T ) lim inf
j!1

k~vjk2
(0;T )

= lim inf
j!1

(Tj=T )k~vjk2
(0;T )

= lim inf
j!1

kvjk2(0;Tj)
= lim inf

j!1
!(Tj):

Hence !(T ) � lim infk!1 !(Tk), that is ! is lower semicontinuous in
T . 2

To show the upper semicontinuity of !, we use the coe�cients of
v�(T ) written as a linear combination of the functions Hi(T ).

These coe�cients form a sequence in l2 and can be used to express
the optimal value !(T ).

Lemma 6.1.8 Let T 2 [T; T ]. Then there exist (�i(T ))i2IN 2 l2 such
that

v�(T ) =
1X
i=1

�i(T )Hi(T ) and

!(T ) =
1X
i=1

�i(T )(ci � hb;Hi(T )i(0;T )):

Moreover, for all i 2 IN the following equality is valid:

1X
j=1

�j(T )hHi(T );Hj(T )i(0;T ) = ci � hb;Hi(T )i(0;T ): (6.5)

Proof. According to Lemma 6.1.5, we have

v�(T ) 2 spanfHi(T ); i 2 INg:
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Hence there exists (�i(T ))i2IN such that v�(T ) =
P1

i=1 �i(T )Hi(T ).
Lemma 6.1.2 implies (�i(T ))i2IN 2 l2. Since v�(T ) = STu�(T ) � b,
we have

!(T ) = kv�(T )k2(0;T )
= h

1X
i=1

�i(T )Hi(T ); v�(T )i(0;T )

=
1X
i=1

�i(T )hHi(T ); v�(T )i(0;T )

=
1X
i=1

�i(T )(ci � hb;Hi(T )i(0;T );

where the last equality follows from equation (6.4), which also implies
(6.5). 2

In the next Lemma, we introduce a maximization problem with value
!(T ), i.e. a dual problem for P1(T ).

Lemma 6.1.9 (Dual Problem) Let T 2 [T; T ]. Then we have

!(T )

= sup
�2l2

�
1X
i=1

1X
j=1

�i�jhHi(T );Hj(T )i(0;T )+ 2
1X
j=1

�j
�
cj � hb;Hj(T )i(0;T )

�
:

Proof. For T 2 [T; T ], � 2 l2, de�ne

h(T; �) = �
1X
i=1

1X
j=1

�i�jhHi(T );Hj(T )i(0;T )+2
1X
j=1

�j
�
cj � hb;Hj(T )i(0;T )

�
:

Let �(T ) = (�i(T ))i2IN be as in Lemma 6.1.8. Then Lemma 6.1.8
implies

h(T; �(T )) = �kv�(T )k2 + 2
1X
j=1

�j(T )
�
cj � hb;Hj(T )i(0;T )

�

= �!(T ) + 2!(T )

= !(T ): (6.6)

Hence we have the inequality

!(T ) � sup
�2l2

h(T; �):
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For � 2 l2, v 2 Z(0; T ) de�ne

�(T; v; �) = kvk2(0;T )+ 2
1X
j=1

�j
�
cj � hb;Hj(T )i(0;T )� hv;Hj(T )i(0;T )

�
(6.7)

Lemma 6.1.4 implies, that �(T; v; �) is well{de�ned.
According to Lemma 6.1.5, we have

kv�(T )k2(0;T ) = !(T )

and hence (6.5) implies that for all � 2 l2

�(T; v�(T ); �) = kv�(T )k2(0;T ) = !(T ):

For all � 2 l2, the map �(T; �; �) is coercive and strictly convex, hence
the set

Mmin(T ) = fv 2 Z(0; T ) : �(T; v; �) = inf
w2Z(0;T )

�(T;w; �)g

is nonempty and consists of a single element.
Let � 2 l2 be �xed and Mmin(T ) = fw�g. Since the map �(T; �; �) :

Z(0; T )! IR is Fr�echet{di�erentiable, we can derive the equation

w� =
1X
j=1

�jHj(T ):

Thus we have

�(T;w�; �)

=
1X
i=1

1X
j=1

�i�jhHi(T );Hj(T )i(0;T )+ 2
1X
j=1

�j
�
cj � hb;Hj(T )i(0;T )

�

�2
1X
i=1

1X
j=1

�i�jhHi(T );Hj(T )i(0;T )
= h(T; �):

Hence for all � 2 l2 we have
h(T; �) = inf

v2Z(0;T )
�(T; v; �) (6.8)

� �(T; v�(T ); �)
= !(T ):
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This implies
sup
�2l2

h(T; �) � !(T );

and the assertion follows. 2

Lemma 6.1.10 (Uniqueness of the dual solutions) For all T 2 [T; T ],
the point (�i(T ))i2IN 2 l2 as de�ned in Lemma 6.1.8 is uniquely deter-
mined and the unique solution of the dual problem stated in Lemma
6.1.9.

Proof. Let �(T ) = (�i(T ))i2IN be as in Lemma 6.1.8. Equation (6.6)
implies that �(T ) solves the dual problem.

Lemma 6.1.2 implies that the function h(T; �) : l2 ! IR is strictly
concave, hence the dual solution is unique.

Hence �(T ) is uniquely determined. 2
Note that for all T 2 [T; T ], the dual solution is an element of the

space l2 that is a space which is independent of T . This fact is very
convenient for our analysis.

Lemma 6.1.11 (Uniform boundedness of the dual solutions) Let
T 2 [T; T ] and (�i(T ))i2IN be as in Lemma 6.1.8. There exists r 2 IR,
such that for all T 2 [T; T ] we have

1X
i=1

(�i(T ))
2 � r:

Proof. According to Lemma 6.1.2, for all T 2 [T; T ] we have 1X
i=1

�i(T )
2

!1=2

� M̂k
1X
i=1

�i(T )Hi(T )k(0;T )

= M̂kv�(T )k(0;T )
� M̂R

with R as de�ned in the proof of Lemma 6.1.6. The assertion follows
with r = M̂R. 2

Lemma 6.1.12 Let u 2 Z(0; T ). For T 2 [T; T ], i 2 IN de�ne

di(T ) = hu;Hi(T )i(0;T ):
Then for all T 2 [T; T ], we have

lim
t!T;t2[T ;T ]

1X
i=1

(di(t)� di(T ))
2 = 0:
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Proof. According to Lemma 6.1.4, for all t 2 [T; T ], we have (di(t))i2IN 2
l2. From the de�nition, we have

di(T ) = hu; (S�T )�1zii(0;T ) = hS�1T u; zii(0;T ):
Let T1, T2 2 [T; T ], T1 < T2. Then Lemma 6.1.1 implies

di(T2)� di(T1) = hS�1T2
u; zii(0;T2) � hS�1T2

u; zii(0;T1)
= hS�1T2

u; zii(T1;T2):
Analogously to Lemma 6.1.4 we can prove (by replacing Hi(T ) by zi)
that for all v 2 Z(T1; T2) we have

1X
i=1

hv; zii2(T1;T2) � P 2kvk(T1;T2):

This implies

1X
i=1

(di(T2)� di(T1))
2 =

1X
i=1

hS�1T2
u; zii2(T1;T2)

� P 2kS�1T2
uk2(T1;T2):

On account of
lim

t!T;t2[T ;T ]

kS�1
T
uk(t;T ) = 0;

the assertion follows. 2

Lemma 6.1.13 (Upper semicontinuity) The function ! is upper semi-
continuous on [T; T ].

Proof. Let T 2 [T; T ] and a sequence (Tj)j2IN 2 [T; T ]IN converging to
T be given. Then for all u 2 Z(0; T ), we have

lim
j!1

kuk(0;Tj) = kuk(0;T ):

Moreover, Lemma 6.1.12 implies

lim
k!1

1X
j=1

�
hb;Hj(Tk)i(0;Tk) � hb;Hj(T )i(0;T )

�2
= 0 and

lim
k!1

1X
j=1

�
hu;Hj(Tk)i(0;Tk) � hu;Hj(T )i(0;T )

�2
= 0:
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Let (�j)j2IN 2 (l2)IN be a weakly convergent sequence converging to ��.
Then for � as de�ned in (6.7) we have

lim
k!1

�(Tk; uj[0;Tk]; �k)

= lim
k!1

kuk2(0;Tk) + 2
1X
j=1

�kj
�
cj � hb;Hj(Tk)i(0;Tk) � hu;Hj(Tk)i(0;Tk)

�

= �(T; uj(0;T ); ��);
i.e. the map

(T; �) 7! �(T; uj(0;T ); �); [T; T ]� l2 ! IR

is sequentially weakly continuous. From (6.8), we have

h(T; �) = inf
u2Z(0;T )

�(T; uj(0;T ); �):

Hence h is the in�mum of sequentially weakly continuous maps. Thus
Proposition 1.5.12 in [37] implies that h is sequentially weakly upper
semicontinuous, i.e.

lim sup
j!1

h(Tj; �
j) � h(T; ��):

For t 2 [T; T ], let �(t) = (�i(t))i2IN . According to Lemma 6.1.11
there exists r 2 IR such that for all k we have

1X
i=1

(�i(Tk))
2 � r:

Hence there exists a subsequence (tj)j2IN of (Tj)j2IN for which we have

lim sup
k!1

h(Tk; �(Tk)) = lim
k!1

h(tk; �(tk))

and such that the sequence (�(tk))k2IN 2 (l2)IN converges weakly to a
point �� 2 l2. Then due to Lemma 6.1.9 we have

lim sup
k!1

!(Tk) = lim sup
k!1

h(Tk; �(Tk))

= lim
k!1

h(tk; �(tk))

� h(T; ��)
� !(T ):
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Hence lim supk!1 !(Tk) � !(T ), i.e. ! is upper semicontinuous on
[T; T ]. 2

Now we state the main result of this section.

Theorem 6.1.1 (Continuity) The function ! is continuous on [T; T ].

Proof. Lemma 6.1.7 and Lemma 6.1.13 together yield the assertion. 2

6.1.6 Continuity of the Value Function for the Discretized
Problem

Lemma 6.1.14 For all N 2 IN , the function !N is continuous on
[T; T ].

Proof. The assertion follows analogously to Theorem 6.1.1, by replac-
ing the in�nite series by �nite sums and the in�nite systems of moment
equations by the corresponding �nite systems. The dual solutions of
problem PN (T ) are elements of IRN . 2

6.1.7 Uniform Convergence of the Value Functions for the
Discretized Problems

In this section we present the result that is announced in the title, a
theorem about uniform convergence of the optimal value functions for
the discretized problems. This theorem shows that if the discretization
level is large enough, the discretized problem yields an arbitrarily good
approximation for the optimal value function !, uniformly on the whole
interval [T; T ].

