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German Summary
(Zusammenfassung)

Krylov Unterraum Methoden werden oft verwendet, um hochdimensionale lineare Gleichun-
gen, wie sie bei Optimierungsproblemen mit partiellen Di�erentialgleichungen (PDE) entste-
hen, zu lösen. Um hierzu e�ziente iterative Löser zu entwickeln, ist eine passende Präkondi-
tionierung unerlässlich.
Die vorliegende Dissertation setzt sich aus zwei Teilen zusammen. Im ersten Teil wer-

den zwei verschiedene Präkonditionierer für einen Konjugierten Gradienten (CG) Löser,
welcher auf eine spezielle partielle Integro Di�erentialgleichung (PIDE) aus dem Finanzbere-
ich angewendet wird, sowohl theoretisch als auch numerisch verglichen. Hierbei werden eben-
falls die Gitterunabhängigkeit und Konvergenzrate analysiert. Das dabei erlangte Wissen
über die Präkonditionierung der PIDE wird im Anschluss daran auf ein verwandtes Opti-
mierungsproblem angewendet. Der zweite Teil zielt darauf ab, mittels Einbindung von Mod-
ellen reduzierter Ordnung in sogenannte De�ated Krylov Unterraum Methoden eine neue
Präkonditionierungstechnik zu entwickeln und diese auf die zugehörigen Optimierungsprob-
bleme anzuwenden. Die dabei verwendeten Modelle reduzierter Ordnung stammen von nicht-
linearen PDEs und werden mittels Proper Orthogonal Decomposition (POD) erzeugt. Dem
schlieÿen sich numerische Ergebnisse für eine Serie von Testproblemen an.

V





English Summary

Krylov subspace methods are often used to solve large-scale linear equations arising from
optimization problems involving partial di�erential equations (PDEs). Appropriate precon-
ditioning is vital for designing e�cient iterative solvers of this type.
This research consists of two parts. In the �rst part, we compare two di�erent kinds of

preconditioners for a conjugate gradient (CG) solver attacking one partial integro-di�erential
equation (PIDE) in �nance, both theoretically and numerically. An analysis on mesh inde-
pendence and rate of convergence of the CG solver is included. The knowledge of precon-
ditioning the PIDE is applied to a relevant optimization problem. The second part aims at
developing a new preconditioning technique by embedding reduced order models of nonlinear
PDEs, which are generated by proper orthogonal decomposition (POD), into de�ated Krylov
subspace algorithms in solving corresponding optimization problems. Numerical results are
reported for a series of test problems.
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Chapter 1.

Introduction

A PDE-constrained optimization problem is an optimization problem with a partial di�er-
ential equation (PDE) as its constraint. In some cases there are more restrictions on the
optimization variable involved. This kind of problem could arise from various scienti�c and
engineering applications such as optimal control, optimal design, parameter identi�cation.
Some references about examples of PDE-constrained optimization problems arising in di�er-
ent areas are listed in the introduction section of Benzi et al. (2011).

PDE-constrained optimization problems can be described mathematically by the general
form

min
x

f(x)

s.t. e(x) = 0

g(x) ≤ 0,

(1.1)

where the equality constraint e(x) = 0 involves a PDE and g(x) ≤ 0 gives further restrictions
on the optimization variable x like its upper bound and lower bound. The optimization
variable x lies in an in�nite dimensional space and has a particular feature that it can be
partitioned into x = (y, u) ∈ Y × U . Here the notation y is commonly used for state
variable and u control variable in the context that y can be determined by the state equation
e(y, u) = 0 for any given u. Y and U are their domains respectively. Note that u could be
named di�erently according to the background of the model problem.

Solving PDE-constrained optimization problems is a challenging task. It has received much
attention in the past few decades. Introductions to this �eld can be found in Biegler et al.
(2003), Tröltzsch (2010), Hinze et al. (2009).

1.1. Preconditioning in PDE-Constrained Optimization

One way to classify the numerical methods for solving PDE-constrained optimization prob-
lems is based on how the PDE constraint is treated. It leads to so-called black-box methods
and all-at-once methods, see e.g. Herzog (2010) and Herzog and Kunisch (2010).

In black-box methods, the PDE constraint in (1.1) is eliminated by a control-to-state map
y = S(u) . Notice that S : U −→ Y is not necessary to be given explicitly. Instead, one
can obtain y by solving the PDE e(y, u) = 0 for any given u ∈ U , which makes the PDE
constraint a 'black box' with u input and y output. Then the objective functional of the
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Chapter 1. Introduction

optimization problem (1.1) becomes

f̂(u) := f (S(u), u) ,

taking only u as optimization variable. In the case that the inequality constraint g(x) ≤ 0 is
absent, such an approach changes a constrained optimization problem into an unconstrained
one.

In contrast, an all-at-once method keeps the PDE as a side constraint and minimizes f(y, u)
with respect to both state and control variables, namely, y and u. An all-at-once method
typically forms the (augmented) Lagrangian of the optimization problem and derives the �rst
order necessary conditions, i.e. Karush-Kuhn-Tucker (KKT) system (see e.g. Nocedal and
Wright (2006)).

No matter which type of methods is adopted, solving PDE-constrained optimization prob-
lems numerically normally involves the solution of large-scale linear problems.

For instance, a black-box method may require repeated solution of the state equation for
di�erent given controls. Sometimes one also needs to solve the adjoint equation, which has
similar form as the PDE constraint, for obtaining gradient information e�ciently, see e.g.
Tröltzsch (2010). The discretization of either state equation or adjoint equation gives rise to
linear equations of large size.

In all-at-once methods, solving the KKT system leads to structured linear equations, more
precisely, saddle point problems, which have the form

(
A BT

B −C

)(
s1

s2

)
=

(
b1
b2

)
. (1.2)

Here the coe�cient matrix is usually symmetric and the blocks in it are of course problem
dependent.

For solving the resulting linear problems, iterative solvers (see e.g. Saad (2003)) are most
preferable, due to the large scale of the problems and sparsity of the coe�cient matrices.
Sparsity is actually important for an iterative method, because the major computational
e�ort of iterative methods lies on matrix-vector multiplications and sparsity allows e�cient
calculation of matrix-vector products.

The e�ciency of an iterative solver for solving a linear equation

Ax = b

is generally determined by the spectral properties of the coe�cient matrix A, such as its
eigenvalue distribution and condition number. Unfortunately, the linear equations that occur
to us in PDE-constrained optimization problems are commonly ill-conditioned. The condition
number of a corresponding coe�cient matrix can be very large so that directly applying an
iterative solver is not realistic at all. To resolve this problem, combining a preconditioner P
is vital for developing a practical iterative solver. In fact, using a good preconditioner could
dramatically improve the rate of convergence of the iterative solver.

The preconditioner P works by transforming the linear equation Ax = b into

P−1Ax = P−1b,

2



1.2. Outline

which has the same solution as the original equation but the preconditioned matrix P−1A
has more favorable spectral properties. This process is known as preconditioning.
How to choose a proper preconditioner depends on the speci�c linear problem we need to

solve. In the context of PDE-constrained optimization problems, the numerical method we
choose has in�uence on the preconditioning strategy in the �rst place.
As solving PDEs is one major part of black-box methods, one may use preconditioners

which approximate the coe�cient matrices, e.g. an incomplete LU preconditioner (see Golub
and Van Loan (1996)), thus the preconditioned matrix is close to identity matrix.
Preconditioning saddle point problems arising from all-at-once methods often exploits the

block structure of the coe�cient matrices, consequently many block structured precondi-
tioners are designed. Such preconditioners normally have very nice clustering e�ect on the
eigenvalues of the saddle point matrices in theory, however, applying block preconditioners
usually requires more considerations to achieve e�cient implementation. In fact one may
only be able to apply block preconditioners approximately in practice. This will be discussed
in Section 4.3.2 and some relevant references are given there.
In this work, we deal with two equality constrained optimization problems and raise dis-

cussions on preconditioning issues for them. We use Krylov subspace methods as iterative
solvers for di�erent situations in the rest of this thesis. Notice that we con�ne ourselves to
the discretize-then-optimize approach, which provides a discrete counterpart of the PDE-
constrained optimization problem and applies an optimization method to the discrete prob-
lem. For discussions on discretize-then-optimize and optimize-then-discretize approaches, we
refer to Hinze et al. (2009).
We remark that the inequality constraint in (1.1) can be handled by primal-dual active

set (PDAS) strategy (see Bergounioux et al. (1999) for instance). If the PDAS strategy is
combined in the framework of an all-at-once method, applying a block preconditioner for the
resulting linear problem could be complicated. For such an application, we refer to Herzog
and Sachs (2010).

1.2. Outline

This section is devoted to an overview of the contents of this thesis.

Preliminaries: Krylov Subspace Methods and Preconditioning

In Chapter 2, knowledge about Krylov subspace methods are reviewed for later use.
We present some estimates to characterize the convergence behavior of the conjugate gra-

dient (CG) method. This gives a clear view of how spectral properties a�ect the rate of
convergence of the CG method. The discussion is extended to general Hilbert space.
We also collect some block preconditioners for saddle point problems. In particular some

Bramble-Pasciak like preconditioners, which make the preconditioned matrices symmetric
positive de�nite with respect to certain nonstandard inner products thus, the CG method is
still applicable to certain inde�nite linear systems, are also included.
De�ated (augmented) Krylov subspace methods are brie�y introduced. They are Krylov

subspace methods carried out with extra constraints on the residuals and searching directions
throughout the iteration.

3



Chapter 1. Introduction

E�cient Solver with Proper Preconditioners for a PIDE

Chapter 3 focuses on preconditioning issues in solving a partial-integral di�erential equation
(PIDE) with preconditioned CG method. It continues the discussion on the e�cient solver
proposed in Sachs and Strauss (2008). The knowledge about preconditioning for such a
problem is also useful to a relevant optimization problem.
We look for y(t, x) ∈ C1,2((0, T ]× R) ∩ C0([0, T ]× R) satisfying

yt −
1

2
σ2yxx + (r + λ)y − λ

∫ ∞

−∞
y(t, z)f(z − x) dz = 0, on (0, T ]× R,

y(0, x) = H(ex), ∀x ∈ R,
(1.3)

where f(x) is a normal density function, H(x) = max{0, x−K} and K, σ, λ, T are positive
constants, r ≥ 0.
In Sachs and Strauss (2008), the PIDE (1.3) is carefully discretized and solving (1.3)

becomes solving a sequence of linear equations

Tnx
p = bp. (1.4)

Here n denotes the number of spatial nodes and p is the index of time steps. The coe�cient
matrix Tn is dense. However, it has a special structure called Toeplitz (see Appendix A).
Toeplitz structure is very bene�cial because matrix-vector multiplication involving a Toeplitz
matrix can be performed very e�ciently using fast Fourier transform (FFT). Moreover, Tn
is proved to be symmetric positive de�nite, hence the CG method is applicable. Sachs and
Strauss suggest to use Strang's preconditioner, which is a circulant matrix (see Section 3.1.3
and Appendix A), in the CG solver and mesh independent convergence is observed in their
numerical experiments.
Obviously, Toeplitz structure of the coe�cient matrix is the key feature for designing such

an e�cient solver, otherwise the dense matrix resulting from the integral term in (1.3) would
be a pain for numerical solution. Other than the �nite di�erence scheme used in Sachs and
Strauss (2008), we prove that �nite element method (FEM) can still maintain the Toeplitz
structure under certain assumptions.
One major work in this thesis is the theoretical analysis for the approach proposed by Sachs

and Strauss (2008). We provide an estimate of the condition number of Tn, which has the
order n2/m with m the total number of time steps. The estimate con�rms the ill condition
of the linear equation (1.4) theoretically. Eigenvalue distribution of Tn is also characterized
by the major part of Tn.
According to the numerical results in Sachs and Strauss (2008), Strang's preconditioner

outperforms other circulant preconditioners in this case, hence we raise analysis on the pre-
conditioned matrix only for Strang preconditioned system. We prove that for su�ciently large
m, the Strang preconditioned matrix has all eigenvalues clustered in a small interval around
1 except for two outliers, which can be used to explain the mesh independent convergence
of Sachs and Strauss's approach. The condition number of Strang preconditioned matrix is
reduced to the order of n/

√
m, which is of course a signi�cant improvement compared to

n2/m.
Noticing that the coe�cient matrix is dominated by a tridiagonal matrix resulting from the
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1.2. Outline

elliptic operator in (1.3) and the dense part coming from the integral term is relatively small
in scale, we propose to use the tridiagonal part as the preconditioner. The corresponding
preconditioned matrix has all its eigenvalues clustered around 1 and the condition number is
close to 1. Mesh independent superlinear convergence of the CG solver is also proved.

If the PIDE (1.3) is discretized by FEM, then the mesh independent superlinear conver-
gence of the CG method combining a tridiagonal preconditioner can be obtained easily by
following the analysis in Karátson (2005). It leads to an estimate only relying on the opera-
tors in the PIDE, thus the rate of convergence of the corresponding CG solver is independent
of �nite elements we choose for discretization.

Results of numerical experiments support our analytical statements. Eigenvalue distribu-
tions and condition numbers of Strang and tridiagonal preconditioned matrices are compared
in �gures. In addition, we illustrate a few intermediate estimates which are important for
our main results. We carry out the CG solver with the two preconditioners for various dis-
cretization settings of the PIDE. Mesh dependent convergence is observed in both cases. By
comparing the performance of the two preconditioners, we see that the CG solver using the
tridiagonal preconditioner requires less iterations. The numerical e�ort for each CG iteration
requires O(n) operations, which is slightly cheaper than O(n log n) in Strang preconditioned
CG solver. This is con�rmed by the numerical results concerning CPU time.

According to the spectral analysis and the numerical results, we conclude that precon-
ditioning the elliptic part is more bene�cial than preconditioning the whole system in this
case. This viewpoint is helpful when we deal with a relevant calibration problem, which is
an optimization problem governed by a very similar PIDE, presented by (1.5).

min
u

J(u) :=
1

2

∑

i∈I
|D(u;xi, Ti)− d(xi, Ti)|2

s.t. DT (x, T )− σ2(x, T )

2
Dxx(x, T ) +

(
r(T ) +

σ2(x, T )

2
− λζ

)
Dx(x, T )

+ λ(1 + ζ)D(x, T )− λ
+∞∫

−∞

D(x− y, T )ey f(y)dy = 0

where D(x, 0) = max{S0 − S0e
x, 0} =: D0(x).

(1.5)

Here x ∈ (−∞,∞), T ∈ (0, Tmax), u is de�ned to be the parameter set (σ, λ, f).

The PIDE (Dupire's equation, see Dupire (1994)) in (1.5) describes a mathematical model
for European option pricing in �nance. The calibration problem aims at correcting the model
to �t a given data set with respect to the parameter set u as much as possible.

A multi-level TRPOD algorithm is developed in Schu and Sachs (2010) for solving (1.5),
which embeds reduced order models calculated by proper orthogonal decomposition (POD)
in a trust region (TR) framework. POD extracts key information from known solution to the
PIDE, such information can be used to project the discrete PIDE into a low dimensional sub-
space to build a reduced order model. Solving the reduced order model gives an approximate
solution of the original PIDE very cheaply. The trust region strategy serves as an indicator
of the e�ectiveness of the reduced order model, as well as a global strategy.

5



Chapter 1. Introduction

The multi-level TRPOD algorithm can be identi�ed as a black-box method. Regardless of
the realization of the algorithm, solving (1.5) following the path of Schu and Sachs (2010)
requires repeated solution of the PIDE constraint, as being discussed in Section 1.1.

Di�erent from the previous PIDE (1.3), discretization of the Dupire's equation in (1.5)
leads to linear equations with nonsymmetric coe�cient matrices. Hence the common CG
method is not applicable anymore. One can use a generalized minimal residual (GMRES)
method as the iterative solver, which is also a Krylov subspace method and its convergence
behavior is very similar to the CG method.

A tridiagonal preconditioner resulting from the elliptic operator is used in (1.5), thus
e�ective solution of the PIDE is achieved. An estimate is derived for characterizing the mesh
independent convergence of the GMRES solver. There are also some numerical results to
compare the numerical e�ort of the unpreconditioned method and preconditioned method,
using the codes developed for Schu and Sachs (2010).

A Preconditioning Strategy Using POD for Nonlinear Problems

POD is commonly used for accelerating the solving of time dependent PDEs or relevant
optimization problems, generally by building reduced order models, see e.g. Kunisch and
Volkwein (1999), Markovinovi¢ and Jansen (2006) and Schu and Sachs (2010). In this re-
search, we are using POD in a very di�erent way.

The aim of Chapter 4 is developing a POD-involved preconditioning strategy in solving
nonlinear PDE-constrained optimization problems with an all-at-once method. We embed
the POD basis (the vectors extracted by POD) directly in the main iteration loop rather
than use it to build reduced order models �rst. The embedding is realized by using de�ated
Krylov subspace methods (see Section 2.3).

Our work is closely related to that in the recent paper by Simoncini (2012). As a result,
We �rst review the approach in Simoncini (2012), then address the di�erence of our method.

Solving PDE-constrained optimization problems with all-at-once methods usually leads
to saddle point problems like (1.2). In some cases, a part of the unknowns can be easily
eliminated by simple calculation, which reduce the dimension of the linear equation to be
solved. The resulting problem is still a saddle point problem, which can be solved by Krylov
subspace methods combined with a block preconditioner. Since block preconditioners are
normally applied approximately, the spectral properties of the preconditioned matrices are
usually not as good as expected. In Olshanskii and Simoncini (2010), it is even proved that
when a block preconditioner is used for a saddle point problem, there remains a cluster of
eigenvalues around 0 in the preconditioned matrix under certain assumptions. This results
in stagnation phases in the convergence history of a Krylov subspace method.

As a remedy, it is proposed in Simoncini (2012) to use approximate eigenvectors corre-
sponding to the small eigenvalues (in magnitude) of the preconditioned matrix to overcome
the stagnation. The idea is carried out by restricting the Krylov subspace solver in the sub-
space A-orthogonal toW . Here A denotes the coe�cient matrix of the saddle point problem
and W consists of the approximate eigenvectors. The restriction of the Krylov subspace
solver is realized by a de�ated Krylov subspace algorithm. The matrix consisting of the
approximate eigenvectors is called de�ation matrix.

The approach is tested on a simpli�ed Monge-Kantorovich mass transfer problem which

6



1.2. Outline

is a nonlinear PDE-constrained optimization problem and is �rst handled by an inexact
Gauss-Newton approach, see Benzi et al. (2011). The required approximate eigenvectors are
evaluated once by the Lanczos algorithm and used for all the Newton-type iterations. Notice
that obtaining the approximate eigenvectors are not cheap. Nevertheless, it is still worthwhile
since the de�ation using these eigenvectors remove the stagnation phases thus signi�cantly
reduce CPU time in each Newton-type iteration.

What we are trying to do is use the POD basis to generate the vectors for de�ation, which
is of course not a common way to utilize this reduced-order-model technique.

The �rst problem would be whether we can obtain desired eigenvectors via POD. In order
to show this, we design a series of numerical experiments for a very simple one-dimensional
heat equation, which is





ut − uxx = 0, ∀ (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, x on ∂Ω

u(x, 0) = u0(x),

(1.6)

where Ω = (0, 1). Di�erent initial conditions (i.e u0(x)) are used in these numerical experi-
ments.

We discretize (1.6) with FEM and implicit Euler scheme in space and time respectively,
then solve the sequence of linear equations

(M + τK)uj = Muj−1, j = 1, 2, . . . ,m, (1.7)

to get numerical solutions (snapshots). Here M and K denote mass matrix and sti�ness
matrix respectively. τ = T/m is time di�erence. In the next step, we apply POD to the
snapshots to generate a set of vectors (POD basis) and examine how well these vectors can
approximate the eigenvectors of the coe�cient matrixM+τK which are related to the small
eigenvalues. The results are in fact encouraging.

In practice, the POD basis is calculated by the singular value decomposition (SVD) or
solving an equivalent eigenvalue problem (EVP), see B.2. Thus the numerical e�ort of POD
for large problems is considerable. Taking care of this, we try to use di�erent subsets of the
snapshots for POD, which reduces the dimension of the corresponding EVP. It turns out that
we only need some properly selected snapshots to obtain satisfying vectors. This raises the
possibility of reducing the cost of POD itself.

We remark that an extra strategy for choosing appropriate subsets of snapshots would be
necessary in a practical problem. For simplicity, we use all the snapshots in the numerical
experiments.

If all the unknown time instances in (1.7) are listed in one long vector, i.e. let ū =
(uT1 , u

T
2 , . . . , u

T
m)T , then we are able to solve (1.7) by solving a large linear equation at once

instead of solving the system of linear equations sequentially. In such a sense, it leads to
so-called one-shot method, see e.g. Stoll (2011).

As being pointed out earlier, the POD basis extracted is used to construct de�ation matri-
ces for de�ated Krylov subspace methods. We can easily construct a de�ation matrix W for
the linear equations (1.7) with POD basis by letting W having its columns to be the vectors
obtained by POD. In a one-shot method, we embed the above de�ned W in the diagonal of

7



Chapter 1. Introduction

the de�ation matrix, this is illustrated in Section 4.1.2. Numerical results con�rm that such
a matrix still catches the desired eigenvalues of the large coe�cient matrix.

In order to verify the de�ation matrix constructed for one-shot method in an optimization
problem, we take a linear quadratic problem from Stoll and Wathen (2010) for test, which is

min
1

2

∫ T

0

∫

Ω
(y(x, t)− ȳ(x, t))2 dxdt+

β

2

∫ T

0

∫

Ω
(u(x, t))2 dxdt

s.t. yt −∆y = u in Ω,

y = 0 on ∂Ω,

y(x, 0) = y0(x).

(1.8)

The problem (1.8) is solved by an all-at-once method via a discretize-then-optimize ap-
proach in Stoll and Wathen (2010), it comes to the KKT system having the form



τA 0 BT

0 βτA −τCT
B −τC 0





y
u
p


 =



τAȳ

0
d


 . (1.9)

Note that the time instances are treated with a one-shot scheme.

Like in Simoncini (2012), we �rst remove the control variable from (1.9) to derive an
equivalent linear system (1.10).





(
τA BT

B − τ
βCA

−1CT

)(
y
p

)
=

(
τAȳ
d

)
,

u = 1
βA
−1CT p.

(1.10)

The state variable and adjoint variable left are in fact solution to the state equation and
adjoint equation respectively, hence they can be well approximated in the POD subspace.

We construct a de�ation matrix for the coe�cient matrix in (1.10) and solve (1.10) by
de�ated MINRES algorithm using de�ation matrices of di�erent dimension. The results
show that the de�ation matrix we build from POD basis is indeed e�ective. We also change
the regularization parameter β of (1.8) in the experiments, which in�uences the e�ect of
de�ation according to the numerical results.

In a real problem, it is necessary to use a preconditioner, we test our de�ation strategy
in a de�ated MINRES solver combining a block-diagonal preconditioner on the following
nonlinear problem.

min
1

2

∫ T

0

∫

Ω
(y(x, t)− ȳ(x, t))2 dxdt+

β

2

∫ T

0

∫

∂Ω
(u(x, t))2 dxdt =: J(y,u)

s.t. yt −∆y − f(y) = 0 in Ω,

y = u on ∂Ω,

y(x, 0) = y0(x).

(1.11)

Here f(y) is a nonlinear functional and the control lies on the boundary.
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1.2. Outline

The problem is solved by a Lagrangian-Newton method, which is Newton's method applied
to the Lagrangian of (1.11), it is equivalent to sequential quadratic programming (SQP), see
Herzog (2010). As a result, we need to solve a sequence of saddle point problems similar to
(1.9). We downsize each of them and, as we do in the linear quadratic problem, the resulting
linear equations are solved by a de�ated MINRES algorithm using a block diagonal precon-
ditioner. The results show that the de�ation strategy works along with the preconditioner
we choose.
This part of work is still in progress, we give some concluding remarks and outlooks in the

end of Chapter 4.

All numerical results in this thesis are produced by MATLAB codes on a desktop PC with
Intel R© Core

TM

2 Duo (3.00GHz) processor and 4GB RAM.
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Chapter 2.

Krylov Subspace Methods and
Preconditioning

Iterative methods are usually adopted for solving large dimensional linear equations when
direct methods, e.g. Gaussian elimination, become prohibitively expensive or even not possi-
ble. Krylov subspace methods are no doubt among the most successful and popular iterative
methods currently.
Consider a linear equation Ax = b in Rn, where A is an n× n nonsingular matrix. For an

arbitrary given initial guess x0, a Krylov subspace of degree k is de�ned by

K(A, r0; k) = span {r0, Ar0, A
2r0, . . . , A

k−1r0},

with r0 = b − Ax0. A Krylov subspace method generates an approximation of the solution
in the linear manifold x0 + K(A, r0; k) at the k-th iteration. In a practical algorithm, the
sequence of Krylov subspaces K(A, r0; k) ( k = 1, 2, . . .) is generated by Arnoldi's procedure,
which becomes the Lanczos algorithm when A is symmetric. Details on how to derive a
variety of Krylov subspace methods can be found in Saad (2003).
In each iteration of a Krylov subspace method, the major computational e�ort comes from

the evaluation of matrix-vector product involving the coe�cient matrix A, which is required
for increasing the dimension of current Krylov subspace to update the search direction. Hence
Krylov subspace methods are preferable when matrix-vector multiplication is cheap. This
is naturally true when A is sparse. Moreover, the matrix-vector multiplication can still be
e�cient when A has a certain special structure, even if A is a dense matrix. We will see such
an application in Chapter 3.
Regarding symmetry and positive de�niteness of A, di�erent kinds of Krylov subspace

methods are developed. Some commonly used ones are listed as follows:
• conjugate gradient method (CG), if A is symmetric and positive de�nite;
• minimal residual method (MINRES), if A is symmetric and inde�nite;
• generalized minimal residual method (GMRES) and biconjugate gradient stabilized
method (BiCGStab), if A is nonsymmetric.

We refer to the review article Simoncini and Szyld (2007) for more methods of this class and
some recent developments.
In exact arithmetic, a Krylov subspace method converges in no more than n iterations for

a linear equation of dimension n if it does not break. In practice, Krylov subspace methods
usually converge much faster to meet chosen stopping criteria. Notice that the kth iterate
can be expressed by x0 + Pk−1(A)r0, where Pk−1 is a polynomial of degree not exceeding
k − 1. The convergence behavior can be analyzed using such an expression, see e.g. Saad
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Chapter 2. Krylov Subspace Methods and Preconditioning

(2003).

According to theoretical analysis, Krylov subspace methods have a characteristic in com-
mon, that is, the convergence behavior heavily rely on the spectrum of the coe�cient matrix
A. This gives rise to a large area of research, namely, preconditioning, which aims to trans-
form the linear equation into an equivalent problem with more favorable spectral properties
for accelerating convergence.

As a prototypical Krylov subspace method, the CG method is well studied and its con-
vergence is well understood. In this chapter, we mainly focus on the convergence and pre-
conditioning aspects of the CG method. Such knowledge can also be used to guide the
preconditioning of other Krylov subspace methods.

