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German Summary

Im Rahmen von Stichprobenerhebungen ist es immer héufiger von Interesse nicht nur Sta-
tistiken fiir eine Grundgesamtheit, sondern auch fir bestimmte Unterpopulationen auszuwei-
sen. Dabei konnen mitunter sehr kleine Teilstichprobenumfange auftreten, so dass klassische
Schétzverfahren keine Schatzungen mit ausreichender Genauigkeit fiir diese Subgruppen mehr
erlauben. In diesem speziellen Fall konnen moderne Schatzverfahren, die so genannten Small
Area-Verfahren, Abhilfe schaffen. Diese sind so konzipiert, dass sie die erhobenen Stichproben-
daten mit weiteren verfiigbaren Hilfsinformationen tiber ein statistisches Modell verbinden, um
so auch trotz der teilweise sehr geringen Teilstichprobenumfange noch akkurate Schétzungen
zu ermoglichen. Im Gegensatz zu den klassischen Verfahren weisen die Small Area-Verfahren
zwar Verzerrungen auf, kompensieren diese aber in der Regel durch eine wesentlich geringere
Variabilitat. Die Verzerrungen resultieren dabei zumeist aus unzutreffenden, aber vereinfa-
chenden Modellannahmen, wie beispielsweise einem (verallgemeinert) linearen Zusammenhang
zwischen der Untersuchungsvariablen und den zusatzlich verwendeten Hilfsinformationen. Eine
moglichst flexible und realitdtsnahe Modellierung lésst daher auf eine Verbesserung der Small
Area-Schiatzungen hoffen. Aus diesem Grund beschéftigt sich die vorliegende Arbeit unter an-
derem mit den folgenden Fragestellungen:

1. Wie lassen sich nichtlineare und hochflexible Modellierungsmethoden in die Small Area-
Verfahren einbinden und wie wirkt sich diese Modellierung auf die Small Area-Schiatzungen
aus?

2. Wie konnen wieter Informationen iiber den (globalen) Zusammenhang zwischen den Va-
riablen, so genannte Shape-Constraints, in der Modellierung berticksichtigt werden, ohne
dabei die Flexibilitdt des Modells einzuschranken?

Um eine moglichst flexible Modellierung zu erreichen, wird in der vorliegenden Arbeit die
penalisierte Spline-Methode vorgestellt. Deren Verwendung fiir die Small Area-Statistik erfolgt
hier iiber einen neuartigen Ansatz, welcher die Modellparameter iiber die Losung eines Opti-
mierungsproblems bestimmt. Auf Basis dieser Reformulierung lassen sich schliefilich beliebige
Shape-Constraints in Form von linearen Ungleichungsnebenbedingungen in das Optimierungs-
problem einarbeiten. Insgesamt resultiert ein innovativer Small Area-Schétzer, welcher sowohl
hochgradig komplexe Zusammenhénge in den Daten als auch Informationen iiber deren glo-
balen Verlauf beriicksichtigt. Dies wurde in der Literatur bislang noch vernachlassigt. Um die
Verwendbarkeit dieses Small Area-Schétzers in der Praxis zu erméglichen, wird anschliefend
eine Resampling-Methode zur Schétzung des zugehorigen mittleren quadratischen Fehlers her-
ausgearbeitet. Anhand einer Simulationsstudie und einer ausgewahlten praktischen Anwendung
wird das Potential dieser neuartigen Herangehensweise verdeutlicht, aber auch etwaige Schwie-
rigkeiten kritisch diskutiert.
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Neben einer geeigneten Modellierung spielen auch Qualitat und Verfligbarkeit der verwende-
ten Hilfsinformationen eine entscheidende Rolle. In diesem Zusammenhang liefern Big Data-
Anwendungen vollig neue und andersartige Moglichkeiten Small Area-Schatzungen zu verbes-
sern, stellen aber gleichzeitig Herausforderungen fiir die derzeit existierenden Methoden dar. Um
die eigentlich in grofler Menge verfiigharen Hilfsinformationen fiir die Small Area-Schétzungen
zu nutzen, miissen die entwickelten Verfahren multivariabel, also fiir die Verwendung mehrerer
Hilfsvariablen, erweitert werden. Im Gegensatz zu den klassischen Verfahren ist dies fiir die
flexiblen splinebasierten Modelle nicht trivial und liefert eine weitere Problemstellung, welche
in dieser Arbeit diskutiert wird:

3. Wie lassen sich multiple Hilfsinformationen in die splinebasierten Small Area-Modelle
unter Erhaltung der Struktur einbeziehen?

Zu diesem Zweck wird in dieser Arbeit ein Tensorprodukt-Ansatz vorgestellt, welcher eine struk-
turerhaltende multivariable Erweiterung der penalisierten Spline-Methode ermoglicht. Da diese
Erweiterung also die allgemeine Struktur der Splines und daher die des betrachteten Optimie-
rungsproblems beibehélt, lassen sich die Shape-Constraints in Analogie zum eindimensionalen
Fall beriicksichtigen.

Eine gravierende Einschrankung bei der Verwendung von Tensorprodukten liegt darin, dass
mit der Hinzunahme jeder weiteren Hilfsvariablen die Dimension des zugrunde liegenden Opti-
mierungsproblems, und damit insbesondere der Speicher- und Rechenaufwand der klassischen
Losungsalgorithmen, exponentiell anwéchst. Dies fiihrt dazu, dass die in dieser Arbeit auftre-
tenden Optimierungsprobleme bereits fir eine moderate Anzahl von Hilfsvariablen nicht mehr
auf handelsiiblichen Computersystemen gespeichert werden kénnen, was die Verwendung von
vorimplementierten Losungsverfahren verhindert. Die vorliegende Arbeit widmet sich daher
abschliefend der folgenden Problematik:

4. Wie lassen sich die betrachteten Optimierungsprobleme speicher- und recheneffizient 16sen
und wie sieht eine geeignete Implementierung der zugehorigen Algorithmen aus?

Unter Ausnutzung der zugrunde liegenden Tensorprodukt-Struktur werden zunéchst Matrix-
operationen fiir bestimmte Klassen von Matrizen hergeleitet, welche ohne die konkrete Spei-
cherung dieser Matrizen durchgefiihrt werden konnen. Dies erméglicht eine speichereffiziente
Implementierung geeigneter Losungsalgorithmen fiir die betrachteten Optimierungsprobleme
und erlaubt so letztendlich die Verwendung multipler Hilfsvariablen in den splinebasierten
Small Area-Modellen. Entscheidend fiir die Laufzeit der Losungsalgorithmen ist dabei die (wie-
derholte) Anwendung eines matrixfreien Verfahrens der konjugierten Gradienten. Um neben
der Speichereffizienz auch die Recheneffizienz der implementierten Algorithmen zu verbessern
wird zusédtzlich ein matrixfreies Mehrgitterverfahren als Prakonditionierer fiir die konjugier-
te Gradienten-Methode entwickelt und implementiert, dessen Potential in numerischen Tests
verdeutlicht wird.
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Chapter 1

Introduction

Sample surveys are a widely used and cost effective tool to gain information about a population
under consideration. Nowadays, there is an increasing demand not only for information on
the population level but also on the level of subpopulations, called areas or domains, defined
geographically or by content. For some of these subpopulations of interest, however, very small
subsample sizes might occur such that the application of traditional estimation methods is not
straightforward. In order to provide reliable information also for those so called small areas,
small area estimation (SAE) methods have to be applied. The present thesis mainly focuses on
the development and the numerical implementation of small area estimation methods that are
applicable to very complex types of data sets. This includes for one thing highly nonlinear and
shape restricted relationships within the data and secondly the utilization of multiple auxiliary
variables within the estimation process.

This chapter starts with a motivational example on small area estimation, namely the estima-
tion of timber reserves in several forest districts of Germany, that highlights the need for the
development of the aforementioned estimation methods. Afterwards, a short outline of this
thesis is given and the main research contributions are presented.

1.1 Motivation: Timber Reserve Estimation in
Rhineland-Palatinate

By storing immense amounts of biomass and acting as carbon dioxide sinks, forests fulfill
important ecological, economical, and socio-economical functions. At the same time, however,
forest ecosystems are threatened by regional impacts of global warming as well as changing
socio-economic conditions (cf. Foley et al., 2005). Therefore, several national and international
commitments - such as the Kyoto Protocol (cf. UNFCCC, 1998) or the Montréal Process (cf.
McRoberts et al., 2004) - are dedicated to forest resources, sustainable forest management, and
biodiversity in order to counter these threats. This leads to an increasing demand for very
extensive and detailed information on forest resources.

In this context, the German National Forest Inventory (GNFI) is designed to provide infor-
mation about forest conditions and resources at the national level on a sample basis and is
supplemented by several State Forest Inventories (SFI) at the federal state level. The inven-
tory data are collected on permanent sampling points at regular time intervals and are mainly
designed for per the hectare estimation of available timber volume in cubic meters (cf. Polley
et al., 2006). The selection of the trees at the sampling points is based on a probability pro-
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portional to size sampling using the tree basal area per hectare as related size measure (cf.
Kangas and Maltamo, 2006). In Rhineland-Palatinate (RLP), a federal state of Germany, the
SFT is organized as square sample plots, based on a regular grid, covering the forestland of
RLP and was lastly conducted in 2007. Since most evaluations and plannings regarding forest
resources in RLP are carried out on the forest district level, the focus has changed towards
estimating forest resources, and in particular timber reserves, on a more regional level instead
of the state or the national level. However, the data acquisition within the forest inventories
is complex and expensive such that the number of district-specific samples is mainly too small
for traditional estimation methods to provide reliable estimates on the forest district level. To
overcome this issue and to provide accurate estimates, suitable auxiliary information can be
incorporated into the estimation process by means of adequate statistical models. The use of
auxiliary variables derived from satellite and airborne laser scanning (ALS) data for model-
based and model-assisted estimation methods has gained great interest in the recent past (cf.
Breidt et al., 2005 and Opsomer et al., 2007). ALS data, collected by the State Office for
Surveying and Geographic Information (Landesamt fiir Vermessung und Geobasisinformation),
are available for nearly the entire territory of RLP. They provide the mean canopy height of
the forest stands in meter and lend themselves as auxiliary information to be used in the esti-
mation process of timber reserves in RLP, due to the expectedly high correlation between the
two variables (cf. Miinnich et al., 2016 and Wagner et al., 2017). Small area estimation (SAE)
methods (cf. Rao and Molina, 2015) provide the opportunity to combine these remote sensing
auxiliary information and the sampled timber reserve information via a statistical model and
thereby obtain reliable estimates at the forest district level even if the particular subsample
sizes are very small and possibly nonexistent.

The use of remote sensing data for small area estimation dates back to Battese et al. (1988) and
was adapted for environmental statistics by Flores and Martinez (2000), Gallego (2004), and
Breidenbach and Astrup (2012), amongst others. Their utilization is based on the assumption of
a (generalized) linear relationship between the remote sensing data and the variable of interest.
The dependency of the timber reserves on the mean canopy height, however, is expected to be
neither linear nor of monotone curvature. This can be seen in Figure 1.1, where the available
timber volume per hectare in cubic meters is plotted against the mean canopy height in meter
for the observations from the SFI 2007 in RLP. The displayed linear and quadratic regression
functions are clearly insufficient to reflect the curvature within the data. Especially at the
left margin negative timber volumes are predicted for small canopy heights, which provides
inadmissible results since the available timber volume has to be nonnegative.

In order to incorporate more complex nonlinearities into the small area estimation process, Op-
somer et al. (2008) and Ugarte et al. (2009) provide a very powerful and innovative approach.
If the functional relationship between the variable of interest and the covariates cannot be spec-
ified a priori, the penalized spline (P-spline) method (cf. Eilers and Marx, 1996) is a popular
modeling technique. By reformulating the P-spline regression model as a linear mixed model
(LMM), which constitutes the foundation for common model-based small area estimation meth-
ods, the authors create a useful connection to utilize the P-spline method within the context
of small area estimation. The resulting P-spline fit to the sample data of the SFI 2007 in RLP
is also presented in Figure 1.1. Although the P-spline function now adequately reflects the
curvature within the forest inventory data, negative and therefore inadmissible timber volumes
are still predicted for small canopy heights.
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Figure 1.1: Linear, quadratic, and P-spline fit to the sample data of the SFI 2007 in RLP.

Therefore, besides the flexible modeling of complex relationships within the data, it is of prac-
tical interest to restrict the underlying model function by appropriate shape constraints. That
is, the restriction of its global form to ensure a desirable and more realistic behavior of the
underlying regression function in practical applications. Especially in small area estimation,
where the subsample sizes are usually too small to sufficiently reflect the general trend in the
underlying data, the incorporation of shape constraints may yield more appropriate, or in the
first place feasible estimates (cf. Wagner et al., 2017). For example for the forest inventory data
of the SFI 2007 in RLP, a monotonically increasing and nonnegative relationship between tim-
ber volume and mean canopy height seems realistic. Especially the restriction to nonnegativity
is crucial since negative timber reserves cannot exist for observed timber stocks. These corre-
sponding shape constraints, however, cannot immediately be considered within the traditional
mixed model formulation such as the spline-based small area method proposed by Opsomer
et al. (2008) and Ugarte et al. (2009). A first approach to incorporate at least the monotonicity
property into small area estimation is given by Rueda and Lombardia (2012). At the present
time, however, there exists no satisfying approach to small area estimation allowing for both a
highly flexible model and arbitrary kinds of shape constraints.

In the context of small area estimation, the utilization of Big Data introduces completely
new opportunities but also challenges on the applied methods (cf. Marchetti et al., 2015).
Especially for remote sensing data, the Sentinel-2 mission! developed by the European Space
Agency has marked the dawn of the Big Data era at the latest (cf. Miinnich et al., 2016). The
Sentinel-2 satellites, launched in 2015 and 2017, provide multi-spectral data with 13 bands
and spatial resolution of 10, 20, and 60 meters with a timely repetition rate of five days,
leading to an annual data stream of approximately two terabytes just for the federal state
RLP. Such an amount of data offers a huge potential to significantly improve estimates, not
only in the case of SAE, such that it is desirable for the considered methods to be capable of
efficiently processing multiple input variables in order to utilize extensive amounts of auxiliary
information. In this context, the curse of dimensionality (cf. Bellman, 1957) plays a crucial role,
describing the exponential growth of required computing power and especially storage capacity

'https://sentinel.esa.int/web/sentinel/missions/sentinel-2 accessed on July 17, 2018.
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within the number of auxiliary variables. Despite of nowadays available computing power, this
issue prevents a straightforward extension of the existing spline-based small area methods to
multiple dimensions. In order to summon the full potential of the multi-dimensional covariate
information, as for example the Sentinel-2 mission data, the development and implementation
of computational as well as memory highly efficient solution algorithms is inevitable to allow
modern small area estimation methods the access into the era of Big Data.

1.2 Thesis Outline

The present thesis is divided into six chapters and organized as follows. Following this in-
troduction, we briefly and succinctly present the mathematical background required for the
general understanding of this thesis in Chapter 2. We review some basic theory on survey
statistics and selected estimation methods and present linear mixed models as they provide
the fundamental concept for the most common small area estimation methods. We consider
special types of matrices, namely Kronecker and Khatri-Rao products, that mainly appear in
the course of modeling with spline functions in multiple dimensions. The small area estimation
methods developed within the scope of this monograph require the solution of large-scale linear
systems and convex optimization problems on a regular basis, wherefore we provide the related
theory of and adequate solution algorithms for these specific problem classes.

Chapter 3 deals with the penalized spline method as a very flexible approach to regression
analysis. We review the general theory on spline functions and provide their extension to
multiple input variables via a tensor product approach. We introduce the P-spline method from
a theoretical as well as from a practical point of view and address some related computational
aspects. By exploiting the unique basis representation of the (tensor product) splines, we
determine the vector of spline coefficients o € R of the P-spline function as the solution of
the optimization problem

min_ ||®a — y||3 + Ao’ Aa. (1.1)
aeRK

The integer K thereby denotes the dimension of the underlying spline space, ® € R™*¥ is
a matrix representing the basis functions evaluated at the n covariates, and y € R" gives
the vector of the realizations of the variable of interest. The matrix A € RX*X represents
an adequate penalty matrix that measures the smoothness of the resulting P-spline whose
influence is regulated by the parameter A > 0. In order to take shape constraints into account,
we illustrate their incorporation as linear inequality constraints into the optimization problem
(1.1) as

in ||®a —y||3 + AalA
min | ®a -yl + o Aa

st. Da<0,relc (1.2)
Iha >0, rels.

The sets I< and I thereby denote adequate index sets and the matrices T', € RT*¥ represent

the respective shape constraints with 7" denoting the number of utilized discretization points.
Finally, we state existence and uniqueness results for the both considered optimization problems
(1.1) and (1.2).



1.2 Thesis Outline

Chapter 4 is devoted to the utilization of the previously introduced shape constrained P-spline
method in the context of small area estimation. We review fundamental notations and methods
for small area estimation with a special emphasis on an existing spline-based small area model.
This approach is based on the reformulation of the P-spline model as a linear mixed model
which, however, prevents the incorporation of the required shape constraints. We therefore
develop an alternative problem formulation which is, in analogy to the regression framework,
based on the solution of the optimization problem

minRD |®a 4+ Wu — |2 + Asa A + Ay ||ul|2. (1.3)

acRK ue

Besides the vector of spline coefficients o € R¥, the vector of area-specific intercept u € R”
is additionally considered within the optimization process, where D denotes the number of
considered areas. The matrix W € R™ P thereby expresses the link between a sample unit and
the corresponding area. This optimization problem formulation then enables, again in analogy
to the P-spline regression approach, the incorporation of shape constraints as linear inequality
constraints into the optimization problem (1.3) as

min | Pa + Wu — y||2 + A" Ao+ Ay ||ul|2
a€RE yecRP
s.t. Ia <0, relc (1.4)

T,a>0,r¢€ls.

For the both considered optimization problems (1.3) and (1.4), we state existence and unique-
ness results. The practical advantage of the resulting small area estimators is highlighted by
the application to the real-world example of timber volume estimation in Rhineland-Palatinate
(cf. Section 1.1). In order to estimate the mean squared error of the small area estimators
developed within this chapter, we propose a Monte-Carlo bootstrap method. To further inves-
tigate the performance of the small area estimators as well as its related precision estimator,
we also conduct a simulation study.

The utilization of multiple covariates within the penalized spline method leads to an exponential
growth of the dimension of the underlying spline space, i.e.

K =0(2P), (1.5)

where P denotes the number of considered covariates and O(-) is the Bachmann-Landau no-
tation. This is problematical for two reasons. For one thing, the number of unknown spline
coefficients that has to be determined grows rapidly within the number of covariates and sec-
ondly, the memory required to store the occurring matrices instantly exceeds the available
internal memory of currently available computer systems even for moderate P. In order to
make the previously developed methods also applicable to multiple covariates, the focus of
Chapter 5 is on the development and implementation of computational and especially memory
efficient large-scale solution algorithms for the various considered optimization problems. By
exploiting the special structure of the occurring matrices, we develop adequate matrix-free solu-
tion algorithms, i.e. methods that do not explicitly require to assemble and store the matrices.
These implementations finally allow to apply the proposed spline-based small area estimation
methods for an arbitrary number of covariates. Furthermore, in order to drastically improve
the convergence speed of the proposed matrix-free solution algorithms, we present a numeri-



1 Introduction

cally highly efficient preconditioning method based on the multigrid idea. The potential of the
developed solution algorithms is finally illustrated by several numerical test examples.

The closing Chapter 6 summarizes and concludes the thesis and points out its main findings.
Additionally, we present a short outlook on future research topics and further possible applica-
tions.

1.3 Research Contributions

Within the scope of small area estimation, the utilization of nonlinear and highly flexible mod-
eling techniques that enable a close to reality representation of the relationship between given
observations is very promising. In this context, Opsomer et al. (2008) and Ugarte et al. (2009)
reformulate a P-spline regression model as a linear mixed model which can directly be adapted
to a small area model. While obtaining a more realistic model, the incorporation of further
shape constraints is expected to significantly improve the estimates, especially in SAE, where
the small sample data frequently do not reflect the general trend within the data at hand.
Although the incorporation of shape constraints into the P-spline regression model is compar-
atively straightforward, these same constraints prevent a mixed model representation. Thus,
a direct incorporation of shape constraints into spline-based small area estimation methods
is not possible with the currently available approaches. In order to fill this gap in literature,
the present thesis focuses on a different framework that enables both the utilization of the
P-spline method in small area estimation and the incorporation of arbitrary shape constraints
into the modeling process. This new approach is based on determining the model parameters
as a solution of an optimization problem instead as from a LMM. The optimization framework
additionally provides the advantage that no specific distributional assumptions are required in
comparison to the LMM framework. This is especially reflected by the possibility of a retro-
spective adjustment of the smoothness of the underlying P-spline, resulting in a much more
flexible approach. The optimization problem formulation further allows for the incorporation
of arbitrary shape constraints as additional linear inequality constraints into the optimization
problem. Thus, by allowing for both the utilization of nonlinear and highly flexible modeling
techniques and the incorporation of shape constraints via an innovative optimization approach,
the present thesis provides a significant contribution to the field of small area estimation.

Besides the possibility of providing a flexible and close to reality small area model via shape
constrained P-splines, it is desired to extend these method to multiple covariates. By utilizing
a tensor product approach, this multivariable extension is straightforward. This tensor prod-
uct approach, however, causes an exponential growth of the number of model parameters with
each additional covariate such that the memory complexity of the P-spline method becomes
tremendously large even for a moderate number of covariates. Here, a further advantage of the
optimization problem formulation is revealed, since it facilitates the application of memory and
computationally efficient solution algorithms for the large-scale optimization problems. For this
purpose, a matrix-free multigrid preconditioned conjugate gradient method is developed that
finally enables the incorporation of arbitrary shape constraints as well as an increasing number
of covariates into a very flexible spline-based small area model. Due to the development of
computational efficient large-scale solution algorithms for special types of optimization prob-
lems and their memory efficient implementation, the present thesis also provides a significant
contribution to the field of algorithmic optimization.



1.3 Research Contributions

In summary, the subject of the monograph contributes to two disciplines, namely small area
statistics and numerical optimization. These fields are not considered separately and the present
thesis occupies a strong interdisciplinary character in the sense that the arising synergy effects
influence the further development of statistical methods as well as the numerical implementa-
tions. In this way, the natural interdependency between mathematics and statistics is deepened
such that this thesis additionally provides a contribution to the connection of the two disci-
plines.






Chapter 2

Mathematical Background

In this chapter, we provide preliminary terminologies and concepts which are fundamental for
the general understanding of the present thesis and for the development of efficient solution
algorithms. We aim for brief and concise information and refer to the related subject literature
for further details. The topics presented in this chapter are as follows. We begin with funda-
mental concepts of survey statistics in Section 2.1 and introduce linear mixed models in Section
2.2, since both are fundamental for the theory of small area estimation. In Section 2.3, we con-
sider special types of matrix products that frequently arise during this thesis while modeling
with P-splines in multiple dimensions. To determine the corresponding model parameters the
solution of a linear system or a convex optimization problem is required, wherefore Section 2.4
and Section 2.5, respectively, provide the related theory and adequate algorithms.

2.1 Fundamentals of Survey Statistics

The present thesis deals with the topic of small area estimation which belongs to the field of
survey statistics. In the following, we therefore introduce fundamental definitions, notations,
and methods of survey statistics according to Sarndal et al. (1992, Chapter 2).

Notations and Definitions

We consider a fixed and finite population U of size N € N and denote the response value of the
variable of interest for each population unit ¢ € U as y; € R. In many applications it is desired
to determine a population parameter or a statistic

0:=f(y;:i€lU), (2.1)

which is given as a function of the variable of interest in the population. Common examples of
such a statistic are the population total of the variable of interest,

0 =1y = Zy@-, (2.2)

icU

or the population mean of the variable of interest,

1

e
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If the y; are known for all units ¢ € U, the parameter of interest can directly be calculated. In
practice, however, the variable of interest is not observed for the entire population, but only for
a sample & C U of size n, where n < N. Thus, the parameter 6 can not be directly determined,
but has to be estimated from the sampled observations. Let S := {S : & C U} denote the set
of all possible samples of U and let

p:S—[0,1] (2.4)

be a function that gives the probability of selecting a specific sample. The function p is fre-
quently called sampling design and is in the design-based framework the only stochastic element
on which inference can be based (cf. Lehtonen and Veijanen, 2009, p. 219). Common sampling
designs are for example simple random sampling (SRS), stratified random sampling (StRS),
and cluster sampling. However, since sampling designs are not further considered within this
thesis, we refer to Lohr (1999) and Cochran (2007) for further reading on the topic of sampling
designs. The probability that a particular unit ¢ € U is included in a sample is known as
(first-order) inclusion probability and obtained from the sampling design as

o=y p(S). (2.5)

{Ses:ieS}

Analogously, the (second-order) inclusion probability that the particular units i and j are both
included in the sample is defined as

mgi= >, pS). (2.6)

{S€S:i,jeS}

These inclusion probabilities are of crucial importance for the construction of design-based
estimators, which are introduced later on.

As already mentioned, the main task is to determine an estimate of the unknown population
parameter 6 out of the realized sample §. An estimator of the parameter 6 is typically denoted
as 0 and corresponds to a real valued random variable on the sample space S. A particular
realization 5(8) is called an estimate of the estimand 6 and it is common practice to denote
the estimate itself as 6 and to use the terms estimator and estimate interchangeably. In order
to describe important aspects of an estimator, adequate performance measures are needed.
According to Sarndal et al. (1992, Section 2.7), the expectation of an estimator 0 is given as

E(0) == 3 p(S)0(S). (2.7)

SeS

It is a weighted average of all possible values 0(S) weighted with the probabilities p(S). The
bias of an estimator 6 is given as

-~

BIAS(A) == E(§) — 6 (2.8)

and is a measure of the average deviation of an estimated value from the parameter of interest.
An estimator is referred to as unbiased if BIAS(A) = 0, i.e. E (5) — 0, otherwise it is called
biased. Unbiasedness, at least asymptotically, is a desirable property of an estimator but does
not give any information on the dispersion of the various estimates. In order to measure this

10
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dispersion, we define the variance of an estimator 6 as

VAR(G) = E ([é . E(é)f) =Y p(8) [i(s) ~E@)]". (2.9)

SeS

That is, the variance of an estimator is defined as the expectation of the squared deviation
of the estimator from its expected value. In order to assess the precision of an estimator, we
define the mean squared error (MSE) as a combined measure of deviation and dispersion as

MSE (8) = E <[§— 0}2) — VAR() + BIAS(9)®. (2.10)

If the estimator @ is unbiased, it follows MSE(6) = VAR(A). A small MSE of an estimator is a
desirable property, since it indicates that the estimator produces estimates that are concentrated
close to the true parameter . However, it might occur that for a particular sample the estimate
is still far removed from the true parameter. Note that the introduced performance measures of
an estimator are computed with respect to the specific sampling design (2.4). This is due to the
fact that in this framework the only source of randomness is the sampling design, wherefore it

is frequently referred to as design-based or randomization approach (cf. Lehtonen and Veijanen,
2009, p. 219).

Estimators can generally be distinguished into direct and indirect estimators. The former
estimators make use of information solely from the population of interest, whereas the latter
incorporate further information from outside in order to improve the estimates. The concept of
incorporating information from outside the population is often referred to as borrowing strength
and is of particular interest in the context of small area estimation (cf. Chapter 4). A further
distinction of estimators is between design-based, model-assisted, and model-based estimators.
Examples for a design-based and a model-assisted estimator are briefly present in the following,
whereas model-based estimators are comprehensively discussed in Chapter 4. For reasons of
clarity, in the following we restrict ourselves to the estimation of the population total (2.2) of
the variable of interest. Estimates for the population mean (2.3) are obtained by dividing the
respective estimates of the total by the true population size N or by the estimated population
size

N:=Y 7t (2.11)
€S

The estimated population size is frequently used to compensate for sampling designs with
variable sample sizes, even if the true population size is known (cf. Miinnich et al., 2013, p.
154).

The Horvitz-Thompson Estimator

As already mentioned, design-based estimation of a finite population parameter refers to an
estimation approach where the randomness is solely introduced by the sampling design. A fur-
ther characteristic is, that no auxiliary information is used within the estimation process. One
of the most popular design-based estimators of the population total is the Horvitz-Thompson

11
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(HT) estimator, proposed by Horvitz and Thompson (1952). It is defined as

ATy Y (2.12)

ies T

where the reciprocal first-order inclusion probabilities (2.5) are used as design weights. Since
the HT-estimator exclusively uses information from the population of interest, it is declared
as a direct estimator. According to Sdrndal et al. (1992, Section 2.8) the HT-estimator is
design-unbiased with variance

VARG = 3% (W - 1) 2 (2.13)
which can be unbiasedly estimated via

VARFEM =3 % (1 - W) Yty (2.14)

i€S jES Tij ) T

Thereby, the second-order inclusion probabilities (2.6) are required. Note that the presented
formulas for the HT-estimator significantly simplify for the most common sampling designs.

The Generalized Regression Estimator

The previously introduced HT-estimator does not make explicit use of potentially available
auxiliary information. Methods that incorporate such covariates into the estimation process
via a model in order to reduce the variance compared to design-based estimators are called
model-assisted. Note that the basic design-based properties do not depend on the validity of
the model, but only the efficiency of the estimator depends on its goodness of fit. The most
popular model-assisted estimator is the generalized regression (GREG) estimator, proposed by
Cassel et al. (1976). Let therefore z; € R denote individual auxiliary vectors that are assumed
to be known for each unit ¢ € U, for example from a register. The GREG-estimator uses these
auxiliary information from a linear regression model in order to correct the HT-estimator and
is defined as

A A~ A~ T =S
FOREG .= 28T 4 (TX - T§T> B, (2.15)

where

—1
B = (Z wilxixiT> > o y (2.16)
i€S i€S

denotes the vector of the estimated regression coefficients from the underlying design weighted
linear regression model and 7x and 7H' are defined as in (2.2) and (2.12), respectively. Ac-
cording to Sarndal et al. (1992, Section 6.4), the GREG-estimator is asymptotically unbiased
and its variance can be estimated via the residual variance estimator

VAR AGREG Z Z (1 _ 7T17Tg> (yz - x;ﬁ)(yj - %T@ (2‘17)

i€S jES ij T
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Note that, depending on which level the regression coefficients B are estimated, the GREG-
estimator can be declared as direct or as indirect estimator. For more detailed information on
the GREG-estimator, we refer to Sdrndal et al. (1992, Chapter 6).

