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German Summary
(Zusammenfassung)

In der modernen Survey-Statistik treten immer häu�ger Optimierungsprobleme auf, die es
zu lösen gilt. Diese sind oft von hoher Dimension und Simulationsstudien erfordern das
mehrmalige Lösen dieser Optimierungsprobleme. Um dies in angemessener Zeit durchführen
zu können, sind spezielle Algorithmen und Lösungsansätze erforderlich, welche in dieser Ar-
beit entwickelt und untersucht werden.

Bei den Optimierungsproblemen handelt es sich zum einen um Allokationsprobleme zur
Bestimmung optimaler Teilstichprobenumfänge. Hierbei werden neben auf einem Nullstellen-
problem basierende, stetige Lösungsmethoden auch ganzzahlige, auf der Greedy-Idee
basierende Lösungsmethoden untersucht und die sich ergebenden Optimallösungen miteinan-
der verglichen.

Zum anderen beschäftigt sich diese Arbeit mit verschiedenen Kalibrierungsproblemen.
Hierzu wird ein alternativer Lösungsansatz zu den bisher praktizierten Methoden vorgestellt.
Dieser macht das Lösen eines nichtglatten Nullstellenproblemes erforderlich, was mittels des
nichtglatten Newton Verfahrens erfolgt.

Im Zusammenhang mit nichtglatten Optimierungsalgorithmen spielt die Schrittweiten-
steuerung eine groÿe Rolle. Hierzu wird ein allgemeiner Ansatz zur nichtmonotonen
Schrittweitensteuerung bei Bouligand-di�erenzierbaren Funktionen betrachtet.

Neben der klassischen Kalibrierung wird ferner ein Kalibrierungsproblem zur kohärenten
Small Area Schätzung unter relaxierten Nebenbedingungen und zusätzlicher Beschränkung
der Variation der Designgewichte betrachtet. Dieses Problem lässt sich in ein hoch-
dimensionales quadratisches Optimierungsproblem umwandeln, welches die Verwendung von
Lösern für dünn besetzte Optimierungsprobleme erfordert.

Die in dieser Arbeit betrachteten numerischen Probleme können beispielsweise bei Zensen
auftreten. In diesem Zusammenhang werden die vorgestellten Ansätze abschlieÿend in
Simulationsstudien auf eine mögliche Anwendung auf den Zensus 2011 untersucht, die im
Rahmen des Zensus-Stichprobenforschungsprojektes untersucht wurden.
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Chapter 1

Introduction

A statistician is a person who draws a mathematically precise line from
an unwarranted assumption to a foregone conclusion.

� Unknown

1.1 Motivation

Although statisticians were already employed in ancient Egypt, they do not always get the
reputation they should get. Being seen as `a person who draws a mathematically precise line
from an unwarranted assumption to a foregone conclusion' is not very complimentary and
makes it look like statisticians are only able to explain things in arti�cial worlds. In fact, this
is not true! Conclusions are not foregone and the use of sophisticated models brings more
`reality' into the assumed world.

During the work of the German Census Sampling and Estimation Research Project it was
inevitable to solve optimization problems, which are often of high dimension. This is where
mathematics and especially numerical optimization takes the stage. Standard optimization
algorithms may fail or may take a lot of time to get a solution, which is a big problem
when doing simulation studies with a lot of repetitions. Therefore, numerical optimization
approaches have to be developed further or existing approaches have to be adapted to the
given setting.

This work shows how survey statistics and mathematics can collaborate, especially in the
context of the German Census Sampling and Estimation Research Project. Starting with an
allocation problem with one equality constraint and a box constraint (Chapter 3), we get to a
calibration problem with several equality constraints and a box constraint (Chapter 5). This
increase in the number of equality constraints complicates the methods needed and whilst
not needed in Chapter 3, it may be helpful having a theory for (nonmonotone) step size rules
in the context of solution methods for nonsmooth functions (Chapter 6). The calibration
problem can also be developed further allowing the relaxation of some calibration constraints
and a constraint concerning the spread ratio of weights is added (Chapter 7). Apart from
the development and study of the theoretical background, implementations and simulation
studies are also proceeded and analyzed.
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Chapter 1 Introduction

In summary, it can be stated that this work aims at building a bridge between the survey
statistical and the mathematical point of view. Not only concerning the problems and solution
methods, but also concerning notations and habits.

1.2 Outline

First, we give a brief overview of each chapter. Chapter 2 and Chapter 4 aim to present the
backgrounds of survey statistics and nonsmooth analysis, whereas Chapter 3, 5, 6 and 7 deal
with the arising optimization problem. In Chapter 8 we conclude this thesis and give a short
outlook on further research topics as well as applications of the presented methods.

Chapter 2: Fundamentals of Survey Statistics

In this chapter we brie�y summarize some statistical aspects that will be needed later on.
For a more detailed elaboration we refer to Münnich, Gabler, Ganninger, Burgard and Kolb
(2012) or Münnich et al. (2013).

De�nition 1.2.1. A survey is a systematic method for gathering information from (a sample
of) entities for the purposes of constructing quantitative descriptors of the attributes of the
larger population of which the entities are members (Groves et al., 2004).

As a survey can be very costly, the aim is to keep the number of people interviewed as small
as possible. However, the gained information should be as precise as possible. Such surveys
are called sample surveys and apart of being cheaper than a classical survey, the desired
information is also gained faster than in the traditional way. As the information gained is
only available for a certain fraction of the population, the totals

ty =
∑
k∈U

yk,

have to be estimated by appropriate estimators. In this context, these estimators can be
roughly divided up into design based estimators shown in Section 2.2, synthetic estimators
given in Section 2.3 and composite estimators discussed in Section 2.4. An example for a
design based estimator is the Horvitz-Thompson estimator

t̂HTy =
∑
k∈s

dkyk,

summing up the characteristic attributes of the elements of the sample multiplied by design
weights.

In contrast to direct estimators, that only use domain-speci�c sample data, synthetic esti-
mators make use of data from outside this domain. The synthetic estimator, model A, of the
total of the variable of interest y in area d is de�ned as

t̂SynthAy,d = tTx,dβ̂,
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1.2 Outline

where tx,d denotes the area totals of the auxiliary variable x and β̂ is estimated from the unit
level model

yk = xTk β + vd + ek ∀k ∈ Ud, d = 1, . . . , D,

where vd represents area-speci�c e�ects and ek unit-speci�c e�ects with classical assumptions.

A composite estimator combines these two types of estimators through a convex combination
in order to omit the individual disadvantages of using only one of the types of estimators men-
tioned before. Well known estimators are empirical best linear unbiased predictors (EBLUP)
or the YOURAO estimator given in You and Rao (2002).

In order to evaluate those estimators and how they perform under certain circumstances,
simulation studies are proceeded. This evaluation can be done by various measures (RRMSE,
RBias) which are given in Section 2.5.

Chapter 3: Optimal Allocation Problems in Statistics

This chapter deals with optimal allocation problems of the form

min
n∈RH+

H∑
h=1

d2
h

nh

s.t.

H∑
h=1

nh ≤ ns

mh ≤ nh ≤Mh ∀h = 1, . . . ,H.

Such optimization problems occur when minimizing the variance of an estimator as a func-
tion of the partial sample sizes nh in the di�erent strata with given sample size ns and
minimal/maximal sampling fractions. These sampling fractions are very important because
they allow to gain reliable model estimates from rural vs. urban comparisons, where the
classical optimal allocation would yield an extremely high sampling fractions in large towns
and very low sampling fraction in rural areas. In Section 3.2 we present methods to solve
the continuous allocation problem. On the one hand, we propose an approach via the La-
grange multiplier, where the sampling fractions are expressed as a function depending on
the Lagrange multiplier. This expression is inserted into the equality constraint leading to
a one-dimensional equation whose root has to computed. On the other hand, a �xed point
iteration depending on certain subsets JλM , J

λ
m and Jλ of the index set is derived, so we obtain

the �xed point iteration

λk+1 :=

( ∑
h∈Jλk dh

ns −
∑

h∈JλkM
Mh −

∑
h∈Jλkm

mh

)2

.

The approaches mentioned so far solve the allocation problem in continuous variables, i.e.,
the integrality conditions on the variables are relaxed. A simple rounding of the continuous
solution does in general not deliver the optimal and may even lead to an infeasible solution.

3



Chapter 1 Introduction

Therefore, in Section 3.4 we consider the integer allocation problem and study di�erent
greedy based solution methods. The drawback of the simple greedy strategy is that only
increments of one unit per iteration are possible and therefore lots of (numerically cheap)
iterations are needed to �nd the optimum. We present a re�nement that generally uses only
a fraction of the number of iterations of the simple strategy. Starting with an increment
of s > 1, the increment is assigned to the most favorable activity until no such increments
are possible. Then, s is decreased and the process of scaled greedy increments is repeated
with the successively smaller increments until the increment equals one. Further, a binary
search algorithm is presented. The entire solution can be reconstructed from the value of
the marginal δlast in the last iteration of the algorithm. That is because by computing the
marginal at an arbitrary value of an arbitrary variable and comparing it to δlast, we can
decide if nh is above or below its value in the optimal solution. Hence, the optimization
problem is equivalent to �nding δlast, which can easily be done by a binary search.

In Section 3.5 we apply all algorithms to the simpli�ed census problem

min
n

2391∑
g=1

8∑
h=1

N2
g,hS

2
g,h

ng,h

s.t.

2391∑
g=1

8∑
h=1

ng,h = ns

mg,h ≤ ng,h ≤Mg,h ∀g = 1, . . . , 2391, h = 1, . . . , 8,

and compare their performance. We further compare the rounded solution with the integer
solution, which in general do not coincide. In the simulation study, the rounded solution
leads to an allocation with 25 elements less than the allocation determined by the greedy-
type algorithms (Section 3.6).

Chapter 4: Fundamentals of Nonsmooth Analysis

In this chapter several types of derivatives for smooth and nonsmooth functions are treated.
Apart from the well known directional derivative, Gâteaux derivative, Hadamard derivative
and Fréchet derivative given in Section 4.2, we present the Bouligand derivative in Section
4.3.

De�nition 1.2.2. A function f : Rn → Rm is said to be Bouligand di�erentiable at x ∈ Rn
if there exists a positively homogeneous function A : Rn → Rm, called the B-derivative of f
at x, such that

lim
h→0

f(x+ h)− f(x)−A(h)

‖h‖
= 0.

Comparing a B-di�erentiable function and a Fréchet di�erentiable function, the one funda-
mental distinction is the absence of linearity in the B-derivative compared to the Fréchet
derivative. When the given function f is further locally Lipschitz, certain directional deriva-
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1.2 Outline

tives coincide. Therefore, f : Rn → Rm is called Bouligand di�erentiable in x ∈ D if f is
locally Lipschitz and all directional derivatives exist in x ∈ D. The local Lipschitz property
is important because it is known that there are functions that are directionally di�erentiable
at a point without being continuous there. Another important consequence of the Bouligand
di�erentiability is that the limit of the directional derivative is uniform on compact sets of
directions.

If we want to develop algorithms for solving nonsmooth equations we will encounter many
di�culties when sticking solely to directional derivatives. Therefore, in Section 4.4 we in-
troduce the generalized Jacobian of the locally Lipschitz function f : Rn → Rm in x ∈ Rn
de�ned as

∂f(x) := conv {V ∈ Rm×n : ∃(xk)k∈N ⊂ Df : xk → x and Jf (xk)→ V }.

The generalized Jacobian helps to extend many results from smooth analysis to locally Lip-
schitz functions. However, a straightforward extension of Newton's method to general non-
smooth equations by using the generalized Jacobian will not work easily, so another important
notion of nonsmooth analysis, namely semismoothness, is introduced in Section 4.5.

De�nition 1.2.3. Let D ⊂ Rn and f : D → Rm be a B-di�erentiable function. Then f is
called semismooth in x ∈ D, if

lim
hk→0,Vk∈∂f(x+hk)

Vkh
k − f ′(x;hk)

‖ hk ‖
= 0.

Semismooth functions are locally Lipschitz functions for which the generalized Jacobians
de�ne a certain approximation scheme. This makes it possible to get almost the same results
for Newton's method in the nonsmooth case as in the smooth case.

Chapter 5: Calibration via Semismooth Newton Method

Extending the optimization problem of Chapter 3 from one equality constraint to m equality
constraints leads to the following optimization problem:

min
g∈Rn

dTF (g)

s.t. X̄T g − tx = 0

g ∈ U.

These problems occur in the calibration approach to estimation for �nite populations (cf.
Särndal, 2007). Weights, that incorporate speci�ed auxiliary information and are restrained
by calibration equations are computed and afterwards used to compute linearly weighted
estimates of totals and other �nite population parameters. This approach is easy to explain
to users and is widely accepted. Furthermore, using auxiliary information allows to improve
the accuracy of survey estimates and can deal e�ectively with surveys where auxiliary infor-
mation exists at di�erent levels. In addition to that, if the gained weights are applied to a

5



Chapter 1 Introduction

variable used for calibration, they deliver the given estimates or true values. This is also very
important because consistency with known aggregates is a desire to promote credibility.

In Section 5.3, the vector of calibration factors g is expressed as a function depending on the
Lagrange multiplier λ. Then, this expression g(λ) is inserted into the function

h : Rn → Rp, g 7→ h(g) = X̄T g − t,

which leads to a p-dimensional nonsmooth equation ψ(λ) = 0 where

ψ : Rp → Rp, λ 7→ X̄T g(λ)− tx

with

gk(λ) = Pr[mk,Mk]

(
f ′−1(−

ξTk λ

dk
)

)
(k = 1, . . . , n).

In the standard case of having a quadratic objective function, we show that ψ is strongly
semismooth so the `semismooth Newton method' (cf. Qi, 1993) given in Section 5.4 can be
applied. In each iteration of the semismooth Newton method a linear system of equations

Hks
k = −ψ(λk),

with Hk being an element of the B-subdi�erential ∂Bψ(λk), is solved and the resulting next
iterate is computed as

λk+1 = λk + sk.

Under certain conditions, the iterates converge quadratically to the optimal solution. This
convergence is also shown numerically in Section 5.5, where we apply the semismooth Newton
method to a given calibration problem.

Chapter 6: Nonmonotone Step Size Rules for B-Di�erentiable Functions

The semismooth Newton method mentioned before is a special algorithm for solving nons-
mooth equations. In a more general notation, the iterates are computed by

xk+1 = xk + αkdk,

with appropriated step size αk, and dk is computed by

f(xk) +A(xk)(dk) = 0.

Depending on the choice of A(xk)(·) we get di�erent methods. In Pang (1990),e.g., A(xk)(dk)
is replaced by the B(ouligand) derivative of f in xk applied to dk.

In order to determine the step size αk, a line search depending on the merit function

θ : Rn → R+ ∪ {0}, x 7→ θ(x) = ‖f(x)‖2

6



1.2 Outline

can be used. Most of the methods using line search require the decrease of the function values
to be monotone. However, for certain problems a nonmonotone line search may deliver better
results. In Section 6.2 we generalize the approaches for B-di�erentiable functions by using
nonmonotone step size rules deriving from Armijo (1966).

Algorithm 1.1 Nonmonotone Armijo's rule

Input: β ∈ (0, 1), σ ∈ (0, σ̄), xk, dk ∈ Rn, νk ∈ R+ ∪ {0}, αmax > 0, θ(xk) 6= 0
Ensure: dk is chosen such that (6.4) holds.
if θ(xk + αmaxdk)− θ(xk) ≤ −σαmaxθ(xk) + νk then

αk = αmax
else

determine smallest lk ∈ N such that
θ(xk + αmaxβ

lkdk)− θ(xk) ≤ −σαmaxβlkθ(xk) + νk
αk = αmaxβ

lk

end if

The nonmonotone Armijo's rule is well de�ned and when requiring that
∑∞

k=1 νk <∞, νk ≥ 0
for all k, we can show that θ(xk) −−−→

k→∞
0. This setting allows only to prove that the iterates

of the function values θ(xk) converge to 0. Nevertheless, we can deduce that there exists
at least one subsequence (xkj )j∈N converging to an accumulation point x∗ ∈ S satisfying
θ(x∗) = 0.

Our approach can also be applied to hybrid methods similar to the ones given in Ito and
Kunisch (2009) or Qi (1993). Those methods �rst try a full step with Newton search direction
which is tested with kind of a `watchdog step'. If this step is `good', a Newton step is
performed. Otherwise, a search direction satisfying certain requirements is determined and
a monotone line search is performed. If we further assume that there exists x∗ such that
xk −−−→

k→∞
x∗, we can prove superlinear convergence of the iterates.

In Section 6.3 we apply the nonmonotone step size rule of Zhang and Hager (2004) to non-
smooth optimization.

Chapter 7: Generalized Calibration for Coherent Small Area Estimation

Standard calibration problems and its solution methods are lacking some important aspects:
A regulation of the spread of the calibrated weights w is only done by the range restriction.
However, this does not take the ratio of the largest to the smallest calibrated weight into
account. Following Little et al. (2009), this ratio should not exceed 10 and is unacceptable
beyond 100. Further, there often exist many estimates on di�erent levels. These estimates
are gained by di�erent estimators which leads to coherence problems, so we have to allow the
benchmarks to be ful�lled with a slight perturbation. Apart from this, the known methods,
for instance given in Beaumont and Bocci (2008), use penalization and do not allow to
analyze which calibration benchmarks are restrictive and might be relaxed in order to get
overall better estimates.

7



Chapter 1 Introduction

In this chapter we include this requirements into the optimization process. Therefore, the
following optimization problem is de�ned in Section 7.2.

min
(g,ε,α,β)∈Rn+u+2

∑
k∈s

dk
(gk − 1)2

2
+
∑
k

δk
(εdis,k − 1)2

2
+
∑
k

δk
(εSMP,k − 1)2

2

s.t. XT
jlg − txjl = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

X̄T
j g − diag(tx̄j )εdis = 0 ∀j = 1, . . . ,K (districts)

X̄T
jlg − diag(tx̄jl)εSMP = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

− dkgk + α ≤ 0 ∀k = 1, . . . , n

dkgk − β ≤ 0 ∀k = 1, . . . , n

−GBα+ β ≤ 0.

(g, εdis, εSMP ) ∈ [m,M ]× [mεdis ,Mεdis ]× [mεSMP ,MεSMP ].

This can easily be rewritten as a high dimensional quadratic program

min
z∈Rn+u+2

zTQz − qT z

s.t. Az 5 t

z ∈ [L,U ].

The sparsity of the calibration matrix A is analyzed in Section 7.3 and an application to
the German Census Sampling and Estimation Research Project is given in Section 7.4. In
this simulations study, 990 samples and the corresponding values for the REG and ISCED
variables are analyzed for di�erent calibration settings. We regard resolvability and the
relaxation of the equality constraints depending on di�erent benchmarks and districts/SMPs
is analyzed. Further, the initial weights and the calibrated weights as well as the gained
objective values are analyzed. The loss of accuracy of the perturbed estimates for the ISCED
variables gained by the calibrated Horvitz-Thompson estimator for domain d compared to
the YOURAO estimator is analyzed by regarding the RRMSE. This is important because it
gives us some information on the loss of accuracy in the Eurostat tables and a one number
census. As we further want to know how good calibrated Horvitz-Thompson estimates of
further variables, e.g., EF117, are compared to the true values, the RRMSE and the RBias
are regarded.

Chapter 8: Conclusion

The last chapter brie�y summarizes the thesis and gives a short outlook on further research
topics as well as possible applications, especially in the context of research concerning the
German Census 2011.

8



Chapter 2

Fundamentals of Survey Statistics

The need for statistical information seems endless in modern society.
� Särndal, Swensson & Wretman

Model Assisted Survey Sampling

As mentioned in Särndal et al. (2003), the need for statistical information seems endless in
modern society. Data is collected for di�erent needs of the demand carrier and in di�erent
ways. Collecting may be done automatically, for instance by storing every search request on
www.google.de or by storing the list of products bought in the supermarket while collecting
points for a PAYBACK account. Companies like `Google Incorporated' or `Payback GmbH'
have the big advantage that they get this information for free and for their purpose, that
is personalized advertising, they do not need to estimate certain values for a whole popu-
lation. However, those data loggers cannot male a point concerning the quality of this big
data. In contrast to this, we regard the whole process of collecting and evaluating data in a
sophisticated and integrated manner. Therefore, we deal with surveys and especially sample
surveys.

De�nition 2.0.4 (Survey). A survey is a systematic method for gathering information
from (a sample of) entities for the purposes of constructing quantitative descriptors of the
attributes of the larger population of which the entities are members (Groves et al., 2004).

2.1 Why Survey Statistics?

Following Rossi et al. (1983), the classic demand carriers for surveys can be classi�ed into
the government sector, the academic sector, the private and mass media sector as well as the
residual sector consisting of ad hoc and in-house surveys.

Having a closer look at this sectors, we can state that the government usually legitimates a
statistical o�ce to collect data on important national characteristics and activities such as
demography, that is for example age and sex distribution, fertility and mortality, agriculture,
industry, trade, labor force as well as health and living conditions. For a detailed discussion
on this topics we refer to Raj (1968). Another very important task of these statistical o�ces
is to operate a national census, which in the case of being a member state of the European
Union, is mandatory every ten years starting 2011. The aim of a census is to provide the most

9
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Chapter 2 Fundamentals of Survey Statistics

accurate snapshot possible of basic information on the population, housing space, education,
and employment (cf. Münnich, Gabler, Ganninger, Burgard and Kolb, 2012). A detailed
discussion on the German Census Sampling and Estimation Research Project can be found
in Chapter 3. Further information concerning the German Census 2011 can be found on
www.zensus2011.de.

In the academic sector, surveys are used by several departments, e.g., sociology and public
opinion research, economics, political science or psychology. In this context, the gained
information is often needed for checking whether an anticipated model is true or not and to
support theoretical �ndings. Nevertheless, the transition to the private and mass media sector
is rather smooth. Marketing surveys are used and proceeded by the economics department as
well as private companies. Furthermore, the exchange of knowledge between these parties is
growing. The mass media sector also covers television audience surveys, readership surveys
or polls.

The big disadvantage of a survey can be stated in one word: expensive! Therefore, the aim is
to keep the number of people interviewed as small as possible whereas the gained information
should be as precise as possible. Such surveys are called sample surveys (cf. Cochran, 1977;
Raj, 1968; Särndal et al., 2003) and have the following principal advantages compared to
complete enumeration (cf. Cochran, 1977; Raj, 1968).

(i) Reduced cost: compared to a full survey one has to train less interviewers which have
to do less interviews. This gains a reduction of one of the main costs of a survey.

(ii) Greater speed: as less interviews have to be done, the information is gained more
quickly which is especially important if the information is urgently needed.

(iii) Greater scope: gaining certain types of information may sometimes only be possible by
using specialized equipment limited in availability, so the choice lies between obtaining
the information by sampling or not at all.

(iv) Greater accuracy: personnel of higher quality can be employed and given intensive
training. This and less volume of work make the results more accurate.

These sample surveys can be classi�ed broadly into two types - descriptive and analytical
(cf. Cochran, 1977). Whilst in a descriptive survey the objective is simply to obtain certain
information about large groups, an analytical survey makes comparisons between di�erent
subgroups of the population, in order to discover whether di�erences exist among them and
to form or to verify hypotheses about the reasons for these di�erences.

After having decided to conduct a survey, one has to properly discuss all steps involved in
the planing and execution of a survey which, following Cochran (1977), are:

(i) Objectives of the survey.

(ii) Population to be sampled.

(iii) Data to be collected.

(iv) Degree of precision desired.

(v) Methods of measurement.

(vi) The frame.
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(vii) Selection of the sample.

(viii) The pretest.

(ix) Organization of the �eld works.

(x) Summary and analysis of the data.

(xi) Information gained for further surveys.

Among this list of steps there exist further lists, like the one mentioned in Raj (1968), which
are more or less the same. We will not discuss all steps in detail but stick to those of greater
importance for this work. The selection of the sample, that is step (vii), plays an important
role in the German Census Sampling and Estimation Research Project because not only
statistical aspects but also legal boundary conditions have to be taken into account. This
topic will be discussed in detail in Chapter 3. Further, in step (x), the summary and analysis
of the data, the computations that lead to the estimates are performed, where di�erent
methods for estimating may be applicable. An overview of di�erent estimators is given
below and the estimation under auxiliary information via `semismooth Newton method' (cf.
Qi and Sun, 1993) is shown in Chapter 5. Another topic of the analysis of the data, which
can be also assigned to step (xi), is the determination of vertical coherent estimates in case
of using di�erent estimators. For a detailed discussion on this topic we refer to Chapter 7.
An application of the steps mentioned above can be found in Münnich, Gabler, Ganninger,
Burgard and Kolb (2012) where they proceed those steps for the German Census 2011.

Hereafter we will brie�y summarize some statistical aspects that will be needed in the fol-
lowing chapters. For a more detailed elaboration we refer to Münnich et al. (2013).

2.2 Design Based Estimators

Assume we have a �nite population U consisting of N elements which are denoted by labels
k = 1, . . . , N . Furthermore we assume that measurements of the real or integer valued
variable y are available for every k = 1, . . . , N and will be denoted by yk (k = 1, . . . , N).
The parameter or variable of interest is the population total

ty =
∑
k∈U

yk,

where the index y indicates the variable forming the total. A sampling design is given
and a sample s ⊂ U with cardinality n and sample selection probability p(s) is drawn.
This sampling design leads to design weights dk(s) depending on the sample s and element
k (k ∈ s). A common choice is the reciprocal of the inclusion probabilities, i.e., dk(s) = π−1

k

where πk =
∑

s:k∈s p(s) ≥ 0, k = 1, . . . , N . For simpli�cation we write dk instead of
dk(s), (k ∈ s). In the absence of auxiliary information we can estimate the population total
ty by using theHorvitz-Thompson estimator (HT) mentioned in Horvitz and Thompson
(1952) or Cochran (1977).

11
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De�nition 2.2.1 (Horvitz-Thompson estimator). The Horvitz-Thompson estimator of
the total ty is de�ned as

t̂HTy =
∑
k∈s

dkyk,

where the design weights are given by dk = π−1
k , k ∈ s.

For common design weights dk we get the so called expansion estimator

t̂y =
∑
k∈s

dkyk.

In case of di�erent domains or areas Ud, d = 1, . . . , D, where

D⋃
k=1

Ud = U, Ud ∩ Ue = ∅ ∀d 6= e,

the Horvitz-Thompson estimator of the total ty,d for domain d takes the form

t̂HTy,d =
∑
k∈sd

dkyk,

where sd = {k : k ∈ s and k ∈ Ud} for all d = 1, . . . , D. As the Horvitz-Thompson estimator
only uses domain-speci�c sample data, it is called a direct estimator. Note that depending
on the sample, these estimators do not always deliver accurate estimates.

Suppose now that for the sake of simplicity s = {1, . . . , n} and p (p� n) auxiliary information
is available in the form of known population totals txj , j = 1, . . . , p and known characteristics
for element k and information j denoted by xkj , k ∈ s, j = 1, . . . , p. (In the case that the
auxiliary information is available for every k ∈ U instead of k ∈ s we have complete auxiliary
information.) These auxiliary information forms the design matrix X and for staying in line
with common statistical notation, all p known characteristics for element k form the vector
xk = (xk1, . . . , xkp)

T ∈ Rp such that

X =

 x11 · · · x1p
...

...
xn1 · · · xnp

 =

 � xT1 �
...

� xTn �

 ∈ Rn×p,
and the vector of population totals is denoted by

tx =

 tx1
...
txp

 ∈ Rp.
An estimator that makes e�cient use of this auxiliary information is the generalized re-

gression estimator (GREG) which can be found in Rao (2003) or Särndal et al. (2003)
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and will be de�ned and motivated below. For a detailed discussion of regression estimators
we refer to Cochran (1977).

De�nition 2.2.2 (Generalized regression estimator). The generalized regression esti-

mator (GREG) of the total ty is de�ned as

t̂GRy = t̂y + (tx − t̂x)T β̂, (2.1)

where t̂x =
∑

k∈s dkxk and β̂ ∈ Rp is the solution of the system of linear equations(∑
k∈s

dkxkx
T
k

)
β̂ =

∑
k∈s

dkxkyk.

The motivation for this is as follows. Assume that the variable of interest y has been generated
by a linear regression model such that

E(yk) = xTk β, k = 1, . . . , N,

V (yk) = σ2
k, k = 1, . . . , N.

This can be rewritten in matrix respectively vector notation with y = (y1, . . . , yN )T , XT =
(x1, . . . , xN ) ∈ Rp×N and Σ = diag(σ2

1, . . . , σ
2
N ), so we get

y = Xβ + ε, with E(ε) = 0, V (ε) = Σ.

