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Abstract

Evapotranspiration (ET) is one of the most important variables in hydrological studies. In the
ET process, energy exchange and water transfer are involved. ET consists of transpiration
and evaporation. The amount of plants transpiration dominates in ET. Especially in the forest
regions, the ratio of transpiration to ET is in general 80-90 %. Meteorological variables,
vegetation properties, precipitation and soil moisture are critical influence factors for ET
generation.

The study area is located in the forest area of Nahe catchment (Rhineland-Palatinate,
Germany). The Nahe catchment is highly wooded. About 54.6 % of this area is covered by
forest, with deciduous forest and coniferous forest are two primary types. A hydrological
model, WaSiM-ETH, was employed for a long-term simulation from 1971-2003 in the Nahe
catchment. In WaSiM-ETH, the potential evapotranspiration (ETP) was firstly calculated
by the Penman-Monteith equation, and subsequently reduced according to the soil water
content to obtain the actual evapotranspiration (ETA). The Penman-Monteith equation has
been widely used and recommended for ETP estimation. The difficulties in applying this
equation are the high demand of ground-measured meteorological data and the determination
of surface resistance.

A method combined remote sensing images with ground-measured meteorological data
was also used to retrieve the ETA. This method is based on the surface properties such as
surface albedo, fractional vegetation cover (FVC) and land surface temperature (LST) to
obtain the latent heat flux (LE, corresponding to ETA) through the surface energy balance
equation. LST is a critical variable for surface energy components estimation. It was retrieved
from the TM/ETM+ thermal infrared (TIR) band. Due to the high-quality and cloudy-free
requirements for TM/ETM+ data selection as well as the overlapping cycle of TM/ETM+
sensor is 16 days, images on only five dates are available during 1971-2003 (model ran) –
May 15, 2000, July 05, 2001, July 19, August 04 and September 21 in 2003. It is found that
the climate conditions of 2000, 2001 and 2003 are wet, medium wet and dry, respectively.
Therefore, the remote sensing-retrieved observations are noncontinuous in a limited number
over time but contain multiple climate conditions.
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Aerodynamic resistance and surface resistance are two most important parameters in
the Penman-Monteith equation. However, for forest area, the aerodynamic resistance is
calculated by a function of wind speed in the model. Since transpiration and evaporation are
separately calculated by the Penman-Monteith equation in the model, the surface resistance
was divided into canopy surface resistance rsc and soil surface resistance rse. rsc is related
to the plants transpiration and rse is related to the bare soil evaporation. The interception
evaporation was not taken into account due to its negligible contribution to ET rate under a
dry-canopy (no rainfall) condition.

Based on the remote sensing-retrieved observations, rsc and rse were calibrated in the
WaSiM-ETH model for both forest types: for deciduous forest, rsc = 150 sm−1, rse = 250
sm−1; for coniferous forest, rsc = 300 sm−1, rse = 650 sm−1. We also carried out sensitivity
analysis on rsc and rse. The appropriate value ranges of rsc and rse were determined as
(annual maximum): for deciduous forest, [100,225] sm−1 for rsc and [50,450] sm−1 for rse;
for coniferous forest, [225,375] sm−1 for rsc and [350,1200] sm−1 for rse.

Due to the features of the observations that are in a limited number but contain multiple
climate conditions, the statistical indices for model performance evaluation are required
to be sensitive to extreme values. In this study, boxplots were found to well exhibit the
model performance at both spatial and temporal scale. Nush-Sutcliffe efficiency (NSE),
RMSE-observations standard deviation ratio (RSR), percent bias (PBIAS), mean bias error
(MBE), mean variance of error distribution (S2

d), index of agreement (d), root mean square
error (RMSE) were found as appropriate statistical indices to provide additional evaluation
information to the boxplots. The model performance can be judged as satisfactory if NSE >

0.5,RSR ≤ 0.7,PBIAS <±12,MBE <±0.45,S2
d < 1.11,d > 0.79,RMSE < 9,97.

rsc played a more important role than rse in ETP and ETA estimation by the Penman-
Monteith equation, which is attributed to the fact that transpiration dominates in ET. The
ETP estimation was found the most correlated to the relative humidity (RH), followed by
air temperature (T), relative sunshine duration (SSD) and wind speed (WS). Under wet or
medium wet climate conditions, ETA estimation was found the most correlated to T, followed
by RH, SSD and WS. Under a water-stress condition, there were very small correlations
between ETA and each meteorological variable.



Zusammenfassung

Die Evapotranspiration (ET) ist eine der wichtigsten Variablen in hydrologischen Studien.
Beim Prozess der Evapotranspiration finden Energieaustausch und Wasserfluss statt. Die
ET setzt sich aus Transpiration und Evaporation zusammen. ET wird durch den Anteil der
Pflanzentranspiration dominiert. Insbesondere in Waldregionen ist der Anteil der Transpira-
tion an der ET 80-90 %. Meteorologische Variablen, Vegetationseigenschaften, Niederschlag
und Bodenfeuchte sind kritische Einflussgrößen für Ableitung der ET.

Das Untersuchungsgebiet ist das Waldgebiet des Nahe-Einzugsgebietes (Rheinland-Pfalz,
Deutschland). Das Nahe-Einzugsgebiet weist einen hohen Waldanteil auf: Ungefähr 54,6 %
der Fläche sind waldbedeckt, mit Laub- und Nadelwald als die beiden dominierenden Typen.
Im hydrologischen Modell WaSiM-ETH wird die potenzielle Evapotranspiration (ETP) über
die Penman-Monteith-Formel errechnet. Danach wird dieser Wert über den Bodenwasserge-
halt auf die aktuelle Evapotranspiration (ETA) reduziert. Die Penman-Monteith-Formel wird
weithin eingesetzt und empfohlen für die Schätzung der ETP. Die Schwierigkeiten bei der
Anwendung dieser Formel liegen in ihrem hohen Bedarf an meteorologischen Eingangsdaten
und an der Notwendigkeit den Oberflächenwiderstand (surface resistance) zu bestimmen.

In dieser Studie wurde eine weitere Methode zu Schätzung der ETA eingesetzt. Dazu
wurden Fernerkundungsdaten mit meteorologischen Messwerten kombiniert. Diese Meth-
ode basiert auf Oberflächeneigenschaften wie Oberflächenalbedo, Anteil Pflanzenbewuchs
(FVC) und der Oberflächentemperatur (LST). Aus diesen Informationen wird der latente
Wärmestrom (LE, entspricht ETA) abgeleitet. Die Oberflächentemperatur ist dabei die kri-
tische Variable für die Schätzung einzelnen Komponenten der Oberflächenenergiebilanz.
LST wurde aus dem Thermalkanal von TM/ETM+ abgeleitet. Es wurden nur sehr gute,
wolkenfreie Datensätze verwendet, was die verfügbaren Datensätze auf fünf Termine ein-
schränkt. Innerhalb der Periode 1971-2003 (Modelllauf) wurden Werte für den 15.5.2000,
den 5.7.2001, den 19.7.2003, den 4.8.2003 und den 21.9.2003 abgeleitet. Die klimatischen
Bedingungen waren für die Termine in 2000, 2001 and 2003 nass, feucht und trocken. Das
bedeutet, dass die Fernerkundungsdaten zwar nur für wenige Termine vorliegen aber ganz
unterschiedliche Feuchtebedingungen abdecken.
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Der aerodynamische Widerstand und der Oberflächenwiderstand sind die beiden wichtig-
sten Parameter der Penman-Monteith-Gleichung. Im Wald wird der aerodynamische Wider-
stand durch eine Funktion der Windgeschwindigkeit ermittelt. Da Transpiration und Evapora-
tion separat gerechnet werden, wird der Oberflächenwiderstand in den Bestandeswiderstand
rsc und den Bodenwiderstand rse aufgeteilt. rsc bezieht sich auf die Transpiration rse auf
die Verdunstung der unbewachsenen Bodenoberfläche. Die Interzeptionsverdunstung wurde
nicht berücksichtigt, da sie unter trockenen Bedingungen (kein Niederschlag) vernachlässigt
werden kann.

Auf der Basis der Fernerkundungsschätzungen wurden rsc und rse im Modell WaSiM-
ETH kalibriert. Für Laubwald ist rsc = 150 sm−1, rse = 250 sm−1; für Nadelwald ist
rsc = 300 sm−1, rse = 650 sm−1. Außerdem wurde eine Sensitivitätsanalyse für rsc und rse

durchgeführt mit folgenden Werte-Intervallen: Laubwald [110,225] sm−1 für rsc, [50,450]
sm−1 für rse; für Nadelwerte [225,375] sm−1 für rsc und [350,1200] sm−1 für rse.

Wegen der Tatsache, dass nur wenige Beobachtungsdaten mit verschiedenen klimatischen
Bedingungen vorliegen sind statistische Indices notwendig to sensitiv auf Extremwerte sind.
Mit Hilfe von Boxplots konnte die Modellgüte sowohl auf der zeitlichen als auch auf der
räumlichen Skale gut dargestellt werden. Es wurden Nash-Sutcliffe Efficiency (NSE), RMSE-
observations standard deviation ratio (RSR), Prozentuale Abweichung (PBIAS), mittlerer
Bias-Fehler (MBE), mittlere Varianz der Fehler (S2

d), index of agreement (d) und RMSE (root
mean square error) als geeignete Kennwerte angesehen um die Modellgüte zu evaluieren. Ein
Modell wurde als akzeptabel bewertet, wenn NSE > 0.5,RSR ≤ 0.7,PBIAS <±12,MBE <

±0.45,S2
d < 1.11,d > 0.79,RMSE < 9,97.

rsc spielt eine wichtigere Rolle als rse bei Abschätzung von ETP und ETA mittels der
Penman-Monteith-Gleichung, was dadurch erklärt werden kann, dass die Transpiration ET
dominiert. The Schätzung von ETP ist am stärksten korreliert mit der relativen Feuchte
(RH), gefolgt von der Lufttemperatur (T), der relativen Sonnenscheindauer (SSD) und der
Windgeschwindigkeit (WS). Unter nassen oder feuchten Bedingungen ist die Schätzung
von ETA am stärksten mit der Temperatur korreliert, gefolgt von RH, SSD und WS. Unter
Bedingungen mit Wasserstress existieren nur noch geringe Korrelationen zwischen ETA und
den einzelnen meteorologischen Variablen.



Table of contents

List of figures xii

List of tables xv

Nomenclature xvii

1 Introduction 1
1.1 Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Potential evapotranspiration . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Reference evapotranspiration . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Actual evapotranspiration . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Factors affecting evapotranspiration . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Meteorological variables . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Vegetation properties . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Precipitation and soil moisture . . . . . . . . . . . . . . . . . . . . 9

1.3 Material and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Hydrological model . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Climate conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Framework of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Main idea and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 A hydrological model WaSiM-ETH 28
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Radiation correction module . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Evapotranspiration module . . . . . . . . . . . . . . . . . . . . . . 32



x Table of contents

2.2.3 Snow module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Interception module . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.5 Unsaturated zone module . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.6 Groundwater flow module . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Important formulas for ETA estimation . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Penman-Monteith equation . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Richards equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Actual evapotranspiration estimation . . . . . . . . . . . . . . . . . 38

2.4 Important parameters setting . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Bulk-aerodynamic resistance . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Bulk-surface resistance . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.3 Other property parameters . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Remote sensing 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Method statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Atmospheric correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Surface properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Surface albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Fractional vegetation cover . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Land surface temperature and emissivity . . . . . . . . . . . . . . . 56

3.5 Surface energy components . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1 Surface energy balance equation . . . . . . . . . . . . . . . . . . . 58
3.5.2 Net radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.3 Sensible heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.4 Soil heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.5 Latent heat flux (actual evapotranspiration) . . . . . . . . . . . . . 62

3.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Surface resistance calibration in WaSiM-ETH 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Review of statistical techniques for model performance evaluation . . . . . 70

4.2.1 Basic index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Correlation measures . . . . . . . . . . . . . . . . . . . . . . . . . 71



Table of contents xi

4.2.3 Index of agreement . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Nash-Sutcliffe efficiency . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.5 Percent bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.6 RMSE-observations standard deviation ratio . . . . . . . . . . . . 74

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Graphical overview of model performance . . . . . . . . . . . . . . 74
4.3.2 Statistical model performance evaluation . . . . . . . . . . . . . . 76
4.3.3 Model evaluation at space scale . . . . . . . . . . . . . . . . . . . 81

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Sensitivity analysis 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Method and material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Value range determination . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Sensitivity of potential evapotranspiration to surface resistance . . . 91
5.4.2 Sensitivity of actual evapotranspiration to surface resistance . . . . 95

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Summary 106
6.1 Comparison of two techniques for ETA estimation . . . . . . . . . . . . . 106
6.2 Features of simulations and observations . . . . . . . . . . . . . . . . . . . 107
6.3 Impact and feedback of meteorological variables . . . . . . . . . . . . . . 108
6.4 Features of WaSiM-ETH model . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Important surface properties in ETA estimation . . . . . . . . . . . . . . . 110
6.6 Recommended model performance evaluation techniques . . . . . . . . . . 110
6.7 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 113



List of figures

1.1 Location of the Nahe catchment. . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Elevation and forest distribution of the Nahe catchment. . . . . . . . . . . . 12

1.3 Available climate and precipitation stations in Rhineland-Palatinate, Germany. 13

1.4 Daily meteorological variables (a) P, (b) T, (c) RH, (d) SSD, (e) WS from
May 01, 2000 to September 30, 2003 in deciduous forest of the Nahe catchment. 19

1.5 Daily meteorological variables (a) P, (b) T, (c) RH, (d) SSD, (e) WS from May
01, 2000 to September 30, 2003 in coniferous forest of the Nahe catchment. 21

1.6 Difference of daily meteorological variables (a) P, (b) T, (c) RH, (d) SSD,
(e) WS from May 01, 2000 to September 30, 2003 between deciduous and
coniferous forest in the Nahe catchment. . . . . . . . . . . . . . . . . . . . 23

1.7 Daily meteorological variables (a) T, (b) RH, (c) SSD, (d) WS on five sample
dates in deciduous and coniferous forest of the Nahe catchment. . . . . . . 24

2.1 Model structure of the WaSiM-ETH model (Schulla and Jasper, 2007). . . . 31

2.2 Model outputs (a) daily median ETP (mm), (b) daily median ETA (mm), (c)
decline between daily median ETP and ETA (mm), (d) daily median relative
soil moisture in root zone, of WaSiM-ETH on five sample dates in deciduous
forest of the Nahe catchment. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Model outputs (a) daily median ETP (mm), (b) daily median ETA (mm), (c)
decline between daily median ETP and ETA (mm), (d) daily median relative
soil moisture in root zone, of WaSiM-ETH on five sample dates in coniferous
forest of the Nahe catchment. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Flow chart of data processing. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 LST for heat fluxes retrieving. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Surface properties (a) α , (b) NDVI, (c) FCOV, (d) LST on five sample dates
in deciduous and coniferous forest of the Nahe catchment. . . . . . . . . . 64



List of figures xiii

3.4 Surface energy components (a) Rn, (b) H, (c) G, (d) LE on five sample dates
in deciduous and coniferous forest of the Nahe catchment. . . . . . . . . . 65

4.1 Two sources of daily ETA (in mm, with each group consists of 5-sample-day
daily values) in the Nahe catchment. The red boxplots are LE group as well
as the 12 green boxplot groups are ETA groups simulated with 12 different
surface resistance combinations by WaSiM-ETH. . . . . . . . . . . . . . . 77

4.2 Frequency distribution of daily (1) ETA 150_250 and (2) LE (both in mm)
on 5 sample dates (a-e) in deciduous forest of the Nahe catchment. . . . . . 82

4.3 Frequency distribution of daily (1) ETA 300_650 and (2) LE (both in mm)
on 5 sample dates (a-e) in coniferous forest of the Nahe catchment . . . . . 82

4.4 Frequency distribution of difference (error, in mm) between (1) ETA 150_250
and LE in deciduous forest and (2) ETA 300_650 and LE in coniferous forest
of the Nahe catchment on 5 sample dates (a-e). . . . . . . . . . . . . . . . 83

4.5 Five days’ MAE (mean absolute error) between ETA (simulated from 12
surface resistance combinations) and LE in the Nahe catchment. . . . . . . 84

5.1 Model performance evaluation between ETA simulated with perturbed rsc

values in [100,225] ms−1 and LE on 5 sample days at temporal scale for
deciduous forest, the x axis indicates the perturbed rsc values. . . . . . . . . 92

5.2 Model performance evaluation between ETA simulated with perturbed rse

values in [50,450] ms−1 and LE on 5 sample days at temporal scale for
deciduous forest, the x axis indicates the perturbed rse values. . . . . . . . . 92

5.3 Model performance evaluation between ETA simulated with perturbed rsc

values in [225,375] ms−1 and LE on 5 sample days at temporal scale for
coniferous forest, the x axis indicates the perturbed rsc values. . . . . . . . 93

5.4 Model performance evaluation between ETA simulated with perturbed rse

values in [350,1200] ms−1 and LE on 5 sample days at temporal scale for
coniferous forest, the x axis indicates the perturbed rse values. . . . . . . . 93

5.5 Daily relative sensitive coefficient (Sr, dimensionless) of ETP to surface
resistance (rs) in May-September in year (a) 2000, (b) 2001, (c) 2003 in (1)
deciduous and (2) coniferous forest. . . . . . . . . . . . . . . . . . . . . . 97

5.6 Daily absolute sensitive coefficient (Sa, in mm/sm−1) of ETP to surface
resistance (rs) in May-September in year (a) 2000, (b) 2001, (c) 2003 in (1)
deciduous and (2) coniferous forest. . . . . . . . . . . . . . . . . . . . . . 97



xiv List of figures

5.7 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1),
and (e) ETP 150_250 (in mm), during May-September in (1) 2000, (2) 2001,
(3) 2003 in deciduous forest, with the large negative values of Sa (ETP to
rsc) were marked with dash lines. . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1),
and (e) ETP 300_650 (in mm), during May-September in (1) 2000, (2) 2001,
(3) 2003 in coniferous forest, with the large negative values of Sa (ETP to
rsc) were marked with dash lines. . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Scatter plot between ETP and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in
ms−1), during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous
forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Scatter plot between ETP and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in
ms−1), during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous
forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 Daily relative sensitive coefficient (Sr, dimensionless) of ETA to surface
resistance (rs) in May-September in year (a) 2000, (b) 2001 and (c) 2003 in
(1) deciduous and (2) coniferous forest. . . . . . . . . . . . . . . . . . . . 101

5.12 Daily absolute sensitive coefficient (Sa, in mm/sm−1) of ETA to surface
resistance (rs) in May-September in year (a) 2000, (b) 2001 and (c) 2003 in
(1) deciduous and (2) coniferous forest. . . . . . . . . . . . . . . . . . . . 101

5.13 (a) P (in mm), (b) ETP 150_250 (in mm), (c) ETA 150_250 (in mm), and (d)
deETP 150_250 (in mm) during May-September in (1) 2000, (2) 2001, (3)
2003 in deciduous forest, with the large negative and positive values of Sa
(ETA to rsc) were respectively marked with dash lines in grey and red. . . . 102

5.14 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1),
and (e) ETA 300_650 (in mm), during May-September in (1) 2000, (2) 2001,
(3) 2003 in coniferous forest, with the large negative and positive values of
Sa (ETA to rsc) were respectively marked with dash lines in grey and red. . 103

5.15 Scatter plot between ETA and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in
ms−1), during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous
forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.16 Scatter plot between ETA and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in
ms−1), during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous
forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



List of tables

1.1 Average ETo (mmday−1) for different agroclimate regions (Allen et al., 1998). 5

1.2 Selected Landsat images on 5 sample dates during the period 1971-2003
(model runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Selected MODIS products on 5 sample dates. . . . . . . . . . . . . . . . . 15

2.1 Soil water condition parameters. . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Aerodynamic roughness length z0 (m) for deciduous and coniferous forest in
the Nahe catchment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Surface resistance (sm−1) for deciduous and coniferous forest in WaSiM. . 41

2.4 Albedo, LAI and FVC for deciduous and coniferous forest in WaSiM. . . . 42

3.1 Calibration constants for at-sensor radiance to effective brightness temperature. 54

4.1 The regional mean and median values of 5-day daily LE (in mm) for decidu-
ous and coniferous forest of the Nahe catchment. . . . . . . . . . . . . . . 76

4.2 Statistical indices for model evaluation at temporal scale between regional
median ETA and LE on 5 sample dates in deciduous forest of the Nahe
catchment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Statistical indices for model evaluation at temporal scale between regional
median ETA and LE on 5 sample dates in coniferous forest of the Nahe
catchment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 General performance ratings for recommended statistics for a monthly time
step (Moriasi et al., 2007). . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Sensitivity classes (Lenhart et al., 2002). . . . . . . . . . . . . . . . . . . . 89

5.2 Estimated value ranges for canopy surface resistance rsc and soil surface
resistance rse for deciduous and coniferous forest, "max" indicates the maxi-
mal value during wintertime (November-February) and "min" indicates the
minimal value in summertime (May-September). . . . . . . . . . . . . . . 91



Nomenclature

Roman Symbols

∆ Slope of saturated vapor pressure curve at temperature Ta.

γ Psychrometric constant.

Ea An empirical representation of the latent heat flux density.

ea Actual vapor pressure.

es Vapor pressure of saturated air.

ETo Reference evapotranspiration.

G Soil heat flux.

H Sensible heat flux.

ra Bulk aerodynamic resistance.

Rg Global radiation.

Rn Net radiation.

rsc Canopy surface resistance.

rse Soil surface resistance.

rsi Interception surface resistance.

rs Bulk surface resistance.

Ta Air temperature, abbreviated as T.

u Wind speed, abbreviated as WS.



Nomenclature xvii

EI Interception evaporation.

EIP Potential interception evaporation.

ET Evapotranspiration

ETA Actual evapotranspiration.

ETP Potential evapotranspiration.

FVC Fractional vegetation cover, denote as fr.

LAI Leaf area index.

LE Latent heat flux, corresponding to ETA.

LST Land surface temperature.

SI Interception storage.

TIR Thermal infrared.

TP Potential transpiration.

TR Actual transpiration.



Chapter 1

Introduction

1.1 Evapotranspiration

Evapotranspiration (ET) is an invisible process, through which the liquid water on the Earth
(e.g. the plants’ inner water, the soil containing water, the surface water storage and the
flows such as lakes, rivers and oceans, and the water on the interception surfaces after
rainfall) is transferred from a variety of surfaces to the atmosphere as water vapor. In the ET
process, energy transfer and water cycling are involved. ET consists of two simultaneous
processes – transpiration and evaporation. The transpiration transports the water within a
plant through its roots, stems, branches and finally from its leaf stomata to the atmosphere.
It is a both physical and biological process and is highly related to the photosynthesis. The
evaporation occurs on almost all kinds of surfaces, such as the soil, the water bodies and
other interception mediums, from which the liquid water evaporates to the atmosphere. The
amount of transpiration dominates in ET. The partitioning of transpiration and evaporation
in ET has been reported in a number of studies: in full canopy regions, e.g. forest, the
transpiration contributes 80-90 % of ET (Kurpius et al., 2003; Szilagyi, 2000; Wilson et al.,
2001); in irrigated crop regions, the ratio range is 85-90 % (Granger, 2000; Hunsaker et al.,
2005; Kite and Droogers, 2000; Williams et al., 2004); in dry crop regions, it is 70-75 %
(Persaud and Khosla, 1999); and in arid and semiarid sparse vegetated regions, the ratios
reported in publications are still more than half of the total ET amount, in a range of 70-90 %
(Ferretti et al., 2003; Williams et al., 2004; Yepez et al., 2003).

ET is one of the most important components in hydrological studies. It is the second
largest quantity in the hydrological water balance, while the precipitation is the first largest
(Dyck, 1985). On average, an amount of 60 % precipitation on the earth evaporates; in arid
and semi-arid dominated regions, this amount raises to 85 % while it is down to 15 % in snow
and ice permanently covered regions (Gash and Shuttleworth, 2007). The estimation of ET
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has been widely used in agricultural irrigation scheduling. The amount of water loss in the
ET process is defined as the crop water requirement (Allen et al., 1998). In a cropped field,
the irrigation water requirement is equal to the difference between the effective precipitation
and the water loss in ET. In the ET process, about 2/3 of the total absorbed extraterrestrial
radiant energy is transferred as the latent heat flux to support the vaporizing. In general, ET
is not only a critical component in the land surface water cycling or energy exchange, but
also the principle way to return water and energy from the land surface to the atmosphere
(Gash and Shuttleworth, 2007).

Monitoring ET in a large scale also provides information on how the climate and the
hydrological cycle impact the natural and agricultural ecosystem (Kustas and Norman,
1996). Huntington (2006) asserted that the climate warming in the future would induce
an intensification of the global water cycle, thereby promote ET generation. There is an
old idea that the surface vegetation affects the climate (Shukla and Mintz, 1982). Shukla
and Mintz (1982) found that the global precipitation, the air temperature and motions were
very dependent on the vegetation generated ET. The ET amount in a forested catchment
is always higher than in a grassed catchment (Zhang et al., 2001). Re- and deforestation
have an impact on the ET generation and thereby affect the water yield and the groundwater
recharge in terms of the hydrological budget – reforestation rises ET rate and consequently
reduces the annual or even long-time runoff, whereas deforest decreases the ET rate and
consequently increases the runoff (Zhang et al., 2001). It is also found that the local weather
can be affected by the ET amount, and the effect is embodied in air temperature, humidity
and cloud formation (Rabin et al., 1990; Segal and Arritt, 1992) .

In the ET studies, there are three widely used sub concepts should be distinguished. They
are potential evapotranspiration (ETP, Thornthwaite (1948)) , reference evapotranspiration
(ETo, Allen et al. (1998)) , and actual evapotranspiration (ETA, Dyck (1985)).

