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General Abstract 

DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC) is considered to be one 

of the principal interfaces between the genome and our environment and it helps explain phenotypic variations 

in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, 

coupled with clear gene expression data in both imprinted genes and malignant diseases provided easily 

dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming 

evident, where small (<10%) changes to intermediate methylation levels were associated with complex disease 

phenotypes. This has resulted in two clear methylation paradigms. The latter “subtle change” paradigm is rapidly 

becoming the epigenetic hallmark of complex disease phenotypes, although we were currently hampered by a 

lack of data addressing the true biological significance and meaning of these small differences. 

The initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease 

phenotype led to numerous observational/association studies being performed. Although this expectation 

remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging 

transcriptional and translational consequences of such subtle methylation changes.  

Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA 

methylation, extensive 5’UTR splicing and microvariability gives rise to the overall level and relative distribution 

of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation 

initiation codons throughout the complete, processed, mRNA enables translation variability, hereby enhancing 

the translational isoforms and the resulting protein isoform diversity; providing a clear link between small 

changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation 

changes in the NR3C1 CpG island, alters the NR3C1 transcription and eventually protein isoforms in the tissues, 

resulting in subtle but visible physiological variability. Implying external environmental stimuli act through subtle 

methylation changes, with transcriptional microvariability as the underlying mechanism, to fine-tune the total 

NR3C1 protein levels.  

The ubiquitous distribution of genes with similar structure as NR3C1, combined with an increasing number 

of studies linking subtle methylation changes in specific genes with wide ranging transcriptional and translational 

consequences, suggested a more genome-wide spread of subtle DNA methylation changes and transcription 

variability. The subtle methylation paradigm and the biological relevance of such changes were supported by 

two epigenetic animal models, which linked small methylation changes to either psychopathological or 

immunological effects. The first model, rats subjected to maternal deprivation, showed long term behavioural 
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and stress response changes. A second model, exposing mice to early life infection with H1N1, illustrated long-

term immunological effects. Both models displayed subtle changes within the methylome. Suggesting/Indicating 

that early life adversity and early life viral infection ‘programmed’ the CNS and innate immune response 

respectively, via subtle DNA methylation changes genome-wide.  

The research presented in this thesis investigated the ever-growing roles of DNA methylation; the 

physiological and functional relevance of subtle small DNA methylation changes genome-wide, in particular for 

the CNS (MD model) and the immune system (early life viral infection model) ; and the evidence available, 

particularly from the glucocorticoid of the cascade of events initiated by such subtle methylation changes, as 

well as addressing the underlying question as to what represents a genuine biologically significant difference in 

methylation. 

Keywords: DNA methylation, hydroxymethylation, EWAS, Association studies, Biomarker, Transcriptional 

microvariability, Gene-environment interactions, glucocorticoid receptor (NR3C1), beta-2-adrenoceptor 

(ADRB2R), transcription start site variability, 5’ UTR, 5’-RACE, postnatal viral infection, Developmental origins 

of health and disease (DOHaD), environmental programming, maternal deprivation model, piRNA, influenza 

virus A (H1N1) 
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1.1 Epigenetics: An Overview 

1.1.1 What is Epigenetics? 

The genome, an arrangement of billions of nucleotides (nt), contains coding information controlling the 

transcriptomic, translational and the proteomic landscape, shapes the phenotypes of each individual. For a long 

time, the coding information was mainly attributed to the arrangement of the nt in the genome sequence1–4. 

However, over the past decade it has increasingly become accepted that the genome contains additional layers 

of information aside from the underlying sequence, which is referred to as the epigenome2,5.  

Epigenetics literally means ‘ beyond or above genetics 2,6 and was first described by Conrad Waddington in 

1941, whom defined it as ‘the branch of biology which studies the causal interactions between genes and their 

products which bring the phenotype into being’7–10. Over the past decades, epigenetics has been assigned 

multiple different meanings8,10. Today, the original definition coincides with developmental biology10 and 

epigenetics is defined as “the study of external environment factors causing heritable changes in gene 

expression and protein production, without affecting the underlying DNA sequence, and as such defining the 

resulting behavioural or physiological phenotype”1,11,12. Epigenetic regulation exerts control on both 

transcriptional and translational levels and is involved in processes such as X-chromosome inactivation, 

genomic imprinting, cell- and tissue-specific gene expression, and silencing of repetitive elements 1,3. It plays a 

crucial role in normal developmental and chronical aging processes, as well as orchestrating a continuous 

adaptation to our environment throughout life1,10,12–14. 

1.1.2 Epigenetic Markers: Inheritance and Reprogramming 

Inheritance of epigenetic marks has been described in several different organisms, such as plants, flies, 

rodents and humans15. Both oocytes and spermatocytes transmit epigenetic marks to the subsequent 

generation. Being specialised cells however, the epigenome requires a resetting to a more basic pluripotent 

state, in order to assure the full development into an adult organism containing many different cel l types16. 

This resetting process, called ’reprogramming’, occurs early in mammalian embryogenesis and erases 

most of the inherited epigenetic markers16–19. Although most of epigenome is erased specific parts, such 

as imprinted genes, maintain their epigenetic marks. These epigenetic tags are passed on unchanged 

across generations18,19. Later on during embryonic development, prior to blastocyst implantation, 

individual-specific epigenetic marks are established de novo161,16,20. These determine the developmental 

course of cells until they attain a specialised state. Consequently, epigenetic patterns are cell-
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specific12,20,21. This re-established epigenome is not a completely fixed entity, but retains some plasticity, 

enabling it to adapt and adjust in response to its changing environment/environmental challenges19. 

1.1.3 Epigenetic stimuli: the Importance of Type and Time of Exposure 

Epigenetics mechanisms underlie the continuous adaptation to our environment throughout life, functioning 

as an interface between the genome and the environment1,3,22. There exists a multitude of environmental stimuli, 

e.g. of nutritional, chemical, social or physical nature, that can affect the exposed individual’s epigenome and 

possibly the epigenome of its offspring1,3. As shown by Lillycrop et al (2005)23, linking the protein concentration 

of the maternal diet with different methylation levels in PPARα and NR3C1, the nature of environmental stimuli 

affects the epigenetic outcome. Equally important is the time of exposure1,12,14. There are three periods of 

heightened epigenetic plasticity and sensitivity, in utero, the immediate postnatal period or early life, and 

adolescence 1,12,14,22. The sensitivity to epigenetic modifications during the in utero period has been underlined 

by epidemiological observations and animals studies1,14. Small or transient environmental changes, such as 

maternal diet, maternal state of mind, stress or exposure to metals or chemical compounds, impact the 

offspring’s’ epigenome inducing phenotypical differences or programming measurable in adulthood1,14,24. Early 

life experiences have been associated with life-long health trajectories and behavioural phenotypes in both 

animal models as well as humans12,22,25. Adolescence, despite being an important neurodevelopmental stage, 

received only limited attention1,14,26,27. Although mainly studied in animal models1,27, the recent TRAIL studies28 

linked stressful life events or traumatic youth experiences with increased NR3C1 and SLC6A4 methylation 

levels in humans26,29.  

1.1.4 The importance of Epigenetics: Genetics versus Epigenetics? 

Milestones such as the first completely sequenced human genome, and the development of new powerful 

array- and sequencing-based techniques, have strengthened the focus on genetic studies. The genome 

sequence was anticipated to provide a blueprint for normal development. Assuming that variability in disease 

heritability was mainly caused by genetic variants, it would enable a better understanding of disease 

predisposition and development1,12 Genome-wide association studies (GWAS) have indeed produced strong 

associations between certain traits, diseases and genetic variants. Yet, these only account for a small fraction 

of the causality and observable phenotypic diversity 1,12,30,31. There is now a large body of evidence that suggests 

the environment-genome interaction, i.e. the epigenome, needs to be considered to understand both 

pathophysiology, as well as association between traits and diseases1,3,12,14. 

 



Chapter 1 

4 

  

1.1.5 The Principal Mechanisms of Epigenetic Regulation 

Epigenetic regulation encompasses covalent DNA modifications, DNA packaging and chromatin states, 

and post-transcriptional regulation. These are mainly performed through the following three functional 

mechanism: DNA methylation, histone modifications and microRNAs1,3,5,12,32 (Fig. 1). 

1.1.5.1 DNA Methylation 

DNA methylation (5-methylcytosine, 5-mC), one of the best studied epigenetic modifications, operates 

directly on the genomic DNA, where a methyl group is added to the 5’ cytosine in a palindromic CG dinucleotide. 

Figure 1: Schematic representation for the principal epigenetic regulation mechanisms. Genomic DNA, 

packed in chromosomes, is wrapped with 146-147 basepairs around nucleosomes. Histone 

modifications are considered to be the first level of epigenetic regulation. The second level is DNA 

methylation of the cytosines of palindromic CpG dinucleotides and the third level of regulation concerns 

microRNA, affecting the translation process. Image from 1.  
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It is known to influence gene expression via chromatin re-modelling and gene transcription regulation13,33–38. 

DNA methylation is described more in detail in section 1.2. 

1.1.5.2 Histone modifications 

Chromatin, a nucleoprotein structure responsible for the DNA organisation within the nucleus, consists of a 

core unit called the nucleosome (histone octamer) around which 146 DNA base pairs are wrapped. Through its 

structural conformation, it tightly regulates the access to the underlying DNA sequence, by either effectively 

blocking or opening for processes such as transcription, damage repair, or recombination 1,4.  

Histone modifications are post-translational modifications (PTM) that dynamically remodel chromatin. This 

vast array of modifications, including covalent phosphorylation, methylation, acetylation, and ubiquitinylation, is 

often referred to as the ‘histone code’ (Table 1)1,5,39–42. Depending on the chemical nature of the PTM, its position 

and the nature of the modified histone in general, PTMs affect transcriptional activity either by directly altering 

the overall chromatin structure, or indirectly by affecting the recruitment of secondary effectors1,39. 

Table 1: The ‘histone code’ of common core histone modifications found in common psychobiological paradigms and 
phenotypes1 

Histone acetylation is a transient modification (Table 1), which has a direct impact on the chromatin 

structure1,5. Acetyl groups are either actively added or removed to the lysine (K) residue side chains by histone 

acetyltransferases (HATs) or histone deacetylases (HDACs) respectively. Acetylation neutralises the lysine’s 

positive charge, weakening the bond between the histones and the negatively charged DNA, rendering the 

underlying DNA sequence more accessible 1,39. 

Histone phosphorylation is a highly dynamic process, mediated by kinases and phosphates, mainly targeting 

serine, threonine and tyrosine primarily situated in the N-terminal histone tails. By adding a phosphate group, 

the kinases add a negative charge to the histone, irrevocably altering the chromatin structure39. 

Histone ubiquitination is a dynamic modification, which covalently binds a 76-amino acid ubiquitin 

polypeptide to lysine by the sequential catalytic actions of an ubiquitin-activating enzyme (E1), an ubiquitin 

Histone H3 Histone H4 
Histone 

H2B 

Residue K4 K9 K27 K36 K79 K20 K5 

Monomethyl   Activation  Activation Repression Activation 

Dimethyl Activation  Repression Activation Activation   

Trimethyl Activation Repression Repression  
Activation + 

Repression 
Repression Repression 

Acetylation Activation Activation Activation    Activation 
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conjugation enzyme (E2), and an ubiquitin ligase (E3). Due to the considerable size of the ubiquitin peptide, 

approximately two-thirds of the histone size, ubiquitination or de- ubiquitination is thought to profoundly remodel 

the chromatin structure and affect the transcriptional activity1,39,40. 

Histone methylation is the process of depositing or removing methylation marks on the side chains of lysine 

(K) or arginine (R) residues (Table 1), mediated by histone methyltransferases and histone demethylases 

respectively1,39. The lysine residues can be either mono-, di-, or tri-methylated, whereas the arginine residues 

can be mono-, symmetrically, or asymmetrically dimethylated39. Contrary to acetylation, phosphorylation, or 

ubiquitination, methylation does not alter the histone’s charge or remodels the chromatin structure in a direct 

way. But rather affect the transcriptional activity by regulating the recruitment of the transcriptional machinery, 

e.g. by increasing the side chains’ hydrophobicity and the creation of new binding surfaces for reader 

proteins1,39. 

1.1.5.3 Non-Coding RNA  

There are four non-coding RNAs (ncRNAs) associated with epigenetic mechanism: microRNAs (miRNA), 

short interfering RNAs (siRNAs), piwi RNAs (piRNAs) and long non-coding RNAs (lncRNAs). All involved in 

processes such as heterochromatin formation, histone modification, DNA methylation targeting and gene 

silencing. 

miRNA are small non-coding RNA molecules (~22 nucleotides), which modulate the gene expression at 

post-transcriptional level, by either binding mRNA or targeting specific genes1,32,43–46. For the former, miRNA 

together with the Argonaute protein family forms a RNA-induced silencing complex (RISC), which binds mRNA 

by imperfect base pairing. The RISC binding blocks the mRNA translation, and starts mRNA deadenylation, 

degradation, and cleavage1,45. miRNA plays a role in the translational control of proteins involved in the HPA 

axis and pathologies linked to stress1. Additionally, studies47,48 have suggested the implication of miRNA in 

chromatin remodelling and DNA methylation32. 

siRNA, a molecule of approximately 21 nucleotides, function in a similar way as miRNA to mediate gene 

expression at post-transcriptional level48. Additionally, siRNA was also suggested to be involved DNA 

methylation and chromatin remodelling. When bound to an RNA-induced transcriptional silencing (RITS) 

complex, it promotes chromatin condensation and H3K9 methylation49. 

piRNA are small non-coding RNAs (24nt and 32nt) that interact /form a complex with Piwi protein family50–

55. Their primary roles are the suppression of transposon activity and gene expression regulation, both at 

transcriptional and post-transcriptional level, in both germline and somatic cells50–54,56. Transposon regulation, 
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either on genomic or epigenetic level, is thought to be important for CNS variability and mosaicism, as well as 

neural development and plasticity. Dysregulation could compromise cellular homeostasis and possibly resolve 

into pathology onset 50–52,54,56. 

lncRNA, ncRNA with a length of 200 nucleotides or more, form an existential portion of the genome part 

being transcribed46,57. They mainly have regulatory roles and are implicated at almost every level of gene 

expression, such as network formation of ribonucleoprotein complexes and chromatin regulators, modulating 

mRNA stability and translation by targeting epigenetic modifications in the nucleus, etc57,58. lncRNAs function 

as chromatin modulators, i.e. they associate with chromatin-modifying proteins, guiding their catalytic activity to 

specific genomic locations and hence influencing the transcription activity58. 

1.2 DNA Methylation 

One of the best studied epigenetic modifications is DNA methylation, a natural covalent DNA 

modification that operates directly on the DNA sequence. The mechanism consists of the addition of a 

methyl group on the 5’ cytosine of a palindromic CpG pair, i.e. a dinucleotide where the C is immediately 

followed by a guanine1,13,33–38,59 (Fig. 1). Approximately 60% to 80% of all CpGs are thought to be 

methylated. CpG dinucleotides are distributed infrequently throughout the genome. Approximately 98% of 

the mammalian genome is CpG-deficient, sporting sparsely dispersed single CpGs. These mainly occur in 

repetitive DNA elements and centromeric regions, and tend to be methylated. The remaining ~2% of the 

genome features an overrepresentation of CpGs as clusters called ‘CpG islands’ (CGI’s). These CGI’s are 

mainly associated with gene promoter and regulatory regions and thought to be protected from 

methylation13,33,35,59,60. 

1.2.1 Biological Importance of DNA Methylation 

In mammals, CpG methylation plays a central role in the mammalian development and is involved in the 

regulation of gene expression through processes as chromatin re-modelling, gene transcription regulation, 

maintenance of X-chromosome inactivation, gene imprinting and tissue-specific gene expression 1,13,33–38,61. As 

one of the main epigenetic mechanism and the best studied one, 5mC is considered to be one of the principal 

interfaces between external environment and the genome. Methylome heterogeneity is partially inherited, but 

mainly caused by environmental programming, explaining the observed phenotypic variety in mammals1,12,60,62. 

1.2.2 Inheritance, Methylome Establishment and Evolution 

As described in paragraph 1.1.2, DNA methylation patterns are established during embryogenesis and early 

life. The DNA methylation patterns inherited from both gametocytes are almost completely erased during 
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embryogenesis and individual foetal de novo methylation patterns are re-established prior to the blastocyst 

implantation1,20. This only partial inheritance of the parental methylome is extremely well demonstrated in the 

case of monozygotic twins, whom share an almost identical methylome, yet exhibit different methylation patterns 

compared to their parents. The epigenetic discordances observed in monozygotic twins mainly developed only 

after birth, and tend to increase with age1,60,63–65.  

In general, the methylome is relatively stable over time, with global methylation levels slowly decreasing with 

age. Demethylation was thought of as a passive process. Recently however, the presence of an active 

demethylation process gained acceptance. Currently, the methylome is viewed as a stable, but plastic entity 

that may be reshaped during several well defined periods in time66–68. 

1.2.3 Alternative DNA Methylation Forms 

Historically, demethylation was thought to be a passive process that was a direct consequence of the 

failure to maintain methylation levels during cell division. However, it is now accepted that DNA methylation 

plasticity is coupled with active demethylation66–68. Although its role is not fully elucidated, 5-

hydroxymethylcytosine (5hmC) is thought to be the first step of the active DNA demethylation process. 

5hmC is generated by oxidation of 5mC by one of the ten-eleven translocation (TET) proteins 1-3, and can 

sequentially be further oxidised to either 5- formylcytosine (5fC) or 5-carboxylcytosine (5caC). The latter 

two can be disposed of via processes including base excision or not 36,66,69. However, although 5hmC has 

been detected in nearly all tissues, it is particularly enriched in the central nervous system (CNS), where it 

is thought to also be involved in active transcription of neuronal genes, and brain development 37,66,70.  

1.3 DNA Methylation Changes: Two Methylation Paradigmsa       

There are two concurrent paradigms for DNA methylation: the first paradigm is a clear mechanism for 

switching genes on/off through complete methylation or demethylation of genomic regulatory regions. DNA 

methylation has long been considered a marker of permanent gene silencing (imprinting) or reactivation4. In 

malignant diseases this simple on/off switch is often observed activating or silencing oncogenes and tumour 

suppressor genes respectively71 e.g. O6-methylguanine-DNA-methyltransferase (MGMT) methylation levels 

vary from 0 to >60%. Although it is not the focus of this review, and has been extensively reviewed and meta-

reviewed elsewhere, the principal diagnostic epigenetic cancer biomarkers available such as VIM, SEPT9, 

SHOX2, GST1, APC, RASSF1A share this clear pattern of no or little methylation, and clear (>60%) 

hypermethylation, with almost nothing in-between72. However, this simple paradigm has been challenged, and 

a second paradigm is emerging. In this second paradigm, intermediary DNA methylation levels are fine-tuned, 

a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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often influenced by the external environment, and are becoming the epigenetic hallmark of many complex non-

malignant disorders. In this case, the association of DNA methylation with an observed phenotype occurs 

through small differences in the methylation level of <10% and often only 1-5%, at single CpGs or over very 

limited genomic regions34,73. Such limited differences in DNA methylation are known to be set during periods of 

epigenetic sensitivity1. Additionally, they have been shown to play a role in creating a large diversity in 

phenotypes linked to the onset of many complex non-malignant diseases, such as type 2 diabetes, major 

depression, schizophrenia, hypertension, cardiovascular diseases15,73. Epigenetic phenotypes are not 

necessarily restricted to an exposed individual. Some epigenetic marks are transgenerational, hereby 

transmitting the phenotypic trait and possible the linked disease to the offspring4,15,74,75. 

This split into two paradigms has been accompanied by the expansion of the roles of 5mC and 5hmC. Both 

are now considered important factors assuring the quantitative, spatial and temporal regulation of gene 

expression as well as normal development and differentiation4,34,59. By targeting promoter CpGs and CGIs, DNA 

methylation was mainly thought to interfere with the transcription initiation and consequently gene silencing or 

reactivating4,13,76. Genome-wide analysis techniques showed DNA methylation influences many other 

mechanisms, such as alternative splicing, alteration of enhancer, insulator and regulatory element function, 

hence altering gene expression73,76–78. For both tissue-specific regulation and non-malignant disorders, changes 

in gene expression are frequently caused by small changes in methylation levels, often at single CpG 

dinucleotides or over a limited genomic region. Such small differences have a big impact on the phenotype 

diversity that is linked to the onset of non-malignant diseases77,79. Plasticity in methylation levels allows 

environmental adaptations, transient changes and long-term alterations of the cell’s transcriptomic profile, 

hereby contributing to the diversity of characteristics, both biochemical and physiological, and hence the 

phenotypic variations observed in human populations4,33,34. These mechanisms have been associated with the 

onset and maintenance of pathogenesis33,80,81, and methylation has increasingly been associated with the 

aetiology and onset of multiple, non-malignant, complex disorders6,77,80–82.  

DNA methylation can be summarised as either discrete hyper- and hypo-methylation coupled with clear gene 

silencing, and easily dissected molecular mechanisms, or a more subtle complex process where small (<10%) 

methylation changes are associated with disease phenotypes and many transcriptional processes. This leads 

us to the fundamental question of the biological significance of such small changes, and how they give rise to 

the final disease phenotype. There is currently doubt over the true biological relevance of such small changes, 

if they are genuinely meaningful, what mechanisms link such limited changes in methylation to the phenotype, 

and how this affects our view of what a gene is. In this review we summarise the pathophysiological and clinical 
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associations that have been made to small, subtle methylation changes; the ever-growing roles of DNA 

methylation; and the evidence available, particularly from the glucocorticoid receptor of the cascade of events 

initiated by such subtle methylation changes, and conclude that such small changes may reflect genuine 

biological differences.  

1.4 Environmental Influence on Phenotype Diversity: A Role for Small Epigenetic 

Changes?a  

Environmental influence on DNA methylation, gene expression, phenotype and disease onset have been 

extensively studied. In the framework of the Developmental Origins of Health and Disease (DOHaD) paradigm 

in utero or early life conditions program lifelong health trajectories. This paradigm focusses on organisms’ 

biological plasticity to adjust their phenotype to their environment over the short and long term in which 

epigenetic processes such as DNA methylation are thought to be involved. Mismatches between the pre-/post-

natally anticipated and the actual mature environment predisposes organisms to disease (Fig. 2)30,44,83.  

Obesity, hypertension, cardiovascular diseases, diabetes: The prevalence of obesity, hypertension and the 

accompanying cardiovascular disorders, and diabetes have been associated with early life environmental 

factors, such as diet, parental diet, and maternal mood during pregnancy (Fig. 2)20,32. In the ‘small litter’ neonatal 

overfeeding model appetite was dysregulated via hypermethylation of the POMC promoter at the NF-kB and 

Sp1 binding sites necessary for inducing POMC expression by leptin and insulin84. Consequently POMC 

expression will be reduced despite insulin or leptin presence)20,32. Parental diet strongly influenced their 

offspring’s methylation profile and phenotype (Fig. 2)32,74. Gestational high fat diets increased the offspring’s 

probability of developing obesity, metabolic syndrome, insulin resistance and diabetes in both humans and 

animal models (Fig. 2)32,85,86. Conversely a low-protein maternal diet peri-conceptually or during gestation was 

associated with lower birth weight, schizophrenia, an increased risk of the offspring developing cardiovascular 

diseases, hypertension, dyslipidaemia and obesity (Fig. 2)32,74,87–89. A well-known natural experiment for 

transgenerational nutri-epigenomics was the ‘Dutch Hunger Winter’. Dutch individuals exposed in utero to 

malnutrition and their direct descendants87 had higher rates of obesity (BMI raise of 7.4% in women90), 

hypertension (OR 1.4491), an increased risk for cardiovascular disorders (coronary heart disease: OR 3.0) and 

impaired glucose homeostasis later on in life (glucose tolerance index: prenatally: −21%; late gestation: −4%; 

mid gestation: −24%; early gestation: −37%)92,93. This was accompanied by hypomethylation in IGF2 (-5.2% to 

-5.6%) and INSIGF (-1.6%), and hypermethylation of IL10 (2.4%), ABCA1 (1.7%), GNASAS (1.1%) and LEP 

(1.2%) (Fig. 2)88,89. Late gestational exposure appeared to be a less sensitive period, as it only affected the 

a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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methylation profile of GNASAS (-1.1%) from the limited number of target genes investigated88. An equally 

important factor affecting the offspring’s methylation profile and phenotype was maternal mental state during 

pregnancy (Fig. 2). Gestational depression during pregnancy associated with a lower birth weight (OR 3.6, 95% 

CI: 1.1–11.4), obesity, as well as cardiovascular disorders and diabetes in later life (Fig. 2)14,94. This was 

accompanied by higher MEG3 methylation levels (2.4%) and decreased methylation of IGF2 (-1.6 %) compared 

to children with normal birth weight94. Offspring with a higher birth weight than normal showed a 

hypermethylation of PLAG1 and PEG10 (5.9% and 3.4% respectively), genes that have previously been linked 

to the regulation of placental and foetal growth and development, growth in general, and diabetes94. Maternal 

depression during the second trimester of pregnancy on the other hand was linked with hypomethylation of the 

SLC6A4 promoter region for both mother and child (Fig. 2)94,95. Overall it seems that individuals subjected to 

poor diets in utero or early life, or born out of mothers suffering from severe depression during gestation develop 

phenotypes with a higher prevalence of obesity, hypertension and the accompanying cardiovascular disorders 

and diabetes. It remains unclear, however, whether the methylation changes are part of the mechanism 

increasing disorder prevalence or rather an additional consequence.  

Psychopathology and behaviour: The risk of developing psychopathologies, cognitive, behavioural, anxiety 

and mood disorders or suicidal tendencies later in life have been related to stressful/traumatic experiences 

during early development and early life (Fig. 2). These early life periods profoundly affect development of the 

central nervous system, the limbic structures or hypothalamus-pituitary-adrenal (HPA) axis regulation. Although, 

the underlying mechanisms are unknown, the detection of methylome and gene expression changes between 

phenotypes highlights the importance of DNA methylation 34,66,96–99. BDNF, a gene involved in 

neurodevelopment, neuroplasticity, the onset of psychiatric disorders and suicidal behaviour, has been 

associated to early life adversity (ELA) (Fig. 2). Rat and mouse models for ELA and depression showed that 

the epigenetic processes controlling BDNF transcription were stress sensitive. The BDNF promoter region was 

hypermethylated (10% to 15% per CpG on average), with the ensuing lower expression levels 97,100. Similar 

BDNF methylation patterns were observed in post-mortem adult brains from suicide completers97,98. HPA-axis 

and stress response dysregulation have been among the most consistent biological findings in major depression 

and psychopathology 101. NR3C1, coding the central HPA axis regulating glucocorticoid receptor, was frequently 

investigated as part of the mechanism linking ELA and the predisposition towards psychopathology or suicide 

risk (Fig. 2)97,102,103. In rat models, ELA caused a hypomethylation of the hippocampal NR3C1 promoter (2% to 

4%), which significantly altered the gene expression and HPA-axis responsivity13,25,102,104. Post-mortem brain 

analyses and clinical studies observed similar trends25,97,102,103. Suicide completers with a history of ELA had 

increased hippocampal NR3C1 promoter methylation and decreased NR3C1 expression (Fig. 2)25,97,102,105. 
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Similarly, higher hippocampal and leukocyte NR3C1 methylation levels were observed for healthy individuals 

previously exposed to ELA. As such, the evidence is now strong that NR3C1 methylation is part of the panoply 

of changes linking ELA events to later life psychopathology, although there is no definite evidence as to whether 

it is a direct mechanism or an additional independent event103. HPA-axis changes were not limited to NR3C1, 

ELA and early life stress (ELS) also induced a sustainable hypomethylation of AVP ( < 10% per CpG position) 

and CRH (< 15% per CpG position34,106,107, as well as psychopathology associated genes such as SLC6A4108,109. 

The methylation status of the SLC6A4 promoter was shown to be affected by abuse as well as genotype108. 

Although DNA methylation appears to explain the link between ELA and psychopathology through HPA-axis 

regulation, robust proof of principle remains, however, to be provided as connecting methylome profile 

alterations and gene expression robustly failed108. The link between epigenetic alterations and neuropsychiatric 

disorders remains unproven. 

Asthma and allergic pathologies: Genetic makeup has been seen in many studies to be one of the strongest 

risk factors for eventually developing allergic symptoms110,111 consistent with epidemiological evidence of an 

increased allergic rhinitis (AR) concordance in twin studies112. Although many candidate genes have been 

suggested, genome-wide association studies (GWAS) have not, so far, identified “overlapping and consistent 

genetic components” 113,114, and epigenetic mechanisms have been proposed to play an equally important role. 

For example, the promoter methylation level of NPSR1 showed small but significant differences for persons 

suffering from severe adult or allergic asthma in children (Fig. 2). NPSR1, normally highly methylated (>75%), 

was hypomethylated by -3.29% and -1.40% for severe adult asthma and allergic asthma in children respectively 

(Fig. 2)115. DNA methylation levels have also been associated with factors such as the current smoking 

behaviour, parental smoking during infancy and the month in which the sample was taken115, which are thought 

to be implicated in the onset of both asthma and allergic diseases. 
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Associations and hypotheses, not mechanisms: The increased number of association studies has given us 

a better insight of the environmental impact on phenotype development (Fig. 2). Yet, as the majority of these 

observational studies did not address the underlying mechanisms, we are left with associations and hypotheses. 

In order to enhance our understanding, future research should address the underlying process and try to provide 

robust evidence for the exact cascade of events linking environment and phenotype differences. A good 

example of such a clear link is the viable yellow Agouti (Avy) mouse model, where the offspring’s coat colour 

shifts between yellow and brown due to incomplete erasure of the maternal epiallele during embryogenesis. 

The Agouti gene has a methylation sensitive intracisternal-A particle retrotransposon inserted at the 5’end that 

functions as a transcription start site. Large changes in methylation of the A locus from ~70% to ~25% result in 

a yellow rather than the natural brown coat. The offspring phenotype and methylation level appeared to be 

Figure 2: Methylation changes have been associated with adult pathology and environmental factors in association 

studies. Environmental factors during certain periods of life have been linked to genes or disorders. The changes in 

methylation are listed next to the phenotype in adult life. ELA Early life adversity; ELS early life stress; † Data are 
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heavily influenced by those of the mother. Oocyte transfer to surrogate mothers of a different epigenetic 

background, however, was necessary to demonstrate that the offspring epigenotype depended on the 

incomplete erasure of the maternal methylation during embryogenesis, rather than the uterine environment116. 

For the studies mentioned throughout section 1.4, such detailed mechanistic studies are unfortunately absent. 

Currently EWAS data such as those highlighted above are a perfect storm of visibly low methylation levels, 

of which the biological meaning is uncertain and a large variety of confounding factors influencing their 

methylation state117. There is a void, with limited information or guidelines on how to design and conduct 

meaningful EWAS. Adopting a set of guidelines or rules for best practices, in a similar manner to GWAS, would 

benefit EWAS interpretation and increase their relevance.  

1.5 What is a Biologically Meaningful Change in Methylation Level?a 

As we14 and others118 have previously noted, there is doubt over the true biological relevance of small 

changes in absolute methylation levels, and it has been suggested that authors may have increased confidence 

in the biological significance of methylation differences >10%, and conversely, must treat differences of <5% 

with extreme caution119.  

