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Herrn Prof. Dr. Florian Jarre danke ich für die Übernahme des Korreferats und das der Arbeit ent-

gegengebrachte Interesse.

Außerdem bedanke ich mich bei der Deutschen Forschungsgemeinschaft und den Trägern des Gra-

duiertenkollegs “Mathematische Optimierung”, die mir die Gelegenheit zur Promotion gegeben

haben.

Zudem danke ich meinen Kollegen M. Fahl, C. Schwarz und T. Voetmann für viele hilfreiche Diskus-
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Chapter 1

Introduction

In this thesis we consider semi-infinite programming problems of the following general form:

minimize f(x)

s.t. x ∈ Rn, Ax = b, A ∈ Rm×n, b ∈ Rm,

gi(x, t) ≤ 0 for all t ∈ T i (i = 1, . . . , l),

(1.1)

wheref is convex, eachgi is convex inx as well as continuous int and eachT i is a nonempty

compact set. Thus we deal with finitely many variables and infinitely many constraints. Such

problems occur in various fields, for instance we point at the following applications:

• Least-cost strategies for air pollution abatementstudied, e.g. by Gorr et al. [13] and Kortanek,

Gorr [29];

• Robot trajectory planningstudied, e.g. by Hettich, Still [18] and Haaren-Retagne [15];

• Engineering design problems likeSeismic resistant design of structures, electronic circuit

designand thedesign of SISO/MIMO control systemsstudied by Polak [37];

• Digital filter designstudied, e.g. by Potchinkov [40, 41] and Kortanek, Moulin [30];

• Applications in finance studied, e.g. by Tichatschke et al. [56].

Besides many problems (including some of that given above) arise in the field of Chebyshev-

approximations or optimal control problems. While Chebyshev-approximation problems are often

linear semi-infinite programming problems (cf., e.g., Hettich, Zencke [19]), the discretized optimal

control problems are mostly of a more difficult structure due to the involved differential equations

(cf., e.g., Sachs [49]). For details and more applications we refer also to the collection papers [8]

and [44] as well as to the extensive survey by Hettich, Kortanek [17].

1.1 Review of literature

As consequence of the variety of applications particular methods for solving semi-infinite problems

were developed. A survey is given by Hettich, Kortanek [17] again. Thereby it turns out that the
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4 1 Introduction

numerical methods typically generate sequences of finite optimization problems and, following Het-

tich, Kortanek [17], we can classify them into three types:exchange methods, discretization methods

andmethods based on local reduction. Nevertheless, particularly caused by the infinite number of

constraints each of these methods has critical points for a practical realization. So, the exchange

methods require the solution of a global optimization problem in each step, the discretization meth-

ods typically lead to finite problems with a very large amount of constraints and the local reduction

methods are based on the necessary optimality conditions and use a further knowledge of the local

behaviour of the constraints. Each of these methods may cause a (very) high computational effort

so that no standard method for solving semi-infinite problems is currently available.

Regardless the work in the field of semi-infinite programming theinterior-point approachfor

solving finite (convex) problems was developed during the last decades. This research was first

initiated by proposing thelogarithmic barrier methodby Frisch [11] in 1955. The fundamental

results of the intensive study during the following years were summarized by the monograph of

Fiacco, McCormick [9], published in 1968. A qualitatively new stage in the development of interior

point methods has been started with the paper of Gill et al. [12], where the relationship between

Karmarkar’s method and the logarithmic barrier methods for linear programs was shown. This fact

brought to the light the polynomial complexity of logarithmic barrier methods for some classes of

problems so that competitive interior-point methods for solving finite convex, especially linear and

quadratic, problems could be developed. A survey of such methods for (mostly) linear problems is

given by Andersen et al. [1].

Motivated by these powerful methods for finite problems including large-scale problems it was

natural to try to transfer ideas from interior point methods to the field of semi-infinite programming

problems. So the first algorithm in this context was an extension of an affine-scaling algorithm to

linear semi-infinite problems suggested by Ferris, Philpott [6, 7]. But it is not easily possible to

extend each interior-point approach to semi-infinite problems. For instance Powell [42] showed that

the application of Karmarkar’s algorithm to linear semi-infinite problems does not have to work.

Additionally, a survey of interior-point approaches which can naturally be extended to semi-infinite

problems is given by Todd [57] and Tunçel, Todd [58]. A further approach originates from the

method of analytic centerswhich was introduced by Sonnevend [53] and extensively studied by

Jarre [22] for finite convex problems. In order to tackle the semi-infinite problem of the form (1.1)

directly, Sonnevend [54, 55] and Schättler [50, 51] extended this approach to convex semi-infinite

problems by introducing an integral form of the logarithmic barrier. But, unfortunately the barrier

property may be lost due to the smoothing effect of the integral (cf., e.g, Tunçel, Todd [58] and Jarre

[23]).

Usually boundedness (or in fact compactness) of the feasible set or at least of the solution set of

the given problems is assumed in all interior point approaches for semi-infinite problems mentioned

above. Dropping this restrictive assumption Kaplan, Tichatschke [26] suggested a combination of

the logarithmic barrier method with a discretization procedure for the constraint set and theproximal

point methodwhich was introduced by Martinet [32, 33]. Furthermore, due to the regularization, the

approach of Kaplan, Tichatschke allows to treat ill-posed semi-infinite problems with ill-posedness

in the sense of Hadamard. Especially the case where the finite auxiliary problems are not solvable is
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of interest in that field. A further advantage of the method proposed by Kaplan, Tichatschke is given

by the fact that convergence of the iterates can be established. This is not clear in each case if one

applies the pure interior-point methods for convex problems excepting linear and quadratic ones.

All methods stated above are based on the smooth problem formulation (1.1) and make use of

differentiability properties of the involved functions. In contrast to this, Polak [37] suggested a

nondifferentiable reformulation of semi-infinite problems by means of using themax-function in the

description of the constraints. This leads in fact to optimization problems with finitely many but

nondifferentiable constraints which cause some difficulties. Nevertheless this reformulation will be

the basis of the thesis which is outlined in the sequel.

1.2 Outline of the thesis

In Chapter 2 we start with a review of the classical logarithmic barrier method for convex problems

since we intend to apply this method to convex semi-infinite programming problems. In particular

the method is briefly stated and two basic convergence results are given.

Then several approaches transferring the logarithmic barrier method to semi-infinite program-

ming problems, given in the smooth formulation (1.1), are discussed in detail. Thereby it turns out

that certain difficulties from the theoretical and/or numerical point of view occur in each of these

approaches.

In order to avoid these difficulties we apply the logarithmic barrier method directly to the nondif-

ferentiable reformulation of the semi-infinite problems. Consequently, we consider barrier problems

with nondifferentiable objective functions so that a method for minimizing nondifferentiable convex

functions under convex constraints is required. Such methods often use subgradient information,

more exact they often assume the existence of bounded subgradients or even subdifferentials on the

feasible set. Due to the logarithmic part in the objective function of the barrier problems such a

property does not hold in our case so that we enforce it by doing the following: The logarithmic bar-

rier function is minimized on successively determined nonempty compact sets which are located in

the relative interior of the feasible set. Introducing this procedure a conceptual algorithm for solving

convex semi-infinite problems is finally presented.

In Chapter 3 the minimization of a convex nondifferentiable function on a nonempty convex

compact set is in the focus of interest. Based on the assumption that the input data like objective

function and subgradient information are exactly available, several known published methods can

be used, one of which is the proximal level bundle method of Kiwiel [28]. Problematic in our case

is that the objective function at hand contains a term whose evaluation requires the exact solution

of a global maximization problem. In order to avoid this we extend Kiwiel’s bundle method to the

situation of inexact given input data. In doing so an inexact determination of the global maximum is

permitted.

In Chapter 4 our conceptual algorithm is first described in detail for one semi-infinite constraint.

This also includes the required specification of the assumptions. One essential assumption is the

compactness of the solution set of the given problem. As stated above such an assumption (or the

stronger condition that the feasible set is compact) is quite usual in the field of interior point methods.
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Thus, after showing that the extended bundle method can be in fact applied, a convergence

analysis based on the results of Fiacco, McCormick [9] is presented. Since these results only ensure

the convergence of the iterates to the solution set in general, it is not surprising that we cannot prove

convergence to one certain point of this set if the given problem is not uniquely solvable. But in

each case convergence to the solution set can be established.

Finally, the straight-forward extension of the implementable algorithm to convex problems with

finitely many semi-infinite constraints is presented. Thus, without specifying detailed assumptions

at this point, we are able to solve convex problems of the form (1.1) if they possess a nonempty

compact set of optimal solutions.

In Chapter 5 we drop this restrictive condition on the solution set. Then, following the ideas

of Kaplan, Tichatschke [24–27], our method developed in Chapter 4 is coupled with the proximal

point regularization technique. This procedure leads to auxiliary problems with strongly convex ob-

jective functions so that these problems are uniquely solvable and the method suggested in Chapter

4 is applicable to them. Based on this fact a combined algorithm is stated in detail. Therein we

additionally make use of the multi-step technique introduced by Kaplan, Tichatschke [24] which

allows to do more steps of the algorithm with large barrier parameters. Since the conditioning of the

barrier problems is getting worse when the barrier parameter tends to zero, the multi-step approach

stabilizes the combined method.

A convergence analysis based on that of Chapter 4 and that of Kaplan, Tichatschke [27] is es-

tablished. Thereby it turns out that, in contrast to the method presented in Chapter 4, the regularized

algorithm generates a sequence which converges to an optimal solution of the given problem under

certain conditions.

Furthermore, a result with respect to the rate of convergence of the values of the objective func-

tion holds under more restrictive conditions than before. But, considering only the class of problems

with quadratic growth we can even show linear convergence of the values of the objective function

as well as the iterates. This reflects a well-known result in the theory of the proximal point method

(cf., e.g., Rockafellar [47]).

In Chapter 6 we perform the numerical analysis of the discussed algorithms. In particular, we

first determine the nonempty compact sets on which the minimization of the (regularized) logarith-

mic barrier function has to be done. Furthermore, based on the previously determined compact sets,

we investigate how to compute the required constants. Then we have a closer look at the inexact

maximization procedure which is required for each inexact evaluation of the logarithmic barrier

function. The inexact maximization of a function on a nonempty compact set is usually carried out

by maximizing this function on a finite grid which discretizes the given compact set. Since these

grids can be very large, a deletion rule for excluding certain grid points from the maximization

process is developed. This deletion rule should accelerate the evaluation of the logarithmic barrier

function and consequently the whole iteration process.

The previously developed logarithmic barrier algorithms require strictly feasible starting points.

Finding such points is in general a difficult task and we discuss their determination in detail.

In Chapter 7 we apply our algorithms to model examples in order to show the typical behaviour

of the considered methods. Most of the examples are previously investigated by Voetmann [61] in



1.2 Outline of the thesis 7

the context of the proximal interior point method of Kaplan, Tichatschke [26].

In Chapter 8 an application arising in the field of finance (cf. Tichatschke et al. [56]) is presented.

In particular we approximate the run of the curve of the German stock index DAX over a given time

interval. The approximation is based on a differential equation under uncertainty. So, by means of

some simplifications we obtain a linear Chebyshev approximation problem.

In Chapter 9 we discuss the design of digital filters. We first give an introduction into the

mathematical model of the design of perfect reconstruction filter banks. This leads to a semi-infinite

program with a single constraint which was previously investigated by Kortanek, Moulin [30].
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Chapter 2

The logarithmic barrier approach for
convex optimization problems

In this chapter we first summarize basic results of the classical logarithmic barrier method for finite

convex optimization problems. Further several trials for an extension of this method to semi-infinite

problems are reported and a conceptual algorithm for solving convex semi-infinite problems is de-

veloped.

2.1 Finite problems

In this section the classical logarithmic barrier approach for solving finite convex programming

problems is reviewed. In order to do this we consider the problem

minimize f(x) s.t. x ∈ Rn, Ax = b, gj(x) ≤ 0 (j = 1, . . . , l) (2.1)

with A ∈ Rm×n, b ∈ Rm as well as convex functionsf : Rn → R and gj : Rn → R for

j = 1, . . . , l. Then the classical logarithmic barrier approach can be described as follows (see, e.g.,

Wright [62], Section 3.2):

Algorithm 2.1

• Givenµ1 > 0.

• For i = 1, 2, . . .:

– Compute a minimizerxi of the barrier problem

minimize fi(x) := f(x)− µi
l∑

j=1

ln(−gj(x))

s.t. x ∈ Rn, Ax = b, gj(x) < 0 (j = 1, . . . , l).

(2.2)

– Chooseµi+1 ∈ (0, µi).

9



10 2 The logarithmic barrier approach for convex optimization problems

The algorithm is practicable if problem (2.2) is solvable in each step. This ensures the following

lemma which corresponds to Lemma 12 in Fiacco, McCormick [9] and Theorem 4 in Wright [62],

although we are able to use a weaker assumption. Fiacco, McCormick [9], Wright [62] as well as

other authors assume that the feasible region of (2.1) is bounded. Instead of this restrictive condition

we only assume that the set of optimal solutions of (2.1) is bounded (which is in fact equivalent to

the compactness since we deal with continuous functions in a finite dimensional space).

Lemma 2.2 Let f : Rn → R and gj : Rn → R for j = 1, . . . , l be convex functions and

A ∈ Rm×n, b ∈ Rm be given. Assume that the solution set of(2.1) is nonempty and compact.

Moreover, assume that the Slater Constraint Qualification is fulfilled, i.e., there existsx̂ ∈ Rn with

Ax̂ = b andgj(x̂) < 0 for all j = 1, . . . , l. Then the level set

Li(τ) := {x ∈ Rn : fi(x) ≤ τ, Ax = b, gj(x) < 0 (j = 1, . . . , l)} (2.3)

is compact for allτ ∈ R and fixedi ∈ N. Especially problem(2.2) is solvable with a compact set

of optimal solutions.

Proof: Let τ ∈ R be arbitrarily given. To show the compactness ofLi(τ) we prove that it is

bounded and closed.

We first show that it is bounded. Suppose thatLi(τ) were unbounded, then there exists a se-

quence{zk} with zk ∈ Li(τ) and‖zk‖ > k. ‖ · ‖ is an arbitrary but fixed norm onRn. Setting

yk := zk/‖zk‖ we have‖yk‖ = 1 for all k ∈ N and the sequence{yk} has at least one accumula-

tion pointy with ‖y‖ = 1. Without loss of generality we assume that{yk} converges toy. Let x∗

be an optimal solution of (2.1). Then we want to show that each pointx∗ + sy with s > 0 is also

an optimal solution of (2.1) which contradicts our assumption of the compactness of the solution set

sincey 6= 0.

In order to show the feasibility of such pointsx∗ + sy for (2.1) lets > 0 be fixed. Then, taking

the convexity ofgj into account, we have for allk > s andj = 1, . . . , l :

gj

((
1− s

‖zk‖

)
x∗ + s

zk

‖zk‖

)
≤
(

1− s

‖zk‖

)
gj(x∗) +

s

‖zk‖
gj(zk) < 0.

Thusk →∞ leads togj(x∗ + sy) ≤ 0 for all j = 1, . . . , l. Additionally, it holds

Ay = lim
k→∞

Ayk = lim
k→∞

Azk

‖zk‖
= lim

k→∞

b

‖zk‖
= 0

such thatx∗ + sy is a feasible solution of (2.1). Further,gj(x∗) ≤ 0 and the convexity ofgj allow

to conclude

0 > gj(zk) ≥
(
‖zk‖ − 1

)
gj(x∗) + gj(zk) ≥ ‖zk‖ gj

((
1− 1
‖zk‖

)
x∗ +

zk

‖zk‖

)

for all k > 1 andj = 1, . . . , l. Therefore, regarding the convergence ofgj

((
1− 1

‖zk‖

)
x∗ + zk

‖zk‖

)
to gj(x∗ + y) for all j, there exists a constantC0 > 0 independent ofj (because only finitely many
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constraints occur) andk with gj(zk) ≥ −C0‖zk‖. Using this as well as the monotonicity of the

logarithm we obtain

τ ≥ fi(zk) = f(zk)− µi
l∑

j=1

ln(−gj(zk)) ≥ f(zk)− µil ln(C0‖zk‖).

Hence, regarding the convexity off , one infers

f

((
1− s

‖zk‖

)
x∗ + s

zk

‖zk‖

)
≤
(

1− s

‖zk‖

)
f(x∗) + s

f(zk)
‖zk‖

≤
(

1− s

‖zk‖

)
f(x∗) + s

τ

‖zk‖
+ sµil

ln(C0‖zk‖)
‖zk‖

for all k > s. Thenk → ∞ gives usf(x∗ + sy) ≤ f(x∗). Consequentlyx∗ + sy is an optimal

solution of (2.1) for eachs ≥ 0. As stated above this contradicts the assumption of the compactness

of the solution set of (2.1) such thatLi(τ) cannot be unbounded.

To show thatLi(τ) is closed, we prove that it contains all its accumulation points. Let{zk} be

a convergent sequence withzk ∈ Li(τ) for all k andz ∈ Rn as its limit point. First, fromAzk = b

for all k ∈ N follows easily thatAz = b. Further, since the convex functionsf andg1, . . . , gl are

continuous onRn (see, e.g., Rockafellar [45], Corollary 10.1.1), we havelimk→∞ f(zk) = f(z)
and limk→∞ gj(zk) = gj(z) for all j = 1, . . . , l. Thus one infersgj(z) ≤ 0, gj(zk) ≥ C1 and

f(xk) ≥ C1 with a constant0 > C1 > −∞ independent ofj andk. Therefore, takingfi(xk) ≤ τ

for all k ∈ N and the monotonicity of the logarithm into account, we can conclude

−µi ln
(
−gν(zk)

)
≤ τ − f(zk) + µi

l∑
j=1
j 6=ν

ln
(
−gj(zk)

)

≤ τ − C1 + µi(l − 1) ln(−C1) =: µiC2

for all ν = 1, . . . , l with a constantC2 <∞. Then it follows

gν(zk) ≤ −e−C2 < 0

and gν(z) < 0 for all ν = 1, . . . , l. Additionally, fi is obviously continuous on its domain

dom (fi) = {x ∈ Rn : gj(x) < 0 (j = 1, . . . , l)} so thatfi(z) ≤ τ follows from the inclu-

sion{zk} ⊂ {x ∈ Rn : gj(x) ≤ −e−C2} ⊂ dom (fi). Hence, it yieldsz ∈ Li(τ) such that the

level set is closed.

Finally, we have to show that (2.2) is solvable with a compact solution set. Due to the existing

Slater point̂x the level setLi(τ) with τ = fi(x̂) is nonempty. Moreover, each optimal solution of

(2.2) must be an element ofLi(fi(x̂)). Consequently the optimization problem

minimize fi(x) s.t. x ∈ Li(fi(x̂)) (2.4)

has the same solution set as problem (2.2). We already know that the level setLi(fi(x̂)) is compact

and contained in the domain offi. In problem (2.4) we have to minimize the continuous function
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fi on a nonempty compact feasible set. Thus there exists at least one optimal solution of (2.4),

resp. (2.2). Furthermore the set of optimal solutions coincides with the level setLi(f∗i ) wheref∗i is

the optimal value offi. Thus, the compactness of this set follows from the statements above.2

The following result shows that we can compute an optimal solution of (2.1) with Algorithm

2.1. This theorem corresponds to Theorem 25 in Fiacco, McCormick [9] and Theorem 5 in Wright

[62]. Let f∗ denote the optimal value of (2.1).

Theorem 2.3 Let f : Rn → R andgj : Rn → R for j = 1, . . . , l be convex functions. Further-

more, letA ∈ Rm×n, b ∈ Rm be given. Assume that the set of optimal solutions of (2.1) is nonempty

and compact. Moreover, assume that the Slater Constraint Qualification is fulfilled. Let{µi} be a

positive sequence withlimi→∞ µi = 0 and let{xi} denote a sequence of arbitrary optimal solutions

of (2.2). Then the following is true

(a) The functionsfi are convex on their domain.

(b) The sequence{xi} is bounded.

(c) It holds

0 ≤ f(xi)− f∗ ≤ µil (2.5)

for all i ∈ N andlimi→∞ f(xi) = f∗.

(d) Each accumulation point of{xi} is an optimal solution of(2.1).

(e) If {µi} is a monotonically decreasing sequence and if{xi} converges, then

lim
i→∞

f∗i = f∗.

Proof: Let us first remark that the existence ofxi is ensured by Lemma 2.2 for alli ∈ N. Now the

separate propositions are successively proven.

(a) Let i ∈ N be fixed. Sincef is convex onRn andµi is positive it remains to prove that the

logarithmic part

−
l∑

j=1

ln (−gj(x)) (2.6)

is convex ondom (fi) = {x ∈ Rn : gj(x) < 0 (j = 1, . . . , l)}. This will be done by showing that

each addend of this sum is convex.

The logarithm is a concave increasing function. Consequently,− ln(−t) is a convex increasing

function. Taking the convexity ofgj into account each summand in (2.6) is the post-composition

of a convex function with an increasing convex function. Such a composition is also convex after

Proposition IV.2.1.8 in Hiriart-Urruty, Lemaréchal [20].

(b) Let µ0 ∈ R be given such thatµi < µ0 for i ∈ N holds. Moreover, letx0 be an optimal

solution of (2.2) withi = 0. Then we have

f(xi)− µi
l∑

j=1

ln
(
−gj(xi)

)
≤ f(x0)− µi

l∑
j=1

ln
(
−gj(x0)

)
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and

f(x0)− µ0

l∑
j=1

ln
(
−gj(x0)

)
≤ f(xi)− µ0

l∑
j=1

ln
(
−gj(xi)

)
for all i ∈ N. Multiplying the first inequality withµ0/µi and combining the resulting estimate with

the second inequality one obtains

f(x0)− f(xi) ≤ µ0

l∑
j=1

(
ln
(
−gj(x0)

)
− ln

(
−gj(xi)

))
≤ µ0

µi

(
f(x0)− f(xi)

)
for all i ∈ N. Due toµ0 > µi for all i ∈ N this can only be true iff(xi) ≤ f(x0) holds for

eachi ∈ N. Thus, regarding alsoAxi = b for all i ∈ N, eachxi is an element of the level set

{x ∈ Rn : f(x) ≤ f(x0), Ax = b, gj(x) ≤ 0 (j = 1, . . . , l)}. Due to the compactness of the

solution set of (2.1) these sets are compact which can be proven similarly to Corollary 20 in Fiacco,

McCormick [9]. Therefore the sequence{xi} is bounded.

(c) The left inequality in (2.5) is simply true since eachxi is feasible for (2.1). Thus it remains

to showf(xi) − f∗ ≤ µil. In order to prove this let an optimal solutionx∗ of (2.1) be arbitrarily

given. The pointxi is a minimizer offi onM0 := {x ∈ Rn : Ax = b, gj(x) < 0 (j = 1, . . . , l)}.
Thus, regarding the convexity ofM := {x ∈ Rn : Ax = b, gj(x) ≤ 0 (j = 1, . . . , l)} as well as

M0 = ri (M), Theorem 6.1 in Rockafellar [45] allows to concludexi + t(x∗ − xi) ∈ M0 for all

t ∈ [0, 1). Therefore we have

0 ≤ fi(xi + t(x∗ − xi))− fi(xi)
t

for all t ∈ (0, 1). Using the existence of the directional derivativef ′i(x
i;x∗ − xi) (cf., e.g., Rock-

afellar [45], Theorem 23.1) this combined with Theorem 23.4 in Rockafellar [45] leads immediately

to

0 ≤ f ′i(xi;x∗ − xi) = max
z∈∂fi(xi)

zT (x∗ − xi),

if we take into account thatxi ∈ int (dom (fi)) which enforces the compactness of∂fi(xi). So

now we have to determine a closed form for the subdifferential offi in xi. From the proof of (a) we

know that the functions− ln(−gj(x)) are convex ondom (fi) for all j = 1, . . . , l. Thus, regarding

Theorem 23.4 in Rockafellar [45],∂(− ln(−gj(xi))) is nonempty for alli andj. Since− ln(−t) is

an increasing convex function andgj is convex for allj = 1, . . . , l we can apply Theorem XI.3.6.1

in Hiriart-Urruty, Lemaŕechal [21] so that we infer in combination with Proposition XI.1.3.1 in

Hiriart-Urruty, Lemaŕechal [21]

∂
(
− ln

(
−gj(xi)

))
=

1
−gj(xi)

∂gj(xi).

Consequently, using Theorem 23.8 in Rockafellar [45] and Proposition XI.1.3.1 in Hiriart-Urruty,

Lemaŕechal [21] and regarding that the intersection

ri (dom (f)) ∩
l⋂

j=1

ri (dom (−µi ln (−gj)))
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is nonempty (since eachxi is an element of it), we have

∂fi(xi) = ∂f(xi) + µi

l∑
j=1

∂(− ln(−gj(xi))) = ∂f(xi) + µi

l∑
j=1

1
−gj(xi)

∂gj(xi). (2.7)

Hence, there existu ∈ ∂f(xi) andvj ∈ ∂gj(xi) with

f ′i(x
i;x∗ − xi) =

u+ µi

l∑
j=1

1
−gj(xi)

vj

T

(x∗ − xi).

Then, regarding the definition of the subdifferential andgj(x∗) ≤ 0 for j = 1, . . . , l, we infer

0 ≤ uT (x∗ − xi) + µi

l∑
j=1

1
−gj(xi)

vTj (x∗ − xi)

≤ f(x∗)− f(xi) + µi

l∑
j=1

gj(x∗)− gj(xi)
−gj(xi)

≤ f∗ − f(xi) + µil.

(d) From (b) we know that{xi} is bounded so that it has an accumulation pointx̃. Then it

follows f(x̃) = f∗ from (2.5). Furthermore,̃x is obviously feasible for (2.1). Hence,̃x is an

optimal solution of (2.1).

(e) Letx∗ be the limit point of{xi}. If we havegj(x∗) < 0 for all j = 1, . . . , l then one can

conclude

lim
i→∞

µi

l∑
j=1

ln
(
−gj(xi)

)
= 0

such that we infer with (c)

lim
i→∞

f∗i = lim
i→∞

f(xi)− µi
l∑

j=1

ln
(
−gj(xi)

)
= f∗.

Thus in the sequel we assume that there exists at least one indexj ∈ {1, . . . , l} with gj(x∗) = 0
which implies

l∑
j=1

ln
(
−gj(xi)

)
< 0

for all i sufficiently large. Then, regarding that we have a nonincreasing sequence{µi}, one can
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conclude

f∗ ≤ f(xi+1)

< f(xi+1)− µi+1

l∑
j=1

ln
(
−gj(xi+1)

)
= f∗i+1

≤ f(xi)− µi+1

l∑
j=1

ln
(
−gj(xi)

)
≤ f(xi)− µi

l∑
j=1

ln
(
−gj(xi)

)
= f∗i

for all i sufficiently large. Especially the sequence{f∗i } decreases monotonically (at least for large

i) and is bounded below which implies the convergence of it. Setα := limi→∞ f
∗
i . Then we have

α ≥ f∗ from above. We want to show thatα = f∗ holds. For this purpose we assumeα > f∗

and setδ := (α − f∗)/2 > 0. Furthermore we choosẽx ∈ Rn with Ax̃ = b andgj(x̃) < 0 for

all j = 1, . . . , l andf(x̃) ≤ α − δ. Such a point has to exist due to (c). Since{µi} is a positive

sequence with limit point0 it yields

α ≤ fi(xi) ≤ fi(x̃) = f(x̃)− µi
l∑

j=1

ln (−gj(x̃)) ≤ α− δ +
δ

2
= α− δ

2

for all i sufficiently large, which contradicts our assumption. 2

2.2 Transfer to semi-infinite problems

In the sequel we want to transfer the classical logarithmic barrier method analyzed in the previous

section to convex semi-infinite problems of the form (1.1). For the sake of simplicity of the presenta-

tion we consider (1.1) withj = 1 (the index will be dropped) and without linear equality constraints,

i.e.

minimize f(x) s.t. x ∈ Rn, g(x, t) ≤ 0 (t ∈ T ). (2.8)

But, in the further course we describe the possibility of the extension to problems of the general

form (1.1).

Without specifying any assumptions at this point it turns out that the most difficult question for

the transfer of the logarithmic barrier method to semi-infinite problems is how can we choose a

suitable barrier function. This is caused by the (possibly) infinitely many constraints.

Considering (2.1) without linear equality constraints we can embed problems of this type into

the class of problems described by (2.8) by settingT := {1, . . . , l} andg(x, t) := gt(x). Thus a

natural generalization of the barrier term is given by

−
∑
t∈T

ln(−g(x, t)).
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But obviously this leads to serious problems. IfT is an uncountable set the definition of this sum

is not clear and ifT is an infinite countable set, serious numerical problems occur when evaluating

the sum. Furthermore, ifT is a finite but large set the barrier parameterµ has to be very small to

guarantee a certain accuracy by estimate (2.5). But in practice this avoids the machine precision so

that a direct transfer of the classical logarithmic barrier in the sense above is inadvisable and we

reject this approach.