1.1.1 Potential evapotranspiration

The term ETP is coined by Thornthwaite (1948) to distinguish from ETA as: "There is a
distinction, then, between the amount of water that actually transpires and evaporates and
that which would transpire and evaporate if it were available. When water supply increases,
as in a desert irrigation project, evapotranspiration rises to a maximum that depends only
on the climate." Hence, ETP represents the maximum water loss to the atmosphere under
a given weather condition, and is commonly used for ETA estimation in the rainfall-runoff
models. Penman (1948) proposed an aerodynamic and energy-balance combined approach
to estimate evaporation from the open water on the basis of the meteorological variables, and
respectively calculated the ETP from the bare soil, the wet soil and the grass surfaces as a
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fraction of the open water evaporation. The Penman equation has been considered as the
prototype of a standard method for ETP estimation. In the equation, the energy supply to
the surface and the atmospheric parameters are held as constant when the surface becomes
saturated. The Penman equation has been widely accepted since the ETP can be conveniently
calculated through it with the meteorological variables (Thornthwaite, 1948). It is written as
(Penman, 1948):

ET P =
H ·∆+ γ ·Ea

∆+ γ
(1.1)

with
Ea = 0.35(0.5+u/100)(es − ea) (1.2)

where H is the sensible heat flux; ∆ is the slope of the saturated vapor pressure curve at
temperature Ta; γ is the psychrometric constant; Ea is an empirical representation of the
latent heat flux density; u is the wind speed ; es is the vapor pressure of saturated air and ea

is the actual vapor pressure.

However, the Penman equation is not suitable for tall crops, e.g. the forest, whose
aerodynamic and surface resistances are much different from the grassland (Calder, 1977).
The aerodynamic resistance ra is used to express the aerodynamic restrain while the heat and
the water vapor transferring. The surface resistance rs is related to the transpiring from plants
and the evaporation from surfaces. The development of the Penman equation containing
parameters ra and rs have been subsequently introduced in a series of publications (Covey,
1959; Penman and Long, 1961; Slatyer et al., 1961; Tanner and Pelton, 1960; Van Bavel,
1966). Based on these studies, Monteith et al. (1965) proposed an ultimately modified
approach termed as the Penman-Monteith equation, which has been to date widely used and
recommended for ETP estimation (Allen et al., 1989, 1998; Droogers and Allen, 2002). The
high demand of ground-measured data such as solar radiation, air temperature, air humidity
and wind speed is an usage restriction of this method. Thus, the Penman-Monteith equation
could not be applied in lacking-data regions. Moreover, the determination of rs is also very
difficult. The ETP is a climatic parameter estimated from the meteorological variables and is
independent of the crop characteristics and the soil water conditions (Allen et al., 1998).

1.1.2 Reference evapotranspiration

The reference evapotranspiration (or the reference crop evapotranspiration, ETo) has been
commonly used for the crop water requirement determination and consequently for the
irrigation planning and the agriculture water management (Droogers and Allen, 2002). In
many publications, the definition of ETo is confused with ETP (e.g. Gong et al. (2006)).
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Indeed, there is a difference – the definition of ETo is more narrow than ETP. The ETo is
defined as the ETP rate from a reference crop surface, with the crop are well-grown and
well-watered. Like ETP, the ETo depends only on the climatic factors, with no regard to the
impact from the crops or the soil water.

To obtain the crop water requirement, a two-step method referred to as "Kc.ETo" approach
is proposed by Doorenbos and Pruitt (1977) in the FAO (Food and Agriculture Organization
of the United Nations) -24 report. In the approach, the first step is to calculate the ETo, which
is defined in the report as "the rate of evapotranspiration from an extensive surface of 8 to 15
cm tall, green grass cover of uniform height, actively growing, completely shading the ground
and not short of water". The crop water requirement is then estimated by transferring ETo

with a crop coefficient Kc, which depends on the crop characteristics and the site conditions.
This approach has been accepted as an international standard method for the crop water
requirement estimation (Smith et al., 1998).

In the FAO-24 report, four methods were recommended for the ETo estimation – the
Blaney-Criddle method (Blaney, 1952), the Radiation method, the modified Penman method,
and the Pan Evaporation method, while the modified Penman (hereafter referred to as FAO
Penman) method was found to generate the best result with minimal errors (Doorenbos and
Pruitt, 1977). However, it is found that the FAO Penman equation frequently overestimates
the ETo rate, and the other three methods show variable adherence to the reference-crop
evapotranspiration standard of grass (Allen et al., 1989; Batchelor, 1984; Jensen et al., 1990).
A modified Penman-Monteith approach referred to as FAO Penman-Monteith equation is
subsequently developed and recommended as the sole standard method for the ETo estimation
(Allen et al., 1998; Droogers and Allen, 2002; Smith et al., 1998). In the standard FAO
Penman-Monteith equation, the reference surface is defined as: "A hypothetical reference
crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 sm−1 and an
albedo of 0.23" (Allen et al., 1998).

The standard FAO Penman-Monteith equation is written as:

ETo =
0.408∆(Rn −G)+ γ(900/(Ta +273))u(es − ea)

∆+ γ(1+0.34u)
(1.3)

where Rn is the net radiation at the crop surface in MJm−2 day−1; G is the soil heat flux
density in MJm−2 day−1; Ta is the air temperature at 2 m height in oC; u is the wind speed at
2 m height in ms−1; es is the vapor pressure of saturated air in kPa; ea is the actual vapor
pressure in kPa; ∆ is the slope of the vapor pressure curve in kPa oC−1; γ is the psychrometric
constant in kPa oC−1.
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In the Table 1.1, typical values of ETo for different agroclimate are listed. The general
ETo is in an approximate range from 1 to 9 mmday−1.

Regions
Mean daily temperature (oC)

Cool ∼ 10 oC Moderate 20 oC Hot > 30 oC

Tropics and humid and sub-humid 2-3 3-5 5-7
subtropics arid and semi-arid 2-4 4-6 6-8

Temperate humid and sub-humid 1-2 2-4 4-7
region arid and semi-arid 1-3 4-7 6-9

Table 1.1 Average ETo (mmday−1) for different agroclimate regions (Allen et al., 1998).

1.1.3 Actual evapotranspiration

The term ETA is defined by Dyck (1985) as: "a largely empirical function of plant specific
potential evapotranspiration and soil water content SM or soil matric potential ψm and
threshold value above which actual and potential evapotranspiration are equal". ETA is also
termed as the crop evapotranspiration under non-standard conditions (ETcadj) , distinguished
from ETo in a reference grass surface (Allen et al., 1998). In the early time, lysimeters,
eddy flux instrumentation and Bowen-ratio instrumentation were directly used for ETA
measurement. However, the high cost of instruments, the requirement of constant attendance
for skilled operators, the basis of unverified assumptions and the point-value measure results
all point out that a direct measure is an inappropriate means for ETA estimation (Morton,
1983). A common application of ETA is the crop water requirement determination, which
is generally obtained by ETo multiplying the crop coefficient Kc. The parameter Kc is
the integrated effects of crop height, albedo, canopy resistance and evaporation from soil.
It is thereby determined by crop types, crop growth stages, soil evaporation and climate
conditions (Allen et al., 1998). However, this means has drawbacks because the Kc is
difficult to determine. In order to physically calculate the ETA, Dyck (1985) introduced
four steps: (1) to calculate the ETo on a short green grass surface, assuming the water
supply is adequate; (2) to calculate the site-related ETo, taking the surface properties such as
slope, aspect and surface albedo into account; (3) in terms of (2), to calculate the ETP with
particular vegetation type with sufficient water supply; (4) to calculate the ETA according
to the soil moisture by reducing ETP obtained in (3). To date, in most hydrological models,
these steps are simplified into two – to obtain the ETP; then reduce it according to the
actual soil water content to get ETA (e.g. WaSiM-ETH model Schulla and Jasper (2007)).
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Therefore, meteorological variables, crop features and soil water conditions are important
factors affecting ETA estimation.

In last decades, remote sensing techniques have also been frequently used for ETA
estimation (Bastiaanssen et al., 1998a,b; Carlson et al., 1995; Hatfield et al., 1983; Jiang
and Islam, 1999; Kustas and Norman, 1996; Soer, 1980). The advantages of remote sensing
images such as economic, efficient, and large-area available alleviate the high demand for
ground-measured data and make remote sensing techniques popular in hydrological studies.
In sparse-data catchments, the remote sensing-retrieved variables can provide additional
information. The remote sensing-based data are always superior in spatial accuracy with
contrast to the ground measurements – the spatial accuracy of the former depends on the
remote sensing images whereas for the latter, it depends on the locations and numbers of
available climate stations. The land surface temperature (LST) retrieved from the thermal
infrared (TIR) bands in the remote sensing images provides information on ETA and the
soil water conditions. Therefore, it has been widely used for ETA amount and soil moisture
condition estimation (Carlson et al., 1981; Gurney and Camillo, 1984; Seguin and Itier, 1983).
To estimate ETA (corresponding to the latent heat flux (LE) in the energy balance equation) ,
the LST is commonly used to firstly retrieve the sensible heat flux (H) through an empirical
method (Carlson et al., 1995; Jackson et al., 1977; Seguin and Itier, 1983). However, LST is
difficult to obtain due to the high-heterogeneity of land surface, the unknown emissivity and
atmospheric conditions (Jin, 2004). Using remote sensing TIR data is the the only means
for a large-scale LST retrieving. The LST-based methods eliminate the difficulty of surface
resistance determination in ET estimation with conventional methods (Brown, 1974).

There is a misconception that a larger ETP rate necessarily indicated a larger ETA rate.
However, Bouchet (1963) found that as a moist surface dried, the ETP increased whereas
the ETA decreased. He consequently proposed a concept termed as "complementary rela-
tionship", which describes the correlation between ETA, ETP and the potential evaporation
under a saturate-surface condition that when ETA equals ETP (ET Ps). The complementary
relationship assumes that as the surface dries, the decrease amount of ETA is equal to the
increase amount of ETP; and this amount is twice of ET Ps. Based on the relationship, some
evaporation models have been developed (Brutsaert and Stricker, 1979; Morton, 1983). In
these models, the Penman equation is used to estimate the ETP rate.

1.2 Factors affecting evapotranspiration

According to these sub ET concepts, it is obviously that meteorological data, crop charac-
teristics and soil water content are very important factors that affecting the ET estimation.
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Zhang et al. (2001) concludes that ET is very dependent on rainfall interception, net radiation,
advection, turbulent transport, leaf area and plant available water capacity, whose relative
importances are related to the crop, soil and climate.

1.2.1 Meteorological variables

In the Penman-Monteith equation, solar radiation, air temperature, air humidity and wind
speed are the basic meteorological variables for ET estimation. The sunshine radiation
supplies energy for water cycling and heat exchanging. Thus more effective incident solar
radiation to the land surface, namely more absorbed net radiation (Rn) may partition more
energy supporting the ET process – in general, about 2/3 of the total absorbed radiant energy
is partitioned for ET generation (Gash and Shuttleworth, 2007). The vapor pressure deficit
– the difference between the saturated air vapor pressure and the actual air vapor pressure
(es − ea) encourages the ET generation. The bigger the term (es − ea) is, the rapidly the ET
generates. An increase of air temperature raises the capacity of air to hold the water vapor
(es) – approximately equals to 5 or 6 % per oC, to enlarge the vapor pressure deficit and
consequently increase the ET amount. High wind speed also accelerates the ET process.

The relative importance of each variable has been reported in a number of publications
(Bakhtiari et al., 2012; Beven, 1979; Gleick, 1986; Gong et al., 2006; Goyal, 2004; McCuen,
1974; Piper, 1989; Revelle and Waggoner, 1983; Samani, 2000; Saxton, 1975). McCuen
(1974) found that temperature and humidity were the most sensitive variables to the Penman
equation, whereas wind speed was the least. Saxton (1975) derived sensitive equations from a
modified Penman equation and found that the ETP was the most sensitive to the net radiation
– radiation change in each unit would result in 50-90 % change in ETP during midyear.
Beven (1979) found that, in both hourly and monthly time steps, the relative importance
of net radiation for the Penman-Monteith ETA estimation was very high in the grassland
but became very small in the forest regions. In the earliest studies, ET was formulated as
a function of temperature (Gleick, 1986; Revelle and Waggoner, 1983), indicating that the
air temperature was considered as the most important factor. Piper (1989) examined the
sensitivity of the Penman evaporation to the uncertainty in measured input variables under a
wide range of climate conditions, and found that ETo was most sensitive to the errors in the
measurement of air temperature, as well as the errors in sunshine duration, wind speed and
wet bulb temperature had small and more or less the same relative impact on ETo. Samani
(2000) used the minimal and maximal temperature through a modified equation to estimate
the solar radiation and subsequently the ETo rate. He concluded that solar radiation and air
temperature were the most important factors, since the major energy used for ET is from solar
radiation, and the air temperature is highly correlated with the solar radiation. Goyal (2004)
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concluded that the sensitivity of climatic factors to ET estimated by the Penman-Monteith
approach were in an order as: air temperature > solar radiation > wind speed > air humidity.
Gong et al. (2006) studied the Penman-Monteith ETo in the Changjiang basin, and found
that the relative humidity was the most sensitive factor, followed by shortwave radiation, air
temperature and wind speed in orderly. Bakhtiari et al. (2012) stated that ETo estimated by
the FAO Penman-Monteith equation was the most sensitive to net radiation; and in arid and
semiarid cool regions, the sensitivity of each meteorological variable was higher than that in
arid warm regions. Thus, the meteorological variables are very important factors affecting
the ET estimation, and their relative importances vary in different cases.

1.2.2 Vegetation properties

Plants on the Earth’s surfaces such as grasses, agricultural crops, bushes and forests are
generally referred to as vegetation. Vegetation is helpful in preventing the desertification
process, conserving the soil and water and consequently reducing the runoff. The surface
vegetation not only plays a significant role in biogeochemical cycle, water cycle, and energy
exchange, but also affects the climate. All these can be attributed to the effect of the ET
generated by vegetation. Based on 39 studies on how forest cover changes impact the
water yield, Hibbert (1965) found that re- and deforestation led to the de- and increase of
water yield, respectively. Based on a review of the experiences of 94 catchments, Bosch and
Hewlett (1982) updated Hibbert’s conclusion that a reduction in forest cover decreased the ET
amount and consequently increased the water yield. In the forested catchments, ET is mainly
generated by the plants, and its magnitude is much higher than that in the grassland. Zhang
et al. (2001) concluded that management and rehabilitation mainly changed the vegetation
surfaces and affected the water balance of catchments. This can be explained by the direct
impact from vegetation on ET, which subsequently affects the climate, water balance and
discharge. In the ET process, the regional climate in forest area is very dependent on the
vegetation. Apart from the vegetation density, the plant characteristics such as the surface
albdeo, the normalized difference vegetation index (NDVI), the fractional vegetation cover
(FVC), the canopy surface temperature and resistance are also important factors. In the
Penman-Monteith equation, the aerodynamic resistance and the surface resistance are critical
parameters for ET estimation; especially in forest regions, the ETA is found to be much more
sensitive to canopy resistance than aerodynamic resistance (Beven, 1979; Calder, 1977). In
general, the vegetation properties are critical influence factors for ET estimation since the
transpiration directly generated by vegetation dominates in the total ET rates in almost all
kinds of land use types (Glenn et al., 2007; Kurpius et al., 2003; Szilagyi, 2000; Wilson et al.,
2001).
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1.2.3 Precipitation and soil moisture

The soil moisture is a critical factor that influences ETA estimation – since in many physical
equations or models for ETA estimation, the amount of ETA is decided by reducing ETP
according to the actual soil moisture in the root zone (e.g. WaSiM-ETH model). Well-watered
plants open their stomata for the transpired water passing. In this process, the temperature
of plants’ leaves are cooling and the surrounding air are subsequently warming. However,
in case that the soil moisture in the root zone is not sufficient, the stomata close to preserve
the inner water, and consequently decrease the ET rate. The soil moisture is commonly
simulated with the precipitation measurements due to their strong association with each other
(Koster et al., 2004). Thus, the impact of soil moisture on ETA can be actually returned to
the correlation between precipitation and ET.

Precipitation and ET are two reverse processes caused by different reasons – the former
transfers the water from atmosphere to the land surface and the latter transfers them back
as water vapor to the atmosphere. Precipitation and ET are in turns the first and second
largest components in magnitude in the water budget (Dyck, 1985). Pike (1964) proposed an
equation based on the water balance, in which the annual ET in Malawi was obtained as the
residual between annual rainfall and the sum of runoff, seepage passed the gauging stations,
as well as the change in groundwater storage. In a water balance equation in volume per
surface area over time that proposed by Eagleson (1978), the precipitation is transformed into
ETA, surface storage, subsurface storage, direct flow, base flow and stream flow (discharge).
The precipitation directly and significantly affects the hydrological budget and the antecedent
soil moisture conditions, and it also plays a significant role in runoff magnitude (Loague and
Freeze, 1985). A rational equation for the calculation of the annual ET in watershed in a
Mediterranean-type climate was proposed by Turner (1991), in which, annual ET is obtained
by a function of annual precipitation and a fractional vegetation cover in the watershed
(shrubs and trees). Zhang et al. (2001) studied a result from 250 forested catchments and
pointed out the good relationship between average ET and precipitation in a long time period.
A study in Beijing mountain area also reported that precipitation had an seasonal impact on
vegetation coverage (Jing et al., 2011). High accuracy precipitation data is necessary for
ETA estimation. However, the accuracy of precipitation data measured and computed from
climate station networks is always not sufficient due to its high spatial-temporal variability
(Dyck, 1985).

To tell whether a climate is moist or dry, not only the amount of precipitation should be
known, but also the precipitation is greater or less than the ETA should be taken into account
(Thornthwaite, 1948).
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1.3 Material and techniques

1.3.1 Study area

The study area is the Nahe catchment locating in the state of Rhineland-Palatinate, in the
southwest of Germany (Figure 1.1). River Nahe is about 120 km in length, rising from the
bound of Saarland and joining into River Rhine in Bingen. The drainage basin of River Nahe
is in total 4065 km2. This area is famous for grape cultivation and quality wine production
due to its moderate climate. The elevation of the entire Nahe catchment is on an average
of 353 m. In Figure 1.2a, the distribution of River Nahe and its tributaries is pointed out
by the elevation values range in 101-200 m. The northwest region of Nahe catchment is
mountainous, whose elevation ranges from 300 to 817 m. The Nahe catchment is highly
wooded. About 54.6 % areas of Nahe catchments is covered with forest (Figure 1.2b).
Deciduous forest and coniferous forest are two primary forest types here. The proportion of
deciduous and coniferous forest to the entire region are 59.1 % and 40.9 %, respectively.

The Nahe catchment has long been known as flood prone area. The residents settled
along River Nahe and its tributaries have suffered a lot from flood damages. In the recent
huge flood events in 1993 and 1995, the damage cost was over 100 million Deutsche Mark
for the entire region.

1.3.2 Hydrological model

This study is based on the former works of the KlimLand-Project (Casper et al., 2013).
In the study, a hydrological model – WaSiM-ETH (Water Flow and Balance Simulation
Model, firstly developed in ETH, Zurich) was applied for a long-term simulation from
year 1971 to 2003 in the Nahe catchment. WaSiM-ETH is a distributed, deterministic,
mainly physical-based hydrological model. It has been widely used in Europe and frequently
reported in publications (Cullmann et al., 2006; Gurtz et al., 2000; Jasper, 2005; Jasper et al.,
2002; Klok et al., 2001; Verbunt et al., 2003). In WaSiM-ETH, several sub modules take
part in water balance simulation above and under the land surfaces. In this study, three
steps were performed in the model to obtain ETA. The first step is to estimate ETP by the
Penman-Monteith equation (Monteith et al., 1965) on the basis of the ground-measured
meteorological variables. The second step is to simulate the soil water content in vertical
direction via Richards equation (Richards, 1931). Based on the previous steps, ETA was
obtained by reducing ETP according to the actual soil water content in a daily time step.

The ground-measured meteorological variables such as relative sunshine duration (SSD,
dimensionless), air temperature (T, in oC), relative humidity (RH, dimensionless) and wind
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Fig. 1.1 Location of the Nahe catchment.

speed (WS, in ms−1) are basic input data for ETP estimation. These data were selected from
19 climate stations over the entire region of Rhineland-Palatinate (Figure 1.3a). The SSD is
the ratio of the actual sunshine duration hours to the possible maximum sunshine duration
hours. It ranges from 0 to 1 and have to exceed 0.1, since the value of SSD less than 0.1
indicates that only diffuse radiation exist, which is incorrect (Schulla and Jasper, 2007). The
RH is the ratio of the actual vapor pressure to the saturated vapor pressure, which indicates
the saturation degree of the air. When T is high and RH is low, water evaporates rapidly,
whereas when T is low and RH is high, water evaporates slowly. Moreover, the regional air
temperature and humidity are also found to be affected by ET (Rabin et al., 1990; Segal and
Arritt, 1992).

The precipitation is an important input data for snow accumulation and melting, inter-
ception evaporation and soil water content estimation. Due to the high spatial and temporal
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(a) Elevation (m) (b) Forest distribution

Fig. 1.2 Elevation and forest distribution of the Nahe catchment.

variability of precipitation data, a dense mesh of gauging stations are required for data
measurement and computation. The precipitation station networks are shown in Figure 1.3b.

1.3.3 Remote sensing

Landsat

Remote sensing techniques were also employed for ETA retrieving. The basic input data
are remote sensing images combining with the same meteorological ground measurements
used in the WaSiM-ETH model. The remote sensing-based ETA are considered as ideal
observation data corresponding to the ETA simulated by WaSiM-ETH. The remote sensing
images from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM+)
were selected in the time period 1971-2003 (model run). Due to the high-quality and cloudy-
free requirements for the data selection, images on only five separate dates are available –
May 15, 2000, July 05, 2001, and July 19, August 04, and September 21, in 2003 (Table 1.2).
It is known that the summer in 2003 was extremely warm and dry in Germany.
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(a) Climate stations (b) Precipitation stations

Fig. 1.3 Available climate and precipitation stations in Rhineland-Palatinate, Germany.

The TM sensor was carried on Landsat 4 and 5 from July 1982 to May 2012, with an
overlapping cycle of 16 days. TM images consist of 7 bands, with bands 1-5 and 7 are in a
spatial resolution at 30 m as well as the resolution of thermal band 6 is collected at 120 m but
resampled to 30 m (NASA, 2015e; USGS, 2015). The ETM+ sensor was carried on Landsat
7 since July 1999. However, a scan line corrector failure has occurred to the data since May
30, 2003. The rescan cycle of the ETM+ sensor is also 16 days. The ETM+ images consist of
8 spectral bands, with band 6 is also the thermal band and band 8 is the panchromatic band.
The spatial resolution is 30 m for band 1-7 (band 6 is selected as 60 m and resampled to 30
m) as well as it is 15 m for band 8 (Irish, 2000; NASA, 2015a). In this study, the reflected
bands 1-5 and 7 of TM/ETM+ were used for a series of surface properties computation:
surface albedo, normalized difference vegetation index (NDVI), fractional vegetation cover
(FVC) and land surface emissivity (LSE). The thermal infrared (TIR) band 6 was used for
the land surface temperature (LST) retrieval. The finally retrieved daily ETA on five separate
dates were applied as observations for model performance comparison and evaluation, which
corresponded to the simulated ETA by the WaSiM-ETH model.
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Spacecraft Sensor Date Path_Row Temporary

Landsat7 ETM+ 2000-05-15 196_025 daily
Landsat7 ETM+ 2000-05-15 196_026 daily
Landsat7 ETM+ 2001-07-05 196_025 daily
Landsat7 ETM+ 2001-07-05 196_026 daily
Landsat5 TM 2003-07-19 196_025 daily
Landsat5 TM 2003-07-19 196_026 daily
Landsat5 TM 2003-08-04 196_025 daily
Landsat5 TM 2003-08-04 196_026 daily
Landsat5 TM 2003-09-21 196_025 daily
Landsat5 TM 2003-09-21 196_026 daily

Table 1.2 Selected Landsat images on 5 sample dates during the period 1971-2003 (model
runs).

MODIS product

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) products - MOD
03, MOD 05 and MOD 09 on five sample dates were also selected (Figure 1.3). MOD 09 was
used for the atmospheric correction of the Landsat images with an empirical method. MOD
05 was used for the surface water vapor retrieving, which is an important input data for LST
determination (NASA, 2015c). MOD 03 is the basic geolocation data for the level 2 MODIS
products (e.g. MOD 09) processing (NASA, 2015b). The MODIS instrument is designed for
land, ocean and atmosphere monitoring. It was carried on the Earth Observing System (EOS)
Terra and Aqua satellites that respectively launched in 1999 and 2002. The MODIS image
combined the characteristics of both AVHRR (Advanced Very High Resolution Radiometer)
and TM data. Thus, its radiometric and geometric quality is very high. There are many
standard MODIS products for a variety of uses.

MOD 03
MOD 03 is the MODIS Geolocation product, which contains information on geodetic
coordinates, ground elevation, solar and satellite zenith and azimuth angle. It is an
auxiliary data set for the further processing of MODIS Level 2 products (NASA,
2015b).

MOD 05
The MODIS Precipitable Water product (MOD 05) is used for water vapor estimation.
It consists of vertical column water-vapor amounts in cm and is in a spatial resolution
at 1 km (NASA, 2015c).
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MOD 09
The MODIS Surface-Reflectance Product (MOD 09, (Vermote et al., 2011)) is com-
puted from the MODIS Level 1B land bands 1, 2, 3, 4, 5, 6, and 7 (centered at 648
nm, 858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm, respectively). The
product is an estimate of the surface spectral reflectance for each band as it would have
been measured at ground level if there were no atmospheric scattering or absorption
(NASA, 2015d; Vermote et al., 2011).

Products Date Level Resolution (m) temporary

MOD 03 2000-05-15 1B 1000 daily
MOD 05 2000-05-15 2 1000 daily
MOD 09 2000-05-15 2 500/1000 daily
MOD 03 2001-07-05 1B 1000 daily
MOD 05 2001-07-05 2 1000 daily
MOD 09 2001-07-05 2 500/1000 daily
MOD 03 2003-07-19 1B 1000 daily
MOD 05 2003-07-19 2 1000 daily
MOD 09 2003-07-19 2 500/1000 daily
MOD 03 2003-08-04 1B 1000 daily
MOD 05 2003-08-04 2 1000 daily
MOD 09 2003-08-045 2 500/1000 daily
MOD 03 2003-09-21 1B 1000 daily
MOD 05 2003-09-21 2 1000 daily
MOD 09 2003-09-21 2 500/1000 daily

Table 1.3 Selected MODIS products on 5 sample dates.