Reducing sample variability: Different cell types have specific epigenetic profiles120, and measuring 

aggregate levels over a large populations is a major source of variability. Since methylation is essentially binary 

i.e. in any given cell a specific CpG is either methylated, unmethylated, or potentially hemi-methylated 

(asymmetric methylation of two alleles), the methylation levels measured simply reflect the proportion of 

methylated cells in the original sample14,121–123. Consequently, minor changes in methylation may actually 

represent small changes in the cellular composition of the original sample rather than a genuine difference due 

to the disease or paradigm studied. As an aside, the most widely used sample, blood, is unfortunately one of 

the most variable, although there is now a well-established procedure that adequately corrects for this 

variability124,125.  

The impact of the data format: Teasing out the biologically relevant changes in methylation levels is further 

complicated by the current trend towards reporting fold changes rather than absolute methylation values. The 

appropriate data to report is naturally specific for the analysis method employed. For example MeDIP-Seq and 

Infinium arrays (Illumina) give M and β-values that may correlate to the percentage methylation, they are relative 

values, and they may be considerably different from the direct measurement (e.g. by pyrosequencing) of the 

absolute methylation levels. Although there is no direct comparison available it has been suggested that “a β-

value of 0.8 might correspond to a level of 30% methylation”118, however, as highlighted above, when 

a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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methylation levels are low, as in the case of NR3C1, a relatively small change in the absolute methylation level 

will be represented as a wildly exaggerated fold change or percentage increase. In the current situation, where 

small differences in methylation or low methylation values are being reported, there are additional technical 

concerns with data analysis and reporting. Illumina β-values are predominantly reported as they can be 

considered an approximation to the percentage methylation present in the original sample. However, this is only 

valid for values in the “middle methylation range”126, with severe heteroscedasticity for low and high methylation 

values. This has lead authors to suggest that statistical analyses are performed with M-values, but to report β-

values126.  

Confounding variables: Interpretation of small methylation changes is further complicated by the numerous 

sources of epigenetic variability that are currently poorly defined. There is significant evidence that many 

genetic, demographical, clinical and environmental factors are strong cofounding variables118. However, these 

underappreciated confounding variables all contribute to the overall measured phenotype. This was highlighted 

by the low intra-individual, but high inter-individual, difference in methylation levels we observed throughout the 

human brain127. Population-wide, 5-mC levels are both reduced and redistributed with age128, and are generally 

higher genome-wide in males than females129,130. Locus-specific differential hyper- or hypo-methylation has, 

however, been reported for both men and women131–134. Equally, the underlying genomic sequence heavily 

influences DNA methylation levels. Although there are numerous other examples 135–139, the best estimate is 

that approximately 2% of the investigated CpGs that cover up to 9.5% of genes represent methylation 

quantitative trait loci (mQTLs), and may operate over distances up to 5 kb140. Our NR3C1 data demonstrated 

that methylation of the NR3C1 promoter 1H was associated with a complete haplotype (haplotype 2), rather 

than a specific SNP, operating over approximately 3kbp. The effect of the underlying genome sequence is also 

highlighted by pervasive asymmetric methylation in diploid genomes (i.e. difference between the two alleles), 

particularly outside imprinted regions137,141–143. This asymmetry is known to be regulated by underlying 

heterozygotic genetic variants. In trans-generational epigenetic inheritance, there is now convincing evidence 

that it is the genomic sequence, rather than the parental DNA methylation levels that determines 5mC levels 

during embryogenesis144. Furthermore, allele-specific methylation events are found in unrelated individuals with 

the same haplotype/genotype as well as in multiple inter-individual tissue137. Although the evidence for these 

confounding factors is growing, there are still no population-epigenetics principles available to guide study 

design, analysis and interpretation. However, we suggest that moving towards sequencing based techniques 

(whole genome bisulphite sequencing, reduced representation bisulphite sequencing, MeDIP-Seq, etc.) will 

allow access to the genomic variants that is not available in array-based techniques. 
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Purpose of epigenetic studies: The current interest in DNA methylation is primarily to exploit its potential as 

a biomarker. In both malignant and complex non-malignant diseases work has centred on associating 

methylation changes with the external environment, particularly to exploit the latency between exposure and 

disease development. In both the DOHaD and “foetal origins” models, early life events induce epigenetic 

changes that are maintained lifelong. Similarly, many environmental factors e.g. chemical, biological (e.g. toxins, 

allergens) or heavy metal exposure alter the epigenome, ultimately increasing the risk of developing 

cancer145,146, for example, asbestos exposure leads to DNMT overexpression, highly specific methylation 

patterns and eventually malignant pleural mesothelioma147,148. In both cases, there is a considerable period of 

latency from the exposure to clinically discernible disease ranging from a few years (autism, obesity) to many 

decades (cardiovascular disease, mesothelioma). During this latent period the epigenetic marks are, however, 

present. If the interest in DNA methylation is solely as a biomarker, then the question of the origin and biological 

relevance of these changes is somewhat irrelevant. If the observed changes can be robustly validated and 

replicated, then their simple representation of a change in the sampled cell population may be adequate for 

their exploitation as a biomarker72,149. However, when changes are observed in purified cell populations, such 

subtle changes in methylation may give significant insight into underlying pathophysiological mechanisms. If we 

consider post-partum depression (PPD), pre-symptom onset epigenetic markers have been identified, 

potentially allowing the identification of susceptible women150. Although the epigenetic markers had a >80% 

predictive accuracy and have significant potential as PPD biomarkers, they also provide significant mechanistic 

insight into the pathophysiology of PPD. It has long been postulated that PPD is linked to the significant 

fluctuation in hormonal levels during pregnancy, and indeed, the epigenetic marks have all been linked to 17β 

oestradiol (E2). Although PPD has a range of previously identified biological and environmental risk factors it is 

unlikely to have a single underlying cause, and the methylation changes identified may represent a ‘final 

common pathway151 integrating many potential pathways. However, this highlights that differentially methylated 

regions are not exclusively biomarkers as they are often reported, but may provide significant insight into the 

underlying mechanisms. 

Overall, we are forced to conclude that there is currently no accurate estimate of what represents a genuine, 

biologically relevant, change in methylation, and what may be ascribed to any of a multitude of external factors. 

Although it should be emphasised that all these outside factors contribute to measurable differences in the 

observed phenotype, and that small changes may represent a genuine biological difference. 

1.6 Methylation: Single CpG or Clusters?a 
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It is becoming clear that, despite numerous reports of single CpGs associating with disease phenotypes, 

methylation levels are regulated in clusters. This has brought into question the functional effect of limited 

changes to the methylation level of single CpG dinucleotides14,152. Using the NR3C1 as an example, that 

methylation over a region of ~45 consecutive CpGs within one of the many promoter regions efficiently silenced 

the associated transcripts153. However, methylation of smaller regions of ~125bp (~12CpGs) reduced promoter 

activity by 75%102. There is currently no evidence for the NR3C1 that single CpG methylation has functional 

effects on gene expression14. Both individual121 and promoter-wide154 CpG methylation increases have been 

associated with clinical post-traumatic stress disorder (PTSD) symptoms. Our NR3C1 methylation data 

concords with the latter observation, where a strong distance-dependent correlation throughout the NR3C1 

promoter was observed both in man127,152 and rat 155, suggesting that for the NR3C1, methylation occurs in 

clusters over ~80bp. Similar results have been observed at the whole epigenome level as well as the population 

level156,157. Importantly, at the population level, methylation clusters appeared to behave in a manner similar to 

genetic variants with multiple clusters of methylation in “linkage-disequilibrium” covering distances up-to 

300kbp158. 

1.7 The Glucocorticoid Receptor Gene: Transcription and Translation 

A frequently studied gene in epigenetic studies42,44,102,159 is glucocorticoid receptor (GR) gene or NR3C1, 

which underlies the stress-response through its regulation of the hypothalamic-pituitary-adrenal (HPA) axis42,159. 

The NR3C1 gene consists of eight constant exons (exon 2-9) and nine untranslated, alternative first exons (1A-

1J), each of them having an own promoter (Fig.3A)160–162. The generated pre-mRNA is spliced at the 3’UTR 

end, resulting in one of the main C-terminal transcriptional isoforms GR-α, GR-β or GR-P (Fig.3B). The first two 

are the pre-dominant forms, generated by the inclusion of either alternative last exon 9α or 9β, and containing 

the C-terminal ligand binding. GR-P on the other hand lacks both exon 8 and 9127,153,163–165. The NR3C1’s 

complex 5’UTR, allowing alternative transcription initiation, combined with alternative splicing of the 3’UTR adds 

to the diversity of NR3C1 transcriptome. The resulting transcript heterogeneity has a significant influence/impact 

on post-transcriptional processes regulating gene expression, and subsequently helps fine-tuning the local GR 

levels, creating cell- and tissue-specific distribution patterns160,162,166–170.  

a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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Next to alternative transcription initiation and alternative splicing, which operate on a transcriptomic level, 

the protein isoform diversity is increased by the process of alternative translation initiation. The translation of 

the GR-α and GR-β transcripts can start at one of the multiple ATG codons within exon 2, hence generating an 

additional variety by producing N-terminal translational GR isoforms (GR-A, GR-B, GR-C1, GR-C2, GR-C3, GR-

D1, GR-D2, GR-D3) (Fig. 3B). All N-terminal GR-α isoforms are functional, as they all contain the identical intact 

ligand-binding domain for glucocorticoids. Yet, they exhibit different transactivation activities, with each 

regulating a unique set of genes. Just like the transcript distribution, the translational isoforms show a cell- and 

tissue-specific pattern164,165,171. 

1.8 Thesis’ Research Objectives 

Within eukaryotes, gene expression is controlled by a multitude of mechanisms operating on both 

transcriptional as well as translational level, such as alternative transcription initiation, alternative RNA 

splicing, mRNA stability, alternative translation initiation etc. The external environment is suggested to 

affect gene expression and the involved processes through epigenetic mechanism such as DNA 

methylation, hydroxymethylation, chromatin condensation, ncRNAs and histone modifications. Hereby, re-

shaping the transcriptional, translational and proteomic landscape and hence the resulting phenotype. 

Consequently altering an individual’s phenotype, due to specific external environmental factors in time.  

DNA methylation has long been thought of as a mechanism switching genes on or off through complete 

methylation or demethylation. Association studies introduced the idea of subtle changes resulting in 

Figure 3: A schematic representation of the NR3C1 structure and the internal ATG translation initiation codons  resulting 

in different translational isoforms.24 
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intermediary methylation levels that contributed to the phenotypical diversity. Despite the increase in association 

studies, the biological relevance of subtle shifts in DNA methylation levels remains elusive. In this thesis, we 

suggest that DNA methylation occurs in two clear paradigms. The classical paradigm where DNA methylation 

appears to be either in a hyper-or hypomethylated state with a clear on/off switch of genes. The second 

paradigm, on which this thesis is focused, is a subtle more complex process where small shifts in methylation 

level may cause a redistribution of the transcriptional landscape, affect the translational isoform production and 

re-orchestrate the final proteomic landscape. Therefore, the overall/global objective of this thesis was the 

examination of the physiological and functional relevance of such subtle small DNA methylation changes. This 

overall goal has been subdivided into the following smaller sub-objectives: 

1. The examination of the role of DNA methylation on mRNA transcripts for model gene NR3C1. By 

adapting the recently introduced high-throughput sequencing (HTS) technique, the transcription 

initiation process’ variability and complexity, and the impact of small DNA methylation could be 

studied more in greater depth. Previous studies suggested an impact of alternative first exon usage 

the translational isoform frequency and distribution. Therefore, a series of plasmid constructs, each 

containing an a first alternative exon variant that was either full exon length or a sequence starting 

within the exon until its end, were designed to elucidate the link between a h ighly permissive 

transcriptional variability, due to shifts in DNA methylation levels, and post -transcriptional 

regulation of the NR3C1. 

Throughout the genome, many other genes possess a similar structure to NR3C1, hence suggesting the 

observations made for NR3C1 could be expanded to other genes as well. To development of the hypothesis 

that the environment, via small subtle methylation changes, causes a transcriptional distribution that affects the 

translational isoform distribution and consequently the resulting proteomic landscape, on a genome-wide basis, 

necessitates suitable models, as outlines in objectives 2 and 3: 

2. The second sub-objective consisted of analysing whether maternal deprivation (MD) is a suitable 

model to analyse the biological relevance of small methylation changes and whether this paradigm 

holds true for the central nervous system. In this study rats were subjected to MD, a model that 

mimics one of the most studied psychopathologies, depression, but of which the epigenetic 

alterations genome-wide are unknown. By combining the methylated DNA enrichment (MeDIP) with 

HTS, we aimed at detecting differentially methylated loci between groups on a genome-wide basis 

and link them to the resulting diversity in phenotypes. 
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3. As severe early life adversity comparable to the MD model is relatively rare in humans, the 

importance of small DNA methylation shifts was also analysed in a second more clinically and 

sociologically relevant model, early life infection. To that end, we used a mouse model, exposing 

animals to early life H1N1 infection and analysing how this modulated their response to viral re-

exposure in adulthood. By employing Methyl-Seq, a reduced representation epigenome 

sequencing technique, we aimed at identifying a network of DNA methylation changes between 

treatment groups and link them to an altered immunological phenotype. 

1.9 Thesis Outline 

In Chapter 1, a broad notion of the context in which this thesis is embedded is thoroughly described. In 

Chapter 2 we present a study which analysed the transcription variability of the NR3C1, reported in 

previous work, in greater depth by adapting the classical RNA ligase-mediated rapid amplification of 5’ 

cDNA ends (5’-RACE) to High-Throughput Sequencing (HTS) identifying the important role it plays in 

determining the overall protein population. Chapter 3 reports one of the first studies combining genome-

wide methylation and hydroxymethylation profiling after subjecting rats to either MD or handling stress. 

Presenting a model for the subtle methylation change paradigm in the CNS for future mechanistic studies. 

Chapter 4 presents the results of a study analysing the effects of early life infection, with influenza virus 

H1N1, on the genome-wide methylation profile in mice. The early life infection model, which is a clinically 

and sociologically more relevant model, assesses whether the subtle methylation paradigm holds true for 

the immune system. In Chapter 5, the major findings are placed into the contemporary context and future 

perspectives discussed. 
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2.1. Abstract 

The variability and complexity of the transcription initiation process was examined by adapting RNA ligase-

mediated rapid amplification of 5’ cDNA ends (5’-RACE) to HTS. We oligo-labelled 5’-m7G-capped mRNA 

from two genes, the simple mono-exonic Beta-2-Adrenoceptor (ADRB2R) and the complex multi-exonic 

Glucocorticoid Receptor (GR, NR3C1), and detected a variability in TSS location that has received little 

attention up to now. Transcription was not initiated at a fixed TSS, but from loci of 4 to 10 adjacent 

nucleotides. Individual TSSs had frequencies from <0.001% to 38.5% of the total gene-specific 5’m7G-

capped transcripts. ADRB2R used a single locus consisting of 4 adjacent TSSs. Unstimulated, the NR3C1 

used a total of 358 TSSs distributed throughout 38 loci, that were principally in the 5’UTRs and were spliced 

using established donor and acceptor sites. Complete demethylation of the epigenetically sensitive NR3C1 

promoter with 5-azacytidine induced 1 new locus and 127 TSSs, 12 of which were unique. We induced 

NR3C1 transcription with dexamethasone and Interferon-Ɣ, adding 1 new locus and 185 additional TSSs 

distributed throughout the promoter region. In-vitro the TSS microvariability regulated mRNA translation 

efficiency and the relative abundance of the different NR3C1 N-terminal protein isoform levels.   
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2.2.  Introduction 

The genome does not only encode mRNA and protein sequences but it contains also the temporal, spatial 

and quantitative instructions for their expression. This elaborate regulation occurs principally at the 

transcriptional level, determining both gene expression and transcript diversity. In the simplest case, 

transcription is initiated from a transcription start site (TSS) after completing the assembly of the competent 

transcription initiation complex on the associated promoter. Many genes possess a 5' UTR containing multiple 

alternative first exons, each with its own alternative promoter as a second level of transcriptional complexity. It 

has been estimated that 58% of the transcribed genes had multiple promoters 172. The 5’ UTR‘s influence gene 

expression in a cell- and tissue-specific manner by generating transcriptional variability, i.e. different mRNA 

variants 167–169,173. Whilst some alternative 5' UTR first exons may be similar in length and nucleotide (nt) 

sequence, e.g. the Pcdh and UGT1 gene clusters 170, most alternative 5' UTR first exons differ in length and 

sequence. These complex 5’UTRs evolved through processes such as gene duplication by recombination, 

retroposition, intronic deletions, etc. 174–177. Both alternative splicing and alternative transcription initiation are 

closely linked and give rise to high complex and diverse transcriptomes and proteomes 164,168,178–181. Coding 5' 

UTR first exons generate different mRNA transcript variants and protein isoforms. Although non-coding first 

exons do not generate protein diversity, they create transcript variability that has significant impact on post-

transcriptional gene regulation, including translational efficiency, mRNA processing, stability and export 

167,169,170,182,183.  

In eukaryotes most promoters are located within CpG-rich regions, whilst conserved, well defined TATA box 

based promoters are less frequent 5,172. Ubiquitously expressed genes are primarily associated with CpG islands 

and variable TSSs, whereas tightly regulated transcripts have TATA box promoters and well-defined TSSs 172. 

There is now limited evidence that, irrespective of their location, the site at which transcription is initiated may 

be variable 172. This was observed as a series of TSSs over a very small 4-6bp region surrounding the principal 

TSSs 172. 

To further investigate the variability of the transcription start sites, two genes with distinct structures and 

expression profiles were selected. The Beta-2 Adrenoceptor (ADRB2R; OMIM 109690), is an intronless single 

exon gene (Fig. 4A and 5A), with no previously identified transcriptional variability, and a uniform, ubiquitous 

expression according to the literature 184. In comparison, the human glucocorticoid receptor gene (GR; NR3C1, 

OMIM +138040), located within chromosome 5, has a complex 5’ structure and a highly variable and tightly 

regulated, but ubiquitous expression 184. The NR3C1 comprises 9 untranslated, alternatively spliced first exons 

(exon 1A – H) and eight translated exons (exon 2-9), with the translation start site located within exon 2 (Fig. 
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4B and 5B). All alternative first exons have their own promoter region covering both a CpG island and a distal 

TATA-like promoter 127,153,160–163,184,185. They are located either in the distal or the proximal promoter region, 

30kb (1A and 1I) and 5kb (1D to 1J) upstream of the translation start site respectively. The latter are contained 

in a highly conserved 3kb CpG island 127,153,160–163,185. Regulation of NR3C1 transcription has been extensively 

studied. At least 29 transcription factor binding sites have been experimentally confirmed, controlling first exon 

usage 163. Additionally, the CpG island promoters were shown to be susceptible to methylation, linking 

expression levels to the environment, fine-tuning NR3C1 levels 27,127,153,163. 

By adapting the classical RNA ligase-mediated rapid amplification of 5’ cDNA ends (5’-RACE) to Next-

Generation Sequencing (NGS) we were able to study the variability and complexity of the NR3C1 transcription 

initiation process in greater depth, identifying transcriptional initiation loci that themselves contain many, often 

adjacent, unique TSSs. The experimental protocol was designed to exclude any other potential interpretation 

of the HTS results and to minimise any potential ligation bias. The RNA oligo ligation strategy, employing TAP 

Figure 4: (A) UCSC browser view of ADRB2R gene. (B) UCSC browser view of NR3C1 gene.166 (Supplementary Data) 
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and CIP treatments, labelled only mature, undegraded mRNAs. By using a common RNA or DNA oligo, potential 

ligation bias between the sequences was reduced. On top of the experimental precautions, a 0.1% cut-off was 

introduced to define genuine TSSs, ensuring that errors introduced during the sample preparations are minimal 

and below our cut-off. The simple mono-exonic gene ADRB2R was used as a control. ADRB2R showed little 

transcriptional variability. Our data expands the unique literature TSS to one unique locus consisting of 4 

adjacent TSSs. The multi-exonic NR3C1 gene on the other hand targeted a total of 358 TSSs throughout 38 

loci that were cell line and stimuli specific. This microvariability around individual loci was negatively associated 

with translational efficiency and controlled the relative abundance of NR3C1 translational isoforms. Although 

this combination of techniques was initially intend to investigate the particular case of the GR, we suggest that 

our observations can be extended to other genes.  

2.3. Material and Methods 

2.3.1. Cell Culture and RNA Extraction 

Three cell lines, DAUDI, MCF-7 and A549, were cultured as previously described 153,186,187. All culture media 

were from Lonza (Verviers, Belgium). T cells were isolated from PBMC’s by Ficoll-isopaque (GE Healthcare 

Life Sciences, Amersham, UK) gradient centrifugation and by positive magnetic selection (Miltenyi midiMacs, 

Miltenyi Biotech GmbH, Cologne, Germany) 162. 

Total RNA was extracted from unstimulated DAUDI, MCF-7 and A549 cells, following routine passage using 

the RNeasy Mini Kit (QIAGEN, Venlo, Netherlands) according to the manufacturer’s instructions. 1.5 x 107 

DAUDI cells were seeded in a 75cm3 flask. When they reached 70% confluence, they were stimulated with 

Interferon Ɣ (IFN-Ɣ; 6h, 5ng/ml), Dexamethasone (Dex; 6 h, 100nM) or 5-AZA-2’-deoxycytidine (AZA; 72h, 

10µM) (Sigma-Aldrich, Diegem, Belgium). Cells were detached from the culture support using trypsin-EDTA 

(Lonza) and pelleted (5 min, 1 671.6 x g). Subsequently, total RNA was isolated using the RNeasy Mini Kit 

(QIAGEN). RNA integrity was assessed using the Eukaryote Total RNA Nano assay with a RNA 6000 Nano 

chip on the Aligent 2100 Bioanalyzer (Aligent Technologies, Diegem, Belgium). The RNA quality assessment 

was based on the RNA integrity number (RIN). Only samples with a RIN value of >7 were used for further 

experiments. 
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Figure 5: A schematic representation of the ADRB2R and NR3C1 gene structure and the 5’-RACE-Sequencing workflow. 

(A) The ADRB2R gene. Nucleotides are numbered with respect to the NCBI reference sequence (NM_000024.5). (B) A 

schematic representation of the NR3C1 gene, showing the first exons (   ) in the distal and proximal (CpG island) promoter; 

the seven common exons (   ); and the two alternative 3’ coding exons (   ). Nucleotides are numbered with respect to the 

ATG translation initiation codon (+1) (C) The experimental workflow from RNA extraction, through the 5’-RACE protocol in 

order to label the TSSs, the HTS library preparation and the actual sequencing. D, uncapped RNA sequence; M7G mRNA 

specific 7-methylguanosine cap; P active phosphate; P phosphate diesterbond; oligo generacer specific oligo. (D) The 

data analysis workflow including read selection, quality control, mapping (TopHat), normalisation, reproducibility and 

differential expression analysis.166 
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2.3.2. RACE-PCR 

To label exclusively the 5’ nt of the mRNA, an RNA oligo was ligated in place of the mature mRNA-specific 

m7G cap structure, as previously described using the reagents from Invitrogen (Life Technologies, Paisley, UK) 

188–190. Briefly, RNA was treated with calf intestinal phosphatase (CIP) to remove all active 5’ mono-phosphates 

from truncated or otherwise degraded mRNA as well as other RNA’s, rendering those sequences unavailable 

for ligation and leaving only intact capped mRNA unaffected. Subsequently, tobacco acid pyrophosphatase 

(TAP) was used to remove the 5’ cap structure leaving a unique active 5’ phosphate on mature mRNA by 

hydrolysing the pyrophosphate bonds on the m7G cap triphosphate bridge. An RNA oligo (5′-

CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGA AA-3′) was ligated to the unique active 5’ 

phosphate using a T4 RNA ligase in a 10µl reaction containing 2ng dephosphorylated, decapped RNA and 

0.25µg RNA Oligo, 10X Ligase Buffer, 10mM ATP, 40U/µl RNaseOut and 5U/µl T4 RNA ligase. First-strand 

cDNA was obtained by reverse transcription of the ligated mRNA using a NR3C1-specific primer in exon 2 (5'-

CAGTGGATGCTGAACTCTTGG-3', Eurogentec, Seraing, Belgium) or dN6 random hexamer primers 

(Invitrogen, Life Technologies), for the control gene (ADRB2R). Two rounds of PCR amplification were 

performed with forward primers located within the RNA oligo and reverse primers in exon 2 of the NR3C1 (Table 

2). The control gene was similarly amplified using the same RNA oligo specific forward primers and two 

ADRB2R specific reverse primers (Table 2). The reverse primers were located respectively 29bp downstream 

and 96bp upstream of the ATG translation start codon. Amplification was performed in 25µl reactions containing 

20mM Tris-HCl, 50mM KCl, 2mM MgCl2, 200µM dNTPs, primers (Eurogentec), 1x SYBR green and 1.5U 

Platinum Taq Polymerase (Life Technologies). Thermal cycling (CFX96, BioRad, Hercules, CA, USA) conditions 

were 95°C, 2min; 45 cycles of 95°C 20s, Ta 20s, 72°C 90s; and a final elongation step at 72°C for 10min. 

Nested PCRs were performed using a 1:100 dilution of the 1st round PCR product as a template. Prior to Next 

Generation Sequencing library preparation, the PCR products were purified using Agent AmPure XP Beads 

(Analis, Suarlée, Belgium) and quantified with the Quant-iT picogreen dsDNA Assay Kit (Life Technologies) 

according to the manufacturers’ instructions.  

Table 2: PCR primers166 (Supplementary Data) 

Primer name Sequence 

GeneRacer 5’ primer_fwd 5’-GACTGGAGCACGAGGACACTGA-3’ 

Exon 2_1st PCR deep seq_rev 5‘-GGAACACTGGTCGACCTATTGAGGT-3‘ 

ADRB2R_1st PCR_deep seq_rev 5’-CTTCCATTGGGTGCCAGCAAG-3‘ 

GeneRacer 5’ nested_fwd 5‘-GGACACTGACATGGACTGAAGGAGTA-3‘ 

Exon 2_2nd PCR deep seq_rev 5‘-GGAGTCTGATTGAGAAGCGACAGC-3‘ 

ADRB2R_2nd PCR_deep seq_rev 5’-CTCATTCAGCGGCTGTGGTG-3‘ 
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2.3.3. High-Throughput Sequencing (HTS) 

The HTS libraries were prepared using the Ion Xpress Plus Fragment Library Kit (Rev. A, Life Technologies) 

according to the manufacturer’s instructions for 100ng gDNA. Briefly, purified PCR products were sheared (Ion 

Shear Plus Kit, Life Technologies) and Ion Xpress Barcode Adapters (Life Technologies) were ligated to the 

resulting DNA strands. Using 2% agarose gels (E-gel System, Life Technologies), DNA fragments of 200-350nt 

length were selected for further amplification. The DNA concentration was estimated with the Agilent High 

Sensitivity DNA chip on the Agilent Bioanalyzer (Agilent Technologies) and equimolar quantities of each library 

were pooled (NR3C1 gene: 4 libraries; ADRB2R gene: 12 libraries).  

Template preparation was carried out using the Ion OneTouch 200 System Template Kit v2 protocol (Rev. 

4, Life Technologies) recommended by the manufacturer. Briefly, a diluted library pool was added to the 

emulsion mix for DNA clonal amplification on the Ion OneTouch instrument, followed by an enrichment of the 

template-positive Ion Sphere Particles (ISP) on the Ion OneTouch ES instrument (Life Technologies). To assess 

the quality and calculate the appropriate library dilution, both unenriched and enriched ISP samples were 

qualified and quantified performing the QubitTM dsDNA HS Assay Kits (Life Technologies) using a Qubit 2.0 

Fluorimeter (Life Technologies) according to the manufacturer’s protocol. 

Ion Torrent PGM runs were performed using the Ion PGM 200 Sequencing Kit (PN4474246 Rev. D, Life 

Technologies) on Ion 314 and 316 Chips (Life Technologies), as simplex and multiplexed runs, with the standard 

Torrent Suite parameters (Fig. 6).  

2.3.4. Bio-Informatics and Statistical Analyses 

Figure 6: Over multiplexing strategy used with Ion Torrent 314 and 316 chips.166 

(Supplementary Data) 
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HTS sequencing reads were processed using the default Torrent Suite settings. Sequences containing at 

least the last 8 nt of the 5’ cap oligo after Multiplex Identifier (MID) sorting were retained as oligo-labelled TSSs 

for further analysis, all non-labelled sequences were discarded. This 5’ cap oligo sequence was subsequently 

trimmed and the reads were mapped against the genomic reference for the NR3C1 gene (Chr5, hg19, 142 657 

496 to 142 850 254) with TopHat software 191,192 (v2.0.3), using default settings. A python script retrieved the 

TSS for each aligned read. Oligo-labelled TSS reads were also analysed manually with Geneious software 

(Biomatters, v5.5.6). Throughout this study, NR3C1 TSSs are annotated with respect to the ATG (+1) translation 

initiation codon and the ADRB2R TSSs with respect to the first nt in the mRNA sequence (NM_000024.5). 

TSS count data were normalised using the ‘Trimmed Mean of the M-values’ (TMM) technique in R (R Core 

Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL http://www.R-project.org/ v3.0.2193) using the Bioconductor package NOISeq 194 (v2.6.0). 

To remove background noise, all TSSs corresponding to a sequence frequency below 0.1% in replicate runs 

were removed. Data were visualised in Bioconductor packages limma 195 (v3.18.13) and affycoretools 

(MacDonald, J.W. (2008). affycoretools: Functions useful for those doing repetitive analyses with Affymetrix 

GeneChips. R package version 1.34.0196). Differential expression analysis was performed with Bioconductor 

package NOISeq 194 (v2.6.0). Differentially expressed TSSs were hierarchically clustered and visualised using 

CRAN-packages cluster (Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2014) cluster: Cluster 

Analysis Basics and Extensions. R package version 1.15.2197) and pheatmap (Raivo, K. (2013). pheatmap: 

Pretty Heatmaps. R package version 0.7.7.198).  

The evolutionary conservation was visualised with the UCSC browser (https://genome-euro.ucsc.edu). 

Differentially expressed TSS frequencies were plotted against the PHAST phyloP conservation score from the 

publically available 100 vertebrate genome alignment 199. In silico Phylogenetic footprints (ISPF) were obtained 

from a previous report 200. 

2.3.5. Translational Efficiency of Transcriptional Micro-Variants  

The previously reported full length exons and the CMV promoter were cloned into the synthetic firefly 

luciferase pGL 4.10 vector (Fig. 7) (Promega, Leiden, Netherlands) 164. Shorter ‘5 microvariants of the exons, 

identified by HTS, were synthesised and also inserted into pGL4.10 (GeneCust, Dudelange, Luxembourg) 

(Table 3).  

http://www.r-project.org/
https://genome-euro.ucsc.edu/
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Twenty-four hours prior to transfection A549 cells were seeded into 24-well plates (4x104 cells/well). Cells 

were transfected with 750ng of 5’ UTR constructs, using 0.5μl of PLUS Reagent and 2.0μl of Lipofectamine LTX 

(Life Technologies) according to the manufacturer’s instructions. The Renilla luciferase plasmid pGL 4.73 was 

used as control vector and cells were transfected using a 10:1 ratio of the two plasmids.  

The firefly and Renilla luciferase activity were measured using the Dual-Glo Luciferase assay system 

(Promega) according to the manufacturer’s protocol. The luminescent signal was read with Infinite M200 plate 

reader (TECAN, Männedorf, Switzerland). The experiments were performed in biological triplicates. Within exon 

variants, the luminescent signals were subjected to a pairwise multiple comparison using Kruskal-Wallis One 

Way Analysis of Variance on Ranks with a Tukey post-hoc correction, reporting q-values for a type I error level 

of 0.05 per comparison. 

