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D E U T S C H E Z U S A M M E N FA S S U N G

Das Ziel dieser Arbeit ist es, die Effekte von Windenergieanlagen
auf lokale Fledermauspopulationen zu modellieren und Aussagen
über deren Gefahr für den Erhalt der betrachteten Population zu tref-
fen. Dabei simulieren wir die Nachtaktivität der Fledermauspopulati-
on und nehmen dabei Rücksicht auf die speziellen Verhaltensweisen
und Eigenschaften dieser Säugetiere. Wir modellieren außerdem un-
terschiedliche Landschaftstypen und das jeweilig zugehörige Verhal-
ten der Tiere. Hierbei betrachten wir zwei unterschiedliche Ansätze,
ein individuenbasiertes Modell und einen dichteabhängigen Ansatz.
Ersteres erstellen wir mit Hilfe von verschieden stochastischen Pro-
zessen, zweiteres mit partiellen Differentialgleichungen. Schließlich
stellen wir die Vor- und Nachteile und die jeweiligen Ergebnisse bei-
der Ansätze gegenüber.

Beim ersten Modell handelt es sich um ein sogenanntes Individu-
enbasiertes Modell (IBM). Bei diesem wird jedes Einzelindividuum
separat modelliert. Anschließend wird mit Hilfe einer Monte-Carlo
Simulation ein durchschnittliches Verhalten für jedes Tier ermittelt
und somit auch die durchschnittliche Gefahr, dass es in die Nähe ei-
ner Windenergieanlage fliegt, quantifiziert. In Summe erhalten wir
somit das Verhalten der Gesamtpopulation und so auch das Gesam-
trisiko. Der große Vorteil dieses Ansatzes ist, dass es hier möglich ist
Einzelpräferenzen darzustellen und das Verhalten jedes Einzelindivi-
duums anhand der produzierten Flugwege nachzuvollziehen.

Wir wenden dieses Modell auf ein reales Habitat an. Dabei wählen
wir den Bereich um den Ort Lettweiler in Rheinland-Pfalz. Dieser
Ort ist in besonderem Maße für ein erstes Anwendungsbeispiel ge-
eignet, weil dort einerseits Sommerquartiere von Zwergfledermäusen
zu finden sind und andererseits eine Kollegin dort, im Rahmen ihrer
Forschungsarbeit, empirische Daten zu dieser Population erhebt.

Im zweiten Ansatz betrachten wir ein äquivalentes partielles Diffe-
rentialgleichungsmodell. Dieser Ansatz modelliert einheitliche Präfe-
renzen der Gesamtpopulation und benötigt wesentlich weniger Be-
rechnungsaufwand als das IBM. Allerdings gehen bei diesem Ansatz
einige Informationen verloren. So ist es nur möglich die Gesamtpräfe-
renzen darzustellen und nicht etwa, wie im ersten Modell, Rivalitäts-
verhalten zwischen den Einzelindividuuen zu berücksichtigen. Des
Weiteren erhalten wir bei diesem Modell nur eine Dichteverteilung
der Gesamtpopulation, keine Einzelflugwege der Tiere.
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Um unser Modell verifizieren zu können stellen wir ein Kalibrierung-
problem auf und erläutern die Übertragung auf unsere spezifischen
Modelleigenschaften. Insbesondere gehen wir dabei auf die Adjun-
giertengleichung ein, die uns die Möglichkeit gibt den Rechenauf-
wand der Kalibrierung zu reduzieren.

Anschließend an die beiden Ansätze stellen wir eine Formel auf, die
uns die geschätzte Anzahl an getöteten Tieren in Abhängigkeit von
Rotorradius, -höhe und Windgeschwindigkeit liefert. Somit erlaubt
dieses Modell den durch Windenergieanlagen hervorgerufenen Ein-
fluss auf die Mortalität zu schätzen.

Im nächsten Teil dieser Arbeit führen wir in die Theorie von Popu-
lationsmodellen ein. Dabei stellen wir sowohl altersunabhängige als
auch altersabhänge Modellansätze vor und betrachten dabei jeweils
einen diskreten und einen stetigen Ansatz. Danach passen wir diese
Modelle an die speziellen Eigenschaften von Fledermäusen an und
setzen die erhöhte Sterberate in das Modell ein. Dadurch erhalten
wir die gewünschte Aussage über das Fortbestehen der betrachteten
Population.

Als Erweiterung des Modells betrachten wir zuletzt ein partielles
Integro-Differentialgleichungsmodell zur Modellierung von Schwär-
men. Dabei gehen wir insbesondere auf Existenz- und Eindeutigkeits-
aussagen ein.
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1
M O T I VAT I O N

1.1 introduction

Since the nuclear phase-out, Germany has to find other options for
satisfying its huge power demand and guaranteeing a stable power
supply. One possibility for alternative power production are fos-
sil fuel power plants like gas- or coal-fired power plants. Unfortu-
nately, these power plants produce very high emissions such that
new options are necessary in order to fulfil international climate tar-
gets. Therefore, renewable energy plants are in the focus of politics,
economists, ecologists and environmental activists. They produce
clean energy with low or no emissions and without reducing the
amount of non-renewable resources. However, there are also some
problems caused by renewable energy production, like the depen-
dence on specific weather conditions or the enormous need of expan-
sion of the power grid systems because of the decentralized produc-
tion places.

One type of renewable energy production is wind energy. In 2016

27,797 onshore and 947 offshore wind power plants have been oper-
ating in Germany and they produced 49,975 MW which represents
12.4% of the power production in Germany (Durstewitz et al., 2017).
Usually offshore wind plants are much more efficient than onshore
plants because of the more hours of full load but they only produce
energy in the north of Germany whereas the main demand of power
is located in the south of Germany. That means the power has to be
transported a very long way from north to south but the power grid is
unable to cope with this high amount of power. For limiting the need
for a huge expansion of the power grid, Germany needs to spread
the energy production more over the country. One way to do so is
building onshore wind turbines. However, the effects of these wind
turbines on the surrounding wildlife are still not predictable at the
moment. Some of these effects are positive (e.g. new edge habitats
because of the aisles in forests) but most of them are negative for the
surrounding environment (e.g. loss of habitat, collision risk of birds,
noise disturbance, forest clearance).

The wildlife is faced by a huge interference caused by the wind en-
ergy production. Especially birds and bats are threatened by death
caused by collisions with the rotor blades of wind turbines (Rydell et
al., 2012; Voigt et al., 2015). The development of mitigation strategies
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2 motivation

of bat fatalities at wind turbines is therefore a focal issue in conser-
vation biology (Peste et al., 2015). One common way of reducing
the number of bat fatalities is to shut down the wind turbines dur-
ing times of high bat activity. However, it is not known how many
bats are killed by wind turbines and how many bats are saved by the
shutting down algorithms. Apart from counts of bats killed by wind
turbines there is almost no information about the impact of such ex-
tra mortality on the viability of local bat populations. Discussing and
setting maximum thresholds for the number of killed bats per wind
turbine and year may therefore be important for conservation pur-
poses and political reasons (Arnett, Barclay, and Hein, 2013). Addi-
tionally the cumulative risk of several wind turbines of a whole wind
park has to be considered and the recommended thresholds have to
be adapted to this cumulative risk.

Recent attempts to model the impact of wind turbine induced mortal-
ity on bat populations primarily tried to identify landscape character-
istics that influence the probability of bats being killed using species
distribution models (Santos et al., 2015) and similar correlative ap-
proaches (Amorim, Rebelo, and Rodrigues, 2012). The few attempts
of predicting population trends following wind turbine induced bat
mortality relied on deterministic growth models and lead to a de-
crease in population size inevitably (Rydell et al., 2012).

In this thesis we present a new approach for estimating the effects
of wind turbines for a local bat population. We build an individ-
ual based model (IBM) which simulates the movement behaviour of
every single bat of the population with its own preferences, forag-
ing behaviour and other species characteristics. This behaviour is
normalized by a Monte-Carlo simulation which gives us the average
behaviour of the population. The result is an occurrence map of the
considered habitat which tells us how often the bat and therefore
the considered bat population frequent every region of this habitat.
Hence, it is possible to estimate the crossing rate of the position of an
existing or potential wind turbine.

We compare this individual based approach with a partial differen-
tial equation based method. This second approach produces a lower
computational effort but, unfortunately, we lose information about
the movement trajectories at the same time . In a next step we predict
the average number of fatalities for each wind turbine in the habitat,
depending on the type of the wind turbine and the behaviour of the
considered bat species. This gives us the extra mortality caused by
the wind turbines for the local population. This value is used for
a population model and finally we can calculate whether the popu-
lation still grows or if there already is a decline in population size
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which leads to the extinction of the population.

Using the combination of all these models, we are able to evaluate
the conflict of wind turbines and bats and to predict the result of
this conflict. Furthermore, it is possible to find better positions for
wind turbines such that the local bat population has a better chance
to survive.

1.2 outline

Here we want to give a short overview over the structure and the
content of this thesis. Therefore, we shortly describe the content of
each chapter and point out the major parts of this thesis.

chapter 2 : literature review

We start this thesis with a literature review. In Chapter 2 we summa-
rize the recent results concerning simulating types of animal move-
ment behaviour with different mathematical techniques. Animal be-
haviour is a well studied topic in literature and of special interest for
lots of biological phenomenon. In many cases it is easy to track indi-
viduals with radio transmitters, but especially for small individuals,
like e.g. bats, this is not always possible or it is too expensive and
needs a lot of man power. Therefore, many authors have built several
models to simulate individual movement behaviour without the high
effort of collecting empirical data.

We start with simple random walk models, then we look at more
specific models which treat specific types of animal movement, like
searching or foraging behaviour. After that we introduce partial dif-
ferential equations which are used for simulating the occurrence den-
sity profiles of whole populations. Then we present the extension to
swarm models, which simulate the behaviour inside animal swarms
with partial integro-differential equations. Swarming is a very sig-
nificant and often observed movement type, where the animals not
only orientate on the surrounding landscape but in fact on their sur-
rounding conspecifics. We give an overview of the latest techniques
and findings for all this models and we finish the chapter by pointing
out the difficulties when in comes to bats and the reason to build a
special model for them.

chapter 3 : model assumptions

For building our own model we have to make many assumptions
concerning the foraging behaviour of bats. In Chapter 3 we present
the general assumptions for our model. Most of them are biologically
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motivated and are well documented in recent literature and studies
on the movement behaviour of bats. Additionally we rely on the work
of Cosima Lindeman, who does a movement behaviour study on the
common pipistrelle (Pipistrellus pipistrellus) near the village Lettweiler
(Germany). Here we use information on this habitat for validating
our model and for giving a first idea on how the model can be used
for biologically induced questions.

Unfortunately, we also have to make assumptions for simplification
purposes to make it possible to implement the model. All these practi-
cal induced assumptions are made to reduce the computational effort
but we try to guarantee that the effect on the model result is deniable,
so we still can accept these restrictions. These assumptions are very
important for building our bats’ movement model and make it realis-
able in a acceptable amount of time.

chapter 4 : individual based model

To fully understand the wind-turbine-induced increase of individ-
ual mortalities and their consequences for the viability of an entire
bat population we simulate the behaviour of every individual of a
considered model population in an individual based model (IBM) in
Chapter 4. We estimate the probability of a moving bat to come close
enough to a wind turbine in the corresponding landscape. In princi-
ple, our approach is based on several stochastic processes. However,
we adapt the mathematical model to three different scenarios which
are determined by the different flight behaviour types of bats. This
includes a flight along a path or a one-dimensional attraction zone,
e.g. an alley or a forest edge, which bats usually use for orientating in-
side their habitat or for hunting along, respectively. Both behaviours
are simulated by a two dimensional stochastic process along the pre-
defined path or hunting zone, whereby the bat flies only once along
a path but several times along a hunting zone. The third habitat
structure is a model for a foraging behaviour over a two-dimensional
attraction zone, such as a lake or a forest. This is simulated by a
two-dimensional reflected Brownian motion (RBM) and we discretize
it by a symmetric Euler-Maruyama scheme (Bossy, Gobet, and Talay,
2004) which we adapt to our special model characteristics.

In addition, the model contains a randomly chosen decision variable
which models different preferences for various attraction zones. We
also include several elements to be able to simulate different types of
territoriality, e.g. a Voronoi separation inside the foraging zones or
different attraction values for each zone and each individual.

In order to obtain an average behaviour of the local population we
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include a Monte-Carlo simulation to our model. The result is an oc-
currence profile of the simulated habitat for one bat or the whole
population, respectively. We finish the chapter by presenting the nu-
merical results of the IBM and the Monte-Carlo simulation.

chapter 5 : application

In Chapter 5, we present the numerical implementation of the before
described IBM to a realistic model landscape. Therefore, we choose
the village Lettweiler and use the data set of C. Lindemann, who does
a behaviour study on the common pipistrelle (Pipistrellus pipistrellus)
in this area. We show the model results for different parameter set-
tings and illustrate the possibilities to apply our first approach on a
realistic scenario.

chapter 6 : partial differential equation model

In Chapter 6 we introduce a second approach to simulate animal
movement behaviour: a partial differential equation (PDE) based ap-
proach. Our first model has lots of advantages when it comes to
adaptability of individual behaviour but this advantage generates
one problem: a high computational effort. It is well discussed in
literature that IBM approaches are often limited concerning the num-
ber of simulated individuals (Grimm et al., 2006). So, we want to
simulate the behaviour of the bat population by a much faster PDE
based approach. Therefore, we derive the corresponding PDE model
to our IBM by using the well known theory concerning the connec-
tion between stochastic differential equations (SDE) and partial differ-
ential equations. Furthermore, we find a possibility to combine the
behaviour of the bats over the foraging zones, which we describe by
a reflected Brownian motion (RBM) in the IBM, with a parabolic PDE
with Neumann boundary conditions (Bossy, Gobet, and Talay, 2004).

In this approach, we simulate the behaviour of a homogeneous popu-
lation and we obtain a probability density function for the occurrence
probabilities. Therefore, it is not possible to show different prefer-
ences inside the population or to get trajectories of single individuals.
The main advantage of the PDE model is the very low computation
time. But on the other side we have a loss of information and adapt-
ability. At the end it is dependent on the application, which of the
two approaches is preferable.

chapter 7 : calibration

The most important step of this work is the calibration of our model
results to an empirical data set. In Chapter 7 we present several nu-
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merical methods for solving general calibration problems. In partic-
ular we use the adjoint equation and fit this method to the special
characteristics of our movement model. Especially the adaptation of
the calibration model for the two-dimensional foraging zones and the
transitions between the three different behaviour models is challeng-
ing.

chapter 8 : model for the death risk of wind turbines

In Chapter 8 we derive a model which predicts the rate of a bat being
killed by a wind turbine. Therefore, we calculate the probability of
the bat reaching the dangerous circ area that is created by the three
turning blades of the wind turbine. Then we derive the rate of a bat
being hit by one of these blades depending on the wind strength. Fi-
nally we obtain the death rate of the considered wind turbine for the
local bat population.

We consider this death rate as an additional death risk for the local
bat population which is endangered by the wind turbine. With this
value and a proper population model we can estimate the changes in
population viability and therefore we can make a prediction whether
the considered population is endangered by extinction or whether the
increased death rate caused by the wind turbines can be compensated
by the intrinsic growth rate of the bat population.

chapter 9 : population model

In Chapter 9 we concentrate on the theory of population modelling.
Therefore, we give a short overview over the general theory of popu-
lation models. Then we start by introducing a simple discrete version
and derive an ordinary differential equation (ODE) model. We in-
clude a carrying capacity K to our models, fit both approaches to the
specific characteristics of our simulated bat species and compare their
results. At the end we include the increased death rate caused by the
wind turbines and examine its effect of the population growth rate.

Bats usually have different fertility and death rates during their lifes-
pan. Therefore, we present age-structured population models which
make it possible to consider these different rates. Again we present
a discrete and a continuous approach. In the discrete case we intro-
duce the so called Leslie matrices and present some of the findings
concerning the growth rate of the population.

In the continuous case, we derive a hyperbolic partial differential
equation which describes the population size development depend-
ing on continuous time and age variables. The inclusion of a carrying
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capacity K into this age-dependent models is much more challeng-
ing than in the age-independent cases. Therefore, we have a closer
look at the possibilities to include such a carrying capacity into the
model formulations in order to obtain a realistic result. At the end
we fit again both models to the bats’ characteristics and include the
increased death rate.

chapter 10 : modelling swarm behaviour with partial

integro-differential equations (pide)

Finally we want to present a possible extension of the partial differ-
ential equation model to a partial integro-differential model in Chap-
ter 10. We point out the effects of the integral term describing the non-
local effects in a animal swarm, e.g. a fish school or a bird swarm. The
choice of the kernel function inside the integral term is responsible for
the existence of the swarm and determines how long the swarm will
sustain. To point out these effects and further assumptions we have
a closer look at the approach Mogilner and Edelstein-Keshet, 1999.
In further steps we analyse some existence and uniqueness results of
this approach.

chapter 11 : conclusion and outlook

At the end of this thesis we present a conclusion and an outlook.
We present again the main contents of this work and summarize our
findings and results. After that we point out the main issues and give
some ideas for extensions and for future research topics in the field
of behaviour simulation of bats and the conflict with the increasing
number of onshore wind turbines.





2
L I T E R AT U R E R E V I E W

Understanding the movement of animals has been a focal issue in ani-
mal behavioural ecology over the past two decades, especially with re-
spect to the increasing number of human-wildlife conflicts. The tech-
nological progress in tracking devices produced a large number of
empirical studies with increasing levels of data accuracy concerning
the spatio-temporal animal behaviour. Simultaneously, various ap-
proaches to simulate animal movement have been developed. In this
chapter we want to review the most important publications and the
therein described techniques for simulating different animal move-
ment behaviour types.

2.1 random walk theory

A very common and plausible way to simulate movement behaviour
of animals is the random walk. In 1827 the botanist Robert Brown
noticed a random movement of particles inside a fluid and called it
a Brownian motion (Brown, 1828) . For a definition of a Brownian
motion see Chapter 4.
After him, lots of mathematicians and physicians used and carried
on on this topic (Einstein, 1905; Langevin, 1908; Smoluchowski, 1906,
e.g.). In mathematics a Brownian motion is usually simulated by a
special stochastic process. Therefore, we introduce the general defini-
tion of a stochastic process:

Definition 1. Stochastic process (Øksendal, 2003)
A stochastic process is a parametrized collection of random variables

{Xt}t∈T

defined on a probability space (Ω,F,P) and {Xt}t∈T assuming values in Rn.
Hereby T is an index set, Ω is a non-empty set, F is a σ-algebra and P is a
probability measure on F.

The stochastic process which is used to simulate a Brownian mo-
tion is called Wiener process, named after the mathematician Norbert
Wiener. This process has special properties which are summarized in
the following definition:

Definition 2. Wiener process (Karatzas and Shreve, 1991)
Be (Ω,F,P) a probability space. Then a Wiener process is a continuous,
adapted process W = {Wt,Ft, 0 6 t < ∞} on this probability space with
the following properties:

9
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• W0 = 0 almost surely

• the increments ofW are independent and Gaussian distributed (Wt+s−
Wt ∼ N(0, s))

The basic model for animal movement is an unbiased random walk.
That means the direction of each new step is independent of all past
movements. The resulting movement is therefore absolutely random
because no direction is preferred (Codling, Plank, and Benhamou,
2008).

A more realistic approach uses correlated random walks (CRWs).
Hereby the movement directions are correlated, which means the an-
imal is more likely to move in the same direction as before, then into
the opposite direction (see e.g. Bovet and Benhamou, 1988; Codling,
Plank, and Benhamou, 2008; Patlak, 1953).
Another approach is a biased random walk (BRW). The directions of
the BRW are not chosen randomly but in a way, such that the result-
ing process is a biased movement to a certain point or into a certain
direction (see e.g. Codling, Plank, and Benhamou, 2008). The pos-
sibility of simulating animal movement to a certain destination is a
very interesting research field. Another way to simulate this type of
behaviour is a mean-reversion process. It is also possible to simulate
movement inside a home range (Harris and Blackwell, 2013) with this
process. The mathematical formulation of such behaviour can be de-
scribed by a Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930).

Definition 3. Ornstein-Uhlenbeck process (Gardiner, 2009)
Let Wt be a Wiener process, then the Ornstein–Uhlenbeck process Xt satis-
fies the following stochastic differential equation:

dXt = θ(µ−Xt)dt+ σdWt

for constants θ, σ, µ > 0.

Again, this process is a Wiener process but the mean of the process
converges to a certain point, such that the process itself converges to a
certain point. An extension of this model presents the work of Black-
well (Blackwell, 1997), who uses not only one Ornstein-Uhlenbeck
process to simulate animal movement behaviour but several Ornstein-
Uhlenbeck processes with different parameters to simulate different
behaviour patterns. Another recent extension of this work is the in-
corporation of group dynamics of Langrock et al. (Langrock et al.,
2014).
For a detailed overview of random walk models and their wide range
of applications see Codling, Plank, and Benhamou, 2008. In their
review they give a very detailed summary about different animal
behaviour in different dimensions, the corresponding random walk
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based models and other interesting applications of these model for-
mulations. Additionally they also linked most of the models to corre-
sponding partial differential equation based models.

2.2 movement from A to B

Empirical studies make it possible to make further assumptions con-
cerning animal behaviour. In many cases animals move from a cer-
tain point to a certain destination point, e.g. from their home to a
hunting area. Therefore, we know the beginning and ending point
of the movement but not the movement trajectory itself. In general
this behaviour can be described as movement from point A to point B.

One possibility of simulating such a behaviour is the Brownian bridge
approach (see e.g. Bullard, 1991). A Brownian bridge is a Wiener pro-
cess as well, but the variance parameter converges to zero and the
mean converges to the ending point B.

Definition 4. Brownian Bridge (Mansuy and Yor, 2008)
Be W(t) a Wiener process, then

B(t) =W(t) −
t

T
W(T), t ∈ [0, T ]

is a Brownian Bridge.

Therefore, only the starting and the ending point are required as in-
put data. The model gives us a random path between these to points
by decreasing the variance parameter over time. It is comparable with
the mean reversion process described above.

Another assumption is the ability of reaching a point in a certain
amount of time. The velocity of animal movement is restricted. There-
fore, only a limited radius is possible for one step. This is included
in the recent developed space-time-prism approach (see e.g. Miller,
2005; Song and Miller, 2014; Technitis et al., 2015). These models gen-
erate individual trajectories between two points, which are randomly
placed in space and time. The model then simulates the accessibil-
ity of any point within the envelope of all possible space-time paths
between an origin and a destination. Therefore, they define a origin
point xi and a destination point xj and an available amount of time
tj − ti. Further let Vm be the maximum travel velocity. Then the
reachable area for the animal in a fixed amount of time t− ti is given
by

pj(t) = {(x,y)|
√

|x− xj|2 + |y− yj|2 6 (tj − t)× Vm}
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and the area which the animal has to reach such that it is still possible
to get to the destination point in the available amount of time tj − t
is given by

fi(t) = {(x,y)|
√

|x− xi|2 + |y− yi|2 6 (t− ti)× Vm}.

The feasible points for this movement step are then given by the in-
tersection of these two sets: Zij = fi(t)∩ pj(t).
In combination with the random walk methods it allows the imple-
mentation of an unequal distribution of visit probabilities within a
prism. This makes it possible to simulate a movement inside a habi-
tat with areas of different attraction to a moving animal. An example
of the construction of such a path is given in Figure 1.

(a) (b)

Figure 1: Example of deriving feasible steps between the starting point A
and the ending point B for a space-time-prism approach.

