
Parsing and Querying
XML Documents in SML

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften

am Fachbereich IV der Universität Trier

vorgelegt von

Diplom-Informatiker
Andreas Neumann

Dezember 1999

The forest walks are wide and spacious;
And many unfrequented plots there are. . .

The Moor Aaron, in1:
The Tragedy of Titus Andronicus

by William Shakespeare

Danksagung

An dieser Stelle möchte ich allen Personen danken, die mich bei der Erstellung
meiner Arbeit direkt oder indirekt unterstützt haben.

An erster Stelle gilt mein Dank dem Betreuer meiner Arbeit, Helmut Seidl.
In zahlreichen Diskussionen hatte er stets die Zeit und Geduld, sich mit meinen
Vorstellungen von Baumautomaten auseinanderzusetzen. Seine umfassendes
Hintergrundwissen und die konstruktive Kritik, die er ausübte, haben wesent-
lich zum Gelingen der Arbeit beigetragen.

Besonderer Dank gilt Steven Bashford und Craig Smith für das mühevol-
le und aufmerksame Korrekturlesen der Arbeit. Sie haben manche Unstim-
migkeit aufgedeckt und nicht wenige all zu “deutsche” Formulierungen in
meinem Englisch gefunden. Allen Mitarbeitern des Lehrstuhls für Program-
miersprachen und Übersetzerbau an der Universität Trier sei hiermit auch für
die gute Arbeitsatmosphäre ein Lob ausgesprochen, die gewiss nicht an jedem
Lehrstuhl selbstverständlich ist.

Nicht zuletzt danke ich meiner Freundin Dagmar, die in den letzten Mo-
naten viel Geduld und Verständnis für meine häufige – nicht nur körperliche
– Abwesenheit aufbrachte. Ihre Unterstützung und Ermutigungen so wie ihr
stets offenes Ohr waren von unschätzbarem Wert.

1Found with fxgrep using the pattern //SPEECH[(//”forest”)] in titus.xml [Bos99]

Abstract

The Extensible Markup Language (XML) is a language for storing and exchang-
ing structured data in a sequential format. Though originally designed for the
use in document processing, it is by now employed for representation of data
in virtually all areas of computing, especially on the Internet.

The basis of all XML processing software is an XML parser, which parses
a document in XML syntax and exposes it as a document tree to the applica-
tion. Document processing then basically reduces to tree manipulation. Mod-
ern functional programming languages like SML and HASKELL with their tree-
structured data-types are therefore well-suited for implementing such applica-
tions. Nonetheless, the area of XML processing software is dominated by JAVA.
Functional programming languages play a minor role, partly due to the lack of
a complete implementation of an XML parser.

One of the most important tasks in document processing is querying, that
is the extraction of parts of a document that match a structural condition and
are in a specific context. Due to the tree-like view of documents, querying XML
can be implemented with techniques from tree language and automata theory.
These techniques must, however, be adapted to the needs of XML. One spe-
cific requirement is that even extremely large documents must be processed. It
must therefore be possible to perform the querying algorithm in a single pass
through the document, without the need of constructing a copy of the docu-
ment tree in memory.

This work is divided into two parts: The first part presents fxp, an XML parser
written completely in SML. We describe the implementation of fxp and discuss
our experiences with SML. We analyze the run-time behavior of fxp and com-
pare it to XML parsers written in imperative and object-oriented programming
languages.

The second part presents an XML querying algorithm based on forest au-
tomata theory. The algorithm locates all matches of a query in at most two
passes through the document. For an important subclass of queries even a sin-
gle run suffices. Moreover, we discuss the implementation of the algorithm
based on fxp. For each of the two parts a separate, more detailed introduction
is given.

v

Zusammenfassung

XML (Extensible Markup Language) ist ein sequentielles Format zur Speiche-
rung und Übermittlung strukturierter Daten. Obwohl es ursprünglich für die
Dokumentenverarbeitung entwickelt wurde, findet XML heute Verwendung in
nahezu allen Bereichen der Datenverarbeitung, insbesondere aber im Internet.

Jede XML-Dokumentenverarbeitungs-Software basiert auf einem XML-
Parser. Der Parser liest ein Dokument in XML-Syntax ein und stellt es als
Dokumentbaum der eigentlichen Anwendung zur Verfügung. Dokumenten-
verarbeitung ist dann im wesentlichen die Manipulation von Bäumen. Mo-
derne funktionale Programmiersprachen wie SML und HASKELL unterstützen
Bäume als Basis-Datentypen und sind daher besonders gut für die Implemen-
tierung von Dokumentenverarbeitungs-Systemen geeignet. Um so erstaunli-
cher ist es, dass dieser Bereich zum größten Teil von JAVA-Software dominiert
wird. Dies ist nicht zuletzt darauf zurückzuführen, dass noch keine vollständi-
ge Implementierung der XML-Syntax als Parser in einer funktionalen Program-
miersprache vorliegt.

Eine der wichtigsten Aufgaben in der Dokumentenverarbeitung ist Query-
ing, d.h. die Lokalisierung von Teildokumenten, die eine angegebene Struktur-
bedingung erfüllen und in einem bestimmten Kontext stehen. Die baumartige
Auffassung von Dokumenten in XML erlaubt die Realisierung des Querying
mithilfe von Techniken aus der Theorie der Baumsprachen und Baumauto-
maten. Allerdings müssen diese Techniken an die speziellen Anforderungen
von XML angepasst werden. Eine dieser Anforderungen ist, dass auch extrem
große Dokumente verarbeitet werden müssen. Deshalb sollte der Querying-
Algorithmus in einem einzigen Durchlauf durch das Dokument ausführbar
sein, ohne den Dokumentbaum explizit im Speicher aufbauen zu müssen.

Diese Arbeit besteht aus zwei Teilen. Der erste Teil beschreibt den XML-Parser
fxp, der vollständig in SML programmiert wurde. Insbesondere werden die
Erfahrungen mit SML diskutiert, die während der Implementierung von fxp
gewonnen wurden. Es folgt eine Analyse des Laufzeit-Verhaltens von fxp
und ein Vergleich mit anderen XML-Parsern, die in imperativen oder objekt-
orientierten Programmiersprachen entwickelt wurden.

Im zweiten Teil beschreiben wir einen Algorithmus zum Querying von
XML-Dokumenten, der auf der Theorie der Waldautomaten fundiert ist. Er
findet alle Treffer einer Anfrage in höchstens zwei Durchläufen durch das Do-
kument. Für eine wichtige Teilklasse von Anfragen kann das Querying sogar
in einem einzelnen Durchlauf realisiert werden. Außerdem wird die Imple-
mentierung des Algorithmus in SML mit Hilfe von fxp dargestellt.

vi

Contents

I An XML Parser Written in SML 1

Introduction 3

Einführung 4

1 Document Processing with XML 6
1.1 Introduction to XML . 6

1.1.1 Elements, Attributes, and the Document Type 7
1.1.2 Entities . 9
1.1.3 Public Identifiers and Catalogs 10
1.1.4 Miscellaneous Markup . 11
1.1.5 UNICODE . 12
1.1.6 Well-Formedness, Validity and Compatibility 12

1.2 XML Software . 13
1.2.1 Areas of XML Processing 15
1.2.2 Commercial software . 16
1.2.3 XML Application Interfaces 16
1.2.4 The Information Set . 17
1.2.5 Further Characteristics of XML Parsers 18
1.2.6 Existing XML Parsers . 19

2 Implementation of fxp 21
2.1 The Implementation Language – SML 21
2.2 System Architecture . 23
2.3 The UNICODE Frontend . 24

2.3.1 Basic Types . 26
2.3.2 Character Classes . 28
2.3.3 Access to the File System and the Network 29
2.3.4 Byte-Stream Operations 31
2.3.5 Decoding into UNICODE 32
2.3.6 Representing Encoded Files 34
2.3.7 Auto-Detection of Character Encodings 36

2.4 Errors and Options . 37
2.5 The Entity Manager . 39

2.5.1 Internal Entities . 39
2.5.2 External Entities . 40
2.5.3 Implementing Look-Ahead 42
2.5.4 Other Important Entity Manager Functions 43

2.6 The DTD Manager . 44

vii

viii CONTENTS

2.6.1 Dynamic Dictionaries . 45
2.6.2 Data Types for Declarations 46
2.6.3 The DTD structure . 49
2.6.4 Adding Declarations . 50
2.6.5 Processing Attribute Values 52

2.7 The Parser Modules . 54
2.7.1 No Tokenization . 54
2.7.2 Syntax Errors and Error Recovery 55
2.7.3 Parsing Simple Components 57
2.7.4 Entity References . 59
2.7.5 Character Data in Content 62
2.7.6 Validation of Element Content 63

2.8 The Programming Interface . 65
2.8.1 Hooks - A Functional Variant of Event Handlers 65
2.8.2 Functorizing the Parser 68
2.8.3 Implications on the Implementation of the Parser 69
2.8.4 Functor Dependencies . 70
2.8.5 Building Applications with fxp 74
2.8.6 Implementing a Tree-Based Interface 75
2.8.7 Catalog Support . 77

3 Analysis, Comparison and Discussion 79
3.1 Run-Time Analysis and Comparison 79

3.1.1 Profiling the Parser . 79
3.1.2 Imperative Optimizations 80
3.1.3 Comparison to XML Parsers Written in Other Languages 82

3.2 Discussion of the Implementation Language 85

II Querying Structured Documents 87

Introduction 89

Einführung 91

4 Preliminaries 94
4.1 Regular Expressions and Word Languages 94

4.1.1 The Berry-Sethi Construction 95
4.2 Trees and Forests . 97

4.2.1 Relation to Ranked Trees 98
4.2.2 Structural Induction . 99
4.2.3 Path Induction . 100

5 Regular Forest Languages 102
5.1 Forest Grammars . 102
5.2 Closure Properties of Regular Forest Languages 104
5.3 Bibliographic Notes . 106

6 Forest Automata 108
6.1 Bottom-Up Forest Automata . 108

6.1.1 Regularity . 109

CONTENTS ix

6.1.2 Deterministic and Right-to-Left Forest Automata 111
6.2 Pushdown Forest Automata . 112

6.2.1 Regularity . 115
6.2.2 Deterministic Pushdown Forest Automata 116
6.2.3 Right-to-Left Pushdown Forest Automata 119

6.3 Decision Problems . 120
6.3.1 Bottom-Up Forest Automata 120
6.3.2 Pushdown Forest Automata 121

6.4 Matching Structural Conditions 123
6.4.1 Matching Structure with Bottom-Up Automata 123
6.4.2 Matching Structure with Pushdown Automata 126

6.5 Bibliographic Notes . 130

7 Locating Matches in Context 132
7.1 Contextual Conditions . 132
7.2 Locating Matches of Context Grammars 135
7.3 Extending the Grammar Formalism 138

7.3.1 Extended Forest Grammars 139
7.3.2 Implementing Extended Forest Grammars 140
7.3.3 Extended Context Grammars 142
7.3.4 Locating Matches of Extended Forest Grammars 143
7.3.5 Locating Matches in Document Order 145

7.4 Matching Context in a Single Pass 145
7.4.1 Right-Ignoring Regular Expressions 145
7.4.2 Match-Relevance and Right-Ignoring Context Grammars 147

7.5 Bibliographic Notes . 149

8 Querying XML Documents 151
8.1 Particularities of XML Documents 151

8.1.1 External Predicates for Matching Character Data 151
8.1.2 Text Patterns . 152
8.1.3 Representation of XML Elements and Attributes 154
8.1.4 Element-Type Patterns . 155
8.1.5 XML Processing Instructions 156
8.1.6 White Space . 156

8.2 A More Convenient Pattern Language 157
8.2.1 An Informal Description of the Pattern Language 158
8.2.2 Examples from XML Practice 162
8.2.3 Translation from Patterns to Grammars 165
8.2.4 Comparison with Other Querying Languages 169

9 Implementation in SML 173
9.1 System Architecture and Implementation 173

9.1.1 The Frontend . 173
9.1.2 The Preprocessing Stage 176
9.1.3 The Collector . 178
9.1.4 The Matcher . 178
9.1.5 Implementation of Text Patterns 180

9.2 Statistics and Analysis . 183

x CONTENTS

Conclusion 188

Bibliography 190

Appendix 201

A Proofs 202
A.1 Proof of Theorem 6.1 . 202

A.1.1 Proof of (1) . 202
A.1.2 Proof of (2) . 203

A.2 Proof of Theorem 6.2 . 203
A.3 Proof of Theorem 6.4 . 203
A.4 Proof of Theorem 6.5 . 204
A.5 Proofs of Theorems 6.6 and 6.7 204
A.6 Proof of Theorem 7.1 . 205
A.7 Proof of Theorem 7.2 . 207
A.8 Proof of Theorem 7.3 . 208
A.9 Proof of Theorem 7.4 . 211

List of Figures

1.1 A model of XML processing. 14
1.2 Using XML for network information transport. 14

2.1 The system architecture of fxp. 24
2.2 Overview of the UNICODE frontend. 25
2.3 The Decode signature. 26
2.4 Distribution of UNICODE characters. 27
2.5 The UniChar signature. 27
2.6 The UniClasses signature. 28
2.7 The Uri signature. 30
2.8 The DecodeFile signature. 31
2.9 The UTF-8 character encoding. 33
2.10 The data type for the entity stack. 39
2.11 The Entities signature. 43
2.12 The Dict signature. 45
2.13 The Dtd signature. 50
2.14 The DtdDeclare signature. 51
2.15 The DtdAttributes signature. 52
2.16 The Hooks signature. 67
2.17 The Parser functor. 68
2.18 Dependencies between the parser modules. 72
2.19 The topological order obtained from the functor hierarchy. . . . 73
2.20 A simple tree-based interface on top of hooks. 76

3.1 The distribution of fxp’s execution time among specific program
parts. 80

3.2 Effects of two imperative optimizations on execution times. . . 81
3.3 Execution time comparison with parsers written in imperative

and object-oriented languages. 84

4.1 The Berry-Sethi construction and the reverse Berry-Sethi con-
struction. 97

4.2 Unique representation of trees as ranked trees. 98
4.3 Alternative ways of mapping trees to ranked trees. 99

5.1 Forests in the languages LG1 – LG3 from Examples 5.1 – 5.3. . . . 103

6.1 The computation model of a left-to-right forest automaton. . . . 109
6.2 The Berry-Sethi construction for the regular expressions in

grammar G3 from Example 5.3. 110

xi

xii LIST OF FIGURES

6.3 Two runs of the LFA A3 from Example 6.1. 110
6.4 The computation model of a right-to-left forest automaton. . . 112
6.5 The visiting order of a recursive function implementing an LFA. 113
6.6 The computation model of a left-to-right pushdown automaton. 115
6.7 Simulation of a pushdown forest automaton by a bottom-up for-

est automaton. 116
6.8 The subset construction for pushdown forest automata. 117
6.9 Example runs of the DLPA A3 and the DLFA B3 in the proof of

Theorem 6.5. 118
6.10 The computation model of a right-to-left pushdown automaton. 119
6.11 Two runs of the DLFA BG3 from Example 6.4. 124
6.12 An algorithm for computing the reachable states of a DLFA. . . 125
6.13 Two runs of the DLPA A~G3 from Example 6.5. 127
6.14 An algorithm for computing the reachable states and transitions

of a DLPA. 128

7.1 Context in pattern matching. 133
7.2 Matches of context grammars C3 and C2 from Examples 7.1 and

7.2. 134
7.3 The Berry-Sethi construction for the regular expressions in

grammar G2 from Example 5.2. 135
7.4 Two example runs of A~G2 . 136
7.5 The runs of B�G2 on the forests ~f1 and ~f2, obtained from the runs

of A~G2 in Figure 7.4. 138
7.6 The Berry-Sethi construction for the regular expressions in

grammar G5 from Example 7.5. 141
7.7 Two runs of A~G5 from Example 7.6. 142
7.8 A match of C5 from Example 7.7 and the run of A~G5 143
7.9 The run of B�G5 on the forest ~f3, obtained from the run of A~G5 on

f3 in Figure 7.8. 144
7.10 An algorithm for determining whether a regular expression is

right-ignoring w.r.t. a variable . 147

8.1 Representation of XML documents as forests. 154
8.2 Summary of the pattern syntax. 162
8.3 Representation of EBNF productions in the XML version of the

XML recommendation. 163
8.4 A scene of Shakespeare’s “Macbeth” in XML. 164

9.1 The system architecture of fxgrep 174

List of Tables

2.1 XML attribute types . 48
2.2 The hooks in fxp and their purposes. 66

3.1 Details of the example documents used for comparison. 83

9.1 The two XML documents used for compiling the statistics. . . . 183
9.2 Querying statistics. 185

xiii

xiv LIST OF TABLES

Part I

fxp –
An XML Parser Written in

SML

1

Introduction

Since its release in 1998 XML, the Extensible Markup Language, has become
one the fastest evolving topics in information technology. As a markup lan-
guage, XML is a language for storing and exchanging structured data in a se-
quential format. Though originally designed for the use in document process-
ing, it is by now employed for representation of data in virtually all areas of
computing. XML plays its most prominent role on the Internet, where it is ex-
pected to replace HTML as the World Wide Web markup language in the near
future; it is already indispensable in fast developing areas such as eCommerce
and Electronic Banking. XML is thus a technology of the future.

The basis of all XML processing software is an XML parser. This is a module
or library which establishes the hierarchical structure of a document from its
sequential XML representation. Thus it relieves the processing application from
dealing with syntactical details: Document processing basically reduces to tree
manipulation. The implementation language of an XML application should
therefore have good support for processing tree-like data structures. Modern
functional programming languages such as SML and HASKELL use trees as
the basic data types. With their mechanisms of user-defined data types and
pattern matching, they are a good candidate for an implementation language.
Nonetheless, the area of XML processing is dominated by software written in
JAVA. Until the release of fxp, there was no complete implementation of the
XML syntax written in a functional programming language.

Functional programming languages are commonly considered as toy lan-
guages, designed for research and educational purposes only. Moreover, they
are estimated to be inefficient and unsuited for implementing real-world ap-
plications. One of our goals was to refute this prejudice and prove the practical
usability of functional programming.

As a basis for XML processing in SML, we implemented fxp. It is a fully
functional XML parser implemented completely in SML, except for network
file retrieval. Though written in functional programming style, it employs
the imperative features of SML at few but important spots. On the basis of
SML’s parametrized modules, fxp provides a very elaborate and customizable
programming interface. Moreover, comparing the execution times of fxp and
other XML parsers written in imperative languages attests that SML can well
compete with the currently most popular programming language in the XML
area, namely JAVA. fxp is included in the XML software delivered with [Gol99].

This part is organized as follows: Chapter 1 gives an introduction to XML
and an overview of XML processing software. The next chapter describes the
implementation of fxp and points out the difficulties and conveniences we ex-
perienced with SML. Finally, Chapter 3 compares fxp to other XML parsers and
discusses the implementation language.

3

Einführung

Seit der Einführung von XML (Extensible Markup Language) im Jahre 1998
vollzieht sich auf diesem Gebiet eine rasante Entwicklung. XML ist eine Aus-
zeichnungssprache (Markup Sprache) für strukturierte Dokumente und dient
der sequentiellen Speicherung und Übermittlung strukturierter Daten. Zwar
wurde XML ursprünglich für den Einsatz in der klassischen Dokumentenver-
arbeitung entwickelt. Es wird jedoch heute in nahezu allen Bereichen der Da-
tenverarbeitung verwendet. Das wichtigste Einsatzgebiet von XML ist das In-
ternet: Es wird voraussichtlich schon in naher Zukunft HTML als die Markup-
Sprache des World Wide Web ablösen. Schon heute ist XML aus solch zukunfts-
versprechenden Bereichen wie dem elektronischen Handel nicht mehr wegzu-
denken.

Die Grundlage jeder XML-Verarbeitungs-Software ist ein XML-Parser. Das
ist ein Modul oder eine Bibliothek, welche die hierarchische Struktur ei-
nes Dokuments aus der sequentiellen XML-Darstellung wiederherstellt. Der
Parser nimmt damit der eigentlichen Anwendung die Behandlung syntak-
tischer Details ab: Dokumentenverarbeitung ist dann im wesentlichen die
Manipulation baumartiger Datenstrukturen. Die Implementierungssprache
einer solchen Anwendung sollte daher die Verarbeitung baumartiger Daten
gut unterstützen. Moderne funktionale Programmiersprachen wie SML und
HASKELL verwenden Bäume als Basis-Datentypen und bieten Konzepte wie
Benutzer-definierte Datentypen und Pattern-Matching. Sie sind daher beson-
ders gut als Implementierungssprache geeignet. Um so erstaunlicher ist es,
dass funktionale Sprachen im Bereich von XML kaum eine Rolle spielen: Vor
dem Erscheinen von fxp gab es noch nicht einmal einen vollständigen XML-
Parser in einer funktionalen Sprache. Statt dessen wird der XML-Markt von
JAVA-Software beherrscht.

Eine weit verbreitete Ansicht ist, dass funktionale Programmiersprachen
reine Experimentier-Sprachen seien, die nur für Zwecke der Forschung und
der Lehre bestimmt sind. Auch herrscht die Meinung, sie seien ineffizient und
ungeeignet für die Realisierung von Anwendungen unter reellen Anforderun-
gen. Eines unsere Ziele war es mit diesem Vorurteil aufzuräumen und den
Beweis zu erbringen, dass funktionale Programmierung tatsächlich gut in der
Praxis anwendbar ist.

Als Grundlage für die XML-Verarbeitungs in SML entwickelten wir den
Parser fxp, der bis auf die Netzwerk-Kommunikation vollständig in SML im-
plementiert ist. Trotz eines funktionalen Programmierstils verwendeten wir
allerdings auch die imperativen Bestandteile von SML, wenn auch an weni-
gen begrenzten Stellen. Auf der Basis von SML’s parametrisierten Modulen
bietet fxp eine sehr raffinierte und anpassbare Programmierschnittstelle. Der
Geschwindigkeitsvergleich mit anderen XML-Parsern, die in imperativen Pro-

4

EINFÜHRUNG 5

grammiersprachen geschrieben wurden, zeigt, dass SML den Vergleich mit der
wohl populärsten Programmiersprache im XML-Bereich, nämlich JAVA, nicht
scheuen muss. fxp wurde in die Reihe der Programme aufgenommen, die zu-
sammen mit dem Buch [Gol99] ausgeliefert werden.

Chapter 1

Document Processing with
XML

Documents usually have a hierarchical logical structure: A book, e.g., is di-
vided into chapters which are themselves made up of sections that consist of
subsections, and so on. Modern document processing systems therefore have
a tree-like view of documents; document processing then basically reduces to
tree manipulation.

In order to store and exchange structured documents, these must be
brought into a sequential representation. This is achieved by inserting markup
into the text, indicating the start and end of each logical component. XML,
the Extensible Markup Language [W3C98b], is a standardized syntax for such
markup developed and introduced for use on the Internet by the World Wide
Web Consortium (W3C).

The basis of all XML processing software is an XML parser. This is a mod-
ule or library which is aware of the XML syntax and can reproduce the tree
structure of a sequentially represented document.

This chapter gives an introduction to the concepts of XML and discusses
requirements and characteristics of XML processing software, particularly XML
parsers. The next chapter will then present fxp, an XML parser written in the
functional programming language SML.

1.1 Introduction to XML

As a markup language, XML provides a syntax for sequential representation of
structured documents: Each logical component of a document, called element,
is enclosed between a pair of specific markers, its start-tag and end-tag, which
are easily distinguishable from the text. The content of an element is the se-
quence of elements and text enclosed between its tags. Additional properties
of the element can be specified in its start-tag by a set of attribute assignments.

In this, XML is similar to HTML [W3C98e], the markup language of the
World Wide Web. HTML, however, is restricted to a fixed set of element types
such that, e.g., mathematical formulae can not be expressed in HTML. SGML
[ISO86, Gol90], the predecessor of XML, addresses this deficiency by providing
a mechanism for defining the markup vocabulary, i.e., the set of admissible
element types, in the preamble of the document, which is called document type

6

CHAPTER 1. DOCUMENT PROCESSING WITH XML 7

declaration (DTD). Each element type is declared along with a rule restricting
the form and order of the contents of elements of that type. It is therefore
not only a markup language but also a meta-language for defining markup
languages such as HTML.

SGML includes, however, many historical features that make parsing of doc-
uments difficult and expensive. For this reason the World Wide Web Consor-
tium introduced XML as a simplification of SGML. It provides the extensibility
of SGML while retaining the syntactical simplicity of HTML, making it suitable
for easy data exchange over the Internet. XML is therefore expected to replace
HTML as the markup language of the World Wide Web within the next few
years. Indeed, HTML is currently being reformulated as an XML document
type [W3C99g].

This section introduces the basic concepts and the syntax of XML. A more
comprehensive tutorial is [Bra98a, Gol99]; technical details are very well ex-
plained in [Bra98b].

1.1.1 Elements, Attributes, and the Document Type

In XML, each element of a document has an element type, e.g., section or
footnote, a number of attributes and a content consisting of other elements or
character data. An element of type a is enclosed between a start-tag <a> and an
end-tag . An empty element <a> can be abbreviated by a special form
<a/>, an empty-element tag. If any attributes are present, they are specified in
the start-tag. As an example, consider an entry of a bibliographic database:

XML Example 1

<bibentry id="XML:1998">
<author org="Netscape">Tim Bray</author>
<author org=’Microsoft’>Jean Paoli</author>
<author>C. M. Sperberg-McQueen</author>
<title>Extensible Markup Language (XML) 1.0</Title>
<publ month="feb" year="1998">W3C Recommendation</publ>

</bibentry>

This element has type bibentry and an attribute named id that identifies it
among other bibentry elements and may serve as a reference to this element.
It contains five elements: three of type author, one of type title and one of
type publ, all of which contain only character data. The publ element has two
attributes month and year indicating the date of appearance, and two of the
author elements have an attribute org containing the author’s affiliation. Be
aware that, though these are the intended interpretations of the elements and
attributes, XML associates no meaning with them: Its view of a document is
solely syntactical.

In order to constrain the content of elements, XML assigns a content model
to each element type by an element-type declaration. A content model is a regu-
lar expression over element types and the special word #PCDATA representing
plain text, i.e, a possibly empty sequence of non-markup characters. For the
bibentry example, the elements might be declared as follows (note that con-
catenation is denoted by the comma sign “,” in content models):

8 1.1. Introduction to XML

XML Example 2

<!ELEMENT bibentry (author+,title,publ)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT publ (#PCDATA)>

In addition to the content model, the attributes of an element type must be
declared with an attribute type and a default value. For the bibentry example,
the attribute declarations are as follows:

XML Example 3

<!ATTLIST bibentry id ID #REQUIRED>
<!ATTLIST author org CDATA "University of Illinois">
<!ATTLIST publ year NMTOKEN #REQUIRED

month (jan|feb|mar|apr|may|jun|
jul|aug|sep|oct|nov|dec) #IMPLIED>

A value for an attribute of type ID must be a name, and it must uniquely iden-
tify its element, i.e., the whole document must not contain another attribute of
that type with the same value. Values for attributes of type CDATA may consist
of arbitrary characters, whereas NMTOKEN attribute values must be name tokens,
i.e., consist of alphanumeric characters only. Attribute month has an enumera-
tion type: Its value must be one of the listed name tokens. For a complete listing
of the possible XML attribute types see Table 2.1.

An attribute can be assigned a default value: This value is substituted by
the parser whenever the attribute is omitted in a start-tag. Instead of a default
value, the keyword #IMPLIED means that the attribute may be omitted but its
value must then be generated by the application. #REQUIRED means that the
attribute must always be specified. A fourth possibility, not appearing in the
example, is a fixed default value: If the attribute is omitted, the default is used,
but if specified the attribute value must be equal to the default value.

An XML document mainly consists of a document type declaration (DTD) fol-
lowed by the document instance which is a single top-level element, also called
the root element or document element. The DTD contains all declarations needed
for the instance and it must have the same name as the type of the root element:

XML Example 4

<!DOCTYPE book [
<!ELEMENT book ...

]>
<book>...</book>

Large document types are often stored in separate files. In this case the DTD
specifies a system identifier indicating a file to be included additionally:

XML Example 5

<!DOCTYPE book SYSTEM "book.dtd" [
...

]>

CHAPTER 1. DOCUMENT PROCESSING WITH XML 9

The contents of this file are called the external subset of the DTD, whereas the
declarations specified directly between “[” and “]” constitute its internal subset.

1.1.2 Entities

Entities are a mechanism for modularization of a document. In the DTD, en-
tity names can be associated with a replacement text. Upon reference of an entity
its replacement text is included into the document. Entities are classified into
general and parameter entities as follows: General entities are dedicated to con-
tain pieces of content. They can, with a few exceptions, only be used in the
document instance. A general entity is declared as follows:

XML Example 6

<!ENTITY author "Andreas Neumann">

In the instance it can be referenced using the characters “&” and “;”:
XML Example 7

This report was written by &author;.

On the other hand, parameter entities are dedicated for use in declarations;
they are not available in the document instance. A parameter entity is declared
and referenced using the character “%”. E.g., in order to define several element
types with the same content model, one could write:

XML Example 8

<!ENTITY % cont "(bold|emph|#PCDATA)*">
<!ELEMENT title %cont;>
<!ELEMENT caption %cont;>
<!ELEMENT footnote %cont;>

In addition to the classification into general and parameter entities, we fur-
ther distinguish between internal and external entities: Internal entities have
a sequence of characters as their replacement text. Similar to C preprocessor
macros, they serve as abbreviations or definitions of frequently used text frag-
ments. Unlike C macros, entities have no arguments: Their replacement text is
constant. E.g., both entities author and cont from XML Examples 6 and 8 are
internal entities.

As opposed to that, external entities facilitate modularization of docu-
ments: The replacement text of an external entity is the content of a file. It
is declared with the SYSTEM keyword followed by a system identifier giving
the location of the file. E.g., in order to modularize the DTD, one might put all
declarations related to math formulae into a separate file math.dtd, and write
in the DTD:

XML Example 9

<!ENTITY % math SYSTEM "math.dtd">
%math;

The declarations in this file can thus be shared between different DTDs. Note
that the specification of an external subset at the beginning of the DTD (cf. XML

10 1.1. Introduction to XML

Example 5) can be viewed as an abbreviation for an external entity declaration
followed by a reference to that entity. We can also use external identifiers for
general entities:

XML Example 10

<!ENTITY resume SYSTEM "resume.xml">
Here is the author’s resume:
&resume;

The physical distribution of a document over external entities must, however,
match its logical structure. XML requires for each logical component, like at-
tribute values, elements, declarations or comments, that its first and its last
character are in the same entity (as a special case of an entity, the file contain-
ing the DTD and the root element is called the document entity).

Entities also allow inclusion of non-XML data into XML documents. Non-
XML entities are called unparsed and declared with the NDATA keyword. Because
an XML parser can not process non-XML data, unparsed entities must be asso-
ciated with a notation. Each notation is assigned an application that can process
its data by a notation declaration in the DTD:

XML Example 11

<!NOTATION jpeg "/usr/local/bin/view">
<!ENTITY portrait SYSTEM "portrait.jpg" NDATA jpeg>

Unparsed entities may not be referenced directly. They may only appear as the
value of an attribute with type ENTITY or ENTITIES.

1.1.3 Public Identifiers and Catalogs

Because XML was designed for information exchange over the Internet, the
system identifier in an external entity declaration need not point to a file on the
local file system. It can also specify a document somewhere on the net. The
system identifier is therefore interpreted as a uniform resource identifier (URI)
[IET98a]. This allows for distributing a document over the net:

XML Example 12

<!ENTITY chapter1 SYSTEM "http://www.company.de/chap1.xml">
<!ENTITY chapter2 SYSTEM "ftp://ftp.company.fr/pub/chap2.xml">
...
<book>
&chapter1;
&chapter2;
</book>

The Internet, however, is a ”moving target”: Documents frequently change
their locations. Moving one part of a document without changing the referring
parts would therefore break the document’s integrity. On the other hand, if one
part of the distributed document is stable and not expected to be changed later,
one can reduce net bandwidth by holding local copies of that part. Since such a
copy is usually only temporary, one would like to avoid changing the reference

CHAPTER 1. DOCUMENT PROCESSING WITH XML 11

in the document itself. Instead, XML provides the concept of public identifiers.
A public identifier uniquely identifies an XML document or entity regardless of
its physical location. Using public identifiers when declaring external entities
therefore keeps the document independent of physical storage:

XML Example 13

<!ENTITY chapter1 PUBLIC
"-//Company//Chapter 1//EN" "chapter1.xml">

The public identifier "-//Company//Chapter 1//EN" is now used to determine
the location of the first chapter, and only if that fails the system identifier
"chapter1.xml" is used. But how can a public identifier be resolved to a file
name? A favored method is using an XML catalog [Cow99]. A catalog is a spe-
cial XML document interpreted as a mapping from public identifiers to system
identifiers. In our example, the catalog would contain the following element:

XML Example 14

<Map PubId = "-//Company//Chapter 1//EN"
HRef = "http://www.company.de/chap1.xml"/>

XML catalogs are derived from a form of catalogs used with SGML [SO97]. Fre-
quently, this syntax is used for XML as the SOCAT syntax of catalogs.

1.1.4 Miscellaneous Markup

Since some characters are reserved for markup, they may not appear literally
at certain places in an XML document: E.g., the “<” character may not appear
in the document instance unless it initiates a start-tag. If such a character is
needed as character data, it must be entered as a decimal or hexadecimal char-
acter reference, in this case either “<” or “<”. For larger parts of text
containing reserved characters, a CDATA section can also be used. It is started
with “<![CDATA[” and ended with “]]>”; no other markup is recognized within
it.

XML Example 15

The greater-than sign can be entered as < or <.
A character reference has the form <![CDATA[<]]>.

Comments are enclosed between “<!--” and “-->”. Comments are not part of
the documents content but contain useful information for human readers of
the XML document.

XML Example 16

<!-- Must check spelling -->
Is this the road to Edinborough?

A special form of a comment is a processing instruction: It is not part of a docu-
ment’s content, but unlike comments it may contain valuable information for
a processing application. In addition to its text, a processing instruction com-
prises a target name indicating the application it is aimed at.

12 1.1. Introduction to XML

XML Example 17

A misspelt word is
<?spell check off?>
Edinborough
<?spell check on?>

In this example, both processing instructions have the target spell.

1.1.5 UNICODE

XML documents are written in UNICODE [Uni96] which is a 21-bit character
set containing most of the characters occurring in the written languages of the
world. Since most operating systems support only 8-bit characters, UNICODE
documents – and thus also XML documents – are usually encoded as 8-bit char-
acter streams. Various methods, e.g., ASCII, LATIN1, UTF-8, UTF-16 or UCS-4
[ISO98, IET92, IET98b, Uni96], are used for encoding XML documents. If an
XML entity is not encoded in UTF-8, then it must start with an XML or text
declaration. These are special processing instructions with target xml and incor-
porate an encoding declaration:

XML Example 18

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE thèse [...

This XML declaration indicates that the document is encoded in the LATIN1
character set using 8-bit characters, thus it is possible to use character “è” di-
rectly in a name.

1.1.6 Well-Formedness, Validity and Compatibility

XML distinguishes several degrees of how a document can conform to the XML
specification: All documents must at least be well-formed. Well-formedness ba-
sically requires that the document is syntactically correct and all entities ref-
erenced in the document instance are declared in the DTD. In addition to be-
ing well-formed, a document should also be valid. Validity requires that the
document instance obeys all declarations made in the DTD. For instance, the
content of each element must match the content model declared for its element
type, and all attribute values must be according to their declared types.

Validity also includes compatibility with XML’s predecessor SGML. The in-
tention is that each valid XML document should also be a valid SGML doc-
ument. This leads to some obfuscating restrictions which go back to design
decisions taken for SGML. When SGML appeared in the middle of the 80’s, the
circumstances were clearly different from today’s:

✧ Most computers were equipped with only a small amount of main mem-
ory. Moreover, hard disks were small and networks were slow. Therefore
it appeared essential for commercial acceptance to reduce the number of
characters consumed by the markup to an absolute minimum.

CHAPTER 1. DOCUMENT PROCESSING WITH XML 13

✧ The markup was usually inserted manually into documents; there were
no tools like syntax-directed or WYSIWYG (what-you-see-is-what-you-
get) editors which can nowadays generate the markup automatically. De-
creasing the amount of the markup therefore corresponded to reducing
the authoring efforts.

As a consequence, SGML offers many possibilities for omitting or abbreviating
the markup, wherever this does not obscure the logical document structure.
Some of these features are the following:

✧ If an attribute has an enumeration type, then the attribute name may be
omitted in the attribute specification. E.g., if the element title has an
attribute align with type (left|center|right), then its start-tag <title
align="center"> can be abbreviated to <title center>. Unfortunately,
this abbreviation requires a restriction on the types of an element’s at-
tributes: The same value may not occur for different attributes (otherwise
the attribute name can not be determined from the attribute value). The
disadvantage is that an element can not have two attributes with type,
e.g., (yes|no).

✧ Content models can be implemented by deterministic finite au-
tomata(DFA). Constructing a DFA for a given content model generally
requires a subset construction, eliminating non-determinism. But the
subset construction possibly generates exponentially many states, thus
consuming huge amounts of memory for the transition tables. Therefore
SGML claims that content models must have a special form that avoids
the subset construction: They must be unambiguous. Basically, unambi-
guity means that a symbol in the input can never match two different
symbols in the regular expression without lookahead. Unambiguity is
decidable in polynomial time (see, e.g., [BW92, Neu97]), but it is not at all
intuitive to non-computer scientists. E.g., the content model (a,(c,a)?)*
is unambiguous whereas ((a,c)?,a)* is not.

XML abolished most of the historical features of SGML. In order to be com-
patible with SGML, however, the restrictions induced by these features were
adopted for XML, some of them as validity constraints and others as interoper-
ability recommendations only.

1.2 XML Software

Conceptually, processing of XML documents is divided into three stages: pars-
ing of the input document, processing of that document, and generation of
output. The processing application itself is not aware of the XML syntax and
the physical representation of the documents. It has only a logical view of
the document structure. In order to access XML documents, it needs an XML
parser. This is a module or a library that can parse and possibly validate XML
documents. Through a programming interface which is either tree-based or
event-based, the parser makes the document available to the application. The
application then processes the document and, in most cases, produces a dif-
ferent document as output. In order to store its output, the application makes

14 1.2. XML Software

Tree Tree

EventsEvents

X
M

L
P

arser

A
p

p
lication

S
eq

u
en

tializer
<doc>

...
</doc>

<intro>
<para>

XML

...

\document

\end{doc

\begin{d
class[..

LATEX

<doc>

...
</doc>

<intro>
<para>

XML

PDF

......

...

<html>
<body>
<title>

</html>

HTML

End
Back-Front-

End

Figure 1.1: A model of XML processing.

Network

Data Data

...

<data>
<item>
...

</data>

XML

...

<data>
<item>
...

</data>

XML

Sending Process

XML Generator XML Parser

Receiving Process

Figure 1.2: Using XML for network information transport.

use of a library generating a sequential representation of the output document.
This need not necessarily be in XML, it might also be in a different format.

Figure 1.1 illustrates this model of XML processing. Of course, it does not
cover all kinds of XML software. E.g., an application might produce no out-
put document at all, but only check a property of its input such as validity.
Other applications might involve multiple processing stages before returning
an output, or obtain the input in a non-XML format.

Another aspect is that XML is designed for platform-independent exchange
of information over networks. Since arbitrary structured data can be expressed
in XML, it is also used for information transport by applications beyond the

CHAPTER 1. DOCUMENT PROCESSING WITH XML 15

document processing area. Figure 1.2 illustrates this practice: In order to send
a packet of data over a network, the data is packed into an XML document
before transmission. The receiving agent unpacks the data from its XML repre-
sentation with the help of an XML parser. Similarly, XML is a popular format
for intermediate representation or permanent storage of data.

1.2.1 Areas of XML Processing

One of the simplest XML applications is a well-formedness checker. It gener-
ates no output but parses the document and reports violations of XML’s well-
formedness constraints. A validator additionally checks for validity.

An XML transformer is an application that takes one or more XML docu-
ments as input and generates one or more XML documents as output. In the
simple case, the input is enriched by adding some information. Examples are
the compilation of a table of contents or the generation of implied attributes
such as figure numbers. While the output usually conforms to the same DTD
as the input, more complex transformations might also restructure the docu-
ment according to a different DTD.

A converter brings its input into a different format, e.g., SGML or LATEX, or
converts it from a non-XML format into XML. Similarly, a recoder reads an XML
document and reproduces it in a different character encoding. Converting to
a different format may require a transformation of the document if the output
format is less or more expressive than the input format.

A formatter renders a document into a representation suitable for reading,
printing or publishing. The formatting process typically starts with a transfor-
mation, annotating the document tree with additional information. The docu-
ment is then formatted into a sequence of page descriptions or another suitable
representation, which is finally displayed on a viewing medium or stored in a
page description language. A more detailed discussion of the formatting pro-
cess is given in, e.g., [ISO96, W3C99e].

Another significant class of XML applications are querying tools. These ap-
plications search and extract occurrences of a pattern in an XML document.
Querying is a vital operation of many other applications, e.g., for selecting
parts of the document to be transformed. In the context of document databases,
querying plays a prominent role in information retrieval. Part II will describe
a querying algorithm in detail.

There are many other XML applications in the classical document process-
ing area. On the other hand, XML’s capability of representing arbitrary – even
binary – data highlights another application area of increasing importance:
XML is widely used for data storage and exchange in virtually all areas of in-
formation technology. Let us only mention a few of them:

Electronic Commerce: The Bank Internet Payment System (BIPS) [FST98] uses
XML for transmitting bank transactions over the Internet. Similarly, the
cXML specification [Ari99] defines a set of DTDs for performing eCom-
merce transactions across the Internet.

Software Modeling: Diagrams of the Unified Modeling Language (UML) are
described and exchanged using the UXF format [SY98], which is an XML
DTD.

16 1.2. XML Software

Computer Graphics: The Precision Graphics Markup Language (PGML)
[AAC+98] is an XML-based format for describing scalable arbitrary pre-
cision graphics, capable of modeling POSTSCRIPT and PDF.

Distributed Computing: XML is used as an exchange format for JAVA Beans
[Joh99], which are JAVA software components. The Object Model Group
(OMG) uses XML for transmitting data in the context of CORBA [OMG99].

1.2.2 Commercial software

XML’s application areas include Web publishing, document databases and doc-
ument processing in general. This opens a large commercial market to XML
software developers. Therefore the major part of XML software is commercial.
In order to try out a commercial software, one can commonly obtain a free
demo or evaluation version. This version, however is either restricted in func-
tionality or limited to processing only small documents. Moreover, in most
cases the documentation is not provided with the demo version, making it dif-
ficult to test advanced features of the software. Our knowledge about most
commercial XML software is therefore limited and unsatisfactory.

Another aspect is that commercial developers compete with each other: A
good algorithm provides the basis for outperforming the competitors. Techni-
cal know-how is therefore kept as a secret, and documentation never includes
a description of the algorithms employed. Furthermore, program sources are
not made available to the public: The software is only available in binary, i.e.
executable, format and can frequently only be run with an operating system
that is widely spread on the commercial market, namely Microsoft Windows.

In the area of XML parsers, the situation is slightly better than for other XML
software. sp [Cla98], one of the first available XML parsers, was originally writ-
ten as an SGML parser. It is a free, open-source software written in C++ and
is the inofficial reference implementation for SGML. Since XML is – with a few
exceptions – a subset of SGML, only slight changes were required for making
sp a fully functional XML parser. Since sp is free software and has a general-
purpose – yet unfriendly – programming interface, commercial competitors
could not expect profits from releasing non-free parsers. Therefore, nearly all
XML parsers are free and, in most cases, open-source software.

Of course, fxp is also open-source. Moreover it is implemented in a
platform-independent programming language. Though it was developed un-
der UNIX, porting it to other platforms should be easy – as far as there are SML
compilers for these platforms, which is the case for most modern operating
systems including Microsoft Windows.

1.2.3 XML Application Interfaces

XML parsers expose the parsed document to the application through a pro-
gramming interface. Conceptually, one can distinguish two kinds of inter-
faces: tree-based and event-based ones. In the tree-based approach, the parser
constructs the document tree during parsing and passes this entire data struc-
ture to the application when parsing is finished.

In contrast to that, in the event-based case the information is fed piecemeal
to the application: Each syntactical component of the document, e.g. a start-tag

CHAPTER 1. DOCUMENT PROCESSING WITH XML 17

or a piece of character data, triggers an event. The application can register a
handler for each type of events, which is called by the parser when an event is
triggered. The handler can then process the information signaled by the event
and change the state of the application accordingly.

The main advantage of a tree-based interface is that the application can
arbitrarily navigate through the document tree and copy or modify parts of it.
This is especially useful in complex applications that have to access each part
of the tree multiple times. The disadvantage is that a copy of the document
must be completely constructed in memory before the application can access
it. For large documents, this consumes a huge amount of memory, probably
impairing the application’s cache and memory behavior, thus slowing it down.

Therefore, an event-based interface is preferable for applications that do not
depend on the physical presence of the document tree. The document can be
processed “on the fly”, and only the required parts are stored in memory by
the application. E.g., compiling a table of contents for a book can be done by
collecting the section titles while discarding all other information.

Through an event-based interface, the application has a serialized view of
the document: It can only be inspected once in a predetermined order. The
application can, however, use the events for generating its own copy of those
parts that have to be traversed several times or in a different order. A tree-
based interface can therefore always be provided on top of an event-based one.

For both kinds of interfaces, a standardization has been attempted in or-
der to increase the interoperability of different XML parsers. For the tree-
based case, the most commonly used abstract data type is the Document
Object Model (DOM), standardized by a W3C Recommendation [W3C98a].
Though the DOM specification claims to be “designed to be used with any
programming language”, it is committed to the imperative object-oriented
programming paradigm: It defines class interfaces for accessing XML docu-
ment trees and (destructively) manipulating them. Similarly, there is a wide-
spread – though not officially standardized – event-based interface called SAX
[Meg+98]. Like DOM, SAX defines class interfaces for registering event han-
dlers in object-oriented programming languages.

A variant of the event-based approach is a demand-driven interface: Instead
of registering handlers, the application repeatedly calls the parser in order to
obtain the next event. This requires that the state of the parser is explicitly
available – and not implicitly, e.g., by the current recursion stack. The advan-
tage is that the control is on the application-side: It can, e.g., process several
documents simultaneously, or stop processing a document after having re-
trieved the desired information. Though occasionally requested in discussion
forums and mailing lists, to the best of our knowledge none of the available
XML parsers provide a demand-driven interface.

1.2.4 The Information Set

XML parsers are also classified by the extent of the information they pass to
the application. This is called the parser’s information set. The XML recommen-
dation requires that all parsers must provide at least a minimal information
set. This includes all information that is necessary for generating a structurally
equivalent copy of the document instance. Moreover, the parser must report
all violations of the XML recommendation to the application; for each of these

18 1.2. XML Software

errors the parser must indicate whether it is a well-formedness, i.e., fatal or
only a validity error.

The XML recommendation does not require reporting of comments, the en-
coding of entities, and the declarations in the DTD. It also disregards the phys-
ical distribution of the document among its entities, i.e., the starts and ends
of included entity references need not be indicated. But an application might
need this information: E.g., a spell checker produces an output document with
all typing errors corrected. It would be annoying if the output had to be in a
single file though the input was well modularized and spread among several
files.

In order to to overcome this deficiency, the W3C is working on a recommen-
dation defining XIS, a standard information set for XML [W3C99d]. It divides
the information into information items, classified into required and optional
ones. The required items are mainly those demanded by the XML recommen-
dation; the optional items include comments, declarations and boundaries of
included entity replacement text. XIS has no mechanism of reporting errors,
nor does it provide information about the physical location, such as the docu-
ment’s URI. But this is valuable information: In order to be user-friendly, error
messages produced by an application should report the position in a file where
an error occurred. Similarly, if a querying tool extracts some information from
a large document, the user might be interested in the location of the source of
that information.

Moreover, XIS is not sufficient for generating a character-by-character iden-
tical copy of the input. The reason is that it abstracts from the syntactical rep-
resentation of the markup. E.g., the information items for the two start-tags
 and would be identical because the spec-
ification order, the quote sign used for the value, and the white space between
the attributes have no influence on the meaning of the start-tag.

For the readability of documents, however, these properties are important.
E.g., if the character used to quote the attribute value occurs in the value it-
self, then this character can not be entered directly – a character reference
must be used instead. Clearly, an attribute value "O’Hara" is preferable to
’O'Hara’. Therefore, an application might desire to preserve these prop-
erties of a document. Another example is the encoding of the document: If an
application generates XML output the user probably wants the output to have
the same encoding as the input because this might be the standard encoding
used in his company. The application must therefore be aware of the input
encoding.

1.2.5 Further Characteristics of XML Parsers

A conforming XML parser must be able to parse an XML document and check
it for well-formedness. Through its application interface it must signal errors
and report a minimal subset of the document’s content to the application. It
need not include external entities – processing the document entity alone is
sufficient. A parser may, however supply additional features, some of which
include:

Validation: A validating parser processes the complete document type dec-
laration including external parameter entity references. It must check

CHAPTER 1. DOCUMENT PROCESSING WITH XML 19

whether all declarations conform with XML and report all errors to the
application. It parses the document instance, including external entities,
and validates it against the DTD. This includes checking the attribute val-
ues for compliance with their declared types and checking whether the
content of each element is according to the content model declared for
it. Validation also includes checking for compatibility and, optionally,
interoperability with SGML (see 1.1.6).

Reentrance: A reentrant parser allows several instances to be run simultane-
ously but independent of each other. E.g., XML catalogs used to resolve
public identifiers are XML documents themselves (see 1.1.3). During
parsing of the main document, a new instance of the parser must thus
be started in order to read the catalog. Since the catalog has its own DTD,
the data structure in which the DTD is stored may not be shared (e.g., as
a global variable). Instead, each instance of the parser must have its own
copy of this data structure. Similarly, the options for different parser in-
stances may differ: E.g., catalog support should be disabled when pars-
ing a catalog. Most of the available XML parsers are reentrant, though
early versions of many parsers were not.

Catalogs: XML catalogs are, by now, only supported by very few parsers.
Many parsers that were derived from existing SGML parsers, however,
support the alternative SOCAT syntax for catalogs defined by the SGML
Open Consortium for use with SGML (cf. 1.1.3).

In addition to catalogs, some parsers support various standards defined on top
of XML, some of which are XML Namespaces [W3C99a], XLINK [W3C98d] and
XPOINTER [W3C99f].

1.2.6 Existing XML Parsers

The most commonly used programming language in the XML area is JAVA
[GJS96]. Among other reasons [Fuc99], this is due to the fact that XML is de-
signed for data exchange on the Internet; and JAVA is designed for Internet
programming. Moreover, JAVA programs are portable to arbitrary operating
systems provided they have an implementation of the JAVA Virtual Machine
(JVM). On the other hand, XML documents are written in UNICODE. Currently,
the only programming language with full built-in UNICODE support is JAVA.
Therefore JAVA is a natural choice for many developers. The most important
XML parsers in JAVA include:

xp [Cla99b] is a non-validating parser written by the author of sp. Its
goal is to be the fastest XML parser in JAVA;

xml4j [IBM99] is a validating parser from IBM. It includes support for
catalogs and implements DOM and SAX. It is probably the most
extensive implementation of XML available.

JAVA as an interpreted language, however, is known to be slow in comparison
to compiled languages like C or C++. Aside from the already mentioned sp,
several XML parsers have been implemented in C, e.g.:

20 1.2. XML Software

expat [Cla99a] is written by the author of xp and sp. It can do only slightly
more than checking for well-formedness, but it is extremely small
and fast;

rxp [Tob99] is a validating, but still very fast parser. Catalogs are not
supported.

On the other hand, scripting languages play an important role on the Internet.
These are most commonly used for CGI-programming on Web servers. Script-
ing languages are usually interpreted languages. They are well-suited for fast
prototyping and implementation of small programs. They are, however, rather
inefficient and inappropriate for large applications. The most popular script-
ing languages are TCL/TK [Ous94], PERL [WCS96] and PYTHON [Lut96]. For
all of these languages, foreign language interfaces to the expat parser have been
implemented [WC99, PXS99, Bal99]. For PYTHON, there is also a native XML
parser:

xmlproc [Gar99] is a validating parser written entirely in PYTHON. It pro-
vides a SAX and a DOM interface and supports catalogs in XML and
SOCAT syntax. It lacks, however, full UNICODE support and omits
some required validity checks. It is therefore not a conforming XML
parser.

All parsers mentioned so far are implemented in imperative programming
languages. In the functional programming area, only recently two projects
emerged. Both were initially released in January 1999:

tony [Lin99] is a non-validating parser written in OCAML [LRV+99]. It
is an incomplete implementation of XML in that it lacks support for
full UNICODE and several XML features like CDATA sections.

HaXml [WR99] is a parser written in HASKELL using combinator-style pars-
ing. Like tony, it does not implement UNICODE and validation.

fxp, which had its first release in February 1999, has full UNICODE support and
implements all requirements of the XML recommendation. It is therefore the
first complete XML parser written in a functional programming language.

Chapter 2

Implementation of fxp in
Standard ML

Due to XML’s tree-like view of documents, the implementation language of
an XML processing application should provide good support for defining and
manipulating tree-structured data types. A good choice of implementation lan-
guage are modern functional programming languages, like SML [MTH+97] or
HASKELL [JHA+98], because they use trees as the basic supported type and
have an easy and intuitive mechanism for user-defined tree data structures.

This chapter presents fxp, an XML parser written completely in the func-
tional programming language SML. It reads and validates XML documents and
provides an application programming interface for processing documents. It
is thus a basis for implementing XML applications like formatters, converters
or querying tools in SML. fxp supports catalogs in both syntaxes; it is reen-
trant, highly customizable, and provides an event-based, functionally flavored
application interface.

We first motivate our choice of programming language and give an over-
view of fxp’s system architecture. We then describe the individual system com-
ponents. Following that, we analyze the efficiency of fxp and compare it to
XML parsers written in other programming languages.

2.1 The Implementation Language – SML

fxp is written in SML (Standard Meta Language) [MTH+97, Pau96], a strict
non-pure functional programming language. Our goal was to provide an
XML parser written completely in a functional language. fxp shows that the
functional programming style is a good alternative to the object-oriented style
widely adopted in the XML area. Beside this rather idealistic motivation, there
are several other good reasons for choosing SML as implementation language:

Tree Types: Imperative programming languages use pointers for constructing
complex data types and iteration for traversing them. In contrast to that,
modern functional programming languages like SML or HASKELL have
a tree-like view of data structures. Traversal of large data structures is
implemented by recursion. Data-type constructors and pattern matching
provide a convenient mechanism for manipulating tree-structured data

21

22 2.1. The Implementation Language – SML

while abstracting – from the programmer’s point of view – from the phys-
ical representation. This makes programming more comfortable and less
error-prone. Moreover, the tree-like view of data structures very closely
matches XML’s view of documents.

Polymorphism: SML supports polymorphic types and functions. A polymor-
phic type is a generic type (e.g., a list) parametrized by one or more types.
It represents a data type containing data of the argument types, provid-
ing a single implementation for all instantiations of the argument types.
Analogously, a polymorphic function is a function that works on a poly-
morphic type and does not depend on the argument types; as the type
itself, the polymorphic function needs only be defined once. A popular
example for a polymorphic function is list concatenation. Polymorphism
thus gives high succinctness and reusability to the code.

Non-Pure Features: In pure functional languages like HASKELL the concept of
explicit state does not exist. As a consequence, there is no destructive up-
date on variable values. Furthermore, there is no purely functional con-
cept of input and output because these depend on the state of the world
in which a program is run. I/O is therefore provided through rather non-
intuitive concepts such as streams or monads. This can render programs
unintelligible and makes debugging of purely functional programs a dif-
ficult task.

SML is a non-pure functional language: It has a concept of imperative,
i.e., side-effected input and output – a feature which turns out to be es-
sential for an XML parser, which must access entities on the local file sys-
tem and on the network. SML also supports mutable types such as ref-
erences and arrays. Though not essentially necessary for an XML parser,
mutable types ease the straight-forward and efficient implementation of
frequently used data structures. A symbol table, for instance, is most nat-
urally implemented as a hash table using an array with constant-time,
destructive update.

fxp uses mutable types in few but frequently used functions, with the ef-
fect of significantly speeding up the program. If possible, the imperative
nature of functions is hidden behind a module interface. The program
source code has therefore a very functional appearance.

Strictness: SML is a strict functional language. Strictness means that argu-
ments of a function are evaluated before the function is called. In contrary
to that, in non-strict languages evaluation of an argument is delayed until
its value is actually needed by the computation.

Strictness is a vital prerequisite for supporting non-pure features like mu-
table types and imperative I/O. Non-strictness, however, does not seem
to be of any advantage for XML parsing: Because the processing order of
XML documents is prescribed – at least during parsing – by its sequential
representation, non-strict evaluation can only obfuscate the evaluation
order. Moreover, non-strict evaluation requires additional efforts from
the languages run-time system, slowing down program execution. On
the other hand, SML’s strictness allows for easy debugging.

CHAPTER 2. IMPLEMENTATION OF FXP 23

Parametric Modules: SML has a very sophisticated module system. It fea-
tures a first-order mechanism for parametrized modules: so-called func-
tors (an unparametrized module is called structure, its interface signature).
A functor is a structure parametrized with other structures. The defini-
tions in its body depend on values defined in the parameter structures.
The functor can be applied to actual argument structures, making these
visible in the functors body in order to create a new structure, an instance
of the functor. A good example for the use of functors are the dictionaries
in Section 2.6.1. Functors have two main advantages: They make the code
highly reusable and are a very elegant means of making it customizable.

Basis Library: With the definition of the SML Basis Library [Rep97], SML has a
comprehensive, platform-independent interface to many common oper-
ating system functions. SML programs are therefore extremely portable.

fxp was developed using the SML of New Jersey (SML/NJ) compiler [Bel99]. It
translates the source code into native code which, however, can only be run
with the support of a run-time system. SML/NJ provides many useful features
such as execution profiling and a sophisticated mechanism of separate compi-
lation [Blu97].

There are several other implementations of SML which are, however, in-
appropriate for our purposes. They include Moscow ML [Ses99] and MLj
[BKR99] both of which do not implement SML functors and are therefore not
usable for fxp. The MLTON compiler [Wee99] translates SML to C. It does, how-
ever, not support separate compilation. Finally, there is a commercial product,
MLWorksTM from Harlequin. Its development seems to be still in an early stage:
Though it has a separate compilation mechanism, it can not figure out mod-
ule dependencies. The programmer has to add annoying dependency annota-
tions to the program sources which make them unusable with other compilers.
Moreover, the compiler is annoyingly slow, while the generated code does not
seem better than that of SML/NJ. We therefore chose SML/NJ for the develop-
ment of fxp.

2.2 System Architecture

fxp’s system architecture is shown in Figure 2.1. It has three main components:

Frontend: The frontend is divided into two separate modules: the UNICODE
frontend and the entity manager.

The UNICODE frontend implements the physical access to the input doc-
ument and all included external entities. Moreover, it performs the de-
coding into UNICODE.

The entity manager maintains the stack of open entities and provides the
parser with its input. It decodes external entities with the help of the
UNICODE frontend.

DTD manager: This module maintains in a bunch of tables the declarations of
the document type. It contains as a separate module the implementation
of the tables in a concrete data structure. The DTD manager reports all
errors that occur to the application.

24 2.3. The UNICODE Frontend

A
pplication

Instance
Parser

DTD
Parser

Parser

Entities Notations Elements Attributes

DTD Manager

Tables

Frontend
UNICODE

Entity
Manager

Frontend

characters

open

data

errors

declarations

errors

lookup lookuplookup

declare

Figure 2.1: The system architecture of fxp.

Parser: The main parser module is divided into two parts: the DTD parser
which processes the DTD with all its declarations and feeds them to the
DTD manager, and the instance parser which processes the content of
the document instance. The DTD parser fills the DTD tables with in-
formation, whereas the instance parser accesses these tables mostly for
obtaining information. Both parser modules report individual parts of
the document as well as errors to the application.

Figure 2.1 also shows a fourth component: the application. This is the docu-
ment processing program that uses fxp as a frontend to the XML syntax. It is
thus not part of fxp.

The following sections document the individual components of fxp. We
illustrate the employed programming techniques by extracts from the source
code which are simplified in order to ease description: Obfuscating details such
as error handling are omitted in most cases. For simplicity, we first describe the
parser without the programming interface. In Section 2.8 we then describe the
programming interface and its implications on the other components.

2.3 The UNICODE Frontend

UNICODE is an international multi-byte character set capable of representing
most written languages of the world. XML is based on UNICODE in order to
make it language-independent. SML, however, supports only 8-bit characters
and has no notion of UNICODE. Therefore, fxp’s UNICODE frontend provides
types for UNICODE characters and strings, along with basic functions for ma-
nipulating them.

XML documents are encoded into byte-streams in order to maintain them

CHAPTER 2. IMPLEMENTATION OF FXP 25

...

retrieve

Byte

File

DecFile Char

Char

File

URIs

UNICODE Frontend

Decode

Decode

Decode

File

Utf8

Ascii

EntitiesUri

Decode

Figure 2.2: Overview of the UNICODE frontend.

in operating system files. A large number of character encodings is used with
XML. fxp’s UNICODE frontend supports the most frequently used encodings. It
provides a type for associating a file with a character encoding, together with
functions for reading UNICODE characters from encoded files.

An overview of the UNICODE frontend is given in Figure 2.2. It has mainly
three stages:

File operations: The module DecodeFile implements the access to the file sys-
tem. It defines a type File, together with functions for opening and closing
files and reading bytes from them. Access to files over the network hap-
pens through the module Uri, which retrieves a remote file and stores it
on the local file system.

Main module: The main module of the UNICODE frontend is Decode. It de-
fines a type DecFile which is a File tagged with its encoding. This type is
visible to the entity manager, whereas the type File and all operations on
the byte-level are hidden from the outside. In order to retrieve a charac-
ter from a DecFile, the decoding function for the associated encoding is
called.

Another task of the structure Decode, which is not captured by Figure
2.2, is the detection of a file’s encoding upon opening of the file (cf. 1.1.5).
Only after this is performed the file can be tagged with its encoding.

Decoding modules: For each of the supported character encodings there is
a module implementing the decoding, e.g., DecodeUtf8 for the UTF-8
encoding. On request it reads a number of bytes through the module
DecodeFile and decodes them to a single UNICODE character.

Figure 2.3 summarizes the interface of the UNICODE frontend by means of the
signature Decode. The substructure Error provides a type for reporting decod-
ing errors together with some auxiliary functions. Moreover, two exceptions
are defined for indicating that either an end of file or an error occurred. Func-
tions decUri, decName and decEncoding return the URI, the file name or the en-
coding of a DecFile.

26 2.3. The UNICODE Frontend

signature Decode =
sig

structure Error : DecodeError

type DecFile
type Encoding

exception DecEndOfFile of DecFile
exception DecError of DecFile ∗ Error.DecodeError

val decUri : DecFile → Uri.Uri
val decName : DecFile → string
val decEncoding: DecFile → Encoding

val decOpenXml: Uri.Uri option → DecFile
val decClose : DecFile → DecFile

val decCommit : DecFile → unit
val decSwitch : DecFile ∗ string → DecFile

val decGetChar : DecFile → UniChar.Char ∗ DecFile
val decGetArray : DecFile → UniChar.Char array

→ int ∗ DecFile ∗ Error.DecodeError option
end

Figure 2.3: The Decode signature.

The functions decOpenXml and decClose are for opening a URI for reading
and for closing a file. Upon opening of a file its encoding must be determined.
This detected encoding, however, need not be identical with the one specified
in the encoding declaration – it suffices if both are compatible. After the en-
coding declaration has been parsed, the parser must therefore either confirm
the auto-detected encoding with decCommit, or switch to the declared encod-
ing through function decSwitch. For a detailed description of this procedure,
see 2.3.7.

The function decGetChar reads a UNICODE character from a DecFile and
returns it together with the modified file. As an optimization, a function
decGetArray is also provided. This function fills a whole array with UNICODE
characters (see 2.3.6).

We will now describe the components of the UNICODE frontend in detail.

2.3.1 Basic Types

In its first version, UNICODE used 16 bits for describing a single character and
was thus capable of representing 65536 characters. With version 2.0 [Uni96],
the surrogates, an additional set of – yet unused – about one million characters,
was added. In order to describe surrogates by means of 16-bit characters, two
areas of 1024 characters were designated as high-surrogates and low-surrogates.
These characters may only appear as a combination of a high-surrogate fol-
lowed by a low-surrogate, together representing a surrogate character. In en-
codings capturing sufficiently many bits per character, a surrogate character
may also appear directly.

The range of UNICODE characters is illustrated in Figure 2.4. The largest
hexadecimal value a UNICODE character can have is thus 0x10FFFF, requir-

CHAPTER 2. IMPLEMENTATION OF FXP 27

Latin1ASCII surrogatessurrog.
low-

surrog.
high-

0x000080

0x000100

0x00E
800

0x00E
C

00

0x00F
000

0x010000

0x000000

0x10F
F

F
F

Figure 2.4: Distribution of UNICODE characters.

signature UniChar =
sig

structure Chars : WORD

type Char = Chars.word
type Data = Char list
type Vector = Char vector

val nullData : Data
val nullVector : Vector

val hashChar : Char → word
val hashData : Data → word
val hashVector : Vector → word

val compareChar : Char ∗ Char → order
val compareData : Data ∗ Data → order
val compareVector : Vector ∗ Vector → order

val Char2Uni : Char → string
val Char2String : Char → string
val Data2String : Data → string
val Vector2String : Vector → string

val Data2Vector : Data → Vector
val Vector2Data : Vector → Data

end

Figure 2.5: The UniChar signature.

ing 21 significant bits to represent it. We therefore use the built-in SML type
Word.word for implementing UNICODE characters. In all SML implementations
we know of, this type represents words of at least 30 bits. The Word structure
also qualifies because it provides the bit-manipulation and arithmetic opera-
tions required for decoding UNICODE.

The UniChar structure declares the types to be used for UNICODE and pro-
vides some basic functions on these types. Its signature is given in Figure 2.5:
Substructure Chars must match the predefined WORD signature and provides
the type for UNICODE characters together with bit-manipulation and arith-
metic operations on this type. In addition to Char, two types are defined for
representing UNICODE strings: Data and Vector. The latter is used for more ef-
ficient representation of constant strings. Constants nullData and nullVector rep-
resent the empty string; functions Data2Vector and Vector2Data convert between
the two string representations.

