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Abstract

In this thesis, we consider the solution of high-dimensional optimization problems with
an underlying low-rank tensor structure. Due to the exponentially increasing compu-
tational complexity in the number of dimensions—the so-called curse of dimensional-
ity—they present a considerable computational challenge and become infeasible even for
moderate problem sizes.

Multilinear algebra and tensor numerical methods have a wide range of applications
in the fields of data science and scientific computing. Due to the typically large prob-
lem sizes in practical settings, efficient methods, which exploit low-rank structures, are
essential. In this thesis, we consider an application each in both of these fields.

Tensor completion, or imputation of unknown values in partially known multiway data
is an important problem, which appears in statistics, mathematical imaging science and
data science. Under the assumption of redundancy in the underlying data, this is a
well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambi-
ent high-dimensional tensor space, Riemannian optimization is a natural framework for
these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with
the state of the art on selected application cases and outperforms known methods on
some test problems.

Optimization problems governed by partial differential equations form an area of sci-
entific computing which has applications in a variety of areas, ranging from physics to fi-
nancial mathematics. Due to the inherent high dimensionality of optimization problems
arising from discretized differential equations, these problems present computational
challenges, especially in the case of three or more dimensions. An even more challenging
class of optimization problems has operators of integral instead of differential type in
the constraint. These operators are nonlocal, and therefore lead to large, dense dis-
crete systems of equations. We present a novel solution method, based on separation of
spatial dimensions and provably low-rank approximation of the nonlocal operator. Our
approach allows the solution of multidimensional problems with a complexity which is
only slightly larger than linear in the univariate grid size; this improves the state of the
art for a particular test problem problem by at least two orders of magnitude.





Zusammenfassung

In dieser Arbeit betrachten wir die Lösung hochdimensionaler Optimierungsprobleme,
welchen eine Tensorstruktur niedrigen Ranges zugrunde liegt. Da die rechnerische Kom-
plexität exponentiell mit der Anzahl der Dimensionen anwächst – dies wird als curse of
dimensionality (

”
Fluch der Dimensionalität“) bezeichnet – stellen sie eine beträchtliche

rechnerische Herausforderung dar und hören bereits für moderate Problemgrößen auf
handhabbar zu sein.

Multilineare Algebra und numerische Methoden für Tensoren haben eine Reihe von
Anwendungen in den Gebieten von Data Science und des wissenschaftlichen Rechnens.
Da praktische Probleme typischerweise eine hohe Dimension haben, sind effiziente Me-
thoden, die Niedrigrangstrukturen ausnutzen, von essentieller Bedeutung. In dieser Ar-
beit betrachten wir jeweils eine Anwendung in diesen beiden Gebieten.

Tensorvervollständigung, oder Imputation unbekannter Werte in teilweise bekannten
mehrdimensionalen Datensätzen ist ein wichtiges Problem in der Statistik, der mathema-
tischen Bildverarbeitung und in Data Science. Wenn man Redundanz der zugrundelie-
genden Daten annimmt, ist es möglich, Verfahren der mathematischen Optimierung für
dieses Problem anzuwenden. Da Tensoren festen Ranges eine Riemann’sche Mannigfal-
tigkeit des umgebenden hochdimensionalen Tensorraums darstellen, ist die Riemann’sche
Optimierung der natürliche Rahmen für die Behandlung dieser Probleme, der sowohl
mathematisch rigoros als auch rechnerisch effizient ist. Wir stellen ein neuartiges Rie-
mann’sches Trust-Region-Verfahren vor, welches dem Vergleich mit dem neuesten Stand
der Forschung für ausgewählte Anwendungen standhält sowie eine Verbesserung bekann-
ter Methoden für einige Testprobleme bietet.

Optimierungsprobleme mit partiellen Differentialgleichungen als Restriktion stellen
ein Gebiet des wissenschaftlichen Rechnens dar, welches Anwendungen in zahlreichen
Gebieten hat, von der Physik bis hin zur Finanzmathematik. Da Optimierungsproble-
me, die von Differentialgleichungen herrühren, inhärent hohe Dimension haben, stellen
diese Probleme eine rechnerische Herausforderung dar, insbesondere im Fall von drei
oder mehr Dimensionen. Eine noch schwierigere Klasse von Problemen hat Operatoren
vom Integral- statt vom Differentialtyp in der Restriktion. Diese Operatoren sind nicht-
lokal und führen somit zu großen, vollbesetzten Gleichungssystemen. Wir präsentieren
ein neuartiges Lösungsverfahren, welches auf der Trennung der Raumvariablen und auf
einer Approximation für den lokalen Operator, welche beweisbar niedrigen Rang hat,
basiert. Unser Ansatz erlaubt es, mehrdimnsionale Probleme mit einer Komplexität zu
lösen, die nur wenig höher als linear in der eindimensionale Gitterweite ist; dies ver-
bessert den Stand der Forschung für ein bestimmtes Testproblem um mindestens zwei
Größenordnungen.





“Young man, in mathematics you don’t understand things. You just get used to them.”

– John von Neumann
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of numerical tests.
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1 Introduction

High-dimensional problems frequently appear in scientific applications. More than six
decades ago, Bellman [7] has coined the phrase of the “curse of dimensionality”—the
exponential growth of the problem size with respect to dimension.

This “curse” is far worse than the typically polynomial growth of the problem size with
respect to the degrees of freedom within one dimension and makes even seemingly small
problems infeasible if the number of dimensions is large enough. As a simple example,
take a problem with 2 degrees of freedom in each dimension and 100 dimensions in total.
This leads to a total number of

2100 ≈ 1.27× 1030

degrees of freedom. The currently (November 2018) fastest supercomputer in the
world, the Summit at Oak Ridge National Laboratory, has a computing power of 143.5
PetaFLOPS, which means it can perform 143.5 × 1015 floating point operations in one
second. Even if all it had to do was to perform one operation on each entry of the tensor
introduced above—where we do not even discuss how to store this tensor—the whole
operation would take more than 280, 000 years. Therefore, fast and efficient computation
is essential when dealing with data of very high dimension. The central idea is to exploit
low-rank structures, i. e. an inherently redundant structure in the data.

The discipline dealing with multiway data, multilinear algebra, goes back many
decades. In the most general sense, it deals with the mathematical properties of multi-
way arrays—tensors. For most of its history, multilinear algebra has been driven by the
application side; the earliest papers in this field, which laid the foundations for the mod-
ern tensor formats come from fields such as chemometrics, psychometrics and phonetics.
More recently, the field of (numerical) multilinear algebra has attracted the interest of
researchers in mathematics. Of particular importance are the papers [64]—an original
research paper from 2000 which put the ideas and heuristics from application sciences
on mathematically sound foundations—and [56]—a survey from 2009 which helped pop-
ularize the field of multilinear algebra among applied mathematicians. Many recent
breakthroughs in the mathematical research on tensors are collected in the book [32].

One of the ideas introduced by mathematicians to the field of multilinear algebra that
have led to new advances is Riemannian optimization—it can be shown that sets of
tensors form a low-dimensional surface in a high-dimensional space, and this property
can be exploited to construct especially fast optimization methods. This framework
has existed in the matrix case for several years [2], and various generalizations to the
tensor case have been proposed in the literature. In this thesis, we will present the first
result, which allows to construct exact second-order optimization methods on tensor
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manifolds in this framework, and we will show the effectiveness of this method for tensor
completion—the reconstruction of a partially known low-rank tensor.

Even more recently, connections between the fields of multilinear algebra and sci-
entific computing—the modelling, simulation and optimization with partial differential
equations—have gained interest in the mathematical literature. A collection of first
results in this field can be found in the two books [47] and [50]. The first mentioned
book deals with the computational and applied side of this field, the second one with
the theoretical side. Scientific computing presents special challenges to the field of ten-
sor numerical methods, since not only the dimension is high, but also the number of
degrees of freedom in each dimension—the typical case is the discretization of PDEs,
which easily admits several thousand degrees of freedom in each spatial direction.

A particularly challenging field of scientific computing is given by the so-called frac-
tional or non-local differential equations. These lead not only to huge systems of equa-
tions but also to dense ones, which causes traditional methods to break down even on
moderately fine grids. We present a novel method for optimal control of a fractional
Laplacian equation which allows performing all computations in just one dimension
(with small overhead cost) by approximately separating the spatial variables.

The rest of this thesis is organized as follows. In Chapter 2, we introduce the two
best-known tensor formats—the CP and the Tucker format. We also define basic ten-
sor operations and present simple algorithms for computing tensor decompositions and
approximations. In Chapter 3, we introduce basic concepts of Riemannian optimiza-
tion and the framework of optimization on Riemannian manifolds. In Chapter 4, we
apply Riemannian optimization to the problem of tensor completion—one of the best
known application cases of multilinear algebra in recent years. We show that the second
derivative of functions on the given tensor manifold can be computed efficiently to con-
struct a second-order optimization method and present convincing numerical results. In
Chapter 5, we consider an optimization problem with a fractional PDE in the constraint
and show how tensor methods can be applied to optimal control problems governed by
non-local PDEs. Our novel approach allows to solve this three-dimensional problem in
one dimension (with some moderate overhead cost) and thus beat existing methods by
almost two orders of magnitude. Finally, in Chapter 6, we summarize the two main
contributions of this thesis.
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2 Low-Rank Tensor Formats

In this chapter, we will present some basic definitions and notions about tensors, espe-
cially those of low rank. Throughout this thesis, we will denote tensors

A ∈ Rn1×···×nd

of order d ≥ 3 by upper-case boldface letters. The entries of the tensor A are given by
ai1···id . As usual, we will denote matrices (which can be seen as tensors of order 2)

A ∈ Rm×n

by upper-case italic letters with entries aij , and column vectors (which can be seen as
tensors of order 1)

a ∈ Rn

by lower-case boldface letters with entries ai.
In Section 2.1, we will introduce basic tensor formats and discuss their similarities and

differences. In Section 2.2, we will present the “workhorse” algorithms for computing
these decompositions.

2.1 Basic Notations and Low-Rank Tensor Formats

In this section, we will present the two best-known rank-structured tensor formats,
namely the CP decomposition and the Tucker decomposition. We will also introduce
some basic notations of tensor algebra we will use throughout the thesis. This section
largely follows the exposition in the survey paper by Kolda and Bader [56].

Similarly to matrices, the space Rn1×···×nd can be endowed with a Frobenius inner
product, given by

〈A,B〉 :=

n1∑
i1=1

· · ·
nd∑
id=1

ai1···inbi1···in . (2.1)

It induces a Frobenius norm, given by

‖A‖ :=
√
〈A,A〉. (2.2)

Since any work with full tensors will be affected by the exponential growth of storage
and computing requirements—the curse of dimensionality—the use of low-rank struc-
tures is essential. The notion of low rank-tensors is derived from that of low-rank ma-
trices.
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In Subsection 2.1.1, we will introduce the simplest low-rank tensors—those of rank
one. Starting from here, we will generalize this notion to higher rank in two different
ways: in Subsection 2.1.2, we will introduce CP format, and in Subsection 2.1.3 the
Tucker format. In Subsection 2.1.4, we will compare the two formats.

2.1.1 Rank-One Matrices and Tensors

Aside from trivial all-zero structures, the simplest low-rank structure in linear algebra
is a matrix of rank one. This means that all rows of this matrix are just linear multiples
of each other, and so are all the columns. It is also useful to think of such a matrix as
an outer product of two nonzero vectors, i. e. a matrix A ∈ Rm×n is rank one if and only
if vectors u ∈ Rm \ {0} and v ∈ Rn \ {0} exist such that

A = uvT.

The outer product of two vectors can be generalized to any number d of nonzero
vectors u(1), . . . ,u(d)—the result of this operation will then be a tensor of order d. We
will denote this as

A = u(1) ◦ · · · ◦ u(d), (2.3)

and the entries of A are then given as

ai1···id = u
(1)
i1
· · ·u(d)id .

A tensor A given as in (2.3) is called a rank-one tensor.
Clearly, it holds that uvT = u ◦ v, so our definition of rank-one tensors is just an

extension of rank-one matrices. Defining tensors of higher rank is more challenging and
does not lend itself to such a straightforward generalization of the matrix case. We will
discuss this in the following sections.

2.1.2 The Tensor Rank and the CP Decomposition

One possible way to define tensors of rank higher than one is by taking sums of rank-one
tensors. A rank-r matrix A admits a decomposition of the form

A = UV T, (2.4)

with factor matrices U ∈ Rm×r and V ∈ Rn×r, which both have full column rank. If we
consider the individual columns of U = [u1, . . . ,ur] and V = [v1, . . . ,vr], (2.4) can also
be written as

A =
r∑

k=1

ukv
T
k =

r∑
k=1

uk ◦ vk, (2.5)

so it will be a sum of rank-one “skeletons”, see Figure 2.1.
The decomposition (2.5) can be extended in a straightforward fashion to tensors of

any order d ≥ 3. We will consider tensors that admit decompositions of the form

A =

r∑
k=1

u
(1)
k ◦ · · · ◦ u

(d)
k , (2.6)

4



A = u
(1)
1

u
(1)
2
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Figure 2.1: Decomposition of a low-rank matrix into a sum of rank-one matrices.
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+ · · · +

u
(S)
1

u
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u
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Figure 2.2: CP decomposition of a tensor.

or, if seen elementwise,

ai1···id =
r∑

k=1

(
u
(1)
k

)
i1
· · ·
(
u
(d)
k

)
id
. (2.7)

Figure 2.2 illustrates this decomposition. It is clearly seen that the storage complexity
is given by O(dRn), where n = maxi ni. Any given entry of A can be computed in dr
floating point operations.

The decomposition (2.5) has first been described by Hitchcock in 1927 [41, 42] as
the polyadic form of a tensor. In the following decades, it has been rediscovered in the
literature several times, notably by Carroll and Chang [17] under the name CANDE-
COMP (canonical decomposition), and by Harshman [36] under the name PARAFAC
(parallel factors), both in 1970. We will also refer to this decomposition as the CP de-
composition, a term coined by Kiers [53] in 2000—CP can be seen as a combination of
CANDECOMP/PARAFAC or as a backronym for canonical polyadic.

The CP decomposition motivates the definition of the tensor rank, which is one possi-
bility to extend the notion of matrix rank to tensors. Just like in (2.5), the tensor rank
of a tensor is the minimal number of rank-one summands needed to express it, i. e.

rankT A = min{r |A admits a CP decomposition with r summands}.

To keep the notation concise, we will use a shorthand expression for (2.7): For all
modes k, we will collect the factors of the rank-one components into matrices Uk =

[u
(1)
k , . . . ,u

(d)
k ]. Then we will write

A = JU1, . . . , UrK :=
r∑

k=1

u
(1)
k ◦ · · · ◦ u

(d)
k .
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Occasionally, it will be useful to normalize the columns of the factor matrices Uk to
length one and collect the weights into a vector λ ∈ Rr, such that

A = Jλ;U1, . . . , UrK :=
r∑

k=1

λk u
(1)
k ◦ · · · ◦ u

(d)
k , ‖u(i)

k ‖ = 1, for all k, i.

While the definition of the tensor rank follows directly from a well-known property of
the matrix rank—a rank-r matrix can be decomposed into a sum of r rank-one matrices—
the properties of the tensor rank are very different in some respects. A notable example
of this is that the tensor rank can be different, depending on the choice of the underlying
field—R or C. Consider, for example, the rank-3 tensor A = JU1, U2, U3K, defined by

U1 =

[
1 0 1
0 1 −1

]
, U2 =

[
1 0 1
0 1 1

]
, U3 =

[
1 1 0
−1 1 1

]
,

see Kruskal [62]. As shown by ten Berge [8], it does indeed not have a CP decomposition
with fewer than three summands. However, it can be easily seen the factors

V1 =
1√
2

[
1 1
−i i

]
, V2 =

1√
2

[
1 1
i −i

]
, V3 =

[
1 1
i −i

]
,

define a rank-2 decomposition A = JV1, V2, V3K over C.
Another important difference of the tensor rank from the matrix rank concerns the

best rank-r approximation problem in the Frobenius norm:

min
rank(X)≤r

‖A−X‖

For matrices, it is solved by the singular value decomposition (SVD): assume that the
SVD of a matrix A is given by

A =
s∑

k=1

σk uk ◦ vk,

with singular values σ1 ≥ · · · ≥ σs > 0. Then the solution for the best rank-r approxi-
mation problem (with r ≤ s) is simply given by

A =
r∑

k=1

σk uk ◦ vk,

due to a famous result by Eckart and Young from 1936 [23].
The Eckart–Young result gives an easy framework for switching between best approx-

imations for different ranks: given a best rank-r approximation, we can obtain a best
rank-(r + 1) approximation by just computing one additional singular value with the
corresponding singular vectors. The change from rank r to rank r − 1 is even trivial by
just dropping the last summand. However, this result cannot be generalized to tensors

6



A

B(α0)
B(α1)

B(α2)

Rank 2 Rank 3

Figure 2.3: Illustration of the tensors B(α) converging to A for α→∞.

of higher order. In [55], Kolda provides an example of a mode-three tensor whose best
rank-one approximation is not a summand in the best rank-two approximation.

Aside from these computational difficulties, the best rank-r approximation problem
may not even be well-posed, since the set of tensors with bounded rank is, in general,
not closed. Therefore, it is practical to call a tensor degenerate if it can be approximated
to any accuracy by a tensor of lower rank. A well-known example from the literature
[76, 80] is given by the rank-three tensor

A = u1 ◦ v1 ◦w2 + u1 ◦ v2 ◦w1 + u2 ◦ v1 ◦w1,

where U ∈ Rn1×2, V ∈ Rn2×2, V ∈ Rn3×2 with arbitrarily chosen ni, and each matrix
has linearly independent columns. Now, for α > 0, the rank-two tensor

B(α) = α
(
u1 +

1

α
u2

)
◦
(
v1 +

1

α
v2

)
◦
(
w1 +

1

α
w2

)
− αu1 ◦ v1 ◦w1

gives us an approximation to A, namely

‖A−B(α)‖ =
1

α

∥∥∥u2 ◦ v2 ◦w1 + u2 ◦ v1 ◦w2 + u1 ◦ v2 ◦w2 +
1

α
u2 ◦ v2 ◦w2

∥∥∥,
so clearly

lim
α→∞

‖A−B(α)‖ = 0,

although rankT A = 3 > 2 = rankT B(α), for all α.
To make numerical treatment of degenerate tensors feasible, the concept of border

rank can be introduced, which is given by

r̃ankT(A) = min{r | for any ε > 0, there exists a tensor E

such that ‖E‖ < ε and rankT(A + E) = r}.
From the definition it follows immediately that

r̃ankT(A) ≤ rankT(A).

De Silva and Lim [80] also show that the set of degenerate tensors can, in general,
have positive volume for at least some ranks; therefore, this is a case which needs to be
considered in practice and can cause some difficulties.

7



2.1.3 The Multilinear Rank and the Tucker Decomposition

As we have seen in the previous section, the CP decomposition poses some numerical
problems for the approximation of tensors in low rank. In fact, these problems stretch
even further: it can be shown that the problem of determining the tensor rank of a given
tensor is NP-complete [44].

