
Optimization for
Multivariate and Multi-domain Methods

in Survey Statistics

Dissertation

zur Erlangung des akademischen Grades eines
Dr. rer. pol.

Dem Fachbereich IV der Universität Trier
vorgelegt von

Martin Johann Andreas Rupp

Gutachter:
Prof. Dr. Ralf Münnich (Universität Trier)

Prof. Dr. Ekkehard Sachs (Universität Trier)

Trier, 2018





Die Dissertation wurde im Rahmen des Forschungsprojektes Research Innovation for Official
and Survey Statistics (RIFOSS) angefertigt.

Datum der mündlichen Doktorprüfung: 05. Oktober 2018

Gutachter: Prof. Dr. Ralf Münnich (Universität Trier)
Prof. Dr. Ekkehard Sachs (Universität Trier)

iii





Vorwort

Zuallererst möchte ich mich sehr herzlich bei Prof. Dr. Ralf Münnich für die exzellente Betreu-
ung während meiner Promotionszeit bedanken. Ich bin nicht nur sehr dankbar dafür, dass ich die
Möglichkeit bekommen habe, an seinem Lehrstuhl als wissenschaftlicher Mitarbeiter tätig zu
sein, sondern insbesondere auch für seine inspirierenden Ideen, fachlich kompetente Beratung
und stets unterstützende Betreuung. Die ausgezeichnete Zusammenarbeit mit ihm schätze ich
sehr. Darüber hinaus möchte ich Prof. Dr. Ekkehard Sachs sehr herzlich für seine Unterstützung
sowohl während meines Studiums als auch während meiner Zeit als wissenschaftlicher Mitar-
beiter danken. Während der Promotionszeit trugen seine numerische Expertise und zahlreiche
anregende Diskussionen entscheidend zu den Entwicklungen der Arbeit bei.

Die Forschungsarbeiten wurden vom Statistischen Bundesamt in Wiesbaden innerhalb des For-
schungsprojektes Research Innovation for Official and Survey Statistics (RIFOSS) finanziell
gefördert. Für die Möglichkeit, die Dissertation im Rahmen des Forschungsprojektes anzuferti-
gen sowie die ausgezeichnete Zusammenarbeit bedanke ich mich sehr. Als assoziiertes Mitglied
gilt mein Dank zudem dem Graduiertenkolleg Algorithmic Optimization (ALOP), finanziert
von der Deutschen Forschungsgemeinschaft, für die Unterstützung während meiner Promo-
tionszeit.

Des Weiteren möchte ich mich bei allen Kollegen vom Lehrstuhl für Wirtschafts- und Sozial-
statistik sowie aus dem Graduiertenkolleg ALOP sehr herzlich bedanken. Sie alle haben maß-
geblich zu einer sehr kollegialen und freundschaftlichen Arbeitsatmosphäre beigetragen. Ihre
Türen standen mir jederzeit sowohl für fachliche als auch persönliche Anliegen offen. Die
zahlreichen inhaltlichen Diskussionen haben einen nicht zu unterschätzenden Mehrwert für
meine Dissertation geliefert. Neben der exzellenten fachlichen Zusammenarbeit sind in dieser
Zeit auch enge private Freundschaften entstanden, die ich keinesfalls mehr missen möchte.

Zu guter Letzt möchte ich mich bei meiner Familie bedanken, die mich während meiner gesam-
ten akademischen Karriere in jeder erdenklichen Situation uneingeschränkt unterstützt und
gefördert haben. Sie gaben mir stets die Kraft und Zuversicht, die nötig war, um die Arbeit
fertigzustellen. Insbesondere meiner Freundin Julia Manecke bin ich für die Unterstützung und
die unermüdliche Geduld in der Schlussphase meiner Promotion unendlich dankbar. Die Zeit
mit ihr gab mir den Ausgleich vom Arbeitsumfeld, der mich abschalten und neue Energie tanken
ließ.

v





Contents

German Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals of Survey Statistics 7
2.1 Framework of finite population sampling . . . . . . . . . . . . . . . . . . . . . 7
2.2 Selected estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Common sampling designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Calibration of survey weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Allocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 The RIFOSS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Fundamentals of Numerical Optimization 27
3.1 Nonlinear optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Semismooth Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Multi-criteria optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Characterization of optimality . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Efficient solutions and Pareto optimality . . . . . . . . . . . . . . . . . 45
3.3.3 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 Pareto optimization and weighted sum scalarization . . . . . . . . . . . 47

4 Optimal Multivariate and Multi-domain Allocation 49
4.1 Motivation and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 The multivariate and multi-domain allocation problem . . . . . . . . . . . . . 54

4.2.1 Mathematical problem formulation . . . . . . . . . . . . . . . . . . . 54
4.2.2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Scalarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.4 Weighted sum and Pareto optimization . . . . . . . . . . . . . . . . . 62

vii



viii CONTENTS

4.2.5 Generalizations of the allocation method . . . . . . . . . . . . . . . . 63
4.3 Algorithmic solution of weighted sum allocation problems . . . . . . . . . . . 66

4.3.1 Existence and uniqueness of the solution . . . . . . . . . . . . . . . . 66
4.3.2 Semismooth Newton method . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Algorithmic solution depending on decision-making function . . . . . . . . . . 73
4.5 Summary of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Application study and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.2 Weighted sum optimal allocation problem . . . . . . . . . . . . . . . . 88
4.6.3 Decision-making strategy . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.4 Compromise allocation on different stratification levels . . . . . . . . . 97
4.6.5 Robustness and sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.6 Algorithmic performance . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6.7 Issues and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 A Generalized Calibration Method 113
5.1 Motivation and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 General calibration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 Algorithmic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Summary of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6 Simulation study and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6.2 Design weights versus calibration weights . . . . . . . . . . . . . . . . 133
5.6.3 Compliance with benchmarks . . . . . . . . . . . . . . . . . . . . . . 136
5.6.4 Point estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.5 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.6.6 Algorithmic performance . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.6.7 Sensitivity, issues, and limitations . . . . . . . . . . . . . . . . . . . . 148

5.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Conclusion and Outlook 153
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A Quality Measurement in Survey Statistics 157

B Additional Material of Application and Simulation Studies 161
B.1 Table of variables within the RIFOSS dataset . . . . . . . . . . . . . . . . . . 161
B.2 Optimal multivariate and multi-domain allocation . . . . . . . . . . . . . . . . 163
B.3 A generalized calibration method . . . . . . . . . . . . . . . . . . . . . . . . . 168

C R-Packages 179

Bibliography 181



German Summary

Diese Dissertation mit dem Titel Optimization for Multivariate and Multi-domain Methods in
Survey Statistics beschäftigt sich mit Methoden zur Verbesserung der Schätzgüte von design-
basierten und modell-assistierten Schätzern für Stichprobenerhebungen auf Basis finiter Popu-
lationen. Dabei stehen sowohl die entwickelten statistischen Methoden als auch deren Umset-
zung mittels darauf zugeschnittener numerischer Optimierungsstrategien im Vordergrund. Die
Motivation zur Entwicklung der statistischen Methoden entstammt sowohl den vielseitigen An-
forderungen an die Ergebnisse von Stichprobenerhebungen als auch der gestiegenen Menge ver-
fügbarer Hilfsinformationen. Die Anforderungen resultieren aus Vorgaben zur Schätzung von
Statistiken für mehrere potenziell konfliktäre interessierende Variablen auf unterschiedlichen
Ebenen der Population anhand einer einzigen Erhebung. Neben den üblichen nationalen Statis-
tiken sind somit auch Statistiken für regional und inhaltlich differenzierte Subpopulationen von
Bedeutung.

Die Arbeit lässt sich in zwei Hauptforschungsfragen untergliedern. Zum einen wird eine op-
timale multivariate Allokationsmethode unter Berücksichtigung mehrerer Schichtungsebenen
entwickelt (Kapitel 4), die den Gesamtstichprobenumfang in einem stratifizierten Stichproben-
design unter vielseitigen Restriktionen varianzoptimal auf die einzelnen Schichten aufteilt. Zum
anderen wird eine generalisierte Kalibrierungsmethode vorgestellt (Kapitel 5). Diese soll ko-
härente und effiziente Schätzungen auf unterschiedlichen Schichtungsebenen unter Beachtung
von Hilfsinformationen erzielen, die aus einer Vielzahl unterschiedlichster Quellen gewonnen
wurden. In den folgenden beiden Abschnitten werden die Methoden kurz erläutert.

In stratifizierten Stichprobendesigns besteht ein zentraler Teil des Auswahlprozesses in der Al-
lokation des Gesamtstichprobenumfangs auf die einzelnen Schichten. Übliche Maßstäbe für
diese Aufteilung sind bei gegebenem Gesamtstichprobenumfang die Gleichheit aller schicht-
spezifischen Stichprobenumfänge, die Proportionalität zur Schichtgröße oder die varianzop-
timale Verteilung im Sinne der Minimierung der Varianz des Populationsschätzers für inter-
essierende Variablen. Das entwickelte Modell basiert grundsätzlich auf der varianzminimalen
Verteilung, deren Betrachtung durch die gleichzeitige Berücksichtigung mehrerer interessieren-
der Variablen zu einem Mehrzieloptimierungsproblem führt. Als Vorbereitung der numerischen
Lösung werden neben Standardisierungsverfahren insbesondere auch mehrere Skalarisierungs-
methoden vorgestellt, die die unterschiedlichen Präferenzen möglicher Anwender abbilden. Zu-
dem wird gezeigt, dass sich durch die Lösung des mit einer gewichteten Summe skalarisierten
Problems für alle Gewichtekombinationen die gesamte Pareto Front des Ursprungsproblems
erzeugen lässt. Durch die Ausnutzung der speziellen Struktur des Problems lässt sich dieses
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x GERMAN SUMMARY

sehr effizient mit Hilfe eines semismooth Newton Verfahrens lösen, sodass sich eine sehr genaue
Approximation der Pareto Front berechnen lässt. Um diese Methode auch für andere Skalari-
sierungsmethoden anwenden zu können, wird unter Verwendung eines projizierten inexakten
Quasi-Subgradientenverfahrens eine Verbindung zwischen der gewichteten Summe und den
übrigen Skalarisierungsmethoden ausgenutzt. Zur Berücksichtigung von Anforderungen an re-
gionale Schätzqualitäten auf mehreren Schichtungsebenen wird die Verwendung von unteren
Schranken für die Schätzqualität in das Modell integriert. Diese Schranken dienen im Speziellen
nicht der Optimierung von regionalen Schätzungen, sondern der Vermeidung unerwünscht ho-
her regionaler Schätzfehler aufgrund von ungewöhnlichen Strukturen innerhalb der Regionen
sowie kleinen Stichprobenumfängen. Neben den Restriktionen für regionale Schätzungen er-
möglicht die Methode auch die Verwendung von Box-Constraints für die schichtspezifischen
Stichprobenumfänge, wodurch minimale und maximale schichtspezifische Auswahlsätze fest-
gelegt werden können.

Die Kalibrierung der aus dem Allokationsprozess resultierenden Designgewichte ist eine ver-
breitete Methode zur Erzielung effizienter und kohärenter Schätzungen. Die entwickelte ge-
neralisierte Kalibrierungsmethode berücksichtigt dabei eine sehr hohe Anzahl von Benchmarks
auf unterschiedlichen Schichtungsebenen. Da diese Benchmarks möglicherweise aus unter-
schiedlichen Quellen wie Registern, Paradaten oder anderen Umfragen mit unterschiedlichen
Schätzmethoden gewonnen werden, ist die Qualität dieser Benchmarks sehr heterogen. Um
der Qualität und der Vielzahl von Benchmarks gerecht zu werden, wird eine Relaxierung aus-
gewählter Benchmarks vorgeschlagen, wobei problematischen Benchmarks auf niedrigen Ag-
gregationsebenen vordefinierte Toleranzen zugeordnet werden, um eine exakte Erfüllung zu
vermeiden. Neben der GREG-typischen Penalisierungsmethode zur Bestimmung der Höhe der
Bestrafung von Abweichungen zwischen Design- und Kalibrierungsgewichten werden weitere
Zielfunktionen untersucht. Darüber hinaus ermöglicht die generalisierte Kalibrierungsmeth-
ode die Verwendung von Box-Constraints für die Korrekturgewichte, um zu extreme Gewichte
zu vermeiden und um eine Beschränkung der Variation der Gewichte zu ermöglichen. Da die
Verwendung eines Residualvarianzschätzers für den Kalibrierungsschätzer auf Basis der entwi-
ckelten Methode insbesondere für regionale Schätzer nicht ohne Weiteres möglich ist, wird eine
Varianzschätzung mittels eines Rescaling Bootstraps vorgestellt, welcher eine spezielle Form
der bootstrapbasierten Resamplingverfahren darstellt.

Beide entwickelten Methoden werden in umfangreichen Simulationsstudien auf Basis eines re-
alitätsnahen synthetischen Datensatzes aller Haushalte Deutschlands analysiert und mit exis-
tierenden Methoden verglichen. Obwohl die beiden Methoden unterschiedlichen Teilen des
Survey-statistischen Prozesses zuzuordnen sind (Auswahl- bzw. Schätzprozess), stehen sie in
engem Zusammenhang zueinander. Aufgrund der bereits genannten ähnlichen Grundvorausset-
zungen und Zielsetzungen beider Verfahren lassen sich diese sukzessive auf eine einzelne Stich-
probenerhebung anwenden, um die jeweiligen Effizienzvorteile zu kombinieren. Zudem lassen
sich beide Methoden anhand vergleichbarer Optimierungsansätze zeiteffizient lösen. Diese
basieren auf Umformungen der Optimalitätsbedingungen. Die Dimension der resultierenden
nichtlinearen und nicht differenzierbaren Gleichungssysteme ist letztendlich unabhängig von
der Dimension der ursprünglichen Probleme, was insbesondere für die Lösung von sehr großen
Problemstellungen extreme Zeitersparnisse mit sich bringt.
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Chapter 1
Introduction

1.1 Motivation

The demand for statistically processed information has been rising within the past few decades
and this trend is most likely to continue in the next years. Even Särndal et al. (1992, p. 3)
phrased that “the need for statistical information seems endless in modern society”. As the
amount of statistical information grows, the complexity of the underlying models has also in-
creased significantly. In politics and economics, several wide-ranging decisions are made based
on statistical analyses. The corresponding decisions may have an impact on the future of indi-
viduals, companies, or even entire nations. These aspects illustrate the societal interest in the
provision of accurate statistical data in order to prevent mismanagement or wrong decisions.
With regard to the high amount of information available and the complexity of the underlying
models, this thesis deals with tailor-made multivariate and multi-domain methods in order to
provide high quality statistics.

In official statistics, the framework of collecting and processing data as well as publishing statis-
tics is generally mandated by law to specific administrative authorities, such as the Federal
Statistical Office of Germany (Destatis) or the European Statistical Office (Eurostat). The leg-
islative basis is governed by the Bundesstatistikgesetz (BStatG) for Germany (Destatis, 2016)
and by the European Statistics Code of Practice for the European Union (Eurostat, 2011). This
framework contains major principles, including quality (Principle 4), cost effectiveness (Princi-
ple 10), accuracy and reliability (Principle 12) as well as coherence and comparability (Principle
14). For this reasons, the profile of requirements for statistics is versatile. Results have to be
provided simultaneously for several variables of interest, which may conflict with one another.
Concurrently, the results may have to be determined on various stratification levels of the pop-
ulation, such as for the entire Germany and for all cities separately. In addition to the increased
requirements, the amount of available data has dramatically increased within the last decade.
Especially the technological progress enables the collection of a huge amount of data within a
short period of time and its processing with manageable computational burden.
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In particular, the implementation of solution strategies for complex statistical methods may
yield high analytical and computational expense. In many cases, these models can be expressed
as optimization problems of high dimensions. The solution of these problems often requires
certain strategies, whose application may be unsuitable using standard optimization tools due
to the computation time needed. To maintain practicability and to improve the computational
performance, innovative numerical optimization strategies have to be developed or existing ap-
proaches have to be further expanded.

In the context of survey statistics, the statistics are produced using the data collected from a
sample of the whole population (cf. Särndal et al., 1992, Chapter 1.2). In this way, the survey
process can be divided into two main parts, namely the selection process and the estimation
process. The selection process contains the specification of the rules and operations, according
to which the units of the population are determined to be included in the sample (design stage)
on the one hand, and the drawing procedure of the sample (sampling stage) on the other hand.
The major task of the estimation process is the computation of the statistics, i.e. the compu-
tation of specific point estimates of population or sub-population values, which is also known
as estimation stage (cf. Kish, 1965). In addition to the point estimation, the evaluation of the
quality of the estimates is a further aspect that can be added to the estimation process, which
is referred to as validation stage in this thesis. Since the quantification of the exact quality
is mostly impossible in practice, this also needs to be estimated, which is known as variance
estimation (cf. Wolter, 2007, Chapter 1.1).

Each of the two main research questions addressed in this thesis belongs to one of the two parts
of the survey statistical process. In addition, both research topics are strongly related to one
another for several reasons. Firstly, both topics offer new opportunities for handling complex
surveys regarding multivariate objectives, high dimensional auxiliary data, and greatly diverse
constraints. Along this line, statistical models are established, and numerical solutions are
presented in this thesis in order to generate statistics, which fulfill the multilateral requirements.
Secondly, since both topics are constructed on and for similar survey frameworks, they can be
applied successively in one survey in order to exploit the potential of the developed approaches.
Aside from the similarities in their content, the mathematical structures of the two underlying
optimization problems resemble each other, which allows for the application of similar solution
strategies.

The thesis is intended to cover relevant aspects and develop strategies to address the two main
research questions. The explanation starts with gathering the requirements and circumstances
for the desired statistical model. Subsequent to the process of the statistical modeling, the prob-
lems need to be formally rewritten to allow for the application of numerical solution strategies.
Prior to this, the theory of existence and uniqueness of the solution also needs to be postulated
and proved. Tailor-made solvers are then either proposed or extended on the basis of existing
algorithms. After the implementation, the models and their solvers are tested, and the results
are simulated and analyzed under realistic conditions.

The further proceedings applied in this thesis are briefly sketched for each of the two topics in
the following paragraphs with a particular emphasis on the newly developed aspects. The intro-
duction of the definitions and notations as well as a complete overview of the current literature
are all found in detail in the respective chapters.
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Optimal Multivariate and Multi-domain Allocation

As a part of the selection process in stratified sampling designs, the allocation of the total sam-
ple size to the strata of the stratified population is mandatory. In the literature, several methods
have been proposed over the past decades, such as the equal and proportional allocations (cf.
Lohr, 2009, pp. 104 ff.) as well as the optimal allocations with various strategies based on
Tschuprow (1923) and Neyman (1934). With regard to cost efficiency and the accuracy of esti-
mates gained by modern complex and multifarious surveys, the method developed in this thesis
needs to consider several aspects. Firstly, the allocation is meant to be optimal for estimates of
several variables of interest, which may possibly be unrelated or even mutually contradictory.
This results in a multi-criteria optimization problem. Based on the suggestions of Friedrich
et al. (2018), the relevance of the variables of interest can be controlled by a few means, such
as using various scalarization techniques, certain appropriate decision-making functions, and
several standardization techniques. Secondly, the method needs to provide accurate estimates
on aggregated stratification levels (such as Germany and its federal states) as well as on disag-
gregated levels, such as cities or towns. The accuracy of estimates on prioritized levels can be
improved by an up-weighting of the corresponding part of the objective, also known as com-
pensatory optimal allocation (cf. Münnich et al., 2012a, pp. 31 ff.). In addition, restrictions
for the stratum-specific sample sizes and minimal quality requirements for regional estimates
should be included in order to be as flexible as possible. If desired, the stratum-specific sample
sizes may be bounded by box-constraints, which has also been suggested by Gabler et al. (2012)
and Münnich et al. (2012c) for the univariate case. Finally, the developed model needs to be
solved in an appropriate computing time, which requires the application of tailor-made numeri-
cal solution strategies. By taking all these aspects into account, the developed method is called
optimal multivariate and multi-domain allocation method, which is referred to as MMDopt (M:
multivariate, MD: multi-domain, opt: optimal) hereinafter.

With regard to the requirements mentioned above, the MMDopt approach results in the following
multi-criteria optimization problem:

min
n∈RH+

(
Var(τ̂ StrRS

y1 ), . . . ,Var(τ̂ StrRS
yq1

)
)

s.t.
H∑
h=1

nh = ns

Var(τ̂ StrRS
yilr

) ≤ Vmax(i,r,lr)

m ≤ n ≤M

In that regard, the variances of the total estimators τ̂ StrRS
yi

of the variables of interest yi with
i = 1, . . . , q1 are simultaneously minimized with regard to the vector of the stratum-specific
sample sizes n ∈ RH

+ and the total sample size ns ∈ N. Vmax(i,r,lr) respresents predetermined
maximal regional estimation errors allowed for the estimation of variable yi in area or region lr
of stratification level r. While solving this multi-criteria optimization problem, it is mandatory
to have a scalarization of the objective functions in order to achieve a real-valued optimization
problem. Here, we consider the weighted sum, p-norms (weighted or non-weighted), and the
min-max approach (cf. Jahn, 1986, Chapter 5). In the first instance, the weighted sum scalar-
ization is focused on, as it coincides with the theory of Pareto optimization. The dimension
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of the resulting (weighted) real-valued optimization problem is equal to the number of strata,
which tends to be high in several applications. Moreover, the feasible set is built by linear and
nonlinear equality and inequality constraints. To avoid the direct solution via a standard solver
of nonlinear optimization, we are able to rewrite the problem as a lower dimensional nonlinear
system of equations following the derivations for the box-constrained optimal univariate allo-
cation proposed by Gabler et al. (2012) and Münnich et al. (2012c). Nevertheless, it has to
be mentioned that the reformulation is only valid for the weighted sum scalarization. Despite
the non-differentiability of the reformulated system, it can be solved in an appropriate time by
applying a semismooth Newton method (SSN). In that regard, the computational burden is only
linearly dependent on the dimension H , which omits an exponential increase of the running
time depending on H . As already shown in Friedrich et al. (2018) for a simpler case, the so-
lution of the system for all possible combinations of weights (up to a discretization) provably
yields the whole Pareto frontier of the multi-criteria problem. On the one hand, this allows for
a comparison of each Pareto optimal solution with one another. On the other hand, the Pareto
frontier can be used to solve MMDopt for other scalarizations such as p-norms (p 6= 1) and the
min-max approach. In general, this is more challenging than for the weighted sum case, given
that the objective function is not separable. Instead of the cost-intensive direct solution via
standard solvers, this thesis proposes the use of an innovative approach based on a projected
inexact quasi-subgradient method (GTM). The iterates of this algorithm are only located in the
Pareto frontier of the multi-criteria problem, rather than in the whole feasible set. Due to this
significant shrinkage of the feasible set, the computational burden of GTM is clearly lower than
using other solvers.

Finally, the proposed method MMDopt and the algorithms SSN and GTM are tested, and the results
are computed using a synthetic dataset under realistic circumstances. The thesis also presents
further studies of robustness and sensitivity with regard to the quality of the input data. Be-
yond the statistical properties, the computational expenses of the algorithms SSN and GTM are
evaluated and compared with standard solvers.

A Generalized Calibration Method

While the allocation method MMDopt is designed to improve the selection process with regard to
versatile requirements such as conflicting objectives, various stratification levels, and diversified
restrictions, the second major research objective of the thesis is supposed to improve the esti-
mation process considering similar goals. Regarding this, a generalized calibration method is
proposed, which is referred to as GCAL (G: generalized, CAL: calibration) hereinafter. In general,
calibration methods deal with the question of how to make use of known auxiliary information
to improve the accuracy of the estimates and to achieve coherent results (cf. Kott, 2006 and
Särndal, 2007). This is achieved by an adjustment of the a priori given design weights with
regard to the auxiliaries. Classical calibration techniques have been proposed by Deville and
Särndal (1992). Complex circumstances and the required goals of modern surveys may neces-
sitate further extensions of the existing methods. Firstly, GCAL is designed to deal differently
with benchmarks gained by known auxiliary data. For this reason, it needs to be distinguished
between a strict compliance with these benchmarks and a weak compliance with a permitted
tolerance. This relaxation of benchmarks has already been proposed by Guggemos and Tillé
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(2010) and Wagner (2013, Chapter 7), and it allows for both coherence and consistency to be
achieved between various sources without neglecting disruptive factors, e.g. inaccurate survey
data or incorrect register data. Moreover, a high number of benchmarks particularly on dif-
ferent stratification levels can be considered in CGAL, since the relaxation enlarges the feasible
set. Secondly, various objective functions are proposed to utilize a penalty structure of the de-
viation from the design weights, which is well-tailored for the considered application. Finally,
box-constraints are added to restrict the deviations of the calibration weights from the design
weights and to allow for the control of the variation of the calibration weights.

Generally, the derivations are closely related to the methods proposed by Münnich et al. (2012b)
and Burgard et al. (2018). Under the consideration of the mentioned requirements, the resulting
optimization problem is given by the following:

min
(g,ε)∈Rns+q2

∑
k∈S

dkD(gk) +
q2∑
j=1

δjD(εj)

s.t.
∑
k∈S

dkgkx
ex
ik = τxex

i
for i = 1, . . . , q1∑

k∈S
dkgkx

rel
jk = εjτxrel

j
for j = 1, . . . , q2

Lgk ≤ gk ≤ Ugk ∀k = 1, . . . , ns

Lεj ≤ εj ≤ Uεj ∀j = 1, . . . , q2.

The problem dimension is equal to the sum of the number of sampled units ns and the number
of relaxed benchmarks q2. In common surveys, the number of sampled units ns may in fact
exceed the size of one million; an example of this is given by the German Census 2011 (cf.
Münnich et al., 2012a). Usually the number of equality constraints q1 + q2 (i.e. all benchmarks)
is significantly lower than the number of units in the sample. To benefit from the structure of
the problem, the problem is rewritten as a lower dimensional nonlinear system of equations in
analogy to Münnich et al. (2012b). Similar to the solution strategy of the allocation method
MMDopt, GCAL can also be solved with the SSN method. As we will see in the simulation study,
the SSN algorithm is able to solve a GCAL problem with a dimension of around 250 000 within
one second. Moreover, a linear dependence between the sample size and the computation time
of SSN can be observed. In contrast to common truncated algorithms (TRUNC), which amongst
others can be found in the R package sampling (cf. Tillé and Matei, 2016) and whose structure
is based on a similar approach, SSN converges provably to the unique optimal solution.

The variance estimation of GCAL has to handle the relaxation of benchmarks and box-constraints,
which is not possible using common variance estimation techniques based on linearization tech-
niques proposed by Deville and Särndal (1992), Estevao and Särndal (2006), and D’Arrigo and
Skinner (2010). Instead, a rescaling bootstrap (cf. Preston, 2009) is proposed in analogy to
Burgard et al. (2018) for dealing with these extensions. Additionally, this bootstrap enables
to provide vectors of replication weights in order to facilitate the variance estimation for GCAL
users and to allow further social-scientific studies.

Finally, the proposed method of GCAL is extensively tested on a realistic dataset. In addition to
the statistical structures such as point and variance estimates, this study presents computational
expenses of the SSN algorithms as well as possibilities for sensitivity analyses. Moreover, the
study compares performance of the SSN algorithms to other solvers.
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1.2 Outline

This section presents an overview of the chapter contents in this thesis.

Chapter 2: Fundamentals of Survey Statistics
Some basis aspects of the theory of survey statistics are briefly introduced in Chapter 2. In that
regard, we focus on the concepts that are relevant for a finite population framework including
relevant estimators and common sampling designs. In preparation for the following chapters,
classical allocation methods for stratified sampling designs and common calibration techniques
are mentioned. Finally, the chapter concludes with the structure of the RIFOSS dataset.

Chapter 3: Fundamentals of Numerical Optimization
In Chapter 3, fundamental frameworks of numerical optimization are presented, which are re-
quired in order to develop and solve the statistical models in Chapters 4 and 5. These models
contain restricted nonlinear optimization problems for which the optimality theory is intro-
duced. In order to define the SSN method, the property of semismooth functions is considered.
As a basis for the derivations in Chapter 4, the theory of multi-criteria optimization is explained.

Chapter 4: Optimal Multivariate and Multi-domain Allocation
In Chapter 4, the MMDopt method is developed, the discussion of MMDopt is embedded in the
context of existing methods, and MMDopt is extensively analyzed in an application study.

Chapter 5: A Generalized Calibration Method
The GCAL method is developed with the major aim to increase the accuracy of the estimates and
to ensure coherence between different sources in Chapter 5. Aside from the general method,
the study also considers additional aspects such as the variation of the weights and techniques
for the variance estimation. Finally, the functionality of GCAL is analyzed in a simulation study.

Chapter 6: Conclusion and Outlook
In Chapter 6, the developments of this thesis are summarized and concluded. Advantages and
drawbacks are found, both of which are stated and elucidated in the context of survey statis-
tics in modern societies. Moreover, further outstanding and unprocessed research potentials are
shortly discussed and further potential scopes of application are explored.

Appendix A, B, and C
An overview of the theory of quality measurements in survey statistics is given in the Ap-
pendix A. In Appendix B, additional simulation results are presented, which go beyond the
scope of the discussions in Chapters 4 and 5. Finally, the R-packages which are still under de-
velopment are briefly discussed in Appendix C.

To simplify the reading of this thesis, a few conventions are explained here. Different font
styles characterize various meanings. Specific expressions and particularly emphasized words
are written in italics. Abbreviated methods and algorithms are printed in typewriter font.
Variables of the dataset are written in sans serif letters. In the evaluation of the results of the ap-
plication and simulation studies, graphics are often indicated by different colors to distinguish
between variables of interest (unknown) and auxiliaries (known). The results of the auxiliaries
are generally shown in plots with headers shaded in blue and green. By contrast, red and orange
shades are chosen for the results of the variables of interest.



Chapter 2
Fundamentals of Survey Statistics

In this chapter, fundamental definitions, notations, and strategies of survey statistics are pre-
sented. We mainly focus on aspects which are pertinent to the topics of the thesis while less
relevant concepts are only quoted. The exposition begins with some basic remarks on the
framework of finite population sampling in Section 2.1. Afterwards, different types of point
estimators are explained in Section 2.2, and selected estimators for the estimation of population
and sub-population aggregates are introduced. Wide-spread sampling designs are discussed in
Section 2.3. In addition to the classical designs, we also focus on balanced sampling designs,
where auxiliary information is used within the sampling process to improve the accuracy of
the estimates. In Section 2.4, calibration methods are presented whose application is exploited
in order to either improve estimates or prevent convergence issues in the context of multiple
data sources or multiple surveys. Concerning stratified sampling designs, common allocation
techniques are presented in Section 2.5, whose analysis is a principal part of this thesis. The
chapter concludes with presenting the RIFOSS dataset of Germany, which is the basis for the
application and simulation studies.

2.1 Framework of finite population sampling

The following definitions and notations are based on Cassel et al. (1977), Särndal et al. (1992),
and Lohr (2009) unless otherwise stated, and their usage is consistent in the entire thesis.

We assume a fixed and finite population approach, which is also known as a design-based
framework following the definitions given by Cassel et al. (1977, Chapter 1). In that regard,
the statistical inference depends on the distribution generated by the selection process while the
population is treated as a fixed and finite set, i.e. the randomness is induced by the probability
whether a unit of the population is selected or not (cf. Lehtonen and Veijanen, 2009, p. 219).
The finite population of size N ∈ N is assigned with

U := {1, . . . , N}, (2.1)

7
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where each unit is uniquely labeled with a fixed and known index k = 1, . . . , N . A set S
consisting of units of the population U is called a sample. The size of S is denoted with ns ∈ N.
Generally, the techniques for drawing a sample can be divided into techniques with and without
replacement. According to Cassel et al. (1977, Section 1.4), a without replacement sampling
techniques prohibits a unit k ∈ U from being contained more than once in the sample S. In
the context of this thesis, without replacement sampling techniques are considered exclusively.
Thus, we assume that each unit k ∈ U can only occur once in the sample S, i.e. the sample
S is a subset of the population U . Hence, S is an element of the set of all possible samples
S := {S : S ⊆ U} with a cardinality of 2N . Moreover, the set of all possible samples of size
ns is denoted by Sns := {S : S ⊆ U with |S| = ns}. Its cardinality is given by

(
N
ns

)
(cf. Lohr,

2009, pp. 30 ff.). If S = U and therefore ns = N , the survey is referred to as a full census.

As the first step of the selection process, the sampling design needs to be specified, defined by
a function

p(·) : S→ [0, 1], (2.2)

which matches each possible sample S ∈ S to a specific probability of being chosen with∑
S∈S p(S) = 1. In a fixed and finite population framework, the sampling design p(·) is the

only stochastic element which an inference can be based upon (cf. Cassel et al., 1977, p. 32 and
Lehtonen and Veijanen, 2009, p. 219). In analogy to the samples itself, sampling designs can be
divided into designs with and without replacement. Since the without replacement designs are
considered in this thesis exclusively, the with replacement designs are not further mentioned.
Thus, the formal distinction between with and without is omitted, meaning that all mentions of
sampling designs refer to without replacement designs.

In accordance with the sampling design, each unit k of the population U is associated a known
and strictly positive probability of being selected in the sample (cf. Särndal et al., 1992, p. 32).
This probability is known as the (first-order) inclusion probability given by

πk := Pr(k ∈ S) =
∑
S∈S

1(k∈S)p(S) ∈ R+, (2.3)

where Pr(·) denotes the probability and 1(·) is the indicator function. The first-order inclusion
probability is the sum over the probabilities of all samples in which unit k is included. Moreover,
we refer to the reciprocal of the inclusion probability as the design weight, given by

dk := π−1
k ∈ R+. (2.4)

The design weight is of great importance when using design-based estimators and calibration
techniques (see Section 2.4). In analogy to the definition of πk, the second-order (or joint)
inclusion probability

πkl := Pr(k ∈ S ∧ l ∈ S) =
∑
S∈S

1(k∈S)1(l∈S)p(S) ∈ R+ (2.5)

represents the probability that units k and l are both elements of the sample. We also note that
πkk = πk and πkl ≤ min{πk, πl} for all k, l ∈ U . Regarding Equations (2.3) and (2.5), the
definition of the inclusion probabilities depends on the choice of the sampling design p(·). As
we will see in Section 2.3, these formulas become significantly simplified if particular sampling
designs are considered.
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In general, the main purpose of surveys is to derive a statistic ϑ from the population U (or
sub-populations of U) with regard to a variable of interest, i.e. a vector

y := (y1, . . . , yN)T ∈ RN (2.6)

of parameters of the finite population U . Frequently, this statistic is evaluated with the aim of
q auxiliary variables or simply auxiliaries, denoted by the corresponding q parameter vectors
(xi1, . . . , xiN)T ∈ RN (i = 1, . . . , q) and assembled to the auxiliary matrix

X := [x1, . . . , xN ] =


x11 . . . x1N

...
...

xq1 . . . xqN

 ∈ Rq×N . (2.7)

In some instances, they are used as individual auxiliary vectors xk := (x1k, . . . , xqk)T ∈ Rq

for all units k = 1, . . . , N . The statistics of the auxiliary variables are generally assumed to
be available prior to the sampling process, i.e. non-response or similar issues are neglected
in the context of this thesis. By contrast, the statistic of the variable of interest y is not given
in advance. Regarding this point, the main task in the estimation process is to evaluate an
estimate ϑ̂(S) of a specific statistic ϑ of the variable of interest y, which only requires sample
information yk, k ∈ S. For this reason, the measurable function ϑ̂ : S → R, which maps the
space of all samples to the real values, is called an estimator of ϑ. For a more detailed analysis
of the definition of estimators, the work of Witting (1978, Chapter 1.2 and 1.3) and Durrett
(2010, Chapter 1.3) provide the necessary references and groundwork.

Following the principles of Särndal et al. (1992, Section 2.7), the expectation of the estimator ϑ̂
is given by

E(ϑ̂) :=
∑
S∈S

p(S)ϑ̂(S), (2.8)

where the estimate ϑ̂(S) is the specific value of the estimator concerning sample S. Thus, the
expected value of ϑ̂ is computed as an average of all possible values of ϑ̂(S), weighted with the
probabilities p(S). The variance of an estimator is given by

Var(ϑ̂) :=
∑
S∈S

p(S)
(
ϑ̂(S)− E(ϑ̂)

)2
. (2.9)

Informally, the variance is the expectation of the squared deviation of a random variable from
its mean (cf. Durrett, 2010, p. 32). The square root of the variance is called standard deviation,
formally given by

sd(ϑ̂) :=
√

Var(ϑ̂). (2.10)

The variance and the standard deviation are measurements for the accuracy and preciseness of
an estimator. Beyond this, we define the bias of an estimator ϑ̂ by

Bias(ϑ̂) := ϑ− E(ϑ̂). (2.11)

If Bias(ϑ̂) = 0, the estimator is called unbiased. An estimator is asymptotically unbiased in
a finite population framework, if Bias(ϑ̂) = 0 holds at least for assuming that the population
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size and sample size tend to infinity. As the expression bias suggests, the bias is a parameter to
measure the distortion of the estimated value from the real value. As a combination of accuracy
and distortion, the efficiency of an estimator is commonly measured by the mean squared error
(MSE), which additively combines the variance and the squared bias

MSE(ϑ̂) := Var(ϑ̂) + Bias(ϑ̂)2 =
∑
S∈S

p(S)
(
ϑ̂(S)− ϑ

)2
. (2.12)

If ϑ̂ is an unbiased estimator for ϑ, it follows from Equation (2.12) that MSE(ϑ̂) = Var(ϑ̂). We
remark that the estimator ϑ̂ may be an estimator for the whole population, but it may also be
for a sub-population. To make variances of various variables of interests with highly different
scales comparable, the coefficient of variation

cv(ϑ̂) :=

√
Var(ϑ̂)
ϑ

(2.13)

is commonly used for standardizing the standard deviation of an estimator ϑ̂ (if ϑ > 0). Usually,
the estimator ϑ̂ is an estimator for the total τy or the mean µy of the variable of interest y, but
other types of estimators are possible. Since the estimator for the mean can easily be derived
from the total estimator, we mainly focus on total estimators within this thesis. Nevertheless,
all methods proposed are similarly applicable for the estimator of the mean. For notational
simplicity, the estimate τ̂y(S) of the total τy computed regarding sample S ∈ S is denoted as τ̂y
hereafter, so that τ̂y refers to the estimator as well as the specific estimate with regard to sample
S ∈ S.

2.2 Selected estimators

In this section, two common estimators are presented which are vital for this thesis. For a
broader overview, we refer to Särndal et al. (1992). In general, the focus is on the estimation of
the population total

τy :=
∑
k∈U

yk (2.14)

of the variable of interest y for population U . The estimator of τy is denoted by τ̂y. The estimator
of a sub-population total

τyd :=
∑
k∈Ud

yk (2.15)

for an arbitrary subset Ud of the population U is analogously defined by τ̂yd, whereby an index is
added for the considered sub-population. The estimators µ̂y and µ̂yd of the corresponding means
µy and µyd can be derived by dividing the total estimates by the size of the (sub-)population.
The sample S is drawn under consideration of a specific sampling design p(·) without replace-
ment (see Equation (2.2)), which determines the inclusion probabilities πk for all k ∈ S (see
Equation (2.3)). For a definition of the respective specific sampling designs, we refer to Sec-
tion 2.3.
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In general, we distinguish between direct and indirect estimators. Direct estimators only incor-
porate the information available from inside the population of interest itself. On the other hand,
an indirect estimator utilizes additional information from outside the population of interest as
well to improve the estimation (cf. You and Rao, 2002, p. 431). This particular utilization
referred to as borrowing strength may be especially reasonable if the size of the population of
interest or the respective sample size is comparatively small (cf. Rao and Molina, 2015, p. 1).
Such indirect estimation techniques are not further considered in this thesis, however, small area
estimates may be incorporated as calibration benchmarks in the generalized calibration method
in Chapter 5. In addition to distinction between direct and indirect estimators, they can be
grouped into three types: design-based estimators, model-assisted estimators, and model-based
estimators. In the following, two common estimators are presented for various sampling designs
p(·) without replacement, which belong to the class of design-based and model-assisted estima-
tors respectively. After this, the characteristics of model-based estimators are briefly sketched
without details, since they are not the primary focus of this thesis.

Horvitz-Thompson estimator

Design-based estimators do not explicitly use auxiliary information in the estimation process.
Nevertheless, some auxiliary information may be incorporated in the design p(·). The most pop-
ular design-based estimator for the population total (2.14) is the Horvitz-Thompson estimator
(HT estimator), defined by

τ̂HT
y : =

∑
k∈U

1(k∈S)
yk
πk

=
∑
k∈U

1(k∈S)dkyk

=
∑
k∈S

yk
πk

=
∑
k∈S

dkyk.
(2.16)

It is built as the sum of the values of the variable of interest over the sampled units weighted by
their respective design weights, which have been determined by means of the sampling design
p(·). The HT estimator is design-unbiased for τy, which can be proved applying the definitions
of the inclusion probability (2.3) and the expected value (2.8) (cf. Horvitz and Thompson, 1952
and Särndal et al., 1992, Section 2.8). The HT estimator is a direct estimator, as it does not
require any information from outside the sample, e.g. from other sources such as administrative
data or other surveys. In the presence of strongly correlated auxiliary data, the HT estimator may
have a higher variance in comparison to estimators that utilize auxiliary information by means
of an assisting model, since the HT estimator does not make use of them at the estimation stage
(cf. Särndal et al., 1992, pp. 219 ff.). Nevertheless, the application of the HT estimator is,
not least due to its simplicity, widespread in the field of survey statistics and may work well in
many situations. For comparably high sampling fractions in particular, the HT estimator yields
generally accurate point and variance estimates (cf. Münnich et al., 2012a, p. 40). The variance
of (2.16) can be derived using the fact that the estimator is a linear function of the random
variables 1(k∈S) and this is then given by

Var(τ̂HT
y ) =

∑
k∈U

∑
l∈U

(
πkl
πkπl

− 1
)
ykyl. (2.17)
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Moreover, based on Särndal et al. (1992, p. 43), the variance can be unbiasedly estimated by
the residual variance estimator

V̂ar(τ̂HT
y ) =

∑
k∈S

∑
l∈S

(
πkl
πkπl

− 1
)
ykyl
πkl

, (2.18)

which prevents the need for resampling strategies for the variance and MSE estimation. Never-
theless, the computation of both (2.17) and (2.18) may suffer for general sampling designs, since
the second-order inclusion probabilities πkl are required. However, Section 2.3 shows that the
formulas can be simplified under specific sampling designs like stratified random sampling.

Generalized regression estimator

As mentioned, in the case of known auxiliary data, design-based estimators may be inefficient
due to the neglecting of auxiliary information at the estimation stage. Procedures that make use
of potentially correlated auxiliary information within a model to reduce the variance compared
to design-based estimators are called model-assisted, if their design-based properties are not
dependent upon the validity of the model (cf. Särndal et al., 1992, Remark 6.4.1). The most
prominent example of such estimators is the generalized regression estimator (GREG estima-
tor), which was primarily published by Cassel et al. (1976). It is given by

τ̂GREG
y := τ̂HT

y + β̂T (τX − τ̂HT
X ), (2.19)

whereby β̂ ∈ Rq is the vector of the estimated regression coefficients between the q auxiliary
variables X and the variable of interest y. Since generally the variable of interest and the
auxiliary information are only available for the sampled units k ∈ S, the regression coefficient
has to be estimated by

β̂ =
∑
k∈S

dkxkx
T
k

−1 ∑
k∈S

dkxkyk. (2.20)

Its population-based value β ∈ Rq is analogously defined by the sum over k ∈ U instead
of k ∈ S. With regard to Equation (2.20), the GREG estimator consists of the HT estimator
corrected by a linear assisting model depending on the correlation of the variable of interest y
and the auxiliary variables X (cf. Särndal et al., 1992, Chapter 6 and 7). We also note that
τX ∈ Rq and τ̂HT

X ∈ Rq are the vector-valued equivalents to the totals and the estimated totals
of the q auxiliary variables respectively. Compared to the HT estimator (2.16), the efficiency of
the GREG estimator (2.19) decisively depends on the goodness of the underlying fit between
the auxiliaries and the variable of interest generated by the assisting model. Since this is a linear
regression model, the goodness is generally strong, if the correlations between the auxiliaries
and the variable of interest are high (cf. Särndal et al., 1992, pp. 227 ff.). While the goodness
of the model does affect the accuracy of the estimate, basic properties such as the asymptotic
design-unbiasedness (which holds under weak assumptions; cf. Cassel et al., 1976) or the
validity of the variance formulas are not dependent on the strength of the model. Thus, the
GREG estimator is given the term model-assisted. Moreover, the GREG estimator can either
be direct or indirect depending on the level which the assisting regression model is fitted at, i.e.
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the level at which the vector β̂ is computed. If the model is fitted only within the population
of interest, the estimator (2.19) is a direct estimator. Alternatively, if additional information
from beyond the bounds of the population of interest is used to fit the model, (2.19) is called
an indirect estimator. This borrowing of strength might be especially useful, if the population
of interest or its sample size is relatively small. In this case, the computation of the regression
coefficient β̂ may be unstable, as the number of sampled units is not large enough to allow
an accurate fit to the considered covariables. The variance of the GREG estimator cannot be
explicitly formulated due to the complex nature of the estimator. Hence, the variance needs to
be approximated by applying Taylor approximations as shown in Särndal et al. (1992, Result
6.6.1). The approximated variance is given by

Var(τ̂GREG
y ) =

∑
k∈U

∑
l∈U

(
πkl
πkπl

− 1
)

(yk − xTk β)(yl − xTl β), (2.21)

whereby β ∈ Rq is computed over all units of the population k ∈ U in analogy to the sample-
based computation of β̂ defined in (2.20). In that regard, the terms (yk − xTk β) represent the
residuals. The corresponding residual variance estimator is defined as

V̂ar(τ̂GREG
y ) =

∑
k∈S

∑
l∈S

(
πkl
πkπl

− 1
) (yk − xTk β̂)(yl − xTl β̂)

πkl
, (2.22)

where only sample information is used to compute the variance and the regression coefficient
β̂. As specified in Särndal et al. (1992, Chapter 6.5), the GREG estimator has several equivalent
expressions apart from (2.19). We will focus on one alternative expression in Section 2.4, which
will build a bridge between the GREG estimator and the calibration techniques.

Model-based estimators

In model-based estimation, implicit or explicit models are commonly applied to borrow strength
by using auxiliary information from outside the population of interest. In contrast to model-
assisted estimators, the properties of model-based estimators are strictly dependent on the va-
lidity of the model (cf. Särndal et al., 1992, Remark 6.4.1). Hence, the validity of the under-
lying model has to be assumed and checked by means of the data. In addition, the property of
design-unbiasedness is not given in general, meaning that the occurrence of a systematic bias
is possible. Model-based techniques are popular in the context of small area estimation, where
linear mixed models are commonly applied to borrow strength from outside the population of
interest (cf. Rao and Molina, 2015, p. 2). We will not focus on these model-based techniques
in this thesis, however, small area estimates may be incorporated as calibration benchmarks in
the generalized calibration method presented in Chapter 5. Thus, a short overview of the ba-
sic literature is provided here. Model-based estimators in the context of small area estimation
have been published by Rao and Molina (2015). Moreover, Fay and Herriot (1979), Battese
et al. (1988), and You and Rao (2002) have presented examples of empirical best linear unbi-
ased predictors. According to these studies, the use of point estimates is often straightforward,
while the evaluation of the quality of these estimates may be very sophisticated. Thus, meth-
ods for variance and MSE estimations are most likely based on approximation techniques or
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resampling methods. Nevertheless, small area estimation has been a widely investigated topic
in the research field over the past few years, and it is steadily becoming more applied in official
statistics, as its potential for improvement is not negligible.

2.3 Common sampling designs

As defined in Section 2.1, the procedure of drawing a sample is based on the sampling design
p(·) : S → [0, 1], which matches each possible sample S ∈ S to a specific probability of being
chosen. In general, we make a distinction between equal probability sampling and unequal
probability sampling according to equal or unequal inclusion probabilities for all units of the
population (cf. Lohr, 2009, p. 23 and p. 179). In this section, we briefly introduce the sampling
designs which are relevant for this thesis, in particular simple random sampling and stratified
random sampling. Since these two designs are the only designs considered in this thesis, we
refer to Cochran (1977) and Lohr (2009, Chapters 2 to 6) for a further overview of classical
sampling designs.

Simple random sampling

In simple random sampling without replacement (SRS), a sample of size ns is drawn in a way
where every possible subset of ns distinct units of the population has the same probability of
being selected as the sample, i.e.

p(S) = 1(
N
ns

) for all S ∈ Sns . (2.23)

Consequently, SRS in an equal probability design, since the inclusion probabilities are constant
for all units of the population, i.e.

πk = ns

N
∀k = 1, . . . , N. (2.24)

In general, a distinction is made between simple random sampling with replacement and without
replacement (cf. Lohr, 2009, Chapter 2.3). Following our definition of a sample S ∈ Sns in
Section 2.1, SRS is exclusively referred to the without replacement design, since it is more
common in household and business surveys. Since πk is constant in SRS, both (2.17) and (2.18)
as well as (2.21) and (2.22) of the variances of the presented estimators in Section 2.2 are
simplified under the SRS design. The variance of the HT estimator of the population total of
variable y under SRS is then given by

Var(τ̂ SRS,HT
y ) = S2N2

ns

(
1− ns

N

)
, (2.25)

where
S2 = 1

N − 1
∑
k∈U

(
yk − ȳ

)2
(2.26)
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is the population variance of variable of interest y with the population mean ȳ = 1
N

∑
k∈U yk

(cf. Cochran, 1977, p. 90). In general, S2 is not known in advance and needs to be estimated
using

s2 = 1
ns − 1

∑
k∈S

(
yk − ȳS

)2
(2.27)

with the sample mean ȳS = 1
ns

∑
k∈S yk. Hence, the variance can be estimated by

V̂ar(τ̂ SRS,HT
y ) = s2N2

ns

(
1− ns

N

)
. (2.28)

The approximated variance of the GREG estimator Var(τ̂ SRS,GREG
y ) under SRS equals Equa-

tion (2.25), whereas S2 is exchanged by

S2
e = 1

N − 1
∑
k∈U

(
yk − xTk β

)2
(2.29)

with the regression coefficient β (cf. Lohr, 2009, pp. 372 ff.). If S2
e needs to be estimated, an

estimator is given by

s2
e = 1

ns − 1
∑
k∈S

(
yk − xTk β̂

)2
(2.30)

with the estimated regression coefficient β̂ defined in Equation (2.20). Thus, the estimated
variance V̂ar(τ̂ SRS,GREG

y ) is given by Equation (2.28) with (2.30) instead of (2.27).

Despite its simplicity, SRS is rarely used in modern surveys in official statistics with design-
based estimation strategies for several reasons. Firstly, with auxiliary information neglected at
the design stage, the opportunity is missed to generate efficiency gains of the estimates through
a smart structuring of the population, such as by incorporating geographic regions in the design
(cf. Lehtonen and Veijanen, 2009, pp. 222 f.). Secondly, the sampled units are randomly
distributed over the whole population, such that the survey costs might be unacceptable high,
given that is is necessary for interviewers to cover huge regions. A more detailed discussion
about this issue is given in Lohr (2009, Chapter 5) in the context of cluster sampling. Moreover,
since regional estimates are desired, SRS implies the presence of unplanned regions, as the
region-specific sample sizes are not known at the estimation stage, which is an assumption for
the validity of the variance formulas of the HT and the GREG estimator. Nevertheless, SRS
plays an important role in multi-stage designs such as the two-stage cluster design, where SRS
can be applied to sample clusters at the first stage and to sample units within each cluster at the
second stage (cf. Lohr, 2009, Chapter 5.3). Since SRS may be the most intuitive design, the
accuracy of an estimate with another design is often measured in relation to the accuracy of an
estimate under SRS.