A first alternative is the method of outer approximation described for instance by Powell [43]

in the case of linear problems. Thereby we replace step by step the setT by discretizations which

become successively finer. Consequently we have to solve finite problems of type (2.1) without

linear equality constraints in each step. These problems can be solved theoretically with the classical

logarithmic barrier approach from above, but again several difficulties occur. At first if the relaxed

problems are solvable the discretized set and consequently the number of the considered constraints

grows such that again the barrier parameter has to be very small to guarantee a good approximate

solution. Furthermore, in general the optimal solutions of the relaxed problems are not feasible

for the original problem. Consequently if we approximately compute optimal solutions by this

method they are typically not feasible for the original problem. Another serious difficulty is that the

properties of the original problem do not have to be inherited to the relaxed problems. Especially it

is possible that the relaxed problems are not solvable (for examples see, e.g. Kaplan, Tichatschke

[24]). Due to these difficulties we look for alternatives.

Sonnevend [54] and Schättler [50, 51] suggest to use the following “Integral Barrier Function”

−
∫
T

ln(−g(x, t))dt. (2.9)

Of course,meas (T ) > 0 is assumed in this case so that especially finite setsT are excluded.

Nevertheless, let us have a closer look at some important details of the arising method.

Due to the smoothing effect of the integral, (2.9) does not have to possess the barrier property

at all. That means it is possible that (2.9) is bounded above if one approaches the boundary of the

feasible region. This fact is illustrated by the following example of Jarre [23].

Example 2.4 We consider the linearly bounded feasible set

S :=

{
x ∈ R2 : g(x, t) := −

(
t− 1

2

)2

x1 − x2 ≤ 0 (t ∈ [0, 1])

}
.

Now, choosingx = (1, 0)T , we haveg(x, t) = −(t − 1
2)2 ≤ 0 for all t ∈ [0, 1]. Thusx ∈ S but

g(x, t̃) = 0 for t̃ = 1
2 impliesx 6∈ int (S). Furthermore, usingT = [0, 1], we conclude

−
∫
T

ln(−g(x, t))dt = −
1∫

0

ln

((
t− 1

2

)2
)
dt = −4

1∫
1/2

ln
(
t− 1

2

)
dt = 2 ln 2 <∞.

2

Finally, let us have a look at (2.9) from the numerical point of view. Here we have the task to

evaluate integrals of the form (2.9) at different pointsx. If x is not located near the boundary of
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the feasible region this could be done with standard formulas for numerical integration. But if we

evaluate this integral for a point near the boundary of the feasible region the logarithm will have large

absolute values for certaint. Consequently standard formulas for numerical integration do not work

very well in this area. But, we have to be able to evaluate the barrier function (and therefore also the

integrals) near the boundary of the feasible region, because optimal solutions are typically located

on this boundary. Due to these problems Schättler [50, 51] refers to specialized integration rules like

Radau’s or Lobatto’s rule (see, e.g. Davis, Rabinowitz [4]) for evaluating the integrals. In contrast

to this Lin et al. [31] use Simpson’s method to compute similar integrals arising by transferring the

exponential barrier to semi-infinite problems. In order to achieve a suitable accuracy they have to

partition the interval[0, 1] into 400000 small parts in one example case. Thus, independent of the

formulae, evaluating such integrals requires a high computational effort.

2.3 A conceptual algorithm for semi-infinite problems

Taking all considerations from the previous section into account we decided to look for a more

practical variant. In order to do that we consider the following reformulation of the semi-infinite

problem (2.8)

minimize f(x) s.t. x ∈ Rn, max
t∈T

g(x, t) ≤ 0. (2.10)

The theoretical properties as well as practical applications of this approach are extensively studied

by Polak [37, 38]. The main advantage of the reformulation (2.10) is that we can write it in the form

(2.1) with a single constraint by using

g1(x) := max
t∈T

g(x, t).

Thus we can use the results of our first section for problems of type (2.10). Consequently we deal

with the barrier function

f(x)− µ ln
(
−max

t∈T
g(x, t)

)
. (2.11)

Therefore in contradiction to the approaches mentioned above we have no additional difficulties

from the theoretical point of view. But there are two remarkable numerical problems. We now deal

with a nondifferentiable barrier function due to the involvedmax-term and we have to solve the

global optimization problem

maximize g(x, t) s.t. t ∈ T (2.12)

in order to evaluate the barrier function at a given pointx, which is in general a very hard task.

Thus except for special cases we cannot suppose that (2.12) is exactly solvable for any givenx with

acceptable computational effort. Accordingly there is only an approximate maximizer of (2.12)

available such that the barrier function is only approximately evaluable. Consequently we have to

use a method for minimizing (2.11) which requires only an approximately computable objective

function. Such a method, derived from a bundle method from Kiwiel [28], is presented in the next
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chapter. This method requires the feasible sets to be compact. In contradiction to this the barrier

function (2.11) has to be minimized on open sets of the form

{x ∈ Rn : g(x, t) < 0 (t ∈ T )} .

Nevertheless, in order to use the method proposed we will minimize the (convex) barrier function

successively on compact sets like closed boxes or balls. However, we still cannot suppose that we

are able to compute an exact minimizer of (2.11) using only approximate values of the objective

function. But as it is known from finite problems this do not have to be required (cf., e.g., den

Hertog [5]). However, the classical logarithmic barrier method from Algorithm 2.1 has to adapted in

the sense thatxk is from now on only an approximate minimizer of the barrier function. Altogether

we obtain the following conceptual algorithm for solving (2.10) resp. (2.8).

Algorithm 2.5

• Givenµ1 > 0.

• For i = 1, 2, . . .:

– Fork = 1, 2, . . .:

∗ Determine a nonempty compact setSi,k ⊂ {x ∈ Rn : maxt∈T g(x, t) < 0}.
∗ Compute an approximate minimizerxi,k of (2.11) onSi,k.

∗ If xi,k is an approximate unconstrained minimizer of a certain accuracy of (2.11)

setxi := xi,k and leave the inner loop.

– Chooseµi+1 ∈ (0, µi).

In the following chapter we present a numerical method for minimizing the nondifferentiable

barrier function (2.11) onSi,k such that in Chapter 4 we can give all necessary details to put this

conceptual algorithm into implementable form.



Chapter 3

A bundle method usingε-subgradients

In this chapter we discuss a method for solving the nondifferentiable auxiliary problems which

appear in the conceptual algorithm at the end of the previous chapter. In general these problems

look like

minimize f(x) s.t. x ∈ S (3.1)

with a convex functionf and a nonempty compact convex setS ⊂ R
n. Moreover, let (3.1) be

solvable and the following assumptions be fulfilled.

Assumption 3.1 Letε ≥ 0 be given. Then it is assumed that the following holds

(a) for anyx ∈ S at least anε-approximationf̃(x) of f(x) with

f(x)− ε ≤ f̃(x) ≤ f(x) (3.2)

can be computed;

(b) for anyx ∈ S anε-subgradientgf (x) of f can be computed;1

(c) f is Lipschitz continuous onS with Lipschitz constantLf such that‖gf (x)‖2 ≤ Lf for all

x ∈ S.

These assumptions on (3.1) are generalizations of those of Kiwiel [28] (there we haveε = 0).

Therefore we suggest a modification of Kiwiel’s proximal level bundle method for solving problem

(3.1). In Kiwiel’s Algorithm 1 we replace all computations off by f̃ and all computations of a

subgradient by anε-subgradient. Linearizingf in xk ∈ S by

fk(x) := f̃(xk) + gf (xk)T (x− xk)

leads to the following algorithm.

1If ∂f̃(x) := {z ∈ Rn : f̃(y) ≥ f̃(x) + zT (y − x) for all y ∈ Rn} 6= ∅ then (3.2) ensures∂f̃(x) ⊂ ∂εf(x). Thus

anε-subgradient off in x can be given by an element of∂f̃(x). Such a situation will always be given in our applications

of the proposed bundle method.

19
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Algorithm 3.2

(S0) Givenx1 ∈ S, the final toleranceεopt ≥ 0, a level parameter0 < κ < 1 andε ≥ 0. Set

x1
c := x1, f0

up := ∞, f1
low := minx∈S f1(x), J1 := {1}, k := 1, l := 0, k(0) := 1 (k(l)

denotes the iteration number of thel-th increase offklow).

(S1) Setfkup := min{f̃(xk), fk−1
up },∆k := fkup − fklow. If fkup = f̃(xk) setxkrec := xk (xkrec

denotes the “best” known iterate up to thek-th step, i.e.fkup = f̃(xkrec)).

(S2) If ∆k ≤ εopt or gf (xk) = 0 terminate; otherwise continue.

(S3) If the feasible set of

minimize
1
2

∥∥∥x− xkc∥∥∥2

2

s.t. x ∈ S, f j(x) ≤ κfklow + (1− κ)fkup (j ∈ Jk)
(3.3)

is nonempty, go to (S5); otherwise continue.

(S4) Setfklow := min
x∈S

max
j∈Jk

f j(x). Choosexkc ∈ {xj : j ∈ Jk} arbitrarily. Setk(l + 1) := k,

increasel by 1 and go to (S1).

(S5) Find the solutionxk+1 of (3.3) and its multipliersλkj such thatĴk := {j ∈ Jk : λkj > 0}
satisfies|Ĵk| ≤ n.

(S6) Calculatef̃(xk+1) andgf (xk+1) ∈ ∂εf(xk+1).

(S7) SelectJks ⊂ Jk such thatĴk ⊂ Jks . SetJk+1 := Jks ∪ {k + 1}, xk+1
c := xkc , f

k+1
low := fklow.

Increasek by 1 and go to (S1).

Let us briefly describe this bundle method. While (S0) and (S1) are initializing steps, (S2) con-

tains the stopping criterion. Then in (S3) a feasibility check of a projection problem with constraints

given by the current bundle is done with the consequence of resetting the lower bound of the opti-

mal value of (3.1) in the case of infeasibility in (S4). In the feasible case the projection is in fact

done leading to the next iterate in (S5) and new values of the objective function as well as theε-

subgradient in (S6). Finally, in (S7) the bundle update based on the Lagrange multipliers of problem

(3.3) is made so that the next iteration step can be done.

The practicability of this method can be easily shown by investigating each step separately.

Thereby we regard in (S5) that many QP-methods automatically generate|Ĵk| ≤ n since there are

n variables involved. In addition let us remark that between two successive updates of the lower

bound in (S4) the step (S5) has to reached at least once because the minimum ofmaxj∈Jk f j(x) on

S is attained at a certain point which is feasible for the following projection (3.3).

Now let us continue with a convergence analysis for the stated method started with a few tech-

nical results.
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Lemma 3.3 (cf. Lemma 3.1 in [28])

For any givenk ∈ N we have:

If k(l) < k < k(l + 1) for somel ∈ N0 then

‖xk+1 − xk‖2 ≥
κ∆k

Lf

otherwisek = k(l) for somel ∈ N0 and

‖xk+1 − xkc‖2 ≥
κ∆k

Lf
.

Proof: Taking into account thatxk+1 is feasible for (3.3) we obtain for anyj ∈ Jk

f j(xk+1) = f̃(xj) + gf (xj)T (xk+1 − xj) ≤ κfklow + (1− κ)fkup = fkup − κ∆k.

Regardingf̃(xj) ≥ fkup, the Cauchy-Schwarz inequality and the boundedness of theε-subgradients

this leads to

κ∆k ≤ f̃(xj)− fkup + κ∆k

≤ f̃(xj)− f j(xk+1)

= −gf (xj)T (xk+1 − xj)
≤ ‖gf (xj)‖2‖xk+1 − xj‖2
≤ Lf‖xk+1 − xj‖2.

(3.4)

If k(l + 1) > k > k(l) it follows k ∈ Jk from step (S7) so that the choicej = k in (3.4) is possible

and the proposition holds in this case. Otherwise ifk = k(l) we can find aj ∈ Jk with xj = xkc
due to (S4) so that the proposition follows again from (3.4). 2

Lemma 3.4 (cf. Lemma 3.2 in [28])

If k(l + 1) > k > k(l) for somel ≥ 0 thenxkc = xk−1
c and

‖xk+1 − xkc‖22 ≥ ‖xk − xkc‖22 + ‖xk+1 − xk‖22. (3.5)

Proof: Checking (S7) the equationxkc = xk−1
c is obvious.

In order to prove the second proposition consider problem (3.3) in stepk − 1, the orthogonal

projection ofxk−1
c onto the set described by

x ∈ S, f j(x) ≤ κfk−1
low + (1− κ)fk−1

up (j ∈ Jk−1).

Due to (S5) and (S7)xk is also the projection ofxk−1
c onto the enlarged set withJk−1

s instead of

Jk−1. The projection theorem (cf., e.g., Hiriart-Urruty, Lemaréchal [20]), Theorem III.3.1.1) in

combination withxkc = xk−1
c gives us

(xkc − xk)T (y − xk) ≤ 0 for all y ∈
{
x ∈ S : f j(x) ≤ κfk−1

low + (1− κ)fk−1
up (j ∈ Jk−1

s )
}
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so that particularly

(xkc − xk)T (xk+1 − xk) ≤ 0

holds if we additionally regard that (S7) ensures the feasibility ofxk+1 for the projection onto the

enlarged set. Therefore we obtain

‖xk+1 − xkc‖22 = ‖xk − xkc‖22 + ‖xk+1 − xk‖22 + 2(xk − xkc )T (xk+1 − xk)
≥ ‖xk − xkc‖22 + ‖xk+1 − xk‖22

which completes the proof. 2

At this point an upper bound for the number of steps with fixedl can be presented.

Lemma 3.5 (cf. Lemma 3.3 in [28])

If k(l) ≤ k < k(l + 1) for somel ∈ N0 and∆k > 0 then

k − k(l) + 1 ≤
(

diam (S)Lf
κ∆k

)2

with diam (S) := max
x,y∈S

‖x− y‖2.

Proof: If k = k(l) the proposition follows from Lemma 3.3.

But if k > k(l) we havexk(l)
c = x

k(l)+1
c = . . . = xkc due to Lemma 3.4. Taking this and the

successive application of (3.5) into account one obtains

(diam (S))2 ≥ ‖xk+1 − xkc‖22
≥ ‖xk − xk−1

c ‖22 + ‖xk+1 − xk‖22
...

≥ ‖xk(l)+1 − xk(l)
c ‖22 +

k∑
j=k(l)+1

‖xj+1 − xj‖22.

Note thatf jup ≥ fkup for all j ≤ k due to (S1), moreover, thatf jlow = fklow for all k(l) ≤ j ≤ k due

to (S7). Thus∆j ≥ ∆k for all k(l) ≤ j ≤ k. Therefore, using Lemma 3.3, we can conclude

(diam (S))2 ≥
k∑

j=k(l)

(
κ∆j

Lf

)2

≥
(
κ∆k

Lf

)2

(k − k(l) + 1)

which leads to our proposition. 2

Lemma 3.6 (cf. Lemma 3.4 in [28])

If ∆k ≥ εopt for somek then

k ≤
(

diam (S)Lf
εopt

)2 1
κ2(1− κ2)

.
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Proof: SetK l := {k(l), . . . , k(l + 1) − 1} for l ∈ N0. The proof of Lemma 3.5 shows that

f jup ≥ f iup, f
j
low = fklow and consequently∆j ≥ ∆i hold for all pairsi, j ∈ K l with j ≤ i. Now,

an estimate for combining these separate results is established. Due to (S1)f
k(l+1)
up ≤ f jup for all

j ∈ K l. Additionally, since (3.3) is not solvable in thek(l + 1)-th iteration step of the method we

have

f
k(l+1)
low ≥ κfk(l)

low + (1− κ)fk(l+1)
up

so that altogether

∆k(l+1) ≤ κ(fk(l+1)
up − f jlow) ≤ κ(f jup − f

j
low) = κ∆j (3.6)

follows for all j ∈ K l.

Let m ∈ N0 be given such thatk ∈ Km holds. Furthermore set̂K = {1, . . . , k}. Then

∆k ≥ εopt, ∆j+1 ≤ ∆j for all j ∈ K(l) ∩ K̂, j < k(l + 1)− 1 and (3.6) allow to conclude

∆i ≥ εopt
κm−l

for all i ∈ K l ∩ K̂, l = 0, . . . ,m.

Using this and Lemma 3.5 we obtain

|K l ∩ K̂| ≤
(

diam (S)Lf
κεopt

)2

κ2(m−l)

for l = 0, . . . ,m. Hence,

k =
m∑
l=0

|K l ∩ K̂| ≤
m∑
l=0

(
diam (S)Lf

κεopt

)2

κ2(m−l) ≤
(

diam (S)Lf
κεopt

)2 1
1− κ2

and the proof is complete. 2

Now we are able to prove the main result of this chapter.

Theorem 3.7 (cf. Corollary 3.6 in [28])

If εopt > 0 then Algorithm 3.2 will terminate in̂k = 1 + kopt iterations where

kopt ≤
(

diam (S)Lf
εopt

)2 1
κ2(1− κ2)

.

Moreover, the inequalities

f̃(xk̂rec)−min
x∈S

f(x) ≤ εopt + ε (3.7)

and

f(xk̂rec)−min
x∈S

f(x) ≤ εopt + 2ε (3.8)

are true.

Proof: The first proposition is a consequence of Lemma 3.6, while, using (3.2), inequality (3.8)

follows directly from (3.7). Thus it remains to prove (3.7).

If the break in (S2) is caused bygf (xk) = 0 for anyk ∈ N, Theorem XI.1.1.5 in Hiriart-Urruty,

Lemaŕechal [21]) givesf(xk) ≤ minx∈S f(x) + ε. Using this, the definition ofxkrec and (3.2) we

can conclude

f̃(xkrec) ≤ f̃(xk) ≤ f(xk) ≤ min
x∈S

f(x) + ε.
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Thus (3.7) holds in this case.

In the sequel we assume that the break is caused by∆k ≤ εopt. Then it holds

f̃(xkrec) = fkup = fklow + ∆k ≤ fklow + εopt.

Moreover, due to (3.2) andgf (xj) ∈ ∂εf(xj), we have

f j(x) = f̃(xj) + gf (xj)T (x− xj)
≤ f(xj) + f(x)− f(xj) + ε

= f(x) + ε

for all j ∈ N. Thus we inferfklow ≤ minx∈S f(x) + ε and altogether we obtain (3.7). 2

Remark 3.8 If a two-sided approximatioñf of f is given, i.e.

f(x)− ε ≤ f̃(x) ≤ f(x) + ε

for all x ∈ S instead of the one-sided approximation, the results stated above remain true if we add

an additionalε to the right-hand sides of (3.7) and (3.8). 2



Chapter 4

A logarithmic barrier method for convex
semi-infinite optimization problems

In this chapter we specify the necessary details to put Algorithm 2.5 into implementable form. For

that purpose we first consider problems of type (2.10)

minimize f(x) s.t. x ∈ Rn, max
t∈T

g(x, t) ≤ 0,

whereby we will denote the feasible set byM and the optimal value byf∗. Later on, in Section

4.3, the developed algorithm as well as the convergence analysis are transferred to problems of the

general form (1.1).

4.1 An implementable algorithm

Assumption 4.1 Assume the following:

(1) f : Rn → R is a convex function;

(2) T ⊂ Rp is a compact set;

(3) g(·, t) is convex onRn for anyt ∈ T ;

(4) g(x, ·) is continuous onT for anyx ∈ Rn;

(5) the setM0 := {x ∈M : maxt∈T g(x, t) < 0} is nonempty;

(6) the set of optimal solutions

Mopt := {x ∈M : f(x) = f∗}

of (2.10)is nonempty and compact;

(7) in caseh > 0 the setTh is a finiteh-grid onT (i.e. for eacht ∈ T there existsth ∈ Th with

‖t− th‖2 ≤ h) and in caseh = 0 the setsTh, T coincides;

25
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(8) for each compact setS ⊂ Rn there exists a constantLtS with

|g(x, t1)− g(x, t2)| ≤ LtS‖t1 − t2‖2 (4.1)

for all x ∈ S and all t1, t2 ∈ T ;

(9) for each compact setS ⊂M0 a constantCS <∞ with

CS ≥ max
x∈S

∣∣∣∣ 1
maxt∈T g(x, t)

∣∣∣∣ (4.2)

can be computed such thatS′ ⊂ S ⊂M0 impliesCS′ ≤ CS ;

(10) for eachx ∈ Rn and eacht ∈ T an element of the subdifferential off in x and an element of

the subdifferential ofg(·, t) in x can be computed.

Regarding (1) and (3) it is ensured that we deal with convex problems of type (2.10). Furthermore,

due to (2) and (4) the maximization problems (2.12) are solvable and consequently the barrier func-

tions (2.11) are evaluable at least from the theoretical point of view. Moreover, (5) and (6) are

motivated by the theoretical results of the Chapter 2. Then Lemma 2.2 ensures the existence of a

minimizer of the barrier function (2.11) for any givenµ > 0. Furthermore, the classical logarithmic

barrier method with exact minimizersxk leads to an optimal solution of the semi-infinite problem

(2.10) in the sense of Theorem 2.3. But as stated in Section 2.3 we cannot suppose that the max-

imization problems (2.12) are exactly solvable. Therefore we admitted the next assumptions. (7)

allows to compute inexact maximizer while their accuracy can be controlled with (8). The necessity

of assumption (9) will become clear in the further course, while by (10) we want to point out that

indeed the computation of the subgradients are necessary in the implementation of the method. We

now state our method in detail.

Algorithm 4.2

• Givenµ1 > 0 andx0 ∈M0.

• For i := 1, 2, . . . :

– Setxi,0 := xi−1, selectεi,1 > 0 and definefi :M0 → R by

fi(x) := f(x)− µi ln
(
−max

t∈T
g(x, t)

)
.

– Fork := 1, 2, . . . :

(a) Selectri,k > 0 such that

Si,k := {x ∈ Rn : ‖x− xi,k−1‖∞ ≤ ri,k} ⊂ M0.

(b) Selecthi,k ≥ 0 and definef̃i,k :M0 → R by

f̃i,k(x) := f(x)− µi ln

(
− max
t∈Thi,k

g(x, t)

)
whereThi,k is a set fulfilling Assumption 4.1(7).
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(c) Selectβi,k ≥ 0 and compute an approximate solutionxi,k of

minimize fi(x) s.t. x ∈ Si,k (4.3)

such that

f̃i,k(xi,k)− min
x∈Si,k

fi(x) ≤
εi,k
2

+ βi,k (4.4)

andf̃i,k(xi,k) ≤ f̃i,k(xi,k−1) are true.

(d) ∗ If f̃i,k(xi,k−1) − f̃i,k(xi,k) ≤ εi,k/2 and1 f(xi,k−1) ≤ f(x0) + 2µi then set

xi := xi,k−1, Si := Si,k, ri := ri,k, εi := εi,k, hi := hi,k, stop inner loop;

∗ if f̃i,k(xi,k−1) − f̃i,k(xi,k) ≤ εi,k/2 andf(xi,k−1) > f(x0) + 2µi then set

εi,k+1 := εi,k/2, continue inner loop;

∗ if f̃i,k(xi,k−1)− f̃i,k(xi,k) > εi,k/2 setεi,k+1 := εi,k, continue inner loop.

– Select0 < µi+1 < µi.

The structure of Algorithm 4.2 resembles that of the conceptual Algorithm 2.5, but let us give ex-

planations for each particular step. In (a) we specify the compact setSi,k as a linearly bounded set.

This decision is caused by the fact that linearly bounded sets are normally the simplest bounded

structures on that minimization can be done. Consequently minimizing the barrier function on the

chosen compact set is normally easier than minimizing it on more complex structures like quadrat-

ically bounded sets such as balls or ellipsoids. Additionally, having the bundle method from the

previous chapter in mind, we point out that the decision to choose linearly bounded sets is important

because in consequence of this the auxiliary problems of the bundle method are linear and quadratic

problems. Thus each of them should be efficiently solvable by standard approaches. Furthermore,

sinceM0 is an open set, step (a) is realizable.

In (b) we define the approximation of the barrier function while in (c) the approximate min-

imization of the barrier function is done with a certain solution accuracy. The condition (4.4) is

stimulated by inequality (3.7) in Theorem 3.7, when solving (4.3) with the bundle method proposed

in the previous chapter. Finally, in (d) the stopping criterion of the inner loop is given. It is di-

vided into three parts but mainly only two inequalities occur. The first one checks whether there is

achieved a sufficient improvement of the approximate solution on the current box with the selected

accuracy. The second part of the criterion is motivated by (2.5) so that it checks whether the accu-

racy parameter and the barrier parameter are in an appropriate order. If this is not the case then the

accuracy parameter is readjusted.

The critical point for a realization of the presented method is the question whether there exist

approximate solutions of (4.3) which fulfill the demanded criterions. As stated above (4.4) is initi-

ated by the bundle method presented in the previous chapter. Therefore we want to show that we

can use this bundle method for solving (4.3). We first notice that the setsSi,k ⊂ M0 are convex

and compact by construction (for any givenri,k > 0). Additionally, they are also nonempty, be-

causexi,k−1 ∈ M0 holds by construction and due to the open structure ofM0 there exists a radius
1Alternatively we can usef(xi,k−1) ≤ minj=0,...,i−1 f(xj) + 2µi instead off(xi,k−1) ≤ f(x0) + 2µi but the latter

one suffices to guarantee the boundedness of the computed sequence{xi}.
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ri,k > 0 such thatSi,k ⊂M0 is fulfilled. Moreover, we have already remarked that the functionsfi

are continuous ondom (fi) = M0 = int (dom (fi)) (this can be proven for instance by using the

convexity property offi ondom (fi) in combination with Theorem 2.35 in Rockafellar, Wets [48]).

Consequently in (4.3) we have to minimize a continuous function on a compact set, which is obvi-

ously solvable. The further requirements contained in Assumption 3.1 are ensured by the following

lemma. To formulate this we define for allx ∈ Rn and allh ≥ 0 the set of active constraints

T (x) :=
{
s ∈ T : g(x, s) = max

t∈T
g(x, t)

}
and its approximation

Th(x) :=
{
s ∈ Th : g(x, s) = max

t∈Th
g(x, t)

}
.

Note thatT (x) 6= ∅ due to Assumption 4.1(2), (4) andTh(x) 6= ∅ due to Assumption 4.1(7).

Lemma 4.3 Let Assumption 4.1 be fulfilled. Leti, k be fixed andβi,k ≥ µiL
t
Si,k

CSi,khi,k be valid.

Then Assumption 3.1 is fulfilled for problem(4.3)with f̃i,k as an approximation forfi andε = βi,k.

Proof: In order to show Assumption 3.1(a),(b) letx ∈ Si,k be arbitrarily given. Furthermore, let

t∗ ∈ T (x) be fixed. Then, due to Assumption 4.1(7) there exists ath ∈ Thi,k with ‖t∗− th‖2 ≤ hi,k.
Thus it holds

0 ≤ max
t∈T

g(x, t)− max
t∈Thi,k

g(x, t)

≤ g(x, t∗)− g(x, t∗h)

≤ g(x, t∗)− g(x, th)

≤ LtSi,k‖t
∗ − th‖2

≤ LtSi,khi,k.

(4.5)

The concavity of the logarithm givesln(b)− ln(a) ≤ (b− a)/a for all positivea, b ∈ R. Therefore,

regarding (4.5), we can conclude

fi(x)− f̃i,k(x) = µi

(
ln

(
− max
t∈Thi,k

g(x, t)

)
− ln

(
−max

t∈T
g(x, t)

))

≤ µi
1

−maxt∈T g(x, t)

(
max
t∈T

g(x, t)− max
t∈Thi,k

g(x, t)

)
≤ µiCSi,kLtSi,khi,k ≤ βi,k.

(4.6)

Moreover, takingmaxt∈T g(x, t) ≥ maxt∈Thi,k g(x, t) and the monotonicity of the logarithm into

account, one infers

f̃i,k(x) ≤ fi(x)

such that Assumption 3.1(a) is proven.



4.1 An implementable algorithm 29

To show Assumption 3.1(b) lett∗h ∈ Thi,k(x) be arbitrarily given. Then, due to Assumption

4.1(10), we can computeu(x) ∈ ∂f(x) andv(x) ∈ ∂g(x, t∗h). Thus the inequality

max
t∈T

g(z, t) ≥ g(z, t∗h) ≥ g(x, t∗h) + v(x)T (z − x)

is true for allz ∈ Rn. If z ∈M0 one can conclude

ln
(
−max

t∈T
g(z, t)

)
≤ ln

(
−g(x, t∗h)− v(x)T (z − x)

)
. (4.7)

Regarding (4.6), (4.7), the subgradient property ofu as well as the convexity of− ln we obtain for

all z ∈M0 that

fi(z)− fi(x) ≥ fi(z)− f̃i,k(x)− βi,k

≥ f(z)− µi ln
(
−max

t∈T
g(z, t)

)
− f(x) + µi ln

(
− max
t∈Thi,k

g(x, t)

)
− βi,k

≥ u(x)T (z − x)− µi ln
(
−g(x, t∗h)− v(x)T (z − x)

)
+ µi ln (−g(x, t∗h))− βi,k

≥ u(x)T (z − x)− µi
g(x, t∗h)

v(x)T (z − x)− βi,k

=

(
u(x)− µi

maxt∈Thi,k g(x, t)
v(x)

)T
(z − x)− βi,k.

Usingfi ≡ ∞ onRn \M0 this inequality is also true for allz /∈M0 so that

u(x)− µi
maxt∈Thi,k g(x, t)

v(x) ∈ ∂βi,kfi(x) (4.8)

follows.

