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Chapter 1

Introduction

In this thesis we consider semi-infinite programming problems of the following general form:
minimize f(x)
st. zeR", Arxr=b, AcR™", beR™, (1.1)
gi(z,t) <0 forallte T (i=1,...,1),
where f is convex, eacly; is convex inz as well as continuous ihand eachl™ is a nonempty

compact set. Thus we deal with finitely many variables and infinitely many constraints. Such
problems occur in various fields, for instance we point at the following applications:

e Least-cost strategies for air pollution abatemstudied, e.g. by Gorr et al. [13] and Kortanek,
Gorr [29];

e Robot trajectory planningtudied, e.g. by Hettich, Still [18] and Haaren-Retagne [15];

e Engineering design problems likgeismic resistant design of structuredectronic circuit
designand thedesign of SISO/MIMO control systestsidied by Polak [37];

o Digital filter designstudied, e.g. by Potchinkov [40, 41] and Kortanek, Moulin [30];

e Applications in finance studied, e.g. by Tichatschke et al. [56].

Besides many problems (including some of that given above) arise in the field of Chebyshev-
approximations or optimal control problems. While Chebyshev-approximation problems are often
linear semi-infinite programming problems (cf., e.g., Hettich, Zencke [19]), the discretized optimal

control problems are mostly of a more difficult structure due to the involved differential equations

(cf., e.g., Sachs [49]). For details and more applications we refer also to the collection papers [8]
and [44] as well as to the extensive survey by Hettich, Kortanek [17].

1.1 Review of literature

As consequence of the variety of applications particular methods for solving semi-infinite problems
were developed. A survey is given by Hettich, Kortanek [17] again. Thereby it turns out that the
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4 1 Introduction

numerical methods typically generate sequences of finite optimization problems and, following Het-
tich, Kortanek [17], we can classify them into three typeechange methogddiscretization methods
andmethods based on local reductioNevertheless, particularly caused by the infinite number of
constraints each of these methods has critical points for a practical realization. So, the exchange
methods require the solution of a global optimization problem in each step, the discretization meth-
ods typically lead to finite problems with a very large amount of constraints and the local reduction
methods are based on the necessary optimality conditions and use a further knowledge of the local
behaviour of the constraints. Each of these methods may cause a (very) high computational effort
so that no standard method for solving semi-infinite problems is currently available.

Regardless the work in the field of semi-infinite programmingitherior-point approachfor
solving finite (convex) problems was developed during the last decades. This research was first
initiated by proposing théogarithmic barrier methodoy Frisch [11] in 1955. The fundamental
results of the intensive study during the following years were summarized by the monograph of
Fiacco, McCormick [9], published in 1968. A qualitatively new stage in the development of interior
point methods has been started with the paper of Gill et al. [12], where the relationship between
Karmarkar's method and the logarithmic barrier methods for linear programs was shown. This fact
brought to the light the polynomial complexity of logarithmic barrier methods for some classes of
problems so that competitive interior-point methods for solving finite convex, especially linear and
guadratic, problems could be developed. A survey of such methods for (mostly) linear problems is
given by Andersen et al. [1].

Motivated by these powerful methods for finite problems including large-scale problems it was
natural to try to transfer ideas from interior point methods to the field of semi-infinite programming
problems. So the first algorithm in this context was an extension of an affine-scaling algorithm to
linear semi-infinite problems suggested by Ferris, Philpott [6,7]. But it is not easily possible to
extend each interior-point approach to semi-infinite problems. For instance Powell [42] showed that
the application of Karmarkar’'s algorithm to linear semi-infinite problems does not have to work.
Additionally, a survey of interior-point approaches which can naturally be extended to semi-infinite
problems is given by Todd [57] and Tuncel, Todd [58]. A further approach originates from the
method of analytic centershich was introduced by Sonnevend [53] and extensively studied by
Jarre [22] for finite convex problems. In order to tackle the semi-infinite problem of the form (1.1)
directly, Sonnevend [54, 55] and Sitier [50, 51] extended this approach to convex semi-infinite
problems by introducing an integral form of the logarithmic barrier. But, unfortunately the barrier
property may be lost due to the smoothing effect of the integral (cf., e.g, Tuncel, Todd [58] and Jarre
[23]).

Usually boundedness (or in fact compactness) of the feasible set or at least of the solution set of
the given problems is assumed in all interior point approaches for semi-infinite problems mentioned
above. Dropping this restrictive assumption Kaplan, Tichatschke [26] suggested a combination of
the logarithmic barrier method with a discretization procedure for the constraint set gordxhmeal
point methodvhich was introduced by Martinet [32, 33]. Furthermore, due to the regularization, the
approach of Kaplan, Tichatschke allows to treat ill-posed semi-infinite problems with ill-posedness
in the sense of Hadamard. Especially the case where the finite auxiliary problems are not solvable is
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of interest in that field. A further advantage of the method proposed by Kaplan, Tichatschke is given
by the fact that convergence of the iterates can be established. This is not clear in each case if one
applies the pure interior-point methods for convex problems excepting linear and quadratic ones.

All methods stated above are based on the smooth problem formulation (1.1) and make use of
differentiability properties of the involved functions. In contrast to this, Polak [37] suggested a
nondifferentiable reformulation of semi-infinite problems by means of usingieefunction in the
description of the constraints. This leads in fact to optimization problems with finitely many but
nondifferentiable constraints which cause some difficulties. Nevertheless this reformulation will be
the basis of the thesis which is outlined in the sequel.

1.2 Outline of the thesis

In Chapter 2 we start with a review of the classical logarithmic barrier method for convex problems
since we intend to apply this method to convex semi-infinite programming problems. In particular
the method is briefly stated and two basic convergence results are given.

Then several approaches transferring the logarithmic barrier method to semi-infinite program-
ming problems, given in the smooth formulation (1.1), are discussed in detail. Thereby it turns out
that certain difficulties from the theoretical and/or numerical point of view occur in each of these
approaches.

In order to avoid these difficulties we apply the logarithmic barrier method directly to the nondif-
ferentiable reformulation of the semi-infinite problems. Consequently, we consider barrier problems
with nondifferentiable objective functions so that a method for minimizing nondifferentiable convex
functions under convex constraints is required. Such methods often use subgradient information,
more exact they often assume the existence of bounded subgradients or even subdifferentials on the
feasible set. Due to the logarithmic part in the objective function of the barrier problems such a
property does not hold in our case so that we enforce it by doing the following: The logarithmic bar-
rier function is minimized on successively determined nonempty compact sets which are located in
the relative interior of the feasible set. Introducing this procedure a conceptual algorithm for solving
convex semi-infinite problems is finally presented.

In Chapter 3 the minimization of a convex nondifferentiable function on a nonempty convex
compact set is in the focus of interest. Based on the assumption that the input data like objective
function and subgradient information are exactly available, several known published methods can
be used, one of which is the proximal level bundle method of Kiwiel [28]. Problematic in our case
is that the objective function at hand contains a term whose evaluation requires the exact solution
of a global maximization problem. In order to avoid this we extend Kiwiel's bundle method to the
situation of inexact given input data. In doing so an inexact determination of the global maximum is
permitted.

In Chapter 4 our conceptual algorithm is first described in detail for one semi-infinite constraint.
This also includes the required specification of the assumptions. One essential assumption is the
compactness of the solution set of the given problem. As stated above such an assumption (or the
stronger condition that the feasible setis compact) is quite usual in the field of interior point methods.
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Thus, after showing that the extended bundle method can be in fact applied, a convergence
analysis based on the results of Fiacco, McCormick [9] is presented. Since these results only ensure
the convergence of the iterates to the solution set in general, it is not surprising that we cannot prove
convergence to one certain point of this set if the given problem is not uniquely solvable. But in
each case convergence to the solution set can be established.

Finally, the straight-forward extension of the implementable algorithm to convex problems with
finitely many semi-infinite constraints is presented. Thus, without specifying detailed assumptions
at this point, we are able to solve convex problems of the form (1.1) if they possess a honempty
compact set of optimal solutions.

In Chapter 5 we drop this restrictive condition on the solution set. Then, following the ideas
of Kaplan, Tichatschke [24—-27], our method developed in Chapter 4 is coupled with the proximal
point regularization technique. This procedure leads to auxiliary problems with strongly convex ob-
jective functions so that these problems are uniquely solvable and the method suggested in Chapter
4 is applicable to them. Based on this fact a combined algorithm is stated in detail. Therein we
additionally make use of the multi-step technique introduced by Kaplan, Tichatschke [24] which
allows to do more steps of the algorithm with large barrier parameters. Since the conditioning of the
barrier problems is getting worse when the barrier parameter tends to zero, the multi-step approach
stabilizes the combined method.

A convergence analysis based on that of Chapter 4 and that of Kaplan, Tichatschke [27] is es-
tablished. Thereby it turns out that, in contrast to the method presented in Chapter 4, the regularized
algorithm generates a sequence which converges to an optimal solution of the given problem under
certain conditions.

Furthermore, a result with respect to the rate of convergence of the values of the objective func-
tion holds under more restrictive conditions than before. But, considering only the class of problems
with quadratic growth we can even show linear convergence of the values of the objective function
as well as the iterates. This reflects a well-known result in the theory of the proximal point method
(cf., e.g., Rockafellar [47]).

In Chapter 6 we perform the numerical analysis of the discussed algorithms. In particular, we
first determine the nonempty compact sets on which the minimization of the (regularized) logarith-
mic barrier function has to be done. Furthermore, based on the previously determined compact sets,
we investigate how to compute the required constants. Then we have a closer look at the inexact
maximization procedure which is required for each inexact evaluation of the logarithmic barrier
function. The inexact maximization of a function on a nonempty compact set is usually carried out
by maximizing this function on a finite grid which discretizes the given compact set. Since these
grids can be very large, a deletion rule for excluding certain grid points from the maximization
process is developed. This deletion rule should accelerate the evaluation of the logarithmic barrier
function and consequently the whole iteration process.

The previously developed logarithmic barrier algorithms require strictly feasible starting points.
Finding such points is in general a difficult task and we discuss their determination in detail.

In Chapter 7 we apply our algorithms to model examples in order to show the typical behaviour
of the considered methods. Most of the examples are previously investigated by Voetmann [61] in
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the context of the proximal interior point method of Kaplan, Tichatschke [26].

In Chapter 8 an application arising in the field of finance (cf. Tichatschke et al. [56]) is presented.
In particular we approximate the run of the curve of the German stock index DAX over a given time
interval. The approximation is based on a differential equation under uncertainty. So, by means of
some simplifications we obtain a linear Chebyshev approximation problem.

In Chapter 9 we discuss the design of digital filters. We first give an introduction into the
mathematical model of the design of perfect reconstruction filter banks. This leads to a semi-infinite
program with a single constraint which was previously investigated by Kortanek, Moulin [30].
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Chapter 2

The logarithmic barrier approach for
convex optimization problems

In this chapter we first summarize basic results of the classical logarithmic barrier method for finite
convex optimization problems. Further several trials for an extension of this method to semi-infinite
problems are reported and a conceptual algorithm for solving convex semi-infinite problems is de-
veloped.

2.1 Finite problems

In this section the classical logarithmic barrier approach for solving finite convex programming
problems is reviewed. In order to do this we consider the problem

minimize f(z) st xzeR", Ax=0b, gjx)<0(=1,...,1) (2.1)

with A € R™*", b € R™ as well as convex functiong : R* — R andg; : R" — R for
j=1,...,1. Then the classical logarithmic barrier approach can be described as follows (see, e.g.,
Wright [62], Section 3.2):

Algorithm 2.1

e Givenyuy > 0.
e Fori=1,2,...

— Compute a minimizex’ of the barrier problem

z
inimize  fi(z) := f(z) —pi Y In(—g;(z
minimize fi(z) == f(z) — p ; (—g;(2)) (2.2)

st. zeR", Az=b, gjx)<0(=1,...,10).

— Choosgu;t1 € (0, ;).
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The algorithm is practicable if problem (2.2) is solvable in each step. This ensures the following
lemma which corresponds to Lemma 12 in Fiacco, McCormick [9] and Theorem 4 in Wright [62],
although we are able to use a weaker assumption. Fiacco, McCormick [9], Wright [62] as well as
other authors assume that the feasible region of (2.1) is bounded. Instead of this restrictive condition
we only assume that the set of optimal solutions of (2.1) is bounded (which is in fact equivalent to
the compactness since we deal with continuous functions in a finite dimensional space).