Stratified random sampling

In Section 2.2, common estimators have been introduced for the total of population U and the
total of an unspecific sub-population Ud. Henceforth, the definition of such sub-populations will
be specified by a stratification of the population substantiated by the stratified random sampling
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design (StrRS; cf. Lohr, 2009, Chapter 3). In that regard, the population is divided into H
pairwise disjoint and exhaustive strata Uh and stratum sizes Nh ∈ N with

U =
H⋃
h=1
Uh. (2.31)

Hence, each unit of the population belongs to exactly one stratum. Since the focus is on a
design-based context, we assume that the stratum sizes are known at the design stage, which
implies that theH strata are determined in the sampling design. In light of the fact that we apply
the developed statistical methods on the whole population, on each specific stratum as well as
on other subsets of the whole population, any unions of some strata h are referred to as areas
from this point onward. To be more precise, areas can be defined on different stratification
levels r = 1, . . . , R, where Lr areas exists for each level r. The areas on stratification level
r ∈ {1, . . . , R} are denoted with U (r)

lr
(lr ∈ {1, . . . , Lr}). Moreover, the areas of each level

exhaust the whole population, i.e.

U =
Lr⋃
lr=1
U (r)
lr

for all r = 1, . . . , R. (2.32)

It should be noted that these areas are also disjoint among one another. Since all the areas are
unions of the strata, they are also considered in the sampling design. This is important for the
validity of the variance formulas of area-specific HT and GREG estimates (unplanned strata or
areas are omitted in this way). The stratification structure is exemplarily illustrated in Figure 2.1
for R = 3, L1 = 2, L2 = 3, L3 = 3, and H = 10. Each color (red, blue, and green) corresponds
to one stratification level. The areas of one stratification level are consecutively numbered and
the numbers are plotted with the respective color. The numbers of the 10 strata are plotted in
black.
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Figure 2.1: Example for a multi-domain stratification (R = 3, L1 = 2, L2 = 3, L3 = 3 and H = 10).

In analogy to the population, a sample S ∈ Sns of the size ns ≤ N and can be divided into
disjoint stratum-specific samples Sh with

S =
H⋃
h=1

Sh (2.33)
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and Sh = S ∩ Uh (cf. Lohr, 2009, Chapter 4). The stratum-specific sample sizes nh are stated
within the vector

n := (n1, . . . , nH)T , (2.34)

where the sum over all components is equal to the total sample size, i.e.
∑H
h=1 nh = ns. Similar

to (2.32), area-specific samples are denoted with S(r)
lr

. Moreover, S(r)
lr

= S ∩ U (r)
lr

holds for all
lr ∈ {1, . . . , Lr} and r ∈ {1, . . . , R}.

Using StrRS, a SRS design is conducted separately within each stratum h, where nh units are
drawn from the hth stratum. In this way, the inclusion probabilities are given by

πk = nh
Nh

∀k ∈ Uh, (2.35)

i.e. the inclusion probabilities are constant within each stratum. In contrast to SRS, StrRS en-
sures that units from all strata are present in the sample (subject to the condition that
nh > 0). Moreover, StrRS enables the computation of stratum- or area-specific estimates and
their variances since, in contrast to SRS, the stratum- and area-specific sample sizes are known
at the estimation stage. The HT estimator (2.16) and the GREG estimator (2.19) are applicable
with StrRS for the estimation of population as well as of stratum- and area-specific totals (see
inter alia Särndal et al., 1992, Result 3.7.2). Since we assume StrRS, the variance of the HT
estimator for the population total τy = ∑

k∈U yk is defined as the sum of the stratum-specific
variances of the HT estimator, given by

Var(τ̂ StrRS,HT
y ) =

H∑
h=1

S2
hN

2
h

nh

(
1− nh

Nh

)
. (2.36)

It can be estimated by

V̂ar(τ̂ StrRS,HT
y ) =

H∑
h=1

s2
hN

2
h

nh

(
1− nh

Nh

)
, (2.37)

where S2
h and s2

h are the stratum-specific variance of variable y and its estimate in stratum h in
analogy to (2.26) and (2.27) respectively (Lohr, 2009, p. 100). An expression for the variance
of the GREG estimator under StrRS can be formulated by (2.36) and (2.37), with a replacement
of S2

h and s2
h in analogy to (2.29) and (2.30).

The definition of the strata is crucial for the efficiency of the estimates under a StrRS design.
As illustrated by Särndal et al. (1992, Example 3.7.1), the variance reduction of the estimate
for τy compared to SRS increases with an increasing homogeneity of the strata with respect to
the variable of interest y. If homogeneity increases in stratum h, the stratum-specific variance
S2
h decreases, which leads to a smaller variance of the estimate. However, it is not possible to

construct strata based on the variable of interest y, since its information is collected by means
of the survey. Thus, external auxiliary information or proxies of y, such as those obtained
from previous surveys or registers, are used in practice to build the strata. Often, regional
properties of the population and individual properties of the units are simultaneously assessed
to construct the strata. In the German Census 2011 (where each address in Germany is a unit
of the population), the strata are built as cross-classifications between sampling points (SMP;
regional areas) and classes depending on the registered inhabitants within an address (areas by
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content) (cf. Münnich et al., 2012a, p. 31). In business surveys, the company size and the
industry sector of the company are frequently used in addition to some regional areas in order
to build the cross-classification strata (cf. Hidiroglou and Lavallée, 2009).

One main task of the application of a stratified sampling design is the allocation of the total
sample size to the strata, which is discussed in more detail in Section 2.5.

Other sampling designs

In addition to SRS and StrRS, cluster sampling is also popular in modern survey sampling.
One major type of cluster sampling can be characterized as a multi-stage SRS, where groups of
units (clusters) are sampled in the first stage(s). The units of the population are only sampled
at the last stage. Cluster sampling is not further considered in this thesis, we refer to Lohr
(2009, Chapter 5) for more information on this topic. Another common design is the balanced
sampling design, which makes use of auxiliary data at the sampling stage (cf. Tillé, 2006,
Chapter 8). It has the property that the HT estimators of the totals for a set of auxiliary variables
are equal to the totals that have to be estimated. For more information about balanced sampling
and its implementation, we refer to Deville and Tillé (2004) and Tillé (2006, Chapter 8).

2.4 Calibration of survey weights

The term calibration is widely used, and in general it has different meanings in various sciences.
In survey statistics, it is considered in the context of calibration of estimator weights. Around
a decade ago, Särndal (2007) praised calibration as “an important methodological instrument
in large-scale production of statistics”. The calibration approach given by Särndal is defined as
follows.

Definition 2.4.1 (calibration approach). The calibration approach to estimation for finite popu-
lations consists of

(a) a computation of weights that incorporate specified auxiliary information and are re-
strained by calibration equation(s),

(b) the use of these weights to compute linearly weighted estimates of totals and other finite
population parameters: weight times variable value, summed over a set of observed units,

(c) an objective to obtain nearly design unbiased estimates as long as nonresponse and other
non-sampling errors are absent.

Other definitions can also be found in the literature. Ardilly (2006) defined calibration similarly
to Definition 2.4.1 (a), namely as a re-weighting method to adjust the design weights with re-
gard to several auxiliary variables. Kott (2006) described calibration weights as a set of weights
that satisfy known population totals. Moreover, Kott characterized the calibration estimator as
design consistent, i.e. the design bias is, under weak conditions, asymptotically insignificant for
the MSE of the estimator. Finally, a proper summary of all these definitions is given in Statistics
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Canada (2003, pp. 45-46): “Calibration is a procedure that can be used to incorporate auxiliary
data. This procedure adjusts the sampling weights by multipliers known as calibration factors
that make the estimates agree with known totals. The resulting weights are called calibration
weights or final estimation weights. These calibration weights will generally result in esti-
mates that are design consistent, and that have a smaller variance than the Horvitz-Thompson
estimator”. In addition to these characterizations, Merkouris (2004) delineated calibration as
a powerful tool to achieve coherent estimates, for example between several survey, for known
administrative data, and on different levels (e.g. unit and household level). This property is
highly relevant for official statistics (cf. Riede et al., 2013). Concerning these definitions, we
are able to define a standard calibration estimator.

Definition 2.4.2 (calibration estimator). Let the units k ∈ S be numbered consecutively with
k = 1, . . . , ns without loss of generality. Then, the estimator for the total τy of variable y

τ̂CAL
y :=

∑
k∈S

dkgkyk (2.38)

with gk (k = 1, . . . , ns) is called calibration estimator with regard to a convex and continuously
differentiable distance function D : R → R0+ , if the vector g = (g1, . . . , gns)T ∈ Rns is the
unique optimal solution of the optimization problem

min
g∈Rns

∑
k∈S

dkD(gk)

s.t.
∑
k∈S

dkgkxk =
∑
k∈U

xk.
(2.39)

The components gk of the solution g are then called correction weights (also known as g-
weights). Furthermore, the products wk := dkgk are called calibration weights.

The distance function D in Definition 2.4.2 quantifies the amount of penalization when the
calibration weights wk = dkgk differ from the design weights dk. Some traditional choices for
D are shown in Table 2.1. These and other distance functions are listed in Deville and Särndal
(1992), Singh and Mohl (1996), and Stukel et al. (1996). A detailed comparison of the distance
functions is given in the simulation study in Subsection 5.6.7.

Table 2.1: Common examples of distance functions for the calibration estimator.

D(gk)

GREG-type 1
2(gk − 1)2

Raking Ratio gk log(gk)− gk + 1
Maximum-likelihood Raking gk − 1− log(gk)

In comparing the calibration estimator (2.38) with the GREG estimator (2.19), similarities can
be observed. Indeed, we can prove equivalence between (2.38) and (2.19) for the estimation
of the population total if the GREG-type distance function is chosen (cf. Deville and Särndal,
1992). Prior to that, Lemma 2.4.3 is proved.
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Lemma 2.4.3. The GREG estimator (2.19) is equivalent to the calibration estimator (2.38), if

gk = 1 +
(
τX − τ̂HT

X

)T ∑
l∈S

dlxlx
T
l

−1

xk (2.40)

for each k ∈ S.

Proof. Using (2.19) and (2.20), we can compute

τ̂GREG
y = τ̂HT

y + (τX − τ̂HT
X )T β̂

=
∑
k∈S

dkyk +

(τX − τ̂HT
X )T

∑
l∈S

dlxlx
T
l

−1 ∑
k∈S

dkxkyk


=
∑
k∈S

1 + (τX − τ̂HT
X )T

∑
l∈S

dlxlx
T
l

−1

xk


︸ ︷︷ ︸

=gk

dkyk

=
∑
k∈S

dkgkyk = τ̂CAL
y

with gk defined by (2.40).

Using the characterization of the correction weights gk given in Lemma 2.4.3, the equivalence
between (2.38) and (2.19) for the estimation of population total can be proved.

Theorem 2.4.4. The GREG estimator (2.19) is equivalent to the calibration estimator (2.38), if
D(gk) = 1

2(gk − 1)2 for all k = 1, . . . , ns.

Proof. Since the objective function of (2.39) is strictly convex, solving the Karush-Kuhn-Tucker
(KKT) conditions

dk(gk − 1) + dkλ
Txk = 0 ∀k = 1, . . . , ns (2.41)∑

k∈S
dkgkxk −

∑
k∈U

xk = 0 (2.42)

is necessary and sufficient for the evaluation of the unique optimal solution of (2.39) (Theo-
rem 3.1.7 or Geiger and Kanzow, 2002, Definition 2.35) with Lagrangian multipliers λ ∈ Rq.
We transform (2.41) to

gk = 1− λTxk (2.43)

and place it into (2.42). After some transformations, the following is obtained:

λT = −
(
τX − τ̂HT

X

)T ∑
k∈S

dkxkx
T
k

−1

. (2.44)

The insertion of (2.44) into (2.43) shows the equivalence of (2.40) and (2.43), which completes
the proof.
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Theorem 2.4.4 shows, that the GREG estimator for the population total can be interpreted as
calibration estimator with the auxiliary variables X as calibration benchmarks. Moreover, the
calibration estimator defined in Definition 2.4.2 is a general case of the GREG estimator, since
Definition 2.4.2 is valid for various distance functions. Alternative formulations of the GREG
estimator and its connection to the field of calibration techniques are extensively discussed in
the literature. Since this is not considered to be a main research question within this thesis,
we refer to the references Deville and Särndal (1992, Chapter 1), Cassel et al. (1976), and
Zieschang (1990, Chapter 3) for a detailed overview of this topic.

In comparing balanced sampling (cf. Tillé, 2006, Chapter 8) with the GREG estimator (2.19)
and calibration techniques, the methods differ in their handling of the auxiliary data. A balanced
sampling approach can be interpreted as an a priori calibration strategy, since auxiliary data
is already used at the design and sampling stage. On the other hand, the application of the
model-assisted GREG estimator (2.19) and the calibration estimator (2.38) can be expressed
as an a posteriori balancing strategy, since the auxiliary data is not used before the estimation
stage. A comparative glance at both strategies yields no general statement whether the usage of
auxiliary information is already sensible at the design stage, since the effect strongly depends
on the specific application. Basically, calibration techniques are preferred in practice, since
the auxiliary information needs to be available not before the estimation stage. By contrast,
balanced sampling requires the auxiliaries to be available already at the sampling stage. For a
more detailed discussion concerning calibration and balanced sampling, we refer to Tillé (2006,
Chapters 8 and 9).

One major aim of this thesis is the development of a more generalized form of the calibration
estimator (see Definition 2.4.2) in order to gain more flexibility and usability in real applica-
tions, especially in official statistics. As explored in Chapter 5, where we discuss the additional
consideration of box-constraints, regional or area-specific benchmarks, and the relaxation of
specific benchmarks. Moreover, the control of the variation of the calibration weights is dis-
cussed, which can be measured by the ratio of the largest to the smallest calibration weight (cf.
Gelman, 2007). This ratio is referred to as Gelman bound (or Gelman factor) from this point
onward in accordance with Münnich and Burgard (2012).

2.5 Allocation methods

In Section 2.3, the StrRS design was introduced as one of the most common sampling designs
in modern survey sampling. In this section, we address the problem of how to allocate an a
priori fixed sample size ns ≤ N to the H strata. Generally, the costs of a survey will increase
if the total sample size ns increases. Thus, the total sample size ns is strongly correlated with
the costs of the survey and is therefore limited in several applications. The other major trade-
off is the one between efficient population estimates on the one hand and efficient stratum- or
area-specific estimates on the other hand. The development of an innovative allocation method,
which considers both aspects at once, is one of the major tasks of this thesis and is extensively
covered in Chapter 4. In general, (stratum-specific) sample sizes need to be integer numbers,
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since it is not possible to sample fractions of units (e.g. companies or households) of the pop-
ulation. Thus, either integer solvers need to be applied or the continuous solution needs to be
rounded such that the following conditions hold:

1. Each stratum-specific sample size needs to be an integer number: nh ∈ N ∀h = 1, . . . , H .

2. The sum over the (rounded) stratum-specific sample sizes needs to be equal to the total
sample size:

∑H
h=1 nh = ns.

Assumption 1 requires certain rounding procedures. The two assumptions are assumed to be
fulfilled in the following description (without being mentioned in each situation). We start by
introducing some standard techniques to allocate an a priori fixed sample size ns to the disjoint
and exhaustive strata h = 1, . . . , H in StrRS.

A commonly used and very simple allocation technique is the equal allocation, where the total
sample size is equally distributed amongst the strata Uh, i.e.

nEQ
h = ns

H
∀h = 1, . . . , H. (2.45)

The equal allocation (2.45) does not prevent an overallocation meaning that the desired stratum-
specific sample size may exceed the stratum size in at least one stratum (nh > Nh). Choudhry
et al. (2012) presented a modification which may be considered instead of (2.45), where nh is
upper-bounded by Nh, and the remaining sample size is equally distributed to the other strata.
An advantage of the equal allocation is that design-based area- and stratum-specific estimates
may be efficient (i.e. their variance may be comparatively small), since, very small sample sizes
are generally avoided. However, the accuracy of population estimates may not be at a very high
level.

In contrast to (2.45), the proportional allocation given by

nPROP
h = ns

N
Nh ∀h = 1, . . . , H (2.46)

yields the same sampling fraction f = ns
N

in all strata, up to rounding effects (cf. Särndal
et al., 1992, p. 107). Thus, all units within the population share (almost) the same probability
of being included in the sample. Moreover, Equation (2.46) prevents overallocation, since the
ratio ns

N
does not exceed a value of 1.0. Comparing the accuracy of population estimates for τy

using SRS and StrRS with a proportional allocation, Särndal et al. (1992, pp. 108 f.) proved
that StrRS with proportional allocation yields smaller variances compared to SRS, except in
the rather theoretical case where all stratum means ȳh are almost equal. The more unequal
the stratum means ȳh are, the more precision will be gained by using StrRS with proportional
allocation instead of SRS (cf. Lohr, 2009, p. 105 f.). Hence, a sensible construction of the
strata should yield heterogeneity between the strata and homogeneity within the strata. If the
population is not completely homogeneous, this results in a kind of homogeneity within each
stratum, which is illustrated by Särndal et al. (1992, Example 3.7.1). Thus, if the stratum means
ȳh significantly differ among each other, we can basically assume

Var(τ̂ StrRS.PROP,HT
y ) ≤ Var(τ̂ SRS,HT

y ). (2.47)



2.5 ALLOCATION METHODS 23

As the stratification of the population is sensible, in general, the inequality (2.47) holds for
almost all practical applications. A drawback of the proportional allocation is that it tends to
disregard design-based area- and stratum-specific estimates, as it may lead to small stratum-
specific sample sizes for smaller strata. Even stratum-specific sample sizes of zero may occur
due to the rounding procedure.

In general, surveys focus on the computation of population estimates. To meet this condition,
the total sample size may be allocated to the strata in a way that minimizes the variance of the
HT estimator (2.16) of the variable of interest y for the population, as given by (2.17). This
procedure is referred to as optimal allocation and was introduced by Tschuprow (1923) and
Neyman (1934) for the case of one variable of interest y, also known as the univariate case.
In Tschuprow (1923) and Neyman (1934), the variance Var(τ̂ StrRS,HT

y ) is minimized under the
assumption of a fixed total sample size ns. It can be easily shown that some derivations of the
first-order optimality conditions lead to the closed form

nOPT
h = NhSh∑H

ι=1NιSι
· ns (2.48)

for all h = 1, . . . , H . This approach was extended in Gabler et al. (2012), Münnich et al.
(2012c), Wagner (2013), Friedrich et al. (2015), and Friedrich (2016). In these studies, upper
bounds Mh ≤ Nh and lower bounds mh ≥ 2 for each stratum-specific sample size nh, namely
box-constraints, are added to the optimization problem to prevent overallocation as well as
extremely small stratum-specific sample sizes. A lower bound of mh ≥ 2 ensures that the
variance formula (2.36) is well-defined, as the denominator in S2

h defined in (2.26) is greater
than zero. As a consequence, the resulting optimization problem

min
n∈RH

Var(τ̂ StrRS,HT
y )

s.t.
H∑
h=1

nh = ns

2 ≤ mh ≤ nh ≤Mh ∀h = 1, . . . , H

(2.49)

needs to be solved numerically, since the Lagrangian approach does not lead to a closed form
solution. In Gabler et al. (2012), the theory of the solution strategy is introduced and verified.
In Münnich et al. (2012c), the optimization problem is reformulated as a nonlinear system of
equations which results from the Lagrangian approach. The authors made use of the special
structure of the objective function (2.36), since it can be easily rewritten as

Var(τ̂ StrRS,HT
y ) =

H∑
h=1

S2
hN

2
h

nh

(
1− nh

Nh

)
=

H∑
h=1

(
dh
nh
− S2

hNh

)
(2.50)

with some constants dh ∈ R+ for h = 1, . . . , H . Since we ignore empty strata or strata with
S2
h = 0, the constants dh are supposed to be strictly positive. Then, the problem (2.49) can

equivalently be reformulated with the inequality constraint
∑H
h=1 nh ≤ ns, but equality holds at

every optimal solution: assuming n∗ ∈ RH is optimal for (2.49) and
∑H
h=1 nh = ns − ε with

ε > 0. Then

VarOPT(τ̂ StrRS,HT
y ) =

(
H∑
h=1

dh
n∗h
− S2

hNh

)
>

d1

n∗1 + ε
+

H∑
h=2

dh
n∗h
−

H∑
h=1

S2
hNh.
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Since d1
n∗1+ε > 0, the resulting variance for

∑H
h=1 nh = ns − ε is bigger than for

∑H
h=1 nh = ns,

such that equality holds in (2.49) for each optimal solution. The objective function (2.50) is
continuously differentiable on the feasible set and fulfills the property of separability (cf. Boyd
and Vandenberghe, 2004, pp. 248 f.), which is a necessary condition for the application of some
efficient numerical solvers.

Remark 2.5.1. A function F : RH
+ → R0+ is separable if it can be rewritten as an independent

sum over its components Fh depending on the individual variables nh, i.e.

F (n) =
H∑
h=1

Fh(nh).

Moreover, a numerical algorithm using a fixed point iteration is presented to solve (2.49) con-
tinuously in a short processing time in Münnich et al. (2012c). This approach is discussed and
extended in Chapter 4 in order to generalize the box-constraint optimal allocation with regard
to multivariate allocations and including additional restrictions. Because the stratum-specific
sample sizes nh all need to be integer numbers, a rounding problem might occur. Since the
rounded optimal (continuous) solution may not be optimal at all, Friedrich et al. (2015) pro-
vided a further extension that ensures integrality of the solution of the optimization problem
(2.49). This was done based on Greedy algorithms, which avoids rounding.

Since, in practice, the total of the variable of interest is estimated by means of the survey, the
variable of interest (or its variance) is not known at the design stage, when the sample allocation
is computed (cf. Särndal et al., 1992, p. 106). Hence, the stratum-specific variances S2

h of
variable of interest y, which are necessary for the computation of the optimal allocation, are not
available. Alternatively, either proxies or highly correlated auxiliary data need to be used. These
proxies can be values from previous years, for instance. Generally, the quality of the resulting
optimal sample sizes depends on the accuracy of the proxy or auxiliary information used. If
(2.48) or (2.49) is calculated using past values of y and meanwhile the variable of interest has
been subject to a large shock (e.g. as a consequence of demographic changes or economic
crises), the resulting allocation may be far from optimal. In any case, this statistical relationship
between the possibly unsteady population changes and the accuracy of the estimates is also
investigated in Chapter 4. An optimal multivariate allocation approach is proposed to weaken
this effect since several variables of interest are considered simultaneously. The consideration
of several variables within the allocation is vital in modern surveys, as the user pursues various
possibly conflicting goals within one single survey. To solve optimal multivariate allocation
problems, strategies of Pareto optimization are proposed in this thesis, and this will be the
starting point of the developments in Chapter 4. We have discussed the strategy of applying
Pareto optimization for a simpler framework in Friedrich et al. (2018). Moreover, optimal
allocation only concentrates on the minimization of the variance of population total estimates.
Variances for area- or stratum-specific estimates are neglected, which may lead to inefficient
estimates on disaggregated stratification levels. This issue is also addressed in Chapter 4.
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2.6 The RIFOSS dataset

To test the developed statistical methods and to accentuate their functionality, the applications
and simulations considered in this thesis are performed on a synthetic dataset representing all
inhabitants of Germany. The dataset1 has been generated at Trier University within the RIFOSS2

project funded by the Federal Statistical Office of Germany. It is based on the simulation dataset
used for the evaluation of the methodology of the German Census 2011. This dataset has also
been generated at Trier University, and it is based on an extract from the official population
register of Germany (cf. Münnich et al., 2012a, Chapter 3.2). Additional variables have been
added with the aid of a scientific use file of the German Microcensus 20083. Generally, the
variables have been included applying multinomial logistic regression model. The generation
process of the data has been done separately for three times. Subsequently, approximately a
third of all households has been selected based on a simulated annealing strategy (cf. Laarhoven
and Aarts, 1987, Chapter 3) in a way where population and sub-population totals are fitted to
the results of the German Census 2011. The generation process has been inspired by Alfons
et al. (2011) and Rahman and Harding (2016, Section 4.4.1). For a more detailed analysis of
the generation of synthetic datasets, we also refer to Burgard et al. (2017).

In representing real sizes of the German population, the dataset consists of approximately 85
million individuals inhabiting approximately 39 million households. The 85 million contain ap-
proximately 82 million individuals living in their main residence. Additionally, approximately
3 million of them are also listed with a secondary residence. Although the methods developed in
the thesis are even able to handle these dimensions in an appropriate time, the dataset is reduced
to four federal states of Germany due to the simpler manageability (with regard to the work-
ing memory and hard disk memory sizes). Thus, the dataset is reduced to the federal states of
Hesse, North Rhine-Westphalia, Rhineland-Palatinate, and Saarland. Moreover, households are
defined as sampling units. The reduction results in a population size of 11 121 631 households
accommodating 30 077 329 individuals.

The population is stratified by the following stratification levels by region or by content:

1. FS: 4 federal states (by region),

2. NUTS2: 12 NUTS2 regions (by region),

3. NUTS3: 121 NUTS3 regions (by region),

4. SMP: 784 sampling points (by region; same structure as in the German Census 2011),

5. HHS: 8 classes of household sizes (by content; same number of persons in each class).

Corresponding to the five stratification levels, the sampling design is defined on 6 272 strata
built as cross-classifications of the five stratification levels that is, the 784 sampling points and
the 8 classes of household sizes. In addition to estimates of the population total and of stratum-

1Version: RIFOSS_GG_v0.1.1_vanilla_inc_cream, accessed 22 June 2018
2RIFOSS: Research Innovation for Official and Survey Statistics
3http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2008/fdz_mz_suf_2008_

schluesselverzeichnis.pdf

http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2008/fdz_mz_suf_2008_schluesselverzeichnis.pdf
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2008/fdz_mz_suf_2008_schluesselverzeichnis.pdf
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specific totals, namely area-specific estimates will also be evaluated for NUTS2 and NUTS3
regions as well as for sampling points and classes of household sizes. The four regional strati-
fication levels are plotted in the Figures 2.2 and 2.3 for Germany and for the four federal states
respectively. The maps exemplarily show the mean number of individuals under the age of 20
within a household per region. The values of the respective regions illustrate the heterogeneous
structure of the dataset. When an aggregated region may be shaded in dark blue, the color struc-
ture of a corresponding disaggregated levels may be highly heterogeneous. However, it has to
be remarked that the values are not real values since the dataset is synthetically generated.

Figure 2.2: Regional stratification levels of Germany (exemplary content: mean number of persons under
the age of 20 within a household).

Figure 2.3: Regional stratification levels of four federal states (exemplary content: mean number of per-
sons under the age of 20 within a household).

The variables considered in the applications and simulations in this thesis are tabulated in the
original form on individual level in Table B.1 in Appendix B.1. Before the application, the
variables are suitably transformed to the household structure. The resulting variables are tab-
ulated in Table B.2. The expression suitably transformed is exemplary meant to refer to the
transformation of the variable EF44 (age of person) to the variables AGE4.1, AGE4.2, AGE4.3,
and AGE4.4 corresponding to the number of persons who are (a) under the age of 20, (b) from
20 to 39, (c) from 40 to 59, and (d) 60 or older living in a household respectively. Since the
population is fully available on household level, the evaluation of the quality of the estimates
computed by the application and simulation studies is then possible based on the true values.



Chapter 3
Fundamentals of Numerical Optimization

In this chapter, fundamental frameworks and definitions of numerical optimization are pre-
sented. The scope of the content is limited to aspects that are pertinent to the thesis. In Sec-
tion 3.1, the basic theory of nonlinear optimization is introduced. As we have already seen
in Chapter 2, the optimal allocation as well as the calibration methods are based on nonlinear
optimization problems. Thus, the theory of nonlinear optimization is the theoretical foundation
to solve these problems. Afterwards, some aspects of non-smooth optimization are addressed
in Section 3.2 with a focus on a property of functions called semismoothness. This property is
a weaker assumption than continuous differentiability. Under this assumption, a semismooth
Newton method (SSN) is applicable to solve special cases of non-smooth equations. This is
essential for the developments in Chapters 4 and 5, as the reduction of the dimension of the
original optimization problems to be solved results in non-differentiable, but semismooth non-
linear systems of equations. In Section 3.3, the theory of multi-criteria (or multi-objective)
optimization is introduced as it is the basis of the derivation of the optimal multivariate and
multi-domain allocation method in Chapter 4. As the optimal multivariate allocation consid-
ers more than one variable of interest, a multi-criteria optimization problem has to be solved.
Due to reasons of comprehensibility, the notation used in this chapter differs from the conven-
tional notation of this thesis. For instance, n,m ∈ N are natural numbers, and x, y, and z are
dependent variables of functions F and G.

3.1 Nonlinear optimization

We have seen in Chapter 1, that almost all solution strategies for survey statistical models de-
sire the application of optimization techniques. Regarding this point, the development of the
optimal multivariate and multi-domain allocation methods (MMDopt) based on (2.49) and the ex-
tension of general calibration methods (GCAL) such as (2.39) require the solution of a restricted
nonlinear optimization problem. For this reason, we provide a short overview of the theoretical
background of common numerical solution strategies. A more detailed theoretical discussion
can be found in Horst (1979), Geiger and Kanzow (2002), Ruszczynski (2006), and Jahn (2007).

27
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Firstly, we will revise the elementary concept of continuity of a vector-valued function F given
by Walter (2002, pp. 41 ff.).

Definition 3.1.1 (Lipschitz-continuous).

1. A function F : Rn → Rm is called Lipschitz-continuous if there exists a constant L ≥ 0
such that

‖F (x1)− F (x2)‖2 ≤ L‖x1 − x2‖2 ∀x1, x2 ∈ Rn.

2. A function F : Rn → Rm is called locally Lipschitz-continuous if for every x ∈ Rn there
exists a neighborhood Ux of x such that F is Lipschitz-continuous in Ux.

Definition 3.1.2 (Positive homogeneity, linearity). A function F : Rn → Rm is called

1. positively homogeneous, if F (αx) = αF (x) for all x ∈ Rn and α ≥ 0.

2. linear, if F (x1 +x2) = F (x1) +F (x2) and F (αx1) = αF (x1) ∀x1, x2 ∈ Rn and α ∈ R.

Definition 3.1.2 implies that a linear function is also positively homogeneous. The other im-
plication does not hold. For example, the absolute value function f : R → R, x 7→ |x| is
positively homogeneous but is not linear, indeed. In the further course of the chapter, we de-
fine two different types of differentiability of a function F , each is characterized by one of the
two properties in Definition 3.1.2 (cf. Yamamuro, 1974, Section 1.2 and Werner, 2007, Section
3.5). The first type of differentiability will be the basis of convergence results of the classical
Newton method, while the second one enables the definition of a non-smooth Newton method
(see Section 3.2).

The most common type of differentiability is the Fréchet-differentiability, which is referred to
generally as differentiability. For simplicity, we characterize this property in Definition 3.1.3
based on Werner (2007, Lemma 3.5.2). For a general definition, we refer to Werner (2007,
Definition 3.5.1).

Definition 3.1.3 (Frechét-differentiability). Let Z ⊆ Rn an open set. A function
F : Z → Rm is called Fréchet-differentiable at x0 ∈ Z, if there exists a continuous linear
function A : Rn → Rm with

lim
‖h‖→0

F (x0 + h)− F (x0)− A(h)
‖h‖

= 0.

F is called Fréchet-differentiable if F is Fréchet-differentiable at each x0 ∈ Z.

Fréchet-differentiability of a function F is a most common assumption for numerical solvers.
If it does not hold in some applications, we then try to verify a weaker assumption of function
F based on another type of differentiability (see Section 3.2) that also allows for the application
of common numerical solvers. From this point onward, a Fréchet-differentiable function F is
simply called differentiable.

In the following definition, different types of convexity are defined for sets and real-valued
functions f : Rn → R in accordance to Boyd and Vandenberghe (2004, Sections 2.1.4, 3.1.1,
3.4.1) and Jahn (2007, Definition 4.15).
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Definition 3.1.4.

1. A set Z ⊆ Rn is a convex set, if for any x1, x2 ∈ Z and any α ∈ [0, 1]

αx1 + (1− α)x2 ∈ Z.

2. Let Z ⊆ Rn be a convex set. Then, the function f : Z → R is a convex function, if for
any x1, x2 ∈ Z and any α ∈ [0, 1]

f
(
αx1 + (1− α)x2

)
≤ αf(x1) + (1− α)f(x2).

If the inequality even holds with <, the function f is strictly convex.

3. Let Z ⊆ Rn be a convex set. Then, the function f : Z → R is called quasi-convex, if

Zα := {x ∈ Z : f(x) ≤ α}

is a convex set for all α ∈ R. Alternatively, f is also quasi-convex, if for any x1, x2 ∈ Z
and any α ∈ [0, 1]

f
(
αx1 + (1− α)x2

)
≤ max

(
f(x1), f(x2)

)
.

4. Let Z ⊆ Rn and let the directional derivatives of function f : Z → R exist in x∗ ∈ S in
every direction. Then, the function f is called pseudo-convex in x∗, if the implication

f ′
(
x∗;(x− x∗)

)
≥ 0 ⇒ f(x)− f(x∗) ≥ 0

holds for all x ∈ Z, where f ′
(
x∗;(x − x∗)

)
is the directional derivative of f in x∗ in

direction (x− x∗).

Jahn (2007, p. 94) shows that the properties quasi-convex and pseudo-convex are generally
weaker assumption than the classical convexity for differentiable functions.

Applying the previously defined properties, it is now possible to derive optimality conditions
for nonlinear optimization problems. Let the nonlinear optimization problem

min
x∈Rn

f(x)

s.t. hi(x) = 0 (i = 1, . . . , q2)
gj(x) ≤ 0 (j = 1, . . . , q3)

(3.1)

be given with (component-wise) twice continuously differentiable functions f : Rn → R,
h : Rn → Rq2 , and g : Rn → Rq3 .

Remark 3.1.5. Problem (3.1) is referred to as a convex optimization problem, if f and gj are
convex functions for all j = 1, . . . , q3, and hi are affine-linear functions for all i = 1, . . . , q2,
i.e. hi(x) := aTi x+ bi for some ai ∈ Rn and bi ∈ R. Due to Geiger and Kanzow (2002, Lemma
2.14), the feasible set

X :=
{
x ∈ Rn : hi(x) = 0 (i = 1, . . . , q2) and gj(x) ≤ 0 (j = 1, . . . , q3)

}
⊆ Rn. (3.2)

of problem (3.1) is convex in this case.
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The Lagrangian function of problem (3.1) is defined as

L(x, λ, β) := f(x) +
q2∑
i=1

λihi(x) +
q3∑
j=1

βjgj(x) (3.3)

with Lagrangian multipliers λ ∈ Rq2 and β ∈ Rq3 (cf. Geiger and Kanzow, 2002, p. 46 and pp.
241 ff.). The corresponding Karush-Kuhn-Tucker (KKT-) conditions are given by the following
nonlinear system of equations

∇xL(x, λ, β) = 0, (3.4)
hi(x) = 0 ∀i = 1, . . . , q2, (3.5)

gj(x) ≤ 0, βj ≥ 0, βjgj(x) = 0 ∀j = 1, . . . , q3. (3.6)

Depending on the properties of the objective function f and the constraint functions, the KKT-
conditions may be applied to formulate necessary and sufficient optimality conditions. In that
regard, the inequality conditions gj(x) ≤ 0 and βj ≥ 0 impede a direct solution of Equa-
tions (3.4) to (3.6) via standard techniques for nonlinear systems of equations. Alternatively,
Equation (3.6) can be equivalently rewritten by the nonlinear complementarity problem formu-
lation

ϕ
(
− gj(x), βj

)
= 0 ∀j = 1, . . . , q3, (3.7)

where ϕ : R2 → R is a NCP-function (i.e. ϕ(a,b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0;
cf. Geiger and Kanzow, 2002, p. 242). An example for a NCP-function is the minimum func-
tion ϕ(a,b) = min{a, b}, which is not differentiable like most of the NCP-functions. However,
the reformulation yields a nonlinear system equations (KKT-system)

∇xL(x, λ, β) = 0,
hi(x) = 0 ∀i = 1, . . . , q2,

ϕ
(
− gj(x), βj

)
= 0 ∀j = 1, . . . , q3

(3.8)

consisting of Equations (3.4), (3.5), and (3.7). This system depending on x ∈ Rn, λ ∈ Rq2 ,
and β ∈ Rq3 forms optimality conditions and can be solved by methods for solving non-smooth
nonlinear systems of equations. Beside the fulfillment of the KKT-system, the regularity of a
feasible point has to be verified by a constraint qualification condition. Common conditions
are the linear independence constraint qualification condition (LICQ, cf. Geiger and Kanzow,
2002, Definition 2.40), the Mangasarian-Fromlovitz constraint qualification condition (MFCQ,
cf. Ruszczynski, 2006, Lemma 3.17), and for a convex problem the Slater-condition (cf. Horst,
1979, Collorary 3). The fulfillment of the LICQ condition implies the fulfillment of the MFCQ
condition. For a convex problem (cf. Remark 3.1.5), the Slater-condition is often preferred.

Definition 3.1.6. Let x ∈ X be a feasible point of problem (3.1) and let

I(x) :=
{
j ∈ {1, . . . , q3} : gj(x) = 0

}
denotes the active set of problem (3.1) at x ∈ Rn. Then, the following constraint qualification
conditions are defined:
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1. LICQ holds at x ∈ X , if the gradients

∇gj(x) for all j ∈ I(x) and ∇hi(x) for all i = 1, . . . , q2

are linearly independent.

2. MFCQ holds at x ∈ X , if the gradients

∇hi(x) for all i = 1, . . . , q2

are linearly independent and there is a vector s ∈ Rn such that

∇gj(x)T s < 0 for all j ∈ I(x) and ∇hi(x)T s = 0 for all i = 1, . . . , q2.

3. Let the problem (3.1) be a convex optimization problem in the sense of Remark 3.1.5.
The Slater-condition holds for problem (3.1), if there is a vector x ∈ Rn with

gj(x) < 0 for all j = 1, . . . , q3 and hi(x) = 0 for all i = 1, . . . , q2.

Following this, we are able to formulate some necessary optimality conditions for problem
(3.1). Since the considered problems are exclusively convex problems, we limit ourselves to
this case.

Theorem 3.1.7 (Necessary and sufficient optimality conditions). Let the objective function
f : Rn → R and the constraint function g : Rn → Rq3 be twice continuously differentiable and
convex. Let h : Rn → Rq2 be twice continuously differentiable and affine-linear. Moreover,
let the Slater-condition be satisfied. Then, x∗ ∈ Rn is a global solution of problem (3.1) if and
only if there are Lagrangian multipliers λ∗ ∈ Rq2 and β∗ ∈ Rq3 which fulfill the KKT-system
(3.8) for x∗ ∈ Rn.

For the proof we refer to Geiger and Kanzow (2002, Theorems 2.45 and 2.46, and p. 245).

Jahn (2007, Lemma 2.14) proved that under the assumptions of Theorem 3.1.7, the set of opti-
mal solutions of (3.1) is a convex set. In addition, if the objective function f is strictly convex,
problem (3.1) has a unique optimal solution.

Algorithms to solve nonlinear optimization problems with constraints are widespread in the lit-
erature. An overview can be found in Geiger and Kanzow (2002), Bonnans et al. (2006), and
Lange (2013). Most of them attempt to somehow solve the KKT-system (3.8). One evident
method is the Lagrange-Newton method, where the KKT-system (3.8) is solved via a Newton
method (cf. Geiger and Kanzow, 2002, pp. 239 ff.). In the presence of inequality constraints, the
solver needs to be a non-smooth version of the Newton method due to the non-differentiability
of ϕ in (3.7). This issue is discussed in detail in Section 3.2. Moreover, sequential quadratic
programming (SQP) methods are common solvers for nonlinear optimization problems. Instead
of directly solving the KKT-system, quadratic subproblems are solved sequentially. After each
iteration, the solution and the Lagrangian multipliers is updated (cf. Geiger and Kanzow, 2002,
p. 244). Another class of solvers is based on penalization methods, where the constraint func-
tions are added additively as a penalization parameter to the objective function. One example
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is the augmented Lagrange method, in which unconstrained optimization problems (with the
constraints added as penalty term) are solved iteratively. After each iteration, an approximation
of the Lagrangian multipliers is updated (cf. Ruszczynski, 2006, pp. 196 ff.). Since the pre-
sented methods are mostly based on solving the KKT-system, e.g. with the Newton method, the
Hessian of the objective function plays a significant role. To reduce the computational burden,
the use of approximations instead of the Hessian is a popular choice. These algorithms are
generally known as quasi Newton methods. A common strategy is based on the BFGS-update
formulas (cf. Nocedal and Wright, 2006, Section 8.1). Moreover, trust region methods are
also applicable for nonlinear optimization problems; the iterative strategy of these algorithms
is based on small regions in which quadratic subproblems are solved to compute a correction
vector. This vector is utilized to update the solution in each iteration (see Qi and Sun, 1994).

Each of the mentioned algorithms has benefits and drawbacks, but all of them contain iterative
strategies whose dimension is at least of the dimension of the underlying optimization problem
(3.1). For example, the Lagrange-Newton method comprises the solution of a (n + q2 + q3)-
dimensional nonlinear system of equations. Moreover, the computational effort exponentially
increases in the dimension n of the problem. Due to the continuously increasing amount of
data, the numeric is faced with ever-growing problem dimensions. Aside from this, there are
also other reasons to develop innovative strategies to reduce the computational effort, such as
regarding variance or MSE estimation strategies. Since the structure of sampling designs and
point estimators are often quite complex, a variance estimation technique applying lineariza-
tions via Taylor approximations is not reasonable. Thus, resampling methods have to be applied
(cf. Särndal et al., 1992, p. 419) in which sub-samples are sequentially drawn from the sample
(see Section 5.4). As a consequence, a problem needs to be solved up to 10 000 times (see Sec-
tion 5.4), such that a reasonable computation time of one hour increases to 420 days (without
parallel computing).

Münnich et al. (2012b) and Münnich et al. (2012c) proposed an alternative approach to solve a
special case of optimization problems of the form (3.1) concerning specific objective functions
and specific structures of constraints (only affine-linear equality constraints and box-constraints,
which are treated different to the inequality constraints) respectively. The special cases corre-
spond to the optimal univariate allocation problem with box-constraints (2.49) and the gen-
eralized calibration methods of the form (2.39). The main advantage is the reduction of the
dimension of the underlying KKT-system from (n + q2 + q3) to (q2 + q3). Generally, since in
our applications q2 + q3 � n (with n being the number of strata, population, or sample size),
the reduction of the computational effort may be significant. Since the dimension of the alter-
native system is independent of n, the exponential increase of the running time depending on
the dimension of the optimization problem (3.1) is omitted. However, the non-differentiability
of the KKT-system remains.

Since the statistical applications are becoming more complicated within the past few years, the
main goals of this thesis are to extend the approach of Münnich et al. (2012b) and Münnich
et al. (2012c) to multivariate and more general problems and to develop a robust and efficient
numerical solver for these applications. The main difficulty of the presented approach is the
non-differentiability of the KKT-system. In analogy to the mentioned publications, we face this
with a semismooth version of the Newton method, as particularly discussed in Section 3.2.
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3.2 Semismooth Newton method

As discussed in Section 3.1, the reduction of the dimension of the KKT-system (3.8) may yield
to non-differentiability. Nevertheless, we wish to continue solving the reduced KKT-system
with a Newton type method, since it ensures (under some assumptions) locally quadratic and
superlinear convergence. The classical Newton method is an iterative solver for a nonlinear
system of equations F (x) = 0 with a continuously differentiable function F : Rn → Rn. In
each iteration k , a linear system

JF (xk)dk = −F (xk)

with the Jacobian JF (xk) of F in xk ∈ Rn is solved. Then, the next iterate is computed by

xk+1 = xk + dk.

As shown in Geiger and Kanzow (2002, Theorem 5.26), this method is superlinearly conver-
gent if both the initial value x0 ∈ Rn is close enough to the solution x∗ and JF (xk) is regu-
lar. If the Jacobian is also locally Lipschitz-continuous, the method converges with a locally
quadratic convergence rate to the optimal solution x∗. Due to the non-differentiability of the
KKT-system, we have to use a non-smooth version of the Newton method, which is referred
to as the semismooth Newton method suggested by Qi and Sun (1993) and Qi (1993). It has
similar convergence rates compared to the classical Newton method.

While the classical Newton method requires continuously (Fréchet-)differentiable functions
based on Definition 3.1.3, the semismooth Newton method suffices with a weaker assumption
based on the Bouligand-differentiability (B-differentiability) originally published in Robinson
(1987, p. 60 and Definition A.1). A more intuitive definition is given by Pang (1990).

Definition 3.2.1 (Bouligand-differentiability). Let Z ⊆ Rn be an open set. A function
F : Rn → Rm is called B-differentiable at x0 ∈ Z, if there exists a positively homogeneous
function A : Rn → Rm with

lim
‖h‖→0

F (x0 + h)− F (x0)− A(h)
‖h‖

= 0.

F is called B-differentiable, if F is B-differentiable at each x0 ∈ Z.

In comparing the Fréchet-differentiability (Definition 3.1.3) and the B-differentiability for func-
tions F : Z → Rm in an open set Z ⊆ Rn, the only difference is that the B-differentiability
requires positively homogeneous function A, whereas A has to be continuous and linear in the
case of Fréchet-differentiability. Thus, the following implication holds for F : Z → Rm:

F is Fréchet-differentiable at x0 ∈ Z ⇒ F is B-differentiable at x0 ∈ Z. (3.9)

Provided that F is locally Lipschitz-continuous at x0, Shapiro (1990) has shown that F is B-
differentiable at x0 if and only ifF is directionally differentiable at x0. According to Rademacher
(1919), a locally Lipschitz-continuous function is Fréchet-differentiable almost everywhere,
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i.e. the set of points in which a B-differentiable function is not Fréchet-differentiable has a
Lebesgue-measure of zero. Thus, many properties of Fréchet-differentiable functions can be
similarly extended to B-differentiable functions.

Since the classical Jacobian JF (x) is only defined if F is Fréchet-differentiable at x ∈ Z, we
have to define an equivalent to the Jacobian for B-differentiable functions. Qi (1993) proposed
to use the generalized Jacobian introduced by Clarke (1983, p. 70) and the one similarly denoted
in Ito and Kunisch (2009, Equations (1.8) and (1.9)).

Definition 3.2.2 (B-subdifferential, generalized Jacobian). Let F : Rn → Rm be locally
Lipschitz-continuous and ZF be the set of points at which F is Fréchet-differentiable. Then,
the set

∂BF (x0) :=
{
H ∈ Rm×n : ∃{xk}k∈N ⊂ ZF with xk → x0 and JF (xk)→ H

}
is called B-subdifferential of F at x0. Moreover, its convex hull

∂F (x0) := conv ∂BF (x0)

is called the generalized Jacobian of F at x0.

Both the B-subdifferential ∂BF (x) and the generalized Jacobian ∂F (x) have a cardinality of
one and are equivalent to the Jacobian JF (x) for all x ∈ Rn where F is Fréchet-differentiable.
The existence of a sequence {xk}k∈N ⊂ ZF is given by Rademacher (1919), since a local
Lipschitz-continuous function is Fréchet-differentiable almost everywhere.

Example 3.2.3. In this example, the difference between Fréchet- and Bouligand-differentiability
is illustrated based on four functions. The corresponding functions are plotted in Figure 3.1.

1. If a functionF : Rn → Rm is continuously Fréchet-differentiable, it is also B-differentiable
and

∂BF (x) = ∂F (x) = {JF (x)} ∀x ∈ Rn.

An example is F1 : R→ R, x 7→ (x− 1)2 + 1.

2. Let F2 : R→ R, x 7→ |x|.
F2 is not Fréchet-differentiable in x = 0, but B-differentiable.

∂BF2(x) = ∂F2(x) = {JF2(x)} ∀x ∈ Rn \ {0}
∂BF2(0) = {−1, 1}, ∂F2(0) = [−1, 1].

3. Let F3 : R→ R, x 7→
{

(x− 1)2 − 1 , if x ≤ 3
2

2x− 7
4 , if x > 3

2
.

F3 is not Fréchet-differentiable in x = 3
2 , but B-differentiable.

∂BF3(x) = ∂F3(x) = {JF3(x)} ∀x ∈ Rn \ {3/2}
∂BF3(3/2) = {1, 2}, ∂F3(3/2) = [1, 2].
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4. Let F4 : R→ R, x 7→
√
|x|.

F4 is not Fréchet- and B-differentiable in x = 0, since no directional derivative exists.

x1 2

F1(x)

1

2

3

0 x−1 0 1

F2(x)

0.5

1

1.5

0

x1 2

F3(x)

1

2

3

0 x−1 0 1

F4(x)

0.5

1

1.5

0

Figure 3.1: Examples for different types of differentiability. Functions F1, . . . , F4 are defined in Exam-
ple 3.2.3. The function is plotted in black, the generalized Jacobian in red and exemplary
elements of the B-subdifferential in blue.

In non-smooth Newton methods, the Jacobian JF (xk) is replaced by an element of the general-
ized Jacobian Hk ∈ ∂F (xk) or an element of the B-subdifferential Hk ∈ ∂BF (xk), depending
on the considered version. Nevertheless, convergence of such a non-smooth Newton method is
generally not given for B-differentiable functions. Therefore, we additionally have to assume
that the function F is semismooth, a property which was originally introduced by Mifflin (1977)
and was extended in Qi and Sun (1993).

Definition 3.2.4 (Semismoothness). Let Z ⊆ Rn and F : Z → Rm be a locally Lipschitz-
continuous function and B-differentiable in x0 ∈ Z. Then F is called

1. semismooth in x0 ∈ Z, if lim
rk→0,Hk∈∂F (x0+rk)

Hkrk − F ′(x0;rk)
‖rk‖

= 0,

2. strongly semismooth in x0 ∈ Z, if lim sup
rk→0,Hk∈∂F (x0+rk)

Hkrk − F ′(x0;rk)
‖rk‖2 <∞,

3. (strongly) semismooth on Z, if F is (strongly) semismooth in each x0 ∈ Z.

Since the definition of semismoothness is rather complicated than intuitive, Mifflin (1977), Qi
and Sun (1993), and Fischer (1997) have proved the following lemmata.
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Lemma 3.2.5 (Characterization of semismooth functions).

1. Let Z ⊆ Rn be an open set, x ∈ Z and F : Z → Rm Lipschitz-continuous.

• If F is continuously (Fréchet-)differentiable in x, then F is semismooth in x.

• If F is (Fréchet-)differentiable and JF locally Lipschitz-continuous in x, then F is
strongly semismooth in x.

2. Let Z ⊆ Rn be an open and convex set and let F : Z → Rm be a convex function. Then
F is semismooth on Z.

3. Le F : Rn → Rm be locally Lipschitz-continuous. Then F is semismooth in x, if each
component Fi of F is semismooth in x.

4. Scalar products as well as sums of semismooth functions are semismooth.

5. Let F : Rn → Rm be semismooth in x ∈ Rn and G : Rm → Rn be semismooth in
F (x) ∈ Rm. Then, the composition G ◦ F is semismooth in x.

For the proof of Lemma 3.2.5, we refer to Qi and Sun (1993) for Items 1 to 3, Mifflin (1977)
for Item 4, and Fischer (1997) for Item 5.

If semismoothness can be verified for a non-smooth function F , e.g. with Lemma 3.2.5, we
are now able to apply the semismooth Newton algorithm (SSN) published by Qi and Sun (1993)
to solve a nonlinear system of equations F (x) = 0 with F : Rn → Rn. The algorithm (with
a certain step-size rule) is presented in Algorithm 1. Here, we choose Hk as an element of
the B-subdifferential ∂BF (xk) as it is presented in Qi (1993). In the original version by Qi
and Sun (1993), Hk is forced to be an element of the generalized Jacobian ∂F (xk), which is
a significantly stronger assumption (cf. Example 3.2.3). Following Qi and Sun (1993), the
solvability increases if Hk is chosen from ∂BF (xk). Thus, we consider this version hereafter.
Moreover, if F is Fréchet-differentiable, Algorithm 1 is equivalent to the classical Newton
method, since ∂BF (xk) = {JF (xk)}. In Algorithm 1, a step-size strategy with step-size αk ≤ 1
can optionally be included. A detailed discussion about its benefits and its calculations is given
at the end of this subsection.