Table 3: Plasmid variants for translational efficiency analysis166 (Supplementary Data) 

Plasmid 

Name 

Length 

Insert 

(nt) 

Sequence Insert (5’ – 3’) 

CMV-1A3 94 AGTTGTACCTTAATAACAGGAATTTTCATCTGCCTGGCTCCTTTCCTCAAAGAACAAAGAA

GACTTTGCTTCATTAAAGTGTCTGAGAAGGAAG 

Figure 7: The plasmid 1C GRpcDNA3.1, into which all inserts were 

cloned.166 (Supplementary Data) 
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CMV-1A3 160 AATGAGTGCCTTCTCTGTGCGAGAATGGGGAGGAACAAAATGCAGCTCCTACCCTCCTCG

GGCTTTAGTTGTACCTTAATAACAGGAATTTTCATCTGCCTGGCTCCTTTCCTCAAAGAAC

AAAGAAGACTTTGCTTCATTAAAGTGTCTGAGAAGGAAG 

CMV-1A3 164 ACTTAATGAGTGCCTTCTCTGTGCGAGAATGGGGAGGAACAAAATGCAGCTCCTACCCTC

CTCGGGCTTTAGTTGTACCTTAATAACAGGAATTTTCATCTGCCTGGCTCCTTTCCTCAAA

GAACAAAGAAGACTTTGCTTCATTAAAGTGTCTGAGAAGGAAG 

CMV-1A3 180 ATTAACTTTGATAAGCACTTAATGAGTGCCTTCTCTGTGCGAGAATGGGGAGGAACAAAAT

GCAGCTCCTACCCTCCTCGGGCTTTAGTTGTACCTTAATAACAGGAATTTTCATCTGCCTG

GCTCCTTTCCTCAAAGAACAAAGAAGACTTTGCTTCATTAAAGTGTCTGAGAAGGAAG 

CMV-1A3 981 AGGTTATGTAAGGGTTTGCTTTCACCCCATTCAAAAGGTACCTCTTCCTCTTCTCTTGCTC

CCTCTCGCCCTCATTCTTGTGCCTATGCAGACATTTGAGTAGAGGCGAATCACTTTCACTT

CTGCTGGGGAAATTGCAACACGCTTCTTTAAATGGCAGAGAGAAGGAGAAAACTTAGATC

TTCTGATACCAAATCACTGGACCTTAGAAGGTCAGAAATCTTTCAAGCCCTGCAGGACCG

TAAAATGCGCATGTGTCCAACGGAAGCACTGGGGCATGAGTGGGGAAGGAATAGAAACA

GAAAGAGGGTAAGAGAAGAAAAAAGGGAAAGTGGTGAAGGCAGGGAGGAAAATTGCTTA

GTGTGAATATGCACGCATTCATTTAGTTTTCAAATCCTTGTTGAGCATGATAAAATTCCCAG

CATCAGACCTCACATGTTGGTTTCCATTAGGATCTGCCTGGGGGAATATCTGCTGAATCA

GTGGCTCTGAGCTGAACTAGGAAATTCACCATAATTAGGAGAGTCACTGTATTTCTCTCCA

AAAAAAAAAAAGTTATACCCGAGAGACAGGATCTTCTGATCTGAAATTTTCTTCACTTCTGA

AATTCTCTGGTTTGTGCTCATCGTTGGTAGCTATTTGTTCATCAAGAGTTGTGTAGCTGGC

TTCTTCTGAAAAAAGGAATCTGCGTCATATCTAAGTCAGATTTCATTCTGGTGCTCTCAGA

GCAGTTAGCCCAGGAAAGGGGCCAGCTTCTGTGACGACTGCTGCAGAGGCAGGTGCAGT

TTGTGTGCCACAGATATTAACTTTGATAAGCACTTAATGAGTGCCTTCTCTGTGCGAGAAT

GGGGAGGAACAAAATGCAGCTCCTACCCTCCTCGGGCTTTAGTTGTACCTTAATAACAGG

AATTTTCATCTGCCTGGCTCCTTTCCTCAAAGAACAAAGAAGACTTTGCTTCATTAAAGTGT

CTGAGAAGGAAG 

CMV-1B 53 AGATGATGCGGTGGTGGGGGACCTGCCGGCACGCGACTCCCCCCGGGCCCAAA 

CMV-1B 73 AGCTGAAGACCCGGCCGCCCAGATGATGCGGTGGTGGGGGACCTGCCGGCACGCGACT

CCCCCCGGGCCCAAA 

CMV-1B 107 AACTTCTCTCCCAGTGCGAGAGCGCGGCGGCGGCAGCTGAAGACCCGGCCGCCCAGAT

GATGCGGTGGTGGGGGACCTGCCGGCACGCGACTCCCCCCGGGCCCAAA 

CMV-1B 105 CTTCTCTCCCAGTGCGAGAGCGCGGCGGCGGCAGCTGAAGACCCGGCCGCCCAGATGA

TGCGGTGGTGGGGGACCTGCCGGCACGCGACTCCCCCCGGGCCCAAA 

CMV-1C 71 AAGCTAAGTTGTTTATCTCGGCTGCGGCGGGAACTGCGGACGGTGGCGGGCGAGCGGC

TCCTCTGCCAGAG 

CMV-1C 73 ACAAGCTAAGTTGTTTATCTCGGCTGCGGCGGGAACTGCGGACGGTGGCGGGCGAGCG

GCTCCTCTGCCAGAG 

CMV-1C 101 ATATTTCCCTCCTGCTCCTTCTGCGTTCACAAGCTAAGTTGTTTATCTCGGCTGCGGCGG

GAACTGCGGACGGTGGCGGGCGAGCGGCTCCTCTGCCAGAG 

CMV-1C 479 GGCGCCGCCTCCACCCGCTCCCCGCTCGGTCCCGCTCGCTCGCCCAGGCCGGGCTGCC

CTTTCGCGTGTCCGCGCTCTCTTCCCTCCGCCGCCGCCTCCTCCATTTTGCGAGCTCGTG

TCTGTGACGGGAGCCCGAGTCACCGCCTGCCCGTCGGGGACGGATTCTGTGGGTGGAA

GGAGACGCCGCAGCCGGAGCGGCCGAAGCAGCTGGGACCGGGACGGGGCACGCGCGC

CCGGAACCTCGACCCGCGGAGCCCGGCGCGGGGCGGAGGGCTGGCTTGTCAGCTGGG

CAATGGGAGACTTTCTTAAATAGGGGCTCTCCCCCCACCCATGGAGAAAGGGGCGGCTG

TTTACTTCCTTTTTTTAGAAAAAAAAAATATATTTCCCTCCTGCTCCTTCTGCGTTCACAAG
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2.3.6. RNA Structure Prediction 

The free energy released on RNA folding (∆G) and the resultant secondary structure of the complete NR3C1 

transcripts and of the individual 5′UTRs were calculated using the online RNAfold algorithm 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)201. Default settings were used for all predictions. 

2.3.7.  Minigene Design & Plasmid Construction 

The plasmids were constructed as previously described 164.  Briefly, all constructs contained a first exon 

variant 1A3, 1B or 1C (Table 3), followed by exon 2 till 8 (NM_000176.2; nt 480-2 673) and the genomic 

sequence of exon 9α and the corresponding introns (NCBI36/hg18 release March 2006, chr5: 142 637 665 – 

142 642 326). A total of 10 different length constructs were prepared. All inserts were synthesized (Genecust, 

Dudelange, Luxembourg) and subsequently cloned into pcDNA3.1 (-) (Life Technologies, Merelbeke, Belgium). 

2.3.8. Western Blot 

GR protein isoform quantification was performed as previously described 164. Briefly, A549 cells were 

transfected with 500ng DNA using Lipofectamine LTX (Life Technologies) twenty-four hours post-seeding.  Total 

proteins were extracted forty-eight hours post transfection, separated on 4-12% Bis-Tris ZOOMTM gels (Life 

Technologies) and immunoblotted with primary rabbit-α-GR antibody (P20 clone , epitope within aa 720-769 of 

the hGRα; Santa Cruz Biotechnologies, Heidelberg, Germany) and Cy5-labelled secondary antibody (GE 

Healthcare). After washing, mouse anti-β actin (anti-β-actin, Santa Cruz Biotechnologies) probing and 

secondary goat-anti-mouse Cy3 antibody (GE Healthcare) incubation, the immunoreactive bands on the 

membrane were read using the Typhoon 9400 imager (GE Healthcare) at excitation wavelength 633nm and 

532nm for Cy5 and Cy3 respectively (PMT= 480V; scanning resolution= 50 µm). Band intensities were 

quantified using ImageJ (NIH, Bethesda, MD, USA) and normalized according to β-actin. Variance was 

determined with One-Way or Two-Way ANOVAs (Sigmaplot 12.3), pairwise comparisons were performed with 

the Student-Newman-Keuls test and p<0,05 were considered significant. 

2.4. Results 

2.4.1. 5’-RACE Library Sequencing 

Library Preparation and Sequencing Quality To investigate the variability in TSS usage of the ADRB2R and 

NR3C1 gene, RNA ligase mediated rapid amplification of 5’ cDNA ends (5’-RACE) was adapted to massively 

CTAAGTTGTTTATCTCGGCTGCGGCGGGAACTGCGGACGGTGGCGGGCGAGCGGCTCC

TCTGCCAGAG 

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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parallel sequencing as outlined in Figure 5C and 5D. Ion Sphere loading densities (ISP) of ~68% were observed, 

corresponding to > 7.4 x 105 reads and > 4.4 x 106 reads for ABRB2R libraries on 314 and 316 chips 

respectively. Removing polyclonal reads reduced the numbers of reads to 3.6 x 105 and 3.2 x 106 reads 

respectively. NR3C1 libraries had ISP densities of ~60% with > 3.7 x 106 reads per 316 chip. These were 

reduced to 2.3 x 106 after removal of ~23-24% polyclonal reads. Sequence quality, assessed by PHRED values, 

for both genes was unaffected by the 5’-RACE library preparation. PHRED values were >25 and fell below the 

acceptable quality threshold of a PHRED score of 20 only after 200nt, as expected from the Ion PGM 200 

Sequencing Kit. In all multiplex ADRB2R and NR3C1 sequencing data sets, reads were equally distributed over 

the different MIDs. To identify m7G-capped TSSs, only 5’ oligo-labelled sequences were analysed. Oligo 

selection and trimming produced data sets of 170000 to 800000 reads and 193727 to 378859 reads for the GR 

and ADRB2R gene that were retained as labelled TSSs. Because of the shearing step in the library preparation, 

on average only 40% of these reads (89 000 to 350 000 reads) contained a labelled 5’ TSS. However, 97% 

(186608 to 366431) of these 5’ TSS reads were successfully mapped against the GR or the ADRB2R gene 

region. Overall, the aligned reads corresponded to respectively 22% to 65% and 69% to 95% of the initial reads 

per sample. All raw and aligned sequencing data are available on the European Nucleotide Archive (ENA) of 

the EMBL-EBI under accession number PRJEB9064. 

GC Content Does not Influence Sequencing. The ADRB2R and the NR3C1 differ significantly in their 5’ G+C 

content. This resulted in a somewhat lower loading efficiency (range 52% to 68%) for the NR3C1 with the higher 

G+C content than the ADRB2R (range 59% to 74%) with the lower G+C content. The sequence quality of both 

genes was similar, with only slightly higher PHRED values for ADRB2R (>28) than for NR3C1 (>25). Thus the 

difference in CG content did not seem to affect the sequencing quality. 

Sequencing Artefacts do not Perturb TSS Identification. Analysis of the HTS reads revealed no substitutions 

in either the TSSs of the ADRB2R gene (0.187 x 106 sequences/21.9 x 106 total nt sequenced) or the NR3C1 

gene (0.258 x 106 sequences/50.2 x 106 total nt sequenced). As expected for Ion Torrent sequencing, however, 

the rate of insertions and deletions (indels) was high. We observed a 6% indel rate (0.05 insertions per total nt 

sequenced and 0.005 deletions per total nt sequenced) for ADRB2R and 2.20% for NR3C1 (0.007 insertions 

per total nt sequenced and 0.004 deletions per total nt sequenced). Importantly, none of these indels were 

observed in the TSS region, i.e. in the 3’ end of the RNA oligo or in the nt immediately downstream of the TSS. 

The TSSs were also checked for homopolymers. Only one of the 21 most important differentially expressed 

TSSs identified in the NR3C1 was part of a two nt homopolymer. The ADRB2R gene had no homopolymer in 

its first exon region. Thus neither substitution, nor indels or homopolymers compromised TSS identification.  
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The Alignment Method does not affect the TSS Identification. Since the TopHat alignment algorithm is 

relatively strict, sequences with sequencing errors and indels may have been excluded from the aligned data 

sets. Therefore, the analysis was repeated using Geneious with less restrictive parameters and the alignment 

of each sequence was manually verified. The Geneious and TopHat alignments, both mapped similar read 

numbers (309 739 sequences, 99.76% versus 308 341 sequences, 99.31%) against the ABRB2R reference 

sequence and both approaches identified the same TSSs with virtually identical frequencies (Fig. 8A-B). Both 

methods selected 7 TSSs: two thirds (64% to 67%) of the reads started at nt position 33, irrespective of the 

alignment method, One third (range 31.40% to 31.64%) of the reads started at nt position 32. Read numbers 

Figure 8: The mono-exonic ADRB2R shows transcriptional microvariability around one locus. (A) Frequency of 

reads aligned to individual TSSs using TopHat (   ) and a manual approach (   ). (B) The number of TSSs shared 

between data sets aligned using TopHat and the manual approach. Numbers in brackets are the frequency (%). 

(D) Bar plot representing the frequency (%) of reads aligned per TSS for three biological replicates. Replicate 1 

(   ); Replicate 2 (   ); Replicate 3 (   ) (E) The number of TSSs shared between the biological replicates and the 

frequency of reads (%) per HTS run corresponding to these TSSs.166 



Chapter 2 

35 

  

starting at nt 31 and 34 accounted for less than 3%. Percentages of reads with TSSs at nt 30, 35 and 39 were 

<0.10%, and may represent the error rate in TSS identification. Therefore, a cut-off of <0.10% was applied for 

all subsequent runs to validate TSSs. As there was virtually no difference in mapping results between the 2 

methods, TopHat was used in all subsequent analyses. 

Sequencing Depth Requirements. In addition, to determine the read depth necessary to identify valid TSSs, 

technical triplicates of the NR3C1 in DAUDI cells were performed on 314 and 316 chips, either in simplex or 

multiplex format, with similar loading and mapping values (Fig. 6). Despite generating different read numbers 

for the different HTS conditions, the TSSs pattern between the technical replicates was conserved (Fig. 6and 

9). On average 97% of the sequences per replicate run target one of the 103 shared TSSs. Fewer than 4 TSSs 

were common to only 2 of the replicates, and none had unique TSSs (Fig. 9). These data suggest that for the 

3kbp variable NR3C1 TSS region, a total number of oligo-labelled reads equal to 50x the length of the variable 

region, is adequate to detect microvariable TSSs. 

2.4.2. The Mono-Exonic ADRB2R Gene shows Biological Microvariability around One 

Transcriptional Locus 

Analysis of a series of biological replicates revealed that 99.79% (±0.4) of the mRNA sequences used one 

of 5 consecutive nt (31 to 35) within the published sequence (Fig. 8C). The relative TSS frequencies were 

Figure 9: The proximal NR3C1 CpG 

island TSSs used in three DAUDI 

technical replicates are plotted, showing 

common and unique TSSs. The number 

of TSSs shared between DAUDI 

technical replicates (numbers in 

parentheses are the % of total labelled 

5’TSSs.166 (Supplementary Data) 
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essentially identical between replicates (Fig. 8D). TSS 35 usage was minimal (range 0.02% to 0.14%) and was 

therefore excluded as a valid TSS. The TSSs 30 and 39, mentioned in the previous section, were excluded as 

valid TSSs, after the application of the 0.10% cut-off. We conclude that the ADRB2R microvariability is limited 

to 4 nt around a single TSS locus. 

2.4.3. The NR3C1 TSSs are Highly Variable 

The NR3C1 5’ UTR of different cell lines and after different cell treatments were sequenced using the same 

protocol as for ADRB2R. Sequencing libraries were made from templates covering a region from the oligo-

labelled TSSs to the start of the common exon 2. The oligo-labelled TSS reads were successfully aligned by 

TopHat to the NR3C1. Each of the 9 NR3C1 first exons showed a remarkable TSS variability, but all 

microvariants used the previously published 3’ splice donor sites (Fig. 5B). For example, in the biological 

replicates of A549 cells, we identified 123 to 128 TSSs, of which 96 were shared between replicates. The 96 

shared TSSs accounted for ~77% of the reads per run (Fig. 10A -B). About ~17% of the reads used 27 to 32 

unique TSSs, accounting each for 0.11% to 4.39% of the total reads per TSS. The remaining ~6% of the reads 

correspond to TSSs below the 0.10% cut-off and represent the intrinsic identification error rate. The TSSs were 

distributed in multiple loci per exon throughout the CpG island (Fig. 10A). Each cluster, or locus, consisted of a 

series of adjacent TSSs, that we term microvariability.  For example, exon 1F was previously reported to be 62 

nt long, starting at -3208 and ending -3146 162. We observed a series of shorter 1F exons, with two clusters of 

transcriptional loci around TSSs -3205 ±4bp and -3170 ±4bp all sharing the -3536 splice donor site (Fig. 10C). 

Exon 1B, with a length of 104 nt (-3640 to -3536), had 24 shorter forms all sharing the common splice donor 

site at -3146 (Fig. 10D) 202 and 11 TSSs immediately upstream of the TSS reported in the literature161,162. Similar 

trends including multiple microvariable transcriptional loci per exon were also observed for the regions 

corresponding to the other CpG island exons (1C, 1D, 1E, 1H and 1J) and the distal exons (1A and 1I) (Fig. 11-

14). Some of the TSSs observed here, were located within a region immediately upstream of the ATG translation 

initiation codon in exon 2, and interestingly even downstream of the ATG, but still within exon 2. In general, our 

alternative TSSs were shorter than previously reported 161,162, although, for instance locus B4 and B5 were 

upstream of the previously identified TSS (Fig. 10D). Both the TSSs used and their variability, were reproducibly 

cell line dependent. This pattern of reproducible microvariability around multiple transcriptional loci between 

biological replicates was also observed for MCF-7 and T cells (Fig. 15-16).  
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Figure 10: Microvariable TSS distribution throughout NR3C1 (A) The proximal NR3C1 CpG island TSSs used in two 

A549 biological replicates are plotted showing common and unique TSSs. The NR3C1 TSSs on both axes are annotated 

with respect to the ATG (±1) translation initiation codon in exon 2. Data points adjacent to the x- and y-axes are unique 

to the respective replicates. (B) The number of TSSs shared between A549 biological replicates (numbers in 

parentheses are the % of total oligo-labelled 5’ TSSs). (C) Detailed TSS usage pattern for the four cell lines and three 

treatment condition for exon 1F. (D) Detailed TSS usage pattern for the four cell lines and three treatment condition for 

exon 1B. Published exon 1F and 1B locations (Turner and Muller 2005162) are shown as a grey arrow, on the left of the 

heatmap. The TSS usage is expressed as the log value of the percentage of TSS expression for specific exon, by colour 

[0.01% (blue) to 100% (yellow)] of the heatmap. 
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Figure 11: Detailed TSS usage pattern for the four cell lines and three treatment condition for exon 

1A and 1I. Published exon locations (Breslin et al, 2001160; Turner and Muller 2005162; Presul et al, 

2007161) are shown as a grey arrow, on the left. TSS usage is expressed by colour 0.1% (blue) to 

100% (yellow)] logarithmically as the percentage of exon specific transcripts. (Supplementary Data)166 
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Figure 12: Detailed TSS usage pattern for the four cell lines and three treatment condition for exon 

1D and 1J. Published exon locations (Turner and Muller 2005162) are shown as a grey arrow, on the 

left. TSS usage is expressed by colour 0.1% (blue) to 100% (yellow)] logarithmically as the 

percentage of exon specific transcripts.166 (Supplementary Data) 
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Figure 13: Detailed TSS usage pattern for the four cell lines and three treatment condition for exon 1E and 1H. 

Published exon locations (Turner and Muller 2005162) are shown as a grey arrow, on the left. TSS usage is 

expressed by colour 0.1% (blue) to 100% (yellow)] logarithmically as the percentage of exon specific 

transcripts.166 (Supplementary Data) 
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Figure 14: Detailed TSS usage pattern for the four cell lines 

and three treatment condition for exon 1C. Published exon 

locations (Turner and Muller 2005162) are shown as a grey 

arrow, on the left. TSS usage is expressed by colour 0.1% 

(blue) to 100% (yellow)] logarithmically as the percentage of 

exon specific transcripts.166 (Supplementary Data) 
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2.4.4. TSS Expression Profiles are Cell Line Specific 

In total we observed 262 discrete TSSs throughout the proximal and distal promoter for the 4 cell lines 

aggregated (A549, MCF-7, T-cells and DAUDI) (Fig. 16B and D). 66 of these were common to all cell lines and 

other were shared with at least one other cell line. Each cell line had a small population of unique TSSs (range 

6 to 43 TSSs). Pairwise analysis of the 4 cell lines, revealed between 134 and 196 TSSs that were differentially 

Figure 15: Microvariable TSS distribution throughout the NR3C1. (A) The proximal NR3C1 CpG island TSSs used in two 

MCF-7 biological replicates are plotted showing common and unique TSSs. The NR3C1 TSSs on both axes are annotated 

with respect to the ATG (±1) translation initiation codon in exon 2. (B) The number of TSSs shared between MCF-7 

biological replicates (numbers in parentheses are the % of total labelled 5’ TSSs). (C) The proximal NR3C1 CpG island 

TSSs used in two T-cells biological replicates are plotted showing common and unique TSSs. The NR3C1 TSSs on both 

axes are annotated with respect to the ATG (±1) translation initiation codon in exon 2. (D) The number of TSSs shared 

between T-cells biological replicates (numbers in parentheses are the % of total labelled 5’ TSSs).166 
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expressed per comparison (Fig. 16A). Some of these differential TSSs were unique to one cell line, while others 

were used in several cell lines at similar or different levels. For example, 125 TSSs were shared by both MCF-

7 and A549 cells (Fig 16A and D), while 9 were uniquely expressed in MCF-7 and were not seen in any other 

cell lines. 71 TSSs were solely expressed in A549 and not in MCF-7. 28 of these were also found in other cell 

lines, leaving 43 TSSs unique to A549 cells. Hierarchical clustering identified the 30 TSSs that most strongly 

discriminated between the cell lines (Fig. 16B and C). Many of these could be related to transcriptional loci 

observed for exon 1B and 1F (Fig. 10C-D). When the read frequencies were taken into account, a smaller group 

of 8 TSSs emerged, which clearly discriminated between the different cell lines (A549, MCF-7, T-cells and 

DAUDI) (Fig. 16B). The above 8 TSSs were also the most conspicuous within the dendrogram (Fig. 16C). The 

TSSs 17 and -18 were T cells specific, TSSs -5, -13, -3642 (locus B4) and -33855 were DAUDI cell specific and 

TSSs -3172 (locus F1) and -2443 (locus C23.4) differentiated best between MCF-7 and the A549 cell line 

respectively. Except TSSs 17 and -33855, these characteristic TSSs were located within the proximal promoter. 

TSSs -5, -13, -18 and 17 were located within exon 2. The first three were situated upstream and the latter 

downstream of the ATG translation initiation codon in exon 2. The TSSs -2443, -3172 and -3642 correspond to 

exons 1C, 1F and 1B in the proximal promoter region. TSS -33855 corresponds to exon 1A in the distal promoter 

region. The remaining differentially expressed TSSs also differed between cell lines, yet, in a much less obvious 

way. 
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2.4.5.  DAUDI Cells have Highly Variable Biological Replicates 

In contrast to other cell lines, the TSS selection patterns in DAUDI cells were less consistent, even in multiple 

biological replicates (Fig. 17). The DAUDI cell line, a Human Burkitt’s lymphoma cell line that reliably expresses 

the distant 1A exon, selected TSSs in both the distal and proximal promoter regions. 

To assess the importance of read depth and determine potential sources of biological variability from 

technical variability, technical triplicates of the NR3C1 in DAUDI cells were sequenced on respectively 314, 316 

and multiplexed 316 chips with different MIDs. Resulting in respectively 61 807, 2 338 506 and 639 608 reads 

per run. After applying the 0.10% cut-off, 103 TSS, which corresponded to 97.14% to 98.09% of all reads, were 

shared between all replicates (Fig. 9). As expected, differential expression analysis did not identify any 

discriminating or run-specific TSS expression profile. Hereby, indicating that the error induced by differences in 

Figure 16: Differential expression of TSSs between multiple cell lines. (A) Pairwise comparisons of normalised read 

counts for all cell lines. The coloured dots (•) represent the significantly differentially expressed TSSs between 2 cell 

lines, the black dots (•) represent TSSs that are not differentially expressed between 2 cell lines. Significance was 

considered for an adjusted p-value of 0.05 after performing the NOISeq proportion test (35) (B) Expression of the 30 

most discriminatory TSSs between the different cell lines, as a percentage of the total oligo-labelled TSSs. (C) 

Hierarchical clustering of the 30 most discriminatory differentially expressed TSSs. (D) The number of unique and 

common differentially expressed TSSs for the four cell lines. 166 
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MIDs, adaptors, PCR cycles and Ion Torrent chips was only minimal and confirmed the biological origin of the 

variability in the DAUDI cells.  

Figure 17: The proximal NR3C1 CpG island TSSs used in two DAUDI biological replicates are plotted 

showing common and unique TSSs and their frequencies. The NR3C1 TSSs on the horizontal axis are 

annotated with respect to the ATG (±1) translation initiation codon in exon 2. The number of TSSs shared 

between DAUDI biological replicates (numbers in parentheses are the % of total labelled 5’ TSSs).166 

(Supplementary Data) 
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Figure 18: Microvariable TSS distribution throughout the NR3C1 under different treatment 

conditions (A) Reproducibility of TSS identification in DAUDI cells after dexamethasone stimulation. 

The region covered corresponds to both the distal and proximal promoter regions of NR3C1. (B) 

The number of TSSs shared between the two dexamethasone stimulation replicates. (C) The 

proximal NR3C1 CpG island TSSs used in two IFN-γ treated DAUDI biological replicates are plotted 

showing common and unique TSSs. The NR3C1 TSSs on both axes are annotated with respect to 

the ATG (±1) translation initiation codon in exon 2. (D) The number of TSSs shared between the 

IFN-γ treated DAUDI biological replicates. (E) The proximal NR3C1 CpG island TSSs used in two 

AZA10 treated DAUDI biological replicates are plotted showing common and unique TSSs. The 

NR3C1 TSSs on both axes are annotated with respect to the ATG (±1) translation initiation codon 

in exon 2. (F) The number of TSSs shared between the AZA10 treated DAUDI biological replicates. 

(numbers in parentheses are the % of total oligo-labelled 5’ TSSs).166 (Panel C-F: Supplementary 

Data) 

E. F. 
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2.4.6. Environmental Conditions Influence the TSS Pattern 

To examine the effect of transcriptional stimuli on TSS microvariability, the transcriptionally variable DAUDI 

cells were exposed to IFN-Ɣ, Dex or AZA. These treatments markedly reduced the TSS variability observed in 

unstimulated DAUDI cells. TSS selection patterns became reproducible between biological replicates, but 

differed between treatments. When exposed to Dex, DAUDI cell replicates targeted 98 to 105 TSSs, of which 

84 were shared between replicates. The 84 shared TSSs accounted for ~85% of the reads per run (Fig. 18A-

B). As for the experiments above with stable unstimulated MCF-7, A549 and T cells, each run also selected a 

small number of unique TSSs (range 14 to 21), but these correspond to no more than 11.49% of the reads and 

less than 3% of the total reads per TSS. The remaining ~4% of the reads were below the 0.1% cut-off and 

represent the error rate intrinsic to our 5’ labelling technique. Although the majority of the TSSs were located 

within the proximal promoter region, a smaller number of TSSs were found in the distal NR3C1 promoter region 

(Fig. 18A). Similar results were observed for DAUDI cells exposed to IFN-Ɣ or AZA (Fig. 18C-F).  

In total we observed 234 discrete TSSs throughout the proximal and distal promoter region for the 4 

treatments aggregated (Fig. 196B and D). 75 of these were common to all treatments and other were shared 

with at least one other treatment. Each treatment had a small population of unique TSSs (range 9 to 12 TSSs). 

Pairwise analysis of the different treatments, revealed between 127 and 179 TSSs that were differentially 

expressed per comparison (Fig. 19A). Similar to the comparison between cell lines, some of these differential 

TSSs were unique to one treatment, while others were used in several treatments at similar or different levels. 

For example, 140 TSSs were shared by both Dex and IFN-Ɣ stimulations (Fig. 19A and D), while 28 and 39 

TSSs were solely expressed after Dex or IFN-Ɣ treatment respectively. 17 of the 28 TSSs induced by Dex were 

also found in other treatments, leaving 11 TSSs unique to Dex. Similarly, 27 of the 39 TSSs induced by IFN-Ɣ 

were also associated with other treatments, leaving 11 TSSs unique to IFN-Ɣ. Hierarchical clustering identified 

28 TSSs that most strongly discriminated between treatments (Fig. 19B and C). Many could be related to 

transcriptional loci observed in exon 1B and 1F (Fig. 10C-D). When the read frequencies were taken into 

account, a small group of 6 TSSs emerged, which clearly discriminated between the different treatments (Fig. 

19B). The above 6 TSSs were also the most conspicuous within the dendrogram (Fig. 19C). The TSSs -5 and 

-13 were specific to untreated DAUDI cells, TSSs -1 and -2 were DAUDI cells + AZA specific and TSSs -2443 

(locus C23.4) and -33855 differentiated best between IFN-Ɣ and Dex treatments respectively. TSSs -1, -2, -5, 

and -13 were situated in exon 2, upstream of its ATG translation initiation codon. The TSS -2443 (locus C23.4) 

corresponds to exon 1C in the proximal promoter region and TSS -33855 corresponds to exon 1A3 in the distal 

promoter region. The remaining differentially expressed TSSs also differentiated between different stimulations, 
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yet, in a much less obvious way. As in our comparison of resting cell lines, we observed transcriptional 

microvariability around the same loci for the DAUDI cells exposed to either IFN-, AZA or Dex. Although, 

transcription microvariability was observed to occur in the same loci as unstimulated cells, the differential 

expression pattern, i.e. the pattern of TSSs within each locus, was treatment specific. 