Assume that yk and xk are known for all k = 1, . . . , N , so we want to get β̄ such that

β̄ = argminβ
1

2
‖Xβ − y‖2Σ−1 .

Therefore, β̄ has to satisfy

(XTΣ−1X)β̄ = XTΣ−1y,

which is equivalent to(∑
k∈U

xkx
T
k σ
−2
k

)
β̄ =

∑
k∈U

xkykσ
−2
k .

As in the case of a sample survey we do not know yk and xk for all k ∈ U but only for k ∈ s,
we have to estimate β̄ by the sample s. If we further assume that σ2

k = 1 for all k we get(∑
k∈s

dkxkx
T
k

)
β̂ =

∑
k∈s

dkxkyk.

Therefore, β̂ estimates β̄ and β̄ in turn estimates the model parameter β.

13
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It is also useful to write t̂GRy in the expansion form

t̂GRy =
∑
k∈s

wkyk,

with calibrated weights wk = dkgk for k ∈ s and

gk = 1 + (tx − t̂x)T

(∑
k∈s

dkxkx
T
k

)−1

xk ∀k ∈ s.

This derives from the calibration approach and will be discussed in Chapter 5 in detail.
Further, we will extend this approach by adding bounds to the calibrated weights wk. In the
context of small area estimation it is also helpful to rewrite the GREG estimator (2.1). If we
replace t̂y by

∑
k∈s dkyk and t̂x by

∑
k∈s dkxk, we get

t̂GRy = tTx β̂ +
∑
k∈s

dk(yk − xTk β̂).

Now we can see that the estimator consists of a synthetic part and the weighted residuals
ek := yk − xTk β̂. In the case of di�erent domains d the domain estimator is written as

t̂GRy,d = tTx,dβ̂g +
∑
k∈sd

dk(yk − xTk β̂g), (2.2)

where sd = s ∩ Ud, d = 1, . . . , D and β̂g indicates that the estimated β may depend on
di�erent groups g. This is discussed in detail in Särndal et al. (2003) or Lehtonen and
Veijanen (2009). If the estimation of β depends on groups which contain several areas we
speak of borrowing strength because the estimator uses information from these areas for
estimating a certain value in a certain area. This is a �rst step towards indirect estimators,
that make use of information from outside the given domain. In this context we will introduce
the de�nition for small and large areas.

De�nition 2.2.3 (Small area). A domain (area) is regarded as large (or major) if the
domain-speci�c sample is large enough to yield direct estimates of adequate precision. A
domain is regarded as small if the domain-speci�c sample is not large enough to support
direct estimates of adequate precision (Rao, 2003).

Another interesting aspect of the GREG estimator is mentioned in Särndal et al. (2003).
The GREG estimates made for di�erent subpopulations add up to the estimate made for the
population as a whole. This useful property of the regression estimator is called vertical

coherence and will play an important role in Chapter 7.

2.3 Synthetic Estimators

In contrast to direct estimators, that only use domain-speci�c sample data, synthetic es-
timators make use of data from outside this domain/area. To be precise, we speak of a
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synthetic estimator if a reliable direct estimator for a large area, covering several small areas,
is used to derive an indirect estimator for at least one of these small areas. This concept
assumes that the underlying small areas have the same sample characteristics as the large
area. If this assumption is violated, the synthetic estimator can be heavily biased. For a
detailed discussion on this topic and the estimators presented below we refer to Rao (2003)
or Münnich, Gabler, Ganninger, Burgard and Kolb (2012).

De�nition 2.3.1 (Synthetic estimator, no auxiliary information). In the case that no auxil-
iary information is available, the easiest synthetic estimator for the total of the variable
y in area d denoted by ty,d forms as follows.

t̂SynthNy,d =

∑
k∈sd dk∑
k∈s dk

∑
k∈s

dkyk ∀d = 1, . . . , D.

We can see that it consists of an expansion estimator for the whole population multiplied by
the estimated fraction of the area in the whole population. Usually, this estimator leads to
a biased estimation which is not desirable.

Now assume that unit speci�c auxiliary data xk = (xk1, . . . , xkp)
T is available for each element

k ∈ U and the area speci�c totals tx,d are known. Then we are able to formulate a regression
synthetic estimator of ty,d.

De�nition 2.3.2 (Synthetic regression estimator). In the case that auxiliary information
is available, the regression synthetic estimator for the total of the variable y in area d
denoted by ty,d forms as follows.

t̂SynthRy,d = tTx,dβ̂ ∀d = 1, . . . , D,

where β̂ is estimated by

β̂ =

(∑
k∈s

dkxkx
T
k

)−1∑
k∈s

dkxkyk.

As β̂ is computed by domain wide information, this estimator assumes that the regression
term β̂ for every domain d is the same as the regression term for the whole population.

Now, every variable of interest yk is assumed to be related to xk through a one-fold nested
error linear regression model, i.e.,

yk = xTk β + vd + ek ∀k ∈ Ud, d = 1, . . . , D, (2.3)

where vd represents area-speci�c e�ects and ek unit-speci�c e�ects for whom holds:

vd ∼ iid N(0;σ2
v) ∀d = 1, . . . , D,

ek ∼ iid N(0;σ2
e) ∀k ∈ U.

This means vd and ek are random variables, which are independent and identically normally
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distributed with mean 0 and variances σ2
v and σ

2
e . As the auxiliary data is available for every

unit k ∈ U , this model is referred to as unit level model (cf. Rao, 2003, where he also
speaks of a `type B' model, or Battese et al., 1988).

De�nition 2.3.3 (Synthetic estimator, model A). The synthetic estimator, model A of
the total of the variable of interest y in area d = 1, . . . , D denoted by ty,d is de�ned as

t̂SynthAy,d = tTx,dβ̂,

where tx,d denotes the area totals of the auxiliary variable x and β̂ is estimated from the unit
level model (2.3).

The estimation of β̂ can be done by maximum likelihood or restricted maximum likelihood
methods which we will not discuss in detail and refer to Harris and Stocker (1998). Apart
from this model, there exist many other models deriving from model (2.3), such as the
multivariate nested error regression model, random error variance linear model, two-fold
nested error regression model, two-level model or general linear mixed model. An overview
of these and related methods as well as links to the original papers can be found in Rao
(2003).

Assume now that the auxiliary information is no longer available on unit level but therefore
on area level. Furthermore, the variable of interest on area level, like the mean ȳd, is assumed
to be related to the known mean of the auxiliary data on area d denoted by x̄d through a
linear model, i.e.,

ȳd = x̄Td β + ζd ∀d = 1, . . . , D, (2.4)

where ζd represents area-speci�c e�ects for which holds:

ζd ∼ iid N(0;σ2
v +

σ2
e

|sd|
) ∀d = 1, . . . , D.

In contrast to the unit level model (2.3), the auxiliary data only needs to be available on
area level. Therefore, this model is referred to as area level model (cf. Rao, 2003, where
he also speaks of a `type A' model, or Fay and Herriot, 1979).

De�nition 2.3.4 (Synthetic estimator, model B). The synthetic estimator, model B of
the total of the variable of interest y in area d = 1, . . . , D denoted by ty,d is de�ned as

t̂SynthBy,d = tTx,dβ̂,

where tx,d denotes the area totals of the auxiliary variables x and β̂ is estimated from the
area level model (2.4).

As it is also the case in model A, there exist other models deriving from model (2.4) such as
the multivariate Fay-Herriot model, correlated sampling error model, spatial model as well
as time series and cross-sectional model which are again mentioned in Rao (2003).

16



2.4 Composite Estimators

2.4 Composite Estimators

Comparing a synthetic estimator with a GREG estimator one can state that the variance of
the synthetic estimator is smaller than the variance of the GREG estimator but the estimates
are rather biased if the model does not �t the structures of all areas. This observation, which
is discussed in detail in Lehtonen and Veijanen (2009), motivates to combine two types of
estimators in order to omit the individual disadvantages of using only one of the mentioned
types of estimators.

De�nition 2.4.1 (Composite estimator). Let t̂Diry,d be a direct and t̂Synthy,d be a synthetic
estimator for the total of the variable of interest y in area/domain d denoted by ty,d. Then

the composite estimator t̂Compy,d of the total of the variable of interest y in area d = 1, . . . , D
denoted by ty,d is de�ned as

t̂Compy,d = γdt̂
Dir
y,d + (1− γd)t̂Synthy,d ,

where γd ∈ [0, 1] for all d = 1, . . . , D.

It is now easy to de�ne di�erent composite estimators, which di�er in the used direct and
synthetic estimator as well as in the way how the parameter γd is chosen. We concentrate
on two standard estimators of small area estimation, the so called empirical best linear

unbiased predictors (EBLUP). The term `empirical' indicates that the needed variances
are estimated from the sample.

When assuming that yk is related to xk through the unit level model (2.3) and SynthA is
used as synthetic estimator and the GREG as direct estimator, we get the EBLUPA.

De�nition 2.4.2 (EBLUPA). Let µ̂MLGR
y,d be the multilevel GREG estimator and µ̂SynthAy,d

be the synthetic estimator, model A for the mean of the variable of interest y in area/domain
d denoted by µy,d. Then the EBLUPA µ̂EBLUPAy,d of the area means µy,d, d = 1, . . . , D is
de�ned as

µ̂EBLUPAy,d = γ̂Ad µ̂
MLGR
y,d + (1− γ̂Ad )µ̂SynthAy,d

= γ̂Ad (µ̂MLGR
y,d − µ̂Tx,dβ̂) + µ̂Tx,dβ̂,

where

γ̂Ad =
σ̂2
v,A

σ̂2
v,A +

σ̂2
e,A

|sd|

∀d = 1, . . . , D.

The subscript A indicates that the variance components are estimated from the unit level
model (2.3) which is used for the synthetic estimator, model A.

The EBLUPB is de�ned analogously. When assuming that yk is related to xk through the
area level model (2.4) and SynthB is used as synthetic estimator and the GREG as direct
estimator, we get the EBLUPB.
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De�nition 2.4.3 (EBLUPB). Let µ̂GRy,d be the GREG estimator and µ̂SynthBy,d be the synthetic
estimator, model B for the mean of the variable of interest y in area/domain d denoted by
µy,d. Then the EBLUPB µ̂EBLUPBy,d of the area means µy,d, d = 1, . . . , D is de�ned as

µ̂EBLUPBy,d = γ̂Bd µ̂
GR
y,d + (1− γ̂Bd )µ̂SynthBy,d

= γ̂Bd (µ̂GRy,d − µ̂Tx,dβ̂) + µ̂Tx,dβ̂,

where

γ̂Bd =
σ̂2
v,B

σ̂2
v,B +

σ̂2
e,B

|sd|

∀d = 1, . . . , D.

The subscript B indicates that the variance components are estimated from the unit level
model (2.4). However, one has to keep in mind that the estimation of the variance of the
units, i.e., σ̂2

e,B, can only be done by making further assumptions.

One lack of the EBLUPA is that the underlying unit level model does not take information
of the sampling design into account. To omit this issue, You and Rao (2002) developed an
estimator that takes this information into account by using the given sampling weights. Fur-
thermore, the estimation of the parameters of the model is done with additional constraints
such that the benchmark of the population total is satis�ed.

De�nition 2.4.4 (YOURAO). Let dk = π−1
k for all k ∈ U and let the adjusted weights w̃k

be de�ned as follows:

w̃k =
dk∑
l∈sd dl

∀k ∈ Ud, d = 1, . . . , D.

Furthermore, let the direct estimator µ̃y,d for the mean of the variable of interest y in area d
be de�ned as

µ̃y,d =
∑
k∈sd

w̃kyk ∀d = 1, . . . , D.

Then the YOURAO estimator µ̂Y OURAOy,d of the area means µy,d, d = 1, . . . , D is de�ned
as

µ̂Y OURAOy,d = γ̂d,w̃µ̃y,d + (µx,d − γ̂d,w̃µ̃x,d)T β̂w̃,

where

γ̂d,w̃ =
σ̂2
v

σ̂2
v + σ̂2

e δ̃
2
d

∀d = 1, . . . , D,

δ̃2
d =

∑
k∈sd

w̃2
k ∀d = 1, . . . , D,
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β̂w̃ =

(
D∑
d=1

γ̃d,w̃µ̃x,dµ̃
T
x,d

)−1( D∑
d=1

γ̃d,w̃µ̃x,dµ̃y,d

)
.

For a detailed discussion of the YOURAO estimator we refer to the original work by You
and Rao (2002). All estimators above were tested for the applicability in the German Census
2011. The results of this test can be found in Münnich, Gabler, Ganninger, Burgard and
Kolb (2012).

2.5 Evaluation of Simulation Results

In the previous sections we mentioned di�erent estimators which have certain properties. It
is desirable to know, how `good' these estimators are and whether they estimate the true
value with an appropriate precision. Therefore, we need the mean and the variance of the
estimator t̂d in terms of Monte Carlo methods (cf. Burgard and Münnich, 2012). t̂d,k denotes
the estimate in domain d derived from sample k = 1, . . . ,m so the mean and the variance
are estimated as follows:

t̂d,mean =
1

m

m∑
k=1

t̂d,k,

t̂d,var =
1

m− 1

m∑
k=1

(t̂d,k − t̂d,mean)2.

If we want to measure the di�erence between an estimator and the true value td scaled to
the true value, we make use of the relative root mean squared error. Note that it takes only
nonnegative values.

De�nition 2.5.1 (RRMSE). The relative root mean squared error of the estimator t̂d
in domain d is de�ned as

RRMSEd =

√
t̂d,var + (t̂d,mean − td)2

td
,

where td denotes the true value.
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The relative bias is another error measure that shows how the estimated values are biased
over the sample.

De�nition 2.5.2 (RBias). The Rbias of the estimator t̂d in domain d is de�ned as

RBiasd =
t̂d,mean − td

td
,

where td denotes the true value.

If RBiasd = 0 the estimator is unbiased over the sample. Otherwise, a positive/negative
relative bias indicates, that the estimator overestimates/underestimates the true value in
average. Applications of the measures mentioned before are given in Chapter 7.
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Chapter 3

Optimal Allocation Problems in Statistics

Just in terms of allocation of time resources, religion is not very
e�cient. There's a lot more I could be doing on a Sunday morning.

� Bill Gates

TIME Magazine, Vol. 149

Given a �xed amount of a certain item, the task of a resource allocation problem is to
determine its allocation to a certain number of activities in such a way that the given objective
function under consideration is optimized. In the case of Bill Gates, the item `time on a
Sunday morning' has to be allocated to certain activities like going to church, staying in bed,
playing football with his son or playing golf. From his statement we cannot conclude which
activity optimizes his objective function, but we can deduce that going to church does not.

These resource allocation problems are special cases of nonlinear programing and have many
applications in science, e.g., load distribution, production planing, computer scheduling,
military, (survey) statistics or portfolio selection (cf. Markowitz, 1952). All these allocation
problems can be written as

min
x∈Rn

f(x1, . . . , xn)

s.t.

n∑
k=1

xk = T

mk ≤ xk ≤Mk ∀k = 1, . . . , n,

and mainly di�er in the given objective function, which can be separable, separable and
convex, minimax, maximin, fractional or fair, and whether the solution is required to be con-
tinuous or integer valued. Depending on these factors, di�erent algorithms are appropriate.

Regarding separable convex di�erentiable functions and the corresponding continuous opti-
mization problem, there exist two main approaches: pegging algorithms and Lagrange mul-
tiplier algorithms (cf. Patriksson, 2008). Pegging algorithms are iterative algorithms that in
each iteration solve a relaxation of the original problem, that is without box constraint, and
�x the outlying variables of the solution on the values of the box constraint. Afterwards, the
problem is reduced by removing the �xed variables and the value of the equality constraint
is reduced. This procedure is repeated until no variable exceeds the box constraint anymore.
Furthermore, there exists also a projected pegging method and as the Lagrange multiplier is
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implicitly optimized in the process, this method is sometimes referred to as primal algorithm.
Lagrange multiplier algorithms have an older history than pegging algorithms and utilize the
simple form of the Karush-Kuhn-Tucker conditions or the Lagrangian dual problem which
has only one variable. The search for the optimal value of the Lagrange multiplier is done by
an easy line search, e.g., bisection method, where the choice of the method applied depends
on the structure of the equation to be solved. This class of algorithms is sometimes referred
to as a dual one. For a detailed discussion of the approaches mentioned in this paragraph
we refer to Ibaraki and Katoh (1988), where also methods and applications for other target
functions are treated.

Applications of the pegging method to strati�ed sampling can be found in Sanathanan (1971),
where a multistage sampling problem is regarded. Further, Bretthauer et al. (1999) make
use of a pegging and a Lagrange multiplier method for solving continuous subproblems of
their branch and bound algorithm that solves integer strati�ed sampling problems. The
Lagrange multiplier method is also applied to strati�ed sampling in Srikantan (1963), where
convergence and optimality of the continuous solution is proved. Sanathanan (1971) also
uses a Lagrange multiplier approach for strati�ed sampling. Apart from these references,
there are many other articles dealing with allocation problems. These can be found in the
extensive overview given in Patriksson (2008).

When dealing with integer allocation problems, things get more di�cult. A simple rounding
of the continuous solution may lead to an infeasible solution and in general does not deliver
the optimal solution. Therefore special algorithms have to be applied and in the case that
the objective function is separable and convex, a simple greedy fashioned algorithm can be
applied. As mentioned in Ibaraki and Katoh (1988), this type of algorithm is also called
incremental or marginal allocation algorithm and proceeds as follows. Given an initial vector
of the lower bounds, one unit of resource is assigned each iteration to the most favorable
activity (in the sense of minimizing the increase of the current objective value) under con-
sideration of the upper bounds and until

∑n
k=1 xk = T . Although this method does not

have a polynomial running time, there exist polynomial time algorithms for solving such
allocation problems. Groenevelt (1991) studies allocation problems with separable objective
functions over a polymatroid and apart from a marginal allocation algorithm also proposes
a `decomposition algorithm', which is especially suited for polymatroids that are implicitly
de�ned by some generating structure, and a `bottom up algorithm', which is useful when a
polymatroid feasible region is de�ned by an explicit list of constraints. Hochbaum (1994)
revisits the greedy idea for polymatroidal constraints and shows that a greedy algorithm
can be applied with arbitrary increments, rather than unit increments. In each iteration,
the given increment is assigned to the most favorable activity until no such increments are
possible. Then, this process of scaled greedy increments is repeated with smaller increments.
It is worth noting that a polynomial running time can be shown for all allocation problems.
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3.1 Allocation Problems in Statistics

As we will see later on, the methods presented by Groenevelt and Hochbaum can be applied
to strati�ed sampling with integer constraints and deliver quite good results. Furthermore,
Bretthauer et al. (1999) propose two branch and bound methods for solving integer strati-
�ed sampling problems. These algorithms mainly di�er in the method utilized to solve the
continuous subproblems in each tree, namely a pegging method and a Lagrange multiplier
method.

We concentrate on optimal allocation problems in strati�ed sampling and propose a di�erent
derivation of the Lagrange method as well as a �xed point iteration for solving the continuous
allocation problem. Further, we compare di�erent root �nding algorithms needed for the
Lagrange method in terms of computing time and number of iterations. As in survey sampling
you cannot select half a person or address, we also propose algorithms for solving the integer
allocation problem. These algorithms are again applied to a numerical example so that
computational aspects as well as the relation of the integer solution compared to the rounded
continuous solution can be analyzed.

3.1 Allocation Problems in Statistics

In classical survey statistics the randomization of a random variable is introduced by the
sample selection scheme. The standard estimator for the total t of a variable of interest y in
a �nite population U of size N is the Horvitz-Thompson estimator

t̂HTy =
∑
k∈s

dkyk,

where s is the sample with size ns = |s| and dk = π−1
k denotes the �rst order inclusion prob-

ability (cf. Särndal et al., 2003). In general, one seeks a sampling design which minimizes the
variance of the estimator V (t̂y). One standard approach which avoids the use of sophisticated
inclusion probabilities is strati�ed random sampling where all population units are uniquely
split into H groups, the strata. This procedure is called strati�cation and is done for various
reasons (cf. Cochran, 1977).

(i) If data of known precision are wanted for certain subdivisions of the population, it is
advisable to treat each subdivision as a `population' in its own right.

(ii) Administrative convenience may dictate the use of strati�cation; for example, the
agency conducting the survey may have �eld o�ces, each of which can supervise the
survey for a part of the population.

(iii) Sampling problems may di�er markedly in di�erent parts of the population. With
human populations, people living in institutions are often placed in a di�erent stratum
from people living in ordinary homes because a di�erent approach to the sampling is
appropriate for the two situations.
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Chapter 3 Optimal Allocation Problems in Statistics

(iv) Strati�cation may produce a gain in precision in the estimates of characteristics of
the whole population. It may be possible to divide a heterogeneous population into
subpopulations, each of which is internally homogeneous. This is suggested by the name
`strata', with its implication of a division into layers. If each stratum is homogeneous,
in that the measurements vary little from one unit to another, a precise estimate of any
stratum mean can be obtained from a small sample in that stratum. These estimates
can then be combined into a precise estimate for the whole population.

Concerning strati�ed random sampling, the Horvitz-Thompson estimator then simpli�es to

t̂SRSy =
H∑
h=1

Nh

N
µy,h,

where Nh is the number of units in stratum h and µy,h the corresponding sample mean of
the variable of interest y. The variance of the estimator t̂SRSy is given by

V (t̂SRSy ) =

H∑
h=1

N2
hS

2
h

nh

(
1− nh

Nh

)
(3.1)

with inferential stratum variances S2
h from the universe. The total sample size will then have

to be divided into H stratum speci�c sample sizes nh which describes an allocation problem.
Minimizing the variance of the estimator in equation (3.1) under the equality constraint

H∑
h=1

nh = ns

yields the so-called optimal allocation by Neyman (1934) and Tschuprow (1923)

nh =
NhSh∑H
k=1NkSk

ns (3.2)

via a standard Lagrangian approach. In a recent paper, Choudhry et al. (2012) also investi-
gate other optimal allocations in the context of small area estimation and propose a nonlinear
programming method for obtaining optimal sample allocations to strata under strati�ed sam-
pling. The gained solution minimizes the total sample size subject to speci�ed tolerances on
the coe�cient of variation of estimators of strata means and the population mean.

Though optimal allocations minimize the variance of the estimator of interest, some pecu-
liarities may occur. First, in sampling without replacement it may happen that the optimal
allocation yields stratum-speci�c sample sizes nh exceeding the number of available units Nh

which by de�nition is not allowed. Furthermore, especially when a huge gain in e�ciency is
observed, some strata su�er from extremely low sample sizes, thus it is desirable to assure
minimal stratum speci�c sample sizes or fractions.

Regarding business surveys, the optimal allocation often delivers stratum-speci�c sample
sizes that lead to a large spread of the design weights. This spread makes it very hard to get
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3.2 Mathematical Formulation of the Allocation Problem

good estimates. Apart from survey statistics, a recent discussion on the use of survey weights
dk occurred in Gelman (2007b). It was pointed out that large variations of survey weights
may not be compensated properly in statistical modeling, especially in Bayesian statistics.
In strati�ed random sampling the design weights are given by dk = Nh/nh, if the observation
k is in stratum h. The variation of design weights is then given by

max
k,l=1,...,H

Nk · nl
Nl · nk

. (3.3)

For other sampling designs as well as the interplay of modeling and survey weighting we refer
to Burgard et al. (2013).

In order to limit this variation or to enable minimal or maximal sampling fractions, bounds
on the variables nh are introduced, such as

mh ≤ nh ≤Mh ∀h = 1, . . . ,H.

In addition to that, the total sample size is restricted by ns, so we get

H∑
h=1

nh ≤ ns.

3.2 Mathematical Formulation of the Allocation Problem

Rewriting the objective function from the previous section without constant terms yields the
following optimization problem.

min
n∈RH+

H∑
h=1

d2
h

nh

s.t.

H∑
h=1

nh ≤ ns

mh ≤ nh ≤Mh ∀h = 1, . . . ,H,

(3.4)

where n := (n1, . . . , nH)T ∈ RH+ de�nes the sample size in the di�erent strata h ∈ {1, . . . ,H}.
Note that in this work R+ = {x ∈ R : x > 0}. The whole sample size is given by ns and
dh is de�ned as the product of the known stratum variance S2

h and the population size Nh

of stratum h. The upper and lower bounds for the sample size of each stratum h are de�ned
as Mh > mh > 0. In shorter notation this problem leads to our model problem

min
n∈RH+

f(n)

s.t. g(n) ≤ 0

n ∈ U,

(3.5)
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Chapter 3 Optimal Allocation Problems in Statistics

where f is a separable function, i.e.,

f : RH+ → R+, n 7→ f(n) =

H∑
h=1

fh(nh).

The components fh are then de�ned as

fh : R+ → R+, nh 7→
d2
h

nh
∀h = 1, . . . ,H,

with given dh > 0, e = (1, . . . , 1)T and

g : RH+ → R, n 7→ g(n) = nT e− ns,

where ns > 0 and

U = {n ∈ RH : mh ≤ nh ≤Mh ∀h = 1, . . . ,H}.

Before discussing possible methods for solving the allocation problem, we will have a look at
some assumptions that guarantee solvability.

Theorem 3.2.1. Assume that

dh 6= 0, ∀h = 1, . . . ,H, (3.6)

0 < mh < Mh <∞, ∀h = 1, . . . ,H, (3.7)

H∑
h=1

mh ≤ ns <
H∑
h=1

Mh. (3.8)

Then we have:

(i) The objective function f is strictly convex and in each component f is strictly mono-
tonically decreasing.

(ii) The feasible set is non-empty and the solution n∗ of the optimization problem (3.5) is
unique.

(iii) The inequality constraint at the solution is active, i.e., g(n∗) = 0.

Proof. (i) The second derivative of f , i.e., the Hessian of f , is given by the diagonal matrix

∇2f(n) = 2 · diag(d2
1/n

3
1, . . . , d

2
H/n

3
H)

which is positive de�nite due to (3.6). Hence, the function f is strictly convex.
The gradient of f is given by

∇f(n) = −(d2
1/n

2
1, . . . , d

2
H/n

2
H)T

and therefore in each component nh the function f is strictly monotonically decreasing.
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3.3 Solution of the Continuous Allocation Problem

(ii) The non-emptiness holds due to (3.8). Furthermore, the feasible set is compact and f
is continuous, so a solution of the optimization problem exists. It is unique because f
is strictly convex.

(iii) If we assume that the optimal point satis�es g(n∗) < 0, then using assumption (3.8)
we have

H∑
h=1

n∗h < ns <
H∑
h=1

Mh.

Hence, there exists an index ĥ with n∗
ĥ

< Mĥ. Let us choose

α = min{Mĥ − n
∗
ĥ
,−g(n∗)} > 0 and ñ = (n∗1, . . . , n

∗
ĥ−1

, n∗
ĥ

+ α, n∗
ĥ+1

, . . . , n∗H). Since

f is decreasing in the ĥ-th component, we obtain f(ñ) < f(n∗), a lower value than
for n∗. The point ñ is also feasible, because g(ñ) = g(n∗) + α ≤ 0 and
ñĥ = n∗

ĥ
+ α ≤ n∗

ĥ
+ Mĥ − n∗

ĥ
= Mĥ. Therefore, n∗ is not optimal, which is a

contradiction. Hence the inequality constraint is active at the optimal point.

�

3.3 Solution of the Continuous Allocation Problem

Regarding the continuous allocation problem in strati�ed sampling, we can apply the peg-
ging method as mentioned in Sanathanan (1971) or a Lagrangian approach given in Srikantan
(1963). The proof of the Lagrange method is usually done via Karush-Kuhn-Tucker condi-
tions. We (Münnich, Sachs and Wagner, 2012c) present an approach using the normal cone
instead of complementarity conditions for including the box constraint. This leads to a non-
di�erentiable equation for which we compare di�erent root �nding algorithms. If the optimal
multiplier is known, we can easily determine the solution vector n∗ of the optimization prob-
lem. Furthermore, we derive a �xed point formulation for the optimal Lagrange multiplier
and use a �xed point iteration based on this formula. This algorithm has the advantage
that, if the Lagrange iterates are close enough to the solution, only one additional iteration
is needed and the algorithm terminates with the solution.

In Stenger and Gabler (2005), they assume an ordering of the coe�cients of the objective
function and that the lower bounds are zero. Then they conclude that there is an index i∗ such
that the optimal solution is at the maximal value for all indices larger than i∗. The solution
also guarantees an optimal allocation in without replacement sampling. An extension and
generalization of this approach is presented in Gabler et al. (2012) where a problem similar
to our case is considered and, under an ordering assumption on the coe�cients, the existence
of a set partition into active and non-active constraints with optimal value is given. Stefanov
(2006) considers optimization problems of the type considered here from a general point of
view. Hohnhold (2009) also minimizes a separable function under a box constraint and an
equality constraint. He gives a necessary condition for the solution in dependence on the
Lagrange multiplier and shows that this reduces to a root �nding problem.
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Chapter 3 Optimal Allocation Problems in Statistics

If one solves the optimization problem with standard optimization methods, like interior
point methods or sequential quadratic programming (SQP) methods (cf. Nocedal and Wright,
2006), one will not use the special structure of this problem which we exploit below.