In general, the computation of the B-subdifferential ∂BF (xk) and the choice of a sensible ele-
ment Hk ∈ ∂BF (xk) is highly challenging. Thus, several alternative expressions of the semis-
mooth Newton methods have been proposed. Han et al. (1992) discussed an approach based
on B-differentiable functions which are additionally assumed to be directionally differentiable.
Hence, the generalized Newton equation

Hkdk = −F (xk) with Hk ∈ ∂BF (xk) (3.10)

may be replaced by
F ′(xk;dk) = −F (xk), (3.11)

where F ′(xk;dk) is the directional derivative of F in xk in direction dk. Han et al. (1992) proved
both local and global convergence under specific assumptions. However, it will be shown in the
following chapters, that the computation of a sensible element Hk ∈ ∂BF (xk) is not a decisive
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factor in the considered cases. In that regard, an application of the standard semismooth Newton
algorithm is sensible in the context of this thesis.

Algorithm 1 Semismooth Newton method with step-size rule (SSN)

Input: F : Rn → Rn locally Lipschitz-continuous, x0 ∈ Rn initial value, x0 ∈ U(x∗)
while ‖F (xk)‖ ≥ tol

choose Hk ∈ ∂BF (xk)
solve Hkdk = −F (xk)
[optional] compute step-size αk ∈ (0, 1], else αk = 1
xk+1 = xk + αkd

k

k ← k + 1
end while

Return: Solution x∗ ← xk

A convergence analysis of the semismooth Newton method is given in Pang (1990) and Qi and
Sun (1993), where a locally superlinear convergence rate is proved (for the case without the
step-size rule). In addition, a locally quadratic convergence rate is shown if the function F
is strongly semismooth. Thus, the convergence results resemble these of the classical New-
ton method, which is a very strong result. However, assuming that x∗ is the solution of the
semismooth Newton method, the assumption that all elements H ∈ ∂BF (x∗) have to be regu-
lar is essential throughout the convergence analysis of the semismooth Newton method. This
assumption may be challenging in real applications. Prior the convergence results, we need to
verify the regularity of all H ∈ ∂BF (x) for all x in a neighborhood of x∗.

Lemma 3.2.6. Let F : Rn → Rn be locally Lipschitz-continuous and B-differentiable in x∗

and let all H ∈ ∂BF (x∗) be regular. Then there exist ρ > 0 and a neighborhood Ux∗ of x∗, such
that the following conditions hold for any x ∈ Ux∗ and H ∈ ∂BF (x):

H is regular and ‖H−1‖ ≤ ρ.

For the proof of Lemma 3.2.6, we refer to Qi (1993).

In applying Lemma 3.2.6, the following two theorems give convergence results for the semis-
mooth Newton method.

Theorem 3.2.7 (Superlinear convergence). Let x∗ be the solution of F (x) = 0 and let
F : Rn → Rn be semismooth. Moreover let H ∈ ∂BF (x∗) be regular. Then, the semismooth
Newton method is well-defined and converges in a neighborhood U(x∗) of x∗ superlinearly to
x∗, i.e. there exists a sequence {ck}k∈N with ck → 0 and

‖xk+1 − x∗‖ ≤ ck‖xk − x∗‖ for all k = 0, 1, 2, . . . .

For the proof of Theorem 3.2.7, we refer to Qi (1993, Theorem 3.1).
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Theorem 3.2.8 (Quadratic convergence). Let x∗ be the solution of F (x) = 0 and let
F : Rn → Rn be strongly semismooth. Moreover let H ∈ ∂BF (x∗) be regular. Then,
the semismooth Newton method is well-defined and converges in a neighborhood U(x∗) of
x∗ quadratically to x∗, i.e. there exists a constant c > 0 with

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 for all k = 0, 1, 2, . . . .

Proof. Since F is locally Lipschitz-continuous and B-differentiable, Shapiro (1990) proved
the directional differentiability of F . Moreover, since F is strongly semismooth, the following
equation holds for x0 ∈ Rn due to Definition 3.2.4:

Hr − F ′(x0;r) = O(‖r‖2) ∀H ∈ ∂BF (x0 + r).

In this way, the proof is completed using Qi (1993, Lemma 2.3 and Theorem 3.1).

Aside from the local convergence results proved in Theorems 3.2.7 and 3.2.8, global conver-
gence results have also been published, and these basically rely on the usage of a step-size
strategy. Regarding this, a brief discussion is given in the following paragraph.

Step-size strategy

As mentioned before, the results in Theorems 3.2.7 and 3.2.8 holds without step-size rule. In
order to achieve global convergence, Pang (1990) proposes to include a step-size rule to ensure
stability and robustness. In this way, the assumption that the generalized Newton equation
in (3.10) has at least one solution at every iteration is essential (cf. Pang, 1990, Chapter 5). A
common choice of a step-size strategy is to choose a specific version of the Armijo step-size rule
primarily published by Armijo (1966). The step-size rule reduces the impact of the solution dk

of the generalized Newton equation in (3.10) on the update step, since a scalar factor αk ∈ (0, 1]
is included, e.g.

xk+1 = xk + αkd
k. (3.12)

In general, the step-size strategy increases the stability of the algorithm, but it also increases the
number of iterations and therefore the computational burden. One possible global convergence
result for semismooth Newton methods with step-size rule is presented in Qi and Sun (1993)
as an extension of the Newton-Kantorovich theorem (cf. Ortega, 1968). Another result was
proposed by Qi (1993), which is based on Pang (1990). We present the method proposed by Ito
and Kunisch (2009), where the step-size rule is separated into two parts based on calculations of
the squared norm of F , the merit function θ : Rn → R0+ , θ(x) = ‖F (x)‖2 (see Algorithm 2).
Firstly, if the normed step-size is low enough and the norm decrease within one iteration k is
high enough, the step-size is set to the maximum value of αk = 1. If this is not the case, the
step-size is reduced step by step, until Equation (3.13) is satisfied.

In comparison with Theorems 3.2.7 and 3.2.8, the global convergence results require several
additional assumptions.
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Theorem 3.2.9 (Global convergence). Let x∗ be the solution of F (x) = 0 and let F : Rn → Rn

be semismooth. Moreover, let H ∈ ∂BF (x∗) be regular and x∗ ∈ Rn. Assume that the
following assumptions hold:

1. The set Xsol :=
{
x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖

}
is bounded.

2. There exist σ̄ and b > 0 such that for each x ∈ Xsol there exists d ∈ Rn satisfying

θ′(x; d) ≤ σ̄θ(x) and ‖d‖ ≤ b‖F (x)‖.

3. The following implication holds:

xk → x̃ and dk → d̃ with xk ∈ Xsol ⇒ θ′(x̃; d̃) ≤ −σ̄θ(x̃).

Then the sequence {xk} generated by the SSN Algorithm 1 (inclusive step-size rule) is bounded.
It satisfies

‖F (xk+1)‖ < ‖F (xk)‖ ∀k ≥ 0,

and each accumulation point x∗ satisfies F (x∗) = 0. Moreover, the sequence {xk} converges
to x∗ superlinearly.

For the proof of Theorem 3.2.9, we refer to Ito and Kunisch (2009, Theorem 2.1) and (Pang,
1990, Theorem 4).

Algorithm 2 Armijo step-size rule (armijo)

Input: xk, dk ∈ Rn; θ : Rn → R0+ , x
k 7→ ‖F (xk)‖2; β, δ, σ̄ ∈ (0,1); σ ∈ (0,σ̄).

Ensure: θ′(xk; dk) ≤ −σ̄θ(xk)
if ‖dk‖ ≤ b‖F (xk)‖ and ‖F (xk + dk)‖ ≤ δ‖F (xk)‖

set αk = 1
else

choose smallest number mk ∈ N0 with

θ(xk + βmkdk)− θ(xk) ≤ −σβmkθ(xk) (3.13)

set αk = βmk

end if
Return: Solution αk

Finally, we can note that if we apply the step-size rule presented in Algorithm 2, the SSN method
in Algorithm 1 is globally convergent under some assumptions specified in Theorem 3.2.9.
Nevertheless, the assumptions are solely of a theoretical nature and their verification in real
application is generally impossible. Despite this, it is desirable to choose an initial value x0 as
near as possible to the solution x∗ to ensure better robustness and convergence rates. The effect
of the step-size strategy in the context of the optimal multivariate and multi-domain allocation
will also be discussed in the application study in Subsection 4.6.6.
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3.3 Multi-criteria optimization

A major part of this thesis is the development of a method to solve optimal multivariate and
multi-domain allocation problems. In contrast to optimal univariate allocation techniques as
given by Equation (2.49) in Section 2.5, these multivariate allocation techniques consider more
than one variable of interest. Since in optimal allocation the variance of the HT estimator
for the population total is minimized, the underlying optimization problem in (2.49) needs to
contain the minimization of more than one objective function. Thus, problem (2.49) passes
over to a multi-criteria (or vector) optimization problem with one equality constraint and box-
constraints. Due to the further extensions expained in Chapter 4, we consider various equality
and inequality constraints. While the mathematical theory of multi-objective optimization is
addressed in this section, both the development of the multivariate allocation method and the
survey statistical application are presented and analyzed in Chapter 4. Unless otherwise stated,
the following theory is based on Jahn (1986) and Ehrgott (2005), which are two main references
in the context of multi-criteria optimization.

The optimal multivariate allocation problem results in the multi-criteria optimization problem

min
x∈X

F (x) (3.14)

with the feasible set

X :=
{
x ∈ Rn : hi(x) = 0 (i = 1, . . . , q2) and gj(x) ≤ 0 (j = 1, . . . , q3)

}
⊆ Rn. (3.15)

and component-wise continuously differentiable functions

F : Rn → Rq1 , h : Rn → Rq2 and g : Rn → Rq3 . (3.16)

The components of F are denoted with Fi : Rn → R, i.e. F (x) =
(
F1(x), . . . , Fq1(x)

)
. Thus,

problem (3.14) consists of q1 objective functions, q2 equality constraints, and q3 inequality
constraints. The box-constraints of (2.49) are contained in function g. Moreover, the image of
X under F is denoted by

Y := F (X ) :=
{
y ∈ Rq1 : y = F (x) for x ∈ X

}
⊆ Rq1 . (3.17)

Since different interpretations for the operator minx∈X can be associated in multi-criteria opti-
mization, we have to characterize the definition of the type of optimality that we want to apply
for solving problem (3.14). In that regard, the type of optimality used is closely related to the
application-specific preferences. The required theoretical framework is presented hereafter.

3.3.1 Characterization of optimality

Since for q1 > 1 there is no canonical order on Rq1 as there is on R1, we have to define how
to compare the q1 objective functions F1(x), . . . , Fq1(x) for all x ∈ X in order to classify
the meaning of minx∈X in multi-criteria optimization. To do this, we use the classification
of Ehrgott (2005, p. 17), according to which a multi-criteria optimization problem is fully
characterized by the following properties:
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(P1) the feasible set X ⊆ Rn

(P2) the objective function F (x) =
(
F1(x), . . . , Fq1(x)

)
(P3) the objective space Rq1

(P4) a model map φ : Rq1 → Rν with ν ∈ N

(P5) an ordered space (Rν ,�).

The properties (P1) to (P3) are clearly given in advance in the considered optimal multivariate
allocation framework. The feasible set (P1) is defined with the aid of the restrictions considered
in the problem, e.g. the equality constraint and box-constraints of problem (2.49). The objective
functions (P2) are given by the q1 variance functions Var(τ̂ StrRS,HT

yi
) (i = 1, . . . , q1) defined in

(2.50). Their image space yields the objective space (P3). Thus, we have to pay heed to (P4)
and (P5). The determination of both the model map φ and the ordered space (Rν ,�) fully
characterizes the concept of optimality applied for the solution of multi-criteria optimization
problems. Thus, the choice of the scalarization technique for the optimal multivariate allocation
problem (see Subsection 4.2.3) is accompanied by the determination of a suitable model map
and an ordered space (Rν ,�).

Initially, we will have a closer look at the model map φ. The function maps the value of the
objective function vector F (x) ∈ Rq1 to the space Rν in which the comparisons for the deter-
mination of the minimum are made. In this thesis, we consider three cases of φ given by

• the identity map φid : Rq1 → Rq1 , F (x) 7→ F (x),

• the p-norm φnorm : Rq1 → R0+ , F (x) 7→
( q1∑
i=1
|Fi(x)|p

) 1
p

, and

• the maximum φmax : Rq1 → R0+ , F (x) 7→ max
i=1,...,q1

Fi(x).

As we will see in Subsection 4.2.3, these three cases are strongly related to the choice of a
scalarization technique for the optimal multivariate allocation problem.

Subsequent to the choice of φ, the ordered space (Rν ,�) has to be determined, i.e. a partial
ordering relation � has to be chosen. Their formal definition requires the knowledge or some
theory of geometric structures for the Euclidean space Rν (cf. Jahn, 1986, Definition 1.1),
which are presented in the following paragraphs.

Definition 3.3.1.

1. Each subset R 6= ∅ of the product space Rν ×Rν is called binary relation R on Rν .

2. Let C 6= ∅ be a subset of theRν . The set C is called a cone, if x ∈ C, λ ≥ 0 ⇒ λx ∈ C.
A cone C is pointed, if C ∩ (−C) = {0Rν}, where 0Rν := (0, . . . , 0)T ∈ Rν .

The most trivial cone on the Rν is the component-wise positive cone

CRν :=
{
x ∈ Rν : xi ≥ 0 ∀i = 1, . . . , ν

}
= Rν

0+ . (3.18)
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We can easily show that the cone CRν defined in (3.18) is pointed, convex, and has the property
of 0Rν ∈ C. Thus, we are able to define a partial ordering relation on Rν (cf. Jahn, 1986,
Definition 1.16).

Definition 3.3.2. Each relation � on Rν is called a partial ordering relation on Rν , if the
following implications hold for z1, z2, z3, z4 ∈ Rν :

1. z1 � z1 (reflexive),

2. z1 � z2, z2 � z3 ⇒ z1 � z3 (transitive),

3. z1 � z2, z3 � z4 ⇒ z1 + z3 � z2 + z4 (additive), and

4. z1 � z2, α > 0 ⇒ αz1 � αz2 (scalar multiplicative).

To illustrate Definition 3.3.2, some examples are given in Example 3.3.3.

Example 3.3.3. This example shows four relations on Rν , one of which is a partial ordering
relation and three of which are no partial ordering relations.

1. Component-wise order z1 ≤c z2 :⇔ z1i ≤ z2i for all i = 1, . . . , ν
≤c is a partial ordering relation on Rν . For ν = 1, it is equal to the standard ≤ (lower or
equal) relation.

2. Strict component-wise order z1 <c z2 :⇔ z1i < z2i for i = 1, . . . , ν
<c is no partial ordering relation on Rν , as it is not reflexive, e.g. 26<c2.

3. p-norm relation z1 ≤p z2 :⇔ ‖z1‖p ≤ ‖z2‖p
≤p is no partial ordering relation, since it is not additive. Let ν = 2:

(1.1, 1.1) ≤p (2, 0) and (1.1, 1.1) ≤p (0, 2), but (2.1, 2.1) �p (2, 2).

4. max-relation z1 ≤max z2 :⇔ max
i=1,...,ν

z1i ≤ max
i=1,...,ν

z2i

≤max is no partial ordering relation, since it is not additive. Let ν = 2:

(4, 4) ≤max (1, 5) and (3, 3) ≤max (5, 1), but (7, 7) �max (6, 6).

Nevertheless, the p-norm relation and the max-relation are partial ordering relations on R1.

The fact that the p-norm relation and the max-relation are not partial ordering relations on
the Rν affects the interpretation of the scalarization technique in Chapter 4. In particular, the
characterization of optimality for problem (3.14) is not possible with the model map φ ≡ id in
combination with the p-norm relation or the max-relation. Thus, we will have to choose another
model map φ for these cases to avoid this inconsistency.

The following theorem states some important properties of partial ordering relations on Rν .
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Theorem 3.3.4.

1. If � is a partial ordering relation on Rν , then the set CRν = Rν
0+ defined in (3.18) is a

convex cone. If, in addition, � is antisymmetric, i.e. (z1 � z2, z2 � z1 ⇒ z1 = z2)
holds for z1, z2 ∈ Rν , the convex cone CRν is pointed.

2. If C is a convex cone in Rν and z1, z2 ∈ Rν , then the relation z1 � z2 :⇔ z2 − z1 ∈ C
is a partial ordering relation on Rν . If, in addition, C is pointed, then � is antisymmetric.

A convex cone characterizing a partial ordering in Rν is called an ordering cone. For the proof
of Theorem 3.3.4, we refer to Jahn (1986, Theorem 1.18).

Finally, we are able to characterize the ordered space (Rν ,�).

Definition 3.3.5. The Euclidean space Rν equipped with a partial ordering relation � and an
ordering cone C is called a partially ordered linear space or simply ordered space (Rν ,�).

Since we have linked the Euclidean space Rν with a partial ordering relation �, we are able
to define minimal (or maximal) elements of a subset of this space concerning the underlying
partial ordering relation in analogy to Jahn (1986, Definitions 4.1, 4.8, and 4.12).

Definition 3.3.6. Let Z be a non-empty subset of Rν with an ordering cone C. Then:

1. An element z∗ ∈ Z is called a minimal element of Z, if(
{z∗} − C

)
∩ Z ⊆ {z∗}+ C.

If C is pointed, the equation can be replaced by
(
{z∗} − C

)
∩ Z = {z∗}.

2. An element z∗ ∈ Z is called a strongly minimal element of Z, if

Z ⊆ {z∗}+ C.

3. An element z∗ ∈ Z is called a weakly minimal element of Z, if(
{z∗} − cor(C)

)
∩ Z = ∅,

where cor(C) is the algebraic interior of C.

Based on the defined structures, the multi-criteria optimization problem (3.14) can be fully
characterized with (P1) to (P5). Since the first three items, i.e. the feasible set X , the objective
function F , and the objective space Rq1 arise out of the problem formulation, the decision-
maker has to choose a suitable model map φ : Rq1 → Rν and an ordered space (Rν ,�) with
a partial ordering relation �. We denote this classification of the multi-criteria optimization
problem (3.14) by

(X , F,Rq1)/φ/(Rν ,�). (3.19)

Using the characterization defined in (3.19), we are now able to interpret the minimal solution
x∗ ∈ X of problem (3.14) as the inverse image of the minimal element F (x∗) of the (from φ
dependent) image space φ(Y) = φ(F (X )), as defined in Definition 3.3.6.
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Definition 3.3.7. Let the multi-criteria optimization problem (3.14) be given of class
(X , F,Rq1)/φ/(Rν ,�) with the feasible set X (see (3.15)) and functions (3.16). Let the model
map φ : Rq1 → Rν be given with the ordered space (Rν ,�) and an ordering cone CRν . Then:

1. An element x∗ ∈ X is called a minimal solution of problem (3.14), if φ(F (x∗)) is a
minimal element of the image set φ(Y) = φ(F (X )).

2. An element x∗ ∈ X is called a weakly minimal solution of problem (3.14), if φ(F (x∗)) is
a weakly minimal element of the image set φ(Y) = φ(f(X )).

As a consequence of Definition 3.3.7, the set of minimal solutions of the multi-criteria optimiza-
tion problem (3.14) depends on the choice of the model map φ and the partial ordering relation
�, which represent the choice of the scalarization technique for the optimal multivariate allo-
cation problem in Chapter 4. The choice is limited, as � has to be a partial ordering relation.
Hence, we are not allowed to choose a p-norm or max-relation in combination with φ ≡ id
(see Example 3.3.3). However, as the p-norm and the max-relation are common scalarization
techniques for multivariate allocation problems (see Subsection 4.2.3), it is highly necessary to
consider these in the developments in Chapter 4. Thus, we choose different model maps φ in or-
der to incorporate these scalarization techniques. To conclude, the following characterizations
of optimality are considered in Chapter 4:

(EF) class of efficient solution (X , f,Rq1)/id/(Rq1 ,≤c),

(norm) class of p-norm optimization (X , f,Rq1)/φnorm/(R1,≤), and

(max) class of min-max optimization (X , f,Rq1)/φmax/(R1,≤).

As we will see in Subsection 3.3.2, the class of efficient solutions (EF) coincides with the theory
of efficient solutions or Pareto optimal solutions. Since the considered ordered space is of di-
mension q1 for this class, the resulting problem is still a multi-criteria problem. The existence of
a solution is shown in Subsection 3.3.3 and optimality conditions are given in Subsection 3.3.4.
Thereafter, we prove in Subsection 3.3.5 that it is sufficient to solve a weighted sum scalarized
problem for all combinations of weights to achieve the whole set of optimal solutions. The
problems of the classes of p-norm optimization (norm) and min-max optimization (max) are
real-valued problems, since the image space is a subset of R1. Thus, the theory of nonlinear
optimization presented in Section 3.1 can be applied. We note that the objective function of
the problem class (max) is not differentiable, so that certain theory of non-smooth optimization
has to be applied (cf. Geiger and Kanzow, 2002, Chapter 6). To omit this in Chapter 4, we
only compute approximate solutions of class (max) by choosing a high p for the corresponding
problem of class (norm). Several tests have shown that the approximations are precise enough
for almost all survey statistical applications.

In Section 4.4, we utilize a connection between the class (EF) and the class (norm) to solve
problems of class (norm) in an appropriate time. The strategy takes advantage of the fact that in
the setting of Chapter 4 the optimal solution of a problem of class (norm) is an element of the
set of optimal solutions of the problem of class (EF). This is exploited to restrict the feasible set
of the problem of class (norm) to the set of optimal solutions of the corresponding problem of
class (EF).
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3.3.2 Efficient solutions and Pareto optimality

In this subsection, we consider the special class (EF) of problem (3.14) given by

(X , f,Rq1)/id/(Rq1 ,≤c) (3.20)

as defined in Subsection 3.3.1, i.e. we choose the component-wise partial ordering relation
presented in Example 3.3.3, which bridges the gap between general optimal solutions of (3.14)
and the theory of efficient solutions or Pareto optimality, well-known from the microeconomic
theory (cf. Varian, 2010, pp. 15 ff.). Since φ = id and therefore ν = q1, the consideration of the
model map can be ignored hereafter. Accordingly, the definition of Pareto optimality is given
in the following definition.

Definition 3.3.8. Let the multi-criteria optimization problem (3.14) be given of class (3.20) with
the feasible set (3.15) and functions (3.16). Then x∗ ∈ X is Pareto optimal (or Pareto-efficient),
if and only if there is no x ∈ X with

Fi(x) ≤ Fi(x∗) ∀i = 1, . . . , q1 and Fj(x) < Fj(x∗) for at least one j ∈ {1, . . . , q1} .

The image set YOPT := {F (x∗) : x∗ is Pareto optimal for (3.14)} ⊆ Rq1 of all Pareto optimal
solutions is called Pareto frontier.

By means of the geometric structures presented in Subsection 3.3.1, we are now able to prove
the equivalence of general minimal solutions of multi-criteria optimization in Definition 3.3.7
and of the Pareto optimal solutions in Definition 3.3.8 for class (3.20).

Theorem 3.3.9. Let the multi-criteria optimization problem (3.14) be given of class (3.20).
Then, x∗ ∈ X is an optimal solution of (3.14), if and only if x∗ is Pareto optimal for (3.14).

Proof. Using Definition 3.3.7, x∗ is an optimal solution of problem (3.14), if and only if F (x∗)
is a minimal element of the image space F (X ). Moreover, the core CRq1 = R

q1
0+ is pointed.

Thus, it is sufficient with Definition 3.3.6 to verify the following equivalence:(
{F (x∗)} − CRq1

)
∩ F (X ) =

{
F (x∗)

}
⇔ x∗ is a Pareto optimal solution.

Let x∗ ∈ X be a minimal solution of problem (3.14), then(
{F (x∗)} − CRq1

)
∩ F (X ) =

{
F (x∗)

}
,

which is equivalent to(
{F (x∗)} − CRq1

)
∩
{
F (x) : x ∈ X

}
=
{
F (x∗)

}
.

Then, a shift of −F (x∗) yields

−CRq1 ∩
{
F (x)− F (x∗) : x ∈ X

}
=
{

0Rq1

}
.

This equality holds if and only if x∗ is Pareto optimal as defined in Definition 3.3.8, which
completes the proof.

In Theorem 3.3.9, we have shown that the set of all optimal solutions of a multi-criteria opti-
mization problem (3.14) of class (3.20) is equal to the set of all Pareto optimal solutions.
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3.3.3 Existence of solutions

In this subsection, assumptions which guarantee the existence of at least one Pareto optimal
solution for problem (3.14) of class (3.20) are presented. In this way, the property compactness
of subsets of the Euclidean space plays a significant role (for the general definition, see Jahn,
1986, Definition 1.29). In general, a closed and bounded subset of the Euclidean space is
referred to as a compact set.

Theorem 3.3.10 (Existence of minimal element). Let Z be a non-empty subset of Rq1 with
CRq1 = R

q1
0+ . Then, there exists at least one minimal element of the set Z, if Z has a compact

section, i.e there is a z ∈ Z for which SZ := ({z} − C) ∩ Z is non-empty and compact.

Proof. Special case of Jahn (1986, Theorem 6.3) with the partially ordered topological linear
space Rq1 . CRq1 is a closed set as a closed subset of the closed set Rq1 .

In order to simplify the verification of Theorem 3.3.10 for the multi-criteria optimization prob-
lem, we deploy the following lemma.

Lemma 3.3.11 (Existence of Pareto optimal solution). Let the multi-criteria optimization prob-
lem (3.14) be given of class (3.20). Moreover, let X 6= ∅ be closed and bounded. Then there
exists at least one Pareto optimal solution of (3.20).

Proof. Since X 6= ∅ and F is a continuous function, it follows that F (X ) 6= ∅. Moreover, let
F (x) ∈ F (X ) for x ∈ X . Then, the section

SF (X ) := ({F (x)} − CRq1 ) ∩ F (X )

is a non-empty set, as 0Rq1 ∈ CRq1 . Moreover, the ordering cone CRq1 = R
q1
0+ is a closed set as

a closed subset of the closed set Rq1 . Therefore,

{F (x)} −Rq1
0+

is also a closed set. Since X is a closed set by assumption, its image F (X ) under a continuous
function F is a closed set as well. Furthermore, F (X ) is bounded because F is continuous and
X is closed and bounded. Consequently X is compact, and the image spaces of continuous
function with a compact feasible set are bounded. This implies that the non-empty section

SF (X ) = ({F (x)} −Rq1
0+) ∩ F (X )

is a closed and bounded set, and therefore it is a compact set. The existence of at least one
Pareto optimal solution of (3.20) follows by Theorem 3.3.10.

In applying Lemma 3.3.11, we are now able to prove the existence of a Pareto optimal solution
of problem (3.14) of class (3.20), if the objective function is continuous and the feasible set is
closed and bounded.
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3.3.4 Optimality conditions

Since we can verify the existence of a Pareto optimal solution for problem (3.14) of class (3.20)
by Lemma 3.3.11, we now present optimality conditions applying a Lagrangian approach in
analogy to the KKT-conditions for the classical (single-objective) optimization presented in
Section 3.1. The following theorem represents necessary optimality conditions for the multi-
criteria optimization problem in (3.14).

Theorem 3.3.12 (Necessary optimality condition). Let the optimization problem (3.14) be
given of class (3.20) with the feasible set X (see (3.15)) and functions defined in (3.16). More-
over, let x∗ ∈ X be a weakly minimal solution of problem minx∈X F (x). Let F and g have par-
tial derivatives at x∗, and let h be continuously partially differentiable at x∗. Let the MFCQ con-
dition (cf. Definition 3.1.6) hold in x∗ ∈ X . Then, there exists multipliers λi ≥ 0 (i = 1, . . . , q1;
with λi > 0 for at least one i), µj ≥ 0 (j ∈ I(x∗)) and η ∈ Rq2 with

q1∑
i=1

λi∇Fi(x∗) +
∑

j∈I(x∗)
µj∇gj(x∗) +

q2∑
l=1

ηl∇hl(x∗) = 0Rn . (3.21)

For the proof of Theorem 3.3.12, we refer to Jahn (1986, Theorem 7.8).

As it is the case in single-criteria optimization, the convexity assumptions are necessary for
the formulation of sufficient optimality conditions (see Theorem 3.1.7) in multi-objective op-
timization. The convexity (quasi- or pseudo-convexity) of real-valued functions is defined in
Definition 3.1.4. Regarding this, we can formulate sufficient optimality conditions for (3.14).

Theorem 3.3.13 (Sufficient optimality condition). Let the optimization problem (3.14) be given
of class (3.20) with the feasible set X (see (3.15)) and functions defined in (3.16). Let x∗ be
given, and assume that F , g, and h have partial derivatives at x∗. Let the functions F1, . . . , Fq1

be pseudo-convex at x∗, and let the functions hl, −hl (l = 1, . . . , q2) and gj (j ∈ I(x∗)) be
quasi-convex at x∗. If there exists Lagrangian multipliers λi ≥ 0 (i = 1, . . . , q1; with λi > 0 for
at least one i), µj ≥ 0 (j ∈ I(x∗)) and η ∈ Rq2 with

q1∑
i=1

λi∇Fi(x∗) +
∑

j∈I(x∗)
µj∇gj(x∗) +

q2∑
l=1

ηl∇hl(x∗) = 0Rn , (3.22)

then x∗ is a weakly minimal solution of problem minx∈X F (x) of class (3.20).

For the proof of Theorem 3.3.13, we refer to Jahn (1986, Corollary 7.24).

3.3.5 Pareto optimization and weighted sum scalarization

In order to numerically solve multi-criteria optimization problems of the form (3.14) of class
(3.20), we have to scalarize the q1 objective functions to obtain a real-valued objective function.
After this, the numerical solver can be applied to the resulting single objective optimization
problem. With regard to the class (3.20), we focus on the weighted sum scalarization which
contains the property that we are able to derive results from the relationships between Pareto
optimal solutions of the multi-objective problem (3.14) and the scalarized problem.
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Definition 3.3.14. Let
min
x∈X

F (x) (3.23)

be the multi-criteria optimization problem with component-wise continuously differentiable
objective function F : Rn → Rq1 and non-empty feasible set X ⊆ Rn. Then, the single-
objective optimization problem

min
x∈X

q1∑
i=1

wiFi(x) (3.24)

with weights w = (w1, . . . , wq1)T ∈ Rq1 is called weighted sum optimization problem.

Although problem (3.24) can be solved numerically (which is not possible with problem (3.23)),
it is in general not possible to find all Pareto optimal points for a multi-criteria optimization
problems by solving the weighted sum problem (3.24). While the sufficient condition of Theo-
rem 3.3.15 holds in a very general setting, see for example Folks and Antle (1965), this is not
true for the necessary condition of Theorem 3.3.17.

Theorem 3.3.15 (Sufficient Condition). Let X ⊆ Rn and let Fi : X → R, i = 1, . . . , q1. For
every optimal solution x∗ of (3.24) with weights w ∈ Rq1 , the following statements hold:

1. x∗ is a weakly Pareto optimal solution for problem (3.23) if w ≥ 0.

2. x∗ is a Pareto optimal solution for problem (3.23) if w > 0.

For the proof of Theorem 3.3.15, we refer to Ehrgott (2005, Proposition 3.9).

In the following, we show that under convexity assumptions it is possible to find all Pareto
optimal points by solving a weighted sum problem.

Lemma 3.3.16. Let X ⊆ Rn be convex, and let Fi : X → R, i = 1, . . . , q1, be convex
functions. Then the set C+(F ) :=

{
(F1(x), . . . , Fq1(x))T |x ∈ X

}
+R

q1
0+ is convex.

For the proof of Lemma 3.3.16, we refer to Jahn (1986, Theorem 2.6).

Theorem 3.3.17 (Necessary Condition). Let X ⊆ Rn be convex, and let Fi : X → R for
i = 1, . . . , q1 be convex functions. Then, for each Pareto optimal solution x∗ of the problem
(3.23), there exist weights w ∈ Rq1

0+ \{0Rq1} such that x∗ is an optimal solution of the weighted
sum problem (3.24).

Proof. Using the convexity of the objective function, Lemma 3.3.16 shows that the set C+(F )
mentioned in the lemma is convex. Using this property, the result follows directly from Jahn
(1986, Theorem 5.4).

We conclude that if the convexity assumption of Theorem 3.3.17 holds for the multi-criteria
optimization problem (3.23) of class (3.20), we can apply the theorem to prove that the solutions
of the single-objective optimization problem (3.24) for all combinations of weights describe the
entire Pareto frontier of the multi-criteria optimization problem (3.23). Although it should be
noted that the accuracy of the Pareto frontier is determined by the discretization of the weights.
This strategy is applied to the optimal multivariate and multi-domain allocation problem in
Chapter 4.



Chapter 4
Optimal Multivariate and Multi-domain
Allocation

4.1 Motivation and issues

The aim of modern surveys is to provide accurate information for several variables of interest,
simultaneously. In light of urban audits or regional policies, these figures need to be made
available not only for the population itself, but also for certain areas and strata. This results in
a stratified sampling design (see Section 2.3) with several stratification levels defined by both
region and content, which possibly yields a vast number of cross-classification strata.

With regard to the number of variables of interest and the required estimations on several strat-
ification levels, the allocation of a fixed sample size ns ∈ N (see Section 2.5) to these strata
is challenging for a number of reasons. Due to a limited total sample size and several possi-
bly conflicting goals, we also need to make decisions regarding the priorities while also trying
concurrently to achieve the optimum of combining all the requirements. With this notion, the
development of an optimal allocation method, which considers both various possibly comple-
mentary or conflicting variables of interest (multivariate) as well as multiple, regional, and
context-specific stratification levels (multi-domain), is the major research question of this chap-
ter. Consequently, such a problem is denoted as optimal multivariate and multi-domain alloca-
tion (MMDopt). The stratified random sampling design provides an adequate basis that allows the
integration of further optimization techniques while practical settings with various constraints
might be considered.

In accordance with the notation presented in Section 2.1, we assume a finite population U of
size N with disjoint cross-classification strata h = 1, . . . , H . For q1 variables of interest yi
(i = 1, . . . , q1), the population totals are denoted by τyi . In StrRS, the unbiased HT estimator
τ̂ StrRS
yi

for the total of variable yi is given by Equation (2.16). Its variance can be calculated
by Equation (2.17). As optimal allocation is based on the minimization of variances of HT
estimators, external auxiliary data is required for the formulation of the objective functions,
which is requested to be highly correlated with the variables of interest. In practice, this data
may be provided by other survey, registers, or adequate proxies. In this thesis, we tacitly assume
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that this information is either available in the form of adequate proxies for the stratum-specific
variances S2

ih (i = 1, . . . , q1 and h = 1, . . . , H) or can be computed using the auxiliary data.
A further investigation of proxy quality and its implications in real applications is discussed
in the application study in Section 4.6, whereas the theoretical analysis of this topic based on
robustness and sensitivity is beyond the scope of this thesis. However, it should be be mentioned
that we assume the strata to be fixed before the sampling process. Thus, we exclude optimal
stratification strategies, such as the cum

√
f rule suggested by Dalenius and Hodges (1959) and

the equal aggregate σ rule proposed by Wright (1983).

As starting points for MMDopt, we employ the optimal allocation of Tschuprow (1923) and Ney-
man (1934) in Equation (2.48) as well as the box-constrained optimal allocation of Gabler et al.
(2012) and Münnich et al. (2012c) in Equation (2.49). Box-constraints for the stratum-specific
sample sizes are vital for the consistency of our model. Upper constraints Mh ≤ Nh need to
be introduced to avoid overallocation in strata where nh exceeds Nh. A further reduction of
Mh allows for the control of sampling fractions, for example avoiding highly different response
burdens in various strata or areas. In addition,Mh prevents a stratum-specific full census, which
in general may be undesirable in several applications. A full census in some strata is worthy
of discussion particularly in the context of business surveys, as the response burden should not
be too much different for all companies (see also the judgment of the German Federal Admin-
istrative Court; BVerwG, 03/15/2017, 8 C 6.16). As zero sample sizes in single strata lead to
biased estimates and the variance computations of the total estimates require stratum-specific
sample sizes of at least two units, a lower constraint mh ≥ 2 is applied. Altogether, the optimal
univariate allocation problem under box-constraints defined in (2.49) is given by

min
n∈RH+

Var(τ̂ StrRS
y )

s.t.
H∑
h=1

nh = ns

2 ≤ mh ≤ nh ≤Mh ≤ Nh ∀h = 1, . . . , H

(4.1)

for variable y. In the multivariate generalization of the optimal allocation problem (4.1), q1 vari-
ances Var(τ̂ StrRS

y1 ), . . . ,Var(τ̂ StrRS
yq1

) of the total estimates of variables y1, . . . , yq1 are considered
simultaneously. This results in a multi-criteria optimization problem with q1 objectives

min
n∈RH+

(
Var(τ̂ StrRS

y1 ), . . . ,Var(τ̂ StrRS
yq1

)
)

s.t.
H∑
h=1

nh = ns

2 ≤ mh ≤ nh ≤Mh ≤ Nh ∀h = 1, . . . , H.

(4.2)

Trivially, this problem is also valid for a multi-domain allocation, since the H strata correspond
to the cross-classifications of all stratification levels (see Figure 2.1 for an example).

Optimal multivariate allocation problems have been widely discussed in literature over the past
few decades, starting in the 1950s. Dalenius (1953) discussed this problem in detail and distin-
guished two solution strategies. In the first approach, one or more of the variances Var(τ̂ StrRS

yi
),
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i = 1, . . . , q1, are bounded from above and treated as constraints of an optimization problem, in
which the total sample size (or the cost of the survey) is minimized. This leads to a univariate
allocation problem with nonlinear constraints. In the second strategy, the variances are min-
imized simultaneously subject to linear size (or cost) constraints. This perspective leads to a
multi-objective optimization problem with conflicting objectives, which requires an appropriate
mathematical theory. In particular, an adequate notion of optimality, such as Pareto optimality,
is essential. Moreover, the problem has to be transformed into a form that is solvable by op-
timization algorithms. Most of the literature dealing with multivariate allocation covers either
one of these two formulations.

The first variant was used by Chatterjee (1968), Chatterjee (1972), and Huddleston et al. (1970).
Optimal multivariate allocation problems were addressed in the same way in Kokan (1963) and
supplemented by existence and uniqueness results in Kokan and Khan (1967). In introducing
overhead costs, Ahsan and Khan (1982) discussed the problem with variance constraints for
a more general objective function. More recently, Bankier (1988), Hohnhold (2009b), and
Hohnhold (2009a) have published allocation techniques with more than one stratification level.
These techniques are based on a compensation of the accuracy of total estimates on regional and
population level and also belong to the first class of methods. Falorsi and Righi (2015) presented
a generalized framework for defining the optimal inclusion probabilities in multivariate and
multi-domain surveys. Falorsi and Righi (2008) and Falorsi and Righi (2016) introduced a
solution method using a balanced sampling design. By combining aspects from both strategies,
Kish (1976) proposed to link aspects of variance and cost minimization in a nonlinear model
with the help of loss functions.

In the second solution strategy introduced by Dalenius (1953), the optimal multivariate alloca-
tion is treated in Folks and Antle (1965) as a multi-objective optimization problem with linear
constraints. They discussed the mathematical theory of scalarization and the relationship be-
tween the multi-objective problem and the scalarized problem. Moreover, they proved a suffi-
ciency result for the set of efficient (or Pareto optimal) solutions for the simple problem without
box-constraints. Díaz-García and Ramos-Quiroga (2014) solved the multivariate allocation as
a multi-objective problem as well, but with the help of stochastic programming instead. Khan
et al. (2012) also used stochastic programming on a further model. Both methods lead to nonlin-
ear integer optimization problems, which are hard to solve even for small instances. Khan et al.
(2003) solved multivariate allocation problems by exploiting the separability of the objective
function and by applying dynamic programming. While dynamic programming is a classical
solution method for allocation problems (Arthanari and Dodge, 1981, Chapter 5), it is not very
efficient in practice, as shown in the computational study of Bretthauer et al. (1999).

Since the aim of the developed method is to minimize the variances of the population totals
of the variables of interest simultaneously, the structure of the method is based on the second
strategy of Dalenius (1953), in which the problem is treated as a multi-objective optimization
problem. A main drawback of classical optimal allocation is the neglection of the accuracy of
stratum- or area-specific estimates. However, official statistics request a method combining an
optimal allocation and a well-balanced allocation between different variables of interest and
especially on different stratification levels. Falorsi and Righi (2008) dealt with this approach
only by minimizing the costs instead of variances (first strategy of Dalenius, 1953). Thus, we
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may also consider a compensation of the accuracy of total estimates at stratum- or area-level
and population level by bounding the variances (or standardized variances) of the stratum- or
area-specific estimates on the one hand, and by using compensated objective functions on the
other hand. The variances of the stratum-specific estimates τ̂ StrRS

yih
for variable of interest yi can

be controlled by the lower bounds mh (h = 1, . . . , H), since the sampling design is defined by
the strata. However, area-specific estimates τ̂ StrRS

yilr
for areas lr in stratification level r = 1, . . . , R

require the consideration of additional nonlinear inequality constraints for problem (4.2), since
areas are defined as unions of strata (see Section 2.3), i.e. each individual area also contains a
StrRS design. These constraints allow the users to define and include upper bounds for vari-
ances or standard errors for various areas lr and variables of interest yi, which are denoted by
Vmax(i,r,lr) ∈ R+. The constraints are given by

Var(τ̂ StrRS
yilr

) ≤ Vmax(i,r,lr). (4.3)

We refer to these constraints as restrictions for regional efficiency hereinafter. Their aim is to
prevent extremely high estimation errors of area-specific estimates rather than to equalize the
estimation errors over all areas. Consequently, the focus still lies on the simultaneous minimiza-
tion of the population total variances, which however is restricted in order to avoid unreliable
estimates for critical areas and/or variables of interest, e.g. to comply with administrative laws
or internal quality assurances. If equalized or compensated estimation errors over all areas are
desired, the better choice is to include a weighting of the respective parts of the objective func-
tion. This yields a compensated allocation, which is further discussed in Subsection 4.2.5 and
which has been applied in the German Census 2011 (cf. Münnich et al., 2012a, pp. 31 ff.).

In addition to the inequality constraints (4.3), we replace the equality constraint
∑H
h=1 nh = ns

of problem (4.2) by a more general formulation of q2 affine-linear equality constraints

An = b (4.4)

with A := [1, A2, . . . , Aq2 ]T ∈ Rq2×H and b := (ns, b2, . . . , bq2)T ∈ Rq2 to ensure more flexibil-
ity. This results in the optimal multivariate and multi-domain optimization problem

min
n∈RH+

(
Var(τ̂ StrRS

y1 ), . . . ,Var(τ̂ StrRS
yq1

)
)

s.t. An = b (4.5)

Var(τ̂ StrRS
yilr

) ≤ Vmax(i,r,lr) for some r ∈ {i, . . . , R}, lr ∈ {1, . . . , Lr}, i ∈ {1, . . . , q1}
2 ≤ mh ≤ nh ≤Mh ≤ Nh ∀h = 1, . . . , H,

which is henceforth referred to as MMDopt for the case without restrictions for regional effi-
ciency and MMDopt.reg (reg: regional restrictions) for the case with restrictions for regional
efficiency (4.3). All strategies using the multi-objective perspective of the problem need to use
scalarization techniques to combine the variances for the variables in one single objective func-
tion. The selection of a scalarization technique can be interpreted as the choice of a suitable
decision-making function (Schaich and Münnich, 1993 and Díaz-García and Cortez, 2006).
The optimal allocation then highly depends on the concrete choice of a scalarization function.
Schaich and Münnich (1993) proposed p-norms (p = 1, 2, 4, 8, . . .) of the objectives as well
as the limiting case, where the maximum of the objectives is minimized (min-max). In this



4.1 MOTIVATION AND ISSUES 53

study, we address both the p-norms and the min-max approach. As discussed in Sections 4.2
and 4.3, the weighted 1-norm (i.e. the weighted sum) is mainly focused on, since it coincides
with the theory of Pareto optimality presented in Section 4.2.4 under some assumptions. We
have suggested a similar approach for a simpler framework in Friedrich et al. (2018).

Due to the scalarization, we take the second of the two perspectives of Dalenius (1953) and treat
the multivariate allocation problem as a multi-objective problem. We extend the theoretical
results in Folks and Antle (1965) by giving a (necessary and sufficient) characterization of
all Pareto optimal points in analogy to Subsection 3.3.5. Moreover, we compute the set of
Pareto optimal solutions, also called Pareto frontier, for the refined problem formulation which
allows decision-makers to choose an individually specified preference from this set. In order to
support the decision-maker in the final choice of the preferred allocation, a strategy is suggested
in Section 4.4 to determine one specific solution of the set of all Pareto optimal solutions.

With regard to the algorithmic strategy, solving allocation problems under the box-constraints
(4.1) via a special and efficient Lagrangian approach may yield non-differentiable points (Mün-
nich et al., 2012b and Wagner, 2013). Thus, many standard algorithms, such as classical Newton
techniques, may fail to provide the correct optimal solution. To avoid convergence issues, we
propose using the semismooth Newton method introduced in Section 3.2. Since stratum-specific
sample sizes are integer values, we also refer to the integer optimal allocation techniques pub-
lished in Friedrich et al. (2015), which avoids rounding.

Each scalarization for optimal multivariate allocation contains an additive linking of variances.
Due to the scaling of units of the variables of interest, the variances have to be standardized
for comparability. In Schaich and Münnich (1993), a standardization using the coefficient of
variation (see Equation (2.13)) is proposed. Here, we present an alternative solution that extends
this technique. Additionally, both standardization techniques are analyzed in great detail under
various circumstances.

Finally, it is of great importance for practical applications that large problem instances can be
solved in an appropriate time. Our methods solve optimal multivariate allocation problems with
several thousand strata within seconds and are reliable tools when dealing with real-world data.
This stands in contrast with other algorithms for multivariate allocation problems, which are
generally computationally tractable for only a small number of strata. The computationally
efficient solution of large optimal multivariate allocation problems supplements the theoretical
discussion and is certainly another central innovation of our methods.

In Section 4.2, we concentrate on the mathematical foundation of the MMDopt(.reg) prob-
lem (4.5) with various decision-making functions and standardization techniques. Moreover,
we establish the link between the multivariate allocation problem and the theory of Pareto op-
timization presented in Section 4.2.4. In this way, the theory of multi-criteria optimization of
Section 3.3 is essential. Primarily, four variants of the box-constrained optimal multivariate and
multi-domain allocation problem (4.5) are derived depending on the decision-making function
and the restrictions:

1. MMDopt with weighted sum or 1-norm scalarization,

2. MMDopt.reg with weighted sum or 1-norm scalarization (restrictions for reg. efficiency),
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3. MMDopt with p-norm scalarization for p > 1, and

4. MMDopt.reg with p-norm scalarization for p > 1 (restrictions for regional efficiency).

In Section 4.3, the first two variants are analyzed, and a solution strategy based on semismooth
Newton methods (henceforth denoted with SSN and SSN.reg for the solution of MMDopt and
MMDopt.reg respectively) is developed. In taking advantage of the special structure of the
problems, the general KKT-system can be equivalently rewritten as a significantly lower di-
mensional nonlinear system of equations, which can efficiently be solved by the SSN method.
As shown in Section 4.6, the algorithms are fast enough to solve even large problem instances
in an appropriate computing time. The scalarization techniques applied in the third and fourth
variants lead to problem formulations that prohibit the usage of a lower dimensional reformu-
lation (the objective functions are not separable). Therefore, an alternative solution strategy
for these variants based on a projected inexact quasi-subgradient method (GTM) is addressed in
Section 4.4, which still allows the solution of these problems in an appropriate time.

In Section 4.6, the statistical accuracy, numerical efficiency, and practicability of the developed
methods is discussed. This is carried out within the framework of an application study based on
a partly-synthetic household dataset of Germany, as presented in Section 2.6. Advantages and
opportunities as well as issues and limits of the developed methods are addressed.

4.2 The multivariate and multi-domain allocation problem

4.2.1 Mathematical problem formulation

To introduce different variants of the multivariate and multi-domain optimal allocation prob-
lem (4.5) and to develop numerical solvers of these variants, a mathematical analysis of their
structure and properties has to be established. In accordance with the notations and defini-
tions of Section 2.1, the population is given by U = {1, . . . , N}. In analogy to the notation
in Section 2.3, the stratified random sampling design is defined by H exhaustive and disjoint
cross-classification strata Uh with U = ⋃H

h=1 Uh and stratum size Nh. The strata are constructed
based on R stratification levels consisting of exhaustive and disjoint areas respectively. The Lr
areas on stratification level r ∈ {1, . . . , R} are denoted with U (r)

lr
(lr ∈ {1, . . . , Lr}) and the

Equation (2.32) holds for all r = 1, . . . , R. In order to express the areas with the aid of the
strata, we define the index set

H(r)
lr

:=
{
h ∈ {1, . . . , H} : Uh ⊆ U (r)

lr

}
(4.6)

consisting of all indices h = 1, . . . , H , for which the strata Uh is a subset of the area U (r)
lr

. In
this way, the area lr on stratification level r can formally be defined as union of strata h ∈ H(r)

lr
,

i.e.
U (r)
lr

:=
⋃

h∈H(r)
lr

Uh. (4.7)
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Equation (2.32) implies that for each stratification level r, the population U is given by the union
of all areas U (r)

lr
of the respective level r. Expression (4.7) warrants the consistency between

areas and strata, i.e. each area is a union of one or more strata. Due to this, a StrRS design can
be observed in each area, such that the computations of variances and quality measures defined
in Section 2.1 is valid. The stratification structure is exemplarily illustrated in Figure 2.1 for
R = 3, L1 = 2, L2 = 3, L3 = 3, and H = 10. Regarding the RIFOSS dataset (see Section 2.6),
stratification levels could be federal states, NUTS2-regions, NUTS3-regions, SMPs (all define
regional levels), and the classes of household size (level by content; see Figure 2.2). The strata
then are constructed as cross-classifications of these areas.

In consistency with Equation (2.26), the stratum-specific variances are denoted with S2
ih for all

variables yi and all strata h. If no information is available to compute S2
ih, it has to be estimated

using adequate proxies obtained from auxiliary data or previous surveys. The robustness with
regard to proxy quality is further discussed in the context of the simulation study in Subsec-
tion 4.6.5.

In accordance with Equations (2.36) and (2.50), the objective functions of problem (4.5) are
denoted with

F : RH
+ → R

q1
0+ , n 7→

(
F1(n), . . . , Fq1(n)

)T
(4.8)

with strictly convex component functions

Fi(n) =
H∑
h=1

(
dih
nh
− eih

)
= dTi

( 1
n

)
− 1T ei. (4.9)

In that regard, we denote
(

1
n

)
:=
(

1
n1
, . . . , 1

nH

)T
∈ RH

+ , and the components are given by

di := (di1, . . . , diH)T , dih = S2
ihN

2
h ∀i = 1, . . . , q1 and h = 1, . . . , H and

ei := (ei1, . . . , eiH)T , eih = S2
ihNh ∀i = 1, . . . , q1 and h = 1, . . . , H.

(4.10)

Without loss of generality, we can assume dih > 0 (otherwise the respective addend can be
omitted). The q2 affine-linear equality constraints are expressed as

A :=


1 ...

...
... A2 . . . Aq2

1 ...
...


T

∈ Rq2×H and b := (ns, b2, . . . , bq2)T ∈ Rq2 , (4.11)

which ensures the compliance with the total sample size ns. By indicating the inequality con-
straints, we assume that restrictions for regional efficiency, i.e. bounds for the variances, are
desired for a subset of all area on all stratification levels. Let

Hrestr ⊆
{

(i, r, lr) : i ∈ {1, . . . , q1}, lr ∈ {1, . . . , Lr}, r ∈ {1, . . . , R}
}

(4.12)

contain these triples (i, r, lr) for which there exists a maximal variance Vmax(i,r,lr) ∈ R+ con-
cerning variable yi for area lr on stratification level r. In particular, the triple (2, 1, 3) ∈ Hrestr

corresponds to a quality restriction of variable of interest y2 in area 3 on stratification level 1.
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For the sake of notational simplicity, the q3 elements ofHrestr are consecutively numbered from
1 to q3, i.e. (i, r, lr)1 to (i, r, lr)q3 . Formally, the restriction for regional efficiency are then
denoted with

Var(τ̂ StrRS
yilr

) ≤ Vmax(i,r,lr)j (4.13)

for all (i, r, lr)j ∈ Hrestr. In that regard, Var(τ̂ StrRS
yilr

) denote the area-specific variances of the HT
estimator for variable yi (see Equation 2.36), i.e.