2.2 Linear Mixed Models

In the context of model-based small area estimation, linear mixed models are a frequently
used tool to exploit similar structures within a population while, at the same time, allow for
differences between the particular areas. Due to its fundamentality in model-based small area
estimation, we briefly introduced the general linear mixed model (LMM) in the following. It is
given by

y=Xp+Zy+e, (2.18)

where:

e y € R” is a known vector of observations,

e 3 € R¥ is an unknown vector of fixed effects,

v € R? is an unknown vector of random effects with v "2 A (0,G),

e € R is an unknown vector of random errors with & & A (0, R),

e 7 and ¢ are independent,
o X ¢ R™K and Z € R™P are known design matrices,

o G c RP*P and R € R™ " are positive definite covariance matrices.

Note that the assumption of normality of 4 and ¢ is not claimed in general linear mixed models
but is usually assumed in the context of small area estimation. If the covariance matrices G
and R are known, Henderson (1950) proved that the best linear unbiased estimator (BLUE)
BBLUE of 8 and the best linear unbiased predictor (BLUP) BLUP of ~ exist and are given as
the unique solution of the mixed model equation

XTR'X  XTR™Z B\ 1 (XTy (2.19)
ZTR\X ZTR'Z+G Y \~) ~ \ 27y )" '

According to Henderson (1975), the solution is given by

BEUE = (XTYIX) T XTIV (2.20)
and

?BLUP —q7Ty! (y o XBBLUE) 7 (2‘21)
where V := R + ZGZ" denotes the variance-covariance matrix of y under the linear mixed

model (2.18).
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In many applications of linear mixed models, such as small area estimation, it is not only of
interest to predict the random effects themselves but also to predict mixed effects of the form

0 :=1"8+m"y (2.22)

with known vectors [ € R and m € RP. According to Jiang and Lahiri (2006), the BLUP of
the mixed effect (2.22) is given as

gBLUP _ ZTBBLUE + mTABLUP ZTBBLUE TGzt (y _ XgBLUE) 7 (2.23)

using the BLUE (2.20) of 5 and the BLUP (2.21) of .

In practice, the covariance matrices G and R are unknown and have to be estimated as well.
Plugging the estimates G and R into the equations (2.20) and (2.21), we obtain the empirical
best linear unbiased estimator (EBLUE) BEBLUE of # and the empirical best linear unbiased
predictor (EBLUP) 7¥BLUP of ~ (cf. Kackar and Harville, 1981) and thus the EBLUP of the
mixed effect (2.22) as

éEBLUP — ZTBEBLUE + mT;)\/EBLUP' (224)

In order to estimate the covariance matrices it is common to assume that G and R depend
on some variance parameters § € R? such that V' = V/(J). These variance parameters are
then estimated by an adequate method, such as the maximum likelihood (ML) method. The
log-likelihood under the linear mixed model (2.18) is given by

0(8) == c— ; [log(det(V)) + (y — X8)"V "' (y — XB8))|, (2.25)

with some constant ¢ independent of §. Under the assumption of normality, the partial deriva-
tive of £ with respect to the j-th component of §, j = 1,..., ¢, is given as (cf. Rao, 2003, Section
6.2.4)

68(:;(5) = —; [tr (V_lgg> + (y _ XB)TV_lg;jV_l(y _ Xﬁ))‘| ' (2.26)

Setting all partial derivatives equal to zero and solving the resulting linear system leads to the
ML-estimator of the variance components d. Alternatives to the ML-estimator are for example
the restricted maximum likelihood (REML) method or the analysis of variances (ANOVA)
method. However, since variance parameter estimation is not considered within the present
thesis, we refer to Harville (1977), Kackar and Harville (1984), and Searle et al. (2009) for
detailed information on the topic.

2.3 Kronecker and Khatri-Rao Products

During the course of this monograph, we frequently have to face large-scale optimization prob-
lems where the occurring matrices are constructed as special matrix products, namely Kro-
necker products and Khatri-Rao products, of matrices of considerably lower dimensions. These
structures originate from the utilization of tensor product splines. The aforementioned matrix

14
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products and their basic properties are considered in the following.

Kronecker Products

Definition 2.3.1 (Kronecker product)
For given matrices A € R™™ and B € R"™*° the matriz

CLHB e alnB
A B:=| : : e R™me (2.27)

amiB ... amunB

1s called Kronecker product of A and B.

The Kronecker product is extended to arbitrary many factors A, € R™*™ p=1,... P, by

P
RA =41®... 0 Ap:=((...((A4 ® Ay) ® 43)...) ® Ap) € R™™, (2.28)
p=1

where m :==mq-...-mp and n :=ny - ... -np. The following lemma reveals some important

properties of the Kronecker product.

Lemma 2.3.2 (cf. Graham, 1981) .
For arbitrary matrices A, B, C, D, identity matrices I and I, and a constant o € R the
following statements about the Kronecker product hold, whenever they are well-defined:

1. Bilinearity: A® (B+C)=(A® B)+ (C® D),
(A+B)@eC=(Ae(C)+ (B (),
a(A® B) =(aA)® B=A® (aB).
Associativity: (A B)@C =A® (B C).
Mized product property: (A® B)(C ® D) = AC ® BD.
Normal factor decomposition: A® B = (A® I)(I ® B).
Distributivity of transposition: (A ® B)T = AT @ BT,

S G e ke

Invertible product property: A ® B is nonsingular if and only if both, A and B, are
nonsingular. Then it holds (A® B)™' = A~' @ B~%.

7. Positive (semi-) definiteness : A ® B is positive (semi-) definite if and only if both, A
and B, are positive (semi-) definite.

8. Diagonal property: diag(A ® B) = diag(A) ® diag(B).

Khatri-Rao Products

The Khatri-Rao product is closely related to the Kronecker product and is defined as column-
wise Kronecker product of matrices with the same number of columns.

15



2 Mathematical Background

Definition 2.3.3 (Khatri-Rao product)
For matrices A € R™" gnd B € R™™" the matrix

A®B:=[A[,1]@B[,1], ..., Al,n]® B[,n]| € R™" (2.29)

is called Khatri-Rao product of A and B, where Al-,i] and B|[-,i] denote the i-th column of A
and B, respectively.

As for the Kronecker product, the Khatri-Rao product is extended to arbitrary many factors
A, e R p=1,...,P, by

P

DA, =40...04p = ((...((41 ® A) ©® 43)...) ® Ap) € R™™, (2.30)
p=1
where m :=m; -...-mp. By definition, some of the properties of the Kronecker product carry

directly over to the Khatri-Rao product. These properties, also in relation to the Kronecker
product, are given by the following lemma.

Lemma 2.3.4 (cf. Liu and Trenkler, 2008)
For arbitrary matrices A, B, C, D and a constant o € R the following statements hold,
whenever they are well-defined:

1. Bilinearity: A® (B+C)=(A®B)+ (C® D),
(A+B)oC=(A600C)+(B6O),
a(A®B) =(aA) ®©B=A0 (aB).

2. Associativity: (A® B)0C=A06 (Bo ).

3. (A® B)(C® D)= AC® BD.

4. (A® B)™t = (ATA * BTB)_1 (A® B)T, where x denotes element-wise multiplication.

2.4 Iterative Methods for Linear Systems

Within the course of this thesis it is frequently required to solve a linear system of equations
Az =b (2.31)

with a positive definite coefficient matrix A € R™*", a right-hand side vector b € R", and a
vector of unknowns x € R". These systems originate from the determination of the parameters
of a P-spline. For example, as shown later on, the optimization problems (1.1) and (1.3)
can be reformulated as a linear system of the above form. Especially, if multiple covariates are
considered during the modeling process, the dimension n of the linear system becomes very large
such that direct solvers become impracticable due to unacceptable computational and memory
complexity. Thus, iterative methods have to be applied that approximately solve the linear
system (2.31). Some iterative methods utilized in the present thesis are briefly introduced in
this section. For further reading and detailed proofs, we refer to the monographs of Hackbusch
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(1994) and Saad (2003).

2.4.1 Relaxation Methods

For a nonsingular matrix M € R™", the identity matrix [,, € R™*", and an arbitrary initial
guess xo € R" the iteration

Tjp1 = Tj — Mﬁl(Al'j — b) = (In — MilA).Tj + Mﬁlb (232)
is called a linear stationary iterative method or a relaxation method. The matrix
C:=1,—M1A (2.33)

is referred to as the iteration matrix of the relaxation method and different choices of M define
several iterations. Frequently used relaxation methods are presented in the following. They are
usually based on the splitting of the coefficient matrix

A=D+U+1I, (2.34)

where D denotes the diagonal part, U the strictly upper, and L the strictly lower triangular
part of A. Note that, since A is symmetric and positive definite, all eigenvalues of A are real
and positive and D is nonsingular.

Richardson Method

The (damped) Richardson iteration is defined as
Tip1 = x; — w(Az; —b) (2.35)

and is obtained for the choice of M := w™'I,, with some damping factor w # 0. The Richardson
method converges for all 0 < w < 2/Apax(A), where Apax(A) denotes the maximal eigenvalue
of the symmetric and positive definite matrix A (cf. Hackbusch, 1994, p. 82).

Jacobi Method

Using M := w™'D with some damping factor w # 0 yields to the (damped) Jacobi iteration
zjy1 = x; —wD ' (Az; — b). (2.36)

Since the Jacobi method is of great importance for the later development of memory and
computationally efficient solution algorithms for the particular class of linear systems arising
within this thesis (cf. Chapter 5), we present the general Jacobi procedure in Algorithm 2.1.
The Jacobi method converges for all 0 < w < 2/Apa(D7LA), where Apax (D7t A) denotes the
maximal eigenvalue of the symmetric and positive definite matrix D' A (cf. Hackbusch, 1994,
p. 89).
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Algorithm 2.1: Jacobi method
7j+0
T < AZL']‘ —b
while ||7;]|3 > tol do
J4+—7+1
T xj_1 —wD
T < Al’j —b
end
return z;

SOR Method

The method of successive over-relaxation (SOR) is defined as
zjy1 =25 —w(D+wL) (Az; —b) (2.37)

and is obtained for the choice of M := w™'D + L with some damping factor w # 0. The SOR
method converges for all 0 < w < 2 (cf. Hackbusch, 1994, p. 134) and for the special case of
w = 1 the iteration is also called the Gauss-Seidel method.

SSOR Method

If the coefficient matrix A of the linear system (2.31) is symmetric, the same holds true for
the iteration matrix of the Richardson and the Jacobi method. For the iteration matrix of
the SOR method, however, this property is not fulfilled. A symmetric variant of the SOR
method, the method of symmetric successive over-relaxation (SSOR), is obtained by M :=
(w(2 = w)) (D +wL)D™ (D + wU) with some damping factor w ¢ {0,2}. The SSOR method
then reads

Tj1=2; —w(2 —w)(D+wlU)'D(D +wL) ' (Az; — b). (2.38)

and converges for all 0 < w < 2 (cf. Hackbusch, 1994, p. 117). As for the SOR method, for the
special case of w = 1 the iteration is called symmetric Gauss-Seidel method.

2.4.2 Multigrid Method

The introduced relaxation methods are straightforward to implement and computationally in-
expensive per iteration but suffer from a very poor convergence rate. Therefore, they are rarely
applied explicitly as solution methods for linear systems but rather appear within much more
complex algorithms. For example, within the multigrid (MG) method they are used for rea-
sons of the so called (error) smoothing property. Multigrid techniques exploit a hierarchy of
discretizations with different mesh sizes of a given problem to obtain optimal convergence from
a relaxation method. The availability of a hierarchy of meshes and the corresponding linear
problems yields a lot of advantages compared to methods that have only access to the coefficient
matrix A and the right-hand side b of the linear system (2.31). However, the understanding
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of the MG method requires a detailed look at the original problem and in particular at the
error frequencies associated with different meshes. In general, the hierarchy originates from the
discretization of partial differential equations with refined mesh sizes. In the present thesis,
however, the hierarchy originates from modeling with splines on refined knot sets. In this sub-
section, the general idea of the MG method is introduced based on a model problem following
Hackbusch (1985) and Saad (2003, Chapter 13).

Model Problem

We start with the introduction of a model problem, which is frequently used for understanding
the motivation and the theory behind the MG method. For that purpose, we consider the
one-dimensional Poisson equation with homogeneous Dirichlet boundary conditions on the unit
interval, that is

—u"(z) = f(x) on [0, 1],

u(z) =0 in {0,1}. (2:39)

For a fixed grid level g € N the finite difference discretization with mesh size h := (n + 1)~}
where n := 29 — 1, leads to the linear system

h2Ar =b, (2.40)

where A € R™" is a tridiagonal matrix with values 2 on the main and —1 on the off diagonal,

z = (u(xy),...,u(z,))’ €R” (2.41)
is the unknown vector of function values at the discretization points z; := th, i = 1,...,n,
and

bim (f@1),. -, f(za))" € R” (2.42)

is the known right-hand side. For further details on the construction of the model problem we
refer to Hackbusch (1985, Chapter 2.1).

Smoothing Property

We now analyze the performance of the Jacobi method (2.36) applied to the linear system
(2.40) representative for all relaxation methods introduced in Subsection 2.4.1. The iteration
matrix of the Jacobi method is then given as

Ciac = I, — wh?A. (2.43)

Note that in this special case the Jacobi method coincides with the Richardson iteration (2.35).
According to Hackbusch (1985, p. 20), the eigenvectors of Cjac are given as

v* := V2h(sin(umh),sin(2urh), . . ., sin(numh))’ € R" (2.44)
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with the corresponding eigenvalues
(W) =1 — dwsin®(umh/2), p=1,...,n. (2.45)

With the choice of w = 1/2 the spectral radius p(Cjyac), i.e. the maximum absolute value of
the eigenvalues of Cjac, is given as

p(Ciac) = 1 —2sin(rh/2) = 1 — O(h?), (2.46)

where O(+) denotes the common Bachmann-Landau notation. This especially shows that the
convergence speed of the Jacobi method depends strongly on h and g, respectively, and becomes
very slow for refining grid levels g. Note that in this case the choice of w = 1/2 is optimal in
the sense that it minimizes the spectral radius of the iteration matrix. For other choices of w
the convergence rates are therefore even worse (cf. Hackbusch, 1985, p. 20).

However, the basic observation on which the MG method is founded is that convergence rate is
not similar for all components of the error vector. Let therefore * denote the unique solution of
the linear system (2.40) and let ; denote the j-th Jacobi iterate. The error vector e; := x; —x*
after j Jacobi iterations is then given as

e; = Cyac(w)eo =D A(w) vt (2.47)
pn=1
where the o, = 1,...,n, are the coefficients of the eigenbasis representation of ey, i.e.
eo =Y a,vt. (2.48)
pn=1

Again, we refer to Hackbusch (1985, p. 20) for further details. This shows that each component
of the error vector is reduced by the factor \,(w)’ after j Jacobi iterations, which is slow
for components with small eigenvalues and fast for components with large eigenvalues. We
therefore define the high frequency components or oscillatory part of the error vector as those
components, where the related eigenvalue is greater or equal than one half, i.e.

{1 M\uw) = 1/2). (2.49)

The remaining components are referred to as low frequency components or smooth part of the
error vector. For further details we refer to Saad (2003, p. 429). Loosely speaking, relaxation
methods efficiently damp error components of high frequency, leaving behind the smooth part
of the error vector. The slow reduction of the low frequency error components is responsible
for the poor convergence rate of the relaxation methods. Since after a few iterations only
the smooth part of the error vector remains, relaxation methods are frequently referred to as
smoothing methods. These so called smoothing property of relaxation methods becomes vivid
in Figure 2.1, where the error vector after several numbers of Jacobi iterations is presented.
There, the Jacobi method with w = 1/3 is applied to the model problem (2.40) with n = 31,
i.e. g =05, b= 0, and initial guess

xo = (sin(mwh) + sin(187h), sin(72h) + sin(1872h), ..., sin(rnh) + sin(18wnh)) € R"*. (2.50)
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Obviously, the error vector becomes smooth after only a few iterations, but the smooth part
only reduces very slowly and is still apparent after a comparatively large number of iterations.
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Figure 2.1: Error vector after several numbers of Jacobi iterations.

A more formal definition of the smoothing property is due to Hackbusch (1985, Definition
6.1.3).

Definition 2.4.1 (Smoothing property)
A relazation method with iteration matrixz C' is said to possess the smoothing property if

[AC] < n(w)[|A] (2.51)
for some function n with n(v) — 0 as v — oo. Here, || - || denotes the spectral norm, i.e.
Al = mas, 14215, 252)

Note that all of the relaxation methods introduced in Subsection 2.4.1 satisfy the smoothing
property (cf. Hackbusch, 1985, Chapter 6.2).

TG Method

As previously illustrated, relaxation methods are efficient methods for reducing the oscillatory
part of the error vector, while the overall convergence is lacking with respect to the smooth
components. The basic idea of the multigrid method is therefore to combine a relaxation method
with a further iteration having complementary properties, i.e. provides a fast reduction of the
low frequency part of the error vector. This iteration is constructed by means of the so called
coarse grid correction. For that purpose, we consider a hierarchy of, in a geometrical sense,
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coarsening representations of the initial linear system, i.e. for a finest grid level G € N we
consider linear systems of the form

Agzg=b, g=1,...,G, (2.53)

where the subscript ¢ indicates for the various grid levels. The linear system (2.40) with varying
grid levels g serves as an example. We aim for solving the linear system (2.53) on the finest grid
level G. After a few iterations of a smoothing method with arbitrary initial guess we obtain a
(very poor) approximated solution z¢ whose (unknown) error

eq =Ty — T (2.54)

is large but smooth, i.e. the high frequencies of the error are removed. The linear system (2.53)
on the finest grid G is equivalent to the residual equation

Ageg ; rg, (255)

where rg := Agxg — bg denotes the current residual. If eg is known, the exact solution of
(2.53) on the finest grid is given by xf, = z¢ — eg. The residual equation (2.55) is of the
same form as the initial problem and therefore as difficult to solve. However, e can be much
better approximated compared to xf, since eq is known to bee a smooth vector. This is of key
importance for the MG method since only smooth vectors can be represented well by means of
a coarser grid (cf. Hackbusch, 1985, p. 21).

To approximate the error vector eq, we approximate the residual equation (2.55) by the coarse
grid residual equation

1
Ag-1eG-1 = rg-1, (2.56)
where

ra_1 =I5 'rg (2.57)

is defined by means of an adequate linear and surjective map Ig ~1 called restriction operator.
Typical restriction operators in the context of finite element discretizations are the injection
operator or the full weighting operator (cf. Saad, 2003, p. 438). Let eq_; := Ag' ;r¢_1 denote
the solution of the coarse grid residual equation (2.56), which is expected to be an approximation
to the error vector ez but on the coarser grid G — 1. To interpolate this vector to the finer grid
G, we define

éq =15, (2.58)

by means of an adequate linear and injective map IS ;, called prolongation operator. Here,
a typical prolongation operator is a piecewise linear interpolation (cf. Saad, 2003, p. 436). In

practice, it is frequently useful to chose the grid transfer operators such that
T
o IS =¢ (Ig_1> for some constant ¢ # 0 and

e Ac 1~ 1 g “LAGIE |, which is referred to as Garlerkin property.
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Since é¢ is assumed to be an adequate approximation of the true error e, we update the actual
iterate by

TEY = xg — ég = 2q — IG5 AG IS (Acre — be). (2.59)
The procedure (2.59) is therefore a linear iterative method, called coarse grid correction, with
iteration matrix

Coco = Ing — 1§, AGL TG, (2.60)

where ng 1= dim(Ag). Note that, according to Hackbusch (1985, Note 2.3.1), the coarse grid
correction (2.59) itself does not converge, i.e. p(Ccae) > 1.

It is the combination of smoothing iteration and coarse grid correction that leads to a very
fast convergence, whereas both iterations by themselves converge only slowly or not at all
(cf. Hackbusch, 1985, p. 23). Applying the coarse grid correction with vy pre- and vy post-
smoothing iterations of an arbitrary smoothing iteration leads to the two-grid (T'G) method to
solve the linear system (2.53) on the finest grid G. The naming is due to the fact that the two
grid levels G and G — 1 are involved. The corresponding iteration matrix of the TG method is
given by

OTG = Cvsyriloothcvccrc Sl/];’lOOth’ (261)
where Cypnootn denotes the iteration matrix of the utilized smoothing iteration. The efficiency
of the TG method becomes obvious in Figure 2.2, where the error after one single iteration
with three pre- and one post Jacobi smoothing iterations is compared to the error of the pure
Jacobi iteration from Figure 2.1. More detailed information on the TG method, especially
on its convergence analysis, are given by Hackbusch (1985, Chapter 6) but are not of further
interest in the present thesis.
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Figure 2.2: Error vector after several numbers of Jacobi iterations compared to one TG iteration
with v = (3,1) Jacobi smoothing steps.
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MG Method

The utilization of the TG method requires the solution of the coarse grid residual equation (2.56)
within each iteration. Depending on the initial linear system, the dimension of the coarse grid
residual equation might still be very large such that it is expensive to solve. However, the
coarse grid residual equation is of the same form as the residual equation for the initial system
such that the TG method can be applied, involving the grid levels G — 1 and G — 2. Recursive
application of the TG method until the coarsest grid level g = 1 is reached is referred to as
v-cycle and is presented in Algorithm 2.2. The name originates form the particular v-shape of
the corresponding workflow.

Algorithm 2.2: v_cycle: Recursive application of the TG method.

v_cycle(Ay,b,z,9)
if g =1 then

‘ x < A'D // solve coarse grid residual equation (2.56)
end
else
x 4 smooth” (A, b, x) // v1-fold pre-smoothing
r< Agz —b
T Ig”r
e<v_cycle(A,4,7,0,9g—1) // recursive function call
r—x—1I] e
x 4— smooth”?(A,, b, x) // vy-fold post-smoothing
end

return
end

Algorithm 2.2 has to be understand as follows. We define the function v_cycle as a function
of a coefficient matrix, a right-hand side vector, the actual iterate, and the actual grid level.
Starting on the finest grid ¢ = G, we begin with an initial guess x for the solution of the
linear system Agzg = b First, 11 smoothing iterations with an adequate smoothing method
are applied to this linear system, for example the Jacobi method from Algorithm 2.1, and
the related residual is computed. This residual is restricted to the next coarser grid level and
provides the right-hand side vector for the coarse grid residual equation on the grid g = G — 1.
To solve this coarse grid residual equation with coefficient matrix Ag_;, we recursively call
the function v_cycle. However, the function is now called on a coarser grid level for the
residual equation, such that the right-hand side is the restricted residual vector on the grid
level g = G — 1 and an adequate initial guess is the zero vector. The procedure is repeated
until the coarsest grid level ¢ = 1 is reached, where the residual equation is solved exactly.
This solution is an approximation of the error vector on the coarsest grid ¢ = 1 which is then
successively prolongated and pre-smoothed until the finest grid level g = G is reached.

The iterative application of the v_cycle function finally leads to the multigrid (MG) method as
solver for the linear system (2.53) on the finest grid G, which is implemented in Algorithm 2.3.
As for the TG method, the naming is due to the fact that the mutiple grid levels g = 1,..., G are
utilized within the solution process. As the TG method, the MG method has an interpretation
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as a linear iteration and the related iteration matrix is given by (cf. Saad, 2003, p. 446)

_ vo G —1 G-1 V1
CMG,G - C1smooth (InG - [G—l (InG—l - CMG,G—I) AG—llG AG) smooth>

(2.62)
Cma,1 = 0.

Note that the iteration matrix is only for theoretical investigations and is never assembled in
practice. For example, statements on the convergence of the MG method are based on this
iteration matrix but strongly depend on the underlying linear system, the grid transfer oper-
ators, and the smoothing iteration (cf. Saad, 2003, Chapter 13). A more detailed convergence
analysis is beyond the scope of this thesis but it should be mentioned that the MG method is
the most optimal approach in terms of required iterations in order to solve a linear system of
the form (2.53). However, the implementation of such a method can be cumbersome such that
it strongly depends on the application whether a MG method has to be used or not. If the
linear system has to be solved multiple times, e.g. in simulation study, the best possible per-
formance might be required, whereas for a single solution a more simple method as presented
in the following can be sufficient (cf. Saad, 2003, p. 464).

Algorithm 2.3: Multigrid method
Jj<0

Tj <= Aij —-b

while [|r;||3 > tol do

7+ 7+1
xj v_cycle(Ag,b,z;_1,G) // apply Algorithm 2.2
T L AG{L’j —b

end

return x;

2.4.3 Conjugate Gradient Method

We now turn back to the solution of the linear system (2.31) with a positive definite coefficient
matrix A € R™*".

CG Method

The conjugate gradient (CG) method, introduced by Hestenes and Stiefel (1952), is the most
popular algorithms to solve a linear system with a symmetric and positive definite coefficient
matrix. The general procedure of the CG method is presented in Algorithm 2.4. Basically, the
CG method is a realization of an orthogonal projection technique onto the Krylov subspace

ICi(A, o) := xo + span{rg, Aro, . .. ,Ajro}, (2.63)

where o := Axg — b is the initial residual to the arbitrary initial guess xy and j is the actual
iteration number (cf. Saad, 2003, p. 196). Note that typical initial guesses are xo = 0 or xy = b.
As a Krylov subspace method the CG iteration computes the exact solution z* := A~'b in at

25



2 Mathematical Background

most n iterations, exact arithmetic provided. However, since n might be very large in practice,
The CG method is generally used as an iterative method. The computational complexity mainly
depends on the condition number of the coefficient matrix, that is

Amax(4) (2.64)

condy(A) = o (A) 2

where A\pax(A) and A\pin(A) denote the largest and the smallest eigenvalue of the symmteric
and positive definite matrix A, respectively. According to Saad (2003, p. 215), it holds

i condy(A) — 1 ’ .
[z — 2%[[a <2 (B (2.65)
condy(A) 4+ 1

for the j-th iteration of the CG method, where || - || 4 denotes the norm induced by A defined by
|z||% = 2T Az for all z € R". A condition number close to one is therefore desirable and with
an increasing condition number the computational complexity of the CG method is expected
to deteriorate.

Algorithm 2.4: Conjugate gradient method
j+0
Dj < T —b— Al’j
while ||7;]]3 > tol do
Vj < Ap]
2/, T
wj < [[r;ll3/pj v
Tjt1 < Z; + W;P;j
Tjt1 erj—wjvj
Pis1 4 Tin + (I ll3/[7113)ps
J4+—7+1
end
return x;

PCG Method

If the coefficient matrix A of the linear system (2.31) is of poor condition, the convergence of
the CG method is expected to be very slow. In order to improve the computational complexity
of the CG method, preconditioning methods are frequently used in practice. The main idea is
to reformulate the linear system by the use of a preconditioner P € R™*" as

Az =b
& PAz = Pb (2.66)

in such a way that conds(PA) < condy(A). Then, the CG method is applied to the precondi-
tioned linear system (2.66). The preconditioner P has to be symmetric and positive definite in
order to maintain the requirements of the CG iteration. The procedure of the preconditioned
conjugate gradient (PCG) method is presented in Algorithm 2.5. Widely used preconditioning
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methods are incomplete factorizations, like the incomplete upper-lower (ILU) or the incomplete
Cholesky factorization. A review is given by Saad (2003, Chapter 9).

Algorithm 2.5: Preconditioned conjugate gradient method
7j+0

T —b— Al’j

Dj < Zj < PTj

while ||7;]|3 > tol do

Vj — Ap]

w; 17 2 /) v

Tjt1 < Z; + W;P;j

Tjt+1 erj—wjvj

Zjt+1 < PT’]‘_H

Pi+1 € Zj1 + (1712j41/75 %)
j+—7+1

end

return z;

MGCG Method

If the linear system to solve is of the hierarchical form (2.53) the MG method from Algorithm
2.3 can be applied to solve the linear system on the finest grid G. As already mentioned, the MG
method possesses an interpretation as a relaxation method with iteration matrix Cyig ¢, where
the iteration matrix represents one v-cycle, i.e. the application Algorithm 2.2. Since Cyig ¢ is
symmetric and positive definite, provided the iteration matrix of the applied smoothing iteration
is symmetric, the v-cycle is applicable as preconditioning method for the CG iteration, that
is P = Cmg,. In practice, this procedure is frequently much more efficient then the direct
application of the MG method as a solver. The application of one v-cycle as preconditioner
per CG iteration leads to the multigrid preconditioned conjugate gradient (MGCG) method,
presented in Algorithm 2.6.

Algorithm 2.6: Multigrid preconditioned conjugate gradient method

j<+0

Tj < b— Al’j

p; 2z < v_cycle(Aq,r;,0,G) // apply Algorithm 2.2
while ||7;]|3 > tol do

Vj < Ap]

w; 17 2/ p] ;s

Tjy1 x5 + Wip;

Tjt1 £ Tj — WiV,

zjy1 < v_cycle(Ag,1j4+1,0,G) // apply Algorithm 2.2
Pi+1 < Zjr + (1] 2541/77 2)p;

jg+1

end

return z;
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2.5 Fundamentals of Convex Optimization

Besides of linear systems, we frequently have to solve convex optimization problems within the
course of this thesis. These convex problems basically originate from the incorporation of shape
constraints into the penalized spline models. For example, as shown later on, the optimization
problems (1.2) and (1.4) are convex optimization problems, or more precise convex quadratic
programs. In the following, we briefly present basic theory and solution algorithms for convex
optimization problems. For further information on the topic and detailed proofs, we refer to
Nocedal and Wright (2006).

Convex Optimization Problem

An optimization problem of the form

min f(x)
zeR” (267)
st gi(x) <0,i=1,...,m,
with convex functions f, g1, ..., gm: R" — R is called a convex optimization problem. We refer
to the set
F={xeR":g(x)<0,i=1,...,m} (2.68)

as the feasible set and call the convex optimization problem feasible if F # (. If F = R",
the optimization problem (2.67) is referred to as unconstrained, otherwise as constrained. The
value

f* = inf f(x) (2.69)

zeF

denotes the optimal value and we call a vector x* € R™ an optimal solution of the convex
optimization problem if * € F and f(z*) = f*. With X* we denote the set of all optimal
solutions. Convex optimization problems possess important properties compared to common
constrained optimization problems, which are stated by the following remark.

