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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit bestimmten mathematischen Eigenschaften
von sogenannten Kompositionsalgebren als Teilräume der unendlich oft differenzierbaren
Funktionen. Eine Kompositionsalgebra ist dabei die Menge

A(ψ) =
{
F ◦ ψ : F ∈ E(Rd,R)

}
,

wobei E(Rn,Rm) den Raum der glatten, also unendlich oft differenzierbaren, Funktionen
auf Rn mit Werten in Rm bezeichnet und ψ ∈ E(Rq,Rd) selbst eine glatte Abbildung ist.
Bekanntlich ist der Raum E(Rn,Rm) versehen mit den Halbnormen

‖F‖K,n = sup{‖DαF (x)‖ : x ∈ K, |α| ≤ n},

wobei K ⊆ Rn kompakt und n ∈ N, ein Fréchetraum.
Wir beschränken uns hierbei im Wesentlichen auf injektive Funktionen ψ und untersuchen
wann die oben erwähnte Kompositionsalgebra abgeschlossen ist. Diese Frage wurde be-
reits von Gläser in [Gla63] sowie Bierstone, Milman und Pawłucki in [BMP96] für reell-
analytische Funktionen ψ untersucht.
Im ersten Kapitel greifen wir eine Charakterisierung von Allan, Kakiko, O’Farrell und Wat-
son aus [AKOW98] auf. Diese beschreibt den Abschluss einer Kompositionsalgebra durch
formale Potenzreihen, falls ψ eine glatte, injektive Kurve einer einzigen reellen Variable
ist. Zuerst befassen wir uns mit der in [AKOW98] erwähnten Komposition von formalen
Potenzreihen und versehen diese mit einer sinnvollen mathematischen Definition. An-
schließend geben wir alternative, funktionalanalytische Beweise für die Ergebnisse aus der
oben erwähnten Arbeit in der Hoffnung, dass diese dazu dienen könnten den Fall q > 1
einzuschließen.

Das zweite Kapitel basiert auf der gemeinsamen Veröffentlichung [KW11] mit J. Wengen-
roth, die teilweise erweitert wurde. Dieser Teil befasst sich ebenfalls mit glatten, injektiven
Kurven. Wir geben drei Bedingungen an, die sowohl notwendig, als auch hinreichend für
die Abgeschlossenheit von A(ψ) sind. Das Hauptresultat lautet wie folgt:

Theorem.
Sei ψ ∈ E(R,Rd) eine injektive Kurve. Die Algebra A(ψ) ist genau dann abgeschlossen,
wenn die folgenden drei Bedingungen erfüllt sind:
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(i) Die Funktion ψ ist eine eigentliche Abbildung,

(d.h. Urbilder von kompakten Mengen sind kompakt)

(ii) jeder kritische Punkt hat endliche Ordnung

(d.h. für alle x ∈ R existiert ein k ∈ N mit ψ(k)(x) 6= 0),

(iii) das Bild ψ(R) ist eine Whitney-reguläre Menge

(d.h. lokal können zwei Punkte ψ(x), ψ(y) durch eine Kurve in ψ(R) verbunden
werden deren Länge C · ‖ψ(x)− ψ(y)‖α nicht überschreitet).

Darüber hinaus stellt sich heraus, dass die drei oben angegebenen Bedingungen äquivalent
dazu sind, dass ψ eine lokal Hölder stetige Umkehrabbildung besitzt.

Das dritte Kapitel stellt Rechenmethoden zur Behandlung des Falles einer injektiven Ab-
bildung ψ : Rq → Rd für q > 1 bereit. Insbesondere beweisen wir eine explizite Formel
(Formel von Faà di Bruno) für die höheren Ableitungen von Kompositionen F ◦ G von
Funktionen, die von mehreren Variablen abhängen. Darüber hinaus können wir folgende
Abschätzung für die Halbnormen der Inversen θ = ψ−1 eines glatten Diffeomorphismus
ψ : U → V angeben, wobei U und V offene Teilmengen des Rn sein sollen. Die Ab-
schätzung lautet:

|||θ(k)(ψ(x))||| ≤ Ck
(
1 + |||ψ|||{x},k

) (k−1)k
2
(
1 + |||ψ′(x)−1|||

) k(k+1)
2 .

Hierbei fassen wir die Ableitung θ(k) : V → Mk(Rn,Rn) als Abbildung mit Werten im
RaumMk(Rn,Rn) der k-linearen Abbildungen auf dem Rn auf, welchen wir mit der Norm

|||T ||| = sup{‖T [r1, ...., rk]‖ : ‖r1‖ ≤ 1, ..., ‖rk‖ ≤ 1}

versehen.

Kapitel 4 verallgemeinert die Techniken aus [KW11] unter Ausnutzung der bereitgestellten
Werkzeuge, um notwendige Bedingungen für die Abgeschlossenheit von A(ψ) zu finden.
Es stellt sich heraus, dass ψ, wie im eindimensionalen Fall, eine eigentliche Abbildung sein
muss. Darüber hinaus muss sie die “untere Distanzabschätzung” erfüllen, das heißt, dass
wir für alle kompakten Teilmengen K ⊆ Rq Konstanten c, γ > 0 finden können, so dass

‖ψ(x)− ψ(y)‖ ≥ c · ‖x− y‖ ·max
{

dist(x,E(ψ)) , dist(y, E(ψ))
}γ

für alle x, y ∈ K gilt. Hierbei bezeichnetE(ψ) die kritische Menge {z : ψ′(z) ist nicht injektiv}.

In Kapitel fünf beschäftigen wir uns mit der Menge I(E(ψ)) von flachen Funktionen (i.e.
die Funktion samt all ihrer Ableitungen verschwindet) auf der kritischen Menge. Wir
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zeigen bereits in Kapitel 4, dass diese Menge stets im Abschluss von A(ψ) enthalten ist.
Das Hauptresultat lautet wie folgt:

Theorem.
Sei ψ ∈ E(Rq,Rd) eine injektive, eigentliche Abbildung mit Whitney-regulärem Bild, die
die untere Distanzabschätzung erfüllt. Dann gilt stets I(E(ψ)) ⊆ A(ψ).

Im Fall einer diskreten kritischen Menge können wir dadurch außerdem beschreiben, wann
A(ψ) abgeschlossen ist und dadurch unser Ergebnis aus Kapitel 2 verallgemeinern.
Zum Schluß betrachten wir einige Spezialfälle, bei denen die kritische Menge E(ψ) nicht
diskret ist. Wir können bei besonderer Struktur von ψ beweisen, dass in diesen Fällen
unter den drei oben genannten Bedingungen A(ψ) abgeschlossen ist.
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Introduction

This work will study the closure and closedness of special subalgebras, so-called composition
algebras, of the space of smooth functions (in one or several variables). Our main interest
will be to give necessary and sufficient conditions for such algebras to be a closed subspace
of the space of smooth functions. To do this properly, let us clarify some notation.
We will always write E(Rn,Rk) for the space

E(Rn,Rk) =
∞⋂
j=1

Cj(Rn,Rk)

of smooth (or C∞) functions on Rn with values in Rk. We endow this space with the family
{‖ · ‖K,` : K ⊆ Rn compact , ` ∈ N} of seminorms defined by

‖f‖K,` = sup{‖Dαf(x)‖ : x ∈ K,α ∈ Nn
0 , |α| ≤ `},

where Dαf denotes the partial derivative of f with respect to the multi-index α ∈ Nn
0 . The

generated locally convex space is Fréchet.

Definition.
For a smooth map ψ ∈ E(Rq,Rd) we define the composition algebra

A(ψ) =
{
F ◦ ψ : F ∈ E(Rd,R)

}
and consider it as a subspace of E(Rq,R) together with the relative topology. We will call
ψ the generator of A(ψ) or simply say that the algebra is generated by ψ.
The composition algebra is the image of the linear map Cψ : E(Rd,R)→ E(Rq,R) defined
by

Cψ(F ) = F ◦ ψ,

which is called composition operator with symbol ψ. The composition F ◦ψ is sometimes
denoted by ψ∗F , for instance by Tougeron in [Tou71], and Bierstone, Milman, and Pawłucki
in [BMP96].

We will often have to deal with real-valued smooth functions on both the source Rq and
range Rd of ψ ∈ E(Rq,Rd). In order to facilitate the reading of the (sometimes rather
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technical) proofs to come, we will always use capital letters for smooth function F ∈
E(Rd,R) defined on the target area of ψ and small letters for functions f ∈ E(Rq,R)
defined on the source of ψ. Note that smooth functions on the domain of ψ are elements
of codomain of Cψ and vice versa.
Let us use this notation to prove the continuity of the composition operator. This is a
short application of the closed graph theorem. Indeed to show the continuity explicitly,
one would need to find for each compact setK ⊆ Rq and n ∈ N some constants c > 0, k ∈ N
and a compact subset L of Rd such that

‖F ◦ ψ‖K,n ≤ c · ‖F‖L,k

for all F ∈ E(Rd,R). This would require to estimate the partial derivatives of F ◦ ψ by
means of partial derivatives of F . This can be done, for instance by using the formula of
Faà di Bruno (cf. [FdB59], page 3) but would be rather technical.
On the other hand Cψ is a linear map between the Fréchet spaces E(Rd,R) and E(Rq,R).
The closed graph theorem (cf. [Rud73], 2.15) states that it is continuous if and only if its
graph

G(Cψ) =
{

(F, F ◦ ψ) : F ∈ E(Rd,R)
}

is a closed subspace of the product E(Rd,R)×E(Rq,R) endowed with the product Fréchet
topology. To prove that G(Cψ) is closed, consider a sequence (Fn, Fn ◦ ψ)n∈N in G(Cψ)
that converges to some (F, f) in E(Rd,R)×E(Rq,R). This implies that both Fn → F and
Fn ◦ ψ → f pointwise and thus

f(x) = lim
n→∞

(Fn ◦ ψ)(x) = lim
n→∞

Fn(ψ(x)) = F (ψ(x)) = F ◦ ψ(x),

hence the required (F, f) ∈ G(Cψ).
Throughout this work, we will mostly consider injective generators ψ ∈ E(Rq,Rd). It might
seem redundant to the reader that we repeat this assumption in every partial result but we
did so on purpose for reasons of completeness. Some results however, such as propositions
1.7 and 2.9, did not require injective maps and might be used to attack related questions
for non-injective generators.
The main goal of our work is to give sufficient and necessary conditions when some injective
map ψ ∈ E(Rq,Rd) generates a closed composition algebra. When given a specific kind
of generator, this can (sometimes) be decided quite easily. Indeed consider the following
example.

Example.
The map defined by ψ : R2 → R2, (x, y) 7→ (x3, y3) is smooth and injective. Moreover it is
a bijection on R2 and even a diffeomorphism on {(x, y) ∈ R2 : x 6= 0 and y 6= 0}. It will
turn out that this map generates a closed composition algebra.
Let us first give an argument why every flat function on the cross

C = {(x, y) ∈ R2 : x = 0 or y = 0}
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is already a composition. We will give the general idea rather than a tedious computation.
Consider some f ∈ E(R2,R) that is flat (i.e. all derivatives vanish) on C. The function
defined by F (x3, y3) = f(x, y) obviously satisfies F ◦ ψ = f and it comes down to showing
that F is smooth on C. To do this one needs to show that (x, y) 7→ f( 3

√
x, 3
√
y) is smooth.

This can be done by computing the partial derivatives and applying l’Hopital’s rule using
the fact that f is flat on the cross.
One can show that the algebra generated by ψ is already closed. This however requires
a lot of work and results (propositions 5.14, 1.7 and a result involving regularly situated
sets, cf. Definition I.5.4 in [Mal67]) as well as a careful decomposition of f ∈ A(ψ) on its
critical set.

Of course the simplicity of the idea behind this example relied heavily on the fact that
we had extensive knowledge of the generator ψ and that the geometrical structure of its
critical set, the cross C, was easy to deal with. For arbitrary smooth functions, this is
generally not the case. Nevertheless we are able to give a necessary condition for the fact
that every flat function on E(ψ) is already a composition no matter the shape of the critical
set E(ψ) = {z : ψ′(z) is not injective}. This condition reads as follows:

Definition.
We say that a map ψ ∈ E(Rq,Rd) satisfies the “lower distance estimate” if the following
holds: For any given compact set K ⊆ Rq there are c, α > 0 such that

‖ψ(x)− ψ(y)‖ ≥ c · ‖x− y‖ · dist(x,E(ψ))α

for all x, y ∈ K.

Basically it requires a certain geometrical property of the critical set. Moreover under
the additional assumptions of properness and Whitney-regularity of ψ(Rq) we also obtain
sufficiency.
Let us cite the main result of this work, proposition 5.12.

Theorem.
Let ψ ∈ E(Rq,Rd) be an injective map that satisfies the following conditions:

(i) ψ is proper,

(ii) ψ(Rq) is a Whitney-regular set (cf. Definition 2.7),

(iii) for any given compact set K ⊆ Rq there are c, α > 0 such that

‖ψ(x)− ψ(y)‖ ≥ c · ‖x− y‖ · dist(x,E(ψ))α

for all x, y ∈ K and where E(ψ) = {z : ψ′(z) is not injective}.
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In this case every smooth function f ∈ E(Rq,R) that is flat on E(ψ) is contained in A(ψ)
and hence can be written as f = F ◦ ψ where we can choose F ∈ E(Rd,R) to be flat on
ψ(E(ψ)).

Let us give a rough sketch of our work.
The first chapter will revisit the work of Allan, Kakiko, O’Farrell, and Watson on the clo-
sure of composition algebras generated by an injective curve. In [AKOW98] and under the
assumption of an injective ψ ∈ E(R,Rd) they explicitly described the functions belonging
to A(ψ) by means of formal power series. Their characterization involved “formal com-
positions of formal power series” and it turns out that a smooth function belongs to the
closure of A(ψ) if and only if it has the “right kind” of Taylor series at every point, namely
the one of a composition F ◦ψ. After giving an exact definition of formal compositions we
give slightly modified proofs that rely more on functional analysis in the hope that they
might hint at a way to extend the result to the case of several variables.
Section 2 is based on the joined work [KW11] with J. Wengenroth and characterizes those
algebras A(ψ) generated by an injective smooth curve ψ ∈ E(R,Rd) that are closed sub-
spaces of E(R,R). The stepping stone to our results is a conjecture by the referee in
[AKOW98] stating that A(Ψ) = A(Ψ) “is probably true for those Ψ : R → Rr that are
proper, injective and have only critical points of finite order”. This conjecture turns out to
be incomplete and we give a simple example for its failure. We prove that ψ generates a
closed composition algebra if and only if its inverse map ψ−1 : ψ(R)→ R is locally Hölder
continuous. This means that for every compact subset L ⊆ ψ(R) we can find constants
cL, γL > 0 depending only on ψ and L such that

‖ψ−1(z)− ψ−1(w)‖ ≤ cL · ‖z − w‖γL .

Substituting ψ(x) = z and ψ(y) = w this is equivalent to

‖x− y‖ ≤ cL · ‖ψ(x)− ψ(y)‖γL

and could be interpreted as some sort of geometric stability of ψ.
The third chapter is a preparation for attacking the case of injective maps ψ ∈ E(Rq,Rd)
of several variables. We discuss the notation of differential calculus of smooth functions
on Rn which will be required until the end of our work. We also use the notation to give
a proof of the multidimensional version of Faà di Bruno’s formula which gives an explicit
way to compute the higher order derivative of a composition F ◦G of two smooth functions
F and G of several variables. We will also discuss some implications of this formula for the
norm-estimates of the inverse map of a diffeomorphism. This estimate reads as follows:
For a given diffeomorphism ψ : U → V with inverse θ = ψ−1, we can find constants Cn
depending only on n such that

|||θ(n)(ψ(x))||| ≤ Cn ·
(
1 + |||ψ|||{x},n

) (n−1)n
2 ·

(
1 + |||ψ′(x)−1|||

)n(n+1)
2 .

Once the symbolism of section 3 has been established we use it to analyze our approach of
the one-dimensional case. There, it turns out that only the behavior of ψ on the critical
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set E(ψ) where the derivative ψ′(x) as a linear map is not injective, is of importance to
decide whether or not f belongs to A(ψ). We generalize some proofs of section 1 to give
easy conditions for a function f to belong to A(ψ). As in the one-dimensional case it turns
out that functions that are flat (i.e. all derivatives vanish) on the critical set E(ψ) are
automatically contained in A(ψ). We then deduce a rather simple necessary condition for
closed composition algebras, namely the estimate

‖ψ(x)− ψ(y)‖ ≥ cK · ‖x− y‖ ·max{dist(x,E(ψ)), dist(y, E(ψ)}α

on every compact set, which we have baptized “lower distance estimate”.
Section 5 will turn our attention to the set I(E(ψ) of flat functions on E(ψ) and show
that the necessary lower distance estimate together with some geometrical property of the
image ψ(Rq) are sufficient to obtain that every flat function on the critical set is not only
contained in the closure of A(ψ), but is already a smooth composition F ◦ ψ itself. More
precisely, our main result reads as follows.

Theorem.
If ψ ∈ E(Rq,Rd) is an injective map that is proper, has a Whitney-regular image, and
satisfies the lower distance estimate, then I(E(ψ)) is contained in A(ψ).

If the critical set E(ψ) is discrete these conditions are even sufficient to obtain a closed
composition algebra. In this case we even obtain a characterization of closed composition
algebras that can be viewed as an extension of our result concerning smooth injective
curves from section 2.

Theorem.
An injective map ψ ∈ E(Rq,Rd) with a discrete critical set generates a closed composition
algebra if and only if it is a proper map that satisfies the lower distance estimate.

Finally we study some special cases where the critical set is not discrete. Depending on
the structure of ψ we obtain simple examples where A(ψ) is closed.



16



Chapter 1

The closure of an algebra of smooth
functions in one variable.

As mentioned in the introduction, our interest is to characterize closed composition alge-
bras. To be able to recognize whether A(ψ) = {F ◦ψ : F ∈ E(Rq,Rd)} is a closed subspace
of E(Rq,R), the space of smooth functions, it is undoubtedly useful to characterize which
functions actually belong to its closure A(ψ). Let us mention some related results.
In [Mal67] (II, theorem 1.3 and corollary 1.7), [Tou72] (V, théorème 1.3 and corollaire
1.6) and [Whi48] the authors characterized the closure of a sub-module M in the space
Em(L,E) resp. E(L,E) of Cm- resp. C∞- (or smooth) germs on L with values in E.
The fact that they considered the general case of germ-spaces (i.e. quotient spaces of
E(Rn,R) by certain subspaces of “flat” functions) is not really important to understand
their idea. For instance, their result still holds when considering L = Rq and E = R in
which case E(L,E) = E(Rq,R) is actually the space of smooth real-valued functions. Their
characterization of the closure M in E(Rq,R) was given by the space

M̂ = {f ∈ E(Rq,R) : ∀x ∈ Rq ∃gx ∈M s.t. Dαf(x) = Dαgx(x) ∀α}

of all those smooth functions having the right derivatives on L.
In [Tou71] Theorem 1.1, Tougeron was able to extend this result to the closure Φ(M) of
the image of a sub-module M under a certain kind of group homomorphism Φ. This result
is more general, but applying it to M = E(Rd,R) and Φ = Cϕ : E(Rd,R) → E(Rq,R),
F 7→ F ◦ ϕ it turns out that for certain ϕ ∈ E(Rq,Rd) the closure of A(ϕ) is also given by
the space

Â(ϕ) =
{
f ∈ E(Rq,R) : ∀x ∈ Rq ∃Fx ∈ E(Rd,R) s.t. Dαf(x) = Dα(Fx ◦ ϕ)(x)∀α ∈ Nq

0

}
of functions with pointwise admissible derivatives. Tougeron considered only those smooth
maps ϕ : Rq → Rd such that for all compact subsets K ⊆ Rq and L ⊆ Rd there is some
α > 0 such that

Γ(y) = sup

{
dist(x, ϕ−1(y))α

‖ϕ(x)− y‖
: x ∈ K \ ϕ−1({y})

}
<∞.

17
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This condition is restrictive as for instance ϕ(x) = x · exp(−1/x2) fails this property
whenever y = 0 and K contains a sufficiently small interval [0, ε], however it holds for
smooth injective maps with a local Hölder continuous inverse.
In [AKOW98] the authors were able to show that such a description of the closure of A(ψ)
is always true whenever ψ ∈ E(R,Rd) is an injective smooth curve. As a starting point to
our work we will give slightly modified proofs of their result. Though the characterization
itself is rather simple, basically it tells that a smooth function f ∈ E(R,R) belongs to the
closure of A(ψ) if and only if it has the Taylor series of a composition Fx ◦ψ at every point
x ∈ R, the proofs however are rather technical.
Unless mentioned otherwise we will always deal with a smooth injective map ψ ∈ E(R,Rd)
of one variable. We remind the reader that, as discussed in the introduction, we will always
write capital letters for functions F ∈ E(Rd,R) and small letters for functions f ∈ E(R,R).
Let us begin by discussing the main theorem of [AKOW98] in more detail and deduce the
pointwise Taylor condition from the rather complicated formulation of “formal composition”
of formal power series that they used. Their main result reads as follows:

Theorem 1.1.
For an injective map ψ ∈ E(R,Rd) and f ∈ E(R,R) the following are equivalent.

(1) f is contained in the closure of the algebra P(ψ) = {p ◦ ψ : p polynomial in Rd}.

(2) For all x ∈ R the formal Taylor series T∞x f of f about x is a formal composition of
some power series S with the Taylor series T∞x ψ − ψ(x).

(3) For all e ∈ R satisfying ψ′(e) = 0 the formal Taylor series T∞e f of f about e is a
formal composition of some power series S with the Taylor series T∞e ψ − ψ(e).

Here, the symbol T∞x is used to describe the map assigning to a function its Taylor series
at x.
Allan, Kakiko, O’Farrell, and Watson initially considered the algebra P(ψ) of polynomials
in ψ rather than A(ψ) = {F ◦ ψ : F ∈ E(Rd,R)}. This is however irrelevant as the
following argument shows that both sets have the same closure. Indeed, the space P(Rd)
of polynomials in d variables is dense in E(Rd,R) and the continuity of the composition
operator shown in the introduction implies

A(ψ) = Cψ(E(Rd,R)) = Cψ

(
P(Rd)

)
⊆ Cψ(P(Rd)) = P(ψ) ⊆ A(ψ),

hence both closures must coincide. This was already mentioned in [AKOW01], where Allan,
Kakiko, O’Farrell, and Watson used the symbol A(ψ) for the closure of the composition
algebra which they denoted by C∞(ψ).
The conditions (2) and (3) look rather technical and formal compositions of power series
cannot be considered common mathematical knowledge. We will therefore give exact def-
initions and explain what the authors meant. In [AKOW98] the authors described the



19

closure of the algebra as the space of those functions having the “right kind” of Taylor
series at each point stating that

"The “right kind” is of the form q ◦ (T∞a ψ1 − ψ1(a), ..., T∞a ψr − ψr(a)), where q
is a power series in r variables and T∞a ψi denotes the Taylor series of ψi about
a."

It turns out that this is just a rather complicated way to express the simple fact that
T∞x f = T∞x (Fx ◦ ψ). The analysis of those formal compositions will lead to the formula

T∞x (F ◦G) = (T∞G(x)F ) • (T∞x G),

where • denotes the formal composition of power series.

1.1 Taylor series and formal compositions of power se-
ries

First we need to have a solid understanding of formal power series in several variables and
we will use bold letters (S,g, ...) for formal power series in order to distinguish them from
the Taylor series of functions we are about to use. There is more than one approach to
defining this space. For instance one could view the space of formal power series in one
point to be the projective limit of the spaces Pn(Rd) of real-valued polynomials in Rd with
degree inferior or equal to n as did [AKOW98]. For k ≤ n the projections would then be
given by the truncation maps %kn : Pn(Rd)→ Pk(Rd) defined by

%kn

∑
|α|≤n

cαx
α

 =
∑
|α|≤k

cαx
α.

We can also consider the case n = ∞ to obtain a projection %k∞ from the space of formal
power series to Pk(Rd).
This appears very natural together with the approach used in [AKOW98] but requires
rather technical computations when defining the formal composition of power series. Indeed
considering a formal power series S in q variables as well as different power series R1, ..,Rq

with Rj(0) = 0 in d variables, one can view S and Rj as the respective sequences (Sn)n∈N0

and (Rn
j )n∈N0 of polynomials Sn = %n∞S ∈ Pn(Rq) and Rn

j = %n∞Rj ∈ Pn(Rd). The intuitive
way to define the formal composition S•(R1, ...,Sq) would be by the sequence of truncations
of the polynomials given by the adequate stepwise composition, namely

Cn = %n∞(S • (R1, ...,Rq)) = %n∞

(
(%n∞S) ◦ (%n∞R1, ..., %

n
∞Rq)

)
.

Note that %n∞(S) and %n∞(Rj) are polynomials and hence their composition is unproblem-
atic. This seems to be the right definition in the projective limit setting but at the first
glance, it is not clear that this sequence actually defines an element of the projective limit,
which would require to prove %nn+1C

n+1 = Cn. To this end, we absolutely need Rj(0) = 0
as the following example shows:
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Example 1.2.
Consider the two polynomials p(x) = x+ x2 and q(x) = x+ 1 of one real variable x.
The sequence defined above yields (p ◦ q)0 = 0 since %0

∞p = 0. Moreover we have

(p ◦ q)1 = %1
∞(%1

∞p ◦ %1
∞q) = %1

∞(id ◦(id +1)) = id +1,

as well as
(p ◦ q)2 = %2

∞(%2
∞p ◦ %2

∞q) = %2
∞(p ◦ q) = 2 + 3 id + id2,

hence we do not have the required property %kn(p ◦ q)n = (p ◦ q)k and the sequence of
compositions does not define an element in the projective spectrum.

A different approach comes into mind when considering the fact that a polynomial is
uniquely defined by its partial derivatives in x = 0. One can view a formal power series,
i.e. a coherent sequence of polynomials, as a coherent sequence of numbers. By coherent
we mean %knCn = Ck for k ≤ n. We can therefore identify a power series S =

∑
α∈Nq0

sαx
α

with its uniquely determined sequence of coefficients (sα)α∈Nq0 . This leads to the following
definition:

Definition 1.3.
We call Xd = RNd0 endowed with the product topology the space of formal power series in
d variables and consider a formal power series simply as a sequence of real numbers.
For x ∈ Rd we define the formal Taylor map T∞x : E(Rd,R)→ Xd in x by

T∞x F =

(
DαF (x)

α!

)
α∈Nd0

as well as the steps T kx : E(Rd,R)→ Xk
d = R{α∈Nd0:|α|≤k} for k ∈ N0 by

T kx f =

(
DαF (x)

α!

)
α∈Nd0,|α|≤k

,

which we can identify with the appropriate Taylor polynomials
∑
|α|≤k

DαF (x)

α!
(y − x)α.

The usual notation for the space Xd of formal power series in d variables is given by
R[[x1, ..., xd]] which is consistent with its interpretation as the “limit” or completion of the
spaces R[x1, ..., xd] of real-valued polynomials in d variables. We have chosen a different
symbol to shorten up the notation. Let us remark that from our point of view, the space
of formal power series is nothing more than a quotient of the space of smooth functions by
a subspace of flat functions. To elaborate this, let us define what we mean by flat function:
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Definition 1.4.
We call a function F ∈ E(Rq,Rd) flat in x ∈ Rq if its Taylor series is zero, meaning
T∞x F = (T∞x F1, ..., T

∞
x Fd) = 0 ∈ Xd

q and we will write I({x}) for the set of functions
which are flat in x.

Let us note that T∞x is a continuous linear map and also surjective by Borel’s theorem.
Indeed, using for instance the version found in the book of Trèves ([Trè67], Theorem 38.1)
we know that every formal power series in n variables is the Taylor series of a smooth map
ϕ at 0 and considering the translation τx(F )(z) = F (z − x) this obviously remains true
for Taylor series at x. The kernel of T∞x is obviously the set I({x}) and this implies that
T̃∞x : E(Rd,R)/I({x})→ Xd, f + I({x}) 7→ T∞x F is an isomorphism.
The advantage of our view ofXd as E(Rd,R)/I({x}) is the fact that the formal composition
of power series is much simpler and more natural to define. As mentioned before, it will
turn out that

F • g = T∞0 (F ◦ g)

is a suitable definition, whenever the functions F and g satisfy T∞0 F = F and T∞0 g = g.
This means that the composition of power series is nothing more than the composition of
functions. To prove that this definition is reasonable we need to verify two things:

(i) First, we require for each F ∈ Xd some smooth function F ∈ E(Rd,R) satisfying
T∞0 F = F but this is already ensured by Borel’s theorem ([Trè67], Theorem 38.1).
At this point, we can already see why the condition g0

j = 0 for all j is so important.
Indeed by applying Borel’s theorem we only have control over the derivatives of F
at 0 ∈ Rq and the condition g0

j = 0 just means that g(0) = 0. Having in mind the
formula (F ◦ g)′(0) = F ′(g(0)) · g′(0) it is plausible to assume that the derivatives
of F ◦ g in 0 can be computed using only the derivatives DαF in g(0) and Dβg(0)
(which is actually a generalization of Faà di Bruno’s formula and will be proven in a
more general setting in section 3). Since 0 is the only point where we have control
over the derivatives of F , the condition g0

j = gj(0) = 0 does not seem so arbitrary
anymore. In fact we can even use Borel’s theorem to circumvent this problem and
give a more general formula for the composition by considering some G having the
Taylor series F in g0 = (g0

1, ..,g
0
d) no matter its value. The formula then reads

(F • (g1, ...,gd)) = T∞0 (F ◦ (g1, ..., gd))(0),

whenever T∞0 g = g and T∞g(0)F = F.

(ii) The second thing we need to prove is that the Taylor series T∞x (F ◦ g) of the com-
position F ◦ g does not depend on the choice of the representation of F and g by
functions F and g. This will be done in the following proposition:

Proposition 1.5.
Consider F,G ∈ E(Rd,R) and f, g ∈ E(Rq,Rd). If f − g is flat in x ∈ Rq and F − G is
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flat in y = f(x) ∈ Rd the function (F ◦ f)− (G ◦ g) is also flat in x, i.e.

T∞x (F ◦ f) = T∞x (G ◦ g).

As a consequence the formal composition of power series F ∈ Xn and f1, ..., fn ∈ Xq, namely

F • (f1, ..., fn) = T∞x (F ◦ f),

whenever some f = (f1, ..., fn) ∈ E(Rq,Rd) and F ∈ E(Rd,R) satisfy both T∞x fj = fj and
T∞f(x)F = F, is well-defined.

Proof. We need to prove that the difference (F ◦ f)− (G◦ g) is flat in x which will be done
in two steps. First we will show that H ◦f is flat in f(x) whenever H ∈ I({f(x)}). We will
then continue by proving that G ◦ f −G ◦ g is also flat in x when f − g ∈ I({x}). Before
we start, let us mention why this is already sufficient. Fix some α ∈ Nq

0 and suppose that
(F −G) ◦ f and (G ◦ f)− (G ◦ g) are both flat in x. Then we obtain

Dα(F ◦ f)(x) = Dα((F −G) ◦ f)(x) +Dα(G ◦ f)(x) = Dα(G ◦ f)(x) = Dα(G ◦ g)(x),

hence the difference (F ◦ f)− (G ◦ g) is flat in x.
Let us now proceed with the two steps mentioned above:
(i) The composition H ◦f is flat in x ∈ Rq whenever H ∈ E(Rd,R) is flat in f(x) ∈ Rd. To
prove this, we will show that every evaluation P 7→ Dα(P ◦f)(x) = 0 vanishes on the subset
D({f(x)}c). The continuity of these evaluations together with the fact that D({f(x)}c) is
dense in I({f(x)}) will then imply Dα(H ◦ f)(x) = 0 for all functions H ∈ E(Rd,R) that
are flat in f(x).
For a function Φ ∈ D({g(x)}c) we can find an open neighborhood U of f(x) such that
U ∩ supp(Φ) = ∅ and hence Φ = 0 on U . Therefore the composition Φ ◦ f vanishes on the
open neighborhood f−1(U) of x and every derivative of Φ ◦ f must vanish in f(x).
Regarding the continuity, we have seen in the introduction that the composition operator
Cf : E(Rd,R)→ E(Rq,R) defined by Cf (P ) = P ◦f is continuous. Since the evaluation map
h 7→ Dαh(x) is also continuous, we obtain the required continuity of P 7→ Dα(P ◦ f)(x).
It remains to prove that D({f(x)}c) is dense in the set I({f(x))}) of flat functions in f(x),
which we will do by using the theorem of bipolars. We require to show that u(H) = 0 for
all functions H that are flat in f(x) whenever u ∈ D({f(x)})◦. Fix such a distribution
u that vanishes on D({f(x)}c), then its support must be contained in {f(x)}. Theorem
2.3.4 from [Hör03] states that u must be a finite sum of evaluations of derivatives in f(x).
If H ∈ I({f(x)}) every such evaluation DαH(f(x) is zero, hence u(H) = 0. The theorem
of bipolars then states that H is contained in the closure of D({f(x)}).
(ii) The difference (G ◦ f)− (G ◦ g) is flat in x whenever f − g is flat in x ∈ Rd.
The key argument in part (i) of the proof was the continuity of the mapsH 7→ Dα(H◦f)(x),
which we deduced from the continuity of the composition H 7→ H ◦ f . For this trick to
work now, we require the continuity of h 7→ G ◦ h. Unfortunately, this time the closed
graph theorem is not an option as the composition RG defined by h 7→ G ◦ h is not linear.
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Nevertheless we are still dealing with Fréchet hence metrizable spaces and it is therefore
sufficient to prove that G ◦ hn converges to G ◦ h in E(Rq,R) whenever hn converges to h
in E(Rq,Rd). Before we proceed with the proof of the continuity, let us explain why it is
sufficient for our needs. Suppose the map h 7→ Dα(G ◦ h)(x) is continuous. The function
f − g is flat in x hence h = f − g ∈ I({x}). As seen in (i) the set D({x}c) ⊆ E(Rq,Rd) of
functions with compact support outside {x} is dense in I({x}). We can therefore find a
sequence (hn)n∈N in D({x}c) converging to h in E(Rq,Rd). Since x 6∈ supp(hn) the function
f and f − hn coincide on a neighborhood Un of x. This implies G ◦ f = G ◦ (f − hn) on
the open set Un containing x, hence Dα(G ◦ f)(x) = Dα(G ◦ (f − hn))(x) for all α ∈ Nd

0.
The continuity of those evaluations then implies the required

Dα(G ◦ f)(x) = Dα(G ◦ (f − hn))(x)→ Dα(G ◦ (f − h))(x) = Dα(G ◦ g)(x).

Let us proceed with the actual proof of the continuity. We need to prove that the conver-
gence hn 7→ h in E(Rq,Rd) implies that every higher order partial derivative Dα(G ◦ hn)
converges uniformly to the appropriate derivative Dα(G ◦ h) on every compact subset K
of Rq. This can be done by induction.
The case |α| = 0 will follow form the mean value inequality. The sequence hn converges to
h uniformly on any compact set K by assumption. This implies that the union of all hn(K)
is bounded as all but a finite number of hn(K) are contained in the bounded neighborhood
h(K) + [−1, 1]d of the compact set h(K). Thus we can find a convex and compact set
L ⊆ Rq containing every hn(K) as well as h(K). The mean value inequality together with
the fact that the gradient ∇G is bounded on L implies that for all x ∈ K we have

|G ◦ hn(x)−G ◦ h(x)| ≤ sup{‖∇G(t)‖ : t ∈ L} · |hn(x)− h(x)| ≤ ‖G‖L,1 · ‖hn − h‖K → 0.

This implies that G ◦ hn converges to G ◦ h uniformly on K as n tends to infinity.
The induction step is given by the chain rule and the continuity of both the addition and
the multiplication in E(Rd,R). Suppose that for all Φ ∈ E(Rd,R) the composition Φ ◦ hn
converges to Φ ◦ h in the space Ck(Rq,R) of k-times continuously differentiable functions
(endowed with the seminorms ‖ ·‖K,k, K compact). For |α| = k+1 we can write α = β+ej
with |β| = k where ej denotes the j-th unit vector. Computing the partial derivatives one
obtains that

Dα(G ◦ hn) = Dβ+ej(G ◦ hn) = Dβ(Dej(G ◦ hn)) = Dβ〈∇G ◦ hn, Dejhn〉.

The vector valued functions∇G◦hn converge to∇G◦h in Ck(Rq,Rd) since every coordinate
DjF ◦hn converges toDjF ◦g by the induction assumption. The addition and multiplication
are continuous in Ck. The scalar products 〈∇G ◦ hn, Dejhn〉 must therefore converge
to 〈∇G ◦ h,Dejh〉 in Ck(Rq,R). Applying the chain rule once more one obtains that
Dα(f ◦ hn)→ Dβ〈∇G ◦ h,Dejh〉 = Dα(G ◦ h) locally uniformly.

Unfortunately, the downside of our definition of the composition of formal power series is
the loss of the ability to construct the formal composition explicitly. Obviously, there are



24

many possible choices for functions F and gj having the right Taylor series F and gj. We
are nonetheless able to give a simple and consistent definition of compositions of formal
power series.

Definition 1.6 (Composition of formal power series).
For power series F ∈ Xd and g1, ...,gd ∈ Xq we define the formal composition • by

F • (g1, ...,gd) = T∞x (F ◦ g),

whenever T∞x gj = gj and T∞g(x)F = F.
This way, we obtain the formula described in [AKOW98] as the “higher order version of
the chain rule” , namely

(T∞g(x)F ) • (T∞x g) = T∞x (F ◦ g).

Now that we have a solid understanding of the space Xd = E(Rd,R)/I({x}) of formal
power series, we go for the first step in the proof of theorem 1.1, namely to prove that the
Taylor series condition

T∞x f ∈ T∞x A(ψ)

is necessary for some f to belong to A(ψ). Since the Taylor map T∞x : E(Rd,R) → Xd

is continuous (a simple consequence of the closed graph theorem), this comes down to
showing that T∞x A(ψ) is a closed subspace of Xd.

Proposition 1.7.
For ψ ∈ E(Rq,Rd) and x ∈ Rq the subspace T∞x A(ψ) = {T∞x (F ◦ψ) : F ∈ E(Rd,R)} of Xq

is closed. This implies that for every f contained in the closure of A(ψ) and every x ∈ Rq

we can find some Fx ∈ E(Rd,R) such that

T∞x f = T∞x (F ◦ ψ) = (T∞ψ(x)F ) • (T∞x ψ).

