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Deutsche Zusammenfassung / German Summary

In Politik und Wirtschaft und damit in der amtlichen Statistik wird aktuell die präzise
Schätzung von Kennzahlen für kleine Regionen oder Teile von Populationen, sogenan-
nten Small Areas oder Domains, intensiv diskutiert. Die derzeit verwendeten design-
basierten Schätzmethoden beruhen überwiegend auf asymptotischen Eigenschaften und
sind somit bei großen Stichprobenumfängen zuverlässig. Bei kleinen Stichprobenumfän-
gen hingegen greifen diese designbasierte Überlegungen oft nicht, weswegen für diesen
Fall spezielle modellbasierte Schätzverfahren entwickelt wurden – Die Small Area-Ver-
fahren. Diese können zwar Verzerrungen aufweisen, haben dafür aber häufig kleinere mit-
tlere quadratische Fehler (MSE) der Schätzung als designbasierte Schätzer. In dieser Ar-
beit werden sowohl klassische, designbasierte Schätzmethoden, als auch modellbasierte
Schätzmethoden vorgestellt und miteinander verglichen. Der Fokus liegt hierbei auf der
Eignung der verschiedenen Methoden für einen Einsatz in der amtlichen Statistik. Hi-
erzu werden zunächst Theorie und geeignete Algorithmen für die benötigten statistis-
chen Modelle vorgestellt, die als Grundlage für die darauf folgenden modellbasierten
Schätzer dienen. Anschließend werden für Small Area Anwendung entwickelte Stich-
probendesigns vorgestellt. Auf diesen Grundlagen aufbauend werden sowohl design-
basierte Schätzer und als auch modellbasierte-Schätzverfahren entwickelt. Besondere
Berücksichtigung findet hierbei der area-level empirisch besten Prädiktor für binomiale
Variablen. Für diesen analytisch nicht lösbaren Schätzer werden numerische und Monte-
Carlo Schätzverfahren vorgeschlagen und verglichen. Weiterhin werden für ihn Methoden
zur Schätzung seines MSEs herausgearbeitet.

Eine sehr beliebte und flexible Resampling-Methode, die im Bereich der Small Area
Statistik viel Anwendung findet, ist der parametrische Bootstrap. Ein großer Nachteil des
Verfahrens ist dessen hohe Computerintensivität. Um diesen Nachteil abzuschwächen,
wird in dieser Arbeit erstmals eine Varianzreduktionsmethode für parametrische Boot-
straps vorgeschlagen. Anhand von theoretischen Überlegungen wird das enorme Poten-
tial dieses Vorschlags nachgewiesen. Mit Hilfe einer Monte-Carlo Simulationsstudie wird
gezeigt, wie starke Varianzreduktion mit dieser Methode in realistischen Szenarien erre-
icht werden kann. Diese kann bis zu 90% betragen. Dadurch wird tatsächlich die Nutzung
vom parametrischen Bootstrap in Anwendungen in der amtlichen Statistik realisierbar.

Schließlich werden die vorgestellten Schätzmethoden in einer großen Monte-Carlo Simu-
lationsstudie in einer konkreten Anwendung für die schweizerische Strukturerhebung hin
untersucht. Dabei werden Fragestellungen erörtert, die gerade für die amtliche Statistik
von hoher Relevanz sind. Insbesondere sind dies:

(a) Wie klein gegliedert dürfen Areas sein, ohne dass die Präzision der Schätzung
ungeeignet wird?

(b) Sind die Genauigkeitsangaben für die Small Area Schätzer reliabel genug, um sie
für die Veröffentlichung zu nutzen?
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(c) Stören sehr kleine Areas bei der Modellierung der interessierenden Variablen? Und
wird dadurch ein Verschlechterung der Schätzungen größerer und damit wichtigere
Areas verursacht?

(d) Wie können Kovariablen, die in verschiedenen Aggregationsebenen vorliegen auf
geeignete Weise zur Verbesserung der Schätzung herangezogen werden.

Als Datengrundlage dient die schweizerische Volkszählung von 2001. Die zentralen
Ergebnisse sind, dass aus Sicht des Autors die Verwendung von Small Area Schätzern für
die Produktion von Schätzwerten für Areas mit sehr geringen Stichprobenumfängen trotz
des Modellierungsaufwandes ratsam ist. Die MSE-Schätzung bietet dabei ein brauch-
bares Maß der Präzision, erreicht aber nicht in allen Small Areas die Reliabilität wie die
Varianzschätzung für designbasierte Schätzer.
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Chapter 1

The Need for Small-Scale Estimates in
Official Statistics

For the 2010 census round, the Swiss Federal Statistical Office conducted a register as-
sisted census for the first time. Instead of interviewing the full population (full census),
only a sample was surveyed (Bundesamt für Statistik Schweiz, 2013b). This implies a
change of paradigm in census methodology. In the full census, all the population values
could be obtained by counting out the entire census record. In contrast, under a register
based census, the population values produced are estimates. The classical estimators used
by official statistics to produce these census estimates are design based estimators. The
properties of these estimators rely mainly on asymptotics. That is, they should hold for
very large sample sizes. For typical surveys, where only estimates on higher aggregation
are needed, e.g. on a state or national level, the design based estimators perform well.
However, if the domain of interest is rather small, the sample size allocated therein is in
many cases also very small. Large sample asymptotic properties will not hold for these
domains. For example, the cross classification of sex, age classes and nationality can be
such a domain or also a county. As the census is the central information source for politics
and the economy for the figures on population, households, family, housing, employment,
mobility, education and religion, amongst others, it is crucial to pay close attention to the
accuracy of these estimates. For many useful population figures, the classical design
based estimators will provide poor quality estimates.

As the title suggests, the aim of this work is to evaluate small area techniques for ap-
plications in official statistics. These techniques comprise the point estimation on small
areas, with special focus on proportions, the MSE estimation for these point estimates
and the use of register data which might only be available on certain aggregation levels
due to disclosure reasons. Further, the practicability of resampling methods for the MSE
estimation of small area estimates is of major interest, where no analytical approximation
exists. The evaluation is done with design based Monte Carlo studies, giving guidance on
the usability of the different techniques at hand, especially for official statistics applica-
tions. The Swiss Census data set from 2010 is used as the exemplary data set. This data
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CHAPTER 1. THE NEED FOR SMALL-SCALE ESTIMATES IN OS

set has been kindly provided by the Swiss Statistical Office within the project Simulation
der Strukturerhebung und Kleingebiet-Schäzungen (see Münnich & Burgard, 2012b) with
permission to use it for this thesis.

This work is organized into six chapters. Following this introduction, the fundamental
methods for modelling the dependent variable by using covariates are presented. These
methods consist of the linear and generalized linear regression model and the linear and
generalized linear mixed models and are used in the following Chapter for the construc-
tion of most of the estimators. Besides the models, estimation methods and algorithms
are also discussed.

In Chapter Three a brief introduction is given to sampling designs relevant in the context
of small area estimation. On this basis, design based estimators are presented which are
typically used by statistical offices to produce estimates for publishing. Further, a variety
of small area estimation methods are presented. Besides the point estimates, precision
estimates are discussed for both the design based estimators and the small area methods.
Special focus is placed on the area level empirical best predictor, which is developed
for binomially distributed variables of interest. For this estimator, analytically intractable
integrals need to be approximated. Numerical and Monte Carlo integration techniques are
discussed which may be apt for solving these integrals. Also, two resampling methods
for the estimation of the MSE of this estimator will be presented. Last but not least in
this chapter, a modelling approach is proposed, which can include register information
on an intermediate level. This situation can arise when register information is only made
available, e.g. for disclosure reasons, on a cross-classification of demographic variables
in each area.

A major pitfall in the precision estimation for the small area methods is that some of
them require resampling methods, such as the parametric bootstrap. In the event of a
large number of areas, the parametric bootstrap is very time costly. Therefore, in Chapter
Four, the use of variance reduction methods is proposed. The proposed methods are
then analysed exemplary for the so-called Fay-Herriot model in a model based simulation
study, in order to visualize in which populations this method will work. It will be shown
that this approach can reduce the computational burden for parametric bootstrap MSE
estimates by a vast amount, depending on the population at hand.

In Chapter Five, the different estimators are analysed under the aforementioned aspects.
First, a brief introduction on the differences between model and design based Monte Carlo
simulations is given and a systematization is proposed. Next, the classical measures used
in Monte Carlo studies in the survey context for the evaluation of the estimators are pre-
sented. Further, an additional measure is proposed, which in Monte Carlo studies gives
another view on the precision of the point estimates. Finally, two major design based
simulations are performed. First, the question is tackled as to how small an area may be
in order for the estimators to provide acceptably precise point estimates. Therefore, four
scenarios are built and compared with each other. Also, the variance and MSE estimators
are discussed for a selection of interesting point estimates and scenarios. Second, the
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applicability of the method for using intermediate level register information proposed in
Section Three is studied.

The last chapter points out the findings of this thesis and discusses them controversially.
Also, an outlook is given on further and already ongoing research, as well as possible
future research directions.
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Chapter 2

Regression Models for Small Area
Estimation

The basis of small area estimators are regression models. These models are used to ex-
plain the variability of the variable of interest using covariates. The basic model used for
this is the general linear model, which is explained in the next section. An extension to
the general linear model, the general mixed linear model allows for more complex data
situations, including clustering and complex correlation structures and will be explained
in Section 2.2. Often the variable of interest is not continuous, such that linear models
may not be suitable. In this case generalized linear models (Section 2.3) and generalized
linear mixed models (Section 2.4) may be applied.

2.1 The General Linear Model

The linear regression is a tool to determine the linear relationship between a dependent
random variable y and one or more independent random variables x. This method dates
back to the 19th century, where Legendre (1805) and Gauss (1809) developed the least
squares method in order to determine the solar orbit of the planets. This linear relation is
expressed as

y = β0 + x1β1 + x2β2 + . . .+ xpβp + e = xβ + e .

where x=(1,x1, . . . ,xp) is the n× p+1 design matrix containing explanatory covariates, y
is the dependent variable of interest, and e is a residual error term containing the variation
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of y that is not explained by x. The least squares solution to this equation consists in
finding the vector β , which produces the minimal sum of squares of the residuals e.

β̂ = argmin
β=(β0,...,βp)

n

∑
i=1

e2
i = argmin

β=(β0,...,βp)

(y− xβ )′(y− xβ ) . (2.1)

By multiplying out the part to be minimized,

(y− xβ )′(y− xβ ) =−y′y−β
′(x′x)β +2y′xβ ,

and taking the derivative with respect to β , this yields

d
dβ
− y′y−β

′(x′x)β +2y′xβ =−2(x′x)β +2y′x = 2(y′x− (x′x)β ) .

Equating this derivative to zero and solving for β , the least squares estimate for β results
in

β̂ = (x′x)−1x′y . (2.2)

The least squares estimate for β is at the same time the maximum likelihood estimate
assuming normality of the error terms and the generalized method of moments estimator
(Verbeek, 2005, p. 183). There exist many different representations of the model assump-
tions underlying the linear regression model. A few examples of different representations
of the assumptions can be found in Poole and O’Farrell (1971), von Auer (2011, § 2) and
Dougherty (2011, § 2.2). In particular, it is assumed that each observation is a realisation
from a distribution with constant variance over all units in the population. That is, the er-
ror term has expectation E [ei] = 0 and variance σ2

ei
, which is identical for all observations

σ2
ei
= E

[
e2

i
]
≡ σ2

e , i = 1, . . . ,n. It is also assumed that the error term is independently
distributed with no form of autocorrelation, that is COV

[
ei, e j

]
= 0, i 6= j.

If the observations shall have a unit-specific importance for the estimation of the model
parameters, weights may be introduced to this linear regression. This can be done by
rewriting the Equation (2.1) into

β̂w = argmin
β=(β0,...,βp)

n

∑
i=1

wie2
i = argmin

β=(β0,...,βp)

(y− xβ )′W (y− xβ ) , (2.3)

with wi being the weight attributed to observation i and W being an n×n diagonal matrix
with the i-th diagonal element being wi (Björck, 1996, § 4.4). The weighted least squares
solution then is

β̂w = (x′Wx)−1x′Wy . (2.4)

For a more in-depth discussion on numerical issues concerning the weighted least squares
estimate see Björck (1996, § 4.4) and the references therein.
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2.2 The General Linear Mixed Model

The general linear model has some very restrictive assumptions. For example, in small
area estimation applications, the assumption that all observations are independent is usu-
ally not reasonable. In practice, the sampling is done for each area separately, and usually
it is assumed that the areas are different in some sense, e.g. with distinct mean and / or
variability. Thus, for small area estimation, it is more reasonable to assume cluster struc-
tures in the correlation of the observations. The general linear mixed model allows for
this and many other correlation structures in the variance covariance matrix and therefore
is very useful for small area estimation.

The mixed model formulation is similar to the linear regression (Pinheiro & Bates, 2000,
§ 5.1)

y = xβ + zu+ e (2.5)

The difference lies in an additional term zu, which is due to the K independent random

effects u. z = (z1, . . . ,zK) is a known matrix of size n×
K
∑

k=1
νk with zk being of size n×νk

and of ranks νk. u = (u′1, . . . ,u
′
K)
′ is a

K
∑

k=1
νk × 1 vector having a multivariate normal

distribution with means zero and non-singular
K
∑

k=1
νk×

K
∑

k=1
νk variance covariance matrix

Σu.

u∼ N(0,Σu) (2.6)

And e is the n× 1 residual vector having a multivariate normal distribution with means
zero and non singular variance covariance matrix Σe of size n×n:

e∼ N(0,Σe) . (2.7)

Alternatively, the distribution of y may be expressed as

y∼ N(xβ + zu,Σe) , (2.8)

or

y∼ N(xβ ,Σe + zΣuz′) . (2.9)
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Generally, the assumptions of normality may be dropped, but in the small area context
normality is usually assumed.

By setting z as a null matrix, e.g. in equation (2.9), one can see that the linear regression
is a special case of the mixed model with Σe = σ2

e I(n). Similarly, if Σu is, or is almost, a
null matrix, the same applies. Therefore, in the case where there is no random effect or
only a weak random effect is observed, the mixed model approaches the linear regression
model.

Henderson (1950) shows, that if Σu and Σe are known, then the best linear unbiased es-
timator β̂ for β and the best linear unbiased predictor û for u exist. Some different ap-
proaches to prove this can be found in Harville (1990); Jiang (1997) and Schmid (2011).
This result can also be derived from a Bayesian perspective as can be seen in Dempfle
(1977); Lindley and Smith (1972) and a comprehensive comparison of the frequentist and
Bayesian approach is presented by Vogt (2007).

Henderson (1950) showed that β̂ and û can be obtained by solving the following equation:(
x′Σ−1

e x x′Σ−1
e z

z′Σ−1
e x z′Σ−1

e z+Σ−1
u

)(
β̂

û

)
=

(
x′Σ−1

e y
z′Σ−1

e y

)
. (2.10)

The solution is given by the weighted least squares estimate of β

β̂ = (x′V−1x)x′V−1y , (2.11)

and
û = Σuz′V−1(y− xβ̂ ) (2.12)

(Henderson, 1963).

The resulting log-likelihood for the maximum likelihood and residual maximum likeli-
hood are respectively

ML: lML(φ ,β ) =−
1
2

(
log(2π)+ log |V |+ e′V−1e

)
, (2.13)

REML: lREML(φ ,β ) =−
1
2

(
(n− p) log(2π)+ log |V |+ e′V−1e+ log |x′V−1x|

)
,

(2.14)

V =V (φ) = Σe + zΣuz′ being the variance covariance matrix of y under the linear mixed
model, φ is the vector of variance components φ = (Σe,Σu), and the residuals e = y−
(xβ + zu).

As Σu and Σe are usually not known, they have to be estimated as well. By plugging the
estimated Σ̂u and Σ̂e into equations (2.11) and (2.12), one obtains the empirical best linear
unbiased predictor û for u (Kackar & Harville, 1981). Kackar and Harville (1981) and
Jiang (2000) also show that if the data is symmetrically distributed and φ̂ are estimated
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with an even and translation invariant estimator, the EBLUP remains unbiased. As Jiang
and Lahiri (2006b) state, ML and REML estimates fulfil these requirements.

Skinner (1989) proposes a method for incorporating survey weights which is similar to the
one in Equation (2.3). However, survey weighted mixed models for complex surveys are a
broad subject that would go beyond the scope of this work. For some papers giving insight
into the topic see e.g., Pfeffermann, Skinner, Holmes, Goldstein, and Rasbash (1998),
Rabe-Hesketh and Skrondal (2006) and Carle (2009). The sampling design needed in the
design based simulations in Chapter 5 remains simple enough, as to allow for using a
simple weighting of the model, which is analogous to the one in Equation (2.3).

2.2.1 Review of General Linear Mixed Model Estimation Methods

Ample literature exists on different estimation methods for general linear mixed mod-
els. In this section, a brief overview of the core directions is presented, including some
findings about the performance of these methods.

Henderson (1953) proposed three methods for estimating the variance components, of
which the third is being extended by many different authors (Pérez, Peña, & Molina, 2011;
Sarraj & Rosen, 2009). The three methods may be classified in the words of Djordjević
and Lepojević (2003):

Method 1 is simply an analogue of the analysis of variance method used with
balanced data; Method 2 is designed to correct a deficiency of Method 1 that
arises with mixed models; and Method 3 is based on the method of fitting
constants so often used in fixed effects models.

(see Djordjević & Lepojević, 2003, § 6, p. 63)

C. R. Rao (1970, 1971a, 1971b, 1972) proposed non-iterative variance components es-
timation methods called MINQUE (Minimum Norm Quadratic Unbiased Estimation)
and MIVQUE (Minimum Variance Quadratic Unbiased Estimation of Variance Com-
ponents). However, in practice they are often used iteratively (C.-t. Wu, Gumpertz, &
Boos, 2001). In this case, Harville (1977) notes that MINQUE/MIVQUE give identical
results to REML under the assumption of normality of u and e. Further, he argues that as
MINQUE does not need any distributional assumptions, Gaussian REML could be used,
even if the data is not normally distributed. P. S. R. S. Rao (1977) gives an overview of the
MINQUE method and Kleffe and Seifert (1986) show how to handle it computationally.

Many authors, such as Giesbrecht and Burrows (1978); Swallow and Monahan (1984)
and Harville (1977) compared the different methods. Essentially, they find that if REML
is computational feasible it gives comparably good results. One problem of REML es-
timates is that they may result in zero-estimates. H. Li and Lahiri (2010) propose an
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adjusted maximum likelihood estimator of the model variance. It maximizes an adjusted
likelihood, which is defined as a product of the model variance and a standard likelihood
function, e.g. a profile or a restricted maximum likelihood. The main advantage of this
approach is that it yields strictly positive σ̂u, which is necessary later on for the construc-
tion of the small area estimates. Further, H. Li and Lahiri (2010) state that this method
has better small sample properties than REML, which in the case of small area estimation
is an important point. As in the Swiss structural survey the sample size is 200,000 and
zero-estimates for the variance components almost never occur, in the following mainly
REML estimates will be used.

Lindstrom and Bates (1988) suggest applying the Newton-Raphson algorithm using a QR-
decomposition approach. A well known drawback of Newton-based iteration algorithms
is that convergence is not guaranteed. It is even possible to obtain parameter estimates
which are out of the parameter space, such as negative variances. Harville (1977) also
compares the Newton-Raphson algorithm with the Fisher Scoring algorithm proposed by
Patterson and Thompson (1971) and speeded up by Longford (1987). He states, that as
the expected Hesse matrix may be easier to compute than the observed one, the Fisher-
Scoring algorithm may be faster than the Newton-Raphson algorithm, with the drawback
that sometimes more iterations are necessary. Knight (2008) finds that Newton-type algo-
rithms do a reasonably good job in cases where the starting values are already close to the
final ML or REML estimates. However, if the starting values are poor, e.g. far away from
the final ML or REML estimates, EM-algorithm based iteration methods will perform
much better. The main advantage of the EM-algorithm based methods is that conver-
gence is assured. However, since the EM-algorithm can only detect a local maximum, the
convergence to the global maximum is not guaranteed.

In reply to the question of whether ML or REML is to be used, Searle, Casella, and
McCulloch (1992) give the following advice:

As to the question "ML or REML?" there is probably no hard and fast an-
swer. Both have the same merits of being based on the maximum likelihood
principle – and they have the same demerit of computability requirements.
ML provides estimators of fixed effects, whereas REML, of itself, does not.
But with balanced data REML solutions are identical to ANOVA estimators
which have optimal minimum variance properties – and to many users this is
a sufficiently comforting feature of REML that they prefer it over ML.

(Searle et al., 1992, § 6.8, p. 255)

In the next sections, the Fisher-Scoring Algorithm for ML and REML estimation and the
EM Algorithm for ML estimation of mixed model parameters are discussed.

9
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2.2.2 Estimating the General Linear Mixed Model with the Fisher-
Scoring Algorithm

One popular approach to obtain the variance components is to use the Fisher-Scoring
algorithm (c.f. A.3). This algorithm needs the Jacobian and the Hessian matrix of the
likelihood and is described in 2.1. First some starting values β (0) and φ (0) have to be
set. This point is crucial, as the starting values should be as near as possible to the true
values. Otherwise convergence may be slow or the algorithm might not even converge
at all (Knight, 2008). Cook (1982); Laird, Lange, and Stram (1987) propose to use the
following starting values:

β
(0) = (x′x)−1x′y (2.15)

u(0)d = (z′dzd)
−1z′d(yd− xdβ

(0)) (2.16)

Σ
(0)
e = σ

2,(0)
e I(n) (2.17)

σ
2,(0)
e =

∑
D
d=1 y′dyd−β (0)

∑
D
d=1 x′dyd−∑

D
d=1 u′dz′d(yd− xdβ (0))

n− (D−1)ν− p−1
(2.18)

and

Σ
(0)
u =

1
D

(
D

∑
d=1

(u(0)d )′u(0)d −σ
2,(0)
e

D

∑
d=1

(z′dzd)
−1

)
(2.19)

Second, the variance covariance matrix V is built in order to, third, calculate the new fixed
effects vector β .

As both ML and REML are considered, both log-likelihoods, ML and REML are consid-
ered as well. Given this new fixed effects vector β and the old variance components φ , the
variance components are updated in step four. Steps two to four are repeated sequentially,
until convergence of the parameters β and φ .

Algorithm 2.1 ML and REML Estimation of Variance Components

The elements of the Jacobian are

d lML

d φl
= JML

(l) (β ,φ) =−
1
2
(

tr
[
V−1V(l)

]
+(y− xβ )′V−1V(l)V−1(y− xβ )

)
d lREML

d φl
= JREML

(l) (β ,φ) =−1
2
(

tr
[
PV(l)

]
− y′PV(l)Py

)
with P =V−1−V−1x(x′V−1x)−1x′V−1, V(l) = dV/d φl , and φ = (Σe, Σu)

10
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The elements of the Hessian are

d2 lML

d φld φk
= HML

(l,k)(β ,φ) =
1
2
(
V−1V(l)V−1V(k)

)
d2 lREML

d φld φk
= HREML

(l,k) (β ,φ) =
1
2
(
PV(l)PV(k)

)
1. Set starting values j = 0 and β

(0)
ML, β

(0)
REML, φ

(0)
ML, and φ

(0)
REML.

2. Increase j by one and build

ML VML(φ
( j−1)
ML ) = Σ

ML( j−1)
e + zΣ

ML( j−1)
u z′.

REML VREML(φ
( j−1)
REML) = Σ

REML( j−1)
e + zΣ

REML( j−1)
u z′.

3. Calculate new fixed effects vector β

ML β
( j)
ML = (x′V−1( j−1)

ML x)−1x′V−1( j−1)
ML y

REML β
( j)
REML = (x′V−1( j−1)

REML x)−1x′V−1( j−1)
REML y

4. Update the variance components vector φ

ML φ
( j)
ML = φ

( j−1)
ML +

(
HML
(l,k)(β

( j−1)
ML ,φ

( j−1)
ML )

)−1JML
(l) (β

( j−1)
ML ,φ

( j−1)
ML )

REML
φ
( j)
REML = φ

( j−1)
REML +

(
HREML
(l,k) (β

( j−1)
REML,φ

( j−1)
REML)

)−1JREML
(l) (β

( j−1)
REML,φ

( j−1)
REML)

5. repeat steps 2-4 until convergence of φ ( j)

(c.f. J. N. K. Rao, 2003, § 6.2.4 and Searle et al., 1992, § 6)

Two concurrent convergence criteria are presented in the following section. They may be
applied as well for the Fisher-Scoring algorithm.

2.2.3 Estimating the General Linear Mixed Model with the
EM-Algorithm

The first theoretical foundations for the EM-algorithm were formulated by Orchard and
Woodbury (1972). Dempster, Laird, and Rubin (1977) generalize this approach, name it,
and provide some general proof. The basic concept is, that in the presence of missing
data, the likelihood is often impossible to maximize. Therefore, instead of maximizing
the likelihood directly, an iterative procedure is applied (Dempster et al., 1977):

11
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1. Estimate the expected likelihood Q given the estimated parameters of the likelihood
of the preceding step.

2. Maximize the likelihood given the estimated missing data.

In Algorithm 2.2 the general formulation of the EM-algorithm is given.

Algorithm 2.2 The general EM-algorithm

1. E-step: Obtain a new Q(ψ;ψ(t−1))

Q(ψ;ψ
(t−1)) = E

[
L(ψ;y)|ψ(t−1)

]
2. M-step: Maximize the Likelihood by choosing new ψ t

ψ
t = argmax

ψ

Q(ψ;ψ
(t−1))

where the new ψ t must be in the parameter space and Q(ψ t ;ψ(t−1))≥Q(ψ;ψ(t−1))
for any ψ in the parameter space.

3. Repeat steps 1-2 until convergence.

(Dempster et al., 1977)

The EM-algorithm remains rather general, as it does not provide a closed form equation
to solve a problem. It can be seen much more as a class of algorithms. A generalization of
the EM algorithm was also proposed by Dempster et al. (1977), which relaxes the M-step
a bit and is presented in algorithm 2.3. In contrast to the algorithm 2.2 it is not necessary
to find the optimal parameter vector given the expected likelihood, but it is sufficient to
find a new parameter vector in the parameter space which yields a higher likelihood than
the one of the step before.

Algorithm 2.3 The generalized EM-algorithm

1. E-step: Obtain a new Q(ψ;ψ(t−1))

Q(ψ;ψ
(t−1)) = E

[
L(ψ;y)|ψ(t−1)

]

12
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2. M-step: Maximize the Likelihood by choosing new ψ t with the condition that ψ t

must be in the parameter space and

Q(ψ t ;ψ
(t−1))≥ Q(ψ(t−1);ψ

(t−1)) .

It is sufficient to find this ψ t such that

L(ψ t ;y)≥ L(ψ(t−1);y)

3. Repeat steps 1-2 until convergence.

(Dempster et al., 1977)

Missing data does not mean necessarily unit or item non-response. It is meant in a much
broader sense, such that basically everything may be included. For example, one could
assume the random effects u to be the missing data. By applying this approach, mixed
models may also be estimated by the EM-algorithm. Let ψ be the vector of unknown
parameters of the assumed probability density function and the missing data, in this case
β and u respectively. L denotes the joint Likelihood of the observed and missing data.
In the case of models with exponential family distributions, it is enough to compute the
expected sufficient statistics in the E-step (Dempster et al., 1977).

There are different proposals for convergence criteria. McLachlan and Krishnan (2007)
for example choose to stop when

|L(ψ t ;y)−L(ψ(t−1);y)|< ε , (2.20)

for a predefined arbitrary small ε . Foulley and Van Dyk (2000) choose to use instead the
convergence criteria based on the estimated parameters ψ over the change in the likeli-
hood. Their stopping criteria checks whether the following norm of ψ is less than 10−8.
Let K be the number of elements of ψ , then the norm is defined as√√√√√√√

K
∑

k=1
(ψ t

k−ψ
(t−1)
k )2

K
∑

k=1
(ψ t

k)
2

. (2.21)

Special EM-algorithm implementations or the estimation of mixed models were proposed
by many authors. In the original paper by Dempster et al. (1977) there is one application
for mixed model estimation, but also Foulley and Van Dyk (2000); Laird et al. (1987);
Lindstrom and Bates (1988); C. Liu, Rubin, and Wu (1998); Meza, Jaffrézic, and Foulley

13
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(2007); van Dyk (2000) and Knight (2008), amongst many others, propose specialized
EM-algorithms, some increasing speed, others stability.

For simplicity a very basic EM-algorithm will be presented, following Knight (2008, pp.
48).

Recalling the mixed model in equation (2.5) we choose an alternative representation,

y = xβ +
K

∑
k=1

zkuk + e , (2.22)

where y is again the n× 1 vector of the observed variable of interest, x is the n× p-
matrix of covariates, zk is a known design matrix for the k-th, k = 1, . . .K, random effect
structure of dimension n× νk, and β is the fixed effects parameter vector of size n× p.
The unobservable, or alternatively called missing values uk, are the νk×1 random effects
vectors.

In analogy to the equation (2.9) the distribution of y can be written as

y∼ N(xβ ,V ) ,

where V in this formulation is V =
K
∑

k=1
zkz′kσ2

k +σ2
e In.