For each of the three types defined, we also provide a function that hashes

28 2.3. The UNICODE Frontend

signature UniClasses =
sig

val isName : UniChar.Char → bool
val isNms : UniChar.Char → bool
val isPubid : UniChar.Char → bool
val isS : UniChar.Char → bool
val isDec : UniChar.Char → bool
val isHex : UniChar.Char → bool
val isXml : UniChar.Char → bool
val isUnicode : UniChar.Char → bool

val decValue : UniChar.Char → UniChar.Char option
val hexValue : UniChar.Char → UniChar.Char option

end

Figure 2.6: The UniClasses signature.

a value of this type to a word, a function that compares two values, and a
function that returns a string representation of a value. For Char there is an
additional function Char2Uni which returns the string ”U+xxxx” where xxxx is the
hexadecimal code of the character. These functions are useful for implementing
symbol table, sorted lists and generation of error messages.

2.3.2 Character Classes

A character class is a set of characters that belong to a certain category, e.g., let-
ters or digits. Structure UniClasses, whose signature is given in Figure 2.6, pro-
vides functions testing for membership in character classes. isHex and isNms,
e.g., implement the classes Hex of hexadecimal digits and Nms of characters
that can start a name. Class Hex is small and simple: It only contains the letters
“A” to “F”, “a” to “f” and the digits “0” to “9”. It is implemented as follows:

fun isHex c =
c>0wx30 andalso c60wx39 orelse (∗ 0-9 ∗)
c>0wx41 andalso c60wx46 orelse (∗ A-F∗)
c>0wx61 andalso c60wx66 (∗ a-f ∗)

Additionally we need a function that computes the numeric value of a hexa-
decimal character. This is a partial function defined only for hexadecimal dig-
its; its return value is therefore of type Char option1:

fun hexValue (c:UniChar.Char) =
if c>0wx30 andalso c60wx39 then SOME(c−0wx30) (∗ 0-9 ∗)
else if c>0wx41 andalso c60wx46 then SOME(c−0wx37) (∗ A-F ∗)
else if c>0wx61 andalso c60wx66 then SOME(c−0wx57) (∗ a-f ∗)
else NONE

In contrast to that, class Nms is very large and complex to describe since it is
spread in small portions over the whole UNICODE range: It consists of 13614
characters distributed among 206 intervals of UNICODE characters, plus two
intervals of about 20000 and 11000 characters in the area of CJK idioms and
Hangul syllables. We can not implement this class with a nested if expression

1The option type is predefined in SML as follows: datatype ’a option = NONE | SOME of ’a.

CHAPTER 2. IMPLEMENTATION OF FXP 29

because that would be far too inefficient. On the other hand, a table containing
all Nms characters would be very large. As a compromise, we implement only
the 206 small intervals with a table:

fun isNms c =
if c<0wx4000 then inCharClass(c,nmsClass)
else c>0wx4E00 andalso c60wx9FA5 orelse (∗ CJK idioms ∗)

c>0wxAC00 andalso c60wxD7A3 (∗ Hangul syllables ∗)

nmsClass is an array of 512 32-bit words characterizing each character between
0wx0000 and 0wx3FFF with a single bit. Function inCharClass checks whether
the bit for a particular character is set:

fun inCharClass(c,class) =
let val idx = Chars.toInt(Chars.>> (c,0w5))

val mask = Word32.<< (0wx1,Word.andb(Chars.toWord c,0wx1F))
in Word32.andb(mask,Array.sub (class,idx))<>0wx0
end

The character’s five lowest bits are used for generating a one-bit mask; its other
bits determine the position of a word to apply this mask to. Note that if the
character is larger than 0x3FFF, this position is beyond the range of the array.
However, this can never happen because nmsClass is visible only to function
isNms.

The array nmsClass is a mutable data structure; this implementation is thus
not purely functional. The reason is that nmsClass must be initialized in some
way. This is most easily achieved by consecutively setting the bits correspond-
ing to the characters in the class. In a vector, this would be impossible because
it does not support destructive update2. The use of an array is therefore indis-
pensable. However, updates on the array are performed only during initial-
ization. This takes place at compile-time; the run-time behavior is thus purely
functional.

2.3.3 Access to the File System and the Network

XML system identifiers are URIs which come in two variants: An absolute URI
points to a fixed location, either on the local file system or on the Internet,
whereas a relative URI specifies a location relative to that of the file referring to
it. The URI syntax has many technical details; let us only briefly summarize
it: An absolute URI starts with a scheme part describing the access method (e.g.
http: or file:), followed by an optional host name and an absolute path to the
location. An absolute path starts with a “/”; its components are separated with
the same symbol. In a relative URI, the scheme and host parts are omitted, and
the path needs not start with a “/”. Here are some example URIs:

http://www.informatik.uni-trier.de/˜neumann/Fxp/
file:/usr/doc/w3c/xml-1.0.xml

/reports/1999.html
chapter1.xml

2In SML, vectors are an immutable variant of arrays.

30 2.3. The UNICODE Frontend

signature Uri =
sig

eqtype Uri
val emptyUri : Uri

val hashUri : Uri → word
val compareUri : Uri ∗ Uri → order

val Data2Uri : UniChar.Data → Uri
val Vector2Uri : UniChar.Vector → Uri
val String2Uri : string → Uri
val Uri2String : Uri → string

val uriJoin : Uri ∗ Uri → Uri
val retrieveUri : Uri → string ∗ string ∗ bool

end

Figure 2.7: The Uri signature.

Though URIs are specified by arbitrary UNICODE strings in XML, they may
only contain ASCII characters. Non-ASCII characters must be encoded in or-
der to specify them as part of a URI; XML recommends to use UTF-8 for this
encoding. The URI “/home/müller/data.xml”, e.g., must be represented as
“/home/m%C3%BCller/data.xml” because the UTF-8 encoding of character “ü”
is the hexadecimal string “C3BC”. Note that this is incompatible with the es-
caping mechanism widely used on the Internet that would encode the URI as
“/home/m%FCller/data.xml”.

URIs are implemented by the structure Uri, whose signature is given in
Figure 2.7. It defines an equality type Uri and provides functions Data2Uri,
Vector2Uri and String2Uri for converting from the different string formats to URIs
while encoding non-ASCII characters. Uri2String decodes a URI into a string,
but drops all characters requiring more than 8 bits. It is mainly used for report-
ing errors. Function uriJoin combines two URIs into a new one: The first one is
treated as an (absolute) base URI, the second one as relative.

Function retrieveUri fetches a URI from the Internet if it is not on the local file
system. It returns three values: a string representation of the URI, the name of
a local file containing the URI’s content, and a boolean indicating whether that
is a temporary file into which the contents of the URI were downloaded. In
this case, it must be deleted upon closing.

fun retrieveUri uri =
case uriLocal uri

of NONE ⇒ retrieveRemote uri
| SOME path ⇒ (Uri2String uri,path,false)

If the URI points to the local file system, i.e., has the form “file:<path>”, then
uriLocal returns that path, which is used as the file name. Otherwise the URI is
downloaded by a call to retrieveRemote:

CHAPTER 2. IMPLEMENTATION OF FXP 31

signature DecodeFile =
sig

structure Bytes : WORD

type File
type Byte = Bytes.word

exception EndOfFile of File

val Char2Byte : UniChar.Char → Byte
val Byte2Char : Byte → UniChar.Char
val Byte2Hex : Byte → string

val openFile : Uri.Uri option → File
val closeFile : File → unit

val getByte : File → Byte ∗ File
val ungetBytes : File ∗ Byte list → File

val fileUri : File → Uri.Uri
val fileName : File → string

end

Figure 2.8: The DecodeFile signature.

fun retrieveRemote uri =
let val tmp = OS.FileSys.tmpName()

val cmd = substitute retrieveCommand (uri,tmp)
val status = OS.Process.system cmd
val = if status = OS.Process.success then ()

else let val = OS.FileSys.remove tmp
in raise NoSuchFile (uri, ”command ”∧cmd∧” failed”)
end

in (Uri2String uri,tmp,true)
end

First, the Basis Library function OS.FileSys.tmpName supplies a name that can
be used for a temporary file. A system command for retrieving the URI is
generated from a template string retrieveCommand. It contains the strings ”%1”
and ”%2” which are replaced with the URI and the temporary file by the func-
tion substitute. A sensible value for this template3 is, e.g., ”urlget -s -f -o %2 %1”.
Executing the system command stores the URI in the temporary file. If the
command fails, that file is removed and an exception is raised, indicating that
the URI could not be retrieved.

Note that fxp does no network communication itself: All access to the net-
work is through system commands. This would not be possible in pure func-
tional programming style, but it relieves us from the efforts of implementing
Internet protocols as part of fxp.

2.3.4 Byte-Stream Operations

The UNICODE frontend reads documents encoded as byte-streams and decodes
them to UNICODE. The access to these byte-streams is through the structure

3Since we use a system command here, the value of this template varies for different platforms.
It is the only parameter that must be customized when installing fxp.

32 2.3. The UNICODE Frontend

DecodeFile whose signature is given in Figure 2.8. It provides a type File that
uniformly represents URIs, whether present permanently or only temporarily
on the local file system. As a special case, a File can also represent the standard
input; this makes it possible to use the output of another system command
as input to the parser through an operating system pipe. The structure also
provides a type Byte, together with a structure Bytes for bitwise and arithmetic
operations on that type.

If openFile is called with (SOME uri) as argument, then it opens the given
URI with the help of retrieveUri. If its argument is NONE, then openFile opens
the standard input. A File is closed with closeFile; if it is a temporary file created
by retrieveUri, this file is removed. fileUri and fileName return the URI described
by the file and its string representation.

A single byte can be read from a file with getByte. This function closes the
file and raises EndOfFile if no more bytes are available. On the contrary, function
ungetBytes undoes reading of some bytes: They are inserted before the current
position in the file such that subsequent calls to getByte will see these characters
again. This is needed for implementing auto-detection of a URI’s character
encoding (cf. Section 2.3.7).

Note that though structure DecodeFile is implemented on top of the impera-
tive TextIO structure from the SML Basis Library, its interface imitates functional
behavior: Operations on files return the modified file as a component of their
return value. This eases implementation of ungetBytes: Whereas reading from
a file can be done imperatively with the TextIO functions, the reverse operation
is not supported by that structure.

2.3.5 Decoding into UNICODE

fxp supports the most widely used character encodings for XML including
ASCII, LATIN1, UTF-8, UTF-16 and UCS-4. With each encoding, a decoding
function is associated which reads a single UNICODE character from a byte
stream. For ASCII, this is the function getCharAscii:

val getCharAscii : DecodeFile.File → UniChar.Char ∗ DecodeFile.File

ASCII is the 7-bit encoding used by most operating systems and Internet proto-
cols. It is very simple: Only the first 128 UNICODE characters are representable,
and a character is represented by its lowest byte. getCharAscii only needs to
check whether the next byte is a valid ASCII character. If it is not, it raises the
exception DecodeError:

fun getCharAscii f =
let val (b,f1) = getByte f
in if b<0wx80 then (Byte2Char b,f1)

else raise DecodeError(f1, ERR ILLEGAL CHAR(b,”ASCII”))
end

DecodeError has two arguments: the file where the error occurred and an error
description. Note that the file argument is necessary because the interface of
DecodeFile is non-imperative. In order to continue reading bytes after handling
the exception, a File argument is required, describing the state of the file after
the error occurred.

CHAPTER 2. IMPLEMENTATION OF FXP 33

0 x7 ... x0

110 x6x10 ... 10 x0x5 ...

1110 x15 ... x12 10 x6x11 ... 10 x0x5 ...

11110 x18x20... 10 x12x17 ... 10 x6x11 ... 10 x0x5 ...

111110 x25 x24 10 x18x23 10 x0x5 ...

1111110 x30 10 x24x29 10 x0x5 ...

8-11 bits:

0-7 bits:

22-26 bits:

27-31 bits:

17-21 bits:

12-16 bits:

Figure 2.9: The UTF-8 character encoding.

The LATIN1 encoding, also known as ISO-8859-1, differs from ASCII only in
that it supports the first 256 UNICODE characters; EBCDIC is a one-byte encod-
ing with a different character order than LATIN1. UTF-16 and UCS-4 encode a
character by splitting it into a multi-byte sequence of fixed length.

2.3.5.1 Decoding UTF-8

In order to illustrate how complex decoding can be, let us consider the UTF-8
encoding. In contrast to most other encodings, it represents a character with a
variable number of at most six bytes. The number of bytes required for encod-
ing an individual character depends on how many significant bits the character
has (at most 31). Figure 2.9 illustrates how the bits are distributed among the
individual bytes: Each byte consists of a byte-mark (the higher bits) and some
data bits. The first byte-mark indicates how many bytes are used in total; all
subsequent bytes have the byte-mark 10. We implement this with a vector
byte1switch. At compile-time, this vector is initialized for each byte value with
the number of UTF-8 bytes indicated by its byte-mark. Byte-mark 10 is invalid
for the first byte of a UTF-8 sequence, indicated by a 0. This vector is used by
the getOneUtf8 function:

fun getOneUtf8 f =
let val (b,f1) = getByte f
in case Array.sub(byte1switch,Word8.toInt b)

of 0 ⇒ raise DecodeError(f1,ERR ILLEGAL UTF8 b)
| 1 ⇒ (Byte2Char b,f1)
| n ⇒ getBytes(b,f1,n)

end

If the first byte is invalid, an appropriate exception is raised; if it indicates a
single-byte character, it is converted to the Char type and returned. Otherwise,
more bytes must be read with the help of function getBytes. Note that although
4 bytes are always sufficient for encoding the – at most 21 – bits of a UNICODE
character, UTF-8 can encode up to 31 bits. We must therefore be able to han-
dle sequences of more than 4 bytes, even if the result is not a valid UNICODE
character.

Function getBytes accumulates the value of the result character in parameter
w of its auxiliary function doit. It repeatedly shifts that value, reads another byte
and adds it to the character value. The byte-mark is not cleared before adding
a byte. Instead, the accumulated effect of all byte-marks is subtracted in a
single operation from the final value. This effect depends only on the number

34 2.3. The UNICODE Frontend

of bytes read and can therefore be precomputed and stored in vector diffsByLen
at compile-time.

fun getBytes(b,f,n) =
let fun doit (w,f,m) =

if m>n then (w,f)
else let val (b,f1) = getByte f handle exn as EndOfFile f

⇒ raise DecodeError(f,ERR EOF UTF8)
val w1 = if Bytes.andb(b,0wxC0)=0wx80

then Chars.<< (w,0w6)+Byte2Char b
else raise DecodeError(f1, ERR ILLEGAL UTF8 b)

in doit (w1,f1,m+1)
end

val (w,f1) = doit (Byte2Char b,f,1)
val diff = Vector.sub(diffsByLen,n)
val c = w−diff

in if isUnicode c then (c,f1)
else raise DecodeError (f1,ERR NON UNI UTF8 c)

end

If a byte can not be read because the end of the file is reached, or if its byte-
mark is different from 10, an appropriate exception is raised. Because UTF-
8 can represent non-UNICODE values, the computed character code must be
checked for being valid UNICODE before returning it.

Having decoded one UTF-8 encoded character, the work is not yet done:
This character might be part of a surrogate pair. Therefore we must check
whether it is a high-surrogate. In case it is, the following low-surrogate is read
and the surrogate pair is combined to the result UNICODE character:

fun getCharUtf8 f =
let val (c1,f1) = getOneUtf8 f
in if isHighSurrogate c1

then let val (c2,f2) = getOneUtf8 f1 handle EndOfFile f
⇒ raise DecodeError(f,ERR EOF SURROGATE)

in if isLowSurrogate c2
then (combineSurrogates(c1,c2),f2)
else raise DecodeError(f1,ERR HIGH SURROGATE c2)

end
else if isLowSurrogate c1
then raise DecodeError(f1,ERR LOW SURROGATE c1)
else (c1,f1)

end

Note that handling of surrogates is not necessary for, e.g., the ASCII encoding
because it can not represent the high- and low-surrogates.

2.3.6 Representing Encoded Files

In order to associate a file with a character encoding, we define an enumeration
type for encoding names. It has two constructors for UTF-16: This encoding
exists in big-endian and little-endian byte order; for UCS-4 it is similar.

datatype Encoding =
NOENC | ASCII | LATIN1 | EBCDIC | . . .
| UTF8 | UTF16B | UTF16L | UCS4B | UCS4L

CHAPTER 2. IMPLEMENTATION OF FXP 35

The value NOENC is used for unknown or unsupported encodings; it usually
indicates an error or a file whose end is reached. Based on this type, we can
define a type for encoded files along with a function for decoding a single char-
acter:

type DecFile = Encoding ∗ File

fun decGetChar (enc,f) =
let val (c,f1) = case enc

of NOENC ⇒ raise EndOfFile f
| ASCII ⇒ getCharAscii f
| LATIN1 ⇒ getCharLatin1 f
. . .
| UTF8 ⇒ getCharUtf8 f

in (c,(enc,f1))
end

handle EndOfFile f ⇒ raise DecEndOfFile(NOENC,f)
| DecodeError(f,err) ⇒ raise DecError((enc,f),err)

The function handles EndOfFile and DecodeError exceptions raised by the de-
coding functions. It then raises a corresponding exception which carries the
file and the character encoding. This is necessary for making the DecodeFile.File
type and its exceptions invisible outside of the decoder.

But this function does not seem to be very efficient: For each character, the
encoding-specific decoding function must be determined by a case distinction.
An apparently evident optimization incorporates the decoding function into
the DecFile type.

type GetChar = File → Char ∗ File
type DecFile = Encoding ∗ GetChar ∗ File

fun decGetChar (enc,get,f) =
let val (c,f1) = get f
in (c,(enc,get,f1))
end

handle EndOfFile f ⇒ raise DecEndOfFile(NOENC,getCharEof,f)
| DecodeError(f,err) ⇒ raise DecError((enc,get,f),err)

This variant has a slightly object-oriented flavor: Values of type DecFile carry
the function for decoding a character, similar to the methods of an object. This
approach, however, turned out to be absolutely impractical: At least in SML/NJ,
this modification enormously increases the execution time of the parser. We
did not investigate the reasons for this behavior, but it is certainly astonishing:
Though functional programming languages encourage the use of data struc-
tures with functional components, current implementations apparently do not
efficiently support that.

We abandoned this approach and pursued another one: We implemented a
function that, instead of decoding a single character, tries to fill an entire buffer
with UNICODE characters. The case expression for determining the decoding
function is then required only once for the whole buffer. The buffer is filled
with characters incrementally and must therefore be implemented as an array.

36 2.3. The UNICODE Frontend

fun decGetArray (enc,f) arr =
let fun loadArray getChar =

let val len = Array.length arr
exception Error of int ∗ exn
fun load (idx,f) = if idx= len then (len,(enc,f),NONE)

else let val (c,f1) = getChar f
handle exn ⇒ raise Error (idx,exn)

val = Array.update(arr,idx,c)
in load (idx+1,f1)
end

in load (0,f) handle Error(idx,exn)
⇒ case exn

of EndOfFile f ⇒ (idx,(NOENC,f),NONE)
| DecodeError (f,err) ⇒ (idx,(enc,f),SOME err)
| ⇒ raise exn

end
in case enc

of NOENC ⇒ (0,(NOENC,f),NONE)
| ASCII ⇒ loadArray getCharAscii
| LATIN1 ⇒ loadArray getCharLatin1
. . .
| UTF8 ⇒ loadArray getCharUtf8

end

Function loadArray decodes characters and writes them into the buffer until the
array is full or an exception raised by the decoding function indicates the end of
the file or a error!decode. It returns the number of characters actually decoded,
the new encoded file, and an optional decoding error. Note that exceptions
raised by the decoding function are handled and packed into the auxiliary ex-
ception Error. This exception additionally carries the current position in the
array, required for reporting the number of decoded characters.

Using an array as a buffer is indeed imperative programming style, but
the accomplished increase in execution speed justifies that (cf. Section 3.1.2).
Moreover, the array is never updated outside of this function: All other func-
tions only read from the buffer.

2.3.7 Auto-Detection of Character Encodings

XML entities must either be encoded in UTF-8 or have an encoding declaration
at the beginning. This declaration, however, is in the same character encod-
ing as the rest of the entity: The parser must therefore detect the encoding in
order to parse the encoding declaration. The XML recommendation provides
a heuristic for auto-detecting the encoding from the first four bytes of a file.
E.g., the two bytes FE FF at the start of a file are interpreted as a byte-order mark
and indicate big-endian UTF-16 encoding. On the other hand, 3C 3F 78 6D is
the ASCII code sequence of the string “<?xm”, initiating an XML or text declara-
tion. Therefore this sequence suggests an encoding that is at least compatible
with UTF-8 in the range of ASCII characters; this range is sufficient for parsing
the encoding declaration. If the first four bytes are not recognized as part of
the string “<?xm” in one of the supported encodings, the parser supposes that
there is no encoding declaration and thus assumes UTF-8 encoding.

The encoding-detection heuristic is implemented by function decOpenXml.

CHAPTER 2. IMPLEMENTATION OF FXP 37

It opens a file, auto-detects its encoding and returns the encoded file.

fun decOpenXml uri =
let fun get4Bytes (n,f) = if n=4 then (nil,f)

else let val (b,f1) = getByte f
val (bs,f2) = get4Bytes(n+1,f1)

in (b ::bs,f2)
end

handle EndOfFile f ⇒ (nil,f)
fun detect bs = case bs

of 0wxFF::0wxFE:: rest ⇒ (UTF16L,rest)
| 0wxFE::0wxFF:: rest ⇒ (UTF16B,rest)

. . .
| [0wx3C,0wx3F,0wx78,0wx6D] ⇒ (UTF8,bs)
| [0wx4C,0wx6F,0wxA7,0wx94] ⇒ (EBCDIC,bs)
| ⇒ (UTF8,bs)

val f = openFile uri
val (bs,f1) = get4Bytes(0,f)
val (enc,unget) = detect bs

in (enc,ungetBytes(f1,unget))
end

The bytes read in order to detect the encoding are part of the file’s content
which must be completely available to the parser. Therefore we must unget
these bytes from the file before returning it. The only exception is UTF-16: A
byte-order mark (FE FF or FF FE) indicating this encoding is not treated as part
of the file’s data. The auxiliary function detect therefore returns the detected
encoding together with the list of bytes to unget.

After opening a file with decOpenXml, the parser must try to read the encod-
ing declaration and switch to the character encoding actually declared; if there
is no encoding declaration, it commits to the auto-detected encoding. This is
the purpose of the two functions decSwitch and decCommit. They raise an er-
ror if the declared encoding is incompatible with the auto-detected one, or if
the auto-detected encoding requires an encoding declaration which was not
present.

This concludes the description of the UNICODE frontend.

2.4 Errors and Options

The easiest way of reporting an error is to print a message to the standard
error device. An application, however, might want to avoid error messages
and instead let the user browse through the errors in a dedicated window on
his screen. It might also be interested only in a certain class of errors and ignore
all others. Therefore, an error is not represented by the message it generates but
by a value of a dedicated data type Error, defined by structure Errors. An error
is reported to the application as a value of that type together with its position
in the document.

type Position = string ∗ int ∗ int

38 2.4. Errors and Options

datatype Error =
ERR EMPTY of string
| ERR ENDED BY EE of string
| ERR EXPECTED of string ∗ Data

. . .
| ERR ILLEGAL CHAR of Char
| ERR DECODE ERROR of DecodeError

A Position describes the physical location of an error by means of a URI, line
and column number. Type Error enumerates the kinds of possible errors. E.g.,
the error ERR ENDED BY EE str is reported if a component of the document
is ended by an entity end; str denominates that component. Another com-
mon syntax error is that the parser finds one or more characters it doesn’t ex-
pect. In this case the error ERR EXPECTED(str,cs) is reported; str describes what
the parser expected whereas cs are the characters found instead. A data type
Warning similar to Error is defined for warnings.

Structure Errors also provides useful functions for generating error mes-
sages and for classifying errors:

val Position2String : ErrorData.Position → string

val errorMessage : ErrorData.Error → string
val warningMessage : ErrorData.Warning → string

val isFatalError : ErrorData.Error → bool
val isDecodeError : ErrorData.Error → bool
val isSyntaxError : ErrorData.Error → bool
val isValidityError : ErrorData.Error → bool
val isWellFormedError : ErrorData.Error → bool

The application can then use these functions for handling errors and warnings.
Section 2.8 will explain in detail how errors are reported to the application.
For simplicity we will until then assume that this happens by a call to function
reportError:

val reportError : Position ∗ Error → unit

Note that the function result type is unit, and its only arguments are the position
and the error. This means that the error must be reported by a side-effect. We
will eliminate this non-functional behavior in Section 2.8.1.

Many of fxp’s features can be controlled by options: E.g., option O VALIDATE
indicates whether the parser should run in validating or non-validating mode.
Other options control whether compatibility and interoperability with SGML
should be checked (cf. Section 1.1.6), or they enable or disable certain kinds of
warnings.

Options are normally of type bool. They are provided by a structure
ParserOptions which holds all options as references. References are SML’s vari-
ant of pointers. They are mutable and thus non-functional types. Their ad-
vantage is that they can easily be changed according to, e.g., command-line
options. Since the parser itself only reads but never sets options, we need not
have a bad conscience for using references here. Section 2.8.2 will show how to
have each instance of a reentrant parser supplied with its own set of options.

CHAPTER 2. IMPLEMENTATION OF FXP 39

datatype Special = DOC ENTITY | EXT SUBSET
datatype EntId = GENERAL of int | PARAMETER of int
datatype ExtType = SPECIAL of Special | NORMAL of EntId ∗ State

and State = ENDED of EntId ∗ State
| CLOSED of DecFile ∗ int ∗ int ∗ ExtType
| INT of Vector ∗ int ∗ int ∗ (EntId ∗ State)
| EXT1 of DecFile ∗ int ∗ int ∗ bool ∗ ExtType
| EXT2 of Char array ∗ int ∗ int ∗ int ∗ int ∗ bool

∗ (DecFile ∗ DecodeError option ∗ ExtType)
| LOOKED of Data ∗ State

Figure 2.10: The data type for the entity stack.

2.5 The Entity Manager

Through an entity reference, an XML document can include the replacement
text of an entity into the document (cf. 1.1.2). Since inclusion of entities can
be nested, the set of open entities must be maintained on a stack. A data type
for this stack is provided by the entity manager, together with functions for ma-
nipulating it. Among others, these include functions for obtaining information
about the entities on the stack and opening new entities. For each entity on the
stack, the entity manager counts the input position in that entity. This position
can be retrieved by functions from other modules, e.g., for error reporting.

Furthermore, the entity manager is the parser’s interface to the UNICODE
frontend. It provides a function getChar for reading a character from the entity
on top of the stack, filtering out UNICODE characters forbidden in XML and
normalizing line breaks into a platform-independent format.

Finally, the entity manager stores for each entity on the stack its entity identi-
fier, which uniquely identifies the entity. This is due to a well-formedness con-
straint in XML requiring that the first and last character of each element must
be in the same entity replacement text. E.g., if entity start has the replacement
text "<a>" and entity end has replacement text "", then &start;foo&end;
yields <a>foo. This element is ill-formed because its last character is in
a different entity replacement text than its first character. The entity manager
therefore defines an equality type EntId for entity identifiers, which consists of
the entity’s index in the DTD tables (cf. 2.6.1 on page 45), together with the
information whether it is a general or parameter entity. The parser can then
obtain the EntId of the current entity, both when entering and leaving an ele-
ment, and compare them in order to detect a violation of this well-formedness
constraint.

The data type implementing the entity stack is given in Figure 2.10. In order
to explain this type, we will consecutively show for each type of entities how
it is represented and how the function getChar retrieves a character through it.
Finally we will give the full signature of the Entities structure.

2.5.1 Internal Entities

Internal entities exist completely in memory: Their replacement text is a vector
of UNICODE characters. An internal entity is represented by

40 2.5. The Entity Manager

INT(vec,s,i,(id,other))

where vec is the vector holding the entity’s replacement text, and s and i are
its size and the position of the next character to read. Component id is the
entity identifier and other contains the underlying rest of the entity stack. Note
that these two components are grouped into a pair because they change less
frequently than the other components. Moreover, they are not inspected at all
by the most important function of the entity manager, getChar.

Reading a character from an internal entity is simple: It need not be de-
coded, no lines must be counted and line breaks need not be normalized. Func-
tion getChar only looks up the next character and increments the position, if the
end of the entity is not reached yet:

fun getChar (INT(vec,s,i,io)) =
if i>s then (0wx0,ENDED io)
else (Vector.sub(vec,i), INT(vec,s,i+1,io))

If all characters of an internal entity have been consumed, getChar returns a
zero character indicating the entity end. The entity itself is not discarded but
temporarily remains on top of the entity stack. The reason is that this entity
end might cause an error. The error message should then refer to this entity as
the source of the error.

In order to avoid reporting the entity end repeatedly, the entity is marked
as closed, discarding the vector, its size and position, and using constructor
ENDED instead of INT. When getChar encounters a closed entity, it proceeds to
the underlying entity stack:

| getChar (ENDED(,other)) = getChar other

2.5.2 External Entities

External entities are more complicated to handle than internal ones: The re-
placement text of an external entity is given by the URI of the file that holds
it. In order to read a character from an external entity we must decode the
contents of this file through the UNICODE frontend. Furthermore, an external
entity might contain characters that are illegal in XML; the entity manager must
report an error for such a character.

Aside from that, the line breaks in external entities are not normalized. In
XML, a line break is represented by a single line feed character (0xA). Different
operating systems, however, have other representations: MS/DOS uses a car-
riage return (0xD) followed by a line feed; other systems use a single carriage
return. XML requires that parsers normalize line breaks prior to processing the
document, i.e., any of the three variants must be replaced by a single line feed
character. This is achieved by replacing each carriage return with a line feed,
and then skipping a possibly following line feed.

For reasons of encoding detection, we distinguish between two kinds of
external entities, depending on whether their encoding is already known (cf.
2.3.7). The difference is that until the encoding is known, the entity must be
decoded character by character because the parser might still switch to another
encoding. As soon as the encoding is reliable, we can use a buffer for decoding
a whole sequence of UNICODE characters at once. Let us start with the first
case: An external entity with uncertain encoding is represented by

CHAPTER 2. IMPLEMENTATION OF FXP 41

EXT1(dec,l,col,br,typ)

where dec is the file descriptor of type DecFile providing the entity’s text
through the Decode structure; l and col are the current line and column number
in that file. br is a boolean indicating whether the last character was a carriage
return and replaced with a line feed. In this case a succeeding line feed must
be skipped.

Component typ is of type ExtType and describes the type of the external en-
tity: SPECIAL indicates that it is either the document entity or the external sub-
set. These entities are never removed from the entity stack because there is no
enclosing entity. On the other hand, NORMAL(id,other) indicates that the entity
was opened by a reference to an entity declared in the DTD: id is the entity
identifier of that entity and other is the underlying stack.

Reading a character from an external entity is rather complicated. First
a character must be decoded with decGetChar. Then we distinguish several
cases:

✧ if this character is a tab character (0wx9) or an XML character other
than carriage return or line feed (0wx20–0wxD7DFF, 0wxE000-0wxFFFD,
0wx10000-0wx10FFFF), it is returned together with the entity stack, the
column incremented by one and the br flag set to false;

✧ if the character is a line feed, then there are two cases: If br is true then the
last character was a carriage return and this line feed must be skipped;
the next character is obtained by a recursive call to getChar. Otherwise
the line feed is returned with the line number incremented by one and
the column reset to zero;

✧ in case of a carriage return, we return a line feed instead, increment the
line number and reset the column. We also set the br flag in the new entity
stack, indicating that a succeeding line feed must be skipped;

✧ all characters not captured by these cases are illegal in XML documents.
For such a character an error is reported and the next character is read by
a recursive call to getChar.

The definition of getChar for this kind of external entities is as follows:

| getChar (EXT1(dec,l,col,br,typ)) =
let val (c,dec1) = decGetChar dec
in if c>0wx0020 andalso c60wxD7FF orelse c=0wx9 orelse

c>0wxE000 andalso c60wxFFFD orelse c>0wx10000
then (c,EXT1(dec1,l,col+1,false,typ))
else if c=0wxA (∗ line feed ∗)

then if br then getChar (EXT1(dec1,l,col,false,typ))
else (c,EXT1(dec1,l+1,0,false,typ))

else if c=0wxD (∗ carriage return ∗)
then (0wxA,EXT1(dec1,l+1,0,true,typ))
else let val = reportError(getPos q,ERR ILLEGAL CHAR c)

in getChar(EXT1(dec1,l,col+1,false,typ))
end

end

The decGetChar call, however, might raise an exception that must be caught by
an exception handler. In case of a decoding error (DecError), an error is issued

42 2.5. The Entity Manager

and the next character is read by a recursive call. The other possibility for
an exception (DecEndOfFile) is that the end of the file is reached. Then a zero
character indicating an entity end is returned. Similarly to internal entities, the
entity is replaced by a closed external entity, discarding all information that is
not needed any more:

handle DecError(dec,err) ⇒
let val = reportError(getPos q,ERR DECODE ERROR err)
in getChar(EXT1(dec,col,l,br,typ))
end

| DecEndOfFile dec ⇒ (0wx0,CLOSED(dec,l,col,typ))

When getChar encounters a closed external entity, it proceeds to the underlying
stack. In case of a special external entity, however, this is an internal error
because there is no underlying entity stack.

| getChar (CLOSED (, , ,typ)) =
case typ

of SPECIAL ⇒ raise InternalError
| NORMAL(,other) ⇒ getChar other

For external entities whose character encoding has already been determined,
we apply the optimization from 2.3.6: Instead of decoding single characters,
we use an array buffer for decoding a whole sequence of UNICODE characters
at once. The entry of such an external entity on the stack must additionally
hold this buffer, its size s and its current input position i:

EXT2(buf,s,i,l,col,br,(dec,err,typ))

Furthermore, it has an additional component err of type DecError option. If this
has the value SOME err, then err is a decoding error that occurred when trying
to decode another character (cf. 2.3.6). This error must be reported before the
buffer is reloaded.

2.5.3 Implementing Look-Ahead

Sometimes the parser must do a small look-ahead in the input. Actually this
happens only at the very beginning of an external entity, when the parser tries
to find out whether the entity starts with an XML or text declaration. For this
purpose, instead of implementing a look-ahead, the entity manager provides
a function ungetChars for placing a list of UNICODE characters back into the
input. On the entity stack, this is represented by LOOKED(cs,other).

fun getChar . . .
| getChar (LOOKED(nil,q)) = getChar q
| getChar (LOOKED(c::cs,q)) = (c,LOOKED(cs,q))

fun ungetChars (q,cs) = LOOKED(cs,q)

Note the difference between ungetChars and the function ungetBytes from 2.3.4:
The latter operates on bytes, whereas ungetChars operates on already decoded
UNICODE characters.

CHAPTER 2. IMPLEMENTATION OF FXP 43

signature Entities =
sig

type State
eqtype EntId
datatype Special =DOC ENTITY | EXT SUBSET

val getChar : State → UniChar.Char ∗ State
val ungetChars : State ∗ UniChar.Data → State

val pushIntern : State ∗ int ∗ bool ∗ UniChar.Vector → State
val pushExtern : State ∗ int ∗ bool ∗ Uri.Uri → State ∗ Decode.Encoding
val pushSpecial : Special ∗ Uri.Uri option → State ∗ Decode.Encoding
val closeAll : State → unit

val commitAuto : State → State
val changeAuto : State ∗ string → State ∗ Decode.Encoding

val getEntId : State → EntId
val getPos : State → Errors.Position
val getUri : State → Uri.Uri

val isOpen : State ∗ int ∗ bool → bool
val isSpecial : State → bool
val inDocEntity : State → bool

end

Figure 2.11: The Entities signature.

2.5.4 Other Important Entity Manager Functions

The signature of the Entities structure is given in Figure 2.11. Aside from those
explained so far, it provides functions for opening and closing entities, and for
extracting useful information other than input characters from the entity stack.

The entity manager provides different functions for opening internal and
external entities. Both these functions compute the entity identifier from the
entity’s index in the DTD and a flag indicating whether it is a parameter entity:

fun makeEntId(idx,isParam) =
if isParam then PARAMETER idx else GENERAL idx

fun pushIntern(q,id,isParam,vec) =
INT(vec,Vector.length vec,0,(makeEntId(id,isParam),q))

fun pushExtern(q,id,isParam,uri) =
let val dec = decOpenXml (SOME uri)

val auto = decEncoding dec
val q1 = EXT1(dec,1,0,false,NORMAL(makeEntId(id,isParam),q))

in (q1,auto)
end

pushIntern can directly use the character vector given as argument for construct-
ing the new entity stack; pushExtern must open the entity through the UNICODE
frontend. It then determines the auto-detected encoding of the entity and re-
turns it together with the new entity stack.

For special entities, i.e., the document entity or the external subset, func-
tion pushSpecial is implemented similar to pushExtern, with the difference that
it does not expect the current entity stack as argument. The aptly named func-

44 2.6. The DTD Manager

tion closeAll is intended for closing all files associated with external entities on
the stack. This might involve deletion of temporary files for entities retrieved
over the net; therefore the entity stack may not simply be discarded at a fatal
error.

The auto-detected encoding of an external entity is not a definite decision. In-
stead, it is possible to change to a compatible encoding after parsing the en-
tity’s encoding declaration, or to commit to the auto-detected choice if there is
no encoding declaration. The latter is the purpose of function commitAuto:

fun commitAuto q =
case q

of EXT1(dec,l,col,brk,typ) ⇒
let val = decCommit dec handle DecError(,err)

⇒ reportError(getPos q,ERR DECODE ERROR err)
val (arr,n,dec1,err) = initArray dec

in EXT2(arr,n,0,l,col,brk,(dec1,err,typ))
end

| LOOKED(cs,q1) ⇒ LOOKED(cs,commitAuto q1))
| ⇒ q

The main task of this function is to switch from the EXT1 representation to the
more efficient EXT2. In addition it checks whether the auto-detected encoding
requires an encoding declaration. In that case it reports an error. changeAuto is
similar, only that it switches to a new encoding with decSwitch if that is com-
patible with the auto-detected one.

Other functions are getEntId for obtaining the entity identifier of the top-
most entity on the stack and getPos which returns the position in the top-most
external entity by means of its URI and the current line and column number,
whereas getUri returns its URI only. isOpen tells whether an entity is already on
the stack; this is for avoiding infinite recursion in entity references. isSpecial de-
termines whether the top-most entity is a special external entity, and inDocEntity
tells whether the top-most external entity is the document entity.

2.6 The DTD Manager

The DTD manager maintains the declarations of the DTD in a number of ta-
bles. In this section we first explain the data structure used for implementing
these tables, namely dictionaries. Then we define the types for the information
stored in the tables.

This information, however, has to be checked for well-formedness and va-
lidity before entering it into the tables. E.g., a valid document may not contain
multiple declarations for the same element type; and each element type may
have at most one attribute of type ID. After being stored in the tables, the DTD’s
declarations are used for processing other components of the document, e.g.,
normalization of attribute values depending on their declared types.

In contrast to the implementation of dictionaries, these operations can pro-
duce errors. They are packed into two separate structures DtdDeclare and
DtdAttributes, which are explained at the end of this section.

CHAPTER 2. IMPLEMENTATION OF FXP 45

signature Dict =
sig

type Key
type ’a Dict

exception NoSuchIndex

val makeDict : int ∗ ’a → ’a Dict
val clearDict : ’a Dict ∗ int option → unit

val hasIndex : ’a Dict ∗ Key → int option
val getIndex : ’a Dict ∗ Key → int
val getKey : ’a Dict ∗ int → Key

val getByIndex : ’a Dict ∗ int → ’a
val getByKey : ’a Dict ∗ Key → ’a

val setByIndex : ’a Dict ∗ int ∗ ’a → unit
val setByKey : ’a Dict ∗ Key ∗ ’a → unit

end

Figure 2.12: The Dict signature.

2.6.1 Dynamic Dictionaries

Declarations in the DTD associate information with keys which are names, i.e.,
sequences of UNICODE characters. Comparison and other operations on names
are expensive; it is therefore desired to represent each name by a unique index.
This is achieved by a symbol table, commonly implemented with the help of a
hash table.

Additionally, a name is associated with some information, e.g., an element
type is associated with the content model and the attributes declared for it. We
therefore use dictionaries instead of symbol tables for implementing the XML
DTD: Aside from its index, a dictionary can also store a value for each name in
its map.

Dictionaries must have unlimited capacity, because it is not known in ad-
vance how many declarations the DTD contains. Therefore, we use dynamic
dictionaries: A dynamic dictionary automatically grows to the double of its
size if it has no more space for further entries. Growing a dictionary happens
rather rarely: Since its size it doubled each time, it increases exponentially by
the number of times it is grown.

A dictionary is implemented by a structure according to signature Dict,
which is given in Figure 2.12. For generality, it is not committed to using names
as keys but provides a Key type itself, together with a polymorphic dictionary
type ’a Dict for storing values of type ’a. A dictionary is created by makeDict(n,a):
The result is a dictionary of size 2n holding the default value a for all – yet unas-
signed – indices. It can be reset to its initial state with clearDict which takes an
optional argument indicating a new size.

The mapping from keys to indices is by function getIndex. If the dictio-
nary already holds an index for the given key, this index is returned; otherwise
the key is associated with the next unused index in the dictionary. Function
hasIndex restricts this functionality: It returns an already existing index but
does not make a new entry otherwise. getKey realizes the reverse mapping:
It returns, for an existing index, the key associated with it; otherwise it raises

46 2.6. The DTD Manager

exception NoSuchIndex.
The value a dictionary holds for each key can be obtained with getByKey

and getByIndex. Initially, all values are equal to the default value provided to
makeDict when the dictionary was created. Functions setByKey and setByIndex
change a particular value.

Note that the Dict signature imposes an imperative implementation. Oper-
ations affecting the state of a dictionary do not return the modified dictionary;
instead the modifications must happen as non-pure side-effects. This is natu-
ral: A hash table as used for dictionaries is most intuitively implemented by an
array, and that has destructive update.

The implementation of the Dict signature is by a functor Dict. It is para-
metrized with a structure Key providing the Key type together with essential
functions for implementing a dictionary: a compare function and a hash func-
tion:

signature Key =
sig

type Key

val null : Key
val hash : Key → word
val compare : Key ∗ Key → order

end

functor Dict (structure Key : Key) : Dict =
struct

type Key = Key.Key
. . .

end

Then it is easy to obtain a dictionary for XML names. We only need to apply
the Dict functor to an appropriate Key structure:

structure KeyData : Key =
struct

type Key = UniChar.Data

val null = UniChar.nullData
val hash = UniChar.hashData
val compare = UniChar.compareData

end

structure DataDict = Dict (structure Key = KeyData)

The implementation of dictionaries is rather technical; we therefore omit the
details here and refer the interested reader to the source code of fxp [Fxp99].

2.6.2 Data Types for Declarations

The values stored for declarations in the DTD tables are complex data struc-
tures: For an element type, e.g., the tables must hold its content model and all
attributes that were declared for it. Additionally the type and default value
must be stored for each of these attributes. Let us have a closer look at the
types defined for this. To start with we need a type for content models:

CHAPTER 2. IMPLEMENTATION OF FXP 47

datatype ContentModel =
CM ELEM of int
| CM OPT of ContentModel
| CM REP of ContentModel
| CM PLUS of ContentModel
| CM ALT of ContentModel list
| CM SEQ of ContentModel list

The int argument to constructor CM ELEM is the index of an element in the DTD
tables. Note that the ContentModel data-type does not allow character data. The
reason is that XML distinguishes two forms of content: Content models specify
element content which may not contain character data, whereas character data
may occur in mixed content. However, only a restricted form of content models
is allowed for element-types with mixed content: It may not specify the order
in which elements appear. Such a content model is always of a form similar to
(#PCDATA|elem|...)*. Having in mind that there are two other special cases,
namely ANY for arbitrary content and EMPTY for empty content, we can define a
type for content specifications:

datatype ContSpec =
CT ANY
| CT EMPTY
| CT MIXED of int list
| CT ELEMENT of ContentModel ∗ Dfa

The CT ELEMENT constructor has an additional argument of type Dfa: Content
models are implemented by deterministic finite automata (DFA). Whenever a
content model is declared, a DFA is constructed (see 2.7.6) and stored with it.

Aside from the content specification, we have to store for each element type
the attributes declared for it. An attribute has a type and a default value; let us
first have a look at attribute types. All XML attribute values are sequences of
characters. Some of them, however, are additionally interpreted by the parser:
The attribute type ENTITIES, e.g., requires the attribute value to be a space-
separated list of names, all of which are declared as unparsed general entities.
These names are mapped to indices by the DTD; a more succinct and infor-
mative representation for an attribute value of this type is therefore a list of
integers. Table 2.1 lists the allowed types for XML attributes together with the
SML types that implement them. Note that though values of the enumeration
type (n1|n2|...) are uninterpreted name tokens, we map them to indices in
order to compare them efficiently.

We can now define data types for attribute types and values:

datatype AttType =
AT CDATA
| AT NMTOKEN
| AT NMTOKENS
| AT ID
| AT IDREF
| AT IDREFS
| AT ENTITY
| AT ENTITIES
| AT GROUP of int list
| AT NOTATION of int list

datatype AttValue =
AV CDATA of UniChar.Vector
| AV NMTOKEN of UniChar.Data
| AV NMTOKENS of UniChar.Data list
| AV ID of int
| AV IDREF of int
| AV IDREFS of int list
| AV ENTITY of int
| AV ENTITIES of int list
| AV GROUP of int list ∗ int
| AV NOTATION of int list ∗ int

48 2.6. The DTD Manager

Attribute type Description SML type

CDATA character data Vector

NMTOKEN a name token, consisting of alphanu-
meric characters only

Data

NMTOKENS a list of name tokens Data list

ID a name, i.e., a name token starting with
a letter. It may not occur as the value of
another ID attribute

int

IDREF a name that occurs as an ID attribute of
some element

int

IDREFS a list of IDREF names int list

ENTITY the name of an unparsed general entity int

ENTITIES a list of ENTITY names int list

(n1|n2|...) one of the specified name tokens int

NOTATION(n1|...) one of the specified names; these must
be declared as notations

int

Table 2.1: XML attribute types

Note that attribute values carry all information about their type. In non-
validating mode, however, attribute values are not interpreted but only nor-
malized. In this case the attribute value is represented by a Vector. Since we
want to use the same type in both validating and non-validating mode, an
attribute value is always of type Vector ∗ AttValue option, for instance in the fol-
lowing two types: AttDefault describes an attribute’s default value: Either it is
required, implied, fixed or equipped with a default. Similarly, we describe the
attribute values in an element’s start-tag with the type AttPresent4: It may have
been specified in the start-tag, but it may also be omitted. In that case it either
has a default value, it is implied or it is missing though required:

datatype AttDefault =
AD IMPLIED
| AD REQUIRED
| AD FIXED of UniChar.Vector ∗ AttValue option
| AD DEFAULT of UniChar.Vector ∗ AttValue option

datatype AttPresent =
AP IMPLIED
| AP MISSING
| AP DEFAULT of UniChar.Vector ∗ AttValue option
| AP PRESENT of UniChar.Vector ∗ AttValue option

An attribute definition consists of the attribute’s index, an attribute type and
a default value. An attribute specification4 takes the attribute’s index and the
present value:

type AttDef = int ∗ AttType ∗ AttDefault
type AttSpec = int ∗ AttPresent

4Though values of type AttPresent or AttSpec are not stored in the DTD tables, we declare these
two types here because they are closely related to the other types.

CHAPTER 2. IMPLEMENTATION OF FXP 49

Having defined all necessary types, we can now define the type for the infor-
mation that is stored in the DTD for each element type:

type ElemInfo = {decl : ContSpec option,
atts : AttDef list }

It consists of an optional content specification and a list of attribute definitions.
Note that the type really used in the implementation holds additional infor-
mation, e.g., a boolean field indicating whether the element declaration was
in an external parameter entity. This information is needed for determining
the standalone status of the document, i.e., whether a non-validating parser can
ignore external entities without misbehaving. This status can be declared as
true in the XML declaration. A validating parser must then report an error if,
e.g., an externally declared element with element content contains white-space
characters (for details, see Section 2.9 of [W3C98b]). For brevity, we omit such
details here and simplify the types.

Analogously, we define types representing external identifiers, general and
parameter entities, notations and ID attribute values.

type ExtId = string option
∗ (Uri ∗ Uri) option

datatype GenEntity =
GE NULL
| GE INTERN of Vector
| GE EXTERN of ExtId
| GE UNPARSED of ExtId ∗ int

datatype ParEntity =
PE NULL
| PE INTERN of Vector
| PE EXTERN of ExtId

type NotationInfo = ExtId option
type IdInfo = bool ∗ Position list

An external identifier consists of an optional public identifier, represented as a
string, and an optional system identifier, given by a URI and the base URI of
the entity in which it is declared.

A parameter entity is either undeclared, internal or external; for general
entities there is the additional possibility of an unparsed entity associated with
the index of a notation. A notation itself is mapped to an external identifier if
declared.

The IdInfo type reports for a name whether it occurred as an ID attribute and
records the positions of all IDREF attributes referring to it.

2.6.3 The DTD structure

Having defined all types necessary for describing the information stored in the
DTD, we can now give the signature of the Dtd structure in figure 2.13. It pro-
vides five name spaces for the DTD: for elements, for attributes and notations,
for ID names, for general entities and for parameter entities. The attribute name
space is used for attribute names and the name tokens occurring in enumerated
attribute types. Because these name tokens include notation names, attributes
and notations share a name space.

For each of the name spaces, the Dtd structure defines functions for map-
ping a name to its index and vice versa, and for obtaining and setting the in-
formation associated with it. Note that updates on the DTD are performed
as side-effects: The modified DTD is not part of the functions’ return values.
Function initializeDtd is provided for initializing the tables.

50 2.6. The DTD Manager

signature Dtd =
sig

type Dtd

val initializeDtd : unit → Dtd

val Element2Index : Dtd → UniChar.Data → int
val AttNot2Index : Dtd → UniChar.Data → int
val Id2Index : Dtd → UniChar.Data → int
val GenEnt2Index : Dtd → UniChar.Data → int
val ParEnt2Index : Dtd → UniChar.Data → int

val Index2Element : Dtd → int → UniChar.Data
val Index2AttNot : Dtd → int → UniChar.Data
val Index2Id : Dtd → int → UniChar.Data
val Index2GenEnt : Dtd → int → UniChar.Data
val Index2ParEnt : Dtd → int → UniChar.Data

val getElement : Dtd → int → Base.ElemInfo
val getNotation : Dtd → int → Base.NotationInfo
val getId : Dtd → int → Base.IdInfo
val getGenEnt : Dtd → int → Base.GenEntity
val getParEnt : Dtd → int → Base.ParEntity

val setElement : Dtd → int ∗ Base.ElemInfo → unit
val setNotation : Dtd → int ∗ Base.ExtId → unit
val setId : Dtd → int ∗ Base.IdInfo → unit
val setGenEnt : Dtd → int ∗ Base.GenEntity → unit
val setParEnt : Dtd → int ∗ Base.ParEntity → unit

end

Figure 2.13: The Dtd signature.

Type Dtd is implemented as a record of dictionaries, one for for each name
space:

type Dtd = {elDict : ElemInfo DataDict.Dict,
idDict : IdInfo DataDict.Dict,
genDict : GenEntity DataDict.Dict,
parDict : ParEntity DataDict.Dict,
notDict : NotationInfo DataDict.Dict }

Again, we disregard some technical details of the real implementation: There,
the DTD has additional information about the document’s standalone status
and similar issues. For the purpose of this description, these details would
only be confusing.

2.6.4 Adding Declarations

Whenever the parser adds a declaration to the DTD tables, it has to be checked
for well-formedness and validity before actually entering it. This happens
through the functions in structure DtdDeclare. Its signature is given in Figure
2.14. Because these functions can produce errors, they expect as an additional
argument the state of the entity stack, in order to report the current position
together with an error.

CHAPTER 2. IMPLEMENTATION OF FXP 51

signature DtdDeclare =
sig

val addAttribute : Dtd.Dtd → Entities.State → int ∗ Base.AttDef → unit
val addElement : Dtd.Dtd → Entities.State → int ∗ Base.ContSpec → unit
val addGenEnt : Dtd.Dtd → Entities.State → int ∗ Base.GenEntity → unit
val addParEnt : Dtd.Dtd → Entities.State → int ∗ Base.ParEntity → unit
val addNotation : Dtd.Dtd → Entities.State → int ∗ Base.ExtId → unit

val checkDefinedIds : Dtd.Dtd → Entities.State → unit
val checkMultEnum : Dtd.Dtd → Entities.State → unit

end

Figure 2.14: The DtdDeclare signature.

The first five functions in the signature are for adding attributes, element
types, entities or notations to the DTD tables. For example, let us have a look
at function addElement:

fun addElement dtd q (idx,cont) =
let val {decl,atts} = getElement dtd idx
in case decl

of NONE ⇒ setElement dtd (idx,{decl=SOME cont,atts=atts})
| SOME ⇒ if not (!O VALIDATE) then ()

else reportError(getPos q,ERR REDEC ELEM
(Index2Element dtd idx))

end

If the element type was declared previously, then the optional decl component
of the ElemInfo has some value. In this case, the declaration is ignored and in
validating mode (if option O VALIDATE is true) an error is reported. Otherwise
the element type’s ElemInfo is updated with the declared content model.

Adding an entity or notation declaration is analogous; for attribute defini-
tions, more has to be done: It must be checked whether the element already
has an attribute with that name; if yes, the definition is ignored. Otherwise, if
the attribute has type ID, it must be checked that an attribute of that type has
not yet been declared for the element type. Only then is the attribute definition
added to its ElemInfo.

The two other functions, checkDefinedIds and checkMultEnum, have a con-
ceptually different task: Instead of adding pieces of information, they check
properties of the whole DTD or document: checkMultEnum validates for each
element type that no name token occurs more than once in its enumerated
attribute types. Because there may be several attribute list declarations for a
single element, this can not be checked before the whole DTD is parsed.

Similarly, checkDefinedIds verifies that all names occurring in attributes val-
ues of type IDREF or IDREFS do also occur as the value of an ID attribute value.
Since an IDREF can point to an ID later in the document, this check can not be
done when the IDREF attribute is encountered. It must be delayed until the end
of the document instance.

52 2.6. The DTD Manager

signature DtdAttributes =
sig

exception AttValue

val makeAttValue : Dtd.Dtd → Entities.State
→ int ∗ Base.AttType ∗ UniChar.Data
→ UniChar.Vector ∗ Base.AttValue option

val checkAttValue : Dtd.Dtd → Entities.State
→ Base.AttDef ∗ UniChar.Data → Base.AttPresent

val genMissingAtts : Dtd.Dtd → Entities.State
→ Base.AttDef list → Base.AttSpec list

val handleUndeclAtt : Dtd.Dtd → Entities.State → int ∗ int → unit
end

Figure 2.15: The DtdAttributes signature.

fun checkDefinedIds dtd q =
if not (!O VALIDATE) then ()
else let fun doit i =

let val (decl,refs) = getId dtd i
val = if decl orelse null refs then ()

else reportError(getPos q,ERR UNDECL ID
(Index2Id dtd i,refs))

in doit(i+1)
end

in doit 0 handle NoSuchIndex ⇒ ()
end

Function doit consecutively checks, starting from 0, for each index whether the
ID name with that index is defined. Eventually, it reaches an index not as-
sociated with an ID name, making getId raise NoSuchIndex. This exception is
handled in the body of the let and terminates the function.

2.6.5 Processing Attribute Values

Within the document instance, the most intensive use of the DTD tables is for
attribute processing: In validating mode, the parser must check for each at-
tribute in a start-tag whether it was declared for the element. In this case the
attribute value is normalized depending on its declared type. It must also ful-
fill the constraints associated with that type. On the other hand, if one of the
element’s declared attributes is not specified in the start-tag, the parser must
generate an attribute value from its default value. The functions for attend-
ing these tasks are defined in structure DtdAttributes whose interface is given in
Figure 2.15.

Function makeAttValue processes the literal value of an attribute given as a
list of characters, converting it into a character vector and – in validating mode
– a value of type AttValue. For CDATA attributes, this requires only conversion of
a list to a vector; for the other types, the following is performed:

✧ The attribute value is normalized by replacing consecutive space charac-
ters with a single space and removing leading and trailing spaces.

CHAPTER 2. IMPLEMENTATION OF FXP 53

✧ In non-validating mode, the normalized attribute value is returned as a
character vector, without the optional AttValue component.

✧ In validating mode, the attribute value is split into a list of tokens at space
characters. The syntactical constraints imposed by the attribute type are
verified. E.g., for type ID the list must consist of a single token which is a
name. If these constraints are not met, an error is reported and exception
AttValue is raised.

✧ The semantic constraints imposed by the attribute type are validated us-
ing and possibly updating the DTD tables. E.g., the single name consti-
tuting an ID attribute must not have occurred as an ID name before; this
token is marked as being a used ID name in the DTD tables. Similarly,
the position of an IDREF attribute is added to the name’s IdInfo. Again,
an error is reported and exception AttValue is raised if a constraint is not
fulfilled.

✧ A value of type AttValue is constructed from the list of tokens. E.g., for
an attribute of type ENTITIES, each token is interpreted as the name of a
general entity and mapped to its index.

✧ The normalized attribute value is returned as a character vector together
with the AttValue.

makeAttValue is a very complex function; documenting its source code is beyond
the scope of this description. In addition to validating the specified attribute
value against its type, however, the parser must also check whether it complies
with its default value: If it has a fixed default value, then the normalized at-
tribute value must be identical to that value. Function checkAttValue performs
this additional check and constructs an attribute value of type AttPresent:

fun checkAttValue dtd q ((att,attType,defVal),cs) =
let val (vec,av) = makeAttValue dtd q (att,attType,cs)

val = case defVal
of AD FIXED(fix,) ⇒

if not (!O VALIDATE) orelse vec=fix then ()
else let val = reportError

(getPos q, ERR FIXED VALUE(att,vec,fix))
in raise AttValue
end

| ⇒ ()
in AP PRESENT(vec,av)
end

The two other functions in the DtdAttributes signature deal with attributes not
declared or specified: handleUndeclAtt is called for an attribute specified but
not declared for an element type. Basically, it reports an error if in validating
mode. Function genMissingAtts takes as argument a list of attribute definitions
whose attributes values have not been specified in a start-tag. It generates a list
of attribute specifications from the default values declared for the attributes.
The default values must in some cases be checked for validity: For example,
the value for an attribute of type ENTITY must be the name of an unparsed

54 2.7. The Parser Modules

general entity. That entity need not be declared when the default value is de-
clared; only when the default is actually used, its declaredness must be veri-
fied. For those attributes that do not have a default value, the function gener-
ates AP IMPLIED or – if the attribute is required – AP MISSING after reporting
an error.

2.7 The Parser Modules

This section describes the modules and functions that actually parse the XML
document. They are written in a recursive-descent style: Roughly speaking,
there is one parsing function for each syntactical component of an XML docu-
ment. If one component is made up from other components, its parsing func-
tion makes use of the functions associated with these components. For an in-
troduction into recursive-descent parsing, see, e.g., [WM95, ASU86].

Most parsing functions are rather technical and long-winded: They must
check many syntactical and validity conditions. Therefore we illustrate the
programming style of the parsing functions only with a few, simplified exam-
ples.

2.7.1 No Tokenization

In classical parser construction one usually divides the lexical analysis from
the syntactical analysis. Lexical analysis is often referred to as tokenization: The
input stream is converted into a stream of basic lexical components, the tokens,
before it is fed to the parser. Examples for tokens are keywords, numbers or
special symbols like operators or parentheses. The parser then need not bother
with the syntactical representation of tokens; a token is the smallest unit from
its point of view.

In fxp no tokenization is performed for several reasons:

✧ A common task of lexical analysis is filtering out the white space and
skipping comments. In XML both white space and comments may be
significant to the application and can therefore not be ignored.

✧ Tokenization of XML documents is context-dependent: According to the
state of the parser, different tokens must be recognized. E.g., character
“%” is recognized as the start of a parameter entity reference in the DTD,
whereas it is treated as character data in content.

✧ Context-dependent tokenization can be realized by a set of different
recognition modes. The parser must then switch between these modes
when the context changes.

Recognition modes were used for defining the syntax of XML’s prede-
cessor SGML [ISO86]. Following the SGML standard, parsing requires
10 different modes. When implementing an SGML parser, however, one
recognizes that these are not sufficient: There are a bunch of exceptions
when a special token may not be recognized in a particular mode. E.g.,
character “%” may not be recognized as the start of a parameter entity

CHAPTER 2. IMPLEMENTATION OF FXP 55

reference if it precedes the entity name in an entity declaration. Conse-
quently, this situation requires its own recognition mode. The real num-
ber of recognition modes required for parsing SGML is therefore nearly
30.

SGML’s syntax could not be given other than on a token basis, because
SGML allows to change the concrete syntax, i.e., the lexical representation
of tokens. In XML, the syntax change feature was dropped, and its syntax
is given on a character basis.

✧ Using different recognition modes also complicates error recovery: Af-
ter a syntax error, the context becomes unclear. The syntax error might
have been caused by a missing token that would otherwise have initiated
switching to another recognition mode. Trying to recover from the error
might therefore fail, because the current recognition mode might ignore
a token that could help the parser regain its orientation.

✧ Tokenizers are usually generated with the help of specialized tools such
as ML-LEX [AMT94]. These tools, however, can not process UNICODE as
input. In order to use a tokenizer for XML, all recognition modes have to
be written by hand, or we have to develop a generator that can handle
UNICODE input.

✧ Most XML tokens consist of only a single character; these can be recog-
nized easily by the parser. For the few multi-character tokens in XML, the
effort of implementing a tokenizer appears to be wasted.

The parser is thus written on character basis. This has, however, one major dis-
advantage: The code becomes difficult to read because a UNICODE character
is represented by its hexadecimal value in the SML sources. E.g., the Char rep-
resentation for character “%” is 0wx25. In order to make the code intelligible,
careful use of comments is therefore indispensable.

2.7.2 Syntax Errors and Error Recovery

In recursive-descent parsing, each syntactical component is associated with
a function that parses it. If a component is composed of other components,
its parsing function calls the associated functions for parsing those parts. If
a syntax error occurs, i.e., an input character is encountered that was not ex-
pected, the parsing function must either recover from that error or report it to
the calling function. Reporting an error is done by raising an exception, either
SyntaxError or NotFound. Both carry as arguments the erroneous character and
the state of the entity stack:

exception NotFound of UniChar.Char ∗ State
exception SyntaxError of UniChar.Char ∗ State

NotFound is raised by a parsing function if the first character it reads does not
start the component it expects to find. A NotFound exception can be handled
easily in many cases. E.g., if syntactically required white space is not present,
the parser reports an error and continues as if the white space had been there.
A different use of this exception is for parsing of optional components. E.g.,

56 2.7. The Parser Modules

in a start-tag, the element type may be followed by a list of attribute specifica-
tions. After having read the element-type, function parseStartTag calls function
parseName. If that returns a name, an attribute specification follows. Other-
wise parseName raises NotFound indicating that the end of the start-tag should
follow. parseStartTag handles this exception and continues by reading the “>”
or “/>” terminating the start-tag.

As opposed to that, a SyntaxError is raised if a function can read an initial
segment of a component but fails to finish parsing it. Handling a SyntaxError is
more difficult: In most cases the parser runs into an undefined state. One way
of regaining orientation is to switch into panic mode: In this mode the parser
skips all characters until it finds one that would terminate the component in
which the error occurred; we call such a character a last-character. For a start-
tag, e.g., the last-character is “>”. The parser then pretends that it has suc-
cessfully parsed this component, and continues parsing with the succeeding
character.

However, the behavior of panic mode is not sufficient for recovering from
errors in many situations: It fails if, e.g., the error was caused by the absence
of the last-character itself. Panic mode would then skip characters until the
input is exhausted, or until it finds another occurrence of a last-character, which
might belong to a completely different component though. For instance, if the
closing bracket “]” of the DTD’s internal subset is missing, panic mode would
skip characters until the end of the document, or at least until the end of the
first CDATA section.

Another deficiency of panic mode is that it blindly takes the first occurrence
of a last-character as the end of the component. But this character might as well
be part of a subcomponent and should therefore be skipped. A start-tag, e.g.,
can contain attribute values enclosed between quote characters. If character
“>” occurs within an attribute value, it should not be interpreted as the end
of the start-tag. A character that might start such a subcomponent is called a
start-character.

In order to improve on the behavior of panic mode, [WM95] proposes in
Section 8.3.6 to switch between two different modes: Error recovery starts in
error mode. As soon as a start-character for a subcomponent is encountered,
parser mode is entered: It attempts to entirely parse the subcomponent before it
switches back into error mode. Moreover, error mode is more intelligent than
panic mode: It also terminates if it encounters a last-character for an enclosing
component, or if it finds a follow-character, i.e., a start-character for a component
that might follow the current component.

For fxp, we implemented a slightly weaker variant of this approach: Error
recovery starts in skip mode for the current component. This mode does not
attempt to parse a subcomponent – it only skips all characters that might be
part of it. Skip mode is aware of start-characters and last-characters; if it finds
a start-character for a subcomponent, it recursively calls itself for that subcom-
ponent. More precisely, skip mode ignores characters until one of the following
situations comes up:

Local continuation on last-characters: A last-character of the current compo-
nent is found. Skip mode finishes for the current component, and de-
pending on the situation, either parsing is continued or skip mode is re-
sumed for the enclosing component.

CHAPTER 2. IMPLEMENTATION OF FXP 57

Non-local continuation on last-characters: A last-character for an enclosing
component is found, which can not be part of the current component.
Similarly to a local continuation, skip mode is terminated, with the dif-
ference that the character is not consumed. For instance, during skip
mode for a markup-declaration, a “]” is a last-character for the enclosing
declaration subset.

Continuation on follow-characters: A first-character of a component is en-
countered which might follow the current component. The behavior of
the parser is the same as for non-local continuation on last-characters. An
example for this situation is a “&” character during skip mode for a start-
tag. This character can not occur in the start-tag; presumably it starts a
reference following the tag.

Recursive call on start-characters: A start-character for a syntactical subcom-
ponent is found. In this case skip mode calls itself recursively for that
subcomponent. After termination of the recursive call, skip mode contin-
ues for the current component. An example for such a subcomponent is
an attribute value in a start-tag. Note that since all characters are allowed
in attribute values, the recursive skip mode for the attribute value will
only terminate upon the closing quote character or an entity end.