Theorem 6.1.2 (Uniform Convergence) The sequence (!N )N2IN con-
verges uniformly and monotone to ! on [T; T ].

Proof. The de�nitions of P1(T ) and PN (T ) imply that for all N 2 IN
we have

!N (T ) � !N+1(T ) � !(T ):

Hence for all T 2 [T; T ], the sequence (!N (T ))N2IN is convergent and

lim
N!1

!N (T ) � !(T ):
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The proof of Lemma 6.1.5 implies that

lim
N!1

!N (T ) = lim inf
N!1

kvN(T )k2(0;T )
� kv�(T )k2(0;T )
= !(T );

where we have used the fact that the function k � k(0;T ) is sequentially
weakly lower semicontinuous. Hence for all T 2 [T; T ], we have

lim
N!1

!N (T ) = !(T ):

Thus the sequence of functions (!N )N2IN converges pointwise to the
function !. By Lemma 6.1.14, for all N 2 IN the functions !N are
continuous. By Theorem 6.1.1, the limit function ! is also continuous.
Hence Dini's Theorem (see [37] implies the uniform convergence. 2

In the next theorem, we summarize our results.

Theorem 6.1.3 For all N 2 IN , the optimal value functions !N of
the discretized problems are continuous. The value function ! of the
original problem is also continuous.

The sequence (!N )N2IN converges uniformly and monotone to ! on
[T; T ].

If the functions ! and !M are strictly decreasing, the inverse func-
tions !�1M exist on the intervals [!�1M (T ); !�1M (T )] and !�1 exists on the
interval [!�1(T ); !�1(T )] and these functions are continuous and strictly
decreasing.

Let yM = !�1M (T ). Then !M (yM) = T , hence !(yM) � !M (yM ) = T ,
thus !�1(T ) � yM = !�1M (T ). Hence for all M �M0, the functions !

�1
M

are all de�ned on the intervals [!�1(T ); !�1M0
(T )].

Theorem 6.1.4 If the functions ! and !M are strictly decreasing, the
sequence of inverse functions f!�1M g1M=M0

converges uniformly to the

function !�1 on the interval [!�1(T ); !�1M0
(T )].

Proof. With similar arguments as above we can show that for all
M �M0, y 2 [!�1(T ); !�1M0

(T )] the following inequality holds:

!�1M (y) � !�1M+1(y) � !�1(y).
Let L = limM!1 !�1M (y). Then Theorem 6.1.3 implies that

j!(L)� yj = lim
M!1

j!(L) � !M (!�1M (y))j
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� lim
M!1

j!(L) � !(!�1M (y))j+ j!(!�1M (y))� !M (!�1M (y))j
= 0;

hence L = !�1(y).

Since the functions !�1M and !�1 are continuous and the sequence
!�1M converges pointwise monotone to the function !�1 on the interval
[!�1(T ); !�1M0

(T )] we can again apply Dini's Theorem which yields the
assertion. 2

6.2 Di�erentiability of the Value Function for the

Discretized Problem

In this section we assume that the operator ST that appears in the ob-
jective function of Problem PN (T ) is a Volterra operator with a constant
� > 0 and a continuous kernel K 2 C(0; T ):

(STu)(t) = �u(t)�
Z t

0
K(t� s)u(s) ds:

We also assume that the functions zj (j 2 IN) and b are in C(0; T ).

We show that these assumptions imply that the optimal value func-
tion !N is continuously di�erentiable. Moreover, we point out how the
derivative can be computed.

As in the previous section, let Hj(T ) = (S�T )
�1zj. We prove that for

all t 2 (0; T ), the derivative @THj(T )(t) exists. This parameter deriva-
tive @THj(T ) can be computed as the solution of a Volterra equation,
which di�ers from the Volterra{equation for Hj(T ) only in the right{
hand side.

In our formula for the derivative of the optimal value function, the
functions Hj(T ) and @THj(T ) appear. For the proof of the di�erentia-
bility of the optimal value function, we use the fact that the coe�cient
vector �N (T ) is the solution of a system of linear equations which de-
pend di�erentiably on the parameter T . In the proof, we apply the
implicit function theorem to this system.
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6.2.1 The Parameter Derivative of Hj(T )

Theorem 6.2.1 Let z 2 C(0; T ) be given. For T 2 [0; T ], let G(T; t)
be the solution of the Volterra equation

�G(T; t)�
Z T

t
K(s� t)G(T; s) ds = z(T )K(T � t)=�; t 2 [0; T ]

(i.e. G(T; �) = (z(T )=�)(S�T )
�1K(T � �)) and H(T; t) be the solution of

the Volterra equation

�H(T; t)�
Z T

t
K(s� t)H(T; s) ds = z(t); t 2 [0; T ]

(i.e. H(T; �) = (S�T )
�1z). Then for all T 2 [0; T ], for all t 2 [0; T ] the

function H(�; t) is continuously di�erentiable and

@TH(T; t) = G(T; t):

Proof. Since the functions K and z are continuous, the functions
H(T; �) and G(T; �) are well{de�ned as the unique continuous solutions
of the corresponding Volterra equations (see Theorem 3.1 in [35] and
Lemma 4.1.1).

First we show that the function G(�; t) is continuous on [t; T ].
According to Lemma 4.1.1, the function v(T; t) = G(T; T � t) is the

solution of the equation

v(T; t)�
Z t

0

K(t� s)

�
v(T; s) ds =

z(T )

�2
K(t):

This equation de�nes the function v(T; �) on the interval [0; T ]. Accord-
ing to Theorem 3.5 in [35], the solution of this problem can be expressed
using the resolvent kernel R for the di�erence kernel K=�, namely as

v(T; t) =
z(T )

�2
K(t) +

Z t

0
R(t� s)

z(T )

�2
K(s) ds

where R is the solution of

R(t)�
Z t

0

K(t� s)

�
R(s) ds =

K(t)

�
:

Thus we have v(T; t) = R(t)z(T )=�. Hence for all T 2 [0; T ] we have

lim
h!0

max
t2[0;T ]

jv(T + h; t)� v(T; t)j = 0;
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=
NX
k=1

NX
l=1

�Nk (T )�
N
l (T )hHk(T );Hl(T )i(0;T ):

Let AN(T ) be the positive de�nite matrix

AN(T ) =
�
hHk(T );Hl(T )i(0;T )

�N
k;l=1

:

De�ne

rN(T ) =
�
cj � hb;Hj(T )i(0;T )

�N
j=1

:

Then by Lemma 6.1.3 we have

!N (T ) = (�N (T ))
TAN(T )�N(T ) = (�N (T ))

TrN(T ): (6.9)

With this representation of the function !N we can prove the following
Lemma.

Lemma 6.2.1 The function !N is continuously di�erentiable on [0; T ]
and

!0N (T ) = 2(�N (T ))
Tr0N(T )� (�N (T ))

TA0N(T )�N(T ): (6.10)

Let Gj(T ) = @THj(T ). The map rN is continuously di�erentiable on
[0; T ] and

r0N (T ) =
�
�b(T )zj(T )=�� hb;Gj(T )i(0;T )

�N
j=1

:

The map AN is continuously di�erentiable on [0; T ] and

A0N(T ) =
�
zi(T )zj(T )=�

2 + hHi(T ); Gj(T )i(0;T ) + hGi(T );Hj(T )i(0;T )
�N
i;j=1

:

Proof According to Theorem 6.2.1, Gj(T ) is well{de�ned and continu-
ous. Let

akl(T ) = hHk(T );Hl(T )i(0;T ):
Then the function akl is di�erentiable and

a0kl(T ) = Hk(T )(T )Hl(T )(T )+hHk(T ); Gl(T )i(0;T )+hGk(T );Hl(T )i(0;T ):
The de�nition of Hj(T ) implies the equation

Hj(T )(T ) = zj(T )=�:
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HenceA0N(T ) exists and the representation that is given in the statement
of the Lemma follows. Analogously, the assertion for r0N (T ) follows.

According to Lemma 6.1.3 we have the equation

AN(T )�N(T )� rN(T ) = 0:

The matrix AN(T ) is regular. Thus the implicit function theorem im-
plies that the map �N is continuously di�erentiable and

�0N (T ) = A�1N (T ) (r0N (T )�A0N(T )�N(T )) :

The representation (6.9) of !N yields

!0N (T ) = (�0N (T ))
TrN(T ) + �N (T )

Tr0N (T )

= (r0N (T )�A0N(T )�N(T ))
T
A�1N (T )rN(t) + �N(T )

Tr0N (T )

= (r0N (T )�A0N(T )�N(T ))
T
�N (T ) + �N (T )

Tr0N (T )
= 2�N (T )

Tr0N (T )� (�N (T ))
TA0N(T )�N(T ): 2

Hence from the vectors �N (T ), r0N (T ) and the matrix A0N(T ) the deriva-
tive !0N (T ) can be computed without solving a system of linear equa-
tions. To compute the derivative �0N(T ), the solution of a system of
linear equations is necessary.

Remark 6.2.1 If A0N(T ) is regular, r0N (T ) = 0 and �N (T ) 6= 0, the
formula for !0N implies that !0N (T ) < 0, hence the function !N is strictly
decreasing in a neighbourhood of T .

A su�cient condition for r0N (T ) = 0 is b = 0. If c 6= 0 we have
�N (T ) 6= 0. Hence if A0N(T ) is regular, b = 0 and c 6= 0, the function
!N is strictly decreasing.

In our example of the Euler{Bernoulli beam, we have b = 0 if y0j =
y1j = 0 (j 2 IN). So if we have y0 = y1 = 0 in the initial conditions, the
equation b = 0 is valid. This implies that !0N (T ) � 0 and the function
!N is decreasing. If in addition A0N (T ) is regular, ( 1;  0� 2) 6= (0; 0),
we have c 6= 0 and the function !N is strictly decreasing.

