• search hit 10 of 45
Back to Result List

Reward-related processing of visual food cues: neuroendocrine and stress mechanisms

Belohnungsbezogene Verarbeitung von visuellen Nahrungsmittelreizen: Neuroendokrine und Stress-Mechanismen

  • Every day we are exposed to a large set of appetitive food cues, mostly of high caloric, high carbohydrate content. Environmental factors like food cue exposition can impact eating behavior, by triggering anticipatory endocrinal responses and reinforcing the reward value of food. Additionally, it has been shown that eating behavior is largely influence by neuroendocrine factors. Energy homeostasis is of great importance for survival in all animal species. It is challenged under the state of food deprivation which is considered to be a metabolic stressor. Interestingly, the systems regulating stress and food intake share neural circuits. Adrenal glucocorticoids, as cortisol, and the pancreatic hormone insulin have been shown to be crucial to maintain catabolic and anabolic balance. Cortisol and insulin can cross the blood-brain barrier and interact with receptors distributed throughout the brain, influencing appetite and eating behavior. At the same time, these hormones have an important impact on the stress response. The aim of the current work is to broaden the knowledge on reward related food cue processing. With that purpose, we studied how food cue processing is influenced by food deprivation in women (in different phases of the menstrual cycle) and men. Furthermore, we investigated the impact of the stress/metabolic hormones, insulin and cortisol, at neural sites important for energy metabolism and in the processing of visual food cues. The Chapter I of this thesis details the underlying mechanisms of the startle response and its application in the investigation of food cue processing. Moreover, it describes the effects of food deprivation and of the stress-metabolic hormones insulin and cortisol in reward related processing of food cues. It explains the rationale for the studies presented in Chapter II-IV and describes their main findings. A general discussion of the results and recommendations for future research is given. In the study described in Chapter II, startle methodology was used to study the impact of food deprivation in the processing of reward related food cues. Women in different phases of the menstrual cycle and men were studied, in order to address potential effects of sex and menstrual cycle. All participants were studied either satiated or food deprived. Food deprivation provoked enhanced acoustic startle (ASR) response during foreground presentation of visual food cues. Sex and menstrual cycle did not influence this effect. The startle pattern towards food cues during fasting can be explained by a frustrative nonreward effect (FNR), driven by the impossibility to consume the exposed food. In Chapter III, a study is described, which was carried out to explore the central effects of insulin and cortisol, using continuous arterial spin labeling to map cerebral blood flow patterns. Following standardized periods of fasting, male participants received either intranasal insulin, oral cortisol, both, or placebo. Intranasal insulin increased resting regional cerebral blood flow in the putamen and insular cortex, structures that are involved in the regulation of eating behavior. Neither cortisol nor interaction effects were found. These results demonstrate that insulin exerts an action in metabolic centers during resting state, which is not affected by glucocorticoids. The study described in Chapter IV uses a similar pharmacological manipulation as the one presented in Chapter III, while assessing processing of reward related food cues through the startle paradigm validated in Chapter II. A sample of men was studied during short-term food deprivation. Considering the importance of both cortisol and insulin in glucose metabolism, food pictures were divided by glycemic index. Cortisol administration enhanced ASR during foreground presentation of "high glycemic" food pictures. This result suggests that cortisol provokes an increase in reward value of high glycemic food cues, which is congruent with previous research on stress and food consumption. This thesis gives support to the FNR hypothesis towards food cues during states of deprivation. Furthermore, it highlights the potential effects of stress related hormones in metabolism-connected neuronal structures, and in the reward related mechanisms of food cue processing. In a society marked by increased food exposure and availability, alongside with increased stress, it is important to better understand the impact of food exposition and its interaction with relevant hormones. This thesis contributes to the knowledge in this field. More research in this direction is needed.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Diana S. Ferreira de Sá
Advisor:Hartmut Schächinger
Document Type:Doctoral Thesis
Date of completion:2015/03/10
Publishing institution:Universität Trier
Granting institution:Universität Trier, Fachbereich 1
Date of final exam:2015/02/10
Release Date:2015/03/10
Tag:Food pictures; Glucocorticoids; Intranasal insulin; Metabolism; Startle modulation
GND Keyword:Cortisol; Intranasales Insulin; Nahrungsreizen; Physiologische Psychologie; Startle-Reaktion
Institutes:Fachbereich 1 / Psychologie
Dewey Decimal Classification:1 Philosophie und Psychologie / 15 Psychologie / 150 Psychologie

$Rev: 13581 $