Proof. Consider the operator τx : E(Rd,Rq) → Xq defined by τxF = T∞x (F ◦ ψ). We
aim at proving that T∞x A(ψ) = τ∞x (E(Rd,Rq)) is a closed subspace of Xq. We will do
so by using the closed range theorem (26.3 in [MV97]), which states that the range of a
continuous linear map S : Y → Z between Fréchet spaces is closed if and only if for any
zero neighborhood U in Y the set U◦ ∩ St(Z ′) is a Banach disk. We recall that a Banach
disk is an absolute convex set B such that

⋃
t>0 tB together with the Minkowski functional

pB(x) = inf{t > 0 : x ∈ tB} of B is a Banach space. In the concrete case of S = τ∞x we will
deduce this from the fact that U◦ ∩ τ tx(X ′q) is contained in a finite-dimensional subspace of
E(Rd,Rq)′.
Fix some zero neighborhood U in E(Rd,R).
First let us note that the range of τ tx contains the kernel of T∞ψ(x). For T∞ψ(x)F = 0 the
composition F ◦ψ must be flat in x, hence F ∈ Ker(τx). This means that every u ∈ τ tx(X ′q)
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vanishes on I({ψ(x)}, which implies that its support must be contained in {ψ(x)}. We
can therefore write u ∈ U◦ ∩ τ tx(X ′q) as

u(F ) =
∑

α∈Nd0,|α|≤n

uαF
α(ψ(x))

and it remains to show that the order n of u does not exceed some upper bound N
depending only on U . This requires more refined knowledge of U .
Since it is a zero neighborhood by assumption, we can find some compact set K ⊆ Rd

and N ∈ N such that BK,N(0, ε) = {F ∈ E(Rd,R) : ‖F‖K,N ≤ ε} is contained in U .
If ψ(x) ∈ K, the order of any u ∈ U◦ with support in {ψ(x)} can not exceed N . If
ψ(x) 6∈ K, we can find some function Φ that is constant zero near K and 1 near ψ(x). For
F ∈ E(Rd,R) the difference F − F · Φ is flat in ψ(x) hence

|u(F )| = |u(F · Φ)| ≤ c · ‖F · Φ‖K,n = 0,

and we obtain U◦ ∩ τ tx(X ′q) = {0}.
In any case we obtain that L = U◦∩τ tx(X ′q) ⊆ span{δαψ(x) : α ∈ Nd

0, |α| ≤ N} and we proceed
to show that this is sufficient to deduce that this set is a Banach disk. Obviously, the span
of L is a finite dimensional subspace of span{δαψ(x) : α ∈ Nd

0, |α| ≤ N}. It remains to show
that the Minkowski functional pL generates a complete norm. This is however trivial as
soon as we know that pL actually is a norm, as all norms on finite dimensional spaces are
equivalent and thus complete. The inclusion L ⊆ U◦ implies pU◦ ≤ pL on the span(L).
Since U◦ is a Banach disk itself, pU◦ is a norm on span(U◦) hence 0 < pU◦(u) ≤ pL(u) for
all 0 6= u ∈ span(L).

Let us close this preliminary discussion of formal Taylor series by showing that the Taylor
map T∞x : E(Rd,R) → Xd is even an algebra homomorphism. We already know that the
space of formal power series Xd = R[[x1, ..., xd]] together with the usual pointwise addition
of coefficients and the multiplication ∗, defined by∑

α∈Nd0

aα

 ∗
∑
α∈Nd0

bα

 =
∑
α∈Nd0

( ∑
β+γ=α

aβbγ

)
xα,

is an algebra. The Taylor map however allows us to define the same algebra structure
simply by applying the isomorphism T∞x to the algebra structure of E(Rd,R). Indeed, we
simply equipXd with the usual addition and the following multiplication ∗ : Xd×Xd → Xd,
defined by

F ∗G = T∞x (F ·G),

where F and G ∈ E(Rd,R) satisfy T∞x F = F and T∞x G = G. Again the surjectivity of T∞x ,
given by Borel’s theorem ([Trè67], Theorem 38.1), implies that we can always find such
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functions F and G. To show that it is well defined we need to show that T∞x (F · G) = 0
whenever F or G is flat in x. Using the commutativity of the multiplication in E(Rd,R),
we can restrict ourselves to the case of F being flat in x. The flatness of F · G is then
simply given by the Leibniz rule

Dα(f · g)(x) =
∑
β∈Nd0
β≤α

(
α

β

)
Dβf(x) ·Dα−βg(x) = 0.

The commutativity, distributivity and associativity of the multiplication in E(Rd,R) di-
rectly extend to the multiplication in Xd, giving it an algebra structure. Therefore T∞x
is indeed a continuous algebra homomorphism. The neutral element with respect to ∗ is
clearly given by the Taylor series T∞x 1 of the constant function t 7→ 1.

1.2 The closure of the composition algebra for an injec-
tive smooth curve.

The results gained in the previous section allow us to reformulate the main theorem of
[AKOW98] cited above in theorem 1.1 in a more practical way at least from a functional
analytical point of view. As we can see in the part (iii) of theorem 1.1 the set of zeros of
ψ′ is of particular importance. Let us therefore give this object its own symbol.

Definition 1.8.
Given a smooth map ψ ∈ E(R,Rd), we denote by

E(ψ) = {x ∈ R : ψ′(x) = 0}

the set of critical points (or critical set) of ψ .

This critical set of ψ plays a crucial role in deciding whether a function belongs to the
closure of the composition algebra or not. As a preparation for the actual proof of (a
slightly altered version of) theorem 1.1, let us explain why only the behavior of a function
on the critical set of ψ is important.

Theorem 1.9.
For an injective map ψ ∈ E(R,Rd) we have D(E(ψ)c) ⊆ A(ψ). Moreover the set

I(E(ψ)) = {f ∈ E(R,R) : f (n)(e) = 0 for all e ∈ E(ψ), n ∈ N0}

of flat functions on E(ψ) is also contained in the closure of A(ψ).

Proof. First let us prove that for every x 6∈ E(ψ) we can find an open neighborhood Ix
such that D(Ix) ⊆ A(ψ).
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Fix an x outside E(ψ). By definition one can find some coordinate j ≤ d such that
ψ′j(x) 6= 0, hence there is an open interval Ix such that ψj : Ix → Jx := ψj(Ix) is a
diffeomorphism between open intervals.
For f ∈ D(Ix) let us write K = supp(f). We will show that for any L ⊆ R compact we can
construct a function FL ∈ E(Rd,R) such that f − FL ◦ ψ = 0 on L. For z = ψ(y) ∈ ψ(Ix)
we know how to define F , namely through the identity F (z) = F ◦ ψ(y) = f(y), hence

F (ψ(y)) = f(y) = f ◦ ψ−1
j ◦ ψj(y) = f ◦ ψ−1

j ◦ πj(ψ(y)),

where πj : Rd → R denotes the projection onto the j-th coordinate. We obtain

F = f ◦ ψ−1
j ◦ πj

on ψ(Ix), but the composition with ψ−1
j is only defined on Jx = ψj(Ix). To smoothly

extend F to some FL ∈ E(Rd,R) we need to multiply it with some smooth cutoff function
ϕL that is zero outside π−1

j (Jx). We need to be even more careful to obtain the actual
identity FL ◦ψ = f on L, since it is possible that there are ψ(z) ∈ π−1

j (Jx) for z 6∈ Ix. The
function ϕL would therefore need to be constant one near ψ(supp(f)) and constant zero
near every other point ψ(z) ∈ π−1

j (Jx) \ ψ(Ix) (or at least for any point z ∈ L). Let us
proceed with the construction of such a decent cutoff function.
The set π−1

j (J cx) is closed as preimage of the closed set J cx under the continuous projection
πj. Moreover it does not contain any point of ψ(K), since ψ(K) ⊆ π−1

j (ψj(K)) ⊆ π−1
j (Jx).

As ψ is injective and ψ(K) ⊆ ψ(Ix), it follows that the intersection ψ(K) ∩ ψ(L ∩ Icx) is
also empty. Therefore the set ψ(L ∩ Icx) ∪ π−1

j (J cx) is closed as finite union of closed sets
and does not intersect ψ(K). Using for instance corollary 1.4.11 from Hörmander’s book
[Hör03], we can find some smooth function ϕL such that ϕL = 1 on an open neighborhood
VK of ψ(K) and ϕL = 0 on a neighborhood VL of ψ(L ∩ Icx) ∪ π−1

j (J cx).
Define FL = ϕL · (f ◦ ψ−1

j ◦ πj). On the one hand, this function is obviously smooth on
the open set VL, which contains π−1

j (J cx) (and ψ(L ∩ Icx)), since ϕL is constant zero there.
On the other hand ψ−1

j : Jx → Ix is smooth, hence the functions ψ−1
j ◦ πj and FL are also

smooth on π−1
j (Jx). The two open sets VL and π−1

j (Jx) form a cover of Rd, since their
union contains both π−1

j (Jx) and π−1
j (J cx), hence FL ∈ E(Rd,R).

Now let us show that FL ◦ ψ = f on L.

• For y ∈ L \ Ix we have ψ(y) ∈ ψ(L ∩ Icx), hence ϕL ◦ ψ(y) = 0. This implies the
identity FL ◦ ψ(y) = 0 = f(y) for all y 6∈ supp(f).

• For y ∈ L ∩ Ix we have y = ψ−1
j (ψj(y)), hence FL ◦ ψ(y) = (ϕL ◦ ψ)(y) · f(y). If

y ∈ K we have ϕL ◦ ψ(y) = 1 hence FL ◦ ψ(y) = f(y), and if y 6∈ K = supp(f) we
have FL ◦ ψ(y) = (ϕL ◦ ψ)(y) · f(y) = 0 = f(y) since f(y) = 0.

Consider the sets Ln = [−(n + 1), n + 1] and Fn ∈ E(Rd,R) satisfying Fn ◦ ψ = f on Ln.
We obtain that Fn ◦ ψ − f = 0 on Ln, thus all its derivatives vanish on the interior of Ln,
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which contains [−n, n]. Since those sets absorb every compact subset of R, the sequence
Fn ◦ ψ converges to f in E(R,R) with respect to the usual topology.
The closure of A(ψ) is a subspace of E(Rq,R) and contains all D(Ix) for x 6∈ E(ψ). The
linear hull L = span{D(Ix) : x 6∈ E(ψ)} and its closure L must therefore also be contained
in A(ψ). To obtain I(E(ψ)) ⊆ A(ψ), it remains to show that L is dense in the set
I(E(ψ)) of flat functions on E(ψ). To do this we will use the theorem of bipolars. We
require to prove u(f) = 0, whenever f ∈ I(E(ψ)) and u ∈ L◦. Obviously every u that
vanishes on L also vanishes on D(Ix), hence its support does not contain any x 6∈ E(ψ).
We obtain supp(u) ⊆ E(ψ) and theorem 2.3.3 from [Hör03] implies that u(f) = 0, since
every derivative of f vanishes on E(ψ).

Let us emphasize that we have only proven D(E(ψ)c) ⊆ A(ψ), and that in general it is not
contained in A(ψ) itself, as the following counterexample shows. This stronger inclusion
requires an additional property of ψ.

Example 1.10.
Suppose one can find x 6∈ E(ψ) as well as an unbounded sequence (xn)n∈N in R such
that ψ(xn) → ψ(x). In this case D(E(ψ)c) is not contained in A(ψ). Indeed, choose
some f ∈ D(E(ψ)c) with compact support and f(x) = 1 and suppose one could write
f = F ◦ ψ with some F ∈ E(Rd,R). The sequence (xn)n∈N is unbounded, hence we can
find a subsequence (nk)k∈N that does not touch the support of f . Since F (ψ(x)) = 1 and
F is continuous we obtain F (ψ(xnk))→ 1 which leads to the contradiction

0 = lim
k→∞

f(xnk) = lim
k→∞

F ◦ ψ(xnk) = 1.

The belief that this is not of importance if the critical set E(ψ) is empty is erroneous. The
simple example ψ(x) = (sin(x), exp(x)) satisfies E(ψ) = ∅, which implies A(ψ) = E(R,R)
by theorem 1.1. We will see in proposition 2.9 that A(ψ) can not be closed

The property prohibiting the existence of such an unbounded sequence with bounded image
is exactly the properness of ψ. As we will see in proposition 2.16, it turns out that the
properness of ψ is actually sufficient to obtain D(E(ψ)c) ⊆ A(ψ) in the injective case,
though this does by far not mean that every flat function on E(ψ) is contained in the
composition algebra.
As a corollary to theorem 1.9, we can even replace the flatness of f by the flatness of its
derivative.

Corollary 1.11.
Consider some injective ψ ∈ E(R,Rd). Every function g ∈ E(R,R) satisfying g′ ∈ I(E(ψ))
is contained in the closure of A(ψ).

Proof. Again, fix some x 6∈ E(ψ) and some open interval Ix ⊆ E(ψ)c containing x. We
will show that every g ∈ E(R,R) satisfying g′ ∈ D(Ix) is contained in A(ψ). Consider such
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a g with g′ ∈ D(Ix). The function g is constant on the sets E−(ψ) = {e ∈ E(ψ) : e < x}
and E+(ψ) = {e ∈ E(ψ) : e > x}. Using the theorem of bipolars it is sufficient to show
u(g) = 0, whenever u vanishes on A(ψ).
For an arbitrary u ∈ A(ψ)◦ we know by theorem 1.9 that K = supp(u) ⊆ E(ψ). Note
that x 6∈ E(ψ) and thus E(ψ) = E−(ψ) ∪ E+(ψ). The sets K− = K ∩ E−(ψ) and
K+ = K∩E+(ψ) are disjoint and compact. Their image under ψ must therefore be disjoint
and compact due to the injectivity and continuity of ψ. We can now separate those sets
using some ϕ ∈ E(Rd,R) that is constant one near ψ(K−) and constant zero near ψ(K+).
Define by g− and g+ the values of g on E−(ψ) and E+(ψ), then g−g−·(ϕ◦ψ)−g+·((1−ϕ)◦ψ)
is flat on K = K− ∪K+. By theorem 2.3.3 from Hörmander’s book [Hör03] we obtain

u(g − g− · (ϕ ◦ ψ)− g+ · ((1− ϕ) ◦ ψ)) = 0,

hence
u(g) = g− · u(ϕ ◦ ψ) + g+ · u((1− ϕ) ◦ ψ) = 0,

since u ∈ A(ψ)◦ and both ϕ ◦ ψ and (1− ϕ) ◦ ψ are elements of A(ψ).
This shows that every f ∈ D(Ix) is contained in the subspaceD

(
A(ψ)

)
=
{
f ′ : f ∈ A(ψ)

}
of derivatives of A(ψ). Since D

(
A(ψ)

)
is also a subspace we can deduce

D(E(ψ)c) = span{D(Ix) : x ∈ E(ψ)c} ⊆ D
(
A(ψ)

)
and the continuity of the differentiation D on E(R,R) implies the inclusion

D(E(ψ)c) ⊆ D
(
A(ψ)

)
⊆ DA(ψ).

The set on the right hand side being closed we end up with I(E(ψ)) = D(E(ψ)c) ⊆ DA(ψ).
Now consider some g ∈ E(R,R) with g′ ∈ I(E(ψ)). We obtain g′ ∈ I(E(ψ)) ⊆ DA(ψ),
hence we can find some gn ∈ A(ψ) such that g′n → g′. The modifications defined by
fn(t) = gn(t)− gn(0) + g(0) are also contained in A(ψ), since every constant function is an
element of the algebra. Finally, it remains to note that f ′n converges to f ′ and fn(0) = g(0),
which implies fn → g and therefore g ∈ A(ψ).

Let us now reformulate theorem 1.1 in order to give a complete proof.

Theorem 1.12 (Allan, Kakiko, O’Farrell, and Watson).
For an injective map ψ ∈ E(R,Rd) and f ∈ E(R,R) the following are equivalent.

(i) The map f is contained in the closure of the algebra A(ψ) = {F ◦ψ : F ∈ E(Rd,R)}.

(ii) For all x ∈ R we have T∞x f ∈ T∞x A(ψ)
(i.e. ∀x ∃F ∈ E(Rd,R) such that f (k)(x) = (F ◦ ψ)(k)(x) for all k ∈ N0) .
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(iii) For all e ∈ E(ψ) we have T∞e f ∈ T∞e A(ψ).

The proof of the implication (iii) ⇒ (i) in [AKOW98] is rather technical and involves
explicit estimates to deduce the local proximity to A(ψ) for a function satisfying the
pointwise Taylor condition (iii). Moreover there is little hope whatsoever to generalize this
proof for a generator ψ that does not only depend on one variable. Let us therefore give a
slightly modified proof that relies a little less on computation.

Proof. The implication (i)⇒(ii) has been proven in proposition 1.7 and (ii)⇒(iii) is trivial
as E(ψ) ⊆ R. Let us therefore concentrate on the proof of the implication (iii)⇒(i).
Consider the subspace

T (ψ) =
⋂

e∈E(ψ)

(T∞e )−1(T∞e A(ψ)).

of functions with the “right” Taylor series on E(ψ).
Let us explain the basic idea behind this proof. We will use the theorem of bipolars which
states that the closure of the subspace L consists of exactly those f ∈ E(R,R) such that
u(f) = 0 for all u ∈ L⊥. It will turn out that those distributions have support in the critical
set E(ψ), which can have a quite complicated shape. However we can restrict ourselves
to some weak-∗ dense subset of A(ψ)⊥ using the theorem of Krein-Milman. We will see
that elements of this dense subset, the linear hull of some specific extreme points having a
much simpler support, allow us to estimate u(f) more explicitly. Compared to the proof
in [AKOW98] this reduces the required amount of calculus.
Since we have already seen in proposition 1.7 that T∞e A(ψ) is always closed and the Taylor
maps T∞e : E(R,R)→ X1 = RN0 are continuous, the subspace T (ψ) is closed as intersection
of closed sets. Obviously we aim at proving that A(ψ) = T (ψ) but it will be easier to
show that the respective sets of derivatives coincide. Let us mention why this is sufficient.
Consider again the derivation map D : E(R,R) → E(R,R), f 7→ f ′ which is a continuous
linear surjection. The kernel of D is the set C of constant functions which is contained in
both A(ψ) and T (ψ). Once we have shown D

(
A(ψ)

)
= DT (ψ) we will obtain

A(ψ) = A(ψ) + C = D−1
(
D
(
A(ψ)

))
= D−1 (DT (ψ)) = T (ψ) + C = T (ψ).

Let us now continue and prove that D
(
A(ψ)

)
and DT (ψ) actually are the same.

It turns out that the set AP (ψ) of accumulation points of E(ψ) plays a central role in that
matter. The key argument will be that the subspace

L = {f ′ ∈ DT (ψ) : supp(f ′) ⊆ AP (ψ)c}

of D
(
A(ψ)

)
is dense in DT (ψ). Let us first show that L is indeed contained in D

(
A(ψ)

)
.

Take some primitive f ∈ T (ψ) with f ′ ∈ D(AP (ψ)c). The set M = E(ψ) ∩ supp(f ′) is
finite and by assumption we have T∞e f ∈ T∞e A(ψ) for every e ∈M . We can therefore find
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Fe ∈ E(Rd,R) such that T∞e f = T∞e (Fe ◦ ψ). Every e ∈ M is an isolated point of E(ψ)
hence we can find ϕe ∈ E(R,R) such that ϕe = 1 near {e} and ϕ = 0 near E(ψ) \ {e}. By
corollary 1.11 we have ϕe ∈ A(ψ) since ϕ′e is flat on E(ψ). The function

∑
e∈M

(Fe ◦ψ) ·ϕe is

contained in the closure of A(ψ) and the derivative of f −
∑
e∈M

(Fe ◦ ψ) · ϕe is flat on E(ψ),

hence the function is also contained in the closure of A(ψ) by corollary 1.11. This implies

f = f −
∑
e∈M

(Fe ◦ ψ) · ϕe +
∑
e∈M

(Fe ◦ ψ) · ϕe ∈ A(ψ),

hence f ′ ∈ D(A(ψ)).
Next we show that the derivative of f ∈ T (ψ) is flat on the set AP (ψ) of accumulation
points of E(ψ), which will turn out to be a a rather simple consequence of the mean
value theorem. For any given accumulation point e∞ ∈ AP (ψ) we can find a sequence
(en)n∈N ∈ E(ψ) \ {e∞} converging to e∞. Without loss of generality we can suppose this
sequence to be strictly monotone. For f ∈ T (ψ) we have f ′(en) = 0 and the mean value
theorem gives another strictly monotone sequence (ξn)n∈N such that ξn lies between en
and en+1 and f ′′(ξn) = f ′(en)−f ′(en+1)

en−en+1
= 0. This leads to f ′′(e∞) = 0 by continuity and

applying the mean value theorem inductively to the strictly monotone sequence of zeros of
f (k) converging to e∞ implies f (k+1)(e∞) = 0. As a direct consequence every g ∈ DT (ψ) is
flat on the set AP (ψ) of accumulation points of E(ψ).
To prove L = DT (ψ) we will use the theorem of bipolars which states that a function
g ∈ E(R,R) is contained in L if and only if u(g) = 0 for all u in the annihilator L⊥ of L.
Since L ⊆ DT (ψ) it is therefore sufficient to prove u(g) = 0 whenever u vanishes on L and
g ∈ DT (ψ). Our aim is to find a more convenient dense subset of L⊥ that allows us to
estimate u(g) for g ∈ DT (ψ) explicitly. In order to do so, we require further knowledge
about u ∈ L⊥.
Let us begin by showing that every u ∈ L⊥ has support in E(ψ). Indeed, the set D(E(ψ)c)

is contained in D
(
A(ψ)

)
⊆ DT (ψ) by corollary 1.11, which implies D(E(ψ)c) ⊆ L. We

obtain that every u ∈ L⊥ vanishes on D(E(ψ)c), hence supp(u) ⊆ E(ψ) whenever u ∈ L⊥.
Unfortunately the unknown structure of E(ψ), especially near accumulation points, makes
it difficult to estimate u ∈ L⊥ on DT (ψ) which we require to prove u|DT (ψ) = 0. In fact,
as mentioned in [AKOW98], E(ψ) can even be the Cantor set. To this end we can further
restrict ourselves to a weak-∗ dense subset of L⊥ using the Krein-Milman theorem. Indeed
as a continuous linear map on the set I(AP (ψ)) of flat functions on AP (ψ) (endowed
with the relative topology of E(R,R)), every u ∈ L⊥ can be absorbed into a polar set
B(K,n)◦ of some unit ball B(K,n) = {f ∈ I(AP (ψ)) : ‖f‖K,n ≤ 1}. This polar set and
its intersection with L⊥ being weak-∗ compact and convex the theorem of Krein-Milman
states that it is the weak-∗ closure of the convex hull of its extreme points and we only
have to prove u|DT (ψ) = 0 for such an extreme point u.
We will now further characterize these extreme points. To this end fix some unit ball
B(K,n) = {f ∈ I(AP (ψ)) : ‖f‖K,n ≤ 1} in I(AP (ψ)). We will show that every extreme
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point u of B(K,n)◦ ∩ L⊥ is such that supp(u) \AP (ψ) lies in a convex subset of AP (ψ)c.
This means that it is contained in some subinterval I of AP (ψ)c and therefore encased
between two consecutive accumulation points of E(ψ).
Supposing that this not to be the case, we can find an accumulation point e ∈ AP (ψ) as
well as x, y ∈ supp(u) \ AP (ψ) such that x < e < y. Denote by IA the indicator function
of a subset A of R. For an arbitrary ϕ ∈ I(AP (ψ)) both functions ϕ− = ϕ · I]−∞,e[ and
ϕ+ = ϕ−ϕ− = ϕ · I]e,∞[ are smooth and we can define u−(ϕ) = u(ϕ−) and u+(ϕ) = u(ϕ+).
Let us prove that u−, u+ ∈ B(K,n)◦ ∩ L⊥. For h ∈ L its support is a subset of AP (ψ)c

hence supp(h−) = supp(h) ∩ ] −∞, e[ is also a subset of AP (ψ)c. Every primitive h− of
h− is contained in T (ψ) since T∞z h− ∈ T∞z A(ψ) either directly by assumption for z < e or
because for z ≥ e it has the same Taylor series as the constant function t 7→ h−(e) which
is contained in A(ψ). We therefore obtain u− ∈ L⊥ and since u+ = u− u− also u+ ∈ L⊥.
Moreover we have ‖u−‖∗K,n + ‖u+‖∗K,n = ‖u‖∗K,n = 1. Indeed, ‖u‖∗K,n = 1, since it is an
extreme point of B(K,n)◦ and the triangle inequality implies

‖u‖∗K,n = ‖u− + u+‖∗K,n ≤ ‖u−‖∗K,n + ‖u+‖∗K,n.

On the other hand, for ϕ, η ∈ I(AP (ψ)) satisfying ‖ϕ‖K,n ≤ 1 and ‖η‖K,n ≤ 1, we
obtain ‖ϕ− + η+‖K,n ≤ 1. Multiplying ϕ, η with appropriate scalars of absolute value 1
we can suppose u−(ϕ−), u+(η+) ≥ 0, hence u−(ϕ) + u+(η) = u(ϕ− + η+) ≤ 1. Taking
the supremum over all ϕ, η ∈ B(K,n) we obtain ‖u−‖∗K,n + ‖u+‖∗K,n ≤ 1. Note that since
x ∈ supp(u−) and y ∈ supp(u+) neither norm can be zero. We can now write u as the
convex combination

u = ‖u−‖K,n
u−

‖u−‖K,n
+ ‖u+‖K,n

u+

‖u+‖K,n
= ‖u−‖K,n

u−

‖u−‖K,n
+ (1− ‖u−‖K,n)

u+

‖u+‖K,n

of u−

‖u−‖K,n
and u+

‖u+‖K,n
which are both contained in L⊥ ∩ B(K,n)◦. The fact that u is

an extreme point implies u = u−

‖u−‖K,n
= u+

‖u+‖K,n
. This means that u vanishes both on

{f ∈ I(AP (ψ)) : supp(f) ⊆ ] −∞, e]} and {f ∈ I(AP (ψ)) : supp(f) ⊆ [e,∞[} but since
their direct sum is I(AP (ψ)) we obtain the contradiction u = 0.
Let us now show that such an extreme point u vanishes on DT (ψ). First we will decompose
u to further simplify its support. As seen above the support of u is contained in some
compact interval I = [a, b] such that ]a, b[∩AP (ψ) = ∅. Since the support of u is contained
in E(ψ)∩I which is a countable set having no more than two accumulation points (a and b),
every x ∈ I \E(ψ) has a neighborhood contained in E(ψ)c. Fix such a point x ∈ I \E(ψ).
Once again, we can find some ϕ ∈ E(R,R) such that ϕ = 1 near E(ψ)∩ ]−∞, x[ and ϕ = 0
near ]x,∞[∩E(ψ). Since the derivatives of ϕ and 1−ϕ are flat on E(ψ), both are contained
in the closure of the algebra A(ψ). Moreover for F ∈ E(R,R) we have (F · ϕ)′ = F ′ · ϕ
near E(ψ) which implies that the “localizations” ϕ · u and (1− ϕ) · u are contained in L⊥.
The intersection of the supports of the localizations and the set of accumulation points
contains at most one element.
Considering the localizations separately if necessary, we can suppose without loss of gen-
erality that u is such that supp(u) ∩ AP (ψ) consists of no more than one point.
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If the support of u is finite, we can easily show that u must vanish on DT (ψ). Indeed, we
can refine our localization ϕ by some function τ ∈ E(R,R) that is constant one near the
finite set of isolated points supp(u) and zero near the rest of E(ψ). Since the support of
u is a compact set, we can even choose τ to have compact support. For f ∈ DT (ψ) the
difference f − τ · f is flat near suppu and since τ · f ∈ DT (ψ) has compact support in
AP (ψ)c, we obtain u(f) = u(τf) = 0.
If the support of u is not finite, it consists of a countable union of discrete points in R. We
can order these points into a strictly monotone sequence (en)n∈N ⊆ E(ψ) that converges
to the accumulation point e∞ ∈ AP (ψ). Without loss of generality we may suppose that
this sequence to be strictly increasing. The basic idea will be to localize u further using a
sequence of functions ϕn that switches from 0 to 1 in the biggest gaps of E(ψ)c to estimate
u(f) explicitly. We will now explain how to chose this sequence.
The sequence |en − en+1| converges to 0 hence we can find a smallest integer n1 such that
d1 = |en1 − en1+1| ≥ |ej − ej+1| for all j ∈ N. Inductively we can construct a “distance
maximizing” subsequence (nk)k∈N such that dk = |enk−enk+1| ≥ |ej−ej+1| for all j ≥ nk−1.
To use this sequence to evaluate u, consider some function η that is constant one near
]−∞, 0] and zero near [1,∞[. The norms ‖η‖R,j = sup{|η(`)(x)| : ` ≤ j, x ∈ R} are finite
for every j ∈ N. The “compressions” ηk(t) = η

(
t−enk
dk

)
are locally constant near E(ψ)

and the derivatives satisfy |η(j)
k (z)| ≤ ‖η‖R,j

djk
. Since ηk is locally constant near E(ψ), we

obtain u(ηk · f) = 0 whenever f ∈ DT (ψ) since the support of ηk · f is a compact subset
of AP (ψ)c. As the distribution u has support in the compact interval I = [e1, e∞] and
finite order N , we can estimate |u(f)| ≤ C · ‖f‖I,N using for instance theorem 2.3.10 from
Hörmander’s book [Hör03]. Since the function (1 − ηk) · f is constant 0 on [e1, enk ], we
obtain for f ∈ DT (ψ):

|u(f)| = |u((1− ηk) · f)| ≤ C · ‖(1− ηk) · f‖I,N = C · ‖(1− ηk) · f‖[enk ,e∞],N .

Applying the Leibniz formula we obtain the estimate ‖g · h‖K,` ≤
∑
|α|≤` ‖g‖K,` · ‖h‖K,`,

which we can dominate by C` · ‖g‖K,` · ‖h‖K,`. Applying this estimate to g = 1 − ηk and
h = f leads to

|u(f)| ≤ C · CN · ‖(1− ηk)‖[enk ,e∞],N · ‖f‖[enk ,e∞],N ≤ C̃N ·
‖η‖R,N
dNk

· ‖f‖[enk ,e∞],N .

Now fix some x ≥ enk . By definition we have dk = |enk − enk+1| ≥ |e`− e`+1| for all ` ≥ nk,
hence the interval [x, x+(j+1)dk] contains at least j+1 different elements of the sequence
(en)n∈N. Since f ∈ DT (ψ), we have f(en) = 0 and the interval [x, x + (j + 1)dk] must
contain j+ 1 different zeros of f . The mean value theorem implies that it contains at least
one zero yj of f (j) for j ≤ N . This leads to the estimate

|f (j)(x)| = |f (j)(x)− f (j)(yj)| = |f (j+1)(ξj)| · |x− yj| ≤ |f (j+1)(ξj)| · (j + 1) · dk.
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Replacing x by ξj and iterating the estimate, we obtain for j ≤ N :

|f (j)(x)| =
∣∣f (j+N+1)(ξj+N+1)

∣∣ · N+1∏
`=1

((j + `) · dk)

≤
∣∣f (j+N+1)(ξj+N+1)

∣∣ · (j +N + 1)! · dN+1
k

≤ ‖f‖I,2N+1 · (2N + 1)! · dN+1
k .

This implies that

|u(f)| ≤ C̃N ·
‖η‖R,N
dNk

· ‖f‖[enk ,e∞],N

≤ C̃N ·
‖η‖R,N
dNk

· ‖f‖I,2N+1 · (2N + 1)! · dN+1
k

≤ C̃N · ‖η‖R,N · ‖f‖I,2N+1 · (2N + 1)! · dk → 0,

hence the required u(f) = 0, since dk → 0, thus completing ending the proof.



Chapter 2

Characterization of closed composition
algebras in one dimension

The main aim of this section will be to characterize when an injective smooth symbol
ψ ∈ E(R,Rd) generates a closed composition algebra A(ψ) = {F ◦ψ : F ∈ E(Rd,R)}. This
property was called “composite function property” by Bierstone and Milman (Definition
1.7 in [BM98]). It will turn out that, in the one-dimensional case, a smooth injective curve
ψ ∈ E(R,Rd) has the composite function property if and only if its inverse ψ−1 : ψ(R)→ R
is locally Hölder continuous. We will also see that this is equivalent to the three conditions
of properness, Whitney-regularity of the image, and finite order of each critical point. Most
of the results have already been published in the joined work [KW11] with Wengenroth in
a somewhat shorter form but we have slightly improved proposition 2.9.

2.1 Introduction and previous results
As an introduction, let us briefly cite the work already done by Bierstone, Glaeser, Milman,
and Pawłucki.
In [Gla63], Glaeser deals with a smooth map θ : U → V where U ⊆ Rn and V ⊆ Rp are
open sets for p ≤ n. He gives the following sufficient conditions regarding the question
whether a smooth analytic map θ : U → V has the composite function property.

Theorem 2.1 (Glaeser, [Gla63], Théorème II).
If θ satisfies the conditions Θ1,Θ2,Θ3,Θ4 below, the subalgebra A(θ) is closed in E(U,R).

Θ1. θ is a real-analytic map from U to V

Θ2. The rank of θ is equal to p on an everywhere-dense open subset of U .

Θ3. The image θ(U) is closed in V .

Θ4. For every compact set K ⊆ θ(U) there exists a compact subset L ⊆ U such that
K = θ(L).

35
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We remind the reader that every map satisfying Θ4 is called semiproper. In [BMP96] the
authors gave the following equivalent definition. They called a map f : A → B between
topological spaces semiproper if f(A) is closed in B and the quotient topology on f(A)
coincides with the one induced by B. They also mentioned that this property is equivalent
to the following definition, which will better suit our needs.

Definition 2.2.
A continuous map ϕ : X → Y is called semiproper if, for every compact set K ⊆ Y , there
is a compact set L ⊆ X such that ϕ(L) = K ∩ ϕ(X).

Since we mainly deal with injective functions, let us mention that injective semiproper maps
are actually proper, i.e. preimages of compact sets are compact themselves. Obviously,
since ϕ is injective, the set L in the definition above is unique and must coincide with the
preimage of K, hence must be compact.
The results of Bierstone and Milman are not restricted by the dimension condition seen
in Glaeser’s work. They also pointed out that the composition property, the fact that the
composition algebraA(ϕ) is closed, was more a geometrical characteristic of the image of ϕ.
They considered the more general case of a real-analytic mapping ϕ : M → N between real-
analytic manifolds where they used the symbol ϕ∗(C∞(N)) for the set {F ◦ϕ : F ∈ C∞(N)}
and ϕ∗(C∞(N))̂ for the set of functions with the right Taylor series (i.e. the Taylor series
of a composition F ◦ ϕ) at every point. For M = R this set is the closure of the algebra
A(ϕ) = ϕ∗(C∞(Rd)) as we have seen in proposition 1.12. Let us first clarify some notions
necessary to formulate their result.

Definition 2.3.

(i) ([BM88], definition 2.1) A subset X ⊆M is called semianalytic if every point x ∈ X
has a neighborhood U such that X ∩ U ⊆ S(O(U)). Here O(U) denotes the set
of real-analytic maps on U and S(O(U)) stands for the smallest family of subsets
of U that is stable under finite union, finite intersection, and complement, and also
contains all preimages {f(x) > 0} for every f ∈ O(U).

(ii) ([BM88], definition 3.1) A subset X ⊆ M is called subanalytic if every point x ∈ X
has a neighborhood U such that X ∩ U is the image under a projection of some
relatively compact semianalytic set.

(iii) We write Em(Rd,R) for the space of m-times continuously differentiable, real-valued
functions on Rd. For a given subset M ⊆ R we denote by Im(M) the subspace
{F ∈ Em(Rd,R) : f (k)(x) = 0 for all k ≤ m,x ∈ M} of m-flat functions on M . We
define the space of m-times continuously differentiable germs on M as the quotient
Em(M,R) = Em(Rd,R)/Im(M). For m = ∞, we will abbreviate I(M) = I∞(M)
and E(M,R) = E∞(M,R).
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In this setting and in the case of the real-analytic manifold M = R, the first part of their
result reads as follows.

Theorem 2.4 (Bierstone, Milman [BM98] Theorem 1.13).
Let ϕ : R → Rn be a real-analytic and proper (or even semiproper) map such that the
image ϕ(R) is a closed subanalytic subset of Rn. The algebra A(ψ) is closed if and only
if the space E(ϕ(R),R) of smooth germs on ϕ(R) is the same as the intersection of all
Em(ϕ(R),R).

Bierstone and Milman also give additional characterizations of closed composition algebras.
For instance they show that it is also equivalent to the semicoherence of ϕ(R) or the fact
that ϕ satisfies certain types of uniform Chevalley estimate. They also note in [BM98],
theorem 1.23 that the composite function property implies the existence of an extension
operator E : E(ϕ(R),R)→ E(Rd,R).
For us, the interesting fact about the results of both Glaeser and Bierstone and Milman is
that they deal with maps that need not be injective and therefore require the semiproper-
ness of the generator. This is not a coincidence but actually a necessary condition no
matter the injectivity of the generator or the dimensions of its domain and codomain.
This might hint to a way of getting rid of the fact that ψ has to be injective, thereby
allowing us to generalize our results to the case of a smooth curve. Unfortunately, this is
out of our range for now.
Let us proceed with results of our own. We will mostly seize a suggestion by the referee of
[AKOW98] mentioned in the previous section. He conjectured that the composition algebra
A(ψ) = {F ◦ψ : F ∈ E(Rd,R)} should already be closed whenever the composition symbol
ψ ∈ E(Rd,R) is a (smooth) injective and proper curve which has only critical points of
finite order.
As we have mentioned above, this question has already been intensely discussed by Bier-
stone, Glaeser, and Milman in the case of a real-analytic map, but to our knowledge thus
far smooth injective maps ψ : Rn → Rn+k have not been dealt with.
To gain a better understanding of the conjecture mentioned above, let us give a formal
definition of the crucial notion of finite order.

Definition 2.5.
A smooth function f ∈ E(R,Rd) is said to be of finite order at x if there exists some
differentiation order n ∈ N such that Dnf(x) 6= 0. The smallest such integer n = n(x) is
called the order of f at x.

Let us now show that these two conditions of properness and finite order of the critical
points are not sufficient to obtain a closed composition algebra by constructing a rather
simple counterexample.
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Example 2.6.
Consider the map ϕ : R→ R defined by ϕ(t) = exp

(
−1

t

)
for t > 0 and ϕ(t) = 0 for t ≤ 0.