1.4 Climate conditions

Since ET is very dependent on the climate conditions, it is necessary to understand the
variances of the basic meteorological variables firstly in the study area. In Figure 1.4
(deciduous forest) and Figure 1.5 (coniferous forest), the ground-measured meteorological
variables such as precipitation (P, in mm), air temperature (T, in oC), relative humidity (RH,
dimensionless), relative sunshine duration (SSD, dimensionless) and wind speed (WS, in
ms−1) from May 01, 2000 to September 30, 2003 (the long-time period included the five
sample dates) in a daily time step are shown. It is noted that on the five sample dates, there
was no rainfall. The other meteorological variables such as T, RH, SSD and WS on these
sample dates in both forests are also shown in Figure 1.7.
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In Figure 1.4a, it is shown that in deciduous forest there were abundant rainfall in 2000,
especially in July and September, whose maximal daily rainfall respectively approximated
to 25 and 30 mm per day. In contrast, on most days in 2003, there were little rainfall. It
was very dry on the days before May as well as in July and August in 2003, whereas about
half a month before September 21, 2003, a precipitation over 20 mm occurred. In contrast
to the "wet" year 2000 as well as the "dry" year 2003, the temperate precipitation amounts
in 2001 and 2002 are thereby rated as "medium". With respect to the five sample dates, it
was extremely wet on May, 2000, which closely followed a huge precipitation over 20 mm;
on July 19, and August 04 in 2003, it seems to be very dry due to the rarely rainfall; on
September 21, 2003, it is hard to rate, since the impact of the huge rainfall that occurred half
a month before was unknown; on July 05, 2001, it is also considered as medium wet with
compare to the other dates. In the coniferous forest (Figure 1.5a), the precipitation conditions
were more or less the same as in the deciduous forest. However, since to judge a climate is
wet or dry should not only on the basis of the precipitation amount (Thornthwaite, 1948),
these ratings such as wet, medium wet, and dry should be further verified.

In general, the T rises in the summer time and always reaches to the top values of the
whole year in July or August. In Figure 1.4b and 1.5b, the variances of T over time in both
forest types followed this seasonal variation rule. It is noted that in the August of 2003, the T
values were much higher than those days at the same time in the previous years. Moreover,
on August 04, 2003, the T was also the top of all five sample dates (over 26 oC, Figure 1.7a).
On May 05, 2000 and September 21, 2003, the T were relatively lower than the other three
dates in summer.

In Figure 1.4c and 1.5c, the RH increased in winter time and decreased in the summer,
which was opposite to the seasonal variance of T. The RH were very high in 2000, whereas
in 2003, the RH were obviously lower than the other three years. It is noted that on July
19, August 04, and September 21 in 2003, the RH were lower than their corresponding
periods’ mean values in 2000-2002. Especially in July and August in 2003, the RH were
extremely low that were consistent with the known climate condition that the summer of
2003 in Germany was extremely warm and dry. In terms of the P and RH measurements,
the wet climate in 2000, medium wet climate in 2001, and dry climate in 2003 summer are
confirmed. With regard to the five sample dates (Figure 1.7b), the relatively low RH on
August 04, 2003 accompanying with the highest T would lead to a rapid ET generation on
that day, whereas on May 15, 2000, the opposite simultaneous low T and relatively high RH
would result in slow ET generating. Therefore in terms of the measurements of P, T and
RH, the five sample dates are confirmed to contain multiple climate conditions such as wet,
medium wet and dry.
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In Figure 1.4d and 1.5d, apparently abundant SSD were shown in 2003 with compare to
in 2000 (the SSD in 2000 were the minimum in 2000-2003). In general, relatively high SSD
were shown in the summer, whereas in the winter, the SSD value were the annual minimum.
On the three sample dates in 2003 (Figure 1.7c), the SSD amount were much higher than at
the other two dates (around 0.9 v.s. not more than 0.8), which might lead to more energy
supplements to the water cycle and energy exchange. It is noted that on July 05, 2001, the
SSD was extremely low with compare to the general cases in summer. In Figure 1.4e and
1.5e, a seasonal rule for the WS is also shown: the values of WS were high in winter time
and became relatively low in summer time. The wind speed of all five dates were not more
than 2.5 ms−1.

In Figure 1.6, the differences of each meteorological variable between deciduous and
coniferous forest are shown. The negative value indicates that the variable amount in the
deciduous forest was higher than in the coniferous forest. In general, the T, RH, and WS
data respectively exhibited apparent differences between two forest types in daily scale
during the whole time period. With regard to the five sample dates (Figure 1.7), it is noted
that, for both forest types, there were also significant differences respectively in T and RH
values between forests, whereas the SSD and WS were almost the same on each date. In
terms of the fact that T in deciduous forest were generally higher than in coniferous forest,
we infer that more ET generated in deciduous forest than in coniferous forest, since high
air temperature encourages ET generation. With regard to the RH (Figure 1.6c), in the
plants growing season of deciduous forest (May to August), the RH in the deciduous forest
were obviously lower than in the coniferous forest. This fact also support the inference
that – during growing season, the deciduous forest generated more ET than the coniferous
forest, while in non-growing season, it was opposite. Likewise, the higher WS values in the
deciduous forest (in Figure 1.6e) speeded the ET process and encouraged the ET generating
in a higher level with compare to in the coniferous forest. On the other hand, the local air
temperature, air humidity and cloud formation are also affected by the ET amount (Rabin
et al., 1990; Segal and Arritt, 1992). It also makes sense, that in the deciduous forest with
more regional ET rates in a long-time period, the regional T increased due to more heat
transferred to the atmosphere; the RH decreased since the rising T increased the water vapor
capacity of the saturated air; the WS became rapid since the intensification of the water
cycling promoted the air motion. Therefore, those differences of T, RH and WS between two
forest types are assumed as not only the causes of the difference in amount of generated ET
rates in two forest types but also the results from the feedback of the generated ET rates in a
long-term period.
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1.5 Framework of this thesis

In Chapter 2, main techniques of the ETA simulation in the WaSiM-ETH model were
presented. The WaSiM-ETH is a mature hydrological model in Europe that has been widely
used and reported in publications. It consists of several sub modules. In this chapter, the
model structure, the main function of each module, the important formulas for ETP, soil
water content and ETA calculation, and the critical parameters setting in the WaSiM-ETH
model were introduced. In the final part, the model outputs were discussed for a further
understanding of the model features.

In Chapter 3, the remote sensing-based techniques for ETA estimation were presented.
Since it is found that different ET rates are generated by different methods, remote sensing-
based method is required as similar to the method used in the WaSiM-ETH as possible. In
this chapter, the basic principle, data processing flow, methods of critical variables retrieving
such as surface properties and surface energy components were introduced in detail. The
important surface properties included: surface albedo, normalized different vegetation index
(NDVI), fractional vegetation cover (FVC), surface emissivity and land surface temperature
(LST). The important surface energy components included: net radiation (Rn), sensible heat
flux (H), soil heat flux (G) and latent heat flux (LE). The outputted data of these variables on
five sample dates were discussed in the final part.

In Chapter 4, a manual model calibration was conducted in the WaSiM-ETH. The
calibrated parameter was surface resistance, which was further divided into the canopy
surface resistance rsc and the soil surface resistance rse since in WaSiM-ETH, transpiration
and evaporation are separately calculated. A review of commonly used model performance
evaluation indices were also shown. The simulated and observed data sets for comparison
were the ETA simulated by the WaSiM-ETH with different surface resistances and the ETA
retrieved by Landsat TM/ETM+ images on five sample dates. Both graphical and statistical
techniques were employed for the model performance evaluation at spatial-temporal scale.
Due to the high spatial-resolution of observations, model performance evaluation in spatial
scale was also studied. The appropriate techniques were recommended.

In Chapter 5, sensitivity analysis of surface resistance were conducted on the canopy
surface resistance rsc and the soil surface resistance rse to study their relative importance
in both forest types. The appropriate value ranges of rsc and rse for each forest type were
respectively determined. The previously recommended statistical indices for model perfor-
mance evaluation in Chapter 4 were verified, and their general value range for a satisfactory
model performance judgement were also determined. The relative and absolute responses of
ETP and ETA respectively to the perturbations of rsc and rse were studied.
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Chapter 6 is the summary of this whole thesis. The main works has been done, the
techniques comparison between the WaSiM-ETH model and remote sensing methods for ETA
estimation, the features of the simulated and observed data in this study, the meteorological
impact and the ET feedback, the features of the WaSiM-ETH model, the critical surface
properties in ETA estimation, and the model performance evaluation techniques were all
summarized in this chapter.

1.6 Main idea and objective

The main idea of this thesis is using remote sensing retrieved ETA as observations for the
model performance evaluation and parameter calibration, in order to make the WaSiM-ETH
model more physical and the model simulated ETA more realistic. The weakness of the
remote sensing based observations is apparent – they are available in a limited number
(only five samples) as well as are noncontinuous in the time series (on May 15, 2000, July
05, 2001, July 19, August 04 and September 21 in 2003). However, the ground-measured
meteorological variables show that in 2000, there were abundant precipitation and relatively
high air humidity, whereas in the summer of 2003, there were rare precipitation, extremely
high air temperature and low air humidity. In contrast to 2000 (wet) and 2003 (dry), the
relatively temperate climate condition in 2001 is thereby considered as medium wet. In
terms of the extremely warm and dry condition in the summer of 2003, we assume that there
are relatively low ETA rates generated at that time in contrast to the previous years during
the same time. On the basis of the precipitation, the air temperature and relative humidity
measurements, the observations on five sample dates were confirmed to represent multiple
climate conditions – wet (on May 15, 2000), medium wet (on July 05, 2001), and dry (on
July 19 and August 04 in 2003). Moreover, an extremely low ETA rate on August 04, 2003
is inferred due to the extremely dry weather on that day and is considered as an extreme
event in the observations. Another advantage of the observations is the high-resolution in
the spatial scale. The remote sensing based observations are superior in spatial resolution to
the simulated ETA rates by the WaSiM-ETH model since the former were retrieved from
TM/ETM+ images, whose spatial resolution is 30 × 30 m for the reflective bands as well
as respectively 120 × 120 m and 60 × 60 m for the thermal band; for the latter, the spatial
resolution is very dependent on the density of the climate station networks (Courault et al.,
2005).

Due to the the features of the observations that: (1) with low temporal resolution but high
spatial resolution, (2) be representative for multiple climate conditions such as wet, medium
wet and dry, the main objectives of this study are: (1) to investigate the response of ET under
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these different climate conditions; (2) to find the critical influence factors for ET estimation;
(3) to find the important parameters for ET estimation in the WaSiM-ETH model; (4) to find
appropriate techniques for the model performance evaluation with the remote sensing-based
observations; (5) to calibrate the important parameters for ET estimation in the WaSiM-ETH
model.

1.7 Summary

In this chapter, three commonly used conceptions of ET were introduced – ETP, ETo and ETA.
The term ETP is the maximal ET rate estimated under the given meteorological variables.
The term ETo is the ETP according to the reference vegetation surfaces. The term ETA
is the actual ET rate according to the actual soil water content. For the ET estimation,
meteorological variables, vegetation properties, precipitation and soil moisture are all critical
influence factors. The study area is the Nahe catchment in the southwest of Germany, which
is mainly covered by deciduous and coniferous forest. The WaSiM-ETH model was used
for ETA simulation in a daily time step. The running period of the WaSiM-ETH model is
1971-2003. In the aims of comparing and evaluating the model performance, the remote
sensing TM/ETM+ images were also employed for ETA estimation. The meteorological
variables from May 01, 2000 to September 30, 2003 in a daily time step showed that: the
climate in 2000 was wet due to abundant rainfall and humid air; it was dry in the summer
of 2003, since during that period, there were rare precipitation, warm air temperature and
low air humidity. The remote sensing-based observations on five sample dates were thereby
considered as to be representative for multiple climate conditions – wet, medium wet and
dry. It is noted that there were significant differences respectively in T, RH and WS between
two forest types. These differences were assumed as not only the causes of the inference
that – the generated ET in the deciduous forest were in general more than in the coniferous
forest due to their different vegetation properties, but also the results from the feedback of
the generated ET in a long-time period. The main objectives of this thesis are to evaluate the
model performance of the WaSiM-ETH model in ETA simulation and to calibrate important
parameters in ETA calculation.



Chapter 2

A hydrological model WaSiM-ETH

2.1 Introduction

The evapotranspiration (ET) estimation in the hydrological models is typically on the basis
of meteorological variables, surface energy budget and algorithms that related to the aerody-
namic characteristics of the vegetation (Allen et al., 2011). In this chapter, we introduced
the main techniques concerning the simulation of actual evapotranspiration (ETA) by a
hydrological model – WaSiM-ETH. The WaSiM-ETH (abbreviation of "Water Flow and
Balance Simulation Model", firstly developed between 1994 and 1996 at the ETH Zurich
in Switzerland) is a distributed, deterministic, mainly physical and grid-based hydrological
model (Schulla and Jasper, 2007). The WaSiM-ETH model has been widely used in Europe
and frequently reported in publications (e.g. Elfert and Bormann (2010); Gurtz et al. (2000);
Middelkoop et al. (2001)). In general, a successful hydrological model should be suitable
for a range of different types of hydrological systems. The pre-alpine and alpine catchments
are challenge for the application of a hydrological model due to their highly variable soil
and vegetation types as well as meteorological variables at the spatial-temporal scale (Gurtz
et al., 2000). However, the WaSiM-ETH model has been successfully applied in pre-alpine
and alpine catchments (Gurtz et al., 2000; Jasper, 2005; Jasper et al., 2002; Klok et al., 2001;
Verbunt et al., 2003). The WaSiM-ETH model also performed well in middle-mountain
(e.g. Middelkoop et al. (2001)) and lowland catchments (e.g. Elfert and Bormann (2010)).
Gurtz et al. (2000) compared two spatially distributed simulation model – WaSiM-ETH and
PREVAH (Viviroli et al., 2007), and found WaSiM-ETH was more physically based and
performed better in the simulation of flood events. Klok et al. (2001) applied the WaSiM-ETH
model in a heavily glaciated Alpine river basin and found it performed well in discharge
simulation. Based on the test of WaSiM-ETH for its suitability in flow simulation and flood
forecasting, Cullmann et al. (2006) concluded that calibration is necessary for WaSiM-ETH
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in case the spatial or temporal resolution changes, since the model is very sensitive to the
resolution variation. In high mountain areas, Rößler and Löffler (2010) suggested to improve
the soil moisture modelling ability of WaSiM-ETH, since its simulated soil moisture variabil-
ity across different altitudes and land cover types was only in moderate accuracy. The land
use is a sensitive variable for the WaSiM-ETH model, and the final land use is more sensitive
than the scenario difference (Elfert and Bormann, 2010). Singh et al. (2012) concluded that
using critical events replacing whole time series for the model calibration was suitable for
WaSiM-ETH. In general, WaSiM-ETH is a mature water balance simulation model, which
has been successfully applied in various areas under different climatic conditions.

WaSiM-ETH is a modular system, which is driven by the meteorological data sets. To
simulate daily ETA in the Nahe catchment, several sub modules of the WaSiM-ETH model
were employed. The modules that took part in provided functions such as radiation and
temperature correlation, ET estimation, snow accumulation and melt calculation, interception
evaporation estimation, soil moisture simulation, groundwater simulation. Simply, three steps
are important in WaSiM-ETH for ETA estimation – (1) to obtain ETP based on the basic
meteorological inputs; (2) to calculate the actual soil moisture (SM) in the unsaturated zone
based on the precipitation measurements; (3) to obtain ETA by reducing the ETP according
to the actual SM.

For ETP estimation, five categories have been divided from the existing main methods
(Xu and Singh, 2002): (1) water budget (e.g. Guitjens (1982)). The water budget methods
are also termed as storage methods, in which the ET is obtained as the residual of water
budgets (calculated by the sum of storage, precipitation and inflow minus outflow). (2)
mass-transfer (e.g. Harbeck (1962)). The mass-transfer methods are based on the Dalton’s
law, which states that the evaporation from the open water surface is proportional to the
vapor pressure difference between the water surface and the surrounding air as well as the
wind speed affects this proportionally. The simplicity in the model form and the reasonable
accuracy are advantages for the mass-transfer methods. (3) combination (e.g. Monteith
et al. (1965); Penman (1948)). The prototype of the combination methods is the Penman
equation (Penman, 1948), which combines both aerodynamic-based (mass-transfer) and
energy balance-based techniques. The Penman equation has been improved in numbers of
publications (Covey, 1959; Penman and Long, 1961; Slatyer et al., 1961; Tanner and Pelton,
1960; Van Bavel, 1966). The Penman-Monteith equation (Monteith et al., 1965) is the most
recommended and widely used one, in which the aerodynamic resistance and the surface
resistance are two very important parameters. The usage restriction of the Penman-Monteith
equation that can not be applied in data-sparse catchments is due to its high demand of
meteorological variables. (4) radiation (e.g. Priestley and Taylor (1972)). The general form
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of the radiation-based methods are linearly related the ETP rate to the net radiation with a
temperature- and altitude-dependent factor as well as a humidity- and wind speed-dependent
coefficient. However, Abtew (1996) used a simple equation for ET estimation when only
radiation data is available. The radiation methods are found to show good results in humid
areas but overestimate in arid areas (Allen et al., 1998). (5) temperature-based (e.g. Blaney
(1952); Thornthwaite (1948)). The temperature-based methods require only temperature as
input data.

2.2 Model structure

The model structure of WaSiM-ETH is shown in Figure 2.1. The WaSiM-ETH model
consists of several sub modules. The model carries out step by step to simulate the water
flow and balance on the earth. In this study, the input data are: (1) the meteorological data
sets collected from 19 available climate stations in the entire Rhineland-Palatinate region
(climate station network is shown in Figure 1.3a), such as the relative sunshine duration (SSD,
dimensionless), the air temperature (T, in oC), the relative humidity (RH, dimensionless)
and the wind speed (WS, in ms−1), which are basic inputs for ETP estimation; (2) the
precipitation measurements collected from precipitation stations in the entire Rhineland-
Palatinate region (station network is shown in Figure 1.3b), which is important for the
estimation of interception ET after rainfall, snow melt and soil water content; (3) the land
surface property data sets, such as land use, soil types, digital elevation model (DEM), land
surface exposure, field capacity and river networks, which are also important auxiliary data
to set up the entire projection in the WaSiM-ETH model. The model run step by step to
simulate a series of hydrological variables. These variables that related to ETA in orderly
are: the potential transpiration and evaporation, the evaporation from snow, the evaporation
from interception surfaces after rainfall, the soil moisture in unsaturated zone and the ETA.
The complete simulation process was executed by WaSiM-ETH from year 1971 to 2003 in a
daily time step. The output daily ETA are the grid data sets in a resolution of 20 × 20 m.

2.2.1 Radiation correction module

The radiation correction module is used to estimate the effective shortwave radiation to each
grid cell, with considering the topographic impact. In this study, we processed the radiation
correction with shadow as well as the temperature correction by the model. The radiation
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Fig. 2.1 Model structure of the WaSiM-ETH model (Schulla and Jasper, 2007).
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correction equation is written as (Schulla and Jasper, 2007):

RGeff = RG · (1+(1− cr0) ·SSD ·
[

cosΘ̂

cosZ
−1

]
) (2.1)

where RGeff and RG are respectively the after corrected effective global radiation and original
interpolated global radiation in Whm−2; SSD is the original interpolated relative sunshine
duration (dimensionless); cr0 is the empirical factor for shortwave radiation diffusion; Θ̂ is
the incident angel between the sun-to-surface direction and the normal incident direction to
the surface; Z is the zenith angel between the direction to the sun and the zenith direction.
When a cell is in the shadow of other cells or the cell is not in the sun, the correlation factor
should be 0.

The same terms in Equation 2.1 are used for temperature correction. The equation is
written as (Schulla and Jasper, 2007):

Tcorr =


Tobs − ct ·SSD ·1.609 cosΘ̂ · (cosZ)−1 < 0.2

Tobs + ct ·SSD · lncosΘ̂

cosZ
0.2 ≤ cosΘ̂ · (cosZ)−1 ≤ 5

Tobs + ct ·SSD ·1.609 cosΘ̂ · (cosZ)−1 > 5

(2.2)

where Tcorr and Tobs are the after-corrected air temperature and observed original air temper-
ature, respectively; ct is a empirical factor. It is noted that the radiation correlation factor is
valid only under cloudless conditions. When it is full cloudy, the temperature correction will
not process. In general, ct is smaller than 5 K.

2.2.2 Evapotranspiration module

The ET module calculates the ETP rates, including the potential transpiration from plants,
the evaporation from bare soil and the evaporation from interception surfaces after rainfall.
Each type of the evaporation is separately calculated using the same method but different
parameters. On no-rainfall days (dry-canopy), the interception evaporation was not taken
into account and only the transpiration from plants and the evaporation from bare soil were
calculated. There are four different methods available in this module: (1) Penman-Monteith,
(2) Hamon (Federer and Lash, 1978), (3) Wendling (Wendling, 1975), (4) Haude (Haude,
1955). The application of the Penman-Monteith method requires the most detailed ground-
measured meteorological variables, such as solar radiation, air temperature, air humidity
and wind speed, therefore this method can not be used in a data-lacking region. The other
three methods are only available for the estimation in a time step not less than one day. The
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Hamon method used only temperature data; the Wendling method used solar radiation and
air temperature as input data; the Haude method is an empirical method and only requires the
water vapor saturation data. Since the Penman-Monteith equation is the most widely used
and recommended method for ETP estimation (Allen et al., 1989, 1998; Droogers and Allen,
2002), in this study, we chose it for ETP estimation in the forest area of the Nahe catchment.
The detailed algorithm is introduced in Section 2.3.

2.2.3 Snow module

The snow module is used to estimate the accumulated snow and snow melt. In this module,
the precipitation is corrected with the wind speed and threshold temperature into two forms –
the liquid precipitation (rain) and the solid precipitation (snow). The accumulated snow is
obtained in terms of the precipitation amount, according to the air temperature (Equation
2.3). When the air temperature is in the range of the rain-snow transition temperature, both
types of the precipitation exist. The formula is written as (Schulla and Jasper, 2007):

psnow =
TR/S +Ttrans −Ta

2 ·Ttrans
f or (TR/S −Ttrans)< Ta < (TR/S +Ttrans) (2.3)

where psnow is the fraction of snow on the total precipitation; Ta is the air temperature in
oC; TR/S is the transition temperature in oC, at which 50 % of precipitation are solid (snow);
Ttrans is the transition temperature in oC, at which 50 % of snow are liquid (rain).

There are a variety of methods for snow melt computation: temperature index approach,
temperature-wind-index approach, Anderson combination method and Braun combination
method. In this study, the temperature-wind-index approach is used, which is formulated as
(Schulla and Jasper, 2007):

M = (c1 + c2 ·u) · (Ta −T0,m) ·
∆t
24

f or Ta > T0,m (2.4)

where M is the melt rate; C1 is the temperature-dependent melt factor in mm oC−1 d−1; C2

is the wind-depended melt factor in mm(oCms−1 d)−1; u is wind speed in ms−1; Ta is the
air temperature in oC; T0,m is the temperature of stating melt in oC; ∆t is the time step. If
T ≤ T0,m, M = 0.

2.2.4 Interception module

The interception module is used to calculate the ETP from the interception surfaces after
rainfall. The interception evaporation is obtained in terms of the interception storage. Since



34 A hydrological model WaSiM-ETH

the interception module runs followed the snow module, both the water from the snow melt
and the rainfall are taken into account for the components of the interception storage. In
equation 2.5, it shows that the leaf area index, the fractional vegetation cover and the land
use type are important factors for effective storage capacity determination.

SImax = fr ·LAI ·hSI (2.5)

where SImax is the maximal interception storage capacity in mm; fr is the degree of the
vegetation cover; LAI is the leaf area index and hSI is the maximal height of water at leaf
surfaces in mm.

Based on the interception storage SI , the interception evaporation is estimated as (Schulla
and Jasper, 2007):

EI =



EIP and T R = 0 for SI ≤ EIP ≤ T P

EIP and T R = T P−EI for SI ≤ T P ≤ EIP

EIP and T R = T P−EI for T P ≤ SI ≤ EIP

SI and T R = T P−SI for SI ≥ EIP ≥ T P

SI and T R = T P−SI for SI ≥ T P ≥ EIP

SI and T R = 0 for T P ≥ SI ≥ EIP

(2.6)

where EI is the interception evaporation in mm; EIP is the potential interception evaporation
in mm; TR is the actual transpiration in mm; TP is the potential transpiration in mm.

2.2.5 Unsaturated zone module

The unsaturated zone module is one of the soil model versions in WaSiM-ETH. Since in the
unsaturated zone vertical flow is much more important than lateral flow, the Richards equation
was employed in this module to simulate fluxes inner soil vertically in one-dimension. The
unsaturated zone was divided into numerous layers. Soil water content is obtained by
simulating the fluxes in the soil between each two neighbour layers. This module is very
important for ETA estimation, since the ETA amount highly depends on the available soil
water content.

2.2.6 Groundwater flow module

The groundwater flow module simulates multilayer aquifers for groundwater. For each layer,
the aquifer is horizontally two-dimension grid data. Leakage factors are the links between
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layers. Groundwater is connected to the surface water through unsaturated zone model. The
surface water falls into ground water through leakage approach while groundwater rises to
the surface generating the surface flow. Both processes are simulated in unsaturated zone
model.