Our error recovery strategy is intelligent enough to cope with single errors in
most cases. This strategy, however, can still fail, especially if multiple errors
coincide: Consider the erroneous start-tag . The first error is that
the attribute value for x is not enclosed between quotes. The parser switches
into skip mode and, when it encounters the quote sign, recursively calls skip
mode for an attribute value literal. But now another error follows: The closing
quote character is missing. Therefore the “>” character is not recognized as a
last-character for the start-tag.

2.7.3 Parsing Simple Components

This and the following two subsections will try to give an impression of the
programming style of the parsing functions. However, the more complex
the syntactical components, the more validity and well-formedness constraints
must be verified, and the more special cases must be distinguished by the pars-
ing functions. We will see in 2.7.4 that the complexity of these functions grows
beyond what is describable in this writing.

To start with let us consider a very simple parsing function: parseName
reads a name and returns it as a list of characters, together with the imme-
diately following character and the obtained state of the entity stack.

fun parseName’ (c,q) =
if isName c then let val (cs,cq1) = parseName’(getChar q)

in (c ::cs,cq1)
end

else (nil,(c,q))

58 2.7. The Parser Modules

fun parseName (c,q) =
if isNms c then let val (cs,cq1) = parseName’(getChar q)

in (c ::cs,cq1)
end

else raise NotFound(c,q)

If the first character is not a name-start character, exception NotFound is raised.
Otherwise all characters until the next non-name character are consumed by
function parseName’. The character immediately following the name must be
inspected in order to recognize the end of the name. That character is therefore
part of the function’s return value. This is typical for most of fxp’s parsing
functions: Their return value includes the next character and the obtained state
of the entity stack.

Function parseName’ is not tail-recursive. Tail-recursion is the functional
variant of iteration: If the recursive call of a function constitutes its return
value, the function’s stack-frame can be reused for the recursive call. A tail-
recursive function therefore needs only a constant amount of space on the
stack. In contrast to that, a non-tail-recursive function requires space propor-
tional to the recursion depth.

In the case of function parseName the non-tail-recursive behavior is afford-
able because names are usually short; the recursion stack does not grow very
deep. This is different when parsing a comment or processing instruction:
These can become very long. Especially comments, which are frequently used
for marking alternative version of large document parts, often have a size of
thousands of characters. Let us have a look at function parseComment. It reads
a comment starting after the initial “<!--” and returns its text as a vector to-
gether with the following character and the obtained entity stack:

fun parseComment q =
let fun check end yet (c,q)

if c=0wx2D (∗ ”-” ∗)
then let val (c1,q1) = getChar q

in if c1=0wx3E (∗ ”>” ∗) then (yet,getChar q1)
else doit (0wx2D::0wx2D::yet) (c1,q1)

end
else doit (0wx2D::yet) (c,q)

and doit yet (c,q) =
if c=0wx2D (∗ ”-” ∗) then check end yet (getChar q)
else if c<>0wx0 then doit (c ::yet) (getChar q)
else let val = reportError(getPos q,

ERR ENDED BY EE ”comment”)
in (yet,(c,q))
end

val (cs,cq1) = doit nil (getChar q)
val vec = Data2Vector (rev cs)

in (vec,cq1)
end

The auxiliary function doit reads characters until it finds the end of the com-
ment. The comment is ended by the string “-->”, which is tested for by
check end, after a single “-” has been encountered5. An entity end (0wx0) occur-

5The real implementation of checkEnd is more extensive: If must report an error if a “--” is not

CHAPTER 2. IMPLEMENTATION OF FXP 59

ring in the comment constitutes an error. The function recovers from the error:
It ends the comment as if the “-->” had been present, concealing the error from
the calling function.

The text of the comment is accumulated by doit in parameter yet as a list of
characters. When the end of the comment is reached, this parameter holds the
whole comment text in reverse order. This is characteristic for accumulating pa-
rameters and exploited, e.g., by a popular implementation of the list reversing
function rev. For fxp, it has the disadvantage that after parsing the comment,
its text must be traversed a second time for reestablishing the original order.
In any case, this overhead is small compared to the cost of a non-tail-recursive
function, which would need a deep recursion stack for parsing long comments.

2.7.4 Entity References

Let us now consider some more complex parsing functions. Both for gen-
eral and parameter entity references the function that parses the reference also
checks whether the entity is declared and whether a reference to the entity is
allowed. The reference is illegal if the entity is declared as unparsed, or if it is
already open: The latter would lead to an infinite recursion of references. Sim-
ilarly, the function parsing a character reference checks whether the character
is a legal XML character. An error is indicated by raising an exception after
issuing an error message:

exception NoSuchChar of State
exception NoSuchEntity of State

These exceptions are easily handled by the calling function: The erroneous
reference is ignored.

Function parseGenRef parses a general entity reference, starting after the
initial “&” character. It first parses the entity name with parseName; it reports
an error and raises SyntaxError if no name is found. Then it checks whether the
next character is a semicolon. The entity name is mapped to its index and the
replacement text declared for it is obtained.

fun parseGenRef dtd cq =
let val (name,(c1,q1)) = parseName cq handle NotFound (c,q)

⇒ let val = reportError
(getPos q,ERR EXPECTED(”an entity name”,[c]))

in raise SyntaxError(c,q)
end

val = if c1=0wx3B (∗ ”;” ∗) then ()
else let val = reportError

(getPos q1,ERR EXPECTED(”’;’”,[c1]))
in raise SyntaxError(c1,q1)
end

val idx = GenEnt2Index dtd name
val (rep,ext) = getGenEnt dtd idx

The function could now return the entity’s index and replacement text to the
calling function. Before doing this it checks whether a reference to this entity
is legal, reporting an error and raising NoSuchEntity if it is not:

followed by a “>”.

60 2.7. The Parser Modules

val = case rep
of GE NULL ⇒

let val = reportError
(getPos q,ERR UNDEC ENTITY name)

in raise NoSuchEntity q1
end
| GE UNPARSED ⇒

let val = reportError
(getPos q,ERR UNPARSED name)

in raise NoSuchEntity q1
end
| ⇒ if not (isOpen(q1,idx,false)) then ()

else let val = reportError
(getPos q,ERR RECURSIVE name)

in raise NoSuchEntity q1
end

in ((idx,rep),q1)
end

Unlike most of the other parser functions, parseGenRef does not return the char-
acter following the reference: If the entity is included, the first character of its
replacement text has to be processed next.

One of the functions that use parseGenRef is parseAttValue. This function is
given a quote character starting an attribute value literal. It reads characters
up to the next occurrence of that quote character. It replaces character refer-
ences with the character they name and includes the replacement text of gen-
eral entity references. It also normalizes the text it reads by substituting a space
character for each white-space character it encounters. The main work is done
by its subfunction doit which accumulates the text of the literal and counts the
nesting level of included entities in its parameters text and level.

fun parseAttValue dtd (quote,q) =
let fun doit (level,text) (c,q) =

case c
of 0wx00 ⇒

if level>0 then doit (level−1,text) (getChar q)
else let val err = ERR ENDED BY EE ”attribute value”

val = reportError(getPos q,err)
in (text,(c,q))
end

If the next character is an entity end then there are two cases: If it is the end
of an included entity (level>0) then it is skipped and the level is decremented.
Otherwise this is an error, because the final quote character of a literal must be
in the same entity as the initial one. This error is handled by assuming that the
final quote was forgotten: doit returns the text read up to the entity end.

The case is more complicated if the next character is a “&”, initiating a char-
acter or general entity reference. A new level and accumulated literal text are
determined depending on the next character: A “#” indicates a character ref-
erence. It is parsed and its replacement character is added to the literal text.
Otherwise a general entity reference is parsed by parseGenRef. This function
can only return an internal or an external entity; the latter is forbidden in at-

CHAPTER 2. IMPLEMENTATION OF FXP 61

tribute values. If it is an internal entity, it is pushed onto the entity stack and
the level is incremented.

| 0wx26 (∗ ”&” ∗) ⇒
let val (c1,q1) = getChar q

val ((level1,text1),cq2) =
(if c1=0wx23 (∗ ”#” ∗)
then let val (ch,q2) = parseCharRef q1

in ((level,ch:: text),getChar q2)
end

else let val ((idx,rep),q2) = parseGenRef dtd (c1,q1))
in case rep

of GE INTERN(,vec) ⇒
let val q3 = pushIntern(q2,idx,false,vec)
in ((level+1,text),getChar q3)
end
| GE EXTERN ⇒

let val = reportError
(getPos q1,ERR EXTERNAL

(Index2GenEnt dtd idx))
in ((level,text),getChar q2)
end
| ⇒ raise InternalError

end)
handle SyntaxError cq ⇒ ((level,text),cq)

| NoSuchEntity q ⇒ ((level,text),getChar q)
| NoSuchChar q ⇒ ((level,text),getChar q)

in doit (level1,text1) cq2
end

If either parseCharRef or parseGenRef raises an exception, then it is caught by
the exception handler before function doit calls itself recursively. The excep-
tions are handled by continuing with the old level and literal text. Note that
if the handler were after the recursive call of doit, this would destroy the tail-
recursive nature of the function.

If the first character is neither an entity end nor a “&”, then doit checks whether
it is a white-space character. In this case it adds a space character to the literal
text and continues. The character might also be the quote character that started
the literal: If it is in an entity replacement text included during parsing of the
literal (level<>0), then it is not recognized as the end of the literal. It is added
to the literal text. Otherwise doit terminates.

| ⇒ if isS c
then doit (level,0wx20:: text) (getChar q)
else if c=quote andalso level=0

then (text,getChar q)
else doit (level,c :: text) (getChar q)

The body of the main function parseAttValue is simple: It first checks whether
the supplied character is really a quote character and raises exception NotFound
if it is not. Then the literal text is parsed by a call to doit. As in function
parseComment, the text must be reversed before returning it.

62 2.7. The Parser Modules

val = if quote=0wx22 (∗ ’ ∗) orelse quote=0wx27 (∗ ” ∗)
then () else raise NotFound (quote,q)

val (text,cq1) = doit (0,nil) (getChar q)

in (rev text,cq1)
end

This function demonstrates how complex and technical the implementation of
the parser functions is. For declarations and the content of elements, even more
validity constraints have to be checked. Therefore, documenting these parsing
functions goes beyond the scope of this description. The examples given so
far, however, have pointed out the style in which the parsing functions are
programmed. For more technical details, the reader is referred to the source
code of fxp [Fxp99]. Here, we will content ourselves with describing one other
important function.

2.7.5 Character Data in Content

A large part of a typical XML document is plain text, more precisely character
data occurring in mixed content. A portion of character data containing no
markup is parsed by the function do chardata, similar to parseComment: It ac-
cumulates characters until it encounters a markup character or an entity end.
Markup occurring in content always starts with a “&” (a reference) or a “<”
which initiates a tag, comment, processing instruction or CDATA section. In-
stead of passing the parsed text to the calling function as part of its return
value, function do chardata reports the text directly to the application. For the
time being, let us assume that this happens by a call to the function reportData,
which expects a character vector as argument and returns nothing. Section 2.8
will present a better method for doing so.

fun do chardata (c,q) =
let fun doit (yet,q) = let val (c1,q1) = getChar q

in case c1
of 0wx00 ⇒ (yet,(c1,q1))
| 0wx26 (∗ ”&” ∗) ⇒ (yet,(c1,q1))
| 0wx3C (∗ ”<” ∗) ⇒ (yet,(c1,q1))
| ⇒ doit (c1::yet,q1)

end

val (cs,cq1) = doit ([c],q)
val vec = Data2Vector(rev cs)
val = reportData vec

in cq1
end

As in function parseComment, the accumulated text must be reversed before
it is reported to the application. In addition to this extra effort, do chardata
contains another source of inefficiency: If a continuous piece of character data
is very long, so is the accumulated text in parameter yet. Moreover, the list
representation consumes much more memory than an array or a vector.

In order to optimize the space efficiency of this function, we implemented a
variant do chardata array that uses an array buffer of fixed size for collecting the
text. When the array is full, its content is reported to the application, and the
array is reused for the next characters. As a consequence, the text is reported

CHAPTER 2. IMPLEMENTATION OF FXP 63

to the application in portions of a reasonable size. Moreover, we need only
constant space for reading arbitrarily long character data sequences, and we
avoid reversing of the list. These benefits outweigh the additional efforts for
maintaining the array.

val dataBuffer = Array.array(DATA BUFSIZE,0w0)

fun do chardata array (c,q) =
let val = Array.update(dataBuffer,0,c)

fun report i = reportData (Array.extract(dataBuffer,0,SOME i))

fun takeOne (c,i,q) =
if i<DATA BUFSIZE
then i+1 before Array.update(dataBuffer,i,c)
else let val = report i

val = Array.update (dataBuffer,0,c)
in 1
end

fun doit (i,q) =
let val (c1,q1) = getChar q
in case c1

of 0wx00 ⇒ (c1,q1) before report i
| 0wx26 (∗ ”&” ∗) ⇒ (c1,q1) before report i
| 0wx3C (∗ ”<” ∗) ⇒ (c1,q1) before report i
| ⇒ doit (takeOne(c1,i),q1)

end

in doit (1,q)
end

In order to avoid allocating a new buffer each time do chardata array is called,
the buffer is declared global to that function. The function starts by entering
the first character into the buffer. Subfunction doit then counts the position in
the buffer in its parameter i. Characters are added to the buffer by takeOne
which flushes the buffer and reports the data it holds to the application if its
size is exhausted.

The use of an array in this function is imperative style. Similar to the argu-
ment in Section 2.3.6, it is justified by the gain of efficiency for large documents
with a low markup quota (cf. Section 3.1.2). Still this mutable data structure is
visible only in a single function, parseMixedContent, and hidden from the rest of
the parser.

This and previous examples demonstrate that most of the parsing functions
are very complex and tedious to explain. We therefore cease documenting
more parsing functions here. Those explained so far have given an impres-
sion of the style in which the parser functions are implemented. The interested
reader is encouraged to read the source code of fxp in order to find out more
details.

2.7.6 Validation of Element Content

While parsing the content of an element, the parser must validate its confor-
mance with the content model declared for the element type. In order to do so,
the parser constructs for each content model, which is a regular expression, a

64 2.7. The Parser Modules

deterministic finite automaton (DFA), using the Berry-Sethi construction [BS86]
(cf. Section 4.1.1) which is also known as Glushkov construction [Glu61]. This
construction produces a non-deterministic automaton (NFA) for any regular
expression. XML content models have the additional property of unambiguity.
For unambiguous regular expressions, the Glushkov automaton is unambigu-
ous [BW92, Brü93], i.e., we can obtain a DFA by adding an error state qe and
completing the transition relation to a function by filling it with transitions to
that state. We can thus directly use this automaton for validating the content
of elements.

Parsing of an element’s content starts with the initial state q0 of the DFA.
For each start-tag encountered, the transition function of the DFA is applied to
the current state q in order to obtain a new state q1. If that state is the error
state qe, the element’s content is invalid and an error message is issued. Now
the following transitions will always end up in that error state again. In order
to avoid repeated error messages for the content of this element, we therefore
add a second error state q f to the DFA. A transition from one of the error states
then always leads to q f , whereas erroneous transitions from non-error states
lead to qe. By reporting an error only in state qe we produce just a single error
message for each element with invalid content.

An invalid start-tag is thus handled by reporting an error and skipping the
validation for the rest of the current element; the content of the element started
by that start-tag is validated in any case. It is also easy to deal with an invalid
end-tag: This is an end-tag for the current element although its content model
requires further content. This error is handled by reporting an error message
and finishing the current element.

The case is more difficult if the parser encounters an end-tag for an element
type other than that of the current element. Though this constitutes a well-
formedness error, i.e., a fatal error, we would still like to recover from this
error without losing the context. We therefore distinguish three cases:

(1) If there is an open element with the same element type as the end-tag,
we assume that the end-tag for the current element was forgotten. We
therefore finish the current element without consuming the end-tag.

(2) Otherwise, if the current element requires no further content according
to its content model, we assume that this is the end-tag for the current el-
ement but its element type was misspelt: The current element is finished
and the end-tag is consumed.

(3) Otherwise, we assume that the author of the document accidentally in-
serted the end-tag. We therefore ignore it and continue parsing the con-
tent of the current element.

As usual in error recovery, these assumptions can also fail. For instance, in case
(3) the end-tag might indeed be the misspelt end-tag for the current element.
But that would mean that two errors coincide: The misspelling of the element
type and the omission of some required content. Even in this rather unlikely
case, the wrong decision will be corrected at the end-tag of the enclosing ele-
ment, because the parser will then still be in the current element. Hence case
(2) will apply and both the current and the enclosing element will be finished.
After that, the parser has regained the context. Thus a wrong end-tag usually
confuses the parser only for a small part of the document.

CHAPTER 2. IMPLEMENTATION OF FXP 65

Observe the difference between this error recovery strategy and the one
presented in 2.7.2: The latter handles syntax errors, i.e., well-formedness errors
and is performed regardless of validation. In contrast to that, the handling of
invalid tags described in this section happens only in validating mode. More-
over, though an end-tag that does not match the current element type is a well-
formedness error, recovery from this error employs information declared in the
DTD and thus depends on whether the parser is in validating mode – case (3)
can never occur in non-validating mode.

2.8 The Programming Interface

In this section we describe fxp’s application interface. It is a functional variant
of an event-based interface that vitally relies on SML’s parametrized modules
for customization. Its information set includes all required and most optional
information items of the XML information set [W3C99d].

After describing the programming interface, we will point out the necessary
modifications of the parser described so far in order to support this interface.
Then we give some simple examples of using fxp’s programming interface for
building XML applications.

2.8.1 Hooks - A Functional Variant of Event Handlers

fxp’s programming interface pursues a functional variant of the event-based
approach discussed in Section 1.2.3. In the classical imperative implementation
of that approach the application’s state is visible to event handlers through
global variables; it can only be modified by destructive update.

The counterpart of global state in functional programming style is an accu-
mulating parameter which is passed around all functions depending on that
state. In order to illustrate this technique, let us consider a small C function:

int sum up (int n) {
int i,sum=0;
for (i=1; i6n; i++)

sum=sum+i;
return sum;

}

This function computes the sum of all integers between 1 and its argument by
consecutively adding them to variable sum. We could implement an analogous
SML function, using a reference type for sum in order to enable destructive
updates on it:

fun sum up n =
let val sum = ref 0

fun loop i = if i>n then ()
else (sum := !sum+i; loop (i+1))

val = loop 1
in !sum
end

Since SML has no concept of for-loops, function loop is used for accomplishing
the iteration. Variable sum can be viewed as the global state of the computation.

66 2.8. The Programming Interface

Hook XML Event

hookError error
hookWarning warning
hookStartTag start-tag
hookEndTag end-tag
hookData segment of character data
hookCData CDATA section
hookCharRef character reference
hookProcInst processing instruction
hookComment comment
hookDecl element, attribute, notation or entity declaration
hookDocType start of the DTD
hookSubset start of the internal subset
hookExtSubset start of the external subset
hookEndDtd end of the DTD
hookGenRef general entity reference
hookParRef parameter entity reference
hookEntEnd end of an included entity
hookXml start of the document entity
hookFinish end of the document

Table 2.2: The hooks in fxp and their purposes.

Nevertheless, using a mutable reference type is very bad SML programming
style. It would better be realized as an additional parameter of function loop:

fun sum up n =
let fun loop sum i = if i>n then sum

else loop (sum+i) (i+1)
in loop 0 1
end

Function loop accumulates the result in parameter sum. This implementation
avoids the use of reference types and destructive updates. On the other hand,
function loop now has one additional parameter and its return value comprises
an additional component, because parameter sum must be passed around the
computation.

In a similar way, fxp’s programming interface avoids destructive updates on
the application’s state in event handlers. The application defines a data type
AppData representing the part of its state affected by the event handlers. We
call this information the application data. During parsing, a value of this type
is maintained by the parser. Upon triggering an event, the event handler re-
ceives the application data as an additional parameter and returns it – possibly
modified – to the parser. The modified application data is then an argument to
the next event, and so forth. In order to distinguish this kind of event handlers
from the imperative variant we call them hooks. The effects of all hooks are thus
accumulated into one value of type AppData.

In order to implement hooks in fxp, the parser must be provided with the
type of the application data and with the functions implementing the hooks.
The easiest way of doing so is to pack them into a structure Hooks, fulfilling the

CHAPTER 2. IMPLEMENTATION OF FXP 67

signature Hooks =
sig

type AppData
type AppFinal

val hookError : AppData ∗ HookData.ErrorInfo → AppData
val hookWarning : AppData ∗ HookData.WarningInfo → AppData

val hookStartTag : AppData ∗ HookData.StartTagInfo → AppData
val hookEndTag : AppData ∗ HookData.EndTagInfo → AppData

val hookData : AppData ∗ HookData.DataInfo → AppData
val hookCData : AppData ∗ HookData.CDataInfo → AppData
val hookCharRef : AppData ∗ HookData.CharRefInfo → AppData

val hookProcInst : AppData ∗ HookData.ProcInstInfo → AppData
val hookComment : AppData ∗ HookData.CommentInfo → AppData
val hookDecl : AppData ∗ HookData.DeclInfo → AppData

val hookDocType : AppData ∗ HookData.DtdInfo → AppData
val hookSubset : AppData ∗ HookData.SubsetInfo → AppData
val hookExtSubset: AppData ∗ HookData.ExtSubsetInfo→ AppData
val hookEndDtd : AppData ∗ HookData.EndDtdInfo → AppData

val hookGenRef : AppData ∗ HookData.GenRefInfo → AppData
val hookParRef : AppData ∗ HookData.ParRefInfo → AppData
val hookEntEnd : AppData ∗ HookData.EntEndInfo → AppData

val hookXml : AppData ∗ HookData.XmlInfo → AppData
val hookFinish : AppData → AppFinal

end

Figure 2.16: The Hooks signature.

signature in Figure 2.16. The purposes of the single hooks are listed in Table
2.2. A hook expects as argument the current application data and – except for
hookFinish – the information belonging to the signaled event, and returns the
modified application data.

The data types providing the event-specific information passed to a hook
are defined by structure HookData. Each information item contains at least the
position in the document where the event occurred; for some events even two
positions are specified: a start position and an end position. E.g., type ErrorInfo
describes an error by means of its position and an error description. A start-tag
is described by the positions of its first and last character, the index of the ele-
ment, the list of attribute specifications and a boolean flag, indicating whether
it is an empty-element tag:

type ErrorInfo = Position ∗ Error
type StartTagInfo = Position ∗ Position ∗ int ∗ AttSpec list ∗ bool

The information set provided through fxp’s hooks is sufficient for producing
a character-by-character identical copy of the document instance. Except for
white space and parameter entity references within declarations, this is also
possible for the DTD.

In addition to type AppData, a Hooks structure must define a type AppFinal.
This type is the result type of the parser: At the end of the document, the parser

68 2.8. The Programming Interface

funsig Parse (structure Dtd : Dtd
structure Hooks : Hooks
structure Resolve : Resolve
structure Options : Options) =

sig
val parseDocument : Uri.Uri option → Dtd.Dtd option

→ Hooks.AppData → Hooks.AppFinal
end

Figure 2.17: The Parser functor.

calls hookFinish in order to finalize the accumulated application data. This is use-
ful because values of type AppData often contain auxiliary information: E.g., if
an application collects information from the document entity, it must ignore
all events occurring within entity replacement texts. For this reason, the hooks
might maintain a counter indicating the nesting depth of included entity ref-
erences. hookFinish then removes this counter because it is of no interest to the
application. Another example for the benefits of finalization is the following:
An application might collect section titles in order to compile a table of con-
tents. Since the application data is an accumulating parameter, these titles are
collected in reverse order (cf. 2.7.3). AppFinal can be used for reestablishing the
original order. For a similar example, see 2.8.5.

2.8.2 Functorizing the Parser

Since fxp is reentrant it must support running several independent instances
of the parser. More precisely, it must be possible to have each instance of the
parser supplied with its own set of hooks. For instance, resolving a public
identifier may involve parsing of an XML catalog. The hooks for processing
the catalog are presumably others than those processing the main document.

The parser is therefore implemented as an SML functor (cf. page 23), expect-
ing the Hooks structure as argument. The application can then generate several
instances of the parser for different purposes. In addition to the hooks, the
parser functor is parametrized with three other structures:

Options : This structure supplies the parser with its options as described in Sec-
tion 2.4. It is useful to have each instance of the parser run with its own
set of options: E.g., XML catalogs frequently have no DTD. Therefore a
catalog is parsed in non-validating mode, even if the main document is
validated.

Resolve : This structure provides a single function for resolving an external
identifier to a URI:

val resolveExtId : Base.ExternalId → Uri.Uri

In the simplest case this function returns the system identifier that is part
of the external identifier. If the parser supports XML catalogs, however,
this is the function that searches the catalog.

Dtd : The implementation of the DTD tables can be provided by the application.
In most cases this is the Dtd structure from Section 2.6.3, but the applica-

CHAPTER 2. IMPLEMENTATION OF FXP 69

tion can also provide a more efficient implementation, or enhance the
functionality of the DTD tables. For instance, the operations on the DTD
tables might be wrapped into functions producing debugging or statisti-
cal information. On the other hand, the application can hard-code element
types or attributes to fixed indices. E.g., in order to collect href attributes
in an XHTML document, one might use the following implementation of
the Dtd argument structure:

structure HrefDtd =
struct

open Dtd

val hrefData = UniChar.String2Data ”href”

fun initializeDtd () =
let val dtd = Dtd.initializeDtd()

val = AttNot2Index dtd hrefData
in dtd
end

val hrefIdx = AttNot2Index (initializeDtd()) hrefData
end

A href attribute will then always have index hrefIdx; searching and com-
paring can be done with this constant rather than the list of charac-
ters [0wx68,0wx72,0wx65, 0wx66]. This is reasonable also because element
types are passed to the hooks by means of their indices in the DTD, not
by their names.

The signature of the parser functor is given in Figure 2.17. It defines a sin-
gle function parseDocument which, given an optional URI of a document and
an optional DTD, parses that document – if no URI is given, the document is
read from the standard input (cf. 2.3.4). It returns the finalized value of the
application data received in its third argument, modified by the hooks during
parsing.

If the optional Dtd argument is given as NONE, the parser initializes the
DTD tables with the initializeDtd function. In this case hooks have no access to
the DTD because it is not provided as an argument to them. For many appli-
cations this is not necessary indeed. If the hooks need to access the DTD, the
application must initialize the tables itself, incorporate them into the applica-
tion data and pass them to the parser in its Dtd argument.

2.8.3 Implications on the Implementation of the Parser

In order to report events to the application via hooks, the application data must
be passed through all functions that might involve a call to a hook. The imple-
mentation presented so far must therefore be altered to make each function
have an additional argument of type AppData and return a modified value of
that type. Because hooks are also used for signaling errors, this affects all func-
tions that might produce an error. E.g., function getChar in structure Entities
must now have type

val getChar : AppData ∗ State → UniChar.Char ∗ AppData ∗ State

70 2.8. The Programming Interface

Furthermore, exceptions such as SyntaxError must comprise the application
data; otherwise the function handling the exception had no application data
to continue with:

exception NotFound of UniChar.Char ∗ AppData ∗ State
exception SyntaxError of UniChar.Char ∗ AppData ∗ State

exception NoSuchChar of AppData ∗ State
exception NoSuchEntity of AppData ∗ State

In order to illustrate how the parsing functions must be modified for support-
ing hooks, let us consider function parseComment from Section 2.7.3. It is mod-
ified to the following:

fun parseComment (a,q) =
let fun check end yet (c,a,q)

if c=0wx2D (∗ ”-” ∗)
then let val (c1,a1,q1) = getChar(a,q)

in if c1=0wx3E (∗ ”>” ∗) then (yet,getChar(a1,q1))
else doit (0wx2D::0wx2D::yet) (c1,a1,q1)

end
else doit (0wx2D::yet) (c,a,q)

and doit yet (c,a,q) =
if c=0wx2D (∗ ”-” ∗) then check end yet (getChar(a,q))
else if c<>0wx00 then doit (c ::yet) (getChar(a,q))
else let val a1 = hookError (a,(getPos q,ERR ENDED BY EE ”comment”))

in (yet,(c,a1,q))
end

val (cs,(c1,a1,q1)) = doit nil (getChar aq)
val vec = Data2Vector (rev cs)
val a2 = hookComment (a1,(getPos q,getPos q1,vec))

in (c1,a2,q1)
end

In addition to the state q of the entity stack, the auxiliary functions doit and
check end now maintain the application data a. Errors are reported through
hookError instead of function reportError. Furthermore, parseComment no longer
returns the text of the comment to the calling function. Instead, it reports the
comment to the application through hookComment, together with its start and
end position.

Similar modifications must be made to all functions in the parser modules,
the entity manager and the DTD manager. The DTD tables and the UNICODE
frontend are not affected because they report errors by raising exceptions. This
allows for employment of the UNICODE frontend for other applications, inde-
pendently of fxp.

2.8.4 Functor Dependencies

Parse is not the only module of the parser which is implemented as a functor:
All modules that make use of hooks must be functorized either. E.g., the Entities
structure is now a functor:

CHAPTER 2. IMPLEMENTATION OF FXP 71

signature Entities =
sig

type State
type AppData

val getChar : AppData ∗ State → UniChar.Char ∗ AppData ∗ State

. . .
end

functor Entities (structure Hooks : Hooks) : Entities =
struct

open Hooks
. . .

end

The types of the functions defined by Entities depend on the type of the appli-
cation data. In order to specify them in the signature, type AppData must also
be included. Similarly, types AppData and State must appear in the signature of
functor ParseBase which, among others, defines the exceptions NotFound and
SyntaxError.

signature ParseBase =
sig

type State
type AppData

exception NotFound of UniChar.Char ∗ AppData ∗ State
exception SyntaxError of UniChar.Char ∗ AppData ∗ State
. . .

end

Functor ParseNames is now parametrized by instances of these two functors,
Entities and ParseBase, both defining types AppData and State. In order to make
ParseNames be correctly typed, the programmer must ensure that the defini-
tions of these types are identical in both structures. Therefore the parameter
list of functor ParseNames contains equality constraints for them:

functor ParseNames
(structure Entities : Entities
structure ParseBase : ParseBase
sharing Entities.State = ParseBase.State
and Entities.AppData = ParseBase.AppData) : ParseNames =

struct
. . .

end

Functor ParseNames is a simple case of a parser module: It only depends on
ParseBase and Entities. Most other modules additionally depend on the Hooks,
Dtd and Options structures, plus the parser modules whose functions they use.
Figure 2.18 shows the dependencies among the parser modules. The main
functor Parse, e.g., depends on nine other parser modules. This leads to nu-
merous equality constraints in the functor headers: In an early version of fxp,
which realized this implementation of the functor hierarchy, 261 lines of code
were required only for the headers of functors. The disadvantage is that these
technical details obscure the source code, deviating the attention from the es-
sentials. Moreover, structural changes to the program, which happen rather

72 2.8. The Programming Interface

ParseContent

ParseTags

ParseLiterals

ParseRefs

ParseXml

ParseMisc

ParseNames

ParseBase

ParseDecl

ParseDtd

Parse

Figure 2.18: Dependencies between the parser modules.

frequently especially during program development, require a large effort in
adapting the equality constraints.

In order to find a more elegant and concise realization, we refrained from
using equality constraints by avoiding repeated declarations of the same type
in different signatures. To start with, we incorporated all parameters of the
parser functor, i.e., Hooks, Dtd, Options and Resolve, together with the entity
manager, the DTD manager, and the ParseBase module, into a single signature:

signature ParseBase =
sig

include Dtd Hooks Resolve Options Entities DtdDeclare DtdAttributes

exception NotFound of UniChar.Char ∗ AppData ∗ State
exception SyntaxError of UniChar.Char ∗ AppData ∗ State
. . .

end

Implementing a functor ParseBase providing all functions specified in this sig-
nature is possible without equality constraints. The hierarchy of parser mod-
ules is now based on this functor: From the module dependencies we can ob-
tain a topological ordering on the modules, with ParseBase as the least and
Parse as the greatest element. Figure 2.19 shows this sequential ordering. Each
functor in this sequence is now defined to include the signature of the preced-
ing functor in its output signature. E.g., ParseMisc is now defined as follows:

CHAPTER 2. IMPLEMENTATION OF FXP 73

ParseContent

ParseDtd

ParseDecl

ParseTags

ParseLiterals ParseBase

ParseNames

ParseMisc

ParseXml

ParseRefs

Parse

Figure 2.19: The topological order obtained from the functor hierarchy.

signature ParseMisc =
sig

include ParseNames
. . .

end

functor ParseMisc (structure ParseBase : ParseBase) : ParseMisc =
struct

structure ParseNames = ParseNames
(structure ParseBase = ParseBase)

open ParseNames
. . .

end

Each functor thus includes all functions defined by the modules that come
earlier in the sequential ordering. The effect is that, e.g., the definitions from
ParseTags are visible in ParseDtd though this module doesn’t depend on them.
On the other hand, the definitions from ParseNames are now available to each
module through the signature of its predecessor. Each functor depends only
on a single parameter structure ParseBase, except for the main parser module
Parse. It expects the four argument structures coming from the application,
feeds them to the ParseBase functor and supplies the result structure to its pre-
decessor ParseContent:

functor Parse (structure Dtd : Dtd
structure Hooks : Hooks
structure Resolve : Resolve
structure ParserOptions : ParserOptions) :

sig
val parseDocument : Uri.Uri option → Dtd.Dtd option

→ Hooks.AppData → Hooks.AppFinal
end

= struct
structure ParseBase = ParseBase (structure Dtd = Dtd

structure Hooks = Hooks
structure Resolve = Resolve
structure Options = Options)

74 2.8. The Programming Interface

structure ParseContent = ParseContent
(structure ParseBase = ParseBase)

. . .
end

This realization of the module hierarchy is much more concise than the previ-
ous variant: It only requires two lines per functor, one for the include statement
in its signature, and one for generating an instance of the immediately preced-
ing functor. Together with the four lines for generating the ParseBase instance,
this is a total of only 24 lines. Moreover, each functor is applied exactly once in
order to obtain an instance of the parser. Interestingly enough, the SML/NJ com-
piler produces a slightly smaller heap image for this implementation, though
the signatures of the functors are larger; in execution time we could not mea-
sure a difference between the two variants.

In order to find out whether dependent functors introduce a run-time over-
head at all, we packed all parser modules into a single functor. This func-
tor, having a size of more than 300 KB of source code, certainly violates the
paradigm of modularized, well-structured programs. Despite that, its execu-
tion speed is not at all higher than that of the hierarchical functors. Going even
one step further, we defunctorized this large parser module, making it explic-
itly dependent on a fixed set of Hooks, Dtd, Resolve and Options structures. The
resulting program is exactly as fast as the implementation with the functor
hierarchy. We can therefore attest that SML functors are a very elegant means
of program modularization without sacrificing efficiency.

2.8.5 Building Applications with fxp

fxp provides a rich information set through its hooks interface. Many applica-
tions, however, are only interested in a subset of that information: A formatter
is probably not interested in comments, and a querying tool will only search
the document instance and ignore the DTD. Therefore we provide a set of
hooks that simply return the application data unchanged:

structure IgnoreHooks =
struct

fun hookError(a,) =a
fun hookWarning(a,) =a
fun hookStartTag(a,) =a
...
fun hookXml(a,) =a
fun hookFinish a =a

end

These functions are polymorphic: They do not depend on the type of the ap-
plication data and can thus be used with arbitrary types. The only exception
is hookFinish which requires types AppData and AppFinal to be equal. An ap-
plication must now only define the hooks that have a different behavior. E.g.,
the hooks for a validator are implemented in a few lines, because it only prints
errors and warnings but ignores all other events:

structure CheckHooks =
struct

open TextIO Errors IgnoreHooks

CHAPTER 2. IMPLEMENTATION OF FXP 75

type AppData =OS.Process.status

fun message(pos,msg) =output(stdErr,Position2String pos∧”: ”∧msg)

fun hookError (,(pos,err)) =
OS.Process.failure before message(pos,errorMessage err)

fun hookWarning (status,(pos,warn)) =
status before message(pos,warningMessage warn)

end

Except for hookError and hookWarning, all hooks are taken over from structure
IgnoreHooks. Another example is the application already mentioned on page 69:
It collects all attributes named href. For this purpose we defined a structure
HrefDtd, hard-coding this attribute name to a constant index hrefIdx. This is used
in the definition of the hooks:

structure HrefHooks =
struct

open Base HrefDtd IgnoreHooks

type AppData = UniChar.Vector list
type AppFinal = AppData

fun findHref nil = NONE
| findHref ((idx,attPres) :: rest) =

if idx<>hrefIdx then findHref rest
else case attPres

of AP PRESENT(vec,) ⇒ SOME vec
| AP DEFAULT(vec,) ⇒ SOME vec
| ⇒ findHref rest

fun hookStartTag (a,(, , ,attSpecs,)) =
case findHref attSpecs

of NONE ⇒ a
| SOME x ⇒ x::a

val hookFinish = rev
end

In order to identify a href attribute, function findHref need only compare its
index with hrefIdx. Note that due to the accumulative nature of the AppData
argument, the attribute values are collected in reverse order. Therefore func-
tion hookFinish is defined to be the list reversing function and reestablishes the
original order.

2.8.6 Implementing a Tree-Based Interface

The hooks interface of fxp its event-based; nevertheless a tree-based interface
can easily be implemented on top of the hooks. Figure 2.20 shows an imple-
mentation of such an interface. For brevity, it has only a restricted informa-
tion set: It ignores the DTD, comments, processing instructions and the entity
structure of the document. It is, however, easy to extend the implementation
to supply all this information.

The Tree data type is simple: A tree is either a piece of text or an element
consisting of a start-tag and a list of trees as content. The application data
represents the partial document tree constructed so far. It contains in its stack

76 2.8. The Programming Interface

structure TreeData =
struct

exception IllFormed

type Tag = int ∗ Base.AttSpec list
datatype Tree = TEXT of UniChar.Vector

| ELEM of Tag ∗ Content
withtype Content = Tree list

end

structure TreeHooks =
struct

open IgnoreHooks TreeData UniChar

type AppData = Content ∗ (Tag ∗ Content) list
type AppFinal = Tree

val appStart = (nil,nil)

fun hookStartTag ((content,stack), (, ,elem,atts,empty)) =
if empty then (ELEM ((elem,atts),nil) ::content,stack)
else (nil,((elem,atts),content) ::stack)

fun hookEndTag ((,nil),) = raise IllFormed
| hookEndTag ((content,(tag,content’) ::stack),) =
(ELEM (tag,rev content) ::content’,stack)

fun hookData ((content,stack),(, ,vec,)) =
(TEXT vec::content,stack)

fun hookCData ((content,stack),(, ,vec)) =
(TEXT vec::content,stack)

fun hookCharRef ((content,stack),(, ,c)) =
(TEXT(Data2Vector [c]) ::content,stack)

fun hookFinish ([elem],nil) = elem
| hookFinish = raise IllFormed

end

functor ParseTree (structure Dtd : Dtd
structure Options : Options
structure Resolve : Resolve) :

sig
val parseTree : Uri.Uri option → Dtd.Dtd option → TreeData.Tree

end
= struct

structure Parser = Parse (structure Dtd = Dtd
structure Hooks = TreeHooks
structure Options = Options
structure Resolve = Resolve)

open Parser TreeHooks

fun parseTree uri dtd = parseDocument uri dtd appStart
end

Figure 2.20: A simple tree-based interface on top of hooks.

CHAPTER 2. IMPLEMENTATION OF FXP 77

component for each ancestor element of the current position, its start-tag to-
gether with the list of its – already complete – left siblings; component content
holds the children of the current element that are known so far. At the begin-
ning of the parse both components are empty. After the whole document has
been parsed, the stack must be empty and a single element tree must have been
constructed. In this case function hookFinish returns that element; otherwise it
raises an exception.

The three functions hookData, hookCData and hookCharRef add the piece of
text reported to them to the content of the current element. The hook for a
start-tag pushes that tag together with the content of the current element onto
the stack. The element started by that tag now becomes the current element.
Function hookEndTag reverses the content of the current element in order to
compensate for the reversing effect of accumulation. Its tag is popped from the
stack and combined with its content. The constructed tree is then prepended
to the content of the parent element which now becomes the current element.

2.8.7 Catalog Support

The parser functor expects as one of its parameters a structure Resolve. This
structure defines a single function resolveExtId which generates a system iden-
tifier, i.e., a URI, from an external identifier. It raises exception NoSuchFile if that
is not possible. The simplest implementation of this function is to combine the
system identifier and the base URI that are part of the external identifier (cf.
2.6.2):

structure ResolveNull : Resolve =
struct

open Errors Uri

fun resolveExtId (pub,sys) =
case sys

of NONE ⇒ raise NoSuchFile ”No system identifier available”
| SOME (base,file) ⇒ uriJoin(base,file)

end

On the other hand, structure Resolve can also be used to implement catalog
support. In this case function resolveExtId searches a catalog for an entry match-
ing the external identifier. The implementation of a suitable data structure for
catalogs and a search routine is rather technical and therefore left out here.
Note only that function resolveExtId must access the catalog through a global
variable because the external identifier is its only argument. Parsing of the cat-
alog and initialization of the catalog data structure must be performed either
by side-effects in resolveExtId, or by an initialization procedure before the start
of the parser.

Parsing a catalog is itself an XML application similar to the href attribute
collector in 2.8.5: An XML catalog is according to a DTD that is at least a super-
set of the following:

78 2.8. The Programming Interface

XML Example 19

<!ELEMENT Map ANY>
<!ATTLIST Map PublicId CDATA #REQUIRED

HRef CDATA #REQUIRED>

<!ELEMENT Remap ANY>
<!ATTLIST Remap SystemId CDATA #REQUIRED

HRef CDATA #REQUIRED>

<!ELEMENT Delegate ANY>
<!ATTLIST Delegate PublicId CDATA #REQUIRED

HRef CDATA #REQUIRED>

<!ELEMENT Extend ANY>
<!ATTLIST Extend HRef CDATA #REQUIRED>

<!ELEMENT Base ANY>
<!ATTLIST Base HRef CDATA #REQUIRED>

Everything except for the elements and attributes in these declarations is con-
sidered a comment and ignored when parsing a catalog. The hooks need only
find these elements and extract the required attributes in order to assemble the
catalog entries.

Chapter 3

Analysis, Comparison and
Discussion

In this chapter, we analyze the run-time behavior of fxp and compare it to that
of XML parsers written in other programming languages. We conclude by crit-
ically discussing the choice of SML as the implementation language.

3.1 Run-Time Analysis and Comparison

In this section, we analyze the execution time of fxp with respect to three areas
of interest: First, we investigate how much the single modules contribute to
the overall run-time. We then examine the effect of two optimizations on the
execution time. Finally we compare fxp’s execution speed to other publicly
available XML parsers.

3.1.1 Profiling the Parser

In order to optimize fxp, we are interested in those parts of the program that
contribute the largest share to the execution time of the parser. We can expect
to obtain the largest effect from optimizations in these parts. In order to detect
these spots, we profiled the execution of the validator from 2.8.5. Since it adds
no functionality to the parser, we called this program fxp; we used it for all
statistics in this section. Using the profiler of the SML/NJ system we tracked
the execution of fxp on four different input documents:

rec is the XML recommendation coded in XML [W3C98b]. Its size is about 185
KB, 30 of which constitute the DTD; slightly more than 100 KB are char-
acter data in content, i.e., the markup quota is around 45%. The encoding
is LATIN1.

data-64 is derived from rec by repeating each piece of character data in its
content 64 times; it is approximately 6.7 MB large; due to the large
amount of character data, its markup quota is very low.

cjk was created by concatenating the document instances of the 19 parts of
the Web CJK-English Character Dictionary [Mul99]. With only 5 KB its
DTD is very small in relation to the document’s size of nearly 3 MB. This

79

80 3.1. Run-Time Analysis and Comparison

Rest of the UNICODE interface

in mixed content
Parsing of character data

Interface between entity manager
and UNICODE interface (Decode)

Parsing of content other
than character data

DTD Tables

Parsing of tags including
processing of attribute values

Garbage Collection

Everything else

12.64

rec

20.92

data-64

17.88 13.24

statscjk

7.29

11.88
18.76

24.02 7.24
11.34

11.74

37.90

20.80

12.27

21.21

15.85 12.84

10.93

11.22

14.26

16.63

26.32

10.52

Figure 3.1: The distribution of fxp’s execution time among specific program
parts (in %, values less than 7% not numbered).

document is a collection of dictionary entries with rather short pieces
of character data; the markup quota exceeds 60%. Because it contains
many East-Asian characters requiring 16 significant bits, this document
is encoded in UTF-16.

stats is an XML version of 1998 baseball statistics [Har99]. This document
consists mainly of markup; only 75 KB of character data with a total doc-
ument size of nearly 620 KB make a markup quota of about 88%. The
document is encoded in UTF-8 but contains only ASCII characters.

The profiling results are shown in Figure 3.1. Most notably, fxp spends a large
amount of its execution time in the Decode structure, which is the interface
between the UNICODE frontend and the entity manager. This structure con-
tributes about one quarter of the total execution time for the rec, cjk and stats
documents. Due to the high markup quota of these documents, the parser also
spends a considerable amount of time on parsing of tags and processing of
attribute values. The rest of the run-time is distributed relatively uniformly
among the other parts of the parser. Interestingly enough, garbage collection
consumes only a small amount of execution time.

The data-64 document is a more extreme case: Due to its very few markup
and long sequences of plain character data, it spends more than three quarters
of its run-time in the UNICODE frontend and for parsing character data; the
other program parts are nearly insignificant.

3.1.2 Imperative Optimizations

The profiling results showed that a major part of fxp’s execution time is spent in
the interface between the decoder and the entity manager; for documents with
few markup, parsing of character data contributes another very large share. In
2.3.6 we mentioned an optimization that uses an array for decoding a whole

CHAPTER 3. ANALYSIS, COMPARISON AND DISCUSSION 81

no array optimization
arrays for decoding

arrays for parsing character data
arrays for decoding and character data

0.49
0.46
0.50
0.46

11.32 10.40
11.54 10.28

10.56 9.74 8.95 8.12

9.12 8.42
9.40 8.40

6.77
6.76

7.07
6.75

ti
m

e
in

se
c.

0

5

10

rec rec-32 data-64 cjk stats

Figure 3.2: Effects of two imperative optimizations on execution times.

sequence of UNICODE characters at a time; a similar optimization was intro-
duced for parsing of character data in 2.7.5.

While both of these optimizations affect only a few lines of source code,
their impact on the execution time is significant. In order to measure the in-
crease in speed we built four versions of fxp: Incorporating none of these op-
timizations, either of them or both of them. The obtained programs were run
on the example documents from 3.1.1. Due to the relatively small size of the
rec and stats documents, the difference was hardly measurable. We therefore
used two other example documents:

rec-32 is the rec document with the document instance repeated 32 times,
encoded in LATIN1. Its size is about 5 MB with a markup quota of 33%.

stats-4 is the stats example with the document instance repeated 4 times,
encoded in UTF-8. Its is about 2.5 MB large and has a markup quota of
about 88%.

Figure 3.2 summarizes the measured execution times. The rec example is too
small for drawing conclusions. For most of the other examples, the optimiza-
tion of the UNICODE frontend alone (2nd column) speeds up the parser by
about 8%; only in case of the stats document, the difference is hardly perceiv-
able. On the other hand, the optimization for character data (3rd column) does
not speed up the parser in most cases: Only for the data-64 example with its
long chunks of character data a significant enhancement is achieved; for the
other documents it even seems to slow down the execution. The combina-
tion of both optimizations, however, achieves the largest speed-up in all cases,
ranging from less than 1% for stats-4 to nearly 24% for data-64 with an av-
erage of about 10%. This certainly justifies the use of imperative features for
these optimizations.

82 3.1. Run-Time Analysis and Comparison

3.1.3 Comparison to XML Parsers Written in Other Languages

As pointed out in Section 1.2.6, the XML area is dominated by software written
in imperative and object-oriented programming languages such as C, C++ or
JAVA. One of the goals in the development of fxp was to show that functional
programming languages are also well-suited for XML processing. We therefore
compared fxp with several other publicly available parsers.

3.1.3.1 Other Functional Programming Languages

Besides fxp, two other XML parsers are implemented in functional program-
ming languages: tony written in OCAML and HaXml written in HASKELL (cf.
1.2.6). Both lack support for many of XML’s features and must therefore be seen
as experimental software. Nevertheless, at least the compiler used for tony is
supposed to produce faster programs than the SML/NJ compiler: OCAML is
famous for executables twice as fast as those generated by SML/NJ.

Both tony and HaXml provide only a tree-based interface and come with a
pretty-printer as the simplest example application. In order to compare them,
we implemented a similar pretty-printer using fxp. Because tony and HaXml
implement only a subset of XML, most of our example documents can not
be processed by them; we therefore measured the execution times for pretty-
printing the following document:

hamlet is Shakespeare’s play coded in XML [Bos99]. It has a simple DTD and
a very flat structure – it is basically a sequence of verses. Its size is 273 KB
with a markup quota of about 36%.

Comparing execution times revealed that fxp is about 12 times faster than tony;
HaXml even runs 30-40 times longer than fxp, requiring nearly double the mem-
ory used by fxp. This strengthens our proposition that pure functional pro-
gramming languages such as HASKELL are unsuited for efficient implementa-
tion of I/O-intensive applications.

We conclude that, besides being the only complete XML implementation in
a functional language, fxp is also the only functional XML parser with a time
efficiency that allows for processing of large real-world documents.

3.1.3.2 Imperative and Object-Oriented Programming Languages

There is a vast number of publicly available XML parsers written in imperative
or object-oriented programming languages. The majority of these parsers is
non-validating. Validation is often considered an easy task as compared to
parsing and checking for well-formedness. Indeed, fxp is only slightly slower
in validating mode than in non-validating mode.

Nevertheless, the capability of validation has a significant impact on the
design of the software. In particular, data types representing the declarations
in the DTD must be far more complex if validation is performed. Moreover,
validation noticeably increases the size of the program. This can have a sub-
stantial influence on its run-time behavior: E.g., a non-validating parser might
be small enough to fit into the processor cache, making its execution extremely
fast, whereas a larger, validating parser might suffer from many cache misses
slowing down its execution. Comparing a non-validating parser to a validating
parser running in non-validating mode is therefore problematic.

CHAPTER 3. ANALYSIS, COMPARISON AND DISCUSSION 83

Size of Number of

DTD Instance Decl. Elem. Data
Char. Encoding Structure Data

Quota
rec 30 KB 155 KB 280 2306 104040 LATIN1 rich 54%
xsl 43 KB 358 KB 341 7328 224814 UTF-8 rich 54%

hamlet 1 KB 273 KB 22 6636 179656 UTF-8 flat 64%
stats 2 KB 600 KB 45 24698 75173 UTF-8 medium 12%
cjk-9 1.2 MB 5 KB 81 24031 126932 UTF-16 medium 21%

Table 3.1: Details of the example documents used for comparison.

For this reason, we compared fxp’s execution speed only with that of val-
idating parsers; still we could not take into account all of them. We chose to
compare fxp with the following parsers (cf. 1.2.6):

✧ the C-program rxp,

✧ sp, written in C++,

✧ xml4j, the JAVA parser from IBM, and

✧ xmlproc, implemented in PYTHON.

All of these parsers come with a validator as an example application. We can
therefore well compare them to fxp. Besides rec, hamlet and stats from the
previous sections, we used two additional documents:

xsl is an XML version of an early working draft of XSL [W3C99e, W3C98c],
the stylesheet language commonly used with XML. It is 358 KB large
with an additional DTD size of 43 KB; in structure being similar to rec,
its markup quota is about 46%. The character encoding is UTF-8 though
actually no non-ASCII characters occur in the document;

cjk-9 is part 9 of the Web CJK-English Character Dictionary [Mul99] used for
creating the cjk document. Encoded in UTF-16, it is about 1.2 MB large
and has a markup quota of nearly 80%. Because xmlproc does not support
multi-byte encoded characters, it can not parse this document.

All of these documents are real-world examples; their details are summarized
in Table 3.1. We measured the execution times of all programs on these doc-
uments, except for xmlproc which is not capable of processing cjk-9 due to
its encoding. The times were taken on a two-processor 400 MHz Pentium-II
running LINUX. Each program was run once for establishing it in the com-
puter’s hard-disk cache. Then it was executed 10 times on each document, and
the measured times were averaged, disregarding the largest and the smallest
value.

The results are illustrated in Figure 3.3. As expected, the C and C++ parsers
are by far the fastest. It is also no surprise that the PYTHON program is very
slow: PYTHON is a scripting language and was not designed for developing
large applications.

The most interesting comparison is between fxp and the JAVA parser: For
the smaller documents fxp is faster, but it is outperformed by xml4j for the
rather large cjk-9. The reason is that the employed JAVA Virtual Machine (JVM)

84 3.1. Run-Time Analysis and Comparison

xmlproc/PYTHONfxp/SML rxp/C xml4j/JAVAsp/C++

2.03
0.23

0.71
2.05

15.49

0.67 0.10
0.35

1.82
2.95

1.22
0.19

0.56
2.10

6.13

0.88
0.11

0.33
1.55

5.13

6

4

2

0

ti
m

e
in

se
c.

statsxml xsl hamlet

3.92

0.87
2.57

cjk-9

0.21

Figure 3.3: Execution time comparison with parsers written in imperative and
object-oriented languages.

uses a just-in-time compiler (JIT) for translating the program to native code,
which can be executed much more efficiently than interpreting the JVM byte-
code. It has therefore a rather long start-up phase of more than one second; the
larger the document, the less significant is this start-up time, and the faster is
the parser in comparison to fxp.

Even if we ignore the start-up time, the JAVA parser is still less than twice as
fast as fxp. If we use a JVM without a JIT, then fxp is faster than xml4j by a factor
between 1.5 and 2. With a compiler producing more efficient code than SML/NJ,
fxp could also compete with JIT-compiled JAVA parsers. The compiler for the
OCAML language [LRV+99], e.g., which is very similar to SML, generates native
code that is about twice as fast as a comparable program compiled by SML/NJ.

We believe that a performance comparable to that of the OCAML compiler
can also be achieved for SML. Some candidates for good future compilers are
Moscow ML, MLWorksTM and MLTON (see also 2.1). Particularly for compar-
ison to JAVA, the most challenging approach is MLj [BKR99], a compiler that
translates SML to the JVM byte-code. SML programs can then run on virtually
all platforms. Moreover, they can profit from the ongoing rapid development
and improvement of JVM implementations. It would be very interesting to
compile fxp with MLj and compare it to a JAVA parser. At the moment, how-
ever, fxp can not be compiled with MLj since this compiler does not support
SML functors; an extension of MLj to deal with functors is planned.

We can thus expect to have better SML compilers available in the near fu-
ture. Having this in mind, fxp can compete with parsers written in JAVA con-
cerning execution time. The benefits of functional programming such as higher
order functions, polymorphic types and referential transparency thus do not
force us to sacrifice reasonable execution speed.

On the other hand, SML programs are more concise than JAVA programs:
Without comments, fxp consists of 10000 lines of source code (365 KB), whereas

CHAPTER 3. ANALYSIS, COMPARISON AND DISCUSSION 85

xml4j requires nearly 22000 lines (888 KB) for implementing a comparable func-
tionality.

3.2 Discussion of the Implementation Language

In 2.1 we gave some arguments for the choice of SML as implementation lan-
guage. Most of these arguments are reinforced by the experiences we made
during the development of fxp.

SML’s module system supports well the development of large and com-
plex software. Its parametric modules and the polymorphic types give a high
reusability to the source code without impairing efficiency. SML has a very
comfortable type system with a type inference mechanism that relieves the
programmer from annotating the program with type information. Moreover,
with SML’s user-defined data-types the error-prone construction of data struc-
tures with pointers becomes obsolete. Another common source of errors are
misspellings or inadequate use of functions, e.g., with the wrong order of ar-
guments. Usually, the type system is strong enough to find most of these errors
at compile-time. Indeed, the first public release of fxp had only few bugs in it –
most of these did not arise from programming errors but were due to ambigu-
ities and obscurities in the XML recommendation.

The SML/NJ system is a comfortable development environment. Its inter-
preter is an excellent environment for interactive modular testing of programs.
Its separate compilation manager allows for fast recompilation after changing
a detail in the source code; thus it enables quick test iterations. The SML Basis
Library is a comfortable way of accessing system-level functions like I/O or
operating system processes in a platform-independent way.

On the other hand, we also missed a few features in SML. First of all, we
would wish to see UNICODE support built-in to SML or integrated into the
Basis Library. For fxp, we had to define our own types for UNICODE charac-
ters and strings together with functions for manipulating them. Many of these
functions can be implemented more efficiently by a system library. Moreover,
fxp’s source code is obscured by the use of hexadecimal notation for a UNI-
CODE character, like 0wx61, which is due to implementing it as a word. It would
be far more convenient to specify characters literally, e.g., #”a”, similar to con-
ventional ASCII characters.

Moreover, virtually all areas of computing are by now subject to interna-
tionalization efforts. UNICODE support will therefore become substantial not
only in the area of XML and document processing. In order for world-wide ac-
ceptance, a programming language will have to provide a standardized means
of processing UNICODE data. For instance, JAVA’s popularity for network pro-
gramming is partially based on its predefined UNICODE types and utilities.

Another deficiency of SML applies to functional programming in general:
In Section 2.7.3, we encountered a situation where a list of characters, accumu-
lated by a tail-recursive function, has reverse order. In order to reestablish the
original order before further processing, the list must be traversed a second
time by the rev function. Avoiding a non-tail-recursive function thus requires
two tail-recursive functions. This is a very common situation in functional pro-
gramming.

How could the additional reversing traversal of the list be avoided? In this

86 3.2. Discussion of the Implementation Language

special case, the result of the rev call is immediately converted into the more
compact vector representation. Function Data2Vector achieves this by a call to
the Basis Library function Vector.fromList. This function has to traverse the list
two times: once for determining the size of the vector to be allocated, and
once for filling that vector with the elements of the list. A modified version
fromRevList could incorporate the reversing of the list without loss of efficiency,
by simply changing the direction in which the vector is filled. Since accumulat-
ing list parameters are very common in functional programming, such a func-
tion would certainly be a sensible extension to the SML Basis Library. Other,
more comprehensive variants of generating vectors are surveyed in [Wad86]

The more general case is when the rev call is not followed by a conversion
to a vector. For this case we might let us inspire by the logic programming lan-
guage PROLOG: Here the problem would be solved with the help of difference
lists (see also, e.g., Section 1.5 of [O’K90]). This programming style exploits the
unification of logic programming. The end of a difference list is not the empty
list nil but a hole in form of an uninstantiated variable. This hole can later be
filled by instantiating the variable with a list, possibly having another hole at
the end. Finally, when the list is complete, the hole at the end is instantiated to
nil.

In SML, there are no logical variables and no unification. Implementing dif-
ference lists, however, does not require full unification. Instead of logic vari-
ables instantiated by unification, place-holders that can be assigned a value
would be sufficient. SML’s references are such place-holders, but they belong
to the imperative features of the language. Moreover, implementing a list with
references prevents application of built-in functions like Vector.fromList. There-
fore, the integration of an appropriate concept into SML would be desirable.
The write-once variables in [PE88] and the futures of MULTILISP [Hal85] and
OZ [Smo98] provide such extensions to functional languages. These, however,
are realized with the help of concurrency, introducing an administrative run-
time overhead that is probably larger than that of a non-tail-recursive function.
The implications of such an extension on other aspects of SML, like the type
system, the strict evaluation or exception handling, lie beyond the scope of this
writing.

Summarizing our experiences, we conclude that SML is well-suited for im-
plementing large software. Its sophisticated module system allows for good
modularization of the program and writing of highly reusable code. We found
that the non-pure features of SML were essential for achieving a reasonable effi-
ciency; their employment can, however, be limited to very few and small parts
of the program. Nonetheless, we found that SML needs improvement: Most of
all, we demand for UNICODE support and better compilers. Other extensions
to the language might ease programming but are not vital.

Part II

Forest Automata for Querying
Structured Documents

87

Introduction

A vital task in document processing is querying, i.e., extraction of parts from a
document that match a specified pattern. The query consists of two conditions:
the form of the requested parts (what to search) and the context in which they
must be (where to find it). For instance, if the document is the technical docu-
mentation of an aircraft, the query might request a section whose title contains
“safety regulations”. Since an aircraft is a complex vehicle, one might not be
interested in the safety regulations for the whole aircraft, but only in those for
the landing gear. Then one would specify as the context that the requested
section must occur within a chapter whose title contains “landing gear”.

After the advent of modern markup languages such as SGML and XML,
documents are hierarchically structured. The task of querying thus reduces to
the location of subtrees in a document tree, which fulfill a structural condition
and are in a specified context. Techniques from tree language and tree automata
theory can therefore be applied in order to perform the querying.

Structural conditions can be given as regular tree languages, which are a well-
studied area of language theory. A common way of specifying regular tree
languages is by tree grammars; they are recognized by bottom-up tree automata.
The theory of regular tree languages has many applications, for instance in
pattern recognition and code generation. Most applications, however, consider
ranked trees in which the number of the children of a node is determined by the
symbol at that node. This is different for documents: For instance, the number
of sections in a chapter is not fixed. Document trees are therefore non-ranked
trees: The children of a node are a sequence of arbitrarily many trees, that is,
a forest. In order to implement querying based on tree automata theory, the
concepts of tree grammars and tree automata must be transferred to the non-
ranked case.

Moreover, a formalism for specifying contextual conditions must be devel-
oped. Because the users of a querying tool are not necessarily computer scien-
tists, the specification language should be intuitive and easily understandable.
If possible, it should use the same formalism for specifying both the structural
and the contextual condition. Nonetheless, it should be expressive enough to
denote regular tree languages for the structural part; for the contextual condi-
tion, a comparable expressiveness is desired.

Of course, a querying algorithm must be efficient for being practical. In
document processing, this does not only refer to the time efficiency, i.e., the ex-
ecution speed of the program. Due to the possibly immense size of a document
(for instance an encyclopedia), it might not fit into the physical memory of the
computer. For such large documents it is desirable to perform the querying
without loading the whole document into memory. Instead it should happen
“on the fly” by a single pass through the document tree. This traversal must

89

90 INTRODUCTION

be in the same order as the sequential representation of the document, that is
in depth-first, left-to-right order. Due to the expressiveness of the query lan-
guage, we can not expect that this is possible for all queries but at least for a
subclass of sufficiently simple queries.

In this work we present a querying algorithm fulfilling the above desiderata.
From the concept of tree grammars we derive the formalism of forest grammars
by allowing regular expressions on right-hand sides of productions. The regu-
lar expressions account for the arbitrary number of children allowed for a node.
We use forest grammars as a uniform method for specifying both structural
and contextual conditions. We then extend forest grammars with conjunctions
and negations. This increases the succinctness but not the expressiveness of the
grammars: They describe the regular forest languages.

In order to implement forest grammars, we introduce the class of bottom-
up forest automata. We show that these forest automata recognize exactly the
regular forest languages. Then we adapt the traversing order of an XML parser
and enhance the forest automata with a pushdown. The resulting class of
pushdown forest automata has the interesting property that an automaton can
be made deterministic in spite of its pushdown. Deterministic pushdown au-
tomata are significantly more succinct than their bottom-up counterparts.

On the basis of pushdown forest automata, we present an algorithm which
implements a query by two consecutive runs of pushdown automata; the first
one traverses in left-to-right order and the second one in right-to-left order, or
vice versa. We also identify an important subclass of queries for which a single
run suffices, namely right-ignoring grammars. These grammars are such that
only the left part of the context must be verified; the right part can be safely
skipped because it is always fulfilled.

Given this querying algorithm, we adapt it to the practical requirements
of XML processing: We add support for matching text and handling of XML
attributes, as well as some other XML-specific features. The resulting speci-
fication formalism are query grammars. Since grammars are unintelligible for
non-computer scientists, we develop an alternative pattern syntax, which can
express most queries more intuitively. The simplicity of this pattern language,
however, is at the cost of expressiveness: It can not specify all regular queries.

We implemented our querying algorithm in the functional programming
language SML, based on the XML parser fxp described in Part I. The program
is reasonably efficient and proves another time that SML is well-suited for im-
plementing practical applications.

We proceed as follows: In Chapter 4 we introduce the basic concepts: regular
expressions and non-ranked trees and forests. Chapter 5 defines the regular
forest languages by forest grammars. Chapter 6 introduces forest automata
and pushdown forest automata and shows how structural conditions are im-
plemented with these automata. Chapter 7 establishes the concept of context
and presents the querying algorithm. It also explains the extensions to the
grammar formalism and the one-pass algorithm. The following chapter deals
with the particularities of XML documents and introduces the alternative pat-
tern syntax. Finally, Chapter 9 describes the implementation in SML and draws
a conclusion.

Einführung

Eine der wichtigsten Aufgaben in der Dokumentenverarbeitung ist das Suchen
(Querying) in Dokumenten. Dabei werden Teildokumente extrahiert, die ein
angegebenes Muster erfüllen. Die Anfrage stellt zweierlei Bedingungen, zum
einen an die Form der Teildokumente (was wird gesucht?), und zum ande-
ren an den Kontext (wo wird gesucht?), in dem sie stehen. Ist das Dokument
z.B. die technische Dokumentation eines Flugzeugs, könnte die Anfrage nach
Abschnitten suchen, deren Titel das Wort “Sicherheitsbestimmungen” enthält.
Nun ist ein Flugzeug ein sehr komplexer Apparat, und man könnte nicht an
den Bestimmungen für das gesamte Flugzeug, sondern nur an denen für das
Fahrwerk interessiert sein. Sinnvollerweise würde man dann als Kontext an-
geben, dass der Abschnitt innerhalb eines Kapitels vorkommt, dessen Titel das
Wort “Fahrwerk” enthält.

Aus der Sicht moderner Dokumenten-Auszeichnungssprachen wie SGML
und XML sind Dokumente hierarchisch strukturiert. Den Vorgang des Que-
rying kann man deshalb auch als die Lokalisierung von Teilbäumen in einem
Dokument-Baum auffassen, die eine strukturelle und eine kontextuelle Bedin-
gung erfüllen. Zur Lösung dieser Aufgabe können Techniken aus der Theorie
der Baumsprachen und Baumautomaten herangezogen werden.