Now we can write the mixed model as a missing data problem by assuming the u as
missing. Then the mixed model is:

y
u1
...

uK

∼ N




xβ

0
...
0

 ,Σ

 (2.23)

with

Σ =

(
ZΣuZ′+Σe ZΣu

ΣuZ′ Σu

)
=

(
V diagK

k=1
(
σ2

k zk
)

diagK
k=1
(
σ2

k z′k
)

diagK
k=1
(
σ2

k Iνk

)) (2.24)

The density function of (y,u) is therefore

f (y,u) =
1√
2π

q |Σ|−0.5e−0.5·κ ′Σ−1κ , (2.25)
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with the column vector κ = (κ0,κ1, . . . ,κK), κ0 = y−zβ , κk = uk, q0 = n, and q=∑
K
k=0 νk

being the length of the vector κ . The resulting complete data log-likelihood is then

L(c) =−0.5q log(2π)−0.5
K

∑
k=0

νk logσ
2
k −0.5

K

∑
k=0

u′kuk

σ2
k

, (2.26)

with u0 = e = y− xβ −
K
∑

k=1
zkuk. Technically, as the uk, k = 0, . . . ,K are not observed,

the L(c) is a log-density function, but for ease it will be called the complete data log-

likelihood. The sufficient statistics for this model are then (y−
K
∑

k=1
zkuk), and u′kuk, k =

1, . . . ,K (Dempster et al., 1977, pp. 17).

The resulting maximum likelihood estimates derived from the complete data log-likelihood
are then (Dempster et al., 1977, p. 18)

σ̂
2
k =

u′kuk

νk
, k = 0,1 . . .K (2.27)

β̂ = (x′x)−1x′(y−
K

∑
k=1

zkuk) (2.28)

As the uk, k = 0,1, . . .K, are not observed, for the E-step of the EM-algorithm first the

expected values of u′kuk and (y−
K
∑

k=1
zkuk) given the observed data y have to be found.

Following Searle et al. (1992, § 8.3.b, p. 298) the distribution of the uk|y is a multivariate
normal distribution of dimension νk given by

uk|y∼ N
(
σ

2
k z′kV

−1(y− xβ ),σ2
k I(νk)−σ

4
k z′kV

−1zk
)

. (2.29)

and the expectations of the conditional sufficient statistics for the complete data log-
likelihood are given by

E
[
u′kuk|y

]
= σ

4
k (y− xβ )′V−1zkz′kV

−1(y− xβ )+ tr(σ2
k I(νk)−σ

4
k z′kV

−1zk) , (2.30)

and

E

[
(y−

K

∑
k=1

zkuk)|y

]
= xβ +σ

2
0V−1(y− xβ ) . (2.31)
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For k = 0, the individual error term, the matrix zk is the identity matrix I(n). Therefore,
E
[
u′0u0|y

]
reduces to

E
[
u′0u0|y

]
= σ

4
0 (y− xβ )′V−1V−1(y− xβ )+ tr(σ2

0 I(n)−σ
4
0V−1) . (2.32)

This yields the EM algorithm 2.4 as a combination of the presented elements. First, the
expectation of the sufficient statistics is computed, given the estimated parameters and the
observed data (the E-step), then the maximum likelihood estimates of the complete data
are calculated.

Algorithm 2.4 An Elementary EM-algorithm for Maximum Likelihood Estima-
tion for the Linear Mixed Model

Set t = 0 and starting values β (0),σ
2,(0)
k , k = 0,1, . . .K.

1. E-step: Obtain the sufficient statistics which are sufficient for Q = L(c):

ŝ(t)k = σ
4,(t)
k (y− xβ

(t))′V−1,(t)zkz′kV
−1,(t)(y− xβ

(t))

+ tr(σ2,(t)
k I(νk)−σ

4,(t)
k z′kV

−1,(t)zk)

κ̂
(t) = xβ

(t)+σ
2,(t)
0 V−1,(t)(y− xβ

(t))

where V (t) =
K
∑

k=1
zkz′kσ

2,(t)
k +σ

2,(t)
e I(n)

2. M-step: Compute the maximum likelihood estimates of the complete data log-
Likelihood L(c) given the estimated sufficient statistics of the E-step:

σ
2,(t+1)
k =

ŝ(t)k
νk

β
(t+1) = (x′x)−1x′κ̂(t)

3. Repeat steps 1-2 until convergence.

(Searle et al., 1992, § 8.3.c, Hartley & Rao, 1967, and Dempster et al., 1977)

For a REML version of this EM algorithm see Searle et al. (1992, § 8.3.f). This EM-
algorithm is an elementary one, on which many other EM-algorithms for the estimation
in mixed models are based. Amongst them are essentially the
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ECM The ECM algorithm proposed by Meng and Rubin (1993) is an extension for the
generalized EM algorithm, for the case that the M-step is computationally difficult
to perform. In this case, the M-step can be split into multiple conditional maxi-
mization steps (CM-steps), which generally are computationally simpler to solve.
This algorithm often takes more iteration steps than the elementary EM algorithm.
Nevertheless, depending on the complexity of the M-step, it may outperform the
EM algorithm in terms of computation time due to the simpler CM-steps

ECME C. Liu and Rubin (1994) propose an extension to the ECM algorithm. They
call it Expectation/Conditional Maximisation Either (ECME) algorithm. Instead of
maximizing the conditional expected complete-data log-Likelihood function (CM-
steps), the corresponding conditional actual likelihood function is maximized. They
show that their ECME algorithm is still monotone convergent, like the EM and
ECM algorithms. Further it converges faster with respect to computation time and
iteration steps than both the EM and the ECM algorithms.

PX-EM C. Liu et al. (1998) proposed the Parameter Expanded EM algorithm (PX-EM).
By parameter expanded it is meant that the observed parameter likelihood is ex-
panded by some parameters to form a new complete data log-likelihood. The ad-
ditional parameters are then used in a manner of covariance adjustment. C. Liu
et al. (1998) state that their PX-EM algorithm is as stable and simple as the EM-
algorithm, but faster. Foulley and Van Dyk (2000), among others, apply the PX-EM
algorithm in the mixed model context.

2.3 The Generalized Linear Model

In the case that the dependent variable is not continuous, the linear regression may pro-
duce nonsensical results. Say, the dependent variable is dichotomous with values 0 and
1, then using a linear regression easily results in predictions of values of over 1 or under
0. As these predictions are out of the range of the support of the dependent variable, they
are neither meaningful nor acceptable.

The exponential family of distributions allows for differently scaled random variables.
Some exponential families are the Binomial, the Poisson and normal distribution families,
amongst many others.

The general form for the probability density function belonging to an exponential family
distribution is

f (y|θ ,φ) := exp
(

yθ −b(θ)
a(φ)

+ c(y,φ)
)

, (2.33)
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where b(θ) must be two times differentiable with respect to θ and it has to be possible
to normalize f (y|θ). φ is called the dispersion parameter and stands for the variability in
the random variable. One can show that E(y) = µ = b′(θ) and V(y) = a(φ)b′′(θ). The
choice of the functions a,b and c leads to the different distribution families which are
exponential families. Early works on this family of distributions can be found in Darmois
(1935), Pitman (1936) and Koopman (1936).

Nelder and Wedderburn (1972) propose a generalization of the linear regression allowing
for a more flexible set of scales of the dependent variable. These models consist of three
components

1. An assumption about the distribution of the dependent variable y.

2. A so called systematic component that describes the way the covariates combine to
form the linear predictor.

3. A link function g: µ 7→ η of the form g(µ) = η . A special case is the canonical
link function, for which g(µ) = θ must hold.

The classical linear regression is a special case of the generalized linear model. By choos-
ing θ = µ ,φ = σ2 ,a(φ) = φ ,b(θ) = θ 2/2 and c(y,φ) =−(y2/σ2 + log(2πσ2))/2 one
obtains that the normal distribution is an exponential family. This can be seen by substi-
tuting these θ ,φ ,a,b,c into equation (2.33).

f (y|µ,σ2) = exp
(

yµ−µ2/2
σ2 − 1

2

(
y2

σ2 + log(2πσ
2)

))
=

1√
2πσ2

exp
(
−(y−µ)2

2σ2

)
.

As the normal distribution is an exponential family, one can apply the generalized linear
model as follows:

1. y is assumed to be normally distributed. (At least y|x is normally distributed.)

2. The systematic component in the linear regression is µ = xβ .

3. The canonical link function is the identity function, as g(µ) = θ = µ .

The model is then

E [y|x] = µ = Xβ ,

V [y|x] = σ
2 ,

or alternatively written

y|x∼ N(xβ ,σ2) ,
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which is the linear regression model.

In the case of a dichotomous dependent variable, the so called logit model may be used.
The dependent variable is taken to be distributed according to a Bernoulli distribution,
which is also an exponential family of distributions. Therefore, it fits into the theory
developed by Nelder and Wedderburn (1972).

1. The dependent variable is assumed to be Binomial distributed

f (y) =
(

n
y

)
θ

y(1−θ)n−y , y ∈ {0,1, . . . ,n} (2.34)

As can be seen, the Binomial distribution is an exponential family:

f (y) =
(

n
y

)
exp
(

y log
(

θ

1−θ

)
−n log(1−θ)

)
, (2.35)

where θ = log(θ/(1− θ)), b(θ) = n log(1+ exp(θ)), a(φ) = 1 and c = log
(n

y

)
.

Further, E [y|x] = b′(θ) = np, V [y|x] = a(φ)b′′(θ) = nθ(1−θ) holds, with b′(θ) =
exp(θ)/(1+ exp(θ)) and b′′(θ) = exp(θ)/(1+ exp(θ))2.

2. The linear systematic component η = xβ is assumed:.

3. The canonical link is in this case the logit-function

g(θ) = logit(θ) := log
(

θ

1−θ

)
, (2.36)

and its inverse function is

g−1(η) = logit−1(η) =
eη

1+ eη
=

1
1+ e−η

= θ . (2.37)

The parameters of the generalized linear model may be estimated by maximum likelihood.
The log-likelihood of the generalized linear model can be written in its general form as:

l(β ) =
n

∑
i=1

li(β ) , (2.38)

where

li(β ) = log( f (yi|x)) =
yiθi−b(θ)

a(φ)
(2.39)

denotes the likelihood contribution of the i’th observation. In this case, the i = 1, . . . ,n
observations are assumed to be independent. The term c(y ,φ) is omitted in equation
(2.39), because it is constant in θ , and thus also constant in β . Therefore, it plays no role
in the maximization process of the likelihood.
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In most generalized linear models there are no closed form solutions for the maximum
likelihood parameter estimate. An exception here is the linear regression model (see
section 2.1).

However, iterative solutions exist. The major statistical software, such as SAS, SPSS,
Stata, S+ and R use ML estimation for obtaining the model parameters. This is done via
the iteratively reweighted least squares, Newton-Raphson or Fisher-Scoring algorithm.
For the Newton-Raphson and Fisher-Scoring algorithm see page 139. A comparison of
these approaches is presented by Green (1984).

Simonoff (2003, § 5.1.2) presents a neat approach to the iteratively reweighted least
squares algorithm. By taking the derivative of the log-likelihood in Equation (2.39), one
obtains the score function. Setting the score function equal to zero yields the parameters
β , which maximizes the log-likelihood.

∂ l(β )
∂β

= s(β ) =
n

∑
i=1

xi
d2

i

σ2
i
(yi−µi) = 0 , (2.40)

with σ2
i = V [yi|xi] and di = ∂ µi/∂ηi. In matrix form this equation can be written as

x′W ((y−µ)� J) = 0 , (2.41)

where W = diag
(
d2

i /σ2
i
)
, J = (∂η1/∂ µ1, . . . ,∂ηn/∂ µn), and � is the element wise mul-

tiplication.

Now a neat trick is employed. On both sides of the equation the term x′Wxβ is added.

x′Wxβ = x′Wxβ + x′W ((y−µ)� J) ,

<=> x′Wxβ = x′Wζ ,

with ζ = xβ +((y−µ)� J). Therefore, the solution to the score equation can be seen as
a weighted least squares problem with the solution

β̂ = (x′Wx)−1x′Wζ (2.42)

But as ζ and W are functions of β , the solution has to be found iteratively.

β̂
( j+1) =

(
x′W (β̂ ( j))x

)−1
x′W (β̂ ( j))ζ (β̂ ( j)) (2.43)

This leads to the iteratively reweighted least squares algorithm 2.5, which yields results
identical to the Fisher-Scoring algorithm (Simonoff, 2003, p. 128).
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Algorithm 2.5 Iteratively Reweighted Least Squares for Generalized Linear Mod-
els

1. Set starting values for β (0) and set j = 1.

2. Calculate η( j) = xβ ( j−1) and µ( j) = g−1(η( j)).

3. Calculate σ
2,( j)
i = V [yi|xi], d( j)

i =
∂ µ

( j)
i

∂η
( j)
i

,

and J( j) =
(

∂η
( j)
1 /∂ µ

( j)
1 , . . . ,∂η

( j)
n /∂ µ

( j)
n

)
4. Compute W ( j) = diag

(
d2

i

σ2
i

)
and ζ ( j) = xβ ( j−1)+((y−µ( j))� J( j))

5. Obtain new β : β ( j) =
(

x′W ( j)x
)−1

x′W ( j)ζ ( j−1)

6. Increase j by one.

7. Repeat steps 2-6 until convergence.

(Simonoff, 2003, § 5.1.2)

For many exponential families, the partial derivatives may be derived analytically. In this
thesis, the Binomial generalized model with logit link is used and, hence, the derivatives
will be given by:

∂ µi

∂ηi
=

eηi

(1+ eηi)2 , (2.44)

∂ηi

∂ µi
=

1
µi(1−µi)

, (2.45)

and

V [yi|xi] = np(1− p) . (2.46)

2.4 The Generalized Linear Mixed Model

In analogy to the pure fixed effects model, non-normal data may not be modelled mean-
ingfully with the general linear mixed model approach. After the proposition of Nelder
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and Wedderburn (1972), soon many authors extended the idea of generalized linear mod-
els to include random effects, especially in a longitudinal context (see e.g. Liang & Zeger,
1986; Zeger, Liang, & Albert, 1988). A more general framework was developed by Schall
(1991) and Wolfinger and O’Connell (1993). As in the generalized linear model, three
components of the generalized mixed model have to be chosen: (1) the assumption about
the distribution of the dependent variable y; (2) the systematic component; and (3) the
link function g. The difference with respect to the generalized linear model lies mainly
in the systematic component, which is extended by the random effects. The distributional
assumption and the link function remain basically the same.

For computational reasons, the notation of the generalized mixed model is often as follows
(Schall, 1991):

y = µ + e , (2.47)

where e is an error term and E(y) = µ . The link function g is used to map µ → R.
η = g(µ) is called the linear predictor, which is assumed to depend on x and z in the
following form:

g(µ) = η = xβ + zu . (2.48)

Again, β is a vector of fixed effects parameters and u a vector of the random effects. e
and u are assumed to be independent and independently distributed with e∼N(0,Σe) and
u∼ N(0,Σu). The conditional expectation of y|u is

E [y|u] = g−1(xβ + zu) . (2.49)

In the case of y being normally distributed and the link function is the identity function,
the generalized mixed model equals the linear mixed model. However, for every other
link the resulting likelihood involves an analytically intractable integral

L(ψ|y) =
+∞∫
−∞

L(ψ|y,u) f (u)d u (2.50)

L(ψ|y,u) = ∏
i∈s

exp
(

yiθi−b(θi)

a(φ)
+ c(y,φ)

)
(2.51)

and as c(y,φ) is independent from ψ

l(ψ|y,u) = ∑
i∈s

yiθi−b(θi)

a(φ)
∝ log(L(ψ|y,u)) (2.52)

by substitution equation (2.52) into (2.50) one obtains equation (2.53)

L(ψ|y) ∝

+∞∫
−∞

exp(l(ψ|y,u)) f (u)d u . (2.53)
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f (u) denotes the probability density function of the random effects, which can be univari-
ate or multivariate. Usually, a normally distributed random effect is used as stated above.
This approach may however be extended to non-normal random effects.

There exist a wide variety of methods for maximizing the likelihood (2.53) for gener-
alized linear mixed models. Rabe-Hesketh, Skrondal, and Pickles (2002) and Bolker et
al. (2009) state that the most commonly used methods are the penalized quasi-likelihood
(PQL: see e.g. Laird, 1978; Stiratelli, Laird, & Ware, 1984) and marginal quasi-likelihood
(MQL: see e.g. Goldstein, 1991).

With the rise of faster computers, Monte-Carlo-based methods have also become increas-
ingly attractive. Examples of this are MCMC-EM algorithms (Booth & Hobert, 1999;
Delyon, Lavielle, & Moulines, 1999; Kuhn & Lavielle, 2004), simulated maximum like-
lihood approaches, like the one proposed by Concordet and Nunez (2002) or the simulated
method of moments developed by Jiang (1998). Here, the most commonly used method,
PQL, is presented via the approach developed by Breslow and Clayton (1993). Their main
idea is to apply the Laplace Approximation to a quasi-likelihood. The quasi-likelihood
they choose is

exp(ql(ψ)) ∝ |Σu|−
1
2

+∞∫
−∞

exp

(
− 1

2φ

n

∑
i=1

di(yi,µi(u))−
1
2

u′Σ−1
u u

)
d u , (2.54)

with the di as the (scaled) deviance measure of fit of the form

di(y,µ) :=−2

µ∫
y

y−u
aiv(u)

d u , (2.55)

with V [yi|u] = φaiv(u). If the y|u are realisations of a linear exponential family with
variance function v(·), then this quasi-likelihood resembles the true likelihood. As stated,
Breslow and Clayton (1993) propose to apply a Laplace approximation to equation (2.54).
By rewriting equation (2.54) into

exp(ql(ψ)) ∝

+∞∫
−∞

exp(κ(u))d u , (2.56)

the Laplace approximation to ql is

ql(ψ)≈−1
2

log |Σu|−
1
2

log |κ ′′(ũ)|−κ(ũ) , (2.57)

with ũ = ũ(ψ) being the solution to

κ
′(u) =−

n

∑
i=1

(yi−µi(u))zi

φaiv(µi(u))g′(µi(u))
+Σ

−1
u u = 0 . (2.58)
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Hence, ũ minimizes κ(u) (Breslow & Clayton, 1993).

The second derivative of κ(u) with respect to u is

κ
′′(u) =−

n

∑
i=1

ziz′i
φaiv(µi(u))[g′(µi(u))]2

+Σ
−1
u +R = z′Wz+Σ

−1
u +R , (2.59)

where

R =−
n

∑
i=1

(yi−µi(u))zi
∂

∂u

[
1

φaiv(µi(u))g′(µi(u))

]
(2.60)

is a remainder term with expectation zero and equals zero in the case of a canonical
link function (Breslow & Clayton, 1993). The n× n matrix W is a diagonal matrix with
elements

wii =
1

φaiv(µi(u))[g′(µi(u))]2
. (2.61)

Substituting equations (2.54) and (2.59) into equation (2.57) yields

ql(ψ)≈−1
2

log |I + z′WzΣu|−
1

2φ

n

∑
i=1

di(yi,µi(ũ))−
1
2

ũt
Σ
−1
u ũ , (2.62)

with ũ being the vector that maximizes − 1
2φ

n
∑

i=1
di(yi,µi(u))−

1
2

u′Σ−1
u u. Breslow and

Clayton (1993) assume that the weights in W do not vary, or vary only very little with
the change of the mean µi(u), and, therefore, neglect the first term in equation (2.62).
By doing this, they obtain the penalized quasi-likelihood proposed by Green (1987) for
semi-parametric regression models

ql(ψ)≈− 1
2φ

n

∑
i=1

di(yi,µi(ũ))−
1
2

ũ′Σ−1
u ũ . (2.63)

Differentiating equation (2.63) with respect to β and u leads to the score equations

n

∑
i=1

(yi−µi(u))xi

φaiv(µi(u))g′(µi(u))
= 0 , (2.64)

n

∑
i=1

(yi−µi(u))zi

φaiv(µi(u))g′(µi(u))
= Σ

−1
u u , (2.65)

which can be solved with the Fisher scoring algorithm proposed by Green (1987). Bres-
low and Clayton (1993) prefer to base the iterative algorithm on the results of Harville
(1977). First they define a working variable ζi = ηi(u) + (yi− µi(u))g′(µi(u)), where
ηi(u) = Xiβ + ziu. In analogy to Harville (1977) they propose to use the solution to the
system of equations: (

x′Wx xWzD
z′Wx I + z′WzD

)(
β

κ

)
=

(
x′Wy
z′Wy

)
, (2.66)
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as estimators with β̂ = β and u = Σuκ = Σuz′V−1(y− xβ̂ ). V is the n× n variance co-
variance matrix V = W−1 + zΣuz′, where W is a diagonal matrix with elements defined
in equation (2.61). Whilst Breslow and Clayton (1993) motivate the PQL method by
a Laplace approximation and deviance and Pearson residuals, Wolfinger and O’Connell
(1993) base a broader estimation method on a Taylor expansion around g(µ(u)). As they
state, their method encompasses not only the PQL by Breslow and Clayton (1993) but also
other estimation techniques proposed by Zeger et al. (1988) and Engel and Keen (1994).
The central aspect is the same as the presented method. The resulting Algorithm 2.6
consists of two steps. First, the new working variable ζ ( j) is computed, and second, the
weighted linear mixed model is used to obtain the new parameters β ( j),σ

2,( j)
k , k = 0, . . .K.

Algorithm 2.6 PQL Estimation of the Parameters of a Generalized Mixed Model

Set j = 0 and starting values β (0),σ
2,(0)
k , k = 0, . . .K.

1. ζ ( j) = η(u( j))+(y−µ(u(t)))g′(µ(u( j)))

2. Obtain from a mixed model estimation method the parameters β ( j),σ
2,( j)
k , k =

0,1, . . .K for the weighted mixed model

ζ
(t) = xβ + zu+ e

with weights w( j)
ii =

1
φaiv(µi(u( j)))[g′(µi(u( j)))]2

.

3. Repeat steps 1-2 until convergence.

(Breslow & Clayton, 1993 and Wolfinger & O’Connell, 1993)
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Chapter 3

Small Area Estimation

In 2011, Switzerland moved from a 10-year based full census to the annual Swiss Struc-
tural Survey for measuring the main population parameters of interest. One of the most
important figures in this context is the rate of active population. This rate is the proportion
of persons who are, roughly speaking, either employed or unemployed, but part of the po-
tentially working population aged between 15-74. For further details see Bundesamt für
Statistik Schweiz (2013b).

As the Swiss Structural Survey is not a full census but a sample of the population, this rate
and most other population parameters have to be estimated. The classical design based es-
timation methods, however, need relatively high sample sizes to deliver precise estimates.
Thus, they will provide reliable and accurate estimates on high aggregation levels. On
small aggregation levels, such as communities, the design based estimators may produce
only inaccurate estimates not apt for publishing. The precision of the design based esti-
mator is generally measured by a variance estimator, as they are at least asymptotically
design unbiased.

Model based small area estimators may produce accurate estimators even on a relatively
small aggregation level. This is achieved by using a model to explain the variation in the
dependent variable, alias the variable of interest, with available covariates. The model
is built depending on the aggregation level of these covariates. That is, if the variables
available are aggregated on an area level, then an area level model is used. If they are
available on a unit level, then a unit level model is used. Sometimes the covariates are
available on multiple aggregation levels. Then, usually the highest aggregation level is
used for the model. This may not be optimal as, in general, models based on lower
aggregation levels allow for more precision for the estimation (for an exception see Vogt,
2007, § 4.2).

In contrast to the design based estimators, the model based small area estimators generally
have a design bias in complex survey designs. Therefore, the variance of the point esti-
mate is not a sufficiently good measure for its precision. Hence, instead of the variance
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estimate, in general, an MSE estimate is reported. For some of the small area estimators,
analytical approximations to the MSE are available. For the other small area estimators,
resampling methods like the Jackknife and the Bootstrap are used. A basic introduction
into small area estimation can be found in Münnich, Burgard, and Vogt (2013) and the
comprehensive standard textbook is J. N. K. Rao (2003).

The lack of design unbiasedness is one of the major hurdles for official statistics to adopt
these model based small area estimates. E.g., it is difficult to communicate to a Mayor that
the total population figure produced may be negatively biased systematically. He would
not accept such a number at a first glance. However, the unbiasedness is only half of the
story. In Figure 3.1 this fact is visualized exemplary.

−10 −5 −3 0 2 5 10

0

x

f(
x)

N (0, 9)
N (−0.8, 2.25)

P(−2<x<2) = 0.495
P(−2<x<2) = 0.757

P(−3<x<3) = 0.683
P(−3<x<3) = 0.923

Figure 3.1: Distribution of design based (blue) versus model based (green) point estimates

The green line represents the distribution of a typical design based point estimate. It is
unbiased, that is, its mean equals the true value, which in this example is zero. Further,
its variability is relatively high. In contrast the blue line demonstrates the distribution of a
model based estimate, which is design biased but has a considerably lower variance. For
this example, without loss of generality, a negative bias is chosen. The central 95% of
each distribution is shaded. In this situation the whole central 95% of the model based
distribution lies within the central 95% of the design based distribution. This is due to the
lower variability and an absolute bias that is not very high. If the bias or the variability is
higher, this may cause the distribution not to overlap the true value. However, in this case,
the design based estimates often have such a large variance that, in terms of the MSE, the
model based estimate is still preferable.
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Another way to compare these two methods is to predefine a certain interval, into which
the estimate should fall. In this example, this interval is chosen to be (−2,2) and (−3,3),
highlighted in red. Now, the probability of obtaining a point estimate that falls into this
interval may be computed from the distribution of the estimates. As can be seen, even
though the model based estimate has a bias, the probability in this case is higher for
the model based than for the design based point estimate to fall into the interval. Of
course, again, if the absolute bias had been higher, this picture would have been quite
different. All in all, it seems more appropriate to use a measure for the precision that takes
into account both the variability and the bias of the distribution of the point estimates.
Consequently, small area estimates should be considered by official statistics, even if they
are not design unbiased.

Coming back to the mayor, the answer one could give him is that he should base his policy
on the 95% confidence interval. Because, in the ex ante perspective of 95% of samples
drawn, the confidence interval will overlap the true value, regardless of whether or not
the point estimate is biased. This is, of course, only true if the confidence interval is built
correctly. The point estimate on its own has, evidently, only a little information, as it may
fall within a wide range without further knowledge as to where. The advantage of small
area estimates is the usually narrower confidence intervals and, therefore, more accurate
information about the parameter of interest.

This chapter is organized as follows. First, a brief introduction to sampling designs de-
veloped for small area estimation purposes is given. Second, the classical design based
estimators are discussed, including point and variance estimates. Third, the different
model based small area point estimators and the related MSE estimators are presented.
And fourth, an approach to include the model covariates on an intermediate aggregation
level is proposed.

3.1 Sampling Designs for Small Area Estimation

Let U = {1, . . . ,N} be a finite set of identifiers for a population of size N. Further, let
S be a subset of U . The inclusion probability πi is the probability that unit i is sampled.
i.e. P(i ∈S ) (c.f. Fuller, 2009, § 1, Lohr, 2010, and Cochran, 1977). The design weights
wi are called the inverse inclusion probabilities, that is, wi := 1/πi. These design weights
are necessary for the estimation of design based estimates (see Section 3.2).

In register-assisted censuses, usually designs without replacement are used, e.g. a unit can
only be observed once in the sample. For simplilcity, in the following only this case is
considered. If a sample of size n is drawn from a population U of size N without further
restrictions, than the design is called simple random sampling without replacement (SRS).
The inclusion probabilities are then πi =

n
N
∀i ∈S .
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An extension to the SRS design is the stratified random sampling without replacement
(StrRS). In the case of StrRS, the population U is partitioned into H strata such that U =
H⋃

h=1
Uh and at the same time /0 =

H⋂
h=1

Uh. It follows directly that N = |U | =
H
∑

h=1
|Uh| =

H
∑

h=1
Nh. Within the strata SRS is applied. As such, the inclusion probabilities are πi =

nh/Nh for i ∈ Uh. There are many different ways of allocating the sample size n to the
H different strata. One possibility is to do an equal allocation where nh = n/H. Another
way is to do a proportional allocation where nh = n ·Nh/N. For the cases where the
resulting nh /∈ N, they have to be rounded under the constraint to sum up to n.

To minimize the total variance of the estimation of variable Y , the optimal Neyman al-
location further considers the standard deviation of Y in the different strata and leads to
nh =

Nhsh
∑

H
k=1 Nksk

·n. This kind of allocation of the sample size is known as Neyman alloca-

tion, after the famous paper of Neyman (c.f. 1934). As Žarković (c.f. 1956, 1962) shows,
Kowalsky (1924) and Tschuprow (1923a, 1923b) anticipated the Neyman-allocation.

The variance reduction of the estimation is greater, the more homogeneous the strata are
concerning the variable of interest Y (Pokropp, 1996, p. 5), the higher the correlation
between the stratification variable and Y , respectively, and the greater the variation of Y
between the strata is (Singh & Mangat, 1996, pp 133). This is due to the fact that the total
variance of a point estimate in StrRS is the sum of the variances of the point estimates
within the strata. Whereas in SRS, the total variance of a point estimate is the sum of
the within strata variance and the between strata variance. Hence, if the between strata
variance is greater than zero, then the stratified point estimate has a lower variance than
the SRS point estimate.

