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Preface

The optimal control of hyperbolic systems is an important problem
in engineering. In this book, a self-contained exposition of the problem
is given, a numerical method for the time—optimal control of hyperbolic
systems is presented and a convergence analysis is made. Numerical ex-
amples are given for the problem of the rotating Euler-Bernoulli beam.

The method is based on the theory of moment problems. In the al-
gorithm, the numerical solution of certain Volterra equations plays an
important role. The ideas of the method are also related to paramet-
ric programming. A special feature of the convergence analysis is the
detailed investigation of the properties of the sequence of optimal value
functions of the discretized parametric auxiliary problems.

Moreover, the optimal value function of the original problem is in-
vestigated thoroughly.

Vorwort

Die optimale Steuerung hyperbolischer Systeme ist ein wichtiges Pro-
blem in den Ingenieurwissenschaften. Wir stellen das Problem dar
und schlagen ein numerisches Verfahren fur die zeitoptimale Steuerung
hyperbolischer Systeme vor. Fur dieses Verfahren entwickeln wir eine
Konvergenzanalyse. Fur das Problem des rotierenden Euler—Bernoulli
Balkens geben wir numerische Beispiele.

Der Algorithmus basiert auf der Theorie der Momentenprobleme. In
dem Verfahren spielt die Losung gewisser Volterra—Gleichungen zweiter
Art eine wichtige Rolle. Die Ideen des Verfahrens hangen auch mit
der parametrischen Optimierung zusammen. Die ausfihrliche Unter-
suchung der Figenschaften der Folge der Optimalwertfunktionen der
diskretisierten Probleme ist eine Besonderheit der Analyse. Die Opti-
malwertfunktion des Ausgangsproblems wird ebenfalls griindlich unter-
sucht.
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Chapter 1

Introduction

1.1 The Problem

In this book, the control of a system is studied whose evolution in time
is governed by a linear partial differential equation.

For given initial conditions and control functions, the solution can
be expressed as a series, where the eigenfunctions and the eigenvalues
of an operator which appears in the partial differential equation occur.

Due to the series representation of the solution, the control functions
that steer the system from the given intial state to a desired terminal
state can be characterized as the solution set of an infinite system of
moment equations. This approach via moment problems has originally
been given by Russel (see [39]). It is also considered in [3]. We con-
sider exact control, that is the terminal state that we want to reach is
prescribed exactly.

We consider the problem of time—optimal control subject to an upper
bound on the L?-norm of the image of an affine linear operator applied
to the control function.

1.2 The Method

We present a numerical method for the solution of the problem of time—
optimal control stated above, that is based on the properties of the value
function of a certain parametric auxiliary problem.

In this auxiliary problem, the controlling time is the parameter. The
moment equations are taken as equality constraints, and the L*-norm
combined with the affine linear operator that occurs in the definition

5



6 CHAPTER 1. INTRODUCTION

of the inequality constraint of the problem of time-optimal control is
taken as the objective function.

Since for the optimal controlling time, the inequality constraint in
the problem of time-optimal control is active, the optimal value of the
auxiliary problem with the optimal controlling time as fixed parameter
is known. This fact is the foundation of the basic idea of the method,
which is due to Krabs: It is to find the optimal controlling time as
the point, where the optimal value function of the parametric auxil-
iary problem attains a certain known value, so basically, the optimal
controlling time is determined as the root of a certain function.

To analyse this approach, it is interesting to consider the regularity
of the optimal value function. The corresponding results presented here
are original. The investigations are related to the results about the
marginal function in parametric programming, see for example [51],

29], [13].

We show the continuity of the value function. For the computations,
the system of moment equations is truncated to obtain a finite number of
equality constraints. In this way, a sequence of optimal value functions
corresponding to the discretized problems is generated. We show that
this sequence converges uniformly to the optimal value function fo the
original problem. The proof is based on Dini’s Theorem.

We show that under weak assumptions, the optimal value functions
of the discretized problems are three times differentiable. The proof is
based on the implicit function theorem. The first and the second deriva-
tive are easy to compute, once the solution of the discretized problem is
known. Hence we can use Newton’s method to compute approximations
for the optimal controlling time. A combination with a bisection ap-
proach yields a method that converges globally quadratically. Since the
evaluation of the second derivative is also cheap, it makes sense to ap-
ply higher order methods too, such as Halley’s method. A combination
with a bisection approach yields global cubic convergence.

We present a sufficient condition for the differentiability of the opti-
mal value function of the original problem. If the optimal controls are
pointwise uniformly bounded, the optimal value function of the original
problem is Lipschitz.
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1.3 The Example of the Euler—Bernoulli Beam

For our computational examples, we consider the problem of the con-
trol of a rotating beam, which is a classical problem of control theory
that has been studied in numerous papers. An Euler-Bernoulli beam is
considered whose movement is controlled by a torque at the axis of the
rotation.

The control function is the angular acceleration. It is assumed to
be a square integrable function of time, that is we work in the Hilbert
space L?[0,T].

The problem is to control the beam from a given intial state to a
prescribed terminal state, for example to rotate it by a given angle in
such a way that at the end of the controlling time, no vibrations occur
and the beam is completely at rest.

