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Preface

In this work, we will consider discrete dynamical systems (X,T ) which consist of a state

space X and a linear operator T acting on X. Given a state x ∈ X at time zero, its

state at time n is determined by the n-th iteration

T nx = (T ◦ ... ◦ T )x (n times).

We are interested in the long-term behaviour of this system, that means we want to

know how the sequence (T nx)n∈N behaves for increasing n and x ∈ X.

In the first chapter, we will sum up the relevant definitions and results of linear dynamics.

In particular, in topological dynamics the notions of hypercyclic, frequently hypercyclic

and mixing operators will be presented. In the setting of measurable dynamics, the

most important definitions will be those of weakly and strongly mixing operators.

If Ω is an open set in the (extended) complex plane containing 0, we can define the

Taylor shift operator on the space H(Ω) of functions f holomorphic in Ω as

Tf(z) =
f(z)− f(0)

z
(z 6= 0), T f(0) = f ′(0).

In the second chapter, we will start examining the Taylor shift on H(Ω) endowed with

the topology of locally uniform convergence. Depending on the choice of Ω, we will study

whether or not the Taylor shift is weakly or strongly mixing in the Gaussian sense.

Next, we will consider Banach spaces of functions holomorphic on the unit disc D. The

first section of this chapter will sum up the basic properties of Bergman and Hardy

spaces in order to analyse the dynamical behaviour of the Taylor shift on these Banach

spaces in the next part. In the third section, we study the space of Cauchy transforms



ii

of complex Borel measures on the unit circle first endowed with the quotient norm of

the total variation and then with a weak-∗ topology. While the Taylor shift is not even

hypercyclic in the first case, we show that it is mixing for the latter case.

In Chapter 4, we will first introduce Bergman spaces Ap(Ω) for general open sets Ω

and provide approximation results which will be needed in the next chapter where we

examine the Taylor shift on these spaces on its dynamical properties. In particular, for

1 ≤ p < 2 we will find sufficient conditions for the Taylor shift to be weakly mixing

or strongly mixing in the Gaussian sense. For p ≥ 2, we consider specific Cauchy

transforms in order to determine open sets Ω such that the Taylor shift is mixing on

Ap(Ω). In both sections, we will illustrate the results with appropriate examples.

Finally, we apply our results to universal Taylor series. The results of Chapter 5 about

the Taylor shift allow us to consider the behaviour of the partial sums of the Taylor

expansion of functions in general Bergman spaces outside its disc of convergence.
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Müller for supporting me during the last years and sharing his knowledge and many

ideas with me. I really appreciated his valuable advice and his patience. Furthermore, I

thank Prof. Dr. Karl Grosse-Erdmann for kindly accepting to be second supervisor to

this thesis. For their financial support, I would like to acknowledge the Ada-Lovelace-

Projekt and the Algorithmic Optimization Research Training Group. Moreover, I thank

my colleagues at the University of Trier for the pleasant working atmosphere. Last, but

certainly not least, I want to thank my family, in particular my parents, for always

believing in me. I could not have wished for greater support.
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Chapter 1

Preliminaries

1.1 Basic Definitions and Results from Linear Dy-

namics

In this work, we want to examine a specific operator on its dynamical properties, i.e.

we want to see how the iterates of the operator behave. Note that if we speak of an

operator, it will always be linear and continuous. For an operator T : X → X on a

topological vector space X, we call the pair (X,T ) a dynamical system. Furthermore,

for a topological vector space X and A ⊂ X, we denote by clX(A) = cl(A) the closure of

A in X and by intX(A) = int(A) the interior of A. As usual, we say that A is dense in

X if its closure equals X. In this chapter, we want to give an overview of the notions of

linear dynamics which will be important to us in the course of this thesis. If not stated

otherwise, the following definitions and results can be found in [3] and [22].

Definition 1.1.1. Let T be an operator T : X → X on a separable topological vector

space X.

1. T is called hypercyclic if there exists some vector x ∈ X such that the orbit

orb(x, T ) := {T nx : n ∈ N0} is dense in X.

2. T is called frequently hypercyclic if there exists some x ∈ X such that for every

non-empty open set U ⊂ X

dens{n ∈ N0 : T nx ∈ U} > 0
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where the lower density of a subset A ⊂ N0 of the non-negative integers is defined

by

dens(A) := lim inf
N→∞

|{0 ≤ n ≤ N : n ∈ A}|
N + 1

.

3. A vector x ∈ X is called a periodic point of X if there exists some n ∈ N such that

T nx = x. Then T is chaotic if it is hypercyclic and has a dense set of periodic

points.

Remark 1.1.2. An equivalent formulation of hypercyclicity and frequent hypercyclicity

shows the difference between the two concepts: A vector x ∈ X is frequently hypercyclic

for T if and only if, for any non-empty open subset U of X, there is a strictly increasing

sequence (nk)k∈N of positive integers such that

T nkx ∈ U for all k ∈ N, and nk = O(k).

In contrast, for a vector x to be hypercyclic, the sequence does not necessarily have to

be of order O(k). This also shows that frequent hypercyclicity is stronger than mere

hypercyclicity.

A subset of a complete metric space X is called nowhere dense if the interior of its

closure is empty. A set is of first Baire category if it is a countable union of nowhere

dense sets and it is called residual if its complement is of first Baire category. Finally, we

say that a property holds for generically many elements of X if the property is satisfied

on a residual set in the space.

Remark 1.1.3. In [30, Theorem 1] the author showed for a frequently hypercyclic op-

erator T on a complex separable Fréchet space X that the set of frequently hypercyclic

vectors is always of first Baire category in X. This also distinguishes frequent hyper-

cyclicity from hypercyclicity because for a hypercyclic operator T the set of hypercyclic

vectors is residual.

Definition 1.1.4. Let T be an operator on a topological vector space X.

1. T is called (topologically) transitive if, for any pair U , V of non-empty open subsets

of X, there exists some n ≥ 0 such that

T n(U) ∩ V 6= ∅.
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2. T is called (topologically) mixing if, for any pair U , V of non-empty open subsets

of X, there exists an integer N ≥ 0 such that

T n(U) ∩ V 6= ∅ for all n ≥ N.

T is called weakly mixing if T × T is topologically transitive on X ×X.

Remark 1.1.5. The Birkhoff transitivity theorem (see e.g. [22, Theorem 2.19]) states

that an operator T on a Fréchet space X is hypercyclic if and only if it is topologically

transitive. This implies that topologically mixing is a stronger notion than hypercyclic-

ity.

In Chapter 6 we want to apply the results of the prior chapters to partial sums of Taylor

series. Therefore, we briefly introduce the concept of universality.

Definition 1.1.6. Let X and Y be metric spaces and let Tn : X → Y , n ∈ N0 be a

sequence of continuous maps.

1. An element x ∈ X is called universal for (Tn)n∈N0 if its orbit orb(x, (Tn)n∈N0) :=

{Tnx : n ∈ N0} is dense in Y .

2. (Tn)n∈N0 is called (topologically) transitive if, for any pair U ⊂ X and V ⊂ Y of

non-empty open sets, there is some n ≥ 0 such that

Tn(U) ∩ V 6= ∅,

and along the same lines as before, it is called (topologically) mixing if the same

holds for all n sufficiently large. Furthermore, (Tn)n∈N0 is called weakly mixing if

(Tn × Tn)n∈N is topologically transitive on X ×X.

3. If (Tn)n∈N0 has universal elements, then the set of those elements is called alge-

braically generic if it contains a dense vector subspace except 0.

In the case of universality we get a result similar to the Birkhoff transitivity theorem.

Theorem 1.1.7 (Universality Criterion). Let X be a complete metric space, Y a sep-

arable metric space and Tn : X → Y , n ∈ N0 continuous maps. Then the following

assertions are equivalent:
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1. (Tn)n∈N0 is topologically transitive,

2. to every x ∈ X and y ∈ Y , there exist sequences (xk)k∈N in X and (nk)k∈N in N0

such that

xk → x and Tnkxk → y (k →∞),

3. there exists a dense set of points x ∈ X such that orb(x, (Tn)n∈N) is dense in Y .

If one of these conditions holds, then there are generically many elements in X with

dense orbit.

Remark 1.1.8. Let T : X → X be an operator on a separable Fréchet space X. T is

called hereditarily hypercyclic with respect to (nk)k∈N if for each subsequence (mk)k∈N of

(nk)k∈N, there is some x ∈ X such that {Tmkx : k ∈ N} is dense in X. By the theorem

of Bès-Peris (see e.g. [22, Theorem 3.15]), we know that T is weakly mixing if and

only if it is hereditarily hypercyclic with respect to some increasing sequence of positive

integers. Along the same lines, T is topologically mixing if and only if it is hereditarily

hypercyclic with respect to the full sequence (n)n∈N (see e.g. [22, Exercise 3.2.3]).

An easy way to show that an operator is frequently hypercyclic or mixing is by trans-

forming it to another operator of which we already know that it has the desired property.

Definition 1.1.9. For two dynamical systems T : X → X and S : Y → Y , T is called

quasiconjugate to S (or T is a factor of S) if there exists a continuous map φ : Y → X

with dense range such that T ◦ φ = φ ◦ S, i.e. the diagram

Y S //

φ
��

Y

φ
��

X
T
// X

commutes. If φ can be chosen to be a homeomorphism then S and T are called conjugate.

Remark 1.1.10. Hypercyclicity, frequent hypercyclicity and the mixing property are

preserved under quasiconjugacy (see e.g. [22]). That means, if a dynamical system

S : Y → Y has the property to be hypercyclic, frequently hypercyclic or mixing then

every dynamical system T : X → X that is quasiconjugate to S has the same property.

In particular, this is the case if an operator is conjugate to another operator, that is, if

φ can be chosen to be a homeomorphism.
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1.2 Necessary and Sufficient Conditions

We start this section by giving some necessary conditions for an operator to be hyper-

cyclic, frequently hypercyclic or chaotic.

Definition 1.2.1. Let T be an operator on a Banach space X and let ‖ · ‖op denote the

operator norm.

1. T is called a contraction if ‖T‖op ≤ 1.

2. T is called power bounded if

sup
n≥0
‖T n‖op <∞.

For a power bounded operator each orbit is bounded which yields the following result.

Proposition 1.2.2. No power bounded operator can be hypercyclic. In particular, no

contraction is hypercyclic.

Remark and Definition 1.2.3. Let T : X → X be an operator on a Fréchet space

X. We denote by σ(T ) the spectrum of T . If T is bijective, the open mapping theorem

yields that its inverse is also continuous. In particular, λ ∈ σ(T ) if and only if at least

one of the following statements is true

1. The range of T − λI is not all of X.

2. T −λI is not one-to-one (i.e. λ is an eigenvalue of T ). By σ0(T ) ⊂ σ(T ) we denote

the point spectrum of T , i.e. the set of all eigenvalues of T .

With that, we get another necessary condition for hypercyclicity if T is an operator

acting on a Banach space. Note that the spectrum of a continuous operator on a

Banach space is always compact.

Theorem 1.2.4 (Kitai’s Theorem). Let X be a Banach space and T : X → X be a

hypercyclic operator. Then every connected component of σ(T ) meets the unit circle.

Finally, for frequent hypercyclicity (and chaos) of an operator T on Banach spaces, the

spectrum of T has to fulfil an additional condition (see [3, Proposition 6.37]):
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Theorem 1.2.5. Let X be a Banach space and T be an operator on X. If T is chaotic

or frequently hypercyclic, then σ(T ) is a perfect set.

We now want to list some sufficient conditions for the notions defined in the first section

of this chapter. A useful tool to verify whether an operator is mixing is the variant of

Kitai’s Criterion which can be found e.g. in [22, Theorem 12.31 and Remark 3.5].

Theorem 1.2.6 (Kitai Criterion). Let T be an operator on a topological vector space

X. If there are dense subsets X0, Y0 ⊂ X such that

1. for any x ∈ X0 it follows T nx→ 0 (n→∞),

2. for any y ∈ Y0 there exists a sequence (un)n∈N in X such that un → 0 and T nun →
y (n→∞),

then T is mixing.

The following result will be concerned with notions of measurable dynamics whereas we

only considered topological dynamics until now.

Remark and Definition 1.2.7. Let (X,Σ, µ) be a measure space where µ is a mea-

sure with full support, i.e. µ(A) > 0 for every non-empty open set A ⊂ X. We say

that a measurable function T : (X,Σ, µ) → (X,Σ, µ) is measure-preserving (or µ is T -

invariant) if µ(T−1(A)) = µ(A) for all A ∈ Σ. In this setting, T is called ergodic if it is

measure-preserving and if for any two A,B ∈ Σ with positive measure one can find an

integer n ≥ 0 such that

T n(A) ∩B 6= ∅.

The notion of ergodicity can be viewed as a measure-theoretic analogue of topological

transitivity. A consequence of Birkhoff’s ergodic theorem is the following:

Let T : (X,Σ, µ)→ (X,Σ, µ) be a measure-preserving transformation. Then the follow-

ing are equivalent:

1. T is ergodic,

2. for any A,B ∈ Σ

lim
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−n(B)) = µ(A)µ(B).
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It follows from the definition of ergodicity that it implies topological transitivity and

hence also hypercyclicity. Actually, we get an even stronger result:

Let T be an operator on X such that there exists a T -invariant measure µ with full

support. If T is ergodic with respect to µ, then T is hypercyclic and the set of hypercyclic

vectors has full measure. More precisely, almost every x ∈ X has the following property:

for every non-empty open set A ⊂ X one has

lim inf
N→∞

|{0 ≤ n ≤ N : T nx ∈ A}|
N + 1

> 0,

i.e. T is even frequently hypercyclic.

For the next result which can be found in [4], we will now define weakly and strongly

mixing operators.

Definition 1.2.8. Let (X,Σ, µ) be a measure space where X is a complex Fréchet space

and T : (X,Σ, µ)→ (X,Σ, µ) be a measure-preserving transformation.

1. T is called weakly mixing (with respect to µ) if

1

N

N−1∑
n=0

|µ(A ∩ T−n(B))− µ(A)µ(B)| → 0 (N →∞)

for any measurable set A,B ⊂ X.

2. T is called strongly mixing (with respect to µ) if

µ(A ∩ T−n(B))→ µ(A)µ(B) (n→∞)

for any A,B ∈ Σ.

Remark 1.2.9. The notion of weakly mixing in a measure-theoretic sense is consistent

with that in topological dynamics, since one can show that a measure-preserving trans-

formation T is weakly mixing if and only if T × T is ergodic on (X ×X,Σ⊗Σ, µ⊗ µ).

Furthermore, if T : X → X is continuous and (weakly) mixing with respect to some

measure µ with full support, then T is also (weakly) mixing in the topological sense. In

that case, T is also frequently hypercyclic according to Remark and Definition 1.2.7.
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Definition 1.2.10. Let X be a complex Fréchet space, B the Borel-σ-algebra on X and

µ a measure on B. A measure-preserving transformation T : (X,B, µ) → (X,B, µ) is

called weakly (resp. strongly) mixing in the Gaussian sense if there exists a Gaussian

probability measure µ such that T is weakly (resp. strongly) mixing with respect to µ.

For the definition of Gaussian probability measures, see e.g. [3].

In line with [4], we define perfectly spanning T-eigenvectors. For that, we will need the

notion of sets of uniqueness. A short overview of the most important properties will be

given in Appendix A.

Definition 1.2.11. Let X be a complex, separable Fréchet space and T an operator on

X. Then T has perfectly spanning T-eigenvectors if for any countable set D ⊂ T

span
⋃

λ∈T\D

ker(T − λI) is dense in X.

Furthermore, we say that T has U0-perfectly spanning T-eigenvectors if for any Borel

set of extended uniqueness D ⊂ T, the linear span of
⋃
λ∈T\D ker(T −λI) is dense in X.

In [4, Theorem 1] the following important result was proved. For the notion of the cotype

of a Banach space which will occur in the third part of the theorem see for example [2].

Theorem 1.2.12. Let X be a complex separable Fréchet space and T be an operator on

X.

1. If the T-eigenvectors of T are perfectly spanning, then T is weakly mixing in the

Gaussian sense.

2. If the T-eigenvectors are U0-perfectly spanning, then T is strongly mixing in the

Gaussian sense.

3. In 1. and 2., the converse implications are true if X is a Banach space with cotype

2.



Chapter 2

The Taylor Shift on H(Ω)

2.1 The Taylor shift operator

We start this section by introducing some general notations from plane and spherical

topology that will be used throughout this thesis. The extended complex plane C∪{∞}
will be denoted by C∞ and shall be equipped with the chordal metric. As usual, we

determine z/∞ := 0 for z ∈ C and z/0 := ∞ for z ∈ C∞ \ {0}. We denote by Dr the

open disc around 0 with radius 0 ≤ r ≤ ∞, i.e. {z ∈ C : |z| < r} and the unit disc

will be briefly written as D. The closed disc around 0 with radius r will be written as

∆r and the closed unit disc respectively as ∆. The unit circle {z ∈ C : |z| = 1} will be

denoted by T. For M ⊂ C∞ we set M−1 := {1/z : z ∈M} and

M∗ := (C∞ \M)−1.

For an open set Ω ⊂ C∞ with 0 ∈ Ω, we have that Ω∗ is compact in C.

Definition 2.1.1. Let Ω ⊂ C∞ be an open set. Then we denote by H(Ω) the space

of holomorphic functions on Ω vanishing at ∞ if ∞ ∈ Ω where we call a function f

holomorphic at infinity if f(z−1) is holomorphic at 0. Following the lines of [39], we can

find compact sets Kn, n ∈ N, with Kn ⊂ int(Kn+1) and Ω =
⋃
n∈NKn. Then H(Ω) is

topologized by the increasing sequence of seminorms

‖f‖Kn,∞ := max
z∈Kn

|f(z)| for f ∈ H(Ω).
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The sets

Vn = {f ∈ H(Ω) : ‖f‖Kn,∞ <
1

n
}

form a convex local 0-base for H(Ω). Furthermore, one can show that the topology of

H(Ω) is compatible with the complete metric

d(f, g) = max
n∈N

2−n‖f − g‖Kn,∞
1 + ‖f − g‖Kn,∞

.

