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Abstract

Nonlocal operators are used in a wide variety of models and applications due to many
natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral
operators allowing for interactions between two distinct points in space. The nonlocal
models investigated in this thesis involve kernels that are assumed to have a finite range of
nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-
diffusion models as well as finance and image analysis. Also within the mathematical
theory they arouse great interest, as they are asymptotically related to fractional and
classical differential equations.

The results in this thesis can be grouped according to the following three aspects:
modeling and analysis, discretization and optimization.

Mathematical models demonstrate their true usefulness when put into numerical
practice. For computational purposes, it is important that the support of the kernel
is clearly determined. Therefore nonlocal interactions are typically assumed to occur
within an Euclidean ball of finite radius. In this thesis we consider more general inter-
action sets including norm induced balls as special cases and extend established results
about well-posedness and asymptotic limits.

The discretization of integral equations is a challenging endeavor. Especially kernels
which are truncated by Euclidean balls require carefully designed quadrature rules for
the implementation of efficient finite element codes. In this thesis we investigate the
computational benefits of polyhedral interaction sets as well as geometrically approxi-
mated interaction sets. In addition to that we outline the computational advantages of
sufficiently structured problem settings.

Shape optimization methods have been proven useful for identifying interfaces in
models governed by partial differential equations. Here we consider a class of shape op-
timization problems constrained by nonlocal equations which involve interface-dependent
kernels. We derive the shape derivative associated to the nonlocal system model and
solve the problem by established numerical techniques.
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Zusammenfassung

Nichtlokale Operatoren werden in einer Vielzahl von Modellen und Anwendungen genutzt,
da zahlreiche Phänomene durch nichtlokale Dynamiken beeinflusst werden. Nichtlokale
Operatoren sind Integraloperatoren, die Interaktionen zwischen zwei disjunkten Punkten
im Raum ermöglichen. Die in dieser Arbeit untersuchten nichtlokalen Modelle basieren
auf Kernen mit beschränktem Interaktionshorizont. Kerne dieser Art werden beispiel-
sweise in nichtlokalen Elastizitäts- und Diffusionsmodellen sowie in der Finanzmarkt-
theorie und Bildbearbeitung eingesetzt. Durch ihren direkten Bezug zu fraktionellen
Operatoren sowie im weiteren Sinne zu Differentialgleichungen, sind nichtlokale Opera-
toren auch innermathematisch von großer Bedeutung.

Die Ergebnisse dieser Arbeit können gemäß der folgenden drei Aspekte kategorisiert
werden: Modellierung und Analysis, Diskretisierung und Optimierung.

Das Anwendungspotential mathematischerModelle kann erst dann ausgeschöpft wer-
den, wenn diese eine praktikable numerische Umsetzung gewährleisten. Zu diesem Zweck
ist es wichtig, dass der Träger des verwendeten Kerns klar definiert ist. In zahlreichen
Modellen wird daher die Annahme getroffen, dass nichtlokale Interaktionen innerhalb
einer Kugel von endlichem Radius stattfinden. In dieser Arbeit betrachten wir allge-
meinere Interaktionsmengen und erweitern bekannte Resultate über Wohlgestelltheit
und asymptotische Grenzwerte.

Die Diskretisierung von Integralgleichungen stellt den Anwender oftmals vor große
Herausforderungen. Insbesondere Kerne mit beschränktem Träger können die Implemen-
tierung von beispielsweise Finite-Elemente-Methoden erschweren und erfordern sorgfältig
gewählte Quadraturformeln. In dieser Arbeit untersuchen wir die numerischen Vorteile
von polyedrischen sowie geometrisch approximierten Interaktionsmengen.

Methoden der Formoptimierung werden erfolgreich eingesetzt, um Interface-abhängige
Parameter partieller Differentialgleichungen zu identifizieren. In dieser Arbeit wird ein
Formoptimierungsproblem betrachtet, das durch eine nichtlokale Gleichung beschränkt
ist, bei dem der Kern von einem glatten Interface abhängt. Wir wenden etablierte
Techniken der Formoptimierung an, um dieses Problem numerisch zu lösen.
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Preface

As part of this thesis, a refereed publication was written, which appears as [87] in the
bibliography. The content of this work, including figures and results of numerical tests,
can be found in Chapter 5.
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Chapter 1

Introduction

Many physical relations and data-based coherences cannot satisfactorily be described
by classical differential equations. Often they inherently possess some features, which
are not purely local. Thus, mathematical models which are governed by nonlocal op-
erators appear in a large variety of applications. These include among others, anoma-
lous or fractional diffusion [17, 18, 33], peridynamics [39, 78, 98, 43], image processing
[47, 56, 66], cardiology [28], machine learning [68], as well as finance and jump processes
[55, 12, 11, 83, 42]. Due to their prevalence the analysis of such operators and the devel-
opment of efficient discretization methods is of great importance. Nonlocal models are
distinctively characterized by the fact that they involve integral equations to describe
the most dominant coherences between the variables appearing in the model. Conse-
quently, interactions between two or more domains can occur over a nonzero distance.
This stands in stark contrast to classical partial differential equations which are governed
by local operators.

The central problem in this thesis is the steady-state nonlocal Dirichlet problem with
volume constraints, given by {

−Lu = f on Ω
u = g on ΩI ,

(1.1)

posed on a bounded domain Ω ⊂ Rd. The governing operator L is a nonlocal convection-
diffusion operator of the form

−Lu(x) =
∫
Rd

(u(x)γ(x,y)− u(y)γ(y,x))dy, (1.2)

which is determined by a nonnegative (interaction) kernel γ : Rd×Rd → R. Throughout
this thesis we consider kernels which can be written as

γ(x,y) = φ(x,y)χS(x)(y), (1.3)

for an appropriate positive function φ : Rd×Rd → R, which we refer to as kernel function.
Here χS(x) denotes the indicator function of the interaction set S(x) ⊂ Rd. The kernel γ,
or more precisely the kernel function φ, accounts for nonlocal interactions between two
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Chapter 1. Introduction

possibly disjoint points in space. By construction (1.3) these interactions are spatially
limited to only occur within the interaction set S(x). Although the case S(x) = Rd
may be of theoretical interest there are no interactions over infinite distances in real-
world applications. We therefore mostly consider finitely truncated kernels, i.e., bounded
interaction sets. The second equation in (1.1) is called Dirichlet volume constraint. It
specifies the values of u on the interaction domain ΩI ⊂ Rd\Ω which consists of all
points in the complement of Ω that interact with points in Ω.

In this thesis, we address the following three aspects of problem (1.1).

• Modeling and analysis. We consider a variational formulation of (1.1) for dif-
ferent choices of kernel functions φ and interaction sets S(x) in (1.3). We address
related analytical questions such as well-posedness and asymptotic limits.

• Discretization. We strongly focus on numerical computations and therefore ex-
tensively discuss the implementation of the finite element method for the nonlocal
equation at hand and present approaches to overcome arising challenges. We make
a point corroborating all theoretical findings by numerical experiments.

• Optimization. We formulate, analyze and numerically solve a shape optimization
problem which is constrained by a nonlocal convection-diffusion equation of the
form (1.1).

Let us highlight some special cases and applications of problem (1.1). A particular
choice of kernel function and interaction set, namely

φd,s(x,y) = cd,s

‖y− x‖d+2s
2

and S(x) = Rd, (1.4)

results in the (integral) fractional Laplacian (−∆)s being a special case of the nonlo-
cal operator −L defined in (1.2) [33]. The fractional Laplacian is perhaps the most
prominent representative for nonlocal operators of type (1.2) and frequently found in
the literature. For instance, the article [54] gives an overview on its various defini-
tions. In [2] the regularity of variational solutions and finite element approximations of
problem (1.1) with the choice (1.4) are discussed; with a supplementing paper [1] on a
two-dimensional finite element implementation. Also, in the two recent publications [4]
and [5] the authors develop sophisticated finite element codes for this choice of kernel.

The fractional kernel (1.4) is an example for a radially symmetric and singular ker-
nel. However, another class of kernels, which is often seen in literature [36], consists of
integrable kernels; i.e., kernels for which the integral

h(x) :=
∫
Rd
γ(x,y)dy (1.5)

is finite. In this case, the nonlocal operator −L can be written as

−Lu(x) = h(x)u(x)−
∫
Rd
u(y)γ(y,x)dy. (1.6)

2



Under appropriate conditions on the kernel γ the second convolution-type term in (1.6)
can be considered as a compact operator acting on the function u. In this instance,
the nonlocal convection-diffusion operator −L is a compact perturbation of a scalar
multiple of the identity operator, which allows us to invoke Fredholm theory for analytical
purposes. In [52, 27, 22] the authors derive analytical results for a time-dependent version
of (1.1) with integrable kernels of radial type. The results accumulated in these papers
are part of the comprehensive monograph [10] on this topic.

The notion of fractional derivatives traces back to the mathematicians Leibniz and
Euler and also Fredholm developed his theory more than 100 years ago. More recently,
the birth of the peridynamics model [78], introduced by Steward Silling in 2000, has led
to an increased focus on nonlocal models of the form (1.1); see, e.g., [39, 98, 43] and
the references therein. Peridynamics is a nonlocal continuum model for solid mechanics
that is free of spatial derivatives. In contrast to classical models it allows for interac-
tions between material points which are separated by a finite distance. A constitutive
assumption is that these nonlocal interactions are spatially limited to only occur within
an Euclidean ball of finite radius. Since integral equations remain valid in the presence
of discontinuities such as cracks, peridynamics has the potential to model fracture and
damage without requiring an external criterion for crack initiation and propagation.

Furthermore, nonlocal operators can be used as filters for image denoising [47, 56, 66].
Considering not only local information at a single pixel they enable the reconstruction
of important image features by considering intensity patterns from a neighborhood or
from all over the image. In fact, classical methods use local (differential) operators and
do not necessarily guarantee feature preservation. In this context, kernels which are
truncated by rectangular interaction sets, such as balls induced by the supremum norm,
are a convenient choice as image data is usually given on regular grids.

When it comes to numerical implementations we are confronted with the “curse of
nonlocality”; the price we have to pay for including nonlocality into our model. Re-
gardless of which discretization approach is utilized we have to employ carefully chosen
quadrature rules for the occurring integral equations, especially when singular or trun-
cated kernels are involved or discontinuous solutions are to be expected. Nonlocality also
leads to densely populated matrices which may necessitate additional memory storage
and tailored solvers. For various types of fractional derivatives finite difference schemes
are commonly used to discretize corresponding nonlocal operators [89, 90, 57]. For me-
chanics applications, such as the peridynamics model, we typically have to deal with
more complicated domains in two or three dimensional space to model the body of in-
terest. Here, finite difference schemes are ineligible and meshfree methods, in particular
particle-type methods [86, 74, 65, 79], are frequently used to discretize problem (1.1).

In this thesis we consider variational methods, and in particular finite element meth-
ods. Variational methods are superior to other approximation techniques since they
provide a convenient framework for dealing with complicated domains, obtain higher-
order convergence rates and facilitate adaptive meshing methods that help to resolve
solution misbehaviors such as steep gradients or discontinuities. In addition, a varia-
tional framework allows for a rigorous mathematical treatment of operator and solution

3



Chapter 1. Introduction

properties such as convergence and related stability issues. Motivated by this endeavor,
a nonlocal vector calculus has been introduced in [48] and further developed in [37] and
[8]. A comprehensive survey is given by [36], which applies the nonlocal vector calculus
to the problem at hand (1.1). Therein, the authors derive its variational formulation and
well-posedness results for a class of symmetric singular kernels such as (1.4) and a class
of symmetric integrable kernels that satisfy (1.5). In [42] similar results are established
for nonsymmetric kernels which are related to nonsymmetric jump processes. In both
papers, [36] and [42], the kernels are truncated by the Euclidean ball S(x) = Bδ,2(x),
which is why we often refer to this kind of truncation as the standard case.

Not only the problem itself but also various optimization problems involving nonlocal
models of the form (1.1) are treated in literature. For example matching-type problems
are treated in [34, 32, 35] to identify system parameters such as the forcing term or a
scalar diffusion parameter. The control variable is typically modeled to be an element
of a suitable function space. On the other hand, shape optimization problems are of
interest in many applied fields, particularly in the context of partial differential equa-
tions. Some examples include aerodynamic shape optimization [69], image segmentation
[51] or shape optimization for the identification of interfaces [76, 73, 71, 70]. However,
shape optimization techniques applied to nonlocal models can hardly be found in liter-
ature. For instance, the articles [16, 81, 64] deal with minimizing (functions of) certain
eigenvalues of the fractional Laplacian with respect to the domain Ω. Also, in [29, 15]
the energy functional related to fractional equations is minimized. In [19] a functional
involving a more general kernel is considered. All of the aforementioned papers are of
theoretical nature only. To the best of our knowledge, shape optimization problems in-
volving nonlocal constraint equations of type (1.1) with truncated kernels and numerical
methods for solving such problems, cannot yet be found in literature.

Corresponding to the three main aspects addressed in the title of this thesis, we make
the following contributions to the field of nonlocal equations.

• Modeling and analysis. We extend the aforementioned well-posedness results
presented in [36] and [42] to kernels which are truncated by more general interaction
sets, thereby allowing for polyhedral interaction sets. This gives natural rise to the
question of how variational solutions corresponding to different kernels differ and
we establish a framework effecting such a comparison study. This framework is then
further applied as follows. On the one hand, we generalize the convergence results
given in [33], where it is shown that solutions corresponding to a truncated version
of the fractional Laplacian converge as δ → ∞ to solutions corresponding to the
(nontruncated) fractional Laplacian. On the other hand, we apply the comparison
result to analyze the effect that geometrically approximated interaction sets have
on the global finite element error. We also consider the local limit and extend the
results in [85, 38, 10] to general norm induced interaction sets and kernel functions
which are radial with respect to any norm.

4



1.1. Structure of the thesis

• Discretization. We give a comprehensive description of the implementation of
the finite element method for approximating solutions of problem (1.1). We point
out related challenges, particularly those arising due to the consideration of trun-
cated kernels of the form (1.3) and reveal the promising computational benefits
that polyhedral and approximate interaction sets provide. Furthermore, for hy-
perrectangular domains and translation invariant kernels we present a structure
exploiting finite element code which enables us to solve three-dimensional nonlocal
problems.

• Optimization. We formulate a shape optimization problem to identify interfaces
in nonlocal models. We prove through numerical experiments the applicability of
established shape optimization techniques. The crucial ingredient is the derivation
of the shape derivative of the nonlocal bilinear form associated to problem (1.1).
We derive an explicit expression for this derivative for a specific class of interface-
dependent, truncated kernels.

1.1 Structure of the thesis

This thesis is structured in the following way.
Chapter 2 serves as a warm-up chapter that familiarizes the reader with the central

problem given in (1.1) and its interpretation as a nonlocal convection-diffusion prob-
lem. In Section 2.1 we first formally derive a nonlocal conservation equation from a
probabilistic perspective and then we underpin these considerations in Section 2.2 with
the concept of a nonlocal vector calculus as introduced in [37]. Means to an end are
the notions of a nonlocal flux and a nonlocal divergence operator. Finally, in Section
2.3, based on these discussions we introduce the steady-state nonlocal Dirichlet problem.

Chapter 3 provides analytical results about the well-posedness of problem (1.1) in-
volving possibly nonsymmetric kernel functions and general interaction sets other than
the Euclidean ball. For this purpose, we first introduce a variational formulation of (1.1)
in Section 3.1 which includes the definition of a nonlocal bilinear form. Then, after set-
ting up some general assumptions on the interaction sets and the kernel in Section 3.2
we provide well-posedness results in Section 3.3 for the two classes of kernels discussed
above; namely singular and integrable ones.

In Chapter 4 we outline the finite element discretization of problem (1.1) and illu-
minate the concomitant challenges. Therefore, in Section 4.1 we briefly recall a general
finite-dimensional approximation of the weak formulation and then specify to finite ele-
ment approximations in Section 4.2. The central notion is that of the nonlocal stiffness
matrix whose challenging assembly is discussed in Section 4.3. Finally, we introduce the
notion of approximate interaction sets in Section 4.4.

Under appropriate assumptions on the kernel and the domain, we show in Chapter
5, more precisely in Section 5.1, that the nonlocal stiffness matrix inherits the structure
of a multilevel Toeplitz matrix. In Section 5.2 we exploit this structure for solving the
resulting linear system and present numerical results in 5.3 including a three-dimensional

5



Chapter 1. Introduction

study case.

In Section 6.1 of Chapter 6 we establish a framework for the comparison of two
nonlocal solutions of (1.1), which correspond to two different kernels. A focus is set
on the comparison of kernels which solely differ in their interaction sets. In particular
we derive precise integral representations to effect the comparison of Euclidean balls
and ‖ · ‖∞-balls for various radii choices. We concretize this special case in Section 6.2
by considering the fractional kernel (1.4). We truncate this kernel by ‖ · ‖∞-balls and
study the convergence of the corresponding solution as the interaction horizon increases.
Finally, in Section 6.3 we exploit the comparison results to derive an estimate for the
global finite element error when geometrical approximations of the exact interaction sets
are used for the assembly of the nonlocal stiffness matrix.

In Chapter 7 we treat the local limit as interaction sets shrink to point sets for
general norm induced balls. After setting up notation in Section 7.1, we establish con-
vergence results for the nonlocal operator and bilinear form in Section 7.2. Then, in
Section 7.3 we estimate the nonlocal energy norm associated with a kernel satisfying
our more general setting against the energy norm of the standard setting. This estimate
allows us to invoke established results from the standard case to prove the convergence
of solutions. Finally, in Section 7.4 we provide the exact scaling constants for several
example kernels which we then use in Section 7.5 for numerical tests.

A shape optimization problem to identify interfaces in nonlocal models is the con-
tent of Chapter 8. After defining the concrete problem setting in Section 8.1, we briefly
recall basic concepts of shape optimization in Section 8.2. Central to this chapter is the
shape derivative of the nonlocal bilinear form, which is derived in Section 8.3. Finally
we present numerical illustrations in Section 8.4.

1.2 Glossary

For the convenience of the reader, we introduce some notation and also list some defini-
tions which are central to this thesis and appear at several places. Thus, the following
can be regarded as supplemental glossary.
Throughout, x, y, z denote points in Rd and we use bold letters whenever an object is
vector-valued. Two-point functions map Rd × Rd to Rd or R so that ψ(x,y) denotes a
scalar two-point function and ψ(x,y) a vector two-point function. Symmetric two-point
functions satisfy ψ(x,y) = ψ(y,x) whereas antisymmetric two-point functions satisfy
ψ(x,y) = −ψ(y,x). In the remainder we apply the superscript (·)′ for indicating a swap
of variables, so that for example ψ′(x,y) = ψ(y,x) or u′(x) = u(y). The same applies
to a bilinear form A(u, v) acting on two functions u, v : Rd → R, i.e., A′(u, v) = A(v, u)
and A is called symmetric if A = A′, and antisymmetric if A = −A′.
Furthermore, Ω always denotes a bounded domain in Rd, i.e., Ω 6= ∅ is bounded, open
and connected.
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1.2. Glossary

1.2.1 General

Natural numbers and Euclidean space

N set of natural numbers excluding zero

Rd Euclidean space of dimension d ∈ N

Rm×n set of m× n matrices in R, where m,n ∈ N

Rd×dspd set of symmetric and positive definite d× d matrices in R

‖ · ‖p p-norm in Rd, given by ‖x‖p = p

√∑d
i=1 |xi|p for p ∈ [1,∞) and ‖x‖∞ =

max1≤i≤d |xi|; cases of interest are the Euclidean norm (p = 2), supremum
norm (p =∞) and Manhattan norm (p = 1)

|x| absolute value of x ∈ R

Linear algebra

Let A and B be two matrices in Rd×d and let x and y denote two vectors in Rd.

AT transpose of A

det(A) determinant of A

tr(A) trace of A

A : B sum of componentwise products, i.e., A : B =
∑d
i,j=1 akjbkj

xTy scalar product of x and y

xyT outer product of x and y

Id identity matrix in Rd×d

Sets and set operations

Let M and N denote two subsets of Rd.

M c complement of M , i.e., M c = Rd \M

|M | d-dimensional volume of M

int(M) interior of M in Rd

M closure of M in Rd

∂M boundary of M

diam(M) diameter of M

M 4N symmetric difference M 4N = (M ∪N) \ (M ∩N)
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Chapter 1. Introduction

M ∪̇N disjoint union of the sets M and N

Differentiation

d(·) derivative with respect to finite-dimensional variables

dα(·) partial derivative dα = ∂|α|

∂x
α1
1 ···∂x

αd
d

where α is a multi-index

D(·) derivative with respect to infinite-dimensional variables

xα multi-index notation for the monomial xα = xα1
1 · · ·x

αd
d

α! multi-index factorial α1! · · ·αd!

div divergence operator

∇ gradient operator or Jacobian

Hu Hessian of a scalar function u

∆ Laplace operator

(−∆)s fractional Laplace operator

Banach and Hilbert spaces

Let Ω̃ ⊃ Ω be a domain in Rd containing Ω. Further let H(Ω̃) denote a vector space of
functions u : Ω̃→ R.

(·, ·)H(Ω̃) inner product on H(Ω̃)

‖ · ‖H(Ω̃) norm on H(Ω̃)

H∗(Ω̃) dual space of H(Ω̃)

H0(Ω̃) set of H(Ω̃)-functions which vanish on the boundary ∂Ω̃

Hc(Ω̃) set of H(Ω̃)-functions which vanish on the volume Ω̃ \ Ω

Examples of H(Ω̃) appearing in this thesis are given by the following spaces.

L2(Ω̃) space of square integrable Lebesgue functions

Hk(Ω̃) Sobolev space W k,2(Ω̃) of integer order k ∈ N

Hs(Ω̃) Sobolev space W s,2(Ω̃) of fractional (non-integer) order s ∈ (0, 1)

Ck(Ω̃) set of functions with derivative up to order k ∈ N ∪ {0,∞}
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1.2. Glossary

Miscellaneous

χM indicator function of a set M ⊂ Rd

supp(u) support of a function u

span linear span

F Fourier transform

δkj Kroenecker delta

O(·) big O notation

1.2.2 Specific to nonlocal problems

We now introduce notations and conventions as well as list some definitions of objects
which are related to the study of nonlocal models conducted in this thesis.

Nonlocal vector calculus

D nonlocal divergence

G nonlocal gradient

N interaction operator

Fnl nonlocal flux

F loc local flux

The kernel and interaction sets

Throughout this thesis we consider nonnegative kernels of the form γ(x,y) = φ(x,y)χS(x)(y)
for some appropriate positive kernel function φ(x,y) and family of interaction sets
{S(x)}x∈Rd .

γ kernel accounting for nonlocal interactions in space

γs symmetric part of the kernel γ given by γs = γ+γ′
2

γa antisymmetric part of the kernel γ given by γa = γ−γ′
2

γ′ swapped argument, i.e., γ′ = γ(y,x)

γ∗ kernel tagged with ∗ ∈ {a, b} to effect comparison of two nonlocal models

γab difference kernel γab = γa − γb

→ similar definitions hold for φ, φs, φa, φ′, φ∗, φab
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{S(x)}x∈Rd family of interaction sets S(x) ⊂ Rd

S∗(x) interaction set tagged with ∗ ∈ {a, b} to effect comparison of two nonlocal
models

Bδ,•(x) norm induced ball of radius δ > 0 centered at x ∈ Rd, given by
Bδ,•(x) =

{
y ∈ Rd : ‖x− y‖• < δ

}
• reserved norm indicator used for balls

δ reserved variable name for interaction radius

ΩI nonlocal interaction domain ΩI = {y ∈ Ωc : y ∈ S(x) for some x ∈ Ω}

Ω∗I interaction domain corresponding to γ∗ for ∗ ∈ {a, b}

Ωab
I Ωab

I = Ωa
I ∪ Ωb

I

Nonlocal convection-diffusion operator

Let u : Ω ∪ ΩI → R be a scalar function.

L nonlocal operator Lu(x) =
∫

Ω∪ΩI (u
′γ′ − uγ)dy

Ld diffusion part of L Ldu(x) =
∫

Ω∪ΩI (u
′ − u)γsdy

Lc convection part of L Lcu(x) =
∫

Ω∪ΩI (u
′ + u)γady

LΩ part of L acting on u|Ω LΩu(x) =
∫

Ω(u′γ′ − uγ)dy + u
∫

ΩI γ
′dy

LΩI part of L acting on u|ΩI LΩIu(x) = −
∫

ΩI u
′γ′dy

LdΩ diffusion part of LΩ LdΩu(x) =
∫

Ω(u′ − u)γsdy + u
∫

ΩI γ
sdy

LcΩ convection part of LΩ LcΩu(x) =
∫

Ω(u′ + u)γady + u
∫

ΩI γ
ady

L∗ adjoint operator of L L∗u(x) =
∫

Ω∪ΩI (u
′ − u)γdy

Nonlocal Dirichlet problem

Central to this thesis is the nonlocal Dirichlet problem given by Lu = f posed on Ω,
where we impose the volume constraint u = g on ΩI .

u solution of the nonlocal Dirichlet problem

uΩ u restricted to Ω, i.e., u|Ω
uΩI u restricted to ΩI , i.e., u|ΩI
u0 solution of the homogeneous auxiliary problem
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u′ swapped argument, i.e., u′(x) = u(y)

u∗ solution corresponding to the kernel γ∗ for ∗ ∈ {a, b}

f forcing term

f̃ right-hand side f̃ = f − LΩIg of the homogeneous auxiliary problem

g Dirichlet data

g′ swapped argument, i.e., g′(x) = g(y)

g∗ Dirichlet data posed on Ω∗I for ∗ ∈ {a, b}

Nonlocal bilinear and linear form

Let u, v : Ω ∪ ΩI → R denote two scalar functions.

A nonlocal bilinear form A(u, v) =
∫

Ω v
∫

Ω (uγ − u′γ′) dydx +
∫

Ω vu
∫

ΩI γ dydx

AΩΩI AΩΩI (u, v) = (LΩIu, v)L2(Ω)

A′ swapped arguments A′(u, v) = A(v, u)

Ad diffusion part of A Ad(u, v) =
∫

Ω v
∫

Ω (u− u′) γsdydx +
∫

Ω vu
∫

ΩI γ
sdydx

Ac convection part of A Ac(u, v) =
∫

Ω v
∫

Ω (u+ u′) γadydx +
∫

Ω vu
∫

ΩI γ
adydx

Ac,s symmetric part of Ac Ac,s(u, v) =
∫

Ω vu
∫

Ω∪ΩI γ
adydx

Ac,a antisymmetric part of Ac Ac,a(u, v) =
∫

Ω v
∫

Ω u
′γadydx.

As symmetric part of A As = 1
2(A+A′) = Ad +Ac,s

Aa antisymmetric part A Aa = 1
2(A−A′) = Ac,a

A∗ adjoint bilinear form A∗(u, v) =
∫

Ω v
∫

Ω (u− u′) γdydx +
∫

Ω vu
∫

ΩI γ dydx

Ad,s fractional bilinear form Ad,s(u, v) = cd,s
2
∫
Rd
∫
Rd

(u−u′)(v−v′)
‖x−y‖d+2s

2
dydx

Aloc local bilinear form Aloc(u, v) = A0(u, v) =
∫

Ω∇uT∇vdx

A∗ effecting comparison nonlocal bilinear form corresponding to γ∗ for ∗ ∈ {a, b}

Aab difference bilinear form Aa −Ab

` right-hand side of weak
formulation

`(v) = `f,g(v) =
∫

Ω fv dx−
∫

Ω LΩIg v dx
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Nonlocal vector spaces

||| · ||| nonlocal energy norm ||| · ||| =
√
A(·, ·)

||| · |||∗ nonlocal energy norm corresponding to the kernel γ∗ for ∗ ∈ {a, b}

V (Ω ∪ ΩI) nonlocal energy space

‖ · ‖V (Ω∪ΩI) ‖ · ‖V (Ω∪ΩI) = ||| · |||+ ‖ · ‖L2(Ω∪ΩI)

Vc(Ω ∪ ΩI) nonlocal constrained energy space

V ∗c (Ω) dual space of Vc(Ω ∪ ΩI)

Ṽ (ΩI) nonlocal volume “trace” space

Discretization via the finite element method

T hΩ triangulation of Ω into finite elements

T hΩI triangulation of ΩI into finite elements

T h triangulation of Ω ∪ ΩI into finite elements, given by T h = T hΩ ∪ T hΩI
Ej the j-th finite element of T h

J , JΩ, JΩI total number of finite elements on Ω ∪ ΩI , Ω and ΩI , respectively

xk the k-th finite element node

K, KΩ total number of finite element nodes on Ω ∪ ΩI and Ω, respectively

{ϕk}Kk=1 set of basis functions assigned to each node of the finite element mesh

Sk support of the basis function ϕk
V h finite element subspace of V (Ω ∪ ΩI), given by V h = span {ϕk : 1 ≤ k ≤ K}

V h
c finite element subspace of Vc(Ω∪ΩI), given by V h

c = span {ϕk : 1 ≤ k ≤ KΩ}

h grid size

uh finite element approximation of u

vh test function of finite element subspace

Ah nonlocal stiffness matrix Ah =
(
Ah

ΩΩ,Ah
ΩΩI

)
∈ RKΩ×K

Ah
ΩΩ Ah

ΩΩ = (A(ϕk, ϕj))(1≤k,j≤KΩ) ∈ RKΩ×KΩ

Ah
ΩΩI Ah

ΩΩI = (AΩΩI (ϕk, ϕj))(1≤k≤KΩ, KΩ+1≤j≤K) ∈ RKΩ×(K−KΩ),

uhΩ discrete solution vector
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1.2. Glossary

fh discrete forcing term vector

gh discrete Dirichlet data vector

xbarya barycenter of the element Ea

Numerical quadrature

During the assembly process of the nonlocal stiffness matrix, the main task is to numer-
ically compute double integrals of the form

∫
Ea
∫
Eb∩S(x) ψ(x,y)dydx.

S(Ea) set of all element indices 1 ≤ b ≤ J so that integrals over Ea×Eb have nonzero
contributions to the nonlocal stiffness matrix

EI interaction domain of the element E

S̊(E) subset of S(E) consisting of elements which neither necessitate special treat-
ment of the outer integral nor a subdivision task

∂S(E) subset of S(E) consisting of elements which necessitate special treatment of
the outer integral and subdivision task for the inner integral

S̃(E) subset of S(E) consisting of elements which necessitate subdivision task for
the inner integral

E0
a E0

a = {x ∈ Ea : Eb ∩ S(x) = ∅} for an element Eb
E1
a E1

a = Ea\E0
a for an element Eb

Qout quadrature order of a quadrature rule on the outer element Ea

Qspecialout quadrature order of a specialized quadrature rule on the outer element Ea

xaq the q-th quadrature point of a rule on Ea

waq the q-th quadrature weight of a rule on Ea

Qin quadrature order of a quadrature rule on polyhedral subelements of the inner
element Eb ∩ S(xaq )

Qnonpolyin quadrature order of a quadrature rule on nonpolyhedral subelements of the
inner element Eb ∩ S(xaq )

JS total number of subelements of Eb ∩ S(xaq )

JpolyS number of polyhedral subelements of Eb ∩ S(xaq )

ybp the p-th quadrature point of a rule on a subelement of the inner element
Eb ∩ S(xaq )

wbp the p-th quadrature weight of a rule on a subelement of the inner element
Eb ∩ S(xaq )
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Ah approximate bilinear form resulting from numerical quadrature

`h approximate linear form resulting from numerical quadrature

Sh(x) approximate interaction set

Bh
δ,•(x) approximate norm induced ball

Nonlocal shape optimization

Γ interface modeled as an element of a suitable shape space

Ωi subdomain of Ωi resulting from the partition induced by the interface

γij partial kernel accounting for nonlocal interactions between Ωi and Ωj

γΓ interface-dependent kernel composed of partial kernels γij

LΓ, AΓ, `Γ respective nonlocal objects corresponding to γΓ

fΓ interface-dependent forcing term

ū given measurements on Ω

ÃΓ perturbed nonlocal bilinear form ÃΓ = AΓ + cperA
loc

cper perturbation parameter cper > 0

J real-valued shape functional

j L2 tracking-type functional

jreg perimeter regularization

Ft family of vector fields on Ω for t > 0 with F0 = id

dFt(x) Jacobian of Ft at x

Γt transformed shape effected by Ft

DJ(Γ)[V] shape derivative of J at Γ in direction of V
d
dt

∣∣∣
t=0+

derivative with respect to t > 0 evaluated at t = 0

L Lagrangian

u̇ or Dm(u) material derivative of u

`∗ right-hand side of the adjoint equation

ψij integrand of the bilinear form AΓ

ψ∗ij integrand of the adjoint bilinear form A∗Γ
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Chapter 2

Introduction to nonlocal
convection-diffusion equations

The central problem considered in this thesis is given by{
−Lu = f on Ω

u = g on ΩI ,
(2.1)

where Ω ⊂ Rd denotes a bounded domain,

−Lu(x) =
∫

Ω∪ΩI
(u(x)γ(x,y)− u(y)γ(y,x))dy

denotes a nonlocal convection-diffusion operator and γ : Rd×Rd → R denotes a nonneg-
ative function, which we refer to as kernel. The set ΩI is called the interaction domain
corresponding to the domain Ω and the kernel γ. It consists of those points in the com-
plement domain Rd\Ω that interact with points in Ω. The second equation in (2.1) is
called Dirichlet volume constraint since it specifies the values of u on the domain ΩI ,
which has nonzero volume in Rd. This stands in stark contrast to Dirichlet constraints
for partial differential equations which are imposed on hypersurfaces. Thus, we naturally
refer to (2.1) as steady-state nonlocal Dirichlet problem with volume constraints.