Lemma 6.2.2 If the kernel K satis�es the equation K(0) = 0, then
Gj(T ) = 0. Hence in that case

r0N (T ) = (�b(T )zj(T )=�)Nj=1;

A0N (T ) = (zi(T )zj(T )=�
2)Ni;j=1:



6.2. DIFFERENTIABILITY OF THE VALUE FUNCTION FORTHE DISCRETIZED PROBLEM99

Proof Theorem 6.2.1 implies that the functions Gj(T ) are continuously
di�erentiable with respect to T and that the derivative @TGj(T ) is the
solution of the Volterra equation

�@TGj(T )(t)�
Z T

t
K(s� t)@TGj(T )(s) ds = z(T )K(0)K(T � t)=�2:

IfK(0) = 0, this yields @TGj(T ) = 0. This implies that for all T 2 (0; T )
t 2 (0; T ) we have

Gj(T )(t) = Gj(t)(t) = z(t)K(0)=�2 = 0:

Now the remaining assertions follow from Lemma 6.2.1. 2
For the kernel in the example of the Euler{Bernoulli beam we have

K(0) = 0. Lemma 6.2.2 implies that in this case the computation of the
derivative !0M (T ) is very cheap. Once the solution �N(T ) is computed,
we get the derivative !0N (T ) almost for free!

Lemma 6.2.3 If the functions b and zj are (continuously) di�eren-
tiable, the function !N is twice (continuously) di�erentiable on [0; T ].

The maps rN and AN are also twice (continuously) di�erentiable on
[0; T ].

Proof In the proof of Lemma 6.2.2, we have seen that the derivative
@TGj(T ) exists.

Lemma 6.2.1 implies that the map rN is twice di�erentiable on [0; T ]
and r00N (T ) =�
�b0(T )zj(T )=�� b(T )z0j(T )=�� b(T )Gj(T )(T )� hb; @TGj(T )i(0;T )

�N
j=1

:

The map AN is also twice di�erentiable on [0; T ] and

A00N(T ) =
�
z0i(T )zj(T )=�

2 + zi(T )z
0
j(T )=�

2

+Hi(T )(T )Gj(T )(T ) + hGi(T ); Gj(T )i(0;T ) + hHi(T ); @TGj(T )i(0;T )
+ Gi(T )(T )Hj(T )(T ) + h@TGi(T )Hj(T )i(0;T )+ hGi(T ); Gj(T )i(0;T )

�N
i;j=1

The representation of !0N (T ) given in Lemma 6.2.1 implies

!00N (T ) = 2(�0N (T ))
Tr0N(T ) + 2(�N (T ))

Tr00N (T )

�2(�0N (T ))TA0N(T )�N(T )� (�N (T ))
TA00N(T )�N(T ):

2
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Remark 6.2.2 If K(0) = 0 we have

r00N (T ) =
�
�b0(T )zj(T )=�� b(T )z0j(T )=�

�N
j=1

;

A00N(T ) =
�
z0i(T )zj(T )=�

2 + zi(T )z
0
j(T )=�

2
�N
i;j=1

:

So in this case the derivative !00N (T ) is easy to compute: Only to obtain
�0N (T ) a system of linear equations has to be solved. The matrix and
the right{hand side of this system is not costly to compute.

The existence of !00N is used in the proof of quadratic convergence of
Newton's method applied to the function !N � �2 (� 2 IR) at the end
of Section 7.5.2 in Chapter 7 about time{optimal control.

In the example of the Euler{Bernoulli beam, the functions zj are
C1. If b = 0, it is obviously also C1. In general, the function b is not
di�erentiable.

If b is su�ciently regular, the following Lemma is interesting.

Lemma 6.2.4 Let n 2 IN . If the functions b and zj are n{times (con-
tinuously) di�erentiable, the function !N and the maps rN , �N and AN

are (n+ 1){times (continuously) di�erentiable on [0; T ].

Proof By induction, Theorem 6.2.1 implies that the functions Gj(T )

are in�nitely often di�erentiable and that the derivative @
(n)
T Gj(T ) is the

solution of the Volterra equation

�@
(n)
T Gj(T )(t)�

Z T

t
K(s�t)@(n)T Gj(T )(s) ds) = z(T )K(0)nK(T�t)=�n+1:

Hence the de�nition of rN(T ) implies that rN is (n+ 1){times (contin-
uously) di�erentiable, and this is also true for AN(T ).

The equationAN (T )�N(T )�rN(T ) = 0 implies that �N (T ) is (n+1){
times (continuously) di�erentiable on [0; T ]. Now the assertion follows
from the equation !N (T ) = (�N (T ))TrN(T ). 2

The Lemma suggests that for the computation of a root of the func-
tion !N � �2, it makes sense to use methods that use both the �rst and
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the second derivative, like Euler's or Halley's method (see e.g. [36]).

Figure 6.2.1 shows the values of the functions !8 for the exam-
ple of the Euler{Bernoulli beam on an equidistant grid consisting of
100 points on the interval [1; 2] for � = 1,  0 = �2, l = 1 and
D 2 f1; 10; 100; 1000g.

Figure 6.2.2 shows the values of the functions (!8 � !6)=!8 for the
example of the Euler{Bernoulli beam on an equidistant grid consisting
of 100 points on the interval [1; 2] for � = 1,  0 = �2, l = 1 and
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Figure 6.2.2
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Figure 6.2.2. The Graph of the functions (!8 � !6)=!8 on [1; 2] for � = 1



104 CHAPTER 6. OPTIMAL VALUE FUNCTIONS

Figure 6.2.3 shows the values of the derivatives !08 for the exam-
ple of the Euler{Bernoulli beam on an equidistant grid consisting of
100 points on the interval [1; 2] for � = 1,  0 = �2, l = 1 and
D 2 f1; 10; 100; 1000g.
Figure 6.2.3
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Figure 6.2.3. The Graph of the derivative !08 on [1; 2] for � = 1
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6.2.3 Euler{Bernoulli beam: !1 is decreasing

In this subsection, we consider the problem of �nding a control for the
Euler{Bernoulli beam for which the corresponding torque function has
minimal norm in L2[0; T ]. We show that the corresponding optimal
value function is decreasing. Our problem is

P1(T ) : minkM(t)k2(0;T ) s:t:
Z T

0
u(t)zj(t) dt = cj ; j 2 fi; i+ 1; :::;Mg;

where i = �1 or i = 0, M(t) = (� + l3=3)u(t) +
R 1
0 xytt(x; t) dx is as

in Subsection 4.1.1 and the moment equations are as in (3.9), (3.10),
(3.11) and possibly (3.12). For the value !1(T ) of Problem P1(T ) we
have the following result:

Theorem 6.2.2 For the problem of �nding a control for the Euler{
Bernoulli beam for which the torque function has minimal norm in
L2[0; T ], the corresponding optimal value function !1 is decreasing on
[T; T ].

Proof Let T � T1 < T2 � T . Let u1 be the solution of P1(T1). We
de�ne u(t) := u1(t) if t � T1 and u(t) := 0 if t > T1.

We consider the initial boundary value problem with initial condi-
tions y(x; T1) = yt(x; T1) = 0, boundary conditions y(0; t) = y0(0; t) =
0 = y00(l; t) = y000(l; t) and the beam equation

ytt(x; t) +Dyxxxx(x; t) = �xu(t); x 2 [0; l]; t � T1:

Then the unique solution is y(x; t) = 0, t � T1. Hence ytt(x; t) = 0,
t � T1. Thus for t � T1, we have

(Su� b)(t) =M(t) = (� + l3=3)u(t) +
Z 1

0
xytt(x; t) dx = 0:

Hence (Su� b)(t) = 0, if t � T1. Since u satis�es the moment equations
in P1(T2), we conclude that

!1(T2) � kSu� bk2(0;T2) = kSu1 � bk2(0;T1) = !1(T1);

and the assertion follows. 2
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6.3 Is the Optimal Value Function of P
1
Di�eren-

tiable?

In the area of parametric optimization, results about the one{sided dif-
ferentiability of optimal value functions are well{known (see for example
[10], [13], [14], [46], [7], [44], [2], [29], [32], [33], [1], [34], [11], [6]).

Points where the right{hand side derivative and the left{hand side
derivative are not equal can occur if the primal or the dual solution is
not uniquely determined.

For problem P1(T ), both the primal and the dual solution are uniquely
determined. However, due to the special structure of the problem the
general results are not applicable here.

To illustrate the di�culties connected with the question of di�eren-
tiability of the optimal value function, we give an example. We present
conditions on the solutions of P1(T ) and on the sequences �(T ) that
give the solutions of the Problems P1(T ) that guarantee the di�eren-
tiability of the optimal value function. To my knowledge, results of this
type have not appeared in the literature before.

6.3.1 An Example

Let xj and �j be as in Lemma 2.3.2. Let �j = x4j and Tc = 4=�. For
j 2 IN , de�ne

z2j(t) = cos(
q
�jt);

z2j�1(t) = sin(
q
�jt):

According to Lemma 2.3.2 we have
p
�j = (j�� �=2 + �j)

2, with j�jj �
j�jj, so limj!1 �j = 0.

Hence we have

lim
j!1

cos(
q
�jTc) = lim

j!1
cos(�(4j(j � 1) + 1)) = cos(�) = �1

and
lim
j!1

sin(
q
�jTc) = sin(�) = 0:

Hence there exists K0 2 IN such that for all j � K0,

cos(
q
�jTc) + sin(

q
�jTc) � �1=2: (6.11)
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Let �2j = 1=j and �2j�1 = 1=j. Then (�j)j2IN 2 l2. Since the (zj)j2IN
are a Bessel sequence (see Theorem 3.1.2), the function

v(t) :=
1X
j=1

�jzj(t)

is in L2(0; Tc).
Let cj = hv; zji(0;Tc) (j 2 IN). Then (cj)j2IN 2 l2. Consider the

problem
P1(T ) : minkuk2(0;T ) s.t.

hu; zji(0;T ) = cj (j 2 IN):

Then Lemma 6.1.5 implies that v is the unique solution of Problem
P1(Tc).