In this section, we will present a different generalization of the matrix rank to tensors,
which will solve some of the issues with the tensor rank. The SVD of a matrix A can be
either written as a sum of rank-one skeleton matrices

A =
r∑

k=1

σk uk ◦ vk,

or as a product of the three factor matrices

A = UΣV T,

where U ∈ Rm×r contains the left singular vectors, V ∈ Rn×r the right singular vectors
and Σ = diag(σ1, . . . , σr) the singular values of A, see Figure 2.4.

This representation of a low-rank matrix lends itself intuitively to a generalization for
tensors, which is illustrated in Figure 2.5 for a mode-three tensor and is called Tucker
decomposition (introduced in 1966 [86]).

For a formally correct introduction of the Tucker decomposition, we will need some
additional notation and definitions. It will be useful to write the entries of a higher-order
tensor into a matrix. For a mode-d tensor, there are d natural ways to achieve this: we
fix all indices except the kth to obtain a vector—a mode-k fibre of a tensor—and then
we write all mode-k fibres into a matrix. The result is called the mode-k matricization
(or unfolding or flattening) of the tensor.

Formally, the mode-k matricization of a tensor A is given by

A(k) ∈ Rnk×
∏

j 6=k nj ,

such that the row index of A(k) is the kth mode of A, and the column index is a multi-
index of the remaining d− 1 modes. It may be viewed as a d-order generalization of the
matrix transpose, since, for d = 2, it holds that A(1) = A and A(2) = AT. We denote

the re-tensorization of a matricized tensor by a superscript index, i. e. (A(k))
(k) = A.

An example helps to illustrate the concept of a matricization. We consider a tensor
A ∈ R3×4×2, given entrywise by

aijk = i+ 3(j − 1) + 12(k − 1).

SU V T

A =

Figure 2.4: SVD of a low-rank matrix.
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C= U1 U2

U3

A

Figure 2.5: Tucker decomposition of a low-rank tensor.

Then the three possible matricizations are

A(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ∈ R3×4·2,

A(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ∈ R4×3·2, and

A(3) =

[
1 2 3 . . . 10 11 12
13 14 15 . . . 22 23 24

]
∈ R2×3·4.

Now, it is possible to define the multilinear rank [62] (or Tucker rank) of a tensor as
the d-tuple of the ranks of all possible matricizations, i. e.

rankML(A) := (rank(A(1)), . . . , rank(A(d))).

For the matrix case d = 2, both the tensor rank and the multilinear rank coincide with
the usual notion of the matrix rank because of the well-known fact that the column rank
equals the row rank. More precisely, we get

rankML(A) = (rank(A), rank(AT)) = (rank(A), rank(A)) = (rankT(A), rankT(A)).

For tensors of higher order, the different matricization ranks need not coincide. This
can already be seen in the very simple example of the tensor A ∈ R2×2×2, given by its
mode-1 matricization

A(1) =

[
1 0 0 0
0 1 0 0

]
.

It is readily seen that the other two matricizations are given as

A(1) = A(2), A(3) =

[
1 0 0 1
0 0 0 0

]
,

and therefore the multilinear rank of A is given as

rankML(A) = (2, 2, 1).

9



To give a formal expression for the Tucker decomposition in Figure 2.5, we will need a
notion of a matrix-tensor product. The i-mode product of A with a matrix M ∈ Rm×ni

is defined as

B = A×iM ⇐⇒ B(i) = MA(i), B ∈ Rn1×···×ni−1×m×ni+1···×nd .

It is worth noting that, for different modes, the order of multiplications is irrelevant, i. e.

A×iM ×j N = A×j N ×iM if i 6= j. (2.8)

If the modes are equal, then

A×iM ×i N = A×i (NM). (2.9)

Now, a Tucker decomposition of a tensor A ∈ Rn1×···×nd with multilinear rank r =
(r1, . . . , rd) is given by

X = C×1 U1 · · · ×d Ud = C
d

×
i=1

Ui, (2.10)

with a small core tensor C ∈ Rr1×···×rd and basis matrices Uk ∈ Rnk×rk with
rank(Uk) = rk. From the definition of the multilinear rank and the k-mode product
via matricizations, it is immediately seen that a tensor admits a Tucker decomposition
of the form (2.10) if and only if its multilinear rank is equal to r.

Since the core tensor contains
∏
k rk entries and the basis matrices contain nkrk entries

each, the overall storage complexity is O(rd + dnr), where n = maxi ni and r = maxi ri.
A single entry of A can be computed with the formula

ai1···id =

r1∑
k1=1

· · ·
rd∑

kd=1

ck1···kdu
(1)
i1k1
· · ·u(d)idkd (2.11)

in drd floating point operations. These expressions show that the Tucker decomposition
does not lift the curse of dimensionality, since we still have a complexity which is ex-
ponential in d. However, it does ameliorate it, since we have the base r, which we can
expect to be much smaller than n in typical applications.

It is worth noting that the Tucker decomposition is not unique. Indeed, for any
nonsingular matrices Ri ∈ Rrk×rk , we can get

A = C
d

×
i=1

Ui =
(
C

d

×
i=1

Ri

) d

×
i=1

(
UiR

−1
i

)
. (2.12)

In other words, we can modify the core tensor arbitrarily, so long as we apply the inverse
modifications to the corresponding basis matrices.
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2.1.4 Comparison of Different Low-Rank Formats and Discussion

In the previous two subsections, we have introduced the two oldest and best-known ten-
sor formats. In Subsection 2.1.2, we have seen that the CP format allows a very high
compression rate with a simple and intuitive representation, but leads to some mathe-
matical difficulties, such as the possible non-existence of a best low-rank approximation.
The Tucker decomposition in Subsection 2.1.3 preserves simplicity and gives us closed-
ness of the bounded-rank set (as we will see later) while preserving simplicity—but it
does not lift the curse of dimensionality. In this thesis, we will make use of both concepts
when appropriate.

A curiosity of tensor notions for ranks is that the unique definition of rank for matrices
leads to different notions in the case d ≥ 2. Since we have different notions of rank and
low-rank decomposition, it makes sense to study the relations between them and the
conversion form one format to the other.

First, consider a tensor A = JU1, . . . , UrK with rankT(A) = r. Then we can easily
transform it into the Tucker format, with the Uis as the basis matrices and the core
tensor defined by

ci1···id =

{
1, if i1 = · · · = id,

0, else.
(2.13)

Therefore, all matricization ranks of A are bounded by the tensor rank r. A discussion
can be found in [32, Subsection 8.5.2].

Now we consider the other direction. Let A = C×d
i=1 Ui be a tensor given in Tucker

format, and assume, without loss of generality, that r1 ≥ ri, for all i. Then A can be
expressed in the CP format as

A =

r2∑
i2=1

· · ·
rd∑
id=1

( r1∑
i1=1

ci1···idu
(1)
i1

)
◦ u

(2)
i2
◦ · · · ◦ u

(d)
id

(2.14)

This shows that the tensor rank is bounded by
∏d
k=2 rk—a number which grows expo-

nentially in d. For a further discussion and ways of approximating the expression (2.14),
see [32, Subsection 8.5.3].

It should be noted that various other low-rank formats for tensors exist, many of
which are based on the CP or the Tucker format, see [56, Section 5]. In recent years,
two new formats, which avoid the detrimental properties of the CP decomposition while
giving polynomial storage and computational complexity, have attracted considerable
interest in the literature. One is the hierarchical Tucker format [30, 33], which builds a
binary tree for the tensor modes to store information recursively. The other is the tensor
train (TT ) format [74] (also known as matrix product states or linear tensor network,
especially in physics), which allows the computation of each tensor entry as a product
of matrices of small size.
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2.2 Computing Low-Rank Tensor Decompositions

In this section, we will introduce some standard algorithms to compute the CP and
the Tucker decomposition of a given tensor. We will also discuss the approximation
qualities of the result with respect to the full tensor. Our exposition is largely based on
[47, Chapter 2].

In this section, as well as in some following parts of the thesis, some special matrix
operations will be useful. We will introduce them here briefly.

The Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q is denoted by A⊗B.
The result is an mp× nq matrix and defined by

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .
The Khatri-Rao product contains the Kronecker products of the matching columns.

Given matrices A ∈ Rm×n and B ∈ Rp×n, their Khatri-Rao is denoted by A ~ B. The
result is an mp× n matrix and defined by

A~B =
[
a1 ⊗ b1 . . . an ⊗ bn

]
.

If a, and b are vectors, then their Khatri-Rao and Kronecker products are identical, i. e.
a⊗ b = a ~ b.

The Hadamard product is the elementwise matrix product. Given matrices A and B,
both of size m× n, their Hadamard product is denoted by A�B. The result is also an
m× n matrix and defined by

A�B =

 a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn

 .
Now, we will collect some useful properties of these operations, cf. [56, Subsection 2.6]

Let A, B, C and D matrices with the right dimensions, such that all the operations given
below are defined. Then

(A⊗B)(C ⊗D) = AC ⊗BD, (2.15)

(A⊗B)+ = A+ ⊗B+,

A~B ~ C = (A~B) ~ C = A~ (B ~ C),

(A~B)T(A~B) = (ATA)⊗ (BTB),

(A~B)+ =
(
(ATA)⊗ (BTB)

)+
(A~B)T, (2.16)

where A+ denotes the Moore-Penrose pseudoinverse of A. For more matrix properties
of this kind, see, for example, the collection [69].

Now we present some basic algorithms: we consider the CP decomposition in Subsec-
tion 2.2.1 and the Tucker decomposition in Subsection 2.2.2.
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2.2.1 The Alternating Least Squares Algorithm for the CP Decomposition

In this subsection, we will present the alternating least squares method for computing a
CP approximation to a given full tensor (CP-ALS). It goes back to the original papers
[17, 36] and remains one of the main algorithms for the computation of CP decomposition
to this day. It is simple to understand and implement, and the idea of alternating
optimization appears at many places in tensor numerical methods, as we will see in the
following subsection and also in Chapter 5.

The goal is to solve the optimization problem

min
X
‖A−X‖2

s. t. X = Jλ;U, V,W K =
r∑

k=1

λk uk ◦ vk ◦wk.
(2.17)

This means, for a given full tensor A and a fixed r, we want to find the rank-r tensor
X, which is closest to A (if it exists).

For simplicity, we will limit ourselves here to the case of of mode-3 tensors. The d-
mode case is completely analogous, but makes notation slightly more cumbersome, see
[56, Fig. 3.3].

Using the properties listed in the introduction to this section, we can write the three
different matricizations of a tensor X = JU, V,W K as

X(1) = U(W ~ V )T,

X(2) = V (W ~ U)T,

X(3) = W (V ~ U)T.

Therefore, the objective function from (2.17) can be written in matricized form:

‖A−X‖2 = ‖A(1) − U(W ~ V )T‖2

= ‖A(2) − V (W ~ U)T‖2

= ‖A(3) −W (V ~ U)T‖2.

While the objective function is nonlinear when viewed as function of the three factors U ,
V and W , it is linear in each of the factors when the other two are fixed. This leads us
to the alternating method, where we solve an alternating sequence of linear least squares
problems. In the mode-1 matricization problem, for V and W fixed, we solve

min
Û
‖A(1) − Û(W ~ V )T‖2,

where Û = U diag(λ) contains the weight vector λ. Since this is just a linear least-squares
problem, the solution is given by

Û = A(1)

(
(W ~ V )T

)+
.
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Because of the formula for the pseudoinverse of the Khatri-Rao product in (2.16), we
can rewrite this solution as

Û = A(1)(W ~ V )(WTW � V TV )+.

Hence it is possible to solve the least-squares problem for a small square r × r matrix
instead of a tall n1 × r matrix, but the condition number is squared—the structure of
the last formula is directly related to the normal equations.

Finally, we normalize the columns of Û to get U and store the column norms in the vec-
tor λ. The computation of the factor matrices V and W is completely analogous. Then,
the iterative scheme is repeated until a convergence criterion is met or the maximum
number of iterations is exceeded.

Due to its simplicity, the CP-ALS algorithm has remained a widely applied method
over the decades, and is still competitive in some practical applications, see, for exam-
ple, the comparison in [83]. Various modifications have been proposed to the CP-ALS
method, but theoretical understanding remains incomplete—notably, it is not guaran-
teed to converge to a minimum, or even a stationary point, since the full information in
all modes is never considered simultaneously. Due to the inherent potential ill-posedness
of the best rank-r approximation problem, theoretical progress in this area has been
slow. Most recently, a Riemannian optimization approach [14] has been proposed, which
might provide new insights.

2.2.2 The HOSVD and Tucker-ALS for Computing the Tucker
Decomposition

In this subsection, we will discuss the computation of the Tucker decomposition and the
problem of the best multilinear rank-r approximation to a full tensor. Specifically, we
consider the problem

min
X
‖A−X‖2

s. t. X = C
d

×
i=1

Ui
(2.18)

The fact that the multilinear rank of a tensor is based directly on the well-understood
concept of the matrix rank gives the motivation for the first approach to the problem
(2.18): due to the Eckart–Young approximation theorem [23], the best rank-r approxi-
mation to a matrix is given by its truncated SVD.

This concept can be generalized to tensors by the truncated higher-order SVD
(HOSVD) [64]. We will quote the main result of the original paper, which summarizes
the properties of the HOSVD:

Theorem 2.1 (HOSVD, [64, Theorem 2]). Every tensor A ∈ Rn1×···×nd can be written
as the product

A = C×1 U1 × · · · ×d Ud = C
d

×
i=1

Ui, (2.19)
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in which

i) all [u
(i)
1 · · · u

(i)
ri ] = Ui ∈ Rni×ri have orthonormal columns;

ii) all matricizations C(i) of the tensor C satisfy the following properties:

a) all-orthogonality: the rows of C(i) are pairwise orthogonal, i. e.

C(i)C
T
(i) =: Σi

is a diagonal matrix.

b) ordering: the diagonal entries (σ
(i)
1 )2, . . . , (σ

(i)
ri )2 of Σi satisfy

σ
(i)
1 ≥ · · · ≥ σ

(i)
ri ≥ 0.

The decomposition (2.19) is called the higher-order singular value decomposition

( HOSVD) of the tensor A. The non-negative numbers σ
(i)
k are called the i-mode singu-

lar values of A, and the vector u
(i)
k is the corresponding i-mode left singular vector of

A.

Proof. Application of the SVD to the matricization of A in each mode.

It is worth noting that the HOSVD inherits the uniqueness properties of the matrix
SVD: the singular vectors to a distinct singular value are unique up to the sign; the left
singular vectors to a multiple singular value are unique up to an orthogonal transforma-
tion, see [64, Property 4].

Now, the HOSVD can be applied in truncated form to give a rank-r approximation
to a full tensor. Let Piri be the best rank-ri approximation operator in the ith mode,

i. e. Piri A = (UiU
T
i A(i))

(i), where Ui denotes the matrix of the ri dominant left singular

vectors of A(i). Then the rank-r truncated HOSVD operator PHO
r is given by

PHO
r A := P1

r1 · · ·P
d
rd

A. (2.20)

In contrast to the matrix case, the HOSVD does not yield a best rank-r approximation:
the Eckart–Young result is not applicable in general since the singular values in the
different modes do not coincide—except for d = 2, where the nonzero singular values of
A and AT are equal. If A is a rank-s tensor (with s ≥ r, entrywise), the truncation error
satisfies

‖A− PHO
r A‖ ≥

s1∑
i1=r1+1

(σ
(1)
i1

)2 + · · ·+
sd∑

id=rd+1

(σ
(d)
id

)2. (2.21)

Hence, the HOSVD gives only a quasi-best-approximation with a constant which dete-
riorates with respect to the number of modes:∥∥A− PHO

r A
∥∥ ≤ √d min

X∈Mr

‖A−X‖, (2.22)
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see [64, Property 10].
Since the truncated HOSVD does not give a best rank-r approximation, there are

methods in the literature concerned with improving on the approximation quality of
PHO
r A. They are based on the following theorem (cf. [65]).

Theorem 2.2. For a given tensor A ∈ Rn1×···×nd, the minimization problem (2.18) is
equivalent to the dual maximization problem

max
V1,...,Vd

∥∥∥A d

×
i=1

V T
i

∥∥∥,
where the matrices Vi have full rank. For given maximizing matrices Vi, the core tensor
C minimizing (2.18) is represented by

C = A
d

×
i=1

V T
i .

Now we can, starting from the HOSVD, build a method for computing the best rank-r
approximation to A in Algorithm 2.3. Note, however, that it does us not, in general,
give a guarantee that we find the global optimum.

Algorithm 2.3 Tucker decomposition via ALS.

Input: Input tensor A, multilinear rank r, maximum number of ALS iterations
kmax ≥ 1.

1: Compute the HOSVD of A for an initial guess, i. e.

(C(0), U
(0)
1 , . . . , U

(0)
d )← PHO

r A

2: for k = 1 to kmax do
3: for i = 1 to d do
4: B← A×i−1

j=1

(
U

(k)
j

)T×d
j=i+1

(
U

(k−1)
j

)T
5: U

(k)
i ← (ri dominant left singular vectors of B(i))

6: end for
7: end for
8: C← A×d

j=1

(
U

(kmax)
j

)T
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3 Elements of Riemannian Optimization

As we will see in the next chapter, the set of tensors of fixed multilinear rank forms a
smooth submanifold of the space of all tensors; similar properties hold for other fixed-
rank sets of tensors. Due to the centrality of optimization on smooth manifolds to this
thesis and to the field of tensor methods in general, in this chapter, we will present some
basic definitions and methods from this field. We will only introduce the concepts that
will be of most use to us later—a comprehensive introduction to the field of optimization
on manifolds is far beyond the scope of this thesis; we recommend the standard text [2],
which is the basis for this chapter, and the references therein.

In Section 3.1, we will introduce basic concepts of differential geometry needed for the
study of manifolds. In Section 3.2, we will utilize these concepts to construct optimiza-
tion methods on Riemannian manifolds.

3.1 Basic Definitions

In this section we will introduce the definition of the manifold—a basic structure of
differential geometry and the “workhorse” of Riemannian optimization.

In Subsection 3.1.1 we will describe what an abstract manifold is, from the point of
view of differential geometry. In Subsection 3.1.2, we will describe the tangent space
structure of manifolds, which is needed to introduce differential calculus. Finally, in
Subsection 3.1.3, we will introduce the Riemannian structure on manifolds, which is a
generalization of the Euclidean structure in vector spaces.

3.1.1 Manifolds, Submanifolds, Product and Quotient Manifolds

Intuitively speaking, a manifold M is a set which is locally similar to the vector space
Rn. The abstract definition of a manifold relies on the concept of a chart—a function
which maps a region ofM it to Rn while satisfying certain properties—and an atlas—a
collection of maps.

LetM be a set. A mapping ϕ of a subset U ofM onto an open subset of Rn is called
an n-dimensional chart of the set M, denoted by (U , ϕ). Given a chart (U , ϕ) and x ∈ U ,
the entries of ϕ(x) ∈ Rn are called the coordinates of x in the chart (U , ϕ).

The concept of a chart makes it possible to apply the usual methods of real analysis to
objects associated wit U . For example, if f is a real-valued function on U , then f ◦ ϕ−1
is a function form Rn to R, with domain ϕ(U). To apply this idea to the whole set M,
we must ensure that each point x ∈M belongs to at least one chart domain; however, if
x belongs to the domains of two charts (U1, ϕ1) and (U2, ϕ2), then the two charts must
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give compatible information with respect to differentiability. This leads to the concept
of the atlas, which will help us define a manifold.

