
Applications of the Adjoint Method

in Stochastic Financial Modelling

Dissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Dem Fachbereich IV der Universität Trier
vorgelegt von

Bastian Peter Groÿ

Trier, Januar 2015



Gutachter: Prof. Dr. Ekkehard Sachs
Prof. Dr. Christian Bender

Tag der mündlichen Prüfung: 15. Mai 2015



Contents

German Summary V

Acknowledgements VII

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5

2.1 Elements of Real and Functional Analysis . . . . . . . . . . . . . . . . . . . . 5
2.2 Fundamentals of Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Financial Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Optimization in Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Calibration Problem 35

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Calibration Problem of Financial Market Models . . . . . . . . . . . . . . . . 36
3.3 Approximation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Weak and Strong Approximations . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Stochastic Predictor-Corrector Schemes . . . . . . . . . . . . . . . . . 40
3.3.3 Smoothing Payo�s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Alternative Approaches for Estimating Sensitivities . . . . . . . . . . . . . . . 44
3.4.1 Likelihood Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Direct Pathwise Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Biochemical and Geoscienti�c Applications . . . . . . . . . . . . . . . . . . . . 47

4 Adjoint Equations of Improved Monte-Carlo Schemes 49

4.1 Stochastic Dynamics in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Calibration via Predictor-Corrector Monte-Carlo Method . . . . . . . . . . . . 49

4.2.1 Calculation of the Gradient . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Special cases of Theorem 4.2.6 . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Computational Complexitiy and E�ciency . . . . . . . . . . . . . . . . . . . . 61
4.4 Alternative Approaches to Reduce Computational Time . . . . . . . . . . . . 63

5 Numerical Results 65

5.1 Monte-Carlo Schemes: Rate of Convergence . . . . . . . . . . . . . . . . . . . 65
5.2 E�ciency of the Adjoint-based Monte-Carlo Calibration . . . . . . . . . . . . 78

5.2.1 Numerical Calibration Results . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Computational E�ort of the Adjoint Technique . . . . . . . . . . . . . 82

III



Contents

6 Coincidence to Optimal Control Theory 85

6.1 First-Optimize-then-Discretize . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Introductory Notes on BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Stochastic Adjoint Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Framework of Calibration with SDE . . . . . . . . . . . . . . . . . . . 87
6.3.2 Adjoint Equation de�ned with an Adapted BSDE . . . . . . . . . . . . 89

6.4 Discretization: Adjoint Stochastic Di�erential Equation . . . . . . . . . . . . 94

List of Tables 97

List of Figures 99

Bibliography 101

IV



German Summary
(Zusammenfassung)

Die Bestimmung des fairen Preises eines Finanzkontraktes ist im Angesicht einerseits des
wachsenden Marktes, andererseits der zunehmenden Komplexität von exotischen Optionen
ein wesentlicher Bestandteil der Finanzmathematik. Der faire Preis ist maÿgeblich von der
Auszahlfunktion, die durch den Finanzkontrakt vorgegeben ist, und dem Finanzmarktmodell
des Basiswertes, das von den Marktteilnehmern bestimmt wird, abhängig. Diese Arbeit be-
schäftigt sich damit, das Finanzmarktmodell, das die Bewegungen des Marktes widerspiegelt,
so zu bestimmen, dass es zu beobachteten Marktpreisen passt. Diesen Vorgang, der mathe-
matisch zu einem kleinsten Quadrate Problem führt, nennt man Kalibrierung.

In dieser Arbeit werden stochastische Finanzmarktmodelle, wie das ein�ussreiche Black-
Scholes Modell oder das Heston Modell, betrachtet. Dabei spielt die Monte-Carlo Methode
eine wichtige Rolle, bei der die Ausgänge einer Vielzahl von Simulationen, den sogenannten
Monte-Carlo Simulationen, gemittelt werden. Diese Methode hat einen hohen Rechenaufwand
und kann eine groÿe Menge an Speicherplatz verbrauchen. Daher ist der erste Ansatz dieser
Arbeit, genau diesen Rechenaufwand zunächst durch verbesserte Simulationsmethoden, den
sogenannten stochastischen Prädiktor-Korrektor Verfahren, zu verringern. Die numerischen
Ergebnisse dieser Arbeit bestätigen diese Verbesserung.

Neben dem Aufwand der Monte-Carlo Simulationen ist bei einer Gradienten-basierenden
Kalibrierung vor allem die Berechnung des Gradienten bezüglich der zu bestimmenden Pa-
rameter bei der herkömmlichen Finiten-Di�erenzen Methode von hoher Komplexität, insbe-
sondere, wenn die Anzahl der Parameter des Finanzmarktmodells hoch ist. Um diesen hohen
Rechenaufwand zu umgehen, wird in dieser Arbeit die adjungierten Methode zur Berech-
nung des Gradienten verwendet. Zunächst wird diese adjungierte Methode im Allgemeinen
vorgestellt und deren Anwendbarkeit auf das konkrete Kalibrierungsproblem des stochasti-
schen Finanzmarktmodells gezeigt. Danach wird deren Implementierung ausgearbeitet und
die numerischen Ergebnisse diskutiert. Dabei stellt sich heraus, dass die Kombination aus ver-
besserten Simulationsmethoden und der adjungierten Methode zu einer starken Verringerung
des Rechenaufwands und des Speicherplatzverbrauchs führt. Damit hat sich die Rechenzeit
der Kalibrierung deutlich reduziert.

Bei der adjungierten Methoden wird auch eine adjungierte stochastische Di�erentialglei-
chung berechnet. Das letzte Kapitel dieser Arbeit befasst sich mit dem Zusammenhang dieser
adjungierten diskretisierten Gleichung zu der Lösung der rückwärtsstochastischen Di�erenti-
algleichungen, die aus der stochastischen Kontrolltheorie herrühren. Dabei stellt sich heraus,
dass beide Ansätze im diskretisierten Fall zu demselben Ergebnis führen. Mit der Zusam-
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menführung des adjungierten Ansatzes und der stochastischen Kontrolltheorie schlieÿt diese
Arbeit.

Bastian Groÿ
Trier, 2015
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Chapter 1

Introduction

1.1 Motivation

The number of traded �nancial derivates increased rapidly over the last decades. Also the
money value of those derivates leveled up as depicted in Figure 1.1. The number of traded
�nancial contracts at the Chicago Board Options Exchange (CBOE)1 increased from 284
million to 1.2 billion from 2003 to 2008 and stays nearly constant since that time. Almost
the same progression is illustrated in the development at the German derivatives exchange
named European Exchange (Eurex)2 as shown in Figure 1.2.

Therefore, determining appropriate prices of �nancial derivates became an important el-
ement of �nancial engineering since Black, Scholes and Merton developed their pioneering
formula. The value of a �nancial derivate depends on the value of some underlying. Since
the movements of those underlying are unpredictable and carry certain risks, the dynamics of
�nancial markets are often modeled with stochastic di�erential equations (SDEs). Modeling
and calibrating such �nancial market models is a tough issue from a mathematical point of
view because model calibration is often an ill-posed inverse problem in the sense of Hadamard
(1902) as in Tikhonov and Arsenin (1977).

In this thesis, model calibration is about identifying the unknown market-implied param-
eters of a certain stochastic process that are governed by a stochastic di�erential equation
which describes the dynamics of the underlying. This leads to a nonlinear least squares
poblem. The calibration problem is based on the computation of a large number of sensi-
tivities. Hence, every sophisticated calibration method relies on gradient-based optimization
methods. The adjoint method, also known as the adjoint approach, is capable of accuratly
and e�ciently computing such sensitivities with respect to the model parameters.

This motivates the main topic of this thesis namely the application of the adjoint method
in �nancial modeling. This work continues, extends and completes the research of Christoph
Käbe (2010) concerning adjoint-based Monte-Carlo calibration.

Adjoint methods represent a wide range of applications of interests in di�erent �elds of
computational engineering. For example, the adjoint method has been applied and imple-
mented for optimal design of mechanical and aerodynamical systems (Giles (1997), Giles

1Data collected from https://www.cboe.com/data/AnnualMarketStatistics.aspx.
2Data collected from http://www.eurexchange.com/exchange-en/market-data/statistics/.
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Chapter 1 Introduction

Figure 1.1: Total CBOE options trading summary: Number of traded contracts at the
CBOE from 2003 to 2008 in million (left side) and total volume of this
contracts in $ billion (right side).

Figure 1.2: Number of traded contracts at the EUREX from 2003 to 2013 in million.

(2002), Giles and Pierce (2000), Giles and Süli (2002), Jameson (1988), Marchuk et al.
(1996), Schillings et al. (2011), Schmidt et al. (2013) and Pironneau (1974)), optimal control
of structural and mechanical systems (Carnarius et al. (2010), Giannakoglou and Papadim-
itriou (2008) and Haslinger and Mäkinen (2003)), air-conditioning, groundwater systems and
weather forecasting (Courtier et al. (1993), Liu and Zhai (2007) and Michalak and Kitanidis
(2004)), biomathematical modelling (Marchuk et al. (2005)) and computer graphics (Chris-
tensen (2003)). Altough Achdou and Pironneau (2005) and Giles and Glasserman (2006)
explain how in practice the adjoint method can be used to compute option sensitivities, the
use of adjoint methods in �nance is still limited to only a few publications (Pironneau (2007),
Capriotti and Giles (2012), Käbe et al. (2009), Lörx and Sachs (2012) and Lörx (2013)).
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1.2 Outline

1.2 Outline

This thesis is divided into three main parts. The description of the calibration problem (Chap-
ter 3), the numerical solution of this problem (4) and the connection to optimal stochastic
control problems (Chapter 6). The introduction is �nished by a short outline.

Chapter 2

Chapter 2 gives an introduction to the theoretical foundation of the adjoint method and
provides tools to handle stochastic processes and calibrations problems. Principles of ordinary
and stochastic calculus, option pricing and optimization are given.

Chapter 3

Chapter 3 introduces the calibration problem. Fitting model prices C to given market prices
Cobs leads to the following abstract least squares formulation

min
x∈X

f(x) := 1
2

I∑
i=1

(
Ci(x)− Ciobs

)2
where Ci(x) = e−rTi E [max(STi(x)−Ki, 0)] .

(1.1)

The corresponding option price C can be computed by solving a stochastic di�erential
equation via the Monte-Carlo method which seems to be preferred by most practitioners.
Due to the fact that the Monte-Carlo method is expensive in terms of computational e�ort
and required memory, more sophisticated stochastic predictor-corrector schemes are estab-
lished in Section 3.3.2. The numerical advantages of these predictor-corrector schemes are
presented and discussed in Section 5.1. The corresponding calibration problem is presented
and further some mathematical challenges arising therein are brie�y discussed.

Alternative statistical methods to estimate sensitivities of expectations are presented in
Section 3.4. Their use for scienti�c applications is discussed, as well.

Chapter 4

The main part of this thesis is contained in Chapter 4. The adjoint method is applied to
the calibration problem of Chapter 3 using tools from chapter 2. The corresponding discrete
adjoint stochastic di�erential equation is �gured out by using the implicit function theorem
and the method of Lagrange multipliers. The discrete representation of the gradient is also
proven.

The theoretical advantage of the adjoint method compared to the �nite di�erence method
is discussed in detail. In Section 4.3 it is shown that the computational e�ort of gradient
calculation via the adjoint method is independent of the number of calibration parameters.
Additionally, some techniques to reduce the calibration time are presented and brie�y dis-
cussed.

3



Chapter 1 Introduction

Chapter 5

Numerical results are presented in Chapter 5 which is divided into two parts. First, di�erent
Monte-Carlo schemes namely the Euler-Maruyama scheme, the Milstein scheme and some
stochastic predictor-corrector schemes are compared in terms of accuracy, speed of conver-
gence and computational e�ciency. The numerical results emphasize the advantage of the
stochastic predictor-corrector schemes for multiple �nancial market models.

Secondly, the computation of the gradient via the adjoint method presented in Chapter 4
is implemented and its computer runtime is compared to the runtime of common methods.
Applying the adjoint method to calibrate the model parameters produced the same accurate
results compared with using the �nite di�erence method. So the adjoint method is reliable.
As testcase the Heston model

dSt = r(t)Stdt+
√
vtSt∆W

1
t ,

dvt = κ(θ − vt)dt+ σ
√
vt∆W

2
t ,

ρdt = Cov
[
dW 1

t , dW
2
t

]
,

is numerically solved using the proposed methods. These results numerically con�rm the
theoretical results of Section 4.3 and summarize the computational advantage of the adjoint
method.

Chapter 6

Furthermore, Chapter 6 provides the connection to optimal stochastic control problems. The
adjoint equation of Chapter 4 is the discretized solution Y of a stochastic di�erential equation
with terminal condition as in the following abstract formulation

dYt = a(Yt)dt+ b(Yt)dWt, t ∈ [0, T ],

YT = ξ.

This solution of this problemis non-adapted. On the contrary, the solution of an optimal
stochastic control problem leads to a pair of adapted processes (Y, Z) satisfying a backward
stochastic di�erential equation

dYt = −f(Yt, Zt)dt+ ZtdWt, t ∈ [0, T ],

YT = ξ.

Finally, this thesis presents the coincidence of this two approaches in the case of the dis-
cretized solutions of the adjoint equation and the backward stochastic di�erential equation.
In particular, the discretized representations of the gradient match each other.

4



Chapter 2

Theoretical Background

In mathematics you don't understand things. You just get used to them.
� John von Neumann

This chapter introduces basic theory which will be frequently referred to throughout this
thesis. Section 2.1 starts with some fundamentals of real and functional analysis which are
often used. In addition, Section 2.2 contains an introduction to probability theory, stochastic
processes, stochastic di�erential equations and gives a toolbox to handle such items. On the
basis of this, Section 2.3 is intended to motivate the investigation of some important results
of mathematical �nance and option pricing. Finally, some fundamental concepts of numerical
analysis, in particular optimization, will be explained in the last Section 2.4.

2.1 Elements of Real and Functional Analysis

In this �rst section some fundamentals of topological vector spaces, functional analysis and
some concepts of di�erentiability are revised. The de�nitions are mostly taken from Bourbaki
(1987), Debnath and Mikusinski (1998), Dieudonne (1969), Kantorovich and Akilov (1982)
as well as Rudin (1976) and Rudin (1991). A detailed overview about functional analysis can
be found in Meise and Vogt (1997). Additionally, fundamentals of linear algebra and related
�elds can be found in Golub and van Loan (1996).

Initially, assuming that topological spaces and metric spaces are known, de�nitions of some
normed vector spaces that are important for applications in this thesis are given. Troughout
this thesis, the term vector space will refer to a vector space over the real �eld R.

De�nition 2.1.1 (Banach space). A Banach space (X, ||·||X) is a normed vector space which
is complete with respect to its norm; this means that every Cauchy sequence is required to
converge.

De�nition 2.1.2 (Hilbert space). A pair (H,< ·, · >H) consisting of a vector space H and
a bilinear map

< ·, · >H : H ×H → R

named the inner product or scalar product on H is called inner product space. If the resulting
normed space is complete, it is called a Hilbert space.

If the Hilbert space is clearly known, the subscriptH will be omitted from the inner product
and < ·, · > will be used for simplicitly. Obviously, Hilbert spaces are always Banach spaces.

5



Chapter 2 Theoretical Background

De�nition 2.1.3 (Separability). A separable space X is a topological space which contains
at least a countable dense subset in X.

It is worth pointing out that separability is especially important in numerical analysis, since
the convergence of many constructive and approximative algorithms can only be proved for
separable spaces. Therefore, Banach spaces and Hilbert spaces are assumed to be separable
spaces troughout this thesis.

De�nition 2.1.4 (Dual Space). The so-called dual space of a topological vector space X is
the linear space X∗ whose elements are the continuous linear functionals l : X → R.

Note that since the scalar �eld R is always a complete space, the dual space of a normed
space is always a Banach space (Debnath and Mikusinski, 1998, Theorem 1.6.5).
The following Theorem 2.1.5 establishes an important connection between a Hilbert space

and its dual space.

Theorem 2.1.5 (Riesz Representation). Let l be a bounded linear functional on an Hilbert
space H. Then there exists a unique x0 ∈ H such that

l(x) =< x, x0 > ∀ x ∈ H.

Proof. (Debnath and Mikusinski, 1998, Theorem 3.10.1) �

Every Hilbert space H is re�exive, i.e. the natural map from H into its double dual space
H∗∗ is an isomorphism. Furthermore let T be a bounded operator on a Hilbert space H.
Then for every �xed x0 ∈ H the functional de�ned on H by

x 7→< Tx, x0 >

is a bounded linear functional on H. In consequence of the Riesz Representation Theorem
2.1.5 there exists a unique y0 ∈ H such that < Tx, x0 >=< x, y0 > for all x ∈ H. The
principal signi�cance of this is that it allows to denote T ∗ as the operator which assigns
every x0 ∈ H the according unique y0 ∈ H, i.e.,

< Tx, y >=< x, T ∗y > ∀ x, y ∈ H.

This leads to the following de�nition of the adjoint operator (Debnath and Mikusinski, 1998,
De�nition 4.4.1) which will play a crucial role in Chapters 4 and 6.

De�nition 2.1.6 (Adjoint Operator). Let T be a bounded operator on an Hilbert space H.
The operator T ∗ : H → H de�ned by

< Tx, y >=< x, T ∗y > ∀ x, y ∈ H

is called the adjoint operator of T .

Up next some often used properties of functions on metric spaces are given.

6



2.1 Elements of Real and Functional Analysis

De�nition 2.1.7 (Lipschitz Continuity). Let (X, dX), (Y, dY ) be metric spaces. A map f :
X → Y is called Lipschitz continuous if there exists a real constant L ≥ 0 such that

dY (f(x), f(y)) ≤ L dX(x, y) ∀ x, y ∈ X.

This L is called the Lipschitz constant for the function f . Furthermore, the function is called
a contraction (contraction mapping) if its Lipschitz constant L is in the open intervall (0, 1).

Theorem 2.1.8 (Banach Fixed-Point). Let (X, d) be a non-empty complete metric space
with a contraction mapping T : X → X. Then T admits a unique �xed-point x∗ ∈ X, this
is T (x∗) = x∗. Furthermore, this �xed-point x∗ can be constructed as follows: start with an
arbitrary element x0 ∈ X and de�ne a sequence (xn)n∈IN ∈ XIN by xn = T (xn−1), then this
sequence converges with the �xed-point x∗ as limit.

Proof. (Debnath and Mikusinski, 1998, Theorem 1.8.1) �

De�nition 2.1.9 (Fréchet Derivative). Let (X, || · ||X), (Y, || · ||Y ) be Banach spaces, U some
open subset of X and x ∈ U . A map f : U → Y is called Fréchet-di�erentiable at the point
x, if there exists a bounded linear operator f ′x : X → Y such that

lim
h→0+

‖f(x+ h)− f(x)− f ′x(h)‖Y
‖h‖X

= 0

converges uniformly with respect to an arbitrary h ∈ X in bounded sets. Equivalently,

f(x+ h)− f(x) = f ′x(h) + εx(h)

lim
h→0+

‖εx(h)‖Y
‖h‖X

= 0.

f ′ is called Fréchet derivative or Fréchet di�erential of f . At last, f : U → Y is called
Fréchet-di�erentiable on U , if f is Fréchet-di�erentiable at every point x ∈ U .

For a subset U of the Hilbert space Rn and f : Rn → R, the Fréchet derivative f ′ is the
gradient of f denoted by ∇f . The gradient ∇f is a row or column vector depending on the
context in which it is used

Corollary 2.1.10. If the Fréchet derivative exists, it is unique.

Proof. (Dieudonne, 1969, VIII 1. p. 149) �

Corollary 2.1.11. If some map is Fréchet-di�erentiable on an open set U and its Fréchet
derivative is bounded on U , it is Lipschitz continuous.

Theorem 2.1.12 (Implicit Function Theorem). Let X,Y, Z be Banach spaces, G : Y ×X →
Z be a continuously di�erentiable map on the open neighbourhoods Sy∗ × Sx∗ ⊂ Y × X of
the point (y∗, x∗) ∈ Sy∗ × Sx∗ such that G(y∗, x∗) = 0. In addition, its partial derivative
Gy(y, x) is bijective in the open set containing (y∗, x∗).

7



Chapter 2 Theoretical Background

Then there exist a continuous map y : Sx∗ → Sy∗ such that y∗ = y(x∗) and G(y(x), x) = 0
for all x ∈ Sx∗. The map y is unique, i.e., if y ∈ Sy∗ , x ∈ Sx∗ and G(y, x) = 0, then
y = y(x). Furthermore, y is di�erentiable with

y′(x) = −Gy(y(x), x)−1Gx(y(x), x). (2.1)

Proof. (Lusternik and Sobolev, 1965, Chapter VIII �8 Theorems 1-2) �

The function y is implicitly de�ned, hence the name of the Theorem.

2.2 Fundamentals of Stochastic Processes

Mathematical models that describe real world processes should have a probalistic component.
Therefore, some principles of probability theory and the analysis of stochastic processes are
introduced. Throughout this thesis, the existence of a probability space (Ω,F ,P) will be
assumed, where Ω is the non-empty set where the random experiment takes place, F is a
sigma algebra or σ-algebra of subsets of the set Ω and P an adequate probability measure
over F . (E, E) is a measurable space, i.e., a set E equipped with a respective sigma algebra
E . If E is restricted to topological spaces, the sigma algebra E is assumed to be the Borel
sigma algebra B(E), which is the sigma algebra generated by all open subsets of E. Usually
(E, E) is chosen as (Rd,Bd), where Bd = B(Rd) is the Borel sigma algebra of Rd.

De�nition 2.2.1 (Measureability and Random Variable). Let (Ω,F) and (E, E) be measur-
able spaces. Then a function g : Ω 7→ E is measurable if for every set A ∈ E the preimage of
A under g is in F , i.e.

g−1(A) := {ω ∈ Ω : g(ω) ∈ A} ∈ F , ∀ A ∈ E .

Let (Ω,F ,P) be a probability space and (E, E) a measurable space. A random variable is a
measurable function X : Ω 7→ E. Then the expected value or the expectation is de�ned by

E[X] :=

∫
Ω
XdP =

∫
Ω
X(ω)P(dω). (2.2)

Without exception probability spaces are assumed to be complete, this means F contains
all P-nullsets. In this manner, an event A ∈ F is said to happen almost surely (a.s.) if it
happens with probability one, i.e., P(A) = 1. All the equalities and inequalities involving
random variables to appear in the sequel are understood to hold P− a.s..

Some arguments in this thesis involve in�nite-dimensional vector spaces. To this end,
Lp spaces are introduced. Let �rst (Ω,F , µ) be a measure space and 1 ≤ p < ∞. Then
Lp = Lp(Ω) = Lp(Ω,F , µ) consists of equivalence classes of measurable real functions f for
which |f |p is integrable, i.e. ∫

|f |pdµ <∞,

8



2.2 Fundamentals of Stochastic Processes

where two measurable functions are equivalent if they are equal in the µ− a.s. sense. Then
for f ∈ Lp the following norm is used

||f ||p =

(∫
|f |pdµ

)1/p

= E[|f |p]1/p. (2.3)

In the sequel, there will be no strong distinction between elements of Lp and representatives
of their equivalence classes. In what follows, µ is restricted to be a probability measure.
Hence µ = P is σ-�nite and according to the Riesz-Fischer Theorem (Meise and Vogt, 1997,
Theorem 13.5) Lp is a separable Banach space for all 1 ≤ p <∞.

Theorem 2.2.2. The space Lp is complete and separable.

Proof. (Billingsley, 1995, Theorem 19.1 and 19.2) �

The conditional expectation is de�ned as follow:

De�nition 2.2.3 (Conditional Expectation). Let (Ω,F ,P) be a probability space, X be an
integrable random variable and G ⊆ F be a sub-σ-algebra, then there exists an almost surely
unique random variable denoted by E[X|G], called the conditional expectation of X given G,
having the following two properties

i) E[X|G] is G-measurable and integrable.

ii) E[X|G] satis�es the functional equation∫
G
E[X|G]dP =

∫
G
XdP, ∀ G ∈ G.

Let Y be another random variable on (Ω,F ,P), then E[X|Y ] := E[X|σ(Y )] is de�ned as the
conditional expectation of X given Y .

The following lemma will list the basic properties of the conditional expectation.

Lemma 2.2.4 (Properties of Conditional Expectation). Let X be an integrable random
variable and let H ⊂ G ⊂ F be sub-σ-algebras. E[·|G] may be seen as an operator on random
variables that maps F-measurable variables into G-measurable ones.

i) If F0 = {∅,Ω} is the smallest possible σ-algebra, the following equation for the trivial
conditional expectation holds

E[X|F0] = E[X], (2.4)

and, therefore, the random variable denoted by the conditional expectation is constant.

ii) The tower property holds

E[E[X|G]|H] = E[X|H] = E[E[X|H]|G]. (2.5)

9



Chapter 2 Theoretical Background

Since F0 = {∅,Ω} is always a sub-σ-algebra of G, also the law of total expectation is
valid

E[E[X|G]] = E[X]. (2.6)

iii) E[·|G] is a projection by

E[E[X|G]|G] = E[X|G]. (2.7)

iv) For X ∈ Lp, E[·|G] is a contraction by

||E[X|G]||p ≤ ||X||p 1 ≤ p <∞. (2.8)

The norm || · ||p is de�ned by (2.3).

v) The conditional expectation has the property that it is the best approximation in the
sense of later Theorem 2.4.12 insofar that E[X|G] is the G-measurable function that
best approximates X as a variance-minimizing prediction. So, for any square integrable
function h it holds

E[(E[X|Y ]−X)2] ≤ E[(h(Y )−X)2] (2.9)

with equality if and only if h(Y ) = E[X|Y ]. This is in fact equivalent to the following
orthogonality property

E[X − E[X|G]|G] = 0. (2.10)

Proof. (Williams, 1991, Section 9.7 and 9.8) �

De�nition 2.2.5 (Filtration). Let I ⊂ R be an index set. An increasing sequence of sigma
algebras F = (Fi)i∈I is called �ltration on a measurable space (Ω,F), i.e., for i ≤ j one has
Fi ⊆ F and Fi ⊆ Fj for all i, j ∈ I.