Lemma22Lletf : R" — Randg; : R® — R forj = 1,...,l be convex functions and
A € R™™ b € R™ be given. Assume that the solution set(®fl) is nonempty and compact.
Moreover, assume that the Slater Constraint Qualification is fulfilled, i.e., there éxistR™ with
Az =bandg;(z) < Oforall j =1,...,l. Then the level set

Li(t):={xeR": fi(zx) <7, Az =10, gj(z) <0(j=1,...,1)} (2.3)

is compact for all- € R and fixedi € N. Especially problen{2.2)is solvable with a compact set
of optimal solutions.

Proof: Letr € R be arbitrarily given. To show the compactness(pfr) we prove that it is
bounded and closed.
We first show that it is bounded. Suppose thiatr) were unbounded, then there exists a se-
quence{zF} with z¥ € £;(7) and||z*|| > k. || - || is an arbitrary but fixed norm oR"™. Setting
y* = 2F/||2*|| we have]|y*|| = 1 for all k € N and the sequendg/*} has at least one accumula-
tion pointy with ||y|| = 1. Without loss of generality we assume tHat'} converges tg). Let z*
be an optimal solution of (2.1). Then we want to show that each pdiat sy with s > 0 is also
an optimal solution of (2.1) which contradicts our assumption of the compactness of the solution set

sincey # 0.
In order to show the feasibility of such point$ + sy for (2.1) lets > 0 be fixed. Then, taking
the convexity ofg; into account, we have forall > sandj =1,...,1:

k
s . z s B s k
i\ L= < {1———)yj —0j < 0.
o (( HZ’“\) ) +SHZ’“H> N < \Z’“!>g”(x ) HZ’“HQJ(Z )

Thusk — oo leads tog;(z* + sy) < Oforall j =1,...,l. Additionally, it holds

k

Ay = lim Ay* = li = — =
Y= eloe ™ TR R T el |2

such that* + sy is a feasible solution of (2.1). Further;(z*) < 0 and the convexity of; allow
to conclude

0> 55 2 (121 -1) 01a") +5(4) 2 1y (1 i ) o+ 5 )

forallk > 1andj = 1,...,l. Therefore, regarding the convergenceyp((l — W) x* + ﬁ)
to g;(x* 4 y) for all j, there exists a constad}, > 0 independent of (because only finitely many
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constraints occur) and with g;(2*) > —Cp||z¥||. Using this as well as the monotonicity of the
logarithm we obtain

l

T2 filz%) = f(F) = i ) In(=g;(2")) = F(*) = pal In(Coll2*]).-

J=1

Hence, regarding the convexity @f one infers

(=) o) = (- i) o=

s T ln(COszH)
< | 1= ) f(&") + 57— + spl ——7—
( rzkH) &)+ SR E

forall k > s. Thenk — oo gives usf(z* + sy) < f(z*). Consequently™ + sy is an optimal
solution of (2.1) for eack > 0. As stated above this contradicts the assumption of the compactness
of the solution set of (2.1) such thét(7) cannot be unbounded.

To show thatZ;(7) is closed, we prove that it contains all its accumulation points.{t&} be
a convergent sequence with € £;(7) for all k andz € R™ as its limit point. First, fromAdz* = b
for all £ € N follows easily thatdz = b. Further, since the convex functioffisandgy, .. ., g; are
continuous orR” (see, e.g., Rockafellar [45], Corollary 10.1.1), we have, ... f(zF) = f(2)
andlimy ., gj(2¥) = g;(z) forall j = 1,...,1. Thus one inferg;(z) < 0, g;(z*) > C; and
f(:zk) > (1 with a constand > C; > —oo independent of andk. Therefore, taking“i(:ck) <T
for all £k € N and the monotonicity of the logarithm into account, we can conclude

l
—puiln (=gu(2H)) <7 = ) + Yo (~a5(2)
et
<7t-Ci+ ,U,Z‘(l — 1) In(—C1) =: u;Csy

forallv =1,...,1 with a constant’s; < co. Then it follows
g,,(zk) <—e <o

andg,(z) < 0forall v = 1,...,l. Additionally, f; is obviously continuous on its domain
dom (f;) = {x € R" : gj(z) < 0(j = 1,...,0)} so thatf;(z) < 7 follows from the inclu-
sion{zF} c {z € R" : g;(x) < —e~©2} C dom (f;). Hence, it yields: € £;(7) such that the
level set is closed.

Finally, we have to show that (2.2) is solvable with a compact solution set. Due to the existing
Slater pointz the level setC;(7) with 7 = f;(&) is nonempty. Moreover, each optimal solution of
(2.2) must be an element gf(f;(Z)). Consequently the optimization problem

minimize fi(z) st x € Li(fi(2)) (2.4)

has the same solution set as problem (2.2). We already know that the lexg{ £€t)) is compact
and contained in the domain ¢f. In problem (2.4) we have to minimize the continuous function
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fi on a nonempty compact feasible set. Thus there exists at least one optimal solution of (2.4),
resp. (2.2). Furthermore the set of optimal solutions coincides with the levé} S&t) wheref* is
the optimal value off;. Thus, the compactness of this set follows from the statements above.

The following result shows that we can compute an optimal solution of (2.1) with Algorithm
2.1. This theorem corresponds to Theorem 25 in Fiacco, McCormick [9] and Theorem 5 in Wright
[62]. Let f* denote the optimal value of (2.1).

Theorem 2.3 Letf : R® — Randg; : R" — Rforj = 1,...,[ be convex functions. Further-
more, letA € R™*", b € R™ be given. Assume that the set of optimal solutions of (2.1) is nonempty
and compact. Moreover, assume that the Slater Constraint Qualification is fulfilled.ukebe a
positive sequence witim; ., 1; = 0 and let{z*} denote a sequence of arbitrary optimal solutions
of (2.2). Then the following is true

(a) The functiongf; are convex on their domain.
(b) The sequencér’} is bounded.
(c) Itholds
0< fla') = f* < il (2.5)

forall i € N andlim; . f(z*) = f*.
(d) Each accumulation point dfz*} is an optimal solution of2.1).

(e) If {u;} is a monotonically decreasing sequence angif} converges, then
1—00

Proof: Let us first remark that the existenceadfis ensured by Lemma 2.2 for alic N. Now the
separate propositions are successively proven.

(a) Leti € N be fixed. Sincef is convex onR"™ andy; is positive it remains to prove that the
logarithmic part

l
= In(—gj(x)) (2.6)
j=1

is convex ordom (f;) = {x € R" : gj(z) < 0(j =1,...,0)}. This will be done by showing that
each addend of this sum is convex.

The logarithm is a concave increasing function. Consequently(—t) is a convex increasing
function. Taking the convexity of; into account each summand in (2.6) is the post-composition
of a convex function with an increasing convex function. Such a composition is also convex after
Proposition 1V.2.1.8 in Hiriart-Urruty, Leméchal [20].

(b) Let o € R be given such that; < o for i € N holds. Moreover, let:’ be an optimal
solution of (2.2) withi = 0. Then we have

z z
F@') = pi > I (=gj(ah) < f@°) = pi »_ I (—g;(a))
i=1 i=1
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and z z
F@%) = po Y In(=g;(a)) < f(&') = po Y In (—g;(a"))
j=1 j=1
for all i € N. Multiplying the first inequality withu.,/u; and combining the resulting estimate with
the second inequality one obtains

l
F@®) = f@') <po ) (In(—g;(a%) —In(—gj(z"))) < % (f(z%) — f(2"))
j=1 '

foralli € N. Due toug > u; for all i € N this can only be true iff (+°) < f(2°) holds for

eachi € N. Thus, regarding alsdz’ = b for all i € N, eachz’ is an element of the level set

{zr e R": f(z) < f(a0), Az = b, gj(z) <0 (j = 1,...,1)}. Due to the compactness of the
solution set of (2.1) these sets are compact which can be proven similarly to Corollary 20 in Fiacco,
McCormick [9]. Therefore the sequen¢e’} is bounded.

(c) The left inequality in (2.5) is simply true since eachis feasible for (2.1). Thus it remains
to show f(z?) — f* < y;l. In order to prove this let an optimal solutiari of (2.1) be arbitrarily
given. The point? is a minimizer off; on My := {x e R": Az = b, g;(z) < 0(j =1,...,1)}.
Thus, regarding the convexity o¥1 := {z €¢ R" : Az =, gj(z) <0(j =1,...,1)} as well as
My = ri (M), Theorem 6.1 in Rockafellar [45] allows to conclude+ t(z* — z%) € M, for all
t € [0,1). Therefore we have

fi(z" + t(a* — ")) — fi(a")

0<
- t

for all t € (0,1). Using the existence of the directional derivatjf/éz’; z* — z%) (cf., e.g., Rock-
afellar [45], Theorem 23.1) this combined with Theorem 23.4 in Rockafellar [45] leads immediately
to
10, % P\ T/, % )

0< fi(z";x x)_ze%lf?éi)z (" —2x'),
if we take into account that’ € int (dom (f;)) which enforces the compactnessaf; (z¢). So
now we have to determine a closed form for the subdifferentig) of z*. From the proof of (a) we
know that the functions- In(—g;(x)) are convex orlom (f;) for all j = 1,...,l. Thus, regarding
Theorem 23.4 in Rockafellar [45§(— In(—g;(x"))) is nonempty for ali andj. Since—In(—t) is
an increasing convex function anglis convex for allj = 1, ...,/ we can apply Theorem XI.3.6.1
in Hiriart-Urruty, Lemagéchal [21] so that we infer in combination with Proposition X1.1.3.1 in
Hiriart-Urruty, Lemagéchal [21]

d(—In (—gj(xi))) I >8gj(xi).

—g;(ai
Consequently, using Theorem 23.8 in Rockafellar [45] and Proposition XI.1.3.1 in Hiriart-Urruty,
Lemagchal [21] and regarding that the intersection

l

ri (dom (f)) N (7 i (dom (—p; In (—g;)))

Jj=1
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is nonempty (since each is an element of it), we have

l l

Ofi(z") = 0f(2") + pi Y _ O(—In(—g;(x )))z@f(xi)+piz_;wagj(xi). (2.7)

j=1 j=1 J

Hence, there exist € df(z') andv; € dg;(z*) with

T
l
fl(zbx* — 2% = (u + 1 Z gjl(a:i)vj) (z* — ).

j=1
Then, regarding the definition of the subdifferential gng:*) < 0forj =1,...,[, we infer

l

A 1 .
0< T % .0 . i T (% _ it
<u (2" —2") 4 E_ —gj(xz)vj (x* — ")

< f(z~ +uzzgj _g] xl )

<fr-fl= )"‘/M

(d) From (b) we know tha{z’} is bounded so that it has an accumulation paintThen it
follows f(z) = f* from (2.5). Furthermoreg is obviously feasible for (2.1). Hence, is an
optimal solution of (2.1).

(e) Letz* be the limit point of{z*}. If we haveg;(z*) < 0 forall j = 1,..., then one can
conclude

!
lim m;m (—g;(z") =0

such that we infer with (c)

lim f = hm flx uzzm = f*.
Thus in the sequel we assume that there exists at least onejndei, . .., [} with g;(z*) = 0

which implies
!
Zln (—g;(z")) <0
j=1

for all i sufficiently large. Then, regarding that we have a nonincreasing seq{ignceone can
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conclude
f* < f( ’i+1)

’L+1 — lig1 Zln z+1 — ;;_1
— Hit1 Z In (—g;(z"))
j=1
l .
—piy I (=gi(a") = f;
j=1

for all i sufficiently large. Especially the sequencg } decreases monotonically (at least for large
i) and is bounded below which implies the convergence of it.oSet lim; ., f;. Then we have

o > f* from above. We want to show that = f* holds. For this purpose we assume> f*
and set := (a — f*)/2 > 0. Furthermore we choose € R" with Az = b andg;(z) < 0 for
allj =1,...,1 andf( ) < a — 4. Such a point has to exist due to (c). Sifge} is a positive
sequence with limit poind it yields

N S

a < fi(a') < fi(E) len —gi(Z <a—5+§: —

for all ¢ sufficiently large, which contradicts our assumption. |

2.2 Transfer to semi-infinite problems

In the sequel we want to transfer the classical logarithmic barrier method analyzed in the previous
section to convex semi-infinite problems of the form (1.1). For the sake of simplicity of the presenta-
tion we consider (1.1) with = 1 (the index will be dropped) and without linear equality constraints,
ie.

minimize f(x) st zeR", g(x,t)<0(teT). (2.8)

But, in the further course we describe the possibility of the extension to problems of the general
form (1.1).

Without specifying any assumptions at this point it turns out that the most difficult question for
the transfer of the logarithmic barrier method to semi-infinite problems is how can we choose a
suitable barrier function. This is caused by the (possibly) infinitely many constraints.