This chapter is based on [37, 36], [10, Chapter 1-2], and it is organized as follows. In
Section 2.1 we first formally derive a nonlocal conservation equation from a probabilistic
perspective to familiarize with problem (2.1). Afterwards in Section 2.2 we underpin
these considerations with the concept of a nonlocal vector calculus as introduced in [37].
Means to an end are the notions of a nonlocal flux and a nonlocal divergence operator.
Finally, in Section 2.3, based on these discussions we define the steady-state nonlocal
convection-diffusion equation which represents the fundamental problem of this thesis.

2.1 A nonlocal conservation equation

Let u(x, t) denote a density of particles at a point x ∈ Rd in space and at time t ∈
[0,∞). We may also think of u(x, t) as being a heat density or a density accounting for
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Chapter 2. Introduction to nonlocal convection-diffusion equations

individuals. Furthermore, let γ(x,y) be a nonnegative two-point function accounting
for the probability, or say tendency, that a particle moves from location x to location
y. We do not require this kernel to be symmetric and allow for jumps meaning that
particles can move with “infinite” speed. We also denote by f(x, t) an external source
density taking effect at location x ∈ Rd and time t ∈ [0,∞). Then, over a time horizon
[t1, t2), where t2 > t1 ≥ 0, we can state the following nonlocal conservation equation

u(x, t2) =u(x, t1) +
∫ t2

t1

∫
Rd
u(y, s)γ(y,x)dyds

−
∫ t2

t1

∫
Rd
u(x, s)γ(x,y)dyds+

∫ t2

t1
f(x, s)ds, (2.2)

where
∫
Rd u(y, s)γ(y,x)dy accounts for the rate at which particles arrive at location

x from all other places and −
∫
Rd u(x, s)γ(x,y)dy is the rate at which particles leave

location x. The last term in (2.2), i.e.,
∫ t2
t1
f(x, s)ds, accounts for the amount of particles

produced or absorbed at location x over the time horizon [t1, t2). With other words, the
difference between the initial density u(x, 0) and the evolved density u(x, t) after time
t > 0 (i.e., t1 = 0, t2 = t) at a fixed location x is given by the difference of mass which
arrived and left over the prescribed time horizon (i.e., the flux density at location x) plus
the mass which is produced by the external source f . See Figure 2.1 for an illustration
of a nonlocal convection-diffusion process.
Some simple manipulations of equation (2.2) lead to an equivalent relation

u(x, t2)− u(x, t1)
t2 − t1

=

1
t2 − t1

(∫ t2

t1

∫
Rd

(u(y, s)γ(y,x)− u(x, s)γ(x,y)) dyds+
∫ t2

t1
f(x, s)ds

)
.

By formally taking the limit t2 → t1 we eventually arrive at the nonlocal evolution
equation

ut(x, t) =
∫
Rd

(u(y, t)γ(y,x)− u(x, t)γ(x,y)) dy + f(x, t), (2.3)

where ut := ∂
∂tu denotes the partial time derivative. Let us define the nonlocal operator

Lu(x, t) :=
∫
Rd

(u(y, t)γ(y,x)− u(x, t)γ(x,y)) dy, (2.4)

then equation (2.3) can be written more concisely as

ut = Lu+ f.

The operator L and with it the evolution equation (2.3) is deemed to be “nonlocal”, since
the evaluation of Lu(x, t) at location x involves not only information of the density u at
x, but of all values in a neighborhood of fixed size.
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x

Ω

y

γ(x,y)

γ(y,x)

Ωc

Figure 2.1: Illustration of a nonlocal convection-diffusion process.

By considering equation (2.2) on a domain Ω ⊂ Rd, not necessarily bounded, we can
describe the evolution of the total mass by integrating the density over Ω. After some
straightforward manipulations we arrive at∫

Ω
(u(x, t)− u(x, 0))dx =∫ t

0

(∫
Ω

∫
Rd

(u(y, s)γ(y,x)− u(x, s)γ(x,y))dydx
)
ds+

∫ t

0

∫
Ω
f(x, s)dxds.

Since the integrand (x,y) 7→ (u(y, s)γ(y,x)− u(x, s)γ(x,y)) is an antisymmetric func-
tion, we find the identity∫

Ω

∫
Ω

(u(y, s)γ(y,x)− u(x, s)γ(x,y))dydx = 0

leading to∫
Ω

(u(x, t)− u(x, 0))dx = (2.5)∫ t

0

(∫
Ω

∫
Ωc

(u(y, s)γ(y,x)− u(x, s)γ(x,y))dydx
)
ds+

∫ t

0

∫
Ω
f(x, s)dxds.

The expression ∫
Ω

∫
Ωc

(u(y, s)γ(y,x)− u(x, s)γ(x,y))dydx (2.6)
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can be considered the nonlocal flux out of Ω into Ωc at time s. Assuming the absence
of external forces, i.e., f = 0, and a zero flux out of Ω we find that∫

Ω
(u(x, t)− u(x, 0))dx = 0, (2.7)

meaning that the total mass is preserved as time evolves in the prescribed situation. We
return to this notion in Section 2.2 within the framework of a nonlocal vector calculus
and relate this to partial differential equations in order to define a reasonable nonlocal
divergence operator.
Without assuming any symmetry properties for the kernel γ such nonlocal evolution
equations can be used to describe convective-diffusive processes [10, 42]. In fact, if γ
is not symmetric then there are pairs of locations (x,y) for which particles tend to
move more likely from one to the other place than going the opposite direction, thereby
inducing convective effects.

2.2 A nonlocal vector calculus

We introduce a nonlocal vector calculus and largely follow the exposition in [37]. The
key notion here is that of a nonlocal divergence operator D, which also leads to a non-
local gradient operator G. In combination with appropriate diffusion and convection
coefficients, we can then use these operators as building blocks to design general nonlo-
cal operators which mimic classical differential operators. The ensuing structural insight
into the governing operator also enables us to set up a variational framework by intro-
ducing the concept of weak solutions and thus positioning the finite element method as
an accessible discretization approach.
The basis is given by the (classical) Gauss theorem∫

Ω
div q dx =

∫
∂Ω

qTn ds =: F loc(Ω,Ωc; q), (2.8)

which states an important relation between the classical divergence operator div q and
the (local) flux F loc(Ω,Ωc; q) =

∫
∂Ω qTnds, where q : Rd → Rd denotes a sufficiently

smooth vector field and n : ∂Ω → Rd the outer normal vector field of Ω. Assume we
have Fnl(Ω,Ωc;ν) accounting for a nonlocal flux (see, e.g., (2.6)), then we can define
the nonlocal divergence as the linear operator D , which satisfies a nonlocal version of
the Gauss theorem, namely ∫

Ω
Dνdx = Fnl(Ω,Ωc;ν), (2.9)

where ν : Rd × Rd → Rd. Thus, the important underpinning for the development of a
nonlocal vector calculus is the notion of an appropriate nonlocal flux. That is why we
start from abstract balance laws and then review several notions related to classical dif-
ferential equations so as to provide a comparison context for the subsequent development
of the nonlocal convection-diffusion model.
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2.2. A nonlocal vector calculus

2.2.1 An abstract balance law

Let F (Ω1,Ω2;u) account for the flux of a density function u : Ω× [0,∞)→ R out of Ω1
into Ω2, where Ω1,Ω2 ⊂ Ω ⊂ Rd are two disjoint domains. Let f : Ω→ R account for an
external source density, then based on (2.5) and (2.6) we formulate an abstract balance
law as follows

∂

∂t

∫
Ω̃
u(x, t)dx =

∫
Ω̃
f(x, t)dx− F (Ω̃, Ω̃c;u) for all Ω̃ ⊂ Ω, t > 0. (2.10)

In words, equation (2.10) states that the temporal rate of change of the amount of u,
i.e., ∂

∂t

∫
Ω̃ u(x, t)dx, is given by the amount of u created within Ω̃ by the external source

f minus the flux of u out of Ω̃. If f = 0 and F (Ω̃, Ω̃c;u) = 0, then

∫
Ω̃
u(x, 0)dx =

∫
Ω̃
u(x, t)dx for all t > 0,

which means that when there are no sources of u in Ω̃ and there is no flux of u out of Ω̃
then the total mass of u is preserved; compare to (2.7).

2.2.2 The local case

We start with the notion of a local flux; see also (2.8). For this purpose, let q : Rd → Rd
denote a sufficiently smooth vector field, ∂Ω12 := Ω1 ∩Ω2 the common boundary of two
disjoint domains Ω1,Ω2 ⊂ Ω and let ni : ∂Ωi → Rd denote the outer normal vector field
of Ωi. Then

F loc(Ω1,Ω2; q) :=
∫
∂Ω12

qTn1ds (2.11)

is called the local flux out of Ω1 into Ω2 and x 7→ q(x)Tn1(x) = −q(x)Tn2(x) is referred
to as flux density along ∂Ω12. The flux accounts for interactions between the two domains
Ω1 and Ω2 which only occur across their common boundary. In Figure 2.2 this situation
is pictured. In case that these two regions are separated, so that ∂Ω12 = ∅, the flux is
zero which is why it is deemed to be local. The vector field q = q(u) is related to some
density function u through a physical law, such as Fourier’s heat law. Since n1 = −n2
and ∂Ω12 = ∂Ω21, the local flux satisfies the action-reaction principle

F loc(Ω1,Ω2; q) =
∫
∂Ω12

qTn1ds = −
∫
∂Ω21

qTn2ds = −F loc(Ω2,Ω1; q). (2.12)

With other words, the flux out of Ω1 into Ω2 is the negative of the flux out of Ω2 into
Ω1.
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Chapter 2. Introduction to nonlocal convection-diffusion equations

Ω2

Ω1

n1(x)

x

n2(x)
∂Ω12

Figure 2.2: Illustration of a local flux. The two domains Ω1 and Ω2 only interact
across their common boundary ∂Ω12. For x ∈ ∂Ω12 the relation n1(x) = −n2(x)
holds for the respective outer normal vector fields.

Now, by inserting the local flux (2.11) with q = q(u) into the balance law (2.10) and
applying the classical Gauss theorem (2.8) we find

∂

∂t

∫
Ω̃
u(x, t)dx =

∫
Ω̃
f(x, t)dx−

∫
Ω̃

div q(u)dx for all Ω̃ ⊂ Ω, t > 0.

Since Ω̃ ⊂ Ω is arbitrary, we obtain the local evolution equation

ut + div q(u) = f in Ω.

For example, Fourier’s heat law postulates

q(u) = −D∇u, (2.13)

where the diffusivity D : Ω→ Rd×dspd is given by a symmetric and positive definite matrix.
In this case, we obtain the heat equation

ut − div D∇u = f in Ω.

Additional convective effects can be included into the model by considering

ut − div D∇u+ div(vu) = f in Ω, (2.14)

where v : Ω→ Rd is referred to as velocity vector field.

2.2.3 The nonlocal case

For the local case, we have discussed local fluxes, local balance laws and local convection-
diffusion. We next go through the same list for the nonlocal case, mimicking at every step
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2.2. A nonlocal vector calculus

what we did for the local case. We also consider additional notions such as a nonlocal
divergence operator and its adjoint operator as well as a nonlocal vector calculus.
Let us take up the considerations presented in the introductory Section 2.1, in particular
the therein derived flux term (2.6). Recalling our intuition that particles may jump we
have that an appropriate nonlocal flux Fnl(Ω1,Ω2;u) must relate all points in Ω1 to all
points in Ω2. Therefore, let ψ = ψ(u) : Rd × Rd → R be a two-point function, then we
denote by

Fnl(Ω1,Ω2;u) =
∫

Ω1

∫
Ω2
ψ(u)(x,y)dydx (2.15)

the nonlocal flux of u out of Ω1 into Ω2 and x 7→
∫

Ω2
ψ(x,y)dy denotes the flux density

from x ∈ Ω1 into Ω2. See Figure 2.3 for an illustration of the nonlocal flux. We note
that the flux given in (2.6) is a special case of (2.15) with

ψ(u) := u′γ′ − uγ.

The flux is nonlocal because it may be nonzero even if the closures of Ω1 and Ω2 have
an empty intersection. This is in stark contrast to classical local interactions for which
the flux between Ω1 and Ω2 vanishes if their common boundary is empty.

Ω2

Ω1

y

x

ψ(x,y)

−ψ(x,y)

Figure 2.3: Illustration of a nonlocal flux. All points of the two domains Ω1 and Ω2
are mutually related through the antisymmetric function ψ. Therefore, the nonlocal
flux Fnl(Ω1,Ω2;u) (2.15) may be nonzero despite the fact that Ω1 ∩ Ω2 = ∅.

Imitating (2.12) we now require that the nonlocal flux fulfills a nonlocal action-
reaction principle

Fnl(Ω1,Ω2;u) = −Fnl(Ω2,Ω1;u). (2.16)

It is straightforward to show, that the following are equivalent:

i) The nonlocal action-reaction principle (2.16) holds for all Ω1,Ω2 ⊂ Ω.
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Chapter 2. Introduction to nonlocal convection-diffusion equations

ii) The two-point function ψ is antisymmetric (almost sure) on Ω× Ω.

iii) There are no self-interactions, i.e.,
∫

Ω̃
∫

Ω̃ ψ(x,y)dydx = 0 for all Ω̃ ⊂ Ω.

A nonlocal divergence and gradient operator

Inserting the definition of the nonlocal flux (2.15) into the nonlocal version of the Gauss
theorem (2.9) gives∫

Ω̃
Dνdx = Fnl(Ω̃, Ω̃c;ν) =

∫
Ω̃

∫
Ω̃c
ψ(ν)(x,y)dydx for all Ω̃ ⊂ Ω.

Here, ν = ν(u) : Rd×Rd → Rd is a vector valued two-point function and mimics the role
of q = q(u). Similarly to (2.13) the relation ν(u) is explained by postulating a physical
law. Since we require a nonlocal action-reaction principle to hold so that there are no
self-interactions, we find∫

Ω̃
Dνdx =

∫
Ω̃

∫
Rd
ψ(ν)(x,y)dydx for all Ω̃ ⊂ Ω.

Since Ω̃ ⊂ Ω is arbitrary we therefore obtain

Dν(x) =
∫
Rd
ψ(ν)(x,y)dy for all x ∈ Ω.

Let us recapitulate our steps until now towards an appropriate definition of a nonlo-
cal divergence operator. After introducing the notion of a nonlocal flux, we have first
required that the nonlocal flux satisfies an action-reaction principle provoking that the
integrand ψ is antisymmetric. Then, we have further required a nonlocal Gauss theorem
to hold, meaning that the integral over the nonlocal divergence Dν of a vector ν over any
domain Ω̃ ⊂ Ω shall equal the nonlocal flux of ν out of that domain. We complete this
list by thirdly postulating that the nonlocal divergence operator D is linear in ν as is the
case for the classical divergence operator. A definition satisfying all three requirements
is given by

ψ(ν) := (ν + ν ′)Tα (2.17)

for some antisymmetric vector-valued two-point function α : Rd×Rd → Rd, resulting in

Dν(x) = Dαν(x) =
∫
Rd

(ν(x,y) + ν(y,x))Tα(x,y)dy for all x ∈ Ω. (2.18)

In [8], the authors derive a more general definition. They show that the three assump-
tions just mentioned on the nonlocal divergence operator allow the application of the
Schwartz kernel theorem. Our definition (2.18) can be considered a special case, but is
sufficiently general for our needs.
Finally we define a nonlocal gradient operator. Due to the classical duality relation
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2.2. A nonlocal vector calculus

∇ = −div∗ with respect to the L2 inner product, it stands to reason to define the cor-
responding nonlocal gradient operator as G := −D∗. Thus G is uniquely determined
through

(u,Dν)L2(Rd) = (Gu,ν)L2(Rd×Rd),

for all u : Rd → R and ν : Rd × Rd → Rk. We find

G(u)(x,y) = −(u(x)− u(y))α(x,y) for all x,y ∈ Rd. (2.19)

Similar to their local counterparts, D is scalar-valued and G is vector-valued. Also,
constant functions are contained in the kernel of the nonlocal gradient, since obviously
G(u) = 0 for u = const.

Nonlocal interaction domains and integral theorems

In the classical integral theorems we find boundary integrals accounting for interactions.
Since interactions may occur at distance in the nonlocal case, i.e., points in Ω may now
interact with points in Ωc, we find double integrals in the nonlocal integral theorems
accounting for these interactions.
Let Ω ⊂ Rd be an open set. Then for a function α : Rd × Rd → Rd we define the
corresponding interaction domain ΩI by

ΩI := {y ∈ Ωc : α(x,y) 6= 0 for some x ∈ Ω} ,

so that ΩI consists of those points outside of Ω that interact with points in Ω. We find
that ΩI mimics the role of the boundary ∂Ω in the following integral theorems.
We have defined the nonlocal divergence operator D in such a way that a nonlocal
analogue of the classical Gauss theorem holds, specifically,∫

Ω
Dνdx = Fnl(Ω,Ωc;ν),

where Fnl is given in (2.15) with ψ as in (2.17). By denoting the flux density from x ∈ Ω
into ΩI by

N (ν)(x) := −
∫

Ω∪ΩI
(ν + ν ′)Tα dy for all x ∈ ΩI ,

we can write this more concisely as∫
Ω
Dνdx =

∫
ΩI
Nν(x)dx.

We refer to this equation, which trivially holds by definition of N and D, as nonlocal
Gauss theorem. By applying this theorem to (x,y) 7→ v(x)ν(x,y) we obtain the nonlocal
integration by parts formula∫

Ω
vD(ν) dx = −

∫
Ω∪ΩI

∫
Ω∪ΩI

G(v)Tν dydx +
∫

ΩI
vN (ν) dx,

23



Chapter 2. Introduction to nonlocal convection-diffusion equations

and with ν :=
(
ΘG(u)

)
as special case the nonlocal Green’s first identity∫

Ω
vD
(
ΘG(u)

)
dx = −

∫
Ω∪ΩI

∫
Ω∪ΩI

G(v)TΘG(u) dydx +
∫

ΩI
vN

(
ΘG(u)

)
dx,

where u, v : Rd → R are scalar functions, ν : Rd × Rd → R a two-point vector function
and Θ : Rd × Rd → Rd×d a two-point matrix function.

2.3 Nonlocal convection-diffusion equations

With the notion of a nonlocal divergence at hand we are in a position to formulate a
nonlocal evolution equation in analogy to (2.14). Nonlocal balance laws now read as

∂

∂t

∫
Ω̃
u(x, t) dx =

∫
Ω̃
f dx−

∫
Ω̃
D(ν) dx for all Ω̃ ⊆ Ω.

Because Ω̃ ⊆ Ω is arbitrary, we arrive at the nonlocal evolution equation

ut +D(ν) = f for all x ∈ Ω, t > 0.

A nonlocal convection-diffusion flux arises from the relation

ν = ν(u) = −ΘG(u) + µu,

where Θ : Rd × Rd → Rd×dspd denotes a two-point matrix function, which we refer to as
nonlocal diffusion coefficient and µ : Rd × Rd → Rd a two-point velocity vector field.
This flux leads to the nonlocal convection-diffusion equation

ut −D(ΘG(u)) +D(µu) = f for all x ∈ Ω, t > 0. (2.20)

Without loss of generality we can assume that Θ and µ are symmetric in (x,y) [42,
Section 1.1]. By inserting the definitions of D (2.18) and G (2.19) we find

Lu(x) = D(ΘGu)−D(µu)
=: Ldu(x)− Lcu(x)

= 2
∫
Rd

(u(y)− u(x))αT (Θα)dy−
∫
Rd

(u(y) + u(x))µTαdy (2.21)

=
∫

Ω∪ΩI

(
u(y)γ(y,x)− u(x)γ(x,y)

)
dx

with

γ = 2αT (Θα) + µTα : Rd × Rd → R. (2.22)

The representation of L in (2.21) coincides with the one given in (2.4) derived from the
nonlocal conservation equation in the introductory Section 2.1. The kernel γ, given in
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2.3. Nonlocal convection-diffusion equations

(2.22), consists of a symmetric component 2αT (Θα), accounting for diffusive effects,
and an antisymmetric component µTα inducing convective behavior; explaining the su-
perscripts “d” and “c” in (2.21).
On the other hand, starting from a model as in Section 2.1 with a given kernel γ (not
necessarily a probability density function), we can decompose this kernel into its sym-
metric and antisymmetric parts γ = γs + γa, where γs := γ+γ′

2 and γa := γ−γ′
2 . Then by

defining

α(x,y) := (x− y)
‖x− y‖2

, Θγ(x,y) := 2γs(x,y) Id, µγ(x,y) := γa(x,y)α(x,y),

(2.23)

we find γ = γs + γa = 2αT (Θα) +µTα. Thus by fixing the gradient operator D = Dα,
for any kernel γ, we can define appropriate convection-diffusion parameters µγ and Θγ ,
such that we obtain the interpretation Lγu = D(ΘγGu)−D(µγu). However, note that
the mapping

(α,Θ,µ) 7→ 2αT (Θα) + µTα

is surjective, but not injective. Consequently, different divergence operators Dα and
convection parameters as well as (possibly anisotropic) diffusion coefficients may lead to
the same kernel function γ.

2.3.1 The nonlocal Dirichlet problem

In this thesis we set a focus on the spatial discretization of nonlocal equations. Hence,
throughout the remainder of this work we from now on consider the stationary version
of (2.20) given by

−Lu(x) =
∫
Rd

(u(x)γ(x,y)− u(y)γ(y,x))dy = f(x) for all x ∈ Ω.

In general −L is not injective. If we consider for example divergence free convection
parameters, i.e., Dµ = 0, then by the first identity in (2.21) and the linearity of D all
constant functions are contained in the kernel of L. Contrasting with partial differential
equations it stands to reason to define nonlocal counterparts of boundary constraints.
The role of the boundary is taken by the interaction domain ΩI in the nonlocal setting
and we define the nonlocal Dirichlet problem with volume constraints by−Lu(x) =

∫
Rd

(u(x)γ(x,y)− u(y)γ(y,x))dy = f on Ω

u = g on ΩI .

We point out that due to the kernel representation γ = 2αT (Θα) +µTα we can rewrite
the interaction domain as

ΩI = {y ∈ Ωc : γ(x,y) 6= 0 for some x ∈ Ω} .
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Chapter 2. Introduction to nonlocal convection-diffusion equations

These kind of constraints are in line with our intuition that particles are allowed to jump
and nonlocal interactions therefore also occur over distance. In the homogeneous case,
i.e., g = 0, the interaction domain ΩI resembles a hostile environment, meaning that
particles which jump outside Ω are absorbed immediately; see also [10, Chapter 2].

Remark 2.3.1. Throughout the remainder of this thesis we only operate on the level
of the kernel, i.e., further specializations of the nonlocal operator such as appropriate
conditions for well-posedness are realized through requirements imposed on the kernel.
However, due to relation (2.23) we can always interpret the symmetric part of the kernel
as nonlocal diffusion and the antisymmetric part as nonlocal convection.
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Chapter 3

Variational formulation and
extended well-posedness results

We introduce a weak formulation of the problem (2.1) and derive results about the
existence and uniqueness of such a weak solution. In [36, 42] and [10, Chapter 2 and 4]
such problems have been analyzed with regard to well-posedness statements for several
choices of kernels. We focus on two example classes of truncated kernels as they are
introduced in [36].
The first one consists of integrable, not necessarily symmetric kernels. A kernel γ is
called integrable, if the integral

∫
γ(x,y)dy is finite for all x ∈ Ω. In [36] well-posedness

is shown for the symmetric case. We extend these results to the nonsymmetric case
by adding additional conditions on the antisymmetric (convective) part of the kernel.
Similar conditions have been derived in [42] but on the level of the operators appearing
within the nonlocal vector calculus. The second class consists of singular and symmetric
kernels, which contains as special case the fractional kernel.
In the above mentioned literature, nonlocal interactions are limited to occur up to a
finite distance, such that the kernels of interest are truncated by the Euclidean ball.
This is motivated by the fact, that there are no interactions over infinite distance in real
world applications. The case of infinite interactions, i.e., unbounded interaction sets,
is not included in the following well-posedness theory but can be found, e.g., in [10,
Chapter 2 and 4] or [2].
In this chapter we extend the well-posedness results to general interaction sets. We
impose appropriate conditions on these sets to rely on existing results holding for the
standard case, i.e., truncation by Euclidean balls. A clearly determined support of
the kernel is important for numerical computations. Instead of restricting ourselves to
nonlocal interactions occurring within Euclidean balls, we can now consider interaction
phenomena described through, e.g., general (semi-)norm induced balls, given by

Bδ,•(x) :=
{
y ∈ Rd : ‖y− x‖• := ‖A

1
2 (y− x)‖p < δ

}
,

where A ∈ Rd×dspd denotes a symmetric and positive definite matrix, 0 < p ≤ +∞ and
δ > 0. Thus including d-dimensional possibly transformed convex norm balls (p ≥ 1)
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Chapter 3. Variational formulation and extended well-posedness results

Figure 3.1: Different examples of interaction sets. For instance, in the top row we
find from left to right the ‖ · ‖2-, ‖ · ‖1-, and ‖ · ‖∞-ball, respectively. In the second
row these norms are additionally transformed by a suitable symmetric and positive
definite matrix. In the bottom row there are two examples of interaction sets which
are not induced by a norm.

and nonconvex seminorm balls (p < 1) as wells as possibly rotated hyperrectangles
(p = +∞). Special cases of interest are the balls Bδ,2, Bδ,∞ and Bδ,1, induced by the
Euclidean, supremum and Manhattan norm, respectively. Also, we can consider any
translation invariant family S(x) := x + S, where S ⊂ Rd is a bounded set satisfying
S = −S. Further examples are provided in Section 3.2. In Figure 3.1 we find several
considerable interaction sets.

This chapter is organized as follows. We first introduce the weak formulation in
Section 3.1 including the definition of a nonlocal bilinear form. Then, after setting up
some general assumptions on the interaction sets and the kernel in Section 3.2 we provide
well-posedness results in Section 3.3 for the two classes of kernels mentioned above. For
these results we apply the Lax-Milgram theorem.

3.1 Weak formulation

For the purpose of defining an appropriate weak formulation of problem (2.1), let us
separate the variables of a potential solution u : Ω ∪ ΩI → R by

u = (uΩ, uΩI ),
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3.1. Weak formulation

where uΩ := u|Ω and uΩI := u|ΩI . According to this decomposition we can also split
the nonlocal convection-diffusion operator L into two components, one acting on uΩ and
one acting on uΩI . More precisely, let x ∈ Ω, then

−Lu(x) =
∫

Ω∪ΩI
(uγ − u′γ′)dy

=
∫

Ω
(uΩγ − u′Ωγ′)dy + uΩ

∫
ΩI
γdy︸ ︷︷ ︸

=:−LΩu(x)

−
∫

ΩI
u′ΩIγ

′dy︸ ︷︷ ︸
=:LΩIu(x)

. (3.1)

Since we require uΩI = g, integrals over ΩI only involve the given Dirichlet data and the
first equation in (2.1) given by −Lu = f is equivalent to

−LΩuΩ = f − LΩIg =: f̃ . (3.2)

Now we require this equivalently reformulated equation (3.2) to hold in a weak sense by
testing with functions v : Ω ∪ ΩI → R that satisfy the constraint v = 0 on ΩI and we
obtain ∫

Ω
(−LΩuΩ) vdx =

∫
Ω

(f − LΩIg) v dx. (3.3)

We define the linear functional

`(v) := `f,g(v) :=
∫

Ω
fv dx−

∫
Ω
LΩIg v dx (3.4)

and the nonlocal bilinear form

A(u, v) :=
∫

Ω
(−LΩu) vdx =

∫
Ω
v

∫
Ω

(
uγ − u′γ′

)
dydx +

∫
Ω
vu

∫
ΩI
γ dydx. (3.5)

Then equation (3.3) reads as
A(u, v) = `(v).

We note that A(u, v) only involves function evaluations of u and v on Ω. We now define
the corresponding “energy” seminorm

|||u||| :=
√
A(u, u). (3.6)

Further, we define the nonlocal energy space and nonlocal volume-constrained energy
space by{

V (Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : ‖u‖V (Ω∪ΩI) := |||u|||+ ‖u‖L2(Ω∪ΩI) <∞}
Vc(Ω ∪ ΩI) := {u ∈ V (Ω ∪ ΩI) : u = 0 on ΩI},

respectively. In the subsequent program we consider kernels for which ||| · ||| defines a
norm on Vc(Ω∪ΩI) implying in particular that A(u, u) is nonnegative for u ∈ Vc(Ω∪ΩI).
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Chapter 3. Variational formulation and extended well-posedness results

We denote by V ∗c (Ω) the dual space of Vc(Ω ∪ ΩI) with respect to the standard L2(Ω)
duality pairing and also define the volume “trace” space

Ṽ (ΩI) := {v|ΩI : v ∈ V (Ω ∪ ΩI)}.

We can finally define a weak formulation of (2.1) as

given f ∈ V ′c (Ω) and g ∈ Ṽ (ΩI), find u0 ∈ Vc(Ω ∪ ΩI) such that
A(u0, v) = `(v) for all v ∈ Vc(Ω ∪ ΩI).

Then u := (u0
Ω, g) ∈ V (Ω ∪ ΩI) is called the weak solution of (2.1).

(3.7)

Remark 3.1.1. For u ∈ Vc(Ω ∪ ΩI), so that u = 0 on ΩI , we obtain −Lu = −LΩu.
Thus u0 in (3.7) can be interpreted as the weak solution of the homogeneous auxiliary
problem {

−Lu = f̃ on Ω
u = 0 on ΩI .

Assumed (3.7) admits a unique weak solution u0 = (u0
Ω, 0) ∈ Vc(Ω ∪ ΩI), then due to

(3.2) the function u := (u0
Ω, g) ∈ V (Ω ∪ ΩI) represents the unique weak solution of the

inhomogeneous problem (2.1).

We want to point out that the nonlocal bilinear form does not have to be symmetric,
since we do not require the kernel to be symmetric. However, let us in greater detail
illuminate some inherent structures. For this purpose, we introduce its symmetric and
antisymmetric part, namely

As := 1
2(A+A′) and Aa := 1

2(A−A′).

Then we find Aa(u, u) = 0 which implies A(u, u) = As(u, u), so that

|||u||| =
√
A(u, u) =

√
As(u, u) for all u ∈ V (Ω ∪ ΩI).