Finally, we show that Assumption 3.1(c) is fulfilled. The Lipschitz continuity offi on the

compact setSi,k ⊂M0 = int (dom (fi)) follows from Rockafellar [45], Theorem 24.7. Moreover,

due to the same theorem the subdifferentials of the convex functionsf andmaxt∈Thi,k g(·, t) are

bounded above onSi,k w.r.t. the Euclidean norm by positive constantscf and cg. Furthermore,

the definition ofv(x) combined with Lemma VI.4.4.1 in Hiriart-Urruty, Lemaréchal [20] gives the

inclusionv(x) ∈ ∂(maxt∈Thi,k g(x, t)) for all x ∈ Si,k. Thus, regarding Assumption 4.1(9), the

Euclidean norm of theβi,k-subgradients described in (4.8) can be estimated as follows∥∥∥∥∥u(x)− µi
maxt∈Thi,k g(x, t)

v(x)

∥∥∥∥∥
2

≤ ‖u(x)‖2 + µi

∣∣∣∣∣ 1
maxt∈Thi,k g(x, t)

∣∣∣∣∣ ‖v(x)‖2

≤ cf + µiCSi,kcg <∞

for all x ∈ Si,k. Therefore, using the approximate subgradients defined in (4.8) the third part of

Assumption 3.1 is also true. 2

Summing up we have shown that we can use the bundle method stated in the previous chapter to

determine approximate solutions of the problems (4.3) withβi,k ≥ µiL
t
Si,k

CSi,khi,k. Furthermore,
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if we use this bundle method we do not have to selectβi,k explicitly, becauseβi,k = µiL
t
Si,k

CSi,khi,k

can be used afterhi,k is known.

Remark 4.4 If it is possible to determinemaxt∈T g(x, t) exactly for each feasible solutionx we

can sethi,k = 0 for all pairs i, k. Consequentlyβi,k = 0 is allowed (independent of the values

Lt
Si,k

, CSi,k ) such thatf̃i,k andfµi are identical. This leads to some simplifications in the algorithm

above as well as in the following convergence analysis. Furthermore, in this case we can drop the

Assumptions 4.1(7) and (8). 2

At the end of this section we can summarize that the presented Algorithm 4.2 is practicable. A

convergence analysis follows in the next section.

4.2 Convergence analysis

In this section we present conditions on the parameters of Algorithm 4.2 which guarantee that we

obtain an optimal solution of (2.10). We start with a characterization of the first part of the stopping

criterion in part (d) of the inner loop of Algorithm 4.2.

Lemma 4.5 Let Assumption 4.1 be fulfilled. Moreover, leti be fixed and̂x be an arbitrary optimal

solution of

minimize fi(x) s.t. x ∈M0. (4.9)

f∗i denotes the minimal value of problem(4.9). Letxi,k−1, xi,k be generated by Algorithm 4.2 and

βi,k ≥ µiLtSi,kCSi,khi,k be valid. If the inequality

f̃i,k(xi,k−1)− f̃i,k(xi,k) ≤
εi,k
2

(4.10)

is true, then

0 ≤ fi(xi,k−1)− f∗i ≤ max
{

1,
‖xi,k−1 − x̂‖∞

ri,k

}
(εi,k + 2βi,k) (4.11)

holds.

Proof: We first remark that Lemma 2.2 ensures the existence ofx̂ as optimal solution of (4.9).

The inequality0 ≤ fi(xi,k−1) − f∗i obviously holds, sincexi,k−1 is feasible for (4.9) by con-

struction as well as

f̃i,k(xi,k)− min
x∈Si,k

fi(x) ≤
εi,k
2

+ βi,k

by construction. Together with (4.10) this yields

f̃i,k(xi,k−1)− min
x∈Si,k

fi(x) ≤ εi,k + βi,k.

Using (4.6) we get

fi(xi,k−1)− min
x∈Si,k

fi(x) ≤ εi,k + 2βi,k. (4.12)

At this point we distinguish two cases with regard to the location ofx̂. We first consider the case

x̂ ∈ Si,k. Thenx̂ is also an optimal solution of (4.9) so that

fi(xi,k−1)− f∗i = fi(xi,k−1)− fi(x̂) ≤ εi,k + 2βi,k
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follows from (4.12). Therefore the proposition (4.11) is true in this case.

Now, let us consider the casêx /∈ Si,k and define the line throughxi,k−1 andx̂ by

γ(s) := xi,k−1 +
s

‖xi,k−1 − x̂‖∞
(x̂− xi,k−1).

Due tox̂ /∈ Si,k we have‖xi,k−1− x̂‖∞ > ri,k > 0. Thereforeγ(ri,k) lies betweenxi,k−1 andx̂ on

that line. Sincefi is convex onM0 with minimizerx̂, one getsfi(γ(ri,k)) ≤ fi(xi,k−1). Moreover,

the equation‖xi,k−1− γ(ri,k)‖∞ = ri,k is true so thatγ(ri,k) ∈ Si,k. Thus, using (4.12), we obtain

fi(xi,k−1)− fi(γ(ri,k)) ≤ εi,k + 2βi,k. (4.13)

Besides we have

fi(γ(ri,k)) ≤
rik

‖xi,k−1 − x̂‖∞
fi(x̂) +

(
1−

ri,k
‖xi,k−1 − x̂‖∞

)
fi(xi,k−1),

sincefi is convex onM0 and0 < rik/‖xi,k−1 − x̂‖∞ < 1. This leads to

fi(xi,k−1)− fi(x̂) ≤ ‖x
i,k−1 − x̂‖∞
ri,k

(
fi(xi,k−1)− fi(γ(ri,k))

)
such that with (4.13) the estimate

fi(xi,k−1)− f∗i ≤
‖xi,k−1 − x̂‖∞

ri,k
(εi,k + 2βi,k)

follows. Thus the proposition is also true in the second casex̂ /∈ Si,k and the proof is complete.2

Now a sufficient termination condition for the inner loop of Algorithm 4.2 can be presented.

Proposition 4.6 Let Assumption 4.1 be fulfilled. Moreover, leti be fixed,qi ∈ (0, 1), δi > 0 be

given andri,k ≥ ri > 0 be valid for allk. If

µiL
t
Si,kCSi,khi,k ≤ βi,k ≤ q

k
i δi (4.14)

is true for allk, then the inner loop of Algorithm 4.2 terminates after a finite number of steps.

Proof: The inner loop terminates after a finite number of steps if the inequalities (4.10) and

f(xi,k−1) ≤ f(x0) + 2µi (4.15)

are both true.

In the main part of the proof we assume that both inequalities never hold together. In order to

bring this to a contradiction we first exclude that (4.10) never holds.

a) Suppose that the inequality (4.10) never holds.
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Then the algorithm generates an infinite sequence{xi,k}k andεi,k = εi,1 for all k ∈ N. Addi-

tionally, the estimatẽfi,k(xi,k) ≤ f̃i,k(xi,k−1) holds by construction so that we infer with (4.6)

0 ≤ f̃i,k(xi,k−1)− fi(xi,k) + βi,k

≤ f̃i,k(xi,k−1)− f̃i,k+1(xi,k) + qki δi

=

f̃i,k(xi,k−1)−
k−1∑
j=0

qji δi

−
f̃i,k+1(xi,k)−

k∑
j=0

qji δi


for all k ∈ N and hence f̃i,k(xi,k−1)−

k−1∑
j=0

qji δi


k

(4.16)

is a monotonically nonincreasing sequence. Furthermore, this sequence is bounded below because

we have

f̃i,k(xi,k−1)−
k−1∑
j=0

qji δi ≥ fi(x
i,k−1)− βi,k −

∞∑
j=0

qji δi ≥ f
∗
i − δi −

1
1− qi

δi

for all k with f∗i given as in Lemma 4.5. Thus the sequence given in (4.16) converges. Combining

this andqki δi → 0 for k →∞ we can find an indexk0 such that

f̃i,k0(xi,k0−1)− f̃i,k0+1(xi,k0) ≤ f̃i,k0(xi,k0−1)− f̃i,k0+1(xi,k0) + qk0
i δi ≤

εi,1
4

and

βi,k0 ≤ q
k0
i δi ≤

εi,1
4
.

Then another use of (4.6) leads to

f̃i,k0(xi,k0−1)− f̃i,k0(xi,k0) ≤ f̃i,k0(xi,k0−1)− fi(xi,k0) + βi,k0

≤ f̃i,k0(xi,k0−1)− f̃i,k0+1(xi,k0) + βi,k0

≤ εi,1
4

+
εi,1
4

=
εi,1
2
.

This contradicts our assumption and we have an indexk such that (4.10) is fulfilled.

b) Suppose that the inequalities (4.10) and (4.15) never hold together.

As in a) one can show that (4.16) defines a monotonically nonincreasing sequence. Therefore,

taking (4.6), (4.14) andqi ∈ (0, 1) into account, we infer

fi(xi,k−1)−
k−1∑
j=0

qji δi ≤ f̃i,k(x
i,k−1) + βi,k −

k−1∑
j=0

qji δi

≤ f̃i,1(xi,0) + qki δi − δi
≤ fi(xi,0)

for all k ∈ N. Thus

fi(xi,k−1) ≤ fi(xi,0) +
1

1− qi
δi
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for all k ∈ N implies

xi,k ∈ Ni :=
{
x ∈M0 : fi(x) ≤ fi(xi,0) +

1
1− qi

δi

}
for all k ∈ N0. The setNi is compact since it is a nonempty level set offi (cf. Lemma 2.2). Hence,

the sequence{‖xi,k−x̂‖∞}k is bounded above by a constantC ≥ ri, wherex̂ is an arbitrary optimal

solution of (4.9).

From the first part of the proof we know that there exists an indexk1 such that (4.10) holds

for k = k1 for the first time. Using the same arguments for all indices greater thank1 we find an

indexk2 > k1 such that (4.10) holds fork = k2 again. Repeating this procedure we get a strictly

monotonically increasing sequence{kj} such that (4.10) holds for allk = kj . Then, we deduce

from Lemma 4.5

0 ≤ fi(xi,kj−1)− f∗i

≤ max
{

1,
‖xi,kj−1 − x̂‖∞

ri,kj

}
(εi,kj + 2βi,kj )

≤ max
{

1,
‖xi,kj−1 − x̂‖∞

ri,kj

}(
εi,kj + 2qkji δi

)
for j ∈ N. It is simple to verify thatkj ≥ j andεi,kj = (1/2)j−1εi,1 are true. Thus, regarding

‖xi,kj−1 − x̂‖∞ ≤ C as well asri,k ≥ ri > 0 for all k, we have

0 ≤ fi(xi,kj−1)− f∗i ≤
C

ri

((
1
2

)j−1

εi,0 + 2δiq
j
i

)

for all j ∈ N. Hence,

lim
j→∞

fi

(
xi,kj−1

)
= f∗i .

Since{xi,kj}j belongs to the compact setNi there exists an accumulation pointx∗ ∈ Ni. From the

last equation we obtain thatx∗ solves (4.9). Due to the continuity off there exists an index̂j ∈ N
with f(xi,kĵ−1) ≤ f(x∗) + µi. Combiningf∗ ≤ f(x0) and (2.5) leads to

f(xi,kĵ−1)− f(x0) ≤ f(x∗) + µi − f∗ ≤ 2µi.

This contradicts our assumption, both inequalities (4.10) and (4.15) are true fork = kĵ and the proof

is complete. 2

Remark 4.7 The assumptionri,k ≥ ri > 0 is not used to prove that all iterates belong to the

nonempty compact setNi. Therefore there exists anr∗i > 0 such that the inclusion{
z ∈ Rn : min

x∈Ni
‖z − x‖∞ ≤ r∗i

}
⊂M0

is valid sinceM0 is an open set. Thus, theoreticallyri,k ≥ ri > 0 is no restriction for the algorithm.

It still restricts the practical computation of the radiiri,k of course. 2
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Remark 4.8 In (4.14) the right-hand sideqki δi can be replaced by an arbitrary summable sequence

δi,k to remain true Proposition 4.6. 2

With Proposition 4.6 we are able to control Algorithm 4.2 in order to make sure that each inner

loop terminates and a well-defined sequence{xi} is generated. Before we proceed with the main

convergence result let us recall the notation ofεi as final accuracy value at thei-th iteration and of

ri as radius of the finally considered compact boxSi at this iteration.

Theorem 4.9 Let Assumption 4.1 be fulfilled. Moreover, let{ri}, {δi} be positive sequences. Ad-

ditionally, letR > 0, {qi} ⊂ (0, 1) be given and assume that(4.14)holds for all i ∈ N and all k

appearing in the outer stepi. Furthermore, assume that

(i) lim
i→∞

µi = 0;

(ii) ri ≤ ri,k ≤ R for all i, k;

(iii) lim
i→∞

εi/ri = 0;

(iv) lim
i→∞

δi/ri = 0.

Then Algorithm 4.2 generates a sequence{xi}, which has at least one accumulation point and each

accumulation point is an optimal solution of(2.10).

Proof: It is easy to see that the assumptions of Proposition 4.6 are satisfied for eachi ∈ N.

Therefore each inner loop terminates after a finite number of steps and the algorithm generates a

sequence{xi} which belongs to the level set{x ∈ Rn : f(x) ≤ f(x0)+2µ1} by construction. Due

to Assumption 4.1(6) and Corollary 20 in Fiacco, McCormick [9] this level set is compact. Thus the

sequence{xi} has an accumulation point and we have to show that each accumulation point of{xi}
is an optimal solution of (2.10).

Letx∗ be such an accumulation point of{xi} and let{xij} be a convergent subsequence of{xi}
with limj→∞ x

ij = x∗. By x∗j we denote an optimal solution of problem (4.9) withi = ij . Using

Lemma 4.5, (4.14) as well asqij ∈ (0, 1) we obtain

0 ≤ fij (xij )− f∗ij

≤ max

{
1,
‖xij − x∗j‖∞

rij

}
(εij + 2βij )

≤ max

{
1,
‖xij − x∗j‖∞

rij

}
(εij + 2δij ).

(4.17)

Furthermore, applying Theorem 2.3, we know that the sequence{x∗j} has an accumulation point.

Without loss of generality we assume that{x∗j} is already convergent to the limit pointx∗∗. Applying

Theorem 2.3 again we conclude thatx∗∗ is an optimal solution of (2.10) and

lim
j→∞

f∗ij = f∗ (4.18)
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is true.

Obviously it is‖xij −x∗j‖∞ ≤ ‖xij −x∗∗‖∞+‖x∗j−x∗∗‖∞. Since allxi belong to the compact

level set{x ∈ Rn : f(x) ≤ f(x0) + 2µ1} the first term of the right-hand side is bounded above.

The second term is also bounded above due to the convergence of the sequences involved. For this

reason there exists a constantC with ‖xij − x∗j‖∞ ≤ C for all j. Together with (4.17) we have

0 ≤ fij (xij )− f∗ij ≤ max
{

1,
C

rij

}
(εij + 2δij ).

In view of Assumptions (ii), (iii) and (iv) we obtain

0 ≤ lim
j→∞

fij (x
ij )− f∗ij ≤ 0

and from (4.18) it follows

lim
j→∞

fij (x
ij ) = f∗. (4.19)

In the sequel we show that{xij} is not only a minimizing sequence but converges to a solution

of problem (2.10).

The continuity off giveslimj→∞ f(xij ) = f(x∗). This combined with (4.19) allows to con-

clude that the limit point ofµij ln(−maxt∈T g(xij , t)) exists and

lim
j→∞

µij ln
(
−max

t∈T
g(xij , t)

)
= lim

j→∞
f(xij )− lim

j→∞
fij (x

ij ) = f(x∗)− f∗. (4.20)

Now we distinguish the two casesmaxt∈T g(x∗, t) < 0 andmaxt∈T g(x∗, t) = 0. One of them

must be valid sinceM is the closure ofM0 andx∗ is an accumulation point of the sequence{xi}
with xi ∈M0 holds for alli.

In the first case we assumemaxt∈T g(x∗, t) < 0. Then the sequence{ln(−maxt∈T g(xij , t))}
is bounded and

lim
j→∞

µij ln
(
−max

t∈T
g(xij , t)

)
= 0.

Together with (4.20) we obtainf(x∗) = f∗. As x∗ is feasible for (2.10) it is an optimal solution as

well.

Now, in the second case, we assumemaxt∈T g(x∗, t) = 0. Therefore there exists a constantj0

so thatmaxt∈T g(xij ) > −1 is true for allj ≥ j0. Thus the inequalitiesln(−maxt∈T g(xij )) < 0
andµij ln(−maxt∈T g(xij )) < 0 hold for all j ≥ j0. Hence,

lim
j→∞

µij ln
(
−max

t∈T
g(xij , t)

)
≤ 0

is true and (4.20) yieldsf(x∗)− f∗ ≤ 0, proving thatx∗ solves (2.10) in this case, too. 2

Remark 4.10The Assumptions (iii), (iv) in Theorem 4.9 are a posteriori criteria since we do not

know εi andri before the inner loop in stepi terminates. Relation (iii) can be satisfied, e.g., if we

change it into

(iii) ′ lim
i→∞

εi,1/ri = 0.
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But, of course this requires an a priori computation ofri.

If this is not possible we have to run stepi of the algorithm with an arbitraryεi,0. When the

inner loop terminates, we check whetherεi/ri andδi/ri satisfy decrease conditions, e.g. geometric

decrease. If at least one of them does not do so, we repeat the step with smaller values forεi,0 and/or

δi until the decrease conditions are satisfied. This procedure is finite for fixedi if we control the

computation of the radii because the values ofri,k can be bounded below (see Remark 4.7). 2

4.3 Extension to general convex problems

Up to now we only considered convex semi-infinite problems with a single constraint. As already

mentioned before in this section our algorithm as well as the analysis will be transferred to general

convex problems of the form (1.1)

minimize f(x)

s.t. x ∈ Rn, Ax = b, A ∈ Rm×n, b ∈ Rm,

gi(x, t) ≤ 0 for all t ∈ T i (i = 1, . . . , l).

We again denote the set of feasible solutions by

M :=
{
x ∈ Rn : Ax = b, max

t∈T i
gi(x, t) ≤ 0 (i = 1, . . . , l)

}
.

The required assumptions are:

Assumption 4.11

(1) f : Rn → R is a convex function;

(2) T i ⊂ Rpi is a compact set for eachi ∈ {1, . . . , l};

(3) gi(·, t) is convex onRn for anyt ∈ T i and eachi ∈ {1, . . . , l};

(4) gi(x, ·) is continuous onTi for anyx ∈ Rn and eachi ∈ {1, . . . , l};

(5) the setM0 := {x ∈ Rn : Ax = b, maxt∈T i gi(x, t) < 0 (i = 1, . . . , l)} is nonempty;

(6) the set of optimal solutionsMopt of (1.1) is nonempty and compact;

(7) in caseh > 0, i ∈ {1, . . . , l} the setT ih is a finiteh-grid on T i (i.e. for eacht ∈ T i there

existsth ∈ T ih with ‖t−th‖2 ≤ h) and in caseh = 0, i ∈ {1, . . . , l} the setsT ih, T i coincides;

(8) for eachi ∈ {1, . . . , l} and each compact setS ⊂ Rn there exists a constantLti,S with

|gi(x, t1)− gi(x, t2)| ≤ Lti,S‖t1 − t2‖2

for all x ∈ S and all t1, t2 ∈ T i;
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(9) for eachi ∈ {1, . . . , l} and each compact set

S ⊂ M̃0 :=
{
x ∈ Rn : max

t∈T i
gi(x, t) < 0 (i = 1, . . . , l)

}
a constantCi,S <∞ with

Ci,S ≥ max
x∈S

∣∣∣∣∣∣ 1
max
t∈T i

gi(x, t)

∣∣∣∣∣∣
can be computed such thatS′ ⊂ S ⊂ M̃0 impliesCi,S′ ≤ Ci,S ;

(10) for eachi ∈ {1, . . . , l}, eachx ∈ Rn and eacht ∈ T i an element of∂f(x) and an element of

the subdifferential ofgi(·, t) in x can be computed.

These are direct generalizations of those in Assumption 4.1. The modified algorithm now reads:

Algorithm 4.12

• Givenµ1 > 0 andx0 ∈M0.

• For i := 1, 2, . . . :

- Setxi,0 := xi−1, selectεi,1 > 0 and definefi : M̃0 → R by

fi(x) := f(x)− µi
l∑

ν=1

ln
(
−max
t∈T ν

gν(x, t)
)
.

- Fork := 1, 2, . . . :

(a) Selectri,k > 0 such that

Si,k := {x ∈ Rn : ‖x− xi,k−1‖∞ ≤ ri,k} ⊂ M̃0.

(b) Selecthνi,k ≥ 0 for ν = 1, . . . , l and definef̃i,k : M̃0 → R by

f̃i,k(x) := f(x)− µi
l∑

ν=1

ln

− max
t∈T ν

hν
i,k

gν(x, t)


whereT νhνi,k

fulfilling Assumption 4.11(7).

(c) Selectβi,k ≥ 0 and computexi,k as approximate solution of

minimize fi(x) s.t. x ∈ Si,k, Ax = b

such that

f̃i,k(xi,k)− min
x∈Si,k

fi(x) ≤
εi,k
2

+ lβi,k

andf̃i,k(xi,k) ≤ f̃i,k(xi,k−1) are true.
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(d) ∗ If f̃i,k(xi,k−1) − f̃i,k(xi,k) ≤ εi,k/2 andf(xi,k−1) ≤ f(x0) + 2µi then set

xi := xi,k−1, Si := Si,k, ri := ri,k, εi := εi,k, hνi := hνi,k (ν = 1, . . . , l), stop

inner loop;

∗ if f̃i,k(xi,k−1) − f̃i,k(xi,k) ≤ εi,k/2 andf(xi,k−1) > f(x0) + 2µi then set

εi,k+1 := εi,k/2, continue inner loop;

∗ if f̃i,k(xi,k−1)− f̃i,k(xi,k) > εi,k/2 setεi,k+1 := εi,k, continue inner loop.

- Select0 < µi+1 < µi.

The practicability of this method can be shown analogously to the corresponding part in Section

4.1. There are only some changes based on the different structure ofM0, i.e. we cannot assume

anymore thatM0 is open. But it is still a relatively open set and that suffices to prove the most used

results while in that cases where an open set is required we can replaceM0 byM̃0. Further changes

are caused by the fact that we now deal with more than one inequality constraint, for instance we

assume nowβi,k ≥ µiL
t
ν,Si,k

Cν,Si,kh
ν
i,k for eachν = 1, . . . , l. Then a convergence analysis can be

done analogously to Section 4.2 and we obtain the following main result (cf. Theorem 4.9).

Theorem 4.13 Let Assumption 4.11 be fulfilled. Moreover, let{ri}, {δi} be positive sequences.

Additionally, letR > 0, {qi} ⊂ (0, 1) be given and assume that

µiL
t
ν,Si,kCν,Si,kh

ν
i,k ≤ βi,k ≤ qki δi

holds for alli ∈ N, all k appearing in the outer stepi andν = 1, . . . , l. Furthermore, assume that

(i) lim
i→∞

µi = 0;

(ii) ri ≤ ri,k ≤ R for all i, k;

(iii) lim
i→∞

εi/ri = 0;

(iv) lim
i→∞

δi/ri = 0.

Then Algorithm 4.12 generates a sequence{xi}, which has at least one accumulation point and

each accumulation point is an optimal solution of(1.1).



Chapter 5

Regularization of the logarithmic
barrier approach

In the previous chapter we mainly considered semi-infinite problems of type (2.10)

minimize f(x) s.t. x ∈M =
{
z ∈ Rn : max

t∈T
g(z, t) ≤ 0

}
under Assumption 4.1. Particularly we assumed in Assumption 4.1(6) that the solution set of the

given problem is compact. But this assumption excludes a lot of problems from being solved with

the presented method. Thus the goal of this chapter is to discuss a numerical method even for

such problems. This can be combined with an improvement of the convergence quality (e.g. rate of

convergence) for problems fulfilling Assumption 4.1.

Let us remark that we consider again problems of type (2.10) for describing and analyzing the

method in detail. But, of course, as stated in the final section, it is possible to transfer the approach

to general problems of type (1.1).

In the first section the method is introduced, while the following sections contain several con-

vergence results including results on the rate of convergence for the values of the objective function

as well as the computed iterates.

5.1 A regularized logarithmic barrier method for convex semi-infinite
problems

As stated above we want to drop the assumption of the compactness of the solution set of (2.10). But

this compactness (in particular the boundedness) is directly used in the proofs of the basic results

Lemma 2.2 and Theorem 2.3 as well as Theorem 4.9. Obviously this assumption is essential for the

results of the previous chapter and it turns out that in fact we cannot use the presented Algorithm 4.2

for solving problems of the form (2.10) without the assumption of the compactness. For instance,

considering the trivial problem

minimize f(x) ≡ 0 s.t. x ∈ R, xt ≤ 0 (t ∈ [0, 1])

39
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we will obtain a fast decreasing sequence{xi} by Algorithm 4.2 where convergence of any sub-

sequence is not detectable. Therefore we have to look for another method to treat semi-infinite

problems under the following weaker assumptions.

Assumption 5.1 The Assumptions 4.1(1)-(5) and (7)-(10) are assumed to be valid.1 Moreover, it is

assumed that

(6)′ the set of optimal solutionsMopt of (2.10)is nonempty.

One approach to attack problems with an unbounded set of optimal solutions is to use regularization

techniques on the original problem. That means the given problem is transformed into a sequence

of problems with a bounded set of optimal solutions (or ideally with unique optimal solutions).

Several approaches exist for this transformation and are discussed in detail in a couple of papers

and monographs mainly in the context of ill-posed problems (see, e.g. Bakushinsky, Goncharsky

[3] and Kaplan, Tichatschke [24]). Some promising approaches like the Tichonov-regularization

and the Proximal Point method are based on the well-known fact that a strongly convex, continuous

function has a unique minimizer on a closed set. Thus the idea is to transform the convex objective

functionf into a strongly convex function.

As it is already stated, one approach in this context is the Tichonov-regularization, where we

consider auxiliary problems of the form

minimize f(x) +
α

2
‖x‖22 s.t. x ∈M

with positive parameterα. To obtain an optimal solution of the original problem we have to solve

a sequence of such auxiliary problems whereby the parameterα has to converge to zero (see, e.g.

Theorem 6.4 in Poljak [39]). Thus the regularization effect by means of the added quadratic term is

getting smaller and smaller. In fact it vanishes from the numerical point of view ifα falls below a

certain value depending on the machine precision.

Therefore, in the sequel we consider the proximal point technique which was introduced by

Martinet [32, 33] and extensively studied by Rockafellar [46, 47]. In this approach the attempt is

made to keep the positive properties (like unique solvability) and remove the described negative

properties of the Tichonov-regularization. Both is achieved by applying a different quadratic term

in the auxiliary problems such that we now consider the problems

minimize f(x) +
s

2
‖x− a‖22 s.t. x ∈M (5.1)

with prox-parameters and so-called proximal pointa. In order to obtain an optimal solution of the

original problem one has to solve a sequence of auxiliary problems of this kind with the proximal

point in each step given by the solution of the previous step. Furthermore, it turns out that the

regularization parameters is not required to converge to zero (see, e.g., Rockafellar [46, 47]).

In the case of convex semi-infinite problems Kaplan, Tichatschke [26] suggest to combine the

proximal point technique with the method of outer approximation which is a discretization strategy
1In the sequel we assume the assumptions to be enumerated as in Assumption 4.1.
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of the compact setT . But we want to avoid such an outer approximation and the key for it is the

observation that each auxiliary problem of type (5.1) is also a convex semi-infinite problem. These

auxiliary problems fulfill slightly differing assumptions as the given problem, namely they fulfill

Assumption 4.1 if Assumption 5.1 is valid for the original problem. The Assumptions 4.1(1)-(5)

and (7)-(10) can be simply derived from the corresponding parts in Assumption 5.1 keeping in mind

that an element of the subdifferential of the objective function in (5.1) in a fixedx ∈ Rn is given by

the vectors(x − a) added to an arbitrary element of the subdifferential off in x. Moreover, (6) is

enforced by the additional quadratic term in the objective function of (5.1).

Consequently we could solve each auxiliary problem of type (5.1) with Algorithm 4.2 if As-

sumption 5.1 holds for the given semi-infinite problem. But as Algorithm 4.2 typically terminates

with only an approximate solution anyway there is little sense in solving each auxiliary problem of

the sequence with an accuracy as high as possible. In particular we suggest to realize only the inner

loop of Algorithm 4.2 for each problem of type (5.1) to compute an approximate solution of it with

fixed barrier parameter, which is then used as the new proximal point.

A practical realization of such a step requires the predetermination of the barrier and the prox

parameter. From the classical logarithmic barrier approach it is known that the barrier parameter has

to converge to zero, e.g. by reducing it from step to step. But, due to the fact that the conditioning of

the barrier problems is getting worse with decreasing the barrier parameter, it makes sense to keep

this parameter fixed for a couple of steps. In order to permit a dynamical control the choice of the

barrier parameter is made dependent on the progress of the iterates in the last step. To avoid side

effects which can influence this choice we keep the prox-parameters constant as long as the barrier

parameter is not changed. Merely the proximal point is updated more frequently. Altogether we

obtain a so-called multi-step-regularization approach (cf., e.g., Kaplan, Tichatschke [24–27]).

Algorithm 5.2

• Givenµ1 > 0, x0 ∈M0, σ1 > 0 ands1 with 0 < s ≤ s1 ≤ s.

• For i := 1, 2, . . . :

– Setxi,0 := xi−1.

