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1 Introduction 

 

The world population is expected to reach 9 billion of people by 2050 (Godfray et al. 

2010). Although the growth of food production leaves less people hungry today, a 14% 

of the world’s population is still facing malnutrition. According to the FAO, farming 

systems face serious pressure by competitive land use (biofuels versus food crops), in-

tensification caused soil degradation by salinization, soil erosion and climate change, 

and urbanization competition for water and land in rural-urban boundaries (Godfray et 

al. 2010; FAO 2011). Sustainable food production and food use therefore present to-

day’s challenge and a “sustainable intensification” (Godfray et al. 2010, p. 813) is called 

for, encompassing increasing agricultural production limits by use of genetically modi-

fied crops and more efficient livestock management, reducing food waste, changing 

diets  and expansion of aquaculture (Godfray et al. 2010). The term “precision agricul-

ture” subsumes the technical improvements aiming at agricultural practices more effi-

cient yet less harmful to the environment. In this context, one prerequisite for produc-

tive agriculture is access to fast and cheap geospatial data and this is where unmanned 

aerial systems (UAS) have knocked their way into the remote sensing communities. 

Small UAS provide data at low costs and high local detail without lengthy processing 

chains compared to costly manned airborne missions and satellite data (Zhang and 

Kovacs 2012).  

Civil unmanned aerial systems (UAS) have shown an immense development within the 

private sector and scientific community since the millennium. According to the RPAS 

Yearbook 2015 (van Blyenburgh 2015), the total number of quoted UAS has been ever 

increasing (400% from 2005 to 2015) and the same holds for producing countries. Fo-

cusing on Europe, the civil applications have outranged the originally military applica-

tions, and Germany, France, the U.K. and Spain are the big producer countries. Mostly 

Mini UAS (smaller than 5 kg take-off weight) and in this category mostly rotary wing 

systems are being developed as they offer flexible platforms. Some key applications are 

listed below 

 Precision agriculture: monitoring crop development and health status to quickly 

adapt crop treatment, 

 Archaeology: surveys and reconnaissance of former settlements and land use 

have been among the first civil applications of UAS, 
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 Conservation: monitoring protected sites and species, detection of poaching and 

fires 

 Security: remote sensing of areas where access is impossible due to risks to hu-

man health (e.g. contaminated site of Fukushima; fires in difficult areas),  

 Health services: use of small UAS to deliver life-aiding systems to remote pa-

tients. 

Accompanying, publications in that field mirror this development and have increased 

ten-fold since the turn of the millennium: 

 

Figure 1.1 Reference hits by Google Scholar 

Due to the relevancy of large-scale geospatial data for sustainable food production and 

also for cultural heritage, key research issues were defined: What is the potential of 

small UAS in multispectral and, to a lesser extent, broadband thermal infrared remote 

sensing within the field of agriculture and archaeology? And likewise, what are the limi-

tations if not potential pitfalls? To study these topics, a md4-1000 quadrocopter UAS 

(microdrones GmbH), was purchased by the Department of Environmental Remote 

Sensing and Geoinformatics at the end of 2010.  

The aim was to retrieve an operational sound processing chain for the use of multispec-

tral or digital cameras, sensor calibration and radiometric correction, to be followed by 

point-cloud modelling leading to orthophoto mosaics which may then further be ana-

lyzed in relation to the respective scientific questions. The work is divided into two 

parts: 

 Part I deals with introduction into the topic and sets the scientific background of 

data processing and requirements. 

 Part II contains the application of the UAS in the context of agricultural and ar-

chaeological research questions. 
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In part I, chapter 2 gives an overview to UAS their historic evolution and recent plat-

form development, especially rotary-based systems and sensors. Within this topic 

comes also the description of the regulatory framework for the operation of such sys-

tems. The latter often  limp behind the technology’s development and demand and may 

still impede the readiness for system use. Regulating bodies do work hard though on 

reaching international standards and safety regulations. Chapter 3 endows on multispec-

tral and thermal broadband remote sensing of vegetation, setting a base for the consecu-

tive case studies.  

A detailed description of the used sensors, their calibration and radiometric correction 

of individual photos is given in chapter 4. Consecutively, the potential radiometric cor-

rection is presented followed by the description of topographic corrections, i.e. geomet-

ric correction, bundle-block adjustment, point-cloud modelling and final derivation of 

orthophoto mosaics (chapter 5). A sensitivity analysis then evaluates the selected wave-

lengths for the study of key vegetation parameters such as chlorophyll, leaf water con-

tent, brown pigments, leaf area index, a.o., pursued by bidirectional reflectance effects 

at multi-angular viewing geometries on the spectral signal and common vegetation indi-

ces (chapter 6).  

Subsequently, the UAS system and processing chain is used in three common research 

questions, i.e. 

a) the potential of multispectral and multi-angular remote sensing of soil manage-

ment effects on grapevine in a vineyard in Luxembourg (chapter 7),  

b) the impact of nitrogen-fertilization treatments on sugar beet on the multispectral 

(and thermal) signal in relation to stress-induced solar fluorescence, and the po-

tential to use the system to map daily fluorescence as a stress indicator (chapter 

8), and finally, 

c) the potential use of small UAS to archaeological surveys and reconnaissance at a 

former Roman settlement in Los Bañales, Spain (chapter 9). 

The benefit and handicaps of small UAS in multispectral remote sensing applications 

are then summarized and discussed in chapter 10, followed by conclusions and recom-

mendations for the use of small UAS in chapter 11. A summary concludes the work in 

chapter 12. 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Part I 
 



 

 

2 Unmanned Aerial Systems for Environmental Remote 

Sensing 

Unmanned aerial systems (UAS) or remotely piloted aircraft systems (RPAS) for envi-

ronmental remote sensing of agriculture and conservation, have emerged about a decade 

ago and find increasing and widening application experiencing a rapid technical devel-

opment ever since (van Blyenburgh 2014a, p.153).  

2.1 Terms and Definitions 

2.1.1 UAS versus UAV 

Only recently, the non-profit trade organization “Unmanned Aerial Vehicle System As-

sociation (UAVS), EUROCAE  and ICAO suggested to harmonize terms from the term 

unmanned aircraft vehicle (UAV) to unmanned aircraft system (UAS) as a reusable, 

powered aircraft which is either steered remotely by a crew on the ground or flies au-

tonomously following preprogrammed tracks (Unmanned Aerial Vehicle System 

Association 2011, ICAO 2011). The acronym UAV originated from a rather military 

perspective of drones as uncrewed radio-controled aerial vehicle performing flight and 

payload operations for reconnaissance missions. Despite industry and regulating bodies 

adopting the term UAS, within scientific publications the acronym UAV persists.  

Other terms used by ICAO and in European Aviation are remotely piloted aircraft sys-

tems (RPAS), remotely operated aircrafts (ROA), simply drones, or for the US Federal 

Aviation Administration unmanned aircrafts (UA) (Eisenbeiß 2009, p.1). Depending on 

the size, drones may also be termed autonomous unmanned micro aerial vehicle 

(AUMAV).  

For civil and commercial applications, industry and regulating bodies now adopted the 

term unmanned aircraft systems (UAS), including all associated system elements like  

 the aerial vehicle and its propulsion mechanism 

 the payload 

 the ground control station 

 the communication means between ground station, the vehicle (i.e. re-

mote control) and data downlinking, and   
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 the support equipment required to run, and transport the UAS (Austin 

2010). 

 UAS Components 

A UAS comprises a platform and its propulsion system, the payload, a flight control 

system, a precision navigation system and, possibly, a sense & avoid system. 

The sensors onboard may encompass one or more of the following: 

 Digital or single lens reflex cameras (SLR), multispectral/hyperspectral sensors 

 thermal infrared cameras (TIR), video cameras and scanners, 

 LiDAR or radar systems, and/or 

 environmental (gas) sondes. 

The ground control station generally supports field missions during  

 set-up, and through 

 a monitoring display for camera live links, 

 the system health diagnostics, 

 navigation tasks, 

 position mapping, and 

 as a data downlinking and processing unit. 

The telecomunication unit controls the transfer of the pilot’s commands to the UAS 

(Jensen 2007; Austin 2010, Everaerts 2008). 

2.1.2 UAS Benefits and Drawbacks 

Cleary the biggest advantage is the immense flexibility in using drones. Whereas tradi-

tional aircrafts are cost-intensive and not always disposable, drones, especially smaller 

vehicles, may be obtained at much lower costs. Their main application lies in mapping 

at large scales and, in particular, in studying short-term variations of sites of interest 

whenever required: crop development during the growing period may be listed here, 

where traditional, manned aircraft would explode project costs. Presuming for adequate 

weather conditions, UAS may be flown when and as often as required and inform preci-

sion agricultural management. In some cases, flights may even be carried out when the 

weather is not ideal, e.g. during light rain, snow fall or underneath clouds. 
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UAS are further advantageous for overflights of  areas of limited access where manned 

air missions might endanger crews, as, for instance, over volcanoes or areas of limited 

access after catastrophic events.  

Also, other flight parameters may be selected to fit the research question: Depending on 

the object under study, variations of the flight height determine the scale of the obtained 

imagery. The choice of a beneficial flight time together with the flight direction deter-

mines object illumination. For thermal imagery morning or evening exposures may be 

beneficial whereas reflectance measurements generally are carried out during maximum 

solar illumination. Finally, the speed of the aerial vehicle and the chosen image acquisi-

tion rate steer image overlap, required for instance for photogrammetric measurements 

(Eisenbeiß 2009, p. 3-4).  

Modern GPS-/inertia steered altitude and attitude reference systems stabilize the plat-

form and, when using rotary-wing drones, the platform may hover over the site of inter-

est as long as required. These systems also show the advantage of vertical take-off and 

landing (VTOL), requiring a minimum space for launching the UAS (Eisenbeiß 2009, 

p.4, microdrones GmbH 2009, Jones and Vaughan 2010). Finally, the mission may be 

programmed so that the vehicle follows pre-defined tracks and executes data acquisition 

autonomously. 

The major drawback in using UASs is the relationship between platform weight and 

maximum payload. National air regulation legislation generally treat commercial and 

non-commercial UAS as model aircrafts and minimize their total weight to e.g. 5 kg in 

Germany, and thus, limiting the sensor size within general ascent permits. Furthermore, 

the flight altitude needs to conform to air traffic regulations and is, thus, limited to the 

space below manned air traffic. In most parts of Germany this amounts to 300 m above 

ground, which is generally still an adequate flight height, for general ascent permits, 

however, maximum altitude limits at 100 m above ground level (a.g.l.).   

Although equipped with GPS/inertia systems, the comparatively rather miniaturised 

platforms still lack in flight stability when compared directly to traditional manned air-

crafts, placing great demands on image processing. To enable post-processing for image 

orientation parameters, ground control points need to be installed in-situ. Other limiting 

factors are technical constrictions in battery capacity and weight. Longer flight times are 

achieved at the expense of payload. Model aircrafts have furthermore been restricted to 

visual line of sight flights and the range of radio communication. 



2 Unmanned Aerial Systems for Environmental Remote Sensing 8 

 

 

2.2 Categorization of Civil Unmanned Aircraft Systems 

Up until now, to the author’s awareness, there is no European-wide official classifica-

tion for UAS. EUROCONTROL together with other members from the UVSI have 

been working on this topic, more results are being soon expected (personal communica-

tion with Mike Lissone, UAS ATM Integration Manager, EUROCONTROL, 

12.12.2011). UAS have also been grouped by lifting force (lighter than or heavier than 

air) or based on their propulsion system, i.e. powered versus passive systems, by their 

size and weight of their platform and payload and by flight altitude and endurance pa-

rameters. The UVSI within the recent years have categorized UAS by their altitude, 

range and weight and distinguish among tactical, strategic and special purpose UAS 

including military UAS and higher (exo-)atmospheric applications which will not be 

described further in this context. 

Table 2.1 UVSI categorization of civil UAS (van Blyenburgh 2012, p. 151) 

UAS Category  

(acronym) 

Range 
[km] 

Flight  

Altitude [m] 

Endurance  

[h] 

MTOW 

[kg] 

Nano (η) <1 100 < 1 < 0.025 

Micro (µ) <10 250 1 < 5 

Mini <10 150 - 300 < 2 Depending on national 
legislation MTOW < 
30 or 150 kg 

Close Range (CR) 10 – 30 3000 2 – 4 150 

Short Range (SR) 30 – 70 3000 3 – 6 200 

Medium Range (MR) 70 – 200 5000 6 – 10 1250 

Medium Range En-
durance (MRE) 

>500 8000 10 – 18 1250 

Low Altitude Deep 
Penetration (LADP) 

>250 50 – 9000 0.5 – 1 350 

Low Altitude Long 
Endurance (LALE) 

>500 3000 >24 < 30 

Medium Altitude Long 
Endurance MALE 

>500 14000 24 – 48 1500 

High Altitude Long 
Endurance (HALE)* 

>2000 20000 24 – 48 4500 (Predator B)/ 

12000 

*Although developed for military applications, HALE UAS have been used for scientific studies. 

 

Other categorizations are shortly mentioned in the following sections. 
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2.2.1 UAS Classification Based on Platform Propulsion 

Eisenbeiß (2009, p.34) summarized UAS based on their propulsion and also lifting 

force mechanism: 

Table 2.2 Classification of UAS based on power-mechanism and lifting force (mod. 
from Eisenbeiß 2009, p.34) 

Lifting force\ 

Propulsion 

Lighter-than-air Heavier-than-air 

  Flexible wing Fixed wing Rotary wing 

(VTOL) 

Unpowered Balloon Kite Glider Rotor-kite 

 Hang glider   

 Paraglider   

Powered Blimp Paraglider Propeller airplane Single rotor 

  Jet engine 
airplane 

Coaxial 

   Quadrotor 

   Multi-rotor 

 

2.2.2 UAS Classification Based on Total Weight 

Beside the desing, most national aviation authorities employ the total platform and pay-

load take-off weight to group UAS for safety regulations. The RPAS Yearbook (van 

Blyenburgh 2015) differentiates light aircraft masses according to maximum take-off 

weight (Table 2.3). 

Table 2.3 Classification of light UAS based on maximum take-off weight (mod. from 
van Blyenburgh (2015), p.156; * depending on legislation) 

 

Similar classes are used by the Australian Civil Aviation Safety Authority (Eisenbeiß 

2009, p. 36).  

 

UAS Category MTOW [kg] Altitude [m] Range [km] 

Nano [η] UAS < 0.025 100 < 1 

Micro [µ] UAS < 5 250 < 10 

Mini UAS <25 or 30 to 150* 300 < 10 

ShortRange UAS < 150 3000 10-30 
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2.2.3 UAS Classification Based on Altitude and Endurance 

Another scheme uses as classification criterion the possible altitudes versus endurance: 

HALE:  high altitude (20000 – 35 0000 feet), long endurance, i.e. Global Hawk 

MALE:  medium altitude (10000 – 30000 feet), long endurance (24-48 hours), i.e. 

MQ-1 Predator 

LALE:  low altitude (~7000 feet), long endurance (>30 hours), i.e. Predator A  

LASE  close: low altitude (up to 6000 feet) and short endurance (several hours), 

overall weights of 2-5 kg. 

STRATO:  stratospheric flight altitudes 

EXO:  exo stratospheric flight altitudes 

The LALE and LASE category were defined by the US Federal States Aviation Admin-

istration (quoted from Watts et al. 2012) and are not commonly used in European no-

menclature, yet are mentioned in UAS Yearbook 2015. 

2.3 Outline of the Historic Evolution of Civil-Use UAS 

2.3.1 First UAS and Developments until 2000 

One of the earliest applications of drones, were hydrogen-filled balloons for reconnais-

sance used in the American Civil War. The military even then tested offensive applica-

tions by timer-activated bomb-droppings (Krock 2002). However, their dependence on 

wind direction and speed made their use problematic, so that Charles Perley’s patent for 

an “unmanned aerial bomber balloon” of 1863 was not being further employed (Clark 

1997). 

The first civil use was pioneered by Arthur Batut who took airphotos in France in 1890 

using large kites. He could already foresee the implications for surveyors, archeologists, 

the military and agriculturists (Jensen 2007 p. 70).  

Jensen (2007) also mentions rockets applications where cameras were shot into the sky 

by Amadee Denisse in 1888, or 1891 by Ludwig Rahrmann in Germany. The latter also 

used large caliber guns to transport the camera into the air which then parachuted down.  
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It was at that time also that UAS started being used for photogrammetric purposes. 

Whittlesley (1970) employed a tethered balloon equipped with a Linhof 6x9 cm camera 

to capture vertical airphotos from about 10 m 

height to map archaeological remains. He also 

experimented with stereographic cameras, i.e. a 

radio-controlled Hasselblad, taken up 2000 feet to 

photograph archaeological sites in Greece, and 

mentions “the U.S. Army Cold Regions Research 

and Engineering Laboratory […] to measure plant 

growth and soil deformation” (Whittlesey 1970, p. 

185). 

 

 
 
 
 
 
 
 

 

 
Figure 2.1 Whittlesley's tethered balloon for ar-
chaeological reconnaissance in Turkey 
(Whittlesey 1970, p. 182) 

During the Post-World War Period, during the Vietnam and later Cold War, UAS 

gained interest again. Especially the USA and Israel began to develop and deploy their 

own systems in the 1970ies/1980ies (Jensen 2007). During, the Cold War period, 

NASA’s MiniSniffer program (1970-1980ies) according to Watts et al. (2012) made 

first attempts in atmospheric sampling at high altitudes. 

In the nineties, during the Persian Gulf War, the U.S. Predator, developed by General 

Atomics Inc., used for reconnaissance missions, was becoming the ancestor for scien-

tific UAS platforms. The NASA then acknowledged the need of the industry and sci-

ence community for cost-effective, more flexible airborne remote sensing technology.  
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2.3.2 Recent Developments of Civil UAS (2000-2015) 

Due to NASA’s Environmental Research Aircrafts and Sensor Technology (ERAST) 

project (1993 to 2003), profound research and development in cost-effective UAS for 

environmental deployment resulted in the development of modern, slow-flying aircrafts 

such as Helios, Proteus, and Pathfinder (Nonami 2007, p.121, Curry 2009). In its second 

phase, the NASA’s ERAST focus lay on solar-driven technology, consumable fuel UAS 

missions for earth science applications and UAS subsystem technologies (Curry 2009). 

A detailed description of HALE UAS application for scientific missions may be found 

in Curry (2009) and Watts et al. (2012).   

To accommodate multiple civil research groups, a medium altitude – long endurance 

platform was developed based on the Predator-B, the NASA’s Ikhana. It was developed 

in 2007 with a 20 m wingspan which may carry up to 1100 kg payload. It may reach 

13000 m in altitude with up to 24 hours endurance (Dryden Flight Research Center 

2007; Watts et al. 2012). According to the authors, the Ikhana was the first drone that 

received a US Certificate of Airworthiness (COA) and could be operated without ac-

companying aircraft and observers (Watts et al. 2012). It was tested on Western US 

States Fire Missions flights between 2006 to 2009 and provided stakeholders with geo-

rectified, near-real time imagery of wildfires (Watts et al. 2012).   

Other MALE systems followed, like the Altus II for atmospheric research (Curry 2009, 

Watts et al. 2012), and later the Science Instrumentation Environmental Remote Re-

search Aircraft – SIERRA for several recent scientific missions at regional scales, de-

scribed by Watts and co-authors (2012 p. 1681f):  

 CASIE – Characterization of Arctic Sea Ice Experiment (2009) 

 greenhouse gas emission (2011),  

 measurement of long-time earthquake hazards and groundwater measurement 

(2011-2013), and  

 carbon dynamics of seagrass and shallow tropical coral ecosystems and atmos-

pheric missions (2011-2013).  

The SIERRA was designed by the Naval Research Laboratory (NRL) and may carry 45 

kg playload and has a take-off weight of approximately 180 kg. It may fly at low alti-

tudes of 3600 m with a speed of 100 km/h. It samples tropospheric chemistry and is 

used for remote sensing of arctic ice (Fladeland 2009; Watts et al. 2012). Its use in con-

trolled airspace at altitudes typically used for manned aircraft does cause logistic prob-

lems (Watts et al. 2012).  
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Parallel to this HALE/MALE development, resulting from the logistic difficulties, cost-

ly missions, and the advancements in miniaturized systems and sensors, lighter UAS 

were being developed all over the world for civil and commercial applications and 

found a widening adoption for public authorities like law enforcement, public policy, 

agricultural and environmental monitoring and sampling, wildlife management as well 

as aerial imagery for every possible application thinkable (Krock 2002, Jensen 2007 

p.85, Eisenbeiß 2009, p. 12ff, Watts et al. 2012, van Blyenburgh 2014a). 

Within this year, according to the UVSI Yearbooks on RPAS and prior UAS, the Mini 

UAS have especially boomed and presented the largest category within the past years 

(Figure 2.2). Altogether, the year 2013 peaked and has become to be called the year of 

drones. Since then numbers of new developments have been declining slightly. Once 

legal regulations become more clear and harmonized across Europe and possibly world-  

 

Figure 2.2 References of different UAS categories listed in the respective UVSI Year-
books within the past years (van Blyenburgh (ed.) 2011-2015) 

This trend is also repeated in the UAS intended purposes: military drone and dual use 

applications still exceed other usage, yet civil/commercial systems found increasing use 

until 2015 (van Blyenburgh 2011-2015). 
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Figure 2.3 Referenced UAS by intended purpose in the UVSI Yearbooks 2011-2015 

The world-wide drone development is still increasing and 2014 as in previous years, the 

world’s largest producer countries (also the strongest military developers) were the 

USA, followed by Russia and Israel (Figure 2.4). Recently China emerged, too. Within 

Europe France, Germany and UK haven been the largest producers recently followed by 

Italy and Spain. 

Figure 2.4 Data source 
RPAS Yearbook 2014 
(van Blyenburgh 2014a, 
p. 156) 
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2.4 UAS Platforms Used for Environmental Remote Sensing and 

Archaeology 

The following description will group current lightweight UAS according to their respec-

tive platform. As there are abundant UAS systems on the market all over the world 

(Figure 2.4), UAS types within this field will shortly be presented, pros and cons men-

tioned and focus laid on rotary wing vertical take-off and landing (VTOL) systems as 

this system has been used for this study and its production has been increasing within 

recent years (Figure 2.5). For a detailed list of producers and systems please refer to the 

RPAS Yearbooks (van Blyenburgh 2012, 2013, 2014a, 2015), Aber et al. (2012) and 

Watts et al. (2012), Eisenbeiß (2009) has compared and contrasted UAS airframe types. 

 

Figure 2.5 UAS airframes referenced in the RPAS 2010-2015 (RPAS Yearbooks (van 
Blyenburgh 2010-2015). 

2.4.1 Lighter-than air platforms 

These platforms include balloons and blimps and, may be free-flying or tethered. Lift-

ing gases include hydrogen, helium, methane or hot air (Federal Aviation Administra-

tion 2007 cited in Aber et al. 2010, p. 103). Nonami (2007, p.120) argues that un-

manned aircrafts are driven by the dynamic lift and thrust given by their engines, so that 

strictly speaking, balloons which swim in the air or rockets following ballistic orbits do 

not count as UAS.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015

Flapwing Motored Parafoil

Lighter-than-air Rotary wing

Fixed wing



2 Unmanned Aerial Systems for Environmental Remote Sensing 16 

 

 

Vierling et al. (2006) summarize the advantages of tethered balloons compared to other 

UAS platforms: They are distinguished by longer endurance than active aircrafts, the 

flight altitude may be controlled more easily, they are reasonably easy to use and move 

in remote locations, and are cheaper to run. 

The disadvantage of lighter-than-air-platforms lies in their reliance on wind still condi-

tions. Free-flying balloons are seldomly used as they are more or less uncontrollable. 

The advantage of blimps compared to balloons is their higher stability in the air due to 

their streamline shape. According to Aber et al.  (2010, p.99), they are also safer to rise 

as the danger of fabric being blown onto the burner flame is low. The helium-filling  

device makes it useable for several days. Its disadvantage however, lies in its suscepti-

bility to wind, operative wind speeds amount to 10-15 km/h and availability of helium 

(Aber et al. 2010, Rock 2010). 

As an example, the “Goethe 

monitoring blimp” is illus-

trated in   developed by the 

department of Physical Ge-

ography of the Frankfurt 

Johan Wolfgang von Goethe 

University. The system is 

described in detail in (Rock 

2010 p.24-26). Due to its 

flying characteristics, blimp 

systems are suited for small-

format aerial photography at 

large scales. Aber et al. 

(2010) use hot-air blimps for soil erosion and vegetation studies.  Other applications 

have worked on coastal and periglacial sites, meteorological sounding, crop state and 

archaeological reconnaissance and mapping for now almost 50 years (Whittlesley 1970, 

Myers 1978, Ullmann 1971, Preu et al. 1987, Bitelli et al. 2004, Oberthür et al. 2007).  

A multi-sensor platform is provided by the SWAMI apparatus which has been used with 

a tethered balloon (Vierling et al. 2006, p.257). See chapter 4.3.4 for more details. 

Figure 2.6 The Goethe blimb (Rock 2010, p.24) 
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2.4.2 Heavier-than air platforms 

2.4.2.1 Fixed wing - kites 

Kites are tethered aircrafts and have been known since the 5th century BC. They were 

invented in SE Asia (region of Indonesia) or by the Chinese, and have been used for 

signaling, testing wind direction, and measuring distances, amongst others. The ad-

vantage in using kites consists in the low costs, the high portability and flexibility in the 

field, the unlimited flight times assuming there is enough wind, and the easy to learn 

technology. There are soft kites inflated by wind pressure and rigid kites. Soft kites are 

very light-weight but collapse quite easily when the wind drops, rigid kites are support-

ed by either graphite or fibre glass framework (Aber et al. 2010, p. 103). According to 

Aber et al. (2010) they perform better at low wind speeds and do not collapse as easily.  

Kites are mounted by anchoring the line, hurling up the kite and pulling on the line. The 

payload generally consists of cameras being mounted either directly on the kite line or 

on a second line attached onto the kite line by means of a pulley. The latter allows for 

taking down the camera for film, card or battery changes without having to take down 

the whole system (Rock 2010 p. 27).  

Kites have been used for small-format aerial photography for a.o. geomorphological 

studies, archeological mapping and vegetation studies and are a cheap means for large-

scale photography (Anderson 2001; Aber et al. 2010). 

2.4.2.2 Fixed wing – paraglider 

Motored paraglider show the advantage of low flight speeds and have been used by 

Aber et al. (2010). The authors praise the inertia in flight, the low flight speeds and the 

robust landing, but do note the difficulty in steering the UAS, and in finding adequate 

runways in the field.   

2.4.2.3 Fixed wing aircraft 

Model airplanes or fixed wing aircrafts require considerable experience for their appli-

cation in aerial photography (Aber et al. 2010). They may be either unpowered gliders 

or powered propeller or jet engine airplanes. Their biggest advantage is that they cover 

larger areas than kites, blimps, paragliders and rotary-wing UAS. Image acquisition 

planning needs to include forward motion which may cause difficulties in camera trig-

gering and potentially cause motion blur in the photographs. Further difficulties arise 

from the type of engines used: either combustion engines or electrical motors. The first 
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allow for a longer flight time and higher payload. However, the engine vibration leads 

to suffering image quality. Electro motors on the other hand, are less affected by vibra-

tion and run much quieter. They are also much cheaper to obtain. Their disadvantage is 

the lower endurance (Rock 2010, p.30-31). A more detailed overview may again be 

found in the respective UAS and RPAS Yearbooks (http://www.uvs-info.com, access 

date 14.04.2015). 

As an example, the MAVinci’s SIRIUS (Figure 2.7) series is described in more detail. 

The German company uses an all-in-one software for flight planning, UAS control and 

picture matching. Their drone may map a maximum of 18 km² at 20 cm ground sam-

pling distance (GSD) within one 40 minutes flight. The user creates the flight plan and 

determines at which interval rate the camera will take photos. The settings are then 

transferred to the on-board computer by radio communication. The aircraft is hand-

launched, and once the pilot hands over to on-board navigation, the UAS follows its 

flight track and images will be acquired and stored on-board. The pilot may toggle back 

to remote control of the aircraft and may alter the flight-plan while flying. The plane 

may carry various 

sensors with a 

take-off weight of 

2.7 kg (MAVinci 

GmbH 2009-

2011, MAVinci 

GmbH 2014).  

 

Figure 2.7 The 
model UAS Siri-
us by MAVinci 
(Photo: Rock 
2015) 

Within recent years, nano UAS have been developed for still rather military reconnais-

sance missions in hostile environments for short-time and low altitude: e.g. the Black 

Hornet Nano (Proxydynamics, Norway). The author is yet unaware of any scientific 

applications in environmental remote sensing. 
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2.4.2.4 Rotary wing small UAS 

Rotary-wing UAS are vertical take-off and landing vehicles (VTOL) and may further be 

differentiated into single, double, quadro- or multi-rotor systems (Eisenbeiß 2009, p.34). 

Their biggest advantage is their ability to take-off and land without runway and to hover 

over sites of interests. Since the nineties, their development increased manifold (Figure 

2.8) and there are numerous developers and vendors selling industry use or hobby use 

rotary-wing systems (van Blyenburgh (ed.) 2011; 2012, 2013, 2014a, 2015).  

 

Figure 2.8 VTOL development 1960-2012 (mod. from Watts et al. 2012) 

Single rotor systems or helicopters have one main rotor supplying lift and thrust and a 

tail rotor to balance yaw and torque. Double- or coaxial systems have more power than 

four or multi-rotor systems and thus may carry more payload and be taken to higher 

altitudes. (Eisenbeiß 2009, p. 35). A major advantage of quadro- or multicopters is their 

high maneuverability. All three axes may be steered alone by varying thrust and drift. 

Multi-rotary systems furthermore still function if some of the rotors breaks and may still 

be landed safely. Their disadvantage lies in the lower flight speeds compared to fixed 

wing UAS, restricting their use to smaller areal coverage.  

For this study, a microdrones GmbH md4-1000 was employed which is described in 

more detail in chapter 4. 

2.5 Ground Control Station 

For the set-up, control, navigation and commanding the UAS in the field, ground con-

trol stations are used. They include hardware and software mostly provided by the drone 

producer. Hardware is generally a laptop but may also be a tablet PC or mobile phone, 

downlink antenna and a monitor to follow the UAS movement.   
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2.6 Autopilots: Navigation and Attitude Control 

An autopilot generally measures the UAS attitude parameters position, velocity and 

attitude with the help of the GPS navigation and uses the information of the IMU to 

feed and correct the flight control for aircraft guidance and orientation systems estimate 

the position, velocity and attitude for post-processing of sensor orientation (Colomina 

and Molina 2014). An extensive list of worldwide autopilot system may be found in van 

Blyenburgh (2014, p. 236-238) and Colomina and Molina (2014) describe some in more 

detail. Autopilots often come as set systems with a UAS and sometimes as customized 

devices, where UAS users demand customization to one autopiloting system to facilitate 

piloting diverse UAS types (AP04 by UAV Navigation (see publications by Zarco-

Tejada’s QuantaLab in Spain: Calderón et al. 2014, Zarco-Tejada et al. 2013). 

Flight planning or navigation is generally achieved by proprietary waypoint editing 

software. Microdrones GmbH, for instance, offers the Waypoint Editor that comes with 

the mdCockpit software (Figure 2.9, microdrones GmbH 2008-2010). The editor is 

linked with Google Maps, providing the base map used for defining waypoints and 

tasks for the drone (e.g. hover, climb, descend) and cameras attached.  

 

Figure 2.9 mdCockpit Waypoint Editor (microdrones GmbH) 
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Also, any other georeferenced map may be used as long as it is based on WGS84 

geodectic reference system. The flight path is then directly transferred onto the microSD 

via USB connection and activated by telecontrol. The UAS now autonomously works 

off the flight route, navigating and positioning itself with the help of the GPS antenna 

and module.   

MAVinci Desktop, the software for handling the Sirius UAS, may be connected to the 

internet in the field, using a 3G modem. As base maps any Web Mapping Service 

(WMS) server may be used (MAVinci GmbH 2011, p.27). The RPAS Yearbook 2015 

lists available autopilots (van Blyenburgh 2015, p. 246-247)    

2.7 Navigation and Attitude Control  

Generally, small UAS use standard GPS modules to receive positions from the Global 

Navigation Satellite System (GNSS). For the md4-series from microdrones GmbH, the 

ublox LEA-5H chip is used. For attitude control and positioning, inertial measurement 

unit (IMU) maneuver aircrafts by gyroscopes, (measuring orientation and angular mo-

mentum), accelerometers for the three main axes (x,y,z), a magnetic sensor and a baro-

altimeter. Furthermore, a barometer measures elevation by air pressure and temperature. 

Microdrones uses their own IMU system and do not hand out any more information. 

The sensor’s measurements are generally fusioned using a Kalman filter (personal 

communication with Tobias Matschke, microdrones GmbH, 15.12.2011). Differential 

GPS (DGPS) are also being used, e.g. by MAVinci and senseFly Ebee (Roze et al. 

2009-2015).  

The RPAS Yearbook 2015 (van Blyenburgh 2015, p. 248-250) gives an extensive list of 

IMUs. Limitations lie within the derived accuracies. With hybrid measurement units 

which measure and process UAS positions in real-time using hybrid orientation systems 

(HOS), may  thus deliver positions at cm-accuracies (Colomina and Molina 2014). The 

authors compare and contrast some of these and state accuracies of 0.015° - 0.2° for roll 

and pitch, and 0.03° - 0.5° for yaw angles (Colomina and Molina 2014, p. 85). 

2.8 Communication – Telecontrol & Telemetry  

Most small UASs are telecontroled/steered by standard remote control (RC) devices as 

can be found in the leisure model aircraft community. As an example, the md4-1000 

quadrocopter comes with a MULTIPLEX Royal Pro 9, which uses a synthesizer HF 
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module to use any frequency within the 35 MHz band. microdrones GmbH developed a 

hardware module to emulate RC controller via a computer transmitted by a 10 kHz FM 

modulation. The commands to and from the module are sent by ASCII format 

(microdrones GmbH 2004-2007). 

The UASs’ telemetry data are transferred onto the ground station PC via serial inter-

face/USB by a downlink decoder (plugged into the ground control station using an au-

dio-chinch plug). It is using the WiFi at 2.3 to 2.5 GHz frequency and has a video 

bandwidth of 30 Hz – 30 MHz, and a audio bandwidth of 15 Hz to 6 KH. A standard 

telemetry kit for DIY drones in the UK and EU is the Xbee Telemetry Kit 2.4 GHz 

63mw module.  

The video signal is visualized with the help of a frame grabber which is integrated with-

in the ground control station and transfers data by a USB connection. Additionally, vid-

eo glasses may be used for UAS control (microdrones GmbH 2009, p.28). 

All flight data, sensor measurements and commands received by the RC are, similar to 

an airplane’s black box, tracked by the flight data recorder onto e.g. a microSD as for 

the md4-1000. For real-time monitoring of the individual flight parameters a real-time 

downlink transfers with a rate of 125 times per second onto the micro-SD which may be 

supervised using the ground control station’s computer. Data is transmitted in ASCII 

format via the audio channel of the video transmitter (microdrones GmbH 2007, p.1). 

The SIRUS ground station includes a wireless link connector for communication be-

tween the UAS, MAVinci Desktop and the Cockpit software. The range is up to 40 km 

in direct line-of-sight. The connector may also be used to connect to the internet using a 

3G modem (http://www.mavinci.eu/?command=components&sub=groundstation, ac-

cess date 20/12/2011).  

2.9 Payload: Imaging Sensors for UAS 

In the following, a selection of cameras and sensors for agricultural and environmental 

remote sensing will be described. An comprehensive list of available sensors worldwide 

may be found in (van Blyenburgh 2015). Table 2.4 to 2.7 subsequently summarize cam-

era characteristics and their applications listed in this document. 
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2.9.1 Digital Cameras 

Nearly any off-the-shelf camera residing within the payload capacity may be employed 

and the following mentions only a selection. A combination of two Kodak DC3200  was 

employed by for the assessment of fertilizer treatments on wheat crops (Jensen et al. 

2007). In one camera a nIR-block filter was applied and the second camera was then 

equipped with filter blocking the red spectral ranges. Wundram and Löffler used a Ni-

kon Coolpix camera to obtain aerial photos from kites (Wundram and Löffler 2008, p. 

963). The camera was steered by a four-channel transmitter and video output was 

transmitted by a 300 m range video transmitter. Image downlink was visualized by vid-

eo glasses, allowing accurate camera control. Recently, Mathews and Jensen (2013) 

applied a Canon PowerShot A480 RGB camera for analysing LAI in grapevine rows. 

Suitable for vegetation canopy studies are the Agricultural Digital Camera series by 

Tetracam Inc, California, USA (Agüera et al. 2011). The single cameras’ spectral sensi-

tivity lies in the visible green, red part and near infrared part of the radiometric spectrum 

(520 nm to 920 nm). The lightweight version, the 3.2 megapixel ADC Lite (2048 x 

1536 pixels), weighs only 200 g, and the ADC Air, the ruggedized weatherproof version 

of similar characteristics but 630 g of weight (Tetracam Inc. 2010, p.38).  

2.9.2 Digital SLR- and SLM-Cameras 

Principally any DSLR camera may be mounted on a UAS providing camera and lenses 

are within the payload capacity. The University of Trier uses a Nikon D3100 (Figure 

2.10) with a wide angle lens of 18-55 mm to be mounted on a quadrocopter.  

 

Figure 2.10 Nikon D3100 used with md4-1000 (Photo: J. Besold) 
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Hunt et al. employed a FinePix S3 (Fuji Photofilm Co., Ltd., Japan) UVIR 12 megapix-

el camera for evaluating fertilizer treatment on winter wheat (Hunt et al. 2010). Lelong 

et al. 2008 used two different digital SLR, a Canon EOS 350D and a SONY DSC-F828 

on either a L’Avion Jaune or Pixy UAS to quantify LAI with the aid of NDVI and ni-

trogen uptake with GNDVI (Lelong et al. 2008, p.3561). 

In future, Digital Single Lens Mirrorless (DSLM) cameras, e.g. the Panasonic LUMIX 

DMC-G-Series, may further be used as they are small, lighter and less complex than 

DSLR cameras. 

2.9.3 Multispectral Cameras 

A sensor that has been used for various multispectral agricultural applications is the 

miniMCA (MCA- multiple camera array; see chapter 4) developed by Tetracam Inc. 

(Berni et al. 2009; Suárez et al. 2010, Retzlaff et al. 2014, to be published). The light-

weight camera array may be obtained as three models with either four, six or 12 lenses 

equipped with 25 mm standard filters in the spectral range of 400 to 1100 nm. As it has 

been used in this study, it will be described in more detail in chapter 5. Quest Innova-

tions BV, Netherlands, also offers 3-5band UAS multispectral cameras, the Condor-

Series with weights between 1-1-5 kg (Table 2.6, personal communication with Hendrik 

Jan van Es, 22/01/2014). Others have build their own cameras comparable to the Mini-

MCA6 (Zarco-Tejada et al. 2013). For possible further providers please refer to the 

RPAS Yearbooks 2015 (van Blyenburgh 2015).  

 

2.9.4 Hyperspectral sensors 

Vierling et al. (2006) and Chen & Vierling (2006) have employed a non-imaging 

hyperspectral sensor for a small UAS system, the Short Wave Aerostat-Mounted Imager 

(SWAMI). It presents a remote sensing system for the acquisition of hyperspectral, pho-

tographic and other ancillary data and has been mounted on a tethered balloon. Here, a 

FieldSpec Dual UV/VNIR hyperspectral radiometer (Analytical Devices, Boulder, CO) 

is used with a color video camera and a thermal infrared sensor. The instantaneous field 

of view (IFOV) may be customized by 10° or 18° fore-optics and the spectral range lies 

within 350-1050 nm with a 3 nm spectral resolution. 

Within recent years, several hyperspectral imaging sensors have been developed for 

light-weight UAS which were at the beginning of this study not yet light enough (< 1 



2 Unmanned Aerial Systems for Environmental Remote Sensing 25 

 

 

kg) to being used with the md4-1000. Sensors applied within the UAS agricultural re-

mote sensing community may be differentiated in snapshot and frame cameras. Snap-

shot cameras collect spectral data synchronously across the image area generally by 

using pixel groups with one wavelength filter which has the advantage of a simultane-

ous image yet less spatial resolution. Most sensors available are hyperspectral frame 

cameras based on Piezo-Actuated Fabry-Perot interferometers (Bareth et al. 2014). 

Their advantage lies in the selectability of wavelengths, however, the time lag of im-

aged wavelengths introduces spatial offsets which require postprocessing (band-to-

band-alignment). A new introduction to the market is the Gamaya OXI series, where 

hyperspectral data is recorded simultaneously by filters onto the CMOS sensor using a 

global shutter, and therefore avoiding shift between spectral bands (Gamaya SA 2015).  

Present small hyperspectral cameras are listed in Table 2.8, interested readers are again 

referred to the RPAS Yearbook 2015/2016 (van Blyenburgh 2015). 

2.9.5 Thermal sensors 

The SWAMI mentioned above also carries a thermal infrared sensor (EW-39669-00, 

Cole-Parmer, Vernon Hills, IL) sensitive within the spectral range of 7.6 -18 µm with 

adjustable emissivity between 0.02 and 1.00, measuring from 0°C to 180°C. The IFOV 

amounts to approximately 30° (Vierling et al. 2006, p.260). Other cameras widely ap-

plied (Berni et al. 2009, Israel 2011) are the thermal cameras developed by FLIR 

(http://www.gs.flir.com/products/unmanned/, access date 29.09.2011). The Zeiss UCM 

is described in more detail in chapter 4.  

2.9.6 LIDAR 

LiDAR has been employed for photogrammetric purposes for several years now. For 

crop and vegetation monitoring, however, LIDAR has only recently been introduced. 

Nagai et al. (2009) were among the first to integrate a SICK LMS-291 laser with a 

Tetracam ADC onto a RPH2 helicopter to retrieve 3D NDVI models for vegetation vol-

ume estimation (Nagai et al. 2009). Recently, the Ibeo LUX laser scanner had been ap-

plied in photogrammetric measurements (Lin et al. 2011, Wallace et al. 2012). It reach-

es a maximum range of 200 m scanning at maximum four parallel layers within a hori-

zontal field of view (FOV) of 85° (35° to -50°) and a vertical FOV of 3.2°. The angular 

resolution is 0.125°, vertically 0.8°.  
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A nearly comprehensive list of imaging sensors and non-imaging sensors is published 

by the RPAS Yearbook 2015/2016 (van Blyenburgh 2015). A list of LiDAR and imag-

ing sensors for photogrammetric applications may be found in Colomina and Molina 

(2014). 
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Table 2.4 Selected single lens cameras used for small UAS applications  in environmental and archaeolgoical remote sensing used with-
in recent years (camera details taken from respective producer’s data sheet last access date 24/04/2015,  n.i.: no information available; 
PA: Precision Agriculture) 

Camera / 
Producer 

Detector 
Type 

Spectral 
sensitivity 

[Mega-
pixel] 

Sensor size 
[pixels] 

Radiom. 
Resolution 

Focal 
length 
[mm] 

Camera size 
[mm] 

Weight 
[g] 

Comments 
Exemplatory Application 

Single Sensor          

ADC Snap 
Tetracam Inc. 

CMOS 
3 bands:  

520 – 920 nm 
1.3 1280 x 1024 10 bit 8.43 75 x 59 x 33 90 

fixed lens, global shutter 
(For applications see 
(http://www.tetracam.com/P
roducts1.htm; 24/08/2015) 

ADC Lite 
Tetracam Inc. 

CMOS 
3 bands:  

520 – 920 nm 
3.2 2048 x 1536 10 bit 8.0 114 x 77 x 61 200 

user-changeable lens, Roll-
ing shutter; as above 

Canon PowerShot 
G5/Canon, Japan 

CCD RGB 5 2592 x 1944 n.i. n.i. 121  x 74 x 70 410 

mapping riparian forest 
(Dunford et al. 2009); LAI 
and 3D mapping of vine-
yards (Mathews and Jensen 
2013) 

Kodak DC3200 
adapted/ 
Eastman Kodak Com-
pany, New York, USA 

CCD 

400 - 500 nm 
500 – 600 nm 
600 – 700 nm 

700 - ~1050 nm 

1 1152 x 864 24 bit 39 113  x 81 x 53 2 x 300 
grain yield, wheat protein 
content (Jensen et al. 2007) 

Nikon Coolpix / 
Nikon 

CCD RGB 4 n.i. n.i. 
Adjusted 
to 4.95 

n.i. n.i. 
vegetation classification  
(Wundram and Löffler 
2008) 
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Table 2.5 DLSR cameras used for small UAS applications  in environmental and archaeolgoical remote sensing used within recent years 
(camera details taken from respective producer’s data sheet last access date 24/04/2015,  n.i.: no information available; PA: Precision 
Agriculture) 

Camera / 
Producer 

Detector 
Type 

Spectral 
sensitivity 

[Mega-
pixel] 

Sensor size 
[pixels] 

Radiom. 
Resolution 

Focal 
length 
[mm] 

Camera size 
[mm] 

Weight 
[g] 

Comments 
Exemplatory Application 

Digital SLR          

Canon EOS 350 D/ 
Canon, Japan 

CMOS RGB 8.2 
22.2 x 14.8 

mm 
 n.i. 127 x 94 x 64 485 

PA: fertilization (Lelong et 
al. 2008); mapping riparian 
forest (Dunford et al. 2009) 

FinePix S3 Pro / Fuji 
Photofilm, Ltd., Japan 

Super CCD 
SR II 

red light 
blocked with 
interference 

filter 
B, G, NIR 

12.1 23 x 15.5 mm 12 bit n/a 148 x 135 x 79 1240 
PA: fertilization (Hunt et al. 
2010) 

SONY DSC-F828  
 

4-colour 
Super HAD 
CCD™ 

RGB, Cyan 8 
16.93 mm 
diagonally 

48 (RAW), 
24 bit 

28-200 134 x 91 x 157 942 g 
PA: fertilization (Lelong et 
al. 2008) 
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Table 2.6 Common multispectral imaging sensors of less than 1.5 kg weight for small UAS (camera details taken from respective pro-

ducer’s data sheet last access date 24/04/2015, n.i.: no information available; PA: Precision Agriculture) 

Camera / 

Producer 

Detector 
Type/ 

Pixel size 
[µm] 

Spectral 
sensitivity 

[Mega-
pixel] 

Image size 
[pixels] 

Bit depth 
[bit] 

Focal 
length 
[mm] 

Speed 
[frames/ 
sec] Camera size Weight Application/Comments 

Micro-MCA-6/ 

Tetracam Inc.,  
6 

standard 25 mm 
diameter 
spectral filters  

450–1050 nm 

1.3 1280 x 1024 as above 9.6 as above 115x18x68 530 

Tetracam Inc. 2015 

 both MCAs are available 
with 4, 6 or 12 detectors; 
global shutter  

Mini-MCA-6 / 
Tetracam Inc. 

6 

CMOS/ 

5.2 x 5.2 

standard 25 mm 
diameter 
spectral filters  

450–1050 nm 

1.3 1280 x 1024 10 bit 9.6 1.3  115x18x80 700 

rolling shutter 
((http://www.tetracam.com/
, access date 24/04/2015);  

VI and chlorophyll concen-
tration, water stress (Berni 
et al. 2009, Retzlaff et al. 
2015) 

SimCam/ 

QuantaLab 
6 

Filters similar to 
above 

 2592x1944 10 bit 8.4 n.i.   
PA: VI (Zarco-Tejada et al. 

2013) 

The Condor 
UAV-sCMOS / 

Quest Innova-
tions BV,  The 
Netherlands 

Fairchild 
CIS1910
F 

6.45x6.4
5  

B1: 400-500 nm 
B2: 500-590 nm 
B3: 590-670 nm 
B4: 670-830 nm 
B5: 830-1000 
nm 

1.4 1360 x 1024 12 bit 50 or 15 5-30 

150x130x177 
or  

150x130x247 

1450 or 
1950 

PA, environmental map-
ping according to home 
page  

(http://www.quest-
innova-
tions.com/aerial.html, 
24/04/2015) 
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Table 2.7 Common thermal imaging sensors of less than 1.5 kg weight for small UAS (camera details taken from respective producer’s 
data sheet last access date 24/04/2015,  n.i.: no information available; FPA: focal plane array) 

Camera / 

Producer 

Detector 
Type/ 

Pixel size 
[µm] 

Spectral 
sensitivity 

[Mega-
pixel] 

Image size 
[pixels] 

Bit depth 
[bit] 

Focal 
length 
[mm] 

Speed 
[frames/ 
sec] Camera size Weight Application/Comments 

Tau640 /  

FLIR, USA 

FPA 
UCM 

17 µm 

NEDT 50 mK at 
f/1.0 

7.5-13.5 µm 

 640 x 512 n.i. 13 -100 3.5 38x38x30 
79 -  
475 

FLIRR Systems Inc. 2011 

game guard (Isreal 2011) 

Thermovision 
A40/ FLIR, 
USA 

FLIR, USA  

FPA 
UCM 

7.5-14 µm  320 x 240 16 bit 
18.7 - 
150 

0.5 207x 92x109 1400 

VI, chlorophyll concentra-
tion, water stress (Berni et 
al. 2009), fluorescence ( 
Zarco-Tejada et al. 2009) 

Zeiss UCM  

NEDT 90 mK at 
40°C f/1.0 

 

 640 x 480 8 bit n.i. 50-60 95x48x48 170 
Carl Zeiss Optronics GmbH 
2008, 2011 
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Table 2.8 Hyperspectral imaging sensors of less than 1.5 kg weight for small UAS (camera details taken from respective producer’s data 
sheet last access date 24/04/2015,  n.i.: no information available) 

Camera /  
Producer 

Detector 
Spatial 

resolution 
[pixel] 

Spectral 
sensitivity 

[nm] 

Spectral 
resolution 

[nm] 
Spectral bands 

Focal 
Length, 
F No. 