Therefore, it follows that H(Ω) forms a Fréchet space endowed with the seminorms

‖f‖K,∞ := max
z∈K
|f(z)| (f ∈ H(Ω))

for K ⊂ Ω compact.

We now want to define the operator which will be studied for its dynamical behaviour

throughout this work.

Remark and Definition 2.1.2. Let Ω ⊂ C∞ be open. If 0 ∈ Ω, we define T := TH(Ω) :

H(Ω)→ H(Ω) by

Tf(z) :=

1
z
(f(z)− f(0)), z 6= 0

f ′(0), z = 0.
(2.1)

One can easily see that for n ∈ N0

T nf(z) =

 1
zn

(f(z)− sn−1f(z)), z 6= 0

an, z = 0,
(2.2)

where snf(z) :=
∑n

ν=0 aνz
ν denotes the nth partial sum of the Taylor expansion of f

around 0. The iterates of T under f have the Taylor series representation

T nf(z) =
∞∑
ν=0

aν+nz
ν (2.3)

for |z| < dist(0, ∂Ω). Because of this property, T is called the Taylor (backward) shift

on H(Ω).
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Furthermore, we can define the Taylor forward shift for open sets Ω with ∞ /∈ Ω as

S : H(Ω)→ H(Ω), Sf(z) = zf(z). (2.4)

The name is justified because for f(z) =
∑∞

ν=0 aνz
ν , we have again for |z| < dist(0, ∂Ω)

that

Snf(z) =
∞∑
ν=0

aν−nz
ν

with a−k = 0 for k ∈ N. The forward shift is a right inverse to the Taylor shift since for

f ∈ H(Ω), we have

TSf(z) =
zf(z)− 0f(0)

z
= f(z).

A first simple result regarding frequent hypercyclicity on H(D) is the following propo-

sition (for the proof see [41]).

Proposition 2.1.3. The Taylor shift operator T on H(D) is frequently hypercyclic.

In particular, one knows with Remark 1.1.3 that the set of the frequently hypercyclic

vectors is of first Baire category.

Remark 2.1.4. 1. Let Ω ⊂ C∞ be open with 0 ∈ Ω and λ ∈ C \ {0}. Then

λT : H(Ω)→ H(Ω) is quasiconjugate to T : H(λ−1Ω)→ H(λ−1Ω).

For that, define the operator

R : H(λ−1Ω)→ H(Ω), Rf(z) = f(λz).

Then one can easily see that R is continuous, has dense range and it holds that

the diagram

H(λ−1Ω) T //

R
��

H(λ−1Ω)

R
��

H(Ω)
λT

// H(Ω)

commutes.

2. Let Ω, Ω0 ⊂ C∞ be open sets such that Ω ⊂ Ω0 and 0 ∈ Ω. If H(Ω0) is dense in

H(Ω), then TH(Ω) is quasiconjugate to TH(Ω0).
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Let j : H(Ω0) → H(Ω), j(f) = f |Ω be the restriction of f to Ω. Then j is

continuous and TH(Ω) ◦ j = j ◦ TH(Ω0). Therefore, TH(Ω) is quasiconjugate to

TH(Ω0).

Note that in the setting above, H(Ω0) is dense in H(Ω) if and only if Ω0 \ Ω has

no compact component (Runge’s Theorem, see e.g. [37, Theorem 13.5]).

Remark 2.1.5. By Proposition 2.1.3 and the second part of Remark 2.1.4, we have

the following: For an open subset Ω of the unit disc D containing 0 such that C \ Ω is

connected, the Taylor shift T : H(Ω)→ H(Ω) is frequently hypercyclic.

2.2 Eigenvalue Criteria

The Taylor shift operator on H(Ω) for general open sets Ω ⊂ C∞ was introduced in [7]

and the following result was proved.

Theorem 2.2.1 (Beise, Meyrath, Müller). Let Ω ⊂ C∞ be open with 0 ∈ Ω. Then the

following are equivalent:

1. T is mixing on H(Ω),

2. T is hypercyclic on H(Ω),

3. each connected component of Ω∗ intersects T.

It is our aim to study the weak and strong mixing property of the Taylor shift operator.

As we have seen in the first chapter, a sufficient supply of unimodular eigenfunctions is

useful in order to prove this. Therefore, we define for α ∈ C the functions

γ(α) : {α}∗ → C, γ(α)(z) :=
1

1− αz
(z ∈ C∞ \ {1/α}). (2.5)

Proposition 2.2.2. Let Ω ⊂ C∞ be an open set with 0 ∈ Ω and T be the Taylor shift

on H(Ω). Then

σ(T ) = σ0(T ) = Ω∗

where an eigenfunction to the eigenvalue α ∈ Ω∗ is given by γ(α). Furthermore, for

α ∈ Ω∗ the kernel of T − αI is 1-dimensional and it fulfils

ker(T − αI) = span γ(α).
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Proof. One can easily see that, for α ∈ Ω∗, the multiples of γ(α) are eigenfunctions for

the Taylor shift on Ω to the corresponding eigenvalue α. In particular, the set Ω∗ is

contained in the point spectrum and therefore in the spectrum of T . On the other hand,

for α ∈ 1/Ω = C∞ \ Ω∗ it is easily seen that

Sα : H(Ω)→ H(Ω), Sαg(z) =
zg(z)− g(1/α)/α

1− zα
(2.6)

(continuously extended at the point 1/α) defines the continuous inverse to T − αI, so

α ∈ 1/Ω cannot be in the spectrum of T . Therefore, σ(T ) = σ0(T ) = Ω∗. Finally,

suppose that f ∈ H(Ω) is an eigenfunction to the eigenvalue α ∈ Ω∗ with Taylor

expansion f(z) =
∑∞

ν=0 aνz
ν for z sufficiently small. By (2.3) it follows

aν = ανa0 for all ν ∈ N.

Therefore, f(z) = a0

∑∞
ν=0 α

νzν = a0γ(α)(z) so every eigenfunction of the Taylor shift

has to be a multiple of γ(α).

Remark 2.2.3. In the setting of Proposition 2.2.2, T is invertible if and only if ∞ ∈ Ω

and for g ∈ H(Ω) with g(z) =
∑∞

ν=0 bν/z
ν+1 near ∞ the inverse is given by

T−1g(z) =
∞∑
ν=0

bν+1

zν+1

near ∞. Hence, T−1 is again a backward shift.

Approximation of holomorphic functions by rational functions with simple poles is of

importance for the following results of this chapter. Therefore, we introduce a version

of Runge’s theorem which can be found in [28, Theorem 10.2].

Theorem 2.2.4 (Runge). Let Ω ⊂ C∞ be open and Λ ⊂ Ω∗ such that each connected

component of Ω∗ contains an accumulation point of Λ. Then span{γ(α) : α ∈ Λ} is

dense in H(Ω).

A first result regarding the frequent hypercyclicity of the Taylor shift was already shown

in [41]. In the following, we call A a non-trivial subarc of T if it is of the form A = {eit :

t ∈ (a, b)} with a < b.
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Theorem 2.2.5. Let 0 ∈ Ω ⊂ C∞ be an open set such that each component of Ω∗

contains a non-trivial subarc of T and let T be the Taylor shift on H(Ω). Then T has

a spanning C∞-eigenvector field and T is mixing, chaotic and frequently hypercyclic on

H(Ω).

Example 2.2.6. Let Ω := C∞ \ B where B is the closure of a non-trivial subarc of T.

With the previous theorem we obtain that the Taylor shift on H(Ω) is mixing, chaotic

and frequently hypercyclic.

A ⊂ C is called a U0-perfect set if for every set D ⊂ C of extended uniqueness it follows

that A \ D is a perfect set. We apply Theorem 1.2.12 to obtain the following more

general condition for the Taylor shift to be weakly or strongly mixing in the Gaussian

sense and by the first chapter it is then also frequently hypercyclic.

Theorem 2.2.7. Let 0 ∈ Ω ⊂ C∞ be an open set such that each component of Ω∗ meets

T and T be the Taylor shift on H(Ω).

1. If Ω∗ ∩ T is a perfect set, then T has perfectly spanning T-eigenvectors.

2. If Ω∗ ∩ T is a U0-perfect set, then T has U0-perfectly spanning T-eigenvectors.

Proof. By definition, we need to show that for every countable subset D ⊂ T the linear

span of
⋃
α∈T\D ker(T − αI) is dense in H(Ω). For ΛD := (Ω∗ ∩ T) \D we have

span
⋃

α∈T\D

ker(T − αI) = span{γ(α) : α ∈ ΛD}

and because every point of Ω∗ ∩ T is an accumulation point of ΛD, we obtain from

Theorem 2.2.4 that span{γ(α) : α ∈ ΛD} is dense in H(Ω). Therefore, the Taylor shift

has perfectly spanning T-eigenvectors. The second case follows along the same lines.

Theorem 2.2.8. Let 0 ∈ Ω ⊂ C∞ be an open set such that each component of Ω∗ meets

T and T be the Taylor shift on H(Ω).

1. If Ω∗ ∩ T is a perfect set, then T is weakly mixing in the Gaussian sense.

2. If Ω∗ ∩ T is a U0-perfect set, then T is strongly mixing in the Gaussian sense.
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Proof. The first and second statement follow from the fact that T has perfectly spanning

(respectively U0-perfectly spanning) T-eigenvectors and Theorem 1.2.12.

As already stated, the last theorem yields that under the given assumptions the Taylor

shift is frequently hypercyclic. In contrast to that, we now want to use the Mellin

transformation in order to find open sets Ω such that this is not the case for the Taylor

shift on H(Ω).

Let L ⊂ {z ∈ C : |Im z| < π} be compact and convex and ΩL := (eL)∗. Let Exp(L)

denote the space of the entire functions f of exponential type whose conjugate indicator

diagram K(f) is contained in L (see Appendix B). Then the Mellin transformation M

is defined as

M : H(ΩL)→ Exp(L), Mg(z) =
1

2πi

∫
γ

g(w)

wz+1
dw (z ∈ C)

where wz := ez logw for z ∈ C, w ∈ C− with C− := C \ (−∞, 0] and where γ is a loop in

C− \e−L of index −1 with respect to the compact set e−L. Furthermore, log denotes the

principal branch of the logarithm. An introduction to the Mellin transformation can be

found in Appendix B.

To obtain situations in which the Taylor shift is not frequently hypercyclic on H(Ω) for

an open set Ω, we now show that the Mellin transform conjugates it to the translation

operator on the space of entire functions of exponential type.

Theorem 2.2.9. Let L ⊂ {z ∈ C : |Im z| < π} be compact and convex. Then the

Taylor shift operator on H(ΩL) is conjugate to the translation operator

τ : Exp(L)→ Exp(L), τf(z) = f(z + 1).

Proof. Let γ be a loop in e−L−
1
m

∆ of index −1 with respect to the points in e−L. We

already know that the Mellin transform M : H(ΩL)→ Exp(L) is a homeomorphism.

Let g ∈ H(ΩL), then one can easily see that for n ∈ N0

(M ◦ T )(g)(n) =
1

2πi

∫
γ

g(w)− g(0)

wn+2
dw =

1

2πi

∫
γ

g(w)

w(n+1)+1
dw = (τ ◦M)(g)(n)
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Now (M ◦ T − τ ◦M)(g) ∈ Exp(L) and we have

max
z∈L

Im z −min
z∈L

Im z < 2π

by assumption, so with Carlson’s theorem (see Appendix B.1.7) we get M ◦ T = τ ◦M .

Thus, T is conjugate to τ .

For v, w ∈ C, we denote by [v, w] := {z ∈ C : z = λv + (1 − λ)w, λ ∈ [0, 1]} the line

segment between v and w.

Remark 2.2.10. 1. In [5, Theorem 1] it was proved that for L := [v, w] ⊂ {z ∈ C :

|Im z| < π} the translation operator τ on Exp(L) is frequently hypercyclic if and

only if v 6= w and v, w ∈ iR.

2. With [6, Theorem 3] one obtains that for an entire function of exponential type f

such that K(f) ⊂ {z : Re z ≤ 0} and K(f)∩ {z : Re z = 0} contains at most one

element, then f is not frequently hypercyclic for the translation operator τ with

respect to the topology on H(C).

Since the property of frequent hypercyclicity is preserved under conjugacy (see Remark

1.1.10), we obtain with Theorem 2.2.9 (see also [41]):

Corollary 2.2.11. 1. Let v, w be complex numbers and L := [v, w] ⊂ {z ∈ C :

|Im z| < π}. Then the Taylor shift operator on H(ΩL) is frequently hypercyclic if

and only if v 6= w and v, w ∈ iR.

2. For a compact and convex set L ⊂ {z : |Im z| < π} ∩ {z : Re z ≤ 0} such that

there exists only one element z0 ∈ L with Re z0 = 0, the Taylor shift operator

T : H(ΩL)→ H(ΩL) is not frequently hypercyclic.

From this corollary, we can easily deduce an open set Ω such that the Taylor shift

operator is not frequently hypercyclic on H(Ω).

Example 2.2.12. Let I = [x, y] ⊂ R+ be an interval on the positive real axis with 1 ∈ I.

Then it follows for L = [− log y,− log x] that the Taylor shift on H(ΩL) = H(C∞ \ I)

is not frequently hypercyclic. In particular, the special case x = y = 1 yields that

the Taylor shift on H(C∞ \ {1}) is not frequently hypercyclic. Compared to that, let
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B := {eit : t ∈ [a, b]} where a, b ∈ R with a < b. We have already seen in Example 2.2.6

that for L := [ia, ib] the Taylor shift on H(ΩL) = H(C∞ \ B) is frequently hypercyclic

since B is the closure of a non-trivial subarc.



Chapter 3

The Taylor Shift on Banach Spaces

of Functions Holomorphic in the

Unit Disc D

3.1 Bergman and Hardy Spaces

In this section, we introduce the Hardy and Bergman spaces and review some basic

properties. A function f ∈ H(D) belongs to the Bergman space Ap, 0 < p < ∞ if it

fulfils

‖f‖p =

∫
D

|f |pdλ2

1/p

<∞

where λ2 is the 2-dimensional Lebesgue measure.

The following proposition can be found in [19, Theorem 1, p. 7] and shows that point-

evaluation is a bounded linear functional on Ap for 0 < p <∞.

Proposition 3.1.1 (see [19]). Each function f ∈ Ap has the property

|f(z)| ≤ π−1/pδ(z)−2/p‖f‖p, for all z ∈ D

where δ(z) = dist(z,T) is the distance from z to the boundary of D.

This fact has several important implications which will be summarized in the following
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remark.

Remark 3.1.2. 1. If fn and f are in Ap, n ∈ N, with ‖fn− f‖p → 0 (n→∞), then

fn → f uniformly on every compact subset of D.

2. Because Ap is a closed subspace of the complete space Lp(D, λ2), the space Ap is

also complete. Thus, Ap is a Banach space for p ≥ 1 and for p = 2 it is a Hilbert

space with inner product

〈f, g〉 =

∫
D

f(z)g(z)dλ2(z).

For 0 < p < 1, the triangle inequality is no longer satisfied.

Theorem 3.1.3 (see [19]). For 1 < p <∞, the dual space of Ap can be identified with

Aq where 1/p+ 1/q = 1. Each functional ϕ ∈ (Ap)′ has a unique representation

ϕ(f) =

∫
D

fgdλ2, f ∈ Ap,

for some g ∈ Aq.

Theorem 3.1.4 (see [19]). Let 1 ≤ p <∞. Then the polynomials are dense in Ap.

Replacing the area integral by a line integral, we obtain Hardy spaces. For f ∈ H(D),

the function fr on T is defined by fr(e
it) = f(reit) for 0 ≤ r < 1. By m we denote the

normalized arc length measure on T. Then the functions fr belong to the Lp(T,m)-space

for 0 ≤ r < 1 and 0 < p <∞ and the Hardy space Hp is defined as the set of functions

f ∈ H(D) that fulfil

‖f‖Hp = sup
0≤r<1

‖fr‖T,p <∞.

In [18], the following result regarding point-evaluation of functions in Hardy spaces can

be found:

Proposition 3.1.5 (see [18]). If 0 < p <∞ and f ∈ Hp, then

|f(z)| ≤ 21/p‖f‖p(1− |z|)−1/p.
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Remark 3.1.6. As in Remark 3.1.2, if fn, f ∈ Hp, n ∈ N, with ‖fn − f‖Hp → 0

(n→∞), then fn → f locally uniformly on D.

For an important property of functions in the Hardy spaces, we will need the notion of

nontangential limits (see [38]): For ζ ∈ T and 0 < r < 1 we denote by Ωζ,r the union of

the disc Dr and the line segments from ζ to the points of Dr. We say that a function f

holomorphic on D has a nontangential limit f ∗(ζ) at ζ ∈ T if for each 0 < r < 1

f(zn)→ f ∗(ζ) (n→∞)

where (zn)n∈N is an arbitrary sequence in Ωζ,r tending to ζ. Then we have the following

result for functions in the Hardy spaces (see e.g. [38, Theorem 17.11]):

Theorem: If 0 < p <∞ and f ∈ Hp, then the nontangential limits f ∗(ζ) exist almost

everywhere on T with nontangential limit f ∗ ∈ Lp(T,m) and ‖f ∗‖T,p = ‖f‖Hp .

Remark 3.1.7. Using the theorem about nontangential limits, it can be shown that for

1 ≤ p <∞, the space Hp equipped with the norm ‖ · ‖Hp is a Banach space and H2 is

a Hilbert space. For 0 < p < 1, Hp is still a vector space but the triangle inequality is

no longer satisfied for ‖ · ‖Hp .

3.2 The Taylor shift on the Bergman and Hardy

Spaces

We want to consider the Taylor shift T = TAp on the Bergman space Ap for 1 ≤ p <∞.