A probability space equipped with the �ltration F is called a �ltered probability space and
denoted by (Ω,F ,F,P). A �ltered probability space is said to satisfy the usual conditions
if F = (Ft)t∈T is right-continuous and F0 contains all P-nullsets. Hence, the �ltration is
a totally ordered set and assuming I represents a set of points in time, then heuristically
one could interpret that the set Ft contains all information available up to time t. In many
examples, the index set I is the natural numbers IN or a time interval T := [0, T ] or [0,∞).

In this thesis stochastic processes will be de�ned in the sense of (Øksendal, 2003, De�nition
2.1.4).

De�nition 2.2.6 (Stochastic Process). Consider measurable spaces (Ω,F) and (E, E) and
a time interval T ⊂ R+. A family X = (Xt)t∈T of random variables

Xt : (Ω,F)→ (E, E)

10



2.2 Fundamentals of Stochastic Processes

is called a stochastic process.

In many cases stochastic processes exist trough Kolmogorov's Extension Theorem (Billings-
ley, 1995, Theorem 36.1). Furthermore, for a �xed event ω ∈ Ω, the map Xt(ω) : T → Rd is
called a path of the stochastic process. On the contrary, for a �xed time t ∈ T the random
variable Xt(ω) : Ω→ Rd is called a realisation of the stochastic process.
The natural �ltration in F with respect to a stochastic process X = (Xi)i∈I is de�ned as

FX = (FXi )i∈I =
(
σ
{
X−1
j (A)

∣∣∣ j ∈ I, j ≤ i, A ∈ E})
i∈I

, (2.11)

i.e., the smallest sequence of sigma algebra on Ω that contains all preimages of Xj under
E-measurable subsets of Ω̃ for times j up to i. All information concerning a stochastic pro-
cess, and only that information, is available in its natural �ltration.

Moreover, by extending De�nition 2.2.3 having a stochastic process (Yt)t∈T and an in-
tegrable random variable X for abbreviation the expectation conditioned by the stochastic
process (Yt)t∈T is given by E[X|FYt ] for some t ∈ T .

De�nition 2.2.7 (Stopping Time). For a given �ltration (Fi)i∈I a mapping

τ : Ω→ I ∪ {+∞}

is called stopping time if {τ ≤ t} := {ω ∈ Ω : τ(ω) ≤ t} ⊂ Ft. Furthermore, for any
stochastic process X and each stopping time τ the stochastic process Xτ denotes the process
stopped in τ given by

Xτ
t (ω) := Xmin(t,τ(ω))(ω) for ω ∈ Ω.

Finally,
T = {τ |τ is stopping time with τ <∞}

denotes the set of all stopping times which do not take the value +∞.

De�nition 2.2.8 (Adapted and Predictable Process). Let (Ω,F ,P) be a probability space
and F = (Ft)t∈T be a �ltration.

i) A stochastic process X = (Xt)t∈T is called adapted or non-anticipating with respect to
the �ltration F if each Xt is Ft-measurable.

ii) A discrete-time stochastic process X = (Xn)n∈IN is called predictable with respect to the
�ltration F = (Fn)n∈IN if each Xn is Fn−1-measurable.

Every stochastic process X = (Xt)t∈T is adapted with respect to its own natural �ltration
FXt per de�nition. Furthermore, it follows from the de�nition of a stopping time τ that Xτ

is adapted if X is adapted. An informal interpretation is that X is adapted if and only if,
for every realisation and every time t, the random variable Xt is known only at time t.

De�nition 2.2.9 (Martingale). A stochastic process M = (Mt)t∈T on a �ltered probability
space (Ω,F ,F,P) is called a martingale with respect to F if

i) M is adapted,

11



Chapter 2 Theoretical Background

Figure 2.1: Some paths of the one-dimensional (left side) and the two-dimensional (right
side) Brownian motion.

ii) E[|Mt|] <∞ for all t ∈ T and

iii) Ms = E[Mt|Fs] almost everywhere ∀ 0 ≤ s < t ≤ T.

Whether or not a given stochastic process M = (Mt)t∈T is a martingale depends on the
underlying probability measure P. Inasmuch as the martingale property of M depends on a
particular measure P, one has to specify that M is a P-martingale when confusion can arise.
Following Föllmer and Schied (2004) a martingale M can be regarded as the mathematical
formalization of a "fair game". This means that for every time s and for each time horizon
t > s, the conditional expectation of the future gain Mt −Ms is zero, given all the informa-
tion available at s. By Doob's Stopping Theorem (see for instance Doob (1971)) the stopped
process M τ is a martingale for any stopping time τ if M is a martingale.

Some important examples for stochastic processes are the following:

Example 2.2.10 (Wiener Process). A Brownian motion or Wiener process is a stochastic
process W = (Wt)t∈[0,T ] with the properties

i) The process starts at 0: W0 = 0 P− a.s..
ii) For any given times 0 ≤ t0 < t1 < t2 < · · · < tm ≤ T the increments Wt1 −Wt0 ,Wt2 −

Wt1 , . . . ,Wtm −Wtm−1 are stochastically independent.

iii) For all 0 ≤ s < t it is Wt −Ws ∼ N (0, t− s), where N (µ, σ2) denotes the normal
distribution with expected value µ and variance σ2.

iv) Paths are P− a.s. continuous, this means the function t→ Wt is almost surely every-
where continuous.

Note that point iv) can be ommitted due to the Kolmogorov Continuity Theorem (Øk-
sendal, 2003, Theorem 2.2.3). The Brownian motion achieved a high level of awareness by
the paper of Einstein (1905).

Theorem 2.2.11 (Non-di�erentiability of the Wiener Process). Almost surely the Wiener
process is nowhere di�erentiable.

12



2.2 Fundamentals of Stochastic Processes

Figure 2.2: Some paths of the one-dimensional Poisson Process.

Proof. Karatzas and Shreve (2000) �

Example 2.2.12 (Poisson Process). A Poisson process with intensity λ is a stochastic process
N = (Nt)t∈[0,T ] with the properties

i) The process starts at 0: N0 = 0 P− a.s..

ii) For any given times 0 ≤ t0 < t1 < t2 < · · · < tm ≤ T the increments Nt1 −Nt0 , Nt2 −
Nt1 , . . . , Ntm −Ntm−1 are stochastically independent.

iii) For all 0 ≤ s < t it is Nt − Ns ∼ P (λ(t− s)), where P(λ) denotes the Poisson
distribution with expected value λ and variance λ.

Example 2.2.13 (Lévy Process). A Lévy process is a stochastic process L = (Lt)t∈[0,T ] with
the properties

i) The process starts at 0: L0 = 0 P− a.s..

ii) For any given times 0 ≤ t0 < t1 < t2 < · · · < tm ≤ T the increments Lt1 − Lt0 , Lt2 −
Lt1 , . . . , Ltm − Ltm−1 are stochastically independent.

iii) For all 0 ≤ s < t it is Lt − Ls ∼ Lt−s, i.e. the increments are stationary.

iv) For any time t ≥ 0 and an arbitray ε > 0 it holds

lim
h→0+

P(|Lt+h − Lt| > ε) = 0.

Subsequently, stochastic (ordinary) di�erential equations are introduced. Let (Ω,F ,F,P)
be a complete �ltered probability space satisfying the usual conditions, on which a Rm-valued
standard Wiener process, W = (Wt)0≤t≤T , is de�ned. Then the dynamic of a Rd-valued
stochastic process X = (Xt)0≤t≤T is the solution of a stochastic di�erential equation (SDE)

13



Chapter 2 Theoretical Background

of the form established by Øksendal (2003):

dXt = a(t,Xt)dt+ b(t,Xt)dWt t ∈ [0, T ] (2.12)

X0 = x0.

In this context a is called the deterministic continuous drift coe�cient or the appreciation rate
and b is called the continuous di�usion or volatility coe�cient. These coe�cient functions
ful�ll the usual properties of the existence and uniqueness of the solution of such an SDE
pooled in the following theorem.

Theorem 2.2.14 (Existence and Uniqueness for Solutions of Stochastic Di�erential Equa-
tions). Let the drift coe�cient a(·, ·) : [0, T ] ×Rd → Rd and the di�usion coe�cient b(·, ·) :
[0, T ]×Rd → Rd×m be measurable functions satisfying the linear growth condition

||a(t, x)||+ ||b(t, x)|| ≤ C(1 + ||x||), ∀ x ∈ Rd and t ∈ [0, T ] (2.13)

for some constant C > 0 and further assume that the Lipschitz condition

||a(t, x)− a(t, y)||+ ||b(t, x)− b(t, y)|| ≤ L||x− y||, ∀ x, y ∈ Rd and t ∈ [0, T ] (2.14)

for some Lipschitz constant L > 0 is satis�ed. Then the stochastic di�erential equation with
starting value Z

dXt = a(t,Xt)dt+ b(t,Xt)dWt t ∈ [0, T ] (2.15)

X0 = Z

has a pathwise unique t-continuous strong solution X = (Xt)0≤t≤T .

Proof. (Øksendal, 2003, Theorem 5.2.1 p.66�) �

Note that this strong solution is an FZt -adapted stochastic process constructed from a
certain version of Wt. Here uniqueness means that if X1 and X2 are two t-continuous
solutions satisfying (2.15) then

X1
t (ω) = X2

t (ω) ∀ t ∈ [0, T ], a.s.. (2.16)

Weak unique solutions are only identical in distribution. Similar conditions (2.13) and (2.14)
could also be used for the proof of the existence and uniqueness of solutions of deterministic
di�erential equations.

Due to the non-di�erentiability of the Wiener Process (see Theorem 2.2.11) there is no
di�erentiation theory of stochastic processes. Therefore, one can rewrite the solution of
above equation (2.12) to the integral formulation as Xt is a solution of the integral equation

Xt = X0 +

∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dWs, t ∈ [0, 1], (2.17)

where
∫ t

0 b(s,Xs)dWs is a stochastic integral which leads either to an Itô integral, a (Fisk-)

14



2.2 Fundamentals of Stochastic Processes

Stratonovich integral or a forward integral in the sense of Russo and Vallois (1993). The
suitable interpretation of the stochastic integral is crucial for its solution, but it will only be
discussed brie�y. Let 0 = t0 ≤ . . . ≤ tN = T , N ∈ IN be a time discretization of the interval
[0, T ] ⊂ R, then the stochastic integral is approximated by∫ t

0
f(s, ω)dWs(ω) ≈

N∑
n=1

f(τn, ω)
(
Wtn −Wtn−1

)
, (2.18)

where τn ∈ [tn−1, tn]. By choosing τn as tn one obtains the Itô integral, on the other hand,
by choosing τn as tn−tn−1

2 one gets the Stratonovich integral. The Russo-Vallois integral is
brie�y introduced in Russo and Vallois (1995). If not otherwise speci�ed, stochastic integrals
are meant to be Itô integrals, troughout this thesis.

Note that the symbolic notation of the SDE (2.12) and (2.17) includes the multi-dimensional
case. Let Wt = (W 1

t , . . . ,W
m
t )> be the m-dimensional vector of a Wiener process, a :

R × Rd → Rd be a drift vector and b : R × Rd → Rd × Rm be a volatility matrix, then
the solution of (2.12) is denoted by Xt = (X1

t , . . . , X
d
t )> and its componentwise integral

representation is

Xi
t = Xi

0 +

∫ t

0
ai(s,Xs)ds+

m∑
ν=1

∫ t

0
bi,ν(s,Xs)dW

ν
s , t ∈ [0, 1], (2.19)

for a preassigned F0 measurable initial vector X0 ∈ Rd. Equipped with the integral formula-
tion, an integral theory for SDE is established now. Assume X = (Xt)0≤t≤T is an R-valued
stochastic process and Yt = g(t,Xt), where g ∈ C2([0, T ] × R,R). In that case one has to
adopt a stochastic chain rule to estimate dYt = d(g(t,Xt)) via the well-known Itô's formula
(Itô's rule, Itô's lemma) as in Øksendal (2003) or Protter (1991) or the following version of
the Itô's formula in higher dimensions.

Theorem 2.2.15 (Itô's Lemma). Let X = (Xt)0≤t≤T be an Rd-valued stochastic process,
F ∈ C2(Rd,R). Then Itô's formula or Itô's (chain) rule states

F (Xt)− F (X0) =

d∑
j=1

∫ t

0

∂F

∂xj
(Xs)dX

j
s +

1

2

d∑
j,k=1

∫ t

0

∂2F

∂xj∂xk
(Xs)d[Xj , Xk]cs, (2.20)

where

[Xj , Xk]ct = lim
∆tn→0

N∑
n=1

(
Xj
tn −X

j
tn−1

)(
Xk
tn −X

k
tn−1

)
is the quadratic variation (quadratic covariation) process, with 0 = t1 < . . . < tN = t and
∆tn = tn+1 − tn.

Proof. (Øksendal, 2003, Theorem 4.2.1) �

It is eminent to point out that for Stratonovich integral driven SDEs the stochastic chain
rule is the same as the chain rule of ordinary calculus.
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Lemma 2.2.16. Let G = (Gt)0≤t≤T and H = (Ht)0≤t≤T be Rd-valued stochastic processes
with dynamics

Gt = G0 +

∫ t

0
g(s)ds+

∫ t

0
γ(s)dWs,

Ht = H0 +

∫ t

0
h(s)ds+

∫ t

0
η(s)dWs.

Then,

〈Gt, Ht〉 = 〈G0, H0〉+

∫ t

0
〈Gs, h(s)〉+ 〈g(s), Hs〉+ 〈η(s), γ(s)〉 ds

+

∫ t

0
〈Gs, η(s)〉+ 〈γ(s), Hs〉 dWs. (2.21)

Lemma 2.2.16 is an extension of Corrollary 5.6 in Yong and Zhou (1999) and is the stochas-
tic version of the integration-by-parts formula (cf. Elliott and Kohlmann (1989b)).

Proof. Applying the Itô Lemma (2.20) to 〈Gt, Ht〉 (F : R2d → R, F ((·, ·)>) = 〈·, ·〉) one
obtain above result. Let to this purpose F : R2d → R be the Euclidian inner product for an
extended vector x̂ := (x, y)> ∈ R2d with

F ((x, y)>) = 〈x, y〉 =

d∑
j=1

xjyj =

d∑
j=1

x̂j x̂j+d =: F (x̂)

Then its derivates are

∂F

∂x̂j
(x̂) =

{
x̂j+d, 1 ≤ j ≤ d
x̂j−d, d+ 1 ≤ j ≤ 2d,

and

∂2F

∂x̂j∂x̂k
(x̂) =


δk,j+d, 1 ≤ j ≤ d
δk,j−d, d+ 1 ≤ j ≤ 2d

0, else.

By using the multi-dimensional Itô's Formula (2.20) one obtains via (Gt, Ht)
> = X̂t

〈Gt, Ht〉 = F (X̂t)

= F (X̂0) +
2d∑
j=1

∫ t

0

∂F

∂X̂j
(X̂s)dX̂

j
s +

1

2

2d∑
j,k=1

∫ t

0

∂2F

∂X̂j∂X̂k
(X̂s)d[X̂j , X̂k]cs
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= F (X̂0) +
d∑
j=1

∫ t

0
X̂j+d
s dX̂j

s +
2d∑

j=d+1

∫ t

0
X̂j−d
s dX̂j

s

+
1

2

 d∑
j=1

∫ t

0
d[X̂j , X̂j+d]cs +

2d∑
j=d+1

∫ t

0
d[X̂j , X̂j−d]cs


= F (X̂0) +

d∑
j=1

∫ t

0
X̂j+d
s dX̂j

s +
2d∑

j=d+1

∫ t

0
X̂j−d
s dX̂j

s +
d∑
j=1

∫ t

0
d[X̂j , X̂j+d]cs

= 〈G0, H0〉+
d∑
j=1

∫ t

0
Hj
sdGjs +

d∑
j=1

∫ t

0
GjsdH

j
s +

d∑
j=1

∫ t

0
d[Gj , Hj ]cs

= 〈G0, H0〉+

∫ t

0
〈Gs, h(s)〉+ 〈g(s), Hs〉+ 〈η(s), γ(s)〉 ds

+

∫ t

0
〈Gs, η(s)〉+ 〈γ(s), Hs〉 dWs,

by using the multiplication table (Øksendal, 2003, Theorem 4.2.1)

dtdt = dW j
t dt = dtdW j

t = 0 and dW j
t dW

k
t = dtδj,k for all k, j.

This completes the proof and establishes the formula (2.21). �

Next, some spaces of stochastic processes (Yong and Zhou, 1999, page 32) are de�ned.
Equipped with the de�nition of Lp(Ω) spaces given by equation (2.3) with (Ω,F , µ) =
(Rd,Bd, λdB), where λB denotes the Lebesgue measure the following spaces of stochastic pro-
cesses are considered

LpF (0, T ;Rd) :=
{
f ∈ Lp(Rd) : f is measurable and adapted to {Ft}t∈[0,T ]

and E
[∫ T

0
f(t, ω)pdt

]
<∞

}
L2
F (0, T ;Rd) equipped with the inner product

< f, g >:= E[

∫ T

0
f(t, ω)>g(t, ω)dt]

is a Hilbert space (Yong and Zhou, 1999, page 32 (5.15)).

M2[0, T ] :=
{
X ∈ L2

F (0, T ;Rn) : X is a right-continuous {Ft}t≥0-martingale

with X(0) = 0,P− a.s.}
M2

c [0, T ] :=
{
X ∈M2[0, T ] : t 7→ X(t) is continuous,P− a.s.

}
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Equipped with the inner product

(X,Y )M2[0,T ] := E
[
X>T YT

]
(M2[0, T ], (·, ·)M2[0,T ]) is a Hilbert space.
Next, let X be the space of stochastic processes of the form

Vt = V0 +

∫ t

0
µ(s)ds+

∫ t

0
σ(s)dWs, 0 ≤ t ≤ T,

with

E
[∫ T

0
||µ(s)||2 + ||σ(s)||2ds

]
<∞.

Let U ∈ X be another stochastic process of the form

Ut = U0 +

∫ t

0
ν(s)ds+

∫ t

0
γ(s)dWs, 0 ≤ t ≤ T,

then an inner product of X is de�ned by

< V,U >X= E[V >0 U0] + E[

∫ T

0
µ(s)>ν(s) + σ(s)>γ(s)ds].

(X, < ·, · >X) is an Hilbert space. One notes that the properties of this inner product are
deduced by the Euclidean scalar product. Moreover, the norm

|V |X =
√
< V, V >X =

(
||V0||2 + E[

∫ T

0
||µ(s)||2 + ||σ(s)||2ds]

)1/2

is equivalent to

||V ||X =

(
E[||VT ||2] + E[

∫ T

0
||µ(s)||2ds]

)1/2

.

X0 is also introduced as the closed subspace of X such that V0 = 0.

The following Martingale Representation Theorem is concerned with how to represent a
martingale Mt ∈M2[0, T ] by a process Zt ∈ L2

F (0, T ;Rn) with a �xed Wiener process.

Theorem 2.2.17 (Martingale Representation Theorem). Let (Ω,F ,F,P) be a �ltered prob-
ability space satisfying the usual conditions and Wt = (W 1

t , . . . ,W
m
t ) be a d-dimensional

Wiener process. Suppose Mt is an F-martingale with respect to P and Mt ∈M2[0, T ] for all
times t ≥ 0. Then there exists a unique stochastic process Zs(ω) such that Z ∈ L2

F (0, T ;Rn)
for all t ≥ 0 and

Mt(ω) = E[M0] +

∫ t

0
Zs(ω)dWs P− a.s. ∀ t ≥ 0. (2.22)

Proof. (Øksendal, 2003, Theorem 4.3.4) �
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An interesting consequence of Theorem 2.2.17 follows by considering ζ ∈ L2
F (0, T ;R) and

the fact that E[ζ|Ft] is an F-martingale. Thus, there exists a Z ∈ L2
F (0, T ;Rn) due to

equation (2.22) such that

E[ζ|Ft] = E[ζ] +

∫ t

0
ZsdWs ∀ t ∈ [0, T ]. (2.23)

In particular

ζ = E[ζ] +

∫ T

0
ZsdWs. (2.24)

This consequence will play a vital role in Chapter 6 concerning backward stochastic di�er-
ential equations (BSDEs).

The following results are also needed. All homogeneous additive functionals of Brownian
motions have zero (conditional) expectation.

Lemma 2.2.18. For any f ∈ L2
F (0, T ;Rn) and stopping time σ and τ with σ ≤ τ,P− a.s.,

E
[∫ t∧τ

s∧σ
f(r)dWr|Fr

]
= 0, P− a.s., (2.25)

in particular, for any 0 ≤ s < t ≤ T ,

E
[∫ t

s
f(r)dWr|Fr

]
= 0, P− a.s., (2.26)

Proof. (Yong and Zhou, 1999, Proposition 5.2 (5.24)) �

The following corollary enables the computation of second order terms of integrals of
stochastic processes.

Corollary 2.2.19 (Itô Isometry).

E

[(∫ T

0
f(t)dWt

)2
]

= E
[∫ T

0
f2(t)dt

]
∀ f ∈ L2

F (0, T ;Rn) (2.27)

Proof. (Øksendal, 2003, Corollary 3.1.7 p. 29) �

In other words, the Itô integral is an isometry of the normed vector spaces with respect to
the norms induced by the inner products.

Often, there is no analytical solution of an SDE known, so numerical approximation theory
has to be initiated. To this end, let X = (Xt)0≤t≤T be an Rd-valued stochastic process whose
dynamic is described as stochastic di�erential equation of the form of equation (2.17). An
approximation of such an X = (Xt)0≤t≤T on (Ω,F ,F,P) for some given time discretization
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0 = t0 ≤ . . . ≤ tN = T , N ∈ IN , is given by the piecewise constant stochastic process
Y ∆ = (Y ∆

t )0≤t≤T

Y ∆ = (Yk1(tk,tk+1](t))0≤t≤T , k = 0, . . . , N − 1, (2.28)

where ∆ denotes the maximal time step of the time discretization {t0, t1, . . . , tN}. Some
examples of approximation schemes of this type will be introduced in Section 3.3. To measure
the quality of such approximations, one needs the following two de�nitions.

De�nition 2.2.20 (De�nition of Strong Approximation). Let X = (Xt)0≤t≤T be an Rd-
valued stochastic process. Then the time discretization Y ∆ is said to converge strongly to X
at point T with order γ > 0 as ∆ ↓ 0 if there exists a positive constant C > 0 such that

εS := E
[∣∣XT − Y ∆

T

∣∣] ≤ C∆γ (2.29)

for each ∆ ∈ (0,∞).

Note that the strong order of Y ∆ is developed as the error at a point T > 0, but for certain
time step sizes ∆ one observes that strong explicit schemes sometimes generate large errors
on the interval [0, T ]. This raises the following de�nition of weak approximation.

De�nition 2.2.21 (De�nition of Weak Approximation). Let X = (Xt)0≤t≤T be an Rd-valued
stochastic process. Then Y ∆ is said to converge weakly to X with order β > 0 if there exists
a positive constant C > 0 such that

εW :=
∣∣E [g(XT )]− E

[
g(Y ∆

T )
]∣∣ ≤ C∆β (2.30)

for any function g ∈ C2(β+1)
p (Rd,R) and each ∆ ∈ (0,∞).

Remark 2.2.22. C
2(β+1)
p (Rd,R) denotes the space of 2(β + 1)-continuously di�erentiable

functions which, together with their partial derivatives of order up to 2(β+1), have polynomial

growth. This means that for every g ∈ C2(β+1)
p (Rd,R) there exist a constant K > 0 and some

r ∈ IN , which depends on the function g, such that for all x ∈ Rd and any partial derivative
∂k

∂x[k]
g(x, t) of order k ≤ 2(β + 1) the following equation holds∣∣∣∣ ∂k∂x[k]

g(x, t)

∣∣∣∣ ≤ K (1 + |x|2d
)
. (2.31)

As one notices from the De�nition 2.2.20, strong schemes provide approximations by single
paths related to trajectories. Therefore, these schemes are used to solve problems such as
hedge simulation and scenario analysis in �nance. Otherwise one perceives from De�nition
2.2.21 that weak schemes provide approximations of the probability measure related to the
moments and in this way are appropriate for problems such as derivative pricing, expected
utilities and risk measures, which will be the main applications in this thesis.

As a last point of this section, the following Law of Large Numbers is introduced as it is
important in Monte-Carlo methods that are introduced and established by the seminal work
of Metropolis and Ulam (1949).
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2.2 Fundamentals of Stochastic Processes

Theorem 2.2.23 (Law of Large Numbers). If (Xn)n∈IN is a sequence of stochastic indepen-
dent and identically distributed random variables and E[X1] exists, then

lim
M→∞

1

M

M∑
m=1

Xm = E[X1] P− a.s.. (2.32)

Proof. (Billingsley, 1995, Theorem 6.1 p. 85) �

Troughout this thesisM ∈ IN denotes the number of Monte-Carlo simulations, realizations
or trajectories. Note that for the number M of Monte-Carlo paths we get the following error
estimation as in Glasserman (2004).