Speed 
[frames/ 

sec] 
Camera size 

Weight 
[g] 

Bit 
depth 

Comments/ 
Applications 

Micro-
Hyperspec 
Series/Headwall 
Photonics 

Silicon 
CCD or 
CMOS, or 
InGaAs or 
MCT 

320 -1600 
dep. on 
sensor 
range 

400-1000, 
900-1700 
550-1650 
900-2500 

1.6-1.9 
VIS 

5-6 nIR 
10 SWIR 

325-370 (VisnIR) 
67-96 nIR 

166 (SWIR) 
2.5 n.i. See data sheet 

680 to 
1300 

12-16 
Headwall 
Photonics Inc. 
2014a 

Micro-
Nanospec/ 
Headwall Pho-
tonics 

CMOS 640 x 480 400-1000 5 (2.2 SSI) 270 2.5 
200-480 

(full) 
76x76x120 680 12 

Headwall 
Photonics Inc. 
2014b 

OXI-snapshot 
series / Gamaya 

n.i. 2048-1088 
Variating 

within 
450-950 

n.i. 16 n.i. 16 n.i. 
160-
250 

 
Gamaya SA 
2015 

Pika II / 
Resonon 

n.i. 640 400-900 2.1 240 3 145 97x168x64 1300 12 Resonon 2015 

Pika NIR / 
Resonon 

n.i. 1600 900-1700 5.4 148 2 120 102x229x76 1474 14 Resonon 2015 

Rikola 
Hyperspectral 
Camera/ 
Rikola Ltd. 

CMOS 
1010 

x1010 
500-900 10 380 

9 mm, 
2.8 

30 80x92x150 720 12 

Rikola Ltd. 
2015;  
Precision agri-
culture, DTM 
(Honkavaara et 
al. 2013) 
Bareth et al. 
2014 

UHD 185 / 
Cubert 

Si CCD n.i. 
450-950 8 (SSI 4) 125 

16mm, 
2.8, 2/3 5 

Minimum 
60x55x40 470 12 

Bareth et al. 
2014 
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2.10  Airspace Regulation 

Before a UAS mission may be planned, airspace regulations need to be considered as 

research applications do not fall under leisure use of UAS. The ICAO, the UN-agency 

for developing standards and common practice in international civil aviation, had been 

requested to initiate procedures to avoid dangers to aviation and to issue operating au-

thorizations for the use of international civil UAS in 2005 (ICAO 2011). Their Circular 

328 issued in 2011 called upon member states to integrate UAS into their non-

segregated airspace and aerodromes (ICAO 2011). The next sections will therefore give 

a to-date summary (July 2015) of European, German, Luxembourgian and Spanish air-

space regulations for small UAS. 

2.10.1 European Airspace Regulation 

With emerging UAS development in the last decade, the European Aviation Safety 

Agency (EASA) produced a policy statement on the “Airworthiness Certification of 

Unmanned Aircraft Systems (UAS)” in August 2009 (Colomina and Molina 2014, 

p.83). At about the same time, the EC and European Defence Agency (EDA) held a 

high-level conference on UAS on 1 July 2010 where the potential use and benefit of 

non-military use of UAS was presented and where it was generally acknowledged that 

missing regulatory frameworks hindered the development of civil UAS industry to 

move forward (Blyenburgh 2012). The UVS International was then commissioned to 

produce a document on the structural and strategic approach to integrate UAS. Follow-

ing this, on 18 April 2011, the EC “announced a new UAS initiative… meant to provide 

the EC with the necessary expertise and input to develop a strategy for the future of 

UAS in the European Union, and to identify the most pressing issues.” (Blyenburgh 

2012, p. 118).  Workshops were held on the industrial sector and market, the insertion 

into airspace and radio frequencies, safety issues of UAS, societal dimensions of UAS 

and the R&D for UAS, which final reports may be found in the staff working document 

“Towards a European strategy for the development of civil applications of Remotely 

Piloted Aircraft Systems (RPAS)” (EC 2012).  

Regarding regulations, the main conclusions were  

 the priority of the secure integration of UAS into the European airspace, 

 the subsequent development of technologies and aviation regulation 

framework at the EU and national levels, and  
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 the coordination between EASA, Civil Aviation Authorities (CAA), Eu-

ropean Organization for Civil Aviation Equipment (EUROCAE), Euro-

pean Organization for the Safety of Air Navigation (EUROCONTROL), 

Joint Authorities for Rulemaking on Unmanned Systems (JARUS), and 

industry a.o.. 

An UAS Roadmap shall achieve these goals within the next 15 years with the help of a 

European RPAS Steering Group (ERSG) holding the following bodies: EC, EASA, 

Eurocontrol, ECAC, EUROCAE, JARUS, EDA, European Space Agency (ESA), UVS 

International a.o. (ERSG 2013), some of their contributions are described in the follow-

ing. 

The European Unmanned System Centre (EuroUSCTM) is the EC regulating Qualified 

Entity (EC Regulation 216/2008 Article 13) and was set up in 2009. It assesses all light 

UAS with a maximal take-off mass (MTOM) of under 150 kg. Herein, in approval by 

the Civil Aviation Authority (CAA) the accredited body of Light UAS Scheme 

(LUASSTM) was set up which has the following tasks: 

 airworthiness assessment, 

 pilot competency qualification and  

 operational assessment (Clot 2012). 

In Europe, EUROCONTROL is the intergovernmental “European Organisation for the 

Safety of Air Navigation […] committed to building a Single European Sky” 

(http://www.eurocontrol.int/content/about-us, 10/02/2013, Tytgat 2012, p. 36). For the 

integration of light UAS to the European sky, UAS need to fit into the Air Traffic Man-

agement (ATM) system. UAS are to be incorporated into the manned aircraft regula-

tions. Currently, several obstacles lie in the way of UAS being permitted in non-

segregated airspace: the capability to see and to be seen, communication links between 

controllers/pilot/navigation and surveillance systems. Here, frequencies need to be made 

available (Tytgat 2012). EUROCONTROL therefore works with other European enti-

ties to develop airport and regulatory guidelines.  

Just how recent the issue of granting flight approval is, shows the current work of 

EUROCAE in France. EUROCAE is the European Organisation for Civil Aviation 

Equipment and therefore the forum for setting aviation standards for airborne and 

ground systems and equipments (http://www.eurocae.net/about.html, 10/02/2013). In 

May 2012, it set off a working group on lightweight UAS (WG93). The goal is to har-

monize European rules and regulations for visual line of sight operations (VLOS) and 
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beyond visual line of sight (BVLOS) to support European countries’ aviation authorities 

with regulation guidance regarding command, control and communication, airworthi-

ness, operator approval, UAS classification and safety assessment, amongst others 

(Leijgraaf 2012b). Furthermore, the working group 73 (WG 73) on Unmanned Aircraft 

Systems was set up in 2006 and aims at delivering standard protocols for the safety and 

regulations of UAS missions (Kallevig 2012). Parallel to this and also co-operating is 

the international JARUS group: The Joint Authorities for Rulemaking on Unmanned 

Systems (JARUS) group over 22 countries worldwide (including Germany) to partici-

pate in harmonizing and coordinating operational requirements and certification issues 

to support aviation authorities in rule-making which they may or may not integrate in 

national or regional law (Leijgraaf 2012a).  

Table 2.9 gives an overview over prevailing UAS regulations in European countries 

(van Blyenburgh 2014b). After the first hype of using UAS for leisure and also envi-

ronmental and remote sensing, regulating bodies have in some countries stopped UAS 

use for civil/commercial and leisure use due to civil protection issues. Spain, for exam-

ple, has stopped civil commercial and professional UAS operations in 2014 until na-

tionals regulations are specified (Agencia Estatal de Seguridad Aréa 2014). 

In March 2015, the European Cockpit Association (ECA) addressed the dangers of light 

and also recreational (toy) UAS in low-level airspace where they may get into the way 

of air rescue, firefighting and police missions. They published a position paper to out-

line key regulatory standards demanded for a safe integration of light UAS into Europe-

an lower airspace: 

 compulsory registration of UAS 

 introduction of automated detection and avoidance systems 

 UAS pilots responsibility to see and avoid manned aircraft 

 mandatory pilot training and licencing 

 definition of weather standards for UAS missions 

 information of the public about recreational UAS use and increase level of law 

enforcement (ECA Piloting Safety 2015). 
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Table 2.9 Current UAS regulations in Europe as published by the UVSI (Source: van 
Blyenburgh 2014b; Abbrev.: * UAS Use is facilitated and granted by National Aviation 
Administrations; VLOS: visual line of sight; BLOS: Beyond line of sight) 

Member 
state 

MTOW established MTOW planned Comment 

Austria* < 150 kg VLOS    

Belgium*   < 150 kg VLOS 2013, not in force 

Bulgaria      

Croatia      

Cyprus      

Czech Re-
public* 

< 150 kg VLOS, BLOS   05/2013 

Denmark* < 150 kg VLOS   01/2004 

Estonia      

Finland   < 150 kg VLOS Expected mid 2014 

France* < 25 kg VLOS, BLOS < 150 kg VLOS, 
BLOS 

Since 04/2012, update in 
preparation 

Germany < 25 kg VLOS    

Greece*      

Hungary*   < 150 kg VLOS  

Ireland* < 20 kg VLOS   Since 05/2012 

Italy* < 25 kg VLOS   Since 12/2013 

Latvia      

Lithuania* < 25 kg VLOS < 150 kg VLOS Expected mid 2014 

Luxem-
bourg 

     

Malta*   < 150 kg VLOS In preparation 

Nether-
lands* 

< 25 kg VLOS < 150 kg VLOS Since 2012, update in 
preparation 

Poland* < 150 kg VLOS, BLOS   Since 2013 

Portugal      

Romania*      
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Member 
state 

MTOW established MTOW planned Comment 

Slovakia      

Slovenia*      

Spain*   < 25 kg VLOS In preparation 

Sweden* < 150 kg VLOS   Since 2013 

UK* < 20 kg VLOS   Since 2002 

Iceland   < 150 kg VLOS, 
BLOS 

 

Norway*     Expected 2014 

Switzer-
land* 

 Model air-
craft rules for 
UAS 

 VLOS over 
people and 
crowds 

Expected 2014 

 

2.10.2 Airspace Regulation in Germany 

In 2012, the air traffic law (Luftverkehrsgesetz – LuftVG) integrated UAS in its listing 

(§1). Now the authorities work on the integration of UAS into subsequent constitutive 

laws and regulations (Udovic 2012). The Air Traffic Order (Luftverkehrsordnung – 

LuftVO §15a) published in 2010, forbids the operation of UAS if their total mass ex-

ceeds 25 kg or when their flight is being operated outside unaided visual line of sight 

(Udovic 2012). Each civil/commercial use (beside recreation or sports use) of a lighter 

unmanned aerial system requires an ascent license issued from the respective federal 

agency legally retained by the Federal Ministry of Transport, Building and Urban De-

velopment (LuftVO §16 (1) number 7). Flights are only permitted in segregated air-

space and outside aerodromes. In Rhineland-Palatinate this is the Landesbetrieb Mobili-

tät Rheinland-Pfalz, Fachgruppe Luftverkehr situated at Hahn airport (LuftVG §31 (2) 

16f and g and §31c). General ascent permits are only issued for UAS of less than 5 kg 

MTOW without fuel engines, flight altitudes of up to 100 m above ground or may be 

issued for repeated missions at one location, for Rhineland-Palatinate only. Flight per-

mits for higher altitudes need to be especially requested for each case.  

For ascents (LuftVO §16 (5)) the admission of the land owner is necessary and, when 

indicated, the protection of data privacy need to be maintained. All flights in controlled 

airspace additionally deserve an air control clearance granted by the respective regulato-
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ry agency (LuftVO §16a (1) 5) which needs to be obtained by the person starting the 

drone (LuftVO §16a (2) 5), and the local control station for (rescue) flights need to be 

informed. Last not least, the proprietor or even the pilot need to contract general liability 

insurance either for several pilots for one drone or pilots for several drones.  

Formerly, the LBM, the local regulatory agencies and the rescue coordination centre 

needed to be informed of intended UAS missions 24 hours before ascent. Now, only the 

police authority requires contacting prior to flight.  

According to Udovic (2012), the German Ministry of Transport works on a common 

operation permit for all federal states. 

2.10.3 Airspace Regulation in Luxembourg 

Up until now, there are no regulations for UAS use in the Grand Duchy of Luxembourg. 

UAS therefore fall under the rules for full-size manned aviation. All research and com-

mercial UAS activities taking photographs or videos are treated as “aerial works” and 

require a permission issued by the Directorate of Civil Aviation (DAC) (DAC 2014).  

To facilitate UAS operations a tax of ~ 620 € has to be paid to acquire a UAS photog-

raphy permit for Luxembourg. No further documents like registration number, air-

worthiness certificates nor pilot licenses are requested. In general, only single ascent 

permits are issued and hold the following restrictions: 

 maximum flight altitude 50 m, 

 no flights over people and crowds, 

 flights only above pre-defined areas, 

 working area limited to public access, 

 VLOS-flights only, 

 auto-landing maneuvers in case of system failure, and 

 public responsibility insurance (DAC 2014). 

Derogations of these restrictions are possible if the applicant presents a safety case 

demonstration for the DAC. On their web-page is a link to ascent permission proposal 

form. Higher flight altitudes may then be asked for and are generally granted provided 

that the above mentioned safety rules are met (DAC 2014).  
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2.10.4 Airspace Regulation in Spain 

A note published by the Spanish Air Navigation Safety Agency (AESA) on 7 April 

2014, declared that any civil commercial or professional use of UAS are and had been 

illegal except for military, experimental or recreational use. The regulatory framework 

had been worked on in the meantime and on 8 July 2014, the AESA proposed a tem-

poral regulatory framework for drones less than 150 kg MTOW (information collected 

from the web pages of AESA, 24/08/2015). To the author’s understanding, this foresees 

for lightweight UAS of < 25 kg,  

 drone must hold a license tag,  

 a pilot license or authorization derived through pilot license for a micro 

light aircraft or by training obtained at EASA-Approved Training Organ-

ization (ATO), or agreement of ATO for drones < 25 kg, else 

 the pilot must be older than 18 years, 

 the Pilot must present a medical certificate to prove fitness of flying 

drones, and  

 a proof of ability to fly and handle the drone issued by UAS producer or 

any training authority 

Moreover, all drone operators further need to fulfill the following: 

 Provide information on drone type to the AESA, 

 Hold an operation manual, 

 Demonstrate aviation safety, 

 Conform to a maintenance program according to producer’s recommen-

dations, 

 Hold an insurance license, 

 Seize measures against system fallouts, and 

 Hold minimum distance of 8 km to airports and aerodromes, 15 km if 

drone is operated by instrument flight (AESA 2015). 

Drones of less than 25 kg MTOW do not need an operating permit but need to inform 

the AESA with the relevant documentations for a safe operation. Intended ascents need 

to be announced at the AESA 5 days prior to flights, and a receipt will be issued AESA 

2015. 

 



 

 

3 Remote Sensing of Vegetation in Vis/nIR Spectral Range 

Vegetation mapping and analysis have been amongst the very first applications in mul-

tispectral remote sensing since the 1970ies. And as vegetation is the key component in 

this work, the chapter gives a short general overview of key spectral-radiometric charac-

teristics of vegetation. Methods to derive biophysical parameters from multispectral 

narrowband remote sensing imagery are then described in more detail in the particular 

case study applications in chapters 7-9. 

3.1 Multispectral Properties of Plant Foliage  

The above-ground biomass of plants may further be described by amount, location, size 

and orientation of its structural components. Plant foliage comprises leaves, needles and 

other green materials of plants. From a remote sensing perspective, the plant organs 

leaves are the most significant above-ground plant organ as they present the largest part 

of the crop plant, whose main function is the photosynthesis and evapotranspiration 

(Kurz 2003, p.13). The spectral properties of leaves are steered by the leaf structure and 

its chemical components according to Asner (1998): 

1. pigments 

2. water 

3. carbon 

4. nitrogen. 

At first, the basic leaf structure and possible light-leaf interactions are described, then 

the main chemical components are described in more detail. 

3.1.1 Leaf Structure 

Among the above-ground plant organs, leaves represent the largest part of crops. Their 

main function is photosynthesis and evapotranspiration (Kurz 2003). Based on the theo-

ry of Willstatter and Stoll (1928), a dicotylendonous leaf is typically defined by four 

layers (Figure 3.1), the upper and lower epidermis, coating the leaf against the outside 

environment and encasing the two inner layers, palisade and sponge parenchyma, the 

so-called mesophyll. The epidermis is generally translucent and shows a waxy cuticle 

which protects the leaf from dehydration and physical destruction. The cuticle may also 
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have hairs (trichomes). Mostly on the lower epidermis, the leaf stomata regulate the gas 

exchange of CO2 entering and evaoptranspiration. The inner part of the leaf, the meso-

phyll or chlorenchyma tissue, is where photosynthesis happens. For horizontal leaves 

(planophile), the palisade layer is located on the upper leaf side and consists of a collec-

tion of cylindrical cells which contain most of the chloroplast material to use incoming 

solar energy. Erectophile (upward-pointing) leaves may have palisade parenchyma on 

both sides. Beneath the palisade layer, the spongy layer consists of irregular structured 

cells with large intercellular air spaces where oxygen (O2) and CO2 are exchanged 

(Kurz 2003, Jensen 2007a). Leaf veins transport water and minerals from the roots into 

the leaf (xylem) or sap, i.e. dissolve sucrose out of the leaf (phloem) (Hodson and 

Bryant 2012). 

 

Figure 3.1 Water and gaseous pathway through a model leaf (Source: mod. from Taiz 
and Zeiger 2010 p. 97) 

3.1.2 Biochemical Radiative Interactions with Leaves 

Spectrally, the most significant leaf chemical component are the photosyntethically ac-

tive leaf pigments, the chlorophyll (65%), carotenoids and flavonoids (Guyot 1990, 

Kurz 2003). The chlorophyll (Chl) pigments are located in the chloroplasts located in 
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the upper palisade parenchyma leading to the leaf’s green colour (Jensen 2007b). They 

absorb incoming solar light in the visible (VIS: 350-700 nm) part of the electromagnetic 

spectrum, chlorophyll a (Chla) at wavelengths ranging from 430 to 660 nm with two 

peaks at 430 nm and 660 nm, and chlorophyll b (Chlb) ranging from 400 to 650 nm with 

two peaks at 460 nm and 640 nm (Guyot 1990, Jensen 2007b). 

Figure 3.2 Leaf pigment 
absorption (Blackburn 
2007, p. 857) 

The carotenoids are also located in the chloroplasts and composed of hydrocarbons, the 

carotenes (lutein and ß-carotene with yellow-orange colour) and yellow xantohphyll 

pigments also containing oxygen (Jensen 2007a). Xanthophyll pigments violaxanthin 

and zeaxanthin absorb light in the blue-green wavelengths (Jones and Vaughan 2010). 

Carotenoids absorb solar energy in the blue wavelength ranges (450 nm) for 

photosysnthesis and chlorophyll protection from photodamage. For healthy green vege-

tation, their absorption is generally masked by the chlorophyll absorption. That’s why in 

the VIS, only a small amount of light is reflected and transmitted by the leaf (Jensen 

2007b). Flavonoids are pigments responsible for the leaf colour, e.g.anthocyanins gives 

fruits, berries and leaves their characteristic red colour in autumn (Jones and Vaughan 

2010).  

Leaf water is the dominant absorber in the IR electromagnetic spectrum. In the nIR, 

there is a minor water absorption bands at 970 nm, in the middle-infrared (mIR) domain 

of 1300-2500 nm wavelengths, water content steers leaf reflectance as there are several 

water absorption bands at 1450, 1950 and 2500 nm (Jensen 2007a, Jones and Vaughan 

2010). Table 3.1 lists the absorption feature wavelengths for cellulose and sugar, protein 

and nitrogen, oil and lignin which reside mainly in the nIR-shortwave infrared (SWIR).  
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Table 3.1 Absorption features of leaf constituents in VIS – mIR (modified from Jones 
and Vaughan 2010, p. 41). Bold numbers show strongest absorption. 

Constituent Absorption Wavelength [nm] 

Chlorophyll 430, 460, 640, 660 

Water 970, 1200, 1450, 1950, 2500 

Protein, nitrogen 910, 1020, 1510, 1690, 1940, 1980, 2060, 2130, 2180, 2240, 
2300, 2350 

Oil 930, 1020, 2310 

Lignin 1120, 1420, 1690, 1940 

Cellulose/sugar 1780 

In contrast to the VIS (Figure 3.3), in the near-infrared (nIR: 700-1300 nm) part, leaf 

pigments and cell walls are transparent resulting in high reflectances (40-60%), trans-

missions (40-60%) and only little absorption (under 10%).  

 

Figure 3.3 (Source: Jensen 2007a, p.362) 

In the VIS most radiation is absorbed in the chloroplasts, but in the nIR light is mainly 

reflected and to a minor part scattered by the mesophyll air/cell wall interfaces (Asner 

1998, Jensen 2007a, Jones and Vaughan 2010). The strength depends on number of cell 

layers, cell size, and the thickness of spongy mesophyll wall-orientation and cell heter-

ogeneity (Gausman and Allen 1973, Guyot 1990, Jensen 2007b).  

When the incident angle of light is off normal, specular reflectance of light on the 

cuticule will be combined with diffuse, spectrally dependent reflectance from within the 
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leaf. In the near-infrared (nIR), leaves may be considered as Lambertian diffusers, in the 

visible domain, reflectance is strongly directional (Guyot 1990).  

3.1.3 Light interactions within the Photosystem II: Fluorescence and Non-

Photochemical Quenching  

Within the thylakoid membrane of the chloroplasts, reside the reaction centre of the 

Photosystem II (PSII) which steer oxygen generation and water splitting. PSII is sensi-

tive to light levels and quality, water and nutrient availability, a.o., and therefore of ma-

jor interest for remote sensing. Excess light energy not being required for photosynthe-

sis and carbon-fixation is partly re-emitted as sun-induced chlorophyll fluorescence at 

longer wavelengths, showing two well-defined peaks at the red 685 nm and nIR 740 nm 

(Zarco-Tejada et al. 2003; Campbell and Wynne 2011; Damm et al. 2011, Jones and 

Vaughan 2010). Altogether, only 2-5 % (Figure 3.4) of the overall reflected radiance 

may be attributed to sun-induced fluorescence (Meroni et al. 2009, Jones and Vaughan 

2010; Damm et al. 2011). The re-emission of excess energy occurs mostly in 10-9 s.  

 

Figure 3.4 Reflectance of a green sugar beet leaf: without fluorescence in black; with  
fluorescence in red (Source: Meroni et al. 2009, p. 2038) 

With senescence, fluorescence emission peaks (Figure 3.5) move towards lower wave-

lengths peaking at 500-600 nm (Campbell and Wynne 2011). 
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Figure 3.5 Fluorescence of 
healthy green and sensced 
vegetation (Source: Camp-
bell and Wynne 2011, p. 
51) 

 

Another mechanism of chloroplasts to dispose of excess light energy is non-

photochemical quenching (NPQ), a conversion of carotenoid violaxanthin into 

zeaxanthin into heat within the xanthophylls cycle (Gamon et al. 1990; Demmig-Adams 

and Adams 1996).   

Canopy derivative fluorescence and reflectance measurements have shown to be direct-

ly related to temperature and humidity stress (Zarco-Tejada et al. 2003; Berni et al. 

2009, Zarco-Tejada et al. 2013a; Zarco-Tejada et al. 2013b). How sun-induced fluores-

cence may be depicted from the overall reflectance is being reviewed in more detail in 

chapter 8. 

3.1.4 Factors Influencing Leaf Reflectance 

3.1.4.1 Leaf Architecture  

Leaf anatomy has a great impact on nIR reflectance. Guyot (1990) summarises the fol-

lowing factors altering leaf optical properties: the number of cell layers and their cell 

size, and the thickness of the spongy parenchyma tissue. He further describes the leaf 

asymmetry when upper cuticule is compared to the lower side. Due to the higher chlo-

roplast density in the palisade mesophyll, the upper leaf side reflects less than the lower 

part. Hairs on the cuticule, increase reflectance in the VIS and mIR, but are transparent 

in the nIR (Guyot 1990, p. 22). 

3.1.4.2 Leaf Age 

Depending on chlorophyll content, the spectral properties of plants change significantly 

from young to mature leaves, yet until senescence, for deciduous plants, the chlorophyll 

level remains relatively constant during the mature state (Guyot 1990, p. 23, Poni et al. 

1994).  
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Figure 3.6 shows the reflectance of senescent vegetation in comparison to green vegeta-

tion. At the beginning of the seasonal cycle, young leaves show a blue-shift of the red-

edge for a short period. With further development, the red-edge is shifting slowly to 

longer wavelengths. When Chl pigments wane in autumn, more light is reflected in the 

green and red VIS spectrum letting the leaves appear yellowed. The reflectance level in 

the nIR decreases slightly and the red edge shifts towards the VIS (Miller et al. 1991; 

Jensen 2007a). Non-photosynthetic vegetation - dried out vegetation – shows an in-

crease in the nIR and mIR and the green peak becomes resolved into a step rise of re-

flectance towards shorter wavelengths.  Also, smaller variations due to wa-

ter/temperature stress during the season lead to blue-shifting fluctuations (Miller et al. 

1991).  

Figure 3.6 Reflec-

tance spectral of 

healthy and dried 

vegetation and  soil 

(Source: Jones and 

Vaughan 2010, p. 46) 

 

3.1.4.3 Leaf Water Content 

Water enters leaves through the petioles is transported mainly to the spongy mesophyll 

by the veins. There are five absorption bands within the nIR to mIR spectral range: 970, 

1190, 1450, 1940 and 2700 nm (Jensen 2007a). Leaf moisture changes by evapotranspi-

ration till wilting and death are dominant in the mIR and effect reflectance at the VIS, 

nIR due to water turgor (Guyot 1990, p. 24). When leaf water decreases, spectra in-

crease in reflectance in the nIR-mIR. 
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3.1.4.4 Leaf Nutrients and Diseases 

Iron deficiency causes chlorosis affecting VIS reflectance. Nitrogen is, amongst others, 

contained in the chlorophyll pigments, nitrogen deficiency therefore is directly linked to 

chlorophyll content, increasing VIS reflectance and decreasing nIR and mIR reflectance 

(Guyot 1990, Jensen 2007a). 

Fungi and diseases may cause leaf aging/yellowing altering the VIS reflectance or in-

troduce other changes, necrosis will look similar to leaves senescence. 

3.2 Multispectral Properties of Canopies 

Vegetation canopy reflectance is an interaction of sensor-characteristics, viewing- and 

illumination geometry, tissue reflectance resulting from light interactions within plant 

parts and canopy as well as background substrate, summarized in Table 3.2 (Asner 

1998, Jensen 2007a).  

Table 3.2 Main Impact Factors on Canopy Bidirectional Reflectance (modified from 
Jensen 2007a, p. 368) 

Sensor  sensor viewing geometry (viewing angle from nadir and 
azimuth position of sensor) 

 IFOV (Instantaneous field of view) 
 spectral sensitivity 

Illumination  sun position (zenith, azimuth) 
 wavelength region 

Vegetation canopy  canopy type (crown shapes, roughness and closure 
 canopy orientation 
 visibility of trunks & stems 
 LAI 
 Leaf angle distribution (LAD) 

Background  understorey 
 soil 

 

3.2.1 Sensor- and Illumination Geometry 

3.2.1.1 Bidirectional Reflectance Effects of Canopies 

Lambert’s emission law states that the radiation of a Lambertian – a perfectly diffusely 

reflecting surface - is proportional to the cosine of the angle θ between a sensor’s line of 
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sight and the surface normal, so that the object shows the same radiance from any view-

ing position. Depending on the canopy structure, dense grass may resemble a 

Lambertian surface whereas a maize field canopy will show a combination of both 

specular and diffuse reflection components (Figure 3.4).  

The at-sensor reflectance varies with a) the location (azimuth) of the sun and its height 

over the horizon (zenith) and depends on b) the sensor position and viewing angle 

(Jensen 2007a), i.e. the bidirectional reflectance distribution. Objects receiving back-

scattered radiance - sensor and sun are positioned at similar azimuth values - seem 

brighter (see figure) than forward-scattered radiances - sensor is positioned opposite the 

sun (Sandmeier 2000). When object – sensor – sun are aligned on the “solar principal 

plane” (Jensen 2007a, p.368), a hot-spot effect occurs, i.e. a bright area on the image 

without any shadows. At nadir imagery, the hot-spot effect appears when the solar zen-

ith angle is smaller than the FOV.  

  

Figure 3.7 Sources of anistropic reflectances in the environment (mod. from Beisl and 

Woodhouse 2004, p. 1684) 
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Figure 3.8 Bidirectional reflectance differences for a maize field along the solar princi-
pal plane (570 nm, sun azimuth ~135°, sun altitude 51°) 

3.2.1.2 The Bidirectional Reflectance Distribution Function 

Sandmeier and Itten were the first to build a transportable field goniometer (FIGOS) to 

use with a spectroradiometer (GER-3700, nominal range of 300-2450 nm) studying the 

bidirectional reflectance distribution by a stepwise variation of sensor zenith and azi-

muth angles in relation to sun azimuth and zenith (Sandmeier and Itten 1999). The ratio 

of reflected radiance to incident irradiance in relation to sun – sensor – target geometry 

is described by the bidirectional reflectance distribution function (BRDF), first defined 

by (Nicodemus et al. 1977): 

 
ܨܦܴܤ	݈ܽݎݐܿ݁݌ܵ ௩݂ ఏ೔,ఝ೔ ,ఏೝ,,ఝೝ ,ఒ

ൌ
ோഇ೔,ക೔ ,ഇೝ,,കೝ	,ഊ

ூഇ೔,ക೔ ,ഇೝ,,കೝ ,ഊ
 [sr-1] (3.1)

With: 

R: reflected radiance [Wm-2sr-1nm-1] 
I: solar incident radiance [Wm-2sr-1nm-1] 
θi : sun zenith 
φi : sun azimuth 
θr : sensor/view zenith 
φr : sensor azimuth 
λ:  respective wavelength 

The spectral bidirectional reflectance (BDR) factor describes the wavelength-dependent 

reflected radiance from a surface to a specific direction in relation to the reflected radi-

ance from a Lambertian reference panel under equal irradiance conditions.  

BRDF are spectrally dependent, effects are larger in the VIS than in the nIR (Guyot 

1990; Sandmeier and Itten 1999). To illustrate wavelength dependent effects, bidirec-
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tional reflectance data may be normalized by nadir reflectance, obtaining an anisotropy 

factors for each wavelength (Jensen 2007a). Figure 3.9 shows the anisotropy factor ob-

tained by forward and backward scattering processes for a sun zenith angle of 35° for 

different wavelengths. BRDF effects are largest on the blue and red chlorophyll absorp-

tion spectral regions, and generally lower for the nIR where multiple scattering is strong 

and reduces BDR effects (Sandmeier and Itten 1999). 

 

Figure 3.9 Anisotropy factors (nadir-normalized BRDF) of ryegrass for different wave-
lengths and a sun zenith angle of 35°(mod. Sandmeier and Itten 1999) 

When sensor viewing angles vary from normal, BRDF may help to understand how the 

signal is affected by sensor viewing geometry in relation to sun position and, also, how 

respective wavelengths are affected. The BRDF also varies seasonally with sun azi-

muth/zenith variations (Sandmeier 2000). However, when multi-angular images are 

compared for a specific point in time, the side-looking imagery yield further infor-

mation on the canopy and its biophysical properties than nadir imagery sensing solely 
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the top canopy layer (Qi et al. 1995; Jensen 2007a). Great care needs to be taken to ac-

curately correct for atmospheric differences when biophysical parameters are estimated 

from multi-temporal imagery (Qi et al. 1995). A comprehensive overview over BDR 

correction models is given by Beisl 2001. They may be grouped into  

 physical models mainly applied for information gain; these are generally based 

either on ray-tracing or radiative transfer function methods;  

 semi-empirical models. They understand BDR as a number of isotropic and vol-

ume scattering kernels and are mostly applied for correcting brightness gradients 

for line scanner data (Beisl and Woodhouse 2004, Schiefer et al. 2006); and 

 empirical models based on viewing geometry (Schiefer et al. 2006).  

3.2.2 Canopy parameters 

The canopy signal as a combination of “leaf additive reflectance” as rays transmitted by 

a leaf may again be reflected and transmitted by understory leaves. Thus, nIR 

reflectances for healthy leaves reach up to ~ 50% (Jensen 2007a). When the incident 

angle of light is off normal, specular reflectance of light on the cuticule will be com-

bined with diffuse, spectrally dependent reflectance from within the leaf and canopy. In 

the near-infrared (nIR), leaves may be considered as Lambertian diffusers, in the visible 

domain, reflectance is strongly directional (Guyot 1990).  

Canopy reflectance spectra were simulated using PROSAIL (explained in more detail in 

chapter 6) to illustrate the influence of leaf biophysical parameters (Wantzenrieder 

2011). Figure 3.10 shows spectral variations of maize reflectances.  

3.2.2.1 Leave’s pigments, leaf water and structure 

For Chla+b (Cab in the model), the most striking changes are as already described 

(Figure 3.2) to be found within the green peak area and the level of the minimum reflec-

tance at the red spectral region. Similarly, the carotenoids (Car) induce changes of the 

level and shift the green peak from lower to higher wavelengths. Variations of the 

brown pigment content (Cbp) lead to an extinction of the green peak and a shortening of 

the red edge to the longer wavelengths with flattening slopes. The moisture content in 

maize leaves, introduces great shifts on the spectral signatures, increasing equivalent 

water content (EWT) fortifies the water absorption minima and the reflectance plateaus 

between these absorption areas. Dry matter content (Cm) and the leaf structure parame-

ter (N) show opposing patterns: decreasing overall reflectance levels for Cm, and an 

overall increase of reflectance peaks for N.  
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3.2.2.2 Leaf area index 

In dependences of the development and amount of biomass, the underlying soils influ-

ence the canopy reflectance quite strongly. Greatest impact on the spectral signature is 

therefore found by LAI at the green peak to short nIR and at midwave IR regions. When 

canopies are not closed as for vineyards or beginning stages in crop development, a sub-

stantial part of the reflected energy comes from background soils which adds to the re-

flectance curve especially in the nIR (Figure 3.10). With an increasing leaf area index 

towards a value of 3, the canopy is supposed to cover the underground and saturate the 

VIS signal, in the nIR a LAI of 5 is required (Guyot 1990). 

Huete and Jackson (1988) showed that soil brightness strongly affected path radiance, 

leading to a greater atmospheric influence on darker soils, and rather greater atmos-

pheric extinction on brighter soils. The soil background also varies with shaded cover, 

moisture state and litter fraction (Huete and Jackson 1988). Huete then introduced the 

soil-adjusted vegetation index to compensate that effect (Huete 1988, Huete et al. 1992). 

3.2.2.3 Plant Geometry Effects 

The orientation of leaves in relation to the stem may be categorised as follows: 

 planophil i.e. horizontal inclination, 

 erectophil, i.e. vertical inclination, 

 plagiophil, i.e. mostly medium-sloped leaves,  

 extremophil, i.e. only few leaves with medium inclination, and 

 uniform, i.e. most leaves show are similar inclination (Kurz 2003, p.12). 

Maize, for example, shows mostly erectophil leaves depending on the respective vari-

ety. Yet, not all leaves are oriented uniformly and leaf-angle-distribution may even vary 

during one day, e.g. when the plant orient towards the sun (sunflowers) when wilting 

occurs when moisture stress increases (Guyot 1990; Jensen 2007a).  These attributes 

have been modelled by leaf inclination distribution functions (LIDF, Guyot 1990) or 

leaf-angle-distribution (LAD, Jensen 2007a) which model reflectance in relation to LAI. 

With increasing LAI, reflectance differences in the red/nIR domain increase considera-

bly for different leaf angle distribution (Figure 3.10). 

The phenological stages of crops and vegetation contribute to seasonal reflectance dif-

ferences. When leaves develop they are of a lighter green and generally moister than 

mature leaves. The chlorophyll content develops within 80-90 days and then levels off 

just until harvest times, when senescence develops and leads to a yellowing or colouring 
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of the leaf (Poni et al. 1994, Jensen 2007a). Crop flowers also contribute to the reflec-

tance signal as well as fruits. Depending on the viewing angle not all plant components 

will always be detected by the sensor. 
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Figure 3.10 Effects of variation of Prosail biophysical input parameters on spectral sig-
natures of maize 
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3.2.2.4 Soil Background Effects 

Depending on the canopy closure, soil background is a major contributor to a vegetation 

stand’s reflectance signal. Typically, soil reflectance is generally increasing from VIS to 

nIR/mIR wavelengths (see figure) and may well be discriminated from vegetation by 

utilizing the sharp increase along the red edge. However, senescent/dry vegetation also 

increases from VIS to IR wavelengths. Soil reflectance spectra vary with their water 

content, i.e. appearing of darker reflectance than dry soils, similarly organic content 

leads to darker signals. The mineral composition of soils also contributes to reflectance 

changes, clayey soils appear darker than more sandy, thus light-coloured soils and iron 

oxides give the typical red colour in the VIS. Similarly to plants, soil surface roughness 

strongly influences the bidirectional reflectance effects of soils (Jones and Vaughan 

2010). Hyperspectral remote sensing can successfully discriminate mineral and organic 

components for dry soil samples (van der Meer et al. 2012). 

3.2.2.5 Row Orientation and Density 

Row structures of crops introduce additional variability on the reflected signal. Depend-

ing on the sensor – sun viewing geometry, bi-directional reflectance differences (see 

chapter 7), illumination and shading and part of visible soil may vary considerably. 

Here the row orientation, canopy height and inter-row-distance will influence the 

amount of canopy, shadow and background visible in the image (Zhao et al. 2010, Yan 

et al. 2012). 

This effect has been analysed as early as the 1980ies, where Suits (1983) showed how 

the reflectance of wheat is affected by row structure modulations to uniform canopy 

models (Figure 3.11). As the contrast of soil background reflectance and the green re-

flectance within the chlorophyll absorption ranges is highest, it is there that the strong-

est BDR-effect is found. 

Several row-models describing radiation transfer were developed in the past: The Geo-

metric-optical model of BDRF (GO-model) by Li & Strahler (1985),  Kuusk (1995) 

developed the Markov-Chain Canopy Reflectance Model (MCRMrow) which has been 

applied by coupling it with PROSPECT-SAIL-FLIM to predict grapevine canopy Chl 

(Zarco-Tejada et al. 2004),  España et al. (1999) generated a plant and canopy 3D maize 

model and combined it with a ray tracing model to obtain canopy reflectances. 
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Figure 3.11 Reflectance 
(RC) polar plots of a uni-
form canopy model (o), a 
row model (•) and the 
Verhoef-Bunnik rectangu-
lar prism model (x) of 
wheat (Suits 1983, p.123) 

Zhao and co-authors only recently developed a 3D row reflectance model to study bi-

directional reflectance for hedgerow geometries (Zhao et al. 2010). Within the rectangu-

lar design of the rows, the row model, requires input on sun-sensor viewing geometry, 

canopy parameters (row distance, width, height, and orientation, foliage dimension, 

LAI, LIDF), and optical parameters such as the hemispherical leaf reflectance, transmit-

tance, the hemispherical reflectance of soils and the ratio of direct to overall irradiance 

(Zhao et al. 2010). 

Figure 3.12 illustrates the bi-directional reflectances for the red (left) and nIR (right) 

wavelengths and N-S-oriented wheat rows of different development stages. As ex-

pected, the effects in the VIS are greater than in the nIR, clearly indicating a bright 

stripe parallel to the row orientation for the well-defined row structures at early wheat 

development stages at the red and a darker stripe in the nIR, an influence that decreases 

with canopy closure (Zhao et al. 2010). 

Recently, Yan et al. (2012) extended the GO model of BDR by using a leaf clumping 

index which may not only be applied to discrete but also to continuous vegetation co-

vers of various types as the BDRF is shown to be driven by the areal component of a) 

illuminated versus shaded leaves and b) visible illuminated versus shaded background.  
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Figure 3.12 Polar plots of directional reflectances in the red (left) and nIR (right) re-
trieved by the row model for four wheat growth stages (I: sparse, II: low, denser cano-
py, III: well-developped canopy with less inter-row soil cover, III: homogenous canopy) 
(modified by Haho e Zhao et al. 2010) 
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3.3 Thermal Remote Sensing of Vegetation  

Thermal infrared (TIR) radiation emits from 7 to 18 µm wavelengths and is also called 

emissive infrared or far infrared. For these wavelengths information on the thermal 

properties and surface temperatures may be derived (Campbell and Wynne 2011). As 

thermal remote sensing in this work was applied only qualitatively, only a brief sum-

mary of broad-band thermal sensing (8-13 µm) is given here. For a more detailed over-

view please refer to Jensen 2007a; Jones and Vaughan 2010, and Campbell and Wynne 

2011. 

3.3.1 Thermal Properties of Vegetation 

According to the Stefan-Boltzmann-Law, thermal radiation of a surface depends on its 

emissivity and temperature: 

 
ܧ ൌ ସܶߪߝ (3.2)

With: 
E:  thermal energy [Wm-2] 
ε:  emissivity 
σ: Stefan-Boltzmann constant 5.67·10-18 [Wm-2K-4] 
T:  absolute temperature 

The kinetic temperature is the relative warmth of an object and is measured by ther-

mometers. Thermal sensors measure the radiant or apparent temperature (Campbell and 

Wynne 2011). 

3.3.2 Canopy Emissivity 

Natural and vegetation surfaces are neither blackbodies (ε = 1) nor greybodies (objects 

emitting thermal radiation equally at all wavelengths with an ε < 1).  Typically ε of veg-

etation features range between 0.94 – 0.99 and its knowledge is crucial for the determi-

nation of an object’s temperature.  In the field, ε is derived by accurately measuring a 

surface’s temperature and either also the background radiation or eliminating the back-

ground radiation by putting the object into a highly reflecting box (Rubio et al. 2003). 

The authors also generated an emissivity database for the range of 8-13 µm for various 

vegetation samples. The emissivity of a total canopy is generally greater than that of a 

leaf sample due to multiple reflection of thermal radiation.  
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ܮ ൌ ߪߝ ௟ܶ௘௔௙

ସ ൅ ሺ1 െ 	ߪሻߝ ௟ܶ௘௔௙
ସ ൌ ߪ ௟ܶ௘௔௙

ସ [Wm-2] (3.3)

With: 
L:  thermal radiation [Wm-2] 
ε: Stefan-Boltzmann constant 5.67·10-18 [Wm-2K-4] 
T:  absolute temperature 

Following equation (3.3), emissivity approaches 1 and as Rubio et al. (2003) have 

shown, ε varies between 0.98 and 0.99 when dense canopies are measured. 

However, several other effects may affect emissivity values: 

 Dryness and age of vegetation (see above) 

 LAI and leaf angle distribution (Guoqan and Zhengzhi 1992)  

 IFOV (Ribeiro da Luz and Crowley 2007, Jones and Vaughan 2010). 

 Viewing angle and directional effects of varying amounts of objects with poten-

tially different ε 

The impact of LAI and LAD on emissivity has been studied by Guoqan and Zhengzhi 

(1992), the authors found that with increasing canopy density, the apparent emissivity 

increases, too (Figure 3.13). 

 

Figure 3.13 Affect of LAI (left) and leaf angle distribution (right) on apparent emissivi-
ty of a vegetation canopy (mod. from Guoqan and Zhengzhi 1992) 

Similarly, when increasing the IFOV (Figure 3.14), the amount of canopy components 

seen by a thermal sensor increases, collecting a mixed signal of leaves, cavities, and 

stems which also lead to an assimilation of apparent ε towards an emissivity of a black-

body (Ribeiro da Luz and Crowley 2007, Jones and Vaughan 2010).    
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Figure 3.14 Changes in apparent emissivity with viewing distance [m] in relation to 
wavelength (Ribeiro da Luz and Crowley 2007) 

Otterman et al. (1995) note that “sun and wind directions and the thermal and structural 

characteristics of the plants” (1995, p. 170) alter canopy thermal temperatures. Thermal 

radiation is strongly anisotropic and for agricultural crops may vary with viewing azi-

muth from 4 K to 13 K for sunflowers due to varying amounts of soil background radia-

tion in the TIR signal (Jones and Vaughan 2010). Sun azimuth location has been report-

ed to vary canopy temperatures up to 2°C under calm wind conditions (Kimes 1983, 

Emissivity also changes with plant age, as can be visualised from the MODIS UCSB 

Emissivity Library (Zhang 1999). Vigorous vegetation has a high ε due to its water con-

tent and cell structure, when senescing, the emissivity becomes more variable (Figure 

3.15) 
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Figure 3.15 Emissivity spectral of young and old pines (MODIS UCSB Emissivity Li-
brary, http://www.icess.ucsb.edu/modis/EMIS/images/pinenew.gif and pineold.gif, ac-
cess date 28/04/2015) 

3.3.3 Influence of Background 

In environmental applications, a thermal sensor detects not only the target’s energy but 

also the reflected component of emitted background energy, its alterations by transmit-

ting atmosphere as well as radiation from the intermediate atmosphere itself (Jones and 

Vaughan 2010). 

 

ܮ  ൌ ߪߝൣ߬ ௧ܶ௔௥௚௘௧
ସ ൅ ሺ1 െ ௕௔௖௞௚௥௢௨௡ௗ൧ܮሻߝ ൅ ௔௧௠௢௦௣௛௘௥௘ (3.4)ܮ

With: 
τ:  transmissivity 
ε: emissivity 
σ: Stefan-Boltzmann constant 5.67·10-18 [Wm-2K-4] 
Ts: absolute temperature 

The thermal inertia P of objects is given as 

 ܲ ൌ ඥ(3.5) ݌ܥܭ

With: 
K:  Thermal conductivity [cal · cm-1 · sec-1] 
C:  Heat capacity [cal · gram-1 · °C-1] 
p:  density [gram · cm-3]  
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Figure 3.16 Diurnal 
course of radiant and 
kinetic temperature for 
different surfaces 
(Source: Jensen 2007a, 
p.725) 

Figure 3.16 illustrates the diurnal thermal behavior of key surface materials. There is a 

lag of maximum temperature reached in relation to noon due to thermal inertia and simi-

larly for the minimum temperatures. By differencing thermal images from the hottest 

(2-3 hours after maximum sun position) and coolest (just before dawn) diurnal times, 

thermal inertia P may be derived (Campbell and Wynne 2011).  

 



 

 

4 UAS, Sensors and Data 

This section will focus on equipment selected for this work. The used UAS will be de-

scribed in more detail as well as the sensors used with this vehicle. For the agricultural 

applications, a hyperspectral sensor small enough (<1 kg) was not yet operationally 

available, so a multispectral six-band camera array had been acquired with the UAS. 

Furthermore, a thermal camera, and for archaeological studies, additionally a standard 

digital single lens reflex (DSLR) camera were applied in this work. The section ends 

with a description of other data sources and field devices.    

4.1 UAS: The md4-1000 Quadrocopter 

At the end of 2010, the Department of Environmental Remote Sensing and 

Geoinformatics purchased a light-weight UAS which should be able to hover over sites 

of specific interest. As a stable and operational VTOL-system, a md4-1000 

quadrocopter (microdrones GmbH) with a carrying capacity of ~ 1.5 kg and a take-off 

weight of 5 kg was chosen. The size of the vehicle is about 170 cm  x 170 cm x 50 cm 

with extended rotors (Schübeler and Eickhoff 2010). 

 

Figure 4.1The md4-1000 with base station (photos: J. Besold 2011) 

The UAS consists of a carbon-fibre built vehicle, a base station and a remote control. 

The md4-1000 has four brushless rotors that move pairwise with counter-rotation 

(Figure 4.2). 
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Figure 4.2 Rotor movement with the md4-
1000 (microdrones GmbH 2008-2010) 

The vehicle mounts with acceleration of all motors, hovers by equal speed at all rotors, 

flies forward by tilting along the lateral axis (pitch) and slowing down the front motor, 

and moves sideways by a change of speed between the motors aside of the  longitudinal 

axis and vice versa. Power is supplied by a 22.2 V Lithium-Polymer battery allowing 

flight duration of about 20 minutes with camera weights of approximately 1 kg.  

The drone position is steered by GPS based on the Global Navigation Satellite System 

(GNSS) and an IMU with a barometric height stabilization by fusioning different posi-

tion sensors through a Kalman-filter.  

The drone and camera triggering is carried out by a Multiplex remote control (Royal Pro 

9) using a 35 MHz band for communication with the vehicle. Alternatively, the pilot 

may use waypoint navigation by programming flight routes and camera tasks using the 

proprietary software mdCockpit (Figure 4.3), which is also used for 

 Waypoint editing, 

 Downlinking of telemetry data 

 Flight data recorder and analysis 

 Communication with and parameterizing of the UAS. 

Waypoint editing with the current version uses NASA/ESA’s Shuttle Radar Topogra-

phy Mission (SRTM) data for terrain input and either Google or user-defined 

georeferenced maps as the basis for route editing (microdrones GmbH 2007-2013). 
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Figure 4.3 mdCockpit 3.2 Waypoint editor (microdrones GmbH 2007-2013) 

Downlink decoding during the flight enables the ground crew to check on vehicle 

movement (positioning, height, speed, wind speed, etc.) and functioning (route, energy 

supply, motors, RC, payload, wind, GNSS, a.o.) and corresponding alerts and control of 

video signals (Figure 4.4). 

Figure 4.4 
Ground station 
device 
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Flight recorder data is written to a microSD-card functioning as a kind of “blackbox” 

supporting flight parameter analysis. The photo positions and attitude parameters as 

well as the GNSS and IMU data may then be exported to text/spreadsheet files for fur-

ther references (Figure 4.5), the flown route may be exported to KML files for visualis-

ing flights on the terrain. Horizontal positioning accuracy varies with flight speed and 

number of GNSS satellites availability and mostly lied within 1.5 to 3 m accuracy. 

 

Figure 4.5 GNSS and IMU data text files and positional accuracy as given by flight re-
corder data 
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4.2 UAS Cameras   

4.2.1 Digital Single Lens Reflex Camera: D3100 

The Nikon D3100 was obtained in 2010 and has a resolution 14.2 megapixels (4608 x 

3072 pixel). The sensor is an APS-C size CMOS sensor (Complementary Metal Oxide 

Semiconductor) with a size of 23.1 x 15.4 mm (Nikon Inc. 2011). Light is filtered into 

the primary colours red, green and blue onto the sensor by colour filters (Bayer or inter-

ference filters) and stored as 8-bit x 3 radiometric values (Figure 4.6).  