Definition 3.1 (atlas, manifold). A (C∞) atlas of M into Rn is a collection of charts
(Uα, ϕα) of the set M such that

i)
⋃
α Uα =M,

ii) for any pair α, β with Uα ∩ Uβ 6= ∅, the sets ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) are
open sets in Rn and the change of coordinates

ϕβ ◦ ϕ−1α : Rn → Rn

is smooth (i. e. of class C∞) on its domain ϕα(Uα ∩Uβ). We say that the elements
of an atlas overlap smoothly.

Given an atlas A, let A+ be the set of all charts (U , ϕ), such that A∪{(U , ϕ)} is also an
atlas. Then A+ is also an atlas, called the maximal atlas (or complete atlas) generated
by the atlas A.

An (n-dimensional) manifold is a couple (M,A+), where M is a set and A+ is a
maximal atlas of M into Rn, such that the topology induced by A+ is Hausdorff and
second-countable.

A maximal atlas of a set M that induces a second-countable Hausdorff topology is
called a manifold structure on M. Given a chart ϕ on M, the inverse mapping ϕ−1 is
called a local parametrization of M.

A few remarks to the Definition 3.1 are in order:

i) The definition of the manifold contains two technical assumptions: We assume
that the induced topology is Hausdorff, i. e. any two distinct points of M have
disjoint neighbourhoods, and that it is second-countable, i. e. there is a countable
collection B of open sets such that every open set is the union of some subcollection
of B. These assumptions ensure that basic results from differential geometry hold
and preclude counterintuitive properties of (M,A+). More details may be found
in [2, Subsection 3.1.2] and in standard texts on differential geometry, such as [85].

ii) If (M,A+) is a manifold, we will usually drop the atlas and simply say “the
manifold M” when there is no ambiguity.

iii) A family of local parametrizations (ϕ−1α )α is equivalent to a family of charts (ϕα)α,
and the definition of a manifold may be given in terms of either.

Given two manifolds, one can easily construct a new one. LetM1 andM2 be manifolds
of dimension n1 and n2, respectively. If (U1, ϕ1) and (U2, ϕ2) are charts of the manifolds
M1 and M2, respectively, then the mapping

ϕ1 × ϕ2 : U1 × U2 → Rn1 × Rn2 , (x1, x2) 7→ (ϕ1(x1), ϕ2(x2))
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is a chart for the set M1 ×M2. All the charts thus obtained form an atlas for the set
M1 ×M2. With the structure defined by this atlas, M1 ×M2 is called the product of
the manifoldsM1 andM2. Its manifold topology is equivalent to the product topology.

Many tensor manifolds, including the one studied in the next chapter, admit a sub-
manifold structure, i. e. they are embedded into a larger space. Generally speaking, let
(M,A+) and (N ,B+) be manifolds such that N ⊂M. The manifold (N ,B+) is called
an immersed submanifold of (M,A+) if the inclusion map i : N → M, x 7→ x, is an
immersion, i. e. the derivative D i(x) is an injection for all x. If the manifold topology
of N coincides with its subspace topology induced from the topological space M, then
N is called an embedded submanifold, or simply a submanifold of the manifold M. An
important special case is that of M being a vector space.

It is important to note that, for any subset N of a manifold M, there is at most
one atlas, which makes it an embedded submanifold of M, cf. [2, Proposition 3.3.1].
Therefore, we can always speak about submanifolds without any ambiguity about the
underlying differentiable structure.

In practice, checking the definition of a submanifold can be difficult. Therefore, we
quote two important sufficient conditions for subsets of manifolds to be embedded sub-
manifolds.

Lemma 3.2 (submersion theorem, subimmersion theorem, [2, Propositions 3.3.3, 3.3.4]).
Let F : M1 → M2 be a smooth mapping between two manifolds of dimension n1 and
n2, respectively.

i) Submersion theorem: Let n1 > n2 and let y be a point of M2. If the rank of F
(i. e. the rank of DF )is equal to n2 at evry point of F−1({y}), then F−1({y}) is a
closed embedded submanifold of M1, and dim(F−1({y})) = n1 − n2.

ii) Subimmersion theorem: Let y be a point of F (M1). If F has constant rank k < n1
in a neighbourhood of F−1({y}), then F−1({y}) is a closed embedded submanifold
of M1 of dimension n1 − k.

We will conclude this subsection with the concept of quotient manifolds—these are
manifolds whose elements are equivalence classes. This concept will be useful when
studying objects, which have several equivalent representations—such as tensors of fixed
multilinear rank—since it will be sufficient to consider any representative of a class.

Let M be a manifold equipped with an equivalence relation ∼, i. e. a relation that is

i) reflexive: x ∼ x, for all x ∈M,

ii) symmetric: x ∼ y if and only if y ∼ x, for all x, y ∈M,

iii) transitive: if x ∼ y and y ∼ z, then x ∼ z, for all x, y, z ∈M.

The set
[x] := {y ∈M| y ∼ x}
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of all elements that are equivalent to a a point x is called the equivalence class containing
x. The set

M/ ∼:= {[x] ∈M|x ∼ x}

of all equivalence classes of ∼ in M is called the quotient of M by ∼. The mapping
π : M → M/ ∼, x 7→ [x], which maps each element of M to its equivalence class, is
called the natural or canonical projection.

Now let (M,A+) be a manifold with an equivalence relation ∼ and let B+ be a
manifold structure on the set M/ ∼. The manifold (M/ ∼,B+) is called a quotient
manifold of (M,A+) if the natural projection π is a submersion, i. e. if its derivative is
surjective at each point in M.

Similarly to the case of submanifolds, a quotient manifold structure is unique. This
means, ifM is a manifold andM/ ∼ is a quotient ofM, thenM/ ∼ admits at most one
manifold structure that makes it a quotient manifold of M, cf. [2, Proposition 3.4.1].

3.1.2 Tangent Vectors and Derivatives

Since a manifold is locally similar to Rn, we can use tools of real analysis to work with
functions on manifolds. However, we will need the notion of tangent vectors and the
tangent space of a manifold to approach functions on manifolds in this way. We will
start with the fundamental definition of this subsection.

Definition 3.3 (curve, tangent vector, tangent space, tangent bundle). Let M be a
manifold.

i) A smooth mapping
γ : R→M, t 7→ γ(t)

is called a curve in M.

ii) Let x ∈ M, and denote the set of all smooth, real-valued functions defined on a
neighbourhood of x by Fx(M). A tangent vector ξx M at x is a mapping from
Fx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

,

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx. The
point x is called the foot of the tangent vector ξx.

iii) The tangent space to M at a point x, denoted by TxM is the set of all tangent
vectors to M at x.

iv) The set of all tangent vectors to M, denoted by

TM :=
⋃
x∈M

TxM,

is called the tangent bundle of M.
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Again, some remarks are in order concerning this definition:

i) When there is no ambiguity, we will occasionally simply write ξ = ξx.

ii) The tangent vector is well defined, i. e. the definition does not depend on the
choice of the curve γ. Similarly, the linear structure of the vector space TxM is
well defined. Details can be found in [2, Subsection 3.5.1].

iii) It can be shown that the tangent bundle TM itself is a manifold, cf. [2, Subsec-
tion 3.5.4].

The concept of tangent vectors allows us now to define derivatives on manifolds. Let
F : M → N be a smooth mapping between two manifolds M and N . Let ξx be a
tangent vector at a point x of M. It can be shown that the mapping DF (x)[ξx] from
Fx(N ) to R defined by

(DF (x)[ξx])f := ξx(f ◦ F )

is a tangent vector to N at F (x). The tangent vector DF (x)[ξx]) is realized by F ◦ γ,
where γ is any curve that realizes ξx. The mapping

DF (x) : TxM→ TF (x)N , ξx 7→ DF (x)[ξx]

is a linear mapping called the differential (or differential map, derivative, or tangent
map) of F at x.

If N = R, i. e. F is a real-valued function on a manifold M, then F ∈ Fx(M), and
we simply have

DF (x)[ξx] = ξxF

using the fact that the tangent space to R is R itself.
We have seen that, on general manifolds, a tangent vector is an object that, given a

real-valued function, returns a real number. Now let M be an embedded submanifold
of a vector space E . Let γ be a curve in M with γ(0) = x. Let f̄ denote a real-valued
function in a neighbourhood U of x in E and let f = f̄ |U∩M. Then we have

γ̇(0)f =
d

dt
f(γ(t))

∣∣∣∣
t=0

=
d

dt
f̄(γ(t))

∣∣∣∣
t=0

= D f̄(x)[γ̇(0)].

This yields a natural identification of TxM with the set

{γ̇(0) | γ curve in M with γ(0) = x},

which is a linear subspace of the vector space E . Graphically, a tangent vector to a
submanifold of a vector space can be thought of as an “arrow” tangent to the manifold.
The tangent space can be thought of as the plane touching the manifold in one point.
See Figure 3.1 for an illustration.
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Figure 3.1: Tangent space of an embedded submanifold of a vector space.

3.1.3 Riemannian Metric and Gradients

In the previous subsection, we have defined directional derivatives on manifolds. In order
to define a gradient as the representative vector of the derivative, we will need the notion
of an inner product. Since we have a distinct tangent vector space TxM in each point x
of a manifold, we will naturally have an inner product 〈 · , · 〉x for every TxM. It induces
a norm ‖ξx‖x :=

√
〈ξx, ξx〉x.

A manifold whose tangent spaces are endowed with a smoothly varying inner product
is called a Riemannian manifold. The smoothly varying inner product is called the
Riemannian metric. When there is no ambiguity, we will drop the index x from the
inner product and the norm.

A metric onM (which should not be confused with the Riemannian metric on TxM)
can be defined with the help of curves. The length of a curve γ : [a, b]→M is defined
by

L(γ) :=

∫ b

a

∥∥γ̇(t)
∥∥dt.

Then the Riemannian distance on M is given by

dist : M×M→ R, dist(x, y) = inf
γ∈Γ

L(γ),

where Γ is the set of all curves in M joining the points x and y. Hence, intuitively,
the distance between x and y is equal to the length of the shortest connection between
them.

Strictly speaking, a Riemannian manifold is a couple (M, 〈 · , · 〉) of a manifold and
a Riemannian metric. However, when the Riemannian metric is clear, we will drop it
and simply speak of M as a Riemannian manifold. It can be shown that any (second-
countable Hausdorff) manifold admits a Riemannian structure.

Given a smooth real-valued function f on a Riemannian manifold M, the (Rieman-
nian) gradient of f at x, denoted by grad f(x) is defined as the unique (due to the Riesz
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representation theorem) element of TxM that satisfies

〈grad f(x), ξ〉x = D f(x)[ξ], for all ξ ∈ TxM.

For the use in optimization methods, it is worth noting that the Riemannian gradient
gradient is the steepest ascent direction of f at x, i. e.

grad f(x)

‖grad f(x)‖
= arg max

ξ∈TxM, ‖ξ‖=1
D f(x)[ξ]. (3.1)

Again, we will discuss the special case of embedded submanifolds, which is of particular
interest to this thesis. Let M be an embedded submanifold of a Euclidean vector space
E . Since every tangent space TxM can be regarded as a subspace of E , the inner product
on E induces a Riemannian metric on M, simply by the natural inclusion map. This
turns M into a Riemannian manifold. Endowed with this Riemannian metric, M is
called a Riemannian submanifold of E . The orthogonal complement of TxM is called
the normal space to M at x and is denoted by

(TxM)⊥ = {ξ ∈ E | 〈ξ, η〉 = 0, for all η ∈ TxM}.

Any element ξ ∈ E can be uniquely decomposed into the sum of an element of TxM and
an element of (TxM)⊥:

ξ = Px ξ + P⊥x ξ,

where Px denotes the orthogonal projection onto TxM, and P⊥x denotes the orthogonal
projection onto (TxM)⊥.

Finally, for Riemannian submanifolds, we will present a result, which allows to com-
pute gradients, when given a gradient in the embedding space.

Lemma 3.4 (gradients on submanifolds, [2, Section 3.6.1]). Let M be a Riemannian
submanifold of a Euclidean space E. Let f̄ : E → R be a function with Euclidean
gradient grad f̄(x) at point x ∈M. Then the Riemannian gradient of f := f̄ |M is given
by grad f(x) = Px grad f̄(x).

3.2 Riemannian Optimization Methods

Now that we have defined all the basic notions from differential geometry needed to work
on Riemannain manifolds, we can approach optimization methods on Riemanniain man-
ifolds. In Subsection 3.2.1, we will introduce the basic building blocks of optimization on
Riemannian manifolds and present some simple first-order methods. In Subsection 3.2.2,
we will introduce the basic second-order method, the Riemannian Newton method. Fi-
nally, in Subsection 3.2.3, we will introduce the Riemannian trust-region method, which
is a globally convergent second-order method.
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3.2.1 Retractions, Vector Transports and Line-Search Methods

Conceptually, the simplest approach to optimizing a differentiable function on a manifold
M is to find a descent direction ηx on some test point x. After a sequence of iterations, we
hope to converge to a critical or stationary point x∗, where grad f(x∗) = 0. Stationarity
is a necessary condition for local optimality; we refer to the text by Udris,te [87] for a
detailed discussion of optimality conditions on Riemannian manifolds.

In Rn, the concept of moving from a point in the direction of a vector is straightfor-
ward. On a manifold, we lack an underlying linear structure for this operation. However,
we can move in a direction on the tangent space TxM of the point x.

However, a descent direction ηk in xk does not us give a new iterate xk+1 yet, since
there is no linear structure we can use to combine xk with ηk. Here the definition of a
retraction on M comes into play.

Definition 3.5 (retraction, [2, Definition 4.1.1]). A retraction on a manifold M is a
smooth mapping R from the tangent bundle TM ontoM with the following properties
(where Rx denotes the restriction of R to TxM).

i) Rx(0x) = x, where 0x denotes the zero element of TxM.

ii) With the canonical identification T0xTxM ' TxM, the mapping Rx satisfies the
rigidity condition

DRx(0x) = idTxM,

where idTxM denotes the identity mapping on TxM.

Now, instead of the expression “xk+ηk”, we can use Rx(ηk) to obtain the new iterate,
cf. Figure 3.2. We note that the rigidity condition means that a retraction is a first-order
approximation to the so-called exponential map on M, which gives a minimal-distance
curve onM and is an analogue of a straight line in a vector space, see [2, Section 5.4] for
details. Since derivative-based optimization methods only use local information anyway,

.

X

RX(ξ)

ξ

Mr

TXMr

Figure 3.2: Retraction R on a manifold M.
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we will find that this kind of local first-order approximation is sufficient to construct
convergent methods.

More specifically, since the negative gradient gives us the steepest descent direction (cf.
(3.1)), we will want the descent direction ηx to be reasonably close to − grad f(x) in some
sense. Formally, this means: given a cost function f on a Riemannian manifold M, a
sequence (ηk)

∞
k=0, ηk ∈ TxkM, is gradient-related for f , if, for any subsequence (xki)

∞
i=0

of (ηk)
∞
k=0 that converges to a non-critical point of f , the corresponding subsequence

(ηki)
∞
i=0 is bounded and satisfies

lim sup
i→∞

〈grad f(xki), ηki〉 < 0. (3.2)

To construct an optimization method, we will further need a line-search procedure in
the tangent space of a manifold M. Given a cost function f on a Riemannian manifold
M with retraction R, a point x ∈ M, a tangent vector η ∈ TxM, and scalars ᾱ > 0,
β, σ ∈ (0, 1), the Armijo point is

ηA = tAη = βmᾱη,

where m is the smallest nonnegative integer such that

f(x)− f(Rx(βmᾱη)) ≥ −σ〈grad f(x), βmᾱη〉. (3.3)

The factor tA is called Armijo step size.
Now we can define a simple framework for line-search methods on a manifold in

Algorithm 3.6.

Algorithm 3.6 Line search method on a manifold m Mr

Input: Riemannian manifold M; continuously differentiable real-valued function f on
M; retraction R from TM to M; scalars ᾱ > 0, c, β, σ ∈ (0, 1); initial iterate x0.

1: for k = 0 until convergence do
2: Pick ηk in TxkM such that the sequence (ηk)

∞
k=0 is gradient-related (cf. (3.2))

3: <Test for convergence>
4: Select xk+1 such that

f(xk)− f(xk+1) ≥ c(f(xk)− f(Rxk(tAηk))),

where tA is the Armijo step size (cf. (3.3)) for the given parameters ᾱ, β, σ, ηk
5: end for

As in the case of Euclidean optimization, standard convergence results can be proved
for the generic line-search method.

Theorem 3.7 (accumulation points of the line-search method, [2, Theorem 4.3.1]).
Let (xk)

∞
k=0 be an infinite sequence of iterates generated by Algorithm 3.6. Then every

accumulation point of (xk)
∞
k=0 is a critical point of the cost function f .
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Proof. By contradiction, using (3.2) and (3.3).

More can be said under compactness assumptions:

Corollary 3.8 (convergence to a stationary point, [2, Corollary 4.3.3]). Let (xk)
∞
k=0 be

an infinite sequence of iterates generated by Algorithm 3.6. Assume that the level set
{x |x ∈Mf(x) ≤ f(x0)} is compact. Then

lim
k→∞
‖grad f(xk)‖ = 0.

Proof. By contradiction, using Theorem 3.7.

For numerical methods, not only the convergence itself, but also the speed of conver-
gence is of importance, which we will define as follows [2, Definitions 4.5.1, 4.5.2]:

Definition 3.9 (linear, superlinear, quadratic convergence). Let M be a Riemannian
manifold and let dist denote the Riemannian distance onM. Let (xk)

∞
k=0 be a sequence

converging to a point x∗ ∈M.

i) We say that (xk)
∞
k=0 converges linearly to a point x∗ ∈M if there exists a constant

c ∈ (0, 1) and an integer K ≥ 0 such that, for all k ≥ K, it holds that

dist(xk+1, x
∗) ≤ cdist(xk, x

∗). (3.4)

The limit

lim sup
k→∞

dist(xk+1, x
∗)

dist(xk, x∗)

is called the linear convergence factor of the sequence. An iterative algorithm on
M is said to converge locally linearly to a point x∗, if there exists a neighbourhood
V of x∗ and a constant c ∈ (0, 1) such that, for every initial point x0 ∈ V, the
sequence (xk)

∞
k=0 generated by the algorithm satisfies (3.4). The constant c is

called the rate of convergence.

ii) Let (U , ϕ) be a chart of M with x ∈ U . If

lim
k→∞

‖ϕ(xk+1)− ϕ(x∗)‖
‖ϕ(xk)− ϕ(x∗)‖

= 0,

then (xk)
∞
k=0 is said to converge superlinearly to x∗. If there exist constants p > 0,

c ≥ 0, and K ≥ 0 such that, for all k ≥ K, it holds that

‖ϕ(xk+1)− ϕ(x∗)‖ ≤ c‖ϕ(xk)− ϕ(x∗)‖p, (3.5)

then xk is said to converge to x∗ with order at least p. An iterative algorithm on
M is said to converge locally to a point x∗ with order at least p if there exists a
chart (V, ψ) at x∗ and a constant c > 0 such that, for every initial point x0 ∈ V,
the sequence (xk)

∞
k=0 generated by the algorithm satisfies (3.5). If p = 2, the

convergence is said to be quadratic.
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Figure 3.3: Vector transport on a manifold M.