According to Lemma 6.1.9, we have

!(T ) = sup
�2l2

�
1X

i;j=1

�i�jhzi; zji(0;T ) + 2
1X
j=1

�jcj:

Hence the following inequality is valid for all h > 0:

!(Tc � h)� !(Tc) = sup
�2l2

�
1X

i;j=1

�i�jhzi; zji(0;Tc�h) + 2
1X
j=1

�jcj

+
1X

i;j=1

�i�jhzi; zji(0;Tc) � 2
1X
j=1

�jcj

�
1X

i;j=1

�i�jhzi; zji(Tc�h;Tc)

=
Z Tc

Tc�h
v2(t) dt:

Hence for all h > 0 we have

!(Tc � h)� !(Tc)

�h �
1X

i;j=1

�i�j
(�1)
h

Z Tc

Tc�h
zi(t)zj(t) dt:

Hence we have

lim sup
h!0+

!(Tc � h)� !(Tc)

�h � (6.12)

lim sup
h!0+

(�1)
h

Z Tc

Tc�h
(v(t))2 dt:
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But (6.11) implies the inequality

1X
i=2K0�1

�izi(Tc) =
1X

i=K0

1

i

�
cos(

q
�jTc) + sin(

q
�jTc)

�
�

1X
i=K0

� 1

2i
= �1:

Thus we have v(Tc) = �1. If Tc is a regular point of v2 in the sense
that

lim
h!0+

1

h

Z Tc

Tc�h
v(t)2 dt = v(Tc)

2;

then (6.12) implies

lim
h!0+

!(Tc � h)� !(Tc)

�h = �1;

and ! is not di�erentiable at Tc. If lim suph!0+�
R Tc
Tc�h v(t)

2 dt=h is a
real number, then (6.12) implies an upper bound for the left{hand side
upper Dini{derivative of !.

6.3.2 Su�cient Conditions for Di�erentiability and Lipschitz
Continuity of !

For T 2 [T; T ], consider the standard minimum norm problem

P1(T ) : minkuk2(0;T ) s.t.

hu; zji(0;T ) = cj (j 2 IN)

with optimal value !(T ). Let Assumptions A1 and A2 be valid.
We start with results about the regularity of ! with assumptions that

are stated as conditions on the solution u of P1(T ).

Lemma 6.3.1 Let T 2 (T; T ] be given.
a) For all h 2 (0; T � T ], the following inequality holds:

!(T � h) � !(T ) + hu�; u�i(T�h;T );
where u� is the solution of Problem P1(T ).

b) If T is a regular point in the sense that

lim inf
h!0+

1

h
hu�; u�i(T�h;T ) � u�(T )2; (6.13)

then

lim sup
h!0+

!(T � h)� !(T )

�h � u�(T )2:



6.3. IS THE OPTIMAL VALUE FUNCTION OF P1 DIFFERENTIABLE? 109

Remark 6.3.1 Lemma 6.3.1 states that if the end{point of the time{
interval is a regular point for the solution of Problem P1(T ) in the sense
of (6.13), then we have an upper bound for the left{hand side upper
Dini{derivative of the optimal value function in terms of the value of
the optimal solution at the end{point of the time{interval.

Proof
a) Let � 2 l2 be such that u� =

P1
j=1 �jzj. According to Lemma

6.1.9 we have

!(T ) = sup
�2l2

�
1X

i;j=1

�i�jhzi; zji(0;T ) + 2
1X
j=1

�jcj:

Hence for all h 2 (0; T � T ), the following inequality is valid:

!(T � h)� !(T ) = sup
�2l2

�
1X

i;j=1

�i�jhzi; zji(0;T�h) + 2
1X
j=1

�jcj

+
1X

i;j=1

�i�jhzi; zji(0;T ) � 2
1X
j=1

�jcj

�
1X

i;j=1

�i�jhzi; zji(T�h;T )
= hu�; u�i(T�h;T ):

b) Assertion a) implies that for all h 2 (0; T � T ), we have

!(T � h)� !(T )

�h � �1

h
hu�; u�i(T�h;T ):

Now the assumption that T is a regular point yields the assertion. 2
Now we give a su�cient condition for di�erentiability of ! in T that

depends on the behaviour of the solutions in a neighbourhood of T .

Theorem 6.3.1 Let T 2 [T; T ] be given. For t 2 [T; T ], let u�(t) be
the solution of Problem P1(t). Assume that T is a regular point in the
sense that

lim
h!0

1

h
hu�(T + h); u�(T )i(T;T+h) = (u�(T )(T ))2; (6.14)

where u�(T ) =
P1

i=1 �izi is de�ned on the interval [0; T ] since zi 2
Z(0; T ).

Then ! is di�erentiable in T and

!0(T ) = �(u�(T )(T ))2:
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Proof For T 2 [T; T ], de�ne the linear operator A(T ) : l2 ! l2,
A(T )� = (

P1
j=1 �jhzi; zji(0;T ))1i=1. Assumption A1 implies that A(T )

is a bounded invertible operator, see Theorem 9 in [50], p.32.
Let �(t) be such that u�(t) =

P1
i=1 �i(t)zi. Then we have �(t) =

A(t)�1c.
For h 6= 0 such that T + h 2 [T; T ], we have c = A(T )�(T ) =

A(T + h)�(T + h), hence �(T ) = A(T )�1[A(T + h)�(T + h)], thus

�(T + h)� �(T ) = A(T )�1[A(T )�A(T + h)]�(T + h):

Since !(T ) =
P1

i=1 �i(T )ci =: c
T�(T ), we obtain

!(T + h)� !(T )

h
= cT

 
�(T + h)� �(T )

h

!

= �cTA(T )�1A(T + h)�A(T )

h
�(T + h)

= ��(T )TA(T + h)�A(T )

h
�(T + h)

= �1

h
hu�(T + h); u�(T )i(T;T+h);

and due to (6.14), for h! 0 we obtain the assertion. 2
Now we give a su�cient condition for the Lipschitz continuity of !

that depends on the uniform boundedness of the solutions in L1.

Theorem 6.3.2 If the solutions are uniformly bounded in the sense that
there exists M 2 IR such that for all t 2 [T; T ] we have

ju�(t)j �M almost everywhere in [0; T ]; (6.15)

then ! is Lipschitz continuous on [T; T ], in the sense that

j!(t1)� !(t2)j �M2jt1 � t2j
for all t1, t2 2 [T; T ].

Proof From the proof of Theorem 6.3.1 we have

j!(T + h)� !(T )j � jhu�(T + h); u�(T )i(T;T+h)j
� hM2:2

Now we give results about the regularity of ! with assumptions on
the regularity of the sequence �(t) that gives the solution of P1(t).
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Theorem 6.3.3 Assume that A1 holds and that the functions zi are
continuous and

max
t2[0;T ]

jzi(t)j � 1; i 2 IN (6.16)

and that they are continuously di�erentiable with

max
t2[0;T ]

jz0i(t)j �
p
�i; i 2 IN (6.17)

where (�i)i2IN is a sequence of positive numbers. Moreover, assume that

for all i; �i � 1 and that there is s > 0 such that
1X
i=1

1=�si <1:

(6.18)
Let t 2 [T; T ] be such that �(t) = A�1(t)c 2 l2r , where r > s + 1.

Then

lim inf
h!0+

!(t+ h)� !(t)

h
� ��(t)D(t)�(t);

lim sup
h!0�

!(t+ h)� !(t)

h
� ��(t)D(t)�(t);

Remark 6.3.2 For the trigonometric moment problem (2.35), (2.36)
conditions (6.16) and (6.17) hold and (6.18) is valid for s > 1=4.

For the proof of Theorem 6.3.3, we need a number of Lemmas.
It is clear that Condition A1 is equivalent to the following statement:
There exist constantsM , P > 0 such that for allN 2 IN , (a1; :::; aN)T 2

IRN and t 2 [T; T ] we have

�
1

M2

� NX
i=1

a2i

!
� aTA(t)a =

NX
i=1

NX
j=1

aihzi; zji(0;t)aj � P 2

 
NX
i=1

a2i

!
:

(6.19)
The following Lemma contains another equivalent formulation, which is
well{known.

Lemma 6.3.2 Condition A1 is is equivalent to the statement

for all a 2 l2 : 1

M2
kakl2 � kA(t)akl2 � P 2kakl2: (6.20)

It is also equivalent to the statements

for all a 2 l2 : kA(t)akl2 � P 2kakl2 and (6.21)

A(t) is invertible and for all a 2 l2 : kA(t)�1akl2 �M2kakl2: (6.22)
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Proof Assume that (6.22) and (6.21) hold. Then (6.21) implies that

aTA(t)a � kA(t)akl2kakl2 � P 2kakl2
and (6.22) implies that

aTA�1(t)a � kakl2M2kakl2 =M2kak2l2:
Since A(t) is positive and symmetric, the generalized Cauchy{Schwarz
inequality (see [15], p. 195) implies

kak4l2 =
�
aTA(t)A�1(t)a

�2 �
(aTA(t)a)(aTA�1(t)a) � (aTA(t)a)M2kak2l2;

thus aTA(t)a � kak2l2=M2: Hence (6.19) holds.
Assume now that (6.19) is valid. Then we have

1

M2
kak2l2 � aTA(t)a � kakl2kA(t)akl2;

hence

kA(t)akl2 � 1

M2
kakl2;

which implies (6.22), since A(t) is surjective due to Theorem 3.0.2 (ii)
(see [12], I.3.7). The generalized Cauchy{Schwarz inequality implies

kak4l2 � (aTA(t)�1a)(aTA(t)a) � kA(t)�1akl2kakl2P 2kak2l2;
hence kA(t)�1akl2 � 1

P 2 kakl2, which implies (6.21). 2
Note that the dual space of l2r is l

2
�r.