Considering (2.1) without linear equality constraints we can embed problems of this type into
the class of problems described by (2.8) by setfihg= {1,...,l} andg(z,t) := g¢(x). Thus a
natural generalization of the barrier term is given by

— Zln(—g(m t

teT
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But obviously this leads to serious problemsIlis an uncountable set the definition of this sum
is not clear and ifl" is an infinite countable set, serious numerical problems occur when evaluating
the sum. Furthermore, if is a finite but large set the barrier parametdnas to be very small to
guarantee a certain accuracy by estimate (2.5). But in practice this avoids the machine precision so
that a direct transfer of the classical logarithmic barrier in the sense above is inadvisable and we
reject this approach.

A first alternative is the method of outer approximation described for instance by Powell [43]
in the case of linear problems. Thereby we replace step by step tielgetliscretizations which
become successively finer. Consequently we have to solve finite problems of type (2.1) without
linear equality constraints in each step. These problems can be solved theoretically with the classical
logarithmic barrier approach from above, but again several difficulties occur. At first if the relaxed
problems are solvable the discretized set and consequently the number of the considered constraints
grows such that again the barrier parameter has to be very small to guarantee a good approximate
solution. Furthermore, in general the optimal solutions of the relaxed problems are not feasible
for the original problem. Consequently if we approximately compute optimal solutions by this
method they are typically not feasible for the original problem. Another serious difficulty is that the
properties of the original problem do not have to be inherited to the relaxed problems. Especially it
is possible that the relaxed problems are not solvable (for examples see, e.g. Kaplan, Tichatschke
[24]). Due to these difficulties we look for alternatives.

Sonnevend [54] and Séttler [50, 51] suggest to use the following “Integral Barrier Function”

- /ln(—g(:v,t))dt. (2.9)

T

Of course,meas (T') > 0 is assumed in this case so that especially finite $etge excluded.
Nevertheless, let us have a closer look at some important details of the arising method.

Due to the smoothing effect of the integral, (2.9) does not have to possess the barrier property
at all. That means it is possible that (2.9) is bounded above if one approaches the boundary of the
feasible region. This fact is illustrated by the following example of Jarre [23].

Example 2.4 We consider the linearly bounded feasible set

S = {xERQ:g(x,t) =— (t—%>2$1—$2§0(t€ [0,1])}.

Now, choosingz = (1,0), we haveg(z,t) = —(t — 3)? < 0forall t € [0,1]. Thusz € S but
g(z,t) = 0fort = J impliesz ¢ int (S). Furthermore, usin@ = [0, 1], we conclude

_/ln(—g(x,t))dt:—jln((t—%)z) dt:—4/11n (t—%) dt = 21n?2 < co.
0 1/2

T
O

Finally, let us have a look at (2.9) from the numerical point of view. Here we have the task to
evaluate integrals of the form (2.9) at different poimtsif 2 is not located near the boundary of
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the feasible region this could be done with standard formulas for numerical integration. But if we
evaluate this integral for a point near the boundary of the feasible region the logarithm will have large
absolute values for certain Consequently standard formulas for numerical integration do not work
very well in this area. But, we have to be able to evaluate the barrier function (and therefore also the
integrals) near the boundary of the feasible region, because optimal solutions are typically located
on this boundary. Due to these problems&thbr [50, 51] refers to specialized integration rules like
Radau’s or Lobatto’s rule (see, e.g. Davis, Rabinowitz [4]) for evaluating the integrals. In contrast
to this Lin et al. [31] use Simpson’s method to compute similar integrals arising by transferring the
exponential barrier to semi-infinite problems. In order to achieve a suitable accuracy they have to
partition the interval0, 1] into 400000 small parts in one example case. Thus, independent of the
formulae, evaluating such integrals requires a high computational effort.

2.3 A conceptual algorithm for semi-infinite problems

Taking all considerations from the previous section into account we decided to look for a more
practical variant. In order to do that we consider the following reformulation of the semi-infinite
problem (2.8)

minimize f(x) st zeR", I?ajgcg(:c,t) <0. (2.10)
€

The theoretical properties as well as practical applications of this approach are extensively studied
by Polak [37, 38]. The main advantage of the reformulation (2.10) is that we can write it in the form
(2.1) with a single constraint by using

= t).
g1() rglea;(g(x, )

Thus we can use the results of our first section for problems of type (2.10). Consequently we deal
with the barrier function

f(z) — pln <— rl]tneajg(g(x,t)> . (2.12)

Therefore in contradiction to the approaches mentioned above we have no additional difficulties
from the theoretical point of view. But there are two remarkable numerical problems. We now deal
with a nondifferentiable barrier function due to the involwedxterm and we have to solve the
global optimization problem

maximize g(z,t) st teT (2.12)

in order to evaluate the barrier function at a given painwhich is in general a very hard task.
Thus except for special cases we cannot suppose that (2.12) is exactly solvable for amyvgiven
acceptable computational effort. Accordingly there is only an approximate maximizer of (2.12)
available such that the barrier function is only approximately evaluable. Consequently we have to
use a method for minimizing (2.11) which requires only an approximately computable objective
function. Such a method, derived from a bundle method from Kiwiel [28], is presented in the next
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chapter. This method requires the feasible sets to be compact. In contradiction to this the barrier
function (2.11) has to be minimized on open sets of the form

{zeR":g(z,t) <0(teT)}.

Nevertheless, in order to use the method proposed we will minimize the (convex) barrier function
successively on compact sets like closed boxes or balls. However, we still cannot suppose that we
are able to compute an exact minimizer of (2.11) using only approximate values of the objective
function. But as it is known from finite problems this do not have to be required (cf., e.g., den
Hertog [5]). However, the classical logarithmic barrier method from Algorithm 2.1 has to adapted in
the sense that” is from now on only an approximate minimizer of the barrier function. Altogether

we obtain the following conceptual algorithm for solving (2.10) resp. (2.8).

Algorithm 2.5

e Givenpuy > 0.
e Fori=1,2,...:

— Fork=1,2,...
+ Determine a nonempty compact $ét* C {z € R" : maxcr g(z,t) < 0}.
« Compute an approximate minimizet* of (2.11) onS%*.
« If zbF is an approximate unconstrained minimizer of a certain accuracy of (2.11)
setz’ := z* and leave the inner loop.
— Chooseui+1 € (0, ;).

In the following chapter we present a numerical method for minimizing the nondifferentiable
barrier function (2.11) or5** such that in Chapter 4 we can give all necessary details to put this
conceptual algorithm into implementable form.



Chapter 3

A bundle method usinge-subgradients

In this chapter we discuss a method for solving the nondifferentiable auxiliary problems which
appear in the conceptual algorithm at the end of the previous chapter. In general these problems
look like

minimize f(z) st z€S (3.1)

with a convex functionf and a nonempty compact convex setc R™. Moreover, let (3.1) be
solvable and the following assumptions be fulfilled.

Assumption 3.1 Lete > 0 be given. Then it is assumed that the following holds
(a) foranyx € S at least arE-approximationf(a:) of f(z) with
f@)—e < fz) < f(x) (3.2)
can be computed;
(b) for anyx € S ane-subgradieny(z) of f can be computed;

(c) f is Lipschitz continuous o8 with Lipschitz constant ; such that||g(x)|2 < Ly for all
xeS.

These assumptions on (3.1) are generalizations of those of Kiwiel [28] (there we: have).
Therefore we suggest a modification of Kiwiel's proximal level bundle method for solving problem
(3.1). In Kiwiel's Algorithm 1 we replace all computations ¢fby f and all computations of a
subgradient by aa-subgradient. Linearizing in z* € S by

fHa) = f(a®) + gp (@) (2 — a¥)

leads to the following algorithm.

N of(x) :={z € R": f(y) > f(z) + 27 (y — z) forally € R"} # 0 then (3.2) ensure8f(z) C . f(x). Thus
ane-subgradient off in « can be given by an elementéf(x). Such a situation will always be given in our applications
of the proposed bundle method.

19
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Algorithm 3.2

(S0) Givenz! € S, the final tolerance,,; > 0, a level parameted < « < 1 ande > 0. Set
xp = al, [, = 00, fib, = mingeg f1(z), J' = {1}, k :=1,1:= 0, k(0) := 1 (k(I)
denotes the iteration number of théh increase off: ).

(S1) Set i, = min{f(a"). fi; 1) A o= fi, — floy. W £, = fla¥) setar,, = ot (ol
denotes the “best” known iterate up to theh step, i.e.f;, = f(x7..))-
(S2) If A* < e, O g¢(z*) = 0 terminate; otherwise continue.
(S3) If the feasible set of
1 Ll12
minimize - Hx —
2 (3.3)

st. weS, flo)<wfl,+0—rfy G

is nonempty, go to (S5); otherwise continue.

(S4) Setff = migma)é:fj(x). Choosex® ¢ {27 : j € J*} arbitrarily. Setk(l + 1) := k,
TES jeJ

increasd by 1 and go to (S1).

(S5) Find the solutionz"*! of (3.3) and its multipliers\¥ such that/* := {j € J* : Ak > 0}
satisfied J*| < n.

(S6) Calculatef (z**+1) andg;(zF*+1) € 9. f(a**1).

(S7) Select/F ¢ J* such that/* ¢ J¥. SetJ*+! .= JF U {k + 1}, af+! = ok, g4l .= gk
Increase: by 1 and go to (S1).

Let us briefly describe this bundle method. While (S0) and (S1) are initializing steps, (S2) con-
tains the stopping criterion. Then in (S3) a feasibility check of a projection problem with constraints
given by the current bundle is done with the consequence of resetting the lower bound of the opti-
mal value of (3.1) in the case of infeasibility in (S4). In the feasible case the projection is in fact
done leading to the next iterate in (S5) and new values of the objective function as wellsas the
subgradient in (S6). Finally, in (S7) the bundle update based on the Lagrange multipliers of problem
(3.3) is made so that the next iteration step can be done.

The practicability of this method can be easily shown by investigating each step separately.
Thereby we regard in (S5) that many QP-methods automatically geméﬁatg n since there are
n variables involved. In addition let us remark that between two successive updates of the lower
bound in (S4) the step (S5) has to reached at least once because the minimeg) of fi(z)on
S is attained at a certain point which is feasible for the following projection (3.3).

Now let us continue with a convergence analysis for the stated method started with a few tech-
nical results.
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Lemma 3.3 (cf. Lemma 3.1 in [28])
For any givenk € N we have:
If k(1) < k < k(I + 1) for somel € N then

k
Bl _ ks BAT
|z | > L;
otherwisek = k(1) for somel € Ny and
Ak
k1 _ ks B
Ja*+ = aflla > 7

Proof: Taking into account that**! is feasible for (3.3) we obtain for anyc J*
P = f@?) + gp(@) (@ —a?) < kflo, + (1= w)f5, = fu, — wAF.

Regardingf(xj) > jfp, the Cauchy-Schwarz inequality and the boundedness efslubgradients
this leads to

kAR < f(:nj) — £p+/€Ak
< f(@!) = f (")
= —gf(q:j)T(xk+1 —29) (3.4)
< lgg(@)[lzf|2*+ = 272
< Lyl|lz™* = 7).

If k(1 +1) >k > k(1) it follows k € J* from step (S7) so that the choige= k in (3.4) is possible

and the proposition holds in this case. Otherwisk # k(1) we can find g € J* with 27 = z*

due to (S4) so that the proposition follows again from (3.4). O

Lemma 3.4 (cf. Lemma 3.2 in [28])
If k(14 1) > k > k(1) for somel > 0 thenz® = z%~1 and

124 — a3 > [l — 213 + [|l2*+ — 3. (3.5)

Proof: Checking (S7) the equatiarf = %! is obvious.
In order to prove the second proposition consider problem (3.3) inksted, the orthogonal
projection ofz*~! onto the set described by

zeS, fla)<wflp, +(1—r)fi,' (GG

low

Due to (S5) and (S7)* is also the projection of“~! onto the enlarged set witi*~! instead of
JF=1. The projection theorem (cf., e.g., Hiriart-Urruty, Leraahnal [20]), Theorem 111.3.1.1) in
combination withz* = z5~! gives us

low

(zF —2MT(y —2F) <0 forall yE{xGSij(l‘)SFL Pl (1—k) 5;1 (jEJffl)}
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so that particularly
({Elg o l‘k)T(:Ek_H _ {L‘k) <0

holds if we additionally regard that (S7) ensures the feasibility*df' for the projection onto the
enlarged set. Therefore we obtain
12"+ — 2|13 = |2 — 2@l + [l2* = 2|3 + 2(2F — 2)T (@ - 2F)

> f|a® — a3 + [l = 2¥[13

which completes the proof. O
At this point an upper bound for the number of steps with fikedn be presented.