Remark 2.5.1 (cf. Nocedal and Wright, 2006, pp. 15-17)
For the convex optimization problem (2.67) it holds:

1. Fach local minimum s already a global minimum.

2. If the objective function [ is strictly conver and if X* # 0, then the optimal solution is
unique.

3. If f is continuously differentiable and if F = R", then X* = {x € R" : Vf(zx) = 0},
where V [ denotes the gradient of f.

Penalty Method

A variety of methods for constrained optimization exists, depending on the specific form of
the objective function and the respective constraints. An important class of methods finds
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the solution to the original constrained problem by replacing it by a sequence of unconstrained
subproblems, which can be solved with unconstrained optimization algorithms (cf. Nocedal and
Wright, 2006, p. 491). In the quadratic penalty approach the constrained optimization problem
(2.67) is replaced by

min h,(z), (2.70)
where the quadratic penalty function
c m
he(z) == f(x) + 3 Zmax{o,gi(x)}Q (2.71)

i=1

consist of the original objective function and an additional penalty term which is positive if
a constraint is violated and zero otherwise. The penalty parameter ¢ > 0 controls for the
influence of the penalty term. By driving ¢ — oo constraint violations are penalized with
increasing severity, forcing the minimizer of the penalty function (2.70) closer to the feasible set
of the initial constrained problem (2.67). The advantage is, that the penalty problem is now an
unconstrained problem which can be solved using techniques from unconstrained optimization.
The general procedure of the quadratic penalty method is presented in Algorithm 2.7.

Algorithm 2.7: Penalty method

"V — m%gn f(x) // solve unconstrained problem
zeR™

while stopping criterion not reached do
xold o phew

™V «— argmin h.(x) // solve penalty problem with z°'¢ as initial guess
z€eR™
¢+ nc // increase penalty parameter
end

return g™V

It is common practice to start with a solution of the unconstrained optimization problem as
first initial guess for the constrained problem. Then, the penalty parameter is successively
increased and the current iterate is used as initial guess for the penalty problem with increased
penalty parameter. This procedure is of practical relevance since the Hessian of the penalty
function can become ill conditioned for large penalty parameters such that the applied solution
methods for the penalty problem might perform poorly. This difficulties can be overcome by
the above mentioned choice of the starting points Nocedal and Wright (cf. 2006, p. 495). The
convergence of the quadratic penalty method is finally stated by the following theorem and for
further information on penalty methods we refer to (Nocedal and Wright, 2006, Chapter 17).

Theorem 2.5.2 (cf. Nocedal and Wright, 2006, Theorem 17.1)
Fach limit point of the sequence produced by Algorithm 2.7 provides a solution of the initial
optimization problem (2.67).
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2 Mathematical Background

Newton Method

Applying the quadratic penalty method to the convex optimization problem (2.67) leads to
the repetitive solution of an unconstrained convex problem (2.70). If the objective function of
the unconstrained penalty problem is twice continuously differentiable, the Newton method is
applicable. For a more convenient notation, we consider the general optimization problem
min h(z) (2.72)

with a twice continuously differentiable and strictly convex objective function. A line search
strategy to solve this problem is an iterative method of the form

Tip1 = T+ a;d;, (2.73)

with an initial guess xy € R", a search direction d; € R", and a step length o; € R. The search
direction

dj == —=V*h(z;)"'Vh(z;) (2.74)

defines the Newton method which is presented in Algorithm 2.8. The step size can be deter-
mined within a backtracking line search by means of several conditions (cf. Nocedal and Wright,
2006, Section 3.1) but this issue is not further considered within this thesis.

Algorithm 2.8: Newton method

7+ 0

while ||Vh(z;)]|3 > tol do
dj < —V2h(z;) "'V h(x;) // solve linear system
compute «; // backtracking line search
Tjp1 < 5 + ajdj
Jj<J+1

end

return z;

Due to the line search strategy, the Newton method is globally convergent and if the actual
iterate is sufficiently close to the true solution, the rate of convergence is quadratic. For further
information and practical modifications of the Newton method we refer to Nocedal and Wright
(2006, Chapter 6).

Convex Quadratic Program

A special type of a convex optimization problem is a convex quadratic program (QP), which is
an optimization problem of the form

1

min -z Ax — o’ x
st. Crx<c
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2.5 Fundamentals of Convex Optimization

with a symmetric positive semidefinite matrix A € R™"  an arbitrary matrix C' € R™*"  and
arbitrary vectors a € R"™ and ¢ € R™. With

1
fR" =R, z+— §xTAx —a'z,

(2.76)
g R" >R, 2—Cli, |lx—¢,i=1,...,m.
the problem (2.75) is indeed a convex optimization problem, since
Vf(z) = Az —a and Vf(z)=A >0, (2.77)

such that f is convex. Note that f is strictly convex if and only if A > 0. Remark 2.5.1 for
convex optimization problems can therefore directly be adapted to a convex QP leading to the
following remark.

Remark 2.5.3
The following statements hold for the conver QP (2.75):

1. If A= 0 and if X* # 0, then the optimal solution is unique.
2. If F=R", then X* ={z € R": Az = a} # 0.

In the following theorem, we state an equivalent formulation for the existence of a solution of
a convex QP.

Theorem 2.5.4 (cf. Bertsekas et al., 2003, p. 101)
For a convexr QP it holds

X*#£0) & —oo< f* < o0, (2.78)

where X* denotes the set of all optimal solutions and f* the related optimal value as defined in

(2.69).

Common approaches to solve quadratic programs are for example active-set and interior-point
methods. However, to the size of the QPs considered in this thesis, these methods are no longer
applicable and are therefore not further discussed. Instead, we refer to Nocedal and Wright
(2006, Chapter 16).
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Chapter 3

Penalized Splines in Regression
Analysis

Regression analysis is a branch of statistics that mainly aims for examining and modeling the
relationship between different variables of a data set. For that purpose, a regression function
is fitted to the given observations, where it is basically distinguished between parametric and
nonparametric methods. In a parametric model, the form of the regression function is predeter-
mined and fully described by a fixed number of parameters that have to be estimated from the
data. By contrast, a nonparametric model determines the regression function from an undeter-
mined and possibly infinite set of parameters that depends on the data. Parametric models are
much easier to determine, understand, and interpret and provide preferable statistical prop-
erties compared to the nonparametric models. For more complex observations, however, the
parametric approach is not flexible enough to capture the fine-scaled structures within the data
at hand (cf. Eubank, 1988, pp. 3-5).

The method of penalized splines (P-splines) provides a bridge between the classical parametric
and nonparametric approaches since it combines the fixed number of parameters of parametric
regression splines with the flexibility of nonparametric smoothing splines. Penalized splines
trace back to Silverman (1985) and O’Sullivan (1986) and have become popular for statistical
applications due to Eilers and Marx (1996). A comprehensive insight into regression modeling
is given by Fahrmeir et al. (2013) and for further reading on the penalized spline method
itself, we refer, amongst others, to the monographs of Eubank (1988), Wahba (1990), Green
and Silverman (1993), and Ruppert et al. (2003). The main idea of the P-spline method is
summarized as follows:

1. Express the regression function as a spline function with a generous number of knots such
that the spline is flexible enough to represent even highly complex data structures.

2. Introduce an additional roughness penalty term that prevents overfitting and minimize
the regularized least squares criterion instead of the ordinary one.

Although the P-spline method does not impose any restrictions on the particular form of the
regression function, it frequently occurs in practice that there exists restrictions on its global
shape, such as monotonicity or convexity. The incorporation of selected shape constraints into
the P-spline method has recently been achieved under certain limitations (cf. Bollaerts et al.,
2006; Meyer, 2008, 2012). A general framework for shape constrained P-splines, however, has
not been considered up to the present time. In this chapter, we therefore provide the required
theory in order to incorporate shape constraints into the P-spline method.
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3 Penalized Splines in Regression Analysis

Since spline functions provide the foundation for the penalized spline method, Section 3.1 is
devoted to splines in one and multiple input variables. In Section 3.2, we introduce the P-
spline method in the regression context and consider some related computational aspects. In
order to obtain more realistic regression functions, we address the concept of shape constrained
P-splines in Section 3.3.

3.1 Spline Functions

Spline functions are basically defined as piecewise polynomials with a global degree of smooth-
ness and have become a popular tool in mathematical and statistical modeling. The funda-
mental theory is briefly introduced in the following an for further reading and detailed proofs,
we refer to the textbooks of de Boor (1978), Schumaker (1981), and Dierckx (1993).

3.1.1 Splines in One Variable

Basic Definitions

Let © := [a,b] C R be a finite and closed interval. For ¢ € Ny, let C4(€2) denote the space of ¢-
times continuously differentiable functions on Q and let P, (€2) denote the space of polynomials
of degree ¢ on Q2. For m € Ny, let

K={a=kro<...<Emnp1 =0b} (3.1)
be a partition of {2 into the m + 1 subintervals [k;_1,K;], j =1,...,m+ 1.

Definition 3.1.1 (Spline)
A function s € C*1(Q) is called a spline of degree q € Ny with knots K if

8’[/@'71,/‘{]‘} E Pq ([/{j—l, K/]]) fOT‘ all j — ]_, e 7m + 1 (32)

The space of splines of degree q with knots K is denoted as S;(K).

If the knots are equally spaced, that is there exists a mesh size A > 0 such that
Kip1 —kj=h forall j=1,...,m, (3.3)

a spline is referred to as a uniform spline. The utilization of uniform splines frequently leads
to significant simplifications in computational implementations, which can be seen later on.
According to Schumaker (1981, Theorem 4.4), the spline space S,(K) is a finite dimensional
linear space of dimension

J i=dim (S,(K))=m+q+1 (3.4)

and with {¢14,...,¢s,} We denote an arbitrary basis of S,(K). Thus, every spline function
s € §,(K) possesses a unique expression as a linear combination of the basis functions, that
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3.1 Spline Functions

is
J
S = Z Oéjqu’q, (35)
j=1

and we call the numbers a; € R the spline coefficients. The most basic example for such a
basis is the so called truncated power series basis (cf. Schumaker, 1981, pp. 110-112), defined
by the functions

I ifj<qg+1
Njq(T) = Ci=1,...,J. (3.6)
max{0, (z — 7j_(g+1))7}, else

This basis, however, is not well suited for numerical applications (cf. Schumaker, 1981, p. 112).
For one thing, the truncated power series basis functions (3.6) grow rapidly and unbounded
which results in numerical precision problems when €2 is a large interval. Secondly, many basis
functions are nonzero when evaluated at some value at the right boundary of €2 which results
in dense design matrices. This weakness can be addressed by using the so called B-spline basis,
introduced in the following.

B-Splines

In order to define the B-spline basis, let 2¢ additional knots outside of the interval €2 be given,
ie.

kg < ... <Ky and Kmio < ... < Kpggtl- (3.7)

We refer to these knots as outer knots, whereas the already existing knots from (3.1) are referred
to as inner knots. For equally spaced knots the definition of the outer knots is according to the
inner knots, that is

Kj=a+jh, j=—q,....m+q+1, (3.8)

where h = (b —a)/(m + 1) is the related mesh size. For unequally distributed knots, however,
different knot placing strategies exist (cf. Fahrmeir et al., 2013, p. 429), for example

Keg=...=Ff_1=a and Kpmi2 = ... = Kmiq+1 = . (3.9)

Based on these outer knots, B-splines can be recursively defined according to Cox (1972) and
de Boor (1972).

Definition 3.1.2 (B-spline)
For g =1,...,J, we refer to point-wise defined function

T — Ki_ 1 Ri—_g — X .
( j—(g+1) ) () + (”) Yit1g-1(2), ifqg>0
Piq(r) 1= \Fi-1 = Kj=(g+D)

]l[/ﬁjfl,nj[(x)u qu =0

Kj—q j

(3.10)

as the j-th B-spline, where 1 denotes the indicator function.
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3 Penalized Splines in Regression Analysis

According to Schumaker (1981, pp. 116-117), every B-spline is indeed a spline function, i.e.
©0iq € Sq(K), and the set of B-splines

{Spj,q : ]:L?J} (311)

forms a basis of the spline space S,(K). As an example, the uniform B-spline bases of various
degrees on the unit interval 2 = [0, 1] with m = 6 equally spaced knots are presented in Figure
3.1.

00 02 04 06 08 1.0
00 02 04 06 08 1.0

0.0 02 04 06 08 1.0

I I I I I I I I I I I I I T T T T I
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 3.1: Uniform B-spline basis of degree ¢ = 1,2,3 (from left to right) on ©Q = [0, 1] with
m = 6 equally spaced knots.

Important characteristics of B-splines which make them well suited for numerical applications
are (cf. Dierckx, 1993, pp. 8-11):

1. Normalization: ¢;,(z) € [0, 1] for all z € €.

2. Local support: supp(p;q) = [/fj_(qﬂ),/-ij}.

J
3. Partition of unity: > ¢, ,(x) =1 for all x € Q.
j=1

4. Derivatives: a‘Pj,q = q< Pja-1 + Pjt+la-1 )
Kj-1 = Kj—(¢+1)  Kj—q — Kj

K Rj = Rj—(a+1)
5. Integrals: [ ¢, = ——207)
Kj—(g+1) i q+ 1
Note that the evaluation of B-splines and the related computation of derivatives and integrals
simplify for uniform B-splines.

Uniform B-Spline Refinement

According to Hollig (2003, p. 32), numerical approximations with (uniform) spline functions
usually involve a sequence of refined mesh sizes in order to evaluate the accuracy of the ap-
proximations. Mesh refinements are also necessary in a neighborhood of singularities and to
resolve small details of solutions. For such purposes the following subdivision formula for uni-
form B-splines turns out to be very useful in the present thesis. More precise, in the course
of this thesis it is required for the development and implementation of a multigrid method for
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3.1 Spline Functions

linear systems originating from a discretization with uniform B-spline functions. For a more
convenient notation let X" be an equally spaced knot set with mesh size 2h and let X" be an
equally spaced knot set with mesh size h, obtained by dividing each subinterval of K?" into
half. Further, let

{go?Z cj=1,...,J" :=m+q+1} and {90?41 cj=1,...,J"=2m4+q+2} (312
denote the B-spline bases of S,(K*") and S,(K"), respectively.

Theorem 3.1.3 (cf. Hollig, 2003, p. 32)
For all B-splines 3" € S,(K*") it holds

q

g+1
2h h
Piaq — 2 Ci¥2j—(g+1)+i,q> (3.13)

where

1 fqg+1
c 2q< . ) (3.14)

denotes a weighted binomial coefficient.

For a uniform spline s € S,(K*") € S,(K") it holds

J2h Jh
s=> a?hgo?fl and s=)_ a?gpﬁq (3.15)
j=1 Jj=1

and Theorem 3.1.3 now provides the link between the B-spline basis functions and the related
B-spline coefficients for the different mesh sizes. This is stated by the following lemma. For a
more convenient notation, let

T T
(ph = (SO}f,q, R (,DL]—;hH) and gth = (803}27 R 903’5h,q> (3.16)
denote the vectors of B-spline basis functions and let
T T
o= (o/f, . ,o/}h) and oM = (a%h, . ,a%’%h) (3.17)
denote the vectors of the related B-spline coefficients.
Lemma 3.1.4
Let the matriz I}, € R7" %" be element-wise defined as
1 q+1
h ) y S — f— . .
Iyli, j] == 924 <z 2t q+ 1) = Ci-2j+q¢+1, (3.18)

T
where ¢;_aj4q11 15 defined as in (3.14). Then it holds o™ = I, o® and p*" = (Igh) o
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3 Penalized Splines in Regression Analysis

Proof. Due to Theorem 3.1.3, it holds

_ 2h 2h 2h
8 — <¢17q, o e 74,0‘]2h7q) a

qt+1 qt+1 q+1

_ _h _h h 2h

=12 CiP2—(g+1)+iq0 > CiPa—(g+1)+ig -+ ) CitP25m —(g+1)+iq | ¢
1=0 =0 =0

_ h h 2h
= (Sol—q,q’ e 902J2h,q) C'oz y

where C' € R/ +0x7* ig clement-wise given as C[i, j] 1= c(_1)_a(j_1). Since @, =0on Q for
i¢{1,...,J"=2J*" — ¢}, it follows

5= (Pl hng) Ca® = (&) Ca™,

where C' € R/"*7*" is obtained by deleting the first ¢ and the last ¢ rows of C. That is, C is
element-wise defined as

Cli, 5] = Cli-1)=2(j—1)+q = Ci—2j+q+1
such that C' = I7,. Finally, it holds
T T T
s — ((ph) ol = <¢h> Ié‘ho?h _ (S02h> a2h7

which completes the proof. O]

3.1.2 Splines in Multiple Variables

To extend the concept of spline functions to multiple input variables x € R”, P > 1, we utilize
a tensor product approach. First, for more convenience while working with tensor products,
we introduce the multiindex notation.

Definition 3.1.5 (Multiindex)
A P-tupel j :== (j1,...,75p)" € NI of nonnegative integers is called a multiindex. For multi-
indices j,k € NI and a vector x € RY | the following definitions are stated:

1. Partial order: j <k & j, <k, forallp=1,...,P.

P
2. Absolute value: |j| == Y jp.
p=1

P
3. Factorial: j!:= TI (j,!).

p=1
. P .
4. Power: x7 := ] xJr.
p=1
, Al
5. Partial derivatives: ¢ \= ———.
ot ... oF
1 P
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3.1 Spline Functions

Tensor Product Splines

To define splines on a finite rectangle

P
Q:= X Q, CR”, where Q, := [a,,b,] CR, (3.19)

p=1
we consider for each dimension p = 1,..., P the one-dimensional spline spaces S, (KC,) of degree

¢y € Ny with knots /C,, (cf. Definition 3.1.1) and a related basis
(D8 0 @ dp=1, 0 Jpi=my + g+ 1} (3.20)

Utilizing the multiindex notation, we define the tensor product basis functions

ijqP

P
$jg: QCRY =R, z=(z",....2") = [[ & , (2) (3.21)
p=1

for 1 < j < J. Note that within this definition the subscripts j € NI and ¢ € NI’ denote
multiindices and not common indices as in definitions within Subsection 3.1.1. However, for
P =1 the both frameworks coincide such that the utilization of the same symbols is justified
and should not cause any misunderstandings. We now define the space of multivariable splines
as the space spanned by the tensor product basis functions.

Definition 3.1.6 (Tensor product splines)
We call the set

S,(K) :=span{¢;, : 1<j<J} (3.22)

the space of tensor product splines of degree q € NI with knots K := Ky x ... x Kp C RP.

Again, note that the same symbols are used as in the case of ordinary spline functions as
introduced in Subsection 3.1.1. The distinction whether a tensor product spline or an ordinary
spline is considered becomes always clear from the context. By definition, the space of tensor
product splines S,(K) is a finite dimensional linear space of dimension

P P
K = dim(8,(K)) = [[ J» = [] dim(S,, (K,)). (3.23)
p=1 p=1
Tensor Product B-Splines

If especially the B-spline basis {¢} @ j, =1,...,J, == my+gy+1}isused forallp=1,..., P
to construct the tensor product spline space, we refer to the basis function

P
piqgt QCRY R, 2= (2!, ... ,2") = ] @5 (T (3.24)
p=1
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3 Penalized Splines in Regression Analysis

as the j-th tensor product B-spline. In Figure 3.2, we graph an exemplary tensor product
B-spline of degree g = (3,3) for P = 2 dimensions.

11\ N\
A\ VN
1 [ /

|||||||||||||||||||||
|||||||||||||||||||||||

Figure 3.2: Shape of a bicubic tensor product B-spline.

By construction, the following properties of one-dimensional B-splines directly transfer to tensor
product B-splines:

1. Normalization: p;,(z) € [0,1] for all z € Q C R

P
2. Local support: supp(gj,) = X [/’i?pi(qp+1),/€§p].
p=1
3. Partition of unity: Y>> ¢;.(x) =1 for all x € €.
1<5<J

P ,{~ f— /{, _
4. Integrals: [ ¢, = [] 2—2= (ap+1)
supp(©;,q) p=1 g +1

Remarks and Notations

In order to implement numerical computations for tensor product spline related problems, we
need to sort arbitrary sets of multiindices. Therefore, we consider the lexicographical order
which is defined via the bijective map

P
y:{jENéD]nggN}—>{1,...,H(Np—Mp+1)},
p=1

(3.25)

j'_>1+zpz ((jp_Mp) (pl:[l(Nk_Mk‘i‘l)))~

p=1 k=1

In the following, whenever sets of arbitrary multiindices are sorted, the sorting is achieved
according to this lexicographical order. The sorting of multiindices allows to uniquely identify
multiindices from the set {j | 1 < j < J} with common indices from the set {1,..., K}, where
K denotes the dimension of the tensor product spline space as in (3.23). Thus, every tensor
product spline s € S,(K) possesses a unique expression in terms of its tensor product spline
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3.1 Spline Functions

basis as
K K
§= Z QjQjq = Z () Puj)g = Z Pk g- (3.26)
1<5<J v(j)=1 k=1

This notation now provides the link of tensor products and Kronecker products (cf. Definition
2.3.1) as stated in the following lemma. For a more convenient notation, we first define for a
given z € R the vectors

0(z) = (14(2), . dicg(@))” and @(a?) = (&, (a?),....d, , (") . (3.27)
Lemma 3.1.7
For all x € ) it holds
P
o(x) = @) ¢F (a7), (3.28)
p=1

where @ denotes the Kronecker product (2.28).

Proof. For arbitrary k € {1,..., K} let j := v='(k), where v denotes the lexicographical order
(3.25). Then it holds

P(2)[K] = drg(7) = djq(7) = l:[1 B (7)) = (@ ¢ (xp)) (K],

where [k] denotes the k-th entry of the respective vector. Since k is chosen arbitrarily, we
conclude the proof. O

Uniform Tensor Product B-Spline Refinement

If all of the knot sets K, are equally spaced with mesh size h,, the subdivision formula of
Theorem 3.1.3 has a natural expansion to uniform tensor product B-splines. As in the one-
dimensional case, let

{7 + 1<j<J™} and {¢f, : 1 <5< T (3.29)
denote the uniform tensor product B-spline basis of the spline spaces S,(K*") and S,(K"),
respectively, where h := (hy,..., hp)T. For a uniform spline
s € S,(KE) ¢ S,(kM) (3.30)
it holds
s = (gp%)Tth and s = ((ph)Tozh (3.31)

and Lemma 3.1.4 exhibits the following natural extension to uniform tensor product B-splines.
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3 Penalized Splines in Regression Analysis

Lemma 3.1.8
Forp=1,...,P let the matrices Ig,fp e R/""*7" e defined as in (3.18). It holds

T
o' =10 o and = (Igh) ©", (3.32)
where
L h h f2h
I, = @ Ly € RFET (3.33)
p=1

Proof. Due to Lemma 3.1.7, it holds

(¢2h($))Ta2h _ (@ gOzhp,p@gp)) a2l

for all x € Q. Lemma 3.1.4 in combination with the properties of the Kronecker product (cf.
Lemma 2.3.2) implies

@90%”’1’(:6’”) = ((ISﬁP)Twzhp’p(:cp)) = (@ (I;l;fp)T) (@ SOh"’p(:cp))

Finally, due to the distributivity of the transposition of the Kronecker product (cf. Lemma
2.3.2), it holds

((102h>Ta2h — (Sph)T[ghoﬂh — (gph)TOéh

which concludes the proof. O]

3.2 Penalized Splines

In this section, we present the basic concept of the P-spline method. For further reading and
detailed information, we refer to Eubank (1988), Wahba (1990), Green and Silverman (1993),
Ruppert et al. (2003), and Fahrmeir et al. (2013). Let a data set

{(zs,y)) ERExR:i=1,...,n} (3.34)

be given, where the y; € R are observations of a continuous response variable and the vectors
z; = (x} )T € RY represent the corresponding values of the continuous covariates. We
assume that the response variable is connected to the covariates via the regression model

gy

iid

yi = s(z;) + &, &~ N(0,02), i=1,...,n, (3.35)
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3.2 Penalized Splines

with a sufficiently smooth but further unspecified regression function s. We model the regression
function by an adequate spline function, i.e. we assume s € S,(K) with an appropriate and
fixed spline space.

3.2.1 Regularization Approach

The most common approach to determine the regression spline s is the least squares method,
where s is determined as minimizer of the least squares functional

£8(s) =3 (s(as) — m1)°. (3.36)

i=1
In order to take differing accuracies of the y; into account the weighted least squares functional

WLS(s) == zn:wi (s(x:) —u:), (3.37)

i=1

with adequate weights w; can also be used. This is a special case of the well established general-
ized least squares method with a diagonal covariance matrix. For example, if heteroscedasticity
in the measurement errors is assumed, i.e. &; ind (0,0?), a typical weighting is w; := o} 2. From
a numerical point of view, the consideration of these weights is straightforward since it does not
affect the algorithms presented in Chapter 5. However, if there is no reasonable assumption on
the accuracy of the observations, it is recommended to consider the unweighted least squares
functional (cf. Dierckx, 1993, p. 45). Therefore, we restrict ourselves to the unweighted case

(3.36) for reasons of clarity and comprehensibility.

By construction, the least squares term (3.36) measures the proximity of the regression spline
to the given observations and its pure minimization leads to a spline function with the best
possible fit to the observations (in the least squares sense). If possible, this least squares spline
interpolates the data at hand. Since the data contain measurement errors, an as accurate as
possible representation is undesirable, but it is rather of interest to capture the general trend in

the data instead of the local variation. To achieve this goal, there are basically two approaches
(cf. Fahrmeir et al., 2013, p. 431):

1. The adaptive choice of the knots K based on model choice strategies.

2. The regularization of the least squares problem through the consideration of a roughness
penalty.

Within the adaptive approach, multivariate adaptive regression splines provide a widely used
method (cf. Friedman, 1991 and Hastie et al., 2009, Chapter 9.4). For the intended incorpora-
tion of shape constraints (cf. Chapter 3.3), however, the adaptive approach is improper such
that we proceed with the regularization approach, also referred to as the roughness penalty
approach. An additional regularization term

P S,(K) — [0, 00 (3.38)

is introduced, that penalizes a wiggling behavior of s. That means, loosely speaking, the value
P(s) decreases as s becomes smoother. This yields the following general definition of a P-spline
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in the context of regression modeling.

Definition 3.2.1 (Regression P-spline)
For a given spline space S,(K), we call a solution of

Join LS(s) + AP(s) (3.39)

a regression P-spline in S;(K).

As already mentioned, the least squares term (3.36) within the definition of a regression P-
spline measures the goodness of fit to the given observations, whereas the regularization term
(3.38) penalizes its roughness. The regularization parameter A > 0 continuously balances the
two competitive terms. As A — 0, the effect of the penalty disappears such that a regression
P-spline converges to the ordinary least squares spline which tries to interpolate the given data.
As A — oo, the penalty term dominates the objective function such that a regression P-spline
converges to an element in the kernel of P, i.e. an element in the set

kern(P) :={s € §,(K) : P(s) =0}. (3.40)

This fact becomes apparent in Figure 3.3, where a regression P-spline for various regularization
parameters is presented. By definition, the choice of the regularization parameter globally
influences the resulting regression P-spline. In some applications it might be of interest to
control the P-spline only locally, for example if the measurements are assumed to be very
exact in some regions while extremely noisy in others. In this case, the regression P-spline
should (approximately) interpolate in the exact regions, i.e. less penalization, while being much
stronger penalized in the other regions. This could be obtained by defining the regularization
parameter as a weighting function

A Q —]0,00[, T+ A(z). (3.41)

This approach, however, is not further considered within this thesis since it prevents the use of
common criteria for regularization paramter selection (cf. Subsection 3.2.4).

3.2.2 Bases and Penalties

A wide spectrum of P-spline methods exists, depending on the spline basis and the related
regularization functional. The most common variants are introduced in this subsection.

Truncated Power Series Basis with Coefficient Penalty

We first consider the case of one single covariate, that is z; € R. Ruppert et al. (2003, Chapter
5.5) suggest the use of the quadratic truncated power series basis (3.6) based on

m := min{|n/4], 35} (3.42)
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3.2 Penalized Splines

knots located by the rule

i+ 1
Kj = <7‘;—:_2> -th sample quantile of the z;, j =1,...,m. (3.43)

Note that this choice of the knots depends on the data x;. It holds

q+1

Za]n]q Za]:ﬂ Ty Z a;max{0, (r — Kj_(g+1))"} (3.44)

Jj=q+2

and the penalty term is defined as penalty on the variability of the truncated polynomials, that
is
J
P(s):= > af =a’"Da, where D :=diag(0,...,0,1,...,1) € R/ (3.45)

J
=qt2 ——— ——

q+1 J—(g+1)
Remark that in this case the kernel of P is the space of polynomials of degree ¢ on €2, i.e.
kern(P) = P,(Q). (3.46)

According to Fahrmeir et al. (2013, p. 530), this approach can directly be extended to multiple
covariates z; € R by using the tensor product truncated power series basis and

P
T(Z]Jl@...@IJp_l@DP®[JP+1®...®IJP)a (3.47)
=1
as penalty, where
D? := diag(0,...,0,1,...,1) e R/»*/ (3.48)
—_—— ——

ptl  Jp—(gp+1)

denotes the one-dimensional penalty matrix for the p-th covariate, I is the identity matrix
of respective dimension, and ® denotes the Kronecker product. As already mentioned, the
truncated power series basis is numerically unstable and therefore rarely used in practice. For
theoretical reasons, however, the truncated power series basis with coefficient penalty can be
useful (cf. Ruppert et al., 2003, p.70).

