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Abstract

The classic Capital Asset Pricing Model and the portfolio theory suggest that in-

vestors hold the market portfolio to diversify idiosyncratic risks. The theory pre-

dicts that expected return of assets is positive and that reacts linearly on the overall

market. However, in reality, we observe that investors often do not have perfectly

diversified portfolios. Empirical studies find that new factors influence the deviation

from the theoretical optimal investment.

In the first part of this work (Chapter 2) we study such an example, namely the

influence of maximum daily returns on subsequent returns. Here we follow ideas of

Bali et al. (2011). The goal is to find cross-sectional relations between extremely

positive returns and expected average returns. We take account a larger number

of markets worldwide. Bali et al. (2011) report with respect to the U.S. market a

robust negative relation between MAX (the maximum daily return) and the expected

return in the subsequent time. We extent substantially their database to a number

of other countries, and also take more recent data into account (until end of 2009).

From that we conclude that the relation between MAX and expected returns is not

consistent in all countries. Moreover, we test the robustness of the results of Bali

et al. (2011) in two time-periods using the same data from CRSP. The results show

that the effect of extremely positive returns is not stable over time. Indeed we find

a negative cross-sectional relation between the extremely positive returns and the

average returns for the first half of the time series, however, we do not find significant

effects for the second half. The main results of this chapter serve as a basis for an
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unpublished working paper Yuan and Rieger (2014b).

While in Chapter 2 we have studied factors that prevent optimal diversification,

we consider in Chapter 3 and 4 situations where the optimal structure of diversi-

fication was previously unknown, namely diversification of options (or structured

financial products). Financial derivatives are important additional investment form

with respect to diversification. Not only common call and put options, but also

structured products enable investors to pursue a multitude of investment strategies

to improve the risk-return profile. Since derivatives become more and more im-

portant, diversification of portfolios with dimension of derivatives is of particularly

practical relevance.

We investigate the optimal diversification strategies in connection with un-

derlying stocks for classical rational investors with constant relative risk aversion

(CRRA). In particular, we apply Monte Carlo method based on the Black-Scholes

model and the Heston model for stochastic volatility to model the stock market

processes and the pricing of the derivatives. Afterwards, we compare the bench-

mark portfolio which consists of derivatives on single assets with derivatives on the

index of these assets. First we compute the utility improvement of an investment in

the risk-free assets and plain-vanilla options for CRRA investors in various scenar-

ios. Furthermore, we extend our analysis to several kinds of structured products,

in particular capital protected notes (CPNs), discount certificates (DCs) and bonus

certificates (BCs). We find that the decision of an investor between these two di-

versification strategies leads to remarkable differences. The difference in the utility

improvement is influenced by risk-preferences of investors, stock prices and the prop-

erties of the derivatives in the portfolio. The results will be presented in Chapter 3

and are the basis for a yet unpublished working paper Yuan and Rieger (2014a).

To check furthermore whether underlyings of structured products influence deci-

sions of investors, we discuss explicitly the utility gain of a stock-based product and

an index-based product for an investor whose preferences are described by cumula-
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tive prospect theory (CPT) (Chapter 4, compare to Yuan (2014)). The goal is that

to investigate the dependence of structured products on their underlying where we

put emphasis on the difference between index-products and single-stock-products, in

particular with respect to loss-aversion and mental accounting. We consider capital

protected notes and discount certificates as examples, and model the stock prices

and the index of these stocks via Monte Carlo simulations in the Black-Scholes

framework. The results point out that market conditions, particularly the expected

returns and volatility of the stocks play a crucial role in determining the preferences

of investors for stock-based CPNs and index-based CPNs. A median CPT investor

prefers the index-based CPNs if the expected return is higher and the volatility is

lower, while he prefers the stock-based CPNs in the other situation. We also show

that index-based DCs are robustly more attractive as compared to stock-based DCs

for CPT investors.

Key words: extreme positive returns, cross-sectional returns, factor-model, id-

iosyncratic volatility, diversification, options, structured products, expected utility,

cumulative prospect theory, underlying stocks
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Zusammenfassung

Das klassische Capital Asset Pricing Model und die Portfolio-Theorie suggerieren,

dass Investoren ein Marktportfolio von Aktien halten, um idiosynkratische Risiken

zu diversifizieren. Die Theorie sagt voraus, dass die erwartete Rendite der Wertpa-

piere positiv und linear auf die Bewegung des Gesamtmarktes reagiert. Allerdings

lässt sich in der Realität beobachten, dass Investoren häufig nicht perfekt diversi-

fizierte Portfolios halten. Empirische Studien finden immer wieder neue Faktoren,

die diese Abweichungen von der theoretisch optimalen Anlage beeinflussen.

Im ersten Teil dieser Arbeit (Kapitel 2) untersuchen wir ein solches Beispiel,

nämlich den Einfluss von maximalen Tagesrenditen auf nachfolgende Renditen. Wir

folgen dabei der Idee von Bali et al. (2011). Das Ziel ist es, die Querschnittsbeziehung

zwischen extrem positiven Renditen und erwarteten durchschnittlichen Renditen

unter Einbezug einer großeren Anzahl von Märkten weltweit zu erforschen. Bali

et al. (2011) berichten hierbei bezogen auf den US-Markt über eine robuste negative

Beziehung zwischen dem MAX (die maximale tägliche Rendite) und den erwarteten

Rendite im nachfolgenden Zeitraum. Wir erweitern deutlich ihre Datenbasis auf

eine Reihe von anderen Ländern und nehmen auch Daten der jüngsten Vergangen-

heit in die Analyse auf (bis Ende 2009). Dabei stellen wir fest, dass die Beziehung

zwischen dem MAX und den erwarteten Renditen nicht in allen Ländern konsistent

ist. Darüber hinaus testen wir die Robustheit der Ergebnisse von Bali et al (2011)

über zwei Teilperioden mit dem gleichen Datenbestand aus CRSP. Die Ergebnisse

zeigen, dass die Wirkung von extrem positiven Renditen über die Zeit nicht stabil ist.
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Wir können die negative Querschnittsbeziehung zwischen den extrem positiven Ren-

diten und den Durchschnittsrenditen für die erste Hälfte des Beobachtungszeitraums

bestätigen, jedoch finden wir keinen signifikanten Beweis für sie in der zweiten Hälfte.

Die Hauptergebnisse dieses Kapitels dienen als Basis für ein noch unveröffentlichtes

Working Paper Yuan und Rieger (2014b)

Während in Kapitel 2 Faktoren untersucht wurden, die optimale Diversifikation

verhindern, betrachten wir in Kapitel 3 und 4, Situationen, in denen die Struk-

tur einer optimalen Diversifikation bislang unbekannt war, nämlich bei der Diver-

sifikation von Optionen (oder Strukturierten Finanzprodukten). Finanzderivate

sind wichtige ergänzende Anlageformen in Bezug auf Diversifikation. Nicht nur

herkömmliche Call- und Put-Optionen, sondern auch Strukturierte Produkte ermög-

lichen Anlegern eine Vielzahl von Anlagestrategien, um das Rendite-Risiko-Profil zu

verbessern. Da Derivate zunehmend an Bedeutung gewinnen, ist Diversifikation von

Portfolios mit Finanzderivaten von besonderer praktischer Relevanz.

Wir untersuchen die optimalen Diversifikationsstrategien im Zusammenhang mit

zugrunde liegenden Aktien für klassische rationale Investoren bei konstanter rela-

tiver Risikoaversion (CRRA). Insbesondere wenden wir hier Monte-Carlo-Verfahren

basierend auf dem Black-Scholes-Modell und dem Heston Modell für stochastische

Volatilität an, um die Prozesse der zugrunde liegenden Aktien sowie die Bewertung

der Derivate zu modellieren. Anschließend vergleichen wir ein Portfolio, welches aus

Derivaten auf einzelne Aktien besteht, mit einem Derivat auf den Index dieser Ak-

tien. Zunächst bewerten wir die Nutzenverbesserung einer Investition in risikofreie

Anlagen und Plain-Vanilla-Optionen für einen CRRA Investor in verschiedenen

Szenarien. Des Weiteren erweitern wir unsere Analyse auf bestimmte Arten von

Strukturierten Produkten: Kapitalschutz-Produkte (CPNs), Discount-Zertifikate

(DCs) und Bonus-Zertifikate (BCs). Wir stellen fest, dass sich die Entscheidung von

Investoren zwischen diesen beiden Diversifikationsstrategien merkbar unterscheidet.

Die Differenz der Nutzenverbesserung kann durch Risikopräferenzen von Investoren,
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Aktienkurse und den Eigenschaften von Derivaten im Portfolio getrieben werden.

Diese Ergebnisse werden in Kapitel 3 präsentiert und bilden die Grundlage für ein

noch unverffentlichtes Working Paper Yuan und Rieger (2014a)

Um weiter zu prüfen, ob Basiswerte von Strukturierten Produkten Entschei-

dungen der Anlegern möglicherweise beeinflussen, diskutieren wir nun explizit den

Nutzengewinn eines aktienbasierten Produktes und eines indexbasierten Produk-

tes für einen Investor, dessen Präferenzen durch die kumulative Prospect Theory

(CPT) beschrieben werden (Kapitel 4, vergleiche Yuan (2014)). Das Ziel ist es, die

Abhängigkeit der Strukturierten Produkte zu ihren zugrunde liegenden Basiswerten

zu erforschen, wobei hier vor allem die Attraktivität eines Indexproduktes im Ver-

gleich zu einem Produkt, welches als Basiswert eine der im Index enthaltenen Ak-

tien besitzt, für Anleger mit Verlustaversion und mentaler Buchhaltung untersucht

wird. Wir ziehen Kapitalschutz-Produkte (CPNs) und Discount-Zertifikate (DCs)

als Beispiele heran und simulieren die zugrunde liegenden Aktienpreise und den In-

dex dieser einzelnen Aktien über Monte-Carlo-Simulationen im Rahmen des Black-

Scholes-Modells. Die Ergebnisse deuten an, dass die Marktbedingungen, unter an-

derem, erwartete Renditen und Volatilitäten der Aktien, eine entscheidende Rolle

bei der Bestimmung der Präferenz der Investoren für aktienbasierte CPNs oder in-

dexbasierten CPNs spielen. Ein Median CPT Investor bevorzugt die indexbasierten

CPNs im Falle höherer erwarteter Renditen und niedrigere Volatilitäten, während

er die aktienbasierte CPNs vice versa vorzieht. Es wird auch gezeigt, dass die in-

dexbasierte DCs robust attraktiver im Vergleich zu den aktienbasierten DCs für die

CPT Investoren sind.

Stichwörter: extrem positive Rendite, Querschnittsrendite, Faktormodell, idiosynkratis-

che Volatilität, Diversifikation, Optionen, Strukturierte Produkte, erwarteter Nutzengewinn,

kumulative Prospect Theory, zugrunde liegende Aktien
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Chapter 1

Introduction

The standard theory of mean-variance portfolio choice suggests that investors hold

diversified portfolios to reduce or eliminate unsystematic risks. However, many in-

vestors, especially retail investors, are observed holding under-diversified portfolios

which is inconsistent with the classic framework. The desire for under-diversified

portfolios may be explained by psychological reasons. As a matter of fact, many

actual behavior characteristics are linked to investment decisions, such as investors’

propensity to gambling, preference for a certain group of stocks, framed decisions

as gains and losses, and so on. These behavioral biases are shown to systematically

increase the subjective attractiveness of many complex financial products, which

have been tremendously grown and developed in recent years. Among others, the

broadly known structured products offer retail investors access to financial deriva-

tives which could not be reached previously, hence making them a useful complement

tool compared to traditional asset class for portfolios diversification. Nevertheless,

the significant success of structured products is intriguing in that it is difficult to

explain the demand of a rational investor for such a product. In this light, this disser-

tation explores several key issues arising from diversification in investors’ portfolios,

in particular in the choice of structured products.

More specifically, I firstly focus on stock markets and investigate the relation
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between lottery-like returns and subsequent cross-sectional returns in different coun-

tries. Many studies have observed that investors include a disproportional number

of lottery-type stocks with low prices and high idiosyncratic volatility in their port-

folios in the hope of obtaining higher returns in the future, even though the chances

of this are extremely low. Consequently, this gambling preference by those investors

causes an overpricing of stocks with lottery features. Evidence from the U.S. market

indicates the negative significance of extreme positive returns in the cross-sectional

pricing of stocks. Inspired by previous results from the U.S. market in Bali et al.

(2011), the first article considers this anomaly in a much wider range of countries,

including Canada, France, Germany, the U.K., China and Japan. Furthermore, it

also examines the robustness of the results in the U.S. market by concentrating on

a more recent time period.

In the second study, I analyze the diversification choices of financial derivatives

for expected utility theory investors given two investment strategies: a combination

of derivatives each based on an individual stock, and a derivative based on the index

composed of these individual stocks. As financial derivatives play an invaluable role

in improving investors’ utility in terms of better diversifying their portfolios, diversi-

fication within derivatives is of practical importance for both institutional and retail

investors. However, very few papers have explicitly considered the diversification

strategy within financial derivatives with respect to their underlying assets. To this

end, the second article investigates the optimal diversification strategy of options as

well as structured products.

Following the second study, the third one presents numerical and empirical ev-

idence examining whether the underlying stocks of structured products influence

investors’ choices in a behavioral finance context. Often, structured products are

targeted at retail investors who lack financial sophistication and are subject to nu-

merous cognitive or behavioral biases. On the other hand, for an issuing bank

considering designing a new product, an appropriate reference asset is one crucial
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factor in success of the product – by no means a straightforward task. Motivated by

these two points, this article takes the cumulative prospect theory as a starting point

and describes favorable structured products in terms of two alternative underlying

assets: individual stocks and an index composed of these stocks.





Chapter 2

Maxing out: the puzzling

influence of past maximum returns

on future asset prices in a

cross-country analysis
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2.1 Introduction

“THOSE who occasionally bet on horse races like the Kentucky Derby

or the Grand National have a tendency to favour 100-1 outsiders. Their

motivation may be the desire for a big win to justify the act of gambling

at all.1

The cross-sectional variation in expected returns has been debated for decades.

Many real investment behaviors observed in the complicated financial markets like

the foreword mentioned go far beyond the theoretical models and reflect an invest-

ment mania that seems insane, in that the standard rational asset pricing models

are not able to explain the empirical facts of the aggregate stock market nor indi-

vidual trading behaviors. Then what drives a usually risk-averse investor to invest

in stocks with high risk? If investors hold many of these stocks in their portfolios,

would this imperfect diversification eventually affect the equilibrium asset prices on

average? Such anomalies have recently been found, e.g. regarding volatility and

skewness (Harvey and Siddique (2000), Ang et al. (2006, 2009), and Barberis and

Huang (2008)).

Very recently, Bali et al. (2011) have found a statistically and economically

significant negative relation between the maximum daily return over the previous

month (MAX) and the cross-section of expected stock returns. The constructed

new variable, MAX, capturing the extremely positive daily returns, is to used to

investigate the predictability of the maximum daily stock return in stock pricing.

The motivation is that investors frequently hold underdiversified portfolios and more

often have a preference for lottery-like assets that usually have a small probability of

large payoffs, e.g. low-priced stocks with high idiosyncratic volatility2. While it is no

1Reported in The Economist (May 31, 2011). Liquidity and lottery tickets–Why investors

overpay for certain assets
2See Odean (1999), Campbell et al. (2001), Mitton and Vorkink (2007), Goetzmann and Kumar

(2007).
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surprise that stocks with extremely positive daily returns tend to be small and have

high idiosyncratic volatility and skewness as defined for lottery-type stocks in Kumar

(2009), the result is robust after controlling for a variety of these and other firm-level

variables and anomalies. Particularly Bali et al. (2011) show that including MAX

reverses the negative relation between returns and idiosyncratic volatility reported

in Ang et al. (2006, 2009). The result is interpreted as consistent with cumulative

prospect theory (Tversky and Kahneman (1992) and Barberis and Huang (2008))

as well as the optimal beliefs framework of Brunnermeier et al. (2007).

In this chapter, we reexamine Bali et al. (2011) to clarify the existence and

significance of a relation between extremely positive returns and expected returns

across different countries as well as for various sample periods. We expand the scope

with data on other stock markets from Datastream for seven countries (Germany,

the U.K., China, Canada, France, Japan and the U.S.). Overall, we find that the

influence of the MAX factor is not the same across countries and times. While the

Chinese stock market shows a similar pattern to that observed by Bali et al. (2011),

in which high exposure to extremely positive returns tends to produce low expected

returns, our results in Canada, the U.K. and the U.S. indicate a statistically positive

cross-sectional relation between extreme positive returns and average returns. More-

over, we fail to find any statistically significant relation between extremely positive

returns and the subsequent average returns in the French, Japanese and German

stock markets.