Lemma 3.5 (cf. Lemma 3.3 in [28])
If k(1) <k < k(I + 1) for somel € Ng andA* > 0 then

diam (S) Ly 2
KkAF

k—k(l)+1< <
with diam (S) := max ||z — y/|2.
z,yeS

Proof: If £ = k(l) the proposition follows from Lemma 3.3.
But if £ > k(I) we havez, MO = kO = = z¥ due to Lemma 3.4. Taking this and the
successive application of (3.5) into account one obtains

(diam (5))* > [|l2* ! — g]|3

k_ k- k k
> la® — 2+ [l — 23

k

k(1 k(i j j
> [loFOT — O3+ Y [l =5

j=k(l)+1

Note thatfi, > f% forall j < k due to (S1), moreover, thgf, = ff forallk(l) < j < k due
to (S7). ThusA? > A* for all k(1) < j < k. Therefore, using Lemma 3.3, we can conclude

(diam (S))? > Ek: (“N> (LAfk>2(k:—k(l)+1)

J=k(1)

which leads to our proposition. O

Lemma 3.6 (cf. Lemma 3.4 in [28])
If A¥ > ¢,,; for somek then

b < <diam(S)Lf)2 1

Eopt k2(1 —K2)
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Proof: SetKl = {k(l),...,k(l+1) — 1} for I € Ny. The proof of Lemma 3.5 shows that
i = [ [, = [, and consequentlpd > A’ hold for all pairsi, j € K' with j < i. Now,

an estimate for combining these separate results is established. Due I,deéi)) < fip for all

j € K!. Additionally, since (3.3) is not solvable in tiké! + 1)-th iteration step of the method we
have

k(l k(1
logw—&—l) > Hflo(w) ( )fk(l-‘rl
so that altogether
AR < o (fRIHD _ pd < (fi — Y = kAT (3.6)

follows for all j € K*.
Let m € Ny be given such that € K™ holds. Furthermore sek = {1,...,k}. Then
AF > e, AT < Adforallj € K(I)N K, j < k(l+1) — 1 and (3.6) allow to conclude
Al > S gorall ie KINK,1=0,....,m
km—l

Using this and Lemma 3.5 we obtain

. 2
|Kl N K| < <dlam (S) Lf> K2(m—l)
KE€opt

fori =0,...,m. Hence,

A diam (S 2
l 2(m—1)
/{:—E | K mK\gE < - > K
1=0 1=0

and the proof is complete. |

IA

<diam(S) Lf>2 1

KE opt 1 — k2

Now we are able to prove the main result of this chapter.

Theorem 3.7 (cf. Corollary 3.6 in [28])
If eope > 0 then Algorithm 3.2 will terminate ih=1+ Eope iterations where

diam (S) Ly 2 1
ot < < ) =Y

Eopt 1-— I€2) ’
Moreover, the inequalities )
J(@fe) = min () < eop +e 3.7)
and )
f(@fec) = min f(x) < eopt + 22 (3.8)
are true.

Proof: The first proposition is a consequence of Lemma 3.6, while, using (3.2), inequality (3.8)
follows directly from (3.7). Thus it remains to prove (3.7).

If the break in (S2) is caused tyy(xk) = 0 foranyk € N, Theorem XI.1.1.5 in Hiriart-Urruty,
Lemagchal [21]) givesf () < min,cs f(x) + . Using this, the definition of,. and (3.2) we
can conclude

F(@hee) < J(a*) < f(aF) < min f(2) +e.

z€eS
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Thus (3.7) holds in this case.
In the sequel we assume that the break is cause*oy. Eopt- Then it holds

rrok k k k k
f(xrec) = fup = flow + A" < flow +50pt-

Moreover, due to (3.2) angf(z7) € 9. f(27), we have

Py = J@)+gp@) (z —a?)

< f@)+ f(x) — f(@7) +e
= fl@)+e
forall 5 € N. Thus we inferfl’zw < mingeg f(x) + € and altogether we obtain (3.7). O

Remark 3.8 If a two-sided approximatiorf of f is given, i.e.

fx)—e < f(z) < f(z) +e

for all z € S instead of the one-sided approximation, the results stated above remain true if we add
an additionak to the right-hand sides of (3.7) and (3.8). O



Chapter 4

A logarithmic barrier method for convex
semi-infinite optimization problems

In this chapter we specify the necessary details to put Algorithm 2.5 into implementable form. For
that purpose we first consider problems of type (2.10)

minimize f(z) st zeR", I?ajgcg(:c,t) <0,
S

whereby we will denote the feasible set M and the optimal value by*. Later on, in Section
4.3, the developed algorithm as well as the convergence analysis are transferred to problems of the
general form (1.1).

4.1 Animplementable algorithm

Assumption 4.1 Assume the following:
(1) f:R™ — R is a convex function;
(2) T C RPis a compact set;
(3) g(-,t) is convex oR" for anyt € T,
(4) g(x,-)is continuous o for anyx € R"™;
(5) the setM := {z € M : maxser g(z,t) < 0} is nonempty;
(6) the set of optimal solutions
Mopt == {z € M: f(z) = f*}
of (2.10)is nonempty and compact;

(7) in caseh > 0 the setTl}, is a finiteh-grid on T (i.e. for eacht € T there exists;, € T}, with
|t — tn]l2 < h) and in caseh = 0 the setdl}, T coincides;

25
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(8) for each compact set C R" there exists a constaut}, with

g9(@,t1) — g(x, t2)] < Ls|lt1 — t2|2 (4.1)
forall z € Sandallty,ts € T}

(9) for each compact st C M a constantC's < oo with
el
maxyer g(z,t)

can be computed such théit ¢ S ¢ M, impliesCs < Cg;

(s > max

ma (4.2)

(10) for eachz € R™ and eacht € T an element of the subdifferential fin z and an element of
the subdifferential of(-, t) in = can be computed.

Regarding (1) and (3) it is ensured that we deal with convex problems of type (2.10). Furthermore,
due to (2) and (4) the maximization problems (2.12) are solvable and consequently the barrier func-
tions (2.11) are evaluable at least from the theoretical point of view. Moreover, (5) and (6) are
motivated by the theoretical results of the Chapter 2. Then Lemma 2.2 ensures the existence of a
minimizer of the barrier function (2.11) for any given> 0. Furthermore, the classical logarithmic
barrier method with exact minimizers' leads to an optimal solution of the semi-infinite problem
(2.10) in the sense of Theorem 2.3. But as stated in Section 2.3 we cannot suppose that the max-
imization problems (2.12) are exactly solvable. Therefore we admitted the next assumptions. (7)
allows to compute inexact maximizer while their accuracy can be controlled with (8). The necessity
of assumption (9) will become clear in the further course, while by (10) we want to point out that
indeed the computation of the subgradients are necessary in the implementation of the method. We
now state our method in detail.

Algorithm 4.2

e Giveny, > 0andz® € M.
e Fori:=1,2,...:

— Setz®? := 271, select; ; > 0 and definef; : My — R by

teT

e i= ) = et (~ (o))
- Fork:=1,2,...:
(a) Selectr; ;, > 0 such that
SR = {r e R": ||z — 2% oo < mip} C Mo.

(b) Selecth;; > 0 and definef; , : My — R by

fir(x) = f(x) = piIn <— max g(ﬂfi))

tGThi b

whereT),, , is a set fulfilling Assumption 4.1(7).
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(c) Selects; . > 0 and compute an approximate solutieft of
minimize fi(z) st z € S%* (4.3)

such that

F iky ' Eik
Ji(@™?) = min fi(z) < =

and f; . (z"*) < fir(z*1) are true.
(d) * If fie(@*1) = fir(@™) < ep/2 and f(a™F1) < f(20) + 2u; then set
gl = athl St = SOR =y 6 = €4k hy i= i, StOp inner loop;
s 0f fi (%1 — fir(a®*) < g;x/2 and f(zPF1) > f(20) + 24, then set
€ik+1 1= €ik/2, continue inner loop;

+ Bik (4.4)

s 0f fi (%1 — fin(2™F) > ¢,1/2 Sete; 11 := i1, cONtinue inner loop.

— SelectD < ;11 < -

The structure of Algorithm 4.2 resembles that of the conceptual Algorithm 2.5, but let us give ex-
planations for each particular step. In (a) we specify the compaétdets a linearly bounded set.

This decision is caused by the fact that linearly bounded sets are normally the simplest bounded
structures on that minimization can be done. Consequently minimizing the barrier function on the
chosen compact set is normally easier than minimizing it on more complex structures like quadrat-
ically bounded sets such as balls or ellipsoids. Additionally, having the bundle method from the
previous chapter in mind, we point out that the decision to choose linearly bounded sets is important
because in consequence of this the auxiliary problems of the bundle method are linear and quadratic
problems. Thus each of them should be efficiently solvable by standard approaches. Furthermore,
since M is an open set, step (a) is realizable.

In (b) we define the approximation of the barrier function while in (c) the approximate min-
imization of the barrier function is done with a certain solution accuracy. The condition (4.4) is
stimulated by inequality (3.7) in Theorem 3.7, when solving (4.3) with the bundle method proposed
in the previous chapter. Finally, in (d) the stopping criterion of the inner loop is given. It is di-
vided into three parts but mainly only two inequalities occur. The first one checks whether there is
achieved a sufficient improvement of the approximate solution on the current box with the selected
accuracy. The second part of the criterion is motivated by (2.5) so that it checks whether the accu-
racy parameter and the barrier parameter are in an appropriate order. If this is not the case then the
accuracy parameter is readjusted.

The critical point for a realization of the presented method is the question whether there exist
approximate solutions of (4.3) which fulfill the demanded criterions. As stated above (4.4) is initi-
ated by the bundle method presented in the previous chapter. Therefore we want to show that we
can use this bundle method for solving (4.3). We first notice that theSééts— M, are convex
and compact by construction (for any givey, > 0). Additionally, they are also nonempty, be-
causer*~! € M, holds by construction and due to the open structurdfthere exists a radius

Alternatively we can usé (z*~!) < minj—o,. .. i—1 f(z?) +2u; instead off (z*F~1) < f(z°) + 2u; but the latter
one suffices to guarantee the boundedness of the computed seduéhce
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rir > 0such thats** ¢ M, is fulfilled. Moreover, we have already remarked that the functifpns

are continuous odom (f;) = My = int (dom (f;)) (this can be proven for instance by using the
convexity property off; ondom (f;) in combination with Theorem 2.35 in Rockafellar, Wets [48]).
Consequently in (4.3) we have to minimize a continuous function on a compact set, which is obvi-
ously solvable. The further requirements contained in Assumption 3.1 are ensured by the following
lemma. To formulate this we define for alle R™ and allk > 0 the set of active constraints

T(z) = {s eT: g(x,s) = Itnea%g(x,t)}

and its approximation

Th(z) = {s €Ty : g(z,5) = maxg(a:,t)} .

teTy

Note thatT’(x) # () due to Assumption 4.1(2), (4) arfd (x) # () due to Assumption 4.1(7).

Lemma 4.3 Let Assumption 4.1 be fulfilled. L&tk be fixed and3; ;, > uiLtSi,kCSi,khi,k be valid.
Then Assumption 3.1 is fulfilled for probldh3) with fzk as an approximation fof; ande = 3; .

Proof: In order to show Assumption 3.1(a),(b) lete S** be arbitrarily given. Furthermore, let
t* € T(x) be fixed. Then, due to Assumption 4.1(7) there exigis@ Tj, , With [[t* —t5[|2 < hj 4.
Thus it holds

0< t) — t
_rtneaTxg(w, ) ténTifkg(w, )

< g(z,t*) — g(z, t})
< g(@,t") — g(z,tp)
< Ligin|[t* = tal2

< Liinhig.

(4.5)

The concavity of the logarithm givés(b) —In(a) < (b— a)/a for all positivea, b € R. Therefore,
regarding (4.5), we can conclude

fi(x) = fir(z) = pi (111 <—th§§1 9(z, t)) —In <— gleagg(fv,t)))

; a a
I max g(z, tén x g(zx,

' —maxser g(z,t) \ teT ik

(4.6)

t
< ,U,Z‘CSi,kLSi,khi,k < 51’,]@‘

Moreover, takingmax;cr g(x,t) > maxser, X g(z,t) and the monotonicity of the logarithm into
account, one infers

fir(@) < fi(x)

such that Assumption 3.1(a) is proven.
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To show Assumption 3.1(b) lef € T}, , (=) be arbitrarily given. Then, due to Assumption
4.1(10), we can computg(x) € 0 f(x) andv(x) € dg(x,t;). Thus the inequality

max g(z,1) > g(2,1,) > g(2,1;) + v(@)" (2 - )

is true for allz € R"™. If z € M one can conclude

In (— rtnea%(g(z, t)> <In(-g(z,t) —v(2)'(z — 7). (4.7)

Regarding (4.6), (4.7), the subgradient property. @fs well as the convexity of In we obtain for
all z € Mg that

fi(z) = fi(z) > fi(2) = firp(@) = Bin
> f(z) — piln (— man@vﬂ) — f(@) + piIn (-tngaX 9(90,75)> — Bik

teT Ry g

— i In (—g(x, th) — v(a:)T(z - :1:)) + piIn (—g(z,t3)) — Bik

)
> u(e)! (2 = 2) = s e(@) (2 - o) = B

T
— | w(z) — Hq ol G
- < () maxeer;,, , g(x,t) ( )> ( ) — Bik

Using f; = co onR™ \ M this inequality is also true for all ¢ M, so that

u(x) - maXtET:; @) € Dadil@) (4.8)
follows.