The interplay between designs and small area estimation is part of recent research (see
e.g. Münnich & Burgard, 2012a; Münnich, Burgard, & Zimmermann, 2012). Costa,
Satorra, and Ventura (2004) proposed to use a design that mixes a StrRS with proportional
allocation with a StrRS with equal allocation. Hereby, a tuning constant, c∈ [0,1], is used
to determine how much of the proportional allocation or the equal allocation is used. Let
nprop

h denote the sample size allocated to stratum h by the proportional allocation and
nequal

h denote the sample size allocated to stratum h by the equal allocation. The sample
size allocated to stratum h by the Costa et al. (2004) allocation with parameter c is

nCosta
h = c

nNh

N
+(1− c)

n
H

. (3.1)

The main idea behind this approach is to combine the advantages of both allocations.
On the one hand, the population estimate should be of certain precision, which would
favour the use of proportional allocation; on the other hand, the area estimates should
give reasonably precise results, which would go in the direction of equal allocation. By
using the convex combination in equation (3.1) a compromise between these two goals is
achieved.
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A similar idea is pursued by Longford (2006). His allocation is the solution to the min-
imization of the weighted sum of sampling variances in the areas. Assuming that the
sampling variance Vd in area d is known, the set of nd is searched which minimizes

min
n1,..,nD

D

∑
d=1

ζdVd (3.2)

maintaining n =
D
∑

d=1
nd fixed. He proposes to use the Lagrange multipliers approach for

this minimization. The coefficients ζd denote the relative importance one wishes to give to
the precision of the estimate in area d. This importance may be derived from e.g. political
goals or simply by a function of the area sizes Nd .

Longford (2006) proposes e.g. to take ζd = Nc1
d , 0 ≤ c1 ≤ 2 where a lower value of c1

would denote equal importance for all areas and the higher c1 is the greater importance
attributed to the larger areas. The sample sizes have to be derived depending on the
sampling design applied in the areas. If Vd = σ2

d/nd (e.g. in SRS), Longford (2006)
shows that the optimal allocation under the minimization of equation (3.2) is

nLongford,SRS
d = n

σd
√

ζd
D
∑

d=1
σd
√

ζd

. (3.3)

In order to include the importance of the precision of a national estimate Ψ̂, Longford
(2006) extends his approach by minimizing

min
n1,..,nD

D

∑
d=1

ζdVdζ◦V
[
Ψ̂

]
, (3.4)

with ζ◦ := c2
D
∑

d=1
ζd . The higher the scalar c2 the more importance is given to the precision

of the population wide estimate Ψ̂. Again no general solution for the sample allocation
can be obtained. In case of simple random sampling within the areas, and the use of the
Horvitz-Thompson estimator (see Section 3.2.1) for the population-wide estimate Ψ̂, the
optimal sample allocation under equation (3.4) is

nLongford 2,SRS
d = n

σd
√

ζ ′d
D
∑

d=1
σd
√

ζ ′d

(3.5)

where ζ ′d = ζd +ζ◦N2
d/N2.

Choudhry, Rao, and Hidiroglou (2011, 2012) propose a method for finding the allocation
with a minimal necessary sample size needed for stratified sampling under some con-
straints. It consists of finding the

min
n1..nD

D

∑
d=1

nd , (3.6)
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while controlling for some imposed constraints. They propose imposing a maximum
tolerance of the coefficient of variation (cv) for each area estimate and for the population-
wide estimate. The allocation can be found by using nonlinear programming methods
(Choudhry et al., 2012).

In the German Census 2011 (DESTATIS, 2012) an allocation proposed by Gabler, Gan-
ninger, and Münnich (2012) is implemented. The idea arose from a warning by Gelman
(2007) who stated that a too high ratio between the highest and lowest design weight is
problematic for model estimation. This allocation in principle is an optimal allocation
with box constraints on the inclusion probabilities. These box constraints impose a max-
imum and a minimum inclusion probability for all units in a stratum. By doing this, the
range of the design weights can be monitored explicitly and, therefore, so can the ratio
between the highest and lowest design-weight. For the precise specification of this allo-
cation see Gabler et al. (2012) and for a fast numerical algorithm to find the allocation see
Münnich, Sachs, and Wagner (2012).

3.2 Design-Based Estimates

3.2.1 The Horvitz-Thompson-Estimator

One of the most popular estimators in official statistics is the so-called Horvitz-Thompson
estimator proposed by Narain (1951) and Horvitz and Thompson (1952). For the estima-
tion of the area totals it only uses information from the respective area. Therefore it is
called a direct estimator.

Denoting the inclusion probability with πi and the design weight is defined as wi := 1/πi
for unit i. Then the Horvitz-Thompson estimator (HT) for the total τd of the value of the
dependent variable y in area d is defined as follows

τ̂d,HT := ∑
i∈Sd

wiyi, (3.7)

where Sd denotes the set of sampled units in area d.

This estimator is a design unbiased estimator for the total τd in area d (c.f.. Särndal,
Swensson, & Wretman, 1992, S. 42ff). The precision of this estimator is estimated by the
following variance estimator

V̂
(
τ̂d,HT

)
= ∑

i∈Sd

∑
j∈Sd

πi j−πiπ j

πi j

1
πi

yi
1
π j

y j , (3.8)
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(c.f. Särndal et al., 1992, S. 42). In the case of simple random sampling without replace-
ment equation (3.8) can be simplified to:

V̂
(
τ̂d,HT

)
= N2

d (
1
nd
− 1

Nd
) ∑

i∈Sd

(
yi−n−1

d ∑
j∈Sd

y j

)2

nd−1
. (3.9)

If the mean is of interest instead of the total the following applies

µ̂HT =
τ̂HT

N
, and (3.10)

V̂
(
µ̂d,HT

)
=

V̂
(
µ̂d,HT

)
N2

d
.

3.2.2 The Generalized Regression Estimator

In contrast to the HT, the Generalized Regression Estimator (GREG) is able to incorporate
additional information besides the sole dependent variable and the survey weights. In
the small area context there is often additional information about the population of an
area. On the one hand, explanatory variables may exist which can help to stabilize the
prediction. On the other hand, one can assume that the other areas in a population may
behave similarly to the area of interest. In that case, the sample information from the other
areas may be used as additional data that can be used for estimating more stable model
parameters.

The basic idea behind the GREG is to use information from a linear regression model
to correct the HT. The regression model expresses the relationship between the auxiliary
information x and the dependent variable y that is to be estimated. The estimates for the
regression coefficients β̂ are from a least squares estimation and asymptotically unbiased
for β due to the inclusion of the design weights wi. The HT-estimate for y is adapted for
the difference between the total of the auxiliary information in the population τx, which
is known for example from a register, and τ̂HT

x , which corresponds with the design-based
HT-estimate of y in the regression model. This approach assumes that the model is true
and the difference is due to the error of the design-based estimation Münnich et al. (2013).

τ̂
GREG
y = τ̂

HT
y +(τx− τ̂

HT
x )β̂ , (3.11)

where β̂ is defined in (2.2).
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If only the information within the area of interest may be used, then the estimation of the
model parameters and the prediction of the estimate are done separately for each area.
This estimator will be called SEP-GREG.

τ̂d,SEP-GREG = ∑
i∈Sd

wiyi +
(

∑
i∈Ud

Xi− ∑
i∈Sd

wixi

)
β̂d,LR . (3.12)

If one assumes that some other areas have the same relationship between the dependent
variable and the covariates, then a grouped GREG (GRP-GREG) can be applied. The
GRP-GREG estimates the model parameters over the whole sample of the group g. These
parameters are then used for the prediction within all areas d which belong to the group
g.

τ̂d,GRP-GREG = ∑
i∈Sd

wiyi +
(

∑
i∈Ud

Xi− ∑
i∈Sd

wixi

)
β̂g,LR . (3.13)

Another representation of the GREG estimator can be obtained by some algebraic trans-
formations.

τ̂d,GREG = ∑
i∈Ud

Xiβ̂ + ∑
i∈Sd

wiei , (3.14)

Lehtonen and Veijanen (1998) expanded the idea of the generalized regression estima-
tor by assuming a nonlinear function of β̂∗ (e.g., via a logit-link). Following them, the
equation 3.14 may be expanded further by

τ̂GREG,Mod = ∑
i∈Ud

g−1
i (ψ̂Mod)+ ∑

i∈Sd

(wi(yi−g−1
i (ψ̂Mod))) , (3.15)

where ψ̂Mod is a set of parameters obtained from an arbitrary generalized linear (mixed)
model with an objective link function g : R→ M ⊆ R (see 2.3). In the case of a fixed
effects logit-model ψFL contains only the fixed effects parameters βFL thus for this model

it is g−1
i (ψ̂FL) :

eXiβ̂FL

1+ eXiβ̂FL
= ŷi,FL. In analogy many different GREG Estimators may be

defined.

In the classical GREG the vector β̂ is the least squares estimate (2.2) and is asymptoti-
cally unbiased for β , if the design weights wi are used to consider the sample design. If
the classical assumptions of the regression model are satisfied, the estimation of the pop-
ulation parameter τY is unbiased. Even in the worst case of not fulfilling the assumptions
of the linear regression model, at least it is asymptotically design unbiased (c.f. Särndal
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et al., 1992, § 6.4). Thus, the MSE of the point estimate equals (at least asymptotically)
its variance.

Särndal et al. (1992, S. 401) write the GREG by using so called g-weights:

τ̂d,GREGg = ∑
i∈S

gdiwiyi , (3.16)

where,

gdi = Ii∈Ud +
(

∑
i∈Ud

xi−
Nd

N̂d
∑

i∈Sd

wixi
)′(x′Wx

)−1x′ . (3.17)

Ii∈Ud is an indicator function being one if unit i is in Area d, else zero, and W = diag(w1, . . . ,wn).
The variance estimator of the GREG may be expressed using the g-weights

V̂
(
τ̂d,GREGg

)
= ∑

i∈S
∑

j∈S

π ji−πiπ j

π ji
gd jw je j gdiwiei. (3.18)

where πi j are the second order inclusion probabilities. If j and i are independently drawn
and not in the same area, then πiπ j = πi j and the right-hand side of equation (3.18) van-
ishes. This is the case of the sampling design considered in this work. Further, it leads to
a simplification of the variance formula

V̂
(
τ̂d,GREGg

)
=

D

∑
h=1

N2
h
( 1

nh
− 1

Nh

)
∑

i∈Sh

(gdhiehi−n−1
h ∑ j∈Sh

gdh jeh j)
2

nh−1
. (3.19)

A proof of the residual variance estimator can be found in Särndal et al. (c.f. 1992, § 6.6),
and for separate groups for each stratum in Münnich (1997, § 2).

By Taylor expansion, one can obtain a different and computational less demanding vari-
ance formula (c.f. Särndal et al., 1992, § 6.6)

V̂
(
τ̂d,GREG

)
= N2

d
( 1

nd
− 1

Nd

)
∑

i∈Sd

(
ei−n−1

d ∑ j∈Sd
e j
)2

nd(nd−1)
. (3.20)

3.3 Model Based Prediction

3.3.1 The Fay-Herriot Estimator

Fay and Herriot (1979) proposed the so-called Fay-Herriot estimator (FH) for the estima-
tion of the mean population income in a small area setting. They assume that covariates
may only be available at aggregate level, such as communities, and not on unit-level. As
Jiang and Lahiri (2006b) state, this can be seen as a special case of a mixed model where
for every area there is only one observation. Hence, the matrix z = Z is just the identity

34



CHAPTER 3. SMALL AREA ESTIMATION

matrix of size D×D. As dependent variable Fay and Herriot (1979) used direct estimates
obtained from the sample. This direct estimate µ̂d,direct may be e.g. a HT or a GREG
estimate. The covariates are true population parameters, e.g. population means X . The
model underlying the FH is then

µ̂d,direct = Xβ +ui + ei . (3.21)

The FH is the prediction from this mixed model and is given by

µ̂d,FH = Xdβ̂ + ûd , (3.22)

with

ûd =
σ̂2

u

σ̂2
u +σ2

e,d
(µ̂d,direct−X β̂ ) .

Whilst the σ̂2
u and β̂ are estimates, the σ2

e,d,d = 1, . . . ,D, are assumed to be known. Jiang
and Lahiri (2006b) state that if all areas have sample allocation and simple random sam-
pling is applied within the area, one can use the variance estimate for a direct survey
estimate for area d as σ2

e,d,d = 1..D. This could be the variance estimate (3.10). Assum-
ing σu is known, then β can be estimated in a similar way, as in the mixed model, via a
weighted least squares approach

β̂ (σu) = (X ′V−1X)−1X ′V−1
µ̂d,direct . (3.23)

As there is only one observation per area, the matrix V−1 is easily computed by V−1 =
σ−2

e � I(D)σ
−2
u , σe in this case being the D×1 vector of σe,d . There exist several methods

for the estimation of σu when σe,d are assumed to be known. Fay and Herriot (1979)
proposed an estimation equation approach using the weighted least squares residuals. It
consists of solving the equation

f (σu) =
D

∑
d=1

(
µ̂d,direct−Xdβ̂ (σu)

)2

σ2
u +σ2

e,d
− (D− p) = 0 , (3.24)

and equation (3.23) iteratively. This can be done via the Newton-Raphson algorithm (c.f.
Section A.3).

Algorithm 3.1 Estimation of σu for the Fay-Herriot estimator: The Fay-Herriot
version.
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An approximation to the first derivative of f (σ2
u ) is

f ′(σ2
u ) =

d f
dσ2

u
≈−

D
∑

d=1

(
ŷd−Xdβ̂ (σ2

u )
)2

(
σ2

u +σ2
e,d

)2 .

1. Set j=0 and the starting value σ
2(0)
u = 0.

2. Increase j by one and compute σ
2( j)
u = σ

2( j−1)
u − f (σ2( j−1)

u )

f ′(σ2( j−1)
u )

3. Repeat step 2 until convergence of σ
2( j)
u (|σ2( j)

u −σ
2( j−1)
u |< ε arbitrary small).

(Fay & Herriot, 1979)

As can be seen from equation (3.22), the relevance of the precision of σu depends on the
scale of σe,d . If σe,d � σu, d = 1..D, then a small change in σu will not change much
in the prediction and thus, ε does not have to be too small. But if some σe,d and σu are
almost of the same size or even some of the σe,d� σu, d = 1..D, then it is very important
to choose a sufficiently small ε in order to obtain a precise prediction.

Another estimator is proposed by Prasad and Rao (1990). It is an estimator using Hen-
derson’s method 3 (Henderson, 1953), a fitting of constants estimator,

σ̂u =

D
∑

d=1

(
ŷd−Xd(X

′X)−1X ′ŷ
)2−

D
∑

d=1
σe,d(1−Xd(X

′X)−1X ′d)

D− p
. (3.25)

This estimator may become negative, and if this happens the σ̂u is set to zero. Plugging
this variance into Equation (3.23) yields the corresponding β -estimate.

The σu can be estimated as well by ML or REML. The algorithm is a simplification of
Algorithm 2.1, as only one variance component has to be estimated.

Algorithm 3.2 Estimation of σu for the Fay-Herriot estimator: The ML and REML
version.

The Jacobian is

ML JML(β ,σu) =−
1
2
( D

∑
d=1

1
σ2

u +σ2
e,d
−

D
∑

d=1

(µ̂d,direct−Xβ )2

(σ2
u +σ2

e,d)
2

)
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REML JREML(β ,σu) =−
1
2
(

tr [PP]− tr
[
µ̂ ′d,directPµ̂d,direct

])
Obtain the Hessian matrix of the log-likelihood

ML HML(β ,φ) =
1
2

D
∑

d=1

1
(σ2

u +σ2
e,d)

2

REML HREML(β ,φ) =
1
2

tr [PP]

1. Set j=0 and the starting value σ
2(0)
u,ML = σ

2(0)
u,REML = 0.

2. Increase j by one and compute

ML β
( j)
ML =

(
X ′(σ2( j−1)

u,ML I(n)σ2
e )
−1X

)−1X ′µ̂d,direct

REML β
( j)
REML =

(
X ′(σ2( j−1)

u,REMLI(n)σ2
e )
−1X

)−1X ′µ̂d,direct

3. Update σ2
u

ML σ
2( j)
u,ML = σ

2( j−1)
u,ML −

(
HML(β

( j−1)
ML σ

2( j−1)
u,ML )

)−1JML(β
( j−1)
ML σ

2( j−1)
u,ML )

REML σ
2( j)
u,REML =σ

2( j−1)
u,REML−

(
HREML(β

( j)
REMLσ

2( j−1)
u,REML)

)−1JREML(β
( j)
REMLσ

2( j−1)
u,REML)

4. Repeat step 2 until convergence of σ
2( j)
u (|σ2( j)

u −σ
2( j−1)
u |< ε arbitrary small).

3.3.2 The Battese-Harter-Fuller Estimator

For the case that unit-level covariates are available, Battese, Harter, and Fuller (1988)
proposed the so-called Battes-Harter-Fuller estimator (BHF). This estimator, like the FH,
can be constructed by using the mixed model framework, as Moura and Holt (1999) and
Jiang and Lahiri (2006b) show.

The mixed model used, is a random intercept model

y = xβ + zu+ e , (3.26)

with the matrix z being of dimension n×D with elements

zid =

{
1, if unit i is in area d,
0, else

. (3.27)

The estimation of the model parameters is described in Section 2.2.
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The BHF is the prediction from the linear mixed model (3.26) with the estimated model
parameters β̂ , σ̂2

u , σ̂
2
e and the national mean of the covariates X :

µ̂BHF = X β̂ + û , (3.28)

û = γd(y− xβ̂ ) =
σ̂2

u
σ̂2

u + σ̂2
e /nd

(y− xβ̂ ) .

This estimator is an empirical best linear unbiased predictor (EBLUP) (Battese et al.,
1988).

3.3.3 MSE Estimation for the Nested Error Regression Models

As both, the FH and the BHF, rely on a nested error regression model, this can generally
be written as

µ(φ) = X β̂ + γ(y− xβ̂ ) . (3.29)

They are BLUP if the variance components are known (Henderson, 1975). Kackar and
Harville (1984) showed that under certain conditions (cf. Kackar & Harville, 1984, pp.
853), the MSE of the BLUP can be decomposed into

MSE
[
µ(φ̂)

]
= MSE [µ(φ)]+E

[
µ(φ̂)−µ(φ)

]2
. (3.30)

As Prasad and Rao (1990) state, the second term in (3.30) is only tractable in special
cases, as done by Peixoto and Harville (1986) and Peixoto (1988) for the balanced one-
way analysis of variance model. Kackar and Harville (1984) proposed a Taylor series
approximation to this term

E
[
µ(φ̂)+µ(φ)

]2 .
= E

[(
∂ µφ

∂φ

)′
(φ̂ −φ)

]2

. (3.31)

The proposed approximation is

E
[(

∂ µφ

∂φ

)′
(φ̂ −φ)

]2
.
= tr

[
VCOV

[
∂ µφ

∂φ

]
E
[
(φ̂ −φ)(φ̂ −φ)′

]]
. (3.32)
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Prasad and Rao (1990) propose a further approximation, valid for their estimator (3.25)
for the variance component.

E
[(

∂ µφ

∂φ

)′
(φ̂ −φ)

]2
.
= tr

[
(Jb)V (J′b)E

[
(φ̂ −φ)(φ̂ −φ)′

]]
, (3.33)

where Jb = col1≤ j≤p

(
∂DGZ′V−1

∂φ j

)
. In case of ML or REML estimation of φ̂ , Datta and

Lahiri (2000) show that the approximation is slightly different

E
[(

∂ µφ

∂φ

)′
(φ̂ −φ)

]2
.
=

1
D

tr
[
(Jb)V (J′b)VCOV−1 [φ ]

]
, (3.34)

which in case of the FH leads to a different MSE estimator. Das, Jiang, and Rao (2004);
Datta and Lahiri (2000); Datta, Rao, and Smith (2005); Prasad and Rao (1990) provide
deeper discussions on the conditions necessary for this approximations to hold. Lahiri
and Rao (1995) show, that the MSE estimator of Prasad and Rao (1990) is robust against
non-normality of the µd,BHF, being correct to terms the order O(D−1). An alternative
approximation is given by Chen and Lahiri (2008). They obtain a Taylor approximation
to the jackknife MSE estimate for the EBLUP of a general linear mixed model. As the
MSE estimator by Prasad and Rao (1990) works well in the applications considered in
Chapter 5, the focus lies on it, and the approximation by Chen and Lahiri (2008) will not
be considered further.

3.3.3.1 Second Order Approximation to the MSE of BHF

Prasad and Rao (1990) split the MSE into three components

MSE [µd(φ)] = g1,d(φ)+g2,d(φ)+g3,d(φ) , (3.35)

where

MSE [µd(φ)] = g1,d(φ)+g2,d(φ) ,

g3,d(φ) = tr
[
(Jb)V (J′b)E

[
(φ̂ −φ)(φ̂ −φ)′

]]
.

They also derive explicit formulas for these three components for the MSE of the BHF
estimator:

g1,d(φ) = (1− γd)σ
2
u , (3.36)

g2,d(φ) = (Xd− γdxd)
′(x′v−1x)−1(Xd− γdxd) , (3.37)

g3,d(φ) =
nd

(σ2
e +ndσ2

u )
3 V
[
σ̂

2
e σ

2
u − σ̂

2
u σ

2
e
]

(3.38)

=
nd

(σ2
e +ndσ2

u )
3

[
σ

4
e V
[
σ̂

2
u
]
+σ

4
u V
[
σ̂

2
e
]
−2σ

2
e σ

2
u COV

[
σ̂

2
e , σ̂

2
u
]]

. (3.39)
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Prasad and Rao (1990) show, that g1,d(φ) is approximated with order O(1), g1,d(φ) with
order O(D−1), and g3,d(φ) with order o(D−1). Thus the leading terms are g1,d(φ) and
g2,d(φ).

According to Münnich and Burgard (2012a), these three components stand for

g1,d The error of the estimator, when all parameters are known.

g2,d The error arising from the estimation of the β vector.

g3,d The error due to the estimation of the γd , which depends on the estimation method
used (c.f. Datta et al., 2005).

3.3.3.2 Second Order Approximation to the MSE of FH

The approach for the approximation to the MSE of the FH is identical to the one for the
BHF. The decomposition of the MSE is again

MSE [µd(φ)] = g1,d(φ)+g2,d(φ)+g3,d(φ)

g1,d(φ) =
σ2

u σ2
e,d

σ2
u +σ2

e,d

g2,d(φ) =
σ4

e,d

(σ2
u +σ2

e,d)
2 x′d(x

′v−1x)−1xd

g3,d(φ) =
σ4

e,d

(σ2
u +σ2

e,d)
3 V
[
σ̂

2
u
]

By assuming that ud and ed are normally distributed, V
[
σ̂2

u
]

can be derived depending on
the estimation methods used for φ̂ . If φ is estimated via the originally proposed method by
Fay and Herriot (1979), which is a combination of the method of moments and a weighted
residual sum of squares, then g3,d(φ) is (Datta et al., 2005)

g3,d(φ) =
2Dσ4

e,d

(σ2
u +σ2

e,d)
3(

D
∑
j=1

(σ2
u +σe, j)−1)2

. (3.40)
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Prasad and Rao (1990) use the method of fitting constants to obtain φ̂ . For g3,d(φ) they
derive

g3,d(φ) =
2σ4

e,d

(σ2
u +σ2

e,d)
3D2

D

∑
j=1

(σ2
u +σe, j)

2 . (3.41)

Datta and Lahiri (2000) showed, that if φ̂ is obtained by an ML or REML estimator of φ ,
then g3,d(φ) is given by

g3,d(φ) =
2σ4

e,d

(σ2
u +σ2

e,d)
3

D
∑
j=1

(σ2
u +σe, j)−2

. (3.42)

Datta et al. (2005) state that the relation between these g3,d(φ) terms is (3.42) ≤ (3.40) ≤
(3.41), with equality if and only if σe,i = σe,k∀ j,k = 1..D.

3.3.4 Pseudo EBLUP Estimators

Neither the FH nor the BHF account explicitly for design weights. As such, they assume
that the sample is a simple random sample from the population. In most cases, however,
the design is not simple random sampling, but much more complex. The result is that
not all units in the population have the same probability to be in the sample. In order to
account for this, the design weights should be incorporated into the estimation process.
Estimators coping for the sampling design were mainly proposed by Pfeffermann et al.
(1998); Prasad and Rao (1999) and Pfeffermann and Sverchkov (2007). Münnich and
Burgard (2012a) study the effect of a large variety of designs on small area estimates
within a large Monte Carlo simulation study. The general result is that the design is
critical. Especially in the case of stratified sampling with optimal allocation and cluster
sampling, the small area models incorporating design weights outperform the somewhat
naïve estimators which assume a simple random sample.

A very interesting approach for the incorporation of the design into hierarchical Bayes
estimators is proposed by Lahiri and Mukherjee (2007). They suggest a correction of the
hierarchical Bayes estimator for achieving design consistency, and propose also uncer-
tainty measures for this estimator. As the hierarchical Bayes method is not part of this
work this approach is beyond the scope.
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3.3.4.1 Pseudo EBLUP Area-Level Estimator

Prasad and Rao (1999) developed an area-level pseudo EBLUP which is design consis-
tent and incorporates weights. It is a special case of the estimator by Fay and Herriot
(1979) without covariates, where the area observations are obtained from the sample by
a weighted area mean. The weights used are the inverse inclusion probabilities wid for
person i in area d.

ŷd =
1

∑
i∈Sd

wid
∑

i∈Sd

widyid = ∑
i∈Sd

w̃id(β0 +ud + eid) (3.43)

= β0 +ud + ∑
i∈Sd

w̃ideid ,

w̃id =
wid

∑
j∈Sd

w jd
with unit i ∈Sd . (3.44)

Prasad and Rao (1999) derive the best linear unbiased estimator for the area mean under
model (3.43) as

µ̂d,PR1 = β̂0 + ûd , (3.45)

with

β̂0 =

D
∑

d=1
γ̂d,PRŷd

D
∑

d=1
γ̂d,PR

, ûd = γ̂d(ŷd− β̂0) ,

γ̂d,PR =
σ̂2

u
σ̂2

u + σ̂2
e δd

, δd = ∑
i∈Sd

w̃2
id .

As (σe,σu) are usually not known, Prasad and Rao (1999) use (σ̂2
e , σ̂

2
u ) as plugin estima-

tors in equations (3.45). These are given by

σ̂
2
e =

nd
∑

i=1

D
∑

d=1
(yid− yd)

2

n−D
, (3.46)

and as σ̂2
u may not be negative,

σ̂
2
u = max(0, ̂̃σ2

u) , ̂̃σ2
u =

D
∑

d=1
nd(ŷd− ŷ)2− (D−1)σ̂e

n− 1
n

D
∑

d=1
n2

d

. (3.47)
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As the estimator µ̂PR incorporates the design weights, Prasad and Rao (1999) call it a
pseudo EBLUP area-level estimator.

The MSE estimation is done in analogy to the MSE estimation for the Fay-Herriot esti-
mator. The MSE of µ̂PR can be decomposed into

MSE [µ̂d,PR]≈ g1,d +g2,d +2g3,d

with

g1,d = (1− γ̂d,PR)σ̂
2
u (3.48)

g2,d =
((1− γ̂d,PR)σ̂u)

2

D
∑

d=1
γ̂d,PR

g3,d =
γ̂d,PR(1− γ̂d,PR)

2

σ̂2
u

(
V
[̂̃σ2

u

]
−2

σ̂2
u

σ̂2
e

COV
[̂̃σ2

u, σ̂
2
e

]
+

σ̂4
u

σ̂4
e

V
[̂̃σ2

u

])
If ud, eid are normally distributed then the variance and covariance in g3,d are given by
(Prasad & Rao, 1999)

V [σ̂e] =
2σe

n−D
(3.49)

V
[̂̃σu

]
=

2

(n− 1
n

D
∑

d=1
n2

d)
2

(
σ4

e (D−1)(n−1)
(n−D)

+

2(n− 1
n

D

∑
d=1

n2
d)σ

2
e σ

2
u +{

D

∑
d=1

n2
d−2

D
∑

d=1
n3

d

n
+

(
D
∑

d=1
n2

d)
2

n2 }σ4
u

)
COV

[
σ̂e,
̂̃σu

]
=
−(D−1)

n− 1
n

D
∑

d=1
n2

d

V [σ̂e]

Prasad and Rao (1999) propose an extension of this pseudo EBLUP to the nested error
regression model case, where instead of using only a common intercept for all areas,
some covariates x are introduced into the model. These x are known from the sample
and the population mean X is assumed to be known. The area-level pseudo EBLUP with
covariates they propose is

µ̂d,PR = Xdβ̂PR + ûd , (3.50)

where β̂PR is the weighted least square estimate

β̂PR =

(
D

∑
d=1

γd,PRx′d,w̃xd,w̃

)−1( D

∑
d=1

γd,PRx′d,w̃ŷd

)
, (3.51)
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with

xd,w̃ = ∑
i∈Sd

xiw̃i , (3.52)

and

ûd = γ̂d,PR(ŷd− xd,w̃β̂PR) . (3.53)

The MSE estimation is performed analogously to the MSE estimation by Prasad and Rao
(1990).

3.3.4.2 Pseudo EBLUP Unit-Level Estimator

You and Rao (2002) extended this area-level pseudo EBLUP to obtain a unit-level pseudo
EBLUP. In analogy to Prasad and Rao (1999), they first rescale the weights as shown in
equation (3.44). Additionally, they estimate the model parameters on unit-level, in such
way that they obtain, as they call it, an automatic benchmarking property. This means that
the aggregation of the area estimates equals a GREG estimate on the whole population
level.

Similar to the other EBLUPs the estimator by You and Rao (2002) is defined as

µ̂d,YR = Xdβ̂YR + ûd,YR , (3.54)

where ûd = γ̂d,PR(ŷd− xd,w̃β̂YR), and

β̂YR =

(
D

∑
d=1

∑
i∈S

wixi(xi− γd,PRxd,PR)

)−1( D

∑
d=1

∑
i∈S

wiyi(xi− γd,PRxd,PR)

)
. (3.55)

For xd,w̃ see Equation (3.52), and γ̂PR is the vector of the γ̂d,PR (see Equation (3.45)).