In the rest of this chapter, we �rst review some useful estimates for characterizing con-
vergence behavior of the CG method and discuss the spirit of preconditioning. Di�erent
perspectives of seeing preconditioning and extended discussion in general Hilbert space are
also brie�y covered. Then we introduce a few preconditioning techniques which are com-
monly used in the process of solving saddle point problems arising from PDE-constrained
optimization. These techniques exploit the algebraic structure of corresponding linear sys-
tems. In the last section of this chapter, we introduce de�ation strategy for Krylov subspace
methods, which can also be treated as a preconditioning technique, as it is used for improving
the spectrum of target problem.

2.1. Conjugate Gradient Method and Preconditioning

2.1.1. Standard Conjugate Gradient Method and Rate of Convergence

The CG method is a remarkable iterative approach for solving the linear equation

Ax = b, (2.1)

where A is an n×n symmetric positive de�nite matrix. We present the classical CG method
developed in Hestenes and Stiefel (1952) by Algorithm 2.1. This algorithm is attractive since
it requires cheap computational e�ort in each iteration and fairly low storage. It is strongly
connected to the Lanczos algorithm, in the sense it can be derived from the Lanczos algorithm
and vice verse, see e.g. Golub and Van Loan (1996).

For all k > 0, the search directions pk and residual vectors rk generated by Algorithm 2.1
satisfy the following conjugacy and orthogonality conditions respectively:

pTkApi = 0, for i = 0, 1, . . . , k − 1, (2.2)

rTk ri = 0, for i = 0, 1, . . . , k − 1. (2.3)

In fact, Algorithm 2.1 applied to Ax = b is equivalent to minimizing the quadratic function
1
2x

TAx−bTx along the sequence of search directions pk consecutively. Based on this fact one
can derive so-called �nite termination property of the CG method, i.e. the sequence {xk}
generated by conjugate gradient method converges to the solution x∗ in at most n steps. Such
a discussion can be found in e.g. Nocedal and Wright (2006). This is not satisfying when
n is very large, which commonly appears if the linear equation is obtained from a problem
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2.1. Conjugate Gradient Method and Preconditioning

Algorithm 2.1 The CG method

1: Given x0;
2: Set r0 ← b−Ax0, p0 = r0, k ← 0;
3: while rk 6= 0 do

4: αk ←
rTk rk

pTkApk
;

5: xk+1 ← xk + αkpk;
6: rk+1 ← rk − αkApk;

7: βk+1 ←
rTk+1rk+1

rTk rk
;

8: pk+1 ← rk+1 + βk+1pk;
9: k ← k + 1;

10: end while

involves PDE. Hence techniques for accelerating convergence is of great interest. Accordingly,
we �rst need to know more information about the rate of convergence of the CG method.
Let ek = xk − x∗ and ‖ · ‖A be weighted norm, i.e ‖u‖A = (uTAu)

1
2 for ∀u ∈ Rn. A basic

convergence estimate for the CG method is given by

‖ek‖A
‖e0‖A

≤ min
Pk∈π1

k

max
λ∈σ(A)

|Pk(λ)|, (2.4)

here π1
k denotes the set of monic polynomials (i.e. the polynomials with the coe�cients of

their highest order terms equal to 1) of degree k and σ(A) denotes the spectrum of A, see
e.g. Axelsson (1994).
Many important estimates can be derived from (2.4) when appropriate polynomials Pk(x)

are chosen. The following theorem is one special case, which improves the �nite termination
statement when A has certain spectrum, see e.g. Nocedal and Wright (2006).

Theorem 2.1.1. If A has only r distinct positive eigenvalues, then the CG iteration will
terminate at the solution in at most r iterations.

Proof. Let λ1, λ2, . . . , λr denote the r distinct eigenvalues of A, then

Pr(λ) =

r∏

i=1

(
1− λ

λi

)
∈ π1

r and Pr(λi) = 0,

for 1 ≤ i ≤ r. According to (2.4), we have

‖er‖A
‖e0‖A

≤ max
1≤i≤r

|Pr(λi)| = 0.

This directly leads to the conclusion. �

By Theorem 2.1.1, the number of iteration required by the CG method is considerably
smaller when r is much smaller than n. Therefore clustered eigenvalue distribution is a
favorable spectral property for the CG method.
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Remark 2.1.2. Theorem 2.1.1 is shown in exact arithmetic. Indeed, it is possible that a
few more iterations are needed to assure the accuracy of the solution in practice because of
numerical error.

For more general linear equations, we summarize two convergence estimates in Theorem
2.1.3. Both of them can be found in e.g. Nocedal and Wright (2006).

Theorem 2.1.3. If A has eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, we have that

‖ek+1‖2A ≤
(
λn−k − λ1

λn−k + λ1

)2

‖e0‖2A. (2.5)

Let κ(A) = ‖A‖2‖A−1‖2 = λn/λ1 denote the Euclidean condition number of A, then

‖ek‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖e0‖A. (2.6)

The two estimates in Theorem 2.1.3 characterize the behavior of the CG method by the
spectrum of A, more precisely, the eigenvalue distribution and condition number respectively.
Notice that Theorem 2.1.1 can also be obtained by setting k = r − 1 in (2.5).

2.1.2. Preconditioned Conjugate Gradient Method

The analysis on the convergence behavior naturally motivates preconditioning, i.e. improv-
ing the spectral properties of the linear system, so as to accelerate the CG method. A
common way to implement preconditioning is transforming the original linear equation into
an equivalent one. Such a process can be carried out via variable substitution.

If C is a nonsingular matrix, let x̂ = Cx, then Ax = b is equivalent to

(C−TAC−1)x̂ = C−T b. (2.7)

Obviously the matrix C−TAC−1 is symmetric positive de�nite, hence the CG method is still
applicable to the equivalent linear equation (2.7). Moreover, the convergence rate of the
CG method applied to (2.7) depends on the spectrum of C−TAC−1, instead of that of A.
We would expect the matrix C−TAC−1 has clustered eigenvalues, or much smaller condition
number compared to A, thus we can achieve faster convergence of the CG method according
to Theorem 2.1.1 and Theorem 2.1.3.

Specially, if all the eigenvalues of C−TAC−1 are clustered around 1, which indicates the
condition number κ(C−TAC−1) is close to 1, then the convergence of the CG method can be
very rapid according to the estimate (2.6) in Theorem 2.1.3. This happens in the case CTC
approximates A. One common choice of such a matrix C could be the triangular matrix
computed by incomplete Cholesky factorization of A, see e.g. Golub and Van Loan (1996).

In the speci�c case that the coe�cient matrix has its eigenvalues well clustered around 1, a
useful estimate is given by Theorem 2.1.4, which is a variant of the estimate given in van der
Vorst (1980) and can be found in e.g. Chan and Jin (2007) and Ng (2004).
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Theorem 2.1.4. If the eigenvalues {λj}j=1,2,...,n of A are ordered such that

0 < η < λ1 ≤ · · · ≤ 1− ε ≤ λp ≤ · · · ≤ λn−q ≤ 1 + ε ≤ λn−q+1 ≤ · · · ≤ λn,

where 0 < ε < 1, then we have

‖ek‖A
‖e0‖A

≤ 2

(
1 + ε

η

)p
εk−p−q (2.8)

for k ≥ p+ q.

Instead of using C explicitly, a practical algorithm exploits the preconditioner de�ned by
P = CTC, which is symmetric positive de�nite by construction. Further, the spectrum of
C−TAC−1 is the same as that of P−1A since the two matrices are similar.
The preconditioned version of the CG method is given by Algorithm 2.2. This algorithm is

bene�cial for it does not require formulating equation (2.7) or explicit variable substitution.
Moreover, it preserves A for e�cient matrix-vector multiplication when A has favorable
structure such like sparsity.

Algorithm 2.2 Preconditioned CG method

1: Given x0, preconditioner P ;
2: Set r0 ← b−Ax0;
3: Solve Py0 = r0 for y0;
4: Set p0 = y0, k ← 0;
5: while rk 6= 0 do

6: αk ←
rTk yk

pTkApk
;

7: xk+1 ← xk + αkpk;
8: rk+1 ← rk − αkApk;
9: Solve Pyk+1 = rk+1;

10: βk+1 ←
rTk+1yk+1

rTk yk
;

11: pk+1 ← yk+1 + βk+1pk;
12: k ← k + 1;
13: end while

The conjugacy property of search directions (2.2) still holds, while the orthogonality of the
residuals (2.3) becomes

rTk P
−1ri = 0, for i = 0, 1, . . . , k − 1. (2.9)

Obviously, the main e�ort of the standard CG method is to compute the matrix-vector
product Apk, in addition, preconditioned CG method needs extra e�ort to solve a linear
equation Pyk = rk in each iteration. To see this di�erence clearly, we can simply set P = I
in Algorithm 2.2 to recover the standard CG method.
Those linear equations which involve the preconditioner P must be tractable, since they are

constantly solved. In Algorithm 2.2, it is clear that applying preconditioner P only requires
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Chapter 2. Krylov Subspace Methods and Preconditioning

solution of the relevant linear equations, hence it is not even necessary to have the explicit
form of P . Instead, a linear solver dealing with Pyk = rk is su�cient for preconditioned
CG method. In practice, approximate solvers are usually used to realize preconditioning for
further reducing computational e�ort.

2.1.3. Conjugate Gradient Method in Hilbert Space

A more general form of the CG method can be derived in Hilbert space, which does not only
provide an alternative way of treating preconditioning and analyzing the convergence rate of
corresponding CG algorithm, but also gives rise to a variety of preconditioning techniques.

Solving linear equation Ax = b in Rn with standard CG method (Algorithm 2.1) requires
A to be symmetric and positive de�nite, for assuring the validity of the CG method. Now we
consider it in a Hilbert space H, by which we mean Rn endowed with a given inner product
〈·, ·〉. We �rst extend these two necessary properties of A for the Hilbert space H.

Symmetry of A is generalized to self-adjointness with respect to the given inner product
〈·, ·〉, de�ned by

〈Au,v〉 = 〈u,Av〉, for ∀u,v ∈ H. (2.10)

At the same time, the positive de�niteness is expressed by

〈Au,u〉 > 0, for u 6= 0. (2.11)

If these two conditions are satis�ed, the CG method implemented in H can be obtained by
simply replacing the dot product (scalar product) in Algorithm 2.1 with inner product 〈·, ·〉.
We omit the result here for it is trivial. If we de�ne the inner product used in the general
form of the CG method, i.e. the CG method in general Hilbert spaces, by 〈u,v〉 = uTv,
then we can recover Algorithm 2.1.

The relaxation of symmetry to self-adjointness (2.10) allows the CG method to handle even
nonsymmetric linear equations, when the right inner product in is chosen. As an example,
we �rst rebuild Algorithm 2.2 in such a context.

Let P be a preconditioner de�ned in the previous section, which is a symmetric positive
de�nite matrix, the equation

P−1Ax = P−1b (2.12)

has its coe�cient matrix P−1A usually nonsymmetric. We de�ne a weighted Hilbert space
HP whose inner product is given by 〈u, v〉P = 〈Pu, v〉 = uTPv, then it is easy to see

〈P−1Au, v〉P = 〈u, P−1Av〉P , for ∀u, v ∈ HP .

The positive de�niteness directly follows that of matrix A. Thus (2.10) and (2.11) are satis�ed
in this case. Apply the CG method in terms of inner product 〈·, ·〉P to (2.12), we immediately
obtain Algorithm 2.3.

If we compare Algorithm 2.3 with Algorithm 2.2, noticing that r̃k = P−1rk, then obviously
Algorithm2.2 and Algorithm 2.3 are essentially the same. The orthogonality of preconditioned
residuals r̃k here is given by

〈r̃k, r̃i〉P = 0, for i = 0, 1, . . . , k − 1,
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2.1. Conjugate Gradient Method and Preconditioning

Algorithm 2.3 Standard CG method with P -weighted inner product

1: Given x0;
2: Set r̃0 ← P−1(b−Ax0);
3: Set p0 = r̃0, k ← 0;
4: while r̃k 6= 0 do

5: αk ←
〈r̃k, r̃k〉P

〈P−1Apk, pk〉P
;

6: xk+1 ← xk + αkpk;
7: r̃k+1 ← r̃k − αkP−1Apk;

8: βk+1 ←
〈r̃k+1, r̃k+1〉P
〈r̃k, r̃k〉P

;

9: pk+1 ← r̃k+1 + βk+1pk;
10: k ← k + 1;
11: end while

as generalization of the orthogonalization given by (2.3). By de�nition of inner product
〈·, ·〉P , it is straightforward that 〈r̃k, r̃i〉P = r̃Tk P r̃i = rTk P

−1ri. Hence we can derive (2.9)
very conveniently using Algorithm 2.3.

The connection between Algorithm 2.3 and Algorithm 2.2 shows that preconditioned CG
method is nothing special but an instance of the general form of the CG method in Hilbert
space. In such a context, the choice of a preconditioner is equivalent to the choice of the
inner product of the Hilbert space. This is discussed for more general case in Günnel et al.
(2011).

Convergence Analysis of the CG Method in Hilbert Space

Although Algorithm 2.3 is not practical for implementation, it brings more �exibility for
developing analysis on the rate of convergence of the CG method since it does not require the
coe�cient matrix to be symmetric any more. Hence it is especially convenient for analyzing
the preconditioned linear equation (2.12) whose coe�cient matrix is normally nonsymmetric.

Now we con�ne ourselves to the linear equation (2.12), which is rewritten into Ax = b with
A = P−1A and b = P−1b. We present some estimates regarding r-superlinear convergence
of the CG method in weighted inner product 〈·, ·〉P (Algorithm 2.3). These estimates can
be directly used for characterizing preconditioned CG method in standard inner product
(Algorithm 2.2) due to the equivalence between these two algorithms.

Based on the K-condition number of matrix A, which is de�ned via

K(A) =

(
1

n
trace(A)

)n
/ det(A) =

(
1

n

n∑

i=1

λi(A)

)n( n∏

i=1

λi(A)

)−1

, (2.13)

an r-superlinear estimate on the convergence of the CGmethod applied to Ax = b is proposed
in Axelsson and Kaporin (2000), see Theorem 2.1.5 below.
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Theorem 2.1.5. Let k < n be even and k ≥ 3 lnK(A), then

‖ek‖A
‖e0‖A

≤
(

3 lnK(A)

k

)k/2
. (2.14)

An estimate similar in form can be derived when the linear equation is de�ned in an in�nite
dimensional Hilbert space. For details, see Theorem 8 in Axelsson and Karátson (2002). Note
that the corresponding CG method should also be given for general Hilbert space, see e.g.
Patterson (1974).

Such knowledge is useful typically when the linear equation being solved iteratively comes
from discretization of a PDE. In such a case, studying the CG method in in�nite dimensional
space can provide rate convergence estimates in limit sense.

In particular, if an in�nite dimensional linear operator equation is discretized by �nite ele-
ment method (FEM), then the convergence estimate of the CG method in �nite dimensional
subspace can be determined by the original linear operator rather than the coe�cient matrix
in the discrete counterpart. To see this, we summarize the analysis of Karátson (2005) as
below.

Let A = I + B with I ∈ Rn×n identity and

F(B) =

(
n∑

i=1

λi(B)2

) 1
2

.

When B is symmetric, F(B) = ‖B‖F , here ‖B‖F denotes the Frobenius norm of B. If B
has all its eigenvalues nonnegative, then the following inequality holds.

lnK(I + B) ≤ 1

2
F(B)2. (2.15)

This inequality can be derived from the proof of Theorem 8 in Axelsson and Karátson (2002).

Using (2.15), the estimate (2.14) is transformed to (2.16) in Karátson (2005).

‖ek‖A
‖e0‖A

≤
(

3F(B)2

2k

)k/2
. (2.16)

For characterizing the rate of convergence of the CG method, (2.16) does not have much
di�erence compared to (2.14), They are both r-superlinear estimates. However, if the linear
equation Ax = b is obtained by applying FEM to a linear operator equation such like a
PDE, then it can be used to derive mesh independent superlinear convergence under certain
assumptions. We denote the linear operator equation by

Lu = f, (2.17)

with some f ∈ H, here H is a separable Hilbert space.

Suppose the following assumptions are satis�ed:

(i) The operator L is decomposed as L = P+Q where P is self-adjoint operator in H,with
dense domain D and Q is a self-adjoint operator de�ned on the domain H;
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(ii) There exists p > 0 such that 〈Pu, u〉 ≥ p‖u‖2 (u ∈ D);
(iii) 〈Qu, u〉 ≥ 0 (u ∈ H).
(iv) The operator P−1Q, de�ned on the energy space HP , is a compact Hilbert-Schmidt

operator, i.e.

‖P−1Q‖2HS :=

( ∞∑

i=1

λ2
i (P−1Q)

)
<∞.

Here ‖ · ‖HS is known as Hilbert-Schmidt norm, which can be considered as generalization of
Frobenius norm in general Hilbert space. Let HP be the completion of D under the weighted
inner product 〈·, ·〉P = 〈P·, ·〉 and the corresponding norm is denoted by ‖ · ‖P , then the
preconditioned form of (2.17), which is (I + P−1Q)u = P−1f , has weak formulation

〈u, v〉P + 〈P−1Qu, v〉P = 〈P−1f, v〉P , for ∀v ∈ HP . (2.18)

(2.18) is equivalent to

〈u, v〉P + 〈Qu, v〉 = 〈f, v〉, for ∀v ∈ HP , (2.19)

and it has unique solution in HP by the assumptions. For more details, see Karátson (2005).

Solving (2.17) numerically, we let V = span{φ1, . . . , φn} ⊂ HP and set matrices P,Q ∈
Rn×n to be

P = {〈φj , φi〉P}ni,j=1, Q = {〈Qφj , φi〉}ni,j=1,

Galerkin discretization of (2.19) leads to a linear equation in Rn, which has form

(P +Q)x = b. (2.20)

and the coe�cient matrix P +Q is symmetric positive de�nite, following the assumptions on
P and Q. Thus the CG method is applicable to (2.20) and P is available as a preconditioner.

In such a case, it is proved in Karátson (2005) that

Theorem 2.1.6. F(P−1Q)2 ≤ ‖P−1Q‖2HS holds independently of n, i.e. the dimension of
the �nite dimensional subspace V .

If we set A = I + P−1Q (B = P−1Q accordingly) in (2.16) and apply Algorithm 2.3 to
the P -preconditioned equation

P−1(P +Q)x = (I + P−1Q)x = P−1b,

then the residuals of the CG method satisfy

‖ek‖A
‖e0‖A

≤
(

3F(P−1Q)2

2k

)k/2
≤
(

3‖P−1Q‖2HS
2k

)k/2
. (2.21)

Here the second inequality is obtained by using Theorem 2.1.6. Assumption (iv) assures the
right-hand side is bounded, hence the estimate (2.21) guarantees r-superlinear convergence
of the CG method regardless of the subspace V chosen for Galerkin discretization.

Specially, when the linear operator equation (2.17) is treated via FEM and the subsequent

19



Chapter 2. Krylov Subspace Methods and Preconditioning

linear system is solved by the above approach, the resulting rate of convergence is independent
of mesh size within the FEM, which makes such a preconditioner P optimal, in the sense of
mesh independence.

An application of such analysis will be given in the next chapter, where an estimate very
similar to (2.16) is used, given by Theorem 2.1.7.

Theorem 2.1.7. If A = I + B has positive eigenvalues, the residuals of the CG method for
Ax = b satisfy

‖ek‖A
‖e0‖A

≤
(

2F(B)

λmin(A)
√
k

)k
. (2.22)

Notice that the estimate in Theorem 2.1.7 does not need all the eigenvalues of B to be
nonnegative any more, thus relaxes the requirements for (2.16). Nevertheless, λi(A) ≥ 0
should hold for all indices.

The estimate (2.22) is derived based on the original work by Winther (1980), which asserts
if A = I + B with λ(B) > −1, then

‖ek‖A
‖e0‖A

≤
(

2

λmin(A)

)k k∏

i=1

|λi(B)|. (2.23)

Using the arithmetic-geometric means inequality in the form

(
k∏

i=1

|λi(B)|
) 1

k

=

(
k∏

i=1

|λi(B)|2
) 1

2k

≤
(

1

k

k∑

i=1

|λi(B)|2
) 1

2

,

then (2.22) is straightforward, see Axelsson and Karátson (2009).

Preconditioned CG Method in Hilbert Space

It is of course not necessary to force the inner product to be induced by the preconditioner
when we are discussing preconditioning in a general Hilbert space H. Preconditioners can
also be developed for certain nonstandard inner product.

If we de�ne the inner product 〈·, ·〉H with a symmetric positive de�nite matrix H and solve
Ax = b with the CG method preconditioned by P, then general preconditioned CG method
can be given by Algorithm 2.4 when P−1A is self adjoint and positive de�nite with respect
to 〈·, ·〉H, like the requirements given by (2.10) and (2.11). Actually such requirements can
be ful�lled when the matrix HP−1A is symmetric positive de�nite. For more details, see
Stoll (2008).

Preconditioned CG method in non-standard inner product brings out some unusual pre-
conditioning techniques, one surprising application is Bramble-Pasciak class preconditioners
for symmetric saddle point problems, which will be reviewed in Section 2.2. It is even possi-
ble to combine di�erent preconditioners to generate a new preconditioner for use. For such
a discussion, see e.g. Stoll and Wathen (2008).
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2.2. Preconditioning for Structured Systems

Algorithm 2.4 Preconditioned CG method in non-standard inner product

1: Given x0;
2: Set r0 ← P−1(b−Ax0);
3: Set p0 = r0, k ← 0;
4: while rk 6= 0 do

5: αk ←
〈rk, rk〉H

〈P−1Apk,pk〉H
;

6: xk+1 ← xk + αkpk;
7: rk+1 ← rk − αkP−1Apk;

8: βk+1 ←
〈rk+1, rk+1〉H
〈rk, rk〉H

;

9: pk+1 ← rk+1 + βk+1pk;
10: k ← k + 1;
11: end while

2.2. Preconditioning for Structured Systems

In the solution of PDE-constrained optimization problems, one special type of linear problem,
namely, saddle point problem, has drawn a lot of attention, since it commonly arises from
the �rst order necessity conditions (KKT system) or SQP steps. Krylov subspace methods
are usually preferable for such saddle point problems, because they are often sparse and very
large-scale. Unfortunately, PDEs normally bring in ill conditioning of the linear problems,
thus preconditioning is vital for e�cient solution of them.
Regarding the linear algebraic structure of saddle point problems, many block-wise precon-

ditioners are designed, we brie�y introduce some popular ones in this section. Some recent
works, especially those on time dependent problems, are well summarized in Stoll (2011), see
the references therein.
Here we deal with symmetric saddle point problems which have the following general form:

A
(
y
p

)
=

(
A BT

B −C

)(
y
p

)
=

(
f
g

)
, (2.24)

with A ∈ Rn×n symmetric, B ∈ Rn×m, C ∈ Rm×m symmetric. The properties of these blocks
are problem dependent.
The nonsingularity of saddle point matrixA is discussed in Benzi et al. (2005) and su�cient

conditions are provided therein, which are summarized as follows.

Theorem 2.2.1. (i) Assume A is symmetric positive de�nite and C is symmetric positive
semide�nite. If ker(C) ∩ ker(BT ) = {0}, then A is nonsingular. In particular, A is
nonsingular if B has full rank.

(ii) Assume A is symmetric positive semide�nite and C = 0. If ker(A) ∩ ker(B) = {0},
then A is nonsingular. The condition ker(A)∩ ker(B) = {0} here actually implies A is
positive de�nite on the kernel of B.

We refer to Benzi et al. (2005) for a comprehensive discussion on general saddle point
problems and their numerical solution.
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Chapter 2. Krylov Subspace Methods and Preconditioning

2.2.1. Ideal Block Preconditioners

The block preconditioners exhibited in this subsection involve the Schur complement of A in
the full matrix A, denoted by S := −(C +BA−1BT ).

In addition to resolving other nonzero blocks in the preconditioners when they are applied,
the computation of S is costly since it requires the inverse of A. As a result, it is basically
necessary to approximate these preconditioners for practical use. From this point of view,
such block preconditioners are only ideal and many considerations should be taken in real
applications.

Without regard to the implementation issues, we list some block preconditioners below.

When A and −S = C +BA−1BT are both nonsingular, an ideal block diagonal precondi-
tioner is proposed in Rusten and Winther (1992), which is

Pd =

(
A 0
0 −S

)
.

In the special case C = 0, correspondingly −S = BA−1BT , it is not hard to see the
preconditioned matrix

M = P−1
d A =

(
I A−1BT

−S−1B 0

)
.

is nonsingular by assumption and satis�es

(M− I)

(
M− 1

2
(1 +

√
5)I

)(
M− 1

2
(1−

√
5)I

)
= 0.

It follows thatM is diagonalizable and has only three distinct eigenvalues, namely 1, 1
2(1 +√

5) and 1
2(1−

√
5). In fact, symmetry of A is not necessary here. For the proof, see Murphy

et al. (2000).

A similar diagonal block preconditioner can be given when C and −S̄ = A+BC−1BT are
nonsingular, it has form

P̄d =

(
−S̄ 0
0 C

)
.

These preconditioners are usually symmetric and widely used. Specially, an analysis on
the robustness of the above block diagonal preconditioners in parameter-dependent saddle
point problems could be found in Zulehner (2010).

Other than the block diagonal preconditioners Pd and P̄d, two block triangular precon-
ditioners are derived from the following triangular factorization of the saddle point matrix,
which reads

A =

(
A BT

B −C

)
=

(
I 0

BA−1 ±I

)(
A 0
0 S

)(
I A−1BT

0 ±I

)
. (2.25)

Here the nonsingularity of A and its Schur complement S is assumed. Computing the product
of the �rst two blocks gives the left preconditioners (regarding positive sign and negative sign
respectively)

Pt =

(
A 0
B ±S

)
.
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2.2. Preconditioning for Structured Systems

The third matrix on the right-hand side of (2.25) indicates that the preconditioned matrix
has spectrum

λ(P−1
t A) =

{
1, if + S is used,

±1, if − S is used.

Note that applying Pt requires a nonsymmetric solver, for such a discussion, see e.g. Benzi
et al. (2005) and Benzi and Wathen (2008).

Remark 2.2.2. In order to reduce the numerical cost of applying Pd and Pt, usually the
blocks A and S are approximated. The choice of the approximations are highly problem
dependent. As applying preconditioners in iterative solvers is normally a major part of
numerical cost, careful considerations concerning e�ective implementation should be made.

2.2.2. Bramble-Pasciak Type Preconditioning

As being pointed out in the previous section, preconditioned CG method in general Hilbert
space does not require the preconditioner to be symmetric, instead, it only needs the precon-
ditioned matrix to be self-adjoint and positive de�nite with respect to the inner product of
the Hilbert space, see the discussion on Algorithm 2.4.

For solving the saddle point problem (2.24), a preconditioned CG method in non-standard
inner product is developed in Bramble and Pasciak (1988), where a block triangular precon-
ditioner is proposed coupled with a speci�c inner product.

Let A0 be the symmetric approximation of A such that A0 and A−A0 are both symmetric
and positive de�nite. The triangular preconditioner is constructed as

PBP =

(
A0 0
B −I

)
,

thus the inverse of PBP is explicitly given by

P−1
BP =

(
A−1

0 0

BA−1
0 −I

)

and the preconditioned matrix is

M = P−1
BPA =

(
A−1

0 A A−1
0 BT

BA−1
0 A−B BA−1

0 BT + C

)
.

