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Abstract

This thesis considers the general task of computing a partition of a set of
given objects such that each set of the partition has a cardinality of at least a
fixed number k. Among such kinds of partitions, which we call k-clusters, the
objective is to find the k-cluster which minimises a certain cost derived from
a given pairwise difference between objects which end up the same set. As
a first step, this thesis introduces a general problem, denoted by (‖·‖, f)-k-
cluster, which models the task to find a k-cluster of minimum cost given
by an objective function computed with respect to specific choices for the cost
functions f and ‖·‖. In particular this thesis considers three different choices
for f and also three different choices for ‖·‖ which results in a total of nine
different variants of the general problem (‖·‖, f)-k-cluster.

Especially with the idea to use the concept of parameterised approxima-
tion, we first investigate the role of the lower bound on the cluster cardinalities
and find that k is not a suitable parameter, due to remaining NP-hardness even
for the restriction to the constant 3. The reductions presented to show this
hardness yield the even stronger result which states that polynomial time ap-
proximations with some constant performance ratio for any of the nine variants
of (‖·‖, f)-k-cluster require a restriction to instances for which the pairwise
distance on the objects satisfies the triangle inequality.

For this restriction to what we informally refer to as metric instances,
constant-factor approximation algorithms for eight of the nine variants of
(‖·‖, f)-k-cluster are presented. While two of these algorithms yield the
provably best approximation ratio (assuming P 6= NP), others can only guar-
antee a performance which depends on the lower bound k.

With the positive effect of the triangle inequality and applications to facility
location in mind, we discuss the further restriction to the setting where the
given objects are points in the Euclidean metric space. Considering the effect
of computational hardness caused by high dimensionality of the input for other
related problems (curse of dimensionality) we check if this is also the source of
intractability for (‖·‖, f)-k-cluster. Remaining NP-hardness for restriction
to small constant dimensionality however disproves this theory.

We then use parameterisation to develop approximation algorithms for
(‖·‖, f)-k-cluster without restriction to metric instances. In particular, we
discuss structural parameters which reflect how much the given input differs
from a metric. This idea results in parameterised approximation algorithms
with parameters such as the number of conflicts (our name for pairs of objects
for which the triangle inequality is violated) or the number of conflict vertices
(objects involved in a conflict). The performance ratios of these parameterised
approximations are in most cases identical to those of the approximations for
metric instances. This shows that for most variants of (‖·‖, f)-k-cluster
efficient and reasonable solutions are also possible for non-metric instances.



Zusammenfassung Deutsch

Die Arbeit beschäftigt sich mit dem abstrakten Clustering-Problem, für eine
gegebene Menge von Objekten eine nach gewissen Qualitätsmaßen gemessene
beste Partition zu bestimmen, sodass jede Teilmenge dieser eine gegebene
feste Mindestkardinalität k besitzt. Als Qualitätsmaß werden insgesamt neun
verschiedene konkrete Maßfunktionen diskutiert, die alle mit einer gegebenen
paarweisen Distanz d auf den Objekten arbeiten. Für die neun Probleme, die
sich daraus ergeben, werden Lösungsverfahren diskutiert, die hauptsächlich
Methoden aus der parametrisierten und approximativen Algorithmik nutzen.

Konkret wird zunächst die Komplexität dieser Probleme in Bezug auf die
Mindestkardinalität k als Parameter diskutiert. Es wird gezeigt, dass alle
neun Problemvarianten bereits für die Einschränkung auf k = 3 NP-schwer
sind, was nicht nur exakte polynomielle Lösbarkeit sondern auch effiziente
parametrisierte Algorithmen für diese Parameterwahl sehr unrealistisch macht.
Die Reduktionen, die für diese Komplexitätsschranken erstellt werden, zeigen
außerdem, dass Approximierbarkeit nur dann möglich ist, wenn die gegebene
Distanzfunktion d die Dreiecksungleichung erfüllt.

Mit Einschränkung auf Dreiecksungleichung werden für acht der neun Prob-
lemvarianten polynomielle Approximationsalgorithmen mit beweisbarer Güte
vorgestellt. Zwei dieser Algorithmen garantieren eine bestmögliche Approxi-
mationsgüte (unter der Annahme P 6= NP), für die restlichen sechs lässt sich
dagegen nur eine Güte beweisen, die von k abhängt.

Des weiteren wird diskutiert, ob eine Einschränkung auf Instanzen im Eu-
klidischen Raum zu leichterer Lösbarkeit führen kann. Insbesondere im Hin-
blick auf den sog. curse of dimensionality, wird untersucht, ob sich Vektoren
in niedrig dimensionalen Räumen effizient partitionieren lassen. Es stellt sich
heraus, dass NP-Schwere für die meisten der neun Problemvarianten auch für
Punkte im zwei- oder drei-dimensionalen Raum bestehen bleibt, sogar in Kom-
bination mit einer Einschränkung auf konstante Werte für k.

Um Probleminstanzen zu betrachten, für die d die Dreiecksungleichung
verletzt, muss, auch für approximative Lösungen mit beweisbarer Güte, mehr
als polynomielle Laufzeit investiert werden. Mit einer Parametrisierung nach
der Anzahl von Konflikten (Objektpaare, die die Dreiecksungleichung verlet-
zen), lassen sich die zuvor für eingeschränkte Instanzen entwickelten poly-
nomiellen Verfahren verallgemeinern. Konkret liefert dies Algorithmen, die
beweisbare Approximationsgüten besitzen und deren Laufzeit polynomiell in
der Eingabegröße und lediglich exponentiell in der Anzahl von Konflikten ist,
sog. fixed parameter tractability für die Konfliktanzahl als Parameter.

Als weitere Möglichkeit mit Verletzung der Dreiecksungleichung umzuge-
hen, wird eine Relaxierung dieser um einen festen Faktor α diskutiert. Auch
für diese Sichtweise lassen sich die zuvor entwickelten Verfahren verallgemein-
ern. Dies führt zu rein polynomiellen Approximationsalgorithmen, deren Güte
sich proportional zu α verschlechtert.
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1 Introduction

Clustering problems arise in different areas in very diverse forms with the only
common objective of finding a partition of a given set of objects into, by some
measure, similar parts. A summary which gives an overview of the clustering
concepts developed over the years can be found in [44]. Most models consider
variants of the classical k-Means or k-Median problem in the sense that k
is a fixed given integer which determines the number of clusters one searches
for. In some applications however it is not necessary to compute a partition
with exactly k parts, sometimes it is not even clear how to reasonably choose
a number for k. We want to discuss a clustering model which does not fix the
number of clusters but instead requires that each cluster contains at least k
objects. This constraint can be seen as searching for a clustering into parts
of a specified minimum significance. For general classification or compression
tasks, one might consider small clusters as disposable outliers.

One concrete scenario for this type of partitioning is Load Balanced
Facility Location [40], a variant of the facility location problem where one
is only interested in building facilities which are profitable. In this scenario, a
facility is not measured by the initial cost of building it but by its profitability
once it is opened. Consequently, it is only reasonable to build a facility if there
are enough (but maybe not too many) customers who use it but aside from
this constraint we can build as many facilities as we want.

The considered cardinality constraint also models the basic principle of
“hiding in a crowd” introduced by the concept of k-anonymity [56]. Anonymity
for an individual record x representing a person (including or linking to poten-
tially sensitive information) in this sense, is provided by the existence of at least
k − 1 other records which are indistinguishable from x. First clustering given
records into sets each of minimum cardinality k followed by some distortion
step which makes records in the same set indistinguishable is one possibility for
algorithmic anonymisation. Depending on the type of distortion, this concept
introduces formal problems such as r-Gather [4], k-Member Clustering
[16] and Microaggregation [27].

In the context of community detection in (social) networks, clustering mod-
els are usually also applied without fixing the number of clusters. The objective
there is to determine sets which are highly connected, see for example the ab-
stract model of dense graph partition, as defined in [23] for such tasks. As
clusters of a small cardinality do not offer the possibility of high connectivity,
the objective of community detection appears closely related to our request
for a minimum cardinality.

Collaborative filtering for recommender systems is also often based on clus-
tering; the Recommender Systems Handbook [55] features a whole chapter on
k-Means and related techniques. The purpose of a recommender system is
to predict the interest of a set of given users for a set of given items based
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on ratings these users have given for a subset of the items in the past. Clus-
tering techniques are used in this regard, to partition either the set of users
into groups with similar interests, or the set of items into groups with simi-
lar properties. Especially for the approach which partitions the set of users,
it seems that a clustering with lower bound on the cardinality of each set is
also a reasonable model for this task.

This thesis considers the general task of computing a clustering of given
objects into sets of minimum cardinality k ∈ N, while minimising a certain
cost derived from the given pairwise difference between objects which end up
in the same set. We begin by introducing an abstract framework to model such
types of problems. For this purpose, we define the generic problem (‖·‖, f)-k-
cluster and specifically discuss nine variants of it, characterised via three
different choices for the local cost function f and the global cost ‖·‖. Before
we start with the formal definition of this family of problems, we introduce the
formal notation used throughout the thesis.

1.1 Notation

Although the notation in this thesis is mostly standard, this section lists the
commonly used definitions for clarity. Some further notations are only used
in a specific section and therefore are introduced where they are needed.

When estimating running times of algorithms we use the O-notation to
suppress constants. For non-polynomial algorithms, we further use the O∗-
notation to also suppress polynomial factors. For integer n, Bn denotes the nth

Bell number, which can be bounded by Bn <
(

0.792n
log(n+1)

)n
[12]. The function

name log is used to denote the logarithm with base 2.

1.1.1 Graph Theory Terminology

We usually use G = (V,E) to denote an undirected graph given by a set of
vertices V and a set of edges E ⊆ V × V . For u, v ∈ V we denote the edge
connecting u to v by {u, v}; u, v and {u, v} are also called adjacent. Our
graphs are always loopless, so {u, u} /∈ E for all u ∈ V . The degree of a vertex
v ∈ V is the number of edges (and hence also vertices) adjacent to v, formally
|{u ∈ V : {u, v} ∈ E}|.

For a clear distinction we always use the term network to refer to directed
graphs and also use the term arc instead of directed edge and denote those by
rounded parenthesis, i.e., an arc from u to v is denoted by (u, v).

For a given graph G = (V,E) and any set V ′ ⊆ V , we use G[V ′] to denote
the graph induced by V ′, formally defined by the graph over vertex set V ′ and
edge set {{u, v} ∈ E : u, v ∈ V ′}. We call a set V ′ ⊆ V an independent set in
G, if G[V ′] contains no edges. A set V ′ ⊆ V is called a vertex cover for G, if
V \ V ′ is an independent set.
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A path (of length s) in a graph G = (V,E), is a sequence of pairwise distinct
vertices v1, . . . , vs+1 ∈ V such that {vi, vi+1} ∈ E for all i ∈ {1, . . . , s}. We
call a graph connected, if any two vertices u and w in it can be connected, i.e.,
it exists a path v1, . . . , vs+1 with v1 = u and vs+1 = w.

A graph G = (V,E) is called a forest, if for all u,w ∈ V which are connected
in G, the path connecting u to w is unique. If G is a forest and also connected,
G is also called a tree. A tree which only contains at most one vertex of degree
more than 1 is called a star.

For a vertex set V , the complete graph on V which contains all edges
{u, v}, u, v ∈ V with u 6= v. As we fixed all our graphs to be loopless, we will
sometimes use the Cartesian product V × V to denote the set of edges of the
complete graph on V . A vertex set V ′ ⊆ V for which G[V ′] is the complete
graph on V ′ is called a clique.

For more detailed information on graph theory, we refer to standard text-
books like [14, 25].

1.1.2 Approximation Terminology

An optimisation problem P is defined by a quadruple (I, S,m, goal) with I
being the set of instances of P , S being a function which maps instances
x ∈ I to the set of feasible solutions for x, m being the objective function,
mapping pairs (x, y) such that x ∈ I and y ∈ S(x) to a positive rational
number and goal ∈ {min,max}. For every x ∈ I, we denote by m∗(x) the
optimum value for P on x, formally m∗(x) := goal{m(x, y) : y ∈ S(x)}. The
class NPO contains all optimisation problems P = (I, S,m, goal) for which
I is recognisable in polynomial time, there exists a polynomial q such that
size(y) ≤ q(size(x)) for each x ∈ I and y ∈ S(x) and such that for all y′ with
size(y′) ≤ q(size(x)) it is decidable in polynomial time whether y′ ∈ S(x),
and m is computable in polynomial time.

An algorithm A is called an r-approximation algorithm for an optimisa-
tion problem P for some r > 1 if for every x ∈ I with S(x) 6= ∅, A com-
putes in time polynomial in the size of x a solution y ∈ S(x) such that

r ≥ max{ m∗(x)
m(x,y)

, m(x,y)
m∗(x)

}. The class APX contains all problems from NPO for
which there exists an r-approximation algorithm for some r > 1.

The probably most obvious way to connect classical complexity results to
approximability are so-called gap-reductions. For a decision problem D and an
minimisation problem P = (I, S,m,min), a pair of polynomially computable
functions (f, c) is a gap-reduction with gap α if f maps instances of D to
instances of P and c maps instances of D to a natural number such that for
all instances x of D:

• m∗(f(x)) ≤ c(x) if x is a “yes”-instance of D, and

• m∗(f(x)) ≥ c(x)(1 + α) if x is a “no”-instance of D.
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It is not hard to see that if D is NP-hard, there exists no approximation
algorithm with performance ratio α− ε for any ε > 0 for D, unless P = NP.

For two problems P1, P2 ∈ NPO with Pj := (Ij, Sj,mj, optj), j ∈ {1, 2}, an
L-reduction from P1 to P2 is a quadruple (f, g, β, γ) such that

• f is a function from I1 to I2 which is computable in polynomial time and
satisfies S2(f(x)) 6= ∅ for all x ∈ I1 such that S1(x) 6= ∅.

• g is a function mapping for each x ∈ I1, any pair (x, y) with y ∈ S2(f(x))
to a solution in S1(x) in polynomial time.

• β is a constant such that m∗2(f(x)) ≤ β ·m∗1(x) for each x ∈ I1.

• γ is a constant such that for each x ∈ I1 and y ∈ S2(f(x)) the following
inequality holds: |m∗1(x)−m1(x, g(x, y))| ≤ γ · |m∗2(f(x))−m2(f(x), y)| .

For minimisation problems (goal = min), L-reduction preserves membership
in APX. Since they further imply PTAS-reductions, L-reductions can be used
to show hardness for APX. Since APX 6= PTAS, unless P = NP, APX-hardness
of a problem is often interpreted as a strong indication that there exists no
polynomial time approximation scheme. For more detailed information about
approximation algorithms see [9].

1.1.3 Parameterised Complexity Terminology

A parameterised problem is a decision problem P with instances (x, k), where x
is the actual input and k ∈ N is the parameter. Such a parameterised problem
is called fixed parameter tractable if it can be solved with an algorithm which
requires a running time in O(g(k) · f(n)), for a computable function g and
polynomial f ; we will use the term fpt-time to express running times of this
type. The class of fixed parameter tractable parameterised problems is denoted
by FPT.

Above the class FPT, parameterised problems are characterised in the W-
hierarchy and above this, XP denotes the class of parameterised problems
that are solvable in time O(nf(k)) (where n is the size of the instance); we will
informally use xp-time to describe running times of this type. These complexity
classes relate in the following way:

FPT ⊆ W[1] ⊆ W[2] · · · ⊆ W[P ] ⊆ XP

The inclusions above are believed to be strict, most notably in this regard, the
exponential time hypothesis implies FPT 6= W[1] by [18]. Completeness for
these complexity classes is defined with respect to fpt reductions. A (classical)
many-one reduction R from a parameterised problem to another is an fpt
reduction, if the parameter of the target problem is bounded in terms of the
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parameter of the source problem, i. e., there is a recursive function h : N→ N
such that R(x, k) = (x′, k′) implies k′ ≤ h(k).

If a parameterised problem is NP-hard for the parameter fixed to a constant,
then it is not in FPT, unless NP = P. In such a case, it follows that the
parameterised problem is hard for the complexity class called para-NP, which
is defined as the class which contains all parameterised problems that can be
solved by a non-deterministic algorithm with a running time in O(g(k) ·f(n)),
for a computable function g and polynomial f . Although XP and para-NP are
not comparable with respect to inclusion (which is why we did not include the
class para-NP in the inclusion chain above), it is not hard to see that problems
which are para-NP-hard are not in XP, unless P = NP.

For more details about parameterised complexity see [22, 30, 38].

1.1.4 Parameterised Approximation Terminology

In most definitions (see for example [17, 20]), parameterised approximation
is defined for, in a sense, very specific decision versions of optimisation prob-
lems. There the parameterised version of an optimisation problem given by
(I, S,m, goal) is the decision problem P containing instances (x, k), where
x ∈ I and k ∈ N is the parameter which is interpreted as a bound on the opti-
mum value, i.e., the answer to instance (x, k) is “yes” if and only if m∗(x) ≤ k
for goal = min (m∗(x) ≥ k for goal = max, resp.).

A parameterised approximation algorithm with ratio r for a parameterised
approximation problem P is an algorithm which is guaranteed to compute on
each input (x, k) which is a “yes”-instance, a solution y ∈ S such that

m(x, y)

{
≤ r · k if goal = min

≥ 1
r
· k if goal = max

with a running time in O(g(k) · f(n)), for a computable function g and poly-
nomial f . For an input (x, k) which is a “no”-instance, the behaviour of the
parameterised approximation algorithm is not fixed; usually one just asks that
if no solution is computed, the algorithm returns some sort of reject notice.
This rejection of “no”-instances seems a little inconvenient considering that
sometimes the algorithm will not give a solution for an instance (x, k) even if
S(x) is not empty. For minimisation problems this is only a technical issue
as one can equivalently consider the parameter k to be implicitly given by the
optimum value, see [20].

In this thesis however, we will only consider structural parameterisation
which does not fit into this definition; Section 2.3.2 will very clearly discuss
why the optimum value is not a reasonable choice of parameter. The defini-
tion of fpt-approximation algorithm with parameter κ discussed in [49], asks for
an approximation algorithm, not for a decision but an optimisation problem,
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which runs in fpt-time, i.e., with running time in O(g(κ) · f(n)), for a com-
putable function g and polynomial f . We prefer this view, as it captures any
kind of parameterisation. Still, to avoid confusion with the term parameterised
approximation algorithm as defined for standard parameterisation, we will al-
ways state our results without this notion but instead talk about asymptotic
worst-case running times of approximation algorithms measured with respect
to some parameter. Especially for negative results, there does not seem to ex-
ist a unified notion of parameterised approximation hardness, so for these kinds
of results, we will not use hardness notions but link the existence of certain
parameterised approximations to the equivalence of complexity classes.

1.2 General Abstract Model

Our goal here is to design a model which captures the task of partitioning a
set of n given objects into sets of cardinality at least k in a very general way
while offering close connections to other well-known combinatorial problems.
We represent the objects as vertices of an undirected graph G = (V,E). A
feasible solution is any partition P1, . . . , Ps of V such that |Pi| ≥ k for all
i ∈ {1, . . . , s}. In the following we will refer to such a partition as k-cluster.
Recall that, in contrast to the classical clustering problems like s-Means or
s-Median, the number of clusters s is not necessarily part of the input.

1.2.1 Distance

Of course, one does not search for just any k-cluster but for a partition which
preferably only combines objects which are in some sense “close”. This similar-
ity can be very hard to capture and the appropriate way to measure it highly
depends on the clustering task and the structure of the input. We therefore
consider an arbitrary distance function d : V ×V → Q+ which for any two ob-
jects u, v ∈ V represents the distortion which is caused by combining u and v.
This general view allows to simultaneously study many different measures for
dissimilarity.

In our model, the distance d is defined via a given edge-weight function
wE : E → Q+. For two vertices u, v ∈ V with u 6= v we define d(u, v) :=
wE({u, v}) if {u, v} ∈ E, and if {u, v} /∈ E, the distance d(u, v) is defined by
the shortest path, with respect to wE, from u to v in G. For simplicity we
always extend d to a function on the whole set V ×V by defining d(v, v) = 0 for
all v ∈ V . This definition of d captures the possibility of missing information
about pairwise distances, as often encountered in practical scenarios.

We will say that d satisfies the triangle inequality if d(u, v) ≤ d(u,w) +
d(w, v) for all u, v, w ∈ V . Observe that our definition allows for distances d
which do not satisfy this property, a simple example is the complete graph
over V = {u, v, w} with wE({u, v}) = wE({u,w}) = 1 and wE({v, w}) = 3.
Violations of the triangle inequality are only possible for distances defined by
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an edge. Edges hence do not necessarily imply similarity but can reflect a
difference greater than the shortest path between two objects and make it
more unattractive to cluster them together; very different from the multiedges
introduced in the hypergraph model for k-anonymous clustering from [61],
where hyperedges reflect similar groups.

1.2.2 Objective Function

The overall cost of a partition P1, . . . , Ps is always in some sense proportional to
the dissimilarities within each set or cluster P . On an abstract level, the global
cost induced by a partition P1, . . . , Ps is calculated by first computing the local
cost of each cluster and second by combining all this individual information.
We discuss three different measures for the local cost caused by a cluster P :

Radius: rad(P ) := min{max{d(x, y) : y ∈ P} : x ∈ P}.
Diameter: diam(P ) := max{max{d(x, y) : y ∈ P} : x ∈ P}.
Average Distortion: avg(P ) := |P |−1 ·min{∑y∈P d(x, y) : x ∈ P}.
In the following, d always denotes the distance induced on the whole graph;
hence we consider for u, v ∈ P with {u, v} /∈ E as distance d(u, v) the shortest
path from u to v in G even if this path contains vertices which are not in
P . For the local cost functions average distortion or radius we will sometimes
call a vertex x ∈ P a central vertex for cluster P , if avg(P ) = 1

|P |
∑

y∈P d(x, y)

or rad(P ) = max{d(x, y) : y ∈ P}, respectively. Observe that central vertices
with respect to average distortion and radius may be different; in the cluster
P = {x, y, x1, y1, y2} with wE({y, x}) = wE({y, y1}) = wE({y, y2}) = 1 and
wE({x, x1}) = 2, the vertex x is the only central vertex with respect to radius
and y is the only central vertex with respect to average distortion.

The overall cost of a k-cluster P1, . . . , Ps is given by a combination of the
local costs f(P1), . . . , f(Ps) with f ∈ {rad, diam, avg}. In order to model the
most common problem versions we consider the following three possibilities:

Worst Local Cost: Maximum cost among all clusters, formally computed by
max{f(Pi) : 1 ≤ i ≤ s}, denoted by ‖·‖∞ and informally often referred
to as ∞-norm or infinity-norm.

Worst Weighted Local Cost: Maximum cost among all clusters, weighted
by their sizes computed by max{|Pi|f(Pi) : 1 ≤ i ≤ s}, denoted by ‖·‖w∞ ,
informally often referred to as weighted ∞- or infinity-norm.

Accumulated Weighted Local Cost: The sum of the local costs of all clus-
ters, weighted by their sizes, computed by

∑s
i=1 |Pi|f(Pi), denoted by

‖·‖w
1
and informally often referred to as 1-norm.

(Structural properties discussed in Section 2.1 will explain why we do not
consider unweighted 1-norm.)
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1.2.3 Problem Family

Any choice of f ∈ {rad, diam, avg} and ‖·‖ ∈ {‖·‖w
1
, ‖·‖w∞ , ‖·‖∞} yields a

different problem. For a fixed k ∈ N, the general optimisation problem is
formally given by the set I being pairs (G, k) of undirected graphs G with
edge-weight function and integer k, S(G, k) contains all k-clusters for G, m is
the composition of ‖ · ‖ with f and opt is min. More informally, we want to
think of the following class of problems:

(‖·‖, f)-k-cluster

Input: Graph G = (V,E) with edge-weight function wE : E → Q+, k ∈ N.

Output: A k-cluster P1, . . . , Ps of V for some s ∈ N, which minimises
‖(f(P1), . . . , f(Ps))‖.

We will use the name (‖·‖, f)-k-cluster to also refer to the natural corre-
sponding decision problem, i.e., given a graphG with edge-weights, an integer k
and a bound D ∈ Q+, does there exist a k-cluster P1, . . . , Ps of V for some
s ∈ N such that ‖(f(P1), . . . , f(Ps))‖≤ D.

Also, we denote the global cost of an optimal solution for (‖·‖, f)-k-
cluster on G with distance d by opt(G, d, ‖·‖, f, k). Sometimes we will
discuss the restriction of a version of (‖·‖, f)-k-cluster to a fixed value for k.
In this case we denote the problem by writing this fixed value instead of k, for
example, for k fixed to 2 we write (‖·‖, f)-2-cluster.

Some of the variants of (‖·‖, f)-k-cluster are known under different
names. (‖·‖w

1
, diam)-k-cluster is equivalent to k-member clustering [16]

and with d chosen as the Euclidean distance, (‖·‖∞ , rad)-k-cluster is the
problem r-Gather [4] (with r = k). The variant (‖·‖w

1
, avg)-k-cluster

models Load Balanced Facility Location [40] with unit demands and
without facility costs. Further, again with d being the Euclidean distance,
(‖·‖w

1
, avg)-k-cluster is equivalent to Microaggregation [27].

Choosing between the cluster measures and norms allows adjustment for
specific types of objects and different forms of output representation. The norm
decides if the desired output has preferably uniformly structured clusters with
or without uniform cardinalities (∞-norm) or builds clusters of object-specific
irregular structure (1-norm). For cohesive clustering, the diameter measure
is more suitable for the choice of f . Average distortion is best used when
the output chooses one representative of each cluster and projects all other
objects in this cluster to it; a scenario which for example occurs for facility
location type problems. If the output does not project to one representative but
considers clusters as circular areas, the radius measure is the most reasonable
choice for f . Optimal k-clusters may differ for different choices of ‖·‖ and/or f .
Still, we will see that there are also very useful similarities.
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1.3 Content of this Thesis

This thesis considers the general task of computing a clustering of given objects
into sets of minimum cardinality k ∈ N as formally defined by the problem
family (‖·‖, f)-k-cluster in the previous section.

At first, we investigate the role of the bound k on the cardinality in Sec-
tion 2. We will see that the cardinality constraint comes with properties which
are different from clustering tasks which fix the number of clusters. First,
we compare the nine problem variants of (‖·‖, f)-k-cluster with respect to
structural differences. These considerations reveal some interesting differences
for the possible choices of local and global cost. We then classify the com-
plexity for (‖·‖, f)-k-cluster restricted to small values of k by identifying
polynomial time solvable cases with connections to matching-type problems
and deriving NP-hardness results for the remaining cases. These results will
not just show that k is not a very helpful choice for parameterisation but also
that the triangle inequality for the distance d plays a key role for efficient
solvability of (‖·‖, f)-k-cluster, especially with respect to approximations.

In Section 3 we therefore first consider finding approximation techniques
for the restriction to distances d which satisfy the triangle inequality. We
there use a large variety of connections to other graph problems, including the
positive results from Section 2, to develop approximation algorithms for this
restriction of most variants of (‖·‖, f)-k-cluster1.

The positive effect of the triangle inequality raises the natural question if
the restriction to even more specific distances d can improve solvability further.
The most natural and commonly discussed distance is probably the Euclidean
distance and we will hence consider a restriction of (‖·‖, f)-k-cluster to
Euclidean space in Section 4. As for such geometric problems, the dimension
of the space is usually considered as the source of computational hardness
(curse of dimensionality), we investigate if restriction of this dimension can
yield improvements. For most variants of (‖·‖, f)-k-cluster it will however
follow that NP-hardness remains even for a small constant dimension.

In Section 5 we consider distances which violate the triangle inequality in
some specific way, that is, either only by a limited magnitude or only for a cer-
tain number of vertices. There we will show that many results from Section 3
can be generalised to α-relaxed triangle inequality and, with the concept of
parameterised approximation, also partially translate with a parameterisation
by conflicts (pairs of vertices which violate the triangle inequality).

In Section 6 we summarise the specific results achieved in the thesis and
give further research directions and a list of open problems.

We implemented some of the (parameterised) approximation algorithms to
test their behaviour in practice. Throughout the thesis, we will sometimes
refer to these tests and mention the insights they brought to the project.

1Parts of Sections 2 and 3 were published in [1] and [2].
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2 The Role of the Lower Bound k

Especially with the objective of parameterisation in mind, a first interesting
question concerning our problem family (‖·‖, f)-k-cluster is the role of the
minimum cardinality k. We will see that this cardinality constraint generates
properties which differ greatly from those of classical clustering models. Fur-
ther, it turns out that the seemingly natural restriction to distances d which
satisfy the triangle inequality plays an important role for structural properties
and especially for approximability.

As a first step, we will investigate if there are bounds for the maximum
cardinality of a cluster in an optimal solution for the different variants of
(‖·‖, f)-k-cluster. Especially the choice of local cost function will play an
important role for these results. But also the restriction to instances for which
the distance d satisfies the triangle inequality is relevant for these bounds. We
then consider fixed values for k, 2 and 3, to be precise, to see if a restriction
to these yields tractable problems. For k larger or equal to 3, we will see
that all variants of (‖·‖, f)-k-cluster are NP-hard, even with restriction
to instances for which the distance d satisfies the triangle inequality. For
(‖·‖, f)-2-cluster we find that five of the nine variants are polynomial time
solvable and a sixth one becomes polynomial time solvable when restricted to
instances where d satisfies the triangle inequality.

2.1 Structural Properties of Optimal Partitions

The diverse behaviour for different choices of f and ‖·‖ is nicely displayed
in the cluster cardinalities of optimal solutions. For the example G = (V,E)
with V = {c, v1, v2, . . . , vn} and E = {{vi, c} : 1 ≤ i ≤ n} with wE({c, vi}) = 1
for all i, we find that for radius and average distortion, the single cluster V is
the optimal solution with ‖·‖∞ or ‖·‖w

1
. If wE({vi, vj}) = D for some large

value D, any k-cluster with more than one set is arbitrarily worse. For the
diameter measure however we know that in general diam(S) ≤ diam(P ) for all
sets S ⊆ P , which immediately yields:

Corollary 1

From any given solution P for an instance of (‖·‖, diam)-k-cluster it is
possible to compute in polynomial time a solution P′ of the same (or smaller)
global cost for which |P | < 2k for all P ∈ P′, for all choices of k ∈ N and
‖·‖ ∈ {‖·‖w

1
, ‖·‖w∞ , ‖·‖∞}.

For radius we only have the weaker property that rad(S) ≤ rad(P ) for
all sets S ⊆ P such that a central vertex for P with respect to radius is
contained in S. Average distortion lacks such monotone behaviour entirely.
Observe that a large cardinality of a cluster can somehow “smooth over” some
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larger distances, for example for three vertices u, v, w with wE({u, v}) = 3
and wE({u,w}) = 1, adding w to the cluster {u, v} decreases the average
distortion from 3

2
to 4

3
. Examples like these show that, even with triangle in-

equality for d, we cannot in general restrict the maximum cluster cardinality
for (‖·‖∞ , avg)-k-cluster, which is a bit undesirable, given that most ap-
plications also prefer to have some upper bound on the cardinality (not too
many customers). In a realistic scenario, we encounter sets of cardinality 2k or
larger in optimal solutions for (‖·‖∞ , avg)-k-cluster, if they contain an ob-
ject (often called outlier) which has a large distance from all objects. Deleting
such outliers before computing clusters is generally a reasonable pre-processing
step, which makes large clusters in (‖·‖∞ , avg)-k-cluster unlikely.

In general, we would like the computation of global cost to somehow favour
finer partitions in order to exploit the difference to clustering models which
bound the number of sets. This is the reason why we do not consider the
unweighted 1-norm, i.e., ‖ (f(P1), . . . , f(Ps)) ‖1 :=

∑s
i=1 f(Pi). For the exam-

ple V = {v1
i , v

2
i : 1 ≤ i ≤ n} with wE({v1

i , v
2
i }) = 1 for i ∈ {1, . . . , n} and

wE({vhi , vkj }) = n − 1 for i, j ∈ {1, . . . , n} with i 6= j and h, k ∈ {1, 2}, the
best 2-cluster with respect to ‖·‖1 with any choice for f is V itself, while the
most reasonable 2-cluster for most applications one can think of for this graph
is obviously {{v1

i , v
2
i } : 1 ≤ i ≤ n}. This makes ‖·‖1 very unattractive for our

clustering purposes. Observe that triangle inequality does not improve this
behaviour, since the distance d for this example satisfies it.

Triangle inequality however has the strong advantage that we can restrict
(for most variants of (‖·‖, f)-k-cluster without loss of generality) the set of
solutions to only contain clusters of a maximum cardinality of 2k − 1.

Theorem 2

For any k ∈ N and any graph G with edge-weights for which the induced dis-
tance d satisfies the triangle inequality, it is possible to compute in polynomial
time from any given k-cluster P for G, a k-cluster P′ for which |P | < 2k for
all P ∈ P′ and such that:

• P′ has the same global cost as P with respect to ‖·‖w∞ and rad or avg.

• P′ has at most twice the global cost of P with respect to ‖ · ‖w
1

and rad
or avg, and also with respect to ‖·‖∞ and rad.

Proof. Consider a k-cluster P containing a cluster P of cardinality s = tk + r
for some t ≥ 2 and k > r ≥ 0 with some central vertex c ∈ P with respect
to the considered local cost f ∈ {rad, avg}. Construct successively for i ∈
{1, . . . , t − 1} the sets Vi containing k vertices from Pi \ {c}, where Pi :=
P \ (V1∪· · ·∪Vi−1), including vi := argmin{d(p, c) : p ∈ Pi \{c}}. We consider
the increase of global cost for replacing P by V1, . . . , Vt−1, Pt−1 in P:
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For the local cost radius, we see that rad(Pi) ≤ rad(P ) for all i and hence
especially for i = t− 1. The radius of the sets Vi can be bounded by:

rad(Vi) ≤ max{d(vi, p) : p ∈ Vi} ≤ d(vi, c) + max{d(c, p) : p ∈ Vi} ≤ 2 · rad(P ) .

The global cost for (‖·‖w
1
, rad)-k-cluster and (‖·‖∞ , rad)-k-cluster only

increases by a factor of at most 2. For the weighted∞-norm, these inequalities
yield:

|Vi| · rad(Vi) = k · rad(Vi) ≤ 2k · rad(P ) ≤ |P | · rad(P ) .

The global cost for (‖·‖w∞ , rad)-k-cluster consequently does not increase.
For the local cost average distortion, the weighted average for each Pi with

i ∈ {1, . . . , t− 1} is bounded by:

|Pi| · avg(Pi) ≤
∑

p∈Pi

d(c, p) ≤ |P | · avg(P ) .

The local cost for Vi with i ∈ {1, . . . , t− 1} is bounded by:

|Vi| · avg(Vi) ≤
∑

p∈Vi

d(vi, p) ≤ k · d(vi, c) +
∑

p∈Vi

d(c, p) .

By the choice of the vertices vi we can bound k · d(vi, c) ≤
∑

p∈Pi
d(c, p) and

conclude that:

|Vi| · avg(Vi) ≤
∑

p∈Pi

d(c, p) +
∑

p∈Vi

d(c, p) =
∑

p∈Pi−1

d(c, p) ≤ |P | · avg(P ) .

The global cost with respect to the weighted∞-norm ‖·‖w∞ consequently does
not increase by replacing P by V1, . . . , Vt−1, Pt−1. For (‖·‖w

1
, avg)-k-cluster

the partition V1, . . . , Vt−1, Pt−1 adds each distance d(c, p) with p ∈ P at most
twice compared to partitioning into P , which also means that the global cost
is at most doubled.

We will look at the particular case of k = 2 in the next section and therefore
also show:

Proposition 3

For any instance of (‖·‖w
1
, avg)-2-cluster for which the induced distance d

satisfies the triangle inequality, it is possible to compute in polynomial time
from any optimal solution P, an optimal solution P′ for which |P | ∈ {2, 3}
for all P ∈ P′.

Proof. For a cluster P = {x1, x2 . . . , xr} with r > 3, let xr be a central vertex
with respect to average distortion. A further partitioning of P into {x2i, x2i+1}
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for i ∈ {1, . . . , z−1} with z = b r
2
c and {x1, x2z, xr} does not increase the global

cost for (‖·‖w
1
, avg)-2-cluster, since:

|P | · avg(P ) =
r∑

i=1

d(xi, xr)

= d(x2z, xr) + d(xr, x1) +
z−1∑

i=1

d(x2i, xr) + d(x2i+1, xr)

≥ |{x1, x2z, xr}| · avg({x1, x2z, xr}) +
z−1∑

i=1

d(x2i, x2i+1)

= |{x1, x2z, xr}| · avg({x1, x2z, xr}) +
z−1∑

i=1

2 · avg({x2i, x2i+1})

= ‖ avg({x1, x2z, xr}), avg({x2, x3}), . . . , avg({x2z−2, x2z−1}) ‖
w

1

2.2 Connections to Matching Problems

The graph representation we chose to define (‖·‖, f)-k-cluster reveals rela-
tions to other well studied graph problems, in case of k = 2 not to classical
clustering but to matching problems. A matching in an undirected graph
G = (V,E) is a subset M of E such that each vertex in V is adjacent to at
most one edge in M . A matching M is perfect if each vertex is adjacent to
exactly one edge in M .

Some variants of (‖·‖, f)-k-cluster can be reduced to the problem of
finding a minimum-weight edge cover in a graph G = (V,E) with edge-weights
wE, a subset M ′ of E of minimum weight (i.e., minimising

∑
e∈M ′ wE(e)) for

which each vertex in V is adjacent to at least one edge in M ′. A minimum-
weight edge cover can be reduced to the problem of finding a minimum-weight
perfect matching (a simple reduction is described, e.g., in the first volume of
Schrijver’s monograph [[58], Section 19.3]). As a consequence, a minimum-
weight edge cover can be found in O(n3) time by the results of Edmonds and
Johnson [31].

Theorem 4

(‖·‖w
1
, avg)-2-cluster can be solved in O(n3) time.

Proof. (‖·‖w
1
, avg)-2-cluster searches for a 2-cluster P1, . . . , Ps minimising:

s∑

i=1

min

{∑

y∈Pi

d(x, y) : x ∈ Pi
}
.
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In other words, for any graph G = (V,E), the global cost is the weight of the
cheapest edge set E ′ ⊆ V ×V for which the graph G′ := (V,E ′) has s connected
components P1, . . . , Ps with at least 2 vertices such that the induced subgraph
of each Pi is a star graph. This property is equivalent to E ′ being a minimum-
weight edge cover for the complete graph on V with edge-weights equal to
the distance d; observe that the graph (V,E ′) is a forest without isolates and
without paths of length 3 for every minimum-weight edge cover E ′ which means
that its connected components are star graphs.

Proposition 5

(‖·‖∞ , rad)-2-cluster can be solved in O(n3) time.

Proof. For a graphG = (V,E), first check all vertices in V and find the smallest
value c > 0 such that each vertex v has distance at most c from at least one
other vertex. This c is obviously a general lower bound on the global cost,
since each vertex needs at least one ’partner’.

For k = 2, this c is also the optimal value. To see this, let Ē be any
minimum edge cover for the graph G′ := (V,E ′) with edge-set E ′ defined by
{{u, v} : 0 < d(u, v) ≤ c}. Such a cover exists, as there are no isolated vertices
in G′ by the choice of c. Let C1, . . . , Cs be the connected components of the
graph induced by the edges in Ē. Each such component Ci is a star graph by
the minimality of the edge cover and contains at least two vertices, hence the
partition {V [Ci] : 1 ≤ i ≤ s} is a 2-cluster for G with radius at most c for each
cluster. An optimal solution for (‖·‖∞ , rad)-2-cluster can hence be obtained
by computing a minimum edge cover for G′.

With respect to diameter, this edge cover strategy is not applicable for
clusters of cardinality larger than two. Even for k = 2 there are cases for
which clusters of cardinality 3 are required in every optimal solution. It seems
difficult to compute the diameter of a cluster by summing up certain edge-
weights. We therefore consider the following problem:

Simplex Matching

Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) and cost function
c : F → Q satisfying:

1. {{u, v}, {v, w}, {u,w}} ⊆ F for all {u, v, w} ∈ F .
(subset condition)

2. c({u, v}) + c({v, w}) + c({u,w}) ≤ 2c({u, v, w}) for all
{u, v, w} ∈ F . (simplex condition)

Output: A perfect matching of H (that is a set S ⊆ F such that every
vertex in V appears in exactly one hyperedge of S) of minimal cost.
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This problem which can be seen as a generalisation of matching seems much
more involved but it is still solvable in O(n3m2 log n), see [7] (this kind of
generalised matching can also be used for anonymisation by deletion, see [13]).
It turns out that (‖·‖w

1
, diam)-2-cluster can be solved with the help of the

polynomial time algorithm for Simplex Matching. In particular, this idea
yields the following result.

Proposition 6

(‖·‖w
1
, diam)-2-cluster can be solved in O(n9 log n) time.

Proof. We model our problem as a particular instance of Simplex Matching.
Let G = (V,E) be an input graph for (‖·‖w

1
, diam)-2-cluster. The corre-

sponding input for Simplex Matching is the hypergraph H = (V, V 2 ∪ V 3)
which obviously satisfies the subset condition. By Corollary 1, there exists
an optimal solution for (‖·‖w

1
, diam)-2-cluster among the perfect match-

ings for H. According to the original problem, the cost function c for any
u, v, w ∈ V is defined as:

• c({u, v}) := 2d(u, v) and

• c({u, v, w}) := 3 ·max{d(u, v), d(v, w), d(u,w)}

and hence satisfies the simplex condition. Since this complete hypergraph has
O(n3) hyperedges, the overall running time is in O(n9 log n).