Eine strukturelle Bedingung kann als reguläre Baumsprache angegeben wer-
den; eine häufig verwendete Spezifikationsmethode für reguläre Baumspra-
chen sind z.B. Baumgrammatiken. Die Klasse der regulären Baumsprachen
wird von Baumautomaten akzeptiert. Diese Sprachen und Automaten sind ein
gut erforschtes Gebiet in der Theorie der formalen Sprachen: Sie wurden z.B.
im Rahmen der Code-Erzeugung und der Mustererkennung ausführlich unter-
sucht. In den meisten Anwendungen werden allerdings Bäume fester Stelligkeit
untersucht, in denen die Anzahl der Söhne eines Knotens durch das Symbol an
diesem Knoten festgelegt ist. In Dokument-Bäumen ist das nicht so: Beispiels-
weise variiert die Anzahl der Abschnitte von Kapitel zu Kapitel. Dokument-
Bäume haben daher beliebige Stelligkeit: Die Söhne eines Knotens sind eine
Folge von beliebig vielen Bäumen, also ein Wald. Deshalb müssen die Konzepte
der Baumgrammatiken und der Baumautomaten auf den Fall beliebiger Stel-
ligkeit übertragen werden.

Des weiteren ist ein Formalismus für die Spezifikation der kontextuellen
Bedingung nötig. Da die Benutzer einer Querying-Software im allgemeinen
keine Informatiker sind, sollte der Formalismus intuitiv und leicht verständ-
lich sein. Wenn möglich, sollte sowohl für die strukturelle als auch für die kon-
textuelle Bedingung ein und der selbe Spezifikations-Formalismus verwendet
werden. Trotz allem sollte dieser Formalismus ausdrucksstark genug sein,
um reguläre Baumsprachen für die strukturelle Bedingung anzugeben; für die
kontextuelle Bedingung ist eine vergleichbare Ausdrucksstärke gefordert.

91

92 EINFÜHRUNG

Ein Querying-Algorithmus muss natürlich effizient sein, um in der Pra-
xis Anwendung zu finden. Damit ist nicht nur die Geschwindigkeit des Pro-
gramms gemeint: Da ein Dokument (z.B. ein Lexikon) immens groß sein kann,
ist es möglich, dass es nicht in den physikalischen Speicher des Rechners passt.
Für solch große Dokumente ist es erforderlich, die Suche auszuführen, ohne
das gesamte Dokument vorher in den Speicher zu laden. Statt dessen muss
der Algorithmus “on the fly” ablaufen, d.h. in einem einzigen Durchlauf durch
das Dokument. Die Reihenfolge dieses Durchlaufs muss mit der sequentiel-
len Repräsentation des Dokuments übereinstimmen, die einem Links-Rechts-
Tiefendurchlauf entspricht. Wegen der Ausdrucksstärke der Anfragesprache
ist dies natürlich nicht in allen Fällen, zumindest aber für eine Klasse von hin-
reichend einfachen Anfragen möglich.

Diese Arbeit stellt einen Querying-Algorithmus vor, der die aufgeführten An-
forderungen erfüllt. Aus dem Konzept der Baumgrammatiken entwickeln wir
den Formalismus der Waldgrammatiken, indem wir reguläre Ausdrücke auf den
rechten Seiten von Produktionen zulassen. Diese regulären Ausdrücke sind
notwendig, um über die beliebig vielen Söhne eines Knotens zu argumentie-
ren. Wir verwenden Waldgrammatiken als einheitliche Spezifikationsmetho-
de sowohl für strukturelle als auch für kontextuelle Bedingungen. Außerdem
erweitern wir die Grammatiken um Konjunktion und Negation. Diese Erweite-
rung erhöht zwar die Präzision der Grammatiken, d.h. die Kürze der Beschrei-
bung, nicht aber ihre Ausdrucksstärke: Sie beschreiben reguläre Waldsprachen.

Für die Implementierung von Waldgrammatiken führen wir die Klasse der
Waldautomaten ein. Wir zeigen, dass diese Automaten genau die regulären
Waldsprachen akzeptieren. Durch das Hinzufügen eines Kellers und das An-
gleichen der Durchlaufreihenfolge an die eines XML-Parsers entwickeln wir
die Automaten weiter und erhalten die Klasse der Keller-Waldautomaten. Ei-
ne interessante Eigenschaft dieser Automaten ist, dass sie trotz ihres Kellers
deterministisch gemacht werden können. Des weiteren sind deterministische
Keller-Waldautomaten bedeutend – bis zu einem exponentiellen Faktor – kom-
pakter als Waldautomaten ohne Keller.

Auf der Grundlage von Keller-Waldautomaten entwickeln wir einen
Querying-Algorithmus, der eine Anfrage mithilfe von zwei aufeinander fol-
genden Läufen je eines Automaten implementiert. Der erste dieser Automaten
läuft von rechts nach links, der zweite von links nach rechts durch das Do-
kument. Für eine wichtige Teilklasse von Anfragen, die rechts-ignorierenden
Grammatiken, genügt sogar ein einzelner Lauf. Für diese Grammatiken muss
nur der linke Teil des Kontexts überprüft werden. Der rechte Teil kann igno-
riert werden, denn er trifft immer zu.

Um diesen Querying-Algorithmus auf XML-Dokumente anzuwenden, pas-
sen wir ihn den praktischen Anforderungen von XML an. Insbesondere in-
tegrieren wir Unterstützung für Text und Processing Instructions sowie eini-
ge andere XML-spezifische Gesichtspunkte. Der resultierende Spezifikations-
Formalismus sind die Query-Grammatiken. Da Grammatiken für Nicht-
Informatiker unverständlich sind, entwickeln wir eine alternative Muster-
Syntax, die die meisten Anfragen intuitiver ausdrücken kann als Grammati-
ken. Die Einfachheit dieser Mustersprache hat allerdings ihren Preis: Nicht
alle regulären Anfragen können formuliert werden.

Schließlich beschreiben wir die Implementierung des Algorithmus in der

EINFÜHRUNG 93

funktionalen Programmiersprache SML und auf der Basis des XML-Parsers fxp,
der in Teil I beschrieben wurde. Das Programm ist durchaus effizient und lie-
fert einen weiteren Beweis für die gute Eignung von SML für die Implementie-
rung praktischer Anwendungen.

Chapter 4

Preliminaries

In this chapter we define regular expressions and regular word languages,
needed for defining forest grammars and text patterns later on. Then we intro-
duce the notion of non-ranked trees and forests and relate them to conventional
ranked trees.

4.1 Regular Expressions and Word Languages

An alphabet Σ is a finite set of symbols. A regular expression defines a set of
words from Σ∗. The setRΣ of regular expressions r over Σ is given as follows:

r ::= /O | ε | a ∈ Σ | (r?) | (r∗) | (r1r2) | (r1 r2)

where r1 and r2 are regular expressions. For brevity we often omit the paren-
theses, with the convention that ∗ and ? have precedence over concatenation
which itself binds stronger than . As an abbreviation, we also use r+ instead
of rr∗. The number of occurrences of symbols from Σ in r is |r|

Σ
; the size |r| of

a regular expression is |r|
Σ

plus the number of occurrences of /O, ε, ∗, ?, and ·
(concatenation) in r. The language [[r]]R ⊆ Σ∗ of a regular expression r is defined
inductively on the structure of r:

[[/O]]R = /O [[r∗]]R = {w1 . . . wn | wi ∈ [[r]]R , n > 0}
[[ε]]R = {ε} [[r1r2]]R = {w1w2 | w1 ∈ [[r1]]R , w2 ∈ [[r2]]R}
[[a]]R = {a}, a ∈ Σ [[r1 r2]]R = [[r1]]R ∪ [[r2]]R
[[r?]]R = {ε} ∪ [[r]]R

Note that regular expressions of the form r? are equivalent to (r ε). It is easy
to see that each regular expression r can be rewritten with the help of ? to an
equivalent regular expression r′, which is at most as large as r, and which is
either ε or does not contain ε at all. With a similar transformation we can
ensure that a regular expression r is either /O or /O does not occur in r at all.
W.l.o.g., we will therefore assume for the remainder that all regular expressions
obey these two restrictions.

A set L ⊆ Σ∗ is called regular if it is the language of a regular expression. It is
a long-known fact [Kle56] that the regular languages are exactly those accepted
by finite automata. A non-deterministic finite automaton (NFA) A = (Q, q0, F, δ)
consists of a set of states Q, an initial state q0 ∈ Q, a set of final states F ⊆ Q

94

CHAPTER 4. PRELIMINARIES 95

and a transition relation δ ⊆ Q× Σ×Q. A word a1 . . . an ∈ Σ∗ is accepted by A
if there are q1, . . . , qn+1 ∈ Q such that q1 = q0, (qi , ai , qi+1) ∈ δ for 1 6 i 6 n
and qn+1 ∈ F. The language LA of an NFA A is the set of words it accepts.

Theorem 4.1: A language is regular iff it is accepted by an NFA, more precisely:

(1) For each regular expression r, there is an NFA A with LA = [[r]]R .

(2) For each NFA A, there is a regular expression r with [[r]]R = LA.

Proof: A construction for (2) is given in Section 3.3 of [Woo87] together with a
correctness proof. (1) is a direct consequence of the next proposition (4.1). �

4.1.1 The Berry-Sethi Construction

A well-studied method for obtaining an NFA for a given regular expression
is the Berry-Sethi construction [BS86]. It is based on an algorithm for direct
construction of a deterministic automaton introduced by [NY60, Glu61]. Sev-
eral variants of the algorithm are discussed and related to each other in, e.g.,
[Wat93, CZ96].

For a regular expression r, the Berry-Sethi construction yields an NFA
Berry(r) = (Q, q0, F, δ). The construction is as follows: If r = ε then choose
some arbitrary q0 and return ({q0}, q0, {q0}, /O); for r = /O, return ({q0}, q0, /O, /O).
Otherwise r does not contain ε or /O. Then perform the following steps:

1. Choose a suitable set P of positions p with |P| = |r|
Σ
.

2. Assign a unique position to each occurrence of a symbol from Σ in r.
Construct a new regular expression }r over P by replacing each symbol a
in r with its assigned position p; a is then the underlying symbol χ(p) of p.
Note that all subexpressions of }r are pairwise different.

3. Compute for each subexpression r′ of }r a flag Empty(r′), indicating
whether ε ∈ [[r′]]R , as follows:

Empty(p) = false
Empty(r1?) = true
Empty(r1

∗) = true
Empty(r1r2) = Empty(r1) ∧ Empty(r2)

Empty(r1 r2) = Empty(r1) ∨ Empty(r2)

4. Compute for each subexpression r′ of }r the set First(r′) of positions that
can start a word in [[r′]]R :

First(p) = {p}
First(r1?) = First(r1)
First(r1

∗) = First(r1)
First(r1 r2) = First(r1) ∪ First(r2)

First(r1r2) = First(r1) ∪
{

First(r2) if Empty(r1)
/O otherwise

96 4.1. Regular Expressions and Word Languages

5. Compute for each subexpression r′ of }r the set Follow(r′) of positions
that can follow a word w′ ∈ [[r′]]R within a word in [[}r]]R . Moreover, if
Follow(r′) contains the auxiliary symbol # /∈ P then w′ can finish a word
in [[}r]]R . In the original construction by [NY60], the positions that can end
a word are computed as an explicit set Last. Incorporating their compu-
tation into Follow is due to [BS86]. Follow is computed in a top-down
traversal of the expression:

r′ = }r : Follow(r′) = {#}
r′ = r1? : Follow(r1) = Follow(r′)
r′ = r1

∗ : Follow(r1) = Follow(r′) ∪ First(r1)
r′ = r1 r2 : Follow(r1) = Follow(r2) = Follow(r′)

r′ = r1r2 : Follow(r2) = Follow(r′)

Follow(r1) = First(r2) ∪
{

Follow(r′) if Empty(r2)
/O otherwise

6. Choose a q0 /∈ P, let Q = {q0} ∪ P and F = {p ∈ P | # ∈ Follow(p)} ∪ F0,
where F0 = {q0} if Empty(}r) is true and F0 = /O otherwise. The transition
relation δ is given by

δ = {(q0, χ(p), p) | p ∈ First(}r)}
∪ {(p, χ(p1), p1) | p, p1 ∈ P, p1 ∈ Follow(p)}

Proposition 4.1: For a regular expression r, let A = (Q, q0, F, δ) = Berry(r).
Then LA = [[r]]R . The proof is given in [BS86]. �

The Berry-Sethi construction produces an NFA traversing the input word from
left to right. Analogously, the reverse Berry-Sethi construction yields an NFA
Berry�(r) which consumes it input from right to left. For this algorithm, we
must modify the Berry-Sethi construction for the case of concatenation: The
roles of the two subexpressions in the computation of First and Follow are
switched:

First(r1r2) = First(r2) ∪
{

First(r1) if Empty(r2)
/O otherwise

and for r′ = r1r2:

Follow(r1) = Follow(r′)

Follow(r2) = First(r1) ∪
{

Follow(r′) if Empty(r1)
/O otherwise

Proposition 4.2: For a regular expression r, let A = Berry�(r). Then w ∈ LA iff
w� ∈ [[r]]R for all w ∈ Σ∗, where (a1 . . . an)� = an . . . a1. �

Example 4.1: Let r = (a∗c aa?b). It is easy to see that [[r]]R = {ab, aab, c, ac, aac,
aaac, . . .}. Let us perform the Berry-Sethi construction for r:

1. Since r has five occurrences of symbols, choose P = {1, . . . , 5} for the
positions.

2. Construct }r = (1∗2 34?5). Thus χ(1) = χ(3) = χ(4) = a, χ(2) = c and
χ(5) = b.

CHAPTER 4. PRELIMINARIES 97

Final
states

Non-final
states

(a) a

a

c

baa

b

(b)

c

a

a

b a a

a

c

state
Initial

21

3 5

40

1

5 3

4

2

0

Figure 4.1: The Berry-Sethi construction (a) and the reverse Berry-Sethi con-
struction (b) for r = (a∗c aa?b).

3. Empty(1) = . . . = Empty(5) = false;
Empty(1∗) = Empty(4?) = true;
Empty(1∗2) = Empty(34?) = Empty(34?5) = Empty(}r) = false.

4. First(p) = {p}, 1 6 p 6 5;
First(1∗) = {1}; First(4?) = {4};
First(1∗2) = {1, 2}; First(34?) = First(34?5) = {3};
First(}r) = {1, 2, 3}.

5. Follow(}r) = Follow(1∗2) = Follow(34?5) = {#};
Follow(2) = {#}; Follow(1∗) = {2}; Follow(1) = {1, 2};
Follow(5) = {#}; Follow(34?) = {5};
Follow(4) = Follow(4?) = {5}; Follow(3) = {4, 5}

6. With q0 = 0, we obtain Q = {0, . . . , 5}, F = {2, 5}, and δ = {(0, a, 1),
(0, c, 2), (0, a, 3), (1, a, 1), (1, c, 2), (3, a, 4), (3, b, 5), (4, b, 5)}. Berry(r) is
illustrated in Figure 4.1, case (a).

The reverse Berry-Sethi construction for r yields the NFA in Figure 4.1(b). �

Both the Berry-Sethi construction and the reverse Berry-Sethi construction
have an interesting and important property: All transitions leading to a state p
are labeled with the same symbol, namely χ(p):

Proposition 4.3: For a regular expression r, let (Q, q0, F, δ) be the NFA pro-
duced by Berry(r) or Berry�(r), and let (q1, a1, q), (q2, a2, q) ∈ δ. Then a1 = a2.

4.2 Trees and Forests

This section introduces the basic notions of trees and forests and relates them
to conventional, ranked trees.

Let Σ be an alphabet. The sets TΣ of trees t and FΣ of forests f over Σ are
given as follows:

t ::= a〈 f 〉, a ∈ Σ f ::= t1. . . tn, n > 0

For brevity, we often omit the alphabet Σ in names, writing simply T and
F instead of TΣ and FΣ. Throughout the remainder of this writing, we use
the following naming conventions: a, a1, . . . denote elements from Σ; we use
t, t1, t′, . . . for trees and f , f1, f ′, . . . for forests.

98 4.2. Trees and Forests

...

t: η1(t):

t1 tn

η1(t2)

η1(t1)

η1(tn)

t2
#

#

#

$

a a

Figure 4.2: Unique representation of trees as ranked trees.

Note that, in contrast to graph theory, a forest is an ordered sequence of
trees rather than an unordered set. The empty forest, i.e., the empty sequence
of trees, is usually written as ε. The occurrences of symbols from Σ in a tree t
are also called nodes. For a tree t = a〈 f 〉, this occurrence of a is the root node of
t and sym(t) = a is the symbol or label of that node.

For t = a〈t1. . . tn〉, the trees ti are called the successors or children of t,
whereas t is the parent of ti. A leaf is a tree a〈〉 without children and is of-
ten abbreviated to a. A descendant t′ of a tree t is either a child of t or a child of a
descendant of t; t is then an ancestor of t′. For a forest t1. . . tn and i 6= j, the tree
ti is called a sibling of t j; if i < j then it is a left sibling, otherwise a right sibling.
When no ambiguities can arise, we often identify trees with their root nodes,
speaking of children, parents, ancestors, etc. of nodes. Similarly, we sometimes
denominate nodes by their symbols.

4.2.1 Relation to Ranked Trees

The elements of Σ are not ranked: A node in the tree can have arbitrarily many
children. This is different from conventional tree theory, where each symbol a
is assigned a fixed rank ρ(a); each tree labeled a must then have exactly that
many children. For clarity, we will always call this kind of trees ranked trees.

Allowing arbitrarily many children for a node does not enhance expressive-
ness of trees: Each tree or forest can be uniquely represented as a ranked tree.
One possible way of doing so is to extend Σ by two additional symbols:

Σ# = Σ ∪ {#, $} with ρ(a) =

 1, for a ∈ Σ
2, for a = #
0, for a = $

We can now map trees and forests to ranked trees with a function η1 : TΣ ∪
FΣ → TΣ# as illustrated by Figure 4.2:

η1(ε) = $
η1(t f) = #〈η1(t)η1(f)〉

η1(a〈 f 〉) = a〈η1(f)〉

η1 expands the sequence of children of a tree t into a spine of #-nodes, with $ at
the tip of the spine; the children of t sit on the ribs of the spine. Note that this
is exactly how lists are represented in declarative programming languages. η1

CHAPTER 4. PRELIMINARIES 99

η3(t1)

η3(t2)

η3(tn)

η2(t): η3(t):

η2(tn)

η2(tn−1)

η2(t1)

#

#

#

a

#

#

#

$

a a

Figure 4.3: Alternative ways of mapping trees to ranked trees.

is an injective mapping: Each tree or forest is uniquely represented and can be
reconstructed from its ranked-tree image.

Note that η1 is only one possible mapping to ranked trees; many others are
possible and might be as sensible as η1. Figure 4.3 shows two of them: η2 is
very similar to η1; the main difference is that a bottom-up traversal encounters
a node’s left-most child first in η2(t), whereas in η1(t) the right-most child is
seen first. The representation by η3 has the advantage that both a bottom-up
and a top-down traversal see the symbol a before visiting the node’s children.
However, the resulting trees are not strictly ranked: Each symbol from Σ occurs
with ranks 0 and 1.

Documents with their arbitrary number of children could thus be modeled
by ranked trees; yet the non-ranked approach corresponds more closely to the
document processing view. Moreover, the ranked representation prescribes the
order in which a bottom-up automaton visits the children of a node. Concep-
tually, such an automaton proceeds to a node from all of its children simulta-
neously in a single step. We will see later that it is sensible to abandon this
illusion: In an implementation, the children of a node must be processed in
some order, be it left-to-right or right-to-left. The representation of non-ranked
trees allows for both of these orders.

4.2.2 Structural Induction

The most important proof method for statements about trees and forests is
structural induction. In order to formally introduce this concept, we need the
notion of subtrees and subforests:

✧ each tree is a subtree of itself;

✧ if a〈t1. . . tn〉 is a subtree of t then so is ti for 1 6 i 6 n;

✧ for f = . . . ti . . ., the subtrees of ti are also subtrees of f .

✧ if f = t1. . . tn, then t1. . . ti is a left subforest and ti . . . tn is a right subforest of
f for 1 6 i 6 n;

✧ if t1 = a〈 f1〉 is a subtree of t or f and f2 is a left or right subforest of f1
then it is also a left or right subforest of t or f .

100 4.2. Trees and Forests

Corollary 4.1: (Principle of Structural Induction) Suppose we want to prove a
property AF f for all forests f ∈ F . Then it suffices to find a suitable property
AT and show the following:

(E) AF ε holds;

(F) If AT ti holds for 1 6 i 6 n, then so does AF t1. . . tn;

(T) AF f implies AT a〈 f 〉 for all a ∈ Σ.

AT and AF are called the induction invariants. Step (F) concludes from all trees
of a forest simultaneously. Sometimes it is desirable to proceed through these
trees in a certain order. This is reflected by replacing step (F) with either of the
following:

(R) If AT t and AF f are fulfilled, then so is AF t f ;

(L) If AT t and AF f are fulfilled, then so is AF f t.

(R) proceeds through the trees of a forest from right to left: It concludes from
a tree t and a right subforest f to the larger subforest t f ; analogously, (L) pro-
ceeds from left to right. Note that (E) is just a special case of (F) with n = 0.
Therefore, if we show (F) with n 6 0 then we do not need to verify (E).

4.2.3 Path Induction

The principle of structural induction gives us a means of arguing about a whole
tree or forest by reasoning about its subtrees and subforests. However, if we
want to prove a property for all subtrees of a forest f , we need a different tech-
nique: path induction. In order to introduce this proof method, we first need a
way of uniquely specifying a subtree located somewhere in a forest. In particu-
lar, if the same subtree occurs multiple times we must be able to distinguish the
different occurrences because they might have different properties. A straight-
forward way of identifying a subtree is by the path through all of its ancestors:
Let f be a forest. Then Π(f) ⊆ N∗ is the set of all paths π in f and is defined as
follows:

Π(ε) = /O
Π(t1. . . tn) = {iπ | π ∈ Π(ti), 1 6 i 6 n}
Π(a〈 f 〉) = {ε} ∪Π(f)

A path in f identifies one of f ’s subtrees: For π ∈ Π(f), f [π] is called the
subtree located at π and is defined as follows:

t[ε] = t for all t ∈ TΣ
a〈 f 〉[π] = f [π] for π 6= ε

t1. . . tn[iπ] = ti[π]

For a path π , we define last f (π) as the number of the right-most child of the
node located at π . Precisely, last f (π) = max{n | πn ∈ Π(f)}. Note that
last f (π) = 0 if π identifies a leaf.

Corollary 4.2: (Principle of Path Induction) For a given forest f0, suppose we
want to prove properties AF π for all paths π ∈ Π(f0) and and AT π for all
paths π ∈ Π(f0) \ {ε}. Then it suffices to show the following:

CHAPTER 4. PRELIMINARIES 101

(s) AF ε holds;

(f) AT π implies AF π , for π 6= ε.

(t) If AF π holds then so do AT π i for 1 6 i 6 last f0 (π).

If we are only interested in AT π for all π 6= ε, then it suffices to show:

(o) AT i holds for 1 6 i 6 last f0 (ε);

(d) AT π implies AT π i for 1 6 i 6 last f0 (π).

Having defined the preliminary concepts, we can now proceed to regular sets
of forests in the next chapter.

Chapter 5

Regular Forest Languages

Regular languages of ranked trees are a well-studied area of language theory.
Methods for specifying regular ranked-tree languages include projections of
local tree sets, algebraic approaches and tree grammars. For our purposes, the
grammar approach is most convenient, though we have to modify it in order
to deal with non-ranked alphabets.

5.1 Forest Grammars

A forest grammar over Σ is a tuple G = (X, r0, R) where X is a set of variables,
r0 ∈ RX is the start expression and R is a finite set of rules, also called productions,
of the form x → a〈r〉 with x ∈ X, a ∈ Σ and r a regular expression over X.
For brevity, if the context is clear, we often write simply x → a〈r〉 instead of
x→ a〈r〉 ∈ R.

In order to define the meaning of a forest grammar, we might use a genera-
tive approach: A grammar produces a forest by starting with the start expres-
sion and consecutively replacing a variable with the right-hand side of one of
its productions, until no more variables occur. In this very popular approach
taken by, e.g., [CDG+99] for ranked trees, the trees produced by a grammar
are constructed top-down, i.e., starting at the root and proceeding to the leafs.
A different approach is to construct them bottom-up, i.e., make up new trees
from already constructed ones, according to the productions of the grammar.
We follow this approach.

The meaning [[G]] : X → 2TΣ of a forest grammar G = (X, r0, R) assigns sets
of trees to the variables in X and is defined inductively on the structure of trees:

t = a〈t1. . . tn〉 ∈ [[G]] x iff there is an r ∈ RX and a word x1 . . . xn ∈ [[r]]R
with x→ a〈r〉 and ti ∈ [[G]] xi for 1 6 i 6 n

We can easily extend [[G]] to map regular expressions to forests:

[[G]] r = {t1. . . tn | there is a word x1 . . . xn ∈ [[r]]Rwith ti ∈ [[G]] xi}
The language of a forest grammar G = (X, r0, R) is then LG = [[G]] r0. A set of
forests is regular if it is the language of some forest grammar.

Example 5.1: For Σ = {a, b}, let G1 be the forest grammar ({x}, x+, R) with
R = {x → a〈x+〉, x → b〈ε〉}. The language of G1 is the set of all non-empty
forests where all leaves are labeled b and all other nodes have symbol a. �

102

CHAPTER 5. REGULAR FOREST LANGUAGES 103

... ...

...

...G1:

a

a

a

b b

a

a

a

bb

c-nodes
only

a-nodes
only

b-nodes
only

G2: b

b

b

...

G3:

abb b b

a b

a b a aa

Figure 5.1: Forests in the languages LG1 – LG3 from Examples 5.1 – 5.3.

Example 5.2: For Σ = {a, b, c}, let G2 be the tree grammar ({xa, xb, xc, x1}, r0, R)
with r0 = xa

∗(xb x1)xc
∗ and the following rules:

xa → a〈xa
∗〉 xc → c〈xc

∗〉
xb → b〈xb

∗〉 x1 → b〈xa
∗(xb x1)xc

∗〉
The language of G2 is the set of all forests such that

✧ there is exactly one path from the root to some node on which all nodes
are labeled b;

✧ all descendants of that node are labeled b;
✧ all nodes to the left of this path are labeled a;
✧ all nodes to the right of this path are labeled c.

This is illustrated by Figure 5.1. �

Example 5.3: For Σ = {a, b}, consider the grammar G3 = (X, x1, R) with X =
{x1, xa, xb} and the following rules:

x1 → a〈xb
∗xaxb

∗〉 xa → a〈〉
x1 → b〈xa

∗xbxa
∗〉 xb → b〈〉

LG3 is the set of all trees of depth 2, whose root symbol occurs exactly once at
the second level, i.e., all forests of the form a〈b. . . bab. . . b〉 or b〈a. . . aba. . . a〉.

�

The next lemma basically states that the meaning of a grammar G is a fix-point
of [[G]]. It is very helpful in structural induction proofs.

Lemma 5.1: Let G be a forest grammar. Then a〈 f 〉 ∈ [[G]] x iff x → a〈r〉 for
some r, and f ∈ [[G]] r. The proof is by definition of [[G]]. �

Forest grammars are a very natural and intuitive way of specifying regular
forest languages. The next section relates our notion of grammars to the gram-
mars of conventional, ranked-tree theory in order to obtain some closure re-
sults.

104 5.2. Closure Properties of Regular Forest Languages

5.2 Closure Properties of Regular Forest Languages

In Section 4.2 we related our notion of non-ranked trees and forests to conven-
tional, ranked trees and showed that each tree or forest can be uniquely rep-
resented as a ranked tree. A regular language of ranked trees can be specified
by a forest grammar with the restriction that right-hand sides of productions
have the form a〈x1 . . . xn〉 with n = ρ(a), and the start expression is a variable
x0. This form of a grammar, which we call ranked-tree grammar, is exactly the
normal form of regular tree grammars in [GS97]. There it is also shown that
the class of regular ranked-tree languages is closed under union, intersection
and complement. This result can be transferred to regular forest languages by
establishing a one-to-one relation between forest languages and ranked-tree
languages.

Proposition 5.1: For a regular forest language L, its image η1(L) is a regular
ranked-tree language. In other words: Let G = (X, r0, R) be a forest grammar
over Σ. Then a ranked-tree grammar G# over Σ# can be constructed with LG# =
η1(LG), where η1 is as in Section 4.2.1.

The construction is as follows: Let G = (X, r0, R) and {r1, . . . , rl} be the set of
regular expressions different from r0 occurring on right-hand sides of rules in
R. For each j = 0, . . . , l, let (Yj, y0, j, Fj, δ j) = Berry(r j). By a renaming of states,
we can easily ensure that Yi ∩ Yj = /O for i 6= j. Then G# = (X ∪ Y0 ∪ . . . ∪
Yl , y0,0, R#) with

R# = {x→ a〈y0, j〉 | x→ a〈r j〉 ∈ R}
∪ {y→ $ | y ∈ Fj for some j}
∪ {y→ #〈xy1〉 | (y, x, y1) ∈ δ j for some j}

It remains to show that η1(t) ∈ LG# iff t ∈ LG. This is easily done by structural
induction, with the help of Lemma 5.1 and Proposition 4.1. �

Example 5.4: Consider the grammar G1 from Example 5.1. It contains the two
regular expressions r0 = x+ and r1 = ε. The Berry-Sethi construction yields
the following NFAs:

r1 = ε:r0 = x+:

y2y0 y1
x

x

Thus G#
1 = ({x, y0, y1, y2}, y0, R#) with the following rules:

x→ a〈y0〉 y0 → #〈xy1〉 y1 → $
x→ b〈y2〉 y1 → #〈xy1〉 y2 → $ �

The converse case is more difficult: A ranked-tree grammar G# over Σ# can
produce trees that are not in η1(FΣ) and thus have no corresponding forest in
FΣ. Even if LG# ⊆ η1(FΣ), a single variable might have two rules x → a〈y1〉
and x→ #〈y2〉: There is no clear distinction between variables representing
trees and variables representing forests. Therefore we say that such a grammar
G# is in η1-normal form iff G# = (X ∪Y, y0, R#) with y0 ∈ Y, X ∩Y = /O and:

CHAPTER 5. REGULAR FOREST LANGUAGES 105

✧ z ∈ X and z1 ∈ Y for all z→ a〈z1〉 ∈ R#;

✧ z ∈ Y for all z→ $ ∈ R;

✧ z, z2 ∈ Y and z1 ∈ X for all z→ #〈z1z2〉 ∈ R.

Proposition 5.2: For each regular ranked-tree language L ⊆ η1(FΣ) there is a
ranked-tree grammar G# such that G# is in η1-normal form and LG# = L.

We only sketch the proof: Because L is regular, there is a ranked-tree gram-
mar G# = (Z, z0, R) with LG# = L. We can bring G# into reduced form by
eliminating all non-productive and unreachable variables. (cf. Section 2.1 of
[CDG+99]). The reduced grammar Gr must be in η1-normal form because oth-
erwise LGr 6⊆ η1(FΣ), due to the following argument: Suppose that there is a
variable z which has two productions z → a〈z1〉 and z → #〈z2z3〉. Because
all variables are productive and reachable, there must be a tree t ∈ LGr with a
subtree t1 = a〈 . . . 〉 ∈ [[Gr]] z. Because t ∈ η1(FΣ), t1 must be the left child of a
#-node. On the other hand, t1 can be replaced in t with an arbitrary t2 ∈ [[Gr]] z,
such that the resulting tree t′ is also in LGr . Because all variables are produc-
tive, there is such a tree t2 of the form #〈 . . . 〉. The resulting tree t′ has a #-node
as the left child of another #-node and can therefore not be in η1(FΣ). This is a
contradiction, and thus no variable in the reduced grammar can have two such
productions. The argument is similar if the second production has the form
z→ $ instead of z→ #〈z2z3〉. �

Proposition 5.3: If L ⊆ η1(FΣ) is regular then η−1
1 (L) ⊆ FΣ is regular. In other

words: Let G# = (X∪Y, y0, R#) be a ranked-tree grammar over Σ# in η1-normal
form. Then a forest grammar G over Σ can be constructed with LG# = η1(LG).

Here is the construction: For each y ∈ Y with y = y0 or x → a〈y〉 ∈ R#,
we define an NFA (Y, y, F, δ) over X with F = {y1 | y1 → $ ∈ R#} and δ =
{(y1, x, y2) | y1 → #〈xy2〉 ∈ R#}. The language accepted by this NFA is regular
and can be denoted as a regular expression ry. Now G = (X, ry0 , R) with

R = {x→ a〈ry〉 | x→ a〈y〉 ∈ R#, a ∈ Σ}

Structural induction shows that η1(t) ∈ LG# iff t ∈ LG. �

Example 5.5: Consider the ranked-tree grammar G# = (X ∪ Y, y0, R#) with
X = {xa, xb}, Y = {y0, y1, y2}, and the following rules:

xa → a〈y1〉
xb → b〈y2〉

y0 → #〈xa y1〉
y1 → #〈xb y2〉
y2 → #〈xa y1〉

y1 → $
y2 → $

The variables in Y and their rules can be interpreted as the following NFA:

y0 y1 y2

xa
xa

xb

106 5.3. Bibliographic Notes

Depending on whether the initial state is y0, y1 or y2, the language accepted
by the NFA is given by r0 = xa(xbxa)∗xb?, r1 = (xbxa)∗xb?, or r2 = (xaxb)∗xa?.
Thus we obtain the forest grammar (X, r0, {xa → a〈r1〉, xb → b〈r2〉}). �

Proposition 5.4: η1 (FΣ) is a regular ranked-tree language.

Proof: Let G#
1 = ({x, y}, y, R1) be the ranked-tree grammar with R1 = {y→ $,

y→ #〈xy〉} ∪ {x→ a〈y〉 | a ∈ Σ}. It is easy to see that LG#
1

= η1(FΣ). �

This enables us to transfer the closure results from ranked trees to forests:

Theorem 5.1: Let L1, L2 be regular forest languages. Then L1 ∪ L2, L1 ∩ L2, and
Lc

1 = TΣ \ L1 are also regular forest languages.

Proof: Since L1 and L2 are regular, so are η1(L1) and η1(L2). Because regular
ranked-tree languages are closed under set union, η1(L1) ∪ η1(L2) is regular.
Now η1(L1) ∪ η1(L2) = η1(L1 ∪ L2) and thus L1 ∪ L2 is regular. The proof for
“∩” is analogous.

For the complement, note that injectivity of η1 implies that η1(Lc) =
(η1(L))c ∩ η1(FΣ). Now if L ⊆ FΣ is regular, then so is η1(L). Because
regular ranked-tree languages are closed under intersection and complement,
(η1(L))c ∩ η1(FΣ) = η1(Lc) is also regular. Then, by Proposition 5.3, Lc is reg-
ular. �

5.3 Bibliographic Notes

Regular tree languages have been considered in the literature since the early
sixties. Most authors, however, restrict themselves to the case of ranked trees.
Inspired by [Cho60] who deals with the derivation trees of context-free gram-
mars, the first systematic treatment of regular tree languages appears to be
[Tha67]: The author characterizes regular languages of non-ranked trees (un-
der the name of recognizable sets of pseudoterms) as projections of the deriva-
tion trees of extended context-free grammars. He also shows that the regular
tree languages are closed under union, intersection and complement.

In [PQ68], non-ranked trees and forests appear under the (French) names
arborescence and ramification. The authors introduce a form of forest gram-
mars capable of describing local forest languages; the regular forest languages
(called bilangages réguliers there) are then homomorphic images of local forest
languages.

Restricting himself to the ranked case, [Bra69] introduces so-called expan-
sive systems for generating regular tree languages; such a system closely corre-
sponds to our notion of ranked-tree grammars. A characterization of regular
tree languages by monadic second order logic(MSO) is given by [TW68, Don70].

[Tak75] characterizes regular tree and forest languages by finite congruences.
She also shows that a string representation of a regular forest language, where
each node labeled a is enclosed between parentheses (a and)a, is a nest lan-
guage, which is a special class of context-free languages.

In our previous work [NS98a], we proposed µ-formulae for specification of
regular forest languages. Though µ-formulae are more succinct than gram-
mars, they have the disadvantage of being absolutely incomprehensible to

CHAPTER 5. REGULAR FOREST LANGUAGES 107

non-computer scientists. In a revised version of this paper [NS98b] we used
constraint systems for specification of regular forest languages. This formalism
is similar to grammars, but has an explicit set of forest variables describing the
regular expressions over variables, similar to the η1-normal form of ranked-
tree grammars. We abandoned this approach in favor of the more intelligible
forest grammars.

Other ways of specifying regular tree languages include algebraic charac-
terizations [GS97] and regular tree expressions [Mur95, GS97]. A good survey
of characterizations of regular tree languages is given in [GS97]; an overview
of how the results from ranked-tree theory carry over to non-ranked trees and
forests is given in [BW98].

Chapter 6

Forest Automata

This chapter introduces a class of bottom-up forest automata accepting the
class of regular forest languages. We then enhance these automata with a push-
down, significantly increasing succinctness but not expressiveness. Finally we
show how to implement forest grammars with these pushdown automata.

6.1 Bottom-Up Forest Automata

In this section we introduce a class of bottom-up automata that accept regular
forest languages. For ranked trees such an automaton has a set of states Q and
a transition relation ∆ with transitions (q1 . . . qn, a, q) with n = ρ(a) (cf., e.g.,
[Bra69, Mur96]). In order to deal with non-ranked trees, [Tha67, Mur95, BW98]
drop the restriction that n = ρ(a) and require instead that the set {w |
(w, a, q) ∈ ∆} must be regular for all a, q. An automaton can thus have in-
finitely many transitions. In order to implement such an automaton, however,
the transition relation must be finitely represented, which is most naturally
done by constructing a finite automaton for each regular set of words w.

We make this finite automaton explicit in the forest automata, similarly to
the construction of [BMW91] in the context of tree pattern matching: There
an n-ary transition relation Qn × Σ → Q is represented for each a ∈ Σ by
a finite automaton on Q, i.e., by a unary transition function Qa × Q → Qa.
Accordingly we distinguish two classes of states in a forest automaton: tree
states corresponding to the states of conventional automata, and forest states
simulating finite automata on words of tree states.

A left-to-right forest automaton (LFA) A = (P, Q, I, F, Up, Side) consists of a
set of tree states P, a set of forest states Q, a set of initial states I, a set of final states
F, an up-relation Up ⊆ Q× Σ× P and a side-relation Side ⊆ Q× P×Q. The size
of an LFA A is the number of states plus the number of transitions in A, i.e.
|A| = |Q|+ |P|+ |Up|+ |Side|.

Based upon I, Up and Side, we define transition relations δA
F ⊆ FΣ ×Q and

δA
T ⊆ TΣ × P describing the behavior of A on an input forest:

(ε, q) ∈ δA
F for all q ∈ I

(f t, q1) ∈ δA
F iff (f , q) ∈ δA

F , (t, p) ∈ δA
T and

(q, p, q1) ∈ Side for some q ∈ Q, p ∈ P

(a〈 f 〉, p) ∈ δA
T iff (f , q) ∈ δA

F for some q and (q, a, p) ∈ Up

108

CHAPTER 6. FOREST AUTOMATA 109

...

...

tnt1 t2

a

Side Side Side Side

Side
Up

qn

pn

q2

p2

q1 qn+1

q q′

p

p1

Figure 6.1: The computation model of a left-to-right forest automaton.

If the context is clear, we often omit the superscript A and write simply δT and
δF . The language of an LFA A is LA = { f | (f , q) ∈ δF for some q ∈ F}. The
processing model of an LFA is illustrated in Figure 6.1. It can be viewed as
a bottom-up procedure: In order to assign a state to a tree t = a〈t1. . . tn〉, a
tree state pi is first assigned to each ti. Then an initial state q1 is chosen from I.
Traversing the word p1 . . . pn from left to right and performing a side-transition
at each step, a forest state qn+1 is obtained from q1. An up-transition for qn+1
and a yields a tree state p for t.

6.1.1 Regularity

An LFA processes the word of tree states assigned to the individual trees of
a forest by starting with an initial state and proceeding from left to right, ap-
plying the side-transition at each tree. This can be simulated by a ranked-tree
automaton on the image of the forest under η2 (cf. Figure 4.3): The states from
I are assigned to $, and transitions at #-nodes simulate the side-transitions. The
languages accepted by ranked-tree automata are known to be exactly the regu-
lar ranked-tree languages [GS97, CDG+99]. Therefore it is no surprise that the
languages accepted by LFAs are the regular forest languages.

Theorem 6.1: A forest language is regular iff it is the language of some forest
automaton. More precisely:

(1) For each forest grammar G, there is an LFA A with LA = LG.

(2) For each LFA A, there is a forest grammar G with LG = LA.

Proof of (1): The construction is analogous to that for Proposition 5.1. For
G = (X, r0, R), let {r1, . . . , rl} be the set of regular expressions different from
r0 occurring on the right-hand sides of rules, and for each j = 0, . . . , l, let
(Yj, y0, j, Fj, δ j) = Berry(r j) such that Yi ∩Yj = /O for i 6= j. Let Y = Y0 ∪ . . .∪Yl .
Then A = (X, Y, I, F0, Up, Side) with

I = {y0, j | 0 6 j 6 l}
Up = {(y, a, x) | y ∈ Fj and x→ a〈r j〉}

Side = δ0 ∪ . . . ∪ δl

In order to show that LA = LG, we first prove the following lemma by induc-
tion over the length n of a forest:

110 6.1. Bottom-Up Forest Automata

r0 = x1:

r1 = ε: r3 = xa
∗xbxa

∗:

r2 = xb
∗xaxb

∗:

y0 y1 y3 y4 y5 y6
x1 xb xa xb

xb xb

y7 y8 y9 y10y2
xaxbxa

xb

xaxa

xa

Figure 6.2: The Berry-Sethi construction for the regular expressions in gram-
mar G3 from Example 5.3.

(a) (b)

ab

b

ab

a
y1

x1

y0

y10y9

xb xa

y2

y7

y1

x1

y0

xb xa

y2

y3 y4 y5

y2 y2

Figure 6.3: Two runs of the LFA A3 from Example 6.1 on the forests (a) b〈ba〉
and (b) a〈ba〉.

Lemma 6.1: Let A = (P, Q, I, F, Up, Side) be an LFA, and f = t1. . . tn. Then
(f , q) ∈ δF iff there are p1, . . . , pn ∈ P and q1, . . . , qn+1 ∈ Q with q1 ∈ I,
qn+1 = q, and for 1 6 i 6 n, (ti , pi) ∈ δT and (qi , pi , qi+1) ∈ Side.

Using this lemma, the proof of LA = LG is a simple structural induction. It is
given in Appendix A.1.1. �

Example 6.1: Let us construct an LFA A3 for grammar G3 from Example
5.3. Figure 6.2 shows the automata produced by the Berry-Sethi construc-
tion for the regular expressions occurring in G3. Thus Y = {y0, . . . , y10} and
A3 = (X, Y, I, F, Up, Side) with I = {y0, y2, y3, y7}, F = {y1} and the following
transitions:

Side = {(y0, x1, y1), (y3, xb, y4), (y3, xa, y5), (y4, xb, y4), (y4, xa, y5),
(y5, xb, y6), (y6, xb, y6), (y7, xa, y8), (y7, xb, y9), (y8, xa, y8),
(y8, xb, y9), (y9, xa, y10), (y10, xa, y10)}

Up = {(y2, a, xa), (y2, b, xb), (y5, a, x1), (y6, a, x1), (y9, b, x1), (y10, b, x1)}

Figure 6.3 shows two example runs of A3. �

CHAPTER 6. FOREST AUTOMATA 111

For the proof of Theorem 6.1 (2), let A = (P, Q, I, F, Up, Side). Find a q0 /∈ Q, let
Q0 = Q ∪ {q0} and

δ = Side∪ {(q0, p, q1) | (q, p, q1) ∈ Side for some q ∈ I}

Then define for each q ∈ Q an NFA Nq = (Q0, {q0}, Fq, δ) with Fq = {q, q0} if
q ∈ I and Fq = {q} otherwise. [[Nq]]R is a regular language and can therefore be
denoted by a regular expression rq. Now define G = (P, r0, R) with

r0 = rq1 . . . rqk , with F = {q1, . . . , qk}
R = {p→ a〈rq〉 | (q, a, p) ∈ Up}

For the proof that LG = LA, we first show by structural induction that for
q ∈ Q, (f , q) ∈ δF iff f ∈ [[G]] rq. Given this part of the proof, which is in
Appendix A.1.2, it is easy to see that [[G]] r0 =

⋃
q∈F[[G]] rq = LA. �

Example 6.2: Let us perform the construction for the LFA A = ({0, 1}, {0, 1},
{0}, {1}, Up, Side) with

Up = {(0, a, 1), (0, b, 0), (1, a, 0), (1, b, 1)}
Side = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

First, we add a state q0 and construct the automata N0 and N1. Note that q0 is a
final state in N0 because 0 is an initial state in A, whereas q0 in not final in N1:

N0: N1:0

1

0

0

q0 1

1

0

1

0

1

0

0

q0 1

1

0

1

A closer look shows that r0 = 0∗(10∗10∗)∗ and r1 = 0∗10∗(10∗10∗)∗. Thus
G = ({0, 1}, 0∗10∗(10∗10∗)∗, R) with the following rules:

0→ a〈0∗10∗(10∗10∗)∗〉 1→ a〈0∗(10∗10∗)∗〉
0→ b〈0∗(10∗10∗)∗〉 1→ b〈0∗10∗(10∗10∗)∗〉

Observe that [[r0]]R is the set of words containing an even number of 1’s,
whereas r1 describes words with an odd number of 1’s. The language of G
and A is therefore the set of forests with an odd number of nodes labeled a.

�

6.1.2 Deterministic and Right-to-Left Forest Automata

An LFA A = (P, Q, I, F, Up, Side) is deterministic (DLFA) if I = {q0} is a single-
ton and Up : Q× Σ → P and Side : Q× P → Q are functions. In other words,
there is only one initial state, and during a run of A, there is never a choice
between two different transitions. In this case, we write p = Upa q instead of
(q, a, p) ∈ Up and q1 = Side(q, p) instead of (q, p, q1) ∈ Side. Note that for a
DLFA, δT and δF are also functions: We write p = δT (t) instead of (t, p) ∈ δT
and q = δF (f) for (f , q) ∈ δF .

Similarly to ranked-tree automata, each forest automaton can be made de-
terministic:

112 6.2. Pushdown Forest Automata

� � �
� � �
� � �
� � �

� �
� �
� �
� �

...

...
a

Side Side Side Side

Side

Up

I

t1 tntn−1

q
p

q′

q2 qnq1

p1 pn

qn+1

pn−1

Figure 6.4: The computation model of a right-to-left forest automaton.

Theorem 6.2: For each LFA A, there is a DLFA D with LD = LA.

The proof is by subset construction: Let A = (P, Q, I, F, Up, Side). Then D =
(2P, 2Q, {I}, F′, Up′, Side′) with

F′ = {q′ ⊆ Q | q′ ∩ F 6= /O}
Up′a q′ = {p | (q, a, p) ∈ Up for some q ∈ q′}

Side′(q′, p′) = {q1 | (q, p, q1) ∈ Side for some q ∈ q′, p ∈ p′}

Obviously the size of D is exponential in the size of A. The proof that LD = LA
is given in Appendix A.2. �

An LFA traverses the children of a node, more precisely the word of tree states
assigned to its children, from left to right. In 4.2.1 we argued that one advan-
tage of the non-ranked tree representation is its suitability for both traversing
directions. A right-to-left forest automaton (RFA) proceeds through the children
of a node from right to left. It is defined in the same way as an LFA with the
exception that the second case of the definition of δA

F must be changed as fol-
lows:

(t f , q) ∈ δA
F iff (f , q) ∈ δA

F , (t, p) ∈ δA
T and

(q, p, q1) ∈ Side for some q ∈ Q, p ∈ P

The computation model of an RFA is illustrated in Figure 6.4. Furthermore,
we define DRFAs analogously to DLFAs. It can easily be shown that RFAs
accept exactly the regular forest languages, and that each RFA can be made
deterministic. Hence Theorems 6.1 and 6.2 hold also for RFAs.

6.2 Pushdown Forest Automata

In this section we enhance forest automata with a pushdown. On the one
hand, the computation model of pushdown forest automata corresponds more
closely to the processing order of an XML parser (and most other parsers for
structured documents). On the other hand, the pushdown significantly in-
creases the succinctness of deterministic forest automata. Moreover, push-
down forest automata are useful not only for implementing forest grammars,
but also for locating subdocuments in a specified context, as we will see in 7.2.

Conceptually, the behavior of an LFA is a bottom-up procedure: δF can
be implemented by first computing a tree state for each tree of a forest, and

CHAPTER 6. FOREST AUTOMATA 113

...
tnt1 t2

a

Figure 6.5: The visiting order of a recursive function implementing an LFA.

then traversing this word of tree states while performing side-transitions on
forest states. An implementation of this procedure, however, typically uses a
pushdown, either implicitly or explicitly. In an SML-like notation, e.g., it could
be implemented as follows (for simplicity, we consider the deterministic case
here):

fun δT a〈 f 〉 = Upa (δF f)
and δF f = let val w = map δT f

fun doit q ε = q
| doit q pw = doit (Side(q, p)) w

in doit q0 w
end

This implementation implicitly uses a pushdown, namely the function recur-
sion stack. An implementation without recursive functions, i.e., with loops,
must even maintain the stack of entered subtrees explicitly. Note that in this
implementation, two list traversals are performed in order to compute function
δF

1: one by map and one by doit. A more intelligent variant is the following:

fun δF f = let fun doit q ε = q
| doit q t f = doit (Side(q, δT t)) f

in doit q0 f
end

Now the first list traversal is spared by incorporating the calls of δT into func-
tion doit2. Observe that when δT is called for a tree t, all subtrees to its left have
already been processed. The forest state q with which the tree state p produced
by δT is combined, is already available before the call of δT . It is therefore
possible to supply q to δT as an additional argument; δT can then use it for
optimizing the computation of p.

The visiting order of a recursive function implementing δF is illustrated
in Figure 6.5. Note that it coincides with the order in which an XML parser
encounters the elements of a document tree: When the parser arrives at an
element, the start-tags of all enclosing elements have already been processed,
and all elements to the left have been entirely traversed.

We adopt this visiting order and make the pushdown explicit in order to
increase the succinctness of forest automata, at least for the deterministic case.

1An experienced SML programmer would rewrite the definition of δF more concisely to
fun δF f = foldl (fn (p, q) ⇒ Side(q, p)) q0 (map δT f).

2Again, this can be rewritten using foldl: fun δF f = foldl (fn (t, q) ⇒ Side(q, δT (t))) q0 f .

114 6.2. Pushdown Forest Automata

The idea is as follows: In order to compute δF (t1. . . tn), an LFA must choose an
q1 from I. By a sequence of side-transitions it then obtains a forest state qn+1,
which yields together with a a tree state p through an up-transition. But if q1
is inaptly chosen this can lead to the situation that there is no up-transition
(qn+1, a, p). Even if there is an up-transition, p must still be combined with a
state q in a succeeding side-transition; it is possible that there is no such transi-
tion for q and p.

An example for such a situation is illustrated in Figure 6.3. It shows the
runs of automaton A3 for the two forests b〈ba〉 and a〈ba〉. This LFA can not
distinguish the b subtrees in the two forests. However, we have to choose dif-
ferent initial states for a successful run. If we had chosen y3 instead of y7 in
case (a), then we would obtain y5 instead of y10 after traversing ba. But for y5
there is no up-transition under b.

Given an LFA A, it can only be implemented efficiently if it is first made
deterministic. An equivalent DLFA D, however, can not choose between initial
states: It must simultaneously track all possibilities in A. The subset construc-
tion in the proof of Theorem 6.2 achieves this by using sets of states in A as
the states of D. The consequence is that the deterministic automaton may need
exponentially many states. One source of this blow-up is the following: Each
side-transition for a set of states q in D yields a new set of states q′, where all
of the states in q′ are obtained from a state in q through a side-transition A.
Obviously, the size of q directly influences the size of q′.
δD
F , however, starts with the set of all initial states in A, which is often

rather large. As we saw above, many of these states do not lead to a success-
ful up- or side-transition. Constraining the initial states to those that can lead
to such a transition keeps the states of D involved in δF smaller. The smaller
these sets, the fewer of them can actually occur during a run of D: The number
of reachable states in D is often reduced. At the end of this section we will see
that this can indeed save an exponential number of states.

In order to select the sensible initial states, the forest state q with which
the next side-transition will be performed, must be available to δT . At the
beginning of this section we argued that, in practice, this does not induce an
implementation overhead. We therefore enhance forest automata with a new
transition relation Down. For the automaton A3 in Figure 6.3, e.g., Down should
contain (q0, a, q3) and (q0, b, q7).

A left-to-right pushdown forest automaton (LPA) A = (P, Q, I, F, Down, Up,
Side) consists, in addition to the components of an LFA, of a down-relation
Down ⊆ Q × Σ × Q. The elements of I are called start states in order to dis-
tinguish them from the initial states of an LFA. The size of an LPA A is the
number of states plus the number of transitions in A, i.e. |A| = |Q| + |P| +
|Down|+ |Up|+ |Side|.

Based on Down, Up and Side, the behavior of A is described by relations
δA
F ⊆ Q×FΣ ×Q and δA

T ⊆ Q× TΣ × P as follows:

(q,ε, q) ∈ δA
F for all q ∈ Q

(q1, f t, q2) ∈ δA
F iff (q1, f , q) ∈ δA

F , (q, t, p) ∈ δA
T and

(q1, p, q2) ∈ Side for some q ∈ Q, p ∈ P

(q, a〈 f 〉, p) ∈ δA
T iff (q, a, q1) ∈ Down, (q1, f , q2) ∈ δA

F
and (q2, a, p) ∈ Up for some q1, q2 ∈ Q

CHAPTER 6. FOREST AUTOMATA 115

...

...

tnt1 t2

a

Side Side Side Side

Side
UpDown

qn

pn

q2

p2

q1 qn+1

q q′

p

p1

Figure 6.6: The computation model of a left-to-right pushdown automaton.

Again we omit superscript A if the context is clear. The language of an LPA is
LA = { f | (q1, f , q2) ∈ δA

F for some q1 ∈ I, q2 ∈ F}. The processing model
of an LPA is illustrated in Figure 6.6. Note that in contrast to an LFA, an LPA
can not be realized without a pushdown: When entering a subtree, the current
forest state must be saved on the pushdown; it is popped off the pushdown by
the side-transition after that subtree has been completely traversed.

Note that moves on the pushdown are determined by the structure of the
input tree: A state is pushed if and only if the automaton descends to the chil-
dren of a node. Similarly a state is popped from the pushdown exactly after the
automaton returns the from children of a node. If we had used a ranked repre-
sentation for trees of arbitrary arity (cf. 4.2.1), then this relationship were less
precise: Moves on the pushdown would have to happen at symbols from Σ,
whereas at auxiliary nodes (# and $) the pushdown had to remain untouched.
Effectively, this leads to a different class of pushdown automata whose expres-
siveness probably exceeds that of our pushdown automata, because they are
less restrictive concerning the use of the pushdown.

Another possibility would be to use the pushdown at auxiliary nodes as
well, by pushing and popping auxiliary states. But then the pushdown would
become fairly large: The depth of the ranked-tree representation is the depth
of the non-ranked tree plus a number that is influenced by the width of the
non-ranked tree, which is in practice significantly larger than its depth.

Moreover, in the ranked-tree image of a non-ranked tree, the direct child
relationship is lost: The original children of a node are represented by non-
direct descendants in the ranked tree. The up- and down-relations become
much more difficult to express, because intermediate transitions through #-
nodes are necessary.

6.2.1 Regularity

Though a pushdown forest automaton has a more powerful model of com-
putation, it can always be simulated by a bottom-up automaton. The class of
languages accepted by LPAs is therefore the class of regular forest languages.

Theorem 6.3: A forest language is regular iff it is the language of some push-
down forest automaton, more precisely:

(1) For each LFA A, there is an LPA B such that LB = LA;

(2) For each LPA B, there is an LFA A such that LA = LB;

116 6.2. Pushdown Forest Automata

...
......

...

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

t1 tntnt1

PFA: LFA:

guess

checkaa

q1 q2 qn+1 (q, a, q1) (q, a, q2) (q, a, qn+1)

(q, p)

(}q, b, q′)(}q, b, q)

p

q′q

Figure 6.7: Simulation of a pushdown forest automaton by a bottom-up forest
automaton.

(1) is trivial: An LFA is an LPA with Down = {(q, a, q1) | q ∈ Q, a ∈ Σ, q1 ∈ I},
i.e., all states from I may be used as initial states at each point.

For the proof of (2), let B = (P, Q, I, F, Down, Up, Side). The idea is illus-
trated by Figure 6.7: A simulates B′s down-relation by augmenting its states
with two components q and a. When A selects an initial state, it guesses a
forest state q and a symbol a and chooses a down-transition for them in or-
der to obtain a triple (q, a, q1). Components q and a are preserved through the
succeeding side-transitions. The up-transition is then only defined if a was cor-
rectly guessed. Similarly, the next side-transition is only possible if the proper
q was guessed. Since a start state of B does not result from a down-transition,
a forest state and a symbol need not be guessed for it. At the top-most level of
the input forest, the forest states of B are therefore also used also by A. Thus,
A = (Q× P, Q ∪ (Q× Σ×Q), I ∪Down, F, Up′, Side′) with:

Up′ = {((q, a, q1), a, (q, p)) | (q1, a, p) ∈ Up}
Side′ = {((q, a, q1), (q1, p), (q, a, q2)) | (q1, p, q2) ∈ Side}

∪ {(q1, (q1, p), q2) | (q1, p, q2) ∈ Side}

The size of A is quadratic in the size of B: |A| = O(|Σ| · |B|2).
The proof that LA = LB is by structural induction with the following in-

duction invariants:

AT t ≡ (t, (q, p)) ∈ δA
T iff (q, t, p) ∈ δB

T , for all q, p;
AF f ≡ (f , (q1, a, q2)) ∈ δA

F iff (q, f , q2) ∈ δB
F , for (q, a, q1) ∈ Down,

and (f , q2) ∈ δA
F iff (q1, f , q2) ∈ δB

F , for all q1 ∈ I, q2 ∈ Q.

We omit the proofs of (E), (L) and (T) because they use only the definitions and
are rather technical. �

6.2.2 Deterministic Pushdown Forest Automata

Similarly to LFAs, an LPA A = (P, Q, I, F, Down, Up, Side) is deterministic (a
DLPA) iff I = {q0} is a singleton and Down : Q× Σ → Q is a function as well
as Up and Side. In this case, we also write q1 = Downa q instead of (q, a, q1) ∈
Down. Furthermore, δT : Q×TΣ → P and δF : Q×FΣ → Q are also functions,
and we use the notations p = δT (q, t) and q1 = δF (q, f).

Interestingly enough, each LPA can be made deterministic. The reason for
this is that all runs of an LPA are synchronized, i.e., moves on the pushdown

CHAPTER 6. FOREST AUTOMATA 117

... ...� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � � �

�

� �
� �
� �

�
�
�

LPA: DLPA:

a a

}q1

q1 qn+1

}qn+1

{(q, q1),
(}q, }q1)}

{(q, qn+1),
(}q, }qn+1)}

q′
}q′

}pp

}q
q

{(q, p),
(}q, }p)}

(}q0, }q)}
{(q0, q), {(q0, q′),

(}q0, }q′)}

Figure 6.8: The subset construction for pushdown forest automata.

are determined by the structure of the input forest, independent of the state of
the automaton.

Theorem 6.4: For each LPA A, there is a DLPA D with LD = LA.

The proof is by subset construction. The conventional approach is to use as
states the subsets of P and Q. But this does not suffice: Consider the two partial
runs of an LPA in Figure 6.8. A down-transition for q and a yields a forest state
q1 which is transformed into qn+1 by δF . The up-transition yields a tree state
p which is combined with q by the succeeding side-transition. A similar run is
obtained for }q, }q1, }qn+1 and }p. If we perform a conventional subset construction,
then the side-transition of the deterministic automaton must combine the two
sets {q, }q} and {p, }p}: It applies Side to all pairs built from these two sets. But
then q is combined with }p which is probably illegal: This constellation might
be impossible in the non-deterministic automaton. More precisely, we must
ensure that a tree state p is only combined with a forest state q if p was obtained
as a consequence of performing a down-transition with q. This relationship is
not determinable with sets of tree or forest states. We capture it with sets of
pairs (q, p) as tree states and sets of pairs (q, q1) as forest states, indicating that
state p or q1 was obtained as a consequence of a down-transition with q. This is
illustrated in Figure 6.8. Since the start states of A do not result from a down-
transition, they are instead paired with themselves.

Formally, define D = (2Q×P, 2Q×Q, {q′0}, F′, Down′, Up′, Side′) with:

q′0 = {(q1, q1) | q1 ∈ I}
F′ = {q′ | (q1, q2) ∈ q′ for some q1 ∈ I, q2 ∈ F}

Down′a q′ = {(q, q1) | (q0, q) ∈ q′ for some q0 and (q, a, q1) ∈ Down}
Up′a q′ = {(q, p) | (q, q1) ∈ q′ and (q1, a, p) ∈ Up for some q1}

Side′(q′, p′) = {(q, q2) | (q, q1) ∈ q′, (q1, p) ∈ p′ and (q1, p, q2) ∈ Side}

The size of D is exponential in the square of the size of A. The proof that
LA = LD is by structural induction and given in Appendix A.3. �

Theorem 6.3 shows that the pushdown does not increase the expressiveness of
forest automata: LPAs accept exactly the same languages as LFAs. In the deter-
ministic case, however, pushdown automata are more succinct than bottom-up
automata: For some languages, a DLPA can do with significantly less states
than a DLFA.

118 6.2. Pushdown Forest Automata

3 X

X

2

X

X

1

0

X

X

X

X

0

3

2

1

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

{1}

{1}

{1, 2}

{1, 2}

{2, 3}

{2, 3}

{1, 3}

{1, 3}S

S

S

S

S

{1}

{1}

{2}

{2}

{3}

{3}

{1}

{1}S

S

S

S

S

a

a

b

a

a

b

b

a

a

a

b

a

a

b

b

a

A3: B3:

Figure 6.9: Example runs of the DLPA A3 and the DLFA B3 in the proof of
Theorem 6.5 for input trees a〈b〈a〈a〉〉〉 ∈ L3 and a〈b〈b〈a〉〉〉 6∈ L3

Theorem 6.5: There is a class of languages L1, L2, . . . such that for all n > 0,
there is a DLPA An accepting Ln with O(n) states, whereas each DLFA Bn ac-
cepting Ln has at leastΩ(2n) states.

Proof: Let Σ = {a, b} and Ln be the set of all unary trees that have symbol a at
the node at depth n. I.e.,

L1 = {a〈t〉 | t is unary} and Li+1 = {x〈t〉 | x ∈ {a, b} and t ∈ Li}.

For n > 0, Ln is accepted by the DLPA An = ({X, ✗}, {0, . . . , n,X, ✗}, {n},
{X}, Down, Up, Side) with:

Downx i = i−1, for i > 1
Downa 1 = 0
Downb 1 = ✗
Downx 0 = 0
DownxX = ✗
Downx ✗ = ✗

Upx i = ✗, for i > 0
Upx 0 = X
UpxX = X
Upx ✗ = ✗

Side(i,X) = X, if i ∈ {0, . . . , n}
Side(q, p) = ✗, if q /∈ {0, . . . , n}

The idea is that X indicates that the symbol at depth n is an a, whereas ✗ in-
dicates that it is a b. For i > 0, entering a subtree with forest state i means
that the a must be at depth i in this subtree; state 0 indicates that the current
depth is larger than n and an a was found at depth n. Now it is easy to see that
LAn = Ln. Figure 6.9 shows two example runs for n = 3. An has 2 tree states
and n + 3 forest states which make a total of O(n).

On the other hand, a DLFA that accepts Ln is Bn = ({S, ✗} ∪ 2{1,...,n},
{✗} ∪ 2{1,...,n},{S}, F, Up, Side) with

CHAPTER 6. FOREST AUTOMATA 119

...

...

t1 tntn−1

a
Up

Side

Side Side Side Side

q
p

q′

q2 qnq1

p1 pn

qn+1

pn−1

Figure 6.10: The computation model of a right-to-left pushdown automaton.

F = {q ⊆ {1, . . . , n} | n ∈ q} Side(S, p) = p, for p ⊆ {1, . . . , n}
Side(q, p) = ✗, for q 6= S or p = ✗

Upa S = {1}
Upb S = /O
Upx ✗ = ✗

Upa q = {1} ∪ {i 6 n | i− 1 ∈ q}, for q ∈ {1, . . . , n}
Upb q = {i 6 n | i− 1 ∈ q}, for q ∈ {1, . . . , n}

A state p ⊆ {1, . . . , n} indicates that a tree has symbol a at depth i for all
i ∈ p, and similarly for forest states. Again, ✗ is an error state and S is the
initial state of the automaton. Two example runs of B3 are shown in Figure
6.9. Because the DLFA runs bottom-up, the current depth in the tree is not
known when performing a transition. Therefore, a state must always contain
the information whether a is at depth i for all i ∈ {1, . . . , n}. Therefore Bn has
exponentially many states. A formal proof that each DLFA accepting Ln must
haveΩ(2n) states is given in Appendix A.4. �

6.2.3 Right-to-Left Pushdown Forest Automata

LPAs traverse a forest from left to right. Similarly to the bottom-up case, there
is also a variant of pushdown automata that proceed in the other direction: A
right-to-left pushdown forest automaton (RPA) consists of the same components
as an LPA. Relations δF and δT are defined in the same way, except for the
second case of δF , which is replaced as follows:

(q1, t f , q2) ∈ δA
F iff (q1, f , q) ∈ δA

F , (q, t, p) ∈ δA
T and

(q1, p, q2) ∈ Side for some q ∈ Q, p ∈ P

The traversing order of an RPA is illustrated in Figure 6.10. We also define
deterministic right-to-left pushdown automata (DRPA) in analogy to DLPAs.
It can be shown that RPAs accept exactly the same languages as LPAs, and that
each RPA has an equivalent deterministic automaton. Moreover, each RPA can
be simulated by an RFA. Thus Theorems 6.3, 6.4 and 6.5 carry over to right-to-
left automata.

As long as we use forest automata for accepting regular forest languages,
both left-to-right and right-to-left automata are equally well suited. However,
in a document processing system one would prefer the left-to-right automata
because their traversing order corresponds to the order in which a document
processor naturally traverses a document.

In 7.2 we will use pushdown forest automata for implementing contextual
conditions. This requires two consecutive runs of a DLPA and a DRPA, or

120 6.3. Decision Problems

vice versa. We will then see that the traversing order of automata is of high
importance.

6.3 Decision Problems

In this section we treat some decision problems for forest automata and relate
them to the corresponding results for ranked-tree automata. The problems we
consider are:

Emptiness: For a given forest automaton A, decide whether its language is
empty, i.e., LA = /O.