ObviouslyM is nonsymmetric. Bramble and Pasciak introduced the inner product

〈u, v〉HBP = uTHBP v with HBP =

(
A−A0 0

0 I

)
.

Surprisingly,M is self-adjoint in the HBP -inner product, this can be seen from

HP−1
BPA =

(
AA−1

0 A−A AA−1
0 BT −BT

BA−1
0 A−B BA−1

0 BT + C

)
.
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Similarly, another triangular preconditioner

P̃BP =

(
A0 0
B −S0

)

is also available in the inner product

〈u, v〉H̃BP = uT H̃BP v with H̃BP =

(
A−A0 0

0 S0

)
,

proposed in Dollar et al. (2008). Here S0 = BA−1
0 BT + C.

In order to apply the CG method as Algorithm 2.4, the matrix HP−1
BPA must be also

positive de�nite. Hence the matrix A0 should be properly chosen.

It could also necessary to scale A0 to make sure A−A0 is positive de�nite, which ensures
the inner product regarding HBP is well de�ned. A remedy is made to avoid the scaling in
Stoll and Wathen (2007), the authors suggested to use the inner product

〈u, v〉H̄ = uT H̄v with H̄ =

(
A+A0 0

0 I

)
,

and the coupled triangular preconditioner is given by

P1 =

(
A0 0
−B I

)
or P2 =

(
A0 0
−B S0

)
.

However, the authors also proved that such preconditioned matrices are always inde�nite in
the standard inner product.

Notice that although these couples of triangular preconditioner and non-standard inner
product are developed for Bramble-Pasciak CG method, they can still be embedded in other
symmetric Krylov subspace solvers such like MINRES, if the positive de�niteness is violated.
For such an application, see e.g. Rees, Stoll and Wathen (2010).

2.3. De�ated Krylov Subspace Methods

In order to accelerate the solution of linear systems with the same symmetric positive de�nite
coe�cient matrix but multi right-hand sides, augmented CG method was developed. The
idea of augmented CG method is constraining CG iteration in standard Krylov subspace
augmented with a few more vectors which possibly contain information of the solution, see
e.g. Nicolaides (1987) and Erhel and Guyomarc'h (2000). De�ated CG method is essentially
the same (see e.g. Meurant (2006)). The di�erence only lies in the subspace used as the
constraint.

Recently, many works have been done to broaden the use of de�ation (augmentation)
technique to more Krylov subspace methods. In this section, we discuss de�ated Krylov
subspace methods for solving a nonsingular linear algebraic system

Ax = b, (2.26)

24



2.3. De�ated Krylov Subspace Methods

constrained by a given subspace W, where A ∈ Rn×n and b ∈ Rn. Notice that W should
contain (approximate) eigenvectors of A. In a speci�c algorithm, the subspace W is repre-
sented by a matrix W which is constructed by l (l < n) linearly independent column vectors
{wi}li=1 and has the form W = [w1, w2, . . . , wl] with its columns orthonormal.

We mainly focus on the de�ation technique which removes certain troublesome eigenvalues
of the coe�cient matrix to improve the spectrum. This is why we also treat de�ation as a
preconditioning technique here.

We illustrate de�ated CG method �rst and move on to more general discussion afterwards.

2.3.1. De�ated Conjugate Gradient Method

As an instance of de�ated Krylov subspace methods, we cite the de�ated CG algorithm for
real symmetric positive de�nite linear problems, which is derived and analyzed in Saad et al.
(1999) (a preconditioned version of de�ated CG algorithm can be found in the same paper):

Algorithm 2.5 De�ated CG method

1: Choose l linearly independent vectors w1, w2, . . ., wl. De�ne W = [w1, w2, . . . , wl].
2: Choose an initial guess x0 such that W T r0 = 0, where r0 = b−Ax0.
3: Solve W TAWµ0 = W TAr0 for µ and set p0 = r0 −Wµ0.
4: for k = 1, 2, . . ., do

5: αk−1 =
rTk−1rk−1

pTk−1Apk−1
6: xk = xk−1 + αk−1pk−1

7: rk = rk−1 − αk−1Apk−1

8: βk−1 =
rTk rk

rTk−1rk−1

9: Solve W TAWµk = W TArk for µ
10: pk = βk−1pk−1 + rk −Wµk
11: end for

Obviously, the major extra numerical cost comes from Step 9 in Algorithm 2.5, where
a matrix-vector product is computed and a linear equation of dimension k is solved. For
minimizing such e�ort, AW and W TAW could be computed once and explicitly stored at
the beginning (see Olshanskii and Simoncini (2010)).

Remark 2.3.1. In fact, initial guess x0 for de�ated CG method only needs to satisfyW T r0 =
0, with r0 = b−Ax0. Hence x0 can be generated from an arbitrary starting point x−1 ∈ Rn×n
by

x0 = x−1 +W (W TAW )−1W T r−1,

here r−1 = b−Ax−1 (see e.g. Saad et al. (1999)). In the rest of this section, we con�ne our
discussion to the case x−1 = 0, which gives x0 = W (W TAW )−1W T b.

As being pointed out in Saad et al. (1999), de�ated CG method applied to (2.26) is
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equivalent to the standard CG method applied to

HTAHx = HT b, (2.27)

with H = I − W (W TAW )−1W TA and I identity matrix in Rn×n. Furthermore, the
convergence behavior of Algorithm 2.5 is determined by the spectrum of auxiliary matrix
Ā := HTAH.

Notice that Ā is a singular matrix. In fact, by simple calculation, we can obtain ĀW = 0.
This can not be a trouble for Algorithm 2.5, because the algorithm solves Ax = b directly in
W and the iteration is always restricted to the subspace A-orthogonal to W.

When de�ated CG is performed, an extra step

rk := rk −W (W TW )−1W T rk

after Step 7 is usually necessary for recovering orthogonality. This is also important for other
de�ated Krylov subspace methods.

2.3.2. De�ated Preconditioned Krylov Subspace Methods

In Gaul et al. (2011), a general framework for de�ated and augmented Krylov subspace
methods is proposed. The authors conclude that de�ation (augmentation) technique can be
embedded into any Krylov subspace method. We characterize de�ation according to their
framework and refer the readers to Gaul et al. (2011) for a more detailed discussion.

As discussed in the beginning of this chapter, a Krylov subspace method generates an
approximate solution in x0 +K(A, r0; k) at k-th iteration, i.e.

xk ∈ x0 +K(A, r0; k). (2.28)

Furthermore, the k-th residual rk := b−Axk satis�es

rk ⊥B K(A, r0; k). (2.29)

Here B = I results in the CG method when A is symmetric positive de�nite. If B = A, then
(2.28) and (2.29) characterize MINRES and GMRES.

In general, a de�ated Krylov subspace method

(i) directly solves the linear system (2.26) inW, i.e. it solves the projected linear equation
W TAWx̄ = W T b and projects the solution x̄ back to Rn by Wx̄, to generate an initial
point x0;

(ii) keeps the iteration in the subspace A-orthogonal to W .

In fact, (i) gives an initial point satisfying W T r0 = 0. (ii) can be achieved by searching

xk ∈ x0 +K(A, r0; k) +W (2.30)

and the residual rk satis�es

rk ⊥B K(A, r0; k) and rk ⊥B W. (2.31)
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Derivation of de�ated CG method, de�ated MINRES and de�ated GMRES in this frame-
work can be found in Gaul et al. (2011).
Instead of using the original MINRES method developed in Saunders and Paige (1975),

a preconditioned de�ated MINRES algorithm is derived in Olshanskii and Simoncini (2010)
based on a revised version of MINRES, see Algorithm 2.6. We cite it here for latter use
in Chapter 4. The implementation requires careful considerations regarding e�ciency and
stability, similar to de�ated CG method in Section 2.3.1. The extra numerical e�ort of
Algorithm 2.6 is the same as that in Algorithm 2.5.

Algorithm 2.6 De�ated preconditioned MINRES method

Given A, b, maxit, tol, P and W with orthonormal columns
x0 = W (W TAW )−1W T b starting approximation
r = b−Ax0, y = P−1r, r1 = r, k = 0
β1 =

√
rT y

β = β1, β0 = 0, d̄ = 0, e = 0, φ̄ = β1, χ1 = β1, χ2 = 0
c = −1, s = 0, w = 0, w2 = 0, r2 = r1

while k < maxit do
k = k + 1
v = y/β
y = Av −AW (W TAW )−1W TAv
if k ≥ 2, y = y − (β/β0)r1

α = vT y
y = y − r2α/β
r1 = r2, r2 = y
y = P−1r2

β0 = β, β =
√
rT2 y

e0 = e, δ = cd̄+ sα, ḡ = sd̄− cα, e = sβ, d̄ = −cβ
γ = max{‖[ḡ, β]‖, e}, c = ḡ/γ, s = β/γ, φ = cφ̄, φ̄ = sφ̄
w1 = w2, w2 = w
w = (v − e0w1 − δw2)/γ
g = W (W TAW )−1W TAwφ
xk = xk−1 − g + φw
ζ = χ1/γ, χ1 = χ2 − δζ, χ2 = −eζ
Check preconditioned residual norm φ̄ for convergence

end while
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Chapter 3.

Preconditioning for a Partial
Integro-Di�erential Equation in Finance

3.1. Precondition a Partial Integro-Di�erential Equation

For pricing European call options, a number of extended mathematical models have been
developed based on Black-Scholes model (Black and Scholes (1973)). Among them, a jump-
di�usion model commonly leads to a partial di�erential equation with an additional non-local
integral term, i.e. partial integro-di�erential equation (PIDE). It requires solution of linear
systems with dense coe�cient matrices when such PIDEs are tackled numerically. An e�cient
solver is of great interest.
In Sachs and Strauss (2008), the authors formulate a PIDE based on Merton's jump-

di�usion model (Merton (1976)). In order to cure the numerical instability caused by the
convection term in the underlying PIDE, variable transformation is suggested. As a result,
the problem is turned into an equivalent one aiming to �nd a y(t, x) ∈ C1,2((0, T ] × R) ∩
C0([0, T ]× R) satisfying

yt −
1

2
σ2yxx + (r + λ)y − λ

∫ ∞

−∞
y(t, z)f(z − x) dz = 0, on (0, T ]× R,

y(0, x) = H(ex), ∀x ∈ R,
(3.1)

where f(x) = 1√
2πσ

J

e−(x−µ
J

)2/(2σ2
J

) is normal density function (µJ is set to be zero throughout

this work), H(x) = max{0, x−K} is payo� function with strike price K, σ, λ, T are positive
constants and r ≥ 0 (see Sachs and Strauss (2008) for more details). The discretization is
carried out using backward di�erence formula of second order (BDF2) in time and central
di�erence scheme for spatial derivatives. The resulting discrete linear equations share a pos-
itive de�nite coe�cient matrix, which allows the usage of conjugate gradient (CG) method.
Moreover, exploiting the Toeplitz structure of the coe�cient matrix, e�cient matrix-vector
multiplication can be achieved utilizing fast Fourier transformation (FFT) in the CG itera-
tion. Circulant type preconditioners are suggested for accelerating convergence.
It is well known that the convergence behavior of CG iteration heavily relies on the spec-

tral properties of the coe�cient matrix, which can be signi�cantly improved when a proper
preconditioner is used. In this section, we follow the approach proposed by Sachs and Strauss
(2008) and focus on preconditioning for PIDE (3.1). Other than circulant preconditioners,
which aim to precondition the dense matrix taking advantage of its Toeplitz structure, we
also suggest to use a tridiagonal preconditioner which only preconditions the PDE part in

29



Chapter 3. Preconditioning for a Partial Integro-Di�erential Equation in Finance

the discrete problem. These two types of preconditioners are compared theoretically and
numerically. Rigorous spectral analysis for the unpreconditioned and preconditioned systems
is developed. Mesh independent superlinear rate of convergence is proved for both precon-
ditioned CG solvers. Notice that we con�ne our discussion on circulant preconditioners to
Strang's preconditioner since it is easy to construct and outperforms other circulant pre-
conditioners in this case according to the numerical results presented in Sachs and Strauss
(2008).

If FEM is used for spatial discretization, Toeplitz structure of the resulting linear system
can still be preserved under certain assumptions. Thus we are still able to apply the same CG
solver and preconditioning techniques developed for the linear equations obtained by �nite
di�erence method (FDM).

In the context of FEM discretization, the tridiagonal preconditioner can be treated as
discretized elliptic operator. A superlinear convergence estimate of CG solver using the tridi-
agonal preconditioner can be obtained by exploiting the relationship between the coe�cient
matrices in the discrete linear equations and the linear operators in corresponding di�erential
equations. More precisely, the convergence result is independent of basis functions used for
discretization and only related to the operators which show up in the original PIDE, thus
mesh independent.

We acknowledge that, Pang et al. worked on PIDE (3.1) with µJ 6= 0 which results
in a nonsymmetric Toeplitz system. They apply the CG method to normalized equations
with Strang's preconditioner and a tridiagonal preconditioner respectively. They theoretically
establish superlinear rate of convergence for both cases using a family of generating functions
de�ned in Zhang (2010), which is quite di�erent from our approach. Their results can be
found in Pang et al. (2011) and Pang et al. (2012).

3.1.1. Numerical Treatment of the PIDE

Truncating the domain for x from R into a su�ciently large subset Ω := (x−, x+), the
following problem with approximate boundary conditions is solved numerically in Sachs and
Strauss (2008) instead of (3.1):

yt −
1

2
σ2yxx + (r + λ)y − λ

∫ x+

x−

y(t, z)f(z − x) dz − λR(t, x, x+) = 0, on (0, T ]× Ω,

y(t, x−) = 0, y(t, x+) = ex−ζt −Ke−rt,
y(0, x) = H(ex), ∀x ∈ Ω.

(3.2)

Here R(t, x, x+) := e−ζtex+σ2
J
/2Φ

(
x−x++σ2

J
σ
J

)
−Ke−rtΦ

(
x−x+
σ
J

)
is the integral term for the

region outside Ω with ζ constant and Φ(x) = 1√
2π

∫ x
−∞ e

−z2/2 dz.

For �nite di�erence discretization, the domain is partitioned as follows:

xi := x− + (i− 1)h with i = 1, . . . , n+ 2, h = (x+ − x−)/(n+ 1),

tp := pτ with p = 1, . . . ,m, τ = T/m.
(3.3)
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Note that the number of spatial nodes is di�erent from that in Sachs and Strauss (2008). It
is adjusted for simpler subscripts in related matrices.

Let yp(x) ∈ C2(Ω) approximate y(tp, x). For simplicity, we use the notation yp below. To
obtain second order accuracy and stability in time, a backward di�erence formula of second
order (BDF2) is used when p ≥ 2, which is

yt(tp, x) ≈
{

(3
2y

p − 2yp−1 + 1
2y

p−2)/τ, for p ≥ 2,

(yp − yp−1)/τ, for p = 1.

Hence at the pth (without loss of generality, let p ≥ 2) time step, the following PIDE is
indeed discretized and solved on Ω:

(3

2
+ (r + λ)τ

)
yp − 1

2
σ2τypxx − λτ

∫ x+

x−

yp(tp, z)f(z − x) dz = bp(x),

yp(x−) = 0, yp(x+) = ex−ζtp −Ke−rtp ,
(3.4)

with bp(x) = 2yp−1 − 1

2
yp−2 + λτR(tp, x, x+).

Using central di�erence scheme for the spatial derivative and composite trapezoidal rule
for the integral term to discretize (3.4) and eliminating two trivial equations (the �rst and
the last) of the consequent linear system, we come to a Toeplitz system

Tnx
p = bp, p = 2, . . . ,m.

The diagonals of the n× n symmetric coe�cient matrix Tn (see (A.1)) are given by

a0 = σ2 τ

h2
+ (r + λ)τ +

3

2
− λτh√

2πσJ
,

a1 = a−1 = −σ
2

2

τ

h2
− λτh√

2πσJ
e−h

2/(2σ2
J

), (3.5)

ai = a−i = − λτh√
2πσJ

e−(ih)2/(2σ2
J

), 2 ≤ i ≤ n− 1.

Let 2x̂ = x+ − x−, then in terms of n and m (3.5) is equivalent to

a0 =
σ2T (n+ 1)2

4x̂2m
+

(r + λ)T

m
+

3

2
− α

(n+ 1)m
,

a1 = a−1 = −σ
2T (n+ 1)2

8x̂2m
− α

(n+ 1)m
e−β/(n+1)2 , (3.6)

ai = a−i = − α

(n+ 1)m
e−βi

2/(n+1)2 , 2 ≤ i ≤ n− 1,

here α = (x+ − x−)λT/(
√

2πσJ ) and β = (x+ − x−)2/2σ2
J
are both positive constants

according to the de�nitions of the variables.

It is proved in Sachs and Strauss (2008) that Tn is a positive de�nite matrix when n is
su�ciently large, thus the CG method should be a good choice.
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Now we concentrate on the semi-discretized PIDEs (3.4), whose discrete counterparts are
actually solved by the CG method. Notice that these subproblems are not time dependent
any more. We introduce notations in order to rewrite (3.4) into a concise linear operator
form, then learn basic facts about the underlying linear operators in preparation for latter
discussions involving Galerkin discretization.

Let S =
(

3
2 + (r + λ)τ

)
I − 1

2σ
2τ∆ be elliptic operator from C2(Ω) into C0(Ω), where

I is identity operator and −∆ is Laplacian de�ned in the same linear space as S, and
Q : L2(Ω) → L2(Ω) is an integral operator de�ned by (Qu)(x) = −λτ

∫
Ω f(z − x)u(z) dz,

then (3.4) can be represented by

(S +Q)yp = bp,

yp(x−) = 0, yp(x+) = ex−ζtp −Ke−rtp ,
(3.7)

In order to change the non-homogeneous boundary condition into a homogeneous one thus
make S be a self-adjoint operator on C2(Ω), we transform (3.7) into an equivalent problem.
Firstly, we choose a y0 ∈ C2(Ω) which satis�es

y0(x) =

{
0, x− ≤ x ≤ x+ − h,
ex−ζtp −Ke−rtp , x = x+,

(3.8)

for a given mesh and assume (S +Q)y0 = b̃p. Moreover, assume that ȳ ∈ C2(Ω) solves

(S +Q)yp = bp − b̃p =: b̄p,

yp(x−) = 0, yp(x+) = 0,
(3.9)

then obviously y0 + ȳ is the solution of (3.7). Notice that on the interval [x−, x+ − h], the
solution of (3.9) is identical to that of (3.4), thus it is appropriate to solve (3.9) numerically
instead of (3.4).

De�ne the scalar product on L2(Ω) by 〈u, v〉 =
∫

Ω uv and denote the deduced Hilbert space
by H, then it is natural to denote the corresponding norm by || · ||L2 . It is well known that
S (with respect to the homogeneous Dirichlet boundary conditions in (3.9), the same below)
is a self-adjoint operator on C2(Ω) ⊆ H.

The integral operator Q is also self-adjoint due to its symmetric kernel, by which we mean
f(x, z) = f(z, x) in the de�nition of Q, according to the following proposition (see Section
2.2 and Section 5.1 in Gohberg et al. (2003)).

Proposition 3.1.1. If k(t, s) is in L2([a, b]×[a, b]) and k(t, s) = k(s, t) a.e., then the integral
operator K de�ned by

(Kf)(t) =

∫ b

a
k(t, s)f(s)ds

is a compact self-adjoint operator on L2([a, b]). Moreover,

‖Kf‖2L2
≤
∫ b

a

(∫ b

a
|k(t, s)f(s)|ds

)2

dt ≤ ‖f‖2L2

∫ b

a

∫ b

a
|k(t, s)|2dsdt. (3.10)
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For simplicity of notation, we de�ne a constant

Cf :=

∫

Ω

∫

Ω

(
f(z − x)

)2
dz dx =

∫∫

Ω×Ω

(
f(z − x)

)2
dz dx, (3.11)

obviously Cf <∞ and the equality holds according to Fubini's theorem.
Using the properties of S and Q, we can show

Proposition 3.1.2. For su�ciently small τ , S + Q is coercive on C2(Ω) , i.e. there exists
a positive constant c, such that 〈(S +Q)u, u〉 ≥ c‖u‖2L2

for all u ∈ C2(Ω).

Proof. It is easy to see

〈Su, u〉 =
(3

2
+ (r + λ)τ

)
‖u‖2L2

+
1

2
σ2τ‖ux‖2L2

, (3.12)

and

|〈Qu, u〉| ≤ ‖Qu‖L2‖u‖L2

≤ λτ
√
Cf‖u‖2L2

.

Here the Cauchy-Schwarz inequality is used in the �rst inequality and (3.10) is used in the
second line. Thus for su�ciently small τ (small enough such that λτ

√
Cf <

1
2), we have

〈(S +Q)u, u〉 ≥ 〈Su, u〉 − |〈Qu, u〉|
≥ 3

2
‖u‖2L2

+
1

2
σ2τ‖ux‖2L2

− λτ
√
Cf‖u‖2L2

≥ ‖u‖2L2
+

1

2
σ2τ‖ux‖2L2

(3.13)

≥ ‖u‖2L2
.

�

Hence the CG method is applicable to the linear operator equation (3.9) in H. Such an
approach could be seen as the in�nite dimensional counterpart of the CG method applied
to Tnx

p = bp and might provide convergence results in limit sense. Yet this is beyond our
interest here.
Other than applying �nite di�erence method to (3.9), we can also derive a �nite dimensional

linear equation by applying Galerkin discretization to the weak formulation of (3.9), i.e.

〈Syp, v〉+ 〈Qyp, v〉 = 〈b̄p, v〉, ∀v ∈ H1
0 (Ω). (3.14)

For validity of FEM, the domain of S is con�ned to H2(Ω) ∩H1
0 (Ω) henceforth.

Using the Friedrichs' inequality, we have ‖u‖L2 ≤ (x+ − x−)‖ux‖L2 with u(x) ∈ H1
0 (Ω),

which leads to ‖ux‖2L2
≥ 1

(x+−x−)2+1
‖u‖2H1 . Hence by inequality (3.13), for su�ciently small

τ , we get

〈(S +Q)u, u〉 ≥ ‖u‖2L2
+

1

2
σ2τ‖ux‖2L2

≥ 1

2
σ2τ‖ux‖2L2

≥ σ2τ

2(x+ − x−)2 + 2
‖u‖2H1 ,
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which gives the coercivity of the bilinear form 〈(S +Q)·, ·〉 on H1
0 (Ω).

The boundedness of the bilinear form 〈(S+Q)·, ·〉 on H1
0 (Ω) can be shown similarly as the

proof of Proposition 3.1.2, with help of the Cauchy-Schwarz inequality.
Thus we can conclude that for small enough τ the weak formulation (3.14) has an unique

solution in H1
0 (Ω) by Lax-Milgram theorem.

Let V = span{φ1, . . . , φn} ⊂ H1
0 (Ω) be a given �nite dimensional subspace,

Sn = {〈Sφj , φi〉}ni,j=1 and Qn = {〈Qφj , φi〉}ni,j=1 (3.15)

be the Gram matrices corresponding to S and Q. We look for an approximation ypV of yp in
V . Let ypV =

∑n
i=1 x

p
iφi, then x

p = (xp1, . . . , x
p
n)T ∈ Rn is the solution of the equation

(Sn +Qn)xp = bp, (3.16)

where bp = {〈b̄p, φi〉}ni=1 is also a column vector in Rn.
The symmetry and positive de�niteness of the matrix Sn + Qn are inherited from the

self-adjointness and coercivity of the operator S +Q respectively. Thus CG method can be
applied to the �nite dimensional linear equation (3.16).
Since the Toeplitz structure can bring great advantage to reducing computation e�ort, we

hope the matrix Sn + Qn is Toeplitz like the coe�cient matrix Tn in the discrete equation
derived by �nite di�erence method. Fortunately, it is true if the basis functions {φi}ni=1 are
specially chosen. The following theorem establishes this fact.

Theorem 3.1.3. Assume the basis functions {φi}ni=1 have the same shape on an equidistant
mesh, by which we mean:
(i) Let suppi denote the support of φi, then for i = 1, . . . , n, suppi = [x− + (i− 1)h, x− +

(i− 1)h+ L], where L is the length of the interval and h = (x+ − x− − L)/(n− 1).
(ii) φi(x) = φi+1(x+ h).
Then the matrix Sn +Qn given by (3.15) is Toeplitz.

Proof. It is trivial that the sum of two Toeplitz matrices is Toeplitz by de�nition. Thus
we are going to show Sn and Qn are Toeplitz respectively, i.e. (Sn)ij = (Sn)i+1,j+1 and
(Qn)ij = (Qn)i+1,j+1 for any i, j without exeeding bounds. Without loss of generality, we
assume j > i.
Firstly, we have (φi)x(x) = (φi+1)x(x+h) from assumption. Utilizing the assumption and

this equality, we have

〈Sφj , φi〉 =

∫

Ω

((3

2
+ (r + λ)τ

)
φj −

1

2
σ2τ∆φj

)
φi

=
(3

2
+ (r + λ)τ

) ∫

suppi ∩ suppj

φjφi +
1

2
σ2τ

∫

suppi ∩ suppj

(φj)x(φi)x

=
(3

2
+ (r + λ)τ

) ∫

suppi+1 ∩ suppj+1

φj+1φi+1 −
1

2
σ2τ

∫

suppi+1 ∩ suppj+1

∆φj+1φi+1

= 〈Sφj+1, φi+1〉.

The last equality but one is obtained by substituting the integral variable x by x+ h. Thus
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Sn is Toeplitz.

Similarly,

〈Qφj , φi〉 =

∫∫

Ω×Ω
f(z − x)φj(z)φi(x) dzdx

=

∫

suppi

∫

suppj

f(z − x)φj(z)φi(x) dzdx

=

∫

suppi

∫

suppj

f
(
(z + h)− (x+ h)

)
φj+1(z + h)φi+1(x+ h) dzdx

=

∫

suppi+1

∫

suppj+1

f(z − x)φj+1(z)φi+1(x) dzdx

= 〈Qφj+1, φi+1〉

shows that Qn is Toeplitz. �

As a simple example of the above theorem, we can construct a Toeplitz system by utilizing
a linear spline basis, which is de�ned by

φi(x) =





(x− xi−1)/h, xi−1 ≤ x ≤ xi,
(xi+1 − x)/h, xi ≤ x ≤ xi+1,

0, otherwise,

where the partition of Ω is the same as (3.3). Moreover, it is not hard to see that the
corresponding matrix Sn is also tridiagonal, which means we are able to obtain the same
structure of coe�cient matrix via either FDM or FEM.

3.1.2. Analysis on Unpreconditioned Problem

To look into the spectrum of the Toeplitz system Tnx
p = bp , we would make use of the results

related to so-called generating function (see e.g. Section 1.3.2 in Chan and Jin (2007)).