The torque is computed from the control function by applying a linear
Volterra—operator of the second kind. For the inequality constraint we
require that the L?norm of the torque function is less than or equal to
a given bound. This has a physical interpretation as a constraint on the
energy that is used to steer the beam.

For the solution of each of the corresponding discretized auxiliary
problems, a number of Volterra—equations has to be solved which is
equal to the number of moment equations. This is the most time-
consuming part of the computation.

The kernel in the Volterra—equations is given as a series. For the
solution of the Volterra—equations, we use the fact that the truncated
kernel has finite rank, hence we can obtain an approximate solution
through the solution of a linear initial value problem. For the numer-
ical solution, we can use an implicit scheme, where due to the special
structure of the matrix the corresponding systems of linear equations
can be solved analytically.

We analyse the convergence of the computed approximations of the
optimal controlling time as the number of moment equations and the
number of terms in the truncated kernel increase and the stepsize in the
numerical integration decreases.

Now we mention some of the papers where the rotating beam has
been studied:

In [41], optimal control on a fixed time interval under L*—constraints
is considered, and an algorithm is given, that is based on Galerkin ap-
proximations and ordinary differential equations.
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In [25], the problem of time-optimal control of a rotating beam as
described above is considered. In [24], the exact controllability of the
system is shown, using a trigonometric inequality by Ingham. For the
numerical solution, Krabs proposes a secant method. No numerical
examples are given.

In [42], a beam with interior damping of Voigt—type is considered and
a method for feedback stabilization is given. This approach is given for
a more general case in [40].

In [8], a chain of serially connected Euler—Bernoulli beams is studied
and it is shown that uniform exponential stabilization can be achieved
by stabilizing at one end point of the composite beam.

In [27], [28] networks of beams are considered.



Chapter 2

Hyperbolic Systems

In this chapter, we consider systems that are governed by partial dif-
ferential equations of the hyperbolic type. We prove a result about the
existence of a unique solution that depends continuously on the initial
data.

As an example, we consider the partial differential equation of the
Euler-Bernoulli beam. We give a representation of the solution as a
series.

2.1 The Problem

Consider a system that is described by an evolution equation of the
second order in time of the form

d*y(t
Tyt(z ) 4 Ay(t) = R(1),t >0 (2.1)
with initial conditions
y(0) = yo, dy(0)/dt = y. (2.2)

Now we introduce the formal setting. Let H be a Hilbert space over
the field of real numbers. Let (¢;);en be an orthonormal Schauder basis
of H. Let (A;)jen be a sequence of numbers that are greater than zero.

Let ¢ = (¢j)jen be a sequence of real numbers and r € IR. Define

- 1/2
lell- = (ZMI?(AJ)T) : (2.3)

i=1

9
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We define the space of sequences

[ =Alej)jen el < o0} (2.4)

We also use the notation |[c[|z = ||c]],.
Define the subspace of H

= {f e H: =Y cidy, [fllw, = ll(¢i)jen]lr < OO}- (2.5)

J=1

It 1s evident that Wy = H.
We consider a linear operator A from W, to W,_, that is given by

o0

chqb] Z)‘ cj ;. (2.6)

7=1

Obviously, for all h € W, we have
[ARlw,_, = ||2][w, (2.7)

The operator A has a pure point spectrum and the eigenfunctions
(¢;)jen with the corresponding strictly positive eigenvalues (A;)en.

In the applications, the operator A will usually be given as a dif-
ferential operator and the spectrum has to be computed somehow. In
this section, we started with the eigenfunctions for the sake of ease of
exposition. The approach in this section is close to the presentation in
[3].

For T' > 0, define the space L?(0,7;W,) of measurable functions
g:(0,T) — W, such that

- 1/2
ol = ([ ool ) <o @
and the space C'(0,7; W,.) of continuous functions d : [0, T] — W, with

the norm |[d||co,r3w,) 1= maxepor [[d(t)]|w, -
Functions g € L*(0,T;W,) can be represented in the form

Zg] ija

with ¢g; € L*(0,T') and 2= "gj"%2(0,T))\; < 0.
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Let D(0,T') be the set of infinitely differentiable real-valued functions
on [0,T] whose support is a compact subset of (0,7"). For 7 € IN, let

dg;/dt be the generalized derivative (in the sense of distributions) of g;.
Then for ¢» € D(0,T) we have

dg: T
Sy == [ i)
0
This implies the inequality
2

dg;
—= ()| < gillzz0m) ¥ 120,17

dt

Define

d o)
= Z g]% dt Zdi )o;, for b € D(0,T).

7=1
Hence we see that dg/dt is a well-defined continuous map from D(0,7")
into W, satisfying the equality

Wiy =~ [ anpinyar

Let R € L*(0,T;W,_1), yo € W,, y1 € W,_;. We are looking for a

solution of our evolution equation with values in the space W, that is
continuous with respect to .

2.2 Existence of a Unique Solution

A function y € C(0,T;W,) is said to be a solution of the problem (2.1),
(2.2) if the sum d?y/(dt*) + Ay is an element of the space L?(0,7; W, _1)
and equal to R and the initial conditions hold as equalities in the spaces
W, and W,_; respectively. Let me remind the reader of the fact that
we have assumed (2.6).