Note that (Ap, T ) is a dynamical system. In the previous chapter, we have seen that

the eigenfunctions to the eigenvalue α ∈ D∗ = ∆ for the Taylor shift on H(D) are given

by multiples of γ(α) which was defined in (2.5). If α ∈ T, the functions γ(α) only lie in

Ap if 1 ≤ p < 2. To be more precise, the following is true:

1. σ(T ) = ∆ for all 1 ≤ p <∞,

2. σ0(T ) = ∆ for 1 ≤ p < 2 and σ0(T ) = D for 2 ≤ p <∞.
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Remark 3.2.1. Let `2 = {x ∈ CN :
∑∞

n=1 |xn|2 < ∞} and Bw be the weighted (back-

ward) shift on `2, that is

Bw(x1, x2, x3, ...) = (w2x2, w3x3, w4x4, ...),

where w = (wn)n∈N is a sequence of nonzero scalars. Then Bw is a self map if and

only if the weights wn, n ≥ 1, are bounded. Furthermore, the following is true (see [22,

Example 4.9(a) and Proposition 9.17]):

1. Bw is hypercyclic on `2 if and only if

sup
n∈N

n∏
ν=1

|wν | =∞.

2. Bw is mixing on `2 if and only if

lim
n→∞

n∏
ν=1

|wν | =∞.

3. Bw is chaotic on `2 if and only if

∞∑
n=1

1
n∏
ν=1

|wν |2
<∞.

4. If Bw is frequently hypercyclic, then there exists a subset A ⊂ N0 of positive lower

density such that ∑
n∈A

(
n∏
ν=0

wν

)−1

<∞.

In [22, Example 4.9(b)], it was shown that for wn = (n+1
n

)1/2, n ≥ 1 the weighted shift

Bw on `2 is conjugate to the Taylor shift T on A2. Therefore, we obtain:

1. Since limn→∞
∏n

ν=1 |
ν+1
ν
|1/2 = limn→∞(n + 1)1/2 = ∞, the Taylor shift is mixing

on A2.

2. Since
∑∞

n=1 1/(
∏∞

ν=1 |
n+1
n
|) =

∑∞
n=1

1
n+1

=∞, the Taylor shift is not chaotic.
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3. Since there does not exist a set A = {nk : k ∈ N} ⊂ N0 of positive lower density

such that
∑∞

k=1
1

(nk+1)1/2
converges, the Taylor shift is not frequently hypercyclic

on A2 (see [22, Example 9.18]).

Using the Kitai Criterion, it was shown in [8, Proposition 3.1] that the Taylor shift is

mixing on Ap for all 1 ≤ p <∞. We now want to prove that T is frequently hypercyclic

on Ap for 1 ≤ p < 2 as well as weakly and strongly mixing in the Gaussian sense.

Remark 3.2.2. For 1 ≤ p < q <∞ it follows that Aq ⊂ Ap and that the embedding

j : (Aq, ‖ · ‖q)→ (Ap, ‖ · ‖p)

is continuous. Furthermore, j(Aq) is dense in Ap since the polynomials are dense in Ap

for all p ≥ 1 by Theorem 3.1.4. If TAp denotes the Taylor shift on Ap and TAq the Taylor

shift on Aq, then we obviously have that TAp ◦ j = j ◦ TAq , i.e. TAp is quasiconjugate

to TAq . We therefore obtain that whenever the Taylor shift is frequently hypercyclic on

Aq, it is also frequently hypercyclic on Ap for all 1 ≤ p ≤ q. The same holds for all other

dynamical properties that are preserved under quasiconjugacy.

In the following, vector-valued integration will play an important role. For a short

introduction to the concept see [39, Chapter 3] for the case of Fréchet spaces or [17] for

Banach spaces.

Definition 3.2.3. Let E ∈ B be bounded. By M(E) we denote the set of complex

measures concentrated on E (see Appendix A) and we define the Cauchy transform of

µ ∈M(E) by

Cµ(z) :=

∫
E

γ(ζ)dµ(ζ) =

∫
E

1

1− ζ·
dµ(ζ) (z ∈ E∗).

Note that Cµ is holomorphic in the interior of E∗ by [15, Proposition 5.2, Section 18.5],

i.e.

C : M(E)→ H(int(E∗))

and the mapping C is called the Cauchy transformation with respect to E.
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Remark 3.2.4. For a set E ∈ B with 0 ∈ int(E∗) and µ ∈M(E), the Cauchy transform

is holomorphic for |z| < dist(0, ∂(E∗)). For those z we have

Cµ(z) =

∫
E

γ(ζ)(z)dµ(ζ) =

∫
E

∞∑
ν=0

(ζz)νdµ(ζ) =
∞∑
ν=0

zν
∫
E

ζνdµ(ζ).

Therefore, the coefficients aν of the Taylor expansion of the Cauchy transform Cµ around

0 are given by

aν =

∫
E

ζνdµ(ζ).

Remark 3.2.5. There is an immediate connection between the eigenfunctions of the

Taylor shift and the Cauchy transformation: For an open set Ω with 0 ∈ Ω and α ∈ Ω∗

we have

γ(α) =

∫
Ω∗

γ(ζ)dδα(ζ) =

∫
Ω∗

1

1− ζ·
dδα(ζ) = Cδα (3.1)

where δα ∈M(Ω∗) is the Dirac measure with respect to α.

As one can see, the Cauchy transform can be viewed as a ”mean” of the eigenfunctions

of the Taylor shift. This gives an idea why it will be of importance later on in this work.

The following important result regarding Cauchy transforms can be found in [15, Section

18.5] and will be useful for the next theorem and also in several other settings of this

work.

Theorem 3.2.6 (see [15]). Let f be integrable with respect to the 2-dimensional Lebesgue

measure λ2 with compact support. Then the Cauchy transform of fdλ2 is defined for all

z ∈ C∞ and continuous on C∞.

We can now show that the eigenfunctions of the Taylor shift with poles on the boundary

of the unit circle are dense in Ap for 1 < p < 2.

Theorem 3.2.7. Let 1 < p < 2. If M is a dense subset of T, then

span{γ(α) : α ∈M} is dense in Ap.

Proof. Let 1 < p < 2 and M be dense in T. We choose ϕ ∈ (Ap)′ with ϕ(γ(α)) = 0 for

all α ∈ M . By Theorem 3.1.3, there exists a function g ∈ Aq, where q is conjugated to
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p, such that

ϕ(f) =

∫
D

fgdλ2.

Then we have for dµ = gdλ2

Cµ(α) = ϕ(γ(α)) =

∫
D

g(z)

1− zα
dλ2(z) = 0 for all α ∈M.

Cµ is holomorphic in int(D∗) = D and by Theorem 3.2.6 continuous everywhere. Since

M is a dense subset of T, we have that Cµ ≡ 0 on T. But then the maximum principle

yields that Cµ ≡ 0 on D. Using Remark 3.2.4, the coefficients an of the Taylor expansion

of Cµ around 0 fulfil

0 = an =

∫
D

zndµ(z) =

∫
D

zng(z)dλ2(z) for all n ∈ N.

Thus, it follows for the monomials pn(z) = zn that

ϕ(pn) =

∫
D

pngdλ2 = 0 for all n ∈ N

and since by Theorem 3.1.4 the polynomials are dense in Ap the Hahn-Banach theorem

yields that ϕ(f) = 0 for all f ∈ Ap.

We can now show that we have a complete characterization of frequent hypercyclicity

of the Taylor shift on Ap for 1 ≤ p <∞.

Theorem 3.2.8. Let 1 ≤ p < ∞ and T be the Taylor shift on Ap. Then the following

are equivalent

1. 1 ≤ p < 2,

2. T is strongly mixing in the Gaussian sense,

3. T is weakly mixing in the Gaussian sense,

4. T is frequently hypercyclic on Ap.
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Proof. Let 1 ≤ p < 2. By Remark 3.2.2 we can assume 1 < p < 2 and we choose D ⊂ T
to be an extended set of uniqueness. Since D has arc length measure 0 (see Appendix

A), it follows that T\D is dense in T. Theorem 3.2.7 yields that span{γ(ζ) : ζ ∈ T\D}
is dense in Ap. According to Theorem 1.2.12 the Taylor shift T is strongly mixing in the

Gaussian sense. This implies that T is also weakly mixing in the Gaussian sense which

itself yields that T is frequently hypercyclic on Ap.

For p = 2, Remark 3.2.1 yields that T is not frequently hypercyclic and the same follows

for p > 2: if there would exit some p > 2 such that T is frequently hypercyclic on Ap,

then Remark 3.2.2 would yield that T is frequently hypercyclic on A2 which is not the

case.

We will now briefly consider the Taylor shift T = THp on the Hardy space Hp for

1 ≤ p <∞. Note that (Hp, T ) is a dynamical system.

Theorem 3.2.9. Let T be the Taylor shift operator on Hp, 1 < p < ∞. Then the

following is true:

1. T nf → 0 in Hp as n→∞ for every f ∈ Hp and

2. T is power bounded.

Proof. Let f ∈ Hp, then T nf ∈ Hp has a nontangential limit (T nf)∗ almost everywhere

on T and

(T nf)∗(ζ) =
f ∗(ζ)− sn−1f(ζ)

ζn
m-almost everywhere

where f ∗ is the nontangential limit of f . By Corollary 3 in [42], the Taylor series of f

converges for 1 < p <∞, so it follows

‖T nf‖Hp = ‖(T nf)∗‖T,p = ‖f ∗ − sn−1f‖T,p = ‖f − sn−1f‖Hp → 0 (n→∞).

Since f ∈ Hp was arbitrary, the uniform boundedness principle yields

sup
n≥0
‖T n‖op <∞.

Thus, the Taylor shift is power bounded on Hp for 1 < p <∞.

In general, an easy implication of (2.3) for functions holomorphic in D is the following:
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Remark 3.2.10. If f ∈ H(D) with f(z) =
∑∞

ν=0 aνz
ν and aν → 0 as ν → ∞ then

T nf → 0 (n→∞) locally uniformly on D.

For that, let K ⊂ D be compact and ε > 0. Then there exists some 0 < r < 1 such that

K ⊂ Dr. Since an → 0 (n → ∞), for δ = ε(1 − r) > 0 there exists some N ∈ N such

that for every n ≥ N we have |an| < δ. For n ≥ N it follows

‖T nf‖K,∞ = max
z∈K
|
∞∑
ν=0

aν+nz
ν | ≤ δ

∞∑
ν=0

rν =
δ

1− r
= ε

which yields the conclusion.

Remark 3.2.11. For 1 < p < ∞, Remark 3.1.6 and Theorem 3.2.9 also show that

‖T nf‖K,∞ → 0 (n → ∞) for every compact K ⊂ D. For p = 1, we still have locally

uniform convergence of T nf on D by Remark 3.2.10 since for every f ∈ H1 its Taylor

coefficients (an)n∈N fulfil an → 0 as n→∞. However, Theorem 3.2.9 does not hold for

H1. In general, the Taylor series of functions f ∈ H1 do not converge in H1 by [42,

Corollary 3] and therefore T nf does not converge to 0 in H1 since otherwise this would

contradict

‖T nf‖H1 = ‖f − sn−1f‖H1 .

3.3 The Space of Cauchy Transforms

If not stated otherwise, the quoted results of this section can be found in [14]. In the

previous section, we have already seen that there is a connection between the eigenfunc-

tions of the Taylor shift and the Cauchy transforms of the Dirac measure with respect

to the corresponding eigenvalue of the eigenfunction. Since eigenfunctions of unimod-

ular eigenvalues play an important role for the dynamical behaviour of an operator, it

suggests itself to consider the Taylor shift on the space of Cauchy transforms on the

unit disc, that is

C = {Cµ ∈ H(D) : µ ∈M(T)}.

The space of complex measures M := M(T) will be equipped with the total variation

norm, i.e. ‖µ‖TV = |µ|(T) for µ ∈M (see Appendix A).

For a function f ∈ C, there are a variety of measures µ ∈ M such that f = Cµ.
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Therefore, we define

M(f) := {µ ∈M : f = Cµ}

as the set of representing measures of f . Along the lines of [14], we want to equip C
with a norm ‖ · ‖ such that (C, ‖ · ‖) becomes a Banach space.

Remark 3.3.1. Let C(T) denote the Banach space of complex-valued continuous func-

tions on T endowed with the uniform norm ‖ · ‖T. Using the Riesz representation

theorem, one can show that the map M → C(T)′, µ 7→ ϕµ where

ϕµ(f) =

∫
T

fdµ

is an isometric isomorphism, for short we write M ' C(T)′. Furthermore, for the disc

algebra A := A(∆) := {f ∈ C(∆): f holomorphic in D}, its annihilator A⊥ is a closed

subspace of M and given by

A⊥ = {µ ∈M :

∫
T

fdµ = 0 for all f ∈ A}.

By the theorem of F. and M. Riesz such annihilating measures µ take the form dµ = hdm

where h ∈ H1
0 := {g : g ∈ H1, g(0) = 0} so we can identify A⊥ with H1

0 . Since A is a

closed subspace of C(T), Theorem 1.4.6 in [14] yields

A′ 'M/H1
0 .

One can show that Cµ = 0 if and only if µ ∈ A⊥ ' H1
0 so the map µ+H1

0 7→ Cµ from

M/H1
0 to C is bijective. Therefore, it makes sense to endow C with the norm of M/H1

0

that is

‖Cµ‖ = inf{‖dµ+ hdm‖TV : h ∈ H1
0}. (3.2)

Hence C ' M/H1
0 ' A′ and (C, ‖ · ‖) is a Banach space. Furthermore, one can show

that there exists a unique measure µf ∈M(f) such that ‖f‖ = ‖µf‖TV .

The first section of this chapter dealt with Hardy spaces. One can say the following
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regarding the relation of the Hardy spaces with the space of Cauchy transforms:⋃
p≥1

Hp ⊂ C ⊂
⋂

0<p<1

Hp

and the inclusions are strict (see [14]).

Proposition 3.3.2. The spaces Hp, 1 ≤ p <∞, are continuously embedded in C.

Proof. Without loss of generality, we can assume that p = 1. Let fn, f ∈ H1, n ∈ N, with

‖fn−f‖H1 → 0 as n tends to∞. Then there exist nontangential limits f ∗n, f
∗ ∈ L1(T,m)

with ‖f ∗n − f ∗‖T,1 → 0 (n→∞) and for µn = f ∗ndm, µ = f ∗dm we have Cµn = fn and

Cµ = f (see e.g. [38, Theorem 17.11]). Using Theorem A.1.3 in the last equality, we

obtain

‖fn − f‖ = inf{‖dµn − dµ+ hdm‖TV : h ∈ H1
0} ≤ ‖µn − µ‖TV =

∫
T

|f ∗n − f ∗|dm→ 0

as n tends to ∞, so fn → f also in C which yields the conclusion.

Remark 3.3.3. In contrast to the case of the Hardy spaces, one can show that

Ap 6⊂ C for all p ≥ 1.

For that, let f ∈ C and µ ∈ M(f). The Taylor coefficients of f are then given by

aν =
∫
T ζ

νdµ(ζ) (see Remark 3.2.4) and therefore we have

|aν | ≤
∫
T

1d|µ|(ζ) = ‖µ‖TV ,

i.e. (aν)ν∈N is bounded. However, if f ∈ Ap, then

aν = o(ν1/p) (3.3)

and the exponent 1/p is best possible (see [19, Theorem 4, p. 85]). Thus, there exist

f ∈ Ap such that f 6∈ C.

We recall the following definition (see e.g. [39]).
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Definition 3.3.4. Suppose M is a closed subspace of a topological vector space X. If

there exists a closed subspace N of X such that

X = M +N and M ∩N = {0}

then M is said to be complemented in X. In this case, X is said to be the direct sum of

M and N and we write

X = M ⊕N.

Using this, the Lebesgue decomposition theorem says that M = Ma ⊕Ms where Ma =

{µ ∈ M : µ � m} is the set of absolutely continuous measures µ with respect to the

normalized arc length measure m and Ms = {µ ∈ M : µ⊥m} is the set of singular

measures with respect to m (see Appendix A for definitions). Then we can also write

the space of Cauchy transforms as the direct sum

C = Ca ⊕ Cs

where Ca = {Cµ : µ ∈Ma} and Cs = {Cµ : µ ∈Ms}.

Unfortunately, C endowed with the norm given in (3.2) is not separable. To be more

precise, the following holds

1. The polynomials are dense in (Ca, ‖ · ‖). Therefore, Ca equipped with the norm

given in (3.2) is separable.

2. Cs equipped with the norm given in (3.2) is not separable.

Because of 1., it would make sense to ask for the dynamical properties of the Taylor shift

on Ca. We first want to consider the Taylor shift T = TC : C → C. Then the operator is

a self map (see e.g. [14]). Because of the connection of the eigenfunctions of the Taylor

shift and the Cauchy transforms of the Dirac measure shown in (3.1) and the fact that

the Dirac measure with respect to an isolated point is singular to the arc length measure

m, we have γ(α) = Cδα ∈ Cs ⊂ C for all α ∈ T.

Theorem 3.3.5. For R : M → M , Rµ = iddµ where id : T → T, id(ζ) = ζ is the
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identity mapping on the unit circle, the diagram

M R //

C
��

M

C
��

C
T
// C

commutes, i.e. C ◦R = T ◦ C.

Proof. Let f ∈ C and µ ∈ M(f). Since by [39, Exercise 3.24] we can change the order

of integration and the Taylor shift, we obtain

Tf =

∫
T

Tγ(ζ)dµ(ζ) =

∫
T

ζγ(ζ)dµ(ζ) =

∫
T

ζ

1− ζ·
dµ(ζ)

with the fact that γ(ζ) ∈ C for ζ ∈ T.

Remark 3.3.6. By induction, it follows for all f ∈ C and n ∈ N that

T nf = T nCµ =

∫
T

ζnγ(ζ)dµ =

∫
T

ζn

1− ζ·
dµ(ζ) (3.4)

if f = Cµ.

We now want to restrict the Taylor shift to Ca. First, note that it is still a self map

because for f ∈ Ca there exists a measure µ with f = Cµ and µ � m i.e. there is a

function g ∈ L1(T,m) with dµ = gdm. Using Theorem 3.3.5, we get

Tf =

∫
T

ζ

1− ζ·
dµ(ζ) =

∫
T

ζg(ζ)

1− ζ·
dm(ζ)

so Tf = Cν with dν = id · gdm and id · g ∈ L1(T,m). Thus, ν ∈Ma and Tf ∈ Ca.

Since (Ca, ‖ · ‖) is separable, one could suspect that the restriction of the Taylor shift to

Ca is hypercyclic. The following theorem shows that this is not the case. An alternative

proof for this statement can be found in [14].