Given a relatively larger sample in the U.S. market and its conflicting result, we

also look at idiosyncratic volatility of stocks that cannot be easily disentangled from

features of lottery-like stocks. Merton (1987) underlines that, in an information-

segmented market, stocks with larger firm-specific variances require high average

returns to compensate investors for holding imperfectly diversified portfolios. Sim-

ilarly, Barberis and Huang (2001) point out that stocks with higher idiosyncratic

volatility have higher expected returns. It is intuitively clear that high MAX stocks
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also have a propensity for higher idiosyncratic volatility. In fact, the positive MAX-

return relation disappears once we control for idiosyncratic volatility. The bivariate

sorts and cross-sectional regressions reveal a robustly significant positive relation

between idiosyncratic volatility and expected stock returns based on our data set.

We further test the robustness of Bali et al. (2011) on a shorter time period,

while the original results were based on the full period from July 1962 to December

2005. We use CRSP data on NYSE, AMEX, NASDAQ stocks, but split the whole

period during 1963 to 2010 into two subperiods. The result is similar to the finding

of Bali et al. (2011) for the period from July 1963 to December 1989, however,

we find no evidence of a significantly negative relation between the maximum daily

return of the previous month and the cross-section of expected returns for the period

from January 1990 to December 2010.

Given the results on different countries as well as recent time periods, our re-

sults suggest that the negative relation between the maximum daily return over the

previous month and expected stock returns reported by Bali et al. (2011) is not

consistent, but changes over time. Therefore, it is conceivable that macroeconomic

conditions or changes in the investor population might play a critical role in de-

termining the average returns affected by the performance of lottery-type stocks.

The investors in Bali et al. (2011) are assumed to be not well-diversified and have a

preference for lottery-type stocks, i.e. stocks that have a small probability of a large

payoff. Investors who are attracted toward those stocks with high MAX accept lower

expected returns given a chance of a large gain. Thus, ultimately, the preferences

of those MAX-seeking investors could influence the cross-sectional expected stock

returns. Inspired by this interpretation, we conjecture that the proportion of MAX-

seeking investors in the overall market may relate to the relation between extremely

positive stock returns and expected returns. More explicitly, the MAX puzzle should

be strongest in a market where retail investors with preference for MAX dominate.

Interestingly, Han and Kumar (2008) confirm that stocks with high proportion of
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retail investors tend to earn lower future returns, especially if they are speculative

stocks. The lottery-type stocks, i.e. stocks with high MAX, contain exactly those

features that could be attractive to retail investors, which supports the conclusion in

Kumar (2009). More impressively, Han and Kumar (2013) examine the character-

istics and pricing of stocks that are actively traded by speculative retail investors,

and conclude that speculative retail trading affects stock prices. Collectively, we

presume that stocks in a relatively younger stock market, such as China or earlier

time periods in the U.S., are dominated by more retail investors, hence exhibit a

stronger negative MAX premium, while in well-developed markets, such as the U.S.

nowadays, the negative premium is much weaker, hence this relation evaporates.

The remainder of this chapter is organized as follows. Section 2.2 describes

the data and construction of variables. Section 2.3 presents the main empirical

results in the seven countries, and discusses in detail the MAX effect using the U.S.

data. Section 2.4 examines the robustness of Bali et al. (2011)’s results. Section 2.5

concludes.

2.2 Data and Variables

The data sample comprises data on firms from seven markets for the period from

January 1994 to December 2009. All the data sets are obtained from Datastream.

Specifically, the individual stock returns we select are the Datastream data for the

U.S., S&P/TSX Composite for Canada, the FTSE-All shares for the U.K. market,

the HDAX for Germany, Shanghai A-Shares for China, the Datastream data for

France and the Datastream data for Japan.

In accordance with Bali et al. (2011) we measure extremely positive returns as

the maximum daily stock returns over one month.

MAXi,t = max(Ri,d) d = 1, . . . , Dt, (2.1)

where Ri,d is the return on stock i on day d and Dt is the number of trading days
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in month t. Meanwhile we also take other economic explanatory components into

consideration. We measure the systematic risk with the market beta in line with

the CAPM, which is estimated as the slope in the regression of individual stocks’ re-

turn on the value-weighted index market returns. For each month, we calculate the

monthly market beta using daily returns within the month, and run time-series re-

gression within the month on excess market returns. The estimated slope coefficient

is the market beta for each month. Moreover, we obtain market capitalization and

book-to-market ratio at the end of each month, which are all available in Datastream.

We use monthly returns to calculate proxies for intermediate-term momentum and

short-term reversals, as a control for the effects of past returns. Specifically, momen-

tum is defined as the cumulative return over the previous 11 months from t− 12 to

t−2. The reversal variable is the stock return over the previous month. Additionally,

Amihud (2002) suggests a positive relation between illiquidity and cross-sectional

returns. Following this idea, we measure the illiquidity by the ratio of the absolute

monthly return and its trading volume in value. We ignore missing values, so that

a firm is eliminated if the relevant information is missing for a particular variable.

Table 2.1 reports an overview of statistics for the stock returns and other firm

characteristic data across the pooled samples. We use data from January 1994

to December 2009, in total 192 months. We present the time-series averages of

the monthly values for monthly return, monthly maximum daily return, market

capitalization and book-to-market ratio. Firm size is the market value of equity and

is measured by the natural logarithm.

Firstly, we see that the sample is relatively large in the U.S., Japan, and China,

where more than 800 firms are included. The number of firms in Germany is the

smallest, containing only 108 firms. Secondly, there is a moderate variation in

monthly MAX across different countries. The average MAX ranges from 7.34% in

Canada to 3.9% in the U.K. Correspondingly, the Canadian market tends to have

the highest return at 2.29% per month, whereas the monthly return in Japan is the
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lowest at 0.59%. Lastly, for the fundamental characteristics of firms, the average

logarithmic firm size is the highest in Japan at 11.8, and lowest in the U.K. at 5.8.

Canada has the highest book-to-market ratio (0.81), compared to China which has

the lowest book-to-market ratio (0.34).

Table 2.1: Summary statistics of the international data

Countries Number of Number of Monthly Monthly Size Book-to-
firms months return MAX market

U.S. 990 192 1.61% 5.11% 8.024 0.460

Japan 992 192 0.59% 5.06% 11.776 0.807

China 845 192 2.04% 6.27% 7.668 0.344

U.K. 612 192 1.21% 3.90% 5.838 0.746

Canada 234 192 2.29% 7.34% 6.360 0.850

Germany 108 192 1.26% 5.14% 7.832 0.608

France 246 192 1.44% 5.17% 6.483 0.710

This table summarizes the pooled descriptive statistics of stocks for the seven countries during

the period January 1994 to December 2009. Monthly return is the monthly raw return, and

monthly MAX is the maximum daily return over one month. Size is the natural logarithm of

market value of equity at the end of each month, and book-to-market ratio has been directly

obtained from Datastream. For each country, variables are the time series average of the

monthly values.

2.3 Results

In this section we discuss the results of the analyses across the seven countries. We

start with a portfolio-level analysis, then we move on to cross-sectional regressions

at the firm level.
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2.3.1 Portfolio Analysis

Before we check the characteristics of extremely positive returns on the individual

country’s level, we first examine it in a global way. We form decile portfolios in-

cluding all 4028 monthly stock returns across countries ranked on MAX rebalanced

every month. Portfolio 1 (low MAX) contains stocks with the lowest MAX in the

previous month and Portfolio 10 (high MAX) includes stocks with the highest MAX

in the previous month. Table 2.2 presents the equally weighted returns of the decile

portfolios. As we compare the ten equally weighted portfolios, a striking feature

different from the results of Bali et al. (2011) is that a high MAX stocks portfolio

(decile 10) tends to generate higher returns (2.53% per month on average) compared

to other percentile portfolios, particularly compared to a low MAX stocks portfolio

(decile 1). The average return difference is 1.50% with a significant t-statistic of

2.63 (not reported in the Table). Moreover, the high MAX portfolio exhibits sub-

stantially higher monthly volatility, at 8.18%, than that of the low MAX portfolio

at 3.13%. We also find that portfolio 9 and 10 with relatively higher MAX stocks

present positive skewness, while the other 8 portfolios show negative skewness.

In addition, in Figure 2.1 we plot the time-series average portfolio returns across

the seven countries by comparing the high MAX (top 10% MAX percentile) and the

low MAX (bottom 10% MAX percentile) portfolios. It is clearly visible that the

high MAX portfolio is more volatile than the low MAX portfolio across the seven

countries.

Next, we move to a univariate sorting method to test the performance of the

stocks that earned the highest daily return over one month at the country level.

Due to relatively small data samples on some countries like Germany and France, in

each month, we sort stocks based on the maximum daily return within the previous

month into quintile portfolios for individual countries respectively. That is, all stocks

of each country are allocated into five portfolios based on MAX over the past month.

Portfolio 1 is the portfolio of stocks with the lowest 20% MAX, and portfolio 5 is
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Table 2.2: Distribution of monthly returns for stocks across countries

Percentiles Mean Median Std.Dev. Skewness

Low 1.03% 1.46% 3.13% -96.15%

2 0.88% 1.25% 3.30% -123.24%

3 0.87% 1.24% 3.45% -157.40%

4 1.01% 1.36% 3.69% -137.00%

5 1.05% 1.38% 4.03% -107.76%

6 1.09% 0.94% 4.22% -111.09%

7 1.24% 1.35% 4.93% -53.15%

8 1.47% 1.63% 5.24% -65.13%

9 1.69% 1.49% 6.72% 36.25%

High 2.53% 2.41% 8.18% 38.13%

Ten portfolios are formed each month from January 1994 to December 2009 across all of the

seven countries based on the maximum daily return over previous month. Low MAX (high

MAX) represents the portfolio returns of the lowest (highest) maximum daily return over

the previous month. The table reports the time-series descriptive statistics for 4028 monthly

returns.

the portfolio of stocks with the highest 20% MAX. The time-series average MAX

and monthly returns of equal-weighted portfolios and value-weighted portfolios are

reported in Table 2.3.

Table 2.3 suggests that the relation between MAX and the cross-section of ex-

pected returns tends to vary across different countries. For stocks from the U.S.

and Canada, both the value-weighted and equal-weighted quintile portfolios show

that the average return differentials between quintile 5 and 1 are positive and sta-

tistically significant. For example, as shown in Panel A, the average value-weighted

return differential between quintile 5 and 1 is 2.84% per month for Canada with a

t-statistic of 3.83. The value-weighted average return difference for the U.S. is 1.37%
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per month with a t-statistic of 2.63. The 5-1 difference of equal-weighted portfolios

in U.K. is 0.90% per month with a corresponding t-statistic of 2.76, while the differ-

ence in average returns on value-weighted quintile portfolios 5 and 1 is much smaller

in magnitude and statistically insignificant at 0.48% per month with a t-statistic

of 1.16. On the other hand, for China we observe that equal-weighted average raw

return difference is negative at −0.81% with a t-statistic of −2.80, suggesting that

high MAX stocks produce lower expected returns in the following month. Nev-

ertheless, the value-weighted average return difference is positive at 0.03%, albeit

statistically insignificant. This is likely a result of the size effect. Moreover, there

is no evidence for a significant link between MAX and expected returns for stocks

in France, Germany or Japan, as the value-weighted and the equal-weighted 5-1

portfolio difference is small in magnitude and also statistically insignificant.

2.3.2 Cross-Sectional Fama-MacBeth Regressions

We have so far provided portfolio sorts based on MAX to interpret the relation

between MAX and expected returns. Now we implement the Fama and MacBeth

(1973) regressions by imposing a functional form on the relation between MAX and

future returns given the presence of other firm characteristics. The reasons for that

are:

1. Portfolio level analysis throws away a large amount of information in the cross-

section via aggregation (Bali et al. (2011));

2. An analysis based on portfolio might exaggerate the relationship between the

returns and the explanatory variables. (Lo and Mackinlay (1990));

3. Some countries have smaller samples as datasets, such as Germany in com-

parison to the U.S., therefore, results of these countries deduced from the con-

structed quintile portfolios based on MAX are not sufficient and even might

be biased.
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The basic equation that we estimate is:

Ri,t+1 = λ0,t + λ1,tMAXi,t + λ2,tBETAi,t + λ3,tSIZEi,t + λ4,tBMi,t

+ λ5,tMOMi,t + λ6,tREVi,t + λ7,tILLIQi,t + εi,t+1, (2.2)

where Ri,t+1 is the realized return on stock i in month t + 1. The predictive cross-

sectional regressions are run on the one-month lagged values of maximum daily

return (MAX), market beta (BETA), log market capitalization (SIZE), log book-to-

market ratio (BM), momentum (MOM), short-term reversal (REV) and illiquidity

(ILLIQ). Monthly cross-sectional regressions are run as the above econometric spec-

ification for all of the stocks in the seven markets individually. We then calculate the

premium estimates λ1, λ2, λ3, λ4, λ5, λ6, λ7, respectively, as the time-series average

of the 191-month (from January 1994 to December 2009) slope coefficients. Statis-

tical significance is determined by the Newey and West (1987) adjusted t-statistics.

Table 2.4 reports the results of regressions. The results of the regressions also

manifest similar predictive patterns of MAX as those we obtain from the portfolio

analysis. Looking individually at the univariate regressions in Panel A, we find

that MAX in China is negatively and significantly related to the cross-section of

expected returns with an average slope coefficient of -0.175 (t = −4.684), which

indicates that average firm returns decrease as MAX becomes more extreme. For

countries like France and Germany, the coefficient on MAX is negative but much

smaller in magnitude than in China, and also statistically insignificant. In contrast,

the results for Canada, the U.K. and the U.S. suggest that high maximum daily

return stocks tend to generate high expected returns. The loadings of MAX in the

univariate regressions are 0.184, 0.089 and 0.117 for Canada, the U.K. and the U.S.,

respectively, all of which are strongly significant. The slope in Japan is positive,

albeit statistically insignificant.

In order to control for other potential economic explanations, we include various

firm characteristics as well as other risk components in the regressions, as shown in

Panel B. Clearly, the MAX effect in China is even stronger in terms of magnitude
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Table 2.4: Cross-sectional return regressions in the seven countries

France Canada China Germany UK US Japan

Panel A: Univariate Regressions

MAX -0.055 0.184 -0.175 -0.007 0.089 0.117 0.034

(-1.592) (3.771) (-4.684) (-0.070) (2.345) (2.911) (0.781)

Panel B: Multivariate Regressions

MAX -0.098 0.151 -0.255 0.042 0.127 0.075 0.029

(-2.756) (2.220) (-6.591) (0.595) (3.212) (2.648) (1.119)

BETA 0.245 0.118 0.973 -0.293 -0.226 -0.050 -0.075

(1.031) (0.720) (2.836) (-0.969) (-1.477) (-0.244) (-0.489)

BM 0.403 1.322 0.934 0.875 0.511 0.493 0.715

(1.414) (3.976) (4.723) (3.380) (4.243) (4.306) (3.902)

SIZE -0.195 -0.276 -0.396 -0.063 0.043 -0.445 -0.206

(-2.459) (-2.322) (-1.871) (-0.574) (1.625) (-6.620) (-2.365)

MOM 0.011 0.016 0.006 0.017 0.013 0.005 0.007

(2.090) (3.608) (1.398) (2.661) (2.286) (0.876) (1.349)

REV 0.012 0.008 -0.026 0.009 0.016 0.005 0.010

(0.984) (0.550) (-2.466) (0.407) (0.932) (0.487) (0.977)

ILLIQ 0.016 0.016 0.177 -0.054 0.272 0.322 0.667

(0.955) (0.955) (0.866) (-1.739) (0.213) (1.095) (0.039)

The table reports Fama-MacBeth (1973) regressions in Eq. 2.2 for stocks in the seven countries.

Each month from January 1994 to December 2009 we run firm-level cross-sectional regressions

of the return on the lagged variables in the previous month. The slopes are the time-series

average of coefficients of monthly regressions, and the Newey and West (1987) adjusted t-

statistics are reported in the parentheses.
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when all other variables are included in the regressions. The coefficient is −0.255

(t = −6.951). Similarly, the coefficient of MAX in France reduces to −0.098 and

becomes statistically significant (t = −2.756). Furthermore, the positive relation

between MAX and expected returns prevails for the full specification with MAX

and the six control variables in Canada, the U.K. and the U.S., in which we find an

average slope of 0.151 (t = 2.22), 0.127 (t = 3.21), and 0.075 (t = 2.65), respectively.