Finally, we show that Assumption 3.1(c) is fulfilled. The Lipschitz continuityfpfon the
compact seb** ¢ My = int (dom (f;)) follows from Rockafellar [45], Theorem 24.7. Moreover,
due to the same theorem the subdifferentials of the convex funcfiarl maxier, g(-,t) are
bounded above o8%* w.rt. the Euclidean norm by positive constanjsandc,. Furthermore,
the definition ofv(z) combined with Lemma VI.4.4.1 in Hiriart-Urruty, Len&hal [20] gives the
inclusionv(x) € a(maxteThi’k g(z,t)) for all z € S**. Thus, regarding Assumption 4.1(9), the
Euclidean norm of the; ,.-subgradients described in (4.8) can be estimated as follows

1

1
u(e) v(@) maxier, g(a,1)

maxicr,, , 9(z,0)

< Jlu(z)ly +
2

[o(2)l,

<cp+ piCgincg < 00

for all z € S“*. Therefore, using the approximate subgradients defined in (4.8) the third part of
Assumption 3.1 is also true. O

Summing up we have shown that we can use the bundle method stated in the previous chapter to

determine approximate solutions of the problems (4.3) with > uiLgikaSi,k hi i Furthermore,



30 4 A logarithmic barrier method for convex semi-infinite optimization problems

if we use this bundle method we do not have to sebegtexplicitly, because; . = ,UziLtsi,kCSi,k hi

can be used aftet; ;. is known.

Remark 4.4 If it is possible to determinenax;c7 g(x,t) exactly for each feasible solutionwe

can seth; , = 0 for all pairsi, k. Consequently3; ;, = 0 is allowed (independent of the values
Ltsm, Cgix) such thatf;k andf,, are identical. This leads to some simplifications in the algorithm
above as well as in the following convergence analysis. Furthermore, in this case we can drop the
Assumptions 4.1(7) and (8). O

At the end of this section we can summarize that the presented Algorithm 4.2 is practicable. A
convergence analysis follows in the next section.

4.2 Convergence analysis

In this section we present conditions on the parameters of Algorithm 4.2 which guarantee that we
obtain an optimal solution of (2.10). We start with a characterization of the first part of the stopping
criterion in part (d) of the inner loop of Algorithm 4.2.

Lemma 4.5 Let Assumption 4.1 be fulfilled. Moreover, idie fixed and: be an arbitrary optimal
solution of
minimize f;(z) s.t. x € M. (4.9)

f denotes the minimal value of problém9). Letz**~1 x%* be generated by Algorithm 4.2 and
Bik > pill;  Cginhi . be valid. If the inequality

fir(@h) = fir(a™) < 62’“ (4.10)
is true, then
-1 e —
0 < fi(x"") — fF < max {1, r—} (eik + 2Bik) (4.11)
ik
holds.

Proof: We first remark that Lemma 2.2 ensures the existendeasf optimal solution of (4.9).
The inequalityd < f;(x**~1) — f* obviously holds, since’*~! is feasible for (4.9) by con-
struction as well as

g iky ‘ €i,k
Fir(@") — min fi(z) < =

by construction. Together with (4.10) this yields

+ Bik

fir(a™F1) — Iélénk fi(z) < ek + Bik
x s

Using (4.6) we get

filaF ) — min fi(@) < i + 2Bik- (4.12)
rxesSh

At this point we distinguish two cases with regard to the locatiof. Ve first consider the case
& € 8%*. Thenz is also an optimal solution of (4.9) so that

Fil@ Y = fF = fi@™ ) = fi(@) < eip + 2Bk
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follows from (4.12). Therefore the proposition (4.11) is true in this case.
Now, let us consider the case¢ S** and define the line throughi-*~! andz by

S

ik—1
27T = 2 oo )-

v(s) i= Pl 4 (z—=x
Due toz ¢ S“* we have||z®F~1 — 2| o > 7,1 > 0. Thereforey(r; ;) lies between:**~! and# on
that line. Sincef; is convex onM, with minimizerz, one getsf;(y(r; 1)) < fi(z%%~1). Moreover,
the equation|z®*~1 — y(r; x)|loc = 7ix IS true so that(r; ) € S“*. Thus, using (4.12), we obtain

Fi@™ ) = fi(v(rig)) < ik + 2B g (4.13)

Besides we have

Ty,
; k) <
RO < i =5

N Tik i k—1
. 1 _ _ ) . 1,
fild) + ( ||tk — 53”00> il )

A

sincef; is convex onMg and0 < r;, /||#%*~! — &l < 1. This leads to

in . xi,kfl —% o i
it — i) < Bt () — i)
Tik
such that with (4.13) the estimate
) xi,k—l — % o
flatty - g < | o (0, + 26,1

Tik
follows. Thus the proposition is also true in the second dageS** and the proof is complete 0

Now a sufficient termination condition for the inner loop of Algorithm 4.2 can be presented.

Proposition 4.6 Let Assumption 4.1 be fulfilled. Moreover, tebe fixed,q; € (0,1), §; > 0 be
given andr; ,, > r; > 0 be valid for allk. If

Ll Cginhig < Big < qFo (4.14)
is true for all k, then the inner loop of Algorithm 4.2 terminates after a finite number of steps.
Proof: The inner loop terminates after a finite number of steps if the inequalities (4.10) and

f(xi’k_l) < f(2%) 4+ 2 (4.15)

are both true.
In the main part of the proof we assume that both inequalities never hold together. In order to
bring this to a contradiction we first exclude that (4.10) never holds.

a) Suppose that the inequality (4.10) never holds.
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Then the algorithm generates an infinite seque[méé}k ande; , = ¢;1 for all k € N. Addi-
tionally, the estimatg; . (z*) < f; x(2**~1) holds by construction so that we infer with (4.6)
0 < fir(z™* 1) = fia™®) + B
< fir(@™ Y — fippr (2F) + g5

= | fix(@™ ) Zq — | firta(z Zq

for all £ € N and hence

il 1) Z ql9; (4.16)
k
is a monotonically nonincreasing sequence. Furthermore, this sequence is bounded below because

we have

1
L —q

Figpla™ 1) Zq35>f ) = Bk — > qloi > f -

J=0

0i

for all £ with f given as in Lemma 4.5. Thus the sequence given in (4.16) converges. Combining
this andql’.“él- — 0 for kK — oo we can find an indek, such that

~ - ~ . ~ - ~ . 5
Fieo @07y — fi o1 (2770) < fig (@7F07Y) — fi o1 (290) + gfo8; < ==

and

k 511
szo<q105 < — 4

Then another use of (4.6) leads to

Fiko (@ F071) — f o (2F0) < f o (R0 1) — Fi(@"70) + B 4
< fiko (@07 — fi g1 (2550) + By g,
51 1 €1 51_,1
0Ty T

This contradicts our assumption and we have an irkdexch that (4.10) is fulfilled.

b) Suppose that the inequalities (4.10) and (4.15) never hold together.
As in a) one can show that (4.16) defines a monotonically nonincreasing sequence. Therefore,
taking (4.6), (4.14) ang; <€ (0, 1) into account, we infer

k—1
k= 1 Z%é <fz zk—1)+ﬁi7k_quj§i
=0
< fin(a™®) +qfs; — o;
< fi(z"?)

forall ¥ € N. Thus
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for all £ € N implies

F e N; = {x e My : fi(z) < fi(xi’o) + 7 _1 q-(si}
forall k € Ny. The setV; is compact since it is a nonempty level setfpfcf. Lemma 2.2). Hence,
the sequencf||z** — || }» is bounded above by a constd@nt> r;, wheres is an arbitrary optimal
solution of (4.9).

From the first part of the proof we know that there exists an indlesuch that (4.10) holds
for k = k; for the first time. Using the same arguments for all indices greaterihave find an
indexky > k1 such that (4.10) holds fot = k, again. Repeating this procedure we get a strictly
monotonically increasing sequengk;} such that (4.10) holds for af = k;. Then, we deduce
from Lemma 4.5

0< fila™™=) — fr

xi,k}j—l — 3
< max {1, | oo } (&ik; + 205 k;)
Tik;
i,kjfl __ 4 .
< max {1, u} (Ez‘,kj + 2qu51<>
Ti,k;

for j € N. Itis simple to verify thatk; > j ande;;, = (1/2)7~1e; ; are true. Thus, regarding
|z#*i =1 — 3| < C as well ag;x > r; > 0 for all k, we have

' Jj—1 )
0< fi(z™hil)y — fr < ¢ ((%) €0+ 25@“1?)

T

forall j € N. Hence,
tim f; (a457) = 7.

J—00
Since{x%*i}, belongs to the compact sAt there exists an accumulation poirit € N;. From the
last equation we obtain that solves (4.9). Due to the continuity gfthere exists an indexe N
with f(z*%1) < f(2*) + ;. Combiningf* < f(2°) and (2.5) leads to
FE T = @) < f@") + = f7 < 20

This contradicts our assumption, both inequalities (4.10) and (4.15) are trkle:fd% and the proof
is complete. |

Remark 4.7 The assumptiom; ;, > r, > 0 is not used to prove that all iterates belong to the
nonempty compact sé¥;. Therefore there exists afi > 0 such that the inclusion

R" : mi - <rf
{ze ;1615\]111||z xHoo_rl}CMo

is valid sinceM is an open set. Thus, theoreticatly, > r, > 0 is no restriction for the algorithm.
It still restricts the practical computation of the radij, of course. O
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Remark 4.8 In (4.14) the right-hand sidﬁ“éi can be replaced by an arbitrary summable sequence
d; 1, to remain true Proposition 4.6. O

With Proposition 4.6 we are able to control Algorithm 4.2 in order to make sure that each inner
loop terminates and a well-defined sequeficg is generated. Before we proceed with the main
convergence result let us recall the notatior 0&s final accuracy value at theh iteration and of
r; as radius of the finally considered compact st this iteration.

Theorem 4.9 Let Assumption 4.1 be fulfilled. Moreover, fet }, {0;} be positive sequences. Ad-
ditionally, letR > 0, {¢;} C (0,1) be given and assume th@.14)holds for alli € N and all k
appearing in the outer step Furthermore, assume that

() lim g =0;
11— 00
(i) r; <mip < Rforalli,k;

(i) lim g;/r; = 0;

71— 00

Then Algorithm 4.2 generates a sequeficg, which has at least one accumulation point and each
accumulation point is an optimal solution ¢2.10)

Proof: It is easy to see that the assumptions of Proposition 4.6 are satisfied foi eadN.
Therefore each inner loop terminates after a finite number of steps and the algorithm generates a
sequencéz’} which belongs to the level s¢t € R" : f(z) < f(2°) +2u1} by construction. Due
to Assumption 4.1(6) and Corollary 20 in Fiacco, McCormick [9] this level set is compact. Thus the
sequencgx’} has an accumulation point and we have to show that each accumulation ppif} of
is an optimal solution of (2.10).

Let z* be such an accumulation point pf‘} and let{z% } be a convergent subsequence of}
with lim; .o 2% = x*. By z; we denote an optimal solution of problem (4.9) witk- 7;. Using
Lemma 4.5, (4.14) as well ag, < (0, 1) we obtain

0< fi;(z) = f}
mij — ¥
< max {17 w} (gij + 2/82])

Tij

Tl — ot
< max {1, w} (€4; + 20;;).

(4.17)

Tij

Furthermore, applying Theorem 2.3, we know that the sequé:ﬁ}:]ahas an accumulation point.
Without loss of generality we assume that } is already convergent to the limit point*. Applying
Theorem 2.3 again we conclude thét is an optimal solution of (2.10) and

lim f = f* (4.18)

J—00
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IS true.
Obviously itis||lz" — 27|l < [|2% —2**|| oo + ]2} — 2™ . Since alls* belong to the compact
level set{z € R"™ : f(z) < f(z°) + 2u1} the first term of the right-hand side is bounded above.
The second term is also bounded above due to the convergence of the sequences involved. For this
reason there exists a constanhtvith ||z — 2% |leo < C forall j. Together with (4.17) we have

0< fiy(a™) = fi; < max{l’ rO} (G +205).