Theorem 3.3.7. The Taylor shift operator on (C, ‖ · ‖) has operator norm 1.
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Proof. Let f ∈ C and µ ∈M(f). By Theorem 3.3.5, we have

‖Tf‖ = inf{‖iddµ+ hdm‖TV : h ∈ H1
0} = inf{‖id(dµ+ h · iddm)‖TV : h ∈ H1

0}
= inf{‖dµ+ h · iddm‖TV : h ∈ H1

0}.

The last equation is true because of Theorem A.1.3 in the Appendix. We now show that

idH1
0 = H1. First, let g ∈ idH1

0 . Then there exists a function h ∈ H1
0 with g = id ·h and

a corresponding h∗ ∈ L1(T,m) which has vanishing Fourier coefficients an for n ≥ 0.

This yields g∗ = id · h∗ ∈ L1(T,m) with Fourier coefficients bn = an+1 which vanish for

n ≥ −1 and this implies g ∈ H1. For the other implication, let g ∈ H1. Then there

exists an almost everywhere limit g∗ ∈ L1(T,m) with Fourier coefficients an = 0 for

n ≥ 1. If we consider h∗ ∈ L1(T,m) with Fourier coefficients bn = an−1 vanishing for

n ≥ 0, then g∗ = id · h∗ and h∗ corresponds to a function h ∈ H1
0 with g = id · h so

g ∈ idH1
0 . In particular, we have H1

0 ⊂ idH1
0 and therefore

‖Tf‖ = inf{‖dµ+ gdm‖TV : g ∈ idH1
0} ≤ inf{‖dµ+ hdm‖TV : h ∈ H1

0} = ‖f‖.

By definition of the operator norm this yields ‖T‖op ≤ 1. Finally, because for α ∈ T we

have that γ(α) ∈ C and ‖Tγ(α)‖ = ‖γ(α)‖, it follows ‖T‖op = 1.

With this theorem and Proposition 1.2.2, we obtain that T : Ca → Ca equipped with the

norm in (3.2) cannot be hypercyclic.

Since C is the norm dual of the disk algebra A equipped with the uniform norm on ∆,

we can also consider the weak-∗ topology on C. Using this topology, we obtain a locally

convex space. From the pointwise estimate

|f(z)| ≤ 1

1− |z|
‖f‖ for all z ∈ D, f ∈ C

where ‖·‖ is the norm defined in (3.2) it can be shown that a sequence (fn)n∈N converges

weak-∗ in C if and only if it converges pointwise on D and (fn)n∈N is norm bounded in C.
Proposition 4.2.8 of [14] states that C is separable in the weak-∗ topology. Furthermore,

both Ca and Cs are weak-∗ dense in C.

Remark 3.3.8. We have already noted in Remark 3.3.1 that for every f ∈ C there
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exists a unique measure µf ∈M(f) such that ‖f‖ = ‖µf‖TV . We define

Snf :=

∫
T

1

ζn
γ(ζ)dµf (ζ) =

∫
T

1

ζn(1− ζ·)
dµf (ζ) (3.5)

for n ∈ N and f ∈ C. We now want to show that for each f ∈ C the sequence (Snf)n∈N

is bounded in norm: If we consider gn : C→ C, gn(z) = zn, then gn ∈ H1
0 for all n ∈ N

with |gn(z)| = 1 for z ∈ T. Since 0 ∈ H1
0 ,

‖Snf‖ = ‖C(gndµf )‖ = inf{‖gndµf + hdm‖TV : h ∈ H1
0}

= inf{‖dµf + hgndm‖TV : h ∈ H1
0} ≤ ‖µf‖TV = ‖f‖

for all n ∈ N.

Theorem 3.3.9. Let T be the Taylor shift on C endowed with the weak-∗ topology. Then

T is mixing.

Proof. We consider T on the weak-∗ dense subset Ca of C. As seen before, T is then a

self map. Along the same lines, we get that the restriction of Sn to Ca is a self map for

all n ∈ N.

Now, let f ∈ Ca and µ ∈ M(f) such that µ � m. Since γ(z) is a continuous function

on T for z ∈ D, we have for g ∈ L1(T,m) with dµ = gdm and a fixed z ∈ D∫
T

ζn
1

1− ζz
dµ(ζ) =

∫
T

ζnγ(z)(ζ)g(ζ)dm(ζ)→ 0 (n→ ±∞)

by the Riemann-Lebesgue theorem. Therefore

T nf(z)→ 0 and Snf(z)→ 0

pointwise for z ∈ D as n tends to ∞. To show the weak-∗ convergence, we still need to

prove that both (T nf)n∈N and (Snf)n∈N are norm bounded. For (T nf)n∈N this follows

from Theorem 3.3.7 and for (Snf)n∈N from Remark 3.3.8. Since pointwise convergence

on D and norm boundedness are equivalent to weak-∗ convergence, we get that T nf → 0

and Snf → 0 in weak-∗ topology as n tends to ∞ for all f ∈ Ca.
Finally, for n ∈ N and f ∈ Ca with µf ∈ M(f) such that ‖f‖ = ‖µf‖TV we have
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Snf =
∫
T ζ

nγ(ζ)dµf (ζ) = Cν where dν = gndµf and gn(ζ) = ζn. Therefore

TSnf = TCν =

∫
T

ζ

1− ζ·
dν(ζ) =

∫
T

1

ζn−1(1− ζ·)
dµf (ζ) = Sn−1f.

Applying T inductively n times, we obtain T nSnf = f for arbitrary f ∈ Ca and n ∈ N.

Thus, the Kitai Criterion yields that the Taylor shift is mixing on C equipped with the

weak-∗ topology.



Chapter 4

Bergman Spaces on General Open

Sets

4.1 Properties of Bergman spaces on General Open

Sets

At the beginning of the third chapter, we already considered Bergman spaces on the unit

disc. In the following, Bergman spaces of functions defined on arbitrary open sets will

play an important role. We therefore want to give a short overview of basic definitions

and results.

Let Ω ⊂ C be an open set in the complex plane. For 1 ≤ p < ∞ the Bergman space

Ap(Ω) consists of all functions analytic in Ω that fulfil

‖f‖Ω,p := ‖f‖p :=

∫
Ω

|f |pdλ2

1/p

<∞.

Then ‖ · ‖p is a norm on Ap(Ω).

Remark 4.1.1. As in Proposition 3.1.1 it follows for all open sets Ω ⊂ C that point-

evaluation is a linear functional on Ap(Ω).

1. For fn, f ∈ Ap(Ω), n ∈ N, with ‖fn − f‖p → 0 (n → ∞) the sequence (fn)n∈N

converges to f locally uniformly on Ω.
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2. Ap(Ω) is a closed subspace of Lp(Ω), so Ap(Ω) is also complete. Therefore, the

Bergman spaces are Banach spaces for p ≥ 1 and A2(Ω) is a Hilbert space.

In the following, we want to characterize situations in which the Bergman spaces are

trivial, i.e. only contain the zero function. For the case 1 ≤ p < 2 a simple characteri-

zation can be found in [1, Proposition 11.1.1]:

Remark 4.1.2. Let Ω := C \K where K is compact.

1. The Bergman space A1(Ω) is trivial if and only if K consists of at most two points.

2. For 1 < p < 2 the Bergman space Ap(Ω) is trivial if and only if K consists of at

most one point.

For p ≥ 2 and K ⊂ C compact, we can give a sufficient condition for the Bergman space

Ap(C \K) to be nontrivial:

Remark 4.1.3. One can show that if K ⊂ C is a compact set which is not totally

disconnected and Ω = C \ K, then Ap(Ω) is not trivial for all 2 ≤ p < ∞. This is

true since for such compact sets, we have that the analytic capacity γ(K) > 0 (for

a definition and some basic results of analytic capacity see Chapter 8 of [20]). If the

analytic capacity of K is positive, then there exists a bounded function f holomorphic

in Ω vanishing at ∞ which is not equal to 0. Then f 2 6≡ 0 is bounded in C \K as well

and vanishes at least of order O(1/z2) as z →∞. This yields f ∈ Ap(Ω).

We now want to study the case p = 2: In [15, Theorem 9.5, p. 347] we can find a

characterization of the space A2(C \ K) where K is a compact subset of C. For that,

we need the following definition in line with [36].

Definition 4.1.4. For a finite Borel measure µ on C concentrated on a compact set,

its energy is given by

I(µ) =

∫∫
log |z − w|dµ(z)dµ(w).

Then the logarithmic capacity of a subset E of C is defined as

c(E) = sup
µ
eI(µ)
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where the supremum is taken over all Borel probability measures µ on C which are

concentrated on a compact subset of E. It is understood that e−∞ = 0 and E is called

a polar set if c(E) = 0.

Theorem 4.1.5 (see [15]). If K is a compact subset of C, then A2(C \K) = {0} if and

only if K is a polar set.

We now want to know which sets are polar sets in order to see in which cases it makes

sense to examine the Taylor shift operator for its dynamical behaviour. The results in

the following remark can be found in [15].

Remark 4.1.6. 1. Countable sets are polar.

2. Polar sets are Lebesgue measurable zero sets.

3. If K is compact and not totally disconnected, then K is not polar.

From now on, for 1 < p < ∞ we will denote by q the conjugated exponent of p if

not stated otherwise. Similarly to the case p = 2, we obtain a characterization for the

Bergman spaces p > 2 in terms of q-capacity. For a definition see [1]. Note that the

authors define a more general (α, q)-capacity Cα,q but since we only need the case α = 1

we will denote by Cq := C1,q the (1, q)-capacity and just refer to it as the q-capacity.

Then [1, Proposition 11.1.1] yields the following:

Theorem 4.1.7 (see [1]). Let K be a compact subset of C and 2 < p < ∞. Then

Ap(C \K) = {0} if and only if Cq(K) = 0.

It can be useful to consider Hausdorff measures in order to get information about the

q-capacity of a set.

Remark and Definition 4.1.8. Let hα : [0,∞)→ [0,∞), hα(r) = rα for some α > 0.

For a set E ⊂ C there exists a countable number of (open or closed) balls xi +Dri with

centre xi and radius ri ≥ 0, i ∈ N such that the union of these balls covers the set E.

Then for any ρ ∈ (0,∞] we can define the set function

Λ(ρ)
α (E) := inf

∞∑
i=1

hα(ri)
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where the infimum is taken over all coverings of E of the kind described above with

supi∈N ri ≤ ρ. Then Λ
(ρ)
α (E) is a decreasing function of ρ, so limρ→0 Λ

(ρ)
α (E) exists (but

may be infinite) and the α-dimensional Hausdorff measure of E is defined as

Λα(E) = lim
ρ→0

Λ(ρ)
α (E).

Note that Λα is a measure on the Borel sets of C.

Remark 4.1.9. In line with [35] we call the 1-dimensional Hausdorff measure of E the

linear measure of E. For sets in R the definitions of linear measure and the Lebesgue

measure coincide, hence the linear measure on R is identical with the Lebesgue measure.

The same is true for the arc length measure. In particular, the linear measure of E is

positive if and only if the arc length measure is positive.

With this definition we can compare the q-capacity with the (2− q)-dimensional Haus-

dorff measure (see [1, Theorem 5.1.9]).

Theorem 4.1.10 (see [1]). Let 1 < q < 2 and E ⊂ C. Then there exists a constant

A ≥ 0 independent of the set E such that

Cq(E) ≤ AΛ
(1)
2−q(E),

and moreover Λ2−q(E) <∞ implies Cq(E) = 0.

In particular, for K ⊂ C compact and 2 < p <∞ the Bergman space Ap(Ω) is trivial if

the (2− q)-dimensional Hausdorff measure of K is finite.

Later on, it will be our aim to examine the Taylor shift on general Bergman spaces

on its dynamical behaviour. If the underlying set is of the form C \ K where K is a

compact set, the Taylor shift is not necessarily a self map on Ap(C \K): Let 1 < p ≤ 2

and suppose that 1 ∈ int(K). Then the function f : C \ K → C, f(z) = 1/(1 − z)2

belongs to Ap(C \K) but Tf(z) = (2 − z)/(1 − z)2 does not decay rapidly enough at

∞ to be p-integrable on C \K so Tf /∈ Ap(C \K). Nevertheless, we want to consider

open sets which have bounded complement. Therefore, we define a modified version of

the Bergman spaces:

Definition 4.1.11. Let Ω ⊂ C∞ be an open set containing ∞, i.e. Ω is of the form

Ω = C∞ \K where K is a compact set in C. For ρ := 1 + maxz∈K |z| the complement
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of Ω is contained in Dρ. We define Ap(Ω) as the space of all functions f holomorphic in

Ω such that f |Ω∩Dρ lies in Ap(Ω ∩Dρ).

Remark 4.1.12. For a compact set K in C, we have the following relationship between

the usual definition of the Bergman spaces and the modified one:

1. A1(C \K) = {f ∈ A1(C∞ \K) : f(z) = O(1/z3) (z →∞)},

2. Ap(C \K) = {f ∈ Ap(C∞ \K) : f(z) = O(1/z2) (z →∞)} for 1 < p ≤ 2,

3. Ap(C \K) = Ap(C∞ \K) for p > 2.

Remark 4.1.13. Compared to Remark 4.1.2, for 1 ≤ p < 2 and z0 ∈ C we have for the

alternative definition of the Bergman spaces that Ap(C∞ \ {z0}) is not trivial. This is

true since for example γ(1/z0) ∈ Ap(C∞\{z0}). Actually, Ap(C∞\{z0}) is 1-dimensional

and equal to the linear span of γ(1/z0).

In the following, we want to show that Ap(Ω) is complemented in Ap(Ω∩Dρ) for Ω ⊂ C∞
open with ∞ ∈ Ω.

Theorem 4.1.14. Let Ω ⊂ C∞ be an open set with ∞ ∈ Ω. Then

Ap(Ω ∩Dρ) = Ap(Ω)⊕ Ap(Dρ). (4.1)

Proof. We first want to show that Ap(Ω) is closed in Ap(Ω ∩Dρ). For that, let (fn)n∈N

be a sequence in Ap(Ω) and f ∈ Ap(Ω ∩Dρ) with

fn → f (n→∞).

We then need to show that f is holomorphic in Ω. By the first statement of Remark

4.1.1, H(Ω) 3 fn → f uniformly on every compact subset of Ω ∩ Dρ. In particular,

let 0 < r < ρ be so that the complement of Ω still is contained in Dr. Then fn → f

uniformly on ∂Dr as n tends to ∞. According to the maximum principle we have

that max|z|=r |fn(z)| = max|z|≥r |fn(z)| for all n ∈ N so f is the locally uniform limit

on C∞ \ Dr of a sequence of holomorphic functions in Ω which means that it has a

holomorphic continuation to Ω. Along the same lines, we get that Ap(Dρ) is closed in

Ap(Ω ∩Dρ).
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If f ∈ Ap(Ω ∩Dρ), then one can find 0 < r1 < r2 < ρ such that the complement of Ω is

still contained in Dr1 . Since f then is holomorphic in Vr1,r2 := {z ∈ C : r1 < |z| < r2},
we can write f as the Laurent series

f(z) =
∞∑
ν=0

aνz
ν +

∞∑
ν=1

a−νz
−ν for all z ∈ Vr1,r2

and we get that f1(z) :=
∑∞

ν=0 aνz
ν is holomorphic in Dr2 and f2(z) :=

∑∞
ν=1 a−νz

−ν

is holomorphic in C∞ \ ∆r1 . Furthermore, as f1 = f − f2 with f ∈ Ap(Ω ∩ Dρ) and

f2 ∈ H(C∞ \ ∆r1) ⊂ H(C∞ \ ∆r2), we obtain that f1 has a holomorphic extension to

Dρ and

‖f1‖Dρ,p =

∫
Dρ

|f1|pdλ2


1/p

=

∫
Dr2

|f1|pdλ2 +

∫
Vr2,ρ

|f − f2|pdλ2


1/p

<∞.

This yields f1 ∈ Ap(Dρ). As above, because f2 = f − f1, we obtain that f2 has a

holomorphic extension to Ω and we get

‖f2‖Ω∩Dρ,p ≤ ‖f2 + f1‖Ω∩Dρ,p + ‖f1‖Ω∩Dρ,p = ‖f‖Ω∩Dρ,p + ‖f1‖Ω∩Dρ,p <∞.

Finally, we have that Ap(Ω) ∩ Ap(Dρ) = {0} because for f ∈ Ap(Ω) ∩ Ap(Dρ) it follows

that f is holomorphic in Ω and in Dρ. Since C∞ \ Ω ⊂ Dρ, we get that f ∈ H(C∞).

Thus, f ≡ 0 which completes the proof.

Remark 4.1.15. An implication of the previous theorem is that (Ap(Ω), ‖ · ‖Ω∩Dρ) is a

Banach space.

Remark 4.1.16. In Theorem 1.2.12, statement 1. and 2. are equivalences if the un-

derlying Banach space X has cotype 2. Since the Lp-spaces have cotype 2 for 1 ≤ p ≤ 2

(see e.g. [2]) and the cotype of a Banach space is inherited by subspaces, it follows that

Ap(Ω) has the desired property for p ∈ [1, 2] and Ω ⊂ C∞ open.

Proposition 4.1.17. Let K ⊂ C be compact. If A2(C \K) = {0}, then A2(C∞ \K) is

trivial as well.



4.2. Approximation by Rational Functions 40

Proof. From [15, Theorem 9.5, p. 347], we can deduce for Ω = C∞ \K

A2(Ω ∩Dρ) = A2(Dρ \K) = A2(Dρ).

Hence, (4.1) yields that A2(Ω) = {0}.

Proposition 4.1.18. Let X be a Fréchet space with X = A ⊕ B. If for M ⊂ A and

L ⊂ B the linear span of M +L is dense in X, then span M is dense in A and span L

is dense in B.

Proof. Let x ∈ A. By definition we have x ∈ X, so there exists a sequence (xn)n∈N

in the linear span of M + L such that xn → x in X as n tends to ∞. Then one can

find linear combinations an of vectors belonging to M and bn of vectors belonging to L

such that xn = an + bn for all n ∈ N. Respectively, one obtains a ∈ A and b ∈ B with

x = a + b. Since x was a vector belonging to A by assumption, it follows that a = x

and b = 0. Because of [39, Theorem 5.16], the projection k : X → A, k(a + b) = a is

continuous and it follows

an = k(xn)→ k(x) = x (n→∞) (4.2)

in A. Hence, the linear span of M is dense in A. The second statement follows analo-

gously.