For Germany and Japan, the MAX coefficients are 0.042 and 0.029 and remain

insignificant as in Panel A.

In summary, unlike the findings in Bali et al. (2011), we do not find uniformly

strong evidence for an economically and statistically significant negative relation

between extremely positive returns and expected returns for the period from January

1994 to December 2009 across the seven countries. Except for the result in China

which is consistent, we find contradicting results for Canada, the U.K. and the U.S.,

in which the coefficients on MAX are all positive and statistically significant. In

addition, the MAX effect is not robustly strong observed in Germany, France and

Japan.

2.3.3 A More Detailed Look at the U.S. Market

Surprisingly, as shown in Table 2.4, MAX is strongly positively associated with

future stock returns in the U.S., Canada, and the U.K.. In particular, the result

of the U.S. is the direct opposite of that of Bali et al. (2011), which demonstrated

a negative and significant relation between MAX and expected returns. Therefore

in this section, we take a detailed look at the effect of MAX with the U.S. data,

where a relatively large number of firms allows for greater power in investigating the

cross-sectional determinants of the effect.

The full specification with MAX and other control variables shows that MAX

has a positive impact on the cross-section of expected returns. One may argue that

the MAX’s predictive ability on subsequent returns is due to its proxy for some
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other well-known effects. Given the characteristics of the high MAX stocks, our

first conjecture is that the MAX effect could be closely associated with the size

effect (e.g. Banz (1981) and Fama and French (1992)). As the size effect indicates,

small firms have higher expected returns than large firms. Naturally, high MAX

stocks are likely to be small stocks, which would potentially dominate the positive

relation between MAX and future returns in our sample on the U.S. data. The size

effect, however, is already mostly controlled for in the Fama-MacBeth regressions in

the previous section.

Another possibility is that, as numerous studies have pointed out, idiosyncratic

risk is positively related to the cross-sectional expected returns (Levy (1978), Merton

(1987), Malkiel and Xu (2002), Jiang and Lee (2006) and Fu (2009)). Idiosyncratic

risk is the risk that is unique to an individual firm and is independent from the aggre-

gate market. Special events of certain firms, like record-breaking events, achieving

extremely positive daily returns, are intuitively and firmly linked to stocks’ idiosyn-

cratic volatility. Investors, therefore, would demand a premium for holding stocks

with high idiosyncratic risk. Following Bali et al. (2011), to estimate idiosyncratic

volatility for an individual stock, we assume a single factor generating process and

measure the firm-level idiosyncratic volatility using the following model:

Ri,d − rf,d = αi + βi(Rm,d − rf,d) + εi,d, (2.3)

where εi,d is the idiosyncratic return on day d. The idiosyncratic volatility of stock

i in month t is then determined as the standard deviation of the residuals:

IV OLi,t =
√
var(εi,d). (2.4)

In particular, the correlation between cross-sectional average of MAX and id-

iosyncratic volatility is remarkably high with the correlation coefficient of 93%, as

one can see visually in Figure 2.2. Obviously, stocks with high (low) MAX are

frequently those stocks with high (low) idiosyncratic volatility (henceforth IVOL).



22 Maxing Out

Thus as a robustness check we control the potential poxy variables IVOL while

examining the MAX effect.

Year
1995 2000 2005 2010

0.
05

0.
10

0.
15

MAX

IV

Figure 2.2: Cross-sectional average of MAX and IVOL

In order to control for the two possible explanations of the MAX phenomenon,

size and idiosyncratic volatility, we firstly conduct bivariate portfolio sorts. Specifi-

cally, we create quintile portfolios each month from January 1994 to December 2009

ranked on firm size and idiosyncratic volatility of the previous month respectively,

and then within each quintile we sort stocks on their maximum daily returns. For

the sake of saving space, we do not report all (5× 5) portfolios, but present average

returns across the spectrum of the control variables for the 5 quintile portfolios with

dispersion in MAX. As a result, quintile 1 (5) consists of the 20% lowest (highest)

MAX stocks, and each quintile is formed with variation in MAX, but with similar

levels of control variables (size and IVOL). The return difference is the time-series

average returns between the high MAX portfolios and the low MAX portfolios. Ta-

ble 2.5 reports the average equal-weighted and value-weighted returns over control of



2.3 Results 23

size and IVOL respectively, and their associated Newey-West adjusted t-statistics.

The value-weighted quintile portfolio is value weighted using market capitalization

at the end of the preceding month.

Table 2.5: Portfolio of stocks sorted by MAX after screening for Size and IVOL

Control for Size Control for IVOL

Quintile EW VW EW VW

low MAX 2.22 2.19 1.72 1.04

2 1.86 1.78 1.57 1.00

3 1.69 1.70 1.50 0.96

4 1.71 1.66 1.48 1.02

high MAX 2.01 1.95 1.68 1.02

difference(5-1) -0.20 -0.24 -0.04 -0.02

(-0.72) (-0.82) (-0.28) (-0.11)

The above table shows equal-weighted (EW) and value-weighted (VW) quintile portfolios

formed every month from January 1994 to December 2009. We first sort stocks each month

based on size or idiosyncratic volatility, then within each quintile we sort stocks on the maxi-

mum daily return (MAX). The table reports average returns across the 5 size/IVOL quintile

portfolios. Return difference is the difference in average monthly returns between quintile 5

and 1. Newey and West (1987) adjusted t-statistics are reported in the parentheses controlling

for heteroscedasticity and autocorrelation.

Somewhat surprisingly, it is shown in Table 2.5 that the positive effect of MAX

disappears for both screening processes. Instead, the 5-1 differences for equal- and

value-weighted portfolios are negative but insignificant. More specifically, after con-

trolling for the firm size, the equal-weighted average return difference is −0.20% per

month with a t-statistic of −0.72, and the value-weighted average return difference is

−0.24% with a t-statistic of −0.82. When controlling for IVOL, the equal-weighted
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and value-weighted spreads between the high MAX and the low MAX quintile are

almost zero and of no statistical significance. Hence, the bivariate sorts screening for

size and IVOL reduce the cross-sectional variation in MAX, implying that both firm

size and IVOL largely interact with MAX. Therefore, we conclude that the positive

MAX effect with the U.S. data is not robust, and controlling for other risk factors

such as size and IVOL is critical to the significance of the result.

Furthermore, Table 2.6 presents the raw value-weighted and equal-weighted re-

turns of univariate sorts and bivariate sorts of IVOL after controlling for firm size

and MAX. Applying a similar procedure to that as in Table 2.5, for the bivariate

sorts, we first form 5 portfolios by sorting stocks each month on size or MAX, and

then we again sort stocks based on IVOL into 5 quintile portfolios within each con-

trol quintile, which results in 25 (5×5) IVOL portfolios conditioned on size or MAX.

For brevity, we report the average portfolio returns with dispersion of IVOL across

the control variables.

We find that while both raw value-weighted and equal-weighted return differ-

ences between the high IVOL portfolio and the low IVOL portfolio are positive,

only the difference in equal-weighted portfolios shows statistical significance, with

a t-statistic of 2.86. Particularly, the value-weighted average return of quintile 5 is

1.28% per month, which is much lower than the equal-weighted average return of

quintile 5 (2.62% per month). This is not surprising though: quintile 5 contains

the smallest 20% of the stocks sorted by IVOL, so on the other hand, it also rep-

resents a smaller proportion of the market capitalization.3 As we know that small

stocks have higher average returns than large stocks, this is the reason that the

value-weighted return of quintile 5 is much lower than the equal-weighted return of

the same quintile.

After controlling for the size in the 4th and 5th column, the equal-weighted and

3Quintile 5 contains 20% of the stocks, however, it only accounts for 8.97% of the overall

market value (not reported in the tables). As comparison, quintile 1 to 4 contributes 30.36%,

25.41%, 20.59%, 14.68% the market share respectively.
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value-weighted return differences between the high IVOL and the low IVOL quintile

are 0.87% and 0.96% per month respectively, both with highly significant t-statistics.

When we look at the last two columns, where portfolios are controlled by MAX, the

positive effect of IVOL persists at 0.45% and 1.18% spreads per month for value-

weighted and equal-weighted portfolio formation respectively. These results are by

all means more impressive than those sorts based on MAX. Particularly noteworthy

is the finding that using the bivariate sorts does not dramatically reduce the higher

returns of quintile 5 based on idiosyncratic volatility.

Table 2.6: Univariate IVOL sorts and bivariate IVOL sorts after screening for Size

and IVOL

VW EW VW EW VW EW

Quintile Control for Size Control for MAX

1(Low IV) 0.97 1.12 1.23 1.24 0.83 1.11

2 0.97 1.20 1.29 1.33 0.98 1.28

3 0.73 1.36 1.43 1.46 1.07 1.46

4 1.00 1.70 1.70 1.75 1.00 1.81

5(High IV) 1.28 2.62 2.10 2.19 1.28 2.29

difference(5-1) 0.31 1.50 0.87 0.96 0.45 1.18

(0.57) (2.86) (3.20) (3.69) (2.17) (6.60)

The above table shows value-weighted (VW) and equal-weighted (EW) quintile portfolios

formed every month from January 1994 to December 2009. We first use univariate sorts

each month based on idiosyncratic volatility (the second and third column), then bivariate

sort portfolios by adding size or the maximum daily return (MAX) as control variable (4-

7th column). The table reports average raw returns, returns controlled for size and MAX

in monthly percentage terms. Return difference is the difference in average monthly returns

between quintile 5 and 1. Newey and West (1987) adjusted t-statistics are reported in the

parentheses control for heteroscedasticity and autocorrelation.
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Next we investigate the relation between average returns and IVOL by applying

the Fama and MacBeth (1973) cross-sectional regressions. We extend the Equation

2.2 to incorporate idiosyncratic volatility. Table 2.7 reports the time-series averages

of estimated coefficients from various specifications. In addition to the variables

mentioned before, we include dummy high MAX and low MAX in the regressions.

Dummy high (low) MAX takes the value one if a stock appears in the highest (lowest)

MAX quintile over the previous month and zero otherwise. The idea is that if a

stock’s previous MAX is relatively high (low), it will potentially persist over the

next month.

Among models 1, 2, 3, and 5 shown in Table 2.7, where MAX is included in

the regression in the absence of IVOL, the coefficient estimate is significant and

positive, which suggests that stocks with higher MAX earn higher returns in the

following month. Both dummy high MAX and low MAX have little influence on

the results. Augmenting the regression with firm’s size does not help: the positive

relation between MAX and expected returns remains. When IVOL is added to

the regression in model 4, the average slope coefficient on MAX reverses its sign

to negative with the estimate of −0.057, yet is only marginally significant with a

t-statistic of −1.80. In contrast, the average slope coefficient on IVOL is 0.642 and

statistically significant with a t-statistic of 3.88, which is in line with the result

from the portfolio analysis: once IVOL is controlled for, the positive effect of MAX

vanishes. Moreover, when we consider MAX, size and IVOL in one regression (model

8), while the power of the IVOL and size is significant and consistent with the former

results, the MAX coefficient is small and has an insignificant t-statistic of −1.32.

Similarly, model 9 and 10 further show that the coefficient of IVOL is robust after

controlling for other well-known economic explanations, whereas the explanatory

power of MAX is marginal and statistically insignificant.

In summary, the result is intriguing. Based on the double-sorting of portfolios

and also cross-sectional regressions, we see that idiosyncratic volatility wins against
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Table 2.7: Cross-sectional regressions with MAX, IVOL and other control variables

Model MAX
Dummy Dummy

IVOL BETA SIZE BM MOM REV ILLIQ
high MAX low MAX

1 0.117

(2.91)

2 0.107 0.002

(3.12) (0.70)

3 0.123 0.001

(3.21) (0.91)

4 -0.057 0.642

(-1.80) (3.88)

5 0.080 -0.496

(2.04) (-5.92)

6 0.477

(3.29)

7 0.328 -0.453

(2.30) (-5.50)

8 -0.040 0.442 -0.450

(-1.32) (2.86) (-5.65)

9 0.313 -0.009 -0.409 0.514 0.005 0.007 0.233

(2.88) (-0.05) (-6.61) (4.39) (0.94) (0.89) (0.77)

10 -0.032 0.397 -0.005 -0.406 0.513 0.005 0.007 0.232

(-0.92) (2.36) (-0.03) (-6.61) (4.36) (0.97) (0.82) (0.75)

Each month from January 1994 to December 2009 we regress the return on the lagged MAX,

IVOL and other control variables over the past month. Two dummy variables are also included:

if the stock appears in the highest (lowest) MAX quintile over the previous month, respectively,

it takes value 1 and zero otherwise. The table reports the time-series average of Fama-MacBeth

(1973) coeffcients of various cross-sectional regressions. Newey and West (1987) adjusted t-

statistics are reported in the parentheses.
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MAX in explaining the cross-sectional variation of average returns. Although MAX

alone exhibits significantly positive explanatory power in forecasting the subsequent

monthly returns, this cross-sectional relation is insignificant and even negative in the

presence of idiosyncratic volatility. Hence these findings indicate that the positive

relation between MAX and future stock returns in the U.S. market, if any, is not

robust after controlling for idiosyncratic volatility as estimated by daily stock returns

in the previous month. On the other hand, the positive relation between IVOL

and expected returns is large in magnitude and statistically significant in various

regression specifications. This evidence implies that MAX seems to be a proxy for

IVOL, and it is the IVOL which drives the positive relation in determining the

cross-section of expected returns.

2.4 Robustness test of Bali et al. (2011) for a re-

cent sample period

We have so far shown that the positive relation between MAX and expected return

is not robust, which is, however, not consistent with the findings documented by

Bali et al. (2011), in which they find a statistically and economically significant

relation between MAX and future returns. Of particular interest is the fact that

their results are robust to other control variables, including idiosyncratic volatility.

An immediate concern would be that the aforementioned results are based on a

dramatically different database from that of Bali et al. (2011). Specifically, we use a

data set concentrating on a relatively recent time span of January 1994 to December

2009 including only 990 stocks from Datastream for the U.S. data, whereas they

focus on all NYSE/AMEX/NASDAQ stocks incorporating more than 20,000 stocks

from the Center for Research in Security Prices (CRSP) covering a period from July

1962 to December 2005.

To check the robustness for recent periods of the findings in Bali et al. (2011),
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in this section, we further investigate the issue also using a sample of NYSE, AMEX

and NASDAQ stocks from CRSP. However, instead of using the full sample period

from July 1962 to December 2010, we divide it into two subperiods, namely, from

July 1962 to December 1989 and from January 1990 to December 2010, while all

variables are defined the same as in Bali et al. (2011). More specifically, our data

include daily and monthly returns of NYSE, AMEX, and NASDAQ financial and

nonfinancial firms from July 1962 to December 2010. Additionally, we use data

from Compustat for the book value of individual firms. The purpose is to clarify

the existence and significance of a relation between MAX and the cross-section of

expected stock returns on a more recent period, which is perhaps the most relevant

period.

Similarly, we firstly examine returns of portfolios formed on the sorting of MAX.