Var(τ̂ StrRS
yilr

) =
∑

h∈H(r)
lr

S2
ihN

2
h

nh

(
1− nh

Nh

)
=

∑
h∈H(r)

lr

dih
nh
−

∑
h∈H(r)

lr

(
S2
ihNh

)
. (4.14)

The value Vmax(i,r,lr)j is the maximal value for restriction (i, r, lr)j , i.e. the minimal quality
which has to be achieved for the HT estimate of variables yi in area lr on stratification level r.
To express (4.13) in matrix notation, a matrix D ∈ Rq3×H and a vector c ∈ Rq3 are defined as

D :=


di1 · 1((i,r,lr)1∈Hrestr ∧ 1∈H(r)

lr

) . . . diH · 1((i,r,lr)1∈Hrestr ∧ H∈H(r)
lr

)
...

...
di1 · 1((i,r,lr)q3∈Hrestr ∧ 1∈H(r)

lr

) . . . diH · 1((i,r,lr)q3∈Hrestr ∧ H∈H(r)
lr

)

 (4.15)

with columns D1, . . . , DH and

c =


c1
...
cq3

 :=


Vmax(i,r,lr)1 +∑

h∈H(r)
lr

(S2
ihNh)

...
Vmax(i,r,lr)q3

+∑
h∈H(r)

lr

(S2
ihNh)

 . (4.16)

Each row in D corresponds to one restriction for regional efficiency. In this way, those of
the H components of the row are non-zero, which correspond to strata that are a subset of the
respective area. Using (4.15) and (4.16), an equivalent formulation of (4.13) for all j = 1, . . . , q3
is given by

D
( 1
n

)
≤ c. (4.17)

The following example illustrates the structure of the nonlinear inequality constraints.

Example 4.2.1. Let the example presented in Figure 2.1 be given and assume that restrictions
for regional efficiency are given for variable y1 and on stratification level r = 2 (3 areas) as
well as for variable y2 and on stratification level r = 1 (2 areas). Then, the structure of matrix
D ∈ R5×10 in (4.15) is given by

D =


d21 d22 d26

d23 d24 d27 d28
d25 d29 d2 10

d11 d12 d13 d14 d15
d16 d17 d18 d19 d1 10

 ,

where each row corresponds to one restriction for regional efficiency, and each column repre-
sents one cross-classification stratum.
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Quality restrictions required for cross-classification strata can be controlled by adjusting the
predefined lower box-constraintsm ∈ RH

+ for the stratum-specific sample sizes n ∈ RH
+ . This is

possible in contrast to the areas, since each stratum contains a SRS design, such that the variance
formula Var(τ̂ SRS

yih
) defined in (2.25) can be applied. We assume that the maximal variances

Ṽmaxi1, . . . , ṼmaxiH ∈ R+ for stratum-specific total estimates for variable yi are given. If
no quality restriction is required for a stratum h, we set Ṽmaxih → ∞ for all i = 1, . . . , q1.
Formally, the stratum-specific quality restrictions can be expressed by

Var(τ̂ SRS
yih

) = S2
ihN

2
h

nh

(
1− nh

Nh

)
≤ Ṽmaxih (4.18)

for stratum h and variable y1, and it can be equivalently rewritten as

S2
ihN

2
h

Ṽmaxih + S2
ihNh

≤ nh.

Then, the adjusted lower box-constraints mh can be computed as

mh ← max
mh , max

i=1,...,q1

(
S2
ihN

2
h

Ṽmaxih + S2
ihNh

) ∀h = 1, . . . , H. (4.19)

After summarizing expressions (4.8) to (4.19), problem (4.5) is equivalent to

min
n∈RH+

(
F1(n), . . . , Fq1(n)

)
s.t. An− b = 0

Dn−1 − c ≤ 0
m ≤ n ≤M.

(4.20)

The objective functions defined in (4.9) can be simplified to

Fi(n) =
H∑
h=1

(
dih
nh

)
, (4.21)

since the constant second term 1T ei in (4.9) does not affect the optimization. As dih > 0 and
ns < N (otherwise we have a full census), we can assume Fi(n) to be strictly positive for all
i = 1, . . . , q1 and n ∈ X . The feasible set of (4.20) is given by

X =
{
n ∈ RH

+ : An = b, Dn−1 ≤ c, n ≥ m, n ≤M
}
. (4.22)

The feasible set X is convex, since all equality constraints (An − b) are affine-linear and the
inequality constraints (Dn−1 − c) are convex as sum of convex functions. Moreover, the box-
constraints can also be interpreted as constant (and therefore convex) inequality constraints.
Then, the convexity of X is given by Remark 3.1.5. Since the objective functions of prob-
lem (4.20) defined in (4.21) are strictly convex (as a sum over strict convex functions), the
problem can be called a convex multi-objective optimization problem. Moreover, the existence
of a solution of problem (4.20) is given by Theorem 3.3.11, since the feasible set X is closed
and bounded. Necessary and sufficient optimality conditions are given by Theorems 3.3.12 and
3.3.13.
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Remark 4.2.2. In practice, the restrictions for regional efficiency (4.17) for area-specific esti-
mates are rarely indicated with maximal variances. Instead, they are indicated by relative values
such as the relative variances, relative standard deviations, or coefficients of variation. Conse-
quently, the values Vmax(i,r,lr)j for the areas given in (4.16) and Ṽmaxih for the strata applied in
(4.18) have to be adjusted according to the definition of the respective measure. The structures
of the constraints remains unchanged.

To complete this subsection, it has to be emphasized that the additional linear equality con-
straints and nonlinear inequality constraints can be defined individually by the user. Provided
that the feasible set of the programming problem is not empty, it is generally possible to re-
strict the quality of an estimate for each combination of variables of interest and combination
of strata.

4.2.2 Standardization

In an optimal multivariate allocation problem of the form of Equation (4.20), several variables
of interest are considered simultaneously. Thus, the resulting optimization problem has several
possibly conflicting objective functions. In that regard, the correlation between the variables
of interest, the variable types, as well as the purpose of the survey are decisive factors. Since
the variables of interest may be of different types and scales, the variances of the respective
estimators are likewise of different scales. Thus, the objective functions, which contain the
variance functions, have to be standardized in order to make the objectives comparable and
linkable. The relevance of standardization is accentuated by Table 4.1, which lists quantiles of
three selected variables on household level. In comparing quantiles of the variables among each
other, it can be noted that the scale is completely different. For instance, AGE4.1 contains values
with a maximum of 705, and PEN includes values of up to 1.9 million. Thus, an additional
linking of these variables without standardization would be conducive. For more information
on the dataset, we refer to Section 2.6.

Table 4.1: Quantiles of household-level values and variances of the variables EDI, PEN, and AGE4.1.

Name Quantiles Variance
50% 60% 70% 80% 90% 100%

EDI . . . 1 384 1 892 1 460 3 220 4 673 82 987 25 · 107

PEN . . . 0 0 582 1 187 2 189 1 921 720 53 · 105

AGE4.1 . . . 0 0 0 1 2 705 3.75

Regarding the objective functions (4.8), Schaich and Münnich (1993) suggested to replace the
variance of the estimators by the coefficient of variation to receive additively comparable values.
In order to retain the mathematical properties of the variance function, we use the squared
coefficient of variation

cv2(τ̂ StrRS
yi

) :=
Var(τ̂ StrRS

yi
)

τ 2
yi

(4.23)
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with the population total τyi of variable yi according to (2.13). This standardization is referred
to as (cv)-standardization. In that regard, the objective functions (4.21) are weighted with
the standardization factors 1

τ2
yi

. In contrast to the coefficient of variation (without squaring), the
(cv)-standardization maintains the properties of the original objective functions, as they are only
adjusted by scale. The principal effect of the simple and the squared coefficient of variation is
similar. However, the squaring may lead to small differences in some settings. The coefficient
of variation is a suitable instrument for the standardization, since it enables the comparison
of the variances of population total estimates for various types of variables in contrast to the
unstandardized variances (cf. Schaich and Münnich, 1993). Formally, it is a relative term in
contrast to the absolute variance. A drawback in using the squared coefficient of variation is
the requirement for the population totals τyi of variables yi, which are generally not given in
advance as they are the objectives of the survey. Thus, adequate proxies need to be utilized. As
(4.23) are ratios, their estimations are even more demanding than when only using the proxies
for the stratum-specific variances contained in Var(τ̂ StrRS

yi
). Moreover, whenever the total of a

variable is close to zero or if a minimum of a variable the lower than zero, the information
content of the coefficient of variation is distorted (see Table 4.2).

Beyond the (cv)-standardization, an alternative standardization technique is proposed, which
we refer to as (opt)-standardization. Instead of total values, the (opt)-standardization is based
on variances as standardization factors. A multivariate allocation of conflicting variables of in-
terest is also accompanied by a quest for a compromise. In this way, the amount of costs to be
paid for each separate variable, i.e. the accuracy-decrease to be tolerated, in order to achieve an
optimal multivariate allocation has to be determined. The accuracy-decrease of each variable
is measured compared to the unique optimal univariate allocations, which are theoretically best
for each separated variable, since the respective variances are minimized separately. There-
fore, the variances of the total estimators under the optimal univariate allocations are used as
standardization factors. Thus, the (opt)-standardization for the variable of interest yi is given
by

opt(τ̂ StrRS
yi

) :=
Var(τ̂ StrRS

yi
)

Varopt
yi

, (4.24)

where Varopt
yi

is the variance of the total estimator for variable yi under the optimal univari-
ate allocation, which may be computed with the box-constraint optimal allocation by Münnich
et al. (2012c) given in (2.49). This standardization technique reflects the relative loss for each
variable under the consideration when using the compromise allocation rather than the single
variable optimized allocation. In contrast to (cv), an advantage of this technique is that the total
τyi of variable yi is not required. Moreover, if the stratum-specific variances S2

ih need to be esti-
mated, the uncertainty and blur of this estimation is symmetrically present in the numerator and
denominator of the objectives, and thus it may be eliminated. Hence, a standardization by the
optimal univariate variances may result in a more robust optimal multivariate allocation. This
is analyzed in the application study in Subsection 4.6.2. Moreover, the (opt)-standardization
is also consistent, if variables comprise negative values, which is not the case for the (cv)-
standardization.

Both standardization techniques are compared in Table 4.2, where the values of the objective
functions (4.9) are tabulated for a proportional allocation. The variances of the variables are
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presented in the second column. If the objective functions Fi are computed by (4.9) using the
unstandardized variances, their scale is not additively linkable (see column 3). If one of the
standardization techniques is applied (column 4 and 5), the values of the three variables are
comparable among each other. In particular, variable PEN has the highest coefficient of varia-
tion (column 4), whereas the ratio of the actual variance and the variance under optimal univari-
ate allocation is the highest for variable AGE4.1. These differences clearly affects the optimal
multivariate allocation concerning the three variables. We have a closer look on the differences
depending on the standardization technique in the application results in Section 4.6.

Table 4.2: Value of objective functions for standardization techniques (under proportional allocations).

name S2 Fi (original) Fi (cv)-
standardization

Fi (opt)-
standardization

EDI 25 · 107 2.84 · 1016 3.69 · 10−5 1.02
PEN 53 · 105 4.71 · 1015 6.21 · 10−5 1.24

AGE4.1 3.75 1.27 · 109 3.97 · 10−5 3.47

In the following, we assume the given standardization factors γ1, . . . , γq1 for all objective func-
tions calculated using the (cv)- or (opt)-standardization. Due to notational simplicity, we set

Fi(n)← γiFi(n) ∀i = 1, . . . , q1.

Thus, the functions Fi(n) refer to the standardized variances γiVar(τ̂ StrRS
yi

) hereafter.

4.2.3 Scalarization

As already mentioned in Section 3.3, the scalarization of the vector-valued objective function
of problem (4.20) is mandatory for solving the multi-criteria optimization problem and depends
on the characterization of optimality discussed in Section 3.3.1. The choice of a scalarization
technique is not clear in advance and coincides with the preferences of the decision-maker.
Thus, the scalarization method can also be interpreted as a decision-making function. As we will
show in Section 4.6.3, the choice of a decision-making function has a considerable influence on
the solution of the problem. A wide range of scalarization techniques can be found in literature.
For the mathematical foundation of these techniques, we refer to Jahn (1986, Chapter 5), Ehrgott
(2005, Chapter 3 and 4) and Lin (2005). In the following, we make a distinction between two
types of techniques that resemble the two strategies of Dalenius (1953) already mentioned in
Section 4.1. In the first strategy, some of the q1 objective functions of problem (4.20) are treated
as inequality restrictions to attain a real-valued optimization problem. Consequently, only one
objective function is optimized, whereas the others remain bounded. One widespread technique
belonging to this strategy is the epsilon-constraint method (cf. Ehrgott, 2005, Section 4.1)

min
n∈X

Fi(n)

s.t. Fj(n) ≤ boxj ∀j ∈ {1, . . . , q1} \ {i}
(4.25)
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with a fixed i ∈ {1, . . . , q1} and scalar values boxj ∈ R+. As the decision-maker is tasked
with selecting the objectives to be considered as restrictions, the technique would require an
a priori ranking of the objectives. In the context of optimal multivariate allocation, a similar
version of the epsilon-constraint method is applied, in which the allocation corresponds to a
cost minimization while variance restrictions are respected, which is treated in Falorsi and Righi
(2015). In this way, all objective functions are shifted to the constraints, whereas the costs (e.g.
expressed as the sum over the stratum-specific sample sizes) are minimized. These strategies
will not be focused on in this thesis since they contradict with the assumption of a simultaneous
optimization of several objectives.

By contrast, the second strategy of Dalenius (1953) is based on an additive linkage of the q1
objectives of (4.20) to achieve a real-valued objective function f : RH

+ → R0+ . Therefore,
the strategy prevents an a priori ranking or selection of the objectives. First, p-norms of the
objectives (p ∈ N) are proposed leading to a real-valued objective function

f(n) :=
∥∥∥∥(F1(n), . . . , Fq1(n)

)T ∥∥∥∥
p

=
( q1∑
i=1

(
Fi(n)

)p ) 1
p

(4.26)

with f : RH
+ → R+. Due to the definition of the objectives in (4.8), Fi ≥ 0 holds for all

i, such that the absolute value | · |p can be omitted. This strategy is among others discussed
in Schaich and Münnich (1993) and complies with the characterization of optimality in multi-
criteria oprimization of class (norm) presented in Subsection 3.3.1. The bigger p is, the more
attention is given to higher values of Fi. Thus, if p is high, the allocation focusses more on
variables with larger standardized variances. Schaich and Münnich (1993) and Lin (2005) stud-
ied the particular case of p = ∞, which is equivalent to the min-max method (see class (max)
presented in Subsection 3.3.1). Then the objective function is given by

f(n) := max
i=1,...,q1

Fi(n) (4.27)

with f : RH
+ → R+. In that regard, the allocation concentrates on the minimization of the

variable with the largest standardized variance. In case of the (cv)-standardization, the maximal
squared coefficient of variation of all variables is minimized. This leads to an allocation, where
the coefficients of variation are well-compensated between the variables of interest. By contrast,
the (opt)-standardization should be chosen if a well-balanced accuracy-decrease compared to
the optimal univariate allocations is required. In practice, the min-max method is a very popular
method, as there is no risk to neglect the variables which are more critical for the allocation.

Besides the p-norm and min-max method, the most intuitive and common scalarization tech-
nique is the weighted sum method, with which each objective is weighted and the weighted
objectives are cumulated (Jahn, 1986, Chapter 3). The vector-valued objective function of prob-
lem (4.20) then becomes a real-valued objective f : RH

+ → R+ of the form

f(n) :=
q1∑
i=1

wiFi(n) (4.28)

with non-negative weights w1, . . . wq1 ≥ 0 and
∑q1
i=1wi = 1. Using equal weights wi = 1

q1
for

all variables, the minimization of the weighted sum (4.28) is equivalent to the minimization of
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the 1-norm in (4.26). Generally, the weighted sum method depends on an a priori choice of the
weighting scheme, i.e. the decision-maker needs to rank the variables of interest similarly to the
epsilon-constraint method (4.25). To avoid this, we focus on solving the weighted sum problem
with all possible combinations of weights, subject to a discretization accuracy of the weights.
In Subsection 3.3.1, the weighted sum approach is described with the optimization class (EF).
In accordance with this characterization, and in analogy to Subsection 4.2.4, the discretization
and the special structure of the problem allows us to compute the whole Pareto frontier, i.e.
to find all Pareto optimal solutions. Thus, the decision-makers are able to choose their own
preferred allocation a posteriori instead of doing an inevitable a priori weighting or ranking
of the variables of interest. In conclusion, the decision is based on more reliable information
which allows for more flexibility.

Apart from the statistical properties and advantages of the developed allocation tool, an efficient
and robust numerical solution of the scalarized and standardized version of problem (4.20) is
a vital part of this thesis. For the choice of a numerical solver, the properties of the objective
function are a decisive factor. In the case of the weighted sum scalarization (4.28), the objective
function f is continuously differentiable, strictly convex, and separable, since f is a (weighted)
sum over continuously differentiable, strictly convex, and separable functions Fi defined in
(4.21). These properties are essential for the fast algorithms presented in Section 4.3. If the
alternative scalarization methods are used, f changes and may lose some of these properties. In
particular, the objective function f in (4.26) is continuously differentiable and strictly convex,
but it is only separable if p = 1. If f is not separable as in the case p 6= 1, special attention
must be paid to the selection of the solution algorithm. This problem is tackled in Section 4.4.
Furthermore, for the min-max method, the objective (4.27) is not continuously differentiable.
However, many classical optimization methods (such as the Newton method) rely on differen-
tiability and are not applicable in this case. An alternative solution for this case is derived in
Section 4.4, where the non-separable case p 6= 1 is traced back to the separable case of the
weighted sum scalarization (p = 1).

4.2.4 Weighted sum and Pareto optimization

As already analyzed in Subsection 3.3.5, the scalarization by the weighted sum coincides with
the theory of Pareto optimality introduced in Subsection 3.3.2. When optimizing the conflicting
objectives in (4.20), the Pareto frontier describes the set of all efficient solutions (cf. Defini-
tion 3.3.8). Efficient solutions are characterized by all points for which one objective function
Fi can only be improved by diminishing another. Therefore, the Pareto frontier provides a suit-
able characterization of all the points that decision-makers should consider in a multi-criteria
optimization problem. However, it is not advisable to choose an allocation that is not an ele-
ment of the Pareto frontier, since in this case at least one objective function Fi can be improved
without causing any further costs (i.e. without diminishing another objective function).

Moreover, the Pareto frontier describes the optimal solutions independent of the weighting, i.e.
independent of the ranking of the variables of interest. Instead of determining the ranking in
advance, the developed method allows users to select a preferred solution among all Pareto
optimal points after the optimization step. Advantages of this procedure include the ability to
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optimize without a known priority ranking of the variables of interest, the robustness of the
solution with respect to the weights, and the possibility to use additional information at the time
of decision, such as variance structures or sensitivity analyses.

The entire frontier of Pareto optimal solutions for the multivariate allocation problem (4.20)
is described mathematically in Subsection 3.3.5 and extend by the results of Folks and Antle
(1965). By Theorem 3.3.15, it can be proved that each optimal solution of the weighted sum re-
formulation for an arbitrary choice of weights is a Pareto optimal solution for (4.20). Moreover,
since Fi are (strictly) convex functions and the feasible set X defined in (4.22) is a convex set,
the following statement holds by applying Lemma 3.3.16 and Theorem 3.3.17. If the weighted
sum problem is solved for all possible combinations of weights, all Pareto optimal solutions of
the original problem are obtained (only subject to the discretization of the weights). In this way,
the whole Pareto frontier of the multivariate allocation problem (4.20) is computed. We refer to
Section 4.6 for numerical results.

4.2.5 Generalizations of the allocation method

Compensated optimal allocation

Generally, optimal allocation techniques are based on the minimization of the (standardized)
variances of the HT estimates for the population total of the variables of interest. In this way,
although a good quality for some area-specific estimates might be of interest as well, the ac-
curacy of these estimates is basically neglected. This effect is also observed in the application
study in Subsection 4.6.4, where high estimation errors are observed with regard to a few par-
ticularly small areas and strata. Using MMDopt, the restrictions for regional efficiency can be
added as inequality restrictions to the optimization problem in (4.20). Another approach was
implemented in the German Census 2011 for the box-constrained optimal univariate allocation
by Gabler et al. (2012) and Münnich et al. (2012c). In this case, the population was divided
into regional sampling points and classes of address sizes (Münnich et al., 2012a, pp. 22 ff.).
Thus, the stratified sampling design was defined by cross-classification strata composed of the
sampling points and classes of address sizes. To achieve a compensated accuracy in each sam-
pling point, the 2-norm of the weighted RRMSEs of sampling point-specific estimates was
minimized instead of the variance of the population total estimate given by (2.50) (cf. Mün-
nich et al., 2012a, pp. 31 ff.). This results in the following compensated objective function
for the box-constrained optimal univariate allocation for j = 1, . . . , J classes of address sizes,
h = 1, . . . , H sampling points and sampling point-specific weighting coefficients vh:

∥∥∥RRMSE(τ̂ StrRS
y )

∥∥∥
2

: =
H∑
h=1

vhRRMSE(τ̂ StrRS
yh )2

=
H∑
h=1

vh
Var(τ̂ StrRS

yh )
τ 2
yh

=
H∑
h=1

vh
τ 2
yh

J∑
j=1

N2
hjS

2
hj

nhj

(
1− nhj

Nhj

)
.

(4.29)
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In the German Census 2011, the weighting coefficients vh are neglected. If vh = τ 2
yh, then (4.29)

is equal to the standard expression of the variance in (2.50). Other values for vh are possible,
such as the results computed by an a priori given function of a minimal allowed precision.
This alternative approach may lead to a more compensated regional-specific accuracy and is
includable to MMDopt with little effort. Nevertheless, this approach is omitted in the application
study due to two reasons. At first, several test simulations yielded more compensated and
more accurate estimates for the sampling points, while the efficiency of the estimates on other
stratification levels significantly decreased. MMDopt is developed to generate accurate estimates
on several stratification levels simultaneously. To achieve this, the restrictions for regional
efficiency tend to be the more suitable instrument, since unusable inaccurate outliers for the
area-specific estimates are omitted, but the variances of the population totals are still minimized.
Furthermore, the focus of MMDopt is on the several stratification levels and, in particular on the
optimal multivariate allocation. Thus, the compensated allocation would generate undesirable
side effects. Nevertheless, using (4.29) is possible in the MMDopt framework, and it may be
useful in some applications.

Optimal allocation with GREG-type objective function

Optimal allocations such as the Neyman-allocation (Neyman, 1934), the box-constrained opti-
mal univariate allocation (Münnich et al., 2012c), and our multivariate extensions MMDopt are
based on the minimization of the sum of the variances of the stratum-specific HT estimates
Var(τ̂ SRS.HT

yh ) of all strata h given by (2.25). To achieve efficient estimates with the aid of known
auxiliary data, the GREG estimator (2.19) is a very popular instrument. As discussed in Lohr
(2009, pp. 74 ff.), the variance of the GREG estimator for StrRS can be approximated by

Var(τ̂ StrRS,GREG
yi

) ≈
H∑
h=1

Var(τ̂ SRS.HT
yih

) ·
(
1− ϑ2

h

)
, (4.30)

where ϑih is the stratum-specific coefficient of correlation between the variable of interest yi
and the auxiliary variable. Equation (4.30) is only valid, if ϑih is computed separately for each
stratum and SRS is applied in each stratum. Otherwise, a more general definition of ϑ has to
be used (cf. Krug et al., 2001, Equation (7.1.39)). However, the expression in (4.30) is only
valid for one auxiliary variable in stratum h and the contained approximation may be inaccurate
in specific situations, for instance in small strata. Alternatively, the variance formula for the
GREG estimator under StrRS as presented in Section 2.3 can be used, i.e.

Var(τ̂ StrRS,GREG
yi

) =
H∑
h=1

S2
eihN

2
h

nh

(
1− nh

Nh

)
, (4.31)

where S2
eih is computed as a proxy to (2.29) for the variables of interest yi (i = 1, . . . , q1). This is

valid for more than one auxiliary variable. Thus, an allocation tailored to the GREG estimator
is also covered by the developed MMDopt method. Although it is theoretically possible, the
minimization of a variance function of the GREG is unusual in optimal allocation, since it
requires the availability of auxiliary data on individual level at the design stage in order to
compute proxies for S2

eyih
. Due to this and in order to avoid side effects, we limit ourselves to

the consideration of the variances of the HT estimator in the application study.
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Additional cost functions

Up until this point, we have solely considered the equality constraint
∑H
h=1 nh = ns corre-

sponding to an a priori fixed total sample size ns. Nevertheless, our approach behaves similarly
when using different types of restrictions. Cost restrictions are frequently added, as described
in Falorsi and Righi (2016, Example 1). Instead of ns, we assume an a priori given total cost
limit of cfull ∈ R0+ . Let the fixed costs per stratum be defined by chfix ∈ R0+ and the cost per
unit sampled in stratum h by chvar ∈ R0+ . Then, the restriction is given by

H∑
h=1

(
chfix + nhchvar

)
= cfull, (4.32)

which is equivalent to
H∑
h=1

nhchvar = cfull −
H∑
h=1

chfix . (4.33)

Frequently, the fixed costs are not defined per stratum, i.e.
∑H
h=1 chfix may be replaced by a

value cfix ∈ R0+ representing the total fixed costs of the survey. With ns := cfull −
∑H
h=1 chfix

and an appropriate redefinition of A in (4.4), we prove the compatibility of our approach under
consideration of generalized cost restrictions of the form defined in (4.32).

Various levels of sampling units

Besides the cost restrictions, the fact that the restrictions refer to the sampling units of the
population is a fundamental assumption in the previous derivations. In relation to this point, a
contradictory example is the German Census 2011 (cf. Münnich et al., 2012a, pp. 31 ff.), where
the addresses of Germany are the sampling units, while ns,pers refers to the maximal number of
persons that can be drawn. Then,

∑H
h=1 nh = ns can be rewritten as

H∑
h=1

nh · pPAh = ns,pers, (4.34)

where pPAh ∈ R0+ is the average number of persons living in one address in stratum h. Since
pPAh is an average number, only the expected number of persons within the sample will be
equal to ns,pers. The precision of the expected value will be high if the structure of the strata
is associated with the number of persons living in one address. For example, in the German
Census 2011, the strata are built according to different classes of address sizes. Moreover, a
reformulation of the box-constraints of problem (4.5) can be handled in analogy to the previous
reformulation in (4.34), i.e.

mpersh ≤ nh · pPAh ≤Mpersh (h = 1, . . . , H), (4.35)

where mpersh and Mpersh are the lower and upper bounds for the number of persons to be drawn
in the strata h = 1, . . . H respectively. In some surveys, sampling fractions are used instead
of absolute numbers ns, mh, and Mh. These can be trivially included and transformed to the
standard form by a multiplication with N and Nh respectively.



66 4 OPTIMAL MULTIVARIATE AND MULTI-DOMAIN ALLOCATION

4.3 Algorithmic solution of weighted sum allocation problems

In this section, two efficient algorithms for the numerical (continuous) solution of the weighted
sum scalarized MMDopt problem (4.20) with and without additional restrictions for regional ef-
ficiency are presented, namely algorithms SSN and SSN.reg. Both algorithms are based on
a Lagrangian approach developed in Münnich et al. (2012c), where an optimal univariate al-
location problem with box-constraints is considered. The approaches are accompanied by a
significant reduction of the dimension of the underlying problem enabled by the special struc-
ture of the problem. After a scalarization with the weighted sum and standardization with the
techniques described in Section 4.2.2, the strategy applied in the univariate case is also appli-
cable to the multivariate problem. The main characteristic of the algorithm is the possibility to
express the stratum-specific sample sizes nh as a function depending on the Lagrange multipli-
ers by transforming the KKT optimality conditions. The strict convexity and separability of the
scalarized objective function f in (4.28) is crucial for the correctness and applicability of both
algorithms.

For the sake of generality, the following derivation is conducted to solve the weighted sum
scalarized problem (4.5), i.e. the optimal multivariate allocation problem with q1 variables of
interest, q2 affine-linear equality constraints, and q3 convex inequality constraints. Nevertheless,
it is also valid for the common practical case q2 = 1, where

∑H
h=1 nh = ns is the only equality

constraint, and q3 = 0, where there are no restrictions for regional efficiency.

For an integer solver for the case without inequality constraints (q3 = 0) and only one equality
constraint (q2 = 1), we refer to a Greedy-based solution strategy developed in Friedrich et al.
(2015) and Friedrich (2016). A further comparison of continuous and integer solvers can be
found in Friedrich et al. (2018).

4.3.1 Existence and uniqueness of the solution

In applying the weighted sum scalarization method (4.28), the vector-valued objective function
F of problem (4.20) changes in accordance with (4.21) to

f(n) =
q1∑
i=1

wiFi(n) =
q1∑
i=1

wi

 H∑
h=1

dih
nh

, (4.36)

which can be simplified to

f(n) =
( q1∑
i=1

wi
H∑
h=1

dih
nh

)
=
(

H∑
h=1

∑q1
i=1widih
nh

)
.

Using the function ϕ : RH
+ → RH

+ , n 7→ n−1, the objective function can be written as

f(n) =
H∑
h=1

dh(w)
nh

= d(w)Tϕ(n) (4.37)
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with functions

dh : Rq1 → R+ , w 7→
q1∑
i=1

widih (h = 1, . . . , H) (4.38)

and d(w) =
(
d1(w), . . . , dH(w)

)T
. Then, the weighted sum scalarized problem (4.20) can be

rewritten as

min
n∈RH+

f(n)

s.t. h(n) = 0 , g(n) ≤ 0 , m ≤ n ≤M.
(4.39)

with functions

f : RH
+ → R+, f(n) =

H∑
h=1

dh(w)
nh

= d(w)Tϕ(n),

h : RH
+ → Rq2 , h(n) = An− b, and

g : RH
+ → Rq3 , g(n) = Dn−1 − c = Dϕ(n)− c.

In that regard, the functions dh is dependent on the weights w of the weighted sum and are
component-wise defined by (4.38). Moreover, A ∈ Rq2×H (4.11), D ∈ Rq3×H (4.15), b ∈ Rq2

(4.11), c ∈ Rq3 (4.16), and n,m ∈ RH
+ . Thus, the feasible set X is given by (4.22).

In comparing problem (4.39) with the problem formulation in the publications Gabler et al.
(2012) and Münnich et al. (2012c), we can identify the following extensions:

1. More than one equality constraint can be included.

2. Nonlinear inequality constraints can be considered (restrictions for regional efficiency).

3. The objective function depends on the weights w, as problem (4.39) considers an optimal
multivariate allocation with a weighted sum scalarization; i.e. problem (4.39) has to be
solved for all combinations of weights.

Thus, our method can be called a generalization of the box-constrained optimal univariate allo-
cation of Gabler et al. (2012) and Münnich et al. (2012c).

The existence, optimality conditions, and uniqueness of the solution of the optimization prob-
lem are shown by applying a Lagrangian approach. The Lagrangian function is defined as
L : RH

+ ×Rq2 ×Rq3 ×RH ×RH → R with

L(n, λ, β, µ, κ) = d(w)Tϕ(n) + λT (An− b) + βT (Dϕ(n)− c) + µT (n−M) + κT (m− n)

and Lagrangian multipliers λ ∈ Rq2 , β ∈ Rq3 , µ ∈ RH , and κ ∈ RH . Following the theory of
Section 3.1, corresponding (necessary and sufficient) optimality conditions for problem (4.39)
can be defined by solving the KKT-system of Equations (3.4) to (3.6).

Theorem 4.3.1. A vector n∗ ∈ RH is a solution of problem (4.39) if and only if the Slater-
condition is satisfied and there exist Lagrangian multipliers λ∗ ∈ Rq2 , β∗ ∈ Rq3

0+ , µ∗ ∈ RH
0+ ,

and κ∗ ∈ RH
0+ such that

∇n

(
d(w)Tϕ(n∗)

)
+ ATλ∗ +

(
∇n(Dϕ(n∗)− c)

)T
β∗ + µ∗ − κ∗ = 0
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An∗ − b = 0(
Dϕ(n∗

)
− c) ≤ 0 (4.40)

β∗j (DT
j ϕ(n∗) − cj) = 0 ∀j ∈ {1, . . . , q3} (4.41)

µ∗h(n∗h −Mh) = 0 ∀h ∈ {1, . . . , H}
κ∗h(mh − n∗h) = 0 ∀h ∈ {1, . . . , H}.

Proof. See Geiger and Kanzow (2002, Theorems 2.45 and 2.46). The necessity holds due to
the assumptions that the Slater-condition is satisfied (see Definition 3.1.6). Since f and g are
convex and continuously differentiable functions and h is a continuously differentiable affine-
linear function, the feasible set X is convex (see Remark 3.1.5), so that the conditions are also
sufficient.

The KKT-system in Theorem 4.3.1 contains the nonlinear inequality constraints (4.40) and
(4.41). Moreover, the Lagrangian multipliers β∗ ∈ Rq3

0+ , µ∗ ∈ RH
0+ , and κ∗ ∈ RH

0+ have to be
non-negative. By applying a numerical solver, these inequality conditions are challenging as the
KKT-system does not represent a system of equations. An alternative approach was introduced
in Section 3.1, where the KKT-system can be equivalently rewritten using a NCP-function (see
(3.7)). Thus, an alternative version of Theorem 4.3.1 is given in Theorem 4.3.2, in which the
inequalities (4.40) and (4.41) are rewritten as equations using NCP functions. Moreover, the
corresponding Lagrangian multipliers β∗ ∈ Rq3

0+ do not have to be non-negative.

Theorem 4.3.2. A vector n∗ ∈ RH is a solution of problem (4.39) if and only if the Slater
constraint qualification condition is satisfied and there exist Lagrangian multipliers λ∗ ∈ Rq2 ,
β∗ ∈ Rq3 , µ∗ ∈ RH

0+ and κ∗ ∈ RH
0+ such that

∇n

(
d(w)Tϕ(n∗)

)
+ ATλ∗ +

(
∇n(Dϕ(n∗)− c)

)T
β∗ + µ∗ − κ∗ = 0 (4.42)

An∗ − b = 0 (4.43)

min
(
−
(
DT
j ϕ(n∗)− cj

)
, βj

)
= 0 ∀j ∈ {1, . . . , q3} (4.44)

µ∗h(n∗h −Mh) = 0 ∀h ∈ {1, . . . , H} (4.45)
κ∗h(mh − n∗h) = 0 ∀h ∈ {1, . . . , H}. (4.46)

For the proof of Theorem 4.3.2, we refer to Theorems 3.1.7 and 4.3.1.

In contrast to Theorem 4.3.1, the KKT-system (4.42) to (4.46) exclusively consists of equality
condition. In addition, the Lagrangian multipliers β∗ ∈ Rq3 do not have to be positive numbers,
which allows a solution strategy where β is iteratively updated. Nonetheless, Equation (4.44)
is non-smooth, but we will see that this is no issue with regard to the applied solution strategy.
In the following, we transform the KKT-system given by (4.42) to (4.46) in a way similar to
the derivations in Münnich et al. (2012c). Some necessary properties are among others the
separability of f , the affine-linearity of h, and the special structure of g, which is similar to the
structure of f .
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Lemma 4.3.3. Under the given assumptions of Theorem 4.3.2, Equation (4.42) is equivalent to

0 ≥ (dh(w) +DT
h β
∗)ϕ′h(Mh) + AThλ

∗, if n∗h = Mh

0 = (dh(w) +DT
h β
∗)ϕ′h(n∗h) + AThλ

∗, if n∗h ∈ (mh,Mh)
0 ≤ (dh(w) +DT

h β
∗)ϕ′h(mh) + AThλ

∗, if n∗h = mh

 for h = 1, . . . , H (4.47)

with component-wise defined

ϕ(n) =
(
ϕ1(n1), . . . , ϕH(nH)

)T
=
(

1
n1
, . . . ,

1
nH

)T
.

We note, that ϕh(nh) is continuously differentiable with derivative ϕ′h(nh) = −1/n2
h. Since ϕ′h

is strongly monotonically increasing, the inverse

ϕ
′−1
h (zh) =

√
−1/zh (4.48)

exists.

Proof. A closer look at Equations (4.45) and (4.46) as well as using the non-negativity of
µ∗ ∈ RH

0+ and κ∗ ∈ RH
0+ lead to following three equivalences for the optimal stratum-specific

sample sizes n∗h (h = 1, . . . , H) depending on the box-constraints:

n∗h = Mh ⇔ µ∗h(n∗h −Mh) = 0, µ∗h ≥ 0 and κ∗h(mh − n∗h) < 0, κ∗h = 0
n∗h = mh ⇔ µ∗h(n∗h −Mh) < 0, µ∗h = 0 and κ∗h(mh − n∗h) = 0, κ∗h ≥ 0
n∗h ∈ (mh,Mh) ⇔ µ∗h(n∗h −Mh) < 0, µ∗h = 0 and κ∗h(mh − n∗h) < 0, κ∗h = 0

for all h = 1, . . . , H . Furthermore, each component of Equation (4.42) is equal to(
dh(w) +DT

h β
∗
)
ϕ′h(n∗h) + AThλ

∗ + µ∗h − κ∗h = 0 ∀h = 1, . . . , H.
This is equivalent to the following three cases for h = 1, . . . , H:

0 ≥ (dh(w) +DT
h β
∗)ϕ′h(Mh) + AThλ

∗, if n∗h = Mh

0 = (dh(w) +DT
h β
∗)ϕ′h(n∗h) + AThλ

∗, if n∗h ∈ (mh,Mh)
0 ≤ (dh(w) +DT

h β
∗)ϕ′h(mh) + AThλ

∗, if n∗h = mh

for all h ∈ 1, . . . , H , which completes the proof.

It should be noted here that the resembling structures of the objective function f and the func-
tion of the nonlinear inequality constraints g are necessary conditions for the verification of
Lemma 4.3.3. If Equation (4.47) is revisited, the optimality conditions can be rewritten by using
λ ∈ Rq2 and β ∈ Rq3 as dependent variables, and then the vector n can be defined depending
on the choice of λ and β. To achieve this, a function n : Rq2+q3 → RH

+ is component-wise
defined as

nh(λ, β) =


Mh, if − ATh λ

dh(w)+βTDh
≥ ϕ′h(Mh)

ϕ
′−1
h

(
− ATh λ

dh(w)+βTDh

)
, if ϕ′h(mh) < − ATh λ

dh(w)+βTDh
< ϕ′h(Mh)

mh, if − ATh λ

dh(w)+βTDh
≤ ϕ′h(mh)

= Proj[mh,Mh]

ϕ′−1
h

(
− AThλ

dh(w) + βTDh

)
(4.49)
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for all h = 1, . . . , H and ϕ
′−1
h defined in (4.48). Combining (4.49) with (4.43) and (4.44)

results in a nonlinear system of equations of dimension q := q2 + q3 that only depends on the
Lagrangian multipliers λ and β. This system is defined by

Φ(λ, β) :=

 An(λ, β)− b
min

(
−
(
Dϕ

(
n(λ, β)

)
− c

)
, β
) = 0 (4.50)

with Φ : Rq → Rq and the component-wise defined minimum function. The goal is to solve the
nonlinear system of equations in (4.50) of dimension q = q2 + q3 instead of the optimization
problem in (4.39) of dimensionH . Common solution strategies for nonlinear optimization such
as Lagrange-Newton, SQP, and trust region methods do not use the special structure of this prob-
lem. All these strategies contain an iterative algorithm, where the optimized variable n ∈ RH

+
and the Lagrangian multipliers need to be updated in each iteration (see Section 3.1 for further
details). In comparison to these methods, solving (4.50) would be associated with a reduction
of the dimension to (q2 + q3), which is independent of the dimension H of the optimization
problem (4.39). Moreover, as H is comparatively high and H � q2 as well as H � q3, the
computational burden is generally expected to be significantly reduced compared to standard
solvers for nonlinear optimization. This is particularly the case for selected applications in offi-
cial statistics, such as nationwide household or business surveys. The following theorem proofs
the equivalence of both problem formulations.

Theorem 4.3.4. A vector n∗ ∈ RH
+ is the unique solution of the optimization problem (4.39) if

and only if there exists multipliers λ∗ ∈ Rq2 and β∗ ∈ Rq3 such that n(λ∗, β∗) defined in (4.49)
satisfies

Φ(λ∗, β∗) = 0. (4.51)

Proof. If (n∗, λ∗, β∗) are given such that (4.47) holds, we compute n(λ∗, β∗) as defined in
(4.49). By means of the three given cases in Lemma 4.3.3, it can then be observed that
n(λ∗, β∗) = n∗. By contrast, if for some (λ∗, β∗) the vector n(λ∗, β∗) satisfies (4.51), then
we can easily verify that

(
n(λ∗, β∗), λ∗, β∗

)
also satisfies (4.47). This completes the proof.

Finally, Theorem 4.3.4 verifies that the weighted sum scalarized MMDopt problem (4.20) of di-
mension H , both with and without additional restrictions for regional efficiency, can be solved
via solving the significantly lower dimensional nonlinear system of equations (4.50) of dimen-
sion q = q2 + q3. An appropriate algorithm is suggested in Subsection 4.3.2.

Sensitivity analysis

In the previous paragraphs, the equivalence of the nonlinear system of equations in (4.51) to
the weighted sum scalarized problem (4.20) was proved. Moreover, we have shown in Subsec-
tion 4.2.4, that solving (4.51) for all possible combinations of weights enables the computation
of the whole Pareto frontier of optimization problem (4.20). Regarding this notion, it is desirable
to analyze the sensitivity of the solution of the weighted sum scalarized MMDopt concerning

1. the stratum-specific variances S2
ih for all strata h = 1, . . . , H and all variables yi

(i = 1, . . . , q1), which are used as input data (as seen in (4.10)), and
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2. the combinations of weights w = (w1, . . . wq1)T ∈ [0, 1]q1 .

The sensitivity and robustness of MMDopt concerning the stratum-specific variances S2
ih is of

great importance if these values are not known but are instead estimated in advance. Thus, the
question is how the uncertainty in S2

ih influences the solution of the optimal allocation computed
by the method MMDopt. To analyze this, the derivative of the variance formula of variables yi

Var(τ̂ StrRS
yi

) =
H∑
h=1

S2
ihN

2
h

nh(λ, β)

(
1− nh

Nh

)
(4.52)

concerning S2
ih needs to be computed. Using this, nh(λ, β) is computed by (4.49). The evalua-

tion of the derivatives is a challenging task, as S2
ih is comprised in dh(w) and dh(w) is comprised

in the distinction of cases of the components of nh(λ, β). This entails the computation of the
derivative of the projection functions, which is highly non-trivial. Hence, we omit the analyti-
cal sensitivity analysis in this thesis, but we do practically investigate the robustness of MMDopt
concerning uncertainty deviations of S2

ih in the application study (see Subsection 4.6.5).

A sensitivity analysis concerning the weights w = (w1, . . . , wq1)T would reveal the same prob-
lems stated above. Thus, this analysis is also omitted, but it can be done numerically by analyz-
ing the gradient between the different points of the Pareto frontiers (see Section 4.4).

4.3.2 Semismooth Newton method

Theorem 4.3.4 verifies the equivalence and enables solving Φ(λ, β) = 0 instead of (4.39). How-
ever, a standard Newton method cannot be applied, since Φ is not continuously differentiable
due to both the projection in (4.49) and the minimum function in the second component of Φ.
Alternatively, Münnich et al. (2012c) choose a fixed-point algorithm to solve Φ = 0 for the
special case of q2 = 1 and q3 = 0, i.e.

Φ(λ) :=
H∑
h=1

nh(λ)− ns = 0. (4.53)

This approach turns out to be computationally efficient, as an optimization problem of dimen-
sion H ≈ 20 000 is solved within a fraction of a second. To make use of this increase in
efficiency, we suggest using a SSN method (see Algorithm 1) to solve (4.51), which was pro-
posed by Münnich et al. (2012b) in the context of calibration. Therefore, we need to verify the
semismoothness (cf. Definition 3.2.4 and Qi and Sun, 1993) of Φ.

Theorem 4.3.5. The function Φ defined in (4.50) is semismooth.

Proof. According to Qi and Sun (1993), the minimum and maximum functions are strongly
semismooth. Since Proj[mh,Mh](x) = min

{
Mh,max{mh, x}

}
for x ∈ R, the projection is

semismooth as a composition of semismooth functions (Lemma 3.2.5, Item 5). In the same man-
ner, ATi n(λ, β)− bi (i = 1, . . . , q2) and min{−(DT

j ϕ(n∗)− cj), βj} (j = 1, . . . , q3) are semis-
mooth. Then, since all components of Φ are semismooth (and are also Lipschitz-continuous),
Φ is semismooth due to Item 3 of Lemma 3.2.5.
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Finally, the application of the SSN method in solving MMDopt and MMDopt.reg with a weighted
sum scalarization (4.39) is possible. Due to Theorem 3.2.7, the nonlinear system of equations
in (4.50) converges superlinearly to the unique optimal solution (λ∗, β∗) if the elements of the
B-subdifferential H ∈ ∂BΦ(λ∗, β∗) is regular. In applying Theorem 4.3.4, the unique opti-
mal solution of the H-dimensional problem (4.39) can be computed via solving the (q2 + q3)-
dimensional problem (4.49). To summarize, the allocation problem of dimension H is solved
using a significantly lower dimensional compensatory problem given by (4.50). Due to the dif-
ferent structure of building the Jacobian for Φ(λ) in the MMDopt case (q3 = 0) and for Φ(λ, β)
in the MMDopt.reg case, the appropriate semismooth Newton algorithms are separately imple-
mented and are called SSN and SSN.reg respectively.

In the practical applications, two assumptions need to be satisfied in order to achieve a robust
convergence of the SSN and SSN.reg methods. On the one hand, the initial iterate (λ0, β0)
needs to be close enough to the solution and on the other hand, all H ∈ ∂BΦ(λ∗, β∗) must be
regular. To guarantee this, we propose a range of procedures that can optionally be included
before and within the iterations:

1. The initial value for λ is inherited from the box-constrained optimal allocation of Mün-
nich et al. (2012c), computed by a fixed-point iteration.

2. Due to the different scales of the first part of equationsAn(λ, β)−b and the second part of
the equations min{−(Dϕ(n(λ, β))− c), β}, the equations need to be standardized before
the iteration. This supports a similar scale of the components of the Newton update as
well as a good condition of the elements of the B-subdifferential of Φ, which has to be
computed in each iteration.

3. A preconditioned element of the B-subdifferential of Φ facilitates a good condition of the
linear system in the Newton step.

4. An Armijo step-size strategy (see Algorithm 2) prevents step-sizes that are too large
within the iterations.

Since stratum-specific sample sizes need to be integer numbers (a fraction of a person cannot
be drawn in a sample), in general the results of SSN need to be rounded. Therefore, a simple
rounding strategy is suggested in Algorithm 3, which leaves the sum of all stratum-specific
sample sizes unchanged. For a more detailed discussion of the integrity of the solutions, we
refer to Subsection 4.6.7.

Algorithm 3 Smart rounding with unchanged sum (smart.round)

Input: Vector n ∈ RH
+ with real numbers and ns = ∑H

h=1 nh ∈ N
compute ñ = bnc
compute η = n− ñ ∈ RH

compute δdiff = ∑H
h=1 ηh

select δdiff components j ∈ Comp ⊆ {1, . . . , H}, which correspond to biggest values of η
set ñj ← ñj + 1 ∀j ∈ Comp

Return: Solution n← ñ
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4.4 Algorithmic solution depending on decision-making
function

In many practical applications, the decision-maker will likely use a decision-making function to
choose a specific justifiable optimal multivariate allocation. Thus, the computation of the whole
Pareto frontier of the underlying vector-optimization problem

(VP) min
n∈X

F (n) :=
(
F1(n), . . . , Fq1(n)

)
(4.54)

is sufficient, as described in Section 4.3. In a second step, the decision-maker needs to choose
one of the Pareto optimal solutions that is considered preferable. To select the preferable Pareto
optimal solution, the decision-maker will likely rely on certain decision-making functions.
Some of these have also been introduced as scalarization techniques in Subsection 4.2.3. In
particular, a p-norm of the objectives (4.26) and a min-max approach (4.27) are commonly
used, which are both consistent with the theory of multi-criteria optimization presented in
Subsection 3.3.1. The higher p is, the more attention is given to the objectives with higher
values. Depending on the choice of the standardization technique presented in Section 4.2.2,
these values correspond with variances (without standardization), coefficients of variation ((cv)-
standardization), or relative losses of accuracy compared to optimal univariate allocations ((opt)-
standardization). The effects of different p-norms are demonstrated in the following example.

Example 4.4.1. This example shows the different solutions of the multi-objective optimization
problem, which is scalarized by a p-norm:

min
n∈[1,10]

∥∥∥∥(F1(n), F2(n)
)T ∥∥∥∥

p

with the two selected functions (no variance functions, for illustration only)

F1 : R→ R : n 7→ (n− 4)2 + 3 and F2 : R→ R : n 7→ 100
n+ 2

on the closed feasible set n ∈ [1, 10]. Figure 4.1 shows that, if p increases, the solution (rep-
resented as a red dot) approaches the intercept point of F1 and F2. In that regard, the Pareto
optimal solutions are illustrated in blue. For the min-max approach, the solution would be the
intercept point. Thus, the higher the value of p, the more attention is paid to reduce the highest
value of the objectives.

Figure 4.1: Example using the p-norm as decision-making function.
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Figure 4.1 shows the possibly high influence of the scalarization technique on the solution of
the problem. However, with the exception of p = 1 the structure of the p-norm scalarized
problem

(P.OP) min
n∈X

q1∑
i=1

Fi(n)p, (4.55)

disables the highly efficient solution strategy applied to the weighted sum scalarized problem

(Ws.OP) min
n∈X

q1∑
i=1

wiFi(n) (4.56)

via the SSN algorithm, which was detailed in Section 4.3. More precisely, Lemma 4.3.3 is not
fulfilled due to the non-separability of the objective function of the p-norm scalarized problem
(P.OP). Other possible solvers for the non-separable optimization problem (P.OP) are inefficient
in general, as they do not make use of a strategy to reduce the dimension of the KKT-system
to (q2 + q3), which is generally significantly lower than the number of strata H and is also
independent of H .

In the following, an alternative solution strategy for p < ∞ is presented for the p-norm scalar-
ized problem (P.OP) based on the algorithmic solver of the weighted sum scalarized problem
(Ws.OP) in Section 4.3. The strategy relies on a connection of (P.OP) and (Ws.OP), which is
used to significantly shrink the set of feasible solutions for (P.OP). In addition, we show that the
alternative strategy is also applicable to solve the min-max problem (i.e. p =∞) with a certain
precision.

In a first step, we need to prove a property of strictly convex functions with a strictly positive
image set. Lemma 3.3.16 and Theorem 3.3.17 show that solving (Ws.OP) for all possible com-
binations of weights (wi ≥ 0, ∑q1

i=1wi = 1) yields all Pareto optimal solutions of the original
problem (VP). Their proofs are based on the strict convexity of the components of F , namely
Fi (i = 1, . . . , q1), and the convexity of the bounded feasible set X (see Subsection 4.2.1).
Using these properties, the following lemma holds for a general real-valued function f .

Lemma 4.4.2. Let X ⊆ RH
+ . Let the strictly convex function f : X → R+ be twice continu-

ously differentiable with a strictly positive image space (i.e. f(n) > 0 ∀n ∈ X ). Then, fp is
also strictly convex for an integer number p ≥ 1.

Proof. Since f is strictly convex, the Hessian ∇2f(n) is positive definite for all n ∈ X . Due to
the power gradient rule, the gradient of fp is given by

∇fp(n) = pfp−1(n)∇f(n).

Then, the following equation holds for the hessian of fp:

∇2fp(n) = p(p− 1)fp−2(n)∇f(n)(∇f(n))T + pfp−1(n)∇2f(n).