The main differences between this approach and the simple Brown-
ian bridges approach is the relevance of time. In this model only
paths are accepted which the animal is able to move in the given time
horizon. This approach is a perfect way to interpolate incomplete
empirical data sets.
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2.3 movement modelling based on partial differential

equations

All the models which we described above are usually implemented by
an individual based model (IBM), which is really complex to imple-
ment and produces a high computational effort (Grimm et al., 2006).
Another approach is more efficient to implement: the use of partial
differential equations (PDE) or stochastic differential equations (SDE).
This is a very wide and well studied topic in behavioural ecology (e.g.
Brillinger, 2003; Brillinger et al., 2002; Codling, Plank, and Benhamou,
2008; Holmes et al., 1994; Murray, 2011; Okubo, 1980; Okubo and
Levin, 2001; Preisler et al., 2001). Hereby the movement behaviour is
simulated by probabilities. The result is therefore a probability den-
sity profile of the movement behaviour. It is often possible to link a
random walk model to a corresponding partial differential equations
model (see e.g. Codling, Plank, and Benhamou, 2008).
However, we only want to give a short overview about this topic.
For a more detailed review on this research field please see Codling,
Plank, and Benhamou, 2008 or Holmes et al., 1994.

The basic PDE model for describing animal movement is a diffusion
model which corresponds to an unbiased random walk model (Mur-
ray, 2011; Okubo, 1980):

∂p(x,y, t)
∂t

= D

(
∂2p(x,y, t)

∂x2
+
∂2p(x,y, t)

∂y2

)
.

Here p(x,y, t) describes the spatial and temporal dependent density
of animals, (x,y) is the spatial coordinate and D is the diffusion coef-
ficient.

This model is especially suitable for a homogeneous environment,
where the animals have no special tendency to move to certain places.
For inhomogeneous landscape structures we can include a drift term
in the above equation and obtain (Banks, Kareiva, and Zia, 1988; Hel-
land, Hoff, and Anderbrant, 1984):

∂p(x,y, t)
∂t

=D

(
∂2p(x,y, t)

∂x2
+
∂2p(x,y, t)

∂y2

)
− ux

∂p(x,y, t)
∂x

− uy
∂p(x,y, t)

∂y
,

where ux and uy denote the drift velocities. This model allows to
include preferences of the animals towards special regions in their
habitat.

The suitable PDE based model for a CRW is the so called telegraph
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equation (Goldstein, 1951; Holmes, 1993; Othmer, Dunbar, and Alt,
1988):

∂p(x,y, t)
∂t

=
v2

2λ

(
∂2p(x,y, t)

∂x2
+
∂2p(x,y, t)

∂y2

)
−
1

2λ

∂2p(x,y, t)
∂t2

.

Here 1/2λ denotes the measure of correlation and v is the velocity of
the individuals.
The movement directions are correlated in this approach. Therefore,
it is possible to simulate a more directed movement behaviour, i.e.
the animal tends to move in a similar direction as before.
In contrast to the random walk models, the PDE approach does not
produce trajectories of single individuals and the fitting to very com-
plex or detailed animal behaviour is often not possible. However, it
is a good method to obtain fast results for simple or biased random
walk models without implementing the behaviour of every single in-
dividual but the behaviour of a homogeneous population.

2.4 modelling swarm behaviour by using partial integro-
differential equations

Another very interesting animal movement behaviour is swarming.
The understanding of this movement type has been studied by many
different researchers of many different fields (e.g. Grünbaum, 1994;
Mogilner and Edelstein-Keshet, 1999; Okubo and Levin, 2001; Topaz
and Bertozzi, 2004). Here single individuals do not only fit their
movement behaviour to the target they want to reach. Instead they fit
their movement decisions to the decisions of the animals surrounding
them. This can be represented by non local terms in the mathematical
problem formulation. Therefore, we also give a short overview on the
most important works on this topic.

Grünbaum (Grünbaum, 1994) describes the differences between La-
grangian models, which represent individual based modelling, and
Eulerian models, which use PDE formulations. The former models
give a good description of the behaviour of single individuals. How-
ever, the number of simulated individuals is limited by the implemen-
tation process. With the latter ones it is possible to simulate a large
number of individuals, but it is only possible to describe the popu-
lation density and to predict group properties. Hence, Grünbaum
builds a mixed model to describe density-dependent social animal
behaviours (e.g. fish schools), in his case a PIDE model:

∂p(x, t)
∂t

= D
∂2p(x, t)
∂x2

−
∂

∂x
[p(x, t)(V + γφ(x, t))].

Here p(x, t) is the population density at site x at time t, D is the dif-
fusion coefficient, V is the environmental advection velocity, γ is the
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characteristic aggregation velocity and φ is the local expected value
of the behavioural decision and is represented by an integral term.

Mogilner and Edelstein-Keshet modified this standard approach in
(Mogilner and Edelstein-Keshet, 1999) and present their version of
simulating animal aggregation:

∂p(x, t)
∂t

=
∂

∂x

(
D
∂p(x, t)
∂x

− V(p)p(x, t)
)

.

Here the diffusion coefficient D is independent of the density p and
they assume the population growth to be negligible. Furthermore,
the velocity V is given by the convolution

V(p) = K ∗ p =

∫
R

K(x− x ′)p(x ′, t)dx ′,

where K is a kernel function and K(x− x ′) describes the strength of
interaction between the individual at site x and the individual at site
x ′. R is the radius that allows interactions between individuals. It is
a sort of sensation radius of the individual.

Topaz et al. present a first attempt to simulate swarm behaviour in
more than one dimension (Topaz and Bertozzi, 2004). The authors
use the standard formulation

∂p(x, t)
∂t

+∇(V(x, t)p(x, t)) = 0,

where the coordinate x is assumed to be at least two-dimensional.
That means V(p) is a velocity field and is described by the convolu-
tion

V(p) =

∫
R2
k(|x− y|, t)p(y, t)dy = K ∗ p.

In a more recent work Topaz et al. consider a density-dependent dif-
fusion (Topaz, Bertozzi, and Lewis, 2006). The corresponding model
is therefore more complex. The model equations stays the same, but
the description of the velocity is given by:

V(p) = Va(p) + Vd(p),

where Va = Vl
α ∇(K ∗ p) describes aggregation and Vd = −Vrl

α2
p∇p

describes dispersal. Here V is the attractive movement speed and l is
the sensation radius of the individuals, i.e. inside this radius they can
sense other individuals and can react to their behaviour. K is again
the interaction kernel and r is the ratio from aggregative to repulsive
velocity. The original model equation then can be reformulated to

∂p(x, t)
∂t

+∇(Vln+1pK ∗∇p− Vrl2n+1p2∇p) = 0.
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Many authors also examined the existence and uniqueness of solu-
tions of the above equation formulations. Burger et al. (Burger, Ca-
passo, and Morale, 2006) consider weak and entropy solutions for

∂p(x, t)
∂t

= −∇(p(x, t)∇(G ∗ p(x, t))) +∆a(p(x, t)),

(x, t) ∈ Rd × (0, T ]

p(x, 0) = p0, (x, t) ∈ Rd × {0}.

Here p(x, t) is the population density, G is the interaction kernel and
a(u) = 1

2p(x, t)|p(x, t)|. They show that every entropy solution is also
a weak solution and prove existence and uniqueness for this more
general formulation.

Finally Fetecau, Huang, and Kolokolnikov, 2011 present a general
study on equilibria, stability analysis, well possessedness and steady
states for the general formulation

∂p(x, t)
∂t

+∇(pV) = 0

V(p) = −∇K ∗ p.

Again the population density p(x, t) is considered and the velocity
V(p) is described by a convolution of a kernel function K and the
population density.

There are some similarities between the swarming approaches but
the assumptions concerning the kernel function vary a lot and the
corresponding results concerning existence and uniqueness of solu-
tions are dependent on these assumptions. In Chapter 10 we have a
more detailed look on this.

The model approaches for animal movement behaviour is as complex
as the different movement types themselves. For every simulated
species it is challenging to find the approach which fits best to the
real movement behaviour.

The foraging behaviour of bats is very specific due to their orienta-
tion via echolocation. Bats have a special movement behaviour de-
pending on the corresponding landscape structures. Therefore, it is
not possible to simply use a common approach. Hence, we have
to build a fitted model for the very complex movement behaviour of
bats. Hereby we include some of the above mentioned approaches for
simulating specific movement types. In our first approach we present
a random walk model with different types of stochastic processes,
amongst others a reflected Brownian motion inside two-dimensional
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hunting areas (see Chapter 4). Additionally, we present a PDE based
model for bat’s movement behaviour (see Chapter 6). We compare
the results of both models at the end of Chapter 6 and explain the
importance of the differences between these models for our special
problem formulation.

In a first step we present the relevant assumptions for our model
in the next chapter. They are necessary for building a suitable model
for simulating bats foraging behaviour and then we point out the
relevance for a new fitted model.





3
M O D E L A S S U M P T I O N S

When building a mathematical model of a real biological phenomenon
it is not possible to reflect every little detail of reality. Instead it is nec-
essary to simplify and choose the most relevant characteristics for the
model. In our case it is not possible to consider every characteristic
of the real behaviour of the simulated bat species or to reproduce ev-
ery feature of the landscape area. Therefore, we determine the most
essential properties and formulate them as model assumptions, e.g.
we define different foraging zones and the position of the roost.

Most of our assumptions are biologically motivated, however, some
are necessary for the practical implementation of the model. On one
hand some characteristics of the bats’ flight behaviour exist which
are very complex to implement and require lots of computation time.
On the other hand they are not extremely relevant for the resulting
movement profile and only have a small effect on the outcome of our
model. In such cases, it is necessary to simplify the model, to achieve
a balance in between the complexity of the model and the reflection
of reality.

3.1 biologically induced assumptions

As mentioned above most of the assumptions are biologically in-
duced. However, we derived them from literature reviews and in
cooperation with experienced researchers in this field. We start with
these biologically induced assumptions:

1. Female individuals
We only simulate the behaviour of roost colonies. This means
we model only the behaviour of female individuals. We assume
that the reproduction is never limited by a shortage of male in-
dividuals. This is a common assumption in population ecology
(Caswell, 2001).

2. Edge structures
We assume that the individuals orientate on landscape struc-
tures, e.g. tree lines and hedge rows (Hillen et al., 2011; Kelm
et al., 2014; Verboom and Huitema, 2010). They use them to
get from a particular point A to another point B in their habitat
and for orientating themselves inside the model habitat. These
sample paths are defined as lines along the edge structures and
lead through the whole habitat. We define sample path i by

19
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Si = {Si1Si2 ...Sili } for i = 1, ..., IS, where li is the number of
points Sij which are contained in path i. Every sample path
starts and ends at the roost R. That means Si1 = Sili = R for
all i. The bat flies along these sample paths. Additionally the
bats can change between two or more sample paths at certain
crossing points Sij which are contained in more than one path.
For example they can change between path Sj and Sk for j 6= k
at crossing point Sj5 if Sj5 ∈ Sj and ∈ Sk.

3. Foraging zones
We assume that the population has preferred foraging zones
which they use for hunting and satisfying their water demand.
We define these foraging zones as lines (e.g. along forest edges
or alleys) or as polygonal structured (e.g. lakes or forests). Let
the one-dimensional attraction zones be given by Pi, i = 1, ..., IP
and Pi, i = IP + 1, ..., IP represent the two-dimensional attrac-
tion zones.
Furthermore, we assume attraction values ρi,j ∈ [0, 1], which
give us an indication how attractive zone i is for bat j. ρi,j close
to one means a high attraction and ρi,j close to zero means al-
most no attraction. These values differ due to different land-
scape types (e.g. water bodies, fields, street lights) as well as
inside the colony. This means that every individual has differ-
ent preferences concerning different attraction zones inside the
simulated habitat. With these preference values it is possible to
make a first step in modelling territorial behaviour. If the pref-
erence values differ highly inside the colony they show highly
different behaviour characteristics and they hardly meet each
other during night. If the values are very similar, the individu-
als show similar behaviour, i.e. frequent similar paths and simi-
lar foraging zones. These values also make it possible to model
homogeneous behaviour or very heterogeneous behaviour in-
side a colony.

4. Territorial behaviour
We assume that bats show territorial behaviour adverse other
colonies as well as within their own population. This means
that they in general use their own hunting areas and only in ex-
ceptional cases, they fly to areas frequented by other individuals
of their own or other bat colonies. As mentioned above, this is
achieved by using different attraction values ρij in our model,
such that every attraction zone has a different attraction value
for every bat. For large foraging zones it is also possible to sim-
ulate a sort of division behaviour. This means that individuals
separate this large zone in several smaller hunting zones. This
is implemented by a Voronoi separation, which automatically
splits an attraction zone in a predefined number Ni of smaller
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zones. Then every smaller zone is related to one or several bats.
However, this behaviour is only suitable for several specimens
and for large attraction zones.

5. Maximum flight distance
We assume a maximal flight distance per night denoted by D
with D > 0 for every individual. This should guarantee a real-
istic flight distance per night and individual. In the roost every
bat checks whether it has already reached its flight distance. If
that is the case, it stops its activity and stays in the roost for
the rest of the night. If the distance is not reached yet, it starts
a new flight and continues its activity period. This means that
the bat covers a distance D > D every night, but D does not
exceed D by far. We have to take this into account by choosing
D in order to obtain a realistic flight distance D.

6. Wind turbines
The main purpose of our model is to estimate the danger of ex-
isting or planned wind turbines in our model area. We choose
IW points (wx,wy)i ∈ R2, i = 1, ..., IW in the habitat which
represent existing or planned wind turbine locations. The bats
may collide with these wind turbines when they exactly fly to-
wards them. However, we also assume that the wind turbine
itself presents an attraction for the bats (tallest tree hypothesis
(Cryan et al., 2014)). This means that if the bat flies in a pre-
defined distance to this wind turbine it also may be attracted
by it and therefore, a collision is possible. It is known that bats
also tend to fly up and down along the wind turbine because of
curiosity (Budenz et al., in press). This increases their risk of be-
ing killed by a wind turbine. This effect is not directly covered
by our movement model but by a second model. This model
describes the behaviour of bats near wind turbines. Hence, it
yields an estimate for the number of fatalities caused by every
wind turbine.

3.2 practically induced assumptions

Unfortunately, we can not reproduce every characteristic of the bats’
flight behaviour or every landscape structure. In order to limit the
model complexity to a reasonable level we have to make some as-
sumptions that restrict the representation of reality but whose effect
on the model outcome is expected to be small, such that the result
stays valuable.

1. Roost
The first assumption we have to make is to consider just one
roost. In reality the local bat population uses several roosts at
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the same time and they can vary them very often during their
activity period. However, these several roosts are located close
to each other, such that the bats use similar landscape structures
and hunting zones. This means that practically only the starting
and ending point of their activity change.

2. Dimension
The next practical assumption is associated with the dimension
of our model. We only model a two-dimensional behaviour, that
means we do not simulate the flight height. For our main goal,
calculating the effect of wind turbines, the height of the bats’
flight is only of interest if the individuals reach the position of
the wind turbine. Furthermore, the flight height of bats near
wind turbines is not correlated with the flight height across a
field or inside a forest. As each wind turbine itself poses a point
of attraction for a bat, the individual would show a different
flight behaviour near a wind turbine compared to near other
landscape structures. Therefore, we consider the flight height in
a second model, already mentioned earlier, which will estimate
the number of fatalities for each wind turbine (see Chapter 8).

3. Incomplete model landscape
We are only able to reproduce an incomplete model landscape.
The structures of a real landscape are way to fragmented for
our simulation. We have to define a less complex model area
in order to be able to deal with an acceptable computing time.
Only the relevant structures are represented by the model to
guarantee closeness to reality. This means that we predefine
edge structures which the bats use for their orientation. We
also predefine a fixed number of relevant hunting areas in the
habitat and relate preference values to them, already mentioned
in this chapter.

As you can see from the assumptions above, bats’ movement be-
haviour is very dependant on the surrounding habitat type. There-
fore, it is not possible to use just one model to represent their be-
haviour. Moreover, we have to combine several mathematical tech-
niques and methods to achieve a realistic model for bat’s foraging
behaviour.

In the following chapter we will introduce our full individual based
model which is constructed to fulfil all the assumptions, defined in
this chapter. This model reflects the single trajectories of each indi-
vidual as well as an occurrence profile of the simulated population.
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F I R S T A P P R O A C H : I N D I V I D U A L B A S E D M O D E L

Our first approach is an individual based model (IBM) which simu-
lates the behaviour of every single animal. Hence, the result of the
model generates trajectories which correspond to every simulated in-
dividual. That makes it possible to incorporate different preferences
and behaviour types inside the colony, e.g. preferred hunting zones, a
special visiting order of special places or other behaviour characteris-
tics. The result is a very complex occurrence profile which reproduces
every individual behaviour characteristic as wanted by the user. Be-
sides this we have to guarantee a random movement of the animals
such that the behaviour is not deterministic or predefined by the pro-
gram. In this case, the model would be useless. So we have to include
enough stochastic parameters which regulate the bats’ behaviour in a
random way.

A bat’s action usually depends on the area it crosses. Therefore, we
define three different habitat types: the sample paths, the linear at-
traction zones and the two-dimensional attraction zones. The one
and two-dimensional attraction zones are preferred foraging areas.
The linear zones are represented by simple lines, where the bats are
hunting along (e.g. a clearing) and the two-dimensional zones are
represented by polygons, where the bats are hunting above (e.g. a
lake). While the attraction zones are used to hunt in, the sample
paths are to be understood as corridors between these areas to get
from one foraging zone to another or back to the roost again. These
sample paths are often characterised through special landscape struc-
tures, based on which the bats orientate themselves (e.g. hedgerows
or alleys).

4.1 sample path

We assume that bats do not move in a completely random way but,
in general, follows certain paths. These paths often follow natural
structures such as forest edges, rivers or similar landscape elements.
This assumption is based on empirical studies (see e.g. Hillen et al.,
2011; Kelm et al., 2014; Verboom and Huitema, 2010). We therefore
define many different sample paths. In each flight simulation the bat
chooses randomly one sample path. The model also allows switching
between the different paths during the flight. The only fixed point
which is visited in each flight is the roost R ∈ R2. This point is de-
fined as the starting and ending point of each activity.

23
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Figure 2: Example for a movement (green line) along a sample path (black
line).

In order to make the model more realistic, we add a stochastic term
to the sample path coordinate. Consequently, the bat does not fol-
low the path exactly but shows some variance in its flight behaviour,
which influences the probability of a bat to spontaneously leave a
given sample path (see Figure 2).

We then simulate the behaviour along the sample paths with a stochas-
tic process {Xt}. With Definition 1 we follow for the t+ 1th step over
the sample path:

Definition 5. Behaviour over the sample path
Let [t0, T ] be the time interval which the bat spends over the sample path,
then the position of a bat at time t is given by

Xt+1 = Xt + hd(Xt+1) + σBt, t = t0, ..., T − h, T

Xt0 = X0

where Xt ∈ R2 is the location of the bat at time t, Xt0 is the starting point
(in our case the roost), d(Xt+1) is the normalized corresponding direction
of the sample path and h is the constant step size. Bt ∈ R2 denotes a

two-dimensional Brownian motion and σ =

(
σ1 0

0 σ2

)
is the coefficient

matrix which determines the amount of stochastic variation. In our model it
is constant and rather small.

Remark 1. For σ1 and σ2 near to zero, the bat sticks close to the chosen
path. The higher these parameters get, the more the bat tends to leave the
sample path. Then the area the bat can visit during one night extends and
consequently the danger that the bat reaches a wind turbine that is located
near a path. Hence, these constants have a high effect on the occurrence
profile of each bat and therefore they also effect the death probability caused
by the wind turbines.

4.2 attraction zones

In addition to the sample paths, we define attraction zones which
are the preferred foraging areas of the bats. This could typically be
a lake, a forest or other habitat structures where the food supply is
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high. Another attraction factor is the opportunity to satisfy the water
demand. Within these attraction zones the bat flies completely at
random. We simulate this behaviour by reflecting the process at the
boundaries at the zones. Consequently, the bat can only leave the
attraction zone if it has reached the predefined duration of stay.

4.2.1 One-dimensional attraction zone

We usually represent these attraction zones by polygons. In this re-
gard, the one-dimensional attraction zone is an exception. Instead
of using a polygonal structure, it is simply represented by a straight
line between beginning and ending point, Fb = (Fb(1), Fb(2))T , Fe =

(Fe(1), Fe(2))T ∈ R2. Examples for this one-dimensional type of at-
traction zones are forest edges or clearings. We want to simulate the
behaviour of the bats inside an attraction zone as a sort of searching
behaviour.

For the one-dimensional attraction zone we simulate the behaviour
in a similar way as for the sample paths. The only difference is, that
we do not let the bat fly along the zone just once, but for several
times. Hence, the bat is flying several times along the zone by chang-
ing its direction at certain changing points. By choosing these points
randomly we guarantee that the bat does not change its direction al-
ways at the same point and the simulated behaviour becomes more
realistic. We introduce the following definition:

Definition 6. Behaviour over the one-dimensional attraction zone
The behaviour over the one-dimensional attraction zone is given by the fol-
lowing stochastic process

Xt+1 = Fb + δt+1dF + σBt+1, t = t0, ..., T .

Here T − t0 represents the amount of time, which the bat spends over the
zone, δt+1 ∈ [0, 1] is the step size of time step t+ 1 and dF = (Fe(1) −

Fb(1), Fe(2) − Fb(2)) ∈ R2 the direction of the zone, e.g. the direction of
the forest edge. Therefore, we do not vary the flight behaviour by a change

in the direction but by the step size δt. σ =

(
σ1 0

0 σ2

)
∈ R2×2 is again

the coefficients matrix which determines the amount of stochastic variation
and Bt+1 ∈ R2 is a two-dimensional Brownian motion.

Remark 2.
In each time step we choose a convex combination of the beginning and
ending point of the zone. That guarantees that the new point is always
inside the zone and replaces a reflection rule.

After the bat has reached the predefined step number of a specific
zone, it will continue flying along the sample path which leads to the
next attraction zone or back to the roost.
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Figure 3: Example for a movement inside a two-dimensional attraction zone.

4.2.2 Two-dimensional attraction zone

In the two-dimensional case, we again want the bat to fly completely
random over the zone. If it reaches a boundary we do not want it
to leave the zone but to change direction and continue flying over
the zone until it has reached the predefined step number (see Fig-
ure 3 for an illustration). This behaviour can be described by a two-
dimensional reflected Brownian motion (RBM) (see e.g. Kushner and
Dupuis, 1992). We therefore introduce the definition of a Brownian
motion, which is a special type of stochastic process:

Definition 7. Brownian motion (Karatzas and Shreve, 1991)
Let (Ω,F,P) be a probability space. Then a Brownian motion is a contin-
uous, adapted process B = {Bt,Ft, 0 6 t < ∞} on (Ω,F,P) with the
following properties:

• B0 = 0

• the increment Bt − Bs is independent of Fs for 0 6 s < t and is
normally distributed with mean zero and variance t− s.