Figure 4.6 Spectral response 
of a CMOS sensor (mod. El 
Gamal and Eltoukhy 2005) 

The camera is mounted by a carbon-frame (Figure 4.7) with two servo-motors which 

may be rotated in pitch direction (0° looking horizontally in flight direction, 90° nadir 

viewing) and along a roll axis to balance positional inclinations of the drone. The cam-

era has an instant return lens aperture, exposure times may range from 1/4000 to 30 s.  

Together with the wide angle 

lens AF-S DX NIKKOR 10-

24 mm (1:3.5-4.5G ED) it 

weighs about 970 g (Nikon 

Inc. 2011). Images are stored 

as RGB either RAW or JPEG 

of varying resolution.  

 

Figure 4.7 Nikon D3100 with 

wide angle lens 
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4.2.2 Multispectral Sensor: Mini-MCA-6 

A multispectral sensor was to be selected in autumn 2010, when the Department of En-

vironmental Remote Sensing & Geoinformatics bought the quadrocopter. At that time, 

the weighing-off between camera weights (< 1 kg), reasonable spectral resolution and 

costs resulted in obtaining a multiple camera array system, the Mini-MCA6, developed 

by Tetracam Inc., USA.  

The low-cost multiple camera array has been developed in 1993, weighs approximately 

780 g and consists of six individual x-mount lenses equipped with 25 mm (1”) diameter 

spectral band-pass filters (Tetracam Inc. 2011). In 2010, the camera was delivered with 

a front-filter mounting system (Figure 4.8).  

Figure 4.8 The Mini-MCA6 
with front-filter mounting 
(photo: © Tetracam Inc.) 

 

The camera lenses then had a focal length of 8.3 mm (f/3.2) and were equipped with 

spectral 10 nm-bandwidth filters. The sensors used are CMOS sensors with a respective 

size of 6.66 mm x 5.32 mm with 1280 x 1024 pixels resulting in approximately 5.2 µm 

x 5.2 µm effective pixel size. The radiometric resolution may be user-defined to 10-bit 

or 8-bit data. The sensor’s spectral response culminates about 800 nm with a total range 

from approximately the visible (Vis) blue to nIR wavelengths. Figure 4.9 illustrates the 

sensor’s monochrome response and the location of filters applied in this context. The 

curve shows a rather steep sensitivity drop-off to the lower and higher filter wave-

lengths of transmissions ranging from 50-70%. Yet, the camera’s exposure rates may be 

adjusted accordingly in relation to the master channel.   
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Figure 4.9 Spectral sensitivity of the Mini-MCA-6’ CMOS sensor (modified from 
Tetracam Inc.) and filters (filter transmission as supplied from producer) 

After a front-to-rear filter change at the end of 2011, the Mini-MCA6 had a focal length 

of 9.6 mm with a slightly elevated luminous intensity of f/2.8 (Figure 4.10). 

 

Figure 4.10 Mini-MCA-6 with front-to-rear filter rebuilt (left) with filters put behind the 
lens plate to facilitate filter access and change (right) (Photographs: M. Perez Saíz) 
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Each camera stores its images on standard 2 GB ScanDisk Compact Flash memory 

cards and may be downloaded by USB connection. The image capture rate takes 3-5 sec 

for the single shot mode, and 1.3 frames/sec in burst mode (Tetracam Inc. 2011). Expo-

sure settings are either carried out by control box and video device or through a USB 

interface within the processing software PixelWrench supplied with the camera.  

Thus, for automatic or fixed exposure, the progressive shutter allows exposure ranges 

from 0.5 to 20 msec. Time to save images to disc requires 2 sec for 10-bit RAW images 

and up to 5 sec for DCM mode. Further settings allow the alteration of sensor gain 

and/or relative exposure of individual cameras in relation to the master band. In this 

case, the master band is camera no. 0 equipped with the 570 µm 10nm-FWHM Andover 

filter.  

4.2.3 Thermal Camera: Un-Cooled Module (UCM) 

The UCM (UnCooled Module, Figure 4.11) had been bought at the end of 2011 as a 

light-weight, robust thermal camera to be used with the md4-1000 quadrocopter. The 

camera had been developed by Carl Zeiss Optronics as an easy-to-use and fast thermal 

microbolometer for mostly military operations. It records in the longwave infrared re-

gion from 7-14 µm with a thermal sensitivity of 90 mK and an image size of 640 x 480 

pixels. The camera was delivered without housing so that a casing had to be built at the 

department. The UCM is 95 x 48 x 48 mm large and weighs 170g (Carl Zeiss Optronics 

GmbH 2011).  

Figure 4.11 The thermal 
camera UCM (photo: G. 
Rock 2011) 

 

Before image acquisition, all pixel values need to be calibrated to ensure identical gain 

and offsets by taking a picture of a homogenous background (i.e. lens-lid). The thermal 



4 UAS, Sensors and Data 70 

 

camera’s lens has a focal length of 10 mm with quite strong barrel distortion (Figure 

4.12). The image capture rate is 50/60 Hz and the storage comprises only up to 20 im-

ages per flight, at snapshot mode 50 images. Images are either stored to BMP or JPG 

format (Carl Zeiss Optronics GmbH 2008).  

During image capture, the grey-value stretch is automatically optimized for each image. 

This renders image processing somewhat cumbersome as image-to-image equalization 

techniques need to be used in post-processing. 

Figure 4.12 Thermal image 
(7-14 µm) of a vineyard tak-
en with UCM 

In this work, the UCM was mainly used for qualitative thermal description of study 

sites. 

 

4.3 Reflectance Measurements: Spectroradiometer 

In addition to the UAS data, reference reflectance measurements of grayscale reference 

panels and vegetation parameters were made using a FieldSpec Pro 3 Max 

spectroradiometer (ASD Inc., Boulder, CO, USA) kindly supplied by the Luxembourg 

Institute of Science and Technology (LIST), Luxembourg. 

The FieldSpec acquires spectral measurements within the range of 350-2500 nm with   

sampling intervals of 1.4 nm up unto 1000 nm and 2 nm for the following wavelengths. 

The spectral resolution is ~ 3 nm @ 700 nm. A fibre optic collects the data with a 23° 

FOV. Reflectances are calibrated by using a 10 x 10 inch Spectralon® device with a 

known reflectance of almost 100% (Figure 4.13). 
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Figure 4.13 Spectralon reflectance (white reference) developed by Labsphere Inc., 
North Sutton, NH, USA. 

For leaf measurements, a leaf-clip device was used. Laboratory measurements were 

carried out using a ProLight video lamp. Generally, 3-15 spectra were averaged for each 

target (with 50 measurements for dark noise, 50 measurements for the target and …). 

These individual spectra were later averaged to a mean spectrum. To compare the 

FieldSpec reflectances to data derived from the multispectral camera, spectra were 

resampled to the FWHM spectral band widths x spectral response of the miniMCA-6 

cameras using ATCOR4 (Richter 2010). 

4.4 Field Measurements of Plant Parameters 

4.4.1 Leaf Area Index 

LAI or rather foliage area index measurements were carried out with a LAI-2000 Plant 

Canopy Analyzer (LI-COR Inc. 1992, p.2-9) which measures the amount of foliage 

within a FOV (below canopy) compared to a fully unlimited FOV (above canopy). The 

optical sensors measure light attenuation within five concentric rings from the zenith 0-

13° to 18-28°, 32-43°, 47-58°, 61-74° (LI-COR Inc. 1992). The above-canopy sensor is 

typically set up in remote mode and measure the sky each 30 seconds. At the beginning 
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both sensors are connected to one data logging device, started simultaneously, and cali-

brated to ensure similar measurement values.  

Depending on the measurement environment, parts of the FOV may be masked by use 

of view caps put onto the sensors to avoid false readings. Measurements should be car-

ried out at cloudy conditions or without exposition to direct sun light to avoid underes-

timation of LAI. Measurements were recomputed to means per location for the respec-

tive amount of concentric rings required using the appropriate canopy model in the 

FV2000 processing software (LI-COR Biosciences). 

4.5 Chlorophyll Measurements  

4.5.1 Wet-chemical Analysis 

For the sensitivity analysis, the following plant physiological parameters were derived: 

dry weight, water content and Chl content. For Chl analysis, leaves were taken in-situ, 

wrapped into aluminum foil and transported to the laboratory in a cooling bag. From 

each leaf, standardized punch discs of known size were retrieved and of each leaf 200 

mg fresh matter mixed with 5 ml methanol. The solution was heated for 25 minutes 

within a 60°C water bath to solve Chla+b. Once solved, the liquid is put into a photome-

ter UV-160A (Shimadzu, Japan) to estimate Chl content by relating absorption at λ = 

665 nm and λ = 650 nm. Chl content [mg/g] was then calculated as follows: 

௧௢௧௔௟݈݄ܥ  ൌ 	
ܪܱ݁ܯ ሺܣ଺଺ହ ௡௠ ∗ 4ሻ ൅ ሺܣ଺଺଴ ௡௠ ∗ 23.5ሻ

௙௥௘௦௛௠௔௧௧௘௥ݐ݄݃݅݁ݓ
 (4.1) 

With: 
MeOH:  methanol content [mg] 
A:   absorption at specific wavelength 

4.5.2 Chlorophyll Meter SPAD-502 

The SPAD-502 () is a relative chlorophyll meter developed by Konica Minolta (Konica 

Minolta Sensing Inc. 2009). It has been used as a comparative measurement device to 

laboratory wet-chemical analysis. Two LEDs emit light in the red (650 nm) and NIR 

(940 nm) and of the incoming transmitted light, their ratio is being calculated as an in-

dicator of chlorophyll content (eq. 4.2). Data in this study were not calibrated any fur-

ther. 
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 M = log [t940 * tv,650/t650*tv,940] (4.2) 

Where tnm is the transmission of light through a leaf at that wavelength, and tv,nm is the 

control light beam stored as DN (Markwell et al. 1995). 

 

Figure 4.14 The SPAD-502 
chlorophyll meter 

4.6 GPS Measurements 

For georeferencing ground control points and sampling sites, two types of GPS were 

used: a differential Trimble GPS, and in some cases hand-held Garmin GPS, both using 

the GPS satellites.  

The Trimble GPS GeoXT is part of the GeoExplorer 2008 Series and comes with a bea-

con and a GPS antenna. The ArcPad-based hand-held receiver is connected to the bea-

con via LAN or Bluetooth and is ideally receiving signals from an external correction 

source (radio). If no external emitting station is available, post-processing differential 

correction in the office was carried out by replicating source signals with measurement 

times. The GPS antenna was generally worn with a pole on a backpack with a known 

height difference. Generally, 50 to 200 measurements per location were averaged to one 

position by trading off accuracy versus number of measurements (Trimble Navigation 

Limited 2008). Using EVEREST multipath rejection technology, sub-metre accuracy 

may be retrieved. 

For orientation purposes and navigation to sampling sites, hand-held Garmin 60CSx 

GPS with an accuracy of up to a couple of metres were used (Garmin Ltd. 2007). All 

measurements were made in WGS84 coordinates. As in this work no photogrammetric 
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objectives with highest spatial accuracy were neither aspired or required, the GPS set-

ups with their rather rough geocoding capabilities within several decimeters (Trimble) 

to a couple of meters (Garmin) were adequate for georeferencing aerial image mosaics.  

  



 

 

5 Radiometric and Photogrammetric Preprocessing of 

Aerial Image Data 

The last chapter gave an overview over UAS sensors as well as spectral data sensors 

used for this work. Following camera calibration, time series of aerial imagery require 

the correction of radiometric differences in illumination and atmospheric conditions. 

Common preprocessing steps necessary for format conversion from raw to other DIP 

formats, radiometric calibration and correction of atmospheric effects used in this study 

are presented. Subsequent to the radiometry issues, ways forward for georeferencing 

and (ortho-)mosaicing of aerial images will be given.  

5.1 Systematic Camera Errors 

Common camera error sources which have been tackled in this context will be described 

focusing on the UAS sensors used. As a complete survey of all error sources surround-

ing aerial cameras is out of scope in this context, the reader is referred to photogram-

metric literature for further reference (Kraus 1996; Mikhail et al. 2001; Kraus 2004, 

Aber et al. 2010). 

Kelcey and Lucieer (2012) have in detail described the radiometric characteristics and 

error sources with respect to the MiniMCA-6 and described ways forward in correcting 

the respective sensor errors. The following sections documents how the MiniMCA-6 

and Nikon DSLR data were calibrated and corrected for further processing and analysis 

for this study. 

5.1.1 Camera Interior Orientation 

Ideally, a photograph is a centrally projected image of an object. The interior orientation 

is the internal geometry of a camera at image capture (Figure 5.1), and is commonly 

described by the principal point (PP), the focal length f or camera constant c, if any, 

fiducial marks, originating in the fiducial centre (FC) and lens distortion parameters. Its 

projection centre is supposed to lie in the distance c (or focal length f) in front of the 

principal point on the image or focal plane (Mikhail et al. 2001; ERDAS Inc. 2010). 
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Figure 5.1 Interior orientation parameters (modified from Mikhail et al. 2001, p.21) 

When image coordinates are shifted to the principal point (x- x0, y – y0, -f), the coordi-

nates retrieved are the image space coordinates or sensor coordinates, generally given in 

µm or mm, and describe projected positions inside the camera. These are to be related to 

the object space or ground coordinate system, describing the regional coverage of an 

aerial photograph on the ground. They are Cartesian systems and may be latitude, longi-

tude, height-based or datum-based (Mikhail et al. 2001, ERDAS Inc. 2010).  

5.1.2 Lens Distortion 

Camera lenses are prone to various lens distortions. Ideally, the central ray in Figure 5.2 

shows the same angle between object point | optical axis and image point | perspective 

centre. In reality, modern lenses mostly show a symmetric quadratic radial distortion 

around the optical axis and the mechanical image size deviates from the optical image 

size. This leads to mapping of straight lines in nature as curved lines in the image  

(Kraus 2004, p. 48, ERDAS Inc. 2010), the radial distortion Δr.  

ݎ∆  ൌ ݎ െ ݂ ݊ܽݐ (5.1) ߙ

With: 
r: radial distortion 
f: focal length 
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Figure 5.2 Radial Δρ and tangential lens distortion ΔP. Image projection point is or-
thogonal to main autocollimation beam (AB) (mod. from Kraus 2004, p. 49). 

Depending on the lens and its focal length (Figure 5.3), several lens distortion may be 

found: 

  

Figure 5.3 Lens distortion types: original pattern (left) pincushion distortion (middle), 
barrel distortion (right) 

These are:  

 pincushion distortion: magnification increases with increasing distance from the 

image centre, i.e. straight lines bend towards the lens centre/image centre, posi-

tive distortion parameters are found; or  

 barrel distortion: magnification is highest in the image centre, i.e. straight lines 

bend away from the image centre, negative distortion parameters are found, or  

 moustache distortion: a mixture of barrel and pincushion distortion.  
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Barrel distortion generally occurs at the wide angle ranges, and pincushion at longer 

focal lengths. 

Deviation resulting from lens centering errors additionally lead to both tangential distor-

tion and asymmetric radial distortion which in modern lenses usually is of a magnitude 

smaller than the radial distortion (Kraus 2004). Lens distortion may be corrected by 

camera calibration including the definition of  

 the three camera coordinates x0, y0 (image centre coordinates in x and y) and 

c (image z or focal length) of the sensor,  

 the radial distortion Δr, and 

 the tangential or asymmetrical distortion P1, P2 (Kraus 2004, p. 462). 

A commonly used correction method is based on the Brown-Conrady model (Conrady 

1919, Brown 1966).  It is based on the so called ‘plumb-line-calibration’ indicating that 

straight lines in reality should be imaged as straight lines in images (Brown 1971). To 

derive the distortion parameters a multiple-view approach is used where several images 

are taken of a calibration target and resulting multiple point correspondences are then 

used to estimate distortion.  

For visualization purposes, lens distortion was retrieved with Agisoft Lens v. 0.4.1 

(Agisoft LLC 2013) using a pinhole model for lens calibration based on Brown’s distor-

tion model (Brown 1966), and specifying the transformation parameters in pixel coordi-

nates in the image frame. Here X, Y and Z are the local camera coordinates with Z 

pointing towards the viewer (focal length). The image origin lies in the top left pixel 

centre. Image coordinates may then be calculated as follows:  

 x = X/Z  (5.2)

 y = Y/Z  (5.3)

With: 
X, Y, Z: local camera coordinates (origin upper left centre of pixel, Z towards viewing 

direction) 
x:  the x-value normalized to viewing direction axis, as projected by an ideal pin-

hole camera 
y:  the y-value normalized to viewing direction axis, , as projected by an ideal pin-

hole camera 
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Radial distortion Δr is then retrieved by: 

ݎ߂  ൌ ²ݎ ൌ ඥሺݔଶ ൅ ଶሻ (5.4)ݕ

The projected coordinates in x- and y-direction are determined by eq. 5.5-6. The first 

part accounts for radial, the second part for tangential distortion. 

ᇱݔ  ൌ ሺ1ݔ ൅ ݇ଵ²ݎ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ ൅ ଶܲ ሺݎଶ ൅ ଶሻݔ2 ൅ 1 ଵܲ(5.5) ݕݔ

ᇱݕ  ൌ ሺ1ݕ ൅ ݇ଵݎଶ ൅ ݇ଶݎସ ൅ ݇ଷݎ଺ሻ ൅ ଵܲ ሺݎଶ ൅ ଶሻݕ2 ൅ 1 ଶܲ(5.6) ݕݔ

With: 

ki:  radial distortion coefficients 
Pi:  tangential distortion coefficients 

In addition, transversal distortion is accounted for by 

 u = cx + x’fx + y’skew  (5.7)

 v = cy+ y’fy (5.8)

With: 

u,v: projected image point coordinates/principal point, distortion centre (pixels) 
cx:  principal point coordinate x 
cy:   principal point coordinate y 
x’:   projected image coordinate in x-direction 
y’:   projected image coordinate in y-direction 
fx:   focal length in x 
fy:   focal length in y 
skew:  skew coefficient between x- and y-axis 
 
Distortion parameters were estimated from screenshots of a checkerboard pattern 
(Figure 5.4) and are summarized in Table 5.1, Figure 5.5 and Table 5.2.  

   

Figure 5.4 Calibration checkerboard pattern (left) and screenshot with DSLR for esti-
mating lens distortion 
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The lens distortion parameters may then be fed into the Structure from Motion (SfM) 

software (chapter 5.3.4) as preliminary values for photo alignment.  

As in this study, flight altitudes were less than ~150 m above ground, no corrections for 

atmospheric refraction were carried out. And as only Cartesian WGS84 coordinates 

were applied no correction for Earth curvature had to be applied to the image coordi-

nates. These corrections may, however, easily be integrated into the triangulation proce-

dure (Mikhail et al. 2001). 
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Table 5.1 Lens Distortion Parameters for Nikon D3100 Lens 

Lens F [mm] Cx Cy K1 K2 K3 P1 P2 Fx Fy 

AF-S 
NIKKOR 
10-24mm 

10 (fixed) 2304.71 1534.8 0.00822958 -0.0477388 0.0213876 -0.000266117 -0.000463729 2045.34 2045.76 

 

 

Figure 5.5 Radial and tangential distortion for Nikon D3100 lens used with 10 mm focal length 
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Table 5.2 Lens Distortion Parameters for Tetracam  MiniMCA-6 cameras with filters 

Band fx fy cx cy skew k1 k2 P1 P2 

M (570 nm) 1986.17 1984.67 658.171 458.097 10.6111 -0.73393 12.0512 -0.00994079 0.00421855 

1 (670 nm) 1897.43 1899.29 637.972 535.796 8.9840 -0.167045 0.420227 -0.00411402 0.00337485 

2 (800 nm) 1982.35 1982.19 626.467 515.989 12.0740 -0.273991 1.62724 -0.00533414 0.00283517 

3 (700 nm) 1961.66 1962.39 661.165 536.154 10.8274 -0.340178 4.18424 -0.00475422 0.00377564 

4 (530 nm) 1954.36 1949.36 642.888 532.706 13.9461 -0.30112 2.54061 -0.00782972 0.000863469 

5 (550 nm) 1883.01 1883.59 627.822 531.12 8.61918 -0.169352 1.12574 -0.00404646 0.00149796 
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5.1.3 Vignetting Correction 

The MiniMCA-6 and, to a lesser extent, the Nikon DSLR display a radial greyvalue 

drop-off towards the image corners. To correct for this vignetting effect, several images 

of homogeneous white surfaces were taken for each respective filter combination. In 

this study, a white reference panel, a white wall or white paper had been photographed.  

After averaging of several photographs, the maximum DN value was then used to de-

fine a mean per-pixel multiplicative corrections mask in accordance to equation (5.9).  

 
ఒ;௜;௝ܨܥܸ ൌ

ܦ ఒܰ,௠௔௫

ܦ ఒܰ;௜;௝
 (5.9)

With: 
VCF:  vignetting correction factor 
λ:   wavelength/filter subscript 
i; j:  pixel subscript for columns and rows 

Figure 5.6 shows example vignetting mask generated for the Nikon DSLR. 

 

Figure 5.6 Nikon D3100 vignetting correction masks for RGB (left to right) 

5.1.4 Correction of Systematic Camera Errors for MiniMCA-6Data 

Kelcey and Lucieer (2012) have in detail described the radiometric characteristics and 

error sources of the MiniMCA-6 and described ways forward in correcting the respec-

tive sensor errors. The following sections document correction procedures required for 

the MiniMCA-6 only. 

5.1.4.1 Band Alignment 

The camera location on the lens plate introduces displacements of the individual band 

images in relation to the master camera. The camera was originally shipped with a glob-

al alignment file consisting of x- and y-shifts, rotation and scaling values which may  



5 Radiometric and Photogrammetric Preprocessing of Aerial Image Data  84 

 

further be adapted for flight altitude using a Field of View Optical Calucator within the 

PixelWrench software. However, any handling of the camera, vibrations during the 

UAS flights and take-off and landings as well as changes of filters and focussing lead to 

fine alterations of this predefined camera alignments parameters. As a consequence, the 

band images do not match up within sub-pixel accuracy introducing a pixel-shift within 

the multispectral imagery (Figure 5.7). 

 

Figure 5.7 Multispectral image with misaligned bands after use of global alignment pa-
rameters showing colour halos (left) and corrected band alignment (right) 

Therefore, in practice, the band alignment was modified for each flight by searching for 

features possibly recognizable in all bands at the corner of the images to estimate rota-

tion and scaling followed by a shifting of pixels in x- and y-directions in relation to the 

master scene (example given in Table 5.3).  

Table 5.3 Example camera alignment values 

Camera X-Shift Y-Shift Rotation Scaling 

Master 0 0 0.00 1.0000 

Slave 1 -5 -5 0.10 1.0078 

Slave 2 -1 -3 0.20 1.0008 

Slave 3 -2 -5 -0.15 1.0026 

Slave 4 -5 -6 0.10 1.0079 

Slave 5 1 -3 0.00 0.9962 
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5.1.4.2 Data Conversion of 10-bit Data and Exposure Corrections 

The MiniMCA-6 stores the individual camera images as either real 8-bit raw data or 

when 10-bit resolution is chosen, as a combination of three 8-bit image planes. Thus, 

after the band alignment, band images have to be converted to 10-bit radiometric resolu-

tion by multiplying the image planes as follows: 

 
DNଵ଴ୠ୧୲ ൌ 	DN୥୰ୣୣ୬ ∗ 4 ൅ ሺDN୥୰ୣୣ୬ െ DNୠ୪୳ୣሻ (5.10)

Furthermore, respective relative exposure changes in relation to the master camera were 

corrected by introducing a correction factor (eq. 5.11).  

ܦ  ఒܰ ൌ ܦ ଵܰ଴௕௜௧ ∗
1

ఒܶ
∗

1
ఒܴܯ

 (5.11)

With: 
c:   correction factor [%] 
T:   filter transmissivity (0-1) 
MR: monochrome response (0-1)  
λ:   wavelength subscript 

Similarly, correction factors for filter transmissivity and spectral sensor response need 

to be included (Table 5.4). 

Table 5.4 Sensor and Filter Correction 

Wavelength 
[nm] 
 

Sensor response 
efficiency 
 (SR) 

SR  
correction 
factor 

Filter  
transmission 
(FT) 

FT 
correction 
factor 

Total 
correction 
factor 

530 0.56 1.80 0.63 1.58 2.83

550 0.62 1.61 0.54 1.86 2.99

570 0.68 1.48 0.66 1.52 2.24

670 0.90 1.11 0.60 1.67 1.86

700 0.93 1.08 0.68 1.47 1.59

750 0.99 1.01 0.68 1.48 1.49

760 0.99 1.01 0.59 1.69 1.71

780 0.99 1.01 0.61 1.63 1.65

800 0.96 1.04 0.56 1.79 1.86

900 0.71 1.41 0.69 1.45 2.04

 

The latter were only corrected when mere DN values were being analysed or in case of 

atmospheric correction. When an empirical line correction method based on reference 
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panels of known reflectance was applied, these offsets and gains were adapted within 

the regression model.  

5.1.4.3 Lens Distortion Estimation from Structure from Motion Software 

Ideally, lens distortion correction is executed first (see chapter 5.1.2). However, when 

image mosaics are built, lens distortion correction parameters are estimated from multi-

ple views of aerial imagery prior to point cloud modeling in the respective Structure 

from Motion or photogrammetrical software (i.e. Agisoft). At the beginning, estimates 

of focal lengths, location of image principal point and radial distortion parameters for 

the master band may be put in. By aligning image pairs, the camera calibration is then 

estimated for the master channel (Figure 5.8). 

 

Figure 5.8 Lens calibration parameters retrieved for the MiniMCA-6: camera focal 
length in x- and y-direction (fx, fy), principal point on image plane (cx, cy), followed by 
radial distortion as retrieved by Agisoft software 

From an operational point of view, this presents also a more accurate procedural method 

as the camera has been built to take photographs from greater heights and focus is gen-

erally set to infinity. This renders close-up image acquisition of calibration targets for 

lens distortion correction software difficult.  

5.1.4.4 Noise 

The MiniMCA-6 dark offset behavior has been analyzed in detail by Kelcey and 

Lucieer (2012) and three types of noise were found: (1) a global checkered pattern, (2) 

horizontally striped noise and (3) periodic noise, occurring with varying contribution in 

each band. 

(1) Global checkered pattern: a pseudo-texture is introduced by a bimodal alternating 

distribution of noise state within a band. Once bands are composed to a multispec-

tral image, the noise texture may produce a checkerboard pattern across the image 

adding with 0-40 DN variations. 

(2) Horizontally striped noise: its source remains unknown and the authors found a DN 

variation of 0-32 DNs. This noise structure may be eliminated by digital image pro-

cessing, i.e. by Fourier analysis and transformations (Oppenheim and Schafer 

1975). 
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(3) Periodic noise introduced by the camera’s progressive shutter results in a brighter 

horizontal strip (0-30 DN) whose location moves with raising exposure times 

(Kelcey and Lucieer 2012, p. 1473-1479).  

Overall averaged noise was found to rise from minimum 5-6 (+/- 1) DN to a maximum 

of 12-13 (+/- 3-4) DN  with exposure lengths from to 1000 µsec to 20000 µsec.  

As image acquisition in this study generally was carried out during peak solar irradiance 

and images during orthophoto mosaicing were resampled to averaged resolutions, and 

statistical analysis were based on regional areas of interest (AOI), noise was not correct-

ed. Finally, for each location several images were acquired with the UAS and best im-

ages selected for further processing. 

5.1.4.5 Vignetting Correction 

As Kelcey and Lucieer (2012) have illustrated, the radial DN fall-off from the centre 

becomes smoother and also lessens with longer exposure times, images for vignetting 

correction masks were taken at midday during sunny conditions to obtain similar illu-

mination conditions as for flight campaigns. For each filter set, several images were 

taken and averaged to avoid random noise (Figure 5.9).  

Band 570 nm (Master)  Band 670 nm (Slave 1)  Band 900 nm (Slave 2) 

   

Band 700 nm (Slave 3)  Band 530 nm (Slave 4)  Band 550 nm (Slave 5)

   

Figure 5.9 Vignetting with dust particles visible for the MiniMCA-6 lenses with respec-
tive filter 
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The highest radial drop-off was found for camera slave 2 (550 nm ) and slave 4 (530 

nm) and the smallest vignetting effect was obtained for the master camera (570 nm). 

Also the radial drop-off is not evenly distributed across the image. Vignetting was then 

corrected by the formula given in eq. 5.9 for each band respectively. Vignetting correc-

tion for a maize scene is illustrated in Figure 5.10. 

  

Figure 5.10 False colour composite (R: 900 nm, G: 570 nm, B: 550 nm) of a maize field 
with vignetting (left) and corrected image (right) 

In practice, lens calibration was carried out within the SfM software and noise correc-

tion during image processing if required. Figure 5.11 summarizes the multispectral data 

preparation prior to radiometric/atmospheric processing or analysis. The processing 

steps from 8bit RGB images to layerstacked images were batch-processed within 

Matlab (MathWorks®) and ERDAS Imagine (Intergraph Corporation).  
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Figure 5.11 Pre-processing flowchart 
for Mini-MCA6 data: from raw single 
images to multiband images 
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5.2 Radiometric Correction of Atmospheric Effects 

5.2.1 The radiation paths between solar irradiance, atmosphere and at-sensor 

radiance 

Any image taken from the air is affected by the air mass and its radiative, absorbing and 

scattering processes (Figure 5.12). When aerial images of multiple times are being eval-

uated, images need to be either corrected or calibrated with respect to atmospheric ef-

fects. The following gives a summary of the atmospheric-target-sensor matter interac-

tions described in detail by Hill and Sturm (1991), Jensen (2007), and Richards (2013). 

 

Figure 5.12 Radiance paths from sun to sensor (E0: solar irradiance, Ed: diffuse sky 

irradiance, θ: sun zenith angle, τθ0: atmospheric transmittance, θv: exit angle towards 

sensor, LP: path radiance, LT target radiance/reflectance, LS total at-sensor radiance, 

mod. from Jensen 2007, p. 59) 

The spectral solar irradiance for any given ground area is: 

ఒ,ீܧ  ൌ ׬	 ൫ܧை,ఒ߬ఏ೚ܿߠݏ݋௢ ൅ ߣ∆ௗ,ఒ൯ܧ
ఒଶ
ఒଵ ሾܹ ݉ିଶሿ  (5.12)
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With: 
 ఒ:  The total solar irradiance at the earth’s surface per wavelength λ,ீܧ
 ை,ఒ:  The total solar irradiance at the top of the atmosphere at wavelength λܧ
߬ఏ೚:    atmospheric transmittance at the solar zenith angle ߠ௢ 
 ௗ,ఒ:  spectral diffuse sky irradianceܧ

The energy emitted by the sun on its ways towards the target pixel is diminuished by 

particle scattering through atmospheric molecules (τR) and aerosols (τA) and by gaseous 

absorption (τG, e.g. O3, CO2, water vapour): 

 ߬ ൌ ߬ோ ൅ ߬஺ ൅ ߬ீ  (5.13)  

 

Molecular Rayleigh scattering for a standard atmosphere depends on the wavelength λ 

and may be approached by (Hill and Sturm 1991): 

 ߬ோ ൌ 0.00879 * ିߣସ.଴ଽ (5.14)  

 

Aerosol optical thickness is defined by the so-called Ångstrom relation where the expo-

nent describes the aerosol size and the variable β the aerosol content of the atmosphere: 

 ߬Å ൌ β * ߣሺି௡ሻ (5.12) 

With: 
λ: wavelength 
n:  Ångstrom exponent 
β:  aerosol content 

Gaseous absorption happens in specific wavelength-dependent absorption bands and is 

except for water vapour relatively constant and may be inferred from look-up tables. 

Assuming the target to be an Lambertian diffuse reflector, the radiance emitted from a 

target area then is: 

்ܮ  ൌ
ଵ

గ
׬ ௢ߠݏ݋ை,ఒ߬ఏ೚ܿܧ߬ఏ೅൫	ఒߩ ൅ ߣ∆ௗ,ఒ൯ܧ
ఒଶ
ఒଵ ሾܹ ݉ିଶିݎݏଵሿ   (5.13)  

With: 
LT:  radiance from target area 
ρλ:   reflectance at given wavelength λ 
߬ఏ೅:  atmospheric transmittane from target towards sensor at angle ்ߠ 
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The sensor additionally senses radiance from the atmosphere (diffuse irradiance and 

scattering processes), the path radiance LP and from multiple reflections of neighbour-

ing pixels Lenv. Thus the total radiance recorded is: 

ௌܮ  ൌ ்ܮ ൅	ܮ௉ ൅ ௘௡௩ܮ ሾܹ ݉ିଶିݎݏଵሿ  (5.14)  

Ideally, for each spectral band, there is a known relationship between radiation and 

greyvalue:  

 
ௌܮ ൌ ܿ଴ ൅ ܿଵDN ሾܹ ݉ିଶିݎݏଵሿ  with  

ܿଵ ൌ 	
ሺ௅ౣ౗౮ష	௅೘೔೙ሻ

஽ே೘ೌೣ
ሾܹ ݉ିଶିݎݏଵሿ  

(5.15)  

And the target reflectance then is (Hill and Sturm 1991): 

்ߩ  ൌ 	
ሼ݀ଶሺܿ଴	ߨ ൅ ܿଵDNሻ െ ୔ܮ

௚ܧ߬
െ ୬୴ୣߩ  (5.16)  

With: 
Eg:   global irradiance at ground level 
d:   correction factor for sun-to-earth distance  

Thus for precise correction of atmospheric effects, according to Richter (2010, p. 16), 

the user needs 

1. to know the sensor calibration, and 

2. to estimate the key atmospheric parameters such as aerosol type, aerosol optical 

thickness (AOT), visibility, and water vapour. 

5.2.2 Topographic effects 

Radiation transfer so far described radiance paths for flat surfaces. Topography adds to 

illumination differences as irradiance is directly proportional to the cosine of the angle 

of incoming solar irradiance in relation to the normal of the local surface (Hill et al. 

1995, p. 145).  

 cos ߛ ൌ cos 	଴ߠ cos ௡ߠ ൅ sin ଴ߠ sin ௡ߠ cosሺ߶௡ െ ߶଴ ሻ 	 (5.17)  

With 
θ0: solar zenith angle 
θn: zenith angle of normal to surface 
ϕ0: solar azimuth angle 
ϕn: topographic aspect angle 
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Hill et al. (1995) have therefore incorporated the correction of topographic effects into 

the atmospheric correction based on the 5S code  - Simulation of the Satellite Signal in 

the Solar Spectrum – introduced by Tanré et al. (1990).   

5.2.3 Bidirectional Reflectance  

Viewing and illumination geometry further affect radiation paths (see also chapter 

3.2.1). An aerial photograph is a central projection of the target area and depending on 

sun azimuth and sun zenith, each object in relation to the camera is detected by different 

viewing angles, and depending on sun-object-sensor geometry introduces different 

shading (Figure 5.13). BDR effects for differenct viewing geometries are analysed in 

more detail in chapter 6. 

Figure 5.13 Bidirectional illumination 
differences for a tree stand with nadir 
viewing (Source: Holopainen and 
Wang 1998, p. 682) 

 

The correction of bidirectional reflectance differences for UAS aerial imagery is possi-

ble when high resolution digital terrain models are available and sensor/sun positions at 

image acquisition are known. For flat terrain, a simple nadir normalization may be suf-

ficient (Richter 2010).  

5.2.4 Atmospheric Correction Using ATCOR-4 

In this study, atmospheric correction of multispectral data was carried out using 

ATCOR-4 (v. 5.1), developed by Richter (2010), as to that time no other software was 

readily available. The version was built for airborne scanner instruments with FOV be-

tween 60°-90°. The MiniMCA-6 has a FOV of ~ 43° in x-direction, hence the value was 

changed in the sensor setup.  
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The underlying monochromatic atmospheric database uses the MODTRAN-4 radiative 

transfer code (Berk et al. 1998, 2003, Richter 2010) which requires resampling for each 

sensor and filter using Gaussian fitting curves.  

For a given image acquisition time, location and sensor position in relation to the sun, 

ATCOR-4 predicts the radiation path through the atmosphere. As descriptors for the 

atmosphere, visibility, optical thickness and water vapour are used. 

The visibility is defined by “the maximum horizontal distance a human eye can recog-

nize a dark object against a bright sky” (Richter 2010, 13). 

 Vis ൌ
1
β
ln

1
0.02

ൌ
3.912
β

 (5.18) 

With:  
β: extinction coefficient at 550 nm 

Where available, visibility measures [km] and water vapour content [g/cm²] were de-

rived from meteorological records or MODIS data or based on season. A plausibility 

check for the visibility was obtained by fitting estimated reflectances to that of reference 

targets. 

The aerosol type was chosen by selecting a suitable atmosphere (i.e. continental 

midlatitude summer rural or urban) or by inflight calibration, an interactive estimation 

from reference targets of known reflectances present in the scene. The veneer plywood 

panels are 50 cm x 50 cm large and were painted with mat acrylic colours from black to 

white (Figure 5.14). 

  

Figure 5.14 Reference targets (left) and respective reflectance measurement with 
spectroradiometer (right) 
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Their reflectance was measured with the ASD FieldSpec both in laboratory and, where 

possible, in the field during image acquisition. Spectral calibration was then carried out 

by using a dark and bright reference target: 

௕௥௜௚௛௧ܮ  ൌ ܿ଴ ൅ ܿଵDNୠ୰୧୥୦୲ and ௗ௔௥௞ܮ ൌ ܿ଴ ൅ ܿଵDNୢୟ୰୩				 (5.19)

 

Then 

 ܿଵ ൌ 	
Lୠ୰୧୥୦୲ െ Lୢୟ୰୩

DNୠ୰୧୥୦୲ െ DNୢୟ୰୩
 (5.20)

And 

 ܿ଴ ൌ ௕௥௜௚௛௧ܮ െ ܿଵDNୠ୰୧୥୦୲  (5.21)

  

ATCOR-4 also corrects for bidirectional reflectance differences across track illumina-

tion correction where the pixel greyvalue is multiplied with a correction factor of the 

inverted function of the scan angle (Richter 2010). 

5.2.5 Empirical Line Method for Atmospheric Correction and Calibration 

Due to lack of meteorological data, also data-driven methods for atmospheric correction 

were applied in this context. A widely applied approach is the so-called empirical line 

calibration (ELC), where the radiance detected by the sensor is assumed to be linearly 

correlated with the respective target reflectance ρ when solar irradiance is homogeneous 

and for flat terrain  (Roberts et al. 1985; Smith and Milton 1999; Karpouzli and Malthus 

2003; Gege et al. 2009; Richards 2013). 

At least two or more targets of known reflectance are selected in the images. As refer-

ence targets, pseudo-invariant features ranging from low to high albedo are used. These 

may be obtained from targets like concrete, bare soil/substrate, dark vegetation or water, 

or reference panels are laid out in the image area prior to the overflight. Reference 

reflectances are either measured in the field or under laboratory conditions. In this 

study, generally three to four grey scale reference panels (Figure 5.14) were used, as 

more than the minimum required two targets reduce errors in the empirical line compu-

tation (Karpouzli and Malthus 2003; Baugh and Groeneveld 2007). 

The image DNs are band-wise linearly regressed to the target’s reflectances to obtain 

the empirical line (Figure 5.15), the EL offset thereby accounts for atmospheric scatter-
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ing processes involved in the path radiance Lp (Schott et al. 1988), the multiplicative 

term incorporates all other atmospheric processes. The calibration is then applied to all 

image pixels at the specific wavelength. Despite the time and effort spent on field refer-

ence reflectance measurements, the ELC method results in comparable, noise-reduced 

reflectances (Roberts et al. 1985). 

 

 

Figure 5.15 The empirical line calibration 

Figure 5.16 shows results from an empirical line calibration of an image taken of a 

vineyard. As vegetation generally ranges from 3-7% in the red wavelength spectrum to 

40%, maximum ~ 70% reflectance in nIR wavelengths, the aim was to enhance the DN 

distribution among the smaller reflectances values. Exposure settings were thus slightly 

extended, which then caused an overexposure of the white reference panel. As a result, 

in most cases only the three darker panels (Figure 5.14) were employed for empirical 

line calibration. The graphs in Figure 5.16 show the original in-situ measured 

reflectances (dashed line) and the resulting reflectances of the respective reference pan-

els after the ELC. Absolute differences in reflectance are listed in Table 5.5 and show a 

maximum of three percent of reflectance. The obtained errors are still well in range with 
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those found in the literature (Smith and Milton 1999; Karpouzli and Malthus 2003, 

Baugh and Groeneveld 2007). 

 

Figure 5.16 Absolute reflectance differences for reference panels after ELC 
 
Table 5.5 Absolute Δρ in percent of reference panels after ELC compared to in-situ 
measurements for given wavelength ρ 

ρ 
[nm] 

 

Lightgrey 
reference 

panel 

Darkgrey 
reference 

panel 

Black  
reference 

panel 

530 -0.020 -0.003 -0.009 

550 -0.025 -0.008 -0.009 

570 0.009 0.004 0.003 

670 0.030 0.017 0.007 

700 -0.001 -0.001 0.000 

900 -0.013 -0.008 -0.007 
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5.3 Geometric Processing  

Depending on the task, UAS images in this work were either used non-registered, i.e. as 

single frames of aerial photographs without linkage to a ground coordinate system, or 

when and where required, mosaiced to orthophotos by aerial triangulation based on 

bundle block adjustment. A description of the image space and ground coordinate sys-

tems, as well as a definition of interior orientation has been given in section 5.11, now 

the resection (definition of the position and orientation of a photo during image acquisi-

tion), and intersection (calculation of ground space coordinates from the rays of two or 

more overlapping photos) are explained which are combined in the bundle block ad-

justment. 

5.3.1 Exterior Orientation of Camera during Image Acquisition 

The exterior orientation describes the local position and the orientation of a cam-

era/photo during the image acquisition (Figure 5.17). This includes the position (Xo, Yo, 

Zo) of the perspective centre or camera station (O) in relation to the ground coordinate 

system (X, Y, Z) with Zo being the camera altitude above sea level or ground level. The 

angular orientation between image (x, y, z or -f) and ground coordinate system are de-

scribed by kappa (κ) – “rotation about the photographic z-axis”, phi (φ) – “rotation 

about the photographic y-axis”, and omega (ω) – “rotation about the photographic x-

axis” (ERDAS Inc. 2010, p.23). The photographic z-axis follows the focal length opti-

cal axis of the camera, and x’, y’, and z’ are parallel to the ground coordinate system 

(ERDAS Inc. 2010). 
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Figure 5.17 Exterior orientation (mod. from Intergraph Corporation 2013, p. 552) 

The quadrocopter drawing (Figure 5.17) illustrates the orientation of the UAS/camera 

during the image acquisition. Positions are given by the GPS coordinates. The roll angle 

is the rotation angle around the principal x-axis of the UAS in flight direction, pitch is 

the rotation angle around the y-axis (nodding movement), and yaw the rotation angle 

around the vertical z-axis (ERDAS Inc. 2010). 

The exterior orientation may thus be described as a bundle of rays’ position and orienta-

tion in relation to the ground coordinate system (Mikhail et al. 2001): 

  
 
 
 
       

    

    

    

      (5.22)  

With: 

x, y, z    image coordinates 

k:     scaling factor 

M:     3x3 rotation matrix of three sequential rotations  

X, Y, Z:   ground coordinates 

Xo, Yo, Zo:  coordinates of camera station 

The rotation matrix is derived as follows (ERDAS Inc. 2010 p. 25-28, Mikhail et al. 

2001, p. 91): 

The rotation matrix may be derived by “three sequential rotations: ω around the X-axis, 

φ about the once-rotated Y-axis, and κ about the twice-rotated Z-axis” (Mikhail et al. 

2001, p. 91). 
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(5.23)

Leading to the rotation matrix M 

ܯ  ൌ ఑ܯ ఝܯ ఠܯ  (5.24)

Being 

ܯ  ൌ	 ൥
cos߮	cos ߢ cos߱ sin ߢ ൅ sin߱ sin߮ cos ߢ sin߱ sin ߢ െ cos߱ sin߮ cos ߢ
െ cos߮ sin ߢ cos߱ cos ߢ െ sin߱ sin߮ sin ߢ sin߱ cos ߢ ൅ cos߱ sin߮ sin ߢ

sin߮ െ sin߱ cos߮ cos߱ cos߮
൩		 (5.25)

Or expressed by its elements 

ܯ  ൌ ൥
݉ଵଵ ݉ଵଶ ݉ଵଷ
݉ଶଵ ݉ଶଶ ݉ଶଷ
݉ଷଵ ݉ଷଶ ݉ଷଷ

൩ (5.26)

Each bundle therefore requires six parameters for exterior orientation: three positional 

and three orientations (Mikhail et al. 2001). 

5.3.2 Absolute Orientation of Camera during Image Acquisition 

Relatively oriented models may be mapped to the ground coordinate system by a seven 

parameter transformation including a scaling factor, three translations, and three rota-

tions (Mikhail et al. 2001). 

 Y = k M X +T (5.27)

With: 
Y:  vector of world coordinates 
k:  scale factor 
M:  rotation matrix from model space to world coordinate system 
X:  vector of model coordinates 
T:  Translation vector 
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5.3.3 Bundle Block Adjustment 

UAS flight campaigns are typically planned with an overlap of 60 % in x-direction and 

40 % in y-direction for the neighbouring stripe (Figure 5.18), the resulting images each 

consist of a bundle of rays converging at the perspective centre or principal point with a 

certain position and orientation in space.  

 

Figure 5.18 Flight plan geometry and bundle rays 

Bundle block adjustment is the computational optimization of simultaneously refining 

the 3D scene geometry from different viewpoints and its parameters of exterior orienta-

tion and simultaneously calibrating the camera and accounting for lens distortion (i.e. 

self-calibration). Each image consists of a bundle of rays. By comparison and finding of 

image pairs (the exterior orientation of cameras in space by tie-point matching and sim-

ultaneously intersecting rays of images, reprojection errors are minimized and image 

locations modeled  (Triggs et al. 1999; Mikhail et al. 2001). The whole process is based 

on the collinearity condition which assumes that the camera station, ground point and its 

corresponding image point location must lie along a straight line: 
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ݔ  െ 	଴ݔ ൌ െ݂	 ቈ
݉ଵଵሺܺ െ ܺ௢ሻ ൅ ݉ଵଶሺܻ െ ௢ܻሻ ൅ ݉ଵଷሺܼ െ ܼ௢ሻ

݉ଷଵሺܺ െ ܺ௢ሻ ൅ ݉ଷଶሺܻ െ ௢ܻሻ ൅ ݉ଷଷሺܼ െ ܼ௢ሻ
቉ (5.28)

 

ݔ  െ 	଴ݔ ൌ െ݂	 ቈ
݉ଶଵሺܺ െ ܺ௢ሻ ൅ ݉ଶଶሺܻ െ ௢ܻሻ ൅ ݉ଶଷሺܼ െ ܼ௢ሻ

݉ଷଵሺܺ െ ܺ௢ሻ ൅ ݉ଷଶሺܻ െ ௢ܻሻ ൅ ݉ଷଷሺܼ െ ܼ௢ሻ
቉ (5.29)

For each location on the ground one such set of equations is computed (Mikhail et al. 

2001; ERDAS Inc. 2010).  

The retrieved model then may be georeferenced for further accuracy by the use of 

ground control points. 

5.3.4 Structure from Motion Software for 3D Model Generation, Mosaicing of 

Orthophotos and Generating DEM 

In this study, Agisoft PhotoScan Professional has been used to calibrate and align the 

aerial photographs. As the 3D structure is being inferred from 2D aerial image sequenc-

es, the process is also called Structure from motion. Either image centre GPS coordi-

nates are fed into the software for a first alignment, or image pairs are retrieved solely 

by feature matching algorithms. First tie-points are searched that are found in corre-

spondence across the input photos, then by feature matching several thousand matching 

points are retrieved. With error minimization, the ground, image plane and camera 

model parameters are simultaneously modeled, thus solving exterior and interior orien-

tation and lens calibration in one modelling approach. The result is a 3D point cloud 

model (Figure 5.19) GCPs may then help to fix the model to the respective reference 

system. For multispectral images, computations are based on the user-defined master 

band (for MiniMCA-6 data the master camera equipped with the 570 nm filter) (Figure 

5.19).  
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Figure 5.19 Exam-
ple of a 3D point 
cloud model with 
stray points requir-
ing further editing 

The resulting 3D point cloud may then be edited before a dense point cloud is generat-

ed. The dense point cloud may also be filtered to obtain sharp or mild edges were depths 

are showing abrupt changes. The next processing step is the creation of a mesh model 

(triangulation) of the points and a maximum number face counts may be set. Following 

this, the triangles may be textured with image greyvalue resampling (Figure 5.20).  

Figure 5.20 Tex-
tured 3D model 
representation of a 
site and its image 
locations obtained 
with Agisoft 
PhotoScan Profes-
sional 
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Four resampling methods exist:  

1) mosaicing blends low frequency components of overlapping images, taking pic-

ture detail from high frequency components of the nearest single image; 

2) averaging weighs pixel by distance from centre and calculates a weighted aver-

age DN using bilinear interpolation; 

3) minimum DN of closest image or 

4) maximum DN of closest image is used (Ovod 2015).   

Finally, an orthophoto mosaic and DEM may be exported (Figure 5.21). The white are-

as within the model are holes, which have not been filled but may be interpolated.  

 

Figure 5.21 Orthophoto-mosaic and DEM retrieved by structure from motion software 

Figure 5.22 summarizes the pre-processing chain for the multispectral MiniMCA-6 data 

from raw data to orthophoto mosaics applied in this work. 
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Figure 5.22 Pre-processing chain applied to multispectral data 
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5.4 Discussion of Pre-processing Steps 

Band-to-band image alignment is supposed to be tackled by a calibration file which is 

ideally created after each filter change or camera focusing. Tetracam Inc. suggests to 

use objects at infinite distances. Another approach is to use a target pattern (provided 

for example, by the SfM software calibration tools) which should be photographed to 

compute lens calibration. The MiniMCA-6 is generally set to be focused for infinite 

objects, thus rendering focused image acquisition of close calibration patterns difficult. 

Alternatively, the Tetracam Inc. approach of iteratively solving for rotation/scaling and 

off-set was chosen for each image campaign. Other authors have programmed feature-

matching algorithms to tackle band alignment (Laliberte et al. 2011).  

ELC for correction of radiometric effects during image acquisition is widely used 

(Smith and Milton 1999; Baugh and Groeneveld 2007; Laliberte et al. 2011; Del Pozo et 

al. 2014) and has shown to retrieve reliable results as Figure 5.16 and Table 5.5 have 

shown. To account for non-linear radiometric effects atmospheric correction is required. 