In order to estimate the MSE for this pseudo EBLUP, You and Rao (2002) adapt straight-
forward the approach of Prasad and Rao (1999), who extend the MSE estimator of Prasad
and Rao (1990) in order to account for the use of the sampling weights. Basically, g1,d and
g3,d remain as in equation (3.48). The term g2,d is changed to account for the weighted β

estimation by using

g2,d =
(
Xd− γd,PRxd,w̃

)′ [
σe(x′ζ )−1

ζ
′
ζ

(
(x′ζ )-1

)′
+σu(x′ζ )−1

κ

(
(x′ζ )-1

)′ ](
Xd− γd,PRxd,w̃

)
,

(3.56)
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where ζ = (ζ1, . . . ,ζn), ζid = (w̃id(xid − γd,PRxd,w̃)) and κ =
D
∑

d=1
ζ ′dζd with ζd being the

part of ζ belonging to area d.

As Jiang and Lahiri (2006a) state, You and Rao (2002) did not consider all cross-product
terms in the MSE. These cross-product terms may be omitted if all the weights within
an area are identical (Torabi & Rao, 2010, § 3.1). Using the regularity conditions and
results of Jiang and Lahiri (2006a), Torabi and Rao (2010) apply a Taylor-linearisation to
approximate these cross-product terms, yielding a new composition of the MSE

MSE [µd(φ)] = g1,d(φ)+g2,d(φ)+g3,d(φ)+C1,d(φ)+C2,d(φ) . (3.57)

The resulting approximation formula for C2,d(φ), however, is very extensive. Before it
can be applied to surveys of the size of the Swiss Structural Survey it has to be eased com-
putationally. However, as the design weights in this setting are generally constant within
the areas, the cross product terms will be very small, and thus, negligible. Alternatively,
Torabi and Rao (2010) propose to use a parametric bootstrap for the MSE estimation. In
order to include the cross-product terms, they choose to use a parametric double bootstrap
following Hall and Maiti (2006). Again, as the approximation to the MSE proposed by
You and Rao (2002) will have a bias of low order in the setting of the Swiss Structural Sur-
vey, for computational reasons this approach will not be considered. For an application
of the parametric double bootstrap method to another estimator see Section 3.3.6.3.

3.3.5 Empirical Best Predictor for Binary Variables

The linear methods previously described are useful for continuous variables. In case of
binary variables, they may produce nonsense-estimates; for instance, estimated propor-
tions lying over one or under zero. This is especially the case if (a) the true proportion of
the areas cannot be explained sufficiently by the model, (b) the true proportions lie near
zero or one, and (c) the true proportions vary considerably between the areas. Thus, an
estimator is needed that can handle the special structure of binary variables.

Malec, Sedransk, Moriarity, and LeClere (1997) proposed a hierarchical Bayes approach
for the estimation of proportions for the National Health Interview Survey. They state
that their method works well, but that it is computationally very demanding. Ghosh,
Natarajan, Stroud, and Carlin (1998) propose a broader hierarchical base approach, in
that their method is not only apt for binary variables, but also for every variable that can
be modelled via a generalized linear (mixed) model. Nevertheless, this approach is also
computationally extremely demanding.

Easing the computational burden, Jiang and Lahiri (2001) propose, as they call it,
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a frequentist alternative to the already existing hierarchical Bayes methods

(Jiang & Lahiri, 2001, p. 218).

They use a mixed logistic model to model the binary variable

yid|θid
iid∼ Bern(θid) , (3.58)

logit(θid) = xidβ +ud . (3.59)

Jiang and Lahiri (2001) show that the best predictor (BP) θ̂ for the area proportion under
this model is

E [θd|y] = E [θd|yd] =
E
[
hd(ud,φ)eld(yd ,ud ,φ)

]
E
[
eld(yd ,ud ,φ)

] , (3.60)

with hd(ud,φ) = logit−1(Xdβ +ud). ld(yd,ud,φ) is the log-likelihood function for area d
under the model (3.58) and E

[
eld(yd ,ud ,φ)

]
is the marginal likelihood.

B. Liu (2009) extends this estimator by assuming the more general exponential distribu-
tion on the ud instead of the normal distribution.

Here the estimator of Jiang and Lahiri (2001) is presented for the case that a Binomial
distribution is assumed on y

yd|θd
iid∼ Bin(nd,θd) . (3.61)

The resulting log-likelihood function for area d is

ld(yd,u,φ) = log

 1
σu
√

2π

(
nd

yd

)[
eXdβ+u

1+ eXdβ+u

]yd
[

1− eXdβ+u

1+ eXdβ+u

]nd−yd

e
−

u2

2σ2
u

 .

(3.62)
Following Jiang and Lahiri (2001), the area-level BP (ABP) for binomial variables can
then be obtained by

θ̂d,ABP =

∞∫
−∞

hd(u,φ)ld(yd,u,φ)du

∞∫
−∞

ld(yd,u,φ)du
. (3.63)
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In most cases φ is not known. Thus, β and σu have to be estimated. By using φ̂ = (β̂ , σ̂u)
instead of φ the area-level empirical best predictor is obtained (AEBP).

θ̂d,AEBP =

∞∫
−∞

hd(u, φ̂)ld(yd,u, φ̂)du

∞∫
−∞

ld(yd,u, φ̂)du
(3.64)

However, equation (3.64) still involves solving two integrals for each area. In Figure 3.2
the function that is to be integrated is plotted for certain constellations of parameters and
in Figure 3.3 the same is plotted on the log-scale. As can be seen, this function has a high
peak maximum. The higher n the steeper the function becomes, and thus the narrower
is the interval where the function is notably above zero. A smaller σu again makes the
function narrow, but additionally shifts the peak towards zero. Whilst the magnitude of n
and σu has mainly an impact on the steepness of the function, the observed mean y

n and
the logit of estimated synthetic mean logit(µ) = η notably shift the graph on the x-axis.
Negative values of η , i.e. µ < 0.5 shift the graph to the right. In contrast, for an observed
mean y

n lower than 0.5, the graph is shifted to the left and vice versa.

3.3.5.1 Computation of the AEBP

As seen in Figures 3.2 and 3.3 the calculation of the integrals can be extremely prob-
lematic, especially in larger areas, i.e. n� 1000. Therefore different approaches will be
presented to obtain an approximation to the integrals.

Integration via Monte-Carlo

The most straightforward way is to do a Monte-Carlo integration. As one component of
the integral is the pdf of the normal distribution, one can use normally distributed random
variables u(r) ∼ N(0,σ2

u ) ,r = 1 . . .R for the integration. The approximation would then
be

θ̂
MC
d,AEBP =

R
∑

r=1

[
eXdβ+u(r)

1+ eXdβ+u(r)

]1(
nd

yd

)[
eXdβ+u(r)

1+ eXdβ+u(r)

]yd
[

1− eXdβ+u(r)

1+ eXdβ+u(r)

]nd−yd

R
∑

r=1

(
nd

yd

)[
eXdβ+u(r)

1+ eXdβ+u(r)

]yd
[

1− eXdβ+u(r)

1+ eXdβ+u(r)

]nd−yd

(3.65)
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Integration via Gauß-Hermite Quadrature

When using Gauß-Hermite quadrature, the first thing to decide is how many nodes will
be used. The more nodes are used, the more precise is the approximation. However, an
increase of nodes also increases computation time. The approximation via Gauß-Hermite
quadrature for r = 1..R nodes u(r) is given by

θ̂
GHQ,R
d,AEBP =

R
∑

r=1
ω(r)

[
eXT

i β+u(r)

1+ eXT
i β+u(r)

]1(
nd

yd

)[
eXT

i β+u(r)

1+ eXT
i β+u(r)

]yd [
1− eXT

i β+u(r)

1+ eXT
i β+u(r)

]nd−yd

R
∑

r=1
ω(r)

(
nd

yd

)[
eXT

i β+u(r)

1+ eXT
i β+u(r)

]yd [
1− eXT

i β+u(r)

1+ eXT
i β+u(r)

]nd−yd

(3.66)

When using Gauß-Hermite quadrature, the choice of the number of nodes is critical for
the success of the approximation to the integral. This fact is visualized in Figure 3.4. If
only a small number of nodes are chosen, it may well be that none of the nodes will have a
function value notably above zero. Even with 99 nodes in the example given in Figure 3.4,
only 22 nodes lie in the area of interest and thus 77 of the nodes were computed without
much gain. This problem can be overcome by either raising the number of nodes or by
transforming the function of interest in such way that it has a more appropriate location
and shape. That is, one should try to bring the mass of the area under the function near
to the point x = 0. This can be done by substituting an appropriate term in the function
of interest. As seen before, one important determinant for the shape of the function is the
σ2

u . Therefore a shift of the function by an amount ξ and a scaling by the factor σ2
u seems

reasonable.

It is not clear how to obtain the optimal ξ without running into even more computational
problems. However, as the function has definitely only one region of interest (the u2 is
dominant for large absolute values of u), the maximum of the function seems the natural
choice for the shift. This maximum is analytically difficult to trace, since for the different
constellations of the parameters, it can lie in a wide region. In most cases a Newton-
Raphson approximation is successful and fast in finding the maximum of the function.

As the Euler function is a strictly monotonic ascending function, it suffices to find the
maximum of a function g(x) in order to obtain the maximum of eg(x). The functions in
equation (3.64) can also be written as:

(
exβ+u

1+ exβ+u

)y+m(
1− exβ+u

1+ exβ+u

)n−y

e
−

u2

2σ2
u , (3.67)
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Figure 3.4: The problem of the choice of the number of nodes in the Gauß-Hermite
quadrature in the example of: xβ = 2.94,y = 800,n = 1000,m = 1,σu = .1

where m = 1 for the function in the enumerator and m = 0 for the function in the denom-
inator. Equation (3.67) can also be written in the form eg(u,·) with:

gd(u, ·) = (m+ yd)(xdβ +u)− (m+nd)log(1+ exdβ+u)− u2

2σ2
u

(3.68)

In order to apply the Newton-Raphson algorithm the first and second derivative of g(u, ·)
have to be found. These are

g′d(u, ·) = (m+ yd)− (m+nd)
exdβ+u

1+ exdβ+u
− u

σ2
u

(3.69)

g′′d(u, ·) = (m+ yd)−
(m+nd)

(1+ exdβ+u)2 +
(m+nd)

1+ exdβ+u
− 1

σ2
u

As the function eg(u,·) is strictly positive, every extreme of the function must be at the same
time a local maximum of the function. Therefore the Newton-Raphson can be applied in
order to find the root of g′d(u, ·). The starting value may be chosen at u0 = 0.

However, the Newton-Raphson algorithm for some constellations of the parameters fails,
which can be identified by running into infinity. In this case, the bisection method or the
regula falsi may be applied in order to approximate the root of the function g′d(u, ·).

The maximum ξ found either by Newton-Raphson, the bisection method or Regula-Falsi
method can be used to perform a substitution of the function (3.67) of the following form:
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Table 3.1: Comparison of the Gauß-Hermite Quadrature for the original and the shifted
function with parameters xβ = 2.94,y = 800,n = 1000,m = 1,σu = .1,ξ =
−0.8764274

number of nodes original function shifted function
3 9.35 ·10−38 4.05 ·10−33

9 1.69 ·10−33 4.05 ·10−33

99 5.07 ·10−33 4.05 ·10−33

999 4.05 ·10−33 4.05 ·10−33

9999 4.05 ·10−33 4.05 ·10−33

+∞∫
−∞

(
exβ+u

1+ exβ+u

)y+m(
1− exβ+u

1+ exβ+u

)n−y

e
−

u2

2σ2
u du (3.70)

= σu

+∞∫
−∞

(
exβ+tσu+ξ

1+ exβ+tσu+ξ

)y+m(
1− exβ+tσu+ξ

1+ exβ+tσu+ξ

)n−y

e
− 1

2

tσu +ξ

σu

2

dt

with t =
u−ξ

σu
, λ (t) = tσu +ξ = u and λ ′(t) = σu. The integration boundaries do not

change as λ (∞) = ∞ and λ (−∞) =−∞. The effect of this transformation can be seen in
Figure 3.4. Whilst the original function drawn in black contains almost no nodes, even
with a relatively high number of quadrature points, the transformed function in orange
contains a considerable number of the nodes in use, even in the case of only a small
number of quadrature points. Logically, the quality of the approximation is also very
different when comparing both functions. In Table 3.1 the results of the integration via
the Gauß-Hermite quadrature are compared for the original function (3.67) and the shifted
function (3.70) when using 3, 9, 99, 999, or 9999 quadrature points. It can be seen that
the integral of the original function is approximated in a much more unstable manner for a
low number of nodes, than the one of the shifted function. Therefore, the shifted function
is preferable to the original function for the integration via Gauß-Hermite quadrature.

Integration via Gauß-Konrod Quadrature

In the case of the Gauß-Konrod quadrature, similar problems as in the case of the Gauß-
Hermite quadrature may arise. In particular, the problem may arise that no nodes lie in
the region of the function where it is considerably above zero. In this case, the adaptive
method will stop very early and approximate the integral with the value zero. Again, the
same approach by substituting the function of interest may give better results.
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Integration via Laplace Approximation

As stated before in equation (3.68) the function can be written in the form eg(u,·). The
second derivative g′′(u, ·) of g(u, ·) is given in equation (3.69). The Laplace approximation
can then be computed as:

+∞∫
−∞

eg(u,·) ≈ eg(ξ ,·)
+∞∫
−∞

e−|g
′′(ξ ,·)|(x−ξ )2/2 =

√
2π

|g′′(ξ , ·)|
eg(ξ ,·) , (3.71)

ξ being the maximum of g(u, ·). For the ratio of integrals in equation (3.64) one can write

+∞∫
−∞

eg(u,m=1,·)

+∞∫
−∞

eg(u,m=0,·)
≈

√
2π

|g′′(ξ1,m=1,·)|e
g(ξ1,m=1,·)√

2π

|g′′(ξ0,m=0,·)|e
g(ξ0,m=0,·)

=

√
|g′′(ξ0,m = 0, ·)|
|g′′(ξ1,m = 1, ·)|

eg(ξ1,m=1,·)

eg(ξ0,m=0,·) . (3.72)

Comparision of the Different Approaches

In Figure 3.5, the different approaches for the integration approximation of the θ̂AEBP are
compared for different constellations. As can be seen, the θ̂AEBP acts according to the
common small area estimates. For a low estimated inter area variation σ̂2

u , the effect of
the synthetic part ηd = xdβ dominates the one of the observed mean

y
n

, whereas for a
high inter area variation the observed mean is more dominant. Furthermore, for a larger
number of observations nd , more trust is placed on the observed mean and, for a lower
number of observations, it relies more on the synthetic part.

In most cases the different approaches yield similar results for the ratio of the two in-
tegrals. However, there are differences, especially between the different approximation
methods. While the quadrature rules work almost identical, the Monte Carlo approxima-
tion with 10,000 trials still has a considerable amount of variation. The Laplace approxi-
mation works quite well in most cases, but deviates in the extreme cases by 10−5. Also,
for small n, the Laplace approximation fails. This is not surprising, as it is a well known
fact that the Binomial distribution only approximates the normal distribution reasonably
for a higher number of observations.

All approximations have problems in the situation in which a low inter area variability
meets a relatively large number of observations. In this case the denominator is approxi-
mated with zero, which yields implausible results for the θ̂AEBP. If this happens, then the
function can be multiplied by a certain factor (both in the numerator and the denominator).
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3.3.6 MSE Estimation for the AEBP

3.3.6.1 MSE Estimation with the Jackknife Method

Early reasoning on the now so-called Jackknife method goes back to Mahalanobis (1946)
who described a method implemented in the Indian Statistical Institute called interpene-
trating subsamples, where two independent samples are drawn for each domain and then
two estimates are computed for quality control (Hall, 2003). Quenouille (1949) used a
similar approach to obtain bias reduction, by splitting the sample into two half-samples.
Later on, Quenouille (1956) proposed to jackknife the Jackknife and thus obtained a sec-
ond order correct jackknife estimator. Tukey (1958) proposed to use the Jackknife for
the estimation of confidence intervals. According to Miller (1974), Tukey was the first
to use the name Jackknife in unpublished work. Miller (1964) showed that the estimator
has to have locally linear qualities, such as being a twice-differentiable function of the
sample mean. For the estimation of the maximum, as a counterexample, he states that
a nonnormal distribution may result in degeneracy at a point and drift to infinity for the
Jackknife. For a thorough review of early Jackknife literature see Miller (1974) and for a
broader picture see Efron and Tibshirani (1993) and Shao and Tu (1996). Jiang, Lahiri,
and Wan (1998) and Chattopadhyay, Lahiri, Larsen, and Reimnitz (1999) propose to use
the Jackknife for the estimation of the MSE of an empirical best predictor. Here reduced
to an area-level EBP, they show that the MSE of θ̂ EBP can be decomposed into:

MSE
[
θ̂

EBP
]
= MSE

[
θ̂

BP
]
+E

[
θ̂

EBP− θ̂
BP
]2

(3.73)

Further, they propose to estimate MSE
[
θ̂ BP

]
by

M̂SE
[
θ̂

BP
]

Jack
= M̂SE

[
θ̂

BP
]
− D−1

D

D

∑
j=1

(
M̂SE

[
θ̂

BP
− j

]
− M̂SE

[
θ̂

BP
])

, (3.74)

and E
[
θ̂ EBP− θ̂ BP

]2
by

Ê
[
θ̂

EBP− θ̂
BP
]2

=
D−1

D

D

∑
j=1

(
θ̂

EBP
− j − θ̂

EBP
)2

. (3.75)

The θ̂ EBP
− j is the θ̂ EBP when omitting area j in the estimation of the model parameters of

the underlying model (c.f. Chattopadhyay et al., 1999), and M̂SE
[
θ̂ BP

]
depends on the

BP at hand.

Jiang, Lahiri, and Wan (2002) extended this approach to a general model including not
only mixed linear models but also generalized linear mixed models. Thus, this Jackknife
is applicable to the before mentioned AEBP. Following Jiang et al. (2002) a Jackknife
estimator for the MSE of the AEBP is
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MSEJack
d = bd(φ̂)−

D−1
D

D

∑
j=1

{
bd(φ̂− j)−bd(φ̂)

}
(3.76)

+
D−1

D

D

∑
j=1

{
θ̂d,AEBP(φ̂− j)− θ̂d,AEBP(φ̂)

}2
,

where φ̂ = (β̂ , σ̂u), φ̂− j are the estimated model parameters omitting the area j, and

bd(φ̂) =

∞∫
−∞

[
eXT

d β̂+u

1+ eXT
d β̂+u

]2

ld(u)du

∞∫
−∞

ld(u)du
. (3.77)

Lohr and Rao (2009); J. N. K. Rao (2003) propose a modification of the Jackknife by
Jiang et al. (2002) which yields a conditional MSE estimator instead of an unconditional
one. J. N. K. Rao (2003, § 9.4) states that MSE

[
θ BP]= E

[
V
[
θ BP]]. Then, he applies the

Quenouille (1956) bias-reduction method to V
[
θ BP] instead of MSE

[
θ BP]. According

to him, this has two advantages. First, it saves the computation of D+ 1 times the term
bd(φ). Second, the leading term is now specific to the area, thus giving a conditional
MSE. Lohr and Rao (2009) improve this approach by reducing the bias of the conditional
MSE estimator. This is done by omitting the area d for the conditional MSE estimator for
area d from the Jackknife correction term.

Jiang et al. (2002) show that their Jackknife has a bias of order o(D−1), the conditional
MSE estimator by J. N. K. Rao (2003) has an unconditional bias of order O(D−1) and
that of Lohr and Rao (2009) has an unconditional bias of order o(D−1). Further, Lohr and
Rao (2009) show that their Jackknife also has a conditional bias of order op(D−1). Within
a simulation run on a model based population, Lohr and Rao (2009) compare these three
alternatives. They find that for the estimation of the conditional MSE, their Jackknife
MSE estimator has the lowest coefficient of variation. In contrast, for the estimation of
the unconditional MSE, the one proposed by Jiang et al. (2002) has the lowest coefficient
of variation in most cases.

While Lohr and Rao (2009) reduce the amount of computation by simplifying the Jack-
knife estimate, there is another way to reduce the burden of computation. If the number
of areas D is very large, re-estimating D times the term (3.76) is time-intensive. Follow-
ing Efron (1980, § 2.2) and Kott (2001), one can use a delete-a-group Jackknife instead
of a delete-1-Jackknife. In analogy of his work, one can also apply this approach to the
area-level case. In this case, the areas are randomly assigned to J equally sized groups.
Instead of omitting D times one area in the estimation process, now J times a whole
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group is thrown out. This is applied to both Jackknife parts of the MSEJack
d . Thus the

delete-a-group of areas Jackknife is given by

MSEGJack
d = bd(φ̂)−

J−1
J

J

∑
j=1

{
bd(φ̂− j)−bd(φ̂)

}
(3.78)

+
J−1

J

J

∑
j=1

{
θ̂d,AEBP(φ̂− j)− θ̂d,AEBP(φ̂)

}2
,

where j is one of the J groups and φ̂− j is the vector of the estimated model parameters
when all areas in group j are omitted in the estimation process. The choice of the number
of groups is arbitrary. In general, the more groups used, the more exact is the Jackknife
estimator. If every group consists of only one area, the original Jackknife estimator is
obtained. In practice, one would argue with computation cost and time for the number of
groups.

3.3.6.2 MSE Estimation With The Parametric Bootstrap Approach

The term parametric bootstrap goes back to Efron (1980, § 5.2), who briefly describes the
idea behind it and gives an example for a bivariate model. This method is closely related
to the so-called (nonparametric-) bootstrap by Efron (1979), and is widely used also in
non small area applications (see e.g. Lahiri & Li, 2009a). Let

Ψ(X ,F) , (3.79)

be a random variable, e.g. the estimator Ψ, as a function of the random variables χ =
(χ1, ...,χK) with multivariate distribution F . The interest lies in a certain aspect of the
distribution L (Ψ) of Ψ at the realized sample χk = ξk,∀k = 1..K. Then, the following
algorithm gives an asymptotically correct approximation (Efron, 1982, § 5.1)

Algorithm 3.3 Nonparametric Monte-Carlo Bootstrap

1. Fit the nonparametric maximum likelihood estimator of F

F̂n(ξ ) =
1
n

n

∑
j=1

Iξ j≤ξ . (3.80)

2. Obtain Ψ∗(ξ ∗, F̂n) by using a bootstrap sample from F̂n:

ξ
∗ = (ξ

′∗
1 , ..,ξ

′∗
n )′

iid∼ F̂n . (3.81)

3. Repeat step 2 independently R times.
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The bootstrap estimator for L is then obtained by:

L ∗ = L (Ψ∗(ξ ∗, F̂n)) (3.82)

In the complex survey design case, the i.i.d. assumption of the observation usually has
to be dropped. Ranalli and Mecatti (2012) compare recent methods to account for sam-
pling design and sampling weights. Davison and Hinkley (1997); Davison, Hinkley, and
Young (2003) and Shao and Tu (1996) give a broad overview of different bootstrap meth-
ods. Lahiri (2003) studies different bootstrap methods for their applicability in small
area estimation and survey sampling. He finds, that the parametric bootstrap method is
a promising approach for the MSE estimation in small area estimation. An overview on
resampling methods in surveys is provided by Gershunskaya, Jiang, and Lahiri (2009).

In contrast to the nonparametric bootstrap, the parametric bootstrap takes Fχ instead of
F̂n in steps 1 and 2. Fχ denotes the distribution of the χ given the model used for the
estimation of Ψ. Often some parts of χ are taken to be fixed and only one column is taken
to be random. The random column is then usually the vector Y denoting the variable of
interest.

Butar and Lahiri (2003); Hall and Maiti (2006) propose a parametric bootstrap approach
for small area estimation. It is presented here directly applied to the MSE estimation of
the AEBP.

Let L be the distribution of (θd− θ̂d,AEBP). The distribution of L may be approximated
by the parametric bootstrap distribution L ∗ of (θ ∗d − θ̂ ∗d,AEBP). θ ∗d and θ̂ ∗d,AEBP are com-
puted by the following algorithm starting with r = 1.

Algorithm 3.4 Parametric Bootstrap for the AEBP

1. Draw for each area d = 1..D one u∗(r)d from the distribution N(0, σ̂2
u ).

2. Calculate θ
∗(r)
d =

eXd β̂+u∗(r)d

1+ eXd β̂+u∗(r)d

.

3. Draw y∗(r)d from the distribution Bin(nd,θ
∗(r)
d ).

4. Estimate the parameters β̂ ∗(r) and σ̂
∗(r)
u in the same way as β̂ and σ̂u, but using the

re-sample y∗(r) instead of y.

5. Calculate θ̂
∗(r)
d,AEBP using the parameters β̂ ∗(r) and σ̂

∗(r)
u .

6. Calculate the distance θ
∗(r)
d − θ̂

∗(r)
d,AEBP.

7. Increase r by one.

8. Repeat Steps 1–7 R times.
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From the distribution L ∗ the MSE of the point estimate θ̂ ∗d,AEBP is calculable. It can be

used as an estimator for the MSE of the point estimate θ̂d,AEBP. This MSE is then

MSE∗d,AEBP = E∗
[
(θ ∗d − θ̂

∗
d,AEBP)

2
]

, (3.83)

where E∗ is the expectation given the distribution L ∗. Then the parametric bootstrap
estimator of MSEd,AEBP is defined as:

M̂SE
Boot
d,AEBP = MSE∗d,AEBP . (3.84)

There are several ways to construct confidence intervals from a bootstrap distribution
(DiCiccio & Efron, 1996; DiCiccio & Romano, 1988). Among them are Efron’s per-
centile method (Efron, 1979), the bias corrected percentile method (Efron, 1987) and the
accelerated bias correction method by (DiCiccio & Efron, 1992). In contrast to Efron’s
percentile method, Hall (1992, 1997) proposes a percentile method which bootstraps a
pivotal instead of a nonpivotal quantity.

Another widely used method is the bootstrap-t method by Babu and Singh (1983); Efron

(1979). In this work two of these approaches are used. First, M̂SE
Boot
d,AEBP is used to obtain

bootstrap-t confidence intervals. These use

KIα/2,1−α/2(θ̂d,AEBP) =
(

θ̂d,AEBP +Qα/2(tnd−1)

√
M̂SE

Boot
d,AEBP ; (3.85)

θ̂d,AEBP +Q1−α/2(tnd−1)

√
M̂SE

Boot
d,AEBP

)
.

This confidence interval is always symmetric around θ̂d,AEBP. However, the distribution
of θ̂d,AEBP is not necessarily symmetric.

Second, the percentile method by Hall (1992) is applied. It uses the quantiles of the
bootstrap distribution of a pivotal quantity to obtain confidence intervals:

KIα/2,1−α/2 =
(

θ̂d,AEBP +Qα/2(L
∗); (3.86)

θ̂d,AEBP +Q1−α/2(L
∗)
)

.

where Qα(L ∗) denotes the α’th quantile of the distribution L ∗. The borders of the confi-
dence interval are not necessarily symmetric around the point estimate. This may happen,
e.g., if the bootstrap distribution L ∗ is not symmetric itself. For a deeper discussion on
the estimation of confidence intervals for predictors see Chatterjee, Lahiri, and Li (2007,
2008).
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3.3.6.3 The Parametric Double Bootstrap

The parametric bootstrap MSE estimate discussed in the section before is not second-
order unbiased (Chatterjee & Lahiri, 2007). Therefore, further methods are needed in
order to obtain a more reliable MSE prediction method. Booth and Hobert (1998) and Hall
and Maiti (2006) proposed to use a double bootstrap strategy, where they build a second
bootstrap distribution on top of the usual bootstrap distribution. However, as Chatterjee
and Lahiri (2007) state, both approaches need analytical work to be done in order to
be implementable to a new model. In contrast, Chatterjee and Lahiri (2007) propose a
second order correct double bootstrap method that can be easily applied to a wide range
of parametric two-level models. The algorithm applied to the AEBP is as follows

Algorithm 3.5 Parametric Double Bootstrap for the AEBP

1. Draw for each area d = 1..D one u∗(r)d from the distribution N(0, σ̂2
u ).

2. Calculate and store θ
∗(r)
d =

eXd β̂+u∗(r)d

1+ eXd β̂+u∗(r)d

.

3. Draw y∗(r)d from the distribution Bin(nd,θ
∗(r)
d ).

4. Estimate the parameters β̂ ∗(r) and σ̂
∗(r)
u in the same way as β̂ and σ̂u, but using the

re-sample y∗(r) instead of y.

5. Begin the loop for the double bootstrap

(a) Draw for each area d = 1..D one u∗∗(r j)
d from the distribution N(0, σ̂2∗(r)

u ).

(b) Calculate and store θ
∗∗(r j)
d =

eXd β̂+u∗∗(r j)
d

1+ eXd β̂+u∗∗(r j)
d

.

(c) Draw y∗∗(r j)
d from the distribution Bin(nd,θ

∗∗(r j)
d ).

(d) Estimate the parameters β̂ ∗∗(r j) and σ̂
∗∗(r j)
u in the same way as β̂ and σ̂u, but

using the re-sample y∗∗(r j) instead of y.

(e) Calculate and store the estimators

UMSE θ̂d

(
yd, φ̂

∗(r)
)

and θ̂d

(
yd, φ̂

∗∗(r j)
)

CMSE θ̂d

(
y∗d, φ̂

∗(r)
)

and θ̂d

(
y∗∗d , φ̂∗∗(r j)

)
with φ̂∗(r) =

(
β̂ ∗(r), σ̂

∗(r)
u

)
and φ̂∗∗(r j) =

(
β̂ ∗∗(r j), σ̂

∗∗(r j)
u

)
.

(f) Increase j by one.
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(g) Repeat steps 5.a-e J times.