To show that∇2fp(n) is positive definite on X , let z ∈ X . Then

zT∇2fp(n)z = p(p− 1)fp−2(n)︸ ︷︷ ︸
≥0

zT
(
∇f(n)(∇f(n))T

)
z︸ ︷︷ ︸

≥0 (∗)

+ pfp−1(n)︸ ︷︷ ︸
>0

zT∇2f(n)z︸ ︷︷ ︸
>0

> 0.
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The expression (∗) holds, as∇f(n)(∇F (n))T is a rank-1 matrix and is therefore positive semi-
definite. Thus, the hessian ∇2fp(n) is positive definite for all n ∈ X , which completes the
proof.

The elements of the image space of the strictly convex functions Fi defined in (4.21) are strictly
positive for all i = 1, . . . , q1, since variances or coefficients of variation are strictly positive
in general. Consequently, F p

i is also strictly convex for p ≥ 1 due to Lemma 4.4.2. Thus, the
relationship between (VP) and (Ws.OP) that solving (Ws.OP) yields all Pareto optimal solutions
of (VP) can be similarly applied to the p-norm scalarized problem (P.OP) and the corresponding
vector-optimization problem

(VP.P) min
n∈X

(
F1(n)p, . . . , Fq1(n)p

)
. (4.57)

For (VP) and (Ws.OP), the connection between solving all (Ws.OP) problems and the Pareto
frontier of (VP) has been proved in Lemma 3.3.16 and Theorem 3.3.17. Accordingly, the so-
lution of the p-norm scalarized problem (P.OP) is one Pareto optimal solution of (VP.P), since
(P.OP) can be expressed as a weighted sum scalarized (VP.P) problem and equal weights.

Moreover, the Pareto frontier of (VP) is equal to the Pareto frontier of (VP.P). This is because
of the equivalence

min
n∈X

Fi(n) ⇔ min
n∈X

Fi(n)p, (4.58)

which holds due to strict convexity and strict positiveness of Fi as well as the convexity and
boundedness of X . Thus, the solution of the p-norm scalarized problem (P.OP) is an element of
the Pareto frontier of the original multi-criteria optimization problem (VP), which is illustrated
in Figure 4.2. This fact offers the opportunity to shrink the feasible set X of the p-norm scalar-
ized problem (VP.P) to the set of Pareto optimal solutions of the original multi-criteria problem
(VP), which is given by

XOPT :=
{
n ∈ X : n ∈ RH

+ is Pareto optimal solution of (VP)
}
. (4.59)

(VP) min
n∈X

(
F1(n), . . . , Fq1(n)

)
⇐⇒ (Ws.OP) min

n∈X

q1∑
i=1

wiFi(n)

∀wi ∈ [0, 1],
∑
wi = 1

⇐
⇒

=⇒

(VP.P) min
n∈X

(
F1(n)p, . . . , Fq1(n)p

)
⇐= (P.OP) min

n∈X

q1∑
i=1

Fi(n)p

(“⇐⇒” means, that the sets of optimal solutions is equal)
(“=⇒” means, that the optimal solution is element of the set of optimal solutions)

Figure 4.2: Connection between multi-objective problems and scalarized problems.

Hence, if the whole set of Pareto optimal solutions XOPT of (VP) is computed via the SSN
algorithm (see Algorithm 1) with the solution strategy presented in Section 4.3, only the specific
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element which is the minimal solution of (P.OP) has to be determined in XOPT. Each element
of XOPT corresponds to a specific vector of weights w ∈ [0, 1]q1 with

∑q1
i=1wi = 1. Hence, only

the combination of weights, which is assigned to the optimal solution of the p-norm scalarized
problem (P.OP) has to be determined.

To determine the combination of weights assigned to the optimal solution of the p-norm scalar-
ized problem (P.OP), we propose an iterative solver based on a projected inexact quasi-sub-
gradient method (GTM). In that regard, the iterates of the method are the weights correspond-
ing to the elements of the Pareto frontier of the original multi-criteria problem (VP). Its Pareto
frontier is given by

YOPT :=
{(
F1(n), . . . , Fq1(n)

)T
∈ Rq1 : n ∈ XOPT

}
(4.60)

as a subset of the image space Rq1
+ . The major advantage of the GTM algorithm compared to the

direct solving of (P.OP) is the dimension of the feasible set of the underlying problem. Since
the iterates are the weights w ∈ [0, 1]q1 of (Ws.OP) and q1 is small (e.g. having values of about
q1 = 3), the computational burden is significantly reduced compared to direct solvers, which
would have to deal with the high dimension H and the non-separability of problem (P.OP).

To apply GTM to solve the p-norm scalarized problem (P.OP), some preliminary studies have to
be considered with regard to the Pareto frontier YOPT of the original problem (VP). As proved
in Lemma 3.3.16, the epigraph C+(F ) of F is convex. By applying Definition 3.3.6 and the
argumentation in the proof of Theorem 3.3.9, we can define a hyperplane

H
(
ỹ(w)

)
:=
{
x ∈ Rq1 : w̃T

(
x− ỹ(w)

)
= 0

}
(4.61)

for each Pareto optimal solution ỹ(w) ∈ YOPT with the condition

ỹ(w) ∈ H
(
ỹ(w)

)
∩ YOPT (4.62)

as a tangent to YOPT (see Figure 4.3). Thus, w̃ ∈ Rq1 is the normal vector to H(ỹ(w)), which
corresponds with the vector of weights w associated with the Pareto optimal solution ỹ(w)
(i.e. w̃ = ηw, η > 0; cf. Craft et al., 2006, p. 3401 and Bokrantz and Forsgren, 2013, p.
379). Moreover, the Pareto frontier here is a subset of the boundary of the convex epigraph of
F defined by F (X ) +R

q1
+ , which generally only holds under convexity assumptions.

F11 2 3 4 5 6 7

F2

1

2

3

4

0

H
(
ỹ(w)

)ỹ(w)

w̃ = ηw

YOPT

image space: Y := F (X ) =
(
F1(X ),F2(X )

)

F (X ) +Rq1
+Y

Figure 4.3: Pareto frontier YOPT of (VP) for q1 = 2.
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To apply a GTM algorithm to solve the p-norm scalarized problem (P.OP), we define the func-
tions

Gi : Rq1
+ → R+, w 7→ Fi

(
n(w)

)
= yi(w) (i = 1, . . . , q1). (4.63)

These functions depend on the weights of (Ws.OP), where n(w) ∈ XOPT is the Pareto optimal
solution of (VP) associated with the weights w in (Ws.OP). Moreover, yi(w) is the component
i of the corresponding element belonging to the Pareto frontier, i.e. (y1(w), . . . , yq1(w))T ∈
YOPT. Thus, functionGi maps each combination of weights to the corresponding objective value
Fi
(
n(w)

)
= yi(w), which is an element of the Pareto frontier of the weighted sum scalarized

problem (Ws.OP). Using (4.63), we can define the function

Gp : Rq1
+ → R+, w 7→

q1∑
i=1

Gp
i (w) =

q1∑
i=1

Fi
(
n(w)

)p
=

q1∑
i=1

yi(w)p (4.64)

as the sum of the components to the power of p of the elements of the Pareto frontier of (VP)
depending on the weights of (Ws.OP). It has to be noted here that each evaluation ofGp requires
the solution of one (Ws.OP)-problem using the SSN algorithm, in particular

yi(w)p = Fi
(
n(w)

)p
= Fi

(
arg min
n∈X

q1∑
i=1

wiFi(n)
)

for all i = 1, . . . , q1. (4.65)

Overall, we have shown that the solution of the H-dimensional p-norm scalarized problem
(P.OP) is equivalent to the solution of the q1-dimensional problem

min
w∈[0,1]q1

Gp(w) =
q1∑
i=1

Fi
(
n(w)

)p
s.t.

q1∑
i=1

wi = 1.
(4.66)

In looking at problem (4.66), it is an optimization problem with a not necessarily differentiable
objective function and a convex feasible set

W :=
{
w ∈ [0, 1]q1 :

q1∑
i=1

wi = 1
}
. (4.67)

An intuitive approach to solve problem (4.66) is to solve (Ws.OP) for a high resolution of the
weights (e.g. up to three decimals) and choose the solution n(w∗) ∈ RH

+ which is minimal for
Gp. Such an enumerative approach has the major disadvantage in that it requires a huge compu-
tational burden. For a resolution of the weights of 0.002 and q1 = 3, the problem (Ws.OP) needs
to be solved 125 751 times. Moreover, tests have shown that this high computational effort is
still accompanied with a not negligible rounding error.

To omit an enumerative strategies, GTM is developed to utilize a different approach based on a
descent algorithm. Generally, descent algorithms are given by an iterative procedure

wk+1 = wk + αkd
k, (4.68)

where dk ∈ Rq1 is a descent direction at the iterate wk, and αk is a predetermined step-size
in iteration k (cf. Spellucci, 1993, p. 97). One of the most prominent examples of a descent
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algorithm is the gradient method for continuously differentiable functions, where the descent
directions are determined by the negative gradient (cf. Ruszczynski, 2006, pp. 218 ff.). Since
properties such as Lipschitz-continuity and differentiability are not given or known for Gp and
the feasible set of (4.66) is bounded, the application of a classical gradient method is therefore
not possible. Instead, the use of a projected subgradient method is possible, with this method
given as

wk+1 = ProjW
(
wk + αkd

k
)
, (4.69)

with dk = −‖sk‖−1sk, and sk is an element of the B-subdifferential of Gp(wk) (cf. Geiger
and Kanzow, 2002, pp. 366 ff. and Algorithm 6.50). However, the subgradient of Gp is
not given explicitly since each evaluation of Gp requires the solution of one (Ws.OP)-problem.
Alternatively, a subgradient sk at the iterate wk can be approximated by a hyperplane containing
q1 surrounding points, as shown in Figure 4.4. Thus, the GTM algorithm may be characterized
as an inexact projected subgradient method. Nevertheless, we can only assume convergence, if
Gp would be a convex function with regard to the weights w. To weaken this assumption Hu
et al. (2015) proposed such methods for the case where Gp is required to be quasi-convex and
proved convergence results. Under this circumstances, an inexact projected quasi-subgradient
method can be applied for (4.69), in which the descent direction is computed by

dk = −
(
‖s̃k‖−1s̃k + rk

)
. (4.70)

In that regard, s̃k is an element of the so-called νk-quasi-subdifferential ∂∗νkG
p(wk) given by

∂∗νkG
p(wk) :=

{
z : zT (u− wk) ≤ 0 ∀u ∈ {v ∈ Rq1 : Gp(v) ≤ Gp(wk)− νk}

}
(4.71)

with a certain noise rk ∈ Rq1 and error νk ∈ R in iteration k. Due to the highly technical
level, we will not present the theory of Hu et al. (2015) in greater detail in this thesis. Indeed,
this is not necessary for our settings, given that we interpret the noise rk and the error νk as
the deviation of the approximated descent direction sk from the (non-computable and therefore

Algorithm 4 Inexact projected quasi-subgradient method GTM for solving MMDopt (p 6= 1)
Input: Choose a high resolution of weights (e.g. 0.0001), choose a starting combination

of weights w0 ∈ [0, 1]q1 , set k = 0 and d0 > tol.
while ‖dk‖ ≤ tol

Compute q1 combinations of weights w(1), . . . , w(q1) ∈ [0, 1]q1 adjoining wk.
Solve (Ws.OP) for w(1), . . . , w(q1); solutions are given by n(w(1)), . . . , n(w(q1)) ∈ RH .
Compute (q1 − 1)-dimensional hyperplane in Rq1

+ , which contains the points
Gp
(
n(w(1))

)
, . . . , Gp

(
n(w(q1))

)
∈ Rq1 .

Compute dk = −‖sk‖−1sk, where sk is an approximation of the element s̃k of the
νk quasi-subdifferential ∂∗νkG

p(wk) of Gp(wk) with the noise rk and error νk.
Compute an appropriate step-size αk > 0 depending on dk.
Compute the next solution wk+1 = wk + αkd

k.
end while

Return: Solution n∗ = n(wk).
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only theoretical) element s̃k ∈ ∂∗νkG
p(wk). We note, that the approximated descent direction

sk is computed by the q1 surrounding points (see Figure 4.4). Following this, a pseudo-code
of GTM is shown in Algorithm 4. It starts with an initial combination of weights w0 ∈ W with
F (n(w0)) ∈ Yopt. Thereafter, in each iteration k the gradient of Gp in wk is approximated by
q1 surrounding dots. In a second step, an appropriate step-size αk > 0 is determined. Then, the
iterate wk is updated. The algorithm stops, if a predefined tolerance is reached.

For a graphical illustration of GTM for q1 = 3 and variable dummies V1,V2, and V3, we refer to
Figure 4.4, where five iterations (It.) of GTM are plotted exemplarily. The triangle represents the
space of all combination of weights. Each grey dot represents one combination of weights with
a scaling resolution of 0.1. The weight for one specific variable is marked on the respective
axis. Since the weights need to sum up to 1.0, this results in 66 combinations of weights. Thus,
if the value of Gp(w) is assigned to the respective dot and is illustrated by a related color, the
triangle can be interpreted as a heatmap of Gp depending on the weights w.
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Scheme of GTM algorithm

Figure 4.4: Iterative GTM method to solve (P.OP) for q1 = 3.

In general, a projected subgradient method converges to a local optimum of the objective func-
tion. Under the assumption of quasi-convexity for the function Gp depending on the weights w,
some global convergence results for GTM can be stated in analogy to Hu et al. (2015), which are
dependent on the sequences of the noises {rk}, the errors {νk}, and the step-sizes {αk}. In a
first step, the quasi-convexity of Gp is proved in the following lemma.

Lemma 4.4.3. The function Gp defined in (4.64) is quasi-convex on the convex set W defined
in (4.67) for p ≥ 1.

Proof. Due to Definition 3.1.4, we need to prove that for any w, u ∈ W and any α ∈ [0, 1]

Gp
(
αw + (1− α)u

)
≤ max

(
Gp(w), Gp(u)

)
.

Without loss of generality, let Gp(u) ≥ Gp(w). The corresponding points of the Pareto frontier
of the weights w and u are given by y(w), y(u) ∈ YOPT. As

(
αw + (1 − α)u

)
describe the

connecting line between w and u, the following equation holds:(
αw + (1− α)u

)
∈

q1×
i=1

[
min{wi, ui},max{wi, ui}

]
.
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Specifically, the connection line is located in the q1-dimensional rectangle defined by the
component-wise minima and maxima ofw and u. Since the epigraphC+(F ) of F is convex (see
Lemma 3.3.16) and its boundary contains the Pareto frontier YOPT, the Pareto frontier describes
a convex curve in the image space

(
F1(X ), . . . , Fq1(X )

)
of the multi-criteria problem (VP) (see

Figures 4.3 and 4.5 for the case q1 = 2). Thus, the connecting line between y(w) and y(u) lies
above YOPT. Each point of the connecting line can be characterized by µy(w) + (1 − µ)y(u)
with µ ∈ [0, 1]. Moreover, if a ≤ b, it follows that ap ≤ bp for some scalar values a, b ≥ 0.

Then, there exist δ ≥ 0 and a specific µ ∈ [0, 1] such that the following holds:

Gp
(
αw + (1− α)u

)
=

q1∑
i=1

Fi

(
n
(
αw + (1− α)u

))p
(4.72)

≤
( q1∑
i=1

Fi

(
n
(
αw + (1− α)u

))p)
+ δ (4.73)

=
( q1∑
i=1

µFi
(
n(w)

)p
+ (1− µ)Fi

(
n(u)

)p)
(4.74)

= µGp(w) + (1− µ)Gp(u) (4.75)
≤ µGp(u) + (1− µ)Gp(u) (4.76)
≤ Gp(u). (4.77)

The step from (4.73) to (4.74) holds, since the addends of (4.74) define a specific point on
the connecting line between the elements of the Pareto frontier y(w) and y(u). This is fully
determined by the choice of µ, as illustrated in Figure 4.5 for q1 = 2. The step from (4.75) to
(4.76) holds due to the assumption Gp(u) ≥ Gp(w). Thus, we have shown the quasi-convexity
of Gp for p ≥ 1.

F11 2 3

F2

1

2

0

YOPT

y(w)

y(u)

y(αw + (1− α)u) µy(w) + (1− µ)y(u)
δ

w

u

αw + (1− α)u
F2(n(w))

F2(n(u))

F2(n(αw + (1− α)u))

F1(n(w)) F1(n(u))
F1(n(αw + (1− α)u))

Figure 4.5: Illustration of Pareto frontier YOPT of (VP) for q1 = 2.

Since the quasi-convexity of Gp is proved in Lemma 4.4.3, a closer look to theoretical results
concerning the choice of the step-size parameters αk is necessary to present convergence results
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for GTM. As each functional evaluation of Gp requires the solution of an optimization problem
(Ws.OP), the elements of the subgradient ofGp(wk) are not explicitly given. As a consequence,
this does not permit the application of a common step-size rule, such as the Armijo-rule (cf.
Algorithm 2), which is based on several function evaluations of Gp. Therefore, other strategies
needs to be considered in determining the step-size parameters αk for each iteration.

Commonly, strategies for the determination of the step-size parameters are given for the gen-
eral setting of descent methods for the minimization of the Fréchet-differentiable function
f : Rq1 → R on a feasible set X . In this sense, a vector d̃k is called a descent direction if
∇f(xk)T d̃k ≤ 0 (cf. Sachs and Sachs, 2011). For the inexact gradient method, the steepest
descent direction is computed by the negative gradient of f(xk) with a perturbation rk, i.e.

d̃k = −∇f(xk) + rk. (4.78)

In order to determine the next iterate

xk+1 = xk + αkd̃
k, (4.79)

an appropriate choice of the step-size parameter αk guarantee convergence and may signifi-
cantly increase the convergence rate. For the differentiable case, some suitable strategies are
proposed by Sachs and Sachs (2011) for general Fréchet-differentiable functions f : X → R

for X ⊆ Rq1 , which still guarantee certain convergence statements. To summarize the state-
ments of Sachs and Sachs (2011, Theorem 2) and Sachs and Sachs (2011, Corollary 1), an
inexact gradient method given by

xk+1 = xk + αkd
k with dk = −∇f(xk) + rk (4.80)

for the minimization of the Fréchet-differentiable function f on the feasible set X converges, if
(besides some additional assumptions) the sequence of step-size parameters αk for all iterations
satisfies the following conditions:

∞∑
k=1

α2
k <∞ and

∞∑
k=1

αk =∞. (4.81)

For a more detailed analysis, we refer to Sachs and Sachs (2011).

Nevertheless, differentiability of the objective function Gp is not given in our case. Thus, con-
vergence results for GTM need to consider this fact. Hu et al. (2015) presented some convergence
results for GTM for the solution w∗ of problem (4.66) with quasi-convex objective function Gp

under the following assumptions.

(A1) The feasible set W of problem (4.66) is compact.

(A2) Gp satisfies the Hölder condition of order p̄ > 0 with modulus κ > 0 on Rq1 , i.e.∥∥∥Gp(w)−Gp(w∗)
∥∥∥ ≤ κ

∥∥∥w − w∗∥∥∥p̄ for all w ∈ Rq1 .

(A3) The noise and errors are bounded, i.e. there exist some B, ν ≥ 0 such that

‖rk‖ ≤ B for all k ≥ 0 and lim sup
k→∞

νk = ν.
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Using these assumptions, two convergence results are given in Hu et al. (2015) for two different
step-size strategies.

Theorem 4.4.4. Let assumptions (A1) to (A3) hold. Then, for a sequence {xk} generated by
the GTM algorithm with the constant step-size αk ≥ 0, we have

lim inf
k→∞

Gp(wk) ≤ Gp(w∗) + κ
(
Bd+ αk

2 (1 +B)2
)p̄

+ ν,

where ‖wk − w‖ ≤ d for all k ≥ 0 and w ∈ W .

For the proof of Theorem 4.4.4, we refer to Hu et al. (2015, Theorem 3.1).

Theorem 4.4.5. Let assumptions (A1) to (A3) hold. Then, for a sequence {xk} generated by
the GTM algorithm with a sequence of step-sizes {αk} given by

αk > 0, lim
k→∞

αk = 0 and
∞∑
k=1

αk =∞,

we have
lim inf
k→∞

Gp(wk) ≤ Gp(w∗) + κ(Bd)p̄ + ν.

For the proof of Theorem 4.4.5, we refer to Hu et al. (2015, Theorem 3.2).

Theorems 4.4.4 and 4.4.5 show convergence for problem (4.66) to the optimal value within
some tolerance given in terms of errors νk and noises rk and depending on the step-size strategy.
SinceW is bounded and closed, and therefore compact, a convergence of the GTM algorithm can
be assumed under the above mentioned assumptions (A1) to (A3) if the approximations of the
descent directions sk correspond to the theory of the νk-quasi-subdifferential ∂∗νkG

p(wk) and
its parameters νk and rk. To underpin the analytically proved global convergence of GTM under
specific assumptions, a global convergence has been observed in all of the tested applications
without a specific predetermination of the assumptions of Theorems 4.4.4 and 4.4.5.

A detailed analysis of the performance of GTM is given in the application study in Section 4.6.6.
The accuracy of the optimal allocation n∗ = n(w∗) strongly depends on two factors, namely
the resolution of the weights while solving (4.66) with the GTM method and also the provided
tolerance while solving problem (Ws.OP) with the SSN method. To avoid intolerable high ap-
proximation errors, both values should be chosen small enough. The practical applicability of
this approach is tested in Section 4.6.3. It turns out that for the common case q1 = 3, approx-
imately 20 iterations are required. Thus, solving a p-norm scalarized multivariate allocation
problem requires approximately 60 solutions of the weighted sum scalarized problem via the
SSN method. Since this method is extremely fast, the performance of the GTM is also very effi-
cient. A detailed analysis of the numerical performance is given in Section 4.6.6.

The proposed method GTM is only valid for p < ∞. The search for an appropriate and com-
putationally efficient solution strategy for the min-max case p = ∞ turned out to be more
challenging. The Lagrangian approach proposed for the weighted sum case (or p = 1) in
Section 4.3 also failed due to the non-differentiability of the objective function (4.27). Thus,
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Theorem 4.3.1 of the optimality conditions does not hold. Nonetheless, a quite accurate approx-
imation of the solution of the min-max approach can be computed by GTM if p is large enough.
This is due to the fact that the solution of a p-norm scalarized MMDopt converges to the solution
of the min-max scalarized MMDopt for p→∞ (cf. Lin, 2005). Several simulations with various
scenarios and parameters have shown that a choice of p = 128 leads to approximations, which
are generally precise enough for almost all real applications.

4.5 Summary of methods

Prior to the analysis of the developed optimal multivariate and multi-domain allocation method
in an extensive application study in Section 4.6, the methods and algorithms are summarized in
the following.

In general, the MMDopt method is a very flexible method to apply an optimal allocation. In a
first step, it can be selected whether the optimal allocation should comply with box-constraints
for the stratum-specific sample sizes and quality restrictions for regional estimators. There-
after, one of the two standardization techniques presented in Subsection 4.2.2 ((cv)- or (opt)-
standardization) has to be chosen. In the next step, it is left to the user to select a characterization
of the optimality (see Section 3.3) to solve the multi-criteria optimization problem of the form
(4.5). In the context of this work, scalarization approaches are presented in Subsection 4.2.3.
On the one hand, a weighted sum scalarization can provide the prerequisite for the determina-
tion of the entire Pareto frontier of the original problem. This approach enables the calculation
of the set of all optimal solutions according to the definition of Pareto optimality presented in
Subsection 3.3.2. In order to obtain a specific optimal allocation, it can be chosen between
p-norm scalarization and min-max scalarization. The choice of the parameter p ∈ N is based
on the preferences of the user.

Beside the influence on the solution of the allocation problem, the selection of the scalarization
technique also determines the applicability of the corresponding solution algorithms. In gen-
eral, it is always possible to use a standard solver for restricted optimization problems, which
are briefly described in Section 3.1. In order to avoid the direct solution, which may be ex-
pensive in high dimensions (i.e. for problems with a high number of strata), several alternative
solution strategies are proposed in this thesis depending on the choice of the scalarization tech-
nique. Using a weighted sum scalarization, the original problem can be transformed into a
significantly lower dimensional nonlinear system of equations by transforming the optimality
conditions. The resulting lower dimensional problem can then be solved in a time-efficient way
with the semismooth Newton method (SSN) presented in Section 3.2. Necessary conditions for
this strategy are the separability and convexity of the objective function of the standardized and
scalarized problem as well as the convexity of the feasible set. In addition, the similarity of
the structures of the objective function and the functions of the regional quality restrictions is
inevitable; both the objective function and the functions of the restrictions are built by variance
functions (see Section 4.3). By using a p-norm scalarization, the separability of the objective
function is not given, so that a direct application of the SSN method is not possible. However, the
discussion in Section 4.4 has shown that the p-norm scalarized problem can be traced back to
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the weighted sum problem. Hence, the application of the SSN method is still possible. This ap-
proach is only verifiable due to the strict convexity and strict positivity of the variance functions.
Thus, the p-norm scalarized problem can also be solved efficiently with a linear dependency be-
tween the computing time and the dimension H of the original problem by using a projected
inexact quasi-subgradient method (GTM). When using the min-max scalarization instead, the
scalarized objective function loses the property of the continuous differentiability. Thus, the
presented methods are not applicable. However, detailed simulations have shown that, by se-
lecting a high value of p in the p-norm scalarization, a solution for the min-max scalarization is
generally precise enough for almost all applications.

Finally, it can be summarized that the presented methods represent different ways to solve
optimal multivariate and multi-domain allocation problems with several constraints in a time-
efficient way by exploiting the specific structure of the problems. Besides, a linear dependency
between the computation time and the dimension H of the original problem (number of the
strata of the sampling design) can be observed. As the specific structures are exploited, the
applicability of the developed approaches has some limits.

For the sake of clarity and comprehensibility, the methods and algorithms are illustrated in a
graphical overview in Figure 4.6. In that regard, blue boxes indicate statistical methods, orange
boxes represent numerical algorithms, and green boxes show the resulting output.
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Figure 4.6: Summary of the optimal multivariate and multi-domain allocation method MMDopt.
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4.6 Application study and results

4.6.1 Framework

The application study is based on the synthetic RIFOSS dataset introduced in Section 2.6. We
consider the household structure and confine ourselves to the federal states of Hesse, North
Rhine-Westphalia, Rhineland-Palatinate, and Saarland. This leads to a population size of
11 121 631 households accommodating 30 077 329 individuals. The sampling design is based
on strata built as cross-classifications of sampling points (SMP – 784 regional areas) and classes
of household sizes (HHS – 8 classes). This results in 784 · 8 = 6 272 cross-classification strata,
which are simply called strata. In addition to the population (pop) estimates and stratum-
specific estimates, regional estimates are also evaluated for NUTS2-regions (NUTS2; 12),
NUTS3-regions (NUTS3; 121), and for the SMPs (SMP; 784). Both NUTS2- and NUTS3-
regions are unions of SMPs. The overall sampling fraction is fixed to 1%, i.e. the total sample
size is given by ns = 111 216. The lower bound for each cross-classification strata h is set
to mh = 2 (in order to ensure the computation of variances), the upper bound is set to the
stratum size Mh = Nh (in order to avoid an overallocation). The size distribution of the cross-
classification strata in terms of the number of included households is shown in Table 4.3, where
a strong homogeneity of the strata can be observed with regard to their size. The smallest stra-
tum consists of two and the largest one contains over 120 000 households, which complicates
the allocation.

Table 4.3: Quantiles of the size of the 6 272 cross-classification strata.

0% 20% 40% 60% 80% 100%

2 335 602 1 004 1 851 123 652

In the following evaluations, six variables are considered, which are split into auxiliary variables
(used for the allocation) and variables of interest. The stratum-specific totals and variances of
the auxiliary variables are assumed to be known at the sampling stage. By contrast, the values of
the variables of interest are unknown, as their estimation is the aim of the survey. The variables
household income per person (INC.PP), number of people over 65 (AGE7.7), and number of
children under 15 (AGE7.1) are used as variables of interest. The major goal is to gain accurate
total estimates for these variables at regional level as well as at population level. Generally,
good proxies for the stratum-specific variances are assumed to be known in advance and can
be used as input data for the allocation. In practice, these proxies may be gained in various
ways, such as by evaluating previous surveys, using obtainable register data, or using highly
correlated auxiliary variables. To meet this in an application framework, some proxies could be
computed under the consideration of certain trends and random perturbations in the variables
of interest. Alternatively, we prefer to use other variables (i.e. auxiliaries), which are pairwise
highly correlated with the variables of interest as input data for the allocation. On the one
hand, this allows a detailed analysis of the functionality of the developed allocation method
by comparing the accuracy of the estimates of the auxiliary variables. On the other hand, this



86 4 OPTIMAL MULTIVARIATE AND MULTI-DOMAIN ALLOCATION

ensures an extensive and realistic evaluation of the quality of the estimates of the variables
of interest in comparison to other allocation techniques. Therefore, the variables equivalized
disposable household income (EDI), value of pensions (PEN), and number of people under 20
(AGE4.1) are used as (auxiliary) variables for the MMDopt method (i.e. q1 = 3). Since their
stratum-specific variances are assumed to be known, these variables are used for the allocation
process (i.e. q1 = 3).

In order to achieve accurate estimates for the variables of interest, the auxiliaries and variables
of interest are pairwise highly correlated. In particular, their correlations are given by

• cor
(
PEN,AGE7.7

)
= 0.72,

• cor
(
EDI, INC.PP

)
= 0.97, and

• cor
(
AGE4.1,AGE7.1

)
= 0.92.

Besides these, the correlation between the three auxiliary variables are small, which is chal-
lenging on the one hand but helps to emphasize the advantages of MMDopt on the other hand. If
the three auxiliaries would be highly correlated, MMDopt yields similar results compared to an
optimal univariate allocation, i.e. the application of an optimal multivariate allocation method
such as MMDopt would be senseless. The correlation structures of the auxiliaries are shown in
Figure 4.7, where we make a distinction between correlations within strata, SMPs, NUTS3-,
and NUTS2-regions. Each dot in the boxplots represents the correlation within one specific
region. The correlations over the whole population are plotted as red vertical lines. Since the
correlations are located around zero and most often do not exceed values of ±0.2, we expect
strongly different optimal univariate allocations for each of the three variables. In such a case,
we suppose that the greatest improvements can be observed by applying the developed MMDopt
method. Nevertheless, as we see later, the usage of highly correlated variables will not lead to
disadvantages compared to other standard allocation techniques.
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Figure 4.7: Boxplots of the correlations of the auxiliary variables for the population (vertical red lines),
NUTS2, NUTS3, SMP, and strata.

To evaluate the results and analyze strengths and weaknesses of the developed method MMDopt,
we compare the results among others with the following allocation methods:

• prop proportional allocation,
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• uni.[var] optimal univariate allocation with box-constraints for variable [var], and

• Cmin minimal costs allocation, which is to minimize ns subject to variance
restrictions (in analogy to the first strategy of Dalenius, 1953; ns ≈ 111 216
is experimentally achieved by an adjustment of the restrictions).

Approaches of the type of Cmin are very common in practice, nevertheless the Cmin methods
completely neglect the minimization of variances or coefficients of variations, which is one of
the key points of MMDopt. As we will see in the analysis of the application, the minimization
of the variance of the total population estimator has indisputable advantages. The methods de-
noted with uni.[var] are based on the box-constrained optimal univariate allocation published
in Gabler et al. (2012), Münnich et al. (2012c), and Münnich et al. (2012a), where only one vari-
able is considered in the allocation process. This tends to be insufficient in some applications,
especially in modern surveys with conflicting aims.

We compare the HT estimates under various settings by means of the relative root mean squared
error (RRMSE). Since the design-based HT estimates are unbiased in stratified random sam-
pling per definition, the comparison of their RRMSEs is equivalent to the comparison of their
variances (Lohr, 2009, Chapter 2). In particular, the RRMSE of an estimator equals its rela-
tive standard deviation. Since the RIFOSS dataset is fully available, the values to be estimated
are known and will be used for the direct computation of the RRMSEs. Thus, a Monte-Carlo
simulation study can be omitted in this study.

As mentioned in Subsection 4.2.5, the method is also applicable for the GREG estimator by
adopting the objective functions. Nevertheless, this study focuses on HT estimates, since the
aim of the study is to compare various allocation strategies with one another without generat-
ing undesirable side effects. Some of the following figures and graphs contain relative values
that compare the RRMSEs, variances, or sample sizes of the developed methods in relation
to the case of an independent optimal univariate allocation (uni.[var]) of the three auxiliary
variables. This allows a straight comparison of advantages and disadvantage of MMDopt.

The application study is divided into several parts. The functionality of MMDopt concerning
the weighted sum optimal allocation is analyzed in Subsection 4.6.2. From there, the resulting
RRMSEs of population total and area-specific estimates are shown in dependence of the pre-
defined weights. Moreover, these results are assembled to build the whole Pareto frontier, as
proved in Subsection 4.2.4. The standardization methods (cv) and (opt) are compared among
one another in each setting. Subsequently, the different decision-making functions (namely
p-norms and the min-max approach) are compared in Subsection 4.6.3. The evaluations of
Section 4.4 enable solving these problems for various decision-making functions with the GTM
algorithm. Since the inclusion of quality restrictions for regional estimates is omitted up to this
point, the effects of these restrictions on various stratification levels (cf. (4.3)) are illustrated and
particularly compared with existing allocation methods in Subsection 4.6.4. A detailed sensi-
tivity and robustness analysis concerning inaccurate input data is presented in Subsection 4.6.5.
Finally, the numerical performance of the algorithms is investigated in Subsection 4.6.6. Due
to the conventions determined of Chapter 1, the results of the auxiliaries are generally shown as
plots with headers shaded in blue and green. By contrast, red and orange shades are chosen for
the variables of interest. Supplementary figures are additionally shown in the Appendix B.2.
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4.6.2 Weighted sum optimal allocation problem

In this subsection, we first focus on the weighted sum method with predefined weights. As il-
lustrated in Subsection 4.2.4, this strategy facilitates the computation of the whole set of Pareto
optimal solutions. In Figure 4.8, the RRMSEs of NUTS3-specific estimates are plotted for
ten selected combinations of weights for the auxiliary variables, which are used for the allo-
cation (for settings with (cv)- and (opt)-standardization). In Figure 4.9, the RRMSEs of the
corresponding estimates on NUTS3 level of the variables of interest are plotted.
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Figure 4.8: RRMSE of the NUTS3-specific total estimates for ten combinations of weights with (cv)-
and (opt)-standardization (auxiliaries).

The setting in row 4 corresponds to an equal weighting. In most cases, a stronger weighting
of a variable coincides with a lower RRMSE of the estimate for the NUTS3-specific total in
comparison to the equal weighting case. Since the auxiliaries are desired to be pairwise highly
correlated with the variables of interests, the statement holds for the auxiliaries as well as for the
variables of interest. Nevertheless, the connection between correlation structure and efficiency
is not a general statement, and it depends on a few factors, including the correlation structure
of the data. The settings in the row 1, 9, and 10 are equal to the optimal univariate allocations
with respect to one of the three auxiliary variables. The errors of the estimates for the other
variables are comparably high especially in these cases since they are assigned with a weight
of zero. This is a strong argument for the necessity of an optimal multivariate allocation. In
comparing the standardizations, (cv) and (opt) do not lead to significant differences. By using
the (opt)-standardization, a slightly more compensated error-increases (compared to the optimal
univariate allocations) over all variables and all NUTS3 regions can be observed than by using
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the (cv)-standardization. This can be seen by comparing row 4 with the optimal univariate
allocations in row 1, 9, and 10. In addition, the estimates of AGE4.1 are more efficient for
the (opt)-standardization, if a weight of greater than 0.0 is assigned to AGE4.1. This is due
to the high influence of the respective term in the objective function (see Table 4.2; the value
of AGE4.1 for the (opt)-standardization dominates). Results for stratification levels apart of
the NUTS3-regions (which have been plotted here exemplarily) follow similar patterns (see
Figure B.1 in the Appendix B.2).

The RRMSEs of the corresponding NUTS3-specific estimates of the variables of interest plotted
in Figure 4.9 follow similar patterns. This is mostly due to the high correlation between the
auxiliaries and the variables of interest. Thus, MMDopt is able to generate allocations which
allow for an accurate estimation of variables of interest that are fully unknown in the selection
process. In that regard, the driving force is their pairwise correlation with the auxiliaries. In
general, this statement also holds for the optimal univariate allocation. Nevertheless, if the
correlation between auxiliary variable and variable of interest in unknown, the user is not able
to presume the advantages gained by the optimal univariate allocation. Applying MMDopt, this
is rather given, because several auxiliaries are utilized in the allocation.
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Figure 4.9: RRMSE of the NUTS3-specific total estimates for ten combinations of weights with (cv)-
and (opt)-standardization (variables of interest).

In the following, the variances of the population total estimates are compared for all possible
combinations of weights with a scaling resolution of 0.1. Since the weights have to sum up to
1.0, this results in 66 combinations of weights. Solving the weighted sum scalarized MMDopt
problem (4.56) provides the opportunity to plot the whole Pareto frontier, even though this is
subject to the resolution of the weights. To illustrate this, the increase of the RRMSEs of the
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population total estimates for the auxiliaries is plotted relative to the RRMSE using an optimal
univariate allocation in the heatmaps in Figure 4.10 for the three auxiliary variables. The three
heatmaps on the left correspond to the (cv)-standardized results, while the ones to the right
correspond to the (opt)-standardization. Each dot represents one combination of weights. The
weight for one specific variable is marked on the respective axis. To facilitate the reading, each
variable and the values of its corresponding weight is plotted in the same color. In that regard,
the weight of a dot for one variable (for instance PEN) can be determined by going along that
connection line of the dot, which has the same color as the variable (red for PEN). The color of
the dot represents the relative increase of the RRMSE of the estimate of the variable stated in
the title of the respective plot.
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Figure 4.10: Relative increase of the RRMSE of the population total estimates under (cv)- and (opt)-
standardization for 66 combinations of weights for each auxiliary variable.
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As a consequence of the scaling resolution of 0.1, the dot which represents the equal weighting
w = (1/3, 1/3, 1/3) is not contained in the heatmaps. However, they can be approximated
by the surrounding dots (we refer to the quasi-convexity of the Pareto frontier proved in Sec-
tion 4.4). Dots with a (dark) blue color that corresponds to the lower end of the color scale are
favorable because they represent combinations of weights with a lower increase of the RRMSE
in comparison to the optimal univariate allocation. As an example, the smallest RRMSE for
variable EDI (heatmaps in row 1) can be located at the vertex where variable EDI is given the
full weight 1.00. The RRMSEs differ depending on the choice of the standardization strategy.

In analyzing the heatmaps, a full weight of 1.0 corresponding to an optimal univariate allocation
with respect to the respective variable yields the most accurate estimate of the population total
for the respective variable. In general, the smaller the weight, the higher the error-increase
becomes. For instance, the maximum RRMSE of the estimate of variable EDI can be located at
the vertex where AGE4.1 has the full weight 1.00. At that point, the RRMSE is approximately
55% higher in comparison to the optimal univariate allocation. In comparing the behavior of
the relative error-increases of the estimates of variable AGE4.1, a high error-increase of over
100% can be observed if a weight of 1.00 is assigned to EDI. In comparison, the error-increase
is more moderate (≈ 40%) if PEN has a full weight of 1.00. These values are not directly
accompanied by the correlation structures of the variables presented in Figure 4.7, where the
correlation between EDI and AGE4.1 exceeds the correlation between PEN and AGE4.1. This
observation shows that the behavior of optimal allocations is not directly comparable to the
correlation structure of the variables used for the allocation.

Similar to Figure 4.8, the setting with (opt)-standardization (right-hand side) results in slightly
more balanced error-increases. While the accuracy of the population estimate of AGE4.1 by
means of roughly equal weights is better when using the (opt)-standardization, it is poorer with
respect to the estimates of EDI and PEN. As the (opt)-standardization reduces the percentage
increases of AGE4.1, which may assume the highest values, it may be considered as more
balanced (see Table 4.2). This effect is investigated in detail in Subsection 4.6.3.

The structure of the heatmaps in Figure 4.11 is equivalent to Figure 4.10, whereas now the
cumulated error-increase of the total estimates of the three auxiliaries is plotted. The heatmap
for each standardization is derived by dividing the sum of the three respective heatmaps of
Figure 4.10 by the value of 3.0. Since the RRMSEs of the estimates of all considered variables
are contained, these heatmaps may give an impression of the overall quality of the allocation.
Nevertheless, they do not provide any information regarding the quality of the estimates for
the individual variables. In the case of (cv)-standardization, the best choice in the sense of a
low cumulated error-increase is an asymmetric weighting (PEN 0.2, EDI 0.2, AGE4.1 0.6). By
contrast, the setting with (opt)-standardization is more balanced, and thus the lowest cumulated
increase of RRMSEs can be reached by using roughly equal weights (PEN 0.4, EDI 0.3, AGE4.1
0.3).

Due to Theorem 3.3.15, each dot in the heatmaps represents the RRMSE of one Pareto optimal
solution (i.e. Pareto optimal vector of the stratum-specific sample sizes). To be precise, the
dots along the edges (where at least one weight is zero) are only weakly Pareto optimal, which
will not be decisive in the following analysis. The heatmaps for the variables of interest follow
similar patterns and are shown in Figure B.2. By combining the heatmaps of the three auxiliaries
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Figure 4.11: Relative cumulated increase of the RRMSE of the population total estimates under (cv)-
and (opt)-standardization for 66 combinations of weights (auxiliaries).

in one plot, we can display the Pareto frontier as a subset of a three-dimensional cube, which
is done in Figure 4.12. Each dot in the three-dimensional space represents the values of the
objective functions of one Pareto optimal solution relative to the optimal univariate allocations.
For this plot, the scaling resolution of 0.01 is chosen, resulting in 5 152 combinations of weights.
Each of the three axes represents the RRMSE-increase of the population total estimate of the
corresponding variable. The colors of the dots reflect the combination of weights (PEN red,
EDI green, AGE4.1 blue). For instance, a green dot belongs to a combination of weights, where
a high weight is assigned to EDI.

Figure 4.12: Pareto frontiers using the (cv)-standardization and (opt)-standardization.

The Pareto frontier is the set of all solutions of the underlying multi-criteria optimization prob-
lem (4.20), i.e. it contains the solution of the weighted sum scalarized problem (4.56) for all
combinations of weights (cf. Theorem 3.3.15). The difference in solving the weighted sum
scalarized MMDopt problem (4.56) using the (cv)- and the (opt)-standardization is the varying
choice of the standardization factors γi (i = 1, . . . , q1), which can be interpreted as a rescaling
of the weights (see Subsection 4.2.2). In other words, the only difference between (cv)- and the
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(opt)-standardization is the relation of another combination of weights to one specific Pareto
optimal solution, which is illustrated in the heatmaps in Figure 4.11. In that regard, the shape of
both Pareto frontiers in Figure 4.12 need to be equal for (cv)- and (opt)-standardization. Since
the elements are related to other combinations of weights, the color scheme of both graphs dif-
fers from one another, and the dots at the upper tail of the Pareto frontier are located closer to
each other when using the (opt)-standardization than when using the (cv)-standardization. This
again indicates a more balanced allocation if the (opt)-standardization is used. Nevertheless,
these observations are the consequence of the scaling resolution of the weights. Theoretically,
the Pareto frontiers are exactly the same sets for both standardizations. Moreover, the quasi-
convexity of the Pareto frontier (cf. Section 4.4) facilitates the approximation of the whole
Pareto frontier by an interpolation of the computed dots, even for comparably high scaling res-
olutions of the weights. This is focused on in Subsection 4.6.3.

The evaluation of the whole Pareto frontier offers valuable support for the decision-maker to
select the preferred solution among all efficient solutions. By using the weighted sum and by
calculating the Pareto frontier, the decision is based on a higher level of reliable information.
As the computation of the Pareto frontier requires the solution of many optimal allocation prob-
lems, it can only be realized in a practical time frame if efficient algorithms are used. The
evaluations of Subsection 4.6.6 show that our algorithms are fast enough to facilitate this anal-
ysis of the Pareto frontier for MMDopt, even for large problem instances.

To compare MMDopt with other techniques of optimal allocation, the RRMSEs of the population
total estimates are shown in Table 4.4, and the RRMSEs of the NUTS3-specific estimates for the
auxiliaries and variables of interest are plotted in Figure 4.13. In this case, the MMDopt scenarios,
computed with equal weights, are compared to both the univariate optimal allocations concern-
ing auxiliaries PEN, EDI, and AGE4.1, and the proportional allocation. The univariate cases
yield the most accurate estimates (underlined) for the optimized auxiliary variable as well as for
the highly correlated variable of interest. However, a further consequence is found, namely that
there are partly unacceptably inaccurate estimates for the other variables. By contrast, MMDopt
leads to a compensated or balanced efficiency between all auxiliaries and variables of interest.
This even holds for the population total estimates (Table 4.4), the NUTS3-specific estimates
(Figure 4.13), and the other stratification levels (see Figure B.3). The efficiency of MMDopt is
particularly demonstrated in Figure 4.13. MMDopt results in comparably small RRMSEs for

Table 4.4: RRMSE of population total estimates for selected allocation strategies (absolute values ·10−3).

Auxiliaries Variables of interest
PEN EDI AGE4.1 AGE7.7 INC.PP AGE7.1

MMDopt (cv) 7.16 6.35 4.12 4.85 7.16 5.28
MMDopt (opt) 7.29 6.60 3.79 4.84 7.51 4.84
uni_PEN 7.07 6.50 4.64 4.78 7.41 5.91
uni_EDI 8.32 6.00 7.22 6.55 6.53 9.12
uni_AGE4.1 8.87 9.44 3.39 5.46 11.67 4.19
prop 7.83 6.04 6.26 5.95 6.66 7.86



94 4 OPTIMAL MULTIVARIATE AND MULTI-DOMAIN ALLOCATION

the NUTS3-specific estimates of all considered variables. In looking at the three univariate
cases, there is at least one variable with a comparatively inefficient estimate. This statement
even holds for the proportional allocation. Thus, the efficiency with regard to MMDopt is more
balanced compared to the other techniques, which improves the overall quality of the results of
the survey.
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Figure 4.13: RRMSE of NUTS3-specific total estimates for selected allocation strategies (auxiliaries and
variables of interest).

4.6.3 Decision-making strategy

Up until this point, we focused on the weighted sum scalarized MMDopt for generating the whole
Pareto frontier. This is desirable from a theoretical point of view, since in this way each Pareto
optimal solution is computed. Nevertheless, in practice decision-makers need to select their
preferred solution. They may possibly make the decision on the visual basis of the heatmaps
in Figures 4.10 and 4.11 as well as the Pareto frontiers in Figure 4.12. An alternative to this
graphical-based decision-making strategy is the usage of a decision-making function, which
is closely related to the scalarization techniques in Section 4.2.3. With the usage of such a
function, the standardized variances are additively combined and then minimized. The most
common decision-making functions are the p-norms (4.26) and the min-max method (4.27).
Following the discussion in Section 4.2.3, the 1-norm as decision-making function for MMDopt
is equivalent to the weighted sum scalarized MMDopt with equal weights for all variables. As
addressed in Section 4.3, the weighted sum scalarized problem (and the 1-norm) can be solved
with the SSN method, which is not applicable for other p-norms. This is due to the lack of
separability of the objective function. However, the solution strategy of Section 4.4 based on
the relation between the weighted sum scalarized problem (Ws.OP) and the p-norm scalarized
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problem (P.OP) can be applied to solve the MMDopt for p-norm scalarizations in analogy to the
weighted sum scalarized MMDopt (see Figure 4.2). The corresponding GTM algorithm is given in
Algorithm 4.

In the following, we compare the results of the four decision-making functions, namely
1-norm, 2-norm, 8-norm, and 64-norm, for the (cv)-standardization as well as for the alter-
native (opt)-standardization. As pointed out before, the 1-norm is equivalent to the weighted
sum scalarization with equal weights.

In Figure 4.14, the relative increases of the RRMSEs of the population total estimates are shown
for the auxiliary variables using MMDopt and different decision-making functions in relation to
the corresponding optimal univariate allocations. Thus, a value of 1.0 corresponds to an estimate
that is as accurate as the estimate based on the optimal univariate allocation. As every optimal
univariate allocation is optimal with regard to the respective target variable, the RRMSEs of
the multivariate allocation need to be higher than or equal to the RRMSEs of the univariate
allocation. In the settings with (cv)-standardization, the error-increases are not well-balanced.
Even for p = 1, the allocations in the (cv)-standardization case are extremely focused on PEN,
whereas the other two variables are basically almost ignored. This is due to the different coeffi-
cients of variation tabulated in Table 4.2, where the relations

cv2(τ̂ StrRS
PEN ) > cv2(τ̂ StrRS

EDI ) and cv2(τ̂ StrRS
PEN ) > cv2(τ̂ StrRS

AGE4.1)

can be observed. In the min-max case (p → ∞), the error-increase of the estimate of variable
PEN is even equal to zero, which means that the optimal multivariate allocation is equal to the
optimal univariate allocation with respect to PEN in that case.
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Figure 4.14: Relative increase of RRMSE of the population total estimates depending on the decision-
making function (auxiliaries).

By contrast, we observe a well-balanced increase of the RRMSEs for the (opt)-standardization,
since the p-norm of the relative change of the RRMSEs compared to the optimal univariate
allocations is minimized. This results in a well-compensated allocation for all p-norms. In the
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case p = ∞, we obtain an almost equal increase of the RRMSE for EDI and AGE4.1, whereas
the increase of PEN is slightly smaller. A similar structure can be observed for the variables of
interest in Figure 4.15 due to the correlation structure. While the (opt)-standardization yields to
balanced increases, the results for the (cv)-standardization are more heterogeneous.
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Figure 4.15: Relative increase of RRMSE of the population total estimates depending on the decision-
making function (variables of interest).

In Figure 4.16, the same settings as in Figure 4.14 are plotted, but the RRMSEs of the SMP-
specific total estimates are shown for the auxiliaries instead. As before, the errors are illustrated
in relation to the errors resulting from the optimal univariate allocations. Dots located to the
right of the vertical one-line correspond to the SMP-specific estimates with an increase of the
respective RRMSE. Accordingly, dots to the left of the one-line correspond to estimates with a
decrease. Again, the settings with the most balanced error-changes are these corresponding to
the (opt)-standardization. In particular, higher values of p intensify the imbalance of the error-
changes in the case of the (cv)-standardization, whereas the results of the (opt)-standardization
are more robust. This is clearly observable for the variable AGE4.1, where high values of
p while using the (cv)-standardization yield extremely high RRMSEs in some SMPs. To be
precise, there are two SMPs with an error-increase of over 400% compared to the estimates
under an optimal univariate allocation concerning AGE4.1. This highlights the imbalance of
the (cv)-standardization. Although the population-specific RRMSEs in Figure 4.14 are equal to
or higher than the univariate RRMSEs, the multivariate allocation also leads to error-decreases
in several SMPs, which is illustrated by the points located to the left of the one-line in the
boxplots. In general, however, the SMP-specific estimates behave similarly to the population
total estimates. Results for other stratification levels are shown in Figure B.4.

To summarize, the application of a decision-making function to MMDopt enables the user to
make a reasonable decision in favor of an application-specific optimal allocation. Figures 4.14,
4.15, and 4.16 show that the (cv)-standardization, and especially a scalarization with a larger p,
can accentuate single variables, particularly the ones with estimates that have a comparably high
coefficient of variation. This may be the best choice, if the goal is to achieve an allocation, in
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which the absolute maximal RRMSE is as small as possible. Certainly, this approach neglects
the structure of specific variables; the estimation of both heterogeneous variables and these
ones that have a skewed distribution may be more complicated. In contrast to this, the (opt)-
standardization yields more compensated results, which may be preferable in cases in which no
variable is considered as most important. In this case, not the absolute maximal RRMSE, but
the relative increase of the RRMSE compared to the optimal univariate allocation is prioritized
by the decision-maker. Thus, the optimization is not mainly focused on highly heterogeneous
variables or these with a skewed distribution, but instead it considers each variable. Eventually,
these reasons lead to the conclusion that the (opt)-standardization is more compensated and
balanced compared to the (cv)-standardization. Finally, a larger p always places a higher focus
on the bigger values of the objective function. Thus, if decision-makers need to focus more
on high values (i.e. an absolute RRMSE with (cv) or a relative increases of the RRMSE with
(opt)), they should choose a higher p.
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Figure 4.16: Relative change of RRMSE of the SMP-specific population total estimators depending on
the decision-making function.