Diameter combined with the∞-norms could be solved using Proposition 6
by fixing some maximum diameterD and multiplying all hyperedge costs which
exceed D with a large value C, say C = n · max{d(u, v) : u, v ∈ V }. This
does not violate the simplex condition for the cost function and there exists a
solution for (‖·‖∞ , diam)-2-cluster of value D for the input graph if and only
if the hypergraph with adjusted costs has a Simplex Matching solution of
value less than C.

To improve upon the running time from Proposition 6 for the ∞-norms,
we will use following problem from [66].2

Simplex Cover

Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) satisfying the subset
condition, i.e., {{u, v}, {v, w}, {u,w}} ⊆ F for all {u, v, w} ∈ F .

Output: A perfect matching of H.

2This covering problem is sometimes also called Unweighted Simplex Matching and
is equivalent to {K2,K3}-packing, an old, well studied generalisation of the classical match-
ing problem [21].
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Proposition 7

(‖·‖∞ , diam)- and (‖·‖w∞ , diam)-2-cluster and can be solved in O(n6 log n)
time. On instances for which d satisfies the triangle inequality, (‖·‖w∞ , avg)-2-
cluster can also be solved in O(n6 log n) time.

Proof. We will reduce solving each of the 2-Cluster problem variants to solv-
ing an instance of Simplex Cover. Let G = (V,E) be the input graph for
the clustering problem. By Corollary 1 and Theorem 2 we can find optimal
solutions for each considered problem variant among the set of perfect match-
ings for the hypergraph H = (V, F ) with F = V 2 ∪ V 3. For a fixed value D,
we build a subset F ′ ⊆ F by removing from F all e ∈ F depending on the
problem variant by the following rule:

• Remove e if diam(e) > D for (‖·‖∞ , diam)-2-cluster.

• Remove e if |e|·diam(e) > D for (‖·‖w∞ , diam)-2-cluster.

• Remove e if |e|·avg(e) > D for (‖·‖w∞ , avg)-2-cluster.

We claim that in all three cases, this deletion yields a subset of V 2 ∪ V 3 that
satisfies the subset condition:

• {u, v, w} ∈ F ′ for (‖·‖∞ , diam)-2-cluster yields diam({u, v, w}) ≤ D,
hence diam({u, v}), diam({u,w}), diam({v, w}) ≤ diam({u, v, w}) ≤ D,
so {{u, v}, {v, w}, {u,w}} ⊆ F ′.

• {u, v, w} ∈ F ′ for (‖·‖w∞ , diam)-2-cluster yields 3·diam({u, v, w}) ≤ D,
hence 2·diam({u, v}) ≤ D, 2·diam({u,w}) ≤ D and 2·diam({v, w}) ≤
D, so {{u, v}, {v, w}, {u,w}} ⊆ F ′.

• {u, v, w} ∈ F ′ for (‖·‖w∞ , avg)-2-cluster yields 3·avg({u, v, w}) ≤ D.
Let u be central for {u, v, w}, so d(u, v) + d(u,w) = 3 · avg({u, v, w}). It
follows that 2 · avg({u, v}) = d(u, v) ≤ D, 2 · avg({u,w}) = d(u,w) ≤ D.
For the edge {v, w} we require that d satisfies the triangle inequality,
in which case 2 · avg({v, w}) = d(v, w) ≤ d(u, v) + d(u,w) ≤ D, so
{{u, v}, {v, w}, {u,w}} ⊆ F ′.

In all three cases, any subset of F ′ which exactly covers V , i.e., a simplex cover
for H ′ := (V, F ′), yields a feasible 2-cluster with global cost at most D. The
augmenting path strategy from [59] solves Simplex Cover in time O(m2),
where m is the number of hyperedges of the input graph, here at most O(n3).
Possible values for D are the O(n2) possible different distances d(u, v) for all
u, v ∈ V , which, including a binary search among all possible values for D,
yields an overall running time in O(n6 log n) to solve each of the 2-Cluster
variants.
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Remark 1: We would like to point out that Simplex Matching is also an
interesting way to solve a sort of geometric version of (‖·‖w

1
, avg)-2-cluster,

originally introduced as microaggregation in [27], which considers cluster-
ing a set of vectors in Rd and measures local cost for a cluster {x1, . . . , xt} by∑t

i=1 ||xi−x||22 where x is the centroid 1
t
(x1 + · · ·+xt) and ‖·‖2

2 is the squared
Euclidean norm. With the hypergraph (V, V 2 ∪ V 3) with V = {v1, . . . , vn}
representing {x1, . . . , xn} and the cost function c defined by: c({vi, vj, vk}) :=∑

h∈{i,j,k} ||xh − 1
3
(xi + xj + xk)||22 for all 1 ≤ i < j < k ≤ n and c({vi, vj}) :=

1
2
||xi − xj||22 for all 1 ≤ i < j ≤ n, the simplex condition holds, since:

2 · c({vi, vj, vk}) = 4
3
(c({vi, vj}) + c({vj, vk}) + c({vi, vk})) .

This construction gives a polynomial time algorithm to solve 2-microaggre-
gation which improves on the 2-approximation from [28].

Observe that a similar construction for (‖·‖w
1
, rad)-2-cluster does not work,

since the cluster cardinality is not bounded by three. Also, even if d satisfies
the triangle inequality, the corresponding cost function c would not satisfy the
simplex condition, since for the small example of three vertices u, v, w with
d(u, v) = d(u,w) = 1 and d(v, w) = 2, the cost with respect to radius would
give 1 = c({u, v, w}) < 1

2
(c({u, v}) + c({u,w}) + c({v, w})) = 2. Similar

problems arise for the other so far unresolved variants of (‖·‖, f)-2-cluster.
At last, we would like to point out that the running times presented in this

section all assume the worst-case in which there are O(n2) pairs of vertices
with small distance to each other; a property that might be avoided for certain
specific clustering tasks. We further believe that an augmenting path strategy
which is specifically tailored to the above problems can also yield significant
improvement on the worst-case running time.

2.3 Computational Lower Bounds

As our attempts to find polynomial algorithms to solve versions of (‖·‖, f)-2-
cluster seem to have reached an end, we move on to a search for lower
bounds. We first check the case k = 3 and then settle the remaining open
questions regarding the restriction to k = 2.

2.3.1 The Case k ≥ 3

The problem variant (‖·‖∞ , rad)-k-cluster with the specific choice of d being
the Euclidean distance was discussed in [4] under the name r-gather (where r
takes the role of k) and was there shown to be NP-complete for k ≥ 7. In [8]
this result was strengthened by a reduction from Exact-t-Cover to k ≥ 3,
however for a type of problem where the cluster center exists as an input
vertex but is assigned to a different cluster (i.e., with the radius of a cluster
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P calculated by: min{max{d(x, y) : y ∈ P} : x ∈ V }) which does not comply
with our definition. We establish different reductions which show NP-hardness
for all variants of (‖·‖, f)-k-cluster with k ≥ 3. We also reduce from the
problem Exact-t-Cover, formally given by:

Exact-t-Cover

Input: A universe X = {x1, . . . , xn} and a collection C = {S1, . . . , Sr} of
subsets of X, such that each Si, i ∈ {1, . . . , r}, has cardinality t.

Question: Does there exist a subset C ′ ⊆ C (exact cover) that is a par-
tition of X?

Exact-t-Cover is known to be NP-hard for all t ≥ 3 by [33].

Theorem 8

The problem (‖·‖, rad)-k-cluster is NP-hard for each k ≥ 3 and all choices
of ‖·‖ ∈ {‖·‖∞ , ‖·‖

w

∞ , ‖·‖
w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof. We reduce from Exact-k-Cover. Let S1, . . . , Sr be subsets of the
universe {x1, . . . , xn}, with |Si| = k, an instance of Exact-k-Cover and let
` := r − n

k
(exactly the number of sets not included in an exact cover). We

construct a graph G = (V,E) for (‖·‖, rad)-k-cluster with a vertex set V
built from the following three types of vertices:

• u1, . . . , un representing x1, . . . , xn,

• w1, . . . , wr representing S1, . . . , Sr and

• yji for i ∈ {1, . . . , `} and j ∈ {1, . . . , k−1}, vertices which will be clustered
with the w-vertices corresponding to sets which are not in the exact cover.

The set E contains the following edges, all of weight 1:

• {ui, wj} for all i ∈ {1, . . . , n} and j ∈ {1, . . . , r} with xi ∈ Sj,

• {y1
i , wj} for each i ∈ {1, . . . , `} and j ∈ {1, . . . , r} and

• {y1
i , y

h
i } for each i ∈ {1, . . . , `} and h ∈ {2, . . . , k − 1}.

We claim that there exists a k-cluster for G which only contains clusters of
radius 1 if and only if there exists an exact cover for S1, . . . , Sr.

Let P be a k-cluster for G which only contains clusters of radius 1, and let d
be the distance on V × V induced by the edges of G. For each i ∈ {1, . . . , `},
let Pi denote the cluster in P containing y2

i , as k ≥ 3, a vertex yji with index
j = 2 is always included in G. Since y1

i is the only vertex at distance 1 from y2
i ,
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Figure 1: Illustration of the reduction for Theorem 8 .

it follows that y1
i is included as the unique central vertex in Pi which means

that Pi ⊆ {v ∈ V : d(v, y1
i ) ≤ 1}. As {v ∈ V : d(v, y1

i ) = 1} = {y1
i , . . . , y

k−1
i } ∪

{w1, . . . , wr} and |Pi| ≥ k, it follows that at least ` of the vertices w1, . . . , wr
are included in the clusters P1, . . . , P`, none of which contain a vertex from
{u1, . . . , un}. Since d(ui, uj) ≥ 2 for all i 6= j, a cluster in P which contains
two vertices from {u1, . . . , un} has to contain at least one of the vertices wz as
central vertex. Such a cluster then has to be a subset of {wz} ∪ {ui : xi ∈ Sz}.
There are only n

k
vertices from {w1, . . . , wr} which lie in such a cluster, so P

has to contain exactly the clusters {wz}∪{ui : xi ∈ Sz} for all wz /∈ P1∪· · ·∪P`
in order to include all vertices ui in a cluster of radius 1. This means that the
sets Sz with {wz} ∪ {ui : xi ∈ Sz} ∈ P build an exact cover for {x1, . . . , xn}.
It also follows that all clusters in a k-cluster of maximum radius 1 contain at
most k + 1 vertices.

Conversely, for any exact cover S ⊆ {S1, . . . , Sr} the union of the sets
{wz} ∪ {ui : xi ∈ Sz} for all z with Sz ∈ S and {y1

i , . . . , y
k−1
i } ∪ {wji} for

all i ∈ {1, . . . , `} where {S1, . . . , Sr} \ S = {Sj1 , . . . , Sj`} yields a k-cluster of
radius 1 for G.

If rad(P ) > 1 for some cluster P in a k-cluster P for G, it follows that
rad(P ) ≥ 2; observe that since G only has edges of weight 1, all shortest paths
have integer length. This means that the global cost of P with respect to radius
and ‖·‖w∞ is at least 2k, so strictly larger than the global cost of a k-cluster of
maximum radius 1 for this norm, which is k + 1 by the above stated property
of k-cluster of maximum radius 1 for G. Also, the global cost of P with respect
to ‖·‖w

1
is at least kr + n

k
+ k (at least k vertices produce a cost of 2), while a

k-cluster of maximum radius 1 with respect to this norm yields a global cost
of kr + n

k
(each vertex produces a cost of 1). In summary, there exists an

exact cover for S1, . . . , Sr if and only if there exists a solution for (‖·‖, rad)-k-
cluster of global cost 1, k + 1 and kr + n

k
for norm ‖·‖∞ , ‖·‖

w

∞ and ‖·‖w
1
,

respectively.
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In the above proof of Theorem 8 a “yes”-instance of Exact-k-Cover is equiv-
alent to the existence of a k-cluster with maximum radius 1. Since all distances
in the constructed instance for (‖·‖∞ , rad)-k-cluster are integral, a k-cluster
with maximum radius more than 1, contains a cluster of radius at least 2. This
simple observation shows a gap of 2 for the maximum radius between “yes”-
and “no”-instance for Exact-k-Cover, which implies:

Corollary 9

There is no (2 − ε)-approximation for (‖·‖∞ , rad)-k-cluster in polynomial
time for any k ≥ 3 and any ε > 0, unless P = NP, even if d satisfies the
triangle inequality.

If we alter the reduction used for Theorem 8 for k ≥ 4 to reduce to Exact-
(k − 1)-Cover, we can conclude that for a “yes”-instance for the covering
problem all clusters in a k-cluster of maximum radius 1 for the corresponding
graph G contain exactly k vertices. This yields a gap of 2 also for the maximum
weighted radius, which implies:

Corollary 10

There is no (2 − ε)-approximation for (‖·‖w∞ , rad)-k-cluster in polynomial
time for any k ≥ 4 and any ε > 0, unless P = NP, even if d satisfies the
triangle inequality.

For diameter, we need a different construction, since for this measure, the
vertices u1, . . . , un have to also be at distance 1 to enable some of them to be
in the same cluster. With such distances, we need a different structure which
makes sure that a solution of diameter 1 does not build clusters only containing
vertices from u1, . . . , un.

Theorem 11

The problem (‖·‖, diam)-k-cluster is NP-hard for each k ≥ 3 and all choices
for ‖·‖ ∈ {‖·‖∞ , ‖·‖

w

∞ , ‖·‖
w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof. We reduce from Exact-t-Cover with t = (k − 1)2. Let S1, . . . , Sr
be subsets of {x1, . . . , xn}, with |Si| = t, an instance of Exact-t-Cover and
let ` := r − n

t
. We construct a graph G for (‖·‖, diam)-k-cluster with the

following three types of vertices:

• u1, . . . , un representing x1, . . . , xn,

• w1
i , . . . , w

k−1
i representing Si for i ∈ {1, . . . , r} and

• v1, . . . , v` which model the selection of the ` sets not in the cover.
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Figure 2: Illustration of the reduction for Theorem 11 . Dotted ellipses sur-
round cliques.

The graph G contains the following edges, all of of weight 1:

• edges such that the set {u1, . . . , un} is a clique,

• edges such that the set {w1
i , . . . , w

k−1
i } is a clique for each i ∈ {1, . . . , r},

• each vh, h ∈ {1, . . . , `}, is connected to all wzi with i ∈ {1, . . . , r} and
z ∈ {1, . . . , k − 1} and

• to model the sets, edges connect uj to one of the vertices w1
i , . . . , w

k−1
i if

xj ∈ Si, more precisely, for every set Si pick and fix an arbitrary partition
Si = S1

i ∪· · ·∪Sk−1
i into disjoint subsets of cardinality k−1 and connect

uj with wzi if uj ∈ Szi .

We claim that there exists an exact cover for S1, . . . , Sr if and only if a
there exists a k-cluster of maximum diameter 1 for G.

Let P be a k-cluster forG which only contains clusters of diameter 1, and let
d be the distance on V ×V induced by the edges of G. Since d(wyi , w

z
j ) = 2 for

i 6= j and any y, z ∈ {1, . . . , k−1} and d(vq, vp) = 2 for q 6= p, each vh can only
be in a cluster of cardinality at least k and diameter 1, if vh is contained in the
cluster Nh

i := {vh, w1
i , . . . , w

k−1
i } for some i ∈ {1, . . . , r}. The only possibilities

for a cluster of cardinality at least k and diameter 1 which contains a vertex wzi
is either exactly the cluster Cz

i := {wzi } ∪ {uj : xj ∈ Szi } or the cluster Nh
i for

some h ∈ {1, . . . , `}. As |Nh
i | = |Cz

i | = k and Nh
i ∩ Cz

i = {wzi } for all
i ∈ {1, . . . , r}, h ∈ {1, . . . , `} and z ∈ {1, . . . , k − 1}, it follows that for each
i ∈ {1, . . . , r} either Nh

i ∈ P for some h ∈ {1, . . . , `} or Cz
i ∈ P for all

z ∈ {1, . . . , k − 1}. As there are exactly ` = r − n
t

vertices vh, which have to

be included in some cluster Nh
i , P contains exactly n

t
clusters C1

i , . . . , C
k−1
i

which is possible if and only if {Si : C1
i ∈ P} is an exact cover; observe that

all sets in P are disjoint, so the (k − 1)n
t

sets of type Cz
i in P contain exactly

(k − 1)(k − 1)n
t

= n vertices from {u1, . . . , un}.
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Conversely, for every exact cover S ⊆ {S1, . . . , Sr}, the union of the set
{C1

i , . . . , C
k−1
i : Si ∈ S} and {Nh

jh
: 1 ≤ h ≤ `} where {S1, . . . , Sr} \ S =:

{Sj1 , . . . , Sjh} is a k-cluster of diameter 1 for G.
Specific to the norm, it follows that there exists a k-cluster of global cost 1

for (‖·‖∞ , diam)-k-cluster if and only if S1, . . . , Sr is a “yes”-instance for
Exact-t-Cover. Further, each cluster that has the possibility of being of diam-
eter 1 contains exactly k vertices, so S1, . . . , Sr is a “yes”-instance for Exact-t-
Cover if and only if there exists a solution of global cost k for (‖·‖w∞ , diam)-k-
cluster. At last, a solution for diameter with weighted 1-norm of global cost
n+ r(k − 1) + ` is possible if and only if each cluster has diameter 1, hence if
and only if S1, . . . , Sr is a “yes”-instance for Exact-t-Cover.

The reduction shown in the above proof of Theorem 11 is also a gap-
reduction with a gap of 2 for the maximum diameter between “yes”- and
“no”-instance for Exact-t-Cover. The maximum cardinality of a cluster in
an optimal solution in case of a “yes”-instance for Exact-t-Cover is k, so
the reduction also gives a gap of 2 for the maximum weighted diameter and
hence implies:

Corollary 12

There is no (2 − ε)-approximation in polynomial time for (‖·‖∞ , diam)- or
(‖·‖w∞ , diam)-k-cluster for any k ≥ 3 and any ε > 0, unless P = NP, even
if d satisfies the triangle inequality.

The construction in the proof of Theorem 8 almost also shows the same
hardness result for average distortion. The only problem is that an optimal
solution requires clusters of cardinality k + 1 which means that with respect
to ‖·‖w∞ , we have a global cost of k, which is also achieved by a cluster of
cardinality k in which 1 vertex has distance 2 from the central vertex. We will
therefore use a third reduction for average distortion which represents each set
by k − 1 vertices as in the construction for diameter and combines this with
the idea to use stars with k − 1 vertices to disable r − n

t
sets from being used

to “cover” u1, . . . , un, as used for radius.

Theorem 13

The problem (‖·‖, avg)-k-cluster is NP-hard for each k ≥ 3 and all choices
for ‖·‖ ∈ {‖·‖∞ , ‖·‖

w

∞ , ‖·‖
w

1
}, even with the restriction to distances d which

satisfy the triangle inequality.

Proof. We reduce from Exact-t-Cover with t = (k − 1)2. Let S1, . . . , Sr be
subsets of {x1, . . . , xn}, with |Si| = t, an instance of Exact-t-Cover. We
construct a graph G for (‖·‖, avg)-k-cluster with the following vertices:

• u1, . . . , un representing x1, . . . , xn,
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Figure 3: Illustration of the reduction for Theorem 13 . Thick vertices have
to be central in a k-cluster of maximum radius 1.

• w1
i , . . . , w

k−1
i representing Si for i ∈ {1, . . . , r},

• w̄zi for all i ∈ {1, . . . , r} and z ∈ {1, . . . , k − 1},

• a set of k − 2 vertices W z
i for all i ∈ {1, . . . , r} and z ∈ {1, . . . , k − 1},

• vi, v1
i , . . . , v

k−1
i for all i ∈ {1, . . . , r} and

• yji for i ∈ {1, . . . , n
t
} and j ∈ {1, . . . , k − 1}.

The graph G contains the following edges, all of weight 1:

• like for diameter, pick and fix for every set Si an arbitrary partition
Si = S1

i ∪· · ·∪Sk−1
i into disjoint subsets of cardinality k−1 and connect

uj with wzi if uj ∈ Szi ,

• {w, w̄zi } for all w ∈ W z
i , i ∈ {1, . . . , r} and z ∈ {1, . . . , k− 1} (the graph

induced by the vertices W z
i ∪ {w̄zi } is a star graph with center w̄zi ),

• {vi, vhi } for all i ∈ {1, . . . , r} and h ∈ {1, . . . , k − 1},

• {wzi , w̄zi } and {w̄zi , vzi } for all i ∈ {1, . . . , r} and z ∈ {1, . . . , r},

• {vi, y1
j} for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n

t
},

• {y1
i , y

h
i } for each i ∈ {1, . . . , n

t
} and h ∈ {2, . . . , k − 1}.
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We claim that there exists an exact cover for S1, . . . , Sr if and only if a
there exists a k-cluster for G such that each cluster has average distortion k−1

k
.

Let P be a k-cluster for G such that each cluster has average distortion
k−1
k

, and let d be the distance on V ×V induced by the edges of G. First of all,
observe that any cluster of cardinality at least k has average distortion k−1

k
if

and only if it hast radius 1 and cardinality k. Similar to the proof of Theorem 8,
denote for each i ∈ {1, . . . , n

t
} by Pi the cluster in P which contains y2

i . With
the property of Pi having radius 1 and cardinality k for each i ∈ {1, . . . , n

t
}, it

follows that exactly n
t

of the vertices v1, . . . , vr are included in some cluster Pi,

which otherwise only contains the vertices y1
i , . . . , y

k−1
i . A similar argument

applies for a cluster P which contains a vertex from W r
i , as these vertices also

only have one vertex (w̄zi ) at distance 1, which then has to be central for P ; this
cluster then always contains the whole set W r

i . So, denote by P z
i the cluster

containing the set W r
i and w̄zi . For each i ∈ {1, . . . , r} and r ∈ {1, . . . , k − 1},

the set P z
i contains either vzi or wzi , as these are the only other vertices at

distance 1 from w̄zi . For each of the exactly r − n
t

vertices vi which are not
contained in any of the clusters P1, . . . , Pn

t
, the only option for a cluster of

cardinality k and radius 1 is the cluster Vi := {vi, v1
i , . . . , v

k−1
i }; observe that a

vertex vhi with h ∈ {1, . . . , k− 1} cannot be central for a cluster of cardinality
k ≥ 3 as the only vertices at distance 1 from vhi are vi and w̄zi and the latter
one already has to be the central vertex for P z

i . Also, the only vertices at
distance 1 from vi which are not in some cluster Pj are v1

i , . . . , v
k−1
i . Hence

there are exactly r − n
t

indices i in {1, . . . , r} such that Vi is a cluster in P.
For all i ∈ {1, . . . , r} for which Vi is a cluster in P, the cluster P z

i contains
wzi for all z ∈ {1, . . . , k − 1} since vzi is not available as kth vertex in P z

i .
Again similar to the proof of Theorem 8, there are exactly enough vertices wzi
not included in a set of the form P z

i in P to build clusters of radius 1 for the
vertices {u1, . . . , un} if and only if the sets Si with indices i ∈ {1, . . . , r} for
which Vi is not a cluster in P are an exact cover.

Conversely, for every exact cover S ⊆ {S1, . . . , Sr}, a k-cluster of average
distortion k−1

k
for G can be built with the following sets:

• {wzi }∪{uj : xj ∈ Szi } and P z
i ∪{vzi } for all i with Si ∈ S, z ∈ {1, . . . , k−1},

• Vi and P z
i ∪ {wzi } for all i with Si /∈ S, z ∈ {1, . . . , k − 1} and

• {vji , y1
i , . . . , y

k−1
i } for all i ∈ {1, . . . , n

t
} with S = {Sj1 , . . . , Sjn

t
}.

So, there exists an exact cover for S1, . . . , Sr if and only if there exists a solution
for (‖·‖∞ , avg)-k-cluster of global cost k−1

k
. Further, for any k-cluster for

G, a global cost of k − 1 with respect to average distortion and ‖·‖w∞ is only
possible if each cluster has radius 1 and cardinality k; a cluster with k′ > k
vertices gives a global cost of at least k′ − 1 > k − 1 and a cluster of radius
larger than 1 contains at least one vertex at distance 2 from the central vertex
which gives a global cost of at least k. So, there exists an exact cover for
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S1, . . . , Sr if and only if there exists a solution for (‖·‖w∞ , avg)-k-cluster of
global cost k − 1.

At last, for any k-cluster for G, a global cost of n+r(k−1)k with respect to
average distortion and ‖·‖1∞ is only possible if each vertex contributes exactly
the minimum cost of k−1

k
to the global cost. Hence there exists an exact

cover for S1, . . . , Sr if and only if there exists a solution for (‖·‖w
1
, avg)-k-

cluster of global cost n+ r(k − 1)k.

In the above reduction used to prove Theorem 13, a “yes”-instance for
Exact-t-Cover corresponds to a graph for which there exists a k-cluster
with a maximum weighted average distortion of k−1. Integrality again implies
that a “no”-instance for Exact-t-Cover corresponds to graph for which the
maximum weighted average distortion of any k-cluster is at least k. This gives
the following result.

Corollary 14

There is no ( k
k−1
−ε)-approximation for (‖·‖w∞ , avg)-k-cluster in polynomial

time for any k ≥ 3 and any ε > 0, unless P = NP, even if d satisfies the
triangle inequality.

2.3.2 Harsh Consequences for Approximation & Parameterisation

The previous section shows that (‖·‖, f)-k-cluster remains NP-hard even
for k restricted to 3 for all choices of local cost f ∈ {rad, diam, avg} and global
cost ‖·‖ ∈ {‖·‖w∞ , ‖·‖∞}, so the bound on the cardinality is obviously not a
parameter which helps with tractability (at least not without a combination
with further parameters). A closer look at reductions used for these hardness
results have further consequences, not just for parameterisation but also for
approximabilty, which we summarise here.

When considering parameterisation for optimisation problems, the first pa-
rameter that comes to mind is usually the optimum value. For our definition
of (‖·‖, f)-k-cluster, this choice is a bit odd, as we allow rational weights,
which means that these and hence also the optimum value, can be scaled pretty
much arbitrarily without changing the general nature of the problem, i.e., the
optimum solution remains unchanged.

The most reasonable option to repair this is a restriction to positive integer
weights. For the 1-norm, this restriction yields an optimum value which is too
large to be an interesting parameter, for all choices of f ; observe that even for
k = 2, the global cost is at least n

2
, as at least half of the vertices then cause

a cost of at least 1. For the (weighted) infinity norm, the reductions in the
previous section only use integer distances and yield optimum values which are
either constant or in O(k). Since the NP-hardness in all cases already holds
for k = 3, these results also disqualify parameterisation by optimum value for
the infinity norms, and formally imply:
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Corollary 15

(‖·‖, f)-k-cluster parameterised by optimum value (and k) is para-NP-hard
for all choices of f ∈ {rad, diam, avg} and ‖·‖ ∈ {‖·‖w∞ , ‖·‖∞}, even if d sat-
isfies the triangle inequality.

Another idea related to the restriction to integer distances is consider-
ing the number of different values in the input as parameter, as suggested
by the concept of parameterisation by the “number of numbers”, see [35].
The constructions used in proofs of the previous section only contain edges
of weight 1. Even taking this concept further, and considering all pairwise
distances between vertices does not yield an angle for parameterisation. Fix-
ing the distances which are not defined by edges in the proofs of the previous
section to all be equal to 2, the NP-hardness reductions still work and only
use two (or three, if the distance 0 for a vertex to itself is counted) different
distance values, which yields:

Corollary 16

(‖·‖, f)-k-cluster parameterised by the number of different distance val-
ues (and k) is para-NP-hard, for all choices of f ∈ {rad, diam, avg} and
‖·‖ ∈ {‖·‖w

1
, ‖·‖w∞ , ‖·‖∞}, even if d satisfies the triangle inequality.

The results from the previous section also yield negative results for ap-
proximability. The following result gives a very clear explanation why trian-
gle inequality for d is an important requirement to develop polynomial time
approximation for (‖·‖, f)-k-cluster. If we consider instances of (‖·‖, f)-k-
cluster for which the induced distance d can violate the triangle inequality,
additional edges of a large weight w in the constructions for Theorem 8 and
Theorem 11 can be used to amplify the gap between a “yes”- and a “no”-
instance of Exact-t-Cover strictly monotonically with w which gives:

Proposition 17

If d violates the triangle inequality, there is no polynomial time constant-factor
approximation for (‖·‖, f)-k-cluster, for all choices of f ∈ {rad, diam, avg}
and ‖·‖ ∈ {‖·‖w

1
, ‖·‖w∞ , ‖·‖∞}, unless P = NP.

Proof. Let G = (V,E) be the graph constructed in the proof of Theorem 8 for a
given instance I of Exact-k-Cover, so there exists a k-cluster of maximum
radius 1 for G if and only if I is a “yes”-instance. Further, every k-cluster of
maximum radius 1 for G only contains sets of maximum cardinality k+ 1. If I
is a “no”-instance, any k-cluster for G contains at least one set S of radius
larger than 1, so for every choice of v ∈ S there exists at least one vertex
v′ ∈ S \{v} such that {v, v′} /∈ E. If we now turn the graph G into a complete
graph with additional edges of weight w, it follows that the radius of such a
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cluster S is w. This also means that the average distortion for such a cluster S
is larger than w

n
, while the minimum average distortion of a k-cluster for G is

k
k+1

in case I is a “yes”-instance. For every norm, the global cost grows strictly
monotonically with the local cost. This means that the gap between I being a
“yes” or “no”-instance for the optimum value of a k-cluster for G with respect
to radius or average distortion with any norm grows strictly monotonically
with w. As this is true for every value of w, a constant-factor approximation
in polynomial time for (‖·‖, f)-k-cluster with f ∈ {rad,avg} with any norm
would solve Exact-k-Cover which however is NP-hard for any k ≥ 3.

For diameter, we use the same idea and turn the graph G constructed in
the proof of Theorem 11 into a complete graph by adding edges of weight w.
Similarly, it follows that there exists a k-cluster of maximum diameter 1 if
the corresponding instance I of Exact-t-Cover is a “yes”-instance, while
the maximum diameter is w if I is a “no”-instance. So, a constant-factor
approximation in polynomial time for (‖·‖, diam)-k-cluster with any norm
would solve the NP-hard problem Exact-t-Cover.

This result demonstrates pretty clearly why we will dedicate a lot of at-
tention to the properties of d with respect to triangle inequality. Already here
we want to mention that, while it discards any constant-factor approximation
for a general scenario, the constructions used to show this negative result all
require both an unbounded number of bad edges and an unbounded increase
of edge-weight. For instances which do not carry this property, we will discuss
possibilities to design approximation procedures later in Section 5.

First however, we want finish the investigation of the general complexity of
(‖·‖, f)-k-cluster with respect to k for which there are still some open cases
with k = 2.

2.3.3 Hard Cases for k = 2

Section 2.2 only provided polynomial time solvability for roughly half of the
variants of (‖·‖, f)-2-cluster. We will now complete the complexity picture
for k = 2 by showing that the remaining variants are already NP-hard even
when restricted to the smallest reasonable cardinality.

We start with (‖·‖w
1
, rad)-2-cluster and reduce from the restriction of

the vertex cover problem to cubic graphs, formally defined by:

Cubic Vertex Cover

Input: Graph G = (V,E) such that all vertices v ∈ V have degree 3.

Output: A set C ⊆ V (vertex cover) of minimum cardinality such that
e ∩ C 6= ∅ for all e ∈ E.
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Cubic Vertex Cover seen as optimisation problem is APX-hard by [5]3.
The reduction we now give from Cubic Vertex Cover to (‖·‖w

1
, rad)-2-

cluster will not only show NP-hardness for the associated decision problem
but also prove APX-hardness for the optimisation problem.

Theorem 18

(‖·‖w
1
, rad)-2-cluster interpreted as decision problem is NP-hard, and in-

terpreted as optimisation problem is APX-hard, even with the restriction to
distances d which satisfy the triangle inequality.

Proof. For the sake of simplicity, we first describe a polynomial reduction
from the decision problem Cubic Vertex Cover and later argue how this
construction can be interpreted as an L-reduction. Let G = (V,E) with V =
{v1, . . . , vn} and m := |E| be the input graph for Cubic Vertex Cover.
We construct a graph G′ = (V ′, E ′) for (‖·‖w

1
, rad)-2-cluster defined by the

vertex set V ′ := {v1
i , v

2
i : 1 ≤ i ≤ n} ∪ {ve : e ∈ E} and edge set E ′ :=

{{v1
i , v

2
i } : 1 ≤ i ≤ n} ∪ {{v1

i , ve} : vi ∈ e} with weights wE({v1
i , v

2
i }) = 1

and wE({v1
i , ve}) = 2. We claim that G has a vertex cover of cardinality ` if

and only if there exists a solution for (‖·‖w
1
, rad)-2-cluster with global cost

2n+ 2`+ 2m.
For any vertex cover C of G, we construct a 2-cluster for G′ by first building

clusters {v1
i , v

2
i } for all i ∈ {1, . . . , n}. We then pick (arbitrarily, if there is a

choice) for every edge e = {u,w} ∈ E an index i ∈ {1, . . . , n} such that vi ∈ C
and vi ∈ {u,w} and add the vertex ve to the cluster {v1

i , v
2
i }. As C is a vertex

cover for G, we can assign each vertex ve in such a way and arrive at a 2-cluster
P for G′ which contains only the following two types of clusters:

• {v1
i , v

2
i } ∈ P for all i ∈ {1, . . . , n} with vi /∈ C,

• for all i ∈ {1, . . . , n} with vi ∈ C, P contains a cluster Pi with {v1
i , v

2
i } ⊆

Pi and Pi\{v1
i , v

2
i } ⊆ {ve : ∃1 ≤ j ≤ n : e = {vi, vj}}. With v1

i considered
as central vertex, Pi has radius at most 2, as all vertices ve with e =
{vi, vj} for some j ∈ {1, . . . , n} have distance 2 from v1

i .

Considering, w.l.o.g., a vertex numbering such that C = {v1, . . . , v`}, the global
cost of P with respect to radius and weighted 1-norm is hence at most:

n∑

i=`+1

2 · rad({v1
i , v

2
i }) +

∑̀

i=1

|Pi| · rad(Pi) ≤ 2(n− `) + 2 ·
∑̀

i=1

|Pi| .

As the union of all the clusters Pi with i ∈ {1, . . . , `} contains exactly all
vertices ve, e ∈ E and all vertices v1

i , v
2
i with i ∈ {1, . . . , `}, it follows that

3The much older paper [54] is often cited for this result, but only gives APX-hardness for
4-regular graphs.
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∑`
i=1 |Pi| = |E| + 2`. The global cost of P as solution for (‖·‖w

1
, rad)-2-

cluster is hence at most 2(n− `) + 2(m+ 2`) = 2n+ 2`+ 2m.
Conversely, let P be a 2-cluster for G′ such that the global cost with respect

to radius and 1-norm is at most 2n + 2` + 2m. We define for this solution a
cost function c on V ′ by c(v) := rad(P ) for all v ∈ P and P ∈ P. The global
cost of P with respect to (‖·‖w

1
, rad) can hence be computed by

∑
v∈V ′ c(v).

Observe first that from the structure of the graph G′ it immediately follows
that c(v) ≥ 1 and c(v) ∈ N for all v ∈ V ′. We consider the possible costs c(v)
for all types of vertices:

• For all i ∈ {1, . . . , n} and h ∈ {1, 2}, c(vhi ) = 1 if and only if {v1
i , v

2
i } ∈ P.

• For all e ∈ E, we know that c(ve) ≥ 2.

• For any e = {vi, vj} ∈ E, c(ve) = 2 is only possible if {v1
i , v

1
j} ∩ P 6= ∅

for the set P ∈ P with ve ∈ P .

• For any e = {vi, vj} ∈ E, c(ve) = 3 is only possible if {v2
i , v

2
j} ∩ P 6= ∅

for the set P ∈ P with ve ∈ P .

Assume that C := {vi : c(v1
i ) ≥ 2} is not a vertex cover of size ` for G. If

|C| > `, we see that, since c(v1
i ) ≥ 2 if and only if c(v2

i ) ≥ 2, the global cost of
P exceeds the assumed value, as:

∑

v∈V ′
c(v) ≥

n∑

i=1

(c(v1
i )+c(v2

i ))+2m ≥ 2 ·2|C|+2(n−|C|)+2m > 2n+2`+2m.

If there is some edge e = {vi, vj} which is not covered by C, the sets
{v1

i , v
2
i } and {v1

j , v
2
j} are both in P by the definition of C, hence c(ve) ≥ 4. So

let Ē ⊆ E be the set of edges which are not covered by C. It follows that:

2n+2`+2m ≥
∑

vi∈C

(c(v1
i )+c(v2

i )) +
∑

vi /∈C

(c(v1
i )+c(v2

i )) +
∑

e∈Ē

c(ve) +
∑

e∈E\Ē

c(ve)

≥ 4 · |C|+ 2(n− |C|) + 4 · |Ē|+ 2(m− |Ē|)

= 2n+ 2m+ 2(|C|+ |Ē|)

This means that |C| ≤ `− |Ē|, so if C is not already a vertex cover for G, we
can greedily chose for each edge in Ē an arbitrary adjacent vertex to cover it
and arrive at a vertex cover for G of cardinality at most `.

At last, with Cubic Vertex Cover and (‖·‖w
1
, rad)-2-cluster seen as

optimisation problems given by (Ivc, Svc,mvc,min) and (I2, S2,m2,min), re-
spectively, the above reduction can be seen as an L-reduction (f, g, β, γ) as
follows:
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• f is given by the above polynomial reduction which creates G′ ∈ I2 from
an input G ∈ Ivc.

• g maps an input G ∈ Ivc and a 2-cluster P for f(G) to the set C as
described in the proof above; observe that the cost c(v) can be computed
from G and P in polynomial time.

• Since m = 3n/2 and ` ≥ n/2 for a cubic graph, we have 2n+ 2`+ 2m ≤
12k. With β := 15 this means m∗2(f(G)) ≤ βm∗vc(G).

• By the definition of g, it follows that mvc(G, g(G,P)) ≤ 1
2
(m2(f(G),P)−

2n − 2m) for each graph G ∈ Ivc with n vertices and m edges and
each 2-cluster P for f(G). Given any vertex cover of size ` for G, the
reduction above showed that there exists a 2-cluster of global cost at most
2(n+m+ `) for G′, which in particular means that m∗2(f(G)) can be
bounded by 2(n+m+m∗vc(G)). With EP (x, g(x, y)) := mP (x, g(x, y))−
m∗P (x) denoting the error for a solution y ∈ S(x) to an instance x ∈ I
of a minimisation problem P = (I, S,m,min) and γ = 1

2
, it follows that:

Evc(G, g(G,P)) = mvc(G, g(G,P))−m∗vc(G)

≤ 1
2
(m2(f(G),P)−2n−2m)− 1

2
(m∗2(f(G))−2n−2m)

= 1
2
(m2(f(G),P)−m∗2(f(G)))

= γE2(f(G),P) .

The L-reduction (f, g, β, γ) hence translates the APX-hardness from Cubic
Vertex Cover to (‖·‖w

1
, rad)-2-cluster.

The reduction above cannot be adapted for the cases of (‖·‖, f)-2-cluster
which were not shown to be polynomial time solvable so far. We therefore
consider the following variation of Satisfiability for the remaining cases:

(3, 3)-Satisfiability (or (3, 3)-SAT)

Input: Boolean formula F in conjunctive normal form such that each
clause contains at most 3 literals and each variable occurs both pos-
itively and negatively in F and overall at most 3 times.

Question: Does there exist a satisfying assignment for F?

This restricted version of the classical satisfiability problem remains NP-hard
by [62].

30



fi tixi

ai bi

w1w1
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Figure 4: Illustration of the gadget introduced for variable vi in Theorem 19.

Theorem 19

(‖·‖w∞ , avg)-, (‖·‖∞ , avg)- and (‖·‖w∞ , rad)-2-cluster are NP-hard, for the
latter two even with the restriction to distances d which satisfy the triangle
inequality.

Proof. Let v1, . . . , vn be the variables and c1, . . . , cm be the clauses of a (3, 3)-
SAT formula F . We construct a graph G = (V,E) by introducing five ver-
tices ti, fi, xi, ai, bi for each vi and edges {xi, fi}, {xi, ti} of weight w1 and
{ai, fi}, {bi, ti}, {ai, bi} of weight w2 as in Figure 4. Also, for each clause cj,
introduce a vertex yj and edges of weight w2 from yj to each literal in cj, i.e.,
to fi if v̄i is a literal in cj and to ti if vi is a literal in cj. We will assign values
for w1 and w2 differently for each problem variant such that a 2-cluster for G
has global cost (and hence maximum (weighted) cost of each cluster) at most 1
if and only if the following assignment properties hold:

• Each xi has to be in a cluster of cardinality 2 with either ti or fi (this
reflects the assignment for vi to be the vertex not clustered with xi).

• Each yj is in a cluster with 1 adjacent vertex, so ti (or fi) for some i with
vi (v̄i) being a literal in cj (this literal satisfies the clause).

• For all i ∈ {1, . . . , n}, the vertices ai and bi lie in the same cluster which
otherwise can only possibly contain either ti or fi (in case we do not need
the variable vi to satisfy any clause).