ATCOR-4 has been developed for airborne scanner data, yet UAV images are central 

projections. So, correction of illumination geometry and BDRF are not strictly correct. 

However, errors remaining from lack of consideration of the central projection geome-

try, have shown to be of minor magnitude and have therefore been accepted for this 

study. Beside, DTM describing the terrain with required accuracy for that scale can only 

be retrieved from the UAV images themselves by e.g. SfM procedures (see the follow-

ing sections) which still need to be derived from the point cloud modeling. Ideally, this 

demands a future processing chain of a) correction and calibration of camera errors, b) 

model a point cloud by SfM techniques to obtain a DTM to feed into c) an atmospheric 

and topographic correction procedure incorporating camera attitudes and reference tar-

gets followed by d) dense point cloud modelling and orthomosaicing to reflectance im-

ages.    

 

 
  



 

 

6 Filter Wavelength Selection, Sensitivity Analysis and 

Scale Issues of the Multispectral Camera 

In this chapter, the sensitivity of the UAS-based multispectral remote sensing of vegeta-

tion parameters in relation to appropriate filter wavelengths and viewing and illumina-

tion geometries are scrutinized. Bidirectional reflectance measurements of maize, grass-

land and barley were randomly simulated varying different levels of LAI or Chla+b and 

other parameters, followed by wavelength selection algorithms to derive appropriate 

filter wavelengths. For the canopy reflectance simulations, the PROSAIL model has 

been selected (Feret et al. 2008; Jacquemoud et al. 2009). Additionally, bidirectional 

reflectance derived from the UAS were compared to modeled canopy reflectances, and  

common vegetation indices used in this thesis and in the literature were computed for 

the same canopy to get an indication of the BDR effects when using the multispectral 

data. BDR effects and other factors influencing the spectral signature of crop canopies 

have been described in detail in chapter 3. Finally, “atmospheric effects” for the low-

altitude UAS flights were investigated by recording multispectral images from different 

heights.  

6.1 The PROSAIL Canopy Reflectance Model 

For row-structured crops, recently a number of row structure reflectance models were 

developed or further adapted to gain further insight to BDR effects for inhomogeneous 

crop canopies of which only some are mentioned here: Yao et al. (2008) introduced a 

bi-directional gap probability model. Yan et al. 2012 (2012) showed that even more 

simple geometrical object models (GO models) treating the row crop as a function of 

leaves clumping may well be used to model BDR. Combinations of geometrical object 

models including radiative transfer within the canopy (GORT models) are applied (see 

Zhao et al. 2010 for a more detailed overview) treating row crops as geometric opaque 

rectangular solid objects, 3D computer simulation models such as the 3D radiosity-

graphics model (RGM) adapted by Qin and Gerstl (2000), and the hybrid geometric 

optical and radiative transfer row model based on SAIL developed by Zhao et al. 

(2010). Although row crops were analyzed, there were not, to the author’s knowledge, 

any publicly available adequate reflectance models available yet. The promising row 
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model of Zhao et al. (2010) which tends to assimilate the SAILH model with closing 

canopies is currently being inverted.  

Within row crops, the clumping of leaves along the rows, the soil influence and multiple 

scattering will contribute significantly to the reflected signal (Zhao et al. 2010, Yan et 

al. 2012), yet, here, row crops were studied when the canopy was already more or less 

homogenous.  

The aim of this experiment was to define sensitive filter wavelengths to the variation of 

plant biophysical and structural parameters such as Chla+b and LAI, and to estimate the 

impact of varying sun-sensor viewing geometries on the retrieved canopy reflectance 

and commonly used vegetation indices obtained from UAS-based multispectral images 

of a maize field. PROSAIL has been shown to be useful for designing and evaluating 

vegetation indices (Haboudane et al. 2002; Zarco-Tejada et al. 2004; Jacquemoud et al. 

2009).  

The PROSAIL simulation model was selected for this study. The model code is freely 

distributed and has been widely used in the remote sensing community resulting in an 

abundance of applications published in recent years (Jacquemoud et al. 2009; Barman et 

al. 2010; Thorp et al. 2012; Tripathi et al. 2012; Mobasheri and Fatemi 2013, a.o). The 

PROSAIL simulation model is a combination of PROSPECT leaf optical properties 

model and SAIL, a canopy bidirectional reflectance model (Jacquemoud 1993, Feret et 

al. 2008; Jacquemoud et al. 2009). PROSPECT assumes the leaf as a set of absorbing 

plates with isotropic scattering, and requires input about the leaf structure (leaf structure 

parameter N: number of compact layers and air/cell boundaries inside the mesophyll) 

and leaf biochemical contents (Table 6.1) to model directional-hemispherical reflec-

tance and transmittance. (Jacquemoud et al. 2009).  

SAIL (Scattering by Arbitrary Inclined Leaves) is a radiative transfer model for canopy 

reflectance. SAIL assumes a horizontal and homogenous infinite canopy layer 

(Lambertian reflector) with uniform leaf optical properties (Verhoef 1984, Jacquemoud 

1993). Canopy morphology is described by leaf area index, discretized leaf inclination 

distribution function (LIDF) describing leaf inclination and azimuth, and layer thickness 

(Verhoef 1984). Other parameters used are leaf reflectance and transmission, back-

ground/soil reflectance and fraction of incident diffuse/direct solar radiation, sun and 

sensor zenith, and azimuth between these two (Verhoef 1984, Jacquemoud 1993). In 

this study, SAIL5B was used which additionally incorporates a hotspot parameter as a 

function of leaf size and canopy height.  
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The PROSAIL_5B version for Matlab was selected for this work and couples the SAIL 

and PROSPECT models for simulations of spectral canopy hemispherical and direc-

tional reflectance in forward and inverse directions (Figure 6.1).  

 

Table 6.1 Required input parameters for coupled PROSAIL model 

Parameter Symbol Unit 

SAIL   

Leaf area index LAI - 

Leaf inclination distribution function LIDF - 

Hot spot parameters sL - 

Soil reflectance factor ρsoil - 

Ratio of diffuse to total incident radiation SKYL - 

Solar zenith angle θsolar  ° 

Sensor/observer zenith angle θsensor ° 

Relative azimuth between sun and sensor or observer  Φsolar-sensor 
° 

PROSPECT   

Leaf structure parameter N - 

Chlorophyll a+b content Chla+b µg cm-2 

Carotenoid C µg cm-2 

Equivalent water thickness Cw cm 

Dry matter content Cm g cm-2 

Brown pigment content Cbp - 
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Figure 6.1 PROSAIL coupled model: black arrows indicate forward modelling mode, 
grey arrows indicate inverse modelling mode (mod. from Jacquemoud et al. 2009) 
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6.2 Filter Wavelength Selection 

6.2.1 Introduction 

As has been described in chapter xxx, the MiniMCA-6 has a spectral monochromatic 

response in the VIR/nIR range between 400 nm to 1000 nm of the electro-magnetic 

spectrum. The objective was to select sensitive filter wavelengths to adequately retrieve 

differences of key plant parameters such as Chl, LAI, carotenoids, leaf water content, 

etc.. The variation of canopy reflectance spectra has been discussed in detail in chapter 

3. Several band selecting techniques have been introduced since the upcoming of 

hyperspectral remote sensing data. Prior to the millennium, the definition of optimal 

wavelengths has mostly been carried out by linking vegetation spectral (leaf- and cano-

py-level) to biochemical parameters by selecting appropriate band combinations for 

band indexing. 

Hansen and Schjoerring (2003) checked “broadband” (30 nm) and narrow-band (10 nm) 

combinations of normalized differenced vegetation indices within the range of 438nm to 

883 nm (1 nm-width) canopy spectrometer measurements of winter wheat to derive op-

timal wavelengths for the prediction of green biomass (GBM), LAI, Chl-concentration 

(Chlconc), Chl-density (Chldensity) leaf nitrogen concentration (Nconc), leaf nitrogen densi-

ty (Ndensity). The linear regression analysis between canopy reflectance and plant param-

eters for each wavelength obtained for winter crop canopies is illustrated in Figure 6.2. 

 

Figure 6.2 Coef-
ficient of deter-
mination (R²) for 
linear regression 
of canopy 
reflectances and 
plant parameters 
for the given 
wavelengths. 
Abbreviations: 
GBM: green 
biomass, 
Chlconc: Chla+b, 
N: leaf nitrogen 
conc: concentra-
tion (Source: 
Hansen and 
Schjoerring 2003, 
p.545) 
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Bands located within the red and red-edge region were mostly retrieved for NDVIs for 

GBM, LAI, Chldensity, and Ndensity.GBM and LAI also were successfully estimated by 

NDVIs with wavelengths around the red edge (690-760 nm) and green area (521-

565nm). For Chlconc and Nconc the blue and green or red bands were most effective. The 

authors additionally found that narrow bands outperformed the broadbands. 

Around the millennium, the multivariate calibration method based on bilinear partial 

least squares regression (PLS) found its way into the remote sensing community (van 

den Broek et al. 1996; Hansen and Schjoerring 2003; Udelhoven et al. 2003). Hansen 

and Schjoerring (2003) used it for the optimal wavelength detection. The method reduc-

es the high amount of measured collinear spectral variables to few non-correlated prin-

cipal components (PC). The authors found two PCs for the prediction of LAI and six for 

the prediction of GMB and Nconc, and PLS increased all R² values for these parameters. 

For leaf water and namely EWT, the MiniMCA-6 monochromatic response is not ideal, 

as leaf water content is best estimated by including bands located in the SWIR region of 

the electromagnetic spectrum and nIR wavelengths (Gao 1996; Ceccato et al. 2001; 

Ordonez et al. 2011; Mobasheri and Fatemi 2013). This is due to the fact, that reflec-

tance in the nIR is mainly influenced by internal structure and dry matter, yet, the SWIR 

is additionally influenced by the vegetation water content (Ceccato et al. 2001, Song et 

al. 2011). Mobasheri and Fatemi (2013) used the least square method of linear relation-

ships between EWT with the measured reflectance in different parts of the spectrum 

between 400 nm to 2500 nm. Highest R² values were found for the 1030 nm to 1380 nm 

region, although the peaks and depressions for the R² within the VIS/nIR region also 

may also be useful, and in the study potentially useful local maxima were found at 425 

nm (R² 0.223) and 750 nm (R² 0.284) and local minima of 686 nm (R² 0.056) and 979 

nm (R² 0.158) (Figure 6.3). 



6 Filter Wavelength Selection, Sensitivity Analysis and Scale Issues of the Multispectral Camera 113 

 

Figure 6.3 R² values of 
linear relationships be-
tween EWT and leaf 
reflectances values 
(Mobasheri and Fatemi 
2013, p.198) 

Song et al. (2011) used a PLS following a principal component analysis (PCA), to de-

termine wavelength combinations suitable for predicting biochemical parameters of Chl, 

nitrogen of paddy rice leaves. They found higher numbers of band combinations (215) 

to produce the largest coefficient of determination compared to two-band combinations, 

but that 4 wavelengths increased the coefficient of determination to 0.82 for the predic-

tion of nitrogen cultivation levels (552, 675, 705 and 776 nm).  

Among all the wavelength selection techniques, no single best method may be suggest-

ed as they all depend on training sample size, number of desirable components and 

spectral ranges used (Hansen and Schjoerring 2003; Song et al. 2011).  

In this work, the aim is to support suitable filter wavelengths prior to vegetation assess-

ment, possibly applicable to a range of biochemical parameter analyses.  

6.2.2 Spectra Simulations 

Again using the PROSAIL model, random hemispherical reflectances were simulated 

for grassland, barley and maize within plant parameter value ranges obtained by either 

measurements or found in the literature (Table 6.2). Within each run, 10000 reflectances 

were simulated within the given ranges. Brown pigment (Cbp) were uniformly set to 0, 

carotenoids to 10 µg/cm². A sun zenith angle of 45° was set and a clear sky was being 

simulated with a ratio of diffuse and direct radiation of 0.1 (SKYL) (Atzberger and 

Richter 2012).  
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Table 6.2: Range limits, and fixed values of input plant variables for different crops 
used for the PROSAIL model 

Input variable Unit Minimum Maximum Fixed Value 

Maize Schneider and Manakos 2003; Duan et al. 2014 

Chlorophyll content (Chla+b) µg/cm² 23 101 68 

Dry matter content (Cm) g/cm² 0.002 0.03 0.009 

Equivalent water thickness 
(Cw) 

g/cm² 0.008 0.045 0.016 

Leaf area index (LAI) m²/m² 0.1 6 4.379 

Leaf structure parameter (N) unitless 1 2 1.3 

Average leaf angle (angl) degrees 43 77 50 

Hot spot size (sL) mm-1 0.05 1 0.2 

Soil brightness parameter 
(ρsoil) 

unitless 0.5 1.5 1 

Grassland Dorigo et al. 2009, Darvishzadeh et al. 2011 

Chlorophyll content (Chla+b) µg/cm² 15 45 30 

Dry matter content (Cm) g/cm² 0.005 0.0135 0.009 

Equivalent water thickness 
(Cw) 

g/cm² 0.0188 0.0231 0.015 

Leaf area index (LAI) m²/m² 0.5 7 2 

Leaf structure parameter (N) unitless 1.5 1.9 1.3 

Average leaf angle (angl) degrees 40 77 60 

Hot spot size (sL) mm-1 0.05 1.5 0.2 

Soil brightness parameter 
(ρsoil) 

unitless 0.5 1.5 1 

Barley Berjón et al. 2013; Yu et al. 2014 

Chlorophyll content (Chla+b) µg/cm² 7 8 30 

Dry matter content (Cm) g/cm² 0.002 0.012 0.009 

Equivalent water thickness 
(Cw) 

g/cm² 0.004 0.024 0.015 

Leaf area index (LAI) m²/m² 0.1 8 2 

Leaf structure parameter (N) unitless 1.1 1.9 1.3 

Average leaf angle (angl) degrees 40 77 40 

Hot spot size (sL) mm-1 0.05 1.5 0.2 

Soil brightness parameter 
(ρsoil) 

unitless 0.5 1 1 
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Furthermore, to obtain sensitive filter wavelengths for the most commonly retrieved 

parameters from remote sensing data, Chla+b and LAI, additional 10000 reflectance 

spectra were generated while only varying Chla+b and LAI values within the given rang-

es (Table 6.2), respectively. Other parameters were then set to fixed values. The simu-

lated spectra were divided into training and validation data, both samples with n = 5000.  

6.2.3 Wavelength Selection Algorithms 

The R Toolbox Subselect package was applied for the statistical analysis. Four different 

search algorithms were compared for grassland spectra: (1) Genetic Algorithm (GA), 

(2) Simulated Annealing (SA), (3) Multiple least square regression analysis and (4) 

step-wise multiple linear regression analysis (stepwise MLR). The algorithm fitting best 

between training and validation data were to be applied. As the MiniMCA-6 camera 

used in this study has six cameras, the target was to retrieve six filter band central wave-

lengths (CWL). Additionally, for grassland it was to be tested how filter wavelength 

locations varied when only three and four filters were to be selected. 

GA is an evolutionary algorithm or stochastic search algorithm mimicking natural se-

lection in biological evolution. For each cardinality k (6), i.e. the number of targeted 

wavelengths, the evolution starts with an initial random population of size n = 5000 

which is divided into two couples and subsequently generates an offspring, a new k-

variable subset, inheriting properties from the parents. A criterion value ranks parents 

and offsprings and the best parent/offspring pair in relation to wavelengths will present 

the next generation. The evolutionary process is steered by exploration and exploitation. 

“Exploration is the creation of population diversity by exploring the search space, and is 

obtained by genetic operators”, i.e. “mutation and crossover” (Scrucca 2013, p.3). Ex-

ploitation reduces the population diversity by survival of the fittest (i.e. wavelengths). 

Convergence criteria terminates the evolutionary process (Scrucca 2013). The termina-

tion rule is given by the number of generations (please refer to Cerdeira et al. 2014, 

p.29-33 for further details).   

SA describes a heuristic optimization algorithm for solving unconstrained and bound-

constrained optimization tasks like e.g. the traveling salesman problem (Kirkpatrick et 

al. 1983). It models the physical process of heating a metal and slowly cooling it down 

(i.e. “annealing”) so that metal atoms have time to rearrange themselves to stable crys-

tals at low system energy (please refer to Cerdeira et al. 2014, p.2-6 for further details). 

An initial k-variable subset is randomly selected and put into the SA algorithm. A ran-

dom subset within the neighbourhood of the current subset is selected and according to 
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the SA rule and updates the current (wavelength) subset when its subset variables im-

prove the criterion.  

The RLI algorithm searches for a k-variable subset serving as a representative for the 

whole set. Initially, a k-variable subset is randomly defined from the full set, and other 

variables are put aside into a queue. Then one variable from the queue is taken and the 

enhancement of the criterion value, when replacing each indvidiual k-value, is tested. 

When the criterion value is improved, the current subset will be updated (please refer to 

Cerdeira et al. 2014, p.47-50 for further details).  

For all algorithms described so far, the ߬²-criterion had been selected. It is related to the 

Wilk’s lambda statistic (λ), a measure of multivariate coherence,  (Cerdeira et al. 2014): 

߬ଶ ൌ 1 െ	ߣሺଵ/௥ሻ 

where r is the rank of effect matrix. 

Last not least, a stepwise forward MLR was carried out to retrieve the six wavelengths 

that best predict the biophysical parameters Chl and LAI. As critierion the Akaike’s An 

Information criterion (AIC) was taken (The R Core Team 2014, p.1160). The algorithm 

starts with one wavelength and depending on the descision criterion keeps the wave-

length variable if it improves the model. The modelling is finished when there is no fur-

ther improvement.  

6.2.4 Results 

6.2.4.1 Comparison of Wavelength Selection Algorithms 

The correlation spectra for simulated Chla+b values and simulated mean grassland 

refletance show two distinct minima at around 550 nm and around 720 nm with a peak 

in-between at around the red region (Figure 6.4).  
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Figure 6.4 Correlation 

spectra between simu-

lated reflectance spec-

trum and plant variable 

(bold green line: simu-

lated Chla+b spectrum for 

grassland) 

 

LAI values show distinct features around the red/red edge and nIR. Although not further 

studied in this context, leaf water content (Cw) only shows a weak correlation minimum 

at around the water absorption around 970 nm. Dry matter content (Cm) showed higher 

negative correlation from the red edge to the nIR region. N shows only weak correla-

tions at around 550 nm and from the red edge to the nIR. 

Among the wavelength selection algorithms, GA, RLI and SA generally yielded the 

best correspondence between measured (training) and predicted (validation) data, alt-

hough all selection algorithms predicted variables with an adjusted R² of > 0.9 (Figure 

6.5).  

Except for the stepwise MLR, the wavelength selection algorithms do not retrieve one 

single but rather a set of solutions, the best fit is defined by minimizing the τ² criterion. 

Therefore, there is not one single solution, yet from the plot showing the range of se-

lected wavelengths, one may infer sensible filter wavelength locations or ranges (Figure 

6.7). Here, the filters should be located along the slopes of the green reflectance peak 

and at the red absorption minimum. The blue squares hereby indicate ten different solu-

tions of the search algorithms, the red squares show the selected wavelengths with the 

highest overall R value. 
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Figure 6.5 Scatter plots for wavelength selection algorithms to predict Chla+b 

 

Figure 6.6 Selected optimal filter locations for the prediction of grassland Chla+b 

 

 



6 Filter Wavelength Selection, Sensitivity Analysis and Scale Issues of the Multispectral Camera 119 

 

As a summary, Figure 6.7 shows for grassland the leaf pigment Chla+b (here Cab in fig-

ures) and LAI, the retrieved wavelengths for all selection algorithms. GA, SA and RLI 

show almost similar wavelengths regions for the prediction of Chla+b located along the 

slopes of the green peak and in the red region of the visible spectrum. 

For the assessment of LAI, filter centre wavelengths were selected from short visible 

wavelengths (RLI) to only nIR wavelengths for GA, SA and stepwise MLR. 

 

Figure 6.7 Simulated grassland spectrum with selected filter wavelengths for Chla+b and 
LAI 

 

6.2.4.2 Crop-type Dependent Wavelength Selection 

The respective wavelengths selected in Figure 6.7 are listed in for the crop types and 
wavelengths selection algorithms. 
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Table 6.3 Filter wavelength selection for Chla+b and LAI for each selection algorithm 

Selected Wavelenghts [nm] 1 2 3 4 5 6 
Multiple 

R²

Grassland 

GA_Chla+b λ 523 526 529 532 586 685 0.9971

SA_ Chla+b λ 523 526 529 535 577 685 0.9969

RLI_ Chla+b  λ 523 526 532 535 571 676 0.9971

Stepwise MLR_Chla+b  λ 442 445 541 661 682 718 0.9799

GA_LAI λ 808 856 862 991 994 1042 0.9714

SA_LAI λ 829 838 943 952 988 994 0.9707

RLI_LAI λ 799 874 901 940 1042 1060 0.9769

Stepwise MLR_LAI λ 400 436 775 922 1096 1099 0.8964

Barley 

GA_Chla+b λ 520 523 526 529 532 535 0.9769

SA_ Chla+b λ 490 505 511 523 526 532 0.9769

RLI_ Chla+b  λ 520 523 526 529 532 535 0.9769

Stepwise MLR_Chla+b  λ 541 664 715 742 976 982 0.9269

GA_LAI λ 802 874 898 940 1042 1057 0.9507

SA_LAI λ 865 880 910 976 997 1024 0.9554

RLI_LAI λ 808 835 865 1030 1033 1069 0.9489

Stepwise MLR_LAI λ 400 775 913 1063 1066 1075 0.8236

Maize 

GA_Chla+b λ 523 529 532 544 553 715 0.9777

SA_ Chla+b λ 523 526 535 544 553 715 0.9757

RLI_ Chla+b  λ 505 508 511 526 529 532 0.9678

Stepwise MLR_Chla+b  λ 445 451 535 685 721 724 0.9047

GA_LAI λ 484 862 931 1063 1069 1081 0.9524

SA_LAI λ 484 865 931 1063 1069 1081 0.9525

RLI_LAI λ 490 928 931 1063 1081 1093 0.9521

Stepwise MLR_LAI λ 664 685 775 811 829 841 0.8000

 

For the other crop types, barley and maize similar results were obtained (Table 6.3). 

Looking at Chl, again, GA, SA, and RLI yielded similar results with high R² values of ~ 

0.97, and least residuals for the green part of the electromagnetic spectrum, for barley, a 

red/nIR spectrum was only selected for the stepwise MLR. For maize, another band 

within the red edge region was introduced (715-724 nm). The LAI is mainly predicted 

with wavelengths within the nIR, for barley. The stepwise MLR selection algorithm 

additionally retrieved a blue band at 400 nm. For maize also nIR bands were selected, 

and an additional band in the blue/green (GA, SA and RLI) or red region (stepwise 

MLR). 
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The GA iterations confirm the concentration of selected wavelengths next to the green 

peak, red (grassland) and red edge for Chla+b for grassland, barley and maize (Figure 6.8 

- Figure 6.9).  

Filter wavelengths for defining LAI are rather situated along the nIR plateau and located 

on both sides of the water absorption minimum at 970 nm (Figure 6.9), and in some 

cases below the green peak and blue region. Similar results were found by Schlerf et al. 

(2005), who analyzed the potential of narrowband ratio and orthogonal VI for 

hyperspectral Vis-shortwave IR (SWIR) and found them to be close to water absorption 

features. 

If only three bands (Figure 6.10 top row) were to be selected, the filter locations vary 

around the red and blue region for grassland and the prediction of Chla+b (R² = 0.9774) 

and with four bands are situated along the green peak (R² = 0.9898). For LAI, the GA 

terminates with filters situated next to the water absorption feature for three bands (R² = 

0.9139) and again along the nIR plateau and next to the water absorption for four bands 

(R² = 0.9536). 
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Figure 6.8 Six-band wavelength selections in rela-
tion to  Chla+b for all iterations used in the Genetic 
Algorithm (GA). Red squares represent final selec-
tion. 
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Figure 6.9 Six-band wavelength selection in rela-
tion to  LAI for all iterations used in the Genetic 
Algorithm (GA). Red squares represent final selec-
tion. 
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Figure 6.10 
Three- (top) 
and four-band 
(bottom) filter 
wavelength 
selections re-
trieved by 
Genetic Algo-
rithm (GA) for 
grassland. Red 
squares repre-
sent final se-
lection. 
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6.2.5 Discussion 

General sensitive wavelength locations had been illustrated graphically by 

Wantzenrieder for maize and grassland (2011) and in Figure 6.4 for grassland. The in-

terpretation of these graphs already allows the determination of obvious spectrally sen-

sitive ranges to biophysical parameters and put forward key sensitive ranges for vegeta-

tion: the green peak and its slopes, the red absorption minimum, the red edge and its 

slope, the nIR plateau and short-wave to mid-wave IR for water content. The filter 

wavelength selection algorithms altogether retrieved similar critical wavelength ranges 

for the predicted plant variables Chl and LAI for grassland where six bands were to be 

selected. Especially, GA, SA and RLI delivered nearly matching filter centre wave-

lengths (Figure 6.8Table 6.3) with an R² of well over 0.97. For the other crops, barley 

and maize, the filter locations varied slightly so that for barley only wavelengths along 

the shorter wavelength slope of the green peak were retrieved and for maize, right along 

the green peak and additionally a red-edge band was selected (Table 6.3). When smaller 

numbers of bands are selected (three and four-band combinations), filter CWL vary 

slightly more and lie at different locations (Figure 6.10): for grassland the three-band 

wavelength selection retrieved also blue. Filters in that range are neither possible for the 

MiniMCA-6 as its monochromatic response in that area is too low, and the signal would 

also be affected by strong atmospheric influences. For four bands optimal filters range 

along the green peak for Chl and for LAI, similar to the six-band combinations, along 

the nIR plateau (three filter wavelengths) and at both sides of the water absorption fea-

ture for four filters. The differences result from the fact, that there is no fixed solution to 

the search algorithms as can be seen by the respective blue squares in Figure 6.8-Figure 

6.10.  

To overcome the problem of retrieving varying band selections especially known from 

the step-wise MLR, Feilhauer et al. (2015) suggest to use a multi-method ensemble se-

lection consisting of PLS-, random forest- (RFR) and support vector machine regression 

(SVMR). They found spectral locations in accordance with known absorption features. 

For differentiating crops under nitrogen stress, Song et al. (2011) found for laboratory-

derived hyperspectral leaf reflectances within the VIS/nIR region of the electromagnetic 

spectrum for paddy rice, the band CWLs 552 nm, 675 nm, 705 nm and 776 nm most 

appropriate for four-band combinations. For fluorescence analyses of green vegetation, 

intensive work on sensitive wavelengths and filter widths has been carried out within 

the ESA-FLEX program (Damm et al. 2010, Damm et al. 2011). 
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The results show that the filter CWLs chosen for the MiniMCA-6 (10 nm-FWHM: 531 

nm, 551 nm, 571 nm, 673 nm, 702 nm, 753 nm, the 1 nm-FWHM 760 nm, 782 nm, 803 

nm, 901 nm, 971 nm and 1 nm-FWHM 760 nm) are well suited for analyzing crop 

physical parameters Chl, LAI, N, leaf water and fluorescence, a.o. Filter had also been 

selected for these spectral ranges to conform to common vegetation indices used in the 

remote sensing community. 

Further crops could be included in the ideal filter wavelength selection and also more 

plant parameters (leaf water, dry matter, structure a.o.) could have been variated to con-

solidate the findings. But a first overview with variations of all parameters except for 

the fixed proportion of diffuse to direct radiation, hot spot parameter and viewing an-

gles, led to similar reflectance ranges. The choice between three to six target filters may 

also help to understand the ideal filter centre wavelengths and filter combinations to 

tackle more than one plant parameter at a time for quantitative analysis of key vegeta-

tion parameters. 

6.2.6 Conclusion 

All filter search algorithms used in this study (GA, SA, RLI and stepwise MLR) pre-

dicted the plant variables Chl and LAI with high R² values of > 0.9 – 0.98, best results 

were obtained with GA and SA (R² 0.95 to > 0.99). The filter wavelength selection re-

trieved potentially ideal filter centre wavelengths to retrieve the key plant parametes 

Chla+b and LAI. These are 

 for Chla+b: green peak from 520–570 nm, red absorption minimum (670 nm) 

 for LAI: mainly nIR-plateau 800-900 nm, shoulders of water absorption feature 

(~ 970 nm). 

Further crops could be included in the ideal filter wavelength selection and also more 

plant parameters (leaf water, dry matter, structure a.o.) could have been variated to con-

solidate the findings. But a first overview with variations of all parameters except for 

the fixed proportion of diffuse to direct radiation, hot spot parameter and viewing an-

gles, led to similar reflectance ranges. The choice between three to six target filters may 

also help to understand the ideal filter centre wavelengths and filter combinations to 

tackle more than one plant parameter at a time for quantitative analysis of key vegeta-

tion parameters.  
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6.3 Bidirectional Reflectance Simulations and Measurements of a 

Maize Canopy Using a UAS Goniometer-Flight  

6.3.1 Introduction 

Bidirectional reflectance effects encompass the variation of the at-sensor received signal 

of non-Lambertian targets and alterations of viewing and illumination geometry de-

pending on the target object characteristics, sensor and solar position at image acquisi-

tion. Huete and co-workers compared the NDVI with the soil-adjusted vegetation index 

(SAVI) for 5°-stepwise variations of viewing angles from 0-40° off-nadir and could 

show that SAVI behaved symmetrically with increasing VZA towards both shaded and 

illuminated sides, the NDVI behaved anisotropically (Huete et al. 1992). Epiphanio and 

Huete (1995) further investigated the indices’ behaviour for different densities of alfalfa 

crops and showed that SAVI seemed more sensitive to nIR changes with higher 

amounts of vegetation, and increasing NDVI/decreasing SAVI values from antisolar to 

solar viewing geometries, the SAVI being of generally higher sensitivity to changing 

viewing angles. 

Lelong et al. (2008) developed a method to balance received light quantity for UAS-

derived multispectral images of a trial wheat plot. As their system was lacking an IMU, 

they employed an image-driven adaption of the Local Range Modification:  1) They 

started subsampling the image to 1/200 of the original pixels by bilinear interpolation; 

2) they performed a Gaussian 3x3 filtering, 3) then over-sampled the image to its origi-

nal size by bicubic interpolation; 4) inverted and scaled the image to 5) obtain a BDR-

filter to be applied on the original image. However, this intensive pre-processing is not 

feasible for multitudes of aerial images for one flight. Hakala et al. (2010) used the 

Rahman Pinty Verstraete surface model (RPV) to correct UAS images derieved on a 

snow field. The semi-empirical model uses three parameters to obtain the bidirectional 

reflectance factor (BRF): incident illumination and observation directions, reflectance 

intensity, level anisotropy of the surface reflectance (here reference panels were used) 

and the amount of back- and forward scattering (Rahman et al. 1993).  

These studies though, have worked on relatively homogenous, structure-poor, more or 

less flat target features. Only few studies so far, have focused on heterogeneous canopy 

structure where additionally row orientation, row gaps and soil background contribute 

to the signal (Guillen-Climent et al. 2012). The 3D radiative transfer Forest Light Inter-

action model (FLIGHT) has been used to study the influence of background substrate 

on the NDVI in orchards under varying daytime illumination to obtain the fraction of 
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intercepted photosynthetically active radiation (fIPAR) by scaling-up and model inver-

sion of image NDVI values (Guillen-Climent et al. 2012).  

Grenzdörffer and Niemeyer (2011) looked into BDRF-measurements of agricultural 

surfaces obtained also with a md4-1000. A hemispherical flight pattern of screw-shaped 

circular flight lines with increasing height and narrowing radii was conducted and the 

anisotropic reflectance behavior derived for a wheat plot. The found the anisotropic 

behavior in the principal plane to be minimal. They now look into how these factors 

may be incorporated into image analysis.  

The main aim was to assess bidirectional reflectance effects on the signal obtained with 

the multispectral MiniMCA-6 in relation to changing sun-observer viewing geometries. 

Furthermore, the bidirectional performance of some selected, commonly used vegeta-

tion indices was to be studied in relation to the respective image acquisition geometries. 

6.3.2 Data and Methods 

Test site was a maize field at the Ehranger Flur, Germany situated at 49.8087° N, 

6.697°E. The rows are oriented SSW-NNE, and the phenological development of the 

individual plant at stage ~ BBCH 38 (Lancashire et al. 1991) with a height of approxi-

mately 2 m (Figure 6.11). 

Figure 6.11: Raw UAS 
image of maize canopy 
(Tetracam MiniMCA-6 
band 900 nm) 

 

On 20/08/2011, a UAS flight at approximately 50 m above ground was carried out, fol-

lowing a circle of about 40 m in diameter around its centre and W-E, N-S cross sections 
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(Figure 6.12). Images were acquired at 11.45 h local MEST  prior to solar noon at 12:27 

h local MEST with a sun elevation of 46° and a sun azimuth position of 136° SE. The 

sky was clear and sunny. The multispectral MiniMCA-6 was set up to look at the cen-

tral point of interest (POI) with viewing angles between 75° at the outer circle to 90° 

(nadir) in the centre position and 5° steps for the sensor zenith angle. Azimuth sensor 

positions in relation to N (0°) were taken at 30° steps. Filter wavelengths were selected 

to cover main vegetation reflectance characteristics with 530 nm, 550 nm, 570 nm, 670 

nm, 700 nm, and 900 nm (see chapter 4.22 for filter description). Image pixel resolution 

was about 3 cm. 

Figure 6.12: Goniometer-flight plan 
for maize field on the Ehranger Flur, 
Germany, presented on Google Earth 
data, image is oriented to the N 
(Google Earth: 28/04/2014) 

Photo preprocessing was following the procedures described in chapter 5. The respec-

tive six band images were corrected for vignetting effects and aligned to retrieve multi-

spectral images. With the help of in-situ derived reflectance measurements of reflec-

tance panels with an ASD FieldSpec, the individual photo DNs were converted to 

reflectances by empirical line correction (chapter 5.2.5). A more detailed description of 

preprocessing may be found in Wantzenrieder (2011). Image reflectances were obtained 

by averaging the reflectances of an area of approximately 3 m in diameter around the 

POI situated at the centre of the respective image.  

For modelling maize reflectance, field sample of top layer leaves were collected. 

Around the projected circle centre on the ground five maize plants were selected at the 

centre and about 1 m to the N, E, S and W via GPS and five leaf samples were cut of 

each plant a couple of days after the UAS flight. From these samples, fresh matter and 

dry weight were measured in the laboratory, to obtain the equivalent water thickness Cw 

and dry matter content Cm. Chla+b was retrieved with UV-160A Shimadzu photometer 
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wet-analysis (see chapter 4.5.1). Furthermore, LAI was measured at breast and knee-

height at the same positions as sampling was taken. 

Mean LAI, Chla+b content, Cw and Cm were used as parameter input for PROSAIL simu-

lations of the particular viewing angles at the respective 26 UAS photo positions for the 

goniometer exercise. From drone position and attitude during the flight, observer zenith 

angle and azimuth values in relation to the sun position were retrieved for each image. 

Other parameters were retrieved from literature analysis (Schneider and Manakos 2003; 

Duan et al. 2014), i.e. carotenoid content of 10 µg/cm2, brown pigment content Cbrown of 

0,  N of 1.3, psoil coefficient of 1, diffuse/direct radiation factor SKYL of 0.1, and a hot 

spot effect SL of 0.2; a leaf angle of ~ 50° was estimated in the field. 

To illustrate the effect viewing geometry has on vegetation indices, additionally some 

widely used vegetation indices were computed to show their behavior with varying ob-

server and azimuth angle (AA) (Table 6.4). 

Table 6.4: List of vegetation indices used for Prosail simulations (subscripted λ in nm) 

Vegetation  
index 

Formulation Author Application 

Simple Ratio 
Index 

SR = RnIR/Rred  Jordan 1969 
Structural index, 
plant vitality 

Normalized  
Difference Vege-
tation Index 

NDVI = (RnIR - Rred) /(RnIR + Rred)  Rouse et al. 1974 
Structural index, 
plant vitality 

Transformed 
Chlorophyll  
Absorption in 
Reflectance Index 

	TCARI	ൌ	3[(R700 - R670) 
-0.2(R700 – R550)( R700 / R670)] 

Haboudane et al. 
2002 

Chl index, less in-
fluence of LAI 

Optimized Soil-
Adjusted     Vege-
tation Index 

OSAVI =  (1 + 0.16) (RnIR – Rred) / 
(RnIR + Rred + 0.16) 

Rondeaux et al. 
1996, Haboudane et 
al. 2002 

Chl index, less sen-
sitive to soil back-
ground 

Photochemical 
Reflectance Index 

PRI = (R531 – R570) / (R531 + R570)  
Gamon et al. 1992; 
Gamon et al. 1997 

Carotenoids/Chl 
index, Chl fluores-
cence, radiation use 
efficiency, water 
stress 

Renormalized 
Difference Vege-
tation Index 

RDVI = (RnIR - Rred) /  
(RnIR + Rred)

0.5  
Roujean and Breon 
1995 

Structural index 
related to fAPAR 

Red Edge Ratio 
Index 

RE = R700/R670 

Part of TCARI; 
Zarco-Tejada et al. 
2013, Zarco-Tejada 
2013 

Chl content 

Normalized PRI PRInorm = PRI/(RDVI * RE) Zarco-Tejada 2013 

Chl content, less 
sensitive to crown 
architecture, water 
potential, stomatal 
conductance 
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Average biophysical leaf parameters retrieved from field sampling and laboratory anal-

ysis are summarized in Table 6.5. The selected UAS images’ viewing parameters are 

summarized in Table 6.6. 26 images were selected for simulation process.  

Table 6.5: Measured field parameters for maize leaves as input to PROSAIL simula-
tions 

Sample LAI 
Chla+b 

[µg/cm²] 
Cm 

[g/cm²] 
Cw  

[g/cm] 

1 4.13 67.524 0.095 0.016

E2 4.22 58.086 0.089 0.015

E3 4.28 69.166 0.098 0.015

E4 4.27 73.487 0.061 0.016

E5 5.01 69.238 0.046 0.015

Mean 4.38 67.500 0.078 0.016

 

6.3.3 Results 

The following polar plots (Figure 6.13A and B) show the differences for simulated 

hemispherical reflectances as obtained by PROSAIL and the actual reflectances re-

trieved from the maize canopy. The polar plot centres represent nadir viewing and the 

radius axis represents increasing viewing zenith angles (VZA). The circular/polar angles 

define the azimuth angles (AA) with deviation from the sun position, hence, the solar 

principal plane is defined along the 0°-180° axis. For all angle combinations where no 

UAS images were taken, the mean reflectance of all other photo samples of that respec-

tive band were used for interpolation. Image viewing and sun position geometries are 

listed in Table 6.6.  
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Table 6.6: Photo attitude parameters and derived observer and AA for PROSAIL input (as derived from the ATCOR4 solar position calcuation tool) 

Photo-
number 

UTC Latitude Longitude 
GPS-

Altitude 
[m] 

Height  
[m] 

Observer 
zenith [°] 

Sun zen-
ith [°] 

Sun azi-
muth[°] 

Azimuth 
(sun-

observer) 
[°] 

2 09:38:15 49.80894191 6.69708064 225.0 49.0 41.3 44.40 135.1 135
6 09:38:40 49.80893117 6.69694185 225.3 48.8 41.2 44.30 135.3 162
8 09:38:59 49.80885968 6.6968274 224.7 48.9 41.1 44.30 135.4 192

10 09:39:19 49.80876343 6.69680216 223.9 48.7 41.3 44.20 135.5 132
12 09:39:39 49.80867672 6.69684302 222.9 48.5 41.5 44.20 135.6 103
14 09:39:59 49.80860908 6.69694125 223.1 48.3 41.7 44.20 135.7 75
16 09:40:18 49.80858857 6.69709113 223.4 49.0 41.0 44.10 135.8 46
18 09:40:38 49.80862605 6.69722372 223.8 48.8 41.2 44.10 135.8 21
19 09:40:51 49.80866824 6.6973038 223.3 48.2 41.8 44.10 135.9 10
22 09:41:14 49.8087725 6.6973674 224.3 49.0 41.0 44.00 136.1 36
24 09:41:33 49.80886235 6.69733841 223.5 48.7 41.3 44.00 136.2 69
26 09:41:52 49.80892452 6.69721981 223.5 49.0 41.0 43.90 136.3 103
28 09:42:11 49.80891244 6.69706509 223.8 48.8 41.2 43.90 136.4 138
31 09:42:39 49.80885706 6.69706532 224.3 49.1 40.9 43.90 136.5 138
32 09:42:44 49.80883851 6.69708724 222.7 48.2 41.8 43.90 136.5 141
33 09:42:56 49.80882316 6.69707285 222.9 48.8 0.3 43.80 136.6 144
34 09:43:01 49.80880113 6.69707678 222.6 48.5 41.5 43.80 136.6 138
35 09:43:10 49.80878592 6.69708186 223.0 48.8 0.0 43.80 136.7 123
38 09:43:30 49.80873596 6.69707526 223.2 48.8 41.2 43.80 136.8 26
40 09:43:41 49.80871313 6.69707212 223.0 48.9 41.1 43.70 136.8 46
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Photo-
number 

UTC Latitude Longitude 
GPS-

Altitude 
[m] 

Height  
[m] 

Observer 
zenith [°] 

Sun zen-
ith [°] 

Sun azi-
muth[°] 

Azimuth 
(sun-

observer) 
[°] 

43 09:44:01 49.80867229 6.69709152 223.8 48.5 41.5 43.70 136.9 39
45 09:44:15 49.80862894 6.69708174 224.1 48.8 41.2 43.70 136.9 45
48 09:44:49 49.80877128 6.69688458 222.4 48.9 41.1 43.60 137.2 130
50 09:45:04 49.80877139 6.69694392 223.6 48.8 41.2 43.60 137.3 126
52 09:45:19 49.80876978 6.69700345 223.0 48.6 41.4 43.60 137.3 121
55 09:45:41 49.80877873 6.69713279 222.9 48.8 41.2 43.50 137.5 23
58 09:45:57 49.80876464 6.69720409 223.5 48.5 41.5 43.50 137.5 47
62 09:46:20 49.80877405 6.69728009 223.8 48.5 41.5 43.40 137.7 50
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Figure 6.13A: Simu-
lated (left) versus 
measured (right) 
reflectances for goni-
ometer flight over 
maize field at Ehranger 
Flur, 20/08/2011. Ra-
dius values define 
VZA, AA are devia-
tion from the solar 
principal plane (0°-
180°, sun position 
137°, elevation 46°)  

N 
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Figure 6.14B: Simulat-
ed (left) versus meas-
ured (right) 
reflectances for goni-
ometer flight over 
maize field at Ehranger 
Flur, 20/08/2011. Ra-
dius values define 
VZA, AA are devia-
tion from the solar 
principal plane (0°-
180°, sun position 
137°, elevation 46°) 

N 
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The simulated reflectances show parts of the hot spot effect at 0° AA and higher view-

ing zenith angles (VZA) and lower reflectances for opposite observer-sun locations and 

with departure from the principal plane with higher AA. As expected, values retrieved 

from the principal plane show generally higher reflectances in the simulated data. Op-

posite sensor positions in relation to the sun (left hemicircle) show slightly lower reflec-

tance. However, for VZA around nadir +/- 5°, and also observer azimuths perpendicular 

to sun location ( 90° and 270°) reflectances obtained show more or less homogenous 

values of absolute differences 0.6% to 0. 8%  in the VIS to 2.75% in the nIR. 

Table 6.7 lists the absolute and relative differences for the individual simulated 

reflectances (∆ρ) between VZA ranging from nadir (0°) to 25° for each AA and Figure 

6.14 illustrates the course of simulated relative ∆ρ for VZA comparable to the goniome-

ter flight (0°-25°) for all AA.  

Table 6.7: Absolute and relative differences in reflectances (Δρ) between VZA 0° to 
VZA 25° for all AA as derived from PROSAIL simulations 

Wavelength 
[nm] 

ρmin 

[0-1] 
ρmax 

[0-1] 
Δρabsolute 

[0-1] 

Δρrelative 

[%] 

530 0.0001 0.0083 0.0082 20 
550 0.0001 0.0081 0.0080 20 
570 0.0001 0.0081 0.0080 20 
670 0.0003 0.0059 0.0056 23 
700 0.0001 0.0087 0.0086 20 
900 0.0018 0.0558 0.0540 10 

 

Relative ∆ρ across all AA amount to approximately one fifth of the signal obtained for 

the respective filter except for the nIR which is slightly lower at 10% (Table 6.7).  Ab-

solute ∆ρ for the VIS are under 1% reflectance. When the reflectance distribution along 

all AA is considered, Figure 6.14 shows highest ∆ρ for band 670 nm, lowest for nIR, 

and altogether, a global minimum around AA of 90° and 270° which represents the 

along row observations. 
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Figure 6.14: Simulated relative reflectance differences (∆ρ) for VZA (0-25°) across all 
AA derived from PROSAIL model 

This is not the case for the measured reflectances which show a quite different area dis-

tribution for the goniometer circle (Figure 6.12A and B right part). Illumination effects 

are not as homogeneous as for the simulated data, altogether reflectances are slightly 

higher close to sun position (0° +/- 90°), yet higher reflectances may be observed from 

the 180°-270° quadrant. As the row orientation is perpendicular to the solar plane, i.e. 

from 90°-270° AA, may be specular reflectance effects from leaves. keeping in mind 

that the goniometer flight did not reach observer zenith angles of greater than 25°, the 

absolute values of reflectances retrieved from UAV flights, are within similar reflec-

tance ranges.  

Figure 6.15 illustrates the real mean UAS-derived reflectances obtained from the goni-

ometer flights for each AA. Their course following along the AA does not depict the 

respective AA dependency from the simulated reflectances (NB: less AA/VZA have 

been obtained for the goniometer flight altogether). 
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Figure 6.15: Absolute reflectances (ρ) for VZA (0-25°) across all AA derived from 
UAS flight 

The next figures illustrates the reflectances across the the VZA for the PROSAIL simu-

lations (lined points) and as derived from the goniometer flight for the red (Figure 6.16) 

and nIR bands (Figure 6.17). The simulations show the hot spot effect at 45° for the 

reflectances along PP, the CP shows less variation with increasing reflectances towards 

the sun position. Nadir measurements deviate ~ 0.5% reflectance for the red and up to  

8% and for the nIR ranges for the  UAS images. The UAS-derived value distribution is 

again noisier with a hardly detectable higher reflectance variation for the PP than the CP 

direction. 
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Figure 6.16: Simulated and UAS-derived reflectances (ρ) at 670 nm for solar principal 
plane (PP) and N-S transect (Sun elevation 46°, sun azimuth 137°) 

 

Figure 6.17: Simulated and UAS-derived reflectances (ρ) at 900 nm for solar principal 
plane (PP) and N-S transect (Sun elevation 46°, sun azimuth 137°) 

PROSAIL simulations of selected vegetation indices are illustrated in Figure 6.18 and 

also show a dependence on viewing geometry.   
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Figure 6.18: Polar plots of simulated 
key vegetation indices obtained from 
PROSAIL for maize (sun elevation 44°, 
sun azimuth 136°, i.e. 0° in plots) 
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PROSAIL simulations of selected vegetation indices are illustrated in Figure 6.18 and 

also show a dependence on viewing geometry. All indices produce value differences 

with altering viewing geometries. The SR, NDVI and PRI are especially affected by 

azimuth changes of sun-sensor positions and VZA, with opposite behavior along the 

principal plane. NDVI shows higher values when the sensor is opposite to the sun loca-

tion. Observer zenith angles are of minor influence when the sensor-sun azimuth is 

around 90°. Similar results are found for the RE, although it shows a hot spot when the 

sensor looks 20-40° off nadir opposite to the sun. PRI also illustrates a considerable 

influence of the azimuth angle on the signal obtained with higher viewing angles oppo-

site to the sun. TCARI and OSAVI are more sensitive to observer zenith angle varia-

tions and only to a lesser degree to azimuth variations. The RDVI also produces differ-

ences in relation to the azimuth angle, the effect being smaller though for opposite sun-

sensor positions which also illustrate less influence by observer angles. Except for SR, 

NDVI, TCARI and OSAVI, the indices for the simulated sun-sensor positions show 

similar reflectance for nadir positions (0°-5° observer angles) across all azimuth loca-

tions.  

6.3.4 Discussion  

As expected, the PROSAIL goniometer simulation showed quite considerate BDR ef-

fects of sensor-object-sun viewing geometries on the signal derived. Errors amount to ~ 

20% relative differences (Table 6.6, Figure 6.14) and are highest for the red band and 

lowest for the nIR. The absolute differences in simulated reflectances from nadir to 

about 25° VZA, lay under 1% in the VIS and under 6% in the NIR which is still within 

the noise ranges of the Tetracam multispectral camera (Kelcey and Lucieer 2012).  

Although, PROSAIL has not been developed for row crops (Atzberger and Richter 

2012), the simulated reflectances along the PP and CP for all VZA agree well with re-

sults obtained for a 3D model published by Zhao et al. (2010). The hot spot effect at the 

PP is clearly displayed as well as the higher variations along the PP compared to the CP 

which again points towards using flight directions perpendicular to the solar illumina-

tion direction. The deviations of the measured (right part in Figure 6.13) versus simulat-

ed maize reflectances (left part in Figure 6.13) may be attributed to the row-structure of 

maize and its non-homogenous canopy. The maize rows where the goniometer flight 

took place were oriented WNW-ESE, almost perpendicular to the sun position of AA 

136-7° (Table 6.6: Photo attitude parameters and derived observer and AA for 

PROSAIL input (as derived from the ATCOR4 solar position calcuation tool)) and by 
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flying a circle and diameters across the field, different row orientations and sides of the 

row canopy are viewed. This may explain the contradicting reflectances along the posi-

tive and negative semi-circle in relation to the simulated reflectances, as well as the ra-

ther random reflectance variations along the PP and CP in Figure 6.16 and Figure 6.17. 

However, except for the peculiar effect of higher reflectance along the 180° - 270° AA 

quadrant, one may infer more shaded components with lower reflectances along the 

locations opposite the sun which has indeed been measured by the photographs. 

Grenzdörffer and Niemeyer (2011) found the anisotropic reflectance behavior of winter 

wheat to be less strong for the PP and higher for CP.    