It can be proven that Algorithm 3.6 with ηk = − grad f(xk) (i. e. the gradient method
or steepest descent method) converges linearly to the limit x∗, cf. [2, Theorem 4.5.6].
However, the rate of convergence depends on the condition number of the Hessian in
the critical point x∗ and can be bad for large condition numbers, which can lead to very
slow convergence in practice, see, for example [2, Subsection 4.6.4], for an illustration.

An improvement over the simple steepest descent method is given by the nonlinear
conjugate gradient or CG method, which uses gradient information from the previous
iteration to obtain an improved search direction. However, in the Riemannian case,
combining information from two different iterations means combining tangent vectors
from two different tangent spaces. This motivates the following definition, see also
Figure 3.3.

Definition 3.10 (vector transport, [2, Definition 8.1.1]). A vector transport on a man-
ifold M is a smooth mapping

T : TM⊕ TM→ TM, (η, ξ) 7→ Tη(ξ),

satisfying the following properties for all x ∈M:

i) (Associated retraction) There exists a retraction R, called the retraction associated
with T , such that, for all η, ξ, it holds that Tηξ ∈ TRx(η)M.

ii) (Consistency) T0xξ = ξ for all ξ ∈ TxM.

iii) (Linearity) The mapping Tη : TxM→ TRx(η)M, ξ 7→ Tηξ is linear.

Now we can define the Riemannian CG method (also called the geometric CG method)
in Algorithm 3.11. Following [82, Subsection 2.8.3], we apply the Armijo condition in a
backtracking scheme. From the various possibilities for nonlinear CG methods, we choose
the Fletcher–Reeves update, see, for example [73, Section 5.2], for a discussion. We follow
the Riemannian Fletcher–Reeve formula of [2, Section 8.3] and apply a modification,
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which ensures that the search sequence (ηk)
∞
k=0 stays sufficiently (in the numerical sense)

gradient-related. This means for the coefficient βk from the CG method:

βk = max

{
0,
〈grad f(xk), grad f(xk)− Tαkηk(grad f(xk−1))〉

‖grad f(xk−1)‖2

}
. (3.6)

Algorithm 3.11 Riemannian CG method on a manifold M, [82, Algorithm 2.3].

Input: Riemannian manifold M; continuously differentiable real-valued function f
on M; vector transport T with associated retraction R; backtracking parameter
c ∈ (0, 1); initial iterate x0.

1: ξ0 ← grad f(x0)
2: η0 ← −ξ0
3: α0 ← arg min f(Rx0(αη0))
4: x1 ← Rx0(α0η0)
5: for k = 1 until convergence do
6: ξk ← grad f(xk)
7: ηk ← −ξk + βkTαk−1ηk−1

(ηk−1)
8: αk ← arg min f(Rxk(αηk))
9: Find smallest m ≥ 0 such that

f(xk)− f(Rxk(2−mαk, ηk)) ≥ −c〈ξk, 2−mαkηk〉

10: xk+1 ← Rxk(2−mαkηk)
11: <Test for convergence>
12: end for

3.2.2 The Riemannian Hessian and the Newton Method

As we have seen in the previous subsection, steepest descent and CG methods only guar-
antee linear convergence. To get a superlinearly convergent optimization method on a
manifold, we will need information about the second derivative of the objective function.
In order to define second derivatives on Riemannian manifolds, we will introduce some
basic concepts.

Definition 3.12 (vector field, affine connection, covariant derivative, Lie bracket). Let
M be a manifold with the tangent bundle TM.

i) A vector field onM is a smooth function fromM to TM. Given a vector field ξ on
M and a smoooth real-valued function f on M, we let ξf denote the real-valued
function on M defined by

(ξf)(x) := ξx(f),

for all x ∈M. We denote the set of all vector fields on M by X (M).
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ii) An affine connection ∇ on a manifold is a mapping

∇ : X (M)×X (M)→ X (M), (η, ξ) 7→ ∇ηξ,

which satisfies the following properties:

a) F(M)-linearity in η: ∇fη+gχξ = f∇ηξ + g∇χξ,
b) R-linearity in ξ: ∇η(aξ + bζ) = a∇ηξ + b∇ηζ,

c) Product rule (Leibniz’s law): ∇η(fξ) = (ηf)ξ + f∇ηξ,
for any η, ξ, ζ, χ ∈ X (M), f, g ∈ F(M), and a, b ∈ R. The vector field ∇ηξ is
called the covariant derivative of ξ with respect to η for the affine connection ∇.

iii) Let ξ and η be vector fields onM. Then we call the function [ξ, η]( · ) from F(M)
onto itself, defined by

[ξ, η]f := ξ(ηf)− η(ξf),

the Lie bracket of ξ and η.

Definition 3.12 allows us now to consider a derivative of a tangent vector ξ in the
direction of another tangent vector η. It can be proved (cf. [2, Proposition 5.2.1]) that
every manifold admits an affine connection. However, it need not be unique in general.
Introducing a Riemannian structure toM and demanding two more conditions gives us
uniqueness.

Theorem 3.13 (Levi–Civita, [2, Theorem 5.3.1]). On a Riemannain manifoldM, there
exists a unique affine connection ∇ that satisfies

i) ∇ηξ −∇ξη = [ξ, η] (symmetry), and

ii) χ〈η, ξ〉 = 〈∇χη, ξ〉+ 〈η,∇χξ〉 (compatibility with the Riemannian metric),

for all ξ, η, χ ∈ X (M). This affine connection ∇, called the Levi–Civita connection or
the Riemannian connection of M is characterized by the Koszul formula

2〈∇χ, ξ〉 = χ〈η, ξ〉+ η〈ξ, χ〉 − ξ〈χ, η〉 − 〈χ, [η, ξ]〉+ 〈η, [ξ, χ]〉+ 〈ξ, [χ, η]〉.

It is worth noting that the symmetry of the Riemannian connection ensures equality
of mixed partial derivatives, and the compatibility with the Riemannian metric ensures
that a generalized product rule holds.

WhenM is a submanifold of a vector space E , the Riemannian connection reduces to
the orthogonal projection of the usual directional derivative. Recall from the previous
subsection that, in this case, every vector ξx ∈ TxM has a unique decomposition in
a tangential component Px ξx and an orthogonal component P⊥x ξx. Then, if ∇ is a
Riemannian connection, the covariant derivative of ξ with respect to η reduces to

∇ηxξx = Px(D ξx[ηx]),

see [2, Proposition 5.3.2].
Now we are ready to define the Riemannian Hessian operator of a function on M.
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Definition 3.14 (Riemannian Hessian). Let f be a real-valued smooth function on a
Riemannian manifold M. Then the Riemannian Hessian of f at a point x in M is the
linear mapping Hess f(x) of TxM into itself defined by

Hess f(x)[ξx] = ∇ξx grad f(x),

for all ξx in TxM, where ∇ is the Riemannain connection on M.

Similarly to Lemma 3.4, we can calculate the Riemannian Hessian on submanifolds
from the Hessian in the embedding space.

Lemma 3.15 (Hessians on submanifolds, [2, Section 5.3.3]). Let M be a Riemannian
submanifold of a Euclidean space E. Let f̄ : E → R be a function with Euclidean gradient
grad f̄(x) at point x ∈M. Then the Riemannian Hessian of f := f̄ |M is given by

Hess f(x)[ξx] = Px D
(

Px grad f̄(x)
)
. (3.7)

Using the chain rule, we can write (3.7) as

Hess f(x)[ξ] = Px D
(

Px grad f̄(x)
)

= Px Hess f̄(x)[ξx] + Px Dξ Px grad f̄(x), (3.8)

where we view x 7→ Px as an operator-valued function and denote its directional deriva-
tive by Dξ. We observe that the first term in (3.8) is just the orthogonal projection of
the Euclidean Hessian, while the second one depends on the curvature of the manifold
M. Indeed, the second term is equal to zero when M is flat, i. e. a linear subspace of
the embedding Euclidean space, cf. [58, Subsection 4.1]. Clearly, the main challenge in
calculating the Riemannian Hessian in (3.8) is the derivative of the projection operator.
In [3, Section 3], the authors show the following result.

Lemma 3.16 (derivative of orthogonal projection). Let M be a Riemannian submani-
fold of a Euclidean space E. For any x ∈M, let Px denote the orthogonal projection onto
the tangent space TxM, and P⊥x := idE −Px the orthogonal projection on its orthogonal
complement (TxM)⊥. We view x 7→ Px as an operator-valued function and denote its
Gâteaux derivative at point x in the direction of ξ ∈ TxM by Dξ Px. Then

Px Dξ Px u = Px Dξ Px
(

P⊥x u
)
, (3.9)

for all x ∈M, ξ ∈ TxM and u ∈ E.

By a simple calculation using the symmetry of the Riemannian connection (cf. [2,
Propositions 5.5.2 and 5.5.3]), it can be shown that the Riemannian Hessian is self-
adjoint with respect to the Riemannian metric, i. e.

〈Hess f [ξ], η〉 = 〈ξ,Hess f [η]〉, for all ξ, η ∈ X (M).

The decisive property of the Riemannain Hessian, which makes second-order opti-
mization methods work, is the fact that, around critical points, it is preserved by a
retraction.
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Theorem 3.17 (Hessian-retraction property, [2, Proposition 5.5.6]). Let R be a retrac-
tion, let x∗ be a critical point of a real-valued function f (i. e. grad f(x∗) = 0). Then

Hess f(x∗) = Hess(f ◦Rx∗)(0).

Algorithm 3.18 Riemannian Newton method on a manifold M, [2, Algorithm 5].

Input: Riemannian manifold M; smooth real-valued function f on M; retraction R;
Riemannian connection ∇ on M; initial iterate x0.

1: for k = 0 until convergence do
2: Solve the Newton equation

Hess f(xk)ηk = − grad f(xk)

for the unknown ηk ∈ TxkM, where Hess f(xk)ηk := ∇ηk grad f(xk)
3: Set

xk+1 ← Rxk(ηk)

4: end for

Now we can define the Riemannian Newton method in Algorithm 3.18 and quote the
main convergence result.

Theorem 3.19 (Newton convergence, [2, Theorem 6.3.2]). Under the requirements and
notation of Algorithm 3.18, assume that there exists x∗ ∈ M such that grad f(x∗) =
0 and (Hess f(x∗))−1 exists. Then there exists a neighbourhood U of x∗ in M such
that, for all x0 ∈ U . Algorithm 3.18 generates an infinite sequence (xk)

∞
k=0 converging

superlinearly (at least quadratically) to x∗.

Proof. Similar to the proof in the Euclidean case, using charts.

3.2.3 The Riemannian Trust-Region Method

In the previous subsection, we have seen that the Newton method in Algorithm 3.18
gives us locally superlinear convergence. However, a plain Newton method has some
well-known drawbacks:

i) The convergence radius may be small, i. e. if the initial guess is too far from a
critical point the method may diverge.

ii) Each step requires the solution of a linear system. This may be expensive and
conceptually difficult if the Hessian operator is not even given explicitly but in
terms of the action on a vector in the tangent space, as in (4.7).

There exists a number of strategies for remedying these problems. An intuitive method
for globalizing the convergence of a Newton method is to modify the Hessian such that
the solution ξ of

Hess f(xk)[ξ] = − grad f(xk) (3.10)
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defines a descent direction, see [73, Section 3.4] for an overview in the Euclidean case.
In [2, Section 6.2] a generalization to the Riemannian case is proposed, replacing the
Newton equation with (

Hess f(xk) + Ek
)
[ξ] = − grad f(xk),

where Ek is a sequence of positive-definite linear operators on the tangent spaces TxkM.
However, such perturbed Newton methods rely on heuristics, and their general con-

vergence properties are not well understood. Moreover, they still require the solution
of a linear system in each iteration. A way to circumvent this are trust-region methods
[19], which find a critical point of the function f by minimizing a sequence of constraint
quadratic models mxk .

For a real-valued function f on a Riemannian manifoldM, a function mx is called an
order-q model, q > 0, of M in x ∈ M if there exists a neighbourhood U of x in M and
a constant c > 0 such that∣∣f(y)−mx(y)

∣∣ ≤ c( dist(x, y)
)q+1

, for all y ∈ U .

It can be shown [2, Proposition 7.1.3] that a model mx is order-q if and only if there
exists a neighbourhood U ′ of x in M and a constant c′ > 0 such that∣∣f(y)−mx(y)

∣∣ ≤ c∥∥R−1x (y)
∥∥q+1

, for all y ∈ U .

i. e. the order of a model can be assessed using any retraction.
Given a retraction R, this result allows to build a model for f by simply taking a

truncated Taylor expansion of
f̂x := f ◦Rx,

for any x ∈M. The definition of f̂x : TxM→ R as a real-valued function on a Euclidean
space allows us to use standard results from multivariate analysis. A simple first-order
model is then given by

m̂x = f̂x(0x) + D f̂x(0x)[ξ] = f(x) + 〈grad f(x), ξ〉,

where the second equality follows form the rigidity condition of the retraction. A generic
second-order model is given by

m̂x = f̂x(0x) + D f̂x(0x)[ξ] + 1
2 D2 f̂x(0x)[ξ, ξ]

= f(x) + 〈grad f(x), ξ〉+ 1
2

〈
Hess f̂(x)[ξ], ξ

〉
.

A straightforward and useful modification is obtained by replacing the Euclidean Hessian
on the tangent space Hess f̂(x) by the Riemannian expression Hess f(x).

Thus, we can define a model

mx = f(x) + 〈grad f(x), ξ〉+ 1
2

〈
Hess f(x)[ξ], ξ

〉
,

which does not make any use of a retraction. However, Theorem 3.17 only guarantees
that mx matches f up to second order if x is a critical point. In general, we can only
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Algorithm 3.20 Riemannian trust-region method on a manifoldM, [2, Algorithm 10].

Input: Initial iterate x0 ∈M; parameters ∆̄ > 0, ∆0 ∈ (0, ∆̄), ρ′ ∈ (0, 14).
1: for k = 0 until convergence do
2: Obtain ηk by approximately solving (3.11)
3: <Test for convergence>
4: Evaluate ρk from (3.12)
5: if ρk <

1
4 then

6: ∆k+1 = 1
4∆k

7: else if ρk >
3
4 and ‖ηk‖ = ∆k then

8: ∆k+1 = min(2∆k, ∆̄)
9: else

10: ∆k+1 = ∆k

11: end if
12: if ρk > ρ′ then
13: Xk+1 = RXk

(ηk)
14: else
15: Xk+1 = Xk

16: end if
17: end for

prove that it will only give us a first-order model. The model mx can be shown to be
of second order for general x if the retraction R is of second order, i. e. if it preserves
second-order information of the exponential map, cf. [2, Proposition 5.5.5]. However,
numerical results presented later in the next chapter suggest that, in our case, the result
also holds for general points on some tensor manifolds.

The main idea of trust-region methods is solving a model problem

min
η∈TxkM

mxk(η)

s. t. ‖η‖ ≤ ∆k,
(3.11)

for some ∆k ≥ 0 in each iteration k to obtain a search direction ηk. To get meaningful
results it is crucial to check how well the model mxk approximates f̂ in TxkM in the
neighbourhood of 0xk ∈ TxkM. This can be expressed in the form of the quotient

ρk :=
f̂(0xk)− f̂(ηk)

mxk(0xk)−mxk(ηk)
. (3.12)

If ρk is small (convergence theory [19, 1] suggests that ρ′ < 1
4 is an appropriate threshold),

then the model is very inaccurate: the step must be rejected, and the trust-region radius
∆k must be reduced. If ρk is small but less dramatically so, then the step is accepted
but the trust-region radius is reduced. If ρk is close to 1, then there is a good agreement
between the model and the function over the step, and the trust-region radius can be
expanded. If ρk � 1, then the model is inaccurate, but the overall optimization iteration
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is producing a significant decrease in the cost. If this is the case and the restriction in
(3.11) is active, we can try to expand the trust-region radius as long as we stay below
a predefined bound ∆̄ > 0. This method is summarized in Algorithm 3.20, cf. [1,
Algorithm 1].

The convergence theory follows standard techniques from Euclidean optimization [19].
Under some technical assumptions, it can be shown that Algorithm 3.20 converges glob-
ally to a stationary point [1, Theorem 4.4] of f . Locally superlinear convergence to a
nondegenerate local minimum can be shown [1, Theorem 4.12] as long as the quadratic
term in mxk is a sufficiently good Hessian approximation of f .
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4 Tensor Completion

In this chapter, we consider problems of tensor completion, i. e. the problem of find-
ing all entries of some low-rank tensor based on partial information. We will see that
Riemannian optimization techniques from Chapter 3 give us a natural framework for
dealing with these kinds of problems.

In Section 4.1 we present the problem formulation and give an overview of the state
of the art in the literature. In Section 4.2, we cite some basic results about the manifold
of low-rank tensors. In Section 4.2, we prove our main result, the Riemannian Hessian
onMr. In Section 4.3, we explain the Riemannian trust-region methods based on exact
and approximate Hessian evaluations. In Section 4.4, we present the some numerical
experiments for our method on synthetic data, a standard test data set from multilinear
statistics, and a test set from hyperspectral imaging.

4.1 Problem Formulation and Literature Overview

We consider least-squares problems of the form

min
X

f(X) =
1

2

∥∥PΩ X− PΩ A
∥∥2

s. t. X ∈Mr :=
{
X ∈ Rn1×···×nd

∣∣ rankML(X) = r
}
,

(4.1)

where rankML(X) ∈ Rd denotes the multilinear rank of a tensor X, and PΩ :
Rn1×···×nd → Rn1×···×nd is a linear operator. A typical choice found in the literature
is

[PΩ X]i1...id :=

{
xi1...id if (i1, . . . , id) ∈ Ω,
0 otherwise,

where Ω ⊂ {1, . . . , n1}× · · · × {1, . . . , nd} denotes the sampling set, i. e. we assume that
A ∈ Rn1×···×nd is a tensor whose entries with indices in Ω are known.

The tensor completion problem is a generalization of the matrix completion problem,
see, for example, the work by Candès and Recht [16]. Early work on tensor completion
has been done by Liu et al. [68], who consider the problem

min
X
‖X‖∗ s. t. PΩ X = PΩ A (4.2)

in the context of image data recovery, where ‖ · ‖∗ is a generalized nuclear norm. Note
that (4.2) can be viewed as the dual of (4.1). It ensures convexity for the tensor comple-
tion problem at the cost of losing the underlying manifold structure of low-rank tensors.
Specifically, it does not give a low-rank solution in the presence of noise, i. e. if A /∈Mr;
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in this case, an additional routine may be needed to truncate the result to low rank. Sig-
noretto et al. [78] and Gandy et al. [26] choose a Tikhonov-like approach by minimizing
the a penalized unconstrained function

min
X

1

2

∥∥PΩ X− PΩ A
∥∥2 +

µ

2
‖X‖∗.

A Riemannian CG method for (4.1) has been proposed by Kressner et al. [57], which is
an extension of Vandereycken’s earlier work [91] for the matrix completion problem. The
authors show rapid linear convergence of their method with satisfactory reconstruction
of missing data for a range of applications. Other Riemannian approaches for matrix
completion include the work by Ngo and Saad [72] and Mishra et al. [70], who use a
product Graßmann quotient manifold structure. A recent survey on tensor completion
methods is given in the preprint by Song et al. [81].