Inclusion: For two forest automata A1 and A2, decide whether the language
of the first is included in the language of the second, i.e., LA1 ⊆ LA2 .

Equivalence: Decide whether two forest automata A1 and A2, are equivalent,
i.e., LA1 = LA2 .

We will first solve these problems for bottom-up forest automata; we will then
modify the described algorithms in order to give the solutions for pushdown
automata.

6.3.1 Bottom-Up Forest Automata

We solve the emptiness problem for LFAs with the help of boolean systems of
inequations. The two other problems are based upon this result.

Emptiness

The question whether the language of an LFA A = (P, Q, I, F, Up, Side) is empty
can be decided in linear time. The algorithm is as follows: First, we construct
a system S of boolean inequations. A variable of S is either <p> with p ∈ P or
<q> with q ∈ Q:

<p> ← <q>, if (q, a, p) ∈ Up for some a
<q> ← true, for q ∈ I
<q2>← <q1>∧ <p> if (q1, p, q2) ∈ Side

Note that the alphabet Σ has no influence on the size of S. The size of S is the
number of transitions plus the number of initial states in A, thus |S| 6 |A|.
Because S is a boolean system, its least solution σ can be computed in linear
time (An algorithm is given, e.g., in [WM95] in the context of grammar flow
analysis).

It is easy to see that a variable describes the productivity of the correspond-
ing state:

σ<p> = true iff there is a tree t with (t, p) ∈ δT
σ<q> = true iff there is a forest f with (f , q) ∈ δF

The language of A is then empty iff σ<q> = false for all q ∈ F. Emptiness of LA
can thus be decided in time O(|A|).

CHAPTER 6. FOREST AUTOMATA 121

Inclusion

Let A1 = (P1, Q1, I1, F1, Up1, Side1) and A2 = (P2, Q2, I2, F2, Up2, Side2). In or-
der to decide whether LA1 ⊆ LA2 , we check whether LA1 \ LA2 = /O. For this
purpose, we perform the following steps:

1. First we use the subset construction (see the proof of Theorem 6.2) for
obtaining a DLFA B = (PB, QB, IB, FB, UpB, SideB) with LB = LA2 . The
states of B are the subsets of P2 and Q2; the size of B is thus exponential
in the size of A2, i.e., |B| = O(2|A2 |).

2. Then we define the complement automaton Bc with LBc = Lc
A2

= FΣ \LA2 .
Because B is deterministic, we can obtain Bc by inverting the set of final
states of B: Bc = (PB, QB, IB, Fc

B, UpB, SideB), where Fc
B = QB \ FB. It is

easy to see that LBc = Lc
B. The size of Bc is equal to the size of B, i.e.,

|Bc| = O(2|A2 |).

3. Now we construct an LFA C with LC = LA1 ∩ LBc = LA1 \ LA2 . C is the
product automaton of A1 and Bc, defined as C = (P1 × PB, Q1 × QB, I1 ×
IB, F1 × Fc

B, UpC , SideC), where

UpC = {((q1, q′), a, (p1, p′)) | (q1, a, p1) ∈ Up1, (q′, a, p′) ∈ UpB}
SideC = {((q1, q′1), (p, p′), (q2, q′2)) | (q1, p, q2) ∈ Side1,

(q′1, p′, q′2) ∈ SideB}

It is easy to see that f ∈ LC iff f ∈ LA1 and f ∈ LBc . Thus LC = LA1 \LA2 .

4. Emptiness of LC can now be decided in time linear to the size of C. The
size of C is bounded by the product of the sizes of A1 and Bc, thus empti-
ness of LC can be decided in DEXPTIME.

If A2 is a deterministic automaton, then we can skip step 1, sparing the expen-
sive subset construction. In this case the size of C is bounded by the product of
the sizes of A1 and A2: The inclusion problem can then be decided in quadratic
time.

Equivalence

The question whether LA1 = LA2 can be reduced to the two inclusion problems
LA1 ⊆ LA2 and LA2 ⊆ LA1 . Both of these can be solved in DEXPTIME, thus the
equivalence problem for LFAs is also decidable in DEXPTIME.

It is easy to see that each conventional ranked-tree automaton can be sim-
ulated be an LFA of linear size. The equivalence problem for ranked-tree au-
tomata was shown to be DEXPTIME-complete by [Sei90]; thus it is also DEX-
PTIME-complete for LFAs.

For deterministic automata A1 and A2, however, the inclusion problem can
be solved in quadratic time, and so can the equivalence problem.

6.3.2 Pushdown Forest Automata

The decision problems for pushdown forest automata are solved in a similar
way as those for bottom-up automata. However, things are more complicated
due to the down-transitions of pushdown automata.

122 6.3. Decision Problems

Emptiness

The question whether the language of an LPA A = (P, Q, I, F, Down, Up, Side)
is empty can be decided in quadratic time. The algorithm is as follows: First,
we establish a system S of boolean inequations. A variable of S is either <q, p>
or or <q, q1> with p ∈ P and q, q1 ∈ Q:

<q, p> ← <q1, q2>, for (q, a, q1) ∈ Down and (q2, a, p) ∈ Up
<q, q> ← true, for all q
<q, q2>← <q, q1>∧ <q1, p> for q ∈ Q and (q1, p, q2) ∈ Side

The size of S is quadratic in the size of A: There are at most |Down| · |Up|
inequations of the first form, |Q| inequations of the second form, and |Q| · |Side|
inequations of the third form. Because S is a boolean system, its least solution
σ can be computed in linear time.

A variable of S describes the one-level reachability of a state p or q1 from a
state q:

σ<q, p> = true iff there is a tree t with (q, t, p) ∈ δT
σ<q, q1> = true iff there is a forest f with (q, f , q1) ∈ δF

The language of A is then empty iff σ<q1, q2> = false for all q1 ∈ I, q2 ∈ F.
Emptiness of LA can thus be decided in time O(|A|2).

To a certain degree this result is astounding: Emptiness for an LPA is easier
to decide than for a pushdown automaton on words, which requires cubic time
w.r.t. the size of the automaton.

Inclusion

The decision procedure is analogous to that for bottom-up automata: Let A1 =
(P1, Q1, I1, F1, Down1, Up1, Side1) and A2 = (P2, Q2, I2, F2, Down2, Up2, Side2). In
order to decide whether LA1 ⊆ LA2 , we check whether LA1 \ LA2 = /O. We
perform the following steps:

1. First we use the subset construction (see the proof of Theorem 6.4) for
obtaining a DLPA B = (PB, QB, IB, FB, DownB, UpB, SideB) with LB = LA2 .
The states of B are the subsets of Q2 × P2 and Q2 × Q2; the size of B is
thus exponential in the square of the size of A2, i.e., |B| = O(2|A2 |2).

2. Next we define the complement automaton Bc with LBc = Lc
A2

= FΣ \
LA2 . Because B is deterministic, we obtain Bc by inverting the set of final
states of B. The size of Bc is equal to the size of B, i.e., |Bc| = O(2|A2 |2).

3. Now we construct the product automatonC of A1 and Bc with LC =
LA1 ∩ LBc = LA1 \ LA2 . It is defined analogously to the bottom-up case:
C = (P1 × PB, Q1 ×QB, I1 × IB, F1 × Fc

B, DownC , UpC , SideC), where

DownC = {((q1, q′1), a, (q2, q′2)) | (q1, a, q2) ∈ Down1,
(q′1, a, q′2) ∈ DownB}

UpC = {((q1, q′), a, (p1, p′)) | (q1, a, p1) ∈ Up1, (q′, a, p′) ∈ UpB}
SideC = {((q1, q′1), (p, p′), (q2, q′2)) | (q1, p, q2) ∈ Side1,

(q′1, p′, q′2) ∈ SideB}

It is easy to see that f ∈ LC iff f ∈ LA1 and f ∈ LBc . Thus LC = LA1 \LA2 .

CHAPTER 6. FOREST AUTOMATA 123

4. Emptiness of LC can now be decided in time quadratic to the size of C.
The size of C is bounded by the product of the sizes of A1 and Bc, thus
emptiness of LC can be decided in DEXPTIME.

If A2 is deterministic, then we can skip the subset construction in step 1. In
this case the size of C is bounded by the product of the sizes of A1 and A2: The
inclusion problem can then be decided in polynomial time.

Equivalence

The question whether LA1 = LA2 can be reduced to the two inclusion problems
LA1 ⊆ LA2 and LA2 ⊆ LA1 . Both of these can be solved in DEXPTIME, thus the
equivalence problem for LPAs is also decidable in DEXPTIME.

Because LFAs are a special case of LPAs, and the equivalence problem for
LFAs is DEXPTIME-complete, so is the equivalence problem for LPAs.

However, if A1 and A2 are deterministic, then the inclusion problem can be
decided in polynomial time, and so can the equivalence problem.

6.4 Matching Structural Conditions

An important task in document processing is verifying a structural property
of a document tree. For most purposes, this structural property can be given
as a regular forest language. For instance, the set of element-type declarations
of an XML DTD establish a special form of a forest grammar and therefore
describe a regular forest language 3. Validating the structure of an XML docu-
ment against a DTD is therefore a test for membership in a regular language. A
good algorithm implementing forest grammars is therefore of high importance
in document processing.

6.4.1 Matching Structure with Bottom-Up Automata

One possibility of implementing a given forest grammar G is to construct an
LFA according to the construction in the proof of Theorem 6.1. This automaton
is non-deterministic and must be made deterministic in order to run it effi-
ciently on a computer. Applying the subset construction in the proof of Theo-
rem 6.2 yields a DLFA BG with LBG = LG. Combining both steps into one, we
obtain the following construction:

Let G = (X, r0, R) and {r1, . . . , rl} be the set of regular expressions different
from r0 occurring on the right-hand sides of rules in R. For each j ∈ {0, . . . , l},
let (Yj, q0, j, Fj, δ j) = Berry(r j), such that Yi ∩ Yj = /O for i 6= j. Let Y = Y0 ∪
. . . ∪Yl and δ = δ0 ∪ . . . ∪ δl . Then BG = (2X , 2Y , {q0}, F, Up, Side) with

q0 = {y0, j | 0 6 j 6 l}
F = {q | q ∩ F0 6= /O}

Upa q = {x | x→ a〈r j〉 and q ∩ F j 6= /O}
Side(q, p) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

Example 6.3: Consider the grammar G3 from Example 5.3. BG3 is obtained by
3More precisely, a DTD is a local forest language. For a discussion of local ranked-tree languages

see, e.g. [GS97]. A generalization of DTDs to describe regular forest languages are XML Schemata
[W3C99h].

124 6.4. Matching Structural Conditions

(b)(a)

ab

b

ab

a
{x1}

{xa}

{y0 , y2 , y3 , y7}

{xb}

{y0 , y2 , y3 , y7}

{y0 , y2 , y3 , y7} {y5 , y10}{y4 , y9}

{y1}

{x1}

{y0 , y2 , y3 , y7}

{xa}

{y0 , y2 , y3 , y7}

{xb}

{y0 , y2 , y3 , y7}

{y0 , y2 , y3 , y7} {y4 , y9}

{y1}

{y5 , y10}

{y0 , y2 , y3 , y7}

Figure 6.11: Two runs of the DLFA BG3 from Example 6.4 on the forests (a) b〈ba〉
and (b) a〈ba〉.

applying the subset construction to the LFA A3 from Example 6.1. Figure 6.11
shows two example runs of BG3 . �

Theoretically, BG has exponentially many states: Its tree states are sets of vari-
ables, and its forest states are sets of NFA states. Many of these states can never
occur during a run of the automaton. A clever implementation will therefore
compute the reachable states and store Up- and Side-transitions only for these
states.

Figure 6.12 shows an algorithm4 for computing the reachable states of
a DLFA. It maintains in the work-list W a set of transitions for reachable
states which have not been processed yet. An entry in the work-list can have
two forms: UP(q) represents all up-transitions for a forest state q, whereas
SIDE(q, p) is for the side-transition under forest state q and tree state p. Initially,
the only state known to be reachable is the start state q0; hence the work-list is
initialized with UP(q0).

The algorithm then repeatedly extracts an entry from the work-list and per-
forms the transitions indicated by that entry. If such a transition yields a state
that was not yet known to be reachable, new entries are added to the work-list
for this state. In case of a tree state, these are side-transitions with all reachable
forest states; for a new forest state, an UP-entry and SIDE-entries for all reach-
able forest states are added. As soon as the work-list is empty, all reachable
states have been found and processed.

Example 6.4: Consider again the DLFA BG3 from Example 6.3 obtained by sub-
set construction from the LFA A3. A3 has a set Y of 11 forest states and a set X
of 4 tree states. The forest states of BG3 are the subsets of Y, and its tree states
are the subsets of X. Thus there are 211 = 2048 forest states and 24 = 16 tree
states. But most of them are unreachable: Running algorithm ReachDlfa yields
that only the following 4 tree states and 13 forest states are reachable in BG3 :

4We do not use an SML-like notation for this algorithm because an imperative notation is clearer
for this purpose. However, we do use SML’s concept of pattern matching.

CHAPTER 6. FOREST AUTOMATA 125

Algorithm ReachDlfa

Input: An alphabet Σ
A DLFA A = (P, Q, {q0}, F, Up, Side)

Output: The setRP ⊆ P of tree states reachable in A
The setRQ ⊆ Q of forest states reachable in A

Algorithm:

RQ := {q0}; RP := /O; W := {UP(q0)};
while W 6= /O do

item := select(W); W := W \ {item};
case item

of UP(q) ⇒ foreach a ∈ Σ do
p := Upa q;
if p /∈ RP then
RP := RP ∪ {p};
foreach q1 ∈ RQ do

W := W ∪ {SIDE(q1, p)};
| SIDE(q, p) ⇒ q1 := Side(q, p);

if q1 /∈ RQ then
RQ := RQ ∪ {q1};
W := W ∪ {UP(q1)};
foreach p ∈ RP do

W := W ∪ {SIDE(q1, p)};
return RP,RQ;

Figure 6.12: An algorithm for computing the reachable states of a DLFA.

Tree States:
p0 = {xa}
p1 = {xb}
p2 = {x1}
p3 = /O

Forest States:
q0 = {y0, y2, y3, y7}
q1 = {y5, y8}
q2 = {y4, y9}
q3 = {y6, y9}

q4 = {y8}
q5 = {y4}
q6 = {y5, y10}
q7 = /O

q8 = {y1}
q9 = {y6}
q10 = {y10}
q11 = {y9}
q12 = {y5}

This is also the order in which the algorithm finds these states. �

This example demonstrates that in spite of the theoretically immense size of BG
even for small grammars G, the reachable states of the automaton are usually
few. It can therefore be implemented efficiently. In some cases, however, the
DLFA must have exponentially many reachable states, as Theorem 6.5 shows.
The example language Ln in the proof of this theorem is easily expressed as a
forest grammar Gn = ({x0, . . . , xn}, xn, R) with the following rules:

x0 → a〈x0?〉
x0 → b〈x0?〉
x1 → a〈x0?〉

xi → a〈xi−1〉
xi → b〈xi−1〉

}
for 1 < i 6 n

We can now construct BGn in order to obtain a DLFA accepting Ln. This au-
tomaton is identical (up to a renaming of states) to the DLFA Bn in the proof

126 6.4. Matching Structural Conditions

of Theorem 6.5. Running algorithm ReachDlfa results in (2n + 1) reachable tree
states and (2n + 2) reachable forest states.

The reason for this exponential blow-up is that a DLFA is unaware of the
ancestors and thus also of the depth of the current node when it makes a tran-
sition: It must therefore keep track of a’s at all depths that do not exceed n. On
the contrary, the pushdown automaton can count the current depth with the
help of its down-transitions. We will pursue this idea in the next section and
modify the construction of BG to yield a pushdown automaton.

6.4.2 Matching Structure with Pushdown Automata

In order to motivate the definition of a down-relation when implementing
structural conditions, let us look again at the two runs of BG3 in Figure 6.11.
Though the two input forests are different, the automaton uses exactly the
same states in both runs. The forest states at the second level are of particu-
lar interest: In case (a), the root of the forest is labeled b; thus its children must
match the regular expression xa

∗xbxa
∗. This regular expression is implemented

by forest states y7, . . . , y10. In order to verify this particular regular expres-
sion, it would therefore suffice to start with the singleton set {y7} instead of
q0 = {y0, y2, y3, y7}. Similarly, in case (b), we are only interested in the regu-
lar expression xb

∗xaxb
∗, which is represented by forest states y3, . . . , y6. In this

case, it would be sensible to start with the singleton {y3}. A DLFA can not
decide which initial states are interesting at a certain point; therefore it must
always start with all of them.

As opposed to that, a pushdown automaton can select the interesting ini-
tial states by its down-transition. Starting with a smaller set at the left-most
tree of a forest, we can assume that fewer states are reachable from that set on
this level. We will now modify our construction of BG to yield a pushdown
automaton. The down-relation of this automaton selects only those y0, j which
might lead to a tree variable contributing to a side-transition.

For a forest grammar G = (X, r0, R), let {r1, . . . , rl} = {r 6= r0 | x →
a〈r〉 ∈ R}. Moreover, for 0 6 j 6 l, let (Yj, y0, j, Fj, δ j) = Berry(r j) such that
Yi ∩Yj = /O for i 6= j. Let Y = Y0 ∪ . . .∪Yl and δ = δ0 ∪ . . .∪ δl . Then the DLPA
A~G is defined as (2X , 2Y , {q0}, F, Down, Up, Side) with

q0 = {y0,0}
F = {q | q ∩ F0 6= /O}

Downa q = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉 for some x, y1}
Upa q = {x | x→ a〈r j〉 and q ∩ F j 6= /O}

Side(q, p) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

Theorem 6.6: For each forest grammar G, LA~G = LG

The proof is by structural induction and given in Appendix A.5 �

Example 6.5: Consider again grammar G3 from Example 6.4. Figure 6.13 shows
the runs of A~G3 for the two input forests from Figure 6.11. Note that the initial
states for traversing the second level are different for both input forests: In the
first case, Downb {y0} = {y7}, because there is only one side-transition for y0;
this uses variable x1, which has only a single rule for symbol b. The initial state
for the regular expression xa

∗xbxa
∗ in this rule is y7. Similarly, in the second

CHAPTER 6. FOREST AUTOMATA 127

(a) (b)

ab

b

ab

a

{xa}{xb}

{y1}

{y9}{y7} {y10}

{y2}{y2}

{y0}

{x1}

{xa}{xb}

{y1}

{y2}{y2}

{y0}

{x1}

{y3} {y4} {y5}

Figure 6.13: Two runs of the DLPA A~G3 from Example 6.5 on the forests (a)
b〈ba〉 and (b) a〈ba〉.

run, Downa {y0} = {y3}, because xb
∗xaxb

∗ this is the only interesting regular
expression if the top-most symbol is a. �

6.4.2.1 Reachable States of Pushdown Automata

A~G , like BG, has exponentially many states, though a large number of them
are not reachable indeed. Similarly to DLFAs, we can also compute the set of
reachable states of a DLPA. An algorithm for accomplishing this is given in
Figure 6.14.

It is fairly more complex than for DLFAs: There, each reachable forest state
can be combined with each reachable tree state in a side-transition. In a push-
down automaton, it is not evident for a reachable forest state q and a reachable
tree state p that these two are ever input to a side-transition: That can only
happen if p is reachable from q, i.e., if there is a tree t such that p = δT (q, t).
Similarly, for a reachable forest state q and symbol a, an up-transition under
q and a can only happen if q is one-level-reachable from a state q0 that is the
result of a down-transition for a, i.e., if there is a q′ and a forest f such that
q = δF (Downa q′, f). Note that, unlike up-transitions, a down-transition can
occur for all symbols a and reachable forest states q.

The consequence is that, in addition to the sets RQ and RP of reachable
forest and tree states, the algorithm also computes the sets RUp and RSide of
reachable up- and side-transitions. Moreover, the algorithm must maintain for
each forest state q the set rP[q] of tree states reachable from q, and the set rQ[q]
of forest states one-level-reachable from q.

The algorithm initializes the set RQ of reachable forest states with the sin-
gleton set containing only q0 and calls procedure init for that state. The task of
this procedure is to find all forest states q1 reachable by applying only down-
transitions, and to initialize rQ[q1] and rP[q1] for these states. In each iteration
of the main loop, the sets rQ[q] and rP[p] are recomputed for each reachable
state q found yet. If this involves a forest state q2 that was not known to be
reachable yet, q2 is initialized with procedure init. The main loop terminates if
none of the rQ[] and rP[] sets was grown by the recomputation.

A more general approach of computing the reachable states and transitions
is to construct a system of equations describing rQ[q] and rP[q] for each q:

128 6.4. Matching Structural Conditions

Algorithm ReachDlpa

Input: An alphabet Σ
A DLPA A = (P, Q, {q0}, F, Down, Up, Side)

Output: The setRP ⊆ P of tree states reachable in A
The setRQ ⊆ Q of forest states reachable in A
The setRUp ⊆ Up of up-transitions reachable in A
The setRSide ⊆ Side of side-transitions reachable in A

Algorithm:

proc new rp(q)
foreach a ∈ Σ do

foreach q1 ∈ rQ[Downa q] do
p := Upa q1; RP := RP ∪ {p}; RUp := RUp ∪ {(q1, a, p)}
if p /∈ rP[q] then

done := false; rP[q] := rP[q] ∪ {p};
proc new rq(q)

foreach q1 ∈ rQ[q] do
foreach p ∈ rP[q1] do

q2 := Side(q1, p); RSide := RSide ∪ {(q1, p, q2)}
if q2 /∈ rQ[q] then

done := false; rQ[q] := rQ[q] ∪ {q2}; init(q2);

proc init(q)
if q /∈ RQ then
RQ := RQ ∪ {q}; rQ[q] := {q}; rP[q] := /O;
foreach a ∈ Σ do

init(Downa q);

RQ := /O; RP := /O; RUp := /O; RSide := /O; init(q0);
repeat

done := true;
foreach q ∈ RQ do

new rp(q); new rq(q);
until done = true;
return RP,RQ,RUp,RSide;

Figure 6.14: An algorithm for computing the reachable states and transitions
of a DLPA.

rP[q] = {Upa q1 | q1 ∈ rQ[Downa q], a ∈ Σ}
rQ[q] = {q} ∪ {Side(q1, p) | q1 ∈ rQ[q] and p ∈ rP[q1]}

Note the similarity to the boolean system in 6.3.2. The least solution of this
system of equations yields exactly the states one-level reachable from each for-
est state q. Computing only a partial solution for those rP[q] and rQ[q] needed
for computation of the value for rQ[q0] involves exactly the reachable states
and transitions of the automaton. [LH92] propose local solvers for computing
such a solution. Indeed, our algorithm implements such a local solver. Because
the only operation required for solving the system is set union, differential local
solvers as in [FS98] can also be applied. The interested reader may consult that

CHAPTER 6. FOREST AUTOMATA 129

paper for efficient algorithms.

Example 6.6: Consider again the DLPA A~G3 constructed for grammar G3 in Ex-
ample 6.5. Running algorithm ReachDlpa yields the following reachable states:

Tree States:
p0 = /O
p1 = {xa}
p2 = {xb}
p3 = {x1}

Forest States:
q0 = {y0}
q1 = {y3}
q2 = {y2}
q3 = /O

q4 = {y7}
q5 = {y5}
q6 = {y4}
q7 = {y1}

q8 = {y8}
q9 = {y9}
q10 = {y6}
q11 = {y10}

Moreover, though there are theoretically 48 side-transitions for these 12 forest
states and 4 tree states, only 25 of them can actually occur during a run of the
automaton; similarly, only 12 up-transitions are reachable. Together with the
24 down-transitions this makes a total of 61 transitions. Compared to that, the
reachable transitions in the DLFA BG3 are 26 down-transitions, as many up-
transitions and 52 side-transitions, which make a total of 104.

Note that all of the reachable states are at most singletons. Though this is
not necessarily true for all grammars G, it is however characteristic for A~G that
its states have only few elements (see also 9.2). �

Example 6.7: Consider again the language Ln from the proof of Theorem 6.5
and the grammar Gn mentioned above which describes Ln. Constructing A~Gn

and running ReachDlpa yields that, after a renaming of states, it has the follow-
ing reachable states and transitions:

Tree States: RP = {X0, . . . ,Xn, ✗}
Forest States: RQ = {0, . . . , n,X0, . . . ,Xn, ✗}
Downx i = i−1, i=2, . . . , n
Downa 1 = 0
Downb 1 = ✗
Downx 0 = 0
DownxXi = ✗, i=0, . . . , n
Downx ✗ = ✗

Side(i,Xi) = Xi , i=0, . . . , n
Side(i, ✗) = ✗, i=0, . . . , n
Side(0,X1) = ✗

Upa 0 = X1
Upb 0 = X0
Upx i = ✗, i=1, . . . , n
UpaX0 = X1
UpbX0 = X0
UpxXi = Xi+1, i=1, . . . , n−1
Upx ✗ = ✗

where x ∈ Σ. This automaton is very similar to An in the proof of Theorem
6.5. The difference is that A~Gn

has a stateXi for each i 6 n, whereas in An all of
these states are unified into a single stateX. �

6.4.2.2 Matching Structure with Right-to-Left Pushdown Automata

Analogously to A~G we can also define a right-to-left pushdown automaton for
a given grammar: For G = (X, r0, R), let {r1, . . . , rl} = {r 6= r0 | x → a〈r〉}.
In contrast to the construction of A~G , we use the reverse Berry-Sethi con-
struction: Let (Yj, y0, j, Fj, δ j) = Berry�(r j) such that Yi ∩Yj = /O for i 6= j.
With Y = Y0 ∪ . . . ∪ Yl and δ = δ0 ∪ . . . ∪ δl , the DRPA A�G is defined as
(2X , 2Y , {q0}, F, Down, Up, Side) with

130 6.5. Bibliographic Notes

q0 = {y0,0}
F = {q | q ∩ F0 6= /O}

Downa q = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉 for some x, y1}
Upa q = {x | x→ a〈r j〉 and q ∩ F j 6= /O}

Side(q, p) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

Theorem 6.7: For each forest grammar G, LA�G = LG

The proof is analogous to that of Theorem 6.6. �

6.5 Bibliographic Notes

Tree automata were introduced [Tha67] under the name pseudo-automata as a
special class of finite algebras. The author shows that they accept the class of
regular tree languages, and that each tree automaton has an equivalent deter-
ministic automaton. For his slightly different definition of tree automata on
ranked trees, [Bra69] obtains the same results. Tree automata were also used
for implementing monadic second order logic by [TW68, Don70].

The automata of these early approaches have no explicit side-transitions;
there is only a single set of states Q. The transition relation α determines a
state for a node a in a single step from the word w of states assigned to its chil-
dren. For non-ranked trees,α can thus have infinitely many transitions, with a
regularity restriction for the set of words w yielding a state q under a symbol a.
The idea of explicitly representing these regular sets by a separate state space
with its own transition relation originally goes back to [Kro75], who used deci-
sion trees for efficient representation of large, n-ary transition relations. It was
refined by [BMW91] who explicitly introduced a horizontal automaton for the
side-transitions.

Pushdown tree automata have been studied in several variants. The first
approach of implementing regular tree languages by pushdown automata is
probably by [Tak75]: The author uses so called P-tracers, a special class of push-
down automata on words, for accepting the string representation of regular
tree or forest languages. Her construction, however, is non-deterministic and
she does not provide a method for making a P-tracer deterministic.

In [AU71] pushdown automata are used in the context of syntax-directed
translation. These automata traverse derivation trees of a context-free gram-
mars while writing to an output tape. Inspired by this work, [KS81] intro-
duced two-way dag-walking automata, a special case of which are two-way
tree-walking automata. Such an automaton can arbitrarily move up and down in
the input tree while maintaining a pushdown. Changes to the pushdown are
synchronized by the tree structure: The pushdown grows by one when moving
to a child, and it shrinks by one when moving to the parent. The automaton
has no explicit side-transitions: It can only move to the parent or the ith child
of the current node. Side-transitions are simulated by moving to the parent
first, and to the next child from there; the pushdown is used for remember-
ing the number of the last child visited. The authors show that two-way tree-
walking automata accept exactly the regular tree languages and that they can
be made deterministic: Their construction generates a deterministic automa-
ton whose traversing order corresponds exactly to that of our LPAs. However,
this automaton is conceptually a bottom-up automaton: The down-transitions

CHAPTER 6. FOREST AUTOMATA 131

never generate information. A restriction of two-way tree-walking automata
are the pebble automata of [EH99]. The size of the pushdown of these automata
is finitely bounded; they can thus only store a finite number of pebbles on the
pushdown. The authors show that the class of languages accepted by pebble
automata is a subclass of the regular tree languages; they conjecture but can
not prove that this is a proper inclusion.

A conceptually different kind of pushdown tree automata is introduced by
[Gue83] and [SG85], in a top-down or a bottom-up variant, respectively. These
automata traverse the tree from the root to the leaves or vice versa, visiting
each node exactly once. Changes to the pushdown are not synchronized with
moves in the tree. By contrast to the pushdown automata of [KS81], a transition
always concerns all children of a node. Both variants of these automata are
shown to accept the context-free tree languages. [Mor94] extends these automata
by allowing them to change the moving direction and thus to revisit nodes.
His two-way automata accept an even larger class of languages. Removing the
pushdown from these automata leads to the class of two-way tree automata as
defined by [BW98], which accept the regular tree languages.

A method similar to our LPAs but without using a pushdown is presented
in [BKR96] for implementing monadic second order logic: In order to minimize
the size of a bottom-up automaton, its run is preceded by a run of a top-down
automaton, the so-called guide. The guide annotates the tree with some finite
information which aids the bottom-up automaton in choosing transitions. This
is similar to the behavior of LPAs: Each node is visited exactly two times, first
when descending and a second time when ascending.

[MS98] use the string representation of ranked trees for the purpose of code
generation. They use LR-parsing and exploit the property that even in the
non-deterministic case moves on the stack are directed by the tree structure.
Thus alternative runs can be tracked simultaneously. LR-parsing is mainly a
bottom-up strategy: The pushdown is used for determining possible points
for reductions. In our case these points are determined by the tree structure
without the need to look at the pushdown. Instead, our algorithm uses the
pushdown for gathering information about the part of the forest visited so far.
It uses this information for selecting sensible expansions when descending to a
node’s children and is therefore more closely related to recursive-descent pars-
ing.

Chapter 7

Locating Matches in Context

In this chapter we introduce contextual conditions and context grammars. We
investigate how to implement context with forest automata and give an al-
gorithm for locating matches in context by two consecutive runs of forest au-
tomata. Then we enhance the grammar formalism with conjunctions and nega-
tions and modify the matching algorithm to deal with these two concepts. Fi-
nally, we identify a class of context grammars which can be implemented by a
single run of a forest automaton.

7.1 Contextual Conditions

In document processing, we are not always satisfied with verifying a structural
condition for an input forest. In fact we often want to locate subdocuments in
a specific context, that additionally have a structural property. For instance, in
order to compile a table of contents for a book, it does not suffice to verify that
the document contains section titles. In fact, we must collect all titles that are
a child of a section. In this case the structural condition is being a title, and
the context is that the parent node is a section. For this purpose we introduce
context grammars in this section.

The contextual condition not only refers to the ancestors of a subtree: It may
also impose conditions on the siblings of the subtree or of its ancestors. We can
view a context as a forest from which a whole subtree is cut out and replaced
by a hole “◦”. The situation is illustrated in Figure 7.1. We call the subtree we
are interested in the target. The path from the target to the root1 of the forest
is its upper context. All nodes to the left of this path belong to the target’s left
context, whereas everything to its right is part of the right context. All three
together make up the context of the target. The left context together with the
upper context is the left upper context, and similarly the right upper context is the
combination of the right and upper context.

A contextual condition is a regular set of contexts, i.e., of forests containing
a hole. The hole could be represented as an additional symbol in the alphabet:
In order to describe a contextual condition with a forest grammar G, we dedi-
cate a variable x◦ to the hole and specify a single rule x◦ → ◦ for that variable.
If we ensure that ◦ does not occur in any other rule of the grammar, then the

1Strictly speaking, a forest has no root. More precisely, we should therefore say: the root of the
largest subtree containing the target.

132

CHAPTER 7. LOCATING MATCHES IN CONTEXT 133

Left Context
Right Context

✄

Target

Upper Context

Figure 7.1: Context in pattern matching.

hole can only show up as a leaf in a forest in LG. The contextual condition is
then fulfilled for all nodes labeled with a ◦. These are exactly the nodes for
which the rule x◦ → ◦must be applied in the definition of [[G]].

But our intention goes further: In addition to the context, we want to verify
a structural condition for the target. We can describe this structural condition
by replacing the rule x◦ → ◦ with one or more rules that do not use ◦. Still,
the contextual condition is fulfilled for all subtrees that involve a rule for x◦,
but now they must additionally be in [[G]] x◦. Since the grammar has no more
occurrences of symbol ◦, it is an ordinary forest grammar. The only additional
component is the variable x◦, which describes the structure of the target; we
therefore call it a target variable. Because we might want to specify different
structural conditions for different contexts, we allow a set of target variables
instead of only a single one.

A context grammar C = (G, X◦) consists of a forest grammar G = (X, r0, R)
and a set of target variables X◦ ⊆ X. Let f0 ∈ LG. For a regular expression r or a
variable x, a path π is an r-context in f0 (w.r.t. G) or an x-context in f0, for short
f0 π r and f0 π x, if one of the following holds:

f0 π r iff n = last f0 (π), f0[π1]. . . f0[πn] ∈ [[G]] r and either
✧ π = ε and r = r0, or
✧ π 6= ε, f0[π] = a〈 f 〉, x→ a〈r〉, and f0 π x for some x.

f0 π i x iff f0 π r for some r, n = last f0 (π), there is a word
x1 . . . xn ∈ [[r]]R with f0[π j] ∈ [[G]] x j for j = 1, . . . , n
and x = xi for some i.

If f0[π] = t and f0 π x, then we also say that t matches x in f0. The meaning
of the context grammar C is defined as

[[C]] f0 = {π | f0 π x◦ for some x◦ ∈ X◦}

For all paths π ∈ [[C]] f0, we also say that π is a match of C in f0.

Example 7.1: Consider again the grammar G3 from Example 5.3. It describes
all trees of depth 2 whose root symbol occurs exactly once at a leaf. In or-
der to locate these leafs, we slightly reformulate G3, introducing two target

134 7.1. Contextual Conditions

[[C2]] f0:[[C3]] f1:

[[C3]] f2:

a

b

a ba a

a bb

b

a a b c

a

c cb

b bb

b

Figure 7.2: Matches of context grammars C3 and C2 from Examples 7.1 and 7.2.

variables x2 and x3, and obtain a context grammar C3 = (G′3, {x2, x3}) where
G′3 = ({xa, xb, x1, x2, x3}, x1, R) with the following rules:

x1 → a〈xb
∗x2xb

∗〉 xa → a〈〉 x2 → a〈〉
x1 → b〈xa

∗x3xa
∗〉 xb → b〈〉 x3 → b〈〉

Note that the rules for xa and xb are identical to those for x2 and x3; the latter,
however, are target variables. Now consider the forest f1 = a〈bab〉 ∈ LG′3 . To
start with, f1 ε x1 for the start expression x1. Because x1 ∈ [[x1]]R and a〈bab〉 ∈
[[G′3]] x1, we also have f1 1 x1 for the variable x1. Next, x1 → a〈r1〉 with r1 =
xb
∗x2xb

∗, and because bab ∈ [[G′3]] r1, also f1 1 r1. Now f1[11] = b ∈ [[G′3]] xb,
f1[12] = a ∈ [[G′3]] x2 and f1[13] = b ∈ [[G′3]] xb. With xbx2xb ∈ [[r1]]R , we get that
f1 12 x2 and thus 12 ∈ [[C3]] f1. A closer look shows that this is the only match
of C3 in f1.

For f2 = b〈aaab〉, we obtain in a similar way that [[C3]] f2 = {14}. Note that
for f3 = b〈bab〉, [[C3]] f3 = /O because f3 /∈ LG′3 . The situation is illustrated for f1
and f2 in Figure 7.2. �

Example 7.2: Consider grammar G2 from Example 5.2, which describes all
forests that a have path π from the root to a node such that all nodes
on π and all descendants of that node are labeled b, all nodes to the left
of the path are labeled a and all nodes to its right are labeled c: G2 =
({xa, xb, xc, x1}, xa

∗(xb x1)xc
∗, R) with:

xa → a〈xa
∗〉 xc → c〈xc

∗〉
xb → b〈xb

∗〉 x1 → b〈xa
∗(xb x1)xc

∗〉

Let C2 = (G2, {x1}). Then the matches of C2 are exactly the proper prefixes of
that path π . For instance, for the forest f0 = b〈aab〈ab〈b〈bbb〉cc〉〉c〉, [[C2]] f0 =
{1, 13, 132}. Figure 7.2 shows the situation. �

CHAPTER 7. LOCATING MATCHES IN CONTEXT 135

r0 = xa
∗(xb x1)xc

∗:

r1 = xa
∗: r2 = xb

∗: r3 = xc
∗:

y4

xc

xc

xc

y0 y1
xa

xa

xb

xb

y2

x1

x1

y3

xa

xa

y5 y6 y7 y8
xb

xb

xc

xc

y9 y10

Figure 7.3: The Berry-Sethi construction for the regular expressions in gram-
mar G2 from Example 5.2.

7.2 Locating Matches of Context Grammars

A characteristic property of a left-to-right pushdown forest automaton is that,
when entering a subtree, it has already visited the entire left upper context.
Moreover, it can store some information about the left upper context on its
pushdown and in its state. Pushdown automata are therefore a good candidate
for implementing context grammars.

Indeed, if we construct for a context grammar (G, X◦) the DLPA A~G , this au-
tomaton can already identify all candidates for a match of the grammar. They
can be recognized by means of the state with which A~G leaves each particular
subtree. This is most easily explained with an example:

Consider the context grammar C2 = (G2, {x1}) from Example 7.2. The
NFAs obtained by the Berry-Sethi construction for the regular expressions of
G2 are shown in Figure 7.3. Note that y3 is the only NFA state with an incom-
ing x1-transition, and that all transitions leading to y3 are labeled x1 (due to
Proposition 4.3). Therefore, a forest state of A~G2 containing y3 can be the result
of a transition Side(q, p) only if p contains x1.

Let us have a look at the run of A~G2 on the forest f1 in Figure 7.4 (a). The
matches of C2 are the paths 1 and 12, i.e., the two top-most b-nodes. Ob-
serve that the tree states computed for these subtrees contain x1 which is the
target variable of the grammar. Moreover, the forest states produced by the
side-transitions at these subtrees contain y3. This gives rise to the assumption
that for all paths matching C2, y3 is in the forest state produced by the side-
transition at that node. These nodes are underlaid in grey in the figure.

But not all of these paths are necessarily matches of the grammar: Since
the automaton is only aware of the left upper context of each subtree, the right
context remains to be verified. This is illustrated by case (b): In f2, the only
match of C2 is the path 1. Even so, the forest state at path 111 contains y3 and
indicates a candidate for a match. But for this subtree the right context is not
fulfilled: It has a right sibling labeled b. Filtering out those paths for which
the right context does not match requires a run of a second automaton which
proceeds from right to left.

Let us formalize this idea: To start with, it does not suffice to consider only
the output state of an automaton. In fact, we have to regard the states involved

136 7.2. Locating Matches of Context Grammars

a

b

b

b

b b

c

bb

b

b

b

(a) (b)

{y0, y7}

{y5}

{xb, x1}

{x1}

{y0}

{y1}

{y3}

{xb}

{y0, y7} {y2, y8}

{xa}

{xb} {xb}

{y0, y7} {y2, y8} {y8}

{y0, y7} {y7}

{y2, y3}

{xc}

{y4}

{y9}

{y2, y3, y8}

{xb}

{y7}

{y8}{y2, y3, y8}

{xb}

{y0, y7}

{y0, y7}

{y2, y8}

{y0, y7}

{xb, x1}

{xb}

{y0}

{y0, y7} {y2, y8}

{xb, x1}

Figure 7.4: The runs of A~G2 on (a) the forest f1 = b〈ab〈b〈bb〉〉c〉 and on (b) the
forest f2 = b〈b〈b〈b〉b〉〉.

in transitions at the individual nodes of the input forest f . Because the same
subtree t can occur multiply in f , we must be able to distinguish the states of
the automaton at these occurrences.

Let A = (P, Q, {q0}, F, Down, Up, Side) be a DLPA. The labeling of a forest
f by A is a mapping λ : Π(f) → Q × P × Q, assigning each node in f the
triple of states involved in the transitions at that node during a run of A. More
precisely, λ fulfills the following:

✧ λ(1) = (q, p, q′) with q = q0;

✧ If f [π] = t and λ(π) = (q, p, q′) then p = δT (q, t) and q′ = Side(q, p);

✧ If f [π] = a〈t1. . . tn〉, n > 0, λ(π) = (q, p, q′), λ(π1) = (q1, p1, q′1) and
λ(πn) = (qn, pn, q′n), then q1 = Downa q and q′ = Upa q′n;

✧ If λ(π i) = (q1, p1, q′1) and λ(π(i+1)) = (q2, p2, q′2), then q′1 = q2.

Similarly, if A is a DRPA, then λ has the following properties:

✧ If f = t1. . . tn, then λ(n) = (q, p, q′) with q′ = q0;

✧ If f [π] = t and λ(π) = (q, p, q′) then p = δT (q′, t) and q = Side(q′, p);

✧ If f [π] = a〈t1. . . tn〉, n > 0, λ(π) = (q, p, q′), λ(π1) = (q1, p1, q′1) and
λ(πn) = (qn, pn, q′n), then q′n = Downa q′ and q = Upa q1;

✧ If λ(π i) = (q1, p1, q′1) and λ(π(i+1)) = (q2, p2, q′2), then q′1 = q2.

CHAPTER 7. LOCATING MATCHES IN CONTEXT 137

Since A is deterministic in both cases, λ is uniquely determined for each f . We
can easily derive the following observation:

✧ For j> i and {π i, π j} ⊆ Π(f), let λ(π i) = (q1, p1, q′1), λ(π j) = (q2, p2, q′2)
and fi, j = f [π i]. . . f [π j]. If A is a DLPA, then q′2 = δF (q1, fi, j), and if A is
a DRPA, then q1 = δF (q′2, fi, j).

Now let C = (G, X◦) be a context grammar, A~G be as in Section 6.4.2, f0 ∈ LG,
and ~λ be the labeling of f0 by A~G . The A~G -annotation of f0 is the forest ~f0
over Σ × P × Q with each node of f0 enhanced with the tree state produced
by δT and the forest state obtained by the side-transition at that node. For-
mally, Π(~f0) = Π(f0) and if ~λ(π) = (q, p, q′) and sym(π [f0]) = a, then
sym(π [~f0]) = (a, p, q′). The DRPA B�G over Σ × P × Q is now defined as
(P, Q, F0, /O, Down�, Up�, Side�) where P, Q and F0 are as in the definition of
A~G and:

Down�(a,p,~q) q = {y2 | y ∈ q ∩ ~q, (y1, x, y) ∈ δ, x→ a〈r j〉, and y2 ∈ Fj}
Up�(a,p,~q) q = p
Side�(q, p) = {y1 | (y1, x, y) ∈ δ, y ∈ q, x ∈ p}

B�G operates on the same sets of states as A~G . However, when descending to
the children of a node, it selects final NFA states instead of initial ones and
performs the NFA transitions in the reverse direction while traversing the chil-
dren. Moreover, when determining the regular expressions whose final NFA
states are selected, Down� does not consider all applicable NFA transitions
(y1, x, y). It takes into account only those y that were reached by A~G as well:
Then A~G must also have performed a transition with x and the current subtree
must be in [[G]] x. Moreover, by performing the transitions of A~G in reverse
order, B�G will certainly reach the initial state of y’s NFA. In other words, the
left part of the context has been verified for this level by A~G . This assures that
the current subtree matches x in f0.

Note that B�G never actually computes an up-transition; it always uses the
tree states assigned by B~G . We can therefore view B�G as a top-down forest au-
tomaton. In the sequel, when arguing about A~G and B�G we will use the naming
convention ~q for forest states of A~G in order to clearly distinguish them from
the states of B�G .

Theorem 7.1: For a context grammar C = (G, X◦), let A~G and B�G be as above,
f0 ∈ LG, ~λ the labeling of f0 by A~G , ~f0 the A~G -annotation of f0, and �λ be the
labeling of ~f0 by B�G . Then

π ∈ [[C]] f0 iff ~λ(π) = (~q1, p, ~q), �λ(π) = (q1, p, q), y ∈ q ∩ ~q
and (y1, x◦, y) ∈ δ for some y, y1 ∈ Y and x◦ ∈ X◦.

Informally, a subtree t matches a target variable x◦, if both the forest state with
which A~G leaves t and the forest state with which B�G arrives at t contain the
same NFA state y which has an incoming x◦-transition.

The proof is given in Appendix A.6. �

138 7.3. Extending the Grammar Formalism

b

a c

b b

b

b

b

b

b

b

b

{x1}
{y3}

{xa}
{y1}

{xc}
{y4}

{xb}
{y2 , y8}

{xb}
{y8}

{xb}
{y2 , y8}

{xb , x1}
{y2 , y3}

y7 , y8}

(a)

{xb}
{y8}

{xb , x1}
{y2 , y3 ,

y8}

{xb , x1}
{y2 , y3 ,

y8}

{y2 , y8}
{xb}

{y2 , y8}
{xb}

(b)

{y2 , y3 ,
y4 , y7 , y8}

{y0 , y1} {y2 , y3 , y4}

{x1}

{xa} {xb , x1} {xc}

{xb}

{xb}

{y2 , y3 , y4}{y2 , y3 , y4}{y0 , y1}{y0 , y1}

{y9 , y10}{y0 , y1} {y0 , y1 ,

{y7 , y8}

{y7 , y8}{y7 , y8}

{xb}

{y7 , y8} {y7 , y8}

{y2 , y3 ,
y4 , y7 , y8}

{xb}

{y7 , y8} {y7 , y8}

{y7 , y8}

{xb}

{y7 , y8}

{y7 , y8}

{y7 , y8} {y7 , y8}

{xb}

{xb , x1}

{y2 , y3 , y4}

{y0 , y1 , y7 , y8}

{y0 , y1 , y7 , y8}

{xb , x1}

Figure 7.5: The runs of B�G2 on the forests ~f1 and ~f2, obtained from the runs of
A~G2 in Figure 7.4.

Example 7.3: Let us illustrate this result for the context grammar C2 from
above. Figure 7.5 shows the runs of B�G2 on the annotated forests ~f1 and ~f2,
according to Figure 7.4. For ~f1, B�G2 finds exactly the nodes that were already
marked as candidates for a match by A~G2 . On the other hand, A~G2 found path
111 as a candidate for a match in f2. In ~f2, however, B�G2 arrives with a forest
state a that node which does not contain y3. 111 is therefore no match of C2 in
f2. �

7.3 Extending the Grammar Formalism

Forest grammars are a formalism for specifying regular forest languages. The
class of these languages is closed under set union, intersection and complement
as we showed in Section 5.2. The latter two operations have no counterpart
in the syntax of forest grammars: Only set union can be expressed by giving
multiple rules for a variable.

In document processing, it is often desired to express intersection and com-
plement: On the one hand, we might want to specify that a subtree may not
fulfill a structural condition. For instance, it is sensible to disallow floating fig-

CHAPTER 7. LOCATING MATCHES IN CONTEXT 139

ures within other figures; or we might want to limit the nesting depth of lists to
a fixed number – e.g., in LATEX this limit is 4. In order to denote the complement
of regular forest languages we must therefore extend the grammar formalism
with negations.

On the other hand, one might want to express that a forest must fulfill sev-
eral structural conditions at a time. This can only be specified intuitively if we
extend forest grammars by conjunctions. Therefore we will now redefine the
syntax and meaning of grammars in order to offer these operations.

7.3.1 Extended Forest Grammars

A forest expression e over X has the form σ1r1 u . . . uσnrn, where σi ∈ {+,¬},
and ri is a regular expression over X for all i. σi is called the sign of ri in e. If
σi = + then we say that r j occurs positively in e; we often omit the + for brevity.
If σi = ¬ then r j is said to occur negated in e.

An extended forest grammar (EFG) over Σ is a tuple G = (X, E0, R) where X is
a set of variables, E0 is a set of forest expressions over X called start expressions,
and R is a finite set of rules of the form x → a〈e〉 with x ∈ X, a ∈ Σ and
e a forest expression over X. In the sequel we will often omit the adjective
extended when speaking about EFGs; for clarity, we will use the term simple
forest grammar when meaning the non-extended form.

Note that unlike simple forest grammars, an EFG has a set of start expres-
sions: While, an alternative of regular expressions can be denoted as a single
regular expression using , this is not possible for forest expressions. We there-
fore allow specification of multiple start expressions.

The meaning [[G]] of an extended forest grammar G = (X, E0, R) assigns sets
of trees to the variables in X and sets of forests to regular expressions and forest
expressions:

f ∈ [[G]] e iff f ∈ [[G]] r for all r with e = . . . u+ru . . . ,
and f /∈ [[G]] r for all r with e = . . . u ¬ru . . . ;

t1. . . tn ∈ [[G]] r iff there is x1 . . . xn ∈ [[r]]R , with ti ∈ [[G]] xi for all i;
a〈 f 〉 ∈ [[G]] x iff f ∈ [[G]] e for some e with x→ a〈e〉.

The language of G is LG =
⋃

e0∈E0

[[G]] e0.

Example 7.4: For Σ = {a, b, c}, suppose we want to describe the language of
all forests containing an a and a b. This is straight-forward with the extended
forest grammar G4 = ({x>, xa, xb}, {e0}, R) with e0 = xa u xb and the
following rules (we use as an abbreviation for x>∗):

x> → a〈 〉 xa → a〈 〉 xb → a〈 xb 〉
x> → b〈 〉 xa → b〈 xa 〉 xb → b〈 〉
x> → c〈 〉 xa → c〈 xa 〉 xb → c〈 xb 〉

Note that x> describes arbitrary trees from TΣ. In the sequel, we will assume
that each grammar implicitly has this variable with rules x> → a〈 〉 for all
a ∈ Σ, and we abbreviate x>∗ to .

Variables xa and xb describe trees that contain at least one a or b respectively.
The u-notation in e0 expresses concisely and intuitively our intention.

140 7.3. Extending the Grammar Formalism

Describing this language without conjunctions is fairly more complicated:
If a forest f = t1. . . tn contains an a and b, then a must occur in ti for
some i and b must occur in t j for some j. Now there are three possibilities:
i< j, i> j, or i= j. Therefore the start expression must have a form similar to

xa xb xb xa xab , where xa and xb are as above and xab de-
scribes all trees containing a and b. This phenomenon is scalable: For express-
ing that a forest contains n different symbols, there are exponentially many
cases in the above case distinction. The grammar then becomes large and un-
intelligible. �

In document processing, such situations occur frequently: E.g., a user of a doc-
ument database might search for all documents whose abstract contains the
words “document”, “automata” and “pattern”. Conjunctions are therefore a
very sensible extension to the grammar formalism.

Example 7.5: For Σ = {a, b, c}, consider the extended grammar G5 =
({x>, xa, xb, xc}, { xa }, R) with the following rules (we numbered the rules
because that will be needed for the next example):

R1 = x> → a〈 〉
R2 = x> → b〈 〉
R3 = x> → c〈 〉

R4 = xa → a〈 xa 〉
R5 = xa → a〈 xb u ¬ xc 〉
R6 = xb → b
R7 = xc → c〈xb〉

Variable xc describes the tree c〈b〉. xa represents all trees that have a subtree
labeled a, which has a child b but does not have a child c〈b〉; all ancestors of the
a-node must also be labeled a. LG5 is the set of all forests one of whose trees is
according to xa. For instance, f1 = a〈a〈bc〉〉 ∈ LG5 , but f2 = a〈bc〈b〉〉 /∈ LG5 .

�

7.3.2 Implementing Extended Forest Grammars

We will now adapt the definition of A~G to extended forest grammars. Note that
simple forest grammars are a special case of EFGs, so the new construction will
also work for them. However, the new construction is not an extension of the
old one: It uses a different set of tree states. This is not strictly necessary for
the purpose of matching structure, but we intend to use the same construction
for matching context. For that purpose, the tree states must not only indicate
whether a subtree matches a variable: It must also denominate the individual
rules fulfilled for that variable (cf. Example 7.8). Therefore the tree states of the
new A~G are sets of rule numbers rather than tree variables.

Let G = (X, E0, R) be a an EFG with R = {R1, . . . , Rh}, such that each rule
Rk has the form xk → ak〈ek〉 for k = 1, . . . , h. Furthermore, let H = {1, . . . , h}
and {r1, . . . , rl} be the set of regular expressions occurring in G. For each
j = 1, . . . , l, let (Yj, y0, j, Fj, δ j) = Berry(r j) such that Yi ∩ Yj = /O for i 6= j,
and define Y = Y1 ∪ . . . ∪ Yl and δ = δ1 ∪ . . . ∪ δl . Then A~G is defined as
(2H , 2Y , q0, F, Down, Up, Side) with:

CHAPTER 7. LOCATING MATCHES IN CONTEXT 141

r4 = xa :

r5 = xb :

r6 = xc :

r1 = :

r2 = ε:

r3 = xb:

y2

y3 y4
xb

y0
xa

xa

x> x>

x>x>

xb

xb

x>

x>

x>

x>

x>

x>

x>

x>

xc

xc

y1
x>

x>

y5 y6 y7 y8

y9 y10 y11 y12

y13 y14 y15 y16

Figure 7.6: The Berry-Sethi construction for the regular expressions in gram-
mar G5 from Example 7.5.

q0 = {y0, j | . . . uσr j u . . . ∈ E0}
F = {q | there is an e0 ∈ E0 such that

q ∩ Fj 6= /O for all j with e0 = . . . u+r j u . . . ,
and q ∩ Fj = /O for all j with e0 = . . . u ¬r j u . . .}

Downa q = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈 . . . uσr j u . . . 〉}
Upa q = {k | a = ak, q ∩ Fj 6= /O for all j with ek = . . . u+r j u . . . ,

and q ∩ Fj = /O for all j with ek = . . . u ¬r j u . . .}
Side(q, p) = {y1 | y ∈ q, k ∈ p, and (y, xk, y1) ∈ δ}

Theorem 7.2: For each extended forest grammar G, LA~G = LG

The proof is by structural induction and given in Appendix A.7. An immediate
consequence is that the language of an EFG is regular. �

Example 7.6: Let us consider again grammar G5 from Example 7.5. Figure
7.6 shows the NFAs produced by the Berry-Sethi construction. The rules (and
thus the forest expressions on their right-hand sides) are already numbered in
Example 7.5: e.g., e4 = xa . Figure 7.7 shows the runs of A~G5 on the forests
f1 = a〈a〈bc〉〉 ∈ LG5 and f2 = a〈bc〈b〉〉 /∈ LG5 . A~G5 accepts f1, but not f2. The
reason is that the top-most tree state {1} in the run on f2 does not contain the
number of a rule for xa. This tree state is obtained through an up-transition for
a and forest state {y1, y6, y10, y12, y14, y15}. This set contains a final state both
for r5 and r6. In order to fulfill rule R5, however, it must not contain any final
state for r6. �

142 7.3. Extending the Grammar Formalism

b

a

cb

b

a

a

c

{y5}

{y1 , y6 , y10 ,
y11 , y14}

{y1 , y6 , y10 ,

{2, 6}

{y0 , y2}

{y0 , y5 ,
y9 , y13}

{y6}

{1}

{3, 7}

{y0 , y3}

{y0 , y2}

{y1 , y4}

{2, 6}

y12 , y14 , y15}

{y5} {y6 , y7}

{1, 4}

{1, 5}

y9 , y13}
{y0 , y5 , {y1 , y6 , y7 ,

y10 , y14}

{y1 , y6 , y10 ,
y12 , y14}y11 , y14}

{y1 , y6 , y10 ,

{2, 6}

{y0 , y2}

{y0 , y5 ,
y9 , y13}

{3}

{y0 , y3}

Figure 7.7: Two runs of A~G5 from Example 7.6 on the forests f1 = a〈a〈bc〉〉 and
f2 = a〈bc〈b〉〉.

7.3.3 Extended Context Grammars

We can also use extended forest grammars for describing contextual condi-
tions: An extended context grammar (ECG) C = (G, X0) consists of an EFG
G = (X, E0, R) and a set of target variables X◦ ⊆ X. Let us now upgrade the no-
tion of π to extended context grammars. For a path π and a forest expression
e, a regular expression r, or a variable x, we define:

f0 π e iff n = last f0 (π), f0[π1]. . . f0[πn] ∈ [[G]] e and either
✧ π = ε and e ∈ E0, or
✧ π 6= ε, f0[π] = a〈 f 〉, x→ a〈e〉, and f0 π x for some x.

f0 π i x iff f0 π r for some r and there is x1 . . . xn ∈ [[r]]R with
n = last f0 (π), x = xi and f0[π j] ∈ [[G]] x j for j = 1, . . . , n.

f0 π r iff f0 π e for some e = . . . u+ru

Example 7.7: Consider again grammar G5 from Example 7.5. It describes the
forests containing an a that has a child b but no child c〈b〉. In order to locate
these b children, we define C5 = (G5, {xb}). Figure 7.8 shows the single match
of C5 in f3 = a〈ba〈b〉c〈b〉〉. Note that only the second occurrence of b is indeed
a match of C5: The first b-node is not a match because it has a sibling c〈b〉, and
the third b-node does not match because it is a child of a c-node, and the forest
expression xc occurs negated in rule R5.

Figure 7.8 also shows the run of A~G5 on f3. Similar to Section 7.2, a subtree
is a candidate for a match of C5 if the automaton leaves that subtree with a
forest state containing an NFA state with an incoming xb-transition. According
to Figure 7.6, these NFA states are y4 and y11. Thus A~G5 identifies the paths 11,
121 and 131 as candidates for a match. �

CHAPTER 7. LOCATING MATCHES IN CONTEXT 143

c

b

b a

a

b

b c

b

a

a

b

y9 , y13}
{y0 , y5 ,

{y0 , y2}

{2, 6}

{y6 , y7}

{1, 4}

{y0 , y2}

{2, 6}

y11 , y14}
{y1 , y6 , y10 ,

{1, 5}

{y1 , y6 , y10 ,{y0 , y5 ,
y9 , y13}

{2, 6}

{y1 , y6 , y8 , y10 ,

{3, 7}

{y1 , y4}{y0 , y3}

{y1 , y6 , y7 , y10
y12 , y14}

y11 , y14}

{y5}

{y0 , y2}

y12 , y14 , y15}

Figure 7.8: The match of C5 from Example 7.7 in f3 = a〈ba〈b〉c〈b〉〉, and the run
of A~G5 on f3.

7.3.4 Locating Matches of Extended Forest Grammars

In order to locate all matches of an extended context grammar in a forest f0,
we adapt the definition of B�G : Let A~G be as above and ~λ be the labeling
of f0 by A~G . Moreover, let ~f0 be the A~G -annotation of f0, and qF the out-
put state 2 of A~G for f0. The DRPA B�G over Σ × P × Q is now defined as
(P, Q, {�q0}, /O, Down�, Up�, Side�) with:

�q0 = {y | y ∈ Fj for some e ∈ E0 with e = . . . u+r j u . . . , and
for all i with e = . . . uσri u . . . , Fi ∩ qF 6= /O iff σ=+}

Down�(a,p,~q) q = {y2 | y ∈ q ∩ ~q, k ∈ p, (y1, x, y) ∈ δ for some y1,
Rk = x→ a〈 . . . u+r j u . . . 〉 and y2 ∈ Fj}

Up�(a,p,~q) q = p

Side�(q, p) = {y1 | (y1, xk, y) ∈ δ, y ∈ q, k ∈ p}

In contrast to the definition of B�G for simple context grammars, Down� selects
only the final states for those regular expressions which occur positively in a
forest expression e. Additionally, the tree state p produced by A~G must indicate
that e was fulfilled by the children of the current node. This is the reason why
tree states must distinguish the individual rules fulfilled for a variable.

Note that �q0 is defined dependent on the output state qF of A~G . Strictly
speaking, B�G can thus be different for all input forests f0. This prevents anal-
ysis of B�G in a preprocessing stage: The reachable states of B�G can not be de-
termined until after the run of A~G . Due to the immensely large alphabet of
B�G , this is virtually impossible anyway. It is therefore sensible to compute the
states and transitions on demand, during the run of B�G (see Chapter 9 for de-
tails of such an implementation).

Theorem 7.1 now carries over to extended context grammars:
2The output state of A~G for f0 is δF (q0 , f0).

144 7.3. Extending the Grammar Formalism

a

b

b b

a c

{1, 4}
{y6 , y7}

{y1 , y6 , y7 ,
y10 , y12 ,

y14}

{2, 6}

y11 , y14}
{y1 , y6 , y10 ,

{2, 6}

y11 , y14}
{y1 , y6 , y10 ,

{2, 6}
{y1 , y4}

{y1 , y6 , y8 ,
y10 , y12 ,
y14 , y15}

{1, 5} {3, 7}

{y7 , y8}{y5 , y6 , y7 , y8}

{1, 4}

{y0 , y1 , y7 , y8} {y0 , y1 , y7 , y8}{y0 , y1 , y5 , y6 , y7 , y8}
y6 , y7 , y8}
{y0 , y1 , y5 ,

{3, 7}{2, 6} {1, 5}

{y0 , y1}{y0 , y1}
y10 , y11 , y12}

{y0 , y1 ,{y0 , y1 , y9 ,
y11 , y12}

{2, 6}{2, 6}

{y0 , y1 , y2} {y0 , y1}

{y0 , y1}

(= q′)

Figure 7.9: The run of B�G5 on the forest ~f3, obtained from the run of A~G5 on f3
in Figure 7.8.

Theorem 7.3: For an extended context grammar C = (G, X◦), let A~G and B�G be
as above, ~λ the labeling of f0 by A~G , ~f0 the A~G -annotation of f0, and �λ be the
labeling of ~f0 by B�G . Then

π ∈ [[C]] f0 iff ~λ(π) = (~q1, p, ~q), �λ(π) = (q1, p, q), y ∈ q ∩ ~q
and (y1, x◦, y) ∈ δ for some y, y1 ∈ Y and x◦ ∈ X◦.

The proof is given in Appendix A.8. �

Example 7.8: Consider again the context grammar C5 and the run of A~G5 on f3

in Example 7.7. The run of B�G5 on ~f3 is illustrated in Figure 7.9. The matches
of C5 are the paths in ~f3 at which the automaton arrives with a forest state
containing an NFA state with an xb-transition, that is also in the (annotated)
forest state with which A~G5 left that node. Path 121 is thus correctly indicated
as the only match of C5 in f3, because y11 is in both forest states there.

Note that, on the one hand, the b node at path 131 is not recognized as a
match though identified as a candidate by A~G5 : It is annotated with a state
containing y4 which has an incoming xb-transition. However, in order to have
y4 in the B�G5 state at that node, it is necessary by definition of Down� that
�λ(13) = (q, p, q′) with y15 ∈ q′ or y16 ∈ q′. This is not the case, because
q′ = Down�(a,{1,4},{y6 ,y7}) {y7, y8}. This Down�-transition ignores NFA states y15
and y16 because they are the final states of r6 which occurs negated in rule R5.

On the other hand, the first b in f3, located at path 11, is not identified as
a match of C5 either. In order to be a match, B�G5 has to arrive at that node
with a state containing y11. This is impossible because the forest state q′ with
which B�G5 enters this level does not contain a state from Y5; thus y11 can not be

CHAPTER 7. LOCATING MATCHES IN CONTEXT 145

obtained through side-transitions from q′. The reason why q′ does not contain
any states from Y5 is that 5 is not in the tree state at the root of the tree. There-
fore rule R5 is ignored in the first Down�-transition, and the final states for r5
are not taken into account. The Down�-transition only considers those rules for
a variable which are structurally matched by the forest to be entered. If we had
used, as in the construction in Section 7.2, sets of variables as tree states, then
we could not make this distinction. �

7.3.5 Locating Matches in Document Order

As shown in the previous section, the matches of an extended context grammar
can be located with runs of two forest automata, namely A~G and B�G . The latter
is conceptually a top-down automaton: It traverses the forest in right-to-left,
depth-first order. A match can be recognized by the forest state with which
B�G arrives at the concerning subtree, i.e., before descending into that subtree.
All matches can thus be reported in the same order in which the automaton
traverses the forest.

In document processing, however, we are usually interested in a different
order: document order, which is depth-first left-to-right. In order to locate the
matches in this order, we have to switch the directions of the two automata:
The first traversal of the forest must be from right to left, and the second run
from left to right.

We therefore define automata A�G and B~G analogously to A~G and B�G , with
the difference that the reverse Berry-Sethi construction is employed for com-
puting the NFAs. Theorems 7.2 and 7.3 can be reformulated for A�G and B~G ;
the proofs are completely analogous.

7.4 Matching Context in a Single Pass

With the automata A~G and B�G from the previous section, we can locate all
matches of a context grammar in a forest in two traversals. The first traversal
already identifies all candidates for matches of the grammar; the task of the sec-
ond traversal is to discard those candidates that do not match. In many cases,
however, all the candidates found by A~G are indeed matches of the grammar;
the second traversal is then superfluous.

We will now define a class of grammars for which the second traversal can
be safely omitted. Then the matching can be done in a single pass which is
a valuable advantage in document processing, because it allows to search a
document without constructing a physical copy of it in memory (cf. 1.2.3).

7.4.1 Right-Ignoring Regular Expressions

In order to define the requirements a grammar must fulfill for being imple-
mented by a single pass, let us have another look at the definition of f0 π x:

f0 π i x iff f0 π r for some r and there is x1 . . . xn ∈ [[r]]R with
n = last f0 (π), x = xi and f0[π j] ∈ [[G]] x j for j = 1, . . . , n.

For j 6 i, the left-to-right automaton A~G can verify that f0[π j] ∈ [[G]] x j; but
the subtrees at π j for j > i must be checked by B�G . In order to skip the run of

146 7.4. Matching Context in a Single Pass

B�G , it must be sure that f0[π j] ∈ [[G]] x j for j > i. This is guaranteed if x j = x>
for j > i (recall from 7.3.1 that x> describes arbitrary trees).

Now let r be a regular expression, (Q, q0, F, δ) = Berry(r), and Qx =
{q ∈ Q | (q1, x, q) ∈ δ for some q1}. Then r is right-ignoring w.r.t. x, if there is
a Q> ⊆ F such that Qx ⊆ Q> and for all q ∈ Q>, there is a q1 ∈ Q> with
(q, x>, q1) ∈ δ. In other words, if we can reach a state in Q through an x-
transition, then this state is final, and we can end up in a final state after an
arbitrary number of x>-transitions.