  

Figure 19: Differential expression of TSSs between untreated, dexamethasone, Interferon-ɣ and 5-AZA-2’-

deoxcytidine exposed DAUDI cells. (A) Pairwise comparisons of normalised read counts for all cell lines. Only 

valid TSSs with a frequency above 0.1% of the total reads were included. The coloured dots (•) represent the 

significantly differentially expressed TSSs between cell treatment conditions, the black dots (•) represent TSSs 

that are not non-differentially expressed between treatments. Significance was considered for an adjusted p-

value of 0.05 after performing the NOISeq proportion test (35) (B) Heatmap of the 30 most discriminatory TSSs 

between the different treatment conditions, expressed on a logarithmic scale. (C) Hierarchical clustering of the 

30 most discriminatory differentially expressed TSSs. (D) The number of unique and common differentially 

expressed TSSs between the different treatment conditions untreated, dexamethasone, Interferon-ɣ and 5-AZA-

2’-deoxcytidine.166 
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2.4.7. Translational Efficiency Assay 

To investigate the functional consequence of NR3C1 microvariability, we constructed a series of 14 

plasmids. Each plasmid contained a first exon variant from of 1A3, 1B or 1C, immediately upstream of a 

luciferase coding sequence. The first exon microvariants were either (i) full length 1st exon sequences as 

reported in the literature 161,162, (ii) a sequence starting from a TSS observed within a few nt of the literature start 

site until the end (e.g. 1B 105 bp and 107 bp), (iii) a sequence from TSSs mid first exon until the end (e.g. 1B 

73 bp or 1C 71 bp and 73 bp) or (iv) a sequence  starting from TSSs close to the 3’ end of the first exon to the 

end of the exon (e.g. 1A3 94 bp and 1B 53bp). Luciferase assays were performed to evaluate the translational 

efficiency of the different 5’UTRs (Fig. 20D). The translation efficiency per exon decreased with the increase of 

construct’s length. Translation efficiency of the 1B microvariability variants (highlighted in figure 20D) was much 

lower than the 1A3 and 1C variants. In all cases there was a considerable effect of the observed transcriptional 

microvariability on the efficiency of luciferase production (Fig. 20A-C). The highest luciferase signal was 

observed for the 94 bp long exon 1A3 with a 75 fold increase (q =4.65) compared to the full length 1st exon 

sequences as reported in the literature 161,162. Exon 1C (73bp) and exon 1B (107bp) showed the highest 

luciferase signal of any of the exon 1C and 1B constructs, with a 5-fold (q = 4.32) and a 2-fold increase (q = 

2.40) respectively. Aside from the 1B constructs, that did not show any significant effect in luciferase activity, 

our observations were compatible with our prior report of shorter sequences having a higher activity 164. 

Accordingly, only small differences in activity were observed between transcripts of similar length, i.e. with 

neighbouring TSSs, e.g. 1C 71 bp versus 73 bp (q = 1.44) and 1A3 160 bp versus 164 bp (q = 1.807). The 

luciferase signal relative to the full length of the 1st exon was in general higher for the exons 1A3 transcriptional 

variants. The signals measured for exon 1C variants were only slightly higher compared to those of exon 1B 

variants. Although one could assess the previously published full length exons 1A3 and 1C, respectively 981nt 

and 479nt, as outliers (Fig. 20D), removing them maintained the negative correlation and resulted in a steeper 

slope. Overall, translation efficiency increased as 5’ UTR length decreased, irrespective of the alternative first 

exon. 
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Figure 20: Translational efficiency and mRNA stability for exon 1A, 1B and 1C. (A) The luciferase activity of three 

replicates per 1A3 construct for different construct lengths. The first construct being the original. The luciferase state 

of the different constructs was normalised to the luciferase activity of the original full length exons (11) (B) The 

luciferase activity of three replicates per 1B construct for different construct lengths. The first construct being the 

original. The luciferase state of the different constructs was normalised to the luciferase activity of the original full length 

exons (11) (C) The luciferase activity of three replicates per 1C construct for different construct lengths. The first 

construct being the original. The luciferase state of the different constructs was normalised to the luciferase activity of 

the original full length exons (11). (D) Translational efficiency values from luciferase are plotted in function of their 

5’UTR length expressed in base pairs (bp), presenting a linear decrease in efficiency as the length increases. Exon 

1B variant with a lower translation efficiency/nt are circled, and the marked 1C and 1A3 datapoints are the full length 

literature sequences (20, 40). (E) The free energy of folding (∆G/nt) for 1A3 microvariable sequences calculated per 

nucleotide (1A3:    ; 1B:    ; 1C:    ) constructs. (F) The mRNA length in function of the free folding energy of the mRNA 

(∆G) (1A3:     ; 1B:     ; 1C:     ). Data in panels A-D are mean ± SD. 166 
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2.4.8. NR3C1-Transcript Secondary RNA Structure is Influenced by the 5’UTR Length 

Secondary structures of full length mature mRNA sequences of NR3C1-α transcripts were modelled using 

the program RNAfold 201. The NR3C1-α transcripts for exon 1A3, 1B and 1C all induce a similar folding. Overall 

there was a strong negative correlation between the total ΔG and the mRNA length irrespective of its location 

within the CpG island (r=-0.76) (Fig. 20E). However, as would be expected based on the similarity of their 

sequences, microvariable sequences clearly cluster by exon. Within these populations the trend was even more 

pronounced (r=-0.99, r=-0.99, r=-0.99). The free energy per nucleotide (ΔG/nt), being a better indicator of the 

secondary mRNA structure stability, was anticipated to be similar between the 3 exon NR3C1 transcripts. The 

ΔG/nt values range from -0.2824 to -0.2786 for all 3 exon transcripts (Fig. 20F). The ΔG/nt of NR3C1 1A3 

transcripts are slightly higher than those of the NR3C1 1B and 1C transcripts, indicating that the 1A3 transcripts 

are probably slightly less stable than the 107nt long 1B exon construct or the 1C constructs. For NR3C1 1C 

transcripts the ΔG/nt does not change with mRNA length, for the other exon microvariants, it is always the 

smallest mRNA variant that has the highest ΔG/nt. However, all of these differences are minimal, therefore we 

would assume that the differences in stability are minimal.  

2.4.9. 5′UTRs Influence the Relative GR Protein Isoform Distribution  

To investigate the role of alternative 5′UTRs in translational start site selection, ten microvariable constructs 

covering the two constitutive 162 and the upstream distal first exon were made. The TSSs covered locus 142 

814 191, 142 814 257, 142 814 261 and 142 814 277 for 1A3, 142 783 994, 142 784 014 and 142 784 048 for 

1B and  142 782 847, 142 782 849 and 142 782 877 for 1C. Forty-eight hours post transfection all microvariable 

constructs showed significant differences in the distribution of N-terminal isoforms on Western blots (Fig. 21-

22). The most abundant N-isoform for all constructs was GR-A (Fig.21A and 22). For 1A3 and 1C constructs, 

the GR-A isoform represented 50% of the total NR3C1 (range 41% to 65% and 42% to 64% respectively) and 

GR-D represented approximately 19% (range 12% to 36% and 8% to 39% respectively). For the 1B 

microvariants the GR-A levels were lower, but GR-D levels higher. Taking all the microvariable constructs 

together, there was a statistical significant transcript variant*protein isoform interaction (DF=39, F=3.6, p-

value<0.001, Two-Way ANOVA). This transcript variant*protein isoform interaction was maintained when exon 

microvariants were treated independently. Detailed examination of the 1A3 variant (DF=12, F=9.064, p-

value<0.001, Two-Way ANOVA, Fig. 21A) showed that in the subsequent Student-Newman-Keuls’ pairwise 

comparison (Fig. 21B) there was a significant difference in the level of GR-A for the different microvariable 

constructs, as well as GR-D and GR-B. The expression of each protein isoform was heavily influenced by the 

transcript length (Fig. 21B). GR-A levels from the 1A3 94nt variant were  
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Figure 21: The microvariable TSSs influence the relative abundance of N-terminal protein issoforms and the 

evolutionary conservation of this region. (A) Areaplot for 1A3 microvariable constructs, indicating the shift of isoform 

levels according to the construct length. Two-Way ANOVA (DF=12, F=9.064, p<0.01). (B) Pairwise comparison of 

relative protein levels. Student-Newman Keuls P-values are expressed by grey scale [0.01 (white) to 1 (black)]. (C) 

The phylogenetic p-value of a specific nucleotide position is plotted in function of the TSS frequency measured at that 

specific location. (D) The relative frequency distribution for respectively the distal promoter (    ), proximal promoter (   ) 

and exon 2 region (   ) in function of the PhyloP conservation value. Negative values indicate higher evolution rates, 

positive values indicate higher conservation rates and zero equal a neutral position concerning evolution rates. (E) For 

exon 1F and the region before, the in silico phylogenetic footprinting sites (38) the TSS frequencies were plotted against 

one another.166 
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significantly higher from the other 4 mRNA microvariants (Fig. 21B). The published 1A3 variant (1A3 mini) 

has significant higher GR-D expression levels compared to all shorter microvariants, additionally its GR-C 

expression level was significantly lower compared to the 1A3 180nt variant (Fig. 21B). Hence, the considerable 

differences in translational efficiency amongst the alternative NR3C1-transcripts suggests that the 5’UTR 

variability, and thus TSS microvariability, is involved in the modulation of transcript isoform levels and 

consequently in protein isoform levels.  

2.4.10. Evolutionary Analysis of NR3C1 

The relative conservation of both the variable upstream promoter regions and the conserved NR3C1 

encoding regions were visually investigated from the UCSC 100 vertebrate phyloP conservation data (Fig. 21 

and 23). Conservation values within exon 2 are higher and more constant than those in the distal and proximal 

promoter region, where the conservation pattern was more variable (Fig. 21 and 22). Within both the distal and 

proximal promoter region the microvariable TSSs did not coincide with regions of increased or decreased 

evolutionary conservation, but were randomly distributed. This observation was confirmed by plotting TSS 

usage against phyloP phylogenetic values (Fig. 21C), where no trend was detected. The bulk of the TSSs, 

irrespectively of their frequency, were centred within the phylogenetic p-value range from -2 till 2, suggesting 

that  irrespective of their frequency, most TSSs were relatively neutral concerning evolution rates, the 

conservation of these sites is not high, nor is their evolution rate. Throughout the distal and proximal promoter 

Figure 22: The microvariable TSSs influence the relative abundance of the N-terminal 

protein isoform. (A) Areaplot of 1B microvariable constructs, indicating the shift of isoform 

levels according to the construct length. (C) Areaplot of 1C microvariable constructs, 

indicating the shift of isoform levels according to the construct length.166 (Supplementary 

Data) 
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the phyloP conservation level was distributed around zero (Fig. 21D). Although the coding exon 2 has previously 

been reported to be highly conserved 203, this was not so. The transcription factor binding sites identified by in 

silico phylogenetic footprinting 200 did not coincide with nucleotide position of the differentially expressed TSSs 

(Fig. 21E). Overall it seems that the observed human TSS microvariability does not occur in regions that are 

evolutionary conserved, suggesting that the pattern of microvariable TSS usage may be species specific.  

2.5. Discussion 

Figure 23: Evolutionary conservation analysis of the NR3C1‘s 5’UTR using the UCSC browser. (A) 

The distal promoter region covering exon 1A. (B) The proximal promoter region containing the CpG 

island. (C) The end of the proximal promoter region and start of the common exon 2 (blue).166 

(Supplementary Data) 
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We detected a variability in TSS location that has so far received little attention and that appears to be due 

to a highly permissive transcriptional machinery. The combination of 5’ mRNA cap labelling and HTS enabled 

us to identify clusters of TSSs (loci) consisting of 4-10 adjacent microvariable TSSs. The simple mono-exonic 

ADR2BR utilised a single locus consisting of 4 adjacent TSSs. The multi-promoter NR3C1 gene targeted 358 

TSSs distributed throughout 38 contiguous loci. We observed TSSs with frequencies from 6.74 x 10-4 % to 

38.5% of the total 5’ m7G transcripts. This expands previous reports from ourselves and others of multiple 

alternative first exons that temporally, spatially, and quantitatively regulate mRNA levels and isoforms 

153,162,164,182,183,204–206, suggesting an almost unlimited transcriptional variability. This transcriptional 

microvariability had a significant effect on the relative abundance of the final NR3C1 N-terminal translational 

isoforms. 

The experimental protocol was carefully designed to exclude other potential interpretation of these HTS 

results. Albeit mRNA extraction and 5’ labelling were performed in the presence of RNase inhibitors, it would 

be conceivable that the 5’ m7G cap and adjacent nt may have been removed by residual RNase activity leading 

to an apparent ragged TSS pattern. This potential artefact was essentially excluded by the RNA oligo ligation 

strategy. First, CIP dephosphorylation removed all active 5’ mono-phosphates from truncated or otherwise 

degraded mRNA as well as all other RNAs, leaving only intact capped mRNA unaffected. Subsequently, TAP 

pyrophosphatase treatment hydrolyses the pyrophosphate bonds in the m7G cap triphosphate bridge leaving 

only mature, undegraded mRNAs with a 5’ mono-phosphate that is available for oligo ligation 188–190. Thus the 

combination of CIP and TAP exclusively labels 5’ m7G capped sequences 207. The enzymatic mechanisms of 

both enzymes are well known from their high resolution crystal structures. The latter studies clearly 

demonstrated RNA binding and formally exclude exonuclease or phosphodiesterase activity 208. Indeed, 5’-

RACE is a well-established technique and incorrect identification of the 5’ m7G capped TSSs has not been 

previously reported 188–190,207,209,210. To further reduce the possibility of artefacts due to high sequencing depth, 

we introduced a 0.1% cut-off to define a genuine TSS. This corresponds to the point of inflection on the 

frequency/cut-off curve, the point where the phases of the linear regression intersect, above which the numbers 

of identified TSSs did not significantly decrease (Fig. 24).  
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Additionally, our experimental protocol was also designed to minimise any potential ligation bias. Both RNA 

and DNA ligases exhibit intrinsic sequence preferences, particularly with respect to the 3’ end of the ligated 3’-

5’ pair 211–217. By using a common RNA or DNA oligo with a constant 3’ end, we effectively minimised the ligation 

bias within- and between- samples. Yet sample-specific MID usage, ligating a variable 3’ end to the common 5’ 

Figure 24: (A) The total number of identified TSSs from the NR3C1 proximal 

CpG island are plotted as a function of the cut-off value (%) used to define a 

genuine TSS. Data are from A549 biological triplicates. (B) The number of 

unique replicate specific TSSs from the NR3C1 proximal CpG island are 

plotted as a function of the cut-off value (%) used to define a genuine TSS. 

Data are from A549 biological triplicates. (Run 1,   ; Run 2, x ; Run 3:   )166 

(Supplementary Data) 



Chapter 2 

57 

  

end of the template, would still cause ligase induced bias to affect multiplex sequencing experiments 211,213,215. 

Hence, sequencing one sample using different MIDs should not result in varying TSS usage profiles because 

of the common RNA-oligo (Fig. 5C-D), but rather in limited differences in overall relative read numbers because 

of biased efficiencies during library preparation 211,212. Both ADRB2R and NR3C1 data sets were screened for 

ligation bias. When samples were run repeatedly with different MID sequences, no discriminating or run-specific 

TSS expression profiles were detected. Therefore, we conclude that errors introduced during the sample 

preparations are minimal and below our 0.1% cut-off. Furthermore, comparisons of sequencing replicates 

allowed us to distinguish between the low technical variability and high biological variability observed in 

unstimulated DAUDI cells. Thus our judicious experimental set-up and control experiments demonstrated that 

the microvariability in TSS usage is a genuine biological phenomenon. Ragged 5’ends of mRNA transcripts so 

far have been reported in one keynote report in the case of the genes Postn, Myh3 and Fth1 (1) and recently 

the importance of alternative 5’ end mRNA for transcriptome and proteome diversity has gained attention 168,178. 

As such, TSS locations may be considered exact, however, the number of sequences at each position should 

be considered semi-quantitative, as the minimal bias introduced during the RACE PCR amplification cannot be 

quantified. HTS-RACE provides an accurate gene specific view of TSS location, and as such is complimentary 

to genome wide techniques such as CAGE 218, “gene identification signatures (GIS)” and “gene signature 

cloning (GSC)” 219. These genome-wide techniques cover the complete transcriptional landscape at a cost of 

several orders of magnitude more sequencing data, whilst HTS-RACE provides greater insight, due to the 

greater sequencing depth it permits for single, often weakly expressed genes, as well as allowing longer 

sequence tags than MmeI digestion 218. 

When our observations were compared to the previously published gene and mRNA structures, the simple 

mono-exonic gene ADRB2R had a small increase in complexity, from 1 TSS 184 to a locus of 4 adjacent TSSs. 

The multi-exonic NR3C1, however, displayed a ~30 fold increase in TSSs, going from 9 previously published 

TSSs 127,153,161–163,184,185 to 358 in 38 loci in the absence of any specific transcriptional stimuli. 66.7% of the newly 

identified NR3C1 TSSs were located within the proximal promoter, 16.1% corresponded to the distal promoter, 

with the remaining 17.2% situated within exon 2. Dex and IFN-Ɣ, both ligands of transcription factors activating 

the NR3C1 promoter further induced transcription from 1 new locus and 185 additional TSSs distributed 

throughout the promoter region, giving a ~40 fold overall increase in the number of NR3C1 TSSs. These TSSs 

are mostly located within loci utilised also in other cell lines. Thus transcription does not seem to be initiated at 

a well-defined, fixed, TSS, but their selection seems to move due to a more or less permissive transcription 

machinery. The effect of the transcription factor ligands Dex and IFN-Ɣ may suggest that the transcription factor 

complex determines the start site of the transcription. Steric effects of binding of transcription factor complexes 
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to the promoter DNA may perhaps be the simplest explanation for TSS microvariability. Although the 

microvariability may appear to be to some extent stochastic, we demonstrate that, in the case of NR3C1, it also 

regulates translation. There are several potential scenarios. When microvariable TSSs are upstream of the 

principal ATG translation initiation codon, the complete coding sequence (CDS) remains available in the mRNA 

and can be translated, without effect on the protein sequences (Fig. 25). Splicing to the subsequent exon was 

never affected and consistently performed to the common splice acceptor site. However, we observed for the 

NR3C1 that some TSSs were located downstream of the principal translation initiation codon in exon 2. These 

abridged mRNAs may produce N-terminally truncated protein isoforms from methionine-encoding ATG codons 

further downstream. Such truncated GR isoforms starting at alternative downstream translation initiation codons 

indeed exist, and are well known as GR-A, -B, -C and –D protein isoforms 171 Fig. 25). These internal translation 

initiation codons are available in the full length mRNA. In line with our previous study 164, where the alternative 

first exons altered mRNA folding stability, half-life, translation efficiency and protein isoform production in a 

length-dependent, but sequence-independent manner. We observed identical negative correlations for ∆G - 

mRNA length, ∆G – translational efficiency and mRNA length – translational efficiency to those in our previous 

report 164, suggesting that microvariability plays a similar role in the regulation of both transcript and protein 

levels. We were able to extend this, demonstrating that differences in TSS location of only a few nucleotides 

within a locus dramatically altered the fine balance between the different N-terminal GR isoforms. There are 

evermore reports of multiple active or alternative initiation codons within a mature mRNA, covering both leaky 

ribosome scanning and internal ribosome entry in plants 220,221 and mammals 222,223 as well as classical viral 

IRES. Given that internal ATG codons and methionines are ubiquitous224,225, we suggest that our observation 

may apply ubiquitously throughout the transcriptome and throughout evolution. The evolution speed of genes 

with complex 5’UTRs is negatively correlated with their expression level and is also dependent on functional 

specialisation of the genes. With a high intron density being one of the characteristics associated with a slower 

evolution rate 177,226. We examined the evolutionary conservation of the NR3C1 CpG island and distal promoter 

region. As would be expected the non-coding regions were less highly conserved than the coding regions in 

exon 2. Since the microvariable TSSs did not coincide with either evolutionary conserved transcription factor 

binding sites or more generally regions of high conservation we suggest that whilst TSS microvariability and its 

functional consequences are most likely identical between species, the actual TSSs selected will be species 

specific. These minor changes in TSS dramatically altering the protein isoforms produced and their function 

may underlay the vastly inflated proteome, significantly increasing the variability from the limited genome to the 

proteome 164,168,178–181. The microvariable transcription initiation is an additional mechanism in the spectrum of 

alternative transcription initiation mechanisms. 
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The demethylation agent AZA also had a profound effect on TSS usage. Complete de-methylation with AZA 

induced 12 specific TSSs and another 115 that were also observed for either Dex- or IFN-Ɣ- treated DAUDI 

cells or one of the other cell lines. One new locus was identified. In a similar manner to Dex and IFN- Ɣ treatment, 

demethylation will alter the balance between the different NR3C1 translational isoforms. Additionally, the vast 

increase in the overall number of TSSs raises doubts over the functional consequences of single CpG 

dinucleotide methylation for the regulation of NR3C1 expression 185,227–229. We would, however, anticipate that 

increased methylation levels over a larger cluster of CpG dinucleotides will influence total NR3C1 levels by 

silencing one or more loci, concordant with our observations of methylation clusters in several models 153,155. 

This raises the interesting hypothesis that the epigenetically controlled response to GC, as previously observed 

27,104,127,153,163,230 is due to DNA methylation influencing TSS usage and altering the balance between 

translational isoforms. There are examples of internal methionine encoding ATGs also serving as secondary 

translation initiation sites in many vertebrate, invertebrate and plant species 220–223, making them amendable to 

TSS microvariability induced differential translation initiation. 

Figure 25: Schematic representation of gene transcription and translation and how 
it is influenced by methylation. (A) Transcription process. Methylated CpG island 
stops the transcription factor (TF) from binding and blocks consequently the gene 
expression. (B) Translation process. Depending on where the transcription initiated 
the translation start codon within the mRNA differs. (Methylated:  ; Non-
Methylated:    )166 (Supplementary Data) 
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In conclusion, we suggest that our observations of permissive microvariable transcription may also be 

expanded to other genes since many possess a structure similar to the NR3C1 167,168,170,177,178,182,183,204,231,232. 

Our observations further suggest that TSS microvariability is not simply the result of a permissive transcription 

machinery, but rather a mechanism to fine-tune total protein levels via multiple mRNAs species that differ in 

stability and in some cases the relative distribution of protein isoforms. We showed that TSS usage can be 

influenced by transcription factor ligands. Similarly, DNA methylation seems to influence TSS selection, adding 

another mechanism by which covalent modifications of DNA can regulate gene expression to match 

physiological requirements.  
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3.1. Abstract 

Early life experiences cause life-long alterations in an individuals’ gene expression, which can affect their 

health later on in life. Exposing rat pups to maternal deprivation (MD) mimics traumatic early life experiences, 

and induces behavioural, immunological, as well as gene expression changes lifelong. Expanding on our 

previous report of increased Nr3c1 mRNA levels, complete 5mC and 5hmC epigenomes were obtained from 

the hippocampus of rats exposed to MD, handling (HD) or left undisturbed (C) in early life. The 5mC and 5hmC 

profiles displayed a high concordance between treatments and cytosine modifications. Overall MD or HD 

induced methylation changes were small, however 50 and 71 clearly defined regions featuring small but 

distinctive changes in 5mC and 5hmC levels respectively, of which the majority resided in intergenic regions. 

For stress-related genes including BDNF, AVP, CRH, NR4A1 and Igf2, differential methylation was observed 

>200kbp from the corresponding genomic loci. However, detailed examination of the region on Chr 18 

surrounding Nr3c1 identified 5 D(h)MRs located significantly further away, approximately 5.7Mbp downstream 

of the Nr3c1 locus. Overall, our data show that MD and HD induced epigenetic modifications in regulatory 

regions more than >200kbp from the closest annotated gene. However, differentially methylated regions 

appeared to be significantly closer to loci associated with piRNA transcripts. These piRNAs are short regulatory 

RNAs that have been previously associated with cellular homeostasis, phenotype change, and CNS variability 

and mosaicism important in the neuronal regulatory system. A gene ontology analysis of the functionally gene 

annotated D(h)MRs linked MD and HD induced methylation changes to the oxidative phosphorylation, purine 

metabolism, mitochondrial dysfunction pathways and Huntington’s disease. Our data shows that MD and HD 

induced clear differential methylation that was associated with regulatory RNAs rather than gene loci, and 

phenotype differences in our maternal handling model were most probably due to post-transcriptional processes 

rather than direct regulation of specific target genes. 
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3.2. Introduction 

Epigenetic modifications play a crucial role in orchestrating temporal, cell and tissue specific gene expression 

patterns during normal development and environmental adaptation 12,13,33,34,36,37,59,66,70,233. One of the best 

studied epigenetic modifications is DNA methylation (5-methylcytosine, 5mC), which consists of the addition of 

a methyl group to the cytosine in a palindromic CG dinucleotide, and is known to influences expression patterns 

through chromatin re-modelling, gene transcription regulation, maintenance of X-chromosome inactivation, 

gene imprinting and tissue-specific gene expression 13,33–38. Historically, 5mC levels were considered to be 

relatively stable throughout time, and in differentiated cells, demethylation was a passive process that was a 

direct consequence of the failure to maintain methylation levels during cell division. However the dynamic nature 

of DNA methylation coupled with active demethylation are now accepted 66–68. Although the exact function of 5-

hydroxymethylcytosine (5hmC) has not been elucidated fully, it is gaining acceptance that it marks the first step 

in DNA demethylation 36,70. the idea of 5hmC acting as an intermediate in an active enzymatic demethylation 

process gains more and more acceptance 36,37,66,69,70,234. 5hmC is generated by oxidation of 5mC by one of the 

ten-eleven translocation (TET) proteins 1-3. Which sequentially can be oxidised to either 5- formylcytosine (5fC) 

or 5-carboxylcytosine (5caC). The latter two can be disposed of via processes, either including a base excision 

or not 36,66,69. However, although 5hmC has been detected in nearly all tissues, it is particularly enriched in the 

central nervous system (CNS), where is thought to also be involved in active transcription of neuronal genes, 

and to have an impact on brain development 37,66,70.  

Differences in both 5mC and 5hmC generate phenotypic diversity and have been implicated in the onset of 

a broad spectrum of mental and physical disorders 12,62,70,233,235,236. For instance, early life experiences are 

known to cause life-long alterations in an individuals’ gene expression. This changes behavioural responses, 

the neural system and health later on in life, which coincides/is consistent with the developmental origin of health 

and disease (DOHAD) hypothesis 22,62,94,123,155,235,237. Although we are constantly influenced by the environment, 

there are several periods/windows of increased epigenetic sensitivity and susceptibility to environmental cues. 

Known sensitive periods are the embryonic and foetal development, postnatal period or early life, and 

adolescence 12,13,22,32,238. An important factor during early life, is the quality of parental care, known to affect 

mental health, brain function, and behaviour into adulthood, for both rats and humans 25,62,123. Predominant 

models for assessing early life social life’s impact, are the licking/grooming (LG) model and the maternal 

deprivation (MD) model in rats 25,62,104,123,155. The LG model uses natural differences in the quality of maternal 

care, i.e. the intensity in licking and grooming, and demonstrated that these differences affect the neural system, 

including functions such as stress response, which persists into adulthood 25,104,123. Offspring that experienced 
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poor maternal care, showed higher Nr3c1 methylation levels and an increased hypothalamic-pituitary -adrenal 

(HPA) response/reactivity towards environmental stress compared to offspring that received high maternal care 

62,104,233. The more-widely used MD model, where postnatal psychosocial stress is induced by daily separation 

of pups and dams for an extended time, installs long lasting behavioural effects, caused changes in the HPA 

axis and hence the stress reactivity 155,239,240. In mice for instance, MD induced DNA methylation changed in 

promoter regions of genes AVP, NR4A1 and Nr3c1. Three genes implicated in the HPA stress response circuit, 

hence altering the stress reactivity into adulthood 240. Breivik et al (2015) showed that maternal deprivation 

during early life affected the Nr3c1 expression in rat hippocampi and impacts behavioural and immune 

responses later on in life 155. 

Initial hypotheses assumed that the effect of early life experiences would mainly affect brain-specific genes 

62,233. The glucocorticoid receptor (NR3C1, Nr3c1, GR), a key player in the HPA axis negative feedback loop, 

has been intensively studied in the context of early life experiences, epigenetic mechanisms and phenotypic 

diversity resulting from it 25,104,123,127,155,241, often focussing on the gene’s promoter region. As extensively 

discussed in Leenen et al (2016) 242, NR3C1’s 5’UTR displayed an almost unlimited transcriptional variability. 

5’ UTR methylation pattern changes impacted transcription start site usage, and consequently reshaped the 

translational and proteomic landscape 242. Throughout the brain, NR3C1 promoter methylation and expression 

patterns were shown to be ubiquitous and consistent 105,127,243. Both patterns were individual specific, with the 

expression correlating to the overall CpG methylation pattern 127. Despite the main focus on the promoter region, 

DMRs were shown to be distributed non-randomly across the whole length of NR3C1, including intragenic 

regions or regions distantly located from transcription start sites 25,123. Research assessing differential 

methylation in NR3C1 in e.g. T-cells and cord blood suggested a system-wide response 62,233,235,244. A more 

wide-spread epigenetic programming via a network of genes is also supported by the 

discovery/presence/existence of additional genes such as BDNF and AVP, affected by maternal care 25,62,123,233. 

Therefore, in this study the Nr3c1 methylation analysis carried out in Breivik et al (2015) 155, was expanded 

using a genome-wide approach, enabling a deeper insight in the complex genome-wide response and how 

subtle methylation changes within such gene networks result in different phenotypes.  
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3.3. Material and Methods 

3.3.1. Animals & Maternal Deprivation Procedure 

Animal housing and the maternal deprivation procedure were previously reported 155,245. Briefly, from each 

litter, one or two rat pups were randomly and equally assigned to either the handling (HD), maternal deprivation 

(MD) or control (C) group (Fig. 26). Between postnatal day (PND) 2 and 14, HD and MD pups were removed 

from their mothers, for 15 minutes or 3 hours respectively at a fixed time every day. Control pups were left 

undisturbed. Terminal anaesthesia was performed at fourteen weeks of age with Hypnorm-Dormicum 

(fentanyl/fluanizone, midazolam; 0.2 ml/100g body weight) (Fig. 26).  

3.3.2. DNA Extraction and (Hydroxy)Methylated DNA Immunoprecipitation (MeDIP) 

Immediately after euthanasia, bilateral hippocampi were removed and genomic DNA (gDNA) extracted using 

the AllPrep® DNA/RNA Mini kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s instructions. DNA 

concentrations were measured using a NanoDrop Spectrophotometer (ND1000, Isogen Life Science, De 

Figure 26: A schematic representation of the Maternal Deprivation (MD) model, its workflow and the phenotypic outcomes. 
C: Control; HD: Handling; MD: Maternal Deprivation 
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Meern, The Netherlands). The 5-(h)mC changes were expected to be small. Detection of such small 

modifications benefits from low-variance data, which can be obtained by pooling multiple samples per group. 

According to the equation of the variance of the estimator of the true distribution mean 𝜃 = 1 𝑛𝑝⁄ ∗

((𝜎𝜀
2) 𝑟𝑠⁄ + (𝜎𝜉

2) 𝑟𝑎⁄ ) , with θ the true distribution mean, np the total number of pools, rs the number of samples 

per pool, ra the number of sequenced samples per pool, 𝜎𝜀
2 the biological variance and 𝜎𝜉

2 the technical variation, 

2 or more samples pooled cause a decrease in variance which leads in turn to an increase in power to identify 

differentially methylated regions 246–248. As such, extracted genomic DNA was pooled from all animals within the 

same treatment group. 

MeDIP-Seq was performed as previously described 61. Briefly, duplicate samples of 2.5µg of gDNA, diluted 

in 100µl TE buffer, were sonicated to an average length of 200-450bp (Bioruptor® UCD-200, Diagenode, Liège, 

Belgium). Fragment length and concentration were measured on a high sensitivity bioanalyser chip (Agilent 

Technologies, Diegem, Belgium). All samples were denatured (95°C for 10min, immediately on ice for 5min). 