Thus As : V (Ω∪ΩI)×V (Ω∪ΩI)→ R defines the symmetric bilinear form associated to
the energy norm. Let us now derive precise representations of As and Aa. To this end
we consider the composition of the kernel into its symmetric and antisymmetric part,
i.e., γ = γs + γa. Inserted into (3.5) yields

A(u, v) =
∫

Ω
v

∫
Ω

(
uγ − u′γ′

)
dydx +

∫
Ω
vu

∫
ΩI
γdydx

=
∫

Ω
v

∫
Ω

(
u− u′

)
γsdydx +

∫
Ω
vu

∫
ΩI
γsdydx︸ ︷︷ ︸

=:Ad(u,v)

+
∫

Ω
v

∫
Ω

(
u+ u′

)
γadydx +

∫
Ω
vu

∫
ΩI
γadydx︸ ︷︷ ︸

=:Ac(u,v)

.

(3.8)
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3.1. Weak formulation

As pointed out in Section 2.3 and in particular (2.21), the bilinear form Ad(u, v) =
(−LdΩu, v)L2(Ω) accounts for diffusion, whereas Ac(u, v) = (−LcΩu, v)L2(Ω) takes into
account convective effects. If the kernel is symmetric, i.e., γ = γs and γa = 0, we obtain
A = Ad. By the symmetry of γs and Fubini’s theorem we further find that the first term
in Ad(u, v) equals∫

Ω
v

∫
Ω

(
u− u′

)
γsdydx = −

∫
Ω

∫
Ω
v′
(
u− u′

)
γsdydx

and therefore

Ad(u, v) = 1
2

∫
Ω

∫
Ω

(
v − v′

) (
u− u′

)
γsdydx +

∫
Ω
vu

∫
ΩI
γsdydx, (3.9)

implying that Ad : V (Ω∪ΩI)×V (Ω∪ΩI)→ R is symmetric. For u, v ∈ Vc(Ω∪ΩI) so that
u, v = 0 on ΩI we can add some appropriate zero terms to arrive at the representation

Ad(u, v) = 1
2

∫
Ω∪ΩI

∫
Ω∪ΩI

(
v − v′

) (
u− u′

)
γsdydx, (3.10)

which is ubiquitous in the related literature; see, e.g., [36, 38, 85]. While Ad is symmetric
we find that Ac is neither symmetric nor antisymmetric. By splitting the first term in
Ac we find

Ac(u, v) =
∫

Ω
v

∫
Ω
u′γadydx +

∫
Ω
vu

∫
Ω∪ΩI

γadydx.

By the antisymmetry of γa and Fubini’s theorem we find for the first term∫
Ω
v

∫
Ω
u′γadydx =

∫
Ω

∫
Ω
v′u(γa)′dydx = −

∫
Ω
u

∫
Ω
v′γadydx

implying its antisymmetry in u and v. Since the second term of Ac is obviously symmetric
in u and v we find that the symmetric part Ac,s of Ac is given by

Ac,s(u, v) =
∫

Ω
vu

∫
Ω∪ΩI

γadydx

and the antisymmetric part Ac,a of Ac by

Ac,a(u, v) =
∫

Ω
v

∫
Ω
u′γadydx.

Finally we are in a position to derive precise representations for the symmetric and
antisymmetric part of the original bilinear form A. Due to A = Ad + Ac (see (3.8)) we
find

As(u, v) = Ad(u, v) +Ac,s(u, v)

=
∫

Ω
v

∫
Ω

(
u− u′

)
γsdydx +

∫
Ω
vu

∫
ΩI
γsdydx +

∫
Ω
vu

∫
Ω∪ΩI

γadydx
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and
Aa(u, v) = Ac,a(u, v) =

∫
Ω
v

∫
Ω
u′γadydx.

By invoking (3.9) we find the following representation of the nonlocal energy seminorm

|||u|||2 = As(u, u) =
∫

Ω
u2
∫

Ω∪ΩI
γadydx

+ 1
2

∫
Ω

∫
Ω

(
u− u′

)2
γsdydx +

∫
Ω
u2
∫

ΩI
γsdydx.

We see later, that the symmetric part γs, i.e., the part which accounts for diffusion, has
to dominate the antisymmetric part γa, i.e., the convection component, to achieve that
||| · ||| is a well-defined norm.

Remark 3.1.2. We have applied two different splitting approaches to the nonlocal bi-
linear form A. Namely, for any u, v ∈ Vc(Ω ∪ ΩI) we have

A(u, v) = Ad(u, v) +Ac(u, v) = Ad(u, v) +Ac,s(u, v)︸ ︷︷ ︸
As(u,v)

+Ac,a(u, v)︸ ︷︷ ︸
=Aa(u,v)

.

We note that the symmetric kernel γs contributes with Ad solely to the symmetric part of
A, whereas γa contributes to both, As and Aa, since Ac falls into Ac = Ac,s +Ac,a. The
decomposition resulting from splitting the kernel into its symmetric and antisymmetric
part leading to A = Ad +Ac with associated operators

LdΩu(x) =
∫

Ω
(u− u′)γsdy + u

∫
ΩI
γsdy

and
LcΩu(x) =

∫
Ω

(u+ u′)γady + u

∫
ΩI
γady

is interesting from the physical perspective. It allows us to interpret the problem as a
convection-diffusion model; see also (2.23).
For the analysis however, it is interesting to consider the splitting on the operator level,
i.e., the splitting of the bilinear form into its symmetric and antisymmetric parts leading
to A = As +Aa with associated operators

LsΩu(x) = LdΩu(x) + u(x)
∫

ΩI
γa(x,y)dy and LaΩu(x) =

∫
Ω
u(y)γa(x,y)dy.

However, we have seen that splitting the kernel does not lead to the operator split-
ting, i.e., the two approaches do not match. This is due the structure of the nonlocal
convection-diffusion operator, which becomes clearer for integrable kernels. In that case
the operator inherits the structure Lγ = hγid + Kγ. We note that the first summand
hγid is symmetric for any type of kernel, (anti-)symmetric or not, explaining the dif-
ference (LsΩ − LdΩ)u(x) = u(x)

∫
ΩI γ

a(x,y)dy. Finally we note that if γ = γs, then
A(u, v) = Ad(u, v) = As(u, v).
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λ

ε
y

x

Figure 3.2: Illustration of the requirements (S1) and (S2) on the family of inter-
action sets. The yellow colored domain indicates an interaction set, which satisfies
the sandwich property (S1) (left) and also the symmetry property (S2) (right).

3.2 Kernel conditions and interaction sets

Let {S(x)}x∈Rd with S(x) ⊂ Rd denote a family of sets that satisfy the following two
properties.

(S1) Sandwich property: There exist two radii ε, λ > 0 such that

Bε,2(x) ⊂ S(x) ⊂ Bλ,2(x) for all x ∈ Rd.

(S2) Symmetry: For all x,y ∈ Rd, it holds that

y ∈ S(x) if and only if x ∈ S(y),

which implies that the indicator function (x,y) 7→ χS(x)(y) is symmetric in (x,y).

Figure 3.2 depicts a nonstandard interaction set which satisfies these requirements. Now
we impose two general conditions on the kernel γ.

(K1) First, we assume that there exists a positive constant γ0 > 0 such that the sym-
metric part of the kernel satisfies

γs(x,y) ≥ γ0 > 0 for all x ∈ Ω ∪ ΩI , y ∈ Bε,2(x),

with ε > 0 from (S1).
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Chapter 3. Variational formulation and extended well-posedness results

(K2) Second, we assume that there exists a positive function φ : Rd ×Rd → R which we
refer to as the kernel function, such that we can express the kernel as the product

γ(x,y) = φ(x,y)χS(x)(y),

where

χS(x)(y) :=
{

1 : y ∈ S(x)
0 : else

denotes the indicator function.

Due to the symmetry condition (S2) we arrive at the representations

γs(x,y) = φs(x,y)χS(x)(y) and γa(x,y) = φa(x,y)χS(x)(y).

Requirement (K1) implies that Ad defines an inner product on Vc(Ω∪ΩI)×Vc(Ω∪ΩI).
In the remaining sections we discuss kernels for which the constrained energy spaces are
Banach.

Truncation (K2) of the kernel serves to restrict nonlocal interactions to occur only
within the set S(x) so that we refer to S(x) as the interaction set for the point x. An
equivalent definition of the interaction domain ΩI is given by

ΩI = {y ∈ Ωc : y ∈ S(x) for some x ∈ Ω}. (3.11)

In Figure 3.3 the interaction domain ΩI is depicted for two different choices of interaction
sets. The boundedness of Ω and assumption (S1) on the interaction sets imply that Ω∪ΩI

is bounded. Examples of interaction sets are given by

S(x) := {y ∈ Rd : η(x,y) < 0}

for a symmetric two-point function η(x,y) for which there exist radii εη, λη > 0 with

εη ≤ ‖x− y‖2 − η(x,y) ≤ λη for all y ∈ S(x),

such that (S1) is fulfilled. If in addition η(x,y) is translation invariant, i.e., η(x,y) =
η(x + b,y + b) for all b ∈ Rd, then

S(x) = {y ∈ Rd : η(y− x,0) < 0} = {(x + z) ∈ Rd : η(z,0) < 0} = x + S(0),

where S(0) = −S(0). Note that S(x) := x + S, with S ⊂ Rd being any bounded set
satisfying Bε,2(0) ⊂ S = −S, fulfills (S1) and (S2).
The particular interaction set S(x) that is in ubiquitous use in nonlocal modeling
corresponds to the symmetric and translation invariant two-point function η(x,y) :=
‖x − y‖2 − δ for δ > 0 independent of x, in which case S(x) is simply the Euclidean
ball Bδ,2(x) of radius δ centered at x. However, within our more general framework,
we consider general interaction sets S(x) that satisfy (S1) and (S2). For instance, other
special cases of interest are defined by

η(x,y) = ‖x− y‖• − δ

34



3.3. Well-posedness of the weak formulation

Ω Ω

Figure 3.3: A rectangular domain Ω enclosed by its gray colored interaction domain
ΩI . On the left-hand side the standard case of Euclidean balls is depicted, whereas
on the right-hand side balls induced by the supremum norm are used as interaction
sets.

for an arbitrary norm ‖ ·‖• in Rd. We note that the sandwich property (S1) follows from
the norm equivalences in Rd. This leads to interaction sets S(x) that are balls

Bδ,•(x) := {y ∈ Rd : ‖x− y‖• < δ} = x + {z ∈ Rd : ‖z‖• < δ}.

In these cases we refer to δ as the interaction horizon or simply as the horizon. In
addition to the Euclidean ball Bδ,2(x), we can consider, e.g., the balls Bδ,1(x) and
Bδ,∞(x) induced by the Manhattan and supremum norm, respectively.

3.3 Well-posedness of the weak formulation

In this section, we introduce two concrete classes of kernels γ : Rd × Rd → R of the
form (K2) both of which are well studied for Euclidean interaction balls and show the
well-posedness of the weak formulation (3.7). We note that the “smoothing” property
of the inverse nonlocal convection-diffusion operator depends on the regularity imposed
on the kernel γ, or more precisely, on the kernel function φ.

We invoke the Lax-Milgram theorem (see, e.g., [44, Lemma 2.2]) to state the well-
posedness of the weak formulation (3.7) and therefore need to show that A is a coercive
and continuous bilinear form on some carefully chosen Hilbert space. For showing the
coercivity we can exploit Aa(u, u) = 0, so that A(u, u) = As(u, u).

3.3.1 Integrable kernels

In this section we consider a class of integrable kernels, not necessarily symmetric, for
which the weak convection-diffusion problem (3.7) is well-posed. For this purpose we
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Chapter 3. Variational formulation and extended well-posedness results

show that the nonlocal bilinear form A is coercive and continuous on the constrained
space

L2
c(Ω ∪ ΩI) :=

{
u ∈ L2(Ω ∪ ΩI) : u = 0 on ΩI

}
.

Due to the composition A = Ad+Ac given in (3.8) it stands to reason to impose separate
conditions on the symmetric and antisymmetric parts of the kernel γ. Also, in doing so,
we can rely on established results for the special case of a symmetric kernel γ = γs. The
following requirements determining this class of integrable kernels are understood to be
in addition to those included in (K1) and (K2).
For the diffusion component we assume that there exist two positive constants γs, γs > 0
such that 

γs = inf
x∈Ω

∫
Ω∪ΩI

γs(x,y)dy,

sup
x∈Ω

∫
Ω∪ΩI

(γs)2(x,y)dy = (γs)2.
(3.12)

The second requirement and the boundedness of Ω ∪ ΩI imply that γs is a Hilbert-
Schmidt kernel, since γs ∈ L2(Ω ∪ΩI ×Ω ∪ΩI). Also, by applying the Cauchy-Schwarz
inequality, we find the estimate

sup
x∈Ω

∫
Ω∪ΩI

|γs(x,y)| dy ≤ γs
√
|Ω ∪ ΩI |, (3.13)

where |Ω∪ΩI | denotes the d-dimensional volume of Ω∪ΩI . For the convection component
we assume that there exist two constants γa ∈ R and γa > 0 such that

γa = inf
x∈Ω

∫
Ω∪ΩI

γa(x,y)dy and γs + γa > 0,

sup
x∈Ω

∫
Ω∪ΩI

|γa(x,y)| dy = γa.
(3.14)

The family of interaction sets {S(x)}x∈Rd can be any family satisfying (S1) and (S2). We
find that the lower bounds in (3.12) and (3.14) guarantee the coercivity of the nonlocal
bilinear form whereas the upper bounds imply the continuity. Furthermore, as we see
below, the requirement γs + γa > 0 in (3.14) assures that the diffusive part “dominates”
the convection-diffusion equation and the coercivity is not deteriorated by the convection
part. Examples for symmetric kernels are provided by the kernels used in [6, 7, 10] and
trivially include the constant kernel. Considerable nonsymmetric kernels are introduced
in the following example.

Example 3.3.1. An example class of nonsymmetric kernels fulfilling the requirements
(3.12) and (3.14) can be constructed as follows. Let

γ : Rd × Rd → R, γ(x,y) :=
(
γs(x,y) + γa(x− y)

)
χS(x)(y)

for any family of interaction sets {S(x)}x∈Rd satisfying (S1) and (S2), for a symmetric
γs satisfying (K1) and (3.12) and for an antisymmetric γa which is translation invariant,
i.e., γa(−z) = −γa(z) for z = x − y. The latter implies that γa = 0 in (3.14). An
example is given by γa(z) := zi, for 1 ≤ i ≤ d.
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3.3. Well-posedness of the weak formulation

Recall that because of A(u, u) = As(u, u) it suffices to show the coercivity of the
symmetrized bilinear form

As : L2
c(Ω ∪ ΩI)× L2

c(Ω ∪ ΩI)→ R.

Furthermore, since we have separate conditions on each, the diffusion and convection
part, respectively, we treat the symmetric parts of the corresponding bilinear forms, i.e.,
the summands of As = Ad +Ac,s, separately in the following. For the diffusion part Ad
we find the following Lemma which is an immediate consequence of Lemma 4.7 from
[36].

Lemma 3.3.2. For any u, v ∈ L2
c(Ω ∪ ΩI) we find

Ad(u, u) ≥ γs‖u‖2L2(Ω) (3.15)

with γs > 0 from (3.12). In particular, Ad is coercive on L2
c(Ω ∪ ΩI).

Proof. Let u, v ∈ L2
c(Ω ∪ ΩI). Recall that Ad(u, v) = (−LdΩu, v), with Ld from (2.21).

Also, since u, v = 0 on ΩI we can rely on the representation of Ad given in (3.10). Since
the family of interaction sets is assumed to be uniformly bounded (S1) there is a radius
λ > 0 such that S(x) ⊂ Bλ,2(x) for all x ∈ Ω ∪ ΩI . Then let us define the kernel

γ̃(x,y) := γs(x,y)χBλ,2(x)(y) = φs(x,y)χS(x)(y)χBλ,2(x)(y)

and the operator
L̃u(x) :=

∫
Ω∪ΩI

(u(y)− u(x))γ̃(x,y)dy

as well as the associated bilinear form

Ã(u, v) := (−L̃u, v)L2(Ω).

Clearly, we have γ̃ = γs on Ω ∪ ΩI × Ω ∪ ΩI and therefore also L̃u = Ldu on Ω and
Ã = Ad on L2

c(Ω ∪ ΩI) × L2
c(Ω ∪ ΩI). Then, due to the general assumptions on the

interaction sets (i.e., (S1) and (S2)) and on the kernel (i.e, (K1) and (K2)) as well as
the requirements on γs (i.e., (3.12)), the auxiliary kernel γ̃ and its associated operators
L̃ and Ã fulfill the requirements of Lemma 4.7 in [36], which states the desired result
(3.15).

Inequality (3.15) is sometimes referred to as nonlocal Poincaré inequality in the litera-
ture [36]. We finally obtain that the coercivity of Ad is not deteriorated by the symmetric
part Ac,s of Ac, such that A determines a coercive bilinear form on L2

c(Ω ∪ ΩI).

Lemma 3.3.3 (Coercivity). For any u ∈ L2
c(Ω ∪ ΩI) we find

A(u, u) ≥ γ‖u‖2L2(Ω)

where γ := γs + γa > 0. In particular, A is coercive on L2
c(Ω ∪ ΩI).
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Proof. By requirement (3.14) on γa we obtain the estimate

Ac,s(u, v) =
∫

Ω
u2
∫

Ω∪ΩI
γadydx ≥ γa‖u‖2L2(Ω).

Combining this estimate with Lemma 3.3.2 we find that

A(u, u) = As(u, u) = (Ad +Ac,s)(u, u)
≥ γ

s
‖u‖2L2(Ω) + γ

a
‖u‖2L2(Ω) = γ‖u‖2L2(Ω),

where γ := γs + γa > 0 by assumption (3.14).

The latter result shows that ||| · ||| =
√
A(·, ·) defines a norm and As(·, ·) an inner

product on the constrained space L2
c(Ω ∪ ΩI). The next lemma provides the continuity

of the nonlocal bilinear form under slightly more general conditions on the kernel than
required in this section. In Chapter 6 we return to this more general result.

Lemma 3.3.4. Let % : Rd × Rd → R satisfy

% := max
{

sup
x∈Ω

∫
Ω∪ΩI

|%|dy, sup
x∈Ω

∫
Ω
|%′|dy

}
< +∞, (3.16)

and consider the bilinear form

B : L2
c(Ω ∪ ΩI)×L2

c(Ω ∪ ΩI)→ R,

B(u, v) :=
∫

Ω
v

∫
Ω

(u%− u′%′)dydx +
∫

Ω
vu

∫
ΩI
%dydx,

where Ω ⊂ Rd. Then for any u, v ∈ L2
c(Ω ∪ ΩI) we obtain the bound

|B(u, v)| ≤ 2%‖u‖L2(Ω)‖v‖L2(Ω),

implying that B is continuous on L2
c(Ω ∪ ΩI).

Proof. We first note that due to the integrability of the kernel (3.16) we can write

B(u, v) =
∫

Ω
vu

∫
Ω∪ΩI

%dydx−
∫

Ω
v

∫
Ω
u′%′dydx.

We find the bound on B by applying the Cauchy-Schwarz inequality. Let us first define

%̃ := sup
x∈Ω

∫
Ω∪ΩI

|%|dy, %̃′ := sup
x∈Ω

∫
Ω
|%′|dy.

Then for any u, v ∈ L2
c(Ω ∪ ΩI) we have

|B(u, v)| ≤
∫

Ω
|vu|

(∫
Ω∪ΩI

|%|dy
)
dx +

∫
Ω

∫
Ω
|vu′||%′|dydx
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≤ %̃‖v‖L2(Ω)‖u‖L2(Ω) +
√∫

Ω
v2
∫

Ω
|%′|dydx

√∫
Ω

∫
Ω

(u′)2|%′|dydx

≤ %̃‖v‖L2(Ω)‖u‖L2(Ω) +
√
%̃′‖v‖L2(Ω)

√
%̃‖u‖L2(Ω)

≤ 2%‖u‖L2(Ω)‖v‖L2(Ω).

The second inequality follows from Cauchy-Schwarz inequality, where for the second
summand applied to the integrand |v|

√
|%′| · |u′|

√
|%′|. The third inequality follows from

Fubini’s theorem applied to the second factor in the second summand.

We can immediately deduce the continuity of the nonlocal bilinear form in our setting.

Corollary 3.3.5 (Continuity). For any u, v ∈ L2
c(Ω ∪ ΩI) we obtain

|A(u, v)| ≤ 2γ‖u‖L2(Ω)‖v‖L2(Ω),

where γ := γs
√
|Ω ∪ ΩI |+ γa.

Proof. Due to the upper bounds given in (3.13) and (3.14) on the symmetric and anti-
symmetric part of the kernel, we find the estimate

sup
x∈Ω

∫
Ω∪ΩI

|γ|dy ≤ sup
x∈Ω

∫
Ω∪ΩI

|γs|dy + sup
x∈Ω

∫
Ω∪ΩI

|γa|dy

≤ γs
√
|Ω ∪ ΩI |+ γa.

Since |γs| and |γa| are symmetric, the same bound γ := γs
√
|Ω ∪ ΩI |+ γa holds for

supx∈Ω
∫
Ω∪ΩI |γ

′|dy. Thus, the result follows by Lemma 3.3.4.

The well-posedness of the weak formulation (3.7) in the space L2
c(Ω ∪ ΩI) then is a

consequence of the Lax-Milgram theorem and the results established above. We obtain
the a priori estimate

‖u‖L2(Ω) ≤ C‖f − LΩIg‖L2(Ω) ≤ C̃(‖f‖L2(Ω) + ‖g‖L2(ΩI)), for some C̃ > 0,

so that there is no gain of regularity for the solution of the nonlocal volume-constrained
problem. Furthermore, the latter results also lead to the following equivalence of spaces.

Corollary 3.3.6 (Equivalence of spaces). Combining Lemma 3.3.2 and Corollary
3.3.5 we find the norm equivalence

√
γ ‖u‖L2(Ω) ≤ |||u||| ≤

√
2γ ‖u‖L2(Ω)

for all u ∈ L2
c(Ω ∪ ΩI), implying that the normed vector spaces (Vc(Ω ∪ ΩI), ||| · |||)

and
(
L2
c(Ω ∪ ΩI), ‖ · ‖L2(Ω)

)
are equivalent. Thus the nonlocal constrained energy space

(Vc(Ω ∪ ΩI), ||| · |||) is a Banach space. Also, if γ = γs, such that A = As = Ad on
Vc(Ω∪ΩI)×Vc(Ω∪ΩI) we find that the well-posedness of (3.7) also holds on Vc(Ω∪ΩI)
by the Riesz representation theorem. In addition to that, the equivalence between the
constrained spaces also imply the equivalence between the unconstrained spaces(

V (Ω ∪ ΩI) , ||| · |||+ ‖ · ‖L2(Ω∪ΩI)
)
∼
(
L2(Ω ∪ ΩI) , ‖ · ‖L2(Ω∪ΩI)

)
.
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3.3.2 Singular symmetric kernels

In this subsection we consider a class of singular symmetric kernels for which the nonlocal
diffusion problem is relatable to space-fractional diffusion equations. We treat such
kernels in Chapter 5 and Section 6.2. Since we restrict ourselves to symmetric kernels
γ = γs, thereby provoking the absence of convective effects, we consider a pure diffusion
model. In this case the nonlocal operator takes the form

Lu(x) = Ldu(x) =
∫
Rd

(u(y)− u(x)) γ(x,y)dy

and the nonlocal bilinear form reduces to the symmetric diffusion part

A(u, v) = Ad(u, v) = 1
2

∫
Ω

∫
Ω

(
v − v′

) (
u− u′

)
γsdydx +

∫
Ω
vu

∫
ΩI
γsdydx

= 1
2

∫
Ω∪ΩI

∫
Ω∪ΩI

(u− u′)(v − v′)γsdydx,

for all u, v ∈ Vc(Ω∪ΩI). Let s ∈ (0, 1), then in addition to the requirements included in
(K1) and (K2) we assume the existence of two constants 0 < γ ≤ γ <∞ such that

γ ≤ γ(x,y)‖y− x‖d+2s
2 ≤ γ for all x ∈ Ω, y ∈ S(x), (3.17)

where {S(x)}x∈Rd could be any family of interaction sets satisfying (S1) and (S2). Re-
quirement (3.17) serves to limit the strength of the singularity of γ(x,y) at y = x as
well as its decay rate for large values of ‖y− x‖2. Note that we allow for general inter-
action sets S(x) but use the norm ‖ · ‖2 for the two purposes just mentioned. Due to the
equivalence of norms in Rd, without loss of generality, we can replace ‖ · ‖2 in (3.17) by
other norms such as the ‖ · ‖1- or ‖ · ‖∞-norm. An example of these kernels is given by

γ(x,y) := σ(x,y)
‖y− x‖d+2s

2
χS(x)(y) (3.18)

for a symmetric function σ : Rd × Rd → R that is bounded from below and above by
some positive constants. Note that this kernel could also be chosen to be radial with
respect to any discrete norm. When σ is constant, we sometimes refer to this kernel as
the fractional kernel because, if δ = ∞ and σ attains an appropriate scaling constant,
(3.18) becomes the kernel for the fractional Laplace operator [54].

We recall the definition of the fractional Sobolev space

Hs(Ω ∪ ΩI) :=
{
u ∈ L2(Ω ∪ ΩI) : ‖u‖Hs(Ω∪ΩI) := ‖u‖L2(Ω∪ΩI) + |u|Hs(Ω∪ΩI) <∞

}
for s ∈ (0, 1), where we define the seminorm

|u|2Hs(Ω∪ΩI) :=
∫

Ω∪ΩI

∫
Ω∪ΩI

(u(x)− u(y))2

‖x− y‖d+2s
2

dydx.
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3.3. Well-posedness of the weak formulation

The volume constrained fractional Sobolev space is then defined as

Hs
c (Ω ∪ ΩI) := {u ∈ Hs(Ω ∪ ΩI) : u = 0 on ΩI}

for which |u|Hs(Ω∪ΩI) is a norm [59].
We show that A = As is a coercive bilinear form on the constrained fractional Sobolev
space

(
Hs
c (Ω ∪ ΩI), | · |Hs(Ω∪ΩI)

)
. For this purpose we first need to provide a Poincaré

type inequality for the energy norm associated to this class of kernels. With the same
considerations as in the proof of Lemma 3.3.2, the proof of the following Lemma is a
consequence of Lemma 4.3 established in [36] and is therefore omitted here.

Lemma 3.3.7 (Poincaré inequality). For any u ∈ Hs
c (Ω ∪ ΩI) we find

‖u‖L2(Ω) ≤ CP |||u||| (3.19)

for some constant CP > 0.

For completeness we provide the following observation which we need in Section 6.2.

Remark 3.3.8 (Uniform Poincaré inequality). For the special case of norm induced
interaction sets S(x) = Bδ,•(x) the Poincaré constant CP in (3.19) depends on the
interaction horizon δ. However, by carefully analyzing the proof of Lemma 4.3 from
[36], which is established for the standard case S(x) = Bδ,2(x), we find that we can
extend the therein established Poincaré inequality to a uniform one. More precisely, in
this paper the authors prove the statement by contradicting the existence of a sequence
(uk)k ∈ V N

c with ‖uk‖2L2(Ω∪ΩI) = 1, for which |||uk|||2 < 1
k . Their first step is to show

that this sequence is bounded in Hs(Ω ∪ ΩI). More precisely, they derive

‖uk‖Hs(Ω∪ΩI) ≤ 1 + 4|Ω ∪ ΩI |δ−(d+2s). (3.20)

Once this step is established, the desired result then follows from statements independent
of δ. Since δ−(d+2s) ≤ 1 for all δ ∈ [1,+∞) we can use 1 + 4|Ω∪ΩI | as a uniform bound
in (3.20). Consequently we obtain a uniform Poincaré constant such that the inequality
holds for all δ ∈ [1,+∞). Using the auxiliary kernel γ̃ from the proof of Lemma 3.3.2,
we can establish a uniform Poincaré inequality for the case of general norm induced
interaction sets S(x) = Bδ,•(x) which holds for all δ ∈ [C•,+∞), where C• > 0 is a
constant depending on the norm equivalence ‖ · ‖2 ∼ ‖ · ‖•.

We are now in the position to prove the coercivity of A on
(
Hs
c (Ω ∪ ΩI), | · |Hs(Ω∪ΩI)

)
.

Lemma 3.3.9 (Coercivity). For any u ∈ Hs
c (Ω ∪ ΩI) we find

A(u, u) ≥ Ccoer|u|2Hs(Ω∪ΩI)

for some constant Ccoer > 0. In particular, A is coercive on Hs
c (Ω ∪ ΩI).
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Chapter 3. Variational formulation and extended well-posedness results

Proof. Let u ∈ Hs
c (Ω ∪ ΩI). Due to assumption (S1), for any x ∈ Ω ∪ ΩI we find

sup
y∈(Ω∪ΩI)\S(x)

1
‖y− x‖d+2s

2
≤ sup

y∈(Ω∪ΩI)\Bε,2(x)

1
‖y− x‖d+2s

2
≤ 1
εd+2s .

Consequently

γ := sup
x∈Ω∪ΩI

sup
y∈Ω∪ΩI\S(x)

1
‖y− x‖d+2s

2
≤ 1
εd+2s < +∞.

Thus we find

|u|2Hs(Ω∪ΩI) =
∫

Ω∪ΩI

∫
(Ω∪ΩI)∩S(x)

(u(x)− u(y))2

‖y− x‖d+2s
2

dydx

+
∫

Ω∪ΩI

∫
(Ω∪ΩI)\S(x)

(u(x)− u(y))2

‖y− x‖d+2s
2

dydx

≤ γ−1A(u, u) + γ

∫
Ω∪ΩI

∫
(Ω∪ΩI)\S(x)

(u(x)− u(y))2dydx

≤ γ−1A(u, u) + γ

∫
Ω∪ΩI

∫
Ω∪ΩI

(u(x)− u(y))2dydx

≤ γ−1A(u, u) + 2γ
∫

Ω∪ΩI

∫
Ω∪ΩI

(
u(x)2 + u(y)2

)
dydx

= γ−1A(u, u) + 4γ|Ω ∪ ΩI |‖u‖2L2(Ω∪ΩI).

The first inequality follows from the assumptions (3.17) on the kernel and (K2). The
second inequality follows because the integrand is nonnegative and the third inequality
follows from the estimate (a− b)2 ≤ 2(a2 + b2) for a, b ∈ R. Now invoking the nonlocal
Poincaré inequality (3.19) we obtain

|u|2Hs(Ω∪ΩI) ≤ γ
−1A(u, u) + 4γ|Ω ∪ ΩI |C2

PA(u, u)
≤ max{γ−1

1 , 4γC2
P |Ω ∪ ΩI |}A(u, u).

Thus, Ccoer := max{γ−1
1 , 4γC2

P |Ω ∪ ΩI |} provides the necessary constant.

The next lemma establishes the continuity of the nonlocal bilinear form A on the
constrained fractional Sobolev space Hs

c (Ω ∪ ΩI).

Lemma 3.3.10 (Continuity). For any u, v ∈ Hs
c (Ω ∪ ΩI) we find

|A(u, v)| ≤ γ|u|Hs(Ω∪ΩI)|v|Hs(Ω∪ΩI) (3.21)

with γ > 0 from (3.17). In particular, A is continuous on Hs
c (Ω ∪ ΩI).

Proof. Due to (K1) in combination with (S1) the bilinear form A = Ad defines a definite
inner product on Hs

c (Ω ∪ ΩI). Thus by Cauchy-Schwarz inequality we obtain

|A(u, v)|2 ≤ A(u, u)A(v, v).
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Now let u ∈ Hs
c (Ω ∪ ΩI), then it follows from assumption (3.17) that

A(u, u) =
∫

Ω∪ΩI

∫
(Ω∪ΩI)∩S(x)

(u(x)− u(y))2φ(x,y)dydx

≤ γ
∫

Ω∪ΩI

∫
Ω∪ΩI

(u(x)− u(y))2

‖y− x‖d+2s
2

dydx = γ|u|2Hs(Ω∪ΩI).

The stated inequality (3.21) is an immediate consequence.

The well-posedness of the weak formulation (3.7) in the space Hs
c (Ω ∪ ΩI) is a con-

sequence of the Lax-Milgram theorem and the results established above. In case of
homogeneous Dirichlet constraints g = 0 we further obtain the a priori estimate

‖u‖Hs(Ω) ≤ C‖f‖H−s(Ω), 0 < s < 1.