For a given n, by the de�nition in (A.2) with setting ak = 0 (k ≥ n), we can obtain a �nite
series as the generating function of Tn as follows

gn(x) = − α

(n+ 1)m

(
2

n−1∑

k=2

e−βk
2/(n+1)2 cos(kx)

)
+ 2a1 cosx+ a0. (3.17)

Substitute (3.6) into (3.17), we get

gn(x) =
3

2
+

(r + λ)T

m
+
σ2T (n+ 1)2

4x̂2m

(
1− cos(x)

)

− α

(n+ 1)m

(
2

n−1∑

k=1

e−βk
2/(n+1)2 cos(kx) + 1

)
. (3.18)

The bounds of gn(x) on [−π, π] are established by
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Lemma 3.1.4. Let gn(x) be the function de�ned in (3.18) and λ, r > 0, then

gn(x) ≥ 3

2
+
rT

m
+
λT

m

(
1− erf

(
n− 1

n+ 1

√
β

))
− α

(n+ 1)m
, (3.19)

gn(x) ≤ 3

2
+
rT

m
+
λT

m

(
1 + erf

(
n− 1

n+ 1

√
β

))
− α

(n+ 1)m
+
σ2T (n+ 1)2

2x̂2m
, (3.20)

where

erf(x) =
2√
π

∫ x

0
e−t

2
dt, x ≥ 0.

Proof. Notice that

∣∣∣∣
1

n+ 1

n−1∑

k=1

e−βk
2/(n+1)2 cos(kx)

∣∣∣∣

≤ 1

n+ 1

n−1∑

k=1

e−βk
2/(n+1)2 | cos(kx)| ≤ 1

n+ 1

n−1∑

k=1

e−βk
2/(n+1)2

<

∫ n−1
n+1

0
e−βx

2
dx =

1√
β

∫ n−1
n+1

√
β

0
e−y

2
dy =

√
π

2
√
β
erf

(
n− 1

n+ 1

√
β

)
(3.21)

and cos(x) ∈ [−1, 1] (x ∈ [−π, π]), the estimates (3.19) and (3.20) are straightforward. �

Remark 3.1.5. By (3.19) and Theorem A.1.2, we can conclude Tn is positive de�nite when
either n or m is su�ciently large.

Let

Dn =




d0 d1

d1
. . .

. . .
. . .

. . . d1

d1 d0



, En =




e0 e1 · · · en−1

e1
. . .

. . .
...

...
. . .

. . . e1

en−1 · · · e1 e0



, (3.22)

where Dn is a tridiagonal matrix and the diagonals of Dn and En are given by

d0 =
3

2
+

(r + λ)T

m
+
σ2T (n+ 1)2

4x̂2m
,

d1 = −σ
2T (n+ 1)2

8x̂2m
,

ek = − α

(n+ 1)m
e−βk

2/(n+1)2 , 0 ≤ k ≤ n− 1.

We can split Tn by
Tn = Dn + En. (3.23)

For convenience of further discussion, we set

w1 =
3

2
+

(r + λ)T

m
, w2 =

σ2T (n+ 1)2

8x̂2m
,
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thus

Dn =




w1 + 2w2 −w2

−w2
. . .

. . .
. . .

. . . −w2

−w2 w1 + 2w2




= w2




2 + w1/w2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2 + w1/w2



.

Since it's trivial that all entries of En tends to 0 very fast when n grows, we consider to
use Dn as an approximation of Tn and study the spectrum of Tn by analyzing that of Dn.
To start we need the following lemma.

Lemma 3.1.6. The sequence {‖En‖2 : n ∈ N} is bounded, more precisely,

‖En‖2 <
C

m
, (3.24)

where C = α

(
1

2
+

√
π

β

)
is a positive constant.

Proof. Notice that the maximum absolute row sum of En is attained at the [
n

2
]th row, where

[x] := max{i ∈ Z : i ≤ x} returns the largest integer which does not exceed x, thus

‖En‖∞ ≤ α

(n+ 1)m
+

2α

m

[n
2

]∑

k=1

1

n+ 1
e−βk

2/(n+1)2

<
α

(n+ 1)m
+

2α

m

∫ [n2 ]

n+1

0
e−βx

2
dx

=
α

(n+ 1)m
+

2α

m
√
β

∫ [n2 ]

n+1

√
β

0
e−y

2
dy

=
α

m

(
1

n+ 1
+

√
π

β
erf
( [n2 ]

n+ 1

√
β
))

.

Since erf(x) ≤ 1,

‖En‖∞ ≤
α

m

(
1

2
+

√
π

β

)
. (3.25)

As En is symmetric, it follows

‖En‖2 ≤
√
‖En‖1‖En‖∞ = ‖En‖∞ ≤

α

m

(
1

2
+

√
π

β

)
.

�

Lemma 3.1.6 indeed gives the upper bound and lower bound of eigenvalues of En. If
we know eigenvalues of Dn and treat En as a perturbation matrix, then we will have the
estimates on the eigenvalues of Tn, according to the following Weyl's theorem (see e.g. Horn
and Johnson (1985)).
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Theorem 3.1.7 (Weyl's Theorem). Let A and E be Hermitian matrices and the eigenvalues
λi(A+ E), λi(A) and λi(E) be arranged in increasing order. Then for i = 1, 2, . . ., n,

λi(A) + λ1(E) ≤ λi(A+ E) ≤ λi(A) + λn(E).

Thus Lemma 3.1.6 indicates that whenm is large, Tn andDn have almost identical spectra.
In fact, we can have the explicit expression of the spectrum of Dn, with which we obtain the
estimates of eigenvalues of Tn.

Using the result of Example 7.2.5 in Meyer (2000), the eigenvalues of Dn are given by the
following proposition.

Proposition 3.1.8. The eigenvalues of Dn are

w1 + 2w2

(
1 + cos

iπ

n+ 1

)
, i = 1, 2, . . . , n.

Hence we obtain the following corollary by directly applying Weyl's theorem.

Corollary 3.1.9. Let {λi(Tn) : i = 1, 2, . . . , n} be the eigenvalues of Tn, then for all 1 ≤ i ≤
n, λi(Tn) satis�es

|λi(Tn)− λi(Dn)| < C

m
.

The next theorem gives the order of condition number of Tn. The notation f(x) = Θ (g(x))
we use means there exist two constants c1 and c2 with 0 < c1 ≤ c2 < +∞ such that
c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| when f(x) and g(x) tend to in�nity. This notation is preferred
to big O notation because it provides double-sided bounds which are appropriate for division
operation later on.

Theorem 3.1.10. For su�ciently large n and m, we have

(i)

∣∣∣∣
κ(Tn)− κ(Dn)

κ(Dn)

∣∣∣∣ <
2C

m
.

(ii) If
n2

m
is large, i.e.

n2

m
≥ C̄ for a given C̄ > 0, κ(Dn) = Θ(

n2

m
).

Proof. We present the proof brie�y as follows:

(i) Let m be su�ciently large such that C/m < 1/2, thus λmin(Dn)− C/m > 1, then

κ(Tn)− κ(Dn)

κ(Dn)
≤

(
λmax(Dn) + C/m

λmin(Dn)− C/m −
λmax(Dn)

λmin(Dn)

)
λmin(Dn)

λmax(Dn)

=
C

m

λmax(Dn) + λmin(Dn)

(λmin(Dn)− C/m)λmax(Dn)

<
C

m

2λmax(Dn)

λmax(Dn)
=

2C

m
.

Similarly we can show
κ(Tn)− κ(Dn)

κ(Dn)
> −2C

m
.
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(ii) We have

λmax(Dn) = w1 + 2w2

(
1 + cos

π

n+ 1

)
= w1 + 4w2

(
1− sin2 π

2(n+ 1)

)
,

λmin(Dn) = w1 + 2w2

(
1 + cos

nπ

n+ 1

)
= w1 + 4w2 sin2 π

2(n+ 1)
.

For su�ciently large n and m, utilizing the Taylor series of sin(x) at 0, which is

sin(x) =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x− x3

3!
+
x5

5!
− · · · ,

statement (ii) is straightforward.

�

Remark 3.1.11. The �rst statement of Theorem 3.1.10 implies limm→∞ κ(Tn)/κ(Dn) = 1,
which allows us to use κ(Dn) as good approximation of κ(Tn) for su�ciently large m. Notice
that it holds independently of n. When n2/m < C̄, κ(Dn) is bounded by a constant. For a
given m, the condition number of Tn grows rapidly as n2, thus it will lead to ill-conditioned
problem when n is enormous. One may raise m to control condition number, however it
means the number of time steps is increased thus more linear equations should be solved,
thus is also costly.

When the CG method is applied, preconditioning would be de�nitely necessary because
of the nonclustered spectrum of Tn and its large condition number in a high dimensional
problem.

3.1.3. Circulant Type Preconditioning

A circulant preconditioned CG solver is developed in Sachs and Strauss (2008) to solve the
linear equations Tnx

p = bp with Tn de�ned by (3.5), where the preconditioner is a circulant
matrix (see De�nition A.2.1) constructed based on Tn. Such a solver is con�rmed to be very
e�cient by the numerical results.

In this section, we are going to establish some spectral properties of the circulant precon-
ditioned system.

Circulant Preconditioners

Gilbert Strang �rst constructs a circulant preconditioner in Strang (1986) by keeping the
central diagonals of the Toeplitz matrix Tn and wrapping them around to get circulant
structure. We denote this preconditioner by T̂n, its entries on diagonals are given by

sk =





ak, 0 ≤ k ≤ floor(n/2),

ak−n, floor(n/2) < k < n,

sn+k, 0 < −k < n,

(3.26)
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where floor(x) = max{i ∈ Z : i ≤ x}. In the case n = 2l + 1 (l ∈ N),

T̂n =




a0 a−1 · · · a−l al · · · a1

a1 a0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . al

al
. . .

. . .
. . . a−l

a−l
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . a0 a−1

a−1 · · · a−l al · · · a1 a0




.

If the generating function g (see (A.3) for de�nition) of T∞ is real-valued, meaning that
T∞ is Hermitian, let Tn be the n × n leading principal submatrix of T∞, then we have the
following result.

Theorem 3.1.12 (Chan (1989)). Let g be a positive function in the Wiener class, that means
its Fourier coe�cients are absolutely summable. Then for large n the circulant matrices T̂n
and T̂−1

n are bounded in the l2-norm. In fact, for large n, the spectrum σ(T̂n) of T̂n satis�es

σ(T̂n) ⊆ [gmin, gmax].

When the CG method is valid for the Toeplitz system Tnx = b, i.e. Tn is symmetric
positive de�nite, it is trivial that T̂n constructed by (3.26) is also symmetric. Furthermore,
if Tn has positive generating function, Theorem 3.1.12 guarantees that T̂n is positive de�nite
(when n is su�ciently large) hence well-de�ned as a preconditioner.

To study the behavior of the preconditioned system, we will need the following theorem.

Theorem 3.1.13 (Chan (1989)). Let g be a positive function in Wiener class and {Tn} be
the sequence of Toeplitz matrices generated by g. Then for all ε > 0, there exists N > 0 such
that for all n > N , at most 2N eigenvalues of T̂n − Tn have absolute values exceeding ε.

Combining Theorem 3.1.12 and Theorem 3.1.13, and using the fact that

T̂−1
n Tn − In = T̂−1

n (Tn − T̂n),

we have the following valuable result:

Corollary 3.1.14 (Chan (1989)). Let g be a positive function in Wiener class, then for all
ε > 0, there exists N > 0 such that for all n > N , at most 2N eigenvalues of T̂−1

n Tn − In
have absolute values exceeding ε.

The following theorem provides certain optimality of T̂n.

Theorem 3.1.15 (Chan (1989)). Let Tn be an Hermitian Toeplitz matrix. The circulant
matrix T̂n whose entries are given by (3.26) minimizes ‖Cn − Tn‖1 = ‖Cn − Tn‖∞ over all
possible Hermitian circulant matrices Cn.
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Besides Strang's preconditioner, there are some other well-known circulant precondition-
ers, which also cluster most eigenvalues of the preconditioned matrices around 1. These
preconditioners have di�erent optimal properties.
In Chan (1988) a circulant preconditioner c(An), known as optimal circulant preconditioner,

is proposed by Tony Chan. This preconditioner can be de�ned for any square matrix An, in
addition, c(An) inherits self-adjointness and positive de�niteness from An.

Theorem 3.1.16 (Chan et al. (1991a)). Let An ∈ Cn×n and c(An) be the minimizer of
‖Cn−An‖F over all circulant n×n matrices Cn. Then c(An) is uniquely determined by An.
Moreover,

c(An) = F ∗nδ(FnAnF
∗
n)Fn, (3.27)

where Fn is the Fourier matrix de�ned in (A.4) and δ(·) denotes the diagonal matrix with
the same diagonal as the matrix in the argument.

Let T̄n be a Hermitian Toeplitz matrix, ai−j = (T̄n)ij , then the diagonals of c(T̄n) are given
by

ck =

{(
(n− k)ak + kak−n

)
/n, 0 ≤ k < n,

cn+k, −n < k < 0,
(3.28)

where a−n is taken to be 0 when k = 0. Thus optimal circulant preconditioner can be
constructed in O(n) operations for a Toeplitz matrix.
The following theorem gives the spectral property of c(T̄n) preconditioned matrix, similar

to Corollary 3.1.14. It can be found in Chan and Jin (2007).

Theorem 3.1.17. Let g be a positive function in Wiener class, then for all ε > 0, there exist
M(ε) and N(ε) > 0 such that for all n > N(ε), at mostM(ε) eigenvalues of (c(An))−1An−In
have absolute values larger than ε.

Tismenetsky (1991) and Tyrtyshnikov (1992) independently propose a so-called super-
optimal preconditioner, denoted by t(An), which also has the property of inheriting self-
adjointness and positive de�niteness from An, just like optimal circulant preconditioner does.

Theorem 3.1.18 (Chan et al. (1991a), Chan et al. (1991b)). Let An ∈ Cn×n be positive
de�nite. Let t(An) be the super-optimal circulant preconditioner for An, de�ned by

‖I − t(An)−1An‖F = min ‖I − C−1
n An‖F ,

where the minimum is taken over all n× n nonsingular circulant matrices Cn. Then

t(An) =
(
c(AnA

∗
n)
)
c(A∗n)−1, (3.29)

where c(A) denotes optimal circulant preconditioner (T. Chan's preconditioner) constructed
from A.

Notice that Ĉn = t(An)−1 = (c(A∗n)c(AnA
∗
n))−1 can be used for preconditioning instead of

t(An) to avoid the evaluation of inverse.
Similar to optimal circulant preconditioner, we have the following result, see e.g. Chan

and Jin (2007).
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Theorem 3.1.19. Let g be a positive function in Wiener class, then for all ε > 0, there exist
M(ε) and (ε)N > 0 such that for all n > N(ε), at mostM(ε) eigenvalues of (t(An))−1An−In
have absolute values larger than ε.

When Tn is a Hermitian Toeplitz matrix, Chan (1989) proposes a preconditioner Rn whose
diagonals are given by

rk =

{
ak−n + ak, 0 ≤ k < n,

r̄−k, 0 < −k < n,

where a−n is set to be 0 when k = 0. It is also said in Chan (1989) that limn→∞ ‖T̂n−Rn‖2 =
0, thus we can expect similar performance of T̂n and Rn for large n.

Huckle (1993) proposes a preconditioner h(Tn) which is optimal in the sense of minimizing

‖I − C−1/2
n TnC

−1/2
n ‖F .

It is shown that this preconditioner and optimal circulant preconditioner are asymptotically
equivalent with respect to the spectral norm. The eigenvalues of h(Tn)−1Tn are clustered
around 1 for large n.

Besides circulant preconditioners, there are also skew circulant preconditioners which have
similar properties, see e.g. Huckle (1992).

To sum up, the above mentioned circulant preconditioners all approximate the original
Toeplitz coe�cient matrix in some sense, and the preconditioned matrices have most eigen-
values clustered around 1.

The cost of applying a circulant preconditioner is fairly low. The preconditioning step in
preconditioned CG algorithm, i.e. solving a linear equation with the circulant preconditioner
as its coe�cient matrix, takes only O(n log n) operations, more precisely, three FFTs and
one vector multiply, see Section A.2.

Because Strang's preconditioner is simple to construct (almost free) and it outperforms
other circulant preconditioners in solving the PIDE, the main numerical experiments are
con�ned to Strang preconditioned systems in Sachs and Strauss (2008). For the same rea-
son, the preconditioned matrices are only analyzed based on Strang's preconditioner in this
section.

Spectrum of Strang Preconditioned Matrix

Corollary 3.1.14 states that for su�ciently large n, Strang preconditioned systems have most
of their eigenvalues clustered around 1, except a few so-called outliers. The number of these
outliers for our case is the concern.

Notice that in Corollary 3.1.14 the result only holds for a given generating function g. In
other words, changing the subscript n of Tn extracts di�erent leading principal submatrices
of T∞ determined by g and Corollary 3.1.14 applies to all these matrices.

The situation is di�erent in our case. When we change the mesh size for discretization, the
entries of Tn change with respect to n, thus the generating function also changes. We are not
able to apply Corollary 3.1.14 for all discretization settings. Nevertheless, following the idea
of Chan (1989), we can prove a result similar to Corollary 3.1.14 for T̂−1

n Tn with varying n.
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The following theorem is useful for diagonally dominant matrices, we present it in the �rst
place for later use.

Theorem 3.1.20 (Varah (1975)). Assume A = (aij)i,j=1,...,n, the following statements hold.

(i) If A is diagonally dominant by rows and set ξ1 = min
k
{|akk| −

∑
j 6=k |akj |}, we have

‖A−1‖∞ < 1/ξ1.
(ii) If A is diagonally dominant by columns and set ξ2 = min

k
{|akk| −

∑
i 6=k |aik|}, then

‖A−1‖1 < 1/ξ2.
(iii) If A is diagonally dominant both by rows and by columns, ‖A−1‖−1

2 <
√
ξ1ξ2.

Lemma 3.1.21. If Toeplitz matrix Tn is de�ned by (3.6), T̂n is the corresponding Strang's
preconditioner, then for su�ciently large m, ‖T−1

n ‖∞ < 1 and ‖T̂−1
n ‖∞ < 1.

Proof. It is not hard to see

ξ := min
k
{|akk| −

∑

j 6=k
|akj |} >

3

2
+

(r + λ)T

m
− ‖En‖∞ >

3

2
+

(r + λ)T

m
− C

m
,

Thus for su�ciently large m, ξ > 1. By Theorem 3.1.20, this yields ‖T−1
n ‖∞ < 1. Similarly

we obtain ‖T̂−1
n ‖∞ < 1. �

Now we come to the main result of this section.

Theorem 3.1.22. Let m be su�ciently large, ∀ε > 0, there exists N(ε) > 0 such that for all
n ≥ N(ε), at most 2N(ε) eigenvalues of T̂−1

n Tn lie outside the interval (1 − ε, 1 + ε). Here
N(ε) is given by

N(ε) =





1, if

√
πα

2
√
βm

< ε,

ceil

(
n+ 1√
β
erf−1

(
1− 2ε

√
βm√
πα

))
, otherwise,

(3.30)

where ceil(x) = min{i ∈ Z : i ≥ x}.

Proof. (i) First of all, we show ‖T̂−1
n ‖2 is bounded. Since T̂n is symmetric, ‖T̂−1

n ‖1 =
‖T̂−1

n ‖∞. By Lemma 3.1.21, for su�ciently large m we have the uniform bound

‖T̂−1
n ‖2 ≤

√
‖T̂−1

n ‖1‖T̂−1
n ‖∞ < 1. (3.31)

(ii) We also need this statement for latter proof: ∀ε > 0, there exists a N(ε) > 0, for all
N ≥ N(ε)

n−N−1∑

k=N+1

|ak| < ε.
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Actually, for all N ≥ 1,

n−N−1∑

k=N+1

|ak| =
n−N−1∑

k=N+1

∣∣∣∣−
α

(n+ 1)m
e−βk

2/(n+1)2
∣∣∣∣

=
α

m

n−N−1∑

k=N+1

1

n+ 1
e−βk

2/(n+1)2

<
α

m

∫ n−N−1
n+1

N
n+1

e−βx
2
dx <

α√
βm

∫ √β
N
√
β

n+1

e−z
2
dz

=

√
πα

2
√
βm

(
erf(

√
β)− erf

(
N
√
β

n+ 1

))

<

√
πα

2
√
βm

(
1− erf

(
N
√
β

n+ 1

))
.

If √
πα

2
√
βm

(
1− erf

(
N
√
β

n+ 1

))
< ε, (3.32)

holds, it follows the above statement. In fact, if

√
πα

2
√
βm

< ε, then (3.32) always holds.

In such a case we can set N(ε) = 1. Otherwise, we can get (3.32) satis�ed by setting

N(ε) = ceil

(
n+ 1√
β
erf−1

(
1− 2ε

√
βm√
πα

))
. This gives (3.30).

(iii) (cf. Chan (1989)) Let Bn = T̂n − Tn, Un be the matrix obtained from Bn by replacing
the (n−N(ε))× (n−N(ε)) leading principal submatrix of Bn by zero matrix. Hence
rank(Un) ≤ 2N(ε). Let Wn = Bn − Un. It is not hard to �nd out that the maximum
absolute column sum of Wn is attained at the �rst column (or the (n − N(ε) − 1)th
column) by construction. If N(ε) is given by (3.30), according to (ii), we have (3.32),
hence

‖Wn‖1 ≤
n−N−1∑

k=N+1

|ak| < ε.

Since Wn is symmetric by construction, ‖Wn‖∞ = ‖Wn‖1 < ε. Thus

‖Wn‖2 ≤
√
‖Wn‖1‖Wn‖∞ < ε.

Hence the spectrum of Wn satis�es σ(Wn) ⊆ (−ε, ε). Note that

T̂−1
n Tn − In = T̂−1

n (Tn − T̂n) = T̂−1
n (Wn − Un) = T̂−1

n Wn + T̂−1
n Un,

where ‖T̂−1
n Wn‖2 ≤ ‖T̂−1

n ‖2‖Wn‖2 < ‖Wn‖2 < ε (by (3.31)) and rank(Un) ≤ 2N(ε)
leads to rank(T̂−1

n Un) ≤ min{n, rank(Un)} ≤ 2N(ε). Applying Weyl's theorem here, we
conclude that at most 2N(ε) eigenvalues of the T̂−1

n Tn lie outside the interval (1−ε, 1+ε).

�
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Remark 3.1.23. For a given matrix Tn, N(ε) given by (3.30) inspires us with the possibility
of increasing m, i.e. re�ning time discretization, so as to limit the number of outlying eigen-
values to be small (in particular, equals 2). According to Theorem 2.1.4, the corresponding
preconditioned CG method will take very few iterations in each time step.
Specially, when m is su�ciently large such that N(ε) = 1, the estimate in Theorem 2.1.4

is actually independent of n thus mesh independent convergence of corresponding CG solver
is obtianed.
On the other hand, if m and small ε are �xed, by (3.30) we can tell that N(ε) will increase

by order O(n) as n grows. Hence 2N(ε) + 1 can be taken as the upper bound of the CG
method's iteration number.

Condition Number of Strang Preconditioned System

In the numerical experiments, we observe that only a small part of Strang's preconditioner
plays a major role. We believe this phenomenon is caused by the fact that the entries of
Tn except those of the three central diagonals vanish fast when the matrix size tends to
in�nity. Following this lead, we raise the following analysis on the condition number of
Strang preconditioned system.
Similarly as (3.23) we can split Strang's preconditioner by the following statement, which

is trivial by the construction of Strang's preconditioner.

Proposition 3.1.24. Let D̂n and Ên be Strang's preconditioner for Dn and En respectively,
T̂n is Strang's preconditioner for Tn, then

T̂n = D̂n + Ên.

Specially, to obtain the circulant structure, D̂n is obtained from Dn by replacing (Dn)n1

and (Dn)1n with d1, i.e.

D̂n = Dn + Ẽn =




d0 d1 d1

d1
. . .

. . .
. . .

. . . d1

d1 d1 d0



, Ẽn =




0 · · · 0 d1
...

. . . 0

0
. . .

...
d1 0 · · · 0



.

Exploiting symmetry and tridiagonal Toeplitz structure, explicit inverse of Dn, given by
its entries, can be obtained by modifying Theorem 2.8 in Meurant (1992). We present it by
the following theorem.

Theorem 3.1.25. Let Cn = (cij)i,j=1,...,n be the inverse of Dn and

γ+ =
w1 + 2w2 +

√
w2

1 + 4w1w2

2w2
, γ− =

w1 + 2w2 −
√
w2

1 + 4w1w2

2w2
, (3.33)

then

cij =





(γi+ − γi−)(γn+1−j
+ − γn+1−j

− )

w2(γ+ − γ−)(γn+1
+ − γn+1

− )
, if j ≥ i,

cji, otherwise.
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Notice that γ− = 1/γ+. If we set ψ = log γ+, then cij can also be written into

cij =





sinh(iψ) sinh((n+ 1− j)ψ)

w2 sinh(ψ) sinh((n+ 1)ψ)
, if j ≥ i,

cji, otherwise.

Specially,

c11 = cnn =
γn+ − γn−

w2(γn+1
+ − γn+1

− )
=

sinh(nψ)

w2 sinh((n+ 1)ψ)
,

c1n = cn1 =
γ+ − γ−

w2(γn+1
+ − γn+1

− )
=

sinh(ψ)

w2 sinh((n+ 1)ψ)
.

Remark 3.1.26. Recalling that

w1 =
3

2
+

(r + λ)T

m
, w2 =

σ2T (n+ 1)2

8x̂2m
,

γ+ and γ− de�ned by (3.33) are both dependent on m and n. Obviously, γ+ > 1 > γ− > 0.
Thus we have c11 > c1n > 0.

The following theorem describes the spectrum of D̂−1
n Dn.

Theorem 3.1.27. Let λ1(D̂−1
n Dn) ≤ λ2(D̂−1

n Dn) ≤ · · · ≤ λn−1(D̂−1
n Dn) ≤ λn(D̂−1

n Dn) be
the eigenvalues of D̂−1

n Dn and Cn = (cij)i,j=1,...,n be the inverse of Dn, when n
2/m is large,

we have

λi(D̂
−1
n Dn) =





1

1− w2(c1n − c11)
, i = 1,

1 , i = 2, · · · , n− 1,
1

1− w2(c1n + c11)
, i = n.

(3.34)

For convenience, we denote λ1(D̂−1
n Dn) and λn(D̂−1

n Dn) by λ−n and λ+
n respectively. We have

the following estimates for these two extreme eigenvalues of D̂−1
n Dn:

λ−n ∈ [
1

2
, 1], λ+

n = Θ(
n√
m

). (3.35)

Proof. D−1
n D̂n = D−1

n (Dn + Ẽn) = In +D−1
n Ẽn. Since

D−1
n Ẽn = −w2




c1n 0 · · · 0 c11

c2n 0 · · · 0 c21
...

...
...

...
cnn 0 · · · 0 cn1


 ,

the eigenvalues of matrix − 1

w2
D−1
n Ẽ are the n zeros of equation

λn−2
(
(λ− c1n)(λ− cn1)− c11cnn

)
= λn−2

(
(λ− c1n)2 − c2

11

)
= 0,
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hence they are c1n − c11, 0, c1n + c11 respectively. Thus the eigenvalues of D−1
n D̂n are

1− w2(c1n − c11), 1 and 1− w2(c1n + c11). By D−1
n D̂n = (D̂−1

n Dn)−1 , we obtain (3.34).