Now we define a RBM:

Definition 8. Reflected Brownian Motion (RBM) (Bossy, Gobet, and Talay,
2004)
A RBM is a Brownian motion inside a domain with reflecting barriers which
we describe by the following stochastic process

Xt = X0 +

∫t
0

b(Xs)ds+

∫t
0

σ(Xs)dWs −

∫t
0

γ(Xs)dξs, (1)

where Ws is a Brownian motion and ξt only increases for Xt ∈ ∂D for the
domain D, such that: ξt =

∫t
0 1{Xs∈∂D}dξs.
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Remark 3.
The first three terms of Equation 1 describe a simple stochastic process with
normal distributed stochastic term. The last term guarantees that the process
stays in the predefined domain in the direction of the vector field γ, which
we will define later. This can be achieved by reflecting the stochastic process
back into the domain, if the process would leave the domain.

euler-maruyama scheme

In order to implement the RBM process, it is necessary to discretize
Equation 1. In the literature, projected Euler schemes are often used
to discretize the problem formulation above (see e.g. Costantini, Pac-
chiarotti, and F., 1998; Pettersson, 1995; Saisho, 1987; Słomiński, 1994).
We present this common discretization scheme in this section.

Therefore, we consider the approach of Costantini et al. (Costantini,
Pacchiarotti, and F., 1998) and adapt it to pure reflecting boundary
problems.
Let D be a bounded convex domain in R2 and of polygonal structure.
Then the boundary of D is piecewise C1. Further let b : [0, T ]×D →
R2 and σ : [0, T ] ×D → R2×2 be continuous functions. Then we
can define the diffusion process X = {Xt}t06t6T with coefficients
b and σ which is reflected at the boundaries of D. Therefore let
n = {nt}t06t6T be a unique stochastic process, such that nt is the
outward normal vector at site Xt ∈ ∂D \ ∂sD, where ∂sD the set of
points x∂Dwhere no unique normal vector exists, namely the vertices
of the polygon. Further let ξ = {ξs}t06t6T be a stochastic process as
well. Then we consider a similar formulation as in Definition 8.

Xt = X0 +

∫t
t0

b(s,Xs)ds+
∫t
t0

σ(s,Xs)dWs −
∫t
t0

nsdξs, t0 6 t 6 T

(2)

ξs =

∫s
t0

I∂D(Xr)dξr, t0 6 t 6 T

where W is a standard Brownian motion.
In the next chapter, we will present a PDE approach for this move-
ment behaviour. Therefore, we mention here the connection of the
above RBM process to a Neumann boundary condition problem which
Costantini, Pacchiarotti, and F., 1998 present in their paper.

Remark 4. Neumann boundary condition problem
For X0 = x, the expected value of XT can be represented as the solution
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u(t, x) of the backward partial differential equation with Neumann boundary
conditions:

∂u

∂t
= −

1

2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
(t, x) −

d∑
i=1

bi(t, x)
∂u

∂xi
(t, x),

t ∈ [0, T), x ∈ D
u(T , x) = f(x), x ∈ D
∂u

∂n
(t, x) = 0, t ∈ [0, T), x ∈ ∂D− ∂sD

where aij =
∑d
k=1 σik(t, x)σjk(t, x).

We now present a projected Euler scheme to discretize Equation 2.
Therefore let {∆p+1η} be a sequence of i.i.d. random variables which
are independent of X0 and let h be the chosen step size.

• Let t = 0, tp = t0 + ph, Xh0 = X0, ξh0 = 0

• We set

X̃htp+1 = X
h
tp

+ hb(tp+1,Xhtp) +
√
hσ(tp+1,Xhtp)∆p+1η.

• Then

– If X̃htp+1 /∈ D

Xhtp+1 = π(X̃
h
tp+1

)

ξhtp+1 = ξ
h
tp

+ P(X̃htp+1)

Here π denotes the normal projection on D. If a unit out-
ward normal vector exists at π(w), P is given by the dis-
tance between w and its projection π(w):

P(w) = |π(w) −w|.

– If X̃htp+1 ∈ D

Xhtp+1 = X̃
h
tp+1

ξhtp+1 = ξ
h
tp

The above scheme converges to the solution of the stochastic pro-
cess and we can cite the following result:

Theorem 1. (Costantini, Pacchiarotti, and F., 1998)
If ∆p+1η is bounded and furthermore us is a Hölder continuous function
of s of exponent 1/2 and uxi,xj , i, j = 1, ...,d, is a Lipschitz continuous
function of x, then it holds for h < 1 that the Euler-Maruyama scheme
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converges to the solution of the stochastic process with the convergence rate
1/2:

sup
t6T ,x∈D

|E[f(XhT , ξhT )] − E[f(XT , ξT )]| 6 C(T)h1/2

for some constant C(T), depending only on T .
Hereby, f(Xht , ξhT ) denotes the solution of the discretization and f(XT , ξT )
denotes the solution of the stochastic process.

For the proof of this theorem please see Costantini, Pacchiarotti,
and F., 1998.
In addition to the above discretization scheme, we want to look at the
symmetrized Euler-Maruyama scheme which was firstly proposed
by Bossy et al.(Bossy, Gobet, and Talay, 2004). With this scheme, it is
possible to improve the convergence rate. In Figure 4 we illustrate the
difference between the two schemes. In the Euler-Maruyama scheme
we reflect the process simply on the boundary of the domain. In
contrast, the symmetrized Euler-Maruyama scheme projects the point
outside the domain not just on the boundary, but it projects the point
inside the domain by using the algebraic distance Fγ.

Remark 5. Fγ

The algebraic distance Fγ parallel to the vectorfield γ of the point outside the
domain x̃ to the boundary is equal to the algebraic distance of the new point
x to the boundary: Fγ(x̃) = Fγ(x).

Now, we summarize the assumptions of Bossy, Gobet, and Talay,
2004 which we need for the convergence result later:

Assumption 1. The boundary ∂D is bounded and of class C5.

Assumption 2. The unit vector field γ is of class C4 and there exists a
p0 > 0 such that γ(s)n(s) > p0, ∀s ∈ ∂D

Assumption 3. The functions b and σ areC4b(D, Rd) andC4b(D, Rd
⊗

Rd)

functions.

Assumption 4. The matrix σσT is uniformly elliptic: ∀x ∈ D holds
σσT (x) > σ20IRd

⊗
Rd for some σ0 > 0.

Further let {Wt}t>0 be a two-dimensional Brownian motion. Again,
we want to discretize the RBM

Xt = x+

∫t
0

b(Xs)ds+

∫t
0

σ(Xs)dWs −

∫t
0

γ(Xs)dξs

where

ξt =

∫t
0

1{Xs∈∂D}dξs
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Figure 4: Reflection scheme of the Euler-Maruyama (solid line) and the sym-
metrized Euler-Maruyama method (dashed line) .

denotes the process which only increases if x ∈ ∂D.

We now present the symmetrized Euler scheme. Let again h be the
step size.

• For Xh0 = X0, tp = t0 + ph we set

X̃htp+1 = X
h
tp

+ b(Xhtp)h+ σ(Xhtp)(∆Wp)

• Then

– if X̃htp+1 /∈ D, we set

Xhtp+1 = π
γ
∂D(X̃

h
tp+1

) + Fγ(X̃htp+1)γ(X̃
h
tp+1

)

for Fγ ∈ R the algebraic distance of x to ∂D parallel to γ
and πγ∂D(x) the projection of x onto ∂D parallel to γ.

– if X̃htp+1 ∈ D, we set

Xhtp+1 = X̃
h
tp+1

• Overall, we obtain

Xhtp+1 = X̃
h
tp+1

+ 2[Fγ(X̃htp+1)]
+γ(X̃htp+1)
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Bossy, Gobet, and Talay, 2004 derive a convergence result for the
above scheme. Therefore, we need one additional assumption:

Assumption 5. The function f is of class C5b(D, R) and satisfies the com-
patibility condition on ∂D: ∀z ∈ ∂D it holds [5fγ](z) = [5(Lf)γ](z) = 0.

Furthermore, we set ‖f‖(5) =
∑
α:|α|65 ‖∂αx f‖∞ for f ∈ C5b(D, R).

This discretization scheme improves the convergence rate towards
the solution of the Neumann boundary condition problem:

Theorem 2. Bossy, Gobet, and Talay, 2004
Under the above described Assumptions 1-5 holds:

|E(f(XhT )) − E(f(XT ))| 6 K(T)‖f(5)‖h

for some constant K(T) uniformly in x and a sufficient function f. Hereby
XhT denotes the solution of the symmetrized discretization scheme and XT
denotes the solution of the stochastic process.

For the proof of this theorem see (Bossy, Gobet, and Talay, 2004).

application to our model formulation

We want to use the discretization scheme of Bossy, Gobet, and Talay,
2004 for the two-dimensional case due to its better convergence prop-
erties. We adjust the above described scheme by leaving out the drift
term, because we want the bat to fly completely randomly over the
attraction zone without any preferences towards special parts of the
zone. This means that we consider the adjusted SDE

Xt = X0 +

∫t
0

σ(Xs)dWs −

∫t
0

γ(Xs)dξs.

Furthermore, we set γ = n such that the reflection direction is always
the unit outward normal vector n. This is biologically induced, be-
cause if the bat leaves the zone and notices it, it would fly on the
shortest way back to the zone in order to save energy costs. That
makes the normal vector the best choice for the reflection vector field.
We define the attraction zone K as a random convex polygon in R2.
Then X0 ∈ K is the point where the bat enters the polygon K. This
point is the starting point for the following simulation. The bat flies
for a predefined number of time steps over the attraction zone. This
happens in a random way until a step tends to leave the zone K. Then
the bat is reflected back to the zone parallel to the unit outward nor-
mal vector n.

The adapted symmetrized Euler-Maruyama scheme is defined as fol-
lows:

• Again we start at the point X0.
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• We discretize the time interval [0, T ] with time step h = T
N . For a

better understanding, we set Xtp = Xp with tp = t0 + ph again.

• Then for the t+ 1st step we calculate the following approxima-
tion:

X̃p+1 = Xp + σ(Xp)∆Wp

• We check whether X̃p+1 is in our polygon:

– if X̃p /∈ K, we set

Xp+1 = π
n
∂D(X̃p+1) − F

n(X̃p+1)n(X̃p+1)

where Fn ∈ R(x) denotes the algebraic distance of the
point x ∈ R2 to the point πn∂K(x) with πn∂K(x) being the
projection of x onto ∂K parallel to the vector n. Again we
set n(x) = n(πn∂K(x)) for points in a surrounding of D. Of
course we have to restrict this to the the parts of ∂K where
the normal vector is defined. For all other points, we set
projection πn∂K(x) = V where V denotes the closest vertex
of the polygon.

– if X̃p ∈ K, we set

Xp+1 = X̃p+1

• Overall we obtain

Xp+1 =Xp + σ(Xp)∆Wp − 2[F
n(X̃p+1)]

+n(X̃p+1).

Whether the bat ends its activity after arriving at the roost or whether
it starts a new flight is determined by the number of path points that
were already visited. For reasons of practicability, we define a max-
imum amount of steps which can be seen as an equivalent of the
maximum time of a bat’s activity per night. If the bat has already
covered this number, it finishes the activity. If not, it starts a new
flight. The steps that the bat covers within the attraction zones are of
course added to the total number. On the one hand, this number acts
as an indicator for the distance the bat has already covered and thus
for the effort it has already taken; on the other hand, it also represents
the foraging success of the night, because usually a large portion of
path points are located within the attraction zones which supply a
high amount of prey.

We want to verify whether we can fulfil the Assumptions 1-5 for the
convergence result.

• Assumption 1:
We want to assume the two-dimensional attraction zones as
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polygonally structured. Unfortunately, this is a contradiction to
assumption 1. We refer to the work of Costantini, Pacchiarotti,
and F., 1998, who were able to show convergence for polygons
as well. Although we have not shown the result of Bossy, Go-
bet, and Talay, 2004 for polygonal structures domains we are
optimistic, that it is possible to combine the two approaches
and to obtain a good convergence results for the symmetrized
Euler-Maruyama scheme for polygons as well.

• Assumption 2:
We set the vectorfield γ equal to the outward normal vector field
n. Therefore, it holds n(s)n(s) > 0 ∀s ∈ ∂D and n(s)n(s) = 0⇔
n(s) = 0.

• Assumption 3:
In our case b = 0 and σ = (σ1,σ2) is constant, so assumption 3

is fulfilled.

• Assumption 4:
Since we set the constant parameters σ1 > 0 and σ2 > 0 we can
find σ0 > 0 such that

σσT =

(
σ21 σ1σ2

σ1σ2 σ22

)
>

(
σ20 σ20

σ20 σ20

)

is fulfilled.

• Assumption 5:
We can chose the function f in the way, that assumption 5 is
fulfilled as well.

We only have a contradiction to assumption 1. However, we remem-
ber the approach of Costantini, Pacchiarotti, and F., 1998. There, they
have shown a convergence result for a piecewise C1 domain. It may
be possible to show the improved convergence result of Bossy, Gobet,
and Talay, 2004 for piecewise C1 domains as well. Nevertheless, we
leave this open for further research and have a closer look on other
special behaviour characteristics of bats.

4.3 voronoi diagram

In our model, we include the opportunity of simulating territorial
behaviour by different preference values. However, we want to in-
clude a second possibility into the model for simulating this kind
of behaviour inside the colony. The bats therefore prefer regions of
the habitat especially inside attraction zones that are not occupied
by other members of their population or which are only frequented
by a few other bats. Depending on the bat species, this territorial
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behaviour is more or less adopted. We achieve this territorial be-
haviour for small zones by using highly different preference values.
For large attraction zones it is possible to divide them into several
smaller zones, such that the different individuals can occupy these
smaller zones. Hence, we have to divide several attraction zones into
different subregions to define the territories of the different individu-
als.
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We do not want to define every subregion manually because this
would produce a very high effort for every large attraction zone. In-
stead of defining every subpolygon, we only define center points and
build the subregions by using Voronoi diagrams. This method is used
to split regions into a predefined number of subregions. Usually it is
used for open domains so we have to adjust the general method for
our purpose.

We now explain the different steps of the Voronoi separation for a
polygon K ∈ R2:

• We start by choosing N− l random points Ci, i = 1, ...,N− l in-
side the attraction zone K. These are called center points. Here
N is the number of simulated bats and 0 6 l 6 N. So N − l

is the number of bats that are supposed to fly to the attraction
zone or the necessary number of subpolygons respectively.

• The chosen points Ci then define the center points of the sub-
polygons inside the Voronoi diagram. We use the euclidean
metric. That means the Voronoi separation decides for every
point inside the large zone which center point is the nearest.
Consequently, every point x ∈ K is connected to the center
point Ci, such that dist(x,Ci) 6 dist(x,Cj) ∀j = 1, ...N − l,
j 6= i. The points which are equally distanced to more than
one center point form the boundaries of the new subpolygons
Vi, i = 1, ...N− l.

• In general, the Voronoi separation is used for open domains. It
does not consider the boundaries of the large polygon. There-
fore, we have to take the intersections of the Voronoi polygons
and the boundaries of the attraction zone to get our wanted
subpolygons Vi = Vi ∩K.

• In a last step, we choose a random order of polygons and relate
to each polygon Vi one or several bats which are supposed to
fly to this subpolygon. For simulating the territorial behaviour,
we decrease the attraction value ai of the subpolygon Vi by
multiplying it with a factor r � 1 for every other individual.
For every new bat that flies to the same zone the attraction value
is further reduced. This means that for m bats flying to zone i,
the attraction value of this zone is rma. This value tends to zero
for increasing m and r < 1. Therefore, it is unlikely that many
bats fly to the same subpolygon which is exactly the territorial
behaviour we want to simulate.

• Now every bat that is used to fly to the large zone, enters it and
moves by a biased random walk to its own subregion. When the
predefined amount of time over the attraction zone is reached,
it leaves the zone again by a biased random walk. Thereby,
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the behaviour over the subpolygons is simulated as in the non-
Voronoi case. So the behaviour over the subpolygon is compa-
rable to a zone without any separation.

Remark 6. This Voronoi separation is possible for every two-dimensional
attraction zone but only meaningful for those that are large enough for such
a separation. This means that it has to be biologically induced either by the
behaviour type of the simulated bat species or by a very high food supply.

For an illustration of the implementation of the Voronoi separation
of an arbitrary two-dimensional polygon see Figure 5. There we can
see the separation of one large polygon into seven subpolygons with
randomly chosen center points. The behaviour of the bats inside a
zone with a Voronoi separation is shown in the numerical results of
this chapter.

4.4 algorithm

The program for our IBM is very complex and includes many sub
routines. Hence, it is not meaningful to show the complete program
code in detail in this thesis. For getting a better overview of the
main steps we forgo having a detailed description and only present in
Algorithm 1 a simplified version with the main steps of our algorithm.

Algorithm 1 Pseudocode for IBM

1: By using the preference values rhoi,j, the program chooses the
attraction zones which the bat should visit for this flight and de-
fines the visit order randomly.

2: The bat starts in the roost and chooses the sample path that leads
to the first attraction zone P1.

3: while The maximum flight distance is not reached yet do
4: while The bat has not reached all chosen attraction zones do
5: It follows the current sample path Si.
6: if It reaches a crossing of two or more sample paths then
7: It chooses the sample path that leads to the wanted at-

traction zone.
8: end if
9: if It reaches an attraction zone then

10: It spends the defined time on flying above the attraction
zone or on its Voronoi section respectively. Then it leaves the zone
and chooses the sample path that leads to the next attraction zone.

11: end if
12: end while
13: It flies to the roost (randomly or on the shortest way).
14: end while
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(b) Polygon with randomly chosen center points
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(c) Polygon with center points and the corresponding Voronoi-
separation

Figure 5: Voronoi separation sheme. We defined the large polygon Figure 5a
and the 7 center points Figure 5b. Then the Voronoi theory gives us
the separation of the large polygon into 7 subpolygons Figure 5c.
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4.5 monte-carlo simulation

In the previous sections we have built a model to simulate single tra-
jectories of each individual bat. This is meaningful to get an idea
of how our model simulates the night activity of a single bat and to
generate trajectories of single individuals. In Chapter 7 we want to fit
this model to a real data set in order to chose the right parameters for
the model. However, because of the high number of stochastic vari-
ables in the program, e.g. the random choice of paths, the random
choice of zones and the random order of attraction zones, the gener-
ated trajectories have different occurrence probabilities. This means
that if we look at one trajectory it is possible that the considered bat
would fly this trajectory only once in a lifetime and if we consider
this trajectory as possible as every other trajectory we would make a
big error in evaluating dangerous positions for wind turbines. Hence,
we have to generate an average behaviour of the bat population to
estimate each trajectory in the right way and to avoid under- or over-
estimation of certain trajectories.

For generating an average occurrence map of the considered habi-
tat D ∈ R2, we include a Monte-Carlo simulation into our program.
Therefore, we divide the habitat into a grid with rectangular subre-
gions Ai, i = 1, ..., I such that:

D =

I⋃
i=1

Ai

and repeat the simulation M times. Each time our process {Xmt }Tmt=1
crosses a grid point, the pass is counted by the characteristic function
χAi . Thereby, Xmt denotes the position of the process at time point
t in simulation m and the number of time steps Tm is dependent on
simulation m. By normalising these numbers, we obtain a density
profile of the bats’ occurrence probability. Hence, we sum up all
simulations and all time points and divide the sums by the number
of simulations M and the number of time points Tm respectively and
we obtain the corresponding two-dimensional occurrence profile

pMC(x,y) =
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(X
m
t ).

This function gives us the average flight behaviour of the bat and
shows how intensely each bat visits specific areas in the concerning
habitat. Therefore, pMC can be interpreted as a kind of density distri-
bution function that describes the activity of the simulated bat pop-
ulation. Hence, we obtain an average occurrence indicator for every
position in the habitat and therefore an indicator for the danger of
every position of a potential or existing wind turbine.
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It is well known that the Monte-Carlo simulation converges with a
factor of O(1/

√
M) where M is the number of simulations. Hence,

a very high number of simulations is necessary in order to obtain a
valuable result. Therefore, the method evokes a high computational
effort.

4.6 numerical results

We now present the numerical results of this first approach and the
Monte-Carlo simulation. Therefore, we implement a model land-
scape, where we present every landscape structure we described above:
roost, sample paths, one- and two-dimensional attraction zones. We
show different behaviour types by simulating two individuals with
different preferences. Further more we present the effect of the vari-
ance parameter to the flight behaviour.
After the results of the IBM we show the results of the Monte-Carlo
simulation. Again we show the differences between single individu-
als with different preferences.

Figure 6 shows our model area which we use for illustrating the
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Figure 6: Model area

model results. The map contains the defined sample paths (black
lines), the one-dimensional attraction zone (red line) and the two-
dimensional attraction zones (three red polygons) and the roost (set
in (0, 0), red dot).
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In Figure 7 the behaviour of several simulated individuals (Nind = 4)
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(a) IBM for four individuals with variance parameter
σ1 = sigma2 = 0.
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(b) IBM for four individuals with variance parameter
σ1 = σ2 = 0.2.
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(c) IBM for four individuals with variance paramter
σ1 = σ2 = 0.7.

Figure 7: Behaviour for four individuals with different variance parameters.
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is illustrated. In the first picture (Figure 7a), the variance coefficient is
equal to zero. This means that all individuals stick close to the paths.
In the second picture (Figure 7b) the individuals tend to leave the
path and fly in larger distance to it and in the last one (Figure 7c) the
individuals leave the path and fly in a very large distance to it. The
larger the variance parameter gets, the more landscape is covered by
the simulated bats. Hence, this variance parameters have to be set
carefully, because the effect on the visit probabilities of special areas
is very high.
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(a) IBM for individual 1 with a = 0.2.
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(b) IBM for individual 2 with a = 0.2.
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(c) IBM for individual 1 with a = 0.2.
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(d) IBM for individual 2 with a = 0.2.
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(e) IBM for individual 1 with a = 0.7.
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(f) IBM for individual 2 with a = 0.7.

Figure 8: Two individuals with different preferences and three different vari-
ance parameters.

Figure 8 shows the different behaviours of two individuals with dif-
ferent preference values. Again, we show the resulting movement
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Figure 9: Effect of a Voronoi separation of a zone.

behaviours for three different variance parameters a = 0 (Figure 8a,
Figure 8b), a = 0.2 (Figure 8c, Figure 8d) and a = 0.7 (Figure 8e, Fig-
ure 8f). The pictures on the left side show an individual preferring a
path on the right side of the habitat whereas the individual simulated
in the pictures on the right side prefers to fly to the left side and the
centre of the habitat. This is the numerical implementation of territo-
rial behaviour inside the colony and can be fitted to the behaviour of
the considered bat species.

Figure 9 shows the effect of a Voronoi separation of one large prior-
ity zone. The zone is divided in four subzones, three of them are
frequented by one bat each, which is illustrated by different colours.
This model property is useful to generate territorial behaviour as well.
Again, this has to be fitted to the behaviour characteristics of the local
bat colony.

The results of the Monte-Carlo simulation for M = 10000 show the
average number of passes per flight event of one individual in one
round (see Figure 11) and the accumulated behaviour for four indi-
viduals (see Figure 10). In all pictures the sample paths, the attrac-
tion zones, the edge of the forest and the roost are clearly silhouetted
against the sections which are not passed by the bats’ flight. The
sample paths are not as highly frequented as for example the one-
dimensional attraction zone because the bat uses them only as a cor-
ridor to get from one foraging area to another but not for foraging
itself.



4.6 numerical results 43

Figure 10: Monte-Carlo simulation for four individuals and M = 10000.

In Figure 11 we can again observe different preferences of two in-
dividuals. It is obvious that the individuals frequent different paths
and attraction zones as in the result of the IBM. In Figure 11a, the
individual frequents not all paths but mainly the paths and attraction
zones on the right side of the habitat. In Figure 11b, the individual
frequents all paths and all attraction zones, but mainly on zone on
the left side of the habitat.
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(a) MCS for individual 1

(b) MCS for individual 2

Figure 11: Monte-Carlo simulation for two individuals with different prefer-
ences and M = 10000.