– For j := 1, 2, . . . :

∗ Setxi,j,0 := xi,j−1, selectεi,j > 0 and defineFi,j :M0 → R by

Fi,j(x) := f(x)− µi ln
(
−max

t∈T
g(x, t)

)
+
si
2
‖x− xi,j−1‖22. (5.2)

∗ Fork := 1, 2, . . . :

(a) Selectri,j,k > 0 such that

Si,j,k := {x ∈ Rn : ‖x− xi,j,k−1‖∞ ≤ ri,j,k} ⊂ M0.

(b) Selecthi,j,k ≥ 0 and defineF̃i,j,k :M0 → R by

F̃i,j,k(x) := f(x)− µi ln

(
− max
t∈Thi,j,k

g(x, t)

)
+
si
2
‖x− xi,j−1‖22
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whereThi,j,k fulfills Assumption 5.1(7).

(c) Selectβi,j,k ≥ 0 and compute an approximate solutionxi,j,k of

minimize Fi,j(x) s.t. x ∈ Si,j,k (5.3)

such that

F̃i,j,k(xi,j,k)− min
x∈Si,j,k

Fi,j(x) ≤ εi,j
2

+ βi,j,k (5.4)

andF̃i,j,k(xi,j,k) ≤ F̃i,j,k(xi,j,k−1) are true.

(d) If

F̃i,j,k(xi,j,k−1)− F̃i,j,k(xi,j,k) ≤
εi,j
2

(5.5)

then setxi,j := xi,j,k−1, Si,j := Si,j,k, ri,j := ri,j,k and stop the loop ink,

otherwise continue with the loop ink.

∗ If ‖xi,j − xi,j−1‖2 ≤ σi then setxi := xi,j , ri := ri,j , j(i) := j and stop the loop

in j, otherwise continue with the loop inj.

– Select0 < µi+1 < µi, 0 < s ≤ si+1 ≤ s andσi+1 > 0.

Except for the stopping criterionf(xi,k−1) ≤ f(x0) + 2µi the inner loops ink of Algorithms

4.2 and 5.2 compare to each other. The additional rule is needed in Algorithm 4.2 as it does not

generate a bounded sequence per se. We will prove later that this behaviour is avoided automatically

in Algorithm 5.2 above. To ensure the practicability we have to transfer Lemma 4.3 explicitly to the

new situation.

Lemma 5.3 Let Assumption 5.1 be fulfilled. Leti, j, k be fixed andβi,j,k ≥ µiLtSi,j,kCSi,j,khi,j,k be

valid. Then Assumption 3.1 is fulfilled for problem(5.3)with F̃i,j,k as an approximation ofFi,j and

ε = βi,j,k.

Proof: Due to the fact that Assumption 4.1(6) is not used in the proof of Lemma 4.3 we can apply

these results. For that purpose we replaceSi,k by Si,j,k andhi,k by hi,j,k. Then we obtain

0 ≤ max
t∈T

g(x, t)− max
t∈Thi,j,k

g(x, t) ≤ LtSi,j,khi,j,k (5.6)

0 ≤ Fi,j(x)− F̃i,j,k(x) ≤ µiCSi,j,kLtSi,j,khi,j,k ≤ βi,j,k (5.7)

and

u(x)− µi
maxt∈Thi,j,k g(x, t)

v(x) ∈ ∂βi,j,kfi(x)

analogously to (4.5), (4.6) and (4.8) if we useu(x) ∈ ∂f(x), v(x) ∈ ∂
(

maxt∈Thi,j,k g(x, t)
)

and

the notationfi as in Section 4.1. Consequently Assumption 3.1(a) is already shown.

In order to show part (b) we regard

Fi,j(x) = fi(x) +
si
2
‖x− xi,j−1‖22
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so that for allx ∈M0

∂βi,j,kFi,j(x) ⊃ ∂βi,j,kfi(x) + ∂
(si

2
‖x− xi,j−1‖22

)
(5.8)

follows from Theorem XI.3.1.1 in Hiriart-Urruty, Lemaréchal[21]. Furthermore,

∂
(s

2
‖x− xi,j−1‖22

)
=
{
si(x− xi,j−1)

}
(5.9)

since this quadratic function is differentiable inx. Therefore we obtain

u(x)− µi
maxt∈Thi,j,k g(x, t)

v(x) + si(x− xi,j−1) ∈ ∂βi,j,kFi,j(x) (5.10)

for all x ∈M0, particularly for allx ∈ Si,j,k ⊂M0, and Assumption 3.1(b) is fulfilled too.

Finally, Assumption 3.1(c) remains to show. The Lipschitz continuity ofFi,j on Si,j,k can be

established in the same manner as it is done in the proof of Lemma 4.3. From there we also know

that the first term of the subgradient (5.10), coming fromfi, is bounded above onSi,j,k. Additionally

the second termsi(x − xi,j−1) is simply bounded above by the definition ofSi,j,k. Therefore all

subgradients given by (5.10) are bounded above onSi,j,k which completes the proof. 2

In consequence of this lemma we know that the bundle method presented in Chapter 3 can also

be used to solve the auxiliary problems arising in Algorithm 5.2. As in the previous chapter we

can useβi,j,k = µiCSi,j,kL
t
Si,j,k

hi,j,k with predefinedhi,j,k as error level when applying the bundle

method.

Remark 5.4 If maxt∈T g(x, t) can be determined exactly for eachx we can sethi,j,k = 0. Then, as

stated in Remark 4.4 for the unregularized algorithm, some simplifications in Algorithm 5.2 as well

as in the analysis of it are possible. Particularly, the Assumptions 5.1(7) and (8) are not necessary in

that case. 2

5.2 Convergence analysis

In this section we want to show that Algorithm 5.2 leads to an optimal solution of problem (2.10)

under appropriate assumptions. We start with a closer look at the loop ink. Analogous to the result

for the finiteness of the loop ink of Algorithm 4.2 the following result holds.

Lemma 5.5 Let Assumption 5.1 be fulfilled. Furthermore, leti, j be fixed,δi,j > 0 andqi,j ∈ (0, 1)
be given. If

µiL
t
Si,j,kCSi,j,khi,j,k ≤ βi,j,k ≤ q

k
i,jδi,j (5.11)

is true for allk, then the loop ink of Algorithm 5.2 terminates after a finite number of steps.

Proof: The proof is analogous to part a) of the proof of Proposition 4.6. 2

At this point we want to analyze the consequences of the stopping criterion of the loop ink.
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Lemma 5.6 Let Assumption 5.1 be fulfilled. Furthermore, leti, j be fixed and̂x be the unique

optimal solution of

minimize Fi,j(x) s.t. x ∈M0. (5.12)

Moreover, letxi,j,k−1, xi,j,k be generated by Algorithm 5.2 andβi,j,k ≥ µiL
t
Si,j,k

CSi,j,khi,j,k be

valid. If inequality(5.5) is true, then

0 ≤ Fi,j(xi,j,k−1)− Fi,j(x̂) ≤ max
{

1,
‖xi,j,k−1 − x̂‖∞

ri,j,k

}
(εi,j + 2βi,j,k) (5.13)

and∥∥∥xi,j,k−1 − x̂
∥∥∥
∞
≤
∥∥∥xi,j,k−1 − x̂

∥∥∥
2
≤ max


√

2(εi,j + 2βi,j,k)
si

,
2(εi,j + 2βi,j,k)

siri,j,k

 (5.14)

hold.

Proof: First, let us remark that Lemma 2.2 ensures the solvability of (5.12). This theorem can be

applied because (5.12) is a barrier problem for a minimization problem of type (5.1). Additionally

(5.12) is uniquely solvable sinceFi,j is strongly convex onM0.

Inequality (5.13) can be shown analogously as (4.11) in the proof of Lemma 4.5 so only the

second inequality needs to be proven.

Due to the strong convexity ofFi,j with modulussi/2 (in the sense of Definition A1.20 in

Kaplan, Tichatschke [24]) we have

Fi,j(λx+ (1− λ)y) ≤ λFi,j(x) + (1− λ)Fi,j(y)− si
2
λ(1− λ)‖x− y‖22

for all λ ∈ [0, 1] and allx, y ∈M0. Taking into account that

Fi,j(x̂) = inf
z∈M0

Fi,j(z) ≤ Fi,j(λx+ (1− λ)y)

for all λ ∈ [0, 1] and allx, y ∈M0 it follows that

Fi,j(x̂) ≤ λFi,j(x̂) + (1− λ)Fi,j(xi,j,k−1)− si
2
λ(1− λ)‖x̂− xi,j,k−1‖22

and

(1− λ)Fi,j(x̂) ≤ (1− λ)Fi,j(xi,j,k−1)− si
2
λ(1− λ)‖x̂− xi,j,k−1‖22

are true for allλ ∈ [0, 1]. Hence,

Fi,j(x̂) ≤ Fi,j(xi,j,k−1)− si
2
λ‖x̂− xi,j,k−1‖22

for all λ ∈ [0, 1) so that

si
2
‖x̂− xi,j,k−1‖22 ≤ Fi,j(xi,j,k−1)− Fi,j(x̂) (5.15)

follows with λ↗ 1. Using (5.13) one obtains

si
2
‖x̂− xi,j,k−1‖22 ≤ max

{
1,
‖xi,j,k−1 − x̂‖∞

ri,j,k

}
(εi,j + 2βi,j,k).
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At this point we distinguish two cases. We first suppose that1 ≥ ‖xi,j,k−1 − x̂‖∞/ri,j,k. Then it

holds
si
2
‖x̂− xi,j,k−1‖22 ≤ (εi,j + 2βi,j,k)

and ∥∥∥xi,j,k−1 − x̂
∥∥∥
∞
≤ ‖x̂− xi,j,k−1‖2 ≤

√
2(εi,j + 2βi,j,k)

si
. (5.16)

In the second case the inequality1 < ‖xi,j,k−1 − x̂‖∞/ri,j,k is supposed to be true. Then

si
2
‖x̂− xi,j,k−1‖22 ≤

‖xi,j,k−1 − x̂‖∞
ri,j,k

(εi,j + 2βi,j,k) ≤
‖xi,j,k−1 − x̂‖2

ri,j,k
(εi,j + 2βi,j,k)

is valid. We conclude that

‖x̂− xi,j,k−1‖∞ ≤ ‖x̂− xi,j,k−1‖2 ≤
2(εi,j + 2βi,j,k)

siri,j,k
. (5.17)

Combining (5.16) and (5.17) completes the proof. 2

In the following we denote the Euclidean ball with radiusτ > 0 aroundxc ∈ Rn by Kτ (xc),
i.e.

Kτ (xc) := {x ∈ Rn : ‖x− xc‖2 ≤ τ}.

Theorem 5.7 Let Assumption 5.1 be fulfilled. Furthermore, letτ ≥ 1 andxc ∈ Rn be chosen such

thatMopt∩Kτ/8(xc) 6= ∅. Letx∗ ∈Mopt∩Kτ/8(xc), x̃ ∈M0∩Kτ (xc) andx0 ∈M0∩Kτ/4(xc)
be fixed andδi,j > 0, qi,j ∈ (0, 1), αi > 0, t̃ ∈ T (x̃), ṽ ∈ ∂g(x̃, t̃) as well as

c ≥ ‖x̃− x∗‖2 and c3 := f(x̃)− f− + c0 + c1

with

f− ≤ min
x∈M

f(x), c0 :=
∣∣∣∣ln(−max

t∈T
g(x̃, t)

)∣∣∣∣ , c1 := ln
(
−max

t∈T
g(x̃, t) + 2‖ṽ‖2

)
be given. Moreover, assume that(5.11) is true for all i ∈ N, 1 ≤ j ≤ j(i) and all k occurring

in the outer loop(i, j) and that the controlling parameters of Algorithm 5.2 satisfy the following

conditions:

max


√

2(εi,j + 2δi,j)
si

,
2(εi,j + 2δi,j)

ri,jsi

 ≤ αi, (5.18)

0 < µi+1 ≤ µi < 1 for all i ∈ N, µ1 ≤ e−c3 , (5.19)

∞∑
i=1

[(
2µi
si

(2| lnµi|+ ln τ)
) 1

2

+ 2cµi + αi

]
<
τ

2
(5.20)

and

σi >

(
2µi
si

(2| lnµi|+ ln τ) + 4ταi

) 1
2

+ αi. (5.21)

Then it holds



46 5 Regularization of the logarithmic barrier approach

(1) the loop ink is finite for each(i, j);

(2) the loop inj is finite for eachi, i.e. j(i) <∞;

(3) ‖xi,j − xc‖2 < τ for all pairs (i, j) with 0 ≤ j ≤ j(i);

(4) the sequence{xi,j} = {x1,0, . . . , x1,j(1), x2,0, . . . , x2,j(2), x3,0, . . .} converges to an element

x∗∗ ∈Mopt ∩Kτ (xc).

Proof: Our first proposition follows immediately from Lemma 5.5. The other propositions will be

proven similarly to the proof of Theorem 1 in Kaplan, Tichatschke [27].

We first definezi = µix̃ + (1 − µi)x∗. Due to0 < µi < 1, x̃ ∈ M0 = int (M), x∗ ∈ M
and the fact thatM is convex one can inferzi ∈M0 with Theorem 6.1 in Rockafellar [45]. Then it

follows

−µi ln
(
−max

t∈T
g(zi, t)

)
= −µi ln

(
−max

t∈T
g(µix̃+ (1− µi)x∗, t)

)
≤ −µi ln

(
−µi max

t∈T
g(x̃, t)− (1− µi) max

t∈T
g(x∗, t)

)
≤ −µi ln

(
−µi max

t∈T
g(x̃, t)

)
= −µi

(
lnµi + ln

(
−max

t∈T
g(x̃, t)

))
≤ µi (| lnµi|+ c0) ,

(5.22)

because themax−function is convex and the logarithm increases monotonically. Furthermore, the

estimates

‖zi − x∗‖2 = µi‖x̃− x∗‖2 ≤ cµi (5.23)

and

f(zi) ≤ µif(x̃) + (1− µi)f(x∗) ≤ f(x∗) + µi(f(x̃)− f−) (5.24)

are obviously true. Additionally, this yields

max
t∈T

g(x, t) ≥ g(x, t̃) ≥ g(x̃, t̃) + ṽT (x− x̃) = max
t∈T

g(x̃, t) + ṽT (x− x̃)

for all x ∈ Rn sinceṽ ∈ ∂g(x̃, t̃), t̃ ∈ T (x̃). Consequently, using the Cauchy-Schwarz inequality

andx̃ ∈ Kτ (xc), we obtain

0 < −max
t∈T

g(x, t) ≤ −max
t∈T

g(x̃, t) + 2τ‖ṽ‖2

for all x ∈ Kτ (xc) ∩M0. Regarding the monotonicity of the logarithm andτ ≥ 1, this leads to

inf
{
−µi ln

(
−max

t∈T
g(x, t)

)
: x ∈ Kτ (xc) ∩M0

}
≥ −µi ln

(
−max

t∈T
g(x̃, t) + 2‖ṽ‖2τ

)
≥ −µi(c1 + ln τ). (5.25)
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As in the previous chapter we introduce

fi(x) = f(x)− µi ln
(
−max

t∈T
g(x, t)

)
for all x ∈M0. The inequalities (5.22), (5.24), (5.25) and the optimality ofx∗ show that

fi(zi) ≤ f(x)− µi ln
(
−max

t∈T
g(x, t)

)
+ µi(c1 + ln τ) + µi(f(x̃)− f−) + µi (| lnµi|+ c0)

= fi(x) + µi(c3 + ln τ + | lnµi|) (5.26)

for all x ∈M0 ∩Kτ (xc). Combining this with (5.19) leads to

fi(zi) ≤ fi(x) + µi (2| lnµi|+ ln τ) (5.27)

for all x ∈M0 ∩Kτ (xc).
Using the results above we can prove the second and third proposition of our theorem by induc-

tion. For that we assume:

(i) i0, j0 are kept fixed with0 ≤ j0 < j(i0),

(ii) j(i) <∞ if i < i0,

(iii) if we denote

xi,j := arg min
x∈M0

Fi,j(x) and x
i,j := arg min

x∈M

{
f(x) +

si
2
‖x− xi,j−1‖22

}
,

the relations

x
i,j = arg min

x∈M∩Kτ (xc)

{
f(x) +

si
2
‖x− xi,j−1‖22

}
, (5.28)

‖xi,j − xc‖2 < τ , ‖xi,j − xc‖2 < τ and‖xi,j − xc‖2 < τ hold for all pairs of indices

(i, j) ∈ Q0 :=
{

(i′, j′) : {i′ < i0, 0 < j′ ≤ j(i′)} ∨ {i′ = i0, 0 < j′ ≤ j0}
}
.

Let us remark thatxi,j ∈M0 as minimizing point ofFi,j exists due to Lemma 2.2. The existence of

x
i,j ∈M as minimizer off(x) + si

2 ‖x−x
i,j−1‖22 is ensured by the strong convexity and continuity

of this function on the nonempty and closed setM.

At this point we have to check (i)-(iii) for the starting valuesi0 = 1, j0 = 0, but this is easy: By

constructionj(1) > 0 so thati0 = 1, j0 = 0 fulfill the first assumption. The other two assumptions

are obvious by construction.

Using the stopping criterion of the loop ink of Algorithm 5.2, (5.11), (5.14), (5.18) as well as

the definition ofxi,j we deduce ∥∥xi,j − xi,j∥∥
2
≤ αi. (5.29)

Furthermore, taking the definitions ofxi,j andxi,j , (2.5) into account we can conclude

f
(
xi,j
)

+
si
2

∥∥xi,j − xi,j−1
∥∥2

2
− f

(
x
i,j
)
− si

2

∥∥∥xi,j − xi,j−1
∥∥∥2

2
≤ µi. (5.30)
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Additionally one can establish

si
2

∥∥∥xi,j − xi,j∥∥∥2

2
≤ f

(
xi,j
)

+
si
2

∥∥xi,j − xi,j−1
∥∥2

2
− f

(
x
i,j
)
− si

2

∥∥∥xi,j − xi,j−1
∥∥∥2

2
(5.31)

in the same manner as (5.15). Combining (5.30) and (5.31) we see

si
2

∥∥∥xi,j − xi,j∥∥∥2

2
≤ µi,

so that ∥∥∥xi,j − xi,j∥∥∥
2
≤
√

2µi
si
. (5.32)

Using this and (5.29) we obtain ∥∥∥xi,j − xi,j∥∥∥
2
≤ αi +

√
2µi
si
. (5.33)

Due toxi,j ∈M0 ∩Kτ (xc) estimate (5.27) implies

fi(zi) ≤ fi(xi,j) + µi (2| lnµi|+ ln τ) (5.34)

for all (i, j) ∈ Q0. In the sequel we distinguish the following cases

a) i < i0, 0 ≤ j < j(i)− 1 or i = i0, 0 ≤ j < j0,

b) i < i0, j = j(i)− 1 and

c) i = i0, j = j0 + 1.

ad a) In this case we obtain∥∥xi,j+1 − zi
∥∥2

2
−
∥∥xi,j − zi∥∥2

2
≤ −

∥∥xi,j+1 − xi,j
∥∥2

2
+

2
si

(
fi(zi)− fi(xi,j+1)

)
≤ −

∥∥xi,j+1 − xi,j
∥∥2

2
+

2µi
si

(2| lnµi|+ ln τ)
(5.35)

by using Proposition 8.3 in Kaplan, Tichatschke [24] and (5.34). Taking (5.21), (5.29) and the

stopping criterion of the loop inj of Algorithm 5.2 into account we conclude∥∥xi,j+1 − xi,j
∥∥

2
≥
∥∥xi,j+1 − xi,j

∥∥
2
−
∥∥xi,j+1 − xi,j+1

∥∥
2
> σi − αi > 0. (5.36)

and we have ∥∥xi,j+1 − zi
∥∥2

2
−
∥∥xi,j − zi∥∥2

2
≤ −ε̃2

i + γi < 0 (5.37)

with ε̃i = σi − αi andγi = 2µi(2| lnµi|+ ln τ)/si.
Moreover, regarding‖xi,j − xc‖2 < τ and‖zi − xc‖ < τ , the estimate∥∥xi,j+1 − zi

∥∥
2
−
∥∥xi,j − zi∥∥

2
<
(
2
∥∥xi,j − zi∥∥

2

)−1 (−ε̃2
i + γi

)
≤ 1

4τ
(
−ε̃2

i + γi
)

(5.38)

holds. Together with (5.21) and (5.29) we obtain∥∥xi,j+1 − zi
∥∥

2
−
∥∥xi,j − zi∥∥

2
<

1
4τ
(
−ε̃2

i + γi
)

+ αi < 0. (5.39)
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ad b) Now we assumei < i0, j = j(i)− 1.

In this case we can combine (5.27), (5.29) and the implications of Proposition 8.3 in Kaplan,

Tichatschke [24] to see that∥∥∥xi,j(i) − zi∥∥∥
2
−
∥∥∥xi,j(i)−1 − zi

∥∥∥
2
≤
∥∥∥xi,j(i) − xi,j(i)−1

∥∥∥
2
−
∥∥∥xi,j(i)−1 − zi

∥∥∥
2

+ αi

≤
(

2
si

(
fi(zi)− fi(xi,j(i))

)) 1
2

+ αi

≤
(

2µi
si

(2| lnµi|+ ln τ)
) 1

2

+ αi

=
√
γi + αi

(5.40)

holds. Summing the inequalities (5.39) w.r.t.j = 0, 1, . . . , j(i) − 2 for a fixedi < i0 and adding

(5.40) leads to ∥∥∥xi,j(i) − zi∥∥∥
2
−
∥∥xi,0 − zi∥∥

2
≤ √γi + αi, (5.41)

and together with (5.23) one has∥∥∥xi,j(i) − x∗∥∥∥
2
−
∥∥xi,0 − x∗∥∥

2
≤ √γi + αi + 2cµi. (5.42)

ad c) Now we assumei = i0, j = j0 + 1.

In this case we consider

x̂i0,j0+1 := arg min
x∈M∩Kτ (xc)

{
f(x) +

si0
2

∥∥x− xi0,j0∥∥2

2

}
.

The non-expansivity of the prox-mapping (see, e.g. Rockafellar [45]) yields∥∥x̂i0,j0+1 − x∗
∥∥

2
≤
∥∥xi0,j0 − x∗∥∥

2
. (5.43)

Using this, (5.23) and (5.39) fori = i0, 0 ≤ j < j0 we obtain∥∥x̂i0,j0+1 − x∗
∥∥

2
≤
∥∥xi0,j0 − zi0∥∥

2
+ cµi0

≤
∥∥xi0,0 − zi0∥∥

2
+ cµi0

≤
∥∥xi0,0 − x∗∥∥

2
+ 2cµi0 .

If i0 > 1 this leads to ∥∥x̂i0,j0+1 − x∗
∥∥

2
≤
∥∥∥xi0−1,j(i0−1) − x∗

∥∥∥
2

+ 2cµi0 .

Now the successive application of (5.42) gives

∥∥x̂i0,j0+1 − x∗
∥∥

2
≤
∥∥x1,0 − x∗

∥∥
2

+
i0−1∑
k=1

(
√
γk + αk + 2cµk) + 2cµi0 . (5.44)

As we assumed that‖x∗−xc‖2 ≤ τ/8 and‖x1,0−xc‖2 < τ/4 we can now assemble (5.19), (5.20)

and (5.44) to get ∥∥x̂i0,j0+1 − xc
∥∥

2
< τ − αi0 −

√
γi0 < τ − αi0 −

√
2
µi0
si0

. (5.45)
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We see that
∥∥x̂i0,j0+1 − xc

∥∥
2
< τ and due to the strong convexity off + si0

2

∥∥· − xi0,j0∥∥2

2
we can

deduce that̂xi0,j0+1 must actually be identical toxi0,j0+1. But then the estimates (5.32) and (5.33)

imply
∥∥xi0,j0+1 − xc

∥∥
2
< τ as well.

So far we have proven that Assumption (iii) is also true fori = i0, j = j0 + 1. It still remains

to prove thatj(i0) < ∞ holds. In order to do so we sum up the inequalities (5.39) to an arbitrary

j ≤ j(i0)− 1 and obtain∥∥∥xi0,j − zi0∥∥∥
2
<
∥∥xi0,0 − zi0∥∥

2
+ j

(
1
4τ
(
−ε̃2

i0 + γi0
)

+ αi0

)
.

Dividing by 1
4τ

(
−ε̃2

i0
+ γi0

)
+ αi0 we get an upper bound forj:

j < −
∥∥xi0,0 − zi0∥∥

2

(
1
4τ
(
−ε̃2

i0 + γi0
)

+ αi0

)−1

<∞. (5.46)

Thus we have shown the induction statements to hold fori0, j0 + 1 if j0 < j(i0). But the case

j0 = j(i0) is equivalent to the case(i0 + 1, 0) and so the induction holds for all possible indices

(i0, j0). As a consequence of this the second and third proposition of the theorem are proven.

It remains to prove the convergence of the generated sequence{xi,j} to an optimal solution of

the given semi-infinite problem (2.10). Let an arbitrary element ofMopt ∩Kτ (xc) be given byx.

Defining

zi = x̃+ (1− µi)(x− x̃),

we can show‖zi − x‖2 ≤ 2τµi similar to (5.23) and analogous results to (5.41) and (5.42) withzi

instead ofzi andx instead ofx∗. Additionally, we obtain from (5.20)

∞∑
i=1

√
γi <∞,

∞∑
i=1

µi <∞ and
∞∑
i=1

αi <∞

and the convergence of
{∥∥xi,0 − x∥∥

2

}
is ensured by Lemma 2.2.2 in Poljak [39]. Moreover, the

results (5.26), (5.35), (5.39) and (5.40) remain true if we usezi instead ofzi and∥∥xi,j − zi∥∥
2
<
∥∥xi,0 − zi∥∥

2
,

∥∥xi+1,0 − zi
∥∥

2
≤ √γi + αi +

∥∥xi,j − zi∥∥
2

for all i and0 < j < j(i). Sincezi, x ∈ Kτ (xc) this leads to∥∥xi+1,0 − x
∥∥

2
−√γi − αi − 4τµi ≤

∥∥xi,j − x∥∥
2
<
∥∥xi,0 − x∥∥

2
+ 4τµi,

hence the sequence
{∥∥xi,j − x∥∥

2

}
converges. Furthermore, regarding (5.29) andlimi→∞ αi = 0

which is enforced by (5.20), it is clear that
{∥∥xi,j − x∥∥

2

}
converges to the same limit point.

Due tox̃, x ∈ Kτ (xc) and0 < µi < 1 for all i ∈ N we havezi ∈ Kτ (xc) for all i ∈ N as well

as ∥∥xi,j−1 − zi
∥∥

2
≤
∥∥xi,j−1 − x

∥∥
2

+ 2τµi

for all pairs(i, j) with 1 ≤ j ≤ j(i) and∥∥xi,j − zi∥∥
2
≥
∥∥xi,j − x∥∥

2
− 2τµi
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for all pairs(i, j) with 0 ≤ j ≤ j(i). Consequently we obtain∥∥xi,j−1 − zi
∥∥2

2
≤
∥∥xi,j−1 − x

∥∥2

2
+ 8τ2µi + 4τ2µ2

i

for all pairs(i, j) with 1 ≤ j ≤ j(i) and∥∥xi,j − zi∥∥
2
≥
∥∥xi,j − x∥∥2

2
− 8τ2µi − 4τ2µ2

i

for all pairs(i, j) with 0 ≤ j ≤ j(i). Additionally the modified estimates (5.26)

fi(zi) ≤ fi(x) + µi(c3 + ln τ + | lnµi|)

for all x ∈M0 ∩Kτ (xc) and (5.35)∥∥xi,j − zi∥∥2

2
−
∥∥xi,j−1 − zi

∥∥2

2
≤ 2
si

(
fi(zi)− fi(xi,j)

)
allow to infer∥∥xi,j−1 − x

∥∥2

2
−
∥∥xi,j − x∥∥2

2
≥ 2
si

(
fi(xi,j)− fi(x)− µi(c3 + ln τ + | lnµi|)

)
− 16τ2µi − 8τ2µ2

i

for all x ∈M0 ∩Kτ (xc). Then, regardingxi,j ∈M0 ∩Kτ (xc) and estimate (5.25), we obtain∥∥xi,j−1 − x
∥∥2

2
−
∥∥xi,j − x∥∥2

2
≥ 2
si

(
f(xi,j)− fi(x)− µi(c1 + ln τ)

)
− 2µi

si
(c3 + ln τ + | lnµi|)− 8τ2µi(2 + µi).