6. Increase r by one.

7. Repeat steps 1–6 R times.

8. Calculate the expectations

UMSE

M1,d = E∗
[
θ
∗
d − θ̂d

(
yd, φ̂

∗
)]2

(3.87)

M2,d = E∗E∗∗
[
θ
∗∗
d − θ̂d

(
yd, φ̂

∗∗
)]2

CMSE

M3,d = E∗
[
θ
∗
d − θ̂d

(
y∗d, φ̂

∗
)]2

(3.88)

M4,d = E∗E∗∗
[
θ
∗∗
d − θ̂d

(
y∗∗d , φ̂∗∗

)]2

The appeal of the parametric double bootstrap by Chatterjee and Lahiri (2007) is that one
can obtain the usual unconditional MSE as well as the conditional MSE advocated by
Fuller (1990) and Booth and Hobert (1998) without having to do any analytical deriva-
tions. An unconditional MSE estimator (UMSEPDBoot) is given by

CMSEPDBoot
d = H(M1,d,M2,d−M1,d) , (3.89)

and an unconditional MSE estimator is obtained by,

UMSEPDBoot
d = H(M3,d,M4,d−M3,d) , (3.90)

(Chatterjee & Lahiri, 2007).

For the choice of the function H Chatterjee and Lahiri (2007) propose four different op-
tions. The functions H2 and H3 are those considered also by Hall and Maiti (2006).

H1(M,∆M) = (M−∆M)IM>∆M (3.91)

H2(M,∆M) = (M−∆M)I∆M≤0 +
(

M e−∆M/(M−∆M)
)
I∆M>0

H3 (M,∆M,n) =
(
M+n−1tan−1(n∆M)

)
I∆M≤0 +M2 (M+n−1tan−1(n∆M)

)
I∆M>0

H4 (M,∆M) = 2M
(

1+ e2∆M/M
)−1
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The function H1 is a kind of natural choice, as it returns the maximum of (M1,d,M2,d) for
the CMSE and the maximum of (M3,d,M4,d) for the UCMSE estimate. For H4 Chatterjee
and Lahiri (2007) state that the order of the error for the CMSE and UMSE is of size
o((p+ ν)2D−1), where p+ ν is the number of parameters of the model. The second
order error is of size O((p+ν)2D−1) in both cases.

In a simulation study using the Fay-Herriot model, Chatterjee and Lahiri (2007) find
that H2 seems to overestimate when the sampling variability is low and H3 seems to
underestimate if the sampling variability is large. They also find that H1 and H4 perform
well for all the choices of sampling variability they made in their simulation study. The
double bootstrap is very computing intensive, e.g. for R = 99 resamples in the first step
and J = 99 resamples in the second step one needs 9801 resamples in total.

3.3.7 Unit-Level Logit Mixed Model Predictor

As already stated, linear models may produce unreasonable results for the prediction of
proportions. González-Manteiga, Lombardía, Molina, Morales, and Santamaría (2007);
Saei and Chambers (2003) propose to use a generalized linear mixed model to predict
small area proportions. The predictor is constructed straightforward, as in the Battese-
Harter-Fuller estimator, but accounts for the nonlinearity of the link function. Because
of the nonlinear link function, it is not possible to do the prediction over the population
means of the covariates, but rather the covariates for all units in the population have to be
known. This predictor will be called here the Binomial predictor BINP and is defined as
follows

θ̂d,BINP =
1

Nd

Nd

∑
i=1

1

1+ e−(Xid β̂+ûd)
, (3.92)

where ûd and β̂ are estimated by a generalized mixed model with binomial assumption
on y and the logit function as link function (see Section 2.4). The BINPW is similar to
the BINP, with the difference that is uses weighted model parameters. The weights are
applied to the likelihood contributions of each unit, which are multiplied by their inverse
inclusion probabilities.

From the same model a binomial synthetic estimator may be computed which is given by:

θ̂d,BINSYN =
1

Nd

Nd

∑
i=1

1

1+ e−(Xid β̂ )
. (3.93)

If only categorical covariates are used, then it suffices to know the cross table which
is defined by the covariates, instead of knowing each unit’s covariate. However, in the
case of continuous covariates, this relaxation on the information level of the population
covariate means is not possible.
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The estimation of the MSE of this estimator is very difficult. Due to the nonlinearity of
the link function, the MSE estimator of Prasad and Rao (1990) is not directly applicable.
González-Manteiga et al. (2007) propose two alternatives for estimating the MSE. The
first alternative is to use the MSE estimator proposed by Prasad and Rao (1990) as an
approximation. It takes the form

M̂SE
[
θd,BINP

]
≈ gd,1(φ̂)+gd,2(φ̂)+2gd,3(φ̂) , (3.94)

where in this case

gd,1(φ) = φ(1− γd)σ
2
rd ,

gd,2(φ) = σ
2
rd
[
(xσ

rd− γdxσ
d )(x

′V−1
s x)(xσ

rd− γdxσ
d )
′]

d,d ,

gd,3(φ) =
2

D
∑

d=1
σ2

d·(1− γd)
2

(
σd·

(1+φσd·)
3σ2

rd

)
,

with γd =
φ

φ +1/σd
, σ rd =

∑ j∈rd
σd j

Nd−nd
, xsd =

∑ j∈rd
σd jxd j

σd·
, and xrd =

∑ j∈rd
σd jxd j

∑ j∈rd
σd j

. How-

ever, they state that this MSE estimator does not work well for small sample sizes and,
even for the situation of higher sample sizes, they do not seem very enthusiastic about it.
Therefore, this approach will not be considered further.

The second alternative is to use a special bootstrap method, which they call small area
wild bootstrap. This bootstrap is a mixture of the wild bootstrap and a finite population
bootstrap. A thorough overview of a wide range of bootstrap methods can be found
in MacKinnon (2006); Shao and Tu (1996). For the case of heteroscedastic and hence
nonidentically distributed observations, C.-F. J. Wu (1986) developed the wild bootstrap
for regression models. It is closely related to bootstrapping residuals (see e.g. C.-F. J. Wu,
1986). In the residual bootstrap, bootstrapped residuals are used to form the new vector
y∗. Then the estimator is recomputed with the y∗ instead of the y yielding the estimate
ψ∗. The y∗ are in the simple case of the linear regression

y∗= xβ̂ + e∗ , (3.95)

e∗ being a simple random sample with replacement of the residuals ê= y−xβ̂ . Obviously,
this can only be done if the observations are identically distributed.

The wild bootstrap instead reuses the residuals from each observation for its own y∗ by
transforming it a bit. The y∗ in the wild bootstrap is formed by

y∗i = xiβ̂ + eiξi , (3.96)
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where ξ is a random variable with E [ξ ] = 0 and E
[
ξ 2]= E

[
ξ 3]= 1. For some choices of

ξ see R. Y. Liu (1988) and Mammen (1993). For an overview on some bootstrap methods
for finite populations see Booth, Butler, and Hall (1994). The general idea behind it is to
generate repeatedly finite populations resembling the finite population of interest.

Another possible method would be to use a parametric bootstrap to create the y∗ by draw-
ing from the model distribution. However, all these bootstrap methods have a common
flaw; they need the estimator to be recomputed for each resample. In the case of the gen-
eralized linear mixed model at hand, this is quite cumbersome. For example, in the Swiss
Structural Survey, a single estimation takes about 40 to 60 minutes. Just by taking 99
bootstrap resamples, which already is a low number, it would take about 3 days for one
estimate. Thus, bootstrapping is in practice still not feasible for these kinds of estimators
in surveys with a high number of total observations and/or a large population.

3.4 Prediction With An Additional Information Source
on an Intermediate Aggregation Level

In small area estimation the auxiliary variables are of utmost importance for a precise
prediction of population parameters. Usually, these auxiliary variables are taken from the
population registers. In some countries the population registers have a large amount of
different variables on the citizens. This is especially the case in northern European coun-
tries like Sweden and Finland. In other countries, such as Germany or Switzerland, there
is only sparse information about the citizens in the population registers. Furthermore, for
many population parameters of interest, the few existing variables have low predictive
quality. The question arises as to how to enrich the population registers, so that more
predictive quality can be obtained.

Unfortunately, additional registers often are not accessible due to legal restrictions. One
legal reason for not obtaining additional register information is the issue of disclosure.
Lahiri and Larsen (2005) propose to use record-linkage in order to enhance the use of
third party registers where no personal identification number is available. However, the
disclosure problem should not be an impediment if the register information is aggregated
to a certain amount. The simplest case would be if the register information was made
available at area level. Then, the Fay-Herriot estimator could be used directly, and record-
linkage would not be mandatory. However, generally, the more detailed the available
register information is, the better a model fits and thus better predictions are possible.

Instead of aggregating the additional register to the area-level, another possibility is to
aggregate them to some sort of subpopulation of each area. This can be, e.g., a total giving
the cross-combination of age classes and gender or proportions in addresses. As this
information is between the unit-level and area-level, it will be referred to as intermediate-
level information.
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The formulas for the estimation and the prediction in the cases of area and unit-level
additional information remain the same as before. In the case of the intermediate-level
additional registers, the model building changes. As the covariates are now some popula-
tion parameter at an intermediate aggregation level, the dependent variable also has to be
aggregated.

Let A be a partition of the population U with J cells. Then Ad contains the units which
belong in area d partitioned as A (Ad := A∩Ud). Furthermore, let A j

d denote the j’th cell
of partition A in area d, and τy,A j

d
be the total of variable y in the cell j of Ad . In this case

one has in each of the D areas J observations τy,A j
d

of the totals of the variable of interest
y.

The linear regression can now be applied on this data, using the cells of the partition as
covariates. It is not possible to use an intercept in the model matrix as it would become
multicollinear. The linear regression model then has the form:



τy,A1
1

τy,A2
1...

τy,AJ
1

τy,A1
2...

τy,AJ
D


︸ ︷︷ ︸

:=y

∼ N





1 0 · · · 0
0 1 0 · · ·
...

... . . . ...
0 · · · 0 1
1 0 · · · 0
...

...
...

...
0 · · · 0 1


︸ ︷︷ ︸

:=x


β1
β2
...

βJ


︸ ︷︷ ︸

:=β

, I(D·J)σ
2
e


. (3.97)

In terms of the general linear regression model 2.1 the τy,A j
d

may be seen as the y for the
cell j in the area d and x is a vector of dimension D of Identity matrices of size J. The
observations are then all cells in all areas.

Up to this point, the additional registers are not considered. However, if the additional
registers can be made available on the cells A j

d , then this information can be incorporated
into the estimation. Let ξk be the k’th vector of the K variables obtained from the addi-
tional register. Then the model in (3.97) can be extended to incorporate this information
in the following way:

y∼ N

(x,ξ1, . . . ,ξK
)


β

βJ+1
...

βJ+K

 , I(D·J)σ
2
e

 (3.98)

The assumption that all cross-combinations of cells are iid distributed over all areas is
somewhat strong, as usually the areas have at least different levels. But taking the areas
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into the fixed effects would lead to a Regression model with too many parameters. Hence,
a mixed model is for practicability reasons more appropriate. In terms of a random inter-
cept model as used by the FH or BHF, the areas, the cells or both can be used as random
effects. However, in order to use solely the cells as random effect, it would be desirable
to have a large number J of them. Another possibility would be to use a so-called two-
level model (§ 5.5.4 J. N. K. Rao, 2003 and Moura & Holt, 1999). In this model, random
coefficients are also possible. This model can cope for area differences in the level of the
fixed effects parameters.

Furthermore, one has to be careful in adding a lot of additional covariates ξ as, due to the
building of cells, less observations are available in contrast to the unit-level models. If too
many parameters have to be estimated, the variability of the β estimate rises. Therefore,
the success of this approach relies on few additional covariates ξ which can actually
explain much of the variability of the accumulated original y’s in the cell A j

d .
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Chapter 4

Variance Reduced Parametric
Bootstrap MSE Estimates

4.1 The Parametric Bootstrap from the Monte-Carlo View

For the practitioner and the data producer in national institutes, the information pertaining
to the precision of an estimate is very important. However, some of the small area methods
presented in chapter 3 do not have an analytical approximation to the variance or MSE of
the point estimate. In this case, only resampling methods may aid in finding an appropriate
precision estimate, e.g., for the AEBP described in section 3.3.5. One big drawback of
resampling methods is that they generally require extremely large computation times.
For example, in the case of the Swiss Structural Survey, a single estimation of the AEBP
takes approximately 14 seconds. A parametric bootstrap with 99 bootstrap samples would
therefore take a little more than 23 Minutes. However, 99 resamples is not a very large
number, considering that in the Swiss Structural Survey there are over 2800 areas. In
other words, an over 2800 dimensional Problem is approximated by only 99 resamples.
Therefore, in practice, much more than 99 resamples would be used, in order to obtain
a reliable precision estimate. Even more problematic is the use of double bootstrap (see
section 3.3.6.3), as this requires many more evaluations of the estimator. A parametric
double bootstrap with 99 resamples in the first and second stage would take more than 38
hours.

Often, there exists a set of possible combinations of the covariates used in the small area
estimator of choice. If it is to check which of these combinations is going to be used
for the data production, the precision estimates produced for them are also of interest.
However, comparing many models would lead to increased problems for the data pro-
ducer. Depending on the estimator and minimum number of bootstrap samples required,
the computations can easily take a couple of days. It is easy to see that the parametric
bootstrap methods in many situations will only be feasible if computation time is reduced
by a considerable amount.
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Recalling the parametric bootstrap for the AEBP in equation (3.83) a more general Ver-
sion for the MSE estimate may be written as

MSE∗d,EST = E∗
[
(ψ∗d − ψ̂

∗
d,EST)

2] .

Now the right hand side is written in function of the distribution of y|X ,Z.

MSE∗d,EST =

+∞∫
−∞

. . .

+∞∫
−∞

(ψd− ψ̂d,EST)
2 fy|X ,Z(u1, . . . ,uD,e1 . . . ,en)du1 . . .duD de1 . . .en .

(4.1)

Simplifying the equation (4.1) one can write h(u) := (ψd − ψ̂d,EST)
2 and fu,e := fy|X ,Z .

Then the MSE estimate obtains the form

MSE∗d,EST =

+∞∫
−∞

. . .

+∞∫
−∞

h(u) fu,e(u1, . . . ,uD,e1 . . . ,en)du1 . . .duD de1 . . .en. (4.2)

As the multivariate normal probability distribution function fu,e does not have a closed
form integral, the equation (4.2) generally will not be tractable analytically either. The
two choices at hand would be to use a numerical integration or a Monte-Carlo integration
method for evaluating this multidimensional integral. In the area-level small area context,
typically the number of areas D is large. In this case it will not be realistic to use a
numerical integration method, as these suffer from the so called curse of dimensionality
(Donoho, 2000), let alone the case of a unit-level small area estimator. By using a simple
Monte-Carlo integration, the classical parametric bootstrap method results. This can be
seen if one remembers that the Monte-Carlo estimate for the expectation of a function
g(U), where U is distributed according to the probability density function fU is written as

E [g(U)] =

+∞∫
−∞

g(u) fU(u)du≈ E [g(U)]MC =
1
R

R

∑
r=1

g(u(r)) , (4.3)

where u(r) is drawn independently r = 1..R times from fU (see e.g. Robert & Casella,
2004, § 3). It follows, so far, that the parametric bootstrap may be written as a special
case of a Monte-Carlo integration problem. Thus, methods to improve estimates gained
by Monte-Carlo integration may be helpful in estimating the parametric bootstrap MSE
estimate as well.

4.2 Variance Reduction Methods for Monte-Carlo Inte-
gration

The plain Monte-Carlo integration is not a very efficient method. In the literature, many
improvements on the plain Monte-Carlo integration have been proposed, in order to in-
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crease efficiency of Monte-Carlo estimates. These methods are subsumed under the so
called variance-reduction methods, which are broadly discussed by Frey and Rhodes
(1999); Hesterberg (1996); Robert and Casella (2004) and Shapiro, Dentcheva, and Rusz-
czyński (2009), among many others. There are two basic ideas behind the variance re-
duction methods. The first one is that if the samples used in the Monte-Carlo integration
are selected carefully, the rate of convergence of the Monte-Carlo approximation may
increase. Besides the classical stratification for high dimensional problems, the Latin
Hypercube Sampling was proposed and will be discussed below. The second one is to
use some additional information for achieving this goal. Within this class of method, the
focus will be laid on the use of control variates.

4.2.1 Latin Hypercube Sampling for Variance Reduction

A well known variance reduction method for survey sampling is the partitioning of the
population into more homogeneous subgroups (strata). Instead of drawing simple random
samples from the whole population, the sample is drawn randomly from the strata. If the
strata are chosen such that the variability between the strata is relatively high to the varia-
tion within the strata, then a considerable reduction of the variance of the point estimates
may be achieved (Neyman, 1934).

The stratified random sampling is determined by two choices:

1. the number and location of the strata (stratification)

2. the number of sampled units in each stratum (allocation)

Whereas the classical stratification is generally applied on a finite population, in Monte-
Carlo integration the finite population can be replaced by a distribution. Therefore, the
strata are defined along the support of the probability density function (for this variance
reduction method see Ehrenfeld & Ben-Tuvia, 1962; Gaver, 1969). Let fY be the proba-
bility density function of the variable Y , which is defined on the support S. For example,
in the case of the normal distribution S = R. The strata then are the parts of a partition
of S. Usually the strata are taken to be subsequent intervals. So for a number of C strata,
the strata may be defined as Ic = (ac−1,ac), c = 1 . . .C, where a0 = inf(S),aC = sup(S)
and ac denotes the supremum of the interval Ic. The choice of the ac is arbitrary. A
common praxis is to choose the ac such that the resulting intervals are equal probable
given the probability density function at hand. Therefore, a straightforward choice would
be Ic =

(
F−1

Y ((c−1)/C) ,F−1
Y (c/C)

)
, c = 1 . . .C, where F−1

Y is the inverse distribution
function corresponding to fY . For equal probable intervals Ic, the number of sampled
units in each stratum in proportional stratified random sampling is nc ≡ n/C, c = 1..C.
The variance reduction effect for proportional stratified random sampling is maximized
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by setting C = n, n being the number of observations drawn in one run. The Monte-Carlo
approximation uses the same formula as in simple random sampling from the distribution

E [g(Y )]MC =
1
R

R

∑
r=1

g(y(r)) , (4.4)

where, each y(r), r = 1..R consists of a stratified random sample as described before. If
these y(r) are used in formula (4.4), then V

[
E [g(Y )]MC

]
StrRS

≤ V
[
E [g(Y )]MC

]
SRS

(see
McKay, Beckman, & Conover, 1979 and Fishman, 1996, § 4.3).

In parametric bootstrap applications, especially in small area estimation, the distribution
from which it has to be drawn is generally multidimensional. As already stated above, for
an area-level estimate on the Swiss Structural Survey, there is easily a 2800-dimensional
distribution over which one has to integrate. With the higher dimensionality, the stratifi-
cation approach runs into troubles, as will be shown now.

Let Y be now a random variable from a K-dimensional distribution FY with probability
density function fY . Again, an arbitrary partition will be the stratification. For simplicity,
only the proportional stratified random sampling with equal probable strata is considered
here. Let Ic, c = 1 . . .C be the equal probable strata. Let’s assume that every marginal
distribution k is univariate stratified with Ck strata. Then, the total number of strata is
C = ∏

K
k=1Ck. Using the example of the Swiss structural survey, it is easy to see that

this approach will not be feasible. The problem is that for the parametric bootstrap for
an area-level estimator, a fixed number n of samples is predefined, which is the number
of areas n = D. Therefore, the restriction is that a maximum of C = n = D strata may be
used. Now, assuming that each marginal distribution of Y is only split into two strata, then
C = ∏

K
k=1Ck = 2K . In the case of K = 2800, the minimal C can no longer be calculated

with a standard calculator and is definitely larger than the fixed n = 2800 observations.
The only way to overcome this problem is to reduce the number of strata. However, as a
result, the stratification almost vanishes and thus will not be very helpful. In this case the
effects tend to be negligible in comparison to simple random sampling.

As alternative, McKay et al. (1979) proposed a method called Latin-Hypercube-Sampling
(LHS). A Latin-Square is a n×n matrix filled with n different symbols which only occur
once in each row and each column (Euler, 1782). See Bose, Chakravarti, and Knuth
(1960) for a computational algorithm to construct Latin-Squares. As Box (1980); Rapanos
(2008) state, Fisher (1935) already used the Latin-Squares for his theory on the design of
experiments. The use of Latin-Squares for sampling is described in Raj (1968, § 4.10).

A Latin-Hypercube, as proposed by McKay et al. (1979), is a generalization of Latin-
Squares into the K-dimensional space. The sampling algorithm is described in Algorithm
4.1. Each of the k = 1 . . .K variables is partitioned into n equally probable intervals
Ii, i = 1 . . .n. From each interval i of each variable k one unit yi,k is drawn by simple
random sampling. The resulting matrix Y is of dimension n×K with entries Yi,k = yi,k.
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Figure 4.1: Comparison of the sampling schemes: Simple-Random-Sampling, Stratified-
Random-Sampling and Latin-Hypercube-Sampling for a sample of n = 16
observations from a bivariate uniform distribution on the space [0,1]2

Now the columns of the matrix Y are randomly permuted to form the matrix Y P . The
resulting observations are then the yi. entries of the matrix Y P. By doing this, it is ensured
that only one point is sampled in each cell of the hypercube. This algorithm draws from
a multivariate equal distribution. In order to draw from a normally distributed variable,
the Inverse Transform Sampling method can be applied (see Section A.1 in appendix or
Robert & Casella, 2004, § 2.1.2.

Algorithm 4.1 Latin-Hypercube-Sampling from a K-dimensional Independently
Uniformly Distributed Random Variable

Let x be a K-dimensional independently uniformly on [0,1]K distributed random
variable from which one wishes to draw n samples.

1. Set r=1.

2. Draw i = 1..n times x(r)i,k ∼ Uniform
[
(i−1)

n
,

i
n

]
for each k ∈ {1 . . .K}.

3. Permute the columns of X randomly.

4. Repeats steps 2 and 3 for r = 2..R.

5. Obtain the R×K sample-matrix X = (x1,xk) of the permuted vectors x∗.

(McKay et al., 1979)

These three methods, SRS, StrRS and LHS are visualized exemplary in Figure 4.1. This
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figure shows the example for a K = 2-dimensional uniformly in [0,1] distributed ran-
dom variable with n = 16 samples. Each circle shows one sampled point. The bars
on the x and y axis show the marginal frequency in the 16 equally probable intervals
[(l−1)/n, l/n] , l = 1..16 of the variables x1 and x2 respectively. In the case of SRS from
the pdf fX one can see that the sample is not distributed evenly on the sample space. E.g.
no samples resulted in cells three and five, while two samples resulted in cells two and
ten. Also the marginal frequency of the sampled x1 and x2 is not even.

The StrRS allocates the sample in such a way, that one sample is drawn from each of
the cells. As 16 samples are drawn from a two dimensional random variable, one can
construct four strata per variable thus resulting in 42 = 16 strata cells. Therefore, by using
StrRS the sample is allocated more evenly over the sample space than through SRS. Still,
regions may result on the marginals without any samples. E.g. in cells 1..13, and16 no
sample is drawn from the lower quartile of the cells for variable x2. LHS, in contrast,
allocates the samples in such way, that both variables have one sample in each interval
[(l−1)/n, l/n] r = 1..16. This way, the marginal frequency is evenly distributed over the
n intervals. However, in LHS it may happen, like in SRS, that larger regions as seen in
cells ten and thirteen remain without samples. With orthogonal sampling, proposed by
Owen (1992), one can trace this problem as well.

4.2.2 Control Variables for Variance Reduction

One application of variance reduction in bootstraps is presented by Hesterberg (1996),
who uses control variates. This idea will be translated into the purpose of the parametric
bootstrap estimation. A control variate is a random variable which is a function of the
same input vectors as the function which is bootstrapped. As before, let h(u,e) be the
random variable produced within the parametric bootstrap. Then a function g(u,e) is
defined with known mean g. Instead of now calculating the expectation of h via

E [h(u,e)] =
1
R

R

∑
r=1

h(u(r),e(r)) ,

the control variate is introduced as a correction term

E [h(u,e)]CV =
1
R

R

∑
r=1

h(u(r),e(r))+ c
(

g(u(r),e(r))−g
)

. (4.5)

As E
[
g(u(r),e(r))

]
= g and c is a constant it follows that E

[
c
(

g(u(r),e(r))−g
)]

= 0 and
therefore E [h(u,e)]CV = E [h(u,e)]. The optimal constant c, in the sense of minimizing
the variance of the estimator in (4.5), is given by

c =
COV [h(u,e), g(u,e)]

V [g(u,e)]
(4.6)
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(Hesterberg, 1996). This method allows for a reduction of the variance of the Monte Carlo
estimate by the rate of COR [h(u,e), g(u,e)]2.

In practice, both COV [h(u,e), g(u,e)] and V [h(u,e)] are not known. Following Hester-
berg (1996) these terms may be computed from the bootstrap resamples.

ĉ =
ĈOV [h(u,e), g(u,e)]

V̂ [g(u,e)]
(4.7)

The estimation induces a bias of order O(R−1) which, in most cases, will be very small.
The central issue in order to apply this method is to define a function g(u,e), which has
a known mean and preferably a strong correlation with h(u,e). This function will depend
strongly on the estimator used. For a proof of concept a control variate for the parametric
bootstrap MSE estimate of the FH is proposed. As for the FH, an analytical approximation
is also available so the performance of the parametric bootstrap MSE estimate may be
compared to the analytical MSE estimate.

The function h(u,e) in the case for the estimation of a mean with the FH is given by

h(u,e)d,FH = (µ̂∗d,FH(X β̂ ,u∗,e∗)−µ
∗
d (X β̂ ,u∗,e∗))2 (4.8)

=
[(

Xdβ̂
∗+ γ

∗
d ((X β̂ +u∗d + e∗d)−X β̂

∗)
)
−Xdβ̂ +u∗d

]2

and assuming that

β̂ ≈ β̂
∗

this may be approximated by

h(u,e)d,FH ≈ ḣ(u,e)d,FH = (γ∗d (u
∗
d + e∗d)−u∗d)

2 (4.9)

= ((γ∗d −1)u∗d + γ
∗
d e∗d)

2 ,

and by further assuming that

(σ̂∗u , σ̂
∗
e,d)≈ (σ̂u, σ̂e,d) (4.10)

ḧ(u,e)d,FH = ((γd−1)u∗d + γde∗d)
2 ,

where u∗ and e∗ for area d are independently normally distributed with mean 0 and vari-
ances σ̂2

u and σ̂2
e,d .

Four arbitrary choices for g(u,e) then may be

g(1)d (u,e) = (u+ e)2 g(1)d = σ
2
u +σ

2
e,d , (4.11)

g(2)d (u,e) = ((γd−1)u+ γde)2 g(2)d = (γd−1)2
σ

2
u + γ

2
d σ

2
e,d , (4.12)

g(3)d (u,e) = (u)2 g(2)d = σ
2
u , (4.13)

g(4)d (u,e) = (e)2 g(3)d = σ
2
e,d . (4.14)
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The correlations of these four functions with the approximation ḧ of h are

COR
[
ḧ(u,e)d,FH, g(1)d (u,e)

]
=

2(γd−1)2σ4
u +2γ2σ4

e,d +4(γd−1)γdσ2
u σ2

e,d

2
(
(γd−1)2σ2

u + γ2σ2
e,d

)
·2
(

σ2
u +σ2

e,d

) = 0 ,

(4.15)

COR
[
ḧd,FH, g(2)d (u,e)

]
= 1 , (4.16)

COR
[
ḧd,FH, g(3)d (u,e)

]
=

2(γd−1)2σ4
u

2
(
(γd−1)2σ2

u + γ2σ2
e,d

)
·2σ2

u

(4.17)

=
(γd−1)2σ2

u

2
(
(γd−1)2σ2

u + γ2σ2
e,d

)
=

σ2
e,d

2(σ2
e,d +σ2

u )
, (4.18)

and

COR
[
ḧd,FH, g(4)d (u,e)

]
=

2γ2
d σ4

e,d

2
(
(γd−1)2σ2

u + γ2σ2
e,d

)
·2σ2

e,d

(4.19)

=
γ2

d σ2
e,d

2
(
(γd−1)2σ2

u + γ2σ2
e,d

)
=

σ2
u

2(σ2
e,d +σ2

u )
. (4.20)

Function g(1) has no correlation to ḧd,FH and thus will not reduce the variability of the es-

timate. As the correlation COR
[
ḧd,FH, g(2)d (u,e)

]
= 1 this function is supposed to deliver

the best results in all settings. Of course, this correlation is higher than the true one, as the
assumptions β̂ ∗ ≡ β̂ and σ̂∗ ≡ σ̂ will, in general, be violated in most of the resamples.
For the same reason the approximation to the correlations of h with g(3) and g(4) is rather
rough, however the picture is promising. The surfaces of the correlation of these func-
tions are visualized in Figure 4.2. For the case, that σ2

u and σ2
e are of same magnitude,

the functions g(3) and g(4) will not bring much improvement. If σ2
u is near to zero then

it is preferable to use g(3), as even for small σ2
u the correlation is quite high. In contrast,

if σ2
e is near zero, then the function g(4) seems the best choice for analogue reasons. In

practice, the function g3 may cause problems if an estimator for σ2
u is used which allows

for zero estimates. In this case, the optimal c may not be computed as g(3) is constant and
thus V

[
g(3)
]
= 0.