This map is smooth and flat at t = 0. In order to obtain both finite order and injectivity,
consider ψ : R → R2 defined by ψ(t) = (t2, ϕ(t)). Its image around zero is given by the
following curve.

Figure 2.1: The sharp cusp of the image ψ(R) near 0.

Obviously, the only critical point of ψ is t0 = 0 which has order 2, since its first coordinate
has non-vanishing second derivative. To see the injectivity, consider x, y ∈ R satisfying
ψ(x) = ψ(y). Suppose x 6= y. The equality of the first coordinate implies x2 = y2 and
therefore x = −y. Without loss of generality we can assume x < y and thus x < 0 < y
which results in the contradiction ϕ(x) = 0 < ϕ(y). To prove the properness of ψ, fix
some compact set K ⊆ R2. The first coordinate ψ1 of ψ is the monomial t 7→ t2, which is
proper. Considering the projection K1 = π1(K) of K onto the first coordinate we obtain
ψ−1(K) ⊆ ψ−1

1 (K1), which must be compact as a closed subset of a compact set.
The function √ϕ is flat in the only critical point z = 0 of ψ. It therefore has the same
Taylor series in z as the function that is constant zero and theorem 1.12 implies that √ϕ
must be contained in the closure ofA(ψ). Supposing that the composition algebra is closed,
we can find some F ∈ E(R2,R) such that √ϕ = F ◦ ψ. For t > 0 we obtain

exp

(
− 1

2t

)
=
√
ϕ(t) =

√
ϕ(t)−

√
ϕ(−t) = F ◦ ψ(t)− F ◦ ψ(−t) = F (t2, ϕ(t))− F (t2, 0).

But as continuously differentiable function, F is Lipschitz-continuous near (0, 0) and we
can find some constant C ≥ 0 such that

exp

(
− 1

2t

)
=
∣∣F (t2, ϕ(t))− F (t2, 0)

∣∣ ≤ C ·‖(t2, ϕ(t))−(t2, 0)‖ = C ·‖ϕ(t)‖ = C exp

(
−1

t

)

for all t > 0 sufficiently small. Multiplying both sides with exp

(
1

2t

)
, we obtain

1 ≤ C · exp

(
− 1

2t

)
,

which leads to a contradiction since the right hand side converges to 0 for t→ 0.
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The reason why we can not consider the branches {ψ(t) : t ≤ 0} and {ψ(t) : t ≥ 0}
separately is our use of the Lipschitz continuity of F . Indeed we can consider two distances
between points on ψ(R). The first would be the usual Euclidean distance in R2, in this
example |ψ(t) − ψ(s)|. The second is the geodesic distance of ψ(s) and ψ(t) on ψ(R).
Supposing s ≤ t, this is precisely the length of the curve ψ|[s,t], namely

∫ t
s
‖ψ′(x)‖dx.

The composition property links both distances prohibiting the case encountered above and
requires that the euclidean distance can be dominated locally by (some potential power
of) the geodesic distance. We have given a sketch of the image of ψ around zero in figure
2.1 to better demonstrate this fact. As we can see, the ratio between the geodesic and
Euclidean distances of two points on the same vertical line but different branches of ψ(R)
explodes as the vertical line approaches zero.
Having this in mind, the following definition of Schwartz ([Sch66], 8, III.9) will prove useful.

Definition 2.7.
A closed arcwise connected subset M ⊆ Rd is called Whitney-regular if for every point
z ∈ M one can find a relative ball B(z, ε) and constants C, γ > 0 such that the geodesic
distance (the smallest length of a rectifiable curve in M ∩ B(z, ε)) between two points
x, y ∈M ∩B(z, ε) can be dominated by C · ‖x− y‖γ.

The most interesting property of a connected Whitney-regular set M is that distributions
with support in M can be estimated by seminorms involving only evaluations of the func-
tions and its derivatives in M ([Hör03], Theorem 2.3.11). This is gravely false if the set
M is not Whitney-regular as mentioned in [Hör03], example 2.3.2, where Hörmander con-
structed a distribution u with compact support and of order one that can not be estimated
by a seminorm ‖ · ‖supp(u),k for any k ∈ N .
Let us first prove that in the injective case, the two previous conditions of properness and
finite order together with the Whitney-regularity of the image ψ(Rd) are necessary for the
composition algebra to be closed.

2.2 Necessity of the conditions

Throughout this section we will suppose that the algebra A(ψ) = {F ◦ψ : F ∈ E(Rd,R)} is
a closed subspace of E(R,R), hence a Fréchet space itself when endowed with the relative
topology of E(R,R). As a continuous surjective linear map between Fréchet spaces the
composition operator Cψ : E(Rd,R)→ A(ψ) is open and we can use this fact to obtain our
main tool.

Proposition 2.8.
If ψ ∈ E(Rq,Rd) generates a closed composition algebra A(ψ), then the following condition
holds: For every compact set K ⊆ Rd and n ∈ N we can find L ⊆ Rq compact and k ∈ N
as well as some constant c > 0 such that any f ∈ A(ψ) can be factorized as f = F ◦ψ with
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F satisfying

‖F‖K,n ≤

{
c · ‖f‖L,k, if ‖f‖L,k 6= 0

1/2, if ‖f‖L,k = 0
.

Proof. As mentioned above, Cψ : E(Rd,R) → A(ψ) is a continuous linear surjection be-
tween Fréchet spaces, hence open. This means that the image Cψ(U) of a zero neighborhood
U in E(Rd,R) is again a zero neighborhood in A(ψ) with respect to the relative topology
induced by E(R,R). Applying this to the zero neighborhood U given by the unit ball
BK,n = {F ∈ E(Rd,R) : ‖F‖K,n ≤ 1}, we can find an open subset V of E(R,R) such
that V ∩ A(ψ) ⊆ Cψ(BK,n). The multiples εBL,k = {f ∈ E(R,R) : ‖f‖L,k ≤ ε} of unit
balls in E(R,R) form a basis of the zero-neighborhoods in E(R,R), where ε ranges over
all positive numbers, k over all integers, and L over all compact subsets of R. We can
therefore find a compact set L ⊆ R, k ∈ N, and ε > 0 such that εBL,k ⊆ V . We ob-
tain εBL,k ∩ A(ψ) ⊆ Cψ(BK,n) and the linearity of Cψ implies that every f ∈ A(ψ) with
‖f‖L,k ≤ 1 can be represented as f = F ◦ ψ with ‖F‖K,n ≤ c = 1

ε
.

For ‖f‖L,k 6= 0 we have f
‖f‖L,k

∈ BL,k, hence we can represent it as some composition
G ◦ ψ = f

‖f‖L,k
∈ BL,k with ‖G‖K,n ≤ c. For F = ‖f‖L,k ·G we obtain both F ◦ ψ = f and

‖F‖K,n ≤ c‖f‖L,k.
For ‖f‖L,k = 0 the unit ball BL,k contains the entire line {λf : λ ∈ R}. Therefore every
multiple λf can be represented as λf = Gλ ◦ ψ with ‖Gλ‖K,n ≤ c. For λ = 2c we obtain
F = Gλ

λ
such that both F ◦ ψ = f and ‖F‖K,n ≤ 1

2
.

The deduced condition of proposition 2.8 is too technical to easily decide if, for a given
ψ ∈ E(R,R), the composition algebra is closed or not. However it can be used to determine
simple criterias for closed algebras. The next necessary condition is a slight improvement
upon the statement we made in [KW11] (3, step 1). While it uses the same proof, it is
neither restricted to injective maps nor to curves (i.e. maps of one variable). It was already
mentioned in 1.4 of [BS83] that this condition is necessary to obtain a closed composition
algebra though the proof was omitted.

Proposition 2.9.
If a function ψ ∈ E(Rq,Rd) generates a closed algebra A(ψ) = {F ◦ ψ : F ∈ E(Rd,R)} in
E(Rq,R), it must be a semiproper map.

Proof. We recall that by definition 2.2 we need to find for every compact subset K ⊆ Rd

another compact subset L ⊆ Rq such that ψ(L) = K ∩ ψ(Rq).
Fix a compact subset K of Rd. As mentioned above, we can choose L ⊆ R compact, k ∈ N,
and c > 0 such that BL,k∩A(ψ) ⊆ Cψ(cBK,0). It will turn out that K∩ψ(Rq) is contained
in the image ψ(L) of the compact set L ⊆ R, which implies semiproperness since then
ψ(L ∩ ψ−1(K)) = ψ(Rd) ∩K.
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Now suppose there is some ψ(x) ∈ K \ ψ(L). The two sets {ψ(x)} and ψ(L) are compact
and disjoint. Using again corollary 1.4.11 from Hörmander’s book [Hör03], we can find
G ∈ E(Rd,R) such that G(ψ(x)) = 1 and G = 0 on an open neighborhood V of ψ(L).
The composition g = G ◦ ψ is constant zero on the open neighborhood ψ−1(V ) of L hence
‖g‖L,k = 0. Applying proposition 2.8, we can write g = Γ ◦ ψ with some Γ ∈ E(Rd,R)
satisfying ‖Γ‖K,0 ≤ 1

2
. Since ψ(x) ∈ K we obtain the contradiction

1 = |g(x)| = |Γ(ψ(x))| ≤ ‖Γ‖K,0 ≤
1

2
.

As a corollary, we obtain the first necessary condition in the injective case.

Corollary 2.10.
If an injective function ψ ∈ E(Rq,Rd) generates a closed composition algebra A(ψ), then
ψ must be a proper map.

Proof. As seen in proposition 2.9, for every compact set K ⊆ Rd we can find a compact set
L ⊆ Rq such that ψ(L) = K∩ψ(R). The injectivity of ψ therefore implies that L = ψ−1(K)
is compact.

Note that, since ‖F‖K,n ≤ c implies ‖F‖K,0 ≤ c, we even obtain a slightly stronger result,
namely that ψ−1(K) ⊆ L whenever BL,k ∩ A(ψ) ⊆ Cψ(cBK,n).
Alternatively one could prove this fact by applying the surjectivity criterion already used
in proposition 1.7 (cf. 26.1 in [MV97]). It states that a continuous linear map T : X → Y
between Fréchet spaces is surjective if and only if preimages under T t of bounded sets in X ′
are again bounded in Y ′. For a compact set K ⊆ Rd, the set of evaluations {δx : x ∈ K} is
bounded, since it is contained in the polar set of the unit ballBK,0. For s ∈ ψ−1(K), we have
δψ(s)(F ) = F (ψ(s)) = δs(F ◦ψ) = Ct

ψ(δs)(F ), hence the set {δs : s ∈ ψ−1(K)} ⊆ C−tψ (B◦K,0)
is bounded in A(ψ)′. We can therefore find some unit ball BL,n and a λ > 0 such that
δs ∈ λB◦L,n for all s ∈ ψ−1(K), which also implies ψ−1(K) ⊆ L.
An easy consequence of the properness of ψ in the injective case is the following statement
about the continuity of the inverse map.

Remark 2.11.
If ψ ∈ E(Rq,Rd) is proper and injective, and if we endow ψ(Rq) with the relative topology
of Rd, the inverse map ψ−1 : ψ(Rq)→ Rq must be continuous. In particular, this is always
the case when an injective ψ generates a closed composition algebra.

Proof. We will show that images of closed sets under ψ are closed (remark 1.4.1 in [BS83]).
Consider a closed set C ⊆ Rq as well as a sequence (ψ(cn))n∈N in ψ(C) converging to some
x ∈ Rd. The set K = {ψ(cn) : n ∈ N} ∪ {x} is compact, hence ψ−1(K) is also compact.
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We can therefore find a subsequence ϕ such that cϕ(n) converges in Rq to some c∞. The
set C being closed, we have c∞ ∈ C and the continuity of ψ implies

x = lim
n→∞

ψ(cϕ(n)) = ψ(c∞) ∈ ψ(C).

The preimage of C under γ = ψ−1 is given by γ−1(C) = ψ(C) which is closed in ψ(Rq) hence
γ = ψ−1 is continuous. It follows that for any open set O ⊆ R the image ψ(O) = γ−1(O)
is open in ψ(Rq) and can therefore be represented as the intersection ψ(O) = U ∩ ψ(Rq)
where U ⊆ Rd is open.
If A(ψ) is closed, we have seen in proposition 2.9 that ψ must be a semiproper map. Its
injectivity together with definition 2.2 implies that it is proper hence ψ−1 is continuous.

We will now use the fact that ψ must be a proper map to extract geometrical conditions
on ψ′ required for the proof of both the finite order condition and the Whitney-regularity
of ψ(R).

Lemma 2.12.
If ψ ∈ E(R,Rd) is injective and the composition algebra A(ψ) is closed, then ψ′ must satisfy
the following estimate:
For all compact sets J ⊆ R, there are constants c > 0 and ` ∈ N such that

dist(x,E(ψ))` ≤ C · ‖ψ′(x)‖

for all x ∈ J .

Proof. Fix a compact set J ⊆ R and consider K = ψ(J) and n ≥ 1. We can choose L, k
and c as in proposition 2.8. We obtain that every f ∈ A(ψ) has a representation f = F ◦ψ
such that ‖F‖K,1 ≤ c · ‖f‖L,k. For L ⊆M and k ≤ r we have ‖f‖L,k ≤ ‖f‖M,r. Therefore
we can enlarge L to be a compact interval containing the set J = ψ−1(K), which is compact
by the properness of ψ. Furthermore we can also suppose k ≥ 2. For f = F ◦ψ and x ∈ L
we then have ψ(x) ∈ K and applying the Cauchy-Schwarz inequality to the formula given
by the chain rule implies that

|f ′(x)| = |(F ◦ψ)′(x)| ≤
d∑
j=1

|∂jF (ψ(x))ψ′j(x)| ≤ ‖∇F (ψ(x))‖ · ‖ψ′(x)‖ ≤ ‖F‖K,n · ‖ψ′(x)‖.

For the specific choice of F given by proposition 2.8, namely ‖F‖K,n ≤ c · ‖f‖L,k, we
obtain |f ′(x)| ≤ c · ‖f‖L,k · ‖ψ′(x)‖ whenever ‖f‖L,k 6= 0. Define d(x) = dist(x,E(ψ)) and
consider ϕ ∈ D((−1, 1)) satisfying ϕ′(0) = 1. For any x 6∈ E(ψ) we can construct the
bump function fx ∈ E(R,R) by fx(t) = ϕ

(
t−x
d(x)

)
. The support of fx does not intersect

E(ψ) hence proposition 1.9 implies fx ∈ A(ψ) = A(ψ). If we further restrict ourselves
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to x ∈ L, the norm ‖fx‖L,k cannot vanish since this would mean that f ′x = 0 on L which
contradicts f ′x(x) = 1

d(x)
. For x ∈ L \ E(ψ) we obtain a function Fx ∈ E(Rd,R) satisfying

1

d(x)
= |f ′x(x)| ≤ ‖Fx‖K,n · ‖ψ′(x)‖ ≤ c · ‖fx‖L,k · ‖ψ′(x)‖ ≤ c · ‖ϕ‖R,k

d(x)k
· ‖ψ′(x)‖,

and multiplying both sides by d(x)k leads to the required estimate

dist(x,E(ψ))k−1 ≤ c · ‖ϕ‖R,k · ‖ψ′(x)‖ ≤ C · ‖ψ′(x)‖.

Since ` = k − 1 ≥ 1, the inequality is trivially true for x ∈ E(ψ) hence is satisfied on L,
which contains J .

As a direct consequence, we can deduce the following geometrical property of the critical
set E(ψ).

Proposition 2.13.
If an injective map ψ ∈ E(R,Rd) generates a closed composition algebra A(ψ), every critical
point must be of finite order.

Proof. Suppose there is a critical point e ∈ E(ψ) that does not have finite order.
Consider any compact neighborhood I of e and choose ` = `(I) and C = C(I) as in lemma
2.12 such that

dist(x,E(ψ))` ≤ C · ‖ψ′(x)‖
holds for all x ∈ I.
Choose δ > 0 such that ‖ψ(`+1)(x)‖ ≤ ε` = (2`+1C(` + 1)`)−1 for all x in the compact
subinterval J = [e − δ, e + δ] of I. The distance to E(ψ) being a continuous function, we
can find some y ∈ J such that d(x) ≤ d(y) for all x ∈ J . In order to shorten the following
estimates a bit, we will write d = d(y). By definition of d any closed subinterval of I of
length 2d contains at least one critical point. Therefore every closed subinterval J of length
2(` + 1)d contains at least ` + 1 different zeros of ψ′j for any coordinate j ≤ d. Applying
Rolle’s theorem repeatedly we see that J contains at least one (actually ` − k + 2) zero,
zk, of ψ

(k)
j for all 1 ≤ k ≤ `+ 1 and each j ≤ d.

If 2(`+ 1) ·d ≤ δ, fix some coordinate j ≤ d of ψ. We can repeatedly apply the mean value
theorem to the different zeros zk ∈ J of ψ(k)

j to obtain a sequence ξ1, ..., ξ` ∈ J such that

|ψ′j(y)| = |ψ′j(y)− ψ′j(z1)| = |ψ′′j (ξ1)| · |y − z1|
≤ |ψ′′j (ξ1)| · 2(`+ 1) · d = |ψ′′j (ξ1)− ψ′′(z2)| · 2(`+ 1) · d

≤ |ψ(3)
j (ξ2)| · |ξ1 − z2| · 2(`+ 1) · d ≤ |ψ(3)

j (ξ2)| · (2(`+ 1) · d)2

...

≤ |ψ(`+1)
j (ξ`)| · (2(`+ 1) · d)`.
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If otherwise, we have 2(` + 1) · d > δ. We can then successively apply Rolle’s theorem to
the zeros zk = e of ψ(k)

j to obtain |ψ′j(y)| ≤ |ψ(`+1)
j (ξ`)| · (2(`+ 1)d)` with some ξ` ∈ I.

By assumption we can dominate |ψ(`+1)
j (z)| by 1

2`+1C(`+1)`
on J and lemma 2.12 implies the

following inequality

dist(y, E(ψ))` ≤ C · ‖ψ′(y)‖ ≤ ε` · C · (2(`+ 1) · d(y))` =
dist(y, E(ψ))`

2
.

for all y ∈ J . This of course can only be true if dist(y, E(ψ)) = 0 on J . Therefore ψ must
be constant on J in contradiction to the injectivity.

As a simple consequence, let us show that the set E(ψ) of critical points must be discrete
whenever A(ψ) is closed and injective.
Indeed, suppose E(ψ) has an accumulation point e∞. We can find a strictly monotone
sequence (en)n∈N in E(ψ) \ {e∞} converging to e∞. As seen in the proof of theorem 1.12
we can iteratively apply Rolle’s theorem to a strictly monotone sequence of zeros of ψ(k)

j

to obtain another strictly monotone sequence of zeros of ψ(k+1)
j converging to e∞. This

implies ψ(k)(e∞) = 0 by continuity for all k ∈ N. The point e∞ does therefore not have
finite order in contradiction to the previous proposition 2.13.
Let us now proceed with the fact that ψ must have a Whitney-regular image. According
to definition 2.7 we need to prove that for any point x ∈ ψ(R) we can find δ, γ, C > 0
such that every two points y, z ∈ ψ(R) with |z − x|, |y − x| < δ can be connected by a
curve Γ in ψ(R) of length inferior to C · |y − z|γ. Since ψ is injective the only possible
curve connecting y = ψ(s) and z = ψ(t) is Γ = ψ|[s,t], which has the length

∫ t
s
‖ψ′(w)‖dw.

Dominating ‖ψ′‖ by some constant CI on a compact interval I containing ψ−1(B(x, δ)),
we obtain the estimate ∫ t

s

‖ψ′(w)‖dw ≤ CI · |t− s|.

It is therefore sufficient to prove that |t − s| ≤ C · ‖ψ(t) − ψ(s)‖γ for all ‖ψ(s) − x‖ < δ
and ‖ψ(t)− x‖ ≤ δ.

Proposition 2.14.
If an injective map ψ ∈ E(R,Rd) generates a closed composition algebra A(ψ), then the
inverse map ψ−1 : ψ(R) → R must be locally Hölder continuous. In particular ψ(R) is a
Whitney-regular subset of Rd.

Proof. Let us begin by proving the local Hölder continuity of the inverse. This is always
true near some point x if it is the image x = ψ(a) of some regular point a ∈ E(ψ)c, and will
be proved using the fact that ψ is a diffeomorphism between the one-dimensional manifolds
R\E(ψ) and its image under ψ. Indeed, by assumption we can choose a coordinate j such
that ψ′j(a) 6= 0. Restricting ourselves to some interval I = [a−ε, a+ε] such that |ψ′j| > c > 0



45

on I, we can suppose that the sign of ψ′j is constant hence we obtain

c · |t− s| <
∫ t

s

|ψ′j(w)|dw =

∣∣∣∣∫ t

s

ψ′j(w)dw

∣∣∣∣ = |ψj(t)− ψj(s)| ≤ ‖ψ(t)− ψ(s)‖

for all s, t ∈ I. Choosing δ > 0 such that B(x, δ) ∩ ψ(R) ⊆ ψ(I) ,we obtain the Hölder
continuity around x = ψ(a) with Hölder exponent γ = 1 and C = 1/c.
Now consider some critical point e ∈ E(ψ). Since the translation τe(f)(t) = f(t−e) defines
an isomorphism on E(R,R), the algebra τe(A(ψ))) = A(τe(ψ)) is also closed and we can
suppose e = 0. By proposition 2.13 the order n of 0 must be finite and we can find an
interval I = [−ε, ε] and a coordinate j such that ψ(n)

j (x) 6= 0 on I. We recall that the order
n of x was defined as the smallest integer such that ψ(n)(x) 6= 0. The derivative ψ′j has no
zero other than 0 on I since otherwise applying Rolle’s theorem n− 1 times would yield a
zero ξ ∈ I of ψ(n)

j . Using l’Hospital’s rule n− 1 times for the quotients ψ′`(t)/ψ′j(t), we see
that each of them has a (finite) limit at 0, namely ψ(n)

` (0)/ψ
(n)
j (0). By reducing ε we can

dominate every coordinate |ψ′`| by |ψ′j| and suppose that

‖ψ′(t)‖ ≤ c · |ψ′j(t)|

with some constant c ≥ 1.
The set E(ψ) being discrete, we can further reduce ε to suppose dist(t, E(ψ)) = |t−e| = |t|
on I. Applying lemma 2.12 to I, we obtain ` ∈ N and C > 0 such that |t|` ≤ C · ‖ψ′(t)‖
on I.
If t and s are on the same side of 0, we can suppose w.l.o.g. that 0 < |s| < |t|. Since ψ′j
has no zero on the interval {λt+ (1−λ)s : λ ∈ [0, 1]}, the sign of ψ′j is constant there. For
x = t/s ≥ 1 and k ∈ N, we can use the estimate

(x− 1)k ≤ (x− 1) · xk−1 ≤ (x− 1)
k−1∑
j=0

xj = xk − 1

to obtain |t − s|k ≤ |tk − sk| by multiplying both sides with |s|k = |sk|. Note that this
estimate is also trivially satisfied for |s| = 0 and we can use it for k = `+ 1 to obtain

1

`+ 1
|t− s|`+1 ≤ 1

`+ 1
|t`+1 − s`+1| =

∣∣∣∣∫ t

s

w`dw

∣∣∣∣ .
Note that the sign of w is constant. We can further estimate using |w|` ≤ C · ‖ψ′(w)‖ and
get

1

`+ 1
|t− s|`+1 ≤

∫ t

s

C · ‖ψ′(w)‖dw ≤
∫ t

s

Cc · |ψ′j(w)|dw

= Cc ·
∣∣∣∣∫ t

s

ψ′j(w)dw

∣∣∣∣ = Cc · |ψj(t)− ψj(s)|

≤ Cc · ‖ψ(t)− ψ(s)‖,
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where we have used that the sign of ψ′j is constant to pull the absolute value out of the
integral.
Now suppose s < 0 < t and consider the interval I = [−ε, ε] for ε > 0. We need to refine the
estimate given in corollary 2.12. To do so, fix a function ϕ ∈ D(−1, 1) satisfying ϕ(0) = 1
and define the compressions ϕx by ϕx(w) = ϕ ((w − x)/|x|)) for x 6= 0. If |x| is sufficiently
small, we have supp(ϕx) ⊆ B(x, |x|), which is contained in E(ψ)c. Proposition 1.9 thus
implies that ϕx ∈ A(ψ). Applying proposition 2.8 to a compact set K containing ψ(I) and
n = 1, we obtain another compact set L ⊇ ψ−1(K) and c, k ∈ N such that any f ∈ A(ψ)
can be factorized as F ◦ψ with ‖F‖K,1 ≤ c · ‖f‖L,k whenever ‖f‖L,k 6= 0. Since ‖ϕx‖L,k 6= 0
we get a factorization Fx ∈ E(Rd,R) such that ‖Fx‖K,1 ≤ c · ‖ϕx‖L,k ≤ c · |x|−k · ‖ϕ‖R,k.
We can now use the mean value inequality for Ft to estimate 1 = ϕt(t) = ϕt(t)−ϕt(s) and
obtain

1 = ϕt(t)− ϕt(s) = |Ft(ψ(t))− Ft(ψ(s))| ≤ ‖Ft‖K,1 · ‖ψ(t)− ψ(s)‖ ≤ Ck
|t|k
· ‖ψ(t)− ψ(s)‖,

where Ck = c · ‖ϕ‖L,k. Multiplying both sides with |t|k the estimate reads

|t|k ≤ Ck · ‖ψ(t)− ψ(s)‖,

and the same procedure applied to ϕs gives us |s|k ≤ Ck · ‖ψ(t)− ψ(s)‖. Using the trivial
inequality |t− s| ≤ 2 ·max{|t|, |s|} leads to

|t− s|k ≤ 2k ·max{|t|k, |s|k} ≤ 2k · Ck · ‖ψ(t)− ψ(s)‖

and taking the k-th root on both sides implies the local Hölder continuity of the inverse.
Finally, let us prove that ψ(R) is Whitney-regular. The set ψ(R) is arcwise connected since
the curve ψ|[s,t] connects ψ(s) and ψ(t) in ψ(R). Corollary 2.11 states that it is also closed.
For x ∈ ψ(R) we can use the local Hölder continuity of ψ−1 to find δ, C, γ > 0 such that
|t − s| < C · ‖ψ(t) − ψ(s)‖γ for all ψ(t), ψ(s) ∈ B(x, δ). Reducing δ we can suppose that
B(x, δ) ∩ ψ(R) ⊆ ψ(I) for some compact interval I. Dominating the length of the curve
ψ|[s,t], we obtain the estimate required for the Whitney-regularity:

L(ψ|[s,t]) =

∫ t

s

‖ψ′(w)‖dw ≤ CI · |t− s| ≤ CIC · ‖ψ(t)− ψ(s)‖γ.

Let us finish this subsection with the remark that in the injective case the local Hölder
continuity of the inverse does not only imply the Whitney-regularity of the image but even
unifies it with the two previous necessary conditions of properness and finite order.

Remarks 2.15.
Given an injective ψ ∈ E(R,R), the local Hölder continuity of the inverse ψ−1 : ψ(R)→ R



47

implies that ψ is a proper map, possesses only critical points of finite order, and has a
Whitney-regular image. Indeed, the local Hölder continuity implies continuity. Therefore
preimages under ψ of compact sets in Rd are images under ψ−1 of compact sets in ψ(R),
hence compact. The finite order condition is a consequence of Taylor’s formula. For some
critical point e ∈ E(ψ) we can find a neighborhood I of e such that |t−e|k ≤ c·‖ψ(t)−ψ(e)‖
for all t ∈ I. Suppose the order of e is superior to k. Then the Taylor polynomial T ke ψ is
constant which leads to the contradiction

|t− e|k ≤ ‖ψ(t)− ψ(e)‖ = ‖ψ(t)− T ke ψ(t)‖ ≤ C · |t− e|k+1.

Finally, the Whitney-regularity of ψ(R) has been proven in 2.14.

2.3 Sufficiency of the conditions
We will now proceed to show that the local Hölder continuity of the inverse is also sufficient
for the composition algebra to be closed. Throughout this section we will only consider
injective curves ψ ∈ E(R,Rd) that satisfy the following three conditions:

(i) ψ is a proper map.

(ii) ψ(R) is a Whitney-regular set.

(iii) Every critical point e ∈ E(ψ) is of finite order.

Note that even though the local Hölder continuity of the inverse map is necessary, we do
not demand ψ to satisfy it explicitly. In light of remark 2.15, it appears to be a stronger
requirement than the three conditions above. It will turn out that those are actually
sufficient and hence equivalent to the local Hölder continuity of the inverse map.
As we have seen before in proposition 1.9 every function with compact support outside
E(ψ) is contained in the closure of A(ψ) but is not necessarily a composition itself. We
will begin by showing that this is the case if we demand that ψ is a proper map. The
constructive argument given below will also be of importance to the proof of the general
case. Let us emphasize that the proof neither relies on the finite order, nor on the Whitney-
regularity of the image.

Proposition 2.16.
Given a proper injective map ψ ∈ E(R,Rd), every smooth function f with support in
R \ E(ψ) is contained in A(ψ).

Proof. Consider some f ∈ E(R,R) with support in R \ E(ψ). For x ∈ E(ψ)c there is
a coordinate j = j(x) such that ψ′j(x) 6= 0. We can therefore find an open interval Ix
containing x such that ψ′j(t) 6= 0 for all t ∈ Ix. The coordinate ψj being monotone on
Ix, its image Jx = ψj(Ix) is an interval and ψj : Ix → Jx is a diffeomorphism. Since ψ is
an injective proper map, corollary 2.11 states that ψ−1 : ψ(R) → R is continuous. This
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implies that the image ψ(Ix) of the open set Ix in R is open in ψ(R) as the preimage
under ψ−1 of Ix. We can therefore find some Ux ⊆ Rd such that ψ(Ix) = Ux ∩ ψ(R). Let
us again write πj for the continuous projection onto the j-th coordinate. Considering the
intersection of Ux with π−1

j(x)(Jx), which is open and also contains ψ(Ix), we can suppose
that πj(x)(Ux) ⊆ Jx. The function defined on Ux by

Fx = f ◦ ψ−1
j(x) ◦ πj(x)

is smooth on Ux and satisfies Fx◦ψ = f on Ix. The family (Ux)x∈supp(f) forms a cover of the
closed set ψ(supp(f)). We can therefore find a locally finite partition of unity (Φx)x∈supp(f)

subordinated to that cover. The function

F =
∑

x∈supp(f)

Fx · Φx

is well-defined and smooth as a locally finite sum of smooth maps. Since Φx ∈ D(Ux),
the composition Φx ◦ ψ has support in ψ−1(Ux) = Ix. On Ix we have Fx ◦ ψ = f hence
(Fx ·Φx) ◦ ψ = f · (Φx ◦ ψ). Outside Ix we also have (Fx ·Φx) ◦ ψ = 0 = f · (Φx ◦ ψ). This
implies the required identity F ◦ ψ = f .

Basically, proposition 2.16 tells us that we only need to “fill in the blanks” around the
critical set. Localizing, we can write f as the sum of functions fe that have support in
arbitrary neighborhoods of e ∈ E(ψ), and a remainder g that has support outside E(ψ).
We know that g is contained in A(ψ) by the previous proposition and it remains to prove
that each fe is contained in A(ψ). Using the characterization of the closure of A(ψ) given
in 1.12, we will see that considering a function fe that is flat in e is sufficient. The proof
will rely on the following special case.

Proposition 2.17.
Consider a smooth bijection ϕ : [a, b]→ [α, β] which has only one critical point z ∈ {a, b}.
Suppose furthermore that this critical point has finite order. Then the composition operator
Cθ : D([a, b]) → D([α, β]) generated by the inverse map θ = ϕ−1 : [α, β] → [a, b] is
continuous .

Proof. Note that the inverse map is not smooth itself. Let us first explain why we can
suppose that a is the critical point with ϕ(a) = α. Indeed, if b is the only critical point
we can consider the coordinate transformation τ(t) = b+ a− t which is a diffeomorphism
on R with τ−1 = τ . The map Cτ : D([a, b])→ D([a, b]) is a continuous bijection hence an
isomorphism. Since the only critical point of ϕ◦τ is τ(b) = a, the map (ϕ◦τ)−1 generates a
continuous composition operator by assumption. Using ϕ−1 = (ϕ ◦ τ ◦ τ)−1 = τ ◦ (ϕ ◦ τ)−1,
we obtain that Cϕ−1 = C(ϕ◦τ)−1 ◦ Cτ is also continuous. The same argument with the
coordinate transform %(s) = α+ β − s and the identity % ◦ % ◦ ϕ = ϕ allows us to suppose
ϕ(a) = α.
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Once we have proven that Cθ is a well-defined map between D([a, b]) and D([α, β]), we can
deduce the continuity from the closed graph theorem since both spaces are Fréchet and Cθ
is continuous with respect to the coarser topologies of uniform convergence.
Since a is the only critical point of ϕ, the map θ = ϕ−1, and hence every composition
f ◦ θ, is smooth on (α, β] = (ϕ(a), β]. To prove f ◦ θ ∈ D([α, β]) we only have to prove
smoothness in α which we will achieve by induction.
The case n = 0 is a consequence of the continuity of θ and we obtain f ◦ θ(α) = f(a) = 0.
For the induction step, suppose that limx→α(g ◦ θ)(n)(x) = 0 for all g ∈ D[a, b]. The
differentiability of (f ◦ θ)(n) at α, together with (f ◦ θ)(n+1)(α) = 0, will follow from the
chain rule

(f ◦ θ)(n+1) = ((f ′ ◦ θ) · θ′)(n) =

(
f ′ ◦ θ
ϕ′ ◦ θ

)(n)

.

Indeed, applying the mean value theorem to compute the difference quotient, one obtains
that

(f ◦ θ)(n)(x)− (f ◦ θ)(n)(α)

x− α
= (f ◦ θ)(n+1)(ξ) =

(
f ′ ◦ θ
ϕ′ ◦ θ

)(n)

(ξ) =

(
f ′

ϕ′
◦ θ
)(n)

(ξ)

for some ξ ∈ (a, b). Since a < ξ < x → a, it follows that the right hand side converges to
zero by the induction assumption once we have shown that f ′/ϕ′ ∈ D([α, β]).
Let us now prove that the quotient in question is smooth, which is also best done by induc-
tion. The quotient g = f ′

ϕ′
can extended to a continuous function on [a, b]. Indeed, applying

l’Hospital’s rule sufficiently many times to g ∈ D((a, b]), one sees that limx→a g(x) = 0 as a
consequence of the finite order condition. For the induction step, suppose the n-th deriva-
tive of g has the form of a quotient g(n) = p

h
where h, p ∈ D([a, b]) and h has only one

zero at a which is of finite order. Its derivative on (a, b] is given by g(n+1) = P
H

where
P = p′ ·h−p ·h′ ∈ D([a, b]) and H = h2 has only one zero, a, which is of finite order (twice
the order of h). We obtain g(n+1)(x) → 0 as x → a, and the mean value theorem implies
that the difference quotient

g(n)(x)− g(n)(α)

x− α
= g(n+1)(ξ)→ 0

since a < ξ < x→ a.

Let us now continue and prove that we can always write functions which are flat on E(ψ)
as compositions. The critical set of ψ being discrete, and since functions with support
outside of it are already compositions by proposition 2.16, we can restrict ourselves to
functions having support in a sufficiently small neighborhood of only one critical point. If
we recall example 2.6, the problem under consideration resulted from the fact that we were
not allowed to consider the two branches ψ((−∞, 0)) and ψ((0,∞)) of the image ψ(R)
separately. This is where the Whitney-regularity comes into play.
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Proposition 2.18.
For ψ ∈ E(R,Rd) that is injective, proper, has a Whitney-regular image, and only critical
points of finite order, every critical point e ∈ E(ψ) possesses a neighborhood Ie such that
every function f ∈ D(Ie) which is flat in e is a contained in A(ψ).

Proof. Fix e ∈ E(ψ). Using the finite order condition, we may choose ε > 0 sufficiently
small such that some higher derivative of one coordinate ψj is zero-free on Ie = [e−ε, e+ε].
Applying the mean value theorem sufficiently many times, one sees that ψ′j is also zero-free
on Ie \{e}. The coordinate ψj, once restricted to I− = [e−ε, e] and I+ = [e, e+ε], satisfies
the condition of the previous proposition 2.17. Having this in mind, we can decompose
any f ∈ D(Ie) which is flat in e into the sum f = f−+f+ of f− ∈ D(I−) and f+ ∈ D(I+).
We now prove that both f+ and f− are contained in A(ψ). We will do so by showing that
they are contained in the respective ranges of the related restrictions C−ψ : X− → D(I−)

and C+
ψ : X+ → D(I+) of the composition operator Cψ on the sets

X− = {F ∈ E(Rd,R) : F flat on ψ(R \ I−)}, and
X+ = {F ∈ E(Rd,R) : F flat on ψ(R \ I+)}.