Within recent years, reflectance models for row-structured cops have been introduced 

and point the way for further studies of this kind (Zhao et al. 2010). Zhao et al. (2010) 

also obtained only a poor agreement between simulated and measured directional 

reflectances along the solar principal plane and its cross plane with increasing deviation 

from nadir. Generally, simulated along-row reflectances were most homogenous across 

all VZA than cross-row observations as the canopy appears denser. Cross-solar plane 

observations curves were smoother, too.   

Except for the SR, NDVI, TCARI and OSAVI, the vegetation indices have shown to 

produces similar values for nadir to 5° observer angles (Figure 6.18). When higher an-

gular views are being applied the value behavior of each index should be given thought 

prior to flight planning. For almost all indices, i.e. SR, NDVI, RE, RDVI and to a lesser 

extent, OSAVI, an azimuth position of 90° off the solar position (yields similar values 

across observer zenith angles. When row crops are being analysed that have not yet 

reached canopy closure, flight planning should indeed include 3D or row structure re-

flectance models to account for the variable background contribution to the signal not 

only related to row structure and their orientation but also to flight day time and sun 

elevation: Guillen-Climent et al. (2012) showed a bowl-shape behavior of the NDVI 

with lowest values at noon through scaling up the 3D radiative transfer model FLIGHT 

(Forest Light Interaction Model).  

6.3.5 Conclusion 

Ideally, further goniometer flights are required with more diametric flights, extending to 

higher VZA and denser AA positions. The hemispherical flight pattern applied by  

Grenzdörffer and Niemeyer (2011) over more homogenous canopies would yield further 

insight into retrieved signals. When the observer zenith deviates from nadir, flights per-

pendicular to the incident light for homogenous canopies and along row-orientation for 
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row crops could be favorable as they showed relatively homogenous simulated 

reflectances across the VZA. Yet, across-row observation may nonetheless gain more 

information on the crop as larger parts of the canopy may be seen (i.e. vineyards), and 

to obtain insight into the BDR effects, 3D simulation models should be applied to either 

select appropriate viewing geometries or for signal correction.      

When row-structured crops are being analyzed it might indeed be advisable to use mul-

ti-views to either average illumination differences within the canopies as suggested by 

(Atzberger and Richter 2012; Duan et al. 2014) or use standardized viewing geometries 

with similar sun altitude/observer positions to avoid sun position dependencies on the 

retrieved signal. Lelong et al. (2008) presented an empirical BDR-correction approach 

which is feasible for small numbers of UAS photos, or the For UAS flights over alter-

nating land covers, Schiefer et al. (2006) presented an empirical approach for class-wise 

correction of brightness differences of line-scanner data and correction by second-order 

polynomial equations. 

When sites are to be monitored throughout the season, it might well be advisable to 

simulate potential sun-sensor-target geometries with least differences in BDRs prior to 

flight planning. Finally, the large-scale UAS images in the real world, remain a con-

glomeration of 3D structural effects of the ground (relief issues), of the crop row char-

acteristics (width, depth, density), crop characteristics (leaf angle values and orientation, 

optical leaf properties) and the viewing geometry and thus BDR effects will remain a 

characteristic of aerial imagery.  

Summarizing, for avoidance of BDR effects in UAS images, ideally flat 

sites/homogeneous crops: 

 a detailed goniometer flight would be required for similar sun elevations as for 

the flight campaign, to obtain the anisotropy factors and derive correction fac-

tors; or 

 Multiple viewings angles could be used to average BRD effects on 

DNs/reflectances. 

However, as the real world in large-scale UAS images shows a complex 3D structure 

and seldomly are homogeneous, care should be taken to evaluate image areas affected 

by only minimally by BRD effects when biophysical parameters shall be retrieved for 

modelling or statistical analysis.  
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6.4 Sensitivity of Signal to Flight Altitude and Air Mass 

The aim was to estimate the effect of the air mass between ground targets and sensor on 

the signal for low flight altitudes and if the correction is mandatory for further quantita-

tive analysis.  

6.4.1 Data & Methods 

Subsequent to the goniometer flight, additionally a scaling flight from roughly 10 m to 

90 m a.g.l. was conducted at the Ehranger Flur (49.8090776 °N, 6.6974405°E) around 

9:50 a.m. UTC. The greyvalue panels presented in chapter 6.2.4 were used as reference 

panels and all images were taken with the reference panels in the centre of each image. 

Table 6.8 shows the camera position parameters acquired for the multispectral aerial 

images acquired with the MiniMCA-6. Reference panels were centred in the image and 

recorde with total pitch angles of a maximum of 2.2° derivation of nadir. 

Table 6.8 Flight altitudes and camera position angles for scaling flight 

altitude [m] 
rollQu 

[°] 

pitchQu 

[°] 

yawQu 

[°] 

Pitchcam 

[°] 

Rollcam 

[°] 
Total pitch 

[°] 

11 -1.1 -1.1 -83.1 89 45 90.1 

20 -1.7 -0.6 -82.4 90 45 90.6 

31 -2.2 0.4 -82.7 90 45 89.6 

49 -2.8 0.3 -83.7 90 45 89.7 

60 -2.1 2.2 -83.3 90 45 87.8 

70 0.4 -0.7 -84.5 90 45 90.7 

79 -1.4 -1.5 -82.9 89 45 90.5 

86 -1.7 1.4 -82.5 90 45 88.6 

 

Pre-processing again comprised band alignment and vignetting correction. Then DNs 

were extracted from the centre of the white reference panel on the image. The respective 

DNs of each image were then plotted against the flight altitude and the linear trend de-

fined. 
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6.4.2 Results 

The DN value differences between the reference panels in dependence to camera eleva-

tion are rather small and amount to a maximum of ∆ 4% DN for the white reference 

panel, and ∆ 0.5 - 3 % DN for the black reference panel (Figure 6.19). 

 

Figure 6.19 Reference panels in relation to flight altitude (in m a.g.l.) at Vis/nIR 
wavelenghts 

The DNs of the white reference panel were plotted against the flight altitudes (Figure 

6.20).  
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Figure 6.20 DN of white reference panel extracted for images of different flight alti-
tudes (in m a.g.l.) 

Figure 6.20 shows the minimal radiometric effect of overall ∆ +/- 5% DN differences 

from low to high altitudes for the white reference panel. Altogether there is a decrease 

in DN values with increasing flight heights: values decrease about ~50 DN for the re-

spective height difference of 80 m. The negative trend is stronger for 530 nm and 700 

nm, the coefficient of determination ranging from 0.83 < R² 0.67.  

For dark targets, i.e. the black reference panel, the effect is smaller, except for the nIR 

panel (Figure 6.21). 
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Figure 6.21 DN of black reference panel extracted for images of different flight altitudes 
(in m a.g.l.) 

6.4.3 Discussion and Conclusion 

There is, especially for the brighter targets, a radiometric effect on image DNs in rela-

tion to flight altitude: with increasing height, DNs of bright targets decrease. For darker 

targets, the found absolute differences are, however, within noise range of the 

MiniMCA-6 found by Kelcey and Lucieer (2012, p. 1478) with 5-13 DNs.  

For regulated flight altitudes of 100 m a.g.l. in general ascent permits issued in Germa-

ny, radiometric differences are approximately within the noise range of the multispectral 

camera and a radiometric calibration by ELC should be appropriate for most applica-

tions. ELC also corrects for the spectral filter response and exposure time settings.  
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The experiment could be repeated for higher flight altitudes. The required following 

experiment setup would require repeated parallel reflectance measurement of reference 

targets and a spectralon® with the respective multispectral camera at varying heights 

and with a field spectrometer simultaneously, while measuring incoming solar irradi-

ance at the same time to verify the camera’s radiometric stability.   
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7 The Impact of Soil Management Effects on Grapevine 

Physiological Variables and Vigour Using Multispectral 

UAS-Data 

7.1 Introduction 

Several studies have shown that wine sensory attributes are driven by underlying soils 

and management, and possibly terroir (Schultz and Löhnertz 2002; Bramley et al. 

2011a; Bramley et al. 2011b), and soil cover crops therefore are thought to have a major 

impact on grapevine growth and physiological parameters.  

Soils ideally allocate moisture, affect nutrient uptake and influence the microclimate by 

their thermal budget and influence the taste of wine by their terroir characteristics and 

soil management (Jackson and Lombard 1993, Hall et al. 2002; Schultz and Löhnertz 

2002; Meggio et al. 2010, Bramley et al. 2011a Bramley et al. 2011b). Thus, soil man-

agement has a direct influence on grape vegetative growth, fruit composition, and final-

ly wine quality. Vineyard soil management comprehends the sowing of cover crops, 

tilling, mowing and chemical treatments aiming at the suppression of weeds, fostering 

of nutrient uptake, minimization of water loss and soil erosion, positive effects on soil 

fauna and avoidance of pests and diseases (Schultz and Löhnertz 2002; Tesic et al. 

2007, Serrano et al. 2012). Cover crops play an important role for the carbon and water 

balance of vineyards (Schultz and Stoll 2010). In the late 80ies, however, viticulturists 

recognized that cover crops also increase competition for nitrogen (N) and water uptake 

and might contribute to the development of atypical aging (ATA), an off-flavour in 

white wines (Schultz and Löhnertz 2002, Schneider 2010). 

The effect different floor cover types have on growth, yield and fruit composition in a 

mild and semi-humid climate Chardonnay vineyard in California, USA was analyzed by 

Clarke et al. (2006) and Tesic et al. (2007). Soil cover slowed down blossoming and 

yielded lower shoot length, pruning weight and canopy density. After two years into the 

experiment, also yield, cluster number and berry weight decreased for the complete soil 

cover, but no effect on fruit composition was measured (Clarke et al. 2006; Tesic et al. 

2007).  
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Remote sensing constitutes a valuable tool to monitor vineyard properties and to re-

trieve physiological plant parameters. Due to vineyard architecture remote sensing of 

leaf and canopy variables requires large-scale imagery. Traditionally, high spatial reso-

lution satellite imagery such as Ikonos (Johnson et al. 2003) and, more so, aerial image-

ry are used in this context utilizing multispectral (Smit et al. 2010), hyperspectral 

(Zarco-Tejada et al. 2005, Meggio et al. 2008, Gil-Perez et al. 2010, Smit et al. 2010) 

and thermal sensors (Berni et al. 2009b). Application of UAS are increasing consider-

ately not only within the scientific community but also by farmers gaining rapid visual 

overviews over their vineyards, as frequently note within the UAS Vision Daily News 

Bulletin (http://www.uasvision.com, 18/11/2014). UAS have recently been applied for 

deriving biophysical parameters such as Chlorophyll (Chl) content, frequently directly 

linked to grape vigour, growth and yield (Gil-Perez et al. 2010, Hall et al. 2011a), Chl 

fluorescence (Zarco-Tejada et al. 2009, Primicerio et al. 2012; Zarco-Tejada et al. 2012) 

and LAI a.o (Mathews and Jensen 2013).  

As chapter 3 has illustrated, the leaf pigments chlorophyll a and b (Chla+b) control the 

photosynthetic activity by absorbing solar energy and converting it to chemical energy 

(Guyot 1990; Walter-Shea and Norman 1991; Asner 1998, Mabrouk and Sinoquet 

1998). The Chl content varies with leaf nutrient status (leaf N), water supply, light and 

temperature, and leaf age  (Boochs et al. 1990, Haboudane et al. 2002; Steele et al. 

2008, Cabello-Pasini and Macias-Carranza 2011). Poni et al. (1994) showed that chlo-

rophyll content increased with leaf age, saturating after approximately 80-90 days and, 

hereafter, persisting until harvest times. Chl absorbs light at 450 nm (blue) and 670 nm 

(red) spectral region, hence, showing a negative correlation between Chl content and 

reflectance. Yet, with increasing Chl, the reflectance decreases at 550 nm (green), 715 

nm (red edge) and >750 nm (nIR) (Schultz 1996; Daughtry et al. 2000, Zarco-Tejada et 

al. 2005). Photosynthetic activity of Vitis vinifera is further driven by temperature, leaf 

age and variety, Zufferey et al. (2000) found that at higher temperature (27-32°), the 

primary shoots showed a maximum of photosynthetic rate, secondary shoots had their 

maximum during the berry ripening period.  

Also, vegetation indices (VIs) have been employed to map grapevine Chl content and 

vigour properties. The normalized difference vegetation index, NDVI (Tucker 1979; 

Huete and Jackson 1988), has been applied to map wine quality, grapevine vigour 

(Meggio et al. 2010; Primicerio et al. 2012), long-term water deficits and stem water 

potential (Baluja et al. 2012a). The division of the transformed chlorophyll absorption 

ratio index, TCARI (Haboudane et al. 2002) and optimized soil-adjusted vegetation 

index, OSAVI (Rondeaux et al. 1996), TCARI/OSAVI appropriately estimate stomatal 



7 UAS-Multispectral Remote Sensing of Soil Management Impact on Grapevine 152 

 

 

conductance (Baluja et al. 2012a). The abundance of (narrow-band/hyperspectral) spec-

tral vegetation indices for mapping Chl and plant pigments has been described in detail 

by Haboudane et al. 2002, Zarco-Tejada et al. 2004, Zarco-Tejada et al. 2005, Gil-Perez 

et al. 2010.  

Water stress as well as photosynthetic efficiency may be measured by the narrow-band 

photochemical reflectance index PRI and UAS application in vineyards and tree planta-

tions have been published plentifold by Berni et al. 2009a; Berni et al. 2009b; Berni et 

al. 2009c, Berni et al. 2009c; Suárez et al. 2009; Suárez et al. 2010; Baluja et al. 2012a; 

Zarco-Tejada et al. 2013a. However, the PRI has also been proven to be sensitive to 

differences in crown-structure, viewing and illumination geometry, showing the strong-

est response in illuminated hot spot conditions and shadowed canopy (Hilker et al. 

2008, Hall et al. 2008, Zarco-Tejada et al. 2013b). Therefore, recent studies combined 

the renormalized difference vegetation index, RDVI (Roujean and Breon 1995), and the 

red edge ratio (ρ700/ ρ670) as a normalization factor to the PRI obtaining an indicator 

sensitive not only to water stress but also to canopy Chl content (Zarco-Tejada et al. 

2013a). Other hyperspectral physiological indices sensitive to the carotenoids and 

anthocyanins foliar pigments were able to predict grape quality deficiencies due to iron 

chlorosis (Meggio et al. 2010), but will not further be considered due to the multispec-

tral sensors used in this study. Further narrow-band, hyperspectral indices have been 

developed within the past decades which have been presented and tested elsewhere 

(Haboudane et al. 2002; Zarco-Tejada et al. 2005, Wu et al. 2008, Xue and Yang 2009). 

Other authors used aerial temperatures and thermal indices to predict leaf stomatal con-

ductance and stem water potential (Baluja et al. 2012b). Yet, the study revealed that 

spectral indices such as the NDVI and TCARI/OSAVI were also well related to the 

vineyard’s water conditions, assuming to reflect longer term water status regimes. In 

contradiction to Baluja et al. (2012) though, NDVI were found less sensitive to leaf 

stomatal conductance and stem water potential (Zarco-Tejada et al. 2012). Thermal in-

ertia (maximum temperature deviations between day and night time imagery) has been 

applied as another proxy for soil moisture variations and potentially water stress 

(Soliman et al. 2013). 

In terms of viewing geometry, the retrieval of biophysical parameters is supposed to be 

improved for vertically trained crops, as more canopy is being recorded as Kempeneers 

et al. (2008) successfully proved for for hyperspectral (AHS) airborne data. Best results 

were obtained for perpendicular sun-object orientations (Kempeneers et al. 2008).  
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For cool climate conditions, the impact of different soil management strategies (SMS) 

on grapevine physiology and vigour has not yet been studied in more detail by means of 

multispectral and thermal UAS remote sensing. Thus, the objectives were:  

(i) to test if different SMS may be separated by means of multi-angular multi-

spectral UAS aerial imagery,  

(ii)  to derive optimal viewing directions for such vertically trained crops in rela-

tion to the prediction of physiological and vigour parameters (e.g. Chl, nitro-

gen, nitrogen balance index, percentage of canopy gap, yield), and  

(iii)  to follow seasonal changes of grapevine physiology and yield in relation to 

soil management. The chapter is a more detailed version of a conference 

contribution (Retzlaff et al. 2013) and a paper version (Retzlaff et al. 2015). 

For the first two objectives, UAS multispectral images from three viewing geometries 

were derived in 2011 (17/08/2011). The last objective used data from four points during 

the 2012 growing season were used. 

7.2 Material and Methods 

7.2.1 Study Site 

The study was carried out in a commercial vineyard in Grevenmacher/Luxembourg 

(49.69 N, 6.45 E, ~180 m a.s.l.) on the white Vitis vinifera L. variety Pinot blanc. The 

vertical shoot positioning trained vineyard (108.7 are) was planted on 125 AA rootstock 

in 1992. The distance between the rows is 2 m and between single plants 1.2 m. The 

experimental vineyard is east exposed with an inclination of around 20% and a west-

east orientation of the rows.  

Pruning as well as canopy management measures were conducted in the same way in all 

strategies. Herbicides were used to suppress weed development. Crop protection appli-

cations against Plasmopara viticola, Erysiphe necator and Botrytis cinerea were carried 

out from the air (helicopter) and from the ground (tractor-driven fungicide sprayers by 

the farmer) (Retzlaff et al. 2015). 
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7.2.2 Soil Management Strategies 

Four SMS were compared using a randomized block design, consisting of 4 replicates 

(plots) of five rows each (Figure 7.1). SMS were:  

1. multi-species cover crop mixture, commercial name “Wolff mixture”, 

2. natural greening, 

3. summer soil tillage with rotating harrow and winter greening, and 

4. natural greening with disturbance in dry conditions.  
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Figure 7.1 Location of studied vineyard in Grevenmacher, Luxembourg, with soil man-
agement strategy plots (1-4) and replicates (A-D). Data source: UAS image (R: 900 nm, 
G 670 nm, B 550 nm; ESRI Data & Maps for ArcGIS® 2012) 
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Prior to the start of the experiment, all rows had been covered by natural greening plants 

for several years. In spring 2010, this natural greening layer was tilled in the strategies 

(1) and (3). At the beginning of the trial, the Wolff mixture consisting of Vicia sp., Tri-

folium spp., Phacelia sp., Onobrychis sp.. Melilotus sp., Medicago spp. and further 

herbs was sown in plots of strategy (1). In this strategy the greening plants were not 

mulched but rolled 3 times per season. Natural greening plants (mainly grass) in strate-

gy (2) were mulched 3 to 4 times per season. In strategy (3), the soil was kept open be-

tween April and August using a rotary harrow. In both years, a winter greening mixture 

consisting of Vicia sp., Lolium sp., Trifolium sp., Raphanus sp. and Malva sp. was sown 

in August and plowed in in April. In strategy (4) one interruption of the greening layer 

was conducted by rotary harrow in May or June (Retzlaff et al. 2015). 

7.2.3 Field Sampling and Analysis 

All parameters were assessed in the central row of each plot (five rows each) in pre-

defined “assessment regions” consisting of 12 plants each in the lower part of the exper-

imental vineyard. Field sampling was carried at five characteristic BBCH-code 

(Biologische Bundesanstalt, Bundesortenamt und Chemische Industrie; Hack et al. 

1992, Meier 2001) stages illustrated in Figure 7.2: after flowering BBCH 69, develop-

ing of fruits BBCH 71-73, berries beginning to touch BBCH 77-79 and at ripening of 

berries BBCH 81-85 (Lorenz et al. 1995). Yield and pruning wood weight per plant 

were measured after harvest in November.  
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Figure 7.2 Seasonal nitrogen uptake and content for grapevine in relation to growth 
stages (modified from Schultz and Löhnertz 2002, p.20)  

The impact of the different SMS on the canopy structure in the cluster-zone was as-

sessed on 27 and 28 July 2011 using point quadrat analysis (PQA) according to (Smart 

and Robinson 1991). To this end, a rod was inserted into the cluster-zone every 10 cm 

from the south side of the row on the height of the upper fruiting wire. Here, PQA war 

carried out at 1.5 m height above the ground in the middle of the canopy instead of the 

cluster-zone as suggested by Smart and Robinson (1991). All contacts of the rod were 

recorded distinguishing between leaves (L), clusters (C) and gaps (G) on 48 insertion 

points per plot. The leaf layer number (LLN) and the percentage of gaps (PG) was cal-

culated according to Meyers and Van den Heuvel (2008).   

Chl content and N were measured between fruit set and harvest (distance between sam-

pling dates in each case five weeks): the Chl content in the leaves and the Nitrogen-

balance-index (NBI) were measured four times using the Dualex® equipment (Force-A, 

Paris, France) (Goulas et al. 2004). For this, 40 leaves were pricked from the main shoot 

from the upper canopy (fifth leaf from the top) at BBCH stages 71, 77-79, 85 and 89 

(Lorenz et al. 1995) on 09/06/2011 (2011 – I), 12/07/2011 (2011 – II), 17/08/2011 
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(2011 – III) 21/09/2011 (2011 – IV), 21/06/2012 (2012 – I), 18/07/2012 (2012 – II), 

20/08/2012 (2012 – III) and 26/09/2012 (2012 – IV). Leaves were transported to the 

laboratory in cooling boxes. Here, Dualex measurements were performed. Leaf discs 

were punched from the same leaves, dried at 60°C for 24 hours and ground. Nitrogen 

(N) contents were quantified with a TruSpec elemental analyser (LECO Corporation, St. 

Joseph, MI, USA) (Mayer et al. 2013). Additionally, the nitrogen balance index (NBI) 

was assessed by the ratio of the Dualex® derived Chl and flavonol content (Martinon et 

al. 2010). 

As UAS flights were not carried out on the same day, additional Chl measurements 

were made according to the Dualex measurements using a Konica Minolta SPAD-502 

chlorophyll meter (see chapter 4.5.2). 

Leaf area measurements were carried out using a Li-COR® LAI-2000 Plant Canopy 

Analyzer. LAI was measured just before dusk on 30/08/2011 with a 50% view cap av-

eraging measurements underneath the grapevine’s first layer of leaves, and in the mid-

dle of the row interspace. For each row 10 such measurements were averaged to one 

LAI value. To comply with routine LAI measurements at the Luxembourg Institute of 

Science and Technology (LIST), this set up was changed following Ollat et al. (1998) in 

2012 (28.06.2012): a 45° view cap was used and measurements were made facing W 

perpendicular to the first layer of leaves and facing 45° NW at the side of the respective 

row. Again, 10 measurements were averaged to one LAI. 

The plants in the assessment regions of each plot were harvested separately at 

20/09/2011 and 10/10/2012. The total yield per plant was calculated by dividing the 

total weight at harvest recorded per plot by the number of plants.  

After leaf fall (30/11/2011, 21/11/2012), grapevines were pruned and the total pruning 

wood weight per plant as an indicator of vegetative growth, was calculated by dividing 

the weights recorded per plot by the number of plants (Retzlaff et al. 2015). 

7.2.4 UAS Image Acquisition 

Flights were covering the entire management site (1) taking multispectral imagery with 

the miniMCA-6 camera (Tetracam Inc. 2010, CA, USA) in 2011 and 2012. In 2011, 

three camera pointing angles were applied: nadir and slant-range (45° off-nadir) view-

ing directions on both illuminated and shaded sides of the vine canopy (Figure 7.3 

Flight route along the vineyard at Grevenmacher for 17/08/2011). In the following year, 
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only VZA of nadir and 45° on illuminated canopy were applied. Flight height was at 

approximately 70 m a.g.l. and resulted in a pixel resolution of about 4 cm x 4 cm.  

 

Figure 7.3 Flight route 
along the vineyard at 
Grevenmacher for 
17/08/2011 

In early summer, also thermal data was acquired with the broadband camera UCM 

(Zeiss) at 70 m above ground, too. Cameras were described in detail in chapter 4.  

Table 7.1 lists the UAS flights, sensors and respective weather conditions and BBCH 

stages (Lorenz et al. 1995) for 2011 and 2012 (Ministère de l’Agriculture, de la Viticul-

ture et du Développement Rural, 2011). It is important to note that image acquisition 

could not always be carried out at the same dates when field parameters were assessed 

due to weather or other reasons (availability of UAS and sensors, pilot) leading to a 

time-shift between the respective data sets. 
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Table 7.1 Flight dates,  sensors weather conditions and grape phenological stages at 
UAS flights in 2011 and 2012 (mod. Retzlaff et al. 2015) 

Date UTC Sensor Weather BBCH stage 

(Lorenz et al. 

1995) 

17/08/2011 10:00h – 10:30h miniMCA-6, nadir 
and 45° VZA 

23.3°C, 58% relative 
humidity (RH), 788 
Wh/m² 

81 Beginning of 
ripening 

28/06/2012 11.03h – 11:05h UCM, nadir 26.7°C, 61% RH, 698 
Wh/m² 

71 Fruit set 

03/07/2012 13:05h - 13:15h miniMCA-6: 
45° illuminated side 
and nadir 

24.3°C, 47% relative 
humidty, 716 Wh/m² 

dito 

23/07/2012  
11:22h - 11:29h 
12:24h - 12:30h 
 

miniMCA-6: 
nadir° 
45° illuminated side 

 
23.3 -24°C, 45% RH, 
740 Wh/m² 

77-79 Berries 
touching 

03/09/2012  
10:01h – 10:07h 
11:06h – 11:12h 

miniMCA-6: 
45° illuminated 
nadir 

21.8°C - 22.6°C, 60% 
- 53% RH, 750-700 
Wh/m² 

85 Softening of 
berries 

30/09/2012  
12:23h – 12:28h 
13:00h – 13:05 h 

miniMCA-6: 
45° illuminated  
nadir 

16.5°C – 17.2°C, , 58-
51% RH 748-780 
Wh/m² 

89 Berries ripe for 
harvest 

 

For the multispectral imagery 10 nm (FWHM) standard filters centred at 530 nm, 550 

nm, 570 nm, 670 nm, 700 nm, and 900 nm were used. Radiometric resolution was set to 

10-bit (1024) greylevels (i.e., digital number: DN). Example images of different view-

ing angles are presented in Figure 7.4. 

Thermal images were taken within a spectral range of 7-14 µm and a thermal sensitivity 

of 90 mK at 30°C. As only about 20 images may be stored on the internal memory, gen-

erally two flights were required to cover the vineyard.  

Ground control points highlighted each assayed row, and their geographic position was 

measured using a Trimble GPS. For radiometric calibration four reference grey-scale 

panels (chapter 5.2.4) with known reflectance were put in the field.  
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Figure 7.4 Multispectral images from study vineyard (17/08/2011) taken with different 
viewing angles: top left: nadir; top right:  45° VZA illuminated; bottom: 45° VZA shad-
ed  canopy (RGB: 900 nm, 550 nm, 530 nm). 

7.2.5 Data Preparation 

7.2.5.1 Multispectral Image Data 

Following the preprocessing chain explained in chapter 6, after vignetting correction, 

the six individual band images (1280x1024 pixels) were aligned to a principal plane by 

x-, y-translation, rotation and scaling and combined to multispectral images. As for the 

2011 data, vignetting was not fully corrected, some darkening around the image edges 

persisted and could not be corrected retrospectively as the camera had already been sent 

to the producer for a rear-to-front filter change, only the central imagery parts were fur-

ther analysed.  

Radiometric corrections included an empirical line (EL) based regression of image digi-

tal values obtained from four reference panels (white, light-grey, dark-grey, black) to in-
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situ derived reflectances using a FieldSpec Pro spectro-radiometer (ASD) as was ex-

plained in more detail in chapter  4.3. Reference images to determine the EL parameters 

were chosen with reference panels lying close to nadir position.  

For the 2012 data, the 30/09/2012-flight was chosen as reference. All other flights were 

calibrated relatively to this flight. As exposure was typically optimized for vegetation 

reflectance, the white reference panel tended to be overexposed and only the three dark-

er reference panels were used for empirical line calculation. Resulting negative reflec-

tance values were set to Null/NoData and excluded from further analysis. Table 7.2- 

Table 7.3show the respective empirical line parameters.  

Table 7.2 Empirical line and coefficient of determination (R²) for radiometric correction 
of 2011 UAS flight 

17/08/2011 Nadir  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0009x - 0.0209 0.9999 

550 ρ = 0.0009x - 0.0191 0.9993 

570 ρ = 0.0008x - 0.0113 0.9993 

670 ρ = 0.0008x - 0.0109 0.9966 

700 ρ = 0.001x - 0.0237 0.9997 

900 ρ = 0.0011x - 0.128 0.9719 
 45° illumin. canopy  
Band 
[nm] 

Empirical line R² 

530 ρ = 0.001x - 0.036 0.9996 

550 ρ = 0.0009x - 0.0343 0.9993 

570 ρ = 0.001x - 0.0395 0.9994 

670 ρ = 0.0009x - 0.036 0.9996 

700 ρ = 0.0011x - 0.0321 0.9997 

900 ρ = 0.0011x - 0.1108 0.9995 
 45° shaded canopy  
Band 
[nm] 

Empirical line R² 

530 ρ = 0.001x - 0.0335 0.9990 

550 ρ = 0.0009x - 0.0344 0.9991 

570 ρ = 0.001x - 0.0419 0.9948 

670 ρ = 0.0012x - 0.0712 0.9923 

700 ρ = 0.0011x - 0.0283 0.9911 

900 ρ = 0.0012x - 0.1541 0.9973 
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Table 7.3 Empirical line and coefficient of determination (R²) for radiometric correc-
tion of 2012 UAS flights  

03/07/2012 Nadir  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0009x - 0.0238 0.9929 

550 ρ = 0.0008x - 0.0215 0.9933 

570 ρ = 0.0009x - 0.0279 0.9942 

670 ρ = 0.0008x - 0.0324 0.995 

700 ρ = 0.0008x - 0.0194 0.9997 

900 ρ = 0.0029x - 0.1056 0.9999 

 45° illumin. canopy  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0009x - 0.0238 0.9929 

550 ρ = 0.0008x - 0.0215 0.9933 

570 ρ = 0.0009x - 0.0279 0.9942 

670 ρ = 0.0008x - 0.0324 0.995 

700 ρ = 0.0008x - 0.0194 0.9997 

900 ρ = 0.0029x - 0.1056 0.9999 

23/07/2012 Nadir  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0003x - 0.013 1 

550 ρ = 0.0002x - 0.0089 1 

570 ρ = 0.0002x - 0.0113 1 

670 ρ = 0.0002x - 0.0124 1 

700 ρ = 0.0003x - 0.0157 1 

900 ρ = 0.001x - 0.0976 0.9999 

 45° illumin. canopy  

530 ρ = 0.0003x - 0.0312 0.9998 

550 ρ = 0.0002x - 0.0177 0.999 

570 ρ = 0.0003x - 0.0488 0.999 

670 ρ = 0.0002x - 0.0334 0.9998 

700 ρ = 0.0003x - 0.0332 1 

900 ρ = 0.0011x - 0.1489 0.9998 

 

03/09/2012 Nadir  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0002x - 0.0173 0.9978 

550 ρ = 0.0003x - 0.0134 1 

570 ρ = 0.0003x - 0.0226 0.9999 

670 ρ = 0.0002x - 0.0237 0.9998 

700 ρ = 0.0003x - 0.0254 0.9997 

900 ρ = 0.001x - 0.1069 0.9999 

 45° illumin. canopy  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0003x - 0.0384 0.9995 

550 ρ = 0.0003x - 0.015 0.9995 

570 ρ = 0.0003x - 0.0177 0.999 

670 ρ = 0.0002x - 0.033 0.9967 

700 ρ = 0.0003x - 0.03 0.9978 

900 ρ = 0.0012x - 0.1281 0.9907 

30/09/2012 Nadir  

Band 
[nm] 

Empirical line R² 

530 ρ = 0.0003x - 0.0208 0.9959 

550 ρ = 0.0003x - 0.0137 0.9987 

570 ρ = 0.0004x - 0.0157 1 

670 ρ = 0.0003x - 0.0187 0.9987 

700 ρ = 0.0003x - 0.015 1 

900 ρ = 0.0009x - 0.0957 1 

 45° illumin. canopy  

530 ρ = 0.0003x - 0.0856 0.9965 

550 ρ = 0.0003x - 0.0313 0.9933 

570 ρ = 0.0003x - 0.0286 0.9938 

670 ρ = 0.0003x - 0.0572 0.9962 

700 ρ = 0.0003x - 0.0545 0.9963 

900 ρ = 0.0011x - 0.1645 0.9925 

 

According to field sampling, all rows within the SMS and replicates sampling area lo-

cated at the lower end of the vineyard (Figure 7.5) were digitized to retrieve the respec-
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tive canopy spectral values of the sampling horizon which was located within the upper 

leaf layer. Canopy gaps were generally avoided.. 

 

 

Figure 7.5 Polygons for retrieving canopy spectral value means (top: nadir VZA, bot-
tom: 45° VZA) 

In preparation for seasonal comparisons of Chl, a mask of the vine rows was created by 

an unsupervised classification following a principal component analysis: The Iterative 

Self-Organiszing Data Analysis Technique (ISODATA) algorithm (Memarsadeghi et al. 

2007, Intergraph Corporation 2013) was applied with the following settings: 10 spectral 

classes with 20 iterations and a convergence threshold of 0.95. Statistics were initialized 

from image statistics and classes obtained needed to fit the following criteria: minimum 

size of 0.1% of all pixels for a cluster, maximum standard deviation of 5, minimum Eu-

clidian distance between clusters of 4 and a maximum of 1 cluster merging at the end of 

the procedure. The retrieved 10 classes were further assigned by visual interpretation to 

a binary map of strict vine canopy (1) and other (0). 

For 2011, commonly used VIs were calculated (Table 7.4) and image statistics (mean, 

minimum, maximum, and standard deviation of DNs or reflectances) derived for the 

digitised sampling zones.   
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Table 7.4 Vegetation indices and their focus on physiological variables used in this 
study (subsripted wavelengths in nm) 

Vegetation 
index 

Formulation Author Application 

Simple Ratio 
Index 

SR = RnIR / Rred Jordan 1969 
Structural index, plant 
vitality 

Normalized  
Difference 
Vegetation 
Index 

 NDVI =  

(RnIR - Rred)/( RnIR + Rred) 
Rouse et al. 1974 

Structural index, 

plant vitality 

    

Transformed 
Chlorophyll  
Absorption in 
Reflectance 
Index 

TCARI = 3 [(R700 - R670) – 
0.2 (R700 - R550) (R700/R670)] 

Haboudane et al. 2002 
Chl index, less influ-
ence of LAI 

Optimized 
Soil-Adjusted    
Vegetation 
Index 

OSAVI =  (1 + 0.16)  (RnIR - 
Rred) / (RnIR + Rred + 0.16) 

Rondeaux et al. 1996, 
Haboudane et al. 2002 

Chl index, less sensi-
tive to soil back-
ground 

Photochemical 
Reflectance 
Index 

PRI =  

(R531 – R570)/( R531 + R570) 
Gamon et al. 1992 

Carotenoids/Chl in-
dex, Chl fluorescence, 
radiation use efficien-
cy, water stress 

Renormalized 
Difference 
Vegetation 
Index 

RDVI =  

(RnIR - Rred) / (RnIR + Rred)
0.5 

Roujean and Breon 
1995 

Structural index relat-
ed to fAPAR 

Red Edge 
Ratio Index 

RE = R700 - R670 
Part of TCARI; Zarco-
Tejada et al. 2013a 

Chl content 

 

7.2.5.2 2012 Thermal Data   

As the UCM automatically performs a greyvalue stretch for each image acquisition, the 

28/06/2012 thermal images were radiometrically aligned by histogram matching.  Imag-

es were resampled to mosaics by ERDAS Imagine image-to-image registration with the 

help of the ground control points laid out in the field. Nearest neighbour resampling to 

15 cm x 15 cm pixel resolution was chosen (Figure 7.6).  
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Figure 7.6 Mosaic of thermal histogram-matched images from 28/06/2012 

As for the multispectral data, for each row, the mean digital values were retrieved from 

the canopy for each treatment and their replicates.  

7.2.6 Statistical Data Analysis 

Statistical analysis on the 2011 and 2012 data sets was carried out a) to assess the im-

pact of the different SMS on canopy reflectance and their spectral separability in rela-

tion to VZAs, b) to analyse the correlation structure among the variables, and c) to es-

tablish quantitative prediction models for a spatial assessment of selected plant physio-

logical properties based on the measured reflectance data.  
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A principal component analysis was computed from the DNs to show potential differ-

ences in VZA and canopy spectral behavior. The correlation structure among the meas-

ured reference and band values data of 2011 was visualized using a heat map of pair-

wise Pearson´s correlation coefficients of all properties, considering all flight directions 

and physiological variables.  

Differences among canopy reflectance caused by the different SMS were analysed using 

both linear discriminant analysis (LDA) and visual inspection (boxplots). The LDA was 

carried out for each viewing direction, with SMS as grouping factor and the VIs as ex-

planatory variables. The following indices were used: SR, NDVI, TCARI, OSAVI, 

TCARI/OSAVI, PRI, RE, and RDVI (Table 7.4).  

Further inspection included boxplots of the thermal radiation at fruit set (BBCH 71) to 

inspect if SMS induce thermal canopy differences, an ANOVA was computed of the 

thermal signal versus SMS. 

The quantification of selected vegetation properties (Chl and N content, leaf layer num-

ber LLN, percentage of gaps PG in the upper canopy, LAI and yield) using grey value 

(i.e. DN, digital number) data was accomplished using forward stepwise multiple re-

gression analysis. Different regression models were calibrated for the 2011 and 2012 

data sets: The aim of the 2011 analysis was to understand the impact of the viewing 

direction on plant property estimations and to derive the most appropriate wavelengths 

in doing so. To this end the combined reflectance data set, including the data from all 

viewing directions were included in the stepwise regression models. The intention of the 

2012 analysis was to calibrate global regression models for estimating key biophysical 

plant parameters and to exemplary compare the resulting spatial estimations of Chl con-

tent. In this stepwise regression only data of the illuminated 45° viewing direction were 

considered since the performance of these data was better compared to the nadir and 

shaded 45° viewing direction. All regression models were internally validated using 

leave-one-out (LOO-) cross-validation. The statistical analysis was carried out using the 

R software package (Retzlaff et al. 2015). 

 



7 UAS-Multispectral Remote Sensing of Soil Management Impact on Grapevine 168 

 

 

7.3 Results 

7.3.1 Field assessments 

The results of field assessments in the season 2011 are summarized in Table 7.5. SMS 3 

(winter greening and soil tillage in summer) showed highest values in LLN, Chl, N, 

NBI, the densest upper canopy, as well as the highest LAI, pruning weight and yield per 

plant. 

 
Table 7.5 Field parameters assessed in the experimental vineyard 2011 (Sampling dates: 
LLN, PG [%], Chl Dualex® contents, NBI Dualex® at 17/08/2011; N [% dry weight] at 
21/09/2011, yield [kg] at 20/11 and 10/10/2011, pruning weight [kg] 30/11/2011) 

Parameter LLN  PG [%] Chl N NBI LAI Yield PW 

Mean 

SMS1 

1.17  

(±0.31) 

33.37 

(±11.5) 

21.61 

(±3.26) 

1.80 

(±0.22) 

6.31 

(±1.26) 

0.76 

(±0.13) 

2.63 

(±0.29) 

0.45 

(±0.13) 

Mean 

SMS2 

1.11 

(±0.19) 

35.50 

(±6.81) 

19.61 

(±2.4) 

1.77 

(±0.27) 

5.75 

(±0.97) 

0.69 

(±0.21) 

2.69 

(±0.67) 

0.39 

(±0.10) 

Mean 

SMS3 

1.79 

(±0.3) 

18.00 

(±9.52) 

26.09 

(±2.52 

2.09 

(±0.14) 

8.43 

(±1.19) 

1.09 

(±0.22) 

4.22 

(±0.38) 

0.57 

(±0.16) 

Mean 

SMS4 

1.64 

(±0.37) 

23.00 

(±10.89) 

21.41 

(±1.58) 

1.82 

(±0,21) 

6.51 

(±0.73) 

0.70 

(±0.15) 

3.03 

(±0.83) 

0.51 

(±0.13) 

 

Table 7.6 lists the seasonally derived physiological parameters for the grapevine leaves 

in 2012. 

For Chl, N, KBI, LAI, and yield SMS 3 “Winter greening” showed continuously the 

highest values and for pruning weight the lowest values in 2011 and 2012, followed by 

SMS 1 “Wolff mixture”. 

Further information on retrieved grapevine parameters and analyses of vegetation data 

not relevant to this study may be found in Evers et al. (2012). 
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Table 7.6  Field parameters assessed in the experimental vineyard for 2012 (arithmetic mean and ± standard deviation; DOY: day of year; BBCH 
after Lorenz et al. 1995, SMS: Soil management strategy; PG [%], Chl Dualex® contents, N [% dry weight], NBI Dualex®, yield [kg], pruning weight 
[kg]) 

Parameter Chl 

I 

SPAD NBI 

I 

N 

I 

SPAD Chl II NBI 

II 

N  

II 

PG LLN Chl 

III 

NBI 

III 

N 

III 

Chl 

IV 

NBI 

IV 

N 

IV 

LAI Yield Pruning 

weight 

DOY 173    185 200   220  233   270   274 284 326 

BBCH 71     71-79   81 81 85   89      

Mean 

SMS 1 

18.8 

±0.4 

26.0 

±0.4 

6.4 

±0.1 

2.8 

±0.1 

27.2 

±1 

22.7 

±0.5 

7.6 

±0.3 

2.4 

±0.1 

9.4 

±4.7 

1.7 

±0.2 

21.4 

±1.2 

7.2 

±0.4 

2.3 

±0.1 

19.1 

±1.3 

6.4 

±0.6 

2.2 

±0.1 

2.0 

±0.2 

2.3 

±0.4 0.7 ±0.1 

Mean 

SMS 1 

17.8 

±0.4 

24.8 

±0.9 

6.0 

±0.2 

2.6 

±0.1 

27.8 

±1.8 

20.3 

±1.0 

6.7 

±0.4 

2.2 

±0.1 

18.2 

±3.4 

1.6 

±0.1 

16.5 

±1.3 

5.2 

±0.5 

1.9 

±0.1 

12.9 

±1.3 

4.1 

±0.5 

1.8 

±0.1 

1.9 

±0.4 

2.0 

±0.3 0.5 ±0.1 

Mean 

SMS 3 

21.9 

±0.7 

29.3 

±1 

8.0 

±0.3 

3.6 

±0.1 

28.8 

±1.5 

28.1 

±0.9 

10.8 

±0.5 

3.3 

±0.0 

3.1 

±1.3 

2.2 

±0.1 

30.3 

±0.5 

11.3 

±0.3 

3.0 

±0.1 

26.1 

±1.0 

10.1 

±0.6 

2.4 

±0.1 

2.0 

±0.3 

3.2 

±0.3 1.1 ±0.1 

Mean 

SMS 4 

18.8 

±0.2 

25.9 

±0.4 

6.4 

±0.2 

2.7 

±0.1 

27.7 

±1.2 

20.6 

±0.8 

6.9 

±0.4 

2.4 

±0.1 

12.0 

±2.9 

1.7 

±0.0 

15.9 

±0.9 

5.1 

±0.4 

2.1 

±0.2 

13.1 

±1.3 

4.2 

±0.5 

2.1 

±0.2 

1.7 

±0.5 

2.1 

±0.1 0.7 ±0.1 
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7.3.2 Spectral Separability of Soil Management Strategies Observed by Different 

Viewing Angles (2011 Data) 

The PCA score plot of PC 1 versus 2 (Figure 7.7) demonstrates a higher variability of 

reflectance values depicted by the oblique viewing geometries, and specifically at illu-

minated canopy parts (red) compared to the narrower ranges of nadir values (blue) and 

shaded canopy parts (green).  

 

Figure 7.7 Plot of the principal component 1 and 2 for all rows and nadir and oblique 
viewing geometries (Retzlaff et al. 2015) 

Figure 7.8 shows box-plots of different vegetation indices (SR, NDVI, PRI, RDVI, 

TCARI, and OSAVI) versus the SMS for the three considered viewing geometries (na-

dir, VZA 45° illuminated, VZA 45° shaded grapevine canopy). The central tendencies 

of all these vegetation indices show remarkable differences between the four different 

soil management systems for the oblique viewing directions and especially for the 45°-

illuminated direction (SR, NDVI, RDVI, OSAVI), whereas for the nadir direction the 

soil management systems show very similar means and cannot be separated from each 

other.  
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Figure 7.8 Box-plots of different vegetation indices versus SMS 1- 4 (x-axis) for the 
viewing geometries nadir, illuminated and shaded grapevine sides (black line: median, 
boxes minimum and maximum values, tails: non-outlier range, circles: outliers) 
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This was confirmed by linear discriminant analysis (Table 7.7) that was carried out for 

each viewing direction, with soil management as grouping factor and the vegetation 

indices as explanatory variables. Table 7.7 summarizes the (cross validated) total accu-

racies of the respective models and the standardized discriminant coefficients of the first 

two functions that represent the contribution of a variable to the discriminant function in 

the context of the other predictor variables in the model. The total accuracy of the model 

that is based on the nadir viewing direction is 48.77%, whereas in both oblique viewing 

directions >70% of the data could be correctly classified. 

 
Table 7.7 Standardized discriminant coefficients of the first two discriminant functions, 
proportion of trace and cross-validated total accuracies for LDA models for different 
viewing directions (n=215, LD: linear discriminant) 

  Nadir 45°(illum.) 45°(shade) 

  LD1 LD2 LD1 LD2 LD1 LD2 

SR              -5.77 -1.35 0.67 3.74 3.4 -0.56 

NDVI          0.45 0.93 5.19 0.66 0.65 -0.83 

PRI             1.86 0.01 -0.19 0.27 0 0.27 

RE -0.96 3.16 0.05 -1.23 -3.15 2.21 

TCARI            5.74 -8.94 17.4 20.72 4.37 5.32 

OSAVI            -1.32 -12.22 -28.8 -15.64 -5.14 -11.66 

TCARI/OSAVI -3.82 4.85 -14.02 -15.68 -3.7 -4.42 

RDVI             6.13 15.6 11.17 2.83 0.38 9.69 

Prop. of trace 0.69 0.25 0.89 0.08 0.86 0.08 

Total acc.(CV) 48.75% 70.77% 70.25% 

 

Furthermore, the discriminant coefficients in Table 7.7 reveals that the vegetation indi-

ces TCARI, OSAVI, TCARI/ OSAVI, RDVI and to a lower extent NDVI mostly con-

tribute to the discrimination, especially for the illuminated canopies (Retzlaff et al. 

2015). 

7.3.3 Separability of Soil Management Strategies Observed by Thermal 

Radiation (2012 Data) 

As the boxplots (Figure 7.9) and the ANOVA (Figure 7.10) of the LWIR radiation data 

against the SMS show, the SMS 3 (summer soil tillage with rotating harrow and winter 

greening) could again be separated from the other strategies and to a lesser extent SMS 



7 UAS-Multispectral Remote Sensing of Soil Management Impact on Grapevine 173 

 

 

1 (Wolff mixture) from 2 (natural greening). The SMS 4 (natural greening with disturb-

ance in dry conditions) could at that point of time not be separated from 1 and 2.   

 

Figure 7.9 Box-plot of thermal radiation signal versus SMS for 28/06/2012 

 
  Df Sum Sq  Mean Sq  F value   Pr(>F) 
as.factor(SMS) 3    3562   1187.5  24.02  4.91e-11*** 
Residuals      76    3757     49.4 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 7.10 ANOVA results of thermal radiation signal versus SMS for 28/06/212 



7 UAS-Multispectral Remote Sensing of Soil Management Impact on Grapevine 174 

 

 

7.3.4 Ability to Predict Physiological Parameters and Yield for Grapevine Using 

Different Viewing Geometries (2011 Data) 

Figure 7.11 shows a heatmap depicting the correlation among the measured plant pa-

rameters for the growing season and reflectance data. Plant parameters from all dates 

were included in the analysis. There is a group of variables that are positively correlated 

(Chl, N, LLN, yield). The variable PG is negatively correlated with this group. From the 

remote sensing perspective, among these variables, the chlorophyll content is the most 

interesting one, since chlorophyll can be predicted from multispectral remote sensing 

data and may be linked to yield. The heatmap also illustrates the increasing correlation 

between Chl and yield with image acquisition dates progressing to the end of season. 

 

Figure 7.11 Heatmap of in-situ measured physiological variables in 2011 (red: high cor-

relation, blue: low correlation, N: nadir; Shad: 45° VZA shaded; Illum: 45° VZA illumi-

nated, I-IV are measurement dates of in-situ sampling from beginning of berry develop-

ment to harvest) 
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Table 7.8 Derived regression models for the prediction of measured vine physiological 
variables of 2011 field samples for each VZA (X: Band; significance codes: 0 ‘***’, 
0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’ 1) (Retzlaff et al. 2015) 

Chl Nadir 45°(illum.) 45°(shad.) 

Intercept 549.101 541.1043 529.7517 
X530   0.000246 *** 
X550 0.0403 * 0.00223 **  
X570  0.00318 **  
X700  0.05216 . 0.043850 * 
N 16 14 13 
R2

cv  0.26 0.85 0.76 
RMSEcv 34.64 17.21 19.92 
        

N Nadir 45°(illum.) 45°(shad.) 

Intercept 3.6251 3.39543 3.7748189 
X530   9.93E-05 ***   
X550 0.083350 .  0.000884 ***  
X570  0.004124 **      
X700  0.029463 * 0.00338 ** 
N 16 14 13 
R2

cv  0.24 0.85 0.76 
RMSEcv 0.184 0.11 0.126 
        

PG Nadir 45°(illum.) 45°(shad.) 

Intercept -30.1074 -25.22294 -31.609778 
X530  0.017161 *  
X550 0.0184 * 0.151129 2.37E-06 *** 
X570  0.000276 ***        
X670  0.002361 **  
N 16 14 13 
R2

cv  0.4 0.66 0.84 
RMSEcv 6.81 4.89 2.97 

Yield Nadir 45°(illum.) 45°(shad.) 