Example 7.9: The regular expression x is right-ignoring w.r.t. x. As a more
complex example, consider the regular expression r = x1(x2x3? x3)x1? .
Here is the Berry-Sethi automaton for r:

0

2

1 4

3

5 6x1 x3 x1 x> x>

x2
x1 x1

x3

x>

x>x>

Now Qx2 = {2}, and with Q> = {2, 6}, r is right-ignoring w.r.t. x2. It
is also right-ignoring w.r.t. x3, because Qx3 = {3, 4}, and we can choose
Q> = {3, 4, 6}. However, r is not right-ignoring w.r.t. x1, because Qx1 = {1, 5}
and 1 is not a final state. �

The intention of the term right-ignoring is that if we can accept a prefix vx of
some word w ∈ [[r]]R , then vxu ∈ [[r]]R for all u ∈ {x>}∗. However, this is not
precisely expressed by our definition: It requires that all involved states must
be final. Consequently, the regular expression r′ = xx>?(x>x>)∗ is not right-
ignoring w.r.t. x, although xu ∈ [[r′]]R for all u ∈ {x>}∗. But r′ is a rather cryptic
way of denoting the language [[xx>∗]]R . We can therefore assume that regular
expressions of this kind do not occur in practice.

It can be efficiently determined whether a regular expression r is right-
ignoring w.r.t. to a variable x. Figure 7.10 gives a corresponding algorithm
IsRiRegExp. The algorithm collects in set seen the final states that are reach-
able from q through x>-transitions and final states only. In each iteration of
the while -loop, the set new contains the states found in the last iteration; the
set temp of final states reachable by an x>-transition from a state in new is com-
puted. As soon as temp contains a state q1 that is already in seen, the loop
terminates: Then there must be an x>-cycle through q1 and q1 is reachable from
q using only x>-transitions. Conversely, if temp is empty, then there is no such
cycle and r is not right-ignoring w.r.t. x. Note that the while -loop computes the
set seen incrementally: The transitions for each state in Q> are examined at most
once.

The complexity of algorithm IsRiRegExp is quadratic in the size of A, pro-
vided that the set operations can be done in constant time. More precisely, it
is O(|F| · |δ|): In order to determine Qx, at most one transition must be exam-
ined for each state in Q (due to Proposition 4.3 all transitions for q are labeled
with the same symbol). The foreach loop is executed at most |F| times. Be-

CHAPTER 7. LOCATING MATCHES IN CONTEXT 147

Algorithm IsRiRegExp

Input: An NFA A = (Q, q0, F, δ)
A variable x

Output: true if A is right-ignoring w.r.t. x
false otherwise

Algorithm:

Qx := {q | (q1, x, q) ∈ δ for some q1};
if Qx 6⊆ F then return false
else foreach q ∈ Qx do

seen := {q}; new := {q};
while new 6= /O do

temp := {q1 ∈ F | q ∈ new, (q, x>, q1) ∈ δ};
if temp = /O then return false;
else if temp∩ seen 6= /O then new := /O;
else new := temp \ seen;

seen := seen∪ temp;
return true;

Figure 7.10: An algorithm for determining whether a regular expression is
right-ignoring w.r.t. a variable

cause the set seen is computed incrementally, the whole while -loop and thus
each iteration of the foreach -loop has a complexity of O(|δ|).

7.4.2 Match-Relevance and Right-Ignoring Context Grammars

Let us now have a look at the definition of f0 π r:

f0 π r iff f0 π e for some e = . . . u+ru

In order for π to be an r-context, it must also be an e-context, i.e., each
regular expressions occurring in e must be fulfilled if its sign is +, and may not
be fulfilled if its sign is ¬. Thus, even if r is right-ignoring w.r.t. x, we must
inspect all right siblings of a subtree matching x in order to verify these side-
conditions. If we want to skip the second pass, it is therefore necessary, that no
forest expression involved in a Down-transition uses conjunction or negation.
More precisely, each forest expression that is used for matching the context,
must have the form +r where r is right-ignoring w.r.t. the variable that is used
for matching the context. Let us formalize this:

Let C = (G, X◦) be an extended context grammar with G = (X, E0, R). A
forest expression or variable is classified as match-relevant as follows:

1. All x ∈ X◦ are match-relevant.

2. If x is match-relevant, x occurs in r and e = . . . uσru . . ., then e is match-
relevant.

3. If e is match-relevant and x→ a〈e〉, then x is match-relevant.

148 7.4. Matching Context in a Single Pass

As a direct consequence, if E0 contains no match-relevant forest expressions,
then C can never have a match. C is called right-ignoring if all match-relevant
forest expressions in G have the form e = +r such that r is right-ignoring w.r.t.
all match-relevant variables.

Example 7.10: None of the example grammars presented so far is right-
ignoring. The context grammar C6 = (G6, {xc}) is right-ignoring, where
G6 = ({x, x1, xb, xc}, { x }, R) with the following rules:

x→ a〈 x 〉 xb → b〈¬ x1 〉 x1 → c〈 〉
x→ b〈xbxc 〉 xc → c〈 〉

The match-relevant variables are xc and x; the match-relevant forest expres-
sions are x and xbxc . Obviously, both of these forest expressions consist
of a single positive regular expression which is right-ignoring w.r.t. x and xc.

Note that variables xc and x1 are structurally equivalent. However, if we
remove x1 and replace it by xc, then the forest expression ¬ x1 becomes
match-relevant; because it consists of a negated regular expression, this would
prevent C6 from being right-ignoring. �

In order to decide whether a context grammar C is right-ignoring, we first have
to determine the match-relevant variables and forest expressions in C. For this
purpose we construct a system of boolean inequations, which has a variable
<x> or <e> for each variable x or forest expression e:

<x>← true if x ∈ X◦
<x>← <e> if x→ a〈e〉 for some a
<e> ← <x> if e = . . . uσru . . . and x occurs in r

The system of inequations can be constructed in time linear to the size of C; its
least solution σ can be computed in linear time because it is a boolean system.
A variable or forest expression is match-relevant if its value under σ is true.

We must now check for each match-relevant regular expression r whether
it is right-ignoring w.r.t. each match-relevant variable x. In the worst case, all
variables and regular expressions are match-relevant; thus at most O(|X| · l)
such checks are necessary, where l is the number of regular expressions in C. It
can thus be decided in polynomial time whether a grammar is right-ignoring.

The main result of this section is that if C is right-ignoring, then all can-
didates for a match identified by A~G do indeed match; C can thus be imple-
mented by a single pass:

Theorem 7.4: For a right-ignoring context grammar C = (G, X◦), let λ be the
A~G -labeling of f0. Then π ∈ [[C]] f0 iff λ(π) = (q, p, q′) and y′ ∈ q′ with
(y, x, y′) ∈ δ for some x ∈ X◦.

The proof is given in Appendix A.9. �

Note that, though A~G proceeds from left to right, the matches of C are not
found in document order: It can only be decided whether a subtree t matches
after t has been completely traversed. If any subtrees of t match as well, then
they are found earlier. Section 9.1.4 will explain how a one-pass matcher can
be implemented in spite of this.

CHAPTER 7. LOCATING MATCHES IN CONTEXT 149

7.5 Bibliographic Notes

In contrast to regular tree languages, which are well studied and understood,
there has only been few work concerning the location of subtrees in context.

[Mur96] uses pointed trees as introduced by [Pod92, NP93] for specifying the
contextual conditions: A pointed tree is a tree with exactly one occurrence of a
special symbol ◦ as a leaf. The concatenation of two pointed trees t1 and t2 is
done by replacing the ◦ in t1 with t2. A context can then be described by the
concatenation of a sequence of pointed trees; a contextual condition is a regular
language of such sequences. It can be given as a regular expression over a finite
set of pointed base-tree representations. A pointed base-tree representation is, for
binary trees, of the form a〈S◦〉 or a〈◦S〉, where S is a regular tree language.
Though this might be practicable in the binary case, it is inconvenient for larger
ranks: For a symbol with rank n, there are n possibilities for the position of ◦,
and n−1 regular tree languages must be given for the other children of a. For
non-ranked trees there are even infinitely many possibilities for the position of
◦. A possible way of transferring this specification method to non-ranked trees
and forests is to use base representations of the form a〈L◦R〉, where L and R
specify regular forest languages. Indeed, the context qualifiers of the pattern
language which will be introduced in Section 8.2 are inspired by this approach.

[Mur96] implements a contextual condition by running a bottom-up tree
automaton on the input tree and annotating each node with its state in that
run. A top-down automaton on the annotated tree then identifies the matches
of the pattern. Using the ranked-tree representation η2 from Section 4.2.1 for
forests, this bottom-up automaton corresponds to an LFA in our framework;
the top-down automaton is the counterpart of our RPA B�G . However, since
the first traversal is by a bottom-up automaton, Murata’s algorithm always
requires the runs of both automata; he can not give a special class of contextual
conditions, such as our right-ignoring grammars, where a single pass suffices.

A different approach is taken by [NS99]: Here a query incorporating both the
structural and the contextual condition is expressed as a formula of monadic
second order logic (MSO) with one free first-order variable. It is a long-known
fact that MSO without free variables expresses exactly the regular tree lan-
guages [TW68, Don70]. A query in [NS99] is implemented by a query automaton
which is a deterministic two-way automaton as defined by [Mor94], without a
pushdown but enhanced with a selection function. The selection function de-
termines for each node whether it matches the query, depending on the state
of the automaton and the symbol at that node. The basic construction is for
ranked trees; in order to implement MSO formulae over non-ranked trees, the
authors extend query automata with stay transitions.

Query automata are a rather theoretical solution to the problem of locating
matches: The automaton constructed for a query must visit each node in the
input tree a number of times which is bounded only by the size, more precisely
the depth of the tree; for large trees this is unacceptable in practice. Moreover,
the size of the automaton is iterated exponential in the size of the MSO for-
mula, because it incorporates a one-way bottom-up automaton for checking
closed MSO formulae. Due to [TW68], the construction of a such an automa-
ton requires k constructions of a complement automaton in an intermediate
step, where k is the alternation depth of ∀ and ∃ quantors in the formula. Each

150 7.5. Bibliographic Notes

of these constructions can lead to an exponential growth of the state space.
However, though this iterated exponential size is not practicable, we should
not conceal that MSO formulae are an extremely succinct formalism.

[BHW98] uses caterpillars for specifying contextual conditions. A caterpillar is
a sequence of node tests and movements. A node test can either check whether
a node is labeled with some symbol a ∈ Σ, or whether it is the root (isRoot) or
a leaf (isLeaf) of the input forest, or the left-most (isFirst) or right-most (isLast)
child of another node. A movement directs the next node test to one of the
neighbors of the current node: its parent (up), immediate left or right sibling
(left or right), or its left-most (first) or right-most (last) child. A node matches
the caterpillar w if, starting at this node, the sequence of movements and node-
tests can be successfully performed. A contextual condition is then a caterpillar
language, i.e., a regular word language of caterpillars. Note that for caterpillars
it does not matter whether the input forest is ranked.

Though caterpillars are a very intuitive formalism, their implementation is
rather inefficient; the authors give an algorithm for locating all matches of a
caterpillar language C in O(n · m) time, where n is the size of the input tree,
and m is the number of states of an NFA A accepting C. This algorithm does
not work on the tree itself: It solves a system of inequations, assigning each
node in the tree the set of states in A from which a final state is reachable by
successful movements and node tests starting at that node. The order in which
an algorithm solving this system of inequations visits the nodes of the input
forest is rather unpredictable. Apparently this algorithm can not be performed
by a fixed number of traversals through the input tree.

A sensible restriction of caterpillars is to constrain movements to a spe-
cific traversing strategy. For instance, in order to make a caterpillar perform a
left-to-right depth-first traversal, one would disallow left and last movements;
moreover a down movement would be illegal after an up move. Since this
traversing order corresponds to that of LPAs, it is not hard to see that such a
caterpillar language could be implemented efficiently with a pushdown forest
automaton.

It is an intriguing open problem whether caterpillars can express all regular
contexts: This would include the ability of specifying that, e.g., the left sibling
of the target fulfills a regular structural condition. With caterpillars, we can ex-
press structural conditions by claiming that the root of a subtree is in a caterpil-
lar language. Such structural conditions are called caterpillar-regular languages.
The authors of [BHW98] show that each caterpillar-regular tree language is a
regular tree language, and that each local tree language is caterpillar-regular.
It remains open whether each regular tree language is also caterpillar-regular.
In the framework of pebble automata for ranked trees, [EH99] suggests a can-
didate for a regular tree language whose implementation requires at least one
pebble, but can not prove this. Since caterpillars closely correspond to Engel-
friet’s automata without pebbles, this proof would imply that caterpillars can
not express all regular tree languages.

In our previous papers [NS98b, NS98a], we used µ-formulae and, alternatively,
constraint systems over pointed trees for specifying contextual conditions (cf.
5.3). However, we restricted ourselves to contextual conditions that correspond
to right-ignoring grammars. For these queries we gave an algorithm which is
very similar to the one-pass algorithm in 7.4.

Chapter 8

Querying XML Documents

In this chapter we adapt our grammar formalism to the requirements of XML:
We add handling of plain text, attributes and processing instructions. Then we
introduce a pattern language for more succinct formulation of queries.

8.1 Particularities of XML Documents

We have presented an algorithm for locating matches of context grammars in
a forest by one or two runs of a pushdown forest automaton. In document
processing this procedure is called querying. In order to query XML documents,
we have to extend our grammar formalism to deal with some XML-specific
aspects not covered by forest language theory.

8.1.1 External Predicates for Matching Character Data

When querying an XML document, the alphabet Σ is chosen as the set of ele-
ment types occurring in the document. But this does not cover all nodes in an
XML document tree: In addition to other elements, an element can also contain
character data, i.e., text. In order to deal with character data, we could extend
the alphabet with the set of characters and treat each single character as a leaf
on its own. But this has two major disadvantages:

✧ Since XML documents are written in UNICODE, the alphabet must contain
the full range U of UNICODE characters, which are theoretically more
than a million. An alphabet of this size is hard to implement efficiently.

✧ When searching for text in a document, one is usually not only interested
in a single character but in a whole sentence or paragraph. For instance,
we might want to query for all section titles containing the word “au-
tomata”.

It is therefore sensible to treat each segment of character data as a single node.
This prevents location of single characters, but that is hardly ever required in
practice. Thus, the set of trees is now given by

t ::= a〈 f 〉, a ∈ Σ | ”s”, s ∈ U ∗

In order to match such a text node, we allow to specify structural conditions
on text by a special mechanism, namely regular expressions over the UNICODE

151

152 8.1. Particularities of XML Documents

alphabet. In order to distinguish them from regular expressions over tree vari-
ables, we call these regular expressions text patterns. Now we allow text pat-
terns as an additional form of right-hand sides of grammar rules (recall from
4.1 thatRX is the set of regular expressions over X):

x→ ”τ”, τ ∈ RU
We extend the meaning function for grammars accordingly:

”s” ∈ [[G]] x iff there is a τ ∈ RU with x→ ”τ” and s ∈ [[τ]]R .

In order to implement grammars with text patterns, we also have to enhance
our notion of a forest automaton. Since a forest automaton can not check
whether a text matches a text pattern, it treats these patterns as a set of external
predicates T = {τ1, . . . , τk}: In order to perform a transition at a text node, each
text pattern is surveyed by a call to an external procedure, which in this case1

performs a run of a deterministic finite automaton on the UNICODE text. The
tree state for the text node is determined from the set of fulfilled predicates by
a special up-relation Uptxt : 2T → P. In a bottom-up automaton it is always
necessary to examine all text patterns. By contrast, a pushdown automaton
can reduce the number of text patterns to be checked to those which might
contribute to a succeeding side-transition, similarly to the down-relation of A~G
which selects a set of sensible NFA states. This selection happens with a special
down-transition Downtxt : Q → 2T . With these concepts we can extend δT for
a DLPA to deal with text nodes:

δT (q, ”s”) = Uptxt{τ | τ ∈ Downtxt q, s ∈ [[τ]]R}
In the construction of A~G , we must now add support for text patterns, i.e.,
define the two functions Uptxt and Downtxt:

Downtxt q = {τ j | y ∈ q, (y, x, y1) ∈ δ, x→ ”τ j” for some x, y1}
Uptxt M = {k | Rk = x→ ”τ j” and τ j ∈ M}

The definition of these two functions for B�G is trivial since this (top-down)
automaton uses the tree states produced by A~G . It is only a technical issue to
integrate handling of text patterns into the proofs of Theorems 6.6, 7.1 and 7.4.

The use of external predicates for text patterns makes precomputing the
reachable states of an automaton virtually impossible: If the grammar contains
n text patterns, then each text node in the document can match one of the 2n

subsets of these patterns. In the case of pushdown automata the situation is
slightly less serious: The maximal number m of text patterns resulting from a
Downtxt transition might be smaller than n. Still there are 2m possible transi-
tions at a single text node. It is therefore sensible to delay the computation of a
transition until it is actually needed during the run of the automaton (see 9.1.2
for more details).

8.1.2 Text Patterns

A text pattern is a regular expression over UNICODE characters. The syntax
for regular expressions presented in 4.1, however, is insufficient for the needs

1Note that the concept of external predicates allows for tests of arbitrary, even non-regular con-
ditions on text. E.g., an external predicate might check whether the text contains a prime number
of words, or whether it is correctly spelled. In this framework we are satisfied with regular text
patterns.

CHAPTER 8. QUERYING XML DOCUMENTS 153

in document processing. We therefore make the following modifications to the
syntax of text patterns, motivated by the syntax used for the UNIX tool grep
[FSF99]:

Character Ranges: When searching for text it is often desired to specify a range
of characters instead of just a single character. For instance, a number is
described by the text pattern ”(0 1 2 3 4 5 6 7 8 9)+”. This is rather
uncomfortable because all digits between 0 and 9 must be enumerated;
for larger ranges of characters the case is even worse. Therefore we intro-
duce a shorter way of specifying a character range using square brackets:

cr ::= [ci . . . ci] | [∧ci . . . ci] | . | ∼ | c ∈ U
ci ::= c ∈ U | c1−c2 | ∼

Let us informally describe character ranges and their meaning: A charac-
ter interval ci is either a single character, describing itself, the special char-
acter ∼ which stands for white-space characters, or of the form c1−c2. In
the last case it represents all characters whose UNICODE value lies be-
tween those of c1 and c2. A character range cr is composed of a sequence
of intervals and describes all characters belonging to the single intervals.
If the first character within the brackets is ”∧”, then the meaning of the
character range is negated: It describes all characters not in any of the
intervals. The character ”.” is a short-hand for the range of all UNICODE
characters. The character range [∼] can be abbreviated to the single char-
acter ”∼”, and for each character c ∈ U , c abbreviates [c].

For example, ”[a−zA−Z0−9]” is the range of alphanumeric ASCII char-
acters, whereas ”[∧ ∼,.:;?!]” describes the range of all characters ex-
cept for white-space and punctuation characters. A text pattern is now a
regular expression over character ranges: For instance, we can describe
numbers by ”[0−9]+”.

White Space: Text pattern ”to be or not to be” matches exactly the string
”to be or not to be”. However, in an XML document there might be
a line break between two of the words, and additionally there might
be white space for purposes of indentation. Therefore, we interpret the
space character as a short-hand for ”∼+”. If the intention is to match really
a single space character, it must be escaped with a ”\” in the text pattern.

For instance, ”a b” matches, among others, the strings ”a b”, ”a b” and
”a b”, whereas ”a\ b” matches only ”a b”.

Leading and Trailing Characters: In order to match a text node containing a
certain word, e.g., ”forest”, it would be convenient to use that word as
a text pattern. Therefore, we interpret an entire text pattern as implicitly
preceded and followed by “.∗”, thus requiring the text to contain a match
of the text pattern, instead of exactly matching it. However, if an exact
match is desired, we can precede the pattern with “∧” for disallowing
leading characters; terminating a text pattern with “$” requires that there
are no trailing characters.

154 8.1. Particularities of XML Documents

... ...

(a) (b)

t1 tn

a

#atts #content

xkx1

”v1” ”vk”

#pi

#atts

”target”

#target ”text”

#content

Figure 8.1: Representation of XML documents as forests: (a) an element with
start-tag <a x1=”v1” . . . xk=”vk”> and content t1. . . tn, and (b) a pro-
cessing instruction <?target text?>.

8.1.3 Representation of XML Elements and Attributes

In 8.1.1 we chose the set of element types as the alphabet Σ. In XML, how-
ever, a node of the document tree is not only labeled with its element type, but
additionally with a set of attribute assignments (cf. 1.1.1). One possibility of
dealing with attributes is by external predicates2. For uniformity, however, we
follow a different approach similar to that of, e.g., DSSSL [ISO96] and XPATH
[W3C99c]. There the attributes of an element are represented in the document
tree as an additional subtree of the element. Our representation is illustrated
by Figure 8.1 (a): Each element has exactly two children, labeled with auxiliary
symbols #atts and #content . The #atts subtree contains for each attribute as-
signment x=”s” one subtree labeled x having a single child: a text node giving
the attribute value s. Note that attribute assignments are unordered; therefore
they need not appear in the same order as in the XML start-tag. The children of
the #content node are the content of the element. This representation requires
extension of the alphabet Σ with the two auxiliary symbols and the attributes
names.

We can now specify conditions on the attributes of XML elements: For in-
stance, in order to match an a element that has an attribute u whose value
contains the word ”forest” but which has no attribute named v, and whose
content matches a forest expression e, we specify the following rules:

x → a〈xaxc〉 xu → u〈xt〉
xa → #atts〈 xu u ¬ xv 〉 xv → v〈x>〉
xc → #content〈e〉 xt → ”forest”

Because this description of the intended structural condition is rather long-
winded, we introduce an abbreviated syntax in which we can specify the above
as follows:

x→ e

We call grammars in this abbreviated syntax query grammars. In a rule of a
query grammar, a right-hand side for an element has the form <a aps> e, where

2It is straight-forward to extend the mechanism of external predicates to non-text nodes.

CHAPTER 8. QUERYING XML DOCUMENTS 155

aps is a sequence of possibly negated attribute patterns. Similarly to the regular
expressions in forest expressions, each attribute pattern has a sign + or ¬; the
+ is usually omitted. Each attribute pattern ap has the form u or u=”τ”, where
u is an attribute name and τ is a text pattern.

rhs ::= ”τ” | <a aps> e
aps ::= ε | ap aps | ¬ap aps
ap ::= u | u=”τ”

An attribute pattern u specifies that the element must have an attribute named
u; for u=”τ” its value must additionally match the text pattern τ . A negated at-
tribute pattern¬u means that no attribute named u may be present; for¬u=”τ”,
there may be such an attribute, but its value must not match τ .

Query grammars are translated to extended context grammars by a func-
tion γrhs. It replaces each abbreviated right-hand side <a σ1ap1 . . .σkapk> e with
a set of right-hand sides in conventional syntax, introducing new variables
xa, xc, x1, . . . xk not occurring elsewhere:

γrhs(x→ <a σ1ap1 . . .σkapk> e) =
R1 ∪ . . . ∪ Rk ∪ {x→ a〈xaxc 〉, xc → #content〈e〉,

xa → #atts〈σ1 x1 u . . . u σk xk 〉}

where Ri = γap(xi , api) for i = 1, . . . , k, with:

γap(x, u) = {x→ u〈x> 〉}
γap(x, u=”τ”) = {x→ u〈xτ 〉, xτ → ”τ”}, xτ is a new variable

Note that in the definition of γrhs, a follows the xc in the right-hand side for
variable x, though the representation of documents ensures that the #content
child of a has no right sibling. However, if we omit the then the resulting
grammar can never be right-ignoring, even if the query grammar is.

8.1.4 Element-Type Patterns

In a rule of the form x → <a aps> e a single element type a can be specified.
It would be more convenient to subsume a set of element types into a single
rule. For instance, in an HTML or XHTML document, if we are interested in the
text of headers (h1,. . . ,h6) containing the word ”forest”, the following rules are
required:

x → <h1> xt x→ <h3> xt x→ <h5> xt
x → <h2> xt x→ <h4> xt x→ <h6> xt

xt → ”forest”

It would be much more concise to write a single rule comprising all six header
element types. We therefore allow specification of an alternative of one or more
element types with the help of an element-type pattern:

x→ <h1 h2 h3 h4 h5 h6> xt

Another useful feature is negation in element-type patterns: Suppose we want
to locate all a elements that are not a subtree of another a element, i.e., that
have no ancestor labeled a. This grammar must have the following rules:

156 8.1. Particularities of XML Documents

x→ <a> e
x→ e, for b ∈ Σ \ {a}

The second line is a template for as many rules as the size of Σ minus one.
For large alphabets, which are quite common as XML DTDs, this is very incon-
venient. Moreover, if the DTD of a document is not known in advance, then
neither is Σ: The elements different from a can not be enumerated, and a gram-
mar can not be specified at all. We therefore introduce negation to element-type
patterns, enabling the following:

x→ <¬a> e

Summarizing, right-hand sides in query grammars may have the following
form:

rhs ::= ”τ” | <ep aps> e
ep ::= a1 . . . ak | ¬ a1 . . . ak | ∗

The first form of an element-type pattern ep is equivalent to enumerating the
rule for each ai; the second form corresponds to enumerating the rule for each
b ∈ Σ which is different from all ai. A ∗ denotes an arbitrary element type; it is
equivalent to a negation of zero element types. Section 9.1.2 will explain how
negated element-type patterns can be implemented without explicitly enumer-
ating all the rules.

8.1.5 XML Processing Instructions

In addition to other elements and character data, an XML element can contain
comments and processing instructions (cf. 1.1.4). While comments may be ig-
nored, processing instructions form an integral part of the document. Since
they may contain essential information for an application, it is desirable to
specify processing instructions in grammars. A processing instruction has the
form <?target text?>, where target and text are character data. In order to deal
with such a processing instruction, we represent it as an element with the aux-
iliary element type #pi. Figure 8.1 illustrates this representation: The target is
specified as the value of an auxiliary attribute #target, and the text of the pro-
cessing instruction is the content of the element. In order to specify processing
instructions in grammars, we allow a new form of right-hand sides in query
grammars:

x→ <?target?> e

This is defined to be equivalent to x→ <#pi #target=”target”> e, and can thus
be translated to context grammar syntax by γrhs.

8.1.6 White Space

XML documents are frequently formatted according to the element structure
by indenting, i.e., insertion of white-space characters. White space is not part
of an element’s content, unless that element has declared mixed content (cf.
1.1.1). An XML parser must, however, always report the white space to the ap-
plication, regardless of whether it is significant (cf. Section 2.10 of [W3C98b]).
The white space is thus present in the document tree. In grammars, however,

CHAPTER 8. QUERYING XML DOCUMENTS 157

we do not want to bother with white space. For instance, we want the regu-
lar expression xaxb to match two consecutive elements, regardless of any white
space in between them. Similarly, processing instructions can occur anywhere
in the content of an element, but do not represent data. We therefore want to
ignore processing instruction unless they are explicitly mentioned in the gram-
mar.

In order to ease the specification of grammars, we therefore assume that,
similarly to the variable x>, a variable xw is always implicitly declared with the
following rules (recall that ∼ and . denote a single white-space character and
an arbitrary character in the text pattern syntax, respectively):

xw → ”∼∗”
xw → <? .∗ ?>

That is, xw structurally matches an arbitrary processing instruction or text
node consisting of white-space characters only. Now we modify the transla-
tion function γrhs to transform regular expressions on right-hand sides of rules:
It replaces subexpressions of the form r1r2 with r1xw

∗r2, and similarly r∗ with
(rxw

∗)∗ and r+ with (rxw
∗)+. If this transformation is not desired, concatena-

tion can be specified with the ”, ” operator, and repetition with ∗∗ and ++. More-
over, an entire regular expression r on the right-hand side of a rule is replaced
by xw

∗rxw
∗. In analogy to text patterns, this can be disabled by preceding the

regular expression with a ∧ and appending a $.

8.2 A More Convenient Pattern Language

Grammars are a precise method of specifying regular forest languages and con-
textual conditions. However, each rule of a grammar can speak only about one
single node in the input forest. For specifying a nesting of element types, at
least as many rules as the depth of this nesting are required. For instance, in
order to describe the constant tree a〈b〈c〉〉, we need the three rules

xa → a〈xb〉
xb → b〈xc〉
xc → c

In many circumstances, such as querying from the command line, it is desir-
able to specify the query in a single line, without the need of introducing aux-
iliary variables for subtrees. XPATH [W3C99c], the querying language of XSLT
[W3C99b], offers this possibility by specifying the query as a location path. A
location path describes the context by means of the path from the target to
the root of the document tree, i.e., by its ancestors. However, in XPATH it is not
possible to specify regular conditions on the siblings of a node. Instead, XPATH
provides an expression language for filtering the nodes selected by a location
path. The expression language has the capability of navigating through the
document tree in arbitrary directions and can thus also relate to siblings, chil-
dren or ancestors of a node. This contradicts our intention of a fixed traversing
order. However, we adopt the concept of path-oriented context specification.

158 8.2. A More Convenient Pattern Language

8.2.1 An Informal Description of the Pattern Language

We will now present a querying language similar to XPATH that additionally
allows specification of regular conditions on the siblings of nodes. Let us first
introduce this language informally, by means of examples.

Node Tests and Node Patterns

A node test nt describes the allowable element types for a subtree:

nt ::= ∗ | a | <ep>
ep ::= a1 . . . ak | ¬ a1 . . . ak | ∗

Note that element-type patterns ep are as for query grammars. The node test ∗
is fulfilled by all element types, whereas only elements of type a satisfy a. The
node test <ep> is true for an element with type a if ep = a1 . . . ak and a = ai
with 1 6 i 6 k; if ep = ¬ a1 . . . ak, then a must be different from all ai.

A node pattern np describes a structural property of a subtree by means of its
element type and its attributes:

np ::= ”τ” | <?τ?> | nt aqs | . aqs
aqs ::= ε | [@ap] aqs | [¬@ap] aqs
ap ::= u | u=”τ”

where u is an attribute name and τ is a text pattern. Note that attribute pat-
terns ap are the same as for query grammars. A text node fulfills node pattern
”τ” if its text is in [[τ]]R , whereas the node pattern <?τ?> is fulfilled by a pro-
cessing instruction whose target is in [[τ]]R . For elements satisfying a node test
nt, a list of attribute qualifiers aqs can be specified, constraining the element’s
attributes. Each qualifier must be fulfilled unless it is negated by ¬; in that case
it must not be fulfilled. A node pattern of the form . aqs is similar, but it ad-
ditionally matches text nodes and processing instructions. Note, however, that
these kinds of nodes have no attributes; it therefore makes no sense to specify
attribute qualifiers if text nodes or processing instructions shall be matched.

For instance, the node pattern <a b>[@x = ”1”][¬@y] describes all elements
of type a or b that have an attribute x whose value contains ”1” and do not have
an attribute y. Similarly, <?∧fxp-?> describes all processing instructions whose
target begins with fxp-.

Note that though the @ appears to be superfluous, it is necessary for dis-
tinguishing attribute qualifiers from other forms of qualifiers introduced later
on.

Path Patterns and Tree Patterns

Path patterns and tree patterns are composed from node patterns using operators
/, // and :

pp ::= np | pp1 pp2 | pp tp | (pp)
tp ::= /pp | //pp

A path pattern pp or a tree pattern tp identifies subtrees of a tree t by describing
the paths from the root of t to these subtrees. Intuitively, operators / and //

CHAPTER 8. QUERYING XML DOCUMENTS 159

express the child and descendant relations, respectively, whereas specifies
an alternative. If a path pattern pp identifies a subtree t′ of a tree t, then we also
say that t′ matches pp in t, or pp locates t′ in t, and similarly for a tree pattern
tp 3.

The simplest form of a path pattern is a node pattern np. It locates t itself
if that satisfies np. A path pattern pp1 pp2 identifies all subtrees in t matching
either pp1 or pp2. If a subtree t′ matches pp in t, then pp tp identifies all subtrees
t′′ that match tp in one of the children of t′.

A tree pattern tp of the form /pp locates all subtrees in t that match pp in
t, whereas //pp identifies all subtrees matching pp in a subtree of t. Let us
illustrate this with some examples:

✧ The tree pattern /. always matches t itself for all t, whereas //a[@x=”1”]
matches all subtrees of t that are labeled a and have an attribute x whose
value contains ”1”.

✧ The tree pattern /a/b//c matches all c elements that are descendants of a
b element which is itself a child of t, provided that t has element type a.

✧ /(a b)/c matches all children of t with element type c, if t has element
type a or b; otherwise no subtree matches in t.

✧ If t is a processing instruction whose target starts with fxp-, then the tree
pattern /<?∧fxp-?>/”forest” locates its text, provided the text contains
the word forest.

For brevity, if a tree pattern tp does not occur as part of a path pattern pp tp, we
allow omission of the leading /; but a leading // may never be dropped.

Observe that // is the only means of iteration, i.e., of specifying paths ex-
ceeding a fixed length. Since there is no means of constraining nodes on that
path, it is impossible to specify, e.g., a path of arbitrary length on which all
elements have type a. If this expressiveness is required, the query-grammar
syntax must be employed.

Structure Qualifiers

The pattern language presented so far can only proceed to a single child of a
node; we can not argue about the entirety of a node’s children. We therefore
add a new kind of qualifiers now: structure qualifiers for specifying the content
of an element. These qualifiers can be specified as part of a node pattern, in
addition to the attribute qualifiers presented above. We therefore extend the
syntax of node patterns:

np ::= ”τ” | <?τ?> sqs | nt aqs sqs | . aqs sqs
sqs ::= ε | [fp] sqs | [¬ fp] sqs

where a forest pattern fp is a regular expression over tree patterns. A forest
pattern is a structural condition and specifies a forest language. In order to
define its meaning, let us first define a structural match of a tree pattern: A

3More precisely, because a subtree t′ might occur twice within t, we should rather speak of oc-
currences of t′ in t, or of paths in t which uniquely identify subtrees. For this informal description,
however, it is more straight-forward to speak about subtrees.

160 8.2. A More Convenient Pattern Language

tree pattern tp structurally matches a tree t if tp locates some subtree of t. Now
a forest pattern fp matches a forest t1. . . tn iff there is some tp1 . . . tpn ∈ [[fp]]R
such that ti structurally matches tpi for all i.

Specifying a structure qualifier [fp] for a node pattern np means that the
children of a tree fulfilling np must match the forest pattern fp; if the qualifier
is negated, then they must not match fp. Specifying two or more structure
qualifiers means that all of them must be fulfilled: This is a way of expressing
conjunction. For instance:

✧ The node pattern a[b[c]] is fulfilled only by an a element that has a single
child b which itself has a c element as its only child.

✧ The node pattern a[b[c]] is fulfilled by an a element that has a
child b which itself has child with element type c. Within patterns we
use as an abbreviation for .∗, whereas within grammars it stands for
x>∗.

✧ The node pattern a[(b (//c))][¬ c] is fulfilled by an element
with type a which has either a child labeled b or a descendant labeled
c, but it must not have a child of type c, which is specified by the second,
negated qualifier.

✧ The node pattern <?∧fxp-?>[”forest”] is fulfilled by a processing in-
struction whose target begins with fxp- and whose text contains the
word forest. In a structure qualifier for a processing instruction it makes
no sense to specify something other than a text pattern because process-
ing instructions contain only text.

In order to ease the handling of white space in forest patterns, we interpret
them analogously to 8.1.2: Concatenation and repetition operators implicitly
allow white space between elements. This can be disabled by using operators
“,”, ∗∗ and ++ instead.

Structure qualifiers can appear at any node pattern occurring in a path or
tree pattern. They specify structural conditions on the nodes that lie on the path
from the document root to the target. Therefore they introduce conjunction into
patterns. For instance, the tree pattern a[b]/c matches an element with
type c that is a child of an a node only if that node also has a child of type b.

Note the difference between the two tree patterns tp1 = a/b[c] and
tp2 = a/b/c. Within a structure qualifier, these two patterns are equivalent,
because they structurally match the same trees t, namely a elements with a
b child that has a child c. However, they locate different subtrees of t: tp1
identifies the b whereas tp2 selects the c node.

Context Qualifiers

Structure qualifiers impose regular conditions on the children of a node match-
ing a node pattern. But they can not be used for constraining the left or right
siblings of the node matching the next node pattern in the path pattern. Con-
sider, e.g., the path pattern a/b, and suppose we want to specify that b must
be the first child of a. This is not possible with a structure qualifier. Even if
we ensure that the first child of a is a b by specifying a[b]/b, the pattern still
locates all b children of a.

CHAPTER 8. QUERYING XML DOCUMENTS 161

In order to overcome this deficiency, we add another kind of qualifiers: con-
text qualifiers. For a node pattern that can match an element, one optional con-
text qualifier cq may be given. Note that it would not make sense to specify a
context qualifier for text nodes or processing instructions: A text node has no
children, and a processing instruction can only have a single child.

np ::= ”τ” | <?τ?> sqs | nt aqs sqs cq | . aqs sqs cq
cq ::= ε | [fp1# fp2]

Specifying a context qualifier for a node pattern np attaches a contextual con-
straint, consisting of two forest patterns l and r, to a tree t satisfying np. If np is
followed by a tree pattern tp in the path pattern, then the child of t in which the
matches of tp are located must be such that its left siblings structurally match
l and its right siblings structurally match r. This is most easily explained by
some examples:

✧ In an element of type a, the tree pattern a[#]/b identifies the first child
of a if that child has element type b. This is the solution to the introduc-
tory example above.

✧ Consider the tree pattern tp = .[a∗#c∗]/b. In an arbitrary tree t, tp locates
a b child of t all of whose left and right siblings have element types a and
c, respectively.

✧ a[#]//b matches in a tree with element type a all descendants of a with
element type b, provided that the a has only a single child. Note that this
child may have arbitrarily many children: The context qualifier does not
extend to the descendants of a, regardless of operator //.

Since a context qualifier can occur at any node pattern, it can also be part of a
tree pattern in a structure qualifier, e.g., in a[(b[c#c]/b)]. Note however,
that such a context qualifier can be replaced by a structure qualifier, in this case
yielding a[(b[cbc])].

Context Patterns and Patterns

A tree pattern identifies subtrees of an XML document tree. But the input to the
pattern matcher is not a single tree: It is the forest consisting of the document
element and all preceding or following processing instructions. We therefore
allow specification of structure and context qualifiers also for this top-level for-
est. These qualifiers together with a tree pattern form a context pattern. A pat-
tern is then a disjunction of context patterns.

p ::= cp1 . . . cpk
cp ::= sqs cq tp

Let us describe the meaning of patterns by examples:

✧ The pattern p = [a]//b [c]//d locates all b elements in an XML
document whose root element has type a, whereas it locates all d ele-
ments if the root element type is c.

✧ [# ∗]/<??> selects all processing instructions that come before
the document element, whereas [∗ #]/<??> identifies those which

162 8.2. A More Convenient Pattern Language

p ::= cp1 . . . cpk
cp ::= tp′ | sqs cq tp

sqs ::= ε | [fp] sqs | [¬ fp] sqs
cq ::= ε | [fp1# fp2]

fp ::= ε | ∧ | $ | | tp′′ | (fp)
| fp1 fp2 | fp1 fp2 | fp1, fp2
| fp∗ | fp∗∗ | fp+ | fp++ | fp?

tp′ ::= pp | tp
tp′′ ::= np | (tp′)
tp ::= /pp | //pp
pp ::= np | pp1 pp2 | pp tp | (pp)

np ::= ”τ” | <?τ?> sqs | nt aqs sqs cq | . aqs sqs cq
nt ::= ∗ | a | <ep>
ep ::= a1 . . . ak | ¬ a1 . . . ak | ∗
aqs ::= ε | [@ap] aqs | [¬@ap] aqs
ap ::= u | u=”τ”

a ::= (an element type)
u ::= (an attribute name)
τ ::= (a text pattern)

Figure 8.2: Summary of the pattern syntax.

come after the document element (recall that the node pattern ∗ matches
only elements but not processing instructions).

Summary of the Patterns Syntax

Figure 8.2 summarizes the syntax of patterns. Observe the following:

✧ Nonterminal tp′ explicitly accounts for omission of the leading / operator
of tree patterns that are part of a path pattern.

✧ In order to avoid syntactical ambiguities, a tree pattern tp′′ occurring in
a forest pattern must be enclosed in parentheses unless it is just a node
pattern. Otherwise the forest pattern /a /b could be interpreted as a se-
quence of the tree patterns /a and /b, or as the single tree pattern /a/b.

✧ We explicitly account for the alternative concatenation and repetition op-
erators “,”, ∗∗ and ++ in the syntax of forest patterns. Note also that the
special symbols ∧ and $ may occur anywhere in a forest pattern, though
their employment is hardly sensible other than at the start or end of a
forest pattern.

8.2.2 Examples from XML Practice

Let us illustrate the use of patterns in querying XML by some more sophisti-
cated examples which are motivated by real-world applications.

CHAPTER 8. QUERYING XML DOCUMENTS 163

XML Example 20

<prod id=’NT-document’>
<lhs>document</lhs>
<rhs>

<nt def=’NT-prolog’>prolog</nt>
<nt def=’NT-element’>element</nt>
<nt def=’NT-Misc’>Misc</nt>*

</rhs>
</prod>

Figure 8.3: Representation of EBNF productions in the XML version of the XML
recommendation.

Querying the XML recommendation

The first example queries the XML recommendation [W3C98b] itself. This doc-
ument defines the syntax of XML by means of an EBNF grammar whose rules
are scattered over the whole document. A developer of an XML application
who wants to use this specification as a reference, has to search through the
document in order to find a rule. In the XML version of the recommendation,
each rule is given by a prod element, which has an ID attribute named id for
referral and contains an lhs element and one or more rhs elements. The lhs
element specifies the nonterminal defined by this rule; the rhs elements give
the right-hand sides for this nonterminal. Each nonterminal occurring on such
a right-hand side is represented by an nt element which carries an IDREF at-
tribute named def identifying the prod element which defines this nontermi-
nal. For instance, the production for nonterminal document, which is formatted
as

[1] document ::= prolog element Misc*

is given by the element shown in Figure 8.3.
Note that the numbering of productions is done by the formatting process;

the XML element therefore does not specify the production’s number [1]. Let
us now formulate some queries on this document:

✧ The pattern //prod[@id = ”∧NT-Char$”] matches the production whose
id attribute is exactly NT-Char, whereas //prod[@id=”Char”] matches all
prod elements for which this attribute contains the word Char, thus also
allowing for CharData and NameChar.

✧ If we don’t want to use the id attribute for selecting the productions –
perhaps we are not sure whether each prod element really has an id
attribute – we can also specify a structure qualifier for the lhs child:
//prod[(lhs/”Char”)] selects all productions whose lhs child contains
a text node with the word Char.

✧ //prod[(lhs[”∧Char$”])]/rhs selects all rhs children of productions
whose left-hand side is exactly Char.

✧ The pattern //prod[# (rhs/nt[@def=”Char”])]/lhs/”” matches the
text of the left-hand sides of productions whose right-hand sides use
a nonterminal whose name contains Char. This can be expressed more
shortly – but less precisely – by //prod[(//nt/”Char”)]/lhs/””

164 8.2. A More Convenient Pattern Language

XML Example 21

<SCENE>
<TITLE>SCENE I. A desert place.</TITLE>
<STAGEDIR>Thunder and lightning. Enter three Witches</STAGEDIR>

<SPEECH>
<SPEAKER>First Witch</SPEAKER>
<LINE>When shall we three meet again</LINE>
<LINE>In thunder, lightning, or in rain?</LINE>

</SPEECH>

<SPEECH>
<SPEAKER>Second Witch</SPEAKER>
<LINE>When the hurlyburly’s done,</LINE>
<LINE>When the battle’s lost and won.</LINE>

</SPEECH>

<SPEECH>
<SPEAKER>Third Witch</SPEAKER>
<LINE>That will be ere the set of sun.</LINE>

</SPEECH>
...

<STAGEDIR>Exeunt</STAGEDIR>
</SCENE>

Figure 8.4: A scene of Shakespeare’s “Macbeth” in XML.

✧ In order to find out the number of the production for Char, we can
count the matches of //.[# (//prod[@id=”∧NT-element$”])]//prod
and add one. The pattern identifies all prod nodes that come before the
production with identifier NT-element in document order. Note that due
to the use of operator // for both prod subpatterns, the prod elements
need not be siblings. They need only have ancestors which are siblings.

Querying Shakespeare

The second example deals with Shakespeare’s play “Macbeth”. Encoded in
XML, a scene basically has a title and contains a sequence of speeches, each rep-
resented by a SPEECH element, interspersed with stage directions. Each speech
contains a SPEAKER element and a sequence of lines containing plain text. Let
us formulate some queries for this document:

✧ The pattern //SPEECH[(LINE/”thunder”)] selects all speeches contain-
ing a line with the word thunder.

✧ The pattern //SPEECH[(//LINE/”hurlyburly”)]/SPEAKER/. selects the
speaker of a line containing the word hurlyburly, that is, the second
witch.

✧ The same result is produced by the following pattern, using a context
qualifier: //SPEECH[# (LINE/”hurlyburly”)]/SPEAKER/. This pattern
is much more precise than the previous one: It requires that the SPEAKER

CHAPTER 8. QUERYING XML DOCUMENTS 165

precedes the LINE elements within a SPEECH, and that the LINE elements
are direct descendants of the SPEECH node.

✧ The pattern //SPEECH[(SPEAKER/”Second Witch”) #]/LINE/”” loca-
tes all text nodes in lines spoken by the second witch.

✧ The pattern //SPEECH[(LINE/”hurlyburly”)#]/LINE matches the line
immediately following after the line containing hurlyburly, whereas
//∗[(SPEECH//”hurlyburly”)#]/SPEECH/SPEAKER selects the speaker
who responds to that speech, that is, the third witch.

✧ //∗[<¬ACT>∗#]/ACT[<¬SCENE>∗#]/SCENE/TITLE/”” selects the title
text of the first scene in the first act, namely: SCENE I. A desert place.

✧ //SCENE[(//SPEAKER/”Witch”)][(//SPEAKER/”MACBETH”)]/TITLE
matches the titles of scenes in which both Macbeth and a witch speak.

✧ //SCENE[(TITLE/”desert”)]/∗[¬ (SPEAKER/”Witch”)]/LINE
locates the lines in a scene whose title contains the word desert, which
are not spoken by a witch.

8.2.3 Translation from Patterns to Grammars

We did not give a formal semantics to patterns. Instead we will now define
a translation scheme from patterns to query grammars. Basically, the result-
ing grammar has one variable for each occurring tree pattern. Of course, an
intelligent implementation will generate only a single variable for multiple oc-
currences of the same tree pattern; we disregard such optimizations here for
simplicity.

The translation scheme is given by a functionγp which yields for a pattern p
a query grammar Cp. A path π then matches the pattern p in f0 iff it matches Cp.
Cp is obtained from the variables, start expressions, rules and target variables
generated for the single context patterns of p:

γp(cp1 . . . cpk) = (X1 ∪ . . . ∪ Xk, {e1, . . . , ek},
R1 ∪ . . . ∪ Rk, X◦,1 ∪ . . . ∪ X◦,k)

with (Xi , ei , Ri , X◦,i) = γcp cpi for i = 1, . . . , k

Function γcp yields for a context pattern cp = sqs cq tp a set of variables, a
start expression, a set of rules and a set of target variables as follows: First a
forest expression describing the structure qualifiers sqs, then two regular ex-
pressions rl and rr for the right and left context given by cq are generated. The
tree pattern tp yields an alternative rt of variables4 and the set of target vari-
ables. Arguments (true,⊥) to the γtp call indicate that tp contributes to the
target variables and that tp is not followed by some path pattern pp within an
enclosing path pattern (see the comments on functions γtp and γpp below). The
three regular expressions are then combined into a single one and added to the
forest expression generated for sqs.

4By an alternative of variables x1 , . . . , xk we mean the regular expression x1 . . . xk .

166 8.2. A More Convenient Pattern Language

γcp(sqs cq tp) = (X1 ∪ X2 ∪ X3, eu rlrtrr, R1 ∪ R2 ∪ R3, X◦)

with (X1, R1, e) = γsqs sqs
(X2, R2, rl , rr) = γcq cq

(X3, R3, X◦, rt) = γtp (true,⊥) tp

For a sequence sqs of structure qualifiers, the function γsqs yields a set of vari-
ables, a set of rules for these variables and a forest expression corresponding
to sqs: For each structure qualifier σ fp, a regular expression is generated and
added to the forest expression, signed with σ :

γsqs([σ1 fp1] . . . [σk fpk]) = (X1 ∪ . . . ∪ Xk, R1 ∪ . . . ∪ Rk,σ1r1 u . . . uσkrk)

with (Xi , Ri , ri) = γfp fpi for i = 1, . . . , k

Note that γsqs generates no target variables since a structure qualifier does not
contribute to the possible matches of a pattern.

Similarly to γsqs, function γcq generates for a context qualifier [fpl# fpr], two
regular expressions corresponding to the two forest patterns. If the context
qualifier is empty, is used as default; in this case no variables and rules are
generated:

γcq ε = (/O, /O, ,)
γcq [fpl# fpr] = (X1 ∪ X2, R1 ∪ R2, rl , rr)

with (X1, R1, rl) = γfp fpl
(X2, R2, rr) = γfp fpr

A forest pattern fp is translated to a regular expression by substituting each
tree pattern tp occurring in fp by the alternative of variables returned for tp by
γtp. A forest pattern can not generate target variables; it therefore calls γtp with
(false,⊥) as first argument; the set of target variables generated by γtp is then
empty and can safely be ignored (see below).

γfp fp = (X1 ∪ . . . ∪ Xk, R1 ∪ . . . ∪ Rk, fp[tp1/r1 ,...,tpk/rk])

where {tp1, . . . , tpk} is the set of tree patterns in fp and
(Xi , Ri , /O, ri) = γtp (false,⊥) tpi

For a tree pattern /pp or //pp, first the path pattern pp is translated, yielding
an alternative of variables and a set of target variables. If tp starts with /, then
this is already the result for tp. For //, a new variable x must be added, repre-
senting a tree that has a subtree matching pp, i.e., either of the variables in the
alternative; the new variable is not a target variable.

γtp (isCxt, cont) /pp = γpp (isCxt, cont) pp
γtp (isCxt, cont) //pp = (X ∪ {x}, R ∪ {x→ <∗> (x r) }, X◦, x r)

where (X, R, X◦, r) = γpp (isCxt, cont) pp
and x is a new variable.

γtp has an additional argument: a pair (isCxt, cont). If isCxt is false, then this
tree pattern occurs within a forest pattern. In this case it is part of a structure
or context qualifier and may not generate target variables. The parameter cont
is either ⊥ or a regular expression, more precisely an alternative of variables,
which represents the continuation of an enclosing path pattern. This becomes

CHAPTER 8. QUERYING XML DOCUMENTS 167

clearer by explaining functionγpp, which also has this additional argument and
translates a path pattern pp. If pp is a node pattern np, a new variable x is re-
served for np, and a set of rules, possibly together with auxiliary variables, is
generated for x by a call to function γnp. If isCxt is true and there is no continu-
ation, then x is a target variable:

γpp (isCxt, cont) np = (X ∪ {x}, R, X◦, x)

where x is a new variable,
(X, R) = γnp (x, cont) np, and

X◦ =
{
{x} if isCxt = true and cont = ⊥
/O otherwise

For a disjunction of two path patterns, both are translated separately and the
results are united:

γpp (isCxt, cont) (pp1 pp2) = (X1 ∪ X2, R1 ∪ R2, X◦,1 ∪ X◦,2, r1 r2)

with (X1, R1, X◦,1, r1) = γpp (isCxt, cont) pp1
(X2, R2, X◦,2, r2) = γpp (isCxt, cont) pp2

For a path pattern pp tp, first tp is translated by γtp. The resulting alternative
of variables r1 is the continuation for the translation of pp. Because pp is nested
into a path pattern, it does not generate target variables. Instead it must be
continued with a rule that demands for a child fulfilling r1 (see the comments
on γnp below).

γpp (isCxt, cont) (pp tp) = (X1 ∪ X2, R1 ∪ R2, X◦, r2)

with (X1, R1, X◦, r1) = γtp (isCxt, cont) tp
(X2, R2, /O, r2) = γpp (isCxt, r1) pp

The most important function – the one which generates the major part of the
variables in the output grammar – is γnp. It generates for a variable x and
a node pattern np a set of rules for x implementing np. It also generates a
(possibly empty) set of auxiliary variables and appropriate rules.

The first case is that np is a text pattern ”τ”: If there is no continuation, then
x has a single text rule. Otherwise x has no rules, because a text node can never
have children; thus no tree can fulfill both np and the continuation. This case
should not occur in practice because a pattern of this form, such as ”forest”/a,
makes no sense; the syntax of patterns, however, allows it.

γnp (x,⊥) ”τ” = (/O, {x→ ”τ”})
γnp (x, r) ”τ” = (/O, /O)

The next case is that np has the form <?τ?> sqs: First the structure qualifiers sqs
are translated into a forest expression e1. If there is a continuation r then this
forest expression is extended by a regular expression r , and a processing
instruction rule is generated:

γnp (x, cont) <?τ?> sqs = (X, R ∪ {x→ <?τ?> e2})
where (X, R, e1) = γsqs sqs, and

e2 =

 if cont = ⊥ and e1 = ε

e1 if cont = ⊥ and e1 6= ε

e1 u r if cont = r

168 8.2. A More Convenient Pattern Language

A similar case is when np has the form nt aqs sqs cq. Here, additionally the
node test nt is translated to the grammar syntax by a call to γnt, and the at-
tribute qualifiers are incorporated into the generated rule for x. Moreover, the
continuation might be constrained by a context qualifier which is translated
into a pair of regular expressions.

γnp (x,cont) nt aqs sqs cq =
(X1 ∪ X2, R1 ∪ R2 ∪ {x→ <γnt nt σ1ap1 . . .σkapk> e})
where aqs = [σ1@ap1] . . . [σk@apk],

(X1, R1, e1) = γsqs sqs,
(X2, R2, rl , rr) = γcq cq

e =


if e1 = ε, cont = ⊥ and rl = rr =

e1 if e1 6= ε, cont = ⊥ and rl = rr =
e1 u rl x>rr if cont = ⊥ and rl 6= or rr 6=
e1 u rlrrr if cont = r 6= ⊥

γnt ∗ = ∗
γnt a = a
γnt <a1 . . . ak> = a1 . . . ak
γnt <¬a1 . . . ak> = ¬a1 . . . ak

The last case is when np has the form . aqs sqs cq. This node pattern comprises
all of the three other cases: It matches an arbitrary text node, processing in-
struction or element. However, a processing instruction can only match if no
attribute qualifiers are present; for a text node there must be no structure or
context qualifier and no continuation either.

γnp (x, cont) . aqs sqs cq = (X1 ∪ X2, R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5)

where aqs = [σ1@ap1] . . . [σk@apk],
(X1, R1, e1) = γsqs sqs,
(X2, R2, rl , rr) = γcq cq

e =


if e1 = ε, cont = ⊥ and rl = rr =

e1 if e1 6= ε, cont = ⊥ and rl = rr =
e1 u rl x>rr if cont = ⊥ and rl 6= or rr 6=
e1 u rlrrr if cont = r 6= ⊥

R3 = {x→ <∗ σ1ap1 . . .σkapk> e})

R4 =
{
{x→ <??> e} if aqs = ε

/O otherwise

R5 =
{
{x→ ”.∗”} if aqs = sqs = cq = ε and cont = ⊥
/O otherwise

Example 8.1: Consider pattern //prod[# (rhs/nt[@def=”Char”])]/lhs/””
from 8.2.2. This pattern is translated by γp to the query grammar
(({x>, x1, . . . , x6}, (x5 x6) , R), {x1}) with the following rules:

x> → ”” x1 → ”” x4 → <rhs> x3
x> → <??> x2 → <lhs> x1 x5 → <prod> x2 x4
x> → <∗> x3 → <nt def=”Char”> x6 → <∗> (x5 x6)

We can further translate this grammar to an extended context grammar; in-
stead of listing that grammar here, let us only mention that it has 22 variables

CHAPTER 8. QUERYING XML DOCUMENTS 169

with 26 rules. The growth in size is caused by the generation of two auxiliary
variables for each right-hand side corresponding to an element: one describing
its attributes (#atts) one describing its content (#content). �

Example 8.2: Let us consider another example pattern from 8.2.2: The pattern
//∗[(SPEECH//”hurlyburly”)#]/SPEECH/SPEAKER is translated by γp to the
grammar (({x>, x1, . . . , x7}, (x6 x7) , R), x1). It has the following rules (the
rules for x> are omitted):

x1 → <SPEAKER> x5 → <SPEECH> (x3 x4)
x2 → <SPEECH> x1 x6 → <∗> x5x2
x3 → ”hurlyburly” x7 → <∗> (x6 x7)
x4 → <∗> (x3 x4)

In contrast to the previous example, this grammar is right-ignoring and can be
implemented by a single run of a DLFA. �

8.2.4 Comparison with Other Querying Languages

In this section we compare our pattern language to other query languages for
tree-structured data. We concentrate on four topics: The pattern matching lan-
guage of TRAFOLA, the querying language of sgrep, the W3C query language
XPATH and a number of database querying languages.

TRAFOLA

Long before the rise of XML, a query language on tree-like data structures
was employed in the non-deterministic functional programming language
TRAFOLA [HS93], which supports trees as one of its basic data structures. De-
signed, among others, for complex tree transformations in the context of pro-
gram optimization in compilers, it has – for a general purpose programming
language – a sophisticated querying mechanism. The pattern matching process
in TRAFOLA decomposes a tree t by deleting the subtree t′ that matches the pat-
tern and replacing it with a hole @. Moreover it binds the variables occurring in
the pattern to subtrees of t′. Pattern matching happens in the head of function
clauses; the body of the clause can then manipulate the variables bound by the
pattern. For instance, consider the following example from [Fec94]:

dec simp = { a ˆ (’add(0,e)|’add(e,0)) => a ˆ e
a ˆ (’mul(1,e)|’mul(e,1)) => a ˆ e }

The function simp finds occurrences of add nodes one of whose children
is labeled 0 using the pattern (’add(0,e)|’add(e,0)). E.g., for the tree
mul(3,add(1,0)), the pattern binds a to mul(3,@) and e to 1. In the body, the
operator ˆ composes the new tree mul(3,1) from a and e.

The TRAFOLA pattern language offers conjunction, alternatives, negation
and even non-linear patterns. However, the only operator that can select sub-
trees at a non-constant depth is ˆ. This operator identifies arbitrary subtrees
of t, similarly to our // operator. Though TRAFOLA trees are non-ranked, the
patterns are committed to a fixed rank. There is no means of imposing a regu-
lar condition on the siblings of a node. TRAFOLA thus can not express regular
conditions with its pattern language.

170 8.2.4. Comparison with Other Querying Languages

sgrep

A popular tool for querying structured text is sgrep [JK96a, JK96b]. It is a text-
based pattern-matcher and unaware of the tree structure of a document. In-
stead it implements an algebra of region sets. A region is a fragment of the
input text; sets of regions can be manipulated by operations of the algebra.

A region set is generated from the input document by matching a constant
string; the result is the set of all occurrences of the string in the document.
Using operator “..” (or its slightly different variant “__”) two regions can be
combined into a single region incorporating all text enclosed between the two
regions. Other operations on region sets include union, intersection and differ-
ence as well as filtering by, e.g., containment conditions. As an example, our
pattern //SPEECH[(//LINE/”hurlyburly”)]/SPEAKER/. is expressed in sgrep
as:

("<SPEAKER>"__"</SPEAKER>") in
("<SPEECH>".."</SPEECH>" containing

("<LINE>".."</LINE>" containing "hurlyburly"))

Compared to our pattern, this sgrep pattern is still less precise: It would also
match if the SPEAKER element were not a direct descendant of the SPEECH el-
ement. Though the above sgrep pattern can be refined to express the pattern
precisely, it would become very complex.

Another weak point of sgrep is that only exact occurrences of a string can be
matched in order to define a basic region set. Therefore the query can not ab-
stract from XML syntax details: It must account for all possible ways of writing,
e.g., a start-tag. In order to ease handling of the XML syntax, sgrep provides a
macro mechanism which allows for more intelligible specification of queries.

sgrep is very fast. However, it can not express regular conditions, neither
on the ancestors nor on the siblings of a node. Moreover, it is completely un-
aware of the document’s tree structure; the result of querying is always a string.
Though well-suited for fast extraction of plain text from a document, sgrep is
therefore absolutely unsuited for selecting subdocuments for further process-
ing.

Database Querying Languages

Querying languages are a well-studied subject in the area of database sys-
tems. A database typically stores large amounts of flat, i.e., non-hierarchically
structured data and provides a query language for extracting data. Only re-
cently concepts for the representation of structured documents in databases
have been developed; documents are then modeled as semi-structured datasemi-
structured data [Abi97]. Database query languages for semi-structured data
include Lorel [AQM+97, GMW99] and YATL [CDS+98]. Specifically for XML,
among others, XQL [Rob99] and XML-QL [DFF+99] have been developed. A
practical comparison of these languages is given in [FSW99].

Usually, the functionality of database query languages exceeds by far that
of pure pattern matching: They provide features like sorting, filtering and re-
structuring. Moreover, database querying languages for semi-structured data
often allow construction of new data from the data extracted by the query, or
transformation of the obtained data. An overview of the requirements on XML

CHAPTER 8. QUERYING XML DOCUMENTS 171

query languages from a database point of view is given by [Mai98].
In contrast to these languages, our pattern language is solely designed for

location of subtrees; yet filtering can still be easily incorporated through exter-
nal predicates. Sorting, restructuring and construction of new data, however,
can not be integrated. These tasks have to be completed by querying applica-
tion.

XPATH

The most prominent query language for XML is XPATH [W3C99c], which is
used both by XSLT [W3C99b] for selecting subtrees to be transformed or for-
matted, and by XPOINTER [W3C99f] for identifying subdocuments referenced
by links in a hypertext language such as HTML.

Since the syntax of our pattern language is inspired by XPATH, both are
very similar. However, the operational model of XPATH is completely different
from ours. While our approach is to locate all matches in one or two traversals
of the document tree, XPATH might need as many as the size of the pattern. Let
us illustrate this by an example. The XPATH pattern a[@x=”1”]//b is evaluated
as follows:

1. All elements with type a are collected in a node-set S1.

2. The qualifier [@x=”1”] selects a node-set S2 ⊆ S1 containing all nodes
from S1 that fulfill the expression @x=”1”. Note that, instead of interpret-
ing this expression as a structural condition, it is evaluated as an expres-
sion on the abstract data type of nodes.

3. Operator // generates the node-set S3 of all descendants of nodes in S2.

4. The set S4 of all elements with type b is filtered from S3.

A qualifier or a node test can thus be viewed as a filter predicate. XPATH allows
predicates that exceed the capabilities of our pattern language. For instance,
the following features are offered:

Arithmetic Expressions: All nodes in a node set are numbered in document
order. The predicate [position() mod 2=0] selects every other node in
a node-set. A predicate may evaluate an arbitrary arithmetic expression
on this position. It is questionable whether this generality is of any use in
practice.

Navigation: A predicate may navigate arbitrarily through the document tree.
For instance, the predicate [ancestor::a] selects all nodes from a node-
set that have an ancestor of element type a. This concept of arbitrary
navigation requires that the document tree is explicitly present; locating
of matches during parsing is not possible.

On the one hand, these features are not offered by our pattern language, be-
cause they can only be implemented if we drop the goal of matching in at most
two passes.

On the other hand, our pattern language has structure and context quali-
fiers. While XPATH has no context qualifiers at all, it provides a weak version
of structure qualifiers, which relates only to a single child of the concerned

172 8.2.4. Comparison with Other Querying Languages

node. Expressed in the syntax of our structure qualifiers, which are arbitrary
regular expressions over tree patterns, XPATH only allows the form [tp].

Both XPATH and our pattern language lack an iteration operator that can
express a regular condition on a path; they only provide operator // which
selects arbitrary descendants. However, in contrast to XPATH we offer query
grammars as an alternative syntax with full regular expressiveness.

A valuable advantage of our pattern language is its clearly defined seman-
tics, which is given precisely by a translation scheme to query grammars. The
specification of XPATH does not give a formal semantics of patterns: Their
meaning is described informally, partly by means of examples only. However,
a formal semantics for a subset of an early draft version of XPATH is given in
[Wad99].

Chapter 9

Implementation in SML

In this chapter we present fxgrep [Fxg99], an XML querying tool based on the
algorithm from the previous chapters. fxgrep reads a grammar or pattern and
locates in an XML document all matches of that grammar or pattern. fxgrep
can be used through a command-line interface similar to the line-oriented text
search tool grep.

fxgrep is implemented in SML, based upon the XML parser fxp. We do not
present all implementation details here. Instead we concentrate on two impor-
tant issues, both of which deal with efficient representation of possibly huge
transition tables. On the one hand, we describe the implementation of text pat-
terns, which must be able to deal with the full range of more than one million
UNICODE characters. On the other hand, we present a demand-driven way of
computing the transition tables of the forest automata employed for the match-
ing procedure.

9.1 System Architecture and Implementation

Figure 9.1 shows the system architecture of fxgrep. It consists basically of three
stages: the frontend, the preprocessing stage and the matcher. The collector is
the querying application to which all matches are reported; this is a function
which accumulates all matches in some data structure. Though the collector is
hard-coded in fxgrep, it can be replaced by virtually any function.

fxgrep consists of about 8000 lines of SML source code, of which 2000 are
comments and 3000 are generated. 4000 lines, i.e., half of the source code is
used by the frontend. The analyzing and preprocessing stage has about 500
lines, and 2000 lines constitute the matcher itself. The rest of the code is for the
command-line interface, debugging output and error reporting.

9.1.1 The Frontend

fxgrep supports two different forms of specifying a query: either as a query
grammar or as pattern. In the first case it is parsed by the grammar parser and
then translated into an extended context grammar by the grammar translator.
If the input is a pattern, then it is parsed by the pattern parser and translated
to a query grammar by the pattern translator before feeding it to the grammar
translator.