Assuming w1 ≥ w2, the induced distance d on G satisfies:

• d(xi, v) ≥ w1 + w2 for all v ∈ V \ {xi, ti, fi},

• d(ti, yj) ≥ 3w2 for all i, j such that vi is no literal in cj,

• d(fi, yj) ≥ 3w2 for all i, j such that v̄i is no literal in cj,

• d(yj, v) ≥ 2w2 for all v ∈ V \ {ti, fi : 1 ≤ i ≤ n}.

These distances imply that a 2-cluster which does not satisfy the assignment
properties contains at least one cluster of either a cardinality at least 3 and
radius at least w1 (some vertex xi not properly clustered), or a radius of at
least 2w2 (some vertex yj not in a cluster with adjacent vertex). We now
consider each problem variant and define respective weights w1 and w2.
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For (‖·‖w∞ , rad)-2-cluster we choose w1 = 1
2

and w2 = 1
3
. With these

weights, a cluster P in a 2-cluster for G of weighted radius at most 1 can
have radius w1 only if it has cardinality 2 and otherwise has radius w2 and
cardinality at most 3. As 2w2 > w1, a solution for (‖·‖w∞ , rad)-2-cluster of
global cost at most 1 fulfils the assignment properties.

For (‖·‖∞ , avg)-2-cluster we choose w1 = 2 and w2 = 3
2
. With these

weights, all pairs of distinct vertices in G have a distance at least 3
2

and hence
the average distortion of every cluster is at least 3

2
(|P | − 1)/|P |, which means

that the maximum cardinality of a cluster of average distortion 1 is 3. A cluster
of cardinality 3 has average distortion at most 1 only if it has radius 3

2
= w2. A

cluster of cardinality 2 has average distortion at most 1 only if it has radius at
most 2 = w1. As again 2w2 > w1, this means that a solution for (‖·‖∞ , avg)-2-
cluster of global cost at most 1 fulfils the assignment properties.

For (‖·‖w∞ , avg)-2-cluster we choose w1 = 1 and w2 = 1
2

but also have
to add some more edges; observe that so far, the induced distance d satisfies
the triangle inequality, so by Proposition 7, a 2-cluster could be computed in
polynomial time, hence our construction cannot be complete. With the current
definition we have 2w2 = w1 which yields that clusters of the form {yi, yj} or
{ai, yj} could also have a weighted average distortion of 1 as there could be a
shortest path from yj to yi or ai via two edges of weight 1

2
. If we add edges

{yi, yj} for all i 6= j and {ai, yj}, {bi, yj} for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
each of weight 2, these types of clusters have a weighted average distortion of 2.
Other clusters in a 2-cluster which yield a violation of the assignment property
have either cardinality at least 3 and radius at least w1, which yields a weighted
average distortion of at least 3

2
, or radius at least min{w1 + w2, 3w2} = 3

2
, so

weighted average distortion at least 3
2
. A solution for (‖·‖w∞ , avg)-2-cluster

of global cost at most 1 fulfils the assignment properties.
Finally, there exists a 2-cluster with assignment properties for G (for any

choice of the weights w1, w2) if and only if the formula F is satisfiable:
Given a 2-cluster P for G with assignment property, the vertices of G

corresponding to the clauses are clustered with their satisfying literal and for
each variable vi either {ti, xi} ∈ P or {fi, xi} ∈ P, so the assignment vi = true
if and only if {fi, xi} ∈ P is a satisfying assignment for F .

Conversely, given a satisfying assignment φ for F , build a partition from the
union of the sets {{xi, ti}, {fi} : φ(vi) = false}, {{xi, fi}, {ti} : φ(vi) = true}
and {{ai, bi} : 1 ≤ i ≤ n}, and put for each j ∈ {1, . . . ,m} the vertex yj into the
cluster which contains the assignment of the literal (an arbitrary literal if there
is a choice) which satisfies cj, i.e., if vi (v̄i) is a literal in cj and φ(vi) = true
(φ(vi) = false) put yj in the cluster containing ti (fi). As F is an instance
of (3,3)-SAT, at most 2 clause vertices are assigned to the same cluster. If
there is some i such that {ti} or {fi} remains a cluster of cardinality 1, merge
this cluster with {ai, bi}. The resulting partition is a 2-cluster with assignment
properties for G.
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k = 2 rad diam avg

‖·‖∞ in P (Edge Cover)

(Proposition 5)

in P (Simplex Cover)

(Proposition 7)

NP-complete

(Theorem 19)

‖·‖w∞ NP-complete

(Theorem 19)

in P (Simplex Cover)

(Proposition 7)

NP-complete

(Theorem 19)

‖·‖w
1

APX-hard

(Theorem 18)

in P (Simplex Matching)

(Proposition 6)

in P (Weighted Edge Cover)

(Theorem 4 )

Table 1: Summary of the complexity of all problem variants for k = 2.

With this result, we have completed our investigation of the complexity of
(‖·‖, f)-k-cluster with respect to k. At last, we want to give an overview of
the diverse behaviour of the different problem variants for k = 2 in Table 1.
Observe that already for the restriction to k = 2, the generally NP-hard variant
(‖·‖w∞ , avg)-k-cluster becomes polynomial time solvable for the restriction to
distances d which satisfy the triangle inequality. The next section will discuss
approximation strategies for this restriction for general values for k.
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3 General Metric Instances

We will now discuss polynomial time approximations for (‖·‖, f)-k-cluster
but only consider the case where d satisfies the triangle inequality. Despite the
chosen title of this section, this does not necessarily make d a metric in the clas-
sical definition of this word, as we allow the existence of u 6= v with d(u, v) = 0
(violation of the so-called identity of indiscernibles property of metrics); recall
that by the formal definition of (‖·‖, f)-k-cluster, the distance d derived
from edge-weights is just non-negative, symmetric and reflexive. There exist
different names for distances with these properties, so for the lack of a fixed
unified notion we chose to still use the simple term metric to describe that
distance d for (‖·‖, f)-k-cluster satisfies triangle inequality. In the formal
results, we always clearly state that we just require triangle inequality for d
(and not identity of indiscernibles). This restriction is not just reasonable in
many scenarios but in some sense necessary to achieve any kind of approxima-
tion as Proposition 17 indicates.

This work is not the first attempt to find polynomial approximations for
(‖·‖, f)-k-cluster. Known approximation results for clustering with size
constraints include a 9-approximation from [8] for Load Balanced Facility
Location without facility cost, which is related to (‖·‖w

1
, avg)-k-cluster

here, but with the additional constraint that each customer should be assigned
to the nearest open facility. The techniques used for this result highly rely
on the additional constraint, which unfortunately means that they can not
be applied here. Other approximations for this problem instead relax the
constraint that each cluster needs to contain at least k vertices; [40] for example
presents a 2k-approximation which constructs clusters of cardinality at least
k/3. We will see that for our problem such an approximation factor can be
achieved without relaxing the cardinality constraints. In general, our results
however do not extend to Load Balanced Facility Location, since the
addition of facility costs yields a very different type of problem; we especially
lose the upper bound of 2k − 1 on the cardinality of clusters in an optimal
solution from Theorem 2. Some other related results will however prove to be
quite helpful.

The main idea of the approximations developed in this section is to exploit
the structural connections between the different problem variants to especially
translate results from one variant to another and to find related problems with
the help of the given graph formulation. This approach will yield polyno-
mial time approximations for eight of the nine problem variants of (‖·‖, f)-k-
cluster.

3.1 Greedy Approximation

The problem that we call (‖·‖∞ , rad)-k-cluster is discussed under the name
r-gather in [4], where r takes the role of k. The greedy concept for the
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2-approximation presented there can be altered and also used to compute a
2-approximation for (‖·‖∞ , diam)-k-cluster which gives the following result;
recall that we use opt(G, d, ‖·‖, f, k) to denote the global cost of an optimal
solution for (‖·‖, f)-k-cluster on G with distance d.

Theorem 20

(‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster are 2-approximable in polynomial
time for all k ≥ 2, if d satisfies the triangle inequality.

Proof. Let G = (V,E) be the input graph with induced distance d. By a
binary search among all values in {d(v, v′) : v, v′ ∈ V }, we search for the small-
est value D such that the procedure described below to build a k-cluster of
maximum radius D is successful.

For a fixed D, we first build a partition of V in the following way: Beginning
with i = 1 and V1 := V we iteratively, until Vi = ∅, choose arbitrarily some
zi ∈ Vi and build clusters P (zi) := {v ∈ Vi : d(zi, v) ≤ D} and set Vi+1 =
Vi \ P (zi). This yields a partition of V into a finite number of clusters P (zi).
Let q be the number of clusters created by this strategy. If each cluster P (zi)
contains at least k vertices, we have found a k-cluster of maximum radius D.

Some of the clusters P (zi) however might have a cardinality of less than k.
In this case, we try to reassign some vertices to adjust the cardinalities. Ob-
serve that by the strategy used to build the clusters, possible vertices outside
P (zi) at distance at most D from zi can only be in clusters P (zj) with j < i.
Hence, we define the sets S(i, j) := {v ∈ P (zj) \ {zj} : d(v, zi) ≤ D} for all
1 ≤ j < i to collect all vertices which can be moved from cluster P (zj) to
cluster P (zi) without increasing the radius of P (zi) to be more than D. If∑i−1

j=1 |S(i, j)| < k − |P (zi)| for some i ∈ {1, . . . , q} there are not enough ver-
tices to move to cluster P (zi), so we delete this clustering attempt and try
again for a larger value for D. Otherwise, we try to move some vertices in
S(i, j) from P (zj) to P (zi), 1 ≤ j < i ≤ q, in order to arrive at a partition
which is a k-cluster. Moving some vertices from S(i, j) into P (zi) to increase
the cardinality of P (zi) might mean that the cardinality of P (zj) decreases
below k and hence requires moving some vertices from S(j, `) into P (zj) for
some ` < j. This kind of ripple effect is the reason why we solve this problem
of moving vertices in S(i, j) to create a k-cluster by modelling it as a max-flow
problem with the following network:

• The network has a source s and target t.

• For each i ∈ {1, . . . , q} we create a vertex z′i representing P (zi) in the
network. If |P (zi)| > k we add an arc from s to z′i of capacity |P (zi)|−k.
If |P (zi)| < k we add an arc from z′i to t of capacity k − |P (zi)| to t.

• For each v ∈ ⋃q−1
i=1

⋃i−1
j=1 S(i, j), create a vertex v′ in the network and arcs
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of capacity 1 from v′ to z′i for all i with v ∈ S(i, j) for some j and also
from z′j to v′ for all j with v ∈ S(i, j) for some i.

There exists a maximum flow of
∑q

i=2 max{0, k − |P (zi)|} from s to t in this
network if and only if we can find a reassignment of the vertices in the sets
S(i, j) to turn P (z1), . . . , P (zq) into a k-cluster: Moving a vertex v ∈ S(i, j)
from P (zi) to P (zj) corresponds to a flow of 1 in the network from z′i to v′

and then to z′j. If |P (zi)| > k, at most |P (zi)| − k vertices are allowed to be
moved out of P (zi) which corresponds to the capacity of the arc from s to z′i.
If |P (zi)| < k, exactly k−|P (zi)| vertices have to be moved into P (zi) without
replacement, saturating the capacities of the arc from z′i to t. Max-Flow
can be solved in time O(m · n) [45, 52] on a directed graph with n vertices
and m edges. If we find a flow of size

∑q
i=2 max{0, k−|P (zi)|}, we can build a

k-cluster for V with maximum radius D, otherwise we abort and try a larger
value for D.

We claim that the procedure described above is successful for D = 2r∗ with
r∗ = opt(G, d, ‖·‖∞ , rad, k). The vertices zi chosen while computing a solution
for D = 2r∗ belong to different clusters in an optimal solution, since vertices in
the same cluster have a distance of at most 2r∗ (observe that this is false if d
violates the triangle inequality). Since at most one vertex from each optimal
cluster was chosen to be some zj, there are enough vertices at distance at
most 2r∗ from each such vertex to distribute them among the sets P (zj) such
that each has a cardinality of at least k. A similar reasoning proves that the
greedy procedure is successful for D = d∗ with d∗ = opt(G, d, ‖·‖∞ , diam, k).
In case of diameter, the vertices zj can not belong to the same cluster in the
optimal solution as soon as their distance is larger than d∗. Maximum radius
of D together with triangle inequality shows that the k-cluster computed for
D = d∗ is a 2-approximation for (‖·‖∞ , diam)-k-cluster.

Remark 2: A natural greedy procedure for (‖·‖∞ , avg)-k-cluster could build
up the sets P (zi) by successively adding argmin{d(v, zi) : v ∈ Vi \ P (zi)} until
avg(P (zi)) exceeds D, but moving vertices from S(i, j) to P (zi) could unfor-
tunately increase the average distortion of P (zj).

3.2 Constraint Forest Problems

Some variants of the very broad class of constraint forest problems introduced
in [39] also has a close relation to clustering with lower bounds. The function f
on subsets of vertices used to design constraints in the integer programming
formulation used for constraint forest problems can be defined to model our
minimum cardinality requirement for a partition. This very general framework
introduced in [39] includes a large collection of different specific problems.
We will however mostly use the following specific problem from the class of
constraint forest optimisation problems:
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Lower Capacitated Tree Partitioning

Input: Graph G = (V,E), edge-weights wE : E → Q+, capacity k ∈ N.

Output: A set E ′ ⊆ E minimising
∑

e∈E′ wE(e) such that each v ∈ V
occurs in at least one e ∈ E ′ and each component in the graph induced
by E ′ is a tree with at least k vertices.

While [39] also gives an approximation procedure for the whole class of con-
straint forest problems, this specific problem Lower Capacitated Tree
Partitioning can be 2-approximated in polynomial time with an application
of the much simpler greedy approximation presented in [43].

Proposition 21

(‖·‖w
1
, avg)-k-cluster is 2k-approximable in polynomial time for all k ≥ 2, if

d satisfies the triangle inequality.

Proof. Let G = (V,E) be an instance of (‖·‖w
1
, avg)-k-cluster with induced

distances d. We consider solving Lower Capacitated Tree Partitioning
with capacity k on G′ = (V, V × V ) with edge-weights computed via d. Any
solution P1, . . . , Ps for (‖·‖w

1
, avg)-k-cluster of global cost L on G = (V,E)

can be interpreted as a solution of cost L for Lower Capacitated Tree
Partitioning on G′; a spanning forest for G′ with connected components
P1, . . . , Ps and cost ‖(avg(P1), . . . , avg(Ps))‖w1 is given by the edge set:

s⋃

i=1

{{ci, vi} : vi ∈ Pi} with ci = argmin{
∑

v∈Pi

d(v, c) : c ∈ Pi} .

Conversely, any minimal solution Ē ⊂ V × V for Lower Capacitated
Tree Partitioning for G′ of cost L can be interpreted as a solution for
(‖·‖w

1
, avg)-k-cluster with global cost at most k ·L. Let C be the set of con-

nected components of the graph induced by Ē. Any component C ∈ C which
contains a path with more than 2k−1 vertices can be split into two connected
components, each of cardinality at least k by deleting an edge (i.e., reducing
the cost of the partition). Further, we can assume that for all components
C ∈ C there is at least one c ∈ C such that C \ {c} is a forest of trees each
of maximum cardinality k. This can be seen as follows: Start at an arbitrary
vertex as candidate for c and let T c1 , . . . , T

c
sc be the connected components of

C \ {c}. If there is an index i such that |T ci | > k, consider the neighbour of c
in T ci as new candidate and iterate this procedure. Observe that the index i for
which |T ci | > k has to be unique; otherwise, T ci and C \V [T ci ] are both trees of
cardinality at least k and the tree partitioning can be altered by deleting the
edge which connects c with T ci . (In case that the tree partitioning is not chosen
locally minimal in this sense, the above described procedure to find a suitable
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vertex c is constructive and can be used to alter the partitioning accordingly
in polynomial time.) By the same argument, it follows that a suitable vertex c
will be reached after at most k iterations.

With the simple observation that the distance of a vertex in T ci to c only
depends on the cost of the edges of the tree partition in the subtree T ci , the
triangle inequality implies that d(v, c) ≤ c(E[T ci ]) for all v ∈ T ci . Considering c
as central vertex for the cluster V [C], this gives the following relation between
the partition P given by {V [C] : C ∈ C} and the cost L of the tree partition Ē:

avg(P) =
∑

C∈C

|C| · avg(C)

≤
∑

C∈C

∑

v∈C

d(v, c)

≤
∑

C∈C

sc∑

i=1

∑

v∈Ti

d(v, c)

≤
∑

C∈C

sc∑

i=1

∑

v∈T c
i

|T ci | · c(E[T ci ])

≤
∑

C∈C

sc∑

i=1

∑

v∈T c
i

k · c(E[T ci ])

≤
∑

C∈C

k · E[C]

= k · L .

Since Lower Capacitated Tree Partitioning can be 2-approximated,
this yields a 2k-approximation for (‖·‖w

1
, avg)-k-cluster.

Remark 3: Theorem 4 showed that (‖·‖w
1
, avg)-2-cluster can be solved in

polynomial time which also translates to solving Lower Capacitated Tree
Partitioning with capacity k = 2; finding a tree partitioning with capacity
2 is hence equivalent to the computation of a weighted edge cover.

Essential for the result above is excluding paths of length 2k in all com-
ponents C, but this property does not prevent C from containing arbitrarily
many vertices. For (‖·‖w

1
, diam)- or (‖·‖w

1
, rad)-k-cluster we need an upper

bound on the cardinality to prove an approximation ratio. We therefore con-
sider Lower Capacitated Path Partitioning, the restriction of Lower
Capacitated Tree Partitioning to paths as connected components. On
weighted graphs for which the weights obey the triangle inequality, [39] pro-
vides a 4-approximation for Lower Capacitated Path Partitioning.
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Proposition 22

(‖·‖w
1
, diam)-k-cluster is 8(k − 1)-approximable in polynomial time for all

k ≥ 2, if d satisfies the triangle inequality.

Proof. Consider for any input G = (V,E) with induced distances d for the
problem (‖·‖w

1
, diam)-k-cluster, the complete graph G′ = (V, V ×V ) with d

as input for path partitioning. Let P1, . . . , Ps be an optimal solution for
(‖·‖w

1
, diam)-k-cluster with |Pi| ≤ 2k − 1 (transformed with Corollary 1).

For each i ∈ {1, . . . , s}, a cheapest spanning path for Pi has a cost of at most
(|Pi| − 1) · diam(Pi). Building a cheapest spanning path for each set Pi hence
gives a solution of Lower Capacitated Path Partitioning on G′ of cost
at most

s∑

i=1

(|Pi| − 1) · diam(Pi) =
s∑

i=1

|Pi| − 1

|Pi|
· |Pi| · diam(Pi))

≤ 2k−2
2k−1
·

s∑

i=1

|Pi| · diam(Pi))

= 2k−2
2k−1
· opt(G, d, ‖·‖w

1
, diam, k) .

This especially implies that the cost T ∗ of an optimal path partitioning for G′

is at most 2k−2
2k−1
· opt(G, d, ‖·‖w

1
, diam, k).

Let Ẽ ⊆ V ×V be a solution for Lower Capacitated Path Partition-
ing for G′ of cost T . Let P ′1, . . . , P

′
s be the vertex sets corresponding to the

connected components of the graph induced by Ẽ. The partition P ′1, . . . , P
′
s

yields a solution for (‖·‖w
1
, diam)-k-cluster of global cost at most (2k− 1)T ;

observe that any set P ′i contains at most 2k − 1 vertices as a path contain-
ing more than 2k − 1 vertices can be split into 2 paths by deleting an edge
from Ẽ. Considering Ē to be a 4-approximation for Lower Capacitated
Path Partitioning on G′ computed with [43], the partition P ′1, . . . , P

′
s gives

a solution for (‖·‖w
1
, diam)-k-cluster of global cost at most:

(2k − 1)T ≤ (2k − 1)4T ∗

≤ (2k − 1)4 · 2k−2
2k−1
· opt(G, d, ‖·‖w

1
, diam, k)

≤ 8(k − 1) · opt(G, d, ‖·‖w
1
, diam, k) .

Remark 4: We believe that it is possible to improve the above result to yield a
6k-approximation by also starting with the 2-approximation for Lower Ca-
pacitated Tree Partitioning. The basic idea for this approach is to split
up components C of large cardinality in the tree partitioning at the point c
chosen as central vertex in the proof of the approximation ratio for Proposi-
tion 21 such that each edge in the tree partitioning only occurs in a cluster of
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at most 6k vertices. As a proper algorithmic description of this split appears to
be rather complicated, we prefer here the cleaner result via path partitioning
presented above.

3.3 Consequences for Other Problem Variants

One advantage of the unified model for (‖·‖, f)-k-cluster is that approxima-
tions for one variant also yield approximations for another. In case d satisfies
the triangle inequality, the different local cost functions relate in the following
way:

avg(Pi) ≤ rad(Pi) ≤ diam(Pi) ≤ 2 · rad(Pi) (1)

With this relation, Proposition 22 immediately yields:

Corollary 23

(‖·‖w
1
, rad)-k-cluster is 16(k − 1)-approximable in polynomial time for all

k ≥ 2, if d satisfies the triangle inequality.

By definition, the two ∞-norms also relate optimal values in the following
way for every choice of f ∈ {rad, diam, avg}:

opt(G, d, f, ‖·‖w∞ , k) ≥ k · opt(G, d, f, ‖·‖∞ , k) (2)

This equation is helpful to derive approximations for the weighted ∞-norm:

Proposition 24

(‖·‖w∞ , diam)- and (‖·‖w∞ , rad)-k-cluster are 4-approximable in polynomial
time for all k ≥ 2, if d satisfies the triangle inequality.

Proof. Let for a given graph G with induced distances d the sets P1, . . . , Ps
be the 2-approximation for (‖·‖∞ , diam)-k-cluster from Theorem 20. By
Corollary 1, we can assume that |Pi| ≤ 2k − 1. This yields:

max{|Pi| · diam(Pi) : 1 ≤ i ≤ s}
≤ (2k − 1) ·max{diam(Pi) : 1 ≤ i ≤ s}
≤ 2(2k − 1) · opt(G, d, diam, ‖·‖∞ , k)

By Equation (2) this implies

max{|Pi| · diam(Pi) : 1 ≤ i ≤ s} ≤ (4k − 2) · 1
k
· opt(G, d, diam, ‖·‖w∞ , k)

which makes P1, . . . , Ps a 4-approximation for (‖·‖w∞ , diam)-k-cluster.
A similar reasoning can be used with a 2-approximation for (‖·‖∞ , rad)-k-

cluster in order to compute a 4-approximation for (‖·‖w∞ , rad)-k-cluster.
If a cluster P in the approximate solution for (‖·‖∞ , rad)-k-cluster contains

40



more than 2k−1 vertices, we remove exactly k vertices from it (keeping at least
one of its central vertices with respect to radius) and build a new cluster P̄ with
them. By triangle inequality this cluster has a radius of at most 2 ·rad(P ). We
repeat this splitting until all clusters have at most 2k−1 vertices. Let P ′1, . . . , P

′
s

be the clusters created from the approximation P1, . . . , Ps for (‖·‖∞ , rad)-k-
cluster by removing vertices and let P̄1, . . . , P̄r be all newly created clusters
of cardinality k. Since at least one central vertex of Pi remains in P ′i , we know
that rad(P ′i ) ≤ rad(Pi). This partition yields a solution for (‖·‖w∞ , rad)-k-
cluster of size:

max{max{|P ′i | · rad(Pi) : 1 ≤ i ≤ s},max{|P̄j| · rad(P̄j) : 1 ≤ j ≤ r}}
≤ max{max{(2k − 1) · rad(P ′i ) : 1 ≤ i ≤ s},max{k · rad(P̄j) : 1 ≤ j ≤ r}}
≤ max{max{(2k − 1) · rad(Pi) : 1 ≤ i ≤ s},max{k · (2 · rad(Pi)) : 1 ≤ i ≤ s}}
≤ 2k ·max{rad(Pi) : 1 ≤ i ≤ s}
≤ 4k · opt(G, d, rad, ‖·‖∞ , k)

By Equation (2), this means that P ′1, . . . , P
′
s, P̄1, . . . , P̄r is a 4-approximation

for (‖·‖w∞ , rad)-k-cluster.

For (‖·‖w∞ , avg)-k-cluster we do not have a result for (‖·‖∞ , avg)-k-
cluster to transfer. Interestingly, a variant with different local and global
cost can be used instead:

Proposition 25

(‖·‖w∞ , avg)-k-cluster is (4k − 2)-approximable in polynomial time for all
k ≥ 2, if d satisfies the triangle inequality.

Proof. We first show opt(G, d, avg, ‖·‖w∞ , k) ≥ opt(G, d, diam, ‖·‖∞ , k). Con-
sider any set P in an optimal solution for (‖·‖∞ , avg)-k-cluster. Triangle
inequality and k ≥ 2 yields:

|P | · avg(P ) = min

{∑

p∈P

d(c, p) : c ∈ P
}

≥ min{max{d(u, c) + d(v, c) : u, v ∈ P, u 6= v} : c ∈ P}
≥ max{d(u, v) : u, v ∈ P} = diam(P ) .

The approximation procedure from Theorem 20 with a simple additional step
of splitting up clusters of cardinality more than 2k−1 by Corollary 1 produces a
2-approximation for (‖·‖∞ , diam)-k-cluster for which each set contains at
most 2k−1 vertices. The global cost of this partition with respect to weighted
∞-norm and average distortion is at most 2(2k − 1) · opt(G, d, diam, ‖·‖∞ , k),
and hence yields a (4k − 2)-approximation for (‖·‖w∞ , avg)-k-cluster.

41



rad diam avg

‖·‖∞ 2

(Theorem 20)

2

(Theorem 20 )

?

‖·‖w∞ 4

(Proposition 24)

4

(Proposition 24)

4k − 2

(Proposition 25)

‖·‖w
1

16(k − 1)

(Corollary 23)

8(k − 1)

(Proposition 22)

2k

(Proposition 21)

Table 2: Summary of the approximation ratios for all problem variants, bold
values are optimal assuming P 6= NP.

This concludes the collection of results we found considering polynomial
time approximations for (‖·‖, f)-k-cluster restricted to instances for which d
satisfies the triangle inequality. The approximation ratios of these results are
summarised in Table 2. The only provably optimal ratios, assuming P 6= NP
are the 2-approximations for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster.

We did not succeed in finding a technique which yields a constant-factor
approximation for (‖·‖∞ , avg)-k-cluster but believe the approximation for
(‖·‖∞ , rad)-k-cluster to be a good heuristic. Average distortion with its lack
of monotonicity is the most challenging local cost, but we did also not find
any lower bound which would suggest that approximations for (‖·‖∞ , avg)-k-
cluster are unlikely. The question whether there exists an approximation
with provable performance ratio, constant or at least in O(k), for this problem
variant hence remains open.

3.4 A Particular Algorithm for k = 4

As a last idea for this section on general metric instances, we want to present an
approximation which exploits the unified model by combining the solutions for
k = 2 derived in Section 2.2 for two different problem variants to compute an
approximate solution for the restriction to k = 4. Although this restriction is
very specific, this result can be seen as a first step towards better approximation
ratios for the weighted 1-norm.

Explicitly, we will combine the Simplex Matching approach for the
problem variant (‖·‖w

1
, diam)-2-cluster and the Edge Cover approach for

(‖·‖w
1
, avg)-2-cluster. For this result, we need the following connection be-

tween (‖·‖w
1
, diam)-4-cluster and (‖·‖w

1
, avg)-2-cluster.
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Lemma 26

Let P1, . . . , Ps with |Pi| ≤ 3 for all i ∈ {1, . . . , s} be an optimal solution for
(‖·‖w

1
, diam)-2-cluster on a graph G with distance d. Let G′ = (P, P × P )

be the graph with P := {p1, . . . , ps} and edge-weights w defined by wi,j :=
w({pi, pj}) := min{d(u, v) : u ∈ Pi, v ∈ Pj}, then:

opt(G, d, diam, ‖·‖w
1
, 4) ≥ 3 · opt(G′, w, avg, ‖·‖w

1
, 2) .

Proof. Let S1, . . . , Sr be an optimal solution for (‖·‖w
1
, diam)-4-cluster on G

and define c(v) := diam(Si) for all v ∈ Si, i ∈ {1, . . . , r}. This yields:

D∗ := opt(G, d, diam, ‖·‖w
1
, 4) =

∑

v∈V

c(v) .

Let G̃ = (P, Ẽ) be the restriction of G′ (edge-weights inherited) to the edges:

Ẽ :=
r⋃

k=1

{{pi, pj} : (i 6= j) ∧ (Pi ∩ Sk 6= ∅) ∧ (Pj ∩ Sk) 6= ∅} .

Observe that |Pi| ≤ 3 for all i ∈ {1, . . . , s} implies that the minimum degree
in G̃ is 1; each v ∈ Pi lies in some set Sj, j ∈ {1, . . . , r}, with |Sj| ≥ 4, so there
exists a vertex v′ ∈ Sj with v′ ∈ Pi′ and i′ 6= i which yields {pi, pi′} ∈ Ẽ. By
the definition of G̃, we know that, for any v ∈ Pi

c(v) ≥ min{wi,j : 1 ≤ j ≤ s, {pi, pj} ∈ Ẽ} . (3)

Let C ⊆ Ẽ be a minimum-weight edge cover for G̃. We claim that 3·w(C) ≤ D∗

and consider three cases for edges C based on the cardinality of the neighbour-
hoods of vertices pi in C, formally defined by NC(i) := {r : {pi, pr} ∈ C}. First
observe that if |NC(i)| > 1, minimality of C yields:

wi,j ≤ min{wh,j : 1 ≤ h ≤ s, {ph, pj} ∈ Ẽ} for all j ∈ NC(i) . (4)

Case 1: |NC(i)| = |NC(j)| = 1 for some j ∈ {1, . . . , s} with {pi, pj} ∈ C. As
{pi, pj} ∈ Ẽ, there exists some k ∈ {1, . . . , r} such that Pi ∩ Sk 6= ∅ and
Pj ∩ Sk 6= ∅, so let ui1, u

j
1 ∈ Sk be two vertices with ui1 ∈ Pi and uj1 ∈ Pj.

By definition of the functions w and c, it follows that:

c(ui1) = c(uj1) = diam(Sk) ≥ d(ui1, u
j
1) ≥ wi,j .

By minimality of C, we know that wi,j ≤ wi,zi + wj,zj for any choice

of zi, zj ∈ {1, . . . , s} with {pi, pzi}, {pj, pzj} ∈ Ẽ, so especially for zh
such that wh,zh = min{wh,x : 1 ≤ x ≤ s, {ph, px} ∈ Ẽ}, h ∈ {i, j}. By
Equation (3) this means that for any two vertices vh ∈ Ph, h ∈ {i, j}:

wi,j ≤ wi,zi + wj,zj ≤ c(vi) + c(vj) .
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As |Ph| ≥ 2, let vh ∈ Ph \ {uh1} for h ∈ {1, 2}, which gives:

c(Pi ∪ Pj) :=
∑

v∈Pi∪Pj

c(v) ≥ c(ui1) + c(uj1) + c(vi) + c(vj) ≥ 3 · wi,j .

Case 2: If |NC(i)| = 2 let NC(i) = {j, k}. Equation (4) yields wh,z ≥ wh,i for
h ∈ {j, k} and all z ∈ {1, . . . , s} with {ph, pz} ∈ Ẽ. Equation (3) hence
yields c(v) ≥ wi,h for all v ∈ Ph, h ∈ {j, k}. Let the edge {pi, ph} be in
Ẽ because of uih, u

1
h for h ∈ {j, k}, i.e., uih ∈ Pi and u1

h ∈ Ph and there
exist yh ∈ {1, . . . , r} such that uih, u

1
h ∈ Syh . By this definition, it follows

that c(uih) ≥ diam(Syh) ≥ d(uih, u
1
h) = wi,h. If uij 6= uik, it follows that

c(Pi ∪ Pj ∪ Pk) ≥ c(uij) + c(uik) + |Pj| ·wij + |Pk| ·wi,k ≥ 3 · (wi,j +wi,k) .

If uij = uik, it follows that yj = yk =: y and hence u1
j , u

1
k ∈ Sy, which

means that the edge {pj, pk} is in Ẽ with weight at most d(u1
j , u

1
k) ≤

diam(Sy) = c(uij). Minimality of C yields wj,k + min{wi,x : 1 ≤ x ≤ s} ≥
wi,j + wi,k, hence Equation (3) yields wj,k + c(|Pi \ {uij}|) ≥ wi,j + wi,k,
which overall gives:

c(Pi) ≥ c(uij) + c(|Pi \ {uij}|) ≥ wj,k + (wi,j + wi,k − wj,k) ≥ wi,j + wi,k ,

which overall gives c(Pi ∪ Pj ∪ Pk) ≥ 3 · (wi,j + wi,k).

Case 3: If |NC(i)| ≥ 3, let NC(i) = {i1, . . . , it}. Equations (4) and (3) yield:

c(vij) ≥ wi,ij for all vij ∈ Pij , j ∈ {1, . . . , t} . (5)

Let for each j ∈ {1, . . . , t}, uj ∈ Pi and vj ∈ Pij be the vertices defining
the edge {pi, pij}, i.e., there exists xj ∈ {1, . . . , r} such that uj, vj ∈ Sxj .
By this definition, it follows that:

c(uj) = diam(Sxj) ≥ d(uj, vj) ≥ wi,ij for all j ∈ {1, . . . , t} . (6)

If uj = uj′ for some j 6= j′, it follows that xj = xj′ and consequently the
edge {pij , pij′} is in Ē and has a cost of at most d(vj, vj′). Minimality
of C implies that d(vj, vj′) ≥ wi,ij + wi,ij′ . On the other hand, we have
c(v) = diam(Sxj) ≥ d(vj, vj′), for all v ∈ Sxj , hence especially for v ∈
{vj, vj′}. With Equation (5), this gives:

c(Pij ∪ Pij′ ) ≥ c(vj) + c(vj′) + c(Pij \ {vj}) + c(Pij′ \ {vj′})
≥ 2(wi,ij + wi,ij′ ) + wi,ij + wi,ij′

= 3(wi,ij + wi,ij′ ) . (7)

Let M be a maximum matching for the graph H = ({1, . . . , t}, Ê) with
Ê = {{j, j′} : uj = uj′}. By the definition of the edges, maximality of M

44



yields that for the unmatched indices N := {j : {j, j′} 6∈M ∀ 1 ≤ j′ ≤ t},
we have |{uj : j ∈ N}| = |N |. With Equations (4),(6) and (7) this yields:

c(Pi) +
t∑

j=1

c(Pij) ≥
∑

{j,j′}∈M

c(Pij ∪ Pij′ ) + c(Pi) +
∑

j∈N

c(Pij)

≥
∑

{j,j′}∈M

3(wi,ij + wi,ij′ ) +
∑

j∈N

c(Pij ∪ {uj})

≥
∑

{j,j′}∈M

3(wi,ij + wi,ij′ ) +
∑

j∈N

wi,ij |Pij ∪ {uj}|

≥ 3 ·
t∑

j=1

wi,ij .

Let C1, . . . , Cx be the connected components (stars) of the graph induced by
the edges in C, and let pij be the center of Cij for each j ∈ {1, . . . , x}, then:

D∗ =
∑

v∈V

c(v) =
r∑

j=1

c(Pj) =
x∑

t=1

c(
⋃

pj∈Ct

Pj) ≥
x∑

t=1

3 ·
∑

j∈NC(it)

wit,j = 3 · w(C) .

At last, since G̃ is a restriction of G′, w(C) is at least the cost of a minimum-
weight edge cover for G′ and by the proof of Theorem 4 any minimal edge
cover for G′ yields a solution for (‖·‖w

1
, avg)-2-cluster.

With the help of this Lemma, we can show that:

Theorem 27

The problem (‖·‖w
1
, diam)-4-cluster can be approximated in polynomial time

within a factor of 35
6

, if d satisfies the triangle inequality.

Proof. LetG = (V,E) be the input graph with induced distances d. First, com-
pute an optimal solution P1, . . . , Ps for (‖·‖w

1
, diam)-2-cluster with Propo-

sition 6. This solution satisfies |Pi| ≤ 3 for all i ∈ {1, . . . , s}. Let D∗ be the
global cost of P1, . . . , Ps. It follows that

D∗ ≤ opt(G, d, diam, ‖·‖w
1
, 4) , (8)

simply because any 4-cluster is also a 2-cluster.
Then, consider the complete graph G′ = (P, P × P ) with vertices P =

{p1, . . . , ps} (pi represents the set Pi) and edge-weights w defined by wi,j :=
w({pi, pj}) := min{d(u, v) : u ∈ Pi, v ∈ Pj}. Compute an optimal solution
S1, . . . , Sr for (‖·‖w

1
, avg)-2-cluster on G′ with Theorem 4 such that with

|Si| ≤ 3 for all i ∈ {1, . . . , s} by Proposition 3 . Lemma 26 then yields:

D∗ ≥ 3 · opt(G′, w, avg, ‖·‖w
1
, 2) = 3 ·

s∑

j=1

|Sj| · avg(Sj) . (9)
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We interpret this partition S1, . . . , Sr as a partition S = {S ′1, . . . , S ′r} on the
graph G, i.e., S ′j :=

⋃
pi∈Sj

Pi for all j ∈ {1, . . . , r}. As |Pi|, |Sj| ≥ 2 for all

i ∈ {1, . . . , r} and j ∈ {1, . . . , s} it follows that |S ′j| ≥ 4 for all j ∈ {1, . . . , s},
so S ′1, . . . , S

′
r is a 4-cluster for G.

If |S ′q| ≥ 8 then Sq contains three vertices, so let i, j, k ∈ {1, . . . , s} be
the indices such that Sq = {pi, pj, pk} with central vertex pi and |Pj| = 3, we
replace the cluster S ′q in S by the two clusters P ′ := Pj∪{ui} and P ′′ := S ′q\P ′
with ui ∈ Pi such that

wi,j = min{d(ui, v) : v ∈ Pj} .

These new clusters satisfy:

|P ′| · diam(P ′) ≤ 4 · (diam(Pj) + wi,j) < 2 · |Pj| · diam(Pj) + 4 · wi,j
and

|P ′′| · diam(P ′′) ≤ 5 · (diam(Pi) + diam(Pk) + wi,k)

≤ 5
2
· |Pi| · diam(Pi) + 5

2
· |Pk| · diam(Pk) + 5 · wi,k .

Consider any set R ∈ S which is not the result of splitting up a cluster S ′q.

• If R = Pi ∪Pj, we know that diam(R) ≤ diam(Pi) + diam(Pj) +wi,j and
|R| ≤ 6, hence:

|R| · diam(R) ≤ 3 · |Pi| · diam(Pi) + 3 · |Pj| · diam(Pj) + 6 · wi,j . (10)

• If R = Pi ∪ Pj ∪ Pk, with pi as central vertex for Sq = {pi, pj, pk}; we
know that |R| ≤ 7 (as Pj and Pk have cardinality 2) and

diam(R) ≤ diam(Pi) + diam(Pj) + diam(Pk) + wi,j + wi,k ,

hence |R| · diam(R) is bounded by:

|R| · diam(R) ≤ 7 · (diam(Pi) + diam(Pj) + diam(Pk) + wi,j + wi,k)

≤ 7
2

∑

h∈{i,j,k}

|Ph| · diam(Ph) + 7(wi,j + wi,k) . (11)

Equations (9), (10) and (11) yield:

∑

R∈S

|R| · diam(R) ≤ 7
2
·

r∑

i=1

|Pi| · diam(Pi) + 6 ·
∑

R⊆Pi∪Pj

wi,j + 7 ·
∑

R=Pi∪Pj∪Pk

(wi,j + wi,k)

≤ 7
2
‖(diam((P1), . . . , diam(Ps))‖

w

1
+7 ·

q∑

i=1

|Si| · avg(Si)

≤ 7
2
D∗ + 7

3
D∗ = 35

6
D∗ .
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Remark 5: With Equation 1, the above algorithm yields a 35
3

-approximation
for (‖·‖w

1
, rad)-4-cluster. Equation 1 translates the above result to yield a

35
3

-approximation for (‖·‖w
1
, rad)-4-cluster.

Since the approximation ratios from Theorem 27 are significantly bet-
ter than the path-partitioning approximation from Proposition 22 (factor 24
and 48, respectively), it would be interesting to nest this construction further
and extend it for larger values of k. In our experimental results, we tested
the performance of multiple nested applications of edge cover and matching
while in each step always picking the strategy which gave a better global cost
with respect to diameter and weighted 1-norm. Although the results looked
promising, proving an approximation ratio for this strategy appears to be a
very difficult task.
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4 Geometric Instances

In our abstract formulation of (‖·‖, f)-k-cluster one might be surprised that
objects are plainly represented by a vertex without additional object-specific
information. In many applications for this type of clustering, objects are usu-
ally vectors of attribute values, for example a personal record, which contains
values for several attributes. Records representing information about δ dif-
ferent attributes such as age and salary etc. are usually represented by δ-
dimensional vectors. For many problems, this dimensionality δ is seen as the
main factor for computational hardness, a property often referred to as the
curse of dimensionality, a term first introduced by Richard Bellman in [11].
This link between dimension and tractability occurs for many types of prob-
lems, for k-anonymity, for example, this effect is discussed in [3]. For an
overview of the problems which arise for the task of clustering high dimen-
sional data in general, see [60].