Y5
In view of Assumptions (ii), (i) and (iv) we obtain
0< lim fi (z"7) = f;, <0
j—o0
and from (4.18) it follows
lim f; (z") = f*. (4.19)
j—oo

In the sequel we show th&t:/ } is not only a minimizing sequence but converges to a solution
of problem (2.10).

The continuity off giveslim; ... f(z%) = f(z*). This combined with (4.19) allows to con-
clude that the limit point ofi;, In(— max,cr g(+', t)) exists and

lim 41, In <— maxg(:vij,t)> = lim f(2%) — lim fi; (%) = f(a*) — f*. (4.20)
j—00 teT Jj—00 Jj—00
Now we distinguish the two casesax;cr g(z*,t) < 0 andmaxycr g(z*,t) = 0. One of them
must be valid sinceé\ is the closure of\, andz* is an accumulation point of the sequer{aé}
with ¢ € M, holds for alli.

In the first case we assumeax;cr g(z*,t) < 0. Then the sequendgn(— maxer g(x%, 1))}
is bounded and

Bim p;; In (— fgleagg(m”,t)) =0.

Together with (4.20) we obtaifi(x*) = f*. Asz* is feasible for (2.10) it is an optimal solution as
well.

Now, in the second case, we assumex;cr g(z*,t) = 0. Therefore there exists a constapt
so thatmax;er g(z%) > —1 is true for allj > jo. Thus the inequalitiek(— max;e7 g(z%)) < 0
andy;; In(— max,er g(+%)) < 0 hold for all j > jo. Hence,

Jimpri; In (— rgleagg(wzj,t)) <0

is true and (4.20) yieldg(z*) — f* < 0, proving thatz* solves (2.10) in this case, too. a

Remark 4.10 The Assumptions (iii), (iv) in Theorem 4.9 are a posteriori criteria since we do not
know ¢; andr; before the inner loop in stepterminates. Relation (iii) can be satisfied, e.qg., if we
change it into

(ii)" lim e;1/r; = 0.
71— 00
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But, of course this requires an a priori computationof

If this is not possible we have to run stepf the algorithm with an arbitrary; o. When the
inner loop terminates, we check whethefr; andd; /r; satisfy decrease conditions, e.g. geometric
decrease. If at least one of them does not do so, we repeat the step with smaller valygaridfor
0; until the decrease conditions are satisfied. This procedure is finite forfifede control the
computation of the radii because the values;gfcan be bounded below (see Remark 4.7). O

4.3 Extension to general convex problems

Up to now we only considered convex semi-infinite problems with a single constraint. As already
mentioned before in this section our algorithm as well as the analysis will be transferred to general
convex problems of the form (1.1)

minimize f(z)
st. zeR", Arxr=b, AcR™", beR™,
gi(z,t) <0 forallte T (i=1,...,10).

We again denote the set of feasible solutions by
M= {x e R": Az =b, m%xgi(m,t) <0(i= 1,...,1)}.
teT™

The required assumptions are:
Assumption 4.11
(1) f:R™ — R is a convex function;
(2) T* c RPi is a compact set for eache {1,...,1};
() gi(-,t) is convex orR" for anyt € T% and eachi € {1,...,1};
(4) gi(x,-) is continuous ofT; for anyz € R™ and each € {1,...,1};
(5) thesetM :={z € R" : Az =b, maxscrigi(z,t) <0(i=1,...,1)}is nonempty;
(6) the set of optimal solutions1,,; of (1.1)is nonempty and compact,

(7) incaseh > 0,i € {1,...,1} the setT} is a finiteh-grid on 7" (i.e. for eacht € T" there
existst, € T} with|[t—t,]|2 < h)andincasér = 0,4 € {1,...,1} the setd}, T" coincides;

(8) for eachi € {1,...,1} and each compact sét C R" there exists a constat; ¢ with
’97«(1"7t1) - gl(l‘,tg)’ < L;SHZLJ — t2||2

forall x € S and allty,t, € T,
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(9) for eachi € {1,...,1} and each compact set

teT™

S c M= {x € R" : maxg;(z,t) <0(i = 1,...,l)}
a constanC; ¢ < oo with

1
Ci,s > max | —————
zeS |max g;(x,t)
teT!

can be computed such thét ¢ S ¢ M, impliesC; s» < C; s;

(10) for eachi € {1,...,1}, eachr € R™ and eacht € T% an element o f () and an element of
the subdifferential of; (-, ¢) in x can be computed.

These are direct generalizations of those in Assumption 4.1. The modified algorithm now reads:
Algorithm 4.12

e Givenyu, > 0andz® € M,.
e Fori:=1,2,...:

- Setz®0 := 271, select; ; > 0 and definef; : My — R by

fi(z) u121n< max gy (& t)>

- Fork:=1,2,...:

(a) Selectr; ;, > 0 such that

k= {z e R" : ||z — $i’k*1HOO <rikt C M.

(b) Selecth?, > 0forv =1,...,land definef; ;, : Mo — R by

Furla) = f mzm—mwmﬂ)

whereT,‘lf_yk fulfilling Assumption 4.11(7).

(c) Selects; ;. > 0 and computer* as approximate solution of
minimize fi(z) st ze S, Az =10

such that

for(@®™) = min_ fi(x) < “2E 416,

x€SHE

andf; . (z"*) < fir(z"*1) are true.
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(@) x If fir(a™ ) = fin(@™*) < gx/2 and f(a™F1) < f(2°) + 2p; then set

U= bkl Gl = SOR =g, e = g, BY = hi (v=1,...,1), stop
inner loop;

s if fip(@P 1) — fir(@®*) < eix/2 and f(zPF1) > f(20) + 24, then set
€ik+1 = €i /2, continue inner loop;

X

s if fip(z9F 1) = fip(z9F) > ;1./2 Sete; k41 = &, cONtinue inner loop.

- Select) < pir1 < p;.

The practicability of this method can be shown analogously to the corresponding part in Section
4.1. There are only some changes based on the different structuvg of.e. we cannot assume
anymore thai\ is open. But it is still a relatively open set and that suffices to prove the most used
results while in that cases where an open set is required we can régiabg M. Further changes

are caused by the fact that we now deal with more than one inequality constraint, for instance we
assume nows; j, > ML;Si,kC,,,Si,khzk foreachv = 1,...,1. Then a convergence analysis can be
done analogously to Section 4.2 and we obtain the following main result (cf. Theorem 4.9).

Theorem 4.13 Let Assumption 4.11 be fulfilled. Moreover, fet}, {J;} be positive sequences.
Additionally, letR > 0, {¢;} C (0,1) be given and assume that

1Ly, i Cyginhiy, < Big < a;bi
holds for alli € N, all k¥ appearing in the outer stepandv = 1,...,[. Furthermore, assume that
(1) lm p; =0;
11— 00
(i)) 7, <rx < Rforalli,k;
(iii) lim g;/r; = 0;
71— 00
11— 00

Then Algorithm 4.12 generates a sequefieé}, which has at least one accumulation point and
each accumulation point is an optimal solution(Gf1).



Chapter 5

Regularization of the logarithmic
barrier approach

In the previous chapter we mainly considered semi-infinite problems of type (2.10)
minimize f(x) st ze M= {z e R": I{l&g{g(z,t} < O}
€

under Assumption 4.1. Particularly we assumed in Assumption 4.1(6) that the solution set of the
given problem is compact. But this assumption excludes a lot of problems from being solved with
the presented method. Thus the goal of this chapter is to discuss a numerical method even for
such problems. This can be combined with an improvement of the convergence quality (e.g. rate of
convergence) for problems fulfilling Assumption 4.1.

Let us remark that we consider again problems of type (2.10) for describing and analyzing the
method in detail. But, of course, as stated in the final section, it is possible to transfer the approach
to general problems of type (1.1).

In the first section the method is introduced, while the following sections contain several con-
vergence results including results on the rate of convergence for the values of the objective function
as well as the computed iterates.

5.1 Aregularized logarithmic barrier method for convex semi-infinite
problems

As stated above we want to drop the assumption of the compactness of the solution set of (2.10). But
this compactness (in particular the boundedness) is directly used in the proofs of the basic results
Lemma 2.2 and Theorem 2.3 as well as Theorem 4.9. Obviously this assumption is essential for the
results of the previous chapter and it turns out that in fact we cannot use the presented Algorithm 4.2
for solving problems of the form (2.10) without the assumption of the compactness. For instance,
considering the trivial problem

minimize f(z)=0 st zeR, zt<0(t€][0,1])

39
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we will obtain a fast decreasing sequerfaé} by Algorithm 4.2 where convergence of any sub-
sequence is not detectable. Therefore we have to look for another method to treat semi-infinite
problems under the following weaker assumptions.

Assumption 5.1 The Assumptions 4.1(1)-(5) and (7)-(10) are assumed to be Viokeover, it is
assumed that

(6) the set of optimal solution$A,,; of (2.10)is nonempty.

One approach to attack problems with an unbounded set of optimal solutions is to use regularization
techniques on the original problem. That means the given problem is transformed into a sequence
of problems with a bounded set of optimal solutions (or ideally with unique optimal solutions).
Several approaches exist for this transformation and are discussed in detail in a couple of papers
and monographs mainly in the context of ill-posed problems (see, e.g. Bakushinsky, Goncharsky
[3] and Kaplan, Tichatschke [24]). Some promising approaches like the Tichonov-regularization
and the Proximal Point method are based on the well-known fact that a strongly convex, continuous
function has a unique minimizer on a closed set. Thus the idea is to transform the convex objective
function f into a strongly convex function.

As it is already stated, one approach in this context is the Tichonov-regularization, where we
consider auxiliary problems of the form

minimize f(:E)Jr%Hng st reM

with positive parametes.. To obtain an optimal solution of the original problem we have to solve

a sequence of such auxiliary problems whereby the paramédtas to converge to zero (see, e.g.
Theorem 6.4 in Poljak [39]). Thus the regularization effect by means of the added quadratic term is
getting smaller and smaller. In fact it vanishes from the numerical point of viewfalls below a
certain value depending on the machine precision.

Therefore, in the sequel we consider the proximal point technique which was introduced by
Martinet [32, 33] and extensively studied by Rockafellar [46,47]. In this approach the attempt is
made to keep the positive properties (like unique solvability) and remove the described negative
properties of the Tichonov-regularization. Both is achieved by applying a different quadratic term
in the auxiliary problems such that we now consider the problems

minimize  f(z) + ng —a|} st zeM (5.1)

with prox-parametes and so-called proximal point. In order to obtain an optimal solution of the
original problem one has to solve a sequence of auxiliary problems of this kind with the proximal
point in each step given by the solution of the previous step. Furthermore, it turns out that the
regularization parameteris not required to converge to zero (see, e.g., Rockafellar [46, 47]).

In the case of convex semi-infinite problems Kaplan, Tichatschke [26] suggest to combine the
proximal point technique with the method of outer approximation which is a discretization strategy

1In the sequel we assume the assumptions to be enumerated as in Assumption 4.1.
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of the compact sef’. But we want to avoid such an outer approximation and the key for it is the
observation that each auxiliary problem of type (5.1) is also a convex semi-infinite problem. These
auxiliary problems fulfill slightly differing assumptions as the given problem, namely they fulfill
Assumption 4.1 if Assumption 5.1 is valid for the original problem. The Assumptions 4.1(1)-(5)
and (7)-(10) can be simply derived from the corresponding parts in Assumption 5.1 keeping in mind
that an element of the subdifferential of the objective function in (5.1) in a fixedR" is given by

the vectors(x — a) added to an arbitrary element of the subdifferentiaf af . Moreover, (6) is
enforced by the additional quadratic term in the objective function of (5.1).

Consequently we could solve each auxiliary problem of type (5.1) with Algorithm 4.2 if As-
sumption 5.1 holds for the given semi-infinite problem. But as Algorithm 4.2 typically terminates
with only an approximate solution anyway there is little sense in solving each auxiliary problem of
the sequence with an accuracy as high as possible. In particular we suggest to realize only the inner
loop of Algorithm 4.2 for each problem of type (5.1) to compute an approximate solution of it with
fixed barrier parameter, which is then used as the new proximal point.