Solution via Lagrange multiplier method

The main goal in the following approach is to express n as a function depending on the
Lagrange multiplier λ. Then, this expression n(λ) is inserted into the function g which
leads to a one-dimensional equation. The only disadvantage is that the resulting function
is continuous but not necessarily di�erentiable, thus only basic root �nding algorithms can
be used. First, we de�ne the normal cone which will be used in the Karush-Kuhn-Tucker
conditions.

De�nition 3.3.1 (Normal cone). The normal cone to U in n∗ is de�ned as

NU (n∗) := {y ∈ RH : yTx ≤ 0 ∀x = γz : z ∈ (U − n∗), γ > 0}.

This leads to the following Karush-Kuhn-Tucker conditions.

Theorem 3.3.2. A vector n∗ ∈ RH is a minimum of problem (3.5) if and only if there exists
a Lagrange multiplier λ∗ ∈ R+ ∪ {0} such that

0 ∈ ∇f(n∗) + λ∗∇g(n∗) +NU (n∗), (3.9)

and furthermore

λ∗g(n∗) = 0. (3.10)

Proof. See Theorem 3.25 in Ruszczynski (2006). Note that the constraint function g is a�ne
and U is a convex polyhedron. Therefore, a constraint quali�cation condition is satis�ed.
Furthermore, the objective function f is strictly convex on RH+ and the feasible set is convex
due to Theorem 3.2.1,(i). Moreover, the necessary optimality condition is also su�cient. �

Regarding those Karush-Kuhn-Tucker conditions, we can easily check the equivalence of the
�rst condition to the following equation.

Lemma 3.3.3. Under the given assumptions of Theorem 3.3.2, equation (3.9) is equivalent
to

0 ≥ − d2h
Mh

2 + λ∗ if n∗h = Mh,

0 = − d2h
n∗
h
2 + λ∗ if n∗h ∈ (mh,Mh),

0 ≤ − d2h
mh2

+ λ∗ if n∗h = mh.

(3.11)
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3.3 Solution of the Continuous Allocation Problem

Proof. In this particular setting with the de�nition of U it is easy to show that

NU (n∗) = {y ∈ RH :


yh ≥ 0, if n∗h = Mh,

yh = 0, if n∗h ∈ (mh,Mh),

yh ≤ 0, if n∗h = mh.

}

Taking this into consideration, there exists λ∗ ∈ R+ ∪ {0} such that equation (3.9) can be
reformulated as

−∇f(n∗)− λ∗∇g(n∗) ∈ {y ∈ RH :


yh ≥ 0, if n∗h = Mh,

yh = 0, if n∗h ∈ (mh,Mh),

yh ≤ 0, if n∗h = mh.

} (3.12)

Note that ∇f(n∗)h = −d2
h/n

∗
h

2 and ∇g(n∗)h = 1 for all h. Then equation (3.12) is equivalent
to the following three cases for h = 1, ...,H:

0 ≥ − d2h
Mh

2 + λ∗ if n∗h = Mh,

0 = − d2h
n∗
h
2 + λ∗ if n∗h ∈ (mh,Mh),

0 ≤ − d2h
mh2

+ λ∗ if n∗h = mh,

which completes the proof.

Furthermore, we can state that because of f being strictly monotonically decreasing in each
component and ns <

∑H
h=1Mh, the Lagrange multiplier λ∗ is strictly positive. Therefore,

from λ∗g(n∗) = 0 follows g(n∗) = 0. �

As stated before, the inequality constraint holds with equality in the optimal solution. There-
fore, the second condition of the Karush-Kuhn-Tucker conditions can be rewritten as

n∗T e− ns = 0. (3.13)

Revisiting equation (3.11), we can reformulate all conditions by using λ as a variable and
then de�ne n depending on the choice of λ. To achieve this we set

n : R+ → RH+ , λ 7→ n(λ),

with

nh(λ) =


Mh, if λ ≤ d2h

M2
h
,

dh√
λ
, if

d2h
M2
h
< λ <

d2h
m2
h
,

mh, if λ ≥ d2h
m2
h
.

(3.14)
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Theorem 3.3.4. A vector n∗ ∈ RH is the unique solution of the optimization problem (3.5)
if and only if there exists a multiplier λ∗ ∈ R+ such that n(λ∗) de�ned in (3.14) satis�es

g(n(λ∗)) = 0. (3.15)

Proof. Since we proved in Theorem 3.2.1,(iii) that the inequality constraint is always active at
the solution, equation (3.10) of Theorem 3.3.2 is satis�ed in the form of g(n∗) = 0. Therefore,
(3.15) has to be satis�ed. If (n∗, λ∗) is given such that (3.11) holds, then we de�ne n(λ∗)
and with the three given cases it is easy to check that n(λ∗) = n∗. On the other hand, if for
some λ∗ the vector n(λ∗) satis�es (3.15), then by a quick veri�cation we see that (n(λ∗), λ∗)
also satis�es (3.11). This completes the proof. �

The last theorem states that the solution of the optimization problem is equivalent to solve
the equation

g̃(λ) := g(n(λ)) = n(λ)T e− ns = 0.

Since g̃ is continuous but not di�erentiable, the equation has to be solved by methods which
only require continuity. There exists a wide range of adequate methods which are mentioned
after the following remarks. Further, detailed information concerning those methods can be
found in Ralston and Rabinowitz (1978).

Remark 3.3.5. All the arguments can also be applied to the following optimization problem:

min
n∈RH+

H∑
h=1

d2
h

nh

s.t. nT p− ns ≤ 0

n ∈ U,

where p de�nes a vector of penalty, cost or weighting parameters.
Then the solution of the problem without a box constraint can be speci�ed as

n∗h =
ns∑H

i=1 di
√
pi
· dh√

ph
,

and for all nh as function depending on λ

nh(λ) =


Mh, if λ ≤ d2h

M2
hph

,

dh√
λph

, if
d2h

M2
hph

< λ <
d2h

m2
hph

,

mh, if λ ≥ d2h
m2
hph

.
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Remark 3.3.6. More general, we can also consider an optimization problem with a separable
objective function. Therefore, we look at the following optimization problem.

min
n∈RH+

H∑
h=1

fh(nh)

s.t. nT e− ns ≤ 0

n ∈ U,

where fh is a di�erentiable, strictly monotonically decreasing, convex function. Then the
solution nh as function depending on λ satis�es

nh(λ) =


Mh, if λ ≤ −f ′h(Mh),

(f ′h)−1(−λ), if − f ′h(Mh) < λ < −f ′h(mh),

mh, if λ ≥ −f ′h(mh).

The easiest method for solving a nonlinear equation g(x) = 0 is the bisection method (Algo-
rithm 3.1) which is very robust and its convergence rate is linear with convergence factor 1

2 .
Since λ has to be positive and g is de�ned on R+, the left bound always has to be positive.

Algorithm 3.1 Bisection method

Input: g : R→ R continuous on [a, b] ⊂ R and g(a)g(b) < 0
set initial iterate x = a
while |g(x)| ≥ ε do
x := a+b

2
if g(a)g(x) > 0 then
set a← x

else

set b← x
end if

end while

return root x

The secant method (Algorithm 3.2) is superlinearly convergent under certain di�erentiability
conditions on the function g which unfortunately do not hold for our application. Neverthe-
less, as we will see later on, the numerical results for this method are satisfactory.
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Algorithm 3.2 Secant method

Input: g : R→ R continuous on [a, b] ⊂ R and g(a)g(b) < 0
Ensure: x0, x1 ∈ (a, b) close to the optimal solution
for k = 1, 2, . . . do
if |g(xk)| ≤ ε then
stop

end if

xk+1 := xk − xk−xk−1

g(xk)−g(xk−1)
g(xk)

end for

return root xk

Another applicable method is the regula falsi (Algorithm 3.3). As the simple regula falsi does
not perform as well as the secant method we look for extensions of the regula falsi.

Algorithm 3.3 Regula falsi

Input: g : R→ R continuous on [a, b] ⊂ R and g(a)g(b) < 0
set initial iterate x = a
while |g(x)| ≥ ε do
x := ag(b)−bg(a)

g(b)−g(a)

if g(a)g(x) > 0 then
set a← x

else

set b← x
end if

end while

return root x

Although one cannot prove the convexity of g, the graph in Figure 3.3 indicates that g has
certain convex parts. For convex functions there exist some extensions called the Illinois
method (Algorithm 3.4), Pegasus method and an alternative method, which all speed up the
convergence.
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Algorithm 3.4 Illinois method

Input: g : R→ R continuous on [a, b] ⊂ R and g(a)g(b) < 0
set initial iterate x = a
while |g(x)| ≥ ε do
x := ag(b)−bg(a)

g(b)−g(a)

if g(a)g(x) > 0 then
set a← x

else

α = 1
2

set b← αg(a)x
αg(a)−g(x) + g(x)a

g(x)−αg(a)
end if

end while

return root x

If we choose

α =
g(b)

g(b) + g(x)

we get the Pegasus method.
An alternative method uses the following choice for α.

α =

{
β, if β > 0,
1
2 , if β ≤ 0,

with β =
(g(x)− g(b))(b− a)

(x− b)(g(b)− g(a))
,

which has a better convergence behavior.

We implemented all methods for the problem under consideration in R and present numerical
results in Section 3.5.

Solution via �xed point iteration

Aside from the presented search for a root of the function g̃, the solution of the optimization
problem can also be found through a �xed point iteration. As stated before, the following
equation has to be solved:

g̃(λ) = n(λ)T e− ns = 0.

The components nh(λ) take values Mh, mh or their values lie in the interval (mh,Mh).
Accordingly, we partition the set J = {1, . . . ,H} of indices into three subsets JλM , J

λ
m and
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Jλ. Using these subsets the equation is rewritten as∑
h∈Jλ

dh√
λ

+
∑
h∈JλM

Mh +
∑
h∈Jλm

mh − ns = 0.

If we solve this equation for λ, we obtain

λ =

( ∑
h∈Jλ dh

ns −
∑

h∈JλM
Mh −

∑
h∈Jλmmh

)2

.

Then the following function φ can be de�ned as

φ : R+ → R+

λ 7→ φ(λ) =

( ∑
h∈Jλ dh

ns −
∑

h∈JλM
Mh −

∑
h∈Jλmmh

)2

.

Now we can prove that solving g̃(λ) = 0 is equivalent to solving λ = φ(λ).

Lemma 3.3.7. Solving g̃(λ) = 0 is equivalent to solving λ = φ(λ).

Proof. One direction has been shown prior to this lemma. If λ∗ = φ(λ∗), then n(λ∗) de�ned
in (3.14) also satis�es g̃(λ∗) = 0, which completes the proof. �

Note that φ is discontinuous and has jumps. However, since the function φ depends on λ
only through the subsets of J , it has a remarkable property. Due to (3.14) we can rewrite
Jλm, J

λ
M as

JλM =

{
h = 1, . . . ,H : λ ≤

d2
h

M2
h

}
,

Jλm =

{
h = 1, . . . ,H : λ ≥

d2
h

m2
h

}
.

Consider the �xed point λ∗ and assume that in Jλm, J
λ
M the inequalities are strict inequalities.

Then it is conceivable that small perturbations of λ∗ do not change these sets Jλm, J
λ
M and

hence the value of φ does not change. This means that the optimal λ∗ is already delivered
as an output of φ when the input λ is close to the optimal λ∗.

Lemma 3.3.8. Let λ∗ be the solution of g(λ) = 0 and assume that

λ∗ /∈
{
d2
h

m2
h

,
d2
h

M2
h

: h = 1, . . . ,H

}
.

Then there exists ε > 0 such that

λ∗ = φ(λ) ∀|λ− λ∗| < ε.
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Proof. Due to the assumption, the index sets JλM and Jλm can be written as

Jλ
∗

M =

{
h ∈ 1, . . . ,H : λ∗ <

d2
h

M2
h

}
,

Jλ
∗

m =

{
h ∈ 1, . . . ,H : λ∗ >

d2
h

m2
h

}
.

We de�ne

ε := min

{
|λ∗ −

d2
h

M2
h

|, |λ∗ −
d2
h

m2
h

| : h = 1, . . . ,H

}
.

Therefore, for all λ ∈ (λ∗ − ε, λ∗ + ε) holds

Jλ
∗

M = JλM , J
λ∗
m = Jλm, J

λ∗ = Jλ.

Since the function φ depends on λ only through the index sets we have

φ(λ) = φ(λ∗) = λ∗ ∀|λ− λ∗| < ε.

�

If the �xed point iteration converges, then the iteration terminates after �nitely many steps
with the exact solution λ∗, because the index sets do not change anymore. This yields to the
following Algorithm 3.5.

Algorithm 3.5 Fixed point iteration

Input: Starting value λ0 > 0 near to the optimal solution
for k=0,1,2,. . . do
determine index sets Jλ

k

M , Jλ
k

m , Jλ
k

λk+1 :=

( ∑
h∈Jλk dh

ns −
∑

h∈JλkM
Mh −

∑
h∈Jλkm

mh

)2

if λk+1 = λk then

stop
end if

end for

return solution λk

In order to �nd a good starting point λ0, the easiest way is to use the optimal allocation
following Neyman (1934) and Tschuprow (1923) for the above optimization problem without
box constraint. The solution of the problem without box constraint is given by

nh =
dh∑H
k=1 dk

ns ∀h = 1, . . . ,H.
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From this equation we can derive the multiplier λ0 as

λ0 =

(
dh
nh

)2

=
1

(ns)2

(
H∑
k=1

dk

)2

.

In case that λ0 is not close enough to the optimal λ∗ such that the �xed point iteration
does not converge, one can start with some iterations of the methods presented before and
afterwards continue with the �xed point iteration.

3.4 Solution of the Integer Allocation Problem

All approaches mentioned so far have one thing in common. The allocation problem is solved
in continuous variables, i.e., the integrality conditions on the variables are relaxed. When
considering integer allocation problems, things get more di�cult. A simple rounding of the
continuous solution does in general not deliver the optimal and may even lead to an infeasible
solution. Therefore, special algorithms have to be applied.

Before we (Friedrich et al., 2013) will deal with di�erent algorithms in detail, we introduce
the concept of polymatroids. These combinatorial structure, which is a generalization of
the more widely known matroid, leads to interesting approaches to integer optimization (cf.
Schrijver (2003) for a general introduction on the topic). The observation that the feasible
region of the allocation problem is a special type of polymatroid is the mathematical reason
for the correctness of the methods.

De�nition 3.4.1 (Polymatroid). A polymatroid is a set of the form

P (ϕ) :=

{
x ∈ RE : x ≥ 0,

∑
e∈A

xe ≤ ϕ(A) ∀A ⊆ E

}
,

where E is a �nite set and ϕ : 2E → R+ is a monotone, submodular function, i.e.,

ϕ(X ∩ Y ) + ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) ∀X,Y ⊆ E,

and satis�es ϕ(∅) = 0.

This de�nition looks rather complicated, but actually describes a polyhedron with `nice'
properties. In fact, every polymatroid is a bounded polyhedron and Figure 3.1 shows a
general polymatroid in R3.

As already mentioned, greedy strategies are applicable for the minimization of a separable
objective function with convex summands when the feasible region is a polymatroid. The
easiest form is the simple greedy algorithm stated in Algorithm 3.6. It increases one variable
per iteration with respect to the given constraints. Normally, x = 0 is chosen as feasible
initial iterate, but other choices are possible as long as x is feasible and element-wise smaller
than the optimal solution.
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x3

x2

x1

Figure 3.1: Example of a polymatroid

Algorithm 3.6 Simple greedy

Input: H,ns ∈ N, d ∈ RH , m,M ∈ NH , x feasible initial iterate
set I = {1, . . . ,H}
while

∑H
h=1 xh 6= ns −

∑H
h=1mh do

compute δh :=
d2h

xh+mh+1 −
d2h

xh+mh
for all h ∈ I

determine index h∗ such that δh∗ = minh∈I{δh}
if xh∗ + 1 ≤Mh∗ −mh∗ then

set xh∗ ← xh∗ + 1
else

set I ← I \ {h∗}
end if

end while

return optimal solution x
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The correctness of the simple greedy strategy is a consequence of the following result due to
Groenevelt (1991).

Theorem 3.4.2. The simple greedy algorithm �nds an integer solution of the problem

min

{
f(x) | x ≥ 0,

∑
e∈A

xe ≤ ϕ(A) ∀A ⊆ E

}
,

where

(i) E is a �nite set,

(ii) ϕ : 2E → R+ is submodular, monotone and satis�es ϕ(∅) = 0,

(iii) f : RE+ → R is separable with continuous convex components.

Indeed, if we apply the shift xh := nh − mh for all h = 1, . . . ,H and de�ne ϕ above by
ϕ(A) = min{

∑
e∈A(Me −me), n

s −
∑

e∈Eme}, it is easy to see that the feasible set of the
allocation problem 3.4 is a polymatroid. Furthermore, as f is separable with continuous
convex components, the simple greedy algorithm can be used to solve the problem.

However, the major drawback of the simple greedy strategy is the fact that it needs a lot
of (numerically cheap) iterations to �nd the optimum since only increments of one unit
per iteration are possible. Hochbaum (1994) presents an elegant re�nement that generally
uses only a fraction of the number of iterations of the simple strategy. She shows that a
greedy algorithm can be applied with arbitrary large increments, rather than unit increments.
Starting with an increment of s > 1, the increment is assigned to the most favorable activity
until no such increments are possible. Then, s is decreased and the process of scaled greedy
increments is repeated with the successively smaller increments until the increment equals 1
as in Algorithm 3.6.

We call this procedure given in Algorithm 3.7 capacity scaling. The mathematical �nesse
of the algorithm lies in Theorem 4.1 of Hochbaum (1994), which guarantees that only the
last increase of each variable with an increment higher than one might lead to non-optimal
assignments. By canceling this last step (after the end of the inner while-loop of the algo-
rithm), the iterate passed over to the simple greedy algorithm is not only guaranteed to be
feasible, but is element-wise smaller than the optimal solution. Therefore, the simple greedy
algorithm can reach the optimal solution from this starting point.
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Algorithm 3.7 Capacity scaling

Input: H,ns ∈ N, d ∈ RH , m,M ∈ NH

set I = {1, . . . ,H}, initial iterate x = 0 and initial increment s =
⌈
ns−

∑H
h=1mh

2H

⌉
.

while s > 1 do
while

∑n
i=1 xh < ns −

∑H
h=1mh and I 6= ∅ do

compute δh =
d2h

xh+mh+1 −
d2h

xh+mh
for all h ∈ I

determine index h∗ such that δh∗ = minh∈I{δh}
if xh∗ + 1 ≤Mh∗ −mh∗ then

if xh∗ + s ≤Mh∗ −mh∗ then

set xh∗ ← xh∗ + s
else

set xh∗ ← xh∗ + 1
set I ← I \ {h∗}

end if

else

set I ← I \ {h∗}
end if

end while

set xh ← max{0, xh − s} for all h ∈ {1, . . . ,H}
set I ← {1, . . . ,H}
set s← d s2e

end while

call simple greedy with initial iterate x
return optimal solution x

We further present a third algorithm which also can be considered a greedy strategy, but
abandons the concept of increasing only one variable per iteration. The underlying idea is
again quite simple: Algorithm 3.6 above successively increases the locally best variables until
the upper bounds are reached. The convexity of the objective implies that the marginal δh
increases in each iteration of the algorithm.

The key observation is that the entire solution can be reconstructed from the value of the
marginal δlast in the last iteration of the algorithm. That is because by computing the
marginal at an arbitrary value of an arbitrary variable nh = xh + mh and comparing it to
δlast, we can decide if nh is above or below its value in the optimal solution. Hence, the
optimization problem is equivalent to �nding δlast, which can easily be done by a binary
search. Before we present the algorithm, it is helpful to restate the problem of �nding δlast
in an illustrative form. Since the H variables nh of the allocation problem can only attain
�nitely many di�erent values, all possible values for δh can be written down in a (supposedly
very large) matrix. Furthermore, these values can be arranged in such a way that each
column of the matrix contains the possible marginals of one single variable nh, starting from
the marginal at nh = mh in the �rst row to nh = Mh. If necessary, the rest of each column
is �lled in with an arbitrary number that is larger than all marginals. Then, because of the
convexity of the components of the objective function, all columns are sorted. The Problem
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of �nding δlast can then be restated as �nding the (ns−
∑H

h=1mh)-smallest value among the
entries of this matrix. By considering the problem in the way above, it is clear why the paper
by Frederickson and Johnson (1982) motivated Algorithm 3.8.

Algorithm 3.8 Binary search

Input: H,ns ∈ N, d ∈ RH , m,M ∈ NH

set I = {1, . . . ,H} and initial iterate n = m.
while

∑H
h=1 nh 6= ns do

compute uh := bMh+mh+1
2 c and ch =

d2h
uh
− d2h

uh−1 for all h ∈ I
compute s := lower median{ch : h ∈ I}
compute nh := b0, 5 +

√
0, 25− d2

hs
−1c for all h ∈ I

if nh < mh then

set nh ← mh

end if

if nh > Mh then

set nh ←Mh

end if

if
∑H

h=1 nh < ns then
set mh ← nh for all h ∈ I

else

set Mh ← nh for all h ∈ I
end if

if mh = Mh then

set nh = mh

set I ← I \ {h}
end if

end while

return optimal solution n

Of course, the explicit construction of the matrix of marginal gains would be very costly in
an implementation of this idea. Fortunately, it is not necessary to construct it. Since the
objective function in Problem (3.4) has convex monotone summands, there exists an inverse
function of the marginal costs of every summand, precisely

d2
h

nh
−

d2
h

nh − 1
= δlast, nh ≥ 0 ⇔ nh = 0, 5 +

√
0, 25− d2

hδ
−1
last.

With the help of this simple formula, we are able to formulate Algorithm 3.8.

Note that, since the marginals per variable are sorted, the lower median of the remaining
possible values for nh is given by the simple formula bMh+mh+1

2 c. A key reason for the
e�ectiveness of the algorithm is the approximation of the (lower) median of the possible
values for all variables by computing the lower median of the lower medians per variable.
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3.5 Application to the German Census Sampling and

Estimation Research Project

Before applying the methods mentioned in Section 3.3 and 3.4, we will regard the setting and
circumstances in the German Census Sampling and Estimation Research Project. Recalling
De�nition 2.0.4 `A survey is a systematic method for gathering information from (a sample
of) entities for the purposes of constructing quantitative descriptors of the attributes of the
larger population of which the entities are members.' In the case of observing the whole
population, this special type of survey is called census (cf. Särndal et al., 2003).

The last German census was done in 1981 (German Democratic Republic) and 1987 (West
Germany), where these were classic censuses. In contrast to this, the German Census 2011 is
register-assisted and apart from analyzing the register of residents, a 10% sample is drawn for
getting information of register errors (over- and undercounts) and other variables of interest
that are not listed in the register. Thus, it is possible to determine the o�cial population
�gure (goal 1) and get detailed �gures on further information like educational background
or status of employment (goal 2). As only the people in the sample are interviewed and
data from the register is used, this method is cheaper than a classic survey while delivering
comparable results. Nevertheless, precision is not only demanded for on state level but also
on other levels like governmental units. Therefore, Germany is divided into disjunct domains,
the so called sampling points (SMP), what from partial samples are drawn. This guarantees
a nationwide distribution of the sample. These sampling points are divided into four types,
whose distribution can be seen in Figure 3.2 where

(i) Type 0, (SDT): urban districts with more than 200,000 inhabitants belonging to com-
munities with more than 400,000 inhabitants,

(ii) Type 1, (GEM): communities with at least 10,000 inhabitants as long as they do not
belong to type 0,

(iii) Type 2, (VBG): small communities (less than 10,000 inhabitants) in an association of
communities summing up to at least 10,000 inhabitants,

(iv) Type 3, (KRS): aggregation of the communities belonging to a district as long as they
are not assigned to another type.

Apart from the devision into SMPs, a strati�cation into eight strata depending on the reg-
istered inhabitants at an address is done, where each stratum contains the same number of
registered people.

The minimal and maximal sampling fraction yielding the box constraint were de�ned and are
given in Table 3.1. Note that type 2* denotes the SMPs of type 2 belonging to Rhineland-
Palatinate. They depend on the SMP type and the community size, where the latter one
leads to a division into
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(i) Type I: 0 to 10,000 inhabitants,

(ii) Type II: 10,000 to 30,000 inhabitants,

(iii) Type III: 30,000 to 100,000 inhabitants,

(iv) Type IV: more than 100,000 inhabitants.

These sampling fractions allow to gain reliable model estimates from rural vs. urban compar-
isons where the classical optimal allocation would yield an extremely high sampling fraction
in large towns and very low sampling fraction in rural areas. Furthermore, they restrict
the variation of design weights which in random sampling are given by dk = Nh/nh if the
observation k is in stratum h.

Figure 3.2: Distribution of the SMPs where SDT=yellow, GEM=red, VBG=green,
KRS=blue. Source: Münnich, Gabler, Ganninger, Burgard and Kolb (2012)

type 0 type 1 type 2* type 2 type 3
com. size ph Ph ph Ph ph Ph ph Ph ph Ph

I − − − − − − − − 0.05 0.05
II − − 0.05 0.50 0.05 0.50 0.05 0.05 0.05 0.05
III − − 0.04 0.40 0.04 0.40 0.05 0.05 0.05 0.05
IV 0.02 0.40 0.02 0.40 0.02 0.40 0.05 0.05 0.05 0.05

Table 3.1: Sampling fraction in the di�erent SMPs depending on community size
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This leads to the following simpli�ed allocation problem

min
n

2391∑
g=1

8∑
h=1

N2
g,hS

2
g,h

ng,h

s.t.
2391∑
g=1

8∑
h=1

ng,h = ns

mg,h ≤ ng,h ≤Mg,h ∀g = 1, . . . , 2391, h = 1, . . . , 8,

where S2
g,h denotes the stratum and area speci�c variance. Further explanations and a

detailed review can be found in Münnich, Gabler, Ganninger, Burgard and Kolb (2012).

Our simulation study was done with an arti�cially generated data set representing the Ger-
man population. This data was also used for the simulation studies in Münnich, Gabler,
Ganninger, Burgard and Kolb (2012). For further explanations concerning the generation of
the data we refer to Kolb (2012). Instead of 2391 SMPs, our setting consists of 2393 SMPs
and for the sake of simplicity our allocation problems is seen as vector valued, such that every
subset depending on the SMPs and strata is referred to as a stratum. Therefore, it follows
that n ∈ R19144

+ and each component nh represents the number of addresses drawn in the
stratum h (h = 1, . . . , 19144). Further, the data is simpli�ed in that way, that the lower and
upper bounds as well as the desired overall sample size ns are integer valued and no �xed
partial samples exist.

First, we tried to solve our problem with an already implemented algorithm in order to get
a benchmark. We chose the `solnp' algorithm implemented in the `Rsolnp' package but we
were faced with storage problems. The algorithm needs to compute a diagonal matrix with a
dimension higher than the number of strata which exceeds the available RAM on a common
desktop PC. This problem is avoided by computationally solving the root problem in R or
applying greedy-type methods because we do not need matrices or other memory absorbing
arrays.

In order to solve the continuous root problem with the di�erent algorithms, we had to choose
the upper and lower bounds for λ, i.e., a and b. In case the bounds did not satisfy the sign
constraint, they were adjusted by doubling or halving.

The computing e�ort of the algorithms in R for a problem with 19,144 variables executed on
a common desktop PC with an Intel(R) Core(TM)2 Duo CPU with 3.00GHz and an internal
memory of 4 GB can be seen in Table 3.2 and Table 3.5. GGM marks an improvement of
the method presented by Gabler et al. (2012), which uses the su�cient optimality conditions
in the proof in order to avoid ordering and is of linear complexity.
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time [sec] iterations
bisection method 0.484 30
secant method 0.088 8
regula falsi normal 0.261 17
regula falsi Illinois 0.083 7
regula falsi Pegasus 0.120 7
regula falsi alternative 0.072 4
GGM 0.032 18
�xed point iteration 0.014 4

Table 3.2: Computing time and number of iterations of the continuous methods in R

We can state that the �xed point iteration needs less time and less iterations than the other
methods, except for the regula falsi alternative that needs the same number of iterations
as the �xed point iteration. However, the �xed point iteration is much faster which can be
explained by a di�ering number of calculations in each iteration of the two methods. This
shows a drawback of more sophisticated methods. They may need less or the same number
of iterations but each iteration may require more time, which can also be seen in the case of
the regula falsi Pegasus and the regula falsi Illinois.

