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Abstract

Quadratic optimization problems (QP ) have a wide area of application such
as combinatorial problems including the max clique problem. Motzkin and
Straus [25] showed the equivalence between the max clique problem and the
standard quadratic problem. Also mathematical statistics is another field of
application of (QP ): Many economic models are based on (QP ), e.g. the
quadratic knapsack problem.

In [5] Bomze et al. reformulated the standard quadratic problem (StQP )
into a copositive problem. Subsequently, algorithms to solve this copositive
problem were established by Bomze and de Klerk in [6] and Dür and Bundfuss
in [9]. While the implementation of those algorithms showed some promising
numerical results, they were only able to solve the copositive reformulation
of (StQP ). In [11] Burer presented a completely positive reformulation
for quadratic optimization problems (QP ) even with binary constraints.
Unfortunately he did not present a method to solve such a completely positive
problem nor did he gave a copositive reformulation, for which one could have
modify the algorithms mentioned above to solve these problems.

This thesis will establish a new finite algorithm to solve a standard
quadratic optimization problem. Furthermore in this thesis copositve rep-
resentations for quadratic optimization problems restricted by inequalities
as well as quadratic optimization problems restricted by equalities will be
presented. For the first approach a completely positive reformulation of the
(QP ) was developed. The copositive reformulation could be obtained by
considering the dual problem of the completely positive problem. A more
direct approach was made by considering the Lagrangian dual of an equiv-
alent quadratic optimization problem restricted by a semidefinit quadratic
constraint. In this context conditions for strong duality are proposed.
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Zusammenfassung

Quadratische Optimierungsprobleme (QP ) haben ein breites Anwendungs-
gebiet, wie beispielsweise kombinatorische Probleme einschließlich des max-
imalen Cliquenroblems. Motzkin und Straus [25] zeigten die Äquivalenz
zwischen dem maximalen Cliquenproblem und dem standard quadratischen
Problem. Auch mathematische Statistik ist ein weiteres Anwendungsgebiet
von (QP ), sowie eine Vielzahl von ökonomischen Modellen basieren auf (QP ),
z.B. das quadratische Rucksackproblem.

In [5] Bomze et al. haben das standard quadratische Optimierungsprob-
lem (StQP ) in ein Copositive-Problem umformuliert. Im Folgenden wurden
Algorithmen zur Lösung dieses copositiviten Problems von Bomze und de
Klerk in [6] und Dür und Bundfuss in [9] entwickelt. Während die Implemen-
tierung dieser Algorithmen einige vielversprechende numerische Ergebnisse
hervorbrachten, konnten die Autoren nur die copositive Neuformulierung des
(StQP )s lösen. In [11] präsentierte Burer eine vollständig positive Umfor-
mulierung für allgemeine (QP )s, sogar mit binären Nebenbedingungen. Leider
konnte er keine Methode zur Lösung für ein solches vollständig positives Prob-
lem präsentieren, noch wurde eine copositive Formulierung vorgeschlagen, auf
die man die oben erwähnten Algorithmen modifizieren und anwenden könnte,
um diese zu lösen.

Diese Arbeit wird einen neuen endlichen Algorithmus zur Lösung eines
standard quadratischen Optimierungsproblems aufstellen. Desweiteren wer-
den in dieser Thesis copositve Darstellungen für ungleichungsbeschränkte
sowie gleichungsbeschränkte quadratische Optimierungsprobleme vorgestellt.
Für den ersten Ansatz wurde eine vollständig positive Umformulierung des
(QP ) entwickelt. Die copositive Umformulierung konnte durch Betrachtung
des dualen Problems des vollständig positiven Problems erhalten werden.
Ein direkterer Ansatz wurde gemacht, indem das Lagrange-Duale eines
äquivalenten quadratischen Optimierungsproblems betrachtet wurde, das
durch eine semidefinite quadratische Nebenbedingung beschränkt wurde. In
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diesem Zusammenhang werden Bedingungen für starke Dualität vorgeschla-
gen.
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Introduction and Preliminaries

1.1 Introduction

The subject of the present thesis consists of two main topics: the general
quadratic optimization problem and the copositive/completely positive pro-
gram.

By “general quadratic programming problem” we mean an optimization
problem, in which all functions involved are quadratic or linear and, in general,
local optima can be different from global optima. We also consider the case
where variables are required to take values in {0, 1} (binary variables). The
class of general quadratic programming problems plays a prominent role in the
field of nonconvex global optimization because of its theoretical aspects as well
as its wide range of applications. On the one hand, many real world problems
arising from economies and engineering design can be directly modeled as
quadratic programming problems. On the other hand, general quadratic
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programming includes as special cases the equivalent formulations of many
important and well studied optimization problems, e.g., linear zero-one pro-
grams, knapsack problems, assignment problems, maximum clique problems,
linear complementarity problems, bilinear problems, packing problems, etc.
Last but not least, some special quadratic programming problems are used as
basic subproblems in trust region methods in nonlinear programming.

A copositive/completely positive program is in general a linear optimiza-
tion problem in matrix variables X with additional conic constraints of the
form X ∈ K, where K is either the cone of so-called copositive matrices or its
dual cone of so-called completely positive matrices.

It has been shown that there is a close relationship between quadratic
optimization problems and copositive/completely positive programs. This
relationship enables us, on the one hand, to investigate duality properties of
nonconvex quadratic problems and copositive/completely positive programs,
and, on the other hand, can be employed in many cases to solve NP-hard
quadratic problems by copositive/completely positive programs.

The major contribution of this thesis is outlined as follows:
In Chapter 2, the quadratic problem over the convex hull of finitely

many points is investigated. This problem contains some interesting special
cases such as the standard and multi-standard quadratic problems. A finite
algorithm of branch and bound type is established, which also can be modified
to check copositivity of matrices.

In Chapter 3, a general concept of constructing equivalent completely pos-
itive programs for quadratic problems is established. The quadratic problem
to be considered thereafter has a system of linear inequalities as constraints.
Two types of equivalent completely positive programs for these quadratic
problems are constructed whose dual problems, which are copositive programs,
are strictly feasible under some mild conditions. The strict feasibility of the



1.2. PRELIMINARIES 3

dual problems guarantees the strong duality and allows to solve copositive
programs efficiently by existing algorithms, e.g. the one in [9].

Aspects of Lagrange duality for a wide class of quadratic problems are
investigated in Chapter 4. The Lagrange dual problem is constructed, and
several duality properties are presented, including strong duality. Following
the obtained duality results, an exact penalty method for a special class of
quadratic problems is developed in the second part of Chapter 4.

Finally, Chapter 5 contains conclusions and topics of future research.

1.2 Preliminaries

1.2.1 Notation

For given positive integers d and k, we introduce the following notation:
IRd and IRd

+: the d−dimensional real space and its nonnegative orthant;

The inner product on IRd is 〈x, y〉 = xTy =
d∑
i=1

xiyi;

IRd×k: The space of d× k matrices;
The inner product on IRd×d is the Frobenius product:

〈A,B〉 = tr(ATB) =
d∑
i=1

d∑
j=1

aijbij;

Sd := {S ∈ IRd×d | ST = S} denotes the space of symmetric matrices;
Nd := {S ∈ Sd | Sij ≥ 0 ∀i, j} denotes the space of entrywise nonnegative
matrices;
S+
d := {S ∈ Sd | xTSx ≥ 0 ∀x ∈ IRd}, the positive semidefinite cone;
Dd := S+

d ∩Nd denotes the cone of doubly nonnegative matrices;
∆d := {x ∈ IRd | eTx = 1, x ≥ 0}, the standard simplex, where e ∈ IRd

denotes the vector of ones. For every subset M of IRd, the notations

int(M), cl(M), ∂(M), conv(M) and rec(M)
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stand for interior, closure, boundary, convex hull and recession cone of M ,
respectively.
If M is a convex set, then V (M) denotes the set of its extreme points. If M
is a convex cone, then E(M) denotes the set of its extreme rays.

1.2.2 The Copositive and Completely Positive Cones

Definition 1.2.1. Let A be a d× d real symmetric matrix. Then A is called
copositive if xTAx ≥ 0 for all x ≥ 0. Strict copositivity of A means that
xTAx > 0 for all x ≥ 0, x 6= 0.

Let COPd be the set of all d× d copositive matrices. Then we have the
following properties.

Proposition 1.2.2. (See, e.g.,[1], [16], [19], and references given therein)

(i) COPd is a closed convex pointed cone in Sd with int(COPd) 6= ∅.

(ii) S+
d ⊂ COPd, Nd ⊂ COPd, and S+

d +Nd ⊂ COPd.

(iii) int(COPd) is the set of strictly copositive matrices, and

∂(COPd) = {A ∈ Sd | min{xTAx : eTx = 1, x ≥ 0} = 0}.

where e denotes the all-ones vector in IRd.

Definition 1.2.3. Let A be a d× d real symmetric matrix. One says that A
is completely positive if there exists an integer m and a d×m matrix B with
nonnegative entries such that A = BBT . The smallest possible number m is
called the CP -rank of A.
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Let CPd be the set of all d × d completely positive matrices. Then we
have the following properties.

Proposition 1.2.4. (See, e.g., [1], [13], [16], [19], and references given
therein)

(i) CPd is a closed convex pointed cone in Sd with int(CPd) 6= ∅.

(ii) CPd ⊂ S+
d ⊂ COPd.

(iii) CPd = conv{xxT | x ∈ IRd
+}.

(iv) int(CPd) = {A ∈ Sd | rank(A) = d, A = BBT with B > 0}, where 0 is
the d× d zero matrix.

(v) E(CPd) = {xxT | x ∈ IRd
+}.

Definition 1.2.5. Let C be an arbitrary given cone in Sd. The dual cone C∗

to C is defined as

C∗ = {A ∈ Sd | 〈A,B〉 ≥ 0 for all B ∈ C}.

Proposition 1.2.6. (See, e.g.,[1], [16], [19], and references given therein)
The cones COPd and CPd are dual to each other in the sense that

COP∗d = CPd and CP∗d = COPd.

1.2.3 Copositive and Completely Positive Programs

and their Duals

Let Q ∈ Sd, Ai ∈ Sd, bi ∈ IR, i = 1, . . . ,m, and let K be some closed convex
cone. Consider a linear optimization problem in matrix variables with a conic
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constraint of the following form:

min 〈Q,X〉
s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ K.

(1.1)

Definition 1.2.7. Problem (1.1) is called a copositive program if K = COPd.
It is called a completely positive program if K = CPd.

The corresponding Lagrangian dual of Problem (1.1) is then

max
m∑
i=1

biyi

s.t. Q−
m∑
i=1

yiAi ∈ K∗

yi ∈ IR, i = 1, . . . ,m.

(1.2)

Since K and K∗ are convex cones, strong duality requires some constraint
qualifications such as Problem (1.1) respectively Problem (1.2) to be strictly
feasible, i.e., the existence of a feasible point in int(K) or int(K∗), respectively
(see [18]).

1.2.4 Quadratic Optimization Problems and Completely

Positive Programs

Two types of quadratic optimization problems are considered in this thesis.
The first one is the optimization of a general quadratic function f : IRd → IR
over the convex hull of a set of finitely many points formulated as

min{f(x) : x ∈ conv{v1, . . . , vk}}, (1.3)

where v1, . . . , vk ∈ IRd. The other type of problem has the form

min{f(x) : x ∈ P, gi(x) = bi, i = 1, . . . ,m}, (1.4)
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where P ⊂ IRd is a polyhedral set, and f, gi : IRd → IR, i = 1, . . . ,m
are quadratic functions. Note that any binary condition xi ∈ {0, 1} can be
rewritten as a quadratic constraint xi(1− xi) = 0, so problems with binary
constraints can be written in the form (1.4).

The general form of a quadratic function f : IRd → IR is given by

f(x) = xTQx+ qTx, (1.5)

where Q ∈ Sd, and q ∈ IRd.
In many cases, a general quadratic function of the form (1.5) can be

rewritten as a quadratic form f(x) = xT Q̄x with Q̄ ∈ Sd, e.g., if the problem
under consideration contains a constraint cTx = 1. In this case, by substitution
Q̄ = Q+ 1

2(cqT + qcT ), one obtains

f(x) = xT Q̄x

on the feasible set of the optimization problem.
There exits a close relationship between quadratic optimization problems

and completely positive/copositive programs. We discuss this relationship by
the following two known cases.

First, consider the so-called standard quadratic optimization problem in
[5]:

min xTQx

s.t. eTx = 1
x ≥ 0,

(1.6)

where Q ∈ Sd and e denotes the all-ones vector. From Problem (1.6), one
constructs the following completely positive program:

min 〈Q,X〉
s.t. 〈eeT , X〉 = 1

X ∈ CPd.

(1.7)
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Problem (1.6) and problem (1.7) are equivalent in the sense, that they
have the same optimal values:

min (1.6) = min (1.7).

Furthermore it has been shown in [5] that X∗ = ∑r
k=1 λk(xk)(xk)T with∑r

k=1 λk = 1, λk ≥ 0 (k = 1, . . . , r) is an optimal solution of (1.7) if and only
if x1, . . . , xk are optimal solutions of (1.6).

The second problem is the mixed-binary quadratic program considered by
Burer in [11]:

min xTQx+ 2qTx
s.t. aTi x = bi, i = 1, . . . ,m

x ≥ 0
xj ∈ {0, 1}, j ∈ J ⊆ {1, . . . , d},

(1.8)

where Q ∈ Sd and q, ai ∈ IRd for all i = 1, . . . ,m.

Burer considered the following two Key Assumptions :

(KA1): The system aTi x = bi, x ≥ 0 (i = 1, . . . ,m) implies 0 ≤ xj ≤ 1 for all
j ∈ J .

(KA2): There exists β ∈ IRm such that

m∑
i=1

βiai ≥ 0,
m∑
i=1

βibi = 1.

Burer [11] showed that under (KA1)-(KA2), by using a vector

α =
m∑
i=1

βiai ≥ 0, (1.9)
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Problem (1.8) can be equivalently reformulated as the following completely
positive program:

min 〈Q,X〉+ 2qTXα
s.t. aTi Xα = bi, i = 1, . . . ,m

aTi Xai = b2
i , i = 1, . . . ,m

(Xα)j = Xjj, j ∈ J
αTXα = 1
X ∈ CPd.

(1.10)

The equivalence between Problem (1.8) and Problem (1.10) is stated as
follows (see [11]):

Theorem 1.2.8. Under (KA1)-(KA2), let α be defined as in (1.9). Then
Problem (1.8) is equivalent to Problem (1.10) in the sense that:

(i) The optimal values of both problems are equal.

(ii) If X∗ is an optimal solution of Problem (1.10), then X∗α lies in the
convex hull of optimal solutions of Problem (1.8).

1.2.5 Algorithms for Copositive Programs using ap-

proximations for COP and CP

Approximation of COP with Sum of Squares

In the last part of this chapter we cover the known approximations for the
copositve and completely positive cone. After that we discuss the resulting
algorithms to solve copostive and completely positive problems.
The first approximation was presented by Bomze and De Klerk in 2002 (see
[6]). The main idea was that every z ∈ IRn

+ can be written as z = x ◦ x for
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some x ∈ IRn, where ◦ indicates the componentwise (Hadamard) product.
Therefore, another condition for copositivity can be formulated as follows. A
matrix A ∈ Sn is copositive if and only if

P (x) := (x ◦ x)TA(x ◦ x) =
n∑

i,j=1
Aijx

2
ix

2
j ≥ 0 for all x ∈ IRn. (1.11)

Using x̄ := [x2
1, ..., x

2
n, x1x2, x1x3, ..., xn−1xn], the polynomial P (x) can be

represented as

P (x) = x̄T Āx̄, (1.12)

for a suitable, but not uniquely determined matrix Ā ∈ S(n+ 1
2n(n−1)). If the

polynomial P (x) has a sum of squares (s.o.s.) decomposition, i.e.

P (x) =
l∑

i=1
fi(x)2 for all x ∈ IRn

for some polynomial functions f1(x), ..., flx, then clearly we have P (x) ≥ 0.
Therefore, if P (x) has an s.o.s. decomposition, then A is for sure a copositive
matrix, but not vice versa.