Note that both X− and X+ are closed subspaces of E(Rd,R), hence Fréchet spaces.
Let I = [a, b] be either the interval I− or I+ and denote by X ∈ {X−, X+} the respective
definition area of the respective restriction T : X → D(I) of the composition operator
Cψ. By proposition 2.16 we know that every f ∈ D((a, b)) is a composition f = F ◦ ψ,
though it has not been stated explicitly that we can choose the support of F to satisfy
supp(F )∩ψ(R) ⊆ ψ((a, b)). Let us therefore recall our constructive argument to obtain this
improvement. By assumption, ψ′j is zero-free on (a, b) hence ψj : (a, b)→ ψj((a, b)) = (α, β)
is a diffeomorphism. The set ψ(supp(f)) is compact and has empty intersection with both
closed sets π−1

j (R\(α, β)) and ψ(R\(a, b)). Considering some Φ ∈ E(Rd,R) such that Φ = 1

near ψ(supp(f)) and Φ = 0 near the union L of the sets π−1
j (R \ (α, β)) and ψ(R \ (a, b)),

we have f = F ◦ ψ, where F = Φ · (f ◦ ψ−1
j ◦ πj) ∈ E(Rd,R). The function F has support

in Lc, which does not intersect ψ(R \ (a, b)), hence supp(F ) ∩ ψ(R) ⊆ ψ([a, b]).
This means that D((a, b)) is contained in the range of T . This set is dense in D([a, b])
as a consequence of the theorem of bipolars, since some u ∈ E(R,R)′ that vanishes on
D((a, b)) has support in R \ (a, b) and therefore vanishes on D([a, b]). The range of the
map T : X → D([a, b]) is therefore dense and it is sufficient to prove that it is also closed to
obtain the surjectivity of T . Using the closed range theorem (see [MV97], theorem 26.3),
we need to show

Ker(T )⊥ ⊆ Range(T t),

where T t : D([a, b])′ → X ′ is the transposed operator of T between the continuous duals,
and Ker(T )⊥ = {u ∈ X ′ : u(F ) = 0 for all F ◦ ψ = 0} is the annihilator of the kernel of
T .
Fix u ∈ Ker(T )⊥, which we can extend to some ũ ∈ E(Rd,R)′ via the Hahn-Banach
theorem. The support of ũ is contained in ψ(R), since for F ∈ D(ψ(R)c) we have F ∈ X
as well as F ∈ Ker(T ) hence ũ(F ) = u(F ) = 0. To obtain the required v ∈ X ′ with
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v(F◦ψ) = u(F ), let us define v on the dense subsetD((a, b)) ofD([a, b]). As previously seen,
we can write an arbitrary f ∈ D((a, b)) as f = F ◦ψ with some F = Φ · (f ◦ψ−1

j ◦πj) ∈ X.
By assigning

v(f) = u(Φ · f ◦ ψ−1
j ◦ πj) = u(F )

whenever F ∈ X satisfies F ◦ ψ = f , we get a linear map on D((a, b)) that is well-defined
since u ∈ Ker(T )⊥. We aim at proving the existence of a continuous linear extension of
v by using the Hahn-Banach theorem. To do so we need to show that v is continuous
on D((a, b)) with respect to the relative topology of D([a, b]). This is the argument that
depends on the Whitney regularity. This geometric property of ψ(R) allows us to estimate
the extension ũ of u, which turns out to have support in ψ(R), by seminorms involving only
evaluations in ψ(R). To this end fix some compact interval J such that supp(ũ) ⊆ ψ(J).
The set ψ(J) is connected and Whitney-regular and we can use theorem 2.3.11 in [Hör03]
to find some C > 0 and n ∈ N such that such that

|ũ(F )| ≤ C · ‖F‖ψ(J),n = C · sup{|DαF (ψ(t))| : |α| ≤ n, t ∈ J}.

For our factorization F = Φ · (f ◦ψ−1
j ◦πj) of f we can use that supp(Φ)∩ψ(R) ⊆ ψ([a, b])

by construction to obtain

|ũ(F )| ≤ C · ‖Φ · (f ◦ ψ−1
j ◦ πj)‖ψ(J),n = C · ‖Φ · (f ◦ ψ−1

j ◦ πj)‖ψ([a,b]),n.

Moreover, since Φ = 1 near ψ(supp(f)), all derivatives of Φ · (f ◦ψ−1
j ◦ πj) and f ◦ψ−1

j ◦ πj
coincide on a neighborhood of ψ(supp(f)). Also both functions vanish on ψ([a, b]\supp(f))
since the derivatives of f◦ψ−1

j ◦πj are zero there. Combining this with the previous estimate,
we obtain

|ũ(Φ · (f ◦ ψ−1
j ◦ πj))| ≤ C · ‖Φ · (f ◦ ψ−1

j ◦ πj)‖ψ([a,b]),n = C · ‖f ◦ ψ−1
j ◦ πj‖ψ([a,b]),n.

The composition with ψ−1
j is a continuous map by 2.17 and so is the one induced by the

projection πj. This implies that we can further estimate the norm on the right-hand side
by some seminorm ‖f‖K,m with some fixed compact set K ⊆ R and m ∈ N, leading to the
required continuity estimate.
It remains to show that the continuous linear extension ṽ satisfies T t(ṽ) = u. For any
function F ∈ E(Rd,R) with supp(F ◦ψ) ⊆ (a, b) this is clear by construction as we already
have u(F ) = v(F ◦ ψ). To generalize this, we will use the continuity of the composition
operator and show that the subspace L = {F ∈ X : F ◦ψ ∈ D((a, b))} is dense inX. By the
theorem of bipolars, it is sufficient to prove w = 0 on X whenever w ∈ E ′(Rd,R) vanishes
on L. Now consider an arbitrary w ∈ L⊥. We will show that supp(w) ⊆ ψ(R \ (a, b)).
The inclusion supp(w) ⊆ ψ(R) is clear since ψ(R) is closed and hence we can find for each
x ∈ ψ(R)c some open neighborhood Ux ⊆ ψ(R)c. Any G ∈ D(Ux) satisfies both G ∈ X and
supp(G ◦ ψ) = ∅ ⊆ (a, b) hence w(F ) = 0 and x 6∈ supp(w). For x = ψ(t) ∈ ψ((a, b)), the
sets {x} and ψ(R\ (a, b)) are closed and disjoint. Separating them by open neighborhoods,
we obtain again an open neighborhood Ux of x such that Ux ∩ ψ(R \ (a, b)) = ∅. Every
G ∈ D(Ux) satisfies both G ∈ X and G ◦ ψ ∈ D(a, b) hence G ∈ L and w(G) = 0. It
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follows from theorem 2.3.3. in Hörmander’s book that w(H) = 0 whenever H is flat on
supp(w) hence w|X = 0.
The verification of the identity T t(ṽ) = u on X then follows from the continuity of the
composition operator. For F ∈ X we can find a sequence (Fn)n∈N in L converging to F
which implies

u(F ) = lim
n→∞

u(Fn) = lim
n→∞

T t(ṽ)(Fn) = T t(ṽ)(F ).

All we have so far are local solutions around and outside the critical set. Let us now
elaborate on how to reduce the general case to the one of a flat function in E(ψ) and
merge the obtained local solutions.

Theorem 2.19.
For an injective ψ ∈ E(R,Rd) such that ψ

(i) is a proper map,

(ii) has a Whitney-regular image,

(iii) has only critical points of finite order,

the composition algebra A(ψ) = {F ◦ ψ : F ∈ E(Rd,R)} is closed in E(R,R).

Proof. Fix f ∈ A(ψ). Theorem 1.12 states that, for each e ∈ E(ψ), we can find some
Fe ∈ E(Rd,R) such that f − Fe ◦ ψ is flat in e. According to the previous proposition 2.18
we can find, for each e ∈ E(ψ), some open interval Ie = (e−ε, e+ε) such that every function
g ∈ D(Ie) that is flat in e can be written as a composition Ge◦ψ with some Ge being flat in
ψ(R \ Ie). The set E(ψ) being discrete, we can reduce ε = ε(e) so that the intervals Ie are
pairwise disjoint. The properness implies that images of open sets in R are open in ψ(R)
hence we can find Ue ⊆ Rd, also pairwise disjoint, such that Ue ∩ ψ(R) = ψ(Ie). Consider
Φe ∈ D(Ue) such that Φe = 1 on a neighborhood of ψ(e). The function (f−Fe◦ψ) ·(Φe◦ψ)
is flat in e and its support is contained in supp(Φe ◦ψ) ⊆ Ie. Proposition 2.18 implies that
we can find some Ge ∈ E(Rd,R) such that (f − Fe ◦ ψ) · (Φe ◦ ψ) = Ge ◦ ψ. Multiplying
Ge with a cutoff function Γe ∈ D(Ue) that is constant 1 near supp(Φe) we can suppose
Ge ∈ D(Ue). Both functions

FE(ψ) =
∑

e∈E(ψ)

Fe · Φe and GE(ψ) =
∑

e∈E(ψ)

Ge

are well defined and smooth since the supports of the respective summands are contained
in Ue which are pairwise disjoint. The resulting sums are therefore locally finite.
The support of f −FE(ψ) ◦ψ−GE(ψ) ◦ψ is contained in R \E(ψ). Therefore, the function
can be written as H ◦ ψ for some H ∈ E(Rd,R) by proposition 2.16. Hence we obtain

f = (H + FE(ψ) +GE(ψ)) ◦ ψ ∈ A(ψ),
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proving the proposition.

Taking a look back at the necessary conditions, we can even simplify the characterization
to obtain the following result.

Proposition 2.20.
An injective smooth curve ψ ∈ E(R,Rd) generates a closed composition algebra if and only
if ψ−1 is a locally Hölder continuous map.

Proof. The necessity of the local Hölder continuity has already been proven in proposition
2.14. Now suppose the inverse map to be locally Hölder continuous. By remark 2.15, ψ
must be proper, have a Whitney-regular image, and have only critical points of finite order
hence the algebra is closed by proposition 2.19.

As a byproduct we obtain a characterization of smooth injective curves with Hölder con-
tinuous inverses.

Corollary 2.21.
An injective curve ψ ∈ E(R,Rd) has a locally Hölder continuous inverse if and only if ψ is
proper, has only critical points of finite order, and ψ(R) is a Whitney-regular set.

Our next goal is to give necessary and sufficient conditions for some smooth and injective
map ψ ∈ E(Rq,Rd) to generate a closed composition algebra. The proof of proposition
2.19 relied heavily on estimating the norm of a distribution u with support in the image
ψ(R) and this is our best shot at attempting to achieve a similar result in the case of
several variables. Unfortunately the usual topology on the space of smooth functions (and
of distributions), namely the one generated by the seminorms

‖f‖K,n = sup{|Dαf(x)| : x ∈ K, |α| ≤ n}

is too rigid to be easily adapted to the rather complicated geometrical structure of the man-
ifold ψ(Rq \E(ψ)). We can however circumvent this by considering directional derivatives
rather then partial ones. Of course this is just an equivalent view on differential calculus,
as partial derivatives can be easily computed from directional ones and vice versa. The
following section will deal with the notions of higher derivatives as multilinear maps as well
as give some explicit formula for higher derivatives of compositions. Though the computa-
tion will be lengthy and tedious, the notation introduced in definition 3.1 of the following
section is crucial for understanding the techniques and results of section 4 and 5.
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Chapter 3

A multidimensional version of Faà di
Bruno’s formula and estimates for the
higher derivatives of an inverse map

In this section we give a complete proof of a version of Faà di Bruno’s formula for higher
derivatives of compositions of maps of several variables. We require this explicit formula
to estimate the seminorms ‖ψ−1‖K,n of the inverse of a diffeomorphism ψ. This estimate
will replace the argument given by proposition 2.17 in the case of several variables.
As usual, we view the total derivative of a map f : X → Y between two Banach spaces
X and Y as the map f ′ : X → L(X, Y ) associating to x ∈ X the linear map r 7→ f ′(x)[r]
where

f ′(x)[r] = lim
06=t→0

f(x+ tr)− f(x)

t

denotes the directional derivative at x along the direction r ∈ X.
Technically, the second order derivative would be a function f ′′ : X → L(X,L(X, Y )) and
we can identify f ′′(x) with the 2-linear map [r, s] 7→ f ′′(x)[r][s] for which we simply write
f ′′(x)[r, s]. Analogously, we view higher order derivatives as maps f (n) : X →Mn(X, Y )
where Mn(X, Y ) denotes the set of all n-linear maps from X to Y . In this context a
(n-dimensional) multidirection is just an element r = (r1, ..., rn) ∈ Xn. We require some
notations in order to simplify the rather technical computations that lie ahead of us.

Definition 3.1.
Let A be a set.

(i) We recall that a collection P of nonempty subsets of A is called a partition of A if⋃
P = A and for P1, P2 ∈ P we have either P1 = P2 or P1 ∩ P2 = ∅. We write P(A)

for the set of all partitions of A and abbreviate P(n) = P({1, ..., n}).

(ii) For two multidirections r = (r1, ..., rk) ∈ Ak and s = (s1, ..., s`) ∈ A` we define the
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(juxtaposition) operations

(r1, ..., rk) � (s1, ..., s`) = (r1, ..., rk, s1, .., s`) and
k

�
j=1

rj = (r1, ..., rk).

We will always use small standard letters for directions in r = Rd and small fraktur
letters for multidirections. In this setting we will sometimes use the juxtaposition
operation indexed over the empty set. In order to avoid any misinterpretation, we
define for a multidirection r = (r1, ..., rn)

∅� r = r� ∅ = r and �
j∈∅

sj = ∅.

For directions s1, .., sk, we will also abbreviate

k

�
j=1

sj � r =

(
k

�
j=1

sj

)
� r and r

k

�
j=1

sj = r�

(
k

�
j=1

sj

)
.

(iii) Consider some multidirection r = (r1, ..., rn) ∈ An and some subset P ⊆ {1, .., n}. We
can suppose P to be ordered, meaning P = {p1, ..., pk} where k = |P | and pj < pj+1.
To further simplify the notation we will write

rP = �
P
r = (rp1 , ..., rpk)

for the P -selection of directions in r.

We only require P to be ordered to have a solid definition at hand. However, since we will
use rP as the directional argument in the total derivative of some Cn-function, the theorem
of Schwarz implies that the actual order of rp1 , ..., rpk in rP does not matter. Furthermore
we will always use parentheses around the argument of the higher derivative f (n) of some
function f ∈ E(Rd,Rq) and square brackets around the multidirection argument of its
evaluation f (n)(x) to visually distinguish between nonlinear and multilinear arguments
and hopefully gain some clarity.
Let us give the main result of this chapter, a higher dimension version of Faà di Bruno’s
formula for higher order derivatives of a composition.

Proposition 3.2.
Consider two smooth functions ψ ∈ E(Rd,Rm) and θ ∈ E(Rm,Rq). The composition θ ◦ ψ
is contained in E(Rd,Rq) and for r = (r1, ..., rn) the n-th derivative is given by the formula

(θ ◦ ψ)(n) (x)[r] =
∑
P∈P(n)

θ(|P|)(ψ(x))

[
�
P∈P

ψ(|P |)(x)[rP ]

]
.
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A related expression can already be found in [Gla58], formula (9.5) in the following alter-
native form

Dn
x(θ ◦ ψ)(n) =

∑(
µ1, ..., µk

n

)
D`
ψ(x)θ[Tµ1,...,µq ],

where the sum ranges over all muti-indices µ1, ..., µq ∈ N0 satisfying µ1 +2µ2 +· · ·+qµq = n
and ` = µ1 + · · ·+µq. The symbol Tµ1,...,µq stands for a symmetric tensor product. Glaeser
states that the proof is done by copying the reasoning required to prove exercise 7 of §3 in
[Bou04] which states a similar formula when ψ is a function of a real variable and θ was
vector-valued. The difference to our approach is that we do not use the symmetry which,
in our opinion, makes the formula easier to read and to apply for concrete computations.
For reasons of completeness we shall nonetheless give an independent proof.
Since we view higher order derivatives as maps F (n) with values in the space Mn(X, Y )
of n-linear maps, we shall begin with useful and well-known tools concerning multilinear
maps in general and derivatives in particular.

Lemma 3.3.
Let T ∈ Mn(X, Y ) be a multilinear map between the normed spaces X and Y and fix
xj, zj ∈ X and j ≤ n.

(i) The difference T [x1, ..., xn]− T [z1, ..., zn] is given by

T

[
n

�
j=1

xj

]
− T

[
n

�
j=1

zj

]
=

n∑
`=1

T

[
`−1

�
j=1

xj � (x` − z`)
n

�
j=`+1

zj

]
.

(ii) If |||T ||| = sup{‖T [r1, ..., rn]‖Y : r1, .., rn ∈ X, ‖rj‖X ≤ 1} denotes the operator norm
of T , one has the estimate

‖T [x1, .., xn]‖Y ≤ |||T ||| ·
n∏
j=1

‖xj‖X .

(iii) For F ∈ E(Rm,Rk) the map (y, r1, ..., rn) 7→ F (n)(y)[r1, ..., rn] is continuous. More
specifically we have

F (n)(y)[%1, ..., %n]→ F (n)(x)[r1, ..., rn]

whenever y → x and (%1, ..., %n)→ (r1, ..., rn).

Proof. The first part is best proved by induction where the case n = 1 follows directly from
the linearity of T . The induction step n− 1→ n is given by decomposing the difference

T

[
n

�
j=1

xj

]
− T

[
n

�
j=1

zj

]
=T

[
n

�
j=1

xj

]
− T

[
n−1

�
j=1

xj � zn

]
+ T

[
n−1

�
j=1

xj � zn

]
− T

[
n−1

�
j=1

zj � zn

]
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and using the induction assumption on the n−1-linear map (r1, ..., rn−1) 7→ T [r1, ..., rn−1, zn]
to obtain

T

[
n

�
j=1

xj

]
− T

[
n

�
j=1

zj

]
=T

[
n−1

�
j=1

xj � (xn − zn)

]
+

n−1∑
`=1

T

[
`−1

�
j=1

xj � (x` − z`)
n−1

�
j=`+1

zj � zn

]
=

n∑
`=1

T

[
`−1

�
j=1

xj � (x` − z`)
n

�
j=`+1

zj

]
.

The proof of the second statement is trivial: If any argument xj is zero, T [x1, ..., xn]
vanishes and the inequality is true. If not, the multilinearity implies

T [x1, ..., xn] = T

[
‖x1‖

x1

‖x1‖
, ..., ‖xn‖

xn
‖xn‖

]
= T

[
x1

‖x1‖
, ...,

xn
‖xn‖

]
·
n∏
j=1

‖xj‖,

hence the required inequality since the X-norm of the arguments of T on the right hand
side are inferior or equal to 1. Note that we did not require |||T ||| to be finite. This is
however always the case if we consider X and Y to be finite-dimensional spaces, as a
multilinear map is continuous and the product of unit balls is compact.
For the third part, we first consider the case n = 1 and fix x, r ∈ Rm. For y, % ∈ Rm we
have

‖F ′(x)[r]− F ′(y)[%]‖ ≤ ‖F ′(x)[r − %]‖+ ‖F ′(x)[%]− F ′(y)[%]‖
≤ |||F ′(x)||| · ‖r − %‖+ |||F ′(x)− F ′(y)||| · ‖%‖.

The first summand on the right hand side converges to zero since |||F ′(x)||| < ∞ and
% → r. To obtain that the second half also converges to zero, it is sufficient to show
that |||F ′(x) − F ′(y)||| → 0, since % converges to r and is therefore bounded. To prove
this we consider the other seminorm ‖T‖ = sup {‖T [z]‖ : z ∈ {e1, ...., em}} on the space
L(Rm,Rn). This seminorm obviously separates points. It is therefore a norm and since the
dimension of L(Rm,Rn) is finite, we obtain some constant C > 0 such that |||T ||| ≤ C · ‖T‖
for all T ∈ L(Rm,Rn). This implies |||F ′(x) − F ′(y)||| ≤ C · ‖F ′(x) − F ′(y)‖ → 0 since F ′
is continuous. For the induction step consider

F (n+1)(y)[%1, ..., %n+1] = F (n+1)(y)[%1, ..., %n, %n+1 − rn+1] + F (n+1)(y)[%1, ..., %n, rn+1].

The first summand of the right hand side can be dominated by

‖%n+1 − rn+1‖ · |||F (n+1)(y)||| ·
n∏
j=1

‖%j‖,

which converges to zero since the norms |||F (n+1)(y)||| and ‖%j‖ are bounded when y → x
and %j → rj. The second summand of the right hand side is the multidirectional derivative
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g(n)(y)[%1, ..., %n] of the map defined by g(z) = F ′(z)[rn+1]. Applying the induction assump-
tion, we obtain that g(n)(y)[%1, ..., %n] converges to g(n)(x)[r1, ..., rn] = F (n+1)(x)[r1, ..., rn+1]
for y → x and %j → %.

In order to simplify the computation and use induction, we will require the following result
for the higher derivatives:

Lemma 3.4.
Consider continuously differentiable functions F ∈ Ck(Rm,Rq) and %j ∈ C1(Rd,Rm) for
1 ≤ j ≤ k. The map defined by

f(x) = F (k−1)(%k(x))

[
k−1

�
j=1

%j(x)

]
is also continuously differentiable and its directional derivative f ′(x)[r] along r ∈ Rd is
given by

f ′(x)[r] =
k∑
`=1

F (k−1)(%k(x))

[
k−1

�
j=1
j 6=`

%j(x) � %′`(x)[r]

]

+ F (k)(%k(x))

[
k−1

�
j=1

%j(x) � %′k(x)[r]

]
.

Proof. First, let us decompose the difference quotient in order to compute the directional
derivative more easily. Take t ∈ R \ {0} then

f(x+ tr)− f(x)

t
=

1

t

(
F (k−1)(%k(x+ tr))

[
k−1

�
j=1

%j(x+ tr)

]
− F (k−1)(%k(x))

[
k−1

�
j=1

%j(x)

])
=

1

t

(
F (k−1)(%k(x+ tr))

[
k−1

�
j=1

%j(x+ tr)

]
− F (k−1)(%k(x+ tr))

[
k−1

�
j=1

%j(x)

])
+

1

t

(
F (k−1)(%k(x+ tr))

[
k

�
j=1

%j(x)

]
− F (k−1)(%k(x))

[
k−1

�
j=1

%j(x)

])
.

The first term on the right hand side, namely

1

t

(
F (k−1)(%k(x+ tr))

[
k−1

�
j=1

%j(x+ tr)

]
− F (k−1)(%k(x+ tr))

[
k−1

�
j=1

%j(x)

])
can be rewritten by applying lemma 3.3 (i) to T = F (k−1)(%k(x+ tr)) with zj = %j(x+ tr)
and xj = %j(x) to obtain

k−1∑
`=1

F (k−1)(%k(x+ tr))

[
`−1

�
j=1

%j(x+ tr) �
%`(x+ tr)− %`(x)

t

k−1

�
j=`+1

%j(x)

]
.
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It remains to study its convergence as t tends to zero. Since the expression in the brackets

converges to
`−1

�
j=1

%j(x) � %′`(x)[r]
k−1

�
j=`+1

%j(x) and %k(x+ tr)→ %k(x) for t→ 0, the previous

lemma 3.3 (iii) states that the sum above must converge to

k−1∑
`=1

F (k−1)(%k(x))

[
`−1

�
j=1

%j(x) � %′`(x)[r]
k−1

�
j=`+1

%j(x)

]
.

We can rewrite this limit as

k−1∑
`=1

F (k−1)(%k(x))

[
k−1

�
j=1
j 6=`

%j(x) � %′`(x)[r]

]

since F (k−1)(%k(x)) is a symmetric (k− 1)-linear form. This coincides with the first half of
the right hand side in our formula.
The second term namely

1

t

(
F (k−1)(%k(x+ tr))− F (k−1)(%k(x))

) [k−1

�
j=1

%j(x)

]

obviously converges to F (k)(%k(x))

[
k−1

�
j=1

%j(x) � %′k(x)[r]

]
, which is the second half of the

right hand side in the formula above and thus ends the computation.

Let us now prove the Faà di Bruno formula for functions of several variables.

Proof of proposition 3.2. Fix ψ ∈ E(Rd,Rm) and θ ∈ E(Rm,Rq).
The proof will be done by induction and the case n = 1 is nothing more than the chain-rule.
For the induction step (n−1)→ n fix a multidirection r = (r1, ..., rn), where r1, ..., rn ∈ Rd.
We consider the directional derivation operator Drn : E(Rd,Rq) → E(Rd,Rq) defined by
DrnF (x) = F ′(x)[rn]. Using the induction assumption on (θ ◦ ψ)(n−1), we get

(θ ◦ ψ)(n) (x)[r] = (θ ◦ ψ)(n) (x)[r1, .., rn]

= Drn

(
(θ ◦ ψ)(n−1) (x)[r1, ..., rn−1]

)
= Drn

 ∑
P∈P(n−1)

θ(|P|)(ψ(x))

[
�
P∈P

ψ(|P |)(x)[rP ]

]
=

∑
P∈P(n−1)

Drn

(
θ(|P|)(ψ(x))

[
�
P∈P

ψ(|P |)(x)[rP ]

])
.

Applying lemma 3.4 to the elements of the sum we obtain
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(θ ◦ ψ)(n) (x)[r] =
∑

P∈P(n−1)

∑
Q∈P

θ(|P|)(ψ(x))

[
�
P∈P
P 6=Q

ψ(|P |)(x)[rP ] � ψ(|Q|+1)(x) [rQ � rn]

]

+
∑

P∈P(n−1)

θ(|P|+1)(ψ(x))

[
�
P∈P

ψ(|P |)(x)[rP ] � ψ′(x)[rn]

]
.

Identifying P ∈ P(n − 1) with the partition R = P ∪
{
{n}

}
in P(n), one obtains a

bijection between P(n − 1) and {R ∈ P(n) : {n} ∈ R} where |R| = |P| + 1. Using the
notation introduced in 3.1 we have

�
P∈P

ψ(|P |)(x)[rP ] � ψ′(x)[rn] = �
P∈P∪{n}

ψ(|P |)(x) [rP ]

and the second sum can be written as∑
P∈P(n−1)

θ(|P|+1)(ψ(x))

[
�

P∈P∪{n}
ψ(|P |)(x)[rP ]

]
=
∑
R∈P(n)
{n}∈R

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]
︸ ︷︷ ︸

(∗)

.

On the other hand the first (double-)sum can be rewritten by switching the order of sum-
mation to obtain

∑
Q⊆{1,...,n−1}

Q6=∅

∑
P∈P(n−1)

Q∈P

θ(|P|)(ψ(x))

[
�
P∈P
P 6=Q

ψ(|P |)(x)[rP ] � ψ(|Q|+1)(x) [rQ � rn]

]
.

By replacing the set Q ∈ P with Q ∪ {n}, we obtain a unique corresponding partition R
containing Q∪{n}. In this case we even have |P| = |R| and we can reformulate the double
sum to

∑
Q⊆{1,...,n−1}

Q6=∅

∑
R∈P(n)
Q∪{n}∈R

θ(|R|)(ψ(x))

[
�
P∈R

P 6=Q∪{n}

ψ(|P |)(x)[rP ] � ψ(|Q∪{n}|)(x)
[
rQ∪{n}

]]
.

Shifting the index from Q 6= ∅ to R = Q ∪ {n} with both n ∈ R and |R| ≥ 2 we obtain

∑
R⊆{1,...,n}
n∈R,|R|≥2

∑
R∈P(n)
R∈R

θ(|R|)(ψ(x))

[
�
P∈R
P 6=R

ψ(|P |)(x)[rP ] � ψ(|R|)(x) [rR]

]

=
∑

R⊆{1,...,n}
n∈R,|R|≥2

∑
R∈P(n)
R∈R

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]
.
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Adding this to the previous sum in (∗), namely∑
R∈P(n)
{n}∈R

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]
=

∑
R⊆{1,...,n}
n∈R,|R|=1

∑
R∈P(n)
R∈R

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]

and switching the order of summation again we obtain the desired

(θ ◦ ψ)(n) (x)[r] =
∑

R⊆{1,...,n}
n∈R

∑
R∈P(n)
R∈R

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]

=
∑
R∈P(n)

θ(|R|)(ψ(x))

[
�
P∈R

ψ(|P |)(x)[rP ]

]
.

Here the last equality holds because every partition R of {1, ..., n} contains precisely one
R ⊆ {1, ..., n} with n ∈ R.

As we have seen in the previous section, one crucial tool to prove that A(ψ) is closed (in
the one-dimensional case) is the ability to estimate the inverse ψ′j(x)−1 by some power of
dist(x,E(ψ))−1. We can now use the explicit formula to obtain a similar estimate in the
case of several variables.

Corollary 3.5.
Let ψ ∈ E(Rd,Rd) be a diffeomorphism between open sets U and V in Rd, and let θ = ψ|−1

U

be its smooth inverse. The derivatives of θ satisfy the estimate

|||θ(n)(ψ(x))||| ≤ Cn ·
(
1 + |||ψ|||{x},n

) (n−1)n
2 ·

(
1 + |||ψ′(x)−1|||

)n(n+1)
2

with some constant Cn depending only on n and |||ψ|||{x},n = sup{|||ψ(k)(x)||| : k ≤ n}.

Proof. The case n = 1 simply follows the chain-rule since we have θ′(ψ(x)) = ψ′(x)−1 hence
|||θ′(ψ(x))||| ≤ |||ψ′(x)−1|||. Now suppose the inequality to hold for all 0 ≤ k ≤ n− 1.
Using the fact that id(n)(x) = 0 for n ≥ 2, we can apply the formula from proposition 3.2
to the identity id|U = θ ◦ ψ|U and some multidirection r = (r1, ..., rn) to obtain for n ≥ 2

0 = id(n)(x)

[
n

�
j=1

rj

]
=

∑
P∈P(n)

θ(|P|) (ψ(x))

[
�
P∈P

ψ(|P |)(x) [rP ]

]
.

Since all partitions in P(n) with the exception of Pn = {{1}, ..., {n}} consist of at most
n− 1 subsets of {1, ..., n}, splitting the corresponding term on the right side and carrying
it to the left leads to

θ(n)(ψ(x))

[
n

�
j=1

ψ′(x)[rj]

]
= −

∑
P∈P(n)
|P|≤n−1

θ(|P|) (ψ(x))

[
�
P∈P

ψ(|P |)(x) [rP ]

]
.
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Using the fact that ψ′(x) is invertible we can write %j = ψ′(x)[rj]. This implies

θ(n)(ψ(x))

[
n

�
j=1

%j

]
= −

∑
P∈P(n)
|P|≤n−1

θ(|P|) (ψ(x))

[
�
P∈P

ψ(|P |)(x)

[
�
k∈P

ψ′(x)−1 [%k]

]]
.

Applying estimate (ii) from lemma 3.3, namely ‖T [r1, ..., rn]‖ ≤ |||T ||| ·
∏n

j=1 ‖rj‖ on the
summands on the right hand side we obtain

∥∥∥∥θ(n)(ψ(x))

[
n

�
j=1

%j

]∥∥∥∥ ≤ ∑
P∈P(n)
|P|≤n−1

|||θ(|P|) (ψ(x)) ||| ·
∏
P∈P

∥∥∥∥ψ(|P |)(x)

[
�
k∈P

ψ′(x)−1 [%k]

]∥∥∥∥ .
Considering (%1, ..., %n) to be in the product of the Rd unit balls and |P | ≤ n we can further
estimate ∏

P∈P

∥∥∥∥ψ(|P |)(x)

[
�
k∈P

ψ′(x)−1 [%k]

]∥∥∥∥ ≤ ∏
P∈P

|||ψ(|P |)(x)||| · |||ψ′(x)−1||||P |

≤
(
1 + |||ψ′(x)−1|||

)n ·∏
P∈P

|||ψ(|P |)(x)|||

≤
(
1 + |||ψ′(x)−1|||

)n · |||ψ||||P|{x},n.
Taking the supremum over all {(%1, ..., %n) : ‖%j‖ ≤ 1 for all j}, we obtain

|||θ(n)(ψ(x))||| ≤
(
1 + |||ψ′(x)−1|||

)n ·
 ∑
P∈P(n)
|P|≤n−1

|||θ(|P|) (ψ(x)) ||| · |||ψ||||P|{x},n


≤
(
1 + |||ψ′(x)−1|||

)n ·
n−1∑

k=1

∑
P∈P(n)
|P|=k

|||θ(k) (ψ(x)) ||| · |||ψ|||k{x},n

 .

We can dominate the sum of all cardinalities of {P ∈ P(n) : |P| = k} in the previous sum
by some common cn independent of k. The estimate then reads

|||θ(n)(ψ(x))||| ≤ cn ·
(
1 + |||ψ′(x)−1|||

)n · n−1∑
k=1

|||θ(k) (ψ(x)) ||| · |||ψ|||k{x},n

≤ cn ·
(
1 + |||ψ′(x)−1|||

)n · (1 + |||ψ|||{x},n
)n−1 ·

n−1∑
j=1

|||θ(k) (ψ(x)) |||.

Using the induction assumption we know that every summand on the right hand side is
dominated by

Ck ·
(
1 + |||ψ|||{x},k

) (k−1)k
2 ·

(
1 + |||ψ′(x)−1|||

) k(k+1)
2 ,
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hence also by
Ck ·

(
1 + |||ψ|||{x},n

) (n−2)(n−1)
2 ·

(
1 + |||ψ′(x)−1|||

) (n−1)n
2

since these terms increase with k. Adding up the corresponding powers and dominating
cn ·

∑n−1
j=1 Ck by some Cn leads to the estimate

|||θ(n)(ψ(x))||| ≤ Cn ·
(
1 + |||ψ|||{x},n

) (n−1)n
2 ·

(
1 + |||ψ′(x)−1|||

)n(n+1)
2

as claimed.

In the previous corollary 3.5 we estimated the norm of the inverse map. There, the first
half of the dominating term, namely

(
1 + |||ψ|||{x},n

) (n−1)n
2 , is rather unproblematic since ψ

is smooth and therefore |||ψ|||{x},n is bounded on any compact set. We are more interested
in gaining information about |||ψ′(x)−1||| by means of ψ itself. This knowledge is given by
the following definition.

Definition 3.6.
For a linear map T between two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) we define the
lower bound of T by

λ(T ) = inf{‖Tx‖Y : ‖x‖X = 1}.

This definition is so important because it turns out that 1/λ(T ) is actually the norm of
T−1.

Proposition 3.7.
For an injective linear T : X → Y , the map T : X → Range(T ) is bijective and possesses
an inverse T−1 : Range(T )→ X. In this case we have

|||T−1||| = 1

λ(T )
.

Proof. Recall that

|||T−1||| = sup{‖T−1y‖ : y ∈ Range(T ), ‖y‖ = 1}.

To prove “≤”, consider some y ∈ Range(T ) with ‖y‖ = 1. We can write y = Tx for some

x ∈ X and obtain 1 = ‖y‖ = ‖x‖ ·
∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≥ ‖x‖ · λ(T ) hence

‖T−1y‖ = ‖T−1Tx‖ = ‖x‖ ≤ 1

λ(T )

and ‖T−1‖ ≤ 1/λ(T ).
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On the other hand for ‖x‖ = 1 the injectivity of T implies that T (x) 6= 0. We obtain the
inequality

1

‖Tx‖
=
‖T−1Tx‖
‖Tx‖

≤ |||T−1||| · ‖Tx‖
‖Tx‖

= |||T−1|||

and the fact that 1
λ(T )

= sup
{

1
‖Tx‖ : ‖x‖ = 1

}
implies

1

λ(T )
≤ |||T−1|||. We therefore obtain

the claimed equality.
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Chapter 4

A necessary condition in the case of
several variables

Our next step will be to find necessary conditions for an injective map ψ ∈ E(Rq,Rd) to
generate a closed composition algebra.
As we have seen in chapter 2, more precisely in proposition 2.9, the semi-properness of ψ
is always necessary, regardless of the injectivity of ψ or the dimensions of its domain and
codomain. Since we only consider injective maps, this means that ψ ∈ E(Rq,Rd) must be
proper to even have a chance to generate a closed composition algebra.
Moreover, to decide if A(ψ) = {F ◦ ψ : F ∈ E(Rd,R)} is closed or not, it would be helpful
to know when a function f is an element of the closure A(ψ). In general, this is a difficult
question. The best result known to us is the characterization of the closure by Tougeron
[Tou71] mentioned at the beginning of chapter 1. It gives sufficient conditions for the
identity

A(ψ) = {f ∈ E(Rq,R) : T∞x f ∈ T∞x A(ψ) for all x ∈ Rq}

to hold and is applicable to maps with Hölder continuous inverses.
We are not able to give a full description on the closure of A(ψ) in the case of several
variables. However we can easily generalize proposition 2.16 which states that, given a
proper injective curve, every function that is flat on the critical set is already a composition.
This is true even if ψ does not match the sufficient conditions mentioned in [Tou71]. To
extend this result to the case of an injective map ψ : Rq → Rd we need to adapt the notion
of critical points.
We recall that by definition 1.8 the critical set E(ψ), in the case of one variable, consists
of all points x ∈ R such that ψ′(x) = 0. The reason this set is so important is that we
can apply the inverse function theorem to some coordinate of ψ around any non-critical
point to obtain a local smooth inverse. Obviously, for several variables, one coordinate is
not enough to construct a local smooth inverse. However, having this tool in mind, the
obvious definition of a non-critical point x ∈ Rq would require a full set J = {j1, ..., jq}
of coordinates such that ψ′J(x) = (ψj1 , ...., ψjq)

′(x) is invertible. This can of course only
be true if q ≤ d which directly follows from the injectivity of ψ : Rq → Rd. Note that
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the linear map ψ′J(x) is invertible if and only if its matrix representation ∇ψJ(x) has full
rank. We can even get rid of the specific subset J , since ∇ψJ(x) has full rank if and only if
∇ψ(x) does. Therefore we simply require that the rank of ∇ψ(x) is q which is equivalent
to the fact that the image of the linear map ψ′(x) is a q-dimensional subspace of Rd. We
obtain the following definition:

Definition 4.1.
Consider an injective ψ ∈ E(Rq,Rd). In analogy to definition 1.8, we write

E(ψ) = {x ∈ Rq : ψ′(x) ∈ L(Rq,Rd) is not injective}
= {x ∈ Rq : dim(Range(ψ′(x))) < q}

=
⋂

J⊆{1,..,d}
|J|=q

{x ∈ Rq : det(ψJ(x)′) = 0}

for the set of critical points. Obviously all three definitions coincide and one can easily see
that the third set is closed as a finite intersection of continuous preimages of the closed set
{0}.

In the one-dimensional case, i.e. q = 1, the definitions 1.8 and 4.1 coincide since the
total derivative ψ′(x) : R → Rq, as a linear map, is injective if and only if the vector
(ψ′1(x), ..., ψ′d(x)) ∈ Rd describing it does not vanish. Moreover for every x 6∈ E(ψ) the
matrix ∇ψ(x) = (∇ψ1(x), ...,∇ψd(x)) has full rank and we can choose J ⊆ {1, ..., d} with
|J | = q such that det(∇ψJ(x)) 6= 0. With this definition at hand we can proceed to prove
the multidimensional analogon to proposition 2.16

Proposition 4.2.
For an injective smooth map ψ ∈ E(Rq,Rd) the following holds:

(i) The set I(E(ψ)) = {g ∈ E(Rq,R) : g is flat in every x ∈ E(ψ)} is contained in
A(ψ).

(ii) If ψ is proper, every f ∈ E(Rq,R) with supp(f)∩E(ψ) = ∅ is a composition f = F ◦ψ.