(5.47)

Furthermore, we havelimi→∞ fi(x) = f(x) for each fixedx ∈M0 soµi → 0 andsi ≤ s give

lim sup
i→∞

(
max

1≤j≤j(i)

(
f(xi,j)− f(x)

))
≤ 0 (5.48)

for each fixedx ∈M0 ∩Kτ (xc).
Now letx∗∗ be an accumulation point of the sequence{xi,j}. Such an accumulation point exists

sincexi,j ∈ Kτ (xc) ∩M for all pairs(i, j). Regarding (5.29) andlimi→∞ αi = 0 it follows that

x∗∗ is also an accumulation point of the sequence{xi,j}. Further we obtainx∗∗ ∈ M ∩ Kτ (xc)
since the setsM andKτ (xc) are closed. For eachx ∈ M0 ∩ Kτ (xc) estimate (5.48) establishes

f(x) as an upper bound forf(x∗∗) so that we deduce

f(x∗∗) ≤ inf {f(x) : x ∈M0 ∩Kτ (xc)} . (5.49)

ObviouslyM∩Kτ (xc) is the closure ofM0∩Kτ (xc). Furtherx∗ ∈Mopt∩Kτ (xc) such that (5.49)

impliesf(x∗∗) ≤ f(x∗) resp.x∗∗ ∈ Mopt ∩Kτ (xc). Consequently, regarding that
{∥∥xi,j − x∥∥

2

}
converges for eachx ∈Mopt ∩Kτ (xc), the sequence

{∥∥xi,j − x∗∗∥∥
2

}
converges to zero. Thus the

sequence{xi,j} converges tox∗∗ ∈Mopt. 2

Remark 5.8 If maxt∈T g(·, t) is bounded below on the feasible setM of (2.10), i.e. there exists a

(nonpositive) constantd > −∞ with d ≤ maxt∈T g(x, t) for all x ∈M, one obtains

inf
{
−µi ln

(
−max

t∈T
g(x, t)

)
: x ∈ Kτ (xc)

}
≥ −µi ln(−d).
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Consequently, using this estimate instead of (5.25) in the proof above, the conditions on the pa-

rameter of Algorithm 5.2 in Theorem 5.7 can be simplified in the considered case. In particular,c3

can be changed intoc3 = f(x̃) − f− + c0 − ln(−d) and in (5.20) and (5.21) the termln τ can be

dropped. Thus the left-hand side of the modified estimate (5.20) does not depend on (the unknown)

τ . Therefore one could choose the value ofτ after determining{µi}, {αi} and{si}. Finally, the

value ofσi can be fixed such that (5.21) holds. Altogether the described procedure is much easier

than the simultaneous determination of all parameters in the general case. 2

Remark 5.9 The conditions on the parameters of the method require their separate adjustment to

each example, which can be a very fragile task when applying the multi-step procedure. In case

of using the one-step procedure parameters according to Theorem 5.7 are easily chosen. The one-

step procedure is given ifj(i) = 1 for eachi, which can be ensured by choosingσi sufficiently

large2. Then (5.21) is automatically satisfied for each fixedτ ≥ 1. Furthermore, (5.20) holds for all

sufficiently large values ofτ if one guarantees that

∞∑
i=1

(
µi| lnµi|

si

) 1
2

<∞ and
∞∑
i=1

αi <∞.

Consequently, (5.20) and (5.21) can be replaced by the given conditions above andτ , σi need not to

be specified explicitly. 2

At the end of this section an estimate of the difference between the current value of the objective

function f at the end of an outer step and its minimal valuef∗ onM is established (cf. Kaplan,

Tichatschke [25, 27]).

Lemma 5.10 Let the assumptions of Theorem 5.7 be satisfied and letf be Lipschitz continuous with

modulusL onKτ (xc).3 Then

f
(
xi
)
− f∗ ≤

(
9
8
τsi + L

)(√
2µi
si

+ αi

)
+

9
8
τsiσi

holds for alli ∈ N.

Proof: Let i be fixed and0 ≤ j < j(i) be arbitrarily given. In the proof of Theorem 5.7 we defined

x
i,j+1 = arg min

x∈M

{
f(x) +

si
2

∥∥x− xi,j∥∥2

2

}
.

The affiliationxi,j+1 ∈ Kτ (xc) has already been shown. SinceM∩Kτ (xc) is obviously convex

(1− λ)xi,j+1 + λx∗ ∈M∩Kτ (xc) for all λ ∈ [0, 1]. The optimality ofxi,j+1 gives

f
(

(1− λ)xi,j+1+ λx∗
)

+
si
2

∥∥∥(1− λ)xi,j+1+ λx∗ − xi,j
∥∥∥2

2
≥ f

(
x
i,j+1

)
+
si
2

∥∥∥xi,j+1 − xi,j
∥∥∥2

2

so that, regarding the convexity off , for all λ ∈ (0, 1]

0 ≤ λf(x∗)− λf
(
x
i,j+1

)
+
si
2
λ2
∥∥∥x∗ − xi,j+1

∥∥∥2

2
+ λsi

(
x∗ − xi,j+1

)T (
x
i,j+1 − xi,j

)
2Of course, when one actually applies the multi-step approach large values ofσi must be avoided.
3Due tof(x) ∈ R for eachx ∈ Kτ (xc), the existence of a Lipschitz constantL is ensured by Theorem 24.7 in

Rockafellar [45].
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and

f
(
x
i,j+1

)
− f(x∗) ≤ si

(
x∗ − xi,j+1

)T (
x
i,j+1 − xi,j

)
+
si
2
λ
∥∥∥x∗ − xi,j+1

∥∥∥2

2
.

Taking the limitλ↘ 0 combined with the Cauchy-Schwarz inequality leads to

f
(
x
i,j+1

)
− f(x∗) ≤ si

(
x∗ − xi,j+1

)T (
x
i,j+1 − xi,j

)
≤ si

∥∥∥x∗ − xi,j+1
∥∥∥

2

(∥∥∥xi,j+1 − xi,j+1
∥∥∥

2
+
∥∥xi,j+1 − xi,j

∥∥
2

)
.

and using the Lipschitz continuity off

f
(
xi,j+1

)
− f(x∗) ≤

∥∥∥xi,j+1 − xi,j+1
∥∥∥

2

(
L+ si

∥∥∥x∗ − xi,j+1
∥∥∥

2

)
+ si

∥∥∥x∗ − xi,j+1
∥∥∥

2

∥∥xi,j+1 − xi,j
∥∥

2
.

In view of (5.33) and∥∥∥x∗ − xi,j+1
∥∥∥

2
≤ ‖x∗ − xc‖2 +

∥∥∥xi,j+1 − xc
∥∥∥

2
≤ τ

8
+ τ =

9
8
τ

we obtain

f
(
xi,j+1

)
− f(x∗) ≤

(
9
8
τsi + L

)(
αi +

√
2µi
si

)
+

9
8
τsi
∥∥xi,j+1 − xi,j

∥∥
2
,

so that our proposition follows w.r.t.
∥∥xi,j(i) − xi,j(i)−1

∥∥
2
≤ σi, xi = xi,j(i) andf(x∗) = f∗. 2

5.3 Rate of convergence

In the following sections we analyze further convergence properties of Algorithm 5.2 with regard to

the rate of convergence based on results of Kaplan, Tichatschke [25, 27]. For that we consider the

sequence{xi,j} instead of the generated sequence{xi,j} whereby

xi,j = arg min
x∈M0

Fi,j(x)

is defined as in the proof of Theorem 5.7. That means we consider the sequence of the exact minima

of Fi,j instead of the computed approximate minima. However, based on results for the exact minima

we can also achieve results for the approximate minima, e.g. by using (5.29).

First the value ofmaxt∈T g(xi,j , t) is estimated.

Lemma 5.11 Let the assumptions of Theorem 5.7 be satisfied. Then for eachi and1 ≤ j ≤ j(i)

−max
t∈T

g(xi,j) ≥ c4µi

holds with

c4 := −
(
µ1 + f(x̃)− f∗ + 2τ2s

)−1 max
t∈T

g(x̃, t)

andx̃ defined in Theorem 5.7.
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Proof: Let i, j be arbitrarily given with1 ≤ j ≤ j(i). Due toxi,j ∈ M0 = dom (Fi,j) Theorem

23.1 in Rockafellar [45] ensures the existence of the directional derivativeF ′i,j(x
i,j ; d) for each

d ∈ Rn. SinceFi,j attains its minimal value atxi,j and sinceM0 is open we obtainF ′i,j(x
i,j ; d) ≥ 0

for eachd ∈ Rn so that0 ∈ ∂Fi,j
(
xi,j
)

follows from Theorem 23.2 in Rockafellar [45]. From (5.8)

and (5.9) we already know

∂Fi,j
(
xi,j
)
⊃ ∂fi

(
xi,j
)

+
{
si
(
xi,j − xi,j−1

)}
.

Regarding

xi,j ∈M0 = ri (dom (fi)) ∩ ri
(

dom
(si

2

∥∥· − xi,j−1
∥∥2

2

))
,

Theorem 23.8 in Rockafellar [45] even leads to

∂Fi,j
(
xi,j
)

= ∂fi
(
xi,j
)

+
{
si
(
xi,j − xi,j−1

)}
.

Moreover, analogous to (2.7) in the proof of Theorem 2.3, one obtains

∂fi
(
xi,j
)

= ∂f
(
xi,j
)

+ µi
1

−maxt∈T g(xi,j , t)
∂

(
max
t∈T

g(xi,j , t)
)
,

hence

∂Fi,j
(
xi,j
)

= ∂f
(
xi,j
)

+
µi

−maxt∈T g(xi,j , t)
∂

(
max
t∈T

g(xi,j , t)
)

+
{
si
(
xi,j − xi,j−1

)}
,

i.e. there existuf ∈ ∂f(xi,j) andug ∈ ∂
(
maxt∈T g(xi,j , t)

)
with

uf −
µi

maxt∈T g(xi,j , t)
ug + si

(
xi,j − xi,j−1

)
= 0

and multiplication with(xi,j − x̃) leads to

uTf (xi,j − x̃) +
µi

−maxt∈T g(xi,j , t)
uTg (xi,j − x̃) + si(xi,j − xi,j−1)T (xi,j − x̃) = 0.

Using the properties of the subgradientsuf andug as well as the convexity of the norm we obtain

0 ≥ f
(
xi,j
)
− f (x̃) +

µi
−maxt∈T g(xi,j , t)

(
max
t∈T

g(xi,j , t)−max
t∈T

g(x̃, t)
)

+
si
2

(∥∥xi,j − xi,j−1
∥∥2

2
−
∥∥x̃− xi,j−1

∥∥2

2

)
,

so that we can conclude

µi
−maxt∈T g(xi,j , t)

(
max
t∈T

g(xi,j , t)−max
t∈T

g(x̃, t)
)
≤ f(x̃)− f∗ +

si
2

∥∥x̃− xi,j−1
∥∥2

2

and using̃x, xi,j−1 ∈ Kτ (xc) gives

µi
−maxt∈T g(xi,j , t)

(
max
t∈T

g(xi,j , t)−max
t∈T

g(x̃, t)
)
≤ f(x̃)− f∗ + 2τ2s.
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Now, regardingµi ≤ µ1, it is obvious that

−max
t∈T

g(xi,j , t) ≥ µi(−max
t∈T

g(x̃, t))
(
µ1 + f(x̃)− f∗ + 2τ2s

)−1

holds and the proof is complete. 2

We introduce

∆i,j := f(xi,j)− f∗

for eachi and1 ≤ j ≤ j(i). In order to complete this definition forj = 0 we setxi+1,0 := xi,j(i)

for eachi ∈ N as well asx1,0 := x1,0 = x0 such that∆i,0 can be defined as∆i,j above.

Theorem 5.12 Let the assumptions of Theorem 5.7 be satisfied. Moreover, assume that

µ1 ≤ −
1
c4

max
t∈T

g(x0) (5.50)

with c4 given as in Lemma 5.11. Additionally let a positive constantα with

α ≤
(
16sτ2

)−1
, α sup

i,j
∆i,j ≤

7
32

(5.51)

be given and assume that for eachi the constant

κi := µi(c1 + ln τ)− µi ln
(

1
8
c4µi

)
+
si
2
α2
i +

7
4
siαiτ (5.52)

satisfies

κi ≤ α

(
∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

)2

, (5.53)

2κi ≤
si
2

(σi − αi)2 (5.54)

with j1(k) := max{1, 2j(k)− 2}.
Then the estimate

∆i,j ≤ ∆1,0

(
1 + α

(
2j +

i−1∑
k=1

j1(k)

)
∆1,0

)−1

(5.55)

is true for all i ∈ N, 0 ≤ j < j(i) if ∆1,0 > 0 or x0 6∈ Mopt.

Proof: Let us denote

zi,j := arg min
z∈Mopt∩Kτ (xc)

∥∥xi,j − z∥∥
2

for eachi and0 ≤ j ≤ j(i). Thenz̃i,j(λ) := λzi,j + (1− λ)xi,j ∈M0 ∩Kτ (xc) for all λ ∈ [0, 1)
andi, 0 ≤ j ≤ j(i) and we haveFi,j+1(xi,j+1) ≤ Fi,j+1(z̃i,j(λ)) for λ ∈ [0, 1) if j < j(i). Taking
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the convexity off as well as (5.29) into account we obtain

Fi,j+1

(
xi,j+1

)
= f

(
xi,j+1

)
− µi ln

(
−max

t∈T
g(xi,j+1, t)

)
+
si
2

∥∥xi,j+1 − xi,j
∥∥2

2

≤ Fi,j+1(z̃i,j(λ))

≤ λf
(
zi,j
)

+ (1− λ)f
(
xi,j
)
− µi ln

(
−max

t∈T
g(z̃i,j(λ), t)

)
+
si
2
(
λ‖zi,j − xi,j)‖2 + αi

)2
.

(5.56)

Using the convexity ofmaxt∈T g(·, t) and the inclusionzi,j ∈M, we have

max
t∈T

g(z̃i,j(λ), t) ≤ (1− λ) max
t∈T

g(xi,j , t)

such that we infer

−µi ln
(
−max

t∈T
g(z̃i,j(λ), t)

)
≤ −µi ln

(
−(1− λ) max

t∈T
g(xi,j , t)

)
.

for all pairs(i, j) with 1 ≤ j ≤ j(i) andλ ∈ [0, 1). Applying Lemma 5.11 the inequality

−µi ln
(
−max

t∈T
g(z̃i,j(λ), t)

)
≤ −µi ln ((1− λ)c4µi) (5.57)

follows for all pairs(i, j) with 1 ≤ j ≤ j(i). Butxi,0 = xi−1,j(i−1) andj(i− 1) > 0 for eachi > 1
so that

−µi ln
(
−max

t∈T
g(z̃i,0(λ), t)

)
≤ −µi ln ((1− λ)c4µi−1)

follows w.r.t. Lemma 5.11. The monotonic decrease of{µi} leads to (5.57) again and regarding

(5.50) the estimate now holds for alli and0 ≤ j ≤ j(i).
From the proof of Theorem 5.7 we know thatxi,j+1 ∈M0 ∩Kτ (xc) for all i and0 ≤ j < j(i).

Using (5.25) we therefore conclude

−µi ln
(
−max

t∈T
g(xi,j+1, t)

)
≥ −µi(c1 + ln τ).

This together with (5.56), (5.57) andzi,j ∈Mopt yields

∆i,j+1 = f(xi,j+1)− f∗

≤ λ(f(zi,j)− f∗) + (1− λ)(f(xi,j)− f∗)

− µi ln
(
−max

t∈T
g(z̃i,j(λ), t)

)
+ µi ln

(
−max

t∈T
g(xi,j+1, t)

)
+
si
2
(
λ‖zi,j − xi,j)‖2 + αi

)2 − si
2

∥∥xi,j+1 − xi,j
∥∥2

2

≤ (1− λ)∆i,j − µi ln ((1− λ)c4µi) + µi(c1 + ln τ)

+
si
2
λ2‖zi,j − xi,j‖22 + siαiλ‖zi,j − xi,j‖+

si
2
α2
i −

si
2

∥∥xi,j+1 − xi,j
∥∥2

2

(5.58)
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for all i and0 ≤ j < j(i). In view of zi,j , xi,j ∈ Kτ (xc) as well as the definition ofκi we obtain

0 ≤ ∆i,j+1 ≤ (1− λ)∆i,j + κi +
si
2
λ2‖zi,j − xi,j‖22 −

si
2

∥∥xi,j+1 − xi,j
∥∥2

2
, (5.59)

if λ ∈ [0, 7/8] which can be enforced by setting

λ = λi,j = min
{

∆i,j

si‖zi,j − xi,j‖22
,
7
8

}
. (5.60)

If λi,j equals7/8 (5.60) immediately leads to

si
∥∥zi,j − xi,j∥∥2

2
≤ 8

7
∆i,j

and we can infer

∆i,j+1 ≤
∆i,j

8
+ κi +

7
16

∆i,j −
si
2

∥∥xi,j+1 − xi,j
∥∥2

2

=
9
16

∆i,j + κi −
si
2

∥∥xi,j+1 − xi,j
∥∥2

2

(5.61)

from (5.59). Due to the second part of (5.51) this allows to conclude

∆i,j+1 ≤ ∆i,j − 2α∆2
i,j + κi −

si
2

∥∥xi,j+1 − xi,j
∥∥2

2
. (5.62)

But if λi,j < 7/8 holds we obtain

∆i,j+1 ≤ ∆i,j −
∆2
i,j

2si‖zi,j − xi,j‖22
+ κi −

si
2

∥∥xi,j+1 − xi,j
∥∥2

2
(5.63)

and now using the first part of (5.51) inequality (5.62) follows again. Consequently this estimate

holds for all pairs(i, j) with 0 ≤ j < j(i) making it the basis of the following induction proof.

Let us assume that (5.55) holds for a fixed pairi, j with j < j(i). This is obvious for the starting

indicesi = 1, j = 0. Now we distinguish three cases.

a) We first consider0 ≤ j < j(i)− 1. Thenj + 1 < j(i) and due to (5.21) as well as (5.36) we

have
si
2

∥∥xi,j+1 − xi,j
∥∥2

2
>
si
2

(σi − αi)2 (5.64)

such that (5.54) leads to

κi −
si
2

∥∥xi,j+1 − xi,j
∥∥2

2
< 0.

Consequently, with (5.62) we obtain

∆i,j+1 ≤ ∆i,j − 2α∆2
i,j .

Moreover, the trivial inequality

y − ϑy2 ≤ y

1 + ϑy
(5.65)
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is true for ally ≥ 0 with fixedϑ > 0 and the function y
1+ϑy increases monotonically for nonnegative

y such that one can setϑ = 2α, y = ∆i,j . Then, with regard to the induction assumption, we infer

∆i,j+1 <
∆i,j

1 + 2α∆i,j

≤ ∆1,0(
1 + α

(
2j +

∑i−1
k=1 j

1(k)
)

∆1,0

)(
1 + 2α ∆1,0

1+α(2j+
∑i−1
k=1 j

1(k))∆1,0

)
=

∆1,0

1 + α
(

2j + 2 +
∑i−1

k=1 j
1(k)

)
∆1,0

and the induction statement holds.

b) In casej = 0, j(i) = 1 we havej1(i) = 1 and (5.62) leads to

∆i+1,0 = ∆i,1 ≤ ∆i,0 − 2α∆2
i,0 + κi.

Furthermore, regarding the second part of (5.51), it holds

∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

≤ ∆1,0 ≤
7

32α
<

1
4α
.

Since the functiony−2αy2 increases monotonically ify < 1/(4α), the induction assumption allows

to conclude

∆i+1,0 ≤
∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

− 2α

(
∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

)2

+ κi

such that

∆i+1,0 ≤
∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

− α

(
∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0

)2

(5.66)

follows from (5.53). Using (5.65) again - this time withϑ = α, y = ∆1,0

1+α
∑i−1
k=1 j

1(k)∆1,0
- the

combination with (5.66) andj1(i) = 1 leads to

∆i+1,0 ≤
∆1,0(

1 + α
∑i−1

k=1 j
1(k)∆1,0

)(
1 + α

∆1,0

1+α
∑i−1
k=1 j

1(k)∆1,0

)
=

∆1,0

1 + α
∑i−1

k=1 j
1(k)∆1,0 + α∆1,0

=
∆1,0

1 + α
∑i

k=1 j
1(k)∆1,0

such that the induction statement holds.

c) Finally let us consider the casej = j(i)− 1 with j(i) > 1. Then we have the inequalities

∆i,j(i)−1 ≤ ∆i,j(i)−2 − 2α∆2
i,j(i)−2 + κi −

si
2

∥∥∥xi,j(i)−1 − xi,j(i)−2
∥∥∥2

2
,

∆i+1,0 = ∆i,j(i) ≤ ∆i,j(i)−1 − 2α∆2
i,j(i)−1 + κi
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from (5.62). Coupling these we infer

∆i+1,0 ≤ ∆i,j(i)−2 − 2α∆2
i,j(i)−2 − 2α∆2

i,j(i)−1 + 2κi −
si
2

∥∥∥xi,j(i)−1 − xi,j(i)−2
∥∥∥2

2
,

so that together with (5.54), (5.64) andα∆2
i,j(i)−1 ≥ 0 the estimate

∆i,j(i) < ∆i,j(i)−2 − 2α∆2
i,j(i)−2

holds. Thus we can conclude in analogy to case a) that

∆i+1,0 <
∆1,0

1 + α
(

2j(i)− 2 +
∑i−1

k=1 j
1(k)

)
∆1,0

=
∆1,0

1 + α
∑i

k=1 j
1(k)∆1,0

since2j(i)− 2 > 1 and the induction is complete. 2

5.4 Linear convergence

Theorem 5.12 establishes the important estimate (5.55) which holds for any problem keeping on to

Assumption 5.1. If we consider problems adhering to tighter assumptions it is possible to prove

linear convergence for the iterates as well as the values of the objective function. The condition to

use in our case is the following growth condition

inf
x∈M̂

f(x)− f∗

ρ2(x,Mopt)
≥ d > 0 (5.67)

with

M̂ := (M0 ∩Kτ (xc)) \Mopt, ρ(x,Mopt) := min
z∈Mopt∩Kτ (xc)

‖x− z‖2.

This growth condition generalizes that of Rockafellar [47] which occurs in the context of proving

linear convergence of the iterates of an inexact proximal point method.

If d
si
< 7

8 is true, (5.60) admitsλi,j = 7/8 as well asλi,j < 7/8 for all j with 0 ≤ j < j(i).
If λi,j = 7/8 the inequality (5.61) is true, while in the caseλi,j < 7/8 the estimate (5.63) follows.

Then we have

λi,j =
∆i,j

si‖zi,j − xi,j‖22
and one can conclude

∆i,j+1 ≤
(

1− d

2s

)
∆i,j + κi −

si
2

∥∥xi,j+1 − xi,j
∥∥2

2

with regard to (5.67) andsi ≤ s.
But if d

si
≥ 7

8 is true (5.60) only admitsλi,j = 7/8 for all j with 0 ≤ j < j(i) which immediately

leads to (5.61).

Thus∆i,j , ∆i,j+1 always fulfill

0 ≤ ∆i,j+1 ≤ (1− d1) ∆i,j + κi −
si
2

∥∥xi,j+1 − xi,j
∥∥2

2
, (5.68)
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if j < j(i) whered1 = min
{

7
16 ,

d
2s

}
.

Using these preliminary remarks the linear convergence of the sequence{∆i,j} can be estab-

lished under the given growth condition.

Theorem 5.13 Let the assumptions of Theorem 5.7 be satisfied. Moreover, let(5.50) as well as

(5.67)be satisfied. Additionally assume that

κi ≤
si(1− d1)
2(2− d1)

(σi − αi)2, κi <
d1

2
∆1,0q

pi (5.69)

with pi =
i−1∑
k=1

j(k), q ∈
[
1− d1

2 , 1
)

. Then

∆i,j ≤ ∆1,0q
pi+j (5.70)

holds.

Proof: The proof is by induction again. The proposition is obviously true fori = 1, j = 0.

Thus we suppose that a fixedi andj < j(i) are given such that

∆k,j′ ≤ ∆1,0q
pk+j′ (5.71)

holds for allk < i, 0 ≤ j′ ≤ j(k) andk = i, 0 ≤ j′ ≤ j. The conditionj < j(i) is not a restriction

because in casej = j(i) we consider the equivalent pairi+ 1, j = 0 < j(i+ 1).
We distinguish three cases.

a) Supposej + 1 < j(i).

Combining
∥∥xi,j+1 − xi,j

∥∥
2
> σi − αi, the first inequality in (5.69) and (5.68) we obtain

∆i,j+1 < (1− d1)∆i,j

and along (5.71) this implies

∆i,j+1 < ∆1,0q
pi+j+1.

b) Supposej > 0, j + 1 = j(i).

Then the inequalities

∆i,j+1 ≤ ∆i,j(1− d1) + κi −
si
2

∥∥xi,j+1 − xi,j
∥∥2

2
,

∆i,j ≤ ∆i,j−1(1− d1) + κi −
si
2

∥∥xi,j − xi,j−1
∥∥2

2

and
∥∥xi,j − xi,j−1

∥∥
2
> σi − αi hold. Substituting the second in the first gives

∆i,j+1 < ∆i,j−1(1− d1)2 + κi(2− d1)− (1− d1)
si
2

(σi − αi)2,

leading to

∆i,j+1 < (1− d1)2∆i,j−1

if we consider the first inequality in (5.69). Hence,

∆i,j+1 < ∆1,0q
pi+j+1

and the induction statement holds.
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c) Supposej = 0, j(i) = 1.

Taking (5.71) and the second inequality in (5.69) into account we obtain

∆i,1 ≤ ∆1,0q
pi(1− d1) +

d1

2
∆1,0q

pi < ∆1,0q
pi+1

from (5.68) and the proof is complete. 2

If the considered problem fulfills the growth condition (5.67) we can additionally prove the

linear convergence of the sequence{xi,j} to an element ofMopt.

For this purpose we definej(i) = 16τ2(σi − αi)−2 + 1 and

ζi =
∞∑
k=i

(
√
γk + αk + 4τµk) , (5.72)

for all i whereγk is given byγk = 2µk
sk

(2| lnµk|+ ln τ) as in the proof of Theorem 5.7.

Theorem 5.14 Let the assumptions of Theorem 5.13 be satisfied. Moreover, assume that

1
4τ
γi + αi <

1
8τ

(σi − αi)2, (5.73)

ζi ≤
(

∆1,0

d

) 1
2

q
1
2

(pi+j(i)) (5.74)

hold for eachi. Then the inequality

∥∥xi,j − x∗∗∥∥
2
≤ 3

(
∆1,0

d

) 1
2

q
1
2

(pi+j) (5.75)

is true for eachi and0 ≤ j < j(i), wherex∗∗ := limi→∞ x
i,0 is an optimal solution of(2.10).

Proof: Let zi,j = arg minz∈Mopt∩Kτ (xc)

∥∥xi,j − z∥∥
2

be given as in the proof of Theorem 5.12.

The inequality ∥∥xi,j − zi,j∥∥
2
≤
(

∆i,j

d

) 1
2

(5.76)

is obviously true ifxi,j ∈Mopt, otherwise (5.76) holds due to (5.67).

In the sequel leti0, j0 be fixed with0 ≤ j0 < j(i0). From the proof of Theorem 5.7 inequality

(5.37) is known, i.e. ∥∥xi,j+1 − zi
∥∥2

2
−
∥∥xi,j − zi∥∥2

2
≤ −(σi − αi)2 + γi

holds for alli, 0 ≤ j < j(i)−1 with zi = x̃+(1−µi)(x∗−x̃). If we usez̃i = x̃+(1−µi)(zi0,j0−x̃)
instead ofzi we can conclude∥∥xi,j+1 − z̃i

∥∥2

2
−
∥∥xi,j − z̃i∥∥2

2
≤ −(σi − αi)2 + γi

analogously for alli and0 ≤ j < j(i)− 1. Furthermore it yields (cf. (5.39))∥∥xi,j+1 − z̃i
∥∥

2
−
∥∥xi,j − z̃i∥∥

2
<

1
4τ
(
−(σi − αi)2 + γi

)
+ αi < 0 (5.77)
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and (cf. (5.40)) ∥∥∥xi,j(i) − z̃i∥∥∥
2
−
∥∥∥xi,j(i)−1 − z̃i

∥∥∥
2
≤ √γi + αi (5.78)

for all i and0 ≤ j < j(i)− 1. Summing up these inequalities we obtain∥∥∥xi,j(i) − z̃i∥∥∥
2
−
∥∥xi,0 − z̃i∥∥

2
≤ √γi + αi,

and together with
∥∥z̃i − zi0,j0∥∥

2
≤ 2µiτ andxi+1,0 = xi,j(i) the estimate∥∥xi+1,0 − zi0,j0
∥∥

2
−
∥∥xi,0 − zi0,j0∥∥

2
≤ √γi + αi + 4µiτ

follows. Summing these inequalities fori = i0 + 1, . . . , i′ − 1 with i′ > i0 + 1 we get∥∥∥xi′,0 − zi0,j0∥∥∥
2
≤
∥∥xi0+1,0 − zi0,j0

∥∥
2

+
i′−1∑
i=i0+1

(
√
γi + αi + 4µiτ) .

In combination with (5.77) and (5.78) this leads to∥∥∥xi′,0 − zi0,j0∥∥∥
2
≤
∥∥xi0,j0 − zi0,j0∥∥

2
+
i′−1∑
i=i0

(
√
γi + αi + 4µiτ) .

Moreover, limi→∞ x
i,0 = limi→∞ x

i,0 follows from (5.29) andlimi→∞ αi = 0 is enforced by

(5.20). Thus, taking the limiti′ →∞ allows to conclude

∥∥x∗∗ − zi0,j0∥∥
2
≤
∥∥xi0,j0 − zi0,j0∥∥

2
+
∞∑
i=i0

(
√
γi + αi + 4µiτ) =

∥∥xi0,j0 − zi0,j0∥∥
2

+ ζi0 .