5
A P P L I C AT I O N

The numerical results in the last chapter represent the behaviour of
a bat in an artificial landscape. In this chapter, we want to illustrate
the result of the individual based model for a real landscape example.
Therefore, we choose the village Lettweiler in Rhineland-Palatinate.
This village is suitable for our purpose as a colony of common pip-
istrelle (Pipistrellus pipistrellus) has several nursery colonies around
the village. Additionally, C. Lindemann does her research within her
PhD in this village and she makes her data available for us. Hence,
we can implement the model area and can illustrate a first result of
the program for a realistic landscape structure.

In the following figures we can see the behaviour for different
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Figure 12: Example for a pipistrelle habitat

parameter settings which correspond to different behaviour charac-
teristics. We have to admit that these results are only a first attempt
of implementing a real landscape area and the results have to be fit-
ted to real empirical data sets in the future. However, these results
give a good idea of how the program works and how it can be used
in future applications.
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Figure 13: Habitat example with sample paths (blue lines), attraction zones
(red lines), a roost (red dot) and several wind turbine locations
(magenta dots).

In Figure 12 we present the habitat example which is the area around
the village Lettweiler. There are many different landscape structures
around the village, e.g. water bodies, rivers, forest patches as well as
cultivated areas. C. Lindemann implemented 30 sample paths, 5263
one-dimensional attraction zones and 1055 two-dimensional attrac-
tion zones, which are illustrated in Figure 13. The paths are repre-
sented by blue lines, the attraction zones by red lines and the roost is
the red dot in the middle of the map. The magenta dots represent 16
locations of wind turbines.

However, we change the clour scheme in the next illustrations to im-
prove the visiility of the bat’s trajectories. We represent the attraction
zones and the sample paths by cyan lines. The simulated trajectories
of the bats are now represent by red lines. In Figure 14, the behaviour
of one bat is illustrated and in Figure 14b the trajectory is shown in
detail. It is easy to see that the individual follows certain sample
paths, but also frequents some zones around the sample paths.

In Figure 15, we show the flight behaviour of four different individu-
als during one night.

In order to illustrate the effect of different preferences, we show in
Figure 16 the behaviour of two individuals which frequent different
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(b) Detail of Figure 14a

Figure 14: Behaviour of one bat for σ = 0.1.

parts of the habitat. In Figure 16a, the individual mainly frequents the
northern part of the habitat and in Figure 16b, the individual tends
to fly to the eastern part of the habitat.

In Figure 17 - Figure 19, we illustrate the effect of the variance pa-
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Figure 15: Behaviour of four bats for σ = 0.

rameter on the trajectories of an individual. Therefore we change
the variance parameter from 2 to 5 to 7 and show the resulting flight
trajectories. In the detail pictures it becomes obvious how the vari-
ance parameter affects the flight behaviour. The larger the variance
parameter gets, the more the bat stays around the roost. For a smaller
variance parameter the bat tends to fly a higher distance to the roost
but on a more direct way.

As mentioned above several parameters have to be fitted in order
to get a realistic result. One of them is the flight distance D. We have
to analyse the trajectories of the program and compare them with the
empirical data sets of C. Lindemann. With the fitted parameters, it
will be possible to generate artificial bat trajectories and use them for
several research purposes.
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(a) Behaviour of one bat for σ = 0, which tends more to the north of the habitat
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(b) Behaviour of one bat for σ = 0, which tends more to the east of the habitat

Figure 16: Behaviour of two bats for σ = 0 with different preferences.
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(b) Detail of Figure 17a

Figure 17: Behaviour of one bat for σ = 2.
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(b) Detail of Figure 18a

Figure 18: Behaviour of one bat for σ = 5.
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(b) Detail of Figure 19a

Figure 19: Behaviour of one bat for σ = 7.



6
S E C O N D A P P R O A C H : PA RT I A L D I F F E R E N T I A L
E Q U AT I O N M O D E L

In the past chapter we have presented an individual based model
(IBM) approach with a Monte-Carlo simulation to model the forag-
ing behaviour of a local bat population. A main problem of this
individual based modelling is the high computational effort of the
model approach. The Monte-Carlo simulation is well known for its
time-consuming implementation and slow convergence rate as well.
Therefore, we want to look at another common approach for simulat-
ing animal behaviour. In this chapter we build a PDE based model to
simulate the behaviour of a homogeneous bat population.

For this approach we assume that each individual in the population
has the same preferences. This means the same attraction zones are
preferred and the same sample paths are frequented by each individ-
ual. The result of this model is an occurrence profile of the model
area. That means we do not have to make a second step like in the
first approach (first IBM result, than Monte-Carlo simulation). This
is less time-consuming, but, on the other hand, it is neither possi-
ble to simulate different preferences within the population with this
approach nor to reproduce trajectories of single animals. It strongly
depends on the intended use of the model results which of the two
approaches is more suitable. Therefore, we finish this chapter by dis-
cussing the different characteristics of the results of both models in a
more detailed way.

We start this chapter by introducing the respective PDE models for
the different movement types of the bats. The most challenging part
of the model is the two-dimensional attraction zone. Here we have to
derive the general connection between the SDE and PDE formulation.
In physics this connection is well known for the Fokker-Planck and
the Langevin equations (Risken, 1984). In finance applications it is
also known as theorem of Feynman-Kac (Paul and Baschnagel, 1999).
But the equivalent PDE based formulation for a reflected Brownian
motion is a boundary value problem. Therefore, we need to derive
the suitable boundary conditions in this chapter.

6.1 transfer to our model

The behaviour of bats is very complex, therefore it is not possible to
describe it by only one PDE formulation but we have to divide our
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54 second approach : partial differential equation model

model again in three main parts which depend on the habitat type:
sample paths, one- and two-dimensional attraction zones. We now
derive the PDE models for these tree different habitat types which cor-
respond to the stochastic process formulations in the IBM approach.

6.1.1 Sample path and one-dimensional attraction zone

As mentioned above, we assume that, in general, the bats follow cer-
tain sample paths. In addition we assume that the bats do not exactly
stick to the sample path all the time. Instead, we assume again some
kind of slight variation around the given path. Therefore, we gener-
ate a normally distributed stochastic component Wt in each step and
add aWt to the corresponding coordinates of the sample path. Here
a > 0 is defined as a small constant which guarantees a limitation of
variation such that the bats do not lose sight of the original sample
path.

We obtain a normal distribution for the occurrence profile along the
sample path where the variance σ2 is a constant value and can be ad-
justed to simulate the specific behaviour of the concerning bat species.
The mean µ is the x-value of the concerning sample path coordinate,
except the sample path is parallel to the y-axis, then we chose the y-
coordinate. So we can define the behaviour along the path as follows.

Definition 9. PDE approach for the path sections
Let p : R× [0, T ]→ [0, 1] and (xt,yt) be the space coordinate of the sample
path at time t. Then the following equation describes the density distribution
of the bat’s position at time t, if the path section is not parallel to the y-axis

p(x, t) =
1

σ
√
2π
e−

1
2(
x−µt
σ )

2

,

where µt = yt and

p(y, t) =
1

σ
√
2π
e−

1
2(
y−µt
σ )

2

represents the density distribution along the path if the path is parallel to the
y-axis, where µt = xt.

Remark 7.
Both equations are the same, we only use different coordinate for the mean
of the distribution function.

A boundary of the forest or a clearing are exceptional cases of an
attraction zone because it is defined as a one-dimensional line instead
of a two-dimensional polygon. Hence, the bat flies along the bound-
ary and in each time step it decides whether in continues flying in
the same direction or whether it rather turns around and flies in the
opposite direction. We can describe this behaviour in a similar way as
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the behaviour along the path. The main difference in the behaviour
of the animals is the number of flights along the zone per night. The
path sections are only visited a few times per night whereas the one-
dimensional attraction zones are higher frequented because they are
not only used as corridors but as hunting zones. However, the density
profile is the same as for the sample path.

6.1.2 Two-dimensional attraction zone

Now we look at the most challenging part in the habitat: the two-
dimensional attraction zone. Here the bats are supposed to fly ran-
domly over the zone for a fixed amount of time. In the IBM we
have simulated this behaviour with a two-dimensional RBM. But we
have assumed that the bats fly completely randomly over the zone
without any drift effect, so we have adjusted the standard SDE for-
mulation. Hence, we can describe the behaviour of the bat over the
two-dimensional attraction zone in the IBM with the adjusted RBM
process of Chapter 4:

Xt = X0 +

∫t
0

σ(Xs)dBs −

∫t
0

n(Xs)dξs. (3)

Here σ ∈ R2 is constant, that means it is set independently from lo-
cation X and time t. The last term guarantees that the process stays
inside the bounded domain. n(X, t) is a vector field on the bound-
ary of the domain in the direction of the outward normal vectors and
ξ(t) is only increasing if the process leaves the domain. For a more
detailed explanation please see Chapter 4.

In this section we want to present the connection between the above
described process and the following PDE based model for the two-
dimensional attraction zone. We want to simulate the above described
behaviour by a parabolic partial differential equation with Neumann
boundary conditions. Therefore, we introduce the definition of Neu-
mann boundary conditions:

Definition 10. Neumann boundary condition (Tveito and Winther, 2006)
Let Ω be a domain. Then

∂y(x)

∂n
= f(x), ∀x ∈ ∂Ω

denote a Neuman boundary condition, where n denotes the outward normal
vector to the boundary ∂Ω and f is a given scalar function.

We want to use the following theorem to link a suitable PDE formu-
lation to our IBM approach formulation Equation 3.
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Theorem 3. Langevin and Fokker-Planck equation (Gardiner, 2009; Paul
and Baschnagel, 1999; Risken, 1984)
Let X(t) be a stochastic variable and p(X, t|X0, t0) the transition probability.
For t 6 0, the SDE

dXt =

∫t
0

F(X, t)dt+
∫t
0

B(X, t)dW(t), t ∈ [0,∞),X ∈ Rn

denotes the Langevin equation. Then p(X, t) is a solution of the parabolic
PDE

∂p(X, t)
∂t

=
1

2

∑
ij=1n

∂2

∂Xi∂Xj
Dijp(X, t) −

n∑
i=1

∂

∂Xi
Fip(X, t),

t ∈ [0,∞),X ∈ Rn,

(4)

with drift term F(X, t) and diffusion coefficient D(X, t) such that D =

BBT ∈ Rn×n. Equation 4 is also called Fokker-Planck equation.

This theorem gives us the theoretical link between our two differ-
ent approaches: the IBM with its RBM formulation and the PDE ap-
proach which we want to derive in the following. Therefore, we only
consider the non-reflecting part of Equation 3:

Xt = X0 +

∫t
0

σ(Xs)dBs (5)

We now derive the corresponding PDE formulation. The main con-
nection is between the coefficients of the SDE and PDE. By Theorem
3, the equivalent PDE is given by the following formulation:

∂p(X, t)
∂t

=
1

2

2∑
i,j=1

∂2

∂Xi∂Xj
Dijp(X, t), t ∈ [0,∞),X ∈ R2, (6)

with D = σσT ∈ R2×2 the diffusion coefficient. So Equation 6 is the
corresponding PDE formulation to the non-reflecting part of our IBM
approach Equation 5.

We have to add boundary and initial conditions to the above PDE
for obtaining the equivalent formulation to our SDE. In analogy to
the work of Bossy et al. (Bossy, Gobet, and Talay, 2004), we use Neu-
mann boundary conditions and a delta function as initial condition.
Then we obtain the following boundary value problem for the two
dimensional attraction zones:

Definition 11. PDE approach for the two-dimensional attraction zones

Let K ∈ R2 be a polygon. Further let D =

(
σ21 σ1σ2

σ1σ2 σ22

)
be the
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diffusion coefficient and δ be the dirac measure. Let x ∈ K be the two-
dimensional space-coordinate and t ∈ [0, T ] the time-coordinate. Then the
parabolic PDE

∂p(x, t)
∂t

=
1

2

2∑
i,j=1

Dij

(
∂2p2(x, t)
∂xi∂xj

)
,

t ∈ [0, T ], x ∈ K

with initial condition

p(x, 0) = δ(x)

and Neumann boundary condition

∂p

∂n
= 0 ∀x ∈ ∂K, t ∈ (0, T ]

describes the behaviour of the bats over the two-dimensional attraction zone.

The magnitude of D determines the spread velocity of the bat. If
D is large, the diffusion of the flight is also high and the bat is likely
to fly a high distance in short time. If D is low, the bat stays close
to its starting point. This fits perfectly the meaning of the coefficient
matrix σ in the IBM (see Chapter 4).

Remark 8. Extension
A possible extension of the model is a space dependent diffusion coefficient
D(x) such that we can simulate a more complex behaviour inside the at-
traction zones. The individuals would not disperse evenly to all directions,
but they would prefer special regions inside the attraction zones. This can
happen if the preferences of the bat concerning the zone are not uniformly
distributed, e.g. if a special part of the zone has an especially high amount of
prey insects. Then the bat would concentrate on this special part of the zone.

6.2 numerical results of the pde model

Just as in the first approach we want to show the numerical results
for this model. Hence, we consider the same model area as in the
first approach and present the results for representative parts of the
model area, before we finish the chapter by comparing the results of
this model to the results of the Monte-Carlo simulation.

The PDE approach along the sample path is just the normal distri-
bution that is shifted along the path. The form of the distribution
depends on the variance parameter. For a larger variance parameter
the curve is more spread out, for a small variance parameter the curve
is narrower. This fits the corresponding behaviour of the bats. A big
variance parameter represents a more loose connection to the path
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(a) PDE approach for the path with
variance σ = 0.3.

(b) PDE approach for the path with
variance σ = 1.5.

(c) PDE approach for the path with variance σ = 3.

Figure 20: PDE model for the path with three different variance parameters.

and the bat tends to fly in a higher distance to the path coordinates.
Therefore, the probability of leaving the path is higher. A small vari-
ance parameter describes exactly the opposite behaviour. Then the
bat sticks closely to the path. Hence, the probability besides the path
declines very fast.

In Figure 20 we can see an example for the path (green line) and
the corresponding density profile with the effect of the different vari-
ance parameters: small (σ = 0.3), midsize (σ = 1.5) and large (σ = 3).

In Figure 21 we can see the PDE approach for a one-dimensional
attraction zone. Again the green line represents the attraction zone.
It is the same distribution as over the paths such that different vari-
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Figure 21: PDE model for the one-dimensional attraction zone.

ance parameters have the same effect on the density profile.

In Figure 22 we show the result for a two-dimensional attraction
zone. The highest density peaks occur at the entering points and
then the profile flattens to the other directions of the zone. The diffu-
sion is, as mentioned before, space independent. So the curve flattens
equally distributed to all boundaries.

6.3 comparison of the two approaches

In the literature the most mentioned problem of an IBM is the high
computational effort (see e.g. Grimm et al., 2006) and therefore the
necessity of reducing the number of simulated individuals. A PDE
model is usually more efficient and it is possible to simulate the be-
haviour of a whole population in a very short time horizon, but we
can not generate trajectories of single individuals. Although in Chap-
ter 2 we have presented various PDE approaches for simulating dif-
ferent types of complex animal behaviour patterns, it is not possible
to apply one general PDE approach to simulate all three behaviour
types of our bat population.

We finish this chapter by presenting a short comparison of the pre-
viously discussed approaches to simulate bat’s movement behaviour:
the Monte-Carlo simulation and the PDE-based model. We illustrate
the comparison of the two approaches by presenting the numerical
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Figure 22: PDE model for the two-dimensional attraction zone.

results for a path section and two different two-dimensional attrac-
tion zones.

In Figure 23 we compare the results of the two approaches for the
sample path. In Figure 23a we show the result of the Monte-Carlo
simulation and in Figure 23b we show the result of the the PDE model
for the same part of sample path. The results are very similar to one
another.
The model of the one-dimensional attraction zone is nearly the same

as the one of the sample path. That is the reason why we will not
represent this case here in detail. Instead, we show the comparison
for the two-dimensional attraction zones. In Figure 24 and Figure 25

we show both models for two different attraction zones and compare
the results of the two approaches.

By comparing the density profiles of the Monte Carlo simulation
and the PDE approach for a given section of the habitat, it becomes
obvious that the two models again generate similar occurrence pro-
files for the bat behaviour. We can see the peaks of occurrence at the
same edges of the attraction zones.

The main difference of the two approaches is the loss of information
in the PDE approach. In the Monte-Carlo simulation it is possible
to show a density profile for the bats occurrence probabilities, but it
is also possible to generate average visit numbers to show how of-
ten bats frequent a special region in the habitat in one night. This is
especially relevant for the evaluation of the danger caused by wind
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(a) Monte-Carlo simulation for the path for σ1 = σ2 = 1 and N = 10, 00000 simula-
tions.

(b) PDE model for the path for σ = 1.

Figure 23: Comparison of the two models for the path.



62 second approach : partial differential equation model

(a) Monte-Carlo simulation for hunting zone one and M = 10, 000 simulations.
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(b) PDE approach for hunting zone one.

Figure 24: Comparison for zone 1
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(a) Monte-Carlo simulation for hunting zone two and M = 10, 000 simulations.
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(b) PDE approach for hunting zone two.

Figure 25: Comparison for zone 2
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turbines. For highly frequented places it is possible that a bat visits
the place several times each night and therefore the danger of a wind
turbine in that region would highly increase. Unfortunately, it is not
possible to generate these numbers with the PDE based approach, be-
cause we do not know in advance how often one animal frequents
one special path. The PDE approach only tells us what the density
profile looks like if the bat visit this path but not how often this ac-
tually happens. This is one reason for us to prefer the IBM approach
for our later risk estimation.

Another reason for preferring the IBM based approach is the ability
to build trajectories. This can be used to extend empirical data sets if
this is to expensive or time consuming to do it by empirical studies.
Hence, it can be a huge improvement of the planning process for new
wind turbines or other projects evoking human wildlife conflicts.



7
M O D E L C A L I B R AT I O N U S I N G T H E A D J O I N T
E Q U AT I O N

In the previous chapters, we have presented our model assumptions,
the out coming models (IBM and PDE based approach) and the result-
ing occurrence profiles of one bat and finally of the local population.
In this chapter, we want to explain the theoretical methods to fit these
model results to empirical data sets. This model calibration is abso-
lutely necessary for validating the model results and identifying the
optimal parameter values in the model. Another useful idea is to
test which assumptions effect the model results in a relevant way or
which additional assumptions we should make to get a more realistic
model result.

We start this chapter by introducing the general theory of numeri-
cal calibration methods. We first introduce the general numerical
method for solving a calibration problem, the Gauß-Newton method.

Then we extend the general framework and introduce the adjoint
equation. These method was first introduced by Giles and Glasser-
man (Giles and Glasserman, 2006) and is mainly used for financial
market model calibration (see e.g. Kaebe, Maruhn, and Sachs, 2009).
We adjust this method to our special model properties and point out
the advantages of this method.

7.1 general calibration model

The goal of solving calibration problems is always to fit a model to
empirical or synthetical data sets. Hence, we have a model function
f : Rl → Rn ×Rm that depends on a vector x ∈ Rl of variables
which determines the result of the model. Additionally, we have a set
of empirical data y ∈ Rn ×Rm.

Now we want to find the set of variables xi, i = 1, ..., l, such that
the model result is as close as possible to the empirical data set y.
This can be described by a least squares problem:

Definition 12. Least squares problem:
With the parameter set y ∈ Rn ×Rm and the model function f : Rl →

65
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Rn ×Rm and x ∈ Rl, we define the non-linear least squares problem as
follows:

min
x

1

2
‖
∑
i,j

yij − f(x)ij‖2 =: r(x)

In our case, the function f can be either the model equation of our
IBM approach or the formulation of our PDE based approach. In both
cases, it is reasonable to split the habitat again in the three sub models:
sample path, one- and two-dimensional attraction zones, and to de-
rive the calibration problem for every sub model. A very challenging
characteristic of the model are the transitions between the different
zones.

First, we present the general numeric theory to treat the above de-
scribed problem.

7.2 gauß-newton method

A general method for solving a non-linear least squares problem is
the Gauß-Newton method (see e.g. Björck, 1996). Instead of solving
the original problem we solve a linear approximation,

min
p
‖r(xk) + J(xk)p‖2.

Here r(xk) defines the residual in step k and J defines the Jacobi ma-
trix of r.

Let pk be the solution of the optimization problem above, then we
obtain the new step of the method as

xk+1 = xk + pk.

By iterating these two steps, we get an approximation of the exact
solution of the least squares problem.

There exist many of approved methods like the damped Gauß-Newton
or the Levenberg Marquard method, which fasten the convergence of
this method. However, the main challenge of all mentioned methods
is to compute the derivative J. In our case, this derivative cannot be
calculated analytically, so we have to approximate it by using numer-
ical methods. The most common method to compute a derivative is
the finite differences scheme, but this method causes a high compu-
tational effort. We want to present a method to compute J with much
lower computational effort in the next section.
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7.3 adjoint equation

Adjoint based methods have been successfully used to fit financial
market models to market data (Kaebe, Maruhn, and Sachs, 2009). The
big advantage of this method is, that the result is an exact calculation
of the derivative. Therefore, it is preferableover any finite difference
method which only gives us an approximation of the derivative J.
Additionally, it reduces the computational effort such that it is prefer-
able concerning other methods which give us an exact derivative but
cause a high computational effort, e.g. the sensitivity equation.

We want to adjust this method to our flight behaviour model. In
our IBM and in the PDE model we always identify three different be-
haviour types depending on the landscape structure. The behaviour
of the bats are highly dependent on these three sub models and each
model has other parameters which we want to fit in the calibration
method.

We want to focus on fitting the model equations of the IBM to an
empirical data set in the following sections. For the PDE model the
problem can be treated analogously.

7.3.1 Model characteristics of the IBM

Every night each bat flies over different landscape structures, e.g. it
flies from the roost via a sample path to a lake, then via another
sample path to a forest and finally via a third sample path back to
the roost again. This behaviour differs in every flight and between the
individuals as well. For this special model, it is necessary to merge
our three different sub models to one model equation, depending on
the order of each bat flight. Therefore, we summarize the different
model properties of each of the three sub models:

path

We start with the model for the sample path. Let Xt ∈ R2 be the posi-
tion at time t ∈ [0, Tm], then the behaviour over the path in simulation
m is described recursively by

Xmt+1 = X
m
t + hdm(Xt+1) + σ0∆W

m
t .

Here, h ∈ R is the constant step size, dm(Xt + 1) ∈ R2 is the cor-
responding constant path direction, the coefficient σ0 regulates the
effect of the normal distributed stochastic term Wt ∈ R2 with µ = 0

and variance σ̂2 = 1. m is the number of the corresponding Monte-
Carlo simulation and the above equation holds for every simulation
m = 1, ...M.
In each night, the bat spends several time intervals over different path
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sections. Therefore, we describe the time steps in which the bat flies
over the path through the index set

T0 = {T0p = {tp1 , ..., tpk(p)},p = 1, ...,P}.

Here P is the number of path sections and k(p) is the number of steps
in path section p.

one-dimensional attraction zone

Now, we describe the behaviour over the one-dimensional attraction
zone. Let Yt ∈ R2 be the position at time t, then the behaviour over
the one-dimensional attraction zone is described recursively by

Ymt+1 = FB + δmt+1d1 + σ1∆W
m
t .

Here, δmt ∈ [0, 1] denotes the random step size for the time step t,
d1 = (FE(1) − FB(1), FE(2) − FB(2))T ∈ R2 is the corresponding di-
rection of the zone with beginning point FB ∈ R2 and ending point
FE ∈ R2, which is the same for all steps over the zone, σ1 is the reg-
ulation coefficient of the normal distributed stochastic term Wt ∈ R2

with mean µ and variance σ̂2. m = 1, ...,M is again the number of the
Monte-Carlo simulation.