The resulting approximation to the reduction of the variance for the parametric bootstrap
MSE estimate for the Fay-Herriot model is depicted in Figure 4.3. The functions g(3) and
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Figure 4.2: Correlation of the function ḧ and the functions g(3) and g(4)
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Figure 4.3: Rough approximation of the reduction of variance of the parametric bootstrap
MSE estimate for the Fay-Herriot by using the functions g(3) and g(4) as con-
trol variates
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g(4) seem only to be useful if σ2
u and σ2

e are small respectively. Again the function g(2) is

not plotted, as the correlation COR
[
ḧd,FH, g(2)d (u,e)

]2
= 1 and thus would mean that the

parametric bootstrap MSE estimate would be estimated with variance 0. As will be seen
in the following Monte Carlo Simulation this, of course, is not the case.

4.3 Performance of the Variance Reduced Parametric
Bootstrap MSE Estimate

4.3.1 Setting of the Monte Carlo Simulation

In this section, the concurrent approaches to reduce the variance of the parametric boot-
strap MSE estimate will be studied in the form of a model based simulation study. For a
discussion on the differences between model-based and design-based Monte Carlo simu-
lation see Section 5.1. FH will be used as the estimator. The variance covariance matrix
of the random effects and the sampling errors in the case of the FH is a diagonal matrix
(see Section 3.3.1). Therefore, the random vectors u,e needed for the parametric boot-
strap approximation to the MSE are independent from each other. For this simulation,
different populations are constructed according to the model used by the FH. The reason
for this is, that by drawing from a population that coincides with the assumptions made in
the estimation process, the disturbances available in the simulation are solely of a random
nature. There is no systematic error when the superpopulation model is implemented cor-
rectly and the estimator is computed in the right way. One assumption of the Fay-Herriot
model is somehow critical, namely that the ui are randomly distributed. This is a helpful
assumption for the estimation but, in fact, the deviation of the area mean from the pop-
ulation mean is not random, but rather is a fixed population parameter. Therefore, the
population is generated in the following way:

yd ∼ N(xdβ +ud,σ
2
e,d)

xd ∼MVN
(
(20,10),

(
5 0
0 3

))
ud ∼ N(0,σ2

u )

Hereby it is assumed, that the area deviation from zero remains constant over all popula-
tions. That is, the xd and also the ud are generated only once, while the yd = xdβ +ud +ed
are generated for every run randomly by drawing the ed from a multivariate normal distri-
bution with means zero and variance covariance matrix (σ2

e,1, ..,σ
2
e,D)I(D). As the variance

covariance matrix is a diagonal matrix, the single ed are independently distributed. There-
fore, it is also possible to draw the D sampling variances ed,d = 1..D from the univariate
normal distribution with mean zero and variance σ2

e,d .
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Table 4.1: Population models for the simulative assessment of the use variance reduction
methods for the parametric bootstrap MSE estimate for the Fay-Herriot esti-
mator

population number number of areas (D) distribution of σ2
e,d value of σ2

u
1 15 U(3,7) 5
2 40 U(3,7) 5
3 100 U(3,7) 5
4 15 U(0.01,0.1) 15
5 40 U(0.01,0.1) 15
6 100 U(0.01,0.1) 15
7 15 U(3,7) 0.1
8 40 U(3,7) 0.1
9 100 U(3,7) 0.1

10 15 U(.1,7) 5
11 40 U(.1,7) 5
12 100 U(.1,7) 5

By changing the parameters σ2
u ,σ2

e,d and the number of areas D some different populations
are created. The different parameter constellations are presented in table 4.1.

The evaluation of the results however is not straightforward. The goal of variance re-
duction methods is to reduce the variability of the parametric bootstrap MSE estimate
and decidedly not to reduce the MSE itself. In other words, a certain precision will be
reached with less resamples. Therefore, it is of interest how variable the MSE estimate is
in function of the number of bootstrap resamples. To visualize this, the following graph
is proposed. The number of bootstrap resamples will be plotted on the x-axis against the
95% confidence interval containing the central 95% of the difference of the MSE estimate
with r resamples to the converged MSE estimate with R resamples MSE(r)−MSE(R). The
narrower this band, the less variability in the MSE estimates. This graph will be used to
evaluate the results in the following.

4.3.2 Monte Carlo Results for the Variance Reduction Methods for
the Parametric Bootstrap MSE Estimate

All the above methods will be compared to the plain parametric bootstrap which, from
the Monte Carlo view, uses a simple random sampling from the underlying distribution.
Consequently, the plain parametric bootstrap will be denoted as SRS, the Latin Hypercube
Sampling is named LHS and the control variates are called function g(2) and g(3). As the
Simulations did not find any major differences in the performance of the methods when
varying the number of areas, in this evaluation, for the sake of clarity, only the results for
the populations with 15 areas are discussed (populations 1, 4, 7, and 10). The first 15
areas of the other populations are plotted in appendix B.
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Results for population 1

In Figure 4.4, the graph proposed above is plotted for the Latin Hypercube Sampling
approach in population 1. Each panel stands for one Area. As can be seen in this figure,
using the Latin Hypercube Sampling does not reduce the variability of the parametric
bootstrap MSE estimate, as the confidence bands are exactly overlapping. The same
holds for the other populations, as can be deduced from Figures B.3, B.6, and B.9 in the
appendix. Therefore, the Latin Hypercube Sampling in this application does not yield the
desired variance reduction and is not discussed further.

The function g(2) was found to be the best control variate under the rough approximations
made in the previous chapter. Therefore, it is thought to perform best under the concurrent
control variates. In Figure 4.5 the performance of the plain parametric bootstrap (SRS)
is compared to the control variate g(2). A high reduction of variance of the parametric
bootstrap MSE estimate is observed when the control variate is used. Using the grey lines,
one can see that the 95 % confidence band of the parametric bootstrap estimate under SRS
with 200 resamples is about as wide as the one of function g(2) with 120 resamples. This
is a reduction of 40% of resamples needed. As can be seen in Figure 4.6 the function g(4)

also leads to a significant variance reduction, even though it is not as high as in the case of
function g(2). In contrast, the function g(3) plotted in Figure 4.7 does not have any impact.
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Figure 4.4: Using Latin Hypercube Sampling for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 1
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Figure 4.5: Using the control variate g(2) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popula-
tion 1
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Figure 4.6: Using the control variate g(4) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popula-
tion 1
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Figure 4.7: Using the control variate g(3) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popula-
tion 1
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Results for population 4

In population 4, the σu is high and the σe,d are rather small. Thus, the control variates
g(2) and g(4) are thought to perform best. In Figures 4.8 and 4.9 the variability of the
estimates is plotted. As can be seen in both plots, the amount of variance reduction is
massive. In some Areas it reaches over 90% less resamples needed for the same width of
confidence bands. The direct comparison of the control variates g(2) and g(4) shows that
g(2) performs slightly better then g(4), as was expected from the analytical approximation.
The use of control variate g(3) does not have any impact on the variance of the estimate
as can be seen in Figure B.23 in the appendix.
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Figure 4.8: Using the control variate g(2) for variance reduction of the parametric boot-
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Figure 4.9: Using the control variate g(4) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popula-
tion 4
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Results for population 7
Population 7 is characterized by a small sigmau and larger σe,d . From the analytical
approximation, in this setting the control variates g(2) and g(3) should be performing best.
Therefore, at a first glance, surprisingly g(4) outperforms the other two control variates,
even though the reduction of the variability of the parametric bootstrap MSE estimate
is moderate in comparison to the other populations (compare Figures 4.10, 4.12, and
4.11). By using the control variate g(3), even an increase in variance may be observed.
This, however, may be explained by the fact that in this population the REML variance
estimate of σu in many samples is zero. By that, in many simulation runs the parametric
bootstrap MSE estimate using the control variate g(3) is not computable. When comparing
the performance of control variate g(3) in populations 7 and 9, which only differ in the
number of areas, 15 and 100 respectively, the effect of the variance estimation becomes
apparent. As can be seen in Figure 4.13 there is actually no longer any increase in variance
of the estimate. In some areas, even a slight reduction is visible. For the constellation of
population 7-9, the amount of possible variance reduction is not very high.
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Figure 4.10: Using the control variate g(2) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popu-
lation 7
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Figure 4.11: Using the control variate g(4) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popu-
lation 7
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Figure 4.12: Using the control variate g(3) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popu-
lation 7
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Figure 4.13: Using the control variate g(3) for variance reduction of the parametric boot-
strap MSE estimate for the Fay-Herriot estimator on the model based popu-
lation 9
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Results for population 10
The results in population 10 again show a considerable variance reduction when using
control variates g(2) and g(4). Also, in this population the control variate g(2) reduces
slightly more the variance of the MSE estimate than the control variate g(4) (see Figures
B.18, B.27, and B.36 in the appendix).

4.4 Conclusion

The need to reduce computational burden when using parametric bootstrap MSE estimates
is apparent. Many small area estimators require a lot of computation time for computing
a single estimate. For the parametric bootstrap applications, a large number of resamples
are needed, which significantly increases computation time. Especially when practition-
ers are trying to evaluate certain models at an instant or time near the MSE estimate is
an important part of this process. The Latin Hypercube Sampling did not show how to
reduce the variability of the parametric bootstrap MSE estimate in any of the populations
studied here. However, the use of control variates has been shown to be a computa-
tional easy implementable and reliable method. In some populations, the reduction of
the needed resamples for a certain variability of the MSE estimate could be reduced by
over 90%. This truly enables almost real-time computations of the parametric bootstrap
MSE estimate. Only when σ2

u is very small, caution must be exercised with the variance
estimation method. REML has shown to be problematic due to possible zero estimates.
Therefore, in these cases, the use of generalized maximum likelihood methods as pro-
posed by Lahiri and Li (2009b), adjusted density methods proposed by Morris and Tang
(2011) or adjusted maximum likelihood methods proposed by H. Li and Lahiri (2010);
Y. Li and Lahiri (2007), and Yoshimori and Lahiri (2012) should be used instead.

91



Chapter 5

Monte Carlo Simulations and
Simulation Studies

Recently, Switzerland moved away from a classical census towards a register-based cen-
sus - the Swiss Structural Survey. This yearly survey was introduced in 2011 and replaces
the full census, which was drawn up every ten years. It is planned as a register assisted
survey. For this purpose mainly the population register is used. In the long term, it may
be possible to incorporate further registers. The population register is taken to be per-
fect in the sense that it has no register errors (for problems arising with register errors
see Burgard, 2009 and Burgard & Münnich, 2012. Thus, counts and means of variables
which are in the register are not estimated but counted. These variables are mainly de-
mographic variables, such as gender and age. All other variables of interest, such as
employment rate, distribution of language or time spent traveling to the place of work
have to be estimated from the sample. The sample in the Swiss Structural Survey can be
seen as a stratified random sample without replacement. It is drawn from the population
register which serves as frame. The strata are the communities and the total sample size
is allocated proportionally to the population size of each community. In total, 200 000
persons over 15 years are drawn from the roughly 8 million inhabitants of Switzerland
(Bundesamt für Statistik Schweiz, 2013a, 2013b).

This change in methodology imposed questions concerning the quality of area estimates.
It is of particular interest to have access to how small an area may be to still allow for pre-
cise estimates. Precise, in this context, is in the first place a matter of political argument.
The question is what precision is needed in order to rely on the estimates. In the small
area context, this decision becomes more complex, as many areas are estimated simulta-
neously. That is, there is a set of precision estimates which have to be evaluated. This
leads to a decision theoretic problem which is discussed deeper in (Münnich & Burgard,
2012c). This thesis is partly attached to the project Simulation der Strukturerhebung und
Kleingebiete-Schäzungen. The Final report of this project is available online (Münnich &
Burgard, 2012c).
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This chapter is organized as follows. First, a systematization of the different types of
Monte Carlo simulation studies is proposed and the single simulation types are explained.
Second, Section 5.2 discusses how to measure the precision of estimates within a Monte
Carlo simulation study. Also, some notes on the decision theoretic problem in small area
estimation are included. As these measures are difficult to revise with tables, due to the
multidimensionality of the small area estimation setting, graphical summaries enable a
quick and broad overview of the behavior of the different estimators at hand. Hence,
third, useful graphs for this purpose are proposed and explained in Section 5.3. Fourth,
the central question driving the project is tackled in Section 5.4. Namely, how to handle
very small areas in the context of the Swiss Structural Survey. Last but not least, fifth, the
possibility of incorporating covariates into the estimators, which are only available on a
certain degree of aggregation, is tackled. This is done exemplary by using an additional
variable from another register, which may only be provided due to legal reasons on a cross
tabulation of some demographic variables for each area.

5.1 Model-Based versus Design-Based Monte Carlo Sim-
ulations

Monte Carlo simulations, with the rise of high computer power, became an increasingly
feasible way for obtaining diverse measures. In the context of survey sampling, the two
main directions of Monte Carlo simulation are the design-based and the model-based
Monte Carlo simulations. They are generally conducted in order to obtain knowledge
regarding the impact of sampling design on the precision of estimates and to evaluate
the appropriateness of estimation methods on certain populations. As there are many
different sampling designs, estimators, statistical properties of interest and populations,
the Monte Carlo simulations have to be designed separately for each purpose. In Table
5.1 a systematization is proposed, which focuses mainly on the aspects concerning which
randomization is chosen to obtain the Monte Carlo approximation and which kind of
population is used. The different types of Monte Carlo simulation are illustrated by an
example where an approximation to the bias of an estimator is studied. The Monte Carlo
simulation would consist in evaluating the integral

Bias =
+∞∫
−∞

(
Ψ̂(x)−Ψ

)
f (x)d x . (5.1)

The randomization is defined by the probability density function f (x), the estimator under
consideration produces estimates Ψ̂(x) and the true value is Ψ. As estimators, the HT (see
Section 3.2.1) and the GREG (see Section 3.2.2) will be used in this example. Of course,
from the theory it is known that the HT estimator is unbiased and the GREG is at least
asymptotically unbiased.
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Broadly speaking, the Monte Carlo simulations may be divided into two main groups,
the design-based and the model-based simulations. The main difference between the two
is that the model-based simulations are characterized by the fact that the randomization
is model-based and the randomization of the design-based simulations is design-based.
First, the simulation types with model-based flavour are discussed, and then the design-
based flavoured.

In the case of a pure model-based simulation, this f (x) represents the joint distribution
of all variables used in the estimation of Ψ̂. In the case of the HT, only the variable
of interest y is to be drawn from the population and a corresponding weight is to be
derived. In case of simple random sampling from the model population, all units have
equal weights. The model population in this case is simply a distribution like the normal
or Bernoulli distribution. In contrast, when the estimator needs more variables, like the
GREG, then the covariates x also have to be drawn from the population. In that case,
the model population is distributed according to the assumed joint probability density
function f (x), e.g., a multivariate normal distribution. Again, if simple random sampling
from the model population is performed, then all weights are taken to be equal.

Often, however, the covariates are taken to be fixed and only the variable of interest y
is taken to be random. In this case, the f (x) is a probability density function depending
on the fixed covariates. This is easier to implement, as it may be extremely difficult to
draw samples from the joint distribution of all variables. Generally, this procedure is
called model-based simulation. At this point, in the context of small area estimation, it
is important to note that the handling of the area effect is important. The mixed models
underlying most of the small area estimates generally assume a distribution on the area
effects. That is, under the mixed model, the area effect is random. For the assessment
of the estimation of the fixed effects β̂ , this randomness has to be considered as such.
In small area estimation, however, the area effect is clearly a fixed value. E.g., one area
actually has a higher average income than another area. Therefore, it might be sensible to
take the area effect as fixed in f (x).

A less common approach is to combine the randomization from the design with the ran-
domization from the model population. That is, f (x) is the joint distribution of the model
population and the sampling design. This case would then be called a model- and design-
based simulation. To clarify this approach an example is constructed where simple ran-
dom sampling is compared to stratified random sampling and cluster sampling. For ease,
the strata, the cluster and the sample sizes are chosen such that the drawn units have the
same inclusion probability. This can be changed in order to have varying design weights.
The assumed superpopulation is the following normal distribution.

(y,x)∼MVN
(
(0,0),

(
1 0.8

0.8 1

))
. (5.2)

In analogy to Chapter 4.2.1, the simple random sampling is the design where realisations
are drawn without restrictions from this multivariate normal distribution. The sample
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Figure 5.1: Example model-based and design-based Monte Carlo simulation

size is set to 45. For stratified random sampling, in contrast, the sample is drawn within
strata. For this example a 3× 3 raster with equal probable strata is used, wherein each
stratum 5 units are drawn. This is accomplished by using the inverse transform sampling
method (see Algorithm A.1) and the Cholesky decomposition (see Algorithm A.2). In
the case of cluster sampling, 15 units are drawn by simple random sampling within 3
randomly chosen strata (clusters) of the 9 previously defined strata. Therefore, all three
designs have the same sample size of n = 45 and all units have equal probability to be
included in the sample. The estimators under consideration are the HT and the GREG.
The results of this simulation with 10,000 repetitions is visualized in Figure 5.1. One
boxplot shows the distribution of the 10,000 iteratively produced point estimates of the
mean in the previously defined model population under one sampling design. One can see
that, as expected, neither estimator shows a bias in the simulation. As is also expected,
the stratified random sampling is more efficient than the simple random sampling. And,
as expected, cluster sampling is less efficient than simple random sampling. Overall, the
GREG is more efficient than the HT, which is plausible, as the theoretical correlation is
COR [y, x] = 0.8.

As already introduced in the design-based simulations, the randomization is done only
via the sampling design. That is, to be exact, the design based simulation needs the real
data, in order to be able to solely detect effects due to the sampling design in the given
population. However, in most applications Monte Carlo simulations are not needed if
the true population is already available. Commonly, only an approximation to the true
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Name Randomization Population True Values

pure
model-based

model all variables are drawn from the model
population for each replication

theoretical

model-based model dependent variables are drawn from the
model population for each replication,
everything else is fixed

theoretical

model- and
design-based

model and de-
sign

samples are drawn according to a sam-
pling design from the model population

theoretical

smooth
design-based

design dependent variables or all variables are
drawn once from the model population
for all replications

empirical

realistic
design-based

design dataset is realistic /
contains the relevant characteristics of
the real underlying data

empirical

design-based design dataset is the real data empirical

Table 5.1: Comparison of model based and design based Monte Carlo simulation settings

population is available. This could be an older census, or some other data set containing
structures and variables which are relevant for the population of interest. As this is not the
true real population, but rather a realistic one, this is called realistic design-based Monte
Carlo simulation.

It is often the case that some covariates are known to a certain degree, e.g. from registers
or other surveys, but only a little information about the dependent variable is available.
In this case, usually a smooth design-based Monte Carlo simulation is performed. As in
model-based simulation, the covariates are taken as fixed, and the variable y is a realisation
of a random variable given the fixed x. In contrast to model-based simulation, only one
realisation of this random variable is considered. With this data set, the design-based
simulation is performed.

5.2 Performance Measures

The output of a large Monte Carlo study is usually very huge. Therefore, in order to
be able to compare the estimators under different scenarios, the information has to be
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reduced to an easy to handle number of figures. Usually, two main features of estimators
are considered, on the one hand, the variability of an estimator is of interest and, on the
other hand, its bias is taken into consideration. In the following two sections, first the
measures for the point estimates and then those for the precision estimates are discussed.

5.2.1 Performance Measures for the Point Estimates

For the calculation of performance measures of the point estimate Ψ̂∗d for estimator ∗ in
area d, its distribution from the Monte Carlo study is considered. The variability of an
estimate can be accessed by the relative dispersion. It is defined as

RDISP∗d := RDISP(Ψ̂∗d) :=
Q(Ψ̂∗d,0.95)−Q(Ψ̂∗d,0.05)

Ψ
, (5.3)

where Ψ is the true value known from the simulation environment, but not in the actual
survey. The possible values of the RDISP lie in (0,∞). The lower they are, the lower
the variability of the estimate. The dispersion is a kind of robust way of measuring the
variability, as the outlying 10% of the estimates are cut off.

The bias can be assessed as the mean difference of the estimates from the true value in
relation to the true value. The formula is

RBIAS∗d := RBIAS(Ψ̂∗d) :=

1
R

R
∑

r=1
Ψ̂∗d r−Ψd

Ψd
. (5.4)

Its values lie in (−∞,∞). The nearer the RBIAS is to zero, the lower the bias of the esti-
mator. In survey statistics, there is often a trade-off between the variability of an estimate
and its bias (see Chapter 3). That is why it is important to also look at compensatory
measures which involve both aspects.

A popular choice for this is the relative root mean squared error. It is computed as the root
of the mean squared deviation from the estimates to the true value in relation to the true
value. The equation is

RRMSE∗d := RRMSE(Ψ̂∗d) :=

√
1
R

R
∑

r=1

(
Ψ̂∗d r−Ψd

)2

Ψd
. (5.5)

Often one estimator is better for one area, whilst another estimator is better for a different
area. In this case, one has to assess which estimator is best overall. One approach is to
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compare the average of the measure over all areas with this average measure result.

AVRDISP∗ :=

D
∑

d=1
RDISP∗d

D
(5.6)

AVRBIAS∗ :=

D
∑

d=1
RBIAS∗d

D
(5.7)

AVRRMSE∗ :=

D
∑

d=1
RRMSE∗d

D
(5.8)

If the interest lies in a minimum requirement in all areas, then one can look at the worst
area only. In all three cases, this would be the maximum absolute value:

MARDISP∗ := max
d=1..D

(RDISP∗d) (5.9)

MARBIAS∗ := max
d=1..D

(RBIAS∗d) (5.10)

MARRMSE∗ := max
d=1..D

(RRMSE∗d) (5.11)

A more general Quantile of the distribution of the measures can be considered, where the
Median q = 0.5 is often used

QRDISP∗q := Q(RDISP∗d,q) (5.12)

QRBIAS∗q := Q(RBIAS∗,q) (5.13)

QRRMSE∗q := Q(RRMSE∗,q) (5.14)

For the practitioner, in the end, it is of interest whether the point estimate lies within a
certain range around the true value. This measure will be called the near-enough rate
(NERATE), it ranges from zero to one and is defined as:

NERATE∗∆ :=
1
R

R

∑
r=1

I|Ψ−Ψ̂∗d r|<∆
. (5.15)

5.2.2 Performance Measures for the MSE and Variance Estimates of
the Point Estimates

In order to have an accuracy measure for the point estimate in the one-sample-case, MSE
or variance estimates for the point estimates are computed. These can be evaluated either
by their bias or by confidence interval rates.
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The relative bias of the MSE estimation is defined in analogy to that of the point estimates
as

RBIASMSE∗d :=

1
R

R
∑

r=1
M̂SE(Ψ̂∗d r)−MSE(Ψ̂∗d)

MSE(Ψ̂∗d)
(5.16)

with MSE(Ψ̂∗d) :=
1
R

R

∑
r=1

(Ψ̂∗d r−Ψd)
2

The values of the RBIASMSE lie in [−1,∞), where values near zero denote an accurate
MSE estimator, a value below zero depicts underestimation and a value over zero, over-
estimation of the MSE. An MSE estimator that generally overestimates the MSE is called
conservative.

It is not only important to have a low bias of the MSE estimator, but also it is of interest
to have low MSE estimates. Thus, the combination of the magnitude of the MSE estimate
and the accuracy of the MSE estimate has to be measured at the same time. A measure
that fulfils these requirements is the confidence interval coverage rate (CICR). The CICR
is defined as follows:

CICR∗d :=
1
R

R

∑
r=1

I
Ψd∈CI(Ψ̂∗d r)

, (5.17)

where CI(Ψ̂∗d r) is the estimated confidence interval for the estimator ∗ in area d in simu-
lation run r. For the methods used to estimate confidence intervals see Section 3.3.6.

With an arbitrary high MSE estimate, the CIRC will always be 1. Therefore, it is of
great interest to compare the CIRC to the magnitude of the MSE. This can be done by
incorporating the mean confidence interval length (MCIL) over the simulation runs. This
is defined as

MCIL∗d :=
1
R

R

∑
r=1

CIL(Ψ̂∗d r) . (5.18)

5.3 Visualization and Interpretation of Monte-Carlo Sim-
ulation Results

Some of these measures are area specific, while others go over all the areas at once. In
the setting of the Swiss Structural Survey, almost 3000 areas are available. Tabulating
these large amounts of measures obviously will not provide a quick overview about the
performance of certain estimators. Therefore, graphical tools are used to summarize this
large amount of information. For ease of interpretation, mainly a standard graphical tool
is used, the Box-and-Whisker Plot (boxplot) first proposed by Tukey (1977, § 2C).
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Figure 5.2: Example of a Box-and-Whisker plot for the standard normal distribution

This graph is very useful for getting an idea of the distribution of the data. Its construction
is rather simple, as can be explained with Figure 5.2. The box of the boxplot delimits the
central 50% of the observed values. Therefore, the left and right borders of this box are
the 25% and 75% quantiles respectively. The smaller the inter quantile range (IQR), the
more compact most of the observations lie. The Whiskers are positioned following Tukey
(1977, § 2C) at the two observations which are farthest away from the median, but not
farther than the maximal distance of 1.5×IQR from the borders of the box. In addition
to the boxplots, the aggregate measures average, maximum absolute value and quantiles
found in equations (5.6), (5.9) and (5.12), respectively, are depicted within the plot as
well. Besides the median, which is already part of the boxplot, a box showing the central
80% of the values is drawn behind the boxplots. The points lying outside the whiskers
can be seen as outliers.

The second graph used is a so-called waterfalls graph. This is used to visualize the CICR.
The name derives from the fact that in many cases in small area estimation the resulting
picture recalls a waterfall. As can be seen in Figure 5.3, on the y-axis the CICR is plotted
against the MCIL. The shorter the MCIL, the more precise is the MSE estimate. There-
fore, it is desirable if the points are far to the left in the waterfalls graph. On the other
hand, the CIRC should have the height of the nominal CICR, that is, for a 95% confi-
dence interval the CICR should be 95%. If the CICR is higher, then the CI is measured
somewhat more conservatively. If the CI is lower than this nominal rate, then the MSE
underestimates the true uncertainty about the estimate at hand. In this case, a short MCIL
purports a precision of the estimate, which cannot be held. To facilitate seeing whether
the CICR is at the nominal rate, a horizontal red line is drawn at its value.
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Figure 5.3: Example of a waterfall graph for a nominal confidence interval coverage rate
of 95%

5.4 Area Sizes and Omission of too Small Areas

A key issue is how to handle very small areas. For many variables of interest, the units in
very small areas may behave in a different way than the rest of the population. If many
of these very small areas exist, they might have a stronger impact on the model than is
appropriate for the share of units within these areas. As traditionally no estimates are
published in official statistics for these very small areas, one viable approach would be to
omit these areas from the estimation and prediction.

Another possibility is to agglomerate the areas to agglomerations that have a minimum
size. In this approach, the estimation and prediction is performed on aggregate level.
From the viewpoint of official statistics, these agglomerations must be a sensible political
unit. This may lead to the problem that not all agglomerations will actually reach the
desired minimal size. However, most agglomerations should meet the required size.

Last but not least, a combination of these two approaches may be viable. That is, the
agglomerations are built from areas with a minimal size themselves.

To answer the question of which approach is most feasible, a Monte Carlo simulation is
performed. In the next Section, the setting of the Monte Carlo simulation is depicted.
Next, the results of the Monte Carlo simulation are summarized. First, the performance
for the point estimates is tackled and subsequently the precision estimates are compared.
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5.4.1 Setting of the Monte Carlo Simulation

As mentioned in the introduction, one approach is to use agglomerations as areas for the
estimation and prediction. The agglomerations are named and built as follows

ZGDEN: Estimation and prediction on all communities.

ZGDEM: Estimation and prediction on all communities with at least 1000 inhabitants.
Communities that have less than 1000 inhabitants are assigned to geographical near
communities, if politically sensible.

ZGDEMM: Estimation on and prediction of all communities with at least 2000 inhab-
itants. Communities that have less than 1000 inhabitants are assigned to nearby
geographical communities, if politically sensible.

The second possibility presented is to use only the communities of a minimal size. These
scenarios are as follows:

CUT0000: All communities are considered.

CUT1000: Only communities with at least 1000 inhabitants are incorporated.

CUT2000: Only communities with at least 2000 inhabitants are incorporated.

The Monte Carlo simulations comprise all combinations of these two scenarios. In Table
5.2 some summary statistics are given for the combinations of the scenarios. Besides the
number of areas in each scenario, some quantiles of the area sizes are also presented in
the table. As can be seen also in the case of ZGDEMM, there are still areas of a size of
less than 2,000 inhabitants. This is due to the fact that some areas could not be allocated
in a politically sensible way to other areas. Further, the agglomeration and the cut off
were calculated including inhabitants younger than 15 years old. In contrast, in the table,
the area sizes are calculated on the basis of inhabitants older than 15 years, which is the
relevant frame for this simulation.

As can be seen in this summary, the range of area sizes is very wide. Beginning with an
area of size 17 up to an area of a size of 320,324 inhabitants aged over 15 years. This
wide range is typical of small area estimation applications in official statistics. However,
often the Monte Carlo simulations performed to argue for Small Area estimators rely on
less variable area sizes.

The sampling design is almost equivalent to a stratified random sample with proportional
allocation to the areas sizes (cf. Section 3.1). Within the areas, a simple random sampling
is drawn. Therefore, the sampling weights do not vary much. In every area at least 2
units are drawn and, overall, there are 200,000 units in the sample. For the Monte Carlo
simulation, 1,000 samples following this sampling design were drawn. For each of these
samples, all the estimators were estimated repeatedly.
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Table 5.2: Area Sizes for the scenarios of the Monte Carlo simulation

Agglo- Cut off Number Quantile of the size of the areas
meration point of areas min 5% 50% 95% max
ZGDEN CUT0000 2,896 17 79 697 7,227 320,324

CUT1000 1,322 765 890 205 12,065 320,324
CUT2000 805 1,505 1,696 3,236 14,617 320,324

ZGDEM CUT0000 1,744 318 793 1,590 10,172 320,324
CUT1000 1,319 765 890 2,013 12,098 320,324
CUT2000 805 1,505 1,696 3,236 14,534 320,324

ZGDEMM CUT0000 1,248 318 1551 1,693 12,556 320,324
CUT1000 1,131 769 979 2,616 13,314 320,324
CUT2000 803 1,505 1,695 3,243 14,634 320,324

5.4.2 Results of the Monte Carlo Simulation

In this section, the results of the Monte Carlo simulation are discussed. Hereby, the results
for the agglomeration ZGDEM are being suppressed for simplicity, as it turns out that the
findings are in between the agglomeration ZGDEN and ZGDEMM. The same applies to
the cut off CUT1000, where the results indicate recommendations in between CUT0000
and CUT2000. First the point estimates and then the precision estimates are compared in
the following.