In recent research, second-order methods in Riemannian optimization have generated
considerable interest in order to find superlinearly converging methods, see the overview
by Absil et al. [2, Chapters 6–8] and the references therein. Boumal and Absil [12]
apply these techniques to matrix completion in the Graßmannian framework. Vanderey-
cken [91, Subsection 2.3] derives the Hessian for Riemannian matrix completion with an
explicit expression of the singular values. In the higher-order tensor case, Eldén/Savas
[24] propose a Newton method for computing a rank-r tensor approximation, using a
Graßmannian approach. Ishteva et al. [45] extend these ideas to construct a Rieman-
nian trust-region scheme. Most recently, Kasai and Mishra [46] proposed a trust-region
scheme for tensor completion using a product quotient manifold structure.

In this chapter, we propose a Riemannian trust-region scheme for (4.1) using explicit
Tucker decompositions and compare it to a state-of-the-art Riemannian trust-region
method in a quotient manifold geometry as used in [46]. We derive the exact expression
of the Riemannian Hessian on Mr for this manifold geometry by using the Weingarten
map proposed by Absil et al. [3]. Our work focuses on the application case of tensor
completion and contains tensor approximation as the special case of full sampling, i. e.
|Ω| =

∏
i ni.

4.2 The Geometry of Low-Rank Tensors and Riemannian
Optimization on Mr

As mentioned in the introduction to this chapter, the set of tensors of fixed multilinear
rank forms a submanifold in the space of all tensors. We will discuss this in Subsec-
tion 4.2.1. Then, in Subsection 4.2.2 we will discuss different retractions, and in Subsec-
tion 4.2.3 different vector transports on this manifold. Finally, in Subsection 4.2.4, we
will prove the main result of this chapter: the Riemannian Hessian formula on Mr.

4.2.1 Riemannian Manifold Structure of Mr

In [82, Theorem 3.6], it is shown that the set Mr of tensors of fixed multilinear rank
r = (r1, . . . , rd) forms a smooth embedded submanifold of Rn1×···×nd . The more general
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case, which includes Hilbert spaces, is treated in [88].
By counting the degrees of freedom in (2.10), it follows that

dim(Mr) =
d∏
i=1

ri +
d∑
i=1

rini − r2i ,

where the last term accounts for the fact that the Tucker decomposition is invariant to
simultaneous transformation of the basis matrix with an invertible matrix and the core
tensor with its inverse. Being a submanifold of the Euclidean space (Rn1×···×nd , 〈 · , · 〉),
the manifold Mr can be endowed with a Riemannian structure in a natural way with
the Frobenius inner product 〈 · , · 〉 as the Riemannian metric.

As is proven in [54, Subsection 2.3], the tangent space of Mr at X = C×d
i=1 Ui is

parametrized as

TXMr =

{
Ċ

d

×
i=1

Ui +
d∑
i=1

C×i U̇i×
j 6=i

Uj

∣∣∣∣ Ċ ∈ Rr1×···×rd , U̇i ∈ Rni×ri with U̇T
i Ui = O

}
,

(4.3)
and the orthogonal projection PX : Rn1×···×nd → TXMr is given by

A 7→
(

A
d

×
j=1

UT
j

) d

×
i=1

Ui +

d∑
i=1

A×i

(
P⊥Ui

[
A×

j 6=i
UT
j

]
(i)

C+
(i)

)
×
k 6=i

Uk, (4.4)

where C+
(i) denotes the Moore-Penrose pseudoinverse of C(i). Note that C(i) has full row

rank, i. e. C+
(i) = CT

(i)(C(i)C
T
(i))
−1. We use P⊥Ui

= Ini − UiUT
i to denote the orthogonal

projection onto span(Ui)
⊥.

Furthermore, it can be shown that the HOSVD (2.20) is locally a C∞ function in the
manifold topology ofMr, see [57, Proposition 2.1] for further details. This allows us its
use in continuous optimization, as we will see in the next section.

4.2.2 Retraction on Mr

In this subsection, we will introduce retractions on the manifoldMr (see Definition 3.5).
As has been shown in in [57], the truncated HOSVD (2.20) defined in Subsection 2.2.2
satisfies these conditions.

Lemma 4.1 (HOSVD as a retraction, [57, Proposition 2.3]). The map

R : TMr →Mr, (X, ξ) 7→ PHO
r (X + ξ)

is a retraction on Mr.

The above lemma makes use of the fact that Mr is a submanifold of Rn1×···nd . How-
ever, it can also be viewed as a quotient manifold, where the quotient structure comes
from the indeterminacy in the Tucker decomposition. More specifically,

Mr =
(
Rr1×···×rd∗ × St(r1, n1)× · · · × St(rd, nd)

)/(
(O(r1)× · · · ×O(rd)

)
,
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Figure 4.1: Retraction by HOSVD and polar decomposition in d = 2. With X ∈ Mr,
ξ ∈ TXMr, retraction t 7→ RX(tξ) is computed for t ∈ [−2, 2]. Two first
components of U1 and U2 are plotted.

with
Rr1×···×rd∗ =

{
C ∈ Rr1×···×rd ,

∣∣ rankML(C) = r
}
,

the manifold of full-rank tensors,

St(ri, ni) =
{
Ui ∈ Rni×ri

∣∣UT
i Ui = Iri

}
,

the Stiefel manifold, and

O(ri) =
{
Qi ∈ Rri×ri

∣∣QT
i Qi = Iri

}
,

the orthogonal group.
Using this property, it can be shown that the orthonormal factors of the polar decom-

position for the basis matrix variations also give us a retraction, cf. [46].

Lemma 4.2 (Polar decomposition as a retraction). Let

X = C
d

×
i=1

Ui ∈Mr,

and

Ċ
d

×
i=1

Ui +
d∑
i=1

C×i U̇i×
j 6=i

Uj ∈ TMr.
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Then the map

R : TMr →Mr, (X, ξ) 7→ D
d

×
i=1

Vi,

defined by

D = C + Ċ,

Vi = (Ui + U̇i)
(
(Ui + U̇i)

T(Ui + U̇i)
)
, i = 1, . . . , d,

is a retraction on Mr.

Both retractions allow their use for optimization methods on Mr. However, there is
an important difference: while both are smooth around a point Mr on the manifold,
the “smoothness radius” of the retraction by HOSVD tends to be much smaller, see
Figure 4.1. We will see the significance of this in the following subsection.

4.2.3 Vector Transport on Mr

A simple vector transport associated with a retraction R is given by the orthogonal
projection onto the tangent space, i. e. Tη(ξ) = PRX(η)(ξ), see [2, Subsection 8.1.3]; in
our case, this is the formula (4.4).

In recent literature, there has been particular interest towards intrinsic representations
of tangent vectors and associated vector transports, cf. [43]. These representations are
based on the idea that the tangent space of a p-dimensional manifold is a p-dimensional
vector space, and thus, all tangent vector admit a basis representation by coordinate
vector v ∈ Rp. This makes tangent vector operations easy since everything can be done
in Rp. However, the computation of the basis representation is non-trivial and poses
computational and theoretical challenges. Here, we present a novel approach to the
intrinsic representation of TXMr based on the matrix case treated in [43].

For a p-dimensional manifold M of w-dimensional vector space E , we define, on an
open subset U ∈ M, a smooth tangent basis field

B : U → Rw×p, x 7→ Bx.

We see the application of Bx to v ∈ Rp as a matrix-vector-multiplication which returns
the element ξ ∈ TxM for which v is the basis coefficient vector. The inverse operation
B+
x applied to ξ ∈ TxM returns the basis coefficients. It can be shown that

Tηξ = BRx(η)B
+
x ξ

defines a vector transport on M.
Now we consider the maps converting the intrinsic representation of a tangent vector

to the extrinsic one, and vice versa. Let

D2EMx : v 7→ ξ = Bxv, and E2DMx : ξ 7→ B+
x η.
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Then
E2DMRx(η)

◦ Tηξ ◦D2EMx v = B+
y (ByB

+
x (Bxv)) = v,

i. e. in the intrinsic representation, the vector transport is just the identity.
Now, we present the application of this idea to Mr. Note that, in order to apply

a vector transport in intrinsic coordinates, we need a locally smoothly varying basis
field. Since the retraction by HOSVD may introduce non-smoothness even for small
perturbations (see the previous subsection), it does not lend itself to this representation.
We recall the tangent space of Mr given by

TXMr =

{
Ċ

d

×
i=1

Ui +
d∑
i=1

C×i U̇i×
j 6=i

Uj

∣∣∣∣ Ċ ∈ Rr1×···×rd , U̇i ∈ Rni×ri with U̇T
i Ui = O

}
Now let Ui⊥ ∈ Rni×(ni−ri) a matrix whose columns form an orthonormal basis for

span(Ui)
⊥, i. e. [ Ui Ui⊥ ]T[ Ui Ui⊥ ] = Ini . Then, because of the orthogonality conditions,

a matrix Ki ∈ R(ni−ri)×ri exists such that Ui⊥Ki = U̇i. Moreover, since Ui⊥ has full
rank, Ki is uniquely determined by U+

i⊥U̇i. Hence TXMr can be written as

TXMr =

{
Ċ

d

×
i=1

Ui +

d∑
i=1

C×i
(
Ui⊥Ki

)×
j 6=i

Uj

∣∣∣∣ Ċ ∈ Rr1×···×rd , Ki ∈ R(ni−ri)×ri
}

=

{
Ċ

d

×
i=1

Ui +
d∑
i=1

[
KiC(i)

](i) ×i Ui⊥×
j 6=i

Uj

∣∣∣∣ Ċ ∈ Rr1×···×rd , Ki ∈ R(ni−ri)×ri
}

=

{
G

d

×
i=1

[
Ui Ui⊥

] ∣∣∣∣ Ċ ∈ Rr1×···×rd , Ki ∈ R(ni−ri)×ri
}
,

the tensor G = G(C, Ċ,K1, . . . ,Kd) ∈ Rn1×···×nd being given by

gν1···νd =


ċν1···νd , if νi ≤ ri for all i,∑ri

µ=1 k
(i)
(νi−ri),µcν1···νi−1µνi+1···νd , if νi > ri and νj ≤ rj for all i 6= j,

0, else,

where k
(i)
ν,µ denotes the entry of Ki in the νth row and µth column. Figure 4.2 illustrates

this structure for d = 3.
Recall that the Riemannian metric is given by the Frobenius inner product, and using

the orthogonality relations we obtain

〈ξ, ξ′〉 = 〈Ċ, Ċ′〉+
d∑
i=1

〈
C,C×i U̇T

i U̇
′
i

〉
= 〈Ċ, Ċ′〉+

d∑
i=1

〈
C,C×i KT

i K
′
i

〉
.

With the notations

C :=

{
Ċ

d

×
i=1

Ui

∣∣∣∣ Ċ ∈ Rr1×···×rd
}
, Ui :=

{
C×i

(
Ui⊥Ki

)×
j 6=i

Uj

∣∣∣∣Ki ∈ R(ni−ri)×ri
}
,
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Ċ
[
K1C(1)

](1)
[
K2C(2)

](2)

[
K3C(3)

](3)

G
(
C, Ċ,K1, . . . ,Kd

)
=

Figure 4.2: Structure of the coefficient tensor G for d = 3.

the tangent space at X ∈Mr can be written as the direct sum

TXMr = C ⊕ U1 ⊕ U2 ⊕ · · · ⊕ Ud,

and the summands are pairwise orthogonal spaces.

Let e
(n)
i denote the ith coordinate vector of Rn. Then, the canonical basis of C is

simply given by {(
e(r1)ν1 ◦ · · · ◦ e(rd)νd

) d

×
i=1

Ui

∣∣∣∣ 1 ≤ νi ≤ ri for all i

}
,

and the canonical basis for a space Ui is given by{
C×i

(
Ui⊥

(
e(ni)
νi ◦ e(ri)µi

)
Σ−1i

)
×
j 6=i

Uj

∣∣∣∣ 1 ≤ νi ≤ ni and 1 ≤ µi ≤ ri
}
,

where Σi = C(i)C
T
(i).

Now we can compute the functions E2DMr
X and D2EMr

X in Algorithms 4.3 and 4.4.
The functions αUi from Algorithm 4.3 and βUi from Algorithm 4.4 can be computed

efficiently using Householder reflectors, see [43].

4.2.4 The Riemannian Hessian on Mr

By Lemma 3.4, the Riemannian gradient of the tensor completion cost function is given
by

grad f(X) = PX(PΩ X− PΩ A). (4.5)

Using the sparsity of PΩ X−PΩ A, a gradient evaluation requires O(rd(|Ω|+n) + rd+1)
operations, cf. [57, Subsection 3.1], where we assume that the ri and ni are constant in
each mode for simplicity of notation.
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Algorithm 4.3 Compute E2DMr
X (ξ).

Input: X = C×d
i=1 Ui ∈ Mr, ξX = Ċ×d

i=1 Ui +
∑d

i=1 C ×i U̇i×j 6=i Uj ∈ TXMr, rep-

resented by (Ċ, U̇1, . . . , U̇d), and functions αUi : Rni×ri → Rni×ri , A 7→ [ Ui Ui⊥ ]TA,
for all i.

1: for i = 1, . . . , d do
2: Ki = (αUi(U̇iΣi))(ri+1:ni,:), where M(a:b,:) denotes the submatrix formed by ath

to bth rows of the matrix M
3: end for
4: Reshape Ċ,K1, . . . ,Kd to be column vectors; stack them to make vX ∈ Rdim(Mr)

5: return vector vX

Algorithm 4.4 Compute D2EMr
X (vX).

Input: X = C×d
i=1 Ui ∈ Mr, vX ∈ Rdim(Mr), and functions βUi : Rni×ri → Rni×ri ,

A 7→ [ Ui Ui⊥ ]A, for all i.
1: Reshape the first

∏
i ri entries of vX to be Ċ ∈ Rr1×···×rd

2: for i = 1, . . . , d do
3: Reshape the next (ni − ri)ri entries of vX to be Ki ∈ R(ni−ri)×ri

4: Compute U̇i = βUi

([
O

KiΣ
−1
i

])
5: end for
6: return (Ċ, U̇1, . . . , U̇d), which represents ξX = Ċ×d

i=1 Ui +
∑d

i=1 C×i U̇i×j 6=i Uj

Now we would like to compute the Riemannian Hessian of the tensor completion cost
function. A finite-difference approximation can be defined in different ways. An intuitive
formula is given by

HFD[ξ] =
Tξ grad f(RX(hξ))− grad f(X)

h
, (4.6)

see, for example, [2, Subsection 8.2.1]. However, such a mapping will in general not
be linear [11], and should be applied with care, as theoretical understanding is yet
incomplete.

The Lemma 3.16 can be applied to the case of the low-rank Tucker manifoldM =Mr.
First, we calculate the derivative Dξ PX.

Lemma 4.5 (derivative of PX). Let X ∈ Mr be a tensor on the low-rank manifold,

given by the factorization X = C×d
i=1 Ui, and let ξ ∈ TXMr, given by the variations

ξ = Ċ
d

×
i=1

Ui +

d∑
i=1

C×i U̇i×
j 6=i

Uj .

We use the notations PUi = UiU
T
i , P⊥Ui

= Ini − UiUT
i and ṖUi = U̇iU

T
i + UiU̇

T
i . Then,
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for any E ∈ Rn1×···×nd, the derivative of PX in the direction of ξ is given by

Dξ PX E =
d∑
i=1

{
E×i ṖUi×

j 6=i
PUj

+ Ċ×i

(
P⊥Ui

[
E×
j 6=i

UT
j

]
(i)

C(i)

)
×
k 6=i

Uk

−C×i

(
ṖUi

[
E×
j 6=i

UT
j

]
(i)

C(i)

)
×
k 6=i

Uk

+
∑
l 6=i

C×i

(
P⊥Ui

[
E×l U̇T

l ×
l 6=j 6=i

UT
j

]
(i)

C(i)

)
×
k 6=i

Uk

+ C×i

(
P⊥Ui

[
E×
j 6=i

UT
j

]
(i)

[(
I − C+

(i)C(i)

)
ĊT
(i)C

+T
(i) C

+
(i) − C

+
(i)Ċ(i)C

+
(i)

])
×
k 6=i

Uk

+
∑
l 6=i

C×i

(
P⊥Ui

[
E×
j 6=i

UT
j

]
(i)

C(i)

)
×l U̇l ×

l 6=k 6=i
Uj

}
,

where I = I∏
j 6=i rj

is the identity matrix of the appropriate size.

Proof. The formula can be obtained by identifying the tensor X with the factors in
the Tucker decomposition and viewing the orthogonal projection defined in (4.4) as a
function

P · E : Rr1×···×rd × Rn1×r1 × · · · × Rnd×rd → Rn1×···×nd , (C, U1, . . . , Ud) 7→ PX E,

for any E ∈ Rn1×···×nd . For calculating the derivative of the pseudoinverse, we use the
formula given in [29, Theorem 4.3], i. e.

DĊ

(
C+
)

=
(
I − C+C

)
ĊTC+TC+ + C+C+TĊT

(
CC+ − I

)
− C+ĊC+,

and note that, here, the second term vanishes since C = C(i) has full row rank, and thus
the pseudoinverse is a right inverse.

Using this result, we can immediately evaluate the curvature term in (3.8).

Corollary 4.6 (curvature term). We use the setting of Lemma 4.5 and denote the
orthogonal projection onto (TXMr)

⊥ by P⊥X := id− PX. Then

PX Dξ PX P⊥X E = C̃
d

×
i=1

Ui +

d∑
i=1

C×i Ũi×
j 6=i

Uj ∈ TXMr,

with

C̃ =
d∑
j=1

(
E×j U̇T

j ×
k 6=j

UT
k −C×j

(
U̇T
j

[
E×
k 6=j

UT
k

]
(j)
C+
(j)

))
,

Ũi = P⊥Ui

([
E×
j 6=i

UT
j

]
(i)

(
I − C+

(i)C(i)

)
ĊT
(i)C

+T
(i) +

∑
k 6=i

[
E×k U̇T

k ×
k 6=j 6=i

UT
j

]
(i)

)
C+
(i),
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Proof. The result follows by applying Lemma 4.5 to P⊥X E ∈ Rn1×···×nd after some
lengthy but straightforward calculations, using the orthonormality relations U̇T

i Ui = O,
UT
i Ui = I and the rules (2.8) and (2.9) for the matrix-tensor product.

Thus, with Lemma 3.16, the Riemannian Hessian of the function f :Mr → R,

f(X) =
1

2

∥∥PΩ X− PΩ A
∥∥2,

can be written as

Hess f(X)[ξ] = PΩ(ξ) + PX Dξ PX P⊥X(PΩ X− PΩ A) (4.7)

and the second term can be evaluated with Corollary 4.6.
Note that for an efficient computation of the terms Ũi, it is advantageous to multiply

out the term containing I − C+
(i)C(i). Then, the computation of Hess f(X)[ξ] for any

given ξ ∈ TXMr has the same complexity as the computation of the gradient, i. e.
O(rd(|Ω|+ n) + rd+1).