B-Spline Basis with Differences Penalty

For one single covariate z; € R, Eilers and Marx (1996, 2010) suggest the cubic B-spline basis
(3.10) with an arbitrarily large number of equally spaced knots and to base the penalty on
higher-order differences of the coefficients of adjacent B-splines. That is

P(s) = Z A (ay) = o (AN Ava = || Aval|2, (3.49)

Jj=r+1
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3 Penalized Splines in Regression Analysis

where A,(-) denotes the r-th order backwards difference operator and
A, € RU=xJ (3.50)

denotes the related difference matrix. As for the truncated power series basis, the B-spline
basis representation can be extended to the tensor product B-spline basis representation (3.26)
for multiple covariates. The related difference penalty reads

P T
T (Z .01, ® (Afp) A @I, ®...0 IJP) a, (3.51)
p=1

where A7 "€ R»=m2)%%» denotes the related difference matrix for the p-th covariate (cf. Fahrmeir
et al., 2013 p. 508 and p. 530).

B-Spline Basis with Curvature Penalty

A common measure of smoothness for univariable functions in C*(Q2) with Q C R is the inte-
grated squared second derivate (cf. O’Sullivan, 1986), that is

| (" (@) dz. (3.52)

This measure is extended to multivariable functions s € C?(Q2) with Q C RY as integrated
square of all partial derivatives of total order two (cf. Eubank, 1988, p. 287 and Green and
Silverman, 1993, p. 159), that is

/i i ( i fﬂ))zdx- (3.53)

=1 paml Oy, 81:,,2

For this curvature penalty, we observe

=> r,/ @ s(@) dr = 3 2105l (3.54)

|r|=2 ri=2 "

where r € NJ denotes a multiindex and || - |20y denotes the norm on the Lebesgue space
L*(Q). More precise, L?(2) is the space of functions for which the square of the absolute
value is Lebesgue integrable, where functions which agree almost everywhere are identified,
and || - ||2() denotes the related norm. Using the tensor product B-spline representation

(3.26), it holds

K K
H@’"SH%Q(Q) (05,0") 12 ZZ e (0" Prg, 0" 0rg) 120y = oW, (3.55)
for each term of the penalty, where ¥, € RE*K is element-wise defined as

W[k, €] = (0 ks 0 P00) oy /6¢M O e q(x)d. (3.56)
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3.2 Penalized Splines

For numerical reasons, which become clear in Chapter 5, we recommend m,, = 2¢ + 1 equally
spaced knots for some G € N and all p = 1,..., P. From a theoretical point of view, the
utilization of the truncated power series basis is also possible with the curvature penalty, but
the computation of the occurring integrals tremendously simplifies for the uniform B-spline
basis.

Existence and Uniqueness Results

Common to all of the introduced P-splines is that they can be reformulated in terms of an
optimization problem for the spline coefficients o € RX i.e. as

min ||®a — yl3 + Ao’ Aa, (3.57)
acRK
with an adequate basis matrix ® € R"*K | element-wise defined by ®[i, k] := ¢ ,(7;), and a

related symmetric and positive semidefinite penalty matrix A € R¥*X_ The following theorem
facilitates to state existence and uniqueness results on regression P-splines.

Theorem 3.2.2
The optimization problem (3.57) is feasible and a solution is given as a solution of the linear
system

(7@ + AN ) o = Ty (3.58)

and vice versa. Further, the solution is unique if and only if ®T® + AA = 0.

Proof. Due to
|Pa — y||2 + AaTAa = o ®Tda — 2(dTy) o + vy y + Ao’ Aa,

the optimization problem (3.57) is equivalent to the optimization problem

L opar T, N\T
miy Sa (CID O + )\A) a—(P'y) a. (3.59)
Since ®T® = 0, A = 0, and A > 0 it also holds ®7® + AA > 0 such that (3.59) is an
unconstrained convex QP. Remark 2.5.3 yields that a solution always exists and is given by a

solution of the linear system (3.58) and vice versa. Further, also because of Remark 2.5.3, the
solution is unique if and only if ®T® + XA > 0. O

In order to state uniqueness results for regression P-splines, we consider the occurring matrices
in further detail. We restrict ourselves to the curvature penalty, since it plays a fundamental
role within the development of efficient solution algorithms (cf. Chapter 5). For that purpose,
the following lemma states some results on the curvature penalty (3.53) itself.

Lemma 3.2.3 (cf. Green and Silverman, 1993, p. 159)
For the curvature penalty (3.53) it holds 0 < P(s) < oo for all s € S;(K). Further, P(s) =0
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3 Penalized Splines in Regression Analysis

if and only if s is an affine hyperplane, that is

P
kern(P) = {s: QCRP =R : 38R such that s(x) = By + Y _ By’ Va € Q} . (3.60)

p=1

Due to this lemma, we are able to state conditions on the covariates to guarantee the uniqueness
of the regression P-spline with curvature penalty.

Theorem 3.2.4
A regression P-spline with curvature penalty (3.53) is unique if and only if the covariate vectors
2 eR" p=1,..., P, are linearly independent and nonconstant.

Proof. Due to Theorem 3.2.2, a regression P-spline is unique if and only if ®7'® + A = 0. Let
0 # a € R¥ be given with a”Aa = 0 and let 0 # s € S,(K) denote the spline with spline
coefficients . Then it holds P(s) = 0 such that s is an affine hyperplane (cf. Lemma 3.2.3).
Therefore, it holds

P
3($z‘):3($},‘-~wzp)Zﬁo—l-ZBpr foralli=1,...,n
p=1

& (s(x1),...,s(z))" = XB,
with adequate coefficients fy, ..., Bp not all equal to zero and
X =12 ..., 2" e R,

Further, it holds

K
(s(x1),...,s(xn)" = > appjg(z;), foralli=1,...,n
k=1

& (s(z1),...,s(zn))" = Pa.
It follows (cf. Bjorck, 1996, p. 6)
a’®Tda =0 BTXTXB =0 < rank(X) # P +1

such that o’ ®T®a = 0 if and only if #!, ..., 2" are linearly dependent and nonconstant. [

Remark that the assumption of z',...,2" € R" being linearly independent and nonconstant
is not restrictive in practice. It requires n > P which is trivially fulfilled in applications in the
survey statistics and small area framework. Further, if the vectors z!,..., 2" € R™ are linearly
dependent, we determine a maximal linearly independent subset to perform regression analysis
without loosing any information. Finally, a constant vector does not give any information and
is simply excluded from the regression process. For the further P-spline variants introduced
in Subsection 3.2.2, uniqueness results can be stated in a similar manner under very mild
assumption on the covariates. However, we do not further discuss this issue in the following,
but assume that the regression P-spline is unique.

48



3.2 Penalized Splines

Remark 3.2.5
In the following, we assume that the matriz ®T® + \A is positive definite. Especially, the
regression P-spline always exists and is unique (cf. Theorem 3.2.2).

3.2.3 Linear Mixed Model Formulation

As shown in the previous subsection, the splines coefficients o € R of a regression P-spline
are determined via the solution ot the optimization problem (3.57) which is equivalent to the
solution of the linear system (3.58). In an alternative approach (cf. Currie and Durban,
2002, Ruppert et al., 2003, Chapter 4.9, and Kauermann, 2005), the P-spline coefficients are
determined via a linear mixed model, which have been introduced in Section 2.2. This linear
mixed model representation of the P-spline method is outlined in the following. For that
purpose, let

A=UxU" (3.61)

be the eigenvalue decomposition of the symmetric and positive semidefinite penalty matrix
A. That is, ¥ is a diagonal matrix containing the K real and nonnegative eigenvalues of A in
descending order and U is an orthogonal matrix containing the related eigenvectors as columns.
Let

r :=rank(A) (3.62)

denote the rank of A such that the last K — r eigenvalues of A are zero and let ¥, € R"™" be
the diagonal matrix containing the strictly positive eigenvalues of A. Further, let

U =[U,, Uy (3.63)

be decomposed into the matrix U, € RX*" containing the eigenvectors related to the strictly
positive eigenvalues and U, € REX(K=7) containing the eigenvectors related to the zero eigen-
values of A. This implies

A=UxUT =U, 3, UL (3.64)

Let Ei/ ? denote the square root of ¥, i.e. a diagonal matrix containing the square roots of
the nonnegative eigenvalues of A, and define

X =Uy e RF*E7) and 7 :=U,xY? e RF>", (3.65)
Then it holds:
1. rank([X, Z]) = rank([Us, U, V7)) = K.
2. ZTAZ = (SY)TUTU S UTUTSY? = (0L LYY = 1
3. XTAX = UlU, %, UTU, = 02,0 = 0, since the columns of U are orthogonal.
For arbitrary a € R let 3 € RE~" and v € R” be defined by

a=Xp+2Zy & (7,47 =X, 2] . (3.66)
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3 Penalized Splines in Regression Analysis

Due to this preliminaries, it follows for the optimization problem (3.57)
in [|[Pa — yl|3 + Aa"A
min [|[Pa —y[l; + Aa” Aa

< min T da + o' Aa — 2(dTy)
acR

g in BTXTOTOXB + AT ZT T D2~y +~TZT0TOX B + Y XTOT D2y
S —TyeR”
+ MBEXTAX B+ M ZTNZy — 28T XT 0Ty — 247 ZT 0Ty
&  min BTXTOTOXB+~ATZT0T0Zy + AT 27T X[ + BT XTOTDZy
BERK T yeR" (3.67)
+ My =287 XToTy — 29T 2707y,
By defining
X = 0X e R*E" and Z:=dZ € RV, (3.68)
we deduce

in [|®a —y||2 + AalA
miy [[@a —yl; + ra"Aa

dp Jmin BEXTXB+ AT ZT Zy+ 7T ZTXB + BEXT Zy 4+ My — 28T X Ty — 297 27y
S —TyeR”

. L, o | XTX Xtz 6] T T 15}
<~ BGRIEIP’"I,IWGRTi(ﬁ » )[ZTX ZTZ—|—>\L« ol - (y Xay Z) v . (369)

This is an unconstrained convex QP, since it is equivalent to the unconstrained convex QP
(3.59). Because of Remark 2.5.3 it finally follows

- 2 T
min |Pa —y5 + Aa” Ac
XTX Xtz B\ 1+ (XTy
< [ZTX ZTZ+>\IT] <7> = (ZTy>' (3.70)

For fixed A := ¢2/0?2, this is equivalent to the mixed model equation (2.19) to the linear mixed
model

y=XB+Zy+e, v~N(0,021,), e ~N(0,021,). (3.71)
This allows to embed the penalized spline method into the theory of mixed models and especially

to apply the related LMM methodology and software.

3.2.4 Regularization Parameter Selection

A beneficial property of the regression P-spline is that its form is continuously controlled from
the least squares hyperplane (as A — 00) to the least squares spline (as A — 0) by the one
single regularization parameter A > 0. This fact becomes apparent from Figure 3.3, where
the regression P-spline for various regularization parameters is presented. Therefore, the exact
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3.2 Penalized Splines

number and position of the knots are of minor importance, provided the regularization param-
eter is appropriately chosen (cf. Fahrmeir et al.; 2013, p. 433). In the following, we present
some approaches to data-driven regularization parameter selection.

o
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? —
— 100Agey
C — A
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, — 0.01Agey o o o ° o

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: Regression P-spline for various regularization parameters.

CV and GCV Method

In the context of regularization parameter selection, cross-validation (CV) methods are widely
used (cf. Wahba, 1990, Chapter 4). Let therefore

dr = (27 + M) 2Ty (3.72)

denote the unique solution of the linear system (3.58). Consequently, the vector of the evalua-
tions of the regression P-spline at the covariates, i.e. the model predicts, is given as

G = Bay = & (870 + ML) @7y = Sy, (3.73)
where the matrix
Syi=® (270 +AA) BT e R (3.74)

is referred to as the hat matrix or the prediction matrix. The initial cross-validation approach
determines the regularization parameter Acy as a solution of

a2
LN yi — Oald]

- 3.75

r?ign;<1—SA[z',z’] ! (3.75)

where [-] and [-,:] denote the entries of the respective vector and matrix, respectively. In

practice, the calculation of the hat matrix and its diagonal elements can be numerically complex.
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3 Penalized Splines in Regression Analysis

For this reason, the diagonal elements Sy[i,i| are frequently approximated by their average

Sili,i] ~

S|

- o, 1 .
> " S\lj. j] = Etr(S)\), i=1,...,n, (3.76)
=1

where tr(-) denotes the trace of a square matrix. This leads to the generalized cross-validation
(GCV) method, where the regularization parameterAgcy is determined as a solution of

min 1 > (W) : (3.77)

In order to solve the optimization problems (3.75) and (3.77) for determining the regularization
parameter, it is common to perform a grid search. That is, a reasonable subset of parameters
is specified and the parameter with the smallest objective function value is selected.

L-Curve Method

The L-curve criterion, initially proposed by Hansen (1992), describes the trade off between the
goodness of fit and the smoothness of the regression function. For arbitrary A let again

Gy = (70 +A0) 9Ty (3.78)

denote the unique solution of the regularized least squares problem (3.57). Defining the func-
tions

wi,w: ]0,00[— R, wi(\) :=log (|®ar = yll3), wa(}) :=log (61 Ady), (3.79)
the set
L= {(wi(A),wa(N) : A >0} (3.80)

is called the L-curve of the regularized least squares problem (3.57). The name originates from
its particular L-shape. The L-curve method determines the regularization parameter \p, as a
solution of

i " () = " W' )
B0 @O+ (1)

(3.81)

In this approach, the regularization parameter is also determined by a grid search.

ML and REML Method

An attractive consequence of the LMM representation of the penalized spline method presented
in (3.71) is that in this case the regularization parameter is already given as the variance ratio

A= ‘752/03- (3.82)

52



3.3 Penalized Splines with Shape Constraints

As mentioned in Section 2.2, these variance parameter are in general unknown in practice but
can be estimated from the given data. Using the maximum likelihood (ML) or the restricted
maximum likelihood (REML) estimator for the variance components, we obtain the regulariza-
tion parameters

a2 ML o2 REML
. 67 . 57
AML = = and Arpmr == 5, (3-83)
2 2
05 ML 05 REML

respectively. For further details we refer to Ruppert et al. (2003, Chapter 5.2) and Kauermann
(2005).

3.3 Penalized Splines with Shape Constraints

In several applications, the regression function is completely unknown but there exists some
information about its global shape, such as monotonicity or convexity. Although the penalized
spline method is a very flexible approach to regression analysis, it does not take the required
shape constraints into account. In order to provide more realistic regression functions, it is
important to develop adequate approaches to shape constrained P-splines. For the B-spline
basis with differences penalty (cf. Subsection 3.2.2) special types of shape constraints are con-
sidered by Bollaerts et al. (2006) and Meyer (2012). A general framework for shape constrained
P-splines, however, is not introduced up to the present time. Therefore, we provide a general
framework for the incorporation of shape constraints into the penalized spline method in the
following.

Shape Constrained Regression P-Splines

Constraints on the shape of a sufficiently often differentiable function can always be translated
into constraints on the sign of its (partial) derivatives. For example, in order to enforce a
monotonically increasing behavior of a spline function s € S,(K) in the first covariate, we have
to claim

0

1 P
—_— > 0. .
8$18(x yoe, ) >0 (3.84)

A concave behavior in the third covariate is exemplary ensured by

5?
@s(xl, 2h) <o (3.85)
3

More general, let for p = 1,..., P the sets I C Ny and IZ C Ny denote index sets indicating
where
o’ o’

s>0, r,eI? and
or, — P T,

s<0, r,elL, (3.86)

is required. For example, if we demand for a spline function to be nonnegative and monotone
decreasing in the first covariate and concave in the second covariate, we define I1 = {0},
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3 Penalized Splines in Regression Analysis

It = {1}, and IZ = {2}. For a more convenient notation, let e, denote the p-th unit vector
and define the sets of multiindices
I, ={reN : r=rye,, mell, p=1,..., P},

3.87
[S:{/I"GNOPT:TPBI” rpelgjp:]‘??P} ( )

This allows for a neat incorporation of shape constraints into the most general form of the
penalized spline method (3.39) as stated in the following definition.

Definition 3.3.1 (Shape constrained regression P-spline)
For a given spline space S,(K), we call a solution of the optimization problem

min  LS(s) + AP(s)
s€84(K)
st. 0's>0, rels (3.88)

0"s<0, relc

a shape constrained regression P-spline in S,(K).

For the numerical implementation of the shape constraints it suffices to control the partial
derivatives at an appropriate discretization of 2. Therefore, let

P
XA =1, M}y ={r:=(r},....70)" + 1<j< M} (3.89)
p=1

denote an arbitrary discretization of ). Defining 7" := M; - ... - Mp € N and using the

lexicographical order (3.25), that is
v {jeN’'  1<j<M}y—={1,...,T},
P po1 (3.90)
g+ (G-D (M),
p=1 k=1

we uniquely identify the discretization points as 7; = 7,(;) = 7, where t := v(j). The basis
representation of a tensor product spline (3.26) then yields

aTS(Tl) 8T¢17q(71) Ce 8T¢K’q<7'1)
: =TI',a, whereI, = : : :

: : - : € RT*K, (3.91)
J"s(rr) drg(tr) ... 0"dxq(Tr)

We reformulate the shape constrained regression P-spline problem (3.88) in terms of the related
spline coefficients as

min  ||®a — y||3 + Aol Aa

a€RK

st. Ia<0, relc (3.92)
I'a>0, rels.

It should be noted that the reformulation (3.92) of the shape constrained regression P-spline
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3.3 Penalized Splines with Shape Constraints

problem (3.88) is not an equivalent reformulation, but only a sufficient. That is, there might
be a solution of (3.92) that is not a solution of (3.88). To ensure equivalence of the the
both optimization problems the choice of the discretization of  is crucial. An equivalent
formulation, however, is only possible for some special types of shape constraints (cf. Meyer,
2012) at first appearance, since there is no control of the behavior of the P-spline function
between the discretization points. At this point, the penalty term plays a decisive role. Due to
the penalty, the shape constrained regression P-spline is sufficiently smooth such that, provide
the discretization of €2 is sufficiently fine, no wiggling behavior between the discretization points
is possible. Therefore, without loss of generality, we can assume equivalence of the optimization
problems (3.92) and (3.88) for a sufficiently fine (equally spaced) discretization of €.

Existence and Uniqueness Results

As for the (unconstrained) regression P-spline, we equivalently reformulate the optimization
problem (3.88) in terms of the spline coefficients of the shape constrained regression P-spline
(3.92) and therefore obtain the optimization problem

1
min gaT ((lf)TCD + )\A) a—(@Ty)'a

a€RK
st. Ia<0, rel<
FrOé > O, e Iz.

(3.93)

Due to Remark 3.2.5, this is a strictly convex QP which allows to state an existence and
uniqueness result for shape constrained regression P-splines in the following theorem.

Theorem 3.3.2
A shape constrained regression P-spline, defined as a solution of (3.88), exists and is unique.

Proof. The shape constrained regression P-spline problem (3.88) is equivalent to the strictly
convex QP (3.93) such that the solution is unique, provided it exists (cf. Remark 2.5.3). To
show the existence of the solution it suffices to show that the optimal value f* of (3.93) is finite
(cf. Theorem 2.5.4). Since 0 is a feasible point of the QP, it holds f* < 0 < co. Let f denote
the optimal value of the unconstrained convex QP (3.59) such that f < f*. Finally, Remark
2.5.3 implies —oo < f which concludes the proof. O

25






Chapter 4

Penalized Splines in Small Area
Estimation

Sample surveys are a widely used and cost effective tool to provide estimates of unknown
population parameters such as means, totals, or proportions. Nowadays, there is an increasing
demand for information not merely on the level of the target population, but also on the
level of subpopulations, called areas or domains, defined geographically or by content. Due
to cost restrictions or a priori unplanned domains, it frequently occurs that some of theses
subpopulations are not adequately reflected within the overall sample in the sense that the
related subsamples are very small or even nonexistent.

In this context, these areas are therefore often referred to as small areas. The classical design-
based estimators, however, require relatively large sample sizes to provide reliable estimates,
i.e. they generally yield estimates of inadequate statistical precision for those small areas. To
obtain accurate small area information, model-based estimation techniques have to be applied.
These methods increase the area-specific effective sample size by borrowing strength from other
similar areas through adequate statistical models, providing a link to the related areas by the use
of auxiliary data. Thus, the determination of suitable linking models is crucial for satisfactory
small area estimation (SAE). The resulting models are referred to as small area models and
often rely on a simple, mainly (generalized) linear relationship within the data. Since model
misspecification can result in biased estimators, it is beneficial to consider more flexible, not
necessarily linear, models which adjust the data at hand in a more realistic manner. As a
consequence, the penalized spline method has recently been considered in the context of small
area estimation (cf. Opsomer et al., 2008; Ugarte et al., 2009).

In addition to that, even more realistic small area models could be obtained through the
incorporation of reasonable shape constraints. Especially in small area estimation, where the
small sample data frequently do not reflect the general trend within the underlying population,
the incorporation of shape constraints is expected to yield more accurate estimates. At the
present time, however, shape constrained small area models have not been considered in an
entirely satisfactory manner (cf. Wagner et al., 2017). In this chapter, we therefore introduce a
flexible small area model based on the penalized spline method that allows for the incorporation
of arbitrary kinds of shape constraints as well as an autonomous control of the smoothness of
the underlying P-spline function.

This chapter is organized as follows. Section 4.1 presents the fundamental concepts and nota-
tions for small area estimation and especially introduces the penalized spline small area model
in the linear mixed model framework. In Section 4.2, we first develop an alternative approach
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4 Penalized Splines in Small Area Estimation

to determine the parameters of the penalized spline small area model via the solution of an op-
timization problem instead as from a linear mixed model. Based on this optimization approach,
we incorporate arbitrary kinds of shape constraints for the P-spline function that underlies the
small area model in Section 4.3. Section 4.4 presents the connection between the penalized
spline method in small area estimation and in the regression context and in Chapter 4.5, we de-
velop an appropriate mean squared error (MSE) estimator for the previously considered shape
constrained P-spline small area estimator. In Section 4.6, we conduct a simulation study in or-
der to analyze the performance of the proposed point estimator and the related MSE-estimator.
Finally, in Section 4.7, we apply the shape constrained spline-based small area estimator for
the estimation of spruce timber reserves in RLP (cf. Section 1.1).

4.1 Fundamentals of Small Area Estimation

As mentioned in Section 2.1, estimation methods in survey statistics can basically be distin-
guished into design-based and model-based approaches. In the design-based framework, ran-
domness of an estimator is completely determined by the sampling design and the associated
(design-based) inference is based on the set of all possible samples. This is in contrast to the
model-based framework, where the finite population itself is treated as a random realization
from a superpopulation model (cf. Bolfarine and Zacks, 1992). The model-based approach,
especially in the context of small area estimation, is further addressed in this section following
Rao (2003), Datta (2009), Miinnich et al. (2013), and Rao and Molina (2015).

4.1.1 Basic Terminology

Within the survey framework, as introduced in Section 2.1, the interest is frequently not only in
estimating a target parameter for the entire population, but also in the simultaneous estimation
of this parameter for several subgroups of the population, called areas or domains. When
subgroup membership is determined by geographical regions such as states, counties, districts,
or municipalities, it is referred to as areas. Subgroups defined by content, such as specific age
or sex groups, are associated with the term domains. For reasons of simplification, only the
term area is used in the following.

To obtain an adequate notation, let the population U be divided into D € N exhaustive and
mutually exclusive areas Uy, d = 1,..., D, each of size N, := [Uy| such that N = N;+...+ Np.
In order to indicate for the area membership of a unit, we define

Y, if ¢ € Ud
bid {0, else (4.1)
for the response value of the variable of interest and analogously denote
Xy, if 1 el
Tig = ! (4.2)
’ 0, else

for the unit-specific auxiliary information. According to the population, the sample § is divided
into the area-specific subsamples S; := S NUy, d = 1,..., D, each of size ng := |Sy| such that
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4.1 Fundamentals of Small Area Estimation

n=mny+ ...+ np. We denote the related subpopulation parameters as 64, d = 1,..., D, for
example the area-specific total of the variable of interest

04 = Tva:= ) Yid (4.3)

1€EUG

or the area-specific mean of the variable of interest

Z yi,d = Ty7d/Nd. (44)

1€UY

Ou = py,d == ]\17(1
Under an independent treatment of the areas, i.e. we consider each area as a separate popu-
lation, the traditional direct methods such as the HT-estimator (2.12) or the GREG-estimator
(2.15) can be applied to provide estimates also on the area-level. This is in general possible if
the areas are planned, that is if the area membership of the units is known a priori and incorpo-
rated into the sampling design. In practice, however, unplanned areas frequently occur, where
the area membership is not incorporated into the sampling design such that the area-specific
sample sizes are random. In that case, very small subsample sizes for at least some of these
areas can occur and even the case of unsampled areas, i.e. ng = 0, is possible. Note that,
due to cost restrictions on the overall sample size, very small subsample sizes can also occur
for planned areas. Areas with small subsample sizes are difficult to handle by the traditional
direct methods. If the area-specific sample size is small, the unit-specific inclusion probabilities
(2.5) and (2.6) become small as well, which results in large variance estimates for the direct
estimators as indicated by (2.14) and (2.17). For unsampled areas, these direct methods can

even not be applied. This leads to the widely used definition of the term small area according
to Rao and Molina (2015, p. 2).

Definition 4.1.1 (Small area)
An area is regarded as small, if the area-specific sample size is not large enough to support direct
estimates of adequate precision.

Even if Definition 4.1.1 is widely used, it has to be controversially discussed how adequate
precision is defined, since the precision requirement strongly depends on the application. As a

point in case, within the scope of the German Census 2011 a relative root mean squared error
(RRMSE) of less or equal than 0.5% is required (cf. Minnich et al., 2012).

An alternative approach is to define the term small area via the sample fraction ng/N4. Purcell
and Kish (1979) for example refer to an area as small if the sample fraction is less than 10%.
In the following, we only assume that (some of) the area-specific subsamples are very small or
even nonexistent and leave the definition of when direct estimates are inadequate to the user.

4.1.2 Small Area Estimators

In order to obtain reliable small area estimates, indirect methods have to applied that borrow
strength from related areas or time periods to increase the effective sample size. Traditional
indirect estimation methods are based on implicit models that provide a link to related small
areas through supplementary data. Such estimators include synthetic estimators and compos-
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4 Penalized Splines in Small Area Estimation

ite estimators (cf. Rao and Molina, 2015, Chapter 3). These estimators are generally design
biased and the design bias does not vanish with increasing sample size. Their design variances,
however, are usually small relative to the design variances of the direct methods. This can
result in a reduction of the MSE, which is the main reason for the utilization of indirect es-
timators. In contrast to implicit linking models, explicit linking models take into account for
area-specific random effects that in particular allow to consider variation between the areas
that is not explained by the covariates. These models are referred to as small area models and
the related estimators are called model-based small area estimators. The use of model-based
small area estimators offers several advantages (cf. Rao and Molina, 2015, p. 5):

e Optimal estimators can be derived under the assumed model.
e Area-specific precision measures can be associated with each estimator.
e Models can be validated from the sample data.

e A variety of models can be utilized depending on the nature of the response variable and
the complexity of the data structure.

Model-based small area estimators, however, can be considerably biased if the assumed model
is incorrect. Therefore, the determination of suitable small area models is crucial in order
to obtain reliable small area estimates. These models are basically classified into area-level
models, where only aggregated auxiliary information on area-level is available as covariates,
and unit-level models, where complete individual information is utilized as auxiliary data. The
most common (generalized) linear area- and unit-level model as well as a small area model
based on the penalized spline method are introduced in the following.

Basic Area-Level Model

Let 2™ denote a direct estimator of the area-specific target parameter 6, and let z; € RY de-
note known area-specific auxiliary data, for example the true area-specific mean of the covariate
vectors

1
MXx.d N, Z Tid ( )

€Uy

The most popular small area model on the area-level is proposed by Fay and Herriot (1979)
and consists of two stages:

1. Sampling model: 0P8 = 0, + ¢4, &4 N N(0,02),d=1,...,D.
2. Linking model: 05 = 218 + ugq, ug S N(0,02),d=1,...,D.

The area-specific random effects uy are further assumed to be independent of the sampling
errors £4. In matrix vector notation the area-level model reads

PR = ZB+u+¢e, u~N(0,021p), e ~ N(0,diag(c?,...,0%)), (4.6)
where PR = (PR BT and Z € RP*P is row-wise defined by z7. This is a linear

mixed model as introduced in Chapter 2.2 such that the BLUE of $ and the BLUP of u can
be obtained, leading to the BLUP of the target parameters 6, for all areas d =1,...,D.
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4.1 Fundamentals of Small Area Estimation

Definition 4.1.2 (FH-estimator)
The Fay-Herriot (FH) estimator of the area-specific target parameters 04, d = 1,...,D, is
defined as

grH .— ,TRBLUE 4 GBLUP. (4.7)

According to Rao and Molina (2015, p. 124) it holds V = diag(c?,...,0%) + 02Ip and we
obtain

2
~BLUP Ty ("DIR T ’\BLUE)
u = 0; " — 2,06 . 4.8
d o2 1 03 d d (4.8)

This yields the more common representation of the FH-estimator as

2
AFH T 3BLUE < ADIR, T ABLUE

os + 05 (4.9)
B (L ),
where
o2
Vg = = _:02 € [0, 1]. (4.10)

The FH-estimator is therefore a composite estimator with shrinkage coefficient ;4. For areas
with a small sampling variance o3 relative to the model variance o2, more weight is assigned to
the direct estimator, whereas in areas with a comparatively small model variance more emphasis
is given to the synthetic part.

Basic Unit-Level Model

Assume now that complete unit-specific covariate information is observed, that is x; is known
for all i € U. The most popular small area model on the unit-level is proposed by Battese et al.
(1988) and given by the nested error linear regression model

Yid = T}y + U+ €ig, i €S. (4.11)

The area-specific random effects wuy NN (0,02) are assumed to be independent of the unit-

: iid : . : :
specific random errors ;4 ~ N(0,02). In matrix vector notation the basic unit-level model
reads

y=XB+Wu+e, u~N(0,021p), e ~N(0,021,), (4.12)
where W € R™P is element-wise defined as

1, ifi €8,

4.13
0, else ( )

Wi, d] == {
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4 Penalized Splines in Small Area Estimation

and expresses the link between a sampled unit and its corresponding area. This is a special
case of a linear mixed model and is referred to as random intercept model. Utilizing the BLUE
of f and the BLUP of u, we obtain the model predictions

Gia = algBPPE + Al e, (4.14)
for the entire population, which defines a model-based small area estimator on the unit-level.