Theorem 2.2.1 (see Theorem II1.2.1.,[3], p.154)
Let R e L*(0,T;W,_1), yo € W,, and y, € W,_;.
Then there exists a unique solution of problem (2.1), (2.2) and the
map
(Rv Yo, yl) = (y7 dy/dt)
of space L*(0, T W,_1)x W, xW,_y to the space C(0,T; W,)xC(0,T; W,_)

18 continuous.
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which implies that
g (DX < BlyF AT + 3[y; [N+ 31 B Lo TA - (2.13)

Hence y(t) € W, for all t € [0,T].
Equation (2.12) implies that

dys(0/dt] < Al 1 IR e VT
thus we have
|dy; (1) /dt]* < 3Xly51* + 3ly;1* + 3T Byl 7201
which implies that
[y (0)/dt* X0 < BlyT1PAT + 3ly; A0 4+ 3TN T R | Lo,y (2:14)
Hence dy(t)/dt € W,_, for all t € [0,T].

Moreover, the series (2.9) converges in W, uniformly in ¢, ¢ € [0,T].
Therefore, inequality (2.13) and the Weierstrass theorem imply that the
function y is continuous in ¢ in the norm of W,. Analogously, we see that
dy/dt is a continuous function from [0, T'] into W,_;. Equality (2.13) as
an equality in the space L*(0,T; W,_;) and equalities (2.2) as equalities
in the spaces W,., W, _; respectively follow directly from (2.10).

To see that the solution is uniquely determined, note that every
solution can be represented in the form (2.9), and the coefficients have
to solve the initial value problems (2.10).

Since the unique solution of (2.10) is given by (2.11), the uniqueness
of the solution of (2.1), (2.2) follows.

Inequality (2.13) implies

i, T 3l

19112207,y < 3ll%0l W, T3TNRI 0w,y (215)
and inequality (2.14) implies
1y /dt || T2 02,y < 3llvolliy, + 3l

and the asserted continuity follows. O

o, + 3TN BRI 0,10,y (2:16)

2.3 Example: The Euler—-Bernoulli Beam

In this section we want to apply Theorem 2.2.1 to the partial differential
equation describing the Euler-Bernoulli beam. In particular, we want
to give a representation of its solution as a series.
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The treatment given in the previous section depends on the expansion
in the eigenfunctions. To use this approach numerically for a particu-
lar operator the eigenfunctions have to be computed somehow. Then
it has to be shown that the eigenfunctions form a complete orthonor-
mal system. For some operators (e.g. of Sturm—Liouville type), this is
guaranteed by general results.

In this section, we want to work with the Hilbert space L*(0,1). So
we have to show that the operator A corresponding to our example has a
pure point spectrum and that the eigenfunctions form a basis of L*(0,1).
Fortunately, for this particular example, it is possible to compute the
eigenfunctions and the eigenvalues of A analytically. The asymptotic
behaviour of the eigenvalues can be described very accurately.

2.3.1  AY = Youra
Let [ > 0 be given. In this section we consider the operator
Ay(e) = dy(e) /e,
and we want to compute the eigenfunctions contained in the set
D(A) = {z € CW([0,1]) with 2(0) = 2'(0) = 0 = 2"(I) = z"(I)}.

Lemma 2.3.1 Eigenfunctions z1, z3 corresponding to different eigen-
values Ay # Ay are orthogonal in L*(0,1), i.e.

/Ol z1(x)ze(x) dx = 0.

All eigenvalues are strictly positive.

The first assertion of Lemma 2.3.1 follows from the equation

Ao /Ol z1(x)ze(x)de = /Ol 21(:1;)254)(:1;) dx
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By partial integration, we can also see that

M [ ey de = [ () dr

Since z; # 0, due to the definition of D(A) this implies A; > 0. O
For A > 0, we examine the differential equation z*)(z) = Az(z). The
general solutions of this differential equation is

2(z) = Asin(A\Y42) + Bcos(A\Y*2) 4+ C'sinh(A*2) + D cosh(AYz),

with coefficients A, B, C, D. (Using the Wronskian, it can be shown
that sin, cos, sinh, cosh are linearly independent functions and hence
we have a basis of the space of solutions.)

The conditions z(0) = z/(0) = 0 yield the equations B = —D and
A = —C'. Hence the eigenfunctions have to be of the form

2(x) = A(sin(A\*z) — sinh(A/*2)) + B(cos(A\/*x) — cosh(A/z)),
which implies that for the derivatives we have
2"(1) = AN (= sin(AY4) —sinh(AY41)) = BAY?(cos(AY41)+cosh(AL/41)),
(1) = AN (= cos(AY A1) —cosh(AY11)) 4+ BA3/ A (sin(AY41) —sinh(A/11)).