Let Ω ⊂ C∞ be open with ∞ ∈ Ω. Because of (4.1), we can apply Proposition 4.1.18

to obtain results on approximation by rational function in the modified Bergman space

Ap(Ω) as we will do in the next section.

4.2 Approximation by Rational Functions

In order to obtain situations in which the Taylor shift has certain dynamical properties

on Ap(Ω) we need to have results on approximation by rational functions. In [23,

Theorem 1] one can find the following result regarding approximation in the Bergman

spaces for 1 ≤ p < 2. For a measurable bounded set E ⊂ C and a set A ⊂ E∗ we will

denote by Rp
A(E) the closure in Lp(E) of rational functions with simple poles in 1/A.
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Theorem 4.2.1 (Hedberg). If 1 ≤ p < 2 and Ω ⊂ C is a bounded open set, then

Ap(Ω) = Rp
Ω∗(Ω).

For a compact set K ⊂ C, the inner boundary of K means the set of points in ∂K which

are not in the boundary of any component of the complement of K. Note that if Ω is

a bounded domain, then the inner boundary of cl(Ω) is empty. For the case p ≥ 2, [23,

Theorems 4 and 5] yield the next result:

Theorem 4.2.2 (Hedberg). Let 2 ≤ p < ∞ and Ω ⊂ C be a bounded open set. If the

inner boundary of cl(Ω) is empty, then Rp
int(Ω∗)(Ω) = Ap(Ω).

Remark 4.2.3. The previous two theorems are statements on approximation by rational

functions with simple poles whereas the related theorems in [23] are stated for rational

functions with arbitrary poles. The proofs, however, show that simple poles suffice.

Theorem 4.2.2 is actually stated for compact sets E ⊂ C, i.e. that functions in Lpa(E) =

{f ∈ Lp(E) : f |int(E) ∈ H(int(E))} can be approximated by rational functions with

simple poles in the complement of E. However, for an open bounded set Ω and f ∈
Ap(Ω), we can understand f as a function in Lpa(cl(Ω)) by defining f ≡ 0 on ∂Ω. Then

there exists a sequence of rational functions (rj)j∈N such that rj → f in Lpa(cl(Ω)). It

follows

‖rj − f‖p,Ω ≤ ‖rj − f‖p,cl(Ω) → 0

which yields Theorem 4.2.2.

In order to apply Theorem 1.2.12 to the Taylor shift, we need to approximate functions

in the Bergman spaces by rational functions having poles in predetermined sets Λ.

Therefore, we introduce the notion of uniqueness sets according to [12].

Definition 4.2.4. Let K ⊂ C be compact in C. Then Λ ⊂ K is called a uniqueness set

for K if every continuous function on K that is holomorphic on the interior of K and

vanishes on Λ vanishes identically.

For the case 1 ≤ p < 2, we can now prove that it is sufficient to have simple poles in a

uniqueness set to approximate functions in Ap(Ω). We recall that γ(α) are the functions

defined in (2.5). Note that for 1 ≤ p < 2 these functions are in Ap(Ω) for all α ∈ Ω∗.
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Theorem 4.2.5. Let 1 ≤ p < 2 and Ω ⊂ C∞ be an open set which is either bounded in

C or with ∞ ∈ Ω. If Λ is a uniqueness set for Ω∗, then

span{γ(α) : α ∈ Λ} is dense in Ap(Ω).

Proof. We first assume that Ω is bounded in C. Let ϕ ∈ (Ap(Ω))′ with ϕ(γ(α)) = 0 for

all α ∈ Λ. There exists a function g ∈ Aq(Ω) with 1/p+ 1/q = 1 such that

ϕ(f) =

∫
Ω

fgdλ2 for all f ∈ Ap(Ω).

For µ ∈M(Ω) with dµ = 1Ωgdλ2 the Cauchy transform

Cµ(ζ) =

∫
Ω

g(z)

1− ζz
dλ2(z)

fulfils Cµ(α) = ϕ(γ(α)) = 0 for all α ∈ Λ. Since Cµ is holomorphic in the interior

of Ω∗ and continuous everywhere by Theorem 3.2.6 (note that we are considering the

case that Ω is bounded) and Λ is a uniqueness set for Ω∗ by assumption we have that

Cµ|Ω∗ ≡ 0 and thus

ϕ(γ(α)) = 0 for all α ∈ Ω∗.

So ϕ is equal to 0 on the set of rational functions with simple poles in C \Ω. According

to Theorem 4.2.1 this yields that ϕ is identically 0.

Now, let Ω be open with ∞ ∈ Ω. By the previous considerations, we have that Rp
Λ(Ω ∩

Dρ) = Ap(Ω∩Dρ). By Proposition 4.1.18 it follows that span{γ(α) : α ∈ Λ} is dense in

Ap(Ω).

For the case p ≥ 2, we want to obtain an approximation result using specific Cauchy

transforms. These type of functions were already considered in [8].

Remark 4.2.6. For measurable B ⊂ T we define

fB(z) := CmB(z) =

∫
B

dm(ζ)

1− ζz
(z ∈ B∗) (4.3)
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where dmB = 1Bdm. By [24, Theorem 1.7], we obtain that∫
T

dm(ζ)

|1− ζz|
= O

(
log

1

1− |z|

)
(|z| → 1−).

With the following estimation

∫
D

∣∣∣∣log
1

1− |z|

∣∣∣∣p dλ2(z) =
1

π

2π∫
0

1∫
0

∣∣∣∣log
1

1− |reit|

∣∣∣∣p rdrdt ≤ 1

π

1∫
0

∣∣∣∣log
1

r

∣∣∣∣p dr
and the fact that log(1/·) ∈ Lp([0, 1]) for all p ≥ 1, we obtain that for an open set Ω

with B = ∂Ω∗ ∩ T 6= ∅ ∫
B

|γ(ζ)|dm(ζ) ∈ Lp(Ω)

for all 1 ≤ p <∞.

The following proposition gives a sufficient condition for a set to be a uniqueness set

(see e.g. [12]).

Proposition 4.2.7. Let K ⊂ C be a compact set such that int(K) is a domain. Then

Λ is a uniqueness set for K if ∂K is a rectifiable Jordan curve and Λ has positive linear

measure.

Using this, we can show that functions in Ap(Ω) for specific open sets Ω can be approx-

imated by functions of the form as in (4.3).

Theorem 4.2.8. Let 2 ≤ p <∞ and Ω ⊂ C∞ be a domain which is either bounded in

C or with ∞ ∈ Ω. If for every component C of Ω∗ the boundary of C is a rectifiable

Jordan curve and the intersection of C with the unit circle T has positive m-measure,

then

span{fB : B ⊂ Ω∗ ∩ T with positive m-measure} is dense in Ap(Ω).

Proof. We first assume that Ω is bounded in C and set

L := span{fB : B ⊂ Ω∗ ∩ T with positive m-measure}.



4.2. Approximation by Rational Functions 44

We choose ϕ ∈ (Ap(Ω))′ with ϕ(fB) = 0 for all B ⊂ Ω∗ ∩ T with positive m-measure.

Since Ap(Ω) is a subspace of Lp(Ω) and ϕ is a linear continuous functional, the Hahn-

Banach theorem yields that ϕ can be extended to Lp(Ω). Thus, there exists a function

g ∈ Lq(Ω) where q is the conjugated exponent to p such that

ϕ(f) =

∫
Ω

fgdλ2

for all f ∈ Ap(Ω) ⊂ Lp(Ω). Since
∫
B
|γ(ζ)|dm(ζ) ∈ Lp(Ω) for all B ⊂ Ω∗ ∩ T with

positive m-measure, Hölder’s inequality yields∫
Ω

|
∫
B

| g(z)

1− ζz
|dm(ζ)|dλ2(z)

≤

∫
Ω

|g(z)|qdλ2(z)

1/q∫
Ω

|
∫
B

| 1

1− ζz
|dm(ζ)|pdλ2(z)

1/p

<∞.

This allows us to apply Fubini’s theorem and for all B ⊂ Ω∗∩T with positive m-measure

we get

ϕ(fB) =

∫
Ω

∫
B

dm(ζ)

1− ζz
g(z)dλ2(z) =

∫
B

∫
Ω

g(z)

1− ζz
dλ2(z)dm(ζ) = 0.

For µ ∈ M(Ω) with dµ = 1Ωgdλ2 the Cauchy transform of µ is continuous everywhere

since we are considering the case that Ω is bounded and

ϕ(fB) =

∫
B

Cµ(ζ)dm(ζ) = 0

for all B ⊂ Ω∗ ∩ T with positive m-measure, so by [38, Theorem 1.39] it follows that

Cµ = 0 m-almost everywhere on Ω∗ ∩ T. Since each component C of Ω∗ is enclosed by

a rectifiable Jordan curve and C ∩T has positive m-measure and therefore also positive

linear measure, Proposition 4.2.7 yields for every component that C ∩T is a uniqueness

set for C. We obtain that Cµ|Ω∗ ≡ 0 because Cµ is holomorphic in the interior of Ω∗.

Since Ω is bounded, we get that ϕ(γ(α)) = 0 for all α in the interior of Ω∗ which is, by

assumption, not empty for every component of Ω∗. Since Ω is a domain, it follows that
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the inner boundary of cl(Ω) is empty so we can apply Theorem 4.2.2 and obtain that L

is dense in Ap(Ω) which yields the assertion.

Along the same lines, we get in the unbounded case that

L := span({fB : B ⊂ Ω∗ ∩ T with positive m-measure} ∪ {γ(α) : α ∈ C \∆ρ})

is dense in Ap(Ω ∩Dρ) and applying Proposition 4.1.18 we obtain that span{fB : B ⊂
Ω∗ ∩ T with positive m-measure} is dense in Ap(Ω) which concludes the proof.

In [8], the authors already proved an approximation result using functions of the form

(4.3). For their result, we first need the notion of Carathéodory domains. Note that for

a compact set K ⊂ C the open set C\K can have at most countably many components,

exactly one of which is unbounded. The boundary of this unique component of C \K
is called the outer boundary of K. Then the outer boundary of an open bounded set

is defined as the outer boundary of its closure. According to [15], one can define the

following.

Definition 4.2.9. A Carathéodory domain is a bounded open connected subset of C
whose boundary equals its outer boundary.

Remark 4.2.10. In [8, Lemma 3.3] it was shown that in case that Ω is a Carathéodory

domain such that cl(Ω) does not separate the plane and T \ Ω contains a non-trivial

subarc, then we can approximate functions in Ap(Ω) by functions as in (4.3). This result

is a special case of the previous theorem.

Along the same lines as in Theorem 4.2.5 and using the identity theorem, we obtain the

following result.

Theorem 4.2.11. Let 2 ≤ p < ∞ and Ω ⊂ C∞ be a domain which is either bounded

in C or ∞ ∈ Ω. If every component C of Ω∗ has interior points and Λ ⊂ int(Ω∗) such

that Λ has an accumulation point in every component C of Ω∗, then

span{γ(α) : α ∈ Λ}

is dense in Ap(Ω).



Chapter 5

The Taylor Shift on General

Bergman Spaces

5.1 The Spectrum of the Taylor Shift on Bergman

Spaces

As in Chapters 2 and 3, we want to examine the Taylor shift operator T := TΩ,p on the

Bergman spaces for its dynamical properties. If Ω is an open set with 0 ∈ Ω which is

either bounded in C or ∞ ∈ Ω, then (Ap(Ω), T ) is a dynamical system: For f ∈ Ap(Ω)

there exists some r > 0 such that f is holomorphic in Dr which means that Tf is

integrable in a neighbourhood of 0 and thus is integrable on Ω itself.

If Ω is as required above, the Cauchy kernel provides a family of eigenfunctions for the

operator T . The following theorem sums up the relations between the spectrum, the

point spectrum and Ω∗ for different values of p.

Theorem 5.1.1. Let Ω be an open set with 0 ∈ Ω which is either bounded in C or

∞ ∈ Ω. For the Taylor shift T on Ap(Ω), the following holds:

1. σ0(T ) = σ(T ) = Ω∗ for 1 ≤ p < 2,

2. int(Ω∗) ⊂ σ0(T ) ⊂ σ(T ) ⊂ Ω∗ for p ≥ 2.

Proof. An elementary calculation shows that Sα on Ap(Ω) from (2.6) is the continuous

inverse operator to T−αI for α ∈ 1/Ω. This yields that σ(T ) ⊂ Ω∗. For α ∈ int(Ω∗) the
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functions γ(α) belong to Ap(Ω) for all p and it is clear that γ(α) is an eigenfunction to

the eigenvalue α. As stated above, for p < 2 the functions γ(α) belong to Ap(Ω) also for

α ∈ ∂Ω∗ which yields σ0(T ) = Ω∗. Since σ0(T ) ⊂ σ(T ), we obtain both statements.

Remark 5.1.2. For p ≥ 2 we have that cl(int(Ω∗)) ⊂ cl(σ0(T )) ⊂ σ(T ) ⊂ Ω∗ with the

fact that the spectrum of a continuous operator is always a closed subset of the complex

plane. In particular, this means that if the closure of the interior of Ω∗ equals Ω∗, then

the spectrum of T also coincides with Ω∗ for p ≥ 2. For example, this is the case if Ω is

a Carathéodory domain.

Example 5.1.3. 1. Let Ω := DR \ {1} for some R > 1. For f ∈ A2(Ω) the point

1 must be a removable singularity by [15, Proposition 9.3, page 345]. Therefore,

A2(DR \ {1}) = A2(DR) and it follows 1 ∈ Ω∗ \ σ(T ).

2. Let Ω = D \ (3/4 + D1/4). Since the area of Ω around 1 is sufficiently small, it

follows γ(1) ∈ A2(Ω) and therefore 1 ∈ σ0(T ) but 1 /∈ int(Ω∗).

These examples show that, in general, the two inclusions in the second statement of

Theorem 5.1.1 are not equalities.

Remark 5.1.4. We know that the spectrum of T on Ap(Ω) equals Ω∗ for p < 2 by

Theorem 5.1.1 which yields that T , by Theorem 1.2.5, can only be frequently hypercyclic

(or chaotic) if Ω∗ is a perfect set. The same holds for the Taylor shift on Ap(Ω) for p ≥ 2

if the closure of the interior of Ω∗ equals Ω∗.

The authors of [8] already considered the Taylor shift operator on general Bergman

spaces and succeeded to prove the following result.

Theorem 5.1.5 (Beise, Müller). Let Ω be a Carathéodory domain such that cl(Ω) does

not separate the plane. If T \ Ω contains some arc, then T is mixing on Ap(Ω) for all

1 ≤ p <∞.

5.2 Dynamics of the Taylor Shift for 1 ≤ p < 2

In this section, we want to study the dynamics of the Taylor shift operator on general

Bergman spaces for 1 ≤ p < 2. In the following, for open Ω ⊂ C∞, we set ΛD :=

(Ω∗ ∩ T) \D for subsets D of the unit circle T.
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Theorem 5.2.1. Let 1 ≤ p < 2 and Ω ⊂ C∞ be an open set with 0 ∈ Ω which is either

bounded in C or contains ∞. Furthermore, let T be the Taylor shift on Ap(Ω).

1. If ΛD is a uniqueness set for Ω∗ for all countable D ⊂ T, then T is weakly mixing

in the Gaussian sense.

2. If ΛD is a uniqueness set for Ω∗ for all sets D ⊂ T of extended uniqueness, then

T is strongly mixing in the Gaussian sense.

Proof. Fix an arbitrary countable set D ⊂ T and f ∈ Ap(Ω). Since ΛD is a uniqueness

set for Ω∗ by assumption, Theorem 4.2.5 yields that⋃
α∈ΛD

ker(T − αI) = span{γ(α) : α ∈ ΛD} is dense in Ap(Ω)

which is sufficient for the Taylor shift to be weakly mixing in the Gaussian sense by

Theorem 1.2.12. The second statement follows analogously for sets D ⊂ T of extended

uniqueness.

We now want to obtain examples of open sets Ω such that the Taylor shift on Ap(Ω)

is weakly or strongly mixing in the Gaussian sense. For that, it is useful to have a

verifiable condition like Proposition 4.2.7 to show whether a set is a uniqueness set. The

following result gives more insight to that.

Proposition 5.2.2 (see e.g. [12]). Let K ⊂ C be a compact set. Then Λ ⊂ K is a

uniqueness set for K if and only if K \ cl(int(K)) is a subset of the closure of Λ and for

every component C of int(K) the set Λ ∩ cl(C) is a uniqueness set for cl(C).

Example 5.2.3. Let B ⊂ T be a perfect compact subset of the unit circle and Ω :=

C∞ \ B. Then for all countable D ⊂ T we have that ΛD := B \ D is a uniqueness set

for B. To verify that we apply Proposition 5.2.2: the first condition holds since B is

a perfect set by assumption and the interior of B is empty since then ΛD is dense in

B for all countable D ⊂ T. For the second condition there is nothing to show because

int(B) = ∅. Hence, if 1 ≤ p < 2, it follows from Theorem 5.2.1 that the Taylor shift

operator on Ap(Ω) is weakly mixing in the Gaussian sense.

In the setting of this example, it follows that it is not only sufficient for B ⊂ T to be a

perfect set but also necessary as the next theorem will show.
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Theorem 5.2.4. Let 1 ≤ p < 2 and Ω := C∞ \ B be open where B ⊂ T. Furthermore,

let T be the Taylor shift on Ap(Ω). Then the following are equivalent:

1. T is weakly mixing in the Gaussian sense,

2. T is frequently hypercyclic,

3. B is a perfect set.

Proof. If T is weakly mixing in the Gaussian sense, it is already frequently hypercyclic

by Remark 1.2.9. Since the spectrum of T equals 1/B, it follows from the frequent

hypercyclicity and Theorem 1.2.5 that 1/B is perfect and therefore also B has to be

a perfect set. Finally, with Example 5.2.3 we obtain that T is weakly mixing in the

Gaussian sense if B is perfect.

Compared to the prior theorem, we get the following result regarding the strongly mixing

property. This follows from the fact that Ap(Ω) are Banach spaces with cotype 2 for

1 ≤ p < 2 and Theorem 1.2.12.