Corollary 2.2.24 (Monte-Carlo Error). If X = (Xn)n∈IN is a sequence of stochastic inde-
pendent and identically distributed random variables, then the Monte-Carlo error is estimated
via

eM (X) ∼ σ̂M (X)√
M

(2.33)

with variance

σ̂M (X) :=

√√√√( 1

M

M∑
m=1

X2
m

)
−

(
1

M

M∑
m=1

Xm

)2

. (2.34)

Proof. (Jäckel, 2002, Section 2.7) �

A detailed overview on the mentioned topics can be found in Billingsley (1995), Bosq
(2010), Jacod and Protter (2013), Karatzas and Shreve (2000), Karlin and Taylor (1975)
and Shiryaev (1996) or Wengenroth (2008) for probability theory, stochastic calculus and
Brownian motions, Cont and Tankow (2004), Karlin and Taylor (1981), Øksendal (2003)
and Protter (1991) for stochastic di�erential equations, Chung and Williams (1990), Ikeda
and Watanabe (1989) and the classical work of Kloeden and Platen (1999). For stochastic
integration, approximation schemes and Monte-Carlo simulations the reader is refered to
Du�y and Kienitz (2009), Glasserman (2004) or Jäckel (2002). De�nitions and notations are
mainly taken from Øksendal (2003) and Wengenroth (2008).
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Chapter 2 Theoretical Background

2.3 Financial Markets

On the basis of Section 2.2 some fundamental concepts of �nancial markets with volatil assets
and their �nancial contracts will be explained in the following. For a more comprehensive
treatment of the concepts, methods and results of mathematical modeling in �nance see for
instance Elliott and Kopp (2005), Föllmer and Schied (2004), Hakala andWystup (2002), Hull
(2008), Karatzas and Shreve (1998), Lamberton and Lapeyre (1996), Chapter 12 of Øksendal
(2003), Shiryaev (1999), Shreve (2004) and Wilmott et al. (1993) and the references therein.

De�nition 2.3.1 (Financial Market). Let (Ω,F ,F,P) be a �ltered probability space. A
d-asset �nancial market model is an F-adapted d + 1-dimensional stochastic process St =
(S0
t , S

1
t , . . . , S

d
t ) t ∈ [0, T ] of the form

dS0
t = r(t, ω)S0

t dt, S0
0 = 1 for t ∈ [0, T ] (2.35)

called the numéraire and for 1 ≤ i ≤ d ∈ IN

dSit = µi(t, ω)dt+
m∑
j=1

σij(t, ω)dW j
t (2.36)

= µi(t, ω)dt+ σi(t, ω)dWt, S0
i = si for t ∈ [0, T ]

called the risky assets or underlyings, where Wt = (W 1
t , . . . ,W

m
t ) is an m-dimensional

Wiener process and σi is the i-th row of the volatility d×m matrix [σij ].

To shorten notation, the initial values Si0, i = 0, 1, . . . , d, will not be speci�ed in detail.

A market is called to have no arbitrage if there is no possibility of gaining a positive amount
of yield out of nothing almost surely. In this case, practitioners are used to say there is no
"free lunch" (see Schachermayer (2008)). This is a main assumption of e�cient markets.

Remark 2.3.2 (E�cient Market Hypothesis). The following properties of �nancial markets
are assumed to hold without exception in this thesis:

i) The market is liquid, i.e., arbitrary amounts of assets are always available.

ii) Market participants can sell assets they do not hold. This is called short selling.

iii) It is possible to buy fractional quantities of assets.

iv) There are no transaction costs and no dividend yields

v) No arbitrage, i.e., no riskless returns.

Some assumptions may be contrary to intuition like the absence of transaction costs. Nev-
ertheless, under these assumptions the considered �nancial market model can be introduced.
The following Fundamental Theorem of Asset Pricing 2.3.9 translates these assumptions into
mathematical language in the manner, that the absence of arbitrage opportunities is related
to the existence of an equivalent martingale measure.
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2.3 Financial Markets

De�nition 2.3.3 (Portfolio). A portfolio is a measurable and F-adapted stochastic vector
process ξ ∈ Rd+1 chosen by an investor in a d-asset �nancial model. Furthermore, a trading
strategy is a predictable Rd+1-valued process ξ̄. A portfolio is self-�nancing if its changes in
value are only due to changes of prices in the underlying �nancial model and do not require
any additional capital.

De�nition 2.3.4 (Contigent Claim). A contigent claim is a random variable C on the
underlying probablity space (Ω,F ,P) such that 0 ≤ C < ∞ P − a.s.. A contigent claim
C in a d-asset �nancial model is called �nancial derivative (�nancial contract or �nancial
security) of the primary assets S0, S1, . . . , Sd if it is measurable with respect to the sigma-
algebra σ(S0, . . . , Sd).

Such �nancial derivatives, like options, futures or swaps, have gained serious interest since
the Chicago Board Options Exchange (CBOE) was founded in 1973, which is the �rst ex-
change to trade standardized stock options and is nowadays the world's largest options ex-
change. Subsequently, pioneering work of the mathematical basics of option pricing arises
from the seventies, e.g. Black and Scholes (1973), Cox et al. (1979), Merton (1973) and
Merton (1976). Many of the answers were obtained in a heuristic way by Bachelier (1900).
Ensuing from these seminal academic introductory and much-cited publications, fundamen-
tal principles of derivative pricing are presented in the rest of this section. Aside from that,
not only the volume of option markets, but also the sophistication of investments increased
over the last decades as seen in the Introduction (Section 1.1). So more sophisticated and
prudent models are conceived since then and presented below.

To price such options accurately, the following de�nitions and the Fundamental Theorem
of Asset Pricing (Theorem 2.3.9) are needed.

De�nition 2.3.5 (Replication Portfolio). A contigent claim C is called replicable (attainable,
hedgeable, redundant) in the �nancial market (St)t∈[0,T ] if C can be replicated by some self-
�nancing trading strategy ξ̄ ∈ Rd+1. Such a portfolio strategy ξ̄ is called a replicating or
hedging portfolio for C.

De�nition 2.3.6 (Complete Market). An arbitrage-free market model is called complete if
every contigent claim is replicable.

An equivalent formulation to the de�nition of complete markets is given in the following
theorem.

Theorem 2.3.7. An arbitrage-free market model (St)t∈[0,T ] as in De�nition 2.3.1 is complete
if and only if the volatility matrix σ(t, ω) has a left inverse σ̃(t, ω) for almost all (t, ω) ∈
[0, T ]× Ω, i.e.

σ̃(t, ω)σ(t, ω) = Im for a. a. (t, ω).

Proof. (Øksendal, 2003, Theorem 12.2.5 page 263f) �

Complete market models are precisely those models in which every contigent claim has a
unique price.
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Chapter 2 Theoretical Background

De�nition 2.3.8 (Equivalent Martingale Measure). A probability measure Q on some (Ω,FT )
is called a martingale measure if the discounted price process X is a Q-martingale. A martin-
gale measure P∗ is called an equivalent martingale measure or risk-neutral probability measure
if it is equivalent to the original measure P on FT . The set of all equivalent martingale mea-
sures is denoted by P.

For simplicity the following theorem is presented in the case of �nite discrete time as in
Delbaen and Schachermayer (1994) or Schachermayer (1992).

Theorem 2.3.9 (Fundamental Theorem of Asset Pricing).

i) The market model is arbitrage-free if and only if the set P of all equivalent martingale
measures is non-empty.

ii) An arbitrage-free market model is complete if and only if there exists a unique equivalent
martingale measure.

Proof.

i) (Föllmer and Schied, 2004, Theorem 5.17 page 232f)

ii) (Föllmer and Schied, 2004, Theorem 5.38 page 245f)

�

The Fundamental Theorem of Asset Pricing (Theorem 2.3.9) simply states that an arbitrage-
free price of a European call option is given by the discounted expected future payo� under
the equivalent martingale measure Q. So let from now on Q be the equivalent martingale
measure such that the discounted stock price e−rt St is a martingale under Q and E be the
corresponding expectation.

The choice of the �nancial market model which describes the dynamic of the underlying
assets e�ects signi�cantly the pricing of �nancial derivatives and option prices di�ers from
that. So we introduce up next some stochastic asset dynamic models. For simplicity, one
drops the numéraire as it is troughout this thesis given by the constant riskless rate of interest
r > 0

dS0
t = rdt, for t ∈ [0, T ] (2.37)

or may di�er only in time

dS0
t = r(t)dt, for t ∈ [0, T ] (2.38)

with deterministic r(t) > 0 for all t ∈ [0, T ].

Some discussion of the necessity of the riskless rate being positive occurs since negative
interest rates are possible. Even though this is an interesting aspect of �nancial modeling,
negative interest rates are not a part of this thesis.

Several dynamics of risky assets are described in the following �nancial market models:
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2.3 Financial Markets

• Black-Scholes model.

dSt = r(t)Stdt+ σ(S, t)dWt, S0, (2.39)

where Wt is a Wiener process and σ > 0, hence, by Theorem 2.3.7 it is a complete
market model.

However, it has been empirically proven, by among others, Dupire (1994) that due to its
simplicity the classical Black-Scholes model (2.39) cannot properly capture the real market
dynamics. The Black-Scholes model is, unfortunately, not suitable to adequately price and
hedge exotic options (see Toivanen (2008)). That is the very reason why other sophisticated
models are introduced and listed here.

• Jump-di�usion model.

dSt = r(t)Stdt+ σ(S, t)dWt + γ(S, t)JdNt(λ), S0, (2.40)

where (Nt)0≤t≤T is a Poisson process with intensity λ and random jump size J , see
Cont and Tankow (2004). The processes (Wt)0≤t≤T and (Nt)0≤t≤T are stochasticly
independent. The Random jump size J might have various types of probability distri-
butions like the Meixner- or Gamma-distribution, see Schoutens (2003), but this thesis
is restricted to the following two popular probability density functions by Merton (1976)
and Kou (2002), respectively,

fMerton(x) := exp

(
1√

2πσJ
e
− (x−µJ )2

2σ2
J

)
(2.41)

fKou(x) := (1− p)η1 e−η1x 1{x≥0} + pη2e
−η2x1{x<0} (2.42)

Adding degrees of freedom to the Black-Scholes model (2.39) leads to the following �nancial
market model developed by Heston (1993):

• Stochastic volatility model. The stochastic volatility model developed by Heston
is a di�usion process with a stochastic process as di�usion coe�cient.

dSt = r(t)Stdt+
√
vtSt∆W

1
t , S0,

dvt = κ(θ − vt)dt+ σ
√
vt∆W

2
t , v0, (2.43)

ρdt = Cov
[
dW 1

t , dW
2
t

]
,

where (vt)0≤t≤∞ is a mean-reverting process, the so-called Cox-Ingersoll-Ross (CIR)
process in Cox et al. (1985). This is similar to the model of Bormetti et al. (2010).
Several related stochastic volatility models of the term structure of interest rates are
named after Black and Karasinski (1991), Hull and White (1987) or Stein and Stein
(1991), respectively.

The empirical work of Bates (1996) indicates that extended �nancial market models are
needed. Merging a stochastic volatility model with the jump aspect of (2.40) leads to the
following �nancial market models:
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• Stochastic volatility jump-di�usion model.

dSt = r(t)Stdt+
√
vtSt∆W

1
t + γ(S, t)JdNt(λ), S0,

dvt = κ(θ − vt)dt+ σ
√
vt∆W

2
t , v0, (2.44)

ρdt = Cov
[
dW 1

t , dW
2
t

]
,

• Stochastic volatility jump-di�usion model with a stochastic jump intensity

rate The following model was developed by Fang (2000):

dSt = r(t)Stdt+
√
vtSt∆W

1
t + γ(S, t, J)dNt(λt), S0,

dvt = κ(θ − vt)dt+ σ
√
vt∆W

2
t , v0, (2.45)

dλt = κλ(θλ − λt)dt+ σλ
√
λt∆W

3
t , λ0,

• Jump di�usion model with both price and volatility jumps The following model
was developed by Du�e et al. (2000):

dSt = r(t)Stdt+
√
vtSt∆W

1
t + γ(S, t, J)dNt(λ), S0,

dvt = κ(θ − vt)dt+ σ
√
vt∆W

2
t + γ(v, t)JvdNt(λv), v0, (2.46)

ρdt = Cov
[
dW 1

t , dW
2
t

]
,

There is a broad �eld of di�erent �nancial market models such as:

• Model of Pricing of Catastrophe Insurance Options. The stochastic process
(Lt)L∈[0,T ] representing the loss index of an insurance is modelled as in Biagini et al.
(2008):

Lt =

Nt∑
j=1

YjA
j
t−τj ,

where (Nt)0≤t≤T is a Poisson process with intensity λ > 0 and jump times τj , j =
1, 2, . . ., that are stopping times. The positive independent and identically distributed
random varibales Yj are the initial loss estimates and (Ajt )0≤t≤T are the reestimation
martingales.

• Model of Pricing of Electricity Options. The non-storable nature of electricity,
the infrequent consumption and the seasonal �uctuations cause pricing with a Markov
regime-switching model (MRS) equipped with a deterministic seasonal component as
in Janczura (2014)

Pt = g(t) +Xt,

where g is the seasonal component and the dynamic of Xt is given by a 3-regime model
and its base regime is given by the mean-reverting Vasicek model (Vasicek (1977))

Xt,b = (α− βXt,b)dt+ σbdWt, (2.47)

as in Cartea et al. (2009).
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2.3 Financial Markets

The volume traded on the Power Derivatives Market of European Energy Exchange
(EEX) amounted to 103.3 terawatt hours (TWh) in December 20131.

Payo� functions are the mathematical tool to handle �nancial contracts of options like
"a negotiable contract in which the bearer, for a certain sum of money (premium or option
value), gives the buyer the right, not the liability, to demand within a speci�ed time (maturity
or expiration time) to purchase (call option) or sale (put option) by the bearer of a speci�ed
number of shares of a stock (underlying) at a �xed price (strike or exercise price)" as in Stoll
(1969). Therefore, often-used payo� functions are listed below.

This thesis will be restricted to the following �nancial contracts and their payo� functions
as in Föllmer and Schied (2004). Here, K denotes the �xed strike price, T the �xed expiration
date and the dynamics of the underlyings are driven by some market model (St)t∈[0,T ]. E[·]
is given by the risk-neutral equivalent martingale measure Q, which represents the discount
factor and may be evaluated by the famous Girsanov Theorem (Föllmer and Schied, 2004,
Theorem 10.25).

• European call and put options

C(T, ST ) = E [max(ST −K, 0)] = E [π(ST ,K)] , (2.48)

P (T, ST ) = E [max(K − ST , 0)] = E [π(K,ST )] . (2.49)

• European digital option

Cdigital(T, ST ) = PE
[
1{ST≥K}

]
. (2.50)

• American Options

To price American Options, which may be exercised at any time up to expiration, one
needs to solve an optimal stopping problem in the set of all stopping times in [t, T ],
denoted by Tt := {τ ∈ T|τ ≥ t} as in Myneni (1992) or Christensen (2014), and to
evaluate a conditional expectation as follow s

CAmerican(T, S) = sup
τ∈Tt

E [max(Sτ −K, 0)|Ft] , (2.51)

PAmerican(T, S) = sup
τ∈Tt

E [max(K − Sτ , 0)|Ft] . (2.52)

This European and American option styles are called plain vanilla options. Now, some
non-vanilla or exotic exercise rights are presented.

1Data collected from http://www.eurexchange.com/exchange-en/about-us/news/765426/.
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Chapter 2 Theoretical Background

Figure 2.3: European call (left) and digital (right) payo� functions and gains.

• European barrier (call) options

Cup-and-out(T, ST ) = E
[
max(ST −K, 0)1{St<B|0≤t≤T}

]
(2.53)

= E
[
π(ST ,K)1{St<B|0≤t≤T}

]
, (2.54)

Cup-and-in(T, ST ) = E
[
max(ST −K, 0)1{St>B|for not less than one t∈[0,T ]}

]
(2.55)

= E
[
π(ST ,K)1{St<B|for not less than one t∈[0,T ]}

]
, (2.56)

where 1A is the indicator function of a set A, being 1 when A occurs, and zero otherwise.
The simplest way to price barrier options is to use a static replicating portfolio of vanilla
options, see Carr et al. (1998) or Maruhn and Sachs (2006).

• Lookback option (with �oating strike)

Cmin(T, ST ) = E
[
max(ST − min

t∈[0,T ]
St, 0)

]
= ST − min

t∈[0,T ]
St, (2.57)

Pmax(T, ST ) = E
[
max( max

t∈[0,T ]
St − ST , 0)

]
= max

t∈[0,T ]
St − ST . (2.58)

• Asian or average options

CAsian(T, S) = E [max(ST −A(T ), 0)] = E [π(A(T ),K)] , (2.59)

PAsian(T, S) = E [max(A(T )− ST , 0)] = E [π(K,A(T ))] . (2.60)

There are numerous styles of Asian option depending on how to evaluate the average
A(T ). The two most popular are the arithmetic average

Ā(T ) =
1

n

n∑
i=1

Sti (2.61)
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and the geometric average

Â(T ) =

(
n∏
i=1

Sti

) 1
n

. (2.62)

The following connection between these two averages exists

ÂT = eln(ÂT ) = exp

(
1

n

n∑
i=1

ln (Sti)

)
.

• Basket option

B̂t =

d∑
j=1

Sjt . (2.63)

The linear combination B̂ of d-assets is called basket. A basket option is a call/put
option or some path dependent option style, e.g. Asian, on such a basket.

This is by no means an exhaustive list of exotic options. The number of di�erent styles
of such options grows rapidly. As an example Bernhart et al. (2012), Bender, Schweizer and
Zhuo (2013) and Bender and Dokuchaev (2014) introduce several methods for pricing swing
options via backward stochastic di�erential equations, which are presented later in Section
6.2. Other methods to price such multiple exercise options, which is a hot topic, are given
by Bender (2011) and Bender, Schoenmakers and Zhang (2013).

By the same token, options can be classi�ed according to the underlying assets as well.
Since the underlying could be all kinds of bonds, commodities, equities, futures, indices,
private equities or real estates, for instance, Busch et al. (2013).

The simplest way to hedge plain vanilla options is given by the Put Call Parity, which
plays an important role in the next Chapter 3.

Theorem 2.3.10 (Put Call Parity).

C(t)− P (t) = St − e−r(T−t)K

Proof. (Stoll, 1969, (5) page 806) �

To summarize, the key requirements for utilizing options is calculating their fair value.
Finding ways to e�ciently solve this pricing problem or hedge such claims has been an active
�eld of research in �nancial mathematics for more than fourty years and it continues to be
a focus of modern �nancial engineering. This completes the introduction to option pricing
and hedging.
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2.4 Optimization in Function Spaces

Subsequently, important fundamentals of numerical optimization, optimization in an in�nite-
dimensional setting, inverse problems and necessary optimality conditions will be explained
in this section. The notations and de�nitions are mostly taken from Bertsekas (1999), Bon-
nans and Shapiro (2000), Bonnans et al. (2006), Clarke (2013), Engl et al. (1996), Gill and
Murray (1974), Hinze (2009), Kantorovich and Akilov (1982), Kelley (1995), Kosmol and
Müller-Wichards (2014), Kushner (1972), Luenberger (1998), Nocedal and Wright (1999)
and Zeidler (1995). The last books also provides a more detailed overview on di�erent topics
of optimization.

This section starts with some generalities on the unconstrained optimization problem

minφ(x), (2.64)

where φ : X → R satis�es some smoothness conditions on the Banach space X.

De�nition 2.4.1. Let X be a Banach space, U ⊂ X a convex subset and φ : U → R a
functional. An element x∗ ∈ U is a minimal solution or local minimum of the functional φ,
if and only if

φ(x∗) ≤ φ(x) ∀ x ∈ U. (2.65)

The following theorem expresses the necessary optimality condition of the problem (2.64).

Theorem 2.4.2 (First Order Optimality Condition). If x∗ is a minimal solution of φ and
φ is continuously di�erentiable in an open neighborhood of Ux∗, x∗ contained in U , then
φ′(x∗) = 0.

Proof. (Kosmol and Müller-Wichards, 2014, Theorem 3.4.1) �

Consider the following abstract constrained optimization problem:

Let X,Y, U be Banach spaces, where X is the state space, Y the range space for the
equality constraint and U is the space of parameters or controls.
In this setting let the objective function Φ and the constraint map g be given by

Φ : X × U → R, g : X × U → Y.

The following smoothness assumption on these maps is crucial:

Assumption 2.4.3. Let the maps Φ and g be continuously Fréchet-di�erentiable on the space
X × U . Let g′ denote the Fréchet-derivative with respect to both variables (x, u) whereas gx
and gu are the partial derivatives with respect to states x and controls u, respectively. Let the
partial derivatives gx and gu exist.

The optimization problem under consideration is given by

Minimize Φ(x, u) over (x, u) ∈ X × U such that g(x, u) = 0. (2.66)
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For applications where the constraint g is given by a di�erential equation for the variable
x and the variable u is merely a control or design parameter, the following assumption is
often satis�ed. Note that g is mainly given by a stochastic di�erential equation and its
approximation, respectively.

Assumption 2.4.4. Assume that at (x, u) ∈ X × U the partial Fréchet-derivative

gx is surjective and an invertible map.

Let Assumptions 2.4.3 and 2.4.4 be true at a point (x∗, u∗) ∈ X × U . Then there exist
- mainly due to the Implicit Function Theorem 2.1.12 - neighborhoods BX ⊂ X of x∗ and
BU ⊂ U of u∗ and a Fréchet-di�erentiable function s : BU → BX such that

g(s(u), u) = 0 and gx(s(u), u)s′(u) = −gu(s(u), u). (2.67)

Equation (2.67) is called the sensitivity equations and will play a crucial role in this thesis. Al-
though the constraint quali�cation would hold if g′(x, u) is only surjective, but the additional
invertibility condition for gx(x, u) yields the applicability of the Implicit Function Theorem
2.1.12. Hence, Assumptions 2.4.3 and 2.4.4 have to be true at all points (x, u) ∈ BX × BU .
The map s : BU → BX is a solution map for the equality constraint. Under the assump-
tions of Theorem 2.1.12, the optimization problem (2.66) can be reformulated as a reduced
unconstrained optimization problem.

Theorem 2.4.5. Assume that (x∗, u∗) ∈ X × U is a local minimum of (2.66) and Assump-
tions 2.4.3 and 2.4.4 hold at (x∗, u∗). Then u∗ is also a local minimum of the unconstrained
optimization problem

Minimize φ(u) = Φ(s(u), u) over u ∈ B̃U (2.68)

for some neighborhood B̃U ∈ U and the map φ : B̃U → R.

Proof. (Nocedal and Wright, 1999, Chapter 12) �

In order to compute the Fréchet-derivative of φ, one can use the di�erentiability of s given
by the Implicit Function Theorem 2.1.12 and obtain:

Lemma 2.4.6 (Gradient Representation). Let Assumptions 2.4.3 and 2.4.4 be true at a point
(x, u) ∈ X × U . Then

φ′(u)∆u = Φx(s(u), u) s′(u)∆u+ Φu(s(u), u)∆u, ∆u ∈ U, (2.69)

where the Fréchet-derivative s′(u) is de�ned through the sensitivity equations (2.67).

Proof. (Kantorovich and Akilov, 1982, Chapter VI) �

Note that (2.69) yields an explicit representation of the linear functional c′(u) ∈ U∗ due
to the Riesz Representation Theorem 2.1.5. If U is a Hilbert space, a unique gradient
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representation of the derivative φ′(u) exists due to Theorem 2.1.5. This changes if one
rewrites the equation (2.69) in the following way. Note that the adjoint

s′(u)∗ : X∗ → U∗

is de�ned on X∗ and Φx ∈ X∗, so that one obtains the following corollary which extends
Lemma 2.4.6 to the uniqueness of the explicit gradient representation

Corollary 2.4.7. Let Assumptions 2.4.3 and 2.4.4 be true at a point (x, u) ∈ X × U . Then

φ′(u) = s′(u)∗ Φx(s(u), u) + Φu(s(u), u) ∈ U∗ (2.70)

where the Fréchet-derivative s′(u) is de�ned through (2.67).

The following theorem summarizes the fundamentals of the so-called adjoint approach in
optimization problems. For further details, the reader is re�ered to (Kantorovich and Akilov,
1982, Chapter XII of PART II: Functional Equations).

Theorem 2.4.8 (Derivatives with Adjoints). Let Assumptions 2.4.3 and 2.4.4 be true at a
point (x, u) ∈ X × U . Then

φ′(u) = gu(s(u), u)∗l + Φu(s(u), u) ∈ U∗ (2.71)

where l ∈ Y ∗ is the unique solution of the adjoint equation

gx(s(u), u)∗l = −Φx(s(u), u), (2.72)

equivalently, l ∈ Y ∗ is uniquely de�ned through

l(y) = −Φx(s(u), u)gx(s(u), u)−1y for all y ∈ Y. (2.73)

Proof. The statement follows from rearranging the terms in equation (2.69)

φ′(u)∆u = [s′(u)∗Φx(s(u), u)]∆u+ Φu(s(u), u)∆u.

Note that the map s′(u) in (2.69) or its dual s′(u)∗ in (2.70) is not needed in its full generality,
but only s′(u)∗Φx(s(u), u).
From the Implicit Function Theorem 2.1.12 one knows that

s′(u) = −gx(s(u), u)−1gu(s(u), u) and s′(u)∗ = −gu(s(u), u)∗(gx(s(u), u)∗)−1.

Hence,

s′(u)∗Φx(s(u), u) = −gu(s(u), u)∗(gx(s(u), u)∗)−1Φx(s(u), u) = gu(s(u), u)∗l,

where l ∈ Y ∗ solves the adjoint equation

gx(s(u), u)∗l = −Φx(s(u), u).
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Similarly, one has

−Φx(s(u), u)∆x = [gx(s(u), u)∗l]∆x = l(gx(s(u), u)∆x)

and with the surjectivity and invertibility of gx

l(y) = −Φx(s(u), u)gx(s(u), u)−1y.

This completes the proof and establishes the equations (2.71) and (2.72). �

The optimization problem, subject to a �nite number of equality constraints is given by

Minimize Φ(x) over x ∈ X such that gi(x) = 0, i = 1, ...m. (2.74)

To solve such problems one can uses Lagrange multipliers (cf. Bertsekas (1999)).

De�nition 2.4.9 (Lagrange Function). Consider objective function Φ and constraints g from
(2.74). The Langrange function L : X × Y 7→ R is given by

L(x, λ) := Φ(x) +

m∑
i=1

λigi(x). (2.75)

Theorem 2.4.10 (Karush-Kuhn-Tucker). Assume that Φ and g are continuously di�eren-
tiable at some local minimum x∗ of problem (2.74). Additionally, let the linear independence
constraint quali�cation (LICQ) hold at this x∗, e.g., the set {∇gi(x∗)} is linearly indepen-
dent. Then there exists so-called Lagrange multipliers λ∗ ∈ Rm such that the following so
called Karush-Kuhn-Tucker (KKT) conditions are saties�ed

∇xL(x∗, λ∗) = 0

gi(x
∗) = 0 i = 1, ...,m

λ∗i ≥ 0 i = 1, ...,m.