A more optimistic way to look at this connection between dimension and
complexity are strategies which exploit the additional structure given by low
dimensionality. The study of problems for which instances are in some sense
embedded in the plane (2-dimensional Euclidean space) is a huge research
area and the list of examples for which restriction to the plane improves com-
putability seems endless. Most significant and relevant to our problems here is
probably the improvement of running time of the 2-approximation algorithm
we used for tree partitioning from [43], from O(n2) for general instances to
O(n log(n)) for instances for which vertices correspond to points in the plane.

So far, our model captures this complexity of dimension with the structure
of the distance d for which we have already noticed that requiring triangle
inequality has a huge impact on structural properties and especially on ap-
proximability. In this section we want to study if an even further restriction
to d being the Euclidean distance allows for a helpful parameterisation by the
dimension. We proceed by first clearly defining these types of instances for
(‖·‖, f)-k-cluster and the notion dimension. We will then see that this di-
mension is not the main factor of computational hardness for most versions of
our family of problems.

4.1 Definition of Euclidean (‖·‖, f)-cluster

In order to properly discuss the term dimension for our family of clustering
problems, we will define a geometric version of (‖·‖, f)-k-cluster which we
will denote by Euclidean (‖·‖, f)-k-cluster, keeping the three choices for
each f and ‖·‖. Instances of Euclidean (‖·‖, f)-k-cluster are given by
vectors Rδ which we will often simply call points, each point representing a
vertex in the original graph definition. The term k-cluster translates for a
finite set of points P ⊆ Rδ analogously to a partition P1, . . . , Ps of P such that
|Pi| ≥ k for all i ∈ {1, . . . , s}.
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The distance between two vertices u and v is given by the Euclidean distance
between the points representing u and v. Formally, for two vertices u, v given
by coordinates (u1, . . . , uδ) and (v1, . . . , vδ), respectively, where δ ∈ N and
ui, vi ∈ R for each i ∈ {1, . . . , δ}, we define:

dδ(u, v) :=

(
δ∑

i=1

(ui − vi)2

) 1
2

.

Whenever we speak about distance between points or vertices in the following,
we refer to this distance with δ fixed according to the space Rδ containing the
representing points in question. The formal decision problem which we will
discuss in this section is defined as follows:

Euclidean (‖·‖, f)-k-cluster

Input: P ⊂ Rδ finite, k ∈ N, D ∈ R.

Question: Is there a k-cluster P1, . . . , Ps of P for some s ∈ N, such that
‖ (f(P1), . . . , f(Ps)) ‖≤ D, where the pairwise distances to compute
this objective function is computed by dδ.

4.2 Reduction Idea

In this section, we will show that Euclidean (‖·‖, f)-k-cluster for local
cost f ∈ {diam, rad} and all choices for ‖·‖ turns out to be NP-complete al-
ready for very low dimensions, i.e., constant δ. In particular, we will show that
Euclidean (‖·‖, f)-k-cluster remains NP-hard even when restricted to in-
stances in the 3-dimensional Euclidean space (δ = 3) for both f ∈ {diam, rad},
all norms and k fixed to a small constant. For weighted 1-norm we show this
hardness for the even stronger restriction to points in the plane (δ = 2), again
for both f ∈ {diam, rad} and k fixed to a small constant. A discussion about
f = avg can be found at the end of this section.

This hardness even for low fixed dimension is not too surprising as the
related problems k-Means, k-Median and k-Center have all been proven
NP-hard even when restricted to instances in the plane (see [48] for k-Means
and [50] for k-Median and k-Center). The problem closest to any of our
versions of Euclidean (‖·‖, f)-k-cluster in this context is the version of
the k-Median problem as introduced by Papadimitriou, with the difference
to the previously mentioned problems being that the “medians” have to be
chosen among the given set of points. This version of k-Median also remains
NP-hard when restricted to planar instances by a construction given in [53].
We will in fact in the following use constructions with a similar conceptual
idea of reducing from a version of Exact-3-Cover. Recall the definition of
this problem from Section 2.3.1, with t fixed to 3, which is NP-hard by [33].
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Exact-3-Cover

Input: A universe X = {x1, . . . , xn} and a collection C = {S1, . . . , Sr} of
subsets of X, such that each Si, i ∈ {1, . . . , r}, has cardinality 3.

Question: Does there exist a subset C ′ ⊆ C that is a partition of X?

The main difference is that our constructions use larger distances to give nice
concrete coordinates to cleanly show how the reductions can be computed
in polynomial time. Further we make changes to the original set of points
according to each choices of global and local cost, mostly duplicating and
slightly moving some points, but the overall idea remains the same as in the
reduction used for k-Median and can intuitively be described as follows:

For an instance C = {S1, . . . , Sr} over a universe X of Exact-3-Cover,
we introduce for each set Si a group of points which can be partitioned with
small cost and according to the required minimum cardinality in exactly two
different ways, which correspond to the decision whether or not Si is chosen to
be part of the cover. For each element in the universe X, there exists a corre-
sponding set in such a, say feasible, partition of the points introduced for Si.
The group of points for the set Si is, very informally speaking, arranged to lie
on a horizontal line and starts (seen from small to larger x-coordinate) with
some initial points, followed by the points which correspond to x1, followed
by the points for x2 and so forth. The groups for S1, . . . , Sr are arranged as
parallel lines in this order which yields a horizontal separation of the space in
the areas between the points for Si and Si+1 for i ∈ {1, . . . , r − 1}. Points
which mark whether an element xj is contained in a set Si are placed in the
areas between Si−1 and Si (and Si and Si+1), more precisely, we introduce a
point xi,j if xj ∈ Si and a point yi,j otherwise (also x′i,j or y′i,j between Si and
Si+1). These points are arranged in such a way that xi,j (or x′i,j) can only be
included in a cluster of small cost and required cardinality, if the points for Si
are partitioned to reflect that Si is chosen not to be in the cover, which may
be confusing at first. In a sense, the reduction will use the exactness of the
solution for Exact-3-Cover, and not the covering property to link k-clusters
of small cost to the existence of an exact cover.

Denote by (xi,j/yi,j) the point xi,j or yi,j, depending on which one exists
according to the containment of xj in Si. The construction contains other
points (named qi,j and q′i−1,j) between Si−1 and Si to enable a feasible clustering
for (xi,j/yi,j) or (x′i−1,j/y

′
i−1,j) but not both, which means that one of these has

to be in a cluster with its corresponding set in Si and Si−1, respectively. This
way, with r horizontal point sets corresponding to S1, . . . , Sr and 2(r−1) points
of the type (xi,j/yi,j) in the areas between them from which only r− 1 can be
clustered with qi,j and q′i−1,j, r − 1 remain to be clustered with the points for
their corresponding set Si. Hence, for each j at most one set Si can be chosen
to have its points arranged in the way which signals containment in the cover.
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In the following we will use the names already introduced in the sketch
above and also use the expression (xi,j/yi,j) to denote xi,j or yi,j, depending
on which of these two points exists for indices i and j.

4.3 Diameter

Theorem 28

Euclidean (‖·‖w
1
, diam)-k-cluster with k = 6 and δ = 2 is NP-hard.

Proof. We reduce from Exact-3-Cover, with an instance given by a collec-
tion of sets S1, . . . , Sr of cardinality 3 over the universe {x1, . . . , xn}. We will
define the instance for Euclidean (‖·‖w

1
, diam)-k-cluster by giving points

in the plane, each point corresponds to a vertex and the distance between two
vertices is the Euclidean distance between the points. Whenever we speak
about distance in the following, we refer to the Euclidean distance.

Let λ ≥ 0 be a constant; we will later fix this value accordingly but the de-
scription of the reduction is more readable with the use of the substitute λ. We
create the following points at y-coordinate (i− 1)6.64 for every i ∈ {1, . . . , r}
and j ∈ {1, . . . , n} (the row labelled “Count” denotes the number of points
we create of each respective coordinates, for simplicity, we abuse notation and
use the same name for all copies as we always refer to the sets):

Name si s′i p1
i,j p2

i,j p3
i,j li ti t′i

x-Coord 0 1.9 λ+3j−1 λ+3j λ+3j+1 2+λ+3n 2.1+λ+3n 4+λ+3n

Count 3 3 2 2 2 2 3 3

This gives the following row of points for each set Si:

si s′i ti t′ip1i,1 p2i,1 p3i,1 p1i,2 p2i,2 p3i,2 p1i,n p2i,1 p3i,n li

For all (i, j) with i ∈ {1, . . . , r} and j ∈ {1, . . . , n} such that xj ∈ Si, create
the following points at x-coordinate 1 + λ+ 3j (except xr,j, qr,j and x′1,j, q

′
1,j):

Name xi,j x′i,j qi,j q′i,j

y-Coord (i−1)6.64+1.73 (i−1)6.64−1.73 (i−1)6.64+3.73 (i−1)6.64−3.73

Count 1 1 2 3

This arrangement places xi,j at a distance of approximately 2 (a little bit less
than 2) from p2

i,j and p1
i,j+1 (and, obviously, at distance exactly 2 from qi,j).

Symmetrically for x′i,j with p2
i+1,j and p1

i+1,j+1.
For all (i, j) with i ∈ {1, . . . , r} and j ∈ {1, . . . , n} such that xj 6∈ Si,

create the following points (except for yr,j, qr,j and y′1,j, q
′
1,j) at x-coordinate

0.5 + λ+ 3j:
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Name yi,j y′i,j qi,j q′i,j

y-Coord (i−1)6.64+1.32 (i−1)6.64−1.32 (i−1)6.64+3.32 (i−1)6.64−3.32

Count 1 1 2 3

This arrangement places yi,j at a distance of approximately 2 (again, a bit less
than 2) from p1

i,j and p1
i,j+1. Symmetrically for y′i,j with p1

i+1,j and p1
i+1,j+1.

Points xi,j, yi,j, qi,j (green) and x′i+1,j, y
′
i+1,j, q

′
i+1,j (purple) lie between the

rows of points for Si and Si+1 in one of the following ways:

xj ∈ Si ∩ Si+1 xj ∈ Si+1 \ Si xj ∈ Si \ Si+1 xj 6∈ Si ∪ Si+1

p1i,j p2i,j p3i,j p1i,j+1

p1i+1,j

p1i,j p2i,j p3i,j p1i,j+1

p1i+1,j

p1i,j p2i,j p3i,j p1i,j+1

p1i+1,j

p1i,j p2i,j p3i,j p1i,j+1

p1i+1,j

Denote by P the set of all points introduced by the above construction. With
P as vertices with Euclidean distance as instance of (‖·‖w

1
, diam)-k-cluster

with k = 6, we claim that there exists a 6-cluster of global cost C if and only if
S1, . . . , Sr is a “yes” instance for Exact-3-Cover, where the cost C is given
by:

C := 30rn+ 27.4r − 14n+ 8(r − n
3
)λ .

First, observe the following properties of partitions for the points created by
the reduction:
Observation 1: The minimum diameter of a set in a 6-cluster for P which
contains a point p /∈ {si, s′i, ti, t′i : 1 ≤ i ≤ r} is 2.

For each i ∈ {1 . . . , r} we will specifically name two options to partition
the points in Pi := {phi,j : 1 ≤ j ≤ n, 1 ≤ h ≤ 3} ∪ {si, s′i, ti, t′i}, as these will
be the best options in an optimal solution and distinguishing between them is
the relation to the exact cover solution:

• The sets {si, s′i} (diameter 1.9), {li, ti, t′i} (diameter 2) and {p1
i,j, p

2
i,j, p

3
i,j}

(diameter 2) for j ∈ {1, . . . , n}. In the following we will call this parti-
tioning cluster-scheme 1 :
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si s′i ti t′ip1i,1 p2i,1 p3i,1 p1i,2 p2i,2 p3i,2 p1i,n p2i,1 p3i,n li

• The sets {si, s′i, p1
i,1} (diameter 2+λ), {ti, t′i} (diameter 1.9), {p2

i,n, p
3
i,n, li}

(diameter 2) and {p2
i,j, p

3
i,j, p

1
i,j+1} (diameter 2) for j ∈ {1, . . . , n − 1}.

This partition will in the following be referred to as cluster-scheme 2.
Compared to cluster-scheme 1, this partition increases the global cost by
8λ and is, in a sense, shifted, see illustration below:

si s′i ti t′ip1i,1 p2i,1 p3i,1 p1i,2 p2i,2 p3i,2 p1i,n p2i,1 p3i,n li

Other partitions for the points created for Si can only be extended to a
6-cluster which contains at least one cluster of diameter more than 2.64 and,
as we will see in the following when λ is fixed, yield a solution of global cost
larger than C.

Using cluster-scheme 2 for the points in Pi (or symmetrically Pi+1), allows
assigning all points that lie between the points in Pi and Pi+1 to a cluster of
diameter 2. Observe that qi,j, q

′
i+1,j with one of the points xi,j, yi,j, x

′
i+1,j, y

′
i+1

builds a cluster of diameter 2 in all cases:

xj ∈ Si ∩ Si+1 xj ∈ Si+1 \ Si xj ∈ Si \ Si+1 xj 6∈ Si ∪ Si+1

If cluster-scheme 1 is used for both Pi and Pi+1, the case xj ∈ Si ∩ Si+1 is
problematic. Cases xj ∈ Si+1 \ Si and xj ∈ Si \ Si+1 only leave one option to
build clusters of cardinality at least 6 and diameter 2:
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xj ∈ Si ∩ Si+1 xj ∈ Si+1 \ Si xj ∈ Si \ Si+1 xj 6∈ Si ∪ Si+1

?

With a distance of 3.18 between xi,j and x′i+1,j, the cheapest clustering option
(w.r.t. diameter and 1-norm) in the first case is to either build a cluster con-
taining xi,j and p1

i,j, p
2
i,j, p

3
i,j or, symmetrically, a cluster containing x′i+1,j and

p1
i+1,j, p

2
i+1,j, p

3
i+1,j, which both give a cluster of diameter larger than 2.64.

Regardless of the structure of the sets Si and the corresponding points
xi,j, yi,j and qi,j, the following partition of P always gives a feasible 6-cluster:

Sets Indices Diameter Cardinality

{si, s′i, p1
i,1} 1 ≤ i < r 2 + λ 8

{p2
i,j, p

3
i,j, p

1
i,j+1, (xi,j\yi,j)} 1 ≤ i < r, 1 ≤ j < n 2 7

{p2
i,n, p

3
i,n, li, (xi,n\yi,n)} 1 ≤ i < r 2 7

{ti, t′i} 1 ≤ i < r 1.9 6

{qi−1,j, q
′
i,j, (x

′
i,j\y′i,j)} 1 < i < r, 1 ≤ j ≤ n 2 6

{sr, s′r} 1.9 6

{p1
r,j, p

2
r,j, p

3
r,j} 1 ≤ j ≤ n 2 6

{tr, t′r, lr} 2 8

See Figure 5 for an illustration of this partition, which we will call basic par-
tition in the following. As a solution for (‖·‖w

1
, diam)-k-cluster, the basic

partition has a global cost of:

C ′ := 2 · |P | − 0.6r + 8(r − 1)λ = 30rn+ 27.4r − 14n+ 8(r − 1)λ .
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S1S1S1S1

S2S2S2S2

S3S3S3S3

S4S4S4S4

S5S5S5S5

x1︷ ︸︸ ︷ x2︷ ︸︸ ︷ x3︷ ︸︸ ︷ x4︷ ︸︸ ︷ x5︷ ︸︸ ︷ x6︷ ︸︸ ︷

Figure 5: Basic partition for r = 5, n = 6, with xi,j, x
′
i,j and corresponding

qi,j, q
′
i,j colored blue and yi,j, y

′
i,j and corresponding qi,j, q

′
i,j colored red. Clus-

ters displayed in dark grey have diameter 2+λ, green clusters have a diameter
of 1.9 and all others have a diameter of 2.
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Now, fix λ = 0.25. Except for the points si, s
′
i, p

1
i,1 i ∈ {1, . . . , r − 1} and

tn, t
′
n, the cost produced by each point is minimal by Observation 1. Further,

using (xi,j, yi,j), possibilities other than cluster-scheme 1 or 2 for pi,j to improve
this standard solution for si, s

′
i, p

1
i,1, i ∈ {1, . . . , r − 1} or tn, t

′
n are worse:

• Any cluster which includes both yi,j and y′i,j together has a diameter of
at least 2.64 and even larger for xi,j and x′i,j. Even if this strategy allows
to cluster both si, s

′
i and ti, t

′
i at their best diameter possible, the global

cost for any 6-cluster which uses this option is larger than the cost for
the basic partition as 6 · 0.64 > 6 · 0.1 + 8 · λ.

• Clustering si, s
′
i and tn, t

′
n without any other points by building one clus-

ter of diameter 3 within the points p1
i,1, . . . , p

3
i,n, li increases the global

cost by at least 6− 8(0.1 + λ) > 0 compared to the basic partition.

The only option for points qi−1,j, q
′
i,j at diameter 2 is in a cluster containing

either (xi−1,j/yi−1,j) or (x′i,j/y
′
i,j), but not both, as this gives a cluster of di-

ameter at least d2(xi−1,j, x
′
i,j) = 3.18. A cluster containing both qi,j and qi,j+1

or q′i,j+1 has a diameter of 2.5, so an overall increase for the global cost of
at least 3 compared to the basic partition. Clusters including qi−1,j, q

′
i,j for

some i will be called qj-sets in the following, observe that there are exactly
r − 1 qj-sets for each j ∈ {1, . . . , n}.

The only possibilities to improve on the basic partition is using cluster-
scheme 1 for more than one of the sets Pi. If cluster-scheme 1 is used for Pi,
the points xi,j and x′i,j with j such that xj ∈ Si have to be in a cluster
together with {qi,j, q′i+1,j} and {qi−1,j, q

′
i,j}, respectively; otherwise the global

cost increases by more than the 8λ saved by switching Pi to cluster-scheme 1.
A partition which uses cluster-scheme 1 for all Piw with w ∈ {1 . . . , s} is
only better than a clustering which uses cluster-scheme 1 for all Piw with w
in a strict subset of {1, . . . , s}, if it is possible to assign all existing points in
{xiw,j, x′iw,j, yiw,j, y′iw,j : 1 ≤ i ≤ r, 1 ≤ w ≤ s} at diameter 2.

With these observations on the basic partition and the possible improve-
ments, we will show the following claim, which gives an idea of how the clus-
tering corresponds to an exact cover:
Claim 1: A minimum 6-cluster for P uses cluster-scheme 1 for the sets Piw
with w ∈ {1, . . . , s} if and only if |⋃s

l=1 Sil | = 3s. Further, the global cost
w.r.t. diameter and 1-norm for this 6-cluster is C ′ − 8sλ.

Proof of Claim: Assume that cluster-scheme 1 is used for Pa and Pb, a 6= b, and
there exists a j ∈ {1, . . . , n} such that xj ∈ Sa∩Sb. There is no option to build
clusters for all existing points in {xw,j, x′w,j, yw,j, y′w,j : 1 ≤ i ≤ r, 1 ≤ w ≤ n}
at diameter 2, simply because there are not enough qj-sets. For every index
i ∈ {2, . . . , r−1}, at least one of the points out of {(xi,j/yi,j), (x′i,j/y′i,j)} has to
be contained in a distinct qj-set. For Pa and Pb partitioned by cluster-scheme 1,
the existing (xh,j only exists for h < r and x′h,j only exists for h > 1) points out
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of {xa,j, x′a,j, xb,j, x′b,j} all have to be included in a distinct qj-set. This however
requires |{1, . . . , r}|− |{1, . . . , r}∩{a, b}|+ 2|{a, b}|− |{a, b}∩{1, r}| = r such
qj-sets, which contradicts the fact that there can only be r − 1.

On the other hand, if |
s⋃
l=1

Sil | = ts, it follows that for every j ∈ {1, . . . , n}
there is at most one index l ∈ {1, . . . , s} such that xj ∈ Sil . The following
changes to the basic partition improve the global cost by 8λ compared to using
cluster-scheme 2 for Pil :

• For all all j with xj ∈ Sil , build the set {qi−1,j, q
′
i,j, (x

′
i,j/y

′
i,j)} for all

indices i with i ≤ il and the set {qi,j, q′i+1,j, (xi,j/yi,j)} for all indices i
with i ≥ il.

• For all all j with xj ∈ Sil , build the set {p1
il,j
, p2

il,j
, p3

il,j
} and for all j with

xj 6∈ Sil the set {p1
il,j
, p2

il,j
, p3

il,j
, yil,j}.

• Build the sets {sil , s′il} and {lil , til , t′il}.

• For all all j with xj ∈ Sil , build the set {p2
i,j, p

3
i,j, p

1
i,j+1, (xi,j/yi,j)} for

each index i with i < il and the set {p2
i,j, p

3
i,j, p

1
i,j+1, (x

′
i,j/y

′
i,j)} for each

index i with i > il.

As these changes only affect points with j-index such that xj ∈ Sil and the
points sil , s

′
il
, lil , til , t

′
il
, we can apply these changes for each l ∈ {1, . . . , s}

without conflict as the sets Sil are disjoint and arrive at a 6-cluster with global
cost C ′ − 8sλ.

By the properties of the underlying problem Exact-3-Cover and Claim 1,
it is clear that cluster-scheme 1 can be used for at most n

3
different sets Piw

which means that opt(P, d2, ‖ · ‖w1 , diam, 6) ≥ C ′ − 8n
3
λ = C, for the in-

stance (P, d2) of (‖·‖w
1
, diam)-k-cluster constructed for any given instance

of Exact-3-Cover with r sets over a universe of size n. So if there exists a
6-cluster P for P with global cost at most C, P is optimal with respect to di-
ameter and 1-norm, cluster-scheme 1 is used optimally for exactly n

3
point sets

Piw , iw ∈ {1, . . . , r}. By Claim 1, this means that for the n
3

indices i1, . . . , in
3

for which Piw is partitioned by cluster-scheme 1 in P satisfy |
n/t⋃
l=1

Sil | = tn
3

= n,

so Si1 , . . . , Sin
3

is an exact cover for {x1, . . . , xn}.
Conversely, if Si1 , . . . , Sin

3
is an exact cover for {x1, . . . , n}, then the basic

partition for P can be improved by 8λ for each index i` ∈ {i1, . . . , in
3
} with

the construction given in Claim 1. This gives a 6-cluster of global cost C with
respect to diameter and 1-norm for (P, d2).

All in all, S1, . . . , Sr is a “yes”-instance for Exact-3-Cover if and only if
there exists a solution for the corresponding instance (P, d2) of (‖·‖w

1
, diam)-k-

cluster with k = 6 of global cost C.
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With points in three-dimensional space, this construction can be extended
to a reduction to the problem variant with diameter and ∞-norm:

Theorem 29

Euclidean (‖·‖∞ , diam)-k-cluster with k = 4 and δ = 3 is NP-hard.

Proof. We reduce from Exact-3-Cover, with an instance given by a collec-
tion of sets S1, . . . , Sr of cardinality 3 over a universe {x1, . . . , xn} and start
with the construction for Theorem 28 with all counts larger than 1 reduced
by 1, λ = 0 and at z-coordinate 0. Replace si, s

′
i, ti, t

′
i for each i ∈ {1, . . . , r}

by:

Name Count x-Coord y-Coord z-Coord

bi 4 1 (i− 1)6.64 0

ei 4 5 + 3n (i− 1)6.64 0

For all i ∈ {1, . . . , r} and j ∈ {1, . . . , n}, add the following points (except
u1
r,j, u

2
1,j, hr,j):

Name Count x-Coord y-Coord z-Coord

ui,j 1 3j + 1 (i− 1)6.64 5.73

u1
i,j 3 3j + 1 (i− 1)6.64 + 2 5.73

u2
i,j 3 3j + 1 (i− 1)6.64− 2 5.73

hi,j 1 3j + 1 (i− 1)6.64 + 3.32 5.73

For pairs (i, j) with xj ∈ Si further include the points:

Name Count x-Coord y-Coord z-Coord

pi,j 1 3j + 1 (i− 1)6.64 1.73

mi,j 3 3j + 1 (i− 1)6.64 3.73

For each j ∈ {1, . . . , n}, these additional points build the following group at
x-coordinate 3j + 1 (where only the pi and mi with xi ∈ Sj exists):

p1 p2 p3 pr 1 pr

m1 m2 m3 mr 1 mr

u1 u2 u3 ur 1 urh1 h2 hr 1u1
1 u1

2 u1
r 1u2

2 u2
3 u2

r

→y
z↓

58



Denote again by P the set of all points created by this construction. We claim
that there exists a subset of {S1, . . . , Sr} which exactly covers {x1, . . . , xn} if
and only if there exists a 4-cluster for P of maximum diameter 2.

Assume there exists a 4-cluster P of maximum diameter 2 for P . By the
difference in the z-coordinate, no existing vertex from the set

Z := {phi,j, xi,j, x′i,j, yi,j, y′i,j, qi,j, q′i,j, bi, ei : 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ h ≤ 3}

is in the same cluster in P as an existing vertex from

H := {ui,j, u1
i,j, u

2
i,j, hi,j,mi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ n} .

Only existing vertices from U := {pi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ n} can be
in a set of diameter 2 with vertices from exclusively either Z or H. As
d2(pi,j, (xi,j/yi,j)) > 2.64, for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n}, the ver-
tices in Z at distance at most 2 from pi,j are p1

i,j, p
2
i,j, p

3
i,j. So, if there is a set

S ∈ P with S ∩ Z 6= ∅ and S \ Z 6= ∅, then S = {pi,j, p1
i,j, p

2
i,j, p

3
i,j} for some

i ∈ {1, . . . , r} and j ∈ {1, . . . , n}. This means that the options to partition
the vertices in Z into sets of minimum cardinality 4 and diameter at most 2
are very similar to the ones for Theorem 28, more precisely: For the points
phi,j, i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and h ∈ {1, 2, 3}, the only options to build
sets of cardinality at least 4 and diameter at most 2 are, in a way, adjusted
versions of cluster-scheme 1 and cluster-scheme 2 (observe that with the re-
duced cardinalities, some of the sets in the original cluster-schemes only have
cardinality 3), with the following differences:

• The sets {si, s′i} and {ti, t′i} are replaced by {bi} and {ei}, respectively.

• For each i ∈ {1, . . . , r} where cluster-scheme 1 is used for the points
in Pi, the points p1

i,j, p
2
i,j, p

3
i,j build a set together with pi,j, for all j with

xj ∈ Si. For all j with xj /∈ Si the points p1
i,j, p

2
i,j, p

3
i,j build a set together

with exclusively either yi,j or y′i,j.

• For each i ∈ {1, . . . , r} where cluster-scheme 2 is used for the points
in Pi, the points p1

i,j, p
2
i,j, p

3
i,j build a set together with exactly one of the

vertices xi,j, x
′
i,j, yi,j, y

′
i,j for each j ∈ {1, . . . , n} (this property also holds

for the construction in Theorem 28).

For every j ∈ {1, . . . , n}, any attempt to partition a largest subset of the
points in the set Hj := {pi,j,mi,j, ui,j, u

2
i,j, u

1
i,j, hi,j : 1 ≤ i ≤ r} into sets of

minimum cardinality 4 and maximum diameter 2 excludes exactly one point
from {pi,j, ui,j, hi,j} for some i ∈ {1, . . . , r}. This follows immediately from the
given structure, as, for every point in Hj, there are always at most two types
of points at distance at most 2 to build a cluster of cardinalty at least 4. The
points ui,j and hi,j have a distance of at least 5.73 from all points in P \ Hj,
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so Hj is partitioned in P such that for exactly one index i ∈ {1, . . . , r}, the
point pi,j is in a cluster only with points in P \ Hj for each j ∈ {1, . . . , n}.

The only option to build a cluster of maximum diameter 2 and cardinality
at least 4 containing pi,j but not mi,j is exactly the set {pi,j, p1

i,j, p
2
i,j, p

3
i,j},

as all points in H other than mi,j have distance at least 4 from pi,j and the
only option with points from Z is {pi,j, p1

i,j, p
2
i,j, p

3
i,j}, as already shown above.

If this set is included in P, then Pi is partitioned by the adjusted cluster-
scheme 1 in P, which requires {pi,j′ , p1

i,j′ , p
2
i,j′ , p

3
i,j′} ∈ P for all j′ ∈ {1, . . . , n}

with xj′ ∈ Si. As for each j ∈ {1, . . . , n} the partition P contains the set
{pi,j, p1

i,j, p
2
i,j, p

3
i,j} for exactly one i ∈ {1, . . . , r} these properties imply that

the collection of all sets Pi for which cluster-scheme 1 is used in P is an exact
cover for {x1, . . . , xn}.

Conversely, if Si1 , . . . , Sin
3

is an exact cover for {x1, . . . , xn}, then we can

build a 4-cluster of maximum diameter 2 for the set P by first using the basic
partition for the points inherited from Theorem 28 (with si, s

′
i replaced by bi

and ti, t
′
i replaced by ei for each i ∈ {1, . . . , r}) and adjusting it by swapping

to cluster-scheme 1 for Pi1 , . . . , Pin
3

as done there. For the remaining points

in P we do the following: For each j ∈ {1, . . . , n}, let ij ∈ {i1, . . . , in
3
} be the

(unique) index such that xj ∈ Sij . First, assign the point pij ,j to the cluster
{p1

ij ,j
, p2

ij ,j
, p3

ij ,j
}. Then, build the following sets:

• {ui,j, u1
i,j} and {hi,j, u2

i+1,j} for all i ∈ {1, . . . , r} with i < ij,

• {mij ,j, ui,j},

• {u1
i,j, hi,j} and {u2

i+1,j, ui+1,j} for all i ∈ {1, . . . , r − 1} with i ≥ ij and

• {mi,j, pi,j} for all i ∈ {1, . . . , r} \ {ij} such that xj ∈ Si.

The collection of the resulting sets is obviously a partition of P . As Si1 , . . . , Sin
3

is an exact cover for {x1, . . . , xn}, all sets of cardinality 3 from the basic par-
tition of the form {p1

ij ,j
, p2

ij ,j
, p3

ij ,j
} turn into the set {pi,j, p1

ij ,j
, p2

ij ,j
, p3

ij ,j
} of

cardinality 4 and diameter 2 by the distribution of the remaining points. All
other sets have cardinality at least 4 and diameter at most 2 by construc-
tion, which makes the partition constructed by this procedure a 4-cluster of
maximum diameter 2 for P .

With very little changes to the previous construction, the hardness result
can be transferred to the weighted ∞-norm, observe that most clusters in the
optimal solution already have the minimum cardinality of 4. In some sense,
we will use the relation between weighted and unweighted ∞-norm described
in Equation 1 to translate the hardness result from one norm to the other.

Proposition 30

Euclidean (‖·‖w∞ , diam)-k-cluster with k = 4 and δ = 3 is NP-hard.
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Proof. Consider the reduction used in the proof of Theorem 29. The proof
argues that each 4-cluster of maximum diameter 2 for the points P has a very
specific form which contains only clusters of exactly cardinality 4, except for
clusters of the form {bi, p1

i,1} or {ei, li}, which have cardinality 6. We change
the construction from Theorem 29 only for the points bi and ei to decrease
the weighted cost of such clusters in the following way: Change for every
i ∈ {1, . . . , r} the x-coordinates of bi and ei to 1.67 and 3n+4.33, respectively.
With this adjustment, the only points at distance at most 2 from bi and ei
are still p1

i,1 and li, respectively, so the possibilities to build sets of minimum
cardinality 4 and maximum diameter 2 do not change. The clusters {bi, p1

i,1}
and {ei, li} now have cardinality 6 and diameter 1.33, which yields a weighted
local cost of 6 · 1.33 < 8.

With this adjustment, we claim that there exists a 4-cluster for P of maxi-
mum weighted diameter 8 if and only if the corresponding instance of Exact-
3-Cover is a “yes”-instance.
If there is a 4-cluster for P of maximum weighted diameter 8, each set in this
solution has diameter at most 2. Theorem 29 shows that the existence of a
4-cluster for P of maximum diameter 2 implies the existence of an exact cover.

Conversely, with the cost of the clusters {bi, p1
i,1} and {ei, li} now reduced

to less than 8, the 4-cluster constructed according to a given exact cover as in
the proof of Theorem 29 has maximum weighted diameter 8.

4.4 Radius

Theorem 31

Euclidean (‖·‖w
1
, rad)-k-cluster with k = 12 and δ = 2 is NP-hard.

Proof. We reduce from Exact-3-Cover, with an instance given by a col-
lection of sets S1, . . . , Sr of cardinality 3 over the universe {x1, . . . , xn}. Let
again λ > 0 be a constant, to be specified later for readability. For each
i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and h ∈ {1, 2, 3}, introduce the following points:

Name phi,j p̄hi,j li l̄i s1
i s2

i s3
i t1i t2i

x-Coord 9j+3h 9j+3h 9n+12 9n+12 2.5 2.5+λ 7.5 9n+16.5 9n+21.5

y-Coord 28.4i−2 28.4i+2 28.4i−2 28.4i+2 28.4i 28.4i 28.4i 28.4i 28.4i

Count 2 2 2 2 10 1 1 1 11

Let Pi := {phi,j, p̄hi,j : 1 ≤ j ≤ n, 1 ≤ h ≤ 3} ∪ {t1i , t2i , li, l̄i} ∪ {shi : 1 ≤ h ≤ 3} for
each i ∈ {1, . . . , r} denote the set of points representing the set Si. With this
construction, the points in Pi are arranged as illustrated in the picture below
for each i ∈ {1, . . . , r}.
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p1
i,j

p̄1
i,j

p2
i,j

p̄2
i,j

p3
i,j

p̄3
i,j

p1
i 1,j

p̄1
i 1,j

p2
i 1,j

p̄2
i 1,j

p3
i 1,j

p̄3
i 1,j

p1
i,j 1

p̄1
i,j 1

p2
i,j 1

p̄2
i,j 1

p1
i 1,j 1

p̄1
i 1,j 1

p2
i 1,j 1

p̄2
i 1,j 1

xi,j x′
i 1,j

yi,j y′
i 1,j

qi,j q′i 1,j

Figure 6: Layout of how the points qi,j, q
′
i−1,j, xi,j, yi,j and x′i−1,j, y

′
i−1,j are

arranged between the points in Pi−1 and Pi (rotated by 90◦).

t1
i

t2
i

s1
i

s2
i

s3
i

p1
i,1

p̄1
i,1

p2
i,1

p̄2
i,1

p3
i,1

p̄3
i,1

p1
i,2

p̄1
i,2

p2
i,2

p̄2
i,2

p3
i,2

p̄3
i,2

p1
i,3

p̄1
i,3

p2
i,3

p̄2
i,3

p3
i,3

p̄3
i,3

p̄1
i,n

p1
i,n

p̄2
i,n

p2
i,n

p̄3
i,n

p3
i,n

l′
i

li

· · ·
· · ·

For each pair of indices (i, j) with i ∈ {1, . . . , r} and j ∈ {1, . . . , n} introduce
the points qi,j, q

′
i,j and if xj ∈ Si the points xi,j, x

′
i,j, if xj /∈ Si the points yi,j, y

′
i,j

(except for qr,j, xr,j, yr,j and q′1,j, x
′
1,j, y

′
1,j) with the following coordinates:

Name qi,j q′i,j yi,j y′i,j xi,j x′i,j

x-Coord 9j+7.5 9j+7.5 9j+7.5 9j+7.5 9(j+1) 9(j+1)

y-Coord 28.4i−9.7 28.4i+13.7 28.4i−4.7 28.4i+8.7 28.4i− 5 28.4i+9

Count 6 6 1 1 1 1

These coordinates place the points qi,j, q
′
i−1,j and either xi,j or yi,j and either

x′i−1,j or y′i−1,j vertically between the points in Pi−1 and Pi as illustrated in
Figure 6.

Denote by P the set of all points introduced by this construction and
consider P with the Euclidean norm as instance of (‖·‖w

1
, rad)-k-cluster.

Let
C = 5 · |P | − 12

n

3
λ = 26rn+ 28r − 14n− 12

n

3
λ .

We claim that for k = 12 there exists a solution of global cost at most C for
(‖·‖w

1
, rad)-k-cluster on P if and only if S1, . . . , Sr is a “yes”-instance for

Exact-3-Cover.
Assume there exists a 12-cluster P for P of global cost at most C with

respect to radius and weighted 1-norm. Define for each point p ∈ P the cost
c(p) by the radius of the cluster in P which contains p. The global cost of P
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with respect to radius and 1-norm is exactly the sum of c(p) over all points
p ∈ P . Consider the minimum radius of a cluster of minimum cardinality 12
containing a point p ∈ P as lower bound on the cost c(p):4

• For p = phi,j or p = p̄hi,j for some i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and
h ∈ {1, 2, 3} with either h > 1 or j > 1, the construction implies c(p) ≥ 5;
observe that d2(phi,j, p̄

h%3+1
i,j ) =

√
32 + 42 = 5. This cost is only possible

for the following types of clusters S containing p:

– S contains a subset of cardinality at least 11 of {phi,j, p̄hi,j : 1 ≤ h ≤ 3}
and aside from these only possibly also yi,j or y′i,j but not both.

– S contains a subset of {p2
i,j, p̄

2
i,j, p

3
i,j, p̄

3
i,j, p

1
i,j+1, p̄

1
i,j+1} (for j = n, the

set {p2
i,j, p̄

2
i,j, p

3
i,j, p̄

3
i,j, li, l̄i}) of cardinality at least 11 and aside from

these only possibly either (xi,j/yi,j) or (x′i,j/y
′
i,j) but not both.

– S is the set {p3
i,j−1, p̄

3
i,j−1, p

1
i,j, p̄

1
i,j, p

2
i,j, p̄

2
i,j} for j > 1.

For other clusters, the cost c(p) is larger than 5.8 (a smallest choice
among these being a cluster with central vertex yi,j or y′i,j).

• For p = p1
i,1 or p = p̄1

i,1 for some i ∈ {1, . . . , r}, the c(p) is at least 5.
Additional to the clusters described for the other phi,j and p̄hi,j, p has
another option for a cluster with this minimum cost containing at least 8
vertices from {shi : 1 ≤ h ≤ 3}. Otherwise, c(p) is at least 6.

• For p = li or p = l̄i for some i ∈ {1, . . . , r}, the c(p) is at least 5 and is
only achieved in a cluster S which contains at least 12 vertices from either
{p2

i,n, p̄
2
i,n, p

3
i,n, p̄

3
i,n, li, l̄i, (xi,n/yi,n)}, {p2

i,n, p̄
2
i,n, p

3
i,n, p̄

3
i,n, li, l̄i, (x

′
i,n/y

′
i,n)} or

{thi , t2i }. For other clusters, c(p) is at least 6.

• For p = shi for some i ∈ {1, . . . , r} and h ∈ {1, 2, 3}, c(p) is at least 5−λ.
This cost is only possible if p is in exactly the cluster {shi : 1 ≤ h ≤ 3}
for other clusters, the cost c(p) is at least 5.

• For p = thi for some i ∈ {1, . . . , r} and h ∈ {1, 2}, c(p) is at least 5.
This cost is only possible if p in exactly the cluster which is a subset of
{t1i , t2i , li, l̄i} for other clusters, the cost c(p) is at least 7.7 .

• For p = qi,j for some i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , n}, c(p) is at
least 5. This cost is only possible if p is in a cluster which contains at
least 11 vertices from {qi,j, q′i−1,j} and aside from these may only contain
either (xi,j/yi,j) or (x′i−1,j/y

′
i−1,j). For other clusters, c(p) is at least 5.8

(a cluster with central vertex yi,j and y′i−1,j, respectively). Similarly for
p = q′i,j for some i ∈ {2, . . . , r} and j ∈ {1, . . . , n} with at least 11
vertices from {qi+1,j, q

′
i,j} and possibly either (x′i,j/y

′
i,j) or (xi+1,j/yi+1,j).

4The following considerations yield an equivalent to Observation 1 used for diameter.
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• For p = yi,j for some i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , n}, c(p) is at
least 5. This cost is only possible if p is in a cluster which otherwise only
contains a subset of cardinality at least 11 from {phi,j, p̄hi,j : 1 ≤ h ≤ 3}
or {p2

i,j, p̄
2
i,j, p

3
i,j, p̄

3
i,j, p

1
i,j+1, p̄

1
i,j+1} ({p2

i,n, p̄
2
i,n, p

3
i,n, p̄

3
i,n, li, l̄i}, for j = n), or

{qi,j, q′i−1,j}. For other clusters, c(p) is at least 6.5 . This holds similarly
for p = y′i,j for some i ∈ {2, . . . , r} and j ∈ {1, . . . , n} (with {qi,j, q′i−1,j}
replaced by {qi+1,j, q

′
i,j}).

• For p = xi,j for some i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , n}, c(p) is
at least 5. This cost is only possible if p is in a cluster which other-
wise only contains a subset of cardinality at least 11 from exclusively
either {p2

i,j, p̄
2
i,j, p

3
i,j, p̄

3
i,j, p

1
i,j+1, p̄

1
i,j+1} ({p2

i,n, p̄
2
i,n, p

3
i,n, p̄

3
i,n, li, l̄i} for j = n,

resp. ) or {qi,j, q′i−1,j}. For other clusters, c(p) is at least 5.8 . This holds
similarly for p = x′i,j for some i ∈ {2, . . . , r} and j ∈ {1, . . . , n} (with
{qi,j, q′i−1,j} replaced by {qi+1,j, q

′
i,j}).