The procedure of the portfolio-based approach is easy to implement and produces a

straightforward result. For each month in the two subperiods, we sort stocks based

on the maximum daily return over the preceding month to form 10 portfolios with

an equal number of stocks. Portfolio 1 contains the lowest 10% stocks of MAX

and portfolio 10 consists of the 10% stocks that have the highest MAX. Table 2.8

presents the value-weighted and equal-weighted returns of percentile portfolios in

the following month. It also presents the magnitude and statistical significance

of the intercepts (Fama-French-Carhart four-factor alphas) from the regressions of

the value-weighted and equal-weighted portfolio returns on a constant, the excess

market return, the SMB, the HML, and the MOM factors4

As shown in Panel A of Table 2.8, where we compose portfolios each month

during the post-1990 period, the average maximum daily return of stocks within a

month increases sharply from less than 2% in the lowest decile to 31% in the highest

decile. Especially, the MAX is 14.6% in decile 9, while it soars to 31.01% in decile 10,

4See Fama and French (1993) and Carhart (1997). SMB, HML and MOM refer to small minus

big, high minus low, winner minus loser, respectively. Factors are described in details in Kenneth

French’s data library.
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Table 2.8: Portfolios sorted by MAX

VW Portfolios EW Portfolios

Decile Return Four-Factor alpha Return Four-Factor alpha Average MAX

Panel A: 1990.1-2010.12

1 (Low) 0.93 0.13 1.15 0.37 1.85

2 1.00 0.18 1.26 0.36 3.08

3 1.06 0.22 1.35 0.40 3.98

4 1.12 0.21 1.35 0.41 4.90

5 1.15 0.23 1.31 0.34 5.91

6 1.15 0.11 1.30 0.36 7.12

7 0.93 0.02 1.23 0.34 8.66

8 1.00 -0.06 1.25 0.38 10.84

9 0.41 -0.61 1.22 0.36 14.60

10 (High) 0.36 -0.77 1.20 0.41 31.01

10–1 -0.57 -0.89 0.05 0.04

(-0.78) (-1.83) (0.08) (0.11)

Panel B: 1962.7-1989.12

Low 0.93 0.07 1.33 0.28 1.44

2 0.98 0.09 1.49 0.38 2.33

3 0.92 -0.04 1.54 0.39 3.01

4 1.16 0.21 1.55 0.34 3.69

5 1.08 0.05 1.50 0.23 4.45

6 1.22 0.16 1.50 0.19 5.34

7 0.98 -0.15 1.37 0.01 6.46

8 0.98 -0.33 1.29 -0.14 7.99

9 0.62 -0.71 0.94 -0.57 10.52

High 0.29 -1.21 0.35 -1.25 19.49

10–1 -0.64 -1.28 -0.98 -1.53

(-1.65) (-4.81) (-2.73) (-8.53)

Each month we sort stocks based on the maximum daily return over the past one month

(MAX). Value-weighted and equal-weighted decile portfolios are formed in two subperiods: in

Panel A from January 1990 to December 2010 (252 months) and in Panel B from July 1963 to

December 1989 (318 months). Portfolio 1 (10) is the portfolio of stocks with the lowest (highest)

MAX. The table reports the value-weighted (VW) and equal-weighted (EW) average monthly

returns and the four-factor Fama-French-Carhart alphas on the value-weighted and equal-

weighted protfolios, and the corresponding average MAX. Row 10− 1 refers to the difference

in monthly returns between portfolio 10 and 1. Newey-West (1987) adjusted t-statistics are in

parentheses. All the returns are in percentage terms.
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in the last column. On the other hand, more importantly, we do not find significant

indications of a negative MAX effect. The value-weighted portfolio return differences

between decile 10 and 1 is −0.57% per month with an insignificant Newey-West t-

statistic of −0.78. The intercept of the time-series regressions of value-weighted

excess returns on the four-factor in the column of four-factor-alpha is 0.13% for the

lowest MAX decile and −0.77% for the highest MAX decile. A hedging portfolio

longing decile 10 and shorting decile 1 yields a monthly return of −0.89%, yet

not strongly statistically significant. The equal-weighted portfolio returns display a

strikingly different picture that is by no means in support of the results revealed in

Bali et al. (2011). Portfolio returns from decile 1 to decile 10 are flat with no clear

trend. The return spread between the highest MAX and lowest MAX is small in

magnitude at 0.05% per month, and cannot be statistically distinguished from zero.

The four-factor alphas also exhibit a similar pattern showing the alpha difference of

0.04% with little statistical significance.

As a comparison we provide the portfolio analysis on the pre-1990 period back

to July 1962 in Panel B. It is clear that, despite the insignificant results in Panel

A, the overall pattern in Panel B coincides with Table 1 of Bali et al. (2011). More

explicitly, in their paper deciles 1-8 have approximately the same levels of return,

whereas the returns of deciles 9 and 10 are significantly lower. The same holds

in our results. Furthermore, except for the second column, where we obtained a

less economically and statistically significant result for the value-weighted return

difference, all the other results are conceivable and expected, with highly statistical

significance. The average value-weighted portfolio difference between decile 10 and

1 is −0.64% per month with a t-statistic of -1.65. It is worth noting that in Table

1 of the original paper, the value-weighted high MAX portfolio has abysmally low

return (−0.02% per month), whereas the counterpart in our result is remarkably

higher (0.29%). Nevertheless, the value-weighted alpha difference is −1.28% with

a t-statistic of −4.18, which is similar to the results in the original paper (−1.18%
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with a t-statistic of −4.71). As with the equal-weighted portfolios, the monthly

difference for decile returns and alpha is −0.98% and −1.53%, respectively, both of

which are highly significant.

Collectively, as preliminary evidence, the above results indicate that the average

raw and risk-adjusted return differences between stocks in the lowest and highest

MAX deciles are much less impressive and weaker than that documented in Bali

et al. (2011), once we rely on a sample period from January 1990 to December

2010. Nevertheless, the negative average return differentials, in any case, are notably

stronger in the pre-1990 period than in the post-1990 period. Our conjecture is that

if the main finding of Bali et al. (2011) exists, it is the strong negative relation in

the early decades that dominates.

Figure 2.3: Monthly MAX coefficients of the Fama-MacBeth regressions
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To assure the findings from the portfolio analysis, we further examine the cross-

sectional relation between MAX and expected returns at the firm level by using
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Fama-MacBeth regressions. Firstly, the cross-section of one-month-ahead returns

are regressed against only MAX, and Figure 2.3 illustrates the time-series Fama-

MacBeth regression coefficients of MAX from July 1962 to December 2010. Fur-

thermore, we include idiosyncratic volatility along with the same set of controls

that are used in Table 2.7 into the regressions, as introducing MAX sheds light on

the puzzle of idiosyncratic volatility according to Bali et al. (2011)5.

Table 2.9 presents results of the cross-sectional regressions with MAX, IVOL

and other six independent control variables. Idiosyncratic volatility is estimated

within-month daily returns following Ang et al. (2006, 2009) with respect to the

three-factor Fama and French (1993) regression:

Ri − rf = αi + βi(Rm − rf ) + siSMB + hiHML+ εi. (2.5)

The idiosyncratic volatility for stock i is measured as the standard deviation of the

residuals εi. The other variables are calculated as described in previous sections.

The models 1-4 in panel A are regression results conducted in the period from

January 1990 to December 2010. Consistent with the results of our portfolio analysis,

we do not find a robust negative relation between MAX and stock expected returns.

The average coefficient of MAX in a univariate regression (model 1) is almost zero,

−0.007, with a t-statistic of −0.53. When we run the regression with only IVOL as

in model 2, the average slope of IVOL is 0.011, but it is not statistically significant

(t = 0.20). Model 3 generates a negative coefficient (−0.083) for MAX and a

positive coefficient (0.357) for IVOL, both of which are statistically significant. This

evidence is in line with the results in Table 10 of Bali et al. (2011). However,

neither a significant effect of MAX nor IVOL shows up when we run the multivariate

regression with full specification in model 4. The MAX coefficient is −0.009 with

a t-steatitic of −0.53 and the coefficient on idiosyncratic volatility is 0.055 with a

t-statistic of 0.57.

5In the original paper, their results show that inclusion of MAX variable reverses the anomalous

negative relation between idiosyncratic volatility and returns in Ang et al. (2006).
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Table 2.9: Cross-sectional regressions with MAX, IVOL and other control variables

MAX IVOL BETA SIZE BM MOM REV ILLIQ

Panel A: 1990.1-2010.12

Model 1 -0.007

(-0.53)

Model 2 0.011

(0.20)

Model3 -0.083 0.269

(-4.53) (2.61)

Model 4 -0.009 0.055 -0.046 -0.081 0.001 0.055 -0.040 0.027

(-0.53) (0.57) (-1.12) (-2.53) (0.53) (0.17) (-7.89) (4.61)

Panel B: 1962.7-1989.12

Model 5 -0.057

(-2.84)

Model 6 -0.104

(-1.39)

Model 7 -0.170 0.357

(-8.16) (3.01)

Model 8 -0.026 -0.040 0.027 -0.107 0.011 0.938 -0.067 0.020

(-1.70) (-0.39) (0.82) (-3.13) (2.49) (5.04) (-9.72) (2.72)

Each month we regress the cross-section of monthly stock returns onto MAX, IVOL and other

control variables over the past month. The regressions are split into two subperiods: in Panel A

the sample period is 1990/01–2010/12 and in Panel B the sample period is 1963/07–1989/12.

The table reports the time-series averages of the cross-sectional regression slope coefficients

and their associated Newey and West (1987) adjusted t-statistics in the parentheses.
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Compared to the results in panel A, the models 5, 6, 7 in panel B are qualitatively

similar to those in Table 10 of Bali et al. (2011): MAX is negatively and significantly

related to the cross-section of expected returns with an average slope coefficient of

−0.057 (t = −2.84) in model 5. The coefficient of IVOL is −0.104 (t = −1.39).

In the presence of MAX and IVOL at the same time, the IVOL coefficient is 0.357

with a t-statistic of 3.01 in model 7, whereas the coefficient becomes −0.40 with a

t-statistic of −0.39 after extending the regression to include the six other control

variables in model 8. The estimate of MAX is −0.170 with an extreme t-statistic

(t = −8.16) in model 7, and it changes to−0.026 in model 8 with a weakly significant

t-statistic (t = −1.70).

The results from the portfolio-level and firm-level analysis suggest that the MAX

factor has not been able to produce an economically or statistically significant effect

in the recent decades. On the other hand, MAX is far more important in explaining

the variation of cross-sectional stock returns in early periods, for example, until

1989. Therefore, our conclusion is that the MAX effect along the lines of Bali et al.

(2011), if anything, is driven mostly by its strong impact in early periods. This risk

factor deteriorates and tends to diminish over time.

Intuitively, stocks with high MAX are naturally idiosyncratic, and vice versa,

stocks with high volatility often exhibit extreme returns. Han and Kumar (2008)

provide evidence that retail investors exhibit disproportionate preferences for high

idiosyncratic volatility stocks, which reflects their propensity to speculate or gamble.

As opposed to retail investors, institutional investors typically hold well-diversified

portfolios and are less likely to respond to “noise” information that leads to devi-

ation from the market6. Given the distinct trading difference between retail and

institutional investors, we suggest that the MAX-return relation depends crucially

on the extent of MAX-seeking behavior among retail investors. Hence with a re-

ducing proportion of MAX-seeking investors in the aggregate market, the negative

6See e.g. Cohen et al. (2002).
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premium of MAX is mitigating and less significant. As a matter of fact, Karceski

(2002) and Baker et al. (2011) note that after 1983, institutional investors have

become progressively more numerous. Based on the above observations, we may

therefore attribute the insignificant MAX effect in the period of the recent 20 years

to the decreasing proportion of MAX-seeking investors in the aggregate market.

2.5 Conclusion

We investigated the impact of extremely positive returns and examined the cross-

sectional relation between maximum daily return and expected stock returns across

different countries. The aim was to verify whether the robust negative relation

identified by Bali et al. (2011) also holds for other stock markets. The results

suggest that the findings on the U.S. market can neither be easily generalized to

other countries, nor to more recent time periods in the U.S..

More specifically, the empirical analysis shows a statistically negative relation

between one-month lagged extremely positive returns and expected stock returns in

the Chinese stock market. This result is robust to controls for other well-known risk

elements. Expected returns on the stocks that showed extremely positive returns in

the previous month are lower in the subsequent month, which implies that investors

are likely to pay more for those stocks and accept a lower average return. Secondly,

we find that there is a positive link between the extremely positive returns and the

average returns in terms of their ability to explain the cross-section of the expected

returns in the Canadian, U.K. and U.S. markets. As we find the exact opposite

result to that of Bali et al. (2011) for the U.S. stock market including all stocks in

NYSE/AMEX/NASDAQ, we run an additional test to control for the idiosyncratic

volatility of individual stocks on the sample data set from Datastream. After the

inclusion of idiosyncratic volatility, however, there is no significant positive relation

between MAX and expected returns, but MAX seems to be a proxy for idiosyncratic
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volatility. Lastly, we do not find any significant results with respect to the stock

markets in Germany, Japan and France.

Additionally, to understand why we obtain conflicting evidence on the link be-

tween MAX and the cross-sectional expected returns, we investigated the CRSP

data set as in Bali et al. (2011), and tested the robustness of their results on two

sample subperiods. The pattern can be replicated for the period of July 1962 to De-

cember 1989, whereas it is not robustly negative for the period from January 1990 to

December 2010. This makes it challenging to interpret the MAX anomaly in pricing

the cross-sectional expected returns. On the other hand, the results in China indeed

also present a similar pattern to the findings in the early periods of the U.S.. Thus

we may conjecture that the lower efficiency of the earlier U.S. stock market as well

as the current Chinese market, in which a higher proportion of retail investors de-

mands the MAX-stocks, so that they are willing to overpay for those stocks, lowers

the average expected cross-sectional returns. As the market develops and become

more mature, intuitional investors become dominant, and speculative preferences

reduce their importance, which results in the weak MAX-impact on stock prices, as

reflected in the recent decades. In fact, this conjecture is supported by Han and Ku-

mar (2013), who demonstrate that stocks with high retail trading proportion (RTP)

have strong lottery features, and these stocks earn stronger negative premium or are

located in regions where people exhibit stronger gambling propensity.

In a nutshell, our results suggest that the relation between high MAX and low

returns is not stable over time. Market-specific stories are likely to play various roles

in determining the prices of stocks. In particular, behavioral asset pricing factors

might affect markets differently over time and space as markets change. While

markets become more rational with more sophisticated participants, stock returns

as well as the overall pattern of the aggregate market can be potentially affected,

which may cast doubt on the robustness of relevant risk factors in the empirical

performance with asset-pricing models.
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3.1 Introduction

Diversification has played a crucial role in both asset pricing and risk management

for years. Generally speaking, the primary objective of diversification is to pro-

tect the overall portfolio in case any single holding suffers a complete meltdown.

The mean-variance model of Markowitz (1952) facilitates investors to achieve this

goal by optimizing portfolios on the mean-variance efficient frontier. This classic

framework suggests that the optimal investment portfolio can be constructed as a

combination of the market portfolio and risk-free asset. Thus, there is no role for fi-

nancial derivatives in this framework, which in real life, however, are very important

supplementary investment vehicles with respect to hedging, optimization and spec-

ulation. It has also been demonstrated that adding derivatives such as plain vanilla

options into portfolios can improve the market efficiency and enhance investors’

utility (e.g., Liu and Pan (2003), Jones (2006), Driessen and Maenhout (2007) and

Branger et al. (2008)). This systematical alternation in the broad market augments

investors’ usual portfolios of stocks and bonds with options and other complex finan-

cial instruments. It is therefore surprising that very few papers explicitly consider

the different possibilities of diversification with financial derivatives.

While in principle adding financial derivatives into portfolios plays an invaluable

role in improving investors’ risk-return trade off, there are two approaches to con-

struct diversification strategies involving financial derivatives with respect to their

underlying assets: combining derivatives on single stocks, and a derivative linked

to the index consisting of those stocks. We compare these two slightly different

strategies and their resulting utility for investors measured with their respective

certainty equivalent rates. Given expected utility specifications, in this chapter, we

analyze the two strategies from the perspective of an individual investor who has

access to options, and the risk-free asset and maximizes his expected utility in the

Black-Scholes as well as the stochastic volatility setup. Moreover, we extend the

analysis to a related new class of derivatives – structured financial products.
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While conventional call and put options have been traded for many years, the fi-

nancial structured products have gained popularity among especially retail investors

in recent years. Just like options, they are alternative investment vehicles to direct

financial investments. More than that, they consist of at least two components,

primarily combining stocks or bonds with options, generating a tailored payoff pro-

file that otherwise may not be available in the market, at least for retail investors.

In Europe, structured products are particularly popular. According to the German

Derivatives Association (Deutscher Derivate Verband), for example, the outstanding

volume of these products reached a value of 90.6 billion Euros by the end of first

quarter of 2014, indicating a stable and significant market capitalization even after

the financial shock in 2007.