Remark 4.7. For the matrix case d = 2, the Hessian expression (4.7) can be simplified
to recover the expression shown in [91, 3],

Hess f(X)[ξ] = PU PΩ(ξ) PV + P⊥U
[

PΩ(ξ) + PΩ(X −A)V̇ Σ−1V T
]

PV

+ PU
[

PΩ(ξ) + UΣ−1U̇T PΩ(X −A)
]

P⊥V ,

where we identify the Tucker decomposition with the usual notation for the SVD, i. e.
U = U1, V = U2 and Σ = C.

4.3 Riemannian Models on Mr

We consider the manifoldMr of fixed-rank tensors and would like to assess the quality of
different model functions. In accordance with Subsection 3.2.3, we consider a first-order
model

mSD
X (ξ) := f(X) + 〈grad f(X), ξ〉+ 1

2

〈
ξ, ξ
〉
, (4.8)

where the superscript indicates that this model corresponds to a steepest-descent
method, and a second-order model

mN
X(ξ) := f(X) + 〈grad f(X), ξ〉+ 1

2

〈
Hess f(X)[ξ], ξ

〉
,

where the superscript indicates that this model corresponds to a Newton method. Fur-
thermore, we would like to assess the quality of a Hessian approximation which drops
the curvature term in Corollary 4.6 and thus ignores the second-order geometry of Mr.
This is given by omitting the second term in (4.7), and just considering the projection
of the Euclidean Hessian i. e.

H̃essf(X)[ξ] = PΩ ξ. (4.9)
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f(X) = 0 f(X) = 1.2× 10

f(X) = 2.1× 10−2 f(X) = 1.9× 102

f(X) = 3.6× 102 f(X) = 1.8× 103

Figure 4.3: The unknown tensor A has full rank, i. e. A /∈Mr.
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f(X) = 0 f(X) = 1.3× 10

f(X) = 0 f(X) = 1.5× 102

f(X) = 0 f(X) = 1.4× 103

Figure 4.4: The unknown tensor A has low rank, i. e. A ∈Mr.
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Omitting the curvature term of the Hessian corresponds to a Riemannian Gauß–Newton
method, as described in [2, Subsection 8.4.1]. Thus, we consider the model function

mGN
X (ξ) := f(X) + 〈grad f(X), ξ〉+ 1

2

〈
H̃essf(X)[ξ], ξ

〉
. (4.10)

As usual, we can expect a Gauß–Newton method to converge superlinearly (as the
corresponding model to be of order higher than 1) if the residual of the least-squares
problem is low. This can be seen in terms of (4.7), where the curvature term is given as(

Hess f(X)− H̃essf(X)
)
[ξ] = PX Dξ PX P⊥X(PΩ X− PΩ A),

which is clearly equal to zero if PΩ X = PΩ A and hence f(X) = 0.
To assess the order of a model, we define for a given mX the model error

e(ξ, h) :=
∣∣f̂X(hξ)−mX(hξ)

∣∣,
for ξ ∈ TXMr and h ≥ 0. Then mX is an order-q model in X if and only if

e(ξ, h) = O
(
hq+1

)
, for all ξ ∈ TXMr.

In Figures 4.3 and 4.4, we test the model orders of (4.8)–(4.10). We generate random
tensors B1, . . . ,B1000 ∈ R10×10×10 with normally distributed entries and project them
onto a given tangent space of M(3,3,3) to get ξi = PX(Bi). We normalize the resulting
vectors to get ‖ξi‖ = 1. We compute the errors e(ξi, 2

−j) for j = 0, · · · , 10, and plot the
geometric mean of the factors (ξi, 2

−(j+1)/(ξi, 2
−j) over all i. The first columns contain

the results for a stationary point of f , i. e. ‖grad f(X∗)‖ = 0, the second columns contain
the results for an arbitrary point on the manifold with ‖grad f(X)‖ 6= 0. The first, second
and third rows contain results for different sampling sizes, with |Ω| = 10, 100, 1000,
respectively. Note that |Ω| = 1000 represents full sampling, i. e. vector approximation.
We write f(X) = 0 whenever the function value computed is smaller that the machine
precision of 10−16.

We observe that the model function mSD
X , indeed, provides results of first order in all

cases. The model function mN
X provides results of second order not only in critical points,

as has been proved by theory, but also in general points on the manifold. This can be
seen as an indication that the retraction by HOSVD preserves second-order information
although we cannot prove this. We also observe that the Gauß–Newton type model
function mGN

X gives second-order results whenever the curvature term is small enough,
otherwise it is only a first-order model; this matches the theoretical predictions we made
earlier. It is especially worth noting that, for A ∈ Mr, a Gauß–Newton model is
sufficient; however, this result is not robust if we add some noise. Note that in the cases
where the blue curve cannot be seen in the plot, the models mGN

X and mN
X match almost

exactly.
We also remark that in the case of exact tensor reconstruction, i. e. A ∈ Mr and
|Ω| =

∏
i ni (the lower-left plot in Figure 4.4), both mN

X and mGN
X seem to be models of

order 3, which means that the third-order term in the Taylor expansion of f vanishes.
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This may be attributed to a possible symmetry of f around the local minimizer X∗ = A
in this case, i. e. f(ExpX∗(ξ)) = f(ExpX∗(−ξ)), where Exp denotes the exponential
map. This means that the odd-exponent terms in the Taylor expansion are equal to
zero. However, we cannot verify this theoretically as we do not have a closed-form
expression for the exponential map on Mr.

Since a CG iteration just requires a fixed number of matrix-vector products, the total
cost of the trust-region method with exact Hessian evaluation is given by

O
(
Kmax(rd(|Ω|+ n) + rd+1)

)
In general, we cannot rule out Algorithm 3.20 converging to a nonregular minimum

if |Ω| < dim(Mr). If this causes problems, we can enforce positive-definiteness of the
Hessian by considering a cost function regularized with an identity term

fµ(X) =
1

2

∥∥PΩ X− PΩ A
∥∥2 +

µ

2
‖X‖2,

for some µ > 0. However, such a problem may not be well-posed since there is not enough
information provided to recover X in a meaningful way. Moreover, in our practical
experiments we did not have a need to use this regularization.

4.4 Numerical Experiments

We implemented our method in Matlab version 2015b using the Tensor Toolbox version
2.6 [5, 6] for the basic tensor arithmetic and Manopt version 3.0 [13] for handling the
Riemannian trust-region scheme. All tests were performed on a quad-core Intel i7-2600
CPU with 8 GB of RAM running 64-Bit Ubuntu 16.04 Linux. Stated calculation times
are wall-clock times, excluding the set-up time of the problem.

In Algorithm 3.20, we choose the standard parameters ∆̄ = dim(Mr), ∆0 = ∆̄/8,
ρ′ = 0.1. The initial guess X0 is generated randomly by a uniform distribution on (0, 1)
for each entry in the factors in the Tucker decomposition. We apply a QR factorization
in each mode to ensure that the basis matrices are orthogonal. The sampling set Ω is
chosen from a uniform distribution on the index set.

In Subsection 4.4.1 we test our algorithm for artificial, uniformly distributed data.
Then we apply it to data from survey statistics in Subsection 4.4.2 and to hyperspectral
imaging data in Subsection 4.4.3.

4.4.1 Uniformly Distributed Random Data

We test the convergence behaviour of Algorithm 3.20 for the recovery of a partially
known tensor A with uniformly distributed entries; the results are shown in Figure 4.5.
Two exemplary cases are shown to point out the properties of our method. We observe
that our trust-region method (TR) with exact Hessian computation yields superlinear
convergence after a small number of iterations in the cases observed here. The finite
difference Hessian approximation (FD TR) as introduced in [11] shows similar behaviour;
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Time ‖X−A‖/‖A‖ CG it.

TR 44.2 9.6× 10−10 8.6

KM TR 226.6 0.14 60.2

FD TR 72.8 3.5× 10−10 8.6

Time ‖X−A‖/‖A‖ CG it.

TR 6.6 1.4× 10−2 4.2

KM TR 0.8 1.9× 10−2 3.3

FD TR 10.9 1.4× 10−2 4.2

(a): n1 = 80, n2 = n3 = 20, r1 = 10, r2 = r3 = 5 (b): n1 = 20, n2 = 30, n3 = 40, ri = 0.1ni ∀i

Figure 4.5: Convergence of Riemannian trust region methods for (4.1). The case (b)
includes noise.
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Figure 4.6: Left: Singular values of the data set [60]; right: convergence of Riemannian
trust region methods for tensor completion with |Ω| = 0.5 ×

∏
i ni and r =

(5, 5, 5). The recovery quality is given by ‖X−A‖/‖A‖ = 0.11 for TR and
‖X − A‖/‖A‖ = 0.32 for KM TR; the runtime is 28.1 for TR and 4.1 for
KM TR.

in case (b) it is not plotted since the iterates are not discernible from TR. In case (a), it is
even slightly faster in terms of outer iterations; however, the exact method has superior
runtime since a finite difference approximation is expensive. The state-of-the-art trust-
region method [46] (KM TR) can slow down when the problem is ill-conditioned as is
shown in case (a). Here, our method is more robust. In case (b), where a normally
distributed noise tensor is added to the partially known tensor A, our method, while
slower, provides a better recovery of A as can be seen in the third column. The average
number of iterations of the inner CG scheme (last column) is reasonable in both cases.

4.4.2 Survey Data

In survey statistics, data in the form of order-3 tensors arises in a natural way: for n1
of individuals, n2 properties are collected over n3 time points; see, for example, [61].
We choose a standard data set [60], containing reading proficiency test measures of
schoolchildren over a period of time. A typical problem in such data sets in practice is
missing entries, resulting from nonresponse or failure to enter some of the data points
correctly; see [67]. A typical application case is a sampling set greater or equal to half
the total tensor size. As Figure 4.6 shows, data of this type shows rapidly decaying
singular values, especially in the time mode (i = 3) and our trust-region method can
be used to retrieve deleted data in a low-rank framework. Our trust-region method also
converges superlinearly in this case. While our method is slower than the Kasai–Mishra
trust-region scheme by a factor of 7 in this case, it provides a significantly better recovery
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of the tensor A.

4.4.3 Hyperspectral Image Data

As a final application, we consider the hyperspectral image ‘Ribeira’ from [25], which
has been studied in the context of tensor completion by [57, 79]. This results in a
tensors of size 1017 × 1340 × 33, where each slice corresponds to an image of the same
scene measured in a different wavelength. We assume the tensor to have low multilinear
rank, see Figure 4.7. The reconstruction quality of tensor completion is illustrated in
Figure 4.8. As can be seen in Table 4.1, the novel method outperforms the state of the
art both in terms of runtime and reconstruction quality.

Figure 4.7: True-color representation (left) and symbolic representation of the hyper-
spectral ‘Ribeira’ image as a tensor (right).

Figure 4.8: The 18th slice of the hyperspectral image with 70 % of the information
deleted (left) and reconstructed by RTR with r = (35, 35, 6).

Time (s) ‖X−A‖/‖A‖ TR it.

TR 1232 0.147 65

KM TR 2347 0.161 41

Table 4.1: TR iteration counts, CPU times and reconstruction quality for convergence
to a relative gradient norm of 10−6 for the hyperspectral image ‘Ribeira’ for
the novel trust-region method and the Kasai–Mishra method.
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5 Optimal Control in Low-Rank Format

In this chapter, we will apply low-rank tensor numerical methods to optimal control of a
fractional partial differential equation. In Subsection 5.1, we will give a brief introduction
to optimal control. Section 5.2 describes the considered problem classes. Section 5.3
discusses the FEM/FDM discretization schemes, formulates the traditional Lagrange
multiplies approach and describes the Kronecker product tensor structure in the discrete
Laplacain type matrices in many dimensions. In Section 5.4 we discuss the application of
rank truncation schemes to function-related matrices and tensors. Section 5.5 analyzes
the tensor approximation of the inverse to the fractional Laplace operator and to some
related matrix valued functions of fractional Laplacian in Rd arising in representation of
the unknown control and design functions. Finally, in Section 5.6, we collect the results
of numerical tests for 2D and 3D examples, which confirm the efficiency of the tensor
approximation in the considered class of optimal control problems.

5.1 Introduction to Optimal Control and Literature Overview

Optimization problems with partial differential equations (PDEs) as constraints are well
known in the mathematical literature. They admit a number of applications in various
fields of natural sciences and have been studied for many years; see [84] for an introduc-
tion. The goal is to find a solution to a given PDE, which minimizes a given objective
function; classical examples include tracking-type functionals, where we need to find a
solution which matches a given profile as closely as possible.

Optimal control problems pose a major challenge from a computational point of view
due to the complexity of constraint: evaluating the constraint requires the solution of
a partial differential equation. Therefore, to make these problems tractable, specially
tailored solvers are required.

In the classical sense, partial differential equations are given by local operators, i. e.
only local information is required to evaluate the operator at a given point in the do-
main. When the PDE is discretized, the locality of the operator infers sparsity of the
discrete operator—to evaluate the operator on a grid point, only the information at the
neighboring grid points is needed. In this case, classical elliptic problem solvers for the
forward problem can be modified to apply to the optimization problems, see [39] for an
overview. Multigrid methods for elliptic equations are shown to be particularly efficient,
since their computational complexity is linear in the number of degrees of freedom, i. e.
in the number of grid points in the computational domain in Rd, see [10, 9].

In recent literature, the study of problems with nonlocal constraints has attracted
particular interest, where the operator is not differential but of integral type. The pro-
totypical example of this kind of problems is the fractional Laplacian operator, which is
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attained by taking a fractional power of the classical Laplacian operator, see, for exam-
ple, [66, 63, 34, 27]. These problems pose an additional computational challenge: since
local information is not sufficient for the evaluation of the operator, the discretized oper-
ator will be a dense matrix instead of a sparse one—if implemented in a straightforward
way, even the simplest matrix-vector operations would have a quadratic complexity in
the number of degrees of freedom in the computational box in Rd. This would make these
problems intractable even on moderately fine grids, especially in the three-dimensional
case.

A number of approaches have been proposed in the literature to circumvent these
difficulties, see papers [40, 34, 89, 22, 35] which consider approximation methods for
fractional elliptic operator and [21, 90] related to time-dependent problems. An exten-
sion method has been proposed [15], which reduces a fractional Laplacian problem to a
classical Laplacian problem in a higher-dimensional space and allows to make the prob-
lem tractable in some cases. Recently, a proof of concept for an optimal control solver
based on the extension approach has been proposed, see [4].

However, we note that above approaches based on the conventional techniques of
numerical analysis providing a linear scaling in the problem size at best, are exhibiting
the exponential growth in the storage and computational complexity as O(nd) in the
number of dimensions d, where n is the univariate grid size. A promising approach,
which exploits the problem structure for the extraction of the numerical benefits from
the specific features in the system of interest, is based on the concept of rank-structured
tensor representation (approximation) of the target multivariate functions and operators,
which allows to avoid this “curse of dimensionality”.

In the last decades, extensive research efforts have been focused on different aspects of
multilinear algebra, tensor calculus and related issues, see [18] for an overview. Recent
tensor numerical methods appeared as a bridging of the well-known tensor decomposi-
tions from multilinear algebra with basic results in nonlinear approximation theory by
using low-rank separable representations of the multidimensional functions and operators
[27, 28]. In recent years, the development of low-rank tensor numerical methods has been
a prior direction of mathematical research in scientific computing [50, 47, 59, 75]. The
main idea of tensor methods is reducing the numerical solution of the multidimensional
integral-differential equations to one-dimensional tensor product operations.

In this chapter, we introduce a tensor numerical method for the efficient numerical
solution of the d-dimensional optimal control problems with fractional Laplacian type
operators in constraints discretized on large spacial grids. We propose and analyze the
approximate low-rank structure representations of functions of the fractional Laplacian
(−∆)α, and its inverse (−∆)−α, α > 0, in the bounded domain in Rd, d = 2, 3, by using
the canonical tensor format. There are many equivalent definitions of the fractional
elliptic operator based on either integral or spectral formulation, see [66, 63, 34, 27].
Our tensor approach is based on the spectral decomposition of the target operators.

The functions of the finite element (finite difference) Laplacian operator on a tensor
grid are diagonalized by using the fast Fourier transform (FFT) matrix and then a low-
rank tensor approximation to the multidimensional core diagonal tensor is computed. In
the three-dimensional case, the multigrid Tucker tensor decomposition [52] and Tucker-
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to-canonical transform are employed [47]. A theoretical justification for the low-rank
canonical and Tucker tensor approximation of functions of the discrete fractional Lapla-
cian is sketched. We then show that these low-parametric representations transfer to the
solution operator of an optimal control problem governed by the fractional Laplacian.
In this way, the spacial dimensions can be approximately separated to admit a low-rank
tensor structure in the solution vector. Our approach allows to make the solution of
the considered optimal control problems computationally tractable in both the two- and
three-dimensional cases. We justify that optimal control problems of this class can be
solved with a cost which is only slightly larger than linear in the number of grid points
in one spacial dimension, independently of the number of spacial dimensions, which is a
considerable improvement over classical solvers, whose cost scales exponentially in the
spacial dimension. We provide convincing numerical results to support our theoretical
reasoning.

Notice that the low-rank tensor methods in the context of fractional time-dependent
optimal control based on a one-dimensional fractional Laplacian operator have been
recently reported in [21].

5.2 Problem Setting

Our goal is the construction of fast solution schemes for solving the control problems with
d-dimensional fractional elliptic operators in the constraint. For this reason, we restrict
ourselves to the case of rectangular domains and to the class of generalized Laplacian
type elliptic operators with separable coefficients.

Given the design function yΩ ∈ L2(Ω) on Ω := (0, 1)d, d = 1, 2, 3, first, we consider
the optimization problem for the cost functional

min
y,u

J(y, u) :=

∫
Ω

(y(x)− yΩ(x))2 dx+
γ

2

∫
Ω
u2(x) dx, (5.1)

constrained by the elliptic boundary value problem in Ω for the state variable y ∈ H1
0 (Ω),

Ay := −∇T · A(x)∇y = βu, x ∈ Ω, u ∈ L2(Ω), β > 0, (5.2)

endorsed with the homogeneous Dirichlet boundary conditions i. e. y|∂Ω = 0. The coef-
ficient matrix A(x) ∈ Rd×d is supposed to be symmetric, positive definite and uniformly
bounded in Ω with positive constants c > 0 and C > 0, i. e.

c Id ≤ A(x) ≤ C Id.

Under the above assumptions the associated bilinear form

A(u, v) =

∫
Ω
A(x)∇u(x) · ∇v(x) dx

defined on V × V , V := {v ∈ H1
0 (Ω)} is symmetric, coercive and bounded on V with

the same constants c and C.
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In what follows, we describe a tensor method for the fast numerical solution of the
optimization problem with the generalized constraints

Aαy = βu(x), x ∈ Ω, (5.3)

such that for 0 < α ≤ 1, the fractional power of the elliptic operator A is defined by

Aαy(x) =

∞∑
i=1

λαi ciψi(x), y =

∞∑
i=1

ciψi(x), (5.4)

where {ψi(x)}∞i=1 is the set of L2-orthogonal eigenfunctions of the symmetric, positive
definite operator A, while {λi}∞i=1 are the corresponding (real and positive) eigenvalues.

Notice that the elliptic operator inverse A−1 = T : L2(Ω) → V , where A = T −1,
provides an explicit representation for the state variable, y = βT u = βA−1u in case
(5.2), while in the general case (5.3) we have

y = βT αu = βA−αu. (5.5)

Here T is a compact, symmetric and positive definite operator on L2(Ω) and its eigen-
pairs {ψi, µi}, i = 1, . . . ,∞, provide an orthonormal basis for L2(Ω). Clearly, we have
λ−1i = µi.