The conditions z”({) = 0 = z(l) yield a linear system for the coefficients
A, B. A solution z # 0 can only exist, if the determinant of this system
equals zero, that is if

(—sin(A'/*) — sinh(A*1))(sin(AY*1) — sinh(A/*1))
—(— cos(AY*1) — cosh(AV4))? = 0,
which is equivalent to the equation
cos( AV D1) cosh(A/ ) = —1

(on account of cos® + sin? =1, cosh? —sinh? = 1).
Hence the eigenvalues of A are the positive solutions of the equation

Cos()\l/4l) +1/ Cosh()\l/4l) =0.
Lemma 2.3.2 The function

F(x) = cos(x) 4 1/ cosh(x)
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has a countable number of positive roots.
Let (x)jen denote the strictly increasing sequence of roots.
Let y; = jm — w/2 and 6y = w/2, §; = arcsin(1/ cosh(y;_1)) for j > 2.
If j is uneven, we have x; € (y;,y; + ;).
If j is even, we have x; € (y; — 0;,y;).
Proof If j is uneven, for @ € [y; + &;, yj+1 — d;41] we have

F(x) < max{—sin(d;), —sin(d;41)} + 1/ cosh(y,)
= max{—1/cosh(y;_1), —1/cosh(y;)} + 1/ cosh(y;)
= —1/cosh(y;)+ 1/ cosh(y;)
= 0.

Hence F' has no root on the interval [y; + &;, yj41 — 0,41
If j is even, for « € [y}, yj+1] we have

F(x)>0+41/cosh(x) > 0.

Hence F' has no root on the interval [y;, y;+1].
For all 5 € IN, we have

F(y;) = cos(ym — m/2) + 1/ cosh(y;) = 1/ cosh(y;) > 0.
If 5 is uneven, we have
Fly; +6;) = cos(y; + ;) + 1/ cosh(y; + 4;)
= —sin(d;) + 1/ cosh(y; + ;)

—sin(d;) + 1/ cosh(yj—1)
0.

IN A

If 5 is even, we have

Fy; —6;) = cos(y; —d;) + 1/ cosh(y; — d;)
= sin(—4;) + 1/ cosh(y; — §;)
< —sin(d;) 4+ 1/ cosh(y;-1)
< 0.
Since the function F'is continuous, the existence of zeros of F' in the
intervals (y;,y; +96;), (y; — d;,y;) respectively follows from the interme-

diate value theorem.

We have the derivative F'(x) = —sin(a) — tanh(x)/ cosh(z).
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If 7 is uneven, for @ € (y;,y; + 0;) we have

F(x) < —sin(y; + ;) — tanh(y;)/ cosh(y; + 4;)
= —cos(d;) — tanh(y;)/ cosh(y; + 4;)
< 0.

Hence F'is strictly decreasing on (y;,y; + 0;) and has at most one root
on this interval.
If j is even, for « € (y; — d;,y;) we have

F'(z) > —sin(y; —§;) — 1/ cosh(y; —4;)
> cos(d;) — 1/ cosh(m)
> \/1 — 1/ cosh®(y;_1) — 1/ cosh(m)
> \/1 — 1/ cosh®(7/2) — 1/ cosh(n)
> 0.

Hence F' is strictly increasing on (y; — d;,y;) and hence F' has at most
one root on this interval. O
For the eigenvalues A; of A we have )\;/4l = x;, hence \; = (z;/1)*.

Remark 2.3.1 The numbers z; can be computed numerically by using
Newton’s method applied to the function F(y; 4 -) with the zero as the
starting point. Note that for j > 12 we have §; < 107'*, hence for
J > 12 the numbers y; are good approximations of the z;.

To obtain the eigenfunctions, we choose B = —1. The equation

Z"(1) = 0 yields
A= (cos()\;/4l) + cosh()\;/4l))/(sin()\;/4l) + sinh()\;/4l)) =: ;.
Thus we have the eigenfunctions

vi(2) = v, (sin( A Yz) — sinh(AMY2)) = cos(AY2) + cosh(Az).

J J J J
(2.17)

Since cosx; = —1/ cosh x;, we have
cos(x;) + cosh(x;) = cosh(x;) —1/cosh(x;)

= (cosh®(x;) — 1)/ cosh(z;)
= sinh®*(z;)/ cosh(z;).
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Moreover, we have

sin(x;) =

Hence we can conclude that

v; = (sinh®(z;)/ cosh(z;))/((—=1)"" sinh z;/ cosh z; + sinh z;)
= sinh(x;)/(cosh(z;)((=1)"T"/ cosh x; + 1))
— sinh(e;)/(cosh(z,) + (~1)).

For 7 uneven, this yields

3 = sinh(e;)/(cosh(z;) + 1
= tanh(x;/2)

and for j even, we have

3 = sinh(e)/(cosh(z;) — 1
= coth(x;/2).

Hence Lemma 2.3.2 implies that if j is uneven, we have
v; € [tanh(jm/2 — 7 /4),1]
and if j is even, we have
v € [1, coth((y — 1)7/2)].
Thus we see that the sequence (v;);en converges to 1 very fast.

Lemma 2.3.3 For the functions p; defined in (2.17) we have

!
/ wi(z)?de = L.
0

Proof We have [} o;(2)?dz =1 fj ;(t])?dt.