Proof. (i) Fix x ∈ E(ψ)c. By definition 4.1 we can find a full set of coordinates J , meaning
|J | = q, such that ψ′J(x) is a linear bijection. The inverse function theorem states the
existence of open neighborhoods Vx of x and Wx of ψJ(x) ∈ RJ such that ψJ : Vx → Wx is
a diffeomorphism. For f ∈ D(Vx) we define Fx : π−1

J (Wx)→ R by

Fx = f ◦ ψ−1
J ◦ πJ ,

where πJ denotes the canonical projection (xi)i≤d 7→ (xj)j∈J . Since πJ : π−1
J (Wx)→ Wx is

smooth, as a linear map, and ψ−1
J ∈ E(Wx, Vx), the function Fx is smooth on the open set

π−1
J (Wx). We also obtain the identity

Fx ◦ ψ(x) = f ◦ ψ−1
J ◦ πJ ◦ ψ(x) = f(x)
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for all x ∈ Vx.
To prove f ∈ A(ψ) we will use the theorem of bipolars and show that u(f) = 0 whenever
u vanishes on A(ψ).
To this end fix some u ∈ A(ψ)⊥ and consider a compact set K such that supp(u) is
contained in the interior of K. The set supp(f) is compact and does not intersect K ∩ V c

x

hence the injectivity of ψ implies that both compact sets ψ(supp(f)) and ψ(K ∩ V c
x ) are

disjoint. Moreover the set π−1
J (W c

x) is closed as the continuous preimage of a closed set
and its intersection with ψ(supp(f)) ⊆ ψ(Vx) ⊆ π−1

j (Wx) is empty. By using for instance
corollary 1.4.11 from [Hör03], we can find Φ ∈ E(Rd,R) such that Φ = 1 near ψ(supp(f))
and Φ = 0 near ψ(K ∩ V c

x ) ∪ π−1
j (Wx) since both sets are closed and disjoint.

The function Fx · Φ is smooth on Rd. Let us elaborate on why (Fx · Φ) ◦ ψ = f on K.

• For y ∈ Vx we have (Fx·Φ)◦ψ(y) = f(y)·(Φ◦ψ(y)). Since Φ◦ψ = 1 on a neighborhood
U of supp(f), we obtain (Fx ·Φ) ◦ψ = f on on U and (Fx ·Φ) ◦ψ = 0 ·Φ ◦ψ = f on
Vx \ supp(f).

• For y ∈ K ∩ V c
x the function Φ ◦ ψ is zero, hence (Fx · Φ) ◦ ψ(y) = 0 = f(y).

Since f ∈ D(Vx) is arbitrary and f = (Fx ·Φ) ◦ ψ on an open neighborhood of supp(u) we
obtain

u(f) = u((Fx · Φ) ◦ ψ) = 0.

This implies supp(u) ∩ Vx = ∅. As u ∈ A(ψ)⊥ is also arbitrary every distribution in the
annihilator of A(ψ) must have support contained in E(ψ). By theorem 2.3.3 from [Hör03]
we obtain that u(g) = 0 whenever u ∈ A(ψ)⊥ and g ∈ I(E(ψ)), hence I(E(ψ)) ⊆ A(ψ)
by the theorem of bipolars.
(ii) In the case of a proper map, we can refine our construction from above to actually
achieve F ◦ψ = f . Fix f ∈ E(Rq,R) with support outside E(ψ). For x ∈ E(ψ)c we choose
J = J(x) as above. Without loss of generality we can suppose Vx to be an open ball. Since
ψ is proper and injective, the inverse ψ−1 : ψ(Rq) → Rq is continuous by corollary 2.11 if
we endow ψ(Rq) with the relative topology of Rd. A set is thus open in ψ(Rq) if and only
if it is the image of an open subset of Rq. This implies that we can find Ux ⊆ Rd such that
ψ(Vx) = Ux ∩ ψ(Rq). By intersecting Ux with the open set π−1

J(x)(Wx) we can even suppose
πJ(x)(Ux) ⊆ Wx. Therefore the function

Fx = f ◦ ψ−1
J(x) ◦ πJ(x)

is smooth on Ux and satisfies Fx ◦ ψ = f on Vx. For a locally finite partition of unity
(Φx)x∈supp(f) subordinated to the cover (Ux)x∈supp(f) of supp(f) the function

F =
∑

x∈supp(f)

Fx · Φx

is again well-defined and smooth. The summands satisfy (Fx · Φx) ◦ ψ = f · (Φx ◦ ψ) on
Vx = ψ−1(Ux), since Fx◦ψ = f there. Outside Vx, we also have (Fx·Φx)◦ψ = 0 = f ·(Φx◦ψ),
since Φx◦ψ has support in Vx = ψ−1(Ux). This implies the required identity F ◦ψ = f .
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As a corollary, we can characterize the closure of composition algebras generated by a
specific kind of injective maps.

Corollary 4.3.
If the critical set E(ψ) of an injective ψ ∈ E(Rq,Rd) is discrete, then A(ψ) contains exactly
those functions f ∈ E(Rq,R) satisfying the Taylor condition

T∞e f ∈ T∞e A(ψ).

for all e ∈ E(ψ)

Proof. The necessity of the Taylor condition has been shown in proposition 1.7. As already
noted in proposition 4.2 (i), every f ∈ D(E(ψ)c) is contained in A(ψ). Therefore, A(ψ)⊥

contains only those u ∈ E(Rq,R)′ that have support in E(ψ). Since this set is discrete, the
support of u ∈ A(ψ)⊥ is a finite collection {e1, ..., eN} of critical points. If f ∈ E(Rq,R)
satisfies the pointwise Taylor condition, we can find a function Fej ∈ E(Rd,R) such that
T∞ej f = T∞ej (Fej ◦ ψ). Considering functions Φj ∈ E(Rd,R) such that Φj = 1 near ψ(ej)
and Φj = 0 near ψ(E(ψ) \ {ej}), we can localize to obtain

u(f) = u

(
N∑
j=1

f · (Φj ◦ ψ)

)
=

N∑
j=1

u((Fej ◦ ψ) · (Φj ◦ ψ)) = 0.

This shows f ∈ A(ψ).

As we have seen in section 2, the one-dimensional injective case allows for a rather ele-
mentary characterization of closed composition algebras, namely those generated by a map
with a locally Hölder continuous inverse map. Moreover the proof of the necessity uses the
fact that the Hölder continuity is equivalent to the following three conditions altogether:

(i) ψ is a proper map.

(ii) Every critical point has finite order.

(iii) The image ψ(R) is a Whitney-regular set.

The Hölder continuity looks like a promising approach to deal with the case of several
variables as it does not depend in any way on the dimensions of the domain of ψ (unlike
condition (ii) in the equivalent decomposition).
Let us begin by giving a positive result dealing with a very special case.

Proposition 4.4.
Consider some injective ψ ∈ E(Rq,Rd) such that the critical set E(ψ) is discrete. If the
composition algebra is closed, then ψ must have a locally Hölder-continuous inverse.
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Proof. By assumption the composition operator is a continuous linear surjection between
Fréchet spaces and hence open. As we have seen in proposition 2.8, this implies that for
every compact set K ⊆ Rd and n ∈ N there is a compact set L ⊆ Rq, a differentiation
order k ∈ N and a constant c > 0 such that for every f ∈ A(ψ) we can find F ∈ E(Rd,R)
with f = F ◦ ψ and

‖F‖K,n ≤

{
c · ‖f‖L,k, if ‖f‖L,k 6= 0

1/2, otherwise
.

Now suppose the inverse map ψ−1 : ψ(Rq)→ Rq fails to be locally Hölder continuous. This
means that we can find some v = ψ(z) and sequences (ζn)n∈N and (ηn)n∈N in ψ(Rq) with
‖ζn − v‖ < 1/n and ‖ηn − v‖ < 1/n such that

|ψ−1(ζn)− ψ−1(ηn)‖ > n · ‖ζn − ηn‖
1
n .

Writing ζn = ψ(xn) and ηn = ψ(yn) we obtain the more handy condition

‖ψ(xn)− ψ(yn)‖ < ‖xn − yn‖
n

nn
.

By corollary 2.10, ψ must be proper and remark 2.11 implies that ψ−1 is continuous.
Therefore both xn = ψ−1(ξn) and yn = ψ−1(ηn) must converge to z = ψ−1(v). Note
that ‖xn − yn‖ > 0 and we can therefore choose a subsequence such that the directions
rn = yn−xn

‖yn−xn‖ converge to some r ∈ Rq with ‖r‖ = 1. Applying the mean value theorem to
every coordinate of ψ we obtain some ξjn = xn + t(yn − xn) such that

‖ψ′j(ξjn)[rn]‖ =

∥∥∥∥ψ′j(ξjn)

[
yn − xn
‖yn − xn‖

]∥∥∥∥ =
‖ψj(xn)− ψj(yn)‖
‖xn − yn‖

<
‖xn − yn‖n−1

n
→ 0.

Since rn → r and ξjn → x∞, the left hand side must converge to ψ′j(x∞)[r] = 0. Thus x∞
is a critical point. Without loss of generality we can suppose ‖xn − x∞‖ ≥ ‖yn − x∞‖ and
hence ‖xn − yn‖ ≤ 2 · ‖xn − x∞‖.
Now consider again ϕ ∈ E(Rq,R) with support in the open unit ball B(0, 1) in Rd and
satisfying ϕ(0) = 1. The functions defined by

fn(z) = ϕ

(
2

‖xn − yn‖
· (z − xn)

)
have support in B

(
xn,

‖xn−yn‖
2

)
which contains neither x∞ nor yn. Since the critical set is

discrete, it does not intersect the support of fn for n sufficiently large. By proposition 4.2
(ii) we can deduce that those fn belong to A(ψ). Now we can use proposition 2.8 for a
compact set K ⊆ Rd containing every line segment {xn + t(yn−xn) : t ∈ [0, 1]} and ñ = 1.
We obtain some compact L ⊆ Rq, k ∈ N, and c ≥ 0 such that fn can be factorized as
fn = Fn ◦ ψ with ‖Fn‖K,1 ≤ c · ‖fn‖L,k ≤ c · ‖fn‖Rq ,k. Applying the mean value inequality
to Fn we get

1 = fn(xn)− fn(yn) = Fn(ψ(xn))− Fn(ψ(yn)) ≤ ‖F‖K,1 · ‖ψ(xn)− ψ(yn)‖
≤ c · ‖fn‖L,k · ‖ψ(xn)− ψ(yn)‖.
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Dominating ‖fn‖L,k by 2k · ‖xn − yn‖−k · ‖ϕ‖Rq ,k we obtain for C = c · 2k · ‖ϕ‖Rq ,k the
contradiction

1 ≤ C · ‖ψ(xn)− ψ(yn)‖ · ‖xn − yn‖−k <
1

nn
‖xn − yn‖n−k → 0.

Unfortunately, we are not able to give a proof for the rather plausible conjecture that
the local Hölder continuity of the inverse is always necessary in order to obtain a closed
composition algebra. This is due to the fact that we have no understanding on the geometric
properties of the critical set E(ψ) and the resulting behavior of compositions F ◦ ψ on it.
This is also the reason why we are still unable to give a characterization of the closure of
the composition algebra in the setting of several variables. However we can note a rather
intriguing fact about locally Hölder continuity, namely a stability of closedness, hinting
towards the conjecture that the Hölder condition could be a characterization of closed
composition algebras.

Proposition 4.5.
If ψ ∈ E(Rq,Rd) and γ ∈ E(R,Rq) are smooth and injective and ψ−1 is locally Hölder
continuous, then A(ψ ◦γ) is closed whenever A(γ) is closed. This means that the composi-
tion operator Cψ maps a closed composition algebra A(γ) into a closed composition algebra
Cψ(A(γ)) = A(ψ ◦ γ).

Proof. By assumption, γ is injective and it follows from proposition 2.20 that A(γ) is closed
if and only if γ−1 is locally Hölder-continuous. Since ψ ◦ γ ∈ E(R,Rd) is also injective,
we can again apply proposition 2.20 to obtain that A(ψ ◦ γ) is closed if and only if its
inverse (ψ ◦ γ)−1 = γ−1 ◦ ψ−1 is also locally Hölder continuous. It remains to show that
the compositions of locally Hölder continuous maps is again locally Hölder continuous. For
this purpose consider two locally Hölder continuous maps F : X → Y and G : Y → Z.
For x ∈ X we can find εF , cF , αF > 0 such that

‖F (v)− F (w)‖Y ≤ cF · ‖v − w‖αFX

for all v, w ∈ BX(x, εF ) as well as εG, cG, αG > 0 such that

‖G(s)−G(t)‖Z ≤ CG · ‖s− t‖αGY

for all s, t ∈ BY (F (x), εG). Choosing ε < εF such that B(x, ε) is contained in the set
F−1(BY (F (x), εG)), which is open by the continuity of F , we can use both inequalities.
For v, w ∈ B(x, ε) we have F (v), F (w) ∈ BY (F (x), εG), hence

‖G ◦ F (v)−G ◦ F (w)‖Z ≤ cG · ‖F (v)− F (w)‖αGY ≤ cG · cαGF · ‖v − w‖
αF ·αG
X .
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As a by-product we obtain the following corollary.

Corollary 4.6.
If an injective ψ ∈ E(Rq,Rd) has a locally Hölder continuous inverse, then every directional
map ψx,r : R → Rd, t 7→ ψ(x + tr) generates a closed algebra. This implies that the
directional maps have only critical points of finite order and Whitney-regular image.

Proof. If r = 0, this is obvious as the composition algebra A(ψx,r) contains only constant
functions. If r 6= 0, the inverse of the curve defined by γ(t) = x+ t · r is Hölder continuous
since

|γ−1(x+ t · r)− γ1(x+ s · r)| = |t− s| = 1

‖r‖
‖x+ t · r − (x+ s · r)‖

The previous proposition implies that A(ψx,r) = A(ψ ◦ γ) must be closed.

Remark 4.7.
Using our notation from chapter 3, more precisely 3.1, we can compute the higher order
derivatives of the directional maps and obtain

ψ(k)
x,r(0) = ψ(k)(x)

[
k

�
j=1

r

]
.

If ψ−1 is locally Hölder continuous, the directional map ψx,r has only critical points of
finite order. This means that for any direction r ∈ Rq \ {0} we can find some “directional
order” k = k(r) such that ψ(k)(x)

[
�k
j=1 r

]
6= 0, which seems to be a good way to generalize

the notion of order to the case of several variables. Moreover the directional orders are
bounded in any point x ∈ Rq. Indeed the map r 7→ ψ(k)(x)

[
�k
j=1 r

]
is continuous. Thus

we can find a neighborhood U of r such that ψ(k)(x)
[
�k
j=1 %

]
6= 0 for all % ∈ U and every

directional order at x along % ∈ U is at most k(r). The boundary of the unit ball being
a compact set we can find a finite cover (Ur)r∈F of {r ∈ Rq : ‖r‖ = 1} and thus every
directional order at x is dominated by kx = max{k(r) : r ∈ F}.

Proposition 4.4 gives us an easy tool to determine, in the special case of a discrete critical
set, which functions ψ are unable to generate a closed composition algebra. We give two
examples to illustrate this fact.

Example 4.8.
Consider the map ϕ : R → R defined by ϕ(z) = exp

(
− 1
|z|

)
for z 6= 0 and ϕ(0) = 0. Let

us define the generator ψ : R2 → R3 by

ψ(z) =

 |z|2
z1 · ϕ(|z|2)
z2 · ϕ(|z|2)

 .
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It seems rather intuitive that the sharp cusp in the center, as depicted in the following
figure 4.1, does not allow for a closed composition algebra. This turns out to be correct
as the function ψ has only a discrete critical set, but does not possess a locally Hölder
continuous inverse.

Figure 4.1: The sharp cusp of ψ around (0, 0).

The injectivity is obvious since ψ(z) = ψ(w) implies |z|2 = |w|2. If |z| = |w| 6= 0, we can
divide the last two coordinates of ψ by ϕ(|z|2) = ϕ(|w|2) 6= 0 to obtain z = w.
We will now use proposition 4.4 and corollary 4.6 to show that A(ψ) cannot be closed. To
apply 4.4 we first need to check that the critical set E(ψ) is discrete.
The matrix representation of the derivative of ψ is given by

∇ψ(z) =

 2 · z1 2 · z2

ϕ(|z|2) + 2 · z2
1 · ϕ′(|z|2) 2 · z1 · z2 · ϕ′(|z|2)

2 · z1 · z2 · ϕ′(|z|2) ϕ(|z|2) + 2 · z2
2 · ϕ′(|z|2)

 .

Obviously (0, 0) is a critical point as ∇ψ(0, 0) = 0R2×3 and it will turn out to be the only
one. Indeed for z1 6= 0, the derivative of ψI = (ψ1, ψ3) is invertible since

det(∇ψI(z)) =

∣∣∣∣ 2 · z1 2 · z2

2 · z1 · z2 · ϕ′(|z|2) ϕ(|z|2) + 2 · z2
2 · ϕ′(|z|2)

∣∣∣∣
= 2 · z1 · ϕ(|z|2) + 4 · z1 · z2

2 · ϕ′(|z|2)− 4 · z1 · z2
2 · ϕ′(|z|2)

= 2 · z1 · ϕ(|z|2) 6= 0.

The rank of ∇ψ(z) is therefore 2 and ψ′(z) is injective.
For z1 = 0 and therefore z2 6= 0, consider instead ψII = (ψ1, ψ2). An analogue computation
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gives us that

det(∇ψII(z)) =

∣∣∣∣ 2 · z1 2z2

ϕ(|z|2) + 2 · z2
1 · ϕ′(|z|2) 2 · z1 · z2 · ϕ′(|z|2)

∣∣∣∣
= 4 · z2

1 · z2 · ϕ′(|z|2)− 2 · z2 · ϕ(|z|2)− 4 · z2
1 · z2 · ϕ′(|z|2)

= −2 · z2 · ϕ(|z|2) 6= 0

and again the rank of Dψ(z) is 2.
Now suppose A(ψ) to be closed. By proposition 4.4 the inverse ψ−1 is locally Hölder
continuous. For z = ψ(0, 0) there are ε > 0 as well as c, α > 0 such that

‖ψ−1(x)− ψ−1(y)‖ ≤ c · ‖x− y‖α

for all x, y ∈ ψ(R2)∩B(z, ε). To see that this can not be the case, we evaluate this estimate
in the points xn = ψ(1/n, 0) and yn = ψ(−1/n, 0). We obtain the estimate

2

n
= ‖ψ−1(xn)− ψ−1(yn)‖ ≤ c · ‖ψ (1/n, 0)− ψ (−1/n, 0)‖α = c ·

∣∣∣∣ 2n · ϕ
(

1

n2

)∣∣∣∣α
and multiplying both sides with n brings the required contradiction 2 ≤ c·n

nα
ϕ
(

1
n2

)α → 0.

Example 4.9.
Consider ϕ : R→ R as in example 4.8. We define the map ψ : R2 → R3 by

ψ(z) =

 z1 · z2

z1 · ϕ(|z|2)
z2 · ϕ(|z|2)

 .

To better visualize its shape, we have given a sketch in the figure below.

Figure 4.2: The Torsion of ψ around (0, 0) from two different angles.
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To prove the injectivity, consider ψ(z) = ψ(w) and distinguish the following three cases.
If ψ2(z) = ψ2(w) = 0, we have z1 = 0 = w1. This implies z2

2 = |z|2 and w2
2 = |w|2 hence

z2 · ϕ(z2
2) = ψ3(z) = ψ3(w) = w2 · ϕ(w2

2) and the injectivity of t 7→ t · ϕ(t) on R gives us
the required z2 = w2.
If ψ3(z) = ψ3(w) = 0, we have z2 = 0 = w2 and the same argument applied to ψ2 gives us
the required z1 = w1.
Elsewise, both ψ2(w) = ψ2(z) and ψ3(w) = ψ3(z) do not vanish. Therefore we have
z1, z2, w1, w2 6= 0, and hence also ψ1(z) = ψ1(w) 6= 0. We can multiply the last two
coordinates to obtain z1 · z2 · ϕ(|z|2)2 = w1 · w2 · ϕ(|w|2)2 and dividing both sides by
z1 · z2 = ψ1(z) = ψ1(w) = w1 · w2 and taking the square root yields ϕ(|z|2) = ϕ(|w|2). As
in the previous example, we can divide ψ2 and ψ3 by ϕ(|z|2) = ϕ(|w|2) to see that z = w.
To prove that A(ψ) cannot be closed we will again use proposition 4.4 in combination with
corollary 4.6. To do so, we need once more to show that the critical set is discrete. It will
turn out that the only critical point is z0 = (0, 0). Computing the derivative we obtain

∇ψ(z) =

 z2 z1

ϕ(|z|2) + 2z2
1 · ϕ′(|z|2) 2z1 · z2 · ϕ′(|z|2)

2z1 · z2 · ϕ′(|z|2) ϕ(|z|2) + 2z2
2 · ϕ′(|z|2)

 .

Evaluating this expression for z = 0, we see that the origin is indeed a critical point and
it remains to prove that it is the only one. Consider some point z 6= 0 and λ, µ ∈ R such
that λD1ψ(z) = µD2ψ(z). We obtain λz1 = µz2 from the first coordinate ψ1 and inserting
this identity into the second coordinate we get

λϕ(|z|2) + 2λz2
1 · ϕ′(|z|2) = λD2ψ3(z) = µD2ψ3(z) = µ2z1 · z2 · ϕ′(|z|2) = λ2z2

1ϕ
′(|z|2),

hence λϕ(|z|2) = 0. Since z 6= 0, this implies λ = 0 and the same computation for
λD1ψ3(z) = µD2ψ3(z) gives us µ = 0.
Suppose that A(ψ) is closed. Proposition 4.4 states that the inverse of ψ must be locally
Hölder continuous and corollary 4.6 implies that every directional map generates a closed
composition algebra. To obtain a contradiction consider the direction r = (1, 0). We obtain
the directional map

ψ0,r(t) = ψ

(
t

0

)
=

 0
t · ϕ(t2)

0


and ψ0,r is flat in t = 0 which is prohibited by proposition 2.13

Although we are not able to prove that the Hölder condition is necessary, studying the
proof of the example 4.4 we can prove a similar necessary condition. The key argument
for evaluating the condition ‖ψ(xn) − ψ(yn)‖ ≤ 1

n
‖xn − yn‖n was the construction of the

functions fn ∈ A(ψ), for which we could give precise estimates for the norms ‖fn‖L,k.
The proof that fn ∈ A(ψ) simply relied on proposition 4.2 and was done by showing
supp(fn) ∩ E(ψ) = ∅. Unfortunately we can not apply this construction and the related
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estimates without further knowledge of the exact shape of the critical set. However, we
can give the following necessary condition, which is a generalization of proposition 2.12,
for an injective smooth map ψ ∈ E(Rq,Rd) which does not require any knowledge about
the structure of E(ψ).

Definition 4.10.
The function ψ ∈ E(Rq,Rd) is said to satisfy the (local) lower distance estimate if for any
compact set K ⊆ Rq there is a cK > 0 and “order” αK ∈ N such that

‖ψ(x)− ψ(y)‖ ≥ cK · ‖x− y‖ ·max{dist(x,E(ψ)), dist(y, E(ψ))}αK

for all x, y ∈ K.

We will deduce weaker conditions from the lower distance estimate that are somewhat
easier to read, but let us first prove that the lower distance estimate is indeed a necessary
condition.

Proposition 4.11.
If ψ ∈ E(Rq,Rd) is injective and A(ψ) is closed, then ψ must satisfy the lower distance
estimate.

Proof. We can basically proceed as in the case of a discrete critical set. Suppose that the
lower distance estimate fails on a fixed compact set L. We obtain the existence of some
sequences (xn)n∈N and (yn)n∈N in L such that

‖ψ(xn)− ψ(yn)‖ < 1

nn
· ‖xn − yn‖ ·max{dist(xn, E(ψ)), dist(yn, E(ψ))}n.

This implies that xn 6= yn. Without loss of generality we can again suppose that the
sequences (xn)n∈N, (yn)n∈N and rn = yn−xn

‖yn−xn‖ converge to some x∞, y∞ and r∞ respectively.
Since dist(z, E(ψ)) is bounded on the compact set L, the right hand side converges to zero
and the injectivity of ψ implies x∞ = y∞. Applying the mean value theorem to every
coordinate ψj of ψ we obtain an intermediate point ξjn = xn + λ(yn − xn) with

‖ψ′j(ξjn)[rn]‖ ≤ 1

nn
·max{dist(xn, E(ψ)), dist(yn, E(ψ))}n → 0.

The left hand side converges to ‖ψ′(x∞)[r∞]‖ and the right hand side converges to zero.
This implies that x∞ must be a critical point.
In the previous example, we used the fact that the composition operator was open by
constructing appropriate functions in the algebra that lead to a contradiction. Let us
recall the precise argument we are going to use.
As previously seen in remark 2.8, the fact that Cψ is an open map implies that for every
compact set K ⊆ Rd and m ∈ N we can find some compact set L ⊆ Rq as well as c > 0
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and k ∈ N such that every f ∈ A(ψ) can be factorized by some F ∈ E(Rq,R) satisfying

‖F‖K,m ≤

{
c · ‖f‖L,k, if ‖f‖L,k 6= 0
1
2
, otherwise

.

Before evaluating this condition, let us explain how we can connect this criterion with
the sequences (xn)n∈N and (yn)n∈N to obtain a contradiction. Suppose we have already
constructed some function ϕn ∈ A(ψ) such that |ϕn(xn)−ϕn(yn)| is “large”. We can apply
the condition mentioned above to some compact set K containing every line segment
{xn + λ(yn − xn) : λ ∈ [0, 1]} and m = 1. We obtain some Fn ∈ E(Rq,Rd) for which we
can use the mean value inequality leading to

|ϕn(xn)− ϕn(yn)| = |Fn(ψ(xn))− Fn(ψ(yn))| ≤ ‖Fn‖K,1 · ‖ψ(xn)− ψ(yn)‖ (∗)
≤ c · ‖ϕn‖L,k · ‖ψ(xn)− ψ(yn)‖.

This leads to the required contradiction if |ϕn(xn)−ϕn(yn)| is large compared to the right
hand side above.
Unfortunately we need to be a little more cautious with our construction of ϕn than in the
case of isolated critical points in order to get a contradiction. To simplify the computations,
suppose without loss of generality that dist(xn, E(ψ)) ≥ dist(yn, E(ψ)). We distinguish the
two following cases.
If 1

2
dist(xn, E(ψ)) ≤ ‖xn−yn‖, consider some ϕ ∈ E(Rd,R) with support in the open unit

ball and ϕ(0) = 1. Define

ϕn(z) = ϕ

(
z − xn

1
2

dist(xn, E(ψ))

)
.

The support of ϕn is contained in the open unit ball around xn with radius 1
2

dist(xn, E(ψ))
and therefore does not meet yn nor E(ψ). By proposition 4.2 we have ϕn ∈ A(ψ) with
ϕn(xn) = 1 and ϕn(yn) = 0. With the estimate (∗) above, we get a parametrization Fn
satisfying

1 = |ϕn(xn)− ϕn(yn)| = |F (ψ(xn))− F (ψ(yn))| ≤ c · ‖ϕn‖L,k · ‖ψ(xn)− ψ(yn)‖.

Dominating the norm ‖ϕn‖L,k by 2k · dist(xn, E(ψ))−k · ‖ϕ‖L,k and using our assumption
that ‖ψ(xn)−ψ(yn)‖ ≤ 1

nn
·‖xn−yn‖·dist(xn, E(ψ))n we obtain the required contradiction

1 ≤ c · ‖ϕn‖L,k · ‖ψ(xn)− ψ(yn)‖ ≤ C

nn
· dist(xn, E(ψ))n−k · ‖xn − yn‖ → 0

Otherwise, we have 1
2

dist(xn, E(ψ)) ≥ ‖xn − yn‖.
For our construction we require some Φ ∈ E(Rq,R) with support in the open unit ball
B(0, 1) and such that α = inf{Φ′(x)[e1] : ‖x‖ ≤ 1/2} > 0. We define

ϕn(z) = Φ

(
Rn

z − xn
dist(xn, E(ψ))

)
,
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where Rn is a normed rotation matrix mapping yn−xn
‖yn−xn‖ to the first unit vector e1

Since Rn maps the open unit ball to itself, the support of ϕn is contained in the open ball
around xn with radius dist(xn, E(ψ)). It does therefore not intersect E(ψ), which implies
ϕn ∈ A(ψ) by proposition 4.2.
Define the direction rn = 1

dist(xn,E(ψ))
· Rn(yn − xn). Applying the mean value theorem to

the map µ : R→ R defined by µ(t) = Φ (t · rn), we obtain some ξ ∈ [0, 1] such that

ϕn(yn)− ϕn(xn) = µ(1)− µ(0) = µ′(ξ) = Φ′ (ξ · rn) [rn]

= Φ′ (ξ · rn)

[
Rn

yn − xn
‖yn − xn‖

]
· ‖yn − xn‖

dist(xn, E(ψ))

= Φ′ (ξ · rn) [e1] · ‖yn − xn‖
dist(xn, E(ψ))

.

Since ‖ξ · rn‖ ≤ ‖rn‖ ≤ 1
2
, we obtain Φ′(ξ · rn)[e1] ≥ α and hence

ϕn(yn)− ϕn(xn) ≥ α · ‖yn − xn‖
dist(xn, E(ψ))

.

The linear map Rn has norm |||Rn||| = 1 and we can estimate ‖ϕn‖L,k by the constant
dist(xn, E(ψ))−k · ‖Φ‖Rq ,k. Using (∗) again, we obtain

α · ‖yn − xn‖
dist(xn, E(ψ))

≤ |ϕn(yn)− ϕn(xn)| ≤ C̃

nn
· dist(xn, E(ψ))n−k · ‖xn − yn‖,

hence the required contradiction

0 < α ≤ Ck
nn
· dist(xn, E(ψ))n+1−k → 0

when dividing both sides with ‖yn−xn‖
dist(xn,E(ψ))

.

Remark 4.12.
The lower distance estimate of definition 4.10 is quite lengthy but implies the following,
formally weaker yet simpler conditions.

(i) For all compact subsets K of Rq there are constants cK > 0 and αK > 0 such that

‖ψ′(x)[r]‖ ≥ cK · dist(x,E(ψ))αK

for all x ∈ K and ‖r‖ = 1.

(ii) For all compact subsets K of Rq there are constants CK > 0 and αK > 0 such that

|||ψ′(x)−1||| ≤ CK ·
(

1

dist(x,E(ψ))

)αK
for all x ∈ K.
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Proof. To prove (i) we can evaluate the lower distance estimate on a given compact subset
K of Rq in the points x ∈ K ∩ E(ψ)c and x+ tr for ‖r‖ = 1 and t sufficiently small. The
lower distance estimate states that

‖ψ(x+ tr)− ψ(x)‖ ≥ cK · ‖x+ tr − x‖ ·max{dist(x+ tr, E(ψ)), dist(x,E(ψ))}αK

= cK · |t| ·max{dist(x+ tr, E(ψ)), dist(x,E(ψ))}αK .

Dividing both sides with |t| yields∥∥∥∥ψ(x+ tr)− ψ(x)

t

∥∥∥∥ =
‖ψ(x+ tr)− ψ(x)‖

|t|
≥ cK ·max{dist(x+tr, E(ψ)), dist(x,E(ψ))}αK .

Since the left hand side converges to ‖ψ′(x)[r]‖ and the right hand side converges to
cK · dist(x,E(ψ))αK , we obtain

‖ψ′(x)[r]geqcK · dist(x,E(ψ))αK .

as claimed.
Part (i) states ‖ψ′(x)[r]‖ ≥ cK · dist(x,E(ψ))α for all x ∈ K and ‖r‖ = 1. This implies
λ(ψ′(x)) ≥ cK · dist(x,E(ψ))αK for all x in the compact set K ⊆ Rq, where we recall
that λ(T ) = inf{‖T [r]‖ : ‖r‖ = 1} according to definition 3.6. Remark 3.7 states that
|||T−1||| = 1/λ(T ). Defining CK = 1/cK we obtain

|||ψ′(x)−1||| = 1

λ(ψ′(x))
≤ CK ·

1

dist(x,E(ψ))αK
.

We have already seen in the examples 4.8 and 4.9 that the local Hölder continuity of the
inverse is easy to check. However, we only know this condition to be necessary if the
critical set is discrete. The lower distance estimate on the other hand is not restricted by
this special case. Let us illustrate this fact in the following two examples, where the critical
set E(ψ) will be given by a union of lines.

Example 4.13.
Consider again the map ϕ : R → R defined by ϕ(z) = exp

(
− 1
|z|

)
for z 6= 0 and ϕ(0) = 0

as mentioned in example 4.8. We define ψ : R2 → R3 by

ψ(x, y) =

 x2 · y2

x · ϕ(x2)
y · ϕ(y2)

 .

We have depicted the shape of ψ in the following figure 4.3. One can see the sharp
edges along the set {(x, y, 0) : x = 0 or y = 0}, which is actually the image of the cross
C = {(x, y) : x = 0 or y = 0}.
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Figure 4.3: The image of [−1, 1]2 under ψ.

Let us first show that the injectivity of ψ is a direct consequence of the injectivity of the
function g : R→ R defined by g(t) = t · ϕ(t2). Indeed the derivative of s 7→ ϕ(s) for s > 0
is given by ϕ′(s) = 1

s2
·ϕ(s). We can therefore compute g′(t) = ϕ(t2) + 2t2 ·ϕ′(t2), which is

strictly positive for all t 6= 0. The function g is therefore injective and for ψ(x, y) = ψ(z, w)
we have g(x) = g(z) and g(y) = g(w), hence (x, y) = (z, w). As mentioned above, the
results of proposition 4.4 and corollary 4.6 cannot be applied here. Indeed the critical set
is not discrete anymore and we will compute it to prove that it is instead given by the
cross C = {(x, y) ∈ R2 : x = 0 or y = 0}. Computing the matrix representation of the
derivative we obtain

∇ψ(x, y) =

 2 · x · y2 2 · y · x2

g′(x) 0
0 g′(y)

 .

Since g′(t) 6= 0 whenever t 6= 0, we see that ψ′(x, y) has rank 2 whenever (x, y) 6∈ C. For
(x, y) ∈ C we have x · y = 0 hence

∇ψ(x, y) =

 0 0
g′(x) 0

0 g′(y)

 ,

which implies that the rank of ∇ψ′(x, y) is at most 1 since either g′(x) = 0 or g′(y) = 0.
We can however show that ψ does not generate a closed composition algebra by proving
that it fails the lower distance estimate, which is necessary by proposition 4.11. To do this,
we need to find a compact set K ⊆ Rd such that the estimate

‖ψ(x, y)− ψ(z, w)‖ ≥ cK · ‖(x, y)− (z, w)‖ ·max{dist((x, y), C), dist(z, w), C)}αK
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does not hold. First let us note that the distance of a point (x, y) to the critical set is
given by dist((x, y), C) = min{|x|, |y|}. Now suppose the algebra A(ψ) to be closed and
therefore ψ to satisfy the lower distance estimate by proposition 4.11. For the compact set
K = [0, 1]2 we would obtain appropriate constants cK > 0 and αK > 0. Evaluating the
lower distance estimate in the points (x, x) and (−x, x) for x ∈ [0, 1] leads to

‖ψ(x, x)− ψ(−x, x)‖ ≥ cK · ‖(x, x)− (−x, x)‖ ·max {dist ((x, x), C) , dist ((−x, x), C)}αK .

Since ‖ψ(x, x)− ψ(−x, x)‖ = |2 · x · ϕ(x2)| and dist((x, x), C) = |x| = dist((−x, x), C), we
obtain

|2 · x · ϕ(x2)| ≥ cK · |x|αK+1.

This leads to the contradiction |ϕ(x2)| ≥
√

2 · cK · |x|αK for x > 0 sufficiently small.



Chapter 5

Composition isomorphisms between
spaces of flat functions.

In this section we will extend the results of chapter 2 to injective maps ψ ∈ E(Rq,Rd) of
several variables. Let us recall the one-dimensional statements. Proposition 2.16 states
that, if ψ ∈ E(R,Rd) is injective and proper, every function with support outside E(ψ) is a
composition and can even be written as F ◦ψ with F having support outside ψ(E(ψ)). Even
more, it follows from proposition 2.19 that under the stronger assumption of a locally Hölder
continuous inverse the composition algebra is closed. Since every function f ∈ E(Rq,R)
that is flat on E(ψ) is contained in the closure of A(ψ), this implies that every such f
can be written as a composition f = F ◦ ψ. It also seems plausible that F can be chosen
to be flat on the image ψ(E(ψ)) of the critical points. This is actually true in the one-
dimensional case when ψ−1 is locally Hölder continuous, and can be deduced by the same
arguments we used in the proof of theorem 2.19. We will show that this is also the case
for several variables and give sufficient conditions for I(E(ψ)) ⊆ A(ψ). By proposition
4.11, the lower distance estimate is necessary to obtain a closed composition algebra. This
condition therefore seems like a plausible assumption. It will turn out that we only require
the following, formally weaker notion mentioned in remark 4.12 (ii).

Definition 5.1.
An injective function ψ ∈ E(Rq,Rd) satisfies the “lower distance estimate for derivatives”
if for any compact set K ⊆ Rq we can find cK > 0 and αK ∈ N such that

‖ψ′(x)[r]‖ ≥ cK · dist(x,E(ψ))αK

for all x ∈ K and r ∈ Rq with ‖r‖ = 1.

The lower distance estimate for the derivative can be viewed as a generalization of the
necessary condition mentioned in proposition 2.12. In this context, our main theorem
reads as follows.

83
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Theorem 5.2.
For an injective ψ ∈ E(Rq,Rd) that is proper, satisfies the lower distance estimate for
derivatives, and has a Whitney regular image the set I(E(ψ)) is contained in A(ψ). More-
over the representation of f ∈ I(E(ψ)) as f = F ◦ψ with F ∈ E(Rd,R) can even be chosen
to be “orthogonally flat with respect to ψ” meaning that F is directionally flat in ψ(x) along
directions that are orthogonal to the tangent space Range(ψ′(x)) at ψ(x) as explained below.

For the proof, we refer to 5.12

5.1 Preliminary definitions

First we need a firm definition of the subspace of “orthogonally flat” functions as well
as a few topological notions. The proof of the main theorem will heavily rely on the
computational tools given in section 3, more precisely propositions 3.2 and 3.7. We remind
the reader that we identify the k-th derivative of a smooth map F ∈ E(Rq,Rd) with the
function F (k) with values in the spaceMk(Rq,Rd) of k-linear maps from Rq to Rd. This
differs from the viewpoint of partial derivatives, which are essential to compute the usual
seminorms ‖F‖K,n = sup{|DαF (x)| : x ∈ K, |α| ≤ n} generating the Fréchet topology on
E(Rq,Rd). The directional derivatives turn out to be more adapted to our computations.
Let us start by defining the respective families of seminorms.

Definition 5.3.
We recall lemma 3.3 (ii), where we defined the norm |||T ||| of a k-linear map T ∈Mk(X, Y )
between Banach spaces by |||T ||| = sup{‖T [x1, ..., xk]‖Y : ‖x1‖X ≤ 1, ..., ‖xK‖X ≤ 1}.
In analogy to the usual seminorms ‖F‖K,n on E(Rq,Rd) where K ⊆ Rq is compact and
n ∈ N0 we define

|||F |||K,n = sup{|||F (k)(x)||| : x ∈ K, k ≤ n}
= sup

{∥∥F (k)(x)[r1, ..., rk]
∥∥ : x ∈ K, k ≤ n, ‖r1‖ ≤ 1, ..., ‖rk‖ ≤ 1

}
.