Despite the substantial popularity of structured products, their successes cannot

be explained easily. Branger and Breuer (2008) and Henderson and Pearson (2011)

find that it is difficult to rationalize the purchase of structured products in the

context of a plausible normative model of rational investors. Hens and Rieger (2014)

compare the Markowitz-style (two funds) investment to structured products and

conclude that the improvement of structured products is too small to be useful for

classic rational investors. On the other hand, beyond the rational mean-variance

theory, it is noted that the popularity of certain structured products is consistent

with behavioral portfolio theory, and there is substantial evidence that behavioral

biases such as loss aversion, probability weighting, and misestimation, are often

associated with features of structured products.(Breuer and Perst (2007), Rieger

(2012), Helberger (2012), Das and Statman (2013))

In another strand of literature, academic research has empirically focused on the

issuing side in the context of pricing. Typically, studies on the pricing of structured

products suggest a positive premium above their theoretical fair price. Wilkens

et al. (2003) and Stoimenov and Wilkens (2005) examine the market for structured

products in Germany and find mispricing in favor of the issuing institution. This
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phenomenon is not unique. Burth et al. (2001) and Wallmeier and Diethelm (2009)

document a pricing discrepancy for the Swiss market. Outside of Europe, Benet

et al. (2006) and Henderson and Pearson (2011) examine the valuation of struc-

tured products in the U.S. and report significantly higher prices in the market than

estimates of the products’ fair values. In recent research, Das and Statman (2013)

find that the benefits of capital protected notes, one of the most important struc-

tured products, are not dissipated as perceived by investors’ mental account until

overpricing reaches 17.8%.1

As shown above, previous studies mostly concentrate either on the behavioral

explanations or the mispricing of structured products. In this chapter, we analyze

the issue of integrating and diversifying options and structured products into a port-

folio in terms of underlying assets. We do not aim at finding the overall optimal

strategy, but rather restrict our analysis to the utility comparison of diversifica-

tion strategies with only pure derivatives. Options are important components for

structured products. Gaining insights into methods of diversification for options

therefore helps us to understand the diversification with structured products. A

first fundamental question we study is which diversification strategy consisting of

options is better for investors with constant relative risk aversion (CRRA). We use

simulations where options are priced theoretically, and consider portfolios of stock-

options and index-options respectively. Particularly, since the index level is just the

weighted sum of individual stock prices, we do not model the index exogenously, but

derive the behavior of the index from the joint behavior of the component individ-

ual stocks. By applying two different return generating processes with and without

stochastic volatility (Black and Scholes (1973) and Heston (1993)), we calculate the

utility improvement of the investment in risk-free asset and plain vanilla options for

a CRRA investor in various scenarios. Moreover, we extend our analysis to three

1Empirical studies typically find a premium of overpricing of about 0.5% for simple products

on large markets, but average values are as high as 8% in other situations. Some single products

can have even larger mispricing.
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types of structured products: capital protected notes (CPNs), discount certificates

(DCs) and bonus certificates (BCs).

By comparing the terminal expected utility of the two diversification approaches

in various scenarios, we find first of all that, given the benchmark parameters, in-

vestors with moderate risk-aversion always prefer the index strategy for call options

and CPNs, while they gain higher utility improvement from the single-stock combi-

nations for the derivative investment of put, DCs and BCs. Secondly, the sensitivity

analysis shows that parameters play a crucial role in determining the optimal choice

for investors. Specifically, varying risk-aversion, the expected return and the volatil-

ity of individual stocks, the strike price of options and the options’ positions in the

portfolio, respectively, has an important impact on the superiority of option diver-

sification strategy. In particular, increasing the weight of the call in the portfolio

leads to a better performance of the stock-based call combinations, which indirectly

implies that, in the presence of higher participation rate (or lower protection level),

CPNs linked to individual stocks can be more appealing for a CRRA investor. Fur-

thermore, our main results hold for both the Black-Scholes model and the Heston

stochastic volatility model. Interestingly, our numerical results with the base-case

parameters on the CPNs and the DCs are somehow in line with the empirical re-

search documented by Henderson and Pearson (2007), in which they point out the

stylized fact that structured products linked to equity indices usually have convex

payoff functions, while those linked to individual stocks mostly have concave payoff

functions.

To our best knowledge, this article is the first one addressing this diversifica-

tion issue theoretically based on a numerical comparison of the expected utilities

for derivatives related to underlying assets. From an economic point of view, our

findings provide insights into how to optimally and precisely choose derivatives in

the presence of two alternative underlying assets in order to meet CRRA investors’

preferences, and more importantly, they shed light on financial applications of the
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optimal diversification strategy for structured products

This chapter proceeds as follows: In section 3.2, we present the conceptual

framework for modeling the underlying individual stocks and the index level, as well

as measuring expected utility for a CRRA investor. Section 3.3 describes the struc-

tured products that we use in the analysis. In section 3.4, we introduce fundamental

settings for the Monte Carlo simulation. Section 3.5 discusses the simulation results

for options and structured products. We then conclude in section 3.6 in the end.

3.2 Model Setup

3.2.1 Black Scholes Framework

Our main focus is on options and structured products, on individual stocks as well

as on the index composed of these stocks. Thus, a crucial setting in the analysis

is to determine the return-generation process for each stock and the index obeying

the aggregation restriction, which is defined as a weighted sum of the stock prices

(Branger and Schlag (2004)).

Within the classical Black and Scholes (1973) option pricing framework, we

assume the price of an individual underlying stock St follows the geometric Brownian

motion, where parameters are set to be identical across all N stocks in the index.

We assume that the market is frictionless, and there are no taxes, and no transaction

costs. Moreover, we assume a constant, continuously compounded risk-free interest

rate r. The price process of each stock Sit for i = 1, . . . , N under the physical

measure P is then given by:

dSit = µSitdt+ σSitdW
i
t , (3.1)

where µ is the expected return, σ is the constant volatility, and the term dW i

represents the Wiener process that follows the evolution of a normal distribution.
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3.2.2 Heston Model

We also use the model proposed by Heston (1993), which adds stochastic volatility

to the Black Scholes framework. Moreover, it is able to capture non-lognormal

distributions of stock prices and generate volatility smile surfaces observed frequently

in reality. The dynamics of the individual stock’s price Sit under the physical measure

P follow the equation:

dSit = µSitdt+
√
υtS

i
tdW

1
t , (3.2)

dυt = κ(θ − υt)dt+ η
√
υt

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, (3.3)

where υt is the instantaneous variance of the spot price and follows a mean-reversion

stochastic process. W 1
t and W 2

t are independent Wiener processes. The underlying

stock price and the volatility are correlated with ρ. κ represents the mean-reversion

rate, θ stands for the long-run mean, and η is the volatility of the volatility.

3.2.3 The Index

Having modelled the behavior of the individual stocks, we define an index of these

stocks, which is essentially determined by the stochastic processes of single stocks

and dependence of each pair of stocks. Given the weight of each stock {wi}, the

index is just a weighted sum of the composing stocks. A general formula for the

index level It is given by

It =
N∑
i=1

witS
i
t ,

where Sit denotes the price of stock i at time t.

In the analysis, we assume an equal constant correlation between any two stocks

with a coefficient ρs, i.e.

dW i
t dW

j
t = ρsdt, i 6= j. (3.4)

The correlation between pairs of stocks is of high importance for the index. Firstly,

the impact of the correlation measuring the shape of smile for index options and
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individual options is distinctively different2. Secondly, higher correlation among in-

dividual stocks increases the market index volatility, and hence lowers diversification

benefits for the index.

Suppose we have a correlation matrix denoted by C, and every two stocks have

the identical correlation coefficient ρs.

C =


ρ1,1 ρ1,2 · · · ρ1,n

ρ2,1 ρ2,2 · · · ρ2,n
...

...
. . .

...

ρn,1 ρn,2 · · · ρn,n

 =


1 ρs · · · ρs

ρs 1 · · · ρs
...

...
. . .

...

ρs ρs · · · 1


The correlation matrix C is symmetric and positive-definite. By performing the

Cholesky Decomposition we transform uncorrelated random variables ε′ into corre-

lated random variables ε, so that we can simulate the correlated stock prices, where

ε = MT ε′,

and M is the matrix that satisfies

MTM = C

The objective is to compare the two diversification strategies for option as well as

for structured products based on different underlying stocks. In order to achieve this

goal, we restrict our analysis to the setup described above and do not consider the

case of jumps in the stock price and other complex settings, since we want this first

study on this subject to be as parsimonious as possible. Moreover, we take the price

processes as given and do not consider equilibrium implications of diversification

strategies.

3.2.4 Expected Utility Theory

The expected utility theory (EUT) has been the standard model of decision making

under risk for descriptive as well as normative purposes. Standard finance is based

2See Branger and Schlag (2004) for example.
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on the assumption that investors behave rationally, are strictly risk-averse, and

make investment decisions that optimize their expected utilities. In this article,

we consider an investor with constant relative risk aversion (CRRA), i.e. his risk

attitude is proportional to his wealth and the percentage allocation assigned to the

risky assets remains constant for different levels of his overall wealth (Gollier (2004)).

One representative utility function in this subclass is the power utility function:

U(W ) =

 1
1−γW

1−γ for γ 6= 1

lnW for γ = 1,

where γ is the constant relative risk aversion coefficient and W is the wealth of the

investor. Since we are focusing on retail investors, we further impose two restrictions.

First of all, the investor follows a buy-and-hold strategy for the holding period and

cannot trade during the term to maturity. Secondly, short selling is not permitted,

neither on the money market nor the derivative account.

The investor starts with a positive wealth W0, and has the opportunity to invest

in a money market account and options. Therefore, At maturity T his terminal

wealth from investing in the portfolio of options and risk-free assets is given by

WT = W0

[
erT (1− ψ0) + ψ0

CT
C0

]
,

where ψ0 denotes the portfolio weight of the option with price C0 at time 0 and

payoff CT at maturity T . Furthermore, we assume the ψ0 is equal for the two

diversification strategies for the sake of comparison3. As financial application, we

also calculate the utility of the investment in structured products. We will provide

a more detailed description for structured products in the later section.

The investor derives utility from the terminal wealth WT of the investment

strategies and his expected utility at maturity is

E [U(WT )] . (3.5)

3Since our aim is the comparison of derivatives on different underlying stocks ceteris paribus, we

do not search for the optimal fraction of the wealth in derivatives nor the exposure of the optimal

portfolio to different risk factors for the retail investor.
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For the sake of clarity and directness, we ultimately translate the expected utility

of various payoffs into the certainty equivalent rate, i.e. the risk-free rate given the

same utility. Then we compare differences of certainty equivalent rates for the two

derivative strategies on single stocks and the index.

3.3 Structured Products as Investment Portfolios

Structured products are tailored to meet investors’ special return-risk profiles and

market expectations, which may not be attained otherwise through traditional fi-

nancial assets that are readily available to retail investors (i.e. stocks and bonds).

They can be very complicated financial derivatives embedded with options connect-

ing to a single security, basket of securities or indices. Therefore, both valuation

and payoff formulas are determined by their component elements. Since private

investors usually have neither the financial sophistication nor the possibility to do

short selling nor access option markets, structured products dramatically increase

the flexibility of their financial transaction opportunities.

Among a tremendous variety of structured products, we select capital protected

notes (henceforth CPNs), discount certificates (henceforth DCs) and bonus certifi-

cates (henceforth BCs) as examples, since they are fairly genetic product types.

Their profiles are illustrated in Figure 3.1

3.3.1 Capital Protection: Capital Protected Products

The classic CPN4 is defined in such a way that it guarantees the redemption of the

invested capital at maturity in addition to participating to a certain degree in the

performance of an underlying risky asset.

In order to obtain the payoff profile described above, one needs two elements.

4It is no other than the uncapped capital protection(1100) according to the SVSP Swiss Deriva-

tive Map
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Figure 3.1: Payoff function and return distributions of the structured products
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First a zero-coupon bond which provides the protection in terms of safe interest and

then a call option which features the participation of speculating the market and

provides returns over the protected amount. Specifically, the zero-coupon bond is

issued at a discount, which redeems usually at par (for 100% capital guaranteed) at

the maturity of the CPN. The participation rate can vary according to the price of

the embedded call option.

The payoff of the CPN XCPN can be replicated by the sum of the two elements,

which leads to the following formula:

XCPN = θBT + α [max(ST −K, 0)] , (3.6)

where θ is the guaranteed level, and α is the participation rate. Practically θ is often

equal to 1, corresponding to the 100% capital guaranteed.

3.3.2 Yield Enhancement Product: Discount Certificate

The yield enhancement products account for the largest number of structured prod-

ucts both in varieties and volume throughout Europe (Blümke (2009)). Unlike

capital protected products, this category of financial products comes with capped

upside potential and without downside protection. The DC is one of them. Typi-

cally, it is issued at a lower price compared to the spot price of a direct investment

in the underlying stocks. The difference between the discounted price and the par

value provides a security buffer as well as a cap, which also limits the potential

upside performance at expiry.

DCs are normally constructed with two components: a long zero-strike call5 and

a short call option. Besides, an alternative way to frame the value of a DC is to mix

a zero-coupon bond and a short put as a consequence of the put-call parity. The

5Sometimes it is referred to the Low Exercise Price Option(LEPO) as well, due to the feature

that no dividends are paid for options compared to usual stocks.
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payoff at maturity T is:

XDC = ST −max(ST −K, 0) (3.7)

= min(ST , K). (3.8)

The value of the DC is:

DCt = St − Ct,

where Ct is the price of the corresponding call option embedded in the DC.

3.3.3 Participation Product: Bonus Certificate

Participation products are a group of products that have upside potential and no, or

only conditional, protection. BCs belong to this category. It features a full upside

participation and a conditional capital protection, provided that the underlying

asset’s price does not cross a predefined threshold H. If the price of the underlying

equity breaches the predefined barrier during the time to maturity, an amount equal

to the underlying price at maturity will be paid, nevertheless the bonus extinguishes.

BCs are established with a long position in a zero-strike call on the underlying

stocks and a long position in a down-and-out put option. Thus, the payoff of BC at

maturity T is

XBC = ST + max(K − ST , 0)1τ>T , (3.9)

where τ = inf{t > 0 : St < H} is the first time of the barrier hitting, and 1{.} is

the indicator function. The value of the BC is given by

BCt = St + Pdot,

where Pdot denotes the value of the down-and-out put option with barrier H and

strike price K.
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3.4 Simulation Setup

We consider a retail investor who can only invest in a money market account and

options or structured products. As the simplest version, two stocks (N = 2) are

employed in the initial set in the index. As a matter of fact, the number of stocks

composing the index is not crucial, since increasing the number of stocks in the

index will not qualitatively change the results.

To examine the theoretical properties of our results, we fix a set of base-case

parameters (note that the parameters for the individual stock and each pair of stocks

are identical). Specifically, the risk-free rate r is set to 4%6. Using the conservative

estimate of the equity risk premium (excess rate of return) of Dimson et al. (2006),

we assume that the expected return of the individual stock equals to 9%. The initial

stock price S0 = 1, the volatility of each stock σ = 20% in the Black Scholes model,

and the correlation coefficient ρs between each pair of stocks is set to 0.4. Derivatives

are set to at-the-money, i.e. the strike price K is set to the spot price of the stock

(S0). Given the fact that many studies use one year as the investment horizon (e.g.

Benartzi and Thaler (1995) and Dichtl and Drobetz (2011)), the investor also buys

some of the assets above and holds them for τ = 1 year. For the option pricing and

the underlying stock processes under the Heston model, we apply a representative

set of parameters as Eraker et al. (2003) and Vrecko and Branger (2009), with the

initial variance υ0 = 0.02, and long-run mean θ = (0.2)2, hence coupling it with the

constant volatility of the Black-Scholes model, mean-reversion speed κ = 5.7960,

volatility of the volatility η = 0.3528, and the correlation coefficient between the

volatility and the stock price ρ = −0.4.7

In accordance with option pricing assumptions, we distinguish the stock price

6This allows a comparison with Hens and Rieger (2014)
7The parameters properties of the Heston model have been estimated by a large number of

studies, and the estimated parameters may differ from paper to paper. Our chosen parameters are

in the generally agreed region as basically in line with Liu and Pan (2003).
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process with the Black-Scholes model and the Heston model, respectively. Under

the risk-neutral measure, we obtain individual option prices within the Black-Scholes

option-pricing framework, and through the fast Fourier transform under the Hes-

ton model. In the case of path-dependent derivatives, options’ prices are obtained

given the stochastic volatility via the Monte Carlo simulation. There is, however, no

closed-form solution for prices of index options.8 Thus for pricing the index option,

we employ the Monte Carlo simulation to compute the price of index options. More

specifically, we perform 1, 000, 000 simulation runs using the stochastic process in

Equation 3.1 and Equation 3.2 respectively. The Monte Carlo simulation is per-

formed through an Euler scheme with 250 time steps per holding period to generate

distributions of the terminal prices of the individual stocks and the index level of

these stocks. Then the expected utility of the portfolio that consists of options and

risk-free assets can be determined for the two diversification strategies. As described

above, we eventually transform the expected utility to certainty equivalent rates for

the CRRA investor. We run Monte Carlo simulations with plain vanilla call and

put options, and proceed with the selected structured products.

3.5 Results

This section presents the results of the numerical analysis with the Monte Carlo

simulation. We divide the results into three parts: the first part gives the certainty

equivalents of the two diversification portfolios with the call and the put under the

base case parameters; the second part conducts a sensitivity analysis with respect

to various parameters; lastly, the third part examines the optimal diversification

portfolios for the selected structured products: the CPNs, the DCs and the BCs.