Parirlo showed in [26], that P (x) = (x ◦ x)TA(x ◦ x) has an s.o.s. de-
composition if and only if A ∈ S+ +N = D∗, where D∗ is the dual of the
doubly nonnegative cone. Note that A ∈ S+ +N is a sufficient condition for
copositivity of A. In [6], Bomze and de Klerk defined the cone

K0 := S+ +N ⊂ COP ,

and then they gave higher order sufficient conditions for copositivity by
considering polynomials of the form

P (r)(x) := P (x)
(

n∑
k=1

x2
k

)r
, (1.13)
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and defining the cone Kr as the cone of matrices for which P (r)(x) has an
s.o.s. decomposition. If P (r)(x) =

l∑
i=1

[fi(x)]2, then

P (r+1)(x) = (
n∑
k=1

x2
k)P (r)(x) =

l∑
i=1

n∑
k=1

[fi(x)xk]2 , (1.14)

which implies that Kr ⊂ Kr+1.
Furthermore, Bomze and de Klerk [6] defined for r ∈ IN the cone Cr of

matrices for which P (r)(x) has nonnegative coefficients. Clearly we have again
for all r ∈ IN that Cr ⊂ Cr+1 and

Cr ⊂ Kr ⊂ COP . (1.15)

From the famous theorem of Póyla [28] follows that every strictly copostive
matrix A lies in some cone Cr for sufficiently large r, and we have the following
theorem

Theorem 1.2.9 (De Klerk and Pasechnik [14]). Let Cr and Kr be defined as
above. Then we have C0 = N and

cl
⋃
r∈IN0

Cr = cl
⋃
r∈IN0

Kr = COP .

Theoretically, is possible to give conditions for any r ∈ IN to construct
the matrix Ā ∈ Sd, where d = O(nr+2) such that P (r)(x) has an s.o.s
decomposition (see Theorem 2.2 in [6]). Due to the rapidly increasing d

even for small n ∈ IN, Bomze and de Klerk in [6] gave explicit conditions
for C0, C1,K0 and K1, and point out that problems becomes too large for the
SPD-solver at this time for r ≥ 1, even for small values of n. The authors of [6]
implemented algorithms to solve corresponding relaxations for the copositive
reformulation of the standard quadratic program (1.6), i.e. instead of solving

max λ

s.t. Q− λE ∈ COP
λ ∈ IR,



12 1.2. PRELIMINARIES

they solved the program

max λ

s.t. Q− λE ∈ K
λ ∈ IR,

(1.16)

where K ∈ {K0,K1, C0, C1} and therefore obtained only lower bounds for
the optimal value of (1.6). Note that for K = K0,K1 these relaxations are
semi-definite programs (SDP)(see [6] Theorem 2.3), while for K = C0, C1

(1.16) is a linear program (see [6] Theorem 2.5). We will discuss results of
these implementations in Chapter 2, when we compare these algorithms with
our method to solve Problem (1.6).

Approximation of COP and CP using Simplicial Partitions

We discuss the approach of Bundfuss and Dür given in [9]. The main idea of
this approach is the following result.

Lemma 1.2.10. Let Sn := conv{v1, ..., vn} be a simplex and A ∈ Sn. Assume
that

(vi)TAvj ≥ 0 for all i, j = 1, ..., n. (1.17)

Then xTAx ≥ 0 for all x ∈ Sn.

Proof. Let x ∈ Sn = conv{v1, ..., vn}, i.e. x =
n∑
i=1

λiv
i, where λ ∈ IRn

+ with
eTλ = 1, then

xTAx =
(

n∑
i=1

λiv
i

)T
A

 n∑
j=1

λiv
j

 =
∑
i,j

λiλj(vi)TAvj, (1.18)

which implies xTAx ≥ 0 for all x ∈ Sn.
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Note that a matrix A is copositive if and only if xTAx ≥ 0 for all x ∈ ∆n.
The main idea for an outer approximation of COP is to consider a subset
of finitely many points x1, ..., xr of the standard simplex, and consider the
set of matrices A which fulfill (xi)TAxi ≥ 0 for all i = 1, ..., r. The more
points contained in the subset, the better the approximation will be. For an
algorithmic approach of partitioning the standard simplex ∆n Bundfuss and
Dür suggested in [9] a simplicial bisection which was investigated by Horst in
[20]. First we will give a definition for a simplical partition.

Definition 1.2.11. Let Sn be a simplex in IRn. A family P = {S1
n, ..., S

m
n }

of simplices satisfying

Sn =
m⋃
i=1

Sin and int(Sin) ∩ int(Sjn) = ∅ for i 6= j (1.19)

is called a simplical partition of Sn. Furthermore, we denote the set of vertices
of the partition by

V (P) = {vi,k | i ∈ {1, ..., n}, k ∈ {1, ...,m}}, (1.20)

and the set of edges by

E(P) = {(vi,k, vj,k) | i, j ∈ {1, ..., n} with i < j, k ∈ {1, ...,m}}, (1.21)

where vi,k denotes the i-th vertex of simplex Skn.

Note that (vi,k, vj,k) = (vj,k, vi,k) for all i 6= j, therefore it is redundant to
consider these edges twice in E(P). The next definition helps to determine
how to obtain a refinement Pk+1 from a simplicial partition Pk.

Definition 1.2.12. Let P be a simplicial partition of ∆n. We call the
maximum diameter of a simplex in the partion P the fineness of P and denote
it by

δ(P) = max
(u,v)∈E(P)

‖u− v‖. (1.22)
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In order to obtain a refinement Pk+1 of Pk Horst [20] suggested to bisect
the simplex Sl in Pk which contains an edge (vi,l, vj,l) with δ(Pk) = ‖vi,l−vj,l‖.
Denote by v1,l, ..., vn,l the vertices of Sl, and then define Sl1 with the vertex
set

V (Sl1) = {v1,l, ..., vi−1,l, u, vi+1,l, ..., vn,l}

and Sl2 with the vertex set

V (Sl2) = {v1,l, ..., vj−1,l, u, vj+1,l, ..., vn,l},

where u = 1
2v

i,l + 1
2v

j,l. Then we have

intSl1 ∩ intSl2 = ∅ and Sl = Sl1 ∪ Sl2 .

Then we can define Pk+1 := Pk \ {Sl} ∪ {Sl1 , Sl2}. Using this rule, we can
generate a sequence of simplicial partitions {Pk}k∈IN yielding

δ(Pk)→ 0 for k →∞ (1.23)

This kind of subdivision is called simplicial partition along the longest edge
and has the nice property that it generates a nested sequence of simplices
which converges to a singleton. This property is a necessary condition for
convergence of any branch and bound algorithm. Having a nice partition rule
for the standard simplex ∆n (Bundfuss and Dür [9]), define the sets

IPk
:= {A ∈ Sn | uTAv ≥ 0, vTAv ≥ 0, v ∈ V (Pk), (u, v) ∈ E(Pk)},

and
OPk

:= {A ∈ Sn | vTAv ≥ 0 for all v ∈ V (Pk)}.

It is easy to see that IPk
and OPk

are polyhedral cones for all k ∈ IN and

IPk
⊂ COP ⊂ OPk

. (1.24)
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We also have OPl
⊂ OPk

and IPk
⊂ IPl

for k ≤ l, and moreover we have

cl
 ⋃
k∈IN
IPk

 = COP =
⋂
k∈IN
OPk

. (1.25)

By duality, we have that the dual cone I∗Pk
of IPk

,

I∗Pk
= {

∑
(vi,vj)∈E(Pk)

λi,j((vi)(vj)T + (vj)(vi)T ) +
∑

vi∈V (Pk)
λi(vi)(vi)T | λi,j, λi ≥ 0}

is an outer approximation of CP and analogously the dual cone O∗Pk
of OPk

,

O∗Pk
= {

∑
vi∈V (Pk)

λi(vi)(vi)T | λi ≥ 0}

is an inner approximation of CP , and we also have

cl
 ⋃
k∈IN
O∗Pk

 = CP =
⋂
k∈IN
I∗Pk

. (1.26)

From these results, Bundfuss and Dür presented in [9] the following
Algorithm 1 to solve copositive problems of the form

max bTy

s.t. C −
m∑
i=1

yiAi ∈ COP

y ∈ IRm.

(1.27)

For a given accuracy ε > 0 Algorithm (1) computes an approximately
optimal value µ∗ with

µ− µ∗

1 + |µ|+ |µ∗| < ε,

where µ denotes the optimal value of Problem (1.27). We call y∗ ∈ IRm with
bTy∗ = µ∗ an approximately optimal solution.
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Algorithm 1 ε-approximation for (1.27)
1: Input:

• Problem data: A1, ..., Am, C ∈ Sn, b ∈ IRm

• Tolerance ε > 0

2: P ← {∆n}
3: repeat

4: solve the inner LP

max bTy

s.t. C −
m∑
i=1

yiAi ∈ IP

y ∈ IRm,

(1.28)

5: denote the optimal solution of this problem by yI

6: solve the outer LP

max bTy

s.t. C −
m∑
i=1

yiAi ∈ OP

y ∈ IRm,

(1.29)

7: denote the optimal solution of this problem by yO

8: choose S ∈ P
9: bisect S = S1 ∪ S2

10: set P ← P \ {S} ∪ {S1, S2}
11: until bT yO−bT yI

1+|bT yO|+|bT yI | ≤ ε

12: Output: Approximation of an optimal solution of (1.27)
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In this algorithm it is not specified how a simplex is selected in line 8
or how the bisection is performed in Line 9. However the partitioning rule
suggested by Horst [20] generates cones IPk

and OPk
that approximate COP

uniformly arbitrarily well, but for optimization purpose it is not very efficient.
Bundfuss and Dür [9] used another partition rule which they called ”simplicial
partion along the longest active edge“. First we will recall how Bundfuss and
Dür chose an edge {u, v} for bisection. For this purpose consider the inner
LP

max bTy

s.t. uTCv −
m∑
i=1

yi(uTAiv) ≥ 0, for all (u, v) ∈ E(P)

vTCv −
m∑
i=1

yi(vTAiv) ≥ 0, for all v ∈ V (P)

y ∈ IRm,

and the outer LP

max bTy

s.t. vTCv −
m∑
i=1

yi(vTAiv) ≥ 0, for all v ∈ V (P)

y ∈ IRm.

Denote by yI the optimal solution of (1.28). Assume that the stopping
criterion in Line 11 has not been met, i.e. for the optimal solution yI there
exists no vertex vertex v ∈ V (P) such that

vTCv −
m∑
i=1

yIi (vTAiv) = 0,

otherwise yI is also optimal for (1.29). Therefore there exists an edge (u, v) ∈
E(P) with uTCv −

m∑
i=1

yIi (uTAiv) = 0. Such an edge is called active edge.
Bundfuss and Dür choose in Line 8 the longest of the active edges in yI for
bisection. Once an edge (u, v) is chosen for bisection, Bundfuss and Dür
bisect all simplices containing the edge (u, v) at the new point w := 1

2u+ 1
2v.
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In [9], the authors presented numerical results for the reformulated copos-
itive program from the standard quadratic problem (1.6). Note that while
the results are very promising for solving these problems, the algorithm only
provides the optimal value, but no optimal solution for the standard quadratic
problem (1.6).

It is our purpose to propose the following improvement for the algorithm
of Bundfuss and Dür.

We propose a way to obtain an optimal solution of the standard quadratic
problem (1.6)

min xTQx

s.t. eTx = 1
x ≥ 0,

which is reformulated as the copositive program

max y

s.t. Q− yE ∈ COP
y ∈ IR.

(1.30)

The outer relaxation (1.29) can be written as

max y

s.t. y ≤ uTQu, for all u ∈ V (P)
y ∈ IR.

(1.31)

Again denote by yO the optimal value and optimal solution of (1.29), and
assume that the optimality criterion for ε-accurency has been met, i.e.

yO − yI

1 + |yO|+ |yI | < ε.
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Note that in this case yO is also an ε− optimal value of (1.29), furthermore
there exists uO ∈ V (P) with

yO = (uO)TQ(uO). (1.32)

From the equivalence between the problems (1.6) and (1.30), we have

yO − min
x∈∆n

xTQx ≤ yO − yI ,

and therefore, yO can also be considered as an approximately optimal value
of Problem (1.6).

Since uO ∈ ∆n, it follows that uO can be taken as an approximately
optimal solution of Problem (1.6).

Using the same reasoning as above, we can also obtain an approximately
optimal solution for the completely positive problem

min 〈Q,X〉
s.t. 〈Ai, X〉 = bi (i = 1, . . . ,m)

X ∈ CP .

(1.33)

The dual of (1.33) is the copositive problem

max bTy

s.t. Q−∑m
i=1 yiAi ∈ COP

y ∈ IRm.

(1.34)

Consider the relaxation problem (1.29)

max bTy

s.t. (uk)TQuk −
m∑
i=1

yi((uk)TAiuk) ≥ 0, uk ∈ V (P)

y ∈ IRm,



20 1.2. PRELIMINARIES

and its dual LP

min
|V (P)|∑
k=1

xk (uk)TQuk

s.t.
|V (P)|∑
k=1

xk (uk)TAiuk = bi (i = 1, . . . ,m)

x ∈ IR|V (P)|
+ ,

which can be written as

min 〈Q,
|V (P)|∑
k=1

xk(uk)(uk)T 〉

s.t. 〈Ai,
|V (P)|∑
k=1

xk(uk)(uk)T 〉 = bi (i = 1, . . . ,m)

x ∈ IR|P|+ .

Obviously,
|V (P)|∑
k=1

xk(uk)(uk)T ∈ O∗P ⊂ CP. Again denote by yO the optimal
solution of (1.29) and assume that the ε-accuracy has been met. Furthermore,
denote the optimal solution of the dual LP by xO∗ . Then

X∗ =
|V (P)|∑
k=1

xO
∗

k (uk)(uk)T

is a ε-optimal solution for (1.33).
We want to mention a problem in the simplicial partition rule of the

algorithm in [9].
Let (u∗, v∗) be one of the longest active edges, i.e. an edge satisfying

(u∗)T (Q−∑ yIi Ai)v∗ = 0,
‖u∗ − v∗‖ = max{‖u− v‖ | uT (Q−∑ yIi Ai)v = 0, (u, v) ∈ E(P)},

where yI denotes the optimal solution of (1.28).
In [9], the new vertex w is determined by w := λu∗+ (1−λ)v∗ with λ = 1

2 .
By this rule, it can happen that the edges (u∗, w) and (w, v∗) will be

considered thereafter such that many other vertices and edges can be generated
from the edge (u∗, v∗). Hence this partition rule may not be exhaustive, and
therefore convergence is not necessary given for the algorithm in [9].
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Quadratic Optimization over the Convex
Hull of finitely many Points

2.1 Introduction

In this chapter, we consider a (possibly nonconvex) quadratic optimization
problem over the convex hull of finitely many points of a real space, and
present an algorithm to solve such a problem. The main idea of the algorithm
is to transform this problem into a quadratic optimization problem of the
form

min f(x) = xTQx+ qTx+ c

s.t. eTx ≤ 1
x ≥ 0,

(2.1)

where Q ∈ Sn, q ∈ IRn, c ∈ IR. Before going into the details of the transfor-
mation we will give some examples for quadratic optimization problems.
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Formally, a quadratic, not necessarily convex problem is written by

min{f̄(ξ) : ξ ∈ S}, (2.2)

where S is the convex hull of n+ 1 given vectors v1, . . . , vn+1 ∈ IRd, i.e.,

S = conv{v1, . . . , vn+1}, (2.3)

and f̄ : IRd → IR a quadratic function given by

f̄(ξ) = ξT Q̄ξ + q̄T ξ (2.4)

with Q̄ ∈ IRd×d being a symmetric matrix, and q̄ ∈ IRd.
Note that the feasible set S = conv{v1, . . . , vn+1} of Problem (2.2) is a

polytope, i.e. a bounded polyhedral set. In general, a polyhedral set P is
defined as an intersection of finitely many halfspaces, i.e.

P = P (A, b) = {x ∈ IRn | Ax ≤ b}, (2.5)

where A ∈ IRm×n and b ∈ IRm. The following well-known theorem stats the
equivalence of both representations.