In contrast, for second-order elliptic partial differential equations, we have

‖u‖H1(Ω) ≤ C‖f‖H−1(Ω)

so that the nonlocal volume-constrained problem with this type of singular kernels results
in a lower gain in regularity. More precisely, for second-order elliptic partial differential
equations, there is gain of regularity of 2 whereas for the nonlocal volume-constrained
problem, there is gain of regularity of 2s with s ∈ (0, 1).

As for the integrable kernel class, the latter results also lead to the following equiv-
alence of spaces.

Corollary 3.3.11 (Equivalence of spaces). Combining Lemmata 3.3.9 and 3.3.10
we find the norm equivalence√

Ccoer |u|Hs(Ω∪ΩI) ≤ |||u||| ≤
√
γ |u|Hs(Ω∪ΩI)

for all u ∈ Hs
c (Ω ∪ ΩI), implying that the normed vector spaces (Vc(Ω ∪ ΩI), ||| · |||) and(

Hs
c (Ω ∪ ΩI), | · |Hs(Ω∪ΩI)

)
are equivalent. Thus the nonlocal constrained energy space

(Vc(Ω ∪ ΩI), ||| · |||) is a Banach space and the well-posedness of (3.7) also holds on
Vc(Ω ∪ ΩI) by the Riesz representation theorem. Moreover, the equivalence between the
constrained spaces also imply the equivalence between the unconstrained spaces(

V (Ω ∪ ΩI) , ||| · |||+ ‖ · ‖L2(Ω∪ΩI)
)
∼
(
Hs(Ω ∪ ΩI) , | · |Hs(Ω∪ΩI) + ‖ · ‖L2(Ω∪ΩI)

)
.

3.4 Concluding remarks

We have shown the well-posedness of the weak formulation (3.7) by applying the Lax-
Milgram theorem for which the coercivity of the symmetrized bilinear form As is crucial.
The latter implies that the regarded problems exhibit properties comparable to that of
elliptic partial differential operators. For the class of possibly nonsymmetric integrable
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kernels treated in Subsection 3.3.1 we thereby only allow for a “mild” convection com-
ponent which does not deteriorate the ellipticity property. However, for this class of
nonsymmetric integrable kernels there may arise situations for which the problem is
well-posed but the associated bilinear form is not coercive; see Chapter 8 for a respec-
tive counterexample and a related discussion.
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Chapter 4

Discretization using the finite
element method

Given the variational formulation (3.7) of the nonlocal volume-constrained problem (2.1),
it is natural to consider its finite-dimensional approximation within that variational
framework. Specifically, we focus on finite element approximations and discuss in detail
the assembly of the nonlocal stiffness matrix which requires numerical quadrature for
the double integral appearing in the nonlocal bilinear form (3.5). We expose the con-
comitant difficulties and challenges arising along the assembly process which contrasts
strongly with the local setting and thereby reveal the price we have to pay for including
nonlocality into our model.
In addition to that, we examine two different types of interaction sets in the context of
finite element implementations, which both have not attained detailed discussion in lit-
erature yet. On the one hand, in Chapter 3 we have established a well-posedness theory
which allows us to model nonlocal interactions to occur within polyhedral interaction
sets, such as balls induced by the supremum norm. Here, we discuss the computational
advantage of such interaction sets over Euclidean balls which are ubiquitous in the liter-
ature. On the other hand, in terms of efficiency we advertise geometric approximations
to the exact interaction set. A further analysis of the latter is then exhibited in Section
6.3.
In this thesis the solving procedure of the resulting discrete system and related issues are
not discussed at this general level. For state of the art finite element discretizations, the
assembly process represents the restrictive factor when aiming to solve nonlocal equa-
tions on very fine meshes. Thus, the size of the discrete system is manageably small in
our experiments. Exceptions for the latter statement arise in special settings; see, e.g.,
Chapter 5.

This chapter is organized as follows. In Section 4.1 we recall a finite-dimensional
approximation of the weak formulation (3.7) which applies in general to variational
problems. We then specify to finite element approximations in Section 4.2. The central
notion is that of the nonlocal stiffness matrix whose challenging assembly is discussed in
the subsequent Section 4.3. Finally we introduce the notion of approximate interaction
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sets in Section 4.4.

4.1 Finite-dimensional approximation

Let {V h}h>0 ⊂ V (Ω∪ΩI) denote a sequence of finite-dimensional subspaces and assume
that {V h}h>0 is dense in V (Ω ∪ ΩI) as h → 0, i.e., for any u ∈ V (Ω ∪ ΩI), there exists
a sequence {uh ∈ V h}h>0 such that

|||u− uh||| → 0 as h→ 0.

The family of constrained finite-dimensional subspaces is then given by

V h
c :=

{
uh ∈ V h : uh = 0 on ΩI

}
⊂ V h,

which is dense in Vc(Ω ∪ ΩI) as h → 0. Let u ∈ V (Ω ∪ ΩI) denote the solution of the
variational problem (3.7) then we seek the Ritz-Galerkin approximation uh ∈ V h of u
determined by posing the variational problem (3.7) on the finite-dimensional subspace,
i.e.,

given f ∈ V ′c (Ω) and g ∈ Ṽ (ΩI), find uh ∈ V h such that uh|ΩI = g and
A(uh|Ω, vh) = `(vh) for all vh ∈ V h

c .
(4.1)

For the two classes of kernels discussed in Subsection 3.3.1 and Subsection 3.3.2, respec-
tively, problem (4.1) satisfies the best approximation property

|||u− uh||| ≤ inf
vh∈V hc

|||u− vh||| → 0 as h→ 0. (4.2)

In fact, since u and uh satisfy (3.7) and (4.1), the approximation uh is the |||·|||-orthogonal
projection of u onto V h (the so-called Galerkin projection property). Then result (4.2)
follows from the assumed density of the spaces V h ⊂ V (Ω ∪ ΩI) as h→ 0. Also, due to
the norm equivalences and Poincaré inequalities established for the two classes of kernels
we find

• for the class of integrable kernels (see Subsection 3.3.1)

||u− uh||L2(Ω∪ΩI) → 0 as h→ 0,

• and for the class of singular and symmetric kernels (see Subsection 3.3.2)

||u− uh||Hs(Ω∪ΩI) → 0 as h→ 0,

and
||u− uh||L2(Ω∪ΩI) → 0 as h→ 0.

Remark 4.1.1 (Convergence rates). Precise convergence rates with respect to the
interpolation parameter h > 0 typically depend on the regularity of the (analytic) weak
solution and the approximation quality of the implemented finite-dimensional subspaces
(ansatz spaces). In this work such regularity and convergence issues are not investigated
at an analytical level.
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4.2. Finite element approximation

4.2 Finite element approximation

In this thesis we consider finite element approximations in order to define appropriate
finite-dimensional energy spaces V h, where h > 0 is a parameter determining the grid
size of the underlying finite element mesh. Finite element methods for nonlocal volume
constrained problems such as (2.1) have been studied, e.g., in [96, 5, 2].

For simplicity we assume that Ω is a polyhedral domain and that the interaction sets
{S(x)}x∈Rd are simply connected. The first requirement implies that we can exactly
triangulate Ω into finite (polyhedral) elements T hΩ = {Ej}JΩ

j=1 with

Ω =
JΩ⋃
j=1
Ej .

We assume that the corners of the boundary ∂Ω are vertices of the finite element mesh. In
the standard case of Euclidean interaction sets S(x) = Bδ,2(x) the interaction domain ΩI

is not polyhedral. However we assume that T hΩI = {Ej}Jj=JΩ+1 triangulates a polyhedral
approximation Ωapprox

I of ΩI , such that

Ωapprox
I =

J⋃
j=JΩ+1

Ej .

We achieve such an approximation by replacing curved corners of ΩI by polyhedral
corners, such that ΩI ⊂ Ωapprox

I . Since we use the correct interaction set in the assembly
process, the Dirichlet data g is not evaluated on Ωapprox

I \ΩI so that we do not need to
extend g to Ωapprox

I . For simplicity we from now on refer to Ωapprox
I as ΩI . See Figure

4.1 for an illustration of Ωapprox
I . Furthermore we assume that the two triangulations

T hΩ and T hΩI coincide at their common boundary Ω ∩ ΩI ensuring that T h := T hΩ ∪ T hΩI
defines a triangulation of Ω ∪ ΩI . By “coincide” we mean that the vertices of the finite
element mesh T hΩ and the vertices of T hΩI are identical on Ω ∩ ΩI . See Figure 4.2 for a
feasible configuration of such a matching grid.
Let {xk}Kk=1 denote the mesh vertices of the triangulation T h. Then this kind of separate
but matching triangulation of Ω and ΩI naturally leads to the decomposition

{xk}Kk=1 = {xk}KΩ
k=1 ∪̇ {xj}

K
k=KΩ+1 (4.3)

of the mesh vertices. Here, {xk}KΩ
k=1 contains all interior vertices of Ω whereas

{xk}Kk=KΩ+1 contains all vertices in Ωc ∩ ΩI including the joint vertices on Ω ∩ ΩI .
Now let us assign to each vertex of the triangulation T h a continuous piecewise poly-

nomial function ϕk : Ω ∪ ΩI → R leading to a family of basis function {ϕk}Kk=1. We
require ϕk(xj) = δkj , where δkj denotes the Kroenecker delta function, and define the
finite-dimensional finite element spaces

V h := span {ϕk : 1 ≤ k ≤ K} and V h
c := span {ϕk : 1 ≤ k ≤ KΩ} . (4.4)
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Ω

Figure 4.1: Illustration of ΩapproxI . The gray colored area represents the true inter-
action domain ΩI of a square domain Ω. A rectangular approximation ΩapproxI ⊃ ΩI
is achieved by replacing the curved corners by polygonal ones. The additional area
ΩapproxI \ΩI is colored in blue. However, during the assembly process we use the
original interaction set (here the yellow disc as an example), which does not intersect
the blue area.

ΩI

Ω
Figure 4.2: Illustration of a matching grid. The black mesh indicates the trian-
gulation T hΩ of the domain Ω and the red mesh indicates the triangulation T hΩI

of
the interaction domain. At their common boundary Ω ∩ ΩI they share the same
vertices (here red dots) so that T h = T hΩ ∪ T hΩI

defines a proper triangulation of
Ω∪ΩI . Also note that we assign the nodes on Ω∩ΩI to the triangulation of ΩI as
indicated by the red color.



4.2. Finite element approximation

Remark 4.2.1 (Finite elements used in this thesis). In all numerical experiments
throughout this thesis we use either P1 elements on triangular meshes or Q1 elements
on rectangular meshes (see, e.g., [44, pp. 22–23] for their definitions). Nonetheless the
following considerations hold in general.

The interpolation uh ∈ V h of the weak solution u ∈ V (Ω ∪ ΩI) effected by the
finite-dimensional subspace V h is given by

uh(x) =
K∑
k=1

uhkϕk(x) (x ∈ Ω ∪ ΩI),

where uhk := u(xk). Since u = g on ΩI we can employ the decomposition of the vertices
and obtain

uh(x) =
KΩ∑
k=1

uhkϕk(x)︸ ︷︷ ︸
=:uhΩ(x)

+
K∑

k=KΩ+1
ghkϕk(x)

︸ ︷︷ ︸
=:gh(x)

(x ∈ Ω ∪ ΩI), (4.5)

where ghk := g(xk). Clearly uhΩ, i.e., the discrete finite element solution restricted to the
interior of the domain Ω, defines the degree of freedom and is an element of V h

c . Ac-
cording to the discrete variational formulation (4.1) the approximation uhΩ is determined
by

A(uhΩ, vh) = `(vh) = (f, vh)L2(Ω) − (LΩIg
h, vh)L2(Ω) for all vh ∈ V h

c , (4.6)

where LΩI is defined in (3.1). Let us define

AΩΩI (u, v) := (LΩIu, v)L2(Ω).

Then due to the definitions of V h
c given in (4.4) as well as uhΩ and gh given in (4.5) the

system (4.6) is equivalent to

KΩ∑
k=1

uhkA(ϕk, ϕj) = (f, ϕj)L2(Ω) −
K∑

k=KΩ+1
ghkAΩΩI (ϕk, ϕj) for all 1 ≤ j ≤ KΩ. (4.7)

Let us define

Ah
ΩΩ := (A(ϕk, ϕj))(1≤k,j≤KΩ) ∈ RKΩ×KΩ ,

Ah
ΩΩI := (AΩΩI (ϕk, ϕj))(1≤k≤KΩ, KΩ+1≤j≤K) ∈ RKΩ×(K−KΩ),

uhΩ :=
(
uhk

)
1≤k≤KΩ

∈ RKΩ , (4.8)

fh :=
(
(f, ϕj)L2(Ω)

)
1≤j≤KΩ

∈ RKΩ ,

gh :=
(
ghk

)
KΩ+1≤k≤K

∈ R(K−KΩ).
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Then we can rewrite (4.7) more concisely into the discrete system

Ah
ΩΩuhΩ = fh −Ah

ΩΩIg
h (4.9)

with unknown uhΩ ∈ RKΩ , or even more condensed as

Ah

(
uhΩ
gh

)
= fh,

where Ah :=
(
Ah

ΩΩ,Ah
ΩΩI

)
∈ RKΩ×K . The entries akj of Ah are given by

akj = A(ϕk, ϕj) +AΩΩI (ϕk, ϕj) = (−Lϕk, ϕj)L2(Ω)

=
∫

Ω
ϕj

∫
Ω∪ΩI

(ϕkγ − ϕk ′γ′)dydx
(4.10)

for 1 ≤ k ≤ K, i.e., ϕk ∈ V h, and 1 ≤ j ≤ KΩ, i.e., ϕj ∈ V h
c . We refer to Ah as nonlocal

stiffness matrix. Since we consider kernels that satisfy (K2) such that γ = φχS(·) we
finally arrive at

akj =
∫

Ω
ϕj

∫
S(x)

(ϕkφ− ϕk ′φ′)dydx. (4.11)

In the next two subsections we discuss this term for the two types of kernels intro-
duced in the previous chapter. Before doing so, we end this part with some remarks.

Remark 4.2.2 (Role of the Dirichlet data). Since the Dirichlet data g is a given
system parameter, we may think of using other approaches to compute the term LΩIg
in (4.6) (instead of interpolating g by utilizing the finite element mesh). In this case we
would only need to assemble the part Ah

ΩΩ of the nonlocal stiffness matrix as well as the
adjusted right-hand side f̃ = f − LΩIg. However, note that the entries akj = A(ϕk, ϕj)
of Ah

ΩΩ given in (4.10) still involve integrals over ΩI which is why we prefer to use a
finite element mesh for the whole domain Ω ∪ΩI . In the homogeneous case, i.e., g = 0,
system (4.9) reduces to

Ah
ΩΩuhΩ = fh

so that we only need to assemble Ah
ΩΩ in this case.

Remark 4.2.3 (Unbounded interaction sets). For the derivation of the nonlocal
stiffness matrix there is no need for interaction sets to be bounded so that the finite
element discretization of a nonlocal model associated to a kernel with infinite interactions,
i.e., S(x) = Rd, leads to the same representations of the matrix entries. However, in this
case ΩI = Ωc which necessitates a strategy to cope with infinite domains within the finite
element implementation. Also, a well-posedness theory different to the one developed in
Chapter 3 is needed.
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Remark 4.2.4 (Continuous interpolation). We restrict ourselves to continuous basis
functions, so that the interpolants gh and fh of g and f , respectively, are necessarily
continuous. However, the well-posedness theory from Chapter 3 merely requires square
integrability, so that g and f may have discontinuities. The same holds for the solution
u and its interpolant uh in case of integrable kernels and for kernels of fractional type
where s ≤ 0.5 [36].

4.2.1 Integrable kernels

For the class of integrable kernels discussed in Subsection 3.3.1 we can split the inner
integral in (4.11) so that

akj =
∫

Ω
ϕjϕk

∫
S(x)

φ dydx−
∫

Ω
ϕj

∫
S(x)

ϕk
′φ′ dydx. (4.12)

We typically consider basis functions which have compact support consisting of a con-
nected patch of elements (see also Remark 4.2.1). In order to compute the occurring
double integrals in (4.12) it is therefore desirable to determine the support of the inte-
grand such that zero evaluations are avoided. Also, this enables us to assign integrals
over finite elements to the support of the respective basis functions and thereby assign
the computed integral value to the correct entry in the nonlocal stiffness matrix; further
details are provided in Section 4.3. By setting Sk := supp(ϕk), we find

akj =
∫
Sk∩Sj

ϕjϕk

∫
S(x)

φ dydx−
∫
Sj
ϕj

∫
Sk∩S(x)

ϕk
′φ′ dydx. (4.13)

Remark 4.2.5. We use representation (4.13) for implementing the nonlocal stiffness
matrix associated to integrable kernels.

4.2.2 Singular kernels

For the class of singular and symmetric kernels discussed in Subsection 3.3.2 the nonlocal
model (2.1) reduces to a pure diffusion model. Thus the nonlocal bilinear form reduces
to A = Ad, where Ad is the diffusion part defined in (3.8). We can therefore consider

akj = Ad(ϕk, ϕj) +AΩΩI (ϕk, ϕj)

=
∫

Ω
ϕj

∫
Ω∩S(x)

(
ϕk − ϕk ′

)
φdydx +

∫
Ω
ϕjϕk

∫
ΩI∩S(x)

φdydx

−
∫

Ω
ϕj

∫
ΩI∩S(x)

ϕk
′φdydx,

(4.14)

for 1 ≤ k ≤ K, i.e., ϕk ∈ V h, and 1 ≤ j ≤ KΩ, i.e., ϕj ∈ V h
c . Note that the last integral

in (4.14) vanishes in the homogeneous setting, i.e., if ϕk ∈ V h
c . Since the kernel function
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may have singularities at (x,x) (see, e.g., (3.18)) we cannot split the first inner integral
in (4.14). Instead, in order to increase the mollifying effect of the term (ϕk − ϕk ′)
in the integrand, in numerical simulations it is reasonable to consider the equivalent
representation of this term given in (3.9) leading to

akj = 1
2

∫
Ω

∫
Ω∩S(x)

(
ϕj − ϕj ′

) (
ϕk − ϕk ′

)
φdydx +

∫
Ω
ϕjϕk

∫
ΩI∩S(x)

φdydx

−
∫

Ω
ϕj

∫
ΩI∩S(x)

ϕk
′φdydx.

(4.15)

For specifying the domain of integration in terms of the supports of the basis functions,
we need to have a closer look at the integrand (ϕj − ϕj ′) (ϕk − ϕk ′)φ from the first
summand in (4.15). Since φ is assumed to be positive (see (K2)), we find

(ϕk(y)− ϕk(x))(ϕj(y)− ϕj(x)) = 0

⇔ (x,y) ∈
(
Sck × Sck

)
∪
(
Scj × Scj

)
∪ {(x,x) : x ∈ Ω ∪ ΩI} .

(4.16)

Because {(x,x) : x ∈ Ω ∪ ΩI} has zero 2d-dimensional volume we can neglect it in the
integral. Further we find((

Sck × Sck
)
∪
(
Scj × Scj

))c
=
(
Sck × Sck

)c ∩ (Scj × Scj)c
=
(

(Sk × Sk) ∪ (Sck × Sk) ∪ (Sk × Sck)
)
∩
(
(Sj × Sj) ∪ (Scj × Sj) ∪ (Sj × Scj )

)
=(I × I) ∪ (Dk × I) ∪ (I ×Dk) ∪ (Dj × I) ∪ (I ×Dj)
∪ (Dj ×Dk) ∪ (Dk × Sj) ∪ (C × I) ∪ (I × C),

where we set

I := Sk ∩ Sj , Dk := Sk ∩ Scj , Dj := Sck ∩ Sj and C := (Sk ∪ Sj)c.

By exploiting the symmetry of the integrand (ϕj − ϕj ′) (ϕk − ϕk ′)φ in (x,y) and noting
that Sj ⊂ Ω for ϕj ∈ V h

c , we find

akj = 1
2

(∫
Sk∩Sj

∫
(Sk∩Sj)∩S(x)

(ϕk − ϕk ′)(ϕj − ϕj ′)φ(x,y)dydx

− 2
∫
Sk∩Sj

ϕj

∫
(Sk\Sj)∩Ω∩S(x)

ϕk
′φdydx

− 2
∫
Sj\Sk

ϕj

∫
Sk∩Ω∩S(x)

ϕk
′φdydx

+ 2
∫
Sk∩Sj

ϕjϕk

∫
(Sk∩Sj)c∩Ω∩S(x)

φdydx
)

(4.17)

+
∫
Sk∩Sj

ϕjϕk

∫
ΩI∩S(x)

φdydx−
∫
Sj
ϕj

∫
Sk∩ΩI∩S(x)

ϕk
′φdydx.
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Furthermore, since Sk ∩ Sj ⊂ Ω we can merge the fourth and fifth integrals in (4.17)
leading to ∫

Sk∩Sj
ϕjϕk

∫
(Sk∩Sj)c∩Ω∩S(x)

φdydx +
∫
Sk∩Sj

ϕjϕk

∫
ΩI∩S(x)

φdydx

=
∫
Sk∩Sj

ϕjϕk

∫
(Sk∩Sj)c∩S(x)

φdydx.

Also, by decomposing the last integral in (4.17) into∫
Sj
ϕj

∫
Sk∩ΩI∩S(x)

ϕk
′φdydx

=
∫
Sk∩Sj

ϕj

∫
Sk∩ΩI∩S(x)

ϕk
′φdydx +

∫
Sj\Sk

ϕj

∫
Sk∩ΩI∩S(x)

ϕk
′φdydx,

we can sum the second, third and last integral in (4.17) as follows∫
Sk∩Sj

ϕj

∫
(Sk\Sj)∩Ω∩S(x)

ϕk
′φdydx +

∫
Sj\Sk

ϕj

∫
Sk∩Ω∩S(x)

ϕk
′φdydx

+
∫
Sj
ϕj

∫
Sk∩ΩI∩S(x)

ϕk
′φdydx

=
∫
Sk∩Sj

ϕj

∫
(Sk\Sj)∩S(x)

ϕk
′φdydx +

∫
Sj\Sk

ϕj

∫
Sk∩S(x)

ϕk
′φdydx.

These considerations finally lead to

akj = 1
2

∫
Sk∩Sj

∫
(Sk∩Sj)∩S(x)

(ϕk − ϕk ′)(ϕj − ϕj ′)φ(x,y) dydx

+
∫
Sk∩Sj

ϕjϕk

∫
(Sk∩Sj)c∩S(x)

φ dydx

−
∫
Sk∩Sj

ϕj

∫
(Sk\Sj)∩S(x)

ϕk
′φ dydx

−
∫

(Sj\Sk)
ϕj

∫
Sk∩S(x)

ϕk
′φ dydx.

(4.18)

See Figure 4.3 for an exemplary configuration of basis function supports and the
resulting integration domains appearing in (4.13) and (4.18).

Remark 4.2.6. We use representation (4.18) for the assembly of the nonlocal stiffness
matrix whenever symmetric singular kernels are involved. We note that for symmetric
integrable kernels the representations (4.13) and (4.18) are equivalent.
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xk

xjSk ∩ Sj

Sk\Sj

Sj\Sk

xk

xjSk ∩ Sj

Sk\Sj

Sj\Sk

x

Figure 4.3: Overlapping supports of two basis functions on a triangular mesh and
resulting integration domains appearing in (4.13) and (4.18). In both images we find
the yellow colored support Sk of the basis function ϕk centered at xk and likewise
cyan colored for index j. Their intersection Sk ∩ Sj is colored green. Furthermore,
on the right-hand side the integration domain of the second integral in (4.18) is
exemplarily depicted. More precisely, the outer integral integrates over points x in
the green colored intersection Sk ∩ Sj , whereas the inner integral integrates over
points y in the shady domain (Sk ∩ Sj)c ∩ S(x) (here S(x) = Bδ,∞(x)).

4.3 Assembly and related challenges

In this section we discuss in detail the assembly of the nonlocal stiffness matrix Ah and
reveal challenges germane to this endeavor. The assembly of the forcing term vector fh
is standard and therefore not discussed here.
In terms of the triangulation T h of Ω ∪ ΩI the stiffness matrix entry as given in (4.11)
can also be written as

akj =
JΩ∑
a=1

J∑
b=1

∫
Ea
ϕj

∫
Eb∩S(x)

(ϕkφ− ϕk ′φ′)dydx.

Let us define for an element E ∈ T h and a family of interaction sets {S(x)}x∈Rd the set

S(E) =
{
b ∈ {1, . . . , J} : |EI ∩ Eb| 6= 0

}
, (4.19)

where | · | denotes the d-dimensional volume measure and EI denotes the interaction
domain of the element E , given by

EI = {y ∈ Ec : y ∈ S(x) for some x ∈ E } .

Then we can also write
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4.3. Assembly and related challenges

Figure 4.4: On the left-hand side the interaction domain EI of the yellow triangle
E with respect to Euclidean balls is depicted. On the right-hand side all triangles
belonging to S(E) are colored blueish, i.e., all triangles whose intersections with EI
have nonzero d-dimensional volume.

akj =
JΩ∑
a=1

∑
b∈S(Ea)

∫
Ea
ϕj

∫
Eb∩S(x)

(ϕkφ− ϕk ′φ′)dydx. (4.20)

In Figure 4.4 the sets EI and S(E) are illustrated. We say that two elements
Ea, Eb ∈ T h interact with each other if b ∈ S(Ea) or equivalently a ∈ S(Eb) (due to
(S2)), because they cause a nonzero contribution to the stiffness matrix in this case.
Now, the two representations (4.11) and (4.20) suggest two different ways of implement-
ing the assembly of the nonlocal stiffness matrix:

• Loop over basis functions: We can iterate through the indices 1 ≤ k ≤ K and
1 ≤ j ≤ KΩ and fully compute each entry akj = (−Lϕk, ϕj)L2(Ω). Thus for a
given pair (k, j) we have to determine the sets of element indices Ek ⊂ {1, . . . , J}
and Ej ⊂ {1, . . . , JΩ} which build the supports Sk and Sj of the respective basis
functions ϕk and ϕj , i.e., Sk =

⋃
a∈Ek Ea and similarly for ϕj . Then we can use the

representations (4.13) and (4.18) to boil down the integrals over the supports to
integrals over the elements. For example, let us consider (4.13), then we can write

akj =
∑

a∈Ek∩Ej

∑
b∈S(Ea)

∫
Ea
ϕjϕk

∫
Eb∩S(x)

φ dydx

−
∑
a∈Ej

∑
b∈S(Ea)∩Ek

∫
Ea
ϕj

∫
Eb∩S(x)

ϕk
′φ′ dydx.

We can apply the same procedure to express the integrals in (4.18) in terms of
integrals over the elements.
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• Loop over elements: On the other hand, representation (4.20) advocates to
iterate through the indices of the elements. In this case, for a given pair of elements
(Ea, Eb) with 1 ≤ a ≤ JΩ and b ∈ S(Ea) ⊂ {1, . . . , J}, we need to determine the set
of basis function indices

Ha,b :={
(k, j) ∈ {1, . . . ,K} × {1, . . . ,KΩ} :

∫
Ea
ϕj

∫
Eb∩S(x)

(ϕkφ− ϕ′kφ′)dydx 6= 0
}
.

Indices (k, j) ∈ Ha,b then have a nonzero contribution to the entry akj . The
representations (4.13) and (4.18) of akj can be utilized to determine the set Ha,b.
For example let us again consider the representation (4.13) for integrable kernels
and treat each of the two integrals separately. Then for the first integral in (4.13)
we find

H1
a,b :=

{
(k, j) :

∫
Ea
ϕkϕj

∫
Eb∩S(x)

φ dydx 6= 0
}

=
{

(k, j) : xk ∈ Ea and xj ∈ Ea
}
.

We observe that the set H1
a,b only depends on a and thereby only accounts for local

interactions as the double integral of interest is a weighted L2-product. For the
second integral in (4.13) we find

H2
a,b :=

{
(k, j) :

∫
Ea
ϕj

∫
Eb∩S(x)

ϕ′kφ
′ dydx 6= 0

}
=
{

(k, j) : xk ∈ Eb and xj ∈ Ea
}
.

Here, H2
a,b depends on both elements Ea and Eb and therefore accounts for nonlocal

interactions. All in all, we find Ha,b = H1
a,b ∪H2

a,b.

In any case, for the assembly of the nonlocal stiffness matrix we need to compute double
integrals over pairs of elements. The order in which we treat such pairs is determined
through the approach chosen from the two assembly possibilities just mentioned. There-
fore, the crucial task is to deal with integrals of the form∫

Ea

∫
Eb∩S(x)

ψ(x,y)dydx (4.21)

where ψ = ψk,j,φ : (Ω∪ΩI)× (Ω∪ΩI)→ R shall serve as placeholder for the various in-
tegrands appearing in (4.13) and (4.18). In the following two subsections we discuss the
quadrature of this double integral. More precisely, we subsequently integrate the outer
integral and the inner integral. For this purpose we denote by

{
xaq , waq

}Q
q=1

a quadrature
rule for a physical element Ea. As usual such quadrature rules are deduced through trans-
formation from a quadrature rule defined on an appropriate reference element. We may
employ quadrature rules of different types for the outer and inner integral, respectively,
what we simply indicate by different orders Q = Qout and Q = Qin, respectively.
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4.3. Assembly and related challenges

Figure 4.5: Illustration of the set ∂S(E). Here, E is given by the yellow colored
triangle. The set ∂S(E) consists of all blueish colored triangles, which are intersected
by the boundary of the interaction domain EI (black line).

4.3.1 The outer integral

Let us denote the integrand of the outer integral in (4.21) by

Ib(x) :=
∫
Eb∩S(x)

ψ(x,y)dy, (4.22)

so that the respective double integral can be written as∫
Ea

∫
Eb∩S(x)

ψ(x,y)dydx =
∫
Ea
Ib(x)dx.

For a fixed element Ea we distinguish two different cases for Eb in (4.22). For identifying
those cases let us define the set

∂S(E) :=
{
b ∈ S(E) : EI ∩ Eb 6= Eb

}
,

which is pictured in Figure 4.5. The first case is b ∈ S(Ea)\∂S(Ea) in which Ib(x) 6= 0 for
all x ∈ Ea. This is the simple case, since we can employ the standard element quadrature
rule

{
xaq , waq

}Qout
q=1

for the discretization of the outer integral. Now let us treat the second
case b ∈ ∂S(Ea). Here we find that the following subset

E0
a := {x ∈ Ea : Eb ∩ S(x) = ∅} ⊂ Ea

has nonzero volume in Rd. Consequently Ib(x) = 0 for all x ∈ E0
a . In this case Ib

numerically behaves like a discontinuous function and we have to employ a carefully
designed quadrature rule on Ea. In fact, if we employ a standard element quadrature
rule, then a significant number of quadrature points may be located in E0

a leading to a
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E1
a E1

a

Figure 4.6: Illustration of the subsets E1
a and E0

a . In both graphics Ea is given by
the triangle in the center and Eb by the magenta colored triangle in ∂S(Ea). The
shaded part of Ea indicates the subset E0

a , whereas the yellow part represents E1
a .

In the left picture, the shady ball centered at a point in the shaded area E0
a does

not intersect with the magenta triangle Eb. On the contrary, for balls centered at
points in E1

a this intersection is nonempty as illustrated in the right picture.

loss of accuracy. In Figure 4.6 this situation is depicted; we further define E1
a := Ea\E0

a =

supp(Ib). Let us denote by
{
xaq , waq

}Qspecialout

q=1
a quadrature routine which considers the

partition Ea = E0
a ∪̇E1

a . Then we finally obtain a semi-discretization of (4.21), given by

∫
Ea
Ib(x)dx ≈


∑Qout
q=1 Ib(xaq )waq : b ∈ S(Ea)\∂S(Ea)

∑Qspecialout
q=1 Ib(xaq )waq : b ∈ ∂S(Ea).