173

174 9.1. System Architecture and Implementation

���������	��
���
���������

� ������� � ������ � � � ����� ����������	��
���
���������

����� ��� � ������ ��� �
�	� �

���
���������

������� �

� ����� � � !��� � �	���

� ����� � �

���
���������

"$#&%('*)�+,'*-

.0/214353516/7 16/�8�9:/

.0/214353516/

7 14;�;�9!/2<

7 14;�;�9!/2<

=>?A@

B >C
DDC>E /�16<F8�GH16;�IJ/

E /�16<F8�GH16;�IJ/

7 16/�8�9:/

KLC
MNAO
? >

=>PQ?RRP >

S 14;�T�UF9:/

VXWY)�Z\[*+,#

E^] IJ_ 7 168�8S 16;�T�U\9:/S 14;�T�UF9:/`*<\9:_ 7 168�8

a <\GAbH<\9 c
��� � ���d���� �
�d�

e %gf�f�+hZ\)�%g#

������� �
E /29:9i^j bHGHk^9:/

XML Parser

Figure 9.1: The system architecture of fxgrep

The Grammar Parser

It is a common practice to specify all input to an XML processor as an XML
document. Examples include XSL style sheets [W3C99e] and XML catalogs
[Cow99]. fxgrep adopts this convention by allowing specification of grammars
as an XML document instance. The advantage is that the XML syntax can be
used for specifying, e.g., non-printable UNICODE characters, in a platform-
independent way. An XML parser can be used as a generic frontend for parsing
the specification.

The grammar parser reads an XML document and interprets it as a query
grammar. Though this document is by default parsed in non-validating mode,
it should be according to the following DTD:

XML Example 22

<!ELEMENT grammar (rule|start|targets)*>
<!ELEMENT rule (#PCDATA)>
<!ELEMENT start (#PCDATA)>
<!ELEMENT targets (#PCDATA)>
<!ATTLIST rule var NMTOKEN #REQUIRED>

The content of a rule element, e.g., specifies a right-hand side for the variable
given as its var attribute. Similarly, a targets element contains a list of target
variables, and a start element specifies a start expression. A simple example
for a grammar is the following:

CHAPTER 9. IMPLEMENTATION IN SML 175

XML Example 23

<grammar>
<rule var= "x" ><![CDATA[<*> _ x _]]></rule>
<rule var= "x" ><![CDATA[<a> _]]></rule>
<targets> x </targets>
<start> _ x _ </start>

</grammar>

In order to parse a grammar, a set of hooks is defined that collects the character
data contained in the three relevant element types and ignores all other infor-
mation. In order to parse, e.g., a right-hand side given as the character data of
a rule element, this data is first tokenized by a lexer. The lexer is hand-coded
because ML-LEX [AMT94], the lexer generator for SML, has no UNICODE sup-
port (cf. 2.7.1). The stream of tokens is fed into an ML-YACC-generated parser
[AT94] which produces an SML data structure representing the query grammar.

Since the grammar syntax employs the characters "<" and ">", specifying a
grammar as an XML document usually requires the use of CDATA sections (cf.
1.1.4). The above example shows that this can make the grammar hardly intel-
ligible. We therefore allow as an alternative specification of the grammar as a
UNICODE file that is not parsed as an XML document. However, the encoding
auto-detection facilities of the XML parser (cf. 2.3.7) can not be used for such
input. It must therefore be in one of the standard encodings UTF-16 or UTF-8
which can be distinguished without the need for an encoding declaration. The
above example can thus be specified as follows:

XML Example 24

TARGETS
x

START
_ x _

RULES
x -> <*> _ x _
x -> <a> _

This alternative syntax is tokenized by a hand-written lexer, and analyzed by a
parser generated with ML-YACC. The specification has 30 nonterminals with
70 rules; the generated parser has 107 states and uses about 35 KB of SML
source code.

For text patterns occurring in the grammar, a different tokenization is re-
quired. The lexer therefore returns text patterns, which are always enclosed
between quotes or "<?" and "?>", as a whole, without tokenizing. In order to
parse a text pattern, it is tokenized and analyzed by a separate lexer and parser.
The ML-YACC specification for text patterns has 9 nonterminals and 53 rules;
the generated parser has 72 states and is 28 KB large.

The Pattern Parser

The second possibility of formulating a query is in pattern syntax. Since a
pattern does not involve multiple rules, it can be specified by a single UNICODE

176 9.1. System Architecture and Implementation

string, usually given as a command-line argument. This string is tokenized and
fed into an ML-YACC-generated parser. The specification for this parser has 29
nonterminals and 86 rules. The generated parser has 155 states and consists
of 49 KB of SML code. Note that it is a non-trivial task to specify the pattern
grammar in Figure 8.2 as an LALR-1 grammar, as required by ML-YACC.

The Pattern Translator

The pattern translator takes a pattern produced by the pattern parser and gen-
erates a query grammar. It is basically an implementation of the γp function
defined in 8.2.3. However, the implementation avoids repeated generation of
variables for multiply occurring tree patterns. Interestingly enough, this mod-
ule consists of less than 200 lines of SML code, which are extremely few for this
fairly complex function. This demonstrates the high suitability of SML for the
manipulation of tree-structured data – in this case the syntax trees of patterns.

The Grammar Translator

The grammar translator performs the translation of a query grammar to an
extended context grammar as described in 8.1, except that it preserves element-
type patterns. Expansion of element-type patterns is expensive because it can
generate a large number of rules for a single element-type pattern. Moreover,
this expansion is usually impossible because the DTD of the input document
is not known in advance; if the document is parsed in non-validating mode, it
need not even have a DTD.

While processing the grammar, the translator additionally performs the
Berry-Sethi construction for each regular expression occurring on a right-hand
side of a rule. If possible, it identifies multiple occurrences of the same regu-
lar expression in order to avoid redundant generation of Berry-Sethi automata,
and to keep the number of NFA states small.

The grammar translator consists of 150 lines of source code, plus an addi-
tional number of 120 lines for the Berry-Sethi construction.

9.1.2 The Preprocessing Stage

The preprocessing stage has two tasks: It analyzes the grammar for being right-
ignoring and computes a number of tables supporting the matcher in comput-
ing transitions.

The Grammar Analyzer

The grammar analyzer determines whether a grammar is right-ignoring, i.e.,
whether it can be matched by a single pass through the document. In order to
do so it employs an algorithm derived from the one given in Section 7.4. It is
implemented in about 150 lines of SML code.

The Preprocessor

Matching of a pattern is performed by one or two runs of a deterministic push-
down forest automaton on the input document. However, the automata might

CHAPTER 9. IMPLEMENTATION IN SML 177

be very large: Although only a small number of states do actually occur during
a run of the automaton, computation of all reachable states is generally expen-
sive. Moreover, in two-pass matching the start state of the second automaton
depends on the output state of the first pass; since computation of reachable
states is initiated with that start state, it would be dependent on the input doc-
ument, which is certainly not our intention.

Therefore the transition tables of the automata are not constructed in ad-
vance. Instead all transitions are computed on demand as soon as they are re-
quired during the run of the automaton. In order to keep this computation as
cheap as possible, the preprocessor stores in a bunch of tables all information
which can be derived directly from the grammar and which is shared between
the computations of transitions. For instance, the down-transition of A~G is de-
fined as follows:

Downa q = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈 . . . uσr j u . . . 〉}

In order to compute Downa q, the matcher must determine the set y0s for y y =
{y0, j | (y, x, y1) ∈ δ, x → a〈 . . . uσr j u . . . 〉} for each y ∈ q. Since y proba-
bly occurs in more than one forest state, this information will be needed sev-
eral times for the computation of a down-transition. It is therefore sensible to
precompute this set for all y ∈ Y. This is the task of the preprocessor. For
down-transitions in A~G , it computes the following information:

y0s for y y = {y0, j | (y, x, y1) ∈ δ, x→ a〈 . . . uσr j u . . . 〉} for all y ∈ Y
y0s for a a = {y0, j | x→ a〈 . . . uσr j u . . . 〉} for all a occurring in G
other y0s = {y0, j | x→ a〈 . . . uσr j u . . . 〉, a does not occur in G}

This also illustrates how element-type patterns are handled: For each element
type a that occurs in G, the information about all rules concerning a is stored
directly in a table. fxgrep’s frontend reserves indices for these element types in
the DTD when the grammar or pattern is parsed. Because this happens prior to
parsing the input document, it ensures that these element types contiguously
occupy the lowest indices in the DTD tables. The relevant information can
therefore be stored in a small table.

If an element type does not occur in the query, there can nonetheless be
concerning rules, namely all rules which have a negated element-type pattern.
Information about these rules is stored in single value; it must always be con-
sidered if the element type in question is beyond the range of the table for the
known element types.

With the help of the precomputed information, a down-transition for a state
q of size n can now be computed by exactly n set operations, namely one inter-
section and (n−1) unions:

Downa q = y0s for a a ∩ ⋃
y∈q

y0s for y y, if a occurs in G

Downa q = other y0s∩ ⋃
y∈q

y0s for y y, if a does not occur in G

For the other transitions the preprocessor computes similar information; in
case of two-pass matching, this information must facilitate transitions both in
A�G and B~G .

178 9.1. System Architecture and Implementation

9.1.3 The Collector

The collector is a module to which all matches of the query are reported by a
call to its function reportMatch. In fxgrep, this module either prints the matching
subtree onto the screen or simply counts the matches. Nonetheless, the matcher
is implemented in a way that allows for replacement of the collector with an
arbitrary structure fulfilling the following signature:

signature MatchReport =
sig

type Report

val null : Report
val report : DocDtd.Dtd → MatchData.Match ∗ Report → Report

end

This is similar to the principle of hooks in fxp: The collector accumulates all
matches in a value of type Report. It must define a start value null of that type
and a function report for incorporating one match. All matches of the query are
then reported through this function in document order.

9.1.4 The Matcher

The matcher is the part of fxgrep which actually locates matches of the query
by one or two runs of a forest automaton. First the input is parsed by the tree
builder and the document tree is constructed in memory. Then the matches
of the query are located either by the two-pass matcher or, if the grammar is
right-ignoring, by the one-pass matcher. In this case construction of the docu-
ment tree can be avoided by using the inline matcher which incorporates the
transitions of A~G into the hooks.

The Tree Builder

If the matching requires two passes, then the input document is parsed and
converted to a tree representation prior to matching. In order to parse the doc-
ument, an instance of the fxp parser similar to the tree-constructing parser in
2.8.6 is used.

The Two-Pass Matcher

The two-pass matcher locates all matches of a grammar G in a run of A�G fol-
lowed by a run of B~G . During the run of A�G , the labeling produced by this
automaton is constructed as a tree data structure. The run of B~G then traverses
the input document and the labeling simultaneously. It detects a match of the
grammar at a subtree as soon as it enters this subtree. Since the tree is com-
pletely available as a data structure, the matching subtree can be reported im-
mediately to the collector.

The forest states and tree states of these automata are sets of variables and
NFA states. Each time a transition is performed, it must be computed with
the help of the information compiled by the preprocessor. However, the struc-
ture of XML documents is usually constrained by a DTD. As a consequence,
there are many subdocuments with a similar logical structure. A run of A�G or

CHAPTER 9. IMPLEMENTATION IN SML 179

B~G typically involves the same states and transitions during traversal of these
subtrees. The same transition is thus performed multiple times during match-
ing.

In order to avoid repeated computation of a single transition, the matcher
stores all computed transitions in a dictionary. For efficient management of the
dictionary, the forest states and tree states are hashed to integers, and so are
the occurring element types and attribute names. In order to find out whether,
e.g., a transition Downa q was already computed, the lookup in the dictionary
requires only comparison of pairs of integers. Only if the transition was not
computed yet, the set of NFA states in q must be considered.

Moreover, tabulation is also performed for intermediate results in the com-
putation of transitions. The reason is that, for a forest state q, down-transitions
with different symbols a and b may occur. Now, according to 9.1.2,

Downa q = y0s for a a ∩ ⋃
y∈q

y0s for y y, and

Downb q = y0s for a b ∩ ⋃
y∈q

y0s for y y

Thus, the subexpression
⋃

y∈q y0s for y y is needed by all down-transitions for
q. It is therefore sensible to store its value once it is computed; subsequent com-
putations of Down transitions for q then only require a single set intersection
operation.

Summarizing, demand driven computation of transitions has the following
advantages:

✧ The possibly exponentially large transition tables need not be computed
in advance;

✧ Transitions are only computed on demand; transitions which are not ac-
tually required for traversal of the input document are ignored.

✧ The number of transitions that are actually computed is at most linear in
the size of the document. For small documents only few transitions are
necessary; due to the logical structure of XML documents, this holds even
for the major part of large documents.

The One-Pass Matcher

The one-pass matcher locates all matches of a right-ignoring grammar in a sin-
gle run of A~G through the input document. In contrast to the two-pass algo-
rithm, a match of the query can not be detected when arriving at that subtree t:
In order to verify the structural condition, t must first be traversed; only when
the automaton exits t it can decide whether it is a match. If a subtree of t also
matches the query, then this match is detected earlier than the match of t: The
matches of the query are not found in document order. Therefore, a match
may only be immediately reported if none of its ancestors can match, i.e., if the
left upper context was fulfilled for none of its ancestors. Otherwise, reporting
must be delayed until that ancestor is completely traversed.

In order to implement this delay mechanism, the one-pass matcher deter-
mines whether the left upper context is fulfilled before it descends to the chil-
dren of a node. This is the case whenever the current forest state contains a y

180 9.1. System Architecture and Implementation

for which a transition with a target variable is possible, i.e., if y ∈ could match
with

could match = {y | (y, x, y1) ∈ δ for some x ∈ X◦}
This set is precomputed by the preprocessor such that a single set intersection
with the current forest state suffices for determining whether the left upper
context is fulfilled. In this case, the matcher collects all matches within the
node’s children instead of reporting them; this introduces an overhead into
the matching procedure. Nonetheless, one-pass matching is still more efficient
than performing two traversals.

The Inline Matcher

Since the traversing order of A~G is the same as that of the XML parser, match-
ing of a right-ignoring grammar can even be performed during parsing. This
is done by the inline matcher, which incorporates the transitions of A~G into
the hooks used for parsing. In addition to delaying the reporting of matches,
the inline matcher must also perform construction of the document tree. This,
however, is only necessary for the matching subtrees because only these are
reported to the collector. The decision whether to construct a subtree must be
taken when entering that subtree; at this time it is not yet known, whether the
structural condition is met. Construction of the document tree thus takes place
for all subtrees for which the upper left context is fulfilled.

Interestingly enough, inline matching is slower than one-pass matching.
This is probably due to the administrative overhead of demand-driven con-
struction of the document tree (cf. 9.2). Therefore the inline matcher is dis-
abled by default and must be explicitly enabled by a command-line option.
This is sensible if the input document is very large: Though the inline matcher
is slower, it requires only a constant amount of memory. For large inputs, this
advantage out-rules the speed loss.

9.1.5 Implementation of Text Patterns

A text pattern is a regular expression over the alphabet of UNICODE characters.
The theory of string matching is a well-studied subject; efficient programs, like
the UNIX tool grep and its variants, have been implemented and established.
These tools implement regular expressions over the ASCII or LATIN1 alphabet
by deterministic finite automata (DFA).

Since the input alphabet of such an automaton has at most 256 charac-
ters, its transition table can be implemented efficiently. Table compaction al-
gorithms can additionally reduce the space required for representation. A pos-
sible problem arises due to the subset construction employed for obtaining the
automaton: It can produce exponentially many states. [ASU86] therefore pro-
poses in Section 3.7 to perform the subset construction only on demand. This
technique is implemented, e.g., in grep.

When matching UNICODE strings, a number of additional difficulties
emerge:

✧ Many characters, such as accented Latin characters have multiple repre-
sentations in UNICODE: either as a single character in the LATIN1 char-
acter range, or as a sequence of combining characters. A UNICODE string

CHAPTER 9. IMPLEMENTATION IN SML 181

matcher should be aware of equivalent representations for a single char-
acter.

✧ There are several degrees of how precise a text matches a pattern. For
instance, it is not intuitively clear whether the pattern “these” should be
matched by the words “thèse”, “These” or “Thèse”. The user should be
able to specify how precise a match must be.

✧ Since the UNICODE alphabet has more than one million characters, the
transition table of the DFA can become very large. It must therefore be
intelligently represented.

An overview of these and similar problems and possible solutions is given in
[Wer99]. For the implementation of text patterns in fxgrep, we only addressed
the efficient representation of transition tables.

9.1.5.1 Representation of Transitions

In order to motivate our representation, let us consider some examples: The
text pattern ”(��)” matches the Chinese word for “shopping centre”. The
UNICODE codes of the four Chinese letters are 8D2D, 7269, 4E2D and 5FC3, i.e.,
they are spread over a range of 16000 characters.

If the text pattern additionally contains characters from the low ASCII
range, as in ”(shopping centre��)”, then we even have to consider a
range of about 36000 characters. Observe that the four Chinese characters are
sparsely distributed in the highest 16000 characters, whereas all other charac-
ters are in the small ASCII range, and an area of about 20000 characters is not
used at all.

A text pattern can also contain characters ranges, as in ”[�−�]”, which
matches a text that contains an arbitrary East Asian CJK character. In this case,
all 20000 characters in the range share the same transitions.

The transitions for a single state of the DFA should be stored in a way
that is space-efficient on the one hand and allows for fast access on the other
hand. A straight-forward implementation is by a vector large enough to hold
all transitions, except for a default transition that is used for symbols be-
yond the range of the vector. For instance, if the transitions for state q are
{(q, 5, q1), (q, 8, q2), (q, 13, q3), (q, 14, q2)} ∪ {(q, c, q0) | c /∈ {5, 8, 13, 14}}, they
can be represented as follows:

5offset:
q0 q0 q0 q0 q0 q0q0default:

0

q1 q2 q3 q2

963

The vector is exactly large enough to hold all non-default transitions. A tran-
sition can be performed efficiently: An offset is added to the input symbol and
the result is used as the index in the vector; if this is not in the vector’s range,
the default is taken. However, this representation is unsuited for large ranges
of characters because the size of the vector can be immense, more precisely up
to a million for UNICODE. Even if we can employ table compaction algorithms
such as described in [WM95], Section 7.4.3, we obtain at least one vector of that
large size in the worst case.

Before we improve the representation, note the following two points:

182 9.1. System Architecture and Implementation

✧ Though the transitions for each state are spread among a huge range of
characters, nearly all of them are usually equal to the default transition.

✧ In some cases, however, there might be large contiguous blocks of char-
acters for which all transitions lead to the same non-default state. This is
the case, e.g., for text pattern ”.∗[�−�].∗”, where all CJK characters have
the same transition, but this is not the default transition. We therefore
need an efficient way of representing such blocks.

Our solution is the following SML data type:

datatype Segment = FIXED of int | TRANS of int array
type Row = (Char ∗ Char ∗ Segment) list ∗ int ∗ bool
type Dfa = Row vector

A state of the DFA is represented as an integer. Each row of the transition table
holds a list of segments associated with an interval of UNICODE characters, a
default transition and a boolean indicating whether the state represented by
this row is a final state. Each segment (off,len,seg) describes the transitions for
the character interval {off,. . . ,off+len}. If seg has the form FIXED q, then the
transitions for all of these characters lead to the same state q. Otherwise seg
is TRANS arr, where arr is an array of size len+1, holding the resulting state for
each character in the interval. The segments are in ascending order according
to the character intervals they describe.

In order to perform a transition for a character c, the list of segments must
be searched for a the segment containing c; because the list is sorted the search
can be aborted as soon as a segment is encountered which is higher than c. A
possible optimization is to use a vector instead of a list in order to enable binary
search on the segments. We did, however, not implement this optimization
because the lists are short in practice.

Example 9.1: Consider the text pattern ”.∗[aeiou�−�].∗” which matches a
text that contains either a vowel or a CJK character. This is a rather artificial
example but well-suited for illustrating the representation of transitions. This
text pattern can be implemented by the following DFA:

[aeiou� -�]

.[∧ aeiou� -�]

0 1

From initial state 0 we reach state 1 by one of the desired characters; for all
other characters, the automaton remains in state 0. State 1 is final; it makes a
transition to itself on arbitrary characters. The the row for state 0 is1:

([(0wx61,0wx14,TRANS [|1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1 |]),
(0wx4E00,0wx51A5,FIXED 1)],

0,false)

The default transition leads to state 0. The first of the two segments holds all
transitions for characters a. . .u (0wx61. . . 0wx75 in UNICODE); only the entries
for vowels are set to 1, all other fields of the array hold the default 0. The

1The SML notation for arrays is [| . . . |].

CHAPTER 9. IMPLEMENTATION IN SML 183

XML document: number of fxgrep tree:
Size

in KB Elem. Attr.
Spec.

Data
Segm.

Elem.-
types

Attr.
names

Elem.
nodes

Text
nodes

xml 159.4 2306 1147 4762 74 20 8069 5101
macbeth 163,1 3975 0 7906 16 0 11925 7904

Table 9.1: The two XML documents used for compiling the statistics.

second segment represents the range of CJK characters (0wx4E00. . . 0wx9FA5=
0wx4E00+0wx51A5 in UNICODE). All characters in this segment have the same
transition, leading to state 1.

The row for state 1 is very simple: It is ([],1,true). The same transition is
performed for all characters, thus there is only a default transition for this row,
but there are no segments. �

Summarizing, our representation has the following advantages:

✧ Contiguous blocks of states with the same transition are represented in
constant space.

✧ Blocks of characters with the default transition consume no space at all.

✧ Small ranges of characters with diverse transitions are represented by an
array with constant access time.

✧ If the text pattern involves only a small range of characters then all transi-
tions can be represented by a single segment of type TRANS, i.e., a transi-
tion can be performed in constant time. This is particularly useful if only
characters from the ASCII or LATIN1 range occur.

9.2 Statistics and Analysis

We conclude this chapter by giving some statistics: For the patterns and input
documents from 8.2.2, we measured the time required for matching and com-
pared it to the time needed for parsing the input. Moreover, we counted the
size of the tables generated by the preprocessor and the number of states and
transitions that occur during matching of the query.

Documents and Patterns Used for the Statistics

For generating the statistics we used the documents and example patterns from
8.2.2. The two documents are the XML recommendation and Shakespeare’s
play “Macbeth” [Bos99]; they are summarized in Table 9.1. The XML recom-
mendation has a rather rich structure: It specifies many attributes and the
number of occurring element-types is large. Compared to that, the Macbeth
document has a poor structure: Only few different element types occur, and no
attributes are specified at all.

Note that in the document tree constructed by fxgrep each element is rep-
resented by three nodes, according to Figure 8.1. Thus the number of element
nodes in the document tree is at least three times the number of elements in the

184 9.2. Statistics and Analysis

document. For the macbeth document, this is the precise number, whereas in
case of the XML recommendation there is an additional element node for each
attribute specified in the document (the remaining four element nodes are due
to a processing instruction). Each text node in the document tree is either the
concatenation of a number of adjacent character data segments, or it is an at-
tribute value specified in the XML document.

The patterns we used are the example patterns from 8.2.2. For the xml doc-
ument, these are the following:

p1 = //prod[@id = ”∧NT-Char$”]
p2 = //prod[@id=”Char”]
p3 = //prod[(lhs/”Char”)]
p4 = //prod[(lhs[”∧Char$”])]/rhs
p5 = //prod[# (rhs/nt[@def=”Char”])]/lhs/””
p6 = //prod[(//nt/”Char”)]/lhs/””
p7 = //.[# (//prod[@id=”∧NT-element$”])]//prod

For the macbeth document, we used the following patterns:

p8 = //SPEECH[(LINE/”thunder”)]
p9 = //SPEECH[(//LINE/”hurlyburly”)]/SPEAKER/.

p10 = //SPEECH[# (LINE/”hurlyburly”)]/SPEAKER/.
p11 = //SPEECH[(SPEAKER/”Second Witch”) #]/LINE/””
p12 = //SPEECH[(LINE/”hurlyburly”)#]/LINE
p13 = //∗[(SPEECH//”hurlyburly”)#]/SPEECH/SPEAKER
p14 = //∗[<¬ACT>∗#]/ACT[<¬SCENE>∗#]/SCENE/TITLE/””
p15 = //SCENE[(//SPEAKER/”Witch”)][(//SPEAKER/”MACBETH”)]/TITLE
p16 = //SCENE[(TITLE/”desert”)]/∗[¬ (SPEAKER/”Witch”)]/LINE

The statistics gathered for the individual patterns are presented in Table 9.2.
In particular, we measured for each pattern the size of the generated context
grammar, the number and size of the states which occurred during the runs of
the automata, the number of different transitions that had to be computed, and
the execution times of fxgrep and fxp.

Size of Context Grammars

The second column in Table 9.2 summarizes for each pattern the size of the
generated extended context grammar. It lists the number of variables and rules
in the grammar and the total number of NFA states generated by the Berry-
Sethi construction for the regular expressions occurring in the grammar.

Observe that the generated context grammars are relatively large in com-
parison to the patterns: Even for the simple pattern p1, 15 tree variables, 19
rules and 45 NFA states are generated. There are several reasons for this:

✧ Representation of the predefined variables x> and xw alone requires 10
variables, 13 rules and 28 NFA states.

✧ Each pattern is translated to a query grammar which has roughly one
variable for each occurring tree pattern. According to the translation
scheme presented in 8.1, each variable in a query grammar can be the

CHAPTER 9. IMPLEMENTATION IN SML 185

Context
Grammar

Tree
States

Forest
States Transitions Execution

Time in sec.

Pa
tt

er
n

V
ar

ia
bl

es

R
ul

es

N
FA

st
at

es

O
cc

ur
re

d

M
ax

im
al

Si
ze

A
ve

ra
ge

Si
ze

O
cc

ur
re

d

M
ax

im
al

Si
ze

A
ve

ra
ge

Si
ze

D
ow

n

U
p

Si
de

Tw
o

Pa
ss

es

O
ne

Pa
ss

In
lin

e

Document: xml Parsing Time: 0.49
p1 15 19 45 15 3 2.0 32 4 2.3 122 111 31 – 0.70 0.78
p2 15 19 45 15 3 2.0 34 4 2.4 127 112 36 – 0.68 0.80
p3 16 20 52 17 3 2.2 40 4 2.7 131 114 45 – 0.69 0.79
p4 17 21 56 18 3 2.3 70 9 4.2 296 132 88 0.74 – –
p5 22 26 73 24 3 2.3 99 8 4.1 356 148 124 0.75 – –
p6 21 25 75 23 3 2.4 101 12 4.6 354 148 127 0.76 – –
p7 26 31 87 23 5 2.6 98 11 5.4 442 147 136 0.81 – –
Document: macbeth Parsing Time: 0.55
p8 16 20 53 12 2 2.3 31 5 3.0 34 27 36 – 0.80 0.94
p9 24 30 85 15 4 3.1 74 12 4.8 88 33 76 0.93 – –

p10 22 28 73 15 4 3.1 68 9 4.3 84 33 68 0.94 – –
p11 19 23 63 15 3 2.4 39 6 3.3 36 29 41 – 0.80 0.83
p12 17 21 54 13 4 2.5 31 4 3.0 33 27 35 – 0.81 0.85
p13 21 25 67 16 3 2.5 40 6 4.0 40 29 50 – 0.91 0.97
p14 22 26 73 15 5 2.9 37 6 3.7 38 26 34 – 0.80 0.85
p15 24 28 91 20 3 2.6 78 18 6.0 131 39 129 0.95 – –
p16 22 26 79 18 3 2.6 55 10 5.1 96 36 94 0.94 – –

Table 9.2: Querying statistics.

source of a number of auxiliary variables in the generated context gram-
mar. For instance, an element rule generates at least two auxiliary vari-
ables, namely for the #atts and #content subtrees, plus up to two auxil-
iary variables for each attribute pattern.

✧ Regular expressions are implicitly transformed, allowing optional white
space between tree patterns and at the start and end of the whole expres-
sion (cf. 8.1.6). This procedure typically doubles the size of the regular
expression.

Execution Times

For each pattern, we ran fxgrep ten times and averaged the execution times; the
results are given in the last column of Table 9.2. Parsing of the document was
performed in non-validating mode in order to spare the time needed for pars-
ing the DTD which is not considered by the matcher in any case. For compar-
ison, parsing was also performed with the stand-alone parser fxp which does
no processing of the document at all. Comparing only the execution times, our
first observation is that matching the query always consumes less time than
parsing the document (the execution times of fxgrep include the time for pars-
ing).

186 9.2. Statistics and Analysis

For right-ignoring patterns which are matched in a single pass, we mea-
sured the execution times of both the one-pass matcher and the inline matcher.
Comparing these times it is striking that the inline matcher is always slower
than the one-pass matcher, although it does not construct the document tree
prior to matching. This can be explained as follows:

✧ The tables generated by the preprocessor must be available to the
matcher. Matching on the constructed document tree, as in the one-pass
matcher, is implemented by a few recursive functions. The tables are visi-
ble to these functions as global variables, namely through the scope of the
enclosing function definition. This is different when matching in hooks:
The tables must be incorporated explicitly into the application data, i.e.,
the arguments of the hooks. Apparently SML/NJ can not compile this as
efficiently as a global variable.

✧ The inline matcher must construct the document trees for all subtrees
that fulfill the left upper context. This requires the extra administrative
task of maintaining an optional partial document tree, together with the
information whether one of the ancestors fulfills the left upper context.
This argument is strengthened by the times measured for patterns p8 and
p11: For p8 the difference of the two execution times is clearly larger than
for p11. The reason is that for p8 the left upper context (//) is fulfilled
by all nodes; the whole document tree must therefore be constructed in
memory, though most subtrees will be discarded later due to violating the
structural condition. p11 is much more restrictive: Its left upper context
is only fulfilled by very few nodes.

The second point gives rise to a possible optimization which is, however, not
incorporated into fxgrep: Although the node test SPEECH conceptually belongs
to the structural condition of p8, it can be checked before descending to the
children of an element. This would avoid construction of the document tree at
least for all nodes of a different type than SPEECH. Thinking one step further,
the decision whether to construct the subtree can even be delayed until the
attributes of an element are processed. This would spare the construction of
even more subtrees.

It is worth mentioning that the time needed for matching a pattern is most
strongly influenced by the number of passes required rather than by the pattern
itself. This is reflected by the measured execution times: Matching is approx-
imately equally fast for all two-pass patterns on a single document. The only
exception is p7 which is noticeably slower than the other patterns for the xml
document. The reason is that the average size of the occurring states is larger
than for the other patterns. The case is similar for one-pass matching: Pattern
p13 is matched clearly slower than the other one-pass patterns for the macbeth
document. In this case, however, the reason it not so obvious. We can only
guess that the larger states are involved more frequently in transitions than the
smaller ones, but this is not reflected by the statistics.

States and Transitions Computed During Matching

The third, fourth and fifth columns of Table 9.2 list the number of tree states,
forest states and transitions that were computed during matching. First ob-

CHAPTER 9. IMPLEMENTATION IN SML 187

serve that extremely few states do actually occur, compared to the number of
theoretically possible states.

✧ In many cases the number of tree states that occurred is smaller than the
number of variables in the grammar, though the tree states are sets of
these variables.

✧ The case is similar for forest states. However, two-pass matching requires
more states than one-pass matching. This indicates that the reachable
states of B~G do not coincide with those of A�G .

✧ Generally the occurring tree states are by far fewer than the forest states.
The reason is that there are also fewer variables than NFA states.

Observe also that the size of states is usually small: Tree states have an average
size of about 2 – 3; the maximal size only rarely exceeds 4. For forests states,
these numbers are larger: They have an average size of less than 6, which is
still small in comparison to the large number of NFA states.

Note that three of the four patterns with the largest state sizes have a com-
mon characteristic: They have a structure qualifier. In contrast to a context
qualifier, a structure qualifier introduces conjunction into the generated query
grammar (cf. 8.2.3). This becomes clear when comparing patterns p9 and p10.
Both express basically the same pattern, but p10 uses a context qualifier where
p9 has a structure qualifier. The effect is that the maximum and average size of
forest states is noticeably larger for p9. It is not surprising that the largest forest
states occur for p15: This pattern has even two structure qualifiers in a single
node pattern.

The number of transitions that have to be computed is apparently related
to the number of occurring states. Note however, that at most a few hundred
different transitions occur. This is a small number compared to the number of
nodes in the document tree.

Summary of Statistics

The statistics attest that demand-driven computation of the transitions is very
practicable. Though the automata are theoretically of immense size, only a
small fraction of the states and transitions are actually required during the
matching procedure, even for large input documents. Moreover, the states, i.e.,
the sets that have to be processed in order to compute transitions, are typically
small. The demand-driven computation of the transition tables is therefore
reasonably efficient.

Conclusion

We have presented an algorithm for locating all matches of a query in an XML
document by two consecutive runs of pushdown forest automata. Here is a
summary of the addressed topics:

Representation of Documents: We represented documents as non-ranked
trees. Though representation as ranked trees is also possible, the non-
ranked representation has the advantage of allowing for both left-to-right
and right-to-left traversal by automata, independently of whether the au-
tomaton is top-down or bottom-up. Moreover, the ranked-tree represen-
tation would significantly complicate the definition of pushdown forest
automata: There would be no one-to-one correspondence between the
tree structure and the moves on the pushdown.

In order to represent XML documents as forests, we added text nodes and
introduced auxiliary nodes in order to distinguish between the attributes
and the content of an XML element.

Forest Grammars and Query Grammars: We used forest grammars for speci-
fication of both the contextual and the structural condition. Forest gram-
mars extend the notion of conventional tree grammars by allowing reg-
ular expressions on the right-hand sides of productions, accounting for
the arbitrary number of children a node may have.

Forest grammars express regular forest languages. We enhanced the
grammar formalism by adding conjunction and negation. While increas-
ing the succinctness of the formalism, this adds nothing to the expres-
siveness of the grammars. In order to meet the requirements of XML we
derived from forest grammars the formalism of query grammars. In de-
tail, we added support for matching text nodes by external predicates
and an abbreviated syntax for specifying conditions on the attributes of
an element and for easy handling of white space in XML documents.

Pattern Language: We provided a pattern syntax as an alternative specifica-
tion method for queries. This syntax is similar to the pattern language
of XPATH. It adds, however, the capability of constraining the forest of
children or siblings of a node by structure qualifiers or context qualifiers,
while refraining from the arbitrary predicates allowed in XPATH quali-
fiers.

The pattern language is less expressive than query grammars: It can not
express all regular conditions. In return it is much more concise and in-
tuitive than query grammars. It is therefore suited for specification of
queries even by non-computer scientists.

188

CONCLUSION 189

Regular Forest Languages: The class of languages accepted by forest gram-
mars is the class of regular forest grammars. We established a one-to-one
connection to regular languages of ranked trees, and showed that regular
forest languages are closed under union, intersection and complement.

Forest Automata: We introduced the class of forest automata which accept ex-
actly the regular forest languages. Forest automata are obtained from
conventional bottom-up tree automata by enhancing them with an ex-
plicit side-transition. The side-transition is used for recognizing regular
languages of words of states assigned to the children of a node. There
are two variants of forest automata, depending on whether the side-
transitions proceed from left to right or vice versa. We showed that forest
automata can be made deterministic and can thus be implemented effi-
ciently.

Pushdown Forest Automata: We adapted the traversing order of an XML
parser by enhancing the bottom-up forest automata with a pushdown
and a down-transition. The resulting class of pushdown forest automata
is as expressive as the bottom-up automata: They accept exactly the regu-
lar forest languages. In contrast to other models of pushdown automata,
pushdown forest automata can be made deterministic because moves on
the pushdown are restricted. In the deterministic case, pushdown for-
est automata are significantly more succinct than bottom-up automata.
Depending on the direction of side-transitions, there are two variants of
pushdown forest automata.

Querying Algorithm: We presented a querying algorithm that employs two
consecutive runs of pushdown forest automata for locating all matches of
a query. The first automaton annotates the input forest with its states, and
indicates with these states candidates for possible matches of the query.
The second automaton runs on the annotated forest produced by the first
automaton and traverses in the opposite direction. A match of a subtree
is determined by the state of the second automaton when it arrives at that
subtree. This automaton can thus report all matches during traversal of
the forest. Choosing the traversing order of these two automata such that
the second one proceeds from left to right ensures that the matches are
reported in document order.

The automata employed for this algorithm can be exponentially large in
the size of the query. Moreover, implementation of text patterns by ex-
ternal predicates additionally increases the size of the transition tables. It
is therefore sensible to compute the transitions required for a run on the
actual input forest on demand. Our implementation shows that only few
states and transitions are actually required during each individual run.

Single-Pass Matching: We identified the subclass of right-ignoring grammars
for which a single run of a forest automaton suffices. For these queries the
matching can be performed during parsing of the document. The docu-
ment tree then need only be constructed for those subtrees that match
the upper left context. Because this requires an additional administra-
tive effort, this strategy is slightly slower than performing the match on
the readily constructed document tree. For large documents, however, it

190 CONCLUSION

spares huge amounts of consumed memory and is therefore the prefer-
able method.

It is efficiently decidable whether a grammar is right-ignoring. The user
who specifies the query therefore need not be aware of this property.
This is especially important because XML querying is often done by non-
computer scientists.

Implementation: We implemented the querying algorithm in SML on top of
the XML parser fxp. The results are extremely satisfactory: On the one
hand, querying an XML document is faster than parsing it, even for com-
plex queries. On the other hand, we found that the number of states and
transitions that occur during a run of a forest automaton is usually very
small, even for large documents. This justifies the approach of demand
driven computation of the transition tables.

Moreover, our implementation proves the suitability of SML for process-
ing structured documents. We were able to use ML-YACC for generation
of the frontend for the syntax of grammars and patterns. Implementation
of the automata constructions and the tree traversing functions was easy
and straight-forward with the help of SML’s user-defined data-types and
recursive functions. The employment of polymorphic and higher-order
functions as well as SML’s parametric modules makes the code highly
reusable and customizable. The parser library of fxp turned out to be a
comfortable platform for development of XML processing applications.

Bibliography

[AAC+98] Nabeel Al-Shamma, Robert Ayers, Richard Cohn, Jon Ferraiolo,
et alias, editors. Precision Graphics Markup Language (PGML) . W3C
Note, World Wide Web Consortium, April 1998. Available online
at http://www.w3.org/TR/1998/NOTE-PGML-19980410.

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. In F.N. Afrati
and P.G. Kolaitis, editors, Proceedings of the International Conference
on Database Theory, Delphi, Greece, volume 1186 of Lecture Notes in
Computer Science, pages 1–18. Springer, Heidelberg, 1997.

[AMT94] Andrew W. Appel, James S. Mattson, and David R. Tarditi. A
lexical analyzer generator for Standard ML, Version 1.6.0. Software
Documentation, Princeton University, October 1994. Available
online at http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-
Lex/manual.html.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom,
and Janet L. Wiener. The Lorel Query Language for Semistructured
Data. International Journal on Digital Libraries, 1(1):68–88, December
1997.

[Ari99] Ariba, Inc. cXML/1.0. Business Standard, August 1999. Available
online at http://www.cxml.org/home/.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmann. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

[AT94] Andrew W. Appel and David R. Tarditi. ML-Yacc User’s Manual,
Version 2.3. Software Documentation, Princeton University, Octo-
ber 1994. Available online at http://cm.bell-labs.com/cm/cs/
what/smlnj/doc/ML-Yacc/manual.html.

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on a Context-
Free Grammar. Information and Control, 19(5):439–475, December
1971.

[Bal99] Steve Ball. TclXml 1.2. Software Documentation, Zveno Pty. Ltd.,
May 1999. Available online at http://www.zveno.com/zm.cgi/in-
tclxml/.

[Bel99] Standard ML of New Jersey. Home Page, 1989-1999. Available online
at http://cm.bell-labs.com/cm/cs/what/smlnj/.

191

192 BIBLIOGRAPHY

[BHW98] Anne Brüggemann-Klein, Stefan Hermann, and Derick Wood.
Context and Caterpillars and Structured Documents. In Ethan V.
Munson, Charles Nicolas, and Derick Wood, editors, Principles of
Digital Document Processing (PODDP’98), volume 1481 of Lecture
Notes in Computer Science, pages 1–9. Springer, Heidelberg, March
1998.

[BKR96] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for
guided tree automata. In First International Workshop on Implement-
ing Automata (WIA’96), volume 1260 of Lecture Notes in Computer
Science. Springer, Heidelberg, 1996.

[BKR99] Nick Benton, Andrew Kennedy, and George Russell. The MLj
Compiler. Software and documentation, Persimmon IT, Inc., Cam-
bridge, U.K., 1999. Available online at http://www.dcs.ed.ac.uk/
˜mlj/.

[Blu97] Matthias Blume. CM – A Compilation Manager for SML/NJ. User
Manual, Princeton University, 1997. Available online at http://
cm.bell-labs.com/cm/cs/what/smlnj/doc/CM/index.html.

[BMW91] Jürgen Börstler, Ulrich Möncke, and Reinhard Wilhelm. Table
Compression for Tree Automata. ACM Transactions on Program-
ming Languages and Systems, 13(3):295–314, 1991.

[Bos99] Jon Bosak, editor. The Complete Plays of Shakespeare, Marked up
in XML, 1999. Available online at http://metalab.unc.edu/xml/
examples/shakespeare.

[Brü93] Anne Brüggemann-Klein. Regular Expressions into Finite Au-
tomata. Theoretical Computer Science, 120(2):197–213, 1993.

[Bra69] Walter S. Brainerd. Tree Generating Regular Systems. Information
and Control, 14:217–231, 1969.

[Bra98a] Neil Bradley. The XML Companion. Addison Wesley Longman,
Harlow, Essex, 1998.

[Bra98b] Tim Bray. The Annotated XML Specification. Tutorial, 1998. Available
online at http://www.xml.com/axml/axml.html.

[BS86] Gerard Berry and Ravi Sethi. From Regular Expressions to Deter-
ministic Automata. Theoretical Computer Science, 48:117–126, 1986.

[BW92] Anne Brüggemann-Klein and Derick Wood. Deterministic Regular
Languages. In A. Finkel and M. Jansen, editors, STACS 92, volume
577 of Lecture Notes in Computer Science, pages 173–184. Springer,
Heidelberg, 1992.

[BW98] Anne Brüggemann-Klein and Derick Wood. Regular Tree Lan-
guages over Non-Ranked Alphabets. Unpublished draft, April
1998. Available online at http://www.oasis-open.org/cover/
regTreeLanguages-ps.gz.

BIBLIOGRAPHY 193

[CDG+99] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard,
Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata
Techniques and Applications, April 1999. Available online at http:
//www.grappa.univ-lille3.fr/tata/.

[CDS+98] Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna
Smaga. Your Mediators Need Data Conversion! In Laura M. Haas
and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of Data, June 2-4,
1998, Seattle, Washington, USA, pages 177–188. ACM Press, 1998.

[Cho60] Noam Chomsky. On the Notion “Rule of Grammar”. In Roman
Jakobson, editor, Proceedings of the 12th Symposium in Applied Math-
ematics, pages 6–24. American Mathematical Society, Providence,
Rhode Island, April 1960.

[Cla98] James Clark. sp 1.3. Software Documentation, March 1998. Avail-
able online at http://www.jclark.com/sp/index.htm.

[Cla99a] James Clark. Expat 1.1. Software Documentation, May 1999. Avail-
able online at http://www.jclark.com/xml/expat.html.

[Cla99b] James Clark. xp 0.5. Software Documentation, January 1999. Avail-
able online at http://www.jclark.com/xml/xp/index.htm.

[Cow99] John Cowan. XML Catalog Proposal, Draft 0.4, April 1999. Available
online at http://www.ccil.org/˜cowan/XML/XCatalog.html.

[CZ96] Pascal Caron and Djelloull Ziadi. Characterization of Glushkov Au-
tomata. Technical Report LIR-96.06, Laboratoire d’Informatique,
Université de Rouen, France, 1996.

[DFF+99] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and
Dan Suciu. A query language for XML. In International World Wide
Web Conference, 1999.

[Don70] John Doner. Tree Acceptors and Some of Their Applications. Jour-
nal of Computer and System Sciences, 4:406–451, 1970.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-Walking
Pebble Automata. In J. Karhumäki, H. Maurer, G. Paun, and
G.Rozenberg, editors, Jewels are Forever, Contributions to Theoretical
Computer Science in Honor of Arto Salomaa, pages 72–83. Springer,
Heidelberg, 1999.

[Fec94] Christian Fecht. A Guide to TrafoLa. Software documentation, Uni-
versität des Saarlandes, 1994.

[FS98] Christian Fecht and Helmut Seidl. Propagating Differences: An
Efficient New Fixpoint Algorithm for Distributive Constraint Sys-
tems. In Programming Languages and Systems, 7th European Sympo-
sium on Programming (ESOP ’98), Lisbon, Portugal, volume 1381 of
Lecture Notes in Computer Science, pages 90–104. Springer, Heidel-
berg, 1998.

194 BIBLIOGRAPHY

[FSF99] Free Software Foundation. GNU grep. Software and Documenta-
tion, 1999. Available online at ftp://ftp.gnu.org/gnu/grep/.

[FST98] Financial Services Technology Consortium. Bank Internet Payment
System, Specification, Version 1.0. Public Review Draft, August 1998.
Available online at http://www.fstc.org/projects/bips/.

[FSW99] Mary Fernandez, Jerome Simeon, and Philip Wadler, editors. XML
Query Languages: Experiences and Exemplars. Draft manuscript,
September 1999. Available online at http://www-db.research.
bell-labs.com/user/simeon/xquery.html.

[Fuc99] Matthew Fuchs. Why XML Is Meant for Java – Exploring the
XML/Java Connection. Web Techniques, June 1999. Available online
at http://www.webtechniques.com/archives/1999/06/fuchs/.

[Fxg99] Andreas Neumann. fxgrep 1.2. Source Code, 1999. Available
online at http://www.informatik.uni-trier.de/˜neumann/Fxp/
fxgrep/.

[Fxp99] Andreas Neumann. fxp 1.2. Source Code, 1999. Available online at
http://www.informatik.uni-trier.de/˜neumann/Fxp/.

[Gar99] Lars Marius Garshol. xmlproc: A Python XML parser, Version
0.61. Software Documentation, April 1999. Available online
at http://www.stud.ifi.uio.no/˜larsga/download/python/xml/
xmlproc.html.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specifi-
cation, Version 1.0. Addison Wesley, August 1996.

[Glu61] V. M. Glushkov. The Abstract Theory of Automata. Russian Math-
ematical Surveys, 16:1–53, 1961.

[GMW99] Roy Goldman, Jason McHugh, and Jennifer Widom. From
Semistructured Data to XML: Migrating the Lore Data Model and
Query Language. In Sophie Cluet and Tova Milo, editors, Pro-
ceedings of the 2nd International Workshop on the Web and Databases
(WebDB ’99), Philadelphia, Pennsylvania, pages 25–30. INRIA, June
1999.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Clarendon Press, Ox-
ford, 1990.

[Gol99] Charles Goldfarb. The XML Handbook. Prentice Hall, New Jersey,
2nd edition, November 1999.

[GS97] Ferenc Gécseg and Magnus Steinby. Tree Languages. In Grze-
gorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, chapter 1, pages 1–68. Springer, Heidelberg,
1997.

[Gue83] Irène Guessarian. Pushdown Tree Automata. Mathematical Systems
Theory, 16(4):237–263, 1983.

BIBLIOGRAPHY 195

[Hal85] Robert H. Halstead. Multilisp: A Language for Concurrent Sym-
bolic Computation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 7(4):501–538, 1985.

[Har99] Eliotte R. Harold, editor. 1998 Baseball Statistics – XML Sample Files,
1999. Available online at http://metalab.unc.edu/xml/examples/
1998validstats.xml.

[HS93] Reinhold Heckmann and Georg Sander. TrafoLa-H Reference
Manual. In B. Hoffmann and B. Krieg-Brückner, editors, Program
Development by Specification and Transformation, volume 680 of Lec-
ture Notes in Computer Science, part II, chapter 8, pages 275–313.
Springer, Heidelberg, 1993.

[IBM99] IBM AlphaWorks. XML Parser for Java. Software Documentation,
August 1999. Available online at http://www.alphaworks.ibm.
com/formula/xml/.

[IET92] K. Simonsen, editor. Character Mnemonics & Character Sets. Inter-
net RFC 1345, IETF (Internet Engineering Task Force), June 1992.
Available online at http://www.ietf.org/rfc/rfc1345.txt.

[IET98a] T. Berners-Lee, R. Fielding, and L. Masinter, editors. Uniform Re-
source Identifiers (URI): Generic Syntax. Internet RFC 2396, IETF (In-
ternet Engineering Task Force), August 1998. Available online at
http://www.ietf.org/rfc/rfc2396.txt.

[IET98b] F. Yergeau, editor. UTF-8, a transformation format of ISO 10646. In-
ternet RFC 2279, IETF (Internet Engineering Task Force), January
1998. Available online at http://www.ietf.org/rfc/rfc2279.txt.

[ISO86] International Organization for Standardization. Information Pro-
cessing – Text and Office Systems – Standard Generalized Markup Lan-
guage (SGML). Ref. No. ISO 8879:1986 (E). Geneva/New York,
1986.

[ISO96] International Organization for Standardization. Information tech-
nology – Processing Languages – Document Style Semantics and Speci-
fication Language (DSSSL). Ref. No. ISO/IEC 10179:1996(E), 1996.

[ISO98] International Organization for Standardization. Information tech-
nology – 8-bit single-byte coded graphic character sets – Part 1: Latin
alphabet No. 1. International Standard ISO/IEC 8859-1:1998, 1998.

[JHA+98] Simon Peyton Jones, John Hughes, Lennart Augustson, et alias.
Haskell 98: A Non-strict, Purely Functional Language, February
1998. Available online at http://haskell.systemsz.cs.yale.edu/
definition/.

[JK96a] Jani Jaakkola and Pekka Kilpeläinen. Sgrep 0.99. Software and
Documentation, Document Management Group, Computer Sci-
ence Department, University of Helsinki, 1996. Available online
at http://www.cs.helsinki.fi/˜jjaakkol/sgrep.html.

196 BIBLIOGRAPHY

[JK96b] Jani Jaakkola and Pekka Kilpeläinen. Using Sgrep for Querying
Structured Text Files. Technical Report C-1999-83, Department of
Computer Science, University of Helsinki, November 1996.

[Joh99] Mark Johnson. XML JavaBeans, Part 1 – Make JavaBeans mobile
and interoperable with XML. Java World, February 1999. Available
online at http://www.javaworld.com/. Parts 2 and 3 appeared in
March and July.

[Kle56] Stephen C. Kleene. Representation of Events in Nerve Sets and
Finite Automata. In C.E. Shannon and J. McCarthy, editors, Au-
tomata Studies, pages 3–42. Princeton University Press, Princeton,
New Jersey, 1956.

[Kro75] H. Kron. Tree Templates and Subtree Transformational Grammars. PhD
thesis, University of California, Santa Cruz, 1975.

[KS81] Tsutomu Kamimura and Giora Slutzki. Parallel and Two-Way Au-
tomata on Directed Ordered Acyclic Graphs. Information and Con-
trol, 49(1):10–51, April 1981.

[LH92] Baudouin LeCharlier and Pascal Van Hentenryck. A Universal Top-
Down Fixpoint Algorithm. Technical Report CS-92-25, Brown Uni-
versity, Providence, 1992.

[Lin99] Christian Lindig. Tony - a XML Parser and Pretty Printer. Software
Documentation, 1999. Available online at http://www.cs.tu-bs.
de/softech/people/lindig/software/tony.html.

[LRV+99] Xavier Leroy, Didier Rémy, Jérôme Vouillon, and Damien Doligez.
The Objective Caml System,Documentation and User’s Guide. Online
documentation, I.N.R.I.A., France, 1999. Available online at http:
//pauillac.inria.fr/caml/ocaml/htmlman/.

[Lut96] Mark Lutz. Programming Python. O’Reilly & Associates, October
1996.

[Mai98] David Maier. Database Desiderata for an XML Query Language. In
The W3C Query Languages Workshop (QL’98), Boston, Massachussets.
World Wide Web Consortium, November 1998. Available online at
http://www.w3.org/TandS/QL/QL98/pp/maier.html.

[Meg+98] David Megginson et alias, editors. SAX 1.0: The Simple API for
XML. Online Documentation, Megginson Technologies, May 1998.
Available online at http://www.megginson.com/SAX/index.html.

[Mor94] Etsuro Moriya. On two-way tree automata. Information Processing
Letters, 50:117–121, 1994.

[MS98] Maya Madhavan and Priti Shankar. Optimal Regular Tree Pattern
Matching Using Pushdown Automata. In V. Arvind and R. Ra-
mamujan, editors, Foundations of Software Technology and Theoretical
Computer Science, (18th FST&TCS), volume 1530 of Lecture Notes in
Computer Science, pages 122–133. Springer, Heidelberg, 1998.

BIBLIOGRAPHY 197

[MTH+97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

[Mul99] Charles Muller, editor. Dictionary of East Asian Literary
CJK Terms – XML Sample Files, 1999. Available online at
http://www.human.toyogakuen-u.ac.jp/˜acmuller/dicts/
xmlcjkdict/data/ind%ex.html.

[Mur95] Makoto Murata. Forest Regular Languages and Tree Regular Lan-
guages. Unpublished manuscript, 1995. Available online at http:
//www.geocities.com/ResearchTriangle/Lab/6259/podp.pdf.

[Mur96] Makoto Murata. Transformations of Trees and Schemas by Patterns
and Contextual Conditions. In Charles Nicolas and Derick Wood,
editors, Principles of Document Processing (PODP’96), volume 1293
of Lecture Notes in Computer Science, pages 153–169. Springer, Hei-
delberg, 1996.

[Neu97] Andreas Neumann. Unambiguity of SGML Content Models –
Pushdown Automata Revisited. In Symeon Bozapalidis, editor,
Proceedings of the 3rd International Conference Developments in Lan-
guage Theory (DLT’97), pages 507–518. Aristotle University of Thes-
saloniki, 1997.

[NP93] Maurice Nivat and Andreas Podelski. Another Variation on the
Common Subexpression Problem. Discrete Mathematics, 114:379–
401, 1993.

[NS98a] Andreas Neumann and Helmut Seidl. Locating Matches of Tree Pat-
terns in Forests. Technical Report 98-08, Mathematik/Informatik,
Universität Trier, 1998.

[NS98b] Andreas Neumann and Helmut Seidl. Locating Matches of Tree
Patterns in Forests. In V. Arvind and R. Ramamujan, editors, Foun-
dations of Software Technology and Theoretical Computer Science, (18th
FST&TCS), volume 1530 of Lecture Notes in Computer Science, pages
134–145. Springer, Heidelberg, 1998.

[NS99] Frank Neven and Thomas Schwentick. Query Automata. In Pro-
ceedings of the Eighteenth Symposium on Principles of Database Sys-
tems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, pages 205–
214. ACM Press, 1999.

[NY60] R. Naughton and H. Yamada. Regular Expressions and State
Graphs for Automata. IRE Transactions on Electronic Computers, EC-
9(1):39–47, 1960.

[O’K90] Richard R. O’Keefe. The Craft of Prolog. MIT Press, Cambridge,
Massachusetts, 1990.

[OMG99] Object Model Group. XML Metadata Interchange (XMI). Proposal to
the OMG OA&DTF RFP 3: Stream-based Model Interchange Format
(SMIF). OMG Document ad/98-07-01, July 1999. Available online
at ftp://ftp.omg.org/pub/docs/ad/98-07-01.ps.

198 BIBLIOGRAPHY

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, May
1994.

[Pau96] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, July 1996.

[PE88] Keshav Pingali and Kattamuri Ekanadham. Accumulators: New
Logic Variable Abstractions for Functional Languages. In Kesav V.
Nori and Sanjeev Kumar, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science, (8th FST&TCS), Pune, India,
volume 338 of Lecture Notes in Computer Science, pages 377–399.
Springer, 1988.

[Pod92] Andreas Podelski. A Monoid Approach to Tree Automata. In Mau-
rice Nivat and Andreas Podelski, editors, Tree Automata and Lan-
guages, pages 41–56. North Holland, 1992.

[PQ68] C. Pair and A. Quere. Définition et Etude des Bilangages Réguliers.
Information and Control, 13:565–593, 1968.

[PXS99] Python XML Special Interest Group. xml 0.5.1. Software Documen-
tation, April 1999. Available online at http://www.python.org/
sigs/xml-sig/.

[Rep97] John Reppy, editor. The Standard ML Basis Library. Draft Report,
Bell Labs, Lucent Technologies, 1997. Available online at http:
//cm.bell-labs.com/cm/cs/what/smlnj/doc/basis/index.html.

[Rob99] Jonathan Robie, editor. XQL (XML Query Language). Proposal, Au-
gust 1999. Available online at http://metalab.unc.edu/xql/xql-
proposal.html.

[Sei90] Helmut Seidl. Deciding Equivalence of Finite Tree Automata.
SIAM Journal on Computing, 19(3):424–437, June 1990.

[Ses99] Peter Sestoft. Moscow ML. Software and documentation, Royal
Veterinary and Agricultural University, Copenhagen, Denmark,
1999. Available online at http://www.dina.kvl.dk/˜sestoft/
mosml.html.

[SG85] Karl M. Schimpf and Jean H. Gallier. Tree Pushdown Automata.
Journal of Computer and System Sciences, 30(1):25–40, 1985.

[Smo98] Gerd Smolka. Concurrent Constraint Programming Based on Func-
tional Programming. Talk given at the European Joint Confer-
ences on Theory and Practice of Software (ETAPS) Lisbon, Portu-
gal, 1998. Available online at http://www.ps.uni-sb.de/˜smolka/
drafts/etaps98.ps.

[SO97] Paul Grosso, editor. Entity Management (Amendment 2 to TR 9401).
Technical Resolution 9401:1997, SGML Open, September 1997.
Available online at http://www.oasis-open.org/html/a401.htm.

BIBLIOGRAPHY 199

[SY98] Junichi Suzuki and Yoshikazu Yamamoto. Making UML mod-
els exchangeable over the Internet with XML: UXF approach. In
�UML�’98 - Beyond the Notation, Mulhouse, France, June 1998.

[Tak75] M. Takahashi. Generalizations of Regular Sets and their Applica-
tion to a Study of Context-Free Languages. Information and Control,
27:1–36, 1975.

[Tha67] J. W. Thatcher. Characterizing Derivation Trees of Context-Free
Grammars through a Generalization of Finite Automata Theory.
Journal of Computer and System Sciences, 1:317–322, 1967.

[Tob99] Richard Tobin. RXP 1.1. Software Documentation, Language Tech-
nology Group, Edinburgh, July 1999. Available online at http:
//www.cogsci.ed.ac.uk/˜richard/rxp.html.

[TW68] J. W. Thatcher and J. B. Wright. Generalization of Finite Automata
Theory with an Application to a Decision Problem of Second Order
Logic. Mathematical Systems Theory, 2(1):57–81, 1968.

[Uni96] The Unicode Consortium. The Unicode Standard, Version 2.0. Addi-
son Wesley Developers Press, Reading, Massachusetts, 1996.

[W3C98a] Vidur Apparao, Steve Byrne, Mike Champion, et alias, editors.
Document Object Model (DOM) Level 1 Specification, Version 1.0. W3C
Recommendation, World Wide Web Consortium, October 1998.
Available online at http://www.w3.org/TR/1998/REC-DOM-Level-
1-19981001.

[W3C98b] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen, editors. Exten-
sible Markup Language (XML) 1.0. W3C Recommendation, World
Wide Web Consortium, February 1998. Available online at http:
//www.w3.org/TR/1998/REC-xml-19980210. XML version available
at http://www.w3.org/TR/1998/REC-xml-19980210.xml.

[W3C98c] James Clark and Stephen Deach, editors. Extensible Style Lan-
guage (XSL) Version 1.0. W3C Working Draft, World Wide Web
Consortium, December 1998. XML Version. Available online at
http://www.w3.org/TR/1998/WD-xsl-19981216.xml.

[W3C98d] Eve Maler and Steve DeRose, editors. XML Linking Language
(XLink). W3C Working Draft, World Wide Web Consortium, March
1998. Available online at http://www.w3.org/TR/WD-xlink.

[W3C98e] Dave Raggett, Arnaud Le Hors, and Ian Jacobs, editors. HTML
4.0 Specification. W3C Recommendation, World Wide Web Consor-
tium, April 1998. Available online at http://www.w3.org/TR/REC-
html40/.

[W3C99a] Tim Bray, Dave Hollander, and Andrew Layman, editors. Names-
paces in XML. W3C Recommendation, World Wide Web Consor-
tium, January 1999. Available online at http://www.w3.org/TR/
1999/REC-xml-names-19990114.

200 BIBLIOGRAPHY

[W3C99b] James Clark, editor. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, World Wide Web Consortium, November 1999.
Available online at http://www.w3.org/TR/xslt.

[W3C99c] James Clark and Steve DeRose, editors. XML Path Language (XPath)
Version 1.0. W3C Recommendation, World Wide Web Consor-
tium, November 1999. Available online at http://www.w3.org/TR/
xpath.

[W3C99d] John Cowan and David Megginson, editors. XML Information
Set. W3C Working Draft, World Wide Web Consortium, May
1999. Available online at http://www.w3.org/TR/1998/WD-xml-
infoset-19990517.

[W3C99e] Stephen Deach, editor. Extensible Style Language (XSL) Specifica-
tion. W3C Working Draft, World Wide Web Consortium, April
1999. Available online at http://www.w3.org/TR/1999/WD-xsl-
19990421.

[W3C99f] Steve DeRose and Ron Daniel Jr., editors. XML Pointer Language
(XPointer). W3C Working Draft, World Wide Web Consortium,
July 1999. Available online at http://www.w3.org/TR/WD-xptr.

[W3C99g] S. Pemberton et alias, editors. XHTML 1.0: The Extensible Hyper-
Text Markup Language. A Reformulation of HTML 4.0 in XML 1.0.
W3C Working Draft, World Wide Web Consortium, March 1999.
Available online at http://www.w3.org/TR/WD-html-in-xml/.

[W3C99h] Henry S. Thompson, David Beech, Murray Maloney, and Noah
Mendelsohn, editors. XML Schema Part 1: Structures. W3C
Working Draft, World Wide Web Consortium, November 1999.
Available online at http://www.w3.org/TR/1999/WD-xmlschema-
1-19991105/.

[Wad86] Philip Wadler. A New Array Operation. In Joseph H. Fasel and
Robert M. Keller, editors, Proceedings of the Graph Reduction Work-
shop, Santa Fé, New Mexico, volume 279 of Lecture Notes in Computer
Science, pages 328–335. Springer, 1986.

[Wad99] Philip Wadler. A formal semantics of patterns in XSLT. Markup
Technologies, Philadelphia, to appear, December 1999. Available
online at http://cm.bell-labs.com/cm/cs/who/wadler/papers/
xsl-semantics/xsl-seman%tics.ps.

[Wat93] Bruce W. Watson. A Taxonomy of Finite Automata Construction Al-
gorithms. Computing Science Report 93/43, Faculty of Mathemat-
ics and Computing Science, Eindhoven University of Technology,
Netherlands, 1993.

[WC99] Larry Wall and Clark Cooper. XML::Parser 2.26. Software Docu-
mentation, July 1999. Available online at http://www.cpan.org/
modules/by-module/XML/COOPERCL.

BIBLIOGRAPHY 201

[WCS96] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Program-
ming Perl. O’Reilly & Associates, 2nd edition, September 1996.

[Wee99] Stephen Weeks. MLton User’s Guide. Software and documentation,
NEC Software Systems Research, 1999. Available online at http:
//www.neci.nj.nec.com/PLS/MLton/.

[Wer99] Laura L. Werner. Efficient Text Searching in Java: Finding the Right
String in any Language . Talk given at the 14th International Uni-
code Conference, March 1999. Available online at http://www-
4.ibm.com/software/developer/library/text-searching.html.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, Reading, Massachusetts, 1995.

[Woo87] Derick Wood. Theory of Computation. Wiley, New York, 1987.

[WR99] Malcolm Wallace and Colin Runciman. Haskell and XML: Generic
Document Processing Combinators vs. Type-Based Translation. Draft
Paper, University of York, March 1999. Available online at http:
//www.cs.york.ac.uk/fp/HaXml/paper.html.

Appendix A

Proofs

A.1 Proof of Theorem 6.1

A.1.1 Proof of (1)

In order to complete the proof, we have to show that LA = LG. Let us first
show that LA ⊆ LG: By structural induction (Corollary 4.1), it suffices to show
(F) and (T) for the following invariants AT and AF :

AT t ≡ if (t, x) ∈ δT then t ∈ [[G]] x, for all x ∈ X;
AF f ≡ if (f , y) ∈ δF and y ∈ Fj, then f ∈ [[G]] r j, for all j.

Let us start with (F): Let f = t1. . . tn and assume that AT ti holds for all i. If
(f , y) ∈ δF then, by Lemma 6.1, there are x1, . . . , xn and y1, . . . , yn+1 such that
y1 ∈ I, yn+1 = y, and for 1 6 i 6 n, (ti , xi) ∈ δT and (yi , xi , yi+1) ∈ Side.
Because y ∈ Fj ⊆ Yj and all Yj are disjoint, (yi , xi , yi+1) ∈ δ j and yi ∈ Yj for all
i. Because y1 ∈ I, we have that y1 = y0, j, and with yn+1 = y ∈ Fj, we get by
Proposition 4.1 that x1 . . . xn ∈ [[r j]]R . Moreover, ti ∈ [[G]] xi because of AT ti for
all i, and thus, by definition, f ∈ [[G]] r j, and (F) holds.

It remains to show (T): Let t = a〈 f 〉, (t, x) ∈ δT , and assume that AF f
holds. By definition there is a y such that (f , y) ∈ δF and (y, a, x) ∈ Up.
By, construction, x → a〈r j〉 for some j, and y ∈ Fj. Now AF f yields that
f ∈ [[G]] r j. Thus, by definition, t ∈ [[G]] x, (T) holds and LA ⊆ LG.

We still have to show that LG ⊆ LA. Again, we define induction invariants
AT and AF :

AT t ≡ if t ∈ [[G]] x then (t, x) ∈ δT , for all x ∈ X;
AF f ≡ if f ∈ [[G]] r j then there is a y ∈ Fj with (f , y) ∈ δF .

Let us show (F): Let f = t1. . . tn ∈ [[G]] r j. Then there is a word x1 . . . xn ∈ [[r j]]R
such that ti ∈ [[G]] xi, and thus (ti , xi) ∈ δT by AT ti, for i = 1, . . . , n. By Propo-
sition 4.1, there are y1, . . . , yn+1 with y1 = y0, j, yn+1 ∈ Fj and (yi , xi , yi+1) ∈ δ j.
Because y0, j ∈ I and δ j ⊆ Side, we get with Lemma 6.1 that (f , yn+1) ∈ δF , and
(F) holds.