Theorem 2.1.1. P is a polyhedral set if and only if there exist sets V and E
of finite many points such that

P = conv(V) + cone(E). (2.6)

The set cone(E) is called the recession cone of P (A, b). It is well known
that for a polytope we have cone(E) = {0}. And hence Problem (2.2) is a
quadratic optimization problem over a bounded polyhedral set.

The quadratic optimization problem (2.2) arises in many contexts. We
can encounter it in the optimization of nondifferentiable functions, in approx-
imation theory (P. Wolfe [33]), in economics, in computer sciences, etc. Some
typical examples for Problem (2.2) are given below.
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Example 2.1.2. For a given point y ∈ IRn Wolfe [33] considered the problem
of finding the point of smallest Euclidean distance to y in the convex hull of a
given finite point set {v1, ..., vr}. Formally the problem can be written as

min{‖x− y‖2
2 | x ∈ conv{v1, ..., vr}}. (2.7)

Note that for the objective function we have

‖x− y‖2
2 = (x− y)T (x− y) = xTx− 2xTy + yTy.

And therefore to find the nearest point in a polyeder is a quadratic optimization
problem.

Example 2.1.3. Let G = (V,E) be an undirected graph, where V is the
vertex set and E is the edge set. A clique of G is a subset of mutually
adjacent vertices in V . A clique is called maximal if it is not contained in any
other clique. A clique is called maximum if it has maximum cardinality of all
cliques in G. The maximum size of a clique in G is called the clique number
of G and is denoted by ω(G). Furthermore, let A denote the adjacency matrix
of G. Then Motzkin and Strauss [25] showed that

1
2

[
1− 1

ω(G)

]
= min{xTAx | x ∈ ∆n}. (2.8)

Note that the right hand side of (2.8) is the standard quadratic optimization
problem (1.6).

Example 2.1.4. The multi-standard quadratic optimization problem (see.
Bomze and Schachinger [7]) has the structure of (2.2):

min{f̄(ξ) : ξ ∈ S}, (2.9)

where f̄(ξ) is a quadratic function, and

S =
m⊗
i=1

∆di
⊂

m⊗
i=1

IRdi = IRd. (2.10)
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For each polytope P , let V (P ) denote its vertex set. Then the set S defined in
(2.10) is a polytope having

m∏
i=1

di vertices, i.e., in this case we have n =
m∏
i=1

di−1.
More precisely, the set S can be written as

S = conv




e1
...
em

 : ei ∈ V (∆di
), i = 1, . . . ,m

 . (2.11)

It is worth noting that Problem (2.9) can be naturally generalized in such
a way that in the definition of the polytope S, the sets ∆di

can be generalized
to be arbitrary polytopes given by their vertex sets.

Example 2.1.5. Let Q ∈ Sn and a, c ∈ IRn. Then the quadratic knapsack
problem is

min xTQx− rTx
s.t. aTx ≤ 1

x ∈ {0, 1}n.

(2.12)

One of the most important applications of Problem (2.12) is the portfolio
management problem, which can be formulated as an optimization problem
with a quadratic objective function under a knapsack constraint (see, e.g.,
[23], [15], [27], [29], [30]). The quadratic function measures both the expected
return and the risk. The single knapsack constraint represents the budget
restriction.

As mentioned above, for the case of convex quadratic function, Wolfe
proposed an efficient method in [33]. An algorithm for the case of any convex
objective function is given in [8]. To our knowledge, for nonconvex problems,
there exist only a few algorithms for some very special cases (see, e.g. [3],
[17], [21], [31], [34]).

The problem to be considered in this chapter has a nonconvex quadratic
objective function, which can have local optima different from global optima.
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2.2 Transformation into Quadratic Problem

over the Origin Simplex

The purpose of this section is to transform the problem defined in (2.2)-(2.4)
into an equivalent quadratic optimization problem over the origin simplex of
IRn.

The origin simplex, denoted by On, is the following subset of IRn:

On := conv{0, e1, . . . , en} = {x ∈ IRn : x ≥ 0,
n∑
i=1

xi ≤ 1}, (2.13)

where e1, . . . , en are unit vectors of IRn. It is clear that On, being the convex
hull of n+ 1 affinely independent vectors in IRn, is an n−simplex in IRn (i.e.,
dim(On) = n).

By definition of S in (2.3), we have that for any ξ ∈ S there exist
x1, . . . , xn+1 ≥ 0 with

n+1∑
i=1

xi = 1 such that ξ =
n+1∑
i=1

xiv
i. This gives

ξ =
n+1∑
i=1

xiv
i = vn+1 + (xn+1 − 1)︸ ︷︷ ︸

=−
∑n

i=1 xi

vn+1 +
n∑
i=1

xiv
i

= vn+1 +
n∑
i=1

xi(vi − vn+1).
(2.14)

Note that
n∑
i=1

xi = 1 − xn+1 ≤ 1. Next, let V be a d × n matrix having the
columns (vi − vn+1), i = 1, . . . , n, i.e.,

V = ((v1 − vn+1) . . . (vn − vn+1)). (2.15)

Then we have that for any ξ ∈ S there exists x ∈ On with

ξ = vn+1 + V x. (2.16)

If the vectors v1, . . . , vn+1 are affinely independent, i.e. the vectors
(v1−vn+1) . . . (vn−vn+1) are linearly independent, then x in (2.16) is uniquely
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determined. Otherwise for a ξ ∈ S there can be several points x ∈ On

satisfying (2.16).
Next, define a function f : IRn → IR by

f(x) := f̄(vn+1 + V x)
= (vn+1 + V x)T Q̄(vn+1 + V x) + q̄T (vn+1 + V x)
= xTV T Q̄V x+ 2(vn+1)T Q̄V x+ q̄TV x

+(vn+1)T Q̄vn+1 + q̄Tvn+1.

(2.17)

By defining

Q := V T Q̄V,

qT := 2(vn+1)T Q̄V + q̄TV,

c := ((vn+1)T Q̄+ q̄T )vn+1,

(2.18)

we have

f(x) = xTQx+ qTx+ c. (2.19)

Note that the n× n matrix Q is symmetric, since from the symmetry of
Q̄ we get that

QT = (V T Q̄V )T = V T Q̄TV = V T Q̄V = Q.

Finally, considering the following quadratic optimization problem

min{f(x) : x ∈ On}, (2.20)

where On is the origin simplex defined in (2.13), and the function f is defined
in (2.18)-(2.19), we obtain the following equivalence between Problem (2.2)
and Problem (2.20).
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Lemma 2.2.1. The problems (2.2) and (2.20) are equivalent in the following
sense: If x∗ ∈ On is an optimal solution of Problem (2.20), then

ξ∗ = vn+1 + V x∗

is an optimal solution of Problem (2.2), and if ξ∗ is an optimal solution of
Problem (2.2), then each x∗ ∈ On satisfying ξ∗ = vn+1 + V x∗ is an optimal
solution of Problem (2.20).

Proof. From (2.14) and (2.16) it follows that for all ξ ∈ S there exists x ∈ On

such that
ξ = vn+1 + V x.

Thus, the equivalence between problems (2.2) and (2.20) follows from the
definitions in (2.19)-(2.18).

As seen above, the dimension of the transformed problem (2.20) depends
on the number of the points contained in the set S. As S is a polytope, it
can be represented by the convex hull of its vertex set, which is a subset of
{v1, . . . , vn+1}. The question arises as to how we can find the vertex set of
the polytope S from the set {v1, . . . , vn+1}, or at least, how we can detect
and remove points from the set {v1, . . . , vn+1}, which are not vertices of S.
This task helps to reduce the dimension of the transformed problem (2.20)
and is the topic of the next section.

2.3 Reducing Dimension of Transformed Prob-

lem

We present in this section a simple procedure for detecting and removing
points from the set {v1, . . . , vn+1} which are not vertices of S.
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Let vj ∈ {v1, . . . , vn+1}. Define Ij := {1, . . . , n + 1} \ {j} and consider
the following linear system in variables λi (i ∈ Ij):

vj =
∑
i∈Ij

λiv
i,
∑
i∈Ij

λi = 1, λi ≥ 0 for all i ∈ Ij. (2.21)

If System (2.21) has no solution, then the point vj is a vertex of S, otherwise,
it is not, and can be excluded from further consideration. Note that checking
System (2.21) can easily be performed by using phase 1 of the well known
simplex algorithm. We present below a procedure for determining the vertex
set of the polytope S from the set {v1, . . . , vn+1}.

Algorithm 2 Procedure for determining the vertex set of S:
1: Input P = {v1, . . . , vn+1}
2: V (S)← ∅
3: l← 0 . l counts the number of points in V (S)
4: for j = 1, . . . , n+ 1 do

5: solve (2.21)
6: if (2.21) in feasible then

7: V (S)← V (S) ∪ {vj}
8: l← l + 1
9: end if

10: end for

11: Output Vertex set V (S) and l = |V (S)|

Proposition 2.3.1. The set V (S) generated by Algorithm 2 is the vertex set
of polytope S.

In the rest of this chapter, we establish an algorithm for finding a globally
optimal solution of Problem (2.20).
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2.4 Main idea of the algorithm

The main idea of our algorithm for solving Problem (2.20) is briefly outlined
as follows.

If the matrix Q in the representation of the quadratic function f is positive
semidefinite, then Problem (2.20) can be solved by many known efficient
algorithms for convex quadratic optimization problems (e.g. Mehrotra’s
predictor-corrector interior point algorithm [24]).

If Q is negative semidefinite, then we have a concave optimization problem,
where an optimal solution x∗ of Problem (2.20) is obtained by checking the
vertices of the origin simplex On, i.e.,

x∗ ∈ argmin{f(x) : x ∈ {0, e1, . . . , en}}.

For the case that Q is indefinite, we recall the following well known result
with a simple proof.

Lemma 2.4.1. Let ∂On denote the boundary of On. Moreover let the matrix
Q in the representation of the function f in (2.19) be indefinite. Then

min{f(x) | x ∈ On} = min{f(x) | x ∈ ∂On}. (2.22)

Proof. Suppose there exists a globally optimal solution x∗ of problem (2.20)
such that x∗ ∈ intOn. Then from ∇f(x∗) = 2Qx∗ + q = 0 it follows that
q = −2Qx∗, and hence we have for all x ∈ On that

0 ≤ f(x)− f(x∗) = xTQx− (x∗)TQx∗ + (x− x∗)T q
= xTQx− (x∗)TQx∗ − 2(x− x∗)TQx∗

= xTQx− 2xTQx∗ + (x∗)TQx∗

= (x− x∗)TQ(x− x∗).

(2.23)



30 2.4. MAIN IDEA OF THE ALGORITHM

Let y ∈ IRn. Then there exists α ≥ 0 and x ∈ On such that y = α(x − x∗).
From (2.23) it follows that yTQy ≥ 0 for all y ∈ IRn, which is a contradiction
to the indefiniteness of Q.

Obviously, the set ∂On consists of n+ 1 simplices of dimension n− 1, (i.e.,
(n− 1)−simplices). Denote these simplices by B1, . . . , Bn+1, where

Bi = conv ({0, e1, . . . , en} \ {ei}) , i = 1, . . . , n, and

Bn+1 = conv{e1, . . . , en},
(2.24)

From Lemma 2.4.1, Problem (2.20) can be replaced by n+ 1 problems of
the form

min{f(x) : x ∈ Bi}, i = 1, . . . , n+ 1. (2.25)

Note that every problem in (2.25) has again the form (2.2), however, in
a space of lower dimension, and therefore, it can be handled by the same
procedure as described above.

First the simplex Bn+1 is exactly the standard simplex of IRn. Thus the
transformation of Problem (2.25) for i = n+ 1 into a quadratic problem over
the origin simplex On−1 of IRn−1 is performed as presented in Section 2.2.

For other problems in (2.25) we obtain quadratic problems over the origin
simplex On−1 ⊂ IRn−1 immediately by the following lemma.

Lemma 2.4.2. For each i = 1, . . . , n, let Qi be the (n− 1)× (n− 1) matrix
obtained from Q by removing the i-th row and the i-th column, let qi be the
vector obtained from q by removing its i-th component, and let ci = c. Then
the i-th problem in (2.25) can be written as the problem

min{yTQiy + qTi y + ci : y ∈ On−1}. (2.26)
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Proof. The i-th problem in (2.25) is

min{f(x) = xTQx+ qTx+ c : x ∈ Bi}.

Now let x ∈ Bi. Then xi = 0 and for I i := {1, . . . , n} \ {i} we have that

f(x) =
∑
k,j∈Ii

Qk,jxkxj +
∑
k∈Ii

qkxk + c. (2.27)

Defining y ∈ IRn−1 with yk = xk for k = 1, . . . , i − 1 and yk = xk+1 for
k = i+ 1, . . . , n. In other words, y can be constructed from x by removing
coordinate xi. Obviously we have that y ≥ 0 and

n−1∑
k=1

yk ≤
n∑
j=1

xj ≤ 1,

i.e. y ∈ On−1, and with (2.27) we get that

xTQx+ qTx+ c = yTQiy + qTi y + ci,

and the results follows.

The whole procedure for computing an optimal solution of Problem (2.20)
is presented in the next Section.

2.5 The algorithm and its finite convergence

Based on the results from he previous sections, we establish an algorithm for
globally solving the following quadratic problem over the origin simplex:

min xTQx+ qTx

s.t. eTx ≤ 1
x ≥ 0,

(2.28)

where, again, Q ∈ Sn and q ∈ IRn.
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Algorithm 3 Solving a quadratic problem over the origin simplex
1: Input Problem P = min{xTQx+ qTx | x ∈ On}
2: γ ← min{xTQx+ qTx | x ∈ {0, e1, . . . , en}}
3: x∗ ← argmin{xTQx+ qTx | x ∈ {0, e1, . . . , en}}
4: P ← {P} . for the 1st iteration P contains only P
5: while P 6= ∅ do

6: choose P ∈ P
7: if P is a convex or concave minimization problem then

8: solve P
9: if minP < γ then

10: γ ← minP
11: x∗ ← argminP
12: end if

13: else

14: construct n+ 1 subproblems P1, . . . , Pn+1 as in (2.25)
15: P ← P ∪ {P1, . . . , Pn+1}
16: end if

17: P ← P \ {P}
18: end while

19: Output Optimal value γ and optimal solution x∗

Theorem 2.5.1. The Algorithm 3 solves Problem (2.28) after finite many
iterations.

Proof. The origin simplex has finitely many faces and therefore the algorithm
has so solve finitely many subproblems. From Lemma 2.4.1 it follows that γ
is the optimal value and x∗ is the optimal solution of P .

To check if P is a convex or concave minimization problem in Line 7, we
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check the definiteness of the objective matrix Q. Unfortunately from the
definiteness of Q we cannot conclude about the definiteness of a submatrix Qi.
Therefore in every subproblem Pi we need to check its convexity (concavity),
which means that we have to check definitness of every submatrix of Q.

2.5.1 Improving the algorithm using lower bounds

Idea: Throughout the algorithm, for every indefinite quadratic problem (P)
to be handled, we try to compute a lower bound, µ(P ), of its optimal value.
If µ(P ) is not smaller than the current best function value, then P is deleted
immediately. Therefore we propose a method to compute a lower bound. Let
Problem (P ) be formulated as

min{xTPx+ pTx : x ∈ O}, (P)

where P and p are a (symmetric indefinite) matrix and a vector of appropriate
sizes, and O is the origin simplex. We propose below a simple method for
computing a lower bound for the optimal value µ(P ).

Denote by Pi∗ the i-th row of matrix P , by V (O) the vertex set of simplex
O, and by a the vector whose components ai are determined by

ai := min{Pi∗x : x ∈ V (O)}. (2.29)

Lemma 2.5.2. A lower bound µ(P ) of the optimal value of Problem (P) can
be computed by

µ(P ) = min{(a+ p)Tx : x ∈ O}. (2.30)

Proof. As x ≥ 0, it follows from (2.29) that xTPx ≥ aTx for all x ∈ O, which
implies that the objective function of Problem (P) is greater than or equal to
the one of (2.30) in O, and the theorem follows.
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2.6 Algorithm for checking copositivity via

(semi)definiteness

A symmetric matrix A ∈ IRn×n is called copositive, if xTAx ≥ 0 for all x ≥ 0.
Checking copositivity is a co-NP-hard problem and therefore much harder
than checking definiteness. In the literature, there exist some methods to
check a copositivity of a matrix such as Bundfuss and Dür in [10] by using sim-
plicial partions. In [32] Sponsel, Bundfuss and Dür improved that algorithm
furthermore. It is worth mentioning that in [4] Bomze and Eichfelder also
presented a method to check copositivity by combining difference-of-convex
(d.c.) decompositions into a branch-and-bound algorithm of ω-subdivisions.
In this section, we apply Algorithm 3 for checking copositivity of a matrix
based on successively using the methods for checking definiteness.