Yielding∥∥xi0,j0 − x∗∗∥∥
2
≤
∥∥xi0,s0 − vi0,j0∥∥

2
+
∥∥zi0,j0 − x∗∗∥∥

2
≤ 2

∥∥xi0,s0 − zi0,j0∥∥
2

+ ζi0

and we obtain ∥∥xi0,j0 − x∗∗∥∥
2
≤ 2

(
∆i0,j0

d

) 1
2

+ ζi0 (5.79)

in combination with (5.76). We remember that estimate (5.46) gives

j(i0) < 2τ
(

1
4τ

((σi0 − αi0)2 − γi0)− αi0
)−1

+ 1

so thatj(i0) < j̄(i0) follows in view of (5.73). Then relation (5.74) gives

ζi0 ≤
(

∆1,0

d

) 1
2

q
1
2

(pi+j(i0))

and along with (5.70) and (5.79) we can deduce

∥∥xi0,j0 − x∗∗∥∥
2
≤ 3

(
∆1,0

d

) 1
2

q
1
2

(pi+j0).

Becausei0 andj0 were chosen arbitrarily the proposition is proven. 2
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Corollary 5.15 Let the assumptions of Theorem 5.14 be satisfied. Then

∥∥xi,j − x∗∗∥∥
2
≤ 4

(
∆1,0

d

) 1
2

q
1
2

(pi+j)

holds for alli and1 ≤ j < j(i), wherex∗∗ = limi→∞ x
i,0 is an optimal solution of(2.10).

Proof: Regarding (5.29) and (5.75) we see that

∥∥xi,j − x∗∗∥∥
2
≤ 3

(
∆1,0

d

) 1
2

q
1
2

(pi+j) + αi

holds for alli and1 ≤ j < j(i). Moreover, using the definition ofζi, (5.74) and0 < q < 1, we

infer

αi ≤
(

∆1,0

d

) 1
2

q
1
2

(pi+j)

for all i and0 ≤ j ≤ j(i). Combining both estimates our proposition follows. 2

5.5 Extension to general convex problems

The regularized method presented can be easily extended to problems of the more general form (1.1)

under Assumption 4.11 - but again without the compactness postulate on the solution set. The same

generalizations used in Algorithm 4.12 can be integrated into Algorithm 5.2 and the results of the

Sections 5.1 and 5.2 remain true with analogous changes to those of Section 4.3.

In order to extend the results of the Sections 5.3 and 5.4 the basic result of Lemma 5.11 must

be transferred. And in the first part of that proof a modification is required which cannot be de-

scribed by the facts stated in Section 4.3. In particular, we cannot conclude0 ∈ ∂Fi,j(xi,j)
if linear equality constraints occur but we deduce0 ∈ ∂xLi,j(xi,j , yi,j) with Lagrange function

Li,j(x, y) := Fi,j(x) + yT (Ax− b) and a certainyi,j ∈ Rm. Thus we have

0 ∈ ∂xLi,j(xi,j , yi,j) = ∂Fi,j(xi,j) +AT y.

Using this we can analogously proceed as in the proof of Lemma 5.11 in order to obtain a result like

in Lemma 5.11. Now, the further results of the Sections 5.3 and 5.4 can be moved to the general

situation of problems of type (1.1) with regard to the remarks in Section 4.3.
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Chapter 6

Numerical analysis

In this chapter we discuss several numerical difficulties which occur by the practical application of

the Algorithms 4.2 and 5.2 or their extensions. We start with the analysis of the inner loops of the

algorithms in the first section while in the second section the determination of a starting point is the

point of interest. We choose this order because the inner loop has often to be done while for some

problems it can be simple to present a feasible starting point.

Let us remark that we mainly consider the problem (2.10) in detail and therefore we suppose

that Assumption 5.1 is fulfilled. Nevertheless the extensions to general problems of type (1.1) are

always stated.

6.1 Numerical aspects of the inner loops

The first question which raises in the loops ink of the Algorithms 4.2 and 5.2 is how can we

determine the positive radiusri,k resp.ri,j,k such that the boxSi,k or Si,j,k is completely contained

inM0. The simplest way to find such a radius is a trial-and-error strategy, whereby only the edges

of the considered box have to be checked for their feasibility. In particular this fact requires that we

can decide whether a given pointx fulfills g(x, t) < 0 for all t ∈ T . Such a decision procedure can

be very costly, especially if the exact evaluation of the constraint values is not possible. Therefore

we offer another method in the following lemma. In order to formulate this letLxS denote a constant

for a given nonempty setS ⊂ Rn with

sup
z∈S

sup
t∈T

sup
v∈∂g(z,t)

‖v‖1 ≤ LxS (6.1)

and the additional property thatS′ ⊂ S impliesLxS′ ≤ LxS . Furthermore, let us define

Br(V ) :=
{
z ∈ Rn : min

v∈V
‖z − v‖∞ ≤ r

}
for r > 0 and nonempty compact setsV ⊂ Rn.

Lemma 6.1 Let x̂ ∈M0 and r̂ > 0 be given. Moreover, leth ≥ 0 be given such that

−max
t∈Th

g(x̂, t)− Lt{x̂}h > 0

65
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holds withLt{x̂} fulfilling (4.1), i.e. |g(x̂, t1) − g(x̂, t2)| ≤ Lt{x̂}‖t1 − t2‖2 for all t1, t2 ∈ T . Then

the inclusionBr({x̂}) ⊂M0 is valid if

0 < r < min

{
r̂,
−maxt∈Th g(x̂, t)− Lt{x̂}h

LxBr̂({x̂})

}
. (6.2)

Proof: Let z /∈ M0 be given. Then one has to show‖z − x̂‖∞ > r. If ‖z − x̂‖∞ ≥ r̂ this follows

immediately. Thus in the sequel we assume that‖z − x̂‖∞ < r̂ holds. Lett∗ ∈ T (z) be given, i.e.

g(z, t∗) = maxt∈T g(z, t) ≥ 0. Then we conclude

0 > max
t∈Th

g(x̂, t) + Lt{x̂}h ≥ max
t∈T

g(x̂, t) ≥ g(x̂, t∗)− g(z, t∗) ≥ vT (x̂− z)

with v ∈ ∂g(z, t∗). Due to‖z − x̂‖∞ < r̂ the estimate

−max
t∈Th

g(x̂, t)− Lt{x̂}h ≤ |v
T (x̂− z)| ≤ LxBr̂({x̂})‖x̂− z‖∞

follows. Hence, we obtain‖z − x̂‖∞ > r and the proof is complete. 2

Remark 6.2In case of more than one inequality constraint (i.e.l > 1 in (1.1)) or in case of occurring

linear equality constraints one has to replaceM0 by {x ∈ Rn : gν(x, t) < 0 (t ∈ T ν)} for each

inequality constraint in the proposition of the lemma. In this way a feasible radius for each inequality

constraint can be separately determined by Lemma 6.1. Then the smallest value of these radii can

be used for fixing the box. 2

Lemma 6.1 determines the required boxes in our algorithms if the constantsLtS andLxS are

computable. Of course we cannot present a general way for computing these values but they are

stated explicitly for each numerical example in the following chapters.

A corollary of Lemma 6.1 establishes admissible values forr∗i in Remark 4.7 which could be

used as lower bounds for all radiiri,k in stepi.

Corollary 6.3 Let τ ∈ R, µ > 0 and r̂ > 0 be given. Moreover, define

N∗ :=
{
x ∈M0 : f(x)− µ ln

(
−max

t∈T
g(x, t)

)
≤ τ

}
and letflow be a lower bound off onN∗. Then the inclusionBr(N∗) ⊂M0 is true for all r with

r < min

{
r̂,
e

1
µ

(flow−τ)

LxBr̂(N∗)

}
(6.3)

if N∗ 6= ∅.

Proof: Let x ∈ N∗ be given. Then a short calculation shows that

−max
t∈T

g(x, t) ≥ e
1
µ

(f(x)−τ) ≥ e
1
µ

(flow−τ)
.

Using this our proposition follows with Lemma 6.1 (settingh = 0). 2
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After the determination the boxes we have to select values forhi,k resp.hi,j,k. Normally they

influence directly the costs of the maximization processes such that we want to choose them as large

as possible. Upper bounds forhi,k resp.hi,j,k are given by (4.14) resp. (5.11). But in order to use

these upper bounds the constantCS fulfilling part (9) of the Assumptions 4.1 or 5.1 is needed.

Lemma 6.4 Let the assumptions of Lemma 6.1 be fulfilled. Furthermore, letr > 0 be given such

that (6.2) is valid. Then

CS :=
1

−maxt∈Th g(x̂, t)− Lt{x̂}h− L
x
Sr

(6.4)

fulfills (4.2)with S := Br({x̂}).

Proof: From Lemma 6.1 it follows thatS ⊂ M0. Let x ∈ S, t∗ ∈ T (x) andv(x, t∗) ∈ ∂g(x, t∗)
be arbitrarily given. Then we infer with (4.5)

−max
t∈T

g(x, t) = −g(x, t∗)

≥ −g(x̂, t∗) + v(x, t∗)T (x̂− x)

≥ −max
t∈T

g(x̂, t)− LxSr

≥ −max
t∈Th

g(x̂, t)− Lt{x̂}h− L
x
Sr.

Moreover, using (6.2), we deduce

−max
t∈Th

g(x̂, t)− Lt{x̂}h− L
x
Sr > 0

so that we have ∣∣∣∣ 1
maxt∈T g(x, t)

∣∣∣∣ =
1

−maxt∈T g(x, t)

≤ 1
−maxt∈Th g(x̂, t)− Lt{x̂}h− L

x
Sr

= CS .

Consequently (4.2) holds sincex ∈ S was chosen arbitrarily. 2

Remark 6.5 The monotonicity property ofCS is automatically given ifLxS possess such a property

(as demanded above) and one computesCS by (6.4). 2

Remark 6.6 In case of more than one constraint one can separately compute the constantsCν,S for

each constraint analogous to Lemma 6.4. 2

With constantCS the valueshi,k or hi,j,k can be determined as large as possible by (4.14)

resp. (5.11). Consequently, regarding the statements after the algorithms, the valuesβi,k andβi,j,k
are already fixed and the minimization problems (4.3) resp. (5.3) can be solved with the bundle

method stated in Chapter 3.

Finally, let us have a closer look at the inexact maximization ofg. Such a maximization proce-

dure can be very costly depending on the grid width and has to be done for each evaluation off̃i,k

andF̃i,j,k. Thus we want to look for an acceleration of this procedure. For that purpose a typical

situation is considered in the following lemma.
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Lemma 6.7 Let x̃ ∈ M0, r > 0, h > 0, Th ⊂ T andS := {z ∈ Rn : ‖z − x̃‖∞ ≤ r} ⊂ M0 be

given. Moreover, assume thatmaxt∈Th̃ g(x̃, t) is known for a certaiñh ≥ 0. Then

⋃
x∈S

Th(x) ⊂ T̃Sh :=
{
t̂ ∈ Th : g(x̃, t̂) ≥ max

t∈Th̃
g(x̃, t)− (Lx{x̃} + LxS)r − LtSh

}
(6.5)

holds.

Proof: Let t̃ ∈ Th̃(x̃) andṽ ∈ ∂g(x̃, t̃) be given. Then we have for allz ∈ S

max
t∈T

g(z, t) ≥ g(z, t̃) ≥ g(x̃, t̃) + ṽT (z − x̃) ≥ max
t∈Th̃

g(x̃, t)− Lx{x̃}r.

This combined with (4.5) leads to

max
t∈Th

g(z, t) ≥ max
t∈T

g(z, t)− LtSh ≥ max
t∈Th̃

g(x̃, t)− Lx{x̃}r − L
t
Sh (6.6)

for all z ∈ S.

Additionally, g(x̃, t) ≥ g(z, t) + v(z, t)T (x̃ − z) for all z ∈ S, t ∈ T with v(z, t) ∈ ∂g(z, t).
Thus one infers

g(z, t) ≤ g(x̃, t) + LxSr (6.7)

for all z ∈ S, t ∈ T . Combining (6.6) and (6.7), for all̂t ∈ Th(z), z ∈ S the inequality

g(x̃, t̂) ≥ max
t∈Th̃

g(x̃, t)− (Lx{x̃} + LxS)r − LtSh

follows and the proof is complete. 2

Remark 6.8 In the same way one can determine a (mostly infinite) subsetT̃S ⊂ T with⋃
z∈S

T (z) ⊂ T̃S . (6.8)

Then, by investigating the use ofLtS in the analysis of the chapters before, we observe that it is only

used to estimate the error of the inexact maximization. Therefore the assumptions on this constant

can be weaken. Namely, since allt ∈ T \ T̃S cannot be maxima points ofg on S, it suffices to

demand that (4.1) holds for allt1, t2 ∈ T̃S and allx ∈ S. Thus in fact one considers the constraint

maxt∈T̃S g(x, t) ≤ 0 onS. In many cases this will lead to a smaller value ofLtS .

Furthermore, the results of this section remain true with

LxS ≥ sup
z∈S

sup
t∈T̃S

sup
v∈∂g(z,t)

‖v‖1

which especially makes larger radii values possible.

However, the described changes are only applicable after the determination ofT̃S ⊂ T . And

this requires previously computed constantsLxS , LtS fulfilling the whole conditions. Nevertheless,

if the determination of a subset̃TS ⊂ T is successful one could use the new (possibly smaller)
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constants to repeat the deletion process with the constants. Particularly one can useT̃S as basis for

determiningT̃Sh . 2

Remark 6.9 In the case of considering general problems of type (1.1) we can use a deletion rule as

given in the previous lemma for each inequality constraint. But then we have to replaceM0 by the

set{z ∈ Rn : maxt∈T ν gν(z) < 0} in order to determine a subset ofT ν . 2

6.2 Feasible starting points

In this section we discuss the determination of a feasible starting point for the Algorithms 4.2 and

5.2 or their extensions. For some examples such a point can be easily given. If this is not the case

we first consider semi-infinite problems of type (2.10)

minimize f(x) s.t. x ∈ Rn, max
t∈T

g(x, t) ≤ 0

under Assumption 5.1. Then the simplest way to find a feasible starting point is to consider the

problem

minimize max
t∈T

g(x, t) s.t. x ∈ Rn

which can be formulated as convex semi-infinite problem as follows

minimize c s.t. (x, c) ∈ Rn ×R, g(x, t)− c ≤ 0 (t ∈ T ). (6.9)

Consequently we can solve it with Algorithm 5.2 if Assumption 5.1 holds for this problem. But it

turns out that the solvability does not have to hold in each case. Caused by this fact we change the

objective function into(c− c0)2 and consider

minimize (c− c0)2 s.t. (x, c) ∈ Rn ×R, g(x, t)− c ≤ 0 (t ∈ T ) (6.10)

with any fixedc0 ∈ R. Then the solvability is enforced by the quadratic objective function and the

continuity of g. The further assumptions demanded by Assumption 5.1 can be simply transferred

from the properties of the given problem (2.10). Thus Algorithm 5.2 is possible to use for solving

this problem, whereby we remark that a feasible starting point for problem (6.10) can be given

by fixing anyx0 ∈ Rn and choosingc > maxt∈T g(x0, t). Furthermore, in case ofc0 < 0 and

M0 6= ∅, a solution of (6.10) must be a point ofM0 because the optimal value ofc has to be as

close as possible toc0. Of course, ifM0 is nonempty we do not have to solve (6.10) exactly because

we can stop the used method when the current iterate is located inM0.

Now let us consider the general case where we have given problems of type (1.1)

minimize f(x)

s.t. x ∈ Rn, Ax = b, A ∈ Rm×n, b ∈ Rm,

gi(x, t) ≤ 0 for all t ∈ T i (i = 1, . . . , l).
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We assume that the generalization of Assumption 5.1 holds. Then we obtain analogously to (6.10)

the optimization problem

minimize (c− c0)2

s.t. (x, c) ∈ Rn ×R, Ax = b,

gi(x, t)− c ≤ 0 for all t ∈ T i (i = 1, . . . , l)

(6.11)

which fulfills the generalization of Assumption 5.1 for each fixedc0 ∈ Rn. Consequently the

extension of Algorithm 5.2 can be used to solve this problem. Thereby we can state again that in

the casec0 < 0 andM0 6= ∅ each exact solution of (6.11) is located inM0 so that it is a feasible

starting point for computing a solution of (1.1) by Algorithm 4.12 or the extension of Algorithm 5.2.



Chapter 7

Application to model examples

In the following chapters we present numerical results computed by the proposed methods. For that

purpose the algorithms were implemented in the programming language C by using version 2.7.2.3

of the gcc-compiler on a Pentium III/800-computer with the operating system Suse Linux 6.2. The

included linear programs are solved by the Simplex-method while the quadratic problems are solved

by a finite algorithm of Fletcher [10].

Before we have a closer look at the examples some general settings are given. The setsTh ⊂ T

are always determined as equidistant discretizations ofT with step size2h. Furthermore, the radii

of the considered boxes are always computed as9/10 of the maximal value allowed by Lemma

6.1. But the values of̂r in the formula for this maximal value have to be adapted to each example.

Particularly they are adapted to each step of the chosen algorithm. Finally, the values ofCS are

always computed as suggested in (6.4).

Let us finish our general statements with a remark on the application of the several convergence

results stated before. Each of them says that the algorithms generate sequences which converge to

an optimal solution (in case of Algorithm 5.2 or its generalization) or which have at least an accu-

mulation point as optimal solution (in case of Algorithm 4.2 or 4.12). Moreover, in each presented

convergence theorem it is required that some positive sequences converge to zero. But, caused by

the fact that we cannot generate complete sequences, in practice it is impossible to check these as-

sumptions. Nevertheless, they are the basis of the practical parameter setting in the following sense:

We choose the occurring finite values of each sequence which has to converge in such a way that

they fulfill a geometric decrease condition.

7.1 The unregularized case

We start with considering two examples which can be solved with Algorithm 4.2.

Example 7.1For fixedn ∈ N we consider the problem (cf. Example 3 in Voetmann [61])

minimize f(x) := xn

s.t. g(x, t) :=

∣∣∣∣∣φ(t)−
n−1∑
m=0

xmt
m

∣∣∣∣∣− xn ≤ 0 for all t ∈ T := [−1, 2]
(7.1)

71
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with

φ(t) :=

{
tn if t ∈ [−1, 1]
max{1, tn − Pn(t)} if t ∈ (1, 2]

and the normalized Chebyshev polynomial (cf., e.g., Hackbusch [16])

Pn(t) :=

{
21−n cos(n arccos(t)) if t ∈ [−1, 1]
21−n cosh(n arcosh(t)) if |t| > 1

of degreen. That means we want to approximateφ on the compact interval[−1, 2] by a polynomial

based on the functions1, t, . . . , tn−1. Voetmann [61] shows that this problem is uniquely solvable

with optimal solutionx∗ characterized by

n−1∑
m=0

x∗mt
m = tn − Pn(t) for all t ∈ R and x∗n = 21−n.

Consequently Assumption 4.1(6) is fulfilled. Furthermore, since part (3) of this assumption holds

due to Theorem 5.7 in Rockafellar [45] the validity of the parts (1)-(4) for the considered problem is

obvious. Then, settingx0 = . . . = xn−1 = 0 andxn sufficiently large, we find an interior point of

the feasible set so that the fifth part holds as well. Regarding the introductory remarks of the chapter

part (7) is simply fulfilled with equidistant gridsTh with grid widths2h. Furthermore, the constants

CS should be computed by (6.4) which requires computable values forLxS for nonempty compact

setsS ⊂ Rn+1. They can be given by

LxS = max
t∈T

n−1∑
m=0

|tm|+ 1 = 2n

which is an upper bound of all possible slopes ofg w.r.t. x. But since2n increases very fast with

parametern this constant is chosen by

LxS = max
t∈T̃S

n−1∑
m=0

|tm|+ 1

if Remark 6.8 is regarded and a subsetT̃S ⊂ T with (6.8) is known. Further the constantsLtS for

nonempty compact boxesS ⊂ Rn+1 have to be known in order to fulfill (8). But the computation

of these constants is much more difficult than that ofLxS . Therefore we divide the interval[−1, 2]
into the parts[−1, 1] and (1, 2] as it is done by the definition ofφ. On [−1, 1] one can use the

differentiability of tn −
∑n−1

m=0 xmt
m w.r.t. t as well as the linear structure inx to find an upper

bound of

sup
t∈[−1,1]

sup
x∈S

∣∣∣∣∣ntn−1 −
n−1∑
m=1

mxmt
m−1

∣∣∣∣∣
which is used asLtS on [−1, 1]. Considering the interval(1, 2] instead of[−1, 2] one has to determine

two constants, one for each possible constraint function. In the first casemax{1, tn − Pn(t)} = 1
the constraint is obviously polynomial int such that it can be treated as it is done on[−1, 1]. In
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casemax{1, tn − Pn(t)} > 1 one can use the well-known recurrence scheme of the Chebyshev

polynomials (cf., e.g., Hackbusch [16]) so that in fact we deal with a (more complicated) polynomial

again. Altogether, the larger of the both computed constants is used asLtS on(1, 2] and then the sum

of the constants of both interval parts is used asLtS on [−1, 2]. Pointing to Remark 6.8 again this

constant can also be getting smaller ifT̃S ⊂ T with (6.8) is known. Then the described procedure

above must be adapted in an easy way.

Finally, part (10) of Assumption 4.1 requires the computation of a subgradient off andg(·, t)
in x for eacht. But due to the linear structure off and g in x this can be easily done so that

Assumption 4.1 is completely fulfilled and we can use Algorithm 4.2 for solving (7.1). For that the

standard parameter setting is given in Table 7.1. Additionally it must be remarked that the values

parameter start value decreasing factor lower bound

µi 1 0.2 10−5

εi,0 0.001 0.15 −
δi 10 0.15 −
qi 0.999 − −

Table 7.1: Example 7.1 - standard parameter

of εi,0 andδi were automatically adapted in the sense of Remark 4.10. That means, in accordance

to our introductory convention, ifεi/ri ≥ 0.99εi−1/ri−1 was detected we halvedεi,0 (andδi) and

restarted thei-th step.

Furthermore, the starting vector was chosen asx0 = . . . = xn−1 = 0, xn = dPn(2) + 1e while,

regarding Lemma 6.1 as well as the introductory remarks of the chapter, the radii were computed by

ri,k = 0.9 min

{
r̂,
−maxt∈Th g(xi,k−1, t)− Lt{xi,k−1}h

Lx
Br̂({xi,k−1})

}
(7.2)

with r̂ = min{1, 2ri,k−1}, h = hi,k−1 if k > 1 and r̂ = 1, h = 0.003 if k = 1. Thereby the

improvement of the constantsLt{xi,k−1} andLx
Br̂({xi,k−1}) in the sense of Remark 6.8 was regarded.

Additionally, all valueshi,k were computed as minimum of0.003 and the maximal value fulfilling

(4.14). With these settings we obtained forn = 1, . . . , 9 the results stated in Appendix A.

Let us pick out the casen = 5 for a detailed discussion. The starting vector was(0, 0, 0, 0, 0, 24)
and we obtained the iteration process presented in the Table 7.2. From this table we observe that

our computed solution approximates the exact optimal solutionx∗ = (0,−0.3125, 0, 1.25, 0, 0.625)
very well.

Furthermore, Table 7.3 contains information which allow an analysis of the iteration process.

But for reading this table a short explanation of the columns is needed. While the first columns

should be clear the column titled “restarts” gives the number of restarts during the several steps

which are caused by insufficient accuracy valuesεi. The column “hmin” contains the minimal

computed value of allhi,k for fixed i and the next column gives the average of allhi,k for the fixed

i. Both columns show that these values decrease during the iteration process which is not surprising
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i µi xi0 xi1 xi2 xi3 xi4 xi5

1 1.00E+00 −0.000054 −0.311187 0.001868 1.247626 −0.003320 1.061415
2 2.00E-01 −0.000261 −0.311517 0.002854 1.248081 −0.003753 0.260689
3 4.00E-02 −0.000030 −0.312379 0.000362 1.249759 −0.000482 0.102581
4 8.00E-03 −0.000035 −0.312358 0.000425 1.249717 −0.000566 0.070454
5 1.60E-03 −0.000001 −0.312497 0.000008 1.249995 −0.000011 0.064105
6 3.20E-04 −0.000001 −0.312497 0.000009 1.249994 −0.000013 0.062819
7 6.40E-05 −0.000000 −0.312500 0.000001 1.250000 −0.000001 0.062564
8 1.28E-05 −0.000000 −0.312500 0.000000 1.250000 −0.000000 0.062513

Table 7.2: Example 7.1 - iteration process forn = 5

since the computational accuracy is improved from step to step. Then the column “∅
|T̃h|
|Th| ” contains

the average ratio of the values|T̃hi,k |/|Thi,k | which shows that our deletion rule, stated in Lemma

6.7, works very effective. The next column contains the average mightiness of the grids and we

observe that the number of elements of these sets increases in spite of the deletion rule. Finally, the

last four columns contain information about the computational effort of the method. While in the

#LP-column the number of considered linear problems is stated, the #QP-column gives the number

of considered quadratic problems which equals the number of inexact maximizations. The linear

and quadratic problems originates from the used bundle method for solving the successive box-

constrained minimizations, whereby the number of investigated boxes is stated in the #BP-column.

The last column “Time” contains the total time in seconds from starting the algorithm until finishing

stepi. Thus the last value of this column is the total running time in seconds of the algorithm for

generating the presented approximate solution.

As stated above we regarded Remark 6.8 for the computation of the constantsLxS andLtS . To

demonstrate the effect of the improved constants we also computed results forn = 5 with the same

parameter values but without using the (possibly) smaller values forLxS andLtS . First of all we

remark that the computed approximate solution differs only slightly from that given in Table 7.2.

Thus we proceed without showing a table containing these iterates. However, the parameter values

are much more interesting and they are given in Table 7.4. Now, comparing the Tables 7.3 and

7.4 we recognize that for smaller barrier parameter the radii valuesri as well as the averages∅ri,k
are larger in the case where Remark 6.8 is regarded. This is especially caused by smaller values for

Lx
Br̂({xi,k−1}) which are possible since the deletion process for generatingT̃S in the sense of Remark

6.8 detects that there cannot exist a maximum ofg(x, ·) neart = 2 for any x ∈ Br̂({xi,k−1}).
ConsequentlyLx

Br̂({xi,k−1}) is much less than2n. For instance, in the last inner step of the fifth outer

iteration we can previously detect

T̃S = [−1.000,−0.100] ∪ [0.110, 1.022]

so thatLx
Br̂({xi,k−1}) = 6.224893 instead ofLx

Br̂({xi,k−1}) = 32 is chosen.

A further consequence of the larger radii is the faster decrease ofεi/ri. Also directly influenced
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by the radii values is the number of considered boxes in each step. Here we realize that this number

is much less if the improved constants are used and this leads also to a smaller number of solved

linear and quadratic problems. Moreover, since the constantsLtS also profit from detecting̃TS we

obtain larger grid constantshi,k (at least in the average) if the deletion process successfully works.

Additionally in these cases we have a better deletion so that, combining both, there occur much

smaller grids.

Altogether the use of improved constantsLxS ,LtS in the sense of Remark 6.8 often leads to much

less effort and thus to a faster algorithm. For the considered example this effect is intensified when

the dimension grows up. 2

Example 7.2We consider forn ≥ 3 the problem (cf. Example 6 in Voetmann [61])

minimize f(x) := −
n∑
i=1

xi

s.t. g(x, t) := ρ1(t)x1 + ρ2(t)x2 +
n∑
i=3

i

i+ 1
x2
i − 1 ≤ 0 for all t ∈ T := [0, 1]

(7.3)

with

ρ1(t) := 1−

∣∣∣∣∣t−
√

2
2

∣∣∣∣∣ , ρ2(t) :=


1−
√

2
2

∣∣∣∣∣t−
√

2
2

∣∣∣∣∣ if t <

√
2

2

1−
√

2

∣∣∣∣∣t−
√

2
2

∣∣∣∣∣ if t ≥
√

2
2

.

In order to decide whether the unregularized or the regularized algorithm has to be taken into account

the solution set of (7.3) is first stated (which can be found by investigating the possibly restrictive

constraints). We have

• for n = 3, 4, 5

Mopt =

x ∈ Rn :
x1 + x2 = 1−

n∑
i=3

i+1
4i , x1 + min

{√
2x2,

√
2

2 x2

}
≥ 0,

xi = i+1
2i (i ≥ 3)

 ,

• for 6 ≤ n ≤ 13

Mopt =

x ∈ Rn : x1 = x2 = 0, xi =
i+ 1

i
√∑n

k=3
k+1
k

(i ≥ 3)


• and forn ≥ 14

Mopt =

{
x ∈ Rn : x1 = −

√
2

3
cn, x2 =

4 + 2
√

2
3

cn, xi =
1

λ+ κ

i+ 1
2i

(i ≥ 3)

}
with

λ =
2
3
, κ =

2 +
√

2
3

and cn = 1− 1
(λ+ κ)2

n∑
i=3

i+ 1
4i

.
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Thus the solution set is nonempty and compact in each case but its structure depends on the dimen-

sion. Consequently Assumption 4.1(6) is fulfilled. Furthermore the parts (1)-(4) of this assumption

and, regarding0 ∈ M0, also (5) hold. The Assumptions 4.1(7) and (9) are fulfilled by the standard

procedures of choosing finite grids for the first one and proceeding as suggested in (6.4) for the

second one. The needed subgradients in Assumption 4.1(10) are simply calculable as derivatives

such that it remains to determine the constantsLtS enforced by Assumption 4.1(8) andLxS required

for the computation ofCS and the radii of the boxes. These constants can be given by

LtS := max
x∈S

max

{∣∣∣∣∣x1 +
√

2
2
x2

∣∣∣∣∣ , ∣∣∣x1 +
√

2x2

∣∣∣}
and

LxS := max
t∈T

ρ1(t) + max
t∈T

ρ2(t) + 2 max
x∈S

n∑
i=3

i

i+ 1
|xi| = 2 + 2 max

x∈S

n∑
i=3

i

i+ 1
|xi|

by estimating all possible slopes. The formula ofLxS allows the improvement of this constant in the

sense of Remark 6.8, while such a consideration is not possible forLtS . However, Assumption 4.1

is completely fulfilled so that we can use Algorithm 4.2 for solving (7.3).