A practical realization of such a step requires the predetermination of the barrier and the prox
parameter. From the classical logarithmic barrier approach it is known that the barrier parameter has
to converge to zero, e.g. by reducing it from step to step. But, due to the fact that the conditioning of
the barrier problems is getting worse with decreasing the barrier parameter, it makes sense to keep
this parameter fixed for a couple of steps. In order to permit a dynamical control the choice of the
barrier parameter is made dependent on the progress of the iterates in the last step. To avoid side
effects which can influence this choice we keep the prox-parametarstant as long as the barrier
parameter is not changed. Merely the proximal point is updated more frequently. Altogether we
obtain a so-called multi-step-regularization approach (cf., e.g., Kaplan, Tichatschke [24-27]).
Algorithm 5.2

e Givenuy > 0,2° € Mg, 01 > 0ands; with 0 < s < 51 < 5.
e Fori:=1,2,...:
— Setz?0 := pi— 1,
—Forj:=1,2,...:
x Setz™V .= z"~1 select; ; > 0 and define;; ; : My — R by

» . . _ Siy o q—12
F; i(z) :== f(x) ,ulln< 1;1&3{9(&:,75))—# 2Hx T II5- (5.2)

x Fork:=1,2,...:
(a) Selectr; j > 0 such that

ik — {reR": |z — «’L’i’j’kfluoo < Tijk} C Mo.

(b) Selecth; ;> 0 and define; ;5 : Mo — R by

S; .
Fijr(x) = f(z) —p;In | — max g(z,t) | + - atd 1”%
teThi,j,k 2
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whereTy, .. fulfills Assumption 5.1(7).
(c) Selects; ;, > 0 and compute an approximate solutighi* of

minimize  F;j(z) st x € Sk (5.3)
such that
3 N ' o
Fyjp(a™®) — min Fj(z) < =L + 85 (5.4)
re Sk 2

andF; j x(2"7F) < F 5 (x%9+-1) are true.
d) If

Fz’,j,k(l’i’j’kil) - Fzgk(x”k) < EZTJ (5.5)

then setw®’ = p®k=1 Gii .= Wik p, .= r; ;) and stop the loop it
otherwise continue with the loop
% If ||z — 2897 Y|y < oy then setw? := 289 r; == 1, ;, j(i) := j and stop the loop
in 7, otherwise continue with the loop jn

— Select) < piyr1 < pi, 0 < s < 8541 < sando;4q > 0.

Except for the stopping criteriofi(z**~1) < f(x°) + 2u; the inner loops irk of Algorithms
4.2 and 5.2 compare to each other. The additional rule is needed in Algorithm 4.2 as it does not
generate a bounded sequence per se. We will prove later that this behaviour is avoided automatically
in Algorithm 5.2 above. To ensure the practicability we have to transfer Lemma 4.3 explicitly to the
new situation.

Lemma 5.3 Let Assumption 5.1 be fulfilled. L&tj, £ be fixed ang3; ; , > uiLgi,j,kCSi,j,khi,j,k be
valid. Then Assumption 3.1 is fulfilled for problé&m3) with Fm,k as an approximation of; ; and

€ = Bijk-

Proof: Due to the fact that Assumption 4.1(6) is not used in the proof of Lemma 4.3 we can apply
these results. For that purpose we repl&t€ by S%/F andh; i, by h; ; x. Then we obtain

0< T{le%z(g(%t) - terirfl;iik g(x,t) < Lgisuhijn (5.6)
0< Fj(x) — By jr(x) < wiCgiinLiisnhijie < Bijn (5.7)
and
Hi
u(z) — v(z) € 8ﬁkafl(‘r)

msien, 9@ )

analogously to (4.5), (4.6) and (4.8) if we user) € 0f(x), v(z) € 0 (maxteTh”k g(:c,t)) and
the notationf; as in Section 4.1. Consequently Assumption 3.1(a) is already shown.
In order to show part (b) we regard

Si i
Fij(x) = filz) + 5 llz —a® 3
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so that for allz € M,

Si Goi—
050 Fig(@) D 05, Ji(@) +0 (S llx = 2*97|3) (5.8)

follows from Theorem XI.3.1.1 in Hiriart-Urruty, Lemachal[21]. Furthermore,

s iji—112) _ ij—1
0 (Sllz ="t 3) = {si(e — 2"} (5.9)
since this quadratic function is differentiablesin Therefore we obtain

Hi
maxier, 9(,1)

u(zx) — v(z) 4 si(x — 1) € 0, ;. Fij(x) (5.10)

for all z € M,, particularly for allz € S*7** ¢ M, and Assumption 3.1(b) is fulfilled too.

Finally, Assumption 3.1(c) remains to show. The Lipschitz continuity’of on S5k can be
established in the same manner as it is done in the proof of Lemma 4.3. From there we also know
that the first term of the subgradient (5.10), coming frims bounded above of~/**. Additionally
the second term;(z — x*7~!) is simply bounded above by the definition $f/*. Therefore all
subgradients given by (5.10) are bounded abov&'dirf which completes the proof. a

In consequence of this lemma we know that the bundle method presented in Chapter 3 can also
be used to solve the auxiliary problems arising in Algorithm 5.2. As in the previous chapter we
can uses; ;= piCgisk L ;. hijx With predefined; ;. as error level when applying the bundle
method.

Remark 5.4 If max;er g(x,t) can be determined exactly for eachve can seh; ;;, = 0. Then, as

stated in Remark 4.4 for the unregularized algorithm, some simplifications in Algorithm 5.2 as well
as in the analysis of it are possible. Particularly, the Assumptions 5.1(7) and (8) are not necessary in
that case. O

5.2 Convergence analysis

In this section we want to show that Algorithm 5.2 leads to an optimal solution of problem (2.10)
under appropriate assumptions. We start with a closer look at the IdapAnalogous to the result
for the finiteness of the loop ik of Algorithm 4.2 the following result holds.

Lemma 5.5 Let Assumption 5.1 be fulfilled. Furthermore, et be fixedg; ; > 0 andg; ; € (0,1)
be given. If

1L 1 Ciiwhign < Bijn < a0 (5.11)

is true for all k, then the loop irk of Algorithm 5.2 terminates after a finite number of steps.

Proof: The proof is analogous to part a) of the proof of Proposition 4.6. a

At this point we want to analyze the consequences of the stopping criterion of the lbop in
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Lemma 5.6 Let Assumption 5.1 be fulfilled. Furthermore, fej be fixed and: be the unique
optimal solution of
minimize F;;(z) s.t. x € M. (5.12)

Moreover, letz/k~1 3:3% pe generated by Algorithm 5.2 ang ;, > il ;1 Csigichiji, be
valid. If inequality(5.5)is true, then

i,7,k—1

.. 27 — 7
Oéfﬁﬂﬁ*kl%—ﬂdﬁ)ﬁnmx{L”m ”””}<QJ+2@¢Q (5.13)
Ti7j7k
and
‘ B NN [ ’ k=1 _ w” < max \/ 2(eiy + 25@;‘,@, 2(ei,j + 2Bijk) (5.14)
> 2 Si SiTijk
hold.

Proof: First, let us remark that Lemma 2.2 ensures the solvability of (5.12). This theorem can be
applied because (5.12) is a barrier problem for a minimization problem of type (5.1). Additionally
(5.12) is uniquely solvable sindg ; is strongly convex ooM,.

Inequality (5.13) can be shown analogously as (4.11) in the proof of Lemma 4.5 so only the
second inequality needs to be proven.

Due to the strong convexity of; ; with moduluss;/2 (in the sense of Definition A1.20 in
Kaplan, Tichatschke [24]) we have

Si
Fi(Or+ (1= Ny) SAF (@) + (1= MF5(y) = 5A0 = Ve =yl
forall A € [0, 1] and allz, y € M,. Taking into account that

Fij(2) = zé&lﬁo Fij(2) < Fij(Az + (1 - N\)y)

forall A € [0,1] and allz, y € M, it follows that
Fij(%) < AFij(@) + (1= N Fy(2"* 1) - %A(l = NE =2

and
(1= NFij(@) < (1= N F (2™ - %A(l =N — a3
are true for all\ € [0, 1]. Hence,

Fj(#) < Fij(a™*71) = %

Al — ™43
forall A € [0, 1) so that

Si R iike— iik— R

S8 =2 < By (@) — (@) (5.15)
follows with A 1. Using (5.13) one obtains

%Hi" — xi’j’k_lﬂg < max {1,

—Z
I } (€ij + 2Bijk)-

711'7j7k
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At this point we distinguish two cases. We first suppose that ||z59%~1 — (/oo /7 ;5. Then it
holds

Si i a C g

Sl = @S < (ei + 26150)

and
y y e, 4+ 28; .
‘ k=1 _ ;i" < |z - xw,k—lH2 < \/ (5m + ﬁumk)_ (5.16)
o0 S
In the second case the inequalityc [|z#9+~1 — #||o /7. x is Supposed to be true. Then
% - gtk < | loe (i 2100 < | b2 (i 4+ 2650
ri?j7k TZ7J7k

is valid. We conclude that

R S R - 2 €; _|_2 L.
||$ _ mw?k 1”00 < ||x _ :v”’k 1”2 < ( %] ﬁm,k)' (5_17)

Combining (5.16) and (5.17) completes the proof. O

In the following we denote the Euclidean ball with radius> 0 aroundz. € R" by K, (z.),
i.e.
K- (xz.):={x e R": ||lx — z.|]2 < 7}.
Theorem 5.7 Let Assumption 5.1 be fulfilled. Furthermore,tet 1 andz. € R"™ be chosen such
that Mo N K js(zc) # 0. Letx* € Mopt VK- jg(2e), & € MoNK7(zc) andz' € MoNK, 4(zc)
be fixed and; ; > 0, ¢;; € (0,1), ; > 0, € T(Z), v € dg(Z,t) as well as

c>|lz—2%||2 and c3:=f(Z)—f_+co+
with

f— S:?eli\r/lif(.x)’ Co =

, c:=In (— max g(Z,¢) + 2||’L7H2>

be given. Moreover, assume th&t11)is true for alli € N, 1 < j < j(i) and all & occurring
in the outer loop(i, ) and that the controlling parameters of Algorithm 5.2 satisfy the following
conditions:

2(e4,5 +20;5) 2(eij + 20i)

max , < a4, (5.18)
Si 73,554
0<piv1 <pi<1 forall ieN, pu <e @, (5.19)
> [( g (2] In g4 —l—ln7)> + 2ep; + oy <% (5.20)
i=1 v

and )

2 2
o; > . (2| Inpi| + In7) + 47 |+ . (5.21)

%

Then it holds
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(1) the loop ink is finite for each(i, j);
(2) the loop inj is finite for eachi, i.e. j(i) < oo;
) ||lz% — z¢|l2 < 7 for all pairs (4, 7) with 0 < j < 5(i);

(4) the sequencézr™} = {10, ... M) 220 223() 230 1 converges to an element
.’L'** G Mopt m KT(J)C).

Proof: Our first proposition follows immediately from Lemma 5.5. The other propositions will be
proven similarly to the proof of Theorem 1 in Kaplan, Tichatschke [27].

We first definez’ = ;7 + (1 — p;)x*. Dueto0 < p; < 1,2 € Mg = int (M), z* € M
and the fact thatf is convex one can infer’ € M, with Theorem 6.1 in Rockafellar [45]. Then it
follows

—p; In <— maxg(zi,t)> = —p;In <— max g(u; T + (1 — uﬁx*,t))
teT teT

< —q: 1 7 _ s *
< mln< pimax g(z,t) — (1 uz)rtngg(w,t)>

~ 5.22)
< — s — (s (
Wi In < 7% I&&xg(m,lﬁ))

= — <lnui +In <— max g(Z, t)))
teT

< g (| Inpag| + co)

because themax —function is convex and the logarithm increases monotonically. Furthermore, the
estimates

128 = *[|2 = pl|Z — 2*||2 < eps (5.23)
and
F2) < paf () + (1= pa) f(2*) < f(a*) + pa(f(E) — f-) (5.24)
are obviously true. Additionally, this yields
man(l‘at) > g(l'vf) > g(i'vf) + @T(x - j) = max.g(i‘7t) + IN}T(:‘C - j)

teT teT

for all z € R"™ sincetv € dg(z,t), t € T(x). Consequently, using the Cauchy-Schwarz inequality
andz € K, (z.), we obtain
0 < —maxg(z,t) < _T%{g(‘%a t) +27|9]l2
€

teT

forall z € K, (z.) N Mj. Regarding the monotonicity of the logarithm and 1, this leads to

i M - : T\Ze > - z, v
mf{ ulln< I}lé)%(g(l‘,t)) xGK(w)ﬂMo} ,uln< I?e%gcg(a: t)—l—2HvH27>

> —pi(er +In7). (5.25)
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As in the previous chapter we introduce

i) = 1)~ st (= mac(o.))

for all x € M. The inequalities (5.22), (5.24), (5.25) and the optimality65how that

fi(z") < f(@) — piln (— max g(, t)> + pi(er +In7) + pi(f (@) — f=) + pi ([ In | + <o)
= fi(@) + piles + In7 + | In pag)) (5.26)
forall z € My N K;(x.). Combining this with (5.19) leads to
fil#') < fi@) + pa (2] 10 | + In7) (5.27)

forallz € My N K- (x.).
Using the results above we can prove the second and third proposition of our theorem by induc-
tion. For that we assume:

(i) o, jo are kept fixed withd < jo < j(ip),
(i) j(i) < ooif i < io,
(iii) if we denote

. o s, .
5 i arg min Fiy(x) and 79 = arg min { £(o) + 2| - 2993,
T arg min 55 (2) T arg min | f(z) + 5 llo — 2™
the relations
=ij . S5 i,j—1 2}
T Y =ar min )+ —|lr—=z , 5.28
g, min  {f@)+ 3 1 (5.28)

|2 — x|y < 7, |75 — 2|2 < 7 and|[T — z.||2 < 7 hold for all pairs of indices
(i,4) € Qo == {(#', ) : {i <iin,0 < j' < j(i")} v{i' =i0,0 <5 < jo}}-

Let us remark that®/ € M, as minimizing point off; ; exists due to Lemma 2.2. The existence of
z7/ € M as minimizer off (z) + %z — 27713 is ensured by the strong convexity and continuity
of this function on the nonempty and closed A4t

At this point we have to check (i)-(iii) for the starting valugs= 1, jo = 0, but this is easy: By
constructionj(1) > 0 so thatip = 1, jo = 0 fulfill the first assumption. The other two assumptions
are obvious by construction.