2.3 Important formulas for ETA estimation

2.3.1 Penman-Monteith equation

The Penman-Monteith equation (Monteith et al., 1965) is the most widely used and rec-
ommended approach for ETP estimation. Its prototype is the Penman equation (Penman,
1948), in which both aerodynamic-based and energy balance-based approaches were firstly
combined to estimate the evaporation from the surfaces such as open water, bare soil and
turf. On the basis of the aerodynamic theory, the ET is calculated as the turbulent transport
of vapor. On the basis of the surface energy theory, the ET is calculated as the latent heat
flux through the surface energy balance equation. Combining these two theories in ET
estimation eliminates the difficulties in calculating the surface temperature, and employs the
basic meteorological variables into ET estimation - the historical ET is therefore available
(Penman, 1948). In the Penman-Monteith equation, two parameters are very important – the
bulk aerodynamic resistance ra and the bulk surface resistance rs . The evaporation surface
in the Penman-Monteith equation is described as a single big leaf. The ra is related to the
heat and water vapor transfer from the evaporation surfaces to the air above the canopy. The
rs describes the resist ability while plant transpiring and bare soil evaporating. In this study,
the bulk surface resistance is further divided into two terms – the canopy surface resistance
rsc and the soil surface resistance rsc , respectively corresponding to the transpiration and the
evaporation. The Penman-Monteith equation is formulated as (Monteith et al., 1965):

λE =

3.6
∆

γp
(Rn −G)+

ρcp

γpra
(es − e)ti

∆

γp
+1+ rs/ra

(2.7)

where λ is the latent vaporization heat, λ = (2500.8− 2.372T ) KJKg−1, with T is the
temperature in oC; E is the latent heat flux in mmm−2 ≡ Kgm−2; ∆ is the tangent to the
saturated vapor pressure curve in hPa K−1; Rn is the net radiation in Whm−2 and G = 0.1 ·Rn

is the soil heat flux in Whm−2, the factor 3.6 is used to convert both fluxes from Whm−2 to
KJm−2; ρ is the density of dry air, ρ = p/(RLT ), at 0 oC and 101325 hPa, ρ = 1.29 Kgm−3;
cp is the specific heat capacity of the dry air at constant pressure, cp = 1.005 KJKg−1 K−1;



36 A hydrological model WaSiM-ETH

es is the saturation vapor pressure at temperature T, in hPa; e is the observed actual vapor
pressure in hPa; ti is the number of seconds within a time step; γp is the psychrometric
constant in hPa K−1; ra and rs are respectively the bulk-aerodynamic resistance and the
bulk-surface resistance in sm−1.

The slope of the saturated vapor pressure curve ∆ in hPa K−1 is calculated as (Tetens,
1930):

es = 06.1078 · e
17.27 ·T
237.3+T (2.8)

∆ =
∂es

∂T
=

25029
(273.3+T )2 · e

17.27 ·T
237.3+T (2.9)

where T is the air temperature in oC.

The psychrometric constant γp in hPa K−1 is calculated as (Schulla and Jasper, 2007):

γp =
cp · p

0.622 ·λ
(2.10)

with
p ≈ 1013 · e−

hM
7991+29.33·Tv (2.11)

where p is the air pressure at level hM in hPa; 0.622 is the ratio of the molecular weights of
water vapor to dry air; hM is the altitude in m; Tv is the mean virtual temperature of the air
column in oC.

The net radiation Rn is the difference between shortwave radiation and longwave radiation.
To calculate Rn, the global radiation Rg (shortwave incident and outgoing radiation from
the land surface) is very important. The input relative sunshine duration SSD is used for Rg

estimation. The formulas are (Schulla and Jasper, 2007):

Rn = (1−α)Rg −Rl (2.12)

with

Rg = Inorm(cr0 + cr1 ·SSD+ cr2 ·SSD2 + cr3 ·SSD3)

= Inorm(0.23+1.77 ·SSD+(−2.28) ·SSD2 +1.28 ·SSD3)
(2.13)

RL = ∆t ·σT 4 · (0.48−0.065
√

e) · (cr0 +(1− cr0) ·SSD)

= ∆t ·5.67 ·10−8T 4 · (0.48−0.065
√

e) · (0.23+0.77 ·SSD)
(2.14)
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where Rn and Rg are in Whm−2; α is the shortwave surface albedo (dimensionless); Rl is the
longwave radiation (outgoing less incident to the surface) in Whm−2; Inorm is the theoretical
clear sky radiation in Whm−2; SSD is the relative sunshine duration (dimensionless); cr0ċr3

are the empirical constants; ∆t is the time step converted from power to energy in h; σ is
the Boltzmann-constant, σ = 5.68×10−8 Wm−2 K4; T is the air temperature in K; e is the
actual vapor pressure in mbar.

2.3.2 Richards equation

The soil model in WaSiM-ETH is based on the Richards equation (Richards, 1931), which is
used for the fluxes simulation in the unsaturated soil zone. As the vertical flow is considered
as much more important than the lateral flow, the soil is divided into several layers in one-
dimension in the vertical direction. The continuity equation for soil model is written as
(Schulla and Jasper, 2007):

∂Θ

∂ t
=

∂q
∂ z

=
∂

∂ z
(−k(Θ)

∂Ψ(Θ)

∂ z
) (2.15)

where Θ is the soil water content in m3 m−3; t is the time in s; k is the hydraulic conductivity
in ms−1; Ψ is the hydraulic head of the suction ψ plus geodetic latitude h in m; q is the
specific flux in ms−1; z is the vertical height in m.

And the discrete Richards equation is formulated as (Schulla and Jasper, 2007):

∆Θ

∆t
=

∆q
∆z

= qin −qout (2.16)

with
q = ke f f ·

hh(Θu)−hh(Θl)

0.5 · (du +dl)
(2.17)

1
ke f f

=
du

du +dl
· 1

k(Θu)
+

du

du +dl
· 1

k(Θl)
(2.18)

where qin is the inflow into soil layer in ms−1; qout is the outflow from soil layers in ms−1,
including both interflow and artificial drainage; q indicates the flux between two neighboring
layers in ms−1; u denotes the upper layer and l denotes the lower one; ke f f is the effective
hydraulic conductivity in ms−1; hh is the hydraulic head in m that depended on the water
content and is given as the sum of suction Ψ(Θ) and geodetic altitude h; d is the thickness of
the layer in m.
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The hydraulic parameter is formulated as (Van Genuchten, 1980):

ψ(Θ) =
1
α
[(

Θ−Θr

Θs −Θr
)−1/m −1]1/n (2.19)

k(Θ)

ks
= [

Θ−Θr

Θs −Θr
]1/2[1−1− (

Θ−Θr

Θs −Θr
)−1/m

m
]2 (2.20)

ks,z = ks · kz
rec (2.21)

where ψ is the suction; Θ, Θr and Θs are respectively the actual, residual and saturated water
content (dimensionless); α , n and m are empirical parameters; ks, ks,z are respectively the
saturated hydrological conductivity within the depth z m and at soil surface in ms−1; krec is
the recession constant.

Based on the Equation 2.19, the actual soil water content Θ is calculated by the actual
soil suction ψ(Θ) (Schulla and Jasper, 2007):

Θ = Θr +(Θs −Θr)(
1

1+(ψ(Θ)α)n )
m (2.22)

2.3.3 Actual evapotranspiration estimation

According to the actual soil moisture, the ETA was then obtained based on the ETP. All soil
water conditions are considered (Schulla and Jasper, 2007):

ETAi =



0 Θ(ψ)< Θwp

ET Pi ·
(Θ(ψi)−Θwp)

(Θψg −Θwp)
Θwp ≤ Θ(ψ)≤ Θψg

ET Pi Θψg < Θ(ψ)≤ η ·Θsat

ET Pi ·
(Θsat −Θ(ψi))

(Θsat −η ·Θsat)
η ·Θsat < Θ(ψ)≤ Θsat

(2.23)

where i is the index of soil layer; Θ(ψ) is the actual relative soil water content at suction ψ

(dimensionless), with ψ is the actual suction (capillary pressure, in m); Θwp is the soil water
content at permanent wilting point (ψ = 1.5 MPa ≈ 150 m); Θψg is the soil water content at
a given suction ψg, with ψg indicates the beginning point of dry soils; Θsat is the saturated
soil water content; η is the maximum relative soil water content under no anaerobe bacterial
conditions (still with Oxygen in soil), η ≈ 0.9 . . .0.95.

In Equation 2.23, four types of soil water conditions are considered – very dry soils
(Θ(ψ)< Θwp), dry soils (Θwp ≤ Θ(ψ)≤ Θψg), well-watered soils (Θψg < Θ(ψ)≤ η ·Θsat)
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and too wet soils (η ·Θsat < Θ(ψ) ≤ Θsat). Three parameters are given in the WaSiM-
ETH control file: T ReduWet indicates the relative soil water content at the beginning of
the Oxygen stress, LimitReduWet is the relative reduction factor of real transpiration for
water-saturated soils, HReduDry is the hydraulic head for beginning dryness stress in m.
Those parameters vary for different crop types. Therefore the reduction of ET P depends on
both the soil water content and crop types. In deciduous and coniferous forest, the default
setting values of those three parameters are totally the same (in Table 2.1).

Forest types TReduWet LimitReduWet HReduDry

Deciduous 0.95 0.5 3.0
Coniferous 0.95 0.5 3.0

Table 2.1 Soil water condition parameters.

2.4 Important parameters setting

2.4.1 Bulk-aerodynamic resistance

The aerodynamic resistance and the surface resistance are two important parameters, to
which the ET estimation by the Penman-Monteith approach are very sensitive. Beven (1979)
studied the ETA estimated by the Penman-Monteith equation in a broadly temperate region
and found it was very dependent on the values of the aerodynamic and surface resistance than
other inputs in grassland surface. The aerodynamic resistance is estimated in WaSiM-ETH
by the following formula (Schulla and Jasper, 2007):

ra =
4.72 · (ln z

z0
)2

1+0.54u
(2.24)

where z is the sampling elevation above ground in m; z0 is the aerodynamic roughness length
in m. Different land use types leads to different z0. z0 ≈ 0.1· (crop height-shift height), with
the (crop height-shift height) is the effective height; u is the wind speed in ms−1. While z0 >

2 m, ra is calculated as (Schulla and Jasper, 2007):

ra = 25/(1+0.54u) (2.25)

In this study, the general aerodynamic roughness length of deciduous and coniferous
forest are both more than 2 m (Table 2.2). Therefore in the Nahe catchments forest regions,
ra for both forest types depend only on the wind speed u. More rapid wind speed leads to
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smaller aerodynamic resistance and thereby results in an increase of the heat and water vapor
transfer.

Forest types z0 (m)

Deciduous 3.93
Coniferous 3.69

Table 2.2 Aerodynamic roughness length z0 (m) for deciduous and coniferous forest in the
Nahe catchment.

2.4.2 Bulk-surface resistance

The bulk-surface resistance describes the resistance for (1) vegetation transpiration, (2)
bare soil evaporation, and (3) evaporation from the interception surfaces under wet surface
conditions. In the WaSiM-ETH model, these three processes of evaporation are calculated
respectively by the Penman-Monteith equation. Therefore the bulk-surface resistance is
divided into three terms: the canopy surface resistance rsc, the soil surface resistance rse and
the interception surface resistance rsi. The canopy surface resistance rsc is found to play a
leading role in affecting the magnitudes of ETA estimated by the Penman-Monteith equation
in forest regions (Beven, 1979). Values of the canopy resistance show diurnal and seasonal
variations. A rule of the diurnal value variation of a significant canopy resistance (more than
10 ms−1) was found by Van Bavel (1967): the initial value of canopy resistance after sunrise
was low and it rose up to about 20 times after midday and then decreased. In WaSiM-ETH,
the surface resistance is calculated separately according to different cases (Schulla and Jasper,
2007):

For daytime:

rs =



1
(1−A)

rsc

for plant transpiration

2500 for plant transpiration when LAI or FVC =0

0 for open water evaporation

rsi for evaporation from interception surfaces

rse for bare soil evaporation

(2.26)

where rs is the minimal surface resistance in sm−1; rsc is the minimal surface resistance
of crop with sufficient water supply in sm−1; 1-A is the evaporation effective vegetation
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coverage with A = f LAI·FVC, f ≈ 0.6 ∼ 0.7, LAIis the leaf area index and FVC is the
fractional vegetation cover; rse is the surface resistance for bare soil whose commonly rough
range is [150,250] in sm−1; rsi is the surface resistance for interception whose commonly
rough range is [20,100] in sm−1.

For night time:

rs =



1
(LAI ·FVC)

2500

for plant transpiration

2500 for plant transpiration when LAI or FVC =0

0 for open water evaporation

rsi for evaporation from interception surfaces

rse for bare soil evaporation

(2.27)

It is obvious that the surface resistance for plant transpiration at night differs from the
value at the daytime, while in other cases the corresponding surface resistances keep the
same for both day and night values. Take an example by assuming f = 0.7,LAI = 6,FVC =

0.9,rsc = 240 for plant transpiration, the minimal surface resistance rs ≈ 280.94 sm−1 at the
daytime as well as at night rs increases to 462.92 sm−1. And this agrees with the diurnal
variation of surface resistance – it diminishes to low value after sunset (Van Bavel, 1967).

In Table 2.3, the default parameters setting of surface resistance in WaSiM-ETH for
each month are listed. The initial values for the deciduous forest are worked out from the
KlimLand-Project (Casper et al., 2013), as well as the initial values for coniferous forest
are based on the Forestclim-Project (Plegnière and Casper, 2011). For both forest types,
in November to February, the value of canopy surface resistance rsc reaches its maximal
whereas in May to September, it reduces to its annual minimal. The soil surface resistance
rse and the interception surface resistance rsi remain constant for an entire year.

Jan Feb Apr Mar May Jun Jul Aug Sep Oct Nov Dec

rsc 150 150 142 112 98 98 98 98 98 128 150 150
rse 250 250 250 250 250 250 250 250 250 250 250 250Deci
rsi 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

rsc 240 240 225 195 165 165 165 165 165 225 240 240
rse 300 300 300 300 300 300 300 300 300 300 300 300Coni
rsi 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 2.3 Surface resistance (sm−1) for deciduous and coniferous forest in WaSiM.
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2.4.3 Other property parameters

In Table 2.4, default parameter settings such as surface albedo, LAI (leaf area index) and
FVC (fractional vegetation cover) are listed. In deciduous forest, the surface albedo is always
higher than that of coniferous forest. With regard to the LAI and FVC, the seasonal variability
in deciduous forest is higher than in coniferous forest, since summer is the grown season for
deciduous plants and the deciduous plants drop their leaves in autumn.

Jan Feb Apr Mar May Jun Jul Aug Sep Oct Nov Dec

albedo 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
LAI 1 1 1 1 3 5 5 5 5 5 3 1Deci
FVC 0.25 0.25 0.25 0.25 0.55 0.85 0.85 0.85 0.85 0.85 0.55 0.25

albedo 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
LAI 6 6 6 6.3 6.3 6.7 6.7 6.7 6.3 6.3 6 6Coni
FVC 0.9 0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.95 0.9 0.9 0.9

Table 2.4 Albedo, LAI and FVC for deciduous and coniferous forest in WaSiM.

2.5 Results and discussion

Figure 2.2 and 2.3 show the regional median values of outputs simulated by the WaSiM-ETH
model, such as daily ETP (mm), daily ETA (mm), decline between daily ETP and ETA
(deETP, in mm) as well as daily relative soil moisture (SM, dimensionless) in the root zone.
These outputs are on five sample dates (May 15, 2000, July 05, 2001, and July 19, August
04, September 21, in 2003), in deciduous and coniferous forest of the Nahe catchment. For
each forest type, the outputs are simulated with 12 different representative surface resistance
combinations. Each surface resistance combination includes two sub parameters – the surface
canopy resistance rsc and the soil surface resistance rse. The former describes the resistance
of the plants’ canopy in transpiring process as well as the latter is the resistance for bare
soil evaporation. Although rsc and rse are parameters for ETP calculation and thereby affect
the estimation of ETP and subsequently the amount of ETA, in the WaSiM-ETH model,
their perturbations also influence the SM simulation (Figure 2.2d and 2.3d). This can be
attributed to the model conception of WaSiM-ETH, in which the simulations of ETA and SM
are associated with each other and follow the water balance principle – an in- or decrease
of ETA will lead to opposite responses in SM in a long-time period. It is obviously that
for each surface resistance combination, their corresponding ETP, deETP and SM for both
forest types respectively exhibit consistent change trend on five sample dates but in different
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amounts (Figure 2.2 and 2.3). Thus, the impacts of surface resistance on ETP, deETP and
SM are mainly in magnitude, whereas their fluctuations over time are assumed to reflect the
climatic changes.

The ETP generation is only dependent on the meteorological variables such as T, RH,
SSD and WS as well as is with no regard to the precipitation. Based on the meteorological
variables, we previously inferred in Chapter 1 that in the summer of 2003, high T and low
RH values might lead to higher ETP rates, especially on August 04, whose T values were
extremely high might lead to extremely high ETP rates; on May 15, 2000, the relatively low
T and high RH might result in smaller ETP rates. In Figure 2.2a and 2.3a, the order of ETP
rates on five dates for both forest types are approximately: ETPAug04,2003 > ETPJul19,2003 >

ETPJul05,2001 > ETPMay15,2000, ETPSep21,2003. This order is consistent with the previous
inference.

The moisture degree of a climate is suggested by Thornthwaite (1948) to be judged on
the basis of the amounts of both precipitation and ETA rather than only on precipitation
– if the amount of precipitation is more than ETA, the climate is wet; conversely, it is
dry. On the basis of the precipitation and relative humidity measurements, we draw a
conclusion in Chapter 1 that the observations on five sample dates are representative for
multiple climate conditions – wet (on May 15, 2000), medium wet (on July 05, 2001) and
dry (on July 19 and August 04 in 2003). Boulet et al. (2007) introduced a stress factor to
indicate the crop water stress in the soil, which was defined as a function of the ratio between
ETA and ETP rates. In order to confirm the climate conditions, we studied the decline
amounts between daily ETP and ETA (deETP, Figure 2.2c and 2.3c) as well as the soil
moisture (SM, Figure 2.2d and 2.3d). For both forest types, deETP on five dates are sorted as:
deETPAug04,2003 > deETPJul19,2003 > deETPJul05,2001 > deETPSep21,2003 > deETPMay15,2000.
It is shown that on August 04, 2003, the ETP rates was the top of all as well as the decline
amount on that day was also the largest. Since: (1) ETP is the maximal evaporation rates for
crops under given meteorological variables with sufficient water supply; (2) the decline of
ETP to ETA is according to the actual SM, the decline amount deETP is considered as an
ideal indicator of water stress. In terms of the deETP, the moisture degree of the climate on
five dates are sorted from wet to dry in order as – May 15, 2000 > July 05, 2001 > September
21, 2003 > July 19, 2003 > August 04, 2003, which is consistent with the previous conclusion.
In terms of the SM, the climate conditions are also confirmed. Moreover, on May 15, 2000,
the SM simulated with different surface resistance combinations uniformly approximated to
0.9, which indicates the almost saturated soil water content (wet) on that day.

The variations of ETA simulated from different surface resistance combinations on five
dates are very complicated (Figure 2.2b and 2.3b). This appearance is attributed to the
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combined effects that the impact of the surface resistance perturbation – mainly influences
ETP in magnitude, the impact of the meteorological variables variances – reflected on the
ETP fluctuations over time, and the impact of the actual soil moisture restriction – determined
the reducing amount on the ETP rate.

Fig. 2.2 Model outputs (a) daily median ETP (mm), (b) daily median ETA (mm), (c) decline
between daily median ETP and ETA (mm), (d) daily median relative soil moisture in root
zone, of WaSiM-ETH on five sample dates in deciduous forest of the Nahe catchment.
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Fig. 2.3 Model outputs (a) daily median ETP (mm), (b) daily median ETA (mm), (c) decline
between daily median ETP and ETA (mm), (d) daily median relative soil moisture in root
zone, of WaSiM-ETH on five sample dates in coniferous forest of the Nahe catchment.
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2.6 Summary and conclusion

In this chapter, we introduced the main techniques concerning ETA estimation in the WaSiM-
ETH model. WaSiM-ETH is a mature hydrological model that has been successfully applied
in different cases. It consists of several sub modules. In this study, seven sub modules were
involved orderly: (1) the radiation correction module corrected the sunshine radiation to
achieve effective radiation for each grid cell; (2) the ET module separately calculated the
ETP from plants transpiration, soil surfaces evaporation and interception evaporation after
rainfall; (3) the snow module calculated the snow accumulation and melting in terms of
the precipitation and temperature measurements; (4) the interception module computed the
interception storage, taking both the water from snow melt and rainfall into account; (5) the
unsaturated zone module simulated the soil water content vertically in one-dimension in the
soil; (6) the groundwater flow module simulated the multi-layer aquifers for groundwater.
With regard to the ETA estimation, there were three main steps: (1) on the basis of the
ground-measured meteorological variables such as SSD, T, RH and WS, to calculate the ETP
by the Penman-Monteith equation; (2) using the precipitation measurements to simulate the
soil water content in the unsaturated zone by the Richards equation; (3) to obtain ETA by
reducing the ETP according to the actual soil water content.

In the Penman-Monteith equation, the bulk aerodynamic resistance ra and the bulk surface
resistance rs are the most important parameters for ET estimation (Beven, 1979; Calder,
1977; Rana and Katerji, 1998). Since in WaSiM-ETH, the transpiration from plants, the
evaporation from bare soil and the interception evaporation are separately calculated with
the Penman-Monteith equation, rs are thereby divided into the canopy surface resistance rsc,
the soil surface resistance rse and the interception surfaces rsi. In this study, we focused our
studies only on the parameters rsc and rse, as only the dry-canopy (no rainfall) condition was
taken into account, as well as rs plays a much more significant role than ra in a forest region
(Beven, 1979).

The simulation with different rsc and rse values were executed in WaSiM-ETH. For each
forest type, 12 different representative combinations of rsc and rse were selected to explore
the performances of their corresponding outputs on five sample dates. It was found that
the changes in rsc and rse leaded to variances of ETP mainly in magnitude whereas the
fluctuations over time were assumed to correspond to the impact of daily meteorological
variables. The parameters rsc and rse also impacted deETP and SM in magnitude. In WaSiM-
ETH, ETA and SM estimation are associated with each other in a long time series – decrease
of ETA would lead to more water remaining in the soil whereas increase of ETA would
reduce the soil moisture due to the water balance principle in the model.
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Due to the suggestion that to judge the moisture degree of a climate by the amounts
of both precipitation and ETA (Thornthwaite, 1948), the deETP is considered as a good
indicator. For instance, the meteorological condition on August 04, 2003 was considered
relatively dry due to the highest deETP value on five sample days whereas it was considered
as wet on May 15, 2000 in terms of its lowest deETP value (Figure 2.2c and 2.3c). In terms of
the deETP, the remote sensing-based observation on five sample days are verified to contain
multiple meteorological conditions. However, on May 15, 2000, it was confirmed very wet
due to the uniform model-simulated soil moisture values with different surface resistances,
which all approximated to 0.9.



Chapter 3

Remote sensing

3.1 Introduction

Remote sensing data have been frequently used in hydrological studies since they are
economic, efficient and large-scale available materials for the hydrological state variables
or energy fluxes in the water cycle estimation. The conventional methods urgently require
ground measurements, whereas the introduction of the remote sensing data alleviate or even
eliminate this requirement. On the basis of the remote sensing data, additional information
on meteorological variables, surface properties and crop features can be supplied in data-
lacking basins, and these research data are available over a large landscape scale. With the
developing of remote sensing instruments and techniques, the accuracy of remote sensing-
based estimations is also increasing. In the last decades, several methods on the basis of
remote sensing images combining with the ground measurements have been proposed and
improved in evapotranspiration (ET) estimation. These methods have improved the accuracy
of the meteorological measurements and the estimated ET (Wilson et al., 2003).

The remote sensing techniques for ET estimation have been divided into four categories
(Courault et al., 2005): (1) empirical direct methods; (2) residual methods of the energy
budget; (3) inference methods; (4) deterministic methods. The empirical direct methods are
based on the simplified approach firstly proposed by Jackson et al. (1977), which linearly
relates the daily sensible heat flux H to the instantaneous temperature difference between
surface and air (Ts −Ta) at midday, assuming that the ratio of H to net radiation (Rn) is a
constant and the soil heat flux (G) in a 24-hours period is negligible. In the approach, Ts is
the land surface temperature (LST) retrieved by remote sensing data in oC and Ta is the air
temperature that 150 cm above the soil in oC. (Ts −Ta) is also termed as the stress degree
day (SDD). The simplified approach has been subsequently improved in a number of studies
(Carlson and Buffum, 1989; Carlson et al., 1995; Lagouarde, 1991; Nieuwenhuis et al., 1985;
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Seguin and Itier, 1983); a non-constant coefficient B and an additional exponential coefficient
n are finally employed to retrieve H from the surface-air temperature difference at midday.
In the empirical direct methods, the ground meteorological measurements and the Thermal
Infra Red (TIR) remote sensing data are basic input data. The basic principle of the empirical
direct methods is that to estimate ET (corresponding to the latent heat flux, LE) by assessing
the surface energy balance through the surface properties such as surface albedo, fractional
vegetation cover (FVC) and LST. The biggest difficulty in the empirical direct methods is
the determination of LST. The residual methods of the energy budget estimate the ET as
the residual of the energy balance equation. The other energy components are obtained by
empirical and physical combined methods. The most representative approach is SEBAL
(Surface Energy Balance Algorithm for Land) (Bastiaanssen et al., 1998a,b). In SEBAL
model, remote sensing images are used to estimate Rn and G at a regional scale. The ground-
measured meteorological data also play an important role in SEBAL. It is also suggested to
obtain reasonable accurate results with SEBAL in midday, and the accuracy very depends on
the density of the available climate stations in the study area (Courault et al., 2005). SEBAL
is suggested not to work in cloudy days (Bastiaanssen et al., 1998a) and it is not suitable for
all regions. However, the biggest difficulty in applying SEBAL is to detect the wet and dry
pixels (Courault et al., 2005). In the wet pixels, H is considered as zero and Ts equals Ta

whereas in the dry pixels, LE is assumed as zero since all energy transforms into H (Calcagno
et al., 2007). The inference methods are actually the "Kc.ETo" approach firstly proposed in
the FAO-24 report (Doorenbos and Pruitt, 1977), in which the actual evapotranspiration ETA
is calculated by the reference evapotranspiration (ETo) multiplying the crop coefficient Kc.
In the inference methods, ETo is estimated by the ground measurements and kc is calculated
by the remote sensing data. It is difficult to determine kc, since it is dependent on crop types,
crop growth stages, soil evaporation rates and climate conditions (Allen et al., 1998). The
vegetation indices such as the normalized difference vegetation index (NDVI) and the leaf
area index (LAI) are critical parameters in kc calculation due to the high correlations between
them and kc. Both NDVI and LAI are retrieved from the red and near red reflective bands
of the remote sensing images. The deterministic methods are based on the complicated
soil-vegetation-atmosphere transfer (SVAT) model. In these methods, the remote sensing
data are employed as the auxiliary materials for the energy flux components estimation and
the input data of SVAT model integration or calibration.