Lemma 6.3.3 For t 2 [T; T ], � 2 l2r , let

(D(t)�)i =
1X
i=1

zi(t)zj(t)�j:

Assume that (6.16) and (6.18) holds. Let r > s. Then D(t) is a con-
tinuous linear map from l2r into l

2
�r and for all � 2 l2r we have

kD(t)�kl2
�r
� k�kl2r

 1X
i=1

��ri

!
: (6.23)
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Proof Let � 2 l2r. Then

j�TD(t)�j = j
1X
i=1

1X
j=1

�izi(t)zj(t)�jj

�
1X
i=1

1X
j=1

j�i�jj

=

 X
i=1

j�ij
!0@ 1X

j=1

j�jj
1
A

=

 1X
i=1

j�ij�r=2i �
�r=2
i

!0@ 1X
j=1

j�jj�r=2j �
�r=2
j

1
A

� k�kl2r
 1X
i=1

��ri

!
k�kl2r ;

where for the last line we have applied the Cauchy{Schwarz inequality
twice. Hence the inequality (6.23) follows. 2

Lemma 6.3.4 Assume that A1, (6.16), (6.17) and (6.18) hold. Let
r > s+ 1. For t 2 [T; T ], � 2 l2r, let

�
�A(t)�

�
i
=

1X
j=1

hzi; zji(0;t)�j:

Then �A(t) is a bounded linear operator from l2r into l
2
�r. �A(t) is Fr�echet{

di�erentiable with respect to t, and

�
�A0(t)�

�
i
=

1X
i=1

zi(t)zj(t)�j = (D(t)�)i:

Proof Due to A1, for � 2 l2r we have
k �A(t)�kl2

�r
� k �A(t)�kl2 � P 2k�kl2 � P 2k�kl2r :

Let h 6= 0 be such that t + h 2 [T; T ]. The Taylor{expansion implies
the existence of numbers �ij 2 (0; T ) such that����1hhzi; zji(t;t+h) � zi(t)zj(t)

����
=
jhj
2

���zi(�ij)z0j(�ij) + z0i(�ij)zj(�ij)
��� � jhj

2
(
q
�i +

q
�j):
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Let � 2 l2r . De�ne Ai =
P1

j=1(
p
�i +

q
�j)�j . Then for all � 2 l2r, we

have�����
1X
i=1

Ai�i

����� �
1X
i=1

1X
j=1

j�ij(
q
�i +

q
�j)j�jj

�
 1X
i=1

j�ij
q
�i

!0@ 1X
j=1

j�jj
1
A+

 1X
i=1

j�ij
!0@ 1X

j=1

j�jj
q
�j

1
A :

For q � s, we have

Cq :=

 1X
i=1

1

�qi

!1=2

<1: (6.24)

For  2 l2r , we have
1X
i=1

jij
q
�i =

1X
i=1

jij�r=2i �
(1�r)=2
i

� kkl2r
 1X
i=1

1

�r�1i

!
= kkl2rCr�1:

Moreover,
1X
i=1

jij � kkl2rCr:

Hence for all � 2 l2r we have�����
1X
i=1

Ai�i

����� � k�kl2rk�kl2r2Cr�1Cr:

Thus we conclude that

k(Ai)ikl2
�r
� 2k�kl2rCr�1Cr:

Hence

k
"
�A(t+ h)� �A(t)

h
�D(t)

#
�kl2

�r

= k
0
@ 1X
j=1

[
1

h
hzi; zji(t;t+h) � zi(t)zj(t)]�j

1
A
i

kl2
�r

� k
0
@h
2

1X
j=1

(
q
�i +

q
�j)�j

1
A
i

kl2
�r
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=
jhj
2
k(Ai)ikl2

�r

� jhj k�kl2rCr�1Cr: (6.25)

Hence for h ! 0 the assertion that �A is Fr�echet{di�erentiable in t
follows. 2

Proof of Theorem 6.3.3 Let h 6= 0 be such that t + h 2 [T; T ].
Then we have

!(t+ h)� !(t) = sup
�2l2

�
1X

i;j=1

�i�jhzi; zji(0;t+h) + 2
1X
j=1

�jcj

+
1X

i;j=1

�i(t)�j(t)hzi; zji(0;t) � 2
1X
j=1

�j(t)cj

� �
1X

i;j=1

�i(t)�j(t)hzi; zji(t;t+h)

= ��(t)T(A(t+ h)�A(t))�(t):

Since �(t) 2 l2r, inequality (6.25) inplies
j�(t)T (A(t+ h)�A(t))�(t)=h� �(t)D(t)�(t)j

� k�(t)kl2rk(
A(t+ h)�A(t)

h
�D(t))�(t)kl2

�r

� k�(t)kl2rjhj k�(t)kl2rCr�1Cr:

Thus we have

lim
h!0

�(t)T
A(t+ h)�A(t)

h
�(t) = �(t)TD(t)�(t):

Hence we conclude that

lim inf
h!0+

!(t+ h)� !(t)

h
� � lim

h!0+
�(t)T

A(t+ h)�A(t)

h
�(t)

= ��(t)TD(t)�(t):
The last assertion follows analogously. 2

To prove a result about the di�erentiability of !, we need the follow-
ing Lemma.

Lemma 6.3.5 Let a sequence (tk)k2IN with tk 2 [T; T ], (k 2 IN) be
given. Assume that limk!1 tk = t. For T 2 [T; T ], let �(T ) = A(T )�1c
and u(T ) =

P1
i=1 �i(T )zi.
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Assume that A1, (6.16) and (6.18) hold and that

sup
k2IN

k�(tk)kl2s <1:

Then
lim
k!1

u(tk)(t) = u(t)(t):

Proof Let
L1 = lim sup

k!1
u(tk)(t):

There exists a subsequence (tkj)j2IN such that

L1 = lim
j!1

u(tkj)(t):

Since it is bounded in l2s , the sequence (�(tkj))j2IN possesses a weakly
convergent subsequence. Let (�k)k2IN denote such a subsequence with
weak limit �� 2 l2s . Assumptions (6.16) and (6.18) imply the inequality

1X
i=1

jzi(t)j2 1

�si
�

1X
i=1

1

�si
<1;

hence (zi(t))i2IN 2 l2�s. Hence the weak convergence implies that

lim
k!1

1X
i=1

zi(t)(�k)i =
1X
i=1

zi(t)(��)i:

Thus we have

L1 = lim
j!1

u(tkj)(t)

= lim
j!1

1X
i=1

zi(t)�i(tkj)

= lim
k!1

1X
i=1

zi(t)(�k)i

=
1X
i=1

zi(t)(��)i:

Let (lk)k2IN be a sequence of natural numbers such that �k = �(tlk). For
all i, k 2 IN , we have

hzi;
1X
j=1

(�k)jzji(0;tlk ) = ci:
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Hence for all i 2 IN

ci �
1X
j=1

hzi; zji(0;t)(��)j

= lim
k!1

1X
j=1

hzi; zji(0;tlk)(�k)j �
1X
j=1

hzi; zji(0;t)(��)j

= lim
k!1

1X
j=1

�
hzi; zji(0;tlk) � hzi; zji(0;t)

�
(�k)j +

1X
j=1

hzi; zji(0;t)(�k � ��)j

=: F1 + F2:

We have

jF1j � lim
k!1

1X
j=1

jhzi; zji(tlk ;t)(�k)jj � lim
k!1

jtlk � tjCsk�kkl2s = 0;

where Cs is de�ned in (6.24). Since (hzi; zji(0;t))j2IN 2 l2, we have
(hzi; zji(0;t))j2IN 2 l2�s, hence the weak convergence implies F2 = 0.
Thus for all i 2 IN , we have

1X
j=1

hzi; zji(0;t)(��)j = ci;

hence A(t)�� = c, and therefore �� = �(t). Hence

lim sup
k!1

u(tk)(t) = L1 =
1X
i=1

zi(t)(��)i =
1X
i=1

zi(t)�i(t) = u(t)(t):

Analogously, we can show that

lim inf
k!1

u(tk)(t) = u(t)(t);

and the assertion follows. 2

Theorem 6.3.4 Assume that A1 holds and that the functions zi are
continuously di�erentiable and that (6.16), (6.17) and (6.18) hold.

Let t 2 [T; T ] be such that there exists a neighbourhood U � [T; T ] of
t such that for all t 2 U , �(t) 2 l2r where r > s+ 1 and

sup
s2U

k�(s)kl2r <1:

Then ! is di�erentiable in t and

!0(t) = ��(t)D(t)�(t):
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Remark 6.3.3 It would be desirable to have su�cient conditions that
guarantee that the assumption that there exists a neighbourhood U �
[T; T ] of t such that for all s 2 U , �(s) 2 l2r and the inequality

sup
s2U

k�(s)kl2r <1

is valid. Unfortunately we did not �nd a condition that can be veri�ed
for trigonometric moment problems.

The following Lemma gives a su�cient condition for �(t) 2 l2r. How-
ever, in general it is not applicable to trigonometric moment problems.

Lemma 6.3.6 Assume that A1 is valid. Let (�j)j2IN be a sequence of
real numbers such that for all i, �i � 1. Let r 2 [0;1) and t 2 [T; T ].

If c 2 l22r and �(t) = A�1(t)c � 0 and for all i, j: aij(t) � 0, then
�(t) 2 l2r. Moreover,

k�(t)kl2r �M2kckl2
2r
:

Proof Let c 2 l22r � l2. Then A1 implies that �(t) 2 l2.
De�ne ~� = (�i(t)�ri )i2IN 2 l2�2r and �̂ = (�i(t)�

r=2
i ))i2IN 2 l2�r. Then

j~�TA(t)�(t)j = j~�Tcj � k~�kl2
�2r
kckl2

2r
<1:

We have

~�TA(t)�(t) =
1X

i;j=1

�i(t)�
r
iaij(t)�j(t) = �TA(t)~�(t) =

1X
i;j=1

�i(t)aij(t)�
r
j�j(t):

For all i, j 2 IN , we have

�i(t)�
r
iaij(t)�j(t) + �i(t)aij(t)�

r
j�j(t)

= �i(t)aij(t)(�
r
i + �rj )�j(t)

� 2�i(t)aij(t)�
r=2
i �

r=2
j �j(t):

Hence we conclude that

2j~�TA(t)�(t)j � 2�̂TA(t)�̂ � 2

M2
k�̂k2l2 =

2

M2
k�(t)k2l2r :

Thus
1

M2
k�(t)k2l2r � k~�kl2

�2r
kckl2

2r

= k�kl2kckl2
2r

� M2kckl2kckl2
2r

� M2kck2l2
2r
: 2
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Theorem 6.3.5 Assume that A1, (6.16), (6.17) and (6.18) hold. Let
r > s + 1. Let t 2 [T; T ) be such that �(t) 2 l2r . Then there exists a
constant L(t) > 0 such that for all t2 2 (t; T ], the following inequality
is valid:

!(t) � !(t2) � !(t)� L(t) (t2 � t):

Proof Let t2 2 (t; T ] and h = t2 � t > 0. Let u� be the solution of
P1(t). De�ne û(s) := u�(s), if s 2 [0; t], û(s) := 0 if s 2 (t; t2]. Then
for all i 2 IN we have

hû; zii(0;t2) = hu�; zii(0;t) = ci;

hence
!(t2) � kûk2(0;t+h) = ku�k2(0;t) = !(t):

Moreover, we have

!(t+ h)� !(t)

h
� ��(t)TA(t+ h)�A(t)

h
�(t)

= ��(t)T
 
A(t+ h) �A(t)

h
�D(t)

!
�(t)� �(t)TD(t)�(t)

� ��(t)TD(t)�(t)� k�(t)k2l2rCr�1Crjhj;
where the last line follows from (6.25).