Proof. (Nocedal and Wright, 1999, Section 12.5) �

Theorem 2.4.11 (Lagrange Multiplier (In�nite-dimensional Case)). If one forms the La-
grangian in the sense of (2.66)

L(x, u, l) = Φ(x, u) + l(g(x, u)),

then the Lagrange multiplier l is de�ned by the equation Lx(s(u), u, l) = 0 and the derivative
φ′(u) is given by Lu(s(u), u, l).

Proof. (Kosmol and Müller-Wichards, 2014, Theorem 2.14.5) �

From the previous Theorem 2.4.8 it is obvious that the Lagrange multiplier l and the
derivative φ′(u) are de�ned as in Theorem 2.4.11.
The resulting equations of the adjoint approach of Theorem 2.4.8 appear from the solution

of the corresponding unrestricted optimization problem based on the Langrange function
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L : X × U × Y → R

L(x, u, l) := Φ(x, u) + l(g(x, u)) (2.76)

which is given by

Minimize L(x, u, l) for (x, u, l) ∈ X × U × Y. (2.77)

Adjoint equations could be interpreted as Lagrange multipliers. This issue is characterized
in detail for instance by Alt (1990) or Noack and Walther (2007).

In order to evaluate conditional expectation such as in Property (2.9) one need following
results on the uniqueness of best approximations.

Theorem 2.4.12 (Uniqueness of best approximation). Let S be a subspace of an Hilbert
space H and x ∈ H. An element y ∈ S is said to be the best approximation to x from S if

||x− y|| ≤ ||x− z|| ∀ z ∈ S.

If a best approximation of x from S exists, then it is unique and it is called the projection of
x onto subspace S.

Proof. (Debnath and Mikusinski, 1998, Theorem 9.7.1) �
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Calibration Problem

Essentially, all models are wrong, but some are useful. However, the
approximate nature of the model must always be borne in mind.

� George E. P. Box

Empirical Model-Building and Response Surfaces, Box and Draper (1987)

3.1 Motivation

The constant volatility σ in the Black-Scholes model (2.39) constitutes a one-to-one connec-
tion (Käbe, 2010, Lemma 2.23) to the call option price C given by the closed form solution
developed by Black and Scholes (1973)

C(S, t) = S N (d1)−K e−rtN (d2), S > 0, t ∈ [0, T ], (3.1)

where N is the cumultative distribution function, abbreviated as cdf, of the standard normal
distribution

N (d) =
1√
2π

∫ d

−∞
e−

t2

2 dt

and

d1 =
ln(S/K) + (r + σ2

2 )(T − t)
σ
√
T − t

, d2 = d1 − σ
√
T − t.

But real liquid market data, as shown in Figure 3.1, shows something di�erent. Graphing
implied volatilities against strike prices for a given maturity close to exercise results in a
skewed curve instead of the expected �at curve. Therefore, one volatility corresponds to sev-
eral call prices in real market data, which contradicts the bijectivity between option price C
and volatility σ in the Black-Scholes model. This phenomenon is vividly called the volatility
smile which was �rst explained by Dupire (1994).

Since Boyle (1977) proposed the use of Monte-Carlo methods for estimating option prices,
there appear to be several methods which �t the volatility smile to market model prices.
After suggesting local volatility by Dupire (1994) or local volatility with permitted jumps by
Andersen and Andreasen (2000), local stochastic volatility models were developed by Heston
(1993), Hull and White (1987), Stein and Stein (1991) or Bormetti et al. (2010) and have
been extended to jump di�usion by Lipton (2002). According to Gatheral (2006), all these

35



Chapter 3 Calibration Problem

Figure 3.1: Implied volatility of the DAX in March 2014 as volatility smile (left) and
volatility surface (right).

stochastic volatility models generate roughly the same shape of implied volatilities. Nev-
ertheless, all these market models contain parameters which have to be adjusted in such a
way that the model prices and their market dynamics coincide with the real market prices.
Practitioners need to adapt their market models to the current market situation in a timely
manner, i.e., the models have to be calibrated promptly to a set of liquidly traded standard
instruments like plain vanilla options. This presents the main issue of the calibration problem
in this thesis.

Modelling the volatility smile to achieve better pricing and hedging exotic options is an ac-
tive area of research in quantitative �nance. A detailed overview can be found in the seminal
survey by Lörx and Sachs (2012) or the contemporary work by Sachs and Schneider (2014).

3.2 Calibration Problem of Financial Market Models

Problems of calibrating a �nancial market model to prices of liquidly traded instruments
arise. SDEs play a vital role in these models. Hence, the main goal in this section is to gain
an appropriate and inexpensive method of calibrating such models with side conditions to
include the solution of the SDEs. Fitting a model to the implied risk-neutral distribution is
the most e�cient way of ensuring consistency with observed market prices. This consistency
with the observed market dynamics implies stable model parameters and hedges (Käbe et al.
(2009)). Without loss of generality, this thesis will focus on the calibration of an equity-type
stock price model to European call options (2.48). The Notations and speci�cations are
properly adopted from Käbe (2010). Nevertheless, the adjoint-based technique which will
later be developed and presented in Chapter 4 is so common, that transferring this method
onto other �nancial, biological or geophysical models will be facile.

For this purpose, let (Ω,F ,F,P) be a �ltered probability space and (W 1, . . . ,Wm) be an
m-dimensional Wiener process under an equivalent martingale measure Q. One may be
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interested in calibrating the parameters x ∈ RP of a model, described by the d-dimensional
system of stochastic di�erential equations in the sense of Käbe et al. (2009)

dXt(x) = a(x,Xt(x))dt+ b(x,Xt(x))dWt (3.2)

with initial value X0 ∈ (0,∞) and time horizont 0 ≤ t ≤ T . Here, Wt = (W 1
t , . . . ,W

m
t )> is

the vector of Wiener processes, drift a : RP ×Rd → Rd and volatility b : RP ×Rd → Rd×Rd
are functions satisfying the usual regularity conditions of Theorem 2.2.14 such that a solution
of the stochastic di�erential equations (3.2) exists. The expression a(x,Xt(x))dt denotes
the componentwise integration al(x,Xt(x))dt for l = 1, . . . , d and b(x,Xt(x))dWt is to be
understood as

m∑
ν=1

bl,ν(x,Xt(x))dW ν
t , l = 1, . . . , d

as in De�nition 2.3.1. Besides, the stock price St is identi�ed in the following as the �rst
component of the d-dimensional stochastic process (Yt)t∈[0,T ] as in Käbe et al. (2009), i.e.,

[Xt]
d
l=1 = [St, X

2
t , ..., X

d
t ]>, t ∈ [0, T ]. (3.3)

In the settings (3.2), (3.3), the Fundamental Theorem of Asset Pricing 2.3.9 states that
the arbitrage-free prices of the European call options are given by their discounted expected
future payo�s under the equivalent martingale measure Q

Ci(x) = e−rTi EQ [max(STi(x)−Ki, 0)] , (3.4)

where max(STi(x) − Ki, 0) is assumed to be Q-integrable ∀ i = 1, . . . , I and x ∈ X. The
properties of the model price function Ci will be decisive for the calibration procedure. In
most applications the map Ci : RP → R is continuously di�erentiable since the integral
operator smooths out the non-di�erentiability of the maximum function, hence this thesis is
focused on European call options.

The problem of calibrating the model prices (3.4) to the observed market prices Ciobs is
given by the following nonlinear least squares problem established by Käbe (2010)

min
x∈X

f(x) := 1
2

I∑
i=1

(
Ci(x)− Ciobs

)2
where Ci(x) = e−rTi EQ [π(STi(x)−Ki)]

s.t. dXt(x) = a(x,Xt(x))dt+ b(x,Xt(x))dWt, X0 > 0

0 ≤ t ≤ T, T := max
i=1,...,I

Ti,

(P)

where π(ξ) := max(ξ, 0), andX ⊂ RP is a suitable convex and compact set which for example
may result from imposing box constraints lp ≤ xp ≤ up , p = 1, ..., P on the model parameters
x. Additional constraints may occur. For instance Feller (1951) established a method that is
used to proof that the Cox-Ingersoll-Ross volatility process of the Heston model (2.43) stays
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positive if the following condition (known as the Feller condition) is ful�lled:

2κθ ≥ σ2. (3.5)

In this thesis an approximation of problem (P) is assumed via Monte Carlo in combination
with an Euler-Maruyama scheme, Milstein-scheme or a predictor-corrector scheme of the
SDEs (3.2) in time direction with step size ∆tn in the n-th step and with M as the amount
of simulated trajectories. These stochastic schemes will be presented in the following Section
3.3 in detail.

3.3 Approximation schemes

Frequently stochastic di�erential equations (SDEs) describe the dynamics of �nancial and
economic models. So the approximation of these dynamics is a vital issue in �nancial engi-
neering. Additionally an appropriate approximation reduces expeditiously the approximation
error whether strong or weak. Heretofore the numerical validations of the analytical strong
convergence order of several approximation schemes are scarce in literature with the ex-
ception of the papers by Schmitz Abe and Shaw (2005), Abdulle et al. (2012) or Abdulle
et al. (2014). So the results of this thesis and Groÿ (2009) show numerically that predictor-
corrector schemes are adequate schemes.

Nevertheless, in the sequel an overview of the still rather limited literature on improved
predictor-corrector schemes especially strong predictor-corrector methods is given. In Kloe-
den and Platen (1999) predictor-corrector schemes have been proposed as weak discrete time
Monte-Carlo approximations. However, the results are limited to SDEs driven by Wiener pro-
cesses. Bruti-Liberati and Platen (2005), Bruti-Liberati and Platen (2006a) �rst articulated
predictor-corrector schemes for weak approximations in a jump driven framework. Weak
convergence theorems are seldom, but some numerical results are presented. Furthermore
for the strong discrete approximation of SDEs predictor-corrector schemes have been missing
so far in the literature except for a paper by Bruti-Liberati and Platen (2008). A strong
convergence theorem of the predictor-corrector Euler method in case of a Black-Scholes SDE
is presented in this article. Also quite a few results of numerical stability (e.g. mean-square,
state or asymptotic stability) using improved Monte-Carlo approximations in �nance and
other areas are presented by Bruti-Liberati and Platen (2008), Buckwar and Sickenberger
(2011), Chalmers and Higham (2008), Li et al. (2013), Niu and Zhang (2012) and Platen
and Shi (2008). Altough predictor-corrector schemes are applicable in �nancial engineering,
their use for option pricing is still limited. In this chapter an adjoint-based technique to solve
calibration problems of �nancial models similar to Käbe et al. (2009) is developed.

In conclusion some numerical results of the e�ort to implement a predictor-corrector scheme
versus Euler-Maruyama are presented in the later Chapter 5.1. Numerical results about the
bene�t of the adjoint-technique are presented in Section 5.2.
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3.3.1 Weak and Strong Approximations

In the following, di�erent kinds of approximation schemes are considered in the one-dimensional
case d = 1. Yn denotes the approximation of Xtn for some time discretization 0 = t0 ≤ . . . ≤
tN = T , N ∈ IN in the sense of equation (2.28). The simplest stochastic scheme, for which
d = m = 1 is ful�lled, is the Euler-Maruyama scheme which has the following form

Yn+1 = Yn + a∆tn + b∆Wn, (3.6)

where a = a(tn, Yn), b = b(tn, Yn) and ∆tn = tn+1− tn is the length of the time discretization
interval. In conclusion

∆Wn = Wtn+1 −Wtn ∼ N(0,∆tn)

is the nth-increment of the Wiener process on the interval [tn, tn+1]. This scheme has a
well-known order of strong convergence γ = 0.5 and weak order β = 1, with reference to
Kloeden and Platen (1999) (cf. Theorem 10.2.2 and Theorem 14.1.5).

For the more general case of d,m > 1 the ith component of the multi-dimensional Euler-
Maruyama approximation of (2.19) is given by

Y i
n+1 = Y i

n + ai∆tn +
m∑
ν=1

bi,ν∆W ν
n , i = 1, . . . , d, (3.7)

where ∆W ν1
n and ∆W ν2

n are independent for ν1 6= ν2. In what follows, the simple formulation
(3.6) will be written instead of the multi-dimensional formulation (3.7) when no confusion
can arise.

Such a scheme together with the Monte Carlo method to evaluate the expectation leads
to the following discretized optimization problem in the case of obtaining Euler-Maruyama
scheme (3.6)

min
x∈X

f̂M,∆t(x) := 1
2

I∑
i=1

(
ĈiM,∆t(x)− Ciobs

)2

where ĈiM,∆t(x) := e−rTi 1
M

∑M
m=1

(
π(smNi −Ki)

)
s.t. ymn+1 = ymn + a(x, ymn )∆tn + b(x, ymn )∆Wm

n ,

(PEMM,∆t)

m = 1, . . . ,M, n = 1, . . . , N,

with smNi(x) de�ned as the �rst component of ymNi , i = 1, . . . , I, and N = T/∆t.

Next, an improved scheme proposed by Milstein (1975) is presented, which has an order of
strong and weak convergence γ = β = 1.0 (Kloeden and Platen, 1999, Theorem 10.3.5 and
Theorem 14.1.5). Its Itô formulation is given by

Yn+1 = Yn + a∆tn + b∆Wn +
bb′

2

(
(∆Wn)2 −∆

)
(3.8)

where b′ describes the spatial derivatives b′(t, Y ) = ∂
∂Y b(t, Y ).
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For the multi-dimensional Milstein scheme the reader is re�ered to Section 10.3 of Kloeden
and Platen (1999), for its implementation to Schmitz Abe (2010) and Schmitz Abe (2011).

3.3.2 Stochastic Predictor-Corrector Schemes

In a next step the formulation of a predictor-corrector scheme is given which is similar to
Bruti-Liberati and Platen (2005) and Bruti-Liberati and Platen (2006b), whose order of
strong or weak convergence depends highly on the chosen predictor and the chosen corrector.
In order to show how a predictor-corrector scheme works, a so-called predictor is calculated
at the nth time step by using an explicit approximation scheme. Then, this predicted value
Y −n+1 is J times improved by corrector steps, wich is an implicit scheme. Subsequently, using
this predicted value and (J − 1)th corrected value respectively instead of the unknown value
to get the �nal computed solution Yn+1. So the idea behind the predictor-corrector scheme
is to use an appropriate combination of an explicit scheme and an implicit scheme to obtain
a convergence characteristic.

Here and subsequently, the formulation of the Euler-Maruyama (3.6) or Milstein (3.8)
scheme will be applied to calculate the predictor step

Y −n+1 = Yn + a∆tn + b∆Wn + α
bb′

2

(
(∆Wn)2 −∆tn

)
.

The parameter α ∈ {0, 1} indicates if the predictor is either Euler-Maruyama or Milstein
scheme. Then the family of predictor-corrector schemes with strong order is given by the
corrector

Yn+1 = Yn +
(
ηa(tn+1, Y

−
n+1) + (1− η)a(tn, Yn)

)
∆tn

+
(
ϑb(tn+1, Y

−
n+1) + (1− ϑ)b(tn, Yn)

)
∆Wn, (3.9)

where the corrected drift function is

a = a− ϑbb′

and the parameters η, ϑ ∈ [0, 1] are called the degree of implicitness in the drift and the
di�usion coe�cients, respectively. The implicit corrector can be seen as �xed-point iteration
(see Theorem 2.1.8).

Remark 3.3.1. 1. For the case η = ϑ = 0 and α = 0 one obtains the explicit Euler-
Maruyama scheme.

2. For the case η = 1, ϑ = 0 and α = 0 one obtains the implicit Euler-Maruyama scheme.

3. For the case η = ϑ = 0 and α = 1 one obtains the Milstein scheme.

4. For the case η = ϑ = 1/2 and α = 0 one obtains the stochastic Heun scheme.

5. For the case η = ϑ = 1 and α = 0 one obtains the fully implicit PCEM-method.
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Figure 3.2: A path of a Wiener process (left side) and a Lévy process (right side) in black
compared with their approximations (Euler-Maruyama in red, Milstein in
blue and predictor corrector scheme in green).

6. This approach includes the split-step backward Euler scheme proposed by Higham et al.
(2002)

In Section 5.1 it will be shown in what manner the strong order di�ers as related to the
choice of number of corrector steps k ∈ IN , η, ϑ ∈ [0, 1] and the chosen predictor scheme.
Figure 3.2 is intended to motivate the investigations of stochastic predictor-corrector schemes.
The Lévy process is a jump-di�ussion process (2.40) with Merton jumps (2.41). Parameters
that are used are from Chapter 5. A �rst review of this was made by Platen (1995).
Predictor-corrector schemes (3.9) lead analogously to PEMM,∆t which leads to the following

discretized calibration problem

min
x∈X

f̂M,∆t(x) := 1
2

I∑
i=1

(
ĈiM,∆t(x)− Ciobs

)2
,

where ĈiM,∆t(x) := e−rTi 1
M

∑M
m=1

(
π(sm,JNi

−Ki)
) (PPCM,∆t)

s.t. ym,0n+1 = ym,Jn + a(x, ym,Jn )∆tn + b(x, ym,Jn )∆Wm
n

+ α
b(x, ym,Jn )b′(x, ym,Jn )

2

(
(∆Wm

n )2 −∆tn
)
,

ym,jn+1 = ym,Jn +
(
ηa(x, ym,j−1

n+1 ) + (1− η)a(x, ym,Jn )
)

∆tn

+
(
ϑb(x, ym,j−1

n+1 ) + (1− ϑ)b(x, ym,Jn )
)

∆Wm
n

m = 1, . . . ,M, n = 1, . . . , N,

for all j = 1, . . . , J , where J denotes the number of corrector steps.

Other schemes like stochastic Runge-Kutta schemes can be found in Abdulle et al. (2014),
Buckwar and Winkler (2007), Buckwar et al. (2010), Burrage and Tian (2002), Burrage et al.
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(2004), Carletti et al. (2004), Debrabant and Röÿler (2008), Komori (2007), Komori (2008),
Röÿler (2009) and Röÿler (2010).

3.3.3 Smoothing Payo�s

Hereafter it might be tempting to immediately apply smooth optimization methods for the
solution of the discretized problems (PEMM,∆t) or (P

PC
M,∆t). However, a closer look reveals that

the payo� is not di�erentiable anymore since the integral operator previously smoothing the
maximum function π was replaced by a discrete sum. In addition, the drift function a and
the di�usion function b might not be continuously di�erentiable on all of RP × Rd. Käbe
et al. (2009) observed in numerical experiments that optimization algorithms can get stuck
in the resulting corners of the Monte Carlo estimator and consequently break down.

To prevent this smoothing out of the non-di�erentiability of the maximum function, the
indicator function and the absolute value function with the help of a smoothing function
πε, where ε > 0 is an adequate smoothing parameter, is compulsory. Furthermore, one
can smooth out potential non-di�erentiabilities of a, b to obtain appropriate modi�cations
aε, bε in the manner of Käbe et al. (2009). Note that all payo� functions introduced in

Section 2.3 π /∈ C2 and so π /∈ C2(β+1)
p as well referring to Remark 2.2.22, so one obtains no

weak approximation having such smooth functions. Nevertheless, weak solutions are mainly
used in �nancial engineering. To solve this problem, smooth approximations of those payo�
functions, in the manner of the following, could be used. Initially, let πε(x) ≈ max(x, 0)
ε > 0 be a �rst smoothing function for all x ∈ R in the following remark.

Remark 3.3.2.

πε(x) =
1

π

(
x arctan

(x
ε

)
− ε

2
log

((x
ε

)2
+ 1

))
+

1

2
x ∀x ∈ R (3.10)

π′ε(x) =
1

π

(
arctan(

x

ε
)
)

+
1

2
∀x ∈ R (3.11)

π′′ε (x) =
ε

π(ε2 + x2)
∀x ∈ R (3.12)

1. Function πε is a smoothed version of the ramp function max(x, 0).

2. Function π′ε is a smoothed version of the Heaviside function

H(x) =

{
0 , x ≤ 0

1 , x > 0.
(3.13)

3. Function π′′ε is a smoothed version of the Dirac delta function

δ0(x) =

{
0 , x 6= 0

1 , x = 0.
(3.14)

One might also use a logistic sigmoid function such as 1/(1 + e−
x
ε ) instead of πε to smooth
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3.3 Approximation schemes

Figure 3.3: Smoothed absolute value functions with ε = 0.1:

(1) 2
π

(
x arctan

(
x
ε

)
− ε

2 log
((

x
ε

)2
+ 1
))

(2) 2
πx arctan

(
x
ε

)
(3)

√
x2 + ε (4) ε log

(
ex/ε + e−x/ε

)
.

the function max(x, 0), that is known as ramp function. Polynomial approximations of the
max function can be found in Käbe (2010).

Note that one is able to approximate an indicator function 1[a,b] of an interval [a, b] ⊂ R
by using a smoothed version of the Heaviside function (3.13).

1[a,b] = H(x− a)−H(x− b) ≈ π′ε(x− a)− π′ε(x− b)

Since the prices of �nancial derivatives are always nonnegative, a smoothed version of the
absolute value function | · | : R → R is needed, as well. The following smooth function
provides an approximation of the absolute value function for all x ∈ R.

π|·|ε (x) =
2

π

(
x arctan

(x
ε

)
− ε

2
log

((x
ε

)2
+ 1

))
≥ 0 (3.15)

Another way to smooth the absolute value function is given by (Øksendal, 2003, Example
4.10) as follows

π|·|ε (x) =

{
|x| , |x| ≥ ε

1
2(ε+ x2

ε ) , |x| < ε.
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Chapter 3 Calibration Problem

In the setting of expected values it is important to keep in mind that non-di�erentiability on
P-nullsets is negligible. Nevertheless, the modi�cations above �nally lead to the smoothed
optimization problem in the case of the Euler-Maruyama scheme (3.6)

min
x∈X

f̂M,∆t,ε(x) := 1
2

I∑
i=1

(
ĈiM,∆t,ε(x)− Ciobs

)2

where ĈiM,∆t,ε(x) := e−rTi 1
M

∑M
m=1

(
πε(s

m
Ni,ε
−Ki)

)
s.t. ymn+1,ε = ymn,ε + aε(x, y

m
n,ε)∆tn + bε(x, y

m
n,ε)∆W

m
n ,

(PEMM,∆t,ε)

m = 1, . . . ,M, n = 0, . . . , N − 1,

with smNi,ε(x) de�ned as the �rst component of ymNi,ε. Otherwise the predictor-corrector scheme
(3.9) leads to

min
x∈X

f̂M,∆t,ε(x) := 1
2

I∑
i=1

(
ĈiM,∆t,ε(x)− Ciobs

)2
,

where ĈiM,∆t,ε(x) := e−rTi 1
M

∑M
m=1

(
πε(s

m,J
Ni,ε
−Ki)

) (PPCM,∆t,ε)

s.t. ym,0n+1,ε = ym,Jn,ε + aε(x, y
m,J
n,ε )∆tn + bε(x, y

m,J
n,ε )∆Wm

n

+ α
bε(x, y

m,J
n,ε )b′ε(x, y

m,J
n,ε )

2

(
(∆Wm

n )2 −∆tn
)
,

ym,jn+1,ε = ym,Jn,ε +
(
ηaε(x, y

m,j−1
n+1,ε ) + (1− η)aε(x, y

m,J
n,ε )

)
∆tn

+
(
ϑbε(x, y

m,j−1
n+1,ε ) + (1− ϑ)bε(x, y

m,J
n,ε )

)
∆Wm

n

m = 1, . . . ,M, n = 0, . . . , N − 1,

for all j = 1, . . . , J , where J denotes the number of corrector steps. To facilitate notation
from now on, ymn,ε, s

m
n,ε is abbreviated by yn, sn and ym,jn,ε , s

m,j
n,ε by ym,jn , sm,jn . Based on the

assumed smoothness of the maps aε, bε and πε, one can deduce that the call price functions
ĈiM,∆t,ε as well as the objective f̂M,∆t,ε are continuously di�erentiable on X such that in
particular their gradients exist. However, to keep notation simple the additional index ε is
only used where necessary.

3.4 Alternative Approaches for Estimating Sensitivities

Calibration, gradient calculation and especially estimation of sensitivities of expectations
commonly refered to as Greeks (i.e., the delta, the vega or the gamma) are certainly a broad
and hot topic in �nancial engineering. In this context, statistical methods are often used to
estimate Greeks. Besides statistical methods automatic di�erentiation is one way to estimate
sensitivities. A detailed overview of this topic is given by Griewank and Walther (2008) or
Griewank et al. (2012). Furthermore, all these methods are already used on the parameter
identi�cation of biological and geophysical models, as well. Allthough this is not the main
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3.4 Alternative Approaches for Estimating Sensitivities

goal of this thesis, only a brief overview on other approaches is given in this section.

3.4.1 Likelihood Methods

The likelihoods methods are based on the relationship between the probability density func-
tion de�ned by the �nancial market model for the underlying price process and the calibra-
tion parameter. There exist various likelihood methods, such as the likelihood ratio method
(LRM), maximum likelihood estimation (MLE), or singular value decomposition likelihood
method (SVDL).

A detailed overview of the likelihood method can be found in the classical work by Broadie
and Glasserman (1996) or the Section 7.3 of Glasserman (2004). A brief overview including
a short discussion on its applicability is given in the following.