Lemma 2.6.1. A matrix A ∈ IRn×n is non-copositive, if and only if

min{xTAx : x ∈ On} < 0. (2.31)

Proof. The sufficient condition is trivial. For the necessary condition, suppose
we do not have (2.31), i.e., xTAx ≥ 0 for all x ∈ On. Since

IRn
+ = {x ∈ IRn : x = αy, y ∈ On, α ≥ 0},

it follows that xTAx ≥ 0 for all x ∈ IRn
+, i.e., A is copositive, a contradiction.

The Problem contained in Condition (2.31) is a quadratic optimization
problem over the origin simplex, and therefore, in principle, we can apply
Algorithm 3 to solve it. However, as we in fact only need to show whether
or not there exists a point x∗ ∈ On satisfying f(x∗) < 0, we propose the
following algorithm, which is a slightly modified version of Algorithm 3.
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Algorithm 4 Checking copositivity of a matrix A
1: Input symmetric matrix A ∈ IRn×n

2: γ ← min{xTAx | x ∈ {0, e1, . . . , en}}
3: P ← {min{xTAx | x ∈ On}}
4: while (P 6= ∅) and (γ ≥ 0) do

5: choose P ∈ P
6: if P is a convex or concave minimization problem then

7: solve P
8: if minP < γ then

9: γ ← minP
10: end if

11: else

12: construct n+ 1 subproblems P1, . . . , Pn+1 as in (2.25)
13: P ← P ∪ {P1, . . . , Pn+1}
14: end if

15: P ← P \ {P}
16: end while

17: if γ ≥ 0 then

18: Output: A is copositive
19: else

20: Output: A is not copositive
21: end if

Theorem 2.6.2. Algorithm 4 terminates after solving finite many subprob-
lems.
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2.7 Illustrative examples and preliminary com-

putational experiments

2.7.1 The pseudo-code

First we give a pseudo-code of our algorithm for solving the quadratic problem
over the origin simplex given in (2.20), i.e. the problem

min f(x) = xTQx+ qTx+ c

s.t. eTx ≤ 1
x ≥ 0,

(2.32)

where Q ∈ Sn, e = (1, . . . , 1)T ∈ IRn, q ∈ IRn, and c ∈ IR.

While in Algorithm 3 no lower bounds were implemented, therefore we
have to solve every subproblem of (2.32), which is a not very efficient way to
solve the problem. In the following Algorithm 5 a lower bound was introduced
to hopefully reduce the number of subproblems the algorithm has to solve.
Note that the number of subproblems, which are eliminated, depends on the
lower bound. If the lower bound is not good, in worst case we still need to
solve all subproblems.

In the following Algorithm 5 in Line 9 we only consider subproblems
which has a better lower bound than the best function value γ found so far,
i.e. subproblems with worse lower bound than γ are eliminated from further
consideration.
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Algorithm 5 Algorithm solving Problem 2.32
1: Input: n ∈ IN, Q ∈ IRn×n, q ∈ IRn, c ∈ IR
2: γ ← min{Qii + qi + c | i = 1, . . . , n}
3: Pn ← {P}.
4: µ(P ) = −∞
5: M ← {µ(P )}
6: call solve(Pn, n,M)
7: function solve(Pk, k,M)
8: while Pk 6= ∅ do

9: mini← min{i ∈ {1, . . . , |Pk|} | µ(Pi) < γ, Pi ∈ Pk}}
10: if Pmini is convex or concave then

11: solve Pmini
12: if minPmini < γ then

13: γ ← minP
14: update x∗

15: end if

16: else

17: Pmini,k−1 ← {Pmini,1, . . . , Pmini,k+1}
18: for i = 1, ..., k do

19: compute µ(Pi)
20: end for

21: Mmini ← {µ(Pmini,1), . . . , µ(Pmini,k+1)}
22: call solve(Pmini,k−1, k − 1,Mmini)
23: end if

24: Pk ← Pk \ {Pmini}
25: end while

26: end function

27: Output: Optimal value: γ, optimal solution: x∗
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The pseudo-code is implemented in C++ using the gsl library (available
at https://www.gnu.org/software/gsl/). The test problems are run on
an intel core duo processor @3,2 Ghz and 2 GB RAM memory on
an Ubuntu base system.
In line 19: µ(Pi) denotes the lower bound of Problem Pi ∈ Pk determined by
(2.30). Obviously we are only considering subproblems, whose lower bound
is not worse than the best upper bound γ found so far. To determine the
definiteness of the objective function matrix QP of subproblem P , we use
the Cholesky decomposition procedure from the gsl-library to compute the
smallest and greatest eigenvalue of the matrix QP .
In line 11: an implementation of Mehrotra’s predictor corrector interior
point method [24] by Ewgenij Hübner, a former Ph.D. graduate of the Trier
University, is used to solve Pmini, whenever Pmini is a convex quadratic
problem. Note that if a subproblem P ∈ P is concave, then the optimal
solution of P is a vertex of the origin simplex. Since the vertex set of any
sub-problem is a subset of the original problem (2.32), for which we already
found the optimal value and vertex in the first line, we have that minP ≥ γ

and hence we do not need to solve P . The main function solve(Pk, k,M) is a
recursive function, which will call itself to solve non-convex and non-concave
subproblems.

2.7.2 Illustrative Examples

We present some numerical examples to illustrate the algorithm for solving
the quadratic problem over the origin simplex. The examples originate from
the test problems considered in [6].

https://www.gnu.org/software/gsl/
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Example 2.7.1. We discuss here the four examples considered by I.M. Bomze
and E. de Klerk in [6]. These are standard quadratic problems of the form

min xTQx

s.t. eTx = 1
x ≥ 0,

which originated from maximum clique problems (see Example 2.1.3) and are
equivalent to completely positive programs of the form:

min 〈Q,X〉
s.t. 〈eeT , X〉 = 1

X ∈ CP .

The dual of the above completely positive program is the copositive program

max λ

s.t. Q− λE ∈ COP
λ ∈ IR.

We point out that in Chapter 5 of this thesis, the equivalence between a class of
quadratic problems including the standard quadratic problem and the copositive
program will be shown directly.

In [6], Bomze and Klerk present a solution method for the resulting copos-
itive program by using the LP-based approximations Cr, ( r = 0, 1, . . .) and
semidefinite programming (SDP) approximations Kr, (r = 0, 1, . . .) of the
copositive cone, which we have introduced in Section 1.2.5. Note that, as men-
tioned in [6], these approaches only provide one sided bounds without further
information about the quality of the current best optimal value. Furthermore
we will compare our numerical results with the results presented in [9] by
Bundfuss and Dür.
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Problem 1: This problem has the objective function matrix

Q =



1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1


∈ IR5×5,

so the problem corresponds to the maximum clique number in a pentagon. As
it is well known, this problem has the optimal value 1

2 , i.e. the maximum
clique number in a pentagon is 2.

Throughout our algorithm, 12 convex and 4 concave subproblems are solved.
The time needed to compute the optimal solution is 0.000443 seconds.

Note that in [6], using the approximation cones Cr and Kr for r = 0, 1
the authors obtain for this problem the following bounds: For C0 and C1

they obtain 1
3 . The approximation cones K0 and K1 yield the bounds 1√

5

and 1
2 , respectively, i.e. K1 yields the (known) exact optimal solution. With

their algorithm in [9], Bundfuss and Dür solved this problem exactly within 6
iterations and 0.01 seconds.
Problem 2: This problem is to determine the maximum clique number of
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an icosahedron. The corresponding matrix Q is

Q =



1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1



∈ IR12×12.

It is well known that the maximum clique number of such an icosahedron is 3,
i.e., the optimal value of the corresponding standard quadratic problem is 1

3 .
Our algorithm needs 0.00126 seconds yielding the optimal value 0.333333

after solving 24 convex and 2 concave subproblems.
For this problem the bound for the approximation cone C1 is 0 and the

bound for K1 is 0.309. In this case K1 does not yield the exact optimal value.
The authors in [6] did not report further bounds for r > 1 due to the difficulties
of the approximations in high dimensions. In [9] Bundfuss and Dür solved
this problem in 158 iterations and needed 0.54 seconds to compute the optimal
value.
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Problem 3: This is a mathematical model in population genetics, where
the corresponding matrix Q is

Q =



14 15 16 0 0
15 14 12.5 22.5 15
16 12.5 10 26.5 16
0 22.5 26.5 0 0
0 15 16 0 14


,∈ IR5×5.

It is known that the optimal value of this problem is 161
3 . In [6] the authors

obtained from C1 the bound 21.0, and K1 yields the exact optimal value. Bund-
fuss and Dür’s algorithm [9] solved this problem within 0.03 seconds and 44
iterations. Our algorithm obtained the optimal value 16.333333 after 0.000528
seconds. The algorithm has solved 10 convex subproblems.

Problem 4: The fourth and last example arises from portfolio optimiza-
tion. In this case x ∈ ∆ (the standard simplex) corresponds to a portfolio
and xi is the fraction of the capital to be invested in item i. Given a portfo-
lio x ∈ ∆, a risk xT Q̄x and a return rTx, the optimization problem under
consideration is

min{xT (Q̄− rrT )x | x ∈ ∆}

(for more details, see [6]). The following matrix has been taken from [6]:

Q =



0.9044 0.1054 0.5140 0.3322 0
0.1054 0.8715 0.7385 0.5866 0.9751
0.5140 0.7385 0.6936 0.5368 0.8086
0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932


∈ IR5×5.

The known optimal value is 0.483933. After considering 7 convex subproblems,
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our algorithm terminated yielding the exact optimal value 0.483933 (0.000672
seconds needed).

In [6], the approximation cone C1 provides a bound of 0.3015 and K1 yields
a bound of 0.4839. In [9], the algorithm takes 27 iterations (0.001 seconds) to
obtain an accuracy of 10−6.

2.7.3 Computational experiments

In the following we generated random instances of the origin quadratic problem
(2.32), where the entries of the symmetric matrix Q ∈ IRn×n were uniformly
distributed in [−10, 10]. For each size we created 40 instances. The algorithm
stopped when there were no more subproblems with a lower bound smaller
than the best value γ found so far. This can either happen if there are no
subproblems left, or the lower bounds of the remaining subproblems are worse
than the best value found so far. Note that for testing our algorithm, the
accuracy is taken depending on the accuracy of the solver for convex quadratic
optimization “sl cq“ in [18], which is 10−6.

The computational results (in the sense of average) are summarized in
the following table.

n time in sec. # concave subproblems # convex subproblems
10 0.000 60.37 53.72
25 0.013 273.5 1,781.25
50 0.127 6,577.2 41,224.37
100 43.876 72,499.37 429,928.72
500 2613.342 1,027,257.72 2,890,735.12

To conclude this chapter, we note that the implementation of this algorithm
was not meant to be competitive with other “high-end“ and/or “big data“
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algorithms, it is a mere proof-of-concept, that the method introduced in
Chapter 2 can work quite well.

It is worth noting that the recursive approach is a very fast method to
solve problems of moderate sizes, but for higher dimensional problems the
memory needed for such a recursive program can be very big, which even some
server computers can not provide. Also there is still room for improvement
for this program, e.g. a faster implementation to determine whether a matrix
is semidefinite or not, also the convex solver used in this program may not be
the best implementation for convex quadratic programming. Therefore we did
not test this program for higher dimensional problems on a high-performance
server computer.

Note that in [9] the authors presented numerical results for randomly
generated instances. However we cannot compare our results with theirs,
because Bundfuss and Dür uses the procedure ”.randomize()“ of the CVM
Class Library by Sergei Nikolaev (available at www.cvmlib.com) to generate
the objective function matrix. Unfortunately this procedure generates negative
semidefinite matrices. Therefore the problems considered in [9] were all
concave minimization problems. Therefore Bundfuss and Dür could present
very good numerical results. It is unclear how the algorithm would perform
for general quadratic problems.

www.cvmlib.com
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Completely Positive Modelling of Quadratic
Problems

3.1 Introduction

In previous chapter we already showed that quadratic optimization problems
(QP) have a wide area of applications. It is well known that the nonconvex
(QP) is an NP-hard problem, even for simple cases such as the standard
quadratic problem. In the last two decades, the idea of formulating (QP)
equivalently as a so called copositive optimization problem or its dual called
completely positive program was developed. These are convex programming
problems with conic constraints. A survey on them can be found in [16]. The
first completely positive reformulation and its dual, a copositive optimization
problem, is due to Bomze et al in [5] for the standard quadratic problem.
An efficient algorithm to solve the copositive reformulation of the standard
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quadratic problem is established by Bundfuss and Dür in [9], (see also [10]),
using iteratively polyhedral inner and outer approximations of the copositive
cone.

In [11], Burer established a general completely positive reformulation for
(QP ) restricted by equality constraints and even with binary constraints such
as in the quadratic knapsack problem (see Example 2.1.5). However unlike the
reformulation of the standard quadratic problem, in this reformulation, the
resulting completely positive optimization problem is in general not strictly
feasible and therefore, there may exist a nonzero duality gap, so that it is
not suitable to consider the dual problem, which is a copositive optimization
problem.

In this chapter, we consider the quadratic optimization problem with
inequality and mixed binary constraints. Our purpose is to construct for
this problem two kinds of equivalent completely positive optimization prob-
lems, which we call lifted problems, and to show that in many cases, their
corresponding dual problems are strictly feasible, so that strong duality holds.
The construction consists of two stages. At the first stage, we construct for
the given quadratic optimization problem two different equivalent quadratic
problems in two different spaces.

The second part of this chapter will deal with the lifting procedure of the
resulting quadratic problems into two different kinds of completely positive
optimization problems.

The duals of these completely positive optimization problems are then
constructed, and it is shown that, under some mild conditions, they are
strictly feasible.
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3.2 Quadratic Optimization Problem and Con-

cept of Lifted Problem

Consider the following quadratic optimization problem:

min xTQx

s.t. x ∈ F (QP ),
(QP)

where Q ∈ IRd×d is a real symmetric matrix, and F (QP ) is some nonempty
feasible set in IRd.

Define the following two sets:

C := conv{xxT : x ∈ F (QP )} (3.1)

R := conv{yyT : y ∈ recF (QP )}, (3.2)

where for each set D, rec(D) and conv(D) are the recession cone and the
convex hull of D, respectively. By definition, it is clear that the set R is a
convex cone in IRd×d.

Consider the optimization problem constructed from (QP):

min 〈Q,X〉
s.t. X ∈ C +R,

(CP)

which is called the lifted problem according to the original problem (QP).
Let F (CP ) denote the feasible set of the lifted problem (CP). The following
lemma is the basis of all lifting approaches considered in this thesis.

Lemma 3.2.1. Assume that an optimal solution x̄ of (QP) exists. Then the
problems (QP) and (CP) are equivalent in the sense that they have the same
optimal value, and any optimal solution X̄ of (CP) is a convex combination
of matrices xi(xi)T , where xi are optimal solutions of (QP).
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Proof. Let µ be the optimal value of Problem (QP) and γ be optimal value of
Problem (CP), respectively. If x̄ exists, then µ > −∞. This implies yTQy =
〈Q, yyT 〉 ≥ 0 for all y ∈ recF (QP ), since otherwise, from (x̄+ λy) ∈ F (QP )
for all λ ≥ 0 it would follow that

(x̄+ λy)TQ(x̄+ λy) = x̄TQx̄+ 2λx̄TQy + λ2yTQy → −∞ for λ→∞.

The matrix x̄x̄T is feasible for (CP), and therefore

γ ≤ 〈Q, x̄x̄T 〉 = µ.