In this study, we used remote sensing images from the Landsat Thematic Mapper (TM)
and Enhanced Thematic Mapper plus (ETM+) as basic input data for ETA estimation. The
accuracy of the remote sensing-based outputs are very dependent on the precisions of the
remote sensors, the spatial and temporal resolutions of the satellites and the impacts from the
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atmosphere and clouds (Lagouarde and Brunet, 1993). It is important to make sure that LST
retrieved from the remote sensing TIR data is under totally clear-sky conditions, since even
very thin cloud covers will considerably affect the thermal band readings, lead to large errors
in LST estimation and sensible heat flux calculation (Allen et al., 2002). Therefore, high
quality and cloudy-free remote sensing images are required. The atmospheric correction is
also necessary for data pre-processing to alleviate the atmospheric effect and improve the
accuracy of the remote sensing images. The spatial resolution of TM and ETM+ images are
very high: 30 × 30 m for the reflective bands, and respectively 120 × 120 m and 60 × 60
m for the thermal band. However, due to the overlapping cycle of the Landsat TM/ETM+
sensor for the entire earth is 16 days, high quality and cloudy-free images during the period
1971-2003 (the WaSiM-ETH model run) for the Nahe catchment are available on only five
dates – May 15, 2000, July 05, 2001, and July 19, August 04, and September 21 in 2003.

The TM and ETM+ images have been widely used in environmental studies. TM sensor
was carried on the Landsat 4 and 5 satellites during 1982-2012. The TM image consists of
seven bands – band 1-5 and 7 are in the visible and near infrared (NIR) regions, and band
6 is in the thermal infrared (TIR) region. Band 1 (0.45-0.520 µm) is used for studies on
coastal water; band 2 (0.52-0.6) is used for crops and vegetation stage identification; band 3
and 4 (0.63-0.69 µm and 0.76-0.9 µm), respectively red and NIR band, are commonly used
for NDVI retrieving; band 5 and 7 (1.55-1.75 µm and 2.08-2.35 µm), both median infrared
band, are used for studies on clouds, snow and ice; the thermal band 6 (10.4-12.5 µm) is
used for land surface temperature determining (Sobrino et al., 2004). The ETM+ sensor has
carried on Landsat 7 and launched since 1999. However, since May 30, 2003, a scan line
corrector occurred to the data. The ETM+ image consists of eight bands, with an additional
Panchromatic band 8. Like TM, the TIR band of ETM+ is also frequently used for LST
retrieving. The spatial resolution of TIR band in TM and ETM+ (120 m and 60 m) are high
enough to detect the thermal variations in space scale on the land surface. With contrast to
the visible and NIR bands, the characteristics of the TIR radiation are: (1) the atmospheric
scatting of TIR radiation is small due to its relatively long wavelength; (2) the radiation can
be acquired both in daytime or nighttime since it is emitted rather than reflected. Based on
the TIR band of TM/ETM+, three single-channel methods were proposed for LST retrieving:
(1) the relative transfer equation; (2) the nomo-widow algorithm (Qin et al., 2001); (3) the
Jiménez-Muñoz and Sobrino’s single-channel method (Jiménez-Muñoz and Sobrino, 2003).
The first method estimates LST using situ radiosounding data by the relative transfer equation.
The mono-window algorithm employs the atmospheric water vapor and near-surface air
temperature as input data. The single-channel method only requires the atmospheric water
vapor content. Sobrino et al. (2004) compared them all and found that the single-channel
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method performed best in LST retrieving. LST is strongly related to the ET rate, therefore
TM and ETM+ TIR data are extensively used for large-scale surface ET estimation.

The purpose of this chapter is to estimate ETA with the remote sensing and ground-
measured combined data, through an appropriate method that is as similar as possible to
the techniques employed in WaSiM-ETH model, thereby to obtain ideal observation data
corresponding to the model simulated ETA. In this chapter, we introduced the main techniques
of daily ETA retrieving from TM/ETM+ images on five sample dates.

3.2 Method statement

In this study, the empirical direct method was used for ETA retrieving from remote sensing
images. Figure 3.1 shows the main flow chart of data processing. The basic principle of this
method is to estimate ETA as the latent heat flux through the surface energy balance equation
with the surface properties. The input data are high-quality and cloudy-free TM and ETM+
images selected on five sample dates during the period that model run (1971-2003) – May 15,
2000, July 05, 2001, July 19, August 04 and September 21 in 2003. The MODIS (Moderate
Resolution Imaging Spectroradiometer) products (MOD 09 and MOD 05) on the same dates
were collected as auxiliary data. MOD 09 is the MODIS surface reflectance product, which
estimates the surface spectral reflectance and used for the atmospheric correction of TM
and ETM+ images. Bands 1–5 and 7 of both TM and ETM+ images are the reflectance
bands. The spectral radiance of these bands with a spatial resolution of 30 m were used
for a series of surface properties achieving: surface albedo, NDVI, FVC and land surface
emissivity (LSE). The MODIS Precipitable Water product (MOD 05) was used for water
vapor estimation. It consists of vertical column water-vapor amounts in cm and is in a spatial
resolution at 1 km. The thermal band 6 with a resolution of 120 m for TM and 60 m for
ETM+ combining with the water vapor estimates were used for LST retrieving.

The LST is a critical variable in surface energy assessment (Figure 3.2). It is an important
input data for the sensible heat flux (H) calculation. In this study, we used a modification of
the simplified method proposed by (Jackson et al., 1977). The H is linearly related to the
instantaneous temperature difference between surface and air at midday – to retrieve daily
integrated H based on the maximal LST and ground measured air temperature. LST is also
an important input data for net radiation (Rn) estimation. The outgoing longwave radiation
was calculated by the mean LST. After the soil heat flux (G) was calculated as an fractional
of Rn, the ETA on five sample dates were finally obtained as latent heat flux by the surface
energy equation. The retrieved data are with a grid resolution of 30 × 30 m.
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Fig. 3.1 Flow chart of data processing.

3.3 Atmospheric correction

Remote sensing images are commonly expressed in arbitrary units, e.g., digital number (DN).
To obtain lasting quantitative values of remote sensing images, it is necessary to calibrate
them into physical units such as reflectance (Teillet, 1986). The reflectance values of remote
sensing images are generally affected by sensor characteristics, illumination geometry and
atmospheric scattering and absorption (Smith and Milton, 1999). To remove the effect of
the sensor, usually a known relationship between DN and sensor-recorded radiance is used.
In this study, the DN values of Landsat TM/ETM+ images were converted to the at-sensor
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Fig. 3.2 LST for heat fluxes retrieving.

spectral radiance by the following equation (Chander et al., 2009):

Lλ = (
LMAXλ −LMINλ

Qcal max −Qcal min
)(Qcal −Qcal min)+LMINλ (3.1)

where Lλ is the spectral at-sensor radiance at the sensor‘s aperture in Wm−2 sr−1 µm−1;
LMAXλ is the spectral at-sensor radiance that is scaled to Qcal max; LMINλ is the spectral
at-sensor radiance that is scaled to Qcal min; Qcal is the quantized calibrated pixel value (DN);
Qcal max is the maximum quantized calibrated pixel value corresponding to LMAXλ (DN);
Qcal min is the minimum quantized calibrated pixel value corresponding to LMINλ (DN).

The thermal band of Landsat TM/ETM+ was converted from at-sensor spectral radiance
to effective at-sensor brightness temperature. The conversion formula is:

Tλ =
K2

ln(
K1

Lλ

+1)
(3.2)

where Tλ is the effective at-sensor brightness temperature in K; K1 and K2 are the calibration
constants in K.

There are a number of methods to account for the influence of illumination and atmo-
sphere on the sensor-recorded radiance, such as (Karpouzli and Malthus, 2003; Smith and
Milton, 1999): (1) dark subtraction methods (e.g. Chavez (1996)). Dark subtraction methods
remove the atmospheric effects from an image by subtracting the pixel value that repre-
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Sensor K1 K2

Landsat TM 607.76 1260.56
Landsat ETM+ 666.09 1282.71

Table 3.1 Calibration constants for at-sensor radiance to effective brightness temperature.

sents the background; (2) normalization method (e.g. FLAASH). Normalization methods
normalized the reflectance of an image to a spectrally flat target or an image average; (3)
empirical line method. Empirical line method calibrated an image by forcing its spectral
data to match an already corrected reference image. (4) radiative transfer methods. Radiative
transfer models such as MODTRAN (Ferrier and Trahair, 1995), EXACT (Popp, 1995) and
6S (Vermote et al., 1997) are frequently used to simulate the interaction between radiation
with the atmosphere and the surface. In this study, we used the empirical line method, which
calibrated the Landsat TM/ETM+ images by forcing their spectral data to match the selected
field reflectance spectra from MOD 09 images (already corrected). The empirical line method
is a logistically simple means of atmospheric correction, and it generates acceptable surface
reflectance of remote sensing images (Smith and Milton, 1999). The method is formulated
as:

Lλcorr = a∗Lλ +b (3.3)

where Lλcorr is the correlated spectral at-sensor radiance; a and b are the regression coef-
ficients obtained from the linear regression function of the spectral data between the raw
remote sensing images that need to be calibrated and filed images (reference).

The study area, Nahe catchment, was classified into more than 10 land used types, e.g.
open water, deciduous forest, coniferous forest, grape field, bare soil, bushes, mountains,
residential district, highway, industrial district. For each land used type, we selected 50
homogeneous targets on the Landsat TM/ETM+ image to collect the image spectra. These
targets were also located to the MOD 09 images to select the corresponding reference field
spectra. The linear regression function was subsequently found between two spectra data sets.
The obtained regression coefficients were used for Landsat TM/ETM+ images calibration.

3.4 Surface properties

3.4.1 Surface albedo

The surface albedo is the ratio of the reflected solar radiation to the total incident solar
radiation. The surface albedo determines the amount of effective incident solar radiation that
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is absorbed by the land surface – an increasing surface albedo leads to the reducing of net
radiation (Rn), thereby less energy will be supplied for the surface energy exchanging and
the water circling between atmosphere and surface, and ET rates will consequently decrease.
All these appearances are attributed to the significant albedo-climate coupling and feedback
mechanism between the land surface and the atmosphere (Cess, 1978). Charney et al. (1977)
studied the albedo change in arid to semi-arid regions and hypothesized that the increase of
surface albedo also caused a net reduction of convective cloud and precipitation. Sud and
Fennessy (1982) draw the same conclusion that increasing surface albedo in the subtropic
regions leads to above atmosphere cooling, a reduction in the convective and subsequently the
total precipitation. It is also found by Dirmeyer and Shukla (1994) that while albedo increases,
the ET and H exhibit similar reduction due to the reduced Rn and result in convection and
precipitation reduction in tropic Africa and Amazon basin. In general, the approximated
range of albedo for forest is 0.05-0.2, while it is 0.1-0.25 for grassland and cropland (Weast,
1969). Surface albedo can be effectively and globally monitored through remote sensing
multi-spectral sensors. The atmospheric conditions and surface properties are critical factors
affecting surface albedo determination (Liang, 2001). In this study, the shortwave surface
albedo is calculated with the high-resolution TM/ETM+ narrowband radiance. The formula
was proposed by Liang (2001) as:

αshort = 0.356α1 +0.130α3 +0.373α4 +0.085α5 +0.072α7 −0.0018 (3.4)

where αn indicate the atmospheric corrected spectral radiance of band n (n = 1,3,4,5,7).
Band 2 is removed from this equation since the standard deviation of its coefficient is too big.

3.4.2 Fractional vegetation cover

Fractional vegetation cover (FVC) is defined as the percentage of vegetation covering the
ground area in the vertical projection. It is an important indicator for characterizing the land
surface vegetation cover and for assessing plants growth condition (Zhang et al., 2013). To
derive FVC, the normalized difference vegetation index (NDVI) is the basic element. NDVI
is a remote sensing based vegetation index used to quantify the density of plant growth on
the earth. It is derived from the surface reflectance of visible (red) spectrum avis (wavelength
λ in 0.5-0.7 µm) and the surface reflectance of near-infrared spectrum anir (λ in 0.7-0.9
µm). The visible spectrum absorbs the chlorophyll of plants and the mesophyll leaf structure
scatters the near infrared spectrum. NDVI is formulated as:

NDV I =
anir −avis

anir +avis
(3.5)
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The range of NDVI is [-1,1]. Land use types can be simply identified with NDVI as water,
soil and vegetated surfaces. A low but positive NDVI approximates 0.5-0.24 represents soil
surfaces; negative values represents open water; and high values close to 1 indicate very high
density of green plants. Plant species, leaf area, soil reflectance and shadows affect NDVI
estimation (Jasinski, 1990). Sellers (1985) concluded that NDVI is a near linear indicator of
minimal canopy resistance and photosynthetic capacity. A good linear relationship between
NDVI and ETA was found by (Kerr et al., 1989), with a time laps of 20 days.

However, NDVI is an unsuitable indicator of the vegetation cover since it is more related
to the chlorophyll of leaves rather than the vegetation coverage – for same vegetation
coverages with identical FVC values, the NDVI values may be different due to the different
chlorophyll contents (Glenn et al., 2007). The equation for FVC computation is written as
(Carlson et al., 1995):

Fr = (
NDV I −NDV I0

NDV Is −NDV I0
)2 (3.6)

where Fr is the fractional vegetation cover (FVC); NDV Is indicates the NDVI values at
100 % vegetation cover and NDV I0 indicates the NDVI values for bare soil. The NDVI
values are divided into three intervals according to different cases (Sobrino et al., 2001): (1)
NDV I < 0.2, the pixel valued in this range indicates the bare soil; (2) NDV I > 0.5, the pixel
valued in this range indicates the full vegetated land; (3) 0.2 ≤ NDV I ≤ 0.5, the pixel valued
in this interval is considered to represent the vegetation and soil mixed surface. Therefore in
Equation 3.6, we used the values that NDV Is = 0.5 and NDV Is = 0.2 for data processing.

3.4.3 Land surface temperature and emissivity

The land surface temperature (LST) is a key parameter in the land surface processes, e.g., the
heat exchange and the water cycling between land surface and atmosphere (Sun, 2011). LST
has been widely used in the meteorological and environmental studies: (1) to monitor the
kinetic temperature trend at spatial and temporal scale on the land surface; (2) to indicate
and predict the climate change; (3) to monitor the vegetation water stress; (4) to estimate
the sensible heat flux and subsequently the latent heat flux (Boulet et al., 2007; Jin, 2004;
Norman and Becker, 1995; Sun and Pinker, 2003). Matsui et al. (2003) found a strong
negative connection between LST and precipitation in a monthly time step – about +4 K
change in LST decreased the rainfall in 1 mm per day, and this connection was attributed to
the positive soil moisture-rainfall feedback. LST has also been frequently used to indirectly
indicate the crop water stress (Boulet et al., 2007; Yuan et al., 2004). In the ET process, the
canopy surface temperature decreases and the surrounding air temperature increases. Under
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the water-stress conditions, the ET reduces and the canopy temperature increases. Moreover,
the absorbed solar radiation warms the air temperature above the canopy surface due to the
surface energy balance principle. This theory has been subsequently extended to the LST and
ET. LST is thus commonly used for ET retrieving due to its correlation with soil moisture.

The remote sensing thermal infrared (TIR) bands directly record the radiance emitted by
the surface, and are commonly used for LST retrieving. Infrared thermometry was firstly
used by Tanner (1963) to retrieve leaf temperature. Fuchs and Tanner (1966) used infrared
thermometers with a bandpass filter to measure the real vegetation surface temperature. The
TIR-based LST is found more accuracy than the microwave-retrieved LST, since the low
variation of land surface emissivity (LSE) of TIR data and the high correlation between its
recorded radiance and temperature (Sun, 2011). With contrast to the sea surface temperature
(SST) that is available in global scale for a long term, LST is difficult to obtain due to the high-
heterogeneity of land surface, unknown emissivity and atmospheric conditions (Jin, 2004).
The methods for LST estimation require consideration containing both atmospheric effects
and land surface emissivity (Li and Becker, 1993). Numbers of methods were proposed
to retrieve LST from remote sensing TIR data. Methods based on multiple thermal bands
as well as methods based on single thermal band are two main types of the methods for
LST retrieving that applied for data from different remote sensors. Split-window method
is the most commonly used multiple-thermal-band method, which estimates LST from two
adjacent channels. (Sobrino et al., 2004) compared three methods for LST retrieving based
on the sole TIR band of Landsat 5 TM – radiative transfer equation, mono-window algorithm
(Qin et al., 2001), and the single-channel method (Jiménez-Muñoz and Sobrino, 2003), and
found the single-channel method performed the best in both LST and LSE estimation. For
the single-channel method, accurate LSE and atmospheric profiles are necessary (Gao et al.,
2013). Based on the Landsat TM/ETM+ images with single thermal band, in this study, the
single-channel method was used for LST retrieving. LSE (ε) was obtained in terms of the
high emissivity in vegetated surfaces and the relatively low emissivity in bare soil and is
formulated as (Brunsell and Gillies, 2002):

ε = Fr · εv +(1−Fr) · εs (3.7)

where εv is the emissivity of full vegetation and εs is the emissivity of bare soil. For ET/ETM+
band 6, εv = 0.99, εs = 0.97 (Sobrino et al., 2004).

LST estimation is mainly affected by atmosphere, angular and emissivity (Valor and
Caselles, 1996). The equation is given as (Sobrino et al., 2004):

Ts = γ[ε−1(ψ1Lsensor +ψ2)+ψ3]+δ (3.8)
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with

γ = {c2Lsensor

T 2
sensor

[
λ 4

c1
Lsensor +λ

−1]}−1 (3.9)

δ =−γLsensor +Tsensor (3.10)

ψ1 =−0.147w2 −0.15583w+1.1234 (3.11)

ψ2 =−1.836w2 −0.37607w−0.52894 (3.12)

ψ3 =−0.04554w2 +1.8719w−0.39071 (3.13)

where Ts is LST in K; Lsensor is the satellite radiance in Wm−2 sr−1 µm; Tsensor is the satellite
brightness temperature in K; λ is the effective spectral wavelength, λ = 11.457 µm for TM
band 6 and λ = 11.269 µm for ETM+ band 6; c1 and c2 are constants, c1 = 1.19104×108

in Wµm4 m−2 sr−1 and c2 = 14387.7 in µmK; ψ1, ψ2 and ψ3 are the atmospheric functions;
w is the total atmospheric water vapor content, which was obtained by MOD 05 (MODIS
Precipitable Water product).

LST is strongly linked with evapotranspiration through surface budget. While land
surface temperature is higher than air temperature, the energy used for evapotranspiration
is lower than the net radiation; whereas if it is lower than air temperature, the energy used
for evapotranspiration is higher than the net radiation (Hatfield et al., 1983). In this remote
sensing-based method, the maximal and mean LST values were subsequently used for surface
energy fluxes (e.g. net radiation, sensible heat flux) retrieving (Figure 3.2).

3.5 Surface energy components

3.5.1 Surface energy balance equation

For most remote sensing techniques, surface energy balance equation is the physical basis
for evapotranspiration estimation – latent heat flux (corresponding to evapotranspiration)
is obtained as the residual of energy budget, and other energy components are calculated
by means of ground measuring, remote sensing or modeling. The surface energy balance
equation is written as:

Rn = LE +H +G (3.14)
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where all terms are expressed in Wm−2; Rn is the net radiant energy, namely the total solar
radiation absorbed by surface; LE is the latent heat flux, which is numerically equal to the
sum energy consumption for evapotranspiration; H is the sensible heat flux and G is the
soil heat flux, which are energy consumption for heat exchange in atmosphere and soil,
respectively. Evapotranspiration is thereby obtained as the energy residual between the
totally absorption (Rn) and consumption (sum of H and G) on the surface. In the equation,
the energy consumption for photosynthesis and heat stored in vegetation are not taken into
account. In general, LE is larger than H or G over vegetated surfaces.

In surface energy balance equation, two observed surface types should be considered for
radiant and convection fluxes estimation – single layer surface and multiple layers surface.
The former indicates a sole component observed surface while the latter contents two sources
components of both soil and vegetation, in which the vegetation can be divided into several
layers according to the canopy degrees.

3.5.2 Net radiation

Solar radiation is the total energy supplier for energy exchange on the earth. Net radiation
(Rn) is the solar radiation balance between incoming (from atmosphere to surface) and
outgoing (from surface to atmosphere) radiation. To obtain Rn, the radiation balance equation
is used:

Rn = (Rs ↓ −Rs ↑)+(Rl ↓ −Rl ↑) (3.15)

with
Rs ↓+Rs ↑= (1−α)Rs ↓ (3.16)

Rl ↓= εaσT 4
am (3.17)

Rl ↑= εσT 4
sm (3.18)

where Rs is the shortwave radiation and Rl is the longwave radiation, both in Wm−2, with
↓ and ↑ indicate the incoming and outgoing directions; α is the shortwave surface albedo
(dimensionless); εa is the effective atmospheric emissivity (dimensionless) while ε is the
surface emissivity (dimensionless); Tam and Tsm are respectively the mean air and land surface
temperature, both in oC. Equation 3.17 is a empirical equation for downward longwave
radiation estimation in terms of only the near surface meteorological data. The approximate
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effective mean atmospheric temperature Tam is calculated by a simply linear relationship to
the near surface (about 2 m above the surface) air temperature T0 (Qin et al., 2001):

For mid-latitude summer Ta = 16.0110+0.92621T0 (3.19)

For mid-latitude winter Ta = 19.2704+0.91118T0 (3.20)

Brutsaert (1975) presented a derivation for effective atmospheric emissivity εa under
cloudy-free conditions. The functions are (Richter, 1998):

εa = 1.24× (
pwv

Ta
)1/7 (3.21)

pwv = RHes/100 (3.22)

es(Ta) = 6.1078exp[
17.26939(Ta −273.16)

Ta −35.86
] (3.23)

where pwv is the water vapor partial pressure in millibar; Ta is the air temperature in Kevin;
pwv is calculated as a function of the relative humidity RH (Equation 3.22); es is the water
vapor pressure in saturated air (Equation 3.23), (Murray, 1967)).

Equation 3.18 is a simple method proposed by Lagouarde and Brunet (1993) for daily
upward longwave radiation estimation under cloudless conditions. It requires only the remote
sensing-retrieved land surface temperature (LST, Ts) in the early afternoon.

3.5.3 Sensible heat flux

Sensible heat flux H is the key term in this method. Jackson et al. (1977) firstly proposed
a simple approach for accumulated daily evapotranspiration estimation. The basic idea of
this approach is that the sensible heat flux H is proportional to the difference between the
instantaneous plant canopy surface temperature and air temperature measured at midday
(Ts −Ta). (Ts −Ta) is commonly used as an indicator of vegetation water status, This so-
called simplified method neglects the soil heat flux over 24 hours period and is written
as:

LE = Rn −B(Ts −Ta) (3.24)
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where Tc is the remote sensing-based canopy temperature measured daily between 1330 and
1400 h, in oC; Ta is the air temperature measured 150 cm above the soil surface, in oC; B is a
dimensionless constant, which indicates that (Ts −Ta) is linearly related to H.

This simplified method has been modified by numbers of studies (Carlson et al., 1995;
Nieuwenhuis et al., 1985; Seguin and Itier, 1983) and written as:

Rn24 −LE24 = B(T013 −Ta13)
n (3.25)

where Rn24 and LE24 are respectively the integrated net radiation and latent heat flux over 24
hours; T013 and Ta13 are respectively the surface radiant and the air temperature 50 m above
the surface at 1300 h local time; B and n are pseudo constants derived from the fractional
vegetation cover. Relevant functions are formulated as below:

B = 0.0109+0.051Fr (3.26)

n = 1.067−0.372Fr (3.27)

Since LST is very difficult to determine as well as remote sensing TIR data is the only
means to retrieve LST in large-scale regions, Penman equation combined both aerodynamic
and surface energy techniques to estimate evapotranspiration on the basis of the meteorologi-
cal variables but jumped the calculation of LST.

3.5.4 Soil heat flux

For estimation in daily scale (over 24 hours), the soil heat flux (G) is always considered as
negligible. However, in this study, since the instantaneous LST retrieved from remote sensing
images in midday was used to estimate the accumulated surface energy fluxes in 24-hours
period, the amount of G should be taken into account. Under full canopy covered conditions,
G may be in the same order of magnitude as H once well-watered as well as may be in the
same order of magnitude as LE for senescent plants (Kustas and Daughtry, 1990).

Soil heat flux is found to linearly relate to net radiation. In vegetated regions, G is 5-10 %
of Rn and is 30-50 % of Rn in bare soil (Choudhury et al., 1986). Boegh et al. (2002) further
assumed that the ratio of soil heat flux to net radiation (G/Rn) is related to the fractional
vegetation cover (FVC). The generalized formula for all surface types is written as:

(G/Rn) = Fr(G/Rn)veg +(1−Fr)(G/Rn)soil (3.28)
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with (G/Rn)veg = 0.1 and (G/Rn)soil = 0.5. Ratio (G/Rn) for vegetation is less than that for
bare soil is due to the partial decreased net radiation for vegetation surface.

3.5.5 Latent heat flux (actual evapotranspiration)

Thus, in this study, the ultimate equation for daily evapotranspiration estimation via remote
sensing images is formulated as (Casper and Vohland, 2008):

∫ 24h

0
LE =

∫ 24h

0
Rn −G−B(Ts(max)−Ta(max))

n (3.29)

with B = 0.0109+0.051Fr and n = 1.067−0.372Fr; Ts(max) is the maximum land surface
temperature in oC; Ta(max) is the maximum air temperature in oC;

∫ 24h
0 LE and

∫ 24h
0 Rn are in

cm.