As one would expect this is just a superficial change of interpretation as ‖·‖K,n and ||| · |||K,n
are equivalent seminorms. Both families therefore generate the same Fréchet topology
on E(Rq,Rd). For reasons of completeness we have given a separate proof of this fact in
proposition 6.1 of the appendix.
We will now proceed and formally define the required spaces of flat functions mentioned
in proposition 5.2.

Definition 5.4.
Consider a subset M ⊆ Rk.
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(i) We denote by

I(M,Rn) = {F ∈ E(Rk,Rn) : F (j)(x) = 0 ∀x ∈M, j ∈ N0}

the set of flat functions on M with values in Rn. We recall that we view the j-th
derivative F (j) as a map from Rk to the spaceMj(Rk,Rn) of j-linear functions from
Rk to Rn. We mostly deal with the case n = 1 and therefore simply write

I(M) = I(M,R).

Obviously, I(M,Rn) is a closed subspace of E(Rk,Rn).

(ii) We define the space of smooth functions on M ⊆ Rk as the quotient

E(M,Rn) = E(Rk,Rn)/I(M,Rn)

which we endow with the usual quotient topology. Since I(M,Rn) is closed, the
quotient E(M,Rn) is a Fréchet space. Again, E(M) will denote the special case
E(M,R) of a one-dimensional range.

(iii) For ψ ∈ E(Rq,Rd) and its critical set E(ψ), we will abbreviate

a) E(ψ) = E(ψ(Rq)),

b) I(ψ) = I(ψ(Rq)),

c) I(E) = I(E(ψ)) and

d) I(ψ(E)) = I(ψ(E(ψ))).

We can now adapt these notions of quotient spaces to the generator ψ ∈ E(Rq,Rd), more
precisely to its image ψ(Rq), to obtain the definition area of the (reduced) composition
operator. Even though it might not directly seem clear from the definition why we consider
the upcoming set, we will elaborate an interpretation to explain why it is more natural
than it seems.

Definition 5.5.
Consider a ψ ∈ E(Rq,Rd).

(i) We call a function F ∈ E(Rd,R) orthogonally flat (with respect to ψ) if

F (k)(ψ(x)) [r] = 0

for all multidirections r = (r1, ..., rk) ∈
k∏
j=1

Range(ψ′(x))⊥ and all x ∈ Rq and k ∈ N.
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(ii) If E(ψ) ⊆ Rq denotes the critical set of ψ, we consider the “reduced definition area”

R(ψ) = {F ∈ I(ψ(E)) : F orhtogonally flat w.r.t. ψ}

and the respective quotient
E0(ψ) = R(ψ)/I(ψ).

Remarks 5.6.
(i) The subspace R(ψ) is closed since it is the intersection over all k ∈ N0, x ∈ Rq, and

r ∈
∏k

j=1 Range(ψ′(x))⊥ of the sets

R(ψ, k, x, r) =
{
F ∈ I(ψ(E)) : F (k)(ψ(x))[r] = 0

}
.

These subspaces are closed as the preimages of {0} under the continuous evaluation
maps F 7→ F (k)(ψ(x))[r]. Therefore R(ψ) is a Fréchet space and, since I(ψ) ⊆ R(ψ),
the quotient space is also Fréchet when endowed with the quotient topology.

(ii) R(ψ) is even an ideal. Indeed, consider F ∈ R(ψ) and Φ ∈ E(Rd,R). Obviously,
all derivatives of the product Φ · F vanish on ψ(E) because those of F do. For
x 6∈ E and some normal multidirection r = (r1, ..., rn) ∈

∏n
j=1 Range(ψ′(x))⊥ the

Leibniz-formula implies

(Φ · F )(n)(ψ(x))[r] =
∑

A⊆{1,...,n}

Φ(|A|)(ψ(x))[rA] · F (|Ac|)(ψ(x))[rAc ] = 0,

where we recall that rA = �
j∈A

rj stands for the A-selection of r = (r1, ..., rn).

The reason to consider the subspaces R(ψ) and E0(ψ) is that the reduced composition
operator C̃ψ : E0(ψ) → A(ψ) turns out to be injective. Prior to giving a formal proof of
this fact, let us explain why this space is more intuitive than the lengthy and technical
definition would suggest.
Fix some F ∈ E(Rd,R). For x ∈ Rq, one obtains the value F ′(ψ(x))[r] for all directions
r = ψ′(x)[s] ∈ Range(ψ′(x)) directly from the behavior of F ◦ ψ. Indeed, the values of
F on ψ(Rq) are uniquely determined by F ◦ ψ and we obtain the derivative through the
computation

F ′(ψ(x))[r] = F ′(ψ(x))[ψ′(x)[s]] = (F ◦ ψ)′(x)[s].

On the other hand, other directional derivatives cannot be constructed by using only
knowledge of F ◦ ψ. This gives us too many degrees of freedom and there is little hope
whatsoever to obtain an injective composition operator. We can of course compensate this
problem by demanding that the function F is “as good as constant”, i.e. flat in directions
that are orthogonal to the tangent space, thus resulting in F ′(ψ(x))[r] = 0 for all directions
r orthogonal to ψ′(x)[Rq] = Range(ψ′(x)). We then obtain complete knowledge of F ′(ψ(x))
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and iterating the process we can gain full knowledge of F (k+1)(ψ(x)) only by the behavior
of the derivatives of F on ψ(Rq) together with the orthogonality condition. Let us now
proceed and formalize this idea.

Proposition 5.7.
The composition operator C̃ψ : E0(ψ)→ A(ψ), F+I(ψ) 7→ F ◦ψ is well-defined, continuous
and injective.

Proof. Obviously for two representatives F,G ∈ E(Rd,R) of the same equivalence class in
E0(ψ) the difference F−G is flat and hence zero on ψ(Rq). We therefore have F ◦ψ = G◦ψ
and the composition with ψ is well-defined.
Let us show that the injectivity of C̃ψ results from the inclusion Ker(Cψ) ∩R(ψ) ⊆ I(ψ).
To this end, consider G ∈ E0(ψ) with C̃ψ(G) = 0. We can write as G = G + I(ψ) with
some G ∈ R(ψ). By the definition of C̃ψ, we obtain Cψ(G) = C̃ψ(G) = 0 and therefore
G ∈ Ker(Cψ)∩R(ψ). The inclusion Ker(Cψ)∩R(ψ) ⊆ I(ψ) then implies G ∈ I(ψ) hence
G = I(ψ) and the injectivity.
It remains to verify that Ker(Cψ)∩R(ψ) ⊆ I(ψ) holds. To do so, fix F ∈ Ker(Cψ)∩R(ψ).
We need to prove F (k)(ψ(x)) = 0 for all k ∈ N0 and x ∈ Rq.
For x ∈ E(ψ) this follows from the definition since F ∈ R(ψ) is flat on ψ(x) ∈ ψ(E(ψ)).
For x ∈ E(ψ)c we will proceed by induction. The case k = 0 is obvious since we have
F ∈ Ker(Cψ) and therefore F (ψ(x)) = 0 for all x ∈ Rq. For k = 1 we can write Rd as
the direct sum Range(ψ′(x)) ⊕ Range(ψ′(x))⊥, thus obtaining for every direction r ∈ Rd

a unique representation r = ψ′(x)[s] + η with η ⊥ ψ′(x)[Rq]. The linearity of F ′(ψ(x))
combined with F ′(ψ(x))[η] = 0 implies

F ′(ψ(x))[r] = F ′(ψ(x))[ψ′(x)[s]] + F ′(ψ(x))[η] = (F ◦ ψ)′(x)[s] = 0.

The key to the computation above is the fact that we can represent every direction r
as a sum ψ′(x)[s] + η. For the induction step we will need a similar decomposition for
multidirections r = (r1, ..., rk). This is a more general result about symmetric multilinear
maps and thus we have given a separate proof in lemma 5.8 in order to keep the computation
to a minimum.
Suppose that F (k−1) = 0 on ψ(Rq) and fix again some regular point x ∈ Rd \ E(ψ)
and a multidirection r = (r1, ..., rk). We can decompose each component rj as the sum
ψ′(x)[sj] + ηj with some ηj ∈ Range(ψ′(x))⊥. By lemma 5.8 we have

F (k)(ψ(x))

[
k

�
j=1

rj

]
=

∑
A⊆{1,...,k}

F (k)(ψ(x))

[
�
j∈A

ψ′(x)[sj] �
`∈Ac

η`

]
.

Thus we only need to consider the “pure” cases, where the components rj are either el-
ements of Range(ψ′(x)) or its orthogonal complement. Now consider the following two
cases:
First case: If every rj is situated in the orthogonal complement of Range(ψ′(x)), the
definition of R(ψ) implies F (k)(ψ(x))[r1, ..., rk] = 0.
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Second case: There exists a coordinate ` with r` = ψ′(x)[s`]. Using the fact that
F (k)(ψ(x)) is symmetric we can suppose ` = k simply by switching those coordinates.
Defining Φ(z) = F (k−1)(z)[r1, ..., rk−1] we obtain a smooth map Φ ∈ E(Rd,R) that vanishes
on ψ(Rq) by the induction assumption. Computing its derivative leads to the required

F (k)(ψ(x))[r1, ..., rk] = Φ′(ψ(x))[ψ′(x)[sk]] = (Φ ◦ ψ)′(x)[sk] = 0.

To prove the continuity we will show that preimages of open sets under C̃ψ are open
in E0(ψ). For an open subset U of E(Rq,R) the preimage C−1

ψ (U) is open in E(Rd,R).
Since R(ψ) is a closed subspace of E(Rd,R), the intersection C−1

ψ (U) ∩ R(ψ) is open in
R(ψ) with respect to the relative topology. The injectivity of C̃ψ implies the identity
C̃−1
ψ (U) = (C−1

ψ (U) ∩ R(ψ)) + I(ψ), which is an open set in E0(ψ) with respect to the
quotient topology.

Lemma 5.8.
Consider two vector spaces X and Y and a k-linear symmetric map F : Xk → Y . For all
multidirections (s1, ..., sk), (q1, ..., qk) ∈ Xk we have the identity

F

[
k

�
j=1

(sj + qj)

]
=

∑
A⊆{1,...,k}

F

[
�
j∈A

sj �
`∈Ac

q`

]
.

Proof. We recall that by definition 3.1 (ii) we have defined �j∈∅ xj � r = r = r�j∈∅ xj.
Furthermore the order of the different arguments do not matter for a symmetric k-linear
map F .

Now let us proceed with the proof by induction. For k = 1 we have only two subsets of
{1} namely ∅ and {1}. Using the notation recalled above, the linearity of F implies

F [s1 + q1] = F [s1] + F [q1] = F

[
�

j∈{1}
sj �

`∈∅
q`

]
+ F

[
�
j∈∅

sj �
`∈{1}

q`

]
.

To prove the induction step, consider some k+1-linear symmetric map F . The evaluations
(r1, .., rk) 7→ F [r1, .., rk, x] are k-linear and hence for x = sk+1 and x = qk+1 we can apply
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the induction assumption to obtain

F

[
k+1

�
j=1

(sj + qj)

]
= F

[
k

�
j=1

(sj + qj) � sk+1

]
+ F

[
k

�
j=1

(sj + qj) � qk+1

]
=

∑
A⊆{1,...,k}

F

[
�
j∈A

sj �
`∈Ac

q` � sk+1

]
+

∑
A⊆{1,...,k}

F

[
�
j∈A

sj �
`∈Ac

q` � qk+1

]

=
∑

A⊆{1,...,k}

F

[
�

j∈A∪{k+1}
sj �

`∈Ac
q`

]
+

∑
A⊆{1,...,k}

F

[
�
j∈A

sj �
`∈Ac∪{k+1}

q`

]

=
∑

A⊆{1,...,k+1}
k+1∈A

F

[
�
j∈A

sj �
`∈Ac

q`

]
+

∑
A⊆{1,...,k+1}
k+1∈Ac

F

[
�
j∈A

sj �
`∈Ac

q`

]

=
∑

A⊆{1,...,k+1}

F

[
�
j∈A

sj �
`∈Ac

q`

]
.

5.2 Cψ as an isomorphism between spaces of flat func-
tions.

We will now prove that, under the assumptions of theorem 5.2, every f ∈ I(E(ψ)) pos-
sesses a representation as f = F ◦ ψ with F ∈ E(Rd,R) satisfying the orthogonal flatness
condition. We can view this statement as an improvement of proposition 4.2, since we are
now able to gain control of the derivatives on ψ(Rq) of a certain representation F of F ◦ψ.
For the proof of our representation we require the existence of specific diffeomorphisms
between submanifolds of Rd, which satisfy certain geometric conditions as well as norm
estimates. To make this chapter more readable we have constructed these diffeomorphisms
in proposition 6.5 of the appendix.
For reasons of clarity let us mention the simplified statement of proposition 6.5.

Proposition 5.9 (Diffeomorphic extension).
Consider a smooth and injective map ψ ∈ E(Rq,Rd). For any x 6∈ E(ψ) we can find neigh-
borhoods Ux ⊆ Rq of x, U0 ⊆ Rd−q of 0, and Vx ⊆ Rd of ψ(x) as well as a diffeomorphism
Ψx : Ux × U0 → Vx such that:

(i) ψ(y) = Ψ(y, 0) for all y ∈ Ux.

(ii) Ψ′(y, 0) is a bijection between Rq × {0d−q} and ψ′(y)[Rd].

(iii) Ψ′(y, t) is a bijection between {0q} × Rd−q and ψ′(y)[Rd]⊥ for all t ∈ U0.

(iv) Ψ′′(y, t)[s1, s2] = 0 whenever s1, s2 ∈ {0} × Rd−q.



90

(v) There are constants Cn and α(n) depending only on n such that

|||Ψ|||(x,0),n ≤ Cn(1 + |||ψ|||x,n)α(n) · (1 + |||ψ′(x)−1|||)α(n).

(vi) There are constants cn and β(n) depending only on n such that

|||Ψ−1|||ψ(x),n ≤ cn(1 + |||ψ|||x,n)β(n) · (1 + |||ψ′(x)−1|||)β(n).

The first step is a refinement of proposition 4.2 in the sense that every f ∈ D(E(ψ)c)
does not only have a smooth parametrization f = F ◦ ψ, but F can even be chosen to be
orthogonally flat with respect to ψ. As a byproduct we also obtain that the set R(ψ) of
orthogonally flat functions is not empty.

Proposition 5.10.
For an injective, smooth, and proper map ψ ∈ E(Rq,Rd) with critical set E = E(ψ), every
function f ∈ D(Ec) can be represented as a composition f = F ◦ ψ with F ∈ R(ψ).

Proof. Given a function f ∈ D(E(ψ)c) we will explicitly construct local parametrizations
Fx that are orthogonally flat and satisfy Fx ◦ ψ = f near x. We will then glue these
local modifications together by means of an adequate partition of unity and verify that the
resulting function is still orthogonally flat.
To visualize the construction we have given a simple example of a 2-dimensional subman-
ifold of R3 in the following figure. The idea will be to derive the values on the left plane
from the values on the image right. We then extend the functions on both sides to be
constant along the red arrows.

The basic idea behind the construction is rather geometrical in nature. Indeed, around
the image ψ(x) of a regular point x, we can represent ψ(Rq) as a q-dimensional manifold
in Rd. This means that the image of ψ is locally diffeomorphic to Rq × {0d−q}. For some
F ∈ E(Rd,R) representing f , we can pull back F |ψ(Rq) via the diffeomorphism Ψ−1

x . We
obtain some F defined on Rq×{0d−q}, which we can smoothly extend by F(x, t) = F(x, 0).
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Applying the composition with the diffeomorphism Ψx on F we obtain some modification
F̃ that coincides with F on ψ(Rq) near ψ(x). The orthogonal flatness condition then
follows from the fact that the diffeomorphism maps the last d− q partial derivatives of F ,
which are zero by construction, to the directional derivatives of F̃ along normal directions
at ψ(x), i.e. orthogonal directions to the tangent space ψ′(x)[Rq].
Let us now formalize the process stated above.
The image ψ(Ec) is a smooth manifold and ψ : Ec → ψ(Ec) is a global coordinate system
(cf. definition 6.3 of the appendix). We can therefore apply the previous proposition 5.9
to some x ∈ Ec to obtain neighborhoods Ux of x ∈ Rq, U0 of 0 ∈ Rd−q and Vx of ψ(x) ∈ Rd

as well as a diffeomorphism Ψx : Ux × U0 → Vx satisfying the conditions (i)-(vi). For
f ∈ D(Ux) we define Fx : Vx → R by

Fx = f ◦ π ◦Ψ−1
x ,

where π : Rq × Rd−q → Rq denotes the projection (y, t) 7→ y. The function Ψx is a
diffeomorphism, hence Ψ−1

x is smooth on Vx, as well as Fx. By definition we obtain the
simpler identity

Fx(Ψx(y, t)) = f(y)

whenever (y, t) ∈ Ux × U0 = Ψ−1
x (Vx). This also implies Fx ◦ ψ = f on Ux.

Let us now prove that Fx is orthogonally flat with respect to ψ. Instead of using induction,
we can prove this by direct computation using proposition 3.2. Let us nevertheless mention
the case k = 1 explicitly to better flesh out the argument.
By property (iii) of Ψx we can write r ⊥ ψ′(y)[Rq] as the image r = Ψ′x(y, 0)[s] of some
vector s = (0, t) ∈ {0q} × Rd−q. By construction we have

Fx ◦Ψx((y, 0) + ε · s) = Fx ◦Ψx(y, ε · t) = f(y) = Fx ◦Ψx(y, 0)

for |ε| so small that ε · t ∈ U0. Therefore the directional derivative (Fx ◦Ψx)
′(y, 0)[s] along

s must vanish and we obtain

F ′x(Ψx(y, 0))[r] = F ′x(Ψx(y, 0))[Ψ′x(y, 0)[s]] = (Fx ◦Ψx)
′(y, 0)[s] = 0.

For the general case we need to prove that

F (k)(ψ(y))[r1, .., rk] = 0

whenever all rj are normal directions at ψ(y), i.e. rj ∈ ψ′(y)[Rq]⊥. By (iii) from proposition
5.9 we can write each rj as Ψ′x(y, 0)[sj] with sj ∈ {0} × Rd−q. Since we have the identity
F ◦ Ψx(y, t) = F ◦ Ψx(y, 0), proposition 3.2 applied to the multidirection s = (s1, ..., sk)
implies

0 = (F ◦Ψx)
(k)(y, 0)

[
k

�
j=1

sj

]
=
∑
P∈P(k)

F (|P|)(Ψx(y, 0))

[
�
P∈P

Ψ(|P |)
x (y, 0)[sP ]

]
.
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By proposition 5.9, (iv) we have Ψ′′x(y, t)[v, w] = 0 whenever v, w ∈ 0d×Rd−q. This implies
that Ψ

(|P |)
x (y, 0)[sP ] = 0 for all |P | ≥ 2. Therefore, every evaluation of F (|P|)(Ψx(y, 0)) with

the exception of P = {{1}, ..., {k}} in the sum on the right hand side must vanish. This
leads to the required

0 = (F ◦Ψx)
(k)(y, 0)

[
k

�
j=1

sj

]
= F (k)(Ψx(y, 0))

[
k

�
j=1

Ψ′x(y, 0)[sj]

]
.

Note that we only have the identity Fx ◦Ψx(y, 0) = Fx ◦ψ(y) = f(y) for y ∈ Ux. To obtain
the more general parametrization Fx◦ψ = f we require the properness of ψ. The continuity
of ψ−1 given by remark 2.11 then implies that we can find an open subset Wx ⊆ Rd such
that ψ(Ux) = Wx ∩ ψ(Rq). By multiplying Fx with some function ηx ∈ D(Wx) satisfying
ηx = 1 near the compact set ψ(supp(f)) we can suppose that Fx ∈ E(Rd,R) has support
in Wx. This implies Fx ◦ ψ = f on Ux as well as Fx ◦ ψ(z) = 0 = f(z) for all z 6∈ Ux. Note
that the product Fx · ηx, which is smooth on Rd, is also orthogonally flat with respect to
ψ and can be deduced using the Leibniz rule.
For f ∈ D(Ec) we can find a finite cover {Ux : x ∈M} of supp(f) by open sets Ux as above
as well as a partition of unity {ϕx : x ∈ M} subordinated to that cover. Again, we can
find Fx ∈ D(Vx) that is orthogonally flat with respect to ψ and satisfies Fx ◦ ψ = f · ϕx.
Gluing the local solutions together we obtain F =

∑
x∈M Fx ∈ R(ψ) that satisfies

F ◦ ψ =
∑
x∈M

Fx ◦ ψ =
∑
x∈M

f · ϕx = f.

This construction is also true if we only ask for supp(f)∩E = ∅, simply by taking a locally
finite partition of unity. Moreover if ψ is a proper map, it follows as a direct consequence
that every G ∈ D(Rd) with supp(G) ∩ ψ(E) = ∅ has a decomposition G = N + K
where K ∈ Ker(Cψ) and N ∈ R(ψ). Indeed the function g = G ◦ ψ has support in the set
ψ−1(supp(G)), which is compact by the assumption of properness, and contained in E(ψ)c.
As seen above one can find some F ∈ R(ψ) with F ◦ ψ = g = G ◦ ψ and hence G can be
written as the sum G = F + (G− F ) of some F ∈ R(ψ) and G− F ∈ Ker(Cψ).
Since D(Ec) is dense in I(E), proposition 5.10 states that C̃ψ : E0(ψ) → I(E) is a con-
tinuous linear injection with dense range and we will proceed to show that it is actually
surjective, hence an isomorphism between both Fréchet spaces. If we take a close look,
we have actually proved a rather interesting fact, namely that E0(ψ) is isomorphic to
a dense subspace of the quotient I(ψ(E))/Ker(Cψ). This is another hint at our claim
that the definition we gave is natural. In fact, if C̃ψ : E0(ψ) → I(E) is surjective,
then E0(ψ) and I(ψ(E))/Ker(Cψ) are isomorphic. It follows from proposition 5.7 that
C̃ : E0(ψ) → I(E) is bijective, hence an isomorphism. Moreover this implies that the
restricted composition operator Cψ : R(ψ) → I(E), and therefore Cψ : I(ψ(E)) → I(E),
are both surjective. The closed range theorem states that this is exactly the case when
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Ĉψ : I(ψ(E))/Ker(Cψ) → I(E) is an isomorphism, in which case both spaces E0(ψ) and
I(ψ(E))/Ker(Cψ) are obviously isomorphic.
It is unclear to us if the two spaces are also isomorphic in the case of a composition operator
that does not have closed range.

Proposition 5.11.
If ψ is a proper and injective map, then E0(ψ) is isomorphic to a dense subspace of
I(ψ(E))/Ker(Cψ).

Proof. Let L and M be two subspaces of a topological vector space X satisfying L ⊆ M .
We consider the map T : X/L→ X/M defined by

T (x+ L) = x+M

T is well defined. For x, y ∈ X satisfying x + L = y + L the identity L ⊆ M implies
L+M = M and hence we obtain x+M = x+ L+M = y + L+M = y +M .
T is continuous. We will show that preimages of open sets under T remain open. This
will follow from the identity T ◦ qL = qM , where qM and qL denote the respective quotient
maps. For an open set U in X/M we obtain q−1

M (U) = q−1
L (T−1(U)) and the surjectivity of

qL : X → X/L implies qL(q−1
M (U)) = T−1(U), which must be open since qM is continuous

and qL is open.
Applying this result to X = I(ψ(E)), L = I(ψ) and M = Ker(Cψ) we see that the
restriction of T to the subspace E0(ψ) of I(ψ(E))/I(ψ) is a continuous linear map.
T |E0(ψ) is injective. Fix F ∈ E0(ψ) with T (F) = Ker(Cψ). For a representative F of F
we obtain F ∈ R(ψ) as well as F ◦ ψ = 0 and the injectivity of the reduced composition
operator C̃ψ proved in 5.7 implies F ∈ I(ψ), hence F = I(ψ).
T has dense range. The set D(ψ(E)c) is dense in I(ψ(E)). Therefore, its image
{G + Ker(Cψ) : G ∈ D(ψ(E)c)} under the continuous quotient map is also dense in
I(ψ(E))/Ker(Cψ). It remains to prove that every such equivalence class G+ Ker(Cψ) lies
in the image of T . For G ∈ D(ψ(E)c) we can find an open set U in Rd such that ψ(E) ⊆ U
and G|U = 0. The composition G ◦ ψ is therefore constant zero on the open set ψ−1(U)
containing E, hence G ◦ ψ ∈ D(Ec). By proposition 5.10 we can find F ∈ R(ψ) such
that F ◦ ψ = G ◦ ψ and the difference H = G − F is contained in Ker(Cψ). This implies
F + Ker(Cψ) = G+ Ker(Cψ) and F = F + I(ψ) satisfies T (F) = G+ Ker(Cψ).

With all these preparations we are now able to give sufficient conditions for the restricted
operator Cψ : I(ψ(E)) → I(E) to have closed range. We recall the results from proposi-
tions 2.9 and 4.11 which state that both properness of ψ and the lower distance estimate
from definition 4.10 are necessary for Cψ to have closed range. We have also seen in remark
4.12 that the lower distance estimate implies the lower distance estimate for derivatives.
It therefore seems quite natural that these conditions are part of the initial assumptions
of our main theorem 5.2. The additional condition of the Whitney-regularity of ψ(Rq) is
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plausible, given that it is already necessary in the one-dimensional case, but remains a
concession to the methods used in our proof. We remind the reader that for a function
ψ of one variable the main tool is given by the closed range theorem which states that
Range(Cψ) is closed if and only if every u ∈ E(Rd,R) that vanishes on Ker(Cψ) can be
written as u = Ct

ψ(v) with some v ∈ A(ψ)′. To verify this we define v in a natural way
(via explicit construction) on a dense subset of A(ψ) and need to find a continuous lin-
ear extension. This is where we heavily rely on the Whitney-regularity of the image. It
allows us to dominate a distribution u ∈ Ker(Cψ)⊥ with support in ψ(R) only by semi-
norms on ψ(R). Some further arguments then lead to the required continuity estimate
|v(F ◦ ψ)| = |u(F )| ≤ ‖F‖ψ(K,n ≤ ‖F ◦ ψ‖K,`.
In the case of several variables, the Whitney regularity of ψ(Rq) will serve the same purpose.
Unfortunately, it is still unclear to us if this condition is only a technical requirement for
our approach or has deeper meaning. We believe that it is actually necessary for A(ψ) to
be closed, or even for the weaker statement of I(E) to be contained in A(ψ).

Theorem 5.12.
If ψ ∈ E(Rq,Rd) is injective, proper, with Whitney-regular image, and satisfies the lower
distance estimate for derivatives

‖ψ′(x)[r]‖ ≥ cK · ‖r‖ · dist(x,E(ψ))αK

on every compact set K, then the restricted composition operator Cψ : R(ψ) → I(E(ψ))
has closed range. As a consequence I(E(ψ)) ⊆ A(ψ) and the reduced composition operator
C̃ψ : E0(ψ)→ I(E(ψ)) is an isomorphism.

Proof. The basic idea is to mimic our approach in the one-dimensional case.
We have already seen in proposition 5.10 that the range of Cψ : R(ψ)→ I(E(ψ)) contains
the I(E(ψ))-dense subspace D(E(ψ)c). It is therefore sufficient to show that Cψ(R(ψ)) is
closed, which follows from the closed range theorem (26.3 in [MV97]) once we verify the
inclusion Ker(Cψ)⊥ ⊆ Range(Ct

ψ).
Fix some u ∈ R(ψ)′ that vanishes on Ker(Cψ). Extending u via the Hahn-Banach theorem
we can suppose without loss of generality that it is the restriction of a distribution on Rd,
which we will also denote by u.
Now we need to construct some w ∈ I(E(ψ))′ such that u(F ) = w(F ◦ψ) for all F ∈ R(ψ).
As an intermediary step, we define

v(F ◦ ψ) = u(F )

for F ∈ R(ψ) satisfying F ◦ ψ ∈ D(E(ψ)c). Note that v is well-defined on D(E(ψ)c) since
by assumption u ∈ Ker(Cψ)⊥, hence v(F ◦ ψ) = u(F ) = 0 whenever F ◦ ψ = 0.
It will turn out that v can be extended continuously to the required w on I(E(ψ)) satisfying
Ct
ψ(w) = u. This extension will be obtained via the Hahn-Banach theorem once we have

proved that we can dominate v(f) by some seminorm |||f |||K,n.
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To achieve this, let us remark that once again the support of u is contained in ψ(Rq) since
for F ∈ D(ψ(Rq)c) ⊆ R(ψ) we have F ◦ ψ = 0 and hence u(F ) = 0. The Whitney-
regularity of ψ(Rq), more precisely theorem 2.3.11 from [Hör03], implies the existence of
some L ⊆ ψ(Rq) and C, n ≥ 0 such that

|u(G)| ≤ C · ‖G‖L,n

for all G ∈ E(Rd,R). We recall the definition 5.3

|||F |||L,n = sup{‖F (j)(x)[r1, ..., rj]‖ : ‖r1‖, ..., ‖rj‖ ≤ 1, x ∈ K, j ≤ n}.

Moreover, according to proposition 6.1 of the appendix, the seminorms ‖ · ‖L,n and ||| · |||L,n
are equivalent, resulting in the continuity estimate

|u(G)| ≤ C · |||G|||L,n

for all G ∈ E(Rd,R).
By the properness of ψ every compact subset L ⊆ ψ(Rq) can be written as the image
L = ψ(K) of some compact subset K ⊆ Rq. Now consider some arbitrary F ∈ R(ψ). By
proposition 5.7 there is only one equivalence class F + I(ψ) representing F ◦ ψ and our
estimation will use the fact that the derivatives of F ∈ R(ψ) in any point ψ(x) depend
only on F ◦ ψ.
To formalize this argument, we remind the reader that, by remark 5.6 (ii), the subspace
R(ψ) is an ideal. Now fix x ∈ K. We will show that if two functions F,G ∈ R(ψ) satisfy
F ◦ ψ = G ◦ ψ on an arbitrary neighborhood U of x, then all derivatives in ψ(x) must
coincide and therefore F (k)(ψ(x)) = G(k)(ψ(x)) for all k ∈ N0. To prove this, fix some open
set V with V ∩ψ(Rq) ⊆ ψ(U) and Φ ∈ D(V ) that satisfies Φ = 1 near ψ(x). The products
F · Φ and G · Φ are contained in R(ψ) and satisfy (F · Φ) ◦ ψ = (G · Φ) ◦ ψ. Proposition
5.7 implies that the difference F · Φ − G · Φ = (F − G) · Φ is flat on ψ(Rq). Since Φ = 1
near ψ(x), we obtain that F −G is flat in ψ(x) and hence F (n)(ψ(x)) = G(n)(ψ(x)) for all
n ∈ N0.
Let us now proceed with the actual estimates. SinceR(ψ) is contained in I(ψ(E)), we have
|||F (k)(ψ(e))||| = 0 for all e ∈ E(ψ) and it is therefore sufficient to estimate |||F (k)(ψ(x))|||
for x ∈ K \ E(ψ) and k ≤ n.
Now fix x ∈ E(ψ)c and consider the diffeomorphism Ψx : Ux × U0 → Vx as constructed
in proposition 6.5. By localizing F with some function Φ ∈ D(Vx) that is constant 1 near
ψ(x), we can suppose without loss of generality that F ◦ ψ has compact support in Ux.
We recall our local construction from 5.10: For f = F ◦ ψ ∈ D(Ux) we set

Fx = (F ◦ ψ) ◦ π ◦Ψ−1
x ,

where as usual π : Rq × Rd−q → Rq denotes the projection (y, t) 7→ y. Since F and Fx
generate the same composition and are both contained in R(ψ), we obtain the identity
|||F (n)(ψ(x))||| = |||F (n)

x (ψ(x))|||. Either by formula 3.2 or the continuity of the composition
with π ◦Ψ−1

x , we can find Cn > 0 depending only on n such that

|||F (n)(ψ(x))||| = |||F (n)
x (ψ(x))||| ≤ Cn · |||F ◦ ψ|||x,n · |||π ◦Ψ−1

x |||ψ(x),n.
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Using the linearity of π we obtain (π ◦ G)(k)(z)[r1, ..., rk] = π
(
G(k)(z)[r1, ...rk]

)
for all

k ∈ N0, hence |||π ◦Ψ−1
x |||ψ(x),n ≤ |||Ψ−1

x |||ψ(x),n. This implies

|||F (n)(ψ(x))||| ≤ Cn · |||F ◦ ψ|||x,n · |||Ψ−1
x |||ψ(x),n.

Now we can apply the estimate (vi) from proposition 6.5 which states that

|||Ψ−1
x |||ψ(x),n ≤ cn · (1 + |||ψ|||x,n)γ(n) · (1 + |||ψ′(x)−1|||)γ(n)

for some constants cn, γ(n) depending only on n. Inserting this in our estimate for F (n)

and using the monotonicity with respect to n of the terms on the right hand side we have

|||F |||x,n ≤ Cn · cn · |||F ◦ ψ|||x,n · (1 + |||ψ|||x,n)γ(n) · (1 + |||ψ′(x)−1|||)γ(n).

Dominating 1 + |||ψ|||x,n for all x ∈ K by some constant, we obtain some C = C(K,n) such
that

|||F |||x,n ≤ C(K,n) · |||F ◦ ψ|||x,n · (1 + |||ψ′(x)−1|||)γ(n). (∗)
This is where the lower distance estimate for the derivative comes into play. It is required
to estimate the norm of the inverse map |||ψ′(x)−1|||. Indeed, we have seen in remark 4.12
(ii), that the lower distance estimate for the derivative implies

|||ψ′(x)−1||| = 1

λ(ψ′(x))
≤ CK ·

(
1

dist(x,E(ψ))

)αK
for all x ∈ K. Using this inequality to further simplify our estimation (∗) of F , we get

|||F |||x,n ≤ C(K,n) · |||F ◦ ψ|||x,n ·
(

1 +
CK

dist(x,E)αK

)γ(n)

≤ C̃(K,n) · |||F ◦ ψ|||x,n ·
(

1 +
1

dist(x,E)αK ·γ(n)

)
.

To deduce a global continuity estimate, it is sufficient to prove that for every γ ∈ N and
compact set K there are some N ∈ N and K̃ ⊆ Rq compact such that

|||F ◦ ψ|||x,n
dist(x,E)γ

≤ |||F ◦ ψ|||K̃,N

for every x ∈ K. This is best done by the mean value inequality. If the set E(ψ) is
empty, the support of every f ∈ E(Rq,R) does not touch E(ψ) and we can write f as a
composition by proposition 4.2. If not, E = E(ψ) is a closed and nonempty set and we
can find some ex ∈ E such that dist(x,E) = ‖x − ex‖. By considering the closed convex
hull K̃ of the set M = K + B(0, R), where R = sup{dist(y, E) : y ∈ K} < ∞, we have
ex ∈ K̃ whenever x ∈ K. Moreover every directional derivative of F ◦ ψ is flat on E. For
some normed multidirection r = [r1, ..., rj] we define the smooth function g : R→ R by

g(t) = (F ◦ ψ)(j)(ex + t · (x− ex)) [r] .
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Since F ◦ ψ is flat in ex, the k-th Taylor polynomial T k−1
0 g(y) =

k−1∑
`=0

g(`)(0)

`!
y` is the zero

polynomial. By Taylor’s theorem we can find some 0 < t < 1 such that

|(F ◦ ψ)(j)(x)[r1, ..., rj]| = |g(1)| =
∣∣g(1)− T k−1

0 g(1)
∣∣ =

1

k!
· |g(k)(t)|

=
1

k!
·
∣∣∣∣(F ◦ ψ)(j+k)(x+ t(ex − x))

[
r

k

�
`=1

x− ex
]∣∣∣∣

=
|x− ex|k

k!
·
∣∣∣∣(F ◦ ψ)(j+k)(x+ t(ex − x))

[
r

k

�
`=1

x− ex
|x− ex|

]∣∣∣∣ .
The norm of every coordinate of the multidirection r�k

`=1
x−ex
|x−ex| is less or equal to 1 and the

compact set K̃ contains the line segment {ex + t · (x− ex) : 0 ≤ t ≤ 1}. We can therefore
further dominate the right hand side leading to

|(F ◦ ψ)(j)(x)[r1, ..., rj]| ≤
|x− ex|k

k!
· |||F ◦ ψ|||K̃,j+k =

dist(x,E)k

k!
· |||F ◦ ψ|||K̃,j+k.

This estimate allows us to compensate the denominator in the continuity estimate. We
obtain

|||F ◦ ψ|||x,n
dist(x,E)N

≤ 1

N !
· |||F ◦ ψ|||K̃,n+N ,

which implies

|||F |||x,n ≤ C̃(K,n) ·
(
|||F ◦ ψ|||x,n +

1

N !
· |||F ◦ ψ|||K̃,n+N

)
≤ 2 · C̃(K,n) · |||F ◦ ψ|||K̃,n+N .

Taking the supremum over all x ∈ K we obtain the required continuity estimate

|v(F ◦ ψ)| = |u(F )| ≤ C · |||F |||L,n ≤ C̃ · |||F ◦ ψ|||K̃,n+k.

We can now apply the Hahn-Banach theorem and continuously extend v to some w ∈ I(E)′.
This functional satisfies u(F ) = w(F ◦ ψ) whenever supp(F ◦ ψ) is a compact subset of
E(ψ)c. This implies u = Ct

ψ(w) on the set D(ψ(E)c), which is dense in I(ψ(E)). Both
maps being continuous we finally obtain the required identity u = Ct

ψ(w) ∈ Range(Ct
ψ).

As an application of the previous theorem we can give an explicit way to construct a
function f that is contained inA(ψ) but does not have an obvious factorization as f = F ◦ψ.

Example 5.13.
Suppose ψ ∈ E(Rq,Rd) satisfies the conditions of theorem 5.12. Fix a subset J ⊆ {1, ..., d}
with |J | = q, which we can suppose to be ordered, i.e. J = {j1, ..., jq} with j` < j`+1. We
define the selection ψJ : Rq → Rq by ψJ(x) = (ψj1(x), ..., ψjq(x)).
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For any ϕ ∈ E(R,R) that is flat at zero, the function defined by f(x) = ϕ(det(∇ψJ(x))) is
contained in A(ψ) and can be factorized as f = F ◦ψ with a smooth function F ∈ E(Rd,R).
As special case, the function g : R → R defined by g(x) = exp

(
− 1

det(∇ψJ (x))

)
is also a

composition.