On the other hand let

X̄ :=
k∑
i=1

λix
i(xi)T +

l∑
j=1

µjy
j(yj)T

be an optimal solution for (CP ), where x1, . . . , xk ∈ F (QP ), y1, . . . yl ∈
recF (QP ) and λ1, . . . , λk ≥ 0 with ∑k

i=1 λi = 1 and µ1, . . . , µl ≥ 0. Then we
have

µ ≥ γ = 〈Q, X̄〉

=
k∑
i=1

λi 〈Q, xi(xi)T 〉︸ ︷︷ ︸
≥〈Q,x̄x̄T 〉

+
l∑

j=1
µj〈Q, yj(yj)T 〉︸ ︷︷ ︸

≥0

≥ 〈Q, x̄x̄T 〉
k∑
i=1

λi = µ.

Therefore we have µ = γ. Furthermore it also implies that 〈Q, yj(yj)T 〉 = 0
for all j = 1, . . . , l and 〈Q, xi(xi)T 〉 = 〈Q, x̄x̄T 〉, i.e. xi is optimal for (QP) for
all i = 1, . . . , k.

Unlike the original Problem (QP) of minimizing a not necessarily convex
quadratic function over a not necessarily convex set, the lifted problem (CP) is
a convex optimization problem. Moreover, in many cases, (CP) is a completely



3.3. EQUIVALENT REPRESENTATIONS OF (QP) 49

positive programming problem. Therefore, as every local optimal solution
obtained by solving (CP) is a global one, we can obtain global optimal
solutions for (QP), by computing local optimal solutions of (CP).

Notice that, we do not try to remove the difficulties of (QP), but we shift
these difficulties into the feasible set F (CP ), whose representation depends
on the definition of the set F (QP ). More precisely, from a given problem
of type (QP), we try to construct some equivalent representations of the
feasible set F (QP ) which can then be lifted into suitable forms of feasible sets
F (CP ) of Problem (CP) so that the latter problem is a completely positive
optimization problem. This is the subject of the next section.

3.3 Equivalent Representations of (QP)

In what follows, we consider the case where the feasible set F (QP ) of Problem
(QP) is defined by linear and binary constraints, i.e. F (QP ) can be written
as

F (QP ) = P ∩ {x | xi ∈ {0, 1} for i ∈ B}, (3.3)

where B is the set of indices of binary variables, and P is a polyhedral subset
of the nonnegative orthant IRd

+. In general, P can be represented as the
intersection of a finite number of halfspaces, i.e.

P = {x ∈ IRd
+ | Bx ≤ b}, (3.4)

where B ∈ IRm×d and b ∈ IRm, furthermore we assume that there exists x ∈ P
such that Bx < b, i.e. there are no hidden equations in the system Bx ≤ b.

Below we present two equivalent representations of the set F (QP ) in IRn

with n := d + 1 and IRm+n, respectively, in such a way that the resulting
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quadratic problems can then be lifted into completely positive optimization
problems thereafter.

We begin with the equivalent representation of the set F (QP ) in IRd+1.

First, we add a redundant inequality of the form αTx ≤ 1 with α ∈ IRd
+ to

the system defining P ∩ {x | xi ≤ 1, i ∈ B}, i.e., it must fulfil that αTx ≤ 1
for all x ∈ P ∩ {x | xi ≤ 1, i ∈ B}.

Such a vector α always exists, and can be constructed in different ways.
Some important examples are given below.

Example 3.3.1. i) In any case for α = 0 we always have αTx ≤ 1 for
all x ∈ P ∩ {x | xi ≤ 1, i ∈ B}.

ii) Let B = ∅. If P is bounded, then the following pair of primal and dual
problems are solvable

max eTx

s.t. Bx ≤ b

x ≥ 0

min bTy

s.t. BTy ≥ e

y ≥ 0.

From the assumption that there exists an x̄ ≥ 0 such that Bx̄ < b, we
have P 6= {0}. And hence we have max{eTx | x ∈ P} > 0. Furthermore
by assumption that P 6= ∅ both problems above are feasible, and therefore
there exists ȳ ≥ 0 with BT ȳ ≥ e and bT ȳ > 0. In this case we choose
α := BT ȳ

ȳT b
> 0 and obtain for all x ∈ P

αTx = ȳTBx

ȳT b
≤ ȳT b

ȳT b
= 1 (3.5)

iii) If B 6= ∅, then choose any α fulfilling

 0 < αj ≤ 1/(n− 1), if j ∈ B,
αj = 0, else.
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Using the redundant constraint, we can write

P = {x ∈ IRn−1
+ | Bx ≤ b, αTx ≤ 1}. (3.6)

Once the redundant inequality αTx ≤ 1 is constructed, define a vector
a ∈ IRn and a matrix A ∈ IR(m+n)×n by

aT := (αT , 1) ∈ IRn, and A :=

baT − (B, 0)
In

 ∈ IR(m+n)×n, (3.7)

with In being the n×n identity matrix. Furthermore define the set Piq ⊂ IRn

by

Piq := {x ∈ IRn | Ax ≥ 0, aTx = 1}. (3.8)

And we have the following relationship between P and Piq.

Lemma 3.3.2. Let P and Piq be defined as above. Then we have

x ∈ P if and only if

 x

1− αTx

 ∈ Piq.
Proof. First let x ∈ P . Then 1− αTx ≥ 0 and

aT

 x

1− αTx

 = αTx+ 1− αTx = 1.

Furthermore we have

A

 x

1− αTx

 =

baT − (B, 0)
In


 x

1− αTx

 =


b−Bx x

1− αTx


 ≥ 0, (3.9)

i.e.

 x

1− αTx

 ∈ Piq.
To show the reverse inclusion let

 x

1− αTx

 ∈ Piq. Then it follows from (3.9)

that b−Bx ≥ 0 and x ≥ 0, i.e. x ∈ P .
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With this equivalent representation for P we obtain an equivalent repre-
sentation, denoted by F (QPiq), for the set F (QP ) in IRn.

F (QPiq) := {x ∈ IRn | Ax ≥ 0, aTx = 1, xi ∈ {0, 1}, i ∈ Biq}, (3.10)

where

Biq = B. (3.11)

To construct the next equivalent representation for F (QP ) we will intro-
duce an equivalent representation for F (QPiq). For this purpose we use the
fact that every inequality constraint can be written as an equality constraint
using a nonnegative slack variable. Let x ∈ F (QPiq) which implies that
Ax ≥ 0, i.e. (B, 0)x ≤ 1 and we have

(B, 0)x ≤ b if and only if s+ (B, 0)x = b for s ≥ 0.

Let

Pe :=


s
x

 ∈ IRm+n
+ | s+ (B, 0)x = b, 0T s+ aTx = 1


=


s
x

 ∈ IRm+n
+ | (Im, B, 0)

s
x

 = b, 0T s+ aTx = 1

 .
(3.12)

Define

cT := (0, . . . , 0, aT ) ∈ IRm+n,

C := (bcT − (Im, B, 0)) ∈ IRm×(m+n),

(3.13)

Note that

bcT =


b1c

T

...
bmc

T

 ∈ IRm×m+n.
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Then we have

Pe = {y ∈ IRm+n
+ | Cy = 0, cTy = 1}, (3.14)

Actually, we simply get Pe from Piq by using m nonnegative slack variables.
The equivalence between these two sets, Piq and Pe, is given in the following
lemma.

Lemma 3.3.3. Let Piq and Pe be defined as in (3.8) and (3.14), respectively.
Then

Ax ∈ Pe if and only if x ∈ Piq.

Proof. First, we show that for all y ∈ Pe there exists an x ∈ Piq such that

y = Ax. Therefore let y :=

s
x

 ∈ Pe. From y ≥ 0 it follows that x ≥ 0 and

s ≥ 0. Then by construction of c we have 1 = cTy = 0s + aTx = aTx, and
furthermore we have

0 = Cy = (bcT − (Im, B, 0))y = baTx− s− (B, 0)x,

therefore 0 ≤ s = (baT − (B, 0))x and it follows that

0 ≤ y =

(baT − (B, 0))
In

x = Ax, i.e. x ∈ Piq.

To show the other direction, let x ∈ Piq and y = Ax. Then, again by
construction we have

y ≥ 0, cTy = cTAx = (0, . . . , 0, aT )

baT − (B, 0)
In

x = aTx = 1.
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Furthermore, we have

Cy = C(Ax) = C

baT − (B, 0)
In

x = (bcT − (Im, B, 0))

b− (B, 0)x
x


= bcT

b− (B, 0)x
x

− (Im, B, 0)

b− (B, 0)x
x


= (0, baT )

b− (B, 0)x
x

− (Im, B, 0)

b− (B, 0)x
x


= baTx− (b− (B, 0)x+ (B, 0)x)

= b− b = 0,

which implies that y = Ax ∈ Pe.

Using the set Pe defined in (3.14), we obtain the following equivalent
representation of F (QP ) in IRm+n.

F (QPe) = {y ∈ IRm+n
+ | Cy = 0, cTy = 1, yi ∈ {0, 1} for i ∈ Be}, (3.15)

where the index set Be is defined as

Be := {i | i = m+ j, j ∈ B}. (3.16)

Remark 3.3.4. By construction of the index sets Biq and Be in (3.11) and
(3.16), respectively, it follows from Lemma 3.3.3 that

Ax ∈ F (QPe)⇔ x ∈ F (QPiq).

As seen above, from the given feasible set F (QP ) in IRd
+ of the original

mixed binary quadratic optimization problem (QP), we have constructed
two equivalent sets F (QPiq) in IRn and F (QPe) in IRm+n. As a result, we
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obtain the following two equivalent problems, denoted by (QPiq) and (QPe),
respectively.

min xTQiqx

s.t. x ∈ F (QPiq)
(QPiq)

with

Qiq :=

 Q 0
0T 0

 ∈ IRn×n, (3.17)

and
min yTQey

s.t. y ∈ F (QPe)
(QPe)

with

Qe :=

 0 0
0 Qiq

 ∈ IR(m+n)×(m+n). (3.18)

The next step of our purpose is to construct two lifting problems, (CPiq) and
(CPe), corresponding to (QPiq) and (QPe), respectively.

3.4 The Lifted Problems

3.4.1 Lifting of the feasible sets

The main task of lifting the problems (QPiq) and (QPe) into suitable matrix
spaces is the construction of lifted sets according to the feasible sets F (QPiq)
and F (QPe). The first lifting procedure was presented by Burer in [11] for
feasible sets of type F (QPe). Some modifications of this method are given by
Burer in [12] and Lieder in [22], in order to reduce the number of constraints
in the lifted problem. In [11] Burer stated that his lifting can not work for sets
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restricted by inequality constraints like F (QPiq), and suggested to formulate
F (QPiq) into F (QPe) by adding m slack variables. However this will increase
the dimension of the quadratic problem from n to n+m.

In this subsection, we first construct the lifted set directly for the set
F (QPiq), without using slack variables. A lifted set, in which only two linear
equality constraints are needed, is then given for the set F (QPe).

We start with lifting the set

F (QPiq) = {x ∈ IRn | Ax ≥ 0, aTx = 1, xi ∈ {0, 1} for i ∈ Biq}

as defined in (3.10). Clearly we have

recF (QPiq) = {x ∈ IRn | Ax ≥ 0, aTx = 0, xi = 0 for i ∈ Biq}.

Similar as Burer [11], we make the following key assumption:

For all i ∈ Biq, we assume that ai > 0 and that
0 ≤ xi ≤ 1 for all x ∈ IRn satisfying Ax ≥ 0, aTx = 1.

(3.19)

It is worth noting that the assumption (3.19) is immediately fulfilled for
the cases considered in Example 3.3.1 iii).

The following result is the basis for our first lifting approach.

Theorem 3.4.1. Let Ciq and Riq be defined by (3.1)–(3.2) according to
F (QPi), i.e.,

Ciq := conv{xxT : x ∈ F (QPiq)},

Riq := conv{xxT : x ∈ recF (QPiq)}.

Further, define an n× n matrix Biq by

Biq :=
∑
i∈Biq

1
2(ei(a− ei)T + (a− ei)(ei)T )
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with ei being the i-th unit vector for each index i. Then, under Assumption
(3.19), we have

Ciq +Riq =
{X ∈ CPn | 〈aaT , X〉 = 1, 〈Biq, X〉 = 0, AXAT ∈ CPm+n} =: Z.

(3.20)

Proof. We first show that Ciq + Riq ⊆ Z: To this end, take X ∈ Ciq and
Y ∈ Riq. Then there exist x1, . . . , xr ∈ F (QPiq) and λ1, . . . , λr ≥ 0 with∑r
k=1 λk = 1 as well as y1, . . . , yl ∈ recF (QPiq) and µ1, . . . , µl ≥ 0 such that

X =
r∑

k=1
λkx

k(xk)T and Y =
l∑

j=1
µjy

j(yj)T .

Then it is easy to see that aT (X + Y )a = 1, and for each k ∈ {1, ..., r} and
i ∈ Biq, the fact that xki ∈ {0, 1} implies

(ei)Txk(xk)T ei = [xk(xk)T ]ii = (xki )2 = xki = aTxk(xk)T ei,

whence (a− ei)TXei = 0.
Similarly, yji = 0 for j ∈ {1, ..., l} and i ∈ Biq implies that

(ei)Tyj(yj)T ei = 0 = aTyj(yj)T ei.

From this, we get
(a− ei)TY ei = 0,

and hence,
(a− ei)T (X + Y )ei = 0 for all i ∈ Biq,

which is a different way of writing 〈Biq, X + Y 〉 = 0.
Finally,

A(X + Y )AT =
r∑

k=1
λk (Axk)︸ ︷︷ ︸

≥0

(Axk)︸ ︷︷ ︸
≥0

T +
l∑

j=1
µj (Ayj)︸ ︷︷ ︸

≥0

(Ayj)︸ ︷︷ ︸
≥0

T ∈ CPm+n.
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Therefore, X + Y ∈ Z and the inclusion Ciq +Riq ⊆ Z is shown.
To show the reverse inclusion, take X ∈ Z. We append m zero rows and

columns to obtain a matrix

X̂ :=

X 0
0 0

 ∈ IR(n+m)×(n+m).

Likewise, we append to A any matrix D such that

Â := (A,D) ∈ IR(m+n)×(m+n)

is nonsingular, and we add m zeros to a to obtain â := (a, 0)T ∈ IRn+m. Note
that ÂX̂ÂT = AXAT ∈ CPm+n and âT X̂â = aTXa = 1.

Since ÂX̂ÂT ∈ CPm+n, there exist ẑ1, . . . , ẑr ∈ IRn+m
+ such that

ÂX̂ÂT =
r∑

k=1
ẑk(ẑk)T .

Define ŷk := Â−1ẑk for k = 1, . . . , r. Then clearly

Âŷk = ẑk ≥ 0 and X̂ =
r∑

k=1
ŷk(ŷk)T .

For any j = n + 1, . . . , n + m it follows from X̂jj = 0 that ŷkj = 0 for all
k = 1, . . . r. Let yk ∈ IRn denote the vector containing the first n components
of ŷk.

By construction,

X =
r∑

k=1
yk(yk)T and Ayk = Âŷk ≥ 0,

which implies by construction of

A =

baT − (B, 0)
In


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that yk ≥ 0 for all k. As a ≥ 0 by assumption, we have aTyk ≥ 0 for all k.
Define

K+ := {k ∈ {1, . . . , r} | aTyk > 0} and
K= := {k ∈ {1, . . . , r} | aTyk = 0}.

For k ∈ K+, let λk := aTyk > 0 and xk := 1
λk
yk. With this, we get that

X =
r∑

k=1
yk(yk)T =

∑
k∈K+

λ2
kx

k(xk)T +
∑
k∈K=

yk(yk)T . (3.21)

We now show that yk ∈ recF (QPiq) for all k ∈ K=, and xk ∈ F (QPiq) for all
k ∈ K+, as well as ∑k∈K+ λ2

k = 1. This will prove that X ∈ Ciq +Riq and
hence Z ⊆ Ciq +Riq, as desired.

For k ∈ K=, we have that aTyk = 0 and Ayk ≥ 0. For i ∈ Biq, Assump-
tion (3.19) and aTyk = 0 imply that yki = 0, so yk ∈ recF (QPiq).

To see that xk ∈ F (QPiq) for k ∈ K+, note that aTxk = 1
λk
aTyk = 1

and from λk > 0 and λkAx
k = Ayk = Âyk ≥ 0 it follows that Axk ≥ 0.