Regarding Table 3.3 we can see that the �xed point iteration also works with other start-
ing points, where 3.511786 · 10−8 is the computed starting point derived from the optimal
allocation following Neyman and Tschuprow.

λ0 1.000000 · 10−9 3.511786 · 10−8 1.000000 · 10−5

λ1 3.413068 · 10−8 1.399724 · 10−8 5.235127 · 10−9

λ2 1.399394 · 10−8 1.358768 · 10−8 1.441687 · 10−8

λ3 1.358768 · 10−8 1.358735 · 10−8 1.358746 · 10−8

λ4 1.358735 · 10−8 1.358735 · 10−8 1.358735 · 10−8

λ5 1.358735 · 10−8 − 1.358735 · 10−8

Table 3.3: Computed λk depending on di�erent starting points λ0 of the �xed point
iteration

The bisection method needs the most iterations because of the special structure of the func-
tion g, which can be seen in Figure 3.3. The left bound stays very long at a constant value
and in the beginning only the right bound is moving towards the root. We can also state
that the function g takes function values between 1.5 ·107 and −1 ·106 over the small interval
of length 3 · 10−8. Therefore, the function value is very sensitive concerning changes in λ.
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Figure 3.3: Plot of g(λ)

We also applied our algorithms to a higher dimensional problem, where the computational
e�ort of the di�ering algorithms is pointed out even stronger than in the problem with 19,444
variables (cf. Table 3.4).

number of variables
2 · 104 2 · 105 2 · 106 2 · 107

bisection method 0.484 6.617 57.096 960.782
secant method 0.088 1.152 9.518 132.942
regula falsi normal 0.261 4.422 38.694 475.119
regula falsi Illinois 0.083 1.158 10.356 158.492
regula falsi Pegasus 0.120 1.807 14.986 231.269
regula falsi alternative 0.072 0.992 8.192 105.409
GGM 0.032 0.371 3.460 52.236
�xed point iteration 0.014 0.226 1.653 61.860

Table 3.4: Computing time [sec] of the continuous methods in R for di�erent problem
sizes

Regarding the computing time and the number of iterations of the integer methods given in
Table 3.5, we can state that the simple greedy is the slowest method and needs the most
iterations. This is not surprising because in each iteration only one element is assigned.
Therefore, the number of iterations equals the number of elements to be assigned, i.e., in the
simulations study ns −

∑19144
h=1 mh = 4567313.
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time [sec] iterations
simple greedy 1165.06 4,567,313
capacity scaling 81.80 226,369
binary search 11.64 23

Table 3.5: Computing time and number of iterations of the integer methods in R

Capacity scaling leads to a speed-up in the computation time of factor 14 and needs only 5%
of the iteration steps of the simple greedy method. These 226,369 iterations are split into
203,785 iterations with an increment greater one and 22,584 iterations with an increment of
one, i.e., 22,584 steps of the simple greedy are performed.

The fastest method concerning computation time and needed iterations is the binary search
which only needs 11.64 seconds to solve the allocation problem. This means an enormous
speed-up of factor 100 and regarding the number of iterations, the binary search only needs
23 iterations which is precious little.

Almost the same properties can be encountered regarding the implementations of the algo-
rithms in C++. Further, due to the general advantage of being much faster than R and the
use of sophisticated object structures like heaps, the computing time of the implementations
in C++ could be reduced to a minimum (cf. Table 3.6).

time [sec] iterations
simple greedy 3.82 4,567,313
capacity scaling 0.58 283,457
binary search 0.10 22

Table 3.6: Computing time and number of iterations of the integer methods in C++

3.6 Rounding Impacts

One possible solution to overcome the non-integrity of the continuous solution is simple
rounding. However, the rounded solution does in general not coincide with the integer so-
lution, which in fact is the optimal solution. In the simulation study, the rounded solution
leads to an allocation with 25 elements less than the allocation determined by the greedy-
type algorithms. This means a variation of 0.0003% to the equality constraint, which is quite
small. Rounding up every partial sample leads to an allocation with 4816 elements more than
the allowed 7,900,000 given by ns, where rounding down leads to an allocation with 4876
elements missing. The problem of satisfying the equality constraint exactly can be tackled
by an intelligent rounding procedure, whereas we will not deal with this topic in this work.

Having a look at the rounded solution compared to the integer solution, we can state that
the di�erence is spread to 25 SMPs which are all missing exactly one element. Further, they
are spread all over Germany as we can see in Figure 3.4.
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Figure 3.4: SMPs with di�erence between the partial samples computed by rounding
and greedy-type algorithms

A clustering of these SMPs cannot be observed and Figure 3.5, showing Bavaria and Schleswig-
Holstein, also indicates that they are more or less randomly distributed. Although there are
25 SMPs in which the rounded solution deviates from the exact integer solution, those devia-
tions cannot be found in every state. In Baden-Wuerttemberg, Berlin, Bremen, Mecklenburg-
Western Pomerania, North Rhine-Westphalia as well as Rhineland-Palatinate the rounded
solution coincides with the computed integer solution.
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(a) Bavaria (b) Schleswig-Holstein

Figure 3.5: SMPs with di�erence between the partial samples computed by rounding
and greedy-type algorithms

It is also worth to mention that the di�erences do not only occur in some strata (the strata
depending on the registered inhabitants at an address) but can be found in every stratum
(cf. Table 3.7).

stratum 1 2 3 4 5 6 7 8
number of di�erences 3 2 2 2 4 4 5 3

Table 3.7: Di�erences depending on strata

Further, those di�erences occur almost only at SMPs of type 1, that are communities with
at least 10,000 inhabitants as long as they are no urban districts with more than 200,000
inhabitants belonging to communities with more than 400,000 inhabitants. At SMPs of type
3 and type 2 (except for Rhineland-Palatinate) the sampling fraction is �xed to 5%, so no
di�erences can occur.

In conclusion, the rounded continuous solution approximates the optimal solution rather good
and because of their speed, the continuous methods are powerful methods. This is especially
the case during �rst tests in which an optimal solution needs to be computed for di�erent
settings very often and therefore should be done very fast. After having found the optimal
setting, the detailed solution for this setting should be computed by integer methods which
are also relatively fast. Especially capacity scaling does not only determine the exact integer
solution but it is also very fast and can be applied in practice almost without any limitations.
However, all presented integer algorithms strongly rely on the special polymatroidal structure
of the feasible region.
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Fundamentals of Nonsmooth Analysis

Just as `nonlinear' is understood in mathematics to mean `not
necessarily linear' we intend the term `nonsmooth' to refer to certain

situations in which smoothness of the data is not necessarily postulated.
� Frank H. Clarke

Optimization and Nonsmooth Analysis

The �rst question that arises when reading this statement given in Clarke (1983) is: how
often are we faced with nonsmooth data? The answer to this is rather easy: frequently! A
well known example of nonsmooth functions is the distance function

dC : Rn → R+ ∪ {0}, x 7→ dC(x) = min
c∈C
‖x− c‖2,

where C ⊂ Rn. Another example is the reformulation f(x) = 0 of the nonlinear variational
inequality problem of �nding an x ∈ C such that

〈F (x), y − x〉 ≥ 0 ∀y ∈ C

with given F : Rn → Rn. Here f is given by

f : Rn → Rn, x 7→ x− PrC(x− F (x))

and PrC(·) denotes the projection operator of Rn onto C.

Therefore, it is necessary to extend existing optimization methods for developing a theory
that can be applied to nonsmooth cases.

Clarke mentions the generalized gradient and the generalized Jacobian for locally Lipschitz
functions. He uses this theory for solving some nonsmooth optimization problems, for ex-
ample by applying a Lagrange multiplier rule for nonsmooth functions. This generalized
Jacobian was already used by Mi�in (1977) in order to de�ne, with additional properties,
semismoothness for functionals. Applying his theory to functions, semismooth functions can
be described in an easy way as functions for which the generalized Jacobian de�nes a certain
approximation scheme. Another group of nonsmooth functions are B-di�erentiable functions,
which were �rst mentioned by Robinson (1987). The requirements for functions in order to
be B-di�erentiable can be satis�ed more easily than those for being semismooth. The disad-
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vantage of this is that the results for certain methods in the B-di�erentiable case are not as
strong as the ones in the semismooth case.

We will now have a short glance at some basics of functional analysis and the existing
di�erent types of (directional) derivatives. The de�nitions are mostly taken from Shapiro
(1990), Werner (2007), Yamamuro (1974), Pang (1990) as well as Rudin (1991).

4.1 Topological Aspects

Before dealing with the di�erent derivatives, we will revise some topological aspects. Al-
though we will deal with normed vector spaces for our applications, we give the de�nitions
in the original form and therefore need a short introduction to topological vector spaces.

De�nition 4.1.1 (Vector space). A vector space over a �eld K is a set V in which two
operations, addition + and scalar multiplication ·, are de�ned such that (V,+) is an Abelian
group and the scalar multiplication is compatible.

De�nition 4.1.2 (Topological space). A topological space is a pair (X,T ) of a set X and
a collection T of subsets of X (called open sets), with the following properties:

(i) X, ∅ are open,

(ii) U, V open ⇒ U ∩ V is open,

(iii) I index set, Ui open for all i ∈ I ⇒
⋃
i∈I Ui is open.

Such a collection T is called topology on X. If no explicit speci�cation of T is needed, the
topological space is called X rather than (X,T ).

De�nition 4.1.3 (Continuity). Let (X,TX), (Y, TY ) be topological spaces. Then a mapping
f : X → Y is continuous, if f−1(U) ∈ TX for all U ∈ TY .

De�nition 4.1.4 (Topological vector space). A topological vector space X is a vec-
tor space which is endowed with a topology such that addition and scalar multiplication are
continuous functions.

De�nition 4.1.5 (Banach space). A Banach space X is a normed vector space which is
complete in the metric de�ned by its norm; this means that every Cauchy sequence is required
to converge.

De�nition 4.1.6 (Hilbert space). A pair (X, 〈·, ·〉) with X being a vector space and 〈·, ·〉
being a scalar product on X is called inner product space. If the resulting normed space is
complete, it is called a Hilbert space.

Remark 4.1.7. (i) Banach spaces, Hilbert spaces and normed vector spaces are topological
vector spaces.

(ii) The following implications hold: Hilbert space ⇒ Banach space ⇒ normed vector space
⇒ metric vector space ⇒ topological vector space
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4.2 Di�erent Types of Derivatives

We will now revise some concepts of di�erentiability. First, we have a look at Shapiro
(1990) who de�nes a class of directional derivatives corresponding to the topology of uniform
convergence on a family of subsets. Under certain conditions, these directional derivatives
coincide with the well known Fréchet and Gâteaux derivative as well as the Bouligand-
derivative given in Robinson (1987), which is essential in the theory of nonsmooth analysis.

De�nition 4.2.1 (Lipschitz continuity). Let (X, dX), (Y, dY ) be metric spaces. A function
f : X → Y is called Lipschitz (continuous) if there exists a real constant L ≥ 0 such that

dY (f(x1), f(x2)) ≤ LdX(x1, x2) ∀x1, x2 ∈ X.

L is called a Lipschitz constant for the function f . If L ∈ (0, 1), the function is called a
contraction.

De�nition 4.2.2 (Locally Lipschitz continuity). Let (X, dX), (Y, dY ) be metric spaces. A
function f : X → Y is called locally Lipschitz (continuous) if for every x ∈ X there
exists a neighborhood U of x such that f restricted to U is Lipschitz continuous.

De�nition 4.2.3 (Positive homogeneity). A mapping A : X → Y is called positively

homogeneous if

A(th) = tA(h) ∀t ≥ 0, h ∈ X.

De�nition 4.2.4 (σ-directionally di�erentiability). Let X,Y be topological vector spaces
over the topological �eld R, f : X → Y and let Σ be a family of subsets of X. f is called
σ-directionally di�erentiable at x ∈ X if there exists a positively homogeneous mapping
A : X → Y satisfying

(i) f(x+ h)− f(x) = A(h) + r(h) and (4.1)

(ii) for all S ∈ Σ :
r(th)

t
−−−→
t→0+

0 uniformly with respect to h ∈ S. (4.2)

Remark 4.2.5. (i) If the family Σ consists of all �nite subsets of X, the obtained σ-
directional derivative coincides with the Gâteaux directional derivative, which will be
de�ned later on.

(ii) If the family Σ consists of sequentially compact subsets of X, we get the compact direc-
tional derivative.

(iii) If the family Σ consists of all bounded subsets of X, we obtain the bounded directional
derivative.

(iv) If Σ consists of all bounded subsets of X and X,Y are normed spaces, (4.1) and (4.2)
can be replaced by

lim
h→0

‖f(x+ h)− f(x)−A(h)‖
‖h‖

= 0. (4.3)
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(v) If in addition the mapping A in (4.3) is linear and continuous we get the Fréchet
derivative, which will be de�ned later on.

(vi) For locally Lipschitz mappings in �nite-dimensional spaces, an equivalent de�nition to
(4.3) was given in Robinson (1987) under the name `Bouligand-derivative'.

This concept of directional derivatives depending on certain sets is also mentioned in Clarke
(1983) where the sets are required to be Banach spaces instead of being common topological
spaces.

De�nition 4.2.6. Let X,Y be topological vector spaces. L(X,Y ) denotes the set of all
continuous linear mappings of X to Y .

De�nition 4.2.7 (Directional derivative). Let f map X to another Banach space Y . The
directional derivative of f at x in the direction h is de�ned as

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
,

if the limit exists.

De�nition 4.2.8 (Gâteaux, Hadamard, Fréchet derivative; Banach spaces). Let X,Y be
Banach spaces and x ∈ X. A function f is said to admit a Gâteaux derivative at x, if
there exists Df(x) ∈ L(X,Y ) such that for every every h in X, one has

lim
t→0+

f(x+ th)− f(x)

t
= 〈Df(x), h〉,

and that the convergence is uniform with respect to h in �nite sets.
If the word `�nite' in the preceding sentence is replaced by `compact', the derivative is known
as Hadamard derivative; for `bounded' we obtain the Fréchet derivative.

The concept of di�erentiability mentioned in Yamamuro (1974) is again quite similar to the
concept mentioned in Shapiro (1990). He also de�nes a derivative depending on certain sets,
the so called M-derivative.

De�nition 4.2.9 (Directional derivative). If the directional derivative of f at x in direc-
tion h exists, we write: f ∈ D(x, Y ;→ h). Further, D(x, Y ;→ X) :=

⋂
h∈X D(x, Y ;→ h).

De�nition 4.2.10 (M-di�erentiability). Let X,Y be topological vector spaces, D ⊂ X open
and M be a set of subsets of X such that every singleton belongs to M .
f : D → Y is called M-di�erentiable at x if there exists

A ∈ L(X,Y ) : lim
t→0+

f(x+ th)− f(x)−A(th)

t
= 0

uniformly with respect to h on each member ofM . We write f ∈ DM (x, Y ) and the continuous
and linear mapping A is called M-derivative.
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Remark 4.2.11 (Gâteaux, Hadamard, Fréchet derivative). Assume that f ∈ DM (x, Y ).

(i) If M consists of all bounded subsets of X, f is Fréchet di�erentiable at x. We write:
f ∈ D(x, Y ).

(ii) If M consists of all sequentially compact subsets of X, f is Hadamard di�erentiable

at x. We write: f ∈ DH(x, Y ).

(iii) If M consists of all single point subsets of X, f is Gâteaux di�erentiable at x. We
write: f ∈ DG(x, Y ).

The following lemma shows the connection between Fréchet, Hadamard, Gâteaux and direc-
tional di�erentiable functions.

Lemma 4.2.12.

D(x, Y ) ⊂ DH(x, Y ) ⊂ DG(x, Y ) ⊂ D(x, Y ;→ X)

Proof. Refer to Yamamuro (1974). �

In the case of normed vector spaces, we get the following lemma for Fréchet di�erentiable
functions.

Lemma 4.2.13. Let X be a normed linear space and Y be a topological vector space. Then
f ∈ D(x, Y ) if and only if

lim
h→0

f(x+ h)− f(x)−A(h)

‖h‖
= 0.

Proof. Refer to Yamamuro (1974). �

We will now have a detailed look at the case in which X,Y are normed spaces, which is the
case for our application. In contrast to the former de�nitions, these de�nitions do not make
use of di�erent sets for de�ning the derivatives. For further details we refer to Werner (2007).
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De�nition 4.2.14 (Gâteaux, Fréchet derivative; normed spaces). Let X,Y be normed spaces,
D ⊂ X be an open subset and f : D → Y .

(i) f is called Gâteaux di�erentiable in x ∈ D if there exists a continuous linear oper-
ator A ∈ L(X,Y ) such that

lim
t→0

f(x+ th)− f(x)

t
= A(h) ∀h ∈ X. (4.4)

(ii) f is called Fréchet di�erentiable in x ∈ D if the convergence in (4.4) is uniform
concerning h ∈ BX = {y : ‖y‖ ≤ 1}.

Lemma 4.2.15. Let X,Y be normed spaces, D ⊂ X be an open subset and f : D → Y . f
is Fréchet di�erentiable in x ∈ D if and only if there exits A ∈ L(X,Y ) such that

(i) f(x+ h)− f(x) = A(h) + r(h) and (4.5)

(ii)
r(h)

‖h‖
−−−−→
‖h‖→0

0. (4.6)

Proof. Refer to Werner (2007). �

4.3 B-di�erentiability

Now that we have seen this many di�erent de�nitions of the derivatives one may ask how
B(ouligand)-di�erentiability �ts into these de�nitions. As noted in Remark 4.2.5, Shapiro
(1990) mentions the Bouligand-di�erentiability for the case the family Σ consists of all
bounded subsets of X. At �rst glance this seems to characterize Fréchet di�erentiability
but in his de�nition he does not require A to be continuous and linear. He only requires A to
be a positively homogeneous mapping. Pang (1990) gives a clear de�nition of B(ouligand)-
di�erentiability for the case f : Rn → Rm and points out the di�erence between the deriva-
tives mentioned in the last section.

De�nition 4.3.1 (B-di�erentiability). A function f : Rn → Rm is said to be B-di�er-
entiable at x ∈ Rn if there exists a positively homogeneous function A : Rn → Rm, called
the B-derivative of f at x, such that

lim
h→0

f(x+ h)− f(x)−A(h)

‖h‖
= 0.

If f is B-di�erentiable at all x ∈ S, then f is said to be B-di�erentiable on S.

Remark 4.3.2. In the original de�nition of B-di�erentiability in Robinson (1987) the posi-
tive homogeneity of the B-derivative was expressed in terms of a cone property of its graph.

Remark 4.3.3. The one fundamental distinction between a B-di�erentiable function and a
Fréchet di�erentiable function is the absence of linearity in the B-derivative.
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Shapiro (1990) shows that ifX,Y in De�nition 4.2.4 are normed �nite dimensional spaces and
f : X → Y is locally Lipschitz, all types of directional derivatives mentioned in Remark 4.2.5
coincide. Therefore we get the following easy to understand de�nition for B-di�erentiability
in the case that X = Rn, Y = Rm.

De�nition 4.3.4 (B-di�erentiability; locally Lipschitz). f : Rn → Rm is called B-di�erentiable
in x ∈ D if f is locally Lipschitz and all directional derivatives exist in x ∈ D.

The local Lipschitz property is important because it is well known that there are functions
that are directionally di�erentiable at a point without being continuous there. Another
important consequence of the B-di�erentiability is that the limit of the directional derivative
is uniform on compact sets of directions. This is stated in the following lemma.

Lemma 4.3.5. Let D ⊂ Rn, f : D → Rm be B-di�erentiable in x ∈ D. Then

lim
h→0

f(x+ h)− f(x)− f ′(x;h)

‖h‖
= 0.

Proof. Refer to Kanzow (2005), Ito and Kunisch (2009), Facchinei and Pang (2003a) or Qi
(1993). �

This property will be used in Chapter 6 and can be rewritten as follows.

Lemma 4.3.6. Let f : Rn → Rm be a B-di�erentiable function and t ≥ 0. Then it holds:

(i) f(x+ h)− f(x)− f ′(x;h) = o(‖h‖),
(ii) f(x+ th)− f(x) ≤ tf ′(x;h) + φ(t‖h‖)t‖h‖,

where φ is a function

φ : R→ R+ ∪ {0}, u 7→ φ(u)

satisfying φ(u) −−−→
u→0

0.

Proof. (i) Refer to Qi (1993).

(ii) Follows from (i) and f ′(x; ·) being positively homogeneous.

�

4.4 Generalized Jacobian

As a nonsmooth function f : Rn → Rm is not di�erentiable in the usual Fréchet sense for
all x ∈ D, we need to de�ne an analogon for the usual Jacobian. Furthermore, if we want
to develop algorithms for solving nonsmooth equations, we will encounter many di�culties
when sticking solely to directional derivatives. Therefore, we make use of the generalized
Jacobian which is discussed in detail in Clarke (1983) and Kanzow (2005). This generalized
Jacobian is needed for the generalized Newton's method, which we will mention in Chapter
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6, and the semismooth Newton method from Qi and Sun (1993), which will be mentioned in
Chapter 5. Furthermore, we give some important theorems and lemmata.

De�nition 4.4.1. Df denotes the set of all elements in which f is di�erentiable.

Df := {x ∈ Rn : f is di�erentiable in x}

De�nition 4.4.2 (B-subdi�erential, generalized Jacobian). Let f : Rn → Rm be locally
Lipschitz, x ∈ Rn and let Jf (x) ∈ Rm×n denote the Jacobian of f in x ∈ Df . Then

∂Bf(x) := {V ∈ Rm×n : ∃(xk)k∈N ⊂ Df : xk → x and Jf (xk)→ V }

is called B-subdi�erential of f in x and

∂f(x) := conv ∂Bf(x)

is called the generalized Jacobian of f in x.

Remark 4.4.3. The existence of the sequence (xk)k∈N is guaranteed due to Rademacher
(1919), who shows that a locally Lipschitz function f is di�erentiable almost everywhere so
Rn \Df has Lebesgue measure zero.

For understanding and getting used to the generalized Jacobian we will have a look at the
following examples.

Example 4.4.4. (i) If f : Rn → Rm is a continuously di�erentiable function then

∂Bf(x) = ∂f(x) = {Jf (x)} ∀x ∈ Rn.

(ii) If f : R→ R, x 7→ |x|, we get

∂Bf(x) = ∂f(x) = {Jf (x)} ∀x 6= 0

∂Bf(0) = {−1,+1}, ∂f(0) = [−1,+1].

(iii) If f : R→ R, x 7→ max{0, x}, we deduce

∂Bf(x) = ∂f(x) = {Jf (x)} ∀x 6= 0

∂Bf(0) = {0,+1}, ∂f(0) = [0,+1].

(iv) If f : Rn → R, x 7→ ‖x‖2, we obtain

∂Bf(x) = ∂f(x) =

{
x

‖x‖2

}
∀x 6= 0

∂Bf(0) = {x ∈ Rn : ‖x‖2 = 1}, ∂f(0) = {x ∈ Rn : ‖x‖2 ≤ 1}.

Now we will consider some useful properties of B-di�erentiable and locally Lipschitz functions,
which will be helpful for the next chapters.
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Figure 4.1: Example of the B-subdi�erential (red) and elements of the generalized
Jacobian (blue)

Theorem 4.4.5 (Mean value theorem). Let D ⊂ Rn be open, f : D → Rm be locally
Lipschitz and x, y ∈ D. Then there exist m + 1 points zk on [x, y] as well as m + 1 scalars
λk ≥ 0 satisfying

∑m+1
k=1 λk = 1 and Vk ∈ ∂f(zk) such that

f(y)− f(x) =
m+1∑
k=1

λkVk(y − x).

Proof. Refer to Clarke (1983). �

The former theorem re�ects a mean value theorem which is frequently not known even for
smooth functions. Furthermore, we get the following corollary of Theorem 4.4.5 which shows
the connection of the generalized Jacobian with B-di�erentiable functions.

Corollary 4.4.6. Let D ⊂ Rn be open and f : D → Rm be B-di�erentiable in x ∈ D. Then
for every h ∈ Rn there exists V ∈ ∂f(x) such that

f ′(x;h) = V h.

Proof. Refer to Qi and Sun (1993). �
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4.5 Semismoothness

The before mentioned generalized Jacobian helps to extend many results from smooth analy-
sis to locally Lipschitz functions. However, a straightforward extension of Newton's method
to general nonsmooth equations by using the generalized Jacobian will not work so eas-
ily, so we need another important notion of nonsmooth analysis, namely semismoothness.
Semismoothness was originally introduced for functionals by Mi�in (1977) and extended
by Qi and Sun (1993), who make use of `p-order semismoothness'. We will concentrate on
the basic semismoothness and strong semismoothness, which in some cases also combine
B-di�erentiability with the generalized Jacobian. As we can see in the next de�nition, semis-
mooth functions are locally Lipschitz functions for which the generalized Jacobians de�ne
a certain approximation scheme. This makes it possible to get almost the same results for
Newton's method in the nonsmooth case as in the smooth case. For a detailed discussion on
generalized Newton's methods we refer to Chapter 5 and 6.

De�nition 4.5.1 (Semismoothness). Let D ⊂ Rn and f : D → Rm be a B-di�erentiable
function. Then f is called

(i) semismooth in x ∈ D, if lim
hk→0,Vk∈∂f(x+hk)

Vkh
k − f ′(x;hk)

‖ hk ‖
= 0,

(ii) strongly semismooth in x ∈ D, if lim sup
hk→0,Vk∈∂f(x+hk)

Vkh
k − f ′(x;hk)

‖ hk ‖2
< +∞,

(iii) (strongly) semismooth on D, if f is (strongly) semismooth in every x ∈ D.

This de�nition is rather complicated but as we will see now, many common functions are
semismooth functions.

Lemma 4.5.2. Let D ⊂ Rn be open, x ∈ D and f : D → Rm be Lipschitz. Then it holds:

(i) If f is continuously di�erentiable in x, then f is semismooth in x.

(ii) If f is di�erentiable and f ′ locally Lipschitz in x, then f is strongly semismooth
in x.

Proof. Refer to Kanzow (2005) or Qi and Sun (1993). �

Theorem 4.5.3. Let D ⊂ Rn be open, convex, and f : D → R be convex. Then f is
semismooth on D.

Proof. Refer to Kanzow (2005) or Qi and Sun (1993). �

Example 4.5.4. (i) The minimum-function

f : R2 → R, (x, y) 7→ min{x, y}

is strongly semismooth on R2.
As f is di�erentiable and f ′ is locally Lipschitz for all x 6= y, f is strongly semismooth
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for all x 6= y (Lemma 4.5.2). The strong semismoothness in x = y, that are the points
in the kink of the surface of f , can be proved by a simple calculation.

(ii) The Fischer-Burmeister function (Fischer, 1992)

FB : R2 → R, (x, y) 7→
√
x2 + y2 − x− y

is strongly semismooth on R2. This function plays an important role in solving vari-
ational inequality problems because it serves as NCP-function and the corresponding
merit function is smooth, which simpli�es gaining convergence statements. A short
overview of this topic will be given in Chapter 6.
As FB is convex on R2, FB is semismooth on R2 (Theorem 4.5.3). For all
(x, y) 6= (0, 0), FB is strongly semismooth because of Lemma 4.5.2. The strong semi-
smoothness in (x, y) = (0, 0) can be proved by simple calculation.
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Figure 4.2: Perspective plot of the minimum-function (a) and the Fischer-Burmeister
function (b)

As the sum of Fréchet di�erentiable functions is again Fréchet di�erentiable, we are interested
whether such rules also exist for semismooth functions.

Lemma 4.5.5. Let f : Rn → Rm be a locally Lipschitz function. If each component of f is
semismooth at x, then f is semismooth at x.

Proof. Refer to Qi and Sun (1993). �
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Lemma 4.5.6. (i) Scalar products of semismooth functions are semismooth functions.

(ii) The sum of semismooth functions is semismooth.

Proof. Refer to Mi�in (1977). �

Lemma 4.5.7 (Chain rule). Let f : Rn → Rm be semismooth at x ∈ Rn and g : Rm → Rn

be semismooth at f(x) ∈ Rm. Then, the composite function g ◦ f is semismooth at x.

Proof. Refer to Fischer (1997). �

Semismoothness positively a�ects the properties of the directional derivatives as we will see
in the following estimates.

Lemma 4.5.8. Let D ⊂ Rn be open, x ∈ D and f : D → Rm be B-di�erentiable in x. Then
it holds:

(i) If f is semismooth in x, then

‖f ′(x+ h;h)− f ′(x;h)‖ = o(‖h‖) ∀h→ 0.

(ii) If f is strongly semismooth in x, then

‖f ′(x+ h;h)− f ′(x;h)‖ = O(‖h‖2) ∀h→ 0.