If 5 is uneven, we have

@;(tl) = tanh(x;/2)(sin(x;t) — sinh(x;t)) — cos(x;t) 4 cosh(x;1).
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Using the program Mathematica, we obtain the formula
/ (tanh(w/2)(sin(wt) — sinh(wt)) — cos(wt) + cosh(wt))2 dt

_ 2w + 2w cosh(w) — 4 sin(w) + sin(2w) + sinh(w) — 4 cos(w) sinh(w) 4 cos(2w) sinh(w)
4w cosh2(w/2)
2 (2w(cosh(w) + 1) + sin(w)(—4 + 2 cos(w)) + sinh(w)(2 cos2(w) —4 cos(w)))
4dw(cosh(w) + 1)

2 (sinh(w)(Z cos2(w) — 4cos(w)) + sin(w)(—4 + 2 cos(w)))
4dw(cosh(w) + 1)
(sinh(w)(cos2(w) — 2cos(w)) + sin(w)(—2 + cos(w)))
w(cosh(w) + 1)

sin(w)

14 %tanh(w/Z) (cos2(w) — 2 cos(w) + Sinh (@) (-2+ cos(w))) .

For 7 uneven, we have

sin(x;) = \/1 —cos?(x;) = \/1 — 1/ cosh*(z;) = tanh(z;).

For w = x;, this implies the equation

Cosz(w) — 2cos(w) + s?;nh((ww)) (—2 + cos(w))
- Cosz(w) — 2cos(w) + cosh(w) (—2 + cos(w))
= COSQ(U)) — 2 cos(w) — cos(w)(—2 + cos(w))

= 0.

Thus for j uneven, we see that fy o;(t/)>dt = 1.
If 5 is even, we have

@;(tl) = coth(x;/2)(sin(x;t) — sinh(x;t)) — cos(x;t) + cosh(x;1).
Again using Mathematica, we obtain the formula
/ (coth(w/2)(sin(wt) — sinh(wt)) — cos(wt) + cosh(wt))2 dt

_ —2w+ 2w cosh(w) — 4sin(w) — sin(2w) + sinh(w) + 4 cos(w)sinh(w) + cos(2w) sinh(w)

4w sinh?(w/2)
_ 2w(cosh(w) — 1) + sin(w)(—4 — 2 cos(w)) + sinh(w)(4 cos(w) + 2 cos2(w))
2w(cosh(w) — 1)
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yields the number 1.00000000, so Formula (2.18) is more suitable for
numerical purposes than (2.17).

Let
$;(x) = pila)/ V1. (2.19)
Then Lemma 2.3.3 implies that the functions (¢;);en form an orthonor-
mal system.

The question remains: Is the sequence (¢;);en a Schauder basis of
L*(0,1)? A positive answer follows from a result in Chapter 1, 16 in
[31]: Using an approach that is based on finite differences, it is shown
that Parseval’s equation holds, that is

for all f € L*(0,1) we have /Ol fA(z)dx = i (/Olf(x)gb](x) d:z;)2
- (2.20)

Since the sequence (¢;) e is an orthonormal system, (2.20) is equiva-
lent to its completeness.
Thus the operator A satisfies the assumptions of Section 2.1 for the

Hilbert space H = L*(0,1).

Remark 2.3.2 The eigenfunctions ¢; appear in many papers (see for
example [41], [24]). However, the intervals containing the eigenvalues A;
in Lemma 2.3.2 and the simple representations of the 5; that are very
useful for numerical purposes seem to be new.

2.3.2 The Series Representation of the Solution

Let D > 0. The number D measures the stiffness of the beam. The
Euler-Bernoulli beam is defined by the initial boundary value problem

d*y(z,t) d*y(z,1)

W + DW = R(z,t), x € [0,1],t > 0. (2.21)
with initial conditions
y(2,0) = yo(z), dy(x,0)/dt = yi(x) (2.22)
and boundary conditions
y(0,1) = y'(0,1) = 0=y"(l,t) = y"(L,1). (2.23)

The proof of Theorem 2.2.1 implies that for the solution of this problem,
we have a representation as a series.
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In the physical formulation, we have D = EI/m, where E is Young’s
modulus of the material, [ is the moment of inertia of the cross section
and m is the mass per unit length.

Let H = L*(0,1). Assume that R € L*(0,T;H), yo € Wi, y1 € H.
Let

Ri(t) = [ R0)s(r) da,
W = [ wolw)sie)dr,
T

Let A, ¢; and A be as in 2.3.1. The operator DA has the eigenvalues
DX;. We have

Fet:f =Y o Ifly, = DY lef*A; < oo} = Wi

7=1
Obviously, Wy C W;.

Lemma 2.3.4 Let f € C™W(0,1) with f(0) = f/(0) = 0 = f(I) =
(). Then f e Ws.

Proof Similar as in the proof of Lemma 2.3.1, we can show that
o ’ L ()
f)y= [ f@gede = + [ fa)éf (o) da
J
_ i/
Mo
1 -

= 3 U0)

[O(2)di(x) da

Since f*) € L?(0,1), we have (Ef(4))(j))jew el

Hence ()\]‘f(j))jel\f = (Ef(4))(j))jew €l Thus fe W, O
Let y;(t) = yf cos(y/DAjt) 4+ yisin(y/DA;t) [/ DA;

+/Ot Ry(r)sin(y/DA,(t — 7))/y/DA,; dr.
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Then N
= Z_: yi(t)o;(x) (2.24)

is the unique solution of our problem in C'(0,7; H) in the sense of The-
orem 2.2.1.