There are several equivalent representations (definitions) for the fractional powers
of the symmetric, positive definite operators Aα and A−α with 0 < α ≤ 1, see for
example the survey paper [63]. It should be noted that equivalence only holds when
viewing the operators as defined on Rd; when we consider them on bounded domains
with some boundary conditions, it does not hold in general, cf. [66]. In particular,
the Dunford–Taylor contour integral and the Laplace transform integral representations
could be applied. In the presented computational schemes based on low rank tensor
decompositions, we apply the Laplace transform integral representation. For α > 0, the
integral representation based on the Laplace transform

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−tA dt (5.6)

suggests the numerical schemes for low rank canonical tensor representation of the op-
erator (matrix) A−α by using the sinc quadrature approximations for the integral on
the real axis [28]. The efficiency of this approach is based on the exponentially fast
convergence of the sinc quadratures on a class of analytic functions.

Furthermore, for α > 0 the Dunford–Taylor (or Dunford–Cauchy) contour integral
representation reads (see for example [40, 34, 27])

A−α =
1

2πi

∫
G
z−α(A− zI)−1 dz, (5.7)

where the contour G in the complex plane includes the spectrum of operator (matrix)
A. This representation applies to any u ∈ L2(Ω), and it allows to define the negative
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fractional powers of an elliptic operator as a finite sum of elliptic resolvents Rz(L) =
(zI − L)−1 by application of certain quadrature approximations, see also [34, 27, 28].
This opens the way for multigrid-type or H-matrix (see [27]) schemes approximating the
fractional powers of elliptic operator with variable coefficients of rather general form.

It is worth noting that both integral representations (5.6) and (5.7) can be applied
to a rather general class of analytic functions of operator f(A), including the case
f(A) = A−α, see [40, 27, 28].

The constraint equation (5.5) allows to derive the Lagrange equation for the control
u in explicit form as follows (see Section 5.3 concerning the Lagrange equations)(

βA−α + γ
βA

α
)
u = yΩ, (5.8)

for some positive constants β > 0 and γ > 0. This equation implies the following
representation for the state variable

y = βA−αu =
(
I + γ

β2A2α
)−1

yΩ. (5.9)

The practically interesting range of parameters includes the case β = O(1) for small
values of γ > 0. Our tensor numerical scheme is focused on the solution of equations
(5.8) and (5.9) that include the nonlocal operators of “integral-differential” type. The
efficiency of the rank-structured tensor approximations presupposes that the design func-
tion in the right-hand side of these equations, yΩ(x1, x2, x3), allows a low-rank separable
approximation.

Since we aim for the low-rank (approximate) tensor representation of all functions and
operators involved in the above control problem, we further assume that the diffusion
coefficient matrix takes a diagonal form

A(x) = diag{a1(x1), a2(x2)}, a`(x`) > 0, ` = 1, 2,

in the case d = 2, and similarly, for d = 3,

A(x) = diag{a1(x1), a2(x2), a3(x3)}, a`(x`) > 0, ` = 1, 2, 3. (5.10)

In what follows, we consider a discrete matrix formulation of the optimal control
problem (5.1), (5.3) based on the FEM/FDM discretization of d-dimensional elliptic
operators defined on the uniform n1 × · · · × nd tensor grid in Ω.

The fractional elliptic operator Aα is approximated by its FEM/FDM representation
(Ah)α, subject to the homogeneous Dirichlet boundary condition, where the operator
(matrix) (Ah)α is defined as in (5.4), where the eigenpairs for the corresponding grid
discretizationAh of the elliptic operatorA are used. Here h = h` = 1/n` is the univariate
mesh parameter. The FEM/FDM approximation theory for fractional powers of elliptic
operator was presented in [22], see also the literature therein.

56



5.3 Optimality Conditions and Representations in a Low-Rank
Format

The solution of problem (5.1) with constraint (5.3) requires solving for the necessary op-
timality conditions. In this section, we will derive these conditions based on a discretize-
then-optimize-approach. Then, we will discuss how the involved discretized operators
can be applied efficiently in a low-rank format, and how this can be used to design a pre-
conditioned conjugate gradient (PCG) scheme for the necessary optimality conditions.

In Subsection 5.3.1, we will calculate the optimality conditions for the optimal control
problem based on the formale Lagrange principle. In Subsection 5.3.2, we will explain
the multiplication of multidimensional matrices and vectors given in a low-rank format.
Finally, in Subsection 5.3.3, we will present a preconditioned conjugate gradient scheme
tailored for data in the low-rank tensor format.

5.3.1 Discrete Optimality Conditions

We consider the discretized version of the control problem (5.1)–(5.3). We assume we
have a uniform grid in each space dimension, i. e. we have N = n1n2 (for d = 2) or
N = n1n2n3 (for d = 3) grid points. We will denote the discretized state y, design yΩ
and control u by vectors y,yΩ,u ∈ RN , respectively. For simplicity, we assume that we
use the same approximation for all quantities.

Then, the discrete problem is given as

min
y,u

1

2
(y − yΩ)TM(y − yΩ) +

γ

2
uTMu

s. t. Aαy =βMu,

where A = Ah denotes a discretization of the elliptic operator A by finite elements or
finite differences. The matrix M will be a mass matrix in the finite element case and
simply the identity matrix in the finite difference case.

For the discrete adjoint p, define the Lagrangian function

L(y,u,p) =
1

2
(y − yΩ)TM(y − yΩ) +

γ

2
uTMu + pT(Aαy − βMu), (5.11)

and compute the necessary first order conditions, given by the Karush-Kuhn-Tucker
(KKT) system, M O Aα

O γM −βM
Aα −βM O

y
u
p

 =

yΩ
0
0

 . (5.12)

We can solve the state equation for y, getting

y = βA−αu,

57



and the design equation for p getting

p = γ
βu.

Hence the adjoint equation gives us an equation for the control u, namely(
βA−α + γ

βA
α
)
u = yΩ. (5.13)

5.3.2 Matrix-Vector Multiplication in the Low-Rank Format

Now we derive a decomposition of the discrete Laplacian A which is compatible with
low-rank data. Let I` denote the identity matrix, and A` the discretized one-dimensional
Laplacian on the given grid in the `th mode, then we have

A = A1 ⊗ I2 ⊗ I3 + I1 ⊗A2 ⊗ I3 + I1 ⊗ I2 ⊗A3. (5.14)

If a matrix A has a decomposition as in (5.14), we will say that A has Kronecker rank
equal to 3, i. e. to the number of Kronecker rank-one summands.

To obtain the matrices A`, we simply discretize the one-dimensional subproblems

−y′′(x`) = βu(x`),

y(0) = 0 = y(1).

Using a uniform grid with grid size h`, we obtain the discretizations

− 1

h`


2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


︸ ︷︷ ︸

=A`

y
(`)
1
...

y
(`)
n`

 = β

u
(`)
1
...

u
(`)
n`



The one-dimensional operator A` has an eigenvalue decomposition in the Fourier basis,
i. e.

A` = F ∗` Λ`F`.

In the case of homogeneous Dirichlet boundary conditions, the matrix F` defines the sin-

Fourier (see, for example, [77, Section 12.3]) transform while Λ` = diag{λ(`)1 , . . . , λ
(`)
n },

where λk denote the eigenvalues of the univariate discrete Laplacian with Dirichlet
boundary conditions. These are given by

λk = − 4

h2`
sin2

(
πk

2(n` + 1)

)
= − 4

h2`
sin2

(
πkh`

2

)
. (5.15)

Thus, using the properties of the Kronecker product, we can write the first summand
in (5.14) as

A1 ⊗ I2 ⊗ I3 = (F ∗1Λ1F1)⊗ (F ∗2 I2F2)⊗ (F ∗3 I3F3)

= (F ∗1 ⊗ F ∗2 ⊗ F ∗3 )(Λ1 ⊗ I2 ⊗ I3)(F1 ⊗ F2 ⊗ F3).
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The decomposition of the second and third summand works analogously, thus we can
write equation (5.14) as

A =(F ∗1 ⊗ F ∗2 ⊗ F ∗3 )(Λ1 ⊗ I2 ⊗ I3)(F1 ⊗ F2 ⊗ F3)

+ (F ∗1 ⊗ F ∗2 ⊗ F ∗3 )(I1 ⊗ Λ2 ⊗ I3)(F1 ⊗ F2 ⊗ F3)

+ (F ∗1 ⊗ F ∗2 ⊗ F ∗3 )(I1 ⊗ I2 ⊗ Λ3)(F1 ⊗ F2 ⊗ F3)

= (F ∗1 ⊗ F ∗2 ⊗ F ∗3 )
(
(Λ1 ⊗ I2 ⊗ I3) + (I1 ⊗ Λ2 ⊗ I3) + (I1 ⊗ I2 ⊗ Λ3)

)
(F1 ⊗ F2 ⊗ F3).

(5.16)

The above expression gives us the eigenvalue decomposition, which can be used to effi-
ciently compute functions of A.

In the case d = 2, the expression simplifies to

A = (F ∗1 ⊗ F ∗2 )(Λ1 ⊗ I2)(F1 ⊗ F2) + (F ∗1 ⊗ F ∗2 )(I1 ⊗ Λ2)(F1 ⊗ F2)

= (F ∗1 ⊗ F ∗2 )
(
(Λ1 ⊗ I2) + (I1 ⊗ Λ2)

)︸ ︷︷ ︸
=:Λ

(F1 ⊗ F2). (5.17)

Note that expression (5.17) gives us the eigenvalue decomposition of A. Therefore, for
a function F applied to A, we get

F(A) = (F ∗1 ⊗ F ∗2 )F(Λ)(F1 ⊗ F2). (5.18)

Now assume that F(A) may be expressed approximately by a linear combination of
Kronecker rank-one operators. Then, to approximate F(A) it is sufficient to approximate
the diagonal matrix F(Λ). Assume we have a decomposition

F(Λ) =
R∑
k=1

diag
(
u
(k)
1 ⊗ u

(k)
2

)
,

with vectors u
(k)
i ∈ Rni and R � min(n1, n2). Now let x ∈ RN be a vector given in a

low rank format, i. e.

x =
S∑
j=1

x
(j)
1 ⊗ x

(j)
2 ,

with vectors x
(j)
i ∈ Rni and S � min(n1, n2). Then, using (2.15) we can compute a

matrix-vector product

F(A)x = (F ∗1 ⊗ F ∗2 )

( R∑
k=1

diag
(
u
(k)
1 ⊗ u

(k)
2

))
(F1 ⊗ F2)

( S∑
j=1

x
(j)
1 ⊗ x

(j)
2

)

=
R∑
k=1

S∑
j=1

F ∗1
(
u
(k)
1 � F1x

(j)
1

)
⊗ F ∗2

(
u
(k)
2 � F2x

(j)
2

)
,

(5.19)

where � denotes the componentwise (Hadamard) product.
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Using the sin-FFT, expression (5.19) can be computed in factored form inO(RSn log n)
flops, where n = max(n1, n2).

In the case d = 3, with completely analogous reasoning, equation (5.19) becomes

F(A)x =
R∑
k=1

S∑
j=1

F ∗1
(
u
(k)
1 � F1x

(j)
1

)
⊗ F ∗2

(
u
(k)
2 � F2x

(j)
2

)
⊗ F ∗3

(
u
(k)
3 � F3x

(j)
3

)
, (5.20)

and similar in the case of d > 3.

5.3.3 The Low-Rank PCG Scheme

Algorithm 5.1 Preconditioned CG method in low-rank format.

Input: Rank truncation procedure trunc, rank tolerance parameter ε, linear function
in low-rank format fun, preconditioner in low rank format precond, right-hand side
tensor B, initial guess X(0), maximal iteration number kmax.

1: R(0) ← B− fun(X(0))
2: Z(0) ← precond(R(0))
3: Z(0) ← trunc(Z(0), ε)
4: P(0) ← (Z(0))
5: k ← 0
6: repeat
7: S(k) ← fun(P(k))
8: S(k) ← trunc(S(k), ε)

9: αk ← 〈R(k),Z(k)〉
〈P(k),S(k)〉

10: X(k+1) ← X(k) + αkP
(k)

11: X(k+1) ← trunc(X(k+1), ε)
12: R(k+1) ← R(k) − αkS(k)

13: R(k+1) ← trunc(R(k+1), ε)
14: if R(k+1) is sufficiently small then
15: return X(k+1)

16: break
17: end if
18: Z(k+1) ← precond(R(k+1))
19: Z(k+1) ← trunc(Z(k+1), ε)

20: βk ← 〈R(k+1),Z(k+1)〉
〈Z(k),R(k)〉

21: P(k+1) ← Z(k+1) + βkP
(k)

22: P(k+1) ← trunc(P(k+1), ε)
23: k ← k + 1
24: until k = kmax

Output: Solution X of fun(X) = B

For operators func and precond given in a low-rank format, such as (5.19) (for d = 2)
or (5.20) (for d = 3), Krylov subspace methods can be applied very efficiently, since
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they only require matrix-vector products. The formulation of the PCG method in Al-
gorithm 5.1 is independent of d, as long as an appropriate rank truncation procedure
trunc is chosen.

As the rank truncation procedure, in our implementation we apply the reduced SVD
algorithm in 2D case and the RHOSVD based canonical-to-Tucker-to-canonical algo-
rithm in the 3D case (see [52]) as described in the next section. One should take care
that the convergence tolerance in lines 14–16 should be small enough in terms of the
rank truncation tolerance (i. e. εconv ≥ c εtrunc, for some constant c), such that CG
convergence is not hindered by the rank truncation.

5.4 Tensor Decomposition of Function Related Tensors

An integral part of the preconditioned CG scheme in Algorithm 5.1 is the function trunc,
which truncates the rank of a given tensor in the CP format. In Subsection 5.4.1 we will
discuss the case d = 2, and in Subsection 5.4.2 the case d = 3.

5.4.1 Reduced SVD of a Rank-r Matrix

Assume we have a rank-s matrix A ∈ Rm×n, given in factored format A = UV T, with
U ∈ Rm×s and V ∈ Rn×s. We are interested in the best rank-r approximation with
r < s. Note that this is non-trivial if the columns of U and V do not coincide with
the singular vectors of A. However, it can be done efficiently in factored form, without
computing the full A, using the reduced SVD algorithm.

First, we perform the QR decomposition for the factor matrices to get

U = QURU , V = QVRV ,

with matrices QU ∈ Rm×s and QV ∈ Rn×s with othonormal columns, and upper-
triangular matrices RU ∈ Rs×s and RV ∈ Rs×s..

Now, we compute the SVD of the core matrix RUR
T
V ∈ Rs×s to get

RUR
T
V = URΣRV

T
R ,

with the diagonal matrix ΣR = diag(σ1, . . . , σs), σ1 ≥ · · · ≥ σs > 0, and orthogonal
matrices UR, VR ∈ Rs×s. Then, the best rank-r approximation of RUR

T
V is given by

the truncated SVD; namely, we take the first r diagonal entries of ΣR to get Σr =
diag(σ1, . . . , σs), and the first r columns of UR and VR to get Ur and Vr, respectively.

Then the best rank-s approximation to A is given by

Ar = QUUrΣrV
T
r Q

T
V = (QUUrΣ

1/2)(QV VrΣ
1/2)T,

where Σ1/2 = diag(
√
σ1, . . . ,

√
σs) simply contains the square roots of the singular val-

ues. The approximation error is bounded by
√∑s

i=r+1 σ
2
i . The complexity of the above

procedure scales linearly in the size of A, namely O(max{m,n}r2 + r3).
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5.4.2 Reduced Higher Order SVD of a Rank-r Tensor

For simplicity of presentation, we will only consider the case d = 3; the general case can
be treated analogously. Assume we have a rank-s tensor A given in CP format

A =
s∑

k=1

λk u
(1)
k ◦ u

(2)
k ◦ u

(3)
k = JU1, U2, U3K.

As we have seen in (2.13), it can be easily transformed into a Tucker tensor with rank
(r, r, r) ∈ R3. However, the tensor rank r can be large and hence, the Tucker decomposi-
tion with a core of order O(r3) will be large. When we know that we have (numerically)
low-rank information, it makes sense to apply a scheme similar to the one in the pre-
vious subsection to reduce the rank. This is the idea of the reduced higher-order SVD
(RHOSVD) introduced in [52].

For each of the factor matrices U`, we compute the SVD

U` = V`Σ`W
T
` , ` = 1, 2, 3.

Given a rank threshold r = (r1, r2, r3), we discard singular values and left singular vectors

of U` to get V
(0)
` ∈ Rn`×r` , Σ

(0)
` ∈ Rr`×r` , and W

(0)
` ∈ Rs×r` . Then, the RHOSVD of A

is given by

A
(0)
r = C

3

×̀
=1

(
V

(0)
` Σ

(0)
` (W

(0)
` )T

)
,

where the core tensor C contains the weights λi on the hyperdiagonal:

ci1i2i3 =

{
λi, if i = i1 = i2 = i3,

0, else.

Similar to the regular HOSVD in Subsection 2.2.2, the RHOSVD can be improved by
an ALS iteration. We will briefly sketch the algorithm for the case d = 3. For more
information, see, for example, [47, Section 3.3].

Starting with the RHOSVD of A, we project the factor matrices U` onto the column

basis of V
(0)
` :

Ũ` := (W
(0)
` )TU` = Σ

(0)
` (W

(0)
` )T, ` = 1, 2, 3.

Now we start the ALS iteration by computing the tensor B for ` = 1:

B =
s∑

k=1

λk u
(1)
k ◦ ũ

(2)
k ◦ ũ

(3)
k ∈ Rn1×r2×r3 .

We matricize B to get B(1) ∈ Rn1×(r2r3), and compute the SVD

B(1) = V
(1)
1 Σ

(1)
` (W

(1)
` )T,

and truncate the left singular vectors to get the new basis matrix approximation
Ṽ (1) ∈ Rn1×r1 . An analogous operation is performed for the cases of ` = 2 and ` = 3.
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The ALS iteration is repeated at most pmax times, and we obtain the final basis matrix
approximations Ṽ (1), Ṽ (2), and Ṽ (3). Then the core tensor C̃ is obtained by applying
the basis matrix Ṽ (3) to the last iterate B̃3, namely

C̃ = B̃3 ×3 Ṽ
(3).

Now, we have applied the RHOSVD rank truncation to a tensor in the CP format and
have obtained a tensor in the Tucker format. To get a tensor in the CP format again,
we apply the Tucker-to-canonical transform introduced in [48, 51]. We state the main
result.

Lemma 5.2 (Tucker–canonical approximation, [47, Lemma 3.6]). Let

A = C
d

×̀
=1

Ui

be a tensor in Tucker format. Assume that a best rank-r approximation Ar to A exists.
Then there exists a best rank-r approximation Cr to C, such that

Ar = Cr

d

×̀
=1

Ui.

Therefore, when we wish to transform a Tucker tensor to the CP format, it is sufficient
to find a CP approximation to the core tensor (e. g. via the ALS routine introduced in
Subsection 2.2.1). When we have found a decomposition

C = JV1, . . . , VdK, (5.21)

the CP decomposition of the tensor A is given by

C = JU1, . . . , UdK, (5.22)

with factor matrices U` = [V`u
(`)
1 · · ·V`u

(`)
r ].