(4.23)

Remark 4.3.1. For simplicity we use an adaptive quadrature rule which automati-
cally takes care of the partition Ea = E0

a ∪̇E1
a . In the case of norm induced interaction

sets S(x) := Bδ,•(x) we activate the adaptive quadrature rule for pairs (Ea, Eb) with
‖xbarya − xbaryb ‖• > δ − h. Here, xbarya denotes the barycenter of an element Ea and h > 0
the diameter of the largest element. With this heuristic criterion we might apply this
special treatment to pairs (Ea, Eb) with b /∈ ∂S(Ea) (see the orange triangles in Figure
4.7). However, the adaptive quadrature rule detects such cases rather automatically and
avoids a deep refinement there. Alternatively, we may also think of quadrature rules for
the outer triangle Ea for which the quadrature points lie close or even on the boundary
∂Ea of the element and thereby avoiding that we miss out interacting triangles Eb for
the inner integral with b ∈ ∂S(Ea). However, in this case a rigorous analysis for the
minimum precision has to be conducted and is left to future work.
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Figure 4.7: Illustration of the heuristic criterion discussed in Remark 4.3.1. The
fixed element Ea of the outer integral is given by the yellow colored triangle with
associated set ∂S(Ea) that consists of all blueish colored triangles. The red line in-
dicates the boundary of the Euclidean ball of radius δ−h centered at the barycenter
of Ea given by the red star. Although only necessary for the blueish triangles, we
apply an adaptive quadrature on Ea whenever ‖xbarya − xbaryb ‖2 > δ − h, thereby
additionally including the orange colored triangles.

4.3.2 The inner integral

Let us continue with (4.23) to obtain a full discretization of the double integral (4.21).
After we have discretized the outer integral, the next task is to apply an appropriate
quadrature rule to the inner integral of (4.23), namely

Ib(xaq ) =
∫
Eb∩S(xaq )

ψ(xaq ,y)dy. (4.24)

For each quadrature point xaq ∈ Ea of the outer integral we have to integrate over the
intersection Eb ∩ S(xaq ). In analogy to the outer integral, there are two cases to con-
sider. First, the intersection region may fully cover the element, i.e., Eb ∩ S(xaq ) = Eb.
In this situation we can employ a standard element quadrature rule on Eb. Second, the
intersection region may only partially cover the element, i.e., Eb ∩ S(xaq ) $ Eb. If we
employ a standard element quadrature rule designed for the whole element Eb we would
cause a significant loss of accuracy due to the discontinuous indicator function χS(xaq )(·).
An accurate quadrature rule for the inner integral results from re-triangulating the in-
tersection region into smaller subelements. Then we can derive a composite quadrature
rule for Eb ∩ S(xaq ) by applying a quadrature rule to each of these subelements. For
the re-triangulation it is desirable to apply the same kind of elements as in T h, since
we can then use the same type of element quadrature rules. However, the intersection
region Eb ∩ S(xaq ) does not have to be polyhedral. Therefore, in general we have to
consider a partition of the intersection region into a polyhedral part and a nonpolyhe-
dral part. The polyhedral part can then be covered exactly by appropriate polyhedral
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Figure 4.8: Subdivision of a partially covered triangle into JS = 3 subelements.
The fixed triangle Ea of the outer integral is depicted in yellow. The interaction
set, here an Euclidean ball, centered at a point x ∈ Ea (black dot) only partially
covers the magenta colored triangle Eb. The intersection region is subdivided into
an orange polygonal part consisting of JpolyS = 2 triangles and a blue nonpolygonal
part consisting of (JS − JpolyS ) = 1 circular segment.

elements (e.g., triangles); preferably those used in T h. The possibly curved or empty
nonpolyhedral part requires different types of subelements. More precisely, let us as-
sume that we have a triangulation of Eb ∩ S(xaq ) into JS = JS,a,q,b ≥ 0 subelements,
where the first JpolyS = JpolyS,a,q,b ≤ JS cover the delimited polyhedral part and the remain-
ing (JS − JpolyS ) ≥ 0 cover the nonpolyhedral part. This leads to the following partition
of the intersection region

Eb ∩ S(xaq ) =
JS⋃
c=1
Ec =

J
poly
S⋃
c=1
Ec

 ∪̇
 JS⋃
c=JpolyS +1

Ẽc

 . (4.25)

This situation is depicted in Figure 4.8. Now let
{
ycp, wcp

}Qin
p=1

and
{
ycp, wcp

}Qnonpolyin

p=1
denote

a quadrature rule for subelements covering the polyhedral part and nonpolyhedral part,
respectively. With this notation at hand we eventually obtain a discretized version of
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Figure 4.9: Illustration of the partition S(E) = S̊(E)∪̇S̃(E)∪̇∂S(E) given in (4.27).
The element E is indicated by the yellow triangle in the center of the image. The
orange triangles belong to S̊(E), the green ones to S̃(E) and the remaining blue ones
belong to ∂S(E).

(4.24), given by

Ib(xaq ) =
∫
Eb∩S(xaq )

ψ(xaq ,y)dy

=
JpolyS∑
c=1

∫
Ec
ψ(xaq ,y)dy +

JS∑
c=JpolyS +1

∫
Ẽc
ψ(xaq ,y)dy

≈
JpolyS∑
c=1

Qin∑
p=1

ψ(xaq ,ycp)waqwcp +
JS∑

c=JpolyS +1

Qnonpolyin∑
p=1

ψ(xaq ,ycp)waqwcp.

(4.26)

4.3.3 Fully discretized stiffness matrix entry

In order to ease the identification of the considerable cases for (Ea, Eb) discussed in the
latter two subsections we introduce the set

S̊(E) := {b ∈ S(E) : Eb ∩ S(x) = Eb for all x ∈ E} ⊂ S(E).

If b ∈ S̊(Ea), then neither a special treatment of the outer integral (note that E1
a = Ea) nor

a subdivision of the intersection region (note that Eb∩S(xaq ) = Eb) needs to be considered.
By further defining S̃(E) :=

(
S(E)\

(
S̊(E) ∪ ∂S(E)

))
we obtain the partition

S(E) = S̊(E) ∪̇ S̃(E) ∪̇ ∂S(E), (4.27)

which is pictured in Figure 4.9. This partition corresponds to the following three different
cases for (Ea, Eb) each of which gets a different numerical treatment. Particularly, let
1 ≤ a ≤ JΩ be a fixed element index, then
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(a) if b ∈ S̊(Ea) we can employ standard element quadrature rules on both, Ea and Eb,

(b) if b ∈ S̃(E) then there are x ∈ Ea for which Eb ∩ S(x) $ Eb such that a subdivision
of the intersection region may become necessary,

(c) and if b ∈ ∂S(Ea) we have to subdivide the intersection region Eb ∩ S(x) and we
have to take care of the partition Ea = E0

a ∪̇E1
a .

In Figure 4.10 these cases are illustrated. Finally, invoking (4.20), (4.23) and (4.26) we
arrive at the fully discretized matrix entry

akj =
JΩ∑
a=1

∑
b∈S̊(Ea)

∫
Ea
ϕj

∫
Eb

(ϕkφ− ϕk ′φ′)dydx

+
JΩ∑
a=1

∑
b∈S̃(E)

∫
Ea
ϕj

∫
Eb∩S(x)

(ϕkφ− ϕk ′φ′)dydx

+
JΩ∑
a=1

∑
b∈∂S(Ea)

∫
Ea
ϕj

∫
Eb∩S(x)

(ϕkφ− ϕk ′φ′)dydx

≈
JΩ∑
a=1

∑
b∈S̊(Ea)

Qout∑
q=1

Qin∑
p=1

ψkj(xaq ,ybp)waqwbp

+
JΩ∑
a=1

∑
b∈S̃(E)

Qout∑
q=1

J
poly
S∑
c=1

Qin∑
p=1

ψkj(xaq ,ycp)waqwcp

+
JS∑

c=1+JpolyS

Qnonpolyin∑
p=1

ψkj(xaq ,ycp)waqwcp




+
JΩ∑
a=1

∑
b∈∂S(Ea)

Q
special
out∑
q=1

J
poly
S∑
c=1

Qin∑
p=1

ψkj(xaq ,ycp)waqwcp

+
JS∑

c=1+JpolyS

Qnonpolyin∑
p=1

ψkj(xaq ,ycp)waqwcp


 .

(4.28)

Remark 4.3.2 (Quadrature rules). We implement two (possibly different) quadra-
ture rules for the reference element, say {x̂, ŵq}Qoutq=1 and {ŷ, ŵp}Qinp=1. The first rule
{x̂, ŵq}Qoutq=1 is used for the integration of the outer integral, whereas {ŷ, ŵp}Qinp=1 is used
for the elements of the polyhedral subdivision which appears along the integration of the
inner integral. For the remaining nonpolyhedral segments of the inner integral we may
need to implement more specialized quadrature rules (e.g., quadrature rules for circular
segments; see [46, 45]) or consider polyhedral approximations thereof.
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(a) (b) (c)

Figure 4.10: The three cases for Eb in (4.28) for a fixed element Ea. In all of the
three images, Ea of the outer integral is represented by the yellow triangle in the
center of each image containing a black dot. This dot indicates a point x ∈ Ea
and is the center of the shady interaction set S(x), here an Euclidean ball. Image
(a) corresponds to the simplest case Eb ∈ S̊(Ea), where we integrate over whole
triangles (yellow triangles). In (b), the case Eb ∈ S̃(E) is depicted. Here, we only
integrate over the yellow colored part of the magenta triangle Eb. Finally, in (c) we
illustrate the case Eb ∈ ∂S(Ea). More precisely, we consider a point x ∈ E0

a , so that
the intersection S(x) ∩ Eb is empty.

In our 2d implementations with P1 elements, we use a symmetric Gaussian quadrature
rule for triangles [41]. The two rules {x̂, ŵq}Qoutq=1 and {ŷ, ŵp}Qinp=1 then only differ in the
quadrature order. As pointed out in Subsection 4.3.1 it is preferable to employ higher
order quadrature rules for the outer integral. For the cases 1 ≤ a ≤ JΩ and b ∈ ∂S(Ea)
we even use an adaptive quadrature rule for the outer integral over Ea; see also Remark
4.3.1. Specifically, we employ Ronald Cools and Ann Haegemans 5-7 embedded rule [26]
to save function evaluations.
For our finite element implementations with Q1 elements, we “tensorize” 1d Gaussian
quadrature rules to obtain quadrature rules on the d-dimensional elements. If a singular
kernel is involved as in the study cases of Chapter 5, we use adaptive quadrature rules.
In this case we “tensorize” the embedded 1d Gauss-Kronrod rule to obtain embedded
adaptive quadrature rules on d-dimensional Q1 elements; see also the Appendices A.2.1
and A.2.2.
Throughout the experiments conducted in this thesis the quadrature rules and especially
the order of the quadrature rules have been chosen rather heuristically in such a way that
expected convergence rate are achieved.

4.3.4 Challenges

After the detailed discussion on the assembly of the nonlocal stiffness matrix, we now
want to illuminate and summarize some obvious and some less obvious difficulties related
to this task. We figure out why finite element implementations of nonlocal equations
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contrast strongly with standard finite element discretizations of analogue local problems.
For this purpose let us first establish a comparison context and briefly recall a standard
finite element implementation of the local homogeneous Poisson equation{

−∆u(x) = f(x) x ∈ Ω
u(x) = 0 x ∈ ∂Ω.

(4.29)

The associated bilinear form is given by

Aloc(u, v) :=
∫

Ω
∇uT∇vdx.

We invoke the triangulation T hΩ and define the entries of the local stiffness matrix as

alockj = Aloc(ϕk, ϕj) =
JΩ∑
a=1

∫
Ea∩(Sk∩Sj)

∇ϕkT∇ϕjdx. (4.30)

We now list the most dominant difficulties of finite element methods for nonlocal equa-
tions.

Densely populated stiffness matrices

For a pair of basis functions (ϕk, ϕj) with nonoverlapping supports, i.e. Sk ∩ Sj = ∅,
we find that the last double integral in (4.13) (or equivalently in (4.18)) may contribute
nonzero values to the stiffness matrix and for both types of kernels the entry reduces to

akj = −
∫
Sj
ϕj

∫
Sk∩S(x)

ϕk
′φ′dydx. (4.31)

In Figure 4.11 this situation is illustrated in 2d for a triangular mesh. This stands in stark
contrast to the stiffness matrix in the analogue local setting resulting from (4.30) where
alockj = 0 if Sk ∩ Sj = ∅. The discretization Ah of the nonlocal operator −L is therefore
densely populated, which is the discrete analogue to nonlocality. The number of nonzero
entries depends on the relations between the size of the interaction sets {S(x)}x∈Rd , the
size of the domain Ω and the grid size h. Specifically, if Ω = Ω ∩ S(x) for all x ∈ Ω,
then Ah

ΩΩ is a dense matrix. See Figure 4.12 for an illustration thereof. Additional
memory storage and appropriate solvers for the resulting linear system (4.9) need to be
considered. In Chapter 5 we show how to circumvent these problems in the special case
of regular grids and translation invariant kernels.

Singular kernels

Another challenge occurs if singular kernels are involved (see Figure 4.13 for an example).
For instance, various fractional derivative models and the peridynamics model for solid
mechanics are important applications where we have to cope with this type of kernels.
In this case the necessity of sophisticated numerical quadrature rules arises. The im-
plementation itself becomes more involved and results in additional computational costs
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Sk

xk
Sj

x xj

Figure 4.11: Nonzero contributions to the stiffness matrix despite nonoverlapping
supports. We see the yellow colored support Sk of the basis function ϕk centered
at xk and the cyan colored support Sj of the basis function ϕj centered at xj .
There are points x ∈ Sj (see, e.g., the red dot depicted in the image) for which the
integration domain Sk ∩ S(x) (here S(x) = Bδ,∞(x)) of the inner integral in (4.31)
is nonempty and therefore akj 6= 0.

Ω Ω Ω Ω

δ δδ δ

Figure 4.12: We obtain dense finite element stiffness matrices as the size of the
interaction sets increases with respect to the (fixed) size of the domain Ω. We note
that, in general and particularly in higher dimensions, the nonlocal stiffness matrix
does not necessarily admit the structure of a banded matrix. In fact, the density
pattern depends on the numbering of the finite element nodes.
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Figure 4.13: Challenging numerical integration due to the presence of singular
kernels. Here, the fractional kernel (3.18) is plotted in 1d for a fraction s = 0.4
and x = 0. A carefully designed quadrature rule is needed to accurately resolve the
singularity at the origin.

which can tremendously affect the assembly time. The simplest approach to handle sin-
gularities is to use adaptive quadrature rules, which avoid evaluations of the kernel at
(x,x); see, e.g., [33] for a 1d implementation. For maintaining sufficient accuracy an ap-
propriate refinement strategy is essential. However, such a refinement typically requires
many function evaluations close to the singularity and therefore increases computation
times. A second approach is to remove the singularities by hand. Such an approach is
presented in [1] for the two-dimensional fractional Poisson equation; see (6.21). Therein,
the authors apply the Duffy transformation [40] to the integrals over each finite element,
such that the singularity is canceled out by the determinant term resulting from the
transformation formula. This manual preprocessing may become very tedious and, in
contrast to a naive adaptive quadrature approach, has to be performed for each kernel
individually. However, the resulting nonsingular integrals are numerically tractable for
standard quadrature rules such as Gaussian rules.

Infinite interactions

In case of unbounded interaction sets, i.e., S(x) = Rd, the subdivision task discussed for
the inner integral in Subsection 4.3.2 is obsolete, but we have to cope with unbounded
integration domains, which leads to fully populated stiffness matrices. We either have
to appropriately truncate these domains in the occurring integrals while preventing a
significant loss of accuracy, or we treat special cases in which such integrals can be
computed by hand (see related discussions in Section 6.2), or transformed into a (local)
boundary integral (see, e.g., [5, Section 2]). This situation arises for the fractional
diffusion problem (6.21) and further details are provided in Section 6.2.
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4.3. Assembly and related challenges

Figure 4.14: Illustration of Sapprox(Ea) defined in (4.32). The fixed element Ea
of the outer assembly loop is given by the yellow colored triangle with associated
set S(Ea) that consists of all blueish colored triangles. The red line indicates the
boundary of the Euclidean ball of radius δ + h centered at the barycenter of Ea
given by the red star. The orange colored triangles indicate all additional triangles
in Sapprox(Ea)\S(Ea).

Double loop assembly

Considering representation (4.20) it is not sufficient to touch each element only once as it
is the case for local problems such as (4.30). Clearly, this unfolds once again the nonlocal
nature of the problem causing that not only basis functions with overlapping support
contribute nonzero values to the stiffness matrix. More precisely, for each triangle Ea ∈
T hΩ we have to take into account all triangles Eb with b ∈ S(Ea), where S(Ea) is defined
in (4.19). However, for interaction sets S(x) which are “smaller” than the domain Ω, we
have that S(Ea) may be significantly smaller than T h. We can exploit this fact in a mesh-
preprocessing step by computing for every Ea ∈ T hΩ an approximation Sapprox(Ea) ⊃
S(Ea) and store the corresponding indices into a list. For example, for norm induced
interaction sets S(x) := Bδ,•(x) we could compute Sapprox(Ea) as follows

Sapprox(Ea) :=
{
b ∈ {1, . . . , J} : ‖xbarya − xbaryb ‖• < δ + h

}
, (4.32)

where xbarya denotes the barycenter of Ea, and similarly for b, and h denotes the diameter
of the largest element. Clearly, for fine meshes such a list exceeds the memory capacities
and rather has to be computed on the fly. In Figure 4.14 this criterion is illustrated.

Quadrature of the outer integral

As alluded to in Subsection 4.3.1 for pairs of elements (Ea, Eb) with b ∈ ∂S(Ea) we
need carefully designed quadrature rules for the outer integral over Ea. This also adds
to the costs created along the assembly process. In this regard we want to illuminate
a particular situation where the negligence of these cases leads to highly inaccurate
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E0
a

E1
a

Figure 4.15: Illustration of the critical case in which the interaction horizon is
smaller than the grid size. For δ � h we find E0

a ≈ Ea so that the integrand Ib(x)
of the outer integral (4.22) is zero in most parts of Ea and quadrature rules have to
be carefully chosen.

results. Let us consider the case of norm induced interaction sets S(x) := Bδ,•(x) with
an interaction horizon δ smaller than the grid size h (see Figure 4.15 for an illustration).
In this case the matrix entry (4.28) reduces to

akj =
JΩ∑
a=1

∑
b∈∂Bδ,•(Ea)

∫
Ea
ϕj

∫
Eb∩Bδ,•(x)

(ϕkφ− ϕk ′φ′)dydx.

This situation appears, e.g., during the numerical investigation of the local limit δ → 0;
see Chapter 7. Thus we exclusively have to deal with partially covered triangles and
standard quadrature rules for the outer integral fail to accurately approximate the stiff-
ness matrix entries. An exception for the latter statement arises in the trivial case where
each ball Bδ,•(xaq ) centered at the quadrature point xaq of the outer integral is fully con-
tained in Ea. In this case, each triangle only interacts with itself, meaning that we have
a local model.

Quadrature of the inner integral

In Subsection 4.3.2 we explain how we deal with the inner integral

Ib(xaq ) =
∫
Eb∩S(xaq )

ψ(xaq ,y)dy.

The fundamental difficulty is to numerically integrate over the intersection Eb ∩ S(xaq )
between a finite element Eb and the interaction set S(xaq ) for xaq being a quadrature
point in Ea. In (4.25) we consider a re-triangulation of this intersection region into
subelements, where we distinguish between a polyhedral part and the (possibly empty)
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Figure 4.16: Simplified subdivision of a partially covered triangle due to the use
of polygonal interaction sets. As in Figure 4.8, the fixed triangle Ea of the outer
integral is depicted in yellow. The ‖ · ‖∞-ball centered at a point x ∈ Ea (black dot)
only partially covers the magenta colored triangle Eb. However, the intersection
region can accurately be subdivided into an orange polygonal part consisting of
JpolyS = 2 triangles.

nonpolyhedral part. Thus, we need to implement a routine, which for a given pair
(E , S(x)) first identifies the intersection region E ∩ S(x) (note that E ∩ S(x) = ∅ and
E ∩ S(x) = E are possible) and then outputs a subdivision into appropriate subelements
taking into account the delimitation of a polyhedral part as in (4.25). The necessity for
such a routine does tremendously affect the efficiency of finite element implementations
for nonlocal models with truncated kernels and is a key factor contributing to the high
computational costs compared to those of analogue local finite element discretizations.
For the sake of illustration let us now consider the most standard setting which is ubiq-
uitous in the related literature; see, e.g., [36, 39, 39, 33]. We consider nonlocal models in
R2 with kernels which are truncated by the standard interaction set S(x) = Bδ,2(x) and
we employ P1 elements. The left image in Figure 4.17 shows the eight possible intersec-
tion scenarios occurring in this setting. We note that each of these intersection regions
can be subdivided into a polygonal region and at most three circular segments. Thus,
besides a quadrature rule for triangles, we need to implement a routine for integrating
over general circular segments. This approach is realized in [95].
In Chapter 3 we figure out, that the well-posedness theory for problem (2.1) is not

limited to just Euclidean balls. Instead, we have extended the established results in the
referenced literature to a large variety of interaction sets. In regard to the discussed in-
tersection problem within a finite element discretization it is therefore worth considering
polyhedral interaction sets, such as balls induced by the supremum or Manhattan norm.
In this case the intersection region Eb ∩ S(x) is itself polyhedral and can accurately be
covered by polyhedral subelements so that there is no need for integrating over compli-
cated domains, such as circular segments (see Figure 4.16 and Figure 4.17 (b)). Also
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(a) (b)

Figure 4.17: (a) The eight possible intersection scenarios for a disc and a triangle,
as well as the nonintersecting case. (b) A selection of possible intersections between
a square and a triangle with a subdivision of the polygonal intersection region (at
most a hexagon).

note that the routine which accurately integrates over intersection regions resulting from
polyhedral interaction sets is a subroutine of the routine employed for Euclidean balls.

In the three-dimensional case, the computation of integrals over regions resulting
from intersecting finite elements, such as tetrahedra, and spherical interaction sets, is a
highly ambitious task and out of the scope of this thesis. In contrast to that, imagine a
three-dimensional regular grid composed of Q1 (diced) elements and rectangular inter-
action sets such as ‖ · ‖∞-balls. The intersection between an element and a ball, would
then be a simple cuboid. In combination with structure exploiting methods (see, e.g.,
Chapter 5) 3d implementations for truncated kernels thus approach technical feasibility.

4.4 Geometric approximations of interaction sets

We have in depth discussed the discretization of the nonlocal bilinear form which re-
quires meticulously implemented numerical quadrature. In the view of Strang’s first
lemma, recalled below as Theorem 6.28, the overall finite element error consists of two
parts. On the one hand we have the so-called approximation error (or interpolation
error), which is the discretization error arising due to approximating the finite element
solution u ∈ V (Ω ∪ ΩI) by its projection uh ∈ V h (see also (4.2)). On the other hand
we have the so-called consistency error induced by approximating the analytic bilinear
form (3.5) by means of numerical quadrature rules leading to a discretized bilinear form.
Once the finite element space is chosen, such that the approximation error is fixed, one
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aims to employ quadrature rules in such a way that the consistency error is smaller
than the approximation error. With other words, the convergence rates of finite element
solutions uh to the analytic solution u as h → 0 induced by the approximation quality
of the ansatz spaces shall not be deteriorated by a poor numerical integration.
In Subsection 4.3.2 we derive a discretization of the inner integral of the nonlocal bilinear
form. In the case of partially covered elements, we have to perform an intermediate step
to partition the intersection region into subelements which are accessible to appropriate
numerical quadrature rules. This step is very costly and may contribute a geometric
component to the consistency error. In fact, it would be desirable to avoid this step at
all by deliberately allowing for geometric errors which in the optimal case do not deteri-
orate the approximation error. For example, in the standard case of Euclidean balls in
2d we can think of neglecting the circular segments so that we were solely left with the
polygonal part of the intersection region (see Figure 4.18). Even more brutal, in order
to avoid the expensive subdivision task at all we could think of integrating not over the
part Eb ∩ S(xaq ) of the element which is covered but over the whole element Eb. Such
approaches lead to geometric approximations Sh(x) of the interaction sets S(x) and in
the remainder we refer to such approximative approaches as approximate interaction
sets. In Section 6.3 we propose different examples, invoke a result from Section 6.1 to
analyze their effect on the finite element error and present some numerical tests.
Finally we want to remark that, besides the use of polyhedral interaction sets discussed
at the end of the previous section, approximate interaction sets represent a second ap-
proach to ease finite element implementations for nonlocal models. However, the idea of
approximate interaction sets can also be applied to polyhedral norm induced interaction
sets; see Subsection 6.3.1.
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Figure 4.18: The orange colored domain represents one possible geometric approx-
imation to the Euclidean ball centered at the black dot of the yellow triangle. This
approximation results from neglecting the blue circular segments. The additional
red lines indicate a subdivision of the partially covered elements of the mesh.

4.5 Concluding remarks and future work

We see great importance in the study of appropriate quadrature rules for the assembly
of the nonlocal stiffness matrix involving truncated kernels. In order to reduce compu-
tational costs it is crucial to derive quantitative criteria which enable us to choose the
lowest quadrature order possible such that the quadrature error does not deteriorate
the approximation quality of the finite-dimensional subspaces V h and thereby does not
deteriorate convergence rates in h. To the best of our knowledge a thorough investiga-
tion of the latter for general truncated kernels and dimensions d ≥ 2 cannot be found
in literature. For the fractional kernel with infinite interactions related studies can be
found, e.g., in [5, Appendix B].
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Chapter 5

Exploiting multi-level Toeplitz
structures on regular grids

As alluded to in Section 4.3, numerical implementations for nonlocal equations are chal-
lenging, especially in higher dimensions. In this chapter we consider a particular setting
in which we can ease the assembly as well as the solving process in a structure exploiting
fashion. As a consequence we are able to solve three-dimensional problems.

We study a finite element approximation of problem (2.1) with homogeneous volume
constraints on an arbitrary d-dimensional hyperrectangle (parallel to the axis) for trans-
lation and reflection invariant kernels. More precisely, we analyze from a computational
point of view a continuous Galerkin discretization with multilinear Q1 elements for the
following setting:

(A1) We set Ω :=
∏d−1
i=0 (ai, bi), where (ai, bi) are open intervals on R.

(A2) We assume that the kernel γ is translation and reflection invariant, such that

γ(b + Rix,b + Riy) = γ(x,y)

for all b ∈ Rd and all 0 ≤ i ≤ d, where Ri(x) := (x0, . . . ,−xi, . . . , xd−1) and
Rd := Id.

The assumptions made in (A2) imply that the kernel is symmetric. Therefore, we are
considering nonlocal diffusion in this chapter. In fact, due to the translation invariance
of the kernel, we find for x,y ∈ R, that γ(x,y) = γ(0,y−x) and γ(y,x) = γ(0,x−y) =
γ(0,−(y−x)). Due to the reflection invariance we find that γ(x,y) = γ(−x,−y), which
finally implies γ(x,y) = γ(0,y− x) = γ(0,−(y− x)) = γ(y,x).
As a consequence, these structural assumptions on the underlying problem are reflected
in the stiffness matrix. We obtain a symmetric d-level Toeplitz matrix, which has two
crucial advantages. On the one hand, we only need to assemble (and store) the first row
(or column) of the stiffness matrix. On the other hand, we can benefit from an efficient
implementation of the matrix-vector product for solving the linear system. This result
is presented in Theorem 5.1.2 and is crucial for this chapter, since it finally enables us
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to solve the discretized system in an affordable way. For illustrative purposes we choose
the fractional kernel (3.18).

This chapter is organized as follows. In Section 5.1 we give details about the precise
finite element setting and proof our main result, that the stiffness matrix is multilevel
Toeplitz. In Section 5.2 we explain the implementation of the solving procedure for the
resulting structured system. Finally, in Section 5.3 we round off these considerations by
presenting numerical results with application to space-fractional diffusion.

5.1 Finite element setting

In this section we study a continuous Galerkin discretization of the homogeneous nonlocal
Dirichlet problem (2.1) under the assumptions (A1) and (A2) given above. Assumption
(A1) allows for a simple triangulation of Ω, which we use to define a finite-dimensional
energy space V h

c . Together with (A2) we can show that this discretization yields the
multilevel Toeplitz structure of the stiffness matrix, where the order of the matrix is
determined by the number of grid points in each respective space dimension.

5.1.1 Definition of the finite-dimensional energy space

We rigorously construct Q1 elements for our setting and point out some properties which
are necessary to prove our main result in the next subsection.
For this purpose we decompose the domain

Ω =
d−1∏
i=0

(ai, bi)

into d-dimensional hypercubes with sides of length h > 0 in each respective dimension.
Note that we can omit a discretization of ΩI since we assume homogeneous Dirichlet
volume constraints; see Remark 4.2.2. Let

N = (Ni)0≤i<d :=
(
bi − ai
h

)
0≤i<d

and
L = (Li)0≤i<d := (Ni − 1)0≤i<d,

then for the interior of Ω this procedure results in

Ld :=
d−1∏
i=0

Li

degrees of freedom. Due to the simple structure of the domain we can choose a canonical
numeration for the resulting grid

d−1∏
i=0

(ai + h {0, . . . , Li − 1})
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of interior points. More precisely, we employ the map

En : Nd → N, En(z) :=
d−1∑
i=0

zipi(n), (5.1)

where
pi(n) :=

∏
j>i

nj ,

for establishing an order on a structured grid
d−1∏
i=0
{0, . . . ni − 1} , where n = (n0, . . . , nd−1) ∈ Nd.

Its inverse is given by

E−n : N→ Nd, E−n(k) =
(⌊

k
pi(n)

⌋
−
⌊

k
pi−1(n)

⌋
ni
)

0≤i<d
,

where b·c denotes the floor function given by

bmc := max {z ∈ Z : z ≤ m} .

Let
e := (1, . . . , 1) ∈ Rd and a := (a0, . . . , ad−1),

then we define the ordered array of interior grid points

(xk)0≤k<Ld ∈ RLd×d, where xk := a + h(E−L(k) + e). (5.2)

In the view of (4.3) we have KΩ = Ld. We further define physical elements

Ej := bj + h�, for 0 ≤ j < Nd =: JΩ

where
bj =

(
bik

)
0≤i<d

:= a + hE−N(j) and � := [0, 1]d,

so that we obtain a triangulation T hΩ = {Ej}JΩ−1
j=0 of Ω with Ω =

⋃JΩ−1
j=0 Ej . Next we

aim to define appropriate element basis functions on the reference element � = [0, 1]d.
Therefore we denote by

(vk)0≤k<2d ∈ R2d×d

the vertices of the unit cube � ordered according to

vk := E−2e(k).

Then for each vertex vk, 0 ≤ k < 2d, we define an element basis function ψ̂k : �→ [0, 1]
by

ψ̂k(x) =

 d−1∏
i=0,vi

k
=0

(1− xi)


 d−1∏
i=0,vi

k
=1
xi

 ,
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0 1
b0

b1

1

Tk
ϕk

a0

xk

−1 Ŝ
a1

Figure 5.1: Transformation of the reference basis function, where d = 2.

where vik denotes the i-th entry of the vector vk =
(
v0
k, . . . , v

d−1
k

)
. For dimensions

d ∈ {1, 2, 3} respectively, these are the usual linear, bilinear and trilinear element basis
functions (see, e.g., [49, Chapter 1]). They are defined in such a way that 0 ≤ ψ̂k ≤ 1
and ψ̂k(vj) = δkj . Moreover, we define the reference basis function ϕ̂ : Rd → [0, 1] by

ϕ̂(x) :=
{
ψ̂i(vi + x) : x ∈ (�− vi)
0 : else.

(5.3)

We note that
Ŝ := [−1, 1]d =

⋃̇2d

i=0
(�− vi) (disjoint union),

such that ϕ̂ is well defined and supp(ϕ̂) = Ŝ. Now let the physical support be defined as

Sk :=
⋃{
Ej : xk ∈ Ej , 0 ≤ j < Nd

}
,

which is a patch of the elements touching the node xk. We associate to each element Ek
the transformation

Tk : Ŝ → Sk, Tk(v) := xk + hv.