We can prove (3.35) by utilizing Theorem 3.1.25. Substituting c1n and c11 by the explicit
expressions, we get

w2(c1n − c11) =
sinh(ψ)

sinh((n+ 1)ψ)
− sinh(nψ)

sinh((n+ 1)ψ)

= −
2 sinh(

n− 1

2
ψ) cosh(

n+ 1

2
ψ)

2 sinh(
n+ 1

2
ψ) cosh(

n+ 1

2
ψ)

= −
sinh(

n− 1

2
ψ)

sinh(
n+ 1

2
ψ)

= −γ
n−1
2

+ − γ−
n−1
2

+

γ
n+1
2

+ − γ−
n+1
2

+

= − γ
n
+ − γ+

γn+1
+ − 1

.

Since γ+ > 1 > γ− > 0, we get −1 ≤ w2(c1n − c11) ≤ 0. Thus λ−n ∈ [
1

2
, 1].

Similarly,

w2(c1n + c11) =
sinh(ψ)

sinh((n+ 1)ψ)
+

sinh(nψ)

sinh((n+ 1)ψ)

=
2 sinh(

n+ 1

2
ψ) cosh(

n− 1

2
ψ)

2 sinh(
n+ 1

2
ψ) cosh(

n+ 1

2
ψ)

=
cosh(

n− 1

2
ψ)

cosh(
n+ 1

2
ψ)

=
γ
n−1
2

+ + γ
−n−1

2
+

γ
n+1
2

+ + γ
−n+1

2
+

=
γn+ + γ+

γn+1
+ + 1

.

Thus we have

λ+
n =

γn+1
+ + 1

(γn+1
+ + 1)− (γn+ + γ+)

=
γn+1

+ + 1

(γn+ − 1)(γ+ − 1)
(3.36)

For the purpose of estimating the order of λ+
n , we �rst show that for su�ciently large n,

γn+1
+ + 1

γn+ − 1
is bounded by positive constants, which means this term does not in�uence the

order of λ+
n and leaves us only the term γ+ − 1 in (3.36) to estimate. In fact, we only need

to prove that
γn+1

+ + 1

γn+ − 1
has a positive limit when n tends to in�nity.

Let

ω =
w1

w2
=

8x̂2

(
3

2
m+ (r + λ)T

)

σ2T (n+ 1)2
=

ν(m)

(n+ 1)2
,

where

ν(m) =

8x̂2

(
3

2
m+ (r + λ)T

)

σ2T
,
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then

γ+ = 1 +
1

2
ω +

1

2

√
ω2 + 4ω.

Since lim
n→∞

ω = 0 and lim
n→∞

(γ+ − 1) = 0, we have

lim
n→∞

(
1 + (γ+ − 1)

) 1
γ+−1 = e.

Moreover,

lim
n→∞

(γ+ − 1)n = lim
n→∞

1

2


 ν(m)n

(n+ 1)2
+

√(
ν(m)n

(n+ 1)2

)2

+
4ν(m)n2

(n+ 1)2


 =

√
ν(m).

Hence

lim
n→∞

γn+ = lim
n→∞

((
1 + (γ+ − 1)

) 1
γ+−1

)(γ+−1)n

= e
√
ν(m)

> 1.

Obviously, we also have

lim
n→∞

γn+1
+ = e

√
ν(m)

.

As a result,

lim
n→∞

γn+1
+ + 1

γn+ − 1
=
e
√
ν(m)

+ 1

e
√
ν(m) − 1

= 1 +
2

e
√
ν(m) − 1

It is not hard to see that
1

γ+ − 1
= Θ(

n√
m

),

thus we conclude
λ+
n = Θ(

n√
m

).

�

It directly follows

Corollary 3.1.28. For large n2/m,

κ(D̂
− 1

2
n DnD̂

− 1
2

n ) =
λn(D̂−1

n Dn)

λ1(D̂−1
n Dn)

= Θ(
n√
m

).

We are going to show that κ(D̂
− 1

2
n DnD̂

− 1
2

n ) indeed approximates κ(T̂
− 1

2
n TnT̂

− 1
2

n ) when m is
su�ciently large. A similar result like the �rst statement in Theorem 3.1.10, which connects
κ(Dn) and κ(Tn), can be proved. We �rst show some estimates heavily rely on ‖ · ‖∞ by the
following lemmas.

Lemma 3.1.29. The sequence {‖Ên‖∞ : n ∈ N} is bounded, more precisely,

‖Ên‖∞ = ‖En‖∞ <
C

m
, (3.37)
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where C = α

(
1

2
+

√
π

β

)
is a positive constant.

Proof. Notice that each absolute row sum of the circulant matrix Ên is the same as the

[
n

2
]th absolute row sum of En, which equals ‖En‖∞, we have ‖Ên‖∞ = ‖En‖∞. Thus the

inequality (3.25) yields the result. �

The following lemma provides bounds for the spectrum of D−1
n D̂n.

Lemma 3.1.30.

(i) ‖D−1
n D̂n‖∞ ≤ 2 holds for all n.

(ii) If
n2

m
is large, ‖D̂−1

n Dn‖∞ = Θ(
n√
m

) .

Proof. We already know that

D−1
n D̂n = In − w2




c1n 0 · · · 0 c11

c2n 0 · · · 0 c21
...

...
...

...
cnn 0 · · · 0 cn1


 .

To show (i), we have

‖D−1
n D̂n‖∞ ≤ 1 + w2 max

i
{cin + ci1}

= 1 + max
i

{
sinh(iψ) + sinh

(
(n+ 1− i)ψ

)

sinh((n+ 1)ψ)

}

= 1 + max
i





cosh
(
(i− n+ 1

2
)ψ
)

cosh(
n+ 1

2
ψ)





= 1 +
cosh(

n− 1

2
ψ)

cosh(
n+ 1

2
ψ)
≤ 2.

In the last inequality, we use the fact that ψ = log γ+ > 0 and cosh(x) is an monotonically
increasing positive function when x > 0.
Notice that

min
i
{1− w2(cin + ci1)} = min

i
{1− w2(cin + c1i)}

= min
i

{
1− sinh(iψ) + sinh

(
(n+ 1− i)ψ

)

sinh((n+ 1)ψ)

}

= 1−max
i





cosh
(
(i− n+ 1

2
)ψ
)

cosh(
n+ 1

2
ψ)




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= 1−
cosh(

n− 1

2
ψ)

cosh(
n+ 1

2
ψ)

= 1− w2(c1n + c11),

by Theorem 3.1.20 we have

‖D̂−1
n Dn‖∞ ≤

1

1− w2(c1n + c11)
= λ+

n .

It follows (ii).

�

Lemma 3.1.31. For su�ciently large m and large n2/m,

λ−n − c1(m) ≤ λmin(T̂−1
n Tn) ≤ λ−n + c2(m),

where c1(m) =
3C(λ−n )2

m+ 3Cλ−n
and c2(m) =

3C(λ−n )2

m− 3Cλ−n
.

Proof.

‖T−1
n T̂n −D−1

n D̂n‖∞ = ‖T−1
n D̂n + T−1

n Ên −D−1
n D̂n‖∞

≤ ‖T−1
n (Dn − Tn)D−1

n D̂n‖∞ + ‖T−1
n Ên‖∞

≤ ‖T−1
n ‖∞‖En‖∞‖D−1

n D̂n‖∞ + ‖T−1
n ‖∞‖Ên‖∞

≤ 3C

m
.

In the last inequality Lemma 3.1.21, Lemma 3.1.29, and Lemma 3.1.30 are used. Thus by
Weyl's theorem, we get

λmax(D−1
n D̂n)− 3C

m
≤ λmax(T−1

n T̂n) ≤ λmax(D−1
n D̂n) +

3C

m
,

using the notation λ−n , this is equivalent to

1

λ−n
− 3C

m
≤ λmax(T−1

n T̂n) ≤ 1

λ−n
+

3C

m
.

We use this inequality to estimate the bounds for λmin(T̂−1
n Tn) as follows:

λmin(T̂−1
n Tn) =

1

λmax(T−1
n T̂n)

≤ 1
1

λ−n
− 3C

m

= λ−n +
3C(λ−n )2

m− 3Cλ−n
.

The lower bound can be computed in a similar way. �

Using the same approach, we can also �nd out the bounds for λmax(T̂−1
n Tn).
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Lemma 3.1.32. For su�ciently large m and large n2/m,

λ+
n − c3(n,m) ≤ λmax(T̂−1

n Tn) ≤ λ+
n + c3(n,m),

where c3(n,m) =
C1n

m
3
2

+
C

m
with C1 > 0 constant.

Proof.

‖T̂−1
n Tn − D̂−1

n Dn‖∞ = ‖T̂−1
n Dn + T̂−1

n En − D̂−1
n Dn‖∞

≤ ‖T̂−1
n (D̂n − T̂n)D̂−1

n Dn‖∞ + ‖T̂−1
n En‖∞

≤ ‖T̂−1
n ‖∞‖Ên‖∞‖D̂−1

n Dn‖∞ + ‖T−1
n ‖∞‖Ên‖∞.

Applying all the estimates and Weyl's Theorem, the statement is straightforward. �

Theorem 3.1.33. For su�ciently large m and large n2/m,

∣∣∣∣∣∣
κ(T̂

− 1
2

n TnT̂
− 1

2
n )− κ(D̂

− 1
2

n DnD̂
− 1

2
n )

κ(D̂
− 1

2
n DnD̂

− 1
2

n )

∣∣∣∣∣∣
≤ C2√

m

with C2 > 0 constant.

Proof.

r :=
κ(T̂

− 1
2

n TnT̂
− 1

2
n )− κ(D̂

− 1
2

n DnD̂
− 1

2
n )

κ(D̂
− 1

2
n DnD̂

− 1
2

n )

=

(
λmax(T̂−1

n Tn)

λmin(T̂−1
n T )

− λ+
n

λ−n

)
λ−n
λ+
n

=
λmax(T̂−1

n Tn)λ−n − λmin(T̂−1
n Tn)λ+

n

λmin(T̂−1
n Tn)λ+

n

Using the estimates in Lemma 3.1.31 and Lemma 3.1.32, we get

r ≤
(
λ+
n + c3(n,m)

)
λ−n −

(
λ−n − c1(m)

)
λ+
n(

λ−n − c1(m)
)
λ+
n

=
c3(n,m)λ−n + c1(m)λ+

n(
λ−n − c1(m)

)
λ+
n

,

and

r ≥
(
λ+
n − c3(n,m)

)
λ−n −

(
λ−n + c2(m)

)
λ+
n(

λ−n + c2(m)
)
λ+
n

= −c3(n,m)λ−n + c2(m)λ+
n(

λ−n + c2(m)
)
λ+
n

.

Compare the order of each term, the conclusion is straightforward. �

This theorem allows us to use κ(D̂
− 1

2
n DnD̂

− 1
2

n ) as good approximation of κ(T̂
− 1

2
n TnT̂

− 1
2

n )

when m is su�ciently large. It directly leads to κ(T̂
− 1

2
n TnT̂

− 1
2

n ) = Θ(
n√
m

).
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According to the main results of this section, i.e. Theorem 3.1.27 and Theorem 3.1.33, the
use of Strang's preconditioner improves the condition of the underlying Toeplitz system a
lot, but the preconditioned system can still become ill-conditioned when the dimension tends
to in�nity. However, The condition number could be controlled by increasing time steps as
in the unpreconditioned case. The condition number does not bring trouble to our numerical
experiments, which bene�ts from the setting of parameters as we believe.

3.1.4. A Tridiagonal Preconditioner

Since Tn ≈ Dn, i.e D
−1
n Tn ≈ In, we can expect all the eigenvalues of the coe�cient matrix

can be clustered around 1 if Dn is used as preconditioner. With this point in view, we raise
the following analysis in this section.

Spectrum of Preconditioned Matrix

The following theorem establishes the expected spectrum of Dn preconditioned matrix.

Theorem 3.1.34. If Dn and En are de�ned by (3.22), then

‖D−1
n Tn − In‖2 <

C1

3m+ C2
,

with C1 = α

(
1 + 2

√
π

β

)
and C2 = 2(r + λ)T positive constants.

Proof.
D−1
n Tn − In = D−1

n (Dn + En −Dn) = D−1
n En,

thus

‖D−1
n Tn − In‖2 ≤ ‖D−1

n ‖2‖En‖2 = λmax(D−1
n )‖En‖2 =

1

λmin(Dn)
‖En‖2.

Using (3.24) and substituting λmin(Dn) by w1 + 2w2

(
1 + cos

nπ

n+ 1

)
, we obtain

‖D−1
n Tn − In‖2 <

α

3m+ 2(r + λ)T

(
1 + 2

√
π

β

)
.

�

Ifm is su�ciently large, all the eigenvalues of Dn preconditioned system are close to 1, thus
the condition number is almost 1, independent of n. An alternative tridiagonal preconditioner
could be the tridiagonal matrix only containing the three central diagonals of Tn.
To apply the preconditioner, a linear equation Dny = r with y and r being column vec-

tors in Rn must be solved in each CG iteration, which can be done in O(n) operations by
forward elimination and backward substitution algorithm. This process can be accelerated
by parallelizing techniques in numerical experiments.
As we notice in Theorem 3.1.10, κ(Dn) = Θ(n2/m) has the same order as κ(Tn), the ill

condition of Tnx
p = bp is in fact transferred to Dny = r when n is very large. As a result,
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numerical instability will likely occur. Dealing with this problem, we can compute y = D−1
n r

by using the explicit inverse D−1
n (see Li et al. (2010) for example) to compute matrix-vector

products. Theorem 3.1.25 can also be used to generate an algorithm for solving the linear
equation Dny = r here. The overall cost grows to O(n2) then, which would compromise the
e�ciency of the tridiagonal preconditioner.

Mesh Independent Superlinear Convergence

While Dn is used as preconditioner for Tn, the preconditioned matrix is

D−1
n Tn = In +D−1

n En. (3.38)

We �rst show that

F(D−1
n En)2 :=

n∑

i=1

λi(D
−1
n En)2

has upper bound independent of n in the following lemma:

Theorem 3.1.35. F(D−1
n En)2 ≤M , where M is a positive constant.

Proof. We �rst prove that ‖En‖2F is bounded. Notice that by symmetry

‖En‖2F =
n∑

i=1

λi(En)2 =
n∑

i,j=1

e2
ij = (λτ)2

n∑

i,j=1

(
h√

2πσJ
e−((i−j)h)2/(2σ2

J
)

)2

,

in which
n∑

i,j=1

(
h√

2πσJ
e−((i−j)h)2/(2σ2

J
)

)2

is a Riemann sum of

∫ x+−h

x−

∫ x+−h

x−

(
f(x−z)

)2
dxdz

with f(x) =
1√

2πσJ
e−x

2/(2σ2
J

). Thus

lim
n→∞

‖En‖2F ≤
∫ x+

x−

∫ x+

x−

(
f(x− z)

)2
dxdz = Cf <∞.

Note that Cf is the same as in (3.11). Hence there exists a constant C̄f such that for all n,

‖En‖2F ≤ C̄f .

Furthermore, by Proposition 3.1.8, we can easily derive that ‖D−1
n ‖2 < 2/3. Utilizing the

inequality
‖AB‖F ≤ min{‖A‖2‖B‖F , ‖A‖F ‖B‖2}, ∀A,B ∈ Rn×n,

see Theorem 3.1.3 in Dennis and Schnabel (1996) for example, we obtain

F(D−1
n En)2 =

n∑

i=1

λi(D
− 1

2
n EnD

− 1
2

n )2 = ‖D−
1
2

n EnD
− 1

2
n ‖2F

≤ ‖D−
1
2

n ‖22‖En‖2F ‖D
− 1

2
n ‖22 = ‖D−1

n ‖22‖En‖2F
≤ (2/3)2C̄2

f =: M.
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Here ‖D−
1
2

n ‖22 = λmax(D
− 1

2
n )2 = λmax(D−1

n ) = ‖D−1
n ‖2 holds for Dn symmetric. �

Notice that λ(D−1
n Tn) ≥ 1 − C1/(3m + C2) > 0 for su�ciently large m and the estimate

is independent of n according to Theorem 3.1.34. Thus combining the above theorem and
Theorem 2.1.7, we come to a mesh independent superlinear convergence estimate for the CG
method employing the tridiagonal preconditioner Dn, stated as follows.

Corollary 3.1.36. For su�ciently large m, there exists a constant Cm, s.t.

‖ek‖Tn
‖e0‖Tn

≤
(
Cm√
k

)k
.

In fact, if we discretize (3.9) by FEM, we can always have a similar mesh independent
superlinear convergence estimate, see the discussion below.

In Section 3.1.1, we denote the FEM discretized linear system of (S +Q)yp = b̄p by (Sn +
Qn)xp = bp, then under certain conditions, it is claimed that F(S−1

n Qn) ≤ ‖S−1Q‖HS by
Theorem 1 in Karátson (2005), where ‖A‖HS denotes the Hilbert-Schmidt norm of operator

A, i.e. ‖A‖HS :=
(∑∞

i=1 λ
2
i (A)

)1/2
with λi(A)(i ∈ N) the eigenvalues of A. We have already

reviewed such an analysis in Section 2.1.3, now we summarize the result for our case by the
following theorem.

Theorem 3.1.37 (Karátson (2005)). Let H be a separable Hilbert space and consider a linear
operator equation

Ax = b

with some b ∈ H, under the following assumptions:

(i) The operator A is decomposed as A = S +Q where S is self-adjoint operator in H,with
dense domain D and Q is a self-adjoint operator de�ned on the domain H;

(ii) There exists c > 0 such that 〈Su, u〉 ≥ c‖u‖2 (u ∈ D);
(iii) 〈Qu, u〉 ≥ 0 (u ∈ H).
(iv) The operator S−1Q, de�ned on the energy space HS, is a compact Hilbert-Schmidt

operator, i.e.

‖S−1Q‖2HS :=

( ∞∑

i=1

λ2
i (S
−1Q)

)
<∞.

If all these assumptions are satis�ed and Sn, Qn are the discrete matrices of S and Q via
Galerkin discretization(see (3.15)), then

F(S−1
n Qn) ≤ ‖S−1Q‖HS (3.39)

holds independently of n.

Similarly as the example in Karátson (2005), we set the Hilbert space H to be H1
0 (Ω)

and domain D to be H2(Ω) ∩ H1
0 (Ω), then assumption (i) is satis�ed in our problem (3.9)

since H2(Ω) ∩ H1
0 (Ω) is dense in H1

0 (Ω) and the self-adjointness is obvious. Assumption
(ii) is already shown by Proposition 3.1.2. In the proof of Theorem 1 in Karátson (2005),
Assumption (iii) is nothing more than assuring the coercivity of the linear operator A = S+Q
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together with Assumption (ii), it can be omitted if A is coercive. Thus if assumption (iv) is
ful�lled, we can apply Theorem 3.1.37 to our case.

We de�ne the weighted inner product 〈u, v〉S =
(

3
2 + (r + λ)τ

) ∫
Ω uv + 1

2σ
2τ
∫

Ω∇u · ∇v
and the deduced norm is denoted by ‖ · ‖S . Let HS be the completion of H2(Ω) ∩ H1

0 (Ω).
Notice that equation (3.12) implies that ‖ · ‖S is equivalent to ‖ · ‖H1 , i.e. there exist two
positive constants M1 and M2 such that M1‖x‖S ≤ ‖x‖H1 ≤M2‖x‖S for all x ∈ HS . Hence
HS = H1

0 (Ω). This allows us to show that S−1Q is a Hilbert-Schmidt operator on H1
0 (Ω)

rather than on HS .

In fact, by Theorem 5.36 in Haroske and Triebel (2008), we have

Proposition 3.1.38. S−1 is a compact operator on H1
0 (Ω).

The Hilbert-Schmidt norm of an integral operator is related to its kernel function by the
following theorem (Theorem 1.2 in Section 5.1 of Gohberg et al. (2003)).

Theorem 3.1.39. Suppose k(t, s) ∈ L2([a, b] × [a, b]) and k(t, s) = k(s, t) a.e, the integral
operator K is de�ned by

(Kf)(t) =

∫ b

a
k(t, s)f(s)ds,

there exists a basic system of eigenvectors {ϕi} and eigenvalues {λi} of K (K 6= 0) such that

(Kf)(t) =

∞∑

i=1

λi

(∫ b

a
f(s)ϕi(s)ds

)
ϕi(t).

Furthermore, ∫ b

a

∫ b

a
|k(t, s)|2 dtds =

∞∑

i=1

λ2
i .

Accordingly, for the integral operator Q de�ned by (Qu)(x) = −λτ
∫

Ω f(z − x)u(z) dz in
our case, we have

‖Q‖2HS =
∞∑

i=1

λ2
i (Q) =

∫ x+

x−

∫ x+

x−

| − λτf(z − x)|2 dzdx = λ2τ2Cf <∞,

thus Q is a Hilbert-Schmidt operator.

Since S−1 is a compact operator, there exists a constant such that ‖S−1x‖H1 ≤ CS‖x‖H1 ,
∀x ∈ H1

0 (Ω). Let {φi}∞i=1 be an orthonormal basis of H1
0 (Ω), then

‖S−1Q‖2HS =

∞∑

i=1

‖S−1Qφi‖2H1 ≤ C2
S

∞∑

i=1

‖Qφi‖2H1 = C2
S‖Q‖2HS = λ2τ2CfC

2
S <∞, (3.40)

where the �rst two equalities come from the de�nition of Hilbert-Schmidt norm given in
Murphy (1990). It follows

Proposition 3.1.40. S−1Q is a Hilbert-Schmidt operator on H1
0 (Ω).
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Since λmax(S−1
n Qn) ≤ F(S−1

n Qn), combining (3.39) and (3.40), we obtain

λmax(S−1
n Qn) ≤ ‖S−1Q‖HS ≤ λτ

√
CfCS .

Hence for su�ciently large m, λmax(S−1
n Qn) < 1

2 , thus λmin(I − S−1
n Qn) > 1

2 .

By Theorem 2.1.7, we have the superlinear convergence estimate

‖ek‖T̄n
‖e0‖T̄n

≤
(

4‖S−1Q‖HS√
k

)k
, (3.41)

where T̄n denotes Sn +Qn, for the CG method applied to (Sn +Qn)xp = bp using Sn as the
preconditioner .

3.1.5. Numerical Results

Throughout all the experiments in this section, the constant parameters being referred to in
Section 3.1.1 are set to be: T = 1, r = 0, σ = 0.2, σJ = 0.5, λ = 0.1, K = 1, x− := −x̂+ ζT

and x+ := x̂ + ζT with x̂ = 4 and ζ := r − 1
2σ

2 − λη. Here η = eσ
2
J
/2 − 1. Details for the

practical meaning of these parameters can be found in Sachs and Strauss (2008).

The behavior of CG solver and relevant spectral properties are illustrated as the number
of space grid points n and the number of time steps m change.

Spectral Property

As the eigenvalue distribution of the coe�cient matrix plays a major role in the e�ciency
of CG iteration, we graph that of circulant preconditioned and tridiagonal preconditioned
matrices. Note that the unpreconditioned Toeplitz matrix Tn has distributed eigenvalues
(c.f. Figure 1 in Sachs and Strauss (2008)).

0.975 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

Eigenvalues of D
−1

n Tn

Eigenvalues of T̂
−1

n Tn

Figure 3.1.: Spectra of Strang preconditioned matrix and tridiagonal preconditioned
matrix with n = 64 and m = 40.

The matrix T̂−1
n is computed using Theorem A.2.2 and D−1

n Tn is done by the Matlab
inbuilt 'backslash'.
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Figure 3.1 establishes the conclusion of Theorem 3.1.22, which states most eigenvalues of
the Strang preconditioned matrix are clustered around 1, except two outliers. In fact, this
depends on how large the 'neighborhood' of 1 is set. If ε is su�ciently small, it will turn to
the second case of (3.30). When the tridiagonal part Dn is used as the preconditioner, all
the eigenvalues are clustered near 1 as Theorem 3.1.34 points out.

n m ρ

512 5 0.012929709
512 10 0.006509528
512 20 0.003266120
512 40 0.001635938
512 80 0.000818698
512 160 0.000409534

(a) n �xed and m variable.

n m ρ

128 40 0.001635736
256 40 0.001635886
512 40 0.001635938
1024 40 0.001635953
2048 40 0.001635957
4096 40 0.001635958

(b) n variable and m �xed.

Table 3.1.: Bounds on the spectrum of D−1
n Tn.

If we set ρ := max
i
{|λi(D−1

n Tn) − 1| : 1 ≤ i ≤ n}, which equals ‖D−1
n Tn − In‖2, then by

Theorem 3.1.34, ρ < C1
3m+C2

with C1 and C2 positive constants. This can be seen from Table
3.1a. When m is �xed and n changes, ρ is only slightly in�uenced, see Table 3.1b.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
500

1000

1500

2000

n

Figure 3.2.: Spectrum of T̂−1
n Tn with n variable and m = 40.

Combining Theorem 3.1.27 , Lemma 3.1.31 and Lemma 3.1.32, we know that when a given
m is su�ciently large, the largest eigenvalue of Strang preconditioned matrix grows linearly
as n grows while the smallest eigenvalue enters a bounded interval. This fact is illustrated
by Figure 3.2, in which the middle column gives the clustered eigenvalues of T̂−1

n Tn (almost
equal to 1) for di�erent n, the left column shows how the smallest eigenvalues change with
respect to n and the largest eigenvalues are in the right.
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Figure 3.2 also implies the condition number of T̂−1
n Tn increases linearly under the same

assumption. This is negative for the preconditioner, but in this case, we also notice that
the condition number is indeed not large and the CG solver performs well (see Figure 3.4
and Table 3.2). As a matter of fact, in order to maintain second order accuracy, n and
m are usually magni�ed simultaneously (see Table 3 in Sachs and Strauss (2008)), which
means the condition number of the Strang preconditioned matrix can be well controlled in
the application.

0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

λ(T̂
−1

n Tn)

m

(a) Spectrum of T̂−1
n Tn with n = 512 and

m variable.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
2
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3.5
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4.5
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5.5

6

6.5

1/λmax (T̂
−1

n Tn)

√
m

(b) The relationship between 1

λmax(T̂
−1
n Tn)

and
√
m with n = 2048.

Figure 3.3.: Eigenvalue distribution of T̂−1
n Tn with n �xed and m variable.

On the other hand, if we �x n and increase m, then the two extreme eigenvalues (outliers)
shrink to 1 as shown in Figure 3.3a. More speci�cally, Figure 3.3b shows that the largest
eigenvalue of Strang preconditioned matrix T̂−1

n Tn is inversely proportional to
√
m when n

is �xed. Since it is always assumed that n2/m is large in the theoretical part, we �x n to be
relatively large (i.e. n = 2048) and try not to make m large here.

100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

n

 

 

κ(Tn)

κ(T̂
− 1

2

n TnT̂
− 1

2

n )

κ(D
− 1

2

n TnD
− 1

2

n )

(a) n variable and m = 40.
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(b) n = 512 and m variable.