Intercept 10.563235 6.28664 3.540241 
X530  0.029139 *  
X550  0.010237 * 0.056265 . 0.185868 
X570  0.095864 .  
X700  0.024746 * 0.000964 *** 
X670   0.001972 ** 
X900 0.055355 .    0.000236 ***   
N 16 14 13 
R2

cv  0.51 0.84 0.68 
RMSEcv 0.57 0.34 0.46 

 

For the 2011 data, the influence of different viewing directions on the quantitative pre-

dictions of selected vine physiological properties was tested: Chl, N, PG and yield. For 

this purpose stepwise linear regression models were computed for each VZA to identify 
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the most relevant wavelengths for estimation, using the Akaike information criterion 

(AIC). Validation was accomplished through leave one-out cross-validation (Table 7.8). 

Table 7.8 demonstrates that for a given plant property different models were identified 

for the different viewing directions using the stepwise linear regression approach. In 

general, best results for each plant characteristics were obtained using the reflectance 

data from the oblique viewing geometries. Beside PG, the 45° sun-illuminated canopy 

parts showed higher coefficients of determination than the shaded sides. The cross-

validated R2 values in our case range from 0.66 (PG) to 0.85 (Chl, N). In contrast, spec-

tral signatures taken from nadir did not, except for yield, lead to reliable quantitative 

estimations of the plant characteristics. 

7.3.5 Predicting Seasonal Grapevine Physiological Parameters and Yield (2012 

Data) 

As in the previous year, the best separability was obtained from oblique imagery of the 

illuminated grapevine parts, therefore only these images were further processed for the 

2012 data. Regression models were computed for Chl, N, and NBI including all dates. 

Compared to individual step-wise regression models for one date in 2011 with a R2
cv > 

0.8, the global predictive models’ R2
 cv in 2012 were smaller but except for N with R2

cv 

= 0.52 still ranged from R2
cv = 0.65 for Chl, and R2

cv = 0.76 for NBI (Figure 7.12). Ta-

ble 7.9 lists the associated model coefficients which include the nIR band (900 nm) and 

the red edge (700 nm) as highly significant (p value < 0) for all parameters models, and 

for Chl also the Chl peak near 550 nm. 

 

7.3.5.1 Chlorophyll Estimation (2012)  

The following presents in detail the results for Chl for 2012. 
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Figure 7.12 Cross-validated regression 
models and model coefficients for Chl 
Dualex® and N content [% dry weight] 
and NBIDualex® for 2012 
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Table 7.9 Model coefficients for cross-validated regressions models for Chl, N  and NBI 
in 2012 of Figure 6 (Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’ 1) 

Coefficients Estimates Standard t value Pr (> ǀtǀ) Sign. 

Chl 
Intercept 31.9502625 1.8207056 17.548 < 2E-16 *** 

X900 0.00325 0.0002935 11.074 9.96E-16 *** 

X700 -0.0182065 0.0030136 -6.041 1.30E-07 *** 

X530 0.0125341 0.004308 2.91 0.00518 ** 

X550 -0.0117183 0.002162 -5.42 1.31E-06 *** 

Multiple R² 

0.7068 

Adjusted R² 

0.6859 
Residual SE 

2.822 

F-Statistic 

38.76 on 4 
and 56 DF 

p-value 

2.49E-14

N  

Intercept 2.07E+00 2.06E-01 10.067 3.59E-14 *** 

X900 3.17E-04 4.77E-05 6.642 1. 1.35E-08 *** 

X700 -1.42E-03 2.53E-04 -5.632 5.99E-07 *** 

X530 5.29E-04 2.14E-04 2.467 0.0167 * 

X670 9.77E-04 4.655€-04 2.1 0.0403 * 

Multiple R² 
0.5758 

Adjusted R² 
0.5455 

Residual SE 
0.271 

F-Statistic 19 
on 4 and 56 

DF 
p-value 

6.40E-10

NBI 

Intercept 5.4260802 0.6973468 7.781 1.43E-10 *** 

X900 0.0020961 0.0001669 12.557 < 2E-16 *** 

X700 -0.0074283 0.0006788 -10.943 9.91E-16 *** 

X670 0.0053489 0.0012923 4.139 0.000114 *** 

Multiple R² 
0.7895 

Adjusted R² 
0.7786 

Residual SE 
1.026 

F-Statistic 

72.52 on 3 
and 58 DF 

p-value 
2.2E-16

 

Based on the derived seasonal regression models, Chl values were spatially estimated 

for each of   the SMS and all replicate for the image acquisition dates in 2012 (Figure 

7.13). For identification purposes, only replicate A was selected for visualization. The 

map illustrates clear differences among the reflectances between the BBCH stages 

(Lorenz et al. 1995).   
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Figure 7.13 Chlorophyll estimation for image acquisition dates based on global regres-
sion model of in-situ derived Chl and reflectances in 2012 (replicate A) 
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The seasonal course of predicted canopy Chl illustrates that SMS (3) with winter green-

ing and summer soil tillage, except for early summer, showed the highest values for all 

dates followed by the Wolff mixture (1). For the natural greening (2) and natural green-

ing with disturbance during dry conditions (3), late summer/early autumn date Chl val-

ues diminish faster than for other SMS. 

Measured Chl(Dualex) values for replicate A-D, confirm these results (Figure 7.14). 

The Chl values are generally highest and persist at higher levels even for September 

(DOY 270) compared to other SMS with respective correlation coefficient between 

measured and predicted Chl values being R = 0.84 for SMS (1),  R = 0.84 for (2), R = 

0.94 for (3) and R = 0.99 for (4).  

 

 

Figure 7.14 Mean seasonal course and standard deviation of measured Chl (Dualex) 
across all replicates in 2012 (SMS: soil management strategy; bars: standard deviation) 
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7.3.5.2 LAI (2011 versus 2012) 

For 2011 (Figure 7.15), LAI values could be predicted with a R²cv of 0.71 by a step-wise 

regression model of the August multispectral reflectance data and measured LAI values 

at the end of August.  

Crossvalidation: LAI estimation (08/2011)

Figure 7.15 Cross-

validated regression 

model for LAI 

For comparison, similar regression analysis for 2012 using the 03/09/2012 images being 

closest in season stage to the 2011 data, yielded no correlation (multiple R²: 0.3687, 

adjusted R²: - 0.05209).  
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7.3.5.3 Yield Estimation (2012) 

The individual step-wise regression models for each respective date and measured yield 

in 2012 showed deviating results: The prediction of yield was best achieved at BBCH 

stage 71 Fruit set (Lorenz et al. 1995) (03/07/2012) with a R²cv of 0.87 and for stage 81 

Softening of berries (03/09/2012) with a R²cv of 0.73. There seems to be no correlation 

of the multispectral data at BBCH stage 77-79 Berries touching (23/07/2012) with R²cv 

of 0.2 as well as for the end of the growing season (30/09/2012) and a R²cv of 0.12.   

 

Figure 7.16 Cross-validated regression models and model coefficients for different 
within-season times in 2012 (top left: 71 Fruit set; top right 77-79 Berries touching; 85 
Softening of berries, 89 Berries ripe for harvest) 
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7.4 Discussion  

High quality wines highly depend on fertile soils and a sensible soil management (Gil-

Perez et al. 2010, Bramley et al. 2011a, Tardaguila et al. 2011, Arnó et al. 2012). In this 

study, the utility of multispectral data acquired at nadir and oblique viewing geometries 

to distinguish among SMS was analyzed (objective (i)). It could be shown that different 

SMS result in variations in the Vis/nIR during the growing season and could well be 

seperated by multispectral and to a lesser extent by broadband thermal data, although 

the latter only for one point in time and to a lesser degree (SMS 4 and SMS 2 were not 

separable, Figure 7.9). 

Compared to nadir images, oblique viewing angles were found to significantly boost the 

spectral separation of grapevine canopy reflectance of different SMS (Figure 7.7). The 

multispectral images obtained from a UAS for August 2011 showed that the canopy 

reflectance of illuminated canopy fractions has a larger variance in the PC space of the 

1st and 2nd principal component (PC) of all bands than the nadir image. The shaded can-

opy parts however, are rather a mixture of these two. This is in accordance with the 

findings of Kempeneers et al. (2008) and Meggio et al. (2008) who successfully mod-

elled Chl concentration from hyperspectral reflectances perpendicular to the solar plane 

by inverting a 3D ray tracing canopy model. Possible signal contamination by spurious 

soil pixels included in the row polygons retrieving the image spectral signals, did not 

seem to affect the statistical separation. First, as arithmetic means were computed for 

each row, potential soil signal effects are supposed to become negligible. Also, one 

would expect the results for the oblique viewing geometries to be more affected by spu-

rious soil pixels and should have performed worse as more soil signal is potentially in-

cluded within the signal. This was, however, not the case. 

Evaluating the performance of common vegetation indices (VI) listed in Table 7.4, we 

were able to confirm the higher suitability of oblique viewing angles on illuminated 

canopy (Table 7.7). Hyperspectral VIs such as OSAVI, TCARI, TCARI/OSAVI and 

PRI, have been described as being sensitive to Chla+b changes for Vitis vinifera L. leaves 

and canopies (Zarco-Tejada et al. 2005; Martín et al. 2007, Gil-Perez et al. 2010, Zarco-

Tejada et al. 2013a), and indeed OSAVI, TCARI AND TCARI/OSAVI were able to 

precisely separate the SMS (Figure 7.8), separability being strongest for oblique view-

ing angles on illuminated canopies. Only poor discriminant power had been found for 

PRI and RE (Table 7.7). Among the simpler VIs and oblique viewing angles with the 

sun positioned behind the observer, the RDVI and NDVI also distinguish well among 

SMS. Hall et al. (2011b) enhanced the analysis of shaded canopies compared to the 
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sunny sides by normalization using a shadow fraction derived from multiple viewing 

geometries. 

Similarly, the broadband thermal data (nadir) was partly able to separate the SMS 3 

(summer soil tillage with rotating harrow and winter greening) from all other treatments 

and partly SMS 2 (natural greening) from 1 (Wolff mixture) as Figure 7.9 and Figure 

7.10 illustrated. The good separation of SMS 3 is most likely due to the heated open 

floor and higher radiative signals compared to the other strategies. A different result 

may be expected if the grapevine suffered from water stress (Berni et al. 2009a; Berni et 

al. 2009c, Berni et al. 2009b).   

The second objective (ii) in this study was, using the 2011 data, to determine the most 

appropriate viewing geometry for predicting physiological and canopy parameters, 

where again best results (Table 7.8) were obtained using multispectral reflectances of 

oblique viewing geometries for illuminated canopies for N and Chl (both R²cv 0.85), and 

yield (R²cv 0.84). For PG in the upper canopy, however, the shaded canopy parts were 

better suited for the estimation (R²cv 0.84). The better performance of oblique viewing 

angles compared to nadir imagery, is due to seeing a greater part of the vertically-

oriented grapevine canopy. In spite of careful pixel selection using manual digitizing 

and unsupervised classification a possible signal contamination by spurious soil pixels 

could not be fully excluded in the statistical analysis. However as arithmetic means 

were computed for each row, a potential soil signal effect is suppressed. If this was not 

the case, the results for the oblique viewing geometries should have been more affected 

and expected to perform worse as more soil signal is potentially included in the area, 

which was not the case. In fact, the optimal retrieval of leaf chemical components was 

achieved from the oblique viewing directions. 

Seasonal changes of grapevine physiological parameters (objective (iii)) were derived 

by global regression models. Chl and NBI content estimations throughout the season of 

2012 showed slightly lower R2
cv values (Figure 7.12: 0.65, and 0.76, respectively) than 

in 2011 (Chl and N R2
cv = 0.85), for N even R2

cv =  0.52 (Table 7.8, Table 7.9). General-

ly, the quantification of the N content from spectroscopic data using empirical models is 

mainly indirect via the positive correlation between N and Chl. In fact, Table 7.9 shows 

that apart from the wavelength 550 nm the stepwise multiple regression selected the 

same wavelengths (900 nm, 700 nm and 530 nm) for both variables and respective re-

gression coefficients have the same signs. N is positively correlated with  the Chl con-

tent as it is contained in the Chl pigments (Guyot 1990, Jensen 2007), which is the opti-

cally active parameter for remote sensing. Compared to Figure 7.12, Figure 7.17 shows 
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the linear relationship between N and Chl for the early flight at fruit set (R2
cv = 0.87), 

and the latter three dates in 2012 (R2
cv = 0.83).  

Figure 7.17 Plot of 
ChlDualex versus N (top) 
and NBIDualex versus N 
content for the field 
measurements early 
and the latter three 
dates in 2012 

It illustrates that at early season, the relationship between Chl and N is different than for 

later development stages leading to an overall lower R2
cv value of 0.52 for the prediction 

of N for the whole season. This again consolidates the importance of selecting appropri-
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ate BBCH stages for image acquisition. The prediction’s accuracy of N therefore in-

creases if the first flight data was subtracted from the 2012 analysis. As Figure 

7.17additionally shows, the NBI is directly linked to Chl content as it is derived from 

the same optical measurement device (i.e. Dualex).     

Furthermore, remaining bidirectional reflectance differences between in-situ spectral 

measurements and sensor-viewing and row geometry may add to that effect (Zarco-

Tejada et al. 2005). Another reason for lower correlations in 2012 compared to 2011 

may be attributed to time delay between field parameter derivation and image acquisi-

tion (Figure 7.18). Due either to weather conditions or logistic reasons (e.g. availability 

of instruments), image acquisition could not always take place at field measurement 

dates. However, the general progression is nevertheless following the measured Chl 

course. 

 

Figure 7.18 Time shift between seasonal field Chl measurements (arithmetic mean: 
black dots) and UAS image acquisition dates (grey asterix) in 2012 

The SMS 3 (summer soil tillage with rotating harrow and winter greening) was ob-

served being the most vigorous in terms of Chl, N, NBI and yield  values followed by 

SMS 1 (Wolff mixture) (Table 7.5, Table 7.6, Figure 7.14). The graph also shows the 

greater late summer drop of mean measured Chl for SMS 2 (natural greening) and 4 

(natural greening with disturbance in dry conditions). This suggests that grapevine vig-

our is fostered by lack of competing cover crops in summer. Similar results had been 

found for more Mediterranean type climate zones (Clarke et al. 2006; Tesic et al. 2007). 
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Both years have deviated from the long-term mean by +1°Cand  +0.5°C in temperature 

derived at 2m height, and 2011 had about 30-45% less rainfall than normally, 2012 had 

mean annual rainfall (data: Forschungsanstalt für Waldökologie und Forstwirtschaft 

2015) .  

The grapevine structural parameter LAI could be predicted with reasonable accuracy for 

2011 (Figure 7.15), yet not so for the subsequent year. This may be attributed to the 

changing measurement method to comply with other experiments. Experiments should 

be repeated throughout a season comparing measurement setups to retrieve any conclu-

sions.   

Predicting yield showed seasonal differences in the prediction quality of measured yield 

(Figure 7.16). Similar as for N and NBI (Figure 7.17), the early season shows higher 

correlation of multispectral data (R2
cv = 0.87) than for later seasons. Although, in this 

case, at veraison, yield could be better predicted (R2
cv = 0.73) than at the end of season 

image shortly before harvest (R2
cv = 0.12).  Negative correlations (r ~ -0.2) between 

canopy density and canopy area and yield until flowering and higher positive correla-

tions (r ~ 0.4-0.6) around veraison have also been reported by Hall et al. 2011a. Hall et 

al. (2011a) therefore confirming the importance of selecting appropriate image acquisi-

tion times.  

7.5 Conclusion 

UAS-based imagery has proven to be a useful tool for rapid spatial information of vine-

yard vigour and precision viticulture. Viticulturists in the Anglican world increasingly 

fly own UAS to obtain quick overviews over their vineyard’s state.  SMS affect grape-

vine vigour and yield across different regions and climates and hence allow for targeted 

viticulturist attention (Poni et al. 1994; Bramley et al. 2011b; Hall et al. 2011a, Ripoche 

et al. 2011, Fourie 2011). Observed differences in vigour may be well depicted by 

means of multispectral UAS-based remote sensing and are best retrieved by oblique 

UAS data. In this work, reflectance of the illuminated parts of the grapevine canopy was 

most appropriate to distinguish among SMS using oblique UAS data using simple vege-

tation indices like the NDVI and RDVI. OSAVI, TCARI and TCARI/OSAVI were also 

well suited to discriminate SMS at angled views. From multiple UAS images taken at 

specific BBCH stages from fruit set to pre-harvest, reliable regression models could be 

derived to estimate Chl and NBI and yield. Thus, the presented methodology is a valua-

ble tool for precision agriculture. Upcoming hyperspectral sensors should widen the 

scope of canopy and fruit properties even more. Further analyses should include UAS 
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imagery into 3D presentations of the vine row canopy (Corbane et al. 2012) to study in 

more detail viticultural canopy properties and bidirectional reflectance behaviour as has 

been exerted for PRI in forests (Hilker et al. 2008, Hall et al. 2008, Hall et al. 2011b). 

The scope of thermal infrared data may best be used for water stress studies in vine-

yards as has been widely published within recent years (Sepulcre-Cantó et al. 2006; 

Berni et al. 2009a; Berni et al. 2009b; Berni et al. 2009c; Suárez et al. 2009, a.o.). An-

other issue for viticulturists could be the microclimatic regional cooling effects during 

day/night-times within the season, but this was out of scope in this study. 

  



 

 

8 UAS-based Retrieval of Sun-Induced Fluorescence 

8.1 Introduction 

Chlorophyll fluorescence has been described in chapter 3.1.3. Photosynthesis is (a) the 

process of converting solar light to carbohydrates fuelling all plant processes and carbon 

fixation (Rascher et al. 2009). Of the solar energy absorbed by the plant pigments, with-

in the photosystem II, (b) excess energy may be emitted from the chloroplasts at longer 

wavelengths (i.e. fluorescence) leading to a double peak at 690 nm (red) and 740 nm 

(nIR). Further surplus energy (c) is released by the non-photochemical quenching or 

heat dissipation (NPQ), which converts surplus energy into heat that is dissipated from 

the leaf and thus protects the chloroplasts from damages (Demmig-Adams and Adams 

1996; Meroni et al. 2009; Damm et al. 2010a). The processes occur in competition and 

give insight into the photosynthetic activity. The used amount of incident light hence 

varies around 0-82%, for solar-induced chlorophyll fluorescence (Fs) ~ 0.5% – 2%, and 

~ 17.5% – 98% for NPQ (Demmig-Adams and Adams 1996; Frankenberg 2012, 

Murchie and Lawson 2013). 

Fs measurements are an early indicator of plant stress (Lichtenthaler and Miehé 1997; 

Meroni et al. 2009, Calderón et al. 2013, Panigada et al. 2014) and may indirectly be 

used to estimate light use efficiency (LUE). LUE again is an important variable for the 

quantification of gross primary production (GPP) and, together with the fraction of ab-

sorbed photosynthetically active radiation (fAPAR), a key component in the definition 

of carbon fixation in the biosphere (Rascher and Pieruschka 2008; Rascher et al. 2009; 

Damm et al. 2010b). 

Within the Flex 2012 Field Campaign at Campus Klein-Altendorf, the impact of N-

fertilization on a sugar beet field on the Fs signal using narrow-band multispectral UAS 

data were to be determined (i). Furthermore, it was tested if UAS-based Fs may follow 

diurnal courses of photosynthetic activity of a sugar beet (Beta vulgaris) field compared 

to field-based spectro-radiometric measurements.  
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8.1.1 Remote Sensing of Sun-Induced Chlorophyll-Fluorescence 

Multispectral remote sensing of Fs has been used with different sensors and for a variety 

of platforms ranging from the ground (Maier et al. 2003, Baluja et al. 2012, Guanter et 

al. 2013, a.o.) to airborne UAS (Berni et al. 2009b; Zarco-Tejada et al. 2012, Calderón 

et al. 2013, Zarco-Tejada et al. 2012; Zarco-Tejada et al. 2013d), airplanes (Zarco-

Tejada et al. 2000, Damm et al. 2010a, Damm et al. 2014), and also space-borne cam-

paigns (Guanter et al. 2007, quoted in Meroni et al. 2009, Guanter et al. 2014).  

The sensor spectral resolution defines the location of the absorption maximum and has 

only recently been shown to vary from 760.4 nm at 0.1 nm spectral resolution to 762 

nm at 5 nm resolution growing wider with decreasing band resolution (Damm et al. 

2011, figure 8.2). Similar results were obtained with synthetic spectra derived by 

FluorMOD (Zarco-Tejada et al. 2012). 

 

 

Figure 8.1 Location of Fraunhofer Line absorption maximum in relation to sensor band 
spectral resolution (mod. from Damm et al. 2011, p. 1886) 

Physical or absolute values of Fs require accurate atmospheric correction of remote 

sensing data even for path lengths in meter-range (Alonso et al. 2008). Even minimal 

errors in estimating the aerosol depth and distribution within the atmosphere introduce 

errors in Fs retrieval and may be corrected by an effective transmission correction using 

non-fluorescing targets (Guanter et al. 2007; Guanter et al. 2010). 

Yet, Fs has been derived without atmospheric correction from AISA airborne imaging 

spectrometer by Corp et al. (2006) and Middleton et al. (2008). Among the first applica-

tions of UAS for Fs detection was conducted by Berni et al. (2009) and Zarco-Tejada et 

al. (2009) who used the in-filling O2-A band method with soil as non-fluorescing target 

to derive spatial and diurnal fluorescence variations within orchards treated with water 
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stress. Consistent results between airborne multispectral and field-based measurements 

were found, and both, the in-filling method (3FLD) and in-filling ratios for modeled 

spectra showed high correlations (R² >0.82). For hyperspectral UAS data obtained at ~ 

6 nm band width, the in-filling ratios were not significant (Zarco-Tejada et al. 2012).  

Meroni et al. (2009) classified and reviewed in detail the different approaches for multi-

spectral data. Basically, there are two types of sun-induced fluorescence retrieval, (a) 

the radiance-based methods employing the Fraunhofer Line O2 absorption bands or (b), 

the reflectance-based methods using indices.  

A detailed description of the respective processes and ground-based measurement tech-

niques of fluorescence may be found in Murchie and Lawson (2013). Passive multispec-

tral remote sensing of (Fs) allows for spatial determination of photosynthetic activity in 

a non-destructive way (Meroni et al. 2009; Rascher et al. 2009; Guanter et al. 2010; 

Murchie and Lawson 2013). Fs is an additive term to the reflected energy at plant level. 

The incoming radiance is isotropic (E0), and canopy reflectance (ρλ) as well as Fs may 

be assumed as Lambertian: 

ఒܮ  ൌ ఒܮ
௣௔௧௛ ൅

ቀܧ଴
ఒߩ
ߨ ൅ ఒቁݏܨ ൈ ߬ఒ

1 െ∝௔௧௠ൈ ఒߩ
 (8.1) 

With: 

Lλ:   target radiance at wavelength λ 
Lpath

λ:  atmospheric path radiance at wavelength λ 
E0:  solar irradiance 
ρλ:  canopy reflectance at wavelength λ 
FS:  solar-induced Chl fluorescence 
τλ:   atmospheric transmittance at wavelength λ 
αλ:  atmospheric spherical albedo at wavelength λ 

8.1.1.1 Radiance-based Method for Fluorescence Retrieval 

Radiance-based methods generally utilize the so-called Fraunhofer lines, and in this 

case the molecular absorption bands of oxygen at 687 nm (O2-B band) and around 760 

nm (O2-A band, see Figure 8.2) where solar light is absorbed by the atmosphere and 

radiances within the absorption maximum are compared to shouldering areas where no 

absorption takes place (Fraunhofer 1817; Malenowský et al. 2009, Meroni et al. 2009; 

Damm et al. 2010a).  
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Figure 8.2 Top-of-atmosphere radiance and top-of-canopy Fs for green vegetation and 
location of O2-absorption bands (from: Guanter et. al. 2010, D1903) 

The Fraunhofer Line Discriminiation (FLD) or in-filling method was first introduced by 

Plascyk (1975) and has long been accepted as the standard Fs retrieval method (Damm 

et al. 2011, Meroni et al. 2009). It is based on the assumption that Fs is an additive term 

to the reflectance within that spectral region and may be measured by flux measure-

ments within the O2-A band and a reference band outside the Fraunhofer line. It is as-

sumed that reflectance fluxes ρ and Fs are constant for that spectral range. 

To account for linear variations of ρ and Fs within and outside the O2-A absorption band 

at 760 nm (Meroni et al. 2009) Maier et al. (2003) introduced the 3FLD method which 

includes two close shouldering bands to model an artificial reference band.  
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௜ܮ െ	
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(8.2) 

With 

L:  target radiance at wavelength λ 
E:  radiance upwelling from non-fluorescent target 
௟ݓ ൌ

ఒ೗ିఒ೔
ఒೝିఒ೗

, and ݓ௥ ൌ
ఒ೔ିఒೝ
ఒೝିఒ೗

 

i,r,l: subscripts indicate wavelengths (e.g. i: 760 nm within, l: outside the absorption band at 
745-755 nm and r: at 770-785 nm) 
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Various improvements of the 3FLD method have been developed within the past years 

(Meroni et al. 2009). In this study Fs was retrieved by using the empiric modification 

(c3FLD) suggested by Damm et al. (2014). While assuming τ = 1, path radiance Lp = 0 

due to low flight altitude and α = 0, Fs may be obtained by equation 4: 

ௌܨ  ൌ ܤ ൤
௢ܧ௜ܮ െ ߙ ௢ܮ ௢ܧ
௢ܧܤ െ ௜ܧܣ

൨ (8.3) 

With  

௜ߩ 	ൌ ௢ߩ	ܣ	
௦೔ܨ ൌ ௦೚ܨܤ
ܤ ൌ 0.8

ൡ  

The factor A relates ρi  and ρo by interpolation of the shoulder bands: 

ܣ ൌ ఘళఱబ௪೗ାఘళఴబ௪ೝ
ఘళఱబ

 , and 

B is an empirical factor relating Fs inside and outside the O2-A band (Damm et al. 2014, 

p. 259f). 

The advantage of the radiance-based methods lies in the derivation of physical fluores-

cence units (Damm et al. 2011). Furthermore, the authors could show the robustness of 

the c3FLD method against noise.   
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8.1.1.2 Fluorescence Reflectance and Method for Fluorescence Retrieval 

The fluorescence signal is a rather fine contribution to the overall plant reflectance with 

a general proportion of only 1 to 5% (see also chapter 3). Figure 8.3 illustrates reflec-

tance and its fluorescence component for a sugar beet leaf. 

 

Figure 8.3 Sun-induced chlorophyll fluo-
rescence for a sugar beet leaf (top) and its 
contribution to the reflectance signal (bot-
tom) (from: Meroni et al. 2009, p. 2038) 

As solar-induced chlorophyll fluorescence (Fs) contributes to the reflectance, Zarco-

Tejada et al. (2000) first showed how the fluorescence signal may be derived from the 

reflectance signal (Meroni et al. 2009): 

ఒߩ  ∗ ൌ
ఒܮߨ
ఒܧ

ൌ ߩ ൅
ఒܨߨ
ఒܧ

 ( 8.4)

With 

 reflectance  :ߣߩ

ߣߩ ∗:  apparent reflectance 

 upwelling radiance :ߣܮ
 reflected energy :ߣܧ
 emitted energy/fluorescence :ߣܨ
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The reflectance-based methods were mostly developed for hyperspectral sensors but 

often use only up to three narrow-band indices. They may be categorized in (1) reflec-

tance-based indices where at least one band is affected by fluorescence, (2) derivative 

indices, and (3) in-filling indices utilizing fluorescence and neighbouring bands. Their 

advantage lies in the simplicity of retrieving Fs from traditional EO data but yet do not 

yield data in physical units, and are often not only steered by fluorescence (Meroni et al. 

2009).  

Dobrowski et al. (2005) used ratios of ρ690/ρ600 nm and ρ740/ρ800 nm with field spec-

trometer data, and Zarco-Tejada et al. (2009) applied the in-filling ratios ρ690/ρ630 nm 

and ρ761/ρ757, and found the latter least affected by Chla+b variations. 

The measurement of the NPQ’s pigment variations introduce reflectance changes in the 

green spectral ranges at 531 nm, and therefore Gamon et al. (1990, 1997) defined the 

photochemical reflectance index (PRI): 

ܫܴܲ  ൌ
ହଷଵߩ െ ହ଻଴ߩ
ହଷଵߩ ൅ ହ଻଴ߩ

 (8.5) 

The index correlates well with NPQ and has shown to be well correlated with water 

stress (Evain et al. 2004, Berni et al. 2009a; Berni et al. 2009c; Suárez et al. 2009; 

Zarco-Tejada et al. 2012; Zarco-Tejada et al. 2013b). 

The PRI has successfully been used to show differences in photosynthetic efficiency 

(see Nichol et al. 2006) and LUE (Hall et al. 2008). Some studies, however, showed 

PRI values to vary with species and phenology (Filella et al. 2004, Rascher and 

Pieruschka 2008; Damm et al. 2010b) and PRI of canopy is strongly affected by solar 

illumination angles, leaf angle distribution and viewing angles (Hall et al. 2008; Hilker 

et al. 2008; Malenowský et al. 2009). This could be confirmed by the sensitivity anal-

yses carried out in the chapter 6. Momentary environmental conditions (irradiance, tem-

perature, water supply, etc.) steer the photosynthetic activity of plants independently of 

the chlorophyll pigment content, canopy structure or fAPAR (Malenowský et al. 2009). 

Vegetation indices are thus supposed to be of limited use for estimating photosynthetic 

activity. 
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8.1.2 The Impact of N-Fertilization on UAS-based Sun-induced Chlorophyll 

Fluorescence Measurements 

Airborne retrieval of Fs of corn crops using AISA multispectral data treated with differ-

ent levels of N-fertilization has been analysed by Corp et al. (2006) using AISA multi-

spectral data. Values ranged from 7-36 mWm-2sr-1nm-1 and the fluorescence index 

ρ688nm/ ρ760nm was able to discriminate between N-fertilization levels. Airborne canopy 

Fs values were also shown to detect biophysical changes introduced by N treatments. On 

the leaf and top of canopy (TOC) level (1m) in-situ ASD spectrometer data yielded 

higher Fs levels with increasing N application rates (Middleton et al. 2008). The authors 

found lower Fs values for in-situ derived Fs values (Corp et al. 2006) using the FLD 

method which is in accordance with findings from Sobrino et al. (2011) who found Fs 

retrieval from sFLD and from improved FLD (Alonso et al. 2008) from airborne meas-

urements to overestimate Fs with RMSEs of 0.4-0.5 mWm-2sr-1nm-1. The latter however, 

used atmospherically corrected data. 

8.1.3 UAS-Based Diurnal Observations of Sun-induced Chlorophyll Fluroescence 

Fs hase been derived from airborne micro-hyperspectral and multispectral UAS sensors 

by Zarco-Tejada et al. (2009), Zarco-Tejada et al. 2012,  and Zarco-Tejada et al. (2013).  

A consistent course for airborne/UAS- and field-based Fs-measurements has already 

been outlined by several authors (Zarco-Tejada et al. 2009, Zarco-Tejada et al. 2012). 

In-situ based measurements of TOC- Fs radiances with a field-spectrometer (ASD 

FieldSpec) have been made by Zhao et al. generally, Fs was higher for the O2-A-band 

compared to the O2-B values and rise in the morning until midday and recline in the 

afternoon following the diurnal PAR (Figure 8.4).  

 

Figure 8.4 Diurnal Fs radiation for a maize-wheat field in China, 13/05/2010 (from Zhao 
et al. 2014, p. 10186) 
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The following sections present the two experiments. They start with a description of the 

study sites followed by the airborne data acquisition and field data collection, data pro-

cessing and analysis methods for each experiment respectively.  

8.2 Experiment Campus Klein-Altendorf 1 (CKA1): N-Fertilization 

Rate and Fluorescence  

8.2.1 Material and Methods 

The HYFLEX experimental sites of the August 2012 campaign are maintained by the 

Forschungszentrum Jülich/University of Bonn. They are located at Campus Klein-

Altendorf (Rascher et al. 2013) . To test if N-fertilization has an effect on sugar beet 

biophysical parameters and fluorescence signal, an experimental plot located at Campus 

Klein-Altendorf 1 (N50° 36' 55", E6° 59' 11") was chosen (Figure 8.5).  

 

Figure 8.5 Study Site Campus Klein-Altendorf 1 (multispectral data) 
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8.2.1.1 Field Data Collection 

Greylevel reference panels were laid out into the centre field tracks and their reflectance 

was measured during the ascent using a FieldSpec Handheld Pro spectrometer (ASD, 

USA). Using the fibre pistol, fifty measurements of the target, the dark current and the 

white reference (spectralon 25 cm x 25 cm) were averaged respectively. Three to five 

spectra for each reference panel were then averaged to one reflectrance spectrum per 

panel. Furthermore, ground-control point markers were distributed along the plot 

boundary and on the inside tracks. For some of these, GPS coordinates were measured 

using a hand-held GARMIN GPS devices described in chapter 4.6.  

8.2.1.2 Airborne Campaign and Data Processing 

Two UAS flights, one with the multispectral miniMCA-6 and one with the thermal 

broadband camera UCM were carried out on 22/08/2012 around midday. Unfortunately, 

for that day, the weather was not ideal for fluorescence analysis as high cirrus and cu-

mulus clouds moved through the area during the morning until midday. Yet, flights 

were carried out within cloud gaps when irradiance was high.  

Multispectral Imagery 

The multispectral flight took place between 12:24 h to 12:35 h UTC one hour after noon 

(11:35h UTC) with ~ 130 m flight altitude above ground. The MiniMCA-6’ cameras 

were equipped with 25 mm-diameter FWHM +/-10 nm filters at the central wavelengths 

531 nm, 570 nm, 670 nm, 750 nm, 780 nm and a FWHM +/- 1 nm at 760 nm. Exposure 

time was set to 4800 µsec and other cameras were exposed according to their filter 

transmission: 670 nm: 130%; 750 nm: 20%; 760 nm: 200%, 780 nm: 30%). The six 

respective camera images were converted from RAW to 16-bit data format and correct-

ed for vignetting effects followed by the alignment of slave camera images to the master 

band (570 nm) as described in chapter 5. As illumination was supposed to be homoge-

nous between image acquisition times, an orthophoto mosaic was to be averaged from 

of 8 selected multispectral images. The Agisoft PhotoScan Professional software was 

used for this process and included the following steps (chapter 5.3.4): 

1. Camera calibration based on the master camera using the Brown distortion model 

2. Photo alignment estimated from eight input UAS photos , UAS-derived GPS coordi-

nates for photo centers (WGS84), GPS-altitude, and camera attitude angles during 

the flight (roll, pitch, yaw) as derived from UAS IMU. Camera locations and error 

estimates are given in Table 8.1 and Figure 8.6 on the next page.  
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Table 8.1 Photo attitude parameters and error estimates of multispectral UAS flight CKA1 (22/08/2012, 12:30 UTC) 

Photo-Label X/East Y/North Z/Altitude Error (m) X error Y error Z error 

ka1_f159_ttc0769.tif 357599.922 5609918.810 362.600063 4.175 2.379 -3.427 -0.16

ka1_f159_ttc0772.tif 357565.203 5609922.718 361.400063 4.209 3.785 -1.838 0.10

ka1_f159_ttc0775.tif 357528.478 5609925.076 362.200063 6.007 4.889 3.489 0.07

ka1_f159_ttc0779.tif 357600.071 5609941.786 361.900063 5.092 -4.176 2.558 -1.39

(ka1_f159_ttc0781.tif 357621.115 5609942.829 360.100063 10.717 -10.473 -0.470 2.22)

ka1_f159_ttc0783.tif 357641.312 5609943.851 360.700063 2.462 -1.515 -0.090 -1.94

ka1_f159_ttc0785.tif 357660.756 5609944.909 360.500063 3.929 -3.610 -1.316 0.82

ka1_f159_ttc0787.tif 357671.344 5609945.603 362.000063 8.794 8.721 1.095 0.28

Total Error 5.291 4.671 2.292 0.96

 

Figure 8.6 Camera locations and error estimates for  

multispectral UAS flight (Z error is represented by  

ellipse color, X,Y errors by ellipse shape) 
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3. A dense mesh model with ~ 180000 polygons was the generated. 

4. Finally, an orthophoto was exported, textured with averaging function to a spatial 

resolution of 75 mm x 75 mm.  

Radiometric correction consisted of an ELC (Smith and Milton 1999) using the 

greylevel reference panels to obtain reflectances. As exposure was optimized for dark 

vegetation targets, the white reference panel was saturated for the first three bands and, 

thus, excluded from correction process. Table 8.2 shows that reflectances could be accu-

rately derived to up to 0.7 reflectance differences for reference panels. 

Table 8.2 Empirical line and coefficient of determination (R²) for radiometric correction 
of UAS image 

22/08/ 
2012 

~ 11:35 UTC      

Band 
[nm] 

Empirical line R² ∆ρ 
white 
rp 

∆ρ 
light-
grey rp 

∆ρ 
dark-
grey rp 

∆ρ 
black 
rp 

530 
ρ = 0.0003x - 0.0397 0.9999 - 0.003 0.000 0.002 

570 ρ = 0.0003x - 0.0390 0.9999 - -0.010 -0.006 -0.003 

670 ρ = 0.0002x - 0.0259 0.9930 - -0.005 0.004 -0.006 

750 ρ = 0.0018x - 0.1187 0.9998 -0.002 -0.005 -0.005 0.007 

760 ρ = 0.0054x - 0.5194 1 -0.001 0.002 -0.004 0.001 

780 ρ = 0.0017x - 0.1604 0.9999 -0.006 -0.008 -0.001 0.003 

 

Several vegetation indices were computed which are listed in (Table 8.3). The NDVI 

was further employed to ensure image statistics derivation for only densely vegetated 

sugar beet areas within the plots: all pixels with a NDVI of less than 0.6 were masked to 

background value. 
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Table 8.3: Vegetation and fluorescence indices used in this study (R: reflectance, nIR: 
near infrared) 

Vegetation 
index 

Formulation Author Application 

Normalized  
Difference Ve-
getation Index 

 NDVI = (RnIR - Rred)/( RnIR + Rred) 
Rouse et al. 
1974 

Structural index, 

plant vitality 

Photochemical 
Reflectance 
Index 

PRI = (R531 – R570)/( R531 + R570) 
Gamon et al. 
1992 

Carotenoids/Chl 
index, Chl fluo-
rescence, radiation 
use efficiency, 
water stress 

In-filling reflec-
tance index I 

IFR I = R760 – R750 

Modified 
from Pérez-
Priego et al. 
2005 

Fluorescence 

In-filling reflec-
tance index II 

IFR II = R760 – (0.5*(R750+R780)) 

Modified 
from Pérez-
Priego et al. 
2005 

Fluorescence 

Fluorescence 
Ratio (FR I) 

FR I = R760/R750 

Modiefied 
from Zarco-
Tejada et al. 
2009 

Fluorescence 

Fluorescence 
Ratio (FR II) 

FR II = R760/R530 do.  Fluorescence 

 

Plots were digitized and used to derive zonal statistics for band reflectances and VI val-

ues versus nitrogen treatment and sugar beet variety (see plots in Figure 8.5). 

 

Thermal Imagery 

Thermal data were acquired using the ZEISS UCM at 13:27 h UTC and 95 m above 

ground (for information on camera characteristics, please refer to chapter 4.2.3). No 

further in-situ temperature measurements were made. As each thermal image employs 

the entire 8-bit data space at < 90mK at 30°C, three images covering the plots were se-

lected and histogram-matching applied using dark to bright greylevel targets within the 

overlapping image zones. Agisoft Photoscan Professional was again applied to align 

photos, build a point cloud and to create an orthophoto mosaic (Figure 8.7).  
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Photo attitude parameters and error estimates for camera location are given in are listed 

in Table 8.4 and illustrated in Figure 8.8 and residuals for used ground control point 

markers are given in Table 8.5.  

 

 

Figure 8.7 Study Site Campus Klein-Altendorf 1 (thermal data) 
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Table 8.4 Photo attitude parameters and error estimates of UAS flight CKA1 (22/08/2012, 13:27 UTC) with thermal camera 
Photo-Label GPS-Xcam GPS-Ycam GPS-Zcam Yaw Pitch Roll Error (m) X error Y error Z error 

SS0283.BMP 6.986786 50.623869 324.9 -84.7 -5.2 1 48.164 -15.057 -11.043 44.397 

ka1_ss0281_hm2ss0283bmp.tif 6.986764 50.623784 322.4 -85.1 -5.8 -4.5 46.084 -17.626 -16.226 39.367 

ka1_ss0285_hm2ss0283bmp.tif 6.987218 50.623853 320.7 -86.6 -0.5 1 46.797 27.878 -11.348 35.832 

Total error 17.082 7.404 4.59165 14.693 

Figure 8.8 Camera locations and error estimates for thermal 
UAS flight (Z error is represented by ellipse color, X,Y errors 
by ellipse shape) 
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Table 8.5 Ground control marker position residuals for georeferencing multispectral 
data 

Label Xerror [m] Yerror [m] Zerror [m] Error [m] Projections Error [pixels] 

point 1 -1.014674 -0.139051 0.453303 1.119992 3 0.406496 

point 3 -0.811614 -0.336366 3.975596 4.071514 3 0.516307 

point 4 -0.920692 -0.068297 2.819942 2.967223 3 0.53594 

point 5 3.435126 1.725167 3.463046 5.173875 2 0.281019 

point 6 7.626207 -2.581539 3.988946 8.985269 2 0.26395 

point 7 0.444271 0.200279 -0.212578 0.531674 3 0.194242 

point 8 0.284905 1.043034 -1.643836 1.967558 3 0.157528 

point 9 -0.689972 -0.375752 -3.598653 3.683416 3 0.427283 

point 10 1.398811 -1.887947 3.522468 4.234241 2 0.006873 

point 11 2.126856 -0.183164 3.378401 3.99633 2 0.159138 

point 12 0.819137 -3.235283 2.305448 4.056246 2 0.614789 

point 13 1.170009 0.44354 -6.828114 6.941815 2 0.275259 

point 14 3.142091 -1.497698 0.675051 3.545636 1 0 

point 15 3.158592 -1.021466 1.840858 3.7959 1 0 

point 16 2.391164 -0.189872 1.793041 2.994781 1 0 

point 17 0.496467 1.589735 -0.29391 1.691188 1 0 

point 18 -0.088029 -0.23407 -1.617861 1.637075 3 0.442276 

point 19 0.439934 0.709121 -0.655524 1.061181 3 0.417906 

point 20 -0.747937 -0.183201 2.68954 2.797606 3 0.380311 

point 21 -0.62459 -0.014259 3.575517 3.629688 3 0.592068 

point 22 -0.016457 0.846361 2.616638 2.750163 3 0.161056 

point 23 -0.355667 -0.754082 5.513943 5.576621 3 0.238979 

point 24 -0.46155 -1.933659 5.187111 5.555014 3 0.503204 

Total 2.177693 1.264461 3.214722 4.083582 0.375453 

 

According to multispectral data, the thermal data were masked to include only densely 

vegetated sugar beet pixels using NDVI > 0.6 as threshold. 

8.2.1.3 Statistical Analyses 

For the analysis of separation of N-treatment on sugar beet varieties, a principal compo-

nent analysis was calculated to infer the first principal component as another infor-

mation input beside the multispectral bands, VI and fluorescence indices (Table 8.6). 

Visual inspection in form of boxplots was carried out with N treatment and variety as 

grouping factors, and thermal and  multispectral bands and Vis (Table 8.3) as explanato-

ry variables as a first impression on the bands/index suitability.  

Two-factorial ANOVAs were computed between respective spectral bands, Vis, fluo-

rescence indices versus variety and N treatment to evaluate the best distinction variables 
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to differentiate between groups.  Finally, a linear discriminance analysis helped to find 

the best band/index combinations. 

Statistics were retrieved using R 3.2.1 packages. 

8.2.2 Results  

There is an overall higher reflectance in the VIS/nIR and thermal radiation emission for 

higher rates of N fertilization as Table 8.6 shows. Regarding fluorescence, the IFR I and 

II also indicate a higher rate of fluorescence: 2.5% higher reflectance for 150 kg N 

compared to 80 kg N. 

 
Table 8.6 Mean values and standard deviation for bands and fluorescence index for N 
treatments at CKA1 

Wavelengths/Index Mean  
N 80 
kg/ha 

Standard  
deviation 

Mean 
N 150 
kg/ha 

Standard  
deviation 

7-14 µm 27.5 7.2 44.8 8.3 

530 nm 0.03 0.007 0.04 0.006 

570 nm 0.04 0.007 0.05 0.006 

670 nm 0.01 0.003 0.01 0.003 

750 nm 0.45 0.037 0.49 0.028 

760 nm 0.52 0.061 0.59 0.044 

780 µm 0.50 0.041 0.55 0.030 

IFR I 0.071 0.026 0.096 0.020 

IFR II 1.09 0.045 1.13 0.036 

 

Visual inspection between boxplots confirm that N treatment may well be discriminated 

across the varieties with the thermal mean, multispectral bands and more so with select-

ed VIs such as the NDVI and fluorescence indices (Figure 8.9)  

Distinction among sugar beet varieties was best achieved by NDVI with the bands 780 

nm and 570 nm or  with 670 nm and 570 nm, the traditional NDVI (here: 780 nm and 

670 nm),  PC1 and the spectral bands at 570 nm, 670 nm and 780 nm (Figure 8.10). The 

fluorescence band at 760 nm showed higher variations from means. Regarding variety, 

variety 2 (Berenika) consistently showed highest DN variations from mean.  
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The two-factorial ANOVAs additionally showed (Table 8.7):  

 N treatment was best separated by all spectral bands (thermal, multispectral 

bands) and the VIs: NDVI570,670, PC1, NDVI, IFR I and to a lesser extent by FR 

I (significance level <0.05). 

 Variety was best separated by NDVI780,570, all spectral bands, 570 nm respec-

tively and NDVI, PC1 and also by IFRI.  

This also indicates differing fluorescence patterns for sugar beet varieties.  
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Figure 8.9 Box-plots of band means or VIs versus N treatment [kg/ha] (x-axis) for the 

CKA1(black line: median, boxes: minimum and maximum values, tails: non-outlier range, cir-

cles: outliers) 
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Figure 8.10 
Box-plots of 
band means 
or VIs ver-
sus sugar 
beet variety 
(x-axis) for 
the CKA1 
(black l: 
median, 
boxes: min. 
and max. 
values, tails: 
non-outlier  
range, cir-
cles: outli-
ers) 
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Table 8.7 Results of two-factorial ANOVA between spectral band/VI versus N treat-
ment/sugar beet variety (Sign. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1) 

Variables Factors Df Sum RMS F_value Pr(>F) 

NDVI780,570 as.factor(variety) 3 0.006265 0.0020885 25.35 6.77E-09 *** 

as.factor(N) 1 0.00006 0.0000603 0.732 0.398 

Residuals 35 0.002884 0.0000824

NDVI570,670 as.factor(variety) 3 0.06587 0.02196 16.15 9.32E-07 *** 

as.factor(N) 1 0.07244 0.07244 53.28 1.57E-08 *** 

Residuals 35 0.04759 0.00136

Thermal as.factor(variety) 3 48.63 16.21 7.819 0.000401 *** 

as.factor(N) 1 61.75 61.75 29.784 4.01E-06 *** 

Residuals 35 72.56 2.07

NDVI as.factor(variety) 3 0.001822 0.0006072 10.68 3.93E-05 *** 

as.factor(N) 1 0.001324 0.0013236 23.29 2.71E-05 *** 

Residuals 35 0.001989 0.0000568

PC1 as.factor(variety) 3 48.63 16.21 7.819 0.000401 *** 

as.factor(N) 1 61.75 61.75 29.784 4.01E-06 *** 

Residuals 35 72.56 2.07

R570 as.factor(variety) 3 0.0009416 3.14E-04 16.646 6.88E-07 *** 

as.factor(N) 1 0.0001695 1.70E-04 8.988 0.00497 ** 

Residuals 35 0.0006599 1.89E-05

R670 as.factor(variety) 3 0.0001252 4.17E-05 8.198 0.00029 *** 

as.factor(N) 1 0.0001663 1.66E-04 32.653 1.84E-06 *** 

Residuals 35 0.0001782 5.09E-06

R780 as.factor(variety) 3 0.0265 0.008833 15.26 1.63E-06 *** 

as.factor(N) 1 0.01853 0.01853 32 2.19E-06 *** 

Residuals 35 0.02027 0.000579

R750 as.factor(variety) 3 0.02102 0.007006 12.59 9.75E-06 *** 

as.factor(N) 1 0.01308 0.013082 23.5 2.54E-05 *** 

Residuals 35 0.01948 0.000557

R530 as.factor(variety) 3 0.0008109 2.70E-04 12.158 1.32E-05 *** 

as.factor(N) 1 0.0002203 2.20E-04 9.909 0.00335 ** 

Residuals 35 0.0007781 2.22E-05

R760 as.factor(variety) 3 0.04525 0.01508 7.258 0.000655 *** 

as.factor(N) 1 0.0329 0.0329 15.83 0.000332 *** 

Residuals 35 0.07274 0.00208

IFR_I as.factor(variety) 3 0.004865 0.001622 2.804 0.05399 . 

as.factor(N) 1 0.00449 0.00449 7.764 0.00855 ** 

Residuals 35 0.020241 0.000578

IFR_II as.factor(variety) 3 0.00161 0.0005366 0.914 0.444  

 as.factor(N) 1 0.001625 0.0016248 2.766 1.05E-01  

 Residuals 35 0.020557 0.0005873    

FR I as.factor(variety) 3 0.00932 0.003108 1.540 0.2213  

 as.factor(N) 1 0.01081 0.010809 5.357 0.0266 * 

 Residuals 35 0.07062 0.0020189    
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Linear discriminance analysis of N treatment or variety as grouping factor and standard-

ized input band means as explanatory variables showed that both grouping factors could 

be differentiated (Table 8.8). For variety, the first two LD accounted for 97% of the 

explained variance. Here, the reflective bands 780 nm, 530 nm at LD1 and 570 nm and 

780 nm scored the highest loads on the discriminant functions.   

Table 8.8 Standardized linear discriminant coefficients for LDA models separating N 
treatment and sugar beet varieties with thermal and Vis/nIR bands (n=40) 

N treatment Variety 

LD1 LD1 LD2 LD3 

Mean_thermal 1.32652325 -0.9068415 0.08226368 -2.218759 

Mean_530nm -0.0448856 2.8138949 -0.6326936 4.104628 

Mean_570nm -1.7606547 -0.9740505 3.74350113 -4.0363345 

Mean_670nm 0.87681572 -2.0599449 -0.3883455 2.8981613 

Mean_750nm 2.32610242 -0.7964128 1.55295756 -8.4999073 

Mean_760nm -0.2255469 -1.598749 -0.840383 -0.5571513 

Mean_780nm -0.3037208 4.0379599 -2.8374513 7.8675644 

Proportion of trace 1 0.5451 0.3144 0.1406 

 

When only Vis/nIR filter bands are considered (Table 8.9), filters located at 570 nm and 

670 nm perform best in separating N. Sugar beet varieties are best differentiated with 

filters at 530 nm, 670 nm (LD1) and 570 nm and 780 nm (LD2). 