Let X be a random variable on a probability space (Ω,F ,P) with probability density gθ
and θ being a parameter of this density. Let f be a real-valued function of X. Equipped
with this notation, the expected function value is given by

Eθ[f(X)] =

∫
R

f(x)gθ(x)dx. (3.16)

By interchanging the order of di�erentiation and integration using Fubini's theorem (Billings-
ley, 1995, Theorem 18.3) one obtains

∂

∂θ
Eθ[f(X)] =

∫
R

f(x)
∂

∂θ
gθ(x)dx

=

∫
R

f(x)
ġθ(x)

gθ(x)
gθ(x)dx

= Eθ
[
f(X)

ġθ(X)

gθ(X)

]
, (3.17)

where ġθ is written for ∂
∂θgθ. It now follows from this equation (3.17) that the likelihood

ratio or score function

f(X)
ġθ(X)

gθ(X)

is an unbiased estimator of the derivative of Eθ[f(x)] (Glasserman, 2004, Section 7.3.1).

The likelihood ratio method just like the adjoint technique leads to the exact derivative.
However, the main limitation in the feasibility of likelihood ration method is that the prob-
ability density function gθ has to be known for the �nancial market model. Even in the case
that the probability function is known, the calibration parameter θ may not be a parameter
of the density at all. For that reason, this method is only applicable for a few chosen �nancial
market models as the Heston model in Aït-Sahalia and Kimmel (2007).

These likelihood method cover a wide range of applications:
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Chapter 3 Calibration Problem

• Apostolos and Skiadas (1995) use a maximum likelihood estimator (MLE) to estimate
parameters of an SDE, by which the Greek electricity consumption is forecasted.

• In Janczura (2014) the expectation maximization (EM) algorithm of Dempster et al.
(1977) searches for a local maximum of the likelihood function to �t given European
energy exchange (EEX) data to the model prices of the Vasicek model 2.47.

• Parameter estimation by the EM method is also used in Horváth and Manini (2008).
Gillespie's algorithm serves to simulate a network of stochastic reactions with given
initial quantities and kinetic rate constants. In this paper the authors consider the
estimation of the kinetic rate constants of the reactions based on a set of discrete
observations generated by Gillespie's algorithm.

• LRM is used to estimate kinetic parameters of several biochemical reaction sytsems for
modelling, i.e, the lambda phage switch Reinker et al. (2006).

• The work by Moummou et al. (2012) is concerned with the estimation of the param-
eters of interest in the drift coe�cient of a stochastic Gompertz model (cf. Gutiérrez
et al. (2005), Gutiérrez et al. (2006), Skiadas (2010)) with logarithmic therapeutic func-
tions. They use a maximum likelihood method to estimate these parameters, specially
of the tumor growth deceleration factor, achieved to date through numerically-based
approaches. The proposed method in this paper provides explicit expressions for the
statistical parameter estimators.

3.4.2 Direct Pathwise Derivatives

The pathwise methods are based on the relationship between the payo� π de�ned by the
�nancial market model and its outcome for the underlying price process and the calibration
parameter. A detailed overview of the pathwise method or pertubation analysis can be found
in the Section 7.2 of Glasserman (2004).

For a short introduction of this pathwise derivative estimation, let Xθ = (Xθ
t )t∈T be a real-

valued stochastic process indexed by the parameter θ ∈ Θ ⊂ R and (Ω,F ,P) be a probability
space. For a �xed event ω ∈ Ω the mapping θ 7→ f(Xθ) is a random function on Θ for some
di�erentiable function f . Then,

f ′(Xθ) := lim
h→0

Xθ+h −Xθ

h
(3.18)

denotes the pathwise derivative of f at θ. Equation (3.18) states that the derivative exists
with probability one. The expectation

E
[
∂

∂θ
f(Xθ)

]
=

∂

∂θ
E[f(Xθ)] (3.19)

is an unbiased estimator if the interchange of di�erentation and expectation is justi�ed
(Glasserman, 2004, Section 7.2.1).
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3.5 Biochemical and Geoscienti�c Applications

For the estimation of the pathwise derivative one is referred to the Malliavin calculus,
named after Paul Malliavin, which is also called the stochastic calculus of variations. A
detailed overview on the Malliavin calculus is given by Nualart (2006) or Di Nunno et al.
(2009). A similar approach is given by Cont and Fourniè (2013).

3.5 Biochemical and Geoscienti�c Applications

The problem of adjusting a biological or geoscienti�c model to physically observed mea-
surements arises. Due to its variability the adjoint approach presented in this chapter is
applicable for such parameter estimations.

• A stochastic model for replicators in catalyzed RNA-like polymers is presented and
numerically solved in the paper by Röÿler et al. (2009). The model consists of a system
of reaction-di�usion equations describing the evolution of a population formed by RNA-
like molecules with catalytic capabilities in a prebiotic process. A stochastic excitation
with additive noise is introduced. To numerically solve the governing equations they
apply the stochastic method of lines. A �nite-di�erence reaction-di�usion system is
constructed by discretizing the space and the associated stochastic di�erential system
is numerically solved using a class of stochastic Runge-Kutta methods. Numerical
experiments are carried out on a prototype of four catalyzed selfreplicator species along
with an activated and an inactivated residue. Results are given only in two space
dimensions.

• Applications to stochastic HIV-models like in Banks et al. (2008), where the extended
Kalman �lter is used to estimate the conditional expected value and the conditional
covariance in order to identify unkown model parameters of their HIV-model, or Wai-
Yuan (2002) or other phage-bacteria interaction models like Carletti (2002) or Carletti
(2006) are possible.

• Stochastic optimal control is about the optimizing drug-control history, maximizing
e�cacy of the drug while minimizing its side e�ects and cost as established by Stengel
and Ghigliazza (2004). Furthermore, Chen et al. (2005) use a stochastic di�erential
equation model for quantifying transcriptional regulatory network in Saccharomyces
cerevisiae.

• Dowd (2011) proclaimed that parameter estimation for stochastic dynamic oceanic sys-
tems is a core problem for the environmental and ecological sciences. This ecological
study considers parameter estimation for a simple nonlinear numerical model of marine
biogeochemistry. They present a nonlinear stochastic di�erential equation based model
for estimating parameters from ocean measurements collected at a coastal ocean obser-
vatory. The ecosystem components considered are: phytoplankton (P) and inorganic
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nutrients (N). Its dynamics are described by

dPt =
N

kN
(γ̂(t)−∆γ)Pt − λP 2

t + σdWP
t

dNt =
N

kN
(γ̂(t)−∆γ)Pt + λP 2

t + σdWN
t .

The parameters of interest are the ecological parameters kN , λ and the statistical
parameter σ. γ̂(t) denotes the seasonal photosynthetic rate and ∆γ its mean.

• Due to Alkhatib and King (2014) uncertainty in surfactant-polymer �ooding is an im-
portant challenge to the wide-scale implementation of enhanced oil recovery process.
Thus, it is essential to have the ability to quantify this uncertainty in an e�cient
manner. Monte Carlo simulation is the traditional uncertainty quanti�cation approach
that is used for quantifying parametric uncertainty. However, the convergence of Monte
Carlo simulation is relatively low, requiring a large number of realizations to converge.
This study proposes the use of the probabilistic collocation method in parametric un-
certainty quanti�cation for surfactant-polymer �ooding using four synthetic reservoir
models. Four sources of uncertainty were considered: the chemical �ood residual oil
saturation, surfactant and polymer adsorption, and the polymer viscosity multiplier.
The output parameter approximated is the recovery factor. The output metrics were
the input-output model response relationship, the probability density function, and the
�rst two moments. These were compared with the results obtained from Monte Carlo
simulation over a large number of realizations. Two methods for solving for the coef-
�cients of the output parameter polynomial chaos expansion are compared: Gaussian
quadrature and linear regression.
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Chapter 4

Adjoint Equations of Improved Monte-Carlo
Schemes

Civilization is the process of reducing the in�nite to the �nite.
� Oliver Wendell Holmes

4.1 Stochastic Dynamics in Finance

The main area for the use of stochastic di�erential equations and their appropriate approx-
imations in �nancial engineering is the pricing of �nancial derivatives and the estimation of
sensitivities with respect to designated parameters, which are widely used to measure risk
or to calibrate �nancial market models. Those derivatives are �nancial contracts and in-
struments whose values are derived from the value of an underlying. To this purpose let
S = (St)0≤t≤T be an Rd-valued price process of some underlying and π a payo� function,
which is de�ned by the type of the �nancial contract and a strike price K as introduced in
Section 2.3. The prospective price of a �nancial derivative is then determined by the expected
value of the payo� function π applied to the underlying process S.

4.2 Calibration via Predictor-Corrector Monte-Carlo Method

4.2.1 Calculation of the Gradient

To solve the nonlinear optimization problem with equality constraints (PPCM,∆t,ε) of the pre-
vious chapter, one needs to compute either the forward di�erence approximation

∇f(x) ≈
[
f(x+ hep)− f(x)

h

]P
p=1

, (4.1)

the backward di�erence approximation

∇f(x) ≈
[
f(x)− f(x− hep)

h

]P
p=1

(4.2)
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or the central di�erence approximation

∇f(x) ≈
[
f(x+ hep)− f(x− hep)

2h

]P
p=1

, (4.3)

where ep denotes the p-th unit vector (0, ..., 0, 1, 0, ..., 0)> ∈ RP - a simple, but yet expen-
sive way (cf. Section 7.1 of Glasserman (2004)). Especially in cases when the calculation
of f(x) is expensive, as it is in a Monte-Carlo framework, this method results in a high
computational e�ort because P additional evaluations of f are necessary. Even though the
structure of f(x) allows to compute the derivatives for all i = 1, . . . , I in one sweep by
di�erentiating smNi with respect to x, the total e�ort of a �nite di�erence approximation is
substantial. Furthermore, an inadequate choice of h can lead to some other problems, while
in applications of Monte-Carlo methods the variability in estimates of function values ranges.

Lemma 4.2.1 (Finite Di�erence Approximation). Let f̂M,∆t,ε : RP → R be the objective
functional of (PEMM,∆t,ε) or (PPCM,∆t,ε),

f̂M,∆t,ε(x) =
1

2

I∑
i=1

(
e−rTi

1

M

M∑
m=1

(
πε(s

m,J
Ni,ε

(x)−Ki)
)
− Ciobs

)2

.

For an arbitrary h > 0 the central di�erence estimator[
f(x+ hep)− f(x− hep)

2h

]P
p=1

(4.4)

is an approximation of the gradient ∇f̂M,∆t,ε with order O(h2).

Proof. (Glasserman, 2004, Subsection 7.1.1) �

One should recall that problems (PEMM,∆t,ε) and (PPCM,∆t,ε) are nonlinear least squares prob-
lems with a special structure. In the end, a nonlinear optimization problem with equality
constraints is obtained

Minimize f̂M,∆t,ε(y, x) (ECP)

s.t. gn(y, x) = 0, n = 1, . . . , N.

To apply Lagrange multipliers one rewrites the side conditions to equality constraints in the
following notations.

• PEMM,∆t,ε:

gmn (y, x) = −ymn,ε + ymn−1,ε + aε(x, y
m
n−1,ε)∆tn−1 + bε(x, y

m
n−1,ε)∆W

m
n−1

m = 1, . . . ,M, n = 1, . . . , N.
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• PPCM,∆t,ε:

gm,0n (y, x) = −ym,0n,ε + ym,Jn−1,ε + aε(x, y
m,J
n−1,ε)∆tn−1 + bε(x, y

m,J
n−1,ε)∆W

m
n−1

+ α
bε(x, y

m,J
n−1,ε)b

′
ε(x, y

m,J
n−1,ε)

2

(
(∆Wm

n−1)2 −∆tn−1

)
,

gm,jn (y, x) = −ym,jn,ε + ym,Jn−1,ε +
(
ηaε(x, y

m,j−1
n,ε ) + (1− η)aε(x, y

m,J
n−1,ε)

)
∆tn−1

+
(
ϑbε(x, y

m,j−1
n,ε ) + (1− ϑ)bε(x, y

m,J
n−1,ε)

)
∆Wm

n−1

m = 1, . . . ,M, n = 1, . . . , N, j = 1, . . . , J, α, η, ϑ ∈ [0, 1].

Note that ymn , g
m
n and gm,jn are d-dimensional vectors for allm = 1, . . . ,M, n = 1, . . . , N, j =

0, . . . , J . To shorten notation the dimension is choosen as d = 1 when no confusion can arise.
In what follows, it will be seen how the calculation can be sped up using an adjoint-based
approach. To this purpose the side conditions are written in terms of a Lagrange functional
L : RN+P+N → R de�ned by

L(y, x, λ) = f̂(y, x) +
M∑
m=1

N∑
n=1

λmn
>gmn (y, x) (4.5)

and L : RJN+P+JN → R de�ned by

L(y, x, λ) = f̂(y, x) +
M∑
m=1

N∑
n=1

J∑
j=0

λm,jn
>
gm,jn (y, x) , (4.6)

respectively. Here λm1 , . . . , λ
m
N for all 1 ≤ m ≤ M and λm,01 , λm,11 , . . . , λm,JN for all 1 ≤ m ≤

M, 0 ≤ j ≤ J are the Lagrange multipliers.

For notional simpli�cation, the constraint function G : RN+P → RN is de�ned by

G(y, x) := (g1(y, x), . . . , gN (y, x)) (4.7)

and G : RJN+P → RJN is de�ned by

G(y, x) := (g0
1(y, x), g1

1(y, x), g2
1(y, x), . . . , gJ1 (y, x), g0

2(y, x), g1
2(y, x), . . . , gJN (y, x)), (4.8)

respectively. So one can write the constraints of the Problem (ECP) in the more compact
form

G(y, x) = 0, (4.9)

which leads to a main condition of the following well-known linear version of the Implicit
Function Theorem 2.1.12, which is repeated here for the convenience of the reader.
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Proposition 4.2.2 (Implicit Function Theorem (Linear Version)). Let G : RN+P → RN be
a continuously di�erentiable linear function and the Jacobian matrix ∇yG ∈ RN×N be non
singular, then there corresponds to every vector x∗ ∈ Sx∗ ⊂ RP a unique vector y∗ ∈ Sy∗ ⊂
RN such that G(y∗, x∗) = 0. This y∗ can be computed from x∗ via

y∗ = − (∇yG)−1∇xGx∗.

Furthermore, one obtains implicitly the gradient of the unique function y : Sx∗ → Sy∗ for
all x ∈ Sx∗ by

∇y(x) = − (∇yG(y(x), x))−1∇xG(y(x), x). (4.10)

Lemma 4.2.3 (Surjectivity). The constraint gradients of PEMM,∆t,ε and P
PC
M,∆t,ε in direction of

y are linearly independent, thereby ∇yG is non singular for all y ∈ RN and x ∈ RP .
Proof. To show that∇yg1(y, x), . . . ,∇ygN (y, x) are linearly independent one builds theN×N
matrix

∇yG(y, x) =


...

...
...

∇yg1(y, x) ∇yg2(y, x) · · · ∇ygN (y, x)
...

...
...



=



−1 g̃1 0 . . . . . . 0
0 −1 g̃2 0 . . . 0
... 0 −1 g̃3 0 . . . 0
...

... 0
. . . . . .

...
...

...
...

. . . . . . g̃N−1

0 0 0 · · · 0 −1


for all (y, x) ∈ RN × RP . Since ∇yG is an upper triangular matrix and hence det(∇yG) =∏N
i=1∇yGi,i = (−1)N 6= 0, one gets that ∇yG is non singular (Golub and van Loan, 1996,

�2.1), thus the linearly independence of the columns ofG which are∇yg1(y, x), . . . ,∇ygN (y, x)
follows. The proof of the linear independence of ∇yg0

1(y, x), . . . ,∇ygJN (y, x) and that the
JN × JN matrix ∇yG is invertible is similar. �

Lemma 4.2.3 leads to a proposition of the Implicit Function Theorem 4.2.2 for all (y, x) ∈
RN × RP . Henceforth, the following Lemma 4.2.4 shows coherence between the Lagrange
multipliers and the adjoint equation. The introductive paper by Giles and Pierce (2000)
established this approach in a deterministic airfoil design optimization.

Lemma 4.2.4. Let G : RN+P → RN and f : RN+P → R be continuously di�erentiable
functions such that G(y(x), x) = 0 and ∇yG(y(x), x) is non singular. Furthermore, let
λ ∈ RN be a vector corresponding to x ∈ RP de�ned by

λ := −∇yf(y(x), x) (∇yG(y(x), x))−1 (4.11)

⇔ −∇yG(y(x), x)>λ> = ∇yf(y(x), x)>,
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then λ is uniquely de�ned. In addition, let φ : RP → R be a function de�ned by

φ(x) := f(y(x), x), (4.12)

then it holds

∇φ(x) = λ∇xG(y(x), x) +∇xf(y(x), x). (4.13)

Proof. The uniqueness of λ follows directly from the fact that ∇yG(y(x), x) is invertible and
its de�nition by equation (4.11). The gradient of φ is obtained by using the chain rule and the
Implicit Function Theorem 4.2.2 in combination with the de�nition of λ in equation (4.11)

∇φ(x) = ∇yf(y(x), x)∇y(x) +∇xf(y(x), x)

= −∇yf(y(x), x) (∇yG(y(x), x))−1∇xG(y(x), x) +∇xf(y(x), x)

= λ∇xG(y(x), x) +∇xf(y(x), x).

This shows the proposition and establishes the formula (4.13). �

In what follows, the dimension of the stochastic process d is free to choose. The vectors
λ, y ∈ RJdN are understood as

λ = ((λ0
1)>, (λ1

1)>, (λ2
1)>, . . . , (λJ1 )>, (λ0

2)>, (λ1
2)>, . . . , (λJN )>)>

or
y = ((y0

1)>, (y1
1)>, (y2

1)>, . . . , (yJ1 )>, (y0
2)>, (y1

2)>, . . . , (yJN )>)>,

respectively, where λjn ∈ Rd and yjn ∈ Rd for all n = 1, . . . , N, j = 0, . . . , J . The following
smoothness assumption on the deterministic continuous drift coe�cient aε, the volatility
coe�cient bε and the payo� function πε is crucial:

Assumption 4.2.5. Let the deterministic maps aε, bε and the payo� πε be continuously
Fréchet-di�erentiable on the space RJdN+P or RJdN , respectively. Let b′ε and π

′
ε denote the

Fréchet-derivative with respect to the variable x. Furthermore, ∂
∂x and ∂

∂y are the partial
derivatives with respect to parameters x and discretization scheme y, respectively.

Equipped with this notations and framework, the adjoint approach or the adjoint tech-
nique via Monte-Carlo methods is established by the following main theorem. This theorem
provides an e�cient algorithm to calculate the gradient of the objective function.

Theorem 4.2.6 (The Case of Predictor Corrector Discretization). Let Assumption 4.2.5 be
true and f̂M,∆t,ε : RJdN+P → R be the real valued objective function for maturity Ti and
strike price Ki for all i = 1, . . . , I

f̂M,∆t,ε(y, x) :=
1

2

I∑
i=1

(
ĈiM,∆t,ε(y, x)− Ciobs

)2
(4.14)

=
1

2

I∑
i=1

(
e−rTi

1

M

M∑
m=1

(
πε(s

m
Ni −Ki)

)
− Ciobs

)2

53



Chapter 4 Adjoint Equations of Improved Monte-Carlo Schemes

with predictor-corrector discretization

ym,0n+1,ε = ym,Jn,ε + aε(x, y
m,J
n,ε )∆tn + bε(x, y

m,J
n,ε )∆Wm

n

+ α
bε(x, y

m,J
n,ε )b′ε(x, y

m,J
n,ε )

2

(
(∆Wm

n )2 −∆tn
)

(4.15)

ym,jn+1,ε = ym,Jn,ε +
(
ηaε(x, y

m,j−1
n+1,ε ) + (1− η)aε(x, y

m,J
n,ε )

)
∆tn

+
(
ϑbε(x, y

m,j−1
n+1,ε ) + (1− ϑ)bε(x, y

m,J
n,ε )

)
∆Wm

n , (4.16)

ym,J0 = Y0, n = 0, . . . , N − 1, m = 1, . . . ,M,

j = 1, . . . , J, N := max
i=1,...,I

Ni, α, η, ϑ ∈ [0, 1].

Then, y is given by y(x) and the gradient of f(x) := f̂M,∆t,ε(y(x), x) for all x ∈ RP is
computed regardless of y ∈ RJdN , maturity Ti and strike price Ki i = 1, . . . , I via

∇f(x) =
1

M

M∑
m=1

N∑
n=1

(
(λm,0n )>

[
∂

∂x
aε(x, y

m,0
n−1)∆tn−1 +

∂

∂x

(
bε(x, y

m,0
n−1)∆Wm

n−1

)
+ α

∂

∂x

bε(x, y
m,J
n,ε )b′ε(x, y

m,J
n,ε )

2

(
(∆Wm

n )2 −∆tn
)]

(4.17)

+

J∑
j=1

(λm,jn )>
[(
η
∂

∂x
aε(x, y

m,j−1
n ) + (1− η)

∂

∂x
aε(x, y

m,J
n−1)

)
∆tn

+

(
ϑ
∂

∂x

(
bε(x, y

m,j−1
n )∆Wm

n

)
+ (1− ϑ)

∂

∂x

(
bε(x, y

m,J
n−1)∆Wm

n

))])
,

where λm,jn ∈ Rd results from the backward adjoint equations

λm,jn =

[
η
∂

∂y
aε(x, y

m,j
n )∆tn−1 + ϑ

∂

∂y

(
bε(x, y

m,j
n )∆Wm

n−1

)]>
λm,j+1
n (4.18)

j = J − 1, J − 2, . . . , 1, 0, m = 1, . . . ,M, n = N,N − 1, . . . , 1

and

λm,Jn =

[
I +

∂

∂y
aε(x, y

m,J
n )∆tn +

∂

∂y

(
bε(x, y

m,J
n )∆Wm

n

)
+ α

∂

∂y

bε(x, y
m,J
n,ε )b′ε(x, y

m,J
n,ε )

2

(
(∆Wm

n )2 −∆tn
)]>

λm,0n+1 (4.19)

+
J∑
j=1

[
I + (1− η)

∂

∂y
aε(x, y

m,j
n )∆tn + (1− ϑ)

∂

∂y

(
bε(x, y

m,j
n )∆Wm

n

)]>
λm,jn+1
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+ 1{n=Ni} e−2rTi
[
π′ε(s

m,J
n (x)−Ki), 0, . . . , 0

]( 1

M

M∑
m=1

πε(s
m,J
n −Ki)− erTi Ciobs

)

m = 1, . . . ,M, n = N,N − 1, . . . , 1

with

λm,JN = e−2rTI
[(
π′ε(s

m,J
N −KI)

)
, 0, . . . , 0

] (
1
M

∑M
m=1 πε(s

m,J
N −KI)− erTI CIobs

)
m = 1, . . . ,M (4.20)

as the initial vector of the backward iteration.

Figure 4.1 impressively demonstrates that jumps of the adoint equation (4.19) occur at the
maturities Ti.

Figure 4.1: An example solution (λt)0≤t≤5 of an adjoint equation.

Proof. First, the predictor-corrector discretization of (4.16) is rewritten to equality con-
straints gjn(y, x) = 0 for all n = 1, . . . , N and j = 0, . . . , J to �t the assumptions of Lemma
4.2.4. The Lagrange function is given by equation (4.6) as

L(y, x, λ) = f̂M,∆t,ε(y, x) +

N∑
n=1

J∑
j=0

λjn
>
gjn(y, x), (4.21)
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and the adjoint equation is obtained by solving the following root equation

∇yL(y, x, λ) = ∇yf̂M,∆t,ε(y, x) +
N∑
n=1

J∑
j=0

λjn
>∇ygjn(y, x)

!
= 0. (4.22)

To this purpose, the gradient ∇yf̂M,∆t,ε(y, x) of (4.14) is computed by using the chain rule

∇yf̂M,∆t,ε(y, x) =
I∑
i=1

∇yĈiM,∆t,ε(y, x)
(
ĈiM,∆t,ε(y, x)− Ciobs

)
=

1

M

M∑
m=1

I∑
i=1

e−2rTi
∂

∂y
πε(s

m,J
Ni
−Ki)

(
1

M

M∑
m=1

πε(s
m,J
Ni
−Ki)− erTi Ciobs

)

=
1

M

M∑
m=1

I∑
i=1

eNi e−2rTi π′ε(s
m,J
Ni
−Ki)

(
1

M

M∑
m=1

πε(s
m,J
Ni
−Ki)− erTi Ciobs

)

=
1

M

M∑
m=1



0
...
0

e−2rT1 π′ε(s
m,J
N1
−K1)

(
1
M

∑M
m=1 πε(s

m,J
N1
−K1)− erT1 C1

obs

)
0
...
0

e−2rT2 π′ε(s
m,J
N2
−K2)

(
1
M

∑M
m=1 πε(s

m,J
N2
−K2)− erT2 C2

obs

)
0
...
...
0

e−2rTI π′ε(s
m,J
N −KI)

(
1
M

∑M
m=1 πε(s

m,J
N −KI)− erTI CIobs

)



.

As of now, the proof is considered by a manner of trajectories. So one gets with the notation
in equation (4.8) from the root equation (4.22) and by using Lemma 4.2.4 the following
system of linear equation with an upper triangular Jacobian matrix

−∇yf̂M,∆t,ε(y, x) =

N∑
n=1

J∑
j=0

λjn
>∇ygjn(y, x)

⇔ −∇yf̂M,∆t,ε(y, x) = ∇yG(y, x)λ
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⇔


f̃1

f̃2
...
...
f̃I

 =



G̃1 G̃J1 0 · · · 0

0 G̃2 G̃J2
. . .

...
... 0

. . . . . . 0
...

...
. . . . . . G̃JN−1

0 0 · · · 0 G̃N




λ1

λ2
...
...
λN

 , (4.23)

where f̃i =
(

0, . . . , 0,− e−2rTi π′ε(s
m,J
Ni
−Ki)

(
1
M

∑M
m=1 πε(s

m,J
Ni
−Ki)− erTi Ciobs

))>
∈ RNi

for all i = 1, . . . , I, n = 1, . . . , N − 1 and the block submatrices on the main diagonal of the
Jacobian matrix are de�ned for all n = 1, . . . , N as

G̃n =



−I g̃n0 0 · · · 0

0 −I g̃n1
. . .