Any 12-cluster for P hence has a minimum cost of at least 5 · |V | − 12rλ with
respect to radius and weighted 1-norm. In the following we set λ = 1

2r
, which

implies by the observations about c(p) above and the connection between c(p)
and the global cost of a clustering, that a 12-cluster P of cost C for P is
possible if and only if all points from P \ {shi : 1 ≤ i ≤ r, 1 ≤ h ≤ 3} have
minimum cost c(p) in P.

Assuming the existing of such a 12-cluster P of cost at most C, we arrive at
similar clustering-schemes for the points Pi as in the construction for diameter.

Observation 2: If shi for some i ∈ {1, . . . , r} and h ∈ {1, 2, 3} has its minimum
cost of 5−λ in P, then P restricted to the points in Pi induces the factorisation
{shi : 1 ≤ h ≤ 3}, {{phi,j, p̄hi,j : 1 ≤ h ≤ 3} : 1 ≤ j ≤ n}, {li, l̄i, t1i , t2i }.

The factorisation described in Observation 2 is illustrated below:
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p̄3
i,n

p3
i,n

l′
i

li

· · ·
· · ·

This factorisation is its role the equivalent to cluster-scheme 1 introduced for
the diameter measure, so we will use the same name here.

Observation 3: If, for some i ∈ {1 . . . , r}, the restriction of P to the points
in Pi is not cluster-scheme 1, then the restriction of P to Pi is given by:
{shi : 1 ≤ h ≤ 3} ∪ {p1

i,1, p̄
1
i,1}, {{p2

i,j, p̄
2
i,j, p

3
i,j, p̄

3
i,j, p

1
i,j+1, p̄

1
i,j+1} : 1 ≤ j ≤ n− 1},

{p2
i,n, p̄

2
i,n, p

3
i,n, p̄

3
i,n, li, l̄i}, {t1i , t2i }.
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Just like for the diameter, denote the factorisation given in Observation 3
by cluster-scheme 2, see the picture below for an illustration:

t1
i

t2
i

s1
i

s2
i

s3
i

p1
i,1

p̄1
i,1

p2
i,1

p̄2
i,1

p3
i,1

p̄3
i,1

p1
i,2

p̄1
i,2

p2
i,2

p̄2
i,2

p3
i,2

p̄3
i,2

p1
i,3

p̄1
i,3

p2
i,3

p̄2
i,3

p3
i,3

p̄3
i,3

p̄1
i,n

p1
i,n

p̄2
i,n

p2
i,n

p̄3
i,n

p3
i,n

l′
i

li

· · ·
· · ·

The corresponding basic partition here is given by the following collection of
sets (for an illustration see Figure 7):

Sets Indices Diameter

{s1
i , s

2
i , s

3
i , p

1
i,1} 1 ≤ i < r 5

{p2
i,j, p

3
i,j, p

1
i,j+1, p

′2
i,j, p

′3
i,j, p

′1
i,j+1, (xi,j\yi,j)} 1 ≤ i < r, 1 ≤ j < n 5

{p2
i,n, p

3
i,n, p

′2
i,n, p

′3
i,n, li, l

′
i, (xi,n\yi,n)} 1 ≤ i < r 5

{t1i , t2i } 1 ≤ i < r 5

{qi−1,j, q
′
i,j, (x

′
i,j\y′i,j)} 1 < i < r, 1 ≤ j ≤ n 5

{p1
r,j, p

2
r,j, p

3
r,j, p

′1
r,j, p

′2
r,j, p

′3
r,j} 1 ≤ j ≤ n 5

{tr, t′r, lr, l′r} 5

{s1
r, s

2
r, s

3
r} 5− λ

This basic partition has a global cost of 5 · |P | − 12λ. Since the assumed 12-
cluster P has global cost at most 5 · |P | − 12n

3
λ, there are at least n

3
indices i

in {1, . . . , r} such that the points {s1
i , s

2
i , s

3
i } have their minimum cost of 5−λ

(observe that this is the only possible improvement, as all other points are
forced to have their minimum cost c(p)), which means that Pi is clustered by
cluster-scheme 1 in P. Let Pi1 , . . . , Pis be all sets for which cluster-scheme 1
is used in P. We claim that Si1 , . . . , Sis is an exact cover for {x1, . . . , xn}.

Assume that there is some xj ∈ {x1, . . . , xn} and a, b ∈ {1, . . . , s}, a 6= b
such that xj ∈ Sa ∩ Sb. Similar as for diameter, for each i ∈ {2, . . . , r − 1},
either (xi,j/yi,j) or (x′i,j/y

′
i,j) can not be in a cluster with points in Pi to create

clusters of radius 5 which means that for each index i ∈ {2, . . . , r − 1} the
partition P either contains the set Qi,j := {qi,j, q′i−1,j, xi,j} or the set Q′i,j :=
{qi+1,j, q

′
i,j, x

′
i,j}. Since Sa and Sb are both clustered by cluster-scheme 1, the

respective points xa,j, x
′
a,j and xb,j, x

′
b,j (which are in a cluster of radius 5 in P)

can not be in a set with points from Pa and Pb, respectively. This means
that P contains Qh,j and Q′h,j for both h = a and h = b (considering non-
existing border cases, i.e., Q1,j and Q′r,j, as empty sets). Then however P has
to contain

|{2, . . . , r − 1}| − |{2, . . . , r − 2} ∩ {p, q}|+ 2|{p, q}| − |{1, r} ∩ {p, q}| = r
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Figure 7: Example of the basic partition for Theorem 31 for r = 5 and n = 6.
Edges illustrate the connection of a point to a central vertex in its cluster.
Points xi,j in red and yi,j in blue.

66



sets from {Qi,j, Q
′
i,j : 1 ≤ i ≤ r}, which is not possible, as these sets have

to be disjoint by definition, and there are only the r − 1 groups of points
{{qi,j, q′i−1,j} : 2 ≤ i ≤ r} to build Qi,j or Q′i,j. This means that Sa ∩ Sb = ∅
for all a, b ∈ {i1, . . . , is}, a 6= b. Since s ≥ n

3
by the global cost of P, it fol-

lows that s = n
3
, as there can not be more than n

3
pairwise disjoint subsets of

{x1, . . . , xn} of size 3, which makes Si1 , . . . , Sis an exact cover for {x1, . . . , xn}.

Conversely, if Si1 , . . . , Sin
3

is an exact cover for {x1, . . . , xn}, a 12-cluster

of global cost 5 · |P | − 12n
3
λ can be constructed by using cluster-scheme 1

for Pi1 , . . . , Pin
3
, cluster-scheme 2 for the remaining sets Pi and choosing Qi,j

and Q′i,j accordingly. To be precise, denote for each j ∈ {1, . . . , n} by zj ∈
{i1, . . . , in

3
} the index for which xj ∈ Szj and build the 12-cluster for P as

follows:

• For each j ∈ {1, . . . , n}, add the set Qi,j for all i with i ≤ zj and the set
Q′i,j for all i with i ≥ zj.

• For each i ∈ {i1, . . . , in
3
} and j ∈ {1, . . . , n} such that j ∈ Si, include

{phi,j, p̄hi,j : 1 ≤ h ≤ 3}.

• For each i ∈ {i1, . . . , in
3
} and j ∈ {1, . . . , n} such that zj > i, add the set

{phi,j, p̄hi,j, yi,j : 1 ≤ h ≤ 3}.

• For each i ∈ {i1, . . . , in
3
} and j ∈ {1, . . . , n} such that zj < i, add the set

{phi,j, p̄hi,j, y′i,j : 1 ≤ h ≤ 3}.

• For each i ∈ {i1, . . . , in
3
}, build {shi : 1 ≤ h ≤ 3} and {t1i , t2i , li, l̄i}.

• For each i ∈ {1, . . . , r} \ {i1, . . . , in
3
} and j ∈ {1, . . . , n} with zj > i, add

{p2
i,j, p

3
i,j, p

1
i,j+1, p̄

2
i,j, p̄

3
i,j, p̄

1
i,j+1, (xi,j/yi,j)}.

• For each i ∈ {1, . . . , r} \ {i1, . . . , in
3
} and j ∈ {1, . . . , n} with zj < i, add

{p2
i,j, p

3
i,j, p

1
i,j+1, p̄

2
i,j, p̄

3
i,j, p̄

1
i,j+1, (x

′
i,j/y

′
i,j)}.

• For each i ∈ {1, . . . , r} \ {i1, . . . , in
3
}, add {shi : 1 ≤ h ≤ 3} ∪ {pi,1, p̄i,1}

and {t1i , t2i }.

This construction obviously yields a 12-cluster for P with a global cost of
5|P | − 12n

3
λ.

Remark 6: In the above construction, we used 1
2r

as value for λ, for which one
might argue that such small differences in distances do not occur in instances
from the real world. We believe that the above proof also works for λ fixed to
some constant which does not depend on r, similar to the construction for the
diameter, but the argumentation just becomes much more complicated.
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Figure 8: Layout of the points added to P for each j ∈ {1, . . . , n} in Theo-
rem 32, projected to the z- and y-axes.

Theorem 32

Euclidean (‖·‖∞ , rad)-k-cluster with k = 7 and δ = 3 is NP-hard.

Proof. We again reduce from Exact-3-Cover, with an instance given by a
collection of sets S1, . . . , Sr of cardinality 3 over the universe {x1, . . . , xn}.
We introduce the same set of points as in Theorem 31 just in the three di-
mensional space with z-coordinate set to 0, and the counts adjusted for each
i ∈ {1, . . . , r}, j ∈ {1, . . . , n} and h ∈ {1, 2, 3}, as follows:

Name phi,j p̄hi,j li l̄i s1
i s2

i s3
i t1i t2i qi,j q′i,j yi,j y′i,j xi,j x′i,j

Count 1 1 1 1 6 0 1 1 6 3 3 1 1 1 1

Additional to this set P , add for all i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , n} add
the following points:

Name Count x-Coord y-Coord z-Coord

m1
i,j 1 9j + 6 28.4i+ 6.2 7.7

u1
i,j 5 9j + 6 28.4i+ 11.2 7.7

hi,j 1 9j + 6 28.4i+ 16.2 7.7

m2
i,j 1 9j + 6 28.4i+ 21.2 7.7

u2
i,j 5 9j + 6 28.4i+ 26.2 7.7

Further, for all pairs (i, j) with i ∈ {1, . . . , r} and j ∈ {1, . . . , n} include the
point pi,j if xj ∈ Si and the point p̄i,j if xj 6∈ Si with the following coordinates:

Name Count x-Coord y-Coord z-Coord

pi,j 1 9j + 6 28.4i+ 2 4.5

p̄i,j 1 9j + 6 28.4i+ 2 7.7

For each j ∈ {1, . . . , n}, this construction adds the set of points arranged as
illustrated in Figure 8.
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Denote by P ′ the set of all points introduced by this construction and
consider P ′ with the Euclidean norm as instance of (‖·‖w

1
, rad)-k-cluster.

We claim that there exists a 7-cluster of maximum radius 5 for P ′ if and only
if S1, . . . , Sr is a “yes”-instance for Exact-3-Cover.

Assume there exists a 7-cluster P of maximum radius 5 for P ′. First
observe, simply by the difference in z-coordinate, that the only new points
which have distance at most 5 from the points inherited from the construction
for Theorem 31 are the points pi,j, i ∈ {1, . . . , r}, j ∈ {1, . . . , n}. As the only
points at distance at most 5 from pi,j are m1

i,j, p
2
i,j and p̄2

i,j (each with count 1),
there is no cluster in P such that pi,j is central. Further, the only clusters in
P containing points both from P and P ′ \P are {phi,j, p̄hi,j : 1 ≤ h ≤ 3} ∪ {pi,j}
for some i ∈ {1, . . . , r} and j ∈ {1, . . . , n} with xj ∈ Si. By the observations
already made in Theorem 31 (with adjusted cardinalities) and the simple linear
layout of the new points, it is easy to see that further there are only the
following options for subsets of P ′ of minimum cardinality 7 and maximum
radius 5:

• Subsets of minimum cardinality 7 of {s1
i , s

3
i , p

1
i,1, p̄

1
i,1} or {t1i , t2i , li, l̄i}, for

i ∈ {1, . . . , r}.

• The set {p`i,j, p̄`i,j : 1 ≤ ` ≤ 3} together with exactly one of the points in

{yi,j, y′i,j}, for i ∈ {1, . . . , r} and j ∈ {1, . . . , n} with xj /∈ Si.

• The set {p2
i,j, p

3
i,j, p

1
i,j+1, p̄

2
i,j, p̄

3
i,j, p̄

1
i,j+1} together with exactly one of the

points in {(xi,j/yi,j), (x′i,j/y′i,j)}, for i ∈ {1, . . . , r} and j∈{1, . . . , n−1};
for j = n, the set {p2

i,j, p
3
i,j, {p1

i,j+1, p̄
2
i,j, li, l̄i} with exactly one point from

the set {(xi,n/yi,n), (x′i,n/y
′
i,n)}. (Considering the border cases i∈{1, r},

there is no choice between (xi,j/yi,j) or (x′i,j/y
′
i,j) as only one of these

points exists and the sets are hence completely fixed.)

• The set {qi,j, q′i+1,j} together with exactly one of the points from the set

{(xi,j/yi,j), (x′i+1/yi+1,j)} for i ∈ {1, . . . , r − 1}, j ∈ {1, . . . , n}.

• {(pi,j/p̄i,j),m1
i,j, u

1
i,j}, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.

• {m1
i,j, u

1
i,j, hi,j}, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.

• {u1
i,j, hi,j,m

2
i,j}, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.

• {hi,j,m2
i,j}, u2

i,j, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.

• {m2
i,j, u

2
i,j, (pi+1,j/p̄i+1,j), }, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.

• {u2
i,j, (pi+1,j/p̄i+1,j),m

1
i+1,j}, for i ∈ {1 . . . , r − 1} and j ∈ {1, . . . , n}.
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For each j ∈ {1, . . . , n}, it follows by an argument inductive on i = 1, . . . , r−1,
that the set in the 7-cluster P which contains m`

i,j also contains all points u`i,j
for ` ∈ {1, 2}. By the limited possibilities to build sets of cardinality 7 and
radius at most 5, the clusters in P containing {m`

i,j, u
`
i,j} also contain exclu-

sively either (pi+`−1,j/p̄i+`−1,j) or hi,j for each i ∈ {1, . . . , r−1}, j ∈ {1, . . . , n}
and ` ∈ {1, 2}. The point hi,j on the other hand, also has to be in a clus-
ter with one of the sets {m`

i,j, u
`
i,j}, ` ∈ {1, 2}. This means that for each

index j ∈ {1, . . . , n}, exactly r − 1 of the sets containing some {m`
i,j, u

`
i,j},

i ∈ {1, . . . , r − 1}, j ∈ {1, . . . , n} and ` ∈ {1, 2} in P also contain some
point hi,j, and also exactly r − 1 contain (pi,j/p̄i,j), which leaves exactly one
index ij ∈ {1, . . . , r} such that (pij ,j/p̄ij ,j) is in a cluster in P which other-
wise only contains points from P , the cluster {phij ,j, p̄hij ,j : 1 ≤ h ≤ 3} ∪ {pij ,j}
to be precise, which also requires that the index ij is such that xj ∈ Sij .
For the set {phij ,j, p̄hij ,j : 1 ≤ h ≤ 3} ∪ {pij ,j} to be in P, the points from
Pij have to be partitioned by cluster-scheme 1 (with adjusted cardinalities),
which in turn means that the sets {phij ,j′ , p̄hij ,j′ : 1 ≤ h ≤ 3} ∪ {pij ,j′} are in

P for each j′ ∈ {1, . . . , n} with xj′ ∈ Sij , as the set {phij ,j′ , p̄hij ,j′ : 1 ≤ h ≤ 3}
only has cardinality 6 and pij ,j′ is the only point which can be added without
increasing the radius. Just like in the proof of Theorem 31, using cluster-
scheme 1 for two different sets Pa and Pb with a 6= b such that there ex-
ists an index j ∈ {1, . . . , n} with xj ∈ Sa ∩ Sb leaves at least r vertices in
{(xi,j/yi,j), (x′i,j/y′i,j) : 1 ≤ i ≤ r} which have to be in a cluster with only the
r−1 groups of points in {{qi,j, q′i−1,j : 2 ≤ i ≤ r}. These properties imply that,
just like in the proof of Theorem 31, the collection of sets Si with i such that
Pi is partitioned by cluster-scheme 1 is an exact cover for {x1, . . . , xn}.

Conversely, if Si1 , . . . , Sin3 is an exact cover for {x1, . . . , xn}, a 7-cluster of
maximum radius 5 for P ′ can be build by partitioning P just like described in
Theorem 31 and then, with again zj denoting the (unique) index in {i1, . . . , in

3
}

such that xj ∈ Szj , partitioning the remaining points as follows:

• For each j ∈ {1, . . . , n}, add pzj ,j to the set {phzj ,j, p̄hzj ,j : 1 ≤ h ≤ 3}.

• For each j ∈ {1, . . . , n}, and i ∈ {1, . . . , r−1} with i < zj, build the sets
{(pi,j/p̄i,j),m1

i,j, u
1
i,j} and {hi,j,m2

i,j, u
2
i,j}.

• For each j ∈ {1, . . . , n}, and i ∈ {1, . . . , r−1} with i > zj, build the sets
{m1

i,j, u
1
i,j, hi,j} and {m2

i,j, u
2
i,j, (pi+1,j/p̄i+1,j)}.

This resulting collection of sets is obviously a 7-cluster of maximum radius 5
for P ′.

Just like for the diameter measure, a translation to the weighted infinity
norm now just requires little adjustment to assure that clusters of cardinality
larger than k have a smaller radius to produce a smaller weighted cost.
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Proposition 33

Euclidean (‖·‖w∞ , rad)-k-cluster with k = 7 and δ = 3 is NP-hard.

Proof. Start with the construction used for Theorem 32 and just replace the
points s1

i , s
3
i by b1

i , b
2
i , and the points t1i , t

2
i by e1

i , e
2
i for each i ∈ {1, . . . , r} with

coordinates:

Name Count x-Coord y-Coord z-Coord

b1
i 6 4.8 28.4i 0

b2
i 1 8.68 28.4i 0

e1
i 1 9n+ 15.32 28.4i 0

e2
i 6 9n+ 19.2 28.4i 0

This adjustment decreases the radius of the clusters {b1
i , b

2
i , p

1
i,1, p̄

1
i1
} and

{e1
i , e

2
i , li, l̄i} (which now replace the sets {s1

i , s
3
i , p

1
i,1, p̄

1
i1
} and {t1i , t2i , li, l̄i})

to 3.88 (and the weighted radius to 34.92), without creating new possibili-
ties to build sets of cardinality at least 7 and radius at most 5.

It is not hard to see that the argumentation for Theorem 32 can now be
used to show that there exists a 7-cluster of weighted maximum radius at
most 35 for P ′ if and only if P ′ was created for a “yes”-instance of Exact-3-
Cover.

4.5 Summary

The original construction from [53] which we adjusted here was for the k-
Median problem in the plane, which measures the quality of a cluster with a
function which relates best to what we have defined as average distortion.
Though it seems that the constructions used for the radius measure probably
also give a reduction for average distortion, a clean formal proof that this
statement really holds, requires at the very least a much more involved case
analysis of possible minimum costs c(p) for each point p. We hence leave the
NP-hardness of Euclidean (‖·‖, f)-k-cluster for average distortion with
dimension δ fixed to some constant as an open problem.

For radius and diameter with any norm, we have shown that there exist
constant values for both k and w such that Euclidean (‖·‖, f)-k-cluster
remains NP-hard even when restricted to these. Table 3 summarises these
values, for which we however do not know if they are optimal, in the sense
of smallest possible; observe that hardness for larger values is implied by the
reductions given in the stated results.
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rad diam

‖·‖∞
k = 7

δ = 3

(Theorem 32)

k = 4

δ = 3

(Theorem 29)

‖·‖w∞
k = 7

δ = 3

(Proposition 33)

k = 4

δ = 3

(Proposition 30)

‖·‖w
1

k = 12

δ = 2

(Theorem 31)

k = 6

δ = 2

(Theorem 28)

Table 3: Summary of NP-hardness results for Euclidean (‖·‖, f)-cluster.
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5 Non-Metric Instances

Until now, we have always restricted (‖·‖, f)-k-cluster to instances for which
the distance d satisfies the triangle inequality. Proposition 17 appears to dis-
miss the possibility to find approximations if this property does not hold.
Many other related problems show a similar behaviour with respect to their
complexity for non-metric instances.

The problem Uncapacitated Facility Location, for example, can be
approximated with ratio 1.488 if restricted to metric instances, see [46]. For
general, possibly non-metric, distances, it is only possible to compute a log(n)-
approximation, see [42] for one of many algorithms with this performance.
The relation to Set Cover does not just provide the basis for this positive
approximation result, but also transfers non-approximability. In particular, is
known that that log(n) is the best approximation ratio for Set Cover by [26],
assuming P 6= NP, and this hardness transfers to Uncapacitated Facility
Location by a very simple approximation-preserving reduction identifying
sets with facilities and the universe with the set of customers.

Such helpful consequences of a restriction to triangle inequality have led to
many approaches which assume that this property holds, as we did in Section 3.
Another nice example of such an approach is given in [32], where the properties
that come with a restriction to distances which satisfy triangle inequality are
used to speed up the famous heuristic algorithm k-means, named after the
clustering problem it is designed to approximate efficiently.

With our attempt to use the abstract problem (‖·‖, f)-k-cluster to ap-
proach clustering for recommender systems, we found that the assumption
that d satisfies the triangle inequality is generally false. The so-called Pearson
correlation coefficient, which is usually used as distance measure for recom-
mendations, does not have this useful property and, as also observed in [57],
practical instances show this non-metric behaviour. We therefore try in this
section to find useful approximations even for what we informally refer to as
non-metric instances as opposed to the metric instances discussed in Section 3.

One option that comes to mind, especially considering the general hardness
from Proposition 17, is graph editing, i.e., a pre-processing step which tries
to transform a given general instance, with preferably few changes, into an
instance for which triangle inequality holds and the results from Section 3 can
then be applied. This idea however has several drawbacks. Changes to a given
instance always come at the price of distortion; altering edge-weights or even
deleting vertices results in perturbation of the original data. This effect hence
raises the task to find alterations which bring as little change to the original
instance as possible. Such graph editing problems are then usually already
hard problems themselves. The task to find a minimum number of vertices
such that their removal from a given instance of (‖·‖, f)-k-cluster is metric,
for example, is closely related to the minimum vertex cover problem.
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In this section, we seek different approaches which include an extra treat-
ment for violations of the triangle inequality within the approximations for
metric instances given in Section 3. The basic idea is to investigate the conse-
quences of violated triangle inequality and devise strategies to deal with those
within moderate exponential time depending on, roughly speaking, how much
the given distance d differs from a metric.

More precisely, we will first look at the set of edges {u, v} which directly
violate the triangle inequality, i.e., there exists another vertex x such that
d(u, v) > d(u, x ) + d(v, x ). We call such edges conflicts ; observe that by
our model, only distances defined by an edge can exhibit such behaviour.
If the set of conflicts for a given instance is empty, the associated distance
obviously satisfies the triangle inequality, which makes the cardinality of the
set of conflicts a reasonable measure of how far the instance is from being a
metric. Our strategy then is to alter the algorithms for metric instances in
such a way that they still yield constant-factor approximations even if the
input includes conflicts, while only spending exponentially more effort with
respect to these conflicts. Formally, this gives a parameterised approximation
with structural parameterisation by the number of conflicts.

This kind of parameterisation by conflicts to improve approximabilty can
be seen as a generalisation of the distance from triviality approach introduced
in [41]. The idea there is to define for a given problem some distance which
specifies how much a given instance differs from some structural property which
makes the problem easy to solve, and use this measure as parameter. The term
triviality there already refers to the broader case of polynomial time solvable
instances, not just trivial inputs as one might think, and in our case we go
one step further and see the number of conflicts as the distance to an instance
which can be approximated efficiently.

For this conceptual idea of parameterisation by conflicts, we will further
discuss other related parameters, such as the number of vertices involved in a
conflict (referred to as conflict vertices) and subsets of these. Very briefly, we
will also consider shortcut vertices, a name we use to denote vertices which
create a conflict by providing the shorter path of length 2, i.e., vertices x for
which there exists an edge {u, v} such that d(u, v) > d(u, x ) + d(v, x ).

Aside from this parameterisation by conflicts, conflict vertices or short-
cuts we will also discuss a very different approach to find approximations for
(‖·‖, f)-k-cluster on non-metric instances. Instead of using conflicts as mea-
surement to determine how much a given distance function d differs from a
metric, we consider the magnitude to which the triangle inequality is violated.
Formally this yields the notion of α-relaxed triangle inequality. For this relax-
ation, we investigate how much the performance ratio of the approximations
for metric instances suffers if generalised to α-relaxed triangle inequality.
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Figure 9: Edge {c, d} has a weight larger than the shortest path from c to d
but it is not a conflict. Lowering the weights on the edges {a, d} and {b, c}
to 2 in order to remove these conflicts however results in an instance where
{c, d} becomes a conflict.

5.1 Definition of Conflicts

From a theoretical point of view in our abstract framework, for the given graph
G = (V,E), the edge-weight wE might be such that an edge {u, v} ∈ E has a
weight larger than the cost of a cheapest path from u to v in G. Such edges
result in an induced distance d which violates the triangle inequality for at
least one pair of vertices on this cheapest path (including u and v). We define
the set of conflicts with respect to the induced distance d as the collection C of
of vertex pairs {u, v} such that the triangle inequality is violated for u and v,
formally:

C = {{u, v} ∈ V × V : ∃ x ∈ V : d(u, v) > d(u, x ) + d(v, x )} .

Recall that violations of the triangle inequality for the distance d by definition
only occur for edges of the input graph, so C is always a subset of E.

Observe that this set of conflicts is not necessarily the whole set of edges
with a weight larger than the cheapest path in the graph (for a counterexample
see Figure 9). Considering the option of graph editing with weight reduction
to achieve triangle inequality, C might be smaller than the set of edge-weights
which would have to be adjusted in order to arrive at a graph without conflicts.

We will also consider parameterisation by the cardinality of the set P of
conflict vertices, which simply are the vertices involved in a conflict in C,
formally defined by:

P =
⋃

{u,v}∈C

{u, v} .

While lowering the weights of edges in C does not always create a metric
instance, deleting all vertices from P does. Vertex removal however may result
in severe perturbation and we will see that our approximation strategies will
work without such changes while some even allow for a parameterisation by
strict subsets of P .
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In the following we will use c and p for the parameters number of conflicts
and number of conflict vertices, respectively. Parameterisation by p yields the
same general tractability as parameterisation by p as the following relation
holds:

p ≤ 2c ≤ (p(p− 1)) . (12)

For the concrete running times, it is however still relevant to distinguish be-
tween parameters p and c as the bounds given in Equation 12 are sharp.

In the set C, we only store edges {u, v} for which there exists a shortcut
vertex x ∈ V , i.e., the inequality d(u, v) > d(u, x ) + d(v, x ) holds. Removing
such shortcut vertices is a different approach to resolve conflicts. Therefore,
we will also briefly consider the set X of shortcut vertices, formally given by:

X = {x ∈ V : ∃ {u, v} ∈ C : d(u, v) > d(u, x ) + d(v, x )} .

Other than the fact that X 6= ∅ if and only if C 6= ∅, there is no general
correlation between the cardinality of X and C. Parameterisation by the
parameter x := |X | hence gives a completely different perspective.

Another completely different way to measure the severity of conflicts, is the
magnitude to which the triangle inequality is violated. The following relaxation
of the triangle inequality constraint is quite obvious and is hence discussed
under different names in the literature. The Encyclopedia of Distances [24]
uses the name C-relaxed triangle inequality. As we have already reserved the
letter C to denote set of conflicts, we will switch to the symbol α and formally
say that the distance function d satisfies α-relaxed triangle inequality5 for some
α ≥ 0 if:

d(u, v) ≤ α · (d(u, x ) + d(v, x )) for all u, v, x ∈ V with x /∈ {u, v} .

5.2 Parameterisation by Conflicts

Starting with the greedy procedure introduced for the infinity norm with radius
or diameter in Section 34, it is not too hard to see that, at least for the radius
measure, a constant number of conflicts does not yield too much trouble. More
precisely, the following result holds:

Theorem 34

A 2-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(np).

Proof. Given an instance (G, d) for (‖·‖∞ , rad)-k-cluster with G = (V,E)
and conflict vertices P ⊂ V , we first guess for all v ∈ P which vertex c(v) ∈ V

5The case α < 1 is stricter than the usual triangle inequality and will yield even better
approximation results; hence the restriction x /∈ {u, v} to enable this case.
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is central in the cluster containing v for some optimal k-cluster for G. For a
fixed choice of central vertices Z := {c(v) : v ∈ P} we run the greedy procedure
from Theorem 20 with the following small alterations:

• We only consider values D for which d(v, c(v)) ≤ D for all v ∈ P .

• We first greedily build the clusters P (c(v)) for all v ∈ P . More precisely,
we first choose centres from the set Z, and add to P (z) with z ∈ Z the
vertex z and all unclustered vertices w ∈ V \ (P ∪ Z) with d(z, w) ≤ D
and all vertices v ∈ P with c(v) = z.

• In the max-flow procedure, we only allow reassignment of the vertices in
V \ P .

It is not hard to see that, for the correct choice of central vertices, this pro-
cedure still yields a 2-approximation for the radius measure. The arguments
given in the proof of Theorem 20 to show this still hold with the additional
property, that the vertices in Z are central by their correct choice, and accord-
ing vertices to build clusters of cardinality at least k and radius at most D
hence exist. The vertices in P are assigned optimally by the correct choice.
For the vertices in V \P , the triangle inequality holds and all previously used
properties remain true. This means that the greedy procedure is successful for
the correct choice of central vertices for each v ∈ P and for D chosen as twice
the optimum value for (‖·‖∞ , rad)-k-cluster on (G, d).
Deterministically, the guessing of central vertices means trying all O(np) possi-
ble combinations of choices. Running the polynomial approximation procedure
and then picking the choice which yields the solution of smallest global cost
hence yields an overall running time in O∗(np) for the described parameterised
2-approximation.

In terms of parameterised complexity, this result can be interpreted as
XP-membership of the 2-approximation for (‖·‖∞ , rad)-k-cluster from The-
orem 20 for non-metric instances with respect to parameterisation by p (and
also by c, by Equation 12). This result raises the question whether an improve-
ment to a more efficient running time with respect to this parameterisation is
possible, i.e., some constant factor approximation in fpt-time; recall that an
improvement of the approximation ratio of 2 remains unlikely by Theorem 8.
For the diameter, the concept of central vertices does not have an appropriate
meaning, so the above considerations already indicate that this local measure
requires a different strategy.

5.2.1 Resolving Conflicts in the Greedy Approximation

In the following we will try to use parameterisation by p to resolve the influence
of conflicts on the 2-approximation algorithm presented in Theorem 20 with a
running time that is only exponential in p. While the polynomial procedure
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described in this algorithm is identical for radius and diameter, we find that
the influence of conflicts is different for these two local measures. Therefore,
we will develop independent strategies for radius and diameter. Still, the basic
idea of fixing a maximum radius D, greedily building a preliminary clustering
with clusters of radius D and then balancing the cardinalities with a network
always remains.

For the following result, recall that Bn denotes the nth Bell number,

bounded by Bn <
(

0.792n
log(n+1)

)n
.

Theorem 35

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(Bp).

Proof. Let d be the distance function induced by the input graph G = (V,E)
with edge-weights wE. We try for each D ∈ {d(v, w) : v, w ∈ V } to build a
k-cluster with maximum radius D, such that the diameter is at most 2D. For
each such fixed D we consider the following subset of the conflict set C:

CD := {{u, v} ∈ C : d(u, v) > 2D, ∃ x ∈ V : d(u, x), d(v, x) ≤ D} .

And the corresponding subset of P :

PD =
⋃

{u,v}∈CD

{u, v} .

For each partition C1, . . . , Cr for PD such that diam(Ci) ≤ D for all i ∈
{1, . . . , r}, build a partition for the whole set of vertices with the following
strategy:

(a) Iteratively, for i = 1, . . . , r, pick an arbitrary vertex ci ∈ Ci and create a
cluster P (ci) by adding to Ci all at this point unclustered vertices v in
V \ PD with d(ci, v) ≤ D.

(b) If all clusters P (ci) are built but
⋃r
i=1 P (ci) 6= V , then repeat the fol-

lowing until all vertices are clustered: Pick any unclustered vertex z
and create a cluster P (z) containing all unclustered vertices which have
distance at most D from z (including z itself).

Let z1, . . . , zq be the vertices chosen in step (b). The sets P (c1), . . . , P (cr),
P (z1), . . . , P (zq) are a partition of V but not necessarily a k-cluster, as the
cardinality constraint might not be satisfied. We now try to reassign vertices
from V \ PD in order to move at least k vertices into each cluster while main-
taining the property that all vertices in P (ci) (P (zj)) have distance at most D
from ci (zj resp.) for all 1 ≤ i ≤ r (1 ≤ j ≤ q resp.). Observe that by the
strategy used to build the clusters, possible vertices outside P (ci) at distance
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at most D from ci can only be in clusters P (cj) with j < i. Vertices out-
side P (zi) at distance at most D from zi are either in a set P (cj) for some
j ∈ {1, . . . , r} or in a set P (zl) with l < i. Hence, we define the sets:

• Sc(i, j) := {v ∈ P (cj) \ PD : d(v, ci) ≤ D} for all 1 ≤ j < i ≤ r to collect
all vertices which can be moved from cluster P (cj) to cluster P (ci),

• S(i, j) := {v ∈ P (cj) \ PD : d(v, zi) ≤ D} for all 1 ≤ j ≤ r and 1 ≤ i ≤ q
to collect all vertices which can be moved from cluster P (cj) to cluster
P (zi) and

• Sz(i, j) := {v ∈ P (zj)\{zj} : d(v, zi) ≤ D} for all 1 ≤ j < i ≤ q to collect
all vertices which can be moved from cluster P (zj) to cluster P (zi).

So, if
∑i−1

j=1 |Sc(i, j)| < k − |P (ci)| for some i ∈ {1, . . . , r} or
∑r

j=1 |S(i, j)| +∑i−1
`=1 |Sz(i, `)| < k−|P (zi)| for some i ∈ {1, . . . , q}, there exist no reassignment

of vertices to turn the given partition into a k-cluster while maintaining the
minimum distance D from the chosen central vertices. This especially holds
if |P (c1)| < k. In such a case we abort the iteration for this choice of D and
partition for PD. Otherwise, we try to reassign the vertices in the set:

S := (
r−1⋃

j=1

r⋃

i=j+1

Sc(i, j)) ∪ (
r⋃

j=1

q⋃

i=1

S(i, j)) ∪ (

q−1⋃

j=1

q⋃

i=j+1

Sz(i, j)) .

We build a network to move at least k vertices into each cluster in the following
way:

• The network has a source s and target t.

• For each i ∈ {1, . . . , r} we create a network vertex c′i representing P (ci).
If |P (ci)| > k we add the arc (s, c′i) with capacity |P (ci)|−k. If |P (ci)| < k
we add the arc (c′i, t) with capacity k − |P (ci)|.

• For each i ∈ {1, . . . , q} we create a network vertex z′i representing P (zi).
If |P (zi)| > k we add the arc (s, z′i) with capacity |P (zi)|−k. If otherwise
|P (zi)| < k we add the arc (z′i, t) with capacity k − |P (zi)|.

• For each vertex v ∈ S we create a corresponding network vertex v′ in the
network connected with the following arcs, each of capacity 1.

– (c′i, v
′) for all i ∈ {1, . . . , r} and v ∈ P (ci),

– (z′i, v
′) for all i ∈ {1, . . . , q} and v ∈ P (zi),

– (v′, c′i) for all i ∈ {2, . . . , r} with v ∈ Sc(j, i) for some j < i,

– (v′, z′i) for all i ∈ {1, . . . , q} with v ∈ S(j, i) for some j ∈ {1, . . . , r},
– (v′, z′i) for all i ∈ {2, . . . , q} with v ∈ Sz(j, i) for some j < i.
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With these definitions, the maximum flow from s to t in this network is at
most:

r∑

i=2

max{0, k − |P (ci)|}+

q∑

j=1

max{0, k − |P (zj)|} .

A flow with this maximum capacity exists if and only if we can find a reassign-
ment of some vertices in S to turn P (c1), . . . , P (cr), P (z1), . . . , P (zq) into a
k-cluster while maintaining the maximum radius of D with respect to the cho-
sen central vertices for each cluster. We claim that for the optimal diameter D∗

there exists a partition for CD∗ such that the above procedure successfully pro-
duces a k-cluster for V with maximum diameter at most 2D∗. Let S1, . . . , Sy
be an optimal solution for (‖·‖∞ , diam)-k-cluster on instance G. Consider
running the above procedure for D = D∗ and the partition C1, . . . , Cr for PD
given by Ci = PD ∩ Sjci with {jc1, . . . , jcr} = {i : 1 ≤ i ≤ y, PD ∩ Si 6= ∅} such
that jc1 < jc2 < · · · < jcr .

Let c1, . . . , cr be an arbitrary choice of representatives ci ∈ Ci, 1 ≤ i ≤ r
to assign vertices in step (a). By definition, for each 1 ≤ i ≤ r the set Ci is
included in a different optimal cluster Sjci . For the vertices z1, . . . , zq chosen in
step (b), we know that d(zi, cj) > D and d(zi, zl) > D for all 1 ≤ i < l ≤ q and
1 ≤ j ≤ r, so each zi belongs to a distinct cluster Sjzi of the chosen optimal
solution with jzi /∈ {jc1, . . . , jcr} and jzi 6= jzl for all 1 ≤ i < l ≤ q. So there exist
at least the k vertices from Sjci at distance at most D from ci to be assigned
to P (ci) for each 1 ≤ i ≤ r and, similarly, at least the k vertices from Sjzi at
distance at most D from zi to be assigned to P (zi) for each 1 ≤ i ≤ q. The
max-flow procedure can hence successfully build a k-cluster from the partition
P (c1), . . . , P (cr), P (z1), . . . , P (zq).

On the other hand, in case the described procedure is successful in com-
puting a partition P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) for some value D, it is
obvious that these sets are a partition of V and that the reassignment of ver-
tices with the max-flow procedure makes sure that each set contains at least k
vertices, so the partition P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) is a k-cluster
for V . Consider the maximum diameter for this k-cluster:

• Each vertex v ∈ P ′(ci) for some i ∈ {1, . . . , r} is from Ci or it was either
assigned to P (ci) in step (a) or moved by the max-flow procedure. In
the latter two cases, v is not in PD and was included in P ′(ci) because
d(v, ci) ≤ D holds.

– For v, w ∈ Ci it follows that d(v, w) ≤ D as the set Ci in the chosen
partition of PD has diameter at most D by definition.

– For v ∈ Ci and w ∈ P ′(ci) \ Ci, we know that d(v, ci) ≤ D (from
the fact that v, ci ∈ Ci) and d(w, ci) ≤ D. Since w /∈ PD it follows
that especially w and v do not create a conflict in CD, so d(v, w) ≤
d(v, ci) + d(ci, w) ≤ 2D.
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– For v, w ∈ P ′(ci) \ Ci, we know that v, w /∈ PD,which implies
d(v, w) ≤ d(v, ci) + d(ci, w) ≤ 2D.

• Each vertex v ∈ P ′(zi) for some i ∈ {1, . . . , q} is not in PD and was
either assigned to P (zi) in step (b) or moved by the max-flow procedure.
For all such vertices, d(v, zi) ≤ D holds, so since no vertex from P ′(zi) is
included in a conflict in CD, it follows that d(v, w) ≤ d(v, zi)+d(w, zi) ≤
2D for all v, w ∈ P ′(zi).

The k-cluster P ′(c1), . . . , P ′(cr), P
′(z1), . . . , P ′(zq) hence is a 2-approximation

for (‖·‖∞ , diam)-k-cluster on G. As there are B|PD| ≤ Bp partitions for PD,
the overall running time of the approximation procedure is in O∗(Bp).

Theorem 36

A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2p).

Proof. Let d be the distance function induced by the input graph G = (V,E).
By binary search among the values D ∈ {d(v, w) : v, w ∈ V } we determine the
smallest value D for which the clustering procedure described below success-
fully builds a k-cluster. For each such fixed D we consider the following subset
of vertices which are involved in a conflict:

PD := {u : ∃ v, x ∈ V : ({u, v} ∈ C) ∧ (d(u, x), d(v, x) ≤ 2D)} .

We guess which of the vertices in PD are a central vertex in their cluster by
considering all 2|PD| subsets of PD. For each such P ′ ⊆ PD we try to compute a
k-cluster for V by successively building clusters until all vertices are partitioned
with the following strategy:

(a) Pick, while such a vertex exists, a v ∈ P ′ that is not assigned to any
cluster yet and build a new cluster P (v) with center v by collecting v
and all unclustered vertices in V \ P ′ which have distance at most D
from v.

(b) If all vertices in P ′ are clustered, pick any v ∈ V \PD that is not clustered
yet and build a new cluster P (v) with center v by collecting v and all
unclustered vertices in V which have distance at most 2D from v.

(c) If the only unclustered vertices are in PD \ P ′, choose any of these un-
clustered vertices w and find a vertex vw ∈ V \ PD of minimum distance
to w. If this minimum distance is larger than D, abort the clustering
process: Otherwise add w to the cluster which contains vw.