2.4 Reachable Set and Moment Problems

In this section, we define the reachable set and characterize it in terms
of a moment problem. From another point of view, this means that
we characterize the set of successful controls as the solution set of a
moment problem. Again we follow the treatment given in [3], Chapter

I11.

2.4.1 Characterization of the Reachable Set

Let H, A and W, be as in Section 2.1. Let U be a Hilbert space, B
a bounded linear operator from U to W,_; and U = L*(0,T;U). We

consider the control system

d*y(t
% + Ay(t) = Bu(t),t >0, u €l (2.25)

with initial conditions

y(0) = yo, dy(0)/dt = y. (2.26)

Definition 2.4.1 The reachable set R(T,yo,y1) from yo, y1 at time
T is the set of all points of the form (y(T),dy(T)/dt) € W, x W,_4,
where y is the solution of (2.25) (2.26) for some u € U.

Fach element of the reachable set R(T,yo,y1) can be uniquely repre-
sented in the form

Zy] Vobj, dy(T)/dt = fj (dyii(tT)) ®;. (2.27)

J=1

We have
1y (1),

= Iy (T))jewll- and ||dy(T')/dt|[w,

wo_r = [(dy;(T)/dt)jenl[---
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Therefore, the set R(T, yo,y1) is isometric to the set
ﬁ(T, (yé)jew, (y{)]‘eﬂ\f) C [? x [?_, consisting of the pairs of sequences
(3, (T, (dyy (1) d) ) corvesponding to
(1), dy(T)dt) € R(T, yo, ).

Let y(t,u, yo,y1) denote the solution of system (2.25), (2.26). Then
we have

y(tvuvyovyl) = y(t707y07y1) —I—y(t,u,0,0)
=: So(t)(yo, yl) —|— [(0(t)u.

In this way, we have defined bounded linear operators

So(t) : W, x W._y — W, and Ko(t) : U — W, where
So(0msn) = 3 (4 costyt) + sin(/ X500/ b and
Ko(thu = fj (/Ot(Bu(T))j sin(y/A(t — T))/@dr) 4.

7=1
Here, the functions (Bu(7)); are defined by the relation
Bu(r) = _(Bu(7));é;.
7=1
For the time-derivative, we have
dy(t,u,yo,y1)/dt = dy(t,0,y0,y1)/dt + dy(t,u,0,0)/dt
= 1) (Yo, 1) + Ki(t)u,
with S1(¢): W, x W._y = W,y and Kq(t) : U — W,_1 where

S00m) = 32 (—uly/A sin(y/A1) 4y cos(y/A1)) ¢ and

Kt = i:; (/Ot(Bu(T))j cos(y D (t — 7)) dr) b

Thus we have the reachable set

R(T,yo,y1) = {(So(T)(yo, y1 )+ Ko(T)u, S1(T)(yo, y1 )+ K1 (T)u) : w € U}.

We are mainly interested in the set

R(T) := R(T,0,0) = {( Ko(T)u, Ky(T)u) : u € U}.



2.4. REACHABLE SET AND MOMENT PROBLEMS 25

Define the corresponding set of coordinate sequences

R(T) = R(T,(0)jen, (0)jen)
= {((Ko(T)u)j)jen, (Ki(T)u)j)jen) - u e U.

At this point, we need the fact that the topological dual space of W, is
W_,. We define the linear operator B* : W_,,; — U by the relation

B(Bo) = (0, Bb)u. v € Uyih € Wopsn.

In particular, (Bv); = (v, B*¢;)v, v € U, 7 € IN.
For ((y;(T))jen, (dy;(T)/dt);en) € R(T) we have

() = [ (Bulr)sin( AT = 1)/ o dr
= /OT sin( \/> —7) /\/7 ), B*¢;)u dr and 2.28)
dy;(T)/dt = /OT COS(\/)T]‘(T — 7)) {u(r), B*¢;)u dr. (2.29)

Trigonometric identities imply that the system of equations (2.28) and
(2.29) is equivalent to the equations

sin(\/ET)\/Ey](T)—l—cos(\/ET)dy](T) cos( \/_T ), B*¢; v dr
_cos(\/ET)\/Ey]( ) + sin( \/_T dy] = sin( \/_T ), B*¢;)u dr.

Hence we can state the following theorem.

Theorem 2.4.1 The reachable set R(T') is isometric to the set ﬁ(T),
which is equal to the set of all pairs of sequences ((¢);en, (Bi)jen) for
which the moment problem

sin(\/)TjT)\/)Tjozj—l—cos(\/)\jT)ﬁj = /OTCOS(\/Y]‘T)<U(T),B*¢]‘>UCZT
— cos(y/\ T /Aoy +sin( N T)B; = /OTsin(\/)TjT)@(T),B*qu}UdT

s solvable with some u € U.

S~

If we want to control our system to the zero position, we ask whether
the relation

0 € R(T, y0,41) = (So(T), 52(T)) + RAT)
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holds. This is equivalent to the relation
—(So(T), 51(T)) € R(T).

Due to Theorem 2.4.1 and the definition of Sy and S;, this is in turn
equivalent to the statement that the moment problem

Al = [ sinAm (), B dr (2.30)

= /OTCOS( o) u(r), B dr (2.31)

is solvable with some v € U.