The standard parameters were chosen as in Example 7.1 (cf. Table 7.1) and the starting vector

x0 = 0 ∈ Rn was used in each case. Moreover, the radii were computed by (7.2) with the setting

r̂ = min{1, 2ri,k−1}, h = hi,k−1 if k > 1 and r̂ = 1, h = 0.0005 if k = 1. Of course, the

improvement ofLxS in the sense of Remark 6.8 was regarded by this computation. The grid constants

hi,k were given as minimum of0.0005 and the maximal value fulfilling (4.14). With these settings

we obtained forn = 3, . . . , 15 the results stated in Appendix A.

Let us now investigate the influence of the starting point in detail. For that we consider the case

n = 5. Due to the structure of the constraint it is simple to choose different feasible starting points

by choosing arbitrary negative values for the first two components ofx0 and settingx0
i := 0 for

i = 3, 4, 5. In that case we observed the results contained in Table 7.5 and, looking at the column

start vector effort

x0
1 x0

2

restarts d2(x8,Mopt) f(x8)
#LP #QP #Box

0 0 0 1.80E-04 −1.945821 104 214 40
−100 0 0 1.69E-04 −1.945821 837 6130 749
−1000 0 0 1.08E-04 −1.945822 6754 58068 6769

0 −100 0 1.50E-04 −1.945821 495 4725 672
0 −1000 0 1.17E-04 −1.945821 3716 40156 6192

−100 −100 0 8.01E-05 −1.945821 643 3305 453
−1000 −100 2 1.05E-04 −1.945821 6415 54529 6463

Table 7.5: Example 7.2 - The influence of the starting point

titled “f(x8)” (note that there are8 outer steps), it turns out that the obtained approximate solutions

are of the same accuracy w.r.t. the value of the objective function (as predicted by (2.5) for the exact
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logarithmic barrier method - the optimal value is−1.945833). Within these bounds differences in

the final distance to the solution set are allowed and occur. However, it is not surprising that there

are big differences in the computational effort caused by the chosen starting points. We can roughly

state that a larger distance ofx0 to the solution set leads to a higher computational effort. In some

examples it may be possible to adjust the computational effort by a larger maximal value for the radii

(here we used̂r = 1), but in the considered example such larger values will have no performance

effect since the radii are bounded above by the restrictive bounds for the iterate components3, 4 and

5. 2

7.2 The regularized case

Now let us consider examples where we have unbounded solution sets. We start with a small ex-

ample with two variables. It is presented in order to show that the unregularized algorithm does not

have to work in the case of an unbounded solution set.

Example 7.3We consider the problem

minimize f(x) := (x1 − x2)2

s.t. g(x, t) := x1 cos t+ x2 sin t− 1 ≤ 0 for all t ∈ T := [0, 1]

The feasible (the grayed area) and the solution set (the dotted line) of this problem are illustrated in

−6 −5 −4 −3 −2 −1 0 1 2

−6

−4

−2

0

2

4

6

x
1

x 2

Figure 7.1: Example 7.3 - The feasible and the solution set

Figure 7.1 (both sets are shrunk to the presented clipped area). The solution set is easily given by

Mopt =
{
x ∈ R2 : x1 = x2 ≤

1
2

√
2
}
.

Thus we deal with an unbounded feasible and an unbounded solution set so that Algorithm 4.2

cannot be used to solve the problem in the sense that we cannot expect convergence as specified in

Theorem 4.9. Therefore we want to show that Assumption 5.1 is fulfilled but excepting for (8) this
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is obvious if we regard our introductory remarks for (7) and (9). Part (8) is fulfilled with constants

LtS defined by

max
x∈S

max
t∈[0,1]

∣∣∣∣∂g∂t (x, t)
∣∣∣∣ = max

x∈S
max
t∈[0,1]

| − x1 sin t+ x2 cos t|

≤ max
x∈S
‖x‖∞ max

t∈[0,1]
| cos t− sin t|

= max
x∈S
‖x‖∞ =: LtS .

Furthermore, for computing the valuesCS and the radii, the constantsLxS are needed and can be

given by

LxS := max
t∈[0,1]

∥∥∥∥∥
(

cos t
sin t

)∥∥∥∥∥
1

=
√

2.

Thus both constants are given in a form so that they cannot be improved in the sense of Remark 6.8.

But for this small example it is not essential. However, Assumption 5.1 is completely fulfilled and

we can use the regularized method for solving the problem.

Before we do this it is shown that the assumption of the boundedness of the solution set is

essential for a meaningful use of Algorithm 4.2. Since Assumption 4.1 is fulfilled except for the part

concerning the boundedness of the solution set we started Algorithm 4.2 anyhow with the standard

parameters given in Table 7.6. Furthermore,x0 = (−5, 0) while the radii were computed by (7.2)

parameter start value decreasing factor lower bound

εi,0 0.001 0.06 −
δi 0.001 0.06 −
qi 0.999 − −

Table 7.6: Example 7.3 - standard parameter

with r̂ = min{1, 2ri,k−1}, h = hi,k−1 if k > 1 and r̂ = 1, h = 0.001 if k = 1. The grid

constantshi,k were given as minimum of0.001 and the maximal value fulfilling (4.14) and, finally,

CS was computed by (6.4) as already stated above. With these values the method was started with

µ1 = 1 and we obtained the iterates given in Table 7.7. From there we observe that no convergence

behaviour of the iterates is cognizable which already shows that the assumption of the boundedness

of the solution set is essential for a meaningful use of Algorithm 4.2. However, the values of the

objective function at the iterates converge to the minimal possible value zero.

After this experiment we now use Algorithm 5.2 for solving the given problem. More precisely

we intend to use all features of this method including the multi-step technique. Having in mind

Theorem 5.7 we have to specify a few more constants than in the case of using the unregularized

method. Nevertheless, we can first state that the standard parameters contained in Table 7.6 as

well as the given computations of the radii and the grid constants were used again. Furthermore,

we sets1 := 1, si+1 := max{0.01, 0.2si}, τ := 12, xc := (−3.3,−1.7), x∗ := (−2.5, 2.5),
x̃ := (0, 0) andx0 := (−5, 0) in order to fulfill x∗ ∈ Mopt ∩ Kτ/8(xc), x̃ ∈ M0 ∩ Kτ (xc) and
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i xi1 xi2 f(xi)

1 −1271.73 −1271.73 1.72E-07
2 −1817.85 −1817.85 7.98E-09
3 −2596.74 −2596.74 1.41E-10
4 −3710.59 −3710.59 1.56E-11
5 −5299.64 −5299.64 1.85E-12
6 −7572.42 −7572.42 1.85E-14

Table 7.7: Example 7.3 - Iterates computed by Algorithm 4.2

x0 ∈ M0 ∩Kτ/4(xc). This led toc = ‖x̃− x∗‖2 =
√

12.5, f(x̃) = 0, f− = 0, c0 = | ln(1)| = 0,

t̃ = 0, ṽ = (1, 0) andc1 = ln(1 + 2) = ln(3) so that we hadc3 = ln(3) andµ1 = 0.1 ≤ e−c3

could be used. Setting the lower bound of the barrier parameter to10−6 andσi as small as possible

by (5.21) all assumptions of Theorem 5.7 are fulfilled and we obtained the iteration process given

in Table 7.8. We must remark that there was not required any restart procedure for adapting the

i, j xi1 xi2 d2(xi,Mopt) #LP #QP #BP Time

1, 1 −3.013535 −2.008399 7.11E-01 15 31 4 0.01
1, 2 −2.622698 −2.414308 1.47E-01 11 33 2 0.02
2, 1 −2.531565 −2.519300 8.67E-03 13 36 2 0.03
3, 1 −2.529324 −2.528754 4.03E-04 12 24 2 0.04
4, 1 −2.529324 −2.528754 4.03E-04 6 10 2 0.06
5, 1 −2.525245 −2.524960 2.01E-04 10 33 2 0.12
6, 1 −2.525539 −2.525535 2.69E-06 14 40 2 0.22

Table 7.8: Example 7.3 - Iterates computed by Algorithm 5.2 with multi-step

accuracy parameter since it turned out that the radius was always equal the maximal possible value

0.9. In contrast to Algorithm 4.2 we observe a convergence-like behaviour of the iterates from Table

7.8. Furthermore, the multi-step technique was in fact used in the first outer step. 2

Example 7.4Now we consider for fixedn ∈ N andk ∈ {1, . . . , n − 2} the following perturbed

version of Example 7.1

minimize f(x) := xn+1

s.t. g(x, t) :=

∣∣∣∣∣φ(t)−
n−1∑
m=0

xmt
m − xn(tk + tk+1)

∣∣∣∣∣− xn+1 ≤ 0 for all t ∈ T := [−1, 2]

with the same functionφ as in Example 7.1. The perturbation reflects a typical situation in the

numerical approximation where we have to approximate a given function by linearly dependent

basis functions. In the given situation we have to approximateφ on [−1, 2] by linearly dependent

polynomials. In consequence of this the solution set is unbounded so that Assumption 4.1 cannot
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hold and Algorithm 4.2 is outside the further considerations. Particularly the complete solution set

is given by

Mopt =

{
(x0, . . . , xn+1) :

(y0, . . . , yn) solves (7.1) withym = xm if m 6= k, k + 1, n and

yk = xk − xn, yk+1 = xk+1 − xn, yn = xn+1

}
.

Then the weaker Assumption 5.1 is fulfilled if we taking into account that the parts (1)-(5), (7)-(10)

can transferred from the analysis of Example 7.1. But of course the calculation of the constantsLxS
andLtS requires some changes caused by the additional summandxn(tk + tk+1). In the case ofLxS
this leads to

LxS = max
t∈T̃S

n−1∑
m=0

|tm|+ max
t∈T̃S

|tk + tk+1|+ 1

while in the case ofLtS one can summarizexk andxn to one variable as well asxk+1 andxn to

another variable. Then the same procedure as for Example 7.1 is usable with the additional fact that

the combined variables have a range of±2r instead of±r.
Altogether Algorithm 5.2 can be used to solve the given problem. The standard parameter

setting is given in Table 7.9 while the choice of a starting point and a barrier parameter fulfilling

parameter start value decreasing factor lower bound

si 0.01 0.8 10−5

εi,0 0.01 0.15 −
δi 10 0.15 −
qi 0.999 − −

Table 7.9: Example 7.4 - standard parameter

(5.19) is much more complicated than in the unregularized case. In the given situation we can easily

determine feasible starting points by using information of Example 7.1. But then, using the starting

point also as̃x, the constantc3 defined as in Theorem 5.7 is typically large which implies that the

starting barrier parameter has to be very small. Having in mind the notice on avoiding too small

barrier parameters for Example 7.1 we should find a better vectorx̃ in the sense that the resulting

c3 is less than before. For that purpose Algorithm 5.2 can be also applied since Lemma 5.5 ensures

the finiteness of each inner loop under much weaker conditions. Consequently we started Algorithm

5.2 with fixed barrier parameterµ = 1 while all other parameters were set to the starting values

given above. Then we ran exactly one outer step of Algorithm 5.2 and calculated new values for

c3 resp.µ1 based on the computed iterate. Ifµ1 is too small again we repeated the step with the

previously computed iterate as starting point and a slightly lower accuracy parameter. Of course,

this procedure can be repeated more often and in the example cases it was stopped whenµ1 = 0.05
was possible as starting barrier parameter. For that there were at most23 steps needed, but excepting

the first step they considered only a few boxes.

Then we used the final iterate of these pre-steps as starting point andµi+1 = 0.2µi as standard

update as in Example 7.1. Furthermore, the algorithm was stopped when the barrier parameter fell
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below10−5. The values ofri,j,k andhi,j,k were computed analogously to the values ofri,k, hi,k in

Example 7.1 and the deletion rule as well as the improvement of the constantsLxS ,LxS in the sense of

Remark 6.8 were regarded again. Moreover a restart procedure similar to that of the unregularized

algorithm was used. But, now the prox parameter was reset in addition to the accuracy values. The

effect of the restart procedure should be that we achieve a geometric decrease of the values ofαi

since these values have to be summable. Nevertheless, in order to avoid too many restarts at the

beginning of the iteration process the restart condition is not directly correlated to the valuesαi,

it only depends again on the ratioεi/ri. If there is a geometric decrease then the definition ofαi

implies also a geometric decrease of these values (at least from a certain index) in combination with

the boundedness ofsi andri.

Then we obtained the results summarized in the appendix forn ≤ 6 andk = 1, 2, 3. At this

point we want to investigate the influence of the choice of the prox parameter. For that we have

a closer look at the casen = 5, k = 3 where we successively set the starting prox parameter

to 10, 1, 0.01 and 0.0001. The other settings are given as above. Furthermore, since the pre-

steps to generate the starting point depends on the prox parameter we excluded this phase from

the investigation and used the standard parameters for it. Thus Algorithm 5.2 was always started

with x0 = (−0.000605,−0.312555, 0.002830, 0.832642,−0.419964, 0.416176, 1.199804). Then

the detailed results contained in Table 7.10 were obtained. Therein the given time values include

0.72 seconds in each case which was needed for the computation of the pre-steps.

First of all we remark that all final approximate solutions have nearly the same distance to the

solution set. But, of course there are some differences in the iteration process. So the results of the

first steps document the several starting prox parameters by the value of the distance to the solution

set: large prox parameter allow a short step and small prox parameter allow a long step. This is

also made clear by the number of considered boxes during each first step, whereby this number

increases if the starting prox parameter decreases. Additionally it can be observed that in each case

an insufficient accuracy value is detected in a certain step. It is remarkable that this detection occurs

earlier if the prox parameter is lower. The reason for this behaviour is that lower prox parameters

allow larger steps inside the given boxes so that we faster go to the solution set on the boundary of

the feasible set. But this leads to smaller radii and consequently to larger ratiosεi/ri so that this

ratio can increase at this point. Thus, if the starting prox parameter is chosen too large the restarts

occur for very small barrier parameters with bad conditioning so that one typically observes a slow

walk along the boundary of the feasible region documented by many considered boxes as in case

s1 = 10 in the example. On the other hand we have to avoid too small (starting) prox parameters in

order to guarantee the regularization effect. But this is supported by our method since the step sizes

are automatically restricted by the radii of the boxes so that the iteration processes approach to each

other if the starting prox parameters are sufficiently small. This can be observed by looking at the

casess1 = 0.01 ands1 = 0.0001. 2
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Example 7.5We consider for fixedn ∈ N and1 ≤ κ < n the problem

minimize f(x) := −
n∑

l=κ+1

xl

s.t. gν(x, t) := −

∣∣∣∣∣t−
√

2
ν + 1

∣∣∣∣∣xν +
n∑

l=κ+1

cos2

(
πl

(
t−

√
2

ν + 1

))
x2
l − 1 ≤ 0

for all t ∈ T ν := [0, 1], ν = 1, . . . , κ.

(7.4)

For an extensive investigation of this problem we refer to Voetmann [61], where the problem above

is considered as Example 2. In comparison to the previously considered problems we are now con-

fronted with an additional difficulty, namely there can occur more than one constraint by choosing

κ > 1. Consequently we have to take Algorithm 4.12 and the analogous extension of Algorithm 5.2

into account.

First of all the solution set of (7.4) is given by

Mopt =
{
x ∈ Rn : xi ≥ 0 (i = 1, . . . , κ), xi =

1√
n− κ

(i = κ+ 1, . . . , n)
}
.

which is unbounded so that Assumption 4.1 resp. 4.11 cannot be fulfilled. Nevertheless, sinceMopt

is nonempty the parts (1)-(5), (6)′ and (7) of Assumption 5.1 or their generalizations are obviously

fulfilled. Additionally, the subgradients off andgν(·, t) required by part (10) of these assump-

tions are in fact gradients sincef , gν(·, t) are differentiable w.r.t.x. Consequently the needed

(sub)gradients are easily calculable. The constantsLtν,S can be computed by

Ltν,S := max
x∈S
|xν |+

n∑
l=κ+1

max
t∈T ν

∣∣∣∣∣2πl sin
(
πl

(
t−

√
2

ν + 1

))
cos

(
πl

(
t−

√
2

ν + 1

))∣∣∣∣∣max
x∈S

x2
l

= max
x∈S
|xν |+

n∑
l=κ+1

πlmax
t∈T ν

∣∣∣∣∣sin
(

2πl

(
t−

√
2

ν + 1

))∣∣∣∣∣max
x∈S

x2
l

≤max
x∈S
|xν |+

n∑
l=κ+1

πlmax
x∈S

x2
l

which estimates all possible slopes ofgν w.r.t. t. This description ofLtν,S allows the improvement

of these constants in the sense of Remark 6.8. Finally,Cν,S is separately calculated by (6.4) for each

ν. For that we also require the constantsLxν,S which can be given by

Lxν,S := max
t∈T ν

∣∣∣∣∣t−
√

2
ν + 1

∣∣∣∣∣+ 2
n∑

l=κ+1

max
t∈T ν

∣∣∣∣∣cos2

(
πl

(
t−

√
2

ν + 1

))∣∣∣∣∣max
x∈S
|xl|.

Summing up Assumption 5.1 or its generalization for more than one constraint is fulfilled. Thus

Algorithm 5.2 or its extension in the sense of Remark 5.5 can be used to solve (7.4). This was

done with the standard parameters given in Table 7.11. For the determination of the starting barrier

parameter we used again the procedure described in Example 7.4 withµ = κ and the origin as

feasible starting point now. But it was not possible to give a standard starting barrier parameter
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parameter start value decreasing factor lower bound

si 0.01 0.5 10−5

εi,0 0.01 0.15 −
δi 1 0.15 −
qi 0.999 − −

Table 7.11: Example 7.5 - standard parameter

like 0.05 in the example before. Instead of this we stopped the determination of a starting barrier

parameter after exactly one step. Then the maximal possible barrier parameter, determined by (5.19),

was used as starting value, whereby it turned out that the starting barrier parameter decreased if

the number of variables and constraints increase. Nevertheless, the standard update for the barrier

parameter wasµi+1 = 0.2µi while the algorithm stopped when the barrier parameter fell below

10−5. In addition there was also used a restart procedure as described for Example 7.4 and for each

ν ∈ {1, . . . , l} a radius was computed by applying (7.2) withr̂ = min{1, 2ri,k−1}, h = hνi,k−1 if

k > 1 andr̂ = 1, h = 0.001 if k = 1. Then the minimal of these radii was used as radius of the box

which had to be determined.

Regarding all the stated facts we obtained the results presented in the appendix for several values

of n andk. At this point we want to have a detailed look at the influence of the starting accuracy

value. For that purpose we consider the casen = 12, κ = 1 with results given in Table 7.12. Thereby

ε1,0 restarts ε6 d2(x6,Mopt) f(x6)

10 4 2.40E-08 1.44E-04 −3.3166088
1 3 3.20E-08 1.47E-04 −3.3166094

0.01 2 4.27E-09 1.46E-04 −3.3166088
0.001 1 5.69E-09 1.55E-04 −3.3166088
0.0001 0 7.59E-09 1.41E-04 −3.3166087

Table 7.12: Example 7.5 - The influence of the accuracy parameter

all parameters except forε1,0 were given as described above. In particular we ran the algorithm with

the same starting point and the same starting barrier parameterµ1 = 0.05 in each case. Thus we had

6 outer steps and the final barrier parameter1.6E-05.

From Table 7.12 we observe the remarkable fact that the final distances to the solution set and the

final values of the objective function at the approximate solutions are comparable to each other. This

and the fact that the accuracy parametersεi approach each other are caused by the restart procedure.

Of course each restart causes an additional computational effort so that the starting accuracy value

should not be chosen too large in order to avoid too many restarts.

Furthermore, investigating the values of the objective function at the approximate solutions we

notice that they are all in a range near the optimal value−
√

11 ≈ −3.3166248 - as predicted by
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(2.5) for the classical logarithmic barrier methods with exact minimizers. This fact is especially

remarkable since the iterates were computed as approximate minimizers of the regularized function

whereas (2.5) holds in the unregularized case. Nevertheless, the values of the objective function at

the approximate solutions of the previous examples are also mostly in the range around the optimal

value predicted by (2.5). This can be especially observed very well by reinvestigating the approx-

imation problems before where the last component of the final iterates equals the final objective

values and approves again the prognose by (2.5).

Additionally we want to have a look at the influence of the number of considered barrier prob-

lems which can be controlled by the barrier parameter update. For that we also observed results with

non-standard updates for the barrier parameter. In order to ensure the same conditions in each case

it was necessary to adapt the updates for the accuracy and the prox parameter. They were chosen

in such way that the predicted final values (without regarding of possible restarts) were nearly the

same. Considering the casen = 12, κ = 1 again we obtained the results summarized in Table 7.13

with chosen starting values as in the standard case. Reading this table we can first state that the final

decreasing factors outer effort

µi εi,0 si steps
restarts d2(x,Mopt) f(x)

#LP #QP #Box

0.2 0.15 0.5 6 2 1.46E-04 −3.3166088 93 118 37
0.41 0.34 0.68 10 3 1.15E-04 −3.3166083 120 156 54
0.605 0.52 0.805 17 4 4.11E-05 −3.3166087 186 260 69

Table 7.13: Example 7.5 - The influence of the barrier update

values of the objective function are nearly the same in all cases. Consequently from that point of

view there is no remarkable influence of the number of outer steps on the final result. Of course

the distance of the final iterate to the solution set differs from case to case and it decreases if the

number of outer steps increases. Additionally, the computational effort increases with the number of

outer steps since we solve more barrier problems. This effect is intensified by the increasing number

of restarts (more planned outer steps lead to more checks of the restart condition). Nevertheless,

the computational effort for each separate outer step decreases if we use larger decreasing factors.

Especially this second observation is typical for our methods and can lead to the possibly surprising

fact that the total computational effort can decrease if more outer steps are done.

Such a behaviour was observed for Example 7.2 withn = 14, 15. If we use the standard

updatesµi+1 = 0.2µi for the barrier parameter andεi+1,0 = 0.15εi for the accuracy parameter

the computational effort is much higher than using the updatesµi+1 = 0.4µi andεi+1,0 = 0.33εi
(which leads to a similar final accuracy). For instance the computation of the approximate solution

in the casen = 15 with the standard parameters tooks about135 seconds against about18 seconds

with the changed update. But unfortunately we have no general rule to obtain an “optimal” update

strategy in order to minimize the computational effort. 2



Chapter 8

An application to the financial market

8.1 The mathematical model

In this chapter we present the application of our algorithms to a problem occurring in the field of

finance. Our goal is to approximate the yield curve of an underlying asset. For that purpose we

follow the considerations by Tichatschke et al. [56] which are based on the model of Vasicek [60].

Let y(t) be a given yield curve fulfilling the stochastic differential equation

dy = (α+ βy)dt+ σdZ

with a Brownian motionZ and parametersα, β, σ. Now this yield curvey should be approximated

on an intervalT = [0, t] by a functionr. Thenr has to fulfill the initial value problem

ṙ = βr + α+ σw(t), r(0) = r0 ∈ [r, r],

w ≤ w(t) ≤ w, t ∈ T
(8.1)

which can be derived from the stochastic differential equation stated above. Therein the Brownian

motionZ is modeled by a piecewise continuous functionw with boundsw, w. Additionally the

initial valuer0 is variable so far. The solution of (8.1) is given by

r(t) = −α
β

(1− eβt) + r0e
βt + σ

t∫
0

eβ(t−τ)w(τ)dτ (8.2)

so that the approximation error can be minimized by solving the problem

minimize max
t∈T
|y(t)− r(t)|

s.t. r0 ∈ [r, r],

w ≤ w(t) ≤ w, for all t ∈ T.

(8.3)

Since the feasible set is mainly described by the function space{w : w ≤ w(t) ≤ w, t ∈ T} we

deal with an infinite problem. In order to simplify this the available functions ofw are restricted to

piecewise constant functions, i.e. we set

w(t) := wi for all t ∈ Ti, i = 1, . . . , N

87
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with 0 =: t0 < t1 < . . . < tN−1 < tN := t, T i := [ti−1, ti) for i ∈ {1, . . . , N − 1} and

TN := [tN−1, tN ]. Then the integral term in (8.2) becomes

σ

t∫
0

eβ(t−τ)w(τ)dτ = −
i−1∑
j=1

Bje
βtwj −

σ

β

(
1− eβ(t−ti−1)

)
wi

for all t ∈ T i with

Bj :=
σ

β

(
e−βtj − e−βtj−1

)
for all j = 1, . . . , N − 1. Consequently, using

fi(r0, w, t) := −α
β

(1− eβt) + r0e
βt −

i−1∑
j=1

Bje
βtwj −

σ

β

(
1− eβ(t−ti−1)

)
wi

for all t ∈ T i, (8.3) can be rewritten as

minimize f(r0, w, ϑ) := ϑ

s.t. gi(r0, w, ϑ, t) := |ŷ(t)− fi(r0, w, t)| − ϑ ≤ 0 for all t ∈ T i (i = 1, . . . , N)

gN+1(r0, w, ϑ) := max
{

max
i=1,...,N

{wi − w,w − wi}, r0 − r, r − r0

}
≤ 0

(8.4)

with an approximation̂y of y constructed by observable values. Thus we now deal with a linear

semi-infinite problem withN + 1 constraints. The number of constraints in (8.4) is much smaller

than in the formulation by Tichatschke et al. [56] which is caused by the fact that we can treat

nondifferentiable constraint functions. Consequently, motivated by (2.5), we can use larger barrier

parameter in order to expect similar accuracies.

8.2 Numerical results

We want to show that Algorithm 4.12 can be used for solving (8.4) approximately. For that purpose

we have to check Assumption 4.11. We first notice that some parts of this assumptions does not

have to hold for the last constraintgN+1 since it does not depend ont. However, in practicegN+1

is treated as constraint of typeg(x, t) ≤ 0, t ∈ T with single-valuedT . Additionally we have to

know something more about̂y if we want to show some parts of Assumption 4.11. Therefore we

only consider the special casêy = yi is constant on each intervalT i as it was done by Voetmann

[61].

We observe that the assumptions of the convexity off and all gi are fulfilled sincer0, w, ϑ

occur at most linearly in each constraint and the absolute values of linear functions as well as the

maxima of finitely many linear functions are convex. Part (2) of Assumption 4.11 is not fulfilled

sinceT 1, . . . , TN−1 are not closed. But it is possible to consider the closures of all setsT i and the

continuous extensions of allgi in (8.4) without changing the feasible set. Then the continuity of all

constraints w.r.t.t is obvious. Furthermore, part (5) of Assumption 4.11 is fulfilled ifw < w and

r < r are true. Moreover, we observe that lower level sets of our considered semi-infinite problem
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are bounded sincew, r0 are bounded by the(N + 1)-th constraint andϑ is bounded below by0 and

bounded above by the given level. Consequently, since we only deal with continuous functions, these

level sets are compact. Thus, regarding that the given problem is feasible, the solution setMopt has

to be nonempty and compact. Part (7) is simply fulfilled if we choose equidistant finite grids for each

constraint as it is done in the chapter before. Regarding Lemma 6.4 part (9) of Assumption 4.11 can

be fulfilled while subgradients off andgi(·, t) can be easily given if one regards that, excluding the

absolute value or the maxima, the functions therein are differentiable. Thus it remains to determine

the constantsLti,S enforced by part (8) of our assumption andLxS for determiningCi,S and the radii.

Regarding the differentiability of the function inside the absolute value ingi we can set

Lti,S := max
(r0,w,ϑ)∈S

sup
t∈T i

∣∣∣∣∣∣αeβt + r0βe
βt −

i−1∑
j=1

Bjβe
βtwj + σeβ(t−ti−1)wi

∣∣∣∣∣∣
for all i = 1, . . . , N . In addition to this

Lxi,S := max
t∈T i

eβt +
i−1∑
j=1

|Bj | eβt +
∣∣∣∣σβ (1− eβ(t−ti−1)

)∣∣∣∣
+ 1

for all i = 1, . . . , N andLxN+1,S := 1 are used. Consequently Assumption 4.11 is completely

fulfilled so that Algorithm 4.12 can be used for solving (8.4).

Demonstrating this we want to approximate the German stock index DAX in two time periods of

each 30 days. The required data, consisting of the daily opening DAX prices, are given in Table 8.1.

The first period represents a quite stable but slowly growing DAX while the second period covers a

big fluctuation in a short time interval. In addition there are needed values forα, β andσ. Voetmann

[61] uses the setting

α = 0.0154, β = −0.1779 and σ = 0.02

which is derived from the observation of US interests for government bonds within the years 1964

to 1989. Since there was not made a similar investigation of the German stock exchange we use

the values stated above too. Moreover, the German stock exchange tends to follow the US stock

exchange so that this choice is not a bad choice.