3.6 Results and discussion

In Figure 3.3 and 3.4, the remote sensing-retrieved surface properties and surface energy
components on five sample dates for both forest types are shown. In the boxplots of surface
albedo on five samples dates (Figure 3.3a), it is shown that for each day, the surface albedo of
deciduous forest is always higher than that of coniferous forest. In the WaSiM-ETH model,
the parameter setting is alike (Table 2.4) – for deciduous forest, the default surface albedo is
0.2, and for coniferous forest it is 0.1. In the model setting, the default surface albedo values
keep constant for each month in an entire year. However, the surface albedo is related to
the vegetation properties and the atmospheric conditions (Liang, 2001); a significant albedo-
climate coupling and feedback mechanism between the land surface and the atmosphere is
also found by Cess (1978). The actual surface albedo is thereby assumed to vary over the
time steps (e.g. daily, monthly) according to the changes in the meteorological variables.
This assumption is confirmed by the remote sensing-retrieved surface albedo. On the three
dates in 2003, significant high albedo (the median values were around 0.15 for each) were
shown in contrast to on the other two dates (less than 0.1). Since the increase of surface
albedo has been found to reduce the regional precipitation in several publications (Charney
et al., 1977; Dirmeyer and Shukla, 1994; Sud and Fennessy, 1982), the extremely dry climate
condition (with rare precipitation) in the summertime of 2003 is assumed to be attributed
to a significant albedo increase. However, the verification of this assumption requires more
observations in a long-time period. In this study, these remote sensing-retrieved surface
albedo on five sample dates are in poor temporal resolution and far from enough.
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In Figure 3.3b and c, the appearances of NDVI and FVC for both forest types on 5
sample dates confirmed the assertion that the NDVI is more related to the chlorophyll of
leaves rather than the vegetation coverage (Glenn et al., 2007). It is shown that there were
significant variances in NDVI on 5 dates whereas with regard to FVC, the variances were
very small. In terms of the FVC, a relatively smaller vegetation coverage is indicated in
coniferous forest than in deciduous forest for each day. This can be simply attributed to the
features of both forest type – the deciduous forest, also called board-leaf forest, is superior in
area covering than the coniferous forest with small-leaf plants. However, in WaSiM-ETH,
the default setting values of FVC in the model for deciduous forest are always smaller than
those for coniferous forest (Table 2.4). To verify the features of FVC for both forest types,
observations in higher temporal resolution are also required.

In Figure 3.4a, it is shown that there was adequate energy supply on May 15, 2000, July
05, 2001 and July 19, 2003, whose Rn values were all over 5 mm per day. On the other two
dates in 2003, the Rn were very low, especially on September 21, its Rn was not more than
2 mm per day. The amount order of Rn on sample dates was not consistent with the SSD
measurements (Figure 1.7c). For example, on July 05, 2001, the Rn was the top of all but
its SSD was the lowest; whereas on the two dates in August and September in 2003, their
Rn were very low (less than 3 mm) but the SSD were relatively high. This can be attribute
to the surface albedo, which determines the amount of effective incident solar radiation.
Therefore, Rn is more accurately than SSD to quantify the effective energy supply for ET.
In publications, Rn has been frequently used to represent measurements in solar radiation
to explore the relative importance in ET estimation (Bakhtiari et al., 2012; Saxton, 1975).
In terms of the surface albedo, it is found that the absorbed net radiation (Rn) of deciduous
forest was consequently always lower than that of coniferous forest (in Figure 3.4a).

It is known that in general, 2/3 of the Rn will transfer as the latent heat flux to support
the ET process (Gash and Shuttleworth, 2007). The change trend of LE (Figure 3.4d) over
five sample days was consistent with Rn and confirmed this. The G also exhibited similar
change trend over time to Rn, since daily G is linearly related to Rn. The H depends on
the temperature difference between land surface and air. Therefore, the highest and lowest
values of H respectively indicate the large temperature gap on August 04, 2003 and slight
temperature difference on September 21, 2003.
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3.7 Summary and conclusion

In this chapter, we introduced the main remote sensing techniques for ETA estimation. The
basic principle of the remote sensing-based method is to estimate ETA as latent heat flux
through the surface energy balance equation with retrieved surface properties, such as surface
albedo, fractional vegetation cover (FVC) and land surface temperature (LST). LST is the
most important variable in this method, which was retrieved from the TM/ETM+ TIR band
by the single-channel method (Jiménez-Muñoz and Sobrino, 2003). The daily sensible heat
flux (H) is linearly related to the difference between daily maximal LST and air temperature.
The mean LST was also used to calculate the outgoing longwave radiation and subsequently
the Rn. The contribution of the soil heat flux G was estimated as a fraction of Rn. The ETA
rate was finally obtained as latent heat flux through the surface budget.

The performances of surface properties and surface energy components on five sample
dates were discussed. Between deciduous and coniferous forest, there were significant
differences for each day: (1) the surface albedo of deciduous forest were consistently higher
than those of coniferous forest, and the Rn and G in deciduous forest were thereby always
lower than in coniferous forest; (2) the vegetation cover indicated by FVC values in deciduous
forest were always higher than in coniferous forest. These differences between forest types
were attributed to the different vegetation properties of plants in deciduous and coniferous
forest.

With regard to the change trend over five sample days, it is shown that: (1) On the three
days in 2003, the surface albedo were much higher than on the other two days; (2) surface
albedo is very dependent on the surface properties and the climate conditions, and it controls
the net radiation Rn. The amount of soil heat flux (G) and latent heat flux (LE) exhibited
similar change trend over time to Rn, since the amount of G were linearly related to Rn and in
general, major Rn supplies for evapotranspiration as latent heat flux. Sensible heat flux is very
dependent on the simultaneous temperature difference between land surface and surrounding
air. On August 04, the H was the highest.



Chapter 4

Surface resistance calibration in
WaSiM-ETH

4.1 Introduction

The calibration of a physically based hydrological model is a process of adjusting parameters
to find their optimal values or ranges – the simulations generated by the model should show
an agreement with the observations as good as possible. There are two important parts
involved: to evaluate the "closeness" between the simulations and observations as well as to
adjust the parameters in the aims of improving the "closeness" between the paired variables
(Boyle et al., 2000). Calibration is necessary for models applied in different regions and
scales (e.g. Cullmann et al. (2006)). Ideal observations for the model calibration depend
on not the data length but whether they contain enough information, e.g., multiple climate
conditions (Gan et al., 1997) and critical events (Singh et al., 2012). Boyle et al. (2000)
has classified the model parameter estimation schemes into three levels: (1) Level zero, to
determine the approximate ranges of the parameters by examining the values obtained from
previous experiences or similar calibrated watershed; (2) Level 1, to refine the parameter
ranges obtained in lever zero by identifying the dominant effect of individual parameters on
outputs in time series; (3) level 2, to further refine the parameter value ranges by detailed
analysis in the parameter interactions and the model performances. Manual and automatic
strategies are two commonly means for model calibration. The manual method is also
termed as the "manual-expert" approach, for which expertises, knowledges and experiences
are necessary. In contrast to the traditional single-criterion automatic calibration methods,
excellent results are always obtained by employing manual approaches. However, the manual
approaches are time and labor consuming. The traditional automatic approaches are superior
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in the speed and powerful computation ability, objective in determination, and time and labor
saving but the results may not be acceptable due to the single-criterion assessment (Gupta
et al., 2003).

Model performance evaluation through comparing the model simulations with the cor-
responding observations is the foundation for model calibration or validation. The model
performance evaluation is carried out to provide: (1) the quantitative estimate of a model’s
ability in simulating watershed behaviors; (2) a means for evaluating the improvements
in model performance during a calibration process; (3) a mechanism for current efforts
comparison (Dawson et al., 2007; Krause et al., 2005). Boyle et al. (2000); Legates and
McCabe (1999); Willmott (1981) suggested to use multiple evaluation techniques for model
performance evaluation. Graphical and statistical techniques are two primary evaluation
means. The most frequently used visual assessment is inspecting the differences between
two variables plotted in time series. Loague and Green (1991) discussed four commonly
graphical means for model performance evaluation: (1) to plot modelled and observed data
sets over time; (2) to plot medians and ranges of the modelled and observed data; (3) to plot
the matched integrated modelled and observed data; (4) to plot the cumulative distribution of
the integrated values. These methods can be respectively displayed as hydrographs, box plots,
bar graphs and scatter plots. The hydrographs are the most frequently used graphical formal
in model performance comparison, by which modelled and observed data sets in a time series
are directly plotted. They compare variables in the specific time steps (daily, weekly, monthly
or yearly). The hydrographs help the identification of model bias, differences, peak flows
and recessions (Committee et al., 1993; Legates and McCabe, 1999). The agreements and
disagreements on timing and magnitude between the compared variables can be easily recog-
nized at first glance. The box plots provide detailed information in statistical distribution,
in which the dispersion degree, the distribution skewness and the outliers are shown. The
bar graphs indicate the frequency of data distribution in specific values, which also provide
information on population distribution. The scatter plots provide a most effective way to
display the correlation between two variables. There are three types of the correlations:
curvilinear, exponential and linear. The Pearson’s correlation coefficient (r) and its square
coefficient of determination (R2) are frequently used regression measures to indicate the
linear relationship between variables.

In the last decades, dozens of statistical measures have been proposed for the hydrological
model performance evaluation. The statistical measures are very good supplements to
graphical techniques. Fox (1981) suggested that the model performance evaluation should be
based on the differences between the simulated and observed variables - the average bias, the
variance (noise), and the gross variability are necessary. The most frequently used measures
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for evaluating the "goodness-of-fit" for the hydrological models in publications, r and R2, are
found to be oversensitive to the extreme values and insensitive to the additive and proportional
differences between simulated and observed data sets (Legates and McCabe, 1999; Willmott,
1981). To overcome their shortages for model evaluation, Willmott (1981) proposed the
index of agreement (d) as an alternative statistical index. Legates and McCabe (1999) also
suggested using d and the Nash-Sutcliffe efficiency (NSE) proposed by Nash and Sutcliffe
(1970) to replace r and R2. The root mean square error (RMSE) and the mean absolute error
(MAE) are both considered as effective measures for average gross differences between two
variables estimation and have been widely used over the time. RMSE is more sensitive to
extreme values than MAE, since the impact on the latter is reduced due to the absence of
the exponent (Willmott, 1982; Willmott and Matsuura, 2005). Legates and McCabe (1999)
suggested that a complete model performance assessment should include both goodness-of-fit
or relative error measures (e.g. d or NSE) and absolute error measures (e.g. RMSE or MAE)
with additional supporting information. Krause et al. (2005) used several efficiency criteria
such as R2, NSE, d and their modified forms in stream flow investigation and suggested a
combination of different efficiency criteria for model performance evaluation. Dawson et al.
(2007) has divided different metrics for model performance evaluation in three categories: (1)
the statistical measures of the modelled and observed data sets in time series, (2) the statistical
measures of the residual errors between modelled and observed data sets in time series, (3) the
dimensionless coefficients of the model performance in compare to the recognized standards.
Analogously, Moriasi et al. (2007) briefly divided them into three main categories: standard
regression, dimensionless and error indices; and the statistics such as NSE, ratio of the root
mean square error to the standard deviation (RSR), and percent bias (PBIAS) were finally
recommended. The standard regression measures have been used for indicating the linear
relationship between two variables, e.g., the regression line method, r and R2. Error indices
provide statistical information based on the differences between simulations and observations.
Mean bias error (MBE), MAE, RMSE and their derivations are included in this category. The
dimensionless measures evaluate the model performance with a relative value of assessment,
whose ranges are always not more than 1. For example, the ranges of d and NSE are between
0 and 1 as well as from −∞ to 1, respectively. For both indices, a value of 1 indicates perfect
model performance that simulations and observations fit the 1:1 line. A general satisfied
range for model performance evaluation were recommended by Moriasi et al. (2007) as:
NSE > 0.5, RSR ≤ 0.7 and PBIAS <±25 % for stream flow.

The simulated and observed data sets used in this study are still the actual evapotranspi-
ration (ETA) estimated by the WaSiM-ETH model and LE (latent heat flux, corresponded
to ETA) retrieved from remote sensing images on 5 samples dates (May 15, 2000, July 05,
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2001 and July 19, August 04 and September 21 in 2003). The weakness of the observations
IS that they are available in a limited number and are discontinuous in time series. However,
the observations are representative for multiple climate conditions – wet, medium wet and
dry. Gan et al. (1997) used data included wet, average and dry year for model calibration
and suggested that ideal observations could not be in a large amount but should contain
enough information. Singh et al. (2012) used critical events replacing the whole time series
to successfully calibrated the WaSiM-ETH model. Thus, the purposes of this chapter are:
(1) to find appropriate methods (graphical and statistical techniques combined) for model
performance evaluation based on the observations; (2) to calibrate the surface resistance for
both forest types in WaSiM-ETH. Moreover, due to the advantage of the observations in
spatial accuracy, model performance at the spatial scale were also be investigated.

In this chapter, we carried out manual calibration of the WaSiM-ETH model. The
calibrated parameter is the surface resistance, which can be further divided into the canopy
surface resistance rsc and the soil surface resistance rse. rsc is related to the transpiration of
plants and rse is related to the evaporation of bare soil. Values of rsc and rse were adjusted in
terms of our previous experiences. 12 representative different surface resistance combinations
(consisted of different values of rsc and rse) for each forest type were selected as samples
for plotting and discussion. The box plots were used for a graphical overview of the model
performance at spatial-temporal scale. The statistical techniques were also applied to supply
additional information for model performance assessing. To distinguish the simulations and
the observations, we used ETA to denote the simulations generated by the WaSiM-ETH
model and LE (latent heat flux) to denote the corresponding observations retrieved from
remote sensing images.

4.2 Review of statistical techniques for model performance
evaluation

4.2.1 Basic index

The measures of model performance evaluation are derived on the basis of the differences/errors
between the simulations (P) and the observations (O). To easily identify the average model-
performance tendency (over- or underestimated), (P−O) was used in this paper to represent
the differences between two variables. Fox (1981) suggested that the measures such as the
MBE, the mean variance of error distribution (S2

d), RMSE, and MAE should be calculated
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for model evaluation. These indices are calculated as below (Fox, 1981):

MBE = N−1
N

∑
i=1

(Pi −Oi) (4.1)

S2
d = (N −1)−1

N

∑
i=1

(Pi −Oi −MBE)2 (4.2)

RMSE =

√
N−1

N

∑
i=1

(Pi −Oi)2 (4.3)

MAE = N−1
N

∑
i=1

∣∣Pi −Oi)
2∣∣ (4.4)

where N is the number of cases. With regards to these indices, Willmott (1982) suggested that
RMSE and MAE are the best overall measures of all, since they provided enough diagnostic
information while MBE and S2

d do not. Positive and negative MBE values describes the
average model-performance of overestimation and underestimation, respectively. S2

d indicates
the mean variance to MBE, form which the degree of disperse is also indicated. Willmott
(1982) mentioned that MAE is less sensitive to extreme values than RMSE since it avoids
the exponentiation. Willmott and Matsuura (2005) further recommended that dimensioned
evaluations and inter-comparisons of average model-performance error should be based on
MAE since RMSE is unambiguous. To date, RMSE and MAE have been widely used for
model performance evaluation in publications to describe the mean differences in the same
units of P and O.

4.2.2 Correlation measures

The correlation measures have been frequently used in model performance evaluation but
they have often been questioned. The correlation measures quantitatively estimated the
association or agreement between two variables while the difference measures estimate the
size of differences (Fox, 1981). The r and R2 are commonly used correlation measures. r
describes the linear relationship between two variables. It ranges from -1 to 1. A value of 0
indicates that there is no linear association between two variables while r =−1or1 indicates
that simulations are perfect linearly (negative or positive) correlated to the observations.
The coefficient of determination R2, which is the square of Pearson’s correlation coefficient,
describes the proportion of the variance in observed data explained by the model. The value
of R2 ranges from 0 to 1, the higher value the less error variance indicated. The r and R2 are
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calculated as:

R2 = (r)2 = (
∑

N
i=1(Pi − P̄)(Oi − Ō)√

∑
N
i=1(Pi − P̄)2

√
∑

N
i=1(Oi − Ō)2

)2 (4.5)

where P̄ and Ō are mean values of P and O , respectively. Fox (1981) suggested using r in
model performance evaluation at the scales of time, space, and time and space combined.
Nonetheless, r and R2 have been subsequently considered as inappropriate measures in
several publications (Krause et al., 2005; Legates and McCabe, 1999; Willmott, 1982),
since these statistics are oversensitive to high extreme values and insensitive to additive and
proportional differences between simulations and observations.

4.2.3 Index of agreement

In order to overcome the less interpretation of r and R2 in distinguishing the pair-wised P
and O, Willmott (1981) proposed the d to describe the relative differences between these two
variables. The index d is dimensionless and calculated as (Willmott, 1981):

d = 1− ∑
N
i=1(Pi −Oi)

2

∑
N
i=1(

∣∣Pi − Ō
∣∣+ ∣∣Oi − Ō

∣∣)2
= 1−N · MSE

PE
(4.6)

with
∣∣Pi − Ō

∣∣+ ∣∣Oi − Ō
∣∣)2 indicates the total potential errors variance (PE) of both P and

O (0 ≤ MSE ≤ N−1 ·PE (Willmott, 1982). The index of agreement d ranges from 0 to 1
that indicates the residual ratio of error (Pi −Oi)

2 to PE. The computed d with a value of 0
represents a totally disagreement of P and O while d = 1 indicates that a perfect agreement.
It represents a decided improvement over r and R2 but also be sensitive to extreme values,
owing to the squared difference.

Legates and McCabe (1999) suggested an adjusted d1 in order to reduce the effect of
squared terms. The modified index of agreement is formed as:

d1 = 1− ∑
N
i=1 |Pi −Oi|

∑
N
i=1(

∣∣Pi − Ō
∣∣+ ∣∣Oi − Ō

∣∣) = 1−N · MAE
PE

(4.7)

4.2.4 Nash-Sutcliffe efficiency

The Nash-Sutcliffe efficiency (NSE) is proposed by Nash and Sutcliffe (1970) and indicates
the simulation ability of a hydrological model by contrasting the simulation to the paired
observed data - how well the observations versus simulations fit to the 1:1 line. NSE is also
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dimensionless and describes the relative error between P and O. It is computed as:

E = 1− ∑
N
i=1(Pi −Oi)

2

∑
N
i=1(Oi − Ō)2

= 1− N ·RMSE2

N ·σ2
O

= 1− (
RMSE

σO
)2 (4.8)

with σO is the standard deviation of observation, σO =
√

∑
N
i=1(Oi − Ō)2. NSE indicates

the normalized ratio of residual variance ("noise", (Pi −Oi)
2) to the observation variance

((Oi − Ō)2). NSE ranges between −∞ and 1. Model performance with E value between 0
and 1 are considered acceptable. Less error between P and O always leads to higher E and
better model-performance. It is notable that NSE with a negative value indicates bad model
performance that is not even better than the mean value of observed variable.

Legates and McCabe (1999) suggested an adjusted Nash-Sutcliffe efficiency E1 in order
to reduce the effect of squared terms. The modified E1 is formed as:

E1 = 1− ∑
N
i=1 |Pi −Oi|

∑
N
i=1

∣∣Oi − Ō
∣∣ = 1− N ·MAE

N ·MADO
= 1− MAE

MADO
(4.9)

with MADO is the mean absolute deviation of observation.

4.2.5 Percent bias

Percent bias (PBIAS) indicates the average tendency of model simulations in contrast to
the corresponding observations in percentage. The optimal PBIAS value is 0, the more
PBIAS approaches to 0, the less error between P and O it indicates. Positive value expresses
overestimation model behavior while negative value means underestimation (Gupta et al.,
1999). It is calculated as:

PBIAS =
∑

N
i=1(Pi −Oi)

∑
N
i=1 Oi

·100 =
N ·MBE

N · Ō
·100 =

MBE
Ō

·100 (4.10)

PBIAS is derived as the ratio between MBE and average O (Ō). PBIAS is recommended
to evaluate watershed models as long as the measured data uncertainty has been considered
(Moriasi et al., 2007).



74 Surface resistance calibration in WaSiM-ETH

4.2.6 RMSE-observations standard deviation ratio

RMSE-observations standard deviation ratio (RSR) is also recommended by Moriasi et al.
(2007) in model performance evaluation. It is calculated as the ratio between RMSE and
standard deviation of measured data, it was formulated as below:

RSR =

√
∑

N
i=1(Pi −Oi)2√

∑
N
i=1(Oi − Ōi)2

=
RMSE

σO
(4.11)

where lower RSR value indicates a better model performance.

Likewise, the MAE-observations standard deviation ratio (MSR) is modified to overcome
the sensitivity to extremely values. The modified index can be denote as MAE-observations
standard deviation ratio, which is written as:

MSR =
∑

N
i=1 |Pi −Oi|

∑
N
i=1

∣∣Oi − Ōi
∣∣ = MAE

σ2
O

(4.12)

4.3 Results and discussion

4.3.1 Graphical overview of model performance

In Figure 4.1, the spatial and temporal distribution of daily ETA (in mm) on 5 separate sample
dates (May 15, 2000, July 05, 2001, and July 19, August 04, and September 21, in 2003) are
shown with boxplots. Two sources of pair-wise data sets are included: the model-simulated
ETA and the corresponding remote sensing-based observations, LE. Each data group consists
of 5 sample days’ daily data. In WaSiM-ETH, for each forest type, 12 representative groups
of ETA were generated from 12 different surface resistance combinations. These surface
resistance combinations were selected by experiences. For deciduous forest, they are de-
noted as: 80_200, 100_200, 100_500, 100_1500, 150_250, 150_300, 150_400, 150_1000,
200_300, 200_1000, 200_1500, 300_600, with the first number in front of the underline
represents the canopy surface resistance rsc (in sm−1) and the second number followed the
underline represents the soil surface resistance rse (in sm−1). For coniferous forest, the
selected 12 surface resistance combinations are: 160_300, 160_500, 240_300, 240_1000,
300_600, 300_650, 300_750, 320_1000, 320_1500, 350_600, 350_750, 400_750. In the
following text, each 5-day ETA group simulated by the specific surface resistance combi-
nation is denoted by " ETA + resistance combination" (e.g. ETA set simulated by surface
resistance combination 80_200 is denoted by " ETA 80_200").
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For both forest types, the 5-day LE groups show similar features in the variation trend
over time (Figure 4.1). The daily regional (indicated the entire Nahe catchment) median
values of LE are sorted as: July 05, 2001 > July 19, 2003 > May 15, 2000 > August 04,
2003 > September 21, 2003. In addition, the significant decline of LE amount from July
19 to August 04 in 2003 should be noted. Under well-watered conditions, the ET amount
always reaches its annual top in the summer due to the abundant sunshine radiation, high air
temperature, dry air humidity, and frequent rainfall in the season. However, LE on August
04, 2003 was abnormally low, whose basic meteorological variables such as the relative
sunshine duration (SSD, dimensionless), the air temperature (T, in oC), the relative humidity
(RH, dimensionless) were inconsistent with the common case in summer (Figure 1.7). It is
attributed to the extreme climate condition of the summer of 2003, which was very warm
and dry (introduced in Chapter 1) - rare precipitation resulted in less soil water content and
thereby more amount was reduced from ETP to ETA.

In Table 4.1, the detailed regional mean and median values of LE are listed. It is shown
that there is no large difference between the daily mean and median value of LE for each date,
which indicates that LEi (i denotes the pixel index within an daily LE grid data, i = 0,1,2, ...)
are evenly distributed in their value ranges and there are few extreme values (otherwise it
would lead the mean value far away form the median value). This spatial pattern of LE is
attributed to its high spatial accuracy. It is also found that on three dates of 2003, LE of the
coniferous forest were a little higher than that of the deciduous forest on the same dates. It is
supposed due to the better drought-endurance of the coniferous forest.

In contrast to daily LE, the distribution of ETA in deciduous forest shows features that
(Figure 4.1a): (1) major ETAi (i denotes the pixel index within an daily ETA grid data,
i = 0,1,2, ...) spread in the area closing to the minimal value of its range on May 15, 2000.
The significant variation between its median and mean differs from the corresponding LEi

distribution. On the other four dates for each surface resistance, the daily medians of ETA
also exhibit different degrees of variation from their mean values. For the ETA data sets,
the median values are more representative than the means in describing the daily spatial
distribution, since the median is insensitive to the outliers and represents the behaviours
of major LEi; (2) For LE, the LEi on September 21, 2003 are in the most compact value
range while on July 19, 2003, the LEi are the most widely scattered, which can be quantified
by their mean standard deviation. For ETA, it is noted that on July 19, 2003, for some
resistance combinations, the ETAi are significantly widely scattered. In Figure 4.1b for
coniferous forest, similar spatial features to those for deciduous forest are shown. These
spatial features are attributed to the simulation accuracy of the WaSiM-ETH model at the
spatial scale. Unlike LE, ETA is simulated on the basis of the ground measurements, therefore
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its spatial accuracy depends on the density of climate station network as well as the accuracy
of collected meteorological data.

To select the ETA sets with the similar variation trend over time to LE, two important
criteria should be met based on the median values of ETA: (1) sorted the 5-day ETA rates as:
July 05, 2001 > July 19, 2003 > May 15, 2000 > August 04, 2003 > September 21, 2003;
(2) included the extreme event that the significant decline of ETA rates between July 19,
2003 and August 04, 2003. For deciduous forest, it is found that two ETA sets with the
surface resistance combinations that rsc at 150 sm−1, rse at 250 sm−1 (denoted by surface
resistance combination 150_250) as well as rsc at 150 sm−1, rse at 300 sm−1 (denoted by
surface resistance combination 150_300) virtually exhibit similar variation features over
time to LE. In the coniferous forest (Figure 4.1b), ETA 300_600 set, ETA 300_650 set, ETA
300_750 set and ETA 350_600 set are found to match the both criteria.

LE (mm)

May15 Jul.05 Jul.19 Aug.04 Sep.21

Deci
mean 3.46 4.07 3.60 1.26 0.80
median 3.52 4.30 3.88 1.16 0.87

Coni
mean 3.33 4.08 3.78 1.48 0.89
median 3.38 4.30 4.12 1.48 0.97

Table 4.1 The regional mean and median values of 5-day daily LE (in mm) for deciduous
and coniferous forest of the Nahe catchment.