Theorem 5.2.5. Let 1 ≤ p < 2 and Ω := C∞ \ B be open where B ⊂ T. Furthermore,

let T be the Taylor shift on Ap(Ω). Then the following are equivalent:

1. T is strongly mixing in the Gaussian sense,

2. B is a U0-perfect set.

These two theorems lead us to an example of an open set Ω such that the Taylor shift

on Ap(Ω) is weakly but not strongly mixing in the Gaussian sense.

Example 5.2.6. Define Ω := C∞ \ eiπ(2C−1) where C is the classical Cantor 1/3-set.

Then Ω fulfils the conditions of Theorem 5.2.4, so the Taylor shift on Ap(Ω) is frequently

hypercyclic and weakly mixing in the Gaussian sense for 1 ≤ p < 2. Because eiπ(2C−1)

is a set of extended uniqueness (see Appendix A), it follows that T cannot be strongly

mixing in the Gaussian sense.

Compared to that, we can construct a Cantor set C which has locally positive arc length

measure.



5.2. Dynamics of the Taylor Shift for 1 ≤ p < 2 50

Example 5.2.7. Recursively, we want to define a descending sequence (Cn)n∈N of sets

with Cn+1 ⊂ Cn for all n ∈ N. We start with C0 = [0, 1] and obtain Cn+1 by taking out

the open interval ((a+b)/2−1/(4 ·3n+1), (a+b)/2+1/(4 ·3n+1)) with length 1/(2 ·3n+1)

of each connected interval [a, b] of Cn. Then we define C :=
⋂
n∈NCn. In every step, one

removes 2n intervals which are pairwise disjoint such that λ(Cn+1) = λ(Cn)−2n/(2·3n+1).

Recursively, we get

λ(Cn) = 1− 1

4

n∑
j=1

(
2

3
)j =

1

2
+

1

2
· (2

3
)n → 1

2
(n→∞)

which yields that C has locally positive Lebesgue measure. On the other hand, for all

n ∈ N, the set Cn consists of 2n components Cn,j with

λ(Cn,j) =
1

2n+1
+

1

2
· 1

3n
→ 0 (n→∞).

Thus, C is totally disconnected. If we consider Ω = C∞ \ eiπ(2C−1), then the Taylor

shift is strongly mixing in the Gaussian sense. This is true because all sets of extended

uniqueness have arc length measure 0 by Appendix A, i.e. eiπ(2C−1) is a U0-perfect set.

Another example for the Taylor shift to be strongly mixing in the Gaussian sense is the

following.

Example 5.2.8. Let 1 ≤ p < 2 and Ω be a domain containing 0 whose boundary

is a rectifiable Jordan curve and such that ∂Ω∗ ∩ T has positive linear measure (and

equivalently has positive arc length measure). Then for every set of extended uniqueness

D ⊂ T the set (∂Ω∗ ∩ T) \ D still has positive linear measure since D has arc length

measure 0. So, with Proposition 4.2.7, we get that (∂Ω∗ ∩ T) \ D is a uniqueness set

for Ω∗ for every set of extended uniqueness D ⊂ T. Thus, the Taylor shift on Ap(Ω) is

strongly mixing in the Gaussian sense.

This also shows that for the case that Ω is a Carathéodory domain such that Ω∗ contains

a non-trivial subarc of T, we have that the Taylor shift on Ap(Ω) is strongly mixing in

the Gaussian sense.

To conclude this section, we want to give an example which clarifies the results for

different values of p.
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Example 5.2.9. Let 1 ≤ p < ∞ and Ω = C∞ \ B be open where B ⊂ T is a perfect

set. Furthermore, let T be the Taylor shift on Ap(Ω).

1. For 1 ≤ p < 2 we have seen in Theorem 5.2.4 that T is weakly mixing in the

Gaussian sense. T is even strongly mixing in the Gaussian sense for the case that

B is a U0-perfect set.

2. A2(Ω) is trivial if and only if B is a polar set. So let B be nonpolar. Since A2(Ω) is

a Banach space with cotype 2, the statements in Theorem 1.2.12 are equivalences.

This yields that T is not weakly mixing because for α ∈ 1/B the functions γ(α)

are not in A2(Ω), i.e.

σ0(T ) = ∅.

We do not know whether the Taylor shift is frequently hypercyclic on A2(Ω).

3. Let 2 < p <∞ and q be the conjugated exponent of p. If the q-capacity of B is 0,

then Ap(Ω) is trivial. Whenever this is not the case, we do not know whether the

Taylor shift is frequently hypercyclic, weakly or strongly mixing in the Gaussian

sense.

5.3 Dynamics of the Taylor Shift for p ≥ 2

In the following, let 2 ≤ p <∞. Contrary to the setting of the previous section, we are

now in a situation where the functions γ(α) from (2.5) are not necessarily contained in

Ap(Ω) whenever α ∈ ∂Ω∗. Therefore, we want to replace these functions by appropriate

Cauchy transforms. If Ω is an open set containing 0, then the Cauchy transforms for

measures µ ∈M(∂Ω∗) are of interest for the Taylor shift on Ap(Ω) (see Definition 3.2.3).

Note that Ω∗ and therefore also ∂Ω∗ are bounded in C since 0 ∈ Ω by assumption.

Kitai’s Theorem shows that an operator can only be hypercyclic if every component of

the spectrum intersects the unit circle. Therefore from now on, we will always assume

that Ω is an open set containing 0 such that ∂Ω∗ ∩ T is not empty.

Definition 5.3.1. For 1 ≤ p <∞ and an open set Ω, we define

Mp(∂Ω∗) = {µ ∈M(∂Ω∗) :

∫
∂Ω∗

|γ(ζ)|d|µ|(ζ) ∈ Lp(Ω)}.
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Furthermore, let

Cp(∂Ω∗) = {Cµ : µ ∈Mp(∂Ω∗)}.

Following the lines of Chapter 3, for f ∈ Cp(∂Ω∗) we denote by M(f) = {µ ∈Mp(∂Ω∗) :

Cµ = f} the set of representing measures for f .

Note that for f ∈ Cp(∂Ω∗) it follows that f ∈ Ap(Ω) since Cauchy transforms of measures

µ ∈Mp(∂Ω∗) are holomorphic in Ω and

|
∫
∂Ω∗

γ(ζ)dµ(ζ)| ≤
∫
∂Ω∗

|γ(ζ)|d|µ|(ζ) ∈ Lp(Ω).

Theorem 5.3.2. Let 1 ≤ p <∞ and Ω be open with 0 ∈ Ω. Furthermore, let T be the

Taylor shift on Cp(∂Ω∗). For R : Mp(∂Ω∗)→Mp(∂Ω∗), Rµ = iddµ the diagram

Mp(∂Ω∗) R //

C
��

Mp(∂Ω∗)

C
��

Cp(∂Ω∗)
T
// Cp(∂Ω∗)

commutes.

Proof. Let 1 ≤ p < ∞ and µ ∈ Mp(∂Ω∗). We first show that R is a self map: Since

∂Ω∗ is compact in C, there exists a constant c > 0 such that supz∈∂Ω∗ |z| ≤ c and we

obtain ∫
∂Ω∗

|γ(ζ)|d|Rµ|(ζ) =

∫
∂Ω∗

|γ(ζ)ζ|d|µ|(ζ) ≤ c

∫
∂Ω∗

|γ(ζ)|d|µ|(ζ).

It follows that Rµ ∈Mp(∂Ω∗) because µ ∈Mp(∂Ω∗) by assumption.

Now, let f ∈ Cp(∂Ω∗) with µ ∈M(f). As in Theorem 3.3.5, it follows

Tf =

∫
∂Ω∗

ζ

1− ζ·
dµ(ζ),

i.e. Tf = CRµ. Since R is a self map on Mp(∂Ω∗), it follows that Tf ∈ Cp(∂Ω∗).
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Inductively, we obtain for f ∈ Cp(∂Ω∗) and µ ∈M(f)

T nf =

∫
∂Ω∗

ζnγ(ζ)dµ(ζ)

for all n ∈ N.

We now want to guarantee that the iterates of the Taylor shift applied to appropri-

ate Cauchy transforms converge to 0 in Ap(Ω). We can prove that this is the case if

µ ∈ Mp(∂Ω∗) with the additional property that µ is concentrated on ∂Ω∗ ∩ T and a

Rajchman measure (see Appendix A for a definition). Note that µ can be understood

as a measure on the unit circle if it is concentrated on ∂Ω∗ ∩T ⊂ T so it makes sense to

speak of Rajchman measures.

Since we want to apply the Kitai Criterion in order to show that under specific assump-

tions the Taylor shift is mixing on Ap(Ω), we also need a right inverse of T . Therefore,

as in Chapter 3, for f ∈ Cp(∂Ω∗) we fix an arbitrary representing measure µf ∈ M(f)

and define

Snf =

∫
∂Ω∗

γ(ζ)

ζn
dµf (ζ) =

∫
∂Ω∗

dµf (ζ)

ζn(1− ζ·)
(5.1)

for all n ∈ N. Since 0 /∈ ∂Ω∗, it follows, as in the proof of Theorem 5.3.2, that Snf ∈
Cp(∂Ω∗).

Theorem 5.3.3. Let 2 ≤ p < ∞ and Ω be an open set with 0 ∈ Ω. Furthermore,

let T be the Taylor shift operator on Ap(Ω) and (Sn)n∈N be the sequence of mappings

on Cp(∂Ω∗) defined in (5.1). If f ∈ Cp(∂Ω∗) such that f is represented by a Rajchman

measure µf ∈M(f) concentrated on B := ∂Ω∗ ∩ T, then

T nf → 0 and Snf → 0

in Ap(Ω) as n→∞.

Proof. Let f ∈ Cp(∂Ω∗) and µf ∈ M(f) such that µf is a Rajchman measure concen-

trated on B. With Theorem 5.3.2 we have

T nf(z) =

∫
∂Ω∗

ζn

1− ζz
dµf (ζ) =

∫
B

ζn

1− ζz
dµf (ζ) (z ∈ Ω)
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for all n ∈ N. Because µf ∈ Mp(∂Ω∗) is concentrated on B ⊂ T, we have that the

functions γ(z) lie in L1(T, |µ|) for all z ∈ Ω. Since µf is a Rajchman measure, Theorem

A.2.6 yields that µf,z with dµf,z = γ(z)dµf is a Rajchman measure as well for all z ∈ Ω.

Thus,

T nf(z) =

∫
T

ζnγ(z)(ζ)dµf (ζ) =

∫
T

ζndµf,z(ζ) = µ̂f,z(−n)→ 0

and

Snf(z) =

∫
T

ζ−nγ(z)(ζ)dµf (ζ) =

∫
T

ζ−ndµf,z(ζ) = µ̂f,z(n)→ 0

as n tends to ∞. Furthermore,

|T nf(z)| ≤
∫
B

|γ(ζ)|d|µf |(ζ) and |Snf(z)| ≤
∫
B

|γ(ζ)|d|µf |(ζ) for all n ∈ N

where
∫
B
|γ(ζ)|d|µf |(ζ) is p-integrable on Ω by assumption. Lebesgue’s theorem of

dominated convergence then yields that ‖T nf‖p → 0 and ‖Snf‖p → 0 as n tends to

∞.

Remark 5.3.4. Let Ω be an open set and B = ∂Ω∗ ∩ T 6= ∅. We recall the definition

of the functions fB from (4.3). We have seen in Remark 4.2.6 that for dmB = 1Bdm it

follows ∫
∂Ω∗

|γ(ζ)|dmB(ζ) ∈ Lp(Ω)

for all 1 ≤ p < ∞ which yields that mB is a measure in Mp(∂Ω∗) concentrated on B

and hence fB ∈ Cp(∂Ω∗). Since 1B ∈ L1(T) and the normalized arc length measure is

a Rajchman measure, Theorem A.2.6 yields that mB is a Rajchman measure as well.

Using the previous theorem, we obtain that the iterates of the Taylor shift applied to

fB converge to 0.

Putting together the results of this section and Section 4.2, we now obtain that the

Taylor shift is mixing on the Bergman space Ap(Ω) for the case p ≥ 2 if Ω is as in the

setting of Theorem 4.2.8.

Theorem 5.3.5. Let p ≥ 2 and Ω ⊂ C∞ be a domain set which is either bounded in

C or ∞ ∈ Ω. If for every component C of Ω∗ the boundary of C is a rectifiable Jordan
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curve and the intersection of C with the unit circle T has positive m-measure, the Taylor

shift on Ap(Ω) is mixing.

Proof. By Theorem 4.2.8, we obtain that

L := span{fB : B ⊂ Ω∗ ∩ T with positive m-measure}

is dense in Ap(Ω). Furthermore, let (Sn)n∈N be the sequence of mappings defined in

(5.1) restricted to L. Then Theorem 5.3.3 yields that ‖T nfB‖p and ‖SnfB‖p converge

to 0 as n →∞ for all fB ∈ L. As in Theorem 3.3.9 we get T nSnfB = fB for all n ∈ N
so the Kitai Criterion (see Theorem 1.2.6) yields the assertion.

Remark 5.3.6. In the situation of the previous theorem, we have that the set of hyper-

cyclic elements of the Taylor shift T is algebraically generic, i.e. contains a dense vector

subspace except 0. This follows directly from Theorem 2 in [11] and the fact that the

assumptions of the Kitai Criterion are fulfilled as seen in the proof of the last theorem

(see condition (A) in [11]).

Remark 5.3.7. Let p ≥ 2 and Ω ⊂ C∞ be a domain such that it is either bounded in C
or ∞ ∈ Ω. Furthermore, let the boundary of every component C of Ω∗ be a rectifiable

Jordan curve and the intersection of C with T be of positive m-measure. If D ⊂ Ω, then

Φ: (Ap(Ω), ‖ · ‖p,Ω)→ (Ap(D), ‖ · ‖p,D), f 7→ f

is a continuous map with dense image by Theorem 4.2.8, i.e. the Taylor shift on Ap

is quasiconjugate to the Taylor shift on Ap(Ω). As we have seen in Theorem 3.2.8,

the Taylor shift is not frequently hypercyclic on Ap whenever p ≥ 2. This yields that

for all Ω ⊃ D which fulfil the requirements of Theorem 5.3.5, we cannot have frequent

hypercyclicity of T on Ap(Ω) for p ≥ 2.

We now want to give some concrete examples of open sets Ω such that the Taylor shift

is mixing on Ap(Ω).

Example 5.3.8. Let Ω := C∞ \K where K is a sector of the form

K := Kρ := {reit : −θ ≤ t ≤ θ, 1 ≤ r ≤ ρ} (5.2)
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for θ ∈ (0, π) and 1 < ρ <∞. Then Ω is a domain, K is connected and the intersection

of ∂(1/K) with T is a non-trivial subarc. Theorem 5.3.5 yields that the Taylor shift is

mixing on Ap(C∞ \K) for all p ≥ 2. Furthermore, with Remark 5.3.7 we obtain that

T is not frequently hypercyclic on Ap(C∞ \K) for p ≥ 2 and therefore it is also neither

weakly nor strongly mixing in the Gaussian sense. By Theorem 5.2.1 the Taylor shift T

on Ap(Ω) is strongly mixing in the Gaussian sense if 1 ≤ p < 2.

The next example shows that for the Taylor shift to be mixing on an open set Ω ⊂ C∞
it is sufficient for the intersection of the complement of Ω with the unit circle T to be a

Cantor set which has positive m-measure.

Example 5.3.9. We consider the Cantor set C from Example 5.2.7. In every iteration,

[0, 1] \ Cn+1 consists of 2n+1 − 2n = 2n additional pairwise disjoint open intervals Ik,

where k ∈ {2n, ..., 2n+1 − 1}, compared to [0, 1] \ Cn. For each of those components Ik,

one can choose an infinitely differentiable function rk : [0, 1] → [0,∞) with compact

support supp rk = cl(Ik) and ak > 0 such that

ak‖rk‖[0,1] <
1

2k
for k ∈ {2n, ..., 2n+1 − 1}

Then r : [0, 1]→ [0,∞), r(x) =
∑∞

k=1 akrk(x) is an infinitely differentiable function with

r(x) = 0 for all x ∈ C.

For α ∈ (0, π) we define

ϕ : [−α, α]→ C, ϕ(x) =

(
1 + r

(
x− α

2α

))
eix.

It follows that ϕ ∈ C∞([−α, α],C) and is injective because of the uniqueness of the polar

coordinate representation. Furthermore, it holds that ϕ([−α, α]) ∩ T = eiα(2C−1) where

eiα(2C−1) has positive arc length measure. We can complete ϕ([−α, α]) to J such that J

is a closed Jordan curve. Since ϕ is infinitely often differentiable, we can assume that J

is rectifiable. We denote by K the closure of the bounded component of the complement

of this Jordan curve and set Ω = C∞ \K. Then Ω fulfils the requirements of Theorem

5.3.5, so the Taylor shift T is mixing on Ap(Ω) for p ≥ 2. As in the last example, we get

with Remark 5.3.7 that T is not frequently hypercyclic on Ap(Ω) for p ≥ 2 whereas it is

even strongly mixing in the Gaussian sense for 1 ≤ p < 2 which follows from Theorem

5.2.1.
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Given a self map T : X → X on a topological vector space X, an interesting question

to ask is how the arithmetic means of its iterates behave.

Definition 5.3.10. For an operator T : X → X on a topological vector space X, we

define the n-th Cesàro mean of T by

Cn : X → X, Cnx =
1

n

n−1∑
k=0

T kx

for n ∈ N.

One easily sees that, for each n ∈ N, the map Cn is linear and continuous. In [27], the

author introduced the notion of Cesàro hypercyclicity. Along those lines, we give the

following definition.

Definition 5.3.11. Let T : X → X be an operator on a topological vector space X.

We say that T is Cesàro mixing if the sequence (Cn)n∈N of its Cesàro means is mixing

on X.