Definition 4.1.3 (BHF-estimator)
The Battese-Harter-Fuller (BHF) estimator of the area-specific target parameters 04, d =
1,...,D, is defined as

07 = f(Gia i € Uy). (4.15)

If the interest is for example in the estimation of the area-specific means, the BHF-estimator
simplifies to

FVIE = % PR @B d =1, D, (4.16)

This in particular shows that ,uBHF is the BLUP of p1y 4. According to Rao and Molina (2015,
Chapter 7.1.1) it holds

2

~BLUP __ Oy ABLUE
Ugq W (,UYd - ,UX dﬁ ) ) (4-17)
where
N 1 R 1
fyd:i=— Z Yig and flyq:i= — Z Tid (4.18)
Na 1€Sy nq 1€Sy

denote the area-specific sample means of the dependent variable and the auxiliary information,
respectively. Defining

0.2

=———¢€/0,1 4.19
Vd —0—0 n;l [ ] ( )

yields the more common composite form of the BHF-estimator for the area-specific mean as

AR = 1 BTV 4 (e — % B

~ ~ T SBLUE ~T ABLUE (4'20)
= Y4 (,MY,d + (ix.a — fixa) B ) + (1 = va) iy 48 .

The synthetic component is referred to as synthetic regression estimator, whereas the utilized
direct part of the BHF-estimator is the multilevel GREG-estimator, i.e. the GREG-estimator
(2.15) where the regression coefficients are determined on the population level (cf. Miinnich
et al., 2013).
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4.1 Fundamentals of Small Area Estimation

P-Spline Linear Mixed Model

The basic unit level model (4.11) relies on the assumption of a linear relationship between the
variable of interest and the covariates. This assumption, however, is rarely satisfied in practice.
As a case in point, the Rhineland-Palatinate forest inventory sample data, displayed in Figure
1.1, show that a (generalized) linear relationship fits these data only poorly. Therefore, it
is advantageous to allow for more flexible dependencies in the small area model. Recently,
Opsomer et al. (2008) and Ugarte et al. (2009) proposed to consider the model

Yia = S(T5q) + uqg+¢cia, 1 €S, (4.21)

. . . iid
where, as in the linear model, the area-specific random effects ug ~ AN(0,02) are assumed

to be independent of the unit-specific random errors ¢; 4 BN (0,02%). Instead of assuming a
linear regression function, the authors only demand s to be sufficiently smooth without further
specification. The authors apply the penalized spline method (cf. Section 3.2) to represent the
regression function s, that is

K
S = Z akqﬁw, (422)
k=1

where & is given as the unique solution of the optimization problem (3.57), i.e.

min_||®a — y||3 + Ao’ Aa. (4.23)
a€RK

In this context, Opsomer et al. (2008) suggest the truncated power series basis based on 35
to 50 quantile placed knots with the related coefficient penalty. Ugarte et al. (2009) extend
this idea to the numerically more stable B-spline basis based on min{|n/4], 40} equally spaced
knots with second order difference penalty. Both of these P-spline variants have been presented
in Subsection 3.2.2. As shown in Subsection 3.2.3, fixing A := 02/07 allows to determine the
solution to the above optimization problem from the LMM (3.71), that is

2
B 7\ ol 0
y=XB+2Zvy+e, <€> N(O,[ A UEInD' (4.24)
The P-spline small area model (4.21) therefore reads
vy ngr 0 0
v 2
y:Xﬁ—i-[Z,W]( >—|—6, ul~N10,] 0 o2Ip O , (4.25)
u 2
£ 0 0 oI,

where W is defined as in (4.13). The BLUP of the area-specific mean values is given as

ABLUP . X,BPLUE 4 7 4BLUP | gBLUP (4.26)
where
_ 1 , - 1 .
Xgi=— S X[i,-] and Zg:=— Y Z[i,"]. (4.27)
Nd 1€UY Nd 1€EUY
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4 Penalized Splines in Small Area Estimation

The estimation of further area-specific target parameters, however, is achieved in analogy to
the BHF-estimator. Let therefore

a = XBBLUE + Z;?BLUP (428)

denote the spline coefficients of the underlying P-spline function (cf. Subsection 3.2.3) and
let

Gia = 8(ziq) + 05" i €U, (4.29)

denote the related model predictions for the entire population. This allows for the definition
of a spline-based small area estimator on the unit-level.

Definition 4.1.4 (SLMM-estimator)
We define the P-spline linear mized model (SLMM) estimator of the area-specific target param-
eters Oy, d=1,...,D, as

OSMM — F(Gig i€ Uy). (4.30)

Discussion of the SLMM-Estimator

The utilization of the penalized spline method in small area estimation, as proposed by Opsomer
et al. (2008) and Ugarte et al. (2009), offers numerous considerable advantages compared to
the common small area models based on (generalized) linear regression functions. Due to the
underlying spline approximation, they allow for the consideration of very complex and highly
nonlinear relationships in the observed data, especially when no assumption on the specific form
of the regression function seems legit. Further, the representation as a linear mixed model allows
to embed the SLMM-estimator into the common setting of small area estimation. Thereby, the
well established mixed model theory and related software can be utilized. Moreover, the mixed
model implementation directly yields the regularization parameter \ := o2/ a§ (cf. Subsection
3.2.4) as ratio of the respective variances.

Even though the SLMM-estimator comes with several improvements compared to small area
estimation using a (generalized) linear regression function, particular challenges and potential
enhancements remain. The sample data of the subpopulations considered in the context of
SAE are typically small and therefore often only insufficiently display the general trend within
the target population. Therefore, the incorporation of further shape constraints on the P-
spline function could lead to a more realistic representation of the data as soon as there exists
reasonable knowledge about the considered variable, e.g. that there are only nonnegative
values as for the estimation of timber volume in RLP (cf. Section 1.1). On the one hand,
the incorporation of shape constraints into the penalized spline method is theoretically and
numerically straightforward (cf. Section 3.3). On the other hand, this extension prevents
from the linear mixed model representation of the related P-spline problem. Hence, in order to
incorporate shape constraints into a P-spline based small area model, an alternative formulation
and solution strategy is necessary. The need of developing an alternative problem formulation
bears the potential to circumvent two further drawbacks of the SLMM-estimator. Firstly, for
the parameter estimation in the linear mixed model relatively strict assumptions are made with
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4.2 Optimization Framework for Penalized Spline based Small Area Models

respect to the random parts of the model, i.e. u S N(0,02Ip) and & - N(0,0%I,). These

assumptions are necessary to derive the estimates from a linear mixed model, but could be
circumvented in a different solution strategy. Secondly, the regularization parameter A := o2/ 03
is fixed in the context of the SLMM-estimator due to the assumptions made on the random parts
of the model and cannot be controlled by the user. This can both lead to an inappropriate fit
of the underlying P-spline function due to an inadequate choice of the regularization parameter
A. In order to address all of these issues, we develop an alternative approach to determine the
parameters of a P-spline small area model in the following.

4.2 Optimization Framework for Penalized Spline based
Small Area Models

The previous section shows that small area estimation based on P-splines comes with several
improvements, but that several challenges and potential enhancements remain. Again, these
are in particular:

1. The relaxation of the strict model assumptions.
2. An autonomous control of the regularization parameter.
3. The incorporation of shape constraints on the P-spline function.

To achieve these goals, we develop an alternative approach to determine the parameters of a
P-spline based small area model, namely the spline coefficients @ € R¥ and the vector of the
area-specific intercepts u € RP. This alternative approach is based on the formulation of an
optimization problem for these parameters instead of a linear mixed model and is discussed in
the following.

4.2.1 Formulation of the Optimization Problem

We consider the small area model
Yid = $(Tia) + ua + €ia, 1 €S, (4.31)

with zero mean unit-specific random errors ¢; 4, zero mean area-specific random effects ug,
and sufficiently smooth but further unspecified regression function s: R” — R. Note that,
compared to the model (4.21), no further distributional assumptions are made. We model the
regression function as a regression P-spline, that is as solution of

min L£S5(s) + AP(s) < min s(xiq) — Ui 2—|—>\7DS, 4.32
uin £8(5) +XP(s) & min 3= (s(eia) — i) +XP(s) (432
and incorporate the area-specific intercepts ug, d = 1, ..., D, as a further variable. Therefore,

we apply a ridge regression approach on the intercept vector u to simultaneously determine the
area-specific effects and the P-spline function. That is, we consider the optimization problem

min > (8(zia) + ug — yia)” + AP(8) + Ao ull3. (4.33)

s€84(K),ucRP ics
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The regularization parameter A; > 0 still controls for the smoothness of the spline function.
The regularization of u is necessary to provide the existence of a unique solution (cf. Theorem
4.2.2). The further regularization parameter A, > 0 allows to regulate the influence of the
both regularization terms independently. The choice of the multiple regularization parameters
is addressed in Subsection 4.2.3. In order to distinguish between the regression P-spline defined
by (3.39) and the P-spline defined by the above optimization problem, we state the following
definition.

Definition 4.2.1 (Small area P-spline)
For a given spline space S,(K) let 3 € S,(K) and u € R” denote a solution of the optimization
problem (4.33). We refer to s as a small area P-spline in S,(KC).

Due to the basis representation of a tensor product spline (3.26), we obtain an equivalent
formulation of the optimization problem (4.33) in terms of the spline coefficients and the area-
specific intercepts as

minRD [Pa + Wu — |3 + Ao’ Ao + Ay ||ull3, (4.34)

a€RE ue
where W is defined as in (4.13). It holds
[Pa + W —yll3 + Ao’ Ao+ Aulull3

= o’ T Pa+ I WIWu +yTy + T T Wu + v W da — 227 0Ty
— 2w Wy + Ao Ao+ Auu (4.35)

OTP 4+ \,A OTW o Q
T T s _ T T

such that the optimization problem (4.34) is equivalent to

, L, 7 7 [®T® + XA oTW o T T a
ae]RI}r(l,lq?eRD 5(@ U )[ wWTd WIW + A\ Ip| \u/ [y ¢y W} ul’ (4.36)

Based on this reformulation, we state an existence and uniqueness result for the optimization
problem (4.33) in the following theorem.

Theorem 4.2.2
The optimization problem (4.33) possesses a unique solution. It is given by the unique solution
of the linear system

OTP + A\ A OTW a\ o [@7 (437)
WTd  WW 4+ M\Ip| \u) ~ |[WT|Y '

Proof. To prove the statement, we show that the symmetric matrix

A= [Q)T(D AN oTw e RE+D)x(K+D)

wWTe WITW + A\ Ip
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is positive definite such that the equivalent optimization problem (4.36) is an unconstrained
strictly convex QP. Remark 2.5.3 then ensures the existence of a unique solution given by
the unique solution of the linear system (4.37). The Schur complement condition for positive
definiteness states that A > 0 holds if and only if:

L ®Td + A\ A > 0.
2. WIW + A\ Ip > 0.

3. M 1= 07% + A\ A — OTW (WIW +A\Jp)  W'd - 0.
The positive definiteness of ®7'® + A\ A is stated in Remark 3.2.5. Since

WTW = diag(ny,...,np)

and )\, > 0 it also follows WTW + \,Ip = 0. In order to show the positive definiteness of M,
we define

C=W (W'W + A\ Ip) W' eR™™ (4.38)
For arbitrary 0 # a € RX and v := ®a € R" it holds
ol Ma = |[v|)5+ Ao’ Aa — v Cw.

Since a’'Aa > 0, it suffices to show v?Cv < ||v]|3 to obtain the positive definiteness of M.
First, note that it holds

(W'W + AIp) = diag ((m +A) o (p + X))

such that

7Z’j:17"’7n7

o (nd—i-)\u)*l ,if i, €8y
Cli.gl = {0 else

follows from the definition of W. This yields

i=1j=1 d=1 \ieS,; jeSy

v O = i gnj Cli, jlvfilvj] = 3 (Z > (na+ Au)lv[z’]v[ﬂ)

and the multinomial theorem implies

v"Co =Y (ng+A\,)"" (Z v[z]) :

d=1 1€Sy

Due to the Cauchy-Schwarz inequality in R™ for d =1, ..., D it follows

"Cv < (ng+ ) (nd > U[i]2> :

d=1 1€Sy
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Finally, because of A\, > 0 it holds
D
vICu <y Dl =D vl = [ull3,
d=1i€S, €S

which concludes the proof. O

Remark that in the previous proof we obtain the positive definiteness of the coefficient matrix
of the linear system (4.37) from the fact that

Nng
ng + Au

<1,d=1,...,D, (4.39)

which is due to A, > 0. Therefore, as already mentioned, the regularization of u in the
optimization problem (4.33) is necessary in order to obtain a well-posed problem.

4.2.2 Derivation of the Small Area Estimator

The SLMM-estimator (4.30) is based on the reformulation of the P-spline problem as a linear
mixed model and the resulting determination of the parameters. In the previous, an alternative
approach to determine the model parameters is presented based on the formulation as the
optimization problem (4.34). As soon as the parameters & and u are determined as the unique
solution of the linear system (4.37), small area estimates can be obtained in analogy to the
SLMM-estimator. Let therefore

Yid := §(33i,d) +uq, 1 €U, (4.40)

denote the model predictions for the entire population, where

K
k=1

denotes the small area P-spline related to a.. This allows for a further definition of a spline-based
small area estimator on the unit-level.

Definition 4.2.3 (SOPT-estimator)
We define the P-spline optimization problem (SOPT) estimator of the area-specific target pa-
rameters 04, d=1,...,D, as

O50PT = f(ia i € Uy). (4.42)

The SOPT-estimator (4.42) and the SLMM-estimator (4.30) both utilize P-splines, but differ
within the derivation of the model parameters. The SOPT determines the model parameters via
an optimization problem, whereas the SLMM employs a linear mixed model. Despite the fact
that the underlying spline models are similar, the resulting estimators possess several different
features. The SLMM-estimator requires the strong statistical assumptions of u ~ N(0,021p)
and € ~ N(0,021,) in order to determine the model parameters from a LMM. Further, the
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SLMM is restricted to the regularization parameter A = 02/ Ug. Thus, an inadequate choice
of A can result. Due to the optimization approach of the SOPT-estimator, these issues are
circumvented. In particular, the SOPT-estimator allows for an autonomous control of the reg-
ularization parameter \; by the user, which can result in a more realistic P-spline function and
therefore in more precise small area estimates. With an identical choice of the regularization
parameters A\, = A, however, the both estimators provide quite similar small area estimates.
Based on the mixed model representation of the SLMM-estimator, statistical features such
as the BLUP property can be obtained. For the SOPT-estimator such properties cannot be
proven. Nevertheless, the optimization problem formulation provides further important numer-
ical features. It enables the straightforward incorporation of shape constraints into the small
area model, which is discussed in more detail in Section 4.3. Further, this framework allows
for the utilization of numerically highly advanced methods in order to determine the model
parameters, which is of special interest if the number of utilized covariates P increases. The
implementation of these algorithms is addressed in Chapter 5.

4.2.3 Regularization Parameter Selection

Compared to the regresion P-spline, the small area P-spline now requires the determination
of the both regularization parameters A\; > 0 and A, > 0. In the following, we propose some
approaches based on the methods introduced for regularization parameter selection for the
regression P-splines (cf. Subsection 3.2.4). Recall first that the small area P-spline is defined
by the unique solution of the linear system (4.37), that is

a\  ([eT®+ AN OTW e (4.43)
a) = wWTed  WTW + \JIp wT| Y '

Simultaneous Parameter Selection

For the simultaneous determination of A, and \,, we define A := (A, A\,)” and let, analogously
to (3.74),

OTP + N\ A OTW D‘l[qﬂl (4.44)

= [‘Wl([ WTe  WTW +M\Jp|) |[WT

denote the hat matrix related to (4.37) with the resulting model predicts g, := Syy. The
extension of the CV and the GCV method to the case of multiple regularization parameters is
straightforward, i.e.

N 2 N2
Ly — ] 1y = Dali]
Aoy = argmin — V=] A ‘= argmin — e 4.45

ARy ; (1 — i, 1] oV T 8o n ; 1 —tr(Sh) (4.45)

Although the extension of these methods is straightforward, the simultaneous determination
of multiple regularization parameters leads to significantly increasing computational demands
since a two-dimensional grid search has to be performed. Therefore, it might be useful to follow
a different approach.
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Sequential Parameter Selection

The regularization parameter \, controls for the smoothness of the underlying P-spline function,
whereas the regularization parameter A, is mainly introduced to ensure for a unique solution.
In order to obtain a suitable spline approximation, we propose to determine the parameter A, at
first by means of the methods introduced in Subsection 3.2.4, for example A\; = A; cv. Based on
this fixed parameter, we then determine the remaining parameter \,. There, the most simplest
choice is an identical parameter selection, i.e. A\, = A,. For some applications, however, this
approach can result in an inappropriate choice of the small area intercept u. Since A, is now
fixed, the hat matrix solely depends on A, and the CV and the GCV method simplify to

~ . 2 ~ .
1Oy — Ol N
)\u = - = ) )\u = - Y

AR & (1 — S i, ] cov = aIgnin s\ T frace(Sh)

)2 . (4.46)

The determination of the both regularization parameters within the sequential selection ap-
proach demands for the solution of two one-dimensional optimization problems, each by a grid
search. This requires by far less effort than the two-dimensional grid search utilized for the
simultaneous parameter selection.

4.3 Penalized Spline based Small Area Models with
Shape Constraints

In the previous section, an optimization framework in order to determine the parameters of a
P-spline based small area model is introduced. An important feature of this approach is the
fact that the incorporation of shape constraints on the small area P-spline is as straightforward
as for the regression P-spline presented in Section 3.3.

4.3.1 Incorporation of the Shape Constraints

The determination of the model parameters for a P-spline based small area model as a solution
of an optimization problem (4.33) allows for a straightforward incorporation of shape constraints
on the small area P-spline function. This is due to the fact that these constraints solely affect
the spline function s, but not the area-specific intercepts ug, d = 1,...,D. We therefore
determine s and u simultaneously as a solution of the optimization problem

. 2 2
sesq(mlcﬁeRD ZGZS (8(z5,a) +ug — Yia)” + AP(s) + Aullull
S.t. 8T3 Z 07 (S ]2
s <0, rele,

(4.47)

where the index sets I> and I< are defined as in (3.87).
Definition 4.3.1 (Shape constrained small area P-spline)

For a given spline space S,(K) let $ € S,(K) and u € R” denote a solution of the optimization
problem (4.47). We refer to s as a shape constrained small area P-spline in S;(K).
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4.3 Penalized Spline based Small Area Models with Shape Constraints

As for the unconstrained case, we obtain an equivalent formulation of the optimization problem
(4.47) as
min | Pa + Wu — yl|3 + Aol Ao + Ay ||ul|?

acRK ueRP
st.  T,a<0, rel (4.48)
Ia>0,rels,

where the matrices I', € RT*X are defined as in (3.91). As for the unconstrained optimization
problem (4.34), we obtain an equivalent formulation of the optimization problem (4.48) as

_ L, 7 7 [®TO 4+ NA oTW o T T a
CRK ERD i(a ) Wio WIW + NIp| \u) [y ¢y W} u

s.t. INa<0, rel<
a>0,rels.

(4.49)

Due to Theorem 4.2.2, this is a strictly convex QP and we state an existence and uniqueness
result for the optimization problem (4.47) in the following theorem based on the reformulation
(4.49).

Theorem 4.3.2
The optimization problem (4}.47) possesses a unique solution.

Proof. To prove the statement, we consider the equivalent reformulation as strictly convex QP
(4.49). Remark 2.5.3 already yields that the solution is unique, provided it exists. In order
to show the existence of a solution it suffices to show that the optimal value f* of the strictly
convex QP (4.49) is finite (cf. Theorem 2.5.4). Since 0 is a feasible point of the strictly convex
QP, it holds f* < 0 < oo. Let f denote the optimal value of the unconstrained strictly convex
QP (4.36) such that f < f* holds. Due to Theorem 4.2.2, it holds —co < f, which concludes
the proof. O

4.3.2 Derivation of the Small Area Estimator

In analogy to the SOPT-estimator (4.42), we define a small area estimator based on the shape
constrained small area P-spline. Let therefore & and @ denote the unique solution of the strictly
convex QP (4.49) and let

Uia = 58(xia) +Ug, 1 €U, (4.50)

denote the related model predictions for the entire population, where

K
k=1

denotes the shape constrained small area P-spline related to a@. As for the SOPT-estimator,
we use these predicts to obtain a small area estimator. This leads to the definition of a spline-
based small area estimator on the unit-level that further allows the consideration of shape
constraints.
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4 Penalized Splines in Small Area Estimation

Definition 4.3.3 (SOPT__CON-estimator)
We define the shape constrained P-spline optimization problem (SOPT _CON) estimator of the
area-specific target parameters 04, d=1,...,D, as

@dSOPT—CON = f(Uia 1 € Ug). (4.52)

Compared to the SOPT-estimator (4.42), the SOPT__CON-estimator (4.52) additionally allows
for the incorporation of arbitrary shape constraints on the underlying small area P-spline. This
enables a more realistic modeling of the relationship within the sample data and can result in
more precise small area estimates. Especially in small area estimation, where the sample sizes
are frequently too small to reflect the general trend within the population, the shape constraints
provide a promising feature. If the data at hand are rich enough to represent the underlying
shapes, the small area P-spline of the SOPT-estimator and the shape constrained small area
P-spline of the SOPT _CON-estimator coincide. Therefore, the both estimators provide the
same small area estimates in this case. From a numerical point of view, however, they lead to
different problems, namely a linear system (4.37) and a strictly convex QP (4.49). The latter
one is much more expensive to solve (cf. Chapter 5) such that the incorporation of shape
constraints should be conducted with deliberation.

4.4 Linkage to Penalized Splines in Regression Analysis

For the special case of u = 0, the small area model
Yia = $(Tig) + Ua+€ia, 1 €S, (4.53)
with zero mean unit-specific random errors ¢; 4 corresponds with the regression model
yi=s(z) +e, i=1,...,n (4.54)

with zero mean unit-specific random errors ¢;. Therefore, in this case the (shape constrained)
regression P-spline and the (shape constrained) small area P-spline coincide. Thus, the (shape
constrained) regression P-spline is a special case of the (shape constrained) small area P-
spline and therefore the related optimization problems (3.58) and (3.93) are special cases of the
optimization problems (4.37) and (4.48). This relationship is revealed in the following and is
of special interest for the implementation of numerical efficient solution algorithms presented
in Chapter 5.

Unconstrained P-Splines

The linear system (4.37) underlying the determination of the coefficients of the (unconstrained)
small area P-spline reads

TP + A A OTW a\ o [e7 (455)
WTd  WIW + A\ Jp| \u) — |WT|Y ‘

The following lemma states a characterization of the unique solution of this linear system.
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4.4 Linkage to Penalized Splines in Regression Analysis

Lemma 4.4.1
The unique solution of the linear system (4.37) is given by

i = diag ((n1 + M) (np 4+ A) ) W (y — @d), (4.56)
where a denotes the unique solution of the linear system
(7P + A\A — BTCD) o = BT (y — Cy) (4.57)

with C € R™™ defined as in (4.38).

Proof. The linear system (4.37) is equivalent to the both coupled linear systems

(7@ + AA) a + OTWu = 3Ty, (4.58)
W oa + (WIW + Mdp)u =Wy, (4.59)

For arbitrary u let
a(u) = (7@ + AA) @7 (y — Wu) (4.60)

denote the unique solution of (4.58), which exists due to Remark 3.2.5. Since
WIW + N Ip = diag ((ny 4+ \) ", (np + ) 71) = 0,
we obtain
a=(W'W + AIp) W (y — Bau)
= diag ((n1 + )" (np + X)) W (y — @a(u))

as unique solution of (4.59), depending on &(u). Plugging @ into (4.60) and defining & := a(u)
yields

= (BT0+ AA) BTy — (7D + AA) T STW (WIW + A Ip) W (y — ®a)
= (87 + M) 2Ty — (TR + AA) @TC (y - Da) (4.61)
= (870 + AA) BT (y — Cy) + (27D +AA) 27O
Multiplying (4.61) by (CI)T(I) + )\SA> and resorting the terms finally yields
(@ch + XA — @chp) a=9oT(y—Cy),

i.e. & is a solution of the linear system (4.57). As shown in the proof of Theorem 4.2.2 it holds
STH 4 \,A — ®TCP - 0, such that the solution & is unique. O

Lemma 4.4.1 especially yields that the spline coefficients of the small area P-spline are given
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4 Penalized Splines in Small Area Estimation

by the unique solution of the linear system (4.57), i.e.
(7@ + \A = 0TCP) a =" (y - Cy). (4.62)
For the special case of C'= 0 the linear system (4.57) simplifies to
(7@ + AA) a = 3Ty (4.63)
which coincides with the linear system (3.58) determining the spline coefficients of the (uncon-

strained) regression P-spline.

Shape Constrained P-Splines

The determination of the shape constrained small area P-spline requires the solution of the
strictly convex QP (4.49). Based on the reformulation for the linear system (4.37) to determine
the unconstrained small area P-spline in Lemma 4.4.1, we state a characterization of the unique
solution of the optimization problem (4.49) in the following lemma.

Lemma 4.4.2
The unique solution of the the strictly convex QP (4.49) is given by

i = diag ((n+\) - (o + M) ) W (y — ®a), (4.64)

where & denotes the unique solution of the strictly convexr QP

min ;aT (<I>T<I> + AA — CIDTC’Q)) a— (@T(y - Cy))T a

a€RK
st. Ia<0, relc
Ia>0,rels

(4.65)

with C' € R defined as in (4.38).

Proof. Since the shape constraints solely affect the spline coefficients o, Lemma 4.4.1 yields
i(a) = diag ((n1 +\) - (np + A) ) W (y — @a)

as optimal solution of (4.49) for arbitrary «. Plugging @(«) into the objective function of the
strictly convex QP (4.49) yields

Loor ooary [270+ AA oW a T 7 a
gl ule)’) [ Wro wrw | i) ~ ' (G
1 1
= 5ozT (@T(P + )\SA) a+ oI Wii(a) — y" ®a — y" Wii(a) + iﬂ(oz)T (WTW + )\UID) ()
1
= §aT (<I>T<I> + ASA> a+ o’ dTC(y — da) — y" ®a —y ' C(y — ®a)

1
+ §<y — ®a)”

CTCH NI (WIW 4+ Adp)~ (WW 4+ AuIp) WT] (y — Ba).
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Due to
—1 —1 )\ )\
A, (WT Wi T Wi = di - —
(V7 o) (VT o) =t (e
and
1 -1
cTC=w (WTW + AUID> wIiw (WTW + Au]D) wT
. n np T
— Wd P \w

128 ((nl T2 (ap £ Au)2>

it holds

CTC+ AW (WIW 4+ NIp)  (WIW + A dp) W'
= W |diag ((n1 +X) ™"  (np + M) ™) | W
= W (WIW + A\ dp) W7
_C.

This yields

L, o o [T+ NA dTW o T T o
e, W) l wre  WIW + A dp| \d(a)) e W] u(a)
— ;QT (@ch + )\SA> a+aldTC(y — ®a) — y'Pa —y' Cly — ®a) + ;(y — ®a)' Oy — ®a)

1
- iaT ((I)TCID + )\SA) a+aTd"Cy — aTdTCha — yTda — 4T Cy + y' Cda

1 1
+ inC'y + §ozT(I>TC'<I>a —aldT Oy

1 1
= iaT (cpch + XA — <I>TCcI>) a+aTdTCy—aTeTy — inC’y
1 1
= 0" (270 + AN~ 27CP) o+ al®T(Cy —y) — 5y Cy

for the objective function of the strictly convex QP (4.49) such that (4.49) is equivalent to the
optimization problem (4.65). As shown in the proof of Theorem 4.2.2 it holds ®T® + A\, A —
PTCP =~ 0 such that (4.65) is a strictly convex QP itself. Finally, due to Theorem 4.3.2, the
strictly convex QP (4.65) possesses a unique solution. O

Lemma 4.4.2 especially yields that the spline coefficients of the shape constrained small area
P-spline are given by the unique solution of the strictly convex QP (4.65), i.e.

min ;aT (CI>T<I> + XA — <I>TC’<I>) a— (CI)T(y — C’y))T a

acRK
st. Ia<0, relc
F,«Oé > O, T e Iz.

(4.66)
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4 Penalized Splines in Small Area Estimation

For the special case of C' = 0 the strictly convex QP (4.65) simplifies to

min ;aT (CI)T<I> + )\SA) o — (@Ty>T Q@

aeRK
st. Ia<0, relc
Ia>0, rels,

(4.67)

which coincides with the strictly convex QP (3.93) determining the spline coefficients of the
shape constrained regression P-spline.

4.5 Mean Squared Error Estimation

As introduced in Section 2.1, the MSE of an estimator 0 is defined as

~ ~

MSE (8) = E ([é _ 9}2) — VAR(A) + BIAS(H)? (4.68)

and yields an adequate measure of precision. Since the exact value of the MSE depends on
the unknown parameter 6, it can in general not be computed and has to be estimated form
the sample S as well. For example, for the HT-estimator and the GREG-estimator the related
precision estimators are given in (2.14) and (2.17), respectively. In practice, an estimator is only
useful if a related MSE-estimator is stated, wherefore the development of an MSE estimation
technique for the SOPT-estimator and the SOPT__CON-estimator is crucial.

Common precision estimators are based on Taylor linearization methods (cf. Sérndal et al.,
1992, Chapter 5.5), but for those complex estimators as the SOPT and the SOPT_CON no
closed form MSE-estimator can be obtained. In this case, resampling methods such as the
bootstrap or the jackknife (cf. Wu, 1986, for an overview) may aid in finding an appropriate
precision estimate for the point estimators. The basic idea of the bootstrap method, initially
proposed by Efron (1979) and Efron and Tibshirani (1993), is to resample a large number of
subsamples with replacement out of the original sample and to determine the MSE of the point
estimator based on the bootstrap samples conditioned on the original sample. According to
Sarndal et al. (1992, Chapter 11.6), a classical bootstrap procedure works as follows:

1. Using the sample S, construct an artificial population U"°°t that is assumed to mimic the
unknown population Y. Frequently, 4P°°" := S is used.