Dynabeads (50µl; M-280 Sheep-anti-Mouse IgG, Invitrogen) were coated with either anti-5-methylcytosine 

(1µg/µl; clone 33D3, Eurogentec, Seraing, Belgium), or anti-5-hydroxymethylcytosine (1µg/µl, clone 4D9, 

Eurogentec) antibodies. Denatured DNA was incubated with antibody coated beads in a final volume of 100µl 

2x IP buffer (0.05% Triton in PBS, 50µg/ml Yeast tRNA, 1xPBS) for 16h25 at 4°C. Beads were washed twice 

with 200µl; 0.025% Triton in PBS, followed by two stringent washes using 200µl 0.05% Triton in 1x PBS. DNA 

was eluted from the beads, by incubating each sample with 7µl proteinase K (10mg/ml, QIAGEN, Venlo, 

Netherlands) in 200µl digestion buffer (50mM Tris, 10mM EDTA, 0.5%SDS, pH8) for 3hours at 50°C, while 

being shaken (1400rpm). Duplicate samples were pooled, purified by PEG8000 precipitation 

(Agencourt®AMPure® XP, Beckman Coulter, Belgium) and the recovered methylated DNA was stored at -20°C 

until further analysis. Single stranded immunoprecipitated DNA was quantified with a Qubit® ssDNA Assay Kits 

(Life Technologies) using a Qubit 2.0 Fluorometer (Life Technologies) according to the manufacturer’s 

instructions. 

3.3.3. MeDIP Library Preparation and Sequencing 

NGS libraries were prepared using the Accel-NGS® 1S Plus DNA library Kit for Illumina® Platforms (Swift 

Biosciences, MI, USA) according to the manufacturer’s instructions. Briefly, 20 µl (4 µg) fragmented and 

immunoprecipitated DNA was denatured by incubation at 95°C for 2 minutes, and immediately quenched on ice 

for 2 minutes. After denaturation, DNA was end repaired, 3’end tailed and a truncated adapter ligated to the 3’ 

end. Subsequently, the DNA was elongated, facilitating the ligation of a second truncated 5’ adapter. Index 

primers (I-IL1SP-12A, Swift Biosciences) were added by PCR using the supplied reagents. Cycling conditions 
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were 98°C for 30s, followed by 8 cycles of 98°C for 10s, 60°C for 30s and 68°C for 60s. The resulting libraries 

were stored at 4°C until sequencing. Library length distribution was assessed (Bioanalyzer, Agilent 

Technologies), and quantified (KAPA Library Quantification Kit for Illumina® platforms, KAPABIOSYSTEMS, 

Massachusetts, USA) prior to 2x125bp paired-end sequencing on an Illumina HiSeq 2500 using the HiSeq SBS 

V4 chemistry, multiplexed within a single lane by Genewiz (New Jersey, USA). Due to this balanced block 

sequencing, possible confounding factors due to batch or lane effects are eliminated 249. 

3.3.4. Bio-Informatics and Statistical Analyses 

The NGS sequencing reads were processed through the CASAVA (v1.8.2, Illumina) pipeline using default 

settings for standard Basecalling, primary data quality control, demultiplexing and fastq generation. Data were 

subsequently filtered for a minimum length of 50 nucleotides, and quality trimmed using cutadapt (v1.8.3) 250,251 

under default settings. The read quality of the resulting/cleaned fastq files was verified with FastQC (v0.11.4) 

251,252. Reads were aligned against the rat genome (RGSC 6.0/rn6) with Bowtie 2 (v2.1.0) 251,253 and SAMtools 

(v1.2) 251,254 using default settings. 

The mapped read distribution genome-wide was assessed using SeqMonk (v0.34.1, Babraham Institute), 

by segmenting the genome into 500nt wide windows with 250nt overlap. The read counts/segment were 

quantified and corrected for the total counts. The CpG and genomic context of the mapped reads were assessed 

with a custom Python script (Python v2.7, Stichting Mathematisch Centrum Amsterdam, The Netherlands) as 

previously described by Kirschner et al (2016) 255. Briefly, based on their CpG density the mapped reads were 

assigned to either CGI, shore, shelf or open sea. CGI’s were characterised as regions of a minimum of 200nt, 

a GC fraction > 0.5 and an CpG observed-to expected ratio > 0.6. This information and the CGI positions were 

obtained from the UCSC rn6 CpG Island database. Shores were regions up to 2kb from CGI’s, shelves were 

regions between 2 and 4kb of the CGI’s and open sea coincides with regions that are 4kb or further away from 

CGI’s. The genomic context was initially defined as enhancer, promoter, intra- and intergenic regions. A second 

stratification subdivided the promoter region into 5’UTR, 200bp upstream of TSS and 200-1500nt upstream of 

the TSS and, the intra-genic region into 1st exon, gene body and 3’ UTR. An Ensembl gene and transcript ID 

were assigned to each fragment. Repetitive elements were analysed with the RGSC 6.0/rn6 UCSC Repeat 

Masker database.  

5(h)mC profiles and differential (hydroxy)methylation (D(h)M) analyses were assessed with the Bioconductor 

package MEDIPS 256 (v1.20.1) in R (v 3.2.3.) 193, with a window size of 500nt, the minimum read coverage 

defined as 4% of the window size, extend all reads to a total length of 300nt, replacing stacked reads by one 

representative (uniq=1), and the paired reads parameter set to true. The MEDIPS profiling and differential 
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coverage was performed, assuming a negative binomial distribution, using the differential coverage calculation 

method edgeR at an adjusted p-value of 0.1 (Benjamini-Hochberg). MEDIPS bins the genome according to a 

fixed window size. To detect the best parameter settings for an optimal trade-off balance between resolution, 

and noise level and multiple testing burden, several window widths (100 to 900nt) and minimum coverage (1% 

to 10%) values were tested. The optimal results were observed for a window size of 500nt and a minimum read 

coverage of 4%, which were used for all subsequent D(h)M analyses. The 5mC and 5hmC profiles were 

visualised with the UCSC browser (https://genome-euro.ucsc.edu/). Each D(h)MR was assigned an Ensembl 

Gene ID, Entrez Gene ID or transcript ID when possible (Rnor_6.0, INSDC Assembly GCA_000001895.4). The 

CpG and genomic context of the D(h)MRs were assessed with a custom bash script that compared the D(h)MRs 

lists with the previously generated tables containing the CpG and genomic characteristics of the mapped reads. 

A functional analysis of all DMR containing genes was performed using Ingenuity Pathway Analysis (IPA, 

QIAGEN Redwood City, USA, www.qiagen.com/ingenuity) and DAVID (the Database for Annotation, 

Visualisation and Integrated Discovery) 257,258.  

https://genome-euro.ucsc.edu/
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Figure 27: Global methylome and hydroxymethylome comparison. (A) A segment trend plot 
depicting the log transformed accumulated read numbers pas a function of all segments ranging 
from the lowest to the highest covered percentile of all 3 groups, for both hydroxy- and  methylation. 
(B) Hierarchical clustering of the treatment groups. C) Infinium gene contexts annotation of the 
enriched (hydroxy)methylated DNA, sequenced, and aligned to the rat genome. (…), TSS1500; (   ) 
TSS200; (…) gene body; (   ) 5’UTR; (   ) 1st exon; (   ) 3′UTR; (   ) inter-genic region. Multiple 
annotations per fragment were possible. 

5mC 5hmC 
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3.4. Results 

3.4.1. Experimental Paradigm 

The animals used in these experiments have previously been reported 155. MD exposure from PND 2 to 14 

induced more severe periodontitis, a lower weight gain, a significant decrease in T-regulatory cytokines, an 

increased emotionality and anxiety-related behaviour towards novelty. HD exposed rats, on the other hand, only 

exhibited altered emotional and anxiety-related behaviours. These previous data also identified methylation 

differences in Nr3c1. HD exposed rats had increased methylation levels in for specific Nr3c1 regions, whereas 

the anticipated changes in methylation levels for MD exposed rats remained undetected. 

3.4.2. MeDIP-Sequencing 

Library Preparation and Sequencing: Genomic DNA was extracted from hippocampi of 21 rats, covering the 

C, HD and MD groups. Six to eight independent samples were pooled for each experimental group. After 

preparing sequencing libraries on these pooled DNAs, MeDIP libraries were multiplexed on an Illumina HiSeq 

2500. Sequencing yielded 63 309 702 to 130 364 176 raw reads (Table 4). Removal of low-quality and too-

short reads reduced read numbers by 1% - 8.5%, resulting in 62 577 420 to 118 998 876 cleaned reads per 

sample. Initial read analysis showed PHRED values >35 over the entire read and a nucleotide coverage skewed 

towards GC as expected for all libraries. Cleaned reads were aligned to the rat reference genome (rn6). The 

overall mapping value was 29.90, between 59 577 460 to 114 343 729 (~95%) successfully mapped reads 

(Table 4). This included 84.64% (52 367 792 to 93 239 635) unique mappings; 2.36% (1 502 520 to 2 732 723) 

singletons, and 0.27% (107 841 to 414 095) of MAPQ>5 pairs located on different chromosomes (Table 4). 

Cumulating the read counts over the different genome percentiles, resulted in 6 similar cumulative paths (Fig. 

27A). The paths were largely identical between the data sets, suggesting that no major technical or biological 

bias had been introduced. All raw and aligned sequencing data are available on the European Nucleotide 

Archive (ENA) of the EMBL-EBI under the accession number XX. 
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Table 4: Sequencing summary 

Identification of Methylated regions: window size and minimal coverage requirement: To balance resolution 

and noise against the multiple testing burden when assessing the (hydroxy)methylome using MEDIPS, a series 

of optimal window width and read coverage values were tested (Fig. 28-31). The D(h)MR number, as well as 

the windows to test, decreased for an increasing window width, stabilising for window widths ≥ 500nt (Fig. 28-

29). For a fixed window width, the D(h)MR number remained constant across the different read coverage values 

and the number of windows to test declined for increasing read coverage values (Fig. 30-31). The latter 

stabilised for read coverage values ≥ 4%. Subsequent methylation profiling and D(h)MR analyses were carried 

with a 500nt window and minimal coverage of 4%, which decreased the multiple testing burden, while 

maintaining enough sensitivity detecting small changes in 5(h)mC levels. 

Epigen

etic 

Modifi

cation 

Gro

up 

Raw 

read 

number 

Cleaned 

read 

number 

Mean 

PHRED 

score 

Mapped 

Reads 

Mean 

MAPQ 

Unique 

mappings 

Singleton

s 

mate 

mapped to 

a different 

chr 

(MAPQ>=5) 

5mC 

C 
98 581 

624 

91 026 104 

(92.34%) 
36 

87 495 523 

(96.12%) 
28.31 

71 274 856 

(81.46%) 

2 089 147 

(2.30%) 

318 126 

(0.35%) 

HD 
130 364 

176 

118 998 876 

(91.28%) 
36 

114 343 

729 

(96.09%) 

28.36 
93 239 635 

(81.54) 

2 732 723 

(2.30%) 

414 095 

(0.35%) 

MD 
75 319 

068 

70 164 228 

(93.16%) 
36 

67 457 583 

(96.14%) 
28.17 

54 850 791 

(81.31%) 

1 620 999 

(2.31%) 

236 744 

(0.34%) 

5hmC 

C 
65 372 

880 

64 725 026 

(99.01%) 
36 

61 674 105 

(95.29%) 
31.55 

54 193 115 

(87.87%) 

1 566 311 

(2.42%) 

132 284 

(0.20%) 

HD 
67 390 

058 

66 715 602 

(99.00%) 
36 

63 502 119 

(95.18%) 
31.47 

55 718 931 

(87.74%) 

1 637 625 

(2.45%) 

128 787 

(0.19%) 

MD 
63 309 

702 

62 577 420 

(98.84%) 
36 

59 577 460 

(95.21%) 
31.55 

52 367 792 

(87.90%) 

1 502 520 

(2.40%) 

107 841 

(0.17%) 
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Figure 28: MEDIPS parameter settings, balancing resolution and noise against the multiple testing burden, assessing the 
number of differentially methylated regions (DMR) in function of the optimal window width per read coverage category. (A) 
Handling-Maternal Deprivation comparison (B) Control-Handling comparison (C) Control –Maternal Deprivation 
comparison.10 reads (…); 1% (…); 2% (…); 4% (   ); 6% (…); 8% (    ); 10% (…).(Manuscript Supplementary Data). 
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Figure 29: MEDIPS parameter settings, balancing resolution and noise against the multiple testing burden, assessing the number 
of windows to test in function of the optimal window width per read coverage category. (A) Handling-Maternal Deprivation 
comparison (B) Control-Handling comparison (C) Control –Maternal Deprivation comparison. 10 reads (…); 1% (…); 2% (…); 4% 
(   ); 6% (…); 8% (   ); 10% (…). (Manuscript Supplementary Data). 
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Figure 30: MEDIPS parameter settings, balancing resolution and noise against the multiple testing burden, assessing the 
number of windows to test in function of the minimal read coverage per window width category. (A) Handling-Maternal 
Deprivatiopn comparison (B) Control-Handling comparison (C) Control –Maternal Deprivation comparison. 10 reads (…); 
1% (…); 2% (…); 4% (   ); 6% (…); 8% (   ); 10% (…). (Manuscript Supplementary Data). 
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Figure 31: MEDIPS parameter settings, balancing resolution and noise against the multiple testing burden, assessing the 
number of differentially methylated regions in function of the minimal read coverage per window width category. (A) 
Handling-Maternal Deprivatiopn comparison (B) Control-Handling comparison (C) Control –Maternal Deprivation 
comparison. 10 reads (…); 1% (…); 2% (…); 4% (   ); 6% (…); 8% (   ); 10% (…).(Manuscript Supplementary Data) 
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3.4.2 Genome-wide Distribution of (Hydroxy)Methylation 

Distribution patterns: 5mC and 5hmC profiles were analysed with a domainograph, which depicts the read 

density along the different chromosomes (Fig. 32). The read density across the genome was overall identical 

for the three experimental conditions, indicating that the same regions tended to be methylated or 

hydroxymethylated across treatments. Genome-wide visualisation of (hydroxy)methylation profiles in UCSC 

confirmed this observation. Across treatments and antibodies, the same genomic regions tend to be methylated 

or hydroxymethylated, which is to be expected seen their biological connection. Although the six groups 

displayed highly similar read density profiles, they were hierarchically clustered into two main fractions according 

to the antibody immunoprecipitation performed (Fig. 27B). Within the 5mC cluster, C and MD displayed more 

similarity than the HD group. For the 5hmC branch, HD and MD were more closely associated compared to C. 

Hence, suggesting that despite their similarity, differences detected in 5hmC profiles across treatments were 

much smaller than for the 5mC profiles (Fig. 27B). 

Distribution throughout the genome: Similarly to the read dispersion described in Su et al 2016, 259 the reads 

cover regions genome-wide, i.e. regions within all chromosomes. As expected, 5mC or 5hmC 

immunoprecipitated regions were identified from their higher sequencings depths. Analysing the read 

distribution across different CG rich regions showed that the majority of the reads, for both 5mC and 5hmC, 

were located within the intergenic regions (65.58%; 34 894 856–66 856 958 fragments), followed by the gene 

body (33.03%; 18 457 776–30 524 836 fragments) (Fig. 27C). Only a smaller fraction of the reads aligned to 

5’UTRs (3.19%; 1 807 078-2 990 388 fragments), 3’UTRs (1.47%; 776 421-1 287 506 fragments), 1st exon 

regions (0.49%; 269 792- 482 005 fragments) and regions located 1500 to 200nt (TSS 1500; 1.18%; 670 818-

1 108 231fragments) and up to 200nt (TSS 200; 0.07%; 36 029-70 783 fragments) upstream of TSSs 

respectively. The lowest coverage was detected for the TSS 200 regions (Fig. 27C).  
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Figure 32: Genome-wide domainograph depicting the absolute number of reads per segment along the 
chromosomes, from zero (white) to multiple segments (dark blue), for the three different treatment groups ( C, HD 
and MD), for both 5mC and 5hmC. 
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Cross-Reactivity: To study the methylation and hydroxymethylation pattern genome-wide and the impact of 

early life experiences on such patterns, DNA was immunoprecipitated with either anti-5-methylcytosine or anti-

5-hydroxymethylcytosine antibody, two antibodies targeting very similar molecular structures. Previous data 

suggests that both antibodies exhibit a high target sensitivity and specificity55,236,260,261. In our initial analysis, we 

identified approximately 5 million enriched genomic regions for both 5mC and 5hmC in all three experimental 

conditions (Fig. 33). As expected, many of the 5mC and 5hmC enriched windows overlapped, 97.3%, 97.9% 

and 97.0% of 5mC and 5hmC immunoprecipitated regions were shared within the three groups respectively 

(Fig. 33A-C). Although approximately 97.4% of the regions coincided for methylation and hydroxymethylation, 

numerous windows were unique for either 5mC or 5hmC. The C group revealed 70 637 (1.3%) unique 5mC 

and 70 587 (1.3%) unique 5hmC enriched windows (Fig. 33A), 66 970 (1.3%) and 42 904 (0.8%) were unique 

for 5mC and 5hmC respectively under HD conditions (Fig. 33B), and MD displayed 58 553 (1.1%) and 100 492 

(1.9%) unique 5mC and 5hmC enriched regions respectively (Fig. 33C). This was visualised by the UCSC 

genome-wide visualisation. Estimates of the 5mC and 5hmC levels of representative regions from the rat 

genome are shown in figures 33D and 33E, which display enrichment for 5mC, 5hmC or both. As such, our 

observations suggested/confirmed that antibody cross-reactivity was minimal or non-existent, as shown in 

previous studies55,236,260,261. 
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Figure 33: Overall comparison of the methylome and hydroxymethylome within groups. (A) The windows shared between 
the methylome and hydroxymethylome for the controls (C) (B) The windows shared between the methylome and 
hydroxymethylome for the handling group (HD). (C) The windows shared between the methylome and hydroxymethylome 
for the maternal deprivation group (MD). (D) A close-up UCSC browser view of the 5mC and 5hmC profile of the C, HD and 
MD group in chromosome 17, pinpointing a region exhibiting DNA methylation but no hydroxymethylation (E) A close-up 
UCSC browser view of the 5mC and 5hmC profile of the C, HD and MD group in chromosome 15, pinpointing a region 
exhibiting DNA hydroxymethylation but no methylation. 
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3.4.3. Group Differences in Distribution 

5mC: Of the 5.7 x 106 windows the genome was divided in, 404 346 (7.0%) windows did not show any 

methylation presence in any of the three groups (Fig. 34A). 5 336 528 (93.0%) windows appeared to be 

methylated in at least one of the three conditions, of which 5 134 031 (89.4%) were shared by all three, 74 410 

(1.3%) by the C and HD group, 44 725 (0.8%) by the HD and MD group and 18 249 (0.3%) by the C and MD 

group (Fig. 34A). 18 724 (0.3%), 32 112 (0.6%) and 14 277 (0.2%) methylated windows were unique for the C, 

HD and MD group respectively (Fig. 34A). Figure 34C shows representative regions from the rat genome within 

chromosome 1, where the 5mC peaks slightly differ in form and 5mC height. 

5hmC: 5hmC data was similar to 5mC. Approximately 7.2% of the windows analysed (413 248) did not 

exhibit any sign of hydroxymethylation in any of the three groups (Fig. 34B). Of the 5 327 624 (92.8%) windows 

displaying 5hMC, the majority (5 159 826; 89.9%) was shared by all treatments, 37 405 (0.7%) windows were 

shared by the C and HD group, 43 734 (0.8%) by the HD and MD group and 31 376 (0.5%) by the C and MD 

group (Fig. 34B). A small number of windows was unique for each treatment group, 16 755 (0.3%) for C, 20 

245 (0.4%) for HD and 18 283 (0.3%) for MD group (Fig. 34B). Figure 34D shows representative regions from 

the rat genome within chromosome 13, which display small differences in 5hmC level between the 3 treatment 

groups. 

3.4.4. Differential Methylation Identification 

The 5 (h)mC profiling of the three groups clearly showed that despite significant similarity, there were small 

differences in 5(h)mC distribution. To test for differential coverage, 5(h)mC levels were compared between two 

conditions using MEDIPS. The detected D(h)MRs were verified and validated by quality control plots visualising 

their characteristics, such as QQ-, volcano and Manhattan plots, under the null distribution, which assumed 

there were no differential 5(h)mC levels. 
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5mC: QQ-plots displayed distributions deviant from the null distribution, with an enrichment of small p-values 

as compared to the expected p-values (Fig. 35A and 36A-B). Indicating that although the majority of windows’ 

5mC levels did not differ significantly between groups, a small number of windows did. The volcano and 

Manhattan plots strengthened these observations (Fig. 35B-C and 36C-F). The former displayed approximately 

symmetrical shapes [range (-3.5,3.5)] (Fig. 35B and 36C-D). The fold change or 5mC difference between HD 

and MD is not significant for the majority of genomic windows (Fig. 35B). Only, a small subset, coloured in red, 

Figure 34: Overall comparison of the methylome and hydroxymethylome profiles between groups. (A) The methylated 
windows shared between the three groups (B) The hydroxymethylated windows shared between the three groups (C) A 
close-up UCSC browser view of the 5mC profiles of the C, HD and MD group in chromosome 1 displaying subtle differences 
in methylation level. (E) A close-up UCSC browser view of the 5hmC profiles of the C, HD and MD group in chromosome 1 
displaying subtle differences in hydroxymethylation level. C. Control; HD: Handling; MD: Maternal Deprivation. 
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displayed significant small fold changes between both groups. Some larger fold changes were observed, yet 

were not significant. Hence, implying significant differences between HD and MD concerned mainly genomic 

windows with small 5mC levels shifts. Similar trends/patterns were also observed for C-HD and C-MD 

comparisons (Fig. 36C-D). Both comparisons also displayed a few larger significant 5mC level shifts. The 

Manhattan plots enabled a genome-wide overview of differential windows (Fig. 35C and 36E-F). Most genomic 

windows presented large p-values for the HD-MD comparison (Fig. 35C). Yet chromosome 1, 3, 7, 13 and M 

displayed peaks in some regions, indicating the presence of neighbouring windows with small p-values. The C-

HD and C-MD Manhattan plot showed similar trends, with peaks observed in chromosomes 1, 3, 5, 7, 13, 20 

and M, and chromosomes 1, 3, 5, 7, 13, 20 and M respectively (Fig. 36E-F).  

  

Figure 35: The detection and verification of differences in DNA methylation levels between the treatment groups. (A) A QQ-
plot, depicting the observed log values in function of the expected log values for the HM comparison (B) A volcano plot 
depicting the statistical significance in function of the magnitude of the differences in DNA methylation between HD and MD. 
(C) A manhattan plot demonstrating the distribution of the DMRs for HM across the rat genome. (D) The DMRs shared 
between treatment group comparisons. (E) The genomic context of the DMRs. C. Control; HD: Handling; MD: Maternal 
Deprivation; CH: control-handling comparison; CM: control-maternal deprivation comparison; HM: handling-maternal 
deprivation comparison. (…) Intergenic; (   ) Gene body; (…) unknown. 
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Table 5: The differentially methylated regions (DMR) for the 3 different group comparisons. For each DMR the exact position, 
the region width and the methylation change is given. The change describes the change in 5mC of the first group compared 
to the second group. C: control group, HD: handling group, MD: maternal deprivation group. *clone-based; red text: piRNA 
(Manuscript Supplementary Data). 

Chro

moso

me 

Start Stop 
Widt

h 

Gene Annotation (Ensembl or Gene Entrez ID) 

 

 

 

C

h

a

n

g

e 

Methylation: C - HD 

chr5 6 374 001 6 375 000 1 000 ENSRNOG00000058589*,ENSRNOG00000058268* 

l

o

s

s 

chr5 127 472 001 127 472 500 500 

ENSRNOG00000015519, ENSRNOG00000012778, 

ENSRNOG00000012724,ENSRNOG00000012443, 

ENSRNOG00000056199, ENSRNOG00000011644 

chr2

0 
19 484 001 19 484 500 500 

ENSRNOG00000000275, ENSRNOG00000001387, 

AABR07044752,1 

chrM 2 001 4 000 2 000 ENSRNOG00000031780.1*, ENSRNOG00000030478.3*, 

ENSRNOG00000029171.3*, ENSRNOG00000043866*, 

ENSRNOG00000032112*, ENSRNOG00000030644, 

ENSRNOG00000029301*, ENSRNOG00000033545*, 

ENSRNOG00000032274*,ENSRNOG00000031033, 

ENSRNOG00000029677*, ENSRNOG00000033932*, 

ENSRNOG00000032609*, ENSRNOG00000031333*, 

ENSRNOG00000029954*, ENSRNOG00000034234, 

ENSRNOG00000032882*, ENSRNOG00000031685*, 

ENSRNOG00000030371, ENSRNOG00000029070*, 

ENSRNOG00000033299, ENSRNOG00000031979, 

ENSRNOG00000030700, ENSRNOG00000029389*, 

ENSRNOG00000033615, ENSRNOG00000032320*, 

ENSRNOG00000031053, ENSRNOG00000029707, 

ENSRNOG00000033957*, ENSRNOG00000032578*, 

ENSRNOG00000031667*, ENSRNOG00000029971, 

ENSRNOG00000029042, ENSRNOG00000032997*, 

ENSRNOG00000031766, ENSRNOG00000030339*, 

ENSRNOG00000029145* 

chrM 5 501 16 500 
11 

000 

chrX 32 445 501 32 446 000 500 ENSRNOG00000038686, ENSRNOG00000004120 

chrX 33 815 001 33 815 500 500 
ENSRNOG00000038654, ENSRNOG00000001387, 

ENSRNOG00000061508 

chr1 180 644 001 180 647 000 3 000 

only mRNA's: DQ620752 
G

a

i

n 

chr1 180 806 001 180 807 500 1 500 

chr1 180 808 001 180 810 000 2 000 

chr1 180 893 001 180 894 000 1 000 

chr1 180 896 001 180 896 500 500 

chr1 273 631 501 273 632 000 500 
ENSRNOG00000012084, ENSRNOG00000031381, 

ENSRNOG00000056862 

chr3 41 001 42 500 1 500 ENSRNOG00000058456* 

chr7 22 324 001 22 324 500 500 
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chr7 22 328 001 22 329 500 1 500 
only mRNA'S: DQ610624, DQ627099, DQ738923, DQ625003, 

DQ606303, DQ614554, DQ759772 

chr7 101 696 001 101 696 500 500 
only mRNA’s: DQ765923, DQ615970, DQ614391, DQ753126, 

DQ622619, DQ753126 

chr1

3 
33 502 001 33 505 500 3 500 

- 
chr1

3 
33 508 001 33 508 500 500 

chr2

0 
27 461 501 27 464 000 2 500 

100910945, ENSRNOG00000000277, ENSRNOG00000042916 
chr2

0 
27 471 501 27 473 000 1 500 

chr2

0 
27 474 501 27 475 500 1 000 

Methylation: C – MD 

chr1 
180 644 

001 
180 647 000 3 000 

only mRNA's: DQ620752 
l

o

s

s 

chr1 
180 808 

001 
180 808 500 500 

chr1 
180 893 

001 
180 893 500 500 

chr7 22 328 001 22 329 500 1 500 
only mRNA's: DQ610624, DQ627099, DQ738923, DQ625003, 

DQ606303, DQ614554, DQ759772 

chr13 33 503 501 33 505 500 2 000 
- 

chr13 33 508 001 33 509 000 1 000 

chr14 76 850 501 76 851 000 500 - 

g

a

i

n 

Methylation: HD – MD 

chr1 30 985 001 30 986 500 1 500 
ENSRNOG00000011622, ENSRNOG00000054753*, 

ENSRNOG00000042309, ENSRNOG00000012324 

l

o

s

s 

chr1 
180 644 

001 
180 647 000 3 000 

only mRNA's: DQ620752 

chr1 
180 703 

001 
180 706 500 3 500 

chr1 
180 805 

501 
180 810 000 4 500 

chr1 
180 808 

001 
180 810 000 2 000 

chr1 
180 858 

001 
180 858 500 500 

chr1 
180 881 

501 
180 882 000 500 

chr1 
180 893 

001 
180 894 000 1 000 
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chr1 
180 896 

001 
180 897 500 1 500 

chr2 49 364 001 49 365 000 1 000 ENSRNOG00000046657 

chr3 41 001 42 500 1 500 ENSRNOG00000058456* 

chr7 22 323 001 22 324 500 1 500 only mRNA's: DQ610624, DQ627099, DQ738923, DQ625003, 

DQ614554, DQ759772 chr7 22 327 001 22 329 500 2 500 

chr12 3 350 501 3 351 500 1 000 
ENSRNOG00000053067*, ENSRNOG00000054841*, 

ENSRNOG00000061869* 

chr13 33 502 001 33 506 000 4 000 
- 

chr13 33 508 001 33 509 000 1 000 

chr19 150 44 501 15 045 500 1 000 

367515, ENSRNOG00000046163, ENSRNOG00000057497*, 

ENSRNOG00000052015*,291863,ENSRNOG00000015519, 

ENSRNOG00000015438, ENSRNOG00000015438,501233, 

ENSRNOG00000015438 

chr20 27 462 501 27 463 500 1 000 

100910945, ENSRNOG00000000277, ENSRNOG00000042916 chr20 27 471 501 27 472 500 1 000 

chr20 27 474 501 27 475 500 1 000 

chr20 46 083 501 46 084 500 1 000 
ENSRNOG00000000312, ENSRNOG00000059699*, 

ENSRNOG00000037688*, ENSRNOG00000000308 

chr20 19 483 501 19 484 500 1 000 
ENSRNOG00000000275, ENSRNOG00000001387, 

ENSRNOG00000055901* 

g

a

i

n 

chrM 2 501 5 500 3 000 ENSRNOG00000031780.1*, ENSRNOG00000030478.3*, 

ENSRNOG00000029171.3*,ENSRNOG00000043866*, 

ENSRNOG00000032112*, ENSRNOG00000030644, 

ENSRNOG00000029301*, ENSRNOG00000033545*, 

ENSRNOG00000032274*, ENSRNOG00000031033, 

ENSRNOG00000029677*, ENSRNOG00000033932*, 

ENSRNOG00000032609*, ENSRNOG00000031333*, 

ENSRNOG00000029954*, ENSRNOG00000034234, 

ENSRNOG00000032882*, ENSRNOG00000031685*, 

ENSRNOG00000030371, ENSRNOG00000029070*, 

ENSRNOG00000033299, ENSRNOG00000031979, 

ENSRNOG00000030700, ENSRNOG00000029389*, 

ENSRNOG00000033615,  ENSRNOG00000032320*, 

ENSRNOG00000031053, ENSRNOG00000029707, 

ENSRNOG00000033957*, ENSRNOG00000032578*, 

ENSRNOG00000031667*, ENSRNOG00000029971, 

ENSRNOG00000029042, ENSRNOG00000032997*, 

ENSRNOG00000031766, ENSRNOG00000030339*, 

ENSRNOG00000029145* 

chrM 7 501 9 000 1 500 

chrM 10 001 11 000 1 000 

chrM 11 501 12 000 500 

chrM 13 001 16 000 3 000 
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MEDIPS identified a total of 177 windows where the methylation level changed significantly across the 

different treatments (Fig. 35D; Table 5). The majority of those were detected for HD-MD, with 86 windows 

compared to the 73 and 18 windows for C-HD and C-MD respectively. Adjacent differentially methylated 

Figure 36: The detection and verification of differences in DNA methylation levels between the treatment 
groups. A QQ-plot, depicting the observed log values in function of the expected log values for the (A) CH 
and (B) CM comparison. A volcano plot depicting the statistical significance in function of the magnitude of 
the differences in DNA methylation between (C) and HD, (D) C and MD. A manhattan plot demonstrating 
the distribution of the DMRs across the rat genome for (E) CH and (F) CM respectively. C. Control; HD: 
Handling; MD: Maternal Deprivation; CH: control-handling comparison; CM: control-maternal deprivation 
comparison; HM: handling-maternal deprivation comparison (Manuscript Supplementary Data). 
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windows were merged into a larger DMR whenever possible. After merging a total of 50 DMRs were identified 

(Fig. 35D). Comparing HD to MD identified 27 (merged) DMRs, 21 unique DMRs, 1 shared with all group 

comparisons, 4 shared with C-HD and 1 with C-MD (Fig. 35D). The majority of the DMRs was located in 

intergenic regions (67.86%; 38 DMR), a small number coincided with the gene body (16.07%; 9 DMRs) or was 

unknown (16.07%, 9 DMR) (Fig. 35E). Except for the C-MD comparison, where all detected DMRs coincided 

with the intergenic region (7 DMRs). When comparing HD to MD, 21 DMRs exhibited upregulated 5mC levels 

(Table 5). C-HD detected 24 DMRs, of which 15 were upregulated in C (Fig. 35D; Table 5). Only 7 DMRs were 

detected for C-MD, with 6 out of 7 downregulated for C (Fig. 35D; Table 5). 