Now, we can consider the n-th Cesàro mean of the Taylor shift T on Ap(Ω), 1 ≤ p <∞
defined as

Cn : Ap(Ω)→ Ap(Ω), Cnf =
1

n

n−1∑
k=0

T kf

for open sets Ω. As in the case of frequent hypercyclicity, the eigenfunctions of the

Taylor shift will be a useful tool to verify that it is Cesàro mixing. Note that for all

α ∈ int(cl(Ω)), we have that the eigenfunctions γ(α) of the Taylor shift are in the

Bergman spaces for 1 ≤ p <∞ and thus we have for those α

Cnγ(α) =
1

n

n−1∑
k=0

T kγ(α) =
1

n

(
n−1∑
k=0

αk

)
γ(α). (5.3)

Theorem 5.3.12. Let Ω ⊂ C∞ be an open set with 0 ∈ Ω and such that it is either

bounded in C or ∞ ∈ Ω. If each component C of Ω∗ fulfils int(C) ∩ T 6= ∅, then the

following is true:

1. The Taylor shift T is Cesàro mixing on Ap(Ω) for 1 ≤ p < 2.
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2. If in addition Ω is a domain, then the Taylor shift T is Cesàro mixing on Ap(Ω)

for 2 ≤ p <∞.

Proof. Let Ω ⊂ C∞ be as required. Using (5.3), we have that Cnγ(α)→ 0 (n→∞) in

Ap(Ω) for |α| < 1 and Cnγ(α)→∞ (n→∞) in Ap(Ω) for |α| > 1. Define

L = span{γ(α) : α ∈ int(Ω∗), |α| < 1} and M = span{γ(α) : α ∈ int(Ω∗), |α| > 1}.

Then both L and M are dense in Ap(Ω) by Theorem 4.2.5 and Theorem 4.2.11, re-

spectively. Now, let U , V be non-empty open sets in Ap(Ω) and take f ∈ U ∩ L and

g ∈ V ∩M , so we can write f =
∑k

i=1 aiγ(αi) for αi ∈ int(Ω∗) with |αi| < 1, i ∈ {1, ..., k}
and g =

∑l
j=1 bjγ(βj) for βj ∈ int(Ω∗) with |βj| > 1, j ∈ {1, ..., l}. We set

hn =
l∑

j=1

bj
n∑n−1

m=0 β
m
j

γ(βj)

such that hn → 0 in Ap(Ω) as n tends to∞ with Cnhn =
∑m

j=1 bjγ(βj) = g. Furthermore

Cnf =
k∑
i=1

ai

∑n−1
m=0 α

m
i

n
γ(αi)→ 0 (n→∞).

Thus, there exists N ∈ N such that for every n ≥ N we have f+hn ∈ U and Cn(f+hn) =

Cn(f) + g ∈ V . Therefore, (Cn)n∈N is mixing.



Chapter 6

Universal Taylor Series

6.1 Overview and First Results

After a short introduction to universality in the first chapter, we now want to consider

a special case, namely universal Taylor series. We have already seen the definition of

the disk algebra. For general compact sets E ⊂ C, the function algebra A(E) is defined

as

A(E) := {f ∈ C(E) : f holomorphic in int(E)}.

Equipped with the uniform norm on E, A(E) is a Banach space. Note that if the interior

of E is empty, it follows that A(E) is equal to C(E).

In the following, we will always consider functions f ∈ H(Ω) where Ω is an open set

with D ⊂ Ω and the complement of Ω intersects the unit circle. As usual, by snf we

denote the n-th partial sum of the Taylor expansion of f around 0.

Definition 6.1.1. Let E ⊂ C \D be a set outside the unit disc, Λ ⊂ N0 be infinite and

let f ∈ H(D).

1. We say that (snf)n∈Λ is pointwise universal with respect to E if for every function

g : E → C there exists a subsequence of (snf)n∈Λ converging pointwise to g on E.

2. If E is a compact set with connected complement, we say that (snf)n∈Λ is uniformly

universal with respect to E if for every function g ∈ A(E) there exists a subsequence

of (snf)n∈Λ converging uniformly to g on E.
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If Λ = N0, we also say that the function f is uniformly universal (respectively pointwise

universal) with respect to E.

In [33] the author was able to show that for a domain Ω ⊂ C there exist generically

many functions f ∈ H(Ω) such that (snf)n∈N is uniformly universal with respect all

E ⊂ C \Ω with connected complement. In particular, the case Ω = D yields that there

exist generically many functions f ∈ H(D) such that for each non-trivial subarc of the

unit circle E ⊂ T which is not equal to T and for every function g continuous on E a

subsequence of (snf)n∈N converges uniformly to g on E.

One might think that an analogous result is true for functions in the Bergman spaces.

However, in [40] the author proved that for f ∈ Ap at most one continuous pointwise

limit function can exist on each non-trivial subarc of T. On the other hand, the authors of

[8] were able to prove that there exist subsets of the unit circle with positive m-measure

such that there are generically many functions in Ap which are uniformly universal.

First, we need the following definition:

Let E be a proper subset of T with m(E) > 0. Then E is said to satisfy Carleson’s

condition if

`(E) :=
∑
k

m(Bk) log(1/m(Bk)) <∞

where T \ E =
⋃
k Bk is the finite or countable union of the pairwise disjoint open arcs

Bk.

Theorem 6.1.2 (Beise, Müller). Let 1 ≤ p < ∞ and E ⊂ T be closed with either

m(E) > 0 and E not containing a subset of positive m-measure satisfying Carleson’s

condition or else m(E) = 0. If Λ ⊂ N0 is infinite, then generically many f ∈ Ap enjoy

the property that (snf)n∈Λ is uniformly universal with respect to E.

As a conclusion from this result, one obtains the existence of generically many f ∈ Ap

which are universal in the sense of Menshov, that is for each measurable function g :

T → C there exists a subsequence of the partial sums (snf)n∈N tending to g almost

everywhere on T.

We now want to obtain a universality result for functions f ∈ Ap(Ω), where Ω ⊂ C∞
is a domain containing ∞, with respect to compact sets E ⊂ C \ Ω lying in a bounded
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component of the complement of Ω. We will apply two theorems from [29] in order to

show the following results:

Corollary 6.1.3. Let Ω = C∞ \ K be open where K ⊂ C \ D is a connected compact

set with nonempty interior meeting the unit circle T and such that int(K) has connected

complement. Then there exist generically many functions f ∈ Ap(Ω) which are, for all

E ⊂ int(K) compact with connected complement, uniformly universal with respect to E.

Proof. Let E ⊂ int(K) be a compact set with connected complement. Then one can find

an open connected set Ω0 with cl(Ω) ⊂ Ω0 such that its complement is also connected

and E ∩ Ω0 = ∅. Define Tn : Ap(Ω) → A(E), Tnf := snf |E. Since H(Ω0) ⊂ Ap(Ω) is

dense and with [29, Theorem 1], we obtain that the set of universal functions is a dense

Gδ-set.

Now, let (Ek)k∈N be the standard exhaustion of int(K) (see [39]). Note that Ek, k ∈ N,

has connected complement as well. For k ∈ N the first part of the proof yields the

existence of generically many functions f ∈ Ap(Ω) which are uniformly universal with

respect to Ek. Using Baire’s theorem, we obtain that generically many f ∈ Ap(Ω) enjoy

the property that for all k ∈ N the set of partial sums {snf |Ek : n ∈ N} is dense in

A(Ek). For an arbitrary E ⊂ int(K) compact with connected complement, there exists

some k ∈ N with E ⊂ Ek and since the polynomials are dense in A(E) and A(Ek),

A(Ek) is dense in A(E). Therefore, any f ∈ Ap(Ω) which is uniformly universal with

respect to all Ek, k ∈ N, is uniformly universal with respect to all E ⊂ int(K) compact

with connected complement.

Compared to the results we have seen until now, we want to analyse the behaviour of

the Taylor expansions of functions f ∈ Ap(Ω) on compact sets E ⊂ Ω \ D.

Corollary 6.1.4. Let Ω = C∞ \K be an open set where K ⊂ C \ D is a compact set

meeting the unit circle T such that K = cl(int(K)). For any countable set E ⊂ C \∆

there exist generically many functions f ∈ Ap(Ω) which are pointwise universal with

respect to E.

Proof. First, let E ⊂ C \ ∆ be finite. Because K equals the closure of its interior, we

can choose z0 ∈ int(K) such that |z0| < |z| for all z ∈ E and define Ω0 := C \ {z0}. [29,

Theorem 2] yields the existence of generically many functions f ∈ H(Ω0) having the

property that for every h : E → C there is a subsequence of (snf)n∈N converging to h on
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E. Since H(Ω0) ⊂ Ap(Ω) is dense and defining Tn : Ap(Ω) → CE as Tnf := snf |E, the

Universality Criterion states that there is a dense Gδ-set of functions f ∈ Ap(Ω) having

the desired property.

If E = {zj : j ∈ N} is countable, we define Ek := {z1, ..., zk}. Then using Baire’s theorem

we obtain that generically many f ∈ Ap(Ω) enjoy the property that for all k ∈ N the set

of partial sums {snf |Ek : n ∈ N} is dense in CEk . For a function f ∈ Ap(Ω) of this kind

and any h : E → C, there exists a strictly increasing subsequence (nj)j∈N of N such that

|snjf(z)− h(z)| < 1/j (z ∈ Ej).

Then snjf tends to h pointwise on E as j →∞.

Example 6.1.5. Let K ⊂ C∞\D be a sector as in (5.2) with K∩T 6= ∅ and Ω = C∞\K.

1. By Corollary 6.1.3 if E ⊂ int(K) is a compact set with connected complement,

generically many f ∈ Ap(Ω) are uniformly universal on E.

2. Corollary 6.1.4 states that for countable sets E ⊂ C \ ∆ there are generically

many functions f ∈ Ap(Ω) which are pointwise universal on E. As an example,

we can choose E := (Q + iQ) \∆. This differs from the first example since E is

also allowed to intersect Ω, i.e. the set where the Taylor expansion of f can be

holomorphically extended. On the other hand, only countable sets E are allowed.

6.2 Universality Results using the Taylor Shift

In the following, we want to apply Theorem 5.3.5 in order to obtain further information

about the behaviour of the partial sums of the Taylor expansion of functions in Bergman

spaces. For that, let Ω be a domain with 0 ∈ Ω and T the Taylor shift on Ap(Ω) for

1 ≤ p < ∞. As one can see from (2.2), the behaviour of the iterates T nf is closely

related to that of the partial sums snf . This connection was already studied in [8]. The

authors showed that in case that Ω is a Carathéodory domain containing a nontrivial

subarc of T which does not separate the plane there exist generically many functions

f ∈ Ap(Ω) having a subsequence of (snf)n∈N tending to f locally uniformly on Ω ∩∆.

Along those lines, we want to apply the results of the previous chapter in order to make
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statements concerning the boundary behaviour of the partial sums snf for f ∈ Ap(Ω)

for more general Ω. Note that (2.2) implies

|T n+1f | ≥ |f − snf | (6.1)

on ∆∩Ω for all f ∈ Ap(Ω). Using (6.1) and Theorem 5.3.5, we obtain the following result

concerning the behaviour of the partial sums of the Taylor expansion on the boundary

and outside its disc of convergence.

Corollary 6.2.1. Let Ω ⊂ C∞ be a domain which is either bounded in C or ∞ ∈ Ω.

Furthermore, let for every component C of Ω∗ the boundary of C be a rectifiable Jordan

curve, the intersection of C with the unit circle T have positive m-measure and Λ ⊂ N0

be infinite.

1. For generically many f ∈ Ap(Ω), there is a subsequence of (snf)n∈Λ tending to f

in Ap(Ω ∩ D) and locally uniformly on Ω ∩∆.

2. If Ω \ ∆ 6= ∅, then for generically many f ∈ Ap(Ω) there exists a subsequence of

(snf(z))n∈Λ tending to ∞ locally uniformly on Ω \∆.

Proof. Theorem 5.3.5 yields that the Taylor shift is mixing on Ap(Ω), so by Theorem

1.1.7 and Remark 1.1.8 there exist generically many universal functions f ∈ Ap(Ω) for

(T n+1)n∈Λ.

To prove the first statement, let f be such a universal function. Then there exists a

subsequence (nj)j∈N in Λ with T nj+1f → 0 in Ap(Ω) and (6.1) implies that snjf → f

in Ap(Ω ∩ D) as j → ∞. Using Remark 4.1.1 and again (6.1), we know that snjf → f

locally uniformly on ∆ ∩ Ω as j tends to ∞.

To prove the second statement, we know that for each of the universal functions f and

z0 ∈ int(Ω∗) there exists a subsequence (nj)j∈N in Λ with T nj+1f → γ(z0) in Ap(Ω).

In particular, γ(z0) ∈ Ap(Ω) is bounded below on compact subsets K of Ω \ ∆ with

γ(z0)(z) 6= 0 for all z ∈ Ω. Therefore, we have with (2.2) that |snjf−f | → ∞ as j →∞
uniformly on every compact K ⊂ Ω \∆ and thus also

|snjf | → ∞ (j →∞)

locally uniformly on Ω \∆.
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The first statement of Corollary 6.2.1 yields that for generically many f ∈ Ap(Ω) there

is a subsequence of (snf)n∈N tending to f locally uniformly on T∩Ω. A natural question

to ask is whether there are finite limit functions different from f on parts of T ∩ Ω.

A known result by Fatou and M. Riesz states that for each function holomorphic in

a domain Ω ⊃ D such that the Taylor coefficients (an)n∈N tend to 0 and each closed

non-trivial subarc Γ of Ω ∩ T, the partial sums (snf)n∈N converge uniformly to f on Γ.

For functions f ∈ Ap, we have seen in (3.3) that the Taylor coefficients an satisfy

an = o(n1/p) (n→∞)

which is best possible so we cannot apply the result of Fatou and Riesz. Without

needing a condition for the growth of the Taylor coefficients, Gardiner and Manolaki

([21, Theorem 1]) were able to show a similar result for functions holomorphic in the

unit disc.

Theorem 6.2.2 (Gardiner, Manolaki). Let f be a function holomorphic in D and

(snjf)j∈N be an arbitrary subsequence of (snf)n∈N converging pointwise to a (finite)

limit function h on a subset Γ of T. If f has nontangential limits f ∗(ζ) for ζ ∈ Γ, then

h = f ∗ on Γ almost everywhere with respect to the normalized arc length measure m.

In contrast to this result, we want to show that on small subsets of Ω ∩ T a maximal

set of limit functions can exist for f ∈ Ap(Ω).

Definition 6.2.3. A closed subset E of T is called a Dirichlet set if a subsequence of

(zn)n∈N tends to 1 uniformly on E.

Remark 6.2.4. One can easily see that each finite set in T is a Dirichlet set. Further-

more, Dirichlet sets cannot have positive arc length measure but can have Hausdorff

dimension 1 (see e.g. [25]).

The authors of [8] already showed for Carathéodory domains Ω and Dirichlet sets E ⊂
T ∩ Ω generically many f ∈ Ap(Ω) enjoy the property that for each h ∈ C(E) there

exists a subsequence of the partial sums of the Taylor expansion converging to h. Using

Theorem 5.3.5 we obtain the following extension of that result.

Theorem 6.2.5. Let Ω ⊂ C∞ be a domain which is either bounded in C or ∞ ∈ Ω.

If for every component C of Ω∗ the boundary of C is a rectifiable Jordan curve, the
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intersection of C with the unit circle T has positive m-measure and E ⊂ T ∩ Ω is a

Dirichlet set then generically many f ∈ Ap(Ω) are uniformly universal with respect to

E.

Proof. Since E is a Dirichlet set, one can find Λ ⊂ N0 infinite with zn+1 → 1 uniformly

on E as n → ∞, n ∈ Λ. Because E has connected complement, Mergelian’s theorem

yields that the polynomials are dense in C(E), so we can assume that h ∈ Ap(Ω). Let f

be universal for (T n+1)n∈Λ which exists by the Universality Criterion and Remark 1.1.8.

Since convergence in Ap(Ω) implies local uniform convergence, there is a subsequence

(nj)j∈N in Λ with T nj+1f → f − h locally uniformly on Ω as j tends to ∞ and thus in

particular uniformly on E. Then also

znj+1T nj+1f(z)→ f(z)− h(z) (j →∞)

uniformly on E and therefore

snjf(z) = f(z)− znj+1T nj+1f(z)→ h(z) (j →∞)

uniformly on E.

Corollary 6.2.6. Let K = {reit : θ1 ≤ t ≤ θ2, ρ1 ≤ r ≤ ρ2} for θ1 < θ2 and 0 < ρ1 < ρ2

such that K ∩ T 6= ∅ and let Ω = C∞ \K. Then for any Dirichlet set E ⊂ T ∩ Ω and

any r ∈ [ρ1, ρ2] generically many f ∈ Ap(Ω) are uniformly universal with respect to rE.

Proof. Let E ⊂ T ∩ Ω be a Dirichlet set and r ∈ [ρ1, ρ2]. By Theorem 6.2.5 there exist

generically many functions f ∈ Ap(Ω/r) which are uniformly universal with respect to

E. Since R : Ap(Ω/r) → Ap(Ω), Rf(z) = f(rz) is continuous and bijective it directly

follows that there exist generically many f ∈ Ap(Ω) such that for any h ∈ C(rE) there

exists a subsequence (nj)j∈N with snjf → h uniformly on rE.

In order to show our next result we first need some definitions. In comparison to the

notion of nontangential limits which was introduced in Chapter 3, we say that a function

f on D has an unrestricted limit f ∗(ζ) at a point ζ ∈ T if

f(zn)→ f ∗(ζ) (n→∞)

for an arbitrary sequence (zn)n∈N tending to ζ in D.
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Definition 6.2.7. Let f ∈ H(D) with f(z) =
∑∞

ν=0 aνz
ν for z ∈ D. If (nk)k∈N is a

strictly increasing sequence in N, we say that f has Hadamard-Ostrowski gaps relative

to (nk)k∈N if a sequence of integers (pk)k∈N with the following properties exists:

1. nk−1 ≤ pk < nk and lim supk→∞ pk/nk < 1,

2. if J is the set of integers ν such that pk < ν ≤ nk for some k ∈ N, then

lim sup
J3ν→∞

|aν |1/ν < 1.

Note that for the proof of the following theorem, a sequence (an)n∈N in C is called Cesàro

summable if the limit of its Cesàro means exists.

Theorem 6.2.8. Let E ⊂ C \ D be a set such that E ∩ T 6= ∅ and E \ ∆ non-polar.