4.3.2 Statistical model performance evaluation

In Section 4.2, a various of commonly used statistical measures were reviewed. Based on the
assessment by the graphical means, the statistical measures supply additional information on
model performance evaluation. Multiple techniques were suggested to be used for model
evaluation (Boyle et al., 2000; Legates and McCabe, 1999; Willmott, 1981). Conventionally,
mean values of both simulated and observed variables in the specific time steps have been
always used for model performance at the temporal scale evaluation. However, due to the low
simulation accuracy of WaSiM-ETH in the spatial scale, it is found that there are significant
variations between mean and median values of the daily ETi (Figure 4.1), and the median
values better describe the spatial distribution of the daily ETi than the corresponding mean
values. Thus in this study, to take both spatial and temporal patterns into account, we used
the median values of the pairwise ETA and LE over time to calculate the statistical indices
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(a) Deciduous forest

(b) Coniferous forest

Fig. 4.1 Two sources of daily ETA (in mm, with each group consists of 5-sample-day daily
values) in the Nahe catchment. The red boxplots are LE group as well as the 12 green
boxplot groups are ETA groups simulated with 12 different surface resistance combinations
by WaSiM-ETH.
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for model performance evaluation. All the values for both forest types are listed in Table 4.2
and 4.3.

In Table 4.2, except for the bias error indices, MBE and PBIAS, the optimal values of all
statistical measures consistently point out that the ET 150_250 set exhibits the best model
performance of all for the deciduous forest. Based on a variety of previous studies, Moriasi
et al. (2007) proposed a general performance rating criteria in terms of NSE, RSR and PBIAS
in a monthly time step for streamflow (Table 4.4). In the WaSiM-ETH manual (Schulla and
Jasper, 2007), NSE has also been recommended for model evaluation between simulated and
observed data. Due to the lack of systematic studies on model evaluation in a daily time step
for ETA simulation, this rating criteria was used in this study as a most reliable reference.
ETA 150_250 set with values of NSE, RSR and PBIAS at 0.90, 0.32 and 2.26 %, respectively,
is considered as "very good" in the model performance. Moreover, R2 for ETA 150_250 is
more than 0.9, which is also much higher than the commonly considered acceptable value 0.5
(Santhi et al., 2001; Van Liew et al., 2003). It is noted that the value of MAE, and the modified
statistical indices, E1, d1 and MSR, show slightly less agreements on the model performance
in contrast to their corresponding indices RMSE, E, d and RSR, respectively. It is because
of the characteristics of the observations that are in a limited number but representative
for multiple climate conditions (Legates and McCabe, 1999; Willmott, 1982; Willmott and
Matsuura, 2005), which requires the statistical indices to be sensitive to the extreme values
(wet and dry).

For coniferous forest (Table 4.3), ETA 300_600 and ETA 300_650 exhibit approximate
simulation ability at the temporal scale, with the identical MAE, d1, d, E1 and MSR values.
Focusing on the general recommended indices, NSE, RSR and PBIAS, ETA 300_650 is
evaluated as the optimal as well as is rated as "Very good" (E = 0.81, RSR = 0.42 and
PBIAS =−4.77 %). Comparing statistics for both forest types, MBE, S2

d , RMSE, d2, NSE,
PBIAS and RSR consistently point out that the simulations in deciduous forest perform a
little better than in coniferous forest. However, a completely opposite conclusion is drawn in
terms of R2. It is attributed to the disadvantage of R2 that it is oversensitive to the outliers
and insensitive to the proportional differences (Legates and McCabe, 1999). Thereby, for
model performance evaluation in the daily time step for ETA simulation, MBE, S2

d , RMSE,
d, E, PBIAS and RSR are considered as appropriate statistical indices to provide additional
information to the boxplots. The surface resistances were calibrated as rsc = 150 sm−1,
rse = 250 sm−1 in the deciduous forest as well as rsc = 300 sm−1, rse = 650 sm−1 in the
coniferous forest.
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Performance Rating RSR NSE PBIAS %

Very good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 PBIAS <±10
Good 0.50 ≤ RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS <±15

Satisfactory 0.60 ≤ RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS <±25
Unsatisfactory RSR > 0.70 NSE ≤ 0.50 PBIAS ≥±25

Table 4.4 General performance ratings for recommended statistics for a monthly time step
(Moriasi et al., 2007).

4.3.3 Model evaluation at space scale

An apparent advantage for the remote sensing-based observations used in this study is the
relatively higher spatial accuracy than the model outputs. Actually, ETA and LE are two
sources of actual ET rates that generated by different estimation techniques and with different
basic materials. ETA was simulated based on the interpolated meteorological data sets, the
spatial accuracy of which depends on the locations and the numbers of available climate
stations. LE was retrieved by Landsat images, whose spatial resolution is 30 m for visible
and NIR bands as well as it is respectively 120 m and 60 m for the TIR band of TM and
ETM+. Their spatial differences are shown in the frequency distribution of daily ETA and
LE (Figure 4.2 and 4.3). It is obviously that the most spatial difference between daily
ETA and LE is the continuity of distribution - for each day, LEi are always continuous
distributed while ETAi are not, especially in the coniferous forest (Figure 4.31). In order
to investigate the detailed model performance in the spatial scale, the statistical indices
related to errors such as mean bias error MBE, mean variance of error distribution S2

d and
MAE were employed. RMSE was not taken into account since it is more sensitive to the
outliers than MAE (Willmott, 1982; Willmott and Matsuura, 2005). Unlike the evaluation
index requirement in the temporary scale, the measures that be less affected by outliers are
appropriate in spatial pattern evaluation. In Figure 4.4, the distributions of errors between
daily ET and LE are shown, with the dash lines indicate MBE and MBE ±S2

d . MBE indicates
the bias of error as well as the S2

d indicates the deviation degree of all errors to the mean bias.
It is shown that less MBE and S2

d leads to a better MAE, which is recommended to be the best
overall measures similar to RMSE that provides enough diagnose information containing
both MBE and S2

d (Willmott, 1982). Therefore, an ideal error distribution between ET and LE
is expected to approximate to the normal distribution, with MBE = 0, S2

d values as small as
possible and consequently low MAE. Therefore MAE is considered as appropriate measure
for model evaluation at the spatial scale.
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Fig. 4.2 Frequency distribution of daily (1) ETA 150_250 and (2) LE (both in mm) on 5
sample dates (a-e) in deciduous forest of the Nahe catchment.

Fig. 4.3 Frequency distribution of daily (1) ETA 300_650 and (2) LE (both in mm) on 5
sample dates (a-e) in coniferous forest of the Nahe catchment .
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Fig. 4.4 Frequency distribution of difference (error, in mm) between (1) ETA 150_250 and LE
in deciduous forest and (2) ETA 300_650 and LE in coniferous forest of the Nahe catchment
on 5 sample dates (a-e).

To take both the temporal pattern and the detailed spatial pattern into account for model
performance evaluation, we calculated the MAE between daily ETA and LE on 5 sample
dates and plotted them over time (Figure 4.5). For deciduous forest, both ETA 150_250,
ETA 150_300 exhibit relatively better overall model performance than ETA simulated with
other surface resistance combinations – the MAE of five days are all in relatively small
ranges (below the horizontal dash line, Figure 4.5a). Likewise, ETA 300_600 and ETA
300_650 show better overall model performance in time scale for coniferous forest (Figure
4.5b). In terms of the temporal and high-accuracy spatial information, ETA 150_250 and
ETA 300_650 are confirmed as the optimal simulations for deciduous and coniferous forest,
respectively. Therefore, for model performance evaluation at the temporal-spatial scale, using
the median value of daily ETA to replace its daily spatial pattern is feasible.

4.4 Conclusion

In the WaSiM-ETH model, the meteorological variables - solar radiation, air temperature,
air humidity, wind speed and precipitation as well as the property parameters - aerodynamic
resistance and surface resistance are important input for ETA estimation. Especially in the
forest regions, the surface resistance played a leading role in affecting ETA compared to the
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(a) Deciduous forest

(b) Coniferous forest

Fig. 4.5 Five days’ MAE (mean absolute error) between ETA (simulated from 12 surface
resistance combinations) and LE in the Nahe catchment.
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aerodynamic resistance as well as the meteorological variables (Beven, 1979). Moreover, in
WaSiM-ETH, the aerodynamic resistance is calculated by a function of wind speed for high
crop surface (e.g. forest). Thus, surface resistance is the sole and most significant parameter
and was calibrated in this study. The calibrated surface resistance included two parameters -
the canopy surface resistance rsc and the soil surface resistance rse, which correspond to the
transpiration of plants and the evaporation of soil, respectively. The simulated and observed
data are ETA simulated by the WaSiM-ETH model and LE retrieved from remote sensing
images on five sample dates. With regard to the observations, low accuracy at temporal scale
is the biggest problem while processing model evaluation and calibration. However, the
weather conditions on the sample dates contained multiple events such as wet, medium wet
and dry were expected to fill in the gaps. On August 04, 2003, the abnormal low ETA in
summertime was also considered as significant extreme event.

As multiple evaluation techniques were suggested for model performance evaluation
(Boyle et al., 2000; Legates and McCabe, 1999; Willmott, 1981), graphical and statistical
techniques were used in this study. Boxplots indicated the model performance at both spatial
and temporal scales well. ETA 150_250 and ETA 150_300 for deciduous and ETA 300_600,
ETA 300_650, ETA 300_750 and ETA 350_600 were found to graphically exhibit similar
spatial and temporal patterns to the corresponding daily LE for 5 sample days. The regional
median value was more appropriate than the mean value to represent the spatial pattern
of daily ET due to the relatively low simulation accuracy of WaSiM-ETH in spatial scale.
An important statistical evaluation reference is the general satisfied model performance
criterion proposed by Moriasi et al. (2007) - NSE > 0.5, RSR ≤ 0.7 and PBIAS <±25 %.
NSE was considered as the most important statistical index since it is also recommended
in WaSiM-ETH manual. Met the requirement that be sensitive to the extreme values, the
statistical indices such as MBE, S2

d , RMSE, d, NSE, PBIAS and RSR were considered as
appropriate measures to provide additional information to the boxplots.

Due to the high accuracy of remote sensing based LE in spatial pattern, model perfor-
mance evaluation was also carried out in spatial scale. The spatial accuracy of ET was
relatively low and depended on the density of climate station networks. Moreover, the
appropriate statistical index for spatial pattern evaluation between daily ET and LE was MAE.
MAE was found as good overall indicator that provide enough information containing mean
bias error and standard deviation, and insensitive to the extreme values in contrast to RMSE.
It is shown that the daily median value of ETA simply represents its spatial distribution and
is recommended to be employed in model evaluation in time series.



Chapter 5

Sensitivity analysis

5.1 Introduction

Sensitivity analysis is useful in all phases of modelling a physical hydrological cycle system:
model formulation, model calibration and model validation, with the definition of the sensitiv-
ity is a measure of the effect of changes in one factor on another factor (McCuen, 1973). To
understand parameters through sensitivity analysis, especially their relative roles in the model,
is a good preparation to understand the characteristics of a mathematical equation or a model
(Saxton, 1975). Sensitivity analysis is conducted to answer the following questions: (1)
which parameters significantly impact the model outputs and should be paid more attention
to; (2) which parameters are insignificant and can be eliminated in the modelling process; (3)
which input components contribute the most to the variations of model outputs; (4) which pa-
rameters are the most highly correlated with the model outputs; (5) what consequence would
be if changing an input parameter (Hamby, 1994). By focusing on those significant factors
that a model is most sensitive to, the future studies, e.g., model calibration and validation, can
be simplified and accelerated. A distinction between "sensitive" and "important" parameters
was introduced by Crick and Hill (1987) – the sensitive parameters significantly affect the
model outputs and the important parameters substantially contribute to the uncertainties of
model outputs. The former is related to the parameter sensitivity analysis and the latter is
related to the parameter uncertainty analysis. An important parameter is always sensitive
whereas a sensitive parameter may not be important if it has been well calibrated thereby
contributes very little to the uncertainties in model outputs (Hamby, 1994).

There are a variety of parameter sensitivity analysis methods and the direct method is the
fundamental of them all. It is also referred to as the differential analysis, with which a direct
investigation of the variances between the model outputs and the base case is conducted.
The simplest method for the sensitivity analysis is to perturb one parameter at a time while
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keeping the other parameters in constant. The method is also termed as the "one-at-a-time"
method.

The Penman-Monteith equation (Monteith et al., 1965) is the most frequently used and
recommended approach for evapotranspiration (ET) estimation (Allen et al., 1989, 1998;
Droogers and Allen, 2002). Several components are employed in this equation: (1) the
surface energy balance components – the net radiation (Rn), the sensible heat flux (H), the
soil heat flux (G) and the latent heat flux (LE); (2) the ground-measured meteorological
variables – the sunshine duration, the air temperature, the vapor pressure and the wind speed;
(3) the atmospheric factors – the phychrometric constant, the dry air density and the specific
heat capacity of the dry air; (4) the resistance parameters – the bulk surface resistance and
the aerodynamic resistance. A successful modelling of the Penman-Monteith ET is very
dependent on the aerodynamic resistance and the canopy resistance (Beven, 1979; Rana and
Katerji, 1998). The aerodynamic resistance is related to the transfer of heat and water vapor
from the evaporating surfaces into the air above. The bulk surface resistance describes the
resistant ability of the vapor diffusion from the surfaces while transpiring and evaporating.
Beven (1979) found that in a broadly humid temperate forested region, the Penman-Monteith
actual evapotranspiration (ETA) was highly sensitive to the canopy resistance, with the
diurnal and monthly relative sensitivity coefficient Sr uniformly approximated to -1, whereas
the relative importance of the aerodynamic resistance remained very small. In a study under
the semi-arid climate conditions, Rana and Katerji (1998) found that: (1) for well-watered
short crops, the aerodynamic resistance played a leading role for influencing the Penman-
Monteith ETA estimation while canopy resistance played a secondary role; (2) for water
stressed tall crops, the canopy resistance was the most important parameter that should be
precisely modelled with considering the climatic, canopy and soil water features, since it
leaded to the major relative errors. Moreover, in the WaSiM-ETH model, for tall crops higher
than 2 m, the aerodynamic resistance is a function of the wind speed.

ET is also very dependent on the meteorological variables. The meteorological variables
are subject to different sources of errors (Hupet and Vanclooster, 2001). To investigate
the error variances associated within ET estimation, Beven (1979) has divided the errors
that contributed to a model into four sources: (1) instrument errors, (2) site errors, (3)
measurement model errors, (4) modelling errors. The errors in the meteorological variables
are found to result in less uncertainties in the estimated evaporation rate by the Penman
equation (McCuen, 1974). A series of publications have reported the relative importances of
the meteorological variables for ET estimation: Bakhtiari et al. (2012); Beven (1979); Saxton
(1975) reported that the net radiation was the most important variable; Gleick (1986); Goyal
(2004); McCuen (1974); Piper (1989); Revelle and Waggoner (1983); Samani (2000) reported
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that the air temperature was the most important variable; Gong et al. (2006); McCuen (1974)
reported that the relative humidity was the most sensitive variable; wind speed or wind profile
parameters was reported as the least sensitive variable in publications (Gong et al., 2006;
McCuen, 1974; Saxton, 1975).

In this chapter, the parameter sensitivity analysis was conducted for two parameters in
the WaSiM-ETH water balance model for each forest type: the canopy surface resistance
(rsc) and the soil surface resistance (rse). The purposes of this chapter are: (1) to verify the
optimal values of the surface resistance; (2) to verify the previously recommended statistical
measures (Chapter 4) for evaluating the model performance; (3) to determine the appropriate
range boundaries of rsc and rse for both forest types; (4) to suggest the satisfied value ranges
of the recommended statistical indices that concluded in Chapter 4 for model evaluation; (5)
to explore the relative importances of rsc and rse in both forest types.

5.2 Method and material

The parametric sensitivity was expressed by a sensitivity coefficient. The sensitivity coef-
ficient is the ratio of the changes in the model outputs to the changes in a parameter, with
the other parameters all remain constant (Krieger et al., 1978). There are two forms of the
sensitivity coefficient – absolute and relative. The former indicates the magnitude changes of
the model outputs resulted from the magnitude changes of the investigated parameter. It is
used to compare the sensitivities of the same or similar parameters (e.g. with a same unit),
which is written as (McCuen, 1974):

Sa =
∂Pi

∂ fi
(5.1)

where Sa is the coefficient of the absolute sensitivity; fi indicates the model input parameters
which the hydrologists are interested in and varies in its acceptable value range that always
determined by experiences; Pi is the model outputs that corresponded to fi.

The relative sensitivity coefficient has been frequently used in publications to compare
the sensitivity of different parameters in different units and value ranges. It relates the relative
changes (in percentage) in the model outputs to the relative changes in the parameters. It is
written as (McCuen, 1974):

Sr =
∂Pi

∂ fi
× fo

Po
(5.2)

In the equation, Sr is the dimensionless relative parametric sensitivity, fo and Po respectively
indicate the optimal values of parameter f and the corresponding output. Usually, fo is valued
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as the mean of its experimental value range. Lenhart et al. (2002) ranked the sensitivity
coefficient into four classes: small to negligible, medium, high and very high (Table 5.1).

Class Index Sensitivity

I 0.00 ≤ |I|< 0.05 Small to negligible
II 0.05 ≤ |I|< 0.20 Medium
III 0.20 ≤ |I|< 1.00 High
IV |I| ≥ 1.00 Very High

Table 5.1 Sensitivity classes (Lenhart et al., 2002).

In the WaSiM-ETH manual (Schulla and Jasper, 2007), a one-at-a-time perturbation
method was used in the sensitivity analysis of the surface resistance. The canopy surface
resistance (rsc) was varied between 25 % and 200 % of its optimal value to study the impact
on potential evapotranspiration (ETP), ETA, interception evaporation and runoff. The Nash-
Sutcliffe efficiency (NSE) proposed by Nash and Sutcliffe (1970) was employed as the sole
statistical index for the model performance evaluation between the modelled and observed
runoff data sets. In this chapter, we used a similar one-at-a-time perturbation method on the
parameter sensitivity analysis of rsc and rse for both deciduous and coniferous forest. The
optimal values were previously determined in Chapter 4: for deciduous forest, rsc = 150
sm−1, rse = 250 sm−1; for coniferous forest, rsc = 300 sm−1, rse = 650 sm−1. For both
forest types, continuous perturbation of ±25 sm−1 for rsc and continuous perturbation
of ±50 sm−1 for rse were conducted to find their appropriate upper and lower bounds,
until the model performance was considered as unsatisfactory. Paired simulations and
observations are still daily ETA and LE (latent heat flux retrieved by remote sensing images,
corresponded to the ETA) on 5 sample dates. To evaluate the model performance as well
as to determine the appropriate value ranges of rsc and rse, we used the general satisfactory
criterion recommended by Moriasi et al. (2007) – NSE > 0.5,RSR ≤ 0.7,PBIAS < ±12
(RSR is the RMSE-observations standard deviation ratio and PBIAS is the percent bias
(Moriasi et al., 2007)). Both absolute and relative sensitivity coefficients were subsequently
calculated for each resistance.

5.3 Value range determination

As mentioned before, the parameter setting of rsc in the WaSiM-ETH model follows a
seasonal variation rule that (Table 2.3): for each forest type, rsc rises to the maximum
during November to February and falls down to the the minimum during May to September.
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Nonetheless, rse in the model always remains the same for a whole year. In Table 5.2, the
estimated appropriate value ranges of rsc and rse for both forest types are listed, with the
annual maximal (in November-February) and minimal (in May-September) values. For
deciduous forest, the annual maximal acceptable value ranges of rsc and rse are respectively
[100,225] and [50,450], as well as for coniferous forest are respectively [225,375] and
[350,1200]. It is apparent that in either deciduous or coniferous forest, for a value change in
each sm−1, rsc results in much more variances in transpiration than rse results in evaporation.
It is attributed to that transpiration is always the majority of total ET rate, especially in the
forested regions, the ratio of transpiration to ET is in general 80-90 % (Kurpius et al., 2003;
Szilagyi, 2000; Wilson et al., 2001).

In Figure 5.1-5.4, the performances of each statistical index with perturbed rsc and rse

values are shown. An appropriate statistical index (except for the bias indices, e.g. the mean
bias error (MBE) and PBIAS) always points out the best performed model outputs with its
maximal or minimal value. For instance, in Figure 5.1, the recommended indices such as
NSE, RSR separately exhibit an upside-down "v" and "v" curvilinear trend over the x axis
(perturbed rsc values), with their troughs or peaks corresponded to the optimal rsc = 150
sm−1 (marked with dash lines). Therefore, the mean variance of error distribution (S2

d), the
root mean square error (RMSE) and the index of agreement (d) are considered as appropriate
indices due to their "v"-curve performance. As mentioned in Chapter 4, to take full advantage
of the multiple climate conditions of the observations such as wet, medium wet and dry, the
statistical indices that being sensitive to the extreme values (e.g. the significant low value on
August 04, 2003 with compare to the general annual high value in the summer time) were
required. As concluded in Chapter 4, the modified NSE (E1) that corresponded to NSE
(E), the MAE-observations standard deviation ratio (MSR) that corresponded to RSR, the
mean absolute error (MAE) that corresponded to RMSE and the modified index of agreement
(d1) that corresponded to d were considered as the misleading statistics in this study due
to their relatively smaller sensitivity to the extreme values than their corresponding indices
(Legates and McCabe, 1999; Willmott, 1982; Willmott and Matsuura, 2005). It is also shown
that those indices that without an exponential in calculation exhibit apparent misleading
in model performance evaluation (e.g. Figure 5.1a v.s. 5.1b, Figure 5.1c v.s. 5.1b). In
addition, as a controversial index, R2 has been repeatedly reported as an inappropriate index
in publications (Krause et al., 2005; Legates and McCabe, 1999; Willmott, 1982)), but it
still has been frequently used in studies for model performance assessment. In Figure 5.1h,
the variation trend of R2 exhibits disagree with other "appropriate" indices. Therefore it
is an unacceptable measure for model evaluation in this study. MBE and PBIAS exhibit
similar performances in bias between the simulated and observed data sets. Unlike others, the



5.4 Sensitivity analysis 91

bias indices always evaluate model performance within a certain value range. For instance,
Moriasi et al. (2007) rated PBIAS <±25 % for streamflow, PBIAS <±55 for sediment, and
PBIAS <±70 for nitrogen and phosphorus as satisfactory for model performance evaluation.
In this study, in terms of the evaluation performance of the statistical indices for rsc and rse

for both forest types, S2
d < 1.11, RMSE < 9.97, d > 0.79, MBE <±0.45 and PBIAS <±15

are recommended as additional evaluation criteria to NSE > 0.5,RSR ≤ 0.7 for the model
performance evaluation.

lower bound optimal upper bound
max min max min max min

rsc (sm−1) 100 65 150 98 225 148
Deci

rse (sm−1) 50 50 250 250 450 450

rsc (sm−1) 225 155 300 206 375 258
Coni

rse (sm−1) 350 350 650 650 1200 1200

Table 5.2 Estimated value ranges for canopy surface resistance rsc and soil surface resis-
tance rse for deciduous and coniferous forest, "max" indicates the maximal value during
wintertime (November-February) and "min" indicates the minimal value in summertime
(May-September).

5.4 Sensitivity analysis

5.4.1 Sensitivity of potential evapotranspiration to surface resistance

In Figure 5.5, the fluctuations of the daily relative sensitive coefficient Sr of ETP to rs are
shown. It is obviously that ETP is generally more sensitive to rsc than to rse, especially in
the coniferous forest (except for the days during May in the deciduous forest). We infer
that the potential transpiration of the plants in forest areas dominates in ETP generation.
And it was reported in several studies that the transpiration contributed 80-90 % to ET in
the full-canopy regions (Kurpius et al., 2003; Szilagyi, 2000; Wilson et al., 2001). In terms
of the grading standard proposed by Lenhart et al. (2002), in deciduous forest, rsc and rse

are ranked as high-sensitive parameters (0.2 ≤ Sr < 1) since their Sr approximately range
in [-0.5,-0.3] and [-0.3,-0.2], respectively, whereas in coniferous forest, rsc that ranged in
[-0.7,-0.5] plays a relatively more important role than rse ranged in [-0.25,-0.15]. Therefore,
an increase of 10 % in rsc leads to a decrease of ETP of 3-5 % and 5-7 % in deciduous and
coniferous forest, respectively, and an increase of 10 % in rse leads to a decrease of ETP of
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Fig. 5.1 Model performance evaluation between ETA simulated with perturbed rsc values in
[100,225] ms−1 and LE on 5 sample days at temporal scale for deciduous forest, the x axis
indicates the perturbed rsc values.

Fig. 5.2 Model performance evaluation between ETA simulated with perturbed rse values in
[50,450] ms−1 and LE on 5 sample days at temporal scale for deciduous forest, the x axis
indicates the perturbed rse values.
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Fig. 5.3 Model performance evaluation between ETA simulated with perturbed rsc values in
[225,375] ms−1 and LE on 5 sample days at temporal scale for coniferous forest, the x axis
indicates the perturbed rsc values.

Fig. 5.4 Model performance evaluation between ETA simulated with perturbed rse values in
[350,1200] ms−1 and LE on 5 sample days at temporal scale for coniferous forest, the x axis
indicates the perturbed rse values.
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2-3 % and 1.5-2.5 % in deciduous and coniferous forest, respectively. The differences of the
relative importances for rsc and rse between deciduous and coniferous forest are due to the
ratio of optimal rs to ETP. The relative coefficient is very dependent on this ratio, and the
ratio for each surface resistance and forest type is very different. Assuming the ETP rates for
both forests are almost the same due to their similar meteorological variables, rsc/ET P in
coniferous forest is more than two times of the ratio in deciduous forest as well as rse/ET P
in coniferous forest is also more than two times of the ratio in deciduous forest.