Figure 37: The detection and verification of differences in DNA hydroxymethylation levels between the treatment 
groups. (A) A QQ-plot, depicting the observed log values in function of the expected log values for the HM comparison 
(B) A volcano plot depicting the statistical significance in function of the magnitude of the differences in DNA 
hydroxymethylation between HD and MD. (C) A manhattan plot demonstrating the distribution of the DhMRs for HM 
across the rat genome. (D) The DhMRs shared between treatment group comparisons. C. Control; HD: Handling; 
MD: Maternal Deprivation; CH: control-handling comparison; CM: control-maternal deprivation comparison; HM: 
handling-maternal deprivation comparison. (E) The genomic context of the DMRs. C. Control; HD: Handling; MD: 
Maternal Deprivation; CH: control-handling comparison; CM: control-maternal deprivation comparison; HM: handling-
maternal deprivation comparison. (   ) TSS1500; (   ) Gene body; (   ) Intergenic; (    ) unknown.  



 

Table 6: The differentially hydroxymethylated regions (hDMR) for the 3 different group comparisons. For each hDMR the 
exact position, the region width and the methylation change is given. The change describes the change in 5hmC of the first 
group compared to the second group. C: control group, HD: handling group, MD: maternal deprivation group. *clone-based; 
red text: piRNA (Manuscript Supplementary Data). 

Chro

mos

ome 

Start Stop 
Widt

h 
Gene Annotation (Ensembl or Gene Entrez ID) 

C

h

a

n

g

e 

Hydroxymethylation: C - HD 

chr1 180 644 001 180 647 000 3 000 

only mRNA's: DQ620752, AY539949, DQ732421 

l

o

s

s 

chr1 180 703 001 180 706 500 3 500 

chr1 180 719 001 180 720 000 1 000 

chr1 180 805 001 180 805 500 500 

chr1 180 806 001 180 809 500 3 500 

chr1 180 858 001 180 859 000 1 000 

chr1 180 884 001 180 884 500 500 

chr1 180 893 001 180 894 000 1 000 

chr1 180 896 501 180 898 500 2 000 

chr1 180 899 501 180 900 500 1 000 

chr1 181 014 501 181 015 000 500 

chr1 181 186 001 181 186 500 500 

chr1 181 198 501 181 200 000 1 500 

chr1 181 286 501 181 287 500 1 000 

chr3 133 567 001 133 567 500 500 ENSRNOG00000047802* 

chr3 133 993 001 133 993 500 500 

ENSRNOG00000060762* 
chr3 133 995 501 133 997 000 1 500 

chr3 133 999 001 134 000 000 1 000 

chr3 134 021 001 134 021 500 500 

chr7 22 323 001 22 324 500 1 500 only mRNA's: DQ610624, DQ627099, DQ738923, DQ625003, 

DQ606303, DQ614554, DQ759772 chr7 22 326 501 22 329 000 2 500 

chr1

2 
3 350 001 3 353 000 3 000 

ENSRNOG00000053067*, ENSRNOG00000054841*, 

ENSRNOG00000061869* 

chr1

2 
3 355 001 3 356 000 1 000 

chr1

2 
3 356 501 3 357 000 500 

chr1

3 
33 485 501 33 486 000 500 

- 

chr1

3 
33 502 001 33 506 000 4 000 

chr1

3 
33 508 001 33 509 500 1 500 

chr1

3 
33 529 001 33 529 500 500 

chr1

3 
33 571 001 33 571 500 500 
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chr1

3 
33 593 001 33 594 000 1 000 

chr1

7 
44 391 001 44 391 500 500 ENSRNOG00000056731 

chr1

8 
38 414 501 38 417 500 3 000 

ENSRNOG00000039260 
chr1

8 
38 497 501 38 498 500 1 000 

chr2

0 
40 882 501 40 883 000 500 ENSRNOG00000000815 

chrM 2 001 2 500 500 

ENSRNOG00000031780.1*, ENSRNOG00000030478.3*, 

ENSRNOG00000029171.3*,ENSRNOG00000043866*, 

ENSRNOG00000032112*, ENSRNOG00000030644, 

ENSRNOG00000029301*, ENSRNOG00000033545*, 

ENSRNOG00000032274*, ENSRNOG00000031033, 

ENSRNOG00000029677*, ENSRNOG00000033932*, 

ENSRNOG00000032609*, ENSRNOG00000031333*, 

ENSRNOG00000029954*, ENSRNOG00000034234, 

ENSRNOG00000032882*, ENSRNOG00000031685*, 

ENSRNOG00000030371, ENSRNOG00000029070*, 

ENSRNOG00000033299, ENSRNOG00000031979, 

ENSRNOG00000030700, ENSRNOG00000029389*, 

ENSRNOG00000033615,  ENSRNOG00000032320*, 

ENSRNOG00000031053, ENSRNOG00000029707, 

ENSRNOG00000033957*, ENSRNOG00000032578*, 

ENSRNOG00000031667*, ENSRNOG00000029971, 

ENSRNOG00000029042, ENSRNOG00000032997*, 

ENSRNOG00000031766, ENSRNOG00000030339*, 

ENSRNOG00000029145* 

chr1 81 982 501 81 983 000 500 
ENSRNOG00000020310, ENSRNOG00000055761, 

ENSRNOG00000055650, ENSRNOG00000046112 

g

a

i

n 

chr2 28 980 501 28 981 000 500 
ENSRNOG00000055452*, ENSRNOG00000015334, 

ENSRNOG00000014999 

chr1

4 
11 809 501 11 810 000 500 - 

chr1

7 
57 707 501 57 708 000 500 

ENSRNOG00000048661, ENSRNOG00000045919, 

ENSRNOG00000056440*, ENSRNOG00000046403 

Hydroxymethylation: C – MD 

chr1 11 966 501 11 967 000 500 

ENSRNOG00000055421*, ENSRNOG00000059852, 

ENSRNOG00000051831*, 310926, ENSRNOG00000052007*, 

ENSRNOG00000061685*, ENSRNOG00000047746*, 

ENSRNOG00000055836*, ENSRNOG00000060657*, 

ENSRNOG00000059898*, ENSRNOG00000055789* 

l

o

s

s 
chr1 128 703 001 128 703 500 500 

ENSRNOG00000023274, ENSRNOG00000013877, 

ENSRNOG00000014030 

chr1 180 590 001 180 590 500 500 only mRNA's: DQ620752, AY539949, DQ732421 



Chapter 3 

90 

  

chr1 180 644 001 180 647 000 3 000 

chr1 180 702 501 180 706 500 4 000 

chr1 180 705 501 180 706 500 1 000 

chr1 180 719 001 180 720 000 1 000 

chr1 180 806 001 180 809 500 3 500 

chr1 180 852 501 180 853 000 500 

chr1 180 858 001 180 859 000 1 000 

chr1 180 893 001 180 894 000 1 000 

chr1 180 896 501 180 897 500 1 000 

chr1 180 898 001 180 898 500 500 

chr1 181 077 501 181 078 500 1 000 

chr1 181 186 001 181 187 000 1 000 

chr1 181 198 001 181 199 500 1 500 

chr1 181 215 501 181 216 000 500 

chr1 181 286 501 181 287 500 1 000 

chr2 160 692 001 160 692 500 500 

only mRNA's: DQ765923, DQ750390, DQ617315, DQ735565, 

DQ610613, DQ6106101, DQ735019, AF055714, DQ731535, 

DQ627773, DQ763101, DQ624671 

chr3 133 995 501 133 997 000 1 500 
only mRNA's: DQ621077, DQ604474, DQ763579 

chr3 133 999 501 134 000 000 500 

chr7 22 323 001 22 324 500 1 500 only mRNA's: DQ610624, DQ627099, DQ738923, DQ625003, 

DQ606303, DQ614554, DQ759772 chr7 22 326 501 22 329 000 2 500 

chr1

2 
3 350 001 3 352 500 2 500 

ENSRNOG00000053067*, ENSRNOG00000054841*, 

ENSRNOG00000061869* chr1

2 
3 354 001 3 355 500 1 500 

chr1

3 
33 475 501 33 476 000 500 

- 

chr1

3 
33 485 501 33 486 000 500 

chr1

3 
33 502 001 33 506 000 4 000 

chr1

3 
33 508 001 33 509 500 1 500 

chr1

3 
33 528 501 33 529 000 500 

chr1

3 
33 593 501 33 594 000 500 

chr1

7 
44 396 501 44 397 500 1 000 ENSRNOG00000056731 

chr1

8 
38 414 001 38 415 500 1 500 

ENSRNOG00000039260 
chr1

8 
38 416 001 38 417 500 1 500 

chr1

8 
38 497 501 38 498 500 1 000 



Chapter 3 

91 

  

chr4 6 877 501 6 878 500 1 000 ENSRNOG00000009085, ENSRNOG00000050578, 

ENSRNOG00000059699*, ENSRNOG00000009226, 

ENSRNOG00000025735, ENSRNOG00000009282 

g

a

i

n 

chr4 6 879 001 6 880 000 1 000 

chr4 93 366 501 93 367 000 500 ENSRNOG00000005630* 

chr5 6 374 001 6 374 500 500 ENSRNOG00000058268* 

chr2

0 
19 484 001 19 485 000 1 000 

ENSRNOG00000000275, ENSRNOG00000001387, 

ENSRNOG00000055901* 

chrM 3 001 5 500 2 500 ENSRNOG00000031780.1*, ENSRNOG00000030478.3*, 

ENSRNOG00000029171.3*, ENSRNOG00000043866*, 

ENSRNOG00000032112*,ENSRNOG00000030644, 

ENSRNOG00000029301*, ENSRNOG00000033545*, 

ENSRNOG00000032274*, ENSRNOG00000031033, 

ENSRNOG00000029677*, ENSRNOG00000033932*, 

ENSRNOG00000032609*, ENSRNOG00000031333*, 

ENSRNOG00000029954*, ENSRNOG00000034234, 

ENSRNOG00000032882*, ENSRNOG00000031685*, 

ENSRNOG00000030371, ENSRNOG00000029070*, 

ENSRNOG00000033299, ENSRNOG00000031979, 

ENSRNOG00000030700, ENSRNOG00000029389*, 

ENSRNOG00000033615,  ENSRNOG00000032320*, 

ENSRNOG00000031053, ENSRNOG00000029707, 

ENSRNOG00000033957*, ENSRNOG00000032578*, 

ENSRNOG00000031667*, ENSRNOG00000029971, 

ENSRNOG00000029042, ENSRNOG00000032997*, 

ENSRNOG00000031766, ENSRNOG00000030339*, 

ENSRNOG00000029145* 

chrM 7 501 15 500 8 000 

Hydroxymethylation: HD – MD 

chr5 6 373 501 6 375 000 1 500 ENSRNOG00000058589*, ENSRNOG00000058268* 

g

a

i

n 

chrM 2 501 5 500 3 000 ENSRNOG00000031780.1*, ENSRNOG00000030478.3*, 

ENSRNOG00000029171.3*, ENSRNOG00000043866*, 

ENSRNOG00000032112*,ENSRNOG00000030644, 

ENSRNOG00000029301*, ENSRNOG00000033545*, 

ENSRNOG00000032274*, ENSRNOG00000031033, 

ENSRNOG00000029677*, ENSRNOG00000033932*, 

ENSRNOG00000032609*, ENSRNOG00000031333*, 

ENSRNOG00000029954*, ENSRNOG00000034234, 

ENSRNOG00000032882*, ENSRNOG00000031685*, 

ENSRNOG00000030371, ENSRNOG00000029070*, 

ENSRNOG00000033299, ENSRNOG00000031979, 

ENSRNOG00000030700, ENSRNOG00000029389*, 

ENSRNOG00000033615,  ENSRNOG00000032320*, 

ENSRNOG00000031053, ENSRNOG00000029707, 

ENSRNOG00000033957*, ENSRNOG00000032578, 

ENSRNOG00000031667*, ENSRNOG00000029971, 

ENSRNOG00000029042, ENSRNOG00000032997*, 

chrM 7 001 15 500 8 500 
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5hmC: Similarly to the 5mC analyses, QQ-plots displayed distributions deviant from the null distribution, with 

an enrichment of small p-values as compared to the expected p-values (Fig. 37A; Fig. 38A-B). Indicating that 

although the majority of windows’ 5hmC levels did not differ significantly between groups, a small number of 

windows did. The volcano and Manhattan plots strengthened these observations (Fig. 37B-C; Fig. 38C-F). The 

former displayed approximately symmetrical shapes [range (-4.5,4.5)] (Fig. 37B; Fig. 38C-D). The fold change 

or 5hmC difference between HD and MD is not significant for the majority of genomic windows (Fig. 37B). Only, 

a small subset, coloured in red, displayed significant small fold changes between both groups (Fig. 37B). Hence, 

implying significant differences between HD and MD concerned mainly genomic windows with small 5hmC 

levels shifts. Similar trends/patterns were also observed for C-HD and C-MD comparisons (Fig. 38C-D). Both 

comparisons also displayed a few larger significant 5hmC level shifts. The Manhattan plots enabled a genome-

wide overview of differential windows (Fig. 37C; Fig. 38E-F). Most genomic windows presented large p-values 

for the HD-MD comparison (Fig. 37C). Yet chromosome 5 and M displayed peaks in some regions, indicating 

the presence of neighbouring windows with small p-values. The C-HD and C-MD Manhattan plot showed similar 

trends, with peaks observed in chromosomes 1, 3, 7, 12, 13 and 18, and chromosome 1, 13, 20 and M 

respectively (Fig. 38E-F). 

ENSRNOG00000031766, ENSRNOG00000030339*, 

ENSRNOG00000029145* 
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MEDIPS identified a total of 241 windows where the 5hmC level changed significantly across the different 

treatments (Fig. 37D; Table 6). Contrary 5mC, the majority of those were detected for C-MD, with 118 windows 

compared to the 97 windows for C-HD and only 26 widows for HD-MD. Adjacent differentially methylated 

Figure 38: The detection and verification of differences in DNA hydroxymethylation levels between the 
treatment groups. A QQ-plot, depicting the observed log values in function of the expected log values for 
the (A) CH and (B) CM comparison. A volcano plot depicting the statistical significance in function of the 
magnitude of the differences in DNA hydroxymethylation between (C) and HD, (D) C and MD. A Manhattan 
plot demonstrating the distribution of the DhMRs across the rat genome for (E) CH and (F) CM respectively. 
C. Control; HD: Handling; MD: Maternal Deprivation; CH: control-handling comparison; CM: control-
maternal deprivation comparison; HM: handling-maternal deprivation comparison (Manuscript 
Supplementary Data). 
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windows were merged into a larger DhMR whenever possible. After merging a total 71 DhMRs were identified 

(Fig. 37D). The majority of the DhMRs was located in intergenic regions (85.71%; 72 DhMR), a small number 

coincided with the gene body (10.71%; 9 DhMRs) (Fig. 37E). Except for the HD-MD comparison, where detected 

DhMRs coincided with either gene body (66,67%; 2 DhMRs) or TSS 1500 (33.33%; 1 DhMR). Comparing C to 

HD identified 39 DhMRs, 26 DhMRs unique and 13 shared with C-MD. When comparing C to HD, 35 DhMRs 

were downregulated (Table 8). C-MD detected 42 DMRs, of which 35 of the DhMRs were downregulated in C 

(Fig. 37D; Table 8). Only 3 DhMRs were detected for HD-MD, all upregulated for HD (Fig. 37D; Table 8). 

Table 7: DAVID functional annotation clustering analysis of the differentially (hydroxy)methylated genes between C and HD, 
C and MD, and HD and MD. Control; HD: Handling; MD: Maternal Deprivation; CH: control-handling comparison; CM: 
control-maternal deprivation comparison; HM: handling-maternal deprivation comparison 

3.4.5. Gene Ontology and Pathway Analysis 

Annotation D(h)MR: As 5mC and 5hmC regions are often situated outsight of the gene body, the detected 

D(h)MRs were associated with genes or mRNA transcripts within 200kb range around the D(h)MR position 

(Table 5-6). The 50 DMRs and 71 DhMRs could be associated with annotated genes, although some were only 

clone-based. Genes such as Nr3c1, BDNF, AVP, CRH, NR4A1 and Igf2, previously reported to be affected by 

MD models or early life stress 24,25,62,123,155,233,239,240, could not be directly associated with the detected D(h)MR. 

Almost all mitochondrial genes were present, indicating that the mitochondrial DNA is environmental sensitive 

and easily subjected to 5(h)mC shifts. Certain D(h)MRs that could not be associated with annotated genes, 

Epigenetic 

Modification 
Group Annotation Cluster 

Enrichment 

score 
Count P-value Benjamini 

5mC 

HM 

Oxidative phosphorylation 6.95 12 9.55E-17 6.66E-16 

Huntington’s disease 2.82 6 4.46E-5 8.87E-5 

Huntington’s disease 1.65 6 4.44E-5 8.87E-5 

CM No clusters selected 

CH 

Generation of precursor metabolites 

and energy 
7.66 13 4.81E-17 4.81E-16 

Oxidative phosphorylation 4.74. 12 8.97E-15 8.72E-13 

Huntington’s disease 2.48 6 1.39E-4 4.62E-4 

5hmC 

HM 

Oxidative phosphorylation 8.43 13 2.89E-20 1.45E-19 

Huntington’s disease 2.93 6 2.81E-5 4.68E-5 

Electron transport 2.43 7 1.73E-11 9.98E-11 

CM 

Generation of precursor metabolites 

and energy 
7.62 13 2.25E-19 3.64E-17 

Huntington’s disease 2.77 6 4.44E-5 1.18E-4 

Electron transport 2.25 7 1.48E-10 1.11E-9 

CH No clusters selected 
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could be linked the mRNA transcripts. All of these transcripts belonged to the piRNA family. The remaining 

D(h)MRs could not be associated with annotated genes or RNA transcripts.  

Pathway Analysis: After functional annotation of the D(h)MRS, a gene ontology and network analysis were 

performed with ‘Ingenuity Pathway Analysis®’ and DAVID 257,258. According to DAVID, the functionally annotated 

genes selected 4 main clusters: oxidative phosphorylation, Huntington’s disease, generation of precursor 

metabolites and energy and electron transport (Table 7). The IPA analysis revealed significant 5mC and 5hmC 

changes in pathways related to oxidative phosphorylation, purine metabolism and mitochondrial dysfunction 

(Table 8). 

Table 8: Ingenuity Pathway Analysis of the differentially (hydroxy)methylated genes between C and HD, C and MD, and HD 
and MD. Control; HD: Handling; MD: Maternal Deprivation; CH: control-handling comparison; CM: control-maternal 
deprivation comparison; HM: handling-maternal deprivation comparison (Manuscript Supplementary Data). 

Epigen

etic 

Modifi

cation 

Gro

up 

Top Canonical 

Pathways (p-

value) 

Top Diseases 

and Disorders 

(p-value) 

cellular 

and 

molecular 

functions 

(p-value) 

Physiologic

al Systems 

functions 

(p-value) 

Top 

Pathways 

(p-value) 

Top Networks 

(score) 

5mC CH 

Oxidative 

Phosphorylation 

(1.03E-19) 

- Molecular 

Transport 

(2.74E-02 - 

1.84E-02) 

- Oxidative 

Phosphorylat

ion (3.65E-

17) 

Cellular 

Movement, 

Reproductive 

System 

Development and 

Function, Cellular 

Development (3) 

Mitochondrial 

Dysfunction 

(2.03E-19) 

- Lipid 

Metabolis

m (3.64E-

02 - 2.74E-

02) 

- Purine 

Metabolism 

(5.07E-02) 

Developmental 

Disorder, 

Hereditary 

Disorder, 

Metabolic 

Disease (3) 

Mitochondrial L-

carnitine Shuttle 

Pathway (2.23E-

2) 

- Small 

Molecule 

Biochemist

ry (3.64E-

02 - 2.74E-

02) 

- Fatty Acid 

Metabolism 

(1.29E-01) 

Developmental 

Disorder, 

Hereditary 

Disorder, 

Metabolic 

Disease (2) 

Glutamate 

Receptor 

Signalling (7.03E-

2) 

- Energy 

Production 

(3.64E-02 - 

3.64E-02) 

- - - 

CTLA4 Signalling 

in Cytotoxic T 

- - - - - 
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Lymphocytes 

(1.11E-1) 

HM 

Oxidative 

Phosphorylation 

(2.87E-18) 

- Molecular 

Transport 

(3.40E-02 - 

1.60E-02) 

- Oxidative 

Phosphorylat

ion (1.00E-

15) 

Carbohydrate 

Metabolism, Lipid 

Metabolism, 

Molecular 

Transport (2) 

Mitochondrial 

Dysfunction 

(3.09E-18) 

- Lipid 

Metabolis

m (3.40E-

02 - 3.40E-

02) 

- Purine 

Metabolism 

(2.43E-04) 

Cardiovascular 

Disease, 

Haematological 

Disease, 

Metabolic 

Disease (2) 

Ubiquinol-10 

Biosynthesis 

(Eukaryotic) 

(1.60E-02) 

- Small 

Molecule 

Biochemist

ry (3.40E-

02 - 3.40E-

02) 

- Stilbene, 

Coumarine 

and Lignin 

Biosynthesis 

(2.50E-02) 

Developmental 

Disorder, 

Hereditary 

Disorder, 

Metabolic 

Disease (2) 

Pyrimidine 

Deoxyribonucleoti

des De Novo 

Biosynthesis I 

(2.50E-02) 

- - - Aminophosp

honate 

Metabolism 

(3.06E-02) 

- 

Pyrimidine 

Ribonucleotides 

Interconversion 

(3.40E-02) 

- - - Ascorbate 

and Aldarate 

Metabolism 

(3.40E-02) 

- 

5hmC CH 

Trans, trans-

farnesyl 

Diphosphate 

Biosynthesis 

(2.59E-03) 

Endocrine 

System 

Disorders 

(3.62E-03 - 

3.62E-03) 

Cell-To-

Cell 

Signalling 

and 

Interaction 

(2.59E-03 - 

2.59E-03) 

Reproductiv

e System 

Developmen

t and 

Function 

(5.18E-04 - 

5.18E-04) 

Biosynthesis 

of Steroids 

(1.59E-02) 

Nervous System 

Development and 

Function, Tissue 

Morphology, Cell 

Death and 

Survival (3) 

Mevalonate 

Pathway I (6.71E-

03) 

Metabolic 

Disease (3.62E-

03 - 3.62E-03) 

Molecular 

Transport 

(2.59E-03 - 

2.59E-03) 

Haematologi

cal System 

Developmen

t and 

Function 

(3.10E-03 - 

3.10E-03) 

Aminosugars 

Metabolism 

(9.56E-02) 

Cell-To-Cell 

Signalling and 

Interaction, 

Cellular 

Assembly and 

Organization, 

Cellular 

Development (3) 

Superpathway of 

Geranylgeranyldip

hosphate 

Biosynthesis I (via 

- Small 

Molecule 

Biochemist

ry (2.59E-

Haematopoi

esis (3.10E-

03 - 3.10E-

03) 

- - 
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Mevalonate) 

(8.77E-03) 

03 - 2.59E-

03) 

Superpathway of 

Cholesterol 

Biosynthesis 

(1.44E-02) 

- Cellular 

Developme

nt (9.79E-

03 - 3.10E-

03) 

Humoral 

Immune 

Response 

(3.10E-03 - 

3.10E-03) 

- - 

 
- Cell 

Signalling 

(1.34E-02 - 

1.34E-02) 

Nervous 

System 

Developmen

t and 

Function 

(9.79E-03 - 

9.79E-03) 

- - 

CM 

Oxidative 

Phosphorylation 

(2.71E-20) 

Cardiovascular 

Disease (1.80E-

02 - 1.80E-02) 

Post-

Translation

al 

Modificatio

n (3.10E-

02 - 3.62E-

03) 

- Oxidative 

Phosphorylat

ion (1.14E-

17) 

Cardiovascular 

System 

Development and 

Function, Organ 

Morphology, 

Organismal 

Development (2) 

Mitochondrial 

Dysfunction 

(4.48E-20) 

Organismal 

Injury and 

Abnormalities 

(1.80E-02 - 

1.80E-02) 

Molecular 

Transport 

(1.68E-02 - 

1.68E-02) 

- Purine 

Metabolism 

(4.30E-02) 

Developmental 

Disorder, 

Hereditary 

Disorder, 

Metabolic 

Disease (2) 

mTOR Signalling 

(2.09E-02) 

Skeletal and 

Muscular 

Disorders 

(1.80E-02 - 

1.80E-02) 

Cell Death 

and 

Survival 

(1.80E-02 - 

1.80E-02) 

- Molecular 

Mechanisms 

of Cancer 

(PI3K 

DATASET) 

(3.31E-01) 

- 

Breast Cancer 

Regulation by 

Stathmin1 (2.24E-

02) 

- Cell 

Signalling 

(4.84E-02 - 

3.10E-02) 

- - - 

Sonic Hedgehog 

Signalling (3.10E-

02) 

- Protein 

Synthesis 

(3.10E-02 - 

3.10E-02) 

- - - 

HM 

Mitochondrial 

Dysfunction 

(2.11E-24) 

- Molecular 

Transport 

(1.04E-02 - 

1.04E-02) 

- Oxidative 

Phosphorylat

ion (9.58E-

21) 

Developmental 

Disorder, 

Hereditary 

Disorder, 
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3.5. Discussion 

The MD model is well known to cause long lasting behavioural effects, changes in the HPA axis reactivity 

and the stress response, all of which have been previously associated with DNA methylation changes within 

specific genes 155,239,240. This is one of the first studies combining both 5mC and 5hmC epigenomes, allowing a 

direct comparison of the overall methylation and hydroxymethylation profiles and the differential regions 

between groups, as well as within groups. Adopting a genome-wide approach for methylome and 

hydroxymethylome investigation, this study enabled a deeper insight in genes/regions susceptible to early life 

adversity, as well as an evaluation of the effect of subtle methylation changes within such gene networks 

resulting in different phenotypes. These data suggest the existence of a relation between 5mC and 5hmC, and 

examines their impact reshaping/remodelling the methylation landscape. 

The multiple sequencing-based methylome profiling techniques can be classified as either bisulphite 

conversion-based or enrichment-based techniques 262–265. For this study, we opted for the enrichment-based 

technique MeDIP-Seq, which provides a direct way of comparing 5mC and 5hmC patterns genome-wide. 

Contrary to bisulphite conversion-based methods, MeDIP-Seq differentiates between the different cytosine 

modifications such as 5mC, 5hmC, 5caC and 5fC, given the appropriate antibody 262–267. Although, it only offers 

a qualitative fragment-based resolution, MeDIP-Seq allows to captures the vast majority of the methylome, 

including areas outside of annotated genomic regions or in repetitive elements 262,265,266, providing a balance 

between resolution, coverage, specificity and costs. 

Traumatic early life experiences, as mimicked by the MD model, are thought to follow the subtle methylation 

paradigm, rather than a blunt on/off mechanism 24. Here, small changes in 5mC levels, fine-tuned gene 

transcription profiles, consequently altering the transcriptional, translational and proteomic landscape 24,242. To 

increase the power of our analysis, the samples were pooled per group in order to obtain low-variance data. 

The genome-wide profiles indeed displayed great similarity across treatments and cytosine modifications, with 

only a limited number of clearly defined regions within which the 5(h)mC levels slightly differed, confirming our 

initial hypothesis that methylation changes would be subtle. For 5mC, most DMRs were detected between HD 

and MD, whereas very few were revealed for the C-MD comparison. For 5hmC, on the other hand, only a limited 

Metabolic 

Disease (2) 

Oxidative 

Phosphorylation 

(6.22E-24) 

- - - Purine 

Metabolism 

(1.73E-02) 

- 
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number of DhMRs were detected for the HD-MD comparison, showing almost an opposite pattern in differential 

regulation between treatments. It is now generally accepted that the environmental manipulation nature of 5mC 

is coupled with an active demethylation process via 5hmC 36,37,66–70,234. The overlap between DMRs and DhMRs 

was limited, yet the presence of multiple DhMRs implied that the 5mC pattern is being actively changed. 

We observed that the majority of the D(h)MRs were not part of the gene body itself, but rather located in 

regions affecting gene transcription activity or intergenic regions/area’s. This agrees with the observations made 

by ENCODE Project Consortium that intergenic regions often exert an important regulatory role in gene 

expression 268, Approximately, 56% to 70% of D(h)MRs contained multiple genes or RNA transcripts within the 

200kbp annotation window, associating the D(h)MRs with more than one gene or RNA transcript. In 13% to 

15% of the cases, the D(h)MRs could not be related to any known genomic entity at all, despite browsing a 

larger genomic area around the gene body, as previously suggested by McGowan et al (2011) 123. None of the 

genes previously studied in MD or after early life stress such as BDNF, AVP, CRH, NR4A1 and Igf2 

24,25,62,123,155,233,239,240 were geographically linked to our DMRs.  

As we have previously reported that MD did not affect Nr3c1 methylation but impacted transcript levels, we 

performed a detailed examination of chromosome 18 surrounding Nr3c1. Expanding the investigation to 

approximately 200Mbp, we were unable to identify regions of differential methylation, in accordance with our 

prior results 155, and in contrast to the reports of McGowan et al 123. A change in expression, despite no 

measurable change in the Nr3c1 5(h)mC, combined with the presence of D(h)MRs situated up- or downstream 

of other stress-related genes implies that MD impacts regulatory regions further away from the regulated genes. 