Proof. Refer to Kanzow (2005). �

The next lemma describes an estimate for a kind of a Taylor expansion.

Lemma 4.5.9. Let f : Rn → Rm be B-di�erentiable and x ∈ Rn. Then it holds:

(i) If f is semismooth in x, then

‖f(x+ h)− f(x)− V h‖ = o(‖h‖) ∀h→ 0, V ∈ ∂f(x+ h).

(ii) If f is strongly semismooth in x, then

‖f(x+ h)− f(x)− V h‖ = O(‖h‖2) ∀h→ 0, V ∈ ∂f(x+ h).

Proof. Refer to Kanzow (2005). �
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Chapter 5

Calibration via Semismooth Newton Method

Calibration has established itself as an important methodological
instrument in large-scale production of statistics.

� Carl-Erik Särndal

The Calibration Approach in Survey Theory and Practice

Calibration is a widely used term which in general may have di�erent meanings. Having a
look at http://www.thefreedictionary.com/calibrating we get a military based de�ni-
tion like `to measure the caliber of (a gun, mortar, etc.)' or `to determine or check the range
and accuracy of (a piece of artillery)' as well as de�nitions based in physics like `to mark (the
scale of a measuring instrument) so that readings can be made in appropriate units' or `to
determine the accuracy of (a measuring instrument, etc.)'. Furthermore, the more general
de�nition `to check, adjust, or standardize a measuring instrument, usually by comparing it
with an accepted model' is given. This �ts to the usage of calibration in mathematics, like
`adjoint-based calibration of local volatility models' where the parameter `local volatility' of
the measuring instrument `local volatility model' is adjusted by comparing the computed call
prices to given market data. Apart from these applications, statisticians make use of calibra-
tion in the context of calibrating design weights for certain estimators and as mentioned in
Särndal (2007), `calibration has established itself as an important methodological instrument
in large-scale production of statistics.'

5.1 Calibration in Statistics

As seen before, calibration has di�erent meanings so we will recall the de�nition and argu-
ments given in Särndal (2007) to state our point of view.

De�nition 5.1.1 (Calibration approach). The calibration approach to estimation for
�nite populations consists of

(i) a computation of weights that incorporate speci�ed auxiliary information and are re-
strained by calibration equation(s),

(ii) the use of these weights to compute linearly weighted estimates of totals and other �nite
population parameters: weight times variable value, summed over a set of observed
units,
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(iii) an objective to obtain nearly design unbiased estimates as long as nonresponse and other
non sampling errors are absent.

This de�nition shows the advantages of calibration. Leading national statistical agencies
�x on weighting methods because they are easy to explain to users and stakeholders and
are, not only because of Horvitz and Thompson (1952), widely accepted. Furthermore,
using auxiliary information allows to improve the accuracy of survey estimates and can deal
e�ectively with surveys where auxiliary information exists at di�erent levels, which is the case
in the German Census Sampling and Estimation Research Project. In addition to that, if the
gained weights are applied to a variable used for calibration, they deliver the known estimates
or true values. In case of a sample based census that uses di�erent kinds of estimators, this is
very important because consistency with known aggregates is a desire to promote credibility.
As most addressee of census results want to get one tool which can be applied to di�erent
variables, calibration delivers a unique weighting system, applicable to many study variables.

One standard approach to include these weights is calibration estimation according to Deville
and Särndal (1992). However, it has to be kept in mind that the calibration approach can also
deal with complex sampling designs, adjustments for nonresponse and frame errors. Since we
are only interested in the computation of the weights we assume that we have single phase
sampling and full response.

A simple way of weighting the study variable values yk by the inverse of their inclusion
probabilities πk was introduced by Horvitz and Thompson (1952)

t̂HTy =

n∑
k=1

dkyk,

where dk = π−1
k (k = 1, . . . , n) denote the (original) design weights which are the reciprocal

of the inclusion probabilities from a survey of size n.

It is often the case that some totals are known and shall be reproduced by Horvitz-Thompson
estimation. These so-called calibration benchmarks

tx =
n∑
k=1

wkxk

require the introduction of new calibrated weights wk = gkdk, which should be close to the
design weights dk.

Since the calibrated weights gkdk should not di�er too much from the design weights, one
could - in addition - minimize the distance between gk and 1 for all k = 1, . . . n, which leads
to the following calibration problem.

min
g∈Rn

1

2

n∑
k=1

dk(gk − 1)2 (5.1)

s.t.

n∑
k=1

wkxk =

n∑
k=1

gkdkxk = tx (5.2)
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where xk and tx are vector-valued quantities.

This method is called the minimum distance method (cf. Särndal, 2007) and was developed
further by Deville and Särndal (1992) who dealt with di�erent distance functions like

n∑
k=1

dk(gk · ln(gk)− gk + 1)

and showed that they generate asymptotically equivalent calibration estimators. Other dis-
tance functions were considered by Deville et al. (1993), Singh and Mohl (1996) as well as
Stukel et al. (1996). An e�cient variance estimation method is given by Demnati and Rao
(2004).

Apart from this method there also exists the instrumental vector method considered in Es-
tevao and Särndal (2006) and Kott (2006), which we will not consider in this work. A recent
overview of the developments in calibration methodology can be drawn from Kim and Park
(2010).

Furthermore, it might be necessary in some instances, to limit the size of the weights in
order to avoid a huge spread of the values. This can be seen as a hard way of circumventing
a large variation of the calibrated survey weights as demanded in Gelman (2007b). Hence,
in addition to the linear system of equations, we add a box constraint for the variables g.
Therefore, we denote

U = {g ∈ Rn : mk ≤ gk ≤Mk, k = 1, ..., n},

with 0 ≤ mk ≤ 1 ≤ Mk. This leads to our formulation of the calibration problem as a
quadratic program with linear equality and inequality constraints.

There are several approaches in the literature that deal with the solution of the constrained
optimization using the special structure of the constraints. One approach followed by Deville
et al. (1993) uses a penalty function formulation for the box constraint. Here we extend their
approach to our setting with componentwise di�erent bounds. Then the objective function
is given by

n∑
k=1

dkf
k
3 (gk)

where

fk3 (gk) =

{(
(gk −mk)ln(gk−mk1−mk ) + (Mk − gk)ln(Mk−gk

Mk−1 )
)
α, if mk < gk < Mk,

∞ if gk ≤ mk, gk ≥Mk.

with α = (Mk−1)(1−mk)
Mk−mk . The resulting calibration problem is a minimization problem with

only equality constraints. This can be tackled by solving with the Lagrange multiplier rule
the necessary optimality conditions, a system of nonlinear equations in g and the multiplier
λ. Although this method is somewhat related to interior point methods, it does not change
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Chapter 5 Calibration via Semismooth Newton Method

the penalty parameter as the iteration progresses. Therefore, the solution of such a problem
cannot have components with values on the boundary of the box constraint U .

One of the most recent methods proposed in statistics for solving the constrained calibration
problem with a quadratic objective function in the statistics software R from the R Develop-
ment Core Team (2012) is the solver `calib' created by the group of Yves Tillé (cf. Tillé and
Matei, 2009). It can be interpreted as a pegging algorithm, that means in every iteration it
computes the solution of the optimization problem with equality constraints for the index set
I ⊂ {1, . . . , n} of all inactive indices and afterwards projects this solution on the set deter-
mined by the box constraint. Then the set of inactive indices is updated and the calibration
benchmarks t are reduced by the value of all gk which became active in this iteration. Then
the iteration starts again and the optimization problem with equality constraints is solved
for the new index set I of all inactive indices. In optimization, see Gill et al. (1981), it is well
known, that active set strategies like the one explained above are in general not su�cient to
ensure convergence of the iterates. However, in practice this method works quite well.

Vanderhoeft (2001) proposes a Newton-type method where he uses the technique of the La-
grange multiplier for the simpli�ed problem without box constraint and sets up the necessary
optimality conditions. This equation can be solved explicitly where the solution depends on
the Lagrange multiplier. Then the Lagrange multiplier has to be chosen such that the equal-
ity constraint is satis�ed. This technique is modi�ed and the projection is included in this
procedure. The resulting nonlinear equation is solved by a Newton-type method, where the
derivative is replaced by some approximation. The disadvantage of this approach is that it
does not guarantee convergence and that it may break down.

Our goal is to transform the calibration problem for general functions f into a nonlinear
equation ψ depending on the Lagrange multiplier similar to the approach given in Chapter 3
dealing with the optimal allocation problem. Since - due to the projection - this mapping ψ is
no longer di�erentiable in the classical sense, Newton's method cannot be applied. However,
the nonlinearity is such that it is possible to apply the `semismooth Newton method' given in
Qi and Sun (1993) in order to solve this equation numerically. This algorithm can be applied
to the calibration problem with box constraint and yields a fast and e�cient numerical
method. Furthermore, the analysis of this method is well understood and local quadratic
convergence will be shown.

5.2 Mathematical Formulation of the Calibration problem

Let 0 < p < n < ∞ and let xk = (xk1, ..., xkp)
T ∈ Rp for k = 1, . . . , n be the calibration

variables. Measurements of these variables are available for all sample elements. Furthermore,
let xki be the value of the i-th calibration variable for the k-th sample element. The variable
dk denotes the reciprocal of the inclusion probability for all xk, (k = 1, ..., n), so we can de�ne
d = (d1, ..., dn)T ∈ Rn as the vector of the design weights. The calibration factors, which
will be determined by the algorithm, are denoted by gk (k = 1, ..., n) and form the vector of
g-weights g = (g1, ..., gn)T ∈ Rn. There also exist calibration benchmarks txi (i = 1, ..., p)
forming the vector of the calibration totals tx = (tx1 , ..., txp)

T ∈ Rp.
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5.2 Mathematical Formulation of the Calibration problem

We further de�ne the following matrices:

X̄T :=

 | |
ξ1 · · · ξn
| |

 =

 ξ11 · · · ξn1
...

...
ξ1p · · · ξnp

 =

 x11d1 · · · xn1dn
...

...
x1pd1 · · · xnpdn

 ∈ Rp×n,
D := diag(d1, ..., dn),

where X̄T is called the design matrix and consists of the values of the i-th calibration variable
for the k-th sample element multiplied with the design weights.

As already mentioned, we may want to avoid negative or widely spread calibration factors
so we de�ne the box constraint

U = {g ∈ Rn : mk ≤ gk ≤Mk, k = 1, ..., n},

qualifying a convex, closed set. Here we assume 0 ≤ mk ≤ 1 ≤Mk.

Let f be a strictly convex, nonnegative, twice continuously di�erentiable function

f : R+ → R+ ∪ {0},

which satis�es f(1) = 0, f ′(1) = 0 and f ′′(1) = 1. Then we de�ne

F : Rn+ → (R+ ∪ {0})n, g 7→ F (g) = (f(g1), ..., f(gn))T ,

with the Jacobian

F ′ : Rn+ → Rn×n, g 7→ F ′(g) = diag(f ′(g1), ..., f ′(gn)),

and its inverse

F ′−1 : Rn → Rn×n, u 7→ F ′−1(u) = diag(f ′−1(u1), ..., f ′−1(un)).

In the literature, special cases are being considered. The truncated linear method means
calibration with a box constraint concerning the function

f1 : R→ R+ ∪ {0}, gk 7→ f1(gk) =
(gk − 1)2

2
,

and the multiplicative method with additional box constraint where

f2 : R+ → R+ ∪ {0}, gk 7→ f2(gk) = gk · ln(gk)− gk + 1.

In this setting we consider the following general calibration problem:

min
g∈Rn

dTF (g)

s.t. X̄T g − tx = 0

g ∈ U.

(5.3)
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Chapter 5 Calibration via Semismooth Newton Method

Furthermore, we assume that the feasible set is non-empty. Since it is a convex compact set
and dTF (·) is continuous, there exists a solution of the calibration problem (5.3) which is
due to the strict convexity of dTF (·) unique.

5.3 Solution of the Calibration Problem

The main goal in the following approach (cf. Münnich, Sachs and Wagner, 2012b) is to
express g as a function depending on the Lagrange multiplier λ. Then, this expression g(λ)
is inserted into the function

h : Rn → Rp, g 7→ h(g) = X̄T g − t,

which leads to a p-dimensional nonsmooth equation h(g(λ)) = 0. This approach is a gener-
alization of the approach presented in Münnich, Sachs and Wagner (2012c) which dealt with
a di�erent objective function but only one equality constraint.

For a standard Lagrangian approach with complementarity conditions we rewrite the cali-
bration problem (5.3) with equality and inequality constraints as:

min dTF (g)

s.t. h(g) := X̄T g − tx = 0

u(g) := g −M ≤ 0

v(g) := m− g ≤ 0.

(5.4)

The corresponding optimality criteria read as follows.

Theorem 5.3.1. A vector g∗ ∈ Rn is a solution of problem (5.4) if and only if there exists
a Lagrange multiplier λ∗ ∈ Rp, µ∗ ∈ Rn+, κ∗ ∈ Rn+ such that

∇(dTF (g∗)) +

p∑
i=1

λ∗i∇hi(g∗) +
n∑
j=1

µ∗j∇uj(g∗) +
n∑
k=1

κ∗k∇vk(g∗) = 0, (5.5)

h(g∗) = 0, (5.6)

µ∗juj(g
∗) = 0 (j = 1, . . . , n), (5.7)

κ∗kvk(g
∗) = 0 (k = 1, . . . , n). (5.8)

Proof. See Theorem 3.8 in Horst (1979). A constraint quali�cation condition is satis�ed
because of all constraint functions being a�ne. Furthermore, the objective function dTF (g)
is separable and strictly convex and the feasible set is convex, so the necessary optimality
condition is also su�cient. �

This system of equalities can be reformulated in a more compact form.
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5.3 Solution of the Calibration Problem

Lemma 5.3.2. Under the given assumptions of Theorem 5.3.1 equation (5.5) is equivalent
to

0 ≥ dkf ′(Mk) + ξTk λ
∗ if g∗k = Mk,

0 = dkf
′(g∗k) + ξTk λ

∗ if g∗k ∈ (mk,Mk),
0 ≤ dkf ′(mk) + ξTk λ

∗ if g∗k = mk,

 (k = 1, . . . , n). (5.9)

Proof. A closer look at equations (5.7) and (5.8) reveals the following equivalences for the
optimal solution g∗:

g∗k = Mk ⇔ uk(g
∗) = 0, µ∗k ≥ 0, vk(g

∗) < 0, κ∗k = 0,

g∗k = mk ⇔ uk(g
∗) < 0, µ∗k = 0, vk(g

∗) = 0, κ∗k ≥ 0 (k = 1, . . . , n),

g∗k ∈ (mk,Mk) ⇔ uk(g
∗) < 0, µ∗k = 0, vk(g

∗) < 0, κ∗k = 0.

As ∇(dTF (g∗))k = dkf
′(g∗k), ∇hk(g∗) = (ξ1k, . . . , ξnk)

T , ∇uk(g∗) = ek and ∇vk(g∗) = −ek
for all k = 1, . . . , n equation (5.5) is equivalent to

dkf
′(g∗k) + ξTk λ

∗ + µk − κk = 0 (k = 1, . . . , n).

This is again equivalent to the following three cases for k = 1, ..., n:

0 ≥ dkf ′(Mk) + ξTk λ
∗ if g∗k = Mk,

0 = dkf
′(g∗k) + ξTk λ

∗ if g∗k ∈ (mk,Mk),
0 ≤ dkf ′(mk) + ξTk λ

∗ if g∗k = mk,

which completes the proof. �

Another approach which leads to the same three equations uses the normal cone and is
presented below. It is based on the approach given in Chapter 3 and extends this idea.
Based on this, the necessary optimality conditions for solutions of the calibration problem
(5.3) are as follows.

Theorem 5.3.3. A vector g∗ ∈ Rn is a minimum of problem (5.3) if and only if there exists
a Lagrange multiplier λ∗ ∈ Rp such that

0 ∈ ∇(dTF (g∗)) +

p∑
i=1

λ∗i∇hi(g∗) +NU (g∗), (5.10)

and

h(g∗) = 0. (5.11)

Proof. See Theorem 3.25 in Ruszczynski (2006). Since all constraint functions are a�ne and
U is a convex polyhedron, a constraint quali�cation condition is satis�ed. Furthermore, the
objective function f is strictly convex and the feasible set U is convex, so the necessary
optimality condition is also su�cient. �
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If we apply this result to our calibration problem we get the following lemma.

Lemma 5.3.4. Under the given assumptions of Theorem 5.3.3 equation (5.10) is equivalent
to

0 ≥ dkf ′(Mk) + ξTk λ
∗ if g∗k = Mk,

0 = dkf
′(g∗k) + ξTk λ

∗ if g∗k ∈ (mk,Mk),
0 ≤ dkf ′(mk) + ξTk λ

∗ if g∗k = mk,

 (k = 1, . . . , n). (5.12)

Proof. In this particular setting with the de�nition of U it is easy to show that

NU (g∗) := {y ∈ Rn :


yk ≥ 0, if g∗k = Mk,

yk = 0, if g∗k ∈ (mk,Mk),

yk ≤ 0, if g∗k = mk,

}.

Taking this into consideration, there exists λ∗ ∈ Rm, such that equation (5.10) can be
reformulated as

−∇(dTF (g∗))−
p∑
i=1

λ∗i∇hi(g∗) ∈ {y ∈ Rn :


yk ≥ 0, if g∗k = Mk,

yk = 0, if g∗k ∈ (mk,Mk),

yk ≤ 0, if g∗k = mk,

}. (5.13)

Note that ∇(dTF (g∗))k = dkf
′(g∗k) and ∇hk(g∗) = (ξ1k, . . . , ξnk)

T for all k = 1, . . . , n.
Then equation (5.13) is equivalent to the following three cases for k = 1, ..., n:

0 ≥ dkf ′(Mk) + ξTk λ
∗ if g∗k = Mk,

0 = dkf
′(g∗k) + ξTk λ

∗ if g∗k ∈ (mk,Mk),
0 ≤ dkf ′(mk) + ξTk λ

∗ if g∗k = mk,

which completes the proof. �

If we revisit equation (5.12) or equation (5.9) we can reformulate all the conditions by using
λ as a variable and then de�ne g depending on the choice of λ. To achieve this we de�ne a
map g : Rp → (R+ ∪ {0})n componentwise as

gk(λ) = Pr[mk,Mk]

(
f ′−1(−

ξTk λ

dk
)

)
(5.14)

=


Mk, if − ξTk λ

dk
≥ f ′(Mk),

f ′−1(− ξTk λ
di

), if f ′(mk) < −
ξTk λ
dk

< f ′(Mk), (k = 1, . . . , n)

mk, if − ξTk λ
dk
≤ f ′(mk).

(5.15)

We use this de�nition to state another optimality criteria for our optimization problem which
leads to the desired equation in λ.
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5.3 Solution of the Calibration Problem

Theorem 5.3.5. A vector g∗ ∈ Rn is the unique solution of the optimization problem (5.3)
if and only if there exists a multiplier λ∗ ∈ Rp such that g(λ∗) de�ned in (5.14) satis�es

h(g(λ∗)) = 0. (5.16)

Proof. If (g∗, λ∗) are given such that (5.12) holds, we de�ne g(λ∗) and it is easy to check
with the three given cases that g(λ∗) = g∗.
On the other hand, if for some λ∗ the vector g(λ∗) satis�es (5.16), then by a quick veri�cation
we see that (g(λ∗), λ∗) also satis�es (5.12). This completes the proof. �

The last theorem states that �nding a solution of the calibration problem (5.3) is equivalent
to solve the equation

ψ(λ) = 0,

where

ψ : Rp → Rp, λ 7→ X̄T g(λ)− tx

with

gk(λ) = Pr[mk,Mk]

(
f ′−1(−

ξTk λ

dk
)

)
(k = 1, . . . , n).

Due to the nonsmoothness of the projection, ψ is not continuously di�erentiable and the
standard Newton's method cannot be applied. A more general method that can be applied
is the semismooth Newton method, which requires that ψ has to be semismooth.

Lemma 5.3.6. ψ is (strongly) semismooth, if f ′−1 is (strongly) semismooth.

Proof. Let f ′−1 be (strongly) semismooth. The projection Pr[mi,Mi] : R→ R, y 7→ Pr[mi,Mi](y)
can be written as a composition of the (strongly) semismooth functions min and max
(cf. Kanzow, 2005). Pr[mi,Mi](y) = min{Mi,max{mi, y}}, so we can apply the chain rule
(Lemma 4.5.7) and deduce that the projection is (strongly) semismooth. Further, g is a
composition of the projection and f ′−1, so g is (strongly) semismooth. txk , ξki are constant
and as

ψi(λ) =
n∑
k=1

ξkigk(λ)− txk , i = 1, . . . , p,

it follows with Lemma 4.5.5 (ii) that all ψk are (strongly) semismooth. As each compo-
nent function is (strongly) semismooth, we deduce with Lemma 4.5.5 that ψ is (strongly)
semismooth. �

We will now have a closer look for which functions f it holds that f ′−1 and therefore ψ is
(strongly) semismooth. As semismoothness in this case requires f ′−1 to be locally Lipschitz
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Chapter 5 Calibration via Semismooth Newton Method

we cannot deduce general requirements for f but if f : D → R is twice continuously di�eren-
tiable and strictly convex it follows that f ′ : D → R is continuously di�erentiable and strictly
monotonically increasing. Therefore there exists an inverse function f ′−1 : f ′(D)→ R which
is continuous and strictly monotonically increasing. If further f ′′(x) 6= 0 for all x ∈ D the
inverse function f ′−1 is di�erentiable on f ′(D). Furthermore, if f ′−1 as well as (f ′−1)′ are
locally Lipschitz it follows that f ′−1 is strongly semismooth.

Now we regard the two given functions and check whether their inverse derivatives are
strongly semismooth.

Lemma 5.3.7. (i) f ′−1
1 is strongly semismooth.

(ii) f ′−1
2 is strongly semismooth.

Proof. (i) Since f1(gi) = (gi−1)2

2 we obtain f ′−1
1 (y) = y + 1 which is continuously di�eren-

tiable and, following Lemma 4.5.2, therefore strongly semismooth.

(ii) Since f2(gi) = gi · ln(gi)− gi + 1 it is obvious that f ′−1
2 (y) = ey which is continuously

di�erentiable and, following Lemma 4.5.2, therefore strongly semismooth.

�

We sum up the former statements to show the strong semismoothness of ψ.

Lemma 5.3.8. ψ is strongly semismooth for the cases that f = f1 and f = f2.

Proof. Follows because of Lemma 5.3.7 as well as Lemma 5.3.6. �

As ψ is strongly semismooth we can apply the semismooth Newton method for solving the
nonsmooth equation ψ(λ) = 0, which will be presented in the following section.

5.4 Semismooth Newton Method

In each iteration of Newton's method for a smooth functions F : Rn → Rn a linear system
of equations

JF (xk)sk = −F (xk)

with JF (xk) denoting the Jacobian of F in xk is solved in sk. The resulting next iterate is
computed as

xk+1 = xk + sk.

This method is locally quadratically convergent if the initial value x0 ∈ Rn is close enough to
the solution x∗ satisfying F (x∗) = 0 and the inverse of the Jacobian exists in x∗ and satis�es
‖JF (x∗)−1‖ ≤ β, where β > 0. Furthermore, the Jacobian is required to be Lipschitz (cf.
Dennis and Schnabel, 1983) and the regularity in x∗ ensures the regularity of the Jacobian
for all x near x∗ (cf. Banach's lemma).
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5.4 Semismooth Newton Method

Regarding nonsmooth functions G, the semismooth Newton method by Qi (1993) reads as
follows.

Algorithm 5.1 Semismooth Newton method

Input: G : Rn → Rn locally Lipschitz, x0 ∈ Rn initial iterate
while ‖ G(xk) ‖≥ ε do
choose Hk ∈ ∂BG(xk)
solve Hks

k = −G(xk)
xk+1 = xk + sk

k ← k + 1
end while

return solution xk

The original version given in Qi and Sun (1993) choses Hk ∈ ∂G(xk) instead of ∂BG(xk) and
the local convergence theorem assumes all H ∈ ∂G(x∗) to be nonsingular. As this condition
is too strong, consider G(x) = |x| where the Newton method converges trivially, we stick
to the version given in Qi (1993) requiring Hk ∈ ∂BG(xk). Then the assumption that all
H ∈ ∂G(x∗) have to be nonsingular is replaced by another regularity condition which we will
mention below.

De�nition 5.4.1 (Strongly BD-regular). Let G : Rn → Rn be locally Lipschitz in x. Then
G is strongly BD-regular at x, if all H ∈ ∂BG(x) are nonsingular.

The following lemma shows that the BD-regularity guaranties the regularity of all elements
H ∈ ∂BG(x) for all x near x∗. This will be needed in the convergence theorem.

Lemma 5.4.2. Let G : Rn → Rn be locally Lipschitz and strongly BD-regular in x∗. Then
holds:

∃ε > 0, c > 0 : ‖ H−1 ‖≤ c ∀H ∈ ∂BG(x), x ∈ Bε(x∗).

Proof. Refer to Qi (1993). �

Theorem 5.4.3 (Superlinear convergence). Suppose that x∗ is a solution of G(x) = 0, and
that G : Rn → Rn is semismooth and strongly BD-regular at x∗. Then the semismooth
Newton method is well de�ned and converges to x∗ superlinearly in a neighborhood of x∗.

Proof. Refer to Qi (1993). �

Furthermore, quadratic convergence can be proven for the case thatG is strongly semismooth.

Theorem 5.4.4 (Quadratic convergence). Suppose that x∗ is a solution of G(x) = 0, and
that G : Rn → Rn is strongly semismooth and strongly BD-regular at x∗. Then there exists
ε > 0 such that for all x0 ∈ Bε(x

∗) the semismooth Newton method is well de�ned and
generates a sequence (xk)k∈N converging quadratically to x∗.
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Proof. Refer to Kanzow (2005). �

In order to ensure global convergence Qi and Sun (1993) give an extension of the classical
Newton-Kantorovich theorem whereas Qi (1993) proposes a hybrid method. We will discuss
these approaches in detail in Chapter 6 and will now focus on the local behavior concerning
our calibration problem.

Theorem 5.4.5. Let ψ be BD-regular in λ∗ satisfying ψ(λ∗) = 0.

(i) The semismooth Newton method converges quadratically to λ∗ for all starting points λ0

close to λ∗.

(ii) g(λ∗) solves the calibration problem (5.3).

Proof. (i) Following Lemma 5.3.8, ψ is strongly semismooth. Hence Theorem 5.4.4 can be
applied which states the proof.

(ii) Since λ∗ is solution of ψ(λ) = 0, following Theorem 5.3.5, g(λ∗) is the solution of the
calibration problem (5.3).

�

The last theorem makes clear that the semismooth Newton method can be applied for solving
the standard calibration problem. In the following section we will study the behavior of the
semismooth Netwon method and other competing methods.

5.5 Numerical Aspects

The algorithms were tested on an example included in the `sampling' package in R. It contains
approximately 200 calibration variables and eight calibration benchmarks. Nevertheless,
the algorithms can also be applied to higher dimensional problems. The algorithm were
implemented in R and tests were run on a common desktop PC with an Intel(R) Core(TM)2
Duo CPU with 3.00 GHz and an internal memory of 4 GB.

As already pointed out, the Newton-type method with projection proposed by Vanderhoeft
(2001) may lead to convergence problems. During our tests we noticed that in a few instances
some indices switched from being active into being inactive after every iteration. This e�ect,
also called zig-zagging, is well known in constrained optimization and is due to an improper
active set strategy. In Figure 5.1 we can see the switching values of certain components
of the Lagrange multiplier and a sample variable. As the values of g directly depend on λ
the switching λ results in switching weights g. This was not encountered when using the
semismooth Newton method.