We note that det dTk(x) = hd. Then for each node xk we define a basis function
ϕk : Ω ∪ ΩI → [0, 1] by

ϕk(x) :=
{
ϕ̂(T−1

k (x)) : x ∈ Sk
0 : else

=
{
ψ̂i(vi + T−1

k (x)) : T−1
k (x) ∈ (�− vi)

0 : else,

which satisfies 0 ≤ ϕk ≤ 1 and ϕk(xj) = δkj . Figure 5.1 illustrates the latter considera-
tions for d = 2. Finally, we can define a constrained finite element space by

V h
c := span

{
ϕk : 0 ≤ k < Ld

}
, (5.4)
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such that each linear combination consisting of a set of these basis functions fulfills the
homogeneous Dirichlet volume constraints. Notice that we parametrize these spaces
by the grid size h indicating the dimension Ld, which is by definition a function of h.
Finally, we close this subsection with the following observations, which we exploit in the
remainder.

Remark 5.1.1. Let x ∈ Rd, then:

i) ϕ̂(x) = ϕ̂(|x|), where |x| := (|xi|)i.

ii) Let Ri : Rd → Rd, for 0 ≤ i < d, denote the reflection

Ri(x) = (x0, . . . ,−xi, . . . , xd−1),

then

ϕ̂(x) = ϕ̂(|x|)⇔ ϕ̂(x) = ϕ̂(Ri(x)) for all 0 ≤ i < d. (5.5)

iii) ϕ̂(x) = ϕ̂((xσ(i))i) for all permutations σ : {0, . . . , d− 1} → {0, . . . , d− 1}.

Proof. We first show i). Since ϕ̂(x) = 0 = ϕ̂(|x|) for x ∈ int(Ŝ)c, let x ∈ int(Ŝ). Thus,
there exists an index 0 ≤ k < d such that x ∈ int(�)− vk, which implies that xi < 0 if
and only if vik = 1. Hence, we can conclude that

ϕ̂(x) = ψ̂k(x + vk) =

 d−1∏
i=0,vi

k
=0

(1− xi)


 d−1∏
j=0,vi

k
=1

(1 + xi)


=

 d−1∏
i=0,vi

k
=0

(1− |xi|)


 d−1∏
j=0,vi

k
=1

(1− |xi|)


=

d−1∏
i=0

(1− |xi|) = ψ̂0(|x|+ v0) = ϕ̂(|x|).

Then for ii), on the one hand, we have that |x| = |Ri(x)| and therefore ϕ̂(x) = ϕ̂(Ri(x))
for all 0 ≤ i < d. On the other hand, we note that the operation | · | is a composition of
reflections Ri, more precisely

|x| =

∏
xi<0

Ri

 (x).

Thus, we obtain the equivalence stated in ii). Statement iii) follows from the represen-
tation

ϕ̂(x) = ϕ̂(|x|) =
d−1∏
i=0

(1− |xi|)

due to the commutativity of the product.
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5.1.2 Multilevel Toeplitz structure of the stiffness matrix

Now we aim to show that the stiffness matrix Ah, as defined in (4.8), owns the structure
of a d-level Toeplitz matrix. This is decisive for this work, since it finally enables us to
solve the discretized system (4.9) in an affordable way. Since we assume homogeneous
Dirichlet data, i.e., g = 0, it suffices to assemble the part Ah

ΩΩ; see Remark 4.2.2. For
simplicity, we will refer to Ah = Ah

ΩΩ as nonlocal stiffness matrix in the remainder.
From now on the assumption (A2) on the kernel function becomes crucial. At this

point we note that the indicator function

(x,y) 7→ χBδ,•(x)(y)

is translation and reflection invariant for any discrete norm ‖·‖•. Note that the symmetry
requirement (S2) on general interaction sets is weaker than being reflection invariant as
required in (A2), which is why we specify to norm induced balls here. Hence, as in (K2),
we can regard the kernel as a composition

γ(x,y) = φ(x,y)χBδ,•(x)(y), x,y ∈ Rd,

for some translation and reflection invariant function φ. In order to analyze the multi-
level structure of Ah ∈ RLd×Ld it is convenient to introduce an appropriate multi-index
notation. To this end, we choose EL from (5.1) as index bijection and we identify

ai j = aEL(i),EL(j).

We call the matrix Ah d-level Toeplitz if

ai j = a(i− j).

If even
ai j = a(| i− j |),

where the absolute value is understood componentwise, i.e.,

| i | := (|ik|)0≤k<d,

then each level is symmetric and we can reconstruct the whole matrix from the first
row (or column). For a more general and detailed consideration of multilevel Toeplitz
matrices see, e.g., [88]. However, with this notation at hand we can now formulate

Theorem 5.1.2. Let the domain Ω and the kernel γ fulfill assumptions (A1) and (A2),
respectively, and let the finite element space V h

c be defined as in (5.4) for a grid size
h > 0. Then the stiffness matrix Ah is d-level Toeplitz, where each level is symmetric.

Proof. The key point in the proof is the relation

akj = a
(∣∣∣h−1(xk − xj)

∣∣∣) ,
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which we show in two steps. First we show that

akj = a
(
h−1(xk − xj)

)
and then we proof a(z) = a(|z|). Therefore let us recall that the entry akj of the stiffness
matrix Ah in the homogeneous case can be written as (see (3.10))

akj = 1
2

∫
Ω∪ΩI

∫
Ω∪ΩI

(ϕk(y)− ϕk(x))(ϕj(y)− ϕj(x))γ(x,y)dydx.

In (4.16) we have examined the support of the integrand, so that

akj = 1
2

∫
(Sck×Sck)

c∩(Scj×Scj )
c
(ϕk(y)− ϕk(x))(ϕj(y)− ϕj(x))γ(x,y)dydx.

Aiming to show akj = a
(
h−1(xk − xj)

)
we need to carry out some basic transformations

of this integral. Since by definition ϕj = ϕ̂ ◦T−1
j and also det dTj(x) = hd, we find

akj = 1
2

∫
(Sck×Sck)

c∩(Scj×Scj )
c
(ϕk(y)− ϕk(x))(ϕj(y)− ϕj(x))γ(x,y)dydx

= h2d

2

∫
T−1
j (Rd)×T−1

j (Rd)

(
1− χScj×Scj (Tj(v),Tj(w))

) (
1− χSc

k
×Sc

k
(Tj(v),Tj(w))

)
(
(ϕ̂ ◦T−1

k )(Tj(w))− (ϕ̂ ◦T−1
k )(Tj(v))

)
(ϕ̂(w)− ϕ̂(v))

γ (Tj(v),Tj(w)) dwdv.

Now we make a collection of observations. Due to assumption (A2) we obtain

γ(Tj(v),Tj(w)) = γ(xj + hv,xj + hw) = γ(hv, hw).

Furthermore, by definition of the transformations Tj ,Tk we find that T−1
j (Rd) = Rd as

well as
(T−1

k ◦Tj)(v) = h−1(xj + hv− xk) = h−1(xj − xk) + v.

Since these transformations are bijective we also have that

χMc×Mc(Tj(x),Tj(y)) = χ(T−1
j (M))c×(T−1

j (M))c(x,y)

for a set M ⊂ Rd. Hence, defining

vjk := h−1(xj − xk) = −vkj (5.6)

and recognizing T−1
j (Sk) = vkj + Ŝ we finally obtain

akj = h2d

2

∫
(Ŝc×Ŝc)c∩((vkj+Ŝ)c×(vkj+Ŝ)c)c
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(ϕ̂(w− vkj)− ϕ̂(v− vkj)) (ϕ̂(w)− ϕ̂(v)) γ(hw, hv)dwdv
= a(vkj). (5.7)

Next, we proof that this functional relation fulfills a(z) = a(|z|). Let us for this purpose
define

F (x,y; z) := (ϕ̂(y− z)− ϕ̂(x− z))(ϕ̂(y)− ϕ̂(x))γ(hy, hx)

such that
a(z) = h2d

2

∫
(Ŝc×Ŝc)c∩((z+Ŝ)c×(z+Ŝ)c)c

F (x,y; z)dydx.

Let z ∈
{
vkj : 0 ≤ k, j < Ld

}
. Then there exists a matrix R = R(z) ∈ Rd×d, which is a

composition of reflections Ri from (5.5), such that Rz = |z|. Then from (5.5) and the
assumption (A2) on the kernel, we obtain for x,y ∈ Rd that

F (Rx,Ry; |z|) = (ϕ̂(Ry−Rz)− ϕ̂(Rx−Rz)) (ϕ̂(Ry)− ϕ̂(Rx)) γ(hRy, hRx)
= (ϕ̂(y− z)− ϕ̂(x− z)) (ϕ̂(y)− ϕ̂(x)) γ(hy, hx)
= F (x,y; z).

Since R(Ŝ) = Ŝ and therefore

R
((
Ŝc × Ŝc

)c
∩
(
(z + Ŝ)c × (z + Ŝ)c

)c)
=
(
Ŝc × Ŝc

)c
∩
(
(|z|+ Ŝ)c × (|z|+ Ŝ)c

)c
,

we eventually obtain

a(|z|) = h2d

2

∫
(Ŝc×Ŝc)c∩((|z|+Ŝ)c×(|z|+Ŝ)c)c

F (x,y; |z|)dydx

= h2d

2

∫
(Ŝc×Ŝc)c∩((z+Ŝ)c×(z+Ŝ)c)c

F (Rx,Ry; |z|)dydx

= h2d

2

∫
(Ŝc×Ŝc)c∩((z+Ŝ)c×(z+Ŝ)c)c

F (x,y; z)dydx

= a(z).

Finally, we can show that Ah carries the structure of a d-level Toeplitz matrix. By
having a closer look at the definitions of EL and the grid points xk (see (5.1) and (5.2))
we can conclude that

ai j = aEL(i)EL(j) = a
(∣∣∣h−1(xEL(i) − xEL(j))

∣∣∣) = a(| i− j |).

Thus, the entry ai j only depends on the difference i− j.

With other words, the translation invariance of the kernel brings in the relation

akj = a
(
h−1(xk − xj)

)
.
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The advantage of this observation relies on the usage of a regular grid leading to redun-
dancy in the set {

xk − xj : 0 ≤ k, j < Ld
}
.

From the reflection invariance we can finally deduce

akj = a
(∣∣∣h−1(xk − xj)

∣∣∣)
leading to symmetry in each level. We also point out that this result is independent of
the relation between the interaction horizon δ and the diameter diam(Ω) of the domain
Ω.

As a consequence, in order to implement the matrix-vector product, it is sufficient
to assemble solely the first row (or column)

Rh := (ai0)0≤i<Ld =
(
a
(
h−1(xi − x0)

))
0≤i<Ld

=
(
a
(
EL(i)

))
0≤i<Ld

of the stiffness matrix Ah. Because with

i(k, j) := EL
(
h−1(|xk − xj |)

)
we obtain

akj = a
(
h−1 (|xk − xj |)

)
= a

(
EL (i(k, j))

)
= Rh

i(k,j).

Note that i(k, j) is well defined, since h−1 (|xk − xj |) lies in the domain of definition of
EL.

Remark 5.1.3. Exploiting that ϕ̂ is invariant under permutations, the same proof (by
composing the reflection R with a permutation matrix) shows that a(z) = a((zσ(i))i) for
all permutations σ : {0, . . . , d− 1} → {0, . . . , d− 1}. We use this observation to accel-
erate the assembling process. Also note in this regard, that a kernel of radial type, i.e.,
γ(x,y) = φ(||x−y||2)χBδ,•(x)(y), is also invariant under such permutations, independent
of the norm ‖ · ‖• used to define the ball Bδ,•(x).

5.2 Solving the discrete system

Now we discuss how to solve the densely populated multilevel Toeplitz system. The idea
is to use an efficient implementation for the matrix-vector product of multilevel Toeplitz
matrices, which is then delivered to the conjugate gradient (CG) method; see also [23].

Let us first illuminate the implementation of the matrix-vector product Tx, for a
general symmetric d-level Toeplitz matrix T ∈ RLd×Ld of order L = (L0, . . . , Ld−1) and
x a vector in RLd . The crucial idea is to embed the Toeplitz matrix into a circulant
matrix for which matrix-vector products can be efficiently computed with the help of
the discrete Fourier transform (DFT) [97]. Here, by a d-level circulant matrix, we mean
a matrix C ∈ RLd×Ld , which satisfies

Ci j = C((i− j) mod L),
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where
(i mod L) := (ik mod Lk)0≤k<d.

In the real symmetric case, as it is present in our setting, T can be reconstructed from
its first row R := (T0i)i ∈ RLd . Since circulant matrices are special Toeplitz matrices,
the same holds for these matrices as well. Due to the multilevel structure it is convenient
to represent T by a tensor

t ∈ RL0×···×Ld−1 ,

which is composed of the values contained in R. More precisely we define

t(i) := REL(i)

for

i ∈
d−1∏
i=0
{0, . . . , Li − 1}

with EL from (5.1). Now t can be embedded into the tensor representation

c ∈ R2L0×···×2Ld−1

of the associated d-level circulant matrix by

c(i) := t(̂i0, . . . , îd−1),

where

îk :=


ik : ik < Lk,

0 : ik = Lk,

2Lk − ik : else.

We note that
t = c([0 : L0 − 1], . . . , [0 : Ld−1 − 1]).

Thus, we can use Algorithm 1 to compute the product Tx, where the DFT is carried out
by the fast Fourier transform (FFT). In the Python code we use the library pyFFTW
(https://hgomersall.github.io/pyFFTW/) to perform a parallelized multidimensional
DFT, which is a pythonic wrapper around the C subroutine library FFTW (http:
//www.fftw.org/). Furthermore, we want to note that a Message Passing Interface
(MPI) implementation for solving multilevel Toeplitz systems in this fashion is presented
in [23].
Finally, with this algorithm at hand, we employ the CG method, as it can be found,
e.g., in [60], to obtain the solution of the symmetric discretized system (4.9).
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5.3. Numerical experiments

Algorithm 1: Matrix-vector product for multilevel Toeplitz matrices
Input: t ∈ RL0×···×Ld−1 representing T ∈ RLd×Ld and x ∈ RLd

Output: y = Tx
1 Construct c ∈ R2L0×···×2Ld−1 by c(i) := t(̂i0, . . . , îd−1)
2 Construct x′ ∈ R2L0×···×2Ld−1 by

x′(i) :=
{

xEL(i) : i ∈
∏d−1
i=0 {0, . . . , Li − 1}

0 : else

3 Compute Λ = FFTL(c)
4 Compute z = FFTL(x′)
5 Compute w = Λz (pointwise)
6 Compute y′ = FFT−1

L (w)
7 Construct y ∈ RL0×···×Ld−1 by y(i) = y′(i) for i ∈

∏d−1
i=0 {0, . . . , Li − 1}

8 Return y.reshape(Ld)

5.3 Numerical experiments

In this last section we want to complete the previous considerations by presenting nu-
merical results in 1d, 2d and also in 3d. We now specify the nonlocal diffusion operator
−L by choosing the truncated fractional Laplace kernel

γ(x,y) = cd,s
||y− x||d+2sχBδ,∞(x)(y) (x,y ∈ Rd, x 6= y), (5.8)

where we employ ‖ · ‖∞-balls as interaction sets. In Chapter 6.2 we relate the nonlocal
Dirichlet problem associated with this truncated kernel to the fractional Laplace operator
(−∆)s.

5.3.1 Numerical results

The implementation has been carried out in Python and the examples were run on a
HP Workstation Z240 MT J9C17ET with Intel Core i7-6700 - 4 x 3.40GHz. Since we
started from an arbitrary dimension throughout the whole analyzes, the codes for each
dimension d ∈ {1, 2, 3} own the same structure. In Appendix A we provide details on the
implementation of the assembling process. The implementation of the solving procedure
only consists of delivering Algorithm 1 to the CG method. Moreover, the codes are
parallelized over 8 threads on the four Intel cores (see also the Appendix A.3).

In all examples we consider Ω = (0, 1)d and the truncated fractional Laplace kernel
(5.8) with a fraction s = 0.4. We consider a constant source term f = 1 and homogeneous
Dirichlet data g = 0 in (2.1). Further we consider an interaction horizon δ = T + λ
where T = 210 with coarsening parameter q = 1.5, minimum grid size hmin = 10−2 and
a parameter λ > 2h for the box B (these parameters are explained in the Appendix
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A.2.3). The CG method stops if a sufficient decrease of the residual ||A
hxk−b||
||b|| < 10−12

is reached. We present numerical examples for d ∈ {1, 2, 3}. For each grid size h we
report on the number of grid points (“dofs”) and the number of CG iterations (“cg its”)
as well as the CPU time (“CPU solving”) needed for solving the discretized system.
Furthermore we compute the energy error ||uhR−u∞||Hs(Ω∪ΩI), where u∞ is a numerical
surrogate taken to be the finite element solution on the finest grid, and the rate of
convergence.

1d Example

For the 1d example we choose λ = 5 as parameter for the box B and n = 7 Gauss points
for the unit interval [0, 1]. The results are presented in Figure 5.2 and Table 5.1.

Figure 5.2: Plot of the 1d finite element solution uh.

h dofs cg its energy error rate CPU solving [s]

2−6 63 16 2.43e-02 0.50 -
2−7 127 24 1.72e-02 0.51 0.005
2−8 255 34 1.21e-02 0.51 0.011
2−9 511 46 8.47e-03 0.52 0.029
2−14 16,383 191 - - 5.261

Table 5.1: Results of the 1d test case.

2d Example

For the 2d example we choose λ = 1 as parameter for the box B and n = 6, i.e., 36
quadrature points for the unit square [0, 1]2. The results are presented in Figure 5.3 and
Table 5.2.
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5.3. Numerical experiments

Figure 5.3: Contour plot of the 2d finite element solution uh.

h dofs cg its energy error rate CPU solving [s]

2−2 9 3 3.11e-01 0.50 -
2−3 49 10 2.17e-01 0.51 -
2−4 225 16 1.53e-01 0.52 0.01
2−5 961 20 1.06e-01 0.53 0.03
2−9 261,121 58 - - 3.15

Table 5.2: Results of the 2d test case.

3d Example

For the 3d example we choose λ = 0.5 as parameter for the box B and n = 4, i.e., 64
quadrature points for the unit cube [0, 1]3. The results are presented in Figure 5.4 and
Table 5.3.
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Figure 5.4: Plot of the finite element solution uh. In order to illustrate the 3d
solution we cut the domain Ω = (0, 1)3 into nine slices along the third dimension
ordered by increasing x2-dimension.

h dofs cg its energy error rate CPU solving [min]

2−3 343 19 1.37e-01 0.51 -
2−4 3,375 20 9.49e-02 0.52 -
2−5 29,791 21 6.54e-02 0.54 0.01
2−6 250,047 23 4.44e-02 0.59 0.03
2−9 133,432,831 55 - - 36.28

Table 5.3: Results of the 3d test case.

5.3.2 Discussion

Before we discuss the numerical results let us cite a result about the regularity of weak
solutions and the convergence of finite element solutions.
Proposition 5.3.1 ([20, Theorem 3.5, Proposition 3.6]). Let the domain Ω ⊂ Rd have
C∞ boundary ∂Ω and let f ∈ Hr(Ω) for r ≥ 0. Further let the kernel be of the form

γ(x,y) = c

||x− y||d+2s
2

χBδ,2(x)(y),

for a constant c > 0, such that (K1), (K2) and (3.17) are satisfied. Then for the solution
u ∈ Vc(Ω ∪ ΩI) of (3.7) the following regularity estimate holds

|u|Hs+α(Ω∪ΩI) ≤ C||f ||Hr(Ω), C > 0,

where α = min {s+ r, 1/2− ε} for some arbitrarily small ε > 0. Furthermore, by in-
voking this regularity estimate we obtain the following convergence result for piecewise
linear finite element approximations:

||u− uh||Hs(Ω∪ΩI) ≤ C ′hα||f ||Hr(Ω), C ′ > 0. (5.9)
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5.4. Concluding remarks

To the best of our knowledge, for the truncated fractional kernel and less smooth
domains corresponding results are not available.

Since we set f = 1, we find that our 1d results confirm the theoretical result given
in (5.9), where

α = min {s+ r, 1/2− ε} ≈ 0.5.

Due to the numerical results for d > 1 we may conjecture, that this convergence result
also holds for domains with less smooth boundary, such as hyperrectangles. The latter
has already been shown for finite element approximations of the nontruncated problem
(6.21) under a Hölder regularity assumption on the right-hand side f ; see [2, Theorem
4.7].
Finally, we also note that the library pyFFTW needs a lot of memory for building the
FFT object, such that we had to move the 3d computations for the finest grid to a
machine with a larger RAM. We can circumvent this problem by using the sequential
FFT implementation available in the NumPy library.

5.4 Concluding remarks

We want to note that the interaction horizon can also be smaller than the diameter of
the domain. This complicates the numerical integration and with that the assembling
procedure, but the stiffness matrix is no more fully populated and its structure still
remains multilevel Toeplitz. Having that, we can model the transition to local diffusion
and access a greater range of kernels.
Moreover, an aspect concerning the solving procedure, which is not examined above,
is that of an efficient preconditioner for the discretized Galerkin system. A multigrid
method might be a reasonable candidate due to the simple structure of the grid (see
also [24, 63]). In general, a lot of effort has been put in the research of preconditioning
structured matrices (see, e.g., [62, 21, 75]). Since we observe a moderate number of CG
iterations in our numerical examples, a preconditioner has not been implemented.
The main drawback of our approach relies on the fact that the code is strictly limited
to regular grids and is thus not applicable to more complicated domains. It is crucial
that each element has the same geometry in order to achieve the multilevel Toeplitz
structure of the stiffness matrix; meaning that only rectangular domains are reasonable.
In contrast to that, the restriction to translation and reflection invariant kernels appears
to be rather weak, since a lot of kernels treated in literature are even radial.
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Chapter 6

Comparison of two nonlocal
models and computational
applications

In this chapter we compare the solutions of two nonlocal models posed on a bounded
domain which solely differ in the kernel that is employed to evaluate nonlocal interac-
tions. An important special case arises when the two different kernels only differ in their
interaction sets which spatially limit the extent of nonlocal interactions.

The results of this chapter can then be applied to specific settings, particularly for the
analysis of the effect of using interaction sets, and in particular balls, that are different
from the Euclidean ball which is in standard use in nonlocal models. In addition to
that, we discuss two other applications which lead to computational benefits. First, we
approximate solutions corresponding to a nontruncated kernel by solutions corresponding
to a truncated version of this kernel. Second, we study the effect that approximate
interaction sets have on the finite element error.

More precisely, in Section 6.1 we derive the main result about the difference in
solutions that correspond to two different kernels. An emphasis is then put on the
special case where the two kernels possess a common ‖ · ‖2-radial kernel function but
one is truncated by standard Euclidean balls and the other by ‖ · ‖∞-balls. This special
case is then further concretized in Section 6.2 by considering the fractional kernel. We
find that we can approximate solutions of the fractional Poisson problem by solutions
arising from the nonlocal model involving the fractional kernel which is truncated by
‖ · ‖∞-balls. Finally, in Section 6.3 we exploit the results from Section 6.1, especially an
estimate for the difference in bilinear forms, to conduct a preliminary investigation of
the effect that approximate interaction sets have on the global finite element error. The
therein derived analytic results are supplemented by numerical study cases.
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Ω

Figure 6.1: Illustration of ΩabI for the case Sa(x) = Bδ,2(x) and Sb(x) = Bδ,∞(x).
The interaction domain ΩbI ⊃ ΩaI additionally contains the blue colored corners, so
that ΩabI = ΩbI .

6.1 Comparison between models having different kernels

We consider two different kernels γa, γb : Rd × Rd → R of the form

γa(x,y) = φa(x,y)χSa(x)(y) and γb(x,y) = φb(x,y)χSb(x)(y) (6.1)

with kernel functions φ∗ : Rd × Rd → R and families of interaction sets {S∗(x)}x∈Rd
which we assume to satisfy the symmetry property (S2). We then have, for ∗ = {a, b},
the interaction domains, operator equations, bilinear forms, spaces, weak formulations,
and solutions as defined in Chapter 3. With respect to the Dirichlet data, we assume
that we are given g(x) defined for

x ∈ Ωab
I := Ωa

I ∪ Ωb
I

so that for the weak formulations (3.7) corresponding to the two kernels, we have the
data

ga = g|ΩaI and gb = g|ΩbI .

An example for Ωab
I is depicted in Figure 6.1. We assume that the forcing function

f for ∗ = {a, b} is the same. We assume that the two kernels are chosen in such a way
that the associated weak formulations are well-posed. In Chapter 3 we have presented
two classes of truncated kernels satisfying this requirement. However, for the following
considerations it is not necessary that interaction sets are bounded.

Because we want to compare the solutions ua and ub corresponding to the two kernels
in (6.1), we have to take into account that those solutions are defined in different domains,
i.e., Ω∪Ωa

I and Ω∪Ωb
I are not the same. However, we observe that the nonlocal energy

(semi-)norm |||·||| defined in (3.6) only involves function evaluations in Ω. Thus, to effect
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such a comparison we do not need to introduce extended bilinear forms for defining the
following extended nonlocal energy spaces

V ab
∗ (Ω ∪ Ωab

I ) := {u ∈ L2(Ω ∪ Ωab
I ) : ‖u‖V ab∗ (Ω∪ΩabI ) <∞}

V ab
∗,c(Ω ∪ Ωab

I ) := {u ∈ V ab
∗ (Ω ∪ Ωab

I ) : u = 0 on Ωab
I }

= {u ∈ L2
c(Ω ∪ Ωab

I ) : |||u|||∗ <∞},

where

‖u‖V ab∗ (Ω∪ΩabI ) := |||u|||∗ + ‖u‖L2(Ω∪ΩabI ) =
√
A∗(u, u) + ‖u‖L2(Ω∪ΩabI ),

for ∗ ∈ {a, b}. Note that although for both ∗ = a and ∗ = b these spaces are defined
with respect to the same domains, we have that, in general V ab

a (Ω∪Ωab
I ) 6= V ab

b (Ω∪Ωab
I )

because the two kernel functions involved are different.
We now also define the difference kernel γab := γa − γb and the difference bilinear

form Aab := Aa−Ab. Then restating Lemma 3.3.4 for the difference objects just defined
leads to the following result.

Corollary 6.1.1 (Estimation of the difference in bilinear forms). Let us assume

Cab = Cba := max
{

sup
x∈Ω

∫
Ω∪ΩabI

|γab| dy, sup
x∈Ω

∫
Ω

∣∣γ′ab∣∣ dy
}
< +∞, (6.2)

then for any u, v ∈ L2
c(Ω ∪ Ωab

I ) we find

|Aab(u, v)| ≤ 2Cab‖u‖L2(Ω)‖v‖L2(Ω).

Proof. Let u, v ∈ L2
c(Ω ∪ Ωab

I ), then by definition we have

Aab(u, v) = (Aa −Ab)(u, v) =
∫

Ω
v

∫
Ω

(uγa − u′γ′a)dydx +
∫

Ω
vu

∫
ΩI
γadydx

−
∫

Ω
v

∫
Ω

(uγb − u′γ′b)dydx +
∫

Ω
vu

∫
ΩI
γbdydx

=
∫

Ω
v

∫
Ω

(uγab − u′γ′ab)dydx +
∫

Ω
vu

∫
ΩI
γabdydx.

Since we require (6.6), we can apply Lemma 3.3.4 to the difference bilinear form Aab.

We now treat certain special cases for the choice of the kernels γa and γb and derive
the resulting constant Cab defined in (6.6).

Remark 6.1.2. i) If φa = φb = φ, then

Cab = Cba = max
{

sup
x∈Ω

∫
Sa(x)4Sb(x)

φdy, sup
x∈Ω

∫
Ω∩(Sa(x)4Sb(x))

φ′dy
}
,
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where 4 denotes the symmetric difference operator (see also Figure 6.2), i.e.,

Sa(x)4Sb(x) := (Sa(x) ∪ Sb(x)) \ (Sa(x) ∩ Sb(x)) .

Note that, if Sa(x) ⊂ Sb(x), then

Sa(x)4Sb(x) = Sb(x)\Sa(x).

If further φ = φ′, we find

Cab = Cba = sup
x∈Ω

∫
Sa(x)4Sb(x)

φdy. (6.3)

ii) If φa = φ and φb = µφ for some symmetric two-point function µ (e.g., a mollifier),
then

Cab = Cba = max
{

sup
x∈Ω

∫
Ω∪ΩabI

φ
∣∣∣χSa(x)(y)− µχSb(x)(y)

∣∣∣dy,
sup
x∈Ω

∫
Ω
φ′
∣∣∣χSa(x)(y)− µχSb(x)(y)

∣∣∣dy} .
If further, φ = φ′, we find

Cab = Cba = sup
x∈Ω

∫
Ω∪ΩabI

φ
∣∣∣χSa(x)(y)− µχSb(x)(y)

∣∣∣dy.
Proof. We only treat i), because ii) is straightforward. By assumption we have φa =
φb = φ so that

|γab(x,y)| =
∣∣∣φa(x,y)χSa(x)(y)− φb(x,y)χSb(x)(y)

∣∣∣ = φ(x,y)
∣∣∣χSa(x)(y)− χSb(x)(y)

∣∣∣ .
Further, by definition of the indicator function, we find

χSa(x)(y)− χSb(x)(y) =


−1 : y ∈ Sb(x)\Sa(x)
0 : y ∈ (Sb(x) ∩ Sa(x)) ∪ (Sa(x) ∪ Sb(x))c

1 : y ∈ Sa(x)\Sb(x).

Thus we have
|χSb(x)(y)− χSa(x)(y)| = χSa(x)4Sb(x)(y).

By the symmetry of the interaction sets, we also have

|γab(y,x)| = φ(y,x)χSa(x)4Sb(x)(y).
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Figure 6.2: The symmetric difference between the two example interaction sets
centered at the black dot is given by the yellow colored area.

We now also assume that, for ∗ = {a, b}, the nonlocal Poincaré inequality

‖v‖L2(Ω) ≤ C∗P |||v|||∗ for all v ∈ V ∗c (Ω ∪ Ω∗I) (6.4)

holds with constant C∗P > 0; see Chapter 3 for examples.

Lemma 6.1.3 (Equivalence of the different energy spaces). If Cab < +∞, then
the extended constrained energy spaces

(V ab
a,c(Ω ∪ Ωab

I ), ||| · |||a) and (V ab
b,c (Ω ∪ Ωab

I ), ||| · |||b)

are equivalent, i.e., there exist positive constants C and C such that

C|||v|||b ≤ |||v|||a ≤ C|||v|||b for all v ∈ L2
c(Ω ∪ ΩI).

Proof. Let v ∈ L2
c(Ω ∪ ΩI). By invoking Corollary 6.1.1 and the Poincaré inequality

(6.4), we obtain

|||v|||2a − |||v|||2b
= Aa(v, v)−Ab(v, v) ≤ |Aa(v, v)−Ab(v, v)|
= |Aab(v, v)| ≤ Cab‖v‖2L2(Ω) ≤ Cab(C

b
P )2|||v|||2b .

Thus, for C :=
√

1 + Cab(CbP )2 and C := 1/
√

1 + Cab(CaP )2, it follows that

|||v|||a ≤ C|||v|||b and C|||v|||b ≤ |||v|||a,

where the second inequality follows by interchanging the roles of a and b.
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Because the spaces V ab
a,c(Ω ∪ Ωab

I ) and V ab
b,c (Ω ∪ Ωab

I ) are equivalent, from now on we
simply denote them by V ab

c (Ω ∪ Ωab
I ). We can also consider the same space of trial

functions in each weak formulation, so that u∗ : Ω ∪ Ω∗I → R, for ∗ ∈ {a, b}, solves

A∗(u∗, v) =
∫

Ω
v

∫
Ω

(
uγ∗ − u′γ′∗

)
dydx +

∫
Ω
vu

∫
Ω∗I
γ∗dydx

=
∫

Ω
fvdx−

∫
Ω
v

∫
Ω∗I
g′γ′∗dydx = `∗(v)

(6.5)

for all v ∈ V ab
c (Ω ∪ Ωab

I ). We are finally in a position to derive an estimate for the
difference in solutions.