Using (3.21) we can rewrite the equation

〈Biq, X〉 =
∑
i∈Biq

(a− ei)TXei = 0

as

0 =
∑
i∈Biq

 ∑
k∈K+

λ2
k(a− ei)Txk(xk)T ei +

∑
k∈K=

(a− ei)Tyk (yk)T ei︸ ︷︷ ︸
=yk

i =0


=
∑
i∈Biq

∑
k∈K+

λ2
k

aTxk︸ ︷︷ ︸
=1

(xk)T ei − (ei)Txk(xk)T ei


=
∑
i∈Biq

∑
k∈K+

λ2
k

[
xki − (xki )2

]
Since by Assumption (3.19) we have 0 ≤ xki ≤ 1 for all i ∈ Biq and k ∈ K+,
the last equation holds true if and only if xki ∈ {0, 1} for all i ∈ Biq, k ∈ K+.
This shows that xk ∈ F (QPiq) for all k ∈ K+.
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Finally, we have

1 = aTXa =
r∑

k=1
aTyk(yk)Ta =

∑
k∈K+

λ2
k +

∑
k∈K=

(aTyk)︸ ︷︷ ︸
=0

2 =
∑
k∈K+

λ2
k,

which concludes the proof.

Example 3.4.2. In this example we will apply Theorem 3.4.1 to the multidi-
mensional quadratic knapsack problem. In Example 2.12 we only considered a
quadratic knapsack problem with one capacity constraint. In this example we
will lift a quadratic knapsack problem subject to multiple capacity constraints,
which is formulated as

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
x ∈ {0, 1}d,

(3.22)

where Q ∈ Sd, q ∈ IRd, ai ∈ IRd
+ for all i = 1, ...,m. In the first step we

will add a redundant inequality constraint to the problem. We are using the
definition for α proposed in Example 3.3.1 iii), i.e. αj := 1

d
for all j = 1, . . . , d.

Problem (3.22) can be written as

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
αTx ≤ 1
x ∈ {0, 1}d.

(3.23)

In the second step we add a slack variable s ≥ 0 to the constraint αTx ≤ 1
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and obtain

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
αTx+ s = 1
x ∈ {0, 1}d

s ≥ 0.

(3.24)

Define n := d + 1, a :=

α
1

 ∈ IRn
+ \ {0}, and q̄ := (qT , 0), then we obtain

the equivalent problem in IRn

min xT

Q 0
0T 0

x+ q̄Tx

s.t. ((ai)T , 0)x ≤ 1 i = 1, . . . ,m
aTx = 1
xi ∈ {0, 1} i = 1, ..., n− 1
xn ≥ 0.

(3.25)

In the next step we want to get rid of the linear term q̄Tx in the objective
function. From the constraint aTx = 1 it follows that

q̄Tx = xTaq̄Tx.

Therefore defining

Qiq :=

Q 0
0 0

+ 1
2(aq̄T + q̄aT ),

and we obtain

xT

Q 0
0 0

x+ (qT , 0)x = xTQiqx.
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Note that the matrix Qiq ∈ IRn×n is again symmetric. In general we cannot
assume that the system

((ai)T , 0)x ≤ 1 i = 1, . . . ,m
aTx = 1
xi ∈ {0, 1} i = 1, ..., n− 1
xn ≥ 0

implies that xi ≤ 1 for all i = 1, ..., n − 1, which is needed for the Key
Assumption 3.19, therefore we need to add the trivial constraints

0 ≤ xj ≤ 1 for all j = 1, . . . , n− 1.

With these constraints we obtain the following equivalent problem

min xTQiqx

s.t. ((ai)T , 0)x ≤ 1 i = 1, . . . ,m
(In−1, 0)x ≤ e

aTx = 1
x ≥ 0
xi ∈ {0, 1} i = 1, ..., n− 1.

(3.26)

Since ((ai)T , 0)x ≤ 1 is equivalent to 0 ≤ aTx︸︷︷︸
=1

−((ai)T , 0)x = (aT −((ai)T , 0))x

we define

A :=



(aT − ((a1)T , 0))
...

(aT − ((am)T , 0))
eaT − (In−1, 0)

In


∈ IR(m+n−1+n)×n.
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With this definition of A we can formulate Problem (3.22) equivalently as

min xTQiqx

s.t. Ax ≥ 0
aTx = 1
xi ∈ {0, 1} i = 1, ..., n− 1.

(3.27)

Note that Problem (3.27) fulfills the Key Assumption 3.19, hence we can apply
Theorem 3.4.1 to Problem (3.27) and obtain the equivalent completely positive
problem

min 〈Qiq, X〉
〈aaT , X〉 = 1
AXAT ∈ CPm+2n−1

〈B,X〉 = 0,

(3.28)

where B :=
n−1∑
i=1

1
2(ei(a− ei)T + (a− ei)(ei)T ) with e1, . . . , en−1 being the first

(n− 1) unit vectors of IRn.

We now present the method for lifting the set F (QPe) ⊂ IRm+n
+ . Recall

that F (QPe) is defined by

F (QPe) = {y ∈ IRm+n
+ | Cy = 0, cTy = 1, yi ∈ {0, 1} for i ∈ Be},

and the index set Be is defined in (3.16).
Here we also make the key assumption that

For all i ∈ Be, it holds ci > 0 and
0 ≤ yi ≤ 1 for all y ∈ IRm+n satisfying Cy = 0, cTy = 1,

(3.29)

which is also fulfilled immediately for the cases considered in Example 3.3.1
iii).
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Theorem 3.4.3. Let Ce and Re be respectively defined by (3.1)–(3.2) corre-
sponding to the set F (QPe), i.e.,

Ce := conv{yyT : y ∈ F (QPe)},

Re := conv{yyT : y ∈ recF (QPe)}.

Further, assume that (3.29) is fulfilled. Then we have

Ce +Re =
{Y ∈ CPm+n | 〈ccT , Y 〉 = 1, 〈CTC, Y 〉 = 0, 〈Be, Y 〉 = 0} =: Y ,

(3.30)

where
Be :=

∑
i∈Be

1
2(ei(c− ei)T + ((c− ei)(ei)T )

with ei being the i-th unit vector for each index i.

Proof. Let
Y =

r∑
k=1

yk(yk)T ∈ Y .

Since CTC is positive semidefinite, it follows that
r∑

k=1
(yk)TCTC(yk) = 〈CTC, Y 〉 = 0 if and only if

(Cyk)TCyk = 0, i.e. Cyk = 0 for all k.

Similar to the proof of Theorem 3.4.1, we define the sets

K+ := {k ∈ {1, . . . , r} | cTyk > 0} and
K= := {k ∈ {1, . . . , r} | cTyk = 0}.

For k ∈ K+, let λk := cTyk > 0 and ŷk := 1
λk
yk. Then again we have

Y =
r∑

k=1
yk(yk)T =

∑
k∈K+

λ2
kŷ

k(ŷk)T +
∑
k∈K=

yk(yk)T .

The statement of this theorem follows then analogously to the proof of
Theorem 3.4.1.
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Remark 3.4.4. In [11], Burer established for the set

F (QPe) = {x ∈ IRn
+ | Cx = 0, cTx = 1, xi ∈ {0, 1} for all i ∈ Be},

the following lifted set:

{X ∈ CPn | cTi Xci = 0, cTi Xc = 0, [Xc]j = Xjj ∀ j ∈ Be, cTXc = 1},

where cTi is the i-th row of C. In his representation, Burer needed 2m+ |Be|+1
linear constraints. In our representation, we modified Burer’s idea in such a
way that we only need three linear equations.

Example 3.4.5. Similar to Example 3.4.2 we can apply Theorem 3.4.3 to
the multidimensional quadratic knapsack problem

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
x ∈ {0, 1}d.

(3.31)

As mentioned in Example 3.4.2 the system (ai)Tx ≤ 1 for all i = 1, ...,m in
general does not imply that 0 ≤ xj ≤ 1 for all j = 1, ..., d. Therefore we need
to add these constraints to the inequality system, i.e.

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
xj ≤ 1 j = 1, ..., d
x ≥ 0
x ∈ {0, 1}d.

(3.32)

Next we add m+ d slack variables to transform the inequality constraints into
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equality constraints and obtain with q̄ :=

0
q

 ∈ IRm+2d

min xT

0 0
0 Q

x+ q̄x

s.t. ((eim+d)T , (ai)T )x = 1 i = 1, . . . ,m
((em+j

m+d)T , (e
j
d)T )x = 1 j = 1, ..., d

x ∈ IRm+2d
+

xj+m+d ∈ {0, 1} j = 1, ..., d,

(3.33)

where eim+d ∈ IRm+d is the i-th unit vector in IRm+d, ejd ∈ IRd is the j-th unit
vector in IRd. Next we want to add a redundant constraint cTx = 1 with c > 0.
It follows from

m∑
i=1

((eim+d)T , (ai)T )x+
d∑
j=1

((em+j
m+d)T , (e

j
d)T )x = m+ d,

that for

c := 1
m+ d

m∑
i=1

(eim+d)
(ai)

+
d∑
j=1

(em+j
m+d)
(ejd)

 ,
we have c > 0 and cTx = 1 is a redundant constraint. Define the matrices

Qe :=

0 0
0 Q

+ 1
2(cq̄T + q̄cT ) ∈ Sm+2d

and

C :=



cT − (e1
m+d)T , (a1)T )

...
cT − (emm+d)T , (am)T )
cT − (em+1

m+d)T , (e1
d)T )

...
cT − (em+d

m+d)T , (edd)T )


∈ IR(m+d)×(m+2d),
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and

Be :=
d∑
i=1

1
2(em+d+i(c− em+d+i)T + (c− em+d+i)(em+d+i)T ) ∈ IR(m+2d)×(m+2d).

Then we can write Problem (3.22) equivalently as

min xTQex

s.t. Cx = 0
cTx = 1
xTBex = 0
x ∈ IRm+2d

+ .

(3.34)

Using Theorem 3.4.3 we can formulate the equivalent completely positive
problem of Problem (3.34) as

min 〈Qe, X〉
s.t. 〈CTC,X〉 = 0

〈ccT , X〉 = 1
〈Be, X〉 = 0
X ∈ CPm+2d.

(3.35)

It is worth noting that, independent from the numbers of constraints and
variables in Problem (3.22), Problem (3.35) only has three linear equality
constraints and one complete positivity constraint.

We have constructed above two lifted sets Z = Ciq +Riq and Y = Ce +Re

by (3.20) and (3.30), respectively. The relationship between these liftings is
shown below.

Lemma 3.4.6. It holds that

X ∈ Z if and only if AXAT ∈ Y .
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Proof. Using Lemma 3.3.3 and Remark 3.3.4 we have the following equiva-
lences:

X ∈ Z ⇔ ∃x1, · · · , xr ∈ F (QPiq), y1, ..., yl ∈ recF (QPiq) :

X =
r∑

k=1
λk(xk)xk)T +

l∑
j=1

(yj)(yj)T , λk ≥ 0 ∀k,
r∑

k=1
λk = 1

⇔ ∃xk ∈ F (QPiq), yj ∈ recF (QPiq) :
Axk ∈ F (QPe) ∀k = 1, . . . , r, Ayj = 0;∀j = 1, ..., l
r∑

k=1
λk(Axk)(Axk)T +

l∑
j=1

(Ayj)(Ayj)T ∈ Ce +Re = Y

⇔ ∃x1, · · · , xr ∈ F (QPiq), y1, ..., yl ∈ recF (QPiq) :

A(
r∑

k=1
λk(xk)(xk)T +

l∑
j=1

(yj)(yj)T )AT ∈ Y

⇔ AXAT ∈ Y .

3.4.2 The Resulting Completely Positive Optimization

Problems

Now that we have representations for the feasible sets of the quadratic
problems (QPiq) and (QPe), we can reformulate these problems as completely
positive optimization problems as follows.

(CPiq)
min 〈Qiq, X〉
s.t. X ∈ Z

and (CPe)
min 〈Qe, Y 〉
s.t. Y ∈ Y ,

(3.36)

where the matrices Qiq and Qe are defined in (3.17) and (3.18), respectively.

Theorem 3.4.7. For quadratic Problems (QPiq), (QPe) considered in previ-
ous section and Problems (CPiq), (CPe) defined in (3.36) we have:

(i) min(QPiq) = min(CPiq) = min(CPe) = min(QPe),
where min(QPiq), min(CPiq), min(CPe) and min(QPe) are the optimal
values of the problems (QPiq), (CPiq), (CPe) and (QPe), respectively.
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(ii) Let X̄ ∈ Z with X̄ =
r∑
i=1

λi(x̄i)(x̄i)T , where
r∑
i=1

λi = 1,λi ≥ 0 and
x̄i ∈ F (QPiq) for all i. Then the following statements are equivalent:

(a) X̄ is optimal for Problem (CPiq).

(b) Ȳ := AX̄AT is optimal for Problem (CPe).

(c) ȳi := Ax̄i is optimal for Problem (QPe) for all i.

(d) x̄i is optimal for Problem (QPiq) for all i.

Proof. First, remember that from (3.7), (3.17) and (3.18) we have

A =

baT − (B, 0)
In

 ∈ IR(m+n)×n, Qiq =

Q 0
0 0

 ∈ IRn×n and

Qe =

0 0
0 Qiq

 ∈ IR(m+n)×(m+n).

Therefore, we have

ATQeA =

baT − (B, 0)
In


T 0 0

0 Qiq


baT − (B, 0)

In

 = Qiq. (3.37)

First, we prove (i): From Lemma 3.2.1, we have that
min(QPiq) = min(CPiq) and min(CPe) = min(QPe), and therefore we need
only show that min(QPiq) = min(QPe). For this, let x̄ be an optimal solution
of (QPiq). From Remark 3.3.4 we have Ax̄ ∈ F (QPe), which implies by (3.37)
that

min(QPiq) = x̄TQiqx̄ = x̄TATQeAx̄ ≥ min(QPe).

Conversely let ŷ be an optimal solution of (QPe). Then there exists a point
x̂ ∈ F (QPiq) such that ŷ = Ax̂. Thus,

min(QPe) = ŷTQeŷ = x̂TATQeAx̂ = x̂TQiqx̂ ≥ min(QPiq).
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Next, we prove (ii): From Lemma 3.2.1, we have (a)⇔ (d) and (b)⇔ (c).
We only need to show (c) ⇔ (d). For this, let x̄ be an optimal solution of
(QPiq). Then it follows from (3.37) that

x̄TQiqx̄ = x̄TATQeAx̄ = ȳTQeȳ,

which implies by (i) that ȳ is an optimal solution of (QPe). In order to show
the other direction, let ȳ be an optimal solution of (QPe). Then there exists
x̄ ∈ F (QPiq) such that ȳ = Ax̄ and we have, again by using (3.37), that

ȳTQeȳ = x̄TATQeAx̄ = x̄TQiqx̄,

which implies by (i) that x̄ is optimal solution of (QPiq).

3.5 The Duals of Resulting Completely Posi-

tive Problems and their Strict Feasibility

While the reformulation of the quadratic optimization problem as a completely
positive optimization problem is a theoretically important result with many
advantages, there is a catch, however: up to now, there do not exist any
practical approaches for solving completely positive problems in reasonable
time. As mentioned in the introduction and in Chapter 1, an efficient
method was developed in [9] to solve its dual problem, which is a copositive
optimization program. Unfortunately, unlike duality in linear optimization,
there can exist a non-zero duality gap in conic duality. In order to guarantee
strong duality for the primal-dual pair under consideration, we need either
the completely positive optimization problem or the copositive optimization
problem to be strictly feasible.

In what follows, we focus on finding strictly feasible formulations for
the copositive problems, which are the dual problems of (CPiq) and (CPe),
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respectively. These formulations have superior characteristics as they, on the
one hand, fulfill the conditions for strong duality and, on other hand, can
be solved by the algorithm developed in [9] for strictly feasible copositive
programs.

First we consider the problem

min 〈Qiq, X〉
s.t. 〈aaT , X〉 = 1

〈Biq, X〉 = 0
AXAT ∈ CPm+n.