Table 8.9 Standardized linear discriminant coefficients for LDA models separating N 
treatment and sugar beet varieties with VIS/nIR bands (n=40) 

N treatment Variety 

LD1 LD1 LD2 LD3 

Mean_530nm 0.437499 1.5724315 0.538167 -4.2362185 

Mean_570nm -2.516591 0.3556094 -3.6149465 2.935714 

Mean_670nm 2.046494 -3.0007735 0.2479098 -0.2627325 

Mean_750nm 1.628201 1.3946366 -1.3059914 9.1569044 

Mean_760nm -1.837667 -0.9443518 0.8762137 -2.8740098 

Mean_780nm 1.537649 1.4317332 2.615851 -5.8770948 

Proportion of trace 1 0.5929 0.3767 0.0304 
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8.2.3 Discussion 

Results of ANOVA and LDA clearly showed that higher rates of N-fertilization pro-

duced higher rates of reflectance in the O2-A absorption band at 760 nm. From the fluo-

rescence indices, however, only IFR_I and to a lesser extent the ratio of R760/R750 

were able to significantly discriminate plot means. This is in accordance with FLD 

analysis of corn fields and fluorescence ratio R688/R760 ratio applied by Corp et al. 

(2006). Thermal and reflective bands in the remaining Vis/nIR do also increase with 

magnitude of N treatment. Plots treated with 150 kg N clearly showed higher values in 

all cases. Other traditional VIs such as the NDVI of nIR to red and red to 570 nm and 

also the first PC were well able to differentiate plot means in relation to N treatment.  

Results suggest that N-induced fluorescence differences are generally detectable which 

is in agreement with findings of the Middleton et al. (2008) and Corp et al. (2006), even 

when weather conditions were not ideal for that day. The fluorescence band 760 nm and 

the IFR II showed relatively large value ranges which may be attributed to fluorescence. 

However, results might be sharper, if the spectral position of the fluorescence filter were 

shifted to  760.5 nm oder 761 nm (Pérez-Priego et al. 2005; Zarco-Tejada et al. 2009; 

Damm et al. 2014). Inherent noise and radiometric processing inefficiencies of the em-

pirical line calibration compared to atmospheric processing are another factor contrib-

uting to the strong variations in that spectral range and fluorescence detection (Damm et 

al. 2014). Finally, as the irradiation on that day was not stable, overall smaller amount 

of Fs should be expected. 

Concluding, under the given sensor configuration N-fertilization is best mapped with 

thermal and Vis/nIR bands rather than the fluorescence bands as Figure 8.9 - Figure 

8.10 illustrated and the ANOVAs showed (Table 8.7).  

Ultimately, when solar irradiance is at maximum, a precise atmospheric correction of 

the aerial images may yield absolute, quantitative Fs values. As is the situation, the filter 

combinations allow for comparative rather than an absolute analysis of Fs values.   
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8.3 Experiment Campus Klein-Altendorf 2 (CKA2): Diurnal Solar-

Induced Fluorescence Measurements of Sugar Beet 

8.3.1 Material and Methods 

8.3.1.1 Site Description 

On 23/08/2012, a sugar beet field located at Campus Klein-Altendorf 2 (N50° 36’ 55’’, 

E 6° 50’ 30’’ was selected for diurnal Fs measurements.  

8.3.1.2 Field Data Collection 

During the whole day, reference field irradiance and canopy radiance measurements 

were made using a Multiplexer-based Radiometer Irradiometer (MRI) by the University 

of Milan. The instrument is based on a OceanOptics optical multiplexer and measures 

incident radiance, upwelling radiance with a FOV of 25° and has a blind channel for 

dark current quantification. In addition, the setup enclosed two HR4000 spectrometers 

(OceanOptics, USA) measuring the spectral range between 400 to 100 nm with a 

FWHM of 1 nm and a FWHM of 0.1 nm within the 700-800 nm range. The devices 

were mounted on a stair within the sugar beet field (N50° 36’ 54.5’’, E6° 59’ 31’’) from 

8:17 UTC until nearly 16 UTC. The spectrometer fibre was mounted to a height of 2.24 

m above the sugar beet canopy with an average height of 46 cm (Figure 8.11) and 

measured a footprint of roughly 1 m in diameter. Three to five scans were averaged to 

one measurement per time (Rascher et al. 2013, p. 32f and 65). 

 

Figure 8.11 Field meas-
urement setup at CKA2: 
field spectrometer and 
grey-level reference pan-
els (Photo: M. Perez) 
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8.3.1.3 Airborne Campaign and Data Processing 

Starting from 8:00 UTC until ~ 14:00 UTC, two to three quadrocopter flights per hour 

were carried out at about 70 m above ground at an altitude of approximately 180 m 

a.s.l.. The MiniMCA-6 multispectral camera was mounted with the same filter setup as 

in the previous experiment. Measurements were supposed to extend until late afternoon, 

however, the base station failed to work from 14:00 UTC onwards and it was therefore 

not possible to assure target focus and image acquisition was terminated then. Image 

nadir was pointed towards the location of the in-situ irradiance and Fs measurements. 

Images were selected where the fluorescence and reference panels were mostly in nadir 

position and angles deviations from nadir viewing of < 3° were selected.  

Reference panels were laid out near the fluorescence tower of partners and were meas-

ured simultaneously to flights using the ASD spectrometer while ascending. The refer-

ence panels were then used for radiometric correction of the selected diurnal images by 

means of empirical line correction (Smith and Milton 1999). 

Parallel to thus the HyFlex sensor was flown at various altitudes, please refer to Rascher 

et al. (2013) for more detailed information. 

8.3.1.4 Diurnal Sun-Induced Fluorescence Retrieval 

To compare fluorescence trends with the Italian partners, areas of interests (AOIs) were 

digitized on the respective images for each time and used for comparison with field 

spectrometer data. The footprint of ~ 1 m in diameter was chosen to match the sensor 

footprint by Italian partners. Fs for each selected image/times was computed using the 

3FLD method (equation (8.1)) and c3FLD method (equation (8.4)), using the linearly 

averaged neighbouring filter bands of 750 nm and 780 nm as reference to the fluores-

cence band at 1 nm wide filter at 760 nm (Zarco-Tejada et al. 2013c). According to 

partners, the white and light grey reference panels were chosen as non-fluorescent tar-

get. 

For diurnal Fs illustrations maps were finally visualized for CKA2. 

8.3.2 Results 

Table 8.10 lists the ELC for converting DN into radiance values using the greylevel 

reference panels’s radiance measurements. 
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Table 8.10 ELC parameters for diurnal Fs retrieval at CKA2, 23/08/2012 (∆rad: differ-
ence of resulting radiance values [Wm-2sr-1nm-1] to the input reference panels’ radiances  
rp: reference panel). 

Band 
[nm]/ 
UTC 

Empirical line R² Δrad 
white rp 

Δrad 
light-
grey rp 

Δrad 
dark-
grey rp 

Δrad 
black rp 

08:06        
530 ρ = 0.00002 x - 0.00004 0.9993  - 0.0016 -0.0005 -0.0004 
570 ρ = 0.00002 x - 0.0012 0.9996  - 0.0003 -0.0001 0.0001 
670 ρ = 0.00001 x - 0.0004 0.9992  - 0.0036 0.0016 0.0010 
750 ρ = 0.00009 x + 0.0001 0.9998 -0.0001 0.0007 0.0002 0.0002 
760 ρ = 0.00006 x - 0.0021 0.9998 0.0003 0.0002 0.0001 0.0001 
780 ρ = 0.00008 x - 0.0025 0.9999 -0.0005 0.0001 -0.0002 0.0001 
08:29        
530 ρ = 0.00003 x - 0.0003 1  - -0.0021 -0.0009 -0.0004 
570 ρ = 0.00002 x - 0.0012 0.9999  - 0.0032 0.0015 0.0009 
670 ρ = 0.00002 x + 0.0003 1  - -0.0035 -0.0015 -0.0006 
750 ρ = 0.0001 x + 0.0009 1 -0.0004 0.0001 0.0000 0.0001 
760 ρ = 0.00007 x - 0.0014 0.9997 0.0001 0.0001 0.0000 0.0003 
780 ρ = 0.00009 x - 0.0012 1 -0.0006 -0.0001 0.0001 0.0000 
08:51        
530 ρ = 0.00003 x + 0.0008 1  - -0.0010 0.0004 -0.0002 
570 ρ = 0.00003 x - 0.0007 1  - -0.0023 -0.0011 -0.0006 
670 ρ = 0.00002 x + 0.0007 1  - -0.0021 -0.0008 -0.0004 
750 ρ = 0.0001 x + 0.0015 0.9998 0.0109 0.0012 0.0009 0.0003 
760 ρ = 0.00008 x - 0.0015 0.9996 -0.0009 -0.0002 0.0002 0.0002 
780 ρ = 0.0001 x - 0.0013 0.9997 -0.0028 -0.0003 0.0006 0.0004 
09:02        
530 ρ = 0.00003 x - 0.0007 1  - -0.0020 -0.0009 -0.0005 
570 ρ = 0.00003 x - 0.0006 0.9999  - -0.0031 -0.0015 -0.0007 
670 ρ = 0.00002 x - 0.0003 1  - -0.0027 -0.0012 -0.0006 
750 ρ = 0.0001 x - 0.0043 0.9999 0.0086 0.0014 0.0011 0.0012 
760 ρ = 0.0009 x - 0.005 0.9992 -0.0009 -0.0007 0.0001 0.0002 
780 ρ = 0.00009 x - 0.0061 0.9998 0.0000 -0.0006 0.0000 0.0005 
09:19        
530 ρ = 0.00003 x - 0.0022 0.9987  - 0.0029 0.0009 0.0010 
570 ρ = 0.00003 x - 0.0021 0.9994  - 0.0005 -0.0001 0.0004 
670 ρ = 0.00005 x - 0.0014 0.9989  - -0.0004 -0.0005 0.0001 
750 ρ = 0.0001 x - 0.0083 1 0.0166 0.0039 0.0018 0.0019 
760 ρ = 0.00009 x - 0.0081 0.9997 -0.0016 -0.0004 -0.0005 -0.0001 
780 ρ = 0.0001 x - 0.0094 0.9999 0.0039 0.0009 0.0002 0.0008 
09:42        
530 ρ = 0.00003 x - 0.0018 0.9986  - 0.0000 -0.0001 0.0001 
570 ρ = 0.00003 x - 0.0015 0.9998  - -0.0013 -0.0007 -0.0002 
670 ρ = 0.00002 x - 0.0009 0.9998  - -0.0018 -0.0010 -0.0003 
750 ρ = 0.0001 x - 0.0061 0.9999 0.0115 0.0024 0.0016 0.0015 
760 ρ = 0.0001 x - 0.007 0.9989 -0.0008 -0.0008 -0.0003 0.0002 
780 ρ = 0.0001 x - 0.007 0.9988 0.0038 0.0005 0.0006 0.0009 
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Band 
[nm]/ 
UTC 

Empirical line R² Δrad 
white rp 

Δrad 
light-
grey rp 

Δrad 
dark-
grey rp 

Δrad 
black rp 

10:13        
530 ρ = 0.00003 x - 0.0027 0.9999 - 0.0033 0.0017 0.0009 
570 ρ = 0.00003 x - 0.0020 1 - 0.0012 0.0005 0.0003 
670 ρ = 0.00002 x - 0.0015 0.9998 - 0.0012 0.0004 0.0004 
750 ρ = 0.0001 x - 0.0087 0.9999 0.0233 0.0053 0.0032 0.0019 
760 ρ = 0.00009 x - 0.0082 1 0.0000 -0.0004 0.0003 0.0003 
780 ρ = 0.0001 x - 0.0099 1 0.0129 0.0027 0.0017 0.0011 
10:45        
530 ρ = 0.00003 x - 0.0016 0.9955 - -0.0012 -0.0012 0.0001 
570 ρ = 0.00003 x - 0.0018 0.9959 - -0.0024 -0.0017 -0.0003 
670 ρ = 0.00002 x - 0.0014 0.9942 - -0.0032 -0.0020 -0.0005 
750 ρ = 0.0001 x - 0.0033 0.9999 0.0031 0.0010 -0.0001 0.0004 
760 ρ = 0.00007 x - 0.0004 0.9999 0.0002 0.0002 0.0001 0.0000 
780 ρ = 0.00009 x - 0.0053 0.9999 0.0005 0.0004 -0.0003 0.0003 
10:57        
530 ρ = 0.00004 x - 0.0019 0.9999 - -0.0017 -0.0009 -0.0004 
570 ρ = 0.00003 x - 0.0013 1 - 0.0031 0.0014 0.0007 
670 ρ = 0.00002 x - 0.0007 0.9999 - 0.0021 0.0008 0.0005 
750 ρ = 0.0001 x - 0.001 1 0.0270 0.0041 0.0018 0.0010 
760 ρ = 0.0001 x - 0.0023 1 -0.0006 0.0001 -0.0001 0.0000 
780 ρ = 0.0001 x - 0.0019 1 0.0205 0.0037 0.0018 0.0014 
11:07        
530 ρ = 0.00004 x - 0.0021 1 - -0.0010 -0.0004 -0.0003 
570 ρ = 0.00004 x - 0.0016 0.9999 - -0.0029 -0.0013 -0.0008 
670 ρ = 0.00002 x - 0.0011 1 - 0.0027 0.0012 0.0007 
750 ρ = 0.0001 x - 0.0076 1 0.0338 0.0070 0.0043 0.0037 
760 ρ = 0.0001 x - 0.0079 0.9997 0.0038 0.0009 0.0006 0.0001 
780 ρ = 0.0001 x - 0.0091 1 0.0269 0.0056 0.0040 0.0031 
11:32        
530 ρ = 0.00004 x - 0.0027 0.9998 - 0.0016 0.0009 0.0003 
570 ρ = 0.00004 x - 0.0026 0.9999 - -0.0001 0.0001 -0.0001 
670 ρ = 0.00003 x - 0.0016 0.9999 - -0.0036 -0.0015 -0.0010 
750 ρ = 0.0002 x - 0.0084 1 -0.0173 -0.0054 -0.0033 -0.0031 
760 ρ = 0.0001 x - 0.0086 0.9998 0.0076 0.0018 0.0016 0.0010 
780 ρ = 0.0001 x - 0.0103 1 0.0356 0.0082 0.0054 0.0042 
11:49        
530 ρ = 0.00004 x - 0.0024 0.9999 - 0.0007 0.0005 0.0001 
570 ρ = 0.00004 x - 0.0018 1 - -0.0016 -0.0007 -0.0004 
670 ρ = 0.00002 x - 0.0017 1 - 0.0039 0.0017 0.0010 
750 ρ = 0.0002 x - 0.0073 1 -0.0232 -0.0060 -0.0039 -0.0034 
760 ρ = 0.0001 x - 0.0087 0.9999 0.0060 0.0016 0.0015 0.0012 
780 ρ = 0.0001 x - 0.0093 0.9999 0.0293 0.0068 0.0044 0.0032 
12:06        
530 ρ = 0.00004 x - 0.0023 1 - 0.0005 0.0002 -0.0002 
570 ρ = 0.00004 x - 0.0025 1 - -0.0011 -0.0005 -0.0011 
670 ρ = 0.00002 x - 0.0013 1 - 0.0036 0.0016 0.0005 
750 ρ = 0.0002 x - 0.0064 1 -0.0208 -0.0056 -0.0032 -0.0055 
760 ρ = 0.0001 x - 0.008 0.9998 0.0065 0.0020 0.0014 0.0001 
780 ρ = 0.0001 x - 0.009 1 0.0291 0.0066 0.0041 0.0024 
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Band 
[nm]/ 
UTC 

Empirical line R² Δrad 
white rp 

Δrad 
light-
grey rp 

Δrad 
dark-
grey rp 

Δrad 
black rp 

12:34        
530 ρ = 0.00004 x + 0.0007 0.9997 - 0.0007 0.0001 0.0002 
570 ρ = 0.00004 x - 0.0016 0.9996 - -0.0008 -0.0006 -0.0001 
670 ρ = 0.00002 x - 0.001 0.9998 - 0.0032 0.0011 0.0006 
750 ρ = 0.0002 x - 0.0082 0.9999 -0.0138 -0.0053 -0.0022 -0.0022 
760 ρ = 0.0001 x - 0.0008 0.9998 0.0060 0.0010 0.0006 0.0001 
780 ρ = 0.0002 x - 0.00008 1 -0.0236 -0.0047 -0.0019 -0.0010 
13:13        
530 ρ = 0.00004 x - 0.002 0.9999 - 0.0008 0.0004 0.0001 
570 ρ = 0.00004 x - 0.0022 1 - -0.0006 -0.0003 -0.0003 
670 ρ = 0.00003 x - 0.0015 1 - 0.0039 0.0018 0.0009 
750 ρ = 0.0002 x - 0.0064 0.9999 -0.0155 -0.0046 -0.0028 -0.0022 
760 ρ = 0.0001 x - 0.0072 0.9998 0.0066 0.0013 0.0008 0.0006 
780 ρ = 0.0001 x - 0.0084 1 0.0273 0.0064 0.0037 0.0028 
13:56        
530 ρ = 0.0003 x - 0.0017 1 - 0.0011 - 0.0004 
570 ρ = 0.00003 x - 0.0014 1 - -0.0003 - -0.0001 
670 ρ = 0.00001 x - 0.0002 1 - -0.0016 - -0.0009 
750 ρ = 0.0001 x - 0.0057 1 0.0178 0.0045 0.0000 0.0026 
760 ρ = 0.00009 x - 0.0058 0.9997 0.0007 0.0002 0.0000 0.0003 
780 ρ = 0.0001 x - 0.0071 1 0.0114 0.0028 0.0000 0.0018 

 

Figure 8.12 shows the incoming solar radiance measured at the field spectrometer by 

partners.  

Figure 8.12 Incoming ra-
diance measured with 
field spectrometer at 747.5 
nm [Wm-2sr-1nm-1] [mod. 
from Rascher et al. 2013] 

 

Figure 8.13 shows the diurnal Fs values retrieved from field spectrometers (blue dia-

monds) and UAS data (red triangles) for the 3FLD method (left) and the c3FLD method 

(right). Fs values were retrieved until 14:00h UTC as the ground station failed to func-

tion at this point, thus it was not possible to map a full diurnal course. UAS-based Fs 
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values are a factor of 10 higher than the spectrometer measurements, values rised until 

noon (~11:30 UTC), then reclined. Data gaps in the morning are due to unstable atmos-

pheric conditions, and the respective images were removed from analysis. 

 

 

Figure 8.13 Diurnal sun-induced fluorescence for CKA2 derived from multispectral 
UAS data (right axis, red triangles) and Ocean Optics Spectrometer (left axis, blue dia-
monds) retrieved by Meroni (2015, personal communication), 23/08/2012. 
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Figure 8.14 Correlation 
between field- and UAS-
derived sun-induced fluo-
rescence at 760 nm at 
CKA2, 23/08/2012 

 

Measurements of Fs at 760 nm derived from the field-spectrometers and drone image 

acquisition did not always temporarily coincide (Figure 8.14), and show a relatively 

weak correlation between the two data sets (linear regression R² 0.5618). 

A comparison of Fs in relation to non-fluorescing reference target for 3FLD methods 

based on Maier et al. (2003) and Damm et al. (2014) in Figure 8.15 shows, values are 

following a related course but are scaled differently: highest Fs values are obtained us-

ing the white reference panel. 
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Figure 8.15 Diurnal course of Fs,UAS (3FLD) values retrieved using different reference 
non-fluorescent target (wh: white reference panel, lg: light-grey reference panel) 

NDVIUAS do decline until midday which is in accordance with wilting processes visibly 

detectable in the field on that day. The high NDVI values together with the high fluo-

rescence values (Figure 8.16) generally show that the bi-annual crop is still dense and 

green and photosynthetically active.  

The daily progression of NDVI and PRI values also point out the differences between 

measurement devices and height above sugar beet (Figure 8.16). NDVIUAS do decline 

until midday which is in accordance with wilting processes visibly detectable in the 

field on that day. The diurnal PRIUAS is showing no diurnal trend compared to PRIfield 

spectrometer.  
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Figure 8.16 Diurnal course of NDVI and PRI at CKA2, 23/08/2012 for spectrometer 
data (top) and MiniMCA-6/UAS data (bottom). Red square: NDVI, green triangles: 
PRI1nm-bandwidth, blue diamonds: PRI10nm-bandwidth 
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Figure 8.17 Diurnal sun-induced chlorophyll Fs,UAS (c3FLD) for a sugar beet field at 
CKA2 (23/08/2012). Centre image HyFlex Fs, HyFlex data derived at noon at 600 m a.s.g. 
(white square shows field). HyFlex data from Rascher et al. (2013). 
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From the individual images in Figure 8.17 the rise in Fs values until midday (11:32  

UTC image) may be detected as well as a slight descent in Fs values towards the after-

noon. However, the images also show higher Fs values at the NE rim and lower Fs val-

ues at the SW corner of the image.  

8.3.3 Discussion 

The UAS-derived Fs values were able to depict the expected diurnal process of sun-

induced chlorophyll fluorescence (Figure 8.13) with increasing fluorescence until mid-

day and decreasing values towards the afternoon following a 2nd order polynomial trend 

function. However, the Fs,UAS overestimated the actual (i.e. field) Fs values by a factor 

of 10 for the c3FLD and by a factor of ~8 for the FLD, as was reported by other air-

borne campaigns (Zarco-Tejada et al. 2009). Yet, the amount of Fs retrieved is well in-

side the ranges reported in a review published by Meroni et al. (2009) who found Fs 

values for the O2-A band vary from 0 to 17 Wm-²sr-1nm-1 for different illumination in-

tensities and crops. The drone-derived Fs (c3FLD) values better match the diurnal pro-

cess (R² = 0.74) than the 3FLD (R² = 0.58) values. Alonso et al. (2008) furthermore 

proved that the sFLD-derived Fs values ranges may well deviate by an order of one 

magnitude regardless of measurement device due to the uncertainty of the reflectance 

curve shape in that wavelength range which is assumed to remain constant. The 3FLD 

method assumes linear relationships between the shoulders of absorption bands wave-

lengths. This assumption is only valid when close shoulder wavelengths are selected for 

Fs retrieval. A violation yields a relative positive Fs bias of up to 50% at the O2-B band 

even for the well-established field spectrometers and airborne sensors (Meroni et al. 

2010). Compared to the field spectrometer data (753 +/- 3 nm and 777 +/- 3nm, respec-

tively), shoulder wavelengths were less close for the UAS data.  

Recent publications within the FLEX programme, have found a precise radiometric and 

atmospheric correction mandatory for accurate Fs retrieval (Guanter et al. 2010; Damm 

et al. 2014). The Fs,UAS  variations for the CKA2 site and field data may well be attribut-

ed to radiometric correction errors resulting from the ELC where deviation of radiance 

values of reflectance panels in some cases exceeds the amount of Fs (Table 8.10). The 

reference panels had been based on top of the canopy within the sugar beet field, hence 

their radiance/reflectance may include adjacency effects of radiation/reflectance envi-

ronmental components in their signal. Furthermore, measurements of solar irradiance 

values did not always coincide exactly with solar irradiance values measured by part-

ners.  
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Up until noon, solar irradiance (Figure 8.12) was not stable and additionally obscured a 

potential maximum Fs course. Bi-directional reflectance effects within the image data 

may add to that effect.  

It was further found that the absolute height of Fs (c3FLD) or Fs (3FLD) also depends on the 

use of reference non-fluorescing reference target as Figure 8.15 illustrated. 

In some cases, negative Fs values occurred during the calculation, especially for the 

3FLD formulation. Negative values occur when fluorescence approximates 0 and gets 

close to the multispectral camera’s intrinsic noise level of 8 to 16 DNs (Kelcey and 

Lucieer 2012).  Other authors have found similar difficulties (Zarco-Tejada et al. 2009). 

Damm et al. 2011 pointed out that the more sophisticated the Fs retrieval method the 

more sensitive it behaves to retrieval accuracies. Differences in atmospheric scattering 

introducing varying path lengths, illumination/observation geometry variations and 

transmission differences have been shown to be contribute considerably to estimation 

errors:  

 Fs bias of 15% for reference non-fluorescing targets being situated at larger dis-

tances from vegetation target,  

 Fs bias of 17%  for flight altitude of 200 m (Damm et al. 2014), and d 

 Due to structural components, i.e. shaded versus sunny canopies also influence 

the Fs retrieval (Rascher et al. 2009).   

A transmittance correction was applied by these authors utilizing bare soils which 

should be free of any Fs signal.  

Both, the individual Fs images derived for the sugar beet field (Figure 8.13) and the PRI 

values (Figure 8.16) may still be influenced by the altogether low deviations from nadir 

viewing and potentially sun azimuth directions obtained during image acquisition 

(Figure 8.18), although these have been moderately low. The individual images show 

high Fs values in the NE and drop-off to the SE may suggest that there still are inherent 

illumination differences for the UAS images not corrected by the ELC approach. Air-

borne Fs imagery obtained from the FLEX Campaign in CKA2 at 600 m above ground 

level (a.g.l.) illustrated in Figure 8.19, though, did retrieve similar variations for the 

sugar beet field: enerally, the sugar beet field showed highest Fs values when compared 

with other crops and for that field respectively, rising Fs values from the shed visible at 

the image corner towards the left to the hedge in the field (Rascher et al. 2013). In the 

UAS images, the shed is situated at the lower left corner. 
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Figure 8.18 Illumination (left) and viewing zenith angle (VZA) deviation from nadir 
(right) for UAS image acquisitions 

 

Figure 8.19 Fs for CKA2 sugar beet field derived from airborne data obtained at 600 m 
a.g.l. (top right field corner). Image source has been subsetted from final HyFlex report 
(Rascher et al. 2013, p. 78). 

Concerning the oscillating PRI values (Figure 8.16), the index has shown to be quite 

sensitive to BRD which may explain the failure of obtaining a similar diurnal patterns 

(Filella et al. 2004, Hilker et al. 2008; Rascher and Pieruschka 2008; Damm et al. 

2010b). Sensitivity analysis in chapter 6 (figure 6.18) yet found stable PRI values for 

VZA close to nadir. But azimuth variations in relation to sun position do contribute to 

index differences, which may not have been totally corrected by the ELC approach. PRI 

has also been demonstrated to be more correlated with NPQ than with PSII (Evain et al. 

2004). Another argument for the poor correspondence of PRI field and UAS-values, 

may be the early stop at 14 UTC which omitted the documented afternoon rise of PRI 

values obtained by partners.   
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Diurnal measurements of Fs may be retrieved with means of multispectral UAS image-

ry. Values varied within the order of a magnitude compared to canopy-based field 

measurements but showed an overall agreement of R² = 0.56. This could be related to 

less than ideal filter centre locations and widths (760 nm compared to 760.5 nm as was 

suggested by Damm et al. 2011). Thus, UAS campaigns may aid in diurnal Fs and stress 

detection and although absolute physical fluorescence values may be overestimated, 

they do indeed allow the detection of diurnal variations and may aid in fast overviews 

across agricultural sites and different species. 

 

8.4 Conclusion 

Principally, the fluorescence of different crop species may be analyzed by UAS-based 

fluorescence behavior as the experiment of CKA1 has illustrated. In this case, Fs was 

due to less than ideal weather conditions not at its maximum. However, different N 

treatment levels could well be distinguished and as could the sugar beet varieties with 

multispectral bands, indices and fluorescence indices. Again, the standard NDVI relia-

bly succeeded in differentiation among N treatment levels and varieties. Further tests 

could include more treatment levels and crops to test if these also can be distinguished 

by means of multispectral UAS-based remote sensing.    

Concluding, retrieval of physical fluorescence values requires synchronous ancillary 

data of irradiance and aerosol optical depths following a strict protocol to quantify at-

mospheric transmission and influence on the fine fluorescence signal. Yet, comparative 

diurnal Fs analysis across sites may well be retrieved by means of UAS multispectral 

measurements using close reference targets to approximate atmospheric disturbances 

(Zarco-Tejada et al. 2012; Damm et al. 2014).  

More precise, absolute physical Fs values may be obtained by currently being developed 

micro-hyperspectral sensors with narrow band widths or finer filter FWHM bandwidths. 

This would also yield the potential to include other fluorescence bands, too. Prerequisite 

of physically absolute Fs retrieval is an accurate radiometric pre-processing including 

camera calibration, noise correction and atmospheric correction with synchronous aero-

sol optical measurements which was out of scope for this work. Parallel comparative Fs 

measurements of (non-)fluorescing targets do support Fs retrieval help to calibrate the 

UAS data. 
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Recently, spectral fitting methods (SFM) for hyperspectral narrow-band data have been 

shown to be more accurate in retrieving Fs at various noise settings: the respective spec-

tral regions around the absorption lines may be described by polynomial functions or 

other appropriate mathematical functions (Meroni et al. 2010). Other authors fluores-

cence spectrum reconstruction over various absorption bands (Zhao et al. 2014, Zhao et 

al. 2014). Thus, once hyperspectral micro-sensors are operationally available, more ac-

curate Fs estimation may be achieved for precision agriculture. 

 

 

  



 

 

9 UAS-Based Archaeological Reconnaissance at the 

Roman Settlement of Los Bañales de Uncastillo, Spain 

9.1 Introduction 

9.1.1 Overview of Geomatic Prospection Sensors 

Archaeological sites nowadays are generally studied embracing different geomatic 

prospection methods (Bitelli et al. 2004, p. 116-117) from large to small scales. Figure 

9.1 illustrates the relative prominence of the individual methods at different scales from 

point-based measurements to 2D- and 3D mapping. 

 

Figure 9.1 Geomatic methods and their application scales in archaeological prospection 
(modified from Bitelli 2012) 

1D measurements use tachymeter or total stations to map archaeological finds and struc-

tures often in local reference systems. Data acquisition is time consuming yet provides 

maps of high precision accuracy within the mm- to cm-range. 2D- to 3D measurements 

then use global satellite positioning systems based on the American Navstar Global Po-
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sitioning System (GPS) or Russian Glonass data amongst others. Again, depending, on 

the measurement setup used, within mm-accuracy of point data in 2D and within cm-

range for height data are feasible. GPS-data may also be obtained for surveying and 

ground control point reference measurements for aerial surveys. Terrestrial laser scan-

ning, finally, is yet another method obtaining a 3D representation of objects at a large 

scale within mm-accuracy from which areal information may be derived by combining 

several point clouds. The need to detect buried materials brought forward proximal 

sensing with geoelectric, geomagnetic or radar sensors, retrieve point data that are then 

interpolated to grids (Masini et al. 2012). Local to small-scale 2D to 3D areal mapping 

is then achieved by remote sensing applications on aerial and satellite platforms. Their 

advantage lies in synoptic views that may be obtained using various sensor systems 

measuring in the VIS/nIR, SWIR, TIR, microwave (radar) spectral regions. From these 

orthophotos and DEMs may be derived as well as further spectrally-derived data such as 

land cover classifications, feature maps, thermal maps, etc. Space-borne LiDAR is an-

other information source and more recently, geoelectric and geomagnetic sensors find 

growing attention operate in close-range remote sensing. Another benefit from remote 

sensing data is the possibility to monitor site by revisiting sensors or flight campaigns 

thus facilitating exploration progress. Lasaponara and Masini (2012b) summarize ar-

chaeological applications of satellite remote sensing, visual inspection and data process-

ing methods. 

9.1.2 Remote Sensing of Cultural Heritage Patterns 

Former settlement structures show geometric patterns of various kinds like rectangular 

or circular wall remains, linear elements like walls, and transport routes or ditches (Aber 

et al. 2010). These may occur on the surface or hidden underneath the surface. Where 

they are close to the surface they tend to show specific surface traces. That is why, 

among the most frequent analysis technique in archaeological remote sensing is visual 

interpretation of aerial photographs to obtain overviews and mapping products which 

often supersedes automatic detection (De Laet et al. 2009). The trained eye quickly de-

rives sites of interest which may then be tackled by the digital image processing suite 

available in the remote sensing domain. The extension of the spectral domain to wave-

lengths beyond the visual system, may reveal more patterns indiscernible to the human 

eye and multi- and hyperspectral remote sensing and standard digital image processing 

find growing applications (Verhoeven 2009; Lasaponara and Masini 2012b; Verhoeven 

2012).  
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Archaeological prospection with UAS data then encompasses various approaches of 

traditional digital image processing (Parcak 2009; Aber et al. 2010; Lasaponara and 

Masini 2012c; Masini et al. 2012): 

1. Data fusion techniques for incorporation high spectral resolution to high spatial 

resolution data when data of different sensors are to be merged (Masini et al. 

2012; Oltean and Abell 2012; Richards 2013), 

2. Data reduction or image enhancement by way of digital feature space process-

ing, 

3. Computation of various vegetation indices unveil otherwise hidden patterns, 

4. Cultural heritage feature tracing by edge detection, texture or pattern analyses, 

5. structural mapping of building fragments (i.e. through incorporating DEM-

derived data as height, slope, aspect),  

6. land cover classification, and  

7. change detection/monitoring of excavation sites (Lasaponara and Masini 2012a). 

The presentation of all existing DIP methods is out of scope here and more information 

is provided in respective references, e.g. Jensen (2005), de Jong (2006) Jensen (2007), 

Lillesand et al. (2008), Richards (2013). Here, only the techniques applied in this work 

are shortly explained. 

9.1.2.1 Crop and Soil Mark Analyses 

It is not only the direct mapping of ancient masonry, but also the indirect mapping of 

sub-surface building remnants that is of interest to archaeologists. Verhoeven (2012) 

points out the neglectance of spectral ranges outside the VIS in aerial remote sensing 

within the field of archaeology. The reflectance characteristics of vegetation canopies 

have been presented in details in chapter 3, and may be used to indirectly map cultural 

heritage features by studying growth differences caused by soil substrate or moisture 

differences (Figure 9.2). Moisture and substrate alterations may induce stress and senes-

cence in plant development, thus altering leaf pigment (Chl, carotenoids, brown pig-

ments), moisture content, fluorescence differences as well as structural differences 

within the leaves. These changes trace back to the canopy signal altering spectral reflec-

tance intensity: the vegetation signal flattens with increasing reflectance in the green 

spectral ranges, loss of the red absorption minimum and flattening nIR reflectances with 

shifts of the red edge (figure 3.10). Furthermore, stress causes variations in plant height 

leading to structural differences and micro-shading within a vegetation canopy. Depend-

ing on climate, crop and soil type, the sample crop-marks may lead to reverse findings 
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in relation to DN values. Resulting spectral signals further depend on the sensor used, 

and patterns may in fact be contrary depending on environmental condition and acquisi-

tion times: thermal sensors reveal inverse patterns during the day compared to nightly 

images.  

 

Figure 9.2 Crop-marks based on sub-surface cultural heritage features and their effects 
on upper soil moisture and crop growth: darker greyshades illustrate higher soil mois-
ture and vice versa (modified from Lasaponara and Masini 2012c, p. 5) 

9.1.2.2 Feature Enhancements Used in Archaeological Remote Sensing 

Similar to crop mark/soil mark detection, surface archaeological structures need to be 

extracted from the multispectral signal of the environment. Wall and building remnants 

introduce reliefed surfaces that include a portion of shadows and are thus highly spec-

trally structured. These features are enhanced by principal component analyses and 

(vegetation) indices, followed by edge and texture detection through filter operation 

(Masini et al. 2012; Richards 2013).  
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9.1.2.3 Land Cover Classification of Archaeological Sites 

Once, cultural heritage patterns have been enhanced, the surface cover materials within 

the vicinity may be derived by classification: 

 Unsupervised clustering (UC) techniques (Garrison 2010), 

 Supervised classification using training sites/clusters (Lasaponara and Masini 

2012a), spectral angle mapping (SAM) or support vector machines (SVM), 

 Spectral methods, i.e. spectral mixture analysis to obtain sub-pixel land-cover 

components, spectral angle mapping (SAM) or support vector machines (SVM) 

(Mountrakis et al. 2011; Lasaponara and Masini 2012a), 

 Object-oriented classification (OOC) incorporating spectral and spatial informa-

tion measures, resulting in vector-based classification output (De Laet et al. 

2009), 

or a combination of the above (Lasaponara and Masini 2012a). There are many classifi-

cation algorithms available which are described in detail by standard textbooks men-

tioned before. 

9.1.3 Using Small UAS for Archaeology 

Among the first UAS applications in archaeological remote sensing was aerial photog-

raphy from balloons: Whittlesey (1970) mounted several camera types (Linhof, Graflex, 

Hasselblad) onto a tethered balloon to obtain stereographic images at various altitudes 

from ~ 10 m to 700 m a.g.l. of sites at Turkey, Greece, Italy and Cyprus. Within the past 

10 years, use of UAS in the field of archaeology has increased manifold, as they provide 

fast and customized data collection to obtain (orthographic) photographs of sites of spe-

cific interest. Myers (1977) describes the aerial photographic mapping of Greek and 

Italian sites with a kite-balloon more appropriate for stronger breezes. Late Iron-age 

structures in South Africa were mapped using a remote-controlled camera mounted on a 

weather balloon within a tethered parachute (Noli 1985). Later, kites were rediscovered 

for aerial photography, allowing to be used with higher winds and had the advantage of 

being independent of gas and its handling (Anderson 2001). Colour and black and white 

films were used then. Within the past decade, the growing UAS market introduced 

many lightweight UAS with mostly off-the-shelf digital cameras for (photogrammetric) 

mapping applications (Colomina and Molina 2014). Plus, rotary and fixed-wing systems 

have found widening application in archaeological mapping. Verhoeven et al. (2014) 

presented a tethered multi-copter, and praised the independency of wind conditions and 
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GNSS signals. Williams (2012) used a fixed-wing light-weight UAS (swinglet CAM) to 

map the Medieval city of Merv along the Silk in Turkmenistan. And recently, Yan et al. 

(2014) compared low-altitude photogrammetry with LiDAR data and found the latter 

more performant for penetrating vegetation close to ancient walls, yet a more expensive 

system and lacking sub-decimetre mapping resolution. A UAV-LiDAR system intro-

duced by Wallace et al. (2012) uses a Sigma Point Kalman Smoother to combine IMU, 

GPS receiver and video observations to point cloud densities of 62 points/m² with hori-

zontal decimetre accuracy of around 34 cm and vertical of 14 cm at a 50 m flight alti-

tude.  

9.1.4 The Roman Settlement of Los Bañales 

Los Bañales is located along the old Roman route joining Caesar Augusta (now Sara-

gossa) to Pompelo to Aquitania and the Pyrenees. Starting as a Celtiberan, Flavian set-

tlement within an agricultural environment in the 4th -3rd century B.C., it became a Ro-

man economic and administrative centre within the first century B.C. consisting of an 

elite of indigenous yet romanised folk, war veterans and also Italians (Lasuén Alegre 

and Nasarre Otín 2008, Andreu Pintado et al. 2014). The urban structure became more 

complex including administrative, religious functions as well as a centre for agricultural 

production and trade/service centre (Lasuén Alegre and Nasarre Otín 2008). At the end 

of the 1st century AD, thermal baths and an aqueduct had been built, although monu-

ment-building is thought to have begun at Augustan times already (Andreu et al. 2011). 

The city extended to about 20 hectares in size (Andreu Pintado et al. 2014). In 2009 

excavations revealed that around the late 2nd century, private spaces with arcades were 

added to the city, and streets suppressed upon to the west of the thermal baths, which 

led to the assumption – in the absence of any destruction signs - that the city was dimin-

ishing either through weakened significance of local authority or due to economic 

causes. From 4th-5th century AD, the settlement was supposed to have become residen-

tial but was still significant (Lasuén Alegre and Nasarre Otín 2008; Andreu et al. 2011). 

Coin founds dating to the Arabian Epoque (8th-9th century A.D.) suggest that depopula-

tion happened gradually and peacefully (Andreu Pintado et al. 2014). Andreu lists other 

settlements facing similar desertions within the time period of 230 to 270 AD (2011, 

p. 122).  

First known descriptions of buildings and sketch maps of the settlement have been 

given by the Portuguese cosmographer Laban of 1610 (Lasuén Alegre and Nasarre Otín 

2008). As local place names have for long been referred to as “Bañales“, derived from 
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the Latin Balneum, the existence of the Roman baths was well known (Lasuén Alegre 

and Nasarre Otín 2008). The authors list further Spanish place names linked to Roman 

origins (Lasuén Alegre and Nasarre Otín 2008, p. 214). 

In 1930 the area was referred to Eremita de los Bañales on the topographic map. The 

first systematic examination of the area was conducted from 1942-49 by Galiay and 

1973-1979 by Beltrán. Recently, the Fundación Uncastillo together with the Universi-

dad Nacional de Educación a Diancia (UNED) set up an investigation plan in 2008 with 

a first excavation beginning in 2009 (Lasuén Alegre and Nasarre Otín 2008; Andreu 

Pintado and Garcia Lopez 2012). 

9.1.5 Objectives 

The main aims of this study were to retrieve the extent and municipal area of the Roman 

city Los Bañales, i.e. (i) to retrieve a 3D representation of the settlement area on the hill 

El Pueyo as a basis for further archaeological mapping and surveying, (ii) retrieving 

appropriate classification procedures to evaluate signs of archaeological settlement 

structures from vegetation type composition, and (iii) to explore the surrounding fields 

in the E and S of El Pueyo for any subsurface remains of Roman city or road structures.  

In the following, the work carried out begins with a description of the study site. The 

data used for this study are then presented followed by relevant pre-processing steps and 

description of the respective point-cloud modelling for the UAS data. Finally, the actual 

archaeological digital image processing focusing on the objectives are presented one by 

one.  

9.2 Study Site 

9.2.1 Historical Outline 

Los Bañales is situated in the South of the Pyrenees within the Comarco Cinco Villas to 

the southeast of the town Layana in the municipal of Uncastillo within the Spanish 

province Zaragoza at 1.23° W and 42.29° N (Figure 9.3). Geologically, the settlement 

lies at the NE-SW tilting sloping area of the Pyrenees in the valley of the river Rigel, 

contributory to the Ebro at mean altitudes of 450 m a.s.l. (Figure 9.1). Locally, the 

Bañales Valley consists of Miocene substrates of sandstones, clays, marls, limestones 

and gypsum (Lasuén Alegre and Nasarre Otín 2008, p. 208). Soils are Cambisols Cal-

cico-Rendzinae. The climate generally is temperate with a dry season and temperature 
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summers (Köppen-Geiger Cfb). At Saragossa Airport (41° 39’38’’N, 1°0’15’’E, 263 m 

a.s.l) for the 1981-2010 period the mean temperature was 15.5°C and about 322 mm of 

annual precipitation, most of it falling generally in autumn/winter and late spring 

(Instituto Aragonés del Medio Ambiente 1993; AEMet 2015c). The region had been 

facing an extremely dry winter season 2011/2012, and received only half of mean 

March rainfall compared to the 1971-2000 mean (AEMet 2015b; AEMet 2015a).  

 

Figure 9.3 The study site of Los Bañales in Arragon, Spain. Dots indicate camera posi-
tions for individual flights. 

The Roman city reached a size of about 20 hectares and was mainly located to the S of 

the hill El Pueyo de los Bañales (567 m a.sl). Figure 9.4 illustrates the location of the 

Roman settlement parts on the site.  
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Figure 9.4 Roman buildings excavated at Los Banales (1: centro de El Pueyo,  
2: domestic/craft centre, 3: Forum, 4: domestic centre, 5: Roman Baths) 

On its plateau, a housing area is assumed by remaining rock wall foundations and pole 

hollows and pits with excavated stones originally developed by indigenous folk. To-

wards the Eastern slopes and the first terrace follow village houses with a radial set up 

with probably poorer inhabitants (Lasuén Alegre and Nasarre Otín 2008). Along the 

second terrace to the E in the direction of the Hermitage, Roman buildings intersecting 

at right angles are situated. At the southwestern slopes, the necropolis of the city was 

established. On these Eastern plains of El Pueyo de los Bañales, the E-W-oriented Fo-

rum (Figure 9.3) was located and joining along in western direction, the domestic/craft 

centre is supposed to be situated as recent excavation have shown (Andreu Pintado et al. 

2014). In 2012 excavations revealed a monumental building on top of El Pueyo, yet 

stratigraphically not confirmed, a temple ( Lasuén Alegre and Nasarre Otín 2008; 

Andreu Pintado et al. 2014). Later finds suggest the hill to be used as a domestic area.  

Water was assumingly supplied to the city through a hydraulic system including a natu-

ral water reservoir with dam wall situated about 300 m to the SE (Figure 9.5) and an 

aqueduct with more than 32 remnant pillars of 3-9 m in height following into the villae 

(Figure 9.5) running along a curvi-linear rocky crest (Viartola et al. 2013) and a cistern 

to the East of the Hermitage. A detailed description may be found in Viartola et al. 

(2013). 

N 
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Figure 9.5 Assumed natu-
ral water reservoir (front) 
and dam of Los Bañales 

From 22 March-5 April 2012, a field trip of members of the Archaeology and Regional 

and Environmental Sciences faculty including the Department of Physical Geography, 

Geobotany and Environmental Remote Sensing and Environmental Sciences visited the 

site. A team of the Universität Hamburg joined the team to carry out geomag-

netic/electric field surveys. 

9.2.2 Vegetation Patterns on El Pueyo 

From visual inspection on the site surrounding El Pueyo, ruins and wall fragments are 

still reasonably preserved (Figure 9.12) and permit conclusions about the use of the dif-

ferent settlement areas. First analyses of soil chemistry and vegetation composition 

conducted by the Geobotany Department in spring 2012 showed distinct differences 

between the area surrounding the former Roman baths compared to agricultural, non-

built-up areas. In the direct environment of the Roman baths, higher concentrations of 

Potassium (K) and plant-available phosphorus (P) were found in dried soils as well as 

higher electrical conductivity of diluted soils. Higher phosphate contents in dry soils 

may indicate long-term immission of human faecal matter during Roman settlement 

times as has been found for other ancient settlements to be the case (Ottaway 1984). The 

vegetation cover also clearly reveals compositional patterns of dominating areas of the 

perennial sub-shrub Artemisia herba-alba Asso (white wormwood) and the sweet grass 

Brachypodium retusum (Pers.). Within Spain, white wormwood is associated with nu-

trient- and salt-rich soils along agricultural fields whereas Brachypodium retusum 

dominates dry, nutrient-poor pastures (Peralta de Andrés 2000). The 2012 field trip re-

vealed higher stony components and more sandy soil constituents within the Brachypo-
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dium sites, and more open soils with higher clay- and silt-fractions within the Artemisia 

sites which may be attributed to the ancient land use (Figure 9.6).  

Figure 9.6 Typical vegeta-
tion type pattern along 
wall remains with Ar-
temisia herba-alba Asso 
(A) and Brachypodium re-
tusu (B). 

 

9.3 Data Sources 

9.3.1 UAS Image Acquisition and Pre-Processing 

On 22/03/2015, skies were clear and several flights were carried out with the md4-1000 

from morning till midday as winds were less strong then. Table 9.1 list the UAS flights 

and camera payloads. 

Table 9.1 UAS flights and camera payload used for the Los Bañales site 

Flight No. UTC Sensor Flight Altitude a.g.l. 

#106 07:20h - 07:31h Nikon DC3100 ~ 100 m  

#107 07:52h - 08:01h Nikon DC3100 ~ 80 m 

#108 08:43h - 08:51h MiniMCA-6 ~ 130 m  

#109 09:48h - 09:58h MiniMCA-6 ~ 115 m 

#111 12:55h – 13:06h MiniMCA-6 ~ 130 m 

 

For the derivations of an orthophoto mosaic and digital elevation model of El Puyeo and 

the necropolis, a 14 Mpixel Nikon DC3100 digital single lens reflex camera (DLSR) 
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was mounted with a digital 10 mm wide angle lens. Sensitivity was set to 800 ISO, im-

age quality to fine JPEG as no spectral analysis was planned. Resulting images were 

corrected for vignetting effects.  

For multispectral imagery to be used for vegetation classification and crop/soil mark 

studies, the MiniMCA-6 was equipped with spectral 10nm FWHM filters at 530 nm, 

550 nm, 570 nm, 700 nm and 900 nm. Except for the first two flights, images were ex-

posed automatically as smaller clouds appeared later that morning. Pre-processing in-

cluded all steps described in chapter 5 including vignetting correction, image alignment 

to multispectral images, and where necessary histogram matching was applied for mul-

tispectral data using either grey-level reference panels described in chapter 6.2.4 or im-

age-to-image matching. 

9.3.2 GPS Data 

For the georeferencing of aerial images, CDs were laid out within the study site as 

ground control points. Their location was defined using a differential GPS (Trimble 

GPS GeoXT) and 200 points per location were averaged to one measurement. Further 

characteristic wall remains and rocky feature locations were measured with a Garmin 

60CSx device. See chapter 5 for a more detailed description of measurement devices. 

Data were acquired as geographic (WGS84) coordinates. 

9.3.3 Ancillary Data 

SITAR Plan Nacional Orthophotos were used as georeferencing base (Instituto 

Geográfico de Aragón 2009). The orthophoto mosaics have a spatial resolution of 

0.5 m. Where no other data were available, height data was extracted from Google Earth 

data.  

From point cloud modelling derived DEM, illumination, slopes and aspect were further 

computed and used as input to classifications.  

Partners from the Archaeology department and the Rheinisches Landesmuseum sur-

veyed building remains with a tachymeter using a locally set up orthogonal coordinate 

systems. Data were later transferred to UTM30N (ETRS89) coordinate system using 

ArcGIS 10. 
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Figure 9.7 Results from geomagnetic pro-
spections made by Prof. Dr. Seifert and 
her team (2012-2015) 
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The Universität Hamburg group conducted several geomagnetic point measurements 

from 2012 until 2015. They used a SENSYS® 5 Channel Magnetometer on the fields of 

specific interest. Surveyed areas are illustrated in Figure 9.7. 

The Geobotany department undertook a first vegetation type classification along the SE 

slopes of the hill El Pueyo in 2012, where the distribution of different herbs and grasses 

were supposed to mirror settlement structures. 