...
... 0

. . . . . . 0
...

...
. . . . . . g̃nJ−1

0 0 · · · 0 −I


, (4.24)

with g̃nj =
[
η ∂
∂yaε(x, y

j
n)∆tn + ϑ ∂

∂y

(
bε(x, y

j
n)∆Wn

)]
for all j = 0, . . . , J−1. The submatrices

on the �rst diagonal above characterize the �xed part of the �xed-point iteration following
the corrector steps and are de�ned for all time steps n = 1, . . . , N − 1 as

G̃Jn =


0 0 · · · 0
...

. . . . . .
...

0 . . .
. . . 0

g̃nJ,0 g̃nJ,1 · · · g̃nJ,J

 , (4.25)

with

g̃nJ,0 =

[
I +

∂

∂y
aε(x, y

J
n)∆tn +

∂

∂y

(
bε(x, y

J
n)∆Wn

)
+ α

∂

∂y

bε(x, y
J
n,ε)b

′
ε(x, y

J
n,ε)

2

(
(∆Wn)2 −∆tn

)]

and g̃nj =

[
I + (1− η)

∂

∂y
aε(x, y

j
n)∆tn + (1− ϑ)

∂

∂y

(
bε(x, y

j
n)∆Wn

)]
,

for all corrector steps j = 1, . . . , J . This establishes the representation of the adjoint equa-
tions in (4.18) and (4.19).

From the last line in the matrix of equation (4.23) one obtains for every path m ∈
{1, . . . ,M}

λm,JN = e−2rTI
[(
π′ε(s

m,J
N (x)−KI)

)
, 0, ..., 0

]( 1

M

M∑
m=1

πε(s
m,J
N −KI)− erTI CIobs

)
.
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Therefore, one �nally gets the following adjoint backward equations for all Lagrange multi-
pliers λjn ∈ Rd for all n = N,N − 1, . . . , 1 and j = J, J − 1, . . . , 0,

λm,jn =

[
η
∂

∂y
aε(x, y

m,j
n )∆tn + ϑ

∂

∂y

(
bε(x, y

m,j
n )∆Wm

n

)]>
λm,j+1
n

j = J − 1, J − 2, . . . , 1, 0, m = 1, . . . ,M, n = N,N − 1, . . . , 1 (4.26)

λm,Jn =

[
I +

∂

∂y
aε(x, y

m,J
n )∆tn +

∂

∂y

(
bε(x, y

m,J
n )∆Wm

n

)
+ α

∂

∂y

bε(x, y
m,J
n,ε )b′ε(x, y

m,J
n,ε )

2

(
(∆Wm

n )2 −∆tn
)]>

λm,0n+1

+
J∑
j=1

[
I + (1− η)

∂

∂y
aε(x, y

m,J
n )∆tn + (1− ϑ)

∂

∂y

(
bε(x, y

m,J
n )∆Wm

n

)]>
λm,jn+1

+ 1{n=Ni} e−2rTi
[
π′ε(s

m,J
n (x)−Ki), 0, . . . , 0

]( 1

M

M∑
m=1

πε(s
m,J
n −Ki)− erTi Ciobs

)

n = N − 1, N − 2, . . . , 1, i ∈ {1, . . . , I} , m = 1, . . . ,M.

Applying the previous equations, which correspond to (4.19), and in combination with the
existence of the inverse of ∇yC(y, x) by Lemma 4.2.3, one uses Lemma 4.2.4 to obtain the
gradient of f(x) := f̂M,∆t,ε(y(x), x) by

∇f(x) = ∇xL(y, x, λ)

= ∇xf̂M,∆t,ε(y, x) +
N∑
n=1

λn∇xcn(y, x)

=
N∑
n=1

(
(λ0
n)>

[
∂

∂x
aε(x, y

0
n−1)∆tn−1 +

∂

∂x

(
bε(x, y

0
n−1)∆Wn−1

)]

+

J∑
j=1

(λjn)>
[(
η
∂

∂x
aε(x, y

j−1
n ) + (1− η)

∂

∂x
aε(x, y

J
n−1)

)
∆tn

+

(
ϑ
∂

∂x

(
bε(x, y

j−1
n )∆Wn

)
+ (1− ϑ)

∂

∂x

(
bε(x, y

J
n−1)∆Wn

))])
,

since ∇xf̂M,∆t,ε(y, x) vanishes. This completes the proof and establishes formula (4.17) for
the gradient. �

An economic interpretation of the adjoint equation can be made in the sense of Du�e et al.
(1996), El Karoui et al. (1997) or Bender and Kohlmann (2008). Thus, the dynamics of the
value of the replicating portfolio ξ̄ as in De�nition 2.3.6 are given by a backward stochastic
dynamics such as the adjoint equation. For the case of robust replication see Bender et al.
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4.2 Calibration via Predictor-Corrector Monte-Carlo Method

(2008) or Tikanmäki (2013).

The numerical e�ort of this method consists of d backward solves compared to P forward
solves for the �nite di�erence method of Lemma 4.2.1 in either instance for N time steps
and M trajectories. In particular, when P dominates the dimension d, for instance when the
underlying model parameters are chosen time dependent (see later Section 5.2), the adjoint
technique reduces the numerical e�ort substantially. It is all about computational e�ciency.
This will be explained in Section 4.3 in detail.

Detailed overviews on the adjoint technique in several �elds of research can be found in
Achdou and Pironneau (2005), Arridge and Schweiger (1998), Bosse et al. (2014), Capriotti
and Giles (2012), Giles and Pierce (2000), Giles and Süli (2002), Jameson (1988), Käbe et al.
(2009), Lörx (2013), Marchuk et al. (1996) and Pironneau (2007). Parameter identi�cation
methods arising in option pricing can be found in Schulze (2002). Moreover, some issues
and results on calibration of �nancial market models including jumps using model reduction
methods can be found in Sachs and Schu (2008), Sachs and Schu (2010), Sachs and Schu
(2013) and Sachs et al. (2014).

4.2.2 Special cases of Theorem 4.2.6

Theorem 4.2.7 (The Case of Euler-Maruyama Discretization). Let Assumption 4.2.5 be
true and f̂M,∆t,ε : RdN+P → R be the real valued objective function for maturity Ti and
strike price Ki for all i = 1, . . . , I

f̂M,∆t,ε(y, x) :=
1

2

I∑
i=1

(
ĈiM,∆t,ε(y, x)− Ciobs

)2
(4.27)

=
1

2

I∑
i=1

(
e−rTi

1

M

M∑
m=1

(
πε(s

m
Ni −Ki)

)
− Ciobs

)2

with Euler-Maruyama discretization

ymn+1 = ymn + aε(x, y
m
n )∆t+ bε(x, y

m
n )∆Wm

n ,

ym0 = Y0, n = 0, . . . , N − 1, m = 1, . . . ,M, N := max
i=1,...,I

Ni.
(4.28)

Then the gradient of f(x) := f̂M,∆t,ε(y(x), x) for all x ∈ X can be computed regardless of
y ∈ RdN , maturity Ti and strike price Ki i = 1, . . . , I via

∇f(x) =
1

M

M∑
m=1

N∑
n=1

(λmn )>
[
∂

∂x
aε(x, y

m
n−1)∆tn−1 +

∂

∂x

(
bε(x, y

m
n−1)∆Wm

n−1

)]
, (4.29)
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where λmn ∈ Rd results from the backward adjoint equation

λmn =

[
I +

∂

∂y
aε(x, y

m
n )∆tn +

∂

∂y
(bε(x, y

m
n )∆Wm

n )

]>
λmn+1 (4.30)

+ 1{n=Ni} e−2rTi
[
π′ε(s

m
n (x)−Ki), 0, . . . , 0

]( 1

M

M∑
m=1

πε(s
m
n −Ki)− erTi Ciobs

)

n = N − 1, N − 2, . . . , 1, i ∈ {1, 2, . . . , I} , m = 1, . . . ,M,

λmN = e−2rTI [π′ε(s
m
N −KI), 0, . . . , 0]

(
1
M

∑M
m=1 πε(s

m
N −KI)− erTI CIobs

)
∈ Rd.

This adjoint-based Monte-Carlo method is described in the simpler case for the calibration
of implied volatilities in a similar way by Cangiani (2000).

Example 4.2.8 (Black-Scholes Model). The dimensions of the calibration problem in the
case of the Black-Scholes model (2.39) are given as d = P = m = 1, the parameter space as
X = (0,∞) ⊂ R, the calibration parameter is denoted as x = σ and y = y1. The smoothed
drift function is given by aε : X × R → R and the smoothed volatility function by bε :
X × R→ R

aε(x, y) := ry1

bε(x, y) := σy1.

In order to implement the gradient (4.17) and the adjoint equations (4.18) and (4.19), the
following partial derivatives are necessary:

∂

∂x
aε(x, y) = 0

∂

∂x
bε(x, y) = y1

∂

∂y
aε(x, y) = r

∂

∂y
bε(x, y) = σ.

Example 4.2.9 (Heston Model). The dimensions of the calibration problem in the case of the
Heston stochastic volatility model (2.43) are given as d = m = 2 and P = 5, the parameter
space as X = (0,∞) × (0,∞) × R × (0,∞) × [−1, 1] ⊂ R5, the calibration parameters are
denoted as x = (v0, κ, θ, σ, ρ)> ∈ X. By applying the simple transformation ṽt := vt/v0 and a
Cholesky decomposition (Golub and van Loan, 1996, Theorem 4.2.5) of the correlation matrix
one obtains the equivalent model dynamics

dSt = r(t)Stdt+

√
v0ṽ

+
t StdW̃

1
t , S0

dṽt = κ

(
θ

v0
− ṽ+

t

)
dt+

σ
√
v0

√
ṽ+
t

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
, ṽ0 = 1,

60



4.3 Computational Complexitiy and E�ciency

where (W̃ 1
t )t∈[0,T ] and (W̃ 2

t )t∈[0,T ] are uncorrelated Wiener processes. With y = (y1, y2)> =

(S, ṽ)> the drift function a : X ×R2 → R2 and the volatility function b : X ×R2 → R2×R2

are de�ned as

a(x, y) :=

(
r(t)y1

κ
(
θ
v0
− y+

2

))

b(x, y) :=

(
v0y

+
2 y1 0

σρ σ
√

1− ρ2

)
.

Obvioulsy, the maps a and b are not continuously di�erentiable on X × R2. Therefore, the
smoothing function de�ned in Remark 3.3.2 is used to eliminate the non-di�erentiability and
to ful�ll the smoothness Assumption 4.2.5

aε(x, y) :=

(
r(t)y1

κ
(
θ
v0
− πε(y2)

))

bε(x, y) :=

(
v0πε(y2)y1 0

σρ σ
√

1− ρ2

)
.

For the implementation of the gradient (4.17) and the adjoint equations (4.18) and (4.19),
the following partial derivatives are necessary:

∂

∂x
aε(x, y) =

(
0 0 0 0 0

−κ θ
v20

θ
v0
− πε(y2) κ

v0
0 0

)

∂

∂x
bε(x, y)∆W =

πε(y2)y1∆W 1 0 0 0 0

0 0 0 ρ∆W 1 +
√

1− ρ2∆W 2 σ

(
∆W 1 −

(
ρ√

1−ρ2

)
∆W 2

)
∂

∂y
aε(x, y) =

(
r(t) 0

0 −κπ′ε(y2)

)
∂

∂y
bε(x, y)∆W =

(
v0πε(y2)∆W 1 v0π

′
ε(y2)y1∆W 1

0 0

)
.

For some further information about the calibration of the Heston stochastic volatility model
one is emphasized to read Käbe et al. (2009), Kahl and Jäckel (2006) or Mikhailov and Nögel
(2003).

4.3 Computational Complexitiy and E�ciency

Any sophisticated optimization algorithm needs at least gradient information. Thereby, such
methods require an e�cient computation of the �rst derivative. Unless analytically evaluta-
tion of the gradient is possible, the simplest numerical way is the use of the �nite di�erence
method (FDM) (4.4). However, since the Monte-Carlo method to calculate the objective
function is very expensive on matters such as computational time and occupancy of working
memory, FDM is not recommended.
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The analysis of the computational e�ort of the adjoint approach developed in Theorem
4.2.6 and its comparison to the derivative evalutation via �nite di�erences is addressed in this
section. Therefore, it is crucial to remark the computational complexity of the computation
of the objective gradient via the �nite di�erence approach.

Remark 4.3.1 (Finite Di�erences Method). The calculation of f̂M,∆t,ε due to Lemma 4.2.1
requires for every approximated path sm,JNi,ε

(x) of the underlying d-dimensional SDE N =
maxi∈I Ni calculations of the stochastic scheme, that needs Q �ops for every timestep. To
evaluate the expected value via Monte-Carlo method, M of such paths have to be simulated.
Moreover, the gradient calculation according to formula (4.4) needs the estimation of f(x +
hep) and in addition f(x− hep) for p = 1, . . . , P . In the aggregate this all is pooled together
to a total �op count of order

O((P + 1)dQMN). (4.31)

Thus, the computational e�ort of the FDM scales linearly in the number of calibration
parameters P . Hence, it would be worthwhile to have a method which is less expensive.
This will be provided by the use of more sophisticated schemes combined with the adjoint
approach introduced with Theorem 4.2.6 as it is pointed out in the following remark.

Remark 4.3.2 (Adjoint Technique). Let pj, j = 1, . . . , P , be the calibration parameters
and uj := | supp(pj)|, j = 1, . . . , P . Then U =

∑P
j=1 uj is the total number of timesteps

a�ected by the calibration routine. Equipped with this, the calculation of the forward mode
as in Theorem 4.2.6 requires for every approximated path sm,JNi,ε

(x) as in above Remark 4.3.1
O(dQMN) �ops.
The backward mode 4.19 needs the same amount of �ops as the forward mode plus some
additions for the maturities. This results in O(dQMN) + I �ops. Furthermore, the gradient
calculation due to equation (4.17) needs O(dQMU) �ops.
In the aggregate this all is pooled together to a total �op count of order

O(dQM(2N + U)) + I. (4.32)

Corollary 4.3.3 (Computational Reduction of the Adjoint Technique). If on uses "local
support" of the calibration parameters (U = pN), then according to Remark 4.3.2 the gradient
computation via adjoint technique is of order

O(dQMN) (4.33)

total �ops.

So the key point of this chapter is that the computational e�ort of gradient calculation via
the adjoint technique is independent of the number of calibration parameters P . Subsequent
numerical results con�rm this advantage of the Monte-Carlo based adjoint technique with
regard to the computation time. For this see later Section 5.2.2.
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4.4 Alternative Approaches to Reduce Computational Time

Generating and Storing Random Numbers, Variance Reduction and

Parallelization

Generating and storing random numbers is a crucial issue in term of computational e�ciency
(cf. Gentle (2004)). The simulation and storing of Wiener increments requires a lot of system
memory, i.e. random access memory (RAM), as one has to store ∆Wm

n for every simulation
m = 1, . . . ,M and time step n = 1, . . . , N . Therefore, MN independently and normally
distributed random numbers have to be stored. Considering for instance the pricing of an
Asian call option (2.59) with a two-dimensional stochastic volatility model 2.43, maturity of
2 years, a time step every bank day and 1, 000, 000 simulations requires the simulation of one
billion normally distributed random numbers. This is approximately 8 GB stored in double
precision and will exhaust the random access memory of a desktop PC. However, since the
transfer rate of reading on a hard drive is limited, this is no alternative. This is precisely
why regenerating random numbers outperformes generating and storing as shown in Section
6.3 of Käbe (2010). To this end, one needs random number generators that exactly replicate
sequences of normally distributed samples.

For the further acceleration of computation time of Monte-Carlo methods via parallelization
on graphics processing units (GPUs) the reader will be referred to following articles Bradley
et al. (2011), Bradley et al. (2012), Dai et al. (2010), Fatone et al. (2012), Joshi (2010), Lee
et al. (2010), Peng et al. (2011) and Kolb and Pharr (2005). The parallel computing plat-
form and application programming interface (API) developed by NVIDIA c© named Compute
Uni�ed Device Architecture (CUDA c©)1 is used in most of the articles. GPUs are also usable
for quantization methods, see Pagès and Wilbertz (2010), Wilbertz (2005) or more detailed
in Pagès and Wilbertz (2012).

Hence the variance σ̂M (X) dominates the Monte-Carlo error (see De�nition 2.2.24), vari-
ance reduction methods, such as antithetic variates, control variates, importance sampling
or Latin hypercube sampling, arises. An introduction to variance reduction methods and a
survey of the computational improvement of them is for instance given in Boyle et al. (1997)
or Chapter 4 of Glasserman (2004).

Furthermore, multilevel Monte Carlo methods (abbreviated "MLMC") were developed by
Giles and Szpruch (2013), Giles et al. (2009), Giles (2015) and modi�ed by Debrabant and
Röÿler (2015) to handle multi-dimensional SDEs and reduce the computational complexity.

1NVIDIA Developer https://developer.nvidia.com/cuda-zone.
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Chapter 5

Numerical Results

Nature is wont to hide herself.
� Heraclitus

In this chapter numerical results are presented and illustrated. It is split into two parts.
First, Section 5.1 illustrates the improvement of the predictor-corrector scheme concerning
the computational performance and the rate of convergence. Section 5.2 is then devoted
to a detailed analysis of the speed up obtained for the calibration of the Heston model by
applying the adjoint technique introduced in the main Theorem 4.2.6.

5.1 Monte-Carlo Schemes: Rate of Convergence

Some results concerning the accuracy of an approximate solution are given, which are cal-
culated via the predictor-corrector schemes and compared with the Euler-Maruyama scheme
and the Milstein scheme as in Higham (2001). Henceforth some numerical tests emphasize
that η = ϑ = 1

2 is an appropriate choice, this leads to a stochastic Heun's scheme which is
a predictor-corrector scheme with the explicit Euler-Maruyama scheme as predictor and the
trapezoidal method of an implicit Euler-Maruyama scheme as corrector.

To compute the results of this subsection the following parameters are used, if not oth-
erwise speci�ed, M = 100, 000, maturity T = 1, µ = 0.08, volatility σ = 0.16, λ = 0.5,
p = 0.55, η1 = 10, η2 = 15, µJ = −0.05, σJ = 0.09, ν0 = 0.4, θ = 0.25, κ = 0.5, σν = 1.5 and
correlation coe�cient ρ = −0.75.

All codes are implemented in MATLAB R© and all numerical test runs are realized on a
desktop PC with an Intel R© Xeon R© CPU E5620 with 2.4GHz and 2GB random access mem-
ory (RAM).

Previous research by Giles et al. (2013) and Schmitz Abe and Shaw (2005) has analysed
the computational e�ciency when using the Euler-Maruyama discretization and also demon-
strates an improved e�ciency using the Milstein discretization with the improved strong
convergence. An extensive comparison of these schemes with di�erent predictor-corrector
schemes is presented here. In particular, Table 5.6 clearly illustrates the improved strong
convergence of the predictor corrector schemes for the case of the Black-Scholes model (2.39).
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Chapter 5 Numerical Results

Black-Scholes Model

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1

1 1.0205 1.0203 0.0585 0.02918 0.0585
1
2 0.5355 0.5354 0.0275 0.00933 0.0275
1
4 0.2746 0.2745 0.0132 0.00329 0.0132
1
8 0.1391 0.1390 0.0065 0.00132 0.0065
1
16 0.0701 0.0700 0.0032 0.00051 0.0032
1
32 0.0352 0.0351 0.0016 0.00025 0.0016
1
64 0.0176 0.0176 0.0008 0.00012 0.0008
1

128 0.0088 0.0088 0.0004 0.00006 0.0004

Table 5.1: Black-Scholes: weak approximation error
∣∣E [max(XT −K, 0)]− E

[
max(Y ∆t

T −K, 0)
]∣∣

with 1,000,000 trajectories and volatility σ = 0.05.

Furthermore, Tables 5.1, 5.2 and 5.3 show the comparsion of the weak error εW for di�erent
discretization schemes regarding di�erent volatilities σ = 0.05, σ = 0.5 and σ = 0.95. Addi-
tionally, in Figures 5.1, 5.5 and 5.3 log-log plots of the weak convergence error εW as de�ned
in De�nition 2.2.21 versus di�erent time steps ∆t =

{
1, 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256 ,

1
512 ,

1
1024

}
are graphed for Euler-Maruyama, Milstein and the following predictor-corrector schemes:
predictor (Euler-Maruyama) and one-time and two-times corrector step, predictor (Milstein)
and one-time and two-times corrector step and �nally predictor (Euler-Maruyama and Mil-
stein) and one-time corrector step of order 1.5 or the θ-scheme proposed by Schmitz Abe
(2010). These are labeled "Euler-M", "Milstein", "Preco1E1", "Preco2E1", "Preco1M1",
"Preco2M1", "Preco1E1.5" and "Preco2M1.5", "Preco1Mθ", respectively. Note that in Fig-
ures 5.1, 5.5 and 5.3 the achieved numerical weak order β describes the slope of the lines and
C describes the point where the slope and the y-axis intersect. Reference slopes for β = 1/2
and β = 1 are plotted in each �gure.

However, a closer look on Tables 5.1, 5.2 and 5.3 reveals that the weak error εW becomes
slightly worse when increasing the volatility. Nevertheless, the predictor-corrector schemes
seem to be the best approximation in terms of smaller errors and computational e�ciency,
especially in the case of a Milstein scheme as predictor and a single corrector step.

In real market data the volatility σ dominates the deterministic drift term represented by
the risk-free interest rate r. In Table 5.4 the weak error εW of a European call option on the
Dax index from March 2014 are presented. The riskfree interest rate is chosen as r = 0.01,
the implied volatility as σ = 0.16, the initial stock price as S0 = 9, 500 and the strike price
as K = 10, 000 with maturity T = 1. Figure 5.4 graphically illustrates these results.

To further reinforce the above results Table 5.5 and the corresponding Figure 5.5 show the
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5.1 Monte-Carlo Schemes: Rate of Convergence

Figure 5.1: Plotted log weak approximation error against log step size ∆t of Table 5.1.

competitive advantage of the predictor-corrector schemes over the Euler-Maruyama and the
Milstein scheme in the case of the jump-di�usion model (2.40) with Merton jump size (2.41).
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Black-Scholes Model

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1

1 3.7423 2.4948 0.9131 0.6796 0.1703
1
2 2.1940 1.4627 0.5362 0.4508 0.1470
1
4 1.0671 0.7681 0.2874 0.2481 0.0804
1
8 0.5993 0.3995 0.1489 0.1277 0.0399
1
16 0.3040 0.2027 0.0754 0.0650 0.0197
1
32 0.1525 0.1017 0.0379 0.0325 0.0097
1
64 0.0764 0.0509 0.0187 0.0165 0.0048
1

128 0.0383 0.0255 0.0094 0.0084 0.0024

Table 5.2: Black-Scholes: weak approximation error
∣∣E [max(XT −K, 0)]− E

[
max(Y ∆t

T −K, 0)
]∣∣

with 1,000,000 trajectories and volatility σ = 0.5.

Figure 5.2: Plotted log weak approximation error against log step size ∆t of Table 5.2.
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Black-Scholes Model

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1 Preco1Mθ
1
4 2.5479 1.0068 1.2424 0.9240 1.1994 0.2200
1
8 1.5155 0.5992 0.6511 0.4188 0.5813 0.1928
1
16 0.7175 0.3221 0.3383 0.1891 0.2833 0.1162
1
32 0.3309 0.1662 0.1729 0.0874 0.1383 0.0632
1
64 0.1608 0.0816 0.0828 0.0426 0.0683 0.0300
1

128 0.0797 0.0414 0.0415 0.0210 0.0340 0.0156
1

256 0.0390 0.0205 0.0217 0.0101 0.0170 0.0076

Table 5.3: Black-Scholes: weak approximation error
∣∣E [max(XT −K, 0)]− E

[
max(Y ∆t

T −K, 0)
]∣∣

with 1,000,000 trajectories and volatility σ = 0.95.

Figure 5.3: Plotted log weak approximation error against log step size ∆t of Table 5.3.
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Chapter 5 Numerical Results

Black-Scholes Model of an index option (DAX)

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1

1 12.0723 3.9976 1.9039 0.6497 0.7918
1
2 7.7697 2.5574 1.1093 0.3943 0.4854
1
4 4.1655 1.4071 0.5963 0.2132 0.2628
1
8 2.1749 0.7346 0.3060 0.1104 0.5813
1
16 1.0857 0.3747 0.1569 0.0561 0.0691
1
32 0.5336 0.1895 0.0802 0.0283 0.0349
1
64 0.2617 0.0945 0.0396 0.0141 0.0174
1

128 0.1288 0.0473 0.0197 0.0071 0.0087
1

256 0.0600 0.0237 0.0100 0.0035 0.0044

Table 5.4: Black-Scholes: weak approximation error
∣∣E [max(XT −K, 0)]− E

[
max(Y ∆t

T −K, 0)
]∣∣

of an index option (DAX) with 1.000.000 trajectories.

Figure 5.4: Plotted log weak approximation error against log step size ∆t of Table 5.4.
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jump diffusion (Merton)

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1
1
2 1.0974 0.7399 0.1824 0.1294 0.1542
1
4 0.7677 0.3954 0.1119 0.0844 0.0950
1
8 0.5411 0.2147 0.0720 0.0565 0.0610
1
16 0.3825 0.1208 0.0482 0.0385 0.0404
1
32 0.2699 0.0713 0.0330 0.0265 0.0274
1
64 0.1910 0.0444 0.0229 0.0185 0.0189
1

128 0.1353 0.0288 0.0161 0.0129 0.0132
1

256 0.0956 0.0193 0.0113 0.0091 0.0092
1

512 0.0674 0.0132 0.0080 0.0064 0.0065
1

1024 0.0477 0.0092 0.0056 0.0045 0.0045

Table 5.5: Jump di�usion (Merton): weak approximation error∣∣E [max(XT −K, 0)]− E
[
max(Y ∆t

T −K, 0)
]∣∣ with 1,000,000 trajectories.