Finally, let us show (T): If t = a〈 f 〉 ∈ [[G]] x, then x → a〈r j〉 for some j and
f ∈ [[G]] r j. By, AF f , there is a y ∈ Fj with (f , y) ∈ δF , and by construction
(y, a, x) ∈ Up. Thus (t, x) ∈ δT . This completes the proof of (1). �

202

APPENDIX A. PROOFS 203

A.1.2 Proof of (2)

We have to show that for q ∈ Q, (f , q) ∈ δF iff f ∈ [[G]] rq. Let us first define
invariants AT and AF for the structural induction:

AT t ≡ (t, p) ∈ δT iff t ∈ [[G]] p, for all p ∈ P.
AF f ≡ (f , q) ∈ δF iff f ∈ [[G]] rq, for all q ∈ Q.

We have to show (F) and (T); let us start with (F): Let f = t1. . . tn and (f , q) ∈
δF . By Lemma 6.1, there are p1, . . . , pn and q1, . . . , qn+1 such that q1 ∈ I, qn+1 =
q, and for 1 6 i 6 n, (ti , pi) ∈ δT and (qi , pi , qi+1) ∈ Side. If n = 0, then
q = q1 ∈ I, thus q0 ∈ Fq and f = ε ∈ [[rq]]R . Otherwise, by construction,
(qi , pi , qi+1) ∈ δ for all i and (q0, p1, q2) ∈ δ; hence p1 . . . pn ∈ LNq = [[rq]]R .
Now ti ∈ [[G]] pi because of AT ti for 1 6 i 6 n, and thus f ∈ [[G]] rq.

On the other hand, suppose that f ∈ [[G]] rq. Then there is a word p1 . . . pn ∈
[[rq]]R such that ti ∈ [[G]] pi for 1 6 i 6 n. Because Nq accepts [[rq]]R , there are
q1, . . . , qn+1 ∈ Q0 with q1 = q0, qn+1 ∈ Fq and (qi , pi , qi+1) ∈ δ for all i. If
n = 0, then q0 ∈ Fq and by construction q ∈ I; hence (ε, q) ∈ δF . Otherwise,
by definition of δ, there is a qI ∈ I with (qI , p1, q2) ∈ Side. Moreover, because
no transition in δ leads to q0, qi 6= q0 and thus (qi , pi , qi+1) ∈ Side for i > 1. By
AT ti, (ti , pi) ∈ δT for all i, and by Lemma 6.1 (f , q) ∈ δF . Thus (F) holds.

It remains to show (T): On the one hand, suppose that t = a〈 f 〉 and (t, p) ∈
δT . Then there is a q such that (f , q) ∈ δF and (q, a, p) ∈ Up. By AF f , f ∈
[[G]] rq, and by construction p→ a〈rq〉 ∈ R. Thus t ∈ [[G]] p. On the other hand,
if t ∈ [[G]] p, then there is a q such that p → a〈rq〉 ∈ R and f ∈ [[G]] rq. By
AF f , (f , q) ∈ δF and by construction, (q, a, p) ∈ Up. Hence (t, p) ∈ δT and (T)
holds. �

A.2 Proof of Theorem 6.2

In order to prove LD = LA, we show by structural induction that for all t, f :

AT t ≡ (t, p) ∈ δA
T iff p ∈ δD

T (t);
AF f ≡ (t, q) ∈ δA

F iff q ∈ δD
F (f);

We have to show (E), (L) and (T). δD
F (ε) = I = {q | q ∈ δA

F (ε)} and thus (E)
holds. For (L), suppose that AT t and AF f hold. By definition, (f t, q1) ∈ δA

F
iff there are p, q such that (f , q) ∈ δA

F , (t, p) ∈ δA
T and (q, p, q1) ∈ Side. By AT t,

AF f and definition of Side’, this is true iff q ∈ q′ = δD
F (f), p ∈ p′ = δD

T (t)
and q1 ∈ Side′(q′, p′). But this is equivalent to q1 ∈ δD

F (f t), and thus (L) holds.
It remains to prove (T): Suppose that AF f holds and t = a〈 f 〉. By definition,
(t, p) ∈ δA

T iff there is a q such that (f , q) ∈ δA
F and (q, a, p) ∈ Up. By AF f and

definition of Up’, this is equivalent to q ∈ q′ = δD
F (f) and p ∈ Up′a q′. This is

true iff p ∈ δD
T (t) by definition; thus (R) holds and LD = LA. �

A.3 Proof of Theorem 6.4

The proof that LA = LD is divided into two parts: Let us first show that
LA ⊆ LD. We show by structural induction that (E), (L) and (T) hold with
the following induction invariants:

204 A.4. Proof of Theorem 6.5

AT t ≡ If (q1, t, p) ∈ δA
T and (q, q1) ∈ q′, then (q1, p) ∈ δD

T (q′, t);
AF f ≡ If (q1, f , q2) ∈ δA

F and (q, q1) ∈ q′, then (q, q2) ∈ δD
F (q′, f)

Having shown (E)-(T), we know that AF holds for all f ∈ FΣ. Especially, for
all q1 ∈ I, q2 ∈ F, if (q1, f , q2) ∈ δA

F then (q1, q2) ∈ δD
F (q′0, f) and thus LA ⊆ LD.

It remains to show that LD ⊆ LA. For this purpose we define new invariants
AT and AF :

AT t ≡ If (q1, p) ∈ δD
T (q′, t)

then (q, q1) ∈ q′ for some q, and (q1, t, p) ∈ δA
T ;

AF f ≡ If (q, q2) ∈ δD
F (q′, f)

then (q, q1) ∈ q′ and (q1, f , q2) ∈ δA
F for some q1

Having shown that AF holds for all forests, we know especially that for all
q2 ∈ F, if (q1, q2) ∈ δD

F (q′0, f) for some q1 then (q1, q1) ∈ q′0 and (q1, f , q2) ∈ δA
F .

Thus LD ⊆ LA. �

A.4 Proof of Theorem 6.5

Let us show that each DLFA B = (P, Q, {q0}, I, Up, Side) accepting Ln must
have at least 2n states. For each S ⊆ {1, . . . , n} let fS be the unary forest
x1〈x2〈. . . 〈xn〉〉〉 with xi = a if i ∈ S and xi = b otherwise. In other words,
fS ∈ Li iff i ∈ S. Let ♦b(f) be the unary forest b〈 f 〉 for all f . Clearly, f ∈ Li iff
♦ j

b(f) ∈ Li+ j. Thus,

(i) ♦n−i
b (fS) ∈ Ln iff i ∈ S.

Now, for a forest state q, define δb(q) = Side(q0, Upb q). Obviously, if q = δF (f),
then δi

b(q) = δF (♦i
b(f)). Thus by (i):

(ii) δn−i
b (δF (fS)) ∈ F iff i ∈ S.

Now suppose that there are S, R ⊆ {1, . . . , n} with S 6= R. W.l.o.g., there is a
i ∈ S with i /∈ R. Let qS = δF (fS) and qR = δF (fR). By (ii), δn−i

b (qS) ∈ F and
δn−i

b (qR) /∈ F, and hence qS 6= qR. Thus B must have at least as many forest
states as there are subsets of {1, . . . , n}, i.e.,Ω(2n). �

A.5 Proofs of Theorems 6.6 and 6.7

In order to prove Theorem 6.6, we have to show that (a) LA~G ⊆ LG and (b)
LG ⊆ LA~G . In order to show (a), we define invariantsAT andAF for structural
induction:

AT t ≡ If x ∈ δT (q, t) then t ∈ [[G]] x;
AF f ≡ If q ∩Yj ⊆ {y0, j}, y ∈ δF (q, f) and y ∈ Fj then f ∈ [[G]] r j.

According to Corollary 4.1, if we show (T) and (F), then AF holds especially
for j = 0. Thus, by definition of A~G , δF (q0, f) ∈ F iff f ∈ [[G]] r0 = LG.
Let us start with (T): Let t = a〈 f 〉 and p = δT (q, t). Then there are q1, q2
such that q1 = Downa q, q2 = δF (q1, f) and p = Upa q2. By definition of A~G ,
q1 ∩ Yj ⊆ {y0, j} and there is a y ∈ Fj ∩ q2 with x → a〈r j〉 for some j. Thus we

APPENDIX A. PROOFS 205

can applyAF f and get that f ∈ [[G]] r j. Moreover, t ∈ [[G]] x because x→ a〈r j〉,
and (T) holds.

In order to show (F), let f = t1. . . tn and suppose that q ∩ Yj ⊆ {y0, j},
q′ = δF (q, f), and y ∈ q′ for some y ∈ Fj. Let q1 = q and for i = 1, . . . , n,
pi = δT (qi , ti) and qi+1 = Side(qi , pi). Then qn+1 = q′. Using the definition of
Side, one can easily see that there must be x1, . . . , xn and y1, . . . , yn+1 such that
yn+1 = y and yi ∈ qi, xi ∈ pi and (yi , xi , yi+1) ∈ δ. Because all Yj are disjoint,
yn+1 ∈ Yj implies that yi ∈ Yj and (yi , xi , yi+1) ∈ δ j for all i. Because q1 ∩
Yj ⊆ {y0, j}, y1 = y0, j, and by Proposition 4.1, x1 . . . xn ∈ [[r j]]R . Furthermore,
ti ∈ [[G]] xi because AT ti holds for all i. Thus, by definition, f ∈ [[G]] r j, (F)
holds and LA~G ⊆ LG.

It remains to show (b): LG ⊆ LA~G . Again we define invariants AF and AT :

AT t ≡ If t ∈ [[G]] x, y ∈ q and (y, x, y1) ∈ δ for some y1,
then x ∈ δT (q, t);

AF f ≡ If f ∈ [[G]] r j and y0, j ∈ q, then δF (q, f) ∩ Fj 6= /O.

If we prove (T) and (F), then AF f holds for all f , particularly for j = 0. Thus,
if f ∈ [[G]] r0, then δF (q0, f) ∩ F0 6= /O and thus f ∈ LA~G . In order to prove
(T), suppose that t = a〈 f 〉 ∈ [[G]] x, y ∈ q and (y, x, y1) ∈ δ. By definition of
[[G]], there is a j such that x → a〈r j〉 and f ∈ [[G]] r j. Now let q1 = Downa q
and q2 = δF (q1, f). By construction, y0, j ∈ q1, we can apply AF f and obtain
that q2 ∩ F j 6= /O. Now, by definition of Up, x ∈ Upa q2 = δT (q, t), and thus (T)
holds.

It remains to show (F): Let f = t1. . . tn ∈ [[G]] r j and y0, j ∈ q. By definition of
[[G]], there is a word x1 . . . xn ∈ [[r j]]R and ti ∈ [[G]] xi for all i. Thus, by Proposi-
tion 4.1, there are y1, . . . , yn+1 with y1 = y0, j, yn+1 ∈ Fj and (yi , xi , yi+1) ∈ δ j for
all i. Let q1 = q and for i = 1, . . . , n, define pi = δT (qi , ti) and qi+1 = Side(qi , pi).
Now, for all i, given that yi ∈ qi, it follows by AT ti that xi ∈ pi, and by def-
inition of Side, yi+1 ∈ qi+1. With y1 ∈ q1, it follows by induction on i that
yn+1 ∈ qn+1 = δF (q, f). Thus (F) holds and LG ⊆ LA~G . �

The proof of Theorem 6.7 is completely analogous to that of Theorem 6.6. The
difference is that A�G proceeds from right to left; this is compensated by using
the reverse Berry-Sethi construction in its definition.

A.6 Proof of Theorem 7.1

The proof is divided into three parts: We start by showing that A~G marks at
least all matches of C as candidates; and that the left siblings of all candidates
identified by A~G are such that the left context is fulfilled (Lemma A.1). Then
we prove that B�G finds all matches of C (Lemma A.2). Finally we formulate as
Lemma A.3, that B�G only indicates correct matches.

First of all note that B�G assign the same tree states as A~G :

if ~λ(π) = (~q1, ~p, ~q) and �λ(π) = (q1, p, q), then ~p = p for all π ∈ Π(f0).

Let us now perform the first part of the proof by proving the following lemma:

206 A.6. Proof of Theorem 7.1

Lemma A.1: For a path π with last f0 (π) = n, let ~λ(π i) = (qi , pi , q′i) and f0[π i] =
ti for i = 1, . . . , n. Furthermore, if π 6= ε, let ~λ(π) = (q, p, q′) and f0[π] = t
with t = a〈t1. . . tn〉. Then the following hold:

(1) If x ∈ p then t ∈ [[G]] x.

(2) If yi+1 ∈ q′i ∩Yj then there are x1, . . . , xi and y1, . . . , yi with y1 = y0, j such
that tm ∈ [[G]] xm and (ym, xm, ym+1) ∈ δ j for 1 6 m 6 i.

(3) If f0 π x then y ∈ q and y′ ∈ q′ for some (y, x, y′) ∈ δ.

(4) If f0 π r j, x1 . . . xn ∈ [[r j]]R and there are y1, . . . , yn+1 such that y1 = y0, j,
and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ j and f0[π i] ∈ [[G]] xi, then xi ∈ pi,
yi ∈ qi and yi+1 ∈ q′i for all i.

(1) and (2) are immediate consequences ofAT andAF in the proof of Theorem
6.6 (a). The other two statements are proven by path induction with AT ≡ (3)
and AF ≡ (4): We have to show (s)–(t).

Let us start with (s): If f0 ε r j, then j = 0. Suppose that x1 . . . xn ∈ [[r0]]R ,
y1 = y0,0 and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ0 and f0[π i] ∈ [[G]] xi. Invariant
AT from the proof of Theorem 6.6 (b) holds for all ti. Thus, if yi in qi then
xi ∈ pi = δT (qi , ti) and also yi+1 ∈ q′i = qi+1. Because y0,0 ∈ q1 = q0, we can
easily show by induction on i that xi ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i, and
thus (s) holds.

Let us show (f): Suppose that AT π holds, x1 . . . xn ∈ [[r j]]R and there are
y1, . . . , yn+1 such that y1 = y0, j, and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ j and
ti ∈ [[G]] xi. If f0 π r j, then there is an x with x → a〈r j〉 and f0 π x. Because
of AT π , there is a y ∈ q with (y, x, y1) ∈ δ for some y1. By definition of Down,
y0, j ∈ q1. Similarly to (s) we can show by induction on i, using invariant AT
from the proof of Theorem 6.6 (b), that xi ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i;
hence (f) holds.

In order to show (t), suppose that f0 πm x with 1 6 m 6 n. Then there
must be a j such that f0 π r j and for some word x1 . . . xn ∈ [[r j]]R with xm = x,
ti ∈ [[G]] xi for i = 1, . . . , n. By Proposition 4.1, there are y1, . . . , yn+1 with
y1 = y0, j and (yi , xi , yi+1) ∈ δ j for all i. Applying AF π we obtain that xi ∈ pi,
yi ∈ qi and yi+1 ∈ q′i for all i, and particularly for i = m. Thus (t) holds. �

We can now prove the first part of Theorem 7.1:

Lemma A.2: For a path π with last f0 (π) = n, let f0[π i] = ti, ~λ(π i) = (~qi , pi , ~q′i)
and �λ(π i) = (�qi , pi , �q′i) for i = 1, . . . , n. Moreover, if π 6= ε, let ~λ(π) = (~q, p, ~q′),
�λ(π) = (�q, p, �q′) and f0[π] = t with t = a〈t1. . . tn〉. Then the following hold:

(5) If f0 π x then y′ ∈ ~q′ ∩ �q′ for some (y, x, y′) ∈ δ.

(6) If f0 π r j and n > 0 then Fj ⊆ �q′1.

We prove this lemma by path induction with using AT ≡ (5) and AF ≡ (6).
We start by showing (s): For π = ε, j must be 0. Now F0 ⊆ �q′n because �q′n is the
start-state �q0 = F0 of B�G .

For (f), suppose that AT π holds and f0 π r j. Then there is an x such that
x → a〈r j〉 and f0 π x. By AT π , there is a y′ ∈ ~q′ ∩ �q′ such that (y, x, y′) ∈ δ
for some y. Then by construction of B�G , Fj ⊆ �q′n = Down�(a,p,~q′) �q and (f) holds.

APPENDIX A. PROOFS 207

Finally, let us prove (t): suppose that AF π holds and f0 πm x. Then there
is a j such that f0 π r j, and for some word x1 . . . xn ∈ [[r j]]R with xm = x,
ti ∈ [[G]] xi for i = 1, . . . , n. By Proposition 4.1, there are y1, . . . , yn+1 such
that y1 = y0, j, yn+1 ∈ Fj and for all i, (yi , xi , yi+1) ∈ δ. Thus, by (4), xi ∈ pi
and yi+1 ∈ ~q′i for all i, and particularly ym+1 ∈ ~q′m. On the other hand, by
construction of B�G , if yi+1 ∈ �q′i, then yi ∈ �qi. By AF π , yn+1 ∈ �qn’, and we can
show by induction on i that yi+1 ∈ �q′i for i = 1, . . . , n, and especially for i = m,
ym+1 ∈ �q′m. Moreover, (yi , xm, yi+1) ∈ δ, and because x = xm, (t) holds, and we
are done with the proof of Lemma A.2. �

Let us now complete the proof of Theorem 7.1. It follows from (5) in the previ-
ous lemma and (7) in the following lemma:

Lemma A.3: For a path π with last f0 (π) = n, let f0[π i] = ti, ~λ(π i) = (~qi , pi , ~q′i)
and �λ(π i) = (�qi , pi , �q′i) for i = 1, . . . , n. Moreover, if π 6= ε, let ~λ(π) = (~q, p, ~q′),
�λ(π) = (�q, p, �q′) and f0[π] = t with t = a〈t1. . . tn〉. Then the following hold:

(7) If y′ ∈ ~q′ ∩ �q′ and (y, x, y′) ∈ δ for some y, then f0 π x.

(8) If n > 0 and �q′n ∩ ~q′n ∩ Fj 6= /O then f0 π r j.

We prove this lemma by path induction using AT ≡ (7) and AF ≡ (8). We
start with (s): For π = ε, �q′n = F0; thus j must be 0, and with f0 ∈ LG, f0 ε r0
by definition.

In order to show (f), suppose that yn+1 ∈ �q′n ∩ ~q′n ∩ Fj. Then, by definition
of Down�, there must be an x and a y′ ∈ �q′ ∩ ~q′ such that (y, x, y′) ∈ δ for
some y, and x → a〈r j〉. By AT π , f0 π x. Moreover, by (2) there are x1, . . . , xn
and y1, . . . , yn such that y1 = y0, j and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ j and
ti ∈ [[G]] xi. Hence x1 . . . xn ∈ [[r j]]R and t1. . . tn ∈ [[G]] r j. Thus f0 π r j.

It remains to show (t): Suppose that ym+1 ∈ ~q′m ∩ �q′m, and (y, x, y′) ∈ δ for
some y. By (2), there are x1, . . . , xm and y1, . . . , ym such that y1 = y0, j and for
i = 1, . . . , m, (yi , xi , yi+1) ∈ δ j and ti ∈ [[G]] xi. Moreover, for m < i 6 n,
if yi ∈ �qi, then by construction of B�G , there are yi+1 ∈ �q′i and xi ∈ pi with
(yi , xi , yi+1) ∈ δ j, and because ym+1 ∈ �q′m = �qm+1, we can show by induction
that there are such xi and yi+1 for all i = m + 1, . . . , n. Now this implies that
also yi+1 ∈ ~q′i by definition of A~G . Because �q′n ∩ Yj ⊆ Fj, yn+1 ∈ Fj. Thus
~q′n ∩ �q′n ∩ Fj 6= /O and by AF π , f0 π r j. Moreover, x1 . . . xn ∈ [[r j]]R , and by
definition f0 π xm. By Proposition 4.3, x = xm and thus f0 π x. �

This completes the proof of Theorem 7.1.

A.7 Proof of Theorem 7.2

For this proof, we first show by structural induction the following invariants:

AT t ≡ For y ∈ q and (y, x, y1) ∈ δ,
there is a k ∈ δT (q, t) with x = xk iff t ∈ [[G]] x;

AF f ≡ For q ∩Yj = {y0, j}, δF (q, f) ∩ Fj 6= /O iff f ∈ [[G]] r j,

By Corollary 4.1 it suffices to show (T) and (F); we start with (T): Suppose that
AF f holds, and let t = a〈 f 〉, y ∈ q, (y, x, y1) ∈ δ and p = δT (q, t). Then

208 A.8. Proof of Theorem 7.3

p = Upa q2, where q2 = δF (q1, f) and q1 = Downa q. Let us prove direction
“⇒” of AT t: Suppose that k ∈ p. By definition of Up, Rk = x → a〈ek〉 and
for all j with ek = . . . u σ jr j u . . ., q2 ∩ Fj 6= /O iff σ j = +. By definition of
Down, q1 ∩ Yj = {y0, j} for all these j. We can thus apply AF f and obtain that
f ∈ [[G]] r j iff q2 ∩ Fj 6= /O. Thus by definition t ∈ [[G]] x.

In order to show the other direction (“⇐”) of AT t, suppose that t ∈ [[G]] x.
Then there is a k with Rk = x → a〈ek〉, and for all j with ek = . . . uσ jr j u . . .,
f ∈ [[G]] r j iffσ j = +. By definition of Down, q1 ∩Yj = {y0, j} for all these j, and
AF f yields that q2 ∩ Fj 6= /O iff σ j = +. Hence k ∈ p by definition of Up, and
(T) holds.

It remains to show (F): Let f = t1. . . tn, assume that AT ti holds for
i = 1, . . . , n, and let q ∩ Yj = {y0, j}. With q1 = q, let pi = δT (qi , ti) and
qi+1 = Side(qi , pi) for i = 1, . . . , n. Then qn+1 = δF (q, f). Let us now show
direction “⇒” of AF f : Suppose that there is a yn+1 ∈ qn+1 ∩ Fj. By defini-
tion of Side, if yi+1 ∈ qi+1 ∩ Yj, then there must be ki ∈ pi and yi ∈ qi ∩ Yj

such that (yi , xki , yi+1) ∈ δ j. Thus, by induction on i, there must be such ki , yi
for all i = 1, . . . , n. Moreover, y1 = y0, j because q1 ∩ Yj = {y0, j}, and thus
xk1 . . . xkn ∈ [[r j]]R by Proposition 4.1. With AT ti we get that ti ∈ [[G]] xki for all i
and thus f ∈ [[G]] r j.

For the other direction (“⇐”), let f ∈ [[G]] r j. Then there is a word x1 . . . xn ∈
[[r j]]R such ti ∈ [[G]] xi for i = 1, . . . , n. By Proposition 4.1, there are y1, . . . , yn+1
such that y1 = y0, j, yn+1 ∈ Fj and (yi , xi , yi+1) ∈ δ j for all i. Now, if yi ∈ qi,
then by AT ti there is a ki with xi = xki and ki ∈ pi, and thus by definition of
Side, yi+1 ∈ qi+1. Since y1 ∈ q1, we get by induction on i that yn+1 ∈ qn+1 and
thus δF (q, f) ∩ Fj 6= /O.

Having shown that AF holds for all f , we can now prove Theorem 7.2. For
a forest f , let q1 = δF (q0, f) and e ∈ E0. By construction q0 ∩ Fj = {y0, j} for all
j with e = . . . uσ jr j u Similarly to (T), we can show with the help of AF f
that f ∈ [[G]] e iff q1 ∩ Fj 6= /O for σ j = + and q1 ∩ Fj = /O for σ j = ¬. Hence
q1 ∈ F iff f ∈ [[G]] e for some e ∈ E0. This completes the proof of Theorem 7.2.

�

A.8 Proof of Theorem 7.3

The structure of the proof is to that of the proof for Theorem 7.1: First we
show that A~G identifies all matches of C as candidates, and that it generates
enough information for B�G to select the correct matches (Lemma A.4). Then we
show with Lemma A.5 that B�G indeed finds all matches, and that all matches
identified by B�G are correct (Lemma A.6).

Lemma A.4: For a path π with last f0 (π) = n, let ~λ(π i) = (qi , pi , q′i) and f0[π i] =
ti for i = 1, . . . , n. Furthermore, if π 6= ε, let ~λ(π) = (q, p, q′) and f0[π] = t
with t = a〈t1. . . tn〉. Then the following hold:

(1) If k ∈ p then t ∈ [[G]] xk, and t1. . . tn ∈ [[G]] ek.

(2) If ym+1 ∈ q′m ∩ Yj then there are k1, . . . , km and y1, . . . , ym with y1 = y0, j

such that ti ∈ [[G]] xki and (yi , xki , yi+1) ∈ δ j for 1 6 i 6 m.

APPENDIX A. PROOFS 209

(3) If f0 π x then k ∈ p, y ∈ q and y′ ∈ q′ for some (y, x, y′) ∈ δ and some k
with xk = x.

(4) If f0 π r j, x1 . . . xn ∈ [[r j]]R and there are y1, . . . , yn+1 such that y1 = y0, j,
and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ j and f0[π i] ∈ [[G]] xi, then there are
k1, . . . , kn with xi = xki and ki ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i.

(1) follows immediately from AT and AF in the proof of Theorem 7.2: If k ∈ p
then, by definition of Up, for all j with ek = . . .uσr j u . . ., q′n ∩ Fj 6= /O iffσ = +.
With AF f we get that f ∈ [[G]] r j iff σ = +, and thus f ∈ [[G]] ek.

For (2), suppose that ym+1 ∈ q′m ∩ Yj. By definition of Side, if yi+1 ∈ q′i ∩ Yj,
then there must be k ∈ pi, yi ∈ qi ∩ Fj such that (yi , xk, yi+1) ∈ δ j. Starting with
ym+1 ∈ q′m, we can show by induction on i that there must such ki , yi for all
i = 1, . . . , m. Moreover, by definition of Down y1 = y0, j and AT t yields that
ti ∈ [[G]] xki for all i. Thus (2) holds.

The other two statements are proven by path induction with AT ≡ (3) and
AF ≡ (4): We have to show (s)–(t).

Let us start with (s): Suppose that x1 . . . xn ∈ [[r j]]R , y1 = y0, j, and for i =
1, . . . , n, (yi , xi , yi+1) ∈ δ j and f0[π i] ∈ [[G]] xi. If f0 ε r j, then there is an e ∈ E0
with e = . . . u+r j u Because AT ti from the proof of Theorem 7.2 holds for
all i, if yi in qi then there is a ki with xi = xki and ki ∈ pi = δT (qi , ti); hence
yi+1 ∈ q′i = qi+1 by definition of Side. Because y0,0 ∈ q1 = q0, we can easily
show by induction on i that ki ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i, and thus (s)
holds.

Let us show (f): Suppose that AT π holds, x1 . . . xn ∈ [[r j]]R and there are
y1, . . . , yn+1 such that y1 = y0, j, and for i = 1, . . . , n, (yi , xi , yi+1) ∈ δ j and
ti ∈ [[G]] xi. If f0 π r j, then there is an x with x → a〈 . . . u +r j u . . . 〉 and
f0 π x. Because of AT π , there is a y ∈ q with (y, x, y′) ∈ δ for some y′, and
y0, j ∈ q1. By invariantAT ti from the proof of Theorem 7.2, if yi ∈ qi then there
is a ki ∈ pi with xi = xki , and yi+1 ∈ q′i = qi+1 by definition of Side. Induction
on i shows that ki ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i = 1, . . . , n, and (f) holds.

In order to show (t), suppose that n = last f0 (π) and f0 πm x with 1 6 m 6
n. Then f0 π r j for some j, and there is a word x1 . . . xn ∈ [[r j]]R such that xm =
x and ti ∈ [[G]] xi for 1 = 1, . . . , n. By Proposition 4.1, there are y1, . . . , yn+1
with y1 = y0, j and (yi , xi , yi+1) ∈ δ j for all i. Thus, by AF π , there are k1, . . . , kn

such that xi = xki , ki ∈ pi, yi ∈ qi and yi+1 ∈ q′i for all i. Particularly for i = m,
ym ∈ qm, ym+1 ∈ q′m, km ∈ p, xkm = x and (ym, xi , ym+1) ∈ δ j; thus (t) holds. �

We can now prove the first part of Theorem 7.3:

Lemma A.5: For a path π with last f0 (π) = n, let f0[π i] = ti, ~λ(π i) = (~qi , pi , ~q′i)
and �λ(π i) = (�qi , pi , �q′i) for i = 1, . . . , n. Moreover, if π 6= ε, let ~λ(π) = (~q, p, ~q′),
�λ(π) = (�q, p, �q′) and f0[π] = t with t = a〈t1. . . tn〉. Then the following hold:

(5) If f0 π x then y ∈ ~q ∩ �q and y′ ∈ ~q′ ∩ �q′ for some (y, x, y′) ∈ δ.

(6) If f0 π r j and n > 0 then Fj ⊆ �q′n.

We prove this lemma by path induction with AT ≡ (5) and AF ≡ (6). We
start by showing (s): If f0 ε r j then there is an e ∈ E0 with e = . . . u+r j u . . .,
and f0 ∈ [[G]] e. Thus for all i with e = . . . uσri u . . ., f0 ∈ [[G]] ri iff σ = +. By

210 A.8. Proof of Theorem 7.3

invariant AF from the proof of Theorem 7.2, qF ∩ Fi 6= /O iff σ = +. Hence, by
construction of B�G , Fj ⊆ �q0 = �q′n.

For (f), suppose that AT π holds and f0 π r j. Then there is a k such that
Rk = xk → a〈ek〉 with ek = . . . u+r j u . . ., t1. . . tn ∈ [[G]] ek, and f0 π xk. Thus
for all i with ek = . . . uσri u . . ., t1. . . tn ∈ [[G]] ri iff σ = +. By AT π , there
are y ∈ ~q ∩ �q and y′ ∈ ~q′ ∩ �q′ such that (y, xk, y′) ∈ δ. Hence ~q1 ∩ Fi = {y0,i}
by definition of Down, and with invariant AF from the proof of Theorem 7.2,
~q′n ∩ Fi 6= /O iff σ = +, and by definition of Up, k ∈ p. Thus, by definition of
Down�, Fj ⊆ �q′n = Down�(a,p,~q′) �q, and (f) holds.

Finally, let us prove (t): suppose that AF π holds and f0 πm x. Then there
is a j such that f0 π r j, and for some word x1 . . . xn ∈ [[r j]]R with xm = x,
ti ∈ [[G]] xi for 1 = 1, . . . , n. By Proposition 4.1, there are y1, . . . , yn+1 such that
y1 = y0, j, yn+1 ∈ Fj and for all i, (yi , xi , yi+1) ∈ δ. Thus, by (4), there is a ki ∈ pi

with xki = xi, yi ∈ ~qi and yi+1 ∈ ~q′i for all i, and particularly ym ∈ ~qm and
ym+1 ∈ ~q′m. We also have to show that ym ∈ �qm and ym+1 ∈ �q′m: By definition
of Side�, if yi+1 ∈ �q′i and ki ∈ pi, then yi ∈ �qi = �q′i−1. By AF π , yn+1 ∈ �qn’, and
we can show by induction on i that yi ∈ �qi and yi+1 ∈ �q′i for i = 1, . . . , n, and
especially for i = m, ym ∈ �qm and ym+1 ∈ �q′m. Moreover, (ym, xm, ym+1) ∈ δ,
and because x = xm, (t) holds, and we are done with the proof of Lemma A.5.

�

Let us now complete the proof of Theorem 7.3. It follows from (5) in the previ-
ous lemma and (7) in the following lemma:

Lemma A.6: For a path π with last f0 (π) = n, let f0[π i] = ti, ~λ(π i) = (~qi , pi , ~q′i)
and �λ(π i) = (�qi , pi , �q′i) for i = 1, . . . , n. Moreover, if π 6= ε, let ~λ(π) = (~q, p, ~q′),
�λ(π) = (�q, p, �q′) and f0[π] = t with t = a〈t1. . . tn〉. Then the following hold:

(7) If y′ ∈ ~q′ ∩ �q′ and (y, x, y′) ∈ δ for some y, then f0 π x.

(8) If n > 0 and �q′n ∩ ~q′n ∩ Fj 6= /O then f0 π r j.

We prove this lemma by path induction using AT ≡ (7) and AF ≡ (8). We
start with (s): For π = ε, λ(πn) = λ(n) = �q0. By construction there must be an
e ∈ E0 with e = . . . u+r j u . . ., and for all i with e = . . . u+ri u . . ., Fi ∩ qF 6= /O
iff σ = +. With invariant AF from the proof of Theorem 7.2, this implies that
f0 ∈ [[G]] ri iff σ = +. Thus f0 ∈ [[G]] e, f0 ε e and also f0 ε r j.

In order to show (f), suppose that yn+1 ∈ �q′n ∩ ~q′n ∩ Fj. Then, by definition
of Down�, there must be a k ∈ p and a y′ ∈ �q′ ∩ ~q′ such that (y, xk, y′) ∈ δ for
some y, and Rk = x → a〈ek〉 with ek = . . . u+r j u By AT π , f0 π x, and
with (1) we obtain that t1. . . tn ∈ [[G]] ek. Thus f0 π ek, and because r j occurs
positively in ek, also f0 π r j.

It remains to show (t): Suppose that ym+1 ∈ ~q′m ∩ �q′m, and (y, x, ym+1) ∈ δ
for some y. By (2), there are x1, . . . , xm and y1, . . . , ym such that y1 = y0, j and
for i = 1, . . . , m, (yi , xi , yi+1) ∈ δ j and ti ∈ [[G]] xi. Moreover, for m < i 6 n,
if yi ∈ �qi, then by definition of Side�, there are yi+1 ∈ �q′i and ki ∈ pi with
(yi , xi , yi+1) ∈ δ j and xi = xki . Starting with ym+1 ∈ �q′m = �qm+1, we can show
by induction that there are such ki, xi and yi+1 for all i = m + 1, . . . , n. Now
this implies that also yi+1 ∈ ~q′i by definition of A~G ’s side-relation. Because
�q′n ∩Yj ⊆ Fj, yn+1 ∈ Fj. Thus ~q′n ∩ �q′n ∩ Fj 6= /O and byAF π , f0 π r j. Moreover,

APPENDIX A. PROOFS 211

x1 . . . xn ∈ [[r j]]R , and by definition f0 π xm. By Proposition 4.3, x = xm and
thus f0 π x.

This completes the proof of Theorem 7.3. �

A.9 Proof of Theorem 7.4

Before we prove the theorem, we show the following lemma, which states that
for a right-ignoring regular expression r, the right siblings of a node matching
x need not be inspected:

Lemma A.7: Let G be a forest grammar, A~G be defined as above, and r j be
right-ignoring w.r.t. x. Moreover, for some f = t1. . . tn and 1 6 m 6 n, suppose
that there are x1, . . . , xm and y1, . . . , ym+1 such that x = xm, y1 = y0, j, and for
1 6 i 6 m, ti ∈ [[G]] xi and (yi , xi , yi+1) ∈ δ. Then there are ym+2, . . . , yn+1 such
that (yi , x>, yi+1) ∈ δ for m < i 6 n, yn+1 ∈ Fj, and f ∈ [[G]] re j.

Proof: Because r j is right-ignoring w.r.t. x, there is a Y> ⊆ Fj such that ym+1 ∈
Y>, and for each y ∈ Y> there is a y′ such that (y, x>, y′) ∈ δ j. Thus there must
be (ym+2, . . . , yn+1) with (yi , x>, yi+1) ∈ δ. For i = m + 1, . . . , n define xi = x>.
Because [[G]] x> = TΣ, ti ∈ [[G]] xi for i = m + 1, . . . , n, and by Proposition 4.1,
x1 . . . xn ∈ [[r j]]R . Thus f ∈ [[G]] r j. �

Theorem 7.4 is now proven by path induction with the following invariantAT .
Let λ be the A~G -labeling of f0, π ∈ Π(f0) and λ(π) = (q, p, q′). Then:

AT π ≡ If y′ ∈ q′, (y, x, y′) ∈ δ for some y and x is match-relevant,
then f0 π x.

Because all x◦ ∈ X◦ are match-relevant, the theorem follows immediately once
AT is proven to hold for all paths. By Corollary 4.2, it suffices to show (o)
AT m holds for 1 6 m 6 last f0 (ε), and (d) if AT π holds, then so does AT πm
for 1 6 m 6 last f0 (π).

Let us start with (o): Let f0 = t1. . . tn, π = m with 1 6 m 6 n, and for
i = 1, . . . , n, λ(i) = (qi , pi , q′i). Now suppose that ym+1 ∈ q′m and (y, x, ym+1) ∈
δ j. By Lemma A.4 (2), there are k1, . . . , km and y1 ∈ q1, . . . , ym ∈ qm such that
(yi , xki , yi+1) ∈ δ j and ti ∈ [[G]] xki for all i, and y1 = y0, j. Because q1 = q0,
there is an e ∈ E0 with e = . . .uσr j u . . . by construction of A~G . By Proposition
4.3, xkm = x and because x is match-relevant, so is e0. Thus, because C is right-
ignoring, e0 = r j and r j is right-ignoring w.r.t. x. By Lemma A.7, there are
ym+2, . . . , yn+1 such that (yi , x>, yi+1) ∈ δ for m < i 6 n, yn+1 ∈ Fj, and f ∈
[[G]] r j. Thus f0 ε e0 and also f0 m x, and we are done with (o).

It remains to show (d): Suppose that AT holds for π . Let n = last f0 (π)
and for i = 1, . . . , n let ti = f0[π i] and (qi , pi , q′i) = λ(π i). Moreover,
let t = a〈 f 〉 with f = t1. . . tn and (q, p, q′) = λ(π). Now suppose that
ym+1 ∈ q′m and (y, x, ym+1) ∈ δ j. By Lemma A.4 (2), there are k1, . . . , km and
y1 ∈ q1, . . . , ym ∈ qm such that (yi , xki , yi+1) ∈ δ j and ti ∈ [[G]] xki for all i, and
y1 = y0, j. By definition of Down, t here must be a y ∈ q such that (y, x′, y′) ∈ δ,
x′ → a〈e〉 and e = . . . uσr j u Because x is match-relevant, so are e and x′,
and because C is right-ignoring, e = r j and r j is right-ignoring. By AT π we
have that f0 π x′.Moreover, by Lemma A.7, there are ym+2, . . . , yn+1 such that

212 A.9. Proof of Theorem 7.4

(yi , x>, yi+1) ∈ δ for m < i 6 n, yn+1 ∈ Fj, and f ∈ [[G]] r j. Thus also f0 πm xkm ,
and by Proposition 4.3 xkm = x, and the proof of Theorem 7.4 is complete. �

Index

A
A~G 126, 130, 144, 146, 153,

178–181
· annotation 138, 144, 145
· for context grammar 136
· for EFGs 141
· example 142

· labeling 149
· size 127
· size of states 129

A�G 146, 178, 179, 188
abbreviated syntax 155
accumulating
· function 33, 59, 60, 62, 66, 85,

174
· parameter 59, 65, 68

algebra 171
algebraic characterization 107
alphabet 94, 97, 120, 133, 152, 155
· size 157

alternative 140, 156, 167, 168, 171
· of path/tree patterns 160

ancestor 98, 126, 133, 158, 165,
171, 173, 180, 187

annotate 131, 150, 190
annotated forest 139
application 157
· data 66, 69, 187
· interface see programming

interface
· state 66

arborescence 106
arithmetic expression 172
array 22, 26, 29, 35, 42, 46, 62, 80,

183, 184
ASCII 12, 30, 32, 34, 36, 80, 181,

182, 184
· non-ASCII characters 30

!ATTLIST 8
attribute 6, 7, 159, 170, 189
· assignment 6, 155

· order 155
· data type 47–49
· declaration 8
· default value 8, 47, 48, 52
· definition 48, 51
· fixed default value 8, 53
· implied attribute 48, 54
· in document tree 155
· name 156, 159, 180
· omission 8, 48, 53
· pattern 156, 159, 186
· qualifier 159, 160, 169
· required 8
· required attribute 48, 54
· type 8, 47, 53
· undeclared attribute 53
· value 8, 18, 80
· normalization 48, 52, 60
· parsing function 60–62

#atts 155, 170, 186
auto-detection of encoding see

encoding detection
auxiliary
· attribute 157
· element type 157
· node 189
· variable 158, 168, 170, 186

B
BG 123, 127
· size 124

B~G 146, 179, 188
B�G 138, 144, 146, 150, 153
· example 138
· for ECG
· example 145

· for ECGs 144
baseball 80
behavior
· of LFA 108

Berry(r) 95, 104, 109, 123, 141

213

214 INDEX

Berry�(r) 96, 130
Berry-Sethi construction 64,

95–97, 104, 110, 136, 142,
147, 177, 185

· example 96
· reverse 96, 130, 146

bilangage 106
binary
· search 183
· trees 150

bottom-up 102, 108, 109, 112, 131,
189, 190

· automaton 99
· forest automaton see forest

automaton
· traversal 99
· tree automaton 150

buffer 35, 40, 42, 63
byte-order mark see UTF-16
byte-stream see UNICODE

frontend

C
C 19, 23, 82, 83
C++ 16, 19, 82, 83
cache behavior 82
candidate 136, 139, 143, 145, 146,

149, 190
carriage return 40
catalog 11, 19, 68, 175
· DTD 77
· parsing 77
· SOCAT syntax 11, 19
· support 19, 20

caterpillar 151
· language 151

![CDATA[11
CDATA 8, 48, 52
CDATA section 11, 56, 176
character
· alphanumeric character 154
· class 28
· data 7, 79, 80, 152, 157
· in content 62–63
· parsing 80, 81
· parsing function 62–63
· reporting 62

· encoding see encoding
· in SML 24

· interval 154
· multi-byte character 24
· range 154, 182
· reference 11, 18, 60

child 105
· relation 115, 160
· right-most 100

children 98, 112, 115, 131, 158,
160, 180, 189, 190

Chinese 182
CJK 28, 79, 83, 182, 183
closure 106
code generation 89, 131
collector 174, 179
· signature 179

combinator-style parsing 20
combining character 181
command line 158, 174
· argument 177
· option 181

comment 11, 54, 58, 157
· parsing function 58, 70

commercial software 16
compatibility with SGML 12, 19,

38
complement 104, 106, 139, 140,

190
· automaton 150
· of DLFA 121
· of DLPA 122

computer graphics 16
concatenation 96, 158, 161, 163
concrete syntax 55
concurrency 86
conformance with XML see XML

parser
conjunction 90, 140, 141, 148, 161,

171, 188, 189
constraint system 107, 151
content 6, 7, 155, 160, 170, 175, 189
· invalid content 64
· model 7, 9, 12
· concatenation 7
· data type 46
· unambiguous content

model 13, 64
· validation 63–65

· specification 47
#content 155, 170, 186
context 89, 133

INDEX 215

· grammar 134
· examples 134–135
· extended context grammar

see ECG
· implementation with

DLPA 136–139
· meaning 134

· left upper context see left
upper context

· pattern 162, 166
· qualifier 150, 162, 166–169,

173, 188, 189
· in tree pattern 162
· top-level 162

· upper context 133
context-free
· grammar 106, 131
· language 106
· tree language 131

contextual
· condition 89, 90, 119, 189
· constraint 162

continuation 168, 169
CORBA 16
counting matches 165, 179

D
δF 114
· for DLFA 111
· for DLPA 116
· for LFA 108
· for LPA 114
· for RFA 112
· for RPA 119
· implementation 113

δT 138
· for DLFA 111
· for DLPA 116
· for LFA 108, 114
· for text node 153

database 171
· query language 172

decision tree 130
decoding error see error
default
· transition 182, 184
· value see attribute

default transition 183
depth 115, 118, 126, 150, 158

· non-constant 171
· of ranked-tree representation

115
depth-first 90, 151
derivation tree 106, 131
descendant 98
· relation 160

destructive update 22, 29, 46, 65
deterministic 90, 111, 112, 114,

116, 121, 123, 138, 190
DEXPTIME 121, 123
· complete 121, 123

DFA 13, 47, 64, 181, 182
dictionary 45–46, 180
difference 171
· lists 86

differential local solver 129
digit 28
· hexadecimal 28

disjunction 162, 168
DLFA 111, 114, 117, 123, 126, 170
· reachable states 124–126

DLPA 116, 126, 137, 153
· reachable states 127–130
· succinctness 117–119

!DOCTYPE 8
document
· database 15
· element 8, 162
· entity see entity, 68
· instance 8, 11, 24, 67, 74
· order 146, 149, 165, 179, 180,

190
· processing 6, 85, 119, 154
· structure 13
· tree 16, 75, 89, 113, 155, 162,

173, 187
· demand-driven

construction 181, 190
· size 185

· type declaration see DTD
· valid document see validity
· well-formed document see

well-formedness
Document Object Model see DOM
DOM 17, 19, 20
Down 114, 116
Down� 138, 144, 145
Downtxt 153
down-relation 114, 126, 153

216 INDEX

down-transition 116, 121, 126,
178, 180, 190

DRFA 112
DRPA 119, 130, 137, 138
DSSSL 155
DTD 7–10, 45, 65, 123, 157,

177–179, 186
· data types 46–50, 82
· external subset 9, 41
· for query grammars see

query grammar
· internal subset 9, 56
· manager 23, 70, 72
· parser 24
· tables 23, 39, 44–50, 68, 70

dynamic dictionary 45

E
η1 98, 104
· normal form 104, 107

η2 99, 109, 150
η3 99
EBCDIC 33
ECG 143, 156, 170, 174, 177
· example 143

eCommerce 3, 15
EFG 140–141
· examples 140–141
· language 140
· is regular 142

· meaning 140
Electronic Banking 3, 15
!ELEMENT 8
element 6, 169, 189
· content 47
· empty element 7
· in document tree 155–156
· type 7, 45, 46, 152, 156, 158,

159, 178, 180
· declaration 7, 51, 123
· pattern 156–157, 159, 177,

178
emptiness 120
· of LFA 120
· of LPA 122

Empty 95
empty content 47
empty-element tag 7
encoding 12, 15, 18, 25, 32, 36

· declaration 12, 26, 36, 44, 176
· detection 25, 26, 32, 36–37, 40,

44, 176
· multi-byte encoding 33

end of file 25, 35, 36, 42
end-tag 6, 7
· ill-formed 64
· invalid 64

ENTITIES 10, 47, 48, 53
!ENTITY 9
ENTITY 10, 48, 53
entity 9, 36
· closed entity 40, 42
· declaration 51
· document entity 10, 18, 41, 44
· end 40, 42, 57
· in attribute value 60
· in comment 58

· external entity 9, 18, 23, 40–42
· general entity 9, 39, 49
· identifier 39, 41, 44
· internal entity 9, 39
· manager 23, 25, 70, 72, 80
· name 59
· non-XML entity 10
· parameter entity 9, 39, 49
· physical location 11
· reference 9, 18, 39, 41
· in attribute value 60
· in declaration 67
· parsing function 59
· to open 59

· replacement text 9, 18, 39, 40,
59, 60, 68

· special entity 41, 43, 44
· stack 39–44, 61
· unparsed entity 10, 49, 54, 59

enumeration type 8, 13, 48, 51
equality constraint 71
equivalence 120
· of DLFAs 121
· of DLPAs 123
· of LFAs 121
· of LPAs 123
· of ranked-tree automata 121

error
· data type 37
· decode 25, 32, 36, 41, 42
· fatal error 18, 64
· handling 24

INDEX 217

· internal error 42
· message 38, 40
· mode 56
· position 18, 38, 50
· recovery 55–57, 64
· reporting 18, 19, 30, 37, 39–41,

50, 54, 55, 64, 70, 174
· state 64
· validity error 18
· well-formedness error 18

escape 154
event 17
· handler 17, 65

exception 25, 32, 35, 53, 55, 59, 61,
70, 77

· handling 35, 36, 41, 52, 55, 70,
86

execution time 79, 82, 186
expansion 131
expansive systems 106
expat 20
expression
· language 158

expressiveness 89, 115, 189
· of LPA 117, 190
· of patterns 189
· of query grammars 189

extended
· context grammar see ECG
· context-free grammar 106
· forest grammar see EFG

Extensible Markup Language see
XML

Extensible Stylesheet Language
see XSL

external
· entity see entity
· identifier 49
· resolving 68, 77

· predicate 153, 155, 172, 189,
190

· subset see DTD

F
FΣ 97
filtering 171, 172
final
· state see state

finalize 68

finite
· algebra 130
· automaton 95, 108, 153
· deterministic see DFA
· non-deterministic see

NFA
· subset construction 13

· congruence 106
· representation of transition

tables 108
First 95
first child 162
fix-point 103
Follow 96
follow-character 56
forest 89, 97–101
· automaton 90, 108, 153, 190
· bottom-up 108–112
· decision problems

120–121
· deterministic see DLFA
· equivalent grammar 111
· example 110
· language 109
· left-to-right see LFA
· right-to-left 112
· top-down 138

· empty 98
· expression 140, 143, 149, 156,

167, 169
· grammar 90, 102, 104, 106,

134, 139, 189
· examples 102–103
· extended forest grammar

see EFG
· language 102
· LFA construction 109
· meaning 102

· pattern 161, 163, 167
· in context qualifier 162

· ranked representation see
ranked tree

· state 108, 178–180
· number of 188

· variable 107
formatter 74
free first-order variable 150
frontend 174, 191
functional programming 3, 20, 21,

82

218 INDEX

· imperative I/O 22, 32
· mutable types see mutable

types
· non-deterministic 170
· non-pure 22, 29, 36, 46, 63
· non-strict evaluation 22
· pure 22, 31, 82
· pure I/O 22
· strict evaluation 22

functor 23, 46, 68, 70, 84, 85, 191
· instance 23
· run-time overhead 74

fxgrep 174–188
· execution time 186
· frontend 174–178
· inline matcher 181
· matcher 179
· preprocessor 177–179, 181,

184
· size of generated ECG 185
· size of source code 174
· statistics 184–188
· system architecture 174
· tree builder 179

fxp 3, 20–78, 90, 174, 186, 191
· catalog support 77–78
· comparison with other parsers

82–85
· components 23
· DTD Manager 44–54
· entity manager 39–44
· error reporting 37, 38
· frontend 23
· functor dependencies 70–74
· parser modules 24, 54–65
· programming interface 65–77
· system architecture 23
· UNICODE support see

UNICODE frontend

G
γap 156
γcp 166
γcq 167
γnp 168–169
γnt 169
γp 166, 177
γpp 168
γrhs 156–158

γsqs 167
γtp 167, 168
garbage collection 80
Glushkov construction 64
grammar
· flow analysis 120
· parser 174, 175
· translator 174, 177

grep 154, 174, 181
guess 116
guide 131

H
Hamlet 82
Hangul syllables 28
hard-code 69, 75
hash function 46
hash table 22, 45, 46
HASKELL 3, 20, 21, 82
HaXml 20, 82
hierarchical structure 6, 89
higher-order function 191
hole 133, 150
· in TRAFOLA 170

homomorphic image 106
hooks 65–78, 176, 179, 181
· data types 67
· signature 67

horizontal automaton 130
HTML 3, 6, 156, 172

I
ID 8, 48, 49, 51, 53, 164
IDREF 48, 51, 53, 164
IDREFS 48, 51
implementation 191
IMPLIED 8
inclusion 120, 121
· of DLFAs 121
· of DLPAs 123
· of LFAs 121
· of LPAs 122

incremental 147
indent 157
index 45, 69
induction 109
· invariant 100

information

INDEX 219

· item 67
· set 17–18, 67, 74, 75
· standard 18

initial
· state see state

injective 99
inline matcher 179, 187
instance parser 24
interesting initial states 126
internal
· entity see internal
· subset see DTD

internationalization 85
Internet 3, 10, 19, 20, 30, 32
interoperability with SGML 13,

19, 38
intersection 104, 106, 139, 171,

178, 180, 181, 190
interval 183
invariant 100, 116
ISO-8859-1 see LATIN1
IsRiRegExp algorithm 147
iteration 160, 173

J
JAVA 3, 16, 19, 82, 83, 85
· Virtual Machine see JVM

JIT 84
just-in-time compiler see JIT
JVM 19, 83, 84

K
key 45

L
label 98
labeling 137, 144, 145, 179
LALR-1 177
Last 96
last f (π) 100
last-character 56
LATEX 140
LATIN1 12, 32, 79, 81, 181, 184
leading characters 154
leaf 98, 100, 102, 134, 151, 152
least solution 120, 122, 128, 149
· partial 129

left upper context 133, 136, 180,
187

left-to-right 90, 96, 99, 146, 151,
189, 190

· forest automaton see LFA
· pushdown forest automaton

see LPA
letter 28
lexer 176
lexical
· analysis 54
· token 54

LFA 108, 109, 112, 114, 123, 150
· size 108

line
· break 154
· normalization 39–41

· feed 40
LINUX 83
local
· forest language 106, 123
· solver 129
· tree language 151

locate 133, 134, 146, 150, 160–162,
174, 179, 189, 190

location 172
· of subtrees 89
· path 158

logic programming 86
logical structure 6, 179, 180
look-ahead 42
Lorel 172
LPA 114, 131, 151
· equivalence to LFA 115
· language 115
· simulation by LFA 116
· size 114, 115

LR-parsing 131

M
µ-formula 106, 151
Macbeth 165, 184
macro 171
markup 6
· abbreviation 13
· language 3, 6, 89
· omission 13
· quota 79, 81–83
· vocabulary 6

220 INDEX

match 134, 138, 143, 145, 149, 166,
167, 189, 190

· of a path/tree pattern 160
· of context grammar 134
· reporting 146, 179, 180, 190
· delayed 180, 181

· structurally 161, 162
match-relevant 148–149
matcher 174, 177
Microsoft Windows 16
mixed content 47, 62, 157
ML-LEX 55, 176
ML-YACC 176
MLj 23, 84
MLTON 23, 84
MLWorksTM 23, 84
ML-YACC 177, 191
monadic second order logic see

MSO
Moscow ML 23, 84
movement 151
MSO 106, 130, 131
· for context 150

MULTILISP 86
mutable
· data structure 29, 63
· type 22, 38, 66

N
name 8, 45
· parsing function 57
· space 49
· start character 28, 58
· token 8, 47, 49

navigate 158, 173
NDATA 10
negated 140, 143, 145, 149
· attribute pattern 156
· attribute qualifier 159
· character range 154
· element-type pattern 157, 178
· structure qualifier 161

negation 90, 140, 148, 156, 171,
189

nest language 106
nesting 158
network
· communication 31
· file access 25

· information transport 14
NFA 64, 95, 96, 104, 105, 111, 136
· final states 138
· language 95
· state 124, 143, 177, 179, 185,

188
· transitions 138

NMTOKEN 8, 48
NMTOKENS 48
node 98
· pattern 159, 160, 168
· root 98
· test 151, 159, 169

non-deterministic 123, 130
non-linear pattern 171
non-productive 105
non-ranked
· forest 104, 106
· tree 104, 106, 108, 171, 189

non-ranked tree 89
non-validating mode 53, 65, 68,

82, 175, 177, 186
!NOTATION 10
NOTATION 48
notation 10, 49
· declaration 10, 51
· name 49

O
object-oriented programming 17,

82
OCAML 20, 82, 84
offset 182
omission of leading / 160, 163
on-the-fly 17, 89
one-level reachability 122, 127
one-pass
· matcher 179, 180, 187
· matching 146–149, 181, 188

open-source software 16
optimization 79
· imperative 80

other y0s 178
output state see state
OZ 86

P
Π(f) 100, 138

INDEX 221

P-tracers 130
panic mode 56
paragraph 152
parametric module see functor
parent 98, 151
parser 3, 13, 16–20, 113, 157,

174–176, 181, 190
· conforming 18
· functor 68–69, 77
· instance 19, 68
· mode 56
· module hierarchy 72
· non-validating 19, 20, 49, 82
· options 19, 68
· reentrant 19, 38, 68
· validating 18–20, 49, 83

parsing functions 57–63
· hook support 70
· return value 58

partial document tree 187
path 100, 103, 133, 143
· induction 100
· of unbounded length 160
· pattern 159, 161, 167, 168
· enclosing 167, 168

pattern 90, 150, 162, 174, 176, 177,
189

· language 158–173
· description 159–163
· examples 164–166
· expressiveness 160

· matching
· in TRAFOLA 170
· text-based 171

· parser 174, 176
· recognition 89
· syntax summary 163
· translation to query grammar

166–170, 173
· translator 174, 177

#PCDATA 7
pebble automata 131, 151
PERL 20
#pi 157
pointed
· base tree representation 150
· tree 150, 151
· concatenation 150

polymorphic
· function 22, 74

· type 22, 45, 85
pop 115
position 67
· in Berry-Sethi construction 95

positive 140, 144, 149
precedence 94
predicate
· in XPATH 189

predicate in XPATH 172
prefix 147
preprocessing 144, 174
pretty-printer 82
processing
· instruction 11, 12, 58,

157–159, 161, 162, 169
· in document tree 157
· target 11, 157

· order
· of XML parser 112

product automaton
· of LFAs 121
· of LPAs 122

production 102
productivity 120
profile 79
program
· modularization 74
· optimization 170

programming interface 13, 16–18
· demand-driven 17
· event-based 16, 65
· standard 17
· tree-based 16, 75, 82

PROLOG 86
pseudo-automata 130
public identifier 11, 49, 68
· resolving 11, 19

push 115
pushdown 90, 112, 136, 190
· automaton on words 122, 130
· forest automaton 90, 112–120,

153, 189, 190
· decision problems

121–123
· deterministic see DLPA
· left-to-right see LPA
· right-to-left see RPA

· tree automaton 130, 131
PYTHON 20, 83

222 INDEX

Q
qualifier in XPATH 172, 173, 189
quantor 150
query 150, 178, 189, 190
· automaton 150
· grammar 155–160, 166, 170,

173–175, 177, 189
· DTD 175
· translation to ECG 156,

170
· language 170
· database see database

· specification 174, 189
querying 74, 89, 152, 158
· algorithm 90, 190

quote character 56, 57, 60
· in included entity 61

R
ramification 106
range see character range
rank 98, 171
ranked tree 89, 97, 98, 102, 104,

106, 150
· automaton 108, 109, 111, 121,

130
· grammar 104, 106, 107
· example 105
· reduced 105

· language 104
· representation of trees and

forests 98, 150, 189
reachable
· states 114, 124, 126, 127, 130,

144, 153, 178, 188
· transitions 127

ReachDlfa algorithm 125
ReachDlpa algorithm 128
recognition mode 54
recursion 21, 58, 61
· depth 58

recursive function 113, 187, 191
recursive-descent parsing 54, 55,

131
reduction 131
reentrant parser see parser
region set 171
regular 108

· expression 7, 63, 90, 94, 105,
107, 109, 111, 123, 134,
140, 141, 143, 148,
152–154, 156, 158, 161,
166, 167, 169, 177, 181, 189

· language 94
· multiply occurring 177
· size 94
· without /O, ε 94

· forest language 90, 102, 108,
109, 115, 123, 139, 150,
189, 190

· closure 104–106
· language 151
· of words 94

· ranked-tree language 104,
109, 190

· set of contexts 133
· tree expression 107
· tree grammar 104
· tree language 89, 106, 130,

131, 150
repetition 158, 161, 163
replacement text see entity
REQUIRED 8
reusable 191
RFA 112
right
· context 133, 136
· sibling 156

right-hand side 102, 109, 123, 153,
156, 158, 170, 175, 177, 189

· in query grammar 155, 157
right-ignoring 148, 156, 177, 187
· grammar 90, 149–151, 177,

179–181, 190
· query grammar 170
· regular expression 147

right-to-left 90, 99, 130, 136, 146,
189

· forest automaton see RFA
· pushdown forest automaton

see RPA
root 102, 126, 151
· element see document

element
RPA 119, 150
rule 102, 141, 144, 185
rxp 20, 83

INDEX 223

S
SAX 17, 19, 20
scripting language 20, 83
segment 183
selection function 150
semantics
· of XPATH 173
· of patterns 166

semi-structured data 172
sentence 152
separate compilation 23, 85
sequential representation 90
SGML 6, 11, 12, 19, 54, 89, 91
· parser 16

sgrep 171
Shakespeare 82, 165, 184
shopping centre 182
sibling 98, 133, 151, 158, 161, 165,

171, 189
· left 98
· right 98, 148

Side 108, 111, 116
side-relation 108
side-transition 116, 124, 127, 130,

138, 146, 153, 190
sign 140
· of attribute pattern 156

simple
· context grammar 144
· forest grammar 140, 141

single pass 146, 149, 177, 187, 190
singleton 129
skip mode 56
SML 3, 21–23, 90, 113, 174, 176,

183, 191
· array see array
· Basis Library 23, 31, 32, 85
· compiler 16, 23
· constructors 21
· data-types 21, 85
· equality type 30
· exception see exception
· functor see functor
· of New Jersey see SML/NJ
· option 28, 49
· pattern matching 21
· reference 22, 38, 65, 86
· structure 23
· vector see vector

SML/NJ 23, 74, 79, 82, 84, 85, 187
SOCAT syntax see catalog
sorting 172
sp 16, 19, 83
space character
· in text pattern 154

standalone status 49, 50
standard input 32, 69
start
· expression 102, 140, 166, 175
· state see state

start-character 56
start-tag 6, 7, 18, 56, 67, 77, 171
· invalid 64

state 95, 108, 136
· final 95, 108, 121, 122, 142,

147, 183
· initial 64, 95, 106, 108, 111,

114, 116, 126, 138, 183
· output 144, 178
· start 114, 116, 124, 178

states occurring during matching
188

stay transitions 150
string matching 181
structural
· condition 89, 90, 133, 161,

172, 180, 187, 189
· implementation with LFAs

123–126
· implementation with LPAs

126–127
· implementation with RPAs

130
· on text 152

· induction 99, 104, 105, 110,
111, 116, 117, 126

structure
· qualifier 160, 164, 166–169,

173, 188, 189
· top-level 162

structured documents 6, 112
style sheet 175
subforest 99
subset construction 13, 112, 114,

117, 121–123
· on demand 181

subtree 99, 149, 167, 170
· located at π 100

successor 98

224 INDEX

succinctness 112, 189, 190
· of MSO 151

surrogate 26
· character 26
· high 26, 34
· low 26, 34
· pair 34

symbol 94, 151
· of a node 98
· table 22, 28, 45

synchronized 116, 131
syntactical
· analysis 54
· component 54, 55
· representation of tokens 54

syntax
· error 38, 55–57
· tree 177

syntax error 70
syntax-directed
· editor 13
· translation 131

SYSTEM 9
system
· command 31
· identifier 8, 9, 29, 77
· of boolean inequations 120,

122, 149
· of equations 128
· of inequations 151

T
TΣ 97
table compaction 181, 182
tabulation 180
tail-recursive 58, 61, 85
target 133, 161
· name see processing

instruction
· variable 134–136, 166–168,

175, 181
#target 157
TCL/TK 20
temporary file 31, 44
testing 85
text
· declaration 12, 36, 42
· node 152, 158, 159, 162, 169,

189

· for attribute value 155
· pattern 152–154, 156, 158,

159, 168
· in fxgrep 181–184
· parsing 176
· syntax 153–154

token 53
tokenization 54–55
tony 20, 82
top-down 102, 131, 146, 150, 153,

189
· forest automaton see forest

automaton
topological ordering 72
TRAFOLA 170
trailing characters 154
transformation 172
transition 111
· computation 179
· intermediate results 180
· on demand 178, 180, 188,

190
· repeated 180

· for text node 153
· for text pattern 182–184
· data type 183

· relation 64, 95, 96, 108
· table 178, 180, 181, 190

traversal 172
traversing order 90, 112, 119, 131,

146, 151, 158, 181, 190
tree 97–101
· automaton 89, 130, 190
· grammar 89, 90, 189
· pattern 159, 161–163, 166, 167
· in forest pattern 163, 167,

168
· multiply occurring 177

· pattern matching 108
· ranked representation see

ranked tree
· and LPA 115

· state 108, 141, 153, 179
· number of 188

· transformation 170
two-pass
· matcher 179–180
· matching 178, 188

two-way tree automaton 131
· deterministic 150

INDEX 225

type inference 85

U
UCS-4 12, 32
· byte order 34

UML 15
unambiguous see content model
unary 118
underlying symbol 95
UNICODE 12, 19, 26, 55, 152, 153,

175–177, 181
· character distribution 27
· character range 26
· frontend 23–37, 39, 40, 70, 80,

81
· byte-stream operations

31–32
· character classes 28
· decoding functions 32–35
· encoding detection 36–37
· types 27
· URIs 29

· string 27
· string matching 181
· support in SML 85
· support in XML parser 20, 24
· support in programming

language 19, 85
· surrogates see surrogate

unification 86
uniform resource identifier see

URI
union 104, 106, 129, 139, 171, 178,

190
UNIX 16, 154, 181
unreachable 105
Up 108, 111, 116
Uptxt 153
up-relation 108
up-transition 116, 124, 138, 142
upper left context 181, 190
URI 10, 18, 25, 29–31, 38, 40, 44,

49, 68
· absolute 29
· base 30, 49, 77
· escaping mechanism 30
· examples 29
· relative 29
· retrieve 30

· syntax 29
UTF-16 12, 32, 80, 83, 176
· byte order 34
· byte-order mark 36, 37

UTF-8 12, 25, 30, 32–34, 36, 80, 81,
83, 176

· bit distribution 33
· byte-mark 33
· decoding 33

V
valid document see validity
validating mode 51, 52, 65, 82
validity 12, 15, 50
· constraint 57
· error see error

variable 102, 104, 140, 143, 148,
166, 175, 185, 188

· predefined 185
· target see target

vector 29, 39, 52, 58, 86, 182, 183
visiting order 113
vowel 183

W
well-formedness 12, 15, 18, 50
· constraint 39, 57
· error see error, 64

white space 18, 49, 54, 55, 61, 67,
154

· in document tree 157
· in forest pattern 161, 186
· in query grammar 157–158
· in text pattern 154

word 94
work-list 124
World Wide Web 3
WYSIWYG 13

X
x> 140
· transition 147

xw 158
XHTML 7, 156
XIS 18
XLINK 19
XML 3, 6–13, 89, 91, 123, 152, 155,

170, 172, 189

226 INDEX

· application 164
· catalog see catalog
· converter 15
· declaration 12, 36, 42
· document see document, 174,

175, 180, 189
· formatting 15
· information set see XIS
· Namespaces 19
· non-XML data 10
· parser see parser
· processing 90, 191
· processing model 14
· processing software 6
· programming interface see

programming interface
· querying 15, 18
· recoder 15
· recommendation 18, 36, 85
· in XML 79, 164, 184

· Schemata 123
· software 13–20
· syntax details 171
· transformer 15
· validity see validity
· well-formedness see

well-formedness
xml4j 19, 83
xmlproc 20, 83
XML-QL 172
xp 19
XPATH 155, 158, 172, 189
XPOINTER 19, 172
XQL 172
XSL 83, 175
XSLT 158, 172

Y
y0s for a 178
y0s for y 178
YATL 172