To parallel compare the sensitivities of rsc and rse for both forests, we further studied the
absolute responses of ETP to their perturbations. In Figure 5.6, it is apparent that according
to an increase of rsc in each sm−1, ETP increases much more in the absolute magnitude in the
deciduous forest than in the coniferous forest. This agrees with the calibrated canopy surface
resistance values of both forests – rsc = 150 sm−1 for deciduous forest and rsc = 300 sm−1

for coniferous forest, which indicate that the resistance of plant canopy while transpiring in
coniferous forest are two times of that in deciduous forest. The impact on ETP resulted from
rse are relatively small – Sa of rse are about one order smaller than those of rsc (e.g. -0.012 v.s.
-0.0017 sm−1), in terms of which we confirm the dominated contribution of transpiration in
ET. In the Sa curves, the troughs present the most sensitive events (with big negative values).
In both forests, the extremely sensitive events (troughs in curves that corresponded to both rsc

and rse) occurred in June of 2000, July of 2001 as well as July and August of 2003. In 2003,
more significant seasonal variability in deciduous forest exhibit than in coniferous forest.
The activity of Sasc rises from May to July and August then fall down again from September,
which is associated with the variation of T. Moreover, in the extremely warm and dry year
2003, rsc exhibits much more activity in affecting ETP than in 2000. Air temperature is
therefore assumed as a very dependent impact variable.

The absolute sensitive coefficients of both surface resistances are assumed to depend
on the generated daily ETP rate. In Figure 5.7 and 5.8, the extreme values of Sa <−0.03
in deciduous forest, Sa <−0.01 in coniferous forest, were pointed out with dash lines and
associated to the basic meteorological variances and ETP simulated by the calibrated surface
resistances (ETP 150_250 for deciduous forest and ETP 300_650 for coniferous forest). It is
shown that, high absolute sensitivity of rsc appears with amount peaks in T and simultaneous
relative humidity troughs, which consequently leads to the amount peaks in ETP. In the same
periods, there are also high SSD values, but no significant associations are shown with WS.
Sa is thus very dependent on the ETP rates, whose fluctuation is assumed highly controlled
by air temperature and relative humidity.

To verify the assumption, the correlations between meteorological variables and ETP
were shown in Figure 5.9 and 5.10. For both forest types, the correlations between RH and
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ETP were the most fitting 1:1 line, with r ≥ 0.87. In several publications, RH has been
reported as the most sensitive meteorological variable for ET estimation (Gong et al., 2006;
McCuen, 1974). Air temperature T also exhibits very high correlation with ETP in 2001 and
2003, whose correlation coefficient r are more than 0.8 that followed RH. However, in May
to September in 2000, less correlation is shown between T and ETP, with r less than 0.7.
SSD and WS are followed in orderly, with r approximately ranges in [0.6,0.8] and less than
0.3, respectively. The net radiation Rn has been always applied to replace SSD to explore the
relative importance of solar radiation in the Penman-Monteith ET generation and is found as
a very sensitive factor (McCuen, 1974). Wind speed has been always reported as the least
sensitive variable of all to ETP (Gong et al., 2006; McCuen, 1974; Saxton, 1975). For both
forests, the correlation coefficients between each meteorological variable and ETP are more
or less the same.

5.4.2 Sensitivity of actual evapotranspiration to surface resistance

(Beven, 1979) concluded that in forest regions, rsc was the most sensitive parameter of ETA
generated by the Penman-Monteith equation, which significantly controlled ETA under the
dry-canopy conditions, and its relative sensitive coefficients approximated to -1.0 in the
hourly and monthly time steps. The relative importances of rsc and rse in ETA simulation in
WaSiM-ETH were shown (in Figure 5.11). In deciduous forest, no large variance appears
during May to September in 2000 and the Sr approximately ranges in [-0.5,0]. It is noted
that in July and August in 2001 and 2003, a number of high positive Sr appear. Especially
in August of 2003, the peak value exceeds 1.5 in deciduous forest and is close to 2.0 in
coniferous forest, which represent that an 10 % increase of rsc leads to an 15 % and 20 %
increase in deciduous and coniferous forest, respectively. However, these positive Sr are
abnormal. In coniferous forest, in 2000, rse exhibits very low sensitivity with Sr values
approximated to 0 and the Sr curve is relatively flat that with small fluctuations. In 2001 and
2003, there are even more high positive Sr. ETA in August of 2003 is extremely sensitive
to rsc. With regard to the absolute sensitivity (Figure 5.12), for each sm−1 change in rsc

or rse, the response changes in ETA are sorted from large to small as: rsc for deciduous,
rsc for coniferous, rse for deciduous and rse for coniferous. Moreover, the impact of rse for
coniferous on ETA were very small.

Likewise, the daily absolute sensitivities of both surface resistances are assumed to
depend on the generated daily ETA rate. In Figure 5.13 and 5.14, the negative extreme values
of Sa (Sa <−0.015 in deciduous forest, Sa <−0.008 in coniferous forest), were marked out
with dash lines in grey and associated to the precipitation, the model outputs such as ETP, ET
and decline between ETP to ETA (deETP) simulated with the calibrated surface resistance
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combination 150_250 for deciduous forest and 300_650 for coniferous forest. It is shown
that, in deciduous forest (Figure 5.13), high negative absolute sensitivities of rsc appear
with peaks in ETP, ETA, and a moderate deETP with not more than 4 mm. In coniferous
forest (Figure 5.13), high negative absolute sensitivity of rsc appear with also peaks in ETP
and ET, as well as the deETP not more than 1 mm. The abnormal positive high values of
Sa (Sa > 0.02 in deciduous forest, Sa > 0.005 in coniferous forest, marked out with dash
lines in red) frequently occurred in dry periods with rare precipitation, especially in 2003.
Those rsc always appeared with simultaneous extremely high ETP and deETP, with which
the little water content in root zone for evapotranspiration were inferred. And the positive
value is attributed to the coupling and feedback between evapotranspiration and soil modules
in WaSiM-ETH - under dry soil moisture conditions, in a long-term period, increasing the
surface resistance will reduce the actual evapotranspiration and subsequently increase the
soil water content; however, the increased soil water content will subsequently feedback to
the actual evapotranspiration due to the water balance strategy in WaSiM-ETH. Therefore,
under dry-soil conditions, an increase of rsc may lead to an increase of ETA in WaSiM-ETH
model.

Correlation between meteorological variables and ET were shown in Figure 5.15 and
5.16. With respect to the correlation with ETP, the introduction of soil water content reduced
the correlation between meteorological variables and ET. In deciduous forest, in 2000 and
2001, ET was highest correlated with T, followed by RH, SSD and WS. In 2003, all variables
were less correlated due to the dry climate conditions. In coniferous forest, the correlation
sorted from high to low is also as: T, RH, SSD and WS in 2000 and 2001. However, in the
wet year 2000, r corresponding to RH and SSD were much lower than those for deciduous
forest. Thus, the correlation between ETA and meteorological variables were dependent on
the ratio of ETA to ETP - under wet and medium wet soil moisture conditions and the ratio is
thereby big, the correlation between ETA and meteorological variables are better than under
dry soil moisture conditions.

5.5 Conclusion

In this chapter, parameter sensitivity analysis was conducted on surface resistance in WaSiM-
ETH model. Two parameters were studied - canopy surface resistance (rsc) and soil surface
resistance (rse). A one-at-a-time perturbation method was employed. For both forests,
continuous perturbation of rsc ±25 sm−1 and rsc ±50 sm−1 were respectively carried out
in WaSiM-ETH. In terms of the general satisfactory criterion recommended by Moriasi
et al. (2007) - NSE > 0.5,RSR ≤ 0.7,PBIAS < ±25, the appropriate surface resistance
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Fig. 5.5 Daily relative sensitive coefficient (Sr, dimensionless) of ETP to surface resistance
(rs) in May-September in year (a) 2000, (b) 2001, (c) 2003 in (1) deciduous and (2) coniferous
forest.

Fig. 5.6 Daily absolute sensitive coefficient (Sa, in mm/sm−1) of ETP to surface resistance
(rs) in May-September in year (a) 2000, (b) 2001, (c) 2003 in (1) deciduous and (2) coniferous
forest.
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Fig. 5.7 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1), and (e)
ETP 150_250 (in mm), during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous
forest, with the large negative values of Sa (ETP to rsc) were marked with dash lines.
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Fig. 5.8 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1), and (e)
ETP 300_650 (in mm), during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous
forest, with the large negative values of Sa (ETP to rsc) were marked with dash lines.
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Fig. 5.9 Scatter plot between ETP and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in ms−1),
during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous forest.

Fig. 5.10 Scatter plot between ETP and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in ms−1),
during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous forest.
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Fig. 5.11 Daily relative sensitive coefficient (Sr, dimensionless) of ETA to surface resistance
(rs) in May-September in year (a) 2000, (b) 2001 and (c) 2003 in (1) deciduous and (2)
coniferous forest.

Fig. 5.12 Daily absolute sensitive coefficient (Sa, in mm/sm−1) of ETA to surface resistance
(rs) in May-September in year (a) 2000, (b) 2001 and (c) 2003 in (1) deciduous and (2)
coniferous forest.
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Fig. 5.13 (a) P (in mm), (b) ETP 150_250 (in mm), (c) ETA 150_250 (in mm), and (d) deETP
150_250 (in mm) during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous forest,
with the large negative and positive values of Sa (ETA to rsc) were respectively marked with
dash lines in grey and red.
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Fig. 5.14 Meteorological variables (a) T (in oC), (b) RH, (c) SSD (d) WS (in ms−1), and (e)
ETA 300_650 (in mm), during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous
forest, with the large negative and positive values of Sa (ETA to rsc) were respectively marked
with dash lines in grey and red.
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Fig. 5.15 Scatter plot between ETA and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in ms−1),
during May-September in (1) 2000, (2) 2001, (3) 2003 in deciduous forest.

Fig. 5.16 Scatter plot between ETA and (a) RH, (b) T (in oC), (c) SSD and (d) WS (in ms−1),
during May-September in (1) 2000, (2) 2001, (3) 2003 in coniferous forest.
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value ranges during May-September (annual minimal) were determined as: in deciduous
forest, [100,225] for rsc and [50,450] for rse as well as in coniferous forest, [225,375] for
rsc and [350,1200] for rse. The previously recommended statistical evaluation indices such
as NSE (E), RSR, PBIAS, MBE, the mean variance of error distribution (S2

d), index of
agreement (d), and RMSE were confirmed as appropriate indices. The model performance
can be judged as satisfactory if NSE > 0.5,RSR ≤ 0.7,PBIAS <±12,MBE <±0.45,S2

d <

1.11,d > 0.79,RMSE < 9,97. E1, MSR, MAE and R2 were misleading indices due to
their relatively insensitivity to extreme values. In terms of those recommended indices, the
previously calibrated surface resistance values were also confirmed.

For both forest types, rsc played a more important role than rse in ETP estimation. In
terms of the grading standard proposed by (Lenhart et al., 2002), rsc were ranked as high-
sensitive parameters in ETP estimation, whereas the relative sensitivity coefficient of ETP to
rse in coniferous forest were partly lower than the high-sensitive level. In deciduous forest,
an increase of rsc in 10 % will lead to a decrease of ETP in 3-5 % whereas an increase of
rse in 10 % will lead to a decrease of ETP in 2-3 %. In coniferous forest, an increase of rsc

and rse in 10 % will respectively result to 5-7 % and 1.5-2.5 % reduction in ETP. Since the
relative sensitive coefficient is very dependent on the ratio that rso/ET Po (with o indicated
the optimal values), the absolute sensitive coefficient were further investigated. The absolute
sensitivity of ETP to rsc were about one order bigger than the absolute sensitivity of ETP
to rse (e.g. -0.012 sm−1 vs. -0.0017 sm−1). It was found that the fluctuations of absolute
sensitivity coefficients of ETP to rsc were dependent on the generated ETP rate. Moreover,
the daily ETP were found the most highly correlated with RH, followed by T, SSD and WS.

With regard to the ETA, rsc also played a more important role than rse for both forest
types. This importance difference was attributed to that transpiration always dominates in
ETA rates, especially in forest regions (Kurpius et al., 2003; Szilagyi, 2000; Wilson et al.,
2001). Under wet meteorological conditions, the daily absolute sensitivity of rsc were also
dependent on the generated ET rates. However, under dry soil moisture conditions, an
increase of rsc may may lead to an increase of ETA due to the coupling and feedback between
the evapotranspiration and soil modules in WaSiM-ETH model. The correlation between
ETA and meteorological variables were dependent on the ratio of ETA to ETP. Under wet
and medium wet conditions, the ETA were found the most correlated with T, followed with
RH, SSD and WS. Under dry conditions, weak correlations were shown.
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Summary

The main works we have done in this thesis are: (1) calibrated the canopy surface resistance
rsc and the soil surface resistance rse in the WaSiM-ETH model for both forest types -
the calibrated values are rsc = 150 sm−1, rse = 250 sm−1 for deciduous forest; rsc = 300
sm−1, rse = 650 sm−1 for coniferous forest; (2) determined the appropriate value ranges
of rsc and rse (annual maximum) – [100,225] sm−1 for rsc and [50,450] sm−1 for rse

in deciduous forest, as well as [225,375] sm−1 for rsc and [350,1200] sm−1 for rse in
coniferous forest; (3) found appropriate statistical indices and determined their value ranges
for model performance evaluation – the model performance can be judged as satisfactory if
NSE > 0.5,RSR ≤ 0.7,PBIAS < ±12,MBE < ±0.45,S2

d < 1.11,d > 0.79,RMSE < 9,97;
(4) investigated the relative importances of rsc and rse – rsc played an more important role
than rse in potential evapotranspiration (ETP) and actual evapotranspiration (ETA) estimation
by the Penman-Monteith equation; (5) investigated the correlation relationships between
meteorological variables and ETP/ETA – the ETP estimation was found the most correlated to
the relative humidity (RH), followed by air temperature (T), relative sunshine duration (SSD)
and wind speed (WS). Under wet or medium wet climate conditions, the ETA estimation was
found the most correlated to T, followed by RH, SSD and WS. Under water-stress conditions,
there were very small correlations between ETA and meteorological variables.

6.1 Comparison of two techniques for ETA estimation

In this thesis, two different techniques were employed for ETA estimation. One is the
conventional method in the WaSiM-ETH model – to firstly estimate the ETP rate and the
soil water content, and subsequently to obtain the ETA by reducing ETP according to the
soil water content. The Penman-Monteith equation was used for ETP calculation. The other
is using remote sensing images combing with the ground-measured meteorological data to
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retrieve the surface properties and the surface energy components, and estimate latent heat
flux (LE, corresponding to ETA) through the surface energy balance equation. Since it is
frequently reported that much different evapotranspiration (ET) rates are always generated
by different methods, the remote sensing-based method is required to be as similar to the
Penman-Monteith equation as possible. The Penman-Monteith equation combined both
aerodynamic- and surface energy-based techniques, with which ETP is on the one hand
calculated as the turbulent transport of vapor and on the other hand estimated through the
surface energy equation. In the equation, the meteorological variables such as sunshine
duration, air temperature, relative humidity and wind speed are basic input data. The biggest
difficulty in estimating ETP by the Penman-Monteith equation is the determination of surface
resistance (Brown, 1974). In the remote sensing- based method, the TM/ETM+ thermal
infrared (TIR) band was used for land surface temperature (LST) retrieving, which is a
critical variable for sensible heat flux (H) estimation. The daily H is calculated in terms
of the temperature difference between the maximal LST and air temperature, which is also
related to the aerodynamic techniques. Based on the retrieved surface properties such as
surface albdeo, fractional vegetation cover (FVC) and LST as well as the ground-measured
meteorological data, the LE was obtained through the surface energy equation. Using remote
sensing TIR data is the only means for a large-scale LST retrieving. In the Penman-Monteith
equation, the introduction of the aerodynamic-based technique eliminates the difficulty in
LST determinate and makes the ETP estimation possible only based on meteorological data
(Penman, 1948).

6.2 Features of simulations and observations

The simulations are the ETA generated by the WaSiM-ETH model with different surface re-
sistance combinations (including both rsc and rse) in a daily time step. The value adjustments
of rsc and rse were conducted in a manual model calibration process on the basis of previous
works and experiments. In this thesis, 12 representative surface resistance combinations were
selected for each forest type for research. The observations are remote sensing-retrieved daily
LE . Due to the high-quality and cloudy-free requirements for remote sensing image selection
as well as the overlapping cycle of TM/ETM+ sensor is 16 days, images on only 5 dates were
available during 1971-2003 (model run). Comparing both data, the features of simulations
and observations are: (1) the model-simulated ETA are in good temporal resolution that are
continuous in a long time series in a daily time step, whereas the observations are noncontin-
uous in time series and only available in a limited number; (2) the observations are superior
in spatial resolution to the simulations since for the former, the spatial resolution are on the
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basis of TM/ETM+ images, whose general spatial resolution are 30 × 30 m; whereas for the
latter, the basic input data are meteorological measurements, whose spatial resolution are
mainly dependent on the density of climate station networks. Singh et al. (2012) successfully
calibrated the WaSiM-ETH model by using critical events replaced the whole time series.
Furthermore, the observations were found to represent multiple climate conditions such as
wet, medium wet and dry as well as the extremely low ETA rate on August 04, 2003 in
contrast to the previously years during the same time was considered as extreme event. These
features are great supplements to overcome the poor temporal resolution of the observations.

6.3 Impact and feedback of meteorological variables

In 2000, there were abundant precipitation and relatively high air humidity, whereas in
the summer of 2003, there were rare precipitation, relatively high air temperature and low
air humidity. To judge the moisture degree of a climate, the amount of both precipitation
and ETA should be taken into account (Thornthwaite, 1948). The decline between model
simulated ETP and ETA (deETP) in a daily time step was considered as a good indicator –
deETP values describes the water-stress degree that the bigger the deETP is, the more the
amount of effective precipitation is smaller than ETA. In terms of the model outputted deETP
simulated with 12 different surface resistance combinations, a consistent assumption was
proposed that the meteorological condition on August 04, 2003 was dry whereas on May 15,
2000, was very wet - 12 deETP values on that day uniformly approximated to 0.9 (in Figure
2.2 and 2.3).

Meteorological variables such as SSD, T, RH and WS are basic input data for ETP
estimation. It is found that the fluctuations of daily ETP generated by the Penman-Monteith
equation was very dependent on the changes in the meteorological variables, especially the
changes in T and RH. Numbers of publications reported the importances of meteorological
variables in ET estimation, especially their relative importances in contrast to others. Rn,
RH and T was respectively reported as the most sensitive variable in several publications
(Bakhtiari et al., 2012; Gong et al., 2006; Goyal, 2004; McCuen, 1974; Saxton, 1975),
whereas in most cases, WS was reported as the least sensitive variable (Gong et al., 2006;
McCuen, 1974; Saxton, 1975). In the WaSiM-ETH model, ETP estimation was found the
most correlated to the RH, followed by T, SSD and WS. Rn was suggested to replace SSD to
quantify the total energy supply in surface energy budget. Under non-water-stress condition,
ETA estimation was found the strongest correlated to T, followed by RH, SSD and WS. Under
water-stress condition, there were very small correlations between ETA and meteorological
variables.
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The meteorological variables are not the only critical input data for ET estimation, but
also affected by the ET feedback. It was found that in the long-time period during May
01, 2000 to September 30, 2003, there were significant differences respectively in T, RH
and WS between two forest types - there were higher T, lower RH and more rapid WS in
deciduous forest than in coniferous forest. Since the local air temperature, air humidity
and cloud formation are always affected by ET (Rabin et al., 1990; Segal and Arritt, 1992),
these differences were assumed not only as the causes of more ET generated in deciduous
forest than in coniferous forest, but also as the result from the feedbacks of the generated
different ET rates in two forest types in a long-time period. On the five sample dates, in
general, higher T and lower RH were also exhibited in deciduous forest in contrast to in
coniferous forest. However, there was opposite appearance that on the three days of 2003, the
ET rates generated in deciduous forest were less than in coniferous forest. This appearance
was assumed attributed to the higher drought-tolerance of plants in coniferous forest under
soil water-stress conditions.

6.4 Features of WaSiM-ETH model

In the WaSiM-ETH model, the flow for ETA estimation was simplified in three steps: (1) to
calculate the ETP on the basis of the meteorological variables such as SSD, T, RH and WS
by the Penman-Monteith equation; (2) to simulate the soil water content in one-dimension
in the vertical direction by the Richards equation; (3) to reduce the ETP to ETA according
to the actual soil water content. In the process of ETA estimation in WaSiM-ETH, the
meteorological variables are critical input data as well as the aerodynamic resistance and the
surface resistance are important parameters.

Aerodynamic resistance and surface resistance are the most important parameter in the
Penman-Monteith equation, however, the surface resistance plays a leading role in the forest
regions (Beven, 1979; Rana and Katerji, 1998). In WaSiM-ETH, the aerodynamic resistance
for forest regions is a function of the wind speed. Duo to the smallest sensitivity of WS in the
Penman-Monteith ETP and ETA estimation, the aerodynamic resistance was also inferred
as insensitive parameters for forested regions. Since the transpiration and evaporation are
separately calculated with the Penman-Monteith equation, the surface resistance were divided
into the canopy surface resistance rsc and the soil surface resistance rse, with the interception
surface resistance was not taking into account. The perturbations of the surface resistance
were found to impact the model simulated ETP, SM and deETP mainly in magnitude but
keep their fluctuations reflecting the impact of the changes in meteorological variables. Both
surface resistances were calibrated to find their optimal values and appropriate values ranges
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respectively for both forest types in the WaSiM-ETH model. It was also found that in both
forests, rsc played a much important role than rse, which was attributed to the knowledge
that transpiration always dominates the ET, especially in a forest area (Kurpius et al., 2003;
Szilagyi, 2000; Wilson et al., 2001). For instance, an increase of 10 % of rsc leaded to an
decrease in ETP of 3-5 % in deciduous forest and 5-7 % in coniferous forest, as well as an
increase of 10 % of rse leaded ETP to a reducing of 2-3 % in deciduous forest and 1.5-2.5 %
in coniferous forest.

It is noted that in WaSiM-ETH, the simulation of ETA and soil moisture are closely
linked. In a long time series, increasing the surface resistance to reduce the ET increases the
soil moisture, since the water balance in terms of the total water supply from precipitation.
Therefore in the extremely dry and warm summer of 2003, extremely high positive sensitive
coefficients that described the response of ETA to rsc were found - in a long time series, an
increase of rsc decreased the ET amount and maintain more water in the soil in the previous
days, and subsequently increased the current soil moisture to supply more water for ET in
water-stress days.

6.5 Important surface properties in ETA estimation

The surface properties such as surface albedo, fractional vegetation cover (FVC) and land
surface temperature (LST) are critical parameters for ET estimation. Based on the remote
sensing-retrieved surface properties on five sample dates, differences were shown for each
property parameter between two forest types: the surface albedo, FVC in deciduous forest
were always higher than in coniferous forest. With regard to the LST, on the three dates
in the dry year 2003, LST in deciduous forest were higher than in coniferous forest, which
were assumed due to the higher drought-tolerance of the plants in coniferous forest under
water-stress conditions. In the WaSiM-ETH model, the default setting of surface albedo
are consistently 0.2 and 0.1 respectively for deciduous and coniferous forest in each month,
whereas default monthly FVC in deciduous forest were lower than those in coniferous forest.
Due to these surface property differences between forest types as well as between model and
remote sensing-retrieved values, future work of this thesis will extend in this direction.

6.6 Recommended model performance evaluation techniques

Using multiple evaluation techniques to assess model performance is widely suggested
(Boyle et al., 2000; Legates and McCabe, 1999; Willmott, 1981). In this thesis, boxplot
was found as a good graphical indicator that exhibited model performance at both spatial



6.7 Sources of error 111

and temporal scale. Due to the features of observations that containing multiple climate
conditions such as wet, medium wet and dry, but in a limited number, the statistical indices
for model performance evaluation in time series are required to be sensitive to extreme values.
The Nush-Sutcliffe efficiency (NSE), RMSE-observations standard deviation ratio (RSR),
percent bias (PBIAS), mean bias error (MBE), mean variance of error distribution (S2

d), index
of agreement (d), root mean square error (RMSE) were found to satisfy this requirement and
are appropriate to provide additional evaluation information to boxplot. At the spatial scale,
MAE was considered as appropriate index since it is an overall measure that provide enough
diagnose information containing both MBE and S2

d .

6.7 Sources of error

In this study, there are three primary sources of error in the data simulation by the WaSiM-
ETH model: error resulted from the surface properties, error resulted from the model
regionalization strategy, and error resulted from the measurements of field capacity. (1) error
resulted from the surface properties. In Table 2.4, the default setting of the surface properties
in the WaSiM-ETH model are shown. In the model, the surface properties such as surface
albedo, leaf area index (LAI) and fractional vegetation cover (FVC) are monthly values and
separately for both forest types. The surface albedo values of deciduous forest are keep in a
constant for the whole year, whereas the albedo values of coniferous forest are also keep in a
constant for each month but the values are only half of those in deciduous forest. For the
FVC, in the growing period from May to September, the FVC values are bigger than the other
seasons for both forest types. It is shown that the monthly FVC values of coniferous forest
are always bigger than the values of deciduous forest. In Figure 3.3, the surface properties
retrieved by the remote sensing images on five sample dates are shown. However, the values
of surface albedo and FVC vary at daily scale. It is noted that the daily FVC values of
deciduous forest are always bigger than those of coniferous forest, which is opposite to the
parameter setting in the WaSiM-ETH model. Therefore, in the further work, the surface
properties should be calibrated. Since the surface resistance for plants transpiration are very
dependent on LAI and FVC, the surface properties calibration is also a follow-up work for
surface resistance calibration. (2) error resulted from the model regionalization strategy.
There are big differences in the spatial pattern between the model simulated ETA and the
remote sensing-retrieved LE (Figure 4.2 and 4.3). It is obviously that LE is superior to
ETA in spatial accuracy. In the WaSiM-ETH model, the spatial pattern of outputs is very
dependent on the ground-measured precipitation and air temperature, the grid data sets of
field capacity and soil slope. The future work is to improve the regionalization strategy to
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reduce the error at spatial scale. (3) error resulted from the measurements of field capacity.
In the WaSiM-ETH model, the field capacity of study area is divided into four classes: (1) 50
mm, (2) 100 mm, (3) 150 mm and (4) 200 mm. It is found that the the regions with a field
capacity at 50 mm exhibited the worst model performance in ETA simulation. Actually, a
field capacity at 50 mm is too low for the soil in the forest area. The field capacity grid data
set is thereby supposed to contain errors.
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