Figure 5.2 shows the convergence of some calibration factors of the Newton-type method with
projection and the nonsmooth Newton method for a feasible example. We can see that the
Newton-type method with projection delivers a rough approximation of the optimal weights
after an acceptable number of iterations but needs much more iterations to reach the optimal
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Figure 5.1: Zig-zagging of certain components of the Lagrange multiplier (a) and a sam-
ple calibration factor (b) using the Newton-type method with projection

weights exactly. In contrast to this, the semismooth Newton method determines the optimal
weights after only few steps.
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Figure 5.2: Convergence of some calibration factors gi using the Newton-type method
with projection (a) and the semismooth Newton method (b)
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The convergence of the components of the Lagrange multiplier is shown in Figure 5.3. We
can state that the behavior of the Lagrange multiplier can be compared to the behavior of
the calibration factors. As the Newton-type method with projection uses kind of a `wrong'
Lagrange multiplier leading to a weight that afterwards is projected on the upper and lower
bound, the limits are di�erent from the ones of the semismooth Newton method.
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Figure 5.3: Convergence of certain components of the Lagrange multiplier using the
Newton-type method with projection (a) and the semismooth Newton
method (b)

As indicated by the convergence theorem, we can observe the quadratic convergence of the
semismooth Newton method also numerically (cf. Table 5.1). In contrast, the Newton-type
method with projection shows a fairly slow convergence locally. Keep in mind that we did
not apply any step size rule because, as we will see in Chapter 6, those methods need a more
sophisticated treatment and further assumptions.
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‖λk − λ∗‖
k semismooth Newton method Newton-type method with projection
1 4.546454 0.132
2 1.197537 1.197537
3 1.646565 1.256575
4 0.498095 1.187136
5 5.1583 · 10−3 1.099326
6 3.2433 · 10−6 1.020406
7 6.5050 · 10−11 0.950875
8 0 0.890555
... -

...
290 - 3.1508 · 10−11

291 - 2.8353 · 10−11

292 - 1.6328 · 10−11

293 - 2.1859 · 10−11

294 - 0

Table 5.1: Convergence for f2

We also made a comparison of the following three methods using the quadratic function f1,
the so-called truncated linear case, as distance function.

(i) `calib' by Tillé and Matei (2009) as listed in the R package `sampling',

(ii) Newton-type methods with projections according to Vanderhoeft (2001),

(iii) semismooth Newton method.

calib Newton-type w. proj. semismooth Newton
n it. time[sec] it. time[sec] it. time[sec] ε

18,500 3 0.058 269 4.573 6 0.387 10−5

18,500 2 0.052 40 0.720 5 0.452 10−5

18,500 1 0.027 221 3.956 4 0.335 10−5

18,500 1 0.032 41 0.898 4 0.454 10−5

18,500 2 0.046 140 2.742 5 0.545 10−5

18,500 3 0.063 181 3.595 6 0.622 10−5

Table 5.2: Computing e�ort for di�ering data of same problem size using f1

When using the truncated linear method we can state that the `calib' function is the fastest
algorithm with regard to the number of iterations and also time. The semismooth Newton
method needs more iterations than the calib algorithm. The advantage of `calib' is a very
aggressive detection of the active indices which leads quickly to small dimensional problems
to be solved in the following iterations (cf. pegging algorithms). To our knowledge, there
does not exist a convergence statement. In Table 5.2, we list the results for various data sets
of the same size.

The computing e�ort for examples with an increasing number of the same variables can be
found in Table 5.3. The termination criterion ‖X̄T g − tx‖ ≤ ε and g being feasible was
adjusted depending on the number of variables. As a starting point we used the optimal
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Chapter 5 Calibration via Semismooth Newton Method

Lagrange multiplier of the optimization problem without box constraint. Table 5.3 also
shows a linear increase of the computing time with regard to the size of the variables. This
is plausible, because the linear system to be solved is in the dual variable λ, where the
dimension stays constant.

calib Newton-type w. proj. semismooth Newton
n it. time[sec] it. time[sec] it. time[sec] ε

185 3 0.003 253 0.120 4 0.006 10−6

1,850 3 0.007 279 0.590 4 0.027 10−6

18,500 3 0.057 279 4.936 4 0.233 10−5

185,000 3 0.667 270 51.815 4 2.775 10−4

1,850,000 3 7.093 242 479.225 4 29.456 2 · 10−2

Table 5.3: Computing e�ort for di�erent problem sizes with f1

We also ran the test set on a di�erent distance function f2, the truncated multiplicative case.
In this case, the `calib' algorithm can no longer be applied in the existing software because we
have a more complicated objective function. The Newton-type method with projection also
cannot be applied due to convergence problems. The semismooth Newton method can still
be used and delivers excellent results. Table 5.4 shows that the truncated multiplicative case
needs more iterations and time compared to the truncated linear case. This can be explained
by the more complicated objective function which takes more time to be evaluated.

semismooth Newton
n it. time[sec] ε

185 8 0.012 10−6

1,850 8 0.060 10−6

18,500 8 0.479 10−5

185,000 8 4.977 10−4

1,850,000 9 61.946 10−3

Table 5.4: Computing e�ort for the truncated multiplicative method

Overall, the numerical results con�rm the theoretical statements from the previous sections
and show that the semismooth Newton method is a fast and reliable method to solve the
calibration problem under investigation.
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Chapter 6

Nonmonotone Step Size Rules for
B-Di�erentiable Functions

The �rst step, my son, which one makes in the world, is the one on
which depends the rest of our days.

� Voltaire

Suppose we want to solve a nonsmooth equation f(x) = 0 in Rn. Such equations may occur
in calibration of estimator weights, as mentioned in Chapter 5, when solving the calibration
problem

min
g∈Rn

dTF (g)

s.t. X̄T g − t = 0

g ∈ [m,M ].

This can be done by solving the equation

f(λ) = 0,

with

f : Rn → Rn, λ 7→ X̄T g(λ)− t

and

gk(λ) = Pr[mk,Mk]

(
h′−1(−

ξTk λ

dk
)

)
(k = 1, . . . , n)

is a semismooth function. Another application comes from nonlinear variational inequality
problems (VIP). We want to �nd x ∈ C such that

〈F (x), y − x〉 ≥ 0 ∀y ∈ C,

where C denotes a closed convex subset of Rn and F : Rn → Rn.
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Chapter 6 Nonmonotone Step Size Rules for B-Di�erentiable Functions

As mentioned in Facchinei and Pang (2003a), x∗ solves the variational inequality problem
(VIP) if and only if x∗ solves the nonsmooth normal equation (NE)

f(x) = x− PrC(x− F (x)) = 0,

with PrC(·) denoting the projection operator of Rn onto C. Although being a large research
area, we will neither deal with the applications of VIPs nor will we talk about the history
of VIPs in detail. As we are especially interested in solving nonsmooth equations, we have
a closer look at solution methods based on the nonsmooth formulation of VIPs. Such nons-
mooth equations also occur when dealing with nonlinear complementarity problems (NCP),
which are special cases of VIPs, or its reformulation using Karush-Kuhn-Tucker conditions.

In the smooth case the vector valued equation f(x) = 0 can be solved by Newton's method,
where in each iteration the system of linear equalities

Jf (xk)dk = −f(xk)

is solved in dk. The new iterate is given by

xk+1 = xk + αkdk

with an appropriate step size αk. In the nonsmooth case the Jacobian does not exist every-
where, so the �rst equation is replaced by

f(xk) +A(xk)(dk) = 0,

where A(xk)(dk) is a substitute for the Jacobian in xk applied to dk. The existing methods
reviewed below mainly di�er in the choice of A(xk)(dk) and the assumptions on f .

An early work on solving nonsmooth equations was done by Kummer (1988), who proposes
a Newton type method for solving general non-di�erentiable functions and proves local con-
vergence. In the special case of having a locally Lipschitz function and using the generalized
Jacobian of Clarke (1983), that is Vkdk = −f(xk), Vk ∈ ∂f(xk), he proves local superlin-
ear convergence of the iterates xk to x∗, under the assumption that |∂f(x∗)| = 1 has to be
satis�ed.

The assumption mentioned before implies that f is also semismooth at x∗, but not vice
versa. Qi and Sun (1993) investigate the convergence property for the more general case of
having semismooth functions and applying a method similar to the one presented in Kummer
(1988). They show local convergence and when assuming further Kantorovich-type conditions
they can even prove global convergence. A detailed discussion on this semismooth Newton
method is given in Chapter 5 and in the case of choosing the `right' element of the generalized
Jacobian, the iterates of the therein mentioned semismooth Newton method coincide with
the iterates of the generalized Newton's method given in Pang (1990). There, the function
f is assumed to be B-di�erentiable and A(xk)(dk) is replaced by the B-derivative of f in xk
applied to dk. Apart from this, Martínez and Qi (1995), Facchinei et al. (1996), Facchinei and
Kanzow (1997) and Facchinei and Pang (2003b) adapt the extensions of Newton's method in
the smooth case and derive a semismooth inexact Newton method as well as a semismooth
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inexact Lenvenberg-Marquardt Newton method which are, under certain conditions, both
locally convergent.

In order to obtain global convergence of the generalized Newton's method for B-di�erentiable
functions, a line search is added in Pang (1990) yielding global superlinear convergence. This
method is called damped Newton method and was motivated by the need for a computation-
ally robust method with guaranteed convergence. It is also the �rst work on global Newton
methods for solving nonsmooth equations. However, it has a theoretical drawback: the
convergence requires a Fréchet di�erentiability assumption at a limit point of the produced
sequence.

A modi�cation of the damped Newton method in Pang (1990) is given in Pang (1991) where
the search direction dk is determined by f(xk) + f ′(xk; dk) = 0 with f ′(xk; dk) being the
directional derivative of the B-di�erentiable function f in xk along dk. Furthermore, applica-
tions to NCPs and VIPs are discussed in detail. Another modi�cation is given in Han et al.
(1992), where a generalization of the damped Newton method for locally Lipschitz functions
is presented. Nevertheless, the direction-generation step in this method calls for the solution
of a nonlinear program that in general is neither smooth nor convex. Pang and Qi (1993)
propose a variant of this method in which the direction-generation subproblems are convex
quadratic programs that are always solvable. An alternative trust region approach is given
in Qi and Sun (1994) and compared to the method of Han et al. (1992).

Ralph (1994) proposes a path search algorithm as an alternative to Pang's line search algo-
rithm. The path search replaces the traditional line search and leads to the same convergence
properties. As line search methods are more common and more reliable, we will not discuss
this algorithm in this work and refer to the original work for further details.

Qi (1993) seizes the ideas of Pang (1991), Han et al. (1992) and Qi and Sun (1993) to
study the convergence of these methods in combination with certain regularity conditions,
e.g., BD-regularity. Furthermore, he proposes a hybrid method of the methods given in
Han et al. (1992) and Qi and Sun (1993). In the latter case the search direction dk is
determined by Vkdk = −f(xk), Vk ∈ ∂Bf(xk). It should be noted that Vk is taken from
the B-subdi�erential of f in xk instead of the generalized Jacobian. Using a line search
and taking further assumptions ensures global and local quadratic convergence. This idea
of combining two methods is also taken into account in Ito and Kunisch (2009), where they
show global convergence and in the case of f being semismooth they show local superlinear
convergence.

In contrast to the globalization methods above, that use a monotone line search relying on
the merit function

θ : Rn → R+ ∪ {0}, x 7→ θ(x) = ‖f(x)‖2,

the method presented in Ferris and Lucidi (1994) uses a nonmonotone line search based
on the nonmonotone line search for smooth functions introduced in Grippo et al. (1986) to
obtain global convergence. Furthermore, they do not assume an explicit rule for calculating
the search direction.

Fischer (1992) uses the Fischer-Burmeister-function to reformulate the Karush-Kuhn-Tucker
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conditions arising from an inequality constrained optimization problem as a system of nons-
mooth equations. The advantage of this approach concerning global convergence lies in the
feature that the gained merit function is smooth, so the standard convergence proof can be
applied as it is done by De Luca et al. (1996) for NCPs.

Harker and Xiao (1990) do not make use of the Fischer-Burmeister-function and therefore get
a nonsmooth merit function for their damped Newton method. They show global convergence
under certain conditions and also add a numerical example. A derivative free algorithm for
complementarity problems is given in Fischer (1997) and Kanzow (2004) also proposes an
inexact Newton method for large scale complementarity problems. Furthermore, there also
exist trust region approaches and in the case of examining mixed complementarity problems
(MCP) Ferris et al. (1998) consider a general algorithmic framework which is applied to the
PATH solver by Dirkse and Ferris (1995) relying on the path search presented in Ralph (1994).
Kanzow (2000) also studies the theoretical and numerical properties of incorporating global
optimization algorithms, namely a tunneling and a �lled function method, to a standard
semismooth Newton-type method for solving MCPs.

Most of the methods using line search require the decrease of the function values to be mono-
tone. However, as known in smooth optimization, for certain problems a nonmonotone line
search such as the ones given in Grippo et al. (1986) or Zhang and Hager (2004) may deliver
better results. In nonsmooth optimization, so far only the nonmonotone line search of Ferris
and Lucidi (1994) was studied. We generalize the approaches for B-di�erentiable functions
mentioned above by using nonmonotone step size rules deriving from Armijo (1966) and
apply the nonmonotone step size rule of Zhang and Hager (2004) to nonsmooth optimiza-
tion. Note that for the sake of readability the iteration indices in this chapter are written as
subscript instead of superscript to circumvent a mix up with the exponent of a scalar.

6.1 Preliminary Results

We now consider some theorems and lemmata which will be useful for the following ap-
proaches.

Lemma 6.1.1. Let (ak)k∈N, (εk)k∈N be sequences with

ak ≥ amin, εk ≥ 0,

∞∑
k=1

εk <∞.

If

ak+1 ≤ ak + εk,

then there exists a∗ ≥ amin such that

ak −−−→
k→∞

a∗.

Proof. Refer to Tichatschke and Kaplan (1994). �
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Theorem 6.1.2. Let θ : Rn → R be bounded below by 0, ρ : Rn → R+ ∪ {0},
(xk)k∈N, (dk)k∈N ⊂ Rn, (αk)k∈N, (λk)k∈N, (νk)k∈N ⊂ R+ ∪ {0},

xk+1 = xk + αkdk

with

λk + θ(xk) ≥ ρ(xk) ≥ 0 (6.1)

and for given σ > 0 it holds

θ(xk+1)− θ(xk) ≤ −σαkθ(xk) + νk. (6.2)

If

∞∑
k=1

λkαk <∞ and
∞∑
k=1

νk <∞ (6.3)

we have:

(i) there exists θ∗ ≥ 0 such that θ(xk) −−−→
k→∞

θ∗,

(ii)

∞∑
k=1

αkρ(xk) <∞.

Proof. The proof is in line with the proof given in Sachs and Sachs (2011), which is slightly
adapted.

(i) It holds due to (6.1) and (6.2) that

θ(xk+1)− θ(xk) ≤ −σαkθ(xk) + νk

≤ σλkαk + νk.

If we de�ne ak := θ(xk) and εk := σλkαk + νk this leads to:

ak+1 ≤ ak + εk, εk ≥ 0 ∀ k,
∞∑
k=1

εk = σ

∞∑
k=1

λkαk +

∞∑
k=1

νk <∞,

ak = θ(xk) bounded below by 0.

Therefore, we can apply Lemma 6.1.1 so there exists a∗ ≥ 0 such that

ak −−−→
k→∞

a∗.
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As ak = θ(xk) there exists θ∗ ≥ 0 and we get

θ(xk) −−−→
k→∞

θ∗.

(ii) Using (6.1) and (6.2) we deduce that

αkρ(xk) ≤ αkλk + αkθ(xk) ≤ αkλk +
1

σ
(νk + θ(xk)− θ(xk+1)).

Taking the sum over k = 1, . . . , j yields

j∑
k=1

αkρ(xk) ≤
j∑

k=1

αkλk +
1

σ

j∑
k=1

νk +
1

σ

j∑
k=1

(θ(xk)− θ(xk+1))

=

j∑
k=1

αkλk +
1

σ

j∑
k=1

νk +
1

σ
(θ(x1)− θ(xj+1)).

If j →∞ we conclude with (6.3) that

∞∑
k=1

αkρ(xk) ≤
∞∑
k=1

αkλk +
1

σ

∞∑
k=1

νk +
1

σ
(θ(x1)− θ∗) <∞.

�

For given nonsmooth functions f : Rn → Rn and θ : Rn → R+ ∪ {0}, x 7→ θ(x) = ‖f(x)‖2,
we obtain the following statements simplifying the application of the derivative to the search
direction.

Lemma 6.1.3. Let x ∈ Rn, f : Rn → Rn be B-di�erentiable and θ : Rn → R, x 7→ θ(x) =
f(x)T f(x). Af (x)(d) denotes the B-derivative of f in x applied to d and Aθ(x)(d) denotes
the B-derivative of θ in x applied to d. Then θ is also B-di�erentiable and if d is chosen such
that Af (x)(d) = −f(x) it holds

Aθ(x)(d) = 2f(x)TAf (x)(d) = −2f(x)T f(x) = −2θ(x).

Lemma 6.1.4. Let x ∈ Rn, f : Rn → Rn be locally Lipschitz and θ : Rn → R, x 7→
θ(x) = f(x)T f(x). Vf (x) ∈ ∂f(x) denotes an element of the generalized Jacobian of f in x
and Vθ(x) ∈ ∂θ(x) denotes an element of the generalized Jacobian of θ in x. Then θ is also
locally Lipschitz and if d is chosen such that Vf (x)d = −f(x) it holds

Vθ(x)d = 2f(x)TVf (x)d = −2f(x)T f(x) = −2θ(x).
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Remark 6.1.5. If f is continuously di�erentiable and d is chosen such that Jf (x)d = −f(x)
we get

∇θ(x)Td = 2f(x)TJf (x)d = −2f(x)T f(x) = −2θ(x).

6.2 Convergence of a Nonmonotone Step Size Rule for

B-di�erentiable Functions

As mentioned at the beginning of the chapter, we want to solve f(x) = 0 by minimizing the
merit function θ(x) = ‖f(x)‖2. In case of having smooth functions f̃ and θ̃, the well known
Armijo's rule for smooth functions guarantees a su�cient decrease in the smooth objective
function θ̃ : Rn → R+ ∪{0} by determining an appropriate step size αk > 0 for the iteration
given by

xk+1 = xk + αkdk,

where dk is a certain descent/search direction. A common notation can be found in Nocedal
and Wright (2006) or in the original work by Armijo (1966), which requires αk to satisfy

θ̃(xk + αkdk)− θ̃(xk) ≤ c1αk∇θ̃(xk)Tdk

for some constant c1 ∈ (0, 1). Before we are able to formulate a nonmonotone Armijo's rule,
which is based on the formulation given in Sachs and Sachs (2011), we have to make some
assumptions. Also, keep in mind that, if Vkdk = −f̃(xk) with Vk ∈ ∂B f̃(xk) the expression
∇θ̃(xk)Tdk in the continuously di�erentiable case can be replaced by −2θ̃(xk). For a detailed
discussion refer to De Luca et al. (1996) as well as Ito and Kunisch (2009).

Throughout the following, we assume that f : Rn → Rn and therefore θ : Rn → R ∪ {0}
are B-di�erentiable functions and from Algorithm 6.1 mentioned below we get sequences
(xk)k∈N, (dk)k∈N ⊂ Rn. Furthermore there exist sequences (νk)k∈N, (αk)k∈N ⊂ R+ ∪ {0}
and the assumptions (A.1)-(A.3) hold.

(A.1) S = {x ∈ Rn : θ(x) ≤ θ(x0) +
∑∞

k=1 νk} is bounded.
(A.2) There exists σ̄ ∈ (0, 1) such that for all xk ∈ S there exists a search direction dk ∈ Rn

such that

θ′(xk; dk) ≤ −σ̄θ(xk). (6.4)

(A.3) (dk)k∈N is bounded.

Assumption (A.2) is motivated by the work of Ito and Kunisch (2009) and is used to guarantee
that the nonmonotone Armijo's rule is well de�ned. We are now able to formulate the
following globalization algorithm.
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Algorithm 6.1 Globalized generalized Newton's method

Input: initial iterate x0 ∈ Rn, θ(x0) 6= 0, k = 0, ε > 0
while θ(xk) > ε do

determine search direction dk satisfying (6.4)
determine step size αk with an appropriate step size rule
xk+1 = xk + αkdk
k ← k + 1

end while

return solution xk

The choice of an appropriate step size rule plays an essential role in the further examination of
the globalized generalized Newton's method. Ito and Kunisch (2009) formulate a monotone
Armijo based step size rule, but sometimes a nonmonotone step size rule leads to better
convergence results. We now present a general nonmonotone Armijo based step size rule
whose convergence behavior will be discussed in detail.

Algorithm 6.2 Nonmonotone Armijo's rule

Input: β ∈ (0, 1), σ ∈ (0, σ̄), xk, dk ∈ Rn, νk ∈ R+ ∪ {0}, αmax > 0, θ(xk) 6= 0
Ensure: dk is chosen such that (6.4) holds.
if θ(xk + αmaxdk)− θ(xk) ≤ −σαmaxθ(xk) + νk then

αk = αmax
else

determine smallest lk ∈ N such that
θ(xk + αmaxβ

lkdk)− θ(xk) ≤ −σαmaxβlkθ(xk) + νk
αk = αmaxβ

lk

end if

return step size αk

Before we check whether the nonmonotone Armijo's rule is well-de�ned we reconsider Lemma
4.3.6 and deduce the following.

Remark 6.2.1. For the B-di�erentiable function θ it holds that

lim
d→0

θ(x+ d)− θ(x)− θ′(x; d)

‖d‖
= 0,

where θ′(x; d) denotes the directional derivative of f in direction d. Therefore

θ(xk + αmaxβ
lkdk)− θ(xk) ≤ αmaxβlkθ′(xk; dk) + φ(αmaxβ

lk‖dk‖)αmaxβlk‖dk‖, (6.5)

where φ : R→ R+ ∪ {0}, u 7→ φ(u) guarantees φ(u) −−−→
u→0

0 and αmaxβ
lk > 0.

It is now easy to prove that the nonmonotone Armijo's rule is well-de�ned.

Lemma 6.2.2. Under the assumptions mentioned before the nonmonotone Armijo's rule
(Algorithm 6.2) is well-de�ned.
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Proof. We have to show that for all xk ∈ S there exists ᾱk > 0 such that

θ(xk + αdk)− θ(xk) ≤ −σαθ(xk) + νk ∀α ∈ [0, ᾱk].

Assume that for a given xk with θ(xk) 6= 0 and for αmaxβ
lj → 0+, which is equivalent to

lj →∞, it holds that

θ(xk + αmaxβ
ljdk)− θ(xk) > −σαmaxβljθ(xk) + νk ≥ −σαmaxβljθ(xk).

Using (6.5) and φ(u) −−−→
u→0

0, we get

αmaxβ
ljθ′(xk; dk) + φ(αmaxβ

lj‖dk‖)αmaxβlj‖dk‖ ≥ θ(xk + αmaxβ
ljdk)− θ(xk)

> −σαmaxβljθ(xk)

which is equivalent to

θ′(xk; dk) + φ(αmaxβ
lj‖dk‖)‖dk‖ ≥ −σθ(xk).

Following (6.4), it holds that θ′(xk; dk) ≤ −σ̄θ(xk) and we deduce

−σ̄θ(xk) + φ(αmaxβ
lj‖dk‖)‖dk‖ ≥ −σθ(xk).

Because of φ(αmaxβ
lj‖dk‖)‖dk‖ −−−−→

lj→∞
0 we get

0 ≥ (σ̄ − σ)θ(xk) ≥ 0.

As (σ̄ − σ) > 0 it follows that θ(xk) = 0, hence a contradiction. �

We are now able to formulate a convergence statement of the function values.

Theorem 6.2.3. Let θ be bounded below by 0. Furthermore be
∑∞

k=1 νk <∞, νk ≥ 0 for all
k and (xk)k∈N, (dk)k∈N generated by the generalized Newton's method (Algorithm 6.1) satisfy
the nonmonotone Armijo's rule (Algorithm 6.2). Then it holds

θ(xk) −−−→
k→∞

0.

Proof. Because of Lemma 6.2.2, the nonmonotone Armijo's rule is well de�ned and for all k
it holds that

θ(xk+1)− θ(xk) ≤ −σαkθ(xk) + νk.

If we set λk = 0 and ρ(xk) = θ(xk) with θ(xk) ≥ 0 for all k, condition (6.1) from Theorem
6.1.2 is satis�ed. Furthermore, θ is bounded below and (6.2) and (6.3) are as well satis�ed.
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Therefore, we can apply Theorem 6.1.2 and we conclude that

(i) there exists θ∗ ≥ 0 such that θ(xk) −−−→
k→∞

θ∗, (6.6)

(ii)

∞∑
k=1

αkθ(xk) <∞, (6.7)

which also ensures that

αkθ(xk) −−−→
k→∞

0. (6.8)

(a) If limk→∞ αk = 0, we can state due to αk = αmaxβ
lk and αk > 0 for all k that

θ(xk +
αk
β
‖dk‖)− θ(xk) > −σ

αk
β
θ(xk) + νk ≥ −σ

αk
β
θ(xk).

Using (6.5) and φ(u) −−−→
u→0

0 we get

αk
β
θ′(xk; dk) + φ(

αk
β
dk)

αk
β
‖dk‖ ≥ θ(xk +

αk
β
dk)− θ(xk)

> −σαk
β
θ(xk)

which is equivalent to

θ′(xk; dk) + φ(
αk
β
‖dk‖)‖dk‖ > −σθ(xk).

Applying (6.4) leads to

−σ̄θ(xk) + φ(
αk
β
‖dk‖)‖dk‖ > −σθ(xk).

Therefore, we obtain

⇔ φ(
αk
β
‖dk‖)‖dk‖ > (σ̄ − σ)θ(xk).

Following (A.3), (dk)k∈N is bounded and by assumption on αk we get

αk
β
dk −−−→

k→∞
0 ⇒ φ(

αk
β
dk) −−−→

k→∞
0 ⇒ φ(

αk
β
dk)‖dk‖ −−−→

k→∞
0.

For k →∞ we obtain

0 ≥ (σ̄ − σ)θ∗ ≥ 0,
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and as (σ̄ − σ) > 0 it follows that θ∗ = 0 so we get

θ(xk) −−−→
k→∞

0.

(b) Otherwise, there exists a subsequence (αkj )j∈N, δ > 0 such that αkj > δ for all j ∈ N.
Using (6.8) we get

αkjθ(xkj ) −−−→
j→∞

0. (6.9)

As αkj > δ for all j ∈ N, we deduce that θ(xkj ) −−−→
j→∞

0 so the subsequence (θ(xkj ))j∈N

converges to zero. Following (6.6) we know that (θ(xk))k∈N converges to θ∗. As the
limits have to be equal, we deduce θ(xk) −−−→

k→∞
0.

�

Before we will have a look at certain nonmonotone step size rules, we will mention a little
disadvantage of our algorithm compared to the one presented by Ito and Kunisch (2009).
Under some additional assumptions they are able to prove the convergence of the iterates
xk to x∗. This proof makes use of the monotonicity of the normed function values ‖f(xk)‖,
which of course is not the case in our nonmonotone setting.

Our setting allows only to prove that the iterates of the function values θ(xk) converge to
0. Nevertheless, because of (A.1), S is bounded and we can deduce that there exists at least
one subsequence (xkj )j∈N converging to an accumulation point x∗ ∈ S satisfying θ(x∗) = 0.

This gets clearer if we have a look at the following example. Let f : R→ R, x 7→ f(x) = x2−1
and θ : R → R+ ∪ {0}, x 7→ θ(x) = 0.5 · |x2 − 1|2. There are two accumulation points in
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Figure 6.1: Zigzagging of possible iterates of the merit function
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−1 and 1 which we will denote by x∗ and x∗∗. If the iterates zigzag between a neighborhood
of x∗ and x∗∗, the function values θ(xk) converge to 0 but we cannot de�ne a limit of the
sequence (xk)k∈N.

However, we are able to de�ne two subsequences (xkj )j∈N and (xkl)l∈N. The �rst one consists
of the iterates in the neighborhood of x∗ and the second one of the iterates in the neighborhood
of x∗∗. Hence, we get two converging subsequences xkj −−−→

j→∞
x∗ and xkl −−−→

l→∞
x∗∗.

Our approach can also be applied to hybrid methods similar to the ones given in Ito and
Kunisch (2009) or Qi (1993). Those methods �rst try a full step with Newton search direction
which is tested with kind of a `watchdog step'. If this step is `good' a Newton step is
performed. Otherwise, a search direction satisfying (6.4) is determined and a monotone
line search is performed. This makes it also possible to propose a theorem determining the
convergence rate.

Algorithm 6.3 Hybrid generalized Newton's method

Input: x0 ∈ Rn, θ(x0) 6= 0, k = 0, ε > 0
while θ(xk) > ε do

if existing then

determine search direction dk satisfying Vkdk = −f(xk), Vk ∈ ∂Bf(xk)
if θ(xk + dk)− θ(xk) ≤ −σθ(xk) then

xk+1 = xk + dk
else

determine search direction dk satisfying (6.4)
determine step size αk with the monotone step size rule 6.4
xk+1 = xk + αkdk

end if

else

determine search direction dk satisfying (6.4)
determine step size αk with the monotone step size rule 6.4
xk+1 = xk + αkdk

end if

k ← k + 1
end while

return solution xk

The corresponding Armijo based monotone step size rule reads as follows.