Then we define the time steps which the bat spends over the one-
dimensional attraction zones by the index set

T1 = {T1f = {tf1 , ..., tfk(f)}, f = 1, ..., F}.

Here F is the number of one-dimensional attraction zone sections and
k(f) is the number of steps in section f.

two-dimensional attraction zone

Finally, we consider the model for the two-dimensional attraction
zone. Let K ∈ R2 be a convex Polygon which represents the two-
dimensional attraction zone and Zt ∈ R2 be the position at time t.
The behaviour over the two-dimensional attraction zone is described
recursively by

Zmt+1 = Z̃
m
t+1 + 2[G

n(Z̃mt+1)]
+n(Z̃mt+1),

with Z̃mt+1 = Zmt + σ2∆W
m
t . Here σ2 is the regulation coefficient

of the normal distributed stochastic term ∆Wt ∈ R2 with mean
µ and variance σ̂2. Gn is the distance between Z̃mt+1 and its pro-
jection on K: πn∂K(Z̃

m
t+1) parallel to the outward normal vector n:

Gn(Z̃mt+1) = ‖Z̃mt+1 − πn∂K(Z̃mt+1)‖2.

Then the time steps in which the bat stays over the two-dimensional
attraction zones are described through the index set

T2 = {T2l = {tl1 , ..., tlk(l)}, l = 1, ...,L}.
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Here L denotes the number of two-dimensional attraction zone sec-
tions and k(l) is the number of steps in section l.

Now we combine all three sub models and obtain the flight behaviour
of one bat for one night by the following definition:

Definition 13. Combined flight behaviour
Let Bmt be the position of the bat at time t ∈ [0, Tm] in Monte-Carlo simu-
lation m. Further let Bm0 = R = BmTm∀m = 1, ...,M, where R ∈ R2 is the
position of the roost. Then

Bmt =


Xmt , t ∈ T0p , for one p ∈ {1, ...,P}

Ymt , t ∈ T1f , for one f ∈ {1, ..., F}

Zmt , t ∈ T2l , for one l ∈ {1, ...,L}

t = 0, ..., Tm m = 1, ...,M

denotes the stochastic process which represents the movement of the bat in
simulation m. Here Tm is the point in time when the bat stops its activity
in simulation m.

This equation holds for every bat in every simulation. We can cali-
brate the behaviour of each bat in an own calibration model which is
useful for the IBM because there, we simulate every bat on their own
with different behaviour types.

Therefore, we need to define the function g, the control parameter
u and the matrix B:

The function g consists of the model equations:

g(Bmt+1) =



Xmt+1 −X
m
t − hd(Xt+1) − σ0∆W

m
t , t ∈ T0p , for one p ∈ {1, ...,P}

Ymt+1 − FB − δmt+1d1 − σ1∆W
m
t , t ∈ T1f , for one f ∈ {1, ..., F}

Zmt+1 −Z
m
t − σ2∆W

m
t − 2[Gn(Z̃mt+1)]

+n(Z̃mt+1),

t ∈ T2l , for one l ∈ {1, ...,L}

∀t = 1, ..., Tm m = 1, ...,M

In the calibration problem, this function has to be equal zero such
that the model equations are fulfilled.

u denotes the control parameter and consists of the parameters σ0,
σ1 and σ2:

u =

σ0σ1
σ2


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By changing these parameters, we later fit the model result to the em-
pirical data set.

The matrix Bm consists of the coordinates of the stochastic process
of the simulated bat in simulation m.

Bm =


Bm1

...

BmTm


7.3.2 Transitions between different parts

Additionally, we need initial and in some cases also ending condi-
tions. We assume that every bat is starting and ending its activity in
the roost R ∈ R2. Therefore, we have the following condition:

Bm(1) = R = Bm(Tm), ∀m = 1, ...,M

Besides this, we have initial and in some cases even ending values
for every transition between the zones. All path sections have a fixed
starting and ending points. For the attraction zones we only define
starting points. Over these zones the bat has a clearly defined start-
ing point but it moves randomly over the zone. If it has reached the
predefined step number of the zone it just jumps to the starting point
of the next section.

It is a complex situation, because we cannot identify the exact time
points, when the transitions between the zones take place, in advance.
Hence, let Sm = {i1, ..., iS} ⊂ {1, ..., Tm} be the index set of the tran-
sition points and let Bmi1 , ...,BmiS be the corresponding starting and
ending values in simulation m. Then we can define the function
h : R2 → R as

h(Bmt ) =

Bmt −B
m
t , if t ∈ S

0, if t /∈ S
.

In the calibration problem, this function has to be equal zero, like the
function g, to guarantee that the starting and ending conditions are
fulfilled.

7.3.3 Calibration model for bats flight behaviour

With these functions we can now describe the calibration problem for
our IBM:

Definition 14. Calibration problem
Let Bobs be an empirical data set, Bm and u are given as above. Further,
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let Ai be the sub regions of our model landscape and χAi(B
m
t ) the function

which counts the crosses of the bats for section Ai for each i = 1, ..., I. That
means, if Bmt is inside Ai then χAi(B

m
t ) = 1 otherwise χAi(B

m
t ) = 0.

Then

min
1

2
‖
I∑
i=1

1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi‖

2 := R(χA)

s.t. g(Bmt ,u) = 0, ∀m = 1, ...,M, t = 1, ..., Tm (7)

h(Bmt ) = 0, ∀m = 1, ...,M, t = 1, ..., Tm

denotes the calibration problem for our model. Here Bobsi is the value of the
empirical data set for section Ai.

Remark 9. Differentiability of χAi
It is obvious that χAi is not differentiable for any subregion Ai. Therefore,
we use a smooth approximation χ̃Ai , i = 1, ..., I of the original function. For
notational reasons we denote this smooth version in the following with χAi .
Then the derivative of χAi with respect to Bmt exists and we denote it with
χ ′Ai , ∀i = 1, ..., I.

7.3.4 Lagrange function and necessary first order conditions

We define the corresponding Lagrange function for the as described
before minimization problem Equation 7. For solving the optimiza-
tion problem we derive the Lagrange function:

Definition 15. Lagrange function
Let the calibration problem be given as above, then we can define the corre-
sponding Lagrange function

L(Bm,u) = R(χA) + λmg(Bm,u) + µmh(Bm), ∀m = 1, ...,m,

depending on simulation m.

Next, we derive the necessary first order conditions for the La-
grange function.

Definition 16. Necessary first order conditions
The necessary first order conditions for the above defined Lagrangian are
described by the derivative with respect to the control parameter u

∂L

∂u
= λmgu(B

m,u) =
Tm∑
t=1

λmt gu(B
m
t ,u) !

= 0, ∀m = 1, ...,M

(8)

to be equal to zero and the derivative with respect to Bmt
∂L

∂Bmt
= RBmt (χA(B

m
t ),u) + (λmt gBmt (B

m
t ,u) + µmhBmt (B

m
t ))

!
= 0,

(9)

∀t = 1, ..., Tm, ∀m = 1, ...,M



72 model calibration using the adjoint equation

to be equal to zero.

We want our model to fulfil these two conditions for all simula-
tions. In the following we check them for our specified model equa-
tions. Therefore, we have to consider again our three cases. For
simplification, we assume in each case that the bat only stays over the
corresponding part: path, one- and two-dimensional attraction zone
such that there are no transitions between these zones.

We now derive the Lagrange parameters for the three cases. In each
case we have to guess λ(0, ·) and we have to choose λ(N, ·) such that
the ending condition is fulfilled if it exists.

path

We start by reformulating the Lagrange function for the path. Let B0
be the initial value, then

L(Bmt ,u) =
1

2

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)2
+ λmt (Bmt −Bmt−1 − hd(Xt) − σ0∆W

m
t−1)

∀t = 1, ..., Tm + 1, ∀m = 1, ...,M

holds. Although we usually only consider the time points until Tm,
we here include additionally the time point Tm + 1 because the path
section has an ending condition, such that we have an additional La-
grange parameter, which we have to choose later. Then the Lagrange
parameter for the path fulfils the following theorem.

Theorem 4. Lagrange parameter for the path
The Lagrange parameter for the path section λ0 is given by:

λm0t = λ
m
0t+1

−

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t )

(10)

∀m = 1, ...,M ∀t = Tm, ..., 2.

Proof.
We calculate the derivative of L with respect to Bmt :

LBmt (B
m
t ,u) =

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t )

+ λmt − λmt+1, ∀t = 1, ..., Tm, ∀m = 1, ...,M.
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So we obtain for our necessary first order condition Equation 9:
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
1 ) + λm1 − λm2

...∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
Tm

) + λmTm − λmTm+1


= 0, ∀m = 1, ...,M.

By solving this equation, we obtain a recursion formula for the La-
grange parameter λt:

−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
1 )

...

−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
Tm

)



=


λm1 − λm2

...

λmTm − λmTm+1

 , ∀m = 1, ...,M

We can solve the above problem by calculating Bm1 , ...,BmTm path-
wise via the system equations:

Bm1 = Bm0 + hd(X1) + σ0∆W
m
1 , m = 1, ...,M

...

BmTm = BmTm−1 + hd(XTm) + σ0∆W
m
Tm

, m = 1, ...M

for every m.
Then we guess λmTm+1 and determine the other Lagrange parameters
pathwise backwards (λTm , ..., λ1) by using the recursion formula Equa-
tion 10 for every m.

By the derivative with respect to u, we here only consider the deriva-
tive with respect to σ0 since the derivatives with respect to σ1 and σ2
are equal to zero. So

Lσ0(B
m
t ,σ0) =

Tm+1∑
t=1

−λmt ∆W
m
t , ∀m = 1, ...,M

denotes the derivative of L with respect to the control parameter.
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one-dimensional attraction zone

In this case, we have an initial value problem. Let B0 be the initial
value. Then we derive the Lagrange function in analogy to the path:

L(Bmt ,u) =
1

2

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)2
+ λmt (Bmt − FB − δmt d1 − σ1∆B

m
t−1)

∀t = 1, ..., Tm, ∀m = 1, ...,M.

Then the Lagrange parameter fulfils the following theorem.

Theorem 5. Lagrange parameter for the one-dimensional attraction zone
For the one-dimensional attraction zone the Lagrange parameter λ1 is given
by:

λm1t = −

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t ),

∀m = 1, ...,M t = Tm, ..., 1.

Proof.
We calculate the derivative of L with respect to Bmt and obtain:

LBmt (B
m
t ,u) =

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t ) + λmt

∀t = 1, ..., Tm, ∀m = 1, ...,M

So we obtain for our necessary first order condition Equation 9:
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
1 ) + λm1 )

...∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
Tm

) + λmTm

 = 0,

∀m = 1, ...,M

This condition holds if for every m = 1, ...,M yields:
−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
1 )

...

−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
Tm

)

 =


λm1

...

λmTm



Again, we can solve the optimization problem by using the system
equations (for explanation see paragraph path).
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Now we calculate the derivative with respect to the control param-
eter. Therefore, we only consider the derivative with respect to σ1.
Then

Lσ1(B
m
t ,σ1) =

Tm∑
t=1

−λmt ∆W
m
t , ∀m = 1, ...,M

denotes the derivative of L with respect to the control parameter.

two-dimensional attraction zone

Again, we have an initial value problem, because there is no ending
value given. We obtain the Lagrange function in analogy to the path:

L(Bmt ,u) =
1

2

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)2
+ λmt (Bmt −Bmt−1 − σ2∆W

m
t−1 − 2[G

n(B̃mt )]+n(B̃mt ))

∀t = 2, ..., Tm, ∀m = 1, ...,M.

Then the Lagrange parameter fulfils the following theorem.

Theorem 6. Lagrange parameter for the two-dimensional attraction zone
The Lagrange parameter for the two-dimensional attraction zone λ2 is given
by the recursion formula

λm2t = λ
m
2t+1

(1+GBmt (t+ 1))

−

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t ),

∀m = 1, ...,M t = Tm − 1, ..., 1,

where GBmt denotes the derivative of [Gn(B̃mt )]+n(B̃mt ) with respect to Bmt .

Proof.
We calculate the derivative of L with respect to Bmt :

LBmt (B
m
t ,u) =

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t )

+ λmt − λmt+1 − 2λ
m
t+1GBmt (t+ 1),

∀m = 1, ...,M, ∀t = 1, ..., Tm − 1.

We have a closer look on the last term of the derivative. Here we have
to determine the derivative of the projection rule of the symmetrized
Euler-Maruyama scheme with respect to Bmt . We remember that there
where two cases in this projection rule. The first one is simple, if B̃mt ∈
K the term is equal to zero and the derivative is zero as well. The
second case is much more challenging. For B̃mt /∈ K, the projection
is unequal zero and we have to calculate its derivative. This problem
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has been subject of many research papers (see e.g. Fitzpatrick and
Phelps, 1982; Haraux, 1977; Shapiro, 1994). If we consider our special
case, the projection in direction of the outward normal vector n on
a convex Polygon K, we have to distinguish between two different
cases. The normal vector n does not exists and we project the point
B̃mt /∈ K on the nearest vertex. Let (V1,V2) be the coordinates of this
vertex, then holds for the length of the projection:

Gnn = B̃mt − (V1,V2)T ,

where

B̃mt = Bmt−1 + σ2∆W
m
t .

The derivative of [Gn(B̃mt )]+n(B̃mt )with respect to Bmt is therefore
given by 1.

For the second case, n exists, we construct a line through the side of
the polygon which contains the solution of the projection πn∂K(B̃

m
t ).

Then every point of this line fulfils the equation

y = mx+ b, (11)

where (x,y) are the coordinates of the points, m denotes the slope
and b the intercept of the line. We can then describe the solution
of the projection πn∂K by the solution of the following optimization
problem:

min
x,y∈∂K

1

2

∣∣∣∣√(x− B̃1)2 + (y− B̃2)2
∣∣∣∣2

= min
x∈R

1

2
((x− B̃1)

2 + (mx+ b− B̃2)
2).

For solving this minimization problem, we determine the derivative
with respect to x and set it equal to zero:

0 =
1

2
(2(x− B̃1) + 2m(mx+ b− B̃2))

x+m2x = B̃1 − bm+mB̃2

x? =
1

1+m2
(B̃1 +mB̃2 − bm).

Then we obtain y? by plugging x? into Equation 11:

y? =
m

1+m2
(B̃1 +mB̃2 − bm) + b

In our case Gn is given by the Euclidean distance between B̃mt and
(x?,y?)T and the normal vector n is the vector from the point (x?,y?)T

to the point B̃mt and therefore it holds:

Gnn =

(
B̃1 − x

?

B̃2 − y
?

)
.
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We get for the derivative

GBmt =

(
1− 1

1+a2
− a
1+a2

− a
1+a2

1− a2

1+a2

)
.

Now we can summarize the three results:

GBmt

=



0, B̃mt ∈ K

1, B̃mt /∈ K and n does not exist1− 1
1+a2

− a
1+a2

− a
1+a2

1− a2

1+a2

 B̃mt /∈ K and n exists

.

We obtain for our necessary first order condition Equation 9 for each
t = 1, ..., Tm−1:

I∑
i=1

(
1

M

M∑
m=1

1

Tm

Tm∑
t=1

χAi(B
m
t ) −Bobsi

)
χ ′Ai(B

m
t )

+ λmt − λmt+1(1+GBmt ) = 0, ∀m = 1, ...,M

This condition holds if for every m = 1, ...,M yields:
−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
1 )

...

−
∑I
i=1

(
1
M

∑M
m=1

1
Tm

∑Tm
t=1 χAi(B

m
t ) −Bobsi

)
χ ′Ai(B

m
Tm

)



=


λm1 − λm2 (1+G ′(1))

...

λmTm−1 − λ
m
Tm

(1+G ′(Tm))

 .

By solving this equation, we again obtain the recursion formula for
the Lagrange parameter λt.

Now, we calculate the derivative with respect to the control parameter
σ2. Again the most challenging part is the derivative of the projection.
In analogy to the derivative with respect to Bmt , we denote with Gσ2
the derivative of [Gn(B̃mt )]+n(B̃mt ) with respect to σ2 and it holds:

Gσ2(t)

=



0, B̃mt ∈ K

∆Wm
t , B̃mt /∈ K and n does not exist1− 1
1+a2

− a
1+a2

− a
1+a2

1− a2

1+a2

diag(∆Wm
t ) B̃mt /∈ K and n exists
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For a better notation, we denote the term with

Lσ2(B,dm2t) =
Tm∑
t=1

−λmt ∆W
m
t − 2λt+1Gσ2(t), ∀m = 1, ...,M.

mixed model

In the preceding paragraphs, we have calculated the Lagrange param-
eter for each habitat zone: sample path, one- and two-dimensional
attraction zone. Finally, we define the Lagrange parameter for our
mixed model:

Definition 17. Lagrange parameter for the mixed model
Let λ0, λ1 and λ2 be given as above defined, then the Lagrange Parameter
for the whole model is given by the following formulation:

λm(t, ·) =


λm0 (t, ·), t ∈ T0p , for one p ∈ {1, ...,P}

λm1 (t, ·), t ∈ T1f , for one f ∈ {1, ..., F}

λm2 (t, ·), t ∈ T2l , for one l ∈ {1, ...,L}

,

t = 1, ..., Tm, m = 1, ...,M.

In order to derive the Lagrange parameter for our whole calibra-
tion model we have to calculate the Lagrange parameter for every
sub model and then we can arrange them in the suitable order.

Within this chapter, we managed to derive the calibration problem
for our special model characteristics. With a suitable data set it is
now possible to fit the model parameters to this empirical data. With
the calibration it also possible to evaluate the model and to estimate
the difference between the model prediction and empirical data. If
this difference is to high, it is useful to add or to change some model
assumptions in order to get a more realistic result. Additionally, we
can justify our model assumptions with a good calibration result and
make it applicable to many biologically induced questions.



8
M O D E L O F T H E A D D I T I O N A L D E AT H R I S K
C A U S E D B Y W I N D T U R B I N E S

In the previous chapters of this thesis we managed to derive an oc-
currence map of each bat or the local bat population, respectively.
This map tells us how often the bats frequent special regions in the
considered habitat. We now wonder what happens if we put sev-
eral wind turbines into this habitat. It is obvious that not every bat
which reaches a wind turbine is killed by it. In this chapter we want
to derive a formula which gives us the risk for the bat being killed,
depending on the type of the wind turbine and the wind velocity.
This risk is varying between the simulated bat species, because every
bat species has special movement behaviours, concerning the flight
height. However, for most bat species, a wind turbine poses an attrac-
tion because they consider them as trees or are simply curious and
explore the wind turbine by flying up and down the tower.

8.1 model structure

Let W ∈ R2 be the position of the wind turbine which we consider in
this chapter. In our previous chapters we have already built models
which give us an occurrence map of the activity of our bat population.
For calculating the number of bats reaching the considered wind tur-
bine, we determined a radius r around the wind turbine, if the bat
flies into this radius it is attracted by it (tallest tree hypothesis (Cryan
et al., 2014)) with probability pr ∈ [0, 1]. This gives us the number
of bats reaching this special wind turbine position. Hereby pr is not
only dependent on the radius r, but it is also based on the type of
the wind turbine, the landscape structure around the wind turbine
(forest, field, etc.) and it has to be fitted to the simulated bat species.

Now, we want to calculate the probability of the bat actually being
killed. This happens if the bat is hit by one of the three blades or if it
suffers from barotrauma. This means that the dangerous zone for the
bats is the area around the turning blades and where barotrauma can
occur. The extent of this dangerous zone depends on various factors,
e.g. the height of the wind turbine h, the rotor radius of the wind
turbine b or the velocity of the turbine blades v, which itself depends
on the prevailing wind intensity.
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8.2 probability density functions

For estimating the number of individuals that reach the dangerous
circ area of the wind turbine (see Figure 27), we need occurrence
functions for the distribution of flight height and for the vertical
spread of the flight behaviour near the wind turbine. In the appli-
cation of this model we would like to derive the density function for
the flight height based on an empirical study which focusses on the
flight height of bats near similar objects like wind turbines. But un-
til we have these data we assume the following probability density
functions:

height

For the height we assume a normal distribution. The mean µ1 of
the normal distribution is set to the average height of the crest level
of the surrounding trees. This is especially meaningful for species
which are used to hunting at this height.

ρ(x) =
1

σ1
√
2π
e
− 1
2

(
x−µ1
σ1

)2
. (12)

It is possible to fit the variance parameter σ1 to empirical data in
order to obtain a realistic result.

width

For the width along the wind turbine we also assume a normal dis-
tribution with mean µ2 set on the position of the middle of the rotor.
This is biologically meaningful because the bat is attracted by the
tower of the wind turbine (highest tree hypothesis). Therefore, they
are most attracted by the tower and then the attraction value flattens
to the sides.

θ(x) =
1

σ2
√
2π
e
− 1
2

(
x−µ2
σ2

)2
. (13)

The variance parameter σ2 also has to be fitted to empirical data.

8.3 killing rate

We now derive the formula to calculate the number of fatalities for
the population for one wind turbine.
We first need the visit number of one bat at the wind turbine location.
This average number is given by the result of the Monte-Carlo sim-
ulation or of the PDE based approach and we denote it withNpostition.

Then we need the number of bats flying to the dangerous circ area of
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Figure 26: Technical description of a
wind turbine:

1 foundation
2 connection to electric
grid
3 tower
4 access ladder
5 wind orientation control
6 nacelle
7 generator
8 anemometer
9 brake
10 gear box
11 rotor blade
12 blade pitch control
13 rotor hub
source: Arne Nordmann
(commons.wikimedia.org)

the wind turbine. We can calculate this number by integrating over
the circ area using the corresponding occurrence functions:

Pcirc(h,b, θ, ρ) =

h+b∫
h−b

√
b2−(h−k)2∫

−
√
b2−(h−k)2

θ(y)dyρ(k)dk,

where ρ is the occurrence function for the flight height (see Equa-
tion 12) and θ is the occurrence function for the spatial flight distribu-
tion (see Equation 13). [h− b,h+ b] denotes the integration domain
for the flight height, h−b is the lowest point of the circ area and h+b
is the highest point.
[−
√
b2 − (h− k)2,

√
b2 − (h− k)2] denotes the dangerous spatial area,

which we derive by using the Pythagorean theorem (for explanation
see Figure 27). It is possible to include the density functions based on
empirical data here.
Finally the rate of actual hitting the blades is given by the following

formula:

Pblades =

3 ts , if 3 ts 6 1

1, if 3 ts > 1
,

where s is the time that one blade needs to go round and t is the
time that a bat needs to cross the dangerous sector. If the bat needs
more time to cross the dangerous section than one blade need to fin-
ish one-third of a round (t > 1

3 ), it is definitely hit by a blade and so



82 risk of wind turbines

Figure 27: Integration scheme: circ area generated by the wind turbine
blades with rotor height h and blade radius b.

the killing rate will be one.

Definition 18. Killing rate
The killing rate of one wind turbine for the considered bat population is given
by:

R = NpostitionPcircPblades. (14)

8.4 numerical implementation

It is very challenging to solve the integral term for Pcirc analytically.
Especially for the use of discrete empirical occurrence functions it is
impossible to get an analytical solution. Therefore, we will use a nu-
merical approximation to calculate the value of this integral term.

We apply the Simpson rule to the above integral term. For an interval
[a,b] we obtain the approximation:

S(f) =
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
for the integral term

∫b
a f(x)dx.