8See Branger and Schlag (2004). The analytical solution would not exist even if each stock of

the index followed a geometric Brownian motion and all the stocks were independent.
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3.5.1 Options

Since structured products are essentially investment portfolios combining long or

short positions with options, we firstly consider a buy-and-hold investor who can in-

vest in the options and the money market as a pre-experiment. Under the prevailing

assumptions, we compute the expected utility of the investment of a CRRA investor,

in which his portfolio is composed of the risk-free asset and plain vanilla options.

Another fundamental assumption here is that an equal amount is invested in the

option position as for the two methods of diversification. We compare a certainty

equivalent return of portfolios consisting of ψ0 options and (1−ψ0) of risk-free assets.

In addition, we implement the paired-t test to assess whether differences between

the two strategies are statistically significant.

Table 3.1 and Table 3.2 reveal the certainty equivalents (CEs) of the CRRA

investor with various risk aversion magnitudes γ = 0.5, 2, 3, 4, 5, given the base-case

parameters as described above. Note that the larger the γ, the more risk-averse the

investor is. The Columns 2 to 6 represent the weights of the initial option position ψ0

from 1% to 5%, which remains constant over time. The t-test results of all differences

D1−D2 indicate the statistical significance at the 1% level. Furthermore, a common

observation for both call and put is that the result is qualitatively very similar under

the Black-Scholes model and the stochastic volatility of Heston model. Therefore,

we restrict the discussion to the results under the Black-Scholes model (Table 3.1).

We observe that the better strategy involving call options for the CRRA investor

to choose is D2 where the call option is based on the index. For an investor with

γ = 0.5, for instance, the index-calls exceed the stock-calls’ combination by giving

the investor additional certainty equivalents from 6 basis points to 26 basis points in

the Black-Scholes framework when the position in the call increases from 1% to 5%.

However, for a less aggressive investor with γ = 5, the maximal certainty equivalent

returns is only 6 bp as ψ0 = 2%. When ψ0 = 5%, the result even reverses, i.e. the

investor gains more from the stock-based calls’ combination, though the difference
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is quite minor (5bp).

In contrast to the results for call options, put options based on individual stocks

are uniformly more appreciated by the CRRA investor for all levels of risk-aversion.

The more wealth is invested into the put option, the more pronounced the utility

differences. In particular, when the weight of the put is 1% (ψ0 = 1%), the difference

of certainty equivalent return is only 7 bp for an investor with relative risk aversion

γ = 5. When we set ψ0 = 5%, which is the fraction of the overall wealth invested

into the put, the difference between the two strategies increases to 54 bp for the

same investor. However, with more exposure to the put option, the utility gain of

both put option strategies declines. This is intuitive, because the payoff of a put

decreases against the development of the underlying stock prices, a larger position

in the put thus in general deteriorates the performance of portfolios consisting of

the put and the risk-free assets.

Taking everything together, the Monte Carlo simulation results show that it is

more beneficial to invest in the index call rather than a portfolio of calls (as long as

risk aversion is not high), while it is more beneficial to have a portfolio of stock-based

put option combinations than an index-based put option.

3.5.2 Sensitivity Analysis

We now conduct a sensitivity analysis of the two diversification strategies to risk-

aversion coefficients, correlation coefficients between stocks, expected returns, volatil-

ities of the stock, strike prices and positions in the options. All other parameters

are chosen as before.

Figure 3.2 and Figure 3.3 provide the sensitivity analysis under different scenar-

ios for the call options and the put options in the Black-Scholes framework. Similarly,

Figure 3.4 and Figure 3.5 give the sensitivity analysis under the stochastic volatility

Heston model. Each of the six graphs represents a quantitative assessment of the

strategy comparison, and indicates a parameter changing while the other parameters
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Table 3.1: Certainty equivalents rates (CEs) for option diversifications in the Black-

Scholes model

ψ0 = 0.01 ψ0 = 0.02 ψ0 = 0.03 ψ0 = 0.04 ψ0 = 0.05

γ D1/D2 D1-D2 D1 /D2 D1-D2 D1/D2 D1-D2 D1/ D2 D1-D2 D1/D2 D1-D2

Call

0.5 4.35/4.41 -0.06 4.70/4.81 -0.12 5.03/5.20 -0.17 5.36/5.58 -0.22 5.68/5.94 -0.26

2 4.34/4.39 -0.06 4.64/4.74 -0.10 4.91/5.03 -0.12 5.14/5.28 -0.14 5.34/5.49 -0.15

3 4.33/4.38 -0.05 4.60/4.69 -0.08 4.83/4.92 -0.10 5.00/5.09 -0.09 5.13/5.21 -0.07

4 4.32/4.36 -0.05 4.56/4.63 -0.07 4.74/4.81 -0.06 4.86/4.90 -0.04 4.93/4.94 -0.01

5 4.31/4.36 -0.05 4.53/4.59 -0.06 4.67/4.72 -0.05 4.74/4.75 -0.01 4.75/4.70 0.05

Put

0.5 3.70/3.64 0.06 3.39/3.27 0.12 3.08/2.90 0.18 2.76/2.52 0.25 2.44/2.13 0.31

2 3.69/3.63 0.06 3.36/3.23 0.14 3.01/2.80 0.22 2.65/2.33 0.31 2.25/1.84 0.41

3 3.69/3.62 0.07 3.34/3.19 0.15 2.97/2.73 0.24 2.56/2.22 0.35 2.13/1.67 0.46

4 3.68/3.61 0.07 3.32/3.16 0.16 2.92/2.66 0.26 2.49/2.11 0.38 2.02/1.52 0.51

5 3.68/3.60 0.07 3.30/3.14 0.17 2.88/2.60 0.28 2.42/2.02 0.40 1.92/1.38 0.54

The table shows the numerical results of certainty equivalents with respect to the terminal

wealth of the option portfolios. ψ0 is the option position at time 0 and remains constant over

time, while the rest 1−ψ0 is the amount invested into the risk-free asset. γ is the risk aversion

of the CRRA investor. D1 and D2 represent the CEs of the two diversification strategies: D1 is

the portfolio of equally weighted options each based on a single stock and the risk-free asset; D2

is the portfolio of a option based on the index and the risk-free asset. D1−D2 is the difference

in certainty equivalent return between the two. We run 1, 000, 000 simulations generated by

the Black-Scholes model market scenarios for the underlying stocks and the index. All the

numbers are percentage. All the differences of certainty equivalents between the two strategies

are statistically significant at the 1% level.
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Table 3.2: Certainty equivalents rates (CEs) for option diversifications in the Hes-

ton model

ψ0 = 0.01 ψ0 = 0.02 ψ0 = 0.03 ψ0 = 0.04 ψ0 = 0.05

γ D1/D2 D1-D2 D1 /D2 D1-D2 D1/D2 D1-D2 D1/ D2 D1-D2 D1/D2 D1-D2

Call

0.5 4.37/4.43 -0.07 4.73 /4.85 -0.13 5.08/5.26 -0.18 5.41/ 5.66 -0.25 5.74/6.04 -0.30

2 4.35/4.42 -0.06 4.66 / 4.78 -0.11 4.95/5.09 -0.14 5.20/ 5.37 -0.17 5.41/ 5.58 -0.17

3 4.35/4.40 -0.06 4.63 / 4.72 -0.09 4.88/4.99 -0.11 5.05/5.16 -0.11 5.19/ 5.31 -0.12

4 4.33/4.39 -0.06 4.60/ 4.68 -0.07 4.79/4.87 -0.08 4.94/5.00 -0.06 4.99/ 5.01 -0.02

5 4.32/4.37 -0.05 4.57/ 4.63 -0.06 4.72/4.78 -0.06 4.80/4.82 -0.03 4.82/ 4.80 0.02

Put

0.5 3.68/3.62 0.05 3.35/3.24 0.12 3.03/2.85 0.18 2.70/2.46 0.24 2.35/2.03 0.32

2 3.67/3.61 0.06 3.32/3.19 0.14 2.95/2.74 0.22 2.56/2.25 0.30 2.15/1.74 0.41

3 3.67/3.60 0.06 3.30/3.16 0.14 2.91/2.66 0.24 2.48/2.14 0.34 2.03/1.58 0.45

4 3.66/3.60 0.07 3.28/3.12 0.15 2.86/2.60 0.25 2.41/2.04 0.37 1.92/1.43 0.50

5 3.66/3.59 0.07 3.26/3.10 0.16 2.82/2.54 0.28 2.34/1.94 0.40 1.81/1.28 0.53

The table shows the numerical results of certainty equivalents with respect to the terminal

wealth of the option portfolios. ψ0 is the option position at time 0 and remains constant over

time, while the rest 1−ψ0 is the amount invested into the risk-free asset. γ is the risk aversion

of the CRRA investor. D1 and D2 represent the CEs of the two diversification strategies:

D1 is the portfolio of equally weighted options each based on a single stock and the risk-free

asset; D2 is the portfolio of a option based on the index and the risk-free asset. D1 − D2 is

the difference in certainty equivalent return between the two. We run 1, 000, 000 simulations

generated by the Heston model market scenarios for the underlying stocks and the index.

All the numbers are percentage. All the differences of certainty equivalents between the two

strategies are statistically significant at the 1% level.
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are fixed with the base-case parameters. Specifically, we assume the risk-aversion

coefficient γ ∈ [0, 5], the correlation between stocks ρ ∈ [−0.99, 0.99], the stock ex-

pected return µ ∈ [−5%, 15%], the stock volatility σ ∈ [0.1, 0.4], the strike of the

options K ∈ [0.8, 1.2] to the current price of the stock, and the fraction of the wealth

in options ψ0 ∈ [0, 0.99].

In line with the observations above, the overall results of the utility comparison

are qualitatively similar in both the Black-Scholes and the Heston model. Hence

again we mainly focus on the results under the Black-Scholes model. In the case of

the call option, we see that the superiority of the diversification strategies varies,

and in fact, is very sensitive to the parameters. Under low (µ ≤ 5%) or turbulent

(σ ≥ 35%) market conditions, the portfolio of calls based on individual stocks is

more attractive to the investor with a moderate risk-aversion coefficient(γ = 3).

Moreover, as the investor becomes more aggressive in investing in the call option,

the utility of stock-based calls combination becomes preferable over the index-based

call (bottom right panel). Similarly, the strike price also plays a role in determining

the optimality of diversification strategies.

For put options, interestingly, the results are largely independent of the parame-

ters such as risk-aversion coefficient γ, stocks’ correlation ρ, volatility σ, strike price

K and the fraction in the put ψ0. Despite the variation in all the parameters, the

results indicate a preference for the put combinations in which each put links to

an individual stock. However, the one exception is the expected return µ. As it

decreases to be negative (µ < 0), which implies a recessive market, put based on

the index becomes increasingly more attractive for the investor.

Moreover, we also run additional tests with respect to the number of stocks

included in the index, by increasing the number of stocks in the index with N = 5

and N = 10. Besides, instead of employing the time to maturity of 1 year, we

consider the remaining lifetime to maturity of both options with τ = 1/12, τ = 1/4,

τ = 1/2 and τ = 2 years. The results are qualitatively very similar and thus not
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Figure 3.2: Comparison of CEs between the two CALL diversification strategies

under the BS model
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The y-axes are the certainty equivalent rates of the portfolio consisting of the stock-based calls

(solid line), the index-based calls (dashed-dot line) and the difference of the two portfolios

(dashed line). The base-case parameters are presented as in Section 3.4, e.g., the investor has

risk aversion γ = 3; the weight of calls on both strategies are set to equivalent θ = 5%; the

stock expected return µ = 9%, and the volatility is σ = 20%.
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Figure 3.3: Comparison of CEs between the two PUT diversification strategies under

the BS model
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The y-axes are the certainty equivalent rates of the portfolio consisting of the stock-based puts

(solid line), the index-based puts (dashed-dot line) and the difference of the two portfolios

(dashed line). The base-case parameters are presented as in Section 3.4, e.g., the investor has

risk aversion γ = 3; the weight of calls on both strategies are set to equivalent θ = 5%; the

stock expected return µ = 9%, and the volatility is σ = 20%.
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Figure 3.4: Comparison of CEs between the two CALL diversification strategies

under the SV model
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The y-axes are the certainty equivalent rates of the portfolio consisting of the stock-based calls

(solid line), the index-based calls (dashed-dot line) and the difference of the two portfolios

(dashed line). The base-case parameters are presented as in Section 3.4, e.g., the investor has

risk aversion γ = 3; the weight of calls on both strategies are set to equivalent θ = 5%; the

stock expected return µ = 9%, and the volatility is σ = 20%.
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Figure 3.5: Comparison of CEs between the two PUT diversification strategies under

the SV model
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The y-axes are the certainty equivalent rates of the portfolio consisting of stock-based puts

(solid line), index-based puts (dashed-dot line) and the difference of the two portfolios (dashed

line). The base-case parameters are presented as in Section 3.4, e.g., the investor has risk

aversion γ = 3; the weight of calls on both strategies are set to equivalent θ = 5%; the stock

expected return µ = 9%, and the volatility is σ = 20%.
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reported9.

3.5.3 Financial Applications: Structured Products

Previous sections have examined the differences in diversification strategies on the

options. In this section, we extend our investigation on diversification to structured

products, which are often embedded with options as well as bond or underlying

securities as packages.

We repeatedly implement a series of strategy comparisons between the pair of

portfolios among CPNs, DCs and BCs. Different from the analysis with options, here

we assume that the total wealth is invested into the structured products, because

the investor holds essentially stocks or bonds positions that are already embedded

into the products. Figure 3.6 depicts the density of the terminal wealth from the

investment in the structured products. It depicts that there is a substantially larger

probability that the index product ends up with the terminal wealth being equal to

the predefined level10 than the addition of the two products. On the other hand, the

CPNs and the BCs display positive skewness, whereas the DCs result in negatively

skewed return distributions.

Panel A of Table 3.3 shows the certainty equivalent rates for the structured

products under the Black-Scholes framework. For the CPNs, index linked products

are superior to the stock products combination (D2 > D1), and the difference

declines monotonically in magnitude from 21 basis points to 1 basis point as the

risk-aversion increases proportionally from 0.5 to 5. This reflects the fact that the

CRRA investor with a lower risk-aversion level (γ = 0.5, for example), would benefit

more from investing in CPNs on the index than in CPNs on individual stocks. This

result is consistent with our previous results on call options. Recall that for the

9Summary of results is available upon request.
10The predefined level refers to the nominal protection level for the capital protected note, the

limited profit potential (cap) for the discount certificate, and the conditional protection level for

the bonus certificate if the barrier is not breached.
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Figure 3.6: Density function of terminal wealth distributions for the diversification

strategies with structured products
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call options considered in Table 3.1, a portfolio consisting of a small amount of calls

(e.g. ψ0 = 4%) on the index and the risk-free assets is always better than the other

alternative (ceteris paribus). As discussed earlier, a CPN is basically a combination

of a call and a bond. Given the base-case parameters’ setting in our analysis, the

CPNs can be translated equivalently to a fraction of 3.92% of the wealth in calls

when considering a portfolio of calls and risk-free assets. However, as we can see

from Figure 3.2 as well as Figure 3.4, the exposure to calls substantially affects

the attractiveness of the strategy, which implies that the higher the participation

rate (or the lower the protection level) of a CPN, the higher the likelihood that the

stock-based CPN portfolio wins against the index-based CPN.

In the case of the DCs, in contrast, we see single stock-based products exceed

their counterparts on the index, and there is no clear trend among the risk aversion

level with the differences around 11 basis points. The optimal strategy for the BCs

is the same as the DCs, though the difference in performance is quite marginal. In

addition, all the differences are statistically significant at the 1% level.

Panel B displays the results conducted under the stochastic volatility of the

Heston model. The results exhibit very similar patterns to those in Panel A and

the differences between the two strategies are of high statistical significance. A

CRRA investor profits more from the index CPNs with the gain in the certainty

equivalent rates of 8 basis points (γ = 5) to 28 basis points (γ = 0.5). Portfolios of

stock-based products deliver explicitly higher utility improvement than the index-

based products for both DCs and BCs, and thus should be more attractive to the

investor. Compared to the Black-Scholes model, the magnitude of both strategies’

certainty equivalent rates of the strategies and their differences in the Heston model

are remarkably larger.