This pattern appears to be repeated genome-wide, although we observed the D(h)MRs to cluster in a similar 

manner to McGowan et al 123. Gene ontology and network analyses of associated genes implied that differences 

in 5mC and 5hmC across treatments affected gene networks involved in oxidative phosphorylation, Huntington’s 

disease, the generation of precursor metabolites and energy, electron transport, mitochondrial dysfunction and 

purine metabolism. Many of those were related to mitochondrial genes. Although methylation of mtDNA is 

somewhat controversial, it has received surprisingly little attention, however, the increasing evidence together 

with the recent discovery of DNA methylation machinery in mitochondria269–271, suggests that it as a real 

phenomenon. There is increasing evidence that mtDNA methylation regulates mitochondrial functions and is 

involved in many physiological and pathophysiological processes, including neurodegenerative diseases such 

as Alzheimer and Parkinson disease, psychiatric disorders, dementia and cardiovascular diseases 269–271. The 

detection of D(h)MRs covering multiple mitochondrial genes, added to the evidence of mtDNA’s involvement in 

diseases. 
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Various D(h)MRs did not correspond to annotated genes, but associated with piRNA transcripts. Small non-

coding RNAs (24nt and 32nt) known to form a complex by binding Piwi proteins, and to play a role in the 

regulation of cellular activities 50–55. Although mainly studied in germlines, they are also present in somatic 

tissues such as heart, kidney, central nervous system and brain 51–54 Piwi/piRNA complexes are mainly known 

for their role in transposon silencing/suppression and gene expression regulation, both during and post-

transcription, the preservation of the genomic integrity and hence have an impact on the cellular phenotypes 50–

54,56. Transposon regulation, either on genomic or epigenetic level, is thought to be important for CNS variability 

and mosaicism, and neural development and plasticity. Dysregulation of transposons could compromise cellular 

homeostasis and possibly resolve into pathology onset 50–52,54,56. As the majority of piRNAs derive from 

transposons (genomic clusters), often located within intergenic regions 51,53–55, the differentially 5mC or 5hmC 

intergenic regions observed, could coincide with shifts in transposon regulation. Suggesting that maternal 

deprivation influenced piRNA levels, the piwi/piRNA complex formation and consequently its role in cellular 

homeostasis, change phenotype, and hence influence the CNS variability and mosaicism important in the 

neuronal regulatory system. Previous studies demonstrated environmental effects on transposon regulation, 

and subsequently gene expression, through epigenetic programming 51,52,54,56. Overall, our data implies 

epigenetic regulation of piRNAs in rat hippocampi due to the early life environment as a significant adaptation 

mechanism. 

Well known effects associated with the MD model, such as changes in HPA responsiveness, alteration of 

the adult stress reactivity, and conditioning behavioural and immune responses later on in life 104,155,245, have 

been observed in studies employing Long-Evans, Sprague-Dawley, and Wistar rat strains 245,272–275. Whereas 

studies using Lewis or Fischer rat strains did not always induce the anticipated HPA axis effects 155,245,276–281, 

implying that the sensitivity to maternal deprivation is not only influenced by broad genetic factors and gender, 

but also by strain, i.e. very specific (inbred) genetic factors. Lewis and Fisher rats seem to be more resistant to 

the MD model’s effects. Our data suggests that piRNA’s and their expression act as mediators for the 

differences observed in HPA axis responsiveness per rat strain. 

This study focussed on profiling epigenetic hallmarks. Combining 5mC and 5hmC profiling, enables a better 

understanding of their distribution across the same loci and the possible interaction between them. Yet, in order 

to get a better understanding of the effect/impact of these hallmarks, the epigenetic data analysis must in future 

studies be paired with expression data analysis. Adding transcriptomic data in the future would also confirm the 

supposed role of the piRNA we observed. Multiple D(h)MRs were associated with piRNA transcripts, suggesting 

the presence of piRNA in the rat hippocampus and its impact on transcription and translation regulation. 



Chapter 3 

101 

  

Expression data would be required to validate this hypothesis. Currently our results have not been validated by 

an additional technique such as microarray, yet by pooling samples during the library preparation, the analysis 

power increases and the data variance is significantly reduced, increasing the results’ trustworthiness246–248. 

Overall, employing the genome-wide approach MeDIP-Seq, we demonstrated that maternal deprivation, or 

the handling of rat pups affected both their 5mC and 5hmC profiles. The (hydroxy)methylation changes induced 

by the early life environment were small, supporting the subtle methylation paradigm. D(h)MRs were not directly 

associated with genes previously involved in CNS modulation or the stress response. Both methylation and 

hydroxymethylation was primarily associated with non-coding RNA’s such as piRNA in intergenic regions, as 

observed by the ENCODE Project, or within mtDNA. We suggest that differential 5(h)mC may alter the resulting 

adult phenotype through post-transcriptional regulatory mechanisms. 
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4.1. Abstract 

Viral respiratory tract infections are highly prevalent during early life and have a long-lasting, profound, 

impact on both neurodevelopment and the subsequent risk for developing allergy and asthma. Little is known 

about the long term effects on either the innate or adaptive immune system. BALB/c mice exposed to Influenza 

A (H1N1, A/Puerto Rico/8/1934) at PND14 had significant increased serum IL-6, MIP-β and RANTES (p<0.05) 

when re-exposed to H1N1 in adulthood, confirming long-term immune programing. Similar effects were 

observed after re-stimulation with polyI:C and homotypic polyI:C programming and re-stimulation, suggesting 

preferential programming of the innate immune system. Reduced-representation epigenome sequencing 

identified a network of methylation changes common to both early life polyI:C and H1N1 programming, leaving 

a mechanistic ‘trace’ that remained visible throughout life. 
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4.2. Introduction 

The developmental origins of health and disease (DOHaD) model describes lifelong conditioning of the 

response to any number of external environmental stimuli by an individual’s early life experience282. One of the 

major perinatal events with long term consequences is infection. Although perinatal infections were previously 

thought to be primarily bacterial283, acute viral respiratory tract infections (ARI) are now known to be the primary 

cause of hospitalisation of children under age 1284. This is further supported by epidemiological evidence 

suggesting ~20% of all young children present with influenza each season285. Additionally, recent evidence 

suggests that ARI such as influenza may also have significant long term consequences on both disease 

susceptibility286 and neurodevelopment287,288. 

The immune system of both the human neonate and young infants is somewhat peculiar as it is “tolerant of 

novel, harmless environmental antigens”289. Although human infants are born with most immune cell types 

present, and in normal concentrations, they are dependent upon innate immune mechanisms as they have not 

developed an adaptive memory, leaving them particularly susceptible to intracellular pathogens290. There is 

growing evidence for the education or ‘trained memory’ of the innate immune system, particularly through 

epigenetic mechanisms291, as well as rapid chromatin re-modelling. For example, effects on methylation of 

cytokine promoters such as IL-6 promoter during active influenza virus infection or immediately upon dsRNA 

treatment292,293. 

As DNA methylation remains plastic from conception for approximately 1000 days until 2 years old294, this 

opens a window of opportunity for the long-term education of the innate immune system. Once established, 

differentially methylated regions (DMRs) should be conserved throughout life and create inter-individual 

epigenetic variation leading to an altered gene expression profile and a different adult phenotype such as an 

impaired susceptibility to viral infections throughout life.  

The very high prevalence of early life viral ARI makes it essential to examine the long term consequences 

on the immune system. As such, this study was designed to demonstrate that the innate immune system can 

be educated by an early life early-life acute respiratory tract infection (Influenza A, H1N1) and that this is 

associated with genome-wide epigenetic changes within splenic lymphocytes. 

4.3. Material and Methods 

4.3.1. Animal Experiments  

BALB/c mice (Harlan Laboratories, Boxmeer, Netherlands) were maintained at 40 ± 5% relative humidity, 22 

± 2°C under timed 12h light/dark cycles in same sex cages. Food and water were available ad libitum. New-
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born litters were generated by housing breeding couples together for one week, and females were subsequently 

housed independently until parturition. All animal experiments were performed in compliance with the European 

Communities Council Directive 86/609/EEC and all national ethical guidelines and regulations.  

4.3.2. Cells and Viruses 

Influenza virus was cultured as previously reported295. Briefly, influenza A virus A/Puerto Rico/8/1934 

Influenza H1N1 was grown on MDCK cells in serum-free EMEM supplemented with 2mg/ml BSA (Lonza) and 

2µg/ml L-1-tosylamido-2-phenylethyl chloromethylketone (TPCK) treated trypsin (all cell culture reagents Lonza 

Verviers Belgium). The half maximal mouse lethal dose (MLD50) of A/Puerto Rico/8/1934 Influenza (PR8 

pH1N1) was determined on seven week old female pathogen-free BALB/c mice (≥ 4 animals per group) by 

monitoring body weight and rectal body temperature daily (TH-5 Thermalert Monitoring Thermometer, Phymep, 

France). Animals were sacrificed if body weight loss exceeded 25%. 

4.3.3. Tissue Culture Infective Dose (TCID50) 

Half maximal tissue culture infectious doses per ml (TCID50) were used to determine virus titres. 

Quadruplicates of virus culture supernatant were serially diluted and incubated for 3 days on MDCK cells at 

37°C and 5% CO2. Cytopathogenic effects were scored and the TCID50 was determined using ID50 (v5.0, 

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html_ncbi/html/index/software.html#1). TCID50 was 

subsequently used in the titration of MLD50 

4.3.4. Perinatal Infections and Challenges 

On post-natal day 14, pups were randomly assigned to H1N1/Controls (intranasal, i.n.) or polyI:C/Controls 

(intraperitoneal i.p.) groups as in Fig. 39. The discovery group received 50µl PR8 H1N1 at 1MLD50 or an 

equivolume of sterile PBS (i.n.). The innate immune validation experiment received polyI:C (0.75mg/kg b.w. at 

0.1µg/µL, i.p.) or an equivolume of sterile saline solution (7.5μl/g b.w., 0.9% NaCl, i.p.). Mothers and pups 

remained undisturbed until weaning at PND21. Animals were subsequently single-sex group housed. 

4.3.5. Adult Re-exposure 

At PND42, programmed and control mice were re-exposed to either H1N1 or polyI:C. For influenza 

infections, animals were intranasally infected with 50µl containing 1MLD50 H1N1 and 7 days post-infection, 

blood was collected from the retro-orbital vein of terminally anesthetized animals, clotted for 1h at 37°C and 

centrifuged for 30min at 1000rcf. Serum was aliquoted and stored at -80°C until analysis. For polyI:C challenge, 

animals received an i.p injection of polyI:C (0.75mg/kg b.w. at 0.1µg/µL). 2h post injection, animals were 

euthanised. Spleens were isolated from all animals and splenocytes isolated by Ficoll-Paque PLUS (VWR, 

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html_ncbi/html/index/software.html#1
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Leuven, Belgium) gradient centrifugation for 20min at 72g and stored in RNAlater (Qiagen) at -80C until DNA 

extractions.  

  

Figure 39: Early life viral infection mouse model: experimental paradigm and adult immune response to H1N1 re-
exposure. (A) Paradigm for the discovery and innate immune validation experiments. PND, post natal day; i.n, 
intranasal; i.p. intraperitoneal. (B) Body weight evolution of mice, from the discovery experiment, exposed to H1N1 
( ) or saline ( ) at PND14. Statistical significance was measured by using 2-Way repeated measures ANOVA (time 
effect - p <0.001; time*group effect – p<0.001) and Holm-Sidak pairwise comparison with overall significance level 
of 0.05 (*). (C) Serum IL-6 cytokine level measured at PND49, 7 days post-influenza infection (* p<0.05) (D) Serum 
MIP-β levels measured at PND49, 7 days post-influenza infection (* p<0.05) (E) Serum RANTES levels measured 
at PND49, 7 days post-influenza infection (* p<0.05). 
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4.3.6. Cytokine Analysis 

Cytokine analysis. IFN-Ɣ, IL-1α, IL-1β, IL2, IL-6, IL-10, IL-12p70, MCP1 (CCL2) and MIPβ and RANTES 

were measured on 50μL 1:4 diluted serum samples using the BD Cytometric Bead Array (CBA) Mouse Flex 

Sets (BD Biosciences, Erembodegem, Belgium). Data were collected on a BD FACSCanto II flow cytometer 

and analysed with FCAP Array Software according to the manufacturer’s instructions (BD Biosciences).  

4.3.7. DNA Extraction and Methyl-Seq 

Genomic DNA (gDNA) was extracted from the splenocytes of saline and H1N1 infected mice at PND49 by 

PureLink™ Genomic DNA Mini Kit (Invitrogen). DNA samples from all animals were quantified (Nanodrop ND-

100, Thermo Fisher Scientific) and group pools were made containing an equimolar proportion of each DNA 

sample at a final concentration of 0.1μg/μl. Pooled DNA (2μg per pool) was digested using 5 units of HpaII or 

MspI (NEB) for 6 hours and an additional 5U of enzyme was added to the mix after 3h at 37°C in CutSmart® 

Buffer (NEB) with agitation at 300rpm. After agarose gel size selection (100-400bp, MinElute Gel extraction kit, 

Qiagen) digested DNA was eluted in 20μl of Low TE.  

As DNA methylation changes were expected to be small, their analysis benefits from low-variance data. 

Variance can be reduced by pooling multiple samples per group. This is described by the equation of the 

variance of the estimator of the true distribution mean, 𝜃 = 1 𝑛𝑝⁄ ∗ ((𝜎𝜀
2) 𝑟𝑠⁄ + (𝜎𝜉

2) 𝑟𝑎⁄ ) with θ the true 

distribution mean, np the total number of pools, rs the number of samples per pool, ra the number of sequenced 

samples per pool, 𝜎𝜀
2 the biological variance and 𝜎𝜉

2 the technical variation. Using this equation, pooling 2 or 

more samples decreases variance, in turn increasing the statistical power to identify differentially methylated 

regions246–248. As such, extracted genomic DNA was pooled from all animals within the same treatment 

conditions. 

Sequencing was performed and the ratio of U-values analysed as previously reported255,296,297 with minor 

modifications. Briefly, digested DNA fragments were end-repaired and sequencing libraries prepared using the 

Ion Plus Fragment Library Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. After 

AMPure bead purification (ratio 1:1.8, Beckman Coulter, Inc) fragments with both adaptors (25μl) were amplified 

for 8 cycles in a 130μl PCR reaction containing 100μl of Platinum PCR SuperMix High Fidelity and 5μl of Library 

Amplification Primer Mix. Thermocycling was performed for 5min at 95°C followed by 8 cycles of denaturation 

(15s, 95°C), annealing (15s, 58°C) and extending (1min, 70°C). After size selection (100-300bp; 1% agarose 

gel; MinElute Gel Extraction Kit, Qiagen) and quantification (Bioanalyser, Agilent Technologies), sequencing 

template preparation was performed with 17pM of DNA library on the Ion One Touch 2 using the Ion PGM 
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Template OT2 200 kit (Thermo Fisher Scientific) for fragments of ≈200bp using the manufacturer’s fixed 

protocol. The percentage of template positive ISPs was evaluated by Ion Sphere Quality Control Kit and the 

Qubit® 2.0 Fluorometer (Thermo Fisher Scientific). The Ion Torrent PGM runs were performed with the Ion 

PGM 200 Sequencing kit (Thermo Fisher Scientific) on Ion 318v2 BC chips on the Ion PGM™ System. High 

throughput sequencing (HTS) reads were processed as previously reported by Kirschner et al255. Methyl-Seq 

DMRs were validated by qPCR. 

4.3.8. Data Analysis 

The standard parameters of Torrent™ Software (v4.0.2) were used for adaptor trimming and output data 

files was exported without quality filtering. Quality control was performed by counting the number of 

fragments starting with the cut restriction site ‘5’-CGG’ and ending with the reverse complement restriction 

site ‘CCG-3’. The fragments were mapped to the mouse genome (GRCm38/mm10) of the UCSC Genome 

Browser via Bowtie2 (Version 2.8.8; John Hopkins University). The fragments were then analysed for their 

location in a CpG island or a repetitive element and for their annotat ion to a known transcript or gene ID 

by comparing the fragments to available UCSC databases. The output of the fragment analyses of the 4 

datasets (SH HpaII, HH HpaII, SH MspI, HH MspI) are summarized in 4 ‘Annotated Tables’ as recently 

described255. The fragment positions and their respective coverages were interpreted using the previously 

reported strategy297: The R script merges the HpaII and MspI ‘Annotated Tables’ by their genomic start 

position. The script retains only the fragments where the MspI digestion had a minimum coverage (amount 

of times the same fragments were sequenced/present in the library) of 4. Methylation was estimated from 

the relative abundance of MspI and HpaII reads. Initially, HpaII reads were normalized per sample to MspI 

digestion by multiplying HpaII coverage with the ratio: Total MspI coverage/Total HpaII coverage. Then, 

the relative abundance was calculated from the arctangent evaluating the position of each point in a scatter 

plot showing the relationship between the number of MspI and normalized HpaII reads at each locus. The 

greater the angle between the line connecting the point to the origin and the X  axis, the higher is the HpaII 

count compared to the MspI count and the less the sample will be methylated. In addition, the length of 

this line positively correlates with the confidence of the measurement. The transformation of these arc 

tangents into a 100 radian scale gives us a value named U-value (Unmethylation-value) for each locus in 

each of the 4 datasets merged in one table. A U-value of 100 represents the lowest average methylation 

percentage found in one samples whereas the highest methylation status is set 0. The ratio of the U-value 

(RU) of a locus in the HH dataset and the same locus in the SH dataset then illustrates the hyper - or 

hypomethylated status of this CpG locus. The closer RU is to 0, the higher is the hypermethylation and the 
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higher RU is above 1, the greater is the hypomethylation. RU values around 1 indicate no considerable 

changes in methylation. 

4.3.9. Statistical Analysis 

Group differences in cytokine levels were determined by one-way ANOVA at significance level 0.05. Post-

hoc Bonferroni correction was applied to correct for multiple testing. If the normality distribution and equal 

variance assumptions were unfulfilled, a non-parametric Kruskal-Wallis test was used. Differences in 

methylation at individual CpG dinucleotides were determined with a two-tailed T-test or a Mann-Whitney Rank 

Sum test based on the fulfilment of distribution and variance assumptions at significance level 0.05. Post-hoc 

Bonferroni correction was applied to correct for multiple testing. 

4.3.10. PCR Validation 

Unpooled biological replicates from both H1N1-treated and control groups (1μg each) were digested with 5 

units of HpaII (NEB) for 6 hours at 37°C in CutSmart® Buffer (NEB) with agitation at 300rpm. Digestions were 

supplemented with a further 5U of enzyme after 3h and diluted to 3ng/μl. PCR products were designed to span 

the 5’ restriction sit, and reactions were performed using 2,5U Platinum® Taq DNA Polymerase, 20mM Tris-HCl 

(pH8,4), 50mM KCl, 200μM of dNTPs (InvitrogenTM), 1X GelStar® Nucleic Acid Gel Stain (Lonza), and 1μl 

sample in a total reaction volume of 25μl. Thermal cycling (CFX96TM Real-Time System, BioRad, Hercules, CA, 

USA) conditions were 95 C, 2min; 44 cycles of denaturation 95 C (20s); annealing (20s); elongation at 72 C 

(20s). Primer sequences, MgCl2 concentrations and annealing temperatures are given in Table 9. Sfi1 was 

chosen as a methylated reference gene and PCR efficiency was tested using a series of 7 10-fold dilutions 

revealing that all PCRs were within 1 cycle from the theoretical value. Amplification of the candidate restriction 

was normalized by the published 2-CT strategy298. 

As negative control for methylation, whole genome amplification (WGA) was performed using the REPLI-g 

Mini Kit (Qiagen) following the manufacturer’s instructions. As a positive control, 500ng of gDNA was treated 

with 10U/μl of CpG Methyltransferase (M.SssI; NEB) by adding 5μl of NEBbuffer2 (NEB) and 1X S-

adenosylmethionine (SAM; NEB) diluted 1/20. The reaction was incubated for 4h at 37°C, then inactivated for 

20min at 65°C. The methylated DNA was purified using AMPure beads (ration 1:1.8) and eluted in Low TE 

buffer. Both controls (1μg each) were digested with the methylation sensitive HpaII. 

Standard errors of the means (SEM) were evaluated between the Ct values of Saline and H1N1 biological 

replicates, the errors of the ΔCt and ΔΔCt values were calculated via  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjfoPv4qN7KAhUBECwKHQ_BCJkQFggcMAA&url=https%3A%2F%2Fwww.neb.com%2Fproducts%2Fb7204-cutsmart-buffer&usg=AFQjCNFEqJJENmYcvThmBGiCRqDRDYdWjQ&sig2=F--gG8_-2e9nyr5Dpsnjyg&bvm=bv.113370389,d.bGg
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√𝑆𝐸𝑀(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑔𝑒𝑛𝑒)2+𝑆𝐸𝑀(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒)2 and the error range of the 2-Ct values was deduced by: 2-

(Ct-error) - 2-(Ct+error). 

Table 9: PCR primers sequences, MgCl2 concentrations and annealing temperatures. (Supplementary Data) 

  

  

  Relative RT-qPCR 

  

  Sequence (RT-qPCR) Product size (bp) Tm (°C) Mg (mM) Oligo (µM) 

H
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rm
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te
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 c
a

n
d

id
a

te
s

 

Cacnb2 
Fwd 5'-GGACCTTCCCTGGAGCCA-3' 

191 64 1.5 1 
Rev 5'-CCTCTTCGCCCCAGGATC-3' 

Cct7 
Fwd 5'-ATAGAGTGGCGGAAGTGGTC-3' 

162 62 1 1 
Rev 5'-CATCATCTTGGAAGCGGCTT-3' 

Kazalt1 
Fwd 5'-GACCCCAGCGCTAACTTCTA-3' 

209 62 1.5 2 
Rev 5'-ACAGTGAGGTTAGCGTCCAG-3' 

Grid1 
Fwd 5'-CTGATCCCCGAGGTATTGCT-3' 

150 62 2 1 
Rev 5'-AGGATCTCTCTGTGACCCCT -3' 

Cd276 
Fwd 5'-CCCTTTCAGAGCTGGCATTC-3' 

170 62 2 0.5 
Rev 5'-CGGGGTGGGTGACTGATTAT-3' 

Cdx2 
Fwd 5'-TACTGCGGAGGACTGACAAA-3' 

162 62 2 1 
Rev 5'-ACCATGTACGTGAGCTACCT-3' 

Mybph 
Fwd 

Not performed 
Rev 

Cxxc5 
Fwd 

Not performed 
Rev 

H
y
p

o
m

e
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y
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te
d

 c
a

n
d
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a
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DsysI3 
Fwd 5'-GATCAGGTGGAGCGAATGGT-3' 

226 59 1 0.5 
Rev 5'-CAGCTGGCACCACAAAAGAA-3' 

Lrp2 
Fwd 5'-CCCTCCTTCCTCACTTTGCT-3' 

206 64 2 0.5 
Rev 5'-GTTTGGGGACTGGAATGCAG-3' 

Mfhas1 
Fwd 5'-TCTAAGCTCCTTGGACACCC-3' 

152 62 2 0.5 
Rev 5'-GTTCTTTGTTGGTCCTGGCC-3' 

Hacd2 
Fwd 5'-CGTCTTTGCCCTCATCCAAG-3' 

202 Weak amplification 
Rev 5'-CCATTCCCCTTGGTCGCT-3' 

Ddx56 
Fwd 5'-CTACGGAGCTGATGAGTCCC-3' 

244 59 2 0.5 
Rev 5'-AGTGAGTATGAGGCAGGACG-3' 

Luc7l 
Fwd 

Not performed 
Rev 

Chsy3 
Fwd 

Not performed 
Rev 

R
e
f.

 

g
e

n
e
 

Sfi 
Fwd 5'-GGGCTCTGCTGTATGGGTAG-3' 

230 60 2 0.5 
Rev 5'-TAGTAGGACGGGGTGGGTAG-3' 
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4.3.11. Bisulphite Modified Pyrosequencing 

Unpooled biological replicates (400ng) were sodium bisulphite converted using the EpiTect® Bisulphite kit 

(Qiagen) following the manufacturer’s instructions and diluted to a final concentration of 3ng/μl. Primers were 

designed using ‘Methprimer’299 around the putative differentially methylated CpGs. RT-qPCR was performed as 

above. Sequencing primers and biotinylated primers were designed via ‘PSQ Assay Design’ (PyroMarkTM, 

Biotage), and together with MgCl2 concentration and annealing temperatures are in Table 10. Pyrosequencing 

was performed on a Pyromark ID (Biotage), and analysed using Pyro-Q-CpG (Biotage). 

Table 10: Sequencing primers and biotinylated primers, MgCl2 concentration and annealing temperatures. –B Biotin 
(Supplementary Data) 

   Bisulphite modified pyrosequencing 

   Sequence (PCR) 

Pro

duct 

size 

(bp) 

T

m 

(°

C) 

M

g 

(m

M) 

Olig

o 

(μM) 

Sequence (Pyrosequencing 

primers) 

H
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p

e
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e
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y
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te
d

 c
a
n

d
id

a
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s
 

Cacnb2 
Fwd 5'-GGGTTTAGAAGTTTTAAAGAATTGG-3' 

271 60 2 0.5 5'-TAGAAGTTTTAAAGAATTGG-3' 
Rev 5'-CAACAACTCCATCTAACTCTCCTAC-3'- B 

Cct7  No Methprimers available 

Kazalt1  No Methprimers available 

Grid1  No Methprimers available 

Cd276  No Methprimers available 

Cdx2 
Fwd 5'-AGGGTTGAAAGGTGTATATTAAAGT-3' 

227 60 2 0.5 5'-TTATATTAATATTATAAGGG-3' 
Rev 5'-AAAAAAACCTCAAAAACCCAAAC-3'-B 

Mybph 
Fwd B- 5’ ATTTGGGTGAGATAGTATTTTTTTT 3’ 

292 56 3 0.1 5' CTACCCAACTCATAAAAAAT 3' 
Rev 5’ TCTCCCCTACCCAACTCATAAA 3’ 

Cxxc5 
Fwd 5’ GGTATTAATGTTTTTTTTATATGGTTT 3’ 

199 56 2 0.5 5' TAATTGGGTTTTTAGAGGTG 3' 
Rev 5’ TAACTCCCAATATACCTAACACC 3’ -B 

H
y
p

o
m

e
th

y
la

te
d

 c
a
n

d
id

a
te

s
 

DsysI3 
Fwd 5'-AATAGTAAATTTTTTTAGTTTTTTTT-3' 

Weak amplification 
Rev 5'-ATCTCAAATCAACCATTCCTACCT-3' 

Lrp2 
Fwd 5'-TTTTTTATTTTAAATAATTTTTTTT-3' 

Weak amplification 
Rev 5'-ATACTTTTCTTAAAAACTTTCCCTTTC-3' 

Mfhas1  No Methprimers available 

Hacd2 

Fwd 5'-GGAAGTTGGGAGGAAATTATTTTTA-3' 

186 58 2 1 

5'-

ATGGAGGTTTTAGTGGGAGTTG

TT-3' 
Rev 5'-CACCTCAAACCCAACTAAACTCTAC-3'-B 

Ddx56 
Fwd B- 5'-GTTATTTAAAATTATAATAGGATGG-3' 

187 54 2 0.5 5'-TTCAAATTACTTAACTCTCA-3' 
Rev 5'-CAAAAAAATAAAAAATAAAATACCC-3' 

Luc7l 
Fwd 

5’ 

AAAATAGGAGGTAGGATTTTAGTTTTATAA 

3’ 
146 55 2 1 

5’ TGATTTTGGGGATTATAGGT -

3’ 

Rev 5’ AAATCAACTAAACTTAATTTTAACC 3’ -B 

Chsy3 
Fwd 5’ AGTGGAGTTAGAGGAGGGGATAT 3’ -B 

299 59 1 0.5 5’ CTAAATCCACCATTCTCCTC 3' 
Rev 5’ ACTACCACCCTATCACAAAC 3’ 
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4.4. Results 

Neonates that survived the infection started to lose body lost weight from D3 to D10 post infection, 

subsequently gaining weight but remained significantly lower than in saline treated control until D43 (2-Way 

repeated measures ANOVA; time effect – p>0.001; time*group effect – p<0.001, Holm-Sidak pairwise 

comparison with overall significance level of 0.05; Fig. 39) 

4.4.1. Early Life H1N1 Infection 

In the initial discovery experiment BALB/c mice exposed to mouse adapted H1N1 Influenza A (A/Puerto 

Rico/8/1934) at PND14 suffered a mortality rate of 54% ± 21.4%.  

At PND42 discovery experiment mice were re-exposing mice to H1N1 Influenza A and the cytokine response 

measured at 7 days post-infection (PND49). Significantly decreased levels of IL-6, MIP-β and RANTES (p<0.05) 

were observed in mice which received an early-life H1N1 challenge compared to saline exposed controls 

(Fig.39). Levels of IFN-Ɣ, IL-1β, IL-4 and IL-12p70 remained unchanged compared to mice with naïve early-life. 

Table 11: Summary statistics of Methyl-Seq sequencing runs. Sequences are available from the 
European Nucleotide Archive, accession number PRJEB17708 and samples ERS1434981-4. 
(Supplementary Data) 

4.4.2. DNA Methylation of Splenocytes 

Methyl-Seq, covering 2.3x106 CpGs, was performed to identify the long-lasting epigenetic imprint of viral 

infection at PND14. At PND49, splenocytes from 7 saline and 6 H1N1 discovery experiment mice were 

collected, DNA was pooled in equimolar concentrations and digested by the isoschizomeric restriction enzymes 

MspI and HpaII. Library sequencing is summarised in table 11, and is in line with our previous Methyl-Seq 

libraries255. The aligned sequencing files have been deposited in the European Nucleotide Archive under the 

accession number PRJEB17708, and sample accession numbers ERS1434981-4.  

  Total Reads cGG&CCG Internal CCGG % uncut CCGG % cut CCGG 

Saline 
HpaII 5,913,973 3,283,603 722,388 12.21 55.52 

MspI 5,982,643 4,302,181 252,675 4.22 71.91 

H1N1 
HpaII 5,530,459 3,203,041 650,354 11.76 57.91 

MspI 5,073,180 3,694,192 195,922 3.86 72.84 
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4.4.3. Genome-wide Distribution of DMRs 

The 2.3x106 CpG dinucleotides interrogated by MspI/HpaII digestionl255 were uniformly distributed 

throughout the complete genome (Fig. 40). After excluding low coverage fragments296, 1660 and 5011 hyper 

and hypomethylated loci were identified (Fig. 40). As sequencing was performed on pooled samples, differential 

methylation was plotted genome-wide as the ratio of the U values (Fig. 41A, 296), and DMRs were distributed 

genome-wide, rather than concentrating on particular loci. Early life H1N1 exposure induced hypermethylation 

ranging up-to to 7 fold (RU=0.14 CaCnb2) change in methylation. Similarly, hypomethylated loci upon H1N1 

exposure had fold changes up-to 9 (RU=8.8, Wrap73). 

 

Figure 40: Genome-wide domainograph depicting the absolute number of reads per 

segment along the chromosomes, from zero (white) to multiple segments (103; dark blue).   
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Figure 41: (A) (A) Manhattan plot visualising the distribution of the RU values across chromosomes. The top hyper- and 
hypomethylated candidates are represented in blue and orange respectively. (•) represent loci that could not be annotated 
to a gene. (B and C) Two top ranked Ingenuity Pathway Analysis functional networks of differentially methylated genes 
centred around Akt and. NFκB. Hypomethylated genes of each network are represented in green and hypermethylated in 
red. 



Chapter 4 

115 

  

4.4.4. Networks of Differentially Methylated Genes Point to Innate Immune Mechanisms 

The top 400 differential methylated genes were organized in functional networks by Ingenuity Pathway 

Analysis® (Fig 41B-C). The statistically significant diseases and functions were biased towards related gene 

expression/transcription and activation functions (P-values from 5.6x 10-5 to 4.1x10-7; 36-53 genes, 9-13% of 

the dataset, per function). The first network (Ingenuity score 33, 24 focus molecules; Fig. 41B) is biased towards 

the most strongly differentially methylated loci, containing 69% of the top 40 differentially methylated genes. 