The approximation error of this rule is 1
90

(
b−a
2

)5
|f(4)(ξ)|, with ξ be-

tween a and b (Deuflhard and Hohmann, 2008).

In order to get a better approximation result we want to apply the
composite Simpson rule. Therefore, we split the interval [a,b] into
N/2 subintervals [x2i, x2i+2], i = 0, ...,N/2− 1 with N even, such that
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each subinterval has the same length h. Then we obtain the compos-
ite Simpson rule:

SN(f) =
h

3

N/2−1∑
i=0

f(x2i) + 4f(x2i+1) + f(xi+1)

 (15)

Here the approximation error can be estimated by:∣∣∣∣∣
∫b
a

f(x)dx− SN(f)

∣∣∣∣∣ 6
N/2−1∑
i=0

∣∣∣∣∫x2i+2
x2i

f(x)dx−
h

3
(f(x2i) + 4f(x2i+1) + f(xi+1))dx

∣∣∣∣
6
N/2−1∑
i=0

∣∣∣∣h590 f(4)(ξi)
∣∣∣∣

6
N

2

h5

90
‖f(4)(ξ)‖∞

=
b− a

180
h4‖f(4)(ξ)‖∞,

where ξi ∈ [x2i, x2i+2] ∀i = 0, ...,N/2− 1.

Applying this to our integral term Pcirc, we obtain the following ap-
proximation.

Lemma 1. Numerical approximation of the death rate
Using the composite Simpson rule, the approximation for Equation 14 is
given by:

SM(I2) =
b

3M

M−1∑
j=0

(
ρ(kj) + 4ρ

(
kj + kj+1

2

)
+ ρ(kj+1)

)

∗

(√
b2 − (h− kj)2

3N

[
N−1∑
i=0

θ(yi) + 4θ

(
yi + yi+1

2

)
+ θ(yi+1)

])
Proof. We start by approximating the inner integral term, which we
denote with:

I1 =

∫√b2−(h−k)2

−
√
b2−(h−k)2

θ(y)dy.

Then it follows with Equation 15 for y0 = −
√
b2 − (h− k)2,y1 =

−
√
b2 − (h− k)2 + h, ...,yN =

√
b2 − (h− k)2 with step size h =

2
√
b2−(h−k)2

N :

SN(I1) =

√
b2 − (h− k)2

3N

[
N−1∑
i=0

θ(yi) + 4θ

(
yi + yi+1

2

)
+ θ(yi+1)

]
.

For the second integral

I2 =

∫h+b
h−b

Int1ρ(k)dk
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we set k0 = h− b,k1 = h− b+ h̃, ...,kM = h+ b for stepsize h̃ = 2b
M .

Then we obtain the approximation:

SM(I2) =
b

3M

M−1∑
j=0

(
ρ(kj) + 4ρ

(
kj + kj+1

2

)
+ ρ(kj+1)

)
(√

b2 − (h− kj)2

3N

[
N−1∑
i=0

θ(yi) + 4θ

(
yi + yi+1

2

)
+ θ(yi+1)

])
.

This numerical framework makes it possible to calculate the num-
ber of bat fatalities caused by one or by several wind turbines. We
want to use this extra mortality for estimating the effect of the wind
turbines for our local bat population. Therefore, we have a look at
the theory of population size modelling in the next chapter.



9
P O P U L AT I O N G R O W T H M O D E L S W I T H
A P P L I C AT I O N T O A L O C A L B AT P O P U L AT I O N

9.1 introduction

Growth or decay of population sizes has been the issue of research
since the 18th century. Thereby lots of different effects on the de-
velopment of a population were examined, e.g. different growth
rates, carrying capacity of the natural habitat (Verhulst, 1845; Vogels
et al., 1975), interaction between different species (see e.g. Lotka, 1925;
Volterra, 1927) and age effects (Leslie, 1945).

One of the first mathematical models to describe population dynam-
ics with differential equations was proposed by Malthus. In the 18th
century, he described population growth by the following linear ordi-
nary differential equation

d

dt
P(t) = αP(t) − µP(t) = δP(t),

which is also called Mathus’ Law (Malthus, Winch, and James, 1992).
The parameter δ = α− µ is called Malthusian parameter of the pop-
ulation. In this model the population size increases without any re-
strictions and independent on the population size which is certainly a
very hard assumption and nearly never fulfilled in a real population.
Therefore, Pierre Francois Verhulst considered a different approach
(Verhulst, 1845, 1847; Vogels et al., 1975). He assumed that not arbi-
trary many individuals can survive together in the same habitat, so
he derived the logistic function:

dN(t)

dt
= rN(t)

(
1−

N(t)

K

)
Here N(t) is the number of individuals at time t, r is the intrinsic
growth rate of the population and K is the carrying capacity of the
environment. This means that only K individuals can survive in the
considered habitat. A reason for this restriction can be for example a
finite amount of food resources.
The logistic equation can be solved explicitly and has the solution

N(t) =
K

1+CKe−rt

with C given through the initial condition such that: C = 1/N(0) −

1/K where N(0) is the initial number of individuals. In this model
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the population grows until it reaches the carrying capacity, indepen-
dent on other influence factors like age effects or predators. Verhulst
extends Malthus’ Law by introducing this carrying capacity and this
results in a more realistic model for population growth. However, the
growth or decay of population size is certainly not just dependent on
a constant growth rate and a carrying capacity.

Another extension of population growth model is the assumption
of more than one species. One of the most famous models of this
type is the Lotka-Volterra model (Lotka, 1925; Volterra, 1927) which
treats the interaction between two species. Here the growth rate of
the predator population is proportional to the population size of prey
individuals and vice versa. The food supply for the prey population
is assumed unlimited and the predator population is dependent on
the prey population. The equation for the prey population is of the
following form:

dx

dt
= αx−βxy, (16)

where x is the number of prey individuals and y is the number of
predator individuals, α is the growth rate or the prey population
and β is the decay rate of prey individuals due to being killed by
the predators. In the case of y = 0 the prey population growth is
unlimited and we obtain again Malthus’ Law.
For the predator population yields

dy

dt
= δxy− γy, (17)

where δ is the growth rate for the predator population and γ rep-
resents the decay of individuals due to emigration or death. Equa-
tion 16 and Equation 17 are also called Predator-Prey equations. The
solutions of this model is often of periodic type.

In 1945 Patrick Leslie extended the work of Lotka. He introduced
life tables and presented age-structured models (Leslie, 1945). With
this models it is possible to represent different effects during a life cy-
cle on the individual. The individuals are separated in different age
classes and every age class can have different birth and death rates.
This is especially meaningful for species with a high life expectancy.

In this chapter we present the general theory of modelling popula-
tion developments. We introduce several approaches for modelling
population size over a fixed time horizon. We start with a simple dis-
crete model which describes the population size development by the
difference between the number of births and the number of deaths.
Thereby we include a carrying capacity for the habitat. Then we de-
rive an ordinary differential equation model for simulating the effect
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of time dependent birth and death rate. Again we include a carrying
capacity.

Moreover, we introduce age-dependent population models. In the
discrete case we present matrix population models which make it
possible to describe different fertility and death rates for predefined
age classes inside the population. The most challenging part is the in-
clusion of the carrying capacity which is valuable for the cumulative
population size, because we do not want to define a carrying capac-
ity for each age class but only one for the whole population size. We
again derive the continuous version, a hyperbolic PDE model, for this
age-dependent case and include the carrying capacity into the model
equation as well.

Finally we fit every model to our considered bat species and we
include the danger of wind turbines into the models. For this pur-
pose we add the above calculated additional death risk (caused by
the considered wind turbines) and evaluate the effects for the local
bat population.

9.2 time-dependent population models

9.2.1 Discrete model

We start with the discrete version similar to Malthus Law. We can
describe the general development of the population size as follows:

n(t+ 1) = n(t) +B(t) −D(t) + I(t) − E(t), t = 0, ..., T

n(0) = n0

Here n(t) is the number of individuals at time t, B is the number of
births, D is the number of deaths, I is the number of immigrants, E is
the number of emigrants and n0 is the initial number of individuals
at time t = 0.

Remark 10.
I is the only number which can exceed the population size n(t). The number
of immigrants is not dependent on n(t).

Usually, the carrying capacity of the considered environment is lim-
ited. That means that the maximum number of individuals is deter-
mined by the available resources. So there is a need to reduce the
number of individuals if there are too many offsprings. This can hap-
pen by a reduced birth rate, an increased death rate or the offspings
have to migrate to another habitat until only the number of individ-
uals is left that can survive with the available resources. Hence, we
want to include a carrying capacity K as first introduced by Verhulst.
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Definition 19. Carrying capacity K
For the population size n and carrying capacity K hold:

n(t) 6 K ∀t = 0, ..., T .

This carrying capacity is dependent on the natural habitat (food
resources, water supply, roost opportunities, etc.) and on the consid-
ered species.

Additionally we introduce birth, death, immigration and emigration
rate.

Definition 20. Rates
For all t ∈ [0, T ] we define the following rates:

• Birth rate b(t) = B(t)
n(t) ∈ [0, 1]

• Death rate d(t) = D(t)
n(t) ∈ [0, 1]

• Immigration rate i(t) = I(t)
n(t) ∈ [0,∞]

• Emigration rate e(t) = E(t)
n(t) ∈ [0, 1]

By using the two Definitions 19 and 20, we can define a discrete
population model with carrying capacity using the logistic function
of Verhulst.

Definition 21. Discrete population model with carrying capacity
We describe the population development by:

n(t+ 1) = n(t) + (b(t) − d(t) + i(t) − e(t))n(t)

(
1−

n(t)

K

)
n(0) = n0

where K is the carrying capacity, n0 is the initial number of individuals and
the the other terms are as defined in Definition 20.

Remark 11.
The last term of the equations causes a population decrease if n(t) > K and
a population increase if n(t) < K.

For constant functions e, i, d and b we introduce the following
lemma for the long-time behaviour of n:

Theorem 7. Long-time behaviour (discrete case)
For constant e, i, d, b such that b− d− i+ e 6= 0 and t→∞ the solution
of

n(t+ 1) = n(t) + (b− d+ i− e)n(t)

(
1−

n(t)

K

)
n(0) = n0

converges to K or to 0.



9.2 time-dependent population models 89

Proof. We can say that

lim
t→∞n(t+ 1) = lim

t→∞n(t)
therefore follows

lim
t→∞n(t+ 1) = lim

t→∞
(
n(t) + (b− d+ i− e)n(t)

(
1−

n(t)

K

))
⇔ lim
t→∞n(t+ 1) = lim

t→∞n(t) + lim
t→∞

(
(b− d+ i− e)n(t)

(
1−

n(t)

K

))
⇔ 0 = lim

t→∞
(
(b− d+ i− e)n(t)

(
1−

n(t)

K

))
⇔ 0 = (b− d+ i− e) lim

t→∞n(t)
(
1−

limt→∞ n(t)
K

)
⇔ 0 = (b− d+ i− e) lim

t→∞n(t) ∨ 0 = 1−
limt→∞ n(t)

K

⇔ 0 = lim
t→∞n(t) ∨ 1 =

limt→∞ n(t)
K

⇔ 0 = lim
t→∞n(t) ∨ K = lim

t→∞n(t)

For the non constant case, we can not clearly determine whether
the population size converge to zero, to the carrying capacity K or
if there is another long-time behaviour like a periodic solution. This
depends on the development of the growth rate b− d+ i− e.

9.2.2 ODE model

Now we want to transfer our discrete model to an ordinary differen-
tial equation model. By using a Taylor expansion we can define the
following initial value problem.

Definition 22. ODE model for population size
With the above used notation, the population size satisfies

∂n(t)

∂t
= (b(t) − d(t) + i(t) − e(t))n(t)

(
1−

n(t)

K

)
, t ∈ [0,∞),

(18)

with

n(0) = n0, (19)

where n0 again is the initial number of individuals.

For constant birth, death, immigration and emigration rates,

n(t) =
n0Ke

rt

K+n0(ert − 1)
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Figure 28: Effect of the carrying capacity. Population model for K = 150 and
two different initial population sizes. For n0 = 180 the popula-
tion size decreases until it reaches the carrying capacity and for
n0 = 100 the population size increases until it reaches the carry-
ing capacity. The solution of the ODE model (blue line) and the
solution of the discrete model (red dots) converge to each other
with increasing t.

denotes an analytical solution for Equation 18 with initial condition
Equation 19 (Murray, 2011) and r = b− d+ i− e (Murray, 2011).

Again we can analyse the behaviour for t→∞.

Theorem 8. Long-time behaviour (continuous case)
For constant e, i, d, b such that r = b− d− i+ e 6= 0 and t→∞ holds

lim
t→∞n(t) = lim

t→∞ n0Ke
rt

K+n0(ert − 1)
=


0, if r < 0

K, if r > 0

n0, if r = 0

Proof. For r = 0 we can simply calculate the solution and obtain

n(t) =
n0K

K
= n0,

for r > 0 follows with L’Hôpital’s rule

lim
t→∞n(t) = lim

t→∞ n0Ke
rt

K+n0(ert − 1)

=
limt→∞ n0rKert
limt→∞ n0rert

= K
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and for the last case r < 0 holds:

lim
t→∞n(t) = lim

t→∞ n0Ke
rt

K+n0(ert − 1)

=
0

K−n0
= 0

Remark 12.
For t → ∞ and r > 0 this solution converges to K. The population grows
until it has reached the carrying capacity K and then its size stays constant.
For r < 0 this solution converges to 0. That means that the population
becomes extinct.

We illustrate the effect of the carrying capacity for the discrete and
the continuous model in Figure 28. Therefore, we start with one
initial population size above and one under the defined carrying ca-
pacity. We can see for both cases that the population size converges
to the carrying capacity K.

We have introduced the basic idea of population growth. Now we
want to transfer this to our special model species.

9.2.3 Age-independent models for a local bat population

In the last section we have presented the general theory of popula-
tion size modelling. In our case we have some specific properties
which we want to consider in the following sections. Therefore, we
set e(t) = −i(t), because it is very difficult to find data for emigration
or immigration rates for a specific bat colony.

9.2.3.1 Discrete model

We divide our considered time period into summer and winter time,
which is useful because bats hibernate and their behaviour depend
therefore strongly on the prevailing season. We start with the sum-
mer period. Although the reproduction takes place in winter, we
attach the birthrate to the summer season because the offsprings are
not born until spring.

We assume an initial number n0 of individuals. Furthermore, we
assume that every individual is female, because we only consider the
nursery colony. We ignore the male individuals by assuming that
enough male individuals are there to guarantee a maximum repro-
duction.

We split our model as above mentioned into two periods. Summer is
our initial season and we start our model with n0 individuals. Birth
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takes only place in the summer period. Furthermore, we exclude
multiple births in our model such that b ∈ [0, 1].
We assume an average death rate of ds ∈ [0, 1] in summer and dw ∈
[0, 1] in winter. For the summer period in year t+ 1, we then obtain

ns(t+ 1) = nw(t) + (b− ds)nw(t)

(
1−

nw(t)

K

)
,

where n(t) is the number of individuals that are alive at the beginning
of the summer period of year t+ 1.
For the winter period we obtain respectively

nw(t+ 1) = ns(t+ 1) − dwns(t+ 1).

In winter there is only a decrease in population size possible, so we
do not need to include the carrying capacity into our model.
For the number of individuals at the end of the time period t+ 1 we
obtain

nw(t+ 1) = nw(t) + (b− ds)nw(t)

(
1−

nw(t)

K

)
− dw

(
nw(t) + (b− ds)nw(t)

(
1−

nw(t)

K

))
= nw(t) + (b− ds − dw(1+ b− ds))nw(t)

(
1−

nw(t)

K

)
Besides the carrying capacity K which influences the size of the popu-
lation, the second term determines whether the population increases
(b− ds − dw(1− b− ds) > 0) or decreases (b− ds − dw(1+ b− ds) <
0).

The increase of wind energy production affects the bat populations.
Many bats die by collision or by the turbulences of the wind turbines.
But how big is this effect and causes it a decrease of bat populations?
We want to answer this question with our model. Therefore, we iden-
tify the added death rate da ∈ [0, 1] which is caused by the wind
turbines. We obtain the new population model by simply adding the
additional death rate to the summer period

ns(t+ 1) = nw(t) + (b− ds − da)nw(t)

(
1−

nw(t)

K

)
The general population size development can be defined as follows:

Definition 23. Discrete population size model for a local bat population
The population size development fulfils

n(t+ 1) = n(t)

+ (b− ds − da − dw(1+ b− ds − da))n(t)

(
1−

n(t)

K

)
for every t > 0.
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For the long term behaviour of the population size we have to ex-
amine the term b− ds − dt − dw(1+ b− ds − da). We have to decide
whether this term is positive or negative. This result leads to a popu-
lation growth to the carrying capacity or to zero, respectively.

9.2.3.2 ODE model

For fitting the ODE model to our specific model characteristics, we
do not have to split the model into two periods. We only have to
define the time-dependent death rate d(t), the time-dependent birth
rate b(t) and the time-dependent additional death rate caused by the
wind turbine da(t).Furthermore let K > 0 be again the carrying ca-
pacity. Then we obtain the following definition.

Definition 24. ODE model for population size of local bat population
Let n0 be the initial number of individuals at time t = 0. Then the initial
value problem

∂n(t)

∂t
= (b(t) − d(t) − da(t))n(t)

(
1−

n(t)

K

)
, t ∈ [0,∞)

n(0) = n0

describes the population development of our local bat population.

For this time-dependent case it is not possible to solve the above
equation analytically, so we need to use numerical methods to approx-
imate the solution. However, we can say that if b(t) > d(t) − da(t)

forall t the population size increases and if b(t) < d(t) − da(t) forall
t the population size decreases. In all other cases the population size
oscillates and we have to do further examinations to estimate the long
term behaviour.

For piecewise constant birth and death rates (as in the discrete case)
we obtain the following initial value problem:

∂n(t)

∂t
= (b− ds − da − dw(1+ b− ds − da))n(t)

(
1−

n(t)

K

)
,

t ∈ [0,∞)

n(0) = n0.

For this formulation we can again present an analytical solution

n(t) =
n0Ke

rt

K+n0(ert − 1)

for r = b − ds − da − dw(1 + b − ds − da). Again the sign of r in-
dicates whether the population grows until the carrying capacity or
whether it became extinct. The effect of this term in illustrated in
Figure 29 for the discrete and the continuous model. Here we can see
that it strongly depends on the growth rate r whether the population
has a chance to survive in the future.
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Figure 29: Effect of birth rate. Population model for carrying capacity K =

150, initial population size n0 = 100, three different birth rates
b = 0.6, 0.7, 0.9 and death rates dw = 0.3, ds = 0.2, da = 0.2.
Only for the highest birth rate the population grows. For the
other two birth rates the population decays. The ODE (blue line)
and the discrete solution (red dots) again converge to each other.

9.3 age-dependent population models

Another type of population models considers age-dependent pro-
cesses, e.g. age-dependent fertility or death rates. So it is possible
to assume different properties for an individual during its life cycle.
This is especially useful for species with a long life expectation.

9.3.1 Discrete age-dependent model: the Leslie matrix

We start by considering a discrete version of age-structured popu-
lation models. In the introduction we have mentioned the work of
Leslie. He introduced matrices in population growth theory to de-
scribe the population size in certain age classes. These matrices are
also called Leslie matrices.

The Leslie model or matrix is one common technique to model an age-
structured population. Therefore, we have to define a discrete set of
age classes i = 1, ..., I. An individual belongs to class i if i− 1 6 x < i
holds for the age of the individual. Then we project the population
from time point t to the next time point t+ 1, such that the surviving
individuals of age class i belong to age class i+ 1 in time point t+ 1.
Therefore let n(t) ∈ RI be a vector and its elements ni(t) define the
number of individuals in each age class i at time t. Let Pi ∈ [0, 1] be
the surviving probability of an individual of age class i = 1, ..., s− 1
at time point t. To complete the model we set Ps = 0, i.e. the indi-
viduals of age class s− 1 have no chance to survive and achieve age
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s + 1. This simply means that we define a maximum age that the
individuals can achieve.

Then we describe the projection to the next time period by the fol-
lowing rule:

ni+1(t+ 1) = Pini(t), i = 1, ..., s− 1 (20)

An exception of this rule is of course the first age class, because it can
not be achieved by projection. For i = 1 the number of individuals
n1(t+ 1) origins from the reproduction of all other classes. Hence, let
Fi(t) be the per capita fertility of age class i ∀i = 1, ..., s at time point
t. Then yields for i = 1 naturally:

n1(t+ 1) =

s∑
i=1

Fini(t) (21)

With Equation 20 and Equation 21 we can define the projection ma-
trix.

Definition 25. Projection matrix
Let Fi be the fertility rates for age class i at time period t for i = 1, ..., s and
Pi be the survival rates for age class i = 1, ..., s− 1. We set Ps = 0. This
simply means that no individual can survive the last age class. Then we can
define the projection matrix A:

A =



F1 · · · · · · Fs

P1 0 · · · 0

0 P2 0
. . . 0

. . . . . .
...

0 · · · 0 Ps−1 0


such that we can describe the projection of the population to the next time
period by the following projection rule:

n(t+ 1) = An(t), t = 0, ..., T

The definition above gives us the population development for the
constant case, i.e. the birth and the survival rates stay constant for
the whole time horizon. Of course we can include a time or/and
population dependent matrix A. Then we obtain the following cases:

Remark 13. Different cases for the projection matrix A

• Linear case: A is time dependent

n(t+ 1) = Atn(t)

• Non-linear case: A is dependent on the population size

n(t+ 1) = Ann(t)
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• Inhomogeneous non-linear case: A depends on time and on the popu-
lation size

n(t+ 1) = An,tn(t)

It depends on the assumptions concerning the population dynamics, which
of the four cases is most suitable. The more variables we include, the more
realistic the resulting model gets. However, we also need very detailed in-
formation about the considered species to identify the matrix A and a very
detailed data set to calibrate the model.

9.3.1.1 Birth and population increase

Now we want to identify conditions in the matrix model that cause
birth and therefore population increase. For this purpose we take a
closer look to the previous defined age-structured population model.
We again consider the projection matrix A, the population vector n(t)
and the corresponding model equation:

n(t+ 1) = An(t)

Then we can describe the population size by using the eigenvalues λi
of the matrix A.

Theorem 9.
Let λi, where i = 1, ..., s, be the eigenvalues of matrix A and wi the corre-
sponding eigenvectors. Then we can describe the population size at time t
by

n(t) =

s∑
i=1

ciλ
t
iwi. (22)

Proof.
Letw be the right eigenvector of A and the scalar λ the corresponding
eigenvalue if

Aw = λw.

This implies that (A− λI)w = 0, where I is here the identity matrix.
General linear algebra theory tells us that a nonzero solution for w
only exists if (A− λI) is singular, i.e. if

det(A− λI) = 0.

Additionally the vector v is called left eigenvector if for the complex
conjugate transpose v∗

v∗A = λv∗

holds.
For a s-dimensional matrix A we will have n eigenvalue-eigenvector
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pairs and the characteristic equation is a polynomial of order s. We
assume that all eigenvectors are linearly independent.

We now describe the initial population n0 as a linear combination
of the right eigenvectors wi:

n0 = c1w1 + ... + csws

=
(
w1 · · · ws

)
c1
...

cs


=Wc

with coefficients ci and W the matrix whose columns are the right
eigenvectors wi. We apply this to our projection rule and obtain for
t = 1

n(1) = An0 =

s∑
i=1

ciAwi =

s∑
i=1

ciλiwi.