5.5 Low-Rank Tensor Approximation of Functions of the
Fractional Laplacian

In this section we analyze the rank structured tensor decompositions of various matrix-
valued (or tensor-valued) functions on the discrete Laplacian arising in the solution of
problems (5.8) and (5.9), including different combinations of fractional Laplacian in Rd.

The elements of the core diagonal matrix Λ in (5.16) can be represented as a mode-
three tensor G ∈ Rn1×n2×n3 , where

gi1i2i3 = λi1 + λi2 + λi3 ,

implying that G has the exact rank-3 decomposition. In the case d = 2 we have similar
two-term representation, gi1,i2 = λi1 + λi2 .
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We consider the matrices A1, A2 and A3 defined as the matrix-valued functions of the
discrete Laplacain Ah by the equations

A1 = A−αh , (5.23)

A2 = A−αh +Aαh , (5.24)

and
A3 =

(
A−αh +Aαh

)−1
= A−12 , (5.25)

respectively. It is worth noting that the matrix A3 defines the solution operator in
equation (5.8), which allows to calculate the optimal control in terms of the design
function yΩ on the right-hand side of (5.8) as follows

u∗ = A3yΩ. (5.26)

Finally, the state variable is calculated by

y = A4yΩ, and A4 = (I +A2α
h )−1 = AαhA−12 . (5.27)

In the following numerical tests, we consider the behaviour of the SVD or Tucker
decompositions for the corresponding multi-indexed core tensors/matrices G1, G2, G3

and G4 representing the matrix-valued functions A1, A2, A3 and A4 in the Fourier basis.
It is well suited for the rank-structured algebraic operations since the d-dimensional
Fourier transform matrix has Kronecker rank equals to one (see Section 5.3):

F = F1 ⊗ F2 ⊗ F3.

Let λ1, . . . , λn be the eigenvalues for the one-dimensional finite difference Laplacian in
H1

0 (0, 1) discretized on the uniform grid with the mesh size h = 1/(n+ 1).
In the 2D case, we analyze the singular value decomposition of the n×n core matrices

Gp = [g
(p)
ij ], p = 1, 2, 3, 4, (5.28)

with entries defined by

g
(1)
ij =

1

(λi + λj)α
, (5.29)

g
(2)
ij =

1

(λi + λj)α
+ (λi + λj)

α, (5.30)

g
(3)
ij =

(
1

(λi + λj)α
+ (λi + λj)

α

)−1
, (5.31)

g
(4)
ij =

(
1 + (λi + λj)

2α
)−1

, (5.32)

In the 3D case, we consider the Tucker decomposition of the n× n× n core tensor

Gp = [g
(p)
ijk], p = 1, 2, 3, 4 (5.33)
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with entries defined by

g
(1)
ijk =

1

(λi + λj + λk)α
, (5.34)

g
(2)
ijk =

1

(λi + λj + λk)α
+ (λi + λj + λk)

α, (5.35)

g
(3)
ijk =

(
1

(λi + λj + λk)α
+ (λi + λj + λk)

α

)−1
, (5.36)

g
(4)
ijk =

(
1 + (λi + λj + λk)

2α
)−1

. (5.37)

The error estimate for the rank decomposition of the matrices Gp and the respective
mode-three tensors Gp can be derived based on the sinc-approximation theory. We con-
sider the class of matrix valued functions of the discrete Laplacian, A1(Ah), . . . , A4(Ah),
given by (5.23)–(5.25) and (5.27), respectively. In view of the FFT diagonalization, the
tensor approximation problem is reduced to the analysis of the corresponding function
related tensors G1, . . . ,G4 specified by multivariate functions of the discrete argument,
g1, . . . , g4, given by (5.34)–(5.37).

Our approach applies to the class of simplified “directionally fractional” Laplacian-
type operators Aα (with the diagonal coefficient as in (5.10)) obtained by the modifica-
tion of (5.2) as follows

Aα := −
d∑
`=1

(
∇T` · a`(x`)∇`

)α
, α > 0. (5.38)

In this case the core tensors in (5.34)–(5.37) representing the operator Aα in the Fourier
basis are simplified to (for a`(x`) = const, d = 3)

g̃
(1)
ijk =

1

λαi + λαj + λαk
, (5.39)

g̃
(2)
ijk =

1

λαi + λαj + λαk
+ λαi + λαj + λαk , (5.40)

g̃
(3)
ijk =

(
1

λαi + λαj + λαk
+ λαi + λαj + λαk

)−1
, (5.41)

g̃
(4)
ijk =

(
1 + (λαi + λαj + λαk )2

)−1
, (5.42)

correspondingly. Hence the rank behavior in the tensor decomposition of these discrete
functions is completely similar to the case of Laplacian like operator in (5.34)–(5.37)
corresponding to the fractional power α = 1. This special case was considered in [21].

In the general case of variable coefficients a`(x`) > 0 in (5.38), the orthogonal matrices
F`, ` = 1, . . . , d, of the univariate Fourier transforms in (5.16) should be substituted by
the orthogonal matrices of the eigenvalue decomposition for the discretized elliptic oper-
ators Ah,` (stiffness matrices) corresponding to A` = −∇T` ·a`(x`)∇`. The eigenvalues in
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(5.39)–(5.42) are obtained from the solution of the eigenvalue problem Ah,`ui = λi,`ui,
` = 1, . . . , d.

The proof of the existence of the low rank canonical/Tucker decomposition of the core
tensors Gp, p = 1, . . . , 4, is beyond the scope of this thesis. We refer to [37].

5.6 Numerics on Rank-Structured Approximations

In this section, we analyze the rank decomposition of all matrix entities involved in the
solution operator (5.8). For the ease of exposition, in what follows, we set the model
constants as β = γ = 1 and assume that n1 = n2 = n3. Recall that A = F ∗GF with the
notation A = Ah, where Ah is the FDM approximation to the elliptic operator A and G
is the diagonal core matrix represented in terms of eigenvalues of the discrete Laplacian
A = Ah. All numerical simulations are performed in MATLAB on a laptop. We will
present 2D computations in Subsection 5.6.1 and 3D computations in Subsection 5.6.2.

First, we illustrate the smoothing properties of the elliptic operator A−αh in 2D (or
by the other words, the localization properties of the fractional operator Aαh) in the
equation for control depending on the fractional power α > 0. Figures 5.1, 5.1, 5.3 and
5.4 represent the shape of the design function yΩ and the corresponding optimal control
u∗ in the equation (5.26) computed for different values of the parameter α and for fixed
grid size n = 255.

Figure 5.1: Shapes of the right-hand side yΩ used in the 2D equation (5.26) computed with
n=255.

66



Figure 5.2: Solutions u∗ for above right-hand sides yΩ with α = 1 for n = 255.

Figure 5.3: Solutions u∗ for above right-hand sides with α = 1/2 for n = 255.
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Figure 5.4: Solutions u∗ for above right-hand sides with α = 1/10 for n = 255.

One observes the nonlocal features of the elliptic resolvent A−1h and highly localized

action of the operator A−1/10h .

5.6.1 Numerical Tests for the 2D Case

Figure 5.5, left, represents the singular values of the matrix G1, with entries given by
(5.29) for different univariate grid size n = 255, 511, and 1023 and fixed α = 1 (Laplacian
inverse). Figure 5.5, right, shows the decay of respective singular values for G1 with fixed
univariate grid size n = 511 and for different α = 1, 12 ,

1
10 .
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Figure 5.5: Decay of singular values for G1 with α = 1 vs. n (left); singular values for
G1 vs. α > 0 with fixed n = 511 (right).
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Figure 5.6 demonstrates the behaviour of singular values for matrices G2 and G3,
with entries corresponding to (5.30) and (5.31), respectively, vs. α = 1, 12 ,

1
10 with fixed

univariate grids size n = 511. In all cases, we observe exponentially fast decay of the
singular values, which means there exists an accurate low Kronecker-rank approximation
of the matrix functions A1, A2 and A3 (see equations (5.23)– (5.25)), including fractional
powers of the elliptic operator.
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Figure 5.6: Decay of singular values of G2 (left) and G3 (right) vs. α = 1, 1/2, 1/10 for
n = 511.

Decay of the error for the optimal control obtained as the solution of equation (5.26)
with rank-R approximation of the solution operator A3 is shown in Figure 5.7.
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Figure 5.7: Decay of the error for the optimal control vs. truncation rank parameter.

As we have shown theoretically in Section 5.3, a single PCG iteration has a complexity,
which is slightly higher than linear in the univariate grid size n. Figure 5.8 shows that the
CPU times show the expected behavior. Thus, with Figure 5.8 and Tables 5.1 and 5.2,
the overall cost of the algorithm is almost linear in the univariate grid size n for the
problem discretized on an n× n two-dimensional Cartesian grid.
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Figure 5.8: CPU times (sec) vs. univariate grid size n for a single iteration of Algorithm 5.1 for
a 2D problem, for different fractional operators and fixed preconditioner rank r = 5.

g1 g4 g3

r
n

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048

1 20 24 24 29 — — 83 80 20 24 24 19

2 — — 3 3 73 — 38 36 — — 3 3

3 7 9 10 14 99 — 17 16 7 9 10 14

4 5 6 6 9 31 — 3 3 5 6 6 9

5 4 4 4 5 11 — 5 5 4 4 4 5

6 3 3 3 4 6 13 2 2 3 3 3 4

7 3 3 3 3 4 7 6 4 3 3 3 3

8 2 2 2 2 3 5 4 2 2 2 2 2

9 2 2 2 2 3 4 3 4 2 2 2 2

10 2 2 2 2 3 3 2 3 2 2 2 2

Table 5.1: PCG iteration counts for convergence to a relative residual of 10−6 for the equations
(5.43)–(5.45) for a 2D fractional Laplacian with α = 1/2 vs. the univariate grid size
n and separation rank r.

We also test the properties of the low-rank discrete operator as a preconditioner. This
means, we solve the equations in Rd, d = 2, 3,

Aαx = b, (5.43)(
I +A2α

)
x = b, (5.44)(

Aα +A−α
)
x = b, (5.45)

with a preconditioned conjugate gradient scheme as presented in Algorithm 5.1, using a
low-rank direct solver as a preconditioner discussed above. We simplify the notation by
A = Ah.
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g1 g4 g3

r
n

256 512 1024 2048 256 512 1024 2048 256 512 1024 2048

1 9 9 10 11 11 13 14 16 7 7 8 9

2 6 4 7 8 7 8 8 9 5 5 6 6

3 4 5 5 6 5 5 6 7 4 4 5 5

4 4 4 4 5 4 4 4 5 3 4 4 4

5 3 3 4 4 3 4 4 4 3 3 3 4

6 3 3 3 4 3 3 3 4 2 3 3 3

7 2 3 3 3 2 3 3 3 2 2 3 3

8 2 2 2 3 2 2 2 3 2 2 2 3

9 2 2 2 2 2 2 2 2 2 2 2 3

10 2 2 2 2 2 2 2 2 2 2 2 2

Table 5.2: PCG iteration counts for convergence to a relative residual of 10−6 for the equations
(5.43)–(5.45) for a 2D fractional Laplacian with α = 1/10 vs. the univariate grid size
n and separation rank r.

In numerical tests we solve the equations (5.43)–(5.45) on a grid of size n, using a
rank-r preconditioner. Tables 5.1 and 5.2 show the number of CG iteration counts for
convergence to a relative residual of 10−6 of (5.43)–(5.45) with α = 1/2 and α = 1/10,
respectively. The dash ‘—’ indicates failure to converge to converge in 100 iterations.

As can be seen in Tables 5.1 and 5.2, we achieve almost grid-independent precondi-
tioning; the iteration counts only grow logarithmically with the number of grid points,
as can be expected from the theoretical reasoning. As can be seen in Table 5.1, the
ranks of the preconditioner should be chosen sufficiently large to ensure reliability. In
the cases tested here, r = 6 is sufficient to achieve reliable preconditioning even in the
most difficult case of equation (5.44) with α = 1/2.

5.6.2 Numerical Tests for the 3D Case

In the following examples we solve the problems governed by the 3D operators in (5.23)–
(5.25), with a 3D fractional Laplacian with α = 1, 12 ,

1
10 . The rank-structured approx-

imation to the above fractional operators is performed by using the multigrid Tucker
decomposition of the 3D tensors Gk, k = 1, 2, 3, 4, described by (5.34)–(5.36), and the
consequent Tucker-to-canonical decomposition of the Tucker core tensor thus obtaining
a canonical tensor with a smaller rank. The rank truncation procedure in the PCG Algo-
rithm 5.1 is performed by using the RHOSVD tensor approximation and its consequent
transform to the canonical format, see Section 5.4.

Figures 5.9–5.11 demonstrate the exponential convergence of the approximation error
with respect to the Tucker rank for operators given by (5.43)–(5.45).
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Figure 5.9: Tucker tensor approximation of G1 vs. rank parameter for α = 1, 1/2, 1/10.
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Figure 5.10: CPU times (in seconds) vs. grid size n of a single iteration of Algorithm 5.1 for a
3D problem, for different fractional operators and fixed preconditioner rank r.
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Figure 5.11: Tucker tensor approximation of G2 and G3 vs. rank parameter for α = 1, 1/2, 1/10.
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We solve the equations (5.43)–(5.45) using n × n × n three-dimensional Cartesian
grids with the univariate grid size n, using a rank-r preconditioner. Tables 5.3 and 5.4
show the number of CG iteration counts for convergence to a relative residual of 10−6

of (5.43)–(5.45) with α = 1/2 and α = 1/10, respectively.
Similarly to the previous subsection, we see that the low-rank approximation gives us

an approximately grid-independent preconditioner. In the cases tested here, r = 6 is
sufficient to achieve reliable preconditioning even in the most difficult case of equation
(5.44) with α = 1/2.

g1 g4 g3

r
n

64 128 256 512 64 128 256 512 64 128 256 512

4 1 2 1 1 1 6 1 2 1 2 1 1

5 1 1 1 2 1 1 8 4 1 1 1 2

6 1 1 1 1 2 2 1 1 1 1 1 1

7 1 3 1 2 1 1 5 4 1 2 1 2

8 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 2 1 6 5 4 1 1 1 2

10 1 1 1 1 1 6 1 1 1 1 1 1

Table 5.3: PCG iteration counts for convergence to a relative residual of 10−6 for the equations
(5.43) - (5.45) for a 3D fractional Laplacian with α = 1/2. Here n is the univariate
grid size, r is the separation rank.

g1 g4 g3

r
n

64 128 256 512 64 128 256 512 64 128 256 512

4 2 1 9 20 2 1 10 17 1 1 9 18

5 1 1 1 1 1 1 1 1 1 2 1 13

6 1 1 1 2 1 1 1 2 1 1 1 7

7 1 1 1 2 1 1 1 2 1 1 2 1

8 1 1 1 1 1 1 1 1 1 1 1 2

9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 2 1 1 1 2 1 1 1 1

Table 5.4: CG iteration counts for convergence to a relative residual of 10−6 for the equations
(5.43)-(5.45) for a 3D fractional Laplacian with α = 1/10. Here n is the univariate
grid size, r is the separation rank.

Our numerical test indicates that all three matrices A1, A2 and A3, as well as the
corresponding three-tensors have ε-rank approximation such that the rank parameter
depends logarithmically on ε, i. e. r = O(| log ε|), that means that the low rank repre-
sentation of the design function yΩ ensures the low-rank representation of both optimal
control and optimal state variable.

We show as well that, using rank-structured tensor methods for the numerical solution
of this optimization problem using the operators of type A1, A2 and A3 can be imple-
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mented at low cost that scales almost linearly in the univariate grid size, O(n log n), see
Figure 5.10.

Figure 5.12: Solutions of the equation with 3D right-hand sides (analogous to Figure 5.1) with
α = 1 for n = 255.

Figure 5.13: Solutions of the equation with 3D right-hand sides (analogous to Figure
5.1) with α = 1/2 for n = 255.
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Figure 5.14: Solutions of the equation with 3D right-hand sides (analogous to Figure 5.1) with
α = 1/10 for n = 255.
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6 Conclusion

In this thesis, we have applied tensor numerical methods in two different areas. The first
application concerns tensor completion in data science.

We have derived the Riemannian Hessian for functions on the manifold of tensors of
fixed multilinear rank in Tucker format. We have shown that it can be used to construct
a rapidly and robustly converging trust-region scheme for tensor completion. The tensor
recovery quality compares favourably with state-of-the-art methods. Furthermore, this
is the first theoretical result on the second-order properties of the given manifold; we
believe this to be useful for an improved understanding of the underlying geometry. Our
numerical results also indicate that Riemannian optimization is a suitable technique for
the recovery of missing entries from multilinear survey data with low-rank structure. We
believe that this aspect merits further exploration; a comparison of Riemannian tech-
niques with standard imputation methods from statistics [67] may reveal opportunities
and limitations of this approach. For this, a better understanding of the sensitivity of
the Tucker decomposition to perturbations is required.

Riemannian preconditioning techniques from recent literature [71] may be used to
speed up convergence for ill-conditioned problems; an application to the geometry used
here would be required. Another well-known way to obtain superlinear convergence is
a Riemannian BFGS method. In recent research, several schemes have been proposed,
generalizing this standard method from Euclidean optimization to the Riemannian case;
see [43, Subsection 5.2] for an application to the manifold of matrices of fixed rank. In
this thesis, we provide a novel vector transport for the fixed-rank tensor manifold, which
may be used to generalize this BFGS method to tensors. Extending this idea to tensors
merits some examination. For high-dimensional applications with d � 3, hierarchical
tensor formats [88, 31] are crucial; see [20] for a Riemannian optimization approach.

Our second application lies in scientific computing, namely in the optimal control of
a fractional partial differential equation.

We have introduced and analyzed a new approach for the optimal control of a frac-
tional Laplacian equation using tensor numerical methods. The fractional Laplacian is
diagonalized in the FFT basis on a tensor grid, and a low-rank approximation to the
core diagonal tensor is computed. We present a novel rank-structured representation of
functions of the fractional elliptic operator based on sinc-approximation method applied
to the core tensor. This representation exhibits exponential decay of the approximation
error in the rank parameter. These results apply to the fractional Laplacian itself, as
well as to the solution operators of a fractional control problem, resulting from first-order
necessary conditions. Due to the separation of the spatial variables, the application of
the arising matrix-valued functions of a fractional Laplacian to a given rank-structured
vector has a complexity which is nearly linear (linear-logarithmic) in the univariate grid
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size, independently of the spatial dimension of the problem.
The PCG algorithm for solving the equation for control function with adaptive rank

truncation is implemented. In the 3D case, the rank truncation is based on the RHOSVD-
Tucker approximation and its transform to the low-rank canonical form. Our numerical
study illustrates the exponential decay of the approximation error of the canonical tensor
decompositions of the target tensors in the rank parameter, and indicates almost linear
complexity scaling of the rank-truncated PCG solver in the univariate grid size for 3D
problems. The low-rank preconditioner provides a uniform convergence rate in the grid
size and other model parameters.

The approach can be applied to generalized Laplacian-type control operators and to
the case of fractional elliptic operators with variable coefficients. Moreover, further
reduction of the numerical complexity to the logarithmic scale can be achieved by using
the quantized-TT (QTT) representation of all discrete functions and operators involved
(see [49]).
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