2. Draw a series of B € N independent subsamples S C U"°°t, b = 1,..., B, by a design
identical to the one by which § was drawn from /.

3. For each bootstrap repetition, compute the bootstrap estimate 0, from the bootstrap
sample S® in the same way as 6 was calculated from the original sample S.

4. Compute the bootstrap MSE-estimator
1 B

MSE@) = > (0~ 0’ (4.69)

b=1

which coincides with the empirical MSE of the bootstrap estimates GAb, b=1,...,B.
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4.5 Mean Squared Error Estimation

Crucial for the performance and the applicability of a bootstrap MSE-estimator is the procedure
under which the bootstrap samples S° are generated. Depending on the construction of the
point estimator 6 and the structure of the underlying data, a variety of bootstrap sample
strategies exists. In order to estimate the MSE of the spline-based small area estimators
SLMM, SOPT, and SOPT CON, we recall that the estimates are obtained from the model
predictions

Yia == 8(xia) + g, 1 €U, (4.70)

where § denotes the underlying P-spline. The three methods mainly differ in their strategy to
determine the function s. Let

é\i,d = gi,d — Yid, (S 87 (471)

denote the residuals related to model predicts. Since the spline function s is considered as fix,
the random parts of the estimator that has to be reflected by the bootstrap sample are the area

effects g, d = 1,..., D and the unit-specific errors &, 4, ¢ € S. According to Kauermann et al.
(2009), we implement a wild bootstrap to draw the bootstrap errors £® := (g%, ...,%)T, that

1S

b , {(1 —+/5)/2  with probability(v/5 + 1) /(2v/5) (4.72)

b o~
Ei g =W, 4 Eid, W; 4 = . . .
bl i = . (1++/5)/2 with probability(v/5 — 1)/(2/5)

The wild bootstrap is in particular suited when the model exhibits heteroskedasticity. Since
no parametric assumptions on the distribution of the area effects are made, we utilize a non-
parametric bootstrap to draw the bootstrap sample u® := (u?, ..., u%)7, that is u® is obtained
by sampling D times with replacement from {u;,...,4p}. The final bootstrap procedure to
estimate MSE(@d), d=1,...,D, is presented in Algorithm 4.1.

Algorithm 4.1: MSE_boot: Bootstrap MSE-estimator for spline-based small area estima-
tors.
forb=1,...,B do

1. Draw a parametric bootstrap sample u’.

2. Draw a wild bootstrap sample £°.

3. Simulate bootstrap data
yi'),d = §(x,q) + ul) + 5§,d'
4. Define the bootstrap sample
S ={y,:i€S}

and compute the bootstrap estimates §fl, d=1,...,D.

end
return @(éd), computed according to (4.69).
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4 Penalized Splines in Small Area Estimation

The MSE_boot has been proposed for the spline-based small area estimators SLMM,S OPT, and
SOPT CON by Wagner et al. (2017). As an alternative bootstrap procedure, the prescaled
random effects block bootstrap for multilevel data (cf. Chambers and Chandra, 2013) is im-
plemented. Both of the MSE-estimators, however, provide very similar results such that we
restrict ourselves to the MSE_boot MSE-estimator in the following.

4.6 Simulation Study

To analyze the performance of the developed point estimators SOPT and SOPT_CON and
of the related MSE_boot MSE-estimator, we conduct a quasi-design-based Monte Carlo (MC)
simulation study in the following. In this framework, a finite population is drawn once as a
realization of a superpopulation model and kept fixed throughout the simulation. In each of
the r = 1,..., R € N simulation replications a sample is drawn out of the finite population
according to an a priori specified sampling design. Each of the samples provides an estimate
6, of the parameter of interest. Since the true parameter is known in the simulation setup,
adequate performance measures of the estimator can be computed, e.g.

~ -~

BIAS(d) = E(d) —

ZZ

R
Z 0, — (4.73)

For a sufficiently large number R of random experiments, the MC-approximation of the ex-
pectation becomes arbitrarily close to the true value. In practice, a number of R = 10,000 is
frequently used.

4.6.1 Performance Measures

To evaluate the results of a large MC-simulation study, the information needs to be reduced to
a manageable amount of indicators and figures. As mentioned in Section 2.1, two main features
of an estimator are of interest, namely its deviation and its dispersion. In this subsection,
we therefore present performance measures for point estimators and MSE-estimators that are
frequently used in simulation studies.

Performance Measures for Point Estimators

Let 64 denote the area-specific parameter of interest and let 6, denote a related point estimator.
In each simulation run, i.e. » =1,..., R, we obtain an estimate HAd’r of the estimand 6,. To assess
whether a bias in an area is present, the (Monte-Carlo) relative bias (RBIAS) is considered. It
is defined as

R
'S O

RBIAS, = —= “er (4.74)
d

If the true value 6, is close to zero, the (Monte-Carlo) absolute bias is considered instead.
Usually, there exists a trade-off between the variability of an estimator and its bias such that
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an biased estimator can still be preferable to an unbiased one. A measure that takes both of
these aspects into account is the (Monte-Carlo) relative root mean squared error (RRMSE). It
is defined as

R /< 2
B3 (Oar — 04)
RRMSE, := = 7 > 0. (4.75)
d

As the RRMSE approximates the relative standard error of the estimator it is a widely used
measure in practice. In analogy to the RBIAS, the (Monte-Carlo) MSE, i.e.

R
MSEq == Ry (64, — 64)", (4.76)
r=1

is considered if 8, is close to zero. A more robust measure of the variation of an estimator is
the relative dispersion (RDISP). It is defined as

Q(6,4,0.95) — Q(64,0.05)
0

RDISP, = >0, (4.77)
where Q(f;,¢) denotes the g-quantile of the (Monte-Carlo) distribution of 6. It is a robust
measure in the sense that the outlying 10% of the simulation results are rejected. The joint
analysis of bias and variation frequently suffices to provide appropriate insight into the per-
formance of a point estimator. The presented performance measures for a point estimator
provide area-specific information, but in practice it might be more convenient to assess the
overall performance of an estimator. For the RBIAS the mean absolute relative bias (MARB)
is considered. It is defined as

D
MARB := D™' Y |RBIAS,| > 0. (4.78)
d=1

The results on the RRMSE are summarized through the average relative root mean squared
error (AVRRMSE). It is defined as

D
AVRRMSE := D! Z RRMSE,; > 0. (4.79)

d=1

Performance Measures for MSE-Estimators of Point Estimators

Besides the performance of a point estimator QAd, the interest is also in the performance of the
related MSE-estimator. This can be analyzed either by their bias or by confidence interval
rates. In analogy to the RBIAS of a point estimator, the (Monte-Carlo) relative bias of the
MSE-estimator (RBIASMSE) is defined as

R —_—— o~
R! > MSE(9d7r) — MSE,

RBIASMSE, := r=1 \ISE € R. (4.80)
d
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Since the true mean squared error is unknown, the Monte-Carlo MSE is used in this definition.
Note that the Monte-Carlo MSE of 6, is a second moment and does therefore not converge as
fast as a first moment. To overcome this issue it is common practice to compute the MSE-
estimates @(gd,r) for a given number of replications (often R = 1,000) and to compare this
against the MSE, calculated from significantly more replications (often R = 10,000). A negative
RBIASMSE indicates for underestimation of the true MSE, whereas a positive value points to
overestimation. An MSE-estimator with generally positive RBIASMSE is called conservative.
If MSE is close to zero, which is the desirable state, the absolute bias of the MSE-estimator
(BIASMSE) is considered instead of the RBIASMSE. It is defined as

R —_— o~
BIASMSE, := R™' > MSE(f,,) — MSE, € R. (4.81)

r=1

A further approach to assess the performance of an MSE-estimator is based on the (estimated)
confidence interval (CI) of significance level «, i.e.

CLo(0y,) = [éd,r — 2o\|MSE(84,), 04, + 2a\| MSE(f4,)| C R. (4.82)

The value z, denotes the related (1 — a/2)-quantile of the standard normal distribution with
a typical value of a = 0.05. The confidence interval coverage rate (CICR) is defined as

R
CICRg:=R™'Y 1, @,y (0a) € [0,1] (4.83)
r=1 ’

and measures the proportion of MC-replications for which the confidence interval covers the true
value 6;. In a simulation study, it is expected that (1 — a) - 100% of these confidence intervals
cover the true value, i.e. CICR; = 1 — a. For a biased estimator, however, the confidence
intervals are shifted from the true value such that the expected CICR can be undershot (cf.
Sarndal et al.; 1992, Chapter 5.2). Also a systematic underestimation of the true MSE of
the point estimator by the applied MSE-estimator causes a break down of CICR, since the
confidence intervals become too short. On the other hand, an excessively high MSE-estimate
results in a CICR of 100%. Therefore, it is of interest to compare the CICR against the mean
confidence interval length (MCIL) defined as

R
MCIL, := R CIL(6q4,), (4.84)
r=1
where
CIL(04,) := 220/ MSE(fy,) > 0 (4.85)

denotes the length of the confidence interval CIa(éd,r) and, as before, z, denotes the respective
quantile of the standard normal distribution.
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4.6.2 Simulation Setup

In the following, we present the general setup of the conducted simulation study. This basically
includes the process of generating the data and the settings for the examined point and MSE-
estimators. Further, we introduce two different sampling designs resulting in two scenarios of
the simulation study.

Population and Sampling

We consider a finite population of N = 30,000 units allocated to D = 30 areas, each of size
Ny = 1,000. The covariates are uniformly located in the interval [0, 1] and the finite population
is generated according to the model

Yia = f(Tig) + ug+ wiacia, i=1,...,N,
ug " N(0,0.05%), (4.86)
£ia P N(0,0.12).

The function f denotes a so called sigmoid function defined as

1
:10,1] — 1,2 1 4.87
and the w; 4 := z;4 + 0.5 are unit-specific weighting factors of the disturbance. In each of

the R = 10,000 MC-replications a sample of total size n = 300 is drawn. To introduce some
variation, the area-specific subsample sizes are as follows:

e ng = 3 for the areas d =1, .. ., 10,
e ng =9 for the areas d = 11, ..., 20,
e ng = 18 for the areas d = 21, ..., 30.

For further variation, we systematically allocate the units to the areas proportional to the
size of the covariate. That is, units with comparatively small covariate value x; are more
likely allocated to an area with a lower index d, whereas units with higher covariate value are
preferably located to areas with increased index. This systematic allocation leads to variations
in the mean values of the covariate px 4 and of the variable of interest uy 4 for the specific areas.
Table 4.1 summarizes the setup for the MC-simulation study, where decimals are rounded to
two digits.

For the sampling design which is utilized to draw a sample in each MC-replication, we consider
two different scenarios. The first design is stratified random sampling (StRS), where each
area is considered as stratum. That is, from each area the required number of samples ny4
is drawn completely at random. In order to investigate the impact of the introduced shape
constraints of the SOPT CON-estimator, we further apply StRS, but restrict the sampled
units to covariates with z; 4 > 0.35. We refer to this sampling design as restricted stratified
random sampling (ResStRS).
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nNg = 3, nd/Nd = 03%
1 2 3 4 5 6 7 8 9 10

px.q | 0.09 018 10.25]0.31]035|038 (042 |0.44|0.45 | 0.48
pyq | 1.16 | 1.07 | 1.15 | 1.13 | 1.22 | 1.42 | 1.48 | 1.45 | 1.47 | 1.40

ng = 9, nd/Nd = 09%
11 12 13 14 15 16 17 18 19 20
tx,qa | 0.50 | 0.52 | 0.52 ] 0.52 | 0.56 | 0.55 | 0.57 | 0.57 | 0.58 | 0.58
fy,q | 1.36 | 1.54 | 1.53 | 1.45 | 1.57 | 1.55 | 1.54 | 1.55 | 1.63 | 1.56
Ng = 18, nd/Nd = 18%
21 22 23 24 25 26 27 28 29 30

tx.q | 0.59 1 0.61 059 | 0.62]0.62 | 0.62 | 0.61 | 0.63 | 0.64 | 0.64
pyq | 1.65|1.63 | 1.62|1.65|1.67 |1.64|1.57|1.59 | 1.71 | 1.72

Table 4.1: Setup for the MC-simulation study

The utilized superpopulation model and the sampling designs are motivated from the practical
application of timber volume estimation introduced in Section 1.1. The underlying data are
presented in Figure 1.1 and indicate for an S-shape as well as a heteroscedastic error. This
is reproduced within the simulation study due to the sigmoid function and the increasing
weighting factors w; 4 = x;4 + 0.5. Further, observations with small values of the auxiliary
information are not located in the sample which is modeled by the sampling design with cut
off, i.e. ResStRS. Finally, the variation of the mean canopy height between the forest districts
is represented by the systematic area allocation.

Point and MSE-Estimators

To estimate the area-specific mean values

1
9d = ,uY,d = ﬁ Z yi7d7 d = 1, Ce 730, (488)
d iclly

we apply the SLMM-estimator (4.30), the SOPT-estimator (4.42), and the SOPT__CON-
estimator (4.52). To allow for an appropriate comparison of the estimators, we utilize the
same spline model for all of the three spline-based estimators. We employ the cubic B-spline
basis with m = 35 equally spaced knots and related difference penalty of order two (cf. Subsec-
tion 3.2.2). For the SOPT- and the SOPT CON-estimator, we determine the regularization
parameters A; and \, according to the sequential parameter selection approach presented in
Subsection 4.2.3. For the SOPT CON-estimator, we additionally demand for a monotonically
increasing function with function values at least one, i.e. we impose s/ > 0 and s > 1 on
as shape constraints. To estimate the MSE of the point estimators, we apply the MSE_boot
MSE-estimator defined in Algorithm 4.1 with B = 99 bootstrap replication for the first 1,000
out of the R = 10,000 MC-runs.
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4.6 Simulation Study

4.6.3 Simulation Results

In this subsection, the results of the MC-simulation study are discussed. We compare the
performance of the applied point estimators and further analyze the suitability of the related
bootstrap MSE-estimator.

Performance of the Point Estimators

The main reason for considering spline models and in particular shape constraints in small
area estimation is to achieve a more realistic model. This is expected to reduce the bias of an
estimator. Figure 4.1 presents the RBIAS of the applied methods as a boxplot over all areas
and as a line plot versus all areas under the different sampling designs.
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Figure 4.1: RBIAS of the point estimators under the sampling designs.

For the first scenario, all of the three estimators perform identically in terms of the RBIAS.
This is due to the fact that the same underlying spline model is applied to recover the general
trend within the data. Further, the sample data are rich enough to adequately represent the
entire finite population such that the additional shape constraints utilized by the SOPT _CON-
estimator do not have a visible effect. Therefore, the three estimators only differ by the selected
regularization parameter. The different approaches to determine the regularization parameter,
however, provide similar results for this first scenario. The spline model underlying the three
estimators recovers the data sufficiently accurate such that a RBIAS of less than 10% is achieved
for most of the areas. Frequently, the RBIAS even falls below 5%. The comparatively largest
biases occur for the areas with small subsample sizes, i.e. d = 1,...,10. Despite the fact that
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4 Penalized Splines in Small Area Estimation

the spline model accurately recovers the general trend, the small subsample sizes affect the
estimation of the area intercept uy. The small subsample sizes do not support an appropriate
estimation of these effects, which causes larger biases for those areas. Further, an unexpected
relatively large bias is observed for the area with index d = 15. For the case of the ResStRS-
design, the SLMM-estimator and the SOPT-estimator still perform similar in terms of the
RBIAS. Due to the cut off introduced by the sampling design, the sample data become less
informative such that the RBIAS of these two methods increases compared to the first scenario.
This becomes in particular visible for the areas with mainly small covariate values, i.e. with a
smaller index d, since the cut off of the sampling design is located at the left margin of the data.
There, the two unconstrained spline methods are not able to recover the underlying trend.
This can be seen in Figure 4.2, where the P-spline fits underlying the respective estimators
to selected MC-sample data is graphed. In this scenario, the shape constraints utilized by
the SOPT __CON-estimator have a visible effect and ensure that the underlying P-spline still
adequately represents the general trend in the data. Therefore, the ResStRS-design only slightly
affects the performance of the SOPT__CON-estimator compared to the StRS-design. Due to
this fact, the SOPT __CON-estimator is much more robust towards the cut off of the sampling
design and outperforms the two unconstrained methods.
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Figure 4.2: P-spline fits to selected MC-samples under the ResStRS-design.

Figure 4.3 presents the RRMSE of the applied methods as a boxplot over all areas and as a
line plot versus all areas under the different sampling designs. As model-based estimators, the
three methods exhibit small variances such that the RRMSE is dominated by the related biases.
Therefore, the results on the RRMSE confirm the former findings. For the first scenario, the
estimators perform identical in terms of the RRMSE and the relatively large RRMSEs occur for
the areas that already occupy larger biases. These are the areas with small subsample size d =
2,3, 4 and the area with index d = 15. For the ResStRS-design, the SOPT CON-estimator still
outperforms the unconstrained methods and the areas with relatively large RRMSEs coincide
with those possessing a larger bias. An unexpected result in this scenario is the observation of a
slight advantage for the SLMM- compared to the SOPT-estimator in terms of the RRMSE. Since
the RBIAS of the both methods approximately coincide, this indicates for a higher variance of
the SOPT-estimator in this case. Figure 4.4 presents the boxplots of all R = 10,000 MC-runs
corrected by the true value, i.e. gd,r — By, for this scenario for all estimators and all areas. This
confirms the assumption of a higher variability of SOPT-estimator since the related boxes show
significantly more outliers and a wider spread.
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Figure 4.3: RRMSE of the point estimators under the sampling designs.
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Figure 4.4: Point estimates for the R = 10,000 MC-replications under the ResStRS-design.
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The increased variability of the SOPT- compared to the SLMM-estimator is due to the fact
that the process of the simulation study does not allow for a retrospective adjustment of the
regularization parameter A;. Therefore, an uncontrolled behavior of the P-spline underlying the
SOPT- and the SOPT__CON-estimator can occur. This is displayed in the left-hand graph of
Figure 4.5. In the sample the P-spline underlying the SOPT- and the SOPT CON-estimator
heavily overfits the data. At the left margin, the P-spline underlying the SOPT-estimator is
pulled upwards due to comparatively high values of the leftmost sample data. This effect also
concerns the P-spline underlying the SOPT __CON-estimator, but the monotonicity constraint
steers in the opposite direction. This volatile behavior indicates for an inadequate choice of the
regularization parameter ). Indeed, for this selected MC-sample the utilized regularization
parameters are Aspum = 66.1 and Ay, = 0.01. The value of 0.01 marks the smallest value
considered within the grid search to determine the regularization parameter for the SOPT
and the SOPT__CON. This is a further indicator of an inadequate parameter selection. In a
concrete application, this unrealistic behavior is controlled by a retrospective adjustment of
the regularization parameter. Resetting A\; = Aspau yields the right-hand graph of Figure 4.5,
which is in line with the expected P-spline fits. The automatic selection of the regularization
parameter within a grid search without manual adjustment is therefore inadequate in practice,
since it deprives the SOPT- and the SOPT__CON-estimator of one of their strengths, namely
the control of the smoothness of the underlying P-spline. For the simulation study, however, the
automatic selection is necessary and explains the increased RRMSE of the SOPT- compared
to the SLMM-estimator.
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Figure 4.5: Uncontrolled (left) and controlled (right) behavior of the P-splines of the SOPT- and
the SOPT CON-estimator for a selected MC-sample under the ResStRS-design.

Performance of the MSE-Estimator

Figure 4.6 depicts the BIASMSE of the bootstrap MSE-estimator for all of the three methods
under both scenarios. For the first scenario, the bootstrap MSE-estimator performs identical in
terms of the BIASMSE for all of the three point estimators. This is due to the fact that the point
estimators themselves are identical in this scenario. The bootstrap MSE-estimator is almost
unbiased, but slightly overestimates in each area and is therefore a conservative MSE-estimator.
For the areas with small subsample sizes the BIASMSE is slightly larger, which stabilizes with
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increasing sample sizes. For the second scenario, the bootstrap MSE-estimator for all methods is
much more biased. Especially for the areas that are more affected by the cut off of the ResStRS-
design the BIASMSE increases. A bit unexpected is the observation that the BIASMSE also
increases for the areas that are not affected by the sampling design. The utilization of the
shape constraints by the SOPT CON-estimator leads to a decreased bias of the bootstrap
MSE-estimator. For all three point estimators the bootstrap MSE-estimator produces mainly
conservative results. In practice, this is much more acceptable than underestimation. In the
areas with index d = 3,4, 5, however, the bootstrap MSE-estimator underestimates the true
value for all methods. Note that these are the areas that are also concerned with a relatively
large RBIAS.
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Figure 4.6: BIASMSE of the MSE-estimator for the point estimators under the sampling
designs.

Figure 4.7 depicts the CICR of the bootstrap MSE-estimator for all point estimators versus the
area index, the MCIL, and the RBIAS of the point estimators. For the first scenario, the CICR
is close to the nominal coverage rate of 95% for all of the three methods and is still at 75% in the
worst case. With a mean value of approximately 0.5, the MCILs for all methods are moderate
such that the MSE-estimator performs satisfactory for all methods under the StRS-design. For
those areas with a comparatively large RBIAS of the point estimator also the MCIL is large
such that the CICR is there also satisfactory but not meaningful. For the ResStRS-design the
picture is slightly different. The nominal coverage rate is much more often reached which is
due to an also increasing MCIL. This increased MCIL compared to the first scenario is caused
by the increased RRMSE of the related point estimators. For the areas with index d = 3,4,5
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4 Penalized Splines in Small Area Estimation

the coverage rate breaks down to approximately 50%. This is due to the comparatively large
biases in these areas since in this case the confidence intervals are shifted from the true value.
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Figure 4.7: CICR of the MSE_boot MSE-estimator for the point estimators under the sampling
designs.

4.6.4 Summary and Discussion

In the simulation study, the performance of the newly developed point estimators SOPT (4.42)
and SOPT CON (4.52), also in comparison to the SLMM-estimator (4.30), under two different
sampling designs is examined. The superpopulation model utilized for the simulation study
and the applied sampling designs are motivated by a real-world application. If the sample data
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adequately represent the underlying finite population, the point estimators turn out to perform
identical and provide satisfying estimates in terms of bias and of variance. In this scenario,
also the MSE_boot MSE-estimator (defined in Algorithm 4.1) for the point-estimators yields
adequate results. We conclude that in the case of the StRS-design all of the three estimators are
appropriate and that the MSE_boot MSE-estimator is applicable to each of the point estimators.
The much more interesting case is the scenario resulting from the ResStRS-design. The cut
off of the sample data generates variation that enables to expose the differences of the applied
methods. A bit surprising is the fact, that the SLMM-estimator performs superior to the SOPT-
estimator in this case. This is due to the increased variability of the SOPT-estimator caused
by an automatization of the regularization parameter selection. Within a more sophisticated
parameter selection algorithm, we expect the both methods to perform also quite similar in this
ResStRS-design scenario. As expected, under the ResStRS-design the SOPT CON-estimator
outperforms the remaining estimators due to a more accurate P-spline fit resulting from the
incorporated shape constraints. In this scenario, the MSE_boot MSE-estimator performs inferior
compared to the first scenario. However, especially for the SOPT__CON-estimator the results
are still satisfying.

An interesting observation that is not further examined within this simulation study is the fact
that the utilization of a heteroscedastic error term does not noticeably effect the performance
of the estimators. The expectation that a heteroscedastic error term causes a rather careful
parameter selection, i.e. a relatively large Ay and Agpa, is not confirmed by the simulation
study. This might be due to the fact that the unit specific terms w; 4¢; 4 are still moderate in
size and are compensated by the spline model. Here, the further examination of the impact of
error terms with a wider spread as well as of outliers is worth to be considered. In this con-
text, the incorporation of the weighted least squares functional (3.37) into the SOPT- and the
SOPT__CON-estimator is a promising feature. Finally, a conspicuous behavior of all of the esti-
mators is observed in the area d = 15. This is, however, neither caused by the superpopulation
model nor by the sampling design and demands for a further investigation.

4.7 Application: Timber Reserve Estimation in
Rhineland-Palatinate

We finally turn back to the real-world application of estimating timber reserves in the sev-
eral forest districts of Rhineland-Palatinate (RLP). This application is already introduced in
the motivational Section 1.1 and also addressed by Miunnich et al. (2016) and Wagner et al.
(2017). To provide area-specific timber reserve estimates, we apply the SOPT- (4.42) and
the SOPT_CON-estimator (4.52) as well as the SLMM- (4.30) and the BHF-estimator (4.15)
for comparative reasons. At first, we introduce the data utilized for this application in more
detail.

Data Basis
In order to conduct the state forest inventory in RLP, the forest land of the federal state is,

in simplified terms, overlaid with N = 3,065,696 grid cells. For n = 521 uniformly cells, the
mean (spruce) timber reserve in cubic meter is observed within the scope of the SFI 2007.
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4 Penalized Splines in Small Area Estimation

These values are considered as response variable y; within the study which aims in estimating
the mean timber reserves per hectare for the D = 46 forest districts of RLP. That is, the
area-specific parameter of interest is given as

edizﬁd-uxd,dzl,...,D, (489)

where k4 € R denotes a given conversion factor (cf. Mandelkow, 2012, Chapter 5). For nearly
the whole territory of RLP, airborne laser scanning data are available. They are collected
by the state surveying office over the course of twelve years from 2002 to 2013 and thus in
particular in 2007. From these data a normalized surface model is created from which the
mean canopy height in meter for each cell is derived (cf. St-Onge et al., 2003). These values are
considered as auxiliary covariate x; and the relationship between response variable and covariate
for the sampled units is presented in Figure 1.1. A high correlation between canopy height
and timber volume is observable, but a (generalized) linear relationship cannot be assumed.
Further, a nonnegative and monotonically increasing relationship is to expect. The ALS data
are (partially) available for D = 44 out of the 46 forest districts of RLP. For the two further
forest districts neither the sample data nor the ALS data are available such that these districts
are excluded from the study. We refer to Mandelkow (2012) and the references therein for more
details on the data collection process. Figure 4.8 presents the area-specific subsample sizes ng4
and the related sample fractions on a percentage basis, i.e. (nq/Ng) - 100%. Due to the very
small and partially nonexisting subsamples, the estimation of timber reserves in the several
forest districts of RLP requires the application of small area estimation methods. Further,
since design information are rarely available and difficult to obtain, the model-based approach
has to be pursued.
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Figure 4.8: Area-specific sample sizes (left) and sample fractions on a percentage basis (right)
for the D = 44 considered forest districts in RLP.
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Small Area Estimates

In order to estimate the mean timber reserves per hectare in the several forest districts of RLP,
that is

04 = kg~ piva, d=1,...,D =44, (4.90)

we apply the estimators BHF, SLMM, SOPT, and SOPT__CON. For the spline parameters of
all of the spline-based estimators, we chose cubic splines with m = 35 equally spaced knots.
According to Ugarte et al. (2009), we base the SLMM-estimator on the B-spline basis with
difference penalty of order two. For the SOPT- and the SOPT CON-estimator, we utilize
the B-spline basis with curvature penalty and determine the regularization parameters by the
identic parameter selection approach (cf. Subsection 4.2.3) and the cross-validation method
(cf. Subsection 3.2.4). For the SOPT__CON-estimator, we additionally impose a nonnegativ-
ity constraint on the small area P-spline, which is reasonable since timber volume cannot be
negative. Further constraints such as a monotonically increasing behavior of the small area
P-spline are also plausible, but the nonnegativity constraint turns out to suffice to provide
reliable small area estimates. The resulting small area estimates of the applied estimators are
illustrated in Figure 4.9. The compared estimators yield a quite similar overall picture, i.e. the
related small area estimates most often do not tremendously differ. However, it is apparent
that the BHF-estimator results in four negative estimates for the timber reserves and that the
SLMM-estimator produces one negative estimate as well. Since timber volume has to be non-
negative, these results are infeasible. Note that the case of infeasible estimates only occurs for
unsampled areas. A simplistic approach to overcome this issue is to set the negative estimates
to zero such that all of the estimates become feasible. Estimating nonexisting timber volume,
however, would still be inaccurate since positive canopy heights are observed in the related ar-
eas, which automatically results in strictly positive timber volumes. Therefore, zero estimates
of timber reserves are not accepted in practice. The SOPT- and the SOPT CON-estimator,
on the contrary, yield feasible small area estimates without any exception, i.e. even for the
unsampled areas.
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Figure 4.9: Estimates of the mean timber reserves per hectare for the D = 44 forest districts
in RLP obtained by the estimators BHF, SLMM, SOPT, and SOPT__CON.
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Underlying Regression Functions

To further analyze the obtained estimation results, the underlying regression functions are dis-
played in Figure 4.10. The linear approximation of the BHF-estimator is clearly insufficient
since the curvature of the sample data is not reflected. Further, the regression line under-
lying the BHF-estimator yields highly negative predictions for small canopy heights which is
unrealistic and therefore unacceptable. This explains the several negative small area estimates
obtained by the BHF-estimator. By contrast, all of the three spline functions adequately reflect
the curvature of the sampled data. In the sample all of the splines approximately coincide, but
differ out of the sample. There, the P-spline function underlying the SLMM-estimator deviates
from the P-splines underlying the SOPT- and the SOPT CON-estimator. This is due to the
different regularization strategies and regularization parameter selections. Especially at the
left margin, the spline function underlying the SLMMe-estimator yields negative and therefore
unrealistic function values. This insufficient behavior explains the one infeasible small area
estimate of the SLMM-estimator. The (unconstrained) small area P-spline produces negative
values as well, but these are as less negative as the values of the spline underlying the SLMM-
estimator. Therefore, the SOPT-estimator provides exclusively feasible estimates, even though
the underlying small area P-spline is insufficient at the left margin. The small area P-splines,
both unconstrained and with shape constraints, only differ on the left margin. There, the non-
negativity constraint utilized by the SOPT CON-estimator has a visible effect such that the
unrealistic negative function values are avoided. This slight modification guarantees feasible
small area estimates and realistic function values.
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Figure 4.10: Regression functions of the applied estimators BHF, SLMM, SOPT, and
SOPT__CON.