Figure 5.5: Plotted log weak approximation error against log step size ∆t of Table 5.5.
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Black-Scholes Model

∆t Euler-
Maruyama
scheme

Milstein
scheme

predictor-corrector schemes

Preco1E1 Preco2E1 Preco1M1
1
2 2.4771 0.8009 0.2211 0.1340 0.1133
1
4 1.8196 0.4255 0.1523 0.0805 0.0687
1
8 1.3142 0.2207 0.1070 0.0460 0.0393
1
16 0.9408 0.1125 0.0761 0.0253 0.0213
1
32 0.6728 0.0568 0.0543 0.0139 0.0112
1
64 0.4763 0.0285 0.0384 0.0078 0.0058
1

128 0.3378 0.0142 0.0272 0.0046 0.0029
1

256 0.2397 0.0072 0.0193 0.0028 0.0015

Table 5.6: Black-Scholes: strong approximation error E
[∣∣XT − Y ∆t

T

∣∣] with 100,000 tra-
jectories.

A tool how to estimate the rate of strong convergence γ or weak convergence β numerically
by using the logarithm of the equation (2.29) in De�nition 2.2.20 or the equation (2.30) in
De�nition 2.2.21 is given for small step sizes ∆i in what follows

εS(∆i) = E
[∣∣∣XT − Y ∆i

T

∣∣∣] = C∆γ
i

⇒ log(εS(∆i)) = log
(
E
[∣∣∣XT − Y ∆i

T

∣∣∣]) = log(C) + γ log(∆i)

i = 1, . . . , R. In the case of the results in Table 5.6 one has r = 8 > 2 = | {γ, log(C)} |. So
one obtains an overdetermined system of linear equations wherefore one has to solve a linear
least squares regression by choosing the following model function to get the positive constant
C and the strong convergence order γ or weak convergence order β, respectively,

m(ti) = x0 + x1ti = log(C) + γ log(∆i) = log(εS(∆i)), i = 1, . . . , R.

This is equivalent to the following linear least squares problem

min
x0,x1

∥∥∥∥∥∥∥
 1 t1

...
...

1 tR

( x0

x1

)
−

 b1
...
bR


∥∥∥∥∥∥∥

2

= min
x0,x1

‖Ax− b‖2 , (5.1)

where ti := log(∆i) and bi := log(εS(∆i)) for all i = 1, . . . , R. In this case the solutions
x0 = log(C) and x1 = γ of (5.1) are estimated by

x0 = b̄− x1t̄

x1 =

∑n
i=1(bi − b̄)(ti − t̄)∑n

i=1(ti − t̄)2
,
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5.1 Monte-Carlo Schemes: Rate of Convergence

where t̄ = 1
n

∑n
i=1 ti and b̄ = 1

n

∑n
i=1 bi are arithmetic mean values (see also Nocedal and

Wright (1999)).

Numerical results of estimating the rates of convergence, i.e, γ and β and the positive con-
stant C for several �nancial market models (e.g. the Black-Scholes model (2.39), the Heston
model (2.43) and some jump-di�usion models (2.40)) are listed in Table 5.7. This results
also numerically con�rm the theoretical rates of convergence presented in Section 3.3.2 and
impressively demonstrates the advantage of the stochastic predictor-corrector scheme.

Figure 5.6 corresponds to Table 5.6 and shows a log-log plot of the strong convergence error
εS as de�ned in De�nition 2.2.20 versus di�erent time steps ∆t =

{
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256

}
for Euler-Maruyama, Milstein and the following predictor-corrector schemes: predictor (Euler-
Maruyama) and one-time and two-times corrector step, predictor (Milstein) and one-time and
two-times corrector step and �nally predictor (Euler-Maruyama and Milstein) and one-time
corrector step of order 1.5. These are labeled as above.

Figure 5.6: Plotted log strong approximation error against log step size ∆t.

Note that in Figure 5.6 the achieved numerical strong order γ is described by the slope of
the lines and the constant C describes the point where the slope and the y-axis intersect.
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5.1 Monte-Carlo Schemes: Rate of Convergence

In order to estimate the strong approximation error E
[∣∣XT − Y ∆t

T

∣∣] one needs an exact
evaluation ofXT . In the case of the well-known Heston model there is no exact solution ofXT

known, so one applies the following Theorem 5.1.1 to determinate the order of convergence
γ as in Table 5.7.

Theorem 5.1.1 (Rate of Convergence without Knowing of the Exact Solution). If there
exists a stochastic process (Xt)0≤t≤T and a corresponding time discretization scheme Y ∆t

that has the following strong convergence property

E
[∣∣XT − Y ∆t

T

∣∣] ≤ C1∆tγ (5.2)

for all time steps ∆t ∈ (0,∞) with C1 > 0. Then, there exists a positive constant C2 with

E
[∣∣Y ∆t

T − Y 2∆t
T

∣∣] ≤ C2∆tγ , (5.3)

where C2 = C1 (1 + 2γ) and this constant does not depend on timestep ∆t ∈ (0,∞). Never-
theless, C2 depends on the strong order of convergence γ and the positive constant C1.

Proof. If equation (5.2) holds for all ∆t ∈ (0,∞), then it must be true for 2∆t ∈ (0,∞) as
well. So one obtains

E
[∣∣XT − Y 2∆t

T

∣∣] ≤ C1(2∆t)γ . (5.4)

By using the triangle inequality and combining equations (5.2) and (5.4) one gets

E
[∣∣Y ∆t

T − Y 2∆t
T

∣∣] = E
[∣∣XT − Y ∆t

T −XT + Y 2∆t
T

∣∣]
≤ E

[∣∣XT − Y ∆t
T

∣∣]+ E
[∣∣XT − Y 2∆t

T

∣∣]
≤ C1∆tγ + C1(2∆t)γ

= C1 (1 + 2γ) ∆tγ

=: C2∆tγ .

This completes the proof and establishes the formula (5.3). �

A very similar result for the weak convergence property∣∣E [g(XT )]− E
[
g(Y ∆

T )
]∣∣ ≤ C∆β

may be proved in the same way as Theorem 5.1.1. Theorem 5.1.1 is very similar to Theorem
1 by Schmitz Abe and Shaw (2005) or Theorem 1 by Schmitz Abe and Giles (2008). Some
results of Theorem 5.1.1 for the Heston model are shown in Table 5.7.

The following example shows how the predictor-corrector scheme performs compared to the
Euler-Maruyama scheme. To illustrate this some prices of plain vanilla and exotic options
(e.g. path-dependent Asian option as in (2.59) and (2.60) or barrier options as in (2.54) and
(2.56)) are listed in Tables 5.8 and 5.9. The reader is also re�ered to Groÿ (2009).
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Example 5.1.2. The following results concern the pricing of di�erent options via Monte-
Carlo methods and will also con�rm the theoretical results of Corollary 2.2.24. The initial
stock price is chosen as S0 = 95 e, the strike price as K = 100 e, the time to maturity
as T = 1, the risk-free interest rate as r = 0.04 and the volatility of the Black-Scholes
model (2.39) as constant σ2 = 0.16. The closed form solution given by equation (3.1) yields
C(0, S0) = 5.56753 e. Using the call put parity of Theorem 2.3.10 one gets P (0, S0) =
6.64647 e. The barriers are chosen as Bup = 150 e and Bdown = 70 e in this example.

option prices (e) 100 1,000 10,000 100,000 1,000,000

C(0, S0) 6.0240 5.7106 5.5251 5.5482 5.5579
deviation from 5.56753 e 8.20% 2.57% 0.76% 0.35% 0.17%
P (0, S0) 6.2431 6.7576 6.6039 6.6717 6.6559
deviation from 6.64647 e 4.56% 1.67% 0.64% 0.38% 0.14%
Cdigital(0, S0) 0.4900 0.4506 0.4191 0.4211 0.4222
Cup-and-out(0, S0) 5.8106 5.8294 5.2517 5.2128 5.2266
Cdown-and-out(0, S0) 6.0240 5.8106 5.5151 5.5382 5.5579
Cup-and-in(0, S0) 0.0038 0.1946 0.2634 0.3254 0.3373
CAsian(0, S0) 2.0827 2.1574 2.1433 2.1608 2.2106
PAsian(0, S0) 4.6283 4.9555 4.9616 4.9972 5.0355
Cmin(0, S0) 9.0124 10.2082 9.5874 9.6776 9.6921
Pmax(0, S0) 14.5507 13.4616 13.9920 13.9133 13.9048

cputime 0.00025 0.00257 0.02267 0.22407 2.23274

Table 5.8: Option prices computed using Euler-Maruyama scheme.

option prices (e) 100 1,000 10,000 100,000 1,000,000

C(0, S0) 5.8162 5.5171 5.5396 5.5632 5.5676
deviation from 5.56753 e 4.47% 0.91% 0.50% 0.08% 0.01%
P (0, S0) 6.4428 6.7548 6.6462 6.6433 6.6469
deviation from 6.64647 e 3.06% 1.63% 0.15% 0.05% 0.01%
Cdigital(0, S0) 0.4394 0.4328 0.4198 0.4227 0.4229
Cup-and-out(0, S0) 5.6567 5.4702 5.2357 5.2218 5.2203
Cdown-and-out(0, S0) 5.9451 5.6258 5.5757 5.5615 5.5609
Cup-and-in(0, S0) 0.1483 0.2504 0.2972 0.3105 0.3471
CAsian(0, S0) 2.0962 2.1831 2.2220 2.2505 2.2548
PAsian(0, S0) 4.9830 5.0450 5.1028 5.2107 5.2143

cputime 0.00037 0.00372 0.03584 0.35739 3.57822

Table 5.9: Option prices computed using predictor-corrector scheme.

The deviation from option prices is given by∣∣C(0, S0)− E
[
max(Y ∆t

T −K, 0)
]∣∣

C(0, S0)
. (5.5)
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So far, predictor-corrector schemes are useful approximations in terms of accuracy and
computational speed. Moreover, the computational e�ciency of the adjoint approach pre-
sented in Theorem 4.2.6 to solve the calibration problem (PPCM,∆t,ε) will be analyzed in the
next section.
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5.2 E�ciency of the Adjoint-based Monte-Carlo Calibration

5.2.1 Numerical Calibration Results

First the chosen market data and additional settings for this section are introduced. For all
test cases the routines calibrate the �nancial market model to a set of 100 European call
options on the S&P 500 index taken from Andersen and Brotherton-Ratcli�e (1997). The
volatilty surface is illustrated in Table 5.10 and Figure 5.7 in the form of implied volatilities.
As in Andersen and Brotherton-Ratcli�e (1997) one chooses the risk-free interest rate as
r = 0.06, the dividend yield δ = 0.0262 and assumes that the initial stock price is normalized
to S0 = 1.

HHH
HHK
T

0.175 0.425 0.695 0.94 1 1.5 2 3 4 5

0.85 0.190 0.177 0.172 0.171 0.171 0.169 0.169 0.168 0.168 0.168
0.90 0.168 0.155 0.157 0.159 0.159 0.160 0.161 0.161 0.162 0.164
0.95 0.133 0.138 0.144 0.149 0.150 0.151 0.153 0.155 0.157 0.159
1.00 0.113 0.125 0.133 0.137 0.138 0.142 0.145 0.149 0.152 0.154
1.05 0.102 0.109 0.118 0.127 0.128 0.133 0.137 0.143 0.148 0.151
1.10 0.097 0.103 0.104 0.113 0.115 0.124 0.130 0.137 0.143 0.148
1.15 0.120 0.100 0.100 0.106 0.107 0.119 0.126 0.133 0.139 0.144
1.20 0.142 0.114 0.101 0.103 0.103 0.113 0.119 0.128 0.135 0.140
1.30 0.169 0.130 0.108 0.100 0.099 0.107 0.115 0.124 0.130 0.136
1.40 0.200 0.150 0.124 0.110 0.108 0.102 0.111 0.123 0.128 0.132

Table 5.10: Market data: Implied volatilities for S&P 500 index options.

As in Figure 3.1 the market data for the S&P 500 index options and the graphical illus-
tration of Figure 5.7 show the typical volatility smile known from many empirical studies
especially the options that are close to exercise maturity.

The Heston model (2.43) is chosen as the test case of calibrating via Theorem 4.2.6

dSt = r(t)Stdt+
√
vtStdW

1
t , S0,

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t , v0,

ρdt = Cov
[
dW 1

t , dW
2
t

]
.

The call option prices corresponding to this model are calibrated to a set of call options that
are computed via a common Monte-Carlo approach considering the volatility surface listed
in Table 5.10. This is a distinction as to the work of Käbe et al. (2009). Since the parameter
x1 = v0 is the start value of the stochastic variance di�erential equation, the Heston dynamics
at �rst sight do not seem to �t into the general model framework of equation (3.2). However,
the simple transformation ṽt := vt/v0, and a Cholesky decomposition yields the equivalent
model dynamics as in Example 4.2.9

dSt = (r − δ)Stdt+

√
v0ṽ

+
t StdW̃

1
t , S0 = 1, (5.6)

dṽt = κ

(
θ

v0
− ṽ+

t

)
dt+

σ
√
v0

√
ṽ+
t

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
, ṽ0 = 1,
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Figure 5.7: Volatility Smile: Graphical illustration of the implied volatilities
for S&P 500 index options from Table 5.10.

with start values (S0, ṽ0)> that are independent of the model parameters x = (v0, κ, θ, σ, ρ)> ∈
U ⊂ R+

4 × [−1, 1]. The set U of feasible parameters is described by the following box con-
straints and the Feller condition (3.5):

0.0001 ≤ v0 ≤ 2

0.05 ≤ κ ≤ 2

0.0001 ≤ θ ≤ 2 (5.7)

0.0001 ≤ σ ≤ 4

−0.995 ≤ ρ ≤ 0.995

σ2 ≤ 2κθ,

hence, by Theorem 2.3.7, it is a complete �nancial market model. The selected lower and
upper bounds assure the non-emptiness, compactness and convexity of U . Equipped with
this, the adjoint equation and the gradient is given in Example 4.2.9. Table 5.11 contains the
calibration results for four di�erent collocations of Monte-Carlo paths M and discretization
time steps ∆t and compares the resulting least square errors

f̂M,∆t,ε =
1

2

I∑
i=1

(
ĈiM,∆t,ε(y, x)− Ciobs

)2

based on the Monte-Carlo function evaluations with smoothing parameter ε = 0.01 (see
Remark 3.3.2). The parameters of calibration problem PPCM,∆t,ε are chosen as η = ϑ = α = 0
in this �rst example.
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The calibration routine is implemented with the MATLAB R© function fmincon from the
Optimization Toolbox1 and is started with initial values v0 = 0.16, mean reversion speed
of volatility κ = 0.8, long run mean volatility θ = 0.16, volatility of volatility σ = 0.4 and
correlation ρ = −0.75. Since one calibrates �ve parameters to �t 100 market prices, the
problem is clearly underdetermined and ill-posed in the sense of Hadamard (1902).

To ensure that the Wiener processes (W̃ 1
t )t∈[0,T ] and (W̃ 2

t )t∈[0,T ] are uncorrelated the
MATLAB c© random number stream function RandStream.create2 is used. As pseudo ran-
dom number generator (PRNG) is the combined multiple recursive generator (mrg32k3a)
chosen. A detailed overview on this random number generator can be found in L'Ecuyer
(1996). It is also very easy to implement on parallel GPUs as established by Giles and
Bradley et al. (2012) because of its inherent structure of long streams and substreams, which
can produce a deterministic sequence of random numbers. In particular, this is an important
feature allowing each Monte-Carlo simulation to be exactly replicated. The idea of regener-
ating the Wiener increments every time they are needed is also discussed in Section 4.4. An
alternative implementation is proposed by Saito and Matsumoto (2008).

M = 10, 000 M = 100, 000 M = 100, 000 M = 500, 000
x ∆t = 0.01 ∆t = 0.01 ∆t = 0.005 ∆t = 0.005

v0 0.1654 0.1617 0.1577 0.1553
κ 1.9674 1.8181 1.8224 1.8390
θ 0.2684 0.2593 0.2510 0.2427
σ 0.2936 0.3612 0.3816 0.3893
ρ -0.6159 -0.6147 -0.6252 -0.6312

f̂M,∆t,0.01 3.5777e-05 2.0919e-05 2.0906e-05 2.0783e-05

Table 5.11: Calibration results for the case of the Heston model with several discretiza-
tion time steps and numbers of Monte-Carlo simulations corresponding to
the implied volatility surface in 5.10.

Table 5.11 impressively demonstrates the convergence of the solutions of the calibration
problem PPCM,∆t,ε as one increases the number of Monte-Carlo paths M and reduces the dis-
cretization step size ∆t. More particularly, it appears that the sample with M = 100, 000
and ∆t = 0.01 leads already to a small least square error. Therefore, for practical applica-
tions, the accuracy in this case is certainly su�cient. Hence, in what follows, the number
of Monte-Carlo paths is chosen asM = 100, 000 and the discretization step size as ∆t = 0.01.

Due to di�erent surfaces of option prices resulting from miscellaneous approaches of com-
puting them, to be more precise closed-form versus Monte-Carlo solution, the results of
Table 5.11 and Table 5.12 di�ers slightly from the calibration results of Table 2 in Käbe
et al. (2009). Also the choice of the smoothed functions results in di�erent solutions of the
calibration problem. Käbe et al. (2009) uses polynomial approximations of the max func-

1https://de.mathworks.com/help/optim/ug/fmincon.html.
2https://de.mathworks.com/help/matlab/ref/randstream.html.
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5.2 E�ciency of the Adjoint-based Monte-Carlo Calibration

tion. The results in this chapter are computed via the smoothed version of the ramp function
max(x, 0) of Remark 3.3.2, i.e., function (3.10). However, Table 5.12 compares the solutions
of PPCM,∆t,ε with di�erent initial values. These results reveal that the stationary point of Table
5.11 is attractive for almost all initial vectors.

x initial end initial end initial end initial end

v0 0.16 0.1613 0.25 0.1556 0.5 0.1549 1 0.1554
κ 0.8 1.8181 0.5 1.8426 1.5 1.7716 1.5 1.7293
θ 0.16 → 0.2592 0.25 → 0.2424 0.5 → 0.2437 1 → 0.2436
σ 0.25 0.3612 0.1 0.4101 0.09 0.3773 0.5 0.3664
ρ -0.75 -0.6147 -0.5 -0.6280 -0.25 -0.6329 0.25 -0.6376

f̂ 2.092e-05 2.077e-05 2.086e-05 2.104e-05
i 24 43 65 86

Table 5.12: Calibration results for the case of the Heston model with several initial
values.

Additionally, the calibration of the Heston model to a set of 510 European call options on
the DAX index corresponding to the Figure 3.1 is presented here. The calibration parameters
as well as the initial values are choosen as above. Table 5.13 compares also the solutions of the
calibration routine for the case of the Euler-Maruyama scheme with the predictor-corrector
scheme in both, the �nite di�erence approach and the adjoint approach. An interesting ob-
servation in both cases of real market data is the negativity of the correlation ρ between
returns of the underlying S and volatility ṽ. Nonetheless, it is often observed that if the
price of the underlying drops down, the volatility will increase.

scheme Euler- Euler- predictor- predictor-
Maruyama Maruyama corrector corrector

approach FDM Adjoint FDM Adjoint
x ∆t = 0.01 ∆t = 0.01 ∆t = 0.02 ∆t = 0.02

v0 0.0266 0.0266 0.0254 0.0254
κ 1.9973 1.9971 1.9798 1.9797
θ 0.0490 0.0491 0.0490 0.0490
σ 0.1527 0.1527 0.1508 0.1509
ρ -0.8713 -0.8714 -0.8886 -0.8886

f̂M,∆t,0.01 2.4825e-03 2.4837e-03 2.2852e-03 2.2877e-05
cputime 427.513 419.953 276.313 256.363

Table 5.13: Calibration results for the case of the Heston model in the case of the DAX
index options.

.

The resulting solutions, displayed in Table 5.13, are almost identical and only di�er slightly
with regard to the approach, i.e., FDM or adjoint approach. The speedup resulting from the
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predictor-corrector scheme in comparison with the Euler-Maruyama scheme is based on the
smaller time step. Table 5.7 emphasizes the selection of a smaller time step size ∆t in the
case of the predictor-corrector scheme since it produces smaller weak errors εW.

5.2.2 Computational E�ort of the Adjoint Technique

To fully assess the potential speedup of the adjoint-based Monte-Carlo calibration in compar-
ison to alternative computation methods for the gradient, the modi�ed Heston model (5.6) is
extended by introducing time-dependent parameters κ(t), θ(t), σ(t) and ρ(t) for 0 ≤ t ≤ T as
established by Benhamou et al. (2010) and Käbe et al. (2009). Piecewise constant parameters
on [tb−1, tb), b = 1, ..., B are chosen for this calculation, i.e.,

κ(t) = κb, t ∈ [tb−1, tb), b = 1, ..., B and κ(T ) = κB,
θ(t) = θb, t ∈ [tb−1, tb), b = 1, ..., B and θ(T ) = θB,
σ(t) = σb, t ∈ [tb−1, tb), b = 1, ..., B and σ(T ) = σB,
ρ(t) = ρb, t ∈ [tb−1, tb), b = 1, ..., B and ρ(T ) = ρB,

(5.8)

where 0 = t0 < t1 < ... < tB = T is a suitable discretization of the time interval [0, T ] into
B ∈ IN subintervals (Hull (2008)). In the examples below the equidistant points t0, t1, ..., tB
with tb = b TB are chosen. For the time-dependent parameters the notation of a vector x ∈ RP
can be retained by arranging the elements of x in the following way

x = (v0, κ1, ..., κB, θ1, ..., θB, σ1, ..., σB, ρ1, ..., ρB)> ∈ RP = R4B+1. (5.9)

This only changes the calculation of the adjoint equation slightly insofar that one has to
replace the previously constant xi by its corresponding value on the subinterval.

scheme Euler-Maruyama Milstein predictor-corrector
α = 0, J = 0 α = 1, J = 0 α = 0, J = 1
∆t = 0.01 ∆t = 0.01 ∆t = 0.02

B P FDM Adjoint FDM Adjoint FDM Adjoint Speedup
ratio

1 5 18.57 18.25 21.02 20.62 11.37 10.42 1.0175
2 9 32.78 18.37 37.17 20.78 19.99 10.47 1.7844
3 13 47.26 18.35 53.40 20.75 28.82 10.45 2.5755
4 17 61.96 18.44 70.23 20.72 37.79 10.51 3.3601
5 21 78.61 18.33 88.84 20.79 47.95 10.44 4.2886
10 41 152.24 18.24 172.04 20.71 92.86 10.49 8.3465
20 81 302.35 18.59 341.79 20.92 184.43 10.46 16.2641
50 201 824.27 18.51 931.44 21.00 502.80 10.45 44.5311
100 401 1636.66 18.32 1838.26 20.76 992.26 10.44 89.3373

Table 5.14: Calculation time (in seconds) for the gradient of the objective function

f̂M,∆t,ε for a changing number B of time intervals [tb−1, tb) and resulting
P = 4B + 1 number of parameters by using di�erent schemes.
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Table 5.14 summarizes the computational e�ort for alternative computation methods for
the gradient. It compares the calculation time for the gradient of the objective function
f̂M,∆t,ε computed via the Euler-Maruyama scheme, the Milstein scheme and the predictor-
corrector scheme (stochastic Heun's scheme). The �nite di�erence method (FDM) as well as
the adjoint approach are presented. These results are also illustrated in Figure 5.8 and also
numerically con�rm the theoretical results of Section 4.3.

Figure 5.8: Calculation time (in seconds) for the gradient plotted against the number
of parameters.

The presented adjoint-based Monte-Carlo calibration take advantage of two facts. On the
one hand due to Benhamou et al. (2010) for time-dependent parameters there is no analytical
formula and one usually has to perform Monte-Carlo simulations to price options. On the
other hand it is worthwhile noting that the speedup resulting from the adjoint technique
strongly depends on the number of parameters of the �nancial market model. In this set-
ting the number of time intervals B allows one to easily analyze this dependence in more
detail. Since one does not want to distort the analysis with varying numbers of iterations for
changing B, one measures the required time for the pure gradient calculation based on �nite
di�erences and the adjoint equation in Table 5.14. As expected, the calculation time for the
�nite di�erence method increases with an almost linear rate in the number of subintervals B,
whereas the time required by the adjoint method nearly stays constant in all cases, i.e. the
Euler-Maruyama scheme, the Milstein scheme and the predictor-corrector scheme. Thus the
speedup increases with an increasing number of subintervals. Käbe (2010) has already shown
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this facts. Moreover, the predictor-corrector scheme combined with the adjoint approch is
the fastest one of all considered schemes. For this very reason it is not required to obtain
a reasonably good approximation in time, because the predictor-corrector scheme does not
necessarily require small time steps to perform excellent calibration results.

In summary, the results of the predictor-corrector scheme are promising in the sense that
they provide a signi�cant acceleration of the calibration of �nancial market models, along
with the adjoint method. The use of stochastic predictor-corrector schemes in the Monte-
Carlo framework of pricing options and calibrating �nancial market models should attract
attention in the �nancial research community.
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Chapter 6

Coincidence to Optimal Control Theory

Life can only be understood backwards; but it must be lived forwards.
� Søren Kierkegaard

This chapter deals with the question of how the the numerical solution of SDE constrained
optimal control problems of the so called discretize-then-optimize approach of Chapter 4
coincide with solution of the opposed optimize-then-discretize approach. Both approaches
are applied to calculate adjoint information which generates the required derivatives of the
calibration functional.

6.1 First-Optimize-then-Discretize

In the research community of optimization problems governed by partial di�erantial equa-
tions (PDEs) a thought-provoking question arises from linking the discretize-then-optimize
approach with the optimize-then-discretize approach as in Collis and Heinkenschloss (2002),
Hinze (2009), Hinze and Tröltzsch (2010) and Hinze and Rösch (2012). Solutions to op-
timization problems with PDE constraints inherit special properties. The associated state
solves the PDE which in the optimization problem takes the role of a equality constraint, and
this state together with the associated control solves an optimization problem, i.e., together
with multipliers satis�es �rst-order necessary optimality conditions (2.4.2). This approach
will be transfered below to stochastic di�erential equations.