2.4.2 Example: The Euler—-Bernoulli Beam

Let A be as in Section 2.3.1. For the Euler-Bernoulli beam, we have
H=1L*0,0),U=IR,U=L*0,T). Forve IR, Bv = —zv € L*0,).
Hence we consider the initial boundary value problem
Pyle,t) | dy(a,!)
i TP
with initial conditions (2.22) and boundary conditions (2.23).
We have (Bv); = —v flxé;(x) dz, with ¢; as defined in (2.19).
Lemma 2.4.1 (cf. [24], p.451) Let ¢; be defined as in (2.19). Then

_ 2 (2.33)

/(Jlxqu(x) dr = \/@

Proof With ¢; as defined in (2.17) we have

[eoiwrae = ) [ 2oe)de

= —zu(t), v € [0,{],t > 0. (2.32)
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Hence we have
(Bv); = —2v/(,/1);). (2.34)

We are looking for a control function w for which at time T, the
system satisfies the end conditions

y(x,T)=0, dy(z,T)/dt =0, x € [0,].

Due to (2.30), (2.31) this requirement to the control function is equiv-
alent to the conditions

/OTSiH(\/D)\]‘T)u(T) dr = —W/Ol yo()p;(x) dx, (2.35)

T MV
/0 cos(y/DN;m)u(r)dr = \/; /Oyl(x)qu(x)dx,jel]\f(z?)(i)

Thus the feasible controls must solve the above trigonometric moment
problem. The above equations can also be considered as a countable
number of equality constraints for the control functions.

For the sake of completeness, we state the series-representation of
the solution for the Euler-Bernoulli beam:

y(a,t) = (2.37)

(y? cos(y/DAjt) + y} sin(y/DA;t)/\/DXj) &,

J=1

_i ()\,\Q/E/otu(ﬂ sin(ﬂ(t — T))dT) ?;.
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Chapter 3

Moment Problems in Hilbert
Space

As we have seen, the controls that steer a hyperbolic system of the type
considered in Chapter 2 from a given initial state to a given target state
can be described as the elements of the solution set of a certain trigono-
metric moment problem. To develop and analyse an algorithm that
uses this fact numerically, we need some results about general moment
problems in Hilbert space, that are presented in this chapter.

Usually in the literature solutions of moment problems with minimal
norm are considered. For our application, we need the more general
case of an objective function that is given by the norm of the image of
the control under an affine linear transformation.

Let H be a Hilbert space. Let (f;);en be a sequence of elements of H
and (¢;);en a sequence of scalars. The corresponding moment problem
is to find a point f € H such that

(f, [ = ¢;for all j € IN. (3.1)

Definition 3.0.2 (see [50]) A sequence (f;);en is called a Bessel se-
quence, if for all f € H we have

S ful? < oo

7=1
The sequence is called a Riesz—Fischer sequence, if the moment prob-
lem (3.1) has a solution for all (¢;)jen € 3.
The moment space of (f;);en is the space

{(fs fi)m)ijen - fe HY.

29
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For the proof of (ii) given in [50], the following Theorem is used.

Theorem 3.0.3 (see Theorem 2, p. 151 in [50]) Let (f;)jen be a
sequence of elements of the Hilbert space H, (¢j);en be a sequence of
scalars and m > 0. The following statements are equivalent:
(i) There exists w € H with ||w|lg < m and (w, f;)g = ¢;, (j € IN).
(ii) For all N € IN, (ay,....,ax)T € IRY we have the inequality

N N
1> aici| <ml| Y aifilla
=1 =1

Proof Statement (i) implies for all N € IN, (ay,...,an)T € RN the
inequality

N N
1> aeil = D aiw, fi)u| < [(w,> aifi)u]
=1 =1 =1

N N
< wllm 1) aifille < ml| Y- aifilln.
=1 =1

Assume now that statement (ii) holds.
Let Y denote the closure of span{f;,7 € IN}. Define a linear functional
poof H by u(3°52 ajf;) = 352, ajej, and p(f) = 0 for f € Y+ Condi-
tion (ii) implies that u is bounded with ||| < m. The Riesz representa-
tion theorem implies the existence of w € H such that p(f) = (w, f)u
for all f € H. Since ||w||g < m, w is a point as required in (i). O

In the sequel we use the following easy statements.

Statement 3.0.1 Foru,w € H with (u—w,w)g =0, we have ||Jw||g <
|- If u # w, we have ||w||g < ||u||g.

This is easily seen from
0 < Jlu—wlify = llullz; — 2(u, w)n + wllz = llully = 2lwlE + [lwlz =
lullf = llwll-5

Statement 3.0.2 Let (z;);en be a sequence of elements of H.
Then im0 ||2;—2||g = 0 if and only if im0 ||2i]|g = ||2]|g and
(x;)jen converges weakly to x.

The assertion follows from the fact that for all j € IV, we have

lej — 2l = Nl — 22, w)m + 2|5 ©
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For the numerical solution of problems with moment equations as
equality constraints we replace the infinite system

([, [i)g = ¢; (j € IN)

by the sequence of finite systems

(f,Jivm = ¢; (5 €{1,.... N}),
with NV € IV.
Consider now the optimization problem
P : min||Su—b||3 s.t. (u, f;)mg =¢; (7 € IN),

with b € H and a continuous bijective linear map S : H — H. For the
numerical solution, this problem is replaced by a sequence of problems
with a finite number of equality constraints. The discretized problems
can be solved by solving a finite system of linear equations.