Proposition 6.1.4 (Estimation of the difference in solutions). Given g defined
on Ωab

I and f defined on Ω, for ∗ = {a, b}, let u∗ ∈ V ∗(Ω∪Ω∗I) denote the weak solution
of the problem (3.7) with the forcing function f and boundary data g|Ω∗; thus solving
(6.5). If

Cab = Cba := max
{

sup
x∈Ω

∫
Ω∪ΩabI

|γab| dy, sup
x∈Ω

∫
Ω∪ΩabI

∣∣γ′ab∣∣ dy
}
< +∞, (6.6)

then
|||ub|Ω − ua|Ω|||a ≤ 2CabCaP

(
‖ub‖L2(Ω) + ‖g‖L2(ΩabI )

)
, (6.7)

and

‖ub|Ω − ua|Ω‖L2(Ω) ≤ 2Cab(CaP )2
(
‖ub‖L2(Ω) + ‖g‖L2(ΩabI )

)
. (6.8)

Note that we can interchange the roles of a and b, since Cab = Cba.

Proof. We first note that the norms ‖ · ‖L2(Ω) and ||| · |||∗ for ∗ ∈ {a, b} only involve
function evaluations on Ω. Thus the norm evaluations in (6.7) and (6.8) are well defined,
although the two solutions u∗ are defined on possibly different domains Ω ∪ Ω∗I . Since
u∗ solves (6.5) we find that, for v ∈ V ab

c (Ω ∪ Ωab
I ),

Aa(ua, v)−Ab(ub, v) =
∫

Ω
v

∫
ΩbI
g′γ′bdydx−

∫
Ω
v

∫
ΩaI
g′γ′adydx.

Due to the definition (3.11) of the interaction domain Ω∗I in terms of the interaction sets,
and the fact that Ω∗I ⊂ Ωab

I , we have∫
ΩabI \Ω

∗
I

g′γ′∗dy = 0,

so that

Aa(ua, v) = Ab(ub, v) +
∫

Ω
v

∫
ΩabI

g′γ′ba dydx. (6.9)
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Let us define v := ua|Ω− ub|Ω which we extend to Ωab
I by zero so that v ∈ V ab

c (Ω∪Ωab
I ).

Then by exploiting (6.9) and Corollary 6.1.1 we find

|||v|||2a = |Aa(v, v)| = |Aa(ua, v)−Aa(ub, v)|

= |Ab(ub, v) +
∫

Ω
v

∫
ΩabI

g′γ′ba dydx−Aa(ub, v)|

≤ |Aab(ub, v)|+
∫

Ω
|v|
∫

ΩabI
|g′||γ′ab| dydx

≤ 2Cab‖ub‖L2(Ω)‖v‖L2(Ω) + Cab‖v‖L2(Ω)‖g‖L2(ΩabI )
≤ 2CabCaP

(
‖ub‖L2(Ω) + ‖g‖L2(ΩabI )

)
|||v|||a.

Inserting v = ua − ub we finally arrive at

|||ub − ua|||a ≤ 2CabCaP
(
‖ub‖L2(Ω) + ‖g‖L2(ΩabI )

)
,

which proves the first estimate (6.7). Applying the nonlocal Poincaré inequality (6.4)
for ∗ = a leads to the second estimate (6.8).

6.1.1 Specialization to norm induced balls

We specialize the results of the previous subsection to norm induced interaction sets, and
to the case φa = φb = φ where φ is assumed to be radial with respect to the ‖ · ‖2-norm.
In this case, the constant Cab in (6.3) further simplifies to

Cab = sup
x∈Ω

∫
Sa(x)4Sb(x)

φ(‖y− x‖2)dy =
∫
Sa(0)4Sb(0)

φ(‖z‖2)dz.

In specifying the two kernels (6.1), we consider balls based on both the ‖ · ‖2- and
‖ · ‖∞-norm. We provide exact representations for Cab in terms of integrals for several
situations involving different concentric ball types and ball radii.

Lemma 6.1.5. Let γa and γb be as in (6.1) with φ radial with respect to the ‖ · ‖2-norm,
i.e., φ(x,y) = φ(‖x− y‖2). Then, for the following choices of balls, the constant

Cab =
∫
Sa(0)4Sb(0)

φ(‖z‖2)dz

can be defined exactly in terms of integrals.

i) ‖ ·‖2-balls of different radii. For Sa(x) := Bδa,2(x) and Sb(x) := Bδb,2(x), with
δa < δb <∞, we have

Cab = dVd

∫ δb

δa
φ(r)rd−1dr, (6.10)

where Vd := π
d
2
/
Γ(d2 + 1) denotes the volume of the unit ‖ · ‖2-ball in Rd and Γ(·)

denotes the Gamma function.
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ii) Embedded ‖ · ‖2- and ‖ · ‖∞-balls of different radii. For Sa(x) := Bδ2,2(x)
and Sb(x) := Bδ∞,∞(x) such that either Sb(x) ⊂ Sa(x) or conversely, we have

d = 2 :
if Bδ∞,∞(x) ⊂ Bδ2,2(x), then δ2 ≥

√
2δ∞ and

Cab = 8
∫ π/4

0

∫ δ2

δ∞/cos θ
φ(r)rd−1drdθ;

if Bδa,2(x) ⊂ Bδb,∞(x), then δ2 ≤ δ∞ and

Cab = 8
∫ π/4

0

∫ δ∞/cos θ

δ2
φ(r)rd−1drdθ. (6.11)

d = 3 :
if Bδb,∞(x) ⊂ Bδ2,2(x), then δ2 ≥

√
3δ∞ and

Cab =16
∫ π/4

0

∫ arctan(cos(θ1))

0

∫ δ2

δ∞
cos(θ1) cos(θ2)

φ(r)r2 cos(θ2)drdθ2dθ1

+16
∫ π/4

0

∫ π/2

arctan(cos(θ1))

∫ δ2

δ∞
sin(θ2)

φ(r)r2 cos(θ2)drdθ2dθ1;

if Bδ2,2(x) ⊂ Bδ∞,∞(x), then δ2 ≤ δ∞ and

Cab =16
∫ π/4

0

∫ arctan(cos(θ1))

0

∫ δ∞
cos(θ1) cos(θ2)

δ2
φ(r)r2 cos(θ2)drdθ2dθ1

+16
∫ π/4

0

∫ π/2

arctan(cos(θ1))

∫ δ∞
sin(θ2)

δ2
φ(r)r2 cos(θ2)drdθ2dθ1. (6.12)

iii) ‖ · ‖2- and ‖ · ‖∞-balls of equal volume. For Sa(x) := Bδ2,2(x) and Sb(x) :=
Bδ∞,∞(x), we have

d = 2 :

Cab = 8
∫ arccos((π/4)1/2)

0

∫ δ2

δ2(π/4)1/2/ cos θ
φ(r)rdrdθ

+ 8
∫ π/4

arccos((π/4)1/2)

∫ δ2(π/4)1/2/ cos θ

δ2
φ(r)rdrdθ.

(6.13)

d = 3 :

Cab

=16
∫ arccos((π6 )1/3)

0

∫ arctan(cos(θ1))

arccos((π6 )1/3/ cos(θ1))

∫ δ∞/(cos(θ1) cos(θ2))

δ2
φ(r)r2 cos(θ2)drdθ2dθ1
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+16
∫ π/4

arccos((π6 )1/3)

∫ arctan(cos(θ1))

0

∫ δ∞/(cos(θ1) cos(θ2))

δ2
φ(r)r2 cos(θ2)drdθ2dθ1

+16
∫ π/4

0

∫ arcsin((π6 )1/3)

arctan(cos(θ1))

∫ δ∞/ sin(θ2)

δ2
φ(r)r2 cos(θ2)drdθ2dθ1

+16
∫ π/4

0

∫ π/2

arcsin((π6 )1/3)

∫ δ2

δ∞/ sin(θ2)
φ(r)r2 cos(θ2)drdθ2dθ1.

Proof. i) In this case the symmetric difference becomes Sa(0)4Sb(0) =
Bδb,2(0)\Bδa,2(0). Note that∫

Bδb,2(0)\Bδa,2(0)
φ(‖z‖2)dz

=
∫ π

0
. . .

∫ π

0

∫ 2π

0

∫ δb

δa
φ(r)rd−1Θ(θ1, . . . , θd−1)drdθd−1 · · · dθ1

=
(∫ δb

δa
φ(r)rd−1dr

)(∫ π

0
. . .

∫ π

0

∫ 2π

0
Θ(θ1, . . . , θd−1)dθd−1 · · · dθ1

)
where we put all the remaining (sine and cosine) terms from the volume element of the
d-dimensional spherical system into Θ(θ1, . . . , θd−1); note that these do not depend on
r. The second factor equals

1∫ 1
0 r

d−1dr

((∫ 1

0
rd−1dr

)∫ π

0
. . .

∫ π

0

∫ 2π

0
Θ(θ1, . . . , θd−1dθd−1) · · · dθ1

)
= dVd

from which (6.10) easily follows.
ii) If d = 2, the proofs are elementary so they are omitted here. If d = 3, it is sufficient
to consider the case where the ‖ · ‖2-ball is embedded into the ‖ · ‖∞-ball (then we only
have to reverse the integration bounds for the opposite case), i.e.,

Cba =
∫
Bδ∞,∞(0)\Bδ2,2(0)

φ(||z||2)dz.

We split the domain Bδ∞,∞(0)\Bδ2,2(0) into 16 = 2d+1 slices for which the integral is
equal due to symmetry. We pick a particular slice which can be parametrized by

Φ(θ1, θ2, r) := r

 cos(θ1) cos(θ2)
sin(θ1) cos(θ2)

sin(θ2)

 , (6.14)

where θ1 ∈ [0, π/4], θ2 ∈ [0, π/2], r ≥ δ2 and

|det dΦ(θ1, θ2, r)| = r2 cos(θ2).

Now, we have to find the precise intervals for the angles (θ1, θ2) and the radius r =
r(θ1, θ2) such that we correctly parametrize the domain of interest. The lower bound
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for the radius r = r(θ1, θ2) is given by the radius of the ‖ · ‖2-ball δ2, whereas the upper
bound by the length of the vector which is given by the intersection of a “ray”

r(θ1, θ2) := {Φ(θ1, θ2, µ) : µ ≥ 0}

with the boundary of Bδ∞,∞(0). Due to our choice of slice we know that such intersec-
tions can only occur at the following two parts of ∂Bδ∞,∞(0): The “wall”

W := {(δ∞, λ1, λ2) : λi ∈ (0, δ∞)}

and the “roof”
R := {(λ1, λ2, δ∞) : λi ∈ (0, δ∞)} .

By equating the determining equations we straightforwardly find the intersection points

r(θ1, θ2) ∩W =

 δ∞
cos(θ1) cos(θ2)

 cos(θ1) cos(θ2)
sin(θ1) cos(θ2)

sin(θ2)




and

r(θ1, θ2) ∩R =

 δ∞
sin(θ2)

 cos(θ1) cos(θ2)
sin(θ1) cos(θ2)

sin(θ2)


 .

Finally we have to partition the set [0, π/4]× [0, π/2] into those pairs (θ1, θ2) for which
the ray r(θ1, θ2) intersects W and those for which it intersects R. For the “wall” case
the angles are determined by

0 ≤ λ1 = δ∞ tan(θ1) ≤ δ∞
0 ≤ λ2 = δ∞ tan(θ2)/ cos(θ1) ≤ δ∞

leading to

{(θ1, θ2) ∈ [0, π/4]× [0, π/2] : r(θ1, θ2) ∩W 6= ∅}
= {(θ1, θ2) ∈ [0, π/4]× [0, π/2] : θ2 ≤ arctan(cos(θ1))} .

Consequently by considering the complement of this set we find for the “roof” case

{(θ1, θ2) ∈ [0, π/4]× [0, π/2] : r(θ1, θ2) ∩R 6= ∅}
= {(θ1, θ2) ∈ [0, π/4]× [0, π/2] : θ2 > arctan(cos(θ1))} .

iii) If d = 2, the equal area assumption requires that δ∞ =
√

π
4 δ2 and the symmetric

difference Sa(0)4Sb(0) consists of four circular segments and four corner regions; see
Figure 6.4. The integrals of φ(z) over all four circular segments is the same, as are
the integrals over all four corner regions. We first consider the circular segments. Let ϕ
denote the corresponding central angle of a representative segment. Then δ∞ = δ2 cos(ϕ2 )
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so that because δ∞ =
√

π
4 δ2 as well, we obtain ϕ = 2 arccos(

√
π
4 ). Then, symmetry

properties and simple algebraic manipulation to determine the limits of integration lead
to the contribution

8
∫ arccos(π/4)1/2

0

∫ δ2

δ2(π/4)1/2/ cos θ
φ(r)rdrdθ (6.15)

to Cab due to the four circular segments. Using similar simple algebraic and trigonometric
manipulations as those used to arrive at (6.15) lead to the contribution

8
∫ π/4

arccos(π/4)1/2

∫ δ2(π/4)1/2/ cos θ

δ2
φ(r)rdrdθ

to Cab due to the four corner regions.
If d = 3, we want to compute

Cab =
∫
Bδ∞,∞(0)4Bδ2,2(0)

φ(||z||2)dz,

where both balls have equal volume, i.e., δ∞ = (π6 )1/3δ2. The symmetric difference
Bδ∞,∞(0)4Bδ2,2(0) consists of 8 corners and 6 spherical caps. We can consider the
same slice as in the proof of ii) for d = 3 and proceed in an analogous manner in order
to determine the appropriate intervals for the angles and the radius when using the
parametrization (6.14). Let us first consider the two regions for which rays intersect the
roof (see upper two regions in Figure 6.3) and let us start with the part of the cap. We
have that rays r(θ1, θ2) intersect the roof for all θ1 ∈ (0, π/4). The interval for θ2 and
the radius is then simply determined by

rmin(θ1, θ2) = δ∞/ sin(θ2) ≤ δ2

from which it follows that θ2 ∈ (arcsin((π6 )1/3), π/2) and r ∈ (δ∞/ sin(θ2), δ2). Next, let
us consider the part of the corner for which rays intersect with the roof. Here we have

δ∞/ sin(θ2) ≥ δ2

0 ≤ λ1 = δ∞ cos(θ1)/ tan(θ2) ≤ δ∞
0 ≤ λ2 = δ∞ sin(θ1)/ tan(θ2) ≤ δ∞

from which it follows that θ1 ∈ (0, π/4), θ2 ∈
(
arctan(cos(θ1)), arcsin((π6 )1/3)

)
and

r ∈ (δ2, δ∞/ sin(θ2)). Finally the part of the corner for which rays intersect with the
wall is determined by the system

δ∞/(cos(θ1) cos(θ2)) ≥ δ2

0 ≤ λ1 = δ∞ tan(θ1) ≤ δ∞
0 ≤ λ2 = δ∞ tan(θ2)/ cos(θ1) ≤ δ∞.
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Figure 6.3: Equal volume case. The 1/16-slice which is divided into 4 disjoint sets.
The lower left, light gray region is not part of the integration domain discussed in
the proof of Lemma 6.1.5.

Due to the first requirement we find two disjoint sets determining the intervals (see lower
two parts in Figure 6.3). One is given by

θ1 ∈
(
0, arccos

(
(π6 )1/3

))
θ2 ∈

(
arccos

(
(π6 )1/3/ cos(θ1)

)
, arctan(cos(θ1)

)
r ∈ (δ2, δ∞/(cos(θ1) cos(θ2)))

the other one by

θ1 ∈
(
arccos((π6 )1/3), π/4

)
θ2 ∈ (0, arctan(cos(θ1)))
r ∈ (δ2, δ∞/(cos(θ1) cos(θ2)) .

Applying the parametrization with the afore derived intervals leads to the 4 integrals
given in the lemma.

In the two-dimensional case, d = 2, Lemma 6.1.5 can be summarized as follows. Let
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δ∞ = λδ2 with λ > 0, then

Cab(λ) =



8
∫ π/4

0
∫ δ2
λδ2/ cos(θ) φ(r)rdrdθ : 0 < λ < 1√

2 (i.e., B∞ ⊂ B2)

8
∫ arccos(λ)

0
∫ δ2
λδ2/ cos(θ) φ(r)rdrdθ

+8
∫ π/4

arccos(λ)
∫ λδ2/ cos(θ)
δ2

φ(r)rdrdθ : 1√
2 ≤ λ ≤ 1

8
∫ π/4

0
∫ λδ2/ cos(θ)
δ2

φ(r)rdrdθ : 1 < λ (i.e., B2 ⊂ B∞).

Figure 6.4: Examples in two dimensions for the different cases appearing in Lemma
6.1.5. The colored area indicates the symmetric difference of the two balls. The
figure in the lower right corner corresponds to the case of equal volume, whereas all
the others are examples of embedded balls.

6.1.2 A numerical example comparing two balls: ‖ · ‖2 versus ‖ · ‖∞
In the following numerical experiment we compare the solution of a nonlocal model
where the interaction sets are ‖·‖2-balls to a nonlocal model associated with ‖·‖∞-balls.
We set Ω = B1,2(0) and

γ∗(x,y) := CχBδ,∗(x)(y), where ∗ ∈ {2,∞} , C = 1000.
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Furthermore we consider the forcing term f = 1 on Ω and Dirichlet data g = 0 on
Ωab
I . In Figure 6.5 we report solutions for the ‖ · ‖2-ball (left), ‖ · ‖∞-ball with the

same volume (middle) and ‖ · ‖∞-ball with the same interaction radius (right). We note
that using a ball with the same volume delivers a solution that is very close to the one
obtained with standard balls. This is confirmed by the fact that ‖u2 − u∞‖L2(Ω) ≈ 0.13
(equal radius), whereas ‖u2 − ũ∞‖L2(Ω) ≈ 0.0047 (equal volume). Since the symmetric
difference between the ‖ · ‖2-ball and the ‖ · ‖∞-ball is smaller for the equal volume case
than for the equal radius case, we find that this observation is in line with (6.13) and
the estimate derived in (6.8) with ub = u2 and ua ∈ {u∞, ũ∞}.

(a) (b) (c)

Figure 6.5: (a) Nonlocal solution u2 for the case of a ‖ · ‖2-ball (∗ = 2, δ = 0.1).
(b) Nonlocal solution ũ∞ for the case of a ‖ · ‖∞-ball of equal volume (∗ = ∞,
δ =

√
π

2 0.1). (c) Nonlocal solution u∞ for the case of a ‖ · ‖∞-ball of equal radius
(∗ = ∞, δ = 0.1). In all plots we use the same color scale, i.e., the same color
indicates the same value.

6.2 Application to large horizons and the infinite horizon
limit

In this section we assume that the interaction sets are large enough to include all points
in Ω, i.e.,

Ω ⊂ S(x) for all x ∈ Ω.

In Figure 6.6 this situation is illustrated. The bilinear form (3.5) then becomes

A(u, v) =
∫

Ω

∫
Ω
v(uφ− u′φ′)dydx +

∫
Ω
uv
( ∫

S(x)\Ω
φdy

)
dx. (6.16)

We now consider two kernels that solely differ in the choice of interaction sets. More
precisely, let

γa(x,y) = φ(x,y)χSa(x)(y) and γb(x,y) = φ(x,y)χSb(x)(y),
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with interaction sets, that satisfy

Ω ⊂ Sa(x) ⊂ Sb(x) for all x ∈ Ω.

Then from (6.16) we find for the difference bilinear form

Ω
x

S(x)

Figure 6.6: Illustration of a large interaction horizon. Here, S(x) = Bδ,∞(x) with
δ > 0 chosen large enough so that Ω ⊂ Bδ,∞(x) for all points x ∈ Ω.

Ab(u, v)−Aa(u, v) =
∫

Ω
u(x)v(x)

(∫
Sb(x)\Sa(x)

φ(x,y)dy
)
dx.

Under the assumption that the integral term in brackets is constant in x, so that∫
Sb(x)\Sa(x)

φ(x,y)dy = Cba,

we further find

Ab(u, v)−Aa(u, v) = Cba
(
u, v

)
L2(Ω). (6.17)

Note that this constant is precisely the special case (6.3) of the constant Cba declared in
(6.6).

Remark 6.2.1. A practical consequence of (6.17) is that the difference between the finite
element stiffness matrices corresponding to the two bilinear forms A∗(u, v), ∗ = {a, b},
is a constant multiple of the mass matrix. For instance, we can assemble the stiffness
matrix corresponding to ‖ · ‖∞-balls and adjust it by a scalar multiple of the mass matrix
in oder to obtain the stiffness matrix corresponding to ‖ · ‖2-balls. See Remark 6.2.4 for
a related discussion.
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In the following, we want to consider the size of the interaction set as a varying
parameter and therefore focus on interaction sets that are norm induced balls S(x) =
Bδ,•(x) with δ ≥ diam(Ω) (or even δ � diam(Ω)). Furthermore we want to rely on the
results derived in Lemma 6.1.5 which is why we now also specialize to kernel functions
that are radial with respect to the ‖ · ‖2-norm, i.e., φ(x,y) = φ(‖y− x‖2) so that

Cba =
∫
Sb(0)\Sa(0)

φ(‖z‖2)dz. (6.18)

6.2.1 The truncated fractional Laplacian kernel and the infinite hori-
zon limit

We consider the case of a large horizon δ and the limit as δ → ∞. Being the most
studied setting for that limit, we only consider fractional diffusion.

In [33], the fractional Laplace operator is introduced as a special case of the nonlocal
diffusion operator given in (2.1). There it is shown that for a specific choice of kernel
γ, the weak solution of the nonlocal problem (3.7) converges, as δ → ∞, to the weak
solution of a similar problem governed by the fractional Laplace equation. Here, we
generalize this result by casting the problem of approximating fractional diffusion by
nonlocal models into our framework and thus allowing for different types of balls for
truncating the kernel function.

The fractional Laplace operator (−∆)s is the pseudo-differential operator with
Fourier symbol [59]

F((−∆)su)(ξ) = ‖ξ‖2s2 û(ξ) for 0 < s < 1,

where û denotes the Fourier transform of u. An equivalent characterization of the
fractional Laplacian is given by [54]

(−∆)su = cd,s

∫
Rd

u(x)− u(y)
‖y− x‖d+2s

2
dy for 0 < s < 1, (6.19)

where the normalizing constant cd,s is given by

cd,s =
22ssΓ(s+ d

2)
πd/2Γ(1− s)

. (6.20)

We consider the homogeneous volume constrained fractional Poisson problem{
(−∆)su(x) = f(x) for x ∈ Ω

u(x) = 0 for x ∈ Ωc,
(6.21)

where f ∈ L2(Ω). The associated constrained energy space is

Hs
c (Rd) = {u ∈ Hs(Rd) : u = 0 on Ωc},
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where Hs(Rd) denotes the Sobolev space of order s [3] given by

Hs(Rd) :=
{
u ∈ L2(Rd) : |u|Hs(Rd) :=

∫
Rd

∫
Rd

(u(x)− u(y))2

‖x− y‖d+2s
2

dydx <∞
}
.

A weak formulation of the problem (6.21) is given as

given f ∈ L2(Ω), find ud,s ∈ Hs
c (Rd) such that

Ad,s(ud,s, v) =
∫

Ω
fvdx for all v ∈ Hs

c (Rd),
(6.22)

with associated bilinear form
Ad,s(u, v)

:= cd,s

∫
Ω
v(x)

∫
Ω

(u(x)− u(y))
‖x− y‖d+2s

2
dydx +

∫
Ω
u(x)v(x)

∫
Ωc

cd,s

‖x− y‖d+2s
2

dydx.
(6.23)

For any u, v ∈ Hs
c (Rd) we can also write (compare to (3.10))

Ad,s(u, v) = cd,s
2

∫
Rd

∫
Rd

(u(x)− u(y)(v(x)− v(y))
‖x− y‖d+2s

2
dydx.

The existence and uniqueness of such ud,s ∈ Hs
c (Rd) is shown in [91] for all s ∈ (0, 1).

Note that the well-posedness theory developed in Chapter 3 does not apply to infinite
interactions. Furthermore, a Poincaré inequality of the form

‖v‖L2(Ω) ≤ CP
√
Ad,s(v, v) for all v ∈ Hs

c (Rd)

holds for bounded Lipschitz domains Ω with constant CP = CP (Ω, d, s) [2, Proposition
2.4].

Clearly, if the kernel γ in (2.1) is chosen as

γ(x,y) = cd,s

‖x− y‖d+2s
2

for x,y ∈ Rd, x 6= y, 0 < s < 1, (6.24)

then, the fractional Laplace operator (−∆)s is a special case of the nonlocal operator
−L defined in (2.1) corresponding to this specific choice for the kernel γ. Furthermore,
the strong and weak formulations (6.21) and (6.22) are special cases of (2.1) and (3.7)
with g = 0, respectively.

We aim to approximate weak solutions of the nontruncated fractional diffusion prob-
lem (6.22) by solutions of the nonlocal diffusion problem (3.7) with a truncated fractional
Laplacian kernel

γ(x,y) = cd,s

‖x− y‖d+2s
2
XBδ,•(x)(y) for x,y ∈ Rd, x 6= y, 0 < s < 1,

for different choices of norm induced balls Bδ,•(x). To this end, we make use of the
following lemma that gives precise formulas for the constant Cba in (6.18) for several
combinations of interaction balls. It is a special case of Lemma 6.1.5 with the fractional
kernel function

φ(r) = cd,s
rd+2s .
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Lemma 6.2.2. Let δ ≥ diam(Ω). Then, for the kernels

γa(x,y) := cd,s

‖x− y‖d+2s
2
XSa(x)(y) and γb(x,y) := cd,s

‖x− y‖d+2s
2
XSb(x)(y), (6.25)

where cd,s is defined in (6.20), the constant Cba from (6.18) is given by

Cba = Cd,sδ
−2s,

where Cd,s, which does not depend on δ, is given as follows.

i) Sa(x) = Bδ,2(x) and Sb(x) = Rd:

Cd,s = d

2sVdcd,s,

where
Vd =

√
πd

Γ
(
d
2 +1

) = volume of the d-dimensional unit ‖ · ‖2-ball.

ii) Sa(x) = Bδ,2(x) and Sb(x) = Bδ,∞(x), i.e., the ‖ · ‖2-ball of radius δ is inscribed
in the ‖ · ‖∞-ball having the same radius:

– d = 2,
C2,s = 1

sc2,s
(
π − 2

(
B̃(s+ 1

2 ,
1
2)− B̃ 1

2

(
s+ 1

2 ,
1
2

)))
,

where B̃ and B̃(·) denote the Beta function and the unregularized incomplete
Beta function, respectively.

– d = 3,
C3,s = c3,s

2
s

(
π

1 + 2s − p1 + 2p2 + 4p3
1 + 2s

)
,

with

p1 = B̃
(
s+ 1, 1

2

) (
B̃
(
s+ 1

2 ,
1
2

)
− B̃ 1

2

(
s+ 1

2 ,
1
2

))
p2 =

∫ π/4

0
cos(θ)2sB̃ 1

1+cos2(θ)
(s+ 1, 1

2)dθ

p3 =
∫ π/4

0

(
cos(θ)√

cos2(θ) + 1

)1+2s

dθ,

where p1, p2, and p3 can be computed numerically with a desired accuracy
since the integrands are smooth.

iii) Sa(x) = Bδ,∞(x) and Sb(x) = Rd:

– d = 2,
C2,s = 2

s
c2,s

(
B̃
(
s+ 1

2 ,
1
2

)
− B̃ 1

2

(
s+ 1

2 ,
1
2

))
> 0.

106



6.2. Application to large horizons and the infinite horizon limit

– d = 3,
C3,s = 2

s
c3,s

(
π

1 + 2s + p1 − 2p2 −
4p3

1 + 2s

)
> 0,

with pi from ii).

Proof. i) Inserting the fractional kernel function into (6.10) leads to

Cba = dVdcd,s

∫ ∞
δ

rd−1

rd+2sdr = dVdcd,s
δ−2s

2s .

ii) For d = 2, we insert the fractional kernel function into expression (6.11) and
obtain

Cab = 8
∫ π/4

0

∫ δ
cos(θ)

δ
φ(r)rdrdθ

= 8c2,s

∫ π/4

0

∫ δ
cos(θ)

δ

r

r2+2sdrdθ

= 8c2,s

∫ π/4

0

(
r−2s

−2s

)∣∣∣ δ
cos(θ)
δ dθ

= c2,s
4
s

(
π
4 δ
−2s −

∫ π/4

0

(
δ

cos(θ)

)−2s
dθ

)

= c2,s4
δ−2s

s

(
π
4 −

∫ π/4

0
cos2s(θ)dθ

)
.

We also have that∫ π/4

0
cos2s(θ)dθ =

∫ √2/2

1
t2s arccos′(t)dt

=
∫ √2/2

1

(
t2
)s (

1− t2
)0.5

dt

= −
∫ √2/2

1

(
t2
)s (

1− t2
)0.5

dt

=
∫ 1
√

2/2

(
t2
)s (

1− t2
)0.5 2t

2
√
t2
dt

= 1
2

∫ 1

1/2
ts−0.5(1− t)0.5dt

= 1
2

∫ 1

0
ts−0.5(1− t)0.5dt−

∫ 1/2

0
ts−0.5(1− t)0.5dt

= 1
2

(
B̃(s+ 1

2 ,
1
2)− B̃1

2
(s+ 1

2 ,
1
2)
)
.

Combining results yields the stated constant.
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For d = 3, we start from (6.12) in order to obtain

Cba = c3,s16
∫ π/4

0

∫ arctan(cos(θ1))

0

∫ δ
cos(θ1) cos(θ2)

δ

1
2r3+2s r

2 cos(θ2)drdθ2dθ1

+ c3,s16
∫ π/4

0

∫ π/2

arctan(cos(θ1))

∫ δ
sin(θ2)

δ

1
r2s+1 cos(θ2)drdθ2dθ1

= c3,s16
∫ π/4

0

∫ arctan(cos(θ1))

0
r−2s

−2s

∣∣∣ δ
cos(θ1) cos(θ2)
δ

cos(θ2)dθ2dθ1

+ c3,s16
∫ π/4

0

∫ π/2

arctan(cos(θ1))
r−2s

−2s

∣∣∣ δ
sin(θ2)
δ

cos(θ2)dθ2dθ1

= c3,s16 δ−2s

2s

∫ π/4

0

∫ arctan(cos(θ1))

0

(
1− cos2s(θ1) cos2s(θ2)

)
cos(θ2)dθ2dθ1

+ c3,s16 δ−2s

2s

∫ π/4

0

∫ π/2

arctan(cos(θ1))

(
1− sin2s(θ2)

)
cos(θ2)dθ2dθ1

= c3,s16 δ−2s

2s

∫ π/4

0

∫ π/2

0
cos(θ2)dθ2dθ1

− c3,s16 δ−2s

2s

∫ π/4

0

∫ arctan(cos(θ1))

0
cos2s(θ1) cos2s+1(θ2)dθ2dθ1

− c3,s16 δ−2s

2s

∫ π/4

0

∫ π/2

arctan(cos(θ1))
sin2s(θ2) cos(θ2)dθ2dθ1

= c3,s8 δ
−2s

s

(
π
4 − p

′
1 − p′2

)
.

For p′1 we first recall from ii) that∫ π/4

0
cos2s(t)dt = 1

2

(
B̃
(
s+ 1

2 ,
1
2

)
− B̃1

2

(
s+ 1

2 ,
1
2

))
and in a similar way we obtain∫ a

0
cos2s+1(t)dt = 1

2

(
B̃
(
s+ 1, 1

2

)
− B̃cos2(a)

(
s+ 1, 1

2

))
.

Thus, we find

p′1 =
∫ π/4

0
cos2s(θ1)

∫ arctan(cos(θ1))

0
cos2s+1(θ2)dθ2dθ1

=
∫ π/4

0
cos2s(θ1)

(
1
2

(
B̃
(
s+ 1, 1

2

)
− B̃cos2(arctan(cos(θ1)))

(
s+ 1, 1

2

)))
dθ1

= 1
2B̃

(
s+ 1, 1

2

)(
1
2

(
B̃
(
s+ 1

2 ,
1
2

)
− B̃1

2

(
s+ 1

2 ,
1
2

)))
− 1

2

∫ π/4

0
cos2s(θ1)B̃ 1

1+cos2

(
s+ 1, 1

2

)
dθ1
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= p1
4 −

p2
2 .

Now, consider p′2. We have

p′2 =
∫ π/4

0

∫ π/2

arctan(cos(θ1))
sin2s(θ2) cos(θ2)dθ2dθ1

=
∫ π/4

0

sin1+2s(θ2)
1 + 2s

∣∣∣∣∣
π/2

arctan(cos(θ1))
dθ1

= 1
1+2s

∫ π/4

0

(
1− sin1+2s(arctan(cos(θ1)))

)
dθ1

= 1
1+2s

(
π

4 −
∫ π/4

0
sin1+2s(arctan(cos(θ1)))dθ1

)

= 1
1+2s

(
π

4 −
∫ π/4

0

(
cos(θ1)√

cos(θ1)2 + 1

)1+2s

dθ1

)
= 1

1+2s
(
π
4 − p3

)
.