Finally, we remark that the development of the solution strategy of Section 4.4 using the GTM
algorithm allows for solving a p-norm MMDopt in an appropriate time even for large problem
instances. We take a closer look on the numerical performance of the GTM algorithm in Subsec-
tion 4.6.6.

4.6.4 Compromise allocation on different stratification levels

Generally, the focus of optimal allocation techniques lies on the minimization of the variances
of the population estimates of the variables of interest. In this case, although a good quality for
sub-populations estimates is often also required, the efficiency of regional-specific estimates is
basically neglected. The reason is that the behavior of regional-specific estimators does not en-
tirely coincide with the behavior of the population estimators. The quality of estimates for small
regions is especially not considered by classical optimal allocation methods. This is exemplar-
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ily shown by the maps of the population in Figure 4.17. These maps illustrate the RRMSE of
the NUTS3- and stratum-specific estimates based on MMDopt with (cv)-standardization, equal
weights, and no assumptions for regional efficiency. Higher RRMSEs of auxiliary variable PEN
for the regions are illustrated as dark blue areas of the map. Efficient estimates are assigned to
the majority of NUTS3-regions as well as SMPs. Nevertheless, there are a few NUTS3-regions
with a comparatively inefficient estimate and several strata with high estimation errors. Some
stratum-specific RRMSEs are extreme high, since these strata are very small and highly het-
erogeneous. With regard to the stratification, these strata are mostly related to the class of the
biggest household sizes. In looking at the maps, we note that the dataset used is synthetically
generated. Thus, the analysis of the maps does not allow conclusions to be drawn about the
regional estimation errors that would result from estimates based on real data.

Figure 4.17: RRMSE of NUTS3- and stratum-specific estimates for PEN without restrictions for regional
efficiency.

One solution approach is based on the first strategy of Dalenius (1953) (cf. Section 4.1), where
the variances (of population total or area-specific estimates) are bounded from above and treated
as constraints of the optimization problem, while the total sample size (or a cost function de-
pending on the sample sizes) is minimized. This Cmin approach allows the integration of re-
strictions for regional efficiency, as among others addressed by Falorsi and Righi (2015) and
Falorsi and Righi (2016). Nevertheless, MMDopt differentiates from the Cmin-approach, as the
minimization of the variance for the population total estimates is a major key point of our anal-
ysis. As proved in Section 4.3, we are able to include restrictions for regional efficiency of the
auxiliaries to the MMDopt method while maintaining the minimization of variances of the pop-
ulation estimates. As a consequence, better regional estimates for the variables of interest are
expected due to their correlation with the auxiliary variables, and the variances of the population
estimates are still minimized, in contrast to Cmin.

In the evaluation, a distinction is made between the following scenarios of MMDopt using the
1-norm scalarization. The maximal allowed RRMSEs are placed in parentheses after the sce-
narios for the respective stratification level and variable.

1. MMDopt: no restrictions for regional efficiency
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2. MMDopt+strata: max. stratum-specific RRMSEs (PEN, AGE4.1: 1.5, EDI: 1.0)

3. MMDopt+NUTS3: maximal NUTS3-specific RRMSEs (PEN, EDI: 0.13)

4. MMDopt+strata&NUTS3: max. stratum-specific RRMSEs (PEN, AGE4.1: 1.5, EDI: 1.0)
and maximal NUTS3-specific RRMSEs (PEN, EDI: 0.13)

5. Cmin (Benchmark): minimize ns with properly chosen RRMSE restrictions

In Table 4.5, the increase of the RRMSEs of the population estimates for the previously defined
settings is tabulated in relation to the optimal univariate allocations. Since the assumptions for
regional efficiency are included, the feasible set of the optimization problem shrinks. Thus, the
RRMSEs of the population estimates increase if the number of regional restrictions increases.
In a certain manner, a compromise has to be made for enforcing efficient regional estimates.
In the strictest scenario, the error-increase compared to the standard MMDopt is about 5%. This
increase may be acceptable, especially since intolerable errors of regional estimates are omitted
coincidently on various stratification levels as shown in Figure 4.18 for the auxiliaries. The max-
imum permitted errors are plotted as vertical red lines in the boxplots. Generally, all NUTS3-
as well as stratum-specific estimates comply with the predefined borders in the respective sce-
narios. Concurrently, the RRMSEs of the other areas slightly increases, as a certain amount
of the total sample size is shifted to the areas with intolerable errors. To conclude, inefficient
outliers can be omitted using the restrictions for regional efficiency. In comparing the results of
the variables of interest with the auxiliaries, a similar efficiency-increase of regional estimates
can be observed (see Figure B.5). The results using Cmin also reveal a compliance with the
predefined restrictions for regional efficiency (see Figure 4.18). Nevertheless, the medians of
the stratum- and NUTS3-specific RRMSEs are significantly higher than using MMDopt, and the
RRMSEs of the population total estimates are disproportionate high, as their variances are not
optimized in Cmin (see Table 4.5). These observation are major characteristics of Cmin, which
mostly results in estimates that both comply with predefined errors and are not optimized.

Table 4.5: Increase of the RRMSEs of population total estimates for selected allocation strategies with
restrictions for regional efficiency (1.00 corresponds to the same RRMSE as in the optimal
univariate allocation).

Auxiliaries Variables of interest
PEN EDI AGE4.1 AGE7.7 INC.PP AGE7.1

MMDopt (cv) 1.01 1.06 1.21 1.04 1.12 1.28
(opt) 1.03 1.10 1.12 1.03 1.17 1.18

MMDopt+
strata

(cv) 1.03 1.06 1.23 1.05 1.45 1.30
(opt) 1.04 1.10 1.14 1.05 1.17 1.20

MMDopt+
NUTS3

(cv) 1.02 1.06 1.22 1.04 1.12 1.29
(opt) 1.03 1.10 1.12 1.04 1.08 1.18

MMDopt+
strata&NUTS3

(cv) 1.06 1.09 1.26 1.08 1.14 1.33
(opt) 1.07 1.12 1.18 1.08 1.19 1.24

Cmin 1.55 1.35 2.22 1.70 1.29 2.32
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The effect of increasing regional efficiency is also shown in the maps in Figure 4.19 in confor-
mity with the maps in Figure 4.17. The dark blue shades indicating regions with high estimation
errors (NUTS3-regions as well as strata) have disappeared. In other words, a minimal quality
for regional-specific estimates is guaranteed. Concurrently, the quality of the estimates for the
other regions does not considerably suffer from the included restrictions for regional efficiency.
Although the observation is restricted to MMDopt with p = 1 and equal weights, the inclusion of
restrictions for regional efficiency is also possible for MMDopt with other p-norms as decision-
making functions (Section 4.6.3) as well as for the computation of the whole Pareto frontier
(Section 4.6.2).
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Figure 4.18: RRMSE for the NUTS3- and stratum-specific estimates with restrictions for regional effi-
ciency.

To conclude, the possibility of including restrictions for regional efficiency can be of particular
interest for official statistics. Usually, requirements for a minimal quality of estimates need to
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be complied with. Using MMDopt with restrictions for regional efficiency provide the technical
opportunity to apply an optimal multivariate allocation under these circumstances.

Figure 4.19: RRMSE of NUTS3- and stratum-specific estimates for PEN with restrictions for regional
efficiency.

As mentioned, the inclusion of the restrictions for regional efficiency to MMDopt results in a
shift of a certain amount of the sample size is to those areas for which the restrictions are
active, i.e. to those areas with high RRMSEs. A comparison of the optimal stratum-specific
sample sizes for some selected scenarios is shown by means of scatterplots in Figure 4.20.
The stratum-specific sample-sizes nh for the optimal univariate and Cmin allocations (columns)
are contrasted with MMDopt and MMDopt.reg (i.e. MMDopt+strata&NUTS3; cf. Table 4.5)
using the (opt)-standardization in order to compare both the univariate cases with MMDopt and
MMDopt with MMDopt.reg. The results compared to MMDopt are plotted in row 1 and the results

Figure 4.20: Stratum-specific sample sizes depending on allocation method in log-scale.
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for MMDopt.reg in row 2. The stratum-specific sample sizes are plotted in log-scale, since it
acquires a higher visibility in the comparison of the small stratum-specific sample sizes. If
dots are located below the line of the bisector, the respective stratum-specific sample size nh is
lower for MMDopt or MMDopt.reg compared to the benchmark methods. The structure of the
optimal allocations is not completely different in general. However, it is obvious that forcing
the regional efficiency (row 2) yields particularly small sample sizes to be higher than without
regional restrictions. This is illustrated by the higher number of points with small sample sizes
(lower than log(nh) ≈ 4.0, i.e. nh ≈ 50) above the bisector line in the MMDopt.reg case.
To compensate this, the stratum-specific sample sizes of big strata slightly decrease. This is
illustrated by points below the bisector line in case of high stratum-specific sample sizes. As
a result, a moderate error-increase is observed in the big strata (in which the quality is already
good enough), but instead significantly better estimates are ensured in the small strata.

In comparing Cmin with MMDopt and MMDopt.reg, major differences between the stratum-
specific sample sizes can be observed, but these differences do not follow a specific pattern. This
is due to the fact that the stratum-specific sample sizes using Cmin are completely determined
by a predefined minimum quality in each stratum. Thus, the stratum-specific sample sizes
are just high enough to ensure the compliance with the minimum quality. However, there is
no compensatory optimization between the strata and no minimization of the variance of the
population total estimator, which can also be seen in the last row of Table 4.5.

4.6.5 Robustness and sensitivity

In this subsection, the robustness and sensitivity of MMDopt and the resulting regional and pop-
ulation estimates depending on the input data are analyzed in relation to the optimal univariate
allocation. As mentioned, the input data can be chosen in different ways. Firstly, good proxies
for the stratum-specific variances may be gained by evaluating previous surveys or obtainable
register data. In this case, these proxies may be affected by certain trends, disruptive effects
(such as natural disasters or economic crises), or some random noise in the data. To handle this,
we investigate the results of MMDopt for the four chosen scenarios sen1 to sen4 of the input
data tabulated in Table 4.6. These scenarios contain SMP-specific trends (constant factor for
all units of a SMP) as well as an individual normal-distributed random noise (random factor
for each unit). These scenarios are computed separately for each auxiliary variable. Secondly,

Table 4.6: Scenarios of input data for sensitivity analysis.

Uniform-distributed SMP-specific trend Individual normal-distributed noise

org unchanged original data
sen1 −5% up to +10% sd = 0.15
sen2 −15% up to +25% sd = 0.15
sen3 −5% up to +10% sd = 0.4
sen4 −15% up to +25% sd = 0.4
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the input data can be gained from highly correlated and known auxiliary variables (as done in
Subsections 4.6.2, 4.6.3 and 4.6.4). From this, the question arises regarding how the height of
the correlation between auxiliaries and variables of interest affects the estimations. Moreover,
the relation between the correlation of the variables of interest and the correlation of the result-
ing stratum-specific sample sizes is of interest. We first focus on the evaluation of the results
based on the five scenarios of the auxiliary variables. Scatterplots illustrating the changes of
the stratum-specific totals τyih and the stratum-specific variances S2

ih compared to the original
data are shown in Figure 4.21. As expected, the changes of the stratum-specific totals (row 1)
compared to the original totals are greater for the scenarios with a higher SMP-specific trend
(sen2 and sen4), whereas the differences of the stratum-specific variances (row 2) are higher
for the scenarios with a more distinctive noise on the individual level (sen1 and sen3).

Figure 4.21: Comparison of stratum-specific totals and variances depending on the sensitivity of the data.

The effect on the estimates is shown in Figure 4.22, in which the relative changes of the RRM-
SEs of the SMP-specific estimates for the four scenarios in comparison to the scenario with
the original data are plotted. Thus, dots to the left of the red one-line represent SMP-regions
with a decreased RRMSE compared to the case with original data; likewise, dots to the right
represent SMP-regions with an increased RRMSE. The change of the population estimates is
plotted as a vertical blue line within each boxplot. The results of the optimal univariate alloca-
tions (uni_[var]) are compared with MMDopt and MMDopt.reg using the scenario with equal
weights and the (cv)-standardization. Scenarios sen2 and sen4 comprise higher differences in
the SMP-specific trends, and they contain greater changes in the efficiency compared to sen1
and sen3 for using uni_[var] and MMDopt. Moreover, MMDopt is more robust compared to the
optimal univariate allocations, as the boxplots of MMDopt are tighter than these ones of the opti-
mal univariate allocation. An explanation may be the usage of more than one auxiliary variable
in MMDopt. The changes in the data may be balanced out over the various auxiliaries, which
is not possible in the case of optimal univariate allocations as only one variable in considered.
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If restrictions for regional efficiency are added (MMDopt.reg), the level of robustness as well
as the efficiency of the estimates decreases significantly. Since the restrictions are based on
incorrect data, the feasible set is skewed, which results in a loss of efficiency. This efficiency
loss is particularly higher if the noise on individual level is higher (sen3 and sen4).
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Figure 4.22: Relative change of RRMSE of SMP-specific total estimates depending on the sensitivity of
the input data with (cv)-standardization.

In general, the MMDopt behaves better in the case of incorrect data than the optimal univariate al-
locations, as incorrectness can partially be balanced out by the various variables. The robustness
of MMDopt.reg depends on the specific definition of the restrictions, but it is significantly poorer
than the robustness of MMDopt. The sensitivity results under (cv)- and (opt)-standardization as
well as under different decision-making functions are comparable with one another.

4.6.6 Algorithmic performance

In this subsection, the performance of the SSN, the SSN.reg, and the GTM algorithm is analyzed.
All the numerical results are computed in the programming language R on a desktop PC with
an Intel Core i7-6700 CPU at 3.40GHz × 8 and an internal memory of 32 GB.

Performance of SSN and SSN.reg

Münnich et al. (2012c) and Friedrich et al. (2015) showed that the fixed-point iteration or SSN
method for the continuous allocation problem as well as the Greedy algorithm for the integer
problem have huge advantages in computing time compared to the R package nloptr (cf. Ypma
et al., 2017). This package provides an R interface to the open source library NLopt for nonlinear
optimization (cf. Johnson, 2018). However, as pointed out in Section 4.3, the separability of
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the objective function is mandatory for these algorithms. Thus, these algorithms can only be
applied using a weighted sum or 1-norm as decision-making function. Due to the advantages in
the computing time, an alternative approach for p 6= 1 is suggested in Section 4.4 based on the
GTM algorithm. The numerical performance of this approach is also analyzed.

The following results are based on the scenarios of Subsection 4.6.2 with a weighted sum setting
with equal weights w = (1/3, 1/3, 1/3) and (opt)-standardization. Neither the choice of the
weights nor the selection of the standardization technique changes the numerical performance
of the algorithms significantly. The initial point for the continuous solvers is calculated with
the aid of the respective mean values of the stratum-specific sample sizes according to the three
separate optimal univariate allocations. First, computing time and the number of iterations are
compared in Figure 4.23 for the following three cases:

• SSN depending on the dimension of the allocation problem H (column 1),

• SSN.reg depending on the dimension of the allocation problem H (with q3 = 15 con-
straints for regional efficiency; column 2),

• SSN.reg depending on the number of constraints for regional efficiency q3 (with
H = 6272); to three cases from weak (weak restrictions) up to hard (hard restrictions;
column 3).
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Figure 4.23: Computing time and number of iterations of SSN and SSN.reg depending on number of
strata H and number of restrictions for regional efficiency q3.
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The distinction between the cases of weak, middle, and hard restrictions differs in the strictness
of the predefined maximum regional errors. Thus, the case with hard restrictions results in the
smallest feasible set. The computing time of the three cases and their number of iterations are
plotted in the three columns of Figure 4.23. Generally, the computing time increases expo-
nentially with an increase of the dimension of an optimization problem if standard solver are
applied. Using the SSN method, a linear dependency between problem dimension and comput-
ing time is observed. The cause for this is the transformation of the system of the optimality
conditions to a nonlinear system of equations (see Section 4.3). This results in a fundamental
reduction of running time. In the left column, a computing time of about 2.5 seconds for 8 itera-
tions for a dimension ofH = 1 000 000 is indicated. In comparison, the standard solver nloptr
has a running time of 10 seconds (requiring approximately 1 500 iterations) for a dimension
of H = 5 000. For significantly higher values of H , an extreme high computational burden
using nloptr can be observed due to the exponential increase depending on H . The computing
time of SSN for H = 5 000 is about 0.012 seconds. In the second column, the computing time
and the iterations are shown for SSN.reg. Although the running time per dimension is larger
compared to SSN, the linear dependency on H also holds for this case. In the right column, the
running time and number of iterations are plotted in dependency of q3 (i.e. the number of non-
linear inequality constraints of problem (4.20)). Since the dimension of the nonlinear system of
equations increases in q3, the computational burden increases exponentially. Additionally, the
number of iterations is gradually raised with an increase of q3. If q3 exceeds a critical value,
the solver fails, as the restrictions are impossible to be fulfilled (i.e. the feasible set in empty),
given that the stricter the restrictions are, the smaller the critical number.

The performance of the SSN algorithm for one specific example is shown in Table 4.7 for each
iteration. By analyzing the residuals tabulated in column 2 of the table, a locally quadratic
convergence rate of SSN can be observed, which is analytically proved for the SSN algorithm
in Theorem 3.2.8. Within the first few iterations, the Armijo step-size rule (see Algorithm 2)
reduces the step-size significantly. This accentuates the necessity of the step-size rule in order
to achieve convergence.

Table 4.7: Performance of the semismooth Newton algorithm (q3 = 0).

Iterations Residual Step-size Lagrangian mult. Objective
k ‖Φ(λk)‖ αk λk f(n(λk))

0 8.51 · 104−0 0.0625 3.360 · 10−2 16.57 · 10−5

1 7.49 · 104−0 0.1250 1.372 · 10−2 11.45 · 10−5

2 5.64 · 104−0 0.2500 6.402 · 10−3 17.49 · 10−5

3 3.16 · 104−0 0.5000 3.864 · 10−3 15.16 · 10−5

4 8.56 · 103−0 1.0000 3.190 · 10−3 14.03 · 10−5

5 1.25 · 103−0 1.0000 3.262 · 10−3 13.78 · 10−5

6 2.08 · 101−0 1.0000 3.263 · 10−3 13.72 · 10−5

7 5.89 · 10−30 1.0000 3.263 · 10−3 13.72 · 10−5

8 2.91 · 10−10 1.0000 3.263 · 10−3 13.72 · 10−5
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Without the control of the step-size, the algorithm diverges within the first iteration (i.e. nh(λ)
reaches the boxes mh or Mh for all h = 1, . . . , H). For SSN.reg especially, a high sensibility
of the convergence depending on both the parameter of the step-size rule and the initial points
can be observed. If these input parameters are not chosen properly, the algorithm fails after
a few iterations due to a non-solvable Newton step in iteration k. This implies that the ele-
ment of the B-subdifferential of Φ(λk, βk) (see (4.50)) is non-regular, which usually occurs if a
high percentage of components of n(λk, βk) reaches the box-constraints, and many inequality
constraints are not satisfied in iteration k.

Performance of GTM

Subsequently, the ability of the GTM algorithm to solve MMDopt problems with decision-functions
for p 6= 1 is analyzed. The setting of the following example is equal to the setting of Subsec-
tion 4.6.3 for p = 8 and (opt)-standardization (H = 6 272). The initial combination of weights
is chosen to be w0 = c(0.1, 0.1, 0.8). The GTM algorithm converges after 26 iterations. Since
the solution of SSN is repeated three times in each iteration of GTM, the SSN algorithm has to
be applied 78 times, which results in a total computing time that is significantly lower than one
second. Thus, a 6 272-dimensional restricted optimization problem with a non-separable ob-
jective function can be solved within one second, which highlights the opportunities of the GTM
algorithm. The course of the iterations (denoted by It.) is plotted in Figure 4.24, where the color
of the dots represents the value of the objective function Gp. For a better visibility, the other
combinations of weights with a resolution of 0.1 are plotted transparently in the background.
Nevertheless, the computation of these dots is not necessary for the application of GTM.

●

It 1

It 2
It 3
It 4
It 5

It 26

●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●

PEN EDI

AGE4.1

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0 1.0

0.8

0.6

0.4

0.2

0.0

P
E

N
AG

E
4.1

EDI

Minimize 8−norm of objective functions
with GTM and (opt)−standardization

15

20

25

30

35

Figure 4.24: Example for the iteration of the GTM algorithm for p = 8 and (opt)-standardization.

In Table 4.8, the residuals (i.e. the norm of approximated gradient), the distances between
weights (iterates) of two consecutive iterations, and the objective values Gp are tabulated for
each iteration. The residual converges to a predefined tolerance close to zero. In general, the
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distance between the iterates decreases with increasing iterations. In more detailed examina-
tions of the performance, the number of iterations of GTM strongly depends on both the initial
point w0. Although the number of iterations may be significantly higher than in this example, a
convergence of GTM is still observed in all tested scenarios.

Table 4.8: Performance of the GTM algorithm for p = 8 and (opt)-standardization.

Iterations Residual Distance between Objective
k ‖sk‖ the iterates Gp(n(wk))

1 8.9830 0.3185 50.6469
2 4.7400 0.0935 20.7278
3 4.0665 0.0469 17.5412
4 3.7636 0.1520 16.3498
5 2.8261 0.2115 13.6143
...

...
...

...
22 0.0122 0.0140 11.9883
23 0.0321 0.0012 11.9885
24 0.0069 0.0006 11.9878
25 0.0049 0.0002 11.9875
26 0.0020 11.9875

4.6.7 Issues and limitations

In this subsection, alternative settings, occurring issues, and limitations of MMDopt and
MMDopt.reg as well as the contained algorithms SSN, SSN.reg, and GTM are focused on. In
this way, critical scenarios, additional capabilities, and unrealizable settings are discussed.

Application using other auxiliary variables

Up until now, MMDopt has been applied with q1 = 3 auxiliary variables. Nevertheless, other
choices of q1 are also possible. In particular, MMDopt with q1 = 1 is equivalent to the box-
constrained optimal univariate allocation developed in Gabler et al. (2012) and Münnich et al.
(2012c). For two auxiliary variables, the dimension of the Pareto frontier shrinks from a subset
of a three-dimensional cube to a subset of a two-dimensional space. Thus, the corresponding
heatmap is reduced to a straight curve as exemplarily shown in Figure 4.25. A value of q1 > 3
is also permitted, but in this case the auxiliaries have to be chosen with care, as the influence
of a single variable on the allocation decreases and the probability of undesired side effects as
well as superimpositions increases with increasing q1. Moreover, a graphical illustration of the
solution via the Pareto frontier or the heatmap is impossible for q1 > 3. If the auxiliary variables
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are highly correlated, the results of MMDopt will not be significantly different from the results
of the optimal univariate allocations with box-constraints. Hence, the advantages of MMDopt
increase with highly heterogeneous and especially with low correlated auxiliary variables.

● ●●●●●●●●●●●EDI AGE4.1
0.0 0.2 0.4 0.6 0.8 1.0

0.00.20.40.60.81.0

AGE4.1

EDI

Cumulated increase of the RRMSEs
− (opt)−standardization, MMDopt −

1.4
1.6
1.8
2.0
2.2
2.4
2.6

Figure 4.25: Relative cumulated increase of the RRMSEs of the population estimates under (opt)-
standardization for q1 = 2.

Solution as integer optimization problem

So far, we have ignored the requirement that the calculated stratum-specific sample sizes in an
optimal (univariate or multivariate) allocation problem have to be in the set of non-negative
integers for almost all application problems. This is due to the fact that a fraction of a person
or household cannot be drawn in a sample. In general, the solution of the allocation problems
with MMDopt as presented in the sections before is not an integer but a fractional number. In real
world applications (and also in the previous application), this problem is commonly solved by
a rounding strategy in the post-processing of the results. However, a rounded solution obtained
this way is in general not an optimal solution in the set of all integral solutions. Therefore,
we refer to Friedrich et al. (2018), where the MMDopt solved via the continuous solver SSN is
compared with an algorithm for the computation of the globally optimal solution for integers.

As in the continuous case, the integer optimal multivariate allocation problem is algorithmically
tractable whenever the objective function is separable and convex. The problem reduces to a
single-objective optimization problem, and algorithms developed for the univariate allocation
problem can be applied directly. Nevertheless, the integer solver is only applicable for the
weighted sum (or p = 1) case with q3 = 0, i.e. for the case without additional restrictions for
regional efficiency.

Friedrich et al. (2015) presented three algorithms for the problem, which use the fact that the
minimization of a separable and convex function is polynomially solvable for integer variables
if the feasible set is a polymatroid (i.e. a convex polytope with strong combinatorial properties).
An exhaustive discussion of the mathematical background is given in Friedrich (2016). The
algorithms are based on methods referred to as Greedy strategies and converge to the globally
optimal integer solution.

In the case of convex objective functions that are not necessarily separable (p 6= 1) however,
the fast Greedy algorithm does not find the optimal solution. In addition, the convergence of
GTM is also not provable using integer optimization techniques instead of SSN. Nevertheless, it is
possible to solve these more general problems with the help of a reformulation as linear integer
problems (Hochbaum, 1995). A reformulation of this type has been solved with the commercial
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software FICO Xpress Optimization Suite in Friedrich et al. (2015) with the result that compu-
tation times worsen significantly, i.e. it takes many hours instead of seconds. Therefore, we do
not solve the integer version of the non-separable problems in this application study.

Friedrich et al. (2018) presented a detailed comparison between the rounded optimal continuous
solution of the optimal multivariate allocation problem, computed by SSN, and the optimal
integer solution, computed by the Greedy method. Although the differences in the solutions are
measurable, they are generally extremely small so that the influence on the estimation can be
ignored, especially for stratum-specific sample sizes significantly greater than zero.

Lagrange-multipliers and infeasibility of problem

Since the underlying optimization problems of MMDopt and particularly MMDopt.reg are re-
stricted optimization problems, the convergence of the algorithms can only be proved under the
assumption of a non-empty feasible set. Coincidently, these restrictions are based on geograph-
ical circumstances (e.g. regional stratification or stratum sizes) and politically or legally defined
restrictions on the quality of the estimates and the total sample sizes. Hence, the assumption of
a non-empty set can generally not be proved in advance. If MMDopt is applied to a problem with
an empty feasible set, the SSN algorithm breaks down in iteration k when the element Hk of the
B-subdifferential of Φ(nk) is singular. In this case, the solutions in iteration k of SSN (which
are the Lagrangian multipliers) reach unusually high values, which is another indicator for the
non-feasibility. Consequently, the user needs to weaken some of the restrictions and restart
the algorithm. In general, this process could also be automated by the software automatically
adjusting the restrictions and restarting the algorithm.

4.7 Summary and discussion

The MMDopt method determines optimal allocations while considering several requirements
such as conflicting variables of interest, various stratification levels, cost restrictions, restric-
tions for regional efficiency, and the control of sampling fractions. In order to solve such mul-
tivariate allocation problems, we proposed several scalarization and standardization techniques
in Section 4.2. Whereas the scalarization reflects the decision-making function when evaluating
conflicting goals, the standardization of the variances yields a rescaling of the variables foster-
ing comparability. Furthermore, we proposed a strategy to compute the entire Pareto frontier as
the set of all Pareto optimal solutions of the multi-criteria problem with the SSN algorithm using
a weighted sum scalarization in Section 4.3, which was treated in a simpler case in Friedrich
et al. (2018). The major benefit is the possibility of an a posteriori choice for a weighting
scheme of the variables of interest. Thus, the decision-maker is able to incorporate additional
information to achieve an application-specific optimal allocation. As a further advantage, it is
not necessary to a priori assess the conflicting goals or rank the variables of interest. If the
decision-maker needs to determine one specific solution, a procedure based on the GTM method
has been proposed in Section 4.4. In that regard, a p-norm or a min-max approach can be
utilized to determine the application-specific optimal allocation.
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We computed solutions for instances of the MMDopt problem using the RIFOSS household
dataset (see Section 2.6). Within the application study in Section 4.6, the methods and the
algorithms were presented comparatively, their advantages were underlined, and recommenda-
tions for their practical use were given. In contrast to standard solvers, using the separability
and convexity of the given problem yields a substantial increase in the numerical performance,
which enables the calculation of the Pareto frontier in high resolution. Moreover, we observed
considerable differences in (area- and stratum-specific) estimation errors and stratum-specific
sample sizes when varying the weighting schemes. Therefore, we can underline the importance
of the chosen scalarization, standardization, and weighting in optimal multivariate allocation.

To summarize, the MMDopt method facilitates the control of the quality of regional estimates
for various variables and various stratification levels accompanied by the minimization of the
(scalarized and standardized) errors of the population estimates for several auxiliary variables.
The interaction of the allocation of the sample size for contradictory auxiliaries, the minimiza-
tion of variances of the population estimates, the control of regional variances, and the moni-
toring of sampling fractions (by means of the box-constraints) conglomerate all the key points
mentioned in the introduction and in the beginning of this chapter. If a high correlation between
the variables of interest and the auxiliaries is given, the accuracy gain of the estimates of the
auxiliary variables can be observed similarly for the variables of interest.





Chapter 5
A Generalized Calibration Method

5.1 Motivation and issues

Motivation

Calibration methods adjust design weights in order to incorporate auxiliary data into the es-
timation process (cf. Statistics Canada, 2003). This may result in both an increase of the
accuracy of the calibration estimates compared to the HT estimates and also coherent estimates
(cf. Merkouris, 2004). In this chapter, a generalized calibration method (GCAL) is developed
and presented. The aim of the method is to achieve coherence between estimates gained from
different sources and to facilitate flexibility in the choice of the auxiliary data on various strat-
ification levels in order to generate accurate estimates of totals and subtotals of a variable of
interest y.

The general framework of calibration techniques is found in Section 2.4, in which the main
characteristics of calibration in survey statistics is stated in Definition 2.4.1. The resulting
calibration estimator

τ̂CAL
y :=

∑
k∈S

dkgkyk (5.1)

(cf. Definition 2.4.2) for the total of variable y contains design weights dk and correction
weights gk (k = 1, . . . , ns), where the correction weights gk are determined by the calibra-
tion method. The products of design and correction weights, wk := dkgk, are called calibration
weights. Due to the inclusion of auxiliary data, the generalized calibration method can be as-
signed to the group of model-assisted methods (cf. Sections 2.2 and 2.4). We have seen in
Section 2.4 that the GREG estimator (2.19) for the population total can be interpreted as a
calibration estimator. Thus, the GREG estimator is a special case of GCAL.

In considering applications in the context of official statistics, the justification for applying GCAL
is defined within the European Statistics Code of Practice. It consists of 15 principles aimed at
fostering the provision of high quality statistics in Europe (cf. Section 1.1 and Eurostat, 2011).

113



114 5 A GENERALIZED CALIBRATION METHOD

In addition to accuracy and reliability, coherence between multiple sources is one of these prin-
ciples. The requirements which have to be considered in GCAL are described in the following
paragraphs. Most of these requirements arise from the requirements for modern surveys, which
was already stated in Section 1.1. These demands comprise simultaneous estimation of sev-
eral variables of interest on different stratification levels on the one hand, and the increased
amount of auxiliary data available on the other hand. Due to both the consideration of several
auxiliaries and the estimation of statistics for various variables of interest, GCAL can be desig-
nated as a multivariate calibration method. It is a multi-domain method as well, since several
stratification levels may be considered simultaneously.

Requirements of GCAL

Firstly, the availability of a great amount of auxiliary data accompanied by the demand for esti-
mates on both aggregated levels and highly disaggregated stratification levels may lead to a high
number of constraints in problem (2.39). Consequently, the maximal spread of the calibration
weights, referred to as Gelman Bound

GB := maxk=1,...,ns wk
mink=1,...,ns wk

, (5.2)

may be high, which is undesired in many applications (cf. Gelman, 2007 and Münnich and Bur-
gard, 2012). In addition, the standard calibration approach in problem (2.39) does not prevent
from negative weights. Since there is no sensible interpretation of negative weights in official
statistics, they should be omitted. Generally, the spread of the correction weights increases if
the number of restrictions increases or if several restrictions on highly disaggregated stratifica-
tion levels are included, since the feasible set is shrunken. In extreme cases, the feasible set can
be empty.

Secondly, the accuracy of the calibration estimator may suffer from using auxiliary data from
different sources, especially if incorrect register data or inaccurate estimates are included as
benchmarks, e.g. gained from different surveys with various sampling or estimation methods.
For example, it is possible to use both direct estimates and small area estimates simultaneously
as calibration benchmarks. In general, small area estimates may exhibit a systematic bias.
Since the auxiliary data are treated as known values, these inaccuracies may hand over to the
calibration estimates, which cannot be avoided in classical calibration methods. Consequently,
the calibration estimator may rely on incorrect data, which can result in inefficient or biased
estimates.

Thirdly, official statistics in Europe often have access to a master sample with a comparably
high sampling fraction. This master sample is usually conducted frequently for an entire coun-
try, but only in large time intervals. An example for this is the German Census (cf. Destatis,
2018). On the other hand, several smaller surveys are conducted within lower time intervals,
possibly regionally limited, and with significantly smaller sampling fractions. In order to make
use of these extra sources, official statistics aims to generate a general valid vector of calibra-
tion weights, which incorporates all sources in one vector of weights. In comparison to the
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results exclusively gained by the master sample, the inclusion of the extra sources may sup-
port the quality of the estimates. Moreover, this approach should yield coherent and consistent
results between the master sample and the additional surveys on various stratification levels.
This is important in order to achieve social acceptance of the published statistics and underlines
the interest to achieve one general valid vector of calibration weights, especially in household
surveys. GCAL allows for the consideration of these aspects with high flexibility. Similar ap-
proaches have been suggested in the context of GREG estimation by Renssen and Nieuwen-
broek (1997), Merkouris (2004), and Merkouris (2010). Currently, a system of a master sample
and affiliated surveys is developed for some of the household surveys in Germany, called the
integrated system of household surveys (cf. Riede et al., 2013).

Finally, a method for the variance and MSE estimation is required for the calibration estima-
tor based on GCAL to facilitate the practicability of the approach, as the techniques which are
commonly applied for the GREG estimator cannot simply be taken over (see Section 5.4).

Problem formulation and literature

Several publications within the last two decades proposed extensions to the classical calibration
problem (2.39) in order to meet (at least a part of) the requirements mentioned above. After
introducing the mathematical problem formulation and some notations, we provide an overview
of these extensions and explicitly explain the framework of GCAL.

In accordance with the notation in Section 2.1 we consider a finite population U = {1, . . . , N}
and a sample S ⊆ U of size ns ≤ N . We assume the design weights dk to be known and
strictly positive for each element k ∈ S of the sample. The goal is to estimate the total
τy = ∑

k∈U yk of variable of interest y using the calibration estimator τ̂CAL
y = ∑

k∈S dkgkyk (cf.
Definition 2.4.2) with correction weights gk (k ∈ S). The correction weights are gained under
consideration of the calibration benchmarks τxi = ∑

k∈S dkgkxik regarding q auxiliary vari-
ables, whose totals are known in advance. In that regard, the vector xk := (x1k, . . . , xqk)T ∈ Rq

contains the individual auxiliary values for all units k ∈ S. The basis for the development of
GCAL is then given by the standard calibration approach (2.39), i.e.

min
g∈Rns

∑
k∈S

dkD(gk)

s.t.
∑
k∈S

dkgkxik = τxi for i = 1, . . . , q,
(5.3)

where the objective function is characterized by a distance function D (see Table 2.1). In the
1980s, the approach in (5.3) was limited to the GREG-type distance function
D(gk) = 1

2(gk − 1)2, since the calibration estimator for the population total based thereon
is equivalent to the GREG estimator (cf. Theorem 2.4.3). Primarily published by Cassel et al.
(1976), the GREG estimator was extensively analyzed, and several alternative expressions were
given inter alia in Isaki and Fuller (1982) and Godfrey et al. (1984). A few year later, Deville and
Särndal (1992) rewrote the GREG estimator such that it depends on a Lagrangian multiplier.
The resulting formula exactly represents the calibration estimator τ̂CAL

y (cf. Definition 2.4.2)
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combined with the optimality conditions of the optimization problem (5.3). Thus, the equiva-
lence was proved. Additionally, Deville and Särndal (1992) proposed further distance measures.
Traditional choices for D are shown in Table 2.1 and Figure 5.1. Other distance functions were
considered by Deville et al. (1993), Singh and Mohl (1996), and Stukel et al. (1996). In the
following, we focus on the three distance functions presented in Table 2.1, i.e. the GREG-type,
the Raking, and the ML-Raking distance function. For the applicability of GCAL under other
distance functions, we refer to Subsection 5.6.7. The distance functions shown in Figure 5.1
differ in their treatment of the penalty term, which affects the functions outcome depending
on how greatly the calibration weight wk differs from the design weight dk (i.e. the correc-
tion weight gk differs from 1.0). The GREG-type distance function assigns the same penalty
to those values with equal absolute distance between gk and 1.0, e.g. D(0.5) = D(1.5) and
D(0.1) = D(1.9). The Raking Ratio and the ML-Raking distance functions are based on a
nonlinear dependency, where gk := 1 − δ smaller 1.0 is penalized stronger than the appropri-
ate gl := 1 + δ greater 1.0 (for any δ > 0). Since gk represents a factorial deviation of wk
from dk, a distance function fulfilling D(gk) = D(g−1

k ) would be reasonable. Even though the
Raking Ratio and ML-Raking distance function are more likely to fulfill this feature than the
GREG-type objective function, the condition D(gk) = D(g−1

k ) is not fulfilled for each of the
considered distance functions. The applicability of a distance function which fulfill this feature
is discussed in detail in Subsection 5.6.7.

gk1 2 3

D(gk)

0.5

1.5

0

(
gk − 1

)2
/2 (GREG-type)

(gk log(gk)− gk + 1) (Raking)

(gk − 1− log(gk)) (ML-Raking)

Figure 5.1: Common examples of distance functions for the calibration estimator.

In order to regulate and limit the spread of the calibration weights as well as to omit nega-
tive weights, Deville and Särndal (1992) proposed to add limits to the correction weights using
the GREG-type objective function. These limits are referred to as box-constraints or range
restricted weights. As described in the beginning of the section, a number of factors such as
the various sources, structures (different stratification levels), and different quantity of auxil-
iary data may lead to infeasibility issues of the calibration problem. To counteract this, some
benchmarks may have to be relaxed, such that they only have to be fulfilled within specific
predefined perturbations. The maximal tolerances allowed are restricted via additional box-
constraints. This approach ensures the feasibility of the calibration problem even for a large
number of benchmarks. Generally, an extreme large number of benchmarks can result from
many auxiliary variables on different stratification levels. Since the benchmarks are obtained
from known totals and different estimates gained by direct or small-area estimators (cf. Rao
and Molina, 2015, and You and Rao, 2002), this relaxation may prevent coherence problems
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between the estimation levels. Moreover, an individual adjustment of the tolerance per bench-
mark can facilitate to incorporate different confidence measures for the different benchmarks.
In considering a small-area estimate in a very small domain, its corresponding variance may be
high compared to other benchmark estimates, Furthermore, the estimate may be biased, i.e. the
confidence in it is low and the allowed tolerance for this benchmark should be higher than for a
direct estimate in a larger domain.

In literature, the relaxation of benchmarks and the box-constraints for the calibration weights
are often analyzed applying ridge weighting and ridge regression methods. Using these regu-
larization techniques, the restrictions of the optimization problem are added as a penalty term
to the objective function, and they deliver a close form solution depending on the penalty pa-
rameter. However, the box-constraints for the weights and deviations of the benchmarks are not
necessarily fulfilled. Thus, an optimal penalty parameter has to be determined, which is often
done by a trial-and-error strategy. Chambers (1996) discussed ridge weighting incorporating
relaxation and box-constraints in the context of robust weighting for multipurpose establish-
ment surveys. Rao and Singh (1997) mentioned a ridge regression method with projection
of the weights to comply with the box-constraints and tolerances. The existence of solutions
using ridge regression under box-constraints was discussed in Théberge (2000). Chen et al.
(2002) analyzed box-constraints in a model-calibration environment by computing empirical
likelihood estimators and model-calibrated empirical likelihood estimators. This approach was
extended in Beaumont and Bocci (2008), and the equivalence to a ridge calibration was proved.
Moreover, a calibration approach using ridge regression is presented in Montanari and Ranalli
(2009). It ensures coherence using different sources of the benchmarks. In Rao and Singh
(2009) a generalization of the ridge regression method was presented in order to comply with
box-constraints and relaxations by using an iterative build-in tolerance specific procedure. In
Guggemos and Tillé (2010), some selected benchmarks were shifted to a penalty term added to
the objective function. Since box-constraints are fully neglected, a closed form was derived to
apply the proposed method without an iterative solver. Nevertheless, all the methods mentioned
require the determination of an optimal penalty parameter, as well as user-specified costs asso-
ciated with the altitude of the deviations from the given benchmarks. The computation of both
the penalty parameter and the costs is not possible in advance and is often done by examining
different scenarios within the calibration process.

To overcome a predetermination of cost and penalty parameters, the relaxation and box-
constraints are treated as real restrictions in GCAL (not as configurable penalty terms). This
approach relies on the developments of Wagner (2013, Chapter 7) and Burgard et al. (2018).
Then, the calibration problem (2.39) can be extended to the GCAL optimization problem

min
(g,ε)∈Rns+q2

∑
k∈S

dkD(gk) +
q2∑
j=1

δjD(εj)

s.t.
∑
k∈S

dkgkx
ex
ik = τxex

i
for i = 1, . . . , q1∑

k∈S
dkgkx

rel
jk = εjτxrel

j
for j = 1, . . . , q2

Lgk ≤ gk ≤ Ugk ∀k = 1, . . . , ns

Lεj ≤ εj ≤ Uεj ∀j = 1, . . . , q2

(5.4)
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with a distance function D of Table 2.1 and the number of q = q1 + q2 benchmarks. The
auxiliary variables are denoted with xex

1k, . . . x
ex
q1k ∈ R (k ∈ S) for the restrictions which should

be fulfilled exactly and with xrel
1k, . . . x

rel
q2k ∈ R (k ∈ S) for the restrictions which have to be

fulfilled with a certain degree of precision. The degree of precision is defined by the lower
and upper bounds of εj ∈ R+, denoted by Lεj and Uεj , respectively (j = 1, . . . , q2). Since
εj states the deviation of the relaxed benchmarks and is restricted by the bounds Lεj and Uεj ,
the vector δ ∈ Rq2

+ (which is used in the second part of the objective function) determines the
magnitude of penalization within these bounds. The box-constraints for the correction weights
gk are denoted by 0 ≤ Lgk ≤ gk ≤ Ugk with Lgk ≤ Ugk (k = 1, . . . , ns). It has to be remarked
that the benchmark totals τxex

i
(i = 1, . . . , q1) and τxrel

j
(j = 1, . . . , q2) may also be estimated

totals instead of known totals. Due to simplifications, the common hat-notation is omitted.

Numerical solvers for GCAL

The inclusion of box-constraints prevents a derivation of a closed form solution as it can be
given e.g. for the GREG estimator (2.19). Therefore, over the past decades, iterative methods
have been developed. One common class of these algorithms is called truncated algorithms
(TRUNC). One example is the function calib() in the R package sampling (cf. Tillé and Matei,
2016), which is generally applied only for the GREG-type distance function. In addition to
TRUNC, Vanderhoeft (2001, pp. 29 f.) proposed a similar algorithm based on a projected New-
ton algorithm (ProjN). Both the TRUNC and ProjN algorithms are applicable in practice even
for comparably large problem instances, although the computational burden of ProjN is sig-
nificantly higher. However, they are not provably supposed to find the unique optimal solution
of the box-constrained calibration problem (5.4). The computed solution is mostly close to the
optimal solution. Nevertheless, extreme cases may yield larger differences between the optimal
solution and the solution computed by TRUNC and ProjN. Their functionality is explained in
Section 5.3, and the performance differences are discussed in Subsection 5.6.6. As an alter-
native, Wagner (2013) proposed to solve problem (5.4) using the highly efficient commercial
software IBM ILOG CPLEX Optimization Studio1. Unfortunately, this software is not freely
available, which is a desirable feature of the methods in this thesis.

Aside from the mentioned solvers, Münnich et al. (2012b) and Wagner (2013) developed the
SSN method as a very efficient alternative to TRUNC and ProjN. The SSN algorithm provably
finds the unique optimal solution of problem (5.4). Using the special structure of the problem,
this method comprises a significant reduction of the dimension of the optimization problem and
enables a sensitivity analysis of the benchmarks using the Lagrangian multipliers. Since SSN
is applicable for very large problem instances and convergence results can be proved, it is the
preferred solver for GCAL. To make SSN applicable for GCAL, the approaches of Münnich et al.
(2012b) and Wagner (2013) are used and extended further here.

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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Outline

In Section 5.2, the mathematical formulation of GCAL incorporating various potential constraints
is derived (depending on stratification levels, sources, etc.). Thereafter, the solution strategy
using a Lagrangian approach and a SSN method as suggested in Wagner (2013) is outlined.
Similar to the developments in Chapter 4, the special structure of problem (5.4) enables to
equivalently rewrite the KKT-system into a lower dimensional nonlinear system of equations,
where its dimension only depends on the number of constraints q1 and q2 and is independent of
the sample size ns. As discussed in Section 5.6, the algorithms based on SSN are fast enough to
solve even large problem instances. The algorithmic solver is presented in Section 5.3. Since
the variance and MSE estimation of classical calibration methods such as the GREG calibration
estimator significantly differ from the MSE estimation under a GCAL model, an innovative MSE
estimation strategy is proposed in Section 5.4 based on a rescaling bootstrap. The statistical
accuracy, numerical efficiency, and practicability of GCAL and its MSE estimation method are
discussed based on the household dataset of Germany (cf. Section 2.6) in a simulation study
in Section 5.6. In addition, the advantages, opportunities, characteristics, and limits of the
developed methods are addressed.

5.2 General calibration model

To present the solution strategy for problem (5.4), we redefine the problem using the following
notations. The matricesXex is defined as design weighted auxiliary matrices for the q1 auxiliary
variables xex

1k, . . . , x
ex
q1k ∈ R for all units k ∈ S, whose benchmark totals need to be satisfied

exactly. Analogously, the matrix X rel contains the q2 auxiliary variables xrel
1k, . . . , x

rel
q2k ∈ R for

all units k ∈ S, whose benchmarks are relaxed and therefore need to be fulfilled allowing for a
predefined tolerance:

Xex =


d1x

ex
11 . . . dnsx

ex
1ns

...
...

d1x
ex
q11 . . . dnsx

ex
q1ns

 ∈ Rq1×ns and X rel =


d1x

rel
11 . . . dnsx

rel
1ns

...
...

d1x
rel
q21 . . . dnsx

rel
q2ns

 ∈ Rq2×ns .

The benchmark totals are denoted by τxex
1
, . . . , τxex

q1
∈ R and τxrel

1
, . . . , τxrel

q2
∈ R respectively.

The approved perturbations of the relaxed variables are given by ε1, . . . , εq2 ∈ R+. Generally,
the matrices Xex and X rel correspond to population total benchmarks. If regional (i.e. area- or
stratum-specific) benchmarks are added, for example for auxiliary variable i ∈ {1, . . . , q1}, the
ith row of Xex is extended. Assume that area-specific benchmarks are defined on stratification
level r, which contains Lr areas lr = 1, . . . , Lr (see Figure 2.1 for an example). Then the
sample S = {1, . . . , ns} is divided into Lr parts Slr with S = ⋃Lr

lr=1 Slr . The ith row of Xex is
then extended to the matrix

d1x
ex
i1 . . . dnsx

ex
ins

d1x
ex
i1 · 1(1∈S1) . . . dnsx

ex
ins
· 1(ns∈S1)

...
...

d1x
ex
i1 · 1(1∈SLr ) . . . dnsx

ex
ins
· 1(ns∈SLr )

 ∈ R(1+Lr)×ns , (5.5)



120 5 A GENERALIZED CALIBRATION METHOD

where each row corresponds to one area lr ∈ {1, . . . , Lr}. Due to the indicator functions 1(·),
only these components of a row that belong to the respective area are considered. The other
components are set to zero. The number of the constraints q1 is then replaced by q1 ← q1 + Lr.
This procedure can be done consecutively for several variables or stratification levels and is
analogously possible for relaxed auxiliary variables. In addition, it is also valid to assume an
auxiliary variable with totals that have to be fulfilled exactly on highly aggregated stratification
levels (e.g. state and federal states), but the totals may be relaxed on more disaggregated levels
(e.g. cities and towns). This procedure is common in practical applications and will also be
applied in the scenarios of the simulation study in Section 5.6.

In assembling the auxiliary matrices and benchmarks, the restriction matrix of problem (5.4)
can be formulated as

A :=


Xex 0 . . . 0

−τxrel
1

0
X rel . . .

0 −τxrel
q2

 ∈ R(q1+q2)×(ns+q2), (5.6)

where q1 is the number of benchmarks to be fulfilled exactly and q2 is the number of benchmarks
to be fulfilled with a tolerance. Whereas the totals for the relaxed benchmarks are included
in the low right block of the matrix A, the benchmarks for the exact benchmarks are inclu-
ded in the right-hand side vector given by

b :=
(
τxex

1
, . . . , τxex

q1
, 0, . . . , 0

)T
∈ Rq1+q2 . (5.7)

To measure the deviations of the a priori given design weights dk from the calibration weights
wk and the perturbations εj to 1.0, one of the distance functions presented in Table 2.1 is applied,
i.e. D : R+ → R0+ with

1. GREG-type: D(zκ) = 1
2(zκ − 1)2,

2. Raking Ratio: D(zκ) = zκ log(zκ)− zκ + 1, or

3. ML-Raking: D(zκ) = zκ − 1− log(zκ).

In that regard, κ = 1, . . . , ns + q2 is the composed index for the respective component of the
objective function of problem (5.4), i.e. indices κ ≤ ns correspond to the ns sampled units
(index k) and indices κ > ns correspond to one of the q2 relaxed benchmarks (index j). With
this, problem (5.4) can then be equivalently rewritten as

min
z∈Rns+q2

P (z) :=
ns+q2∑
κ=1

d̃κD(zκ)

s.t. A z − b = 0
m ≤ z ≤M

(5.8)

with objective function P : Rns+q2
+ → R0+ , where z := (g, ε)T ∈ Rns+q2 is the dependent

variable of the problem, d̃ := (d, δ)T ∈ Rns+q2 the vector of design weights and degrees of
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penalization for the relaxed benchmarks, m := (Lg, Lε)T ∈ Rns+q2 the lower bounds, and
M := (Ug, Uε)T ∈ Rns+q2 the upper bounds for g and ε.

Since the structure of problem (5.8) slightly resembles the structure of the MMDopt problem
(4.20) in Chapter 4, we attempt to implement a similar solution strategy also based on a refor-
mulation of the KKT-system. In order to do so, some properties of the objective function P of
problem (5.8) are required and therefore proved in Lemma 5.2.1.

Lemma 5.2.1. Under the three distance functions D : R+ → R0+ of Table 2.1, the objective
function P of problem (5.8) is twice continuously differentiable, strictly convex, and separable.

Proof. First, it is proved that the three functions D : R+ → R0+ of Table 2.1 are twice
continuously differentiable and strictly convex:

1. GREG-type: The properties hold since D is a quadratic function.

2. Raking Ratio: D is twice continuously differentiable as a composition of twice continu-
ously differentiable functions. Moreover, since D′′(zκ) = 1

zκ
> 0, D is strictly convex.

3. ML-Raking: D is twice continuously differentiable as a composition of twice continu-
ously differentiable functions. Moreover, since D′′(zκ) = 1

z2
κ
> 0, D is strictly convex.

Consequently, P (z) is twice continuously differentiable and strictly convex as a sum of com-
positions of twice continuously differentiable and strictly convex functions. Moreover, P is
separable, as it can be rewritten as an independent sum over its components depending on its
individual variables (cf. Remark 2.5.1).