Theorem 3.0.4 (see [25], p. 153) Let S : H — H be a continuous
bijective linear map, b € H, (c1,cq,...,en)t € RY and fi,..., fx € H be
linearly independent. The problem

Py : min|[Su—b||5 s.t. (u, f;lg=c¢;, 5 €{1,....N}

has a unique solution uy that satisfies the equality

N
SUN —b= ZUjH]‘, with H]‘ == (S*)_lf]‘
7=1
and the coefficients n; that solve the linear system

Z<Hi7Hj>H77j =c¢ — <b, H2>H7 1€ {1, ,N} (32)

i=1

Here S* denotes the adjoint of the operator S.

Proof Since the functions Hy, ..., Hy are linearly independent, the Gram
matrix ((H;, Hj>H)%:1 is positive definite. Hence the linear system (3.2)

has a unique solution. Therefore

N
(Su —b,H)yy = Y n(Hi, Hj)n

=1

= ¢ — <b, H2>H7 1 € {1, ,N}
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and Statement 3.0.1 implies ||[Su* — b||g < ||Su — b||z. We have

* 2 . . N 2 — 1 * 2
S — bl < liminf [ Su™ — bJ3 = lim Ay < [|Su” — b]J3.

hence limy o0 || Su 0|\ = || Su*—b]| s, and limy oo (Sul —Su*, H; )y =
0 for all j € IV, and Statement 3.0.2 implies the assertion. O
Remark It is not necessary to assume that the space H is separable.

3.1 Example: The Euler—-Bernoulli Beam

In Section 2.4.2 we have seen that the controls for which the end con-
ditions

y(@,7) =0, y(2,T) =0, = € [0,1] (3-3)
hold, satisfy the trigonometric moment equations (2.35), (2.36).

We want to consider the problem of a rotating Euler-Bernoulli beam,
where the beam rotates about an axis through its fixed end. Problems
of the control of rotating Fuler—Bernoulli beams have been considered
in numerous papers, see for example [25], [26], [41], [21], [5], [42], [30].

Let ¢ () be the angle of rotation at time ¢. Then we have the addi-
tional initial conditions

$(0) = o, ¢(0) =ty (3.4)

for the initial angle vy and the initial angular velocity ;. The control
is the angular acceleration v = ”. The transverse vibrations of the
beam are described by equation (2.32).

We want to steer the beam to a position of rest, so we have the
additional end condition that the angular velocity at time T" be zero,

(1) = 0. (3.5)

If we prescribe the angle where the beam comes to rest, we have also
the end condition

(1) = s (3.6)
The end condition (3.5) is equivalent to the moment equation

/OT u(t)dt = —i, (3.7)

and the end condition (3.6) is equivalent to the moment equation

/OT tu(t) dt = o — . (3.8)
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So the controls steering the system to the desired end state are the
solutions of the moment problem consisting of the equations

/OT sin(y/DAjm)u(r)dr = —W# /Ol vo(x)dj(x)dz,  (3.9)
T MV
/0 cos(/DX\;m)u(r)dr = \/>T/o yi(x)p;(x) dx, j € IN3.10)

/OT u(t)dt = —ty and if (3.6) is prescribed (3.11)
/OTtu(t) dt = o — s (3.12)

The controllability of the system (2.22), (2.23), (3.4), (2.32) (3.3), (3.5),
(3.6) is equivalent to the solvability of the moment problem (3.9), (3.10),
(3.11), (3.12).

This approach to controllability via moment problems has been stud-
ied by Krabs in [23]. Earlier, Russel has considered this approach (see
39))

The basic idea of the proofs is to show that an inequality of the type
that appears in Theorem 3.0.2 (iii) holds. For trigonometric moment
problems, this can sometimes be done using the results of Ingham given
in [16]. Before these results can be applied, the problem has to be trans-
formed to a complex trigonometric moment problem. This approach is
given in detail in [23], Chapter 1.

Theorem 3.1.1 For T > 0, the functions
{1,t,sin(y/DAjt),cos(y/DA;t), 7 € IN}
form a Riesz—Fischer sequence in L*(0,T).

Proof See Section 1.2.3 in [23].0
Theorem 3.1.2 For T > 0, the functions

{1,t,sin(y/ DAjt),cos(y/DA;t), 7 € IN}

form a Bessel sequence in L*(0,T).

Proof See [22], Theorem I1.2.8.0
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Note that for all functions yo, y1 € C®(0,1), Lemma 2.3.4 implies
that the numbers on the right hand side of the moment equations (3.9),
(3.10) form a sequence in 3. Hence Theorem 3.1.1 implies the following
result.

Theorem 3.1.3 For T > 0, yo, y1 € C*0,1), the moment problem
(3.9), (3.10), (3.11), (3.12) has a solution u in L*(0,T).



Chapter 4

The Computation of
Hj=(5%)7'f;

As the title indicates, in this chapter we consider a computational as-
pect. The reader who is more interested in theoretical considerations
can skip this and the next chapter and continue with Chapter 6. How-
ever, the numerical examples presented here are important since they
show that the