5.4.2.1 Evaluation of the Point Estimates

In Figure 5.4 the boxplots of the area-specific RRMSE for the single estimators and sce-
narios are illustrated. The vertical lines serve as orientation and simplify the comparison
between the boxplots of the estimators and the scenarios.

As expected, the GREG outperforms the HT in all scenarios. This is due to the assisting
model (see section 3.2.2) used by the GREG. The same covariates are also used by the
other estimators but, as is evidenced, with different results. For most areas the model
based estimators perform better in terms of RRMSE than the GREG, yet not for all ar-
eas. For example, the comparison of the GREG with the YOURAO shows that the right
whisker of the boxplot for the YOURAO is near the left margin of the box for the GREG.
In other words, with the YOURAO, almost all areas have a lower RRMSE than the first
quartile of the GREG. In turn, with the YOURAO, on the average for the simulation, up
to five areas lie above the maximal RRMSE of the GREG.

The comparison of the YOURAO with the BHF demonstrates that the YOURAO performs
slightly better than the BHF. The BHFW produces RRMSE almost identical to the BHF,
as can be seen in Figure 5.5.
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Figure 5.4: RRMSE of the point estimates under the four scenarios.
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Figure 5.5: RRMSE of BHFW versus BHF
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In comparison to the before mentioned estimators, the BINPW is a binomial unit level
estimator. In the direct comparison between the GREG and the BINPW, it is striking that
the boxes are very similar to each other, yet the BINPW is always slightly better than the
GREG. But by far it does not reach the precision of the other small area estimators. The
big point for the BINPW is that there are no single areas with an extremely high RRMSE.
The BINPW is a composite estimator and its shrinkage-factors in this study mostly accent
the design-based component. Hence, it shows similar characteristics as the design-based
estimators in this simulation study.

As to the area level estimators, the high reduction of RRMSE with respect to the design
based methods is depicted. Even though they only use information on an area level, they
outperform the GREG by far. In comparison to the unit level model based estimators,
the area level estimators perform only slightly worse. The AEBP, the binomial model for
area-level data, again achieves results similar to the FH.

In Table 5.3, summary statistics for the NERATE are presented. The interval into which
the estimate should fall is defined by (θ−

√
Nθ ,θ +

√
Nθ), where θ is the active popula-

tion rate to be estimated. The results are controversial. For the design based methods, the
NERATE is very low with maximal NERATE over all areas of 0.38 up to 0.82, depending
on the scenario. Even worse, the mean NERATE over all areas does not go beyond 33%.
That is, two-thirds of the design based estimates in this simulation lie outside the inter-
val around the true value. The BINPW yields only slightly higher rates. In contrast, the
FH, YOURAO, BHF and AEPB yield much higher maximum and mean NERATEs. The
mean NERATES are almost twice as high as the ones from the design based estimates.
The controversy becomes apparent when focusing on the lower tail of the distribution of
the NERATEs. There, the design based estimates and the BINPW hold a minimal NER-
ATE, even though it is quite low. The small area estimators fall to a NERATE of zero.
Comparing the small area estimates, one can see that the area level estimates have a higher
NERATE for the 3rd quartile and a lower one for the 1st Quartile.

With these figures, the decision theoretic problem becomes apparent. Small area estimates
provide higher NERATEs for most areas, thus lying within a certain, predefined and tar-
geted range around the true value. On the other hand, independently of which sample is
drawn, there is no chance for some areas to obtain an estimate which can be defined as
near enough to the true value. Even though in the case of the design based estimators and
the BINPW, the NERATE is very low for all areas, the areas have a real chance to obtain
an estimate defined as near enough.

In Figure 5.6, the RBIAS is illustrated in the form of boxplots. The vertical red line
marks the desirable value zero of the RBIAS. Here, the HT and the GREG show the
smallest bias. Single higher differences from the zero in the small areas only arise when
the really small areas are also used (ZGDEN CUT0000). The BINPW also performs very
well when considering the RBIAS. However, all other small area estimators show high
differences from zero for single areas. The more small-scaled the estimation, the higher
the RBIAS results. In this context, it should be especially emphasized that the AEBP in
the median over the areas shows a smaller RBIAS than the YOURAO and the BHF.
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Figure 5.6: RBIAS of the point estimate for the four scenarios
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The design-based estimators, such as the GREG and the HT, are (asymptotically) unbi-
ased. Yet, the estimate between different samples often alternates very strongly. This can
also be observed in figure 5.7. Thereby the HT shows greater variations of the estimates
than the GREG, which achieves more stability in the point estimation because of the as-
sisting model. As can be seen as well, the point estimates of the GREG and HT vary very
strongly, particularly for smaller areas (ZGDEN/CUT0000). Furthermore, the RDISP of
the BINPW is extremely high for a small area estimator. However, it still shows smaller
RDISPs than the GREG.

The comparison of the area-models indicates that the FH has a slightly but yet obvi-
ously higher RDISP than the AEBP. The YOURAO and the BHF even have a slightly
higher RDISP than the FH. Overall, the YOURAO, the BHF, the AREABINEBP and the
AREAEBP do not show an elevated RDISP, even when using the very small areas instead
of excluding them.
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Figure 5.7: RDISP of the point estimate for the four scenarios

It is of great interest to know how the RRMSE behaves depending on the community
size. Compliance with certain quality requirements is often linked to the community size.
Thus, a method that does provide considerably more precise point estimators in small
areas, but loses too much precision in huge areas, often, at least for huge areas, is not
suitable. In Figure 5.8 this question is examined. For this purpose, the RRMSE per area
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is plotted against the logarithmic area sizes for the scenario ZGDEN/CUT0000. For the
HT and the GREG a clear relationship between area size and RRMSE is visible. The
greater an area is, the lower the RRMSE becomes. A similar finding is provided by the
BINPW. Here too, the same relationship between RRMSE and area size is observed. It is
again depicted here that, due to the proportional allocation of the sample size, larger areas
have a higher absolute sample size.

The YOURAO and the BHF show a different result. For both of them, even relatively
small areas already achieve a quite low RRMSE, whereas some slightly greater areas also
show a higher value than the GREG or the BINPW. This pattern can also be observed
in the area level estimators. Altogether, it can be asserted that the small area estimators
perform very well for all kinds of area sizes, with a few outliers.

Figure 5.8: RRMSE of the point estimates versus the logarithmic area sizes in scenario
ZGDEN/CUT0000

Next, in regard to the question of the relationship that exists between the area size and the
quality of the point estimator, it is also important to consider whether the exclusion of too
small areas from the models can lead to better estimation results for the more important
huge areas.

This question can be analysed with the help of Figure 5.8. This illustrates the difference of
the RRMSE when using all areas (ZGDEN/CUT0000), compared to the situation where
the areas below 2,000 inhabitants are omitted (ZGDEN/CUT2000). Negative values mean
that the RRMSE of a community is lower for CUT2000 than for CUT0000, i.e., that the
exclusion of areas with less than 2,000 inhabitants leads to a reduction of the RRMSE
in the other areas. The figure shows that there is no difference, either for the GREG or
the HT, between the two scenarios. For the HT, it has to be this way, as no information
from other areas has been added and thus the information used does not change between
the two scenarios. For the GREG, differences between the scenarios are theoretically
possible. Usually they are very small, as the GREG contains the correction term for the
error of the model.
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Figure 5.9: Change in RRMSE of the point estimates versus the logarithmic area sizes
when dropping the very small areas (scenario ZGDEN/CUT2000)

For the BINPW, through the exclusion of the areas with less than 2,000 inhabitants, a
slight improvement is to be seen. However, this only benefits areas that are not much
greater than the excluded areas, with less than 2,000 inhabitants. The very huge areas are
not affected by this. For the other estimators in the figure, there is no clear pattern visible,
so it cannot be concluded whether the exclusion CUT2000 represents an improvement or
a decline for the estimation results for the YOURAO, the BHF, the FH or the AEBP.

Figure 5.10: Change in RRMSE of the point estimates versus the logarithmic area sizes
when dropping the very small areas (scenario ZGDEMM/CUT2000)

The same analysis for the scenarios with ZGDEMM agglomerations of 2000 shows an-
other picture. As is seen in Figure 5.10, all estimates worsen somewhat when the areas
with less than 2,000 inhabitants are excluded from the estimation. As some parts drop out
because of the exclusion of the small areas from some agglomerations, the differences
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of the RRMSE are no longer identical to zero for the HT and the GREG as well. Fur-
thermore, the BINPW worsens considerably when excluding the communities with less
than 2000 inhabitants. This leads to the conclusion that a combination of both scenarios
means that the use of an agglomeration and the additional exclusion of small areas can
even lead to a worsening of the estimation results. For this reason, in the following only
the variance and MSE estimation for both of the CUT0000 scenarios are examined.

5.4.2.2 Evaluation of the MSE Estimates

In general, the precision of a point estimator is indicated by an appropriate variance or
MSE estimator, which has to be calculated from the sample as well. In the following,
as a simplification, variance estimators, as well as MSE estimators are denoted as MSE
estimators. Variance estimators, in a strict sense, are only the variance estimators of the
GREG and the HT. However, as these estimators are unbiased (HT) or asymptotically
unbiased (GREG), their variance estimators are in a wide sense also MSE estimators. In
the simulation, the quality of the precision measures can be tested. Of particular interest
as precision measures are the confidence interval coverage-rates in combination with the
average confidence interval lengths.

For confidence interval coverage-rates in a simulation, the share of the confidence in-
tervals that covers the true value is calculated. Ideally, this corresponds to the nominal
coverage-rate of 95 % (see equation (5.17)). In the context of the small-area-problems,
often small samples result in each area. In this case, often a confidence interval build with
the student distribution instead of the normal distribution is preferred. The same applies
to the confidence interval for the small area estimates with an analytic approximation to
the MSE or a jackknife MSE estimate. For the estimators which rely on bootstrap meth-
ods, such as the AEBP, two approaches are possible as mentioned in Sections 3.3.6.2 and
3.3.6.3. On the one hand, the MSE of the bootstrap distribution is taken as the MSE esti-
mator for the MSE of the point estimate and, on the other hand, the confidence interval is
obtained by taking the corresponding interval from the bootstrap distribution.

Therefore, if a 95 % confidence interval is analysed, the confidence interval should cover
the true value in 95 % of the samples. Furthermore, it is desirable that the confidence
interval lengths be as short as possible. A short confidence interval indicates a high pre-
cision of the estimation. However, if the confidence interval lengths are short and the
coverage-rates are low, the MSE estimator pretends to have a higher precision of the point
estimation then it effectively has.

For the AEBP, four different CI estimators are used. These are built as follows

AEBPJKALL Jackknife, each area is dropped once (see Section 3.3.6.1).

AEBPJKSRS Grouped jackknife with 100 groups of an almost equal number of areas.
Each group of areas is dropped once (see Section 3.3.6.1). The areas are assigned
to the groups via simple random sampling without replacement.

111



CHAPTER 5. MC SIMULATIONS AND SIMULATION STUDIES

log(MCIL)

C
IC

R

0.0

0.2

0.4

0.6

0.8

1.0

−4 −2 0 2

HT GREG

−4 −2 0 2

GREG.g

BHF BHFW

0.0

0.2

0.4

0.6

0.8

1.0

YR
0.0

0.2

0.4

0.6

0.8

1.0

AEBPJKALL AEBPJKSRS AEBPPB99
0.0

0.2

0.4

0.6

0.8

1.0

AEBPPB99.Q

Figure 5.11: Confidence interval coverage rates versus the logarithmic mean confidence
interval length for scenario ZGDEN/CUT0000
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AEBPPB99 Parametric bootstrap with 99 bootstrap resamples. CI are built using the
MSE of the bootstrap distribution.

AEBPPB99.Q Parametric bootstrap with 99 bootstrap resamples. CI are built using the
2,5% and 97,5% quantiles of the bootstrap distribution.

As mentioned in Section 3.3.7 the MSE estimator of the BINPW is still quite cumber-
some, especially in terms of computation times. The use of a resampling procedure takes
a prohibitively long time. Further, the point estimates are not as promising as the ones
from the AEBP or the unit level small area estimators. The FH does not perform better in
terms of RRMSE than the AEBP. The AEBP has the nice property in that it always gives
estimates for proportions that lie in the interval [0,1], which is not necessarily the case for
the FH. Therefore, the MSE estimates of the FH and the BINPW will not be discussed
further.

In Figure 5.11 for the scenario ZGDEN/CUT0000, the logarithmic MCIL are depicted
on the x-axis and the CICR on the y-axis. Ideally, the points would lie entirely at the
left on a red 95% line. The coloration should be interpreted as follows: the areas in the
fourth quartile of the confidence interval rates for each estimator are shown in green, in
blue those in the third quartile, in purple those in the second quartile and in red those in
first quartile. For example, for the BHF in Figure 5.11, more than 75% of the confidence
interval CICR for the estimator lies above the desired 95% CICR. On the contrary, for the
AEBPPB99.Q more than 25% shows CICRs close to 0%. That the CICR for the BHFW
perform worse than for the BHF is due to the fact that for the BHFW, the Prasad-Rao MSE
estimator (see Section 3.3.3.1) without adjustment was used for the weighted estimation.
It is to be expected that an approach similar to the one of Torabi and Rao (2010) would
lead to considerable improvements.

For the HT, more than half of the confidence interval rates barely lie under the 95%
mark (all red, purple and a few of the blue points). In particular, it can be observed
that the confidence interval lengths are extremely long. Values above zero on this scale
mean that the confidence interval length is above one, which is no longer helpful for the
interpretation of a ratio. For example, a point estimator of 0.4 with a symmetric CI of
length 1 would be

(
0.4−0.5;0.4+0.5

)
=
(
−0.1;0.9

)
. Even if this confidence interval

had a coverage rate of 95%, the information is strongly limited. However, even with this
extremely long confidence interval, the confidence interval coverage rates for the HT drop
off up to 40%. A better picture is provided by the GREG. Here too, in part, the confidence
interval lengths become extremely long and the confidence interval coverage rates do not
reach the desired 95% coverage rates. However, these do not drop off as dramatically as
occurs with the HT. The use of the g-weights for the variance estimation does not lead
to a considerable improvement compared to the residual variance estimator, despite the
theoretically better asymptotic characteristics. Thus, the extensive increase of computing
time does not pay off.

Contrary thereto, the confidence interval coverage rates, as well as the confidence interval
lengths, behave completely different for the small area estimators. Here, for all of the
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listed small area estimators, the confidence interval coverage rates for many areas are
95% or more. At the same time, the confidence interval lengths are considerably lower for
all areas. However, in return, the confidence interval coverage rates in some areas break
down even more extremely than for the HT and for the GREG. The best performance in
this comparison is provided by the unweighted unit-level estimator (BHF). As already
mentioned, for more than 75% of the areas, the confidence interval coverage rates lie
above 95%.

Furthermore, the logarithmic MCIL are still relatively moderate, with mostly under -2,
thus MCIL of under 0,135. In relation to the confidence interval lengths, the AEPJKALL
and the AEBPJKSRS certainly perform better, but for these many more areas do not
reach the desired 95% CICR. For the parametric bootstrap confidence interval estimations
AEBPPB99.Q, very short confidence interval lengths are achieved, but in turn consider-
able losses in the coverage rates are involved. For the confidence interval estimations on
the basis of AEBPPB99, indeed more areas achieve a confidence interval coverage rate of
95%. In return, the MCIL is considerably closer to the CICR compared to the one of the
AEBPPB99.Q.

The examination of the CICR in the case of ZGDEMM (see Figure 5.12) shows that the
CICR is much more stable for the HT, as well as for the GREG. Although they do not
reach the desired 95% in most cases, they are generally very close to this value. Also,
the MCIL are considerably shorter, but with up to 0.36 are still very long. Furthermore,
the small area estimators show that the use of the agglomeration ZGDEMM leads to
a stabilization of the CICR. Hereby, most of the logarithmic MCILs lie under 0.1. In
addition, many areas exceed the 95% line with their CICR.

An improvement of the confidence interval estimation for the parametric bootstrap is to
be expected for an increase in the replications. At the same time, the parametric bootstrap
has the lowest logarithmic MCIL. On the average, these lie at about 0.05. The use of
parametric bootstraps with an insufficient number of replications can lead to pretended
and, in practice, misleading accuracy, because of the many poor CICR paired with the
very short MCIL. Contrary thereto, the Jackknife seems to function very well in the form
of the AEBPJKALL, as well as in the form of the AEBPJKSRS (grouped). Most of the
areas have a CICR near the 95% line and the logarithmic MCIL are relatively short, with
about 0.05, even shorter than for the BHF. For this reason, in the case of the ZGDEMM it
is a question of consideration whether the AEBPJKSRS with short MCIL and a few areas
that do not achieve the 95% coverage rates or the BHF, that offers better coverage rates
and in turn higher MCIL, should be used instead.

In the context of the examination of CICR related to the MCIL, possible biases of the vari-
ance or MSE estimator play a central role. In the simulation, this bias is quantified with
the RBIAS of the variance and the MSE estimation (see (5.16)). It is very important to
take note that the MSE of the point estimation has a lower Monte Carlo precision than the
mean of the variance- and, respectively, MSE estimations, as the convergence according
to the weak law of large numbers is slower . To be able to specify more precise RBIAS of
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Figure 5.12: Confidence interval coverage rates versus the mean confidence interval
lengths for scenario ZGDEMM/CUT0000
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the variance- and MSE-estimations at this point, the computation of point estimators for
more than 1,000 samples would be necessary. The effort to undertake such estimations,
for example with 100,000 samples, exceeds acceptable time margins by far.

In Figure 5.13 the RBIAS of the MSE estimators is depicted for the scenario ZGDEN/-
CUT0000. In order to better see the differences, the plot is repeated three times, only
varying the range of the y-axis. The variance estimators of the HT and the GREG are
almost unbiased in all examined regions. In the median of the areas, the BHF, YR and
the AEBPPB99 show a positive bias of the MSE estimates. The BHFW, AEBPJKALL
and AEBPJKSRS, in contrast, show a negative bias in the median of the area. As the
MSE estimate for the BHFW is a plugin of the YOURAO estimator, it is not surprising
that it fails to some extent in estimating the MSE correctly. A bit unexpected is the fact
that the grouped jackknife for the AEBP (AEBPJKSRS) performs visibly better than the
AEBJKALL.

The different zoom-levels again demonstrate clearly how strong the difference of MSE-
estimations in single areas can be. Even if overestimations of MSEs in principle are
more acceptable than underestimations, as this involves a more careful evaluation of the
estimations’ quality, such an overestimation should be avoided.

Figure 5.14 illustrates the distribution of the variance and MSE-estimation from the sim-
ulation for the small area 16. This figure demonstrates the problems of the variance es-
timation for the HT and the GREG. A peculiarity of estimators not using distributional
assumptions is that for small sample sizes there are often only a limited number of pos-
sible estimates. This directly influences the variance estimation of the HT where, for this
reason, there are only a small number of possible variance estimates available as well.
Due to the use of the model, the GREG can take more different point estimates, and its
variance estimator also attains more different variance estimates. In this constellation,
using the variance of the point estimate as a benchmark for the variance estimator is obvi-
ously not very helpful. The model based estimators can deal better with the small sample
sizes in the MSE estimation. This is due to the fact that these estimators have parametric
assumptions about the distribution of the point estimator and estimate on this basis. Thus,
even for small sample sizes, the point estimator can take many different values.

5.4.3 Conclusion

The model based estimation methods perform substantially better in relation to the qual-
ity of the point estimation of the active population ratio than the design based methods.
As explained before, the BINPW does not show the expected performance and thus lies
between the design based and the other model based estimates in terms of RRMSE. The
findings indicate that among the model based estimates, the BHF and the YR provide the
best results. As the design weights in the Swiss Structural Survey do not vary (consider-
ably) because of the proportional design, the YR yields no improvement. Furthermore, it
has to be noted that the exclusion of small areas in the estimation brings no considerable
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Figure 5.13: RBIAS of the variance and MSE estimates in the scenario ZGDEN/-
CUT0000
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Figure 5.14: Distribution of the variance and MSE estimators in area 16 (< 300 inhabi-
tants).
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improvement of the estimation quality for the remaining areas. The drawback of the linear
estimation methods, such as the BHF, is that they may provide estimates of proportions of
over one or under zero. Taking this into account, along with the fact that the AEBP yields
almost as good estimates, the AEBP is also to be considered.

As can be seen in the part on the MSE estimation, the jackknife MSE estimates work
quite well for most of the areas. Also, the MSE estimate for the BHF provides satisfactory
results. Although the design based CICR are more reliable than the ones from the BHF
and AEBP, they have a very long MCIL, leading to uninformative estimation results.
Therefore, also from the view of the MSE estimation, it is reasonable to opt for the use
of the BHF or the AEBP as the estimator for the proportion of the active population. Of
course, this is only one decision in the decision theoretical problem. If some areas are
given more weight in the decision of which estimator to use than other areas, the decision
of which estimator to use may vary greatly.

5.5 Small Area Estimation with Additional Information
Sources on Different Aggregation Levels

For the estimation of the proportion of unemployed, an interesting additional informa-
tion source would be the job centre register. For disclosure reasons, these registers are
not usually available on unit level. Most figures reported are either on area level or on
demographic domains on a national level. However, it might be possible to obtain the
figures on demographic domains on area level, in the event the area is large enough to
prevent disclosure. This situation is studied in this section using the modelling proposed
in Section 3.4.

5.5.1 Setting of the Monte Carlo Simulation

The demographic domain considered is a cross combination of the variables AGE and
SEX, both of which are usually available from the population registers. The variable AGE
is partitioned into four classes and SEX into two classes. Hence, the total number of cells
for the intermediate model is eight. Therefore, for the intermediate model, in every area
there are eight observations of the cell totals. However, it can well be, especially for
really small areas, that some of the cells have no units even in the universe. These cells
will logically always have zero observations in the sample.

In this Monte Carlo simulation, the quality of the small area estimates on the three dif-
ferent levels, namely unit-level, intermediate-level, and area-level, are compared for un-
derlying linear normal mixed models (FH and BHF) and binomial logit mixed models
(AEBP and LogitMM). In order to see the improvement by using the additional regis-
ters, the estimation is performed once with the additional registers and once without the
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Table 5.4: Coding of the variable AGC

AGC 1 < AGE ≤ 20
AGC 2 20 < AGE ≤ 60
AGC 3 60 < AGE ≤ 65
AGC 4 65 < AGE

Table 5.5: Estimators and its information sources when estimating with additional regis-
ters with disclosure issues.

Linear Normal Model Logit Model
Aggregation Esti- Register Estimator Register
Level mator Population Additional Population Additional
Unit BHF (X) X LogitMM (X) X
Intermediate BHF X (X) LogitMM X (X)
Area FH X X AEBP X X

legend: X := usually available; (X) := sometimes available; X:= usually not available.

additional registers. Furthermore, two area sizes were studied. On the one hand, all mu-
nicipalities were used as areas (denoted with N) where the sizes go down into the tens.
On the other hand, accumulated municipalities were used as areas (denoted with MM).
For this, the municipalities were accumulated to areas of over 2,000 inhabitants where it
was geographically and politically feasible. An overview of the estimators and the infor-
mation sources that are generally available is given in Table 5.5. While for the common
researcher, at least the counts of certain cells in the population registers are are made
available by the national authorities, the unit-level population register information might
not always be available.

5.5.2 Results of the Monte Carlo Simulation

In this simulation the focus lies on the quality of the point estimates and the viability to
use an intermediate level model as proposed in Section 3.4. Hence, the RDISP, RBIAS
and RRMSE measures are considered in the following.

Relative Dispersion of the Estimates

From Figure 5.15, the first thing to see is that when using the additional register informa-
tion, the linear and the binomial estimators act almost oppositely in terms of variability of
the estimates. In the linear case, with additional register information, the lower the aggre-
gation level of the estimation, the less variable the estimates for both agglomerations N
and MM. In contrast, for the binomial estimators, the higher the aggregation level of the
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Figure 5.15: Relative dispersion of the estimation on different aggregation levels.

estimator, the lower its variability. The lowest variability is yielded in this comparison by
the binomial Area-Level estimator (AEBP).

When no additional register information is available, then the picture is a bit different.
Surprisingly, in the linear case, the intermediate estimator overrides both the unit-level
and the area-level estimators in terms of variability. The same applies to the binomial
estimators, where the area-level estimator has almost the same low level of variability as
the binomial intermediate level estimator.

In all cases, the use of MM instead of N diminishes the variability. For the intermediate
level estimators this effect is rather small, in contrast to the unit level and area level
estimators, where the reduction is considerable. However, the use of MM instead of N
comes with the cost of having less detailed estimates.

Another surprising point is that the variability of the estimates produced by the interme-
diate level estimators does not benefit much when adding the additional register informa-
tion. Even the point with the maximal relative variation, denoted by the red line, increases
enormously when using the additional information. Comparing the orange and the green
line, which do not differ very much, one can see that the outliers in the intermediate
level models are not numerous enough to increase the average variability over the median
variability of the estimates.

Relative Bias of the Estimates

Even though small area estimators in general do not produce (design) unbiased estimates,
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Figure 5.16: Relative bias of the estimation on different aggregation levels.

in this setting the RBIAS of the estimators is relatively low overall. Furthermore, the few
areas with a bit of RBIAS are almost symmetrically distributed around 0. This can be seen
either by observing the border of the boxes, by comparing the positively and negatively
biased estimates or by confirming that the orange and green lines are almost identical. In
order to better assess whether these estimators are empirically unbiased in this setting,
one would have to increase the amount of simulation runs by far over 10,000 runs, as the
convergence for improving the results in some decimal points is quite slow.

Only the intermediate level estimate seems to be slightly biased when using the additional
register information. As in this case the AVRBIAS is visibly different from the median
RBIAS, the outlying area estimates are considerably away from zero. This is the case
for the linear and for the binomial intermediate level estimators with additional register
information.

In general, one can see that by using the additional register information, the relative bias
of many areas rises, sometimes enormously. This effect is much stronger in the case of
the intermediate level estimators then in the case of unit level or area level estimators.
From these results it seems that the model does not hold equally well for all areas.

Relative Root Mean Squared Error of the Estimates

In this setting, the relative root mean square error is driven mainly by the variability of
the estimates and less by their bias.
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Figure 5.17: Relative root mean squared error of the estimation on different aggregation
levels.

The linear unit level and area level estimators gain by using the additional register in-
formation. While this effect in the case of the area level estimator is only marginal, in
the case of the unit level model it is important. In the intermediate level, the situation is
the inverse. Here, the use of the additional information source deteriorates the estimation
considerably. When using the agglomeration MM over the agglomeration N, the overall
picture of the area RRMSEs is less variant. However, this effect is mainly due to the
fact that in the case of the agglomeration MM for the really small areas, no estimates are
produced.

In contrast to the linear estimators, under the binomial estimators the area level estimator
performs better in terms of RRMSE than the unit level estimator. As in the case of the
linear intermediate level estimator, the binomial intermediate level estimator has a higher
RRMSE in some areas. This higher RRMSE is induced by both the variability and the
bias of the estimates. Again, by using the agglomeration MM, the most extreme RRMSE
are smaller, but no estimates are available for areas under 2,000 inhabitants.

5.5.3 Conclusion

If the partition used to construct intermediate level estimators partitions the dependent
variable in such a way that a large amount of its variability is explained, then it may even
yield better estimates compared to the unit level models.
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The use of additional register information has to be conducted carefully. Especially when
the additional register information is gained by combining similarly defined variables
from decentralised registers, caution has to be taken that the different definition of this
variable is not counterproductive.

When the information is only available on area level, then for the estimation of a propor-
tion or a total it seems advisable to use the binomial model instead of the linear one. This
is not only theoretically more appealing, as the proportion may not exceed the interval
[0,1], but it also enhances the quality of the estimates, as they give very suitable results
over all the combinations considered here.

Furthermore, even if the information is available on unit-level, it might be interesting to
use a binomial area level estimator, as this yields good results in comparison to the unit
level linear estimator, better results than the binomial unit level estimator and similar or
better results than the binomial intermediate level estimator.
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Chapter 6

Summary and Outlook

The aim of this research has been to evaluate small area techniques for applications in
official statistics. The estimation in the small area context is generally based on regres-
sion models which have been presented in Chapter 2, Regression Models for Small Area
Estimation, The regression models tackled include the general linear model, the general
linear mixed model, the generalized linear model and the generalized linear mixed model.
Besides the theory, algorithms for the estimation of the regression models have also been
shown.