This chapter will bridge the class of problems dealt with here is a static parameter identi�-
cation calibration problem with SDE constraints to backward stochastic di�erential equations
(BSDEs) arising from optimal control problems. To solve this static optimal control problem
an adjoint technique is presented for an e�cient evaluations of the gradient of the calibra-
tion function in gradient-based optimization algorithms. Adjoint equation may considered
as Lagrange multiplier in the in�nite-dimensional case.

In the discretize-then-optimize approach of Theorem 4.2.6, such as in Käbe et al. (2009)
or Groÿ and Sachs (2012), the calibration problem is �rst discretized, using for instance
the Euler-Maruyama discretization (e.g. Theorem 4.2.7) of a stochastic di�erential equation
(SDE). Afterwards the resulting �nite dimensional optimization problem is solved. On the
contrary, in the optimize-then-discretize approach one �rst solves the in�nite dimensional
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optimality system, involving the (forward) stochastic di�erential equation as well as the (ad-
joint) backward stochastic di�erential equation (BSDE). One �nally discretizes this optimal-
ity system using standard schemes for both the forward and the adjoint backward equations.
Betimes these approaches lead to di�erent results. Following Collis and Heinkenschloss (2002)
one will use discrete adjoint equations and discrete gradient equations in notation to mean
that these are the adjoint and gradient equations for the discretized problem. One will also
use the phrases discretized adjoint equations and discretized gradient equations to refer to
discretizations of the adjoint equation and gradient equation, respectively.

The main result of this section is to show that there is no gap between the discrete gradient
equations of the discretize-then-optimize approach and the discretized gradient equations of
the optimize-then-discretize approach for some standard schemes. Nevertheless, there is a
di�erence between the discretized adjoint equations and its counterpart, namely, the dis-
cretizations of the adjoint backward equation as in Kohlmann and Zhou (2000). Insofar as
the discrete adjoint equations of Section 4 are (non-adapted) solutions of linear stochastic
di�erential equations with some terminal condition. However by the optimize-then-discretize
approach one gets a discretizations of an adjoint linear backward stochastic di�erential equa-
tion as we see in section 6.3 and what is also a result of the similar approach of stochastic
control problems (e.g. Bahlali et al. (2007), Baras et al. (1988), Du�e and Skiadas (1994), El-
liott and Kohlmann (1989d), El Karoui et al. (1997), Kunita (1982), Mou and Yong (2007),
Yong (2010) or Yong and Zhou (1999)). This section shows how this leads in an elegant
manner to the same gradient representation of both approaches. To this end, one has to use
the same method of Section 2.4 to determine the discretized gradient representation and the
discrete gradient representation.

In Section 6.4 results of the previous sections are used to calibrate a �nancial market model
to observed market prices. Finally, this chapter concludes this thesis in the manner of Bender
et al. (2014).

6.2 Introductory Notes on BSDEs

First some important properties of backward stochastic di�erential equation (BSDE) are
established followed by some general results. The standard work on BSDEs is Yong and
Zhou (1999). Their is a strong connection between BSDEs and the Martingale Representa-
tion Theorem 2.2.17 (cf. Elliott and Kohlmann (1989c)). A dual representation in terms of
martingales was �rst suggested by Rogers (2002) and then established by Haugh and Kogan
(2004), Belomestny et al. (2009), Belomestny et al. (2013), Bender, Schoenmakers and Zhang
(2013) and Rogers (2007).

To discuss the connection between the optimize-then-discretize approach and non-anticipating
or adapted BSDEs, which were introduced as adjoint equations in stochastic control by Bis-
mut in the 1970's, i.e., Bismut (1973), Bismut (1978) and later by Haussmann (1981), Elliott
(1977) and Kushner (1972) and generalized by Pardoux and Peng (1990) the following frame-
work is given.
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6.3 Stochastic Adjoint Equation

6.3.1 Framework of Calibration with SDE

Let the following calibration problem be considered for given market data xobs ∈ Rn

min
1

2
‖E[π(XT (u))]− xobs‖2

where X· is a solution of the stochastic integral equation

Xt(u) = X0 +

∫ t

0
a(s,Xs(u), u)ds+

∫ t

0
b(s,Xs(u), u)dWs, (6.1)

u ∈ Rp is the calibration parameter and π : Rd → Rn is a payo�-function.

Assumption 6.3.1. Let deterministic functions

a : [0,∞)×Rd → Rd, b : [0,∞)×Rd → Rd×m

be measurable in t ∈ [0,∞) and a(·, 0), b(·, 0) ∈ L2(0, T ;Rd) for any T > 0. Furthermore,
there exists a Lipschitz constant L > 0 such that

‖a(t, x)− a(t, y)‖+ ‖b(t, x)− b(t, y)‖ ≤ L‖x− y‖

for all t ∈ [0,∞), x, y ∈ Rd.

Since for the computation of adjoints, integration by parts is an essential step in the
derivation, Lemma 2.2.16 will play a crucial role in what follows.

Assumption 6.3.2. For each parameter vector u ∈ Rp let a(·, ·, u) and b(·, ·, u) satisfy
Assumption 6.3.1. Moreover, let a(t,X, ·) and b(t,X, ·) be continuously di�erentiable in
the variable u for each t ∈ [0, T ] and X ∈ Rd. Furthermore, let a(t, ·, u) and b(t, ·, u) be
continuously di�erentiable in the variable X for each t ∈ [0, T ] and u ∈ Rp. The partial
Fréchet-derivatives aX(t, ·, u) and bX(t, ·, u) are Lipschitz. Additionally, let π : Rd → Rn be
continuously di�erentiable.

To cast this problem into the framework of Section 2.4, one has to set

X = X, Y = X0, U = Rp,

and consider u and X as independent variables

Φ(X,u) =
1

2
‖E[π(XT )]− xobs‖2 (6.2)

coupled through the equality constraint g : X× U 7→ X0

g(X,u) = X· −X0 −
∫ ·

0
a(s,Xs, u)ds−

∫ ·
0
b(s,Xs, u)dWs = 0. (6.3)
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The Fréchet-derivative gx(·) : X×U 7→ L(X×U,X0) is given by the partial Fréchet-derivatives
in the next lemma.

Lemma 6.3.3. Let Assumption 6.3.2 hold. Then the map g : X × U 7→ X0 as de�ned in
(6.3) is continuously Fréchet-di�erentiable and its partial Fréchet-derivatives are given by

gX(X,u)∆X = ∆X· −
∫ ·

0
aX(s,Xs)∆Xsds−

∫ ·
0
bX(s,Xs)∆XsdWs,∆X ∈ X, (6.4)

gu(X,u)∆u = −
∫ ·

0
au(s,Xs)∆uds−

∫ ·
0
bu(s,Xs)∆udWs, ∆u ∈ U. (6.5)

Proof. First one shows, that g is continuously Fréchet-di�erentiable with respect to a X ∈ X.
To this let be ∆X ∈ X with |∆X|X → 0 and note that a, b are already Fréchet-di�erentiable
with using the Taylor formula

a(s,Xs −∆Xs) = a(s,Xs)− ax(s,Xs)∆Xs + o(∆Xs)

or
b(s,Xs −∆Xs) = b(s,Xs)− bx(s,Xs)∆Xs + o(∆Xs),

respectively. So one obtains using De�nition 2.1.9

|g(X −∆X,u)− g(X,u)− gX(X,u)∆X|X
=
(
||X −X0 −X0 + ∆X −X +X0 −∆X||2

+ E
[∫ T

0
||a(s,Xs −∆Xs)− a(s,Xs) + ax(s,Xs)∆Xs||2ds

]
+ E

[∫ T

0
||b(s,Xs −∆Xs)− b(s,Xs) + bx(s,Xs)∆Xs||2ds

])1/2

= |εX(∆X)|X

as long as

gX(x, u)∆X = ∆X· −
∫ ·

0
ax(s,Xs)∆Xsds−

∫ ·
0
bx(s,Xs)∆XsdWs.

Note that the Fréchet-di�erentiable with respect to u ∈ U of the constraint g : X× U 7→ X0

is very similar.

|g(X,u−∆u)− g(X,u)− gu(X,u)∆u|X = |εX(∆u)|X

�

Next one has to check the Assumption 2.4.4 concerning the surjectivity of the constraint.

Lemma 6.3.4. Let Assumption 6.3.2 hold. Then for each u ∈ U the map gX : X 7→ X0 as
de�ned in (6.4) is surjective and invertible.
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Proof. Due to the fact that the existence and uniqueness holds for the linear SDEs (Theorem
2.2.14), there exists a unique ∆X ∈ X for any given stochastic process V ∈ Y = X0 with

gX(X,u)∆X = ∆X· −
∫ ·

0
ax(s,Xs, u)∆Xsds−

∫ ·
0
bx(s,Xs, u)∆XsdWs = V. (6.6)

�

Finally one checks the Fréchet-derivative for the objective function Φ.

Lemma 6.3.5. The map Φ : X×U 7→ R de�ned in (6.2) is continuously Fréchet-di�erentiable
and its partial Fréchet-derivatives are given by

ΦX(X,u)∆X = (E[π(XT )]− xobs)>E[π′(XT )∆XT ] for all ∆X ∈ X, (6.7)

Φu(X,u)∆u = 0 for all ∆u ∈ U. (6.8)

Proof. Since Φ is independent of parameters u, one has Φu(X,u)∆u = 0. Further it can be
shown, that Φ is continuously Fréchet-di�erentiable with respect to an X ∈ X. To this let
be ∆X ∈ X and εX be a map with E[εX(∆X)]→ 0

|Φ(X −∆X,u)− Φ(X,u)− Φx(X,u)∆X|

=

∣∣∣∣12‖E[π(XT −∆XT )]− xobs‖2 −
1

2
‖E[π(XT )]− xobs‖2 − Φx(X,u)∆X

∣∣∣∣
=

∣∣∣∣12 < E[π(XT −∆XT )],E[π(XT −∆XT )] > − < E[π(XT −∆XT )], xobs >

− 1

2
< E[π(XT )],E[π(XT )] > + < E[π(XT )], xobs > −Φx(X,u)∆X

∣∣∣∣
=
∣∣− < E[π(XT )]− xobs,E[π′(XT )∆X(T )] > −Φx(X,u)∆X + E[o(∆XT )]

∣∣
= |εX(∆X)|,

where
π(XT −∆XT ) = π(XT )− π′(XT )∆XT + o(∆XT )

by using the Taylor formula. �

This establishes the framework of the following section.

6.3.2 Adjoint Equation de�ned with an Adapted BSDE

In this section the in�nite-dimensional theory of Section 2.4 is used to derive the adjoint equa-
tion as a solution of a backward stochastic di�erential equation. The proof of the following
theorem follows the same strategy as for optimal control problems with ordinary or partial
di�erential equations. Although the linear functional representing the Lagrange multiplier
lies in a dual space, one proposes a particular representation or "ansatz" for this functional
and then prove that it this particular functional satis�es all the requirements in equation
(2.73) and due to the uniqueness it is the desired linear functional.
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Theorem 6.3.6. Let Assumption 6.3.2 hold. The function φ : Rp → R de�ned as

φ(u) := Φ(X(u), u) =
1

2
‖E[π(XT (u))]− xobs‖2,

where X(u) solves a stochastic di�erential equation

Xt(u) = X0 +

∫ t

0
a(s,Xs(u), u)ds+

∫ t

0
b(s,Xs(u), u)dWs, (6.9)

has a gradient representation

∇φ(u) = E
[∫ T

0
P>s au(s,Xs(u), u) + Z>s bu(s,Xs(u), u)ds

]
(6.10)

where the pair (P (·), Z(·)) is the solution of on the linear adjoint BSDE

dPt = −(ax(t,Xt(u))>Pt + bx(t,Xt(u))>Zt)dt+ ZtdWt t ∈ [0, T ] (6.11)

PT = π′(XT )>(E[π(XT (u))]− xobs).

Note that the dimension of the Wiener process m = 1 is chosen here for simplicity and
comparability. Otherwise, equation (6.11) turns into

dPt = −

(
ax(t,Xt(u))>Pt +

m∑
ν=1

bνx(t,Xt(u))>Zνt

)
dt+ ZtdWt t ∈ [0, T ] (6.12)

corresponding to (2.19). Similarly, the gradient representation (6.10) turns into

∇φ(u) = E

[∫ T

0
P>s au(s,Xs(u), u) +

m∑
ν=1

Zνs
>bνu(s,Xs(u), u)ds

]
. (6.13)

Assumption 6.3.2 ensures the set of assumptions in Bender and Steiner (2013), and thus the
existence and uniqueness of an adapted solution (6.11) is assured as in Ma and Yong (1999)
and Bouchard and Touzi (2004). Notation is based on Zhang (2001).

Proof. The Lagrange multiplier l ∈ Y ? is uniquely de�ned in equation (2.73). This means
that for all V ∈ Y

l(V ) = −CX(X(u), u)∆X

where ∆X is de�ned as the solution of

gX(X(u), u)∆X = V.

For this purpose, with Lemma 6.3.5 one has for all V ∈ X0 using equation (6.7)

l(V ) = (E[π(XT (u))]− xobs)>E[π′(XT (u))∆XT ], (6.14)

90



6.3 Stochastic Adjoint Equation

where ∆X ∈ X using (6.6) is the solution of

∆Xt −
∫ t

0
ax(s,Xs)∆Xsds−

∫ t

0
bx(s,Xs)∆XsdWs = Vt, t ∈ [0, T ]. (6.15)

At this point, one has to assume that l ∈ (X0)
∗ is represented by some generator λ ∈

L2
F (0, T ;Rd), that is a drift of an stochastic process, which is represented via following

backward stochastic di�erential equation (BSDE) with a pair (P (·), Z(·)) ∈ M2[0, T ] ×
L2
F (0, T ;Rd×m) (see also (Yong and Zhou, 1999, De�nition 2.1 page 349), (Mou and Yong,

2007, (3.2) on page 545) or (Yong, 2010, (3.11) on page 4132))

Pt = PT +

∫ T

t
λ(s)ds−

∫ T

t
ZsdWs, (6.16)

such that for any stochastic process V ∈ X0

l(V ) := E[

∫ T

0
V >t λ(t)dt] + E[V >T PT ]. (6.17)

The proof is in a sense constructive, since it will be shown in the sequel, how the unknown
generator λ(·) and the unknown terminal condition PT have to be chosen such that equation
(6.14) holds.
To this end, one omits for the rest of the proof the dependence of X on u and set for brevity

Y· :=

∫ ·
0
ax(s,Xs)∆Xsds+

∫ ·
0
bx(s,Xs)∆XsdWs = ∆X· − V· ∈ X0. (6.18)

By using the sensitivity equation (6.15) one obtains

l(V ) = E[

∫ T

0
V >t λ(t)dt] + E

[
V >T PT

]
= E

[∫ T

0

(
∆Xt −

∫ t

0
ax(s,Xs)∆Xsds−

∫ t

0
bx(s,Xs)∆XsdWs

)>
λ(t)dt

]
+ E

[
V >T PT

]
= E[

∫ T

0
(∆Xt − Yt)>λ(t)dt] + E

[
V >T PT

]
In order to rewrite the term

∫ T
0 Y >t λ(t)dt Itô's formula (2.21) is used by setting

Gt = Yt, G0 = 0, g(s) = ax(s,Xs)∆Xs, γ(s) = bx(s,Xs)∆Xs,
Ht = Pt, H0 = P0, h(s) = λ(s), η = Zs.

(6.19)

Using Y ∈ X0, Lemma 2.2.18 and equation (6.18) one �nally obtains

l(V ) = E[

∫ T

0
∆X>t λ(t)dt+ Y >T PT − Y >0 P0 −

∫ T

0
(ax(t,Xt)∆Xt)

>Ptdt
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−
∫ T

0
(bx(t,Xt)∆Xt)

>Ztdt−
∫ T

0
((bx(s,Xs)∆Xs)

>Pt + Y >t Zt)dWt] + E[V >T PT ]

= E[

∫ T

0
∆X>t

(
λ(t)− ax(t,Xt)

>Pt − bx(t,Xt)
>Zt)

)
dt] + E[∆X>T PT ]

Recall that on the other hand the linear functional l by equation (6.14) should satisfy

l(V ) = (E[π(XT )]− xobs)>E[π′(XT )∆XT ] = E[∆X>T π
′(XT )>(E[π(XT )]− xobs)] (6.20)

To satisfy equation (6.14) the following equations have to hold

0 = E
[∫ T

0
∆X>t

(
λ(t)− (ax(t,Xt)

>Pt)− (bx(t,Xt)
>Zt)

)
dt

]
and (6.21)

PT = π′(XT )>(E[π(XT )]− xobs). (6.22)

Since the generator λ and the terminal condition PT in in the de�nition (6.17) of l are still
free to choose, the previous equation (6.20) is true, if

λ(t) = ax(t,Xt)
>P (t) + bx(t,Xt)

>Z(t),P− a.s. t ∈ [0, T ]

PT = π′(XT )>(E[π(XT )]− xobs)

holds. And so the following linear backward stochastic di�erential equation with a pair
(P (·), Z(·)) ∈M2[0, T ]× L2

F (0, T ;Rd×m) with terminal condition is de�ned

dPt = −(ax(t,Xt)
>Pt + bx(t,Xt)

>Zt)dt+ ZtdWt t ∈ [0, T ] (6.23)

PT = π′(XT )>(E[π(XT )]− xobs),

or, equivalently, corresponding to (6.16)

Pt = π′(XT )>(E[π(XT )]− xobs) +

∫ T

t
ax(s,Xs)

>Ps + bx(s,Xs)
>Zsds−

∫ T

t
ZsdWs.

Then (6.14) holds and since the linear functional l from Theorem 2.4.8 is unique, this is the
representation of it.

Next, the representation for the gradient of the objective function is considered. One
obtains from Theorem 2.4.8 and equation (6.5) that

∇φ(u)>∆u = l(gu(X(u), u)∆u) + Φu(X(u), u)>∆u
= l

(∫ ·
0 au(s,Xs, u)∆uds+

∫ ·
0 bu(s,Xs, u)∆udWs

)
+ 0

= E[
∫ T

0

(∫ t
0 au(s,Xs, u)∆uds+

∫ t
0 bu(s,Xs, u)∆udWs

)>
λ(t)dt]

+ E[
(∫ T

0 au(s,Xs, u)∆uds+
∫ T

0 bu(s,Xs, u)∆udWs

)>
PT ]

= E[
∫ T

0 Ỹ >t λ(t)dt+ Ỹ >T PT ]>∆u
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by setting Ỹt :=
∫ t

0 au(s,Xs, u)ds+
∫ t

0 bu(s,Xs, u)dWs. If one uses Itô's formula (2.21) again,
Lemma 2.2.18 and Y ∈ X0, one �nally obtains

∇φ(u)>∆u = E
[∫ T

0
Ỹ >t λ(t)dt+ Ỹ >T PT

]>
∆u

= E
[∫ T

0
au(s,Xs, u)>Psds+

∫ T

0
bu(s,Xs, u)>PsdWs

+

∫ T

0
bu(s,Xs, u)>Zsds+

∫ T

0
Ỹ >t ZsdWs − Ỹ >0 P0

]>
∆u

= E
[∫ T

0
au(s,Xs, u)>Ps + bu(s,Xs, u)>Zsds

]>
∆u

This completes the proof and establishes the formula (6.10). �

An alternative approach to derive such a BSDE is via Pontryagin neccesary conditions for
optimality or the stochastic maximum principle and its Hamiltonian solution as overviewed
by Bahlali et al. (2007) and Peng (1992). Roughly speaking this is done as follows by de�ning
the Hamiltonian as in Bahlali et al. (2007)

H(t,X, u, P ) = Ptb(t,X, u)− h(t,X, u) (6.24)

and assuming its solution given by (X̂, û). Consider the adapted pair of solution (Pt, Zt) of
the BSDE

dPt = −Hx(t, X̂t, ût, Pt)dt+ ZtdWt t ∈ [0, T ] (6.25)

PT = gx(X̂T ).

Under some smoothness assumptions the stochastic maximum principles states that

max
u∈U
H(t, X̂t, u, Pt) = Hu(t, X̂t, ût, Pt) a.e. t ∈ [0, T ], P− a.s. (6.26)

Among others Elliott and Kohlmann (1989a) used only this approach to get an adjoint
stochastic equation. By contrast, Theorem 6.3.6 presents another way in the sense of Section
2.4 by using the adjoint approach.
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6.4 Discretization: Adjoint Stochastic Di�erential Equation

Back to the speci�c calibration problem. In order to calibrate �nancial market model to the
market prices Ciobs with strikes Ki, maturities Ti and european payo� max(STi(x) −Ki, 0)
at time Ti, i = 1, . . . , I one obtains the following nonlinear least squares problem as P of
Chapter 3

min
x∈X

φ(u) := min
u∈U

1
2

I∑
i=1

(
Ci(u)− Ciobs

)2
where Ci(u) = e−rTiEQ [π(STi(u)−Ki)]

s.t. dYt(u) = a(x, Yt(u))dt+ b(x, Yt(u))dWt, Y0 > 0

0 ≤ t ≤ T, T := max
i=1,...,I

Ti,

(P)

where π(ξ) := max(ξ, 0), and X ⊂ RP is a suitable convex and compact set which for ex-
ample may result from imposing box constraints lp ≤ xp ≤ up , p = 1, ..., P on the model
parameters u as in Chapter 3. For further information about this issue the reader is re�ered
to Käbe et al. (2009) and Lörx (2013).

So a calibration requires at least gradient information for the objective function φ with
respect to parameters u ∈ U = RP . To get this gradient information one needs to discretize
above SDE and BSDE (6.11) to end up estimating gradient (6.10). For discretization of
such BSDEs the reader is referred to Bender and Denk (2007), Bender and Zhang (2008),
Bouchard and Touzi (2004) or Ma et al. (2002). Given a partition 0 = t0 < ... < tN = T this
suggests naturally for the BSDE (6.11)

dPt = −(ax(t,Xt)
>Pt + bx(t,Xt)

>Zt)dt+ ZtdWt t ∈ [0, T ]

PT = π′(XT )>(E[π(XT (u))]− xobs)

the following discretized approximation assuming that conditional expectations can be esti-
mated:

PtN = π′(YN )>(E[π(YN )]− xobs) (6.27)

Ztn = En
[
Ptn+1

∆Wn

∆tn

]
(6.28)

Ptn = En
[
Ptn+1 + (ax(tn, Yn)>Ptn+1 + bx(tn, Yn)>Ztn)∆tn

]
, (6.29)

where En[·] = E[·|Ftn ] is the conditional expectation, m = 1 the dimension of the Wiener
process and (Yn)n∈{0,...,N} the corresponding approximation of the forward process (Xt)0≤t≤T
via a standard discretization scheme of Sections 3.3.1 and 3.3.2.

The seminal Longsta�-Schwartz algorithm presented in the pioneering work Longsta� and
Schwartz (2001) gives an advice how to estimate conditional expectation in order to approx-
imate the solution of an BSDE. Second-order approximation schemes can be found in Crisan
and Manolarakis (2014). The above scheme is not directly implementable. Special care
needs to be taken for the computation of the involved conditional expectations as described
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in Crisan et al. (2010). Schemes with high order of convergence can be found in Gobet and
Labart (2007). An survey of the accuracy and complexity of such algorithms can be found
in Lemor et al. (2006). The rate of convergence is of order O(∆t).

By combining equations (6.29) with (6.28) and using the tower property and taking out
what is known (Lemma 2.2.4) one obtains

Ptn = En
[
Ptn+1 + ax(tn, Yn)>Ptn+1∆tn + bx(tn, Yn)>Ptn+1∆Wn

]
. (6.30)

This discretized approximation corresponds to equation (4.30). Afterwards the usual dis-
cretization of the gradient representation (6.10)

∇φ(u) = E
[∫ T

0
P>s au(s,Xs, u) + Z>s bu(s,Xs, u)ds

]
looks like

E

[
N−1∑
n=0

P>tn+1
au(tn, Yn, u)∆tn + Z>tnbu(tn, Yn, u)∆tn

]
. (6.31)

Subsequently, to compare this optimize-then-discretize gradient (6.31) with the corresponding
discretize-then-optimize gradient (4.29) of Theorem 4.2.7 the following corollary is presented.

Corollary 6.4.1. The discrete gradient (4.29) does not di�er from the discretized gradient
(6.31).

Proof. By using equations (6.28) and (6.29) and, in particular, the tower property (2.5) to
eliminate the conditional expectation one obtains

∇φ(u) = E

[
N−1∑
n=0

P>tn+1
au(tn, Yn, u)∆tn + Z>tnbu(tn, Yn, u)∆tn

]

= E

[
N−1∑
n=0

P>tn+1
au(tn, Yn, u)∆tn + En

[
P>tn+1

∆Wn

∆tn

]
bu(tn, Yn, u)∆tn

]

= E

[
N−1∑
n=0

P>tn+1au(tn, Yn, u)∆tn + P>tn+1bu(tn, Yn, u)∆Wn

]

Furthermore, by approximating the expectation via Monte-Carlo method and making use of

the fact that Ptn = En[λn], Ztn = En
[
λn+1

∆Wn
∆tn

]
and yn = Yn pathwise for all n = 1, . . . , N

one �nally obtains the corresponding discrete gradient (4.29) as

1

M

M∑
m=1

N∑
n=1

(λmn )>
[
∂

∂u
a(tn−1, y

m
n−1, u)∆tn−1 +

∂

∂u
b(tn−1, y

m
n−1, u)∆Wm

n−1

]
�
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This result concludes this thesis in an elegant manner. Although, the discretization of
the solution of an BSDEs need conditional expectations, a closer look reveals, that the
expensive computations of conditional expectations are not necessary in the case of gradient-
based calibration routines. In conclusion, Theorem 4.2.6 cleverly achieves a gradient-based
calibration method only with the most necessary computations. This forti�es the adjoint
method in calibration of stochastic �nancial models.
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