This network, organised around Akt, suggests that INFα, IL12 as well as IL10 will be differently regulated as a 

result of the H1N1 exposure. IL12p70 was increased in both homotypic (H1N1/H1N1) and heterotypic 

(H1N1/polyI:C) scenarios (Fig. 39). The second network (Ingenuity score 32, 24 focus molecules; Fig. 41C) with 

66% candidates formed a web around NFκB, Jnk, STAT5a/b, PI3K, ERK1/2 and IgM. To find possible 

associations with influenza A infection, the top 400 differential methylated genes were compared to known H1N1 

infection related genes. The 49 linked genes (12.25% of the dataset) formed a network containing NFκB, IL6 

and 10, TLR3, IFN-Ɣ and β1 (Fig. 42). 

Figure 42: The top 400 differentially methylated genes organised in functional networks using Ingenuity Pathway Analysis®. (A) Providing 
links between genes associated with influenza A (white) and the 400 differentially methylated candidate genes (green/red). (B) Ingenuity 
network created from the subset of linking genes (panel A) in the 2 gene groups. Hypomethylated genes of each network are represented 
in green and hypermethylated in red. (Supplementary Data) 
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4.4.5. Validation of Differentially Methylated CpGs 

Based on their functional relevance combined with a high difference in methylation, 11 candidate positions 

were chosen for validation by RT-qPCR targeting the putative differentially digested restriction sites: Cacnb2, 

Cct7, Kazalt1, Grid1, Cd276 and Cdx2 for hypermethylation and Dpysl3, Lrp2, Mfhas1, Hacd2 and Ddx56 for 

hypomethylation. Six were validated by relative quantification (Fig. 43). Four candidate positions were 

additionally chosen for validation by bisulphite modified pyrosequencing targeting the putative differentially 

methylated CpG. Three out of the four genes tested (Cdx2, Hacd2, Ddx56) showed the correct direction of 

change in mean methylation level, even if absolute levels were low and did not reach statistical significance 

(<1%, 0.3<p<0.1, Fig. 44).  

Figure 43: Normalised fold change in gene amplification 2-∆∆Ct values) in 

comparison to the RU values of the 11 candidate genes. Grey quadrants 

indicate validation of the hyper- or hypomethylated candidates (RU>1 

and 2-∆∆Ct<1 are hypomethylated candidates (º); RU<1 and 2-∆∆Ct>1 are 

hypermethylated candidates (•)). (Supplementary Data) 
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4.4.6. Programming is not H1N1 Specific 

Innate immune system programming was confirmed in the innate immune validation experiment (Fig. 39) by 

adult exposure at PND42 to polyI:C of both H1N1 and polyI:C programmed mice. Heterotypic polyI:C re-

stimulation of H1N1 programmed mice significantly increased IL1α, IL2, MIPα, and IL12p70 levels (Table 12, 

p<0.05). Similarly, homotypic polyI:C exposure and re-stimulation significantly increased levels of MCP1, 

IL12p70 and RANTES (Table 12, p<0.05). Significantly, IL12p70 was increased in both homotypic and 

heterotypic scenarios, and is a key element of the predicted network of epigenetically modified genes (Fig. 41B).  

  

Figure 44: Methylation levels of the candidate genes measured by pyrosequencing. 
Differences in CpG methylation levels between control and H1N1 programmed mice for 4 
Methyl-Seq candidate genes Cacnb2 (A), Cdx2 (B), Hacd2 (C) and Ddx56 (D). T-test or 
Mann-Whitney(MW) if assumptions were not fulfilled (*≤0.5; **≤0.01). (Supplementary 
Data) 
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Table 12: Cytokine response to polyI:C stimulation in vitro after early life 
exposure to either H1N1 or polyI:C. a – One-way anova; b – One-way anova on 
ranks 

4.4.7. H1N1 Programmed Loci are Programmed After polyI:C 

Pyrosequencing was performed on four target genes Cacnb2, Cdx2, Hacd2 and Ddx56 after early life 

polyI:C exposure. Methylation levels at 16 of the 18 CpG dinucleotides examined were significantly reduced 

at PND42 (Fig. 45, p<0.05), and 13 CpG dinucleotides remained statistically significant after Bonferroni 

post-hoc correction (p<0.0031, Fig. 45).  

Early life Mean (SD) Mean (SD) P-valuea  

H1N1 Control (saline) Exposed   

 IL6 14.2 (4.8) 16.7 (2.9) 0.122 

 IL2 9.2 (1.6) 11.4 (1.8) 0.0159 

 MCP1 889.1 (333.4) 1006.3 (574.7) 0.630b 

 IL10 40.9 (12.8) 49.4 (19.4) 0.253 

 MIPα 15.4 (4.4) 20.4 (4.6) 0.0242 

 TNFα 26.5 (10.5) 31. 9 (10.2) 0.170 

 MIPβ 200.2 (60.0) 259.0 (74.1) 0.0567 

 IL12p70 24.8 (7.9) 38.9 (13.7) 0.0269 

 RANTES 1489.5 (602.6) 1215.2 (615.6) 0.184 

 IL1α 9.9 (1.0) 14.2 (1.7) 0.000273 

 IL1β 20.5 (6.2) 33.896 (15.260) 0.0667 

     

PolyI:C Control (Saline) Exposed   

 IL6 14.2 (4.8) 16.7 (2.9) 0.937b 

 IL2 13.3 (1.7) 13.6 (1.2) 0.363 

 MCP1 1284.8 (363.3) 2133.0 (357.2) 0.0011 

 IL10 60.0 (12.2) 73.7 (7.7) 0.065b 

 MIPα 22.7 (9. 5) 20.4 (0.7) 0.699b 

 TNFα 39.8 (5.4) 48.4 (9.4) 0.156 

 MIPβ 320.7 (111.2) 428.9 (117. 9) 0.206 

 IL12p70 51.9 (20.4) 56.6 (20.4) 0.050 

 RANTES 1088.5 (181.3) 1666.7 (294.8) 0.00109 

 IL1α 16.5 (1.1) 15.7 (0.90 0.59 

 IL1β 37.8 (3.3) 45.2 (18.2) 0.39 
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4.5. Discussion 

In this study we demonstrated that early life H1N1 infection modulated cytokine secretion after H1N1 re-

exposure in adulthood. This appears to be a learned or programmed innate immune response as a similar effect 

was observed after heterotypic adult re-stimulation (H1N1/polyI:C) and homotypic polyI:C programming and re-

stimulation (polyI:C/polyI:C). Reduced representation epigenome sequencing identified a network of 

methylation changes common to both early life polyI:C and H1N1 programming through which early life immune 

challenge left a mechanistic ‘trace’ that remained visible throughout life. 

Since the seminal observation of Ellis et al300 that early-life exposure to the dsRNA mimetic polyI:C 

significantly attenuated the febrile response to a subsequent (adult) polyI:C challenge coupled to an 

exaggerated corticosterone response300, efforts have concentrated on the neurodevelopmental and 

neuroimmune consequences of polyI:C exposure rather than long term immunological effects. In the equivalent 

bacterial paradigm, LPS exposure leads to long-term programming of both the febrile response and the HPA 

axis. Such exposure increases the HPA axis response, correspondingly attenuating the cytokine response (e.g. 

Figure 45: Methylation levels of the candidate genes measured by pyrosequencing. 

Differences in CpG methylation levels between control and PolyI:C programmed 

mice for 4 Methyl-Seq candidate genes Cacnb2 (A), Cdx2 (B), Hacd2 (C) and Ddx56 

(D). T-test or Mann-Whitney(MW) if assumptions were not fulfilled (*≤0.5; 

**≤0.01). 
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TNF- α, IL-6 and IL-1β)300 and reducing the fever response to subsequent adult re-exposure301. Adrenalectomy 

and corticosterone supplementation or pharmacological glucocorticoid receptor blockage (e.g. RU486) 

abolished this attenuation of cytokine secretion suggesting heightened HPA axis responses mediate this effect.  

In our model, early life influenza infection similarly modulated the cytokine response to homotypic re-

exposure. Since influenza infection is primarily cleared by the innate immune system (reviewed in Schmolke et 

al (2010)302) even though the adaptive immune response is essential for developing immunological 

memory303,304, higher IL-6 levels are known to be protective against primary H1N1 infection, enhancing both 

innate immunity and viral clearance305. Similarly, RANTES (CCL5) is upregulated in airway epithelial cells upon 

H1N1 infection306, recruiting protective eosinophils to the site of infection, decreasing viral loads 307. Since 

influenza A is known to signal though TLR3 a dsRNA-specific sentinel located on the endosomal membrane308, 

we hypothesised that this was primarily an innate immune process. Confirming this hypothesis, exposure to the 

TLR3 specific stimulant polyI:C in adulthood induced clear differences in cytokine levels after early-life H1N1 

exposure, although this was surprisingly in opposite directions to the homotypic polyI:C challenge. This can be 

explained by the more complex recognition of H1N1 infection by the innate immune system compared to polyI:C. 

Throughout the replication cycle of H1N1 in cells, at least three different receptor families can recognize the 

viral infection: TLRs (3, 7 and 8), RIG-1 and the NOD-like receptor family member NOD, LRR- and pyrin domain-

containing 3 (NLRP3)309 compared to the unique TLR3 for polyI:C. Although the effects of homotypic polyI:C 

and H1N1 programming on the cytokine production did not converge, epigenetic differences were clearly 

observed after both exposures. As the complete murine adaptive immunity response only develops at PND30310, 

our study hereby supports the hypothesis of an epigenetic regulation of the innate memory called trained 

immunity291,311. 

Early life programming appears to lower the cytokine response to subsequent infections. Superficially, this 

may appear somewhat antithetical, however, on many occasions long term exposure to high cytokine levels 

has been shown to be deleterious. These changes are, however, accompanied by a tangled network of 

methylation changes surrounding innate immune regulatory genes, particularly NF-κB. Although our data are 

preliminary, we suggest that since both chemokines induced by H1N1 interact with CCR5 (RANTES/CCL5 and 

MIP1β/CCL4) and signal downstream to NFκB, an equilibrium has been found where despite lower circulating 

cytokine levels, epigenetic regulation of genes interacting with NFκB may result in the same physiological effect, 

while avoiding repeated exposure to high cytokine levels. Based on these data, we hypothesise that 

programmed differences in eosinophil recruiting chemokines such as RANTES and MIP1β secretion may partly 

explain the epidemiological link between early life ARI and asthma/allergy. We suggest that increased levels of 
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RANTES and MIPβ levels will further recruit eosinophils into the airway increasing the risk of asthma, therefore 

increasing the risk of asthma or exacerbating symptoms after disease onset. 

As from prior data the methylation changes were anticipated to be small166 and the number of available 

experimental samples was limited, they were pooled to reduce the intragroup variance and increase DMR 

detection power246–248. This study also leaves open the question of the mechanisms involved in the epigenetic 

modifications during viral infection. One possible mechanism related to influenza A virus infection and host 

responses was proposed by Fang et al. (2012)312, attributing a role to miR29 in blocking DNMTs provoking 

demethylation in the COX2 promoter and increasing the subsequent IFN-Ɣ production312. Furthermore, the 

consequences of differential methylation need to be shown on both the mRNA and protein level in order to 

identify the functional consequences of early-life influenza infection. 

In summary, these preliminary data show that a single early life exposure to viral infection programs the 

innate immune response to both homo- and hetero-typic challenges in adulthood that is observed as altered 

secretion of key mediating cytokines upon homotypic re-infection later in life, coupled with clear epigenetic 

differences in splenic lymphocytes.  
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5.1. General Overview 

In this thesis, we demonstrated that small DNA methylation changes have a genuine biological 

relevance for the model gene we studied (NR3C1). The glucocorticoid receptor displayed a higher 

transcription initiation variability than previously assumed and this transcription initiation pattern was 

affected by small shifts in methylation levels. Furthermore, this transcription microvariability was shown to 

affect the translational regulation and hence the relative abundance of protein isoforms.  This suggested 

that external environmental stimuli acted through subtle methylation changes and transcription variability 

as a mechanism to fine-tune the total NR3C1 protein levels. To expand the findings for NR3C1 and 

investigate the relevance of small DNA methylation changes on a genome-wide basis, we introduced two 

epigenetic models. Rats subjected to the maternal separation paradigm, displayed long term behavioural 

and stress response changes. Complete methylome analyses identified many subtle differences, 

suggesting that the early life adversity (MD) ‘programmed’ the CNS via subtle changes in methylation 

levels. A second model, exposing mice to early life infection with H1N1, illustrated long-term immunological 

effects and displayed a network of subtle methylation changes, including innate immune regulatory genes. 

Indicating that early life viral infection ‘programmed’ the innate immune response via subtle DNA 

methylation changes genome-wide. Both models link small methylation level changes to either 

psychopathological or immunological effects, hence suggesting that the paradigm of small DNA methylation 

changes fits. 

5.2. Towards a Mechanism Linking Subtle Methylation Changes to Phenotypes?a   

The work presented in Chapter 2 builds upon many years research within the host group on the GR. The 

glucocorticoid receptor (NR3C1, GR), has well characterised transcriptional and translational variability. The 

association of receptor levels and variants with disease162,163,185 has made it a particularly useful model to 

explore both the functional relevance and the effects of small methylation changes153,164,166,187,200, and the 

association between methylation and pathology at the single gene level105,127,152,313. The NR3C1 5’ structure, 

containing multiple alternative non-coding first exons (1A to 1J) with a multitude of transcription factor binding 

sides (Fig. 46A), was initially reported by to be responsible for the quantitative, spatial and temporal expression 

of the NR3C1162,163,185. Data presented in Chapter 2 however, demonstrated that NR3C1‘s transcription was 

exceptionally permissive rather than being initiated at fixed positions (Fig. 46). We observed a total of 358 

statistically significant transcription start sites (TSS) located in 38 contiguous loci in the absence of any particular 

stimuli, with a further 185 stimuli specific166. For instance, demethylation with 5-AZA-2’-deoxycytidine (AZA) had 

a profound influence on the TSSs used, with 127 stimuli-specific TSSs induced by demethylation. This 

a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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permissivity, covering a large 3kbp region, is called transcriptional microvariability (Fig. 46)166. Although such 

microvariability appears to be stochastic, in the case of the NR3C1, I showed that it had ait has a significant 

effect on translation. Small differences in TSS location (<10nt) within any given locus redirected ribosomes to 

initiate translation from internal (downstream) ATG codons, altering the balance of the translational GR isoforms 

produced (Fig. 46)l32. A shift in TSS location resulted in an altered mRNA secondary structure and half-life, and 

influences the overall translational efficiency in a “length-dependent, but sequence-independent manner” 164,166. 

These data are also significant because they demonstrate how the NR3C1 microvariability vastly inflates the 

associated proteome. The GR is classically cytosolic, however we have previously demonstrated that the 

membrane bound form of the receptor (mGR88) is derived from the classical NR3C1 gene187,. and further refined 

its molecular origin to the epigenetically regulated alternative first exon, 1D164. In Chapter 2 we demonstrated 

that the NR3C1 microvariability influenced not only the final protein form, but also the final cellular distribution 

of the GR proteins (Fig. 46)32. Our data lead me to conclude that physiological differences in glucocorticoid 

secretion and response were the result of DNA methylation altering TSS/first exon usage, with the 

consequentially proteomic difference. Importantly, my data suggested that, at least for the NR3C1, neither single 

nor clusters of CpGs that are methylated switch off transcription of any particular splice variant, rather, they 

orchestrate the final proteomic landscape, and potentially alter the splicing internally or at the 3’ end. Part of the 

publication Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the orchestra from 

exposure to phenotype? Clin. Epigenetics 8, (2016) 
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Figure 46: Panel A) A schematic representation of the NR3C1 5’ UTR structure, showing the alternative first exons (1A-

1J, CpG island:           ), transcription factor binding sites (1-25), transcriptional loci (B1-B5), and microvariable transcription 

start sites (•). Transcription factor binding sites: (   )  IRF-1 and IRF-2 (position 1); (   ) glucocorticoid response elements 

(GRE, positions 2, 3, 8, 11, 14 and 22); (   ) c-Myb, c-Ets1/2 and PU1 (position 4); (   ) Ying Yand 1 (positions 5, 6, 7 and 

25); (   ) Sp1 binding sites (positions 9, 10, 12, 13, 16, 19, 20, 21 and 24); (   ) Ap-1 (position 15); (   ) NGFI-A binding site 

(position 17); (   ) glucocorticoid response factor-1 (GRF-1, position 18); (   ) Ap-2 (position 23). Panel B) Structure of the 

GR mRNA with the internal ATG translation initation codons, a western blot demonstrating the different transcriptional 

isoforms (from 166 with permission), and the frequency of the different protein isoforms with increasing 5’UTR length 

(adapted from 164 with permission).24 
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5.3. Expanding the Mechanism from the NR3C1 to the Complete Transcriptome 

and Proteome?b 

It has been recognised for many years that both the complexity and phenotypic diversity increase as the 

relative size of non-coding genomic regions and the regulatory elements and variability within them increase 

throughout evolution314,315. Features like alternative first exons, transcriptional microvariability, and alternative 

in-frame downstream ATG initiation codons are found genome-wide. ~60% of all genes are thought to possess 

a highly variable 5’ structure with many alternative first exons172, and this transcription variability has been 

reported in many cases to be responsible for spatio-temporal gene expression patterns167. Similarly, multiple 

alternative in-frame ATG translation initiation codons within mature mRNA are found ubiquitously through 

evolution, occurring in many plant, invertebrate and vertebrate species220–222.  

In light of data on the origin and evolution of new TSSs and exons in different species168,177,178,181 

transcriptional microvariability is not unexpected, and now several reports have observed transcription starting 

over small multiple small loci genome-wide172 and in model organisms316. Multiple alternative in-frame ATG 

translation initiation codons have been observed in a wide range of genes. Although no systematic review of 

their occurrence has been performed, they are thought to be ubiquitous, and cover both leaky ribosome 

scanning and internal ribosome entry225. These observations and the ubiquity of the features, made researchers 

suggest that the 5’UTR, together with intergenic regions and the 75% of the human and mouse genomes that 

are transcribed are the key to understanding the vastly inflated proteome166,314,317. It therefore seems logical 

that the mechanisms outlined for NR3C1 above should be expandable to the complete transcriptome and 

proteome. Irrespective of whether 5’ variability comes from the mRNA structure, the TSS location, transcriptional 

microvariability, or alternative mRNA splicing, this variability will give rise “to high complex and diverse 

transcriptomes and proteomes”166 (Fig. 47). 

In order to expand the subtle methylation paradigm genome-wide, reliable epigenetic animal models were 

required to confirm the relevance of subtle methylation changes and the applicability of the transcription 

microvariability as a proposed mechanism. The DOHaD paradigm describes the conditioning of individual’s 

lifelong health trajectories by their in utero or early life experiences30,44,83. In Chapter 3 and 4, the MD model in 

rats and the perinatal infection model in mice respectively, were introduced to assess whether the subtle 

methylation change paradigm holds true genome-wide. 

The MD model, mimicking depression, one of the best studied psychopathologies, was shown to induce long 

lasting behavioural effects, affect the stress reactivity, and to induce DNA methylation changes in promoter 

b. Paragraph 1 and 2 of this sectionwere published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: 

conducting the orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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regions of specific genes155,239,240. Although the main focus has been on the promoter region, differences in 

methylation occurred across the whole length of NR3C1, including intragenic regions or regions distantly located 

from transcription start sites25,62,123,233,235,244, supporting a more wide-spread epigenetic programming due to 

maternal care. The data presented in Chapter 3 enabled a deeper insight in genes/regions susceptible to early 

life adversity genome-wide, as well as an evaluation of the effect of subtle methylation changes, by employing 

a genome-wide enrichment-based approach MeDIP-Seq. The 5mC and 5hmC profiles revealed a randomly 

distributed read density across all chromosomes. Similar regions tended to be (hydroxy)methylated across 

maternal care conditions, with only a limited number of regions exhibiting slightly different 5(h)mC levels. They 

were found in promoter, intragenic and intergenic regions, not all necessarily annotated. These findings were a 

first hint at the biological relevance of subtle DNA methylation changes for the CNS. None of the annotated 

D(h)MRs was linked to DMRs or genes previously reported by early life adversity studies24,25,62,123,155,233,239,240. 

Although no real changes could be detected in NR3C1’s 5(h)mC profile, the transcript levels did alter155. 

Additionally, the detected D(h)MRs, although not coinciding with previous revealed D(h)MRs associated with 

MD or early life stress, occurred both up- and down-stream of different stress-related genes. Suggesting that 

MD affected regulatory genes although more distantly linked to regulatory genes of the CNS and the stress 

response. Many of the D(h)Mrs were situated in mtDNA. Although mtDNA methylation only recently gained 

attention, it has been suggested to play a role in the regulation of mitochondrial functions, but also to be 

implicated in physiological and pathophysiological processes, including neurodegenerative diseases such as 

Alzheimer and Parkinson disease, dementia and psychiatric disorders269–271. The presence of multiple D(h)MRs 

in the MD model added to this suggestion. Various D(h)MRs detected in the MD model, associated with piRNA 

transcripts. Together with Piwi proteins they form a complex which is mainly known for its role in transposon 

regulation and gene expression regulation50–56. With the majority of piRNAs deriving from transposons, often 

intergenically situated,51,53–55 and transposon regulation assumed to be implicated in CNS variability and 

mosaicism, and neural development and plasticity50–52,54,56, the intergenic with piRNA transcript associated 

D(h)MRs could coincide with regulatory regions for transposon regulation. Implying that the epigenetic 

regulation of piRNAs as a consequence of the early life environment, acts as an adaptation mechanism. Overall, 

the data presented in Chapter 3 profiled epigenetic hallmarks by combining 5mC and 5hmC profiling. The by 

the early life environment induced changes in (hydroxy)methylation levels were small, hence supporting the 

subtle methylation paradigm. The detected D(H)MRs were not directly linked genes previously involved in CNS 

modulation or the stress response. Yet seem to be either situated in regions that were either distantly linked to 

regulatory genes of the CNS and the stress response, mtDNA or piRNA, which are both thought to exert 

regulatory functions directly or indirectly. Hence, the findings presented in Chapter 3 suggest that the subtle 
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(hydroxy)methylation changes caused by maternal deprivation may be involved in the regulation/modulation of 

the CNS, either direct or indirectly.  

With early life infection being one of the major  perinatal events with long term consequences283–285, the 

mouse model subjected to perinatal viral infection with H1N1 presented a clinically and sociologically relevant 

model to study the biological relevance of subtle methylation changes genome-wide. The data presented in 

Chapter 4 demonstrated that early life H1N1 infection modulated the cytokine secretion upon homotypic re-

exposure in later life. As the adaptive immunity response was not yet developed during early life viral infection, 

the model suggests that the innate immune response was modulated. The similar reaction upon re-exposure to 

either homo-typic or hetero-typic stimulation (TLR3 ligand polyI:C or H1N1) supported this. I hypothesised that 

a plausible mechanism underlying the development of this phenotype would be subtle changes in DNA 

methylation. Employing a restriction enzyme based approach (Methyl-Seq), revealed that DMR occurred in 

CpGs across the whole genome, presenting a uniformly genome-wide DMR distribution. They were found in 

promoter, intragenic regions, but also in not-annotated intergenic regions. The exhibited changes in methylation 

levels between control and H1N1 groups tended to be small, with a 7- and 8-fold change, for hyper- and 

hypomethylation respectively, as largest alterations. The changes could be associated with gene networks 

surrounding innate immune regulatory genes. A first one organised around Akt involving also genes such as 

INFα, IL12 and IL10. A second network build included genes such as NFκB, Jnk, STAT5a/b, PI3K, ERK1/2 and 

IgM. Overall, the H1N1 infected mouse model demonstrated that viral infections during early life program the 

innate adult response later on, with DNA methylation as underlying mechanism. As such, the H1N1 model 

shown that the subtle methylation change paradigm holds true for the immune system, by underlining the 

biological relevance of small methylation changes genome-wide in modelling the immunological response and 

thus the resulting phenotype. 

The two models, maternal deprivation and early life infection both successfully induced subtle changes in 

DNA methylation, concurring with the central hypothesis of this thesis that during epigenetically sensitive 

periods, external environmental stimuli induce subtle changes in DNA methylation that will associate with the 

eventual phenotype. As such, both of these models can now be used in subsequent studies to further dissect 

the molecular mechanisms linking the environment to the phenotype. The techniques developed in Chapter 2 

to assess RNA 5’ microvariability will be a key element of such studies.  

5.4. Re-defining a ‘Gene’a  

The significant increase in transcriptional and translational complexity observed for the NR3C1 concords 

with the recent movement towards re-defining a “gene”. While the definition of “gene” has changed considerably 
a. This section was published in Leenen, F. A. D., Muller, C. P. & Turner, J. D. DNA methylation: conducting the 

orchestra from exposure to phenotype? Clin. Epigenetics 8, (2016) 
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over the last century, the current definition used worldwide for genome annotation is “a DNA segment that 

contributes to phenotype/function. In the absence of demonstrated function a gene may be characterized by 

sequence, transcription or homology”318. This definition has come under scrutiny over the last decade319,320. 

Large-scale sequencing projects such as ENCODE/GENCODE have identified several phenomena that are 

changing our perception of what a gene is, including universal alternative splicing, pervasive and intergenic 

transcription, and dispersed patterns of transcription regulation321–323. Gerstein et al metaphorically described 

the classical definition of a gene as “subroutines in the genomic operating system”319. This analogy was further 

broken down into the genome being a complete human “operating system” and with gene being a clear, well-

defined “subroutines” where a genomic region is assembled as in a homologous manner to computer code, with 

transcription and translation considered the homologues of calling and running a subroutine. In this analogy 

gene elements (5’, 3’UTR, intron, exon etc...) were considered as the syntax. GENCODE and subsequent data 

have called this neat definition into question. The vastly inflated transcriptome and proteome suggest that the 

process is rather “higgledy-piggledy” or stochastic, with the gene “subroutine” very poorly defined with many 

starting points. Post GENCODE the definition of a gene was simplified taking into account this variability as “a 

gene is a genomic sequence (DNA or RNA) directly encoding functional product molecules, either RNA or 

protein”319. The two definitions can be compared to strict Boolean or fuzzy logic. This definition is amenable to 

the integration of data, such as ours, from the epigenetic regulation of the NR3C1, as it would appear that a 

combination of genetic and epigenetic variants underpin and orchestrate the “higgledy- piggledy” or fuzzy 

processes into a concerted, specific response to the external environment.  
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5.5. Concluding Remarks and Future Perspectives 

In this thesis we have demonstrated NR3C1‘s transcription was extremely permissive and did not start at 

well-defined, fixed TSS. A permissivity that significantly affected the translation. Small shifts in TSS usage, due 

to DNA methylation, altered the translational GR isoform balance, and affected the mRNA ‘s secondary structure 

stability, its half-life, and the translational efficiency. Which in turn influenced the final protein form and NR3C1’s 

final cellular distribution. Consequently, our data showed that subtle changes in DNA methylation altered the 

TSS usage and therefore translational variability and the resulting proteomic landscape. The ubiquitous 

distribution of genes with similar structure as NR3C1, suggested that transcription microvariability could be 

mechanism to fine-tune total protein levels that is more wide-spread throughout the genome. 

Moreover, the data illustrated that maternal separation or handling of rat pups modulated their methylation 

and hydroxymethylation profiles, via subtle changes of (hydroxy)methylation levels. Hereby supporting the 

subtle methylation paradigm and being one of the first studies to our knowledge combining 5mC and 5hmC 

profile analysis. The detected differential regions were mainly located in intergenic regions, as observed by the 

Figure 47: Proposed mechanism for the creation of phenotype diversity by environmental factors. Epigenetic marks, 

such as DNA methylation, are proposed to influence transcriptional variability and hence the proteomic landscape, 

resulting in a phenotype diversity.24 
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ENCODE Project Consortium, and often associated with more distant regulatory regions of the genome, non-

coding piRNA’s or mtDNA. Suggesting that they may exert regulatory functions directly or indirectly. 

Furthermore, we have shown the subtle methylation paradigm also holds true for the immune system. Using 

the early life infection model, we demonstrated that a single early life exposure to viral infection programmed 

the innate immune response to both homo- and hetero-typic challenges of mice later on in life. The secretion of 

key mediating cytokines upon homotypic re-infection later in life was altered and could be coupled with clear 

epigenetic differences in splenic lymphocytes. Therefore supporting the subtle methylation paradigm and the 

biological relevance of such small DNA methylation changes. 

Overall, it has become clear that DNA methylation occurs either as discrete hyper- and hypo-methylation 

coupled with a clear on/off switch of genes as often observed in oncogenes, and easily dissected molecular 

mechanisms, or in a second paradigm as a more subtle complex process where small (<10%) methylation 

changes have been associated with divers phenotypes and epigenetic programming events. In this thesis we 

provided two suitable animal models, the MD model and early life viral infection model, to further investigate the 

biological relevance and function of small DNA methylation differences. Our data demonstrated that the 

alterations in methylation are subtle. Yet in order to decipher the underlying mechanism and the functional 

consequences of these, future studies employing these models would need to focus on the effect of the 

methylation changes on both translational and proteomic level. 

Despite the observational association studies’ aim to increase our understanding of the environmental impact 

on phenotype development, the underlying mechanisms linking subtle methylation changes to an eventual 

phenotype remained unaddressed (Fig. 47). Consequently, hampering our interpretation of the associations 

with subtle changes in methylation due to a lack of data addressing the true biological relevance and function 

of such small differences. We are now starting to gain insight into the function and relevance of such small 

changes in methylation from genes, such as NR3C1. These data suggest that the 5′ UTR is the key to controlling 

gene expression. Small changes in methylation throughout this region impact mechanisms such as alternative 

splicing and transcriptional microvariability, altering enhancer and insulator use, and the function of regulatory 

elements. Methylation of single CGs affect the TSS usage within a gene promoter region, i.e. silence a specific 

location, whereas methylation of multiple closely related CG’s will rather silence a transcription loci, i.e. a whole 

site of adjacent TSSs. Recent studies demonstrate that small changes in methylation levels seem to be 

regulated in clusters rather than single CpGs. But whether they act as single CpGs or in clusters, these small 

changes do not function as an on/off switch, rather redistributing the transcriptional landscape, affect 

translational isoform production, and orchestrating the final proteomic landscape. Hence, this thesis suggests 
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that the observed NR3C1 transcription microvariability can be expanded as a genome-wide mechanism through 

which subtle DNA methylation changes can act on the resulting phenotype.  

Technologies such as high-throughput sequencing (HTS) have enabled researchers to study these subtle 

methylation changes in greater detail genome-wide. In order to confirm the subtle methylation paradigm in the 

MD and early life viral infection models and to study the transcription initiation in NR3C1 in greater depth, we 

combined existing techniques such as 5-RACE and MeDIP with HTS. Techniques that can readably employed 

in future epigenetic studies analysing genome-wide DNA methylation patterns or the transcriptional variability. 

Both techniques also will also be valuable for the study of alternative covalent DNA modifications, such as 5mC, 

5fC or 5CaC. Enabling an epigenome-wide overview, as well as a deeper insight in the DNA methylation 

mechanisms underlying changes. Additionally, our techniques in combination with the emerging single cell HTS, 

will allow a far more in depth analysis of this phenomenon and its importance overall as well as on the single-

cell level.  
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