• search hit 2 of 2
Back to Result List

Surjectivity of augmented linear partial differential operators with constant coefficients and a conjecture of Trèves

Surjektivität augmentierter linearer partieller Differentialoperatoren mit konstanten Koeffizienten und eine Vermutung von Trèves

  • The main topic of this treatise is the solution of two problems from the general theory of linear partial differential equations with constant coefficients. While surjectivity criteria for linear partial differential operators in spaces of smooth functions over an open subset of euclidean space and distributions were proved by B. Malgrange and L. Hörmander in 1955, respectively 1962, concrete evaluation of these criteria is still a highly non-trivial task. In particular, it is well-known that surjectivity in the space of smooth functions over an open subset of euclidean space does not automatically imply surjectivity in the space of distributions. Though, examples for this fact all live in three or higher dimensions. In 1966, F. Trèves conjectured that in the two dimensional setting surjectivity of a linear partial differential operator on the smooth functions indeed implies surjectivity on the space of distributions. An affirmative solution to this problem is presented in this treatise. The second main result solves the so-called problem of (distributional) parameter dependence for solutions of linear partial differential equations with constant coefficients posed by J. Bonet and P. Domanski in 2006. It is shown that, in dimensions three or higher, this problem in general has a negative solution even for hypoelliptic operators. Moreover, it is proved that the two dimensional case is again an exception, because in this setting the problem of parameter dependence always has a positive solution.
  • Die vorliegende Arbeit beschäftigt sich hauptsächlich mit der Lösung zweier Probleme aus der Theorie der allgemeinen Lösbarkeit linearer partieller Differentialgleichungen mit konstanten Koeffizienten. Während Charakterisierungen für die Surjektivität linearer partieller Differentialoperatoren mit konstanten Koeffizienten sowohl auf dem Raum der glatten Funktionen auf einer offenen Teilmenge des euklidischen Raums als auch auf dem Raum der Distributionen schon 1955 bzw. 1962 von B. Malgrange bzw. L. Hörmander bereitgestellt wurden, ist die Auswertung dieser Bedingungen nach wie vor ein hochgradig nicht-triviales Problem. Insbesondere ist bekannt, dass Surjektivität auf den glatten Funktionen nicht notwendigerweise Surjektivität auf den Distributionen impliziert. Da die Beispiele hierfür allerdings allesamt in drei oder mehr Dimensionen liegen, vermutete F. Trèves 1966, dass im zweidimensionalen Fall Surjektivität eines linearen partiellen Differentialoperators auf den glatten Funktionen sehr wohl schon Surjektivität auf den Distributionen nach sich zieht. In der vorliegenden Arbeit ist es gelungen, diese Vermutung zu beweisen. Das zweite Hauptresultat der Arbeit löst das sog. Problem der (distributionellen) Parameterabhängigkeit von Lösungen linearer partieller Differentialgleichungen mit konstanten Koeffzienten, das in voller Allgemeinheit 2006 von J. Bonet und P. Domanski formuliert wurde. Nicht nur wird gezeigt, dass dieses Problem in Dimension drei oder höher i.a. schon bei hypoelliptischen Differentialoperatoren eine negative Lösung besitzt, sondern auch, dass der zweidimensionale Fall auch hier wieder die Rolle einer positiven Ausnahme spielt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Kalmes
URN:urn:nbn:de:hbz:385-8760
Advisor:Leonhard Frerick
Document Type:Habilitation
Language:English
Date of completion:2014/07/31
Publishing institution:Universität Trier
Granting institution:Universität Trier, Fachbereich 4
Date of final exam:2012/06/13
Release Date:2014/07/31
Tag:P-Konvexität für Träger; P-Konvexität für singuläre Träger; Parameterabhängige Lösungen linearer partieller Differentialgeichungen
P-convexity for singular supports; P-convexity for supports; Parameter dependence of solutions of linear partial differential equations
GND Keyword:Distribution <Funktionalanalysis>; Hypoelliptischer Operator; Lineare Funktionalanalysis; Linearer partieller Differentialoperator; Ultradistribut
Institutes:Fachbereich 4 / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Axx General topics / 35A21 Propagation of singularities
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Exx Equations and systems with constant coefficients [See also 35N05] / 35E10 Convexity properties
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Exx Equations and systems with constant coefficients [See also 35N05] / 35E20 General theory
46-XX FUNCTIONAL ANALYSIS (For manifolds modeled on topological linear spaces, see 57Nxx, 58Bxx) / 46Axx Topological linear spaces and related structures (For function spaces, see 46Exx) / 46A63 Topological invariants ((DN), ( ), etc.)
46-XX FUNCTIONAL ANALYSIS (For manifolds modeled on topological linear spaces, see 57Nxx, 58Bxx) / 46Fxx Distributions, generalized functions, distribution spaces [See also 46T30] / 46F05 Topological linear spaces of test functions, distributions and ultradistributions [See also 46E10, 46E35]

$Rev: 13581 $