Figure 3.4.: Euclidean condition numbers of unpreconditioned and conditioned systems.
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Condition number is another important character for evaluating the e�ciency of precon-
ditioning. We summarize those of unpreconditioned, tridiagonal preconditioned and Strang
preconditioned matrices as follows:

(i) κ(Tn) = Θ(n2/m) (see Theorem 3.1.10);

(ii) κ(D
− 1

2
n TnD

− 1
2

n ) ≈ 1 (see Theorem 3.1.34);

(iii) κ(T̂
− 1

2
n TnT̂

− 1
2

n ) = Θ(n/
√
m) (see Theorem 3.1.33 and Corollary 3.1.28).

Figure 3.4 demonstrates how the condition numbers of di�erent systems change as n and
m grow respectively. It is obvious that preconditioning with Strang's preconditioner im-
proves the condition a lot and the tridiagonal preconditioner is almost perfect at this point,

especially, the condition number of D
− 1

2
n TnD

− 1
2

n does not depend on n any more.

To obtain the estimate of condition number of Strang preconditioned matrix T̂
− 1

2
n TnT̂

− 1
2

n ,
the relevant proofs in Section 3.1.3 heavily rely on estimates in in�nity norm. Indeed, nu-
merical results show that these estimates are fairly sharp in this case.
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Figure 3.5.: The left plot shows the largest eigenvalue of D̂−1
n Dn and two upper bounds

of it with respect to in�nity norm and 2-norm respectively. The right plot
is about the di�erence between largest eigenvalues of T̂−1

n Tn and D̂
−1
n Dn, and

three di�erent upper bounds. In both plots, m = 20 and n varies.

As we can see in the left plot of Figure 3.5, ‖D̂−1
n Dn‖∞ is almost identical to λmax(D̂−1

n Dn).
‖D̂−1

n Dn‖2 is also plotted for comparison, which is obviously not a good estimate as the
linear growth is violated. In the right plot, ρ(T̂−1

n Tn − D̂−1
n Dn) denotes the spectral radius

of T̂−1
n Tn − D̂−1

n Dn. For some n, the in�nity norm estimate is not better than the 2-norm
estimate. But once again, the 2-norm estimate does not keep the linearity of the growth and
changes the order (with respect to n) of the quantity. Note that the gap in the right plot is
indeed very small according to the scale of y-axis.

E�ciency of CG Solver

In the CG solver, we use
‖rk‖∞ < δ
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as the stopping criterion instead of the one in weighted norm which is essential for all the
error estimates in Section 2.1. Here rk denotes the residual after the kth CG iteration and δ
is a positive constant describing the precision of the CG solver.
To solve the sequence of discrete problems with coe�cient matrix de�ned by (3.6), CG

solver using Strang's preconditioner needs O(mn log n) �ops. If tridiagonal preconditioner is
used, then the e�ort is O(mn). It is not trivial that the overhead is linearly dependent on m,
because the iteration number needed for each time step does not only rely on the spectrum of
the coe�cient matrix but also concerns the initial error e0. In the numerical experiments, we
always use the solution of previous time step as initial guess of the current linear equation,
which assures that ‖e0‖2 is of the same scale throughout all the time steps and results in
stable iteration numbers.

n m sec(Dn) #it(Dn) sec(T̂n) #it(T̂n)

2048 40 0.134 3 0.171 4
4096 80 0.478 3 0.687 4
8192 160 1.865 3 2.749 4
16384 320 5.605 2 11.041 4
32768 640 24.680 2 50.572 4
65536 1280 106.049 2 240.372 4

Table 3.2.: CPU time and average iteration number of CG solver with tridiagonal and
Strang's preconditioner respectively (δ = 10−8).

Like in Sachs and Strauss (2008), we scale m and n by a factor of 2 at the same time in
Table 3.2, the computational e�ort is re�ected by CPU time (only that of CG iteration is
counted). Further, the iteration numbers are smaller when the tridiagonal preconditioner Dn

is used, which can be even smaller when m gets larger. Mesh independent convergence can
also be observed for both cases.

unprec. Dn T̂n
n m 10−8 10−8 10−5 10−3 tri. δ

64 40 5 2 2 1 3
128 40 7 2 2 1 4
256 40 11 3 2 1 4
512 40 21 3 2 1 4
1024 40 43 3 2 1 4
2048 40 89 3 2 2 4

Table 3.3.: Iteration numbers for di�erent precision δ (m=40).

In Table 3.3, the third column provides the iteration numbers of unpreconditioned CG
method with δ = 10−8. The next three columns show the iteration numbers of CG solver
with Dn being the preconditioner and di�erent values of δ are used which indeed in�uences
the iteration numbers. The last column gives the iteration numbers of CG solver using
Strang's preconditioner with respect to three di�erent precisions (i.e. δ = 10−3, δ = 10−5 and
δ = 10−8). Di�erent from the case of tridiagonal preconditioned CG method, the iteration
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number does not vary when the required accuracy is changed. Roughly speaking, this is
because T̂−1

n Tn has three clusters of eigenvalues while D−1
n Tn only has one.

We conclude that preconditioned CG method reduces the iteration number a lot and
both ways of preconditioning achieve mesh independent convergence. The performance of
tridiagonal preconditioner is slightly better than Strang's preconditioner for our application.
Nevertheless, from theoretical point of view, it is much more reliable.

3.2. Precondition the PIDE in a Calibration Problem

In the previous section, the tridiagonal preconditioner coming from Laplacian outperforms
circulant preconditioners, which aim at preconditioning the full linear equations derived from
the PIDE. This fact helps us choose the preconditioner in solving the following calibration
problem, which calibrates the mathematical model (constraint PIDE) with respect to pa-
rameter set u by minimizing the di�erence between model data D(u;xi, ai) (solution to the
PIDE for given u) and known market data d(xi, ai) (i ∈ I) in terms of least squares.

min
u

J(u) :=
1

2

∑

i∈I
|D(u;xi, ai)− d(xi, ai)|2

s.t. DT (x, T )− σ2(x, T )

2
Dxx(x, T ) +

(
r(T ) +

σ2(x, T )

2
− λζ

)
Dx(x, T )

+ λ(1 + ζ)D(x, T )− λ
+∞∫

−∞

D(x− y, T )ey f(y)dy = 0

where D(x, 0) = max{S0 − S0e
x, 0} =: D0(x).

(3.42)

Here x ∈ (−∞,∞), T ∈ (0, Tmax), u is de�ned to be the parameter set (σ, λ, f). For more
detailed description of (3.42), we refer to Schu and Sachs (2010) and Schu (2012).

In Schu and Sachs (2010), a multilevel TRPOD algorithm, which employs POD in the
framework of trust region method, is proposed for solving (3.42). We present it as follows:

Algorithm 3.1 Multilevel TRPOD algorithm Schu and Sachs (2010)

1: Given uk, solve the state and adjoint equation (PIDEs) on level hk;
2: Use the solutions of Step 1 to build a POD model (reduced order model)

mPOD
k (uk + sk);

3: Compute an approximate minimizer sk for
min

||sk||≤∆k

mPOD
k (uk + sk);

4: Compute J(uk + sk) and ρk =
ared(sk)

pred(sk)
;

5: Update the trust region radius according to ρk,
Re�ne, coarse or keep the discretization level hk+1,
k ← k + 1 and go to step 1 resp. step 3
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In Algorithm 3.1, the major numerical e�ort lays on solving PIDEs on di�erent levels
in Step 1 and the POD subproblems in Step 3. Since the POD subproblems are of low
dimension, we concern more about accelerating the process of solving the PIDEs. Note that
the adjoint equations have similar structure as the constraint Dupire's equation.

The numerical treatment of the constraint PIDE is very similar to that in the previous
section. We �rst need to truncate the in�nite domain, σ(x, T ) and g(x) := exf(x) are
restricted to the truncated domain then. For time discretization, Crank-Nicolson scheme is
employed while in space a linear spline basis is used for �nite element discretization. More
details can be found in Schu and Sachs (2010).

As a result, at each time step a linear equation having the form

(Sn +Qn)xn = bn (3.43)

is to be solved, where Sn and Qn are from elliptic and integral parts respectively. Notice that
Sn is tridiagonal, not Toeplitz, nonsymmetric and Qn is dense, Toeplitz, nonsymmetric, see
Schu and Sachs (2010). Since the coe�cient matrix Sn + Qn is nonsymmetric, GMRES is
used for solving (3.43). Fast Fourier transform (FFT) is adopted for e�cient matrix-vector
product evaluation because Qn is Toeplitz matrix.

Let τ denote time di�erence and h be the mesh size in space, utilizing the explicit ex-
pressions of the entries of Sn and Qn in Section 3.2.1 of Schu (2012), it can be easily shown
that

Lemma 3.2.1. (i) If τ is su�ciently small and σ(x), σ′(x), σ′′(x) are bounded, then Sn
is diagonally dominant by rows and columns.

(ii) ‖Qn‖1 ≤ c̄τh, ‖Qn‖∞ ≤ c̄τh with c̄ constant.

Thus it is straightforward to have the following proposition according to Theorem 3.1.20.

Proposition 3.2.2. ‖S−1
n Qn‖∞ ≤ c1τ , ‖S−1

n Qn‖1 ≤ c2τ . c1 and c2 are positive constants.

This suggests if we use the tridiagonal matrix Sn as preconditioner, the preconditioned
matrix In + S−1

n Qn has its eigenvalues clustered around 1 and its condition number is close
to 1, when τ is su�ciently small.

With help of the following theorem, we can analyze the rate of convergence of GMRES in
this case. A tighter estimate could be found in Beckermann et al. (2005).

Theorem 3.2.3 (Elman (1982)). If A has a positive de�nite hermitian part (A+AT )/2, the
k-th residual rk of GMRES method for Ax = b satis�es

‖rk‖2
‖r0‖2

≤ sink(β),

where β ∈ [0,
π

2
] is de�ned by cos(β) :=

λmin
(
(A+AT )/2

)

‖A‖2
.
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Let A = In + S−1
n Qn be the preconditioned matrix in our case, we have

‖A‖2 = ‖In + S−1
n Qn‖2

≤ 1 + ‖S−1
n Qn‖2

≤ 1 +

√
‖S−1

n Qn‖1‖S−1
n Qn‖∞

≤ 1 + τ
√
c1c2

and

λmin
(
(A+AT )/2

)
=

1

λmax
(
(A+AT )/2

) =
1

1 + 1
2λmax

(
S−1
n Qn + (S−1

n Qn)T
)

≥ 1

1 + 1
2‖S−1

n Qn + (S−1
n Qn)T ‖1

≥ 1

1 + 1
2

(
‖S−1

n Qn‖1 + ‖S−1
n Qn‖∞

)

≥ 1− 1

2

(
‖S−1

n Qn‖1 + ‖S−1
n Qn‖∞

)

≥ 1− τ c1 + c2

2
.

Hence we can conclude that the residuals of GMRES iteration satisfy
‖rk‖2
‖r0‖2

≤ sink(β̄), where

β̄ satis�es cos(β̄) ≥ 1− τ c1+c2
2

1 + τ
√
c1c2

.

Thus GMRES can reach at least linear convergence and the rate of convergence is mesh
independent.

The numerical results are obtained using the same codes and the same setting in the
numerical experiment of Schu and Sachs (2010). Table 3.4 compares the CPU time for
solving calibration problem (3.42) using Algorithm 3.1, with or without preconditioner in
Step 1. Numbers are given in second. The e�ect of using the preconditioner is signi�cant.

Total POD PIDE

Unprec. 8041 85 7956
Prec. 105 85 20

Table 3.4.: CPU time (in second) comparison of multilevel TRPOD solver.

n rep.
aver. #it aver. #it
unprec. prec.

500 21 21 3
1000 3 35 3
2000 5 67 3
4000 4 141 3

Table 3.5.: Average iteration number of GMRES for solving PIDEs with or without
preconditioner.

63



Chapter 3. Preconditioning for a Partial Integro-Di�erential Equation in Finance

Table 3.5 gives the average iteration numbers of GMRES on di�erent levels. The �rst
column is the numbers of grid points of di�erent levels of mesh, the second column records
the number of PIDEs which are solved on a certain level. From the table we can see that
the iteration numbers grow with respect to mesh size when GMRES solver works without
preconditioner, however, the mesh independence is observed if the tridiagonal preconditioner
is used.
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Chapter 4.

Preconditioning with Proper Orthogonal
Decomposition

Solving PDE-constrained optimization problems usually leads to linear systems of saddle
point type, when an all-at-once method is adopted. Iterative solvers for such problems and
corresponding preconditioning techniques are well discussed in Benzi et al. (2005). Developing
e�cient solvers for linear problems arising from PDE-constrained problems is an active �eld
of research.

In this chapter, we aim at exploring the possibility of embedding a reduced-order-model
(ROM) technique, namely proper orthogonal decomposition (POD), in preconditioned Krylov
subspace methods and developing an e�cient solver for optimization problem governed by a
time dependent nonlinear PDE.

This work is inspired by the recent paper Simoncini (2012), in which the author introduces
a preconditioned de�ated MINRES solver for the linear systems resulting from a nonlinear
PDE-constrained optimization problem, more precisely, a simpli�ed Monge-Kantorovich mass
transfer problem.

In Simoncini (2012), the optimization problem is �rst handled by an inexact Gauss-Newton
approach, see Benzi et al. (2011). In each Newton-type iteration, part of the unknown vari-
ables are removed by simple calculation, which gives rise to an equivalent lower dimensional
linear system. MINRES serves as the linear solver and a block diagonal preconditioner is
employed. Since the preconditioner is applied approximately, some eigenvalues close to zero
of the coe�cient matrix are not well captured by the preconditioner. As a result, stagnation
phases in the convergence history of MINRES are observed. In order to remove the stagna-
tion, a few approximate eigenvectors related to the unpleasant eigenvalues of the precondi-
tioned matrix are obtained by means of Lanczos process and a de�ated MINRES algorithm
using these eigenvectors is developed. The improvement of the convergence is established by
numerical results.

Other than using the approximate eigenvectors of the preconditioned matrix for de�ation,
we propose to use POD basis to generate the de�ation matrix. As is well known, POD is
usually used for building reduced order models, because it can extract key information of the
solution space out of given snapshots when a time dependent PDE is treated. This essential
feature makes it possible to use POD to do more things.

Let us consider a simple nonsingular linear equation Ax = b in Rn. For simplicity, we
assume that A is symmetric positive de�nite. Let {λi}ni=1 denote the eigenvalues of A satis-
fying 0 < λ1 ≤ λ2 ≤ . . . ≤ λn, the corresponding eigenvectors are denoted by {vi}ni=1, then
we can expand the right-hand side by b =

∑n
i=1 civi for all ci ∈ R constant and the solution
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has expression

x = A−1b =

n∑

i=1

1

λi
civi

When the linear equation is a discrete PDE, A usually has eigenvalues close to 0, e.g. A
is discretized Laplacian operator in the previous Chapter. Despite the in�uence of ci, the
inverses of smallest eigenvalues of A magnify the corresponding eigenvectors. Hence these
eigenvectors are more likely dominating in the solution. If we have a set of such linear
equations which share the same coe�cient matrix but have di�erent right-hand sides, then
we have a good chance to extract vi of smallest indices from the solutions of all these linear
equations via POD. This is exactly the progress of our �rst experiment in the next section.

We �rst test our idea of using POD basis to generate de�ation matrix on a heat equation,
then we move on to a linear quadratic problem and develop the de�ation strategy for a down-
sized KKT system. A POD de�ated MINRES solver using a diagonal block preconditioner
is proposed for a nonlinear PDE-constrained optimization problem at last. A number of
numerical experiments are designed and carried out, a�rmative results are obtained.

This chapter is organized as follows.

Section 4.1 consists of a series of numerical experiments on a simple 1D heat equation
involving di�erent initial conditions. We �rst extract POD basis from various subsets of
snapshots obtained by three di�erent ways, then we compare all these basis to the exact
solution, in order to check how well POD can extract the desired information contained in the
given snapshots. After that, we compare the eigenvalue distributions of POD-de�ated matrix
and the original coe�cient matrix in the discrete system. The results show that POD basis
can capture some smallest eigenvalues of the coe�cient matrix. We also implement de�ated
CG algorithm which uses de�ation matrix constructed by POD basis to solve the discrete
system and observe obvious reduction of iteration numbers. In the end of this section, we
propose a de�ation matrix for solving the heat equation with one-shot method, which solves
all time instances simultaneously instead of solving a sequence of linear equations.

In Section 4.2 we work on a linear quadratic problem taken from Stoll and Wathen (2010).
We remove the control variable in the resulting KKT system to construct an equivalent
linear system via simple calculation, as in Simoncini (2012). Then we propose de�ation
strategy for the resulting system by projecting state variable and adjoint variable into the
POD subspace. A de�ated MINRES solver is implemented for various experiment settings.
The results con�rm the e�ectiveness of our de�ation strategy.

In Section 4.3, a boundary control problem with nonlinear constraint PDE is constructed
for test. The problem is solved in an SQP framework thus a sequence of saddle point prob-
lems have to be solved. We also downsize each of them as we do in the linear quadratic
problem, then propose a solver which contains a block diagonal preconditioner and combines
the de�ation strategy. Compared to same preconditioned MINRES solver, the embedding
of de�ation with POD improves the rate of convergence and reduces both iteration numbers
and CPU time.

This research is still in progress, we give some concluding remarks for the work done and
also outlook in the end of this chapter.

Notice that we refer to smallest eigenvalues in the sense of smallest magnitude in this
chapter.
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4.1. Observation: Catch Smallest Eigenvalues with POD

POD has been proved to be very helpful in solving many kinds of PDEs and PDE-constrained
optimization problems. It is usually used to build reduced order models of very low dimension
for PDEs. In consequence, solving such models provides good approximate solutions to the
original problems at low cost.

We observe that the POD basis in fact includes eigen information of the underlying (dis-
crete) PDE, which allows us to use POD as a pure numerical technique in an Krylov subspace
method.

In this section, we �rst introduce how POD is realized numerically by example (a more
general discussion is provided in Appendix B). Furthermore, the observation, that computed
basis via POD can be used as approximate leftmost eigenspace (eigenvectors related to the
smallest eigenvalues) of the linear equations arising from discretized PDE, is also illustrated
for the same example.

4.1.1. Test Problem: Heat Equation with Various Initial Conditions

As a test problem, we take the following 1D heat equation:





ut − uxx = 0, ∀ (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, x on ∂Ω

u(x, 0) = u0(x),

(4.1)

where Ω = (0, 1).

By Fourier analysis, the solution u(x, t) has the form

u(x, t) =
∞∑

k=1

αke
−λktvk(x), (4.2)

with

λk = (kπ)2,

vk(x) =
√

2 sin(
√
λkx), k = 1, 2, 3, . . .

αk = 〈u0, vk〉L2(Ω).

For di�erent initial conditions, the Fourier coe�cients {αk}∞1 are computed by evaluating
〈u0, vk〉L2(Ω) and presented as follows:

αk =

{
2
√

2
kπ , if k is odd

0, if k is even
, when u0(x) = 1, x ∈ [0, 1], (4.3)

αk =





√
2

kπ , if k mod 2 = 1

−2
√

2
kπ , if k mod 4 = 2

0, if k mod 4 = 0

, when u0(x) =

{
0, x ∈ [0, 1

2)

1, x ∈ [1
2 , 1]

, (4.4)
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αk =
2
√

2

(kπδ)2
sin(

1

2
kπ) [1− cos(kπδ)] when u0(x) =





1
δ + 1

δ2
(x− 1

2), x ∈ [1
2 − δ, 1

2 ]
1
δ − 1

δ2
(x− 1

2), x ∈ [1
2 ,

1
2 + δ]

0, otherwise

.

(4.5)

Here u0(x) is actually set to be 'constant', 'step', 'peak' function respectively. Note that
some terms in the analytic solution (4.2) vanish when the relevant coe�cients equals 0 in
these three cases. This fact has impact on our numerical experiments.

On the Solution

In preparation of latter discussion, we include two approximations of the analytic solution
(4.2) in addition to a numerical solution.

For practical implementation, the exact solution uN of problem (4.1) is given by the partial
sum

uN =

N∑

k=1

αke
−λktvk(x), (4.6)

with a large N ∈ N.
A truncated solution uN0 is given by the partial sum

uN0 =

N0∑

k=1

αke
−λktvk(x), (4.7)

where N0 ∈ N and N0 � N .

To obtain FEM solution uFEM of Problem (4.1), linear spline basis is used for spatial
discretization and implicit Euler scheme is used for time discretization. The domain is par-
titioned as follows:

xi := ih with i = 1, . . . , n, h = 1/(n+ 1),

tj := jτ with j = 1, . . . ,m, τ = T/m.
(4.8)

At each time step, a linear equation

(M + τK)uj = Muj−1 (4.9)

should be solved, where

mass matrix M :=
h

6




4 1

1 4
. . .

. . .
. . . 1
1 4



, sti�ness matrix K :=

1

h




2 −1

−1 2
. . .

. . .
. . . −1
−1 2



.

The FEM solution uFEM is given by a n×m matrix whose j-th column is uj . The other two
solutions uN and uN0 are also evaluated on the same grid (4.8) and represented by n ×m
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matrices in the following numerical experiments.

Remark 4.1.1. It is not hard to see that high frequency terms decay exponentially when t
moves away from 0 in the Fourier series (4.2), i.e. these terms are only visible around t = 0.
Hence uN provides a solution to (4.1) with very high precision already and uN0 can be treated
as very good approximation of the exact solution. This observation also plays an important
role when we choose snapshots to extract the low frequency vectors, as we will see later.

4.1.2. Numerical Experiments

We carry on the numerical experiments step by step as follows. We �rst extract POD basis
from di�erent subsets of snapshots of the solution and compare the POD basis to the solution
to see whether we can extract the major information of the given solution, more precisely,
the nonzero terms in (4.2), by POD. Results are presented for di�erent types of approximate
solution and di�erent initial conditions. Secondly, we illustrate the e�ect of removing the
smallest eigenvalues from the coe�cient matrixM+τK using POD basis. We also try to use
de�ated CG method to compute the numerical solution and compare the e�ciency to that of
using standard CG method. In the end, some discussions are raised for one-shot method of
solving (4.1) numerically, which compute all the time steps of the FEM solution at the same
time.

POD and Practical Implementation

Extracting POD basis from the solution (snapshots) to a time dependent PDE (4.1) can be
achieved by singular value decomposition (SVD), for detailed discussion, we refer to Volkwein
(2011). In Section B.2, alternative implementations are presented, here we choose to solve
an equivalent symmetric eigenvalue problem.

Assume we have a set of column vectors {us1 , us2 , . . . , usl} ⊂ Rn (l < n) and they form a
matrix

X = (us1 , us2 , . . . , usl),

we get a POD-like basis by:

(i) Solving the eigenvalue problem

XTXV = V Λ, where Λ =




λ1(XTX)
λ2(XTX)

. . .

λp(X
TX)


 (4.10)

with λ1(XTX) ≥ λ2(XTX) ≥ · · ·λp(XTX) the p largest eigenvalues (p < l) of the
correlation matrix XTX.

(ii) The basis is given by the columns of the normalized matrix

W = XV Λ−
1
2 . (4.11)

Note that the matrix W is also referred to as POD basis later.
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In the numerical implementation, if too small (maybe even negative) eigenvalues are de-
tected, the corresponding eigenvectors are discarded. Moreover, an extra step of orthogonal-
ization is applied to W for correction.
Throughout this section, some necessary parameters are set as follows:

T = 0.06, N = 10000, N0 = 100,
p = 4, n = 999, m = 900.

See (4.6) and (4.7) for N and N0, (4.8) for n and m. p = rank(W ). Note that p is possible
to be reduced by algorithm automatically in the case lower rank of W is detected. We set
δ = h in (4.5).

Choice of Snapshots

The �rst question one may ask would be whether we can extract the required vectors from
the solution. To answer this, we apply the above process to uN , uN0 and uFEM on the same
mesh, then compare the resulting matrixW to the low frequency vectors given by the Fourier
series (4.2).
The comparison is carried out by SVD. Let V2p = (v1, v2, · · · , v2p) with vi being the �nite

dimensional representation of vi(x), Z = (V2p,W ) is a matrix whose columns are all those of
V2p and W . Here 2p v-vectors are chosen to cover all possible eigenvectors extracted from
W because some Fourier coe�cients in (4.2) are 0 and the corresponding v-vectors are not
in the solution thus will not be extracted by POD. We apply SVD to Z, then the p smallest
singular values indicate the strength of linear relationship of the column vectors of Z (the
closer to 0, the more linearly dependent). Notice that V2p has orthogonal column vectors and
W TW = Ip by construction.
In the numerical experiments, W should not contain small (with respect to norm) vectors,

otherwise these vectors can result in singular values close to 0. The protection is made in
the POD subroutine by adding a reorthogonalization step.

Remark 4.1.2. Using smallest singular values as a indicator of linear dependence of column
vectors in Z is in fact reasonable. To see this more clearly, we let Z = (P, P ) ∈ Rn×2m with

P TP = Im (m < n). Thus ZTZ =

(
Im Im
Im Im

)
. Obviously the kernel of ZTZ is comprised of

all vectors in the form

(
v
−v

)
with v ∈ Rm. This means the multiplicity of the eigenvalue 0

of ZTZ equals m. Since the singular values of Z are the square roots of the eigenvalues of
ZTZ, we conclude that Z has exactly m singular values equal to 0.

Solving the eigenvalue problem (4.10) is not cheap in a high dimensional problem, hence
it is more preferable that as few snapshots as possible are taken for POD. Di�erent subsets
of snapshots are chosen and the choices are compared in the following numerical tests. Note
that according to Remark 4.1.1, the low frequency vectors could be more likely extracted
out of the snapshots which are away from t = 0, while the high frequency terms are almost
absent.
In Figure 4.1, the initial condition u0(x) is set to be constant function, c.f. (4.3). Each

column of points are the p (sometimes less than p) smallest singular values of matrix Z in
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Figure 4.1.: p smallest singular values of Z for di�erent choices of snapshots and di�erent
types of solution. Initial condition is constant function.

which the POD-like basis W is computed from di�erent subsets of snapshots of certain given
solution. More speci�cally, the �rst three columns are the singular values of Z when all
snapshots are taken to generate W and the snapshots come from exact, truncated, FEM
solution respectively.

Here the marks of x-axis mean

'AS': all snapshots ,

'Subset_1': p snapshots with t ∈ [0, (p− 1)τ ],

'Subset_2': p snapshots with t ∈ [0.02, 0.02 + (p− 1)τ ],

'Subset_3': p snapshots with t ∈ [T − (p− 1)τ, T ].

That is to say, we use all snapshots and the subsets of snapshots taken from the beginning,
the middle and the end of the time interval [0, T ] respectively. Notice that the last three
choices only take p vectors for POD, which leads to extremely low numerical cost of solving
the corresponding eigenvalue problem.

We can conclude from Figure 4.1 that

(1) The three di�erent types of solution provide very similar subspace W . This is natural as
the solutions are almost equal.

(2) If proper snapshots are chosen for computing POD basis, the result could be better than
applying POD to all snapshots, in the sense that the columns in Z are more linearly
dependent.

(3) The high frequency eigenvectors are more visible when t is closer to 0, hence the snapshots
farther away from 0 give better approximation of low frequency eigenvectors. Notice
that when 'Subset_1' is taken, the singular values show highly linear independence of
the column vectors in Z, as being pointed out at the beginning.