Above all, the results of structured products are essentially consistent with the

empirical analysis discussed in Henderson and Pearson (2007), which reveals that

products based on the prices of individual equities predominantly have concave pay-



3.5 Results 67

Table 3.3: Certainty equivalent rates for diversifications of structured products

CPN DC BC

γ D1 D2 D1−D2 D1 D2 D1−D2 D1 D2 D1−D2

Panel A: Black-Scholes Model

0.5 5.41 5.63 -0.21 5.95 5.83 0.11 7.20 7.16 0.04

2 5.20 5.34 -0.13 5.52 5.41 0.11 6.05 5.97 0.08

3 5.07 5.16 -0.09 5.20 5.09 0.11 5.35 5.26 0.08

4 4.95 4.99 -0.04 4.84 4.72 0.12 4.68 4.61 0.07

5 4.82 4.83 -0.01 4.44 4.31 0.13 4.05 4.00 0.05

Panel B: SV Heston Model

0.5 5.50 5.84 -0.34 5.93 5.75 0.19 7.43 7.22 0.22

2 5.31 5.56 -0.24 5.54 5.37 0.17 6.36 6.10 0.25

3 5.20 5.38 -0.18 5.24 5.07 0.17 5.69 5.43 0.26

4 5.09 5.21 -0.13 4.91 4.73 0.18 5.06 4.81 0.25

5 4.98 5.05 -0.07 4.53 4.34 0.19 4.45 4.22 0.24

The table shows the numerical results of certainty equivalents from the investment in CPNs,

DCs and BCs, respectively, in the Black-Scholes and the Heston model. The overall wealth is

invested into the structured products at time 0 and is not adjusted during the term. γ is the risk

aversion of the CRRA investor. D1 and D2 represent two means of diversification strategies:

D1 is the portfolio of equally weighted structured product each based on a single stock; D2 is

the structured product based on the index. D1 −D2 is the difference in certainty equivalent

return between the two strategies. We run 1, 000, 000 simulations for the underlying stocks

and the index. All the numbers are percentage. All the differences of certainty equivalents

between two strategies are statistically significant at the 1% level.
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off profiles, while those based on equity indices predominantly have convex payoffs.

Figure 3.1 displays this clear pattern for the CPNs with convex payoffs and the DCs

with concave payoffs.

On the other hand, the patterns from the simulation results are also applicable

to investors’ preferences for categories of structured products proposed by Blümke

(2009), in which CPNs are categorized as fairly low-risk instruments, whereas DCs

and BCs are categorized as average-to-high risk instruments. As shown in Table

3.3, the BC is the optimal choice in general for a relatively aggressive investor (e.g.

γ = 0.5), in which he can realize up to 7.43% certainty equivalent return, whereas

for an investor with higher risk-aversion (e.g. γ = 5), the CPN dominates among

others by generating up to 5.05% profit. Investors who tend to buy CPNs are

more likely to be conservative, and they are prone to picking the index products

passively. Investors who tolerate higher risks may choose to actively manage their

own portfolios by for example constructing portfolios with individual stock-linked

DCs and BCs.

3.6 Conclusion

Among the many purposes that options and structured products serve, diversifi-

cation is one of the most important goals for investors. Different from rules of

constructing a diversified portfolio with common stocks, there are two possibilities

to diversify financial derivatives: one is to combine individual stock-based products,

and the other one is index-linked products. Both readily diversified investment

strategies seem to be reasonable and also feasible to retail investors. This chapter

studies the optimal investment portfolios with respect to options as well as different

structured products by comparing the expected utility benefits for a CRRA investor.

Specifically, applying the numerical Monte Carlo procedure through the widely

used Black-Scholes model as well as the Heston stochastic volatility model, we firstly
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assess the optimal strategy for the plain vanilla call and put, then extend the inves-

tigation to structured products including the capital protected notes, the discount

certificates and the bonus certificates in the analysis. Our results on options show

that the attractiveness of a diversification strategy related to different underlying

assets largely depends on parameters with respect to the market condition, the risk

attitude of investors and the position of options in the portfolio. As financial ap-

plications under the base-case parameters’ setting, having the opportunity to invest

in structured products, the CRRA investor obtains a higher utility from the invest-

ment of index capital protected notes, while he profits more from a combination of

stock-linked products for discount certificates and bonus certificates.

In the analysis, we omit transaction costs in the model. Taking transaction costs

into account would be valuable and more realistic, since diversification for retail

investors is costly, hence they should invest only in products where diversification

benefits exceed construction costs. It would therefore be interesting to extend our

study in this direction. Another limitation is that we only considered a static buy-

and-hold strategy in this article. Further research could examine the problem in a

dynamic environment.
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4.1 Introduction

Structured products are practically financial synthetic investment strategies that

combine an underlying, typically a stock or a stock index with at least a derivative

on that underlying. Consider the design of a structured product from the perspective

of an issuing financial institution. While the valuation of the structured product is

no doubt of predominant importance, we discuss the issue from a slightly different

angle that is by no means straightforward: the choice of an appropriate reference

stock, on which equity performance the structured product is based. In this chapter

we study the optimal design of structured products between alternative choices: an

individual stock and an index composed of those stocks. Among the vast majority of

structured products, we concentrate on capital protected notes (CPNs) and discount

certificates (DCs) for purpose of illustration in our analysis. Ultimately, we evaluate

and compare the utility gain of the CPNs and the DCs on single stocks and those

on indices, respectively, for investors in a behavioral finance context. The aim is to

explore the dependence of structured products on their underlying assets, especially

on the attractiveness of the structured products between an index and its component

stock for investors with loss aversion and mental accounting.

It is well-known from an academic perspective that structured products are

generally overpriced (e.g. Stoimenov and Wilkens (2005), Benet et al. (2006) and

Henderson and Pearson (2011)), which is natural, since Carlin (2009) demonstrates

that financial firms strategically enhance the complexity of their financial products,

which tends to induce investors away from rational behavior but to end up with a

rather irrational choice. The financial firms, on the other hand, preserve the market

power even in the face of competitive pressures and are able to charge a higher price

on their products. Rieger (2012) and Das and Statman (2013) provide evidence

that the irrationality of investors for structured products can be to some extent ex-

plained within the behavioral portfolios theory. As a matter of fact, the asymmetric

nature of the payoffs of the structured products also necessitates nonexpected utility
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preferences to explain the demand.

While conventional expected utility framework is not plausible explaining the

desire for structured products under numerous stances, we focus on the cumulative

prospect theory (CPT) as proposed by Tversky and Kahneman (1992) to measure

the utility gain of CPNs and DCs. The CPT is widely viewed as the best descriptive

theory of decision making under risk in experimental settings, which features a S-

shaped utility (value) function as divided by a reference point with loss-aversion

and probability weighting, so that it reflects a binary pattern of people’s different

risk behaviors in gains and losses. We consider an individual stock’s price being

determined under a complete and frictionless market corresponding to the Black

and Scholes (1973) model, then the index level can be derived as the weighted sum

of the individual component stock prices. Given the structured products being fairly

priced according to the Black and Scholes (1973) model, we calculate the final payoff

of each product hence the utility gain of a CPT investor via Monte Carlo simulations.

Moreover, to control the impact of investor’s risk preferences on their choices, we

analyze the results on a step-by-step procedure, in which different aspects of the

CPT are added cumulatively. In particular, we explore the robustness of the results

by dynamically combining parameters of the drift and the volatility of the return

generating process. Moreover, with empirical daily returns of the Deutsche Bank

(DBK) and the index that contains the DBK: the German Stock Index (Deutscher

Aktien IndeX: DAX), we implement historical simulations from January 1980 to

July 2013. Based on a one-day moving window, we use 250 subsequently daily

stock returns as proxy for yearly performance. Then we are able to produce 8207

overlapping yearly scenarios for the structured products. So that certain features of

stock return distributions that are missed out in the Monte Carlo simulations, like

fat tails and autocorrelation, are compensated in the historical simulations.

Our main results are as follows. Index-based CPNs generally outperform stock-

based CPNs given low to moderate volatility levels as well as relatively high return
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expectations, whereas stock-based CPNs beat index-based CPNs for the opposite

scenarios. As loss aversion has virtually no impact on investors’ decisions owing

to the CPNs’ property of ‘100% guaranteed principal’, the competing factors af-

fecting investors’ decisions are the participation rate on the underlying stocks and

investors’ overweighting of small probability events. Since in general, the index is

less volatile than its component stocks, thus this gives the index-based CPNs more

opportunity to take participation in the performance of the market index as long as

the product being fairly priced. As a result, a higher participation rate contributes

to the superiority of the index-based CPNs when the return expectation is high,

and correspondingly, it deteriorates the performance of the index-based CPNs when

the expected return of the stock is low. When volatility of the individual stock

increases, ceteris paribus, the individual stock generates a more right-skewed return

distribution compared to the index. The subjective probability weighting scheme

affects the CPT investor by making him overestimate the tail events, which induces

the investor in favor of the stock-based CPNs. On the other hand, a qualitatively

stable result with respect to the DCs shows that for various expected return and

volatility combinations, DCs on the index is preferable. We can attribute this find-

ing to the combination effect of loss aversion and probability weighting. The CPT

investor overweights probabilities in both tails of distribution, in combination with

loss aversion in the value function, the power of negative events magnifies more

heavily. In that respect, even though the stock-based DC attains a higher maxi-

mum possible payment (cap), more extreme negative returns significantly damage

its attractiveness perceived by the CPT investor, leaving the index-based DC the

better choice.

A number of studies have contributed in the literature in various aspects. For

instance, Branger et al. (2008) analyze the benefit of rational investors from trad-

ing structured products under the Expected Utility Theory framework. Breuer and

Perst (2007) evaluate the discount reverse convertibles and reverse convertible bonds
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as examples of structured products under the cumulative prospect theory. Ameur

(2010) illustrates the optimal design of structured products within the rank depen-

dent utility theory framework. More related to our topic, patterns of reference stock

classes to which structured products are linked have also been investigated. Benet

et al. (2006) argue that stocks with “large float” are used for structured products,

which may avoid the possibility that managers of the structured products manipu-

late underlying stock prices. Henderson and Pearson (2007) provide evidence that

issuers of structured products in aggregate choose underlying stocks not randomly,

but follow stylized rules. More explicitly, they document striking patterns in the

underlying securities of structured products. For example, products based on the

prices of individual equities predominantly have concave payoff profiles, while those

based on a diversified stock index possess convex payoff profiles.

To the best of our knowledge, this article is the first one that conducts the

analysis on a theoretical background to investigate the interplay of underlying stocks

and the optimal design of structured products in the CPT framework. In particular,

under the assumptions with an investor being a median decision maker subject to

Tversky and Kahneman (1992) and Lattimore et al. (1992), our results generally

predict that DCs on the index are more appealing, which seems to be contrary to

what is observed in practice as pointed out by Henderson and Pearson (2007). We

argue that this contradiction could occur because investors might deviate from the

standard CPT when they make decisions of purchasing a DC or other more complex

products without downside protection in reality, as Erner et al. (2013) show that

it is too much of a leap of the CPT parameters elicited via simple lotteries to be

applied in real world situations.

The remainder of the article is organized in the following. In section 4.2 we

introduce the fundamentals of the cumulative prospect theory. Section 4.3 presents

the design and the main results from the Monte Carlo simulations and the historical

simulations. Section 4.4 contains a short summary.
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4.2 Cumulative Prospect Theory

We consider an investor with preferences obeying the cumulative prospect theory

(CPT) as proposed by Tversky and Kahneman (1992), which takes two central

properties, framing effect and probability overweighting, into account, as compared

to the classic expected utility theory (EUT). Instead of the final absolute wealth that

an EUT investor values, a CPT investor sets a reference point and makes decisions

according to relative gains and losses. The investor is risk-averse in the domain

of gains and risk-seeking in the domain of losses, which implies a S-shaped value

function being concave over gains and convex over losses. Additionally, he is more

sensitive to losses in that losses generate a more pronounced negative utility than

the equal gains. Moreover, the CPT investor distorts statistical probabilities in a

sense that he is highly likely to overweight events with extremely low probability,

while underweight normal or average events.

To apply the CPT, we interpret the terminal outcome xi as the difference to the

reference point x0 for each product, i.e. ∆xi = xi−x0. With probability pi assigned

to each outcome ∆xi, a prospect is a vector of pairs as ((∆x1, p1), (∆x2, p2), . . . , (∆xN , pN)).

Defining the decision weights πi and the value function v(∆xi), the CPT investor’s

subjective evaluation for an investment strategy is given by

CPT (Strategy) =
N∑
i=1

πi · v(∆xi) (4.1)

Following Tversky and Kahneman (1992) we assume a two-part value function

v(∆x):

v(∆x) =

 ∆xα ∆x ≥ 0

−λ · (−∆x)β ∆x < 0,
(4.2)

based on the relative deviation from the reference point. So that the S-shaped

value function is concave in the range of gains and convex in the range of losses,

resulting in a kink at ∆x = 0. The parameters α ≈ 0.88 and β ≈ 0.88 reflect the
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investor’s sensitivity towards gains and losses, while λ ≈ 2.25 stands for the loss

aversion coefficient, which captures the investor’s propensity of valuing losses more

than twice as important as gains.

The objective statistical probabilities pi are not multiplied in equation 4.1, but

the transformed probability weighting functions πi are used. Specifically, decision

weights π are computed slightly different for losses w− and gains w+, as shown below

πi =

 π−i = w−(p1 + · · ·+ pi)− w−(p1 + · · ·+ pi−1)

π+
i = w+(pi + · · ·+ pN)− w+(pi+1 + · · ·+ pN),

(4.3)

where i denotes the outcomes ∆xi ranking in an ascending order, with ∆xi < 0 for

i = 1, . . . , k and ∆xi ≥ 0 for i = k+1, . . . , N . The key idea of the CPT that deviates

the original version of the prospect theory is that it replaces the probabilities with

differences of cumulative weighted probabilities, so that the problem in the original

prospect theory such as the violation of stochastic dominance can be avoided.1 We

follow the probability weighting function in line with Lattimore et al. (1992) and

Gonzalez and Wu (1999) assuming wp to be of a two-parametric form

wδ,γ =
δ · pγ

δ · pγ + (1− p)γ
:=

w
+(p) := δ+·pγ+

δ+·pγ++(1−p)γ+

w−(p) := δ−·pγ−

δ−·pγ−+(1−p)γ−

. (4.4)

The parameter γ determines the curvature in a sense that it measures how the

decision maker discriminates the probabilities of each outcome, while δ controls the

elevation, signifying how attractive the decision maker perceives different outcomes.

Alternative probability weighting specifications with only one parameter are not

considered, like Tversky and Kahneman (1992) and Prelec (1998), since they do

not permit an independent variation of elevation and curvature. In this article we

consider a median CPT investor elaborated by the empirical estimation according

1The violation of stochastic dominance is based on the fact that a large number of small prob-

ability outcomes added up to a “subjective” probabilities larger than one, which implies that one

prospect might be preferred even if it yields a worse outcome.
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to Abdellaoui (2000), in which the parameters are setting as following: δ+ = 0.65,

δ− = 0.84, γ+ = 0.60 and γ− = 0.65.

4.3 Simulation Results

4.3.1 Monte Carlo Simulation

Base Case

We firstly investigate the question under plausible economic assumptions as a base

case. We run 1,000,000 Monte Carlo simulations to approximate N = 20 individual

stocks, hence the index return distributions. The drift parameter is set to µ = 0.09,

and the volatility is constant and equal to σ = 0.2. Moreover, we assume a risk-

free rate r = 0.04, the investment horizon T = 1 year and the correlation between

each pair of stocks to be identical with ρ = 0.4. Given the fundamental settings

of the underlying stocks, parameters of the CPNs and the DCs can be determined.

Table 4.1 summarizes the descriptive statistics of the underlying stocks and the

structured products through the Monte Carlo simulation. In particular, as key

parameters often appear in products’ fact-sheets and prospectuses, at first glance

the CPN on the index looks intuitively better than that on the individual stock,

in that the index-based CPN participates more (with participation rate 53.73% vs

39.51%) in the performance of the underlyings given both the principal being equally

100% protected. Conversely, the DC on the individual stock seems more attractive,

followed by the fact that it sells at a cheaper price (with discount rate 9.93% vs

7.32%), thus would potentially be able to offer a higher maximum return.

Based on the above assumptions, Figure 4.1 depicts the return distributions of

the individual stock, the index, the CPNs and the DCs with the Monte Carlo sim-

ulation. Different from payoff function which only gives the magnitude of potential

payoffs, probability distribution provides information on the possibilities that events
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occur2. It is noteworthy here that both of the two classes of structured products

have truncated return distributions, but in an opposite way. While the CPNs’ return

is truncated above a “floor”, the DCs’ return is limited by a “cap”.