Let L(t) = �(t)TD(t)�(t) + k�(t)k2l2rCr�1Cr[T � T ] > 0. Then

!(t+ h) � !(t)� L(t) h;

and the assertion follows. 2

Remark 6.3.4 The fact that ! is decreasing is well{known, but the
lower bound for !(t2) appears to be new.

Up to now we have mainly studied the optimal value function. The
following lemma contains a result about the sensitivity of the optimal
solutions with respect to the parameter t. The question of stability of
the optimal solutions is an important topic in parametric optimization,
see for example [17], [18], [20].

Lemma 6.3.7 Let c 2 l2. For t 2 [T; T ], let �(t) = A(t)�1c. Assume
that A1 and A2 are valid. Then for all t1, t2 2 [T; T ], the following
inequality is valid:

k�(t1)� �(t2)kl2 �M2Pk
1X
j=1

�j(t1)zjk(t1;t2):
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�
 1X
i=1

j�i(t1)j�r=2i �
�r=2
i

!2

jt1 � t2j

� k�(t1)k2l2r
 1X
i=1

1

�ri

!
jt1 � t2j;

hence if �(t1) 2 l2r, (6.26) follows. Now (6.27) is a consequence of the
equation

!(t1)� !(t2) = cT (�(t1)� �(t2))

and the Cauchy{Schwarz inequality. 2



Chapter 7

Time{Optimal Control

7.1 Introduction

In this chapter we consider the problem of time{optimal control with a
constraint that is related to the L2{norm. Again we use the fact that
the set of feasible controls can be described as the solution set of certain
moment{problems.

After an analysis of the problem, we propose a fast algorithm for its
numerical solution.

We prove the existence of a unique time{optimal control function.
We characterize the optimal controlling time as the smallest root of
the optimal value function of a time{parametric optimization problem,
which has a sequence of moment equations as equality constraints. We
consider the discretized problems where this sequence is truncated and
give analogous results about the existence of a unique solution.

We prove the montone convergence of the smallest roots of the value
functions of the discretized problems to the optimal controlling time.
These roots are the optimal controlling times corresponding to certain
discretized problems.

We also study, how the optimal controlling time depends on the value
of the upper bound in the constraint. We show that if the value function
is strictly decreasing, the dependence is continuous.

We give an algorithm for the computation of the smallest root of the
value function of the discretized problem. The algorithm is a Newton{
bisection method that is based on the fact that the optimal value func-
tion is di�erentiable and that the cost to compute the derivative is very
small compared with the cost to compute the function value. Since the

123
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second derivative can also be computed very cheaply, we consider meth-
ods that use the second derivative as well, namely Euler's and Halley's
method.

For the example of the Euler{Bernoulli beam, the optimal value func-
tion appears to be strictly decreasing. We apply Newton's method with-
out modi�cations and obtain fast convergence. For Halley'smethod that
uses the second derivative as well, convergence is even faster.

We think that it makes sense to use the derivative to reduce the
number of iterations since the evaluation of the optimal value function
is very expensive. The main di�culty consists in the computation of
the functions Hj . To compute the values, we have implemented the
approach based on rank{one matrices described at the end of Chapter
4.

So the usage of the derivative saves a lot of computing time, compared
for example with the secant method.

An alternative approach to problems of time{optimal control would
be to transform the time intervals to a �xed interval, for example [0; 1]
by introducing an additional variable. The drawback of this approach
is that the resulting problem is not convex with respect to the new
variable, which appears in a rather complicated way.

7.2 The Problem

In this chapter, we consider the situation as de�ned in 6.1.1. In particu-
lar, we assume that A0 and A1 hold. Our problem is to �nd the shortest
time T for which we can �nd a control function that is contained in the
set U(T; �;C). De�ne

T � = inffT 2 [T; T ] : U(T; �; c) 6= ;g;
that is the in�mum of all points T 2 [T; T ] for which there exists a
control u 2 Z(0; T ) for which kSTu � bk2(0;T ) � �2 and which satis�es

the moment equations, i.e. such that hu; zji(0;T ) = cj for all j 2 IN .
The lower bound T is introduced since only for T � T , A1 guar-

antees that the set U(T;1; c) is nonempty (see Theorem 3.0.3). For
the example of the Euler{Bernoulli beam, T can be chosen arbitrarily
small. Assumption A0 implies T � � T .

The following Lemma guarantees the existence of a unique time{
optimal control. In addition, the minimal controlling time T � is char-
acterized as the smallest root of the function !(�)� �2.
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Lemma 7.2.1 We have !(T �) � �2.
If T � > T , then !(T �) = �2 and U(T �; �; c) 6= ;. Moreover, the

time{optimal control is uniquely determined.

Proof Lemma 6.1.5 implies that the set U(T; �; c) is nonempty if and
only if !(T ) � �2. Hence the de�nition of T � implies

T � = inffT 2 [T; T ] : !(T ) � �2g: (7.1)

Thus if T � > T , the continuity of ! (see Theorem 6.1.1) implies !(T �) =
�2. Now Lemma 6.1.5 implies the existence of a unique time{optimal
control. 2

7.3 The Discretized Problem

If we truncate the system of moment equations, we obtain an approxi-
mation for T � that can be computed numerically. For N 2 IN , let

T �N = inffT 2 [T; T ] : there exists u 2 Z(0; T ) :
hu; zji(0;T ) = cj; j 2 f1; :::; Ng and

kSTu� bk2(0;T ) � �2g
Analogously to Lemma 7.2.1, the number T �N can be characterized as
the smallest root of the function !N (�) � �2, where !N is the optimal
value function of the discretized problem PN .

Lemma 7.3.1 We have !N (T �N) � �2.
If T �N > T , then !(T �N) = �2 and there exists a uniquely determined

function ~uN = uN (T
�) with h~uN ; zji(0;T �

N
) = cj; j 2 f1; :::; Ng and

kST ~uN � bk2(0;T �
N
) = �2.

Proof Lemma 6.1.3 implies that

T �N = inffT 2 [T; T ] : !N (T ) � �2g:
Thus if T �N > T , the continuity of !N (see Lemma 6.1.14) implies
!N (T �N) = �2. Now Lemma 6.1.3 implies the assertion. 2

Next we consider the sequence (T �N)N2IN . Since !N (T ) � !N+1(T ) �
!(T ) for all N 2 IN , T 2 [T; T ] we have T �N � T �N+1 � T �. Hence the
sequence (T �N )N2IN is convergent and limN!1 T �N � T �.
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Lemma 7.3.2 The sequence (T �N)N2IN converges monotonically to T �.
If T � > T , for N large enough, we have !N (T �N) = �2.

Proof If T � = T , for all N 2 IN we have !N (T ) � !(T ) � �2, hence
T �N = T for all N 2 IN . Now assume that T � > T . By Lemma 7.2.1,
we have !(T �) = �2. Let L = limN!1 T �N . Suppose that L = T . For
all N 2 IN , we have !N (T �N) � �2. Hence by Theorem 6.1.2

!(L) = lim
N!1

!N (T
�
N) � �2:

Hence (7.1) implies that T � � L = T , a contradiction.
Hence for N large enough, we have T �N > T and Lemma 7.3.1 implies

that !N (T �N) = �2. Hence Theorem 6.1.2 implies that !(L) = �2. Since
L � T �, by (7.1) this yields L = T �. 2

Remark 7.3.1 The assertion limT �N = T � has been proved in [25] in
another way for the example of the rotating beam. The relationship
between time{minimal controllability with norm{bounded controls and
minimum{norm controls on �xed time intervals can be found in several
works of Krabs, see e.g. [22].

7.4 Sensitivity with respect to �

Obviously the numbers T � and T �N depend on the choice of the bound
�. If the function ! is strictly decreasing, the value of T � depends
continuously on �. If ! is only decreasing, this cannot be guaranteed.

Lemma 7.4.1 If the function ! is strictly decreasing, the value of T �

depends continuously on � for � such that !(T ) < �2.

Proof Let

T �(�) = inffT 2 [T; T ] : U(T; �; c) 6= ;g:
Let �1 < �2 be such that !(T ) < �2

1 Then !(T
�(�1)) = �2

1 < !(T �(�2)) =
�2
2. Thus T

�(�1) > T �(�2). Hence the function T � is strictly decreasing.
Let � be such that !(T ) < �2. Then !(T �(�)) = �2. Let �k ! ��.

Then L = limk!1 T �(�k) � T �(�), and !(L) = limk!1 !(T �(�k)) =
limk!1 �2

k = �2, hence L = T �(�).
Let �k ! �+. Then L = limk!1 T �(�k) � T �(�), and !(L) = �2,

hence L = T �(�). Hence the function T � is continuous. 2
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7.5 A Newton{Bisection Algorithm

7.5.1 A Regularization Method

Let a continuous function v : IR! IR and T0 with v(T0) > 0 and T̂ > T0
with v(T̂ ) < 0.

We consider the following problem: Find the smallest root of v in
[T0; T̂ ]:

T := minft 2 [T0; T̂ ] : v(t) = 0g:
If v is not strictly decreasing, several roots can exist on the interval
[T0; T̂ ]. This is the motivation to use a regularization approach. The
function v is regularized in such a way that a parametric family of
strictly decreasing functions is generated, whoose roots converge to the
smallest root of v. This approach is similar to the method of prox{
regularization (vgl. [19]).

For � > 0 we de�ne the function

h(t; s) = v(t)� �v(s)(t� s):

This means geometrically that we add a strictly monotone linear func-
tion to the function v, which yields a strictly decreasing function if the
linear function decreases su�ciently steep.

The function h has the following properties:

1. h(t; t) = v(t).

2. For s 2 [T0; T ), v(s) > 0, hence if T0 � t < s < T then h(t; s) >
v(t) > 0.

3. If T0 � s < T and s < T then h(t; s) < v(t).

4. Let s 2 [T0; T ) be given. Then h(T; s) = ��v(s)(T � s) < 0 and
h(s; s) = v(s) > 0. Hence the function h(�; s) has a root in the
interval (s; T ).

Now we give an algorithm that generates a sequence (sk)k2IN that is
increasing and converges to T .

Algorithm 7.1 (Regularization)
Step 0

Choose s0 < T (e.g. s0 = T0). Let �s1 denote the smallest root of h(�; s0)
in [T0; T̂ ]. Choose �1 2 (0; 1]. Compute s1 with �s1 � �1 � s1 � �s1.
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Step k
Let sk be given. Let �sk+1 denote the smallest root of h(�; sk) in [T0; T̂ ].
Choose �k+1 2 (0; 2�k]. Compute sk+1 with �sk+1 � �k+1 � sk+1 � �sk+1.