Let P ′ = {p1, . . . , pr} and let z1, . . . , zq be the vertices chosen in step (b)
to build clusters P (z1), . . . , P (zt) by the above procedure. We now try to
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turn the partition P (p1), . . . , P (pr), P (z1), . . . , P (zq) into a k-cluster for V by
reassigning some vertices. Here, the aim is to keep a maximum radius of D
for P (p1), . . . , P (pr) and a maximum radius of 2D for P (z1), . . . , P (zq), which
yields the following types of vertices which are allowed to be moved:

• Sp(i, j) := {v ∈ P (pj)\{pj} : d(v, pi) ≤ D} for all 1 ≤ j < i ≤ r to collect
all vertices which can be moved from cluster P (pj) to cluster P (pi),

• S(i, j) := {v ∈ P (pj) \ {pj} : d(v, zi) ≤ 2D} for all 1 ≤ j ≤ r and
1 ≤ i ≤ q to collect all vertices which can be moved from cluster P (pj)
to cluster P (zi) and

• Sz(i, j) := {v ∈ P (zj) \ {zj} : d(v, zi) ≤ 2D} for all 1 ≤ j < i ≤ q to
collect all vertices which can be moved from P (zj) to P (zi).

Just like in Theorem 35, we try to turn P (p1), . . . , P (pr), P (z1), . . . , P (zw)
into a k-cluster by reassigning vertices in the above described sets with the help
of a max-flow formulation. Denote in case of a successful reassignment, the
resulting k-cluster by P ′(p1), . . . , P ′(pr), P

′(z1), . . . , P ′(zq). We claim that for
D = r∗, there exists a subset P ′ ⊆ PD such that the above clustering procedure
successfully computes a k-cluster P ′(p1), . . . , P ′(pr), P

′(z1), . . . , P ′(zq). Let
{S1, . . . , Sy} be any optimal solution for (‖·‖∞ , rad)-k-cluster on input G =
(V,E) with distance d. Fix some central vertex si for Si for each i ∈ {1, . . . , y}.
Consider running the described greedy procedure for D = r∗ and the subset
P ′ = PD ∩ {s1, . . . , sy}. First, observe that steps (a) − (c) are successful in
finding a preliminary clustering P (p1), . . . , P (pr), P (z1), . . . , P (zq), since for
each v ∈ PD \ P ′, there exists at least one vertex s ∈ {s1, . . . , sy} at distance
at most D from v and, by the choice of P ′, this vertex s is not in PD \ P ′.

Further, any two different vertices in P ′ ∪ {z1, . . . , zq} belong to different
clusters in the chosen solution {S1, . . . , Sy}: For two vertices from P ′ this is
true by the choice of P ′. For a vertex zi and any w ∈ P ′, we know that
d(zi, w) > D = r∗, so, since w is central for some cluster Sj which has radius
at most r∗, zi cannot belong to Sj. For any two vertices zi, zj with i < j, we
know that zj was not clustered in P (zi) because d(zi, zj) > 2D. If there was a
cluster Sh in the optimal solution such that {zi, zj} ⊆ Sh, then this would
imply that d(sh, zi) ≤ r∗ and d(sh, zj) ≤ r∗, while d(zi, zj) > 2D, which would
mean that {zi, zj} is a conflict for this choice of D which is not possible (recall
that the vertices zi and zj are chosen as central vertices in step (b), so they do
not belong to PD).

By the choice of P ′ there exist at least k−1 distinct vertices at distance at
most D for each pi. Since the vertices zj are not in PD, they have a distance
of at most 2D from each vertex in their respective optimal cluster, so there
are also at least k − 1 vertices of distance at most 2D to cluster with them;
the reassignment procedure described by the max-flow can hence successfully
build a k-cluster.
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If, for some D, the above described procedure successfully builds a partition
P ′(p1), . . . , P ′(pr), P

′(z1), . . . , P ′(zq), it is again clear that these sets are a k-
cluster for V . We claim that this solution has a maximum radius less than or
equal to 3D. To see this, first consider a set P ′(zi) for some i ∈ {1, . . . , q}. All
vertices added in step (b) or by the max-flow reassignment are picked because
they are at distance most 2D from zi. For any vertex w ∈ PD added to P (zi)
in step (c), we know that there exists a vertex vw which was placed in P (zi) in
step (b) and hence has distance at most 2D from zi and has, by the choice in
step (c), distance at most D from w. Since zi /∈ PD, it follows that d(zi, w) ≤
3D. For a set P ′(pi) with i ∈ {1, . . . , r}, all vertices added by step (a) or by
the max-flow reassignment have distance at most D from pi. Let w1, . . . , wh
be the vertices added to P (pi) in step (c). Further, let vwj

be a vertex in
P (pi) \ PD at distance at most D from wj. Since vw1 is not in PD it follows
that d(v, vw1) ≤ d(vw1 , pi)+d(pi, v) ≤ D+D for every v ∈ P ′(pi)\{w1, . . . , wh}.
Further, triangle inequality gives: d(vw1 , wi) ≤ d(vw1 , vwi

)+d(vwi
, wi) ≤ 2D+D

for every i ∈ {1, . . . , h}. With central vertex vw1 , P
′(pi) hence has radius at

most 3D.
At last, the running time of this approximation algorithm is in O∗(2p), as

it only requires polynomial effort for each set P ′ ⊆ PD and PD ⊆ P .

5.2.2 Translation to Other Measures

With the simple observation that Equation 2 from Section 3.3 does not require
the distance d to satisfy the triangle inequality, we can translate at least one
of the parameterised approximations in the same way as we did in the metric
case. Recall the statement for Equation 2 which holds for every choice of
f ∈ {rad,diam,avg}:

opt(G, d, f, ‖·‖w∞ , k) ≥ k · opt(G, d, f, ‖·‖∞ , k) .

Proposition 37

A 4-approximation for (‖·‖w∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(Bp).

Proof. Let (G, d) be a given instance of (‖·‖w∞ , diam)-k-cluster. Observe
that Corollary 1 also does not require the distance function d to satisfy the
triangle inequality but holds in general. This allows us to first use the pa-
rameterised approximation from Theorem 35 to compute a k-cluster P for
(‖·‖∞ , diam)-k-cluster on (G, d). As P is a 2-approximation, it has a max-
imum diameter of at most D := 2opt(G, d, diam, ‖ · ‖∞ , k). Then, we to turn
this partition into a k-cluster P′ for (G, d) of global cost at most D and
with |S| ≤ 2k − 1 for all S ∈ P′. Just like in Proposition 24, Equation 2
shows that the resulting k-cluster P′ is a 4-approximation for (‖·‖w∞ , diam)-k-
cluster.
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For the radius measure, an equivalent to Proposition 37 is not clear. While
the cluster cardinality for the diameter can be easily restricted by Corollary 1,
an according result for radius does not hold in case of a non-metric distance
measure. In particular, the idea of starting with a k-cluster P for (‖·‖∞ , rad)-
k-cluster and then splitting up clusters of a large cardinality to obtain a
solution which gives a provable approximation for (‖·‖w∞ , rad)-k-cluster with
the help of Equation 2 is problematic in the case where P contains a cluster
S of large cardinality for which the set C \ P is either empty or only contains
the unique central vertex of C. As the procedure used for Theorem 36 does
not allow a restriction to solutions for which such cases are avoided, it appears
to be difficult to build an approximate solution for (‖·‖w∞ , rad)-k-cluster for
non-metric instances with an idea similar to the one used in the metric case
in Proposition 24. We can however at least translate the weaker result from
Theorem 34 for radius, which yields:

Proposition 38

A 4-approximation for (‖·‖w∞ , rad)-k-cluster can be computed with a running
time in O∗(np).

Proof. For a given instance (G, d) of (‖·‖w∞ , rad)-k-cluster with conflict ver-
tex set P ⊆ V , we first build a k-cluster with the procedure described in
Theorem 34. Denote by r∗ the maximum radius of the optimum solution
for (‖·‖w∞ , rad)-k-cluster; observe that r∗ is not necessarily identical to
opt(G, d, ‖ · ‖∞ , rad, k) but might be larger. If the choice of central vertices
for P is optimal with respect to radius and the weighted infinity norm, the
resulting k-cluster will have a maximum radius of at most 2r∗. For the vertices
in V \P , the same strategy as in Proposition 24 can be used to split up clusters
of cardinality more than 2k − 1. Each set S in the resulting k-cluster hence
satisfies one of the following conditions:

• S has a radius of at most 2r∗ and a cardinality of at most 2k − 1.

• S has a radius of at most 4r∗ and a cardinality of k. This case occurs if
S is the result of a splitting procedure as described in Proposition 24.

• S has a radius of at most r∗ and contains at most one vertex from V \P .

The last case is the only one where S can have a cardinality of more than 2k,
as the procedure from Proposition 24 allows us to split up such a cluster as
soon as there is more than one vertex from V \P in S. For a choice of central
vertices which is optimal with respect to the weighted infinity norm, this last
case means that the cluster S is a subset of a cluster in an optimal solution for
(‖·‖w∞ , rad)-k-cluster. Overall, this means that the resulting k-cluster has a
global cost of at most 4 · opt(G, d, ‖·‖w∞ , rad, k).
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A translation of Proposition 25 to non-metric instances is also difficult.
First of all, the relation between diameter and average distortion used for this
result does no longer hold if d violates the triangle inequality and unfortunately
this property can not be saved by any reasonable pre-processing. It is however
possible to relate (‖·‖w∞ , avg)-k-cluster to (‖·‖∞ , rad)-k-cluster to trans-
late approximation results from there. This idea then runs exactly into the
same problem of the impossibility to restrict cluster cardinalities as encoun-
tered above for (‖·‖w∞ , rad)-k-cluster and hence only gives a parameterised
approximation in xp-time with respect to p.

Proposition 39

(‖·‖w∞ , avg)-k-cluster is 4k-approximable in O∗(np).

Proof. Given an instance (G, d) of (‖·‖w∞ , avg)-k-cluster, first observe that
the following relation holds, even if d violates the triangle inequality:

opt(G, d, avg, ‖·‖w∞ , k) ≥ opt(G, d, rad, ‖·‖∞ , k) (13)

This is not hard to see, as for every non-empty set P ⊆ V we can quite
trivially bound its radius by the weighted average distortion, more precisely,
with c chosen as some central vertex in P , it follows that

|P | · avg(P ) = min{
∑

p∈P

d(c, p) : c ∈ P}

≥ max{d(c, v) : v ∈ P}
≥ min{max{d(u, v) : v ∈ P} : u ∈ P}
= rad(P )

For an optimal k-cluster P for (‖·‖∞ , avg)-k-cluster we can hence conclude
that the global cost max{|P |avg(P ) : P ∈ P} is at most the maximum radius
of P, which yields Equation 13.

Now consider an approximation procedure very similar to the one described
in Proposition 38 for (‖·‖w∞ , rad)-k-cluster with the only difference that
we assume that the guessed central vertices are optimal for (‖·‖w∞ , avg)-k-
cluster. Equation 13 is constructive in the sense that the optimal k-cluster
for (‖·‖w∞ , avg)-k-cluster of global cost r∗, can be interpreted as a k-cluster
for (‖·‖∞ , rad)-k-cluster of global cost at most r∗. This means that the
restriction of (‖·‖∞ , rad)-k-cluster to solutions for which an assignment of
central vertices which is optimal with respect to (‖·‖w∞ , avg)-k-cluster still
yields the opportunity to build a k-cluster of maximum radius at most r∗. The
approximation procedure described in Theorem 34 run for the choice of central
vertices which is optimal for (‖·‖w∞ , avg)-k-cluster hence yields a k-cluster P
of maximum radius at most 2r∗ and can with the help of the procedure which
splits up large clusters as described in the proof of Proposition 24 be turned
into a k-cluster for which each set S satisfies one of the following properties:
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• S has radius at most 2r∗ and cardinality at most 2k − 1.

• S has radius at most 4r∗ and cardinality k.

• S only contains vertices from P and their mutual fixed central vertex.

These properties hold, since each cluster S ∈ P of cardinality more than 2k−1
which contains a vertex in V \ P which is not fixed to be the central vertex
of S, can be split up by the procedure used in Proposition 24. If a cluster S of
cardinality more than 2k − 1 remains, it only contains vertices in P and their
correctly chosen central vertex. This means that S is a subset of an optimal
cluster for (‖·‖∞ , avg)-k-cluster, and by the monotonicity of the associated
global cost, we can conclude that the weighted average distortion |S|avg(S)
is bounded by opt(G, d, avg, ‖·‖w∞ , k). Overall, the solution computed with
this procedure yields a k-cluster of maximum weighted average distortion at
most 4kr∗. By the definition of r∗, this makes the described procedure a 4k-
approximation for (‖·‖w∞ , avg)-k-cluster.

The complete approximation algorithm is given by the procedure given in
Theorem 34 with additional split-up of clusters of cardinality more than 2k−1
for which more than just the fixed central vertex is in V \ P and obviously
picking as output the choice of fixed centers for P which yields the solution
of smallest global cost with respect to (‖·‖∞ , avg)-k-cluster. The running
time of this approximation is dominated by the guessing of the central vertices
which can be done in O∗(np).

5.2.3 Resolving Conflicts in the Constraint Forest Approximations

In the following we will discuss the strategy of parameterisation by conflicts for
the approximation procedures from Section 3 which are based on a reduction
to constraint forest problems. While a first xp-time approximation can be
obtained quite trivially, these algorithms have a very different structure which
does not seem to allow an easy generalisation to non-metric instances.

Simple guessing for each v ∈ V and each vertex p ∈ P if they lie together in
the same cluster in an optimal solution gives the complete sets which contain
conflict vertices. The remaining vertices which are not assigned to clusters
by this guessing are not involved in any conflict and can hence be partitioned
using the approximation procedures for metric instances. This simple idea of
parameterisation by conflicts translates the results from Section 3.2 to the non-
metric case with a running time dominated by the number of possible guesses,
which immediately gives the following result.

Corollary 40

(‖·‖w
1
, avg)-k-cluster, (‖·‖w

1
, diam)-k-cluster and (‖·‖w

1
, rad)-k-cluster

can be approximated with a running time in O∗(np) and ratio 2k, 8k − 1 and
16k, respectively.
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Aside from this rather brute-force approach, it appears to be quite difficult
to incorporate parameterisation into the approximation strategies based on
tree partitioning. While the approximation for tree partitioning itself as given
in [43] also works for non-metric distances, conflicts are very troublesome for
the translation from a given tree partitioning to a k-cluster. More precisely, if
the vertex c which we chose as the center to build a star from a given tree as
in the proof of Theorem 21 is a conflict vertex, we can no longer assume any
constant approximation ratio.

For the results based on Lower Capacitated Path Partitioning even
this vague idea is no longer applicable as the 4-approximation used to find
the path partitioning already requires an instance which satisfies the triangle
inequality. The idea to also use tree partitioning, as indicated in Remark 4,
is not enough to resolve this, since it has the same problem as an attempt to
derive an approximation for path partitioning from tree partitioning in case
of non-metric instances; in short, it is not trivial to transform the tree into a
path without uncontrollable blow-up of edge-costs. It seems therefore that an
approximation for (‖·‖w

1
, rad)-k-cluster and (‖·‖w

1
, diam)-k-cluster for

non-metric instances with parameterisation by conflicts definitely requires a
different strategy for the metric case first.

5.2.4 Summary of Parameterisation by Conflicts

Without even a known approximation for (‖·‖∞ , avg)-k-cluster on metric
instances to start from, it appears pointless to try to come up with a useful
parameterisation by conflicts for this problem variant. Therefore we end up
with the results summarised in Table 4.

The increase in approximation ratio from 2 to 3 for (‖·‖∞ , rad)-k-cluster
that comes with the change from only requiring xp-time to the more efficient
fpt-time, is quite peculiar. The lower bounds discussed in Section 5.3.3 will
at least give a partial explanation for this. Now, in the following section, we
will first try to improve the worst-case running time without worsening the
approximation ratio.

5.3 Structural Parameters of the Conflict Graph

One possibility to speed up the parameterised approximation algorithms pre-
sented so far is to choose a smaller parameter. In these procedures, we techni-
cally do not always consider the whole set P but just the subset PD of vertices
which are involved in a conflict of a certain type for each fixed value D. For the
diameter-measure, for example, we only consider vertices which are involved
in a conflict in the set:

CD := {{u, v} ∈ C : d(u, v) > 2D, ∃ x ∈ V : d(u, x), d(v, x) ≤ D} .
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rad diam avg

‖·‖∞
2 3

O∗(np) O∗(2p)
(Theorem 34) (Theorem 36)

2

O∗(Bp)

(Theorem 35)

?

‖·‖w∞
4

O∗(np)
(Proposition 38)

4

O∗(Bp)

(Proposition 37)

4k

O∗(np)
(Proposition 39)

‖·‖w
1

16(k − 1)

O∗(np)
(Corollary 40)

8(k − 1)

O∗(np)
(Corollary 40)

2k

O∗(np)
(Corollary 40)

Table 4: Summary of the parameterised approximation results, ratio and
asymptotic running time with respect to the number of conflict vertices p.

These types of conflicts are the only ones that would lead to a solution of
diameter larger than 2D in the greedy procedure described for Theorem 20.
Generally, it is difficult to say how much the cardinality of PD differs from the
number of vertices involved in any (small) conflict, in the worst case, it is of
course possible that all conflicts are of the type described in CD and hence PD
is equal to P .

Designing approximation algorithms in this way with a parameter which is
provably smaller than P is hence only possible by either considering a conflict
set provably smaller than C or a set of conflict vertices provably smaller than P .
This leads to two different approaches to decrease the size of the set of vertices
which require exponential effort.

A conflict in C in the approximation algorithms for metric distances from
Section 3 increases the approximation ratio proportionally to the magnitude
of the violation. Considering the notion of α-relaxed triangle inequality intro-
duced in Section 5.1, it seems that smaller values for α do not affect the quality
of the derived approximations too much. We will discuss the idea to ignore
such in a sense less serious conflicts to speed up approximation procedures for
the price of a controllable increase of the performance guarantee in Section 5.5.

In this section, we want to focus on strategies to only spend exponential
time for vertices in a subset of P .
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5.3.1 Vertex Cover

Looking closer at the problems caused by the conflicts CD in the polynomial
approximation algorithms, it is not necessary to consider all vertices in P but it
appears to be sufficient to pick a subset of PD which covers all conflicts in CD.
Formally, this idea translates into parameterisation by a vertex cover for the
subgraph of G, given by Gc = (P,C). In the following, we will use pc to denote
the size of a minimum vertex cover for Gc and discuss parameterised approxi-
mation with respect to this parameter. Again, as a first easy observation, an
xp-time result for (‖·‖∞ , rad)-k-cluster with this parameterisation is pretty
easy to see. In fact, we can simply switch from the set P to a minimum vertex
cover for Gc, which yields the following result.

Theorem 41

A 2-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(npc).

Proof. Consider the procedure Theorem 34 with the only alteration that the
set P is replaced by a subset Pc of P which is a minimum vertex cover for Gc.
The arguments given for Theorem 34 remain exactly the same:

• Vertices in Z are central by the correct choice and according vertices to
build clusters of cardinality at least k and radius at most D hence exist.

• Vertices in Pc are assigned optimally by the correct choice.

• Vertices in V \Pc are not in conflict as Pc is a vertex cover for Gc. Triangle
inequality hence holds for all pairs of vertices in V \Pc and all arguments
used in the original approximation from Theorem 20 remain true.

This means that the greedy procedure is successful for the correct choice of
central vertices for each v ∈ Pc and for D chosen as twice the optimum value
for (‖·‖∞ , rad)-k-cluster on (G, d).

The asymptotic running time is dominated by guessing the correct central
vertices for the clusters containing vertices in Pc which can be done in O∗(npc);
observe that a minimum vertex cover for Gc only has to be computed once in
the beginning and this can be done in O∗(1.2738pc) by [19].

The fpt-time parameterised approximations from Section 5.2.1 also require
little algorithmic adjustment to switch from parameter p to parameter pc.
Proving the correctness of the given procedures, i.e., guaranteeing a perfor-
mance ratio, is however more complicated.

Theorem 42

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(Bpc + 1.1996p).
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Proof. Let d be the distance function induced by the input graph G = (V,E).
Just like in the procedure described for Theorem 35 we consider for fixed
D ∈ {d(v, w) : v, w ∈ V } the subset of conflicts:

CD := {{u, v} ∈ C : d(u, v) > 2D, ∃ x ∈ V : d(u, x), d(v, x) ≤ D} .

and the corresponding subset of P :

PD =
⋃

{u,v}∈CD

{u, v} .

Let GD
c = (PD, CD) be the conflict graph with respect to D and let VD be

a minimum vertex cover for GD
c . As GD

c is a subgraph of Gc, the cardinality
of VD is at most pc.

We use almost the same procedure as described for Theorem 35. The main
difference is that we only iterate over partitions of VD instead of the whole
set PD, so, let C1, . . . , Cr be a partition of VD with Ci 6= ∅ and diam(Ci) ≤ D
for all i ∈ {1, . . . , r}. In step (a) of the greedy pre-clustering process, we no
longer pick a representative ci but now, in a sense, always consider the whole
subset Ci as center:

(a) Iteratively, for i = 1, . . . , r, create a cluster (for the sake of simplicity
still named) P (ci) by adding to Ci all at this point unclustered vertices v
in V \ PD with d(u, v) ≤ D for all u ∈ Ci.

Also, the sets Sc(i, j) are similarly now defined with respect to the whole set Ci.
Further, we now only fix the vertices in VD and not the whole set PD, which
gives the following different definitions of the sets Sc(i, j) and S(i, j):

• Sc(i, j) := {v ∈ P (cj) \ VD : d(u, v) ≤ D ∀ u ∈ Ci} for all 1 ≤ j < i ≤ r,

• S(i, j) := {v ∈ P (cj)\VD : d(v, zi) ≤ D} for all 1 ≤ j ≤ r and 1 ≤ i ≤ q.

Other than these adjustments, we use the same procedure as for Theorem 35
and claim that it also produces a 2-approximation for D chosen as the optimum
value opt(G, d, ‖·‖∞ , diam, k).

Let S1, . . . , Sy be an optimal solution for (‖·‖∞ , diam)-k-cluster on in-
stance (G, k). Consider running the above procedure for D chosen as the
optimum value opt(G, d, ‖·‖∞ , diam, k) and the partition C1, . . . , Cr for VD
given by Ci = VD ∩ Sjci with {jc1, . . . , jcr} = {i : 1 ≤ i ≤ y,VD ∩ Si 6= ∅}
such that jc1 < jc2 < · · · < jcr . Very similar to the proof of Theorem 35,
it can be shown that the clustering procedure successfully builds a k-cluster
P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) for this choice of D and C1, . . . , Cr: By
definition, for each 1 ≤ i ≤ r, the set Ci is included in a different optimal clus-
ter Sjci . For the vertices z1, . . . , zq chosen in step (b), we know that d(zi, u) > D
for at least one vertex u ∈ Ci and d(zi, zl) > D for each 1 ≤ i < l ≤ q and all

90



1 ≤ j ≤ r, so each zi belongs to a distinct cluster Sjzi of the chosen optimal
solution with jzi /∈ {jc1, . . . , jcr} and jzi 6= jzl for all 1 ≤ i < l ≤ q. So there
exist at least the k vertices from Sjci at distance at most D from all vertices
in Ci to be assigned to P (ci) for each 1 ≤ i ≤ r and, similarly, at least the k
vertices from Sjzi at distance at most D from zi to be assigned to P (zi) for each
1 ≤ i ≤ q. The max-flow procedure can hence successfully build a k-cluster.

It is again clear that any successful run of the above procedure yields a k-
cluster for V . For the approximation ratio, we have to be more careful than in
Theorem 35. Let P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) be a solution computed
for some value D:

• Each vertex v ∈ P ′(ci) for some i ∈ {1, . . . , r} is from Ci or was either
assigned to P (ci) in step (a) or moved by the max-flow procedure. In
the latter two cases, v is not in VD and was included in P ′(ci) because
d(u, v) ≤ D holds for all u ∈ Ci.

– For v, w ∈ Ci it follows that d(v, w) ≤ D as the set Ci has diameter
at most D by choice.

– For w ∈ Ci and v ∈ P ′(ci) \ Ci, we know that d(v, w) ≤ D.

– For v, w ∈ P ′(ci) \ Ci, we know that v, w /∈ VD, so {v, w} is not an
edge in GD

c as it would otherwise not be covered by VD. As Ci 6= ∅,
there exists at least one vertex u ∈ Ci and for this vertex u, we
know that d(u, v) ≤ D and d(u,w) ≤ D. By the definition of the
edge set CD this means (with shortcut x = u) that d(v, w) ≤ 2D.

• Each vertex v ∈ P ′(zi) for some i ∈ {1, . . . , q} was either assigned to
P (zi) in step (b) or moved by the max-flow procedure, in both cases
because d(v, zi) ≤ D holds. Further, P ′(zi) contains no vertices from VD,
so for any two vertices v, w ∈ P ′(zi), {v, w} is not an edge in GD

c . With
shortcut x = zi in the definition of the edge set CD, this implies d(v, w) ≤
2D for all v, w ∈ P ′(zi).

As the procedure is successful for the optimum diameter chosen as D, the
k-cluster P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) produced for this D hence is a
2-approximation for (‖·‖∞ , diam)-k-cluster on G.

A minimum vertex cover for GD
c can be computed in O∗(1.1996|PD|) by [65].

Together with the upper bound of B|VD| ≤ Bpc on the number of partitions
that have to be checked, this gives the claimed running time.

Alternatively to an exact algorithm to solve Minimum Vertex Cover
on GD

c , we could also use a parameterised algorithm to arrive at a parameteri-
sation only by pc. Minimum Vertex Cover with standard parameterisation
can be solved in O∗(1.2738pc) by [19] which gives the following result:
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Corollary 43

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(Bpc).

For (‖·‖∞ , rad)-k-cluster, it is not obvious how to reduce the parameter
in Theorem 36 to a structural parameter of the input graph. With an algorithm
which additionally guesses a partition, like for the diameter measure, it is
possible to find an approximation for (‖·‖∞ , rad)-k-cluster parameterised
by the minimum vertex cover of the conflict graph, leading to the following.

Theorem 44

A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2pc ·Bpc + 1.1996p).

Proof. We modify the algorithm presented for Theorem 36, so let for an input
graph G = (V,E) with distances d, D be as defined there and we use the same
subset of conflict vertices given by:

PD := {u : ∃ v, x ∈ V : ({u, v} ∈ C) ∧ (d(u, x), d(v, x) ≤ 2D)} .

Let CD be the corresponding set of conflicts, i.e.:

CD := {{u, v} : ∃ x ∈ V : d(u, x), d(v, x) ≤ 2D} .

Let VD be a minimum vertex cover for GD
c := (PD, CD). In addition to guessing

which vertices in this set VD are central in an optimal solution, we also guess
their partition as in the procedures described for the diameter measure. These
two guesses should be consistent with a solution of maximum radius D, so we
only consider a subset P ′ ⊆ VD of central vertices together with a partition
W1, . . . ,Wr of VD if for all i ∈ {1, . . . , r} the following two properties hold:

1. |Wi ∩ P ′| ≤ 1 and

2. if Wi ∩ P ′ 6= ∅ then w ∈ Wi ∩ P ′ satisfies d(w, v) ≤ D for all v ∈ Wi.

Let P ′ ⊆ VD and W1, . . . ,Wr be a partition of VD with these properties.
For every such set, we first compute a central vertex wi for each Wi, i ∈
{1, . . . , r}. If Wi ∩ P ′ 6= ∅, we set wi to be the only vertex in this non-empty
intersection. Let, w.l.o.g., {1, . . . , h} be the subset of indices j from {1, . . . , r}
for which Wj ∩ P ′ = ∅. In order to find a central vertex for each Wj, j ∈
{1, . . . , h}, we compute for each j ∈ {1, . . . , h} the sets Qj = {v ∈ V \ {VD} :
d(v, w) ≤ D for all w ∈ Wj} of potential central vertices. As these sets do not
have to be disjoint, we use maximum matching, which can be computed in
O(n3) for a graph with n vertices (see [31]), on the graph Ḡ := (V̄ , Ē) with
V̄ := {u1, . . . , uh} ∪

⋃h
j=1Qj and Ē :=

⋃h
j=1{{uj, v} : v ∈ Qj} to try to assign
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one central vertex to each set Wj. If no matching of cardinality h exists for Ḡ,
we abort the algorithm for this choice of P ′ and W1, . . . ,Wr. Otherwise, we
assign the central vertex wj for each j ∈ {1, . . . , h} to be the vertex from Cj

which is matched with uj in the maximum matching for Ḡ. With these central
vertices, build a pre-clustering with the following steps:

(a) For i = 1, . . . , h, build a cluster P (wi) including Wi and all at this point
unclustered vertices v from V \ VD with d(v, wi) ≤ 3D.

(b) For i = h + 1, . . . , r, build a cluster P (wi) including Wi and all at this
point unclustered vertices v from V \ VD with d(v, wi) ≤ D.

(c) While there are still unclustered vertices, pick an arbitrary unclustered
vertex z and build a cluster P (z) including z and all unclustered vertices v
with d(v, z) ≤ 2D.

Let, as usual, z1, . . . , zq be the vertices chosen in step (c) to build clusters
P (z1), . . . , P (zt) by the above procedure. For the reassignment which balances
cardinalities, we aim to keep a maximum radius of 3D for P (w1), . . . , P (wh), a
maximum radius of D for P (wh+1), . . . , P (wr) and a maximum radius of 2D for
P (z1), . . . , P (zq), which yields the following types of vertices which are allowed
to be moved:

• Sp(i, j) := {v ∈ P (wj)\(VD∪{wj}) : d(v, wi) ≤ 3D} for all 1 ≤ j < i ≤ h

• Sp̄(i, j) := {v ∈ P (wj)\ (VD∪{wj}) : d(v, wi) ≤ D} for all 1 ≤ j < i ≤ r,
h < i.

• S(i, j) := {v ∈ P (wj)\VD : d(v, zi) ≤ 2D} for all 1 ≤ j ≤ r and 1 ≤ i ≤ q
and

• Sz(i, j) := {v ∈ P (zj) \ {zj} : d(v, zi) ≤ 2D} for all 1 ≤ j < i ≤ q.

If it is possible to move vertices according to these sets such that each cluster
contains at least k vertices, such a reassignment can be found with a max-flow
in a network designed very similar to the one for Theorem 35. In case of a
successful run of the described algorithm, the resulting partition obviously is a
k-cluster for V of maximum radius at most 3D.

We claim that for D = r∗, there exists a subset P ′ ⊆ VD and a parti-
tion W1, . . . ,Wr such that the above clustering procedure is successful. Let
{S1, . . . , Sy} be any optimal solution for (‖·‖∞ , rad)-k-cluster on input G =
(V,E) with distance d. Fix some central vertex si of Si for each i ∈ {1, . . . , y}.
Consider running the described greedy procedure for D = r∗, the subset
P ′ = VD ∩ {s1, . . . , sy} and the partition W1, . . . ,Wr with Wi = Sji ∩ VD,
where {j1, . . . , jr} is the set of indices j in {1, . . . , y} with Sj ∩ VD 6= ∅. As,
by definition, Wi ∩ P ′ ⊂ {sji} for each i ∈ {1, . . . , r}, this choice of P ′ and
W1, . . . ,Wr has properties 1 and 2 and is hence valid for the algorithm.

93



If {1, . . . , h} is the set of indices i ∈ {1, . . . , r} for which Wi ∩ P ′ = ∅, we
know by definition that the vertex sji /∈ Wi is a valid center for the cluster
which includes Wi, so sji ∈ Qi. The graph Ḡ hence has a maximum matching
of cardinality h, as the set {{ui, sji} : 1 ≤ i ≤ h} is such a matching. The
algorithm hence successfully assigns a central vertex wi to a set Wi for each
i ∈ {1, . . . , r}.

The setsW1, . . . ,Wr are by definition from different sets in the fixed optimal
solution. For any z chosen in step (c) we know that d(wi, z) > 3D for all i ∈
{1, . . . , h}. We claim that this implies that z is not in Sji for any i ∈ {1, . . . , r}.
Assume on the contrary that z ∈ Sji , which means that d(z, sji) ≤ D. If i > h,
z can not be unclustered in step (c), as sji = wi and step (b) for i would,
in case z was not clustered even earlier, put z into P (wi). If i < h, then
sji /∈ VD and also wi /∈ VD by definition, so {wi, sji} is not a conflict in CD.
As for all vertices v in the nonempty set Wi we know that d(sji , v) ≤ D and
d(wi, v) ≤ D, it follows that d(sji , wi) ≤ 2D. As z is also not included in the
vertex cover of the conflict graph, the set {wi, z} is not a conflict which implies
d(wi, z) ≤ d(sji , wi) + d(sji , z) ≤ 3D, so, unless z is already clustered even
earlier, step (a) would move z into P (wi). Two vertices z, z̄ with z 6= z̄ chosen
in step (c) belong to different clusters Sj, j ∈ {1, . . . , q}, as d(z, z̄) > 2D
and z, z̄ /∈ VD, so {z, z̄} is not a conflict, hence there can not be an index
j ∈ {1, . . . , y} such that d(sj, z) ≤ D and d(sj, z̄

′) ≤ D. So, each vertex
zi chosen in step (c) belongs to a different cluster Sjzi , i ∈ {1, . . . , q} with
jzi /∈ {j1, . . . , jr}. The algorithm can successfully assign k vertices to each
cluster since:

• For the clusters P (wi) with i ≤ h, we already showed the relation
d(sji , wi) ≤ 2D. For all vertices v ∈ Sji \ VD = Sji \ Wi it follows
that d(v, wi) ≤ d(v, sji) + d(sji , wi) ≤ 3D, as v, wi, sji /∈ VD, so no two
of these vertices build a conflict. Consequently, there are at least the
vertices from the set Sji (which has cardinality at least k) at distance at
most 3D from wi to move into P (wi).

• For the clusters P (wi) with i > h, the algorithm knows the correct center
wi = sji and can find all vertices in Sji at distance at most D from wi.
So there are at least the vertices from Sji at distance at most D from wi
to move into P (wi).

• For the clusters P (zi), i ∈ {1, . . . , q}, we know that zi belongs to a
cluster Sjzi which does not contain vertices from VD. As zi is also not
in VD, {v, zi} is not a conflict for each v ∈ Sjxi , so d(v, zi) ≤ d(v, sjzi ) +
d(sjzi , zi) ≤ D+D. So there are at least the vertices from Sjzi at distance
at most 2D from zi to move into P (zi).

Overall, this shows that the described algorithm is successful for D chosen as
the optimum value opt(G, d, ‖·‖∞ , rad, k), and produces a k-cluster of max-
imum radius 3D. A minimum vertex cover for GD

c can be computed in
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O∗(1.1996|PD|) by [65]. The running time of the remaining algorithm is dom-
inated by guessing the subset P ′ and the partition W1, . . . ,Wr of the vertex
cover VD. As GD

c is a subgraph of Gc, the vertex cover VD has a cardinality of
at most pc, so there are at most O∗(2pc · Bpc) possibilities to check for P ′ and
W1, . . . ,Wr, which yields the claimed overall running time.

Just like for the diameter measure, we can estimate the running time solely
by the vertex cover number of the conflict graph which yields:

Corollary 45

A 3-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2pc ·Bpc).

5.3.2 P3-Covers

With more changes to the algorithm introduced in Theorem 43, it is possible to
further reduce the size of the subset of PD which requires the expensive guessing
of the partition. When building the greedy pre-clustering, it is always possible
to correctly assign conflict vertices to a set by branching on the conflicts to
decide which vertex has to be excluded. This way it is possible to find a
correct choice of central vertices in step (b). The network used to model
vertex-reassignment can be altered to prevent two conflict vertices to move
into the same cluster, by routing their flow through an additional network-
vertex with a capacity of only 1 to move into a cluster. If the conflicts are
isolated, an additional network-vertex for each conflict can be used to correctly
model all conflict-free reassignments. We can of course not assume that the
conflicts are pairwise disjoint, but we can fix the partition of a subset of conflict
vertices, as we did for the vertex cover of the conflict graph, and use the above
ideas for the remaining vertices which induce a graph with isolated conflicts.
The set of vertices which have to be removed in order to arrive at a graph with
isolated conflicts is smaller than the vertex cover of the conflict graph (unless
the distance is a metric). Formally, the smallest set for which this property
holds is called a P3-cover of the conflict graph. The corresponding problem of
finding a smallest P3-cover of a given graph is formally defined by:

P3-Cover

Input: Graph G = (V,E), ` ∈ N.

Parameter: `

Question: Does there exists a subset F ⊆ V such that the degree of each
vertex in G[V \ F ] is at most 1?

P3-cover can be solved in O∗(1.3659n) time and space or in O∗(1.4656n)
time and polynomial space, see [51]. Using the more expensive previously
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used strategy of guessing the correct partition only for a minimum P3-cover
of the conflict graph, branching on the remaining isolated conflicts for the
pre-clustering and modifying the network to avoid conflicts as described above
gives the following result, where we in the following always use p3c to denote
the cardinality of a minimum P3-cover for Gc.

Theorem 46

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(

√
2
p ·Bp3c + 1.4656p).

Proof. Let d be the distance function induced by the input graph G = (V,E).
As before, we use binary search to find the smallest value D for which we can
construct a k-cluster with the procedure described in the following. So, let
D ∈ {d(u, v) : u, v ∈ V } be fixed and let GD

c be defined as in the proof of
Theorem 42. Let FD be a minimum P3 cover for GD

c .
The idea now for the greedy pre-clustering is to only guess the partition

for the set FD, so we consider all partitions F1, . . . , Fr of FD with Fi 6= ∅
and diam(Fi) ≤ D for all i ∈ {1, . . . , r}. Let e1, . . . , eb be the edges remaining
in GD

c after removing the vertices in FD. Since FD is a P3-cover, it follows that
ei∩ej = ∅ for all i, j ∈ {1, . . . , b} with i 6= j. These edges are the only conflicts
from CD which remain in the set V \ FD. When building the pre-clustering,
which we want to construct such that each set has a diameter of at most 2D,
we now have to be careful not to include both vertices of an edge ei in the
same set. We therefore guess for each edge ei which of its adjacent vertices is
not included in the set in question6. Denote for this purpose the two vertices
adjacent to e` by u0

` and u1
` for each ` ∈ {1, . . . , b}. As we only want to guess

once in the beginning, we fix an arbitrary ordering on the vertices in V to
make our pre-clustering algorithm, in a way, deterministic. For each partition
F1, . . . , Fr of FD and each vector g ∈ {0, 1}b, we build a pre-clustering in the
following way:

(a) Iteratively, for i = 1, . . . , r do the following:

– Create a cluster P (fi) and add all vertices from Fi to it.

– Collect in the set Ri all at this point unclustered vertices v in V \FD
with d(w, v) ≤ D for all w ∈ Fi.

– While there exists an index ` ∈ {1, . . . , b} with e` ⊆ Ri, remove the

vertex u
g[`]
` from Ri.

– Add Ri to P (fi).

(b) If all clusters P (fi) are built but
⋃r
i=1 P (fi) 6= V , then repeat the fol-

lowing until all vertices are clustered:

6See Remark 7 for a different view on this type of guessing.
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– Pick the unclustered vertex z of smallest index in the fixed order
on V and create a new cluster P (z) = {z}.

– Collect in the set Rz all at this point unclustered vertices v with
d(z, v) ≤ D.

– While there exists an index ` ∈ {1, . . . , b} with e` ⊆ Rz, remove the

vertex u
g[`]
` from Rz.

– Add Rz to P (z).

Let z1, . . . , zq be the vertices chosen in step (b). In order to turn the pre-
clustering into a k-cluster, define the sets of vertices which can be moved
similar as for Theorem 42, so with the notation here and the P3-cover FD
instead of the vertex cover VD, given by:

• Sf (i, j) := {v ∈ P (fj)\FD : d(u, v) ≤ D ∀ u ∈ Fi} for all 1 ≤ j < i ≤ r,

• S(i, j) := {v ∈ P (fj)\FD : d(v, zi) ≤ D} for all 1 ≤ j ≤ r and 1 ≤ i ≤ q,
and

• Sz(i, j) := {v ∈ P (zj) \ {zj} : d(v, zi) ≤ D} for all 1 ≤ j < i ≤ q

Again, collect all vertices which can be moved in the set

S := (
r−1⋃

j=1

r⋃

i=j+1

Sf (i, j)) ∪ (
r⋃

j=1

q⋃

i=1

S(i, j)) ∪ (

q−1⋃

j=1

q⋃

i=j+1

Sz(i, j)) .

When reassigning vertices from these sets, we now have to be careful not to
move a conflict-pair in the same cluster; observe that V \ FD now may still
contain vertices involved in a conflict namely exactly the vertices adjacent to
the edges e1, . . . , eb. We alter the network to make sure that no two conflict
vertices end up in the same cluster. Start with the network introduced in the
proof of Theorem 35, where now we rename c′i to f ′i as representative for P (fi)
for all i ∈ {1, . . . , r}. Remove in this network all arcs from network-vertices v′

representing a vertex v ∈ V \ FD which is included in a conflict-edge e` for
some ` ∈ {1, . . . , b}. We add the following nodes and arcs to the network:

• For each ` ∈ {1, . . . , b}, we introduce a network-vertex e′`.