If f ∈ Ap is a function having an unrestricted limit for some ζ ∈ E ∩ T and such that

there exists a subsequence of (snf)n∈N which converges pointwise on E to a function h,

then h(ζ) = f(ζ).

Proof. By assumption, f has radius of convergence 1. Since E\∆ is non-polar, it follows

that ∆ ∪ E has logarithmic capacity > 1. Let (nk)k∈N be a sequence of integers such

that (snkf)k∈N converges to a function h pointwise on E. In particular, the sequence

(snkf(ζ))k∈N is bounded for each ζ ∈ E. Hence,

lim sup
k→∞

|snkf(z)|1/nk ≤ 1 for all z ∈ E.

Thus, Theorem 1 of [9] yields that f has Hadamard-Ostrowski gaps relative to (nk)k∈N.

Using (3.3), the Taylor coefficients satisfy an = o(n) as n tends to ∞. Therefore,

[34] yields that (snf)n∈N is Cesàro summable at each point ζ ∈ T at which f has an

unrestricted limit which is the case for some ζ ∈ E ∩ T by assumption. Using Lemma

3.2 in [16], we can conclude that h(ζ) = f(ζ).

Remark 6.2.9. Let Ω be an open set such that Ω∗ ∩T 6= ∅, let E ⊂ Ω \D intersect the

unit circle and E \ ∆ be non-polar. Note that each f ∈ Ap(Ω) has unrestricted limits

on Ω ∩ T. Thus, if for f ∈ Ap(Ω) there exists a subsequence of (snf)n∈N converging

pointwise on E to a function h, the assumptions of the previous theorem are fulfilled

and we have h(ζ) = f(ζ) for all ζ ∈ E ∩ T.
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On the other hand, if E ⊂ Ω \D is a set meeting the unit circle and E \∆ is polar, we

do not know whether there exist universal functions f ∈ Ap(Ω) with respect to E.

Example 6.2.10. Let K = Kρ ⊂ C \ D be a sector as in (5.2) with K ∩ T 6= ∅ and

Ω = C∞ \ K. Furthermore, let E ⊂ Ω ∩ T be a Dirichlet set. By Corollary 6.2.6 it

follows that for any r ∈ [1, ρ] there exist generically many f ∈ Ap(Ω) which are uniformly

universal with respect to rE. However, if E is a non polar Dirichlet set and we only add

one point ζ ∈ Ω ∩ T to rE for r ∈ (1, ρ], we obtain by Theorem 6.2.8 that there exists

no function f ∈ Ap(Ω) which is universal on rE ∪ {ζ}.

Compared to Corollary 6.2.6 the following theorem shows that, for each given non polar

set E ⊂ T and each r > 1, all sufficiently small sectors K ⊂ C as in (5.2) have the

property that for any f ∈ H(C∞ \ K) and any subsequence (nj)j∈N of N the partial

sums (snjf)j∈N are not bounded on rE.

Theorem 6.2.11. Let E ⊂ C \∆ be a non polar set. Then there is a sector K whose

size only depends on the capacity of ∆ ∪ E such that for all f ∈ H(C∞ \ K) with

f(z) =
∑∞

ν=0 aνz
ν having radius of convergence 1 and any subsequence (nj)j∈N of N the

partial sums (snjf)j∈N are not bounded on E.

Proof. Let E ⊂ C \ ∆ be a non-polar set and ε > 0 sufficiently small such that C1 :=

(1 + ε)/c(∆ ∪ E) < 1. By [9, Theorem 1] there exists some q ∈ (0, 1) such that

lim sup
j→∞

max
qnj≤ν≤nj

|aν |1/ν ≤ C1 (6.2)

for all f(z) =
∑∞

ν=0 aνz
ν with radius of convergence 1 fulfilling

lim sup
j→∞

|snjf(z)|1/nj ≤ 1 for all z ∈ E (6.3)

for some subsequence (nj)j∈N of N. Let C2 ∈ (C1, 1) and let f be a function satisfying

(6.3). By [32, Lemma 2] we obtain the existence of some sufficiently small ρ > 1 and

θ ∈ (0, π) such that for all functions Φ of exponential type whose indicator diagram is

contained in the rectangle

R = {z ∈ C : − ln ρ ≤ Re z ≤ 0, −| ln θ| ≤ Im z ≤ | ln θ|}
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it holds

q < dens{ν ∈ N0 : |Φ(ν)|1/ν ≥ C2}. (6.4)

We now show that f cannot be holomorphically extended to C∞ \K where K = Kρ :=

e−R is a sector as in (5.2): Suppose not. Then f(z) =
∑∞

ν=0 Φ(ν)zν for some Φ ∈ Exp(R)

using Theorem B.2.2 and and the fact that the Mellin transformation is a bijection

between H(C∞ \K) and Exp(R) with Proposition B.2.3. By (6.2), this already yields

for Λ := N \
⋃
j∈N[qnj, nj]

dens{ν ∈ N0 : |Φ(ν)|1/ν ≥ C2} ≤ dens{ν ∈ Λ : |Φ(ν)|1/ν ≥ C2}

≤ lim inf
j→∞

|{Λ 3 ν ≤ nj : |aν |1/ν ≥ C2}|
nj

≤ lim inf
j→∞

qnj
nj

= q

which contradicts (6.4).



Appendix A

Sets of Uniqueness and Rajchman

Measures

The deep result of Theorem 1.2.12 is of importance when it comes to confirming whether

an operator is weakly or strongly mixing in the Gaussian sense. For an operator T :

X → X on a Fréchet space X to be strongly mixing, it is sufficient that for any Borel

set of extended uniqueness D ⊂ T the linear span of
⋃
λ∈T\D ker(T − λI) is dense in X.

Furthermore, Rajchman measures will play a crucial role in Chapter 5. Therefore, we

want to give a short introduction of these notions.

A.1 Complex Measures

For a measurable space (S,Σ), we say that µ : Σ → C is a complex measure on S if

it fulfils (i) ν(∅) = 0 and (ii) ν(
⋃
i∈I Ai) =

∑
i∈I ν(Ai) for all Ai ∈ Σ pairwise disjoint

where I is either finite or countably infinite. Furthermore, for a complex measure µ, we

can write µ = Re µ+i·Im µ and then we have the complex conjugate µ = Re µ−i·Im µ.

If not stated otherwise, the following results can be found in [38, Chapter 6].

Definition A.1.1. Let µ and ν be complex measures on S.

1. The total variation of µ is given by

|µ|(E) = sup
P∈P

∑
A∈P

|µ(A)| for all measurable E
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where P is the set of all partitions P of E into a countable number of disjoint

measurable subsets. The total variation of a measure µ is itself a positive finite

measure.

2. For two complex measures µ, ν, we define

µ� ν if µ(B) = 0 for all Borel sets B with ν(B) = 0.

and say that µ is absolutely continuous with respect to ν.

3. We call µ concentrated on K ∈ Σ if ν(A) = ν(A ∩ K) for every A ∈ Σ. This is

equivalent to the hypothesis that ν(A) = 0 whenever A ∩K = ∅.

4. µ, ν are called mutually singular and we write µ⊥ν if there exists a pair of disjoint

sets A and B such that µ is concentrated on A and ν is concentrated on B.

Remark A.1.2. Let µ and ν be complex measures on S.

1. If µ is concentrated on a set K ∈ Σ, then so is |µ|.

2. If µ� ν, then it also follows |µ| � ν. In particular, this yields |µ| � µ.

3. By the Radon-Nikodym Theorem we know that µ is absolutely continuous with

respect to ν if and only if there exists some f ∈ L1(S, |ν|) with dµ = fdν.

Theorem A.1.3. Let µ be a complex measure on Σ and dν = fdµ for a function

f ∈ L1(µ). Then

|ν|(A) =

∫
A

|f |d|µ| (A ∈ Σ).

Proof. [38, Theorem 6.12] yields the existence of a measurable function h on S with

|h| = 1 and such that dµ = hd|µ|. But then it directly follows from [38, Theorem 6.13]

with dν = fdµ = fhdµ that

|ν|(A) =

∫
A

|fh|d|µ| =
∫
A

|f |d|µ|

for all A ∈ Σ which yields the conclusion.
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Remark A.1.4. 1. Let µ be a positive and ν be a complex measure such that there

exists a complex valued function f with dν = fdµ. Then dν = fdµ.

2. For two complex measures µ, ν and a function f with dν = fdµ it holds dν = fdµ.

This is true because for µ there exists a function h with |h| = 1 and dµ = hd|µ|
by [38, Theorem 6.12]. Then dν = fhd|µ| and since |µ| is a positive measure it

follows with 1. that

dν = fhd|µ| = fdµ.

Remark A.1.5. Let B be the Borel-σ-algebra on C and E ∈ B. Then we denote by

M(E) the set of complex measures µ : B → C concentrated on E. If B(E) is the Borel-

σ-algebra on E, we can understand measures µ : B(E) → C as measures in M(E) by

setting

µ(A) = µ(A ∩ E) for all A ∈ B.

A.2 Rajchman Measures and Sets of Uniqueness

If not stated otherwise, the following definitions and results can be found in [26].

Definition A.2.1. A set D ⊂ T is called a set of uniqueness if for every trigonometric

series
∞∑

n=−∞

cne
inx (cn ∈ C)

which is 0 for eix ∈ T \D we have that the series is identically 0. Otherwise it is called

a set of multiplicity. We denote by U the class of sets of uniqueness and byM the class

of sets of multiplicity.

It follows directly from the definition that if D ∈ U , we have that every A ⊂ D is a set

of uniqueness.

Theorem A.2.2 (Cantor, Lebesgue). Every countable closed set D ⊂ T is a set of

uniqueness.

Theorem A.2.3. Every Lebesgue measurable set of uniqueness D ⊂ T has arc length

measure 0.
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Remark A.2.4. There exist perfect sets of uniqueness. For example, Rajchman was

able to show that eiπ(2C−1) where C is the classical Cantor 1/3-set is a set of uniqueness.

On the other hand, Cantor sets with positive arc length measure are sets of multiplicity.

Definition A.2.5. A measure µ ∈M(T) is called a Rajchman measure if µ̂(n)→ 0 as

|n| → ∞ where µ̂(n) =
∫
e−intdµ(t) is the n-th Fourier-Stieltjes coefficient of µ.

Theorem A.2.6. Let ν be a Rajchman measure and µ� ν. Then µ is also a Rajchman

measure.

Definition A.2.7. A set D ⊂ T is called an extended set of uniqueness if for every

positive Rajchman measure µ it follows that µ(D) = 0. Otherwise, D is called a set of

restricted multiplicity. We denote by U0 the class of extended sets of uniqueness and by

M0 the class of sets of restricted multiplicity.

Remark A.2.8. As the normalized arc length measure is a positive Rajchman measure

it follows that m(D) = 0 for all extended sets of uniqueness D.

We call a set D ⊂ T universally measurable if it is measurable for all positive Borel

measures on T. In particular, all Borel sets are universally measurable.

Proposition A.2.9. Every universally measurable set of uniqueness is of extended

uniqueness.

Example A.2.10. Since eiπ(2C−1) is a Borel set and a set of uniqueness, the previous

proposition yields that it is also an extended set of uniqueness.



Appendix B

Entire Functions of Exponential

Type

Since entire functions of exponential type play an important role in Chapter 2 of this

work, we will give a short introduction to the topic according to [13].

B.1 Basic Definitions and Results

Definition B.1.1. Let Φ be an entire function

(i) The maximum modulus of Φ is defined by MΦ(r) = max|z|=r |Φ(z)|.

(ii) Φ is called entire function of exponential type if

τ(Φ) := lim sup
r→∞

lnMΦ(r)

r
<∞

Definition B.1.2. Let Φ be an entire function of exponential type. Then

hΦ : [−π, π)→ [−∞,∞), hΦ(t) = lim sup
r→∞

ln|Φ(reit)|
r

is called Phragmén-Lindelöf indicator function of Φ.
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Definition B.1.3. Let K ⊂ C be a non-empty, compact and convex set. Then

HK : C→ C HK(z) = sup
u∈K

Re (uz)

is called support function of the set K.

In the following, we list some useful properties of the support function due to [10] and

[31].

Proposition B.1.4. Let K,L ⊂ C be non-empty, compact and convex. Then the fol-

lowing assertions hold:

1. HK+L = HK +HL.

2. K is a subset of L if and only if HK ≤ HL.

Let Φ be an entire function if exponential type and ζ ∈ T. Then we set

W (ζ) := {z ∈ C : Re (zζ) > hΦ(arg ζ)}

Given this set, we define the Laplace-transform as follows

BΦ(z, ζ) := ζ

∞∫
0

Φ(tζ)e−ztζdt (z ∈ W (ζ))

One can show the following properties for the Laplace-transform

1. z 7→ BΦ(z, ζ) is holomorphic on W (ζ).

2. For ζ, ζ ′ ∈ T we have

BΦ(z, ζ) = BΦ(z, ζ ′) (z ∈ W (ζ) ∩W (ζ ′))

With the second property, one can glue the Laplace-transforms together to a well-defined

function BΦ on
⋃
ζ∈TW (ζ). This function is called Borel-transform of Φ.

Definition B.1.5. Let Φ be an entire function of exponential type. Then K(Φ) :=

C \
⋃
ζ∈TW (ζ) is called conjugate indicator diagram of Φ, where K(Φ) is compact and

convex.
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Definition B.1.6. For a compact and convex set K ⊂ C, we denote by Exp(K) the set

of entire functions f of exponential type whose conjugate indicator diagram K(f) is a

subset of K.

Equipped with the family of seminorms

‖f‖m = sup
z∈C
|f(z)|e−

1
m
|z|−HK(z)

Exp(K) forms a Fréchet space (see [10]), where m is a positive integer, f ∈ Exp(K) and

HK : C→ C denotes the support function.

Theorem B.1.7 (Carlson’s theorem). Let Φ be an entire function of exponential type

and K(Φ) its conjugate indicator diagram such that

max
z∈K(Φ)

Im z − min
z∈K(Φ)

Im z < 2π

If Φ(n) = 0 for n ∈ N0, then Φ ≡ 0.

B.2 The Mellin transformation

Definition B.2.1. For L ⊂ {z ∈ C : |Im z| < π} compact and convex the Mellin

transformation is given by

M : H((eL)∗)→ Exp(L), Mg(z) := − 1

2πi

∫
γ

g(w)

wz+1
dw (z ∈ C)

where wz := ez logw, z ∈ C, w ∈ C− with C− := C \ (−∞, 0] and where γ is a loop in

C− \ e−L of index −1 with respect to the compact set e−L, and log denotes the principal

branch of the logarithm.

With [10, pages 266-270] we know that the Mellin transformation is a bijective and

linear map.

Theorem B.2.2. For a given function Φ ∈ Exp(L) and z with small modulus, it holds

M−1Φ(z) =
∞∑
ν=0

Φ(ν)zν
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and for z with large modulus

M−1Φ(z) = −
∞∑
ν=1

Φ(−ν)z−ν .

In the following, we prove that the Mellin transformation is also continuous:

Proposition B.2.3. Let L ⊂ {z ∈ C : |Im z| < π} be compact and convex. Then the

Mellin transformation is a topological isomorphism.

Proof. Let L be a compact and convex subset of {z ∈ C : |Im z| < π}. We already

know that the Mellin transformation is a linear, bijective map. Because of its linearity,

it is sufficient to show that M is continuous at 0. For that purpose, let m be a positive

integer and gn ∈ H((eL)∗), n ∈ N, with gn → 0 (n → ∞). Now, choose γ as a loop in

e−L−
1
m

∆ of index −1 with respect to the points in e−L so that log(|γ|) ⊂ 1
m

∆ +L where

|γ| denotes the trace of the γ. Since 1
m

∆ +L is convex, with Proposition B.1.4 we know

that

Hconv(log(|γ|)) ≤ H 1
m

∆+L = H 1
m

∆ +HL.

So, with c :=
∫
γ
|dw|/|w| we obtain

‖Mgn‖m = sup
z∈C
| 1

2πi

∫
γ

gn(w)

wz+1
dw|e−

1
m
|z|−HK(z)

≤ c

2π
sup
z∈C

max
w∈|γ|
| gn(w)

ez log(w)
|e−

1
m
|z|−HK(z)

≤ c

2π
max
w∈|γ|
|gn(w)| sup

z∈C
eHconv(log(|γ|))(z)− 1

m
|z|−HK(z)

≤ c

2π
max
w∈|γ|
|gn(w)| → 0 (n→∞).

With that we obtain the continuity and, finally, the continuity of the inverse map follows

from the open mapping theorem (see e.g. [39, Corollary 2.12]).
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152:201–215.

[28] Luecking, D. H. and Rubel, L. A. (1984). Complex Analysis: A Functional Analysis

Approach. Springer.

[29] Melas, A. D. (2001). Universal functions on nonsimply connected domains. Ann.

Inst. Fourier, 51:1539–1551.

[30] Moothathu, T. S. (2013). Two remarks on frequent hypercyclicity. J. Math. Anal.

Appl., 408:843–845.

[31] Morimoto, M. (1993). An Introduction to Sato’s Hyperfunctions. American Math-

ematical Society.

[32] Müller, J. (1993). Small domains of overconvergence of power series. J. Math. Anal.

Appl., 172:500–507.

[33] Nestoridis, V. (1996). Universal Taylor series. Ann. Inst. Fourier, 46:1293–1306.

[34] Offord, A. C. (1931). On the summability of power series. Proc. London Math.

Soc., S2–33:467–480.

[35] Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Springer.

[36] Ransford, T. (1995). Potential Theory in the Complex Plane. London Mathematical

Society.

[37] Remmert, R. and Schumacher, G. (2007). Funktionentheorie 2. Springer.

[38] Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill.

[39] Rudin, W. (1991). Functional Analysis. McGraw-Hill.

[40] Shkarin, S. (2009). Pointwise universal trigonometric series. J. Math. Anal. Appl.,

360:754–758.



Bibliography 80

[41] Thelen, M. (2017). Frequently hypercyclic Taylor shifts. Comput. Methods Funct.

Theory, 17:129–138.

[42] Zhu, K. (1990). Duality of Bloch spaces and norm convergence of Taylor series.

Michigan Math. J., 38:89–101.