Theorem 7.5.1 The sequences (�sk)k2IN and (sk)k2IN generated by Al-
gorithm 7.1 have the following properties:

a) The sequences (�sk)k2IN and (sk)k2IN converge to T and for all
k 2 IN we have sk < T and �sk < T .

b) If v is di�erentiable and v0(T ) < 0 and �i=jT � sij ! 0 (i !1)
then the sequence (si)i2IN converges superlinearly to T in the sense that

lim
i!1

si+1 � T

si � T
= 0:

If in addition �i=jT � sij2 ! 0 (i ! 1), then the sequence (si)i2IN
converges quadratically to T in the sense that

lim
i!1

si+1 � T

(si � T )2
� �;

c) If in addition to the previous assumptions, v0 is continuous in T ,
let dk := minfd 2 fsk + 2�k; T̂g : v(d) < 0g. Then dk > T and the
sequence (dk)k2INconverges to T .

If in addition v0 is bounded on the interval [T0; T̂ ], the number � can
be chosen such that we have

sup
i2IN

sup
t2[si��i+1 ;di]

@th(t; si) < 0:

Proof a) First we show by induction, that for all k 2 IN we have
�sk+1 2 (sk; T ) and sk+1 2 (sk � �k+1; T ).
k = 0: We have h(s0; s0) = v(s0) > 0. For all t < s0: h(t; s0) >

v(t) > 0. Hence �s1 > s0. On the other hand we have h(T; s0) < v(T ) =
0. Since �s1 is the smallest root of h(�; s0), this implies �s1 2 (s0; T ) and
the de�nition of s1 yields s1 2 (s0 � �1; T ).
k 7! k + 1 : Assume that sk 2 (sk�1 � �k; T ) and thus h(sk; sk) =

v(sk) > 0. For all t 2 [T0; sk) we have h(t; sk) > v(t) > 0. Hence
�sk+1 > sk. On the other hand we have h(T; sk) < v(T ) = 0. Hence
�sk+1 2 (sk; T ) and the de�nition of sk+1 yields sk+1 2 (sk � �k+1; T ).
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Hence

0 � lim sup
i!1

T � si+1

(T � si)2
� lim sup

i!1

T � �si+1 + �i+1

(T � si)2

� �
v0(T )
v0(T )

+ 0 = �:

c) The sequence (sk)k2IN converges superlinearly to T . Hence for all
k that are su�ciently large we have sk + 2�k > T .

The inequality v0(T ) < 0 and the continuity of v0 imply the existence
of a neighbourhood U of T with v0(t) < 0 for all t 2 U . If k is large
enough we have on account of sk ! T : sk +2�k 2 U . Since v is strictly
decreasing on U , sk+2�k > T yields the inequality v(sk+1=k) < 0 and
thus dk = sk + 2�k for all except a �nite number of k. Hence dk ! T .
Since v(dk) < 0 we have dk > T .

Let S1 = supt2U v
0(t) < 0 and S2 = supt2[T0;T̂ ] v

0(t). For all except a
�nite number of i we have [si � �i+1; di] � U ; therefore on account of
si < T we have

S3 = inf
i2IN :[si��i+1 ;di]6�U

v(si) > 0:

Choose � � (1 + S2)=S3. Then for all i with [si � �i+1; di] 6� U and for

all t 2 [T0; T̂ ] we have the chain of inequalities

@th(t; s) � v0(t)� �S3

� v0(t)� S2 � 1

� �1:
Now [si � �i+1; di] � U and t 2 [si � �i+1; di] � U imply

@th(t; s) � S1 < 0: 2

Remark 7.5.1 If it is known a priori that v is decreasing (not nec-
essarily strictly decreasing) it is also possible to use the regularization
Algorithm 7.1 with h(t; s) = v(t)� �(t� s). Then @th � �� and

0 � T � si+1

T � si
� T � �si+1 + �i+1

T � si
! �

� � v0(T )
:

Hence if v0(T ) < 0 the sequence (si)i2IN converges linearly to T . If
v0(T ) = 0 the convergence is only sublinear.
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7.5.2 Newton{Bisection Method

Now we give an algorithm for the computation of the smallest root of
the functions h(�; sk) that is required in Algorithm 7.1.

According to Theorem 7.5.1 c) we can assume that

h0(�; sk) � �� < 0 on E0 := [sk � �k+1; dk]:

So we give an algorithm for the computation of the smallest root in
E0 of a function that is strictly decreasing. The fact that the function
is strictly decreasing allows us to show global superlinear convergence.
This is the reason for our regularization e�ort in Algorithm 7.1.

We consider the following problem: Let functions H, G: IR! IR be
given. Assume that H is continuous and G(t) 6= 0 for all t 2 IR. (G is
used as an approximation of the derivative of H).

We want to compute an approximation for the smallest root �s of
H, whose existence we also assume. Our algorithm combines a fast
algorithm that determines the numbers nk with a bisection method.

Algorithm 7.2 (Newton{Bisection)
Step 0 Find an interval E0 = [a0; b0] containing �s. Choose �0 2

fa0; b0g.
Step k Given an interval Ek = [ak; bk] containing �s and �k 2 fak; bkg.
Compute nk = �k �H(�k)=G(�k).
If nk 2 Ek compute H(nk).

Take the left interval [�k; �k] 2 f[ak; nk]; [nk; bk]g with �s 2 [�k; �k],
which is determined by the sign of H(nk).

If nk 62 Ek, let [�k; �k] = [ak; bk].
Compute the midpoint ck = (�k + �k)=2 and H(ck).

Take the left interval Ek+1 = [ak+1; bk+1] 2 f[�k; ck]; [ck; �k]g with �s 2
Ek+1.

If nk � ak+1, let �k+1 = ak+1. If nk � bk+1, let �k+1 = bk+1.

Lemma 7.5.1 If for all k, �k 6= �s, inft2E0 jG(t)j > 0 and tk ! �s implies
G(tk)�H(tk)=(tk � �s)! 0, then

lim
k!1

�k+1 � �s

�k � �s
= 0;

that is the sequence (�k)k2IN converges superlinearly to �s.
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and Lemma 7.5.1 implies superlinear convergence.
If the functions b, zj (j 2 IN) are continuously di�erentiable, Lemma

6.2.3 implies that H is twice continuously di�erentiable, hence

H 0(t)� H(t)

t� �s
= O(t� �s)

and Lemma 7.5.2 implies quadratic convergence.
If !N is twice continuously di�erentiable, another possible choice of

G is

G(t) = H 0(t)� H(t)H 00(t)
2H 0(t)

: (7.3)

For this choice of G, the de�nition of nk is as in Halley's method (see
[36]).

If H 0(�s) 6= 0, (7.2) holds and Lemma 7.5.1 implies superlinear con-
vergence. Moreover, we have

G(t)� H(t)

t� �s
= O(t� �s)

and Lemma 7.5.2 guarantees quadratic convergence. If H is three
times continuously di�erentiable we can say even more: Analogously
to Lemma 7.5.2 we can show that

G(t)� H(t)

t� �s
= O(t � �s)2 (7.4)

and inft2E0 jG(t)j > 0 implies cubic convergence.
If H is three times continuously di�erentiable, (7.4) is valid for G as

in (7.3). Hence we have cubic convergence.

7.6 Numerical Examples

For the example of the Euler{Bernoulli beam, it is possible to work
with Newton's, Halley's and Euler's method without regularization and
without a combination with a bisection method. In Figure 6.2.1, the
graph of !8 looks like the graph of a convex function. Therefore, we
started with points that were smaller than the root that was to be com-
puted, since in this situation, for a convex function, Newton's method
generates a sequence that converges monotonically to the root.

The methods that we used were de�ned in the following way:
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of iterations needed by the three methods is approximately the same.

Figure 7.6.1
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Figure 7.6.1:

The points sign(!8(xi)) log(1 + j!8(xi)j) for the methods of Halley, Euler, Newton.

Example 7.6.2 For our second example, we choose � = 100 and start
with the point x0 = 0:2 for D = 1 and x0 = 0:1 for D 2 f10; 100; 1000g.
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Halley Euler Newton
D = 1 10 13 13
D = 10 9 11 10
D = 100 9 11 11
D = 1000 11 12 11

(7.8)

D = 1 : T �8 = 4:51032

D = 10 : T �8 = 4:41398

D = 100 : T �8 = 4:39814

D = 1000 : T �8 = 4:40270

The numerical results indicate that Halley's method is often faster
than Newton's method if the iteration starts far away from the solution
and large changes in the �rst derivative occur during the iteration.

If the iteration starts close to the solution, there is almost no di�er-
ence between the iterates generated by Newton's and Halley's method.
Euler's method does not work so well since often, far away from the
solution, it has to use a Newton step.

7.7 Discretization Re�nement

7.7.1 Introduction

The main work in the computation of a solution of Problem PN (T ) with
the method described in Chapter 5 consists in the computation of the
functions Hj(T ).

Hence the amount of work is proportional to the number of the func-
tions Hj(T ).

We assume that the assumptions A1 and A2 given in Chapter 6 hold.
Assume that ST is a Volterra operator with a kernel that is given

as a series where the truncated series yields a �nite rank kernel. Then
for each truncated kernel, the functions Hj can be computed using the
solution of an initial value problem.

The dimension of the di�erential equation in the initial value prob-
lems is equal to the number k of terms in the truncated series of the
kernel K, hence the computing time is also approximately proportional
to k.
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Moreover, the computing time depends on the stepsize that is used
in the numerical solution of the initial value problem and for the numer-
ical integration, which is used to compute approximations of the scalar
products which are the numbers in the Gram matrix.

In our algorithm for the solution of the problem of time{optimal
control, the computation of solutions of PN (Tj) is required for a number
of points Tj. To reduce the number of iterations in this algorithm, a
good starting point is essential. As such a starting point, we can use the
root of a cheaper approximation of the function whoose root we want
to compute.

For each smaller number k, each smaller number N and each larger
stepsize h we obtain such an approximation.

Theoretically, we can compute an in�nite number of roots T �N;k;h
corresponding to these functions.

In this section, we consider the convergence of these numbers T �N;k;h
for N !1, k !1 and h! 0.