Then yields for t = 2

n(2) = An(1) = AAn0 = A

s∑
i=1

ciAwi = A

s∑
i=1

ciλiwi

=

s∑
i=1

ciλiAwi

=

s∑
i=1

ciλ
2
iwi.

Equation 22 follows by induction.

Remark 14. Eigenvalues
We can see that the long-term behaviour of the population size n(t) depends
on the eigenvalues λi of A. n(t) is dependent on the term λti . Therefore, we
get exponential growth for λi > 1 ∀i and exponential decay for 0 < λi < 1
∀i. For other cases we often get oscillations.

9.3.1.2 Asymptotic analysis and strong ergodic theorem

Here we consider the behaviour of the population size for t→∞. We
therefore start with the definitions of asymptotic analysis and ergod-
icity which are often used in the context of the long time behaviour
of population size.

Definition 26. Asymptotic analysis (Keyfitz and Caswell, 2006)
Asymptotic analysis describes the behaviour of the population size for a long
time horizon. Here we can determine whether a population shrinks, expands
or stays stable in the future.
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Definition 27. Ergodicity (Keyfitz and Caswell, 2006)
Ergodicity indicates the model dependence on the initial conditions. A model
is called ergodic, if its asymptotic dynamics are independent of initial condi-
tions.

We want to analyse the behaviour of the matrix A for different
scenarios. Therefore, we need some terms of matrix algebra. Hence,
we start with some further definitions, which we later use for proving
the behaviour of n(t) for t→∞.

Definition 28. Nonnegative/ positive matrix
A matrix is called nonnegative if all elements are greater than or equal to
zero.
A matrix is called positive if all elements are strictly greater than zero.

Remark 15.
A negative entry in a population projection matrix implies a negative num-
ber of individuals. Hence, all population projection matrices are at least
nonnegative. However, they are usually not positive.

Definition 29. Irreducibility (Keyfitz and Caswell, 2006)
A nonnegative matrix A is irreducible if its life cycle graph contains a path
from every node to every other node.

Definition 30. Primitivity (Keyfitz and Caswell, 2006)
A irreducible nonnegative matrix A is primitive if there exists some k > 0
such that Ak is strictly positive.

Remark 16.
Since Pi > 0 ∀i = 1, ...,k − 2, our projection matrix A is primitive and
irreducible.

Now we can introduce the well known Perron-Frobenius theorem
which we later apply to our projection matrix.

Theorem 10. Perron-Frobenius theorem (Keyfitz and Caswell, 2006; Meyer,
2000)
Let A be a nonnegative, irreducible s× s matrix and λ1 denote the greatest
eigenvalue of A. Then holds:

• λ1 > 0 and λ1 ∈ R and λ1 is a simple root of the characteristic
equation (algmultA(λ1) = 1),

• the corresponding eigenvectors w1 and v1 are real and > 0 if A is
primitive and > 0 if A is imprimitive.

• there exists no other eigenvalue with nonnegative eigenvectors

For a proof see for example (Meyer, 2000).
Now we consider again the population growth rate and present the
strong ergodic theorem which connects the eigenvalue λ1 with the
growth rate of the population size.
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Theorem 11. Strong ergodic theorem (Cohen, 1979)
Let λ1 > |λi| for i > 2 be the eigenvalues of matrix A. Then

lim
t→∞ n(t)λt1 = c1w1

holds, where c1 is a positive constant and w1 is the eigenvector which corre-
sponds to the biggest eigenvalue λ1.

Remark 17.
Hence, the long-term evolution of the population size n(t) divided by the
population growth rate λt1 is equal to a constant vector. Therefore, the pop-
ulation growth rate behaves asymptotically like the biggest eigenvalue λ1 of
matrix A.

Proof.
Let n0 =

∑s
i=1 ciwi be the vector that contains the age structure of

the initial population. Then we can represent the population size by:

n(t) = An(t− 1) = AAn(t− 2) = · · · = Atn0

= At
s∑
i=1

ciwi =

s∑
i=1

ciA
twi

=

s∑
i=1

ciλ
t
iwi

= λt1

(
c1w1 +

s∑
i=2

ci

(
λi
λ1

)t
wi

)

The assumption that λ1 is the biggest eigenvalue yields
(
λi
λ1

)
< 1.

Therefore

lim
t→∞n(t) = λt1 (c1w1 + 0)

= λt1c1w1.

holds and this completes the proof.

9.3.1.3 Euler-Lotka equation

We have found out that the biggest eigenvalue of the Leslie matrix
is of great importance for the growth or the decay of the population
size. Now we take a look at the structure of our matrix A to find out,
if it is possible to compute the eigenvalues.
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We again consider the following matrix:

A =



F0 · · · · · · Fs−1

P0 0 · · · 0

0 P1 0
. . . 0

. . . . . .
...

0 · · · 0 Ps−2 0


(23)

with the fertility rate Fi, i = 0, ..., s− 1 of age class i and the survival
rates Pi, i = 0, ..., s− 2 for age class i. Additionally, we set Ps−1 = 0.

Theorem 12. Population growth rate
Let A ∈ Rs×s be our population projection matrix as given in Equation 23.
Then we can calculate the population growth rate λ by only using the num-
ber of births bi of age class i and the probabilities of surviving until age i
li:

1 =

s∑
k=1

lkbk
λk

with

bi+1 =
Fi
Pi

, i = 0, ..., s− 1 (24)

and

li+1 = Pili, i = 0, ..., s− 1 (25)

where l0 = 1.

Proof.
For proving the theorem we need that

i∏
k=0

Pk =
l1
l0

l2
l1
· · · li+1

li
=
li+1
l0

= li+1 (26)

The last equality holds because l0 = 1.
Let λ be an eigenvalue of our matrix, then holds ni(t+1) = Pi−1ni−1(t)
for i = 1, ..., s− 1. This can simply be seen by Definition 25. Then we
can follow with Theorem 11:

lim
t→∞ n(t)λt = lim

t→∞ n(t+ 1)λt+1
=
1

λ
lim
t→∞ An(t)λt

=
1

λ
lim
t→∞ 1

λt

F0n1(t) + · · ·+ Fs−1ns(t)P0n1(t)

Ps−2ns−1(t)


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Hence, for each ni(t), i = 2, ..., s:

lim
t→∞ ni(t)λt

=
1

λ
lim
t→∞ Pi−2ni−1(t)λt

=
Pi−2
λ

lim
t→∞ ni−1(t)λt

=
Pi−2
λ

Pi−3
λ

lim
t→∞ ni−2(t)λ

= · · ·

=

∏i−2
k=0 Pk
λi−1

lim
t→∞ n1(t)λt

=
li−1
λi−1

lim
t→∞ n1(t)λt

The last equality follows with Equation 26.
For the first element of n(t) we have:

lim
t→∞ n1(t)λt

=
1

λ
lim
t→∞ 1

λt

s−1∑
i=0

Fini+1(t)

=
1

λ

(
s−1∑
i=0

Fi lim
t→∞ ni+1(t)λt

)

=
1

λ

(
s−1∑
i=0

Fi
li
λi

lim
t→∞ n1(t)λt

)
.

Division by the left hand side yields

1 =
1

λ

s−1∑
i=0

Fi
li
λi

.

By using Equation 24 we reformulate the equation:

1 =
1

λ

s−1∑
i=0

bi+1Pi
li
λi

.

Finally we obtain

1 =
1

λ

s−1∑
0=1

bi+1
li+1
li

li
λi

=

s−1∑
i=0

bi+1
li+1
λi+1

=

s∑
i=1

bili
λi

.

by using Equation 25.

Remark 18.
Unfortunately, the equation above is not only true for the biggest eigenvalue
of A but also for all other eigenvalues.

9.3.1.4 Carrying capacity

The implementation of a carrying capacity into an age-dependent
model is not as simple as in the age independent cases. In the age-
dependent case we consider each age class on its own, but we do
not want to define a carrying capacity for each age class, because
this is not biologically meaningful. Instead we want that the popu-
lation size

∑s
i=1 ni(t) converges to a carrying capacity K as in the

age-independent models.
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Definition 31. Carrying capacity for the matrix model
Let A be the projection matrix as given before and let K be the carrying
capacity. Then

n(t+ 1) = A

(
n(t− 1) +n(t)

(
1−

∑s
i=1 ni(t)

K

))
(27)

denotes the projection rule.

We again have a look at the long-time behaviour of the population
size for the above described projection rule.

Theorem 13. Long-time behaviour (matrix model)
For the above described projection rule,

∑s
i=1 ni(t) for t→∞ converges to

the carrying capacity K or limt→∞ ni(t) = 0 ∀i = 1, ..., s.

Proof. We reformulate the projection rule Equation 27

n(t+ 1) = A

(
n(t− 1) +n(t)

(
1−

∑s
i=1 ni(t)

K

))
= An(t− 1) +An(t)

(
1−

∑s
i=1 ni(t)

K

)
= n(t) +An(t)

(
1−

∑s
i=1 ni(t)

K

)
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Consider t→∞:

lim
t→∞n(t+ 1) = lim

t→∞n(t) + lim
t→∞An(t)

(
1−

∑s
i=1 ni(t)

K

)
⇔ lim
t→∞n(t+ 1) − lim

t→∞n(t) = lim
t→∞An(t)

(
1−

∑s
i=1 ni(t)

K

)
⇔ 0 = A lim

t→∞n(t)
(
1−

limt→∞∑s
i=1 ni(t)

K

)
⇔ 0 = A lim

t→∞n(t) ∨ 1−
limt→∞∑s

i=1 ni(t)

K

⇔ 0 = A lim
t→∞n(t) ∨ lim

t→∞
s∑
i=1

ni(t) = K

⇔ 0 = lim
t→∞


∑s−1
i=1 Fini(t)

P1n1(t)
...

Ps−1ns−1(t)

 ∨ lim
t→∞

s∑
i=1

ni(t) = K

⇔ lim
t→∞

s−1∑
i=1

Fini(t) = 0

∧ lim
t→∞Pini(t) = 0 ∀i = 1, ..., s− 1 ∨ lim

t→∞
s∑
i=1

ni(t) = K

⇔ lim
t→∞n0(t+ 1) = 0

∧ lim
t→∞ni(t+ 1) = 0 ∀i = 2, ..., s− 1 ∨ lim

t→∞
s∑
i=1

ni(t) = K

⇔ lim
t→∞ni(t) = 0 ∀i = 0, ..., s− 1 ∨ lim

t→∞
s∑
i=1

ni(t) = K

For the optimal parameter choice the solution of Equation 27 con-
verge to the carrying capacity K. We can see this in the numerical
example in Figure 30. For the same parameters as in the age indepen-
dent cases (blue line and red dots) the solution of the matrix model
(green dots) converges to the same population size. In the other case
the number of individuals in each age class converge to zero and the
population dies out.

9.3.2 Continuous age-dependent models

Again, we want to derive a continuous approach for the easier imple-
mentation of time-dependent birth and death rates. We introduce an
age variable a ∈ R+. Then n(a, t) denotes the age density function
at time t. We can define an upper bound for the age variable a which
we denote by a. This should be the highest age that an individual in
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Figure 30: Effect of the carrying capacity for the matrix model. K = 400,
b = 0.7, d = 0.3 and five age classes

the population can achieve and it holds a ∈ [0,a]. Analogously let
b(a, t) be the age dependent birth rate and d(a, t) be the age depen-
dent death rate.
Then we can calculate the number of individuals of age between a1
and a2 at time t:

n(a1 : a2, t) =
∫a2
a1

n(s, t)ds

Let N(t) =
∫a
0 n(a, t)da denote the total population size at time t.

Analogously B(t) =
∫a
0 b(a, t)n(a, t)da denotes the total number of

births at time t. At the same time it is equal to n(0, t), the number of
individuals at age 0 at time t. The total number of deaths is defined
by D(t) =

∫a
0 d(a, t)n(a, t)da.

For the next time point we have the following rule

n(a+ 1, t+ 1) = n(a, t)(1− d(a, t))

gives us the number of individuals in the next age class. This means
that the number of individuals of age a+ 1 at time t+ 1 is equal to
the number of individuals of age a at time t and survived until the
next time step t+ 1.
By using a Taylor expansion we obtain

n(a, t) +
∂n(a, t)
∂a

+
∂n(a, t)
∂t

+O(a2 + t2) = n(a, t)(1− d(a, t)).

We can represent this equation by the hyperbolic PDE formulation
and therefore define the continuous age-dependent population model:

Definition 32. Continuous age-dependent population size model
For n(a, t) the number of individuals at age a at time t holds

∂n

∂t
+
∂n

∂a
= −d(a, t)n(a, t), (28)
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where the first age class is given by:

n(0, t) =
∫a
0

b(a, t)n(a, t)da

and a given initial population size structure

n(a, 0) = n0(a).

9.3.2.1 Carrying capacity

We want to include a carrying capacity into this model as well. The
population size at time t is given by the integral term∫a

0

n(a, t)da.

Then we can include the carrying capacity as we did in the age inde-
pendent case and obtain a PIDE formulation:

Definition 33. Carrying capacity for the continuous age-dependent case
Let K > 0 be the carrying capacity of the considered habitat. Then we get

∂n

∂t
= −

(
∂n

∂a
+ d(a, t)n(a, t)

)(
1−

∫a
0 n(a, t)da

K

)

for the population size development, where the first age class is given by

n(0, t) =
∫a
0

b(a, t)n(a, t)da

and a given initial population size structure

n(a, 0) = n0(a).

Remark 19.
For only one age class, the above described formulation would transform to
the age-independent case.

9.3.3 Age-dependent models for a local bat population

9.3.3.1 Matrix model

We divide our bat population into I age classes. Furthermore, we
assume constant fertility rates Fi, i = 1..., I. For the survival probabili-
ties we orientate on the discrete model. The survival rate for age class
i in the summer period is 1−ds(i) and in the winter period 1−dw(i),
respectively. Hence, the survival rate for age class i for the total year
is Pi = (1−ds(i))(1−dw(i)). Then we can describe the matrix model
for our bat population as follows.
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Definition 34. Matrix model for the bat population
For the projection equation

n(t+ 1) = A

(
n(t− 1) +n(t)

(
1−

∑s
i=1 ni(t)

K

))
, t = 0, ..., T

holds, where

A =



F1 · · · · · · FI

P1 0 · · · 0

0 P2 0
. . . 0

. . . . . .
...

0 · · · 0 PI−1 0


with Pi = (1− ds(i))(1− dw(i)) ∀i.

Certainly we also want to include the additional danger of wind
turbines for the local bat population. We assume this danger to be
age independent and only occurring during the summer period. We
denote the additional risk for each age class besides the first by da.
Then our matrix A changes into

A =



F1 · · · · · · FI

P̂1 0 · · · 0

0 P̂2 0
. . . 0

. . . . . .
...

0 · · · 0 P̂I−1 0


with P̂i = (1− ds(i) − da)(1− dw(i))∀i.

9.3.3.2 Continuous age-dependent model

We adjust Equation 28 to our specific model properties:

Definition 35. Continuous age-dependent model for the bat population
We can represent the age dependent continuous growth model for a local bat
population by the following initial value problem:

∂n

∂t
= −

(
∂n

∂a
+ d(a, t)n(a, t)

)(
1−

∫a
0 n(a, t)
K

)
, t ∈ (0, T ],

a ∈ (0,a]

n(a, 0) = n0(a), a ∈ (0,a]

n(0, t) =
∫a
0

b(a, t)n(a, t)da, t ∈ (0, T ]

with a being the maximum age of the population and d(a, t) = 1+ (1−

ds(a))(1− dw(a)).
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We now include again the danger of the wind turbines into our
model by increasing the death rate d̂.

Definition 36. Continuous age-dependent model for the bat population
with increased death probability

We can represent the age dependent continuous growth model for a local
bat population through the following initial value problem:

∂n

∂t
= −

(
∂n

∂a
+ d̂(a, t)n(a, t)

)(
1−

∑J
l=1 n(l, i)
K

)
, t ∈ (0, T ],

a ∈ (0,a]

n(a, 0) = n0(a), a ∈ (0,a]

n(0, t) =
∫a
0

b(a, t)n(a, t)da, t ∈ (0, T ]

with a the maximum age of the population and d̂(a, t) = 1+ (1− ds(a) −

da)(1− dw(a)).

For the implementation of the above equation we use the discretiza-
tion scheme of the Lax-Wendroff method which is a common dis-
cretization method for hyperbolic PDEs. We start by deriving this
discretization scheme. Therefore, we use the Taylor expansion of the
function n. Let ∆a and ∆t be the step sizes for the age and time
intervals [0,a] and [0, T ], respectively:

n(t+∆t,a) = n(t,a) +∆t
∂n(t,a)
∂t

+
∆t2

2

∂2n(t,a)
∂t2

+O(∆t3)

(29)

Now we consider a more simple version of the above hyperbolic PDE:

∂n(t,a)
∂t

= −
∂n(t,a)
∂a

(30)

For the second derivative we have

∂2n(t,a)
∂t2

=
∂2n(t,a)
∂a2

. (31)

We use Equation 30 and Equation 31 and apply them to Equation 29:

n(t+∆t,a) = n(t,a) −∆t
∂n(t,a)
∂a

+
∆t2

2

∂2n(t,a)
∂a2

+O(∆t3)

By using forward differencing for the time derivative and the sym-
metrized difference quotient for the derivative with respect to a we
obtain the Lax-Wendroff scheme

n(t+∆t,a) = n(t,a) −
∆t

2∆a
(n(t,a+∆a) −n(t,a−∆a))

+
∆t2

2∆a2
(n(t,a+∆a) − 2n(t,a) +n(t,a−∆a)

+O(∆t2) +O(∆a2).

(32)
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Figure 31: Effect of the carrying capacity for continuous age-dependent ap-
proach. K = 400, b = 0.7, d̂ = 0.3.
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Figure 32: Number of individuals for each age class for the continuous and
the discrete approach at time T = 70.

We now adapt Equation 32 to our hyperbolic equation. Therefore
let J = a/∆a and I = T/∆t be the number of age and of time dis-
cretisation steps, respectively. For notation purposes we set ti = i

and aj = j. The integral term is approximated by using a composite
trapezoidal rule. Then we obtain

n(j, i+ 1) =n(j, i) −
∆t

2∆a
(n(j+ 1, i) −n(j− 1, i))

(
1−

Tn(i)

K

)
+
∆t2

2∆a2
(n(j+ 1, i) − 2n(j, i) +n(j− 1, i))

(
1−

Tn(i)

K

)
−∆td̂(j, i)n(j, i)

(
1−

Tn(i)

K

)
,

j = 2, ..., J− 1, i = 1, ..., T − 1
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for each time step i = 1, ..., T and each age class j = 1, ..., J− 1, where

Tn(i) = ∆a

1
2
(n(0, i) +n(J, i)) +

J−1∑
j=1

n(j, i)


denotes the time dependent approximation of the integral term. The
effect of the carrying capacity K to all four models is illustrated in
Figure 31. Thereby we use the same parameter settings for all ap-
proaches and we can see that all model results converge to the car-
rying capacity K. The age-dependent approaches yield a faster con-
vergence rate than the age-independent approaches, such that the
population size reaches K in a shorter time horizon.
In Figure 32 we see the number of individuals for each age class for
the discrete and the continuous approach.





10
PA RT I A L I N T E G R O - D I F F E R E N T I A L E Q U AT I O N S
F O R S I M U L AT I N G S WA R M B E H AV I O U R

In the previous chapters of this thesis, we have discussed the danger
of wind turbines for a local bat population. Therefore we have simu-
lated the behaviour of the foraging individuals in their habitat. These
individuals act on their own most of the time and only adjust their be-
haviour to other bats when it comes to competitive behaviour, e.g. if
there are too many individuals for the food supply in a special region.

Migrating birds or bats tend to fly in special swarm formations. By
doing that, they naturally cross regions where wind turbines stand.
Considering the effect of swarming to the danger caused by wind tur-
bines is therefoe necessary to predict a realistic number of fatalities.

Now, we want to consider these effects of swarm behaviour. In an
animal swarm, the individuals not only consider their own prefer-
ences when they are moving but they include the behaviour of the
individuals surrounding them into their moving decisions. Therefore
it is not possible to simulate moving behaviour for each animal with-
out considering the behaviour of the other animals. When we now
want to simulate the behaviour of an animal x we have to include the
behaviour of the animals y in a certain distance R to it, since their
movement decisions depend on each other.

Often, the relevant parameter inside these swarms is the individual
density. When this density becomes to high it is not possible for the
animals to move properly, if it gets to low the swarm disperses. There-
fore it is useful to simulate these swarm behaviour by simulating the
density profile inside these swarms.

Modelling swarm behaviour by partial integro-differential equations
(PIDEs) has become really common in recent years and many authors
have made different approaches. We have already discussed these ap-
proaches in Chapter 2. Now, we have a closer look at the formulation
of Mogilner and Edelstein-Keshet, 1999. We discuss the properties of
this model and afterwards we want to state some theoretical exten-
sions for this special model formulation.

111
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10.1 simulating animal swarms

In Chapter 2 we have presented many different models for modelling
animal swarms. Altough the described models are very similar and
describe swarm behaviour by similar techniques, they all have dif-
ferent assumptions concerning diffusion, velocity, velocity range and
many other parameters. Therefore we want to focus in the following
section on the PIDE formulation of Mogilner and Edelstein-Keshet,
1999 because its application is really near to a bat or bird swarm.
Hence, it is most suitable for our problem.

Therefore we start by taking a closer look at the PIDE formulation

∂f(x, t)
∂t

=
∂

∂x

(
D
∂f(x, t)
∂x

− V(f)f(x, t)
)

, x ∈ R, t ∈ (0,∞)

(33)

where the velocity V(f) is given by

V(f) = K ∗ f =
∫

R

K(x− y)f(y, t)dy.

Furthermore we include the initial condition

f(x, 0) = f0.

to the above equation. This initial condition gives us the density pro-
file of the swarm at time t = 0.

Here the velocity is given as a convolution of a kernel function K

and the population density function f. This means that the velocity is
dependent on the population density at a certain surrounding of the
actual space coordinate. The kernel function K can be interpreted as
density function. Since the meaning of an individual y for individ-
ual x decreases the bigger the distance is between them, the kernel
function K usually flatten near the boundaries. This means that the
individuals usually orientate more on the individuals near them, in
other words which they can sense (e.g. by seeing). Individuals which
are outside their sense range are usually not relevant for their move-
ment decisions, so we can ignore them in the model. Therefore we
can restrict the integration domain to a bounded set Swhich describes
exactly the sensation radius of the individual at position x. The solu-
tion of this problem f(x, t) can be interpreted as density function, as
well.

A possible example for this kernel function is the normal distribution
density function. It weights the distance between the actual space
coordinate x and the surrounding space coordinates. For a normal
density function this means, on the one hand, that the closer the two
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coordinates y and x are, so the smaller |x− y| gets, the higher is the
effect of the population density at y. On the other hand, if y is far
away from x, the normal distribution function tends to 0 and the ef-
fect of p(y) on the velocity vanishes.

Hence, the velocity represents the non-local term in the above PIDE
description and the kernel function controls the behaviour of the
swarm. The structure of K has a big effect on whether the swarm
will collide, drifts away or stays stable. For a closer look on these
different scenarios see Mogilner and Edelstein-Keshet, 1999. There
they discussed different types of kernel functions and their long-time
effects on the swarm.

10.2 weak formulation

Above we have presented the problem formulation and the meaning
and the effects of the different variables. In this section we want to
look closer to the problem formulation. Hence, we examine some ex-
istence and uniqueness results of Equation 33 and therefore, we start
by introducing some definitions which we need later in this section.