Due to the proof of Lemma 5.2.1, D′′ is strictly positive, i.e. the inverse of the derivative D′ is
well-defined and given by

D′
−1 : R→ R, u 7→ D′

−1(u). (5.9)

In Section 5.3, these properties are exploited to present an efficient numerical solver for problem
(5.8). The required inverses D′−1(u) for the distance functions of Table 2.1 are given by the
following:

1. GREG-type: D′−1(u) = u+ 1,

2. Raking Ratio: D′−1(u) = exp (u), and

3. ML-Raking: D′−1(u) = 1
1− u .

5.3 Algorithmic solution

Reformulation depending on Lagrangian multipliers

The algorithmic solutions for calibration methods in survey statistics primarily differ in the
kind of restrictions and the choice of the objective function. For some suitably formulated
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problems, a closed formula may exist. The most common example for this is the GREG estima-
tor (2.19), which is equivalent to the calibration estimator in Definition 2.4.2 if the GREG-type
distance function is applied (see Theorem 2.4.4). However, if additional restrictions such as
box-constraints or relaxed benchmarks are added or other objective functions are utilized, the
analysis of the optimality conditions of the calibration problem does not lead to a closed form
solution. In this case, iterative solvers need to be applied. These are generally based on a
Lagrangian approach as shown in Deville and Särndal (1992) and Deville et al. (1993). This
strategy was picked up in Münnich et al. (2012b) and Wagner (2013, pp. 66-70) in more detail.
The proposed procedure and its deviations are concisely sketched in the following paragraph
for problem (5.8).

The main goal is to express the vector of correction weights g ∈ Rns and the vector of pertur-
bations ε ∈ Rq2 as functions gk(·) : Rq1+q2 → R (k = 1, . . . , ns) and εj(·) : Rq1+q2 → R

(j = 1, . . . , q2) depending on the Lagrangian multipliers λ ∈ Rq1+q2 of problem (5.8) belong-
ing to the equality constraints Az − b = 0. The resulting function z(·) : Rq1+q2 → Rns+q2 with
the components

z(λ) :=
(
g1(λ), . . . , gns(λ), ε1(λ), . . . , εq2(λ)

)T
(5.10)

is inserted into the function of equality constraints

h : Rns+q2 → Rq1+q2 , h(z) = Az − b. (5.11)

This leads to a (q1 + q2)-dimensional nonlinear system of equations h
(
z(λ)

)
= 0 which is

solved in place of the original problem (5.8).

In analogy to the optimality conditions in Theorem 3.1.7 and the statements of Lemma 4.3.3
for the allocation problem, the same deviation can be done for the calibration problem (5.8) (cf.
Wagner, 2013, Theorem 5.3.1. and Lemma 5.3.2.). Since the equality constraints of (5.8) are
affine-linear and the objective function is strictly convex, the first order necessary optimality
conditions are also sufficient if the Slater condition is satisfied (Theorem 3.1.7). Aside from
these properties, the objective function is separable and the feasible set is convex. Thus, problem
(5.8) can be equivalently reformulated as the nonlinear system of equations

Ψ(λ) = 0 (5.12)

with
Ψ : Rq1+q2 → Rq1+q2 , λ 7→ Az(λ) − b, (5.13)

where the function z(·) : Rq1+q2 → Rns+q2 is component-wise defined as

zκ(λ) : =


Mκ, if − ATκ λ

d̃κ
≥ D′(Mκ)

D′−1
(
−ATκ λ

d̃κ

)
, if D′(mκ) < −ATκ λ

d̃κ
< D′(Mκ)

mκ, if − ATκ λ

d̃κ
≤ D′(mκ)

= Proj[mκ,Mκ]

D′−1
(
−A

T
κλ

d̃κ

)
(5.14)

for κ = 1, . . . , ns + q2 with the projection function Proj[mκ,Mκ](·). The regularity of D is shown
in (5.9). The following theorem proves the equivalence of solving (5.8) and (5.12).
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Theorem 5.3.1. A vector z∗ ∈ Rns+q2 is the unique solution of the optimization problem (5.8)
if and only if there exist Lagrangian multipliers λ∗ ∈ Rq1+q2 such that Ψ(λ∗) = 0 defined in
(5.12) is satisfied.

For the proof of Theorem 5.3.1, we refer to Münnich et al. (2012b, Theorem 3).

In applying Theorem 5.3.1, the (q1 + q2)-dimensional nonlinear system of equations in (5.12)
has to be solved to achieve the optimal solution of the (ns + q2)-dimensional optimization prob-
lem in (5.8). Then, the solution z∗ ∈ Rns+q2 of problem (5.8) is component-wise given by

z∗κ = zκ(λ∗) (5.15)

for all κ = 1, . . . , ns + q2 with zκ(·) computed by (5.14). Since q1 � ns and q2 � ns, in
general, the computational burden to solve (5.12) is supposed to be significantly lower than the
computational effort needed to solve problem (5.8). Finally, the optimal solution g∗ ∈ Rns and
the optimal penalty parameter ε∗ ∈ Rq2 are determined by

g∗ = (z∗1 , . . . , z∗ns
)T and ε∗ = (z∗ns+1, . . . , z

∗
ns+q2)T . (5.16)

Control of the spread of the weights

As mentioned in the beginning of this chapter, the Gelman Bound (5.2) (cf. Münnich and
Burgard, 2012) plays a significant role in general calibration methods to prevent highly spread
calibration weights. The importance of the consideration of the Gelman bound has also been
observed in the context of small area estimation in business surveys by Burgard et al. (2014).
For the numerical realization, Wagner (2013, Chapter 7.2) proposed adding the condition in
Equation (5.2) to the general calibration problem (5.8) as an additional inequality constraint.
Due to the ratio of the maximum to the minimum weight, this constraint is nonlinear, non-
differentiable, and particularly non-separable, which prohibits the application of the considered
solution strategy. Alternatively, the constraint can be rewritten as a set of 2ns + 1 linear in-
equality constraints. This enables the application of common nonlinear optimization solvers,
such as barrier methods, augmented Lagrangian methods, and SQP methods (see Section 3.1).
Nevertheless, the proposed reformulation to the lower dimensional nonlinear system of equa-
tions in (5.12) is not possible. Instead, the problem can be directly solved via the commercial
software CPLEX. Since the free availability of the solver is a key point of the thesis, another
strategy for the consideration of the Gelman bound is presented in the following paragraph.

The strategy in Algorithm 5, referred to as GB_control, is based on an adjustment of the
box-constraints for the correction weights gk (k = 1, . . . , ns). However, the Gelman bound is
related to a ratio not of the gk but of the calibration weights wk = dkgk. As a consequence, the
inclusion of GB_control to the GCAL problem (5.8) does not yield the unique optimal solution
of GCAL with the original Gelman Bound condition (5.2) included as an inequality constraint.
However, the precision of the solution is high enough for the majority of practical applications.
In particular, the predefined Gelman bound is an upper bound for the resulting Gelman bound.
Thus, Gelman bounds which are for instance established by law can not be breached. Since
GB_control shrinks the feasible set of problem (5.8), the value of the objective function in
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the optimal solution P (z∗) increases. Moreover, the risk of infeasibility increases, especially if
the desired Gelman bound is smaller than the original Gelman bound computed by the design
weights. Nevertheless several simulations have shown, that the use of GB_control does not
yield to significantly higher values of the objective function in general. We refer to Figure 5.3
and Table 5.2 in Subsection 5.6.2.

Algorithm 5 Control of Gelman bound in GCAL (GB_control)
Input: Design weights d ∈ Rns , box-constraints Lg, Ug ∈ Rns , desired Gelman bound
GB ∈ R+

for k = 1, . . . ns

Ugk = min
{
Ugk ,

1
dk

GB min{d}
}

Lgk = max
{
Lgk ,

1
dkGB

max{d}
}

end for
Return: Adjusted box-constraints Lg, Ug ∈ Rns

In contrast to the Gelman bound strategy proposed in Wagner (2013, Chapter 7.2), the
GB_control strategy does not necessarily yield the optimal solution. Nevertheless, this draw-
back is compensated by a dramatically reduced computational burden, a simple applicability,
and an appropriateness of the results.

Comparison of algorithms

By introducing box-constraints to the calibration model, the function Ψ of the nonlinear system
of equations in Equation (5.12) is not continuously differentiable, which prohibits us from ap-
plying the classical Newton method. However, widespread solvers for calibration problems with
box-constraints make use of the reformulation to the nonlinear system of equations in (5.12),
which was already mentioned in Section 5.1. Despite the non-differentiability, in a first step the
classical Newton method is mostly applied to the problem (5.8) without box-constraints (i.e.
the unconstrained problem), given by

Ψunconstr(λ) := Azunconstr(λ) − b = 0 (5.17)

with

zunconstrκ(λ) = D′−1
(
−A

T
κλ

d̃κ

)
for all κ = 1, . . . , ns + q2. (5.18)

In contrast to function Ψ of (5.13), the unconstrained function Ψunconstr is continuously differ-
entiable. Thus, a classical Newton method can be applied to solve the nonlinear system of
equations Ψunconstr(λ) = 0. The actual handling of the box-constraints differs from one solver
to another.

In the TRUNC algorithm (i.e. function calib() of R package sampling; cf. Tillé and Matei,
2016 and Algorithm 6), the Newton method used for solving the unconstrained problem (5.17)
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is successively applied several times. After each round, the components κ = 1, . . . , ns + q2
which do not fulfill the box-constraints mκ and Mκ (i.e. these with zunconstrκ(λ) < mκ or
zunconstrκ(λ) > Mκ) are truncated and frozen to the value of the respective box-constraint.
Thereafter, the reduced problem without the frozen components is solved again until all boxes
are fulfilled and a given tolerance is reached. Generally, TRUNC does not find the optimal so-
lution for GCAL, since if one component fails to comply the box-constraints in one round, it
is irrevocably frozen to the corresponding box-constraint and not considered any further. An
example of the difference between the optimal solution and the solution via the truncated algo-
rithm is given in Subsection 5.6.6.

Algorithm 6 Truncated algorithm for the solution of GCAL (TRUNC)

Input: Ψunconstr : Rq1+q2 → Rq1+q2 , λ0 = 0Rq1+q2 initial value,
k = 0, Ak+1 = A, bk+1 = b, z∗ = 1Rns+q2 , ind =

{
1, . . . , (ns + q2)

}
while

(
‖Ψunconstr(λk)‖ ≥ tol

)
|
( (ns+q2)∑

κ=1
1(

(mκ>z∗κ)∨(Mκ<z∗κ)
) 6= 0

)
k = k + 1
solve Ak zunconstr(λk)− bk = 0 (simple computation if D is GREG-type; else Newton)
set z∗[ind] = zunconstr(λk)
for κ ∈ ind

if mκ > z∗κ
z∗κ = mκ ; ind← ind \ {κ}

else if Mκ < z∗κ
z∗κ = Mκ ; ind← ind \ {κ}

end if
end for
Ak+1 ← A[ , ind]
bk+1 ← b− A[ ,−ind] z∗[−ind]
zunconstr(·)← zunconstr(·)[ind]

end while
Return: Solution z∗

The algorithm ProjN proposed by Vanderhoeft (2001, pp. 29 f.) differs slightly from TRUNC.
In contrast to TRUNC, the Newton method is only applied once. Within each iteration, the clas-
sical Newton step is replaced by an approximation that contains the box-constraints in form
of projections. Nevertheless, even the ProjN algorithm does not guarantee convergence. In
Wagner (2013, Section 5.5), the performance of TRUNC and ProjN are analyzed. In applying
ProjN, several numerical instabilities such as break downs and so-called zig-zagging effects of
the Lagrangian multipliers are observed. Moreover, the computing time of ProjN significantly
exceeds the computing time of TRUNC (by approximately a factor of 100). Thus, ProjN is not
further considered in the thesis. The computing time of TRUNC, in particular for a GREG-type
objective function, is rather small (especially compared to ProjN). Nevertheless, it is not a suit-
able solver for GCAL, since the optimality of the solution cannot be verified. Hence, alternative
algorithms need to be utilized.

Dealing with the non-differentiability of Ψ, Münnich et al. (2012b) proposed applying the SSN
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method (Algorithm 1) in a way that is similar to the allocation problem in Chapter 4, which al-
lows convergence results to be stated. Moreover, SSN and TRUNC reveal a similar computational
burden, which is shown in the study in Wagner (2013, Section 5.5). For the convergence proofs
of SSN, the semismoothness of Ψ is sufficient, which is proved in the next theorem.

Theorem 5.3.2. The function Ψ defined in (5.13) is semismooth.

Proof. Following Qi and Sun (1993), the minimum and maximum function are strongly semis-
mooth. Since Proj[mκ,Mκ](x) = min

{
Mκ,max{mκ, x}

}
for x ∈ R, the projection is semis-

mooth as it is a composition of semismooth functions (Lemma 3.2.5, item 5.). For that reason,
ATl z(λ) − bl (l = 1, . . . , q1 + q2) is semismooth. Then, since all components of Ψ are semis-
mooth (and also Lipschitz-continuous), Ψ is semismooth due to Item 3 of Lemma 3.2.5.

To conclude, it is proved in Theorem 5.3.2, that the SSN algorithm (see Algorithm 1) can be
applied to solve the GCAL problem (5.8) of dimension ns + q2, which has been rewritten as a
significantly lower dimensional nonlinear system of equations (5.12) of dimension q1 + q2. The
numerical performance is discussed in Subsection 5.6.6. For reasons of numerical stability, a
non-smooth version of the Armijo step-size rule is integrated (cf. Algorithm 2). As seen in
Section 3.2, the convergence rates of SSN method are similar to the classical Newton method,
which is exemplarily shown in the results in Subsection 5.6.6.

To conclude, the general calibration method GCAL solved via the SSN algorithm allows for the
opportunity to have a timely very efficient calibration under the consideration of various con-
straints, such as box-constraints, relaxation of benchmarks, and the Gelman bound control via
the tool called GB_control. The practicability and further results are shown in Section 5.6.

5.4 Variance estimation

In practice, a statistical method is only sensibly applicable if the quality of the estimates com-
puted by the method is quantifiable. Thus, the development of a variance or MSE estimation
technique for the calibration estimator based on GCAL is essential. As shown in Equation (2.22),
a variance estimator for the GREG estimator is given by

V̂ar(τ̂GREG
y ) =

∑
k∈S

∑
l∈S

(
πkl
πkπl

− 1
) (yk − xTk β̂)(yl − xTl β̂)

πkl
(5.19)

(cf. Särndal et al., 1992, Chapter 6.5). Similar variance estimation methods for classical cal-
ibration techniques based on Definition 2.4.2 are given by Demnati and Rao (2004), Estevao
and Särndal (2006), and D’Arrigo and Skinner (2010). All methods mentioned result in closed
forms of the variance estimators, which are based on Taylor linearization strategies.

Compared to established calibration methods (potentially with box-constraints), GCAL allows
more flexibility in the calibration process, i.e. the relaxation of benchmarks, the consideration
of area-specific benchmarks, the inclusion of a predefined Gelman bounds, and the individu-
ally adjustable maximum perturbations and penalty parameters. Consequently, the structure of
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the general calibration problem changes substantially. While this has no effect on the point
estimator (2.38), it does have a major impact on the variance estimation. In that regard, a signif-
icant underestimated variability of the population estimates obtained by the variance estimation
methods in Deville and Särndal (1992), Estevao and Särndal (2006), and D’Arrigo and Skinner
(2010) is expected, if the relaxed benchmarks are omitted in the determination of the residual
variance estimator. In addition, most of the techniques are only valid for the estimation of the
variance of the population estimates, but not for area-specific estimates. Furthermore, these
variance estimation methods focus on the estimation of means and totals only, whereas in gen-
eral, there is an interest in running regression models and obtaining correct inference on the
regression parameters as well.

An alternative to the linearized variance estimators are resampling methods based on bootstrap
strategies, which have been primarily published by Efron (1979). As also stated in Kovar et al.
(1988) and Särndal et al. (1992, pp. 442 ff.), a bootstrap technique can be described by the
following procedure. We start by supposing a given sample S of the population U . The goal
is to estimate the unknown parameter ϑ using the estimate ϑ̂ by means of the sample S. The
required value to quantify the quality of the estimate is an estimation of Var(ϑ̂) or MSE(ϑ̂). A
classical bootstrap procedure is given by the following:

1. Construct an artificial population Uboot that is assumed to mimic the real and unknown
population U . In general, Uboot is equal to the sample S ⊆ U .

2. Draw a series of RBoot ∈ N independent sub-samples Srh from Uboot and calculate esti-
mates ϑ̂boot in the same way as ϑ̂ was calculated.

3. The observed distribution of ϑ̂boot
1 , . . . , ϑ̂boot

RBoot
is considered as an estimate of the sampling

distribution of ϑ̂. Thus, Var(ϑ̂) can be estimated by

V̂ar(ϑ̂)boot := 1
RBoot − 1

RBoot∑
r=1

ϑ̂boot
r −

 1
RBoot

RBoot∑
ι=1

ϑ̂boot
ι

2

, (5.20)

which is equivalent to the empirical variance of the bootstrap estimates ϑ̂boot
r .

Since all steps necessary to obtain the calibration weights are reproduced in every bootstrap
replication r = 1, . . . , RBoot, a bootstrap implies a massive amount of computation time. Thus,
the classical bootstrap approach appears to be unfeasible if multiple population estimates are
calculated at the same time. Furthermore, due to the computational costs, users may be less
likely to use a classical bootstrap for obtaining valid inference for their models. As a solution
to this drawback, Dippo et al. (1984) proposed the usage of replicate weights. They stated that
the implementation of a replication through replicate weights may facilitate the computation of
design-based variances from a given data set by far more researchers. Many important surveys
already provide replicate weights, such as the American Community Survey2 (ACS) and the
Household Finance and Consumption Survey3. In the German Census context, the usage of
replicate weights seems to be appropriate as well, since many sources of uncertainty can be
easily modeled using replications. For the calibration model GCAL, the derivation of replicate

2https://usa.ipums.org/usa/repwt.shtml
3http://www.ecb.europa.eu/pub/pdf/other/ecbsp1en.pdf

https://usa.ipums.org/usa/repwt.shtml
http://www.ecb.europa.eu/pub/pdf/other/ecbsp1en.pdf
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weights is rather simple as the weights correspond to the output of GCAL within each replication.
By doingRBoot replications, it is possible to obtainRBoot vectors containing the replicate weights
for each unit in the sample. As the way the replications are constructed may alter in every
survey, the construction of the replicate weights for the StrRS design will be given an adequate
attention here. The results are presented in Section 5.6.1.

In order to enable replicate weights to be used for many different estimators, Dippo et al. (1984)
and Fay (1989) proposed restricting all replicate weights to non-zero values. Rao and Wu (1988)
proposed a bootstrap procedure using a scaling of the data in the replications. This approach
was extended by Rao et al. (1992) by scaling the weights instead of the data, thereby allow-
ing a variance estimation for non-smooth statistics. Chipperfield and Preston (2007) further
increased the efficiency of this approach by using an SRS design. The bootstrap proposed for
GCAL is based on the rescaling bootstrap introduced by Preston (2009). This approach extends
the former bootstraps to the case of stratified multistage sampling, which allows its application
to be used in a large number of different survey designs. As stated in Burgard et al. (2018), ap-
proximately 50% of the design weights dk (k = 1, . . . , ns) are set to values near zero, while the
others are accordingly increased, such that the sum of the computed bootstrap design weights
equals to the original ones. This procedure is done separately in each stratum h = 1, . . . , H .
The replicate weights are then obtained using the appropriate rescaling bootstrap presented in
Algorithm 7.

Algorithm 7 Rescaling bootstrap for the variance estimation of GCAL problems (resc.boot)
Input: RBoot ∈ N number of bootstrap replications

for r ∈ 1, . . . , RBoot

for h ∈ 1, . . . , H
draw a sub-sample Srh without replacement from Sh of size nbooth = bnh/2c
set λboot

h =
√
nboot
h · 1−fh

nh−nboot
h

and define δr := (0, . . . , 0)T ∈ Rnh

for k = 1, . . . , nh

set δrk

{
1, if k ∈ Srh
0, else

compute drh =
(

1− λboot
h + λboot

h
nh
nboot
h
δrk

)
· dh

end for
end for
gr is the solution to the calibration problem using dr instead of d
wr :=

(
dr1g

r
1, . . . , d

r
ns
grns

)T
is the r-th replicate weight

end for
Return: r-th replicate weights wr for all r = 1, . . . , RBoot.

The variance estimates for some arbitrary totals, means, and proportions can then be obtained
by the simple sum of squares method shown in (5.20). To verify the accuracy of the vari-
ance estimator V̂ar(ϑ̂)boot gained by the rescaling bootstrap, the variance estimator needs to be
relatively compared with the Monte-Carlo variance of the point estimate ϑ̂ in a simulation study.
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Thus, the relative bias of the variance estimate given by

E
(
V̂ar(ϑ̂)boot

)
− Var(ϑ̂)MC

Var(ϑ̂)MC
(5.21)

has to be evaluated. In this way, the difference of the expected value of the bootstrap variance
estimates and the Monte-Carlo variances of the point estimate ϑ̂ computed in a Monte-Carlo
simulation study with the aid of the 1 000 samples is compared in a relative manner.

The proposed rescaling bootstrap is applied to a GCAL problem in Subsection 5.6.5. The occur-
ring optimization problems are also solved via the SSN algorithm. For a more detailed analysis
of the rescaling bootstrap, we refer to Preston (2009) and Burgard et al. (2018).

5.5 Summary of methods

Prior to the analysis of the simulation study in Section 5.6, the presented methods and algo-
rithms are summarized in this Section. In general, the GCAL method is a generalized calibration
method, which offers a wide range of possibilities with regard to a flexible consideration of the
restrictions and distance measures used. Moreover, it can be interpreted as a generalization of
classical calibration methods like the GREG calibration (see Subsection 2.4).

In a first step, a desired distance function has to be selected, which covers the preferences of
the user (see Table 2.1). Then, the restrictions have to be specified. In that regard, an individual
definition of box-constraints for the correction weights is possible. By using an additional
tool called GB_control (see Algorithm 5), it is also possible to restrict the variation of the
calibration weights. In addition to the box-constraints, the calibration benchmarks have to be
selected. These benchmarks may refer to any possible stratification level, i.e. the simultaneous
consideration of national and regional benchmarks is enabled. Moreover, each benchmark can
individually be referred to as an exact or a relaxed benchmark. This allows the simultaneous
consideration of a very large number of benchmarks. Moreover, benchmarks for small regions
can also be included without the risk of infeasibility problems. For each relaxed benchmark,
an individual selection of the permitted tolerance can be considered as well. Thus, benchmarks
for small regions or even estimated benchmarks gained from other surveys can be included in a
way such that the size of the tolerance takes into account the size of the region or the estimation
accuracy of the estimates.

In general, the problem can be formulated as a restricted optimization problem (5.4). Its dimen-
sion is equal to the sample size, which may exceed the number of one million in applications
like the German Census (cf. Münnich et al., 2012a). Despite the high dimension, a standard
solver for restricted optimization problems, which are briefly described in Section 3.1, is ap-
plicable. In order to avoid the direct solution, the original problem can be transformed into
a significantly lower dimensional nonlinear system of equations by converting the optimality
conditions in analogy to Münnich et al. (2012b). The resulting lower dimensional problem
can then be solved using the semismooth Newton method (SSN) presented in Section 3.2. In
that regard, a linear dependence between the computing time and the dimension of the original
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problem can be observed. The necessary conditions for the applicability of this strategy are the
separability and convexity of the objective function as well as the convexity of the feasible set.
These properties are given for all three objective functions considered. A detailed analysis of
the performance of the SSN algorithm compared to the solvers TRUNC (cf. Tillé and Matei, 2016)
and ProjN (cf. Vanderhoeft, 2001, pp. 29 f.), which are based on similar approaches, shows
that SSN outperforms TRUNC and ProjN with regard to the computing time. In addition, it is the
only algorithm which provably reaches the optimal solution (see Subsection 5.6.6).

Due to the relaxation of benchmarks and the box-constraints, common variance estimation tech-
niques based on linearization techniques are not applicable. Instead, a rescaling bootstrap (cf.
Preston, 2009) is proposed. This approach is only applicable due to the time-efficient solution
strategy using the SSN algorithm, as the calibration has to be done repeatedly. Besides the vari-
ance estimation, the bootstrap enables to provide vectors of replication weights in order to allow
further social-scientific studies.

Finally, it can be summarized that the methods presented show a possibility to solve a gen-
eralized calibration problem in a very time-efficient way by exploiting the specific structure
of the problem. Besides, there is a linear dependence between the computation time and the
dimension ns of the origin problem, which in fact is the size of the sample. For the sake of
comprehensibility, the methods and algorithms concerning GCAL are illustrated in a graphical
overview in Figure 5.2. In that regard, blue boxes indicate statistical methods, orange boxes
represent numerical algorithms, and green boxes show the resulting output.

Variance estimation

General calibration method
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no box-constr. & 

no relaxation

no box-constr. & 

relaxation

box-constraints & 
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Figure 5.2: Summary of all options of the generalized calibration method GCAL.
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5.6 Simulation study and results

5.6.1 Framework

As for the optimal allocation, the simulation study for GCAL is also based on the synthetic RI-
FOSS dataset introduced in Section 2.6 which is restricted to the federal states of Hesse, North
Rhine-Westphalia, Rhineland-Palatinate, and Saarland, with a population size of 11 121 631
households accommodating 30 077 329 individuals. The sampling design is based on 6 272
strata built as cross-classifications of sampling points (SMP – 784 regional areas) and classes of
household sizes (HHS – 8 classes). In contrast to Chapter 4, the overall sampling fraction is fixed
to 2%, i.e. the total sample size is given by ns = 222 433 households. The stratified samples are
drawn using the MMDopt method described in Chapter 4 with (cv)-standardization and auxiliary
variables EDI, PEN, and AGE4.1. The allocation is computed with equal weights, lower bounds
mh = 2, and upper bounds equal to stratum size Mh = Nh for each cross-classification stratum
h = 1, . . . , H . This results in SMP-specific sampling fractions from 1.6% to 3.9%, where the
highest sampling fractions are primarily assigned to small SMPs.

For the calibration benchmarks, the totals of considered auxiliary variables can be assumed to
be known by (properly managed) registers or other surveys, namely

• ZEN (number of persons living in the household),

• EF117A, EF117B, EF117S (occupational status),

• ILO1, ILO4 (type of employment), and

• ISCEDA, ISCEDB, ISCEDD (highest graduation)

as well as additional classes of cross-classifications of age and gender, namely

• AGE4.1_Sex.1, AGE4.2_Sex.1, AGE4.3_Sex.1, AGE4.4_Sex.1, and
AGE4.1_Sex.2, AGE4.2_Sex.2, AGE4.3_Sex.2, AGE4.4_Sex.2.

Some characteristics of these variables are omitted, such as ILO2 due to its rare appearance.
For a detailed description of the variables we refer to the Tables B.1 and B.2. In practice, these
benchmark totals may also be gained from other surveys with sampling designs or estimation
techniques that differ completely from the regarded survey (e.g. model-based estimation meth-
ods such as small area estimation; c.f. Münnich et al., 2012a, pp. 129 f.). Then, the relaxation
of these benchmarks support the handling of possible inconsistencies and biased estimates, as
described in Section 5.2.

There are two major goals of applying GCAL. The first is to gain accuracy increases for (re-
gional and overall) total estimates of some variables of interest compared to the HT estimator,
which strongly depends on the correlation between auxiliary variables and variables of interest.
The second goal is to ensure coherence of the estimates with the known totals of the auxiliary
variables. Depending on various scenarios, the coherence should be achieved on several stratifi-
cation levels and with various predefined tolerances. The six scenarios considered are described
in Table 5.1. They are split into three cases, each with and without consideration of the Gelman
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bound. Generally, the number of benchmarks increases from the first to the last row of the
table. The SMP-specific benchmarks for ZEN are included in each of the six scenarios without
relaxation. In the first of the three cases, federal state-specific benchmarks for the auxiliaries
are added (without relaxation). In the second case, SMP-specific relaxed benchmarks are added
for the auxiliaries. The third case additionally contains benchmarks for Age×Gender classes
(exact for federal states and relaxed for SMPs). If the Gelman bound is considered, the Gelman
bound of the calibration weights should not exceed the original Gelman bound computed by the
design weights. The overall number of benchmarks is tabulated in the last column.

Table 5.1: Various scenarios applied to GCAL. “X” means the respective benchmarks are included, “−”
vice versa. The values xx% refer to the maximal allowed tolerance.

ZEN Auxiliaries Age×Gender Gelman Bench-
SMP Fed.

state
SMP Fed.

state
SMP Bound marks

BL.exact X X − − − − 816
BL.exact+GB X X − − − X 816

SMP.rel(Aux) X X ±15% − − − 7 088
SMP.rel(Aux)+GB X X ±15% − − X 7 088

SMP.rel(Aux&AxG) X X ±15% X ±18% − 13 392
SMP.rel(Aux&AxG)+GB X X ±15% X ±18% X 13 392

It should be noted that the calibration estimator for the population total concerning scenario
BL.exact is equivalent to the GREG estimator for the population total with the federal state-
specific totals of the auxiliaries and SMP-specific totals for ZEN used as benchmarks. To evalu-
ate the results and analyze the strengths and weaknesses of the GCAL, the results of this scenarios
are compared to the HT estimates. Aside from the analysis of weights and benchmarks (Subsec-
tions 5.6.2 and 5.6.3), the accuracy of point estimates on various stratification levels is compared
for the auxiliaries and several other variables of interest in Subsection 5.6.4. The accuracy is
measured by the Monte-Carlo RRMSE and RBIAS computed on the basis of the RMC = 1 000
Monte-Carlo replications. For each evaluation, the results for the three distance functions of
Table 2.1 are analyzed. In addition, the variance estimation with a rescaling bootstrap (see
Section 5.4) is computed with RBoot = 199 bootstrap replications per Monte-Carlo replicate.
These results are summarized in Subsection 5.6.5. Finally, the algorithmic performance of the
algorithms is investigated in Subsection 5.6.6. In particular, the advantages of SSN compared
to the truncated algorithm TRUNC and the GREG estimator are emphasized. The evaluations
of Subsections 5.6.2, 5.6.3, and 5.6.6 are exemplarily based on the results of the sample with
number 615. A randomly conducted study yields similar results for other samples.

The color selection of the headers in the lattice-plots are adopted from Chapter 4, blue and
green are given for the auxiliary variables, and red and orange are for the variables of interest.
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5.6.2 Design weights versus calibration weights

Within the calibration process, the design weights dk are adjusted to the calibration weights
wk = dkgk, where the correction weights gk are generated by GCAL. If the calibration has no
influence, gk = 1 holds for all k = 1, . . . , ns. Thus, the higher the influence of the calibra-
tion (i.e. the higher the number of benchmarks or the more restrictive the benchmarks), the
higher the gk deviates from 1.0. To illustrate this, the correction weights gk are displayed using
density plots in Figure 5.3 for the three scenarios without GB_control and the three distance
functions. The light blue vertical lines in each panel highlight the position of the 5%- and the
95%-quantiles of the weights. Generally, the number of benchmarks increases from row 1 to 3.
Firstly, we observe a significant increase in the variance for the scenarios with (relaxed) SMP
benchmarks (rows 2 and 3), especially if Age×Gender classes are included (row 3). This effect
can be seen by the lower curves at gk = 1 and the bigger tails of the distributions, as displayed
by the outwards shifted vertical lines of the quantiles. This is a result of the increased number
of benchmarks. If some attempts were made to fulfill the SMP-specific benchmarks exactly, i.e.
to omit the relaxation, the SSN algorithm for GCAL would break down due to the non-feasibility
of the resulting problem.
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Figure 5.3: Density plots of correction weights g for scenarios without Gelman bound control.

When looking at the shapes of the density plots, a similar behavior can be observed for the three
distance functions. However, in considering the red numbers at the top-right and top-left of each
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plot, there are significant differences between the three distance functions. The number at the
top-left corresponds to the number of weights reaching the lower bound of 0.2, whereas the
number at the top-right corresponds to the number of weights reaching the upper bound of 5.0.
Firstly, the number of active box-constraints increases with the number of restrictions (from row
1 down to row 3). Secondly, the number of active lower bounds is clearly smaller for the Raking
distance function and even smaller from the ML-Raking objective function. The opposite effect
can be observed for the upper bounds. This observation is consistent with the analysis of the
distance function in Section 5.1 and Figure 5.1, where the weight gk being smaller than 1.0 are
more penalized for Raking and ML-Raking compared to the GREG-type distance functions.
This results in a skewed shifted distribution of the correction weights, which is also highlighted
in Figure 5.4, where the correction weights gk resulting from the three distance functions are
plotted against each other (in log scale; for scenario SMP.rel(Aux&AxG)). The first mentioned
distance function is plotted on the ordinate. In looking exemplarily at the panels including the
GREG-type distance function, units with extremely low weights for the GREG-type function
are assigned with higher weights for the other two functions and vice versa. Although the final
choice of the distance function depends on the specific application, it may be recommended
to use the ML-Raking distance function, since the calibration weights consists of the design
and correction weights and a doubling of a design weight (i.e. gk = 2) should approximately
be penalized with the same amount as a halving of a design weight (i.e. gk = 0.5). This
is most likely given for the ML-Raking function and is mostly unfulfilled for the GREG-type
function.

Figure 5.4: Scatterplot of correction weights under different distance function (for scenario
SMP.rel(Aux&AxG)) - first-mentioned distance function is plotted on the ordinate.

In Table 5.2, the values of the objective functions (without penalty term for relaxed bench-
marks) are shown for the three distance functions and the different scenarios. However, we
only focus a column-wise comparison of the values, because it is not reasonable to compare the
values of the distance functions row-wise with one another. Firstly, the more benchmarks are
included or the more restrictive the benchmarks are, the higher are the values of the objective
functions. This corresponds to the increasing variances of the distributions in Figure 5.3. The
objective values increase by a factor of 10 to 15, if SMP-specific benchmarks are added for the
auxiliaries (i.e. from scenarios BL.exact[+GB] to SMP.rel(Aux)[+GB]), which stresses the
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high effort to comply with regional benchmarks (despite relaxation). The additional consider-
ation of the Age×Gender classes increases the objective values by a factor of 2 compared to
the scenarios SMP.rel(Aux)[+GB]. This is caused by some SMPs with very bad HT estimates
for certain Age×Gender classes. This is analyzed in more detail in Subsection 5.6.4. Secondly,
the inclusion of GB_control also raises the objective value but only in a slight manner. Thus,
GB_control seems to be easily includable in each application. Several other simulations reveal
similar results, and it turns out that in general, GB_control only affects the few highest and
smallest calibration weights. Therefore, the corresponding increase of the value of the objective
function is comparably small. Nevertheless, this increase may easily result in a non-feasibility
for one specific benchmark in one specific SMP, which would lead to a break down of the SSN
algorithm. The sensitivity of the algorithm is examined in more detail in Subsection 5.6.7.

Table 5.2: Values of objective functions for calibration scenarios (without penalty term for relaxed bench-
marks).

GREG-type Raking Ratio ML-Raking

BL.exact 1 098.90 1 103.78 1 108.47
BL.exact+GB 1 457.29 1 476.72 1 497.68

SMP.rel(Aux) 15 049.09 15 005.66 15 009.58
SMP.rel(Aux)+GB 15 624.21 15 600.39 15 641.09

SMP.rel(Aux&AxG) 28 475.30 28 146.59 28 002.86
SMP.rel(Aux&AxG)+GB 29 250.17 29 000.49 28 957.23

With regard to Table 5.2, the consideration of a Gelman bound slightly increase the objective
value, but the effect on the resulting Gelman bound is immense. In this application, the orig-
inal Gelman bound of the design weights is GBorg = 76.13. This is also the Gelman bound
to be reached by GCAL. We have to note, that a lower Gelman bound is almost impossible in
the scenarios with relaxed benchmarks due to the number of benchmarks and relatively small
SMPs. As shown in Table 5.3, the Gelman bounds after the calibration are extensively higher

Table 5.3: Gelman bounds for the calibration scenarios depending on the objective function.

GREG-type Raking Ratio ML-Raking

BL.exact 388.86 388.82 388.72
BL.exact+GB 51.85 51.84 51.83

SMP.rel(Aux) 738.10 875.26 1 110.71
SMP.rel(Aux)+GB 76.13 76.13 76.13

SMP.rel(Aux&AxG) 792.72 948.31 1 222.14
SMP.rel(Aux&AxG)+GB 76.13 76.13 76.13
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in the scenarios without GB_control, which is a well-known problem of calibration methods.
In the scenarios with GB_control, the Gelman bounds are equal to or lower than GBorg. The
slighter value for scenario BL.exact+GB is due to the low number of benchmarks in this sce-
nario. Overall, the large differences of the Gelman bound and the high values occurring in the
scenarios without GB_control (which are partly over 1 000) highlight the importance of using
GB_control for GCAL. The control of Gelman bounds, which is often requested by law or at
least desired in official statistics, is generally not possible in common calibration methods and
therefore a unique selling point of GCAL.

5.6.3 Compliance with benchmarks

It is desirable to consider a great number of benchmarks of several auxiliary variables on various
stratification levels. These benchmarks may be gained from different sources and are associated
with different data quality. Infeasibility problems can easily occur if all these benchmarks have
to be exactly met by the calibration procedure. Furthermore, satisfying benchmarks associated
with sampling errors or biases in analogy to benchmarks of high quality is not always desirable.
Therefore, GCAL permits specific benchmarks to be relaxed. Figure 5.5 highlights the func-
tionality of the relaxation. Each boxplot contains the deviation of the totals estimated by the
calibration estimator and the benchmark totals for all restrictions which are included in scenario
SMP.rel(Aux&AxG) (i.e. both SMP- and federal state benchmarks for the variables mentioned
in Subsection 5.6.1). The boxplots are divided into Auxiliaries and Age×Gender classes. The
red vertical lines correspond to the maximal allowed tolerance for the relaxed benchmarks. The
results with and without GB_control are almost equal, so that only three scenarios have to be
distinguished.
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Age x Gender

Figure 5.5: Compliance with benchmarks of SMP-specific estimates for scenarios with the GREG-type
objective function.

In the scenarios without consideration of SMP benchmarks (BL.exact), there are several SMP-
specific estimates which substantially differ from their benchmark totals and significantly ex-
ceed the maximal perturbations, which are used in the scenarios with SMP-specific benchmarks.
In the case of BL.exact, the maximal deviations are about 100% of the correct total for the aux-
iliary variables and +83% and−70% for the Age×Gender classes. These extreme perturbations
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are unacceptable if SMP-specific estimates are subject of the survey. In official statistics for ex-
ample, this is undesirable for a number of reasons. For one thing, the known totals of small
regions are not able to be included in the calibration of a sample conducted in a nationwide
survey, and thus the accuracy of regional estimates cannot benefit from the correlation of the
auxiliaries and the variables of interest. On the other hand, it may be impossible to calibrate
the sample with the aid of well-managed regional registers. This results in regional inconsis-
tencies and coherence problems, and the prevention of these problems is a major task in several
modern surveys. The issue is exemplarily shown in the maps of Figure 5.6 for the NUTS3-
and SMP-specific estimates for variable AGE4.1_Sex.2 (SMP left-hand side, NUTS3 right-
hand side; each for scenarios BL.exact and SMP.rel(Aux&AxG)). Darker areas correspond to
a higher deviation of benchmarks and estimates. Since SMP-specific benchmarks are included
in scenario SMP.rel(Aux&AxG), no inefficient SMP-specific estimates can be observed in this
scenario. Even the NUTS3-specific estimates benefit from the inclusion of SMP-specific bench-
marks. A similar behavior can be observed for other variables and is therefore not displayed. If
the SMP-specific restrictions are included in GCAL, the accuracy of the SMP-specific estimates
increases significantly for both, NUTS3- and SMP-specific estimates.

Figure 5.6: SMP- and NUTS3-specific deviations of estimates and benchmark totals for variable
AGE4.1_Sex.2.

We have shown that the possibility of the relaxation of regional benchmarks in the calibration
process by GCAL enables a range of opportunities and increases the efficiency and flexibility
of users. Flexibility is particularly given by the option of choosing the height of the maximal
tolerance for each variable in each region separately. Thus, the strength of the restrictions can be
adapted to the framework of the regions to ensure the practicability of calibration while taking
into account all restrictions. Figure 5.6 also shows that in general, the accuracy of aggregated
stratification levels can benefit from relaxed benchmarks on more disaggregated stratification
levels.
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5.6.4 Point estimation

Aside from coherence and consistency, increasing the accuracy of estimates is a key aspect of
GCAL. Within the simulation study, the efficiency of the calibration point estimates is evalu-
ated for approximately 50 variables over all 1 000 Monte-Carlo replications. The SMP-specific
RRMSEs for eight selected variables are shown in Figure 5.7 for all scenarios and for the
GREG-type objective functions. The eight variables comprise four variables which are (partly)
included in the calibration (green shaded header) and four variables of interest (red shaded
header), which are not involved in the calibration. Each boxplot contains 784 points assigned
to the 784 SMPs. Additional plots for other objective functions, other stratification levels, and
more variables are shown in the Appendix B.3. In general, there are no fundamental differences
observed for the other objective functions and other stratification levels. For comparability, the
HT estimator is shown in the first row.
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Figure 5.7: RRMSE of SMP-specific point estimates for scenarios with a GREG-type objective function.

In general, the point estimates for all variables (auxiliaries and variables of interest) and all
scenarios are at least as accurate as the HT estimates. Beside this, significant differences can be
observed in the behavior of the point estimates of the auxiliaries (green shaded headers), which
is primarily a consequence of the usage of the auxiliary variables as benchmarks. Moreover, the
consideration of the Gelman bound does not yield any notable changes in the accuracy of the
estimates. Some certain observations are explained in detail in the following paragraph.

With regard to the scenarios containing only federal state-specific benchmarks (see scenarios
BL.exact[+GB] in rows 2 and 3), the accuracy of the SMP-specific estimates of all the auxil-
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iary variables is similar to the HT estimates, since none of the auxiliary variables is included
as benchmark on SMP-level. In case of the scenarios SMP.rel(Aux)[+GB] (rows 4 and 5),
the accuracy of the SMP-specific estimates is significantly improved for the auxiliary vari-
ables ISCEDA and EF117A, since they are applied as relaxed benchmarks in GCAL. In this case,
the boxplots contain no inadequate outliers due to the predefined maximal perturbations, and
possibly poor estimates are controlled. Concurrently, the SMP-specific estimates of variables
AGE4.1_Sex.1 and AGE4.4_Sex.1 are more or less equal to the results of the BL.exact[+GB]
(rows 2 and 3) scenarios. Thus, the inclusion of specific benchmarks does not necessarily
lead to accuracy-changes for other not included variables. In looking at the results with re-
gard to the scenarios SMP.rel(Aux&AxG)[+GB] (rows 6 and 7), a significant decrease of the
RRMSE for the SMP-specific estimates is also observed for the variables AGE4.1_Sex.1 and
AGE4.4_Sex.1, since they are contained in GCAL as relaxed benchmarks. In these scenarios,
the accuracy of the estimates for ISCEDA and EF117A slightly suffer due to the following rea-
son. The feasible set is shrunken as the number of restrictions increases, i.e. the SMP-specific
RRMSEs of estimates of variables which are included in GCAL, but which are not located at
the maximal permitted tolerance may suffer due to the smaller feasible set. The RRMSEs of
the NUTS3- and NUTS2-specific estimates in Figures B.7 and B.8 also benefit from the inclu-
sion of SMP-specific benchmarks. Thus, gains in accuracy are generally also expectable for
estimates on aggregated levels.

With regard to the variables of interest (red shaded header), different behaviors can also be
observed. The accuracy of the SMP-specific estimates for AGE7.7 significantly increases if the
Age×Gender classes are included as benchmarks (rows 6 and 7) due to the high correlation
between AGE7.7 and the auxiliary variables belonging to the Age×Gender classes. For EDI
and PEN, only slight efficiency increases can be observed. A reason for this is found in the
simulation framework, as most of the auxiliaries are solely variables which count persons in
household with specific properties and thus are not typical continuous variables (e.g. income or
expenses). The specific framework for this simulation results in a correlation structure between
auxiliaries and variables of interest which does not establish optimal conditions in order to
allow for a significant error-decrease for EDI and PEN. Regarding this point however, it has
to be considered that the main task of GCAL is not only to obtain accuracy increased estimates
but also to have consistency between benchmarks and auxiliaries. Thus, the kindness of the
calibration approach cannot be determined only by the height of the error-decrease of the point
estimates of the variables of interest.

In Figure 5.8, the RBIAS is presented for the SMP-specific estimates for the same scenarios
and variables as for the RRMSE in Figure 4.23. As per definition, the HT estimator is unbiased
for all variables. Since the GREG estimator is model-assisted and an estimation based on GCAL
can also be associated to this type of estimators, estimates based on GCAL should at least be
asymptotically unbiased. Generally, unbiased estimates for most scenarios are observed, in-
cluding those with relaxed benchmarks. In some SMPs, a small (mostly negative) bias occurs
if GB_control is used, especially for the variables which are not involved in the calibration or
are highly correlated with one of these. The reason for this is the significant restriction of the
feasible set by GB_control to prevent a high Gelman bound, especially for very small and high
design weights. Consequently, the calibration is slightly skewed for some variables, and this
may result in a small bias. Nevertheless, the bias is relatively small and is not enough to be a



140 5 A GENERALIZED CALIBRATION METHOD

   

S
ce

na
rio

s

SMP.rel(Aux&AxG)+GB

SMP.rel(Aux&AxG)

SMP.rel(Aux)+GB

SMP.rel(Aux)

BL.exact+GB

BL.exact

Horvitz Thompson

−0.2−0.1 0.0 0.1 0.2

●

●

●

●

●

●

●

●●●●●●● ● ●●●●●●●●● ●●●●●● ●● ● ●●●●●●● ●●●●● ●● ●● ●● ●●●

●●●●●●●●●●●●●●●●●●●

●●●●● ●●● ●●● ●● ●●●● ● ●●●●●●● ●●●●● ●● ● ●● ● ●●●●●●●● ●●●● ●● ●●● ●●●● ●

●●●●● ●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●● ●

●●●●● ●● ●● ●● ●●●●● ●● ●●●● ●●●●●●● ●● ●● ●●● ●●● ●●●●● ●● ●●● ●●● ●●● ●●●● ● ●●●●● ●

● ●●●●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●

●●● ●●●●●●●●●● ●

AGE4.1_Sex.1

−0.10 0.00 0.05 0.10

●

●

●

●

●

●

●

●●● ●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●● ●●●●● ●●●● ●

● ●● ●● ●●● ●●● ●●●● ●●● ● ●●●● ●●●● ●●●●●●● ●● ●●●●● ● ●●●●●●● ●●●●

●●●● ●●●● ●●●●●●● ●●●●●●●● ●● ●●●● ●●●●

●●● ●●● ● ●●●●●●● ●●●●● ●● ●● ●● ●●● ●●● ●●● ●● ●●●●●● ●●● ●●●● ●● ●●● ●

●● ●●● ●●●●●● ●● ●●●● ●●●●●● ●●● ●

●●● ●●●●●●●●●● ●●● ●●● ●●●●●● ●

AGE4.4_Sex.1

−0.15 −0.05 0.05 0.15

●

●

●

●

●

●

●

● ●● ●●● ● ●●●● ●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●● ●

● ●● ●●●●● ●●●●●● ●●●● ●●●● ●

●●● ●●● ●● ●●●● ●●● ●●●●●●●●●●● ●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●● ● ●● ●● ●● ●●● ●●● ●●● ●●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●● ●●

●● ●●●●●● ●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●

ISCEDA

−0.05 0.00 0.05

●

●

●

●

●

●

●

●● ●●● ●●● ●● ●●● ● ●● ●● ●● ●●● ●● ●●●●●● ●●●●● ●●●●●●●● ●●

●●●●● ●● ● ●●● ●●●●● ●●● ●●●●● ●

● ●●● ●●●● ●●● ●●● ● ●●●●●● ●

●●● ●●● ●

● ●●● ●● ●●● ●● ●● ●●●●● ●● ●●● ●● ●●●●●● ●●● ●●●● ●● ●●●●●● ● ●● ● ●● ●●

● ●●●●● ●●●● ●●●●● ●●● ●● ●●●● ●●●

●●●● ●●● ●●● ●● ●●●●● ●●●●● ●●●

EF117A

RBIAS of SMP−specific estimates (GREG−type)

S
ce

na
rio

s

SMP.rel(Aux&AxG)+GB

SMP.rel(Aux&AxG)

SMP.rel(Aux)+GB

SMP.rel(Aux)

BL.exact+GB

BL.exact

Horvitz Thompson

−0.05 0.00 0.05

●

●

●

●

●

●

●

●●● ●●●● ●● ●● ●●● ●●●●● ●●●● ●●● ●●●●● ●●

●● ●●● ●●●●●●● ●● ●● ●●●●●● ●●● ●●

●● ●● ● ●● ●●● ●●●●●● ●●●●● ●● ●●● ●●●●●●

●●●● ●●●● ●●●● ●●●●● ●●●●●● ●●● ●●

●● ● ●●● ●● ●● ●●●●● ●●●●● ●● ●● ●● ●● ●●● ●● ●●

● ●●● ●●●●●●●●●●●● ●●●● ●●● ●●

● ●● ●●●●●●●●● ●●● ●●●●●● ●●● ●●

INC

−0.05 0.00 0.05

●

●

●

●

●

●

●

● ●● ●●●●● ●●● ●●●●●● ●●● ●●●●● ●● ●●●● ●●●●●●●●●●●●● ●● ●

● ●●●●●●● ●● ●●●●● ●●●● ●●●● ●●●●● ●● ●

●● ●● ●●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●● ●●● ●●● ●● ●●●● ● ●●●●●●● ●

● ●●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●

●●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ●●●●●● ● ●

●● ●●●●● ●●● ●● ●●●● ●●●●●●● ●● ●●● ●

●● ●●● ●●●●● ●●●● ●●●● ●

PEN

−0.050.00 0.05

●

●

●

●

●

●

●

●● ●●●● ●●● ●● ●● ●●● ●●●●●●●● ●● ●●● ●●●● ●●●●● ●● ●●●●●●● ●●● ●●●●

● ●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●

● ●● ●●●●●●● ●● ●●●●● ●●● ●●● ● ●●●● ●●● ● ●●● ● ●● ●●●● ●●●●●●● ●●● ●●●●●

●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●

● ●● ● ●● ●●● ●●●●● ●●●●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●●● ●●●

●●●●● ●●●●●●● ●●● ●●● ●●●●●●● ●●●●● ●●●● ●● ●● ●●●●●●

●●● ●●● ●●● ●●● ●●●●●● ●●

AGE7.7

−0.05 0.00 0.05

●

●

●

●

●

●

●

● ●●●● ●●●● ● ●● ●● ● ●●● ●● ●● ●●●● ●●●●●● ●●●● ● ●●● ●● ●●●● ●●●● ●●● ● ●● ●● ●●●● ●● ●

● ●●●●●●●●●●● ● ●●●●●●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●●●

●●● ●●● ●●●●● ● ●●● ●●● ●● ●●● ●●● ●●●● ● ●● ●● ●●●● ●● ●●●● ●●● ● ●●●●●● ●● ●

●●●●● ●●●● ●●●●●●●●● ●●●●● ●●● ●●● ●●● ●● ●●●●●●

●●● ●●●● ●● ● ●●● ●● ●●● ●● ●●●● ●●●● ●●● ●● ●● ●●●● ●●●●●●●● ●● ●

●●● ●●● ●●● ●●● ●● ●● ●●●● ●●●●●

●● ●●● ●●●●● ●●● ●● ●●●●

EDI

Figure 5.8: RBIAS of SMP-specific point estimates for scenarios with a GREG-type objective function.

driving force of the MSE (which is equal to the variance plus the squared bias). This can be
seen in Table 5.4, where the quantiles of the ratio BIAS2

MSE are tabulated over all SMPs for six of
the eight observed variables exemplarily shown for the scenario SMP.rel(Aux&AxG)+GB. The
median of the share of the bias in the MSE over all SMPs is about one per mil. In a few SMPs,
the share is over 10%, but these SMPs are not the ones with a high bias. A similar behavior can
be observed for other variables and other distance functions (see Appendix B.3). Thus, the cal-
ibration estimator based on GCAL is generally unbiased for the observed variables and scenarios
in this simulation framework.

Table 5.4: Quantiles (over all SMPs) of the ratio BIAS2

MSE for the six observed variables exemplarily shown
for scenario SMP.rel(Aux&AxG)+GB with GREG-type objective function.