Proof. The function x 7→ det(∇ψJ(x)) is smooth, which follows for instance from the
Leibniz formula and the fact that x 7→ ∇ψJ(x) is smooth. Since J is a full set of coordinates,
det(∇ψJ(x)) must vanish whenever x is a critical point. It follows that the composition
with ϕ, which is flat in zero, must be flat on E(ψ). Theorem 5.12 then implies that
f = ϕ ◦ det(∇ψJ) is contained in A(ψ) and can even be factorized as f = F ◦ ψ with a
function F ∈ E(Rd,R) that is flat on ψ(E(ψ)).

With theorem 5.12 at hand, we can give sufficient conditions for the composition algebra
to be closed. As stated before, this requires knowledge about the behavior of compositions
on the critical set E(ψ). If we demand such a tame behavior, namely that the quotient
A(ψ)/I(E(ψ) is closed, we can formulate the following corollary.

Corollary 5.14.
Suppose ψ ∈ E(Rq,Rd) is injective and satisfies the following four condition:

(a) ψ is a proper map.

(b) The image ψ(Rq) is Whitney-regular.

(c) ψ satisfies the lower distance estimate for the derivative

‖ψ′(x)[r]‖ ≥ CK · ‖r‖ · dist(x,E)αK

on every compact set K.

(d) The set qE(A(ψ)) is closed in E(E(ψ),R), where qE : E(Rd,R)→ E(E(ψ),R) denotes
the quotient map f 7→ f + I(E(ψ).

In this case the composition algebra A(ψ) = {F ◦ ψ : F ∈ E(Rd,R)} is closed.

Proof. For a function f ∈ A(ψ) the continuity of the quotient map and condition (d) imply
that

qE(f) ∈ qE
(
A(ψ)

)
⊆ qE(A(ψ)) = qE(A(ψ)).

This means that we can find some F ∈ E(Rd,R) such that f − F ◦ ψ ∈ I(E(ψ)). By
theorem 5.12 the first three conditions imply that f − F ◦ ψ ∈ A(ψ), hence f ∈ A(ψ).
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5.3 Some special cases of closed algebras
Let us conclude this section with a few simple situations, where we can easily see that
condition (d) is satisfied. The first one is the simplest extension of our one-dimensional
result. As we have seen, in that case the Hölder continuity of the inverse map implies that
the critical set E(ψ) is discrete. This fact already facilitates proof of the theorem of Allan,
Kakiko O’Farrell and Watson (cf. theorem 1.12) enormously.

Example 5.15.
If an injective ψ ∈ E(Rq,Rd) has a discrete critical set, the image qE(A(ψ)) is closed.

Proof. By Borel’s theorem we know that the Taylor map T∞e : E(Rq,R) → Xq = RNq0

defined by f 7→ (f (α)(x))α∈Nq0 is a continuous linear surjection. We will show that the
continuous linear map

T∞E : E(Rq,R)→
∏
e∈E

Xq, F 7→ (T∞e F )e∈E

is also surjective as a direct consequence of the discrete structure of E. Indeed, consider
disjoint open neighborhoods Ue of e as well as a partition of unity (ϕe)e∈E subordinated
to this cover of E. For a given element x = (xe)e∈E ∈ XE

q we can use Borel’s theorem to
obtain Fe ∈ E(Rq,R) satisfying T∞e Fe = xe. The function defined by∑

e∈E

Fe · ϕe

is smooth and satisfies T∞E F = x. The Kernel of TE is obviously given by the set I(E) of
flat functions on E and the induced map T̃∞E : E(Rq,R)/I(E)→ XE

q is a continuous linear
bijection. The open mapping theorem implies that both spaces are isomorphic.
Since by proposition 1.7

∏
e∈E

T∞e (A(ψ)) = T∞E A(ψ) is closed in
∏
e∈E

Xq, so must be qE(A(ψ)).

Let us gather a few facts about this special situation that will lead to a characterization
of closed composition algebras, given that the critical set of ψ is discrete.

Remarks 5.16.

(i) In the special case of a discrete critical set, the properness and lower distance estimate
imply the local Hölder continuity of the inverse. Indeed suppose that the inverse
ψ−1 : ψ(Rq) → Rq is not locally Hölder continuous. We can find a = ψ(z) ∈ ψ(Rq)
such that for any n ∈ N there are bn = ψ(xn) and cn = ψ(yn) in B(ψ(z), 1/n) such
that

‖ψ−1(bn)− ψ−1(cn)‖ > n · ‖bn − cn‖
1
n .



100

Obviously both sequences (bn)n∈N and (cn)n∈N converge to a and the continuity of the
inverse, given by the properness of ψ, implies xn → z as well as yn → z. Inserting
bn = ψ(xn) and cn = ψ(yn) in the estimate above we obtain

1

nn
· ‖xn − yn‖n > ‖ψ(xn)− ψ(yn)‖. (∗)

The directions rn = xn−yn
‖xn−yn‖ are all contained in the compact set {r ∈ Rq : ‖r‖ = 1}

and we can take a subsequence such that the normed directions rn converge to some
r∞ of norm 1. We can then apply the mean value theorem to every coordinate
function γj : R→ R, t 7→ ψj(yn + t · rn) to obtain

|ψj(xn)− ψj(yn)| = |γj(‖yn − xn‖)− γj(0)| = |γ′j(ξn)| · ‖yn − xn‖
= |ψ′j(yn + ξn · rn)[rn]| · ‖yn − xn‖.

Using the estimate (∗) above then implies

|ψ′j(yn + ξn · rn)[rn]| = |ψj(xn)− ψj(yn)|
‖yn − xn‖

<
1

nn
· ‖xn − yn‖n−1 → 0.

Since the left hand side converges to ψ′(z)[r∞] = 0, the point z is critical. As
the set E(ψ) is discrete, we can suppose that dist(xn, E) = ‖xn − x∞‖ as well as
dist(yn, E) = ‖yn − x∞‖ for n sufficiently large.

Applying the lower distance estimate to a compact convex set K containing both
{xn : n ∈ N} and {yn : n ∈ N} leads to the contradiction

‖xn − yn‖k+1 ≤ ‖xn − yn‖ · (‖xn − x∞‖+ ‖yn − x∞‖)k

≤ 2k · ‖xn − yn‖ ·max{dist(xn, E), dist(yn, E)}k

≤ 2k · CK · ‖ψ(xn)− ψ(yn)‖ < 1

nn
· ‖xn − yn‖n

for n→∞.

(ii) In the case of a smooth curve ψ ∈ E(R,Rd) the Hölder-continuity of the inverse implies
the lower distance estimate. Indeed, by proposition 2.20, A(ψ) must be closed and
we can derive the lower distance estimate from proposition 4.11.

With this fact at hand we are able to characterize closed composition algebras in this very
restrictive case. The resulting theorem can be viewed as a generalization of proposition
2.20 to the case of a map of several variables.

Theorem 5.17.
An injective map ψ ∈ E(Rq,Rd) with a discrete critical set induces a closed composition
algebra if and only if it is a proper map that satisfies the lower distance estimate.
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Though this is already a characterization of closed composition algebras in the restrictive
case of a discrete critical set, it is not the only implication of theorem 5.12. We can also
give simple examples of closed composition algebras where the critical set of the generator
is a union of lines.
Our next aim is to show that tensorizing two injective curves that generate closed compo-
sition algebras also leads to a closed composition algebra.
First let us make sure that the conditions of proposition 5.12 are satisfied.

Proposition 5.18.
Consider two smooth injective maps γ ∈ E(Rd,Rn) and ϕ ∈ E(Rq,Rm) that generate closed
composition algebras A(γ) and A(ϕ). The map ψ : Rd+q → Rn+m defined by

ψ(x, y) =

(
γ(x)
ϕ(y)

)
is again injective, proper, and satisfies the lower distance estimate for derivatives. If ad-
ditionally both γ(Rd) and ϕ(Rq) are Whitney-regular, so is ψ(Rd+q).

Proof. The injectivity of ψ is obvious. Since A(γ) and A(ϕ) are closed, proposition 2.9
implies that both γ and ϕ must be proper maps. Let us show that this easily extends to
ψ. Consider a compact set K ⊆ Rn+m. Both projections

KI = πI(K) = {x ∈ Rn : ∃ y ∈ Rm with (x, y) ∈ K} and
KII = πII(K) = {y ∈ Rm : ∃ x ∈ Rn with (x, y) ∈ K}

are compact and satisfy K ⊆ KI ×KII . The closed set ψ−1(K) is therefore contained in
the compact set ψ−1(KI ×KII) = γ−1(KI)× ϕ−1(KII), hence compact.
Let us now prove that ψ also satisfies the lower distance estimate for derivatives. To this
end we need precise knowledge regarding the shape of E(ψ). For (x, y) ∈ Rd+q and a
direction (r, v) ∈ Rd+q the derivative of ψ is given by ψ′(x, y)[(r, v)] = (γ′(x)[r], ϕ′(y)[v]).
The dimension of Range(ψ′(x, y)) = Range(γ′(x)) × Range(ϕ′(y)) is therefore the sum of
the dimensions of Range(γ′(x)) and Range(ϕ′(y)). It follows that (x, y) is a critical point
if and only if x ∈ E(γ) or y ∈ E(ϕ) which implies

E(ψ) = (E(γ)× Rq) ∪
(
Rd × E(ϕ)

)
.

The distance to E(ψ) is therefore given by

dist((x, y), E(ψ)) = min {dist(x,E(γ)), dist(y, E(ϕ))} .

Now fix a compact set K ⊆ Rd+q and denote by KI and KII the projections on Rd and Rq

as above. By proposition 4.11 both γ and ϕ must satisfy the lower distance estimate which
implies its counterpart for the respective derivatives by remark 4.12. We can therefore find
constants Cγ, αγ > 0 and Cϕ, αϕ > 0 such that

‖γ′(x)[r]‖ ≥ Cγ · ‖r‖ · dist(x,E(γ))αγ and
‖ϕ′(y)[v]‖ ≥ Cϕ · ‖v‖ · dist(y, E(ϕ))αϕ .
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Defining C = min{Cϕ, Cγ} and using ψ′(x, y)[(r, v)] = (γ′(x)[r], ϕ′(y)[v]) we obtain the
estimate

‖ψ′(x, y)[(r, v)]‖2 = ‖γ′(x)[r]‖2 + ‖ϕ′(y)[v]‖2

≥ C2 · ‖r‖2 · dist(x,E(γ))2αγ + C2 · ‖v‖2 · dist(y, E(ϕ))2αϕ

≥ C2 ·
(
‖r‖2 + ‖v‖2

)
·min

{
dist(x,E(γ))2αγ , dist(y, E(ϕ))2αϕ

}
≥ C2 ·

(
‖r‖2 + ‖v‖2

)
·min

{
dist((x, y), E(ψ))2αγ , dist((x, y), E(ψ))2αϕ

}
for all (x, y) ∈ K. Taking the square root on both sides and writing z = (x, y) and
w = (r, v) we get

‖ψ′(z)[w]‖ ≥ C · ‖w‖ ·min {dist(z, E(ψ))αγ , dist(z, E(ψ))αϕ}

for all z ∈ K. It remains to prove that we can find c, β > 0 such that

min {dist(z, E(ψ))αγ , dist(z, E(ψ))αϕ} ≥ c · dist(z, E(ψ))β

for all z ∈ K. To this end, consider d = 1 + sup{dist(a,E(ψ)) : a ∈ K} < ∞. For all
z ∈ K we have 1

d
· dist(z, E(ψ)) ≤ 1 , hence the trivial estimate

dist(z, E(ψ))β

dβ
≤ dist(z, E(ψ))α

dα

for all 0 < α ≤ β. Applying this to β = max{αγ, αϕ} and α ∈ {αγ, αϕ} leads to the
required

c · dist(z, E(ψ))β ≤ min {dist(z, E(ψ))αγ , dist(z, E(ψ))αϕ} ,
where c = min

{
dαγ/dβ, dαϕ/dβ

}
.

To prove the second statement, let us now suppose that γ(Rd) and ϕ(Rq) are Whitney-
regular sets. To prove that ψ(Rd+q) is also Whitney-regular, we need to show the following:
For every ψ(x0, y0) ∈ ψ(Rd+q) we can find a neighborhood U of ψ(x0, y0) such that any two
points t, s in Uψ = U ∩ ψ(Rd+q) can be joined by a curve in Uψ of length not greater than
CU · ‖t− s‖αU . By assumption we can find a neighborhood V ⊆ Rd of γ(x0) and W ⊆ Rq

of ϕ(y0) such that this is true for V and W . Define U = V ×W . For ψ(x, y), ψ(z, r) ∈ U
we have γ(x), γ(z) ∈ V as well as ϕ(y), ϕ(r) ∈ W . By assumption there is a rectifiable
curve λI joining γ(x), γ(z) in V ∩ γ(Rd), and λII joining ϕ(y) and ϕ(r) in W ∩ϕ(Rq) with
suitable lengths. Without loss of generality, we can suppose them to be parametrized over
[0, 1]. We define λ(t) = (λI(t), λII(t)). The length L(λ) can then be estimated by the
lengths L(λI) and L(λII) of the the respective curves λI and λII in the following way:

L(λ) ≤ L(λI) + L(λII) ≤ CV · ‖γ(x)− γ(z)‖αV + CW · ‖ϕ(y)− ϕ(r)‖αW

≤ CV · ‖ψ(x, y)− ψ(z, r)‖αV + CW · ‖ψ(x, y)− ψ(z, r)‖αW ,

which again implies the estimate

L(λ) ≤ C̃ · (‖ψ(x, y)− ψ(z, r)‖α)

for α = min{αV , αW} and a suitable C̃.
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Corollary 5.19.
If γ and ϕ are injective curves generating closed composition algebras and ψ : R2 → Rd+q

is defined by ψ(t, s) = (γ(t), ϕ(s)), then I(E(ψ) ⊆ A(ψ) holds.

Corollary 5.20.
If γ ∈ E(Rn,Rq) and ϕ ∈ E(Rm,Rd) are injective maps with Hölder continuous inverses
and both satisfy the lower distance estimate for derivatives, then ψ(x, y) = (γ(x), ϕ(y))
also satisfies I(E(ψ)) ⊆ A(ψ).

The next step is to verify condition (iv) of proposition 5.14. To do this we need to prove
that for every f ∈ A(ψ) one can find F ∈ E(Rn+m,R) such that f − F ◦ ψ is flat on
E(ψ) = (E(γ)× R) ∪ (R× E(ϕ)). Let us start with a simpler example where the second
curve γ is given by the identity on R.

Proposition 5.21.
Consider an injective curve γ ∈ E(R,Rn) generating a closed composition algebra A(γ).
The injective smooth map ψ : R2 → Rn+1 defined by ψ(t, s) = (γ(t), s) also generates a
closed composition algebra.

Proof. We have already seen in the previous proposition 5.18 that ψ satisfies the conditions
(i)-(iii) of proposition 5.14. It therefore remains to verify condition (iv), namely that
the quotient A(ψ)/I(E(ψ) is closed. Let us note that the critical set of ψ is given by
E(ψ) = E(γ) × R and that E(γ) is discrete as a consequence of proposition 2.13 since
A(γ) is closed by assumption.
To prove that A(ψ) is closed, we will construct for f ∈ A(ψ) some F ∈ E(Rn+1,R) such
that f−F ◦ψ is flat on E(ψ). By proposition 5.12 we then obtain that f−F ◦ψ ∈ I(E(ψ))
is also a composition G ◦ ψ, hence f = (F +G) ◦ ψ.
Let us first explain why it is sufficient to only construct Fe ∈ E(Rn+1,R) such that f−Fe◦ψ
is flat on E(γ) × R. The basic idea is to glue together local solutions on a line by using
an appropriate partition of unity. The set E(γ) is discrete and γ is a proper map, hence
γ(E(γ)) is also discrete. We can therefore find a disjoint open cover (Ue)e∈E(γ) of γ(E(γ))
inducing a disjoint open cover (Ue × R)e∈E(γ) of γ(E(γ)) × R = ψ(E(ψ)). Considering
functions Φe ∈ D(Ue × R) that are constant 1 on a neighborhood of {γ(e)} × R we can
piece together the local solutions by defining F =

∑
e∈E(γ) Fe ·Φe. Since every compact set

in Rn+1 intersects only finitely many open sets Ue × R, this function is well-defined and
smooth. Moreover we have F = Fe on a neighborhood Ve of {γ(e)} × R, hence F ◦ ψ and
Fe ◦ψ coincide on the open neighborhood ψ−1(Ve) of {e}×R. This obviously implies that
(F − Fe) ◦ ψ is flat on {e} ×R for every e ∈ E(γ) and therefore f − F ◦ ψ is flat on E(ψ).
Now fix f ∈ A(ψ) and e ∈ E(γ). To construct Fe explicitly we need to refine proposition
1.7. This result states that that for every f ∈ A(γ) there is an F ∈ E(Rn,R) such that
f − F ◦ γ is flat in e. We will show that one can compute the Taylor coefficients of some
F satisfying T∞e (F ◦ ψ) = T∞e f explicitly.
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To prove this we identify again

E(Rn,R)/I({γ(e)}) ∼= RNn0 and E(R,R)/I({e}) ∼= RN0

via the isomorphisms given by the Taylor maps T∞γ(e) and T
∞
e . We consider the continuous

linear map τ : RNn0 → RN0 defined by τ(T∞γ(e)F ) = T∞e (F ◦ γ), which is continuous and
linear. The Kernel of τ is a closed subspace of RNn0 and we will use the fact that it is
complemented, which we deduce from the book of Bonet and Pérez Carreras [PB87]. To
this end we recall the definition of minimal locally convex spaces (definition 2.6.3 in [PB87]).
A locally convex space is minimal if there exists no coarser locally convex separated vector
space topology. This is obviously the case for RNn0 . Moreover, by theorem 2.6.4 (ii) of
[PB87] every closed subspace of a minimal locally convex space is also minimal. Corollary
2.6.5 (iii) in [PB87] states that minimal subspaces are complemented. Applying this to
the kernel L of τ we obtain a complementary subspace R. Obviously R and T∞e A(γ) are
closed subspaces of Fréchet spaces and hence Fréchet themselves. Let us prove that the
restriction of τ : R → T∞e A(γ) is a continuous linear bijection. The map τ is surjective
since for T∞e (F ◦ γ) ∈ T∞e A(γ) we can decompose T∞γ(e)F = `+ r, where r ∈ R and ` ∈ L,
hence τ(T∞γ(e)F ) = τ(r). The function τ is also injective since τ(r) = 0 implies r ∈ Ker(τ),
which gives r ∈ R ∩ L = {0}. As bijection between Fréchet spaces, τ is an isomorphism
and hence possesses a continuous inverse θ.
Let us now extend this fact and add another variable. Our main tool will be a slight
generalization of Borel’s theorem (cf. proposition 6.2 of the appendix). This version states
that for every collection {fα : α ∈ Nn

0} ⊆ E(Rq,R) one can find F ∈ E(Rn+q,R) such that
D(α,0q)F (0n, y) = fα(y) for all multi-indices α ∈ Nn

0 .
For f ∈ A(ψ), we consider the collection given by fj(y) = f (j,0)(e, y), where j ∈ N0. By
proposition 1.7, f must satisfy the pointwise Taylor condition T∞x f ∈ T∞x A(ψ). One can
therefore find F(e,y) ∈ E(Rn+1,R) such that T∞(e,y)f = T∞(e,y)(F(e,y) ◦ ψ). This implies the
identity D(j,0)f(e, y) = D(j,0)(F(e,y) ◦ ψ)(e, y) for all j ∈ N0. Fix y ∈ R, the map defined
by Fy(x) = F(e,y)(x, y) is smooth. We also obtain the identity D(j,0)f(e, y) = Dj(Fy ◦ γ)(e)
and hence the sequence (fj(y))j∈N0 is contained in T∞e A(γ).
For α ∈ Nn

0 we define
Fα(y) = θα((fj(y))j∈N0)

where θα = πα ◦ θ and θ is the inverse of τ defined above by τ(T∞γ(e)G) = T∞e (G ◦ γ). The
map θα : T∞e A(γ)→ R is continuous and linear and can therefore be written as

θα((fj)j∈N0) =

N(α)∑
j=0

cj,α · fj.

We obtain that for any α ∈ Nn
0

Fα(y) =

N(α)∑
j=0

cj,αD
(j,y)f(e, y),
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which implies that Fα is a smooth map.
Applying Borel’s theorem (cf. proposition 6.2) we can find F ∈ E(Rn+1,R) satisfying
D(α,0)F (e, y) = Fα(y) for all α ∈ Nn

0 . It remains to show that f − F ◦ ψ is flat on {e} ×R.
By construction we already have D(j,0)(F ◦ ψ)(e, y) = D(j,0)f(e, y) for all α ∈ Nn

0 . Com-
puting the remaining partial derivatives we see that this also implies

D(j,k)(F ◦ ψ)(e, y) = D(0,k)D(j,0)(F ◦ ψ)(e, y) = D(0,k)D(j,0)f(e, y) = D(j,k)f(e, y).

Remark 5.22.
Note that if ψ ∈ E(Rn+m,Rd+q) has the structure ψ(x, y) = (γ(x), ϕ(y)) and generates a
closed composition algebra A(ψ), it directly follows that both A(ϕ) and A(γ) are closed.
Indeed consider f ∈ A(γ) ⊆ E(Rn,Rd), then one can find a sequence (Fn)n∈N in E(Rn,R)
such that Fn ◦ γ → f . Defining Gn ∈ E(Rn+m,R) by Gn(x, y) = Fn(x) we see that
Gn ◦ψ converges to some g ∈ E(Rn+m,R). By assumption A(ψ) is closed and we can write
g = G ◦ ψ for some G ∈ E(Rn+m,R). Defining F (z) = G(z, ϕ(0)) for z ∈ Rn we obtain

F (γ(x)) = G(γ(x), ϕ(0)) = G ◦ ψ(x, 0) = lim
n→∞

Gn ◦ ψ(x, 0) = lim
n→∞

Fn(x) = f(x),

hence f = F ◦ γ. As this is true for all f ∈ A(γ), we see that A(γ) must be closed and for
reasons of symmetry the same argument implies that A(ϕ) is also closed.

To generalize the idea of the previous example to some ψ(x, y) = γ(x)�ϕ(y) we will
use the notion of regularly situated sets as found in [Mal67], definition 5.4. This is a
very powerful result which we can use to decompose closed sets and related spaces of flat
functions. Basically it gives precise conditions when we have I(X ∩ Y ) = I(X) ⊕ I(Y ).
The main reason for the use of this technique, aside from being easy to check in the special
cases we consider and thus simplifying our computations, is that this property might be
useful to decompose the critical set in a less restrictive setting. This could be way to obtain
a generalization of the result of Allan, Kakiko, O’Farrell and Watson ([AKOW98]) in the
case of several variables and therefore a description of the closure of A(ψ).

Definition 5.23 ( [Mal67], Def. 5.4).
For Z ⊆ Rq we abbreviate E(Z) = E(Z,R) = E(Rq,R)/I(Z) for the space of smooth germs
on Z. For a smooth function F ∈ E(Rq,R) we will write FZ =

(
D(α)F |Z

)
α∈Nq0

for the germ
on Z generated by F .
Two closed subsets X and Y of Rq are called regularly situated if the sequence

0→ E(X ∪ Y )
δ−→ E(X)⊕ E(Y )

%−→ E(X ∩ Y )→ 0

is exact, where δ(FX∪Y ) = (FX ,FY ) and % (FX ,GY ) = FX∩Y − GX∩Y .
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Remark 5.24.
1. We can interpret the exactness of the sequence above as a geometrical decomposition

property for flat functions on X ∩ Y , more precisely it implies

I(X ∩ Y ) = I(X) + I(Y ).

The implication “ ⊇ “ is obvious and always true, no matter X and Y . To prove
′′ ⊆ “ note that the exactness of the sequence in definition 5.23 is equivalent to
Range(δ) = Ker(%). For F ∈ I(X ∩ Y ) we see that the related germ FX satisfies
% (FX , 0) = 0 , hence (FX , 0) is contained in Ker(%) = Range(δ). This implies that
we can find G ∈ E(X ∪ Y ) and therefore some representative G ∈ E(Rq,R) such that
D(α)G(x) = D(α)F (x) for all x ∈ X as well as D(α)G(y) = 0 for all y ∈ Y . We obtain
G ∈ I(Y ) and F −G ∈ I(X), hence

F = F −G+G ∈ I(X) + I(Y )

2. By theorem 5.5 in [Mal67] two closed sets X, Y ⊆ Rq are regularly situated if and
only if they are either disjoint or satisfy the following geometric inequality.

For any compact subsets K ⊆ X and L ⊆ Y there exist C, α > 0 such that

dist(x, L) ≥ C · dist(x,X ∩ Y )α

for every x ∈ K.

Tougeron uses this inequality as defining property of regularly situated sets (definition
4.4. in [Tou72]). He then shows the equivalence to the exactness of the sequence
0→ E(X ∪ Y )

δ−→ E(X)⊕ E(Y )
%−→ E(X ∩ Y )→ 0 in proposition 4.7.

Proposition 5.25.
Consider some injective ψ : R2 → Rd+q defined by ψ(t, s) = (γ(t), ϕ(s)). If both A(γ) and
A(ϕ) are closed, so is A(ψ).

Proof. As mentioned in corollary 5.19 the map ψ satisfies the conditions of proposition
5.12, hence I(E(ψ)) ⊆ A(ψ). It remains to prove that for every f ∈ A(ψ) one can find a
composition F ◦ ψ such that f − F ◦ ψ is flat on E(ψ).
Now fix some f ∈ A(ψ) and define X = E(γ)×R as well as Y = R×E(ϕ). We will again
construct some F ∈ E(Rn+m,R) satisfying f − F ◦ ψ ∈ I(E(ψ)). To simplify this task we
need to decompose f .
First we will construct a function G ∈ E(Rd+q,R) such that the difference f − G ◦ ψ is
flat on E(γ) × E(ϕ) = X ∩ Y . By assumption γ and ϕ are both injective and generate
closed composition algebras. Proposition 2.13 states that E(γ) and E(ϕ) are discrete
and hence their product X ∩ Y must be discrete as well. The properness of ψ implies
that ψ(X ∩ Y ) is also discrete. We can therefore find disjoint open neighborhoods Ue,c of
(γ(e), ϕ(c)) of (e, c) ∈ E(γ)× E(ϕ). Considering Φe,c ∈ D(Ue,c) that is constant one near
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(γ(e), ϕ(c)) = ψ(e, c) as well as Fe,c ∈ E(Rd+q,R) such that f − Fe,c ◦ ψ is flat in (e, c) we
can construct

G =
∑

e∈E(γ), c∈E(ϕ)

Fe,c · Φe,c.

This map is well-defined and smooth since every compact subset of Rd+q only intersects
finitely many neighborhoods Ue,c. Moreover, the resulting difference f − G ◦ ψ is flat on
the set E(γ)× E(ϕ) = X ∩ Y .
We can now suppose without loss of generality that f ∈ I(X ∩Y ) and will further decom-
pose f into the summ fX + fY with fX ∈ I(Y ) and fY ∈ I(X) using remark 5.24 (i). To
do this we will show that X and Y are regularly situated. This is best done by checking
the equivalent inequality mentioned in remark 5.24 (ii), which will follow from the product
structure of X and Y . To verify the inequality fix compact subsets K ⊆ X and L ⊆ Y .
For x = (eγ, s) ∈ K ⊆ E(γ)× R the inclusion L ⊆ Y implies

dist(x, L) ≥ dist(x, Y ) = dist((eγ, s),R× E(ϕ)) = dist(s, E(ϕ))

= dist((eγ, s), E(γ)× E(ϕ)) = dist(x,X ∩ Y ).

Note that both fX and fY satisfy the pointwise Taylor condition and it will follow by
[Tou71] Theorem 1.1 that they are therefore contained in A(ψ). To apply this result are
going to verify that ψ has a locally Hölder continuous inverse, which is due to the fact that
ψ = (γ, ϕ) where both γ and ϕ have locally Hölder continuous inverses.
Now we require to construct FX , FY ∈ E(Rd+q,R) such that both fX−FX◦ψ and fY−FY ◦ψ
are flat on E(ψ) = X ∪Y , which we will do similarly to the previous example. For reasons
of symmetry it is sufficient to construct FX , as the same techniques show how to gain FY .
Now fix fX ∈ A(ψ) that is flat on Y = R× E(ϕ).
For e ∈ E(γ) we will construct a local solution Fe such that fX − Fe ◦ ψ is flat on both
{e} × R and Y . Define the map τe : RNd0 → T∞e A(γ) by

τe(T
∞
γ(e)H) = T∞e (H ◦ γ),

where we have again identified RNd0 with the quotient E(Rd,R)/I(γ(e)) via the isomorphism
H + I(ψ(e)) 7→ T∞γ(e)H. The kernel of τe is a minimal space, as closed subspace of the
minimal locally convex space RNd0 , hence complemented by [PB87], corollary 2.6.5 (iii). Its
complementary subspace Le is therefore closed and the restriction τe : Le → T∞e A(γ) is a
continuous linear bijection between Fréchet spaces and hence an isomorphism. We denote
its inverse by θe : T∞e A(γ)→ Le and write θαe for the appropriate coordinate πα ◦ θe, where
πα : RNd0 → R is the usual projection and α ∈ Nd

0. Since θαe : T∞e A(γ)→ R is a continuous
linear map with respect to the product topology on T∞e A(γ) ⊆ RN0 , we can find N(α) ∈ N
and coefficients ck ∈ R such that

θαe ((λj)j∈N0) =

N(α)∑
k=0

ck · λk.
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For α ∈ Nd
0 we define

hαe (s) = θαe ((D(j,0)fX(e, s))j∈N0),

which is a smooth map on R given the form of θαe : T∞e A(γ)→ R as a finite sum. Moreover
the representation of θαe leads to the identity

Dkhαe (s) =

N(α)∑
j=0

ck ·D(j,k)fX(e, s)

for the derivatives of hαe . Since fX is flat on E(γ) × E(ϕ), this implies that hαe is flat on
E(ϕ). By assumption A(ϕ) is closed and we can find some function Hα

e ∈ E(Rq,R) such
that Hα

e ◦ ϕ = hαe . By proposition 5.12 we can even chose Hα
e to be flat on ϕ(E(ϕ)).

To construct Fe we use Borel’s theorem (proposition 6.2 of the appendix) to obtain Fe
satisfying D(α,0q)Fe(e, y) = Hα

e (y). This computation shows that fX − Fe ◦ ψ is flat on
Y ∪ ({e} × R).
Now let us piece together the local solutions. Since γ(E(γ)) is discrete, we can find a disjoint
cover Ue of γ(e) ∈ γ(E(γ)) generating another disjoint cover Ve = Ue ×Rq of ψ(X). For a
partition of unity (Φe)e∈E(γ) subordinated to the cover (Ve)e∈E(γ) of γ(E(γ))×Rq and some
Fe such that fX−Fe◦ψ is flat on Y ∪({e}×R), the function defined by FX =

∑
e∈E(γ) Fe ·Φe

satisfies fX − FX ◦ ψ ∈ I(X) as well as fX − FX ◦ ψ ∈ I(Y ).

Example 5.26.
As an example of the applicability of the previous proposition we consider ψ : R2 → R3

defined by

ψ(t, s) =

 t3

t2 · Arctan((t− 3)2)
s3

 .

A sketch of the image of ψ([0, 1]2) is depicted below.
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We will now verify that A(ψ) is closed by using proposition 5.25 on the curves defined by
γ(t) = (t3, t2 · Arctan(t − 3)2) and ϕ(s) = s3. Let us first note that ϕ generates a closed
composition algebra since it has a locally Hölder continuous inverse. For r < 0 < s we
have

|s− r|3 ≤ (|s|+ |r|)3 ≤ 8 max{|r|, |s|}3 ≤ 8|r|3 + 8|s|3 = 8|r3 − s3|,

and for sgn(r) = sgn(s) we have

|r − s|3 ≤ |r − s| · |r + s|2 ≤ |(r − s)(r2 + s2 + rs)| = |r3 − s3|.

This also shows that the curve γ possesses a locally Hölder continuous inverse since we
have ‖γ(t)− γ(v)‖ ≥ |t3 − v3| ≥ |t− v|3. By proposition 2.20 both curves generate closed
composition algebras, hence A(ψ) is closed. One can even show that ψ has a local Hölder
continuous inverse.

Moreover, we can use the special case of tensorized curves to verify the conditions of 5.12
in some specific cases as we demonstrate in the following example.

Example 5.27.
(i) Consider the map ψ : R2 → R3 defined by

ψ(x) =

 exp
(
x2+y2

2

)
x3

y3

 .

Its critical set is given by E(ψ) = {(x, y) ∈ R2 : x · y = 0} and I(E(ψ)) ⊆ A(ψ) holds.
To better grasp the geometrical structure of ψ we have given a sketch below.

Figure 5.1: The image ψ([−1, 1]2) from two different angles, above and beyond.
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To verify our claim that E(ψ) is the union of the sets R × {0} and {0} × R we need to
compute the derivative of ψ. The matrix representation ∇ψ(x, y) of the linear map ψ′(x, y)
is given by

∇ψ(x, y) =

 x · exp
(
x2+y2

2

)
y ·
(
x2+y2

2

)
3 · x2 0

0 3 · y2

 .
One can easily see that its rank is 0 if and only if either x = 0 or y = 0. To show that
I(E(ψ)) ⊆ A(ψ) we will verify the conditions from theorem 5.12. Given its last two coor-
dinate functions, the injectivity of ψ is obvious. To prove the remaining conditions, namely
the properness, the Whitney-regularity of the image, and the lower distance estimate for the
derivative, we will show that they are directly inherited from the map (x, y) 7→ (x3, y3).
Indeed, the curve defined by γ(t) = t3 has a locally Hölder continuous inverse, namely
s 7→ 3

√
s. Proposition 2.20 implies that γ generates a closed composition algebra. By

proposition 5.18 the tensorized map defined by θ(x, y) = (x3, y3) is injective, proper, sat-
isfies the lower distance estimate for derivatives, and possesses a Whitney-regular image.
Theorem 4.11 then implies that I(E(θ)) ⊆ A(θ) and, since A(θ) ⊆ A(ψ), also the required
inclusion I(E(ψ)) = I(E(θ)) ⊆ A(ψ).
(ii) This approach can also be used when dealing with maps that are not real-analytical.
Indeed consider the map ϕ : [0,∞]→ R, t 7→ exp (−1/t) and define Ψ : R2 → R3 by

Ψ(x) =

 ϕ(x2 + y2)
x3

y3

 .

The critical set is also given by E(Ψ) = {(x, y) ∈ R2 : x·y = 0} and again I(E(Ψ)) ⊆ A(ψ)
holds. Surprisingly, its shape seems smoother around (0, 0) then the real-analytic example
(i) as the following picture shows.

Figure 5.2: The image Ψ([−1, 1]2).
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Let us first compute the derivative which is given by

∇Ψ(x, y) =

 2 · x · ϕ′(x2 + y2) 2 · y · ϕ′(x2 + y2)
3 · x2 0

0 3 · y2

 .
We see that its rank is less than two whenever x = 0 or y = 0. If again θ is defined as in
(i), the same argument as above implies I(E(Ψ)) = I(E(θ)) ⊆ A(θ) ⊆ A(Ψ).
(iii) We can even give an example for a closed composition algebra. Let ϕ be defined as
above and consider the map Φ : R2 → R3 defined by

Φ(x) =

 ϕ(x2) + ϕ(y2)
x3

y3

 .

We have again E(Φ) = {(x, y) ∈ R2 : x · y = 0}, and the algebra A(Φ) is closed.
This time, there are no sharp edges along the critical set as the following picture shows.

Figure 5.3: The image Φ([−1, 1]2).

Computing the derivatives we obtain

∇Φ(x, y) =

 2x · ϕ′(x2) 2y · ϕ′(y2)
3x2 0
0 3y2


and again Φ′(x, y) does not have full rank whenever x = 0 or y = 0. If θ : R2 → R3

denotes the map (x, y) 7→ (x3, y3) as in part (i) and (ii) above, we obtain that A(θ) is
closed. To prove that this is also the case for A(Φ) it remains to show that the first
coordinate Φ1 is contained in A(θ). Since A(θ) is a subspace, it is sufficient to prove that
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both (x, y) 7→ ϕ(x2) and (x, y) 7→ ϕ(y2) are contained in A(θ). This is due to the fact that
both functions are flat on E(θ) and that I(E(θ)) ⊆ A(θ). We obtain the inclusions

A(θ) ⊆ A(Φ) ⊆ A(θ) = A(θ),

hence the required A(Φ)) = A(θ) = A(Φ).

Even though the first three conditions in corollary 5.14 look very similar to the ones required
in the one-dimensional case of proposition 2.19, with the lower distance estimate taking
the place of the finite order condition, we are not able to prove that the Hölder condition
is sufficient to obtain a closed algebra. Of course, the local Hölder continuity of the inverse
implies both the properness and the Whitney-regularity of the image, but we fail to see
how it would imply the lower distance estimate.
Let us close this section with a few open problems.

Problem 1.
In the case of an injective ψ ∈ E(Rq,Rd), is the Whitney-regularity of ψ(Rq) necessary in
order for A(ψ) to be closed?

We believe that this is true. One might attack this problem by showing that every dis-
tribution u with compact support in ψ(Rq) can be estimated by seminorms ‖ · ‖ψ(K),n on
ψ(Rq), which is the property we need in the proof of proposition 5.12. The next problem
is much more difficult in nature as it requires to characterize the functions in the closure
of A(ψ).

Problem 2.
For an injective ψ ∈ E(Rq,Rd), are the three conditions of proposition 5.12 namely

(i) ψ is a proper map,

(ii) ψ(Rq) is a Whitney-regular set and

(iii) ψ satisfies the lower distance estimate.

sufficient to obtain that A(ψ) is closed?
More specifically, given proposition 5.14 it would be sufficient to show that, under these
conditions, we can find for every f ∈ A(ψ) a composition F ◦ψ such that f −F ◦ψ is flat
on E(ψ).

