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ABSTRACT

The main aim of the present dissertation is the development and the theoretical
as well as the numerical examination of solution methods for so-callednonconvex
all-quadratic optimization problems, i.e., for problems of type

min xT Q0x + (d0)T x

xT Qlx + (dl)T x + cl ≤ 0 l = 1, . . . , p

x ∈ P ,

(QP)

with Ql ∈ IRn×n symmetric,dl ∈ IRn (l = 0, . . . , p), cl ∈ IR (l = 1, . . . , p)
and P = {x ∈ IRn : Ax ≤ b} a non-empty, full-dimensional polytope with
A ∈ IRm×n andb ∈ IRm.

In the first chapter some applications of this type of global optimization prob-
lems are presented. Furthermore, some basic concepts in the field of global opti-
mization as well as solution approaches for Problem (QP) known from the literature
are discussed in short. With the description of the construction of randomly gen-
erated test examples, which are used for the numerical examination of different
solution methods discussed within the thesis, we conclude the first chapter.

In Chapter 2 we discuss an indirect approach for solving (QP). We do not de-
velop an algorithm to determine an optimal solution of Problem (QP). We present
several approaches for solving certain so-calledunary problems. Each problem of
type (QP) is equivalent to a unary problem, as we will see in this chapter. Thus, we
can use algorithms for solving unary problems in order to detect optimal solutions
of quadratic problems. This idea is due to Ramana [Ram93, Chapter 7]. Since the
outer approximation (cutting plane) algorithm introduced by Ramana for solving
unary problems cannot be guaranteed to be convergent, we present new approaches
overcoming this theoretical deficiency. The resulting algorithms are combinations
of linear outer approximations and branch-and-bound like subdivisions of the fea-
sible region of the considered unary problem. In Chapter 2 we give, in particular,
an explicit formulation of a so-calledregularn-simplex with all its vertices on the
boundary of the unit sphereB = {x ∈ IRn : ‖x‖2 ≤ 1}. The theoretical properties
of such ann-simplex were known before (see, e.g., [Som29, Sle69, GKL95]) , but –
to the author’s knowledge – such a set has not yet been constructed. Unfortunately,

1



2

we have to recognize that this indirect solution method for (QP) is not applica-
ble in practice. Only small dimensional all-quadratic problems can be solved with
acceptable computational effort via the solution of the equivalent unary problem.

Chapter 3 deals with a direct approach for solving (QP). This method shows a
significantly better performance than the foregoing indirect one. Beside the rectan-
gular branch-and-bound algorithm introduced in [AKLV95] our simplicial method
belongs to the rare approaches in the literature, which consider Problem (QP) di-
rectly. Other solution approaches for all-quadratic problems mostly interpret this
type of programs as a special instance of a more general problem class, like bilin-
ear problems [AK92], polynomial problems [ST92], problems involving biconvex
functions [FV93], general d.c. problems (see Chapter 4) or – as we did in Chapter
3 – unary problems [Ram93].

The development of the proposed new algorithm was motivated by the work
of Al-Khayyal et al. [AKLV95]. The branch-and-bound method for solving prob-
lems of type (QP) introduced in [AKLV95] is based on a rectangular subdivision
of the feasible region of (QP) and exploits the convex and concave envelopes of
the two-dimensional bilinear functionxy on a rectangleR ⊂ IR2. By using a
simplicial partitioning strategy and the convex envelope of a concave function on
ann-simplex, we obtain a simplicial branch-and-bound scheme involving mainly
linear programming subproblems. The numerical comparison of our new approach
with the rectangular branch-and-bound method by Al-Khayyal et al. shows that the
simplex algorithm often outperforms the rectangular algorithm.

In the definition of the simplicial branch-and-bound algorithm in Chapter 3 we
use the so-calledbisectionfor subdividing ann-simplex. Because of the special
property of this subdivision strategy, it is a so-calledexhaustivesubdivision rule,
the convergence of the presented approach can be ensured. The convergence is
meant in the sense that each accumulation point of a sequence generated by the
proposed algorithm is an optimal solution of Problem (QP). Some authors favor
another subdivision rule in simplicial branch-and-bound methods, the so-calledω-
subdivision rule. This strategy is not necessarily exhaustive, and the convergence
of an algorithm using this rule was still an open question.

In Chapter 4 we give an answer to this question. We consider a generalization
of Problem (QP). We assume that the nonlinear functions involved in the global
optimization problem under examination are d.c., i.e., the difference of two con-
vex functions, not necessarily quadratic. After presenting an algorithm, which is a
generalization of the simplicial branch-and-bound method introduced in Chapter 3
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and which is applicable to the generalized problem class, we examine the conver-
gence of this approach with respect to different subdivision rules. The convergence
of the simplicial branch-and-bound scheme using theω-subdivision rule can only
be guaranteed for optimization problems with a d.c. objective function and with
concave constraints. We present in Chapter 4 a counterexample showing that the
presented method using this rule does not converge in general. In view of our the-
oretical results we are non the less able to develop a new convergent subdivision
strategy – combiningω-subdivision and bisection. The numerical performance of
some variants of this mixed strategy will be examined. The convergence concept,
which we use in Chapter 4 in connection with the examination of theω-subdivision,
is – from a theoretical point of view – weaker than the one used in Chapter 3. We
will not prove that each accumulation point of a sequence generated by the vari-
ant of our approach usingω-subdivisions is optimal. We will only show that this
method determines in finite time either an approximate solution or the emptiness of
the feasible region of the considered problem. As we will see in Chapter 4 – from a
practical point of view – this convergence concept has non the less the same quality
as the stronger concept mentioned above.

We conclude the more theoretically oriented Chapter 4 with a finiteness re-
sult. We prove that a simplicial branch-and-bound algorithm, which employs only
ω-subdivisions and which is applied to the minimization of a concave function
with respect to linear constraints, is even finite, if two additional assumptions are
fulfilled.

In Chapter 5 we close our consideration of Problem (QP) by examining an ap-
plication of this class of global optimization problems. This chapter deals with the
problem of packingn equal circles of maximal radius into the unit square, which
we will call packing problem. Unfortunately, the solution methods, which we de-
veloped for general problems of type (QP), are not able to solve the optimization
problem resulting from this application. At least they are not able to solve the prob-
lem for a high enough number of circles. Therefore, we develop a special global
optimization algorithm for solving this problem.

We start in Chapter 5 with a study of the packing problem from a theoretical
point of view. Some new properties, which have to be satisfied by at least one
solution of this problem, are introduced. These properties state the intuitive fact
that as many circles as possible should touch the boundary of the unit square. Sub-
sequently we propose a basic rectangular branch-and-bound algorithm and derive
special bounds exploiting the structure of the packing problem. We introduce some
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tools with respect to the subdivision and the possible refinement of the considered
hyperrectangles, which again exploit the special structure of the packing problem.
They use in particular the theoretical properties of some solutions mentioned above.
Applying these tools in the rectangular branch-and-bound algorithm we obtain an
efficient algorithm.

In the literature good solutions of the packing problem with up to50 circles are
known. However, the quality of these solutions with respect to their optimality is
mostly not known – at least for the packing problem with more than20 circles. The
new approach developed in this thesis is able to guarantee theε-optimality of deter-
mined solutions of this problem. Furthermore, the implementation of our solution
method showed a really good numerical performance for the packing problem with
up to27 circles. Moreover, we were also able to solve this problem approximately
with up to31 circles. This means that global optimization problems with a dimen-
sion of up to63 can be solved up to a certain accuracy.
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