(CPiq)

Note that

AXAT =

baT − (B, 0)
In

X
baT − (B, 0)

In


T

=

(baT − (B, 0))X(baT − (B, 0))T (baT − (B, 0))X
X(baT − (B, 0)) X

 ∈ CPm+n

also implies that X ∈ CPn. By using an additional variable Z = AXAT ∈
CPm+n we obtain the Lagrangian function

L(X,Z, U, λ, σ) = 〈Qiq, X〉+ 〈Z −AXAT , U〉+ λ(1− 〈aaT , X〉) + σ〈Biq, X〉.

Therefore, the dual problem of (CPiq), denoted by (D)iq, is

max
U,λ,σ

min
X,Z
〈Qiq, X〉+ 〈Z − AXAT , U〉+ λ(1− 〈aaT , X〉) + σ〈Biq, X〉

= max
U,λ,σ

{λ+ min
X,Z
{〈Qiq − ATUA− λaaT + σBiq, X〉+ 〈U,Z〉}},

where we optimize with respect to U ∈ Sm+n, λ, σ ∈ IR, X ∈ Sn and
Z ∈ CPm+n.

For given U, λ, σ, the conditions for

min
X,Z
{〈Qiq − ATUA− λaaT + σBiq, X〉+ 〈Z,U〉} > −∞ (3.38)
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are
Qiq − ATUA− λaaT + σBiq = 0 and 〈Z,U〉 ≥ 0.

Therefore, from Z ∈ CP it follows that U ∈ COP and the first condition
gives

Qiq − λaaT + σBiq = ATUA .

By construction A has full column rank. Denote A+ as the Moore-Penrose-
pseudoinverse of A, we have AA+ = In, and the equation above is equivalent
to

(A+)T (Qiq − λaaT + σBiq)A+ = U

Thus, the dual problem (Diq) can now be formulated as

max λ

s.t. (A+)T (Qiq − λaaT + σBiq)A+ ∈ COPn+m

λ ∈ IR, s ∈ IR

(Diq)

In general, there may or may not exist a strictly feasible point for (Diq),
therefore there can be a non-zero duality gap between (Diq) and (CPiq). In
this case the feasible set of (Diq) may be too small. We can restrict the feasible
set of the primal problem a bit more, by adding the constraint X ∈ CPn to
(CPiq), which gives the known formulation

min 〈Qiq, X〉
s.t. 〈aaT , X〉 = 1

〈Biq, X〉 = 0
AXAT ∈ CPm+n

X ∈ CPn

. (CPiq)

For the minimization problem in (3.38) to be solvable in this case we need

Qiq − ATUA− λaaT + σBiq ∈ COPn and U ∈ COPm+n.
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In this case the dual problem of (CPiq) is

max λ

s.t. Qiq − ATUA− λaaT + σBiq ∈ COPn
U ∈ COPm+n

λ ∈ IR, σ ∈ IR

(D’iq)

For the case considered in (3.5) where the key assumption (3.19) is fulfilled it is
easy to construct a strictly feasible point as follows. Choose Û ∈ int COPm+n.

Next, set σ̂ = 0. Then choose λ̂ < 0 (sufficiently negative) such that the
matrix

Qiq − AT ÛA− λaaT

has strictly positive entries. The point (Û , λ̂, 0) is then strictly feasible to
Problem (D′iq). As a result, we have strong duality, and moreover, we can, in
principle, apply the algorithm in [9] to solve the dual problem (D′iq). However,
since Problem (D′iq) contains two conic constraints, one needs some suitable
modifications while implementing the original algorithm. We will deal with
these modifications at another occasion.

Example 3.5.1. We want to give a strictly feasible copositive formulation of
Problem (3.22) and Problem (3.28). Recall the problems

min xTQx+ qTx

s.t. (ai)Tx ≤ 1 i = 1, . . . ,m
x ∈ {0, 1}d,

min 〈Qiq, X〉
s.t. 〈aaT , X〉 = 1

AXAT ∈ CPm+2n−1

〈Biq, X〉 = 0.

Then the copositive problem can be formulated as

max λ

Qiq − λaaT + σBiq + ATUA ∈ COPn
λ, σ ∈ IR
U ∈ COPm+2n−1.

. (3.39)
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Note that for the constraint

Qiq − λaaT + σBiq + ATUA ∈ COPn

we need Biq to be symmetric. The strict feasibility of Problem (3.39) is shown
as follows. Choose Û = eeT , i.e. Û ∈ int COPm+n. Furthermore, choosing
ŝ = 0 and λ̂ < 0 small enough we obtain the matrix Qiq − λ̂aaT +AT ÛA with
all positive entries, i.e.

Qiq − λ̂aaT + AT ÛA ∈ int COPn.

Notice that under some circumstances the original algorithm in [9] can
solve strictly feasible copositive programs with only one copositive variable
very efficiently. In order to use this advantage, the problem formulation (CPe)
could be considered as a good alternative. To this purpose, we formulate
Problem (CPe) explicitly as

min 〈Qe, X〉
s.t. 〈ccT , X〉 = 1

〈CTC,X〉 = 0
〈Be, X〉 = 0
X ∈ CPm+n.

(CPe)

By the same idea of construction as above, we obtain the following dual
problem of (CPe), which is a copositive program with only one copositive
variable:

max λ

s.t. Qe − λccT + σCTC + τBe ∈ COPm+n

λ, σ, τ ∈ IR.

(De)

In general, (De) is not strictly feasible. However since cTx = 1 is a
redundant equality constraint for (QPe), we can add another redundant
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constraint ĉTx = 1 with ĉ > 0 instead of cTx = 1 whenever the feasible set
of (QPe) is bounded. Let Ĉ be the corresponding matrix defined by (3.13),
then we obtain the equivalent problems

min 〈Qe, X〉
s.t. 〈ĉĉT , X〉 = 1

〈ĈT Ĉ,X〉 = 0
〈Be, X〉 = 0
X ∈ CPm+n

(CPe)

and its dual

max λ

s.t. Qe − λĉĉT + σĈT Ĉ + τBe ∈ COPm+n

λ ∈ IR, σ ∈ IR, τ ∈ IR.

(De)

In order to construct a strictly feasible point for (De), choose σ̂ = τ̂ = 0.
Then choose λ̂ < 0 (sufficiently negative) such that the matrix

Qe − λ̂ĉĉT

has strictly positive entries and hence Qe − λ̂ĉĉT ∈ int COPm+n. Then the
point (λ̂, σ̂, τ̂) is a strictly feasible point for (De).

Remark 3.5.2. Note that we wanted to solve the Problem (De) with the
algorithm from Bundfuss and Dür in [9]. Unfortunately the simplex partition
chosen in this paper is not exhaustive for these kinds of problems, therefore
convergence is not guaranteed. To find an exhaustive bisection rule is no easy
task and require some effort to establish such a exhaustive rule. Which we
will not cover in this thesis.
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Duality and Exact Penalty Method

4.1 Introduction

The subjects of this chapter are the following quadratic optimization problems:

min xTQx

s.t. Cx = 0
cTx = 1
x ≥ 0,

(P1)

and
min xTQx

s.t. xTAx ≤ b

cTx = 1
x ≥ 0,

(P2)

where Q ∈ Sn, C ∈ IRm×n, A ∈ COPn, b > 0, and c ∈ IRn
+ \ {0}.
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Our purpose consists of two points. Firstly, we construct the Lagrange
dual problem of an equivalent formulation of Problem (P1) and investigate
duality properties for the resulting primal-dual pair, including strong duality,
and secondly, following the obtained duality results, we develop an exact
penalty method for globally solving Problem (P2).

Two known special cases of Problem (P1) are the problem with the feasible
set Pe given in (3.14), and the standard quadratic problem, where m = 0.
The feasible set of Problem (P1) is one of the standard forms of polyhedral
sets used in interior point algorithms (e.g., in Karmarkar-type algorithms).
See Section 3.3 for how to obtain Problem (P1) from quadratic problems over
polyhedral sets.

4.2 Equivalent Form of Problem (P1) and its

Dual Problem

We notice that

Cx = 0⇔ (Cx)T (Cx) = 0,

and since c ≥ 0, it follows that cTx ≥ 0 for x ≥ 0.
Therefore, for x ≥ 0 we have

cTx = 1⇔ (xT c)(cTx) = 1.

Thus, we can formulate Problem (P1) equivalently as the following problem

min xTQx

s.t. xTCTCx = 0
xT ccTx = 1
x ≥ 0,

(QP)
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In the following, Problem (QP) is considered instead of Problem (P1).
We begin with the construction of the Lagrangian dual problem of (QP).

Proposition 4.2.1. The Lagrangian dual problem of the quadratic optimiza-
tion problem (QP) is the following copositive program:

max λ

Q− λccT + σCTC ∈ COPn
λ ∈ IR, σ ∈ IR.

(D)

Proof. The Lagrangian function for (QP) is:

L(x, λ, σ) = xTQx+ σ(xTCTCx) + λ(1− xT ccTx).

The Lagrangian dual problem has then the form

max
λ,σ∈IR

min
x≥0

{
xTQx+ σ(xTCTCx) + λ(1− xT ccTx)

}
=

max
λ,σ∈IR

{
λ+ min

x≥0

{
xTQx− λ(xT ccTx) + σ(xTCTCx)

}}
=

max
λ,σ∈IR

{
λ+ min

x≥0
xT
(
Q− λccT + σCTC

)
x
}
.

If for some λ̄, σ̄ ∈ IR, there is x̄ ≥ 0 such that

x̄T
(
Q− λ̄ccT + σ̄CTC

)
x̄ < 0,

then for every real number γ ≥ 0 , we also have

γx̄T
(
Q− λ̄ccT + σ̄CTC

)
γx̄ < 0.

Thus, it follows that

min
x≥0

xT
(
Q− λ̄ccT + σ̄CTC

)
x ≤

γx̄T
(
Q− λ̄ccT + σ̄CTC

)
γx̄−→ −∞ for γ → +∞.
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Moreover, note that for every pair

(λ, σ) ∈ IR2 satisfying xT
(
Q− λccT + σCTC

)
x ≥ 0 for all x ≥ 0,

we obtain
min
x≥0

xT
(
Q− λccT + σCTC

)
x = 0.

Therefore, the dual problem of (QP) is

max λ

xT
(
Q− λccT + σCTC

)
x ≥ 0 for all x ≥ 0

λ, σ ∈ IR,

which is by definition the copositive program (D).

Before investigating relationships between the primal-dual pair (QP) and
(D) in the the next sections, we present the following result, which is the basis
of an equivalent representation of the constraint system of Problem (D).

Proposition 4.2.2. Let c ∈ IRn
+. Then for a matrix B ∈ Sn we have

B ∈ COPn ⇔ xTBx ≥ 0 for all
x ∈

{
{x ∈ IRn

+ : cTx = 1} ∪ {x ∈ IRn
+ : cTx = 0}

}
.

(4.1)

Proof. The first direction follows immediately from the definition of copositive
matrices. To show the opposite direction, suppose that B /∈ COPn, i.e., there
exists y ∈ IRn

+ such that cTy 6= 0, cTy 6= 1 and yTBy < 0. Then, since c ≥ 0,
the point x = αy with α = 1

cT y
would satisfy x ∈ IRn

+, cTx = 1 and xTBx < 0,
a contradiction.

From Proposition 4.2.2, it follows that the constraint

Q+ σCTC − λccT ∈ COPn
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in Problem (D) is equivalently written as

xT (Q+ σCTC − λccT )x ≥ 0 for all
x ∈

{
{x ∈ IRn

+ : cTx = 1} ∪ {x ∈ IRn
+ : cTx = 0}

}
,

(4.2)

or in two groups of constraints:

λ ≤ xTQx+ σ(xTCTCx) for all x ≥ 0, cTx = 1
0 ≤ xTQx+ σ(xTCTCx) for all x ≥ 0, cTx = 0.

(4.3)

4.3 Necessary Conditions for Insolvability of

Problem (QP)

Proposition 4.3.1. We have the following relationship between Problems
(QP) and (D).

(i) If Problems (QP) is infeasible, then Problem (D) is either infeasible or
unbounded.

(ii) If Problem (QP) is unbounded, then Problem (D) is infeasible.

Proof. (i) Infeasiblity of (QP ) implies that for x ≥ 0, cTx = 1, we must
have Cx 6= 0. In view of (4.3), we can therefore write (D) equivalently
as

max λ

s.t. λ ≤ xTQx+ σ(xTCTCx), for all x ≥ 0, cTx = 1, Cx 6= 0
0 ≤ xTQx+ σ(xTCTCx), for all x ≥ 0, cTx = 0, Cx 6= 0
0 ≤ xTQx+ σ(xTCTCx), for all x ≥ 0, cTx = 0, Cx = 0.

If (D) is feasible, then clearly the third condition must be fulfilled, and
in this case it does not imply any restriction on λ and σ. In this case,
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we get from Cx 6= 0 that xTCTCx > 0, and hence

xTQx+ σ(xTCTCx)→∞ as σ →∞.

If follows that (D) is unbounded.

(ii) Assume that (QP ) is unbounded. Then there exists a descending
recession direction x̄ satisfying

x̄ ≥ 0, Cx̄ = 0, cT x̄ = 0, and x̄TQx̄ < 0.

Plugging x̄ into (4.3), x̄ generates the constraint

0 ≤ x̄TQx̄+ σ · 0.

Since x̄TQx̄ < 0, we see that this constraint cannot be satisfied, so (D)
is infeasible.

4.4 Necessary Conditions for Insolvability of

Problem (D)

For the investigation of further duality properties, we introduce the follow-
ing quadratic optimization problem, denoted by (PQPσ), which is defined
depending on a parameter σ ≥ 0:

min{xTQx+ σxTCTCx : xT ccTx = 1, x ≥ 0}. (PQPσ)

Proposition 4.4.1. Under the assumption that there exists σ̄ ≥ 0 such that
the problem (PQPσ̄) is solvable, we have the following relationship between
Problems (QP) and (D):
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(i) If Problem (D) is infeasible, then Problem (QP) is insolvable.

(ii) If Problem (D) is unbounded, then Problem (QP) is insolvable.

Proof. (i) Suppose that Problem (QP) is solvable. Define

λ̄ = min{xTQx+ σ̄xTCTCx : xT ccTx = 1, x ≥ 0}. (4.4)

We show that (λ̄, σ̄) is a feasible solution of Problem (D), which is a contra-
diction to the infeasibility of Problem (D).

It follows that

λ̄ ≤ xTQx+ σ̄xTCTCx for all x ≥ 0, cTx = 1. (4.5)

Moreover,

0 ≤ xTQx+ σ̄xTCTCx for all x ≥ 0, cTx = 0, (4.6)

since otherwise, there exists a descending recession direction x̄ satisfying

x̄ ≥ 0, cT x̄ = 0, x̄TQx̄+ σ̄x̄TCTCx̄ < 0,

contradicting the existence of λ̄ in (4.4). The systems (4.5) and (4.6) imply
that (λ̄, s̄) satisfies (4.3) and hence it is a feasible solution of Problem (D).

(ii) Suppose Problem (QP) is solvable. Then, as the constraint system
(4.3) of (D) contains the following constraint group

λ ≤ xTQx for all x satisfying x ≥ 0, cTx = 1, Cx = 0,

it follows that

λ ≤ min{xTQx : Cx = 0, cTx = 1, x ≥ 0}.

Since the right hand side equals the optimal value of (QP) this is a contra-
diction to the unboundedness of (D).
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4.5 Main Duality Properties

We are now in a position to present the main duality properties of the primal-
dual pair (QP) and (D). For this, let ε > 0 be any given real number and
consider the following quadratic problem

min xTQx

s.t. xTCTCx ≤ ε

xT ccTx = 1
x ≥ 0,

(QPε)

which is a perturbation problem of (QP) by using the perturbation parameter
ε > 0 for the constraint xTCTCx = 0.

Theorem 4.5.1. Under the assumption that there exists σ̄ ≥ 0 such that
Problem (PQPσ̄) is solvable, we have the following duality properties of the
primal-dual problem pair (QP) and (D).