MSE-Estimates

Besides the plausibility of the estimates, we analyze the performance of the spline-based small
area estimators in terms of their relative root mean squared error (RRMSE). Figure 4.11
presents the estimated RRMSEs on a percentage basis of the applied estimators, obtained by
499 repetitions of the MSE_boot MSE-estimator presented in Algorithm 4.1. The SOPT- and
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the SOPT_CON-estimator yield much more stable estimates in terms of the RRMSE compared
to the SLMM-estimator. This is due to the numerical more stable optimization approaches and
the more flexible choice of the regularization parameter. The area-specific RRMSEs of the
SLMM-estimator frequently exceed 10%, most of them by far. On the contrary, for the SOPT-
estimator the area-specific RRMSEs are all less than 10%, expect one, most of them less than
5%. The RRMSEs of the SOPT- and the SOPT CON-estimator are quite similar, but, due
to the shape constraints, even for the last vacant area the RRMSE gets reduced to less than
10%. Thus, despite the fact that the SOPT-estimator already results in exclusively feasible
small area estimates, the incorporation of the shape constraints pays off in terms of RRMSE.
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Figure 4.11: RRMSE of the estimators SLMM, SOPT, and SOPT_CON, estimated by the

MSE_boot MSE-estimator with B = 499 repetitions.

93






Chapter 5

Large-Scale Algorithms for Penalized
Spline Methods

As shown in the previous chapters, the determination of the small area P-spline (cf. Definition
4.2.1) requires the solution of the linear system (4.37), whereas the shape constrained small
area P-spline (cf. Definition 4.47) is based on the solution of the strictly convex QP (4.65).
That is

(7P + A\ A — BTCD) o = BT (y — Cy) (5.1)
for the unconstrained case and

min ;aT ((IDTQD + XA — CDTC’<I>) a— (@T(y - Cy))T a

ac€RK
st. Ia<0, relc
a>0,rels

(5.2)

for the shape constrained case. For the special case of C' = 0, we obtain the regression P-spline
(3.39) and the shape constrained regression P-spline (3.88), respectively. At first appearance,
these problems can be solved by the classical solution algorithms for the respective problem
classes. The problem dimension K, however, corresponds to the dimension of the underlying
spline space S,(K) and is given as

P
K = dim(S, H dim(S,, ( H m,+q, +1) = O(2") (5.3)

and therefore depends exponentially on the number utilized covariates P. This exponential
dependency of K on P is often referred to as the curse of dimensionality (cf. Bellman, 1957).
The exemplarily choice of m, = 36 and ¢, = 3 for all p =1, ..., P, which is consistent with the
suggestions made in Section 3.2, leads to a problem dimension of K = 40”. The related spline
space dimensions for this concrete example are presented in Table 5.1.

| P=2|P=3| P=4 | P=5
dim(S,(K)) | 1,600 | 64,000 | 2,560,000 | 102,400,000

Table 5.1: Exponential dependency of the spline space dimension K = dim(S,(K)) on the
covariate dimension P.
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It becomes evident that even a moderate number of covariates leads to computationally very
challenging large-scale problems (5.1) and (5.2). A serious issue thereby is the required amount
of memory caused by the high-dimensional matrices occurring within the considered problems.
For example, for P = 3 already the storage of the penalty matrix A of dimension K x K
requires approximately two gigabyte (GB) of random access memory (RAM) using the com-
presses sparse column (CSC) format from the Matrix package (cf. Bates and Maechler, 2018)
of the statistical computing software R (cf. R Core Team, 2018). Since A is not the only matrix
that has to be stored and since the matrices further need to be manipulated, i.e. the problems
(5.1) and (5.2), respectively, have to be solved, this clearly exceeds the internal memory of
common computer systems which averages 8-16 GB of RAM. For further increasing P, even
the memory of currently available supercomputers is no longer sufficient. This rapid growth
of the memory requirements prevents the utilization of classical pre-implemented solution al-
gorithms and demands for much more sophisticated strategies in order to make the P-spline
methods developed within this thesis applicable to multiple covariates. Therefore, this chapter
is devoted to the development of computational efficient solution algorithms for the particular
large-scale problems (5.1) and (5.2) and especially to the memory efficient implementation of
these algorithms. In this context, computational efficiency is related to the number of required
iterations to solve a given problem and is therefore a property of the applied algorithm, whereas
the memory efficiency mainly depends on the implementation. The runtime of an algorithm,
i.e. the time required to terminate, is of further interest and is affected by both the applied
algorithm and the related implementation.

As pointed out before, the occurring matrices do not fit into the internal memory of nowadays
available computer systems. Therefore, the developed solution algorithms have to be matrix-
free, i.e. they do not assemble and store the matrices explicitly, but only accesses them by
performing matrix operations such as evaluating matrix-vector products. In Section 5.1, we
therefore implement the desired matrix operations in a memory efficient manner by exploiting
the special inherent structure of these matrices. To solve the large-scale linear system (5.1),
we present a matrix-free conjugate gradient method in Section 5.2 based on the implemented
matrix operations. Section 5.3 is devoted to the large-scale strictly convex QP (5.2). We
apply a quadratic penalty approach to reformulate the constrained optimization problem (5.2)
as an unconstrained convex optimization problem which is solved by the Newton method.
There, the large-scale linear system to determine the Newton direction is memory efficiently
solved by a modification of the matrix-free CG method for the linear system (5.1). In order to
improve the computational complexity of the utilized matrix-free CG methods, we implement
a matrix-free preconditioner in Section 5.4 based on the multigrid idea. The performance of
this MGCG method is analyzed in numerical test examples in Section 5.5, also in comparison
to the unpreconditioned CG method.

5.1 Memory Efficient Matrix Operations

Due to the curse of dimensionality, the matrices ®, A, and I', cannot be stored for increasing
covariate dimension P. Therefore, the respective solution algorithms have to be designed in
such a way that they only access these matrices by performing adequate matrix operations.
By exploiting their inherent structure, we develop several memory efficient operations for these
special types of matrices in this section.
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5.1 Memory Efficient Matrix Operations

5.1.1 Matrix Structures

Due to Definition 3.1.6, a tensor product spline basis function ¢, , is given as the component-
wise product of spline basis functions in one variable, i.e.

P
: P 1 P\T
Phg = 0jg: QCR" =R, z=(27,...,2° ) — H qb?p’qp(xp). (5.4)
p=1
Based on this tensor product nature, we derive convenient representations of the high-dimensional
P-spline related matrices in terms of their one-dimensional counterparts in the following.

Tensor Product Spline Basis Matrix

Since the covariates z1,...,z, € RY are scattered, the tensor product spline basis matrix ®
does not exhibit a special structure as well. Due to the aforementioned tensor product nature,
however, we obtain a representation of ®7 as Khatri-Rao product (cf. Definition 2.3.3) of
the related transposed spline basis matrices in one variable. This is stated by the following
lemma.

Lemma 5.1.1
For the matrices

@, e R, @i, 5, =, (af), p=1,..., P, (5.5)
it holds
P
T = ()P e RF ™. (5.6)
p=1

Proof. Let i € {1,...,n} be arbitrary. Due to Lemma 3.1.7 and Definition 2.3.3, it holds

(I)T['>i] = ¢(xz) = ®¢p($f) = ®(I>g["i] = (Q (I)Z) [77’]

p=1 p=1

for the i-th column of ®7. Since 7 is chosen arbitrarily, we already conclude the proof. n

Penalty Matrix

The explicit form of the penalty matrix A depends on the utilized regularization term (cf.
Subsection 3.2.2). For the truncated power series basis the penalty matrix reads

P
A=>I®..01, @D'®I;, 6 ®.. &I ¢cR*" (5.7)
p=1
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5 Large-Scale Algorithms for Penalized Spline Methods

whereas the differences penalty matrix for the B-spline basis is given as
P T
A=YI1®...0,, 0(AL) AL @1, ®...® 1, € R, (5.8)
p=1

Thus, both penalty matrices are given as the sum of Kronecker matrices (cf. Definition 2.3.1).
The dimension of the Kronecker factors of each Kronecker matrix is independent of P such
that their storage does not cause any problems. For the curvature penalty (3.53) with B-spline
basis, that is

2
A=) =0, € REXE (5.9)

e

we aim for a similar representation. Based on the tensor nature of the B-spline basis functions,
the following lemma states that each of the Gramian matrices ¥, is given as the Kronecker
product of the related Gramian matrices in one variable.

Lemma 5.1.2
For the matrices

W € R WL [y, 4] = (0708, 070 0) gy P =L P (5.10)
it holds
P
U, =QUr e RF*E, (5.11)

p=1

Proof. To prove the lemma, we show
Uk (] = (U, @ ... UL ) k(]

for arbitrary k,¢ € {1,..., K}. Let v denote the bijective lexicographical sorting map (3.25)
and let i = (i1,...,ip) == v (k) and j = (j1,...,jp) := v () denote the related inverse
images. It holds

U, [k, 0] = <8T@i,qvaT¢j7q>L2(Q) = /ar%,q(x)ar%ﬁq(x)dx
Q

P
= / / [[o7e} (@) (aF)dz” ... da'!

0 op Pl

I
v

[0, @, (@) dar

p

<a7’p (’Dfpv% ’ an Spgp »dp >

Il
—

p

I
v

Lo (Qp)

S
I
—
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= (@i \I]fp) (i), v(j)] = (@i \Dfp) [k, €].

Since k and ¢ are chosen arbitrarily, we conclude the proof. O

Matrix of the Shape Constraints

The matrices representing the shape constraints (3.91) are defined as the partial derivatives of
the tensor product spline basis functions evaluated at an adequate discretization of €. Utilizing
the tensor nature of the spline basis functions, we obtain a representation of each of the I,
as Kronecker product of the one-dimensional counterparts. This is stated by the following
lemma.

Lemma 5.1.3
For the matrices
I g, (1) .. O (1)
I? = : : eRM* N p=1 ... P, (5.12)
O o (Thr,) - O (Th)
it holds
P
[, =Q@TI7 e RTE. (5.13)
p=1

Proof. For arbitrary t € {1,...,T} and arbitrary k € {1,..., K}, we show

Dt k] = (é Ff,,) K.

Let v denote the bijective lexicographical sorting map (3.25) and let i = (iy,...,ip) := v~ (t)
and j = (j1,...,7jp) := v (k) denote the related inverse images. It holds

P

Loft, k] =0 ¢sq((rh,....7) ) =[] 0™ L (™)

_ (@ rf:,,) (i), v(j)] = (@ Fi) £, k).

Since t and k are chosen arbitrarily, we conclude the proof. O

Remark

As previously shown, the memory demanding matrices ®, A, and I', that occur in the large-
scale problems (5.1) and (5.2) are given as Khatri-Rao or as Kronecker product of matrices
of much smaller dimensions. Especially, the dimensions of the Khatri-Rao and the Kronecker
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factors do not depend on the number of covariates P, but only the number of factors depends
on P. Therefore, the required memory to store these factors is linear in P, which is obviously
a great improvement compared to the exponential dependency for storing the full matrices as
stated in (5.3). Note that all of the occurring factors are of comparatively small dimensions
such that their storage requires a negligible amount of RAM. As a case in point, the storage of
the Kronecker factors of A for the P = 3 case requires the storage of three matrices of dimension
40 times 40, i.e. 4,800 doubles, which is 38400 bytes (= 0.0000384 GB). On the contrary, as
already mentioned, the storage of the full matrix A in CSC format requires approximately two
GB of RAM.

5.1.2 Matrix Operations

In order to develop memory efficient solution algorithms for the large-scale problems (5.1) and
(5.2), we aim at exploiting the special structures of the occurring matrices. Therefore, in the
following we implement several matrix operations with arbitrary Kronecker and Khatri-Rao
matrices that only require the storage of the respective low-dimensional factors.

Khatri-Rao Matrix

For given matrices A, € R™*" p=1,..., P, we consider the Khatri-Rao matrix
jo P
A=A, eR™", where m:= [] m,. (5.14)
p=1 p=1

Due to the definition of the Khatri-Rao product (cf. Definition 2.3.3), it holds

P P P
A=0A4,=|Q A.1],...,® Al,n] (5.15)
p—1 p=1 p=1
such that for all z € R” it follows
n P
Az =) zfilv;, where v; := Q) Ayl 1] € R™ (5.16)
i=1 p—1

denotes the i-th column of A. As a result, Algorithm 5.1 allows to compute the matrix-vector
product Az by only accessing the Khatri-Rao factors Ay,..., Ap of A.

Algorithm 5.1: Matrix-vector product with a Khatri-Rao matrix
Input: Aq,..., Ap,x
Output: w:=(A; ®...® Ap)z
w <0
fori=1,...,ndo
v Al ®...® Apl, 1]
w < w + iy
end
return w
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Analogously, for all z € R™ it holds
ATz = (vsz, . ,vfz)T, (5.17)

which yields Algorithm 5.2 to calculate the matrix-vector product A7z by only accessing the
Khatri-Rao factors Aq,..., Ap of A.

Algorithm 5.2: Matrix-vector product with a transposed Khatri-Rao matrix
Input: Ay,... , Ap, 2
Output: w:= (4,0 --® Ap)T2

w <+ 0

fori=1,...,ndo
V< Al[,l] X ... ®AP[,Z]
wli] + vz

end

return w

For the aspired development of computationally efficient solution algorithms and the related
memory efficient implementation not only matrix-vector products, but also the extraction of
diagonal elements of several matrices is required. Recall that these operations still have to be
performed matrix-free, i.e. the diagonal of the respective matrix has to be computed without
explicitly assembling the matrix itself. In order to compute the diagonal of the matrix product
AAT € R™*™ where A still denotes the Khatri-Rao matrix (5.14), let e; be the j-th unit vector
for j =1,...,m. For the j-th diagonal element of AA” it holds

T
T T
(Ul €jyenn ,Un€j>

=@l ..ol = iw[ﬂ?

2

(AA)" [, j] = e] AATe; = || ATey |3 =

2

(5.18)

where v; is the i-th column of A as in (5.16). Algorithm 5.3 allows for the extraction of the
diagonal of AAT by only accessing the Khatri-Rao factors of A.

Algorithm 5.3: Diagonal extraction for Khatri-Rao products I
Input: Aq,..., Ap
Output: d := diag(AAT), where A:==A; ©...® Ap
d<+0
fori=1,...,ndo

V< Al[,l] R...Q AP[,Z]

for j=1,...,mdo

| dlj] < d[j] + v[4]”
end

end
return d
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For a further given matrix B € R™*" it analogously holds
e;ABATe; = (vi[f],. .., vali]) B (nlf], ..., vals])"

= $= ) (3 Bk iuli) = 3 (S gle ]

k=1 \i=1

(5.19)

for the j-th diagonal element of the matrix product ABAT € R™ ™. The Algorithm 5.4
computes the diagonal of ABAT by only accessing the Khatri-Rao factors A, ..., Ap and the
matrix B.

Algorithm 5.4: Diagonal extraction for Khatri-Rao products II
Input: Ay,...,Ap,B
Output: d := diag(ABAT), where A:= A; ®...® Ap
fori=1,...,ndo
V< Al[,l] X...x0 AP[,Z]
for k=1,...,ndo

for j=1,...,m do

| dlj] <= dlj] + Bk, i]o[j]v[j]
end

end
end
return d

Kronecker Matrix

For given matrices A, € R™»*" we now consider the Kronecker matrix

P P P
A=A, e R™", where m:=[[m, and n:= []n,. (5.20)

p=1 p=1 p=1

In the case of quadratic Kronecker factors, that is m, = n, for all p = 1,..., P, Benoit et al.
(2001) provide an implementation to compute the matrix-vector product 27 A for arbitrary
z € R™ by only accessing the Kronecker factors Aj,..., Ap. For the solution algorithms
developed and implemented within this thesis, however, Kronecker matrices with nonquadratic
factors occur. Therefore, we extend their approach to compute the matrix-vector product Az
for all x € R™ with arbitrary Kronecker factors in the following. Due to the normal factor
decomposition of the Kronecker product (cf. Lemma 2.3.2), it holds

A=T[(In®.. . ®L, , ®A &L, ®.. &L,)=[](L,®A4eL,), (5.21)
p=1 p=1
where
p—1 P
L=1]n;, r= [ my (5.22)
=1 j=p+1
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and [ denotes the identity matrix of respective dimension. In order to compute the matrix-
vector product Az, it suffices to successively multiply with each normal factor, that is, starting
with vp := z € R", we compute

z%y:@@®@®bg%eRmep:R“wL (5.23)
and obtain vy = Ax € R™. To multiply with the p-th normal factor, note that
(5, @ A @ L,) v, = (I, ® Ry) vy, (5.24)
where
R, = A, ® I, € RM»x"eTr, (5.25)

The matrix I;, ® R, is a block-diagonal matrix consisting of [, blocks containing the matrix
R, in each block. We decompose the vector v, into the [, chunks v,1,...,9,,,, each of length
nprp, that is

Up1 vpl(s — 1)nyry, + 1]
vy=1 |, Upsi=0s[(s = V)nyr, +1:snyry) = : e R™"™  (5.26)

Up., Vp[ STy

for s =1,...,1,. This yields

Rytpa Wp,1
(n,eA,eL)u=  |=|: |, (5.27)
Rp@pvlp wp,lp
where
wy s = R,U,, € R™'™. (5.28)
In order to compute w, s for s =1,...,1,, note that
Ap[1, 1)1, Ap[1,np) 1,
Ry =A,&1I, = : " : (5.29)
Aplmp, 1L, ... Aplmy, ),

such that each row of R, consist of the elements of a row of A, at distance 7, apart and zeros
for the rest. We define the vectors
Up,s|t]
Ups|lt + 1
Zpst = Upslt,t +1p, ..., b+ (n, — 1)1, == pol , d c R™ (5.30)

Gpalt + (mp — 1)1
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fort =1,...,7p,, such that each of the matrix-vector products
Zpst = Apzp st € R™ (5.31)

provides m,, elements of the vector w, s, but at incorrect positions. Since the true positions are
at distance r, apart, we deduce

Wy, s[t]
Wy s[t + 1)

Wy s[t, t+7p, .. t+ (my — 1)ry] = : = Zpst (5.32)
Wp,s[t + (my — 1)1y

Finally, looping backwards over all normal factors of A leads to Algorithm 5.5 to compute the
matrix-vector product Az by only accessing the Kronecker factors of A.

Algorithm 5.5: Matrix-vector product with a Kronecker matrix
Input: Aq,..., Ap,x
Output: vy := (4, ®...® Ap)x

Up < T
for p=P,...,1do // loop over normal factors
for s=1,...,[,do // loop over chunks
Up.s < Vp[(s — L)nyry + 12 snyry)
Wy < 0
for t=1,...,r,do // chunk details
Zpst < Upsltt + 7y, ..ot 4+ (n, — 1)1y
Zpsit S ApZpsi
Wy st t+71py ..t 4+ (my — 1)rp] <= 2,54
end
Up—1[(s — D)myry + 10 smyry]| <= wy
end
end
return vy

As already mentioned, for the aspired development of computationally efficient solution algo-
rithms and the related memory efficient implementation not only matrix-vector products, but
also the extraction of diagonal elements of several matrices is required. Due to the properties
of the Kronecker product (cf. Lemma 2.3.2), namely the distributivity of transposition, the
mixed product property, and the diagonal property, it holds

diag(ATA) = édiag (A;FAP) : (5.33)

p=1

Algorithm 5.6 extracts the diagonal of the matrix AT A € R™ ™ by only accessing the Kronecker
factors Ay,..., Ap.
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5.2 Matrix-Free Conjugate Gradient Method

Algorithm 5.6: Diagonal extraction for Kronecker products I
Input: Aq,..., Ap
Output: d := diag(ATA), where A= A; ®...® Ap
forp=1,...,Pdo

d, < diag (AT A,)
end
return d<+ d; ® ... dp

Let W := diag(wy,...,w,) € R™ denote an arbitrary diagonal matrix. The j-th diagonal
element of ATW A is given as

G?ATWAej = (A[7.]DTWA[7]] = Z ka[kvj]27 (534)
k=1
where e; denotes the j-th unit vector and
jo P
Al 4] = (@ Ap) [, 7] = & (Al 3,]) (5.35)
p=1 p=1

with i = (i1,...,ip) := v~ 1(j) denoting the inverse image of the lexicographical sorting map
(3.25). Algorithm 5.7 computes the diagonal of ATTW A while assembling neither A nor W,

Algorithm 5.7: Diagonal extraction for Kronecker products II
Input: Al, ce 7Ap, Wiy vy Wy
Output: d := diag(ATW A), where A := A, ®...® Ap and W := diag(wy, ..., wy,)
for j=1,....,ndo
i+ vi(j)
V Al[',il] ®...® AP[',’iP]

d[j] < X wyv[k]?

k=1

end
return d

5.2 Matrix-Free Conjugate Gradient Method

Section 5.1 provides several matrix operations with special types of matrices, namely Kronecker
and Khatri-Rao matrices, that do not require their explicit storage. Based on these memory
efficient implementations, we develop a matrix-free solution algorithm for the large-scale linear
system (5.1) in this section. Due to Lemma 4.4.1, the coefficient matrix

TP 4 \A — dTCP € REXK (5.36)

of this linear system is symmetric and positive definite such that an appropriate method to solve
the large-scale linear system (5.1) is the CG method (cf. Algorithm 2.4). The crucial part of
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this approach is the computation of a matrix-vector product with the coefficient matrix (5.36)
in each CG iteration such that a straightforward application is computationally infeasible. The
CG algorithm, however, does not require the explicit storage of the coefficient matrix, but only
needs to access it by forming matrix-vector products, i.e. it can be implemented as a matrix-
free method. For that purpose, we require the implementation of matrix-vector products with
the matrices ®7, ®, and A without explicitly storing them. Due to Lemma 5.1.1, the matrix
T is given as a Khatri-Rao product such that the required matrix-vector product is achieved
by Algorithm 5.1. Further, we obtain the right-hand side ®7 (y — Cy) of the linear system
(5.1) by Algorithm 5.1 as well. Algorithm 5.2 provides the required matrix-vector product
with the transposed Khatri-Rao matrix ®. In order to multiply with the penalty matrix A,
we remark that the penalty matrix is given as a (weighted) sum of Kronecker matrices. A
matrix-vector product with A is therefore computed by the repetitive application of Algorithm
5.5. In conclusion, we present a memory efficient implementation of the matrix-free CG method
to solve the large-scale linear system (5.1) in Algorithm 5.8.

Algorithm 5.8: Conjugate gradient method for the linear system (5.1)

a0

p 1+ O (y—Cy) // apply Algorithm 5.1
while [|r||3 > tol do

v (OTP + AN - BTCD) p // apply Algorithm 5.2, 5.1, and 5.5
w < [|r[I3/p"v

a4 o+ wp

T 4T

T 1T —wu

p <+ (Ir3/1713)p

end

return «

Note that for a fixed P the Algorithm 5.8 solely requires the storage of all occurring Kronecker
and Khatri-Rao factors. These storage demands, however, are a priori fixed and comparatively
small, especially when a sparse storage format is used. Thus, the memory requirement depends
linearly on P and is therefore O(P). This is a tremendous improvement compared to O(2F)
required by the naive implementation of the CG method in the full matrix approach. The
application of the matrix-free CG method allows to determine the (unconstrained) regression
P-spline as well as the (unconstrained) small area P-spline for increasing covariate dimension
P with a negligible amount of RAM. The convergence rate of the CG method, however, heavily
depends on the condition number of the coefficient matrix and due to its construction, we have
to expect that the matrix ®7® + A — ®TCd is of rather poor condition. We therefore have to
face tremendously increasing computational complexity with increasing covariate dimensions
P. This demands for adequate preconditioning methods in order to make the matrix-free CG
method more practicable (cf. Subsection 2.4.3). These preconditioning methods, however, also
have to be matrix-free which prevents the application of widely used incomplete factorization
methods such as the incomplete Cholesky factorization (cf. Nocedal and Wright, 2006, pp. 119-
120). The memory efficient implementation of an adequate preconditioner for the matrix-free
CG method is further addressed in Section 5.4.
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5.3 Matrix-Free Newton Method for the Quadratic
Penalty Approach

The matrix-free CG method (cf. Algorithm 5.8) provides a suitable approach to determine the
coefficients of an unconstrained (small-area) P-spline with an arbitrary number of covariates.
This section is now devoted to the memory efficient implementation of solution algorithms
for the large-scale strictly convex QP (5.2) in order to allow also for the determination of a
shape constrained (small-area) P-spline in arbitrary covariate dimensions. For the memory
efficient implementation of a matrix-free solution algorithm for the large-scale optimization
problem (5.2), we apply a quadratic penalty method to transform the strictly convex QP into
an unconstrained convex optimization problem (cf. Section 2.5). We then apply a Newton
method to solve the resulting convex problem, where in each Newton step the related linear
system is solved by a matrix-free CG method similarly to Algorithm 5.8.

5.3.1 Quadratic Penalty Problem and Newton Method

According to (2.71), we define the objective function h.: RX — R of the quadratic penalty
method for the strictly convex QP (5.2) as

he(ar) :== ;aT {(I)Tq) + XA — @TC’CI)} a— {@T ly — Cy]}T a

L
2

ZI: ;max{o, L.[t,Ja}® + 21: 2 max{0, —T,[t, ~]a}2]

(5.37)
- ;aT [CIDTCID + XA — (IDTC’@] a— {(I)T ly — C’y]}T a

c
+ —a”

S TIW, <(a)l + Y FTTWT,Z(a)rT] a.

TGIS T‘E]z

The matrices W, <(a) and W, > («) thereby denote diagonal matrices of dimension 7" x T" with
diagonal elements

1, if Tt -]Ja>0 1, if Tt Ja<0
W, <(a)[t,t] == ] , Wes ()t t] == ] (5.38)
0, else 0, else
To simplify the notation, we define the matrix valued function
M:RF 5 R am ST TIW, <(a)l, + Y. TIW, s (o)L, (5.39)
TEIS TGIZ
such that the quadratic penalty objective function (5.37) reads
1
hele) = 507 [870 + AA = OTCP + eM(a)] a — [0 [y - cyl] a. (5.40)
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To apply the quadratic penalty method (cf. Algorithm 2.7), we have to repeatedly solve the
unconstrained large-scale optimization problem

min A («) (5.41)

a€RK

for systematically increasing ¢ > 0. For that purpose, we first reveal some characteristics of the
matrix valued function (5.39) in the following lemma.

Lemma 5.3.1
For the matriz valued function M and for all o € RX it holds:

1. M(a) = 0,
2. 0, M(a) = 0.
Proof. Let a,a € RE x € {<, >}, and r € I U I5 all be arbitrary. For v := I',& it holds
T
A"TIW, ()T ra = 0" W, (@)v = > W, (a)[t, tjoy >0
t=1
and we conclude M (a) = 0 for all « € RX. To prove the second statement, it suffices to show

that 0,W, .(a)) = 0. By definition of the Fréchet derivative it holds

1
aaWr,*<&) = %1_{% E [WT,* (CY + Ea) - WT,*(a)]

and for sufficiently small |¢| it holds
sgn(T.[t, -Ja + (T, [t, -Ja) = sgn(T,[¢, - |a), t=1,...,T,

where sgn(-) denotes the algebraic sign of a real number. This yields W, .(a + la) = W, ()
for |¢] sufficiently small, which implies

W, () i= %5%2 W,a(a+ ) — W,(a)] = lim 2 = 0

and we conclude the proof. O

Due to Lemma 5.3.1, the objective function h. of the quadratic penalty method possesses the
following properties:

L. Vhe(a) = [®"® + \A = ®7CD + cM(a)| o+ ca’ [0 M(a)] o — @7 [y — Cy]
= [27® + \A = TCP® + M (a)| o — " [y — Cy],
2. V?h(a) = ®T® + \A + c[0.M ()] a — ®TCP + cM(a)
= ®T® + \A — dTCOD + cM(a),
3. V2he(a) = 0V a € RE.
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Since V2h.(a) = 0 for all o € RE i.e. h, is strictly convex, the optimization problem (5.41)
is an unconstrained strictly convex optimization problem. The quadratic penalty method (cf.
Algorithm 2.7) requires the repeated solution of the large-scale unconstrained strictly convex
optimization problem (5.41) for systematically increasing parameters c. Since h,. is a twice con-
tinuously differentiable and strictly convex function, we aim for a matrix-free implementation
of the Newton method (cf. Algorithm 2.8). This requires the determination of the Newton
direction in each iteration step, i.e. the solution of the linear system

V2he(a)d = —Vhe(a) (5.42)

with fixed and given a € R¥. This is a large-scale linear system with symmetric and positive
definite coefficient matrix

V2he(a) = 70 + M\A — TCP + cM(a) € RFE*E (5.43)
and right-hand side
~Vhe(a) = = [87® + A A = @TCP + cM(a)| a + " [y — Cy] € R¥. (5.44)

In order to solve the linear system (5.42), we aim for a memory efficient implementation of a
matrix-free CG method in analogy to Algorithm 5.8.

5.3.2 Conjugate Gradient Method for the Newton Direction

Comparing the linear system (5.42) to determine the Newton direction in the quadratic penalty
method to the linear system (5.1) for the unconstrained small area P-spline it can be seen that
the coefficient matrices (5.36) and (5.43) solely differ by the term ¢M («). Thus, to adapt the
matrix-free CG method for the linear system (5.1) to the linear system (5.42), we additionally
require to implement memory efficient matrix-vector products with the matrix M (a). By
definition it holds

M(a) =3 TW, ()T, + > TIW, > ()T, (5.45)

T‘EIS 7’612

and Lemma 5.1.3 yields

P
r,=Q1I?. (5.46)
p=1

Remark that all of the Kronecker factors of I',. fit into the internal memory and further that
the storage of the diagonal matrices W, >(a)) and W, <(«a) only requires to store the respective
diagonal elements. Therefore, we can compute a matrix-vector product with M («) by the
repetitive application of Algorithm 5.5. This allows to compute the right-hand side of the linear
system (5.42) as well as the memory efficient implementation of a matrix-free CG method to
determine the Newton direction as solution of (5.42). The procedure is presented in Algorithm
5.9.
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Algorithm 5.9: Conjugate gradient method for the linear system (5.42)

d<0

P T — [@TCID + XA —OTCD + cM(oz)} a+®"[y—Cy] // apply Alogrithm 5.2,
5.1, and 5.5

while [|r||3 > tol do

v [(IDTQD + AN —TCD + cM(a)] p // apply Algorithm 5.2, 5.1, and 5.5

w < [Irll3/p"v

d <+ d+wp

T =T

r— T — W

p e+ (IrlI3/11713)p

end

return d

This memory efficient implementation of a matrix-free CG method to determine the Newton
direction finally enables to solve the large-scale strictly convex QP (5.2). Especially, it allows for
the determination of the shape constrained regression P-spline as well as the shape constrained
small area P-spline for increasing covariate dimension P. The final procedure is presented in
Algorithm 5.10.