Analyses techniques applied for answering the objectives are described in the respective 

sections. 

9.4 Methods 

9.4.1 Pre-Processing: Point Cloud Modelling and Image Mosaicing 

9.4.1.1 Derivation of Orthophoto Mosaic and DEM for the Roman City of Los Bañales 

as a Mapping Base (flight #106 and #107) 

All point cloud modelling, meshing and image mosaicking was performed using Agisoft 

software 1.1 (AgiSoft LLC 2014) according to procedures described in chapter 5.3. To 

cover the whole extent of the hill and its surroundings, flights #106 and #107 were 

combined in point cloud modelling. UAS flights were performed by visual control of 

mapped areas with the help of the ground station only. This led to underestimation of 

some areas in the NE of the hill and to the S, W of the former Roman baths during flight 

#106 and #107 (Figure 9.8). 
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Figure 9.8 Camera locations and image overlap for UAS-DLSR flight. Numbers and 
colours illustrate amount of image overlap for the given location (i.e. projections) 

The two UAS flights with the Nikon DLSR camera resulted in a total of 59 images at an 

average flight altitude of 88 m a.g.l to be used for image processing. For image align-

ment with ground markers ~730000 tie-points were used. The resulting point cloud was 

edited and meshed with a medium density and textured with image data by averaging 

DN. The resulting spatial resolution of the orthophoto mosaic (Figure 9.12) amounted to 

~ 5 cm with a locational error in relation to GPS measurements of 3.56 pixels. Where 

image overlap was less dense, the digital elevation model retrieved erroneous height 

differences in surrounding areas and elevation values should only be analyzed at speci-

fied areas (bluish parts of Figure 9.8). The Z error therefore ranges from 0.05 to 10.69 m 

at maximum (Table 9.2). 
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Table 9.2: GCPs and their locational projection errors for flight #106 and #107 

GCP# X error [m] Y error [m] Z error [m] Error [pixel] Projections 

point1 -1.21 0.93 -4.49 3.80 4 

point2 0.11 -0.40 0.28 4.88 8 

point3 0.72 0.13 3.14 2.31 7 

point4 0.13 0.69 -0.72 1.99 4 

point5 -0.78 0.41 0.05 8.27 9 

point6 0.69 -1.64 3.23 1.99 10 

point7 -1.06 0.93 -3.63 2.02 10 

point8 -0.14 0.26 -4.16 6.04 10 

point9 -0.55 0.24 -1.56 4.74 15 

point10 0.60 1.52 10.69 10.93 7 

point11 1.01 -0.74 2.39 7.46 6 

point12 -0.07 0.32 -3.00 5.71 11 

point13 0.03 -0.63 -3.22 3.19 13 

Total 0.67 0.82 4.05 5.43 114 

 

9.4.1.2 Derivation of Multispectral Orthophoto Mosaics for El Pueyo 

Analogous to flight #109, photos collected with the MiniMCA-6 were modelled to a 

point cloud and georeferenced with the GCPs laid out in the field. About 44500 tie 

points were used and the overall RMSE was 0.51 pixel/0.21 m, the Z error amounted to 

0.20 m, however, the respective DEM was not further used. Spatial resolution was set to 

7 cm. As the orthophoto mosaic of flight #106_107 was the largest and had been se-

lected as reference, the orthophoto mosaic #109 was further rubbersheeted onto this 

reference to increase accuracy where image overlap was scarce for that flight. Figure 

9.9 shows image procetions for flight #109. 

Table 9.3 GCPs and their locational projection errors for flight #109 (Projections: indi-
cates number of images where GCP could be located) 

GCP#109 X error [m] Y error [m] Z error [m] Error [m] Error [pixel] Projections 

1 -0.030 0.010 -0.001 0.032 0 1

8 0.027 0.002 -0.056 0.062 0.467 5

10 -0.032 -0.003 0.098 0.103 0.579 5

11 0.149 0.082 -0.469 0.499 0.237 2

12 0.001 0.003 -0.021 0.021 0.761 4

13 0.001 -0.006 0.023 0.024 0.140 3

Total 0.064 0.034 0.198 0.512 0.512 20
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Figure 9.9 Camera locations 
and image overlap for ortho-
photo of flight #109  

 

9.4.1.3 Derivation of Multispectral Orthophoto Mosaics for Cultural Pattern 

Reconnaissance in Agricultural Fields (#108 and #111) 

Similarly, image alignment, point cloud modelling, meshing to medium resolution and 

texturing to orthophoto mosaics was carried out for the agricultural fields to the E 

(#108) and South of El Pueyo (#111) (Figure 9.10). As already mentioned, here, histo-

gram matching was applied to imagery. For the eastern field due to image caption ge-

ometry, not one single model was able to cover the respective field. Two separate mod-

els were therefore processed which were later combined to one orthophoto mosaic by 

image rectification using a 1st order polynomial transformation and bilinear interpola-

tion, reference points being retrieved from the Nikon mosaic and SITAR web server 

(http://sitar.aragon.es/geoinformacion.jsp, access date: 22/06/2012). Prior to that histo-

gram matching was applied to obtain comparable radiometric data. 
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Table 9.4 Point cloud modelling and resolution parameters for multispectral data for the 
agricultural fields in the E (#108) and S (#111)  

  #108 S #108 N #111 
No. of images 16 4 11 
tie-points 31968 1399 2611 
Ground resolution 0.06 0.07 0.03 
Error [pixel] 0.96 1.66 1.33 

Figure 9.10: Camera locations and image overlap for orthophoto of flight #108 (left) 
and flight #111 (right) 

For the southern field, only parts explored by the Universität Hamburg team using geo-

magnetic prospection were further analysed. The mesh model was textured by using the 

mosaic option and a rough georeferencing was carried out within Agisoft (Table 9.4) 

then the data was rubbersheeted to match the Hamburg prospection data using the SI-

TAR orthophotos and the Nikon orthophoto mosaic reference. 

Table 9.5 GCPs and their locational projection errors for flight #111 

GCP#111 X error [m] Y error [m] Z error [m] 
Error in 

pixels Error [m] Projections 

point 24 10.844 -35.465 76.231 1.052 84.773 2 

point 25 29.462 3.951 78.203 8.841 83.662 2 

point 26 9.144 18.187 -6.793 0.000 21.459 1 

Total 18.879 23.124 63.174 5.631 69.872 5 
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9.4.2 Feature Enhancement 

Prior to land use classification, several feature enhancements were carried out. As the 

flight acquisition time at the end of March 2012 was less than ideal due to the dry pre-

ceding winter, the herbal vegetation was just starting to get active, and herbs still ap-

peared quite dry. Several vegetation indices were computed to enhance the weak differ-

ences in vegetation types: NDVI, NDVI700nm, 530nm, and TCARI (see chapter 7.4 for in-

dex definition).  

Although very similar in DN, Artemisia sites (Figure 9.6, Figure 9.15) showed quite a 

different texture than other vegetated sites due to substrate/vegetation/shade compo-

nents, thus inclusion of texture measures promised further separation capability. Several 

texture measures and filter sizes, provided by digital image processing (DIP) software 

and by Hass (2015), were tested. As it is out of scope to present all of them here, only 

the optimal texture measures are presented here: Texture was analysed by means of a 

9x9 pixel filter operation calculated from the grey-level co-occurrence matrices 

(GLCM) of the 2nd principal component (PC) of the multispectral data, as it showed the 

highest variance in relation to vegetation features: 

Cluster shade (CLS) 
(Haralick et al. 1973; 
Conners et al. 1982) 

ܵܮܥ ൌ ෍෍൫ሺ݅ െ ሻߤ ൅ ሺ݆ െ ሻ൯ߤ
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 10.1

Cluster prominence (CLP) 
(Conners et al. 1982) ܲܮܥ ൌ ෍෍൫ሺ݅ െ ሻߤ ൅ ሺ݆ െ ሻ൯ߤ
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Cluster coherence (COH) 
(Haralick et al. 1973) ܪܱܥ ൌ ෍෍
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With: 

Ng:   Number of quantization levels 
P(i,j):   entry (i.j) in the normalized and symmetrical GLCM 
µ:    GLCM mean 
σ:    GLCM standard deviation 
µx, µy:  marginal column and row means 
σ x, σ y:  marginal column and row standard deviation.  
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For a detailed discussion please refer to Haralick et al. (1973), Haralick (1979), Conners 

and Harlow (1980), Conners et al. (1982), and Hass (2015). The filter size was chosen 

smaller than the extent of an Artemesia cluster size of roughly 15 pixels. As image input 

the second principal component was chosen as it showed maximum difference in vege-

tation DN from soil substrate.  

To decorrelate bands and to remove noise from the input data, a principal component 

analysis (Richards 2013) based on the correlation coefficient between bands was carried 

out in ENVI for the following input bands: 

A) lb109-orthophoto mosaic bands, NDVI700nm,670nm, TCARI, texture measures 

(CLS, CLP, COH), and 

B) lb109-orthophoto mosaic bands, NDVI700nm,670nm. 

9.4.3 Land Cover Classification Using Support Vector Machines 

The land use classification was then performed using SVM as they have been found to 

often outperform alternative (supervised) classification algorithms and are able to han-

dle feature spaces of higher dimensionality. Its advantages are, that the SVM classifier 

is independent on the data distribution, and performs well in heterogeneous land covers 

with limited training data samples: only few training pixels are required to determine 

the support hyperplane (Melgani and Bruzzone 2004; Mountrakis et al. 2011).  

 

Figure 9.11 Support Vector (Melgani and Bruzzone 2004, p. 1781) 

For each land cover class, a vector (Figure 9.11) is defined in the d-dimensional feature 

space. SVM searches for maximizing the distance between training samples (linear sur-
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face). Two marginal hyperplanes maximizes the margin around a separating hyperplane 

between the training samples by the use of a subset of special training samples, the so-

called support vectors (Richards 2013, p. 226f). 

The decision-rule is then a discriminant function dependent on the hyperplane: 

 

 ݂ሺݔሻ ൌ ݓ ∙ ݔ ൅ ܾ (10.1)

With: 

w:  vector 
b:  bias 

A pixel is then a member of class 1 if ݓ	 ∙ ݔ ൅ ܾ > 1. w and b are estimated to obtain 

 

ݓ௜ሺݕ  ∙ ௜ݔ ൅ ܾሻ ൒ 1 (10.1)

Here, a non-linear SVM with a radial kernel method was selected for defining the hy-

perplanes of higher order PC space (see Melgani and Bruzzone 2004; Richards 2013, 

p. 230f for a detailed description).  

 

,௜ݔሺ	ߢ  ሻݔ ൌ exp ሺെݔ‖ߛ௜ െ ሻଶ (10.1)‖ݔ

For the estimation of the optimal kernel parameters, the penalty cost parameter C and γ, 

a parameter which is inversely proportional to the broadness of the Gaussian kernel, a 

grid search was guided by the cross-validation accuracy. An exhaustive searching was 

carried out using the hyperparameter optimization technique of a grid search: 

 Cost parameter C [2, 4, 8, 16, 32, 64, 128] 

 γ [0.312, 0.0625, 0.125, 0.25, 0.5, 1]  

Training pixels for input were digitized with the help of the original multispectral bands 

and the Nikon orthophoto mosaic and resulted in a training set of n = 904 pixels. Care 

was taken to digitize sample sizes about ~ 10 times larger than required number of LC 

classes. A 5-fold cross-validation was used to produce an unbiased estimate of classifi-

cation accuracy and from the resulting five images’ pixel values the most frequent land 

cover was selected for the respective location. Additionally, during the classification 

process, the variances of the 5-fold cross-validations were used to optimize training 

samples for misclassified areas. Classification accuracy was computed for one classifi-
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cation output including overall accuracy, error of omission (Richards 2013) and area-

weighted κ (Pontius and Millones 2011).  

9.5 Results 

9.5.1 Base Map for Analysis of Settlement Patterns at El Pueyo and 

Surroundings 

One of the aims of this work, was to obtain a map base for excavation and settlement 

structure surveys (Figure 9.12). 

   

Figure 9.12 GPS measurements (red cross: Trimble GPS, yellow cross: Garmin GPS) 
and GCP for orthophoto-productions (RGB: bands 1,2,3) 

As no other base map of a locational precision within centimetre range was available for 

further corrections, the resulting orthophoto was accepted as the base map for this area. 

The retrieved digital elevation model has a 20 cm spatial resolution (Figure 9.13). 
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Figure 9.13 Digital elevation model of the study site as retrieved from DSLR UAS im-
agery (background data: SITAR orthophoto mosaic) 

 

Figure 9.14 Hillshade of El Pueyo highlighting former settlement structures 

Derived data, like hillshade (Figure 9.14), together with land cover data (here rocks) 

may help to map settlement structures.  
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9.5.2 Vegetation Type Classification as an Indicator for Former Land Use 

The second aim was to obtain a vegetation composition/land cover map of the Pueyo 

and its surroundings as an indicator for potential former possibly Roman settlement 

structures in addition to wall structures and settlement remnants. The focus lies on the 

retrieval of the described Artemisia versus Non-Artemisia sites and settlement patterns.  

The NDVI700nm,530nm (Figure 9.15: top right) and TCARI (Figure 9.15: bottom right) 

best depicted DN differences between Artemisia sites and surrounding vegetation. This 

index was therefore stacked to the orthophoto for following analysis.  

 

 



9 UAS-Based Archaeological Reconnaissance at Los Bañales, Spain 250 

 

 

Figure 9.15 Multispectral orthophoto of flight lb109 (RGB: 900, 700, 670 nm) top left, 
NDVI900nm,670nm top right, NDVI700nm, 530nm: lower left, and TCARI (lower right. Red 
circles known Artemesia distribution sites; blue circles: other grassy/herb species)  
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Figure 9.16 shows the texture measure COH and illustrates the areas of lower texture 

for Artemisia sites. 

  

Figure 9.16 Differences in DN texture for Artemisia sites (homogeneous greyvalues in 
cluster correlation) and more grassy/stony environments in between (9x9 filter) 

The PC transformation resulted in components (Figure 9.17) associated with different 

features and land cover classes for the A) input variant revealed that the PC6 is mostly 

characterized by periodic striping introduced by data acquisition and mosaicing errors 

and was therefore deleted from the image for further analysis. 
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Figure 9.17 Principal components computed from correlation matrix of the multispectral 
input bands (1-6) and NDVI700nm, 530nm (PC1-7 from top left to bottom): PC 6 shows 
noise 
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Figure 9.18 shows the resulting land cover classification of variant A) the PC bands 

with NDVI, TCARI and texture measures and variant B) additionally including texture 

information. Selected kernel parameters are given in Table 9.6. The variant B), i.e. 

without texture measure, retrieved the best representation of the Artemisia herba alba 

site within the LCC (Table 9.7, Table 9.8) and was therefore chosen as the final land 

cover map. 

Table 9.6 Selected radial kernel parameters for cross-validations in SVM LCC 

Variant A CV1 CV2 CV3 CV4 CV5 

Γ 0.12500 64.00000 0.12500 8.00000 0.03125 

C 128.00000 0.06250 16.00000 0.25000 16.00000 

Variant B      

γ 0.25000 4.00000 0.25000 32.00000 0.50000 

C 2.00000 0.03125 128.00000 0.12500 4.00000 

Table 9.7 Area-weighted confusion matrix for land cover classification by SVM of mul-
tispectral orthophoto mosaic including texture for CV5 (variant A) 

  
Validation 

      
User’s 
accur. 

Training 
LC Rock Soil 

Exca-
vation 

Plastic 
foil Pa veg. 

Scarce 
veg 

Artem
tem-
isia 

Shad
e Sum 

 

Rock 0.108   0.002     0.110 98 
soil bright  0.207       0.207 100 
Excavation   0.009   0.000   0.009 100 
Plastif foil    0.000  0.000   0.000 100 

Pa veg.     0.008    0.008 100 
Scarce veg  0.048   0.048 0.242 0.016  0.356 68 
Artemisia.      0.012 0.242 0.012 0.265 91 

Shade        0.040 0.040 100 
Sum 0.108 0.255 0.009 0.002 0.057 0.254 0.258 0.051 1  
Producer’s 
accuracy 
[%] 100 81 100 15 14 95 94 78  85 

 

The overall accuracy retrieved for variant A) was 0.85, with an area-weighted κ of 0.82 

for the best SVM land cover classification.  
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Table 9.8 Area-weighted confusion matrix for land cover classification by SVM of mul-
tispectral orthophoto mosaic without texture for CV5 (variant B) 

  
Validation 

      
User’s 
acc. 

LCC Rock Soil 
Exca-
vation 

Plastic 
foil 

Pa vege-
tation 

Scarce 
veg 

Artem-
tem-
isia  Shade Sum 

 

Rock 0.331   0.000     0.110 100 
soil bright  0.238       0.207 100 
Excavation   0.018   0.000   0.009 100 
Plastif foil    0.003  0.000   0.000 100 

Pa veg.     0.025    0.008 100 
Scarce veg  0.018   0.009 0.117 0.000  0.356 81 
Artemisia      0.006 0.061 0.003 0.265 88 

Shade        0.124 0.040 100 
Sum 0.331 0.256 0.018 0.003 0.034 0.122 0.061 0.127 1  
Producer’s 
accuracy 
[%] 100 93 100 100 74 95 100 98  92 

 

The overall accuracy for variant B) was 0.92 and the area-weighted κ 0.89.  

Although less accurate for the sparsely vegetated environments (Table 9.8, the LCC 

depicts quite well the Artemisia herba-alba Asso sites using the noise-substracted PC 

and NDVI700,530nm data (see also the orthophoto compared to LCC in Figure 9.19). The 

species show a clumped occurrence in between sink areas within the wall fragments 

along the plateau and the terraces down to the road. The separation from Brachypodium 

retusum was not followed any further, as the phenology at image acquisition was not 

ideal and grasses not well separable from other shrubs and (reddish) soil substrates. 

However, once proven that the Artemesia distribution is not caused by alleopathy, the 

pattern may further be investigated by archaeologists with regard to former use. Classi-

fication accuracy surely be much smaller if field-data had been available at that detail. 

The LCC including texture (Variant A)) shows overestimation of Artemisia herba alba 

sites, especially on the central plateau and to the SE. On the plateau, image overlap was 

small and the image therefore slightly unfocused. Texture measures therefore indicate 

low values for this area.  

The texture measures do introduce spatial artefacts (Figure 9.16 left) for spectrally con-

trasting small objects such as rocks. Here, object-oriented LCC would yield better clas-

sification results for these types of highly structured land covers. Another potential LCC 

scheme could use a binary LC classification for Artemisia sites in relation to other LC, 

using the low texture values in the COH band to mask out only potential Artemisia sites.  
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Figure 9.18: Land cover classification for vegetation types using multispectral image-derived PCs, VIs and texture 
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Figure 9.19 Orthophoto mosaic (left) and land cover classification result (right) 
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9.5.3 Detection of Cultural Heritage Patterns in the Eastern and Southern 

Vicinity of El Pueyo 

Due to early season and crops not having developed to full canopy cover, reconnais-

sance of archaeological settlement features in the field E of El Pueyo (flight lb108) are 

difficult to obtain spectrally. The Universität Hamburg group kindly provided the inter-

polated geomagnetic data for comparison (Figure 9.7), and features may be derived 

visually on the UAS data, yet it had not been possible to retrieve them by DIP. 

From the geomagnetic prospection data (Figure 9.20), several linear features were found 

at location A, B, and C. For the detected features at location A, a subsurface three-

walled feature had been found. At the smaller plot B, vegetation just about emerged and 

therefore, no crop marks could be detected. In the multispectral data (Figure 9.20), these 

are hardly to be traced. For area C, however, a linear feature running NNE-SSW may be 

just detected in Figure 9.20 which was additionally visible in the NDVI image (Figure 

9.21).
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Figure 9.20 Reconnaissance for the agricultural field to the E of El Pueyo: Top left: re-
sults of geomagnetic survey (Prof. Dr. Seifert & team, Universität Hamburg) compared 
to spectral data (RGB 700, 670, 570 nm) on the right. Bottom row left shows the spec-
tral data with (RGB 900, 700, 570 nm) and on the right the fifth principal component. 
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Figure 9.21 NDVI image of agricultural field E of El Pueyo.  

The other field analyzed was situated to the SE of El Pueyo, and similar results were 

found. Despite the late and scarce crop development, some crop marks or other potential 

tracers of subsurface features are detectable by means of feature enhancement (PCA) 

and visual interpretation of multispectral data (Figure 9.22).  
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Figure 9.22 Crop marks found in agricultural field SE of El Pueyo. Left: PC2, right: 
geomagnetic data (Prof. Seifert and team) with overlaid transparent multispectral image 
(RGB 900,700,670 nm). 

Again, the late crop development did not help to highlight potential archaeological fea-

tures and signals are rather weak. Yet, the wall or road structure visible in rectangle A 

(Figure 9.22) is just traceable by PC2. The darker marks in rectangle B are also found in 

the 2015 magnetometer measurements reinforcing the assumption that the low magnetic 

values (dark areas) are a former ditch area or potential building fundaments. The regular 

pattern of low magnetic values in rectangle C is not found for the aerial imagery. 

9.6 Summary 

As was shown by this study, by other publications (Verhoeven 2009; Verhoeven 2012, 

Williams 2012), and the manifold increasing flight requests for UAS pilots, Vis/nIR 

remote sensing imagery has been emerging as a cheap and ad-hoc information source 

for large-scale studies within the field of archaeology. Applications range from simple 

visual surveys to map excavation progress to photogrammetric surveys and retrieval of 

3D objects to archaeological reconnaissance. In this study, visual data (Nikon camera), 
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were utilized to retrieve an orthophoto mosaic and DEM as a reference map for future 

work in that area and derived data (hillshade, slope, land cover material, etc.) support 

this kind of work. Due to high wind speeds, data was mostly acquired in the morning 

which resulted in a considerable amount of shadow in the image, impeding DIP within 

these areas. As image acquisition had to be prosecuted within a couple of days for a 

large area, flights were carried out manually, leading to scarce image overlap in some 

areas. These introduced artificial features within the imagery impeding automatic fea-

ture detection. Another noise source introduced in the imagery, are stripes introduced by 

the multispectral MiniMCA-6 and its progressive shutter and by platform vibrations 

during the flight. These could be eliminated to some extent by feature space transforma-

tions, in this case PCA, where often noise is mapped to one or two principal compo-

nents which may then be eliminated for further processing.  

A land cover map for the hill El Pueyo has shown the potential to provide further in-

formation about former land use if the assumption that Artemisia herba-alba is indeed 

an effect of ancient phosphorus input. The plant type areal dominances may, however, 

also be contributed to allelopathy used by the respective species (Escudero et al. 2000) 

or small-scale differences in soil constituents. This question can only finally be an-

swered after more detailed field and plant pot comparative studies which up until now 

could not be performed but are planned for the future. 

Aerial reconnaissance of cultural heritage patterns has also shown potential to indicate 

former land use features, although phenology of crops lacked behind the seasonal mean 

due the preceding very dry winter.  

9.7 Conclusions 

Today’s spread of light-weight, easy-to-use small UAS provide archaeological explora-

tions with almost immediately ready-to-use systems for low-cost image acquisition. As 

the work at Los Bañales has shown, for a successful archaeological data mining of UAS 

imagery, well-planned campaigns support reconnaissance. At the beginning, flight plans 

regarding sufficient image overlap should be established. Even if today’s SfM-software 

takes advantage of slant-range imagery and uses self-calibration to builds reasonably 

accurate point cloud models (Rock 2010; Franjcic and Bondeson 2014), total site cover-

age with high image overlap, and possibly differing viewing angles provide better qual-

ity orthophotos and DEMs to obtain centimeter-range pixel resolution for orthophoto 

mosaics (Nex and Remondino 2014). Furthermore, the acquisition of accurate ground 
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control points using advanced DGPS technology is essential to anchor retrieved 3D 

point models for decimetre/centimetre accuracy.  

Image quality steers object recognition, demanding well-planned data acquisition in 

relation to  

 choice of season, phenology, and time of the day,  

 selection of appropriate sensors (spectral range, radiometric resolution), 

 acquisition of mandatory ancillary data (GCPs, reference spectral measurements, 

field surveys) 

 image pre-processing to correct for noise, radiometric and atmospheric effects, 

precise geopositioning, followed by  

 adequate image-processing (Lasaponara and Masini 2012b).  

Good practice guides for UAS surveys may be found online and support archaeological 

work (Gray 2009 ). 

Minimal growth differences in height and vitality introduce – depending on sun-sensor-

target geometry – different patterns in plant and crop signals, which may then be en-

hanced by DIP algorithms (e.g. texture measures, feature space transformations). Yet, 

visual interpretation still often beats DIP processing in pattern recognition. 

In relation to sensors, multispectral, hyperspectral, thermal or even microwave sensors 

outperform human vision of spectral features. Yet, small RGB digital cameras will per-

sist as they are cheaper and more ready to use with small UAS. They may be equipped 

with special filters to extend/limit the spectral signature to the nIR, or a set of configur-

able standard industry C-mount cameras may be equipped with spectral filters, thus ex-

tending pattern recognition likelihood of hidden archaeological features.  

  



 

 

10 Summary and Discussion  

The main aim of this work was to examine the potential use of small (quadrocopter) 

UAS for agricultural crop observations and archaeological applications. The discussion 

first describes the state-of-the-art pre-processing from image acquisition, radiometric 

calibration and correction to geometric processing to obtain orthophoto (mosaics) and 

DEMs. Finally, the findings of the agricultural and archaeological applications are dis-

cussed. 

Drones have knocked in to the field of environmental remote sensing since the millen-

nium like satellites have at the end of the last century. As chapter two has illustrated, 

UAS development is still increasing and new platforms and sensors continue to be de-

veloped. Applied at mostly larger scales (local to small regions), their utilization is still 

widening for nearly all environments. Their benefit first of all lies in the small costs 

compared to aircrafts and manned aircraft missions. Up until now, UAS pilots did not 

require licenses in Germany, and after a short training period are able to fly operation-

ally. The other big advantage is the less strong importance of weather conditions. UAS 

are generally flown well underneath cloud level (i.e. < 100-300 m a.g.l.) and if precise 

radiometric correction of greylevels is of subordinate importance, they fastly deliver 

overviews over specific sites of interest, helping, for example, viticulturists to see areas 

of nutrient or water stress.  

The limitations are first to be searched in allowed platform take-off weight. In Ger-

many, general ascent permits are restricted to UAS with a take-off weight of < 5 kg, 

which is also limiting the weight of sensors. Camera miniaturization though, will surely 

help to provide advanced sensors at lower costs than are available now. For small UAS, 

and especially rotary-wing systems, batteries still restrict flight times hindering surveys 

of larger sites where fixed-wing UAS still are the platform of choice. Chapter 2.2 sum-

marises today’s UAS categories, and gives information about platform types in detail. 

Rotary-wing systems such as the md4-1000 quadrocopter, offer the advantage of verti-

cal take-off and landing and thus are independent of runways and may hover over sites 

of interest, thus excluding forward-motion blur.  

The sensor used for this study was a six-band multispectral camera (Tetracam 

MiniMCA-6) which, at the onset of this study, was the sensor with the best spectral 

resolution to be found within the <1 kg camera weight department and could be 

equipped with customized filters of variable FWHM. Furthermore, the study showed the 
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use of broadband thermal cameras in differentiating crop status, and the use of off-the-

shelf digital slant range cameras the generation of orthophoto mosaics as map refer-

ences. Other sensors find widening applications, too, but were out-of-scope in the con-

text of this work and are solely listed in chapter 2.  

Apart from these technical limitations, another restricting factor to the use of UAS may 

be the national airspace regulations. Some European countries, after a first open policy 

of the use of UAS are now backpedalling and requesting pilot training and health 

checks impeding application of technology as Pablo Zarco-Tejada asserted during the 

9th EARSeL’s SIG Imaging Spectroscopy Workshop in Luxembourg 2015. No-fly 

zones are being identified to protect sites of special security (e.g. government building) 

after UAS flying without permit into the park of the White House, within the city of 

Paris or London parks. Clearly, the expanding technology has overrun regulating bod-

ies. In 2011, Europe’s aviation bodies published a European strategy on civil UAS (EC 

2012) and set up a road map and RPAS steering group for civil use of these systems, 

seeking secure integration into European airspace, developing an aviation regulation 

framework at national and EU level and their coordination. UAS will only be allowed 

into non-segregated airspace once they communicate their location to air traffic control 

either by constant broadcasting or by request. Mike Lissone, the RPAS ATM integra-

tion programme manager of Eurocontrol, spoke of over 1.2 million commercial RPAS 

worldwide. Equipping these with Automatic Dependent Surveillance-Broadcast (ADS-

B) would soon bring the Universal Access Transceiver (UAT) down on their knees as 

they would not be able to handle that amount of requests and answers, said Lissone dur-

ing the RPAS Workshop in the Netherlands, June 2015. Standards for integration of 

RPAS in European airspace are to be developed until 2022 (van Wagenen 2015).  

However, general ascent permits are granted if flight altitude is below manned aircraft 

(different altitudes are used in different countries) and liability insurance has been pro-

cured. Then police/controlling authority on-site need to be informed beside the air traf-

fic control. For the study presented here, a general ascent permit was granted for visual 

line of sight flights of up to 100 m a.g.l. outside restricted areas for Rhineland-Palatinate 

(chapter 2). 

The general workflow from image acquisition to image analysis followed in this study 

is illustrated in Figure 10.1. Image acquisition as obviously the first step, requires care-

ful flight planning to ensure sufficient data overlap and image quality (40-60%) if or-

thophoto mosaics are to be generated. Generally, 2-3 photos per location were taken to 

ensure the acquisition of focused images per location.  
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Figure 10.1 Summary of processing flowchart for UAS campaigns (ELC: empirical line 
calibration, PCA: principal component analysis, SVM: support vector machines) 

The multispectral camera has shown to be affected by a) random and b) systematic 

noise (Kelcey and Lucieer 2012; Del Pozo et al. 2014). Random noise induced by the 

dark current may be eliminated by dark room image acquisition and averaging error 

effects in DN. The systematic bimodal noise is introduced by the progressive shutter 

and a chequerboard pattern by sensor induced differing DN levels. The band-dependent 

errors have shown to lie between ~0.5 to maximum 16 DN altogether, and may only 

partially be removed (Kelcey and Lucieer 2012; Del Pozo et al. 2014).  

The progressive shutter mechanism used with the MiniMCA-6 does in cases show 

blurred areas when the UAS platform was affected by winds or flight-induced vibra-

tions. Flight-planning is carried out with the respective ground station, offering either 

preloaded maps, in this case using Google Earth or any other maps as reference base. 

For spectral analysis of image data, it is then of further importance to ensure equal ra-

diometric or illumination conditions for each image: flights should ideally be carried out 

when the sky is clear and the sun is at its peak to ascertain similar illumination condi-

tions and to minimize shadows. This allows for fixed exposure times, thus, saving im-

age-to-image radiometric corrections in case of automatic exposure. In practice, this is 

not always operationally possible, when several flights during one day are required, due 
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to battery-dependent flight times or when diurnal measurements are required. If absolute 

reflectances are required, reference reflectances need to be obtained during image ac-

quisition.  

The post-flight processing starts with data downloading of raw imagery and conversion 

to DIP image formats. Due to the rectangular sensor dimension in relation to optics 

(Verhoeven 2009), vignetting occurs and requires specific correction (chapter 5.1). The 

multispectral photos derived from the MiniMCA-6 for a respective location require 

band-to-band image alignment to obtain multispectral imagery. Alignment files with 1st 

order transformations (offset in x- and y-direction, scaling and rotation) are either pro-

vided by the producer, may be provided from the producer or by using images of infi-

nite distance created by the user. In practice, camera handling, temperature differences 

and platform vibrations do cause modifications of camera parallaxes. Alignment files 

had thus to be generated for each flight campaign. Filter transmission and monochro-

matic camera response required further correction. Lens distortion is nowadays cor-

rected within the Structure-from-motion software, and is not mandatory. As reference 

grey-level scales, panels of various colours or even just one Spectralon® panel are pro-

viding necessary calibrating targets to relate digital image numbers/values (DN) to re-

flectance values. In this work, grey-level panels (chapter 5) have been used, other 

groups used vinyl sheets or coloured boards (Del Pozo et al. 2014). Care needs to be 

taken to exclude environmental reflectances onto this panel, e.g. by placing a non-

reflecting target underneath. The effect of tilted positioning and slant-range imaging on 

reference panels, e.g. in vineyards, requires further looking into. 

Higher-order atmospheric effects like topographical influence are only removed by at-

mospheric and topographic correction (Tanré et al. 1990; Hill and Sturm 1991; Richter 

2010; Hantson and Chuvieco 2011) with radiative transfer modeling. Here, with non-

flat topography and the relative height differences of the 3D targets, ideally, 3D point 

cloud models should be derived prior to atmospheric correction, which is often not op-

erational. However, to speed up data pre-processing, empirical line calibration by vi-

carious measurements of reference targets during the flight, approximate the actual ra-

diation transfer quite well (Smith and Milton 1999; Karpouzli and Malthus 2003; Baugh 

and Groeneveld 2007). 

Camera calibration and image-to-image alignments are extensively carried out with 

structure-from-motion software by multiple views and result in ground spatial resolu-

tion of about 3-8 cm for flight altitudes below a 100 m a.g.l.. Providing sufficient image 

overlap, the exterior orientation is estimated by utilizing GPS-measured photo centre 
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coordinates derived during the flight or by image matching. Image calibration may vary 

slightly for each run. An even distribution of GCPs within the field support point cloud 

referencing to accuracies of differential GPS measurements (Harwin and Lucieer 2012). 

There are also increasing number of companies that support users in point cloud model-

ling services, selling point clouds, orthophoto products from the user’s UAS imagery. 

Once images point cloud models are derived, they may be meshed and textured with 

image DNs, reflectance or radiance values for further analysis. DEMs may further be 

derived. The geometric correction may well be carried within a day or two depending 

on number of input images.  

Part II of this work dealt with the agricultural and archaeological applications. At the 

beginning, the sensitivity analysis showed that the spectral filters chosen for the agricul-

tural applications at 531, 550, 570, 670, 700 and 800 or 900 nm were appropriate to 

examine key crop and vegetation state parameters (chapter 7.2, Figure 7.5). Crop can-

opy simulations using PROSAIL (Feret et al. 2008; Jacquemoud et al. 2009) showed: 

for Chla+b, the wavelengths at 550 and 700-720 nm were negatively correlated, and 670-

680 nm showed minor peak with lower negative correlation. Similarly, the N content 

highlighted the same wavelength regions, yet with positive correlation at lower absolute 

values. Dry matter content shows highest negative correlations with the spectral signal 

at spectral ranges beside the green peak, the red absorption minimum and alternating to 

positive correlation at the nIR. The selected filter wavelengths are therefore, well ap-

propriate for studying crop-state. For LAI estimation, sensitive areas have been found 

for the green peak and red absorption minima, red edge and the nIR next to the red 

edge. For sun-induced Chl fluorescence measurements (chapter 8), though, the used 

filters around the O2-B absorption maximum, ideally should have been chosen at 

761 nm instead of 760 nm (Damm et al. 2010) and shoulder wavelengths using FWHM 

widths less than 10 nm (Damm et al. 2011). The study of bidirectional reflectance ef-

fects of a maize field (chapter 7.3) revealed more structured differences in reflectance 

response in the UAS images than those simulated for a homogenous canopy. Azimuth 

angle differences between sensor and sun led to different patterns of bidirectional reflec-

tances between simulated and measured reflectances: highest differences were found for 

900 nm band (Figure 7.15) compared to simulated patterns where the 670 nm band 

would be expected to show highest variations and 900nm the lowest. For viewing zenith 

angles, the pattern varied as well. This may be attributed to several reasons: first of all, 

the underlying PROSAIL model was developed for homogenous canopies which may 

impede their use for a row crops like maize, even if in full developed canopies. Further 

work should be based on specific row models (e.g. Zhao et al. 2010) and should be re-
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peated for denser viewing zenith angle differences and varying crops to be able to con-

cludingly summarize bidirectional reflectance effects on the MiniMCA-6 sensor. Com-

monly used vegetation indices (Table 7.4) like the SR, NDVI, PRI, RDVI and RE are 

quite strongly affected by azimuth angle changes, OSAVI and TCARI are less sensitive. 

Small deviation from nadir viewing show smaller effects on PRI and RE values, not, yet 

azimuth angles off the principal plane show stronger effects. This needs to be kept in 

mind when analyzing UAS imagery.  

The sensitivity analysis also looked into the impact of radiometrical influence of the 

height of atmosphere between target and sensor and found the small air mass to indeed 

influence the DN signal from ~ 0.5-3% DN for 10-bit data for the black and to +/- 5% 

DN for the white reference panel (Figure 7.20 and Figure 7.21).  

The agricultural applications (chapter 7 and 8) illustrated the advantage of small UAS 

for evaluating management strategies and crop state. Oblique images have proven to 

outperform nadir information when it comes to row-structured crops like vineyards 

where they well described crop state (Chl, N content, yield,) and its development within 

a growing season. Similarly, the multispectral data showed the potential to differentiate 

N-treatment within sugar beet varieties and their influence on sun-induced Chl fluores-

cence (chapter 8). Other authors have also shown the potential to use UAS data for early 

detection of disease detection (Calderón et al. 2013; Calderón et al. 2014).  

Data pre-processing can be demanding, as precise image alignment to correct for the 

MiniMCA-6 individual cameras’ parallaxes were found having to be set up for each 

flight campaign individually, as otherwise edge features were introduced into the image. 

For future applications, this could be automated through scale-invariant feature-

matching algorithms (Lowe 2004). Empirical line calibration proved to be suitable for 

radiometrical calibration of UAS data of different acquisition times for a) one flight or 

b) different points in time.   

Common vegetation indices may quickly be derived from multispectral UAS data, and 

NDVI, red-edge related indices, OSAVI and TCARI proved to be most successful for 

evaluating crop state and diseases (Calderón et al. 2013). The PRI only poorly described 

photosynthetic activity and moisture differences which may well be attributed to the fact 

that the 531 nm-band’s 10 FWHM-width should be changed to 1 nm-FWHM.  

Likewise, diurnal courses of crop state parameters may be derived as the diurnal meas-

urements of sun-induced Chl fluorescence have illustrated in chapter 8 and by other 

authors (Zarco-Tejada et al. 2013b). Diurnal course of vegetation indices could be ap-

plied to monitor daily variations in plant water stress with filters at 900 and 970 nm for 
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the water index (Peñuelas et al. 1993) or a narrow-band PRI (Zarco-Tejada et al. 2013a) 

helping to identify stressed areas at water-intensive crops like vegetables.  

Although not the main focus of application in this study, broadband uncorrected thermal 

data proved to help identifying crop varieties and soil management effects on grape-

vines. The automatic greyvalue stretching aggravates image processing. Momentarily, 

blackbodies of known temperatures are being fit to the camera allowing for capturing 

pixels with known temperature. The respective minimum and maximum temperatures 

are adapted to air temperature on-the-fly. Simultaneously, relative humidity and air 

pressure will be documented. This will facilitate image processing for future use. 

Broadband thermal data has been used in precision agriculture to map stomatal conduc-

tance on a daily and seasonal basis for cash crops like e.g. olive plantations and vine-

yards (Berni et al. 2009a, Berni et al. 2009b). 

Other authors have shown how canopy properties of tree crops may be derived from the 

3D structure of plants which is easily followed by UAS imagery (Mathews and Jensen 

2013; Díaz-Varella et al. 2015). However, this also requires intensive field-work of 

ground- and crop-based temperature measurements, and if dense point clouds are re-

quired, higher image densities are required, which minimizes areal coverage. 

With growing populations worldwide, precision agriculture is a growing application for 

UAS (Godfray et al. 2010, microdrones GmbH UAVveek 2015 workshop). UAS may 

also help bridging the gap between ground and satellite data and are more and more 

used for up-scaling ground-based information into EO satellite systems or updating of 

smaller scale data (Azmi et al. 2014). On the other hand, they are restricted to local and 

small regional scales at best. Explicitly for viticultural applications, Matese et al. (2015) 

compared NDVI surveys of vineyards and found an area threshold of five hectares to be 

the crossroads where airborne campaigns become cheaper than UAS applications.  

UAS in archaeology have long been applied (see chapter 2) for site mapping, surveys, 

site monitoring, and archaeological reconnaissance. Near-infrared spectra, have been 

retrieved by filtering standard (digital) cameras and presents an acknowledged method 

for hidden cultural pattern recognition (Verhoeven 2009; Verhoeven 2012). Extending 

the spectral range to more wavelengths and spectral ranges beyond visible bands has 

been introduced by satellite and airborne remote sensing (Lasaponara and Masini 2012, 

Oltean and Abell 2012, Parcak 2009), and only recently has been used with UAS 

(Williams 2012). In this study, UAS has illustrated the potential for providing accurate 

maps at sub-decimetre accuracy for surveying and monitoring, and derivation of digital 

elevation models which may then be applied for further analysis. Archaeological recon-
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naissance through pattern recognition takes advantage of the higher number of spectral 

bands and does find patterns similar to geomagnetic measurements (see previous chap-

ter). Yet, within the experiment, reconnaissance on agricultural plots suffered from the 

early image acquisition date in Spain in March 2012 after a dry and cold winter, where 

vegetation had not yet developed much. Standard and evolved DIP methods allow for 

spectral feature enhancement to punctuate relevant information retrieval of archaeologi-

cal features as, e.g., land cover, vegetation patterns or settlement fragments. 
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11 Conclusion and Recommendations  

This work has illustrated the potential and limitations of a multispectral small UAS for 

applications in agricultural and archaeological problems. UAS present a valuable, flexi-

ble and mostly easy-to-use remote sensing system for agricultural and archaeological 

multispectral remote sensing. They are mainly operated at large scales with sub-meter 

accuracy and study of short-term variations of sites of interest. The accuracy of derived 

orthophotos and DEMS is directly dependent on onboard or camera GPS accuracy to 

describe the exterior orientation but also to the accuracy of GCP measurements which 

equally require locational positioning in the decimetre/centimetre range. UAS are a 

flexible platform as they may be flown at less perfect weather conditions as the gener-

ally stay underneath cloud level. Since the specific advantage of rotary-wing UAS is the 

ability to hover over sites of interest and thus provide higher image quality as mostly no 

forward-motion blur occurs. The hovering capability also allows surveying a specific 

site for video capture or regular imagery. Although not possible in Germany, and not 

performed in this study, flights beyond visual sight do allow flying UAS in areas of 

impeding access or protected zones. 

Limitations are mostly set by size of application area where five hectares have shown to 

be the crossroads to manned aircraft applications. In this case battery power is limiting 

flight time to an average of 15 minutes to up to an hour, depending on sensor payload. 

Platforms often lack in flight stability, yet with the fast development within that sector, 

accurate on-board IMU and miniaturized DGPS sensors will help to define attitude pa-

rameters with growing accuracy.  

Another limiting factor is the size of UAS for which ascent permits are provided. Gen-

eral ascent permits in Germany’s federal states are so far restricted to UAS below 5 kg. 

Larger UAS may be flown, but require applications for single ascent permits. The size 

of UAS is important for possible payload which for the small quadrocopter chosen for 

this study was less than 1 kg. Miniature multispectral, thermal or the nowadays more 

widely available hyperspectral sensors are still quite expensive, yet sensor miniaturisa-

tion is in constant development. Services of UAS data acquisition and orthophoto mo-

saicking are being offered for users who do not have the capacity to run such a system 

on their own. 

The multispectral sensor used in this study, the Tetracam Mini-MCA has successfully 

been applied at agricultural and archaeological applications but requires time-
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consuming pre-processing and calibration to obtain reflectances or radiance values. The 

progressive shutter often results in striped images, but Tetracam has been offering a 

version with global snap shutter, recently. Band-to-band calibration of imagery requires 

either to be carried out for each flight campaign or by SIFT algorithms. First results 

with a broadband thermal camera showed promising findings, too. Hyperspectral sen-

sors are becoming more widely available within the required weight limitations and a 

full new range of applications is waiting here for precision agriculture and related fields 

(Calderón et al. 2013; Calderón et al. 2014; Zarco-Tejada et al. 2013b; Bareth et al. 

2014).  

Experienced difficulties identified in this study are summarized in the following rec-

ommendations for an operational use of small UAS multispectral flight campaigns and 

good quality products: 

 Sensible flight planning with a high image overlap (80-90% as suggested by 

Rosnell and Honkavaara 2012) including tilted images has shown to supersede 

manual flight plans, not necessarily requiring regular flight paths; 

 Where required, collection of simultaneous in-situ reference spectral measure-

ments for radiometric calibrations and atmospheric correction is mandatory for 

radiometric correction; likewise leaf- or ground-level temperature measurements 

for calibration of thermal cameras should be obtained; 

 Reference panels for radiometric calibration should be placed on absorbing ma-

terial (black fabric) and well-away of reflecting environmental surfaces;  

 For high geometric accuracies of derived topographic data, ground control 

points should be distributed within and outside the study area, measured with a 

differential GPS. 

More research may then be focused on the following issues: 

 Comparison of ELC in accuracy for various topographies (flat versus sloped ter-

rain) and environmental effects for oblique imagery; 

 3D-evaluation of crop illumination issues and crop parameters;  

 Archaeological reconnaissance of hidden pattern using (hyper-)spectral data. 

The study showed the potential of UAS to retrieve relevant physiological parameters for 

precision agriculture. UAS are, thus, contributing to food security demands for large-

scale spatial information to derive risk areas where action is required for local crop 

management. Last not least, they contribute to a variety of application areas where 

large-scale environmental remote sensing data is required. 
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Summary 
The work examined the potential use of small unmanned aerial systems (UAS) for agri-

cultural crop observations and archaeological applications. The term UAS encompasses 

the aerial vehicle and its propulsion mechanism, the sensor payload, a ground control 

station, the communication means between ground station and the vehicle and any other 

support equipment like, for example, transport means. Due to their flexibility UAS have 

found a booming development since the turn of the millennium. 

For the world’s growing population, agricultural production requires a sensible intensi-

fication to ensure food security to all people and to avoid further soil and land degrada-

tion. Precision agriculture subsumes the technical improvements aiming at more effi-

cient yet less harmful agricultural practices. In this context, one prerequisite for food 

production is the fast and easy access to geospatial data required to local famers. UAS 

have bridged the gap on cost-intensive manned aircraft and satellite imagery.  

Potential benefits lie in the ad-hoc acquisition of large-scale environmental remote sens-

ing data, the lower costs of data acquisition compared to manned aircraft, relative inde-

pendency of cloud coverage as they are generally flown below cloud level. Most UAS 

being developed are Mini-UAS (< 5kg take-off weight), and thereof vertical take-off 

and landing (VTOL) systems. They offer the potential to hover over sites, yet are slower 

than fixed wing systems, and appropriate for sites < 5 ha during one flight, flight times 

range from 15-60 min. Flight regulations and integration into manned airspace are cur-

rently being worked on at the European and national levels. To date, general ascent 

permits in Rhineland-Palatinate are granted for limited flight altitudes (< 100 m above 

ground) in unrestricted areas, liability insurance and the responsibility to inform regulat-

ing bodies and police authorities 24 hours prior to ascent. 

The main aims of this study were to evaluate how key physiological crop parameters 

(chlorophyll content, nitrogen content, LAI, yield, sun-induced chlorophyll fluores-

cence: Fs) may best be retrieved with a UAS, and how multispectral data may be used 

for archaeological reconnaissance. A quadrocopter UAS (md4-1000, microdrones 

GmbH, payload of < 1 kg) was equipped with a digital single-lens reflex, a six-band 

multispectral (MiniMCA-6, Tetracam Inc.) and a broadband thermal camera (UCM, 

Zeiss).  

A sensitivity analysis selected suitable wavelengths and assessed bidirectional and alti-

tudinal effects on the multispectral signal. The study then describes the required work-

flow from image acquisition to preprocessing for the respective cameras with special 

focus on the multispectral camera (equipped with 10 nm-FWHM spectral filters in the 



range of 530 nm – 900 nm). Pre-processing included sensor radiometric corrections 

(lens distortion, vignetting correction, band-to band image alignment), radiometric cali-

bration to reference spectra by means of empirical line calibration or atmospheric cor-

rection, and geometric corrections by Structure from Motion (SfM) software (point 

cloud modelling by bundle block adjustment, meshing and texturing) to retrieve digital 

elevation models and orthophoto mosaics of centimeter-range spatial resolution.   

For a vineyard, the best viewing geometry to detect soil management effects on the 

spectral signal were evaluated. Oblique viewing geometries of illuminated canopies 45° 

off nadir were found to be most suitable for estimating physiological parameters for row 

crops, and soil management strategies could well be differentiated. Thus, plant parame-

ters could be predicted throughout the season by regression analysis, i.e. chlorophyll 

R²cv of 0.65, nitrogen balance index by 0.76 (2012), and yield with 0.84 for 2011, and 

R²cv for early season and mid-season of 0.87 and 0.73 respectively.  

Effects of nitrogen fertilizer experiments on the Fs of sugar beet were analyzed by visual 

inspections and two-factorial ANOVAs of the multispectral and thermal signal during 

the HyFlex campaign in 2012. Varieties could well be discriminated by spectral and 

broadband thermal signal, less though for respective fluorescence vegetation indices 

within the O2 absorption band. Diurnal fluorescence signals were obtained by multiple 

UAS flights (23/08/2012, 8:00 – 14:00 UTC). Despite less stable atmospheric condi-

tions in the morning, a diurnal course of Fs could be retrieved, yet Fs signals showed to 

be higher than comparative field measurements. 

Archaeological reconnaissance has been applied since the 1970ies when tethered bal-

loons were used. Pattern recognition is improved through the extension of the human 

vision to multispectral, thermal, or recent hyperspectral ranges, a.o.. Studies in Los 

Bañales, Spain illustrated the general information gain UAS data, pattern recognition of 

possible land-use related vegetation distribution by means of land cover classification of 

multispectral data and texture measures by support vector machines. Furthermore, crop 

mark detection was analyzed.  

Concluding, high quality multispectral/thermal UAS data may be derived by high image 

overlap (80-90%) including oblique imagery, where required, simultaneous reference 

spectral or thermal measurements for radiometric calibration should be carried out, and 

geometric referencing with ground control points derived at cm to dm accuracy. Thus 

UAS imagery provides the missing gap for large-scale quantitative environmental moni-

toring. 
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