(dp1) For every feasible solution x of Problem (QP) and every feasible solution
(λ, σ) of Problem (D) we have

λ ≤ xTQx. (4.7)

(dp2) Problem (QP) is solvable if and only if Problem (D) is solvable. In this
case, the following holds true for every ε > 0:

min(QPε) ≤ max(D) ≤ min(QP ). (4.8)

Proof.(dp1) Let x be any feasible solution of Problem (QP) and (λ, σ) any
feasible solution of Problem (D). Then, as xTCTCx = 0, xT ccTx =
1, x ≥ 0 in (D), and (λ, σ) fulfills the constraint

λ(cTx)2 ≤ xTQx+ σ(xTCTCx)
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in (D), it follows that

λ ≤ xTQx.

(dp2) From Proposition 4.3.1 and Proposition 4.4.1, it follows that Problem
(QP) is solvable if and only if Problem (D) is solvable.

To show the property (4.8), let (λ∗, σ∗) be an optimal solution of Problem
(D) with optimal value λ∗. Then from Assertion (dp1), it follows that

λ∗ ≤ xTQx for all x satisfying xTCTCx = 0, xT ccTx = 1, x ≥ 0,

or

λ∗ ≤ min{xTQx : xTCTCx = 0, xT ccTx = 1, x ≥ 0}

= min(QP ),
(4.9)

which is the right inequality in (4.8). For the left inequality in (4.8),
notice that as (QP) is solvable, (QPε) is feasible. If (QPε) is unbounded,
the left inequality is fulfilled trivially. Now let (QPε) be solvable.
Furthermore, let x̄ be an optimal solution of Problem (PQPσ̄) and
define

λε := min(QPε),

σε := 1
ε
(λε −min(PQPσ̄)).

(4.10)

For σε < 0, i.e. λε < min(PQPσ̄) consider the following problems:

min 〈Q+ σ̄CTC,X〉
s.t. 〈ccT , X〉 = 1

X ∈ CPn,

(CPσ̄)
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and

max λ

s.t. (Q+ σ̄CTC)− λccT ∈ COPn
λ ∈ IR.

(Dσ̄)

Then Problem (CPσ̄) is the completely positve reformulation of (PQPσ̄)
and Problem (Dσ̄) its copositve dual. Since (PQPσ̄) contains only one
equality constraint, we have that (CPσ̄) is strictly feasible and hence
strong duality with

min (CPσ̄) = max (Dσ̄).

Furthermore we have max (Dσ̄) ≤ max (D), and it follows that

min (QPε) = λε < min(PQPσ̄) = max (Dσ̄) ≤ max (D). (4.11)

In case σε ≥ 0, we have

λε = σεε+ min(PQPσ̄)

= σεε+ x̄TQx̄+ σ̄x̄TCTCx̄

≤ xTQx+ σ̄xTCTCx+ σεε for all x ≥ 0 satisfying
xT ccTx = 1

≤ xTQx+ (σ̄ + σε)xTCTCx for all x ≥ 0 satisfying
xT ccTx = 1, xTCTCx ≥ ε,

(4.12)
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and on the other hand, as σxTCTCx ≥ 0 for all σ ≥ 0 and for all x:

λε = min(QPε)

≤ xTQx for all x ≥ 0 satisfying
xT ccTx = 1, xTCTCx ≤ ε

≤ xTQx+ (σ̄ + σε)xTCTCx for all x ≥ 0 satisfying
xT ccTx = 1, xTCTCx ≤ ε.

(4.13)

From the assumption that (PQPσ̄) is solvable, there exists no vector
xσ̄ ≥ 0 with xTσ̄ cc

Txσ̄ = 0 such that

xσ̄Qxσ̄ + σ̄xTσ̄CC
Txσ̄ < 0,

i.e. xσ̄ is a descending recession direction of (PQPσ̄). Hence for all
x ≥ 0 with xT ccTx = 0 we have

0 ≤ xTQx+ (σ̄ + σε)xTCTCx (4.14)

In sum, the inequalities (4.12)-(4.14) imply that (λε, (σ̄ + σε)) fulfills
System (4.3), i.e., it is a feasible solution of Problem (D) and hence we
have

min(QPε) = λε ≤ max (D). (4.15)

Finally, from (4.9),(4.11) and (4.15), we obtain (4.8).

The next result gives us another duality property by using the problem
(PQPσ).

Theorem 4.5.2. Under the assumption that the Problems (PQP0), (QP) and
(D) are solvable, we have the following duality property of the primal-dual
problem pairs (QP) and (D):
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(dp3) For given ε > 0 there exists σε > 0 such that for all σ ≥ σε we have

min(PQPσ) ≤ max (D) ≤ min (QP). (4.16)

Proof. From Assertion (dp2) of Theorem 4.5.1, the right inequality follows
immediately. To show the left inequality, we show that for given ε > 0 there
exists σε > 0 such that for all σ ≥ σε we have

min(PQPσ) = min(QPε).

Note that Problem (PQP0) has the form

min{xTQx : xT ccTx = 1, x ≥ 0}.

We can assume without loss of generality that

min(QPε) > min(PQP0), (4.17)

since otherwise both problems (QPε) and (PQP0) are equivalent.
From the solvability of Problems (QP) and (PQP0), it follows that Problem

(QPε) is solvable for every given ε > 0. For given ε > 0 let define

λε = min(QPε),

σε = 1
ε
(λε −min(PQP0)).

(4.18)

From (4.17) we have σε > 0, and from (4.18) it follows for every σ ≥ σε that

λε ≤ min(PQP0) + σε.

Thus, for every λ ≤ λε we have on the one hand

λ ≤ λε ≤ xTQx+ σxTCTCx

for all x ≥ 0 satisfying xT ccTx = 1, xTCTCx ≥ ε,
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and on the other hand, as σxTCTCx ≥ 0 for all x ≥ 0,

λ ≤ λε ≤ xTQx+ σxTCTCx

for all x ≥ 0 satisfying xT ccTx = 1, xTCTCx ≤ ε.

Therefore, we obtain that for all σ ≥ σε, we have

min(QPε) = λε

= max{λ : λ ≤ xTQx+ σxTCTCx for all x ≥ 0 satisfying
xT ccTx = 1, λ ∈ IR}

= min{xTQx+ σxTCTCx : x ≥ 0, xT ccTx = 1}

= min(PQPσ).

The following result gives us a strong duality property of the pair (QP)-(D).

Theorem 4.5.3. Assume that c > 0, i.e., ci > 0, i = 1, ..., n, and Problem
(QP ) is solvable. Then we have strong duality property for the pair (QP)-(D),
i.e.,

min (QP) = max (D).

Proof. From c > 0 it follows that (PQP0) is solvable and from (QP) is feasible
it follows from Theorem 4.5.1 that (D) is feasible and for ε > 0 we have

min(QPε) ≤ max (D) ≤ min (QP).

For the strong duality property, denote by

ϕ : IR+ → IR, ϕ(ε) := min(QPε)

the optimal value function of the parametric optimization problem (QPε).
Since c > 0, the set

{x ∈ IRn : xT ccTx = 1, x ≥ 0}
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is compact. Thus, since the quadratic function xTQx is continuous and
Problem (QP0) (i.e., (QP)) is solvable, it follows that the function ϕ is both
upper and lower semicontinuous at 0 (see Corollary 4.2.1.1 and Theorem 4.2.2
in [2]), which implies that

ϕ(ε)→ ϕ(0) = min (QP) as ε→ +0.

From (4.8), it follows then max (D) = min (QP).

Remark 4.5.4. (i) Theorem 4.5.1 and Theorem 4.5.2 provide computable
duality gaps between the primal and dual problems (QP) and (D).

(ii) Theorem 4.5.3 provides a direct reformulation of the quadratic optimiza-
tion problem (P1) into a copositive program. By taking the dual of the
resulting copositive program, we obtain a completely positive program
reformulation of Problem (P1).

4.6 An Exact Penalty Algorithm for Solving

Problem (P2)

Following the duality results obtained above, we develop an exact penalty
method for solving Problem (P2), which is written as

min{xTQx : xTAx ≤ b, cTx = 1, x ≥ 0}, (P)

where Q ∈ Sn, A ∈ COPn, b > 0, and c ∈ IRn
+. Notice that the problem class

(P) contains Problem (QPε) as a special case where A = CTC and b = ε.
According to (P) we construct the following penalized problem by using

the penalty function σxTAx with the penalty parameter σ > 0:

min{xTQx+ σxTAx : cTx = 1, x ≥ 0}. (PPσ)
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The following result provides an exact penalty method for globally solving
Problem (P).

Theorem 4.6.1. Assume that Problem (P) as well as Problem

min{xTQx : cTx = 1, x ≥ 0}, (SP)

are solvable. Moreover, assume that the constraint xTAx ≤ b is essential for
Problem (P), i.e.,

min (P) > min (SP). (4.19)

Then there exists σ̄ > 0 such that for all σ ≥ σ̄ we have

(i)

min (P) = min (PPσ); (4.20)

(ii) Every optimal solution xσ of Problem (PPσ) satisfies

(xσ)TAxσ ≤ b.

Proof. (i) Define

λ̄ := min (P),

σ̄ := 1
b
(λ̄−min (SP)).

(4.21)

From (4.19) we have σ̄ > 0, and from (4.21) it follows for every σ ≥ σ̄ that

λ̄ ≤ min (SP) + σb.

Thus, for every λ ≤ λ̄ we have on the one hand

λ ≤ λ̄ ≤ xTQx+ σxTAx for all x ≥ 0 satisfying cTx = 1, xTAx ≥ b,
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and on the other hand, as σxTAx ≥ 0 for all x ≥ 0,

λ ≤ λ̄ ≤ xTQx+ σxTAx for all x ≥ 0 satisfying cTx = 1, xTAx ≤ b.

Therefore, we obtain that for all σ ≥ σ̄ we have

λ̄ = max{λ : λ ≤ xTQx+ σxTAx for all x ≥ 0 satisfying
cTx = 1, λ ∈ IR}

= min{xTQx+ σxTAx : x ≥ 0, cTx = 1}

= min(PPσ).

(ii) To show this assertion, suppose that (xσ)TAxσ > b, i.e.,

(xσ)TAxσ
b

> 1.

Then from (4.21) and Assertion (i) we have

λ̄ = (xσ)TQxσ + σ(xσ)TAxσ

≥ (xσ)TQxσ + (λ̄−min(SP ))
b

(xσ)TAxσ

> (xσ)TQxσ + (λ̄−min (SP))

= λ̄+ ((xσ)TQxσ −min (SP))

≥ λ̄,

which is a contradiction. Note that the last inequality follows from the fact
that xσ is feasible for (SP ), and hence

(xσ)TQxσ −min (SP) ≥ 0.
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In particular, we consider the case where in Problem (P), the vector c
satisfies c > 0, i.e., ci > 0, i = 1, · · · , n.

Let ∆c be the simplex defined by

∆c := {x ∈ IRn : cTx = 1, x ≥ 0}. (4.22)

Then the problem (PQP0) is

min{xTQx : x ∈ ∆c}, (4.23)

which is clearly solvable.
For a given ε > 0, the problem (QPε) is

min{xTQx : xTCTCx ≤ ε, x ∈ ∆c}. (4.24)

From Theorem 4.6.1, there exists σε ≥ 0 such that Problem (4.24) can be
replaced by the problem (PPσ)

min{xT (Q+ σCTC)x : x ∈ ∆c}, (4.25)

with σ ≥ σε. Problem (4.25) belongs to the problem class considered in
Chapter 2, and can be solved by the algorithm given there. From the proof
of Theorem 4.5.1 we can construct a σ ≥ σε. For this define

λε := min(QPε),
σε := 1

ε
(λε −min(PP0)).

For computational efficiency we do not need to exactly compute σε. It suffice
to obtain a feasible point λ of (QPε) and a good lower bound µ for (PP0)
and define σ := 1

ε
(λ− µ). Clearly we have σ ≥ σε.
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Conclusions and Outlook

In this final chapter we address the questions ”What have we done in this
thesis?” (Section 5.1) and ”What remains open for future research?” (Section
5.2).

5.1 Summary

In this thesis, we have done the following.

Chapter 1 introduces notations and background knowledge required
in this thesis. All symbols and spaces are listed in Subsection 1.2.1. The
definitions of the copositive and completely positive cone was introduced in
Subsection 1.2.2. Subsection 1.2.3 and 1.2.4 was devoted to the copositive
and completely positive programs and their duals. Finally in Subsection 1.2.5,
known algorithms to solve copositive problems were discussed.

In Chapter 2, based on Lemma 2.4.1 that optimal solutions of a non
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convex quadratic optimization problem over a compact convex set can be
obtained on the boundary of the feasible set, a finite algorithm to solve
quadratic optimization problems over the origin simplex was established. An
implementation of the algorithm in C++ and the comparison of the numerical
results for some chosen problems were performed.

The main subject of Chapter 3 was to reformulate general quadratic
optimization problems as completely positive problems similar to the case of
the Standard Quadratic Problem considered in [5]. The resulting problems
were called lifted problems which are in general convex programs with matrix
variables and conic constraints. The general concept of constructing lifting
problems was discussed in Subsection 3.2. Subsection 3.3 was devoted to
an equivalent reformulation of the feasible set of a given general quadratic
optimization problem, which is suitable to be lifted into the space of completely
positive cone. In Subsection 3.4, two lifted completely positive representations
for general quadratic optimization problems were constructed, one for quadratic
optimization problems restricted by inequalities and the other one for equality-
restricted quadratic optimizations problems. Subsection 3.5 was concerned
with the copositive duals of the completely positive problems introduced in
Subsection 3.4 and the question of strong duality for primal-dual problem
pairs, i.e. strict feasibility of the primal or/and the dual problem.

We have taken the multidimensional knapsack problem as an example for
performing our reformulation technique.

In Chapter 4, we were concerned with two topics: duality and penalty
method for respectively two classes of quadratic optimization problems. For
the first class, which contains standard forms of polyhedral sets as special
cases, we constructed the Lagrange dual problem and investigated different
duality properties including strong duality for the resulting primal-dual pair.
Following these results, we developed an exact penalty method for solving
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another problem class, which is a generalized form of a perturbation problem
of the first class. Using this penalty method, we can solve the latter class by
applying the algorithm given in Chapter 2.

To sum up, the novelties of this thesis are as follows:

• In Chapter 2, a new finite algorithm to solve a quadratic optimization
problem over the origin simplex has been established (Algorithm 5).
Preliminary computational results show that this algorithm can work
well for problems of moderate dimensions.

• In Chapter 3, completely positive program representations for respec-
tively two classes of quadratic problems were constructed. The first
class contains inequality constrains (Theorem 3.4.1), while the second
one contains equality constraints (Theorem 3.4.3). For both cases, the
resulting completely positive program contains only one conic constraint.
Two copositive dual problems were respectively formulated for two re-
sulting completely positive problems, and one condition for the case of
strong duality was given (Subsection 3.5).

• In the first part of Chapter 4, Lagrangian dual of a wide class of
quadratic problem over polyhedral set and duality properties including
strong duality were presented. These results provide on the one hand
computable duality gaps between the primal and dual problems, and
on the other hand, a direct reformulation of the primal problem into a
copositive program.

An exact penalty method for a special class of quadratic problems was
developed in the second part of Chapter 4. As a result, the algorithm
given in Chapter 2 can be used for solving the standard quadratic
problem with an additional quadratic constraint.
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5.2 Future Work

The following research topics are subjects of our next works:
1. To investigate whether the results obtained in Chapter 4 can be

generalized for quadratic optimization problems of the form

min xTQx

s.t. Cx = 0
xTAix = bi, i = 1, ...,m
cTx = 1
x ≥ 0,

(QP)

where Q ∈ Sn, C ∈ IRm×n, Ai ∈ Sn, and c ∈ IRn
+ \ {0}.

In particular, to investigate the relationships between problem (QP) and
the following copositive program

max λ+
m∑
i=1

biβi

s.t. Q− λccT + δC −∑m
i=1 βiAi ∈ COPn

λ, δ ∈ IR, β = (β1, · · · , βm) ∈ IRm.

(COP)

2. To develop algorithms for solving Problem (COP) and its dual based
on following ideas:

2.a. Solving Problem (COP) and its dual simultaneously within a frame-
work of primal-dual algorithms.

2.b. Solving Problem (COP) by an outer approximation method using
the algorithm given in Chapter 2 for checking copositivity of matrices.
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