Uncertainty in Macroeconomic Models
- In the modeling context, non-linearities and uncertainty go hand in hand. In fact, the utility function's curvature determines the degree of risk-aversion. This concept is exploited in the first article of this thesis, which incorporates uncertainty into a small-scale DSGE model. More specifically, this is done by a second-order approximation, while carrying out the derivation in great detail and carefully discussing the more formal aspects. Moreover, the consequences of this method are discussed when calibrating the equilibrium condition. The second article of the thesis considers the essential model part of the first paper and focuses on the (forward-looking) data needed to meet the model's requirements. A large number of uncertainty measures are utilized to explain a possible approximation bias. The last article keeps to the same topic but uses statistical distributions instead of actual data. In addition, theoretical (model) and calibrated (data) parameters are used to produce more general statements. In this way, several relationships are revealed with regard to a biased interpretation of this class of models. In this dissertation, the respective approaches are explained in full detail and also how they build on each other.
In summary, the question remains whether the exact interpretation of model equations should play a role in macroeconomics. If we answer this positively, this work shows to what extent the practical use can lead to biased results.