We start with the definition of some function spaces.

Definition 37. Function spaces
We define the function spaces L2(R) and H1(R) and the corresponding
norms:

1. L2(R) = {v : R → R :
∫

R
|v(x)|2dx < ∞} with inner product

〈v,w〉L2(R) =
∫

R
v(x)w(x)dx

2. H1(R) = {v ∈ L2(R) : v ′ ∈ L2(R)} with inner product 〈v,w〉H1(R) =

〈v,w〉L2(R) + 〈v ′,w ′〉L2(R)

Endowed with the norm ‖ · ‖V =
√
〈·, ·〉V , where V = {L2(R),H1(R)},

L2(R) and H1(R) are Hilbert spaces.

Furthermore, we present a definition of Sobolev spaces.

Definition 38. Sobolev spaces
Let m be a positive integer and 1 6 p 6 ∞. Further, let ‖ · ‖m,p denote a
norm on the following spaces:

• Wm,p(R) = {u ∈ Lp(R) : Dαu ∈ Lp(R) for 0 6 |α| 6 m}, where
Dαu denotes the weak partial derivative.

• Wm,p
0 (R) = C∞

0 (R)

Endowed with the above described norms, these two spaces are Hilbert spaces.

Remark 20.
It holdsWk,2(R) = Hk(R) and thereforeW1,2(R) = H1(R) andW1,2

0 (R) =

H10(R).
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In this section, we want to have a closer look on the weak solutions
of Equation 33. Therefore we introduce the weak formulation of this
equation in the following definition.

Definition 39. Weak formulation
Let the problem equation be given as before, then we can derive the weak
formulation∫

R

∂f(x, t)
∂t

v(x)dx

=

∫
R

∂

∂x

(
D
∂f(x, t)
∂x

−

∫
S

K(x− y)f(y, t)dyf(x, t)
)
v(x)dx

by using the arbitrary test function v(x) ∈ H10(R).

By integrating the right side by parts, we can reformulate the right
side into∫

R

∂

∂x

(
D
∂f(x, t)
∂x

−

∫
S

K(x− y)f(y, t)dyf(x, t)
)
v(x)dx

=

∫
R

(
D
∂f(x, t)
∂x

−

∫
S

K(x− y)f(y, t)dyf(x, t)
)
v ′(x)dx.

Since v(x) ∈ H10(R), the boundary terms of the partial integration are
equal to zero.

This formulation is non-linear in f and because of that it is rather
complicate to handle it. We simplify the above equation in the next
two sections in two different ways before we examine this original
equation in Section 10.5.

10.3 linear case i

First, we simplify the non-linear equation by setting one density func-
tion f constant. This makes it possible to show an existence and
uniqueness result very quickly.

Assumption 6.
We assume the last term f(x, t) to be a constant f ∈ R and obtain a linear
formulation of our equation:∫

R

∂f(x, t)
∂t

v(x)dx =

∫
R

(
D
∂f(x, t)
∂x

−

∫
S

K(x− y)f(y, t)dyf
)
v ′(x)dx

(34)

With this assumption it is possible to show that the right side of
our equation is a bilinear form.

Theorem 14.
With Assumption 6 it follows, that

a(u, v) =
∫

R

(
D
∂u(x, t)
∂x

−

∫
S

K(x− y)u(y, t)dyf
)
v ′(x)dx

is a bilinear form.
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Proof. Let λ and µ ∈ R be constants, g and u suitable functions, then
it follows:

a(λ(f+ g),µ(v+ u))

=

∫
R

(
D
∂λ(f+ g)(x, t)

∂x
−

∫
R

K(x− y)(λ(f+ g))(y, t)dyf
)

(µ(v+ u)) ′(x)dx

= λµ

∫
R

(
D
∂f(x, t)
∂x

−

∫
R

K(x− y)f(y, t)dyf
)
(v ′(x) + u ′(x))dx

+ λµ

∫
R

(
D
∂g(x, t)
∂x

−

∫
R

K(x− y)g(y, t)dyf
)
(v ′(x) + u ′(x))dx

= λµ

∫
R

(
D
∂f(x, t)
∂x

−

∫
R

K(x− y)f(y, t)dyf
)
v ′(x)dx

+ λµ

∫
R

(
D
∂g(x, t)
∂x

−

∫
R

K(x− y)g(y, t)dyf
)
v ′(x)dx

+ λµ

∫
R

(
D
∂f(x, t)
∂x

−

∫
R

K(x− y)f(y, t)dyf
)
u ′(x)dx

+ λµ

∫
R

(
D
∂g(x, t)
∂x

−

∫
R

K(x− y)g(y, t)dyf
)
u ′(x)dx

= λµ(a(f, v) + a(g, v) + a(f,u) + a(g,u))

So we can describe our weak formulation by the variational formu-
lation∫

R

∂u(x, t)
∂t

v(x)dx = a(u, v). (35)

Now we examine the existence and uniqueness properties of a weak
solution of our simplified model Equation 34. Therefore we introduce
the following assumptions:

Assumption 7.

1. The diffusion coefficient is bounded (D ∈ [Dmin,Dmax]) and posi-
tive (Dmin > 0).

2. The constant f is nonnegative (f > 0).

3. The kernel function is positive and bounded above through a constant
K > 0. (0 6 K(x− y)2 6 K ∀x,y ∈ R).

Applying these assumptions to our problem formulation, we can
derive the next theorem, which gives us further properties of our
bilinear form a.
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Theorem 15.
If assumptions 7 holds, the bilinear form a satisfies the following properties:

1. Continuity: |a(u, v)| 6 c‖u‖H1(R)‖v‖H1(R)

2. Gårding inequality: a(u,u) + c1‖u‖2L2(R)
> c2‖u‖2H1(R)

where c, c1 > 0 and c2 > 0 are constants.

Proof.
For notation, we set in the following L2(R) = L2 and H1(R) = H1.
First inequality:
With the Cauchy-Schwarz inequality it follows:

|a(u, v)| =
∣∣∣∣∫

R

Du ′v ′ −

∫
R

K(x− y)udyfv ′dx

∣∣∣∣
6 Dmax‖u ′‖L2‖v ′‖L2 + f

∣∣∣∣∣
∫

R

(∫
R

K(x− y)2u2
)1/2

‖v ′‖L2dydx

∣∣∣∣∣
6 Dmax‖u ′‖L2‖v ′‖L2 + f‖v ′‖L2

∣∣∣∣∣
∫

R

(∫
R

K(x− y)2u2dy

)1/2
dx

∣∣∣∣∣
6 Dmax‖u ′‖L2‖v ′‖L2 + fK‖v ′‖L2

∣∣∣∣∣
∫

R

(∫
R

u2dy

)1/2
dx

∣∣∣∣∣
6 Dmax‖u‖H1‖v‖H1 + fK‖v‖H1‖u‖H1
6 c‖u‖H1‖v‖H1

with c = Dmax + fK.
Second inequality:

a(u,u) =
∫

R

Du ′u ′dx−

∫
R

K(x− y)udyfu ′dx

> Dmin

∫
R

u ′2dx−

∫
R

∫
R

K(x− y)udyfu ′dx

= Dmin‖u ′‖2L2 −
∫

R

∫
R

K(x− y)udyfu ′dx

= Dmin(‖u‖2H1 − ‖u‖
2
L2) −

∫
R

∫
R

K(x− y)udyfu ′dx

> Dmin(‖u‖2H1 − ‖u‖
2
L2) −Kf‖u‖L2‖u

′‖L2

> Dmin(‖u‖2H1 − ‖u‖
2
L2) −

k2

4
‖u ′‖2L2 −

Kf
2

k2
‖u‖2L2

> Dmin(‖u‖2H1 − ‖u‖
2
L2) −

k2

4
‖u ′‖2H1 −

Kf
2

k2
‖u‖2L2

=

(
Dmin −

k2

4

)
‖u‖2H1 −

(
Dmin +

Kf
2

k2

)
‖u‖2L2

with k > 0 an arbitrary constant, c1 = Dmin + Kf
2

k2
and c2 = Dmin −

k2

4 > 0 follows the inequality for k small enough.
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We can now present a theorem, which lead to a existence and
uniqueness result of our equation.

Theorem 16. (Wloka, 1982)
Let the two conditions of Theorem 15 be fulfilled, then the solution of Equa-
tion 35 exists and is unique.

Remark 21.
We define a new bilinear form b(u, v) = a(u, v) + c1〈u, v〉. Then it holds
with Theorem 15:

|b(u, v)| 6 |a(u, v)|+ |c1〈u, v〉|
6 c‖u‖H1‖v‖H1 + |c1〈u, v〉|
6 c‖u‖H1‖v‖H1 + c1‖u‖L2‖v‖L2
6 (c+ c1)‖u‖H1‖v‖H1
6 C̃‖u‖H1‖v‖H1

with C̃ = c+ c1 and

b(u,u) = a(u,u) + c1〈u,u〉 = a(u,u) + c1‖u‖2L2
> c2‖u‖2H1 .

With the Lemma of Lax-Milgram it follows the existence of a unique solution
u ∈ V for the following equation:

b(u, v) =
∫

R

(
∂u(x, t)
∂t

+ c1u(x)

)
v(x)dx, ∀v ∈ V

Then we can follow that there exists a unique solution u for Equation 35, as
well.

Hence, we showed existence and uniqueness for the weak solution
of our simplified linear model equation. But unfortunately this linear
formulation does not simulate the biological phenomenon we want
to analyse.

10.4 linear case ii

We assume now the term f(x, t) inside the integral operator to be
constant f ∈ R (instead of the outer term). Then we convert our
partial differential equation as follows

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2

−
∂

∂x
(f

∫
R

K(x− y)dyu(x, t)), x ∈ R, t ∈ (0,∞)

Since the kernel K is a density function it holds
∫

R
K(x− y)dy = 1

and the above equation transforms to

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2

− f
∂u

∂x
, x ∈ R, t ∈ (0,∞).
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The equation above is called the one-dimensional Fokker-Planck equa-
tion with constant diffusion coefficient and its stationary solution is
well known (see e.g. Risken, 1984).

This equation is a better model equation for simulating swarm be-
haviour but still does not exactly describe the same as the non-linear
equation. It is important to simulate a variable density function in-
side the integral operator, because only then the non local effects were
seen in the model result. A constant density is a to simple assumption
to simulate the complex swarm behaviour.

10.5 non-linear case

In the previous sections, we proved existence and uniqueness of the
weak solution for two linearised cases. But we also explained why
the linear cases do not describe the behaviour that we want to simu-
late for our application. Especially the non-local effects are not sim-
ulated correctly and so the formulations in both linear cases do not
describe swarm behaviour properly. Hence, we now consider the
original non-linear case and show a uniqueness result of this equa-
tion. Therefore, we again consider the weak formulation of our origi-
nal problem. Furthermore be W(0, T) = {u ∈ L2(0, T ;H1(R)) : Dtu ∈
L2(0, T ;H−1(R))}.

Theorem 17. Uniqueness
Let u ∈W(0, T) be a bounded solution of Equation 33, such that
‖u‖L2(0,T ;H1(R)) 6 d. Then this solution is unique.

Proof.
Let u, v ∈W(0, T) be solutions of our problem with u(0) = v(0) = u0
and be w = u− v. For a better notation we define the linear function
T : L2(R)→ R with

T(u) =

∫
R

K(x− y)u(y)dy
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Then it follows w(t) ∈ L2(R) and wt = Dwxx − (T(u)u)x + (T(v)v)x,
w(0) = 0.
Without loss of generality let D be equal to one. Then for all t holds:

1

2

d

dt
‖w‖2L2 = (w,wt)

= (w,wxx − (T(u)u)x + (T(v)v)x)

= −(wx,wx) + (T(u)u,wx) − (T(v)v,wx)

= −‖wx‖2L2 + (T(u)u− T(v)v,wx)

= −‖wx‖2L2 + (T(u)(u− v) + (T(u) − T(v))v,wx)

= −‖wx‖2L2 + (T(u)w+ T(w)v,wx)

6 −‖wx‖2L2 + ‖wx‖L2(‖T(u)w‖L2 + ‖T(w)v‖L2)
6 −‖wx‖2L2 + ‖wx‖L2(‖T(u)‖∞‖w‖L2︸ ︷︷ ︸

6‖u‖
L2
‖w‖

L2

+ ‖T(w)‖∞‖v‖L2︸ ︷︷ ︸
6‖w‖

L2
‖v‖

L2

)

6 −‖wx‖2L2 + c‖wx‖L2‖w‖L2

= −(‖wx‖L2 −
c

2
‖w‖L2)2 +

c2

4
‖w‖2L2

6
c2

4
‖w‖2L2

where c is a positive constant. We apply the Gronwall’s inequality
theorem:

Theorem 18. Gronwall’s Inequality
Let I = [t0, t1] and let a,b : I→ R be continuous functions and u : I→ R

satifies

u ′(t) 6 a(t)u(t) + b(t), t ∈ I
u(t0) = u0

Then the solution of the above described inequality fulfils

u(t) 6 u0e
∫t
t0
a(s)ds

+

∫t
t0

e
∫t
s a(k)dkb(s)ds.

In our case u0 = b = 0 and therefore, it follows ‖w‖ 6 0. Conse-
quently u(t) = v(t) ∀t and this proofs the theorem.

So we showed the uniqueness of the weak solution of our original
model equation. Showing the existence of this non-linear equation if
very challenging. Therefore this is a target for further research.

In this chapter, we examined the model formulation of Mogilner and
Edelstein-Keshet, 1999 and we were able to show some theoretical
results. For future research, it would be interesting to have a look
on the practical implementation and the application to our model
species and the collision risk with wind turbines. It is expectable that
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swarm behaviour has a negative effect on the number of fatalities
caused by wind turbines. The examination of this topic is of great im-
portance for swarming animals and their survival probabilities near
wind turbines or whole wind parks.



11
C O N C L U S I O N A N D O U T L O O K

We finish this thesis by concluding our results and by pointing out
the most important steps of our work. Therefore we give a short sum-
mary of each chapter of this thesis by presenting the major findings
to point out the relevance of this work for estimating the danger for
bats caused by wind turbines. Furthermore, we present additional
application possibilities of the derived models.

Finally we give an outlook on possible extensions of this thesis and
interesting open questions concerning the wildlife conflict of bats and
wind turbines.

11.1 conclusion

We start with an overview of each chapter and our main results and
findings therein.

chapter2 : literature review

In Chapter 2, we present an overview of different mathematical mod-
els simulating animal movement behaviour. We illustrate the differ-
ent approaches, e.g. random walk models, Brownian bridges, PDE
based approaches and PIDE formulations. Furthermore, we mention
the corresponding areas of application for most of the models. Then
we embed our model in this theory and point out the relevance of
building a new model for bats foraging behaviour due to the specific
and very complex movement characteristics of bats.

chapter 3 : model assumptions

In Chapter 3, we introduce all assumptions which we use to build our
IBM in Chapter 4 and for our PDE model in Chapter 6. We separate
them in biologically induced assumptions and practically induced as-
sumptions. We document the biologically induced assumptions with
results described in recent research papers and point out their rel-
evance for a realistic simulation of bats’ movement behaviour. For
each assumption motivated by practical reasons, we explain its neces-
sity for the implementation process and additionally we clarify the
negligible effect on the output of the models.
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chapter 4 : individual based model

We present in Chapter 4 our individual based model. In this ap-
proach, we derive a model which simulates the behaviour of ev-
ery single bat and illustrate the resulting movement characteristics
for different landscape structures. Therefore, we split the habitat in
three major parts, the sample paths, the one-dimensional and the two-
dimensional attraction zones. Then we simulate the bats’ movement
behaviour by a combination of different stochastic processes and a
symmetrized Euler-Maruyama discretization scheme of a reflected
Brownian motion. Additionally we include a Voronoi separation into
our model for simulating territorial behaviour inside the colony. This
separation divides large two-dimensional attraction zones into multi-
ple smaller zones and allocate individuals to these different subzones.

Then we include a Monte-Carlo simulation into our model in order
to get an average behaviour of the population and to obtain an occur-
rence profile for every subregion of the considered habitat. At the end
of the chapter, we present the numerical results for a habitat exam-
ple for different parameter settings of the IBM and the Monte-Carlo
simulation.

chapter 5 application

We present the IBM results for a real parametrized landscape struc-
ture which is known for a pipistrelle (Pipistrellus pipistrellus) colony
and which is focus of the research work of C. Lindemann. We choose
different parameter settings and illustrate the resulting flight trajecto-
ries. This chapter gives a first idea of how the model is applicable on
future research questions.

chapter 6 : partial differential equation model

In addition to the IBM, we present a PDE based approach for bats’ for-
aging behaviour in this chapter. We derive the PDE approach for all
three subparts: Sample paths, one-dimensional and two-dimensional
attraction zones. For the most challenging part, the two-dimensional
attraction zones, we achieve this by using a recent result of Bossy,
Gobet, and Talay, 2004 which allows us to transform our reflected
Brownian motion into a parabolic PDE with Neumann boundary con-
ditions. At the end of the chapter, we present the numerical results
for these three subparts. Additionally we compare the results of the
IBM and the PDE based models and we point out the advantages
and disadvantages of both approaches in order to connect them to
suitable applications. Furthermore, we explain the characteristics of
the IBM which make it more suitable for our model purposes.
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chapter 7 : calibration

Every model has to be validated. So, we give a short introduction
into model calibration and the general method, the Gauß-Newton al-
gorithm. The main issue in all calibration methods is the calculation
of the derivative of the residual function. This derivative is either
approximated, e.g. by finite differences, or it is calculated exactly.
The latter can sometimes be done analytically, but unfortunately this
is not possible in our case. Another method for calculating the exact
derivative is the sensitivity equation. However, this method produces
a high computational effort. Hence, we use the adjoint equation. This
method reduces the computational effort of the calibration model by
simultaneously calculating the exact derivative. After a general intro-
duction, we fit this method to our special model characteristics and
present the final calibration model for our IBM.

chapter 8 : death risk of wind turbines

Since the approaches of Chapter 4 and Chapter 6 only give us the
occurrence rates for specific regions in the habitat, we need to calcu-
late the number of fatalities caused by existing or planned wind tur-
bines. Therefore, we present in Chapter 8 a model which calculates
the number of bats actually being hit after reaching the wind turbine.
This rate depends on various factors, e.g. the rotor height and the
rotor radius. The result of this chapter is a formula which makes it
possible to estimate the bats’ risk of being killed by the wind turbine
depending on the type of wind turbine, the wind velocity and the bat
species. Hence, this model is also applicable to various bat species
and their particular movement characteristics.

chapter 9 : population model

In Chapter 8, we estimate the number of fatalities caused by wind
turbines. This number represents an additional death risk which we
use for population size modelling in Chapter 9. We start this chapter
with an introduction into the general theory of population models.
There are a lot of different types of models in literature. We start
with a simple discrete one and derive the corresponding ordinary dif-
ferential equation (ODE) model which makes it possible to consider
a continuous time development. Additionally, we include a carrying
capacity which is an indicator for the food supply and the habitat
quality and therefore limits the population growth.

Since there are different age-dependent fertility and death rates inside
a bat colony, we introduce age-structured population models. We con-
sider the discrete matrix population model formulation, called Leslie
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Matrix, and also the continuous case, which uses a hyperbolic PDE
formulation. A very challenging part of these age-structured models
is the incorporation of the carrying capacity. We manage to include
this carrying capacity, such that the population growth is again lim-
ited by this constant. We adapt all models to the characteristics of a
bat population, include the additional risk caused by the wind tur-
bines and compare the resulting population size developments.

chapter 10 : modelling swarm behaviour with partial

integro-differential equations

In this chapter, we present an interesting type of movement behaviour:
The swarm. This type of movement is not only interesting for eco-
logically induced research, but it is also very fascinating to look at
the mathematical techniques to represent this type of behaviour. We
introduce the theoretical framework of simulating swarm behaviour
with a partial integro-differntial equation (PIDE) model. These mod-
els have been a focal issue in recent years and have been studied
intensively. By moving as a swarm, individuals do not only move
from A to B in the shortest or simplest way, but they orientate on the
behaviour of the individuals surrounding them. This can be simu-
lated by a non-local advection-diffusion term. We focus on the work
of Mogilner and Edelstein-Keshet, 1999 and we get some existence
and uniqueness results for a simpler version of their model and a
uniqueness result for their original equation.

11.2 outlook and possible applications

Here we want to sum up open questions and we would like to point
out further research topics which might be interesting for evaluate
the wildlife conflict of wind turbines and a local bat population. Ad-
ditionally, we want to identify possible applications for the models
described in this thesis.

11.2.1 Numerical calibration

The numerical implementation of the calibration framework and the
parameter fitting stays crucial for the application of the IBM. There-
fore an appropriate empirical data set is necessary. The result of the
calibration method can be used for validating the model assumptions
or to find new model assumptions in order to obtain a more realistic
model outcome. After this fitting process, it will be possible to use
the model result in order to generate artificial trajectories of bats or
to find better places for wind turbines.
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11.2.2 Planning tool

The main goal of this work is to estimate the danger of existing or
planned wind turbines for the local bat population. The next step
is to derive a sort of planning tool which finds optimal locations for
wind turbines. Here, we want to give a short outlook on how that
can be achieved.

We present three different optimization approaches, which use spe-
cific target functions.

maximise energy output

The wind turbine produces an amount E of energy per year. E is de-
pendent on the wind speed s and the type of the wind turbine. The
wind speed is dependent on the location (x,y) where the wind tur-
bine is built. The bats’ annual death rate D must not exceed the limit
D. This limit should guarantee that the population does not become
extinct. Just like E, the death rate is dependent on the wind speed
s and the type of wind turbine considered. This rate is calculated in
Chapter 8.
So we can set the optimization problem:

max
(x,y)

E(s(x,y))

s.t. D(s(x,y)) 6 D.

minimise death rate

In the second approach we define the minimal annual energy output
E. This limit identifies the amount of energy that is necessary for a
economic efficient operation of the wind turbine.

Then we obtain the following optimization problem:

min
(x,y)

D(s(x,y))

s.t. E(s(x,y)) 6 E.

We have to say that the two different optimization problems do not
necessarily yield the same position coordinates for the wind turbine.
In most of the habitats it is almost sure, that the results are different.

This occurs because in the first problem, we try to maximize the en-
ergy output. So we optimise over the set of points where the popu-
lation does not extinct and search the optimal coordinates for energy
production. In the second approach, we optimise on the set of eco-
nomic reasonable locations for wind production and search the point
where the bats have the highest survival rate.
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multi-objective optimization

Instead of considering these two different optimization problems it is
also possible to formulate the multi-objective optimization problem

min
(x,y)

{ω1D(s(x,y)),−ω2E(s(x,y))}

s.t. (x,y) ∈ R2,

here ω1 and ω2 denote two weighting functions, where ω1+ω2 = 1.
In the extreme cases (ω1 = 1 and ω2 = 0 or ω1 = 0 and ω2 = 1) we
obtain the unconstrained cases from above. For the more interesting
in-between cases we obtain new solutions which correspond to the
choice of this weighting functions.

11.2.3 Comparison to existing models

The most mentioned technique for estimating the number of fatalities
caused by wind turbines is the work of Behr et al., 2011. They pro-
pose a sort of shutdown algorithms which guarantee that the wind
turbines are shut down in times with high bat activity and/or low
wind velocities. Although this method is used for many wind parks,
it is not known until today if these algorithms achieve the predicted
reduction of fatalities. Hence, a comparison of our result to the ap-
proach of Brinkmann would be a very interesting project and could
be a possibility for either validating both approaches or for giving
ideas of improving the shutdown algorithms.
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