In Chapter 3, Small Area Estimation, the estimation and prediction of small area estima-
tors have been depicted. First, a brief review is given of sampling designs developed for
surveys that set out to use small area estimation techniques. Second, on the basis of this,
classical design based estimators are described in a form suitable for small area estima-
tion problems. Subsequently, third, the model based small area estimators are explicated.
Beginning with the standard models in small area estimation, a presentation is given of
the Fay-Herriot (FH) and the Battese-Harter-Fuller (BHF) models, the pseudo small area
models incorporating design weights. In addition to point estimation, MSE estimation is
also discussed. As many of the variables of interest in small area applications are binary,
the models apt for binary dependent variables are also described. In particular, a binomial
area-level predictor (AEBP) is developed, which relies on the work of Jiang and Lahiri
(2001). For this estimator, a Jackknife, a grouped Jackknife, a parametric bootstrap and
a parametric double bootstrap MSE estimator are also proposed. Last but not least in this
chapter, fifth, a way to make use of register data which might only be available on certain
aggregation levels due to disclosure reasons is proposed.

One major problem for the MSE estimation via the parametric bootstrap is the huge com-
putation time, especially for complex estimators. Therefore, in order to reach practicabil-
ity, the computational burden of this method has to be reduced. In Chapter 4, Variance
Reduced Parametric Bootstrap MSE Estimates, variance reduction methods for easing the
computational burden of the parametric bootstrap are proposed and evaluated exemplary
for the FH within a model based simulation study. The two variance reduction methods
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proposed are the Latin Hypercube Sampling (LHS) and the method of using control vari-
ates (CV). The LHS has not shown to be helpful in the studied model based scenarios.
In contrast, the CV has shown to allow for a great reduction in the resampling required
to obtain a certain stability of the MSE estimate. The reduction attained in the number
of resamples in the model based simulation reached a massive 90%. Caution has to be
exercised with the estimation of the σu when σu is very small. In this case special es-
timates for the variance component as proposed by H. Li and Lahiri (2010); Y. Li and
Lahiri (2007) may improve the results.

In Chapter 5, Monte Carlo Simulations and Simulation Studies, the small area techniques
are studied by design based Monte Carlo simulations on the basis of the Swiss Census
of 2001. In order to clarify the differences between the various types of Monte Carlo
simulations in the Survey Statistics context, a systematization of different Monte Carlo
simulation types is proposed. Also, an example is given of what a combination of model
and design based Monte Carlo simulation may look like. Subsequently, adequate mea-
sures are presented in order to assess the output of the simulation studies.

The questions tackled in a first design based Monte Carlo simulation are how small an area
can be for small area estimation and whether the exclusion of very small areas can improve
the estimation of the larger ones. For this purpose, four scenarios have been introduced
where the estimation is done either on all areas, only on areas larger than a certain size,
on different aggregation levels, or on all three. The exclusion of the very small areas has
not shown to have a considerable impact on the estimation of the larger areas. Moreover,
aggregating did not improve the estimation. The estimator which performed the best was
the BHF estimator. The AEBP works nearly as well, with the advantage that the estimated
proportion in the AEBP always ranges between zero and one. This is not necessarily the
case for the BHF. In terms of the precision estimation, it should be noted that all estimators
have some troubles reaching the nominal confidence interval coverage rate (CICR) in all
areas. This is also true for the design based estimates, as the distribution of point and
variance estimates is discrete, with a low number of possible values for small sample
sizes. Hence, in really small areas the asymptotics are seen to have problems. Also,
the linearised MSE estimate for the BHF and the grouped jackknife for the AEBP have
problems meeting the nominal CICR. But, in combination with the much lower relative
root mean square error (RRMSE) of the point estimates, they seem to be preferable to the
design based methods. This is confirmed by a look at the near enough rate (cf. Section
5.2), which shows the strong advantages of the BHF and AEBP.

The second simulation study evaluates the approach to include intermediate level infor-
mation (cf. Section 3.4). The result is that this approach is a viable way to improve the
estimation for both linear and binomial small area estimators. Nevertheless, this approach
has to be handled carefully. The additional information will not always bring the desired
effect of a reduction in the RRMSE. A method to detect whether it would be useful in
a certain situation would be an interesting research topic. In order to be applicable, a
working MSE estimate has to be found. This is a further research topic.
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The proposed variance reduction method CV has shown to be very promising (cf. Chapter
4). Currently, this method is being studied in depth also for other small area estimates. An
interesting issue here is to find adequate functions which can be used as control variates.
In addition, the extension of the CV method to the parametric double bootstrap is being
developed. This is a very important development, as it would make the parametric double
bootstrap computational more feasible.

Also, an R-package is in preparation, in order to allow for the estimation of the AEBP
without having to deal with numerical issues. The MSE estimation techniques will also
be included.

In this work, many small area techniques have been evaluated under a design based Monte
Carlo study. Modern small area methods have shown to provide an interesting alternative
to the classical design based estimators. In many situations, the small area estimates out-
perform the design based estimators. For small areas, in the case of binary variables even
the confidence intervals for the small area estimates obtained higher coverage rates, along
with smaller confidence interval lengths than the design based methods. Especially, the
proposed variance reduction method of using control variates for the parametric bootstrap
MSE estimation will computationally enable the use of complex small area estimators.
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Appendix A

Statistical and Mathematical
Background

A.1 Random Number Generation

For drawing random samples a crucial prerequisite is to have some kind of random num-
bers. Physically produced random numbers may be obtained e.g. by throwing a coin or
rolling a dice. The physical generation of random numbers is obviously time consum-
ing, particularly if millions of random numbers are needed. An early solution for this
problem was found by Tippett (1927) who published a table of 40,000 digits, which he
obtained by taking digits at random from census reports. However, for many situations
like sampling from a large population, 40,000 digits are not enough. Therefore Kendall
and Babington-Smith (1938) proposed a apparatus which they call The Randomizing Ma-
chine. This machine works similar to a wheel of fortune. A disk is divided into ten equally
sized sections enumerated with the digits 0..9. In a dark room this disk is brought to ro-
tate. Then a flashlight illuminates a small part of the disk in at random intervals for a
short duration, in such way, that each time only one number can be observed. With this
machine they obtained in their setting in average one random digit every three to four
seconds (Kendall & Babington-Smith, 1938).

Although unlimited amount of random numbers may be produced with this machine, it
still takes a lot of time to obtain them. Further, these random numbers cannot be repro-
duced at a later stage, which in some cases is desirable. In the not uncommon situation,
where one would like to reproduce an experiment conducted in the past, and for some
reaseon, e.g. storage costs, only some of the random numbers are still available. By
drawing new random numbers the outcome of the experiment will change. Therefore,
one cannot reproduce the results and check whether the mathematical routines were im-
plemented correctly. For a more detailed overview of the different approaches applied to
obtained random numbers see Knuth (1981, § 3.1). Lehmer (1951) proposed the so called
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Linear Congruential Method (LCG). According to Knuth (1981, § 3.2.1) this method is
one of the most popular random number generators, and is easy to implement. However,
this class of generators is has some drawbacks which are discussed in Entacher (1998).

One big advantage of the LCG is that, given a set of parameters, all random numbers
can be reproduced easily by just starting the LCG again. On the other side it might seem
counterintuitive to call number produced this way random, as they can be reproduced de-
terministically. In fact, for encryption problems the LCG is not suitable. But as Knuth
(1981, § 3.1) states ’[...] the sequence isn’t random, but it appears to be.[...] Being appar-
ently random is perhaps all that can be said about any random sequence anyway. There
exist many different test to see whether a sequence of random number are apparently
random.

A widely applied random number generator is the Mersenne-Twister by Matsumoto and
Nishimura (1998). His great popularity is due to the fact, that the length of its random se-
quence is 219937−1 and thus, long enough for most applications. Furthermore, it reaches
a 623-dimensional equidistribution (Matsumoto & Nishimura, 1998). The higher the di-
mensions are in which the random numbers seem to be equally distributed the more they
appear to be at random (c.f. L’Ecuyer, 1994). One drawback of the Mersenne-Twister is
that in case of bad initial values, it needs about 700,000 random numbers before converg-
ing to a good random sequence (c.f. Panneton, L’Ecuyer, & Matsumoto, 2006). A random
number generator that needs much less time (about 700 random numbers) to converge to
a good random sequence is given by Panneton et al. (2006) and is called WELL.

Algorithm A.1 Inverse Transform Sampling

Let U be a K-dimensional independently distributed random variable with pdf fU
and cdf FU . One wishes to obtain a random vector u = (u1, ..,uK) with the uk lying
in the interval [ak,bk]⊆ image of fUk .

1. Set k=1.

2. Draw xk ∼ Uniform(FUk(ak),FUk(bk)).

3. Set uk = F−1
Uk

(xk), d = 1..D.

4. Repeat steps 2 and 3 k = 2..K times.

5. Combine the uk to u = (u1, ..uK).

(Robert & Casella, 2004, § 2.1.2)

If the random variable U is to be normally distributed one has the problem that there is
no analytical representation of FU . In this case step 3 can be approximated by using the
algorithm of Wichura (1988), which gives correct values for up to 16 digits. Further, if
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U is multivariate normal with u∼MVN(µ,Σ), one can use the Cholesky-decomposition
AT A = Σ in order to obtain a sample from this distribution as described in Algorithm A.2
on page 130 in the appendix.

Algorithm A.2 Generation of Multivariate-Normal Random Vectors

Let U be a K-dimensional multivariate-normal distributed random variable with
the mean vector µ and the variance-covariance matrix Σ. One wishes to obtain
a random vector u = (u1, ..,uK) from K standard-normal random numbers xk, k =
1..K, X = (x1, ..,xK).

1. Compute the Cholesky-Decomposition AT A = Σ.

(see. e.g. Rizzo, 2008, § 3.2)

2. Compute U = JµT +AX , with J being a column vector of ones.

Step 2 in algorithm A.2 is a linear transformation. Thus, the standardized marginal dis-
tributions of the xk in algorithm A.2 are the same as before, or exactly reverse in order
(in the case that there was a negative covariance). Both, StrRS as LHS build symmet-
ric strata, therefore it wouldn’t matter if the standardized marginal distributions were in
reverse order.

Concatenating algorithms the stratified random sampling and 4.1 with the algorithms A.1
and A.2, samples can be drawn from a multivariate-normal distribution with arbitrary
mean µ and variance-covariance-matrix Σ.

A.2 Computational Integration Methods

A.2.1 Numerical Integration

A Common problem in statistics is to find the integral of an arbitrary function, which is
not analytically tractable. A prominent case is the cumulative distribution function cdf of
a normally distributed random variable X with mean µ and variance σ2. The cdf can be
written as

FX(x) =
x∫

−∞

e
−
( j−µ)2

2σ2

σ
√

2π
d j . (A.1)
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This integral has no closed form. Therefore, in many cases the expectation of a function
ψ of a random variable X cannot be derived analytically. The expectation is defined as:

E [ψ(X)] =

+∞∫
−∞

ψ(x) fX(x)dx , (A.2)

fX being the probability density function (pdf) of the variable X . E.g. for a normally
distributed random variable X with mean µ and variance σ2 the pdf is

fX(x) =
e
−
(x−µ)2

2σ2

σ
√

2π
. (A.3)

In order to obtain an approximation of this expectation two main concepts can be used:
Numerical Integration and Monte Carlo Integration. For simplicity consider the case that
the integral of the function ψ(x) = e−x2

is to be computed over the interval (−∞,∞). This
function has a bell shape (see figure A.1) and is closely related to the pdf of the standard
normal distribution.
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Figure A.1: Graph of the function f(x) = e−x2

The integral of this function can be expressed as
∫

e−x2
dx =

√
π

2 erf(x)+c, where erf(x) =
2√
π

∫ x
0 e−t2

dt is the error function and c a constant.
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In numerical integration the integral is approximated generally by a second function
which is easily integrable such as polynomials. In case of a polynom of degree J all
its coefficents may be computed by knowing J+1 pairs {(x0, f(x0)), . . . ,(xJ, f(xJ))}.

A general form of the formula used for numerical integration is

b∫
a

f(x)dx≈
J

∑
j=0

ω j f(x j) (A.4)

where the integral is approximated by the sum of J function evaluations f(x j),a = x0 <
x1 < xk < xJ = b, j = 0..J weighted by appropriate weights ω j, j = 0..J. The differences
between most of the numerical integration techniques lie in the choice of the x j ∈ [a,b]
and ω j.

The Midpoint Rule

The midpoint rule is the most simplistic of the numerical integration rules. It merely
takes one function evaluation f(x),x = a+b

2 and one weight ω = b− a. Thus, the ap-
proximation to the integral is (b− a) f(a+b

2 ). This method is visualized in figure A.2 on
the left side. An improvement can be easily achieved by applying the midpoint rule on
J equidistant intervals within the intervals of interest. The interval borders for the j-
th interval are then a j = a+ j(b−a)

J , j = 0..(J− 1) and b j = a j+1. The points that have

to be evaluated are then, following the midpoint rule, x j =
a j+b j

2 , and their weights are
ω j = (b j−a j). The approximation formula for the integral via the cumulative midpoint
rule is then ∑

J
j=0(b j−a j) f(a j+b j

2 ). The cumulative midpoint approximation is visualized
in figure A.2 on the right. As can be seen by comparing both sides in A.2, the cumulative
midpoint method approximates the value of the integral much better than the pure mid-
point rule. The narrower the intervals are chosen the better the approximation will be,
however, the computation time also rises, as more evaluations of the function are needed.
This approach is similar to the Riemann Sums.

The Trapezoidal Rule

In contrast to the midpoint rule, where only the function value at the middle of the in-
terval is taken into consideration, the trapezoidal rule uses both endpoints of the in-
terval. Therefore the two function evaluations f(a) and f(b) are needed. The applied
weights are ω0 = ω1 = b−a

2 . The approximation of the integral via the trapezoidal rule
is then b−a

2

(
f(a) + f(b)

)
. This approach is visualized in figure A.3 on the left. The

trapezoidal rule can also be used within a cumulative setting. Similar to the case of the
cumulative midpoint rule the interval of interest can be split into J equally wide inter-
vals [a j,b j] with a j and b j as before. Then the trapezoidal rule is applied to each of
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Figure A.2: The Midpoint Rule and the Cumulative Midpoint Rule Applied to the Func-
tion f(x) = e−x2

these intervals and accumulated to obtain the approximation to the integral of interest
∑

J
j=0

b j−a j
2

(
f(a j)+ f(b j)

)
. As in this case f(b j) = f(a j+1) only J+1 function evaluations

have to be performed and the formula can be simplified to b−a
2J

(
f(a)+f(b)+2∑

J−1
j=1 f(a j)

)
.

By comparing the cumulative trapezoidal rule on the right (in figure A.3) with the pure
trapezoidal rule, the improvement becomes obvious. The trapezoidal rule is especially
interesting for periodic functions as described in .

The Newton–Cotes rule

The Newton-Cotes rule can be split into two main branches. On the one hand there are the
open Newton-Cotes rules. Open means, that the endpoints of the interval upon which the
integral is to be approximated, are not used as a point of support for the approximation
formula, that is ∑

J−1
j=1 ω j f j. The midpoint rule is an open Newton-Cotes rule of degree one.

On the other hand there are the closed Newton-Cotes rules, where the endpoints of the
interval are used as points of support, that is ∑

J
j=0 ω j f j. The trapezoidal rule is a closed

Newton-Cotes rule of degree one. Generally, the equally spaced points x j (sometimes also
f(x j)) are given for the Newton Cotes rules. The degree of the Newton-Cotes rule denotes
the degree of the polynomial used to approximate the function f. For a given degree it
gives the optimal weights ω j.
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Figure A.3: The Trapezoidal Rule and the Cumulative Trapezoidal Rule Applied to the
Function f(x) = e−x2

The names, formulae and error terms for the most popular Newton-Cotes quadrature rules
are provided in table A.1.

One important advantage of the cumulative closed Newton-Cotes rules, is that it is easy
to improve the precision of the approximation. In case that the error estimate seems too
large to the researcher, the support can be enlarged by adding the points in the middle
of the former points of support to the former support. The already performed function
evaluations can be used again, and only the new set of points of supports have to evaluated.
This property is called nesting.

Gaussian Quadrature Rules

The Newton-Cotes rules use ex-ante fixed points of support for the evaluation of the func-
tion and gives the optimal weights ω for these points. In contrast, the Gaussian quadrature
rule determines the optimal pairs (x j,ω j) for the points of support and the weights for a
given number of function evaluations. Similar to the Newton-Cotes rules, the Gaussian
quadratur rule uses polynomials to approximate the shape of the function. Depending
on the number of points that are to be evaluated, the used polynomial’s degree changes.
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Table A.1: Newton-Cotes rules

Open Newton–Cotes Formulae
Name (Degree) Formula Error term

Closed Newton–Cotes Formulae
Name (Degree) Formula Error term

Trapezoid rule (1)
b−a

2
(f0+ f1) −(b−a)3

12
f(2)(ξ )

Simpson’s rule (2)
b−a

6
(f0+4f1+ f2) −(b−a)5

2880
f(4)(ξ )

Simpson’s 3/8 rule (3)
b−a

8
(f0+3f1+3f2+ f3) −(b−a)5

6480
f(4)(ξ )

Boole’s rule (4)
b−a

90
(7f0+32f1+12f2+32f3+7f4) − (b−a)7

1935360
f(6)(ξ )

Table A.2: Two Gaussian Quadrature Rules

# nodes x j ω j Error term
Gauss–Legendre Quadrature [−1,1]
1 (0

)
(2)

2 (− 1√
3
, 1√

3
) (1,1)

3 (− 3√
5
,0, 3√

5
) (5

9 ,
8
9 ,

5
9)

Gauss–Hermite Quadrature (−∞,∞)

Therefore, the optimal pairs (x j,ω j) given a polynomial of certain degree p have to be
derived. The general form of the approximation to the integral again is ∑

J
j=1 ω j f(x j).

Since the Gaussian quadrature rule in general does not nest, once the approximation via
the Gaussian quadrature is done, an improvement of the approximation needs a completly
new evaluation.

Gauss-Konrod Quadratur Rule

The Gauss-Konrod quadratur extende the Gauss quadrature with J points of support, by
J + 1 points of support. As such in total 2J + 1 function evaluations are needed, where
J function evaluations are already available from the before performed Gauss quadrature.
The difference of the Gauss and the Gauss-Konrod approximation can be used as an error
estimate. Kahaner, Moler, Nash, and Forsythe (1989, § 5.5), give an example of Gauss-
Konrod quadrature depicted in table A.3.
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Table A.3: Example of a 15-points Gauss-Konrod quadrature rule on the interval [−1,1]
rounded to 5 digits

Gauss nodes Weights
±0,94911 G1 0,12948
±0,74153 G2 0,27971
±0,40585 G3 0,38183

0,00000 G4 0,41796

Kronrod nodes Weights
±0,99146 0,02294
±0,94911 G1 0,06309
±0,86486 0,10479
±0,74153 G2 0,14065
±0,58609 0,16900
±0,40585 G3 0,19035
±0,20778 0,20443

0,00000 G4 0,20948

Multidimensional Quadrature

The extension of numerical quadrature rules to the multidimensional space is quite cum-
bersome. Smolyak (1963) provided the mathematical foundation for an approach called
sparse grid, which aims to set the nodes in the multidimensional space in an optimal way
in order to obtain precise approximation to the integrand at least for smooth functions.
Griebel, Zenger, and Zimmer (1992) developed a set of algorithms for the implementa-
tion of this method which was named sparse grids integration. A compact overview and
some extensions to the sparse grid method can be found in Gerstner and Griebel (1998).
Never-the-less, the multidimensional numerical integration techniques suffer from the so
called curse of dimensionality (Bungartz & Dirnstorfer, 2003). That is, the number of
needed funtion evaluations grows exponentially with the number of dimensions. In con-
trast, Monte-Carlo techniques do not suffer from this problem. Depending on the problem
at hand, Monte Carlo integration perform better than the multidimensional numerical in-
tegration rules by Bungartz and Dirnstorfer (2003). This is especially the case the higher
the dimension of the problem, and the less smooth the function is.
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A.2.2 Monte Carlo Integration

As stated before, the definintion of the expectation of a function f(X) where X is a random
number with probability distribution function fX is

E [f(X)] =

+∞∫
−∞

f(x) fX(x)dx . (A.5)

If X is random variable on the interval (a,b) then equation A.5 reduces to

E [f(X)] =

b∫
a

f(x) fX(x)dx . (A.6)

If the random variable X is uniformly distributed on (a,b) then A.6 is even simpler

E [f(X)] =
1

b−a

b∫
a

f(x)dx . (A.7)

A Monte Carlo integration can then be performed by drawing R random numbers xr,r =
1..R from the uniform distribution on (a,b) and computing the the following approxima-
tion:

E [f(X)] = f(X)≈ f(X)
MC

=
1
R

R

∑
r=1

f(xr) . (A.8)

Using the strong law of large numbers one can show, that with probability of 1 f(X)
MC

converges to f(X). More generally, for an arbitrary probability distribution function fX
the Monte Carlo approximation to the expectation is similar to equation A.8, but with xr
drawn from the distribution fX .

A.3 Finding the Root of Real Valued Functions

One basic problem in statistics is to find the root of a continous function f(x) that maps
from Rn 7→R. That is, the x = x1, ..xn for which a function f(x) = 0 has to be found. There
are several methods to find this x.
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Bisection Method

The bisection method searches for a root of a continous function f within a pre-defined
interval [a,b]. It starts from the assumptuion that if ∃a0,b0 ∈ [a,b], f(a0) f(b0) < 0 then
there must exist a x ∈ [a0,b0] with f(x) = 0. It is easy to see, that this method will not find
roots which are at the same time extreme values of the function f.

Algorithm A.3 Bisection Method

Let f be a continous real valued function with a root in the interval [a,b]. Set r = 0
and ε > 0 arbitrary small depending on the precision needed.

1. Find a0,b0 ∈ [a,b] such that f(a0) f(b0) < 0. E.g. by plotting the function and
deducing them from the graph.

2. Set xr =
ar +br

2
. If f(xr) = 0 or |xr− xr−1

xr
|< ε then stop and take xr.

3. If

f(ar) f(xr)< 0: set ar+1 = ar and br+1 = xr.

f(br) f(xr)< 0: set br+1 = br and ar+1 = xr.

4. Increase r by one and proceed with step 2.

The Bisection method can be extended to solve multidimensional as shown by Morozova
(2008).

Regula Falsi Method

The Regula Falsi method is very similar to the bisection Methods. It differs mainly in
the update formula for the xr. Instead of using the trivial guess of xr =

1
2(ar + br) it

approximates xr by equating the secant which crosses the points (ar, f(ar)) and (br, f(br))
to zero. As the xr from the Regula Falsi method in most cases is much nearer to the
searched value than in the Bisection method, a faster convergence can be expected.

Algorithm A.4 Regula Falsi Method

Let f be a continous real valued function with a root in the interval [a,b]. Set r = 0
and ε > 0 arbitrary small depending on the precision needed.
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Figure A.4: Examplary comparision of the Bisection, Regula Falsi and Newton Raphson
Methods

1. Find a0,b0 ∈ [a,b] such that f(a0) f(b0) < 0. E.g. by plotting the function and
deducing them from the graph.

2. Set xr =
ar f(br)−br f(ar)

f(br)− f(ar)
. If f(xr) = 0 or |xr− xr−1

xr
|< ε then stop and take xr.

3. If

f(ar) f(xr)< 0: set ar+1 = ar and br+1 = xr.

f(br) f(xr)< 0: set br+1 = br and ar+1 = xr.

4. Increase r by one and proceed with step 2.

Newton-Raphson Method

A Brief history of the Newton-Raphson method is given by Cajori (1911) who states, that
the first printed version of the ideas of Newton for finding the root of a polynomial is in
a book by Wallis (1685, § 94). Following Cajori (1911) theese first thoughts of Newton
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were then extended by Raphson (1690) who gave the Newton-Raphson method the present
form.

Instead of having to define an interval in which the root has to be found, the Newton-
Raphson method only needs to have a single value x0 near enough to the root. The term
near enough is dependent on the function.

The Newton-Raphson method can be derived using a taylor expanion around f(xr)

f(x) = f(xr)+(x− xr) f′(xr)+E1 (A.9)

as x is a root of f, obviously f(x) = 0 and thus by solving the equation (A.9) for x one
obtains

x+
E1

f′(xr)
= xr−

f(xr)

f′(xr)
. (A.10)

The smaller the approximation error E1 of the taylor series expansion is in relation to the
tangent of f at point xr, the nearear will the term x+ E1

f′(xr)
be to x. Thus it is sensical to set

xr+1 := x+ E1
f′(xr)

as next approximation step. This yields the following algorithm.

Algorithm A.5 Newton-Raphson Method

Let f be a continous real valued function with a root. Set r = 1 and ε > 0 arbitrarily
small depending on the precision needed. Obtain the derivative f′ of f.

1. Find x0 near the root of f. E.g. by the Bisection or Regula Falsi methods.

2. Set xr = xr−1−
f(xr−1)

f′(xr−1)
. If f(xr) = 0 or |xr− xr−1

xr
|< ε then stop and take xr.

3. Increase r by one and proceed with step 2.

Maximizing a Likelihood

One of the most used classes of estimation methods are the maximum-likelihood esti-
mators. The main idea behind this method is rather simple. Assuming a distributional
relationship between a set of variables one derives a function called likelihood function.
This function ` maps from R p 7→R where p is the number of parameters needed to de-
scribe the before mentioned relationship. The function is constructed in such way, that it
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provides the likelihood of the parameter set β1, ..,βp given the distributional assumptions
and the data.

In order to find the parameter set β for which the function ` is maximal (i.e., the param-
eters with the maximal likelihood) one can also search for the root of the first derivative
`′ of `. For numerical reasons this is generally accomplished by searching for the root of
−`′. This approach may be problematic if the likelihood function at hand is multimodal,
as several roots of `′ exist in that case. As described before, the Newton-Raphson method
provides one possibility in order to find the root of this function.

Newton-Raphson Method for Maximum-Likelihood Estimation

In order to apply the Newton-Raphson method to the maximization of a likelihood `, it
is necessary to attain its first and second derivative (`′ and `′′). Starting with an initial
guess x0 and setting in algorithm A.5 f := `′ and f′ := `′′ one obtains the Newton-Raphson
algorithm for maximum likelihood estimation. However, in general the function ` maps
from Rp 7→ R. Therefore, `′ is the Jacobian of ` and `′′ is the Hesse matrix of `.

If the first and second derivatives of ` have no analytical solution, then one can also use
numerical derivatives.

Fisher-Scoring Method for Maximum-Likelihood Estimation

The Fisher-Scoring method is a modification of the Newton-Raphson, where instead of
using the second derivative of ` the Fisher information is used (Bailey, 1961; Fisher,
1925; Kale, 1961, 1962). The Fisher information can be interpreted on the one hand
as the variance of the likelihood function, and on the other hand as the expectation of
the second derivative of the likelihood function. When using a canonical link with a
exponential family distribution the observed and expected Hesse matrices are identical
(Fahrmeir, Tutz, & Hennevogl, 1994, p. 39), and hence, the Newton-Raphson and Fisher-
Scoring algorithms give identical results.
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Additional Graphs for Chapter 4

B.1 Additional Graphs for Latin Hypercube Sampling

142



APPENDIX B. ADDITIONAL GRAPHS FOR CHAPTER 4

Number of parametric bootstrap resamples r=1...R

S
im

ul
at

ed
 9

5%
 c

on
fid

en
ce

 b
an

d 
fo

r 
th

e 
co

nv
er

ge
nc

e 
m

ea
su

re
 m

se
^{

(r
)}

 −
 m

se
^{

(R
)}

−1.0
−0.5

0.0
0.5
1.0

200 400 600 8001000

1 2

200 400 600 8001000

3

4 5

−1.0
−0.5
0.0
0.5
1.0

6
−1.0
−0.5

0.0
0.5
1.0

7 8 9

10 11

−1.0
−0.5
0.0
0.5
1.0

12
−1.0
−0.5

0.0
0.5
1.0

13

200 400 600 8001000

14 15

SRS LHS

Figure B.1: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 2
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Figure B.2: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 3
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Figure B.3: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 4
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Figure B.4: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 5
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Figure B.5: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 6
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Figure B.6: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 7

148



APPENDIX B. ADDITIONAL GRAPHS FOR CHAPTER 4

Number of parametric bootstrap resamples r=1...R

S
im

ul
at

ed
 9

5%
 c

on
fid

en
ce

 b
an

d 
fo

r 
th

e 
co

nv
er

ge
nc

e 
m

ea
su

re
 m

se
^{

(r
)}

 −
 m

se
^{

(R
)}

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

200 400 600 8001000

1 2

200 400 600 8001000

3

4 5

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

6
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

7 8 9

10 11

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

12
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

13

200 400 600 8001000

14 15

SRS LHS

Figure B.7: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 8
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Figure B.8: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 9
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Figure B.9: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 10
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Figure B.10: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 11
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Figure B.11: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 12
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B.2 Additional Graphs for Control Variate g(2)
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Figure B.12: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 2
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Figure B.13: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 3
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Figure B.14: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 5
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Figure B.15: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 6
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Figure B.16: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 8
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Figure B.17: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 9
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Figure B.18: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 10
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Figure B.19: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 11
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Figure B.20: Usingcontrol variate function g(2) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 12
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B.3 Additional Graphs for Control Variate g(3)
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Figure B.21: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 2
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Figure B.22: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 3
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Figure B.23: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 4
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Figure B.24: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 5
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Figure B.25: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 6
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Figure B.26: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 8
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Figure B.27: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 10
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Figure B.28: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 11
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Figure B.29: Usingcontrol variate function g(3) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 12
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B.4 Additional Graphs for Control Variate g(4)
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Figure B.30: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 2
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Figure B.31: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 3
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Figure B.32: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 5
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Figure B.33: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 6
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Figure B.34: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 8
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Figure B.35: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 9
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Figure B.36: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 10
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Figure B.37: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 11
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Figure B.38: Usingcontrol variate function g(4) for variance reduction of the parametric
bootstrap MSE estimate for the Fay-Herriot estimator on the model based
population 12
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