Algorithm 6.4 Monotone step size rule

Input: β ∈ (0, 1), σ ∈ (0, σ̄), xk, dk ∈ Rn, θ(xk) 6= 0
Ensure: dk is chosen such that (6.4) holds.
determine smallest lk ∈ N ∪ {0} such that
θ(xk + βlkdk)− θ(xk) ≤ −σβlkθ(xk)
αk = βlk

return step size αk
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Lemma 6.2.4. Under the assumptions mentioned before the monotone step size rule (Algo-
rithm 6.4) terminates after a �nite number of iterations.

Proof. We have to show that for all xk ∈ S there exists ᾱk > 0 such that

θ(xk + αdk)− θ(xk) ≤ −σαθ(xk) ∀α ∈ [0, ᾱk].

Assume that for a given xk with θ(xk) 6= 0 and for βlj → 0+, which is equivalent to lj →∞,
it holds that

θ(xk + βljdk)− θ(xk) > −σβljθ(xk).

Using (6.5) and φ(u) −−−→
u→0

0 we get

βljθ′(xk; dk) + φ(βlj‖dk‖)βlj‖dk‖ ≥ θ(xk + βljdk)− θ(xk)
> −σβljθ(xk),

which is equivalent to

θ′(xk; dk) + φ(βlj‖dk‖)‖dk‖ ≥ −σθ(xk).

Following (6.4), it holds that θ′(xk; dk) ≤ −σ̄θ(xk) and we deduce

−σ̄θ(xk) + φ(βlj‖dk‖)‖dk‖ ≥ −σθ(xk).

Because of φ(βlj‖dk‖)‖dk‖ −−−−→
lj→∞

0, we get

0 ≥ (σ̄ − σ)θ(xk) ≥ 0.

As (σ̄ − σ) > 0, it follows that θ(xk) = 0, hence a contradiction. �

After having shown that the monotone step size rule is well-de�ned, we are again able to
state the convergence of the function values.

Theorem 6.2.5. Let θ be bounded below by 0. Furthermore assume that (xk)k∈N, (dk)k∈N
are generated by the hybrid generalized Newton's method (Algorithm 6.3) and satisfy the
monotone step size rule (Algorithm 6.4) where necessary. Then it holds

θ(xk) −−−→
k→∞

0.
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Proof. The proof proceeds analogously to the proof of Theorem 6.2.3 with slight adaptations.
Because of Lemma 6.2.4 for all k it holds that

θ(xk+1)− θ(xk) ≤ −σαkθ(xk).

If we set λk = 0, ρ(xk) = θ(xk) with θ(xk) ≥ 0 and νk = 0 for all k condition (6.1) from
Theorem 6.1.2 is satis�ed. Furthermore θ is bounded below and (6.2) and (6.3) are as well
satis�ed. Therefore we can apply Theorem 6.1.2 and we conclude that

(i) there exists θ∗ ≥ 0 such that θ(xk) −−−→
k→∞

θ∗, (6.10)

(ii)
∞∑
k=1

αkθ(xk) <∞, (6.11)

which also ensures that

αkθ(xk) −−−→
k→∞

0. (6.12)

(a) If limk→∞ αk = 0, we can state due to αk = βlk and αk > 0 for all k that

θ(xk +
αk
β
‖dk‖)− θ(xk) > −σ

αk
β
θ(xk).

Using (6.5) and φ(u) −−−→
u→0

0 we get

αk
β
θ′(xk; dk) + φ(

αk
β
dk)

αk
β
‖dk‖ ≥ θ(xk +

αk
β
dk)− θ(xk)

> −σαk
β
θ(xk),

which is equivalent to

θ′(xk; dk) + φ(
αk
β
‖dk‖)‖dk‖ > −σθ(xk).

Applying (6.4) leads to

−σ̄θ(xk) + φ(
αk
β
‖dk‖)‖dk‖ > −σθ(xk).

Therefore, we obtain

φ(
αk
β
‖dk‖)‖dk‖ > (σ̄ − σ)θ(xk).

Following (A.3), (dk)k∈N is bounded and by assumption on αk we get

αk
β
dk −−−→

k→∞
0 ⇒ φ(

αk
β
dk) −−−→

k→∞
0 ⇒ φ(

αk
β
dk)‖dk‖ −−−→

k→∞
0.
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For k →∞ we obtain

0 ≥ (σ̄ − σ)θ∗ ≥ 0,

and as (σ̄ − σ) > 0 it follows that θ∗ = 0 so we get

θ(xk) −−−→
k→∞

0.

(b) Otherwise, there exists a subsequence (αkj )j∈N, δ > 0 such that αkj > δ for all j ∈ N.
Using (6.12) we get

αkjθ(xkj ) −−−→
j→∞

0. (6.13)

As αkj > δ for all j ∈ N, we deduce that θ(xkj ) −−−→
j→∞

0 so the subsequence (θ(xkj ))j∈N

converges to zero. Following (6.10) we know that (θ(xk))k∈N converges to θ∗. As the
limits have to be equal, we deduce θ(xk) −−−→

k→∞
0.

�

If we further assume that there exists x∗ such that xk −−−→
k→∞

x∗, we can give a statement

concerning the convergence rate. The following lemma is also needed.

Lemma 6.2.6. Suppose that f : Rn → Rn is semismooth at the solution x∗ of f(x) = 0 and
that all V ∈ ∂Bf(x∗) are nonsingular. Then there exists δ, C > 0 and ε : R+ → R+ with
ε(t) −−−→

t→0+
0 such that ‖V −1‖ ≤ C for all V ∈ ∂Bf(x), x ∈ Bδ(x∗) and

(i) ‖x− V −1f(x)− x∗‖ ≤ ε(‖x− x∗‖)‖x− x∗‖,
(ii) ‖f(x− V −1f(x)‖ ≤ ε(‖x− x∗‖)‖f(x)‖,

for all V ∈ ∂Bf(x), x ∈ Bδ(x∗).

Proof. Refer to Qi (1993). �

Theorem 6.2.7. Assume that there exists x∗ such that xk −−−→
k→∞

x∗ and f is semismooth as

well as strongly BD-regular in x∗. Then xk −−−→
k→∞

x∗ superlinearly.

Proof. As xk −−−→
k→∞

x∗ the iterates enter into the region of attraction of Theorem 5.4.3.

Following Lemma 6.2.6, there exists an index k̄ such that

‖f(xk̄ − V −1f(xk̄)‖ ≤ ε(‖xk̄ − x∗‖)‖f(xk̄)‖.

Therefore, there also exists an index kδ such that

θ(xkδ − V
−1f(xkδ)) ≤ ε

2(‖xkδ − x∗‖)θ(xkδ) ≤ (1− σ)θ(xkδ).
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This means that for all k ≥ kδ the watchdog step is satis�ed and a full step is performed,
which allows to apply Theorem 5.4.3 to get superlinear convergence. �

Unfortunately, a re�nement with a nonmonotone step size rule is not possible. Due to the
added νk we cannot guarantee that a full step xk+1 = xk + dk with dk satisfying Vkdk =
−f(xk), Vk ∈ ∂Bf(xk) is performed.

6.3 Nonmonotone Step Size Rule by Zhang and Hager

Zhang and Hager (2004) introduce a special nonmonotone step size rule which makes use of
a convex combination of the function values of the former iterates.

Algorithm 6.5 Nonmonotone step size rule by Zhang and Hager

Input: β ∈ (0, 1), σ ∈ (0, σ̄), xk, dk ∈ Rn, ck ∈ R+ ∪ {0}, αmax > 0, θ(xk) 6= 0
c0 = θ(x0), q0 = 1, 0 ≤ ηmin ≤ ηmax

Ensure: dk is chosen such that (6.4) holds and ηk ∈ [ηmin, ηmax]
if θ(xk + αmaxdk) ≤ ck − σαmaxθ(xk) then
αk = αmax

else

determine smallest lk ∈ N such that
θ(xk + αmaxβ

lkdk) ≤ ck − σαmaxβlkθ(xk)
αk = αmaxβ

lk

end if

qk+1 = ηkqk + 1

ck+1 =
ηkqkck+θ(xk+1)

qk+1

return step size αk

If we set

νk = ck − θ(xk) ∀k,

we are in the setting of our nonmonotone Armijo's rule in Algorithm 6.2 . We are now able
to use the �ndings of the former section to prove convergence of the globalized generalized
Newton's method if using the nonmonotone step size rule by Zhang and Hager (2004) given
above.

Theorem 6.3.1. Let the assumptions of Theorem 6.2.3 hold. Furthermore we assume that
ηmax < 1. Then it holds

θ(xk) −−−→
k→∞

0.
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Proof. In order to apply Theorem 6.2.3 we have to show that

(i) νk = ck − θ(xk) ≥ 0,

(ii)

∞∑
k=1

νk <∞.

As −σαmaxβlkθ(xk) ≤ 0 for all k, we deduce that

θ(xk+1)− ck ≤ 0. (6.14)

Furthermore, as

qk+1 = ηkqk + 1⇔ ηk =
qk+1 − 1

qk

we get

ck+1 =
ηkqkck + θ(xk+1)

qk+1
=

(qk+1 − 1)ck + θ(xk+1)

qk+1
= ck +

θ(xk+1)− ck
qk+1

. (6.15)

Using (6.14) we derive that

ck − ck+1 = ck − ck −
θ(xk+1)− ck

qk+1
=
ck − θ(xk+1)

qk+1
≥ 0,

which also shows that (ck)k∈N is monotonically decreasing. This leads to

0 ≤
j∑

k=0

ck − θ(xk+1)

qk+1
=

j∑
k=0

ck − ck+1 = c0 − cj+1 ≤ c0 − θ(xj+2) ≤ c0. (6.16)

Due to (6.15) we deduce that

νk+1 = ck+1 − θ(xk+1) = (1− 1

qk+1
)(ck − θ(xk+1)) = (qk+1 − 1)

ck − θ(xk+1)

qk+1
≥ 0,

(6.17)

which shows (i).

As ηk ≤ ηmax < 1, the sequence (qk)k∈N is bounded and

qk+1 = ηkqk + 1 ≤ ηmaxqk + 1 ≤ ηmax(ηmaxqk−1 + 1) + 1

≤ . . . ≤
k+1∑
j=0

ηjmax ≤
∞∑
j=0

ηjmax =
1

1− ηmax
. (6.18)
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Due to (6.16),(6.17) and (6.18), this yields

0 ≤
∞∑
k=1

νk =

∞∑
k=1

(1− 1

qk
)(ck−1 − θ(xk)) =

∞∑
k=1

(qk − 1)
ck−1 − θ(xk)

qk

≤ ηmax
1− ηmax

∞∑
k=1

ck−1 − θ(xk)
qk

≤ ηmax
1− ηmax

c0 <∞,

which shows (ii). �

Since the requirements make it very hard to �nd an appropriate and easy to compute example,
we will not conclude with a numerical study. Nevertheless, Chapter 6 shows that techniques
from smooth optimization can under certain additional assumptions and requirements be
extended to nonsmooth optimization. In practice, smooth methods often deliver good results,
even when applied to nonsmooth optimization problems.
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Chapter 7

Generalized Calibration for Coherent Small
Area Estimation

Survey weighting is a mess.
� Andrew Gelman

Struggles with Survey Weighting and Regression Modeling

Survey weighting is a mess. This controversial opening line in Gelman (2007b) led to an
extensive discussion about survey weighting. But what is behind all this? In some of the
classical statistical theory of sampling, survey weights are equal to the reciprocal of the
inclusion probabilities. In fact, they are typically constructed based on a combination of
probability calculation and nonresponse adjustment. Calibration or regression modeling tries
to overcome this misery by adding information and therefore adjusting the weights. In fact,
this does not overcome all problems and criticism but makes regression modeling a mess with
which Gelman (2007a) is comfortable.

We extend the standard calibration approach, which is a special type of regression modeling,
by requesting the weights to ful�ll certain additional conditions and make the weights `less
messy'.

7.1 Extending Classical Calibration

Consider a �nite population U = {1, 2, . . . , N} whose elements are denoted by integers k.
Assume the inclusion probabilities πk > 0 are known and the design weights are given
by dk = π−1

k for each k. Further a �nite sample s with cardinality n is drawn from the
population U . We want to estimate the total ty =

∑
k∈U yk of the study variable y by

using the Horvitz-Thompson estimator t̂HTy =
∑

k∈swkyk with calibrated weights wk =
dkgk. For calibrating those weights, additional auxiliary information forming the vector
xk = (xk1, . . . , xkp)

T is available for each element k. Here we have to distinguish whether
the auxiliary information is available for every k ∈ U or only for every k ∈ s. In the �rst
case, which is the case of the adjusted index data in the German Census Sampling and
Estimation Research Project, we have complete auxiliary information and can calculate the
total exactly. We could even construct a new variable x2

k and calculate the total
∑

k∈U x
2
k,

where xk squared stands for a component wise multiplication. In the second case, which
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is in our case the ISCED (international standard classi�cation of education) data in the
German Census Sampling and Estimation Research Project, the total forming the benchmark,
has to be imported from an outside source, for example from sample census or small area
estimations.

The resulting calibration problem forms as follows: �nd weights wk = dkgk for all k ∈ s such
that a distance function, e.g., the `chi-square distance'

f : Rn → R+, g 7→
∑
k∈s

dk
(gk − 1)2

2
,

is minimized with additional calibration benchmarks∑
k∈s

xkidkgk = txi ∀i = 1, . . . , p,

where txi =
∑

k∈U xki in the case of complete auxiliary information or ti given in the second
case. Furthermore, range restrictions

mk ≤ gk ≤Mk ∀k ∈ s,

are given, where 0 ≤ mk < 1 < Mk for all k ∈ s, so no �xed values exist. For a detailed
discussion on standard calibration problems and its solution methods we refer to Chapter
5. Although these calibration methods and its modi�cations are used very often in practice,
they are lacking some important aspects.

(i) A regulation of the spread of the calibrated weights w can only be done by the range
restriction. However, this does not take the ratio of the largest to the smallest calibrated
weight into account. Following Little et al. (2009), this ratio should not exceed 10 and
is unacceptable beyond 100.

(ii) Further, if we regard the German Census Sampling and Estimation Research Project,
there often exist many estimates on di�erent levels. These estimates are gained by
di�erent estimators which leads to coherence problems, so we have to allow the bench-
marks to be ful�lled with a slight perturbation.

(iii) The methods using penalization do not allow to analyze which calibration benchmarks
are restrictive and might be relaxed in order to get overall better estimates.

These aspects were the main reason for developing the classical calibration approach into a
multicriterial calibration approach. In case of the German Census 2011, the original design
weights' ratio of the largest to the smallest calibrated weight is 25. This is gained by limiting
the sampling fraction in the di�erent SMPs between 2% and 50%. We call the maximally per-
mitted spread ratio Gelman-bound and because of consistence, the ratio of the calibrated
weights should also be limited by a Gelman-bound near to 25.

The problem of missing coherence is also often encountered at table estimates in o�cial
statistics, which are based on di�erent estimation methods. This problem may also occur
in census that use sample information. Estimates on a lower level are gained by small area
estimation methods (cf. Rao, 2003, or the estimator presented in You and Rao, 2002), whereas
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estimates on higher levels are gained by classical estimators such as the general regression
estimator (cf. De�nition 2.2.2). As the sum of estimates on areas on a lower level usually
di�ers from the estimated value of the corresponding higher level, it is not possible to get
weights such that all calibration benchmarks are satis�ed exactly. Therefore, we have to
allow the benchmarks to be relaxed.

In literature, Chambers (1996) mentions ridge weighting to incorporate the relaxation of
the benchmarking constraints to get positive weights in the context of robust weighting for
multipurpose established surveys. Ridge weighting adds the benchmarking constraints as
penalty term in the objective function and delivers a closed form solution for the weights
depending on the penalty parameter. However, these weights are not always positive or
range restricted so the optimal penalty parameter has to be determined such that the range
restriction or box constraint is satis�ed. This is often done by examining di�erent plots.
Further, costs of the weighted estimator not satisfying the calibration constraints have to be
de�ned. For a detailed discussion of penalty methods we refer to, e.g., Gill et al. (1981) or
Nocedal and Wright (2006).

Rao and Singh (1997) propose a method that relaxes some benchmarking constraints while
satisfying range restrictions and maintaining design consistency. In fact, it is an iterative
ridge regression method with projection of the weights into the given range restriction and
updating the maximum tolerance of the perturbation of the benchmarking constraints. The
existence of solutions to ridge regression methods with range restrictions is discussed in
Théberge (2000), where he makes use of an adjustment of the penalty parameter. Chen
et al. (2002) make use of a relaxation of the benchmarking constraints in order to make the
calibrated weights ful�ll the range restriction, where they concentrate on obtaining weights
in pseudo-empirical likelihood and model-calibrated empirical likelihood estimators. Beau-
mont and Bocci (2008) discuss ridge calibration and the method of Chen et al. (2002) and
propose an alternative method which boils down to be equivalent to ridge calibration and
delivers satisfying results when staying close to the given benchmarks is desired. Multiple
and ridge model calibration is studied in Montanari and Ranalli (2009) and allows to obtain
a single set of weights for more than one survey variable and estimates that are coherent with
census data or aligned with those produced by another survey. In Rao and Singh (2009) an
iterative method (ridge shrinkage) is proposed to generalize the ridge regression method in a
manner similar to the iterative modi�cations of generalized regression, to meet range restric-
tions. It forces convergence for a speci�ed number of iterations by using a build-in tolerance
speci�c procedure to relax benchmarking constraints while satisfying range restrictions and
maintaining design consistency.

Nevertheless, all these methods require to determine user-speci�ed costs associated with not
satisfying the benchmarks in advance. The method we will present below is based on standard
optimization procedures, for which very e�cient algorithms and software exists, and makes it
also possible to get information about the restricting e�ect of the calibration benchmarks by
regarding the Lagrange multiplier. Further, apart from adding the Gelman-bound constraint,
the method delivers a single set of weights for estimating other variables of interest leading
to a one number census. Early discussions and applications of this method were recently
given by Münnich, Sachs and Wagner (2012a).
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7.2 Mathematical Formulation of the Census Problem

Consider the �nite population U = {1, 2, . . . , N} of addresses in Germany whose elements
are denoted by integers k. As mentioned in Chapter 3, this population is divided into K
disjunct subsets Kj , the so called `Kreise' or districts, i.e.,

Kj with |Kj | = kj , Kj ⊂ U,
K⋃
j=1

Kj = U, Kj ∩Kk = ∅ ∀j 6= k,

which are again divided into the so called `smallest sampling points' SMPjl, i.e.,

SMPjl with |SMPjl| = pjl,

Gj∑
l=1

pjl = kj ,

where Gj denotes the number of SMPs forming a Kreis/district Kj and

SMPjl ⊂ Kj ,

Gj⋃
l=1

SMPjl = Kj , SMPjl ∩ SMPji = ∅ ∀l 6= i.

Now, a sample s with cardinality n is drawn consisting of partial samples sjl of the SMPs
mentioned above, such that∑

j=1,...,K

∑
l=1,...,Gj

|sjl| = n, sjl ⊂ SMPjl,
⋃

j=1,...,K, l=1,...,Gj

sjl = s.

The way the partial samples are drawn is discussed in Chapter 3 and Münnich, Sachs and
Wagner (2012c). To illustrate the situation mentioned above, we have a look at Figure 7.1,
where the partitioning of the population into three districts/Kreise and four SMPs in district
1 with corresponding partial samples is shown. For the sake of simplicity we will only regard
the elements sampled, so we assume that

s = {s1, . . . , sn} =
⋃

j=1,...,K, l=1,...,Gj

sjl.

This leads to a simple vector whose elements are arranged as shown in �gure 7.2. Further,
assume that the inclusion probabilities πk > 0 are known and the design weights are given
by dk = π−1

k for each k. We want to estimate the total ty =
∑

k∈U yk of the study variable y
by using the calibrated Horvitz-Thompson estimator

t̂y =
∑
k∈s

wkyk

with calibrated weights wk = dkgk. For calibrating those weights, additional auxiliary in-
formation are available for each element k. On the one hand, benchmarks for districts and
SMPs concerning known register data, on the other hand benchmarks for districts and SMPs
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Figure 7.1: Partitioning of the population

Figure 7.2: Partitioning of the sample

concerning another attribute, e.g., employment or educational background. The benchmarks
concerning known register data on SMP and district level are estimated by a combined GREG
estimator (cf. De�nition 2.2.2 or Münnich, Gabler, Ganninger, Burgard and Kolb, 2012). As
this estimator is vertically coherent, we only have to calibrate on SMP level. If the bench-
marks are ful�lled on SMP level they are also ful�lled on district level. Concerning the other
benchmarks, di�erent estimators are applied on di�erent levels. On district level, a combined
GREG estimator is applied, whereas on SMP level the YOURAO estimator from De�nition
2.4.4 is taken.

We are now able to build design matrices XT ∈ R1×n consisting of known register data
and X̄T ∈ Rr×n consisting of other attributes mentioned above. Note that for the sake of
readability the notation slightly di�ers from the one used in Chapter 5.

XT := (ξ1, . . . , ξn) = (x1d1, . . . , xndn) ∈ R1×n,
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X̄T :=

 | |
ξ̄1 · · · ξ̄n
| |

 =

 ξ̄11 · · · ξ̄n1
...

...
ξ̄1r · · · ξ̄nr

 =

 x̄11d1 · · · x̄n1dn
...

...
x̄1rd1 · · · x̄nrdn

 ∈ Rr×n.
Further, we de�ne

X̄T
j := (ζ̄qr)qr, ζ̄qr =

{
ξ̄qr, if sq ∈ Kj ,

0, else,

representing the `partial matrices' for the districts j, (j = 1, . . . ,K). Regarding an example
with two di�erent calibration variables and two districts, this leads to

X̄T =

(
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

)
,

X̄T
1 =

(
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0 0

)
, X̄T

2 =

(
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗

)
.

De�ning

X̄T
jl := (ζ̄qr)qr, ζ̄qr =

{
ξ̄qr, if sq ∈ Sjl,
0, else,

(j = 1, . . . ,K, l = 1, . . . , Gj),

leads to the `partial matrices' for the SMPs and the matrices of the example form as follows:

X̄T =

(
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

)
,

X̄T
11 =

(
∗ ∗ 0 0 0 0 0
∗ ∗ 0 0 0 0 0

)
, X̄T

12 =

(
0 0 ∗ ∗ 0 0 0
0 0 ∗ ∗ 0 0 0

)
,

X̄T
21 =

(
0 0 0 0 ∗ 0 0
0 0 0 0 ∗ 0 0

)
, X̄T

22 =

(
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗

)
.

The given benchmarks for the calibration variables x̄ on district level Kj are denoted by tx̄j
and tx̄jl on SMP level SMPjl. X

T
j , X

T
jl as well as txj and txjl are de�ned analogously.

Let us now have a look at the spread ratio mentioned in the introduction, which is de�ned
as follows.

De�nition 7.2.1 (Spread ratio). The spread ratio SR of weights wk = dkgk, k = 1, . . . , n
is de�ned as

SR(w) :=
maxk=1,...,nwk
mink=1,...,nwk

.

At �rst glance, a restriction of this ratio by the Gelman-bound GB could be done by adding
SR(w)−GB ≤ 0 as additional constraint. However, in contrast to the calibration benchmarks
which are linear constraints, the ratio constraint is nonlinear and non-di�erentiable. There-
fore, solution methods like barrier methods, augmented Lagrangian methods, SQP methods
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or interior point methods, which are discussed in detail in Gill et al. (1981) or Nocedal and
Wright (2006), are not applicable and would, if applied, lead to numerical di�culties during
the minimization process. Another possibility rewrites the nonlinear constraint SR : Rn → R

as a set of 2n+ 1 linear constraints.

Lemma 7.2.2. The nonlinear inequality SR(w) − GB ≤ 0 can be rewritten as the set of
linear inequalities

−wk + α ≤ 0 ∀k = 1, . . . , n,

wk − β ≤ 0 ∀k = 1, . . . , n,

−GBα+ β ≤ 0.

Proof. It holds

SR(w)−GB ≤ 0⇔
maxk=1,...,nwk
mink=1,...,nwk

−GB ≤ 0.

Let α, β ∈ R+ such that

−wk + α ≤ 0 ∀ k = 1, . . . , n,

wk − β ≤ 0 ∀ k = 1, . . . , n.

Then it holds that α ≤ mink=1,...,nwk and β ≥ maxk=1,...,nwk as well as
maxk=1,...,n wk
mink=1,...,n wk

≤ β
α .

Further

−GBα+ β ≤ 0⇔ β

α
−GB ≤ 0⇒

maxk=1,...,nwk
mink=1,...,nwk

−GB ≤ 0,

which completes the proof. �

After having introduced the necessary notations, we are able to formulate the calibration
problem. We want to gain calibration factors gk near to 1 such that the Horvitz-Thompson
estimator forms as follows.

t̂HTy =
∑
k∈s

wkyk =
∑
k∈s

gkdkyk.

Furthermore, there exists an objective function f : Rn → R with f(g) =
∑

k∈s dk
(gk−1)2

2 so
we can formulate the following calibration problem.

min
g∈Rn

∑
k∈s

dk
(gk − 1)2

2

s.t. XT
jlg − txjl = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

X̄T
j g − tx̄j = 0 ∀j = 1, . . . ,K (districts)

X̄T
jlg − tx̄jl = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

(7.1)
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Chapter 7 Generalized Calibration for Coherent Small Area Estimation

In case of di�erent estimators on district and SMP level this optimization problem is in general
infeasible. As already mentioned, the German Census Sampling and Estimation Research
Project recommends to use a combined GREG estimator and the YOURAO estimator. This
leads to coherence problems, so we have to relax our problem and the benchmark constraints
may be perturbed. Nevertheless, the weights and the perturbation shall be bounded, thus an
additional box constraint is added. Furthermore, we want to limit the spread ratio SR(w)
by the Gelman-bound GB, so we get the following calibration problem.

min
(g,ε,α,β)∈Rn+u+2

∑
k∈s

dk
(gk − 1)2

2
+
∑
k

δk
(εdis,k − 1)2

2
+
∑
k

δk
(εSMP,k − 1)2

2

s.t. XT
jlg − txjl = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

X̄T
j g − diag(tx̄j )εdis = 0 ∀j = 1, . . . ,K (districts)

X̄T
jlg − diag(tx̄jl)εSMP = 0 ∀j = 1, . . . ,K, l = 1, . . . , Gj (SMPs)

− dkgk + α ≤ 0 ∀k = 1, . . . , n

dkgk − β ≤ 0 ∀k = 1, . . . , n

−GBα+ β ≤ 0.

(g, εdis, εSMP ) ∈ [m,M ]× [mεdis ,Mεdis ]× [mεSMP ,MεSMP ]

(7.2)

If we set z = (g, εdis, εSMP , α, β) ∈ Rn+u+2, q = (d, δ, 0, 0) ∈ Rn+u+2, Q = diag(q) ∈
R(n+u+2)×(n+u+2), minimizing the objective function of (7.2) is equivalent to

min
z∈Rn+u+2

1

2
zTQz − qT z.

Furthermore, the calibration constraints can be written as linear constraints

Az 5 t,

where A ∈ R(p+u+2n+1)×(n+u+2), t ∈ Rp+u+2n+1 and `5' means that the �rst p+u equations
have to be ful�lled with `=' and the last 2n+ 1 equations have to be ful�lled with `≤'.
If we further set L = (m,mεdis ,mεSMP ,−∞,−∞) ∈ Rn+u+2 and
U = (M,Mεdis ,MεSMP ,∞,∞) ∈ Rn+u+2 we get the following quadratic problem.

min
z∈Rn+u+2

zTQz − qT z

s.t. Az 5 t

z ∈ [L,U ].

(7.3)

7.3 Computational Aspects

Before dealing with the solution and statistical analysis of the calibration problem, we will
have a look at some computational aspects. If we consider the following example with
n = 12, r = 2, u = 18, where three districts are each divided into two SMPs, we get
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the structure of the matrix A seen in Figure 7.3. The �rst block (blocks are separated by
solid lines) derives from the benchmarks, that have to be ful�lled exactly. The second and
the third block derive from the relaxed benchmarks and the last, which is also the largest
block, derives from the Gelman-bound constraint. Obviously, the matrix is sparse and only

Figure 7.3: Sparse structure of the matrix A

u + (2r + 5)n + 2 = 128 of the (6 + u + 2n + 1) · (n + u + 2) = 1568 entries are nontrivial
(8.1%). In the more realistic case of n = 1,409,620, r = 3, u = 8460, only u+(2r+5)n+2 =
15,514,282 of the (2391+u+2n+1)·(n+u+2) ≈ 4.01·1012 entries are nontrivial (0.00038%).
Therefore it is inevitable to use a solver that supports sparsity.