AGE4.4_Sex.1 ISCEDA EF117A PEN EDI

0% 2.21 · 10−8 1.90 · 10−10 1.64 · 10−9 3.87 · 10−10 2.38 · 10−9

25% 2.04 · 10−4 2.90 · 10−4 2.48 · 10−4 1.39 · 10−4 1.20 · 10−4

50% 8.93 · 10−4 1.08 · 10−3 1.11 · 10−3 5.53 · 10−4 5.69 · 10−4

75% 2.72 · 10−3 3.61 · 10−3 3.17 · 10−3 1.77 · 10−3 2.12 · 10−3

100% 2.58 · 10−1 8.02 · 10−1 5.77 · 10−1 1.96 · 10−1 1.20 · 10−1
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5.6.5 Variance estimation

As mentioned in Section 5.4, a rescaling bootstrap is applied to receive a robust variance es-
timation of estimates gained by GCAL. Aside from the number of RMC = 1 000 Monte-Carlo
replications, the number of bootstrap replicates is set to RBoot = 199, which turns out to be a
reasonable choice regarding the trade-off between computational burden and accuracy of the
computed estimates. However, we have to remark that a generally valuable choice of RBoot

highly depends on the application and is not further investigated in this thesis. In the following
evaluations, the six scenarios presented in Subsection 5.6.1 are considered in analogy to the
presentation of the point estimates in Subsection 5.6.4. The first two scenarios omit relaxed
benchmarks. With the exception of the box-constraints, the first scenario with GRGE-type dis-
tance function is equal to the GREG estimator. This statement is only valid for the population
estimate, since area-specific calibration estimates gained by GCAL differ from the classical area-
specific GREG estimate in general. The reason is a different foundation of the assisting model.
In addition to the scenarios, a distinction is made between the three distance functions of Ta-
ble 2.1 and the results for variables of interest and auxiliaries, which are partly used as relaxed
benchmarks in the calibration model GCAL. The variance estimates are analyzed for estimates
on various stratification levels, which is a special ability of GCAL.

In Figure 5.9, the relative bias of the variance estimates computed by the rescaling bootstrap of
SMP-specific estimates are shown using the GREG-type distance function, i.e.

E
(
V̂ar(τ̂)boot

)
− Var(τ̂)MC

Var(τ̂)MC . (5.22)

In doing so, the difference of the expected value of the 1 000 bootstrap variances and the Monte-
Carlo variances computed with the aid of the 1 000 samples is relatively compared. In general,
absolute deviations of Equation (5.21) under 15% for SMP-specific estimates are considered as
sufficiently accurate (marked with red dashed vertical lines in the figures). In Figure 5.9, the
RBIAS of the variance estimates in plotted for the GREG-type distance function. To evaluate
the robustness of the rescaling bootstrap concerning different distance functions, the results for
the ML-Raking distance function are plotted in Figure 5.10. In the upper panels, four auxiliary
variables are plotted. Whereas the variables ISCEDA and EF117A are considered as relaxed
benchmarks on SMP-level in the scenarios in rows 3 to 6, the variables AGE4.1_Sex.1 and
AGE4.4_Sex.1 are considered only in the last two scenarios. In the lower panels, four variables
of interest are plotted, which have not been involved in the calibration process. Since the dots
of most of the SMP-specific estimates are located within the two red dashed vertical lines, the
bootstrap method provides accurate variance estimates in general. Some slight underestima-
tions can be observed in particular for the scenarios in rows 5 and 6 where a high number of
benchmarks is included. Nevertheless, they are only observed for those variables, which are
included in GCAL as auxiliaries (green shaded header). The variance estimates for the observed
variables of interest (red shaded header) are almost unbiased, which is important for the practi-
cal application. Although the majority of the variance estimates of the SMP-specific estimates
is relatively biased with values smaller than 0.15, there are some outliers that are not negligible.
Further analyses have shown that these outliers mostly correspond to small SMPs with a small
sample size. The results for the other stratification levels follow similar patterns, whereas the



142 5 A GENERALIZED CALIBRATION METHOD

relative bias for the larger NUTS2 and NUTS3 regions is absolutely smaller than the relative
bias of the SMP-specific variance estimates (see Appendix B.3).
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Figure 5.9: Relative bias of SMP-specific variance estimates computed by the rescaling bootstrap for
scenarios with a GREG-type objective function.

In Figure 5.10, the bootstrap results are shown using the ML-Raking distance function. The
results closely resemble those presented in Figure 5.9 for the GREG-type distance function.
Similar results are also observable for the Raking distance function as well (see Appendix B.3).
The high efficiency of the rescaling bootstrap for all considered distance functions buttresses the
stability and flexibility of the rescaling bootstrap as a variance estimation technique for GCAL.
This observation is in contrast to certain residual variance estimators, whose structure would
clearly differ if another distance function was chosen.

Besides the use of the rescaling bootstrap as an appropriate technique for the variance estimation
of GCAL, it does have further advantages compared to both a classical bootstrap and a residual
variance estimator. As the rescaling bootstrap generates RBoot vectors of replicate weights for
GCAL, these can be utilized in further ways after the calibration. On the one hand, they can be
provided to third party users as additional material to the vector of calibration weights. This
allows the users to apply a simple and robust variance estimation for their generated point
estimates. We are able to assume robustness and stability in these cases, since good results have
been shown in Figures 5.9 and 5.10 for variables of interest, which are completely uninvolved
in the calibration process. The strategy of providing replicate weights to third party users is
not possible for a classical bootstrap, as it would mean drawing RBoot subsamples out of the
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original sample. Thus, users would have to apply sampling techniques on their own. One major
disadvantage of resampling strategies is the computational burden. In the simulation study that
has been performed for this thesis, RBoot = 199 calibrations have been executed for each of
the RMC = 1 000 samples. In total, the computational effort contains solving GCAL for 199 000
times.
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Figure 5.10: Relative bias of SMP-specific variance estimates computed by the rescaling bootstrap for
scenarios with a ML-Raking objective function.

5.6.6 Algorithmic performance

As in Chapter 4, the numerical results are computed in R on a desktop PC with an Intel Core
i7-6700 CPU at 3.40GHz × 8 and an internal memory of 32 GB. To achieve comparability,
the algorithms are solely implemented in R. However, it has to be remarked that the computing
time can be significantly reduced if C++ implementations are used. Firstly, the performance
of SSN (see Algorithm 1) for GCAL is analyzed. Thereafter, the results of GCAL computed by
the SSN algorithm are compared to the results computed by the common solver TRUNC (see
Algorithm 6).

Performance of SSN for GCAL

As observed in Münnich et al. (2012b) and Wagner (2013), SSN for GCAL has huge advantages
in computing time compared to standard solvers for nonlinear optimization. The fundamental
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reason for this is the avoidance of directly solving a highly dimensional optimization problem
(that could have over one million variables) with thousands of equality constraints and box-
constraints. A substituted lower dimensional problem needs to be solved instead, which can be
derived exploiting the special structure of the problem such as the separability of the objective
function. This allows us to solve even large problems within seconds. In Figure 5.11, the
computing time of SSN and the number of iterations are plotted depending on the dimension of
the problem (i.e. depending on the sample size; see left column), and the number of restrictions
(i.e. depending on the total number of benchmarks used; see right column). The scenario
considered is SMP.rel(Aux&AxG) with the GREG-type objective function. With regard to the
left column, the number of restrictions is fixed to 784, which is a rather low number compared
to the scenarios considered in Table 5.1. For the evaluations in the right column, the sample
size is set to ns = 222 433.
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Figure 5.11: Computing time and number of iterations of SSN for GCAL depending on sample size ns and
number of restrictions (exact and relaxed) for scenario SMP.rel(Aux&AxG) and GREG-
type objective function.

In looking at the upper left plot, the running time is linearly dependent on the problem dimen-
sion ns. In the example with a low number of restrictions it is in the range within one second,
even for a problem dimension of about ns = 200 000. This speed is unreachable using stan-
dard solvers, which would solve the optimization problem directly without the reformulation as
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lower dimensional nonlinear system of equations. The lower left plot shows that the number
of iterations stays constant if ns increases and the number of restrictions is fixed. Thus, the
linear increase of the computing time can be attributed to the increased computational burden
within each iteration. In the right column, the running time and number of iterations are plot-
ted depending on q1 + q2. Since the dimension of the nonlinear function Ψ(λ) (cf. (5.13)) is
q1 + q2, increasing q1 + q2 results in solving a higher dimensional nonlinear system of equations
with SSN. Thus, the running time exponentially increases in q1 + q2. The slight variation in the
plots occurs due to the different strictnesses of the restrictions which are progressively added.
An increased number of constraints also yields an increase in the number of iterations. Aside
from the number of restrictions, the strictness of the restrictions also has a significant effect on
the computing time. Overall, we have shown that GCAL is solvable in a short time for highly
dimensional surveys, such as the German Census.

The performance of the SSN for GCAL for the example considered in the simulation study be-
fore (ns = 222 433; q1 + q2 = 13 392, scenario SMP.rel(Aux&AxG) and GREG-type objective
function) is shown in Table 5.5. In looking at the residuals in column 2, a locally quadratic
convergence rate of SSN can be observed (cf. Qi and Sun, 1993). The convergence is slowed
down in some iterations where the Armijo step-size rule reduces the normal step-size of 1.0.
Without applying the step-size rule, the algorithm would not converge, i.e. the linear system
of equation which has to be solved in each Newton step would not be solvable in iteration 2.
Thus, the inclusion of the Armijo step-size rule is strongly necessary in order to achieve conver-
gence. In addition, the convergence rate of the algorithm is quite sensible to the choice of the
parameters of the step-size rule. Nevertheless, it is not very hard to find appropriate parameters
for one example, but it is difficult to find a general set of parameters which is appropriate for
all possible application. This is one of the most challenging tasks in developing a universally
applicable software tool.

Table 5.5: Performance of the semismooth Newton algorithm for GCAL (ns = 222433; q1+q2 = 13392).

Iterations Residual Step-size Objective Lower Upper
k ‖Ψ(λk)‖ αk P (z(λk)) bound bound

0 1.06 · 1010 1.0000 0 0 0
1 4.95 · 108 1.0000 565.53 · 102 214 2
2 1.04 · 107 0.2500 613.49 · 102 261 1
3 7.15 · 106 0.1250 615.56 · 102 262 1
4 5.81 · 106 0.0625 614.11 · 102 260 1
5 3.99 · 106 0.5000 614.18 · 102 260 1
6 1.27 · 106 0.0625 614.14 · 102 261 1
7 1.12 · 106 0.0312 614.15 · 102 261 1
8 9.98 · 105 1.0000 614.08 · 102 261 1
9 2.20 · 104 1.0000 614.72 · 102 263 1
10 6.60 · 10−14 1.0000 614.80 · 102 263 1
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In column 4, the objective values are tabulated per iteration. The greatest changes are observed
within the first iterations, i.e. the most significant changes to the correction weights are made
within these iterations. From iteration 4 to 10, the alteration in the objective is only about one
per mil of the value. This observation is consistent with columns 5 and 6 where the number
of weights gk that has reached the lower or upper bound are shown. As mentioned in Subsec-
tion 5.6.2, the number of weights that are equal to the lower bound is much higher, which is
caused by the strongly skewed distribution of the penalties for the GREG-type objective func-
tion. The penalty for a weight gk = 0.2 is 1

2(0.2− 1)2 = 0.32, whereas the penalty for a weight
gk = 5 is 1

2(5 − 1)2 = 8. In examining the lower bound and iterations 3 and 4, the number of
weights with gk = 0.2 decreases from 262 to 260. Thus, the weights which reach the bound
within one iteration may differ from those reaching it in the new iteration. In that regard, there
is no monotonic behavior of the weights over the iterations. This will also be discussed in the
next paragraph, where SSN is compared to TRUNC.

Comparison of SSN and TRUNC

In this paragraph, solving GCAL with the common truncated algorithm TRUNC (i.e. function
calib in R package sampling; cf. Tillé and Matei, 2016) is compared to the solution with the
SSN algorithm. SSN provably reaches the unique optimal solution λ∗ of Ψ(λ) = 0 if the initial
value is good enough, Ψ is semismooth, and H ∈ ∂BΨ(λ∗) is regular (cf. Theorem 3.2.7). By
contrast, it is not guaranteed that the solution of TRUNC is the optimal solution because TRUNC
fixes and cuts off weights that reached the bounds such that a reduced problem is solved in
the next iteration. Consequently, weights which have reached the bounds once are no longer
considered for any adjustments in the iterations thereafter. This effect is exemplarily shown
in Figure 5.12 for the scenario SMP.rel(Aux&AxG) and the GREG-type objective function.
Solving this problem with TRUNC and SSN results in very similar but unequal solutions. The
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Figure 5.12: Comparison of performance of SSN and TRUNC for GCAL: plot of some correction weights
gk, which significantly differ from TRUNC to SSN (ns = 222433; q1 + q2 = 13392).
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majority of correction weights gk show no discernable differences between TRUNC and SSN, but
approximately 30 weights differ in more than 10% between SSN and TRUNC. The modification
of these weights over the iterations is plotted in blue lines in Figure 5.12 (left indicates TRUNC,
and right indicates SSN). Additionally, there are three weights (plotted in red) which are located
on the bounds for TRUNC but not for SSN. These weights determine the different results of the
algorithms. Using TRUNC they reach the bounds in iteration 1 and stay there for the other iter-
ations, because they are not further considered after iteration 1. Using SSN, they also reach the
bounds in iteration 1, but they leave the bounds in the next iterations, which results in different
solutions. This yields different solutions for algorithms TRUNC and SSN with the solution of SSN
being provably optimal.

The results of TRUNC and SSN and their performance are compared in Table 5.6. In looking at
the objective values in column 2, the objective of SSN is slightly smaller than the objective of
TRUNC, and at the same time, the accuracy of the compliance of the benchmarks is even higher
for SSN (see column 1). Thus, the solution of SSN (which is optimal) is better than the solution of
TRUNC. In this example, the differences are quite small and may not be relevant for the user, but
the differences can be significant under other circumstances, especially if the box-constraints
are strictly chosen. With regard to the last column, the computing time of SSN is 30 seconds,
whereas TRUNC converges within 15 seconds. Even the computing time is application-specific
and can also be the other way around, but the magnitude of the computational burden is similar
for TRUNC and SSN.

Table 5.6: Comparison of performance of SSN and TRUNC for GCAL (ns = 222433; q1 + q2 = 13392).

Residual Objective Lower Upper Iterations Time
‖Ψ(λk)‖ P (z(λk)) bound bound in sec.

TRUNC 1.55 · 10−12 615.40 · 102 265 2 5 15.77
SSN 6.60 · 10−14 614.80 · 102 263 1 11 30.09

To summarize, even though the computational burden of the two algorithms is comparable, SSN
provably computes the optimal solution of GCAL in contrast to TRUNC. The differences are quite
small in the majority of applications tested, but they may also be higher in extreme cases. On the
other hand, SSN (and especially the step-size rule) is more sensitive with regard to convergence
issues. Nevertheless, the advantages of SSN over TRUNC outweigh the drawbacks and therefore
an application of SSN can be recommended.
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5.6.7 Sensitivity, issues, and limitations

Other distance functions

While choosing an appropriate distance function for GCAL, it is generally possible to use differ-
ent functions for each weight gk and deviation εj of the GCAL problem (5.8) since the distance
function is only applied component-wise in the deviation of function Ψ in (5.13). Nevertheless,
it is generally not sensible in practice to vary the distance functions from one weight to another.
However, it might be useful to apply one distance function for the weights and another one for
penalizing the epsilons.

As mentioned in Section 5.1, it might also be sensible to penalize a weight of gk = 0.5 with
the same penalty as gk = 2, because doubling the weight may be handled equal to halving
the weight. This feature is least given for the GREG-type distance function, more likely given
for ML-Raking, but not fully given for any of the distance functions listed in Table 2.1. The
distance function which fully fulfills this feature is

D(gk) := log(gk)2, (5.23)

which is referred to as the Balanced distance function from this point onward. The comparison
of the Balanced distance function to the other distance functions considering its derivatives and
its values for gk = 0.5 and gk = 2 are shown in Table 5.7 and Figure 5.13. However, the
application of the Balanced distance functions to GCAL is not possible in general because the
derivative

D′(gk) = 2 log(gk)
1
gk

(5.24)

of the Balanced distance function is not monotonically increasing on (0,∞). The gradient
of D′ is zero in Euler’s number e ≈ 2.71828. Thus, the inverse D′−1 does not exist, the
definition of (5.9) does not hold, and therefore the function Ψ defined in (5.13) and (5.14)
cannot be built. SinceD′ is monotonically increasing on the interval (0, e), D′−1 is well-defined
if Ugk ≤ e and Uεj ≤ e hold for the upper bounds for all k = 1, . . . , ns and j = 1, . . . , q2 of
the GCAL problem (5.8). Nevertheless, the derivation of the inverse of D′ is not trivial in this
case, since an equation consisting of a product of gk and its logarithm log(gk) has to be solved
(reformulation of Equation (5.24)). This can be done by applying the Lambert W function (cf.
Corless et al., 1996), also called omega function, which defines a relation for the inverse of a
function f(x) = xex for a real number x ∈ R. For the Lambert W function, the following
equation holds:

W (x)eW (x) = x. (5.25)

For more details, we refer to Corless et al. (1996). To summarize, the application of the Bal-
anced distance function to GCAL is possible if Ugk ≤ e and Uεj ≤ e hold for all k = 1, . . . , ns

and j = 1, . . . , q2. If the Balanced distance function is applied, the computational burden of
SSN increases and the stability of the algorithm decreases. This occurs due to the behavior of
the Balanced distance functions for the weights gk being clearly smaller than 1.0 (as the gra-
dient is very steep; see Figure 5.13). This would lead to ill-conditioned linear problems in the
Newton step within each iteration of SSN, which may decelerate the convergence rate and may
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Table 5.7: Analysis of distance functions for the calibration estimator.

D(gk) D′(gk) D(0.5) D(2)

GREG-type 1
2(gk − 1)2 gk − 1 0.125 0.500

Raking gk log(gk)− gk + 1 log(gk) 0.153 0.386
ML-Raking gk − 1− log(gk) 1− 1

gk
0.193 0.307

Balanced log(gk)2 2 log(gk) 1
gk

0.480 0.480

raise the chances of instabilities. Hence, we have theoretically shown that the implementation
of the Balanced distance function in GCAL is possible. However, we did not focus on this in the
simulation study due to the issues concerning the numerical implementation.
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Figure 5.13: Analysis of distance functions for the calibration estimator (left: distance functionD; right:
derivative D′ of distance function.

Sensitivity analysis via the Lagrangian multipliers

The functionality of SSN is discussed in detail in Section 3.2. The Lagrangian multipliers λ
of the original optimization problem are iteratively updated, and they converge to a unique
optimal solution λ∗ of the corresponding nonlinear system of equations. Afterwards, the optimal
solution of the optimization problem can be computed with λ∗. Each Lagrangian multiplier
corresponds to one equality restriction of GCAL (i.e. one benchmark). Thus, the modifications
of the multipliers along the iterations can be utilized to analyze the effort raised by the strict
compliance with the restrictions (i.e. the level of difficulty to fulfill the restrictions). This is
plotted in Figure 5.14, where values of 30 randomly selected Lagrangian multipliers are plotted
for each iteration in comparison to the corresponding height of the deviation of the respective
benchmark. Dark blue lines correspond to restrictions that have perturbations equal to the box-
constraints. The light blue lines represent restrictions with a deviation smaller than the maximal
defined tolerance.

In general, high values of λk corresponds to high perturbations of the benchmarks. This obser-
vation can be utilized to establish a sensitivity analysis. Firstly, if the algorithm SSN diverge
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in some settings, the analysis of the Lagrangian multipliers can contribute to assessing those
benchmarks, which have a relaxation set too strict. Thus, a restart with weaker assumptions
may yield to a convergence of the algorithm. Secondly, if the algorithm SSN converges but the
variance of the resulting calibration weights wk is too high (i.e. the tails of the density plots
in Figure 5.3 are large), an observation of the Lagrangian multipliers may yield recommenda-
tions to slightly adjust the maximum perturbations in order to achieve calibration weights with
a smaller variance.
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Figure 5.14: Behavior of selected Lagrangian multipliers over the iterations of SSN for GCAL (scenario
SMP.rel(Aux&AxG)+GB).

Infeasibility and its prevention

If the number of restrictions is high, the risk of infeasibility issues in the GCAL problem (5.8)
should not be neglected. In that regard, it is sufficient for an infeasible problem if at least two
restrictions exclude each other. Then, the feasible set is empty, and the problem is unsolvable.
Indeed, this problem has been observed in the considered simulation study. A very few sam-
ples have produced such infeasibilities. They have been replaced in order to prevent distorted
simulation results. The risk of an empty feasible set increases when strict box-constraints for
weights and/or relaxations are required. Unfortunately, the detection of such an unsolvable
case is a priori almost impossible. In particular, the a priori identification of the causal restric-
tions is not practicable. A possible remedy is to weaken the box-constraints for all the relaxed
benchmarks, i.e. to weaken Lεj and Uεj for all j. To ensure the compliance with the original
strict benchmarks for most of the restrictions, the penalty parameters δj (j = 1, . . . , q2) in the
objective function of (5.4) may be raised. This yields an elevated penalty for a deviation of
the benchmarks without shrinking the feasible set. Adjustment options of δj are therefore an
opportunity to manage the strictness of the penalization for perturbed restrictions.



5.6 SIMULATION STUDY AND RESULTS 151

An example of the described issue is shown in Figure 5.15 for the same case of row 6 in Fig-
ure 5.5 (scenario SMP.rel(Aux&AxG)+GB, GREG-type objective function). The values of δj are
varied around the standard case δj = 1 300, which has been computed depending on the number
of units in the sample and the number of relaxed benchmarks. The six scenarios in Figure 5.5
are based on values of the factors 0.5, 1.0, 5.0, 10, 100, and 1 000 of the original δj (i.e. the sec-
ond line corresponds with the original setting). It is observed that the deviations decreases with
an increasing δj , since the influence of the corresponding penalty term in the objective function
increases. Thus, it is possible to almost comply with the original box-constraints if these are
weaken and the δj is increased. In particular, if GCAL is applied to a setting with an empty feasi-
ble set, the feasible set can be widened by weakening the box-constraints for the perturbations
εj (j = 1, . . . , q2). To still enforce the compliance with the original box-constraints, the penalty
parameters δj must be pushed up. In consequence, the algorithm converges (i.e. the feasible
set is not empty at all) but the original box-constraints are still not exceeded for most of the
restrictions, despite for those restrictions which have led to the infeasibility.
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Figure 5.15: Variation of the penalty parameter for the relaxation to ensure feasibility of GCAL (scenario
SMP.rel(Aux&AxG)+GB, ns = 222433; q1 + q2 = 13392).

Overall, the described strategy is useful for preventing infeasibility issues. Nevertheless, the
adjustment of δj affects the condition of the matrix, which has to be solved in each Newton step
within SSN. Therefore, the strategy needs to be handled with care, i.e. the stability of SSN is only
guaranteed for a limited adjustment of δj . Beside the issues concerning the numerical stability,
the variance estimation via the rescaling bootstrap may also be influenced by an adjustment
of δj . Some investigations have shown, that higher values of δj tend to enhance the slight
underestimations observed for some auxiliary variables in Subsection 5.6.5.
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5.7 Summary and discussion

The generalized calibration method GCAL determines calibration weights for calibration esti-
mators while considering several requirements, such as a large number of benchmarks on var-
ious stratification levels, which are possbily obtained from different sources, the use of box-
constraints, and the control of the Gelman bound. The general framework of GCAL was pre-
sented in Section 5.2, and the numerical solution strategy of such generalized calibration meth-
ods was proposed Section 5.3 based on the approaches of Münnich et al. (2012b) and Wagner
(2013). To quantify the quality of estimates, a strategy for the variance estimation based on
a rescaling bootstrap in proposed in Section 5.4, which we also dealt with in Burgard et al.
(2018).

The relevance of GCAL for European official statistics can be exemplarily substantiated by two
fundamental surveys in Germany, namely the German Census (cf. Münnich et al., 2012a) and
the German System of Household Surveys (cf. Riede et al., 2013). The German Census in
2011 has been a stratified random sample of all addresses in Germany with an overall sampling
fraction of approximately 9%. The next German Census will be conducted in 2021 using a
similar methodology. Its main goal is to deliver a statistic regarding the total of all inhabitants
of Germany, the 16 federal states, and certain smaller regions. Since auxiliary data is available
from registers and other surveys, calibration may lead to a significant improvement of the qual-
ity of the survey estimates. The diversity of the auxiliary variables (in relation to the various
sources, stratification levels, quality, and relevance) necessitates a flexible generalized calibra-
tion method. As we have presented in the simulation study in Section 5.6, GCAL is able to fulfill
these multiple requirements. Next to the German Census, the German System of Household
Surveys may also benefit from GCAL. By 2021, the System of Household Surveys will be con-
ducted as a renewed integrated system consisting of several surveys, such as the Micro-Census,
the Labor Force Survey (LFS), the European Union Statistics on Income and Living Condi-
tions (EU-SILC), and other surveys (cf. Riede et al., 2013). The integration of several surveys
requires special attention with regard to the coherence and consistency of the results. Due to
high sample sizes, it is of great importance to solve GCAL even for large problem instances in
appropriate time, especially if an MSE estimation using resampling methods need to be applied.
This is possible due to the solution strategy via the SSN algorithm, in particular due to the linear
dependency between computing time and total sample size.



Chapter 6
Conclusion and Outlook

The main developments of the thesis are concluded in this chapter. Advantages as well as
drawbacks are stated and elucidated in the context of survey statistics in modern societies.
Moreover, further outstanding and unprocessed research potentials are shortly discussed in an
outlook. Finally, further potential scopes of application beyond survey statistics are explored.

6.1 Conclusion

As mentioned in the introduction, the complexity of statistical models has steadily increased
due to new challenges and requirements. This is often accompanied by an enhanced analyt-
ical and computational expense. In order to consider these issues, to maintain practicability,
and to improve the computational performance, this thesis addressed two main research top-
ics concerning the generation of multivariate and multi-domain statistics, namely an optimal
multivariate and multi-domain allocation method (MMDopt) as well as a generalized calibration
method (GCAL). Aside from the statistical modeling, innovative numerical optimization strate-
gies have been developed, and existing approaches have been expanded further.

One of the principal objectives of this work is to allow more flexibility with regard to the in-
clusion of known auxiliary data. Since auxiliary data is a strong instrument for increasing the
quality and ensuring the consistency of estimates, its usage is required in almost all applica-
tions. In order to handle the respective data with regard to its sources, structures, and quality,
several extensions of established methods have been developed. To consider multivariate aux-
iliary data, the MMDopt allocation method deals with possibly conflicting objectives on various
stratification levels based on results of the theoretical analysis of multi-criteria optimization.
The calibration method GCAL enables the use of a huge amount of auxiliary data and satisfies
the quality of the data with optionally includable individual relaxations. A further key objective
is the compliance with restrictions for various stratification levels, possibly based on legal reg-
ulations. MMDopt allows for the compliance with both quality restrictions for regional estimates
as well as lower and upper bounds for the stratum-specific sample sizes. Due to the possibility
of the relaxation of benchmarks in GCAL, even benchmarks for small regions may be regarded,
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which would otherwise lead to non-feasible problems. Moreover, additional assumptions have
been considered, e.g. the opportunity for the control of the Gelman bound in GCAL.

In addition to the statistical properties, the numerical implementation is a key objective of the
thesis. If possible, the application of the developed methods should be realizable with an or-
dinary desktop PC in an appropriate time, which allows for a wide application range, such as
applications in national statistical offices, in independent institutes, in the industry, and also by
individual private users. The numerical solution strategies are mainly based on developments
of Münnich et al. (2012b), Gabler et al. (2012), and Münnich et al. (2012c). In that regard, the
strategies take advantage of a specific transformation of the optimality conditions. This results
in significantly lower dimensional problems, which can be solved efficiently by applying the
semismooth Newton method for MMDopt and GCAL. To emphasize the performance, problems
of several ten-thousand variables can be solved within one second. Moreover, the computing
time is only linearly dependent on the dimension of the original optimization problem, with a
result that the exponential increase of the running time depending on the problem size is omit-
ted. Beside the semismooth Newton method, a projected inexact quasi-subgradient method is
developed to solve a specific class of MMDopt problems, that do not fulfill the assumptions to
apply the semismooth Newton method.

Finally, the statistical flexibility and versatility as well as the efficient solution strategy allows
a straightforward application of GCAL and MMDopt. Official statistics may especially obtain sig-
nificant benefits using both methods, since the requirements for modern surveys have increased
(cf. Münnich et al., 2012a and Riede et al., 2013). Firstly, efficient estimates may be gained
for the population level as well as for certain regional levels. In that regard, potential nega-
tive outliers can be omitted by both including restrictions for regional efficiency in MMDopt or
applying relaxed benchmarks in GCAL. Secondly, coherence and consistency between various
sources such as surveys, censuses, and registers may be guaranteed without neglecting disrup-
tive factors, for instance inaccurate survey data and incorrect register data. Thirdly, surveys with
several possibly conflicting goals can be conducted in order to achieve accurate estimates for
all variables of interest, while utilizing various well-established decision-making functions.

Conveniently, both methods are developed to gain efficient estimates under similar circum-
stances, i.e. under a huge amount of auxiliary data, with regard to several conflicting objectives,
and under consideration of different stratification levels. With regard to the survey process, the
MMDopt method aims at improving the selection process by an optimal allocation of the total
sample size to the strata. By contrast, GCAL is applied to generate accurate and coherent esti-
mates in the estimation process. Thus, it may be sensible to apply both methods subsequently
in one survey in order to exploit all the benefit from both methods.

6.2 Outlook

In this work, we focused on the theoretical foundation of the methods on the one hand, and on
the analysis of their functionality and the resulting statistical quality on the other hand. The
MMDopt allocation method is based on a stratified population. The assumption of predefined
and fixed strata has been compulsory in this thesis. Indeed, this assumption is sensible, since
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all the applications considered and the majority of possible applications in official statistics
are based on predefined strata. Often times, these are determined by natural or administrative
circumstances, such as a regional structuring of countries or content-related classifications of
the population. These predefinitions have an impact on the resulting estimates. Thus, a smart
adjustment of the definition of the strata may improve the results of a survey. This is known as
optimal stratification in the literature and has been primarily suggested by Dalenius and Hodges
(1959) and Wright (1983). The inclusion of a strategy of optimal stratification can be identified
as an opportunity for improvement of the MMDopt method.

Although this thesis focuses on applications of household surveys, MMDopt and GCAL are also
applicable in further areas of survey statistics such as biogeographic applications like agricul-
tural or biological surveys. Examples can include the vegetable survey1 or other animal counting
surveys. Moreover, both developed methods may be usable with regard to the processing of a
huge amount data gained by geographical localization using satellite data, which will be a rais-
ing research field within in the next years. In addition, several applications beyond the horizon
of survey statistics are possible. One example is the field of developing automated driving and
driver assistance systems. In the course of this type of development, a huge amount of data is
generated within extremely short time periods by several sensors, which needed to be processed
and analyzed. MMDopt may yield support to choose the important parts of the data. Another po-
tential field of application is the wide field of economics. Both developed methods may assist
in data processing and analyzing if a huge amount of data is available. The allocation method
MMDopt may provide support in how to choose and sample the relevant data from the overall
volume of data. Moreover, GCAL may support the use auxiliary data and paradata (information
about the process by which the data were collected) to improve process structures and services
offered.

To conclude, both developed methods MMDopt and GCAL contribute to improve the quality of
statistics gained by means of a survey. The improvement of the accuracy of the estimates and
the obtaining of consistent results are accompanied by a high flexibility with regard to the input
data and the determination of restrictions. In addition to these statistical advantages, highly
efficient numerical solvers allow users to apply the outlined methods in an appropriate time
with a common IT infrastructure.

1https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/
ObstGemueseGartenbau/Gemueseerhebung2030313177004.pdf;jsessionid=
8E086CD7915F866FEDAB4E7D93EE3E48.InternetLive2?__blob=publicationFile

https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ObstGemueseGartenbau/Gemueseerhebung2030313177004.pdf;jsessionid=8E086CD7915F866FEDAB4E7D93EE3E48.InternetLive2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ObstGemueseGartenbau/Gemueseerhebung2030313177004.pdf;jsessionid=8E086CD7915F866FEDAB4E7D93EE3E48.InternetLive2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ObstGemueseGartenbau/Gemueseerhebung2030313177004.pdf;jsessionid=8E086CD7915F866FEDAB4E7D93EE3E48.InternetLive2?__blob=publicationFile




Appendix A
Quality Measurement in Survey Statistics

In order to analyze the functionality of the developed statistical methods, applications and sim-
ulation studies are generally conducted to measure the quality of the estimates obtained from
surveys by means of the developed methods. These studies are mostly based on datasets, which
may be either synthetically generated or based on real observations. Thus, the true values ϑd
of a (sub-)population Ud ⊆ U , which are supposed to be estimated by means of the survey,
are known and can be compared with the estimated values ϑ̂d. With respect to the quality of
the point estimates, two types of quality measures basically have to be considered. On the one
hand, the estimates should not systematically under- or overestimate the true values (bias, cf.
Equation (2.11)) and, on the other hand, they should not exhibit a large variation (variance, cf.
Equation (2.9)). Both the bias and the variance of the estimate θ̂d are derived using the expected
value of θ̂d, as defined in Equation (2.8). As mentioned in Chapter 2, the efficiency of the esti-
mate θ̂d is generally measured by the mean squared error (MSE, cf. Equation (2.12)), which is
defined as the sum of the variance and the squared bias

MSE(ϑ̂d) := Var(ϑ̂d) + Bias(ϑ̂d)2. (A.1)

The evaluation of the MSE may follow one of two main approaches, which are described in the
following two paragraphs.

If an estimator is applied which is design-unbiased and for which the variance can be deter-
mined with the aid of a closed formula (e.g. for the HT estimator) the MSE can be computed
straight forward via Equation A.1 without conducting repeated Monte-Carlo strategies. This is
the case for the analysis of the MMDopt method in Chapter 4, since MMDopt only aims at opti-
mizing the allocation of the total sample size to the strata in a stratified sampling design. Thus,
the developments are only referred to the design-stage and in particular to the computation of
the design weights in StrRS. As the variance of the HT estimator in StrRS can be computed
by (2.36) and its bias is supposed to be zero per definition (cf. Särndal et al., 1992, Section
2.8), the MSE of the estimate is equal to its variance. As a result of this, the performance of
MMDopt is analyzed in an application study (without Monte-Carlo simulations) in Section 4.6.
However, is needs to be noted that this strategy does not allow for the analysis of the spread
of the estimates concerning repeatedly drawn samples. Nevertheless, this primarily depends on
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the definitions of the HT estimator and the StrRS design, whose analyses are not a subject of
the thesis.

If the object of investigation is related to the structure of the estimator, it would not be possible
to determine the variance, the bias, and the MSE using the aid of a closed formula. This is the
case for the GCAL method proposed in Chapter 5, as it optimizes the adjustment of the calibration
weights for the calibration estimator (2.38). Hence, GCAL has influences on the estimation. As a
consequence, the quality of GCAL can only be observed by conducting a Monte-Carlo simulation
study, in which RMC estimates related to RMC independently drawn samples are computed. As
a result of the simulation study, the MC-bias of ϑ̂d can be computed by

BIASMC(ϑ̂d) := 1
RMC

RMC∑
r=1

(
ϑ̂d,r − ϑd

)
, (A.2)

where ϑ̂d,r is the resulting estimate for ϑd in replication r = 1, . . . , RMC. The MC-bias BIASMC

is an approximation of the analytical bias (2.11). Due to the law of large numbers, BIASMC

converges to the bias for RMC →∞. The speed of convergence strongly depends on the consid-
ered method or estimator. As a result, the MC-bias computed by Equation (A.2) will generally
not be equal to zero in cases where the unbiasedness of the estimator is given per definition.
Analogously, the MC-MSE is an approximation of the MSE (A.1) and is given by

MSEMC(ϑ̂d) := 1
RMC

RMC∑
r=1

(
ϑ̂d,r − ϑd

)2
. (A.3)

Since the variance, the MSE, and the bias are each dependent on the scale of the respective
variable, they are often defined in relation to the true value ϑd. The corresponding relative
measures are introduced in the following for the Monte-Carlo case, whereas the formulas for
the analytical case can be defined in analogy. The relative bias and the relative MSE are given
by

RBIASMC(ϑ̂d) := 1
RMC

RMC∑
r=1

(
ϑ̂d,r − ϑd

)
ϑd

(A.4)

and

relMSEMC(ϑ̂d) := 1
RMC

RMC∑
r=1

(
ϑ̂d,r − ϑd

)2

ϑ2
d

, (A.5)

respectively. In addition, the relative root MSE (RRMSE) is often considered, given by

RRMSEMC(ϑ̂d) :=

√√√√√ 1
RMC

RMC∑
r=1

(
ϑ̂d,r − ϑd

)2

ϑ2
d

. (A.6)

Generally, the use of the relative values enables a comparison between different variables. Nev-
ertheless, an issue arises, if the denominator of (A.4), (A.5), and (A.6) (i.e. the known value)
is close to zero. In this case, even an extremely small absolute bias and MSE can result in im-
mense relative values. Under these circumstances, it may be preferable to analyze the absolute
bias and MSE, instead. Basically, MSE, relMSE, and RRMSE can take non-negative values. In
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this way, a value close to zero suggests an efficient estimate and is therefore most desirable. By
contrast, the BIAS and RBIAS can take positive and negative values. Moreover, a value of zero
corresponds to an unbiased estimate. For unbiased estimators and a sufficiently large number of
replications, the MC-RRMSE will be very close to the relative standard error. This is a criterion
often used in official statistics, since in general, only results with a relative standard error less
than a predefined maximum are allowed to be published.

Up to now, the proposed quality measures are based on a known population since the true values
ϑd are utilized to compute the respective measures. The true values are unknown in practice, as
their estimation is the aim of the survey. In this case, the variance or the MSE of the estimate
need to be estimated either directly using computed linearization techniques or indirect using
resampling methods (see Section 5.4 for more details). Thus, a variance or MSE estimator is
determined to quantify the quality of the point estimates, in particular its variance or MSE, even
if the real values ϑd are unknown. Therefore, a precise statement on the quality of the point
estimates in practical applications depends on the precision of the variance or MSE estimates.
In order to quantify this precision, the variance estimates are compared with the real variances
or MSEs in a simulation study.





Appendix B
Additional Material of Application and
Simulation Studies

B.1 Table of variables within the RIFOSS dataset

A list of all applied variables of the RIFOSS dataset in the original form on person level is given
in Table B.1 with a brief description based on the description published in the data manual of
the German Microcensus 20081. Thereafter, the variables are suitably transformed to mostly
(quasi-) continuous variables in the household structure. The resulting variables are tabulated in
Table B.2 with a short explanation of the process of their generation and its type. The expression
continuous (in italics) is referred to variables which can be characterized as quasi-continuous,
i.e. discrete variables with many different values.

Table B.1: List of variables within the RIFOSS dataset on person level (original data of the dataset).
name type description

EF44 continuous age of the respective person
inc_unemp5 continuous unemployment benefits
hpw1 continuous working hours
inc_w5 continuous total income
inc_pen5 continuous total retirement pension
AGS_neu character municipality key
HID character household ID
ADR character address ID (sequential number)
EF3_mod2 character number of selection area
SMP character sampling point
EF29 categorical type of acquisition
EF46 categorical gender
EF49 categorical family status
EF117 categorical occupational status

1http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2008/fdz_mz_suf_2008_
schluesselverzeichnis.pdf
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EF310 categorical highest school graduation
EF312 categorical highest professional school graduation
EF540 categorical ISCED level (education)

Table B.2: List of variables within the RIFOSS dataset on household level (input variables for MMDopt
and GCAL; calculation basis in brackets behind description).

name type description

ZEN continuous Number of persons living in household
SEX1 / SEX2 continuous Number of male / female persons living in household (EF46)
AGE_INC continuous age of main income earner of household (EF44, inc_w5)
HAGE continuous age of oldest person of household (EF44)
MAGE continuous mean age all persons of household (EF44)
medianAGE continuous median age all persons of household (EF44)
AGE4.1 - AGE4.4 continuous number of persons in household of age 0 to 19, 20 to 39, 40 to 59,

and ≥ 60 (EF44)
AGE7.1 - AGE7.7 continuous number of persons in household of age 0 to 14, 15 to 24, 25 to 34, 35

to 44, 45 to 54, 55 to 64, and ≥ 65 (EF44)
AGE4.1_Sex.1 -
AGE4.4_Sex.2

continuous male / female number of persons in household of age 0 to 19, 20 to
39, 40 to 59, and ≥ 60 (EF44)

AGE7.1_Sex.1 -
AGE7.7_Sex.2

continuous male / female number of persons in household of age 0 to 14, 15 to
24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, and ≥ 65 (EF44)

ALG continuous total unemployment benefits of household (sum of inc_unemp5)
ASTD continuous total working hours of household (sum of hpw1)
INC continuous total income of household (sum of inc_w5)
INC.PP continuous mean income per person of household (inc_w5, ZEN)
EDI continuous equivalized disposable household income (inc_w5, ZEN, EF44)
PEN continuous total retirement pension (inc_pen5)
ABSCHL1 -
ABSCHL4

continuous number of persons in household with prof. school graduation
(EF312 ∈ {1, 2, 3, 12}, = 4, ∈ {5, 6, 7, 8, 11}, and ∈ {9, 10})

SCHUL1 -
SCHUL3

continuous number of persons in household with school graduation (EF310
∈ {1, 6, 7}, ∈ {2, 3}, and ∈ {4, 5})

EF117A, EF117B,
EF117S

continuous number of persons in household with occupational status (EF117
∈ {1, 2, 3}, ∈ {4, 5, 6, 9}, and ∈ {7, 8, 10, 11, 12, 13})

FAM1 - FAM4 continuous number of persons in household with family status (EF49 = 1, = 2,
= 3, and = 4)

ISCEDA - ISCEDD continuous number of persons in household with ISCED level (EF540 < 4,
∈ {4, 5}, = 6, and ≥ 7 )

ILO1 - ILO4 continuous type of acquisition (EF29= 1, = 2, = 3, and = 4)
AGS character municipality key (AGS_neu)
HID character household ID (HID)
ADR character address ID (ADR)
FS character name of federal state (AGS_neu)
NUTS2 character name of NUTS2 region (AGS_neu)
NUTS3 character name of NUTS3 region (AGS_neu)
HHS character name of class of household sizes (ZEN)
SMP character name of sampling point (SMP)
strata character name of cross-classification strata (SMP, HHS)
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B.2 Optimal multivariate and multi-domain allocation

In this section, additional figures are shown for the evaluation of the application study for the
allocation method MMDopt in Section 4.6. The plotted scenarios resemble the figures of Sec-
tion 4.6, whereas the results of estimates for other stratification levels are shown here.

Outline of the following figures:

• Figure B.1: RRMSE for ten combinations of weights.

• Figure B.2: Relative increase of the RRMSE (heatmaps).

• Figure B.3: RRMSE for selected allocation strategies.

• Figure B.4: Relative change of RRMSE depending on the decision-making function.

• Figure B.5: RRMSE with restrictions for regional efficiency.
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RRMSE of SMP−specific estimates
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Figure B.1: RRMSE of SMP- and NUTS2-specific total estimates for ten combinations of weights with
(cv)- and (opt)-standardization.
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Figure B.2: Relative increase of the RRMSE of the population total estimates under (cv)- and (opt)-
standardization for 66 combinations of weights for each variable of interest.
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Figure B.3: RRMSE of SMP- and NUTS2- specific total estimates for selected allocation strategies.

Relative change of RRMSE for NUTS3−specific estimates

p−
no

rm
s

p = 64

p = 8

p = 2

p = 1

0.951.001.051.10

●

●

●

●

●●

●●

●●

●●

(opt)
PEN
(opt)
PEN

0.9 1.0 1.1 1.2

●

●

●

●

●●●●●

●●●●

●●●●●●

●●●●●●

(opt)
EDI
(opt)
EDI

1.0 1.5 2.0 2.5

●

●

●

●

(opt)
AGE4.1

(opt)
AGE4.1

0.951.001.051.10

●

●

●

●

●● ●●

● ●●

●● ●

● ●

(opt)
AGE7.7

(opt)
AGE7.7

0.9 1.0 1.1 1.2

●

●

●

●

●●●

●●●

●●●●●●

●●●●●●

(opt)
INC.PP

(opt)
INC.PP

1.0 1.5 2.0 2.5

●

●

●

●

●

●

(opt)
AGE7.1

(opt)
AGE7.1

p = 64

p = 8

p = 2

p = 1

●

●

●

●

●●●●●●

●●●●●

●●●●● ●● ●●

(cv)
PEN
(cv)
PEN

●

●

●

●

●●●●●●

●●

●●●●● ●●

●●●●●

(cv)
EDI
(cv)
EDI

●

●

●

●

●● ●● ●● ● ●●

●● ●● ●●

●●

●

(cv)
AGE4.1

(cv)
AGE4.1

●

●

●

●

●

●

●

●●●

(cv)
AGE7.7

(cv)
AGE7.7

●

●

●

●

●●●●●●

●●●●●●

●●●●●

●●●●●

(cv)
INC.PP

(cv)
INC.PP

●

●

●

●

●●●● ●● ●●● ●●●

●● ● ●● ●● ●

●

●

(cv)
AGE7.1

(cv)
AGE7.1

Relative change of RRMSE for NUTS2−specific estimates

p−
no

rm
s

p = 64

p = 8

p = 2

p = 1

1.001.021.041.06

●

●

●

●

(opt)
PEN
(opt)
PEN

1.02 1.06 1.10

●

●

●

●

(opt)
EDI
(opt)
EDI

1.1 1.3 1.5 1.7

●

●

●

●

●

●

●

●

(opt)
AGE4.1

(opt)
AGE4.1

1.001.021.041.06

●

●

●

●

(opt)
AGE7.7

(opt)
AGE7.7

1.02 1.06 1.10

●

●

●

●

(opt)
INC.PP

(opt)
INC.PP

1.1 1.3 1.5 1.7

●

●

●

●

●

●

●

(opt)
AGE7.1

(opt)
AGE7.1

p = 64

p = 8

p = 2

p = 1

●

●

●

●

(cv)
PEN
(cv)
PEN

●

●

●

●

(cv)
EDI
(cv)
EDI

●

●

●

●

(cv)
AGE4.1

(cv)
AGE4.1

●

●

●

●

●

●●

●●

(cv)
AGE7.7

(cv)
AGE7.7

●

●

●

●

(cv)
INC.PP

(cv)
INC.PP

●

●

●

●

●

●

●●

●●

(cv)
AGE7.1

(cv)
AGE7.1

Figure B.4: Relative change of RRMSE of NUTS3- and NUTS2-specific estimates depending on the
decision-making function.
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Figure B.5: RRMSE of SMP-, NUTS3, and NUTS2-specific estimates with restrictions for regional effi-
ciency.
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B.3 A generalized calibration method

In this section, additional figures are shown for the evaluation of the simulation study in Sec-
tion 5.6 concerning GCAL. The figures show the RRMSE and RBIAS of the point estimates as
well as the RBIAS of the variance estimates computed by the rescaling bootstrap. In that re-
gard, it is distinguished between the three distance functions (see Table 2.1), the six scenarios
tabulated in Table 5.1, and variables of interest and auxiliaries (visible by the shaded headers of
the panels).

Outline of the following figures:

• Figure B.6: RRMSE of SMP-specific point estimates for the three distance functions.

• Figure B.7: RRMSE of NUTS3-specific point estimates for the three distance functions.

• Figure B.8: RRMSE of NUTS2-specific point estimates for the three distance functions.

• Figure B.9: RBIAS of SMP-specific point estimates for the three distance functions.

• Figure B.10: RBIAS of NUTS3-specific point estimates for the three distance functions.

• Figure B.11: RBIAS of NUTS2-specific point estimates for the three distance functions.

• Figure B.12: RBIAS of SMP-specific variance estimates for the three distance functions.

• Figure B.13: RBIAS of NUTS3-specific variance estimates for the three distance func-
tions.

• Figure B.14: RBIAS of NUTS2-specific variance estimates for the three distance func-
tions.
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Figure B.6: RRMSE of SMP-specific point estimates.
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Figure B.7: RRMSE of NUTS3-specific point estimates.
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Figure B.8: RRMSE of NUTS2-specific point estimates.
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RBIAS of SMP−specific estimates (GREG−type)
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Figure B.9: Relative bias of SMP-specific point estimates.
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Figure B.10: Relative bias of NUTS3-specific point estimates.
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Figure B.11: Relative bias of NUTS2-specific point estimates.
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Relative bias of bootstrap variance estimates of SMP−specific estimates (GREG−type)
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Relative bias of bootstrap variance estimates of SMP−specific estimates (ML−Raking)
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Figure B.12: Relative bias of SMP-specific variance estimates computed by the rescaling bootstrap.
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Relative bias of bootstrap variance estimates of NUTS3−specific estimates (GREG−type)
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Relative bias of bootstrap variance estimates of NUTS3−specific estimates (Raking)
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Relative bias of bootstrap variance estimates of NUTS3−specific estimates (ML−Raking)
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Figure B.13: Relative bias of NUTS3-specific variance estimates computed by the rescaling bootstrap.



B.3 A GENERALIZED CALIBRATION METHOD 177

Relative bias of bootstrap variance estimates of NUTS2−specific estimates (GREG−type)

S
ce

na
rio

s

SMP.rel(Aux&AxG)+GB
SMP.rel(Aux&AxG)

SMP.rel(Aux)+GB
SMP.rel(Aux)
BL.exact+GB

BL.exact

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

●●

INC.PP

●

●

●

●

●

●

●

EDI

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

INC

●

●

●

●

●

●

●●

PEN

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

●

●

AGE7.1

●

●

●

●

●

●

AGE7.7
SMP.rel(Aux&AxG)+GB

SMP.rel(Aux&AxG)
SMP.rel(Aux)+GB

SMP.rel(Aux)
BL.exact+GB

BL.exact

●

●

●

●

●

●

●●

●

●

●

●

AGE4.1

●

●

●

●

●

●

AGE4.4

●

●

●

●

●

●

●●

●

ISCEDA

●

●

●

●

●

●

● ●

ILO1

●

●

●

●

●

●

●

●●

●

ILO4

●

●

●

●

●

●

ZEN
SMP.rel(Aux&AxG)+GB

SMP.rel(Aux&AxG)
SMP.rel(Aux)+GB

SMP.rel(Aux)
BL.exact+GB

BL.exact

●

●

●

●

●

●

●

AGE4.1_Sex.1

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

●

AGE4.2_Sex.1

●

●

●

●

●

●

●

●

●

AGE4.3_Sex.1

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●

AGE4.4_Sex.1

●

●

●

●

●

●
●

●

EF117A

−0.4−0.2 0.0 0.2 0.4

●

●

●

●

●

●
● ●

● ●

EF117B

Relative bias of bootstrap variance estimates of NUTS2−specific estimates (Raking)
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Relative bias of bootstrap variance estimates of NUTS2−specific estimates (ML−Raking)
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Figure B.14: Relative bias of NUTS2-specific variance estimates computed by the rescaling bootstrap.





Appendix C
R-Packages

In this chapter, two R packages are presented which contain the optimal multivariate and multi-
domain allocation method MMDopt and the generalized calibration method GCAL. Both the pack-
age MultOptAlloc for MMDopt and the package genCalib for the calibration method GCAL are
still under development. In the following, the input and output structure of both packages is
briefly sketched and some possible options are mentioned.

The R package MultOptAlloc

Input:

• Auxiliary data and structure of stratification (on unit level or aggregated stratum-values)

• Restrictions for regional efficiency and box-constraints

• Sampling fraction, scalarization, standardization, weights

Output:

• Optimal multivariate and univariate allocations, summaries, performance of convergence

• Optional: plots to analyze results (heatmaps, boxplots, Pareto frontier)

The R package genCalib

Input:

• Design weights, stratification structure, auxiliaries, benchmarks

• Box-constraints, allowed perturbations for relaxed benchmarks

• Optional: rescaling weights for variance estimation

Output:

• Calibration weights, point estimates, variance estimates, summaries
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