• search hit 48 of 61
Back to Result List

Universelle Matrix-Ueberkonvergenz

Universal matrix-overconvergence

  • Es wird die Existenz einer Potenzreihe vom Konvergenzradius 1 bewiesen, so dass die mit einer zweifach unendlichen Matrix A (deren komplexe Einträge drei Bedingungen erfüllen müssen) gebildeten A -Transformierten außerhalb des (einfach zusammenhängenden) Holomorphiegebietes der Potenzreihe überkonvergieren. Das Hauptergebnis der Arbeit ist ein Satz über die Existenz einer universellen Potenzreihe vom Konvergenzradius 1, so dass deren A "Transformierte stetige Funktionen auf kompakten, holomorphe Funktionen auf offenen Mengen (in beiden Fällen liegen die Mengen im Komplement des einfach zusammenhängenden Holomorphiegebietes der Potenzreihe) approximieren und sich zusätzlich zur fast-überall-Approximation messbarer Funktionen auf messbaren Mengen (im Komplement des Holomorphiegebietes der Potenzreihe gelegen) eignen. Als wichtige Konsequenz dieses Hauptergebnisses ergibt sich für den Fall, dass das Holomorphiegebietes der Potenzreihe der Einheitskreis ist, die Existenz einer universellen trigonometrischen Reihe, so dass deren A "Transformierte auf dem Rand des Einheitskreises stetige Funktionen approximieren und zusätzlich messbare Funktionen fast-überall auf [0,2π] approximieren
  • It is shown that there exists a power series with radius of convergence 1 such that the A " transforms (formed with an infinite matrix A which satisfies three properties) overconverge in the complement of the simply connected domain in which the power series is holomorphic. The main result of the paper is a theorem that proves the existence of an universal power series with radius of convergence 1 such that the A " transforms approximate continuous functions on compact and holomorphic functions on open sets (in both cases the sets belong to the complement of the simply connected domain in which the power series is holomorphic). The A " transforms also approximate simultaneous measurable functions almost everywhere on measurable sets which belong to the complement of the simply connected domain in which the power series is holomorphic. An important consequence of this main result is (for the case that the domain in which the power series is holomorphic is the unit disc) the proof of the existence of a universal trigonometric series such that the A " transforms approximate continuous functions on the boundary of the unit disc. The A " transforms also approximate simultaneous measurable functions almost everywhere on [0,2π].

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Rebecca Reis
URN:urn:nbn:de:hbz:385-3435
Advisor:Wolfgang Luh
Document Type:Doctoral Thesis
Language:German
Date of completion:2005/11/17
Publishing institution:Universität Trier
Granting institution:Universität Trier, Fachbereich 4
Date of final exam:2005/11/02
Release Date:2005/11/17
Tag:Ueberkonvergenz; Universelle Approximation; Universelle trigonometrische Reihe; Universelle ueberkonvergente Potenzreihen und Matrix-Transformierte
Overconvergence; Overconvergent power series and matrix-transforms; Universal approximation; universal trigonometric series
GND Keyword:Ueberkonvergenz
Institutes:Fachbereich 4 / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik

$Rev: 13581 $