If necessary for applying a special solver, the inequality constraints can be transformed into
equality constraints by adding slack variables. For small dimensions, the resulting calibration
problem

min
z

z̄T Q̄z̄ − q̄T z̄

s.t. Āz̄ = t

z̄ ∈ [L̄, Ū ]

(7.4)

can then be solved by well known algorithms implemented in R packages such as `calib' by
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Chapter 7 Generalized Calibration for Coherent Small Area Estimation

Tillé and Matei (2009) or `quadprog' by Turlach and Weingessel (2011), whose algorithm is
based on the methods of Goldfarb and Idnani (1982) or Goldfarb and Idnani (1983).

However, if dimensions raise we get storage problems because the algorithms do not support
sparsity. We decided to use the commercial solver `IBM ILOG CPLEX Optimization Studio'
because it has several advantages. At �rst, it is a sophisticated solver and supports sparsity,
which is crucial for our given census problem. Secondly, there exits an R-package called
`cplexAPI' by Gelius-Dietrich (2012) which passes the sparse notation of the optimization
problem to the C codes from CPLEX and returns the solution to R. Nevertheless, the sparse
notation has to be constructed which, because of a great amount of loops, was done by C

routines called from R. These routines exploit the special structure of A and therefore are
cheap in terms of computing time but expensive in time needed for coding.

7.4 Application to the German Census Sampling and

Estimation Research Project

Apart from calibrating the weights in order to get weights for estimating other variables
of interest, the method presented previously has another advantage. The German Federal
Statistical O�ce would like to have a single set of weights that, if applied to the variables
of interest by using the Horvitz-Thompson estimator, led to the already gained estimates.
On the one hand, this so called one number census has the advantage, that the estimates
are vertically coherent and on the other hand it also delivers an easy to understand and
easy to communicate estimation approach. Further, because of the weighting approach, the
estimates can be easily included into tables leading to coherent results.

We did a simulation study with an arti�cially generated data set representing the German
population. In order to get reliable results, 990 samples were drawn and the corresponding
estimates were done. The benchmarks, that had to be ful�lled exactly, were the totals of the
corrected register data (REG). As they were estimated by the combined GREG estimator, the
estimates on SMP and district level were coherent so it was su�cient to take the SMP totals
as benchmarks. Another variable for calibration was the ISCED (international standard
classi�cation of education) data, where three classes, namely ISCEDA, ISCEDB and ISCEDC
were chosen and therefore led to three benchmarks in every domain. Their totals on district
level were estimated by the GREG estimator whilst the totals on SMP level were estimated
by the YOURAO estimator, so these benchmarks had to be relaxed.

As mentioned in Chapter 3 there exist 2391 SMPs summing up to 429 districts. Every sample
has a cardinality of 1,409,620, so the quadratic problem (7.3) optimizes over z ∈ R1,418,082

and the matrix Q in the objective function is of dimension 1,418,082 × 1,418,082. The matrix
of the constraints is much larger, namely A ∈ R2,830,092×1,418,082.

After several pretests, we decided to concentrate on four di�erent settings which can be seen
in Table 7.1. In setting 1 only the benchmarks of the corrected register data have to be
ful�lled. Further, no Gelman-bound is preset and as δ = 0, no penalty is imposed on not
ful�lling the ISCED benchmarks. This setting is chosen in order to see, how di�cult it will be
to ful�ll the ISCED benchmarks because we can see, how much the given benchmarks di�er

104



7.4 Application to the German Census Sampling and Estimation Research Project

on district and on SMP level. Setting 2 imposes a penalty on the variance of the ISCED
benchmarks and the spread of the calibrated weights w is limited by the Gelman-bound
35 which is chosen because the initial weights had a spread of 25. Further, the calibration
factors g are restricted by a box constraint whereas the variance of the ISCED benchmarks
is not restricted. This setting corresponds to a penalty approach and is chosen to see how
the spread changes and how a penalty approach would handle the ISCED benchmarks.

setting 1 setting 2 setting 3 setting 4
GB ∞ 35 35 35
δ 0 1000 1000 1000

m M 0 ∞ 0.1 10 0.1 10 0.1 10
mεdis Mεdis −∞ ∞ −∞ ∞ 0.7 1.3 0.8 1.2
mεSMP

MεSMP
−∞ ∞ −∞ ∞ 0.7 1.3 0.7 1.3

Table 7.1: Test settings

Settings 3 and 4 impose a box constraint on the perturbation of the ISCED benchmarks.
Setting 3 allows a maximum perturbation of 30% on district and SMP level, where because
of the penalty term in the objective function, the maximum should only be reached by few
domains. In setting 4, the perturbation on district level is narrowed to 20%.

It is worth to note that when setting GB = ∞, mεdis = −∞, Mεdis = ∞, mεSMP =
−∞, MεSMP = ∞ and di�ering δ for every benchmark, our approach includes the so called
`ridge calibration' approach and the `CSWmethod' mentioned in Beaumont and Bocci (2008),
but has the advantage that bounds for the calibrated weights can be easily imposed.

The computations of the simulation were processed on a compute server with 48 CPU cores
and an internal memory of 264 GB. Each CPU is an AMD Opteron(TM) with 1.7 GHz. As
the samples are independent from each other, we were able to use almost all CPUs at the
same time. Reordering the date, building the sparse notation of the matrices and computing
a solution took about 6 hours, so the whole simulation took about 4 weeks.

Regarding the resolvability depending on the test settings in Table 7.2, we can state that
when the ISCED benchmarks are ignored, which corresponds to setting one, there exists
a solution for every sample. If we add the Gelman-bound, a box constraint for g and a
penalty parameter, only one sample leads to an unsolvable calibration problem, whereas
the remaining 989 samples form a resolvable calibration problem. This indicates that the
Gelman-bound constraint seems to play less a role concerning resolvability. We will further
have a look at two explicit samples, namely sample 651 which leads to resolvable calibration
problems for every setting, and sample 394 whose calibration problems for setting 3 and 4
are unsolvable.

setting 1 setting 2 setting 3 setting 4
resolvable 990 989 848 755
[%] 100 99.9 85.7 76.3

Table 7.2: Resolvability depending on test settings
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Regarding the target and actual values of the solution of sample 651 in Table 7.3, we can state
that a calibration concerning only the corrected register data without imposing a Gelman-
bound and without a penalty on the ISCED constraints leads to a spread ratio of 63, which
is far above the initial value of 25. Fortunately, the calibration factors g lie between 0.13
and 1.56 which is near 1 so 0.1 and 10 as upper and lower bound in the other settings
seems to be well-chosen. On district level, the maximum perturbation concerning the ISCED
benchmarks is 78% upwards and 22% downwards and on SMP level 330% upwards and 52%
downwards. Keep in mind, that because of δ = 0 in setting one, the ISCED benchmarks are
not considered during calibration so the strong perturbation is not surprising. Nevertheless,
the greater variation on SMP level indicates, that ful�lling the benchmarks on SMP level is
not as easy as on district level.

In setting 2, the Gelman-bound GB = 35 and the penalty parameter δ = 1000 as well as
a box constraint for g are added. This leads to a reduction of the variation to the ISCED
benchmarks on district and SMP level, where the biggest reduction can be seen on SMP level
to a maximum of 44%. Nevertheless, 44% are far too much for being an acceptable variation
and it is also likely that most of the calibration constraints are already ful�lled with less
variation. Therefore, an upper and a lower bound of 30% perturbation is added in setting
3. It is also interesting to see, that this limitation does not a�ect min{εdis}, which is the
smallest value of the downward perturbation on district level. As already mentioned, it is
quite likely that ful�lling the benchmarks on SMP level is not as easy as on district level.
Therefore, in setting 4 the range restriction on district level is limited to 20% which also
leads to a solution satisfying all constraints.

setting 1 setting 2 setting 3 setting 4
target actual target actual target actual target actual

GB ∞ 63 35 35 35 35 35 35
m 0 0.13 0.1 0.1 0.1 0.1 0.1 0.1
M ∞ 1.56 10 2.49 10 2.49 10 2.49
mεdis −∞ 0.78 −∞ 0.81 0.7 0.81 0.8 0.81
Mεdis ∞ 1.78 ∞ 1.56 1.3 1.3 1.2 1.2
mεSMP

−∞ 0.48 −∞ 0.64 0.7 0.7 0.7 0.7
MεSMP

∞ 4.30 ∞ 1.44 1.3 1.3 1.3 1.3

Table 7.3: Target and actual values of the solution of sample 651
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However, this good results are not always achieved (cf. Table 7.2) and depend on the sample.
Regarding the results of sample 394 given in Table 7.4, we can see that setting 1 leads to a
very large spread ratio of 105, which fortunately can be reduced to 35 in setting 2. The range
of g and the maximum perturbation of the ISCED variable on district level can be compared
to those of sample 651. On a less positive note, the perturbation on SMP level in setting 1
amounts to unpleasant 2270%, which indicates that severe coherence problems of the ISCED
variable are rather likely. Further, this indicates that the estimation of the corrected register
data variable as well as the estimation of the ISCED variable on SMP level di�er widely.
Adding a penalty (setting 2) makes it possible to lower the value of max{εSMP } to 2.34, but
134% perturbation is still far too much. That is the reason why setting 3 and setting 4 are
unsolvable. The high perturbation on SMP level can be explained by a suboptimal small area
estimation which was already encountered in some pretests. However, it is not the case that
certain SMPs or samples with a certain number of sampled elements in the SMPs lead to
the suboptimal estimates, where suboptimal means negative estimates or estimates far away
from the estimates gained for the other samples. Although we did not generate the estimates
and will not deal with this topic in detail (for further information refer to Kolb, 2012),
we will mention a possible approach to handle extreme benchmarks or unfavorable SMPs
concerning calibration. The easiest possibility is to chose a `small' δk for the corresponding
SMP and to vary the bounds allowing a greater perturbation. Then, this benchmark is of
inferior importance in the optimization process and does not inference the other benchmarks.
However, this violates the desired vertical coherence in the superior district.

setting 1 setting 2
target actual target actual

GB ∞ 105 35 35
m 0 0.12 0.1 0.1
M ∞ 1.54 10 2.14
mεdis −∞ 0.78 −∞ 0.83
Mεdis ∞ 1.66 ∞ 1.49
mεSMP

−∞ 0.50 −∞ 0.67
MεSMP

∞ 23.70 ∞ 2.34

Table 7.4: Target and actual values of the solution of sample 394
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We will now revisit sample 651. Regarding the box plots (Figure 7.4) of the variable g
depending on the setting, we can see that most calibration factors gk are near to one. In
setting 2, 3 and 4 the spread between the �rst and the third quartile increases and the
whiskers also slightly drift outwards. However, they all stay close to one. The maximum of
g increases to 2.5 which is caused by the imposition of a penalty on violating the ISCED
benchmarks. As M = 10, max{g} could be larger, but it is likely that g is limited by the
given Gelman-bound.

Figure 7.4: Box plots of calibration factors g for sample 651

Figure 7.5 shows the values of εdis for the ISCEDA benchmark for every setting and 7.6
the corresponding histograms. Almost every value of εdis is very close to 1 except for three
outliers taking values between 1.25 and 1.30. As setting 3 imposes an upper bound of 1.3, the
ISCEDA benchmark on district level does not lead to any problems. Further, a bound of 1.2
is also unproblematic as we can see in setting 4. However, keep in mind that all benchmarks
and all levels interact, so a small change on the upper level may cause a large change on the
lower level.
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Figure 7.5: Perturbation εdis for benchmark ISCEDA and sample 651

109



Chapter 7 Generalized Calibration for Coherent Small Area Estimation

setting 1, district level, ISCEDA

εdis

fr
eq

ue
nc

y

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

20
0

setting 2, district level, ISCEDA

εdis

fr
eq

ue
nc

y

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

20
0

setting 3, district level, ISCEDA

εdis

fr
eq

ue
nc

y

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

20
0

setting 4, district level, ISCEDA

εdis

fr
eq

ue
nc

y

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

20
0

Figure 7.6: Histogram with absolute frequencies of the perturbation εdis for benchmark
ISCEDA and sample 651

The ISCEDB variable is more problematic than ISCEDA. We can see that the variation is
larger, i.e., not only more districts di�er from the benchmark, but also di�er with a greater
amplitude. In setting one, the maximum variation is approximately 80%, which can be
lowered by a penalty to less than 60%. This is very interesting, because it shows that a
sole penalty approach, as presented in Beaumont and Bocci (2008) or Chambers (1996), may
yield unsatisfying results. Our approach adds a box constraint on the perturbation and at
the same time puts a penalty on the relaxation of the benchmark. This has the advantage,
that we are able to limit the maximum perturbation. Figure 7.7 clearly shows that in setting
3 and 4 the maximum perturbation is limited by 30% and 20%, respectively, and that the
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limitation a�ected many districts. This is supported by Figure 7.8 where we can clearly see,
that the variance of approximately 20 districts is �xed on 20%. While the ISCEDB variable
imposes some di�culties, the ISCEDC variable behaves like the ISCEDA variable and its
benchmarks are more or less easy to handle.

●●

●
●
●●

●●●
●

●
●

●

●
●
●
●●
●

●●
●

●

●●
●

●
●

●

●
●

●

●

●

●
●●
●●
●●

●

●●●

●

●

●
●

●

●
●●
●
●●

●

●
●
●●

●

●

●

●
●●●●

●

●

●

●

●
●●
●
●

●
●
●●

●

●
●

●●●●●●
●

●

●●
●●●

●
●

●●

●

●
●

●

●●●
●
●
●●

●

●

●
●●
●
●●
●●●●
●●●●
●●●●●●●
●
●

●
●
●

●

●

●
●
●●●

●

●
●●
●●
●
●

●

●
●●●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●

●●
●●
●●
●
●

●●

●

●

●

●

●●
●●
●
●

●●●

●●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●
●
●

●●

●
●●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●
●
●
●

●
●●
●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●●●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

0 100 200 300 400

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

setting 1, district level, ISCEDB

district

ε d
is

●●

●
●●●

●●●
●

●

●

●

●
●
●
●
●
●
●●
●

●

●●
●

●
●

●

●
●

●

●

●

●
●●
●●
●●
●

●
●
●

●

●

●
●

●

●

●●
●
●●

●

●
●
●●

●

●

●

●
●●●●

●

●

●

●

●
●●
●
●

●
●
●●

●

●
●

●●●●●●
●

●

●●●●●

●●
●●
●

●
●

●

●●●●
●
●●
●

●

●
●●
●
●●
●●●●
●●●●
●●●●●●●
●
●

●
●
●

●

●

●
●
●
●●

●
●
●●
●
●●●
●
●
●●●

●

●

●
●

●

●

●

●●
●●

●
●

●●
●●
●●
●●
●
●
●●

●

●

●

●
●
●
●●
●
●
●●●
●●

●●

●
●
●●

●
●
●
●

●

●

●

●

●●●
●
●

●

●
●

●

●
●

●

●

●
●
●

●●
●
●●

●

●
●

●

●
●

●●
●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●
●
●●●
●
●●
●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●
●
●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●
●

●
●

●
●

●

●
●
●

●

●

●●

●●

●

●
●

●

●
●
●●●

●
●

●

●

●

●●

●

●

●
●
●

●●●

●

●

●

●

0 100 200 300 400

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

setting 2, district level, ISCEDB

district

ε d
is

●●

●
●●●

●●●
●

●

●

●

●
●
●
●
●
●
●●
●

●

●●
●

●
●

●

●
●

●

●

●

●
●●
●●
●●
●

●
●
●

●

●

●
●

●

●

●●
●
●●

●

●
●
●●

●

●

●

●
●●●●

●

●

●

●

●
●●
●
●

●
●
●●

●

●
●

●●●●●●
●

●

●●●●●

●●
●●
●

●
●

●

●●●●
●
●●
●

●

●
●●
●
●●
●●●●
●●●●
●●●●●●●
●
●

●
●
●

●

●

●
●
●
●●

●
●
●●
●
●●●
●
●
●●●

●

●

●
●

●

●

●

●●
●●

●
●

●●
●●
●●
●●
●
●
●●

●

●

●

●
●
●
●●
●
●
●●●
●●

●●

●
●
●●

●
●
●
●

●

●

●

●

●●●
●
●

●

●
●

●

●
●

●

●

●
●
●

●●
●
●●

●

●
●

●

●
●

●●
●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●
●
●●●
●
●●
●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●
●
●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●
●

●
●

●
●

●

●
●
●

●

●

●●

●●

●

●
●

●

●
●
●●●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

0 100 200 300 400

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

setting 3, district level, ISCEDB

district

ε d
is

●●

●
●●●

●●●
●

●

●

●

●
●
●
●
●
●
●●
●

●

●●
●

●
●

●

●
●

●

●

●

●
●●
●●
●●
●

●
●
●

●

●

●
●

●

●

●●
●
●●

●

●
●
●●

●

●

●

●
●●●●

●

●

●

●

●
●●
●
●

●
●
●●

●

●
●

●●●●●●
●

●

●●●●●

●●
●●
●

●
●

●

●●●●
●
●●
●

●

●
●●
●
●●
●●●●
●●●●
●●●●●●●
●
●

●
●
●

●

●

●
●
●
●●

●
●
●●
●
●●●
●
●
●●●

●

●

●
●

●

●

●

●●
●●

●
●

●●
●●
●●
●●
●
●
●●

●

●

●

●
●
●
●●
●
●
●●●
●●

●●

●
●
●●

●
●
●
●

●

●

●

●

●●●
●
●

●

●
●

●

●
●

●

●
●
●
●

●●
●
●●

●

●
●

●

●●

●●
●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●●

●

●

●●
●
●●●
●
●●
●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●
●
●
●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●
●

●
●

●
●

●

●
●
●

●

●

●●

●●

●

●
●

●

●
●
●●●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

0 100 200 300 400

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

setting 4, district level, ISCEDB

district

ε d
is

Figure 7.7: Perturbation εdis for benchmark ISCEDB and sample 651
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Figure 7.8: Histogram with absolute frequencies of the perturbation εdis for benchmark
ISCEDB and sample 651

Regarding the ISCED variable on SMP level, we can state that εSMP behaves like εdis on
district level. A closer look at the perturbation εSMP for benchmark ISCEDB given in
Figure 7.9 reveals that in setting 1 there are many outliers. This number of outliers is
reduced successfully by the penalty in setting 2, except for one SMP. Here we can again
see the importance of the box constraint on ε, because in setting 3 and 4 the maximum
perturbation of 30% is satis�ed. We can also state, that a maximum perturbation of 20%
can hardly be satis�ed, because there are too many SMPs having a perturbation greater than
20%. In Figure 7.10 we can clearly see, that the penalty narrows the histograms of εSMP .
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Figure 7.9: Perturbation εSMP for benchmark ISCEDB and sample 651
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Figure 7.10: Histogram with absolute frequencies of the perturbation εSMP for bench-
mark ISCEDB and sample 651

As already mentioned, setting 3 and 4 are unsolvable for sample 394 due to one extremely
large benchmark on SMP level. The benchmarks on district level are similar to the bench-
marks of sample 651 and regarding Figure 7.11, it is most likely that the ISCED variable
would not cause any problems concerning a limitation of the perturbation to 30% or even
20%.
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Figure 7.11: Perturbation εdis for benchmark ISCEDB and sample 394

Figure 7.12 shows the histogram of the initial weights d and the calibrated weights dg from
setting 4 and sample 651. We can see that the distribution before calibration is roughly the
same as the distribution after calibration.
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Figure 7.12: Histogram with absolute frequencies of the initial weights (a) and the cal-
ibrated weights (b)

However, a detailed look at the scatter plot in Figure 7.13 reveals, that the values of small ini-
tial weights slightly increase. This can be explained by comparing the given benchmarks and
the simple Horvitz-Thompson estimator. The given benchmarks are usually larger than the
estimates gained by the Horvitz-Thompson estimator, so this di�erence is counterbalanced
by increasing the weights which leads to the seen results. Another interesting observation is
that although the distribution of the weights around 20 has only minor changes, the amount
of change of certain values of the weights is rather large, e.g., some weights switch from 19.82
to 41.66 whereas others switch from 21 to 2.1.
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Figure 7.13: Scatter plot of the initial weights and the calibrated weights for sample 651

Another question arising is the role of the Lagrange multiplier. According to amount, the
larger the Lagrange multiplier the greater the importance of the constraint during opti-
mization. This property can also be examined at our simulation study. Regarding set-
ting 2 for sample 394, the Lagrange multiplier λ9911 amounts approximately −71 where
λi ∈ (−2.1, 0.36) for all i ∈ {1, . . . , 2830092} \ {9911}. Regarding the structure of the cal-
ibration matrix A, it is obvious that λ9911 is exactly the Lagrange multiplier belonging to
the ISCEDB constraint in SMP 2078, which has a variation of 2270%. Having a look at
the Lagrange multiplier for sample 561, no outliers can be noticed which is reasonable be-
cause regarding ε the estimates are `good' and a satisfaction of the benchmarks can easily be
reached.
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In order to compare the optimal values of the optimal solutions we de�ne the following
functions of z = (g, εdis, εSMP , α, β) :

OVg : Rn+u+2 → R,

z 7→
∑
k∈s

dk
(gk − 1)2

2
,

OVε : Rn+u+2 → R,

z 7→
∑
k

δk
(εdis,k − 1)2

2
+
∑
k

δk
(εSMP,k − 1)2

2
,

OV : Rn+u+2 → R,

z 7→
∑
k∈s

dk
(gk − 1)2

2
+
∑
k

δk
(εdis,k − 1)2

2
+
∑
k

δk
(εSMP,k − 1)2

2
.

Regarding Table 7.5, we can see that the optimal value OV increases, that means getting
worse, the more sophisticated a setting gets. This makes sense, because more constraints
are added from one setting to the next. However, it is interesting to see that whilst OVg
increases, OVε decreases from setting 2 to setting 4. The increase of OVg is easily explained:
The more constraints are added, the more calibration factors move away from one. This can
also be seen in Figure 7.4. In contrast to this, OVε decreases from setting 2 to setting 3 and
slightly increases from setting 3 to setting 4. The decrease can be explained by the add of a
box constraint limiting the values of ε. Nevertheless, as all εk depend on each other a stricter
restriction may cause other εk to drift away from 1 such that OVε increases, which is the case
in setting 4.

setting 1 setting 2 setting 3 setting 4
OVg 977 6,939 7,759 8,995
OVε 0 13,193 12,852 12,887
OV 977 20,132 20,612 21,883

Table 7.5: Rounded optimal values of sample 651

The objective values of sample 394 and setting 1 as well as setting 2 given in Table 7.6 can
be compared to those of sample 651, where due to the unsolvability no optimal solution and
therefore no objective values exist for setting 3 and setting 4.

setting 1 setting 2 setting 3 setting 4
OVg 921 6,457 - -
OVε 0 13,159 - -
OV 921 19,617 - -

Table 7.6: Rounded optimal values of sample 394

As mentioned in Chapter 2 it is also desirable to know how `good' an estimator is. In this
case, we are interested in two aspects. The �rst one is how the perturbed estimates for the
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ISCED variables gained by the calibrated Horvitz-Thompson estimator for domain d, that is

t̂HTcaly,d =
∑
k∈sd

gkdkyk,

behave compared to the YOURAO estimator. This is important because it gives us some
information on the loss of accuracy in large tables and a one number census. The second
point is how good calibrated Horvitz-Thompson estimates of further variables, e.g., EF117,
are compared to the true values. Therefore, we regard the RRMSE and the RBias (cf.
Chapter 2).

Table 7.7 shows the mean (RRMSEmean), the minimum (RRMSEmin) as well as the maxi-
mum (RRMSEmax) of the RRMSE of the YOURAO estimator for the di�erent ISCED vari-
ables. Here, mean/minimum/maximum means mean/minimum/maximum of the RRMSE
of all SMPs. Note, that the RRMSE is computed for the estimates of setting 4 and that
in order to get comparable results, only the estimates deriving from samples leading to a
feasible calibration problem were considered in the computation.

RRMSEmean RRMSEmin RRMSEmax
ISCEDA 0.0206 0.0086 0.1963
ISCEDB 0.0728 0.0145 0.2409
ISCEDC 0.0530 0.0162 0.1993

Table 7.7: RRMSE of the YOURAO estimator for all SMPs and the di�erent ISCED
variables

Table 7.8 shows the same as Table 7.7 but instead of the YOURAO estimator, it is based on
the calibrated Horvitz-Thompson estimator. We can see that for both estimators, the mean
and the maximum of the RRMSE takes the highest values for the ISCEDB variable. This is
in accord with the observations of ε because its variance is the largest in case of ISCEDB. For
all ISCED variables, the mean of the RRMSE of the calibrated Horvitz-Thompson estimator
lies below the mean of the YOURAO estimator, which is very positive. This property can
also be seen regarding the maximum RRMSE, where for instance in the case of the ISCEDA
variable the maximum RRMSE was lowered from 0.1963 to 0.1005.

RRMSEmean RRMSEmin RRMSEmax
ISCEDA 0.0201 0.0093 0.1005
ISCEDB 0.0565 0.0145 0.2575
ISCEDC 0.0435 0.0169 0.1348

Table 7.8: RRMSE of the calibrated Horvitz-Thompson estimator for all SMPs and the
di�erent ISCED variables

Regarding the RBias, we can state that the calibrated Horvitz-Thompson estimator leads to
better results than the YOURAO estimator. As we can see in the histograms given in Figure
7.14 ISCEDA shows the best results because the estimators are almost unbiased. Further,
the bias of the ISCEDB and ISCEDC variables is reduced because the anticipated density
function is narrowed so most RBiases lie near to zero.
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Figure 7.14: Histogram of the RBias of the YOURAO estimator and the calibrated
Horvitz-Thompson estimator for all SMPs and the di�erent ISCED vari-
ables

We will now have a look at the calibrated Horvitz-Thompson estimates of the EF117 vari-
ables. This variables classify the professional status, e.g., whether a person is an employee
(EF117A), an o�cial (EF117B) or a freelancer (EF117S), and we are interested in the total
value over the whole population. Table 7.9 clearly shows that the RRMSE is very low lead-
ing to very good estimates. Further, as the RBias is extremely near to zero, the calibrated
Horvitz-Thompson estimator is unbiased for the EF117 variables.
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RRMSE RBias
EF117A 0.0010 −0.0001
EF117B 0.0029 −0.0005
EF117S 0.0019 −0.0004

Table 7.9: RRMSE and RBias of the calibrated Horvitz-Thompson estimator for the
whole population and the di�erent EF117 variables

In conclusion, the simulation study shows that a sole penalty approach as proposed in Beau-
mont and Bocci (2008) is not su�cient to deliver good results. Outliers can only be captured
by adding a maximum admissible perturbation as it is done in our approach. Further, the re-
sults are quite promising and, with small reservations, our approach makes it possible to real-
ize a one number census. However, a good data basis in terms of good estimates/benchmarks
is inevitable for delivering good results.
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Chapter 8

Conclusion and Outlook

In this thesis, we dealt with di�erent optimization problems arising in survey statistics, such
as an optimal allocation problem and calibration problems. Di�erent methods for solving
this allocation problem in continuous and integer variables were developed. The methods
for the continuous case lead to one-dimensional root �nding problems and for solving the
integer allocation problem we used greedy type methods and developed a method based
on a binary search. We further applied the algorithms to simulation data of the German
Census Sampling and Estimation Research Project and compared the computing time and
the number of iterations. Di�erences between the gained continuous and integer solution
were also analyzed and pointed out.

For solving the general calibration problem we re�ned the optimality conditions leading
to a nonsmooth equation. We proved the semismoothness of the obtained function so its
root could be computed by the semismooth Newton method. This method was applied to
simulation data and we showed that the theoretically proved quadratic convergence can also
be encountered numerically. In the context of nonsmooth algorithms, we developed a general
approach to step size rules. Here, we focused on nonmonotone, Armijo based line search
methods but also showed that our approach can as well be applied to monotone line search
methods. We also extended the classical calibration approach by adding further constraints
on the calibrated weights and allowed some benchmarks to be relaxed in order to get vertical
coherence. A solution method for this high dimensional quadratic program was implemented
and a simulation study was conducted. In this study, we analyzed the simulation data of the
German Census Sampling and Estimation Research Project and worked out the advantages
and limits of the approach.

Main �elds of application of the optimization methods mentioned in this thesis are sample
based censuses, e.g., the German Census 2011 as well as future censuses. As a census is
mandatory for every member state of the European Union every ten years, a lot of simulation
studies have to be done in advance. By using our optimal allocation algorithms, a lot of
simulations can be done in a short amount of time, such that di�erent sampling fractions
can be easily tested. Further, the already gained estimates of a sample based census may
have to be delivered to Eurostat. For the use of those estimates in the Eurostat tables, the
estimates have to be vertically coherent. Due to the use of small are methods, this coherence
is not given and has to be arti�cially generated, which can be done by the presented extended
calibration problem. In this context, the given R code should be generalized such that the
method can be easily applied to other benchmarks or domain arrangements.
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