Table 4.1: Statistical summary of the alternative underlyings and the structured

products generated by Monte Carlo simulations

Underlying CPN DC

Statistics/Parameters Stock Index Stock Index Stock Index

mean return 0.094 0.094 0.055 0.061 0.061 0.058

standard deviation 0.221 0.144 0.069 0.064 0.089 0.048

skewness 0.621 0.401 1.557 1.134 -1.993 -2.682

kurtosis 3.719 3.279 5.742 4.102 6.543 10.515

protected level 100% 100%

participation rate 39.51% 53.73%

discount 9.93% 7.32%

This table describes the statistical characteristics of the underlying assets and the structured

products for the time horizon of 1 year simulated by Monte Carlo simulations. Basic parameter

values are µ = 9%, σ = 20%, r = 4%, ρ = 0.4.

Now we assess an investor’s utility given the cumulative prospect theory. As a

CPT investor distinguishes between gains and losses relative to a neutral reference

point, which is usually set to the status quo3, we use the strategy returns of zero

as the reference point. We implement the simulation procedure on a step-by-step

basis. Specifically, in the first step, we neither account for loss aversion (setting the

parameter in the value function λ = 1) nor probability weighting. Next, we include

2This is important because unsophisticated investors are highly likely to misestimate the objec-

tive probability and overoptimistic about an unrealistic favorable payoff, see for example Bernard

et al. (2011) and Rieger (2012).
3See for example Benartzi and Thaler (1995).



4.3 Simulation Results 81

−1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
Underlying Asset

return on stocks

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
stock
index

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60
Capital Protection Note

return on CPNs

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
stock
index

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35
Discount Certificate

return on DCs

P
ro

ba
bi

lit
y 

de
ns

ity

 

 
stock
index

Figure 4.1: Density estimate of return distributions with MonteCarlo Simulation
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the loss aversion in the value function with λ = 2.25, but still ignore the probabil-

ity weighting. In the end, we complete the whole cumulative prospect theory by

incorporating the loss aversion and the probability weighting. Controlling parame-

ters step-by-step, we capture the results’ deviation attributed to different aspects of

the cumulative prospect theory. In particular, to evaluate the utility improvement

more directly, we transform the final CPT value into certainty equivalent rates (CE),

which can be interpreted as equally desirable risk-free payment that generates the

same CPT value resulting from other risky investment strategies.

Table 4.2 presents the results of the two structured products for the base case.

Firstly, we find that the optimal CPN is based on the index (5.679% in CEs), whereas

the best DC is derived from the single stock (5.701% in CEs) in Panel A, where

neither loss aversion nor probability weighting is considered. Including loss-aversion

coefficient λ = 2.25, as shown in Panel B, does not influence the outcome of the

CPNs4, however, the opposite results are observed for the DC in comparison to the

outcome in Panel A. Incorporating the probability weighting in Panel C evidently

mitigates the magnitude of the CPT value difference between the CPN on the single

stock and that on the index, whereas it dramatically sharpens that difference for the

DCs. Additionally, all differences of the CPT values are statistically significant at

the 1% level as measured by the paired t-test. In a nutshell, the results above suggest

that for a given moderate market with stock expected return being 9% and volatility

being 20%, both the CPN and the DC linked to the index deliver a higher utility

for the investor with CPT preferences relative to those linked to the single stock. A

closer look at the Figure 4.1 can help with understanding the results. For both CPNs

and DCs, stock-based products have obviously longer tails than their counterparts

on the index. In spite of the longer positive ‘tail’ of the CPN on the single stock,

its inferiority results from the reduced upside participation of the underlying stocks

4Since the investor is fully protected in the investment of the CPNs, thus there is no negative

returns.
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(39.5% vs 53.7%)5. As for the DCs, extremely adverse events of the stock-based-DC

are weighted more by the CPT investor, whose negative prospect value in addition

to the loss-aversion effects substantially dominate over the higher maximum return

(the “cap”) it achieves. As a result, the DC on the index with less adverse events

exceeds, hence is optimal to the investor.

Robustness Check

Furthermore, we conduct a number of robustness tests by modifying parameters to

check the dependence of our simulation results on the choice of parameter speci-

fications. Most importantly, we compare the CPT values by changing either the

expected return µ or the volatility σ of the individual stock while the other param-

eter being fixed. We allow for µ changing between -0.05 and 0.15, and σ varying

between 0.1 and 0.4, as shown in Figure 4.2 and Figure 4.3, where the sensitivity

analyses of different market scenarios for the two structured products are depicted.

Interestingly, Figure 4.2 illustrates that the optimality of CPNs shifts, largely

depending on the parameters µ and σ. Partially inconsistent with the result shown in

Table 4.2, the stock-based CPNs exceed the index-based CPNs given relatively lower

values of µ (e.g. µ < 0.06) or higher values of σ (e.g. σ > 0.35). On the other hand,

as displayed in Figure 4.3, the CPT value of the index-based DCs outperforms that

of the stock-based DCs for all expected returns and volatility levels. This suggests

that the CPT investor should always choose the index-based DCs rather than the

stock-based DCs.

In Figure 4.4 and Figure 4.5 we sketch the 3-dimension diagrams of the dif-

ferences of CPT values by dynamically changing µ and σ at the same time. The

preference structure reveals that the index-based CPNs are mainly desired rela-

tive to the stock-based CPNs for µ being relatively high and σ being relatively low.

There exists a “fuzzy” (µ, σ) threshold at which the difference is close to 0, implying

5See the participation rate in the Table 4.1
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Table 4.2: Base case with Monte Carlo simulation results

CPN DC

Stock Index S-I Stock Index S-I

Panel A: without loss aversion λ = 1

CPT 4.098 4.610 -0.512*** 4.626 4.499 0.128***

CE (%) 4.968 5.679 -0.711 5.701 5.523 0.178

Panel B: with loss aversion λ = 2.25

CPT 4.098 4.610 -0.512*** 2.842 3.837 -0.996***

CE (%) 4.968 5.679 -0.711 3.277 4.610 -1.333

Panel C: with loss aversion and probability weighting

CPT 4.159 4.328 -0.170*** -1.215 1.085 -2.300***

CE (%) 5.051 5.285 -0.235 -0.497 1.097 -1.594

This table describes the numerical results of our base case with Monte Carlo simulations

for the capital protected notes and the discount certificates on the two alternative underlying

assets. While the individual stock returns are generated using the Geometric Brownian motion,

the index is the weighted sum of individual stock prices. Investors are characterized with

different preferences that can be interpreted as following: the investor in Panel A contains the

fundamental setup of the CPT with risk-aversion in the domain of gains and risk-seeking in the

domain of losses, but his preference does not account for loss aversion and probability weighting;

in Panel B loss aversion (λ = 2.25) is added into the value function, but decision weighting is

omitted; in Panel C all elements of the CPT are incorporated, with loss aversion and probability

weights. The paired t-test is conducted to test the prospect value of a structured product based

on the single stock is statistically different from that based on the index. *** indicates that

the test statistic is significant at the 1% level.
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Figure 4.2: CPT value comparison of the CPNs
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Figure 4.3: CPT value comparison of the DCs

−0.05 0 0.05 0.1 0.15
−10

−8

−6

−4

−2

0

2

4

Expected return µ

C
P

T
 V

al
ue

CPT comparison for different µ, given σ = 0.2

 

 
single stock
index

0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

Volatility σ

C
P

T
 V

al
ue

CPT comparison for different σ, given µ = 0.09

 

 
single stock
index



86 Does Underlying Really Matter for Structured Products?

that it is difficult to determine the superiority of CPNs between the two alternative

underlyings. As the differences of CPT values of the DCs (CPTIndex − CPTStock)

are always positive, meaning that the index-based DCs benefits more to the CPT

investor whatever (µ, σ) parameter combination is assumed. It is also worth noting

that the magnitude of differences tends to become larger for increasing the volatility

of individual stocks.

Besides, while all the others being equal, we rerun the Monte Carlo simulations

with different risk-free rate (r = 3%, 5%), correlation coefficient (ρ = 0.2, 0.6), time

to maturity (τ = 1/12, 1/2, 2, 5 year(s)), and the number of stocks in the index

(N = 5, 10, 30) respectively. However, the qualitative findings remain valid for all

of these variations.

Our results imply that given a normal state of the market with a moderate µ

(e.g. 9%) and σ (e.g. 20%), an index-based CPN is more attractive to the CPT

investor. As a component stock is likely more volatile than its index, the CPT

investor with probability overweighting overestimates probabilities of rare positive

events, thus would opt for CPNs linked to single stocks. However, the marginal

utility of stock-based CPNs earned by probability overweighting is offset by its

insufficient participation of the upward market movements compared to the index-

based CPNs, which reduces the desirability of the stock-based CPN, especially when

the expected return of the underlying stocks is high. Ultimately the index-based

CPNs with much higher participation in the rising market deliver higher utility than

its stock-based counterparts, thus are more attractive to the investor. The situation

with the DCs can be interpreted as the impact of the downside risk and probability

overweighting perceived by the investor. Specifically, an asymmetric perception to

losses over gains in addition with an excessive probability weighting of negative

returns leads the investor to be preferable to the index-based DC.
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Figure 4.4: CPT value differences between stock-based CPNs and index-based CPNs

as a function of expected return µ and volatility σ
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as a function of expected return µ and volatility σ
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4.3.2 Historical Simulation

Obviously, the results of Monte Carlo simulation are highly dependent on the input

parameters. Nevertheless, the scenario sets should match the market observations

and financial fundamentals as close as possible. In the simulation analysis above

under the perfect market condition, it is inevitable that our generated scenarios of

the underlying stock prices miss certain real data properties, such as return distri-

butions with significant asymmetries, excess skewness and kurtosis as well as heavy

tails. We therefore employ the historical simulation approach in order to capture

those missing characteristics in the Monte Carlo simulations.

We select the German stock index (Deutscher Aktien IndeX: DAX) and one

of its component stocks: the Deutsche Bank (DBK) in the analysis as underlying

representatives. The stock prices of the DAX and the DBK are the most frequently

used reference index and individual stock, respectively, for structured products (see

Bergstresser (2009)) in Germany. Therefore, we believe that the DAX and the DBK

can be the good proxy and suitable choice for underlying stocks. Specifically, we

focus on daily returns of the DAX and the DBK from January 1980 through July

2013. For the risk-free rate we employ the three-month Frankfurt interbank rate.

All data in the analysis is from the Thomson Reuters Datastream.

For historical simulation we use 250 subsequently daily stock returns as proxy

for yearly performance by moving window of one day. With this method, we obtain

8207 overlapping yearly data, in a sense that the available data is most efficient

utilized, and more importantly, crucial properties of the historical returns, such as

autocorrelation and heteroscedasticity6, are preserved.

Table 4.3 gives descriptive statistics of the continuously compounded returns

scaled by the beginning-of-period price on the Deutsche Bank, the DAX and the

6We test for autocorrelation up to 5 days and heteroscedasticity at lag up to 3 for the DBK

and the DAX, respectively. The results that for brevity are not reported indicate statistically

significant autocorrelations and heteroscedasticity effects for both the DBK and the DAX.
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money market rates. We see that the annual average return of the Deutsche Bank

is 11.54%, which is close to that of the DAX with 11.26%. But returns of the DBK

is notably more volatile in comparison to the DAX (32% vs 22%). This is intuitive:

the index provides more diversification than the individual stocks, hence is less

volatile. The observation also falls corresponding to our estimation in the Monte

Carlo simulations, where the stock expected return µ ranges from −5% to 15%, and

the volatility changes from 10% to 40%. Additionally, the average risk-free rate is

4.77% lying between 3% and 5% in the scenarios checked in the robustness of Monte

Carlo simulations. For a more detailed insight of return distributions, Figure 4.6

illustrates the estimate of return distributions for 1 year with historical simulations.

Table 4.3: Descriptive statistics

DBK DAX fixed interest rate

Mean return p.a. 11.54% 11.26% 4.77%

Volatility p.a. 31.95% 21.71% 2.88%

This table reports descriptive statistics of returns of the Deutsche Bank (DBK), German

stock index (DAX) and the money market rate as represented by the three-month Frankfurt

interbank rate over the period of January 1980 to July 2013.

Parallel to the table 4.2 that obtained from the Monte Carlo simulations, table

4.4 contains the results derived from the historical simulations. It can be seen

that the general conclusion from the Monte Carlo simulation is strengthened by the

historical simulation using data of the DBK and the DAX. The only exception is

in Panel C, where dominance between the DBK-based CPN and the DAX-based

CPN cannot be determined, as the paired t-test shows no statistical significance.

This inconsistence is not surprising, as seen from the Figure 4.4 presented before, it

might arguably fall in the “fuzzy” area in which there is no clear sign indicating the

superiority of the CPNs between the two alternative underlyings.
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Figure 4.6: Density estimate of return distributions with historical simulations
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Table 4.4: Historical simulation results

CPN DC

DBK DAX DBK-DAX DBK DAX DBK-DAX

Panel A: without loss aversion λ = 1

CPT 4.781 5.188 -0.408*** 5.004 4.579 0.425***

CE (%) 5.917 6.494 -0.577 6.233 5.635 0.598

Panel B: with loss aversion λ = 2.25

CPT 4.781 5.188 -0.408*** 1.999 2.608 -0.608***

CE (%) 5.917 6.494 -0.577 2.197 2.972 -0.774

Panel C: with loss aversion and probability weighting

CPT 5.239 5.231 0.008 -0.053 -0.027 -0.026***

CE (%) 6.566 6.555 0.011 -0.014 -0.007 -0.007

The table describes the numerical results for the capital protected notes and the discount

certificates with historical simulation based on daily returns of the Deutsche Bank (DBK) and

the German stock index (DAX) over the period of January 1980 to July 2013. We use 250

subsequently daily returns by moving the rolling window forward by one day and obtain 8207

overlapping yearly data. Investors are characterized with different preferences that can be

interpreted as following: the investor in Panel A contains the fundamental setup of the CPT

with risk-aversion in the domain of gains and risk-seeking in the domain of losses, but does

not account for loss aversion nor probability weighting; in Panel B loss aversion (λ = 2.25)

is added into the value function, but decision weighting is omitted; in Panel C all elements

of the CPT are incorporated, with loss aversion and probability weighting. The paired t-test

is conducted to test the prospect value of a structured product based on the single stock is

statistically different from that on the index. *** indicates that the test statistic is significant

at the 1% level.
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4.4 Conclusion

Structured products are combined financial-engineered securities that reward in-

vestors based on the performance of a reference asset. Taken capital protected notes

(CPNs) and discount certificates (DCs) as typical examples of structured products,

in this article we systematically compare the utility gain of a CPN and a DC linked

to a single stock with that to an index composed of these stocks, respectively, in

the behavioral finance context according to the cumulative prospect theory. To this

end, we conduct extensive Monte Carlo simulations as well as historical simulations

to examine which alternative underlying asset is more attractive to a median CPT

investor.

First of all, we find that in a moderate or optimistic market with rising expected

returns and a relatively low volatility of the underlying stocks, the CPNs linked

to the index are more of interest to the CPT investor, while in the situation of

a declining and turbulent market, the CPNs linked to the single stock are prone

to be more appealing. Furthermore, we obtain that the DCs based on the index

perform predominantly better than those based on the individual stocks for all

combinations of expected returns and volatilities. Parameter variations, like time

to maturity, correlation coefficient between pairs of stocks, and risk-free rate, are of

minor importance to the results. Moreover, our qualitative findings carry on to the

results using real market data by historical simulations.

In particular, it is notable that the result on DCs is contrast with the empirical

findings of structured products issued in the U.S. market documented by Henderson

and Pearson (2007), where they predict that “if a structured product has a concave

payoff, it is highly likely to be based on an individual common stock”. Given the

concave payoff function of DCs, our findings might be surprising, which results in the

empirical observation that individual stock-based DCs dominate over index-based

DCs challenging to be explained under the CPT in our settings. It is nevertheless not
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difficult to trace that the extent of loss aversion and probability weighting is critical

in determining the attractiveness of the DCs. As CPT investors are more sensitive

toward losses than gains, index-based DCs with less skewed return distributions

yields higher utility improvement than stock-based DCs. Therefore, it would be

worthwhile broadening the investigation on some modifications of the assumptions

on the inherent preferences of investors.

Though we only consider two specific types of structured products, they are

adequately simple and representative to justify theoretically. It is hoped that this

article provides insights to our knowledge on how a structured product should be

designed with respect to its reference stocks in order to meet investor’s preferences.

Further research could also look at properties of underlying assets of other more

complex structured products.
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