(4) When 'Subset_3' is taken, all the three types of solution only extracts 3 valid vectors.
The reason could be when t is away from 0, the solution is very small in in�nite norm,
thus su�ers more from numerical error. The snapshot matrix may not even have full
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rank.
Similar results can be seen from Figure 4.2 and Figure 4.3 where the initial condition is

step function (4.4) and peak function (4.5) respectively.
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Figure 4.2.: p smallest singular values of Z for di�erent choices of snapshots and di�erent
types of solution. Initial condition is step function.
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Figure 4.3.: p smallest singular values of Z for di�erent choices of snapshots and di�erent
types of solution. Initial condition is peak function.

Note that the singular values related to FEM solution are sometimes di�erent from exact
or truncated solution. This depends on the initial condition and the choice of snapshots as
well.

Eigenvalue De�ation

We expect that the column vectors of W well approximate the eigenvectors associated with
the smallest eigenvalues of the coe�cient matrix in the target linear equation so that we can
use them for the de�ation of these smallest eigenvalues to improve the condition.
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4.1. Observation: Catch Smallest Eigenvalues with POD

As we can only have numerical solution in practice, the experiment is con�ned to FEM
solution in this part.

The linear equation (4.9) can be solved by CG method or de�ated-CG method, where the
eigenvalue distribution of the coe�cient matrix is critical for the e�ciency of the correspond-
ing algorithm. As a result, we compare the eigenvalues of the original coe�cient matrix A :=
M + τK to the auxiliary (de�ated) matrix B := HTAH with H = I −W (W TAW )−1W TA,
(c.f. (2.27)). Eigenvalue distribution of matrix B decides the rate of convergence for de�ated
CG method, as discussed in Section 2.3.1.
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Figure 4.4.: The smallest eigenvalues of A and B where B is obtained by using di�erent
de�ation matrix W . Initial condition is constant function.
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Figure 4.5.: The smallest eigenvalues of A and B where B is obtained by using di�erent
de�ation matrix W . Initial condition is step function.

Figure 4.4, Figure 4.5, Figure 4.6 show the smallest eigenvalues of A and B, where B is
obtained by using di�erent matrices W extracted from di�erent choices of snapshots, e.g. in
Figure 4.4, the �rst column plots the smallest eigenvalues of A, the second plots those of B
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Figure 4.6.: The smallest eigenvalues of A and B where B is obtained by using di�erent
de�ation matrix W . Initial condition is peak function.

where the matrix W used for de�ation comes from all the snapshots.

In these three �gures, the e�ect of de�ation basically agrees with the corresponding analytic
solution and the smallest singular values of Z. Shift of eigenvalues can be observed when W
provides less good approximation of eigenvectors. This is especially obvious when 'Subset_1'
is taken to extract W .

One may notice that not all the small eigenvalues of A are removed. For example, in the
second column of Figure 4.4, only the odd-numbered small eigenvalues disappear. This is
caused by the zero Fourier coe�cients in (4.2), given by (4.3). More speci�cally, the terms
related to such coe�cients are actually not contained in the solution at all. Hence such
information can not be extracted by POD, i.e. these eigenvectors are missing in W .

E�ciency of CG Method

We now use (de�ated) CG method to solve the heat equation step by step in time direction,
then compare the average iteration numbers (total iteration numbers divided bym). Di�erent
de�ation matrices are used. Specially, we also use Vp (i.e. the �rst p columns of V ) for
de�ation. As being shown in the previous numerical experiment, the columns of Vp span
more or less the same subspace as those of W do.

In the CG algorithm, the initial guess is given by the solution of previous linear equation,
stopping criterion is based on relative reduction, i.e.

‖rk‖∞
‖r0‖∞

≤ ε,

the tolerance ε is set to be 1e− 9 here.

Note that when the initial condition is constant or step function, W (Subset_3) only con-
tains 3 vectors, although we set p = 4 here. One invalid vector is discarded by the POD
subroutine.

In Table 4.1, the �rst column presents the initial condition, the second column gives the
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Init. Cond. None W(AS) W(Subset_1) W(Subset_2) W(Subset_3) Vp
constant 29.6 11.9 24.4 8.5 17.3 19.0

step 32.9 21.5 29.9 16.8 20.9 20.9

peak 32.3 19.2 28.8 12.6 20.1 21.2

Table 4.1.: Average iteration numbers of CG method with di�erent de�ation matrices
for di�erent initial conditions.

average iteration numbers of standard CG method for solving linear equations (4.9). The next
columns are the average iteration numbers for de�ated CG method using di�erent de�ation
matrix. The reduction in iteration number when de�ated CG method is applied is reasonable
since some small eigenvalues are de�ated, c.f. Figure 4.4, Figure 4.5, Figure 4.6.
The corresponding CPU time is presented in Table 4.2. The �gures are averages of 20

repeated computations.

Init. Cond. None W(AS) W(Subset_1) W(Subset_2) W(Subset_3) Vp
constant 2.59 1.83 3.60 1.32 2.60 2.80

step 2.89 3.21 4.41 2.53 3.11 3.09

peak 2.83 2.86 4.26 1.93 4.61 3.20

Table 4.2.: CPU time (in second) of CG method with di�erent de�ation matrices for
di�erent initial conditions.

Combining the results in Table 4.1 and Table 4.2, we can conclude that our de�ation
strategy can possibly save much computational e�ort. However, in many cases, CPU time of
de�ated CG method is more than that of standard CG although iteration numbers are less.
This is mainly because each iteration of de�ated CG method involves one extra matrix-vector
product and solution of a small linear equation, see Step 9 in Algorithm 2.5. Such additional
cost takes signi�cant proportion in 1D problem, however, its weight will be reduced in higher
dimensional problems, when the coe�cient matrix is more sparse. This will take place in the
test problems of next sections.

De�ation Matrix for One-Shot Method

Instead of solving time steps sequentially, one-shot method computes all the time steps at
the same time. In the case of our test problem (4.1), it means we need to solve the following
linear equation:




M + τK
−M M + τK

. . .
. . .

−M M + τK







u1

u2
...
um


 =




Mu0

0
...
0


 =: g. (4.12)

Let B be the coe�cient matrix in (4.12), and ū = (uT1 , u
T
2 , . . . , u

T
m)T , then (4.12) can be

rewritten into
Bū = g.
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Since B is not symmetric, a nonsymmetric solver like GMRES can be applied to solve (4.12).
The spectrum of B is dominant for the rate of convergence.

However, our aim is not to solve (4.12), but to examine whether we can still attack the
smallest eigenvalues of the big matrix B using POD basis by constructing a proper de�ation
matrix.

We �rst split matrix B and learn some characteristics of its eigenvalue distribution, which
is surely related to the spectral properties of its nonzero blocks. Let

D =




M + τK
M + τK

. . .

M + τK


 and R =




0
−M 0

. . .
. . .

−M 0


 ,

then B = D +R.

It is not hard to see ‖R‖2 = ‖M‖2 ≤ h. For any eigenvalue λ̂ of B, there exists one
eigenvalue λ of D, such that

|λ̂− λ| ≤ ‖R‖2 ≤ h, (4.13)

see e.g. Corollary 6.3.4 in Horn and Johnson (1985). Hence B has n clusters of eigenvalues
which have values close to the eigenvalues of M + τK.

Suppose we have a matrix W̃ for de�ation of the smallest eigenvalues of M + τK, we give
a corresponding de�ation matrix for B by

W =




W̃

W̃
. . .

W̃




= Im ⊗ W̃ , (4.14)

where ⊗ denotes Kronecker product.

Using W for de�ation, we in fact project the equation (4.12) onto a lower dimensional

subspace by projecting each ui (i = 1, 2, . . . ,m) onto W̃ (subspace spanned by all the column

vectors of W̃ ).

Furthermore, all the column vectors of W approximate the eigenvectors of D based on the
numerical results in the previous experiments, thus they can be treated as rough eigenvectors
of B regarding R a perturbation matrix (c.f. (4.13)). Then we expect that the smallest

p
(

= rank(W̃ )
)
clusters of eigenvalues of B can be de�ated by W . Notice that matrix B is

not symmetric, thus it possibly has complex eigenvalues. We use absolute values for plotting
instead.

The result in Figure 4.7 agrees with what we expect. It is very similar to Figure 4.4, except
that the eigenvalues appear in clusters.

When the discretization gets �ner by the same factor in time and space, the eigenvalues
of B are more distributed, so do the eigenvalues of the corresponding de�ated matrices.
Nevertheless, the de�ation matrix still capture the right clusters of eigenvalues, according to
Figure 4.8
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Figure 4.7.: The smallest eigenvalues of B and Bdef , where Bdef is obtained by using

di�erent de�ation matrix W̃ . Initial condition is constant function. T = 1,
n = 23, m = 24. The eigenvalues here are given in absolute value.
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Figure 4.8.: The smallest eigenvalues of B and Bdef where Bdef is obtained by using

di�erent de�ation matrix W̃ . Initial condition is constant function. T = 1,
n = 39, m = 40. The eigenvalues here are given in absolute value.

Preciser analysis on the smallest eigenvalues of B could be tricky. The smallest eigenvalues
seem to tend to 0 when the grid gets �ner (according to Figure 4.7 and Figure 4.8), hence
they are very sensitive to perturbation. This raises the di�culty of explaining why W can
approximate required eigenvectors of B.

We show the following lemma, which gives a rough explanation by investigating a necessary
condition.

Lemma 4.1.3. Assume

(i) the mass matrix M satis�es ‖M‖2 ≤ c1h
d, with c1 constant, h denotes mesh size and

d is spatial dimension;
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(ii) POD basis (matrix form) W̃ approximates some eigenvectors of the sti�ness matrix K

related to its smallest eigenvalues, i.e. ‖KW̃‖2 ≤ c2, with c2 small constant.

Let W = Im ⊗ W̃ , then we have ‖BW‖2 ≤ 2c1h
d + τc2 and ‖BTW‖2 ≤ 2c1h

d + τc2, where
B is coe�cient matrix in (4.12).

Proof.

‖BW‖2 =

∥∥∥∥∥∥∥∥∥∥




(M + τK)W̃

−MW̃ (M + τK)W̃
. . .

. . .

−MW̃ (M + τK)W̃




∥∥∥∥∥∥∥∥∥∥
2

≤
∥∥∥Im ⊗

(
(M + τK)W̃

)∥∥∥
2

+

∥∥∥∥∥∥∥∥∥




0

−MW̃ 0
. . .

. . .

−MW̃ 0




∥∥∥∥∥∥∥∥∥
2

= ‖(M + τK)W̃‖2 + ‖MW̃‖2
≤ ‖MW̃‖2 + τ‖KW̃‖2 + ‖MW̃‖2
≤ 2‖MW̃‖2 + τc2

≤ 2c1h
d + τc2

Similarly, ‖BTW‖2 ≤ 2c1h
d + τc2. �

Assumption (i) in Lemma 4.1.3 can be satis�ed by choosing appropriate basis functions for
spatial discretization. For some examples, see Section 1.6 in Elman et al. (2005). Assumption
(ii) is reasonable based on the previous numerical tests.

Remark 4.1.4. When W̃ well approximates some eigenvectors of K related to nearly 0
eigenvalues, KW̃ should be a almost null matrix, thus ‖KW̃‖2 is very small. If W approx-
imates the left most eigenspace of B, then ‖BW‖2 should also be close to 0. The second
term of the upper bound given by Lemma 4.1.3, i.e. τc2, is indeed small by assumption (ii).

Notice that τc2 could be relatively larger if we embed some random matrices instead of W̃
in B. In such a case, this term drives the upper bound away from 0.

4.2. De�ation with POD for a Linear Quadratic Problem

4.2.1. A Linear Quadratic Problem and its Optimality System

In the last section, we provided a de�ation matrix for one-shot method in the case of solv-
ing a PDE. In order to illustrate the fact that a de�ation matrix based on (4.14) can still
capture desired eigenvalues when one shot scheme is adopted for solving PDE-constrained op-
timization problem, we �rst carry out some experiments on the following 3D linear quadratic
problem:
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min
1

2

∫ T

0

∫

Ω
(y(x, t)− ȳ(x, t))2 dxdt+

β

2

∫ T

0

∫

Ω
(u(x, t))2 dxdt

s.t. yt −∆y = u in Ω,

y = 0 on ∂Ω,

y(x, 0) = y0(x).

(4.15)

with Ω = (0, 1)3, T = 1.

According to Stoll and Wathen (2010), the adjoint equation of the PDE in (4.15) is

−pt −∆p = χΩ(y − ȳ),

p = 0, on ∂Ω, (4.16)

p(x, T ) = 0,

where χΩ is an indicator function for the domain Ω.

The discretization is done exactly like in Stoll and Wathen (2010). Using trapezoidal
rule for approximating integral, linear spline basis for FEM on a uniform grid and implicit
Euler for time discretization (τ := T/m denotes time di�erence), a discretize-then-optimize
approach leads to such a KKT system



τA 0 BT

0 βτA −τCT
B −τC 0





y
u
p


 =



τAȳ

0
d


 , (4.17)

with y = (yT1 , . . . , y
T
m)T , u = (uT1 , . . . , u

T
m)T ∈ Rmn3

, A = blkdiag(1
2M,M, . . . ,M, 1

2M),

C = blkdiag(M, . . . , M) ∈ Rmn3×mn3
, d = ((My0)T , 0, . . . , 0)T + τCf ∈ Rmn3

and

B =




M + τK
−M M + τK

. . .
. . .

−M M + τK


 , (4.18)

Here m and n are number of time steps and number of grid points in each spatial dimension
respectively.

We can either solve (4.17) directly or solve an equivalent linear system of lower dimension,
which can be obtained by eliminating the control variable like in Simoncini (2012).





(
τA BT

B − τ
β
CA−1CT

)(
y
p

)
=

(
τAȳ
d

)
,

u =
1

β
A−1CT p.

(4.19)

Notice that CA−1CT = blkdiag(2M,M, . . . ,M, 2M). Thus we only need to solve the linear
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equation in (4.19) (denoted by Ax = b) and evaluate u explicitly to get the discrete solution
of (4.15). The matrix A is symmetric but not necessarily positive de�nite, hence we choose
to use MINRES.

4.2.2. De�ation Strategy

First of all, we take snapshots of both y and p (the discrete solution to the state equation

and the adjoint equation respectively) and compute W̃ ∈ Rn3×l via POD, such a W̃ provides
POD basis for the state equation and adjoint equation at the same time.

The matrix Ŵ applied in the de�ated MINRES algorithm can be constructed to be a block
diagonal matrix as

Ŵ :=

(
W

W

)
∈ R2mn3×2ml, (4.20)

where

W = Im ⊗ W̃ =




W̃

W̃
. . .

W̃



∈ Rmn

3×ml (4.21)

is constructed similar to (4.14).

The de�ation matrix Ŵ actually projects each time instance of both state variable y and
adjoint variable p into the POD subspace, this makes sense since y and p are solutions of
PDEs for which POD can be applied.

If the assumptions of Lemma 4.1.3 are satis�ed, we have

∥∥∥∥
(
τA BT

B − τ
βCA

−1CT

)(
W

W

)∥∥∥∥
2

=

∥∥∥∥
(
τAW BTW
BW − τ

βCA
−1CTW

)∥∥∥∥
2

≤ ‖τAW‖2 + ‖BTW‖2 + ‖BW‖2 +
∥∥∥− τ

βCA
−1CTW

∥∥∥
2

≤ 4c1h
d + 2τc2 + τ

∥∥∥diag
(

1
2MW̃,MW̃ , . . . ,MW̃ , 1

2MW̃
)∥∥∥

2

+ τ
β

∥∥∥diag
(

2MW̃,MW̃ , . . . ,MW̃ , 2MW̃
)∥∥∥

2

≤ 4c1h
d + 2τc2 + τ‖MW̃‖2 + 2τ

β ‖MW̃‖2
≤

(
4 + τ + 2τ

β

)
c1h

d + 2τc2

(4.22)

Thus we expect the de�ation matrix Ŵ can still approximate expected eigenvectors of the
downsized coe�cient matrix thus capture the smallest eigenvalues of A.
Using de�ation strategy requires extra matrix-vector multiplication with W in a de�ated

Krylov subspace method (see Section 2.3), but this can not be very expensive because of the
sparsity of W . In fact, the number of nonzero entries of W is no more than a dense matrix
in R2mn3×l.

According to (4.10), extracting W̃ requires the solving of an eigenvalue problem in R2m

for l eigenpairs. The size of the relative eigenvalue problem is much smaller compared to the
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linear system to be solved, thus it is no trouble in our tests. However, in a real application,
m could be large, the cost of solving eigenvalue problem should be taken into consideration.
In such a case, using a smart subset of snapshots for POD could be necessary, as being
illustrated in Section 4.1.2.

4.2.3. Numerical Experiments

In this part of numerical experiments, we set

y0(x) = 0, ȳ(x, t) = 1000tx1(x1 − 1)x2(x2 − 1)x3(x3 − 1),

thus the optimization problem (4.15) has solution

y∗(x, t) = ȳ(x, t),

u∗(x, t) = −2t
(
x2(x2 − 1)x3(x3 − 1) + x1(x1 − 1)x3(x3 − 1) + x1(x1 − 1)x2(x2 − 1)

)

+x1(x1 − 1)x2(x2 − 1)x3(x3 − 1).

This experiment is designed to verify our de�ation strategy for the linear problem (4.19),
rather than developing a solver for the linear quadratic problem (4.15).

Because we need the solution for computing POD basis, we �rst solve the linear system
(4.19) with standard MINRES, then use the solution to build de�ation matrix Ŵ as described
earlier and apply de�ated MINRES to Ax = b. Notice that we do not use the known exact
solution for POD but only for checking the numerical solution. The results obtained by such
an approach are provided in the columns 'De�. MINRES' in Table 4.3.

De�ated MINRES starts its iteration from the solution in the POD subspace (see Algorithm

2.6), in the sense that each time instance of y and p is in the POD subspace W̃ . More precisely,

the initial point of De�ated MINRES is the solution of Ŵ TAŴx0 = Ŵ Tb, which can be
considered to be the reduced order model of (4.19), hence a good initial guess in this case.

For comparison, we start standard MINRES from the same initial point as de�ated MIN-
RES, the results are presented under 'Init. MINRES' in Table 4.3.

Table 4.3 shows the results of the above solvers with respect to di�erent values of regu-
larization parameter β and di�erent dimension l of POD subspace used for de�ation. The
discretized problem has 15 DOF in each spatial dimension and 16 time steps, hence the linear
equation Ax = b has dimension 108, 000. Notice that no preconditioner is used here.

Because of the good initial guess, the initial residuals are fairly small in number in all the
cases. If the POD subspace used for de�ation includes more vectors, it is natural that the
initial guess is better, which results in even smaller initial residual of MINRES iteration.
This fact is re�ected by increasing the dimension of POD subspace l.

Another in�uencing factor in Table 4.3 is the regularization parameter β, which balances
the weight of mass matrix and sti�ness matrix in coe�cient matrix A and leads to di�erent
e�ciency of de�ation. This e�ect could be highly problem dependent. The impact of β in
our case can be easily seen from the last column of Table 4.3, which denotes the percentage
of iteration numbers reduced by embedding our de�ation strategy.
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β l Init. Res.
De�. MINRES Init. MINRES

#it Red.
#it time #it time

1e-2

- 1.32e-5 526 30.30 - - -
1 8.56e-7 133 9.02 344 19.91 61%
2 9.00e-9 57 4.17 132 7.66 57%
3 8.87e-11 33 2.54 39 2.39 15%
4 9.06e-13 9 0.87 11 0.72 18%

1e-3

- 1.32e-5 779 44.51 - - -
1 5.13e-6 224 14.66 487 27.94 54%
2 5.12e-8 100 7.11 276 16.08 64%
3 8.31e-10 68 5.26 104 6.08 35%
4 3.02e-11 17 1.45 26 1.59 35%

1e-4

- 1.32e-5 1733 99.64 - - -
1 3.10e-5 722 47.85 1157 66.19 38%
2 3.28e-6 467 32.53 742 42.95 37%
3 7.50e-9 205 15.23 372 21.29 45%
4 6.85e-10 110 8.69 209 12.06 47%

1e-5

- 1.32e-5 1290 73.84 - - -
1 6.65e-5 735 48.73 857 49.25 14%
2 1.09e-5 391 27.27 762 43.68 49%
3 3.61e-8 187 13.90 508 29.41 63%
4 5.38e-9 46 3.65 280 16.27 84%

1e-6

- 1.32e-5 565 32.31 - - -
1 8.29e-5 334 22.03 337 19.36 1%
2 7.89e-6 162 11.39 372 21.43 56%
3 3.10e-8 78 5.93 227 13.40 66%
4 1.50e-9 10 0.90 114 6.72 91%

Table 4.3.: Comparison of de�ated MINRES and POD-initialized MINRES
for distributed control problem (4.15). Time is given in second.
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Figure 4.9.: Iteration history of de�ated MINRES and POD-initialized MINRES
with di�erent POD basis. β = 1e− 3, l = 2 and l = 3.
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Figure 4.9 plots the iteration history of the case β = 1e − 3, l = 2 and l = 3, which
is intuitive that our de�ation strategy indeed accelerates the convergence by improving the
slope. The other cases perform in a similar way.

We conclude that de�ation using POD subspace still works as expected when one shot
scheme is used, in addition to what we veri�ed in Section 4.1.2.

4.3. Preconditioned De�ated Algorithm for a Nonlinear

Optimization Problem

For practical use, a preconditioner should be employed in a Krylov subspace method. We
need to verify whether the de�ation strategy developed in the last section works along with
common preconditioning or not.

4.3.1. SQP Framework for Solving a Nonlinear Boundary Control

Problem

We take the following 3D nonlinear Dirichlet boundary control problem for test:

min
1

2

∫ T

0

∫

Ω
(y(x, t)− ȳ(x, t))2 dxdt+

β

2

∫ T

0

∫

∂Ω
(u(x, t))2 dxdt =: J(y,u)

s.t. yt −∆y − f(y) = 0 in Ω,

y = u on ∂Ω,

y(x, 0) = y0(x).

(4.23)

Here Ω = (0, 1)3, T = 1, f(y) is a nonlinear function, ȳ is desired state.

The problem is handled with a discretize-then-optimize approach very similar to the linear
quadratic problem in the previous section. As well, we use one-shot scheme to deal with the
time instances.

We use Q1-element for the �nite element discretization on a uniform grid in space. Implicit
Euler scheme is used for time discretization. Like in Rees, Stoll and Wathen (2010), we �rst
partition the mass matrix M and sti�ness matrix K as follows:

M =

(
MII MBI

MIB MBB

)
, K =

(
KII KBI

KIB KBB

)
.

Here the subscript 'I' denotes the index set of interior nodes of Ω while 'B' denotes that of
the boundary nodes. Thus for instance, MBB denotes the boundary mass matrix. Obviously
MBI = MT

IB and KBI = KT
IB.

Using trapezoidal rule to approximate the integrals, the objective functional in (4.23)
becomes

J(y, u) =
τ

2
(y − ȳ)TA(y − ȳ) +

βτ

2
uT Ãu, (4.24)

where y = (yT1 , y
T
2 , . . . , y

T
m)T , u = (uT1 , u

T
2 , . . . , u

T
m)T are column vectors consisting of solu-

tions at all time steps, A = blkdiag(1
2MII,MII, . . . ,MII,

1
2MII), Ã = blkdiag(1

2MBB, MBB,
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. . ., MBB,
1
2MBB), m and τ are the same as in the last section.

Let C = blkdiag(MII, . . . ,MII), C̃ = blkdiag(MBI, . . . ,MBI), fI(y) and fB(u) are pointwise
�nite dimensional approximations (vector valued) of f(y) evaluated at y and u respectively,

B =




MII + τKII

−MII MII + τKII

. . .
. . .

−MII MII + τKII


 ,

B̃ =




MBI + τKBI

−MBI MBI + τKBI

. . .
. . .

−MBI MBI + τKBI


 ,

then embedding boundary control into the PDE constraint (c.f. Rees, Stoll and Wathen
(2010)) in (4.23) leads to the following discrete constraint:

e(y, u) := By − τCfI(y) + B̃u− τC̃fB(u) = 0. (4.25)

Now we need to solve the nonlinear constrained optimization problem

min J(y, u)

s.t. e(y, u) = 0.
(4.26)

There are many ways to solve this kind of problem, for such a discussion see e.g. Herzog
(2010). Here we adopt an SQP method. Equivalently, we apply Newton's method to the
Lagrangian of (4.26), which is formulated as

L(y, u, p) =
τ

2
(y − ȳ)TA(y − ȳ) +

βτ

2
uT Ãu+ pT e(y, u), (4.27)

where p denotes the Lagrange multiplier. After simple calculation, the k-th Newton step
reads 


τA+ Pk 0 QTk

0 βτÃ+ P̃k Q̃Tk

Qk Q̃k 0






δyk

δuk

δpk


 = −



τA(yk − ȳ) +QTk pk

βτÃuk + Q̃Tk pk

B(yk) + B̃(uk)


 , (4.28)

with

Pk =− τdiag
(
f ′′I (yk) ◦ (CT pk)

)
, Qk =B − τCdiag

(
f ′I(yk)

)
,

P̃k =− τdiag
(
f ′′B(uk) ◦ (C̃T pk)

)
, Q̃k =B̃ − τC̃diag

(
f ′B(uk)

)
.

Here "◦" denotes (componentwise) Hadamard product, f ′I(y) and f ′′I (y) are componentwise
derivatives of fI(y), the same to f ′B(u) and f ′′B(u).

For a similar derivation of such an approach applied to a nonlinear PDE-constrained op-
timization problem, we refer to Benzi et al. (2011).
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In terms of the new iterate, (4.28) can be rewritten into



τA+ Pk 0 QTk

0 βτÃ+ P̃k Q̃Tk

Qk Q̃k 0






yk+1

uk+1

pk+1


 =



τAȳ + Pkyk

P̃kuk

g(yk, uk)


 , (4.29)

with g(yk, uk) = τC
(
fI(yk)− f ′I(yk) ◦ yk

)
+ τC̃

(
fB(uk)− f ′B(uk) ◦ uk

)
.

Solving (4.29) is equivalent to solving the following system







τA+ Pk QTk

Qk −Q̃k
(
βτÃ+ P̃k

)−1
Q̃Tk



(
yk+1

pk+1

)
=

(
τAȳ + Pkyk

h(yk, uk)

)
,

uk+1 =
(
βτÃ+ P̃k

)−1 (
P̃kuk − Q̃Tk pk+1

)
.

(4.30)

with h(yk, uk) = g(yk, uk) − Q̃k

(
βτÃ+ P̃k

)−1
P̃kuk. The �rst equation in (4.30) will be

referred to as Akxk = bk.

The idea of solving a relatively easier equivalent downsized system instead of the original
system proposed in Simoncini (2012) is based on the assumption that part of the variables
are easy to evaluate in the saddle point problem. In our case, transforming (4.29) into (4.30)
requires uk+1 is easy to evaluate, more precisely, the inversion of βτÃ + P̃k is cheap. To
achieve this, we use diagonally lumped matrix M throughout the numerical experiments in
this section, which makes βτÃ+ P̃k a diagonal matrix.