Using the stopping criterion of the loop inof Algorithm 5.2, (5.11), (5.14), (5.18) as well as
the definition ofz’” we deduce

|77 — 27|, < ou. (5.29)

Furthermore, taking the definitions of’ andz"”’, (2.5) into account we can conclude

) - 1 () -

=J _  4j—1 2 )
5 |7 x < Hi- (5.30)

2
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Additionally one can establish

Sillmij  =i|? iy L Simig 1|2 —ij Sill=ig  ij—1|?
2 TV -z 2§f(x ])+§ij_$] HQ—f<x )—5 R H2 (5.31)
in the same manner as (5.15). Combining (5.30) and (5.31) we see
Si||zig =i ‘2 <
T 7, < His
so that
i =ij 244
‘E” z ‘ < 2 (5.32)
2 S;
Using this and (5.29) we obtain
=ij i 2
‘x’—x’]LSai—i- . (5.33)
Si

Due toz?/ € Mo N K, (x.) estimate (5.27) implies
fi(2") < £i(@7) + pi (2 In ;| + In7) (5.34)
forall (7, 7) € Qp. In the sequel we distinguish the following cases
a)i<in0<j<j(i)—1ori=r1y0<j< jo,
b) i <ig,j=j(i) —1and
C) i=1p,j = jo+ 1.
ad a) In this case we obtain

o+t 2 e — < 2 (5 i)
2;} (5.35)
. “(2|In ;| +1In7)

%

< [l ot

by using Proposition 8.3 in Kaplan, Tichatschke [24] and (5.34). Taking (5.21), (5.29) and the
stopping criterion of the loop ini of Algorithm 5.2 into account we conclude

[79+ — 2

o = |la =2, — ||z = 2], > 0 — i > 0. (5.36)
and we have
[Z91 = 2|3 — [ — 2|3 < &2 445 < 0 (5.37)

with &; = 0; — a; and~y; = 2 (2| In ;| + In7) /55

Moreover, regardingz® — .|| < 7 and||z* — .|| < 7, the estimate

- . o N 1,

[ = 2, = o™ = 2|, < (22" = Z]) 7 (< 4 y) < o (<) (B.38)

holds. Together with (5.21) and (5.29) we obtain

o4 =2, = =, < g (2470 s <0 (5:39)
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ad b) Now we assume< ig, j = j(i) — 1.
In this case we can combine (5.27), (5.29) and the implications of Proposition 8.3 in Kaplan,
Tichatschke [24] to see that

xlvj(l) — Z’L xZ,](l)_l — ZZ xlvj(l)_l — ZZ

<]
2

< <3 (i) - fi(xi:ﬂi))))% +a

203 (0) _ xm(i)—lH _ ‘
2

_‘ + oy
2 2

(5.40)

(A
=i+

holds. Summing the inequalities (5.39) w.lit= 0,1,...,5(i) — 2 for a fixedi < ip and adding
(5.40) leads to

20 2
< < 5 (2|lnui|—i—ln7‘)> +

’ g0 _ , Hxi’o — zZH2 <Vt s, (5.41)
and together with (5.23) one has
‘ L3 G) - Hxi,o _ 5’3*H2 < i+ o + 26 (5.42)

ad c) Now we assume= iy, j = jo + 1.
In this case we consider

. S .9
glodotl .— gp min { z) + 2 ||x — growo } .
gze/\mm(xc) f(@) 2 H H2

The non-expansivity of the prox-mapping (see, e.g. Rockafellar [45]) yields

ok |, < a0 5. .43

Using this, (5.23) and (5.39) far= iy, 0 < j < jo we obtain

ot — 7|, < [laiodn — 50|, + ey,
S
< [l — o], + 20m,.
If ip > 1 this leads to

l,’b()—l,j(’b()—l) — ¥

:%imjo-i-l _ x*HQ < ‘

9 + 2C14i .-

Now the successive application of (5.42) gives

ip—1
oAt — ||, < |2t — 2*||, + Y (VA + an + 2emk) + 2. (5.44)
k=1

As we assumed thditr* — .2 < 7/8 and||z!? — z.||2 < 7/4 we can now assemble (5.19), (5.20)
and (5.44) to get

glodotl _ SL‘cH2 < T — Qg — Vip < T — Qi — 2%. (5.45)
io
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We see thafj#/0-90+! — z.||, < 7 and due to the strong convexity $f+ =2 ||- — a0-d0 H; we can
deduce thag?o7o+! must actually be identical @°°**. But then the estimates (5.32) and (5.33)
imply ||zio-dot! — z.||, < T as well.

So far we have proven that Assumption (iii) is also trueifes ig, j = jo + 1. It still remains
to prove thatj(ip) < oo holds. In order to do so we sum up the inequalities (5.39) to an arbitrary

7 < j(io) — 1 and obtain

|

Dividing by ;- (—&% + ;,) + a;, We get an upper bound fgr

2% J_ 4o

. . - 1 B
2<meu—%w2+3<zﬂ—ﬁf+%ﬁ+am>.

- , , 1 -1
j<—Hﬂw—sz<Lﬂ—%;wm)+%Q < oc. (5.46)

Thus we have shown the induction statements to holdfoiy + 1 if jo < j(ip). But the case
Jjo = j(io) is equivalent to the casg, + 1,0) and so the induction holds for all possible indices
(i0, jo). As a consequence of this the second and third proposition of the theorem are proven.

It remains to prove the convergence of the generated seqdeh¢eto an optimal solution of
the given semi-infinite problem (2.10). Let an arbitrary elementf,: N K (x.) be given byz.
Defining

Z =1+ (1)@ - 1),

we can show|z! — Z||o < 27u; similar to (5.23) and analogous results to (5.41) and (5.42) With
instead of:* andz instead ofz*. Additionally, we obtain from (5.20)

(o) o0 oo
Z\/%<OO, Z“i<oo and Zai<oo
i=1 i=1 i—1

and the convergence df|+"* —Z||, } is ensured by Lemma 2.2.2 in Poljak [39]. Moreover, the
results (5.26), (5.35), (5.39) and (5.40) remain true if wedisastead of:’ and

|27 = 2|, < [l = =]

R e P RVATR R Bt P
foralli and0 < j < j(). Sincez’, 7 € K, (x.) this leads to
10~ ], = v/ 0~ < a9 7], < [} 7] +

hence the sequendg|="/ — Z||,} converges. Furthermore, regarding (5.29) &#ng_.. a; = 0
which is enforced by (5.20), it is clear thfliz*/ — ||, } converges to the same limit point.
Due toz,7 € K,(z.) and0 < u; < 1 foralli € N we havez® € K, (z.) forall i € N as well
as
277 =2y <[] = |, + 2w

for all pairs(z, 7) with 1 < j < j(¢) and

177 =2, = |} - 7|, — 27
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for all pairs(z, j) with 0 < j < j(i). Consequently we obtain
70 =2y < o7 =+ 872+ 407
for all pairs(z, j) with 1 < j < j(i) and
9 2, = (|77 — 3|, — 877 — 4r0?
for all pairs(z, j) with 0 < j < j(7). Additionally the modified estimates (5.26)
fi(Z) < fix) + piles +n7 + [ In )
forall z € My N K,(x.) and (5.35)
29 — 2~ la = 1} < (5 - £@9)
allow to infer
a1 — || - ||z —z); > S% (fi(@) = filz) = pi(es + In7 + | In ) — 1677 — 872

forall 2 € Mo N K, (z.). Then, regarding®’ € My N K,(x.) and estimate (5.25), we obtain

- . 9 .
[ER— EHZ — ||z - TH; > - (f@") = fi(x) — pi(er +1nT))
- 2£i (c3+InT + |Inp|) — 872 (2 4 i)

(2

(5.47)

Furthermore, we haviém;_,, fi(z) = f(z) for each fixedr € M sopu; — 0 ands; < s give

limsup< max _(f(Z") — f(a:))> <0 (5.48)

i—oo  \1<j<i(9)
for each fixedr € Mo N K (z.).

Now letz** be an accumulation point of the sequegé’ }. Such an accumulation point exists
sincex™ € K, (x.) N M for all pairs(i, j). Regarding (5.29) antim; ... o; = 0 it follows that
x** is also an accumulation point of the sequefizé’}. Further we obtain** € M N K, (x.)
since the setd\f and K (z.) are closed. For each € M, N K, (z.) estimate (5.48) establishes
f(x) as an upper bound fgf(xz**) so that we deduce

f(@™) <inf{f(x):x € MoN K(z.)}. (5.49)

ObviouslyMNK;(x.) is the closure oM oNK(z.). Furtherz* € M,,,NK-(z.) such that (5.49)
implies f(z**) < f(z*) resp.z*™ € Moy N K (x.). Consequently, regarding thaf«"/ — ||, }
converges for each € M, N K- (z.), the sequencg||«™/ — 2**||, } converges to zero. Thus the
sequencgz’} converges ta** € M,y. O

Remark 5.8 If max.cr g(+,t) is bounded below on the feasible get of (2.10), i.e. there exists a
(nonpositive) constant > —oo with d < maxer g(x, t) for all z € M, one obtains

inf {_m In <_ 1;neaTxg(x,t)> ze KT(xc)} > i In(—d).
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Consequently, using this estimate instead of (5.25) in the proof above, the conditions on the pa-
rameter of Algorithm 5.2 in Theorem 5.7 can be simplified in the considered case. In partigular,
can be changed intgg = f(Z) — f— + ¢o — In(—d) and in (5.20) and (5.21) the term 7 can be
dropped. Thus the left-hand side of the modified estimate (5.20) does not depend on (the unknown)
7. Therefore one could choose the valuerddfter determining{x; }, {«;} and{s;}. Finally, the

value ofg; can be fixed such that (5.21) holds. Altogether the described procedure is much easier
than the simultaneous determination of all parameters in the general case. O

Remark 5.9 The conditions on the parameters of the method require their separate adjustment to
each example, which can be a very fragile task when applying the multi-step procedure. In case
of using the one-step procedure parameters according to Theorem 5.7 are easily chosen. The one-
step procedure is given jf(i) = 1 for eachi, which can be ensured by choosiagsufficiently

large?. Then (5.21) is automatically satisfied for each fixed 1. Furthermore, (5.20) holds for all
sufficiently large values of if one guarantees that

- Mi’lnﬂi’% d =
—_— < an P < .
S (M) <o and Yoo <o

=1 i=1
Consequently, (5.20) and (5.21) can be replaced by the given conditions aboveraméed not to
be specified explicitly. |

At the end of this section an estimate of the difference between the current value of the objective
function f at the end of an outer step and its minimal vafifeon M is established (cf. Kaplan,
Tichatschke [25, 27]).

Lemma 5.10 Let the assumptions of Theorem 5.7 be satisfied anddetLipschitz continuous with
modulusL on K, (z.).2 Then

: 201
fla)—f < <§T$’z‘+L> ( a +Oéi> +§Tsmi

Si

holds for all € N.

Proof: Leti be fixed and) < j < j(i) be arbitrarily given. In the proof of Theorem 5.7 we defined
—i,j+1 : 5 ig2
T :argéreuf\r/ll{f(x)