Algorithm 5.10: Newton method for the quadratic penalty formulation of the strictly
convex QP (5.2)

-1
a4 [CIJT(I) + XA — @TC@} o7 [y — Cy] // apply Algorithm 5.8
while stopping criterion not reached do
c 4+ nc
while ||[Vh.(a)|% > tol do
d < —V?h.(a)'Vh(a) // apply Algorithm 5.9
compute v // backtracking line search

o+ o+ vd
end

end
return o

As for Algorithm 5.8, the memory requirements of Algorithm 5.9 are O(P), but the condition
of the underlying coefficient matrix is again expected to be poor. The following section is
therefore devoted to the memory efficient implementation of a preconditioning method for the
both matrix-free CG algorithms.

5.4 Matrix-Free Multigrid Preconditioner

Both of the developed methods to solve the large-scale problems (5.1) and (5.2) require the
application of a matrix-free CG method presented in Algorithm 5.8 and Algorithm 5.9. The
convergence rate of the CG method mainly depends on the condition number of the coefficient
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matrix of the considered linear system (cf. Subsection 2.4.3) and we have to expect that the
coefficient matrices are of rather poor condition. To improve the computational complexity
and therefore the runtime of the matrix-free CG methods, we aim for the memory efficient
implementation of adequate preconditioning methods to apply the preconditioned CG method
(cf. Algorithm 2.5). Since the considered coefficient matrices cannot be stored, the precon-
ditioning methods also have to be matrix-free. We therefore implement a matrix-free v-cycle
(cf. Algorithm 2.2) for both considered linear systems, leading to a matrix-free version of the
multigrid preconditioned conjugate gradient method as presented in Algorithm 2.6. In order
to apply a v-cycle to the linear systems, we require the following fundamental components (cf.
Subsection 2.4.2):

1. Hierarchization: Introduction of a hierarchy of, in a geometrical sense, coarsening repre-
sentations of the initial linear system, based on different discretization grid levels.

2. Smoothing iteration: Application of a relaxation method to the linear system at each grid
level.

3. Grid transfer: Prolongation and restriction operations in order to transfer information
between the grids.

4. Coarse grid solver: Solution method for the linear system at the coarsest grid level.

Note that none of these operations can be performed by storing the upcoming matrices, but need
to be implemented as matrix-free methods. For the implementation of a matrix-free MGCG
method, we have to restrict ourselves to the uniform B-spline basis with curvature penalty as
introduced in Subsection 3.2.2. That is:

2
LA=Y € RFXK, where W, [k, €] := (0" @rg, 0" Prq) 120y
|r|=2 " °
2. ® € R™E where ®[i, k] := ¢y (1),
3. T, € RTE where T,.[t, k] := 0" (7).

To implement a v-cycle for the linear systems, we introduce a maximum grid level G € N and
base the spline space S,(K) on

mPi=mb :=2—1,p=1,...,P, (5.47)
equally spaced knots. We aim at solving the large-scale linear system
T T ! T
(26)" @ + AAg — (26)" CO6|a = (26)" [y — Cy] (5.48)
for a and the large-scale linear system
[(@6)" @6 + Ao — (96)7 Cq + eMg(a)] d -
== [(®c)" ®a + Al — (P6)" COG + cMa(a)| a + (D) [y — Cy).

for d (with given ). As mentioned in Subsection 5.3.2, the both systems coincide if &« = 0 in the
latter system. Especially, the linear system (5.49) can be seen as a generalization of the linear
system (5.48) such that we focus on a memory efficient implementation of a matrix-free MGCG
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method for the more general problem (5.49). For a more convenient notation, we define

A (@6)" ¢ + MAg — (Bg)" CPg + cMg(a),  for system (5.49) (5.50)
CT ) 0Lde + AAg — (D) CP, for system (5.48) '
and
. [(@6)" @6+ Nehg — (26)" COG + cMg(a)| a + (26)" [y — Cyl,  for (5.49) (5.51)
- (@6) [y - Cyl, for (5.48)
and consider the linear system
Aqz = b. (5.52)

Hierarchization

In order to achieve an adequate hierarchization of the linear system (5.52), we define the nested
sequence of knot sets

Ky CKgp, g=1,....,G—1, (5.53)

where K, consists of mp := 29 —1 equidistant knots for all p=1,..., P. This hierarchy of knot
sets yields a hierarchy of the related tensor product spline spaces

S,(Ky) € Sy(Kyir), g=1,....G—1, (5.54)

and subsequently a hierarchy of the matrices ®,, A,, and M,(«). This finally leads to a
hierarchy of coefficient matrices Ay, g = 1,...,G. The subscript grid number g indicates that
the respective matrix is obtained by using the B-spline basis of S,(K,). Note that y € R,
As € R, and C' € R™™ are independent of the grid level g. With

P
Ky = dim(S,(K,)) = [[(2' + ), g=1,...,G, (5.55)
p=1
we denote the dimension of the quadratic coefficient matrices A, at the grid level g.

Smoothing Iteration

Smoothing iterations in the multigrid context, as introduced in Subsection 2.4.1, are based on
a splitting of the coefficient matrix A, for each grid level g = 1,...,G. Since these coefficient
matrices are not explicitly available, the required splitting matrices are neither. The application
of the Jacobi method (cf. Algorithm 2.1), however, solely requires multiplications with the
coefficient matrix and its diagonal. Since the respective diagonals are vectors of length K,
g =2,...,G, their memory demand is comparatively small. To efficiently extract the desired
diagonals, we apply Algorithm 5.3 to compute the diagonal of (<I>g)T ®,, Algorithm 5.4 for the
diagonal of (<I>g)T C®,, Algorithm 5.6 to each term of A, to obtain its diagonal, and finally
Algorithm 5.7 to each term of M, («) for the last diagonal. A memory efficient implementation
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of the matrix-free Jacobi method as smoothing iteration for the aspired v-cycle is presented in
Algorithm 5.11.

Algorithm 5.11: JAC: Jacobi smoothing for the v-cycle
JAC(x,b,g,v)
D «+ 1/diag(A,) // apply Algorithm 5.3, 5.4, 5.6, and 5.7
for 1,...,v do
r<«b— A // apply Algorithm 5.2, 5.1, and 5.5

x4 x+wDTr
end

end
return z

The application of the SSOR method as smoothing iteration additionally requires the triangular
part of the coefficient matrix which does not fit into the storage. It is possible to compute the
desired elements entry-wise within each smoothing iteration, but this is computationally very
expensive since these elements have to be computed repeatedly in each iteration and for each
grid level. Therefore, we commit to the memory efficient implementation of the Jacobi method
as smoothing iteration. Nevertheless, we point out the differences of both smoothing iterations
in Section 5.5.

Grid Transfer Operations

To transfer vectors between the different grid levels, we require prolongation and restriction
matrices

19 e R o and 19, e RF Mot g =1 . G -1 (5.56)

In (3.33), we provide adequate matrices to exactly transfer B-spline coefficients from a coarser to
a finer grid. Note that for this reason we restrict ourselves to the uniform B-spline basis for the
implementation of the MGCG method. According to Lemma 3.1.8, we define the prolongation
matrices

I = L e RF g =1 G- 1, (5.57)

g

where

T
hy = ((my—1)7" ... (mf = 1)), g=1,...,G, (5.58)

g

denotes the vector of mesh sizes for the different grids. Based on the suggestions in Subsection
2.4.2, we define the restriction matrices as

T
I, = (I97) eRE S g=1, . G-1, (5.59)

which yields the desired Garlerkin property as stated by the following lemma.
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Lemma 5.4.1
The Garlerkin property holds for the determined choice of restriction and prolongation matrices,
that is

Ay =19, Ay 197 (5.60)

forg=1,...,G —1.

T
Proof. Let g € {1,...,G — 1} be arbitrary. Since [j,, = (Iggﬂ) and due to the definition of
A, and My(a) it suffices to show:

1. ¢, = <I>g+1fgg+1,
2. W,y = §+1\1/7«,g+1f§+1,
3. I g = Fr’gﬂlg“.
Let o9 € R¥s be arbitrary and let

Kg
5= Al g € Sq(Ky)
k=1

denote the spline with B-spline coefficients a?. Due to Lemma 3.1.8, it holds
& g g 1
5 = Z af go%q e S, (K9
for a9 1= 1971 a9 € R¥s+1. This yields
Pyaf =Py a8 = <I>g+1Igg+1ag

such that ®, = ® 1] g“ holds, since ¥ is arbitrarily chosen. Further, it holds

g+1 g+l
T r T
(09 W,y = 075|200 <z A3 ot soi*;>
L2(Q2)

Kgi1 Kgt1

_ g+1 g+1 g+l or g+1
- Z Zak y < kaq,ag@gq >L2(Q)
k=1 (=1

T
_ +1 +1
= (™) Wy gi10°
_ ( g)T 79 W 9109

g

Since af is arbitrarily chosen, we conclude W, , = I¥, W, ;.1 19", Finally, it holds

81"8(7'1) 0%(7’1)
Fr,gafg == and an_’_l]gg—‘rlag = F’I‘,g—l—lag—i_l e ,
87“5(7'T) aTS(TT)
which yields Ty = T\ g1 IS1!, since f is arbitrarily chosen. O
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Note that the Garlerkin property is not fulfilled for the other penalties introduced in Subsection
3.2.2. For this reason, we restrict ourselves to the curvature penalty for the implementation of
the MGCG method. The grid transfer matrices depend on K, and therefore do not fit into the
working memory. But, due to Lemma 3.1.8, it holds

P
=5 = QL (5.61)
p=1

such that matrix-vector products with the prolongation matrices I 99“ are achieved by Algorithm
5.5. Due to the distributivity of transposition (cf. Lemma 2.3.2), it further holds

g9 _ (r9+1\T _ Php T_P hp \T
=) = (@5, ) =@ () (5.02)
p:

p=1

such that matrix-vector products with the restriction matrices I, are performed by Algorithm
5.5 as well.

Coarse Grid Solver

The implementation of a v-cycle requires the solution of the residual equation on the coarsest
grid, that is

|

Ae =z (5.63)

for a given right-hand side vector z € R¥X1. This linear system is of the same form as the
initial linear system (5.42) such that we can apply the matrix-free CG method as implemented
in Algorithm 5.8 and 5.9, respectively, to obtain the coarse grid solution. This procedure is
presented in Algorithm 5.12. Note that the CG method as coarse grid solver causes only a
fraction of the computational costs of the CG method as solver for the initial linear system,
which is due to K7 < Kg.

Algorithm 5.12: CG_coarse: Conjugate gradient method as coarse grid solver for the
v-cycle

CG_coarse(Ay, z)

e+ 0

PT 2

while ||7||? > tol do

v+ Aip // apply Algorithm 5.2, 5.1, and 5.5
w = [Irll3/p"v

e<— e+ wp

T 4T

T 4= T — WY

p 1+ (Irl5/1I7]13)p
end

end
return e
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V-Cycle and MGCG Method

Finally, we have all constitutive parts at hand for a memory efficient implementation of a matrix-
free v-cycle for the large-scale linear systems (5.52). This procedure is presented in Algorithm
5.13. The v_cycle_mf function can now be applied as MG method (cf. Algorithm 2.3) to
solve the large-scale linear system (5.52) or as preconditioning method for the CG iteration,
resulting MGCG method (cf. Algorithm 2.6). The memory efficient implementation of the
matrix-free CG method (cf. Algorithm 5.8 and 5.9) and the memory efficient implementation
of the matrix-free v_cycle_mf function (cf. Algorithm 5.13) finally leads to a memory efficient
implementation of a matrix-free MGCG method to solve the large-scale linear system (5.52),
given in Algorithm 5.14.

Algorithm 5.13: v_cycle_mf: V-cycle for the linear system (5.52)

v_cycle mf(z,b,g,v)

if g =1 then
‘ x <+ CG__coarse(A;,b) // apply Algorithm 5.12
end
else
x < JAC(z,b,g,11) // apply Algorithm 5.11
r< Agr —b // apply Algorithm 5.2, 5.1, and 5.5
T4 Ig_lr // apply Algorithm 5.5
e <+ v_cycle mf(0,r,g—1,v) // apply Algorithm 5.13
r 1] e // apply Algorithm 5.5
x < JAC(z,b, g,1s) // apply Algorithm 5.11
end
end
return z

Algorithm 5.14: Multigrid preconditioned conjugate gradient method for the linear system

(5.52)
x40
r<2b // apply Algorithm 5.2, 5.1, and 5.5
p < z < v_cycle mf(0,7,G,v) // apply Algorithm 5.13
while |73 > tol do
v+ Agp // apply Algorithm 5.2, 5.1, and 5.5
w = |[r[f3/p"
T 4 T+ wp
T4
r— 1T —wu
Z4z
z +v_cycle mf(0,7r,G,v) // apply Algorithm 5.13
p+ 2+ (rT2/fTZ)p
end
return z
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The main reason for introducing a preconditioner is to improve the computational complexity
and therefore the runtime of the applied CG algorithm. The performance of the proposed
MGCG methods for the large-scale P-spline related problems also in comparison to the unpre-
conditioned CG method is further addressed in the following section.

5.5 Complexity of the Multigrid Preconditioned
Conjugate Gradient Method

In this section, we analyze the performance of the matrix-free multigrid preconditioned conju-
gate gradient method as implemented in Algorithm 5.14 in terms of computational complexity
and runtime. For reasons of simplification, we restrict ourselves to the determination of an
(unconstrained) regression P-spline, that is we focus on the solution of the large-scale linear
system

(7@ + AN ) o = BTy (5.64)

by Algorithm 5.14. We also compare the algorithmic complexity of the MGCG method to the
algorithmic complexity of the unpreconditioned CG method as implemented in Algorithm 5.8.
The following computations are performed on a computer system equipped with Intel Core i7-
6700 3.4 GHz Quad-Core Processor and 32 GB of RAM. The underlying codes are programmed
within the statistical computing software R (version 3.4.4) and the algorithmic building blocks,
which are critical to computational performance, are accelerated by using the RCPP extension
library (cf. Eddelbuettel and Frangois, 2011 and Eddelbuettel, 2013) and programmed in the
C++ programming language.

5.5.1 Computational Setup

In order to analyze the performance of the MGCG method, we consider the finite and discrete
data sets

{(zs,:) e R xR | i=1,...,100,000}, P =2,3,4. (5.65)
The covariates x; are uniformly distributed on the rectangle € := [0,1]” and the variable of
interest is generated from the model

iid

yi i= fp(x;) + &5, & ~ N(0,0.1%), (5.66)

where

1
'_)
1+ exp (=16 (||z||3P~* — 0.5))

fri Q0,1 (5.67)

denotes a normalized sigmoid function in P dimensions. For one and two dimensions the
related sigmoid functions fp are graphed in Figure 5.1. We consider these functions, since
they are irrational functions that show a similar behavior for varying covariate dimensions P.
However, since the performance of the solution algorithms is in focus and not the quality of
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the resulting P-spline, the exact form of the generating function is of minor importance. As
proposed in Section 5.4, we apply the penalized spline method with uniform cubic B-spline basis
and curvature penalty to obtain a regression P-spline. For maximum grid levels G € {4,5,6,7},
we utilize m, = 2¢ — 1 knots for each covariate dimension p = 1,..., P. This results in the
linear system

(26)" @ + Me] a = (@6)"y. (5.68)

To solve this large-scale linear system, we apply the matrix-free CG method (cf. Algorithm
5.8) as well as the matrix-free MGCG method (cf. Algorithm 5.14). For the MGCG method,
we apply v = (6,3) Jacobi smoothing iterations with a damping factor of wjsc := 1/3. We
further apply the MGCG algorithm with the SSOR method as smoothing iteration (cf. Chapter
2.4.1) with v = (6,3) and wssor = 1 for comparative reasons. Note that for this approach
the coefficient matrix is completely assembled and stored in the CSC format. In order to
distinguish between both of the MGCG methods, we refer to the MGCG__JAC method for the
matrix-free implementation with Jacobi smoother and to the MGCG__SSOR method for the
sparse implementation with SSOR smoother.

f1(x)

00 02 04 06 08 10

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 5.1: Sigmoid functions for P = 1 and P = 2 dimensions.

5.5.2 Algorithmic Results

This subsection presents the results of the CG, the MGCG_JAC, and the MGCG_SSOR
method applied to solve the linear system (5.68) for various covariate dimensions P and various
maximum grid levels GG. At this, we analyze the convergence behavior, special features of the
MGCG method, and the approximation quality of the resulting P-spline.
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Convergence and Algorithmic Complexity

The main interest is in the convergence behavior of Algorithm 5.14 in terms of the number of
required iterations and runtime to reach an adequate stopping criterion as well as in its required
memory. As stopping criterion, we chose a relative error reduction by a factor of five, that is

I {(‘DG)T‘I’G + )\AG} a— (Pa)"yll3
(@) Tyll5

This stopping criterion is sufficient for the most applications and results in an adequate P-spline
fit (cf. Figure 5.4). In a first test case, we fix the maximum grid level to G = 5, as suggested
in Section 5.4. The number of required iterations and related runtimes for various covariate
dimension P is presented in Table 5.2. The number of iterations deteriorates for increasing P for
all of the three methods, which is due to the fact that the condition number of the coefficient
matrix increases with increasing P. The increasing number of required iterations and the
increasing size of the coefficient matrix explains the deteriorating runtime of the methods for
increasing P. The CG method and the MGCG__JAC method perform quite similar in small
dimension P =1 and P = 2 in terms of runtime. The CG method requires significantly more
iterations than the both MGCG method, but, since a CG iteration is much cheaper, this is not
reflected in the overall runtime. In this small dimensions the MGCG__SSOR method clearly
outperforms the other methods in number of iterations and in computational time. However, it
has to noted that the comparison of computational time is not legitimated in this case since only
the computational time of the solution iteration is considered, but not the offline costs. Further,
the MGCG__SSOR method does not rely on the matrix-free approach. Since complete matrices
have to be assembled for the MGCG__SSOR method, its offline costs are much higher compared
to the other methods. In P = 3 dimensions, however, the MGCG with SSOR smoothing for
the test problem requires approximately 30 GB of RAM, which is at the limit of the utilized
computer system. By contrast, the matrix-free methods require approximately 16 MB (CG) and
78 MB (MGCG__JAC) of RAM. This is reflected in the overall runtime since the MGCG__ SSOR
method now requires much more computational time compared to the other methods, despite
the fact that it remains still superior in terms of required iterations. For P = 4, the memory
requirements of the MGCG__SSOR method exceed the internal memory such that it does not
produce any results. For this dimension the matrix-free CG and MGCG__JAC method are
still applicable, since they are not restricted by memory constraints. The advantage of the
MGCG__JAC method compared to the CG method here becomes more obvious. The required
number of CG iterations growth much more rapidly then the number of MGCG__JAC iterations,
which is also reflected in the overall running time.

<107°. (5.69)

CG MGCG_JAC | MGCG_SSOR
P=1| 22 (1.41) | 2 (1.13) | 1 (<0.10)
P=2| 73 (4.34) | 4 (3.72) | 2 (<0.10)
P=3 | 367 (107.41) |14  (82.02) | 3 (454.80)
P=4 | 747 (2956.98) | 19 (2001.58) —

Table 5.2: Required number of iterations and algorithmic runtime of the methods CG,

MGCG_JAC, and MGCG_SSOR for G = 5 grids and varying dimensions P.
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Condition Number and Eigenvalues

Crucial for the computational complexity of the CG method in the unpreconditioned and in
the preconditioned case is the condition number of the respective coefficient matrix. That is

(@) Pg + Mg (5.70)
for the unpreconditioned CG method and
CMG,G [(Cpg)T(I)G + Mg (571)

for the MGCG method, where the iteration matrix of the multigrid method Cyg ¢ is given
as in (2.62). Note that for the MGCG_JAC the Jacobi smoother is utilized and for the
MGCG_SSOR the SSOR smoother. Therefore, different preconditioning matrices Cyig,¢.iac
and Cyg,a.ssor occur. Table 5.3 presents the condition number of the respective coefficient
matrices of the applied methods for G = 5 grids and P = 2 dimensions. The condition numbers
confirm the results of the analysis of the computational complexity. The condition for the
(unpreconditioned) CG method is comparatively huge. Amongst the multigrid preconditioned
methods the SSOR smoother performs superior to the Jacobi smoother, which nevertheless
provides a significant improvement compared to the unpreconditioned case.

CG | MGCG_JAC | MGCG_SSOR
193327 | 182 | 1.03

Table 5.3: Condition number of the coefficient matrices of the methods CG, MGCG__JAC, and
MGCG_SSOR for G =5 grids and P = 2 dimensions.

To further explain the different performance of the MGCG methods, Figure 5.2 displays the
eigenvalues of the related coefficient matrices on a logarithmic scale. For the unpreconditioned
coefficient matrix of the CG method very large eigenvalues occur, which is responsible for its
comparatively large condition number. Since the eigenvalues are slightly clustered, the compu-
tational complexity is still acceptable. Both MGCG methods can handle the large eigenvalues
very well such that for both coefficient matrices the maximum eigenvalue is approximately one.
The MGCG with Jacobi smoother is incapable to handle the small eigenvalues such that the
smallest eigenvalue of the unpreconditioned case remains nearly unchanged. By contrast, the
MGCG__SSOR method is also able to handle the small eigenvalues which explains its superior
performance in terms of required iterations.

CG —
MGCG_JAC - o cum

MGCG_SSOR—

I I I I I I I I
0.5 1 5 10 50 100 500 1000

Eigenvalues

Figure 5.2: Eigenvalues of the coefficient matrices of the methods CG, MGCG__JAC, and
MGCG_SSOR for G =5 grids and P = 2 dimensions.
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Grid Independence

To analyze the performance of the proposed algorithms, we fixed a maximum grid level G = 5
and varied the covariate dimension P in a first test case. For the following test case, we fix
the spatial dimension to be P = 2 and apply the solution methods for various maximum grid
levels G € {4,5,6,7}. The results in terms of the required number of iterations are presented
in Figure 5.3 on a logarithmic scale. We observe that the number of (unpreconditioned) CG
iterations significantly increases under grid refinements. For both, the MGCG__JAC and the
MGCG__SSOR method, the number of iterations is almost constant, i.e. 1-2 for MGCG__SSOR
and 4 for MGCG__JAC. This result illustrates that the multigrid preconditioner provides a
scalable solver for the linear system (5.68). Clearly, the computational times are increasing
since we run only a single core code. A standard approach is to distribute the matrix between
an increasing number of processors in a cluster computer in order to obtain almost constant
runtimes in the sense of weak scalability. Note that this is not to achievable for the plain CG
solver due to the increasing computational complexity.

1000 — cG

@ A MGCG_JAC

S MGCG_SSOR

© _

g 100

S

g

q—g). 10

& S A A e Ao i e A

l —]

I I I I
4 5 6 7

Maximum Grid Level

Figure 5.3: Grid independent convergence of the MGCG__JAC and the MGCG__SSOR method

in comparison to the CG method for P = 2 dimensions.

Regression P-Spline

Finally, Figure 5.4 shows the resulting regression P-spline in P = 2 dimensions with a maximum
grid level of G = 5 (left) and the corresponding residuals to the 100,000 noisy data points (right).
This shows that the resulting regression P-spline recovers the underlying sigmoid test function
with adequate precision, since it can not be distinguished by eye from the data generating
function in Figure 5.1. Also the presented residuals do not show any irregularities and behave
like drawn from the N(0,0.12) distribution. This is, however, a feature of the penalized spline
method itself and is not due to the utilized algorithm. Nevertheless, it shows that the introduced
methods are rational and sensibly implemented and lead to adequate results not only in terms
of computational complexity but also from a application point of view.
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Figure 5.4: Regression P-spline fit and related residuals for P = 2 dimensions.
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Chapter 6

Conclusion and Outlook

In this closing chapter, we conclude the present thesis and point out its main findings. Further,
we present a short outlook on future research topics and possible applications.

Conclusion

Motivated from a practical application in Section 1.1, the present thesis addresses the following
research topics:

1. How can nonlinear and highly flexible modeling techniques be utilized for model-based
small area estimation methods? How does this modeling affect the quality of the resulting
small area estimates?

2. How can (global) shape constraints on the relationship between the variables be incorpo-
rated into the modeling process without restricting the flexibility?

For that purpose, Section 3.2 introduces the penalized spline method as a highly flexible mod-
eling technique. The utilization of P-splines in small area estimation dates back to Opsomer
et al. (2008) and Ugarte et al. (2009) and is based on linear mixed model techniques. In this
thesis a different framework is developed, where the model parameters are determined via the
solution of an unconstrained optimization problem (cf. Section 4.2) instead as from a linear
mixed model. Due to this optimization approach, the incorporation of shape constraints into
the modeling process is achieved in terms of additional linear inequality constraints on the
optimization problem (cf. Section 3.3 and Section 4.3). This new framework results in the
innovative small area estimators (4.42) and (4.52) that allow for both the utilization of the
penalized spline method as a highly flexible modeling technique and the incorporation of arbi-
trary shape constraints on the underlying P-spline function. This has not been considered in
literature so far such that the present thesis provides a significant contribution to the field of
small area estimation. Small area estimation not only addresses the issue of providing reliable
estimates of area-specific characteristics of interest for subpopulations with very few sample
data, but also focuses on the assessment of the precision of theses small area estimates. For
that purpose, we introduce a bootstrap MSE-estimator in Section 4.5 for the implemented
point estimators that enables the application of the proposed methods in practice. Within the
scope of a simulation study in Section 4.6 and by means of the real-world application presented
in Section 4.7, the huge potential of this innovative methods is exposed. The present thesis
therefore not only provides theoretical results in the field of small area estimation, but also
yields methods of practical relevance.
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Besides the possibility of utilizing a highly flexible and close to reality modeling technique, it is
desired to extend the developed methods to multiple covariates. Therefore, a further research
topic discussed by the present thesis is:

3. How can multiple covariates be incorporated into the various P-spline models while pre-
serving the underlying structure?

For that purpose, we employ a tensor product approach to extend the penalized spline method
to multiple input variables as introduced in Section 3.2. This extension affects neither the
general structure of the spline models nor the structure of the resulting optimization problem.
Therefore, the extension to shape constraints and the utilization in the context of small area
estimation is achieved in analogy to the case of a single covariate.

A serious limitation of the tensor product approach is caused by an exponential growth of the
size of the underlying optimization problems with each additional covariate. This leads to an
unjustifiable complexity of the applied solution algorithms in terms of runtime and in terms
of memory requirements. This rapid growth causes a tremendous memory demand such that
the internal memory of common computer systems does not support a naive extension of the
spline-based methods to more than two or three covariates. Conclusively, the present thesis is
also devoted to the following research question:

4. How can the occurring (constrained and unconstrained) large-scale optimization problems
be solved in a computationally and memory efficient manner? How are the related large-
scale algorithms to implement?

By exploiting the underlying tensor nature of the spline functions, we develop and implement
various operations for particular classes of matrices that come along without assembling and
storing these matrices (cf. Section 5.1). This allows for a memory efficient implementation
of adequate solution algorithms for the considered optimization problems in Section 5.2 and
Section 5.3. A crucial part within the proposed large-scale algorithms is the (repetitive) appli-
cation of a matrix-free CG method. In order to improve the computational complexity of these
algorithms, we finally implement a matrix-free MGCG method in Section 5.4. The algorithmic
complexity of the proposed MGCG method is analyzed in numerical test cases (cf. Section 5.5)
that show the advantageous characteristics of this implementation. By the development of com-
putationally efficient solution algorithms for special types of optimization problems and their
memory efficient implementation, the present thesis also provides a significant contribution to
the field of algorithmic optimization.

Especially by the interplay of the application driven need for alternative and extended small
area models and the resulting demand for highly developed large-scale solution algorithms, this
thesis provides an illustration on the development of cross-disciplinary optimization methods
and algorithms for challenging problems motivated by real world applications. In this way, the
natural interdependency between mathematics and statistics is deepened such that the thesis
additionally provides a contribution to the connection of both disciplines.

Outlook

Regarding the issue of algorithmic runtime, the multigrid preconditioned conjugate gradient
method provides an adequate solution approach. A further speed up can be obtained by utilizing
a parallel implementation of the algorithm. A trivial parallelization of the matrix operations,
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e.g. the parallel computation of all required matrix-vector products, is not productive since the
per core operations are very fast but a lot of direct memory access is required. In fact, it turns
out that the trivial parallelization even decelerates the algorithmic runtime. In order to apply
parallel computing methods, a more sophisticated implementation of the proposed algorithms
is required. In this context, the programming with graphics processing units (GPU) instead
of central processing units (CPU) can provide a significant improvement of the algorithmic
runtime of the proposed methods.

From a practical point of view, a possible application is already mentioned in Section 1.1. The
sentinel-2 satellites provide multi-spectral data with 13 bands that can be used as auxiliary
information. Certainly, the incorporation of 13 covariates into the penalized spline method
is not reasonable, neither from a numerical nor from a practical point of view. The question
arises how many covariates are useful and can be incorporated into the presented methods.
In this context, efficient variable selection procedures that are adequate for the applied spline
methods need to be developed. Further, the proposed estimators are obviously not restricted
to forest applications. In official statistics for example a frequent demand is coercivity of the
small area estimates, which means that the estimates need to add up to a given value on
higher aggregation levels. In order to achieve coercive small area estimates from the developed
methods, the coercivity restriction has to be transformed into constraints on the considered
optimization problem. A further topic that arises from the simulation study is the fact that the
sampling design influences the quality of the estimators. The impact of the sampling design on
small area estimates is an ongoing research topic (cf. Miinnich and Burgard, 2012 and Burgard
et al., 2014) and needs to be further examined for the particular estimators proposed in this
thesis.
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