• For each vertex v ∈ S with v ∈ e` for some ` ∈ {1, . . . , b} add the
following arcs, each of capacity 1:

– (v′, e′`),

– (v′, w′) for e` = {v, w} if there exist i ∈ {2, . . . , r}, j ∈ {1, . . . , i−1}
such that v ∈ Sc(j, i) and w ∈ P (fi),
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– (v′, w′) for e` = {v, w} if there exists an index i ∈ {1, . . . , r} such

that v ∈ (
⋃t
j=1 S(j, i)) ∪ (

⋃i−1
j=1 Sz(j, i)) and w ∈ P (zi),

– (e′`, f
′
i) for all i ∈ {1, . . . , r} with e` ⊆

⋃i−1
j=1 Sc(j, i),

– (e′`, z
′
i) for all i ∈ {1, . . . , q} with e` ⊆ (

⋃q
j=1 S(j, i))∪(

⋃i−1
j=1 Sz(j, i)),

– (v′, f ′i) for all i ∈ {2, . . . , r} and v ∈ V such that v /∈ P (fi) and

(P (fi) ∪
⋃i−1
j=1 Sc(j, i)) ∩ e` = {v},

– (v′, z′i) for all i ∈ {1, . . . , q} and v ∈ V such that v /∈ P (zi) and

(P (zi) ∪ (
⋃q
j=1 S(j, i)) ∪ (

⋃i−1
j=1 Sz(j, i))) ∩ e` = {v}.

When reassigning vertices in S according to a max-flow for this network, we
interpret a flow over an arc (v′, w′) with v, w ∈ V as replacing v by w in the
cluster that initially contains v. We will later show that these adjustments
make sure that for a reassignment of vertices according to a network flow,
no two vertices involved in a conflict e` end up in the same set. This is
important to prove that a partition created from reassigning vertices in S
creates a partition with maximum diameter at most 2D. The maximum flow
in this network is at most:

M :=
r∑

i=2

max{0, k − |P (fi)|}+

q∑

j=1

max{0, k − |P (zj)|} .

If there exists a maximum flow of value M in the network, denote by
P ′(f1), . . . , P ′(fr), P

′(z1), . . . , P ′(zq) the partition built from P (f1), . . . , P (fr),
P (z1), . . . , P (zq) by reassigning vertices according to this flow. Obviously, this
partition is a k-cluster, as a max-flow of value M balances the cardinalities
such that each cluster contains at least k vertices. If the maximum flow in the
network has a value less than M , abort and try a larger value for D.

We claim that the above described algorithm successfully computes a k-
cluster of maximum diameter 2D for D = opt(G, d, ‖·‖∞ , diam, k).

Let S1, . . . , Sy be an optimal solution for (‖·‖∞ , diam)-k-cluster on in-
stance G. Consider running the above procedure for the optimum value D and
the partition F1, . . . , Fr for FD given by Fi = FD ∩ Sjfi with {jf1 , . . . , jfr } =

{i : 1 ≤ i ≤ y,FD ∩ Si 6= ∅} such that jf1 < jf2 < · · · < jfr . By definition, for
each 1 ≤ i ≤ r, the set Fi is included in a different optimal cluster Sjfi

. We

claim that there exists a vector g ∈ {0, 1}b such that the greedy pre-clustering
chooses z1, . . . , zq by resolving conflicts according to this vector g such that
the following two properties hold:

1. {z1, . . . , zq} ∩ Sjfi = ∅ for all i ∈ {1, . . . , r}, and
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2. in the fixed optimal solution, no two vertices in {z1, . . . , zq} belong to
the same cluster, formally: |Sj ∩ {z1, . . . , zq}| ≤ 1 for all j ∈ {1, . . . , y}.

For property 1, fix the following entries in g (recall the notation e` = {u0
` , u

1
`}):

Let for each ` ∈ {1, . . . , b}, in case it exists, i ∈ {1, . . . , r} be the smallest index
such that d(w, u0

`) ≤ D and d(w, u1
`) ≤ D for all w ∈ Fi (these properties mean

that e` ⊆ Ri when building P (fi) in step (a) ). Assign:

g[`] =

{
0 if u0

` /∈ Sjfi
1 else .

As e` is a conflict in CD, we know that d(u0
` , u

1
`) > 2D, so if u0

` ∈ Sfji , it follows

that u1
` /∈ Sfji . For a vector g with these entries, step (a) of the pre-clustering

procedure does not put a vertex z in cluster P (fi) if either d(z, w) > D for
at least one vertex w ∈ Fi (which implies z /∈ Sfji as the optimal solution has

maximum diameter D) or if z is a vertex in a conflict e` and z /∈ Sfji . Observe
that each conflict e` only causes at most one decision in step (a) namely at
the smallest index i for which both u0

` and u1
` are in Ri; afterwards one of the

vertices involved is included in the set P (fi) and not considered in a successive
step. Hence, after step (a), no unclustered vertex is contained in a set Sfji ,
i ∈ {1, . . . , r}, so especially {z1, . . . , zq} ∩ Sjfi = ∅ for all i ∈ {1, . . . , r}.

For property 2, we show inductively that there is a vector g such that zi
is chosen appropriately for each i. Let R be the set of vertices remaining
unclustered after step (a) for a vector g with entries according to the setting
for property 1; observe that this set R only depends on the partition F1, . . . , Fr
and the entries for g which we have fixed for property 1. Step (b) then picks as
vertex z1 the vertex of smallest index in R (choice only depends on R). Let jz1
be the index in {1, . . . , y} with z1 ∈ Sjz1 . For all ` ∈ {1, . . . , b} with e` ⊆ R and
d(z1, u

0
`) ≤ D and d(z1, u

1
`) ≤ D, fix g[`] = 0 if u0

` /∈ Sjz1 and g[`] = 1 otherwise.
Since e` ⊆ R, this conflict has not been considered so far and the entry for g is
hence not fixed by a previous step. For g with these entries, the set R \ P (z1)
only contains vertices w with either d(w, z1) > D or conflict vertices outside
Sjz1 , so R∩Sjz1 ⊆ P (z1), hence if R \P (z1) 6= ∅, step (b) chooses as z2 a vertex

that lies in an optimal cluster Sj2z with j2
z /∈ {jz1}∪{jf1 , . . . , jfr }. Inductively, if

z1, . . . , zh are picked with zi ∈ Sjzi and g fixed such that R ∩ Sjzi ⊆
⋃i
s=1 P (zs)

for all i ∈ {1, . . . , r} and Rh+1 := R \ (
⋃h
i=1 P (zi)) 6= ∅, then zh+1 picked in

step (b) satisfies zh+1 ∈ Sjzh+1
with jzh+1 /∈ {jz1 , . . . , jzh} ∪ {jf1 , . . . , jfr }. With g

such that g[`] = 0 if u0
` /∈ Sjzh+1

and g[`] = 1 otherwise for all ` ∈ {1, . . . , b}
with e` ⊆ Rh+1 and d(zh+1, u

0
`) ≤ D and d(zh+1, u

1
`) ≤ D, it follows that

Rh+1 ∩ Sjzh+1
⊆ P (zh+1).

For at least one vector g, z1, . . . , zq are chosen such that each zi belongs

to a distinct cluster Sjzi of the chosen optimal solution with jzi /∈ {jf1 , . . . , jfr }
and jzi 6= jzl for all 1 ≤ i < l ≤ q. So there exist at least the k vertices from Sjfi
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at distance at most D from all vertices in Fi to be assigned to P (fi) for each
1 ≤ i ≤ r and, similarly, at least the k vertices from Sjzi at distance at most
D from zi to be assigned to P (zi) for each 1 ≤ i ≤ q. For each conflict e`, no
set Sj contains both vertices in e`, so the adjustments made to the network
from Theorem 35 preventing both u0

` and u1
` to move to the same cluster do

not affect the fact that there are at least k vertices which can be assigned to
each set in the pre-clustering. The max-flow procedure can hence successfully
build a k-cluster P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq).
Any sets P ′(c1), . . . , P ′(cr), P

′(z1), . . . , P ′(zq) produced by a successful run
of the above procedure for some value D is obviously a k-cluster for V . We
claim that the maximum radius of this solution is at most 2D:

• Each vertex v ∈ P ′(fi) for some i ∈ {1, . . . , r} is from Fi or was either
assigned to P (fi) in step (a) or moved by the max-flow procedure. In
the latter two cases, v is not in FD and was included in P ′(fi) because
d(v, w) ≤ D holds for all w ∈ Fi.

– For v, w ∈ Fi it follows that d(v, w) ≤ D as the set Fi has diameter
at most D by choice.

– For w ∈ Fi and v ∈ P ′(fi) \ Fi, then d(v, w) ≤ D holds as already
mentioned above.

– For v, w ∈ P ′(fi) \Fi, we know that v, w /∈ FD and as Fi 6= ∅, there
exists at least one vertex u ∈ Fi and, by definition, d(u, v) ≤ D and
d(u,w) ≤ D. If d(v, w) > 2D, it follows that {v, w} ∈ CD, which
means that {v, w} = e` for some ` ∈ {1, . . . , b}. As step (a) only
includes at most one vertex from each such conflict, at least v or w
was added by the max-flow procedure, so assume w.l.o.g. v /∈ P (fi).
Since v is moved into P ′(fj) by the max-flow, v is in Sc(i, j) for some
j < i. If w ∈ P (fi), this means that the network only contains the
arc (v′, w′) to move v into P ′(fi), which for a feasible flow however
requires w to to be moved to a different cluster. If w /∈ P (fi), then
w ∈ Sc(i, j

′) for some j′ < i. Then e` ⊆
⋃i−1
j=1 Sc(i, j), hence the

network only contains the arcs (v′, e′`), (w′, e′`) and (e′`, f
′
i) to move v

and w into P ′(fi), the arc (e′`, r
f
i ) however only has capacity 1 and

can only move either v or w. Overall, this means that d(v, w) > 2D
is not possible.

• Each vertex v ∈ P ′(zi) for some i ∈ {1, . . . , q} was either assigned to
P (zi) in step (b) or moved by the max-flow procedure, in both cases
because d(v, zi) ≤ D holds. For two vertices v, w ∈ P ′(zi) \ {zi} it
follows that if d(v, w) > 2D ≥ d(zi, v) + d(zi, w) then {v, w} = e` for
some ` ∈ {1, . . . , b}. Similar to v, w ∈ P ′(fi), this is not possible by the
construction of the partition.
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Overall, this shows that the procedure described above is an approximation
algorithm with performance ratio 2 for (‖·‖∞ , diam)-k-cluster.

For eachD, a minimum P3-cover forGD
c can be computed inO∗(1.4656|PD|),

so especially in O∗(1.4656|P |) as PD ⊆ P for all D. The number of edges
remaining in the graph GD

c [V \ FD] is bounded by 1
2
|PD \ FD| ≤ 1

2
|P |, as FD

is a P3-cover which means that GD
c [V \ FD] only contains single edges and

isolated vertices as connected components. The number of vectors g to be
checked for each D is hence bounded by 2

1
2
|P |. The Bell-Number B|FD| bounds

the number of partitions to be checked for each D. As GD
c is a subgraph

of Gc for each D, it follows that |FD| ≤ p3c. The algorithm described above
considers at most log(|V |2) values for D which yields an overall running time
in O∗(1.4656p +

√
2
p ·Bp3c).

With the fpt-algorithm for P3-Cover from [64] which runs in O∗(1.7485p3c),
the worst-case running time of the algorithm presented for Theorem 46 can be
estimated differently which does not give parameterisation solely by p3c but
still yields the following result:

Corollary 47

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(

√
2
p ·Bp3c).

Remark 7: The described guessing of a vector g ∈ {0, 1}b with a fixed vertex-
ordering is an iterative way to implement the intuitively described idea of
branching on the conflicts. From a human perspective, it is probably easier to
think of the pre-clustering as a procedure which greedily builds sets as in the
original algorithm from Theorem 20 and, whenever this strategy tries to put
two vertices which build a conflict into the same set, branches on which vertex
can not stay in this set. We chose the described iterative approach instead for
two reasons: Firstly, it is easier to maintain in the implementation, especially
considering space-requirements; concretely, we found that the information that
had to be stored for recursive calls would either require copies of large parts of
the input, or an unnecessarily complicated back-tracking strategy. In compar-
ison, the described iterative strategy always only needs one copy of the input
and also had the advantage that it required very little changes to the original
polynomial algorithm. Secondly, proving that there exists a successful run of
the approximation procedure for the optimal value for D is cleaner with a
concrete definition of the decisions g which correspond to a valid solution.

As already mentioned, branching on conflicts for the pre-clustering works
for any set of conflicts, not just for the restriction to isolated ones. The
reassignment-restriction for conflict vertices modelled with the capacities in
the network however requires a situation where, in case of conflict, at most
one vertex can be moved into a cluster. Capacities on arcs from some addi-
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tional network-vertices which handle conflicts can not model a scenario where
out of three vertices u, v, w, a cluster is restricted to either only contain u or
any subset of {v, w}; this situation occurs when u is in conflict with v and w
but {u,w} is not a conflict. This structure means that the vertices u, v, w
induce a P3 in the conflict graph. If the conflict graph, or any graph for that
matter, does not contain an induced P3, its connected components are cliques.
For this structure, the network can be adjusted to correctly model conflict-
free vertex-reassignments. The problem to find, for a given graph, a smallest
vertex set whose removal yields a P3-free graph is sometimes called Induced
P3-Cover, but we will refer to it by Cluster Vertex Deletion, a name
associated to the structure of the resulting graph. Formally, we consider the
following parameterised definition of this problem:

Cluster Vertex Deletion

Input: Graph G = (V,E), ` ∈ N.

Parameter: `

Question: Does there exists a subset F ⊆ V such that G[V \ F ] does not
contain P3 as an induced subgraph?

Currently, there does not seem to be a non-trivial exact algorithm for Cluster
Vertex Deletion in the literature so we use the exact algorithm from [63] for
3-Hitting Set which runs in O∗(1.6538n), where n is the number of vertices
in the hypergraph. By 3-Hitting Set, we denote the following problem:

3-Hitting Set

Input: Hypergraph H = (V, F ) such that |f | = 3 for all hyperedges f ∈ F ,
` ∈ N.

Question: Does there exists a subset C ⊆ V such that f ∩ C 6= ∅ for all
f ∈ F?

Cluster Vertex Deletion can be modelled as an instance of 3-Hitting
Set by keeping the same bound ` and vertex set and introducing a hyperedge
for each induced P3.

We will now, in a sense, generalise the algorithm for Theorem 46 to con-
sider a cluster vertex deletion set instead of a P3-cover to reduce the cost for
guessing the partition. We denote the corresponding parameter, the size of a
minimum cluster vertex deletion set for the conflict graph, by p3d. While the
relation p3d ≤ p3c obviously makes this generalisation an improvement, we
have to pay for this in the branching for the pre-clustering, as the remaining
conflicts are no longer bounded by 1

2
|P |. The generalisation also requires more

changes to the network and yields the following result:
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Theorem 48

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(2c ·Bp3d + 1.6538p).

Proof. We will alter the algorithm presented for Theorem 46, so let d, G =
(V,E), D and GD

c be defined as in the proof of Theorem 46. Let now FD be a
minimum induced P3-cover for GD

c and we consider all partitions F1, . . . , Fr of
this set FD with Fi 6= ∅ and diam(Fi) ≤ D for all i ∈ {1, . . . , r}. Let further
{e1, . . . , eb} be the set of edges of the graph GD

c [PD \ FD]. We do exactly
the same pre-clustering procedure as for Theorem 46, observe that we did not
require the edges {e1, . . . , eb} to be disjoint for this part of the algorithm.

Now that a vertex in PD \ FD can be involved in more than one remaining
conflict {e1, . . . , eb}, we have to alter the network used for balancing cardinali-
ties to make sure that no conflicts occur in the same set of a resulting k-cluster.
Let R be the set of vertices in PD \ (FD ∪ {z1, . . . , zq}) which are involved in
at least two remaining conflicts e1, . . . , eb, not including conflicts with a ver-
tex in {z1, . . . , zq}. The vertices in R will be modelled differently in the new
network to deal with the conflicts they are involved in. For this purpose, first
remove from P (fi) and P (zj) all vertices from R for all i ∈ {1, . . . , r} and
j ∈ {1, . . . , q}. Build for the resulting sets P (f1), . . . , P (fr), P (z1), . . . , P (zq)
the network as for Theorem 46. Add to this network the following vertices and
arcs to model reassignments for the vertices in R:

• For each vertex v ∈ R, create a network-vertex v′.

• Add an arc of capacity 1 from s to v′ for each v ∈ R.

• For each i ∈ {1, . . . , r} with {v ∈ R : d(v, w) ≤ D for all w ∈ Fi} =:
FR
i 6= ∅, let F 1

i , . . . , F
ni
i be the vertex sets corresponding to the con-

nected components of the graph GD
c [F r

i ]. Introduce new network-vertices
fi

1, . . . , fi
ni representing these sets.

• Similarly for each i ∈ {1, . . . , q} with ZR
i := {v ∈ R : d(v, zi) ≤ D} 6= ∅,

let Z1
i , . . . , Z

mi
i be the vertex sets corresponding to the connected compo-

nents of the graph GD
c [ZR

i ]. Introduce new network-vertices z1
i , . . . , z

mi
i

representing these sets.

• Add the arc (v′, f ji ) of capacity 1 for each v ∈ F j
i , i ∈ {1, . . . , r} and

j ∈ {1, . . . , ni}.

• Add the arc (v′, zi
j) of capacity 1 for each v ∈ Xj

i , i ∈ {1, . . . , q} and
j ∈ {1, . . . ,mi}.

• Add the arc (f ji , f
′
i) of capacity 1 for each i ∈ {1, . . . , r}, j ∈ {1, . . . , ni}.

• Add the arc (zi
j, z′i) of capacity 1 for each i ∈ {1, . . . , q} and j ∈

{1, . . . ,mi}.

103



We claim that these newly defined network-vertices and arcs exactly model
the possibilities to assign the vertices in R to the clusters P (f1), . . . , P (fr),
P (z1), . . . , P (zq) such that the maximum diameter does not exceed 2D, and
hence allows to build a k-cluster in case the partition of FD is chosen correctly
and z1, . . . , zq are chosen such that in an optimal solution they are not in a
cluster with vertices from FD and also pairwise lie in different clusters. First
observe that the graph GD

c [F j
i ] is a clique for each i ∈ {1, . . . , r} and j ∈

{1, . . . , ni}, as the vertices in F j
i are connected and GD

c [F j
i ] is an induced

subgraph of the cluster graph GD
c [PD \ FD]. This means that in a partition

of maximum diameter 2D, no two vertices from F j
i are included in the same

set. In the network, at most one network-vertex v′ with v ∈ F j
i can send a

flow through the corresponding network-vertex f ji to f ′i (and then to t), hence
at most one vertex v ∈ F j

i is moved into the cluster P (fi). The same holds
for the vertices in Zj

i for each i ∈ {1, . . . , q}, j ∈ {1 . . . ,mi}. All vertices
outside R which are reassigned by this procedure are not in conflict with
vertices in R and are correctly modelled like for Theorem 46, as they have
exactly the same properties and exactly like in the proof of Theorem 46 it
follows that for D chosen as the optimum diameter, there exists a vector g for
which this approximation procedure is successful in creating a k-cluster.

In case of a successful vertex-reassignment according to a max-flow for the
above network, the maximum diameter of the resulting k-cluster is at most 2D.
This follows exactly like for Theorem 46 with the only additional observation,
that vertices from R can never end up in the same cluster, as they are removed
and re-assigned separately by the adjusted max-flow procedure.

Overall, this shows that the described adjustment of the algorithm from
Theorem 46 still produces a 2-approximation for (‖·‖∞ , diam)-k-cluster
while now only guessing the partition of an induced P3-cover for GD

c . By defi-
nition, GD

c is a subgraph of Gc which means that the cardinality of this cover
is bounded by our parameter p3d and guessing of the partition can hence be
done in O∗(Bp3d), while the computation of this set can be done in O∗(1.6538n)
by [63]. Since now the remaining conflicts do not have to be isolated, we can
bound z only by c which, with the still at most log(|V |2) many values to check
for D, gives an overall running time in O∗(2c ·Bp3d + 1.6538n).

Instead of the exact algorithm for 3-Hitting Set, we can also use the cur-
rently best known parameterised algorithm for Cluster Vertex Deletion
from [15] which runs in O∗(1.9102`). This adjustment yields:

Corollary 49

A 2-approximation for (‖·‖∞ , diam)-k-cluster can be computed with a run-
ning time in O∗(2c ·Bp3d).

All results for (‖·‖∞ , diam)-k-cluster with respect to the structural pa-
rameters of the conflict graph translate to a 4-approximation for the problem
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pc p3c p3d

O∗(Bpc + 1.1996p)

(Theorem 42)

O∗(
√

2
p
Bp3c + 1.4656p)

(Theorem 46 )

O∗(2cBp3d + 1.6538p)

(Theorem 48 )

O∗(Bpc)

(Corollary 43)

O∗(
√

2
p
Bp3c)

(Corollary 47)

O∗(2cBp3d)

(Corollary 49)

Table 5: Summary of the running time of the parameterised 2-approximation
for (‖ · ‖∞ , diam)-k-cluster (4-approximation for (‖ · ‖w∞ , diam)-k-cluster),
where pc, p3c and p3d denote the size of a minimum vertex, P3 and induced
P3-cover for the conflict graph, respectively.

variant (‖·‖w∞ , diam)-k-cluster with the same arguments used in Proposi-
tion 37 to show how Theorem 35 also applies for the weighted infinity norm.
This immediately yields the following result:

Corollary 50

A 4-approximation for (‖·‖w∞ , diam)-k-cluster can be computed in

• O∗(Bpc + 1.1996p) or O∗(Bpc), where pc is the size of a minimum vertex
cover for the conflict graph.

• O∗(
√

2
p
Bp3c + 1.4656p) or O∗(

√
2
p
Bp3c), where p3c is the size of a mini-

mum P3-cover for the conflict graph.

• O∗(2cBp3d + 1.6538p) or O∗(2cBp3d) where p3d is the size of a minimum
induced P3-cover for the conflict graph.

Remark 8: The results to improve the parameterised approximation from The-
orem 42 are here presented in a way which suggest a stepwise improvement
of the running time. In principle, reducing the number of vertices which re-
quire partitioning appears to be the best option. But the reductions of this
set used for Theorems 46 and 48 require additional branching costs on conflict
vertices and conflicts, respectively. Depending on the structure of the conflict
graph, any one of the three algorithms can have the best worst-case running
time. An overview of the parameterised approximations for (‖·‖∞ , diam)-k-
cluster with respect to the structural parameters of the conflict graph dis-
cussed in this section is given in Table 5.
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5.3.3 Lower Bounds

In this section, we investigate the limitations of parameterised approximation
for (‖·‖, f)-k-cluster with structural parameters of the conflict graph. Es-
pecially the increase from ratio 2 for metric instances to ratio 3 for non-metric
instances in fpt-time for (‖·‖∞ , rad)-k-cluster appears strange. We will how-
ever see that the approach we use to design parameterised approximations is
limited to the performance ratio of 3. Further, we will discuss the limits of
choosing structural parameters for (‖·‖∞ , diam)-k-cluster; more precisely
we will see that while the previous section gave approaches to move from p to
pc, p3c and p3d, a next step towards a parameterisation by a split vertex dele-
tion set (definition explained in detail later) does not give a constant factor
approximation in fpt-time.

To show the negative results of this section, we use a kind of reduction which
links the existence of a parameterised approximation with certain ratio to an
fpt-algorithm for a parameterised problem which is believed not to be in FPT.
For the first reduction of this type, we consider the following parameterised
problem:

Multicoloured Dominating Set

Input: Graph G = (V,E), with vertex partition V = V1 ∪ · · · ∪ V`.

Parameter: `

Question: Does there exists a subset D ⊆ V such that N [D] = V (D is a
dominating set for G) and |D ∩ Vi| = 1 for all i ∈ {1, . . . , `}?

The colour-coding technique from [6] shows that the W[2]-hardness of the clas-
sical Minimum Dominating Set problem, which is shown in [29], transfers to
this restricted version we called multicoloured in reference to Multicoloured
Clique and the corresponding reduction technique introduced in [36], which
denotes the clique problem with the same kind of colour-coding technique.

We will in the following give a reduction from Multicoloured Dominat-
ing Set to (‖·‖∞ , rad)-k-cluster which will show that an approximation in
fpt-time for the clustering problem could be used to solve the W[2]-hard dom-
ination problem in fpt-time. This kind of reduction shows a lower bound for
parameterised approximation for (‖·‖∞ , rad)-k-cluster under the assump-
tion FPT 6= W[2]. In particular, we arrive at the following result.

Theorem 51

There exists no (3− ε)-approximation for (‖·‖∞ , rad)-k-cluster with a run-
ning time in O∗(f(pc)) for any ε > 0 and computable function f , unless
FPT = W[2].
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Proof. Assume there was an (3−ε)-approximation algorithmA for (‖·‖∞ , rad)-
k-cluster with a worst-case running time in O∗(f(pc)) for some computable
function f . We will show that the existence of this algorithm implies FPT =
W[2] by building fromA an algorithm to solve Multicoloured Dominating
Set with a running time in O∗(f(`)), contradicting the W[2]-hardness of the
problem.

Let G = (V,E) with V = V1, . . . , V` and |V | = n be an instance of Multi-
coloured Dominating Set. We describe a polynomial algorithm R which
computes from this given instance a graph G′ = (V ′, E ′) and edge-weight
function wE′ as input for A in the following way (for an illustration of the
constructed graph, see Figure 10):

• Build the vertex set V ′ from the vertices V of G, a copy of V , denoted
V̄ = {v̄ : v ∈ V }, ` + 2 vertices (which will become the vertex cover of
the conflict graph) denoted u1, . . . , u` and ur, uR and an additional set
A of (`− 1)n+ ` vertices.

• For each i ∈ {1, . . . , `} add to E ′ the edge {ui, v} with wE′({ui, v}) = 1
for all v ∈ Vi.

• For each v ∈ V add to E ′ the edge {v, ur} with weight 1

• For each {v, w} ∈ E add to E ′ the edges {v, w̄} and {w̄, v} both with
weight 1.

• For each w ∈ A and v ∈ V ∪{ur} add to E ′ the edge {w, v} with weight 1.

• Add to E ′ the edge {ur, uR} with weight 1.

• For each i ∈ {1, . . . , `} add to E ′ the edge {v, ui} with weight 3 for all
v ∈ V ′ \ Vi.

• For each v ∈ V̄ add to E ′ the edge {ur, v} with weight 3.

• For each v ∈ V ′ \ {vr, vR} add to E ′ the edge {uR, v} with weight 3.

Consider G′ with wE′ as instance of (‖·‖∞ , rad)-k-cluster with k = n + 2
and let d be the distance induced by wE′ . If G is a “yes”-instance for Multi-
coloured Dominating Set, let {v1, . . . , v`} be a colourful dominating set
for G. Let further W1, . . . ,W` be a partition of V such that Wi ⊆ NG[vi] for all
i ∈ {1, . . . , `}; such a partition exists, since {v1, . . . , v`} dominates V . Build
from this partition for V a partition for V ′ in the following way:

• For each i ∈ {1, . . . , `} build a cluster Pi = {v̄ : v ∈ Wi} ∪ {ui, vi} and
add to this set n− |Wi| vertices from A. Observe that there are enough
vertices in A to distribute them among all sets Pi in such a way as∑`

i=1 n− |Wi| = (`− 1)n < |A|.
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• Build a cluster Pr of the remaining vertices from V ′.

The sets P1, . . . , P`, Pr are obviously a partition of V ′. Each set Pi, i ∈
{1, . . . , `} contains exactly n − |Wi| + |Wi| + 2 = n + 2 vertices. The set Pr
contains the vertices ur and uR, exactly ` remaining vertices from A and the
n− ` vertices in V \ {v1, . . . , v`}, so |Pr| = n+ 2. The partition P1, . . . , P`, Pr
hence is a k-cluster for G′. By definition of the edges in E ′, the maximum
radius of P1, . . . , P`, Pr is 1, as:

• {vi, w} ∈ E for all w ∈ Wi by the definition of Wi for each i ∈ {1, . . . , `},
which means that {vi, w̄} ∈ E ′ with weight 1. Also, d(vi, z) = 1 for
all z ∈ A and i ∈ {1, . . . , `} and d(vi, ui) = 1, which together yields
rad(Pi) ≤ max{d(vi, v) : v ∈ Pi} = 1.

• For Pr, we know that Pr ⊂ A ∪ V ∪ {ur, uR} with ur ∈ Pr. Since each
edge {ur, v} ∈ E ′ has a weight of 1 for all v ∈ A ∪ V ∪ {uR}, it follows
that rad(Pr) ≤ max{d(ur, v) : v ∈ Pr} = 1.

This means that P1, . . . , P`, Pr is a solution for (‖·‖∞ , rad)-k-cluster with
k = n+ 2 for G′ of optimal value 1.

Conversely, assume there exists a k-cluster P with k = n + 2 for G′ such
that rad(P ) ≤ 3 − ε for all P ∈ P for some ε > 0. First of all, observe that,
since |V ′| = 2n+`+2+(`−1)n+` = (`+1)(n+2) and k = n+2, P contains at
most `+1 clusters. Denote by Pi the cluster in P which contains the vertex ui
for each i ∈ {1, . . . , `} and by Pr the cluster in P which contains uR. Because of
the edges of weight 3 introduced from ui to all vertices in V ′\Vi, it follows that,
since rad(Pi) ≤ 3− ε, there exists a vertex vi ∈ Pi ∩ Vi ∪ {ui} which is central
in Pi for each i ∈ {1, . . . , `}. Also d(uR, v) < 3 if and only if v ∈ {ur, uR},
which means that ur is central for Pr (if uR itself was central, Pr could only
contain two vertices at radius smaller than 3). As d(vi, uj) = 3 for all i 6= j
i, j ∈ {1, . . . , `}, it follows that Pi 6= Pj for all i 6= j and, since d(uj, ur) = 3 it
follows that Pi 6= Pr for all i ∈ {1, . . . , `}. With the above mentioned constraint
of at most `+ 1 sets, P only contains exactly the `+ 1 sets P1, . . . , P` and Pr.
We claim that D := {v1, . . . , v`}∩V is a dominating set for V . Assume on the
contrary that there is some w ∈ V such that w /∈ NG[v] for all v ∈ D. The
vertex w̄ ∈ V ′ has distance 3 from ur, so w̄ ∈ Pi for some i ∈ {1, . . . , `}. As
d(ui, w̄) = 3, it follows that vi ∈ Vi, hence vi ∈ D. So, if {w, vi} /∈ E, there is
no edge (of weight 1) between w̄ and vi in G′. A shortest path between w̄ and
vi in G′, which defines the distance d(w̄, vi), can not have length 2, as vertices
in V̄ only have vertices in V at distance 1 while vertices in V are not adjacent
in G′ and have distance 2 from each other. Since all distances have integer
values (in fact they are in {0, 1, 2, 3}), this means that if d(w̄, vi) > 1, then
d(w̄, vi) = 3, which is a contradiction to rad(Pi) ≤ 3 − ε. The set D hence is
a dominating set for G which also satisfies |Vi ∩ D| = |{vi} ∩ V | ≤ 1 and if
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|{v1, . . . , v`}∩V | < `, adding an arbitrary vertex v ∈ Vi for each i ∈ {1, . . . , `}
with Vi ∩ D = ∅ yields a colourful dominating set for G.

Given any multicoloured graph G, we can now decide whether G is a “yes”-
instance for Multicoloured Dominating Set or not by first running al-
gorithm R to compute the corresponding graph G′ and then running A for G′.
If A returns a solution of maximum radius less than 3, G is a “yes”-instance
for Multicoloured Dominating Set, otherwise G is a “no”-instance. This
decision is correct, as we have shown that a “yes”-instance G yields a graph G′

for which there exists a k-cluster of maximum radius 1 while a “no”-instance G
yields a graph G′ for which a k-cluster has a maximum radius of at least 3. The
(3− ε)-approximation algorithm A hence yields a solution of maximum radius
less than 3 for G′ if and only if G is a “yes”-instance for Multicoloured
Dominating Set.

The reduction algorithm R obviously runs in polynomial time and espe-
cially produces a graphG′ with a size polynomial in the size ofG. By definition,
the approximation algorithm A runs in time O∗(f(pc)), where pc is the size of
a minimum vertex cover for the conflict graph of the input. For G′, the conflict
graph is a subgraph of the graph induced by all edges of weight 3; observe that
the set of conflicts is always a subset of the edges and that all other edges have
weight 1 which is the minimum distance in the given graph and hence can
not produce a conflict. All edges of weight 3 involve at least one of the ver-
tices in U := {u1, . . . , u`} ∪ {ur, uR}, which means that U is (or rather, more
precisely, contains) a vertex cover for the conflict graph of G′. This means
that pc ≤ ` + 2 which means that A, and overall also the decision-routine to
solve Multicoloured Dominating Set, only requires a running time in
O∗(f(`)). With the W[2]-hardness of Multicoloured Dominating Set,
the existence of the assumed (3−ε)-approximation algorithmA for (‖·‖∞ , rad)-
k-cluster with running time in O∗(f(pc)) hence implies FPT = W[2].

Remark 9: The algorithm R described in the proof of Theorem 51 can be
seen as a so-called fpt gap-reduction introduced in [10] from Multicoloured
Dominating Set to (‖·‖∞ , rad)-k-cluster with g and ρ in this definition
set to the constant functions g ≡ 3− ε and ρ ≡ 3− ε.

Remark 10: The reduction used to prove Theorem 51 also illustrates why
our parameterised approximation for (‖·‖∞ , rad)-k-cluster with parameter p
given in Theorem 36 really does not have a performance ratio better than 3.
The situation illustrated in Figure 10, which shows the gap of 3, is also a case
where our algorithmic strategy of picking a central vertex and greedily build-
ing clusters fails; if the algorithm chooses v′2 instead of v2 as central vertex
(observe that these two are both not in the set P ), then q is one of the vertices
in P \ P ′ which have to be assigned by step (c) at the worst possible distance
(3 times the optimum) from the central vertex.
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Figure 10: Illustration of the reduction used for Theorem 51.

A graph G = (V,E) is called a split graph, if its vertex set can be partitioned
into two disjoint sets A and B such that A is an independent set in G and G[B]
is the complete graph on vertex set B. Especially for the application to ratings
to build recommendation systems, it appears that the conflict graph almost
has the structure of a split graph; with a small set of users which give unusual
ratings and are hence in conflict among each other (set B) and with a larger
set of more average users (set A). This observation raises the question whether
it is helpful to turn the conflict graph into a split graph, as this transformation
appears to require very little change.

Formally, a split vertex deletion set of a graphG = (V,E) is a subset V ′ of V
such that G[V \V ′] is a split graph. Looking at the previous strategies to lower
the parameter from vertex cover to P3-cover to cluster vertex deletion, the size
of a minimum split vertex deletion set appears to be a promising next smaller
parameter-choice. Unfortunately, it seems that this parameterisation can not
be used for (‖·‖∞ , diam)-k-cluster as the following result will show. We
will use a similar kind of fpt gap-reduction between (‖·‖∞ , diam)-k-cluster
parameterised by split deletion set and the following problem:

List Colouring(τ)

Input: Graph G = (V,E), colours {1, . . . , `} and a list of possible colours
for each vertex v ∈ V , given by a list L(v) ⊆ {1, . . . , `} for each v ∈ V .

Parameter: τ(G) (cardinality of a minimum vertex cover for G).

Question: Does there exists a colouring f : V → {1, . . . , r} such that
f(v) ∈ L(v) for all v ∈ V and f(v) 6= f(w) for all {v, w} ∈ E?
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With the above chosen parameterisation by the vertex cover number τ , List
Colouring is W[1]-hard [34, 37].

Theorem 52

There exists no constant factor approximation for (‖·‖∞ , diam)-k-cluster
with a running time in O∗(f(ps)), for any computable function f , where ps is
the size of a minimum split vertex deletion set, unless FPT = W[1].

Proof. Assume there exists an r-approximation algorithm A for the problem
(‖·‖∞ , diam)-k-cluster with worst-case running time in O∗(f(ps)) for some
constant r > 1. Similar to the proof of Theorem 51, we will use A to solve
List Colouring(τ), so let G = (V,E), {1, . . . , `} and {L(v) : v ∈ V } be an
instance of List Colouring(τ). We describe a reduction algorithm R which
creates from this instance, an instance for (‖·‖∞ , diam)-k-cluster. On input
G = (V,E), {1, . . . , `} and {L(v) : v ∈ V } with |V | = n, the algorithm R
creates a graph G′ = (V ′, E ′) with weight function wE′ given by:

• V ′ = V ∪L1∪ · · · ∪L` where each Li, i ∈ {1, . . . , `}, is a set of n+ 2 new
vertices denoted by l1i , . . . , l

n+2
i .

• E ′ contains edges such that each v ∈ V is connected to all vertices in
V ′, each set Li, i ∈ {1, . . . , `} is a clique and the set {l11, . . . , l1`} is also a
clique.

• Edges in E have weight r + 1.

• The edges among the vertices in {l11, . . . , l1`} have weight r + 1.

• For each c ∈ {1, . . . , `} and v ∈ V such that c /∈ L(v), wE′({l1c , v}) = r+1.

• All other edges in E ′ have weight 1.

• As a technicality to simplify the conflict argumentation, we add one
further vertex x to V ′ which has distance 1 from all vertices in V ′.

Consider G′ with distances d induced by wE′ as instance for (‖·‖∞ , diam)-k-
cluster with k = n+ 2.

If the given instance G with L is a “yes”-instance for List Colouring(τ),
let f be a feasible list colouring. The sets Li ∪ {v : f(v) = i}, i ∈ {1, . . . , `}
(with x added to one of the sets, arbitrarily) are a k-cluster for G′ with max-
imum diameter 1 as the cardinality constraint is obviously satisfied and for
each i ∈ {1, . . . , `} and all u, v ∈ Li ∪ {v : f(v) = i}, it follows that d(u, v) = 1
because one of the following cases holds:

1. u, v ∈ Li, so d(u, v) = wE′({u, v}) = 1.
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2. u, v ∈ V which means that {u, v} /∈ E as f(u) = f(v) = i and f is a
feasible colouring, so d(u, v) = wE′({u, v}) = 1.

3. u ∈ V and v ∈ Li \ {l1i }, which means d(u, v) = wE′({u, v}) = 1 by
definition.

4. u ∈ V and v = l1i . As f is a feasible list colouring, it follows that
i ∈ L(u), so wE′({u, l1i }) = 1.

5. The additional vertex x has distance 1 from every vertex, and can hence
not increase the diameter.

On the other hand, if P is a k-cluster for (‖·‖∞ , diam)-k-cluster with
k = n + 2 of maximum radius at most r, denote for each i ∈ {1, . . . , `} by
Pi the cluster in P which contains l1i . As d(l1i , l

1
j ) = wE′({l1i , l1j}) = r + 1

for all i 6= j, it follows that Pi 6= Pj for all i 6= j, i, j ∈ {1, . . . , `}. Since
|V ′| = (n+ 2)`+n+ 1, the lower bound on the cluster cardinality of k = n+ 2
implies that there are at most ` sets in the partition P, so P contains exactly
the sets P1, . . . , P`. We claim that the colouring f(v) = i for all v ∈ V ∩ Pi,
i ∈ {1, . . . , `} is a feasible list colouring for G; it is defined for all v ∈ V as each
vertex in V has to be in one of the sets P1, . . . , P`. Assume on the contrary
that f is not a feasible list colouring, which means one of the following to
situations occur:

• f(v) /∈ L(v) for some v ∈ V ,

• f(v) = f(w) for some {v, w} ∈ E.

The first case f(v) /∈ L(v) with f(v) = i means that d(v, l1i ) = wE′({v, l1i }) =
r + 1, which contradicts diam(Pi) ≤ r as, by definition v, l1i ∈ Pi. The second
case f(v) = f(w) for some {v, w} ∈ E implies d(v, w) = wE′({v, w}) = r + 1.
As the colourings f(v) and f(w) were assigned according to the clustering, the
set Pi with i = f(v) = f(w) contains both v and w which also is a contradiction
to the maximum diameter of r for Pi.

Given graph G = (V,E) with colour-lists {L(v) : v ∈ V }, we can decide if
there exists a feasible list colouring by first usingR to create the corresponding
instance G′, wE′ for (‖·‖∞ , diam)-k-cluster with k = n+1 and then running
algorithm A on it. The above properties of the reduction show that G with L
is a “yes”-instance of List Colouring(τ) if and only if the r-approximation
algorithm A returns a solution of maximum diameter at most r.

The reduction algorithm R runs in polynomial time and especially pro-
duces a graph G′ with a size polynomial in the size of G. The algorithm A
runs in time O∗(f(ps)), where ps is the size of a minimum split vertex deletion
set for the conflict graph of the input. Similar to the argument in Theo-
rem 51, the conflict graph for G′, is a subgraph of the graph induced by all
edges of weight r + 1. Here with the vertex x added to the construction
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Figure 11: Illustration of the reduction used for Theorem 52, conflict edges
(weight r + 1) drawn bold. Vertices u, v ∈ V such that {u, v} /∈ E, 1 ∈ L(u),
1 /∈ L(v), 2 ∈ L(u) ∩ L(v) and ` /∈ L(u) ∪ L(v).

as shortcut, the conflict graph is exactly the graph induced by the edges of
weight r + 1 > 2 which includes the vertices l11, . . . , l

1
` as clique with con-

nections to the non-isolated vertices in G, connected with the edges in E.
Removing any vertex cover for G hence turns the conflict graph into a split
graph with clique l11, . . . , l

1
` and the remaining independent set in G also as

independent set in the conflict graph. This means that ps ≤ τ(G), so A,
and hence the overall described routine to solve List Colouring(τ), runs in
O∗(f(τ(G))). With the W[1]-hardness of List Colouring(τ) from [34, 37],
the existence of the assumed r-approximation algorithm A for (‖·‖∞ , diam)-k-
cluster with running time in O∗(f(ps)) hence implies FPT = W[1].