Due to the fact that we only consider two different scenarios we do not give a standard pa-

rameter setting. Rather we have a separate look at both situations. Nevertheless, there were some

common settings. So in both situations the considered time period was uniformly mapped to the

interval [0, 1] which implies that each trading day was represented by a subinterval of length1/30
of [0, 1]. Additionally we setqi = 0.999 in each case and, regarding Remark 6.2, the radii were

computed by Lemma 6.1. In fact we used (7.2) to determine a radius for each constraint with

r̂ = min{1000, 2ri,k−1} if k > 1 andr̂ = 1000 if k = 1 for all constraints andh = hνi,k−1 if k > 1,

h = 0.001 if k = 1 for ν = 1, . . . , 30. In consequence of this it was possible to computeCν,Si,k by

Lemma 6.4 for each constraint.

Now considering only the first example data DAX1 the starting point

r0 := 1600, w1 = . . . = w30 := 0, ϑ := 3000
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Example DAX1 Example DAX2

Bounds
Trading Day

t1i

Price

y1
i

Bounds
Trading Day

t2i

Price

y2
i

04.01.1993 1533.06 05.03.1998 4642.79
05.01.1993 1547.99 06.03.1998 4686.24
06.01.1993 1560.27 09.03.1998 4775.83
07.01.1993 1546.33 10.03.1998 4807.92
08.01.1993 1540.56 11.03.1998 4855.22
11.01.1993 1526.66 12.03.1998 4822.78
12.01.1993 1527.33 13.03.1998 4863.44
13.01.1993 1529.61 16.03.1998 4891.85
14.01.1993 1521.03 17.03.1998 4932.42
15.01.1993 1542.91 18.03.1998 4936.17

w = −105 18.01.1993 1559.83 w = −106 19.03.1998 4923.51
19.01.1993 1576.13 20.03.1998 4993.53

w = 105 20.01.1993 1586.94 w = 106 23.03.1998 5017.48
21.01.1993 1577.62 24.03.1998 5014.62

r = 1000 22.01.1993 1587.95 r = 4000 25.03.1998 5058.54
25.01.1993 1582.21 26.03.1998 5093.52

r = 2000 26.01.1993 1566.83 r = 6000 27.03.1998 5041.84
27.01.1993 1570.96 30.03.1998 5069.98
28.01.1993 1561.02 31.03.1998 5070.81
29.01.1993 1571.28 01.04.1998 5093.52
01.02.1993 1582.35 02.04.1998 5163.11
02.02.1993 1587.20 03.04.1998 5203.58
03.02.1993 1595.08 06.04.1998 5256.69
04.02.1993 1605.07 07.04.1998 5276.79
05.02.1993 1635.67 08.04.1998 5282.94
08.02.1993 1643.83 09.04.1998 5270.35
09.02.1993 1642.32 14.04.1998 5378.91
10.02.1993 1649.79 15.04.1998 5379.99
11.02.1993 1651.22 16.04.1998 5362.26
12.02.1993 1655.13 17.04.1998 5266.34

Table 8.1: DAX data
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was used and we set

ε1,0 := 0.001, εi+1,0 := 0.7εi, δ1 := 10, δi+1 := 0.7δi, µ1 := 10, µi+1 := 0.8µi.

But as in all examples before the restart procedure proposed by Remark 4.10 was applied to adapt

automatically the accuracy parameter. Then the algorithm was stopped when the barrier parameter

fell below 0.1. Although this stopping criterion seems to be very bad, Figure 8.1 shows that the

tendency of the DAX curve is correctly reconstructed by our final approximate solution which can

be found in the appendix. Furthermore the final approximation error of15.65 is better than16.78
achieved by Voetmann [61] and close to the correct minimal value15.30 given by the half of the

maximal gap between two successive observed DAX values.

For the second example data DAX2 we used

r0 := 5000, w1 = . . . = w30 := 30000, ϑ := 5000

as starting point,

ε1,0 := 0.005, εi+1,0 := 0.6εi, δ1 := 50, δi+1 := 0.6δi, µ1 := 100, µi+1 := 0.7µi

and, again, the restart procedure. The stopping criterion was now fulfilled if the barrier parameter

reached0.01. The resulting approximate solution is stated in the appendix too, while our final

approximation error given by54.30 is comparable with the result achieved by Voetmann [61]. The

optimal value is54.28 so that the more accurate stopping criterion leads also to a more accurate

final solution in comparison to the first situation. Figure 8.2 shows again that the complete curve

is correctly reconstructed, but it can be observed as in the first case that there is not detected each

particular fluctuation.
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Chapter 9

Perfect reconstruction filter bank design

9.1 The mathematical model

In this chapter we want to analyze the design of so-called perfect reconstruction filter banks. Let us

first give a short introduction into the filter theory from the mathematical point of view (we follow

Kortanek, Moulin [30]). We refer to Antoniou [2], Meyer [34] or generally to the references in

Kortanek, Moulin [30] for much more details than here are presented.

A discrete input signalx is given by an arbitrary infinite sequence{x(n)}n∈Z which is square

summable, i.e.x ∈ l2(Z). Generally afilter is a linear operator that acts on an input signalx

through convolution. Thus, identifying the filter with{h(n)}n∈Z, the output vectory of a linear

time-invariantsystem (LTI) is given by

y(n) =
∞∑

i=−∞
h(i)x(n− i). (9.1)

Moreover, we assume that the filter coefficientsh(i) are real-valued since data converters work with

real-valued signals only (cf., e.g., Potchinkov [41]).

A very simple filter is described by the decimation operator↓2 which picks out only the terms

of x(n) with even index and corresponds to down-sampling. The adjoint operator↑2 corresponds to

up-sampling and fills in zeros at the odd indices.

For filterh thetransfer functionin the complex domain is

H(z) :=
∞∑

n=−∞
h(n)z−n.

Then (9.1) is equivalent to multiplying the corresponding transfer functions, i.e.Y (z) = H(z)X(z).
Similarly, thefrequency responseis given by

H(ω) :=
∞∑

n=−∞
h(n)e−jnω

with j as imaginary unit.

93
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When the filter has only finitely many nonzero components, it is calledfinite impulse response

(FIR-)filter. Such FIR-filters with length2N will be only considered in the sequel.

The combination of at least two filters is calledfilter bank. As stated above we intend to design

perfect reconstruction filter banks. Thus let us describe the simplest case of such a filter bank, a two-

band PR filter bank. Generally, it is divided into two sections, the analysis section and the synthesis

section. The analysis section consists of alowpassand ahighpassfilter which decomposes the input

x(n)

H0(z)

L0(z)

xh(n)

xl(n)

↓ 2

↓ 2

x′h(n)

x′l(n)

x′h(n)

x′l(n)

↑ 2

↑ 2

x′′h(n)

x′′l (n)

H1(z)

L1(z)

yh(n)

yl(n)

my(n)

Analysis section Synthesis section

Figure 9.1: Two-band perfect reconstruction filter bank

signalx(n) into two componentsxl(n) andxh(n). The lowpass filter takes averages to smooth out

variations while the highpass picks out the high frequencies in the signal. After these filters there

is a down-sampling part to shorten the signal. The synthesis section also consists of a lowpass and

a highpass filter. Furthermore, there is an up-sampling part. The task of the synthesis section is to

reconstruct (thus reconstruction filter bank) a signaly from the two signalsx′h andx′l. Our design

goal is to construct the filters in such a way that the output signaly(n) is identical with the input

signalx(n).
For the mathematical description let the transfer functions of the lowpass filtersL0, L1 be

given byLm(z) =
∑2pm+2N−1

k=2pm
hlm(k)z−k with m = 0, 1 andp0, p1 ∈ Z. For simplicity we

set p0 := 0 (otherwise we only have a delayed version of the resulting signal). Furthermore,

Hm(z) =
∑2qm+2N−1

k=2qm
hhm(k)z−k with q0, q1 ∈ Z are the transfer functions of the highpass fil-

ters. Then one has

x′′l (2n) = x′l(n) =
2N−1∑
k=0

hl0(k)x(2n− k) and x′′l (2n+ 1) = 0 (9.2)

after a short calculation so that we obtain

X ′′l (z) =
1
2

(L0(z)X(z) + L0(−z)X(−z))

as transfer function of the lowpass band up to the second lowpass filter. Hence,

Yl(z) = L1(z)X ′′l (z) =
1
2

(L0(z)L1(z)X(z) + L0(−z)L1(z)X(−z))
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is the complete transfer function of the lowpass band. Analogously we get

Yh(z) =
1
2

(H0(z)H1(z)X(z) +H0(−z)H1(z)X(−z))

as transfer function of the highpass band. Adding both we have

Y (z) =
1
2

(L0(z)L1(z) +H0(z)H1(z))X(z) +
1
2

(L0(−z)L1(z) +H0(−z)H1(z))X(−z)

as transfer function for the complete output signal. The first term of this expression is called the

distortion transfer function, while the second term is thealiasing transfer function. The perfect re-

construction condition requires thatY (z) = X(z)z−m with some odd integerm (cf., e.g., Goswami,

Chan [14]), i.e. the output signal can only be a delayed version of the input signal. Consequently the

filters have to be chosen such that the aliasing part is eliminated. This can be achieved by

L1(z) = ±H0(−z) and H1(z) = ∓L0(−z).

Choosing the upper sign and defining product filters for each band we have

Pl(z) := L0(z)L1(z) = L0(z)H0(−z)
Ph(z) := H0(z)H1(z) = −L0(−z)H0(z) = −Pl(−z).

Then the perfect reconstruction condition becomes

Pl(z)− Pl(−z) = 2z−m.

At this point there exist two basic approaches for determining the filtersL0,H0 (cf., e.g., Goswami,

Chan [14]). The first one is the quadrature mirror approach, i.e.H0(z) = L0(−z) while the sec-

ond one is the half-band filter approach. In the sequel we assumeH0(z) = −z−mL0(−z−1) in

correspondence to the second approach. Then we have

Pl(z) = −(−z)−mL0(z)L0(−(−z)−1) = z−mL0(z)L0(z−1).

SettingP (z) = zmPl(z) = L0(z)L0(z−1) the perfect reconstruction condition is transformed into

P (z) + P (−z) = 2. (9.3)

Our goal will be the design of this product filterP . Then the underlying lowpass filterL0 comes

from the spectral factorization ofP (cf., e.g., Smith, Barnwell [52]).

To analyze the structure ofP we simply expandL0(z)L0(z−1):

P (z) =
2N−1∑
i=0

(hl0(i))2 +
N−1∑
i=0

2N−1−2i∑
k=0

hl0(k)hl0(k + 2i)(z2i + z−2i)

+
N−1∑
i=0

2N−2−2i∑
k=0

hl0(k)hl0(k + 2i+ 1)(z2i+1 + z−2i−1).
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Taking (9.3) into account this leads to the following conditions

2N−1−2k∑
i=0

hl0(i)hl0(i+ 2k) = δk0, 0 ≤ k < N. (9.4)

Thus, setting

ai :=
2N−2i−2∑
k=0

hl0(k)hl0(k + 2i+ 1), 0 ≤ i < N, (9.5)

we have

P (z) = 1 +
N−1∑
k=0

ak(z−2k−1 + z2k+1).

Moreover, under the change of variable,z = e2πjω, 0 ≤ ω ≤ 0.5, we obtain

P (ω) = 1 + 2
N−1∑
k=0

ak cos(2(2k + 1)πω)

as well asP (ω) = |L0(ω)|2. ThereforeP (ω) ≥ 0 has to hold such that the feasible product filters

are described by

1 + 2
N−1∑
k=0

ak cos(2(2k + 1)πω) ≥ 0, 0 ≤ ω ≤ 0.5. (9.6)

Now let us look for a design goal or an objective function. This will come from the application

of subband coding which is illustrated in Figure 9.2.
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Figure 9.2: Two-band coding system

Our digital input signalx has length2P which is split correctly intox′l andx′h (alternatively

we can consider an analog input signal which is split correctly into two analog signals). But now

these signals are transmitted and for this transmission they are shorten (or digitalized) by the coder

to additional length2p. Decoding these coded signals it leads to input signalsx̃′l, x̃
′
h of the synthesis

section which are typically different fromx′l, x
′
h. Consequently the output signaly of the whole
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coding system is different from the input signalx. The signaly(n)− x(n) is termed the reconstruc-

tion error and is due to the subband quantization errorsx̃′l(n) − x′l(n) andx̃′h(n) − x′h(n). For the

mathematical model these quantization errors are modeled as random processes as follows:

Let a signalv be given in the binary representation, i.e.v =
∑l

k=−∞ vk2
k. Then the quantization

Q(v) is theb−bit representation ofv (b is called thetransmission rate), i.e.Q(v) can be given by

Q(v) =
∑l

k=l−b+1 ṽk2
k. Thus, setting∆ = 2−(b−1)2l, we have

−∆
2
≤ q = Q(v)− v ≤ ∆

2
,

where the division by 2 occurs from the action of round off. Now, assuming that the quantization

errorq has a uniform probability over[−∆/2,∆/2] we obtain

σ2
q =

∆/2∫
−∆/2

q2 1
∆
dq =

∆2

12
=

2−2b22l

3

Moreover, we assume that the quantization errors are statistically independent and statistically inde-

pendent of the signalv. These assumptions are valid in the limit as∆ tends to zero ifv is itself a

random variable with varianceσ2
v . But for a given bit budget∆ and henceσ2

q are related to the input

varianceσ2
v in a special way that depends only on the statistical properties of the input signal, i.e.

σ2
q = c2−2bσ2

v , (9.7)

wherec is a constant which includes the informations on the statistical properties of the input signal.

Now, let us come back to the two-band case. We assume that the input signalx(n) is a ran-

dom variable for eachn which is Wide Sense Stationary. This means thatmx = Ex(n) and the

autocorrelationsRxx(k) = E[x(n)x(n − k)] are independent ofn. These assumptions are stan-

dard for noise analysis in LTI systems. Then the signalsx′l(n) andx′h(n) are also random variables

which are independent ofn in the sense above. Thus they have variancesσ2
l′ , σ

2
h′ independent ofn.

Consequently, using (9.7) we obtain the variances

σ2
l = c2−2ρlσ2

l′ and σ2
h = c2−2ρhσ2

h′

in the lowpass and the highpass band with the same constantc for both bands (because both signals

x′l, x
′
h coming from the input signalx), but possibly different transmission rates in each band. Due

to the independence assumption the variance of the whole system is

σ2
SBC(ρl, ρh) = c2−2ρlσ2

l′ + c2−2ρhσ2
h′ .

Now, the design goal is to minimize this variance under the additional constraintρl + ρh = 2ρ. This

leads directly to

ρl = 2ρ+
1
2

log2

 σ2
l′√

σ2
l′σ

2
h′

 and ρh = 2ρ+
1
2

log2

 σ2
h′√
σ2
l′σ

2
h′
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such that the minimal variance of the whole system is

σ2
SBC = 2c2−2ρ

√
σ2
l′σ

2
h′ .

Comparing this result with aPulse Code Modulation(equals a one-band coding system) with trans-

mission rateρ we have

σ2
PCM = c2−2ρσ2

x

which leads to thecoding gain

GSBC :=
σ2
PCM

σ2
SBC

=
σ2
x

2
√
σ2
l′σ

2
h′

.

Moreover, due to our assumptions of the independence and the perfect reconstruction, we have

σ2
x = σ2

l′ + σ2
h′ and the coding gain becomes

GSBC =
(σ2
l′ + σ2

h′)/2√
σ2
l′σ

2
h′

, (9.8)

which has to maximized for the best filter. Due to the fixed sumσ2
l′ + σ2

h′ this maximization is

equivalent to the maximization ofσ2
l′ if we assumeρl > ρh in accordance with the lowpass/highpass

interpretation.

Now there is only the question how can we calculate the variancesσ2
l′ , σ

2
h′ . For this we as-

sume without loss of generality that all inputs are zero-mean random processes (cf., e.g., Use-

vitch, Orchard [59]) so that we havemx = E(x(n)) = 0 for all n. Furthermore,σ2
l′ is given

by σ2
l′ = E((x′l(n))2)− (E(x′l(n)))2. Determining both components we recall the definition

x′l(n) =
2N−1∑
k=0

hl0(k)x(2n− k)

from (9.2) and, regardingmx = E(x(n)) = 0, we infer

E(x′l(n)) = mx

2N−1∑
k=0

hl0(k) = 0

such thatσ2
l′ = E((x′l(n))2). Additionally

(x′l(n))2 =
2N−1∑
k=0

2N−1∑
m=0

hl0(k)hl0(m)x(2n− k)x(2n−m)

and consequently

E((x′l(n))2) =
2N−1∑
k=0

2N−1∑
m=0

hl0(k)hl0(m)E(x(2n− k)x(2n−m)).
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Due to the independence ofE(x(n)x(n−m)) of n as well asE(x(k)) = 0 for all k we can set

rm := Rxx(m) = E(x(n)x(n−m)) = Cov(x(n), x(n−m))

so that we obtain

σ2
l′ =

2N−1∑
k=0

2N−1∑
m=0

hl0(k)hl0(m)r|k−m|

=
2N−1∑
k=0

(hl0(k))2r0 + 2
2N−1∑
k=1

2N−1−k∑
m=0

hl0(m)hl0(m+ k)rk.

Using (9.4) and (9.5) we conclude

σ2
l′ = r0 + 2

N−1∑
k=0

akr2k+1 (9.9)

and, regardingH0(z) = −z−mL0(−z−1),

σ2
h′ = r0 − 2

N−1∑
k=0

akr2k+1.

Then, summing up the statements above and combining the objective function (9.9) with the feasible

set described by (9.6), our design problem is

maximize r0 + 2
N−1∑
k=0

akr2k+1

s.t. 1 + 2
N−1∑
k=0

ak cos(2(2k + 1)πω) ≥ 0, 0 ≤ ω ≤ 0.5

or, written as convex minimization problem,

minimize f(a) := −r0 − 2
N−1∑
k=0

akr2k+1

s.t. g(a, ω) := −1− 2
N−1∑
k=0

ak cos(2(2k + 1)πω) ≤ 0, ω ∈ T := [0, 0.5].

(9.10)

9.2 Numerical results

Before we consider several numerical examples let us check Assumption 4.1. The parts (1)-(4) are

obviously fulfilled. Furthermore, the origin ofRN is an interior point of the feasible region since

g(0, ω) = −1 for all ω ∈ T . Thus (5) is fulfilled. In order to show that (6) holds we first prove that

the feasible region is bounded. For that let a feasiblea ∈ RN be fixed and consider the function



100 9 Perfect reconstruction filter bank design

ga : R → R defined byga(ω) := g(a, ω). Thenga is a periodic even function with period1 and

ga(ω) ≤ 0 for all ω ∈ R which follows from the feasibility ofa for (9.10). Therefore the identity

ga(0.5− ω) = −1 + 2
N−1∑
k=0

ak cos(2(2k + 1)πω) = −2− ga(ω)

leads immediately toga(ω) ≥ −2 for all ω ∈ R such that|ga(ω)| ≤ 2 holds for allω ∈ R. Now,

considering the(2N − 1)-th partial sum

c0

2
+

2N−1∑
ν=1

cν cos(2πνω) +
2N−1∑
ν=1

bν sin(2πνω)

of the Fourier series ofga we have particularly (cf., e.g., Pinkus, Zafrany [36])

cν = 2

1∫
0

ga(ω) cos(2πνω)dω

for ν = 0, . . . , 2N − 1. Thus, using the orthogonality property of the Cosinus-function, we obtain

c2k+1 = −4

1∫
0

ak cos2(2(2k + 1)πω)dω = −2ak

for all k ∈ {0, . . . , N − 1}. Hence,

|ak| ≤
1∫

0

|ga(ω)|dω ≤ 2

for all k ∈ {0, . . . , N − 1} such that‖a‖∞ ≤ 2 follows. Consequently the feasible set of (9.10) is

bounded. Further this set is closed since the involved functions are continuous. Therefore, in (9.10),

we deal with a continuous objective function on a nonempty compact set so that the solution set is

also nonempty and compact, i.e. part (6) holds. Moreover, due to the differentiability ofg(a, ω), we

can set

LtS := 4πmax
a∈S

N∑
m=1

(2m+ 1)|am| ≥ sup
a∈S

sup
ω∈T

∣∣∣∣ ∂g∂ω (a, ω)
∣∣∣∣

for each given compact setS ⊂ RN so that (8) holds. Then the constantsCS can be computed by

(6.4) if the constantsLxS are given too. But these constants are simply given by

LxS := 2N ≥ sup
x∈S

sup
ω∈T

N−1∑
m=0

∣∣∣∣ ∂g∂xm
(x, ω)

∣∣∣∣ .
Let us remark that both constantsLtS andLxS can be improved in the sense of Remark 6.8. For that

we make use of the fact that each summand of the respective gradient can be estimated more exact

on subsets ofT by estimating the appropriate Sinus- or Cosinus-term more exact. Additionally,
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(10) holds since the involved functionsf, g are differentiable and the required subgradients can be

computed by differentiation. Altogether, regarding also the general remarks in the beginning of

the chapter, Assumption 4.1 holds such that Algorithm 4.2 can be used for the design of a perfect

reconstruction two-band filter bank.

Thus let us have a look at numerical examples. We consider the examples given in Kortanek,

Moulin [30] and Moulin et al. [35] so that we deal with the following three cases:

1. AR(1)-process withrn = ρn, ρ = 0.95;

2. AR(2)-processrn = 2ρ cos θrn−1 − ρ2rn−2 with r0 = 1, r1 = 2ρ cos θ
1+ρ2 , ρ = 0.975 and

θ = π/3;

3. lowpass process with box spectrum withrn = sin(2πfsn)
2πfsn

, fs = 0.225.

For the purpose of comparing the results with those of Kortanek, Moulin [30] and Moulin et al. [35]

we also consider the casesN = 4 andN = 10. Additionally we considerN = 14 and the

standard parameters are contained in Table 9.1. But, the restart procedure forεi,0 andδi described

parameter start value decreasing factor lower bound

µi 1 0.2 10−5

εi,0 0.001 0.15 −
δi 100 0.15 −
qi 0.999 − −

Table 9.1: filter design - standard parameter

for Example 7.1 was used again if insufficient accuracy values were detected. Furthermore we set

x0 := 0 ∈ RN and the radii were computed by (7.2) withh = hi,k−1 if k > 1 andh = 0.0005 if

k = 1. Additionally all valueshi,k were given as minimum of0.0005 and the maximal value which

fulfills (4.14).

Then we obtained forN = 4 the approximate solutions given in Table 9.2 which also includes

the results of Kortanek, Moulin [30] (in the lower row of each process).

Thus we obtained similar results as presented by Kortanek, Moulin [30]. For the purpose of

evaluating these results the last column of Table 9.2, containing the values of the coding gain, is

of special interest since these values represent the improvement achieved by the application of the

constructed two-band filter banks instead of transferring a single signal. The given values in the table

are different from those calculated by (9.8) since they are now given in a logarithmic scale (decibel)

as usual in the field of filter design, i.e. there is written down10 log10GSBC . Nevertheless, the

values computed by our algorithm are comparable with the results of Kortanek, Moulin [30] and

Moulin et al. [35], whereby we should state that the slight difference is only caused by the fact

that we stopped the algorithm with the barrier parameter1.28E-5. If one computes approximate

solutions for smaller barriers better results are the consequence. For instance, in the AR(2)-case

we also computed a coding gain of6.070 with barrier parameter2.56E-6, but the additional step of
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Process Algorithm a0 a1 a2 a3
Coding gain

(in dB)

4.2 0.612048 −0.149279 0.045733 −0.008533 5.860
AR(1)

cf. [30, 35] 0.612104 −0.149404 0.045859 −0.008577 5.862

4.2 0.594990 −0.193611 0.059889 −0.042127 6.069
AR(2)

cf. [30, 35] 0.595198 −0.193416 0.060023 −0.042055 6.070

lowpass with 4.2 0.613735 −0.169685 0.072194 −0.026933 4.884
box-spectrum cf. [30, 35] 0.613755 −0.169685 0.072184 −0.026923 4.885

Table 9.2: approximate solutions forN = 4

Algorithm 4.2 was disproportional costly due to too large gridsTh and small radii. Thus we did not

compute results for this parameter in general.

In caseN = 10 we obtained the coding gains5.942 (instead of5.945 by Kortanek, Moulin

[30] and Moulin et al. [35]) for the AR(1)-process,6.833 (6.835) for the AR(2)-process and9.869
(9.879) for the lowpass process with box spectrum. Thus we can state that the quality of the filter

designed by our algorithm forN = 10 is comparable to those of Kortanek, Moulin [30] and Moulin

et al. [35].

In caseN = 14 we obtained the coding gains5.951 for the AR(1)-process,6.920 for the AR(2)-

process and12.868 for the lowpass process with box spectrum so that the values of the coding gain

increase when the number of variables or equivalently the signal length increases.

More details of all iteration processess are given in the appendix. But, finally, the frequency

response in dB of the computed filters is plotted in the Figures 9.3, 9.4 and 9.5 forN = 4 (left-hand

side) andN = 10 (right-hand side).
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Figure 9.3: AR(1)-process
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Figure 9.4: AR(2)-process
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Figure 9.5: lowpass with box spectrum
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Appendix A

Numerical results

In this appendix we state numerical results of the examples considered in the Chapters 7, 8 and 9

in tabularized form. In order to make the understanding of the tables easier they have of a certain

structure. So the first column contains the dimension of the problem in the sense of its occurrence in

the previous chapters. Then in the second column the used feasible starting vector is given followed

by the exact optimal solution and the optimal value as far as they known. The next column contains

the computed final approximate solution including its value of the objective function and in the case

of a known solution set the distance to this set measured by the Euclidean norm is given in the

“accuracy”-column. Apart from the column containing non-standard parameter values (emanated

from the parameter settings given in the Chapters 7, 8 or 9) there occur two columns titled “effort”

and “final values” which have to be specified in a more detailed way. So the “effort”-column has the

general structure

restarts: #RES

#LP/#QP/#Box

tLP /tQP /tMAX

tTotal

with

#RES : number of restarts of inner loops

#LP : number of solved linear programs

#QP : number of solved quadratic programs

#Box : number of considered boxes

tLP : time in seconds for solving all LP

tQP : time in seconds for solving all QP

tMAX : time in seconds for all maximizations

tTotal : total time in seconds for the complete iteration process

while the “final values”-column contains the final barrier parameterµ, the final radiusr (which is

mostly an indication for the smallest radius), the final prox-parameters (if the regularized method

was used), the averagehav of the grid constants of the final outer step, the minimal grid constant

hmin and the average ratio of the the values|T̃hi,k |/|Thi,k | or |T̃hi,j,k |/|Thi,j,k | during the final outer

step as measure for the final effectivity of the deletion rule.
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x

0
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0

x
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x
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f
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−
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x
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x
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=
0
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x
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=
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x
5

=
0
.499983

x
6

=
0
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x
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=
0
.500002
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−

1
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3
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-05
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s/0.07

s
0
.40

s

µ
1

=
0
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µ
=
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h
a
v

=
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h
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-06
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h |/|T
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0
.06
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x

0
=
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x
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0
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=
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x
i

=
0
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=
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f
∗

=
−
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x
1

=
0
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x
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=
0
.043036

x
3

=
0
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x
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=
0
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x
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=
0
.333307

x
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=
0
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x
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=
0
.333314

x
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=
0
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x
9

=
0
.333323

x
1
0

=
0
.333328

x
1
1

=
0
.333334

x
1
2

=
0
.333341

f(x)
=
−

2.999880

5
.32E

-05

restarts:2
75/107/36
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s/0

.00
s/0.13

s
0
.88

s
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1

=
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µ
=
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=
9.03E

-06
s
i

=
1
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=
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-05
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x

0
=
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=
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x
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=
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.024121

x
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=
0
.018091

x
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=
0
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x
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=
0
.242529

x
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=
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x
7

=
0
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x
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=
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x
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=
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x
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=
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x
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=
0
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=
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=
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=
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=
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=
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=
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n
startvector
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ate
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r
0

=
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w
1

=
...=

w
3
0

=
0

ϑ
=
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r
0

=
1525

.52
w

1
=
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.75

w
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=
32815.99

w
3

=
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.77
w

4
=

4020
.24

w
5

=
−
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w
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=

4758
.85
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=
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w
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=
14112.17

w
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=
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w
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w
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w

1
2 =
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w

1
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14098.55
w

1
4 =

14098.55
w

1
5 =
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w

1
6 =
−

3195.49
w

1
7 =
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.09

w
1
8 =
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w

1
9 =
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w

2
0 =
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w

2
1 =
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w

2
2 =
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w

2
3 =
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w

2
4 =

46345.79
w

2
5 =

49706.85
w

2
6 =

14621.09
w

2
7 =

17968.50
w

2
8 =

20163.07
w

2
9 =
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w
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0 =
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ϑ

=
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.
=
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=
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=
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=
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=
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=
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.0

6
w

5
=
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=
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=
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=
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=
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=

45
08

9.
31

w
1
8
=
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=
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=
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=
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=
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=
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=
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n
startvector

approxim
ate

solution
effort

non-standard
param

eters
finalvalues

4
x

0
=

0

a
0 =

0
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a
1 =
−

0
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a
2 =

0.045733
a

3 =
−

0.008533
C

oding
gain:5.860
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s
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h
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-09
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=

0

a
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a
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0.107007

a
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−
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a

4 =
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a
5 =
−

0.024743
a

6 =
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a
7 =
−
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a
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a
9 =
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C
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