We recall that at least for injective generators ψ with a locally Hölder continuous inverse,
the closure of A(ψ) is fully described by Tougeron ([Tou71], theorem (1.1)). We already
pointed out at the beginning of chapter 1 that this theorem implies

A(ψ) = {f ∈ E(Rq,R) : T∞x f ∈ T∞x A(ψ) ∀x ∈ Rq} .
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The heart of this problem is the behavior of A(ψ) on the critical set E(ψ). One way to
attack this might be to decompose the critical set into subsets Ej(ψ) where the rank of
ψ′(x) is j in order to reduce the dimensions step by step. In this context, the decomposition
of closed sets mentioned in definition 5.23 using regularly situated sets could be helpful.
Finally the similarities between the decomposition of the local Hölder continuity of the
inverse and the three conditions of Whitney-regularity properness and finite order condition
in the case of one variable suggest that this could be true even in higher dimensions.

Problem 3.
Is it true that an injective ψ ∈ E(Rq,Rd) generates a closed composition algebra if and
only if ψ−1 is locally Hölder continuous?
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Chapter 6

Appendix

6.1 Equivalent seminorms on E(Rq,Rd)

First let us give a proof for the simple fact mentioned in chapter 5, namely that the family
of seminorms ||| · |||K,n where K ⊆ Rq is a compact set and n ∈ N, generates the usual
Fréchet topology on E(Rq,Rd). For F ∈ E(Rq,Rd) we recall the definitions of both the
usual seminorm

‖F‖K,n = sup{‖DαF (x)‖ : x ∈ K, |α| ≤ n},

where α ∈ Nq
0 is a multi-index of length |α| = α1 + · · ·+ αq, and the multidirectional one

|||F |||K,n = sup{|||F (k)(x)||| : x ∈ K, k ≤ n}

from lemma 3.3, where |||T ||| = sup{‖T [r1, ..., rk]‖Y : ‖r1‖X ≤ 1, ..., ‖rk‖X ≤ 1} for a
k-linear map T ∈Mk(X, Y ) between the normed spaces X and Y .
Let us now prove that this change of interpretation of the derivatives and their related
seminorms is harmless in nature and leaves the topology of E(Rd,Rq) untouched.

Proposition 6.1.
Both families of seminorms ‖ · ‖K,n and ||| · |||K,n generate the same topology on E(Rd,Rq).

Proof. Fix a compact set K ⊆ Rd and differentiation order n ∈ N. We will show that both
seminorms ‖ · ‖K,n and ||| · |||K,n are equivalent. For any multi-index α ∈ Nd

0 we can use the
notation from definition 3.1 to translate α ∈ Nd

0 into the multidirection

(e1, ..., e1︸ ︷︷ ︸
α1 times

, ..., ed, ..., ed︸ ︷︷ ︸
αd times

) =
d

�
k=1

(
αk
�
j=1

ek

)

where ej denotes the j-th unit vector in Rd. For F ∈ E(Rd,Rq) we thereby obtain

DαF (x) = F (|α|)(x)

[
d

�
k=1

(
αk
�
j=1

ek

)]
,
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which implies ‖DαF (x)‖ ≤ |||F (|α|)(x)||| and hence ‖F‖K,n ≤ |||F |||K,n.
We will deduce the other estimate from the fact that every multilinear T ∈ Mn(Rd, Y )
satisfies the inequality

|||T ||| ≤
√
dn · sup

{∥∥∥∥T [ n

�
j=1

ηj

]∥∥∥∥ : η1, ..., ηn ∈ {e1, ..., ed}
}
, (∗)

which we will prove by induction.
For n = 1 and ‖x‖ ≤ 1 the linearity of T implies

‖T [x]‖ =

∥∥∥∥∥T
[

d∑
j=1

xjej

]∥∥∥∥∥ ≤
d∑
j=1

|xj| · sup{‖T [e`]‖ : ` ≤ d} ≤
√
d · sup{‖T [e`]‖ : ` ≤ d}.

For the induction step consider some (n+ 1)-linear map T ∈Mn+1(Rd, Y ) and directions
x1, ...., xn ∈ Rd satisfying ‖xj‖ ≤ 1. We can write every ξ ∈ Rd with ‖ξ‖ ≤ 1 as the sum∑d

j=1 ξj · ej, where |ξj| ≤ 1. We obtain the estimate

‖T [x1, ..., xn, ξ]‖ ≤
d∑
j=1

|ξj| · ‖T [x1, ..., xn, ej]‖ ≤
d∑
j=1

|ξj| · ‖Tj[x1, ..., xn]‖ ,

where Tj is defined by Tj[x1, ..., xn] = T [x1, ..., xn, ej]. Applying the Cauchy-Schwarz in-
equality leads to

‖T [x1, ..., xn, ξ]‖ ≤ ‖ξ‖ ·

(
d∑
j=1

‖Tj[x1, ..., xn]‖2

) 1
2

≤

(
d∑
j=1

|||Tj|||2
) 1

2

,

hence |||T ||| ≤
√
d·max{|||Tj||| : j ≤ d} once taking the supremum over all ‖x1‖, ..., ‖xn‖ ≤ 1.

We can now apply the induction assumption to every Tj to see that

|||Tj||| ≤
√
dn · sup {‖Tj[η1, .., ηn]‖ : η1, ..., ηn ∈ {e1, ..., ed}}

=
√
dn · sup {‖T [η1, .., ηn, ej]‖ : η1, ..., ηn ∈ {e1, ..., ed}} .

Inserting this in the estimate |||T ||| ≤
√
d·max{|||Tj||| : j ≤ d} leads to the required inequality

|||T ||| ≤
√
dn+1 · sup{‖T [η1, ..., ηn+1]‖ : η1, ..., ηn+1 ∈ {e1, ..., ed}}.

Using (∗) for the n-linear map F (n)(x), we get

|||F (n)(x)||| ≤
√
dn · sup{‖F (n)[ξ1, ..., ξn+1]‖ : ξ1, ..., ξn+1 ∈ {e1, ..., ed}}.

Finally, note that every n-tuple (y1, ..., yn) of unit vectors y1, .., yn ∈ {e1, ..., ed} adds up to
some multi-index α =

∑n
j=1 yj of length |α| = n that satisfies DαF (x) = F (n)(x)[y1, ..., yn].

We therefore obtain the estimate

|||F (n)(x)||| ≤
√
dn · sup{‖F (n)[ξ1, ..., ξn+1]‖ : ξ1, ..., ξn+1 ∈ {e1, ..., ed}}

≤
√
dn · sup{‖DαF (x)‖ : α ∈ Nd

0 : |α| = n}

and hence the required |||F |||K,n ≤
√
dn · ‖F‖K,n.
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6.2 The theorem of Borel for hyperplanes
The usual version of this result, as mentioned by Trèves in Theorem 38.1 of his book [Trè67],
states that every sequence (cα)α∈Nd0 can be expressed as the Taylor sequence (DαF (0))α∈Nd0
of derivatives of a smooth function F ∈ E(Rd,R). We can extend this to allow a coefficient
sequence (fα)α∈Nd0 of smooth functions on Rq, thereby obtaining the mentioned Theorem
38.1 as the special case q = 0 as required in the proofs of propositions 5.21 and 5.25.

Proposition 6.2.
The map T : E(Rd+q,R)→

∏
α∈Nd0

E(Rq,R) defined by

T (F ) =
(
F (α,0q)(0d, ·)

)
α∈Nd0

is surjective, where G(0d, ·) stands for the map y 7→ G(0d, y). This means that for any
family (fα)α∈Nd0 ⊆ E(Rq,R) we can find F ∈ E(Rd+q,R) such that D(α,0q)F (0d, y) = fα(y).

Proof. First let us note that
∏

α∈Nd0
E(Rq,R) together with the product topology of E(Rq,R)

is a Fréchet space and that T is continuous and linear. We will prove that the range of T
is dense and closed.
For the proof of the density, fix a family (fα)α∈Nd0 in E(Rq,R). For a given zero-neighborhood
U in

∏
α∈Nd0
E(Rq,R) we can find zero-neighborhoods (Vα)|α|≤N in E(Rq,R) such that⋂

|α|≤N π
−1
α (Vα) ⊆ U , where πα denotes the usual projection onto E(Rq,R). By defining

F (x, y) =
∑
|α|≤N

fα(y) · xα

tone obtains F (α,0q)(0d, y) = fα(y) and hence πα(T (F ) − f) = 0 for all |α| ≤ N . This
implies that T (F )− f is contained in the intersection

⋂
|α|≤N π

−1
α (Vα) ⊆ U .

Let us now show that the range of T is closed, which we will prove by verifying the
condition Ker(T )◦ = Range(T t) of the closed range theorem (26.3 in [MV97]). The in-
clusion Ker(T )◦ ⊇ Range(T t) is always true. To prove the other inclusion, consider some
u ∈ Ker(T )◦. For F ∈ E(Rd+q,R) with support outside {0d} × Rq all partial derivatives
vanish on {0d}×Rq, hence T (F ) = 0 and thus u(F ) = 0. This implies supp(u) ⊆ {0d}×Rq.
Theorem 2.3.5 in Hörmander’s book [Hör03] states that we can write

u(F ) =
∑
|α|≤k

uα(Fα)

where uα is a distribution on E(Rq,R) and Fα(y) = F (α,0q)(0d, y). Defining

v((fα)α∈Nd0) =
∑
|α|≤k

uα(fα))

we obtain a continuous linear map u on
∏

α∈Nd0
E(Rd,R) that satisfies u(F ) = v(T (F )) and

hence the required u ∈ Range(T t).
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6.3 Stable diffeomorphisms and norm estimates
Now we want to construct the specific diffeomorphisms required in the proof of propositions
5.10 and 5.12. There, we need to extend the global coordinate system ψ : Rq \E(ψ)→ Rd

locally to a diffeomorphism Ψx : Ux × U0 → Rd satisfying further stability conditions and
estimates for the derivatives. Let us start with some basic notions of differential geometry.

Definition 6.3.
A subset M of Rd is called a q-dimensional manifold if for every point m ∈ M there is
an open subset U of Rd containing m, an open set V = Vm ⊆ Rd, and a diffeomorphism
h = hm : U → V such that

h(U ∩M) = V ∩ (Rq × {0}).

By theorem 5-2 in Spivak’s book [Spi65] this is equivalent to the existence of a local
“differentiable parametrization” f : W → U , also called coordinate system, where W ⊆ Rq

is an open set and U ⊆ Rd is open and contains m ∈M , satisfying

1. f(W ) = M ∩ U ,

2. f ′(y) has full rank on W ,

3. f−1 : f(W )→ W is continuous.

Through ψ : Rq \ E → Rd we have not only local but even global knowledge of the q-
dimensional submanifold ψ(Rq \E) in terms of a global coordinate system. Unfortunately,
in order to construct the parametrization F ◦ ψ of some f ∈ A(ψ), we require additional
knowledge of the map given in the definition above. More precisely we require accurate
estimates for the norms |||h|||K,n and |||h−1|||K,n of the diffeomorphisms stated in the definition
above as well as a certain stability condition for the derivatives, namely that the inverse
Φ = h−1 satisfies Φ′(y, 0)[{0} × Rd−q] ⊥ ψ′(y)[Rq]. This means that Φ is an extension of
the coordinate map to a diffeomorphism on Rd such that the derivative Φ′(y, 0) maps the
last d− q unit vectors to a basis of the space of normal vectors at ψ(y).
The construction will require two steps. In the first step, we will obtain a coordinate system
satisfying the required norm estimates. In the second step, we will use this parametrization
to generate another coordinate system that also satisfies the stability conditions for the
derivatives.

Lemma 6.4 (First step, norm domination).
Consider some q-dimensional manifold M in Rd. For every coordinate system ψ : U →M
and x ∈ U , we can find open neighborhoods Ux of x ∈ Rq, U0 of 0 ∈ Rd−q, and Vx of
ψ(x) ∈ Rd as well as a diffeomorphism Φ = Φx : Ux × U0 → Vx such that:

(i) ψ(y) = Φ(y, 0) for all y ∈ Ux.
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(ii) For every r ∈ Rq and s ∈ Rd−q we have Φ′(x, 0)[(r, 0d−q)] ⊥ Φ′(x, 0)[(0q, s)].

(iii) |||Φ|||(x,0),n = |||ψ|||x,n as well as |||(Φ−1)′(ψ(x))||| ≤ 2 · |||ψ′(x)−1|||, where ψ′(x)−1 denotes
the inverse of ψ′(x) : Rq → Range(ψ′(x)).

Proof. Prior to the proof, we give a sketch of our construction in the case of a very simple
2-dimensional submanifold of R3. The diffeomorphism Φx can be viewed as an extension
of ψ describing the manifold. The blue hyperplane on the left visualizes the definition
area Rq of ψ as a subspace of Rd, whereas the blue structure on the right is the image
of ψ(·) = Φx(·, 0). The derivative Φ′x(x, 0) then maps directions along the hyperplane on
the left to tangential directions on the right (both blue) and the remaining orthogonal
vector to the hyperplane to one that is orthogonal to the manifold (red). Note that the
orthogonality only holds at (x, 0) and generally fails on the rest of Ux × U0.

Figure 6.1: Φx mapping the hyperplane R2 × {0} to the manifold.

Let us now proceed with the detailed proof. Fix x ∈ U . Since ψ is a coordinate system,
its derivative ψ′(x) has full rank, hence Range(ψ′(x)) is a q-dimensional subspace of Rd.
We can therefore find an orthogonal basis {γ1, ..., γd−q} of the (d−q)-dimensional subspace
Range(ψ′(x))⊥. Without loss of generality we can even demand that ‖γj‖ = |||ψ′(x)|||. Let
us now define the linear map Γ : Rd−q → Rd by

Γ(t) =

d−q∑
j=1

γjtj

as well as
Φx : U × Rd−q → Rd, (x, t) 7→ ψ(x) + Γ(t).

Obviously, Φx is a smooth map on the open set U × Rd−q.
Computing its partial derivatives, we see that Φ′x(x, 0)[(r, 0)] = ψ′(x)[r] for all r ∈ Rq as
well as Φ′x(x, 0)[(0, s)] =

∑d−q
j=1 sj · γj for all s ∈ Rd−q. We obtain that Φ′x has full rank in



120

(x, 0) and the inverse function theorem implies that it is a diffeomorphism onto its range
once restricted to an adequate open neighborhood of (x, 0). Without loss of generality we
can suppose this neighborhood to have product structure Ux × U0, where Ux ⊆ Rq and
U0 ⊆ Rd−q are respective neighborhoods of x ∈ Rq and 0 ∈ Rd−q. The setW = Φx(Ux×U0)
is open and we have Φx(Ux×{0}) = ψ(Ux) = M ∩W . Since Γ is a linear map and therefore
Γ′(t)[s] = Γ(s), we obtain the explicit representation

Φ′x(y, t)[(r, s)] = ψ′(y)[r] + Γ′(t)[s] = ψ′(y)[r] + Γ(s).

Using the orthogonality of ψ′(x)[r] and Γ(s), we can deduce the identity

‖Φ′x(x, 0)[r, s]‖2 = ‖ψ′(x)[r]‖2 + ‖Γ(s)‖2 = |||ψ′(x)|||2 · (‖r‖2 + ‖s‖2) = |||ψ′(x)|||2 · ‖(r, s)‖2.

This implies |||Φ′(x, 0)||| = |||ψ′(x)||| for the first derivative when taking the supremum over
all ‖(r, s)‖ ≤ 1.
For k ≥ 2 the linearity of Γ implies Γ(k) = 0. Applying formula 3.2 to compute the k-
derivative of the composition ψ ◦ π, where π : Rd → Rq denotes the projection (y, t) 7→ y,
we have

Φ(k)
x (y, t)

[
k

�
j=1

(rj, sj)

]
= (ψ ◦ π)(k)(y, t)

[
k

�
j=1

(rj, sj)

]
+ Γ(k)(y, t)

[
k

�
j=1

(rj, sj)

]
=
∑
P∈P(k)

ψ(|P|)(π(y, t))

[
�
P∈P

π(|P |)(y, t)

[
�
j∈P

(rj, sj)

]]
+ 0.

Using the fact that π is also a linear map and hence π(j) = 0 for all j ≥ 2, every evaluation
of the multilinear map ψ(|P|)(x) in the sum on the right hand side vanishes whenever some
P ∈ P satisfies |P | ≥ 2. This means that all summands are zero with exception of the one
belonging to P = {{1}, ..., {k}} which implies

Φ(k)
x (y, t)

[
k

�
j=1

(rj, sj)

]
= ψ(k)(π(y, t))

[
k

�
j=1

π′(y, t)[rj, sj]

]
= ψ(k)(y)

[
k

�
j=1

rj

]
.

Taking the supremum over all ‖rj‖ ≤ 1 we obtain |||Φ(k)
x (y, t)||| ≤ |||ψ(k)(y)|||. Combining it

with the estimate for the first derivative leads to the required |||Φx|||(x,0),n ≤ |||ψ|||x,n.
We can also give an estimate for the inverse map. Since Rd can be represented as the direct
sum Range(ψ′(x)) ⊕ Range(ψ′(x))⊥, we can find unique directions r ∈ Rq and s ∈ Rd−q

such that w = ψ′(x)[r] + Γ(s) = Φ′(x, 0)[r, s]. The orthogonality of the two summands
implies ‖w‖2 = ‖ψ′(x)[r]‖2 + ‖Γ(s)‖2 and thus we have both

‖s‖ = ‖Γ−1(Γ(s))‖ ≤ |||Γ−1||| · ‖Γ(s)‖ ≤ |||Γ−1||| · ‖w‖

as well as
‖r‖ = ‖ψ′(x)−1[ψ′(x)[r]]‖ ≤ |||ψ′(x)−1||| · ‖w‖.
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For ‖w‖ ≤ 1 we obtain

‖(Φ−1)′(ψ(x))[w]‖ = ‖Φ′(x, 0)−1[w]‖ = ‖(r, s)‖ ≤ |||ψ′(x)−1|||+ |||Γ−1|||.

hence |||(Φ−1)′(ψ(x))||| ≤ |||ψ′(x)−1||| + |||Γ−1||| by taking the supremum over all ‖w‖ ≤ 1.
To estimate |||Γ−1||| let us recall that we have chosen {γj : j ≤ d− q} to be an orthogonal
system satisfying ‖γj‖ = |||ψ′(x)|||. This orthogonality implies

‖Γ[t]‖2 =

∥∥∥∥∥
d−q∑
j=1

tjγj

∥∥∥∥∥
2

=

d−q∑
j=1

|tj|2 · |||ψ′(x)|||2 = |||ψ′(x)|||2 · ‖t‖2,

which gives us ‖Γ−1[Γ[t]]‖ = ‖t‖ = ‖Γ(t)‖
|||ψ′(x)||| . We recall that Γ−1 : Range(Γ) → Rd−q and

that its norm is defined by |||Γ−1||| = sup{‖Γ−1(Γ(r))‖ : ‖Γ(r)‖ ≤ 1}. We therefore obtain
|||Γ−1||| = 1

|||ψ′(x)||| ≤ |||ψ
′(x)−1|||. Inserting this into the estimate above leads to the required

|||(Φ−1)′(ψ(x))||| ≤ 2 · |||ψ′(x)−1|||.

With this intermediate construction, we can modify the diffeomorphism Φx so that Φ′x(y, 0)
maps the first q unit vectors to a basis of the tangent space Range(ψ′(y)) at ψ(y) and the
last remaining d−q unit vectors to a basis of the space Range(ψ′(y))⊥ of normal directions
at ψ(y). We will call this property orthogonally stable. Note that this is an improvement
of condition (ii) in the previous lemma as we are not only restricted to the orthogonality of
the partial derivatives at (x, 0) but can extend this to all (y, 0) ∈ Ux×{0}. As visualization,
let us consider the same submanifold as in figure 6.1. The hyperplane is still mapped to
the manifold but this time the orthogonal stability holds in every point of the manifold. To
better visualize this, we have sketched several orthogonal vectors to the hyperplane that
are mapped to vectors orthogonal to the manifold in their respective images.

Figure 6.2: The red arrows are orthogonal to the hyperplane (left) and manifold (right).
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Proposition 6.5 (Second step, orthogonal stability).
Consider some q-dimensional manifold M in Rd. For every coordinate system ψ : U →M
and x ∈ U we can find open neighborhoods Ux of x ∈ Rq, U0 of 0 ∈ Rd−q and Vx of
ψ(x) ∈ Rd as well as a diffeomorphism Ψ = Ψx : Ux × U0 → Vx such that:

(i) ψ(y) = Ψ(y, 0) for all y ∈ Ux.

(ii) Ψ′(y, 0) is a bijection between Rq × {0d−q} and ψ′(y)[Rd] for all y ∈ Ux.

(iii) Ψ′(y, t) is a bijection between {0q} × Rd−q and ψ′(y)[Rd]⊥ for all (y, t) ∈ Ux × U0.

(iv) Ψ′′(y, t)[s1, s2] = 0 whenever s1, s2 ∈ {0} × Rd−q and (y, t) ∈ Ux × U0.

(v) There are constants Cn, αn > 0 depending only on n such that

|||Ψ|||(x,0),n ≤ Cn · (1 + |||ψ|||x,n)αn · (1 + |||ψ′(x)−1|||)αn .

(vi) There are constants cn, βn > 0 depending only on n such that

|||Ψ−1|||ψ(x),n ≤ cn · (1 + |||ψ|||x,n)βn · (1 + |||ψ′(x)−1|||)βn .

Proof. For x ∈ U , fix Ux, U0, Vx and Φx : Ux × U0 → Vx as given by the previous lemma
6.4. We define Ψ = Ψx : Ux × U0 → Rd by

Ψx(y, t) = ψ(y) +
(
Φ′x(y, 0)−1

)∗
[(0, t)],

where T ∗ denotes the adjoint of a linear map T with respect to the usual scalar product
on Rd.
The map Ψ is smooth.
The function (y, t) 7→ ψ(y) is obviously smooth and it remains to prove that this is also
the case for (y, t) 7→ (Φ′(y, 0)−1)

∗
[(0, t)]. Since Φ is a diffeomorphism, the function defined

by (y, t) 7→ Φ′(y, t)−1 = (Φ−1)
′
(Φ(y, t)) is smooth with values in the finite-dimensional

Banach space X = L(Rd,Rd) of linear maps on Rd. The map T 7→ T ∗ is also smooth as a
linear map on X and we obtain that (y, t) 7→ (Φ′(y, 0)−1)

∗ is also smooth with values in X.
The evaluation map z 7→ δz, where δz : X → Rd, T 7→ T (z) is linear and hence also smooth
with values in L(X,Rd). As a composition of smooth maps, (y, t) 7→ (Φ′(y, 0)−1)

∗
[(0, t)]

must be smooth itself.
The map Ψ satisfies the conditions (i) through (iv)
Let us first compute the partial derivatives to show the tangential stability conditions (ii)
and (iii). Fix a direction (r, s) ∈ Rq × Rd−q. Consider the linear map τ : Rq → Rd defined
by τ(y) = (y, 0). We obtain ψ = Ψ ◦ τ and applying the chain rule leads to

ψ′(y)[r] = (Ψ ◦ τ)′(y)[r] = Ψ′(τ(y))[τ ′(y)[r]] = Ψ′(y, 0)[(r, 0)],

where we have deduced τ ′(y)[r] = τ(r) = (r, 0) from the fact that τ is linear. Since ψ′(y)
is injective for all y ∈ Ux, the subspace Ψ′(y, 0)[Rq × {0}] = ψ′(y)[Rq] has dimension q.
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Therefore Ψ′(y, 0) is a linear bijection between Rq × {0} and Range(ψ′(y)) which proves
(ii). To show (iii) we use the identity

Ψ′(y, t)[(0, s)] = lim
06=ε→0

Ψ(y, t+ ε · s)−Ψ(y, t)

ε

= lim
06=ε→0

(Φ′(y, 0)−1)
∗

[(0, ε · s)]
ε

=
(
Φ′(y, 0)−1

)∗
[(0, s)].

Since Φ is a diffeomorphism, the linear map Φ′(y, 0)−1 and hence also its adjoint are
invertible and Ψ′(y, t)[{0q} × Rd−q] has dimension d − q. It now suffices to show that
Ψ′(y, t)[(0, s)] ⊥ Ψ′(y, 0)[(r, 0)] for all r ∈ Rq and s ∈ Rd−q. This relation is given by the
fact that Ψ′(y, 0)[r, 0] = ψ′(y)[r] = Φ′(y, 0)[r, 0] and the computation

〈Ψ′(y, t)[(0, s)],Ψ′(y, 0)[(r, 0)]〉 =
〈(

Φ′(y, 0)−1
)∗

[(0, s)] , Φ′(y, 0)[(r, 0)]
〉

=
〈
(0, s) , Φ′(y, 0)−1 [Φ′(y, 0)[(r, 0)]]

〉
= 〈(0, s), (r, 0)〉 = 0,

where we have used the defining property 〈T ∗x, y〉 = 〈x, Ty〉 of the adjoint map. This
implies that Ψ′(y, t) is a bijection between {0} × Rd−q and Range(ψ′(y))⊥, hence (iii).
We also obtain that Ψ′ has full rank on Ux × {0} and, by shrinking Ux, U0 and Vx, the
inverse function theorem states that Ψ is a diffeomorphism, hence bijective. As a result we
have Ψ(Ux × {0}) = ψ(Ux) and (i).
To prove (iv), we only need to take a closer look at our computation of the derivative.
For s ∈ Rd−q, the directional derivative Ψ′(y, t)[(0, s)] = Ψ′(y, 0)[(0, s)] does not depend
on t. Therefore the second order directional derivative Ψ′′(y, t)[(0, s) � (0, w)] vanishes on
Ux×U0 and so must every multidirectional derivative Ψ(k)(y, t)[r1, ..., rk] = 0 whenever two
different components r` and rj are contained in the subspace {0q} × Rd−q. We will now
proceed and estimate the norms of Ψ and Ψ−1.
The estimate (v) for |||Ψ|||(x,0),n holds.
We recall that by definition we have

Ψ(y, t) = ψ(y) +
(
Φ′(y, 0)−1

)∗
[(0, t)].

The first summand Θ : Rq × Rd−q → Rd, (y, t) 7→ ψ(y) can be written as Θ = ψ ◦ π where
π denotes the projection (y, t) 7→ y onto the first q coordinates. Let us show that this
implies the inequality |||Θ|||(x,0),n ≤ (1 + |||ψ|||x,n+1) · (1 + |||ψ′(x)−1|||). Using the fact that π
is a linear map and therefore π′(y, t) = π and π(k) = 0 for all k ≥ 2, we can compute the
directional derivatives of Θ, namely

Θ(k)(y, t)

[
k

�
j=1

(rj, sj)

]
= (ψ ◦ π)(k)(y, t)

[
k

�
j=1

(rj, sj)

]
= ψ(k)(π(y, t))

[
k

�
j=1

π(rj, sj)

]
.

This obviously implies

|||Θ|||(x,0),n ≤ |||ψ|||x,n ≤ (1 + |||ψ|||x,n)αn · (1 + |||ψ(x)−1|||)αn
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for every αn ∈ N by taking the supremum over all ‖(rj, sj)‖ ≤ 1.
It remains to show that the required estimate also holds for the map

ϕ : Ux × Rd−q, (y, t) 7→ (Φ′(y, 0)−1)∗[0, t].

To do this we will decompose ϕ(y, t) = M(t) ◦ F (y), where M(t) : L(Rd,Rd) → Rd is
defined by G 7→ G∗[(0, t)] and F (y) = Φ′(y, 0)−1, to show that for every α ∈ Nd

0 and
β ∈ Nd−q

0 the partial derivative satisfies

D(α,β)ϕ(y, t) = (DβM(t)) ◦ (DαF (y)).

For all t ∈ Rd−q, the map M(t) is linear and continuous on L(Rd,Rd) with respect to the
operator norm. For all j ≤ q, computing the respective partial derivative yields

Dejϕ(y, t) = M(t) ◦DejF (y),

which, by induction, leads to D(α,0)(M(t) ◦ F (y)) = M(t) ◦ (DαF (y)) for all α ∈ Nq
0.

Furthermore the linearity of t 7→ M(t) also implies that the partial derivatives D(0,β) of
the map (y, t) 7→ M(t) ◦ L(y) satisfy D(0,β) (M(t) ◦ L(y)) = DβM(t) ◦ L(y). This leads to
the required

D(α,β)ϕ(y, t) = D(0,β)D(α,0)M(t)◦F (y) = D(0,β)(M(t)◦(DαF (y))) = (DβM(t))◦(DαF (y)).

The linearity of M also implies that every partial derivative DβM(t) vanish when the
length of β exceeds one. Moreover we have |||M(t)||| ≤ ‖t‖ and since M is linear also
DejM(t) = M(ej) ≤ 1. For all ‖t‖ ≤ 1 this implies ‖DβM(t)‖ ≤ 1, hence the estimate

‖D(α,β)ϕ(y, t)‖ ≤ |||DβM(t)||| · |||DαF (y)||| ≤ |||DαF (y)||| ≤ ‖F‖y,n,

where ‖F‖y,n = sup{|||DαF (y)||| : |α| ≤ n}. The equivalence of the norms proved in
proposition 6.1 states that |||ϕ|||(y,0),n ≤

√
dn · ‖ϕ‖(y,0),n ≤

√
dn · ‖F‖y,n. We can use the

identity F (y)◦Φ′(y, 0) = Id to compute the partial derivatives of F . It follows from lemma
6.6 (i) that

0 = Dej(F (y) ◦ Φ(y, 0)) = DejF (y) ◦ Φ′(y, 0) + F (y) ◦DejΦ′(y, 0)

hence DejF (y) = −F (y) ◦DejΦ′(y, 0) ◦ F (y) and lemma 6.6 (ii) implies

‖DejF‖y,n ≤ 4n · ‖F‖2
y,n · |||DejΦ(·, 0)|||y,n.

Dominating |||DejΦ(·, 0)|||y,n ≤ |||Φ|||(y,0),n+1 and taking the supremum over all unit vectors
ej ∈ Rq, we obtain the fundamental estimate

‖F‖y,n+1 ≤ 4n · (1 + ‖F‖y,n)2 · (1 + |||Φ|||(y,0),n+1). (∗)

This will imply the required ‖F‖y,n ≤ Cn ·(1+ |||ψ|||x,n+1)αn ·(1+ |||ψ′(x)−1|||)αn by induction.



125

For n = 0 we can use the estimates ‖F‖x,0 = |||F (x)||| = |||Φ′(x, 0)−1||| ≤ 2 · |||ψ′(x)−1||| as
well as |||Φ|||(x,0),n+1 ≤ |||ψ|||x,n+1 from the previous proposition 6.4 (iii) and the equivalence
of the norms ||| · |||K,n and ‖ · ‖K,n to see that

‖F‖x,1 ≤ (1 + ‖F‖x,0)2 · (1 + |||Φ|||(y,0),1)

≤ (1 + 2|||ψ′(x)−1|||)2 · (1 + |||ψ|||x,1)

≤ 2 · (1 + |||ψ′(x)−1|||)2 · (1 + |||ψ|||x,1)2.

To prove the induction step, suppose ‖F‖x,n ≤ Cn · (1 + |||ψ′(x)−1|||)αn · (1 + |||ψ|||x,1)αn to
be true. Using the fundamental estimate (∗) we obtain

‖F‖x,n+1 ≤ 4n · (1 + ‖F‖x,n)2 · (1 + |||Φ|||(x,0),n+1)

≤ 4n ·
(

1 + Cn · (1 + |||ψ′(x)−1|||)αn · (1 + |||ψ|||x,n+1)αn
)2

· (1 + |||ψ|||x,n+1)

≤ 4n · (1 + Cn)2 · (1 + |||ψ′(x)−1|||)2αn · (1 + |||ψ|||x,n+1)2αn+1

≤ Cn+1 · (1 + |||ψ′(x)−1|||)αn+1(1 + |||ψ|||x,n+1)αn+1 ,

where αn+1 = 2αn + 1 and Cn+1 = 4n · (1 + Cn)2.
Let us now proceed with the estimate for the norm of the inverse.
By corollary 3.5 we have that

|||
(
Ψ−1
x

)(n)
(ψ(x))||| ≤ Cn · (1 + |||Ψx|||x,n)γ(n−1) · (1 + |||Ψ′x(x, 0)−1|||)γ(n),

where γ(j) = j(j+1)
2

. The monotonicity of the terms on the right hand side implies that the
estimate stays true if we replace ||| (Ψ−1

x )
(n)

(ψ(x))||| by |||Ψ−1
x |||ψ(x),n and γ(n− 1) by γ(n).

We then obtain

|||Ψ−1
x |||ψ(x),n ≤ Cn · (1 + |||Ψx|||x,n)γ(n) · (1 + |||Ψ′x(x, 0)−1|||)γ(n).

We can estimate 1 + |||Ψx|||x,n using property (v) to obtain

1 + |||Ψx|||x,n ≤ 1 + C̃n · (1 + |||ψ|||x,n)αn · (1 + |||ψ′(x)−1|||)αn

≤ 2 · C̃n · (1 + |||ψ|||x,n)αn · (1 + |||ψ′(x)−1|||)αn .

It remains to show that |||Ψ′x(x, 0)−1||| ≤ |||ψ′(x, 0)|||−1. To this end we recall our remark 3.7
stating the relation

λ(T ) = inf{‖T (r)‖ : ‖r‖ = 1} =
1

|||T−1|||

between T and the norm of its inverse T−1.
By computing the partial derivatives we have already seen that

Ψ′x(x, 0)[(r, t)] = ψ′(x)[r] + (Φ′x(x, 0)−1)∗[(0, t)]
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and we can use the orthogonality of both components to further estimate

‖Ψ′(x, 0)[(r, t)]‖2 = ‖ψ′(x)[r]‖2 + ‖(Φ′x(x, 0)−1)∗[(0, t)]‖2

≥ λ(ψ′(x))2 · ‖r‖2 + λ((Φ′x(x, 0)−1)∗)2 · ‖t‖2

≥ min
{
λ(ψ′(x))2, λ((Φ′x(x, 0)−1)∗)2

}
· (‖r‖2 + ‖t‖2).

Taking the infinum over all ‖(r, t)‖ = 1 we get λ(Ψ′(x, 0)) ≥ min {λ(ψ′(x)), λ((Φ′x(x, 0)−1)∗)}.
Applying the identity from remark 3.7 to T = (Φ′x(x, 0)−1)∗ we obtain

λ((Φ′x(x, 0)−1)∗) = λ((Φ′x(x, 0)∗)−1) =
1

|||Φ′x(x, 0)∗|||
=

1

|||Φ′x(x, 0)|||
.

Therefore we have

|||Ψ′(x, 0)−1||| = 1

λ(Ψ′(x, 0))
= max

{
1

λ(ψ′(x))
, |||Φ′x(x, 0)|||

}
= max

{
|||ψ′(x)−1|||, |||Φ′x(x, 0)|||

}
= max

{
|||ψ′(x)−1|||, |||ψ′(x)|||

}
≤ (1 + |||ψ′(x)−1|||) · (1 + |||ψ′(x)|||).

Inserting these estimates we finally get (vi) namely

|||Ψ−1
x |||ψ(x),n ≤ cn · (1 + |||ψ′(x)−1|||)βn · (1 + |||ψ′(x)|||x,n)βn ,

where βn = γ(n) · (1 + αn).

Lemma 6.6.
We consider the ring (Y,+, ∗) of smooth maps from Rn to L(Rd,Rd) together with the
pointwise addition (G+H)(z) = G(z)+H(z) and multiplication (G∗H)(z) = G(z)◦H(z).
For two smooth maps G,H : Rn → L(Rd,Rd) and k ∈ N the following two statements are
true:

(i) The higher order derivatives of G ∗H in the multidirection r = (r1, ..., rk) are given
by

(G ∗H)(k)(x)[r1, ..., rk] =
∑

A⊆{1,...,k}

G(|A|)(x)[rA] ◦H(|Ac|)(x)[rAc ].

(ii) The following estimate holds:

|||G ∗H|||x,n ≤ 2n · |||G|||x,n · |||H|||x,n.

Proof. We can view the first statement as a version of the Leibniz formula for multidirec-
tions instead of the usual partial derivatives. We will proceed by induction. For k = 1
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computing the difference quotients gives us

(G ∗H)′(x)[r] = lim
06=t→0

G(x+ tr) ◦H(x+ tr)−G(x) ◦H(x)

t

= lim
06=t→0

G(x+ tr) ◦ (H(x+ tr)−H(x))

t
+

(G(x+ tr)−G(x)) ◦H(x)

t

= G(x) ◦H ′(x)[r] +G′(x)[r] ◦H(x).

To simplify the computation of the induction step we use the notation ∂rG(x) = G′(x)[r] as
well as ∂krG(x) = G(k)(x) [r] = G(k)(x)[r1, ..., rk] for the higher order directional derivatives
in the multidirection r = [r1, ..., rk]. This way we obtain

∂kr (G ∗H) = ∂rk∂
k−1
r1,...,rk−1

(G ∗H) = ∂rk
∑

A⊆{1,...,k−1}

∂|A|rA
G ∗ ∂|Ac|rAc

H

=
∑

A⊆{1,...,k−1}

(
∂rk∂

|A|
rA
G
)
∗ ∂|Ac|rAc

H + ∂|A|rA
G ∗

(
∂rk∂

|Ac|
rAc

H
)

=
∑

A⊆{1,...,k}
k∈A

∂|A|rA
G ∗ ∂|Ac|rAc

H +
∑

A⊆{1,...,k}
k∈Ac

∂|A|rA
G ∗ ∂|Ac|rAc

H

=
∑

A⊆{1,...,k}

∂|A|rA
G ∗ ∂|Ac|rAc

H.

For the second part, let us recall the definition

|||G|||x,n = sup{|||G(k)(x)[r1, ..., rk]||| : k ≤ n, ‖r1‖, ..., ‖rk‖ ≤ 1}
= sup{|||∂kr1,...,rkG(x)||| : k ≤ n, ‖r1‖, ..., ‖rk‖ ≤ 1},

where ||| · ||| simply denotes the operator norm on L(Rd,Rd). For some multidirection
r = (r1, ..., rk), where all components satisfy ‖rj‖ ≤ 1, we can use the formula given by (i)
and the submultiplicativity |||S ∗ T ||| ≤ |||S||| · |||T ||| to obtain

|||∂kr (G ∗H)(x)||| ≤
∑

A⊆{1,...,k}

|||∂|A|rA
G||| · |||∂|Ac|rAc

H||| ≤ 2k · |||G|||x,k · |||H|||x,k.

The estimate for |||(G ∗H)(k)(x)||| follows by taking the supremum over all multidirections
r in the product of the unit balls. The monotonicity with respect to k of the terms on the
right hand side implies |||G ∗H|||x,n = max{|||G ∗H|||x,k : k ≤ n} ≤ 2n · |||G|||x,n · |||H|||x,n.
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