Again we can prove uniform convergence of the corresponding opti-
mal value functions, provided that k is increasing fast enough with N
and h is increasing fast enough with N and k.

We start here with the parameter N since it determines the size of
the Gram matrix. The number k determines the size of the initial value
problem, hence we consider h as the last parameter.

7.7.2 Sensitivity with respect to N and k

We start our analysis with a Lemma about the sensitivity to pertur-
bations of the solution of linear Volterra equations of the second kind,
that is based on Theorem 3.10 in [35].

Lemma 7.7.1 Let � > 0 and K, Kk and f be continuous functions on
the interval [0; T ].

For T 2 (0; T ], let v(T ) denote the solution of the equation

v(T )(x)�
Z x

0

K(x� y)

�
v(T )(y) dy =

f(T � x)

�

and vk(T ) denote the solution of the equation

vk(T )(x)�
Z x

0

Kk(x� y)

�
vk(T )(y) dy =

f(T � x)

�
:
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Let �K(k) = max
x2[0;T ]

jK(x)�Kk(x)j
�

and �f(s) = max
x;x+s2[0;T ]

jf(x+ s)� f(x)j
�

:

Let �f = max
x2[0;T ]

jf(x)j
�

and �K = max
x2[0;T ]

jK(x)j
�

.

Then for all x 2 [0;minfT; T + sg] the following inequality holds:

jv(T )(x)� vk(T + s)(x)j �n
�f(s) + �K(k)x( �f +�f(s)) exp(( �K +�K(k))x)

o
exp( �Kx): (7.9)

Proof The result follows directly from Theorem 3.10 in [35]. 2
In the sequel, for � 2 IRN

k�k = (
NX
i=1

j�ij2)1=2

denotes the Euclidean norm and for A 2 IRN�N , kAk denotes the cor-
responding matrix norm.

Let Hj;k(T ) denote the function that solves the equation

�Hj;k(T )(x)�
Z T

x
Kk(y � x)Hj;k(T )(y) dy = zj(x): (7.10)

Lemma 4.1.1 implies the equation

Hj;k(T )(x) = vk(T )(T � x);

with vk(T ) as de�ned in Lemma 7.7.1 with f(x) = zj(x).
For the rest of this chapter, we assume that

M0 = sup
j

sup
x2[0;T ]

jzj(x)j
�

<1:

Then according to Example 3.3 in [35] we have for all x 2 [0; T ]

jHj(T )(x)j �M0 exp( �KT ):

We consider a sequence of kernels (Kk)k2IN with limk!1�K(k) = 0.
Lemma 7.7.1 implies that for all x 2 [0; T ], j, k 2 IN we have

jHj;k(T )(x)�Hj(T )(x)j � �K(k)TM0 exp(2( �K +�K(k))T ) =: Bk:
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For the scalar products this yields for all i, j 2 IN���hHi;k(T );Hj;k(T )i(0;T )� hHi(T );Hj(T )i(0;T )
��� ����hHi;k(T )�Hi(T );Hj;k(T )i(0;T )
��� +���hHi(T );Hj;k(T )�Hj(T )i(0;T )
��� �

BkT ( max
x2[0;T ]

jHi(T )(x)j+ max
x2[0;T ]

jHj(T )(x)j+Bk) �
BkT (2M0 exp( �KT ) +Bk) =: �Bk:

Let AN;k(T ) be the N �N matrix

AN;k(T ) =
�
hHi;k(T );Hj;k(T )i(0;T )

�N
i;j=1

:

For A 2 IRN�N , let kAk1 denote the column{sum norm of the matrix,

kAk1 = max
j2f1;:::;Ng

NX
i=1

jaijj:

Then we have kAk � p
NkAk1. De�ne �N;kA(T ) = AN;k(T )�AN(T ).

Then
k�N;kA(T )k �

p
Nk�N;kA(T )k1 � N3=2 �Bk: (7.11)

With the notation as in Lemma 6.1.3, we have

AN(T )�N(T ) = rN(T ) = (ci � hb;Hi(T )i(0;T ))Ni=1:

Let (bk)k2IN be a sequence of approximations of b such that

lim
k!1

kb� bkk
(0;T )

= 0:

Let �N;k(T ) be the solution of the equation

AN;k(T )�N;k(T ) = rN;k(T ) =: (ci � hbk;Hi(T )i(0;T ))Ni=1:

Let �N;kr(T ) = rN;k(T )� rN (T ) = (hb� bk;Hi(T )i(0;T ))Ni=1:
Due to A2, Lemma 6.1.4 implies that for all k we have

1X
i=1

(hb� bk;Hi(T )i(0;T ))2 � P̂
2kb� bkk2(0;T ):

Hence for all N , k we have

k�N;kr(T )k � P̂ kb� bkk(0;T ):
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For k su�ciently large we have the well{known inequality (see [43],
(1.86), p.37)

k�N (T )� �N;k(T )k �
kAN(T )�1k

1 � kAN(T )�1k k�N;kA(T )k fk�N;kr(T )k+ k�N;kA(T )k k�N(T )kg :
(7.12)

Lemma 6.1.2 implies that kAN(T )�1k is uniformly bounded with re-
spect to T 2 [T; T ] and N , since the smallest eigenvalue of the sym-
metric and positive de�nite matrix AN (T ) is greater than or equal to

1=M̂
2
:

kAN(T )
�1k � M̂

2
:

Lemma 6.1.4 implies that krN(T )k is also uniformly bounded with re-
spect to T 2 [T; T ] and N , since

krN(T )k � kckl2 + P̂kbk(0;T ):
Since k�N(T )k � kAN(T )�1kkrN (T )k, this implies that we also have

sup
N

sup
T2[T ;T ]

k�N (T )k �M2(kckl2 + P̂kbk
(0;T )

<1:

Let C0 > 0 be such that for all k 2 IN , �Bk � C0�K(k).
Then for all k;N we have

k�N;kA(T )k � C0N
3=2�K(k):

In this case, (7.12) implies that there is C2 > 0 such that for all N , k
su�ciently large we have

k�N(T )� �N;k(T )k � C2

�
N3=2�K(k) + kb� bkk(0;T )

�
:

By (6.9), the value of !N can be represented in the form

!N (T ) = (�N (T ))
TrN(T ):

De�ne
!N;k(T ) = (�N;k(T ))

TrN;k(T ):

It is easy to see that !N;k(T ) can be interpreted as the optimal value of
a certain optimization problem PN;k(T ).



142 CHAPTER 7. TIME{OPTIMAL CONTROL

For the di�erence of !N (T ) and !N;k(T ), we have the following in-
equality:

j!N (T )�!N;k(T )j � k�N(T )k k�N;kr(T )k+krN;k(T )k k�N(T )��N;k(T )k:
Hence there exists a constant C3 > 0 such that for all N , k and T 2
[T; T ] we have

j!N(T )� !N;k(T )j � C3

�
N3=2�K(k) + kb� bkk(0;T )

�
:

Thus we have the following Lemma

Lemma 7.7.2 There exists a constant C3 > 0, k0 2 IN such that for
all � > 0, for all N , k � k0 with

N3=2�K(k) + kb� bkk
(0;T )

� �

the following inequality holds:

max
T2[T ;T ]

j!N (T )� !N;k(T )j � �C3:

Hence we can prove the following Theorem:

Theorem 7.7.1 For all � > 0 there is k0 > 0, N0 > 0 such that for all
N > N0, for all k > k0 with

�K(k) + kb� bkk
(0;T )

=N3=2 � �=(2N3=2C3); (7.13)

we have
max

T2[T ;T ]

j!(T )� !N;k(T )j � �: (7.14)

Proof Choose � > 0. Theorem 6.1.2 implies the existence of N0 > 0
such that for all N � N0 we have

max
T2[T ;T ]

j!(T )� !N (T )j � �=2:

According to Lemma 7.7.2, for all N , k for which (7.13) holds, we have

j!N (T )� !N;k(T )j � �=2;

hence if N � N0 and (7.13) is valid, the inequality

j!(T )� !N;k(T )j � j!(T )� !N (T )j+ j!N (T )� !N;k(T )j � �

holds, and the assertion follows. 2

Remark 7.7.1 If we de�ne rN;k(T ) as (ci � hbk;Hi;k(T )i(0;T ))Ni=1 then

Lemma 7.7.2 and Theorem 7.7.1 hold with N2 instead of N3=2. If b =
bk = 0 as in our numerical examples, the result with N3=2 is applicable.
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7.7.3 Sensitivity with respect to N , k and h

In this section, we assume that for all k, Kk is a �nite rank kernel as
de�ned in (4.8). For general �nite rank kernels as in (4.5), an analogous
discussion is possible.

Let �h denote the global discretization error corresponding to the
stepsize h for the numerical solution of the initial value problem (4.10),
(4.11), (4.12), so that we have the inequality

jy(xk)� ykj � �h;

with xk = kh, k 2 f1; :::; T=hg, for the exact solution y and the values
yk of the approximate solution. Let m = T=h 2 IN .

Let Hj;k;h(T ) be de�ned as

Hj;k;h(T )(xk) = zj(xk)=��
1

�

kX
i=1

�
sin(

q
D�jxm�i)y2j�1(xm�i)� cos(

q
D�jxm�i)y2j(xm�i)

�
:

Then due to (4.13), for the solution Hj;k(T ) of the Volterra equation
(7.10), we have

jHj;k(T )(xk)�Hj;k;h(T )(xk)j � 1

�
2k�h: (7.15)

This inequality shows that if k is increased, this only has a positive
e�ect on the accuracy if at the same time, h is made smaller in such a
way that �h decreases.

Let GT
m denote a generalized Newton{Cotes rule for the approxima-

tion of integrals on the interval [0; T ] by using the values on an equidis-
tant grid,

GT
m(f) =

mX
i=0

Wm
i f(xi); W

m
i � 0;

mX
i=0

Wm
i = T:

Assume that there exist � 2 IN , Qm > 0 such that for the quadrature
error, we have the inequality�����GT

m(f) �
Z T

0
f(t) dt

����� � Qm

���f (�)(�)���h�;
for some � 2 [0; T ]. Then

jhHi;k(T )Hj;k(T )i(0;T )�GT
m(Hi;k(T )Hj;k(T ))j �
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Remark 7.7.2 In the case of the trapezoidal rule (4.15), we have �h =
O(h3) (see [9]).

In our implementation, for the quadrature we used the generalized
Simpson rule, for which we have � = 4.
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