Remark 11: As the exponential time hypothesis implies FPT 6= W[1] by [18],
the negative results in this section especially hold assuming ETH.

Both reductions used to show hardness for parameterised approximations
here create instances of (‖·‖, f)-k-cluster with large values for k. In most
applications however, k is a fixed, not too large integer, which raises the ques-
tion whether an additional parameterisation by k (additional to the number
of conflicts, as, like already mentioned in Section 2.3.2, k alone is not helpful)
would help overcome the negative results. For the greedy strategies used for
the positive results in Sections 5.2 and 5.3, it is not clear how k could be in-
cluded in a useful way. Better parameterised approximation algorithms with
parameterisation by both conflicts and k probably require a different approach
and are an interesting open problem.

So far, we did not manage to find these kinds of lower bounds for parame-
terised approximation for other versions of (‖·‖, f)-k-cluster, although also
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the positive results are weaker. Also, the gap between our positive results
and the presented lower bounds leaves room for improvement. Stronger lower
bounds seem to require new techniques for reductions which consider both
parameterisation and approximation.

One other aspect we did not consider here is the optimality of the asymp-
totic running times of our positive results. Techniques for such more fine-
grained considerations require a more careful analysis. A concrete question
in this regard is whether it is possible to improve the parameterised ap-
proximations for (‖·‖∞ , diam)-k-cluster to only require single-exponential
time. We did not see a possibility to find such improvements but also did
not find lower bounds which suggest that they are unlikely to exist; in this
regard it would be very interesting to see if slightly superexponential lower
bounds as shown in [47] can be proven for a 2-approximation of (‖·‖∞ , diam)-k-
cluster with parameter p.

5.4 Parameterisation by Shortcuts

Another option for resolving conflicts with parameterisation is devising special
algorithmic strategies for the vertices in X . As already mentioned in Sec-
tion 5.1, the cardinalities of X and P can differ (almost) arbitrarily which
makes the parameterisation by x = |X | a sort of orthogonal approach com-
pared to the parameter p (or c, resp.).

Especially for the radius measure, it seems that shortcuts play a more
important role than the vertices involved in a conflict. In particular, these
vertices appear to be more suitable to be chosen as central vertices. As the
following result shows, it turns out that parameterisation by x indeed yields a
better approximation strategy for the radius measure.

Theorem 53

A 2-approximation for (‖·‖∞ , rad)-k-cluster can be computed with a running
time in O∗(2x ).

Proof. We use a simplified version of the algorithm presented for Theorem 36,
with shortcut instead of conflict vertices, so let G, d and D be defined as
defined in the proof of Theorem 36. We consider, for fixed D, the following
subset of shortcut vertices:

XD := {x ∈ V : ∃ u, v ∈ V : (d(u, v) > 2D) ∧ (d(u, x ), d(v, x ) ≤ D)} .

We guess which of the vertices in XD are a central vertex in their cluster.
For each such X ′ ⊆ XD we try to compute a k-cluster for V by successively
building clusters until all vertices are partitioned with the following strategy:

(a) Pick, while such a vertex exists, a v ∈ X ′ that is not assigned to any
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cluster yet and build a new cluster P (v) with center v by collecting v and
all unclustered vertices in V \X ′ which have distance at most D from v.

(b) If all vertices in X ′ are clustered, pick any v ∈ V that is not clustered
yet and build a new cluster P (v) with center v by collecting v and all
unclustered vertices in V which have distance at most 2D from v. 7

Let X ′ = {x1, . . . , xr} and let z1, . . . , zq be the vertices chosen in step (b) to
build clusters P (z1), . . . , P (zt) by the above procedure. Like in Theorem 36,
we try to turn this partition into a k-cluster for V by reassigning some vertices,
aiming to keep a maximum radius of D for P (x1), . . . , P (xr) and a maximum
radius of 2D for P (z1), . . . , P (zq). Formally, we allow reassignment of vertices
according to the sets:

• Sx(i, j) := {v ∈ P (xj) \ {xj} : d(v, xi) ≤ D} for all 1 ≤ j < i ≤ r,

• S(i, j) := {v ∈ P (xj) \ {xj} : d(v, zi) ≤ 2D} for all 1 ≤ j ≤ r and
1 ≤ i ≤ q,

• Sz(i, j) := {v ∈ P (zj) \ {zj} : d(v, zi) ≤ 2D} for all 1 ≤ j < i ≤ q.

As usual, we try to turn P (x1), . . . , P (xr), P (z1), . . . , P (zq) into a k-cluster by
reassigning vertices in the above described sets with the help of a max-flow for-
mulation. Denote in case of a successful reassignment, the resulting k-cluster
by P ′(x1), . . . , P ′(xr), P

′(z1), . . . , P ′(zq). We claim that the procedure de-
scribed above behaves very similar to the more complicated algorithm used for
the conflict vertices with X taking the place of P , i.e., we claim that for D = r∗,
there exists a subset X ′ ⊆ XD such that the above clustering procedure suc-
cessfully computes a k-cluster P ′(x1), . . . , P ′(xr), P

′(z1), . . . , P ′(zq). Further, a
good choice for X ′ can again be derived from fixed central vertices of a fixed
optimal solution, so let {S1, . . . , Sy} be any optimal solution for (‖·‖∞ , rad)-
k-cluster on input G = (V,E) with distance d. Fix some central vertex si
for Si for each i ∈ {1, . . . , y}. Consider running the described greedy proce-
dure for D = r∗ and the subset X ′ = XD ∩{s1, . . . , sy} and let as described in
the algorithm X ′ = {x1, . . . , xr}.

We first show that any two different vertices in X ′ ∪ {z1, . . . , zq} belong to
different clusters in the chosen solution {S1, . . . Sy}:

• For two vertices from X ′ this is true by the choice of X ′.

• For a vertex zi and any x ∈ X ′, we know that d(zi, x) > D = r∗, so,
since x is central for some cluster Sj which has radius at most r∗, zi
cannot belong to Sj.

7Observe that, in contrast to the algorithm for Theorem 36, there is no step (c) for the
pre-clustering, as we still allow vertices in XD \X ′ to be chosen as central vertices.
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• For any two vertices zi, zj with i < j, we know that both zi and zj have
distance more than D from all vertices in X ′ and also that zj was not
clustered in P (zi) because d(zi, zj) > 2D. If there was a cluster Sh in
the optimal solution such that {zi, zj} ⊆ Sh, then this would imply that
d(sh, zi) ≤ r∗ and d(sh, zj) ≤ r∗, while d(zi, zj) > 2D, which would mean
that sh is a shortcut vertex, so sh ∈ X ′ which contradicts the fact that zi
and zj were not included in the cluster with center sh in step (a).

By the choice of X ′ there exist at least k − 1 distinct vertices at distance at
most D for each xi, in particular given by the vertices in the set Sh for which
sh = xi. Since the vertices zj each belong to a unique cluster Sij for which
the central vertex sij is not in XD (as otherwise X ′ would have contained sij
and zj would have been placed in a cluster with this central vertex), all at
least k vertices z from Sij have distance at most d(zj, sij) + d(z, sij) ≤ 2D
from zj. Since the sets S1, . . . , Sy are pairwise disjoint and of cardinality at
least k, the reassignment-procedure described by the max-flow can successfully
build a k-cluster by assigning the vertices in Sij to P (zj) and the vertices in Sh
to P (xi) for h ∈ {1, . . . , y} and i ∈ {1, . . . , r} such that sh = xi.

If, for some D, the above described procedure successfully builds a partition
P ′(x1), . . . , P ′(xr), P

′(z1), . . . , P ′(zq), it is again clear that these sets are a k-
cluster for V . By the definition of the pre-clustering and the reassignment, it
also follows immediately that the sets P ′(xi), i ∈ {1, . . . , r} have a maximum
radius of D and the sets P ′(zj), j ∈ {1, . . . , t} have a maximum radius of 2D
which overall makes the described algorithm a parameterised 2-approximation.

At last, the running time of this approximation algorithm is in O∗(2x), as
it only requires polynomial effort for each set X ′ ⊆ XD and XD ⊆ X.

Although parameterisation by x allows the better approximation factor of 2
for (‖·‖∞ , rad)-k-cluster, it has the drawback that we do not know if this
strategy can be adjusted to also work for a potentially much smaller subset
of X; recall that the algorithm for p could with few adjustments be altered to
the size of a vertex cover for Gc.

Besides this positive effect for (‖·‖∞ , rad)-k-cluster, shortcuts do not
give an obvious angle to approach other variants of (‖·‖, f)-k-cluster. Just
like for the above approximation with parameterisation by conflict vertices,
i.e., the procedure given for Theorem 36, parameterisation by x as used in
Theorem 53 does not translate to a similar result for the weighted infinity
norm. For the diameter measure or the approximations derived with tree or
path partitioning, it is also not obvious how parameterisation by shortcuts
can be efficiently used to resolve conflicts. On the other hand, proving lower
bounds for this choice of parameter is also not a simple task, which means that
shortcut parameterisation remains wide open for further investigation.

116



5.5 α-Triangle Inequality

An orthogonal way to approach instances of (‖·‖, f)-k-cluster for which the
induced distances is not in our sense metric, is considering the severity of the
violation of triangle inequality. We will now discuss the restriction to instances
for which d satisfies the α-relaxed triangle inequality, as already introduced in
Section 5.1; recall that we defined this notion for any α > 0 to require that for
all u, v ∈ V the following inequality holds:

d(u, v) ≤ α · (d(u,w) + d(v, w)) for all u, v, w ∈ V with w /∈ {u, v} .

We will show that the strictly polynomial algorithms introduced for metric in-
stances can in most cases be generalised to α-relaxed triangle inequality with
however worsening of the approximation ratio. A parameterisation by α to
improve these ratios in the way we parameterised by conflicts, does not seem
to be a reasonable option, as we will see in Section 5.5.3 that approximation
lower bounds transferred to α-relaxed triangle inequality from the results in
Section 2.3.1 make this strategy very unlikely to succeed. We will however
briefly discuss the idea to combine conflict parameterisation with the polyno-
mial strategies for α-relaxed triangle inequality in Section 5.5.4.

5.5.1 Application to the Greedy Approximation

For Theorem 20, it is not hard to see that small alterations to the approxi-
mation procedure used for this result give a 2α-approximation for instances
which satisfy the α-relaxed triangle inequality:

Proposition 54

(‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster are 2α-approximable in polynomial
time for all k ≥ 2 and α ≥ 1, if d satisfies the α-relaxed triangle inequality.

Proof. Given a graph G = (V,E) with induced distance function d which satis-
fies the α-relaxed triangle inequality, consider running the procedure described
in Theorem 20.

For the diameter-measure, the greedy procedure remains successful for the
optimum value D = opt(G, d, diam, ‖·‖∞ , k); observe that the crucial property
which we used to show this in the proof of Theorem 20 remains true: vertices at
distance more than D belong to different clusters in an optimal solution. The
computed k-cluster has maximum radius D, which means that by α-relaxed
triangle inequality, the pairwise distance of vertices from the same cluster is
at most 2α · D, which gives a maximum diameter of at most 2α times the
optimum value.

For the radius, on the other hand, the solution computed by the greedy-
procedure still has a maximum radius of the value for D for which it was
successful. However, the additional factor of α comes into play when arguing
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for which D it is possible to find a k-cluster with the described algorithm.
Here, α-relaxed triangle inequality for d only implies that vertices can not
belong to the same cluster in an optimal solution if their distance is larger than
2α · opt(G, d, rad, ‖·‖∞ , k). So, we also end up with a 2α-approximation.

While the change in approximation ratio from standard to α-relaxed tri-
angle inequality is the same for radius and diameter, the arguments used to
prove this result are different. When deriving approximations for the weighted
infinity norm for this, it turns out that this difference also affects the approx-
imation factor. For the diameter measure, Proposition 24 translates exactly
(only exchanging Theorem 20 by Proposition 54) to:

Corollary 55

(‖·‖w∞ , diam)-k-cluster is 4α-approximable in polynomial time for all k ≥ 2
and α ≥ 1, if d satisfies the α-relaxed triangle inequality.

For radius however, we encounter the problem that bounding the cardi-
nality of the clusters built by Proposition 54 might cause an increase of the
radius; just like in Section 5.2.2. Since now the conflicts are bounded in the
sense that α-relaxed triangle inequality limits their severity, we at least arrive
at the following result:

Proposition 56

(‖·‖w∞ , rad)-k-cluster is 4α2-approximable in polynomial time for all k ≥ 2
and α ≥ 1, if d satisfies the α-relaxed triangle inequality.

Proof. For a given graph G = (V,E) with distance d satisfying the α-relaxed
triangle inequality, start with the approximation from Theorem 20, which
gives a 2α-approximation for (‖·‖∞ , rad)-k-cluster on G by Proposition 54.
Just like in Proposition 24, we cut clusters of cardinality k from large clus-
ters to arrive at a partition which only contains clusters of cardinality at most
2k − 1. This splitting procedure however might result in an increase of the
radius by a factor of 2α for the clusters of cardinality k. Combined with Equa-
tion 2, which, as already observed in Section 5.2.2, holds for even non-metric
distances, and the factor 2α from Proposition 54 this shows that the resulting
partition is a 4α2-approximation for (‖·‖w∞ , rad)-k-cluster.

A generalisation for Proposition 25 for α-relaxed triangle inequality, also
brings an increase of approximation ratio by a factor of α2:

Proposition 57

(‖·‖w∞ , avg)-k-cluster is (4k − 2)α2-approximable in polynomial time for all
k ≥ 2 and α ≥ 1, if d satisfies the α-relaxed triangle inequality.
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Proof. Given a graph G = (V,E) with distance d satisfying the α-relaxed tri-
angle inequality, first observe that the inequality used in the proof of Proposi-
tion 25 generalises to α · opt(G, d, avg, ‖·‖w∞ , k) ≥ opt(G, d, diam, ‖·‖∞ , k), as
for any set P in an optimal solution for (‖·‖∞ , avg)-k-cluster α-relaxed tri-
angle inequality and k ≥ 2 yields:

|P | · avg(P ) = min

{∑

p∈P

d(c, p) : c ∈ P
}

≥ min{max{d(u, c) + d(v, c) : u, v ∈ P, u 6= v} : c ∈ P}
≥ max{ 1

α
· d(u, v) : u, v ∈ P} = 1

α
· diam(P ) .

Running Theorem 54 followed by simply splitting up large clusters of car-
dinality more than 2k − 1 (recall that Corollary 1 also holds if d violates the
triangle inequality) produces a 2α-approximation for (‖·‖∞ , diam)-k-cluster
on G for which each set contains at most 2k − 1 vertices. The global cost of
the resulting partition with respect to the weighted infinity norm and average
distortion is at most (2k − 1) · 2α · opt(G, d, diam, ‖·‖∞ , k), and hence yields
an approximation of ratio (4k − 2)α2 for (‖·‖w∞ , avg)-k-cluster.

Remark 12: If α-relaxed triangle inequality holds for some 1
2
≤ α < 1, d is not

just what we referred to as metric but satisfies an even stricter requirement
than simple triangle inequality; so quite the opposite of relaxed (observe that
α < 1

2
is uninteresting as this can only hold if all distances are zero). In this

case we can improve on the results given in Section 3. In fact, all arguments
used to prove Proposition 54 still hold in this case and yield an approxima-
tion factor of 2α < 2 for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster. Observe
that the lower bound from Corollaries 9 and 12 do not apply to the restric-
tion to α-relaxed triangle inequality with α < 1. Similarly, Corollary 55 and
Proposition 56 yield a 4α-approximation for (‖·‖w∞ , diam)- and (‖·‖w∞ , rad)-k-
cluster, respectively. For k ≥ 3, we can also use the argumentation from
Proposition 57, which gives a (4k − 2)α2-approximation for (‖·‖w∞ , avg)-k-
cluster even for 1

2
≤ α < 1.

5.5.2 Application to Constraint Forest Approximations

The effect of a worsening in approximation ratio by multiple factors of α as
already observed for the greedy approximation, appears to occur even stronger
for the approximations derived from tree (or path) partitioning. As illustrated
in Figure 12, α-relaxed triangle inequality allows for a situation where the
average distortion (or radius) of a set given by a connected component of a
tree (or path) partition increases by a factor of αdlog ke with respect to the sum
of the cost of the connecting edges. For a generalisation of Proposition 21, this
effect is the worst that can happen and we arrive at the following result:
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Figure 12: Illustration of the effect of α-relaxed triangle inequality for the
approximations based on constraint forest problems.

Proposition 58

(‖ · ‖w
1
, avg)-k-cluster is 2kαdlog ke-approximable in polynomial time for all

k ≥ 2 and α > 1, if d satisfies the α-relaxed triangle inequality.

Proof. Consider the approximation procedure discussed in the proof of Propo-
sition 21 for an instance (G, d) of (‖·‖w

1
, avg)-k-cluster where d only satisfies

the α-relaxed triangle inequality for some α > 1. The cost of a minimum tree
partitioning of capacity k for G′ (the complete graph on the vertices of G with
edge-cost given by d) is still at most the global cost of an optimal solution for
(‖·‖w

1
, avg)-k-cluster on G.

Any tree partitioning Ē of capacity k for G′ of cost L with connected com-
ponents C can again be interpreted as a k-cluster P for G by taking the vertex
sets associated to the components in C. For each C ∈ C, we again fix a vertex
c ∈ C for which C \ {c} is a forest of trees each of maximum cardinality k;
denote again by T c1 , . . . , T

c
sc the connected components of C \{c}. For this ver-

tex c, the length of a longest path to any vertex in C along the edges in C is at
most k. So, for each vertex v ∈ C in component T ci α-relaxed triangle inequal-
ity for d yields d(v, c) ≤ αdlog kec(E[T ci ]); this can easily be seen by induction
on k, as an additional factor of α can only be introduced for every time k is dou-
bled. A computation analogous to the one conducted for Proposition 21 with
the additional factor of αdlog ke yields avg(P) ≤ αdlog kek ·L, which makes an ap-
plication of the polynomial 2-approximation for tree-partitioning interpreted
as a partition a 2kαdlog ke-approximation for (‖·‖w

1
, avg)-k-cluster.

For the results based on path partitioning (Proposition 22, Corollary 23),
we already have the problem, that the 4-approximation for path partitioning
requires a distance which satisfies the triangle inequality. In our case of a
complete graph this algorithm simply computes a 2-approximation for tree-
partitioning and then flattens the tree with increasing the cost by at most a
factor of 2. For the generalisation to α-relaxed triangle inequality, this flat-
tening already yields a much larger increase of cost which is pretty difficult
to bound. The strategy sketched in Remark 4 is probably more suitable for
designing approximations for (‖·‖w

1
, diam)-k-cluster restricted to α-relaxed
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triangle inequality. For a generalisation of Corollary 23, we further run into
the problem that Equation 1, which we used for this result to relate radius
to diameter, is also affected by the relaxation of the triangle inequality. The
problem variant (‖·‖w

1
, rad)-k-cluster hence also requires more sophisticated

strategies to make use of the α-relaxed triangle inequality.

5.5.3 Lower Bounds

The lower bounds for the approximation ratios derived from the reductions
in Section 2.3.1 quite easily generalise to α-relaxed triangle inequality. More
precisely, if we change the constructions given in Theorems 8, 11 and 13 by
adding for all u, v ∈ V with {u, v} /∈ E and edge of weight 2α, we can translate
pretty much all lower bounds from Section 2.3.1.

In the proof of Theorem 8 there is now a gap of 2α for the maximum ra-
dius between “yes”- and “no”-instance for Exact-k-Cover, as the maximum
radius is either equal to 1, meaning that all vertices in a cluster are adjacent
to the central vertex in the original construction, or at least the weight of a
newly introduced edge, which implies:

Corollary 59

There is no (2α− ε)-approximation for (‖·‖∞ , rad)-k-cluster in polynomial
time for any k ≥ 3, α ≥ 1 and any ε > 0, unless P = NP, even if d satisfies
α-relaxed triangle inequality.

Altering further the reduction used for Theorem 8 for k ≥ 4 to reduce to
Exact-(k − 1)-Cover, like used for Corollary 10, we can conclude that in
case of a “yes”-instance for Exact-(k − 1)-Cover all clusters in a k-cluster
of maximum radius 1 for the corresponding graph G have to contain exactly k
vertices. This yields a gap of 2α also for the maximum weighted radius between
“yes”- and “no”-instance for Exact-(k − 1)-Cover, which implies:

Corollary 60

There is no (2α− ε)-approximation for (‖·‖w∞ , rad)-k-cluster in polynomial
time for any k ≥ 4, α ≥ 1 and any ε > 0, unless P = NP, even if d satisfies
the α-relaxed triangle inequality.

The reduction given in Theorem 11 also turns into a gap-reduction with a
gap of 2α for both weighted and unweighted infinity norm, which gives:

Corollary 61

There is no (2α − ε)-approximation in polynomial time for (‖·‖∞ , diam)- or
(‖·‖w∞ , diam)-k-cluster for any k ≥ 3, α ≥ 1 and any ε > 0, unless P = NP,
even if d satisfies the α-relaxed triangle inequality.
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Only the inapproximability for average distortion can not be translated to a
stronger result for α-relaxed triangle inequality, which concludes this section
on lower bounds.

5.5.4 Summary and Possible Further Applications

Table 6 summarises the approximations for restriction to α-relaxed triangle
inequality. Unfortunately, for many variants the ratios differ more than a
single factor of α from the ratios for metric instances while the lower bounds
do not seem to support such a behaviour. It is hence quite likely, that a
more careful adjustment to α-relaxed triangle inequality and a more thorough
analysis can yield better results.

rad diam avg

‖·‖∞ 2α

(Proposition 54)

2α

(Proposition 54 )

?

‖·‖w∞ 4α2

(Proposition 56)

4α

(Corollary 55)

(4k − 2)α2

(Proposition 57)

‖·‖w
1

? ? 2kαdlog ke

(Proposition 58)

Table 6: Summary of the approximation ratios if d only satisfies α-relaxed
triangle inequality for some α ≥ 1; bold ratios are optimal assuming P 6= NP.

One possible further degree of freedom for the above discussed approaches
to deal with non-metric instances can be gained by combining the results for α-
relaxed triangle inequality and the parameterised approximations. It appears
to be possible to have a flexible trade between running time and approximation
ratio by fixing a desired α ≥ 1 and only considering the conflict set

Cα
D := {{u, v} : ∃ w ∈ V : d(u, v) > α · (d(u,w) + d(v, w))} .

Considering the improvement of the approximation ratio for α-relaxed triangle
inequality with α < 1 as mentioned in Remark 12, it might even be possible
to design a parameterised approximation with arbitrarily small approximation
ratio. This idea might yield the same kind of flexible family of parameterised
approximation algorithms, usually referred to as efficient polynomial time ap-
proximation scheme, short EPTAS, as defined for example in [38].
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6 Conclusions

This thesis introduced the general problem (‖·‖, f)-k-cluster to model clus-
tering tasks which do not fix the number of clusters but require each cluster
to contain at least k objects. The nine specific variants of this problem cho-
sen here generalise many previous models but, of course, do not capture every
possible way to measure the quality of such a clustering. We however tried to
cover many previous models while maintaining a clear framework. The unified
abstract formulation of (‖·‖, f)-k-cluster proved to be very useful in exploit-
ing similarities between the specific problem variants, but also in pointing out
significant differences caused by the choice for local and global cost function.

In our attempt to find efficient ways to solve variants of (‖·‖, f)-k-cluster
we considered structural properties of the problem with respect to the role of
the lower bound k as well as several restrictions of the distance d. From the
methodological side, we discussed polynomial-time solvability, approximabil-
ity and parameterised complexity with respect to different parameterisations.
Generally, most results in this thesis come from a combination of insights from
different viewpoints such as approximations which translate from one prob-
lem variant to another, algorithmically useful structural observations with re-
spect to k which are only possible with triangle inequality for d, approximation
strategies based on a combination of polynomial algorithms for restricted prob-
lem cases, and, most prominently, parameterised approximation algorithms.

Considering the complexity of the nine variants of (‖·‖, f)-k-cluster dis-
cussed here, it turned out that the lower bound k plays a minor role compared
to the effect of the properties of the distance d. In particular, we did not find
positive results based on a restriction of the lower bound k other than the very
specific restriction to k = 2. The properties of d however play such an impor-
tant role that they are reflected in the general organisation of the whole thesis.
Restriction to triangle inequality for d enabled polynomial time approxima-
tions for eight of the nine variants of (‖·‖, f)-k-cluster, while such results
are highly unlikely without such a restriction. Our investigation of instances
in fixed dimension however showed that the impact of restrictions of d seems
to be limited in the sense that it can not break the general NP-hardness; at
least not with the most obvious idea to fix d to the Euclidean norm.

The specific algorithmic approaches to solve variants of (‖·‖, f)-k-cluster
for general k discussed in this thesis all rely on certain properties of d. From
restriction to (α-relaxed) triangle inequality to parameterisation by conflicts,
shortcuts and related parameters, the results always give a better approxima-
tion ratio or are most efficient if d is in some sense close to a metric. Nev-
ertheless, the concept of parameterised approximation yields efficient ways to
approach non-metric instances. Our lower bounds, especially for these results,
do not match the guarantees of the presented algorithms which suggests that
there is still room for improvement.
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Aside from (‖·‖, f)-k-cluster, there are many other related clustering-
type problems which exhibit similar difficulties with violations of the triangle
inequality. The parameterisation by conflicts and related parameters discussed
in this thesis might provide a useful way to approach these problems as well.
Further, we believe that structural parameterisation for approximations in
general is an underestimated and hence still very rarely considered research
direction from which many other problems could benefit greatly.

At last, we will give a more detailed summary of the results presented in
this thesis, list specific open problems related to those which also mention
some broader ideas for further research in this direction.

6.1 Summary of Results

As a first step in our investigation of the nine variants of (‖·‖, f)-k-cluster,
we considered the role of the lower bound k. It turned out that as soon as k is
larger than 2, all variants of (‖·‖, f)-k-cluster are already NP-hard; shown
for the local cost radius in Theorem 8, for diameter in Theorem 11 and for
average distortion in Theorem 13. These results harshly show that a parame-
terisation by the lower bound k can not (at least not alone) help in designing
efficient algorithms for (‖·‖, f)-k-cluster. For the remaining case, k fixed
to 2, the choice of local and global measure yields a quite peculiar diverse
behaviour. While some variants can be solved efficiently by a reduction to
matching-type problems, others are already intractable; recall here the sum-
mary of these results (restatement of Table 1):

k = 2 rad diam avg

‖·‖∞ in P (Edge Cover)

(Proposition 5)

in P (Simplex Cover)

(Proposition 7)

NP-complete

(Theorem 19)

‖·‖w∞ NP-complete

(Theorem 19)

in P (Simplex Cover)

(Proposition 7)

NP-complete

(Theorem 19)

‖·‖w
1

APX-hard

(Theorem 18)

in P (Simplex Matching)

(Proposition 6)

in P (Weighted Edge Cover)

(Theorem 4)

An interesting further result from Section 2 is that the restriction to dis-
tances d which satisfy the triangle inequality turns the generally NP-hard prob-
lem (‖·‖w∞ , avg)-2-cluster into a problem that can be solved in polynomial
time. We further showed that the reductions used to prove the NP-hardness
results also prove that this restriction to metric distances is a necessary require-
ment (assuming P 6= NP) for the existence of polynomial time approximations,
see Proposition 17.
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In Section 3 we therefore considered exactly this restriction of d to find
polynomial time approximations. Especially the relation between the different
problem variants proved to be very useful to translate results here. A sum-
mary of the approximation ratios for the different problem variants with the
restriction to instances for which d satisfies triangle inequality is given in the
table below with bold values being optimal assuming P 6= NP (restatement of
Table 2):

rad diam avg

‖·‖∞ 2

(Theorem 20)

2

(Theorem 20 )

?

‖·‖w∞ 4

(Proposition 24)

4

(Proposition 24)

4k − 2

(Proposition 25)

‖·‖w
1

16(k − 1)

(Corollary 23)

8(k − 1)

(Proposition 22)

2k

(Proposition 21)

Based on the success of restriction to triangle inequality, we considered in
Section 4 the problem family Euclidean (‖·‖, f)-k-cluster, a more specific
version of (‖·‖, f)-k-cluster, where the objects represented by V are points
in Rδ and d is the Euclidean norm. Considering the curse of dimensionality,
we investigated if the dimension w is the source of computational hardness for
these problems, but found that NP-hardness remains already for small fixed
values for δ (also in combination with a fixed value for k). A summary of the
NP-hardness results for Euclidean (‖·‖, f)-cluster with the concrete fixed
values for δ and k is given in the table below (restatement of Table 3):

rad diam

‖·‖∞
k = 7

δ = 3

(Theorem 32)

k = 4

δ = 3

(Theorem 29)

‖·‖w∞
k = 7

δ = 3

(Proposition 33)

k = 4

δ = 3

(Proposition 30)

‖·‖w
1

k = 12

δ = 2

(Theorem 31)

k = 6

δ = 2

(Theorem 28)
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In Section 5, we tried different approaches to generalise the approximations
for metric to general instances. We first considered parameterisation by con-
flicts (edges which violate the triangle inequality) and conflict vertices (vertices
included in conflicts) in Section 5.2. A summary of the approximation ratios
and asymptotic running times with respect to the number of conflict vertices p
of the resulting parameterised approximations is given in the table below (re-
statement of Table 4):

rad diam avg

‖·‖∞
2 3

O∗(np) O∗(2p)
(Theorem 34) (Theorem 36)

2

O∗(Bp)

(Theorem 35)

?

‖·‖w∞
4

O∗(np)
(Proposition 38)

4

O∗(Bp)

(Proposition 37)

4k

O∗(np)
(Proposition 39)

‖·‖w
1

16(k − 1)

O∗(np)
(Corollary 40)

8(k − 1)

O∗(np)
(Corollary 40)

2k

O∗(np)
(Corollary 40)

In Section 5.3 we found that the parameterised approximations for the
problem variants (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster could, with little
additional algorithmic effort, be altered to also work for a parameterisation by
the vertex cover number of the conflict graph, denoted by pc. For the diame-
ter measure, it turned out that this parameter could be reduced even further.
A Summary of the running time of the parameterised 2-approximation for
(‖ · ‖∞ , diam)-k-cluster (which is also a 4-approximation for (‖ · ‖w∞ , diam)-
k-cluster) is given in the table below (restatement of Table 5), where p3c

and p3d denote the size of a minimum P3 and induced P3-cover for the conflict
graph, respectively:

pc p3c p3d

O∗(Bpc + 1.1996p)

(Theorem 42)

O∗(
√

2
p
Bp3c + 1.4656p)

(Theorem 46 )

O∗(2cBp3d + 1.6538p)

(Theorem 48 )

O∗(Bpc)

(Corollary 43)

O∗(
√

2
p
Bp3c)

(Corollary 47)

O∗(2cBp3d)

(Corollary 49)
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For (‖·‖∞ , rad)-k-cluster, we further found that parameterisation by short-
cuts can also be used to efficiently compute approximate solutions. Specif-
ically it turned out that for this parameter it is possible to compute a 2-
approximation in fpt-time, while the lower bounds in Section 5.3.3 suggest
that the ratio of 3 is optimal for fpt-time parameterised approximation with
respect to the parameter pc.

In Section 5.5 we considered as a different approach to find approximations
for non-metric instances of (‖·‖, f)-k-cluster the restriction to instances for
which d satisfies α-relaxed triangle inequality for some α ≥ 1. The performance
ratios of the approximations discussed there are summarised in the table be-
low (restatement of Table 6), where again bold ratios are optimal assuming
P 6= NP:

rad diam avg

‖·‖∞ 2α

(Proposition 54)

2α

(Proposition 54 )

?

‖·‖w∞ 4α2

(Proposition 56)

4α

(Corollary 55)

(4k − 2)α2

(Proposition 57)

‖·‖w
1

? ? 2kαdlog ke

(Proposition 58)

Another interesting result from Section 5.5 is the observation stated in Re-
mark 12, which showed that restriction to α-relaxed triangle inequality with
α < 1 (not a relaxation but rather a further restriction) can even yield an im-
provement on some of the approximation ratios for general metric instances.

6.2 Summary of Open Problems

Throughout this thesis, we already mentioned questions which remained unan-
swered and ideas for further interesting research directions. Here, we want to
briefly summarise a list of concrete open problems:

• (‖·‖∞ , avg)-k-cluster is the only variant of (‖·‖, f)-k-cluster for
which we did not find any approximation strategy with provable per-
formance guarantee. The lack of monotonicity of average distortion ap-
pears to be the main problem in this regard. This behaviour led us to
believe that (‖·‖∞ , avg)-k-cluster is indeed a problem which is likely
to be hard to approximate but we also did not succeed in finding an ap-
propriate reduction to prove this. The approximability of (‖·‖∞ , avg)-k-
cluster hence remains open.
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• Section 3.4 derives an approximation for (‖·‖w
1
, diam)-4-cluster by

combining the polynomial strategies for the case k = 2 for (‖·‖w
1
, diam)-

and (‖·‖w
1
, avg)-2-cluster. We believe that it is possible to expand

this result for larger values of k (powers of 2, to be precise) by nest-
ing more than 2 applications of the polynomial procedures for k = 2.
While very difficult to analyse, the implementation of this generalisa-
tion is fairly simple, and our experimental results in which we tried ex-
actly this indicate that this strategy yields reasonable results; it also
seemed that the approximation ratio for k = 4 is in fact much better
than 35

6
. These observations suggest that a clever combination of the

polynomial procedures for k = 2 might give much better approximation
algorithm for (‖·‖w

1
, diam)-k-cluster (and possibly also (‖·‖w

1
, rad)-k-

cluster) than Proposition 22.

• Section 4 showed that the restriction to constant dimensionality for in-
stances of Euclidean (‖·‖, f)-k-cluster remains NP-complete if the
local cost f is radius or diameter. The case f = avg was left open,
with strong indication that the construction used for radius might al-
ready provide a reduction. Further, the given results always fix some
value for k and some dimensionality; while it is quite obvious that the
results also hold for larger k and larger dimensionality, the given lower
bounds are not necessarily minimal, which raises the question of find-
ing for each problem variant the minimum k and dimension d for which
NP-completeness holds.

• Also concerning the restriction to constant dimensionality, the given NP-
completeness results do not give (good) lower bounds with respect to
approximation hardness. It is in fact quite likely that specific strate-
gies for geometric instances of (‖·‖, f)-k-cluster allow for much better
approximations than the ones given in Section 3 for general metric in-
stances.

• The parameterised approximations with parameter p based on constraint
forest problems only gave xp-time algorithms. It is not clear if such
approximations for the corresponding problem variants can be designed
to only require fpt-time. It appears that this requires already different
strategies for metric instances.

• For parameterisation by shortcuts, we only developed an approxima-
tion algorithm for (‖·‖∞ , rad)-k-cluster. For all other variants it is
completely open whether this parameter is useful to design efficient al-
gorithms.

• The lower bounds for conflict parameterisation given in Section 5.3.3
only give a vague intuition about the optimality of the parameterised
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approximations given in this thesis. In particular, it remains open if:

– a parameterised 2-approximation for (‖·‖∞ , rad)-k-cluster which
only requires exponential running time in p is possible.

– the parameterised 2-approximation introduced for (‖·‖∞ , diam)-k-
cluster can be improved to run in single-exponential time in p
(or even for the smaller parameters pc, p3c or p3d). In this regard,
it might be interesting to analyse the algorithms presented in this
thesis with a closer look at the enumerations of the partitions of PD.
We always estimated this with the Bell number although we only
consider partitions with specific properties which in a sense relate
to colourings of the conflict graph. It might be possible to enumer-
ate the relevant partitions of PD more efficiently with the help of
colouring strategies.

• Section 5.5 only discussed very simple generalisations of the algorithms
from Section 3 for α-relaxed triangle inequality; only the approximation
for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster derived this way is prov-
ably optimal. In particular we do not give any strategy for (‖·‖w

1
, diam)-

or (‖·‖w
1
, rad)-k-cluster. Further investigations for α-relaxed triangle

inequality are quite likely to yield stronger results.
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List of Problems

Family of Problems Discussed in the Thesis

For the choices f ∈ {rad,diam,avg} with the definitions:

rad(P ) := min{max{d(x, y) : y ∈ P} : x ∈ P},

diam(P ) := max{max{d(x, y) : y ∈ P} : x ∈ P},

avg(P ) := |P |−1 ·min{∑y∈P d(x, y) : x ∈ P},

and ‖·‖ ∈ {‖·‖w
1
, ‖·‖w∞ , ‖·‖∞} with the definitions:

‖(f(P1), . . . , f(Ps))‖∞ := max{f(Pi) : 1 ≤ i ≤ s},

‖(f(P1), . . . , f(Ps))‖w∞ := max{|Pi|f(Pi) : 1 ≤ i ≤ s},

‖·(f(P1), . . . , f(Ps))‖w1 :=
∑s

i=1 |Pi|f(Pi),

we considered the following problems:

(‖·‖, f)-k-cluster

Input: Graph G = (V,E) with edge-weight function wE : E → Q+, k ∈ N.

Output: A k-cluster P1, . . . , Ps of V for some s ∈ N, which minimises
‖(f(P1), . . . , f(Ps))‖.

Euclidean (‖·‖, f)-k-cluster

Input: P ⊂ Rw finite, k ∈ N, D ∈ R.

Question: Is there a k-cluster P1, . . . , Ps of P for some s ∈ N, such that
‖ (f(P1), . . . , f(Ps)) ‖≤ D, where the pairwise distances to compute
this objective function is computed by dw.

Other Problems

P3-Cover

Input: Graph G = (V,E), ` ∈ N.

Parameter: `

Question: Does there exists a subset F ⊆ V such that the degree of each
vertex in G[V \ F ] is at most 1?
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Cluster Vertex Deletion

Input: Graph G = (V,E), ` ∈ N.

Parameter: `

Question: Does there exists a subset F ⊆ V such that G[V \ F ] does not
contain P3 as an induced subgraph?

3-Hitting Set

Input: Hypergraph H = (V, F ) such that |f | = 3 for all hyperedges f ∈ F ,
` ∈ N.

Question: Does there exists a subset C ⊆ V such that f ∩ C 6= ∅ for all
f ∈ F?

Multicoloured Dominating Set

Input: Graph G = (V,E), with vertex partition V = V1 ∪ · · · ∪ V`.

Parameter: `

Question: Does there exists a subset D ⊆ V such that N [D] = V (D is a
dominating set for G) and |D ∩ Vi| = 1 for all i ∈ {1, . . . , `}?

List Colouring(τ)

Input: Graph G = (V,E), colours {1, . . . , `} and a list of possible colours
for each vertex v ∈ V , given by a list L(v) ⊆ {1, . . . , `} for each v ∈ V .

Parameter: τ(G) (cardinality of a minimum vertex cover for G).

Question: Does there exists a colouring f : V → {1, . . . , r} such that
f(v) ∈ L(v) for all v ∈ V and f(v) 6= f(w) for all {v, w} ∈ E?

Simplex Matching

Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) and cost-function
c : F → Q satisfying:

1. {{u, v}, {v, w}, {u,w}} ⊆ F for all {u, v, w} ∈ F .
(subset condition)

2. c({u, v}) + c({v, w}) + c({u,w}) ≤ 2c({u, v, w}) for all
{u, v, w} ∈ F . (simplex condition)

Output: A perfect matching of H (that is a set S ⊆ F such that every
vertex in V appears in exactly one hyperedge of S) of minimal cost.
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Exact-t-Cover

Input: A universe X = {x1, . . . , xn} and a collection C = {S1, . . . , Sr} of
subsets of X, such that each Si, i ∈ {1, . . . , r}, has cardinality t.

Question: Does there exist a subset C ′ ⊆ C (exact cover) that is a par-
tition of X?

Cubic Vertex Cover

Input: Graph G = (V,E) such that all vertices v ∈ V have degree 3.

Output: A set C ⊆ V (vertex cover) of minimum cardinality such that
e ∩ C 6= ∅ for all e ∈ E.

(3, 3)-Satisfiability (or (3, 3)-SAT)

Input: Boolean formula F in conjunctive normal form such that each
clause contains at most 3 literals and each variable occurs both pos-
itively and negatively in F and overall at most 3 times.

Question: Does there exist a satisfying assignment for F?

Lower Capacitated Tree Partitioning

Input: Graph G = (V,E), edge-weights wE : E → Q+, capacity k ∈ N.

Output: A set E ′ ⊆ E minimising
∑

e∈E′ wE(e) such that each v ∈ V
occurs in at least one e ∈ E ′ and each component in the graph induced
by E ′ is a tree with at least k vertices.

Simplex Cover

Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) satisfying the subset
condition, i.e., {{u, v}, {v, w}, {u,w}} ⊆ F for all {u, v, w} ∈ F .

Output: A perfect matching of H.
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