Eliminating the second equation of (4.29) and explicitly evaluating control variable u leaves
only y and p in the linear equation to be solved. In case the PDE constraint does not contain
a nonlinear functional, p could be interpreted as the solution to the adjoint equation, which
is a PDE similar to the constraint, see (4.16). Hence y and p would be solutions to PDEs, the
numerical solution of which could bene�t from using POD basis. However, in the nonlinear
problem (4.23), the coupling of y and Lagrange multiplier p is obscure because of nonlinearity.
Despite this, we still exploit POD basis to gain numerical bene�ts.

4.3.2. Preconditioning

Let n denote DOF in each dimension, then the coe�cient matrix in (4.30)

Ak =

(
τA+ Pk QTk
Qk −Rk

)
∈ R2mn3×2mn3

,

with Rk = Q̃k

(
βτÃ+ P̃k

)−1
Q̃Tk .

Since Ak is symmetric but not necessarily positive de�nite, MINRES is preferable for
solving the linear equation in (4.30). Now we focus on how to precondition this linear
equation with an block structured preconditioner and using de�ation strategy to accelerate
the convergence of MINRES by further removing the smallest eigenvalues. For de�ation we
extract POD basis from the solution to a previous Newton step and expect it to not only
provide a good initial guess for the current step but also capture the desired eigenvalues.
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Aiming to use de�ation strategy combined with a preconditioner, we employ the de�ated
MINRES algorithm derived in Olshanskii and Simoncini (2010), see Algorithm 2.6 in Section
2.3.2.

In general, selecting a proper preconditioner requires much consideration regarding the
type of iterative solver being used as well as the structure and properties of the coe�cient
matrix, for such discussion we refer to Benzi et al. (2005).

Similarly as in Simoncini (2012), here we simply use the ideal block diagonal preconditioner
suggested in Silvester and Wathen (1994):

Pbdk =

(
τA+ Pk

Rk +Qk (τA+ Pk)
−1QTk

)
.

The clustering property of Pbdk is analyzed for a discrete Stokes problem in Silvester and
Wathen (1994), an extended analysis is raised in Zulehner (2010) for parameter dependent
saddle point problems.

Applying a preconditioner is usually a lot numerical e�ort. In this application, applying
Pbdk means solving a linear equation with the preconditioner as coe�cient matrix in each
MINRES iteration. As we use lumped mass matrix, the (1,1)-block of Pbdk is a diagonal

matrix, thus the inversion of this block is trivial. Furthermore, βτÃ+ P̃k is also a diagonal
matrix, hence the Schur complement of τA + Pk in Ak, i.e. the (2,2)-block of Pbdk , can be
evaluated explicitly in a very cheap way. The main e�ort of applying Pbdk is to solve a linear
equation involving its (2,2)-block, which can be performed using iterative solvers such as CG,
MINRES or fast algorithm like algebraic multi-grid method (AMG).

Notice that in more general case, the block τA + Pk in the preconditioner may not be
easily invertible, Krylov subspace methods can be one choice. There are of course other
solutions available, like Chebyshev semi-iteration (see Wathen and Rees (2009)). It is also
common that the Schur complement of the �rst block is expensive to compute, thus a proper
approximation is preferable in practice. A commonly used one is proposed in Rees, Dollar
and Wathen (2010). Most recently, a regularization- robust approximation is proposed in
Pearson and Wathen (2011) and its application in preconditioning can be found in Pearson
et al. (2011).

Another fact should be noticed is, the linear equation involves the preconditioner could
also be ill-conditioned, thus a second level preconditioning might be also necessary. For the
experiment of our nonlinear test problem, this will be further discussed later.

4.3.3. Numerical Experiments

Our approach for solving the nonlinear problem (4.23) is summarized in Algorithm 4.1.

All the numerical experiments in this section are carried out in Matlab. For �nite element
discretization, we use the matlab interface of GetFem++ (Renard and Pommier (n.d.)).
Q1 -element is adopted.

For solving the sequence of linear systems (4.30), we apply Algorithm 4.1 and �x β = 1e−4,
l = 4, n = 15, m = 16. Thus Akxk = bk is of dimension 108, 000. The desired state is set to
be ȳ = 1000tx1(x1 − 1)x2(x2 − 1)x3(x3 − 1).

The de�ated MINRES matlab routine is revised from the same code (a variant of MINRES
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Algorithm 4.1 Nonlinear solver using POD-based preconditioning

1: Solve A1x1 = b1 by Pbd1 -preconditioned MINRES and compute u1 directly;
2: Compute POD basis for y and p, build de�ation matrix W ;
3: for k > 1 do
4: Solve Akxk = bk by Pbdk -preconditioned de�ated MINRES and compute uk directly;
5: Update W if necessary;
6: k ←− k + 1;
7: end for

other than the original MINRES method proposed in Paige and Saunders (1975)) as in
Olshanskii and Simoncini (2010) subject to the algorithm therein. Further implementation
hints about de�ated MINRES can also be found in the same paper.

The preconditioner Pbdk is applied by solving the relevant linear equation to a certain
low precision via MINRES. Notice that the ideal preconditioner is applied here, despite the
inaccurate MINRES solver. The preconditioner itself still has large condition number, hence
we use an additional diagonal preconditioner (the main diagonal of Pbdk ) for the second level
preconditioning. The above strategy of applying the preconditioner Pbdk is chosen only for
simplicity of implementation.

For comparison, we solve Akxk = bk via Pbdk -preconditioned MINRES using the same
preconditioning strategy for all k.

Since there is no globalization in Algorithm 4.1, we need start the outer iteration from an
initial point which is close enough to the solution. That is xk = 0 in our case. The outer
(SQP) iteration is stopped at a tolerance of 10−5 and the linear equations Akxk = bk are
solved to the precision 10−10.

Table 4.4 shows the performance of de�ated MINRES and standard MINRES for solving all
the linear subproblems when the nonlinear term is set to be f(y) = y2 and hk := xk − xk−1.

k
MINRES De�ated-MINRES

#it time ‖hk‖∞ #it time ‖hk‖∞
1 52 102.45 6.93e+2 - - -

2 45 84.77 6.14e+1 32 51.72 6.14e+1

3 45 85.77 4.02e−1 30 37.75 4.02e−1
4 48 91.43 1.46e−5 28 37.00 1.46e−5
5 46 86.80 1.12e−7 29 39.27 1.43e−7

Table 4.4.: Comparison of MINRES and de�ated MINRES for solving nonlinear
problem (4.23). f(y) = y2.

Note that CPU time for de�ated MINRES already includes the cost of POD, which is in
fact ignorable here. This is because we only have 16 time steps, thus POD only needs the
solving of a small eigenvalue problem in R32. When the number of time steps is high, in
addition to choosing a smart subset of all the snapshots for POD, it could be necessary to
reuse POD subspace for multiple steps in order to compute it less frequently.

Figure 4.10 presents iteration history of the second Newton step. The slope of de�ated
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MINRES is signi�cantly steeper, which obviously bene�ts from the de�ation with POD.
The starting point is already very close the solution, thus the good initial guess is no more
observable. Here we do not use the previous solution as starting point of next Newton step,
otherwise there will be few MINRES iterations. Instead, we use the same starting point for
all k, for better comparison.
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Figure 4.10.: Iteration history of the second Newton step, when f(y) = y2

k
MINRES De�ated-MINRES

#it time ‖hk‖∞ #it time ‖hk‖∞
1 54 109.76 6.18e+2 - - -

2 47 92.62 1.53e+1 28 77.00 1.53e+1

3 46 91.18 5.62e−2 28 74.23 5.62e−1
4 50 100.67 5.69e−5 28 75.24 5.69e−5
5 48 92.12 1.48e−7 28 74.74 2.49e−9

Table 4.5.: Comparison of MINRES and de�ated MINRES for solving nonlinear
problem (4.23). f(y) = 100y

1+y2 .

k
MINRES De�ated-MINRES

#it time ‖hk‖∞ #it time ‖hk‖∞
1 47 96.28 7.01e+2 - - -

2 59 121.68 2.87e+1 34 102.76 2.87e+1

3 53 109.48 3.58e−1 34 69.98 3.58e−1
4 53 106.67 5.91e−5 35 69.26 5.90e−5
5 53 107.13 4.63e−8 34 67.52 2.75e−7

Table 4.6.: Comparison of MINRES and de�ated MINRES for solving nonlinear
problem (4.23). f(y) = 5 sin y.

Results for di�erent nonlinear terms, i.e. f(y) = 100y
1+y2 and f(y) = 5 sin y, are shown in
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Table 4.5 and Table 4.6, which are very similar to Table 4.4. The e�ciency of POD-based
preconditioning varies with the nonlinear term.

4.4. Conclusion and Outlook

The numerical results we obtain in this chapter are encouraging. We establish the fact that
POD basis can be used as leftmost eigenvectors by the experiments on the heat equation in
Section 4.1. The tests on the linear quadratic problem verify e�ectiveness of our de�ation
strategy for a downsized KKT system. We also get an alternative view about the de�ated
MINRES algorithm, i.e. the algorithm solves a reduced order model and improves the so-
lution by MINRES iterations. The regularization parameter β should be paid attention to
because of its in�uence on the e�ciency of de�ation. By solving a nonlinear PDE-constrained
optimization problem in Section 4.3, the de�ated preconditioned MINRES solver outperforms
same preconditioned MINRES without de�ation, with many restrictions though.
As one may notice, the de�ated preconditioned MINRES solver proposed in Section 4.3

does not include a global strategy, thus the experiments are carried out using initial points
close to the solution. For practical use, it would be necessary to have globalization in Algo-
rithm 4.1.
If we have large-scale problems, cheaper calculation of POD basis should also be taken

under consideration. In order to further reduce the cost, reusing POD basis for several steps
could be necessary, thus an strategy of updating POD basis from time to time is required.
We only test one block diagonal preconditioner in Section 4.3, more experiments involving

di�erent block structured preconditioners like those referred to in Section 2.2 and di�erent
ways of applying the preconditioners should be tested. Moreover, di�erent iterative solver
could also be tried and compared, e.g. the Bramble-Pasciak-like CG method discussed in
Section 2.2.2.
The research in this chapter is still at the stage of numerical experiments, theoretical

explanations and analysis are also of great interest.
Another issue is the downsizing in Section 4.2 and Section 4.3 heavily relies on the use of

lumped mass matrix, this could be a restriction of using the de�ated preconditioned MINRES
solver. For overcoming this shortage, we propose the de�ation matrix

Z =



W 0
0 0
0 W




for original linear system (4.17), where W is de�ned as (4.21).
If the assumptions of Lemma 4.1.3 are satis�ed, for (4.17) we have

∥∥∥∥∥∥



τA 0 BT

0 βτA −τCT
B −τC 0





W 0
0 0
0 W



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥



τAW BTW

0 −τCTW
BW 0



∥∥∥∥∥∥

2

≤ ‖τAW‖2 + ‖τCTW‖2 + ‖BTW‖2 + ‖BW‖2
≤ τ

∥∥∥∥diag

(
1

2
MW̃,MW̃ , . . . ,MW̃ ,

1

2
MW̃

)∥∥∥∥
2

+ τ
∥∥∥diag

(
MW̃, . . . ,MW̃

)∥∥∥
2
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+4c1h
d + 2τc2

≤ 2τ‖MW̃‖2 + 4c1h
d + 2τc2

≤ (4 + 2τ)c1h
d + 2τc2

The upper bound is small, thus the de�ation matrix Z seems to be reasonable.
To examine this, we experiment on 2D version of the linear quadratic problem (4.15) like

we do in Section 4.2, with

y∗(x, t) = ȳ(x, t) = tx1(x1 − 1)x2(x2 − 1),

and
u∗ = x1(x1 − 1)x2(x2 − 1)− 2t

(
x1(x1 − 1) + x2(x2 − 1)

)
.

Here Ω = (0, 1)× (0, 1), T = 1.
Furthermore, we set the parameters to be

β =
1

500
, m = 30, n = 20.

Thus the linear system to be solved has 24000 unknowns. The discretization and derivation
of the KKT system are almost the same as in Section 4.2, hence we omit them here.
De�ated MINRES and POD-initialized MINRES are compared and the results are given

by Table 4.7. We can obviously see that de�ation improves the numbers of iteration a lot for
di�erent dimensional POD basis. However, CPU time is higher except the case l = 1. This
is similar to what we see from the experiment on the e�ciency of de�ated CG method in
Section 4.1. It could be changed if we shift to a 3D problem, where the extra matrix-vector
product in de�ated MINRES algorithm weights relatively less in the total computational
e�ort.

tol = 1e-8 l Init. Err.
Def-MINRES Init. MINRES
#it CPU time #it CPU time

MINRES - 3.75e-3 3452 31.82 - -

MINRES(W̃1)

1 8.36e-7 1547 19.94 2493 22.67
2 3.72e-7 1427 25.79 2409 22.12
3 7.68e-8 1415 31.11 2453 21.96
4 4.66e-8 1383 37.52 2449 21.90

Table 4.7.: Comparison of de�ated MINRES and POD-initialized MINRES for
distributed control problem (4.15). Time is given in second.

An interesting phenomenon in Table 4.7 is that the number of iterations does not decrease
much when we use higher dimensional POD subspace for de�ation. This is probably caused
by the control variable u, more precisely, solving for u requires certain amount of iterations,
which can not be improved by de�ation using Z.
If we use a matrix like Z for de�ation in Algorithm 4.1, then we will need a di�erent

preconditioner. The e�ect of such a de�ation strategy combined with a proper preconditioner
requires further study.
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Appendix A.

Toeplitz Matrix

A Toeplitz matrix is a matrix with all its diagonals constant. The structure of Toeplitz
matrices is very bene�cial for storage and computation. Since we mainly focus on precon-
ditioning for iterative methods, we introduce Toeplitz matrices with corresponding e�cient
matrix-vector multiplication here. For a comprehensive study of Toeplitz systems and related
solvers, we refer to Chan and Jin (2007) and Ng (2004).

A.1. Toeplitz Matrix and Generating Function

We �rst give the rigid de�nition of Toeplitz matrix as follows.

De�nition A.1.1. A matrix T ∈ Cn×n is called Toeplitz, if T is determined by the 2n− 1
scalars a−(n−1),. . ., a−1, a0, a1, . . ., an−1 with Tij = ai−j for all i and j, i.e. the Toeplitz
matrix Tn is of the following form:

Tn =




a0 a−1 · · · a2−n a1−n

a1 a0
. . . a2−n

...
. . .

. . .
. . .

...

an−2
. . .

. . . a−1

an−1 an−2 · · · a1 a0



. (A.1)

Toeplitz matrices are usually dense, however, Toeplitz can be somewhat treated as a sparse
structure, since storing a matrix Tn de�ned by (A.1) only requires the storage of the 2n− 1
scalars a−(n−1),. . ., a−1, a0, a1, . . ., an−1.

In fact, an in�nite Toeplitz matrix T∞ (by De�nition A.1.1 with n going to in�nity) can
be uniquely determined by a so-called generating function g, which is de�ned by the Fourier
series

g(x) =

∞∑

k=−∞
ake
−ikx, x ∈ [−π, π]. (A.2)

Precisely speaking, the entries of T∞ are given by

ak =
1

2π

∫ π

−π
g(x)eikx dx, k = 0,±1,±2, · · · . (A.3)

Let Tn be the matrix generated by g in the sense that its entries are determined as (A.3)

91



Appendix A. Toeplitz Matrix

with k = 0,±1, . . . ,±(n− 1), notice that when g is a real-valued function,

a−k =
1

2π

∫ π

−π
g(x)e−ikx dx = āk, ∀k ∈ Z,

that means for all n ∈ N, Tn must be Hermitian. Additionally, if g is also even, i.e. g(−x) =
g(x), then Tn is real and symmetric for all n ∈ N.
The following theorem indicates the relationship between g and the spectrum of Tn.

Theorem A.1.2 (Grenander and Szegö (1984)). Let g be a real-valued function in L1[−π, π]
de�ned by (A.2). Then the spectrum σ(Tn) of Tn satis�es

σ(Tn) ⊆ [gmin, gmax], ∀ n ≥ 1,

where gmin and gmax are the essential in�mum and the essential supremum of g respectively.
Moreover, if gmax > gmin, then

gmin < λmin(Tn) ≤ λmax(Tn) < gmax.

In particular, if gmin > 0, then Tn is positive de�nite for all n ∈ N.

A.2. Circulant Matrix

As a special kind of Toeplitz matrices, circulant matrices have more remarkable properties,
which are very important especially from a computational point of view.

De�nition A.2.1. C ∈ Cn×n is called circulant if it is a Toeplitz matrix where each column
is a circular shift of its preceding column or a−i = an−i in Tn (i = 1, ..., n − 1), i.e. the
circulant matrix Cn is of the following form:

Cn =




c0 cn−1 · · · c2 c1

c1 c0
. . . c2

...
. . .

. . .
. . .

...

cn−2
. . .

. . . cn−1

cn−1 cn−2 · · · c1 c0



.

With respect to n× n Fourier matrix Fn (unitary matrix), whose entries are given by

(Fn)ij =
1√
n
ωij , ω = e−2πi/n, i, j = 0, . . . , n− 1, (A.4)

a very useful diagonalization of circulant matrices is given by the following theorem.

Theorem A.2.2 (Davis (1979)). Let Cn ∈ Rn×n be circulant. Then it has the decomposition

Cn = F ∗nΛFn, (A.5)

where Λ = diag(λ1, . . . , λn), λj being the jth eigenvalue of Cn, j = 1, . . . , n.
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As a result of Theorem A.2.2, more accurately, by comparing the �rst column of FnCn and
ΛFn, we can get the relationship

(λ1, . . . , λn)T =
√
nFn(c0, . . . , cn−1)T ,

thus Λ can be computed by one Fast Fourier Transform (FFT). Furthermore, the matrix-
vector product Cna = F ∗nΛFna can be computed by three FFTs and one vector multiply
(see e.g. Golub and Van Loan (1996)). Since the computational complexity of Fna via FFT
is O(n log n), the evaluation of Cna takes only O(n log n) operations instead of O(n2) for
common dense matrices. Notice that C−1

n a = F ∗nΛ−1Fna, the numerical e�ort of evaluating
C−1
n a is the same as computing Cna.

{ω}-circulant is a generalized form of circulant structure, the de�nition of {ω}-circulant is
given by

De�nition A.2.3. Let ω = eiθ0 with θ0 ∈ [−π, π]. An n × n matrix Cωn is said to be an
{ω}-circulant matrix if it has the spectral decomposition

Cωn = Ω∗nF
∗
nΛnFnΩn.

Here Ωn = diag(1, ω−1/n, . . . , ω−(n−1)/n) and Λn is a diagonal matrix containing the eigen-
values of Cωn .

In particular, Cωn is a circulant matrix when ω = 1. If ω = −1, Cωn is called skew-circulant
matrix. Similar to matrix-vector product regarding a circulant matrix, FFT can also be
used to accelerate the matrix-vector multiplication involving a skew-circulant matrix, the
computational complexity is still O(n log n), see e.g. Ng (2004).

A.3. E�cient Matrix-Vector Multiplication with Toeplitz

Matrix

The computational advantage of circulant matrices is very attractive, fortunately, it can
be employed to achieve e�cient matrix-vector multiplication for general Toeplitz matrices.
There are two ways to do so, the �rst method embeds a Toeplitz matrix in a large circulant
matrix, the second is splitting a Toeplitz matrix into a circulant matrix and a skew circulant
matrix. We present them as follows.

(i) For a given n × n Toeplitz matrix Tn de�ned by (A.1) and a vector x of dimension n,
the product Tnx can be computed within O(n log n) operations by �rst embedding Tn
into a 2n× 2n circulant matrix

C2n =

(
Tn Bn
Bn Tn

)
with Bn =




0 an−1 · · · a2 a1

a1 0
. . . a2

...
. . .

. . .
. . .

...

an−2
. . .

. . . an−1

an−1 an−2 · · · a1 0



.
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Obviously C2n is a circulant matrix, hence

C2n

(
x
0

)
=

(
Tnx
∗

)

can be evaluated with three FFTs.
(ii) According to Pustyl'nikov (1980), any n × n Toeplitz matrix Tn can be split into the

sum of a circulant matrix Un and a skew-circulant matrix Vn, which are given by

Un =
1

2




a0 a−1 + an−1 a1−n + a1

a1 + a1−n a0
. . .

. . .
. . .

. . . a−1 + an−1

an−1 + a−1 a1 + a1−n a0




and

Vn =
1

2




a0 a−1 − an−1 a1−n − a1

a1 − a1−n a0
. . .

. . .
. . .

. . . a−1 − an−1

an−1 − a−1 a1 − a1−n a0



.

Thus we can compute Unx and Vnx respectively and Tnx is easily obtained by evaluating
Unx+ Vnx.

The storage and computational e�ort of the above two methods are comparable. In Chapter
3, we use the second method though.
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Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a very useful method to generate low-dimensional
approximate representation for large-scale dynamical systems and large data sets. It is mostly
used as a reduced order modeling technique for time dependent partial di�erential equations
since a low-dimensional POD basis is usually able to capture the characteristics of the system
of interest. We �rst review some essential properties of POD following the track of Kragel
(2005) and Kunisch and Volkwein (2002), then we introduce the numerical realization of
POD. For more detailed discussion, we refer to Volkwein (2011).

B.1. POD in Hilbert Space

Let H be a separable Hilbert space endowed with inner product 〈·, ·〉H : H × H → R.
A corresponding norm is naturally given by ‖ · ‖ =

√
〈·, ·〉H . For a given set of elements

(snapshots in the context of dynamical systems) y1, y2, . . ., yn ∈ H, POD provides an
orthonormal basis {φj}kj=1 (k is preassigned and k ≤ n) solving

min
{ψj}kj=1

n∑

i=1

ωi‖yi −
k∑

j=1

〈yi, ψj〉Hψj‖2

s.t. 〈ψi, ψj〉H = δij for 1 ≤ i, j ≤ k.
(B.1)

Here the solution {φj}kj=1 is called a POD basis of rank k, {ωi}ni=1 are positive weights, δij
denotes the Kronecker delta, i.e.

δij =

{
0, if i 6= j,

1, if i = j.

In order to solve the constrained optimization problem (B.1), a bounded linear operator
Yn : Rn → H is introduced, which is de�ned by

Yna =

n∑

i=1

ωiaiyi for a = (a1, a2, . . . , an)T ∈ Rn.

If we further de�ne a weighted inner product on Rn by

〈a, b〉Rn = aTWb for a, b ∈ Rn
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with W = diag(ω1, ω2, . . . , ωn) ∈ Rn×n, then Y∗n : H → Rn, the adjoint operator of Yn, is
given by

Y∗nx = (〈y1, x〉H , 〈y2, x〉H , . . . , 〈yn, x〉H)T for x ∈ H.
Obviously 〈Yna, x〉H = 〈a,Y∗nx〉Rn for all a ∈ Rn, x ∈ H with such notations.

It follows that the autocorrelation operator Rn := YnY∗n ∈ L(H) is given by

Rnx =

n∑

i=1

ωi〈yi, x〉Hyi, for x ∈ H.

Here L(H) denotes the Banach space of all bounded linear operators on H.

It is concluded in Volkwein (2001) that there exists an orthonormal basis {φj}j∈N of H
and a sequence {λj}j∈N of nonnegative real numbers such that

Rnφj = λjφj with λ1 ≥ · · · ≥ λp > 0 and λj = 0 (j > p). (B.2)

Moreover, span{y1, . . . , yn} = span{φ1, . . . , φp}. Using the expressions in (B.2), the solution
to (B.1) and the relevant error formula is given by the following theorem.

Theorem B.1.1. {φj}kj=1 for 1 ≤ k ≤ p satisfying (B.2) solves Problem (B.1), the resulting
truncation error is given by

n∑

i=1

ωi‖yi −
k∑

j=1

〈yi, φj〉Hφj‖2 =

p∑

j=m+1

λj . (B.3)

The proof of Theorem B.1.1 can be found in Volkwein (2001).

B.2. Calculate the POD Basis

For numerical realization, we con�ne ourselves to the special case H = Rm. Thus the
given snapshots {yi}ni=1 are vectors in Rm. If we let Y = (y1, y2, . . . , yn) ∈ Rm×n de-
note the snapshot data matrix, then the linear operator Yn has the matrix form Ȳ :=
(ω1y1, ω2y2, . . . , ωnyn) = YW ∈ Rm×n and its adjoint operator Y∗n is simply given by
Ȳ T := WY T ∈ Rn×m. As a result, Rn = YnY∗n is represented by R := Ȳ Ȳ T ∈ Rm×m.
R is symmetric and positive semide�nite by construction.

If the eigenvalues of R are ordered as in (B.2) and the corresponding (normalized) eigen-
vectors are denoted by {uj}mj=1, i.e.

Ruj = λjuj with λ1 ≥ · · · ≥ λp > 0 and λj = 0 (j > p), (B.4)

a POD basis of rank k(1 ≤ k ≤ p) consists of the �rst k eigenvectors u1, u2, . . . , uk ac-
cording to Theorem B.1.1. In practice, we use the matrix form of the POD basis, i.e.
Uk = (u1, u2, . . . , uk) ∈ Rm×k. Note that the corresponding truncation error formula di-
rectly follows (B.3).

Directly solving the eigenvalue problem Ru = λu is usually not cheap, especially when m
is large, which is normally the case when the problem arises from discretization of a PDE.
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We now introduce alternative ways based on singular value decomposition (SVD) which o�er
possibility of reducing such e�ort.
Assume Ȳ has singular value decomposition

Ȳ = UΣV T = U

(
D 0
0 0

)
V T , (B.5)

where Σ ∈ Rm×n, D = diag(σ1, σ2, . . . , σp) ∈ Rp×p with σ1 ≥ σ2 ≥ . . . ≥ σp > 0, U =
(u1, u2, . . . , um) ∈ Rm×m and V = (v1, v2, . . . , vn) ∈ Rn×n are orthogonal matrices. It is not
hard to see

Ruj = Ȳ Ȳ Tuj = σ2
juj .

Thus λj = σ2
j > 0 and Uk is indeed the left part (the �rst k columns) of U .

Based on the decomposition (B.5), we also have

Ȳ vj = σjuj , Ȳ Tuj = σjvj , Ȳ T Ȳ vj = σ2
j vj .

In order to get Uk, we can directly compute the singular value decomposition (B.5), or
we solve the eigenvalue problem Ȳ T Ȳ v = σ2

j v �rst and compute {uj}kj=1 by uj = 1
σj
Ȳ vj , in

addition to solving (B.4).
We summarize the three ways of computing Uk as follows:
(1) Do SVD to Ȳ ∈ Rm×n.
(2) Solve Ȳ Ȳ Tu = λju in Rm×m.
(3) Solve Ȳ T Ȳ v = λjv in Rn×n for Vk and Uk = Ȳ VkΛ

− 1
2

k .
Here Vk = (v1, v2, . . . , vk) ∈ Rn×k, Λk = diag(λ1, λ2, . . . , λk) ∈ Rk×k. If m < n, method (2)
is preferable to method (3), and vice versa. For discussions on practical implementation, we
refer to Fahl (2000) and the references therein.
We remark that POD and SVD have close connection in a more general sense, which is

studied in Hilbert space in Volkwein (1999).
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