Inserting the last two results into

Cba = c3,s4 δ
−2s

s (π4 − p
′
1 − p′2)

yields

Cba = c3,s8 δ
−2s

2s
(
π
4 − p

′
1 − p′2

)
= c3,s8 δ

−2s

2s

(
π
4 −

p1
4 + p2

2 −
1

1+2s
(
π
4 − p3

))
.

which immediately leads to the stated result.
iii) Because Bδ,2(0) ⊂ Bδ,∞(0), we have∫

Rd\Bδ,∞(0)
φ(‖z‖)dz =

∫
Rd\Bδ,2(0)

φ(‖z‖)dz−
∫
Bδ,∞(0)\Bδ,2(0)

φ(‖z‖)dz

so that, for d = 2,

Cba = c2,s
δ−2s

2s π − c2,s
δ−2s

2s

(
π − 2B̃(s+ 1

2 ,
1
2) + 2B̃1

2
(s+ 1

2 ,
1
2)
)

which, canceling the common terms, is the stated result. For d = 3,

Cba = c3,s
δ−2s

s π − c3,s
1
s

(
2sπ

1+2s − p1 + 2p2 + 4p3
1+2s

)
which immediately leads to the stated result.

We now focus on ‖ · ‖∞-balls and specialize (6.17) to the two kernels in (6.25) with
Sa(x) = Bδ,∞(x) and Sb(x) = Rd so that Ab(u, v) = Ad,s(u, v), where Ad,s(u, v) is the
bilinear form (6.23) corresponding to the fractional Laplacian operator (6.19).
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Proposition 6.2.3. For d ∈ {2, 3} and for Sa(x) = Bδ,∞(x) with δ ≥ diam(Ω) and
Sb(x) = Rd,

Ad,s(u, v) = Aa(u, v) + Cd,s(u, v)L2(Ω)δ
−2s, (6.26)

where the constant Cd,s is given in Lemma 6.2.2 part (iii). Furthermore, the spaces
Hs
c (Rd) and V a

c (Rd) are equivalent and

|ud,s|Ω − ua|Ω|Hs(Ω∪ΩI) ≤ Cd,sC
a
P ‖ud,s‖L2(Ω)δ

−2s

‖ud,s|Ω − ua|Ω‖L2(Ω) ≤ Cd,s (CaP )2 ‖ud,s‖L2(Ω)δ
−2s,

where CaP denotes the uniform Poincaré constant for the space Hs
c (Ω ∪ΩI) independent

of δ; see Remark 3.3.8.

Proof. First we point out that in the notation of Section 6.1 and particularly Lemma
6.1.4, we here have that Ω ∪ Ωab

I = Rd and Ω ∪ Ωa
I = Ω ∪ ΩI , so that

|||u|||a = |u|Hs(Ω∪ΩI) =
∫

Ω

∫
Ω

cd,s (u− u′)2

‖x− y‖d+2s
2

dydx +
∫

Ω
u2
∫

ΩI

cd,s

‖x− y‖d+2s
2

dydx.

The relation (6.26) follows immediately from (6.17). An immediate consequence of (6.26)
is that

|Ad,s(u, v)−Aa(u, v)| ≤ Cd,s‖u‖L2(Ω)‖v‖L2(Ω)δ
−2s

so that the remaining assertions follow immediately as special cases of Lemma 6.1.3 and
Lemma 6.1.4 with g = 0.

Proposition 6.2.3 tells us that weak solutions of the truncated nonlocal problem (3.7)
with Sa(x) = Bδ,∞(x) converge to the weak solution of the fractional Laplace problem
(6.22) with a rate of 2s as the extent of nonlocal interactions increases, i.e., as δ → ∞.
The same results are shown for Sa(x) = Bδ,2(x) in [33].

Remark 6.2.4 (Implementation recipe). Related to Remark 6.2.1, Proposition 6.2.3
and in particular (6.26) suggest the following recipe for implementing finite element
methods for the fractional Laplacian with homogeneous volume constraints. We choose
the smallest δ possible, i.e., δ = diam(Ω), and compute the stiffness matrix of the (trun-
cated) nonlocal diffusion problem. This stiffness matrix is then “corrected” by adding
a scalar multiple of the mass matrix (u, v)L2(Ω) which is independent of δ and other
properties peculiar to the problem such as the fraction s, other kernel properties, etc.
This implies that, in practice, we do not have to be concerned with having to deal with a
“large” ball in the implementation process. For this purpose it was necessary to compute
the precise values for the constant Cba in Lemma 6.2.2.
We also want to mention that in [1] a related implementation recipe is considered. There,
a fixed ball containing the domain Ω is considered and an auxiliary mesh is used for the
intersection between this ball and the complement of Ω. Outside of the ball, spherical
coordinates are employed.
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Remark 6.2.5 (Extension to inhomogeneous problems and other kernels).
i) The results of this section can be extended to the case of inhomogeneous volume con-
straints. In particular, the assembly process for the stiffness matrices for the fractional
Laplacian problem and for the truncated nonlocal problem remain unchanged. One issue
that does arise for inhomogeneous volume constraints is that the implementation of the
second term of the right-hand side (3.4), i.e.,∫

Ω
v(x)

∫
Ωc
g(y)γ(x,y)dydx

requires computing integrals of the Dirichlet data g over the complement domain. Of
course, this issue arises in the implementation of any numerical method for the fractional
Laplacian problem with inhomogeneous Dirichlet-type volume constraints. Because g is a
given function, the needed integrals can be approximated using suitable quadrature rules
and appropriate truncation for the fractional Laplace equation.
ii) The considerations of this section not only hold for the fractional Laplacian problem,
but can be extended to other settings such as, e.g., other types of radial kernels; see, e.g.,
Lemma 6.1.5.

6.2.2 A numerical example

We illustrate the results of Proposition 6.2.3 for the case of ‖ · ‖∞-balls such that Ω ⊂
Bδ,∞(x), for all x ∈ Ω, for a sequence of increasing δ. Specifically, we consider Ω =
(0, 1)2, which we uniformly discretize with a fixed grid size h = 2−8. Furthermore we
choose s = 0.4, and

δi = 2iδ0, for i ∈ {4, 5, . . . , 8}

with δ0 := 1.4453125 so that

δ0 > diam(Ω) =
√

2 and δ0
h
∈ N.

We use Q1 elements and exploit the multilevel Toeplitz structure of the stiffness matrix;
see Chapter 5. In Table 6.1, ud,s denotes a surrogate for the solution of the fractional
problem (6.22) whereas ua denotes the solution of (3.7) with the kernel γa(x,y) given in
(6.25) with Sa(x) = Bδ,∞(x). The results presented in Table 6.1 show that, as predicted
by the results in Proposition 6.2.3, the convergence rate of 2s = 0.8 is achieved for both
the L2-norm and the energy norm.
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δ ‖ud,s − ua‖L2 rate ‖ud,s − ua‖Hs rate

24δ0 0.019 0.825 0.027 0.826
25δ0 0.011 0.815 0.015 0.814
26δ0 0.006 0.809 0.009 0.808
27δ0 0.003 0.807 0.005 0.804
28δ0 0.002 0.804 0.003 0.802

Table 6.1: For s = 0.4, comparisons of a numerical surrogate for the weak solution
ud,s of the fractional Laplacian problem (6.22) with finite element approximations
of the weak solutions ua of (3.7) corresponding to finite ‖ · ‖∞-balls for several
interaction horizons δ.

6.3 Application to approximate interaction sets

We now pick up on the discussion of Section 4.4 where we introduce the notion of
approximate interaction sets. The motivation is to ease the subdivision task arising
along the numerical integration of the inner integral in (4.21) by intentionally allowing
for geometric errors, thereby leading to approximations Sh(x) to the exact interaction
set S(x).

As in Section 4.2 we assume that Ω∪ΩI is a polyhedral domain for which we have a tri-
angulation T h into finite elements. Let

{
V h
}
h>0

denote a sequence of finite-dimensional
subspaces V h ⊂ V (Ω ∪ ΩI) consisting of piecewise polynomials defined with respect to
T h. The numerical quadrature discussed in Section 4.3 for discretizing the nonlocal
bilinear form A and the linear functional ` leads to approximate bilinear and linear
forms

Ah : V h
c (Ω ∪ ΩI)× V h

c (Ω ∪ ΩI)→ R, `h : V h
c (Ω ∪ ΩI)→ R. (6.27)

We want to discuss the effect of the discretization on the global finite element error with
a focus on considering approximate interaction sets. A fundamental result in the finite
element theory which proves useful to initiate such an investigation is given by Strang’s
first lemma, which we recall for convenience (see, e.g., [44, Lemma 2.17]).

Theorem 6.3.1 (Strang’s first lemma). Let (H, ‖·‖H) be a Hilbert space and A : H×
H → R a coercive and continuous bilinear form, not necessarily symmetric, and ` ∈ H∗.
Further we consider finite-dimensional subspaces Hh ⊂ H and let Ah : Hh×Hh → R be
uniformly Hh-elliptic, i.e.,

Ah(uh, uh) ≥ β‖uh‖2H for all h, and all uh ∈ V h
c (Ω ∪ ΩI),

for some β > 0 independent of h, and let `h be a linear functional on Hh. Let u ∈ H
be, such that A(u, v) = `(v) for all v ∈ H and analogously uh ∈ Hh be, such that
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Ah(uh, vh) = `h(vh) for all v ∈ Hh. Then there exists a constant CS > 0 independent of
h, such that

||u− uh||H ≤ CS

 inf
vh∈Hh

‖u− vh‖H + sup
wh∈Hh

∣∣∣(A−Ah)(vh, wh)
∣∣∣

‖wh‖H


+ sup

wh∈Hh

∣∣∣(`− `h)(wh)
∣∣∣

‖wh‖H

 . (6.28)

Strang’s first lemma derives an upper bound for the global discretization error, which
consists of two parts. On the one hand we have the so-called approximation or interpo-
lation error

I(h) := inf
vh∈Hh

‖u− vh‖H , (6.29)

which is affected by the choice of the ansatz space V h, and on the other hand we have
the so-called consistency errors

sup
wh∈Hh

∣∣∣(A−Ah)(vh, wh)
∣∣∣

‖wh‖H
and sup

wh∈Hh

∣∣∣(`− `h)(wh)
∣∣∣

‖wh‖H
,

which can be controlled by carefully chosen quadrature rules.
Let us cast the setting of the latter theorem into our framework. In Chapter 3

we have considered a class of integrable kernels for which the nonlocal bilinear form
A is coercive and continuous on

(
Lc(Ω ∪ ΩI), ‖ · ‖L2(Ω∪ΩI)

)
and also a class of sin-

gular kernels for which A shares these properties on the fractional Sobolev space(
Hs
c (Ω ∪ ΩI), | · |Hs(Ω∪ΩI)

)
. Thus, these spaces are natural choices for (H, ‖ · ‖H) in

Strang’s first lemma. Furthermore we have deduced that these spaces are equivalent to
the nonlocal constrained energy space

(
Vc(Ω ∪ ΩI), ||| · ||| =

√
A(·, ·)

)
, so that this can

also be considered a candidate space for H. In the following we keep H = H(Ω∪ΩI) as
placeholder for the spaces just mentioned. For the finite-dimensional subspaces however
we have considered the same piecewise polynomial finite element basis functions in each
case, so that we can consider Hh = V h.

For simplicity, we now assume that the quadrature rules which we employ to arrive at
the discretized forms Ah and `h are exact for the integrands appearing in the respective
integrals over the finite elements. For example, for a kernel γ and a forcing term f
which are smooth within each element, we can choose a standard Gaussian quadrature
rule of sufficiently high order; note that we are considering piecewise polynomial basis
functions. Thus, under this assumption, we find that

sup
wh∈Hh

∣∣∣(`− `h)(wh)
∣∣∣

‖wh‖H
= 0
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and consequently, the consistency error is only effected by

sup
wh∈Hh

∣∣∣(A−Ah)(vh, wh)
∣∣∣

‖wh‖H

which arises due to considering geometric approximations to the interaction sets. In the
view of Section 6.1, to compare A and Ah we can consider two kernels, the original kernel

γa(x,y) := γ(x,y) = φ(x,y)χS(x)(y)

and the kernel involving the approximate interaction set, i.e.,

γb(x,y) := γh(x,y) := φ(x,y)χSh(x)(y).

The result presented in Corollary 6.1.1 then enables us to derive an estimate for the
difference in bilinear forms (A− Ah)(vh, wh) appearing in (6.28). Since the two kernels
solely differ in the choice of interaction sets, we are in the case of Remark 6.1.2 i), and
can carry over the results as follows. If

Cba = Cba(h) = max
{

sup
x∈Ω

∫
S(x)4Sh(x)

φdy, sup
x∈Ω

∫
S(x)4Sh(x)

φ′dy
}
<∞, (6.30)

then by invoking Corollary 6.1.1 we find∣∣∣(A−Ah)(u, v)
∣∣∣ ≤ 2Cab(h)‖u‖L2(Ω)‖v‖L2(Ω) (6.31)

for all u, v ∈ L2
c(Ω ∪ Ωab

I ).
We now combine Strang’s first lemma with (6.31) in order to arrive at the following

bound for the global finite element error in the setting just discussed.

Corollary 6.3.2 (Approximate balls). Let (H(Ω∪ΩI), ‖ · ‖H) be a Hilbert space with
‖ · ‖H satisfying a Poincaré type inequality

‖u‖H ≥ CP ‖u‖L2(Ω) for all u ∈ L2
c(Ω ∪ ΩI). (6.32)

We assume that the nonlocal bilinear form A is coercive and continuous on H and for
a forcing term f and Dirichlet data g let u ∈ H denote the unique solution of the weak
problem (3.7) posed on H. Further let Ah and `h be as in (6.27). We assume that Ah is
uniformly V h

c -elliptic and for `h let uh denote the solution of the discrete problem (4.6).
Finally we require Cba(h) <∞ with Cba(h) from (6.30). Then it follows that

‖u− uh‖H ≤ CS
(
1 + 2Cba(h)C2

P

)
I(h) + 2CSCba(h)C2

P ‖u‖H ,

where CS > 0 is the constant from Strang’s Lemma and I(h) the interpolation error
defined in (6.29). Applying (6.32) also yields

‖u− uh‖L2(Ω) ≤ CS
( 1
CP

+ Cba(h)CP
)
I(h) + CSCba(h)CP ‖u‖H .
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Proof. Since the requirements for Strang’s first lemma (6.28) are fulfilled, we find

||u− uh||H ≤ CS

 inf
vh∈V hc

||u− vh||H + sup
wh∈V hc

∣∣∣(A−Ah)(vh, wh)
∣∣∣

‖wh‖H


+ sup

wh∈V hc

∣∣∣(`− `h)(wh)
∣∣∣

‖wh‖H

 .
Since we assume perfect quadrature, the last term vanishes identically, i.e.,

sup
wh∈V hc

∣∣∣(`− `h)(wh)
∣∣∣

‖wh‖H
= 0.

Invoking (6.31) and (6.32) we find

sup
wh∈V hc

∣∣∣(A−Ah)(vh, wh)
∣∣∣

‖wh‖H
≤ 2Cba(h)C2

P ‖vh‖H

≤ 2Cba(h)C2
P

(
‖u− vh‖H + ‖u‖H

)
,

where the second inequality follows from triangle inequality on H. We finally obtain the
desired estimate

‖u− uh‖H ≤ CS inf
vh∈V hc

{
‖u− vh‖H + 2Cba(h)C2

P

(
‖u− vh‖H + ‖u‖H

)}
= CS

(
1 + 2Cba(h)C2

P

)(
inf

vh∈V hc
‖u− vh‖H

)
+ 2CSCba(h)C2

P ‖u‖H .

Hence, we can conclude that the finite element error is dominated by either the inter-
polation error I(h) or the geometric error Cab(h). In the next subsection we concretize
these thoughts and draw conclusions for specific examples.

6.3.1 Numerical examples for different approximate balls

We now specify to norm induced interaction sets S(x) = Bδ,•(x) for a norm ‖ · ‖• and
a fixed interaction horizon δ > 0. We aim to define approximate balls Sh(x) = Bh

δ,•(x)
which ease the quadrature of the inner integral in (4.21). In the following we only discuss
approaches which completely circumvent the subdivision task discussed in Section 4.3.2.

In restricting to norm induced balls we find that the constant of interest given in
(6.30) becomes

Cab(h) = max
{

sup
x∈Ω

∫
Bδ,•(x)4Bh

δ,•(x)
φdy, sup

x∈Ω

∫
Bδ,•(x)4Bh

δ,•(x)
φ′dy

}
<∞.
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We assume that δ > h and

Bδ,•(x)4Bh
δ,•(x) ⊂ B(δ+h),•(x)\B(δ−h),•(x). (6.33)

The latter requirement (6.33) is fulfilled by the examples of approximate balls Bh
δ,•(x)

considered in the numerical study below. Now let us estimate Cab(h) in oder to determine
the order of the consistency error. By (6.33) we first find that

Cab(h) ≤

sup
x∈Ω

sup
y∈Bδ,•(x)4Bh

δ,•(x)
max

{
φ, φ′

} ∣∣∣B(δ+h),•(0)\B(δ−h),•(0)
∣∣∣ . (6.34)

Clearly, the second factor satisfies∣∣∣B(δ+h),•(0)\B(δ−h),•(0)
∣∣∣ ≤Mh

for some constant M = M(d, δ, •) > 0. Hence, it remains to analyze how the first factor
in (6.34) depends on h, which relies on the choice of the kernel function φ. For this
purpose we restrict ourselves to radial, thereby symmetric, and monotonically decreasing
kernel functions

φ(x,y) = φ(‖x− y‖]). (6.35)

Typical examples are constant kernel functions φ(x,y) = const, the truncated fractional
kernel function φ(x,y) = cd,s

‖x−y‖d+2s
2

, the peridynamics kernel function φ(x,y) = 1
‖x−y‖2

as well as Gaussian type kernel functions of the form φ(x,y) = exp
(
−c‖x−y‖]

δ2

)
all of

which are ubiquitous in the relevant literature; see, e.g., [36, 78, 27, 33] and the references
therein. Furthermore, let h0 ∈ (0, δ) be a maximum grid size such that h ∈ (0, h0]. Then,
due to the equivalence of norms in Rd, we find a constantK = K(d, •, ]) > 0 independent
of h such that for y ∈ B(δ+h),•(x)\B(δ−h),•(x) we have

‖x− y‖] ≥ K‖x− y‖• ≥ K(δ − h) ≥ K(δ − h0).

Thus, since φ(x,y) = φ(‖x− y‖]) is assumed to be monotonically decreasing we find

sup
y∈B(δ+h),•(x)\B(δ−h),•(x)

φ(x,y) ≤ φ(K(δ − h0))

which is independent of the grid size h ∈ (0, h0]. All in all we can conclude that there
exists a constant L = L(δ, d, •, ]) > 0 independent of h ∈ (0, h0], such that

Cba(h) ≤ Lh

and by Corollary 6.3.2 we can at most expect a first-order convergence for kernel func-
tions of type (6.35) and approximate interaction sets satisfying (6.33).

We now present three different preliminary approaches to approximate the exact
ball. All of them satisfy assumption (6.33) and avoid the subdivision task for the inner
integral which we have detailedly discussed in Section 4.3.2. In Figure 6.7 these examples
are depicted. Let in the following x ∈ E ∈ T h.
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• Example 1: We integrate over all elements E ′ which are intersected by the exact
ball, i.e.,

Bh
δ,•(x) :=

⋃{
E ′ ∈ T h : Bh

δ,•(x) ∩ E ′ 6= ∅
}
.

• Example 2: We integrate over all elements E ′ whose barycenter xbaryE ′ lies in the
exact ball, i.e.,

Bh
δ,•(x) :=

⋃{
E ′ ∈ T h : xbaryE ′ ∈ B

h
δ,•(x)

}
.

• Example 3: We integrate over all elements E ′ whose barycenter is at most a
distance of δ away from the barycenter of E , i.e.,

Bh
δ,•(x) := Bh

δ,• :=
⋃{
E ′ ∈ T h : ‖xbaryE − xbaryE ′ ‖• < δ

}
.

We want to point out that the third example allows the use of vectorized quadrature,
since we consider the same ball Bh

δ,• for all x ∈ E .
In the numerical experiment we use the following problem setting. We consider

problem (3.7) on Ω = (0, 1)2, with homogeneous Dirichlet data g = 0, and with the
following kernel, which is truncated by ‖ · ‖∞-balls, given by

γ(x,y) = cδχBδ,∞(x)(y), where δ = 0.1, cδ = 3
4δ4 .

For computing convergence rates as h → 0, we construct a manufactured solution.
Therefore, we consider u(x) := p(x1)p(x2) for some function p : R → R with anti-
derivative P : R → R and compute the corresponding right-hand side f(x) := −Lu(x).
For homogeneous volume constraints, i.e., g = 0, and x = (x1, x2) ∈ Ω we find

f(x) =
∫
Bδ,∞(x)

(u(x)− u(y)) γ(x,y)dy

=cδu(x)|Bδ,∞(x)| − cδ
∫
Bδ,∞(x)

u(y)dy

=cδu(x)4δ2 − cδ
∫ min(x1+δ,1)

max(x1−δ,0)

∫ min(x2+δ,1)

max(x2−δ,0)
p(y1)p(y2)dy2dy1

=cδ
(
u(x)4δ2 −

(
P (min(x1 + δ, 1))− P (max(x1 − δ, 0))

)
·
(
P (min(x2 + δ, 1))− P (max(x2 − δ, 0))

))
.

Now we set p(x) := sin(2πx), such that P (x) = − 1
2π cos(2πx) and therefore

u(x) =
{

sin(2πx1) sin(2πx2) : x ∈ Ω
0 : x ∈ ΩI .

We assemble the stiffness matrix with the exact ‖ · ‖∞-ball by executing the re-
triangulating task for the inner integral, and with the three examples of approximate
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Example 1 Example 2

Example 3

Figure 6.7: The three examples of approximate balls considered in the numerical
experiments of Table 6.2. In all images the thick solid black line indicates the
exact interaction set, here S(x) = Bδ,2(x), centered at the black dot x in the yellow
triangle E . The dashed lines indicate the enclosing balls B(δ−h),2(x) and B(δ+h),2(x)
from (6.33). The respective approximate interaction sets Bhδ,2(x) are represented by
the blue lines. All three approaches are based on the underlying grid and contain
whole triangles, which are colored orange. In addition to that, the red line in the
bottom image of Example 3 indicates the ball Bδ,2(xbary) centered at the red star-
shaped barycenter xbary of the yellow triangle. In this case, the approximate ball
is the same for all points in the yellow triangle.



6.3. Application to approximate interaction sets

Exact Example 1 Example 2 Example 3

h ||| · ||| rate ||| · ||| rate ||| · ||| rate ||| · ||| rate

h1 0.291 1.91 3.184 0.46 0.375 0.89 1.107 0.86
h2 0.077 1.94 2.319 0.65 0.202 0.87 0.610 1.17
h3 0.020 1.96 1.481 0.79 0.110 0.92 0.271 1.03
h4 0.005 1.91 0.857 0.88 0.058 0.94 0.133 1.00
h5 0.001 - 0.464 - 0.030 - 0.067 -

Table 6.2: We consider grids of size hi = 0.2 · 2−i, 1 ≤ i ≤ 5 and report on the
convergence rates with respect to the given exact solution measured in the energy
norm ||| · |||.

balls introduced above. The results are presented in Table 6.2. As predicted by the
theory, we find that the use of first-order ball approximations deteriorates the nearly
second-order convergence rates observed of the exact ball. However, the assembly times
for the approximate balls were up to three times faster than the assembly time needed
for the exact ball.

6.3.2 Concluding remarks and future work

Approximate interaction sets represent a promising approach to ease finite element im-
plementations for nonlocal models involving truncated kernels; particularly truncations
induced by the Euclidean ball. The examples presented are all based on “whole triangle”-
approaches and only lead to first-order approximations. Thus, in future work other types
which might lead to higher order geometric approximations need to be considered and
investigated more in depth. For instance, let us consider Euclidean balls in 2d. Yet
another geometric approximation would arise by simply neglecting the circular segments
or by considering a re-triangulation thereof into several polyhedral subelements. This
should lead to a better, but still cost saving, approximation and is worth being analyzed.
In this regard, also a rigorous analysis of the error arising from the quadrature rules as
well as the validness of the uniform V h

c -ellipticity has to be conducted. All in all, this
section serves as the basis for further considerations and the idea of approximate inter-
action sets may potentially contribute to the realization of tractable 3d finite element
implementations for nonlocal models.
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Chapter 7

Vanishing nonlocality for general
norm induced balls

As in Section 6.2, we treat the size of the interaction set as a varying parameter and
therefore specialize to norm induced balls in this chapter. Opposed to the infinite limit
δ →∞ considered in the aforementioned section, we now consider the local limit as the
horizon vanishes, i.e., δ → 0. In this case we asymptotically change the nature of the
model from a nonlocal to a local one and different analytical tools have to be consulted.
It is a well known fact [85, 38, 37, 84, 10], that the nonlocal weak solution corresponding
to an appropriately scaled ‖ · ‖2-radial kernel with bounded second moment converges
as the interaction horizon vanishes to the weak solution of the classical Poisson equation
(4.29) involving the Laplace operator. We extend this result to kernels which are radial
with respect to any norm in Rd and truncated by any norm induced ball, but satisfy an
analogue scaling condition.

After setting up notation in Section 7.1, we establish necessary convergence results
for the nonlocal operator and the nonlocal bilinear form in Section 7.2. Then in Section
7.3 we estimate the nonlocal energy norm associated with a kernel satisfying our more
general setting against the energy norm of the standard setting, which is crucial for the
analysis presented in this chapter. In fact, combining this estimate with the results of the
previous section brings us into a position to invoke established results from the standard
case. Finally, in Section 7.4 we provide the exact scaling constants for several example
kernels which we then use in Section 7.5 for numerical tests confirming the theoretical
results of this chapter.

7.1 Preliminaries

For small horizon, i.e., δ � 1, and for the local limit the case of Euclidean interaction
balls in combination with radial kernel functions φ(x,y) = φ(‖y−x‖2) has been studied,
e.g., in [85], where it is shown that if∫

Bδ,2(0)
z2

1φ(‖z‖2)dz = C <∞,
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then for sufficiently smooth u, v that vanish on the interaction domain ΩI we find

A(u, v) =
∫

Ω∪ΩI

∫
Ω∪ΩI∩Bδ,2(x)

(
u(x)−u(y)

)(
v(x)− v(y)

)
φ(‖y− x‖2)dydx

−→
δ→0

C

∫
Ω
∇u(x) · ∇v(x)dx = CAloc(u, v)

and, in addition, that weak solutions of (3.7) with g = 0 converge, as δ → 0, to weak
solutions of a corresponding (local) partial differential equation.

We proceed along the lines of the aforementioned papers to show that these results
hold independently of the norm ‖ · ‖• chosen for the ball or the norm ‖ · ‖] chosen for
the kernel function, i.e., they hold for kernels (K2) of the form

γδ,•,](x,y) = φ(‖x− y‖])χBδ,•(x), (7.1)

where the ball is defined as Bδ,•(x) := {y ∈ Rd : ‖y − x‖• < δ} for x ∈ Rd and some
norm ‖ · ‖• and φ(x,y) = φ(‖x − y‖]) is radial with respect to some norm ‖ · ‖]. We
define

−Lδ,•,]u(x) := 2
∫

(Ω∪ΩI)∩Bδ,•(x)

(
u(x)− u(y)

)
φ(‖y− x‖])dy,

Aδ,•,](u, v) :=
∫

Ω∪ΩI

∫
(Ω∪ΩI)∩Bδ,•(x)

(
u(x)− u(y)

)(
v(x)− v(y)

)
φ(‖y− x‖])dydx,

Kδ,•,] :=
∫
Bδ,•(0)

z2
1φ(‖z‖])dz,

A0(u, v) :=
∫

Ω
∇u(x) · ∇v(x)dx.

(7.2)
For simplicity, in the rest of this chapter we omit the subscript •, ] and abbreviate the
objects above by γδ, Lδ, Aδ, and Kδ.

Remark 7.1.1. Without loss of generality we scale the nonlocal operator L by a factor
of 2 in (7.2). This cancels the factor of 1

2 appearing in the Taylor expansion up to the
second derivative. Furthermore, we consider homogeneous Dirichlet data g = 0 in this
chapter. Since we also consider radial and thereby symmetric kernels, we find that the
nonlocal bilinear form defined in (3.5) can be written as (3.10) which coincides with the
definition in given in (7.2) considering the scaled operator.

The following lemma proves useful in the other proofs of this chapter.

Lemma 7.1.2.
i) Let h : Rd → R denote an odd function, i.e., h(−z) = −h(z). Then,∫

S
h(z)dz = 0.
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for all S ⊂ Rd with S = −S, e.g., S = Bδ,•(0).

ii) Let γδ(x,y) be given as in (7.1). Then, with z = y− x, we have∫
Bδ,•(x)

(yi − xi)2 γδ(x,y)dz =
∫
Bδ,•(0)

z2
1 φ(‖z‖])dz for i = 1, . . . , d

and
∫
Bδ,•(0)

zizkφ(‖z‖])dz = 0 for i, k = 1, . . . , d, k 6= i.

iii) For the scaling constant Kδ defined in (7.2) we have

Kδ
−1
∫
Bδ,•(0)

z2
1φ(‖z‖])dz = 1, Kδ

−1
∫
Bδ,•(0)

zT zφ(‖z‖])dz = d

and Kδ
−1
∫
Bδ,•(0)

zzTφ(‖z‖])dz = Id .

Proof.
i) We have ∫

S
h(z)dz =

∫
S
h(−z)|(−1)d|dz = −

∫
S
h(z)dz = 0.

ii) The first result follows by considering the transformation Si(z) which swaps the first
and i-th component of the vector z and for which Si(Bδ,•(0)) = Bδ,•(0), ‖Si(z)‖] = ‖z‖]
and | det dSi(z)| ≡ 1. The second follows by considering the transformation Ri(z) :=
(z1, ...,−zi, ..., zd) for which Ri(Bδ,•(0)) = Bδ,•(0), ‖Ri(z)‖] = ‖z‖] and |det dRi(z)| ≡
1.
iii) Note that ∫

Bδ,•(0)
zT zφ(‖z‖])dz =

∑
1≤i≤d

∫
Bδ,•(0)

z2
i φ(‖z‖])dz

and ∫
Bδ,•(0)

zzTφ(‖z‖])dz =
(∫

Bδ,•(0)
zizjφ(‖z‖])dz

)
1≤i≤d,1≤j≤d

.

Thus, the three equalities are immediate consequences of ii).

7.2 Convergence results for operators

We have the following result concerning the convergence of the nonlocal operator and
nonlocal bilinear form to their local analogs. The proofs of i) and ii) are an immediate
consequence of Taylor expansion and the scaling requirement, whereas iii) is closely
related to the considerations in [38, Section 3.3] for the standard setting.
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Proposition 7.2.1. Let the kernel γδ(x,y) be as in (7.1). Then,
i) K−1

δ Lδu(x) = ∆u(x) +O(δ2)
for all x ∈ Ω and u ∈ C∞(Ω ∪ ΩI) with support in Ω;

ii) K−1
δ Aδ(u, v) = A0(u, v) +O(δ2)

for all u, v ∈ C∞(Ω ∪ ΩI) with support in Ω;
iii) |K−1

δ Aδ(u, v)−A0(u, v)| = O(δ)

where for (iii), T h = {Ej}j refers to a triangulation of Ω ∪ ΩI where we assume
v, u|Ej ∈ Cq(Ej) for Ej ∈ T h with q ≥ 2 and u, v ∈ C0(Ω∪ΩI)∩H1(Ω∪ΩI) with support
in Ω. �

Proof. i) For any x ∈ Ω we have

−Lδu(x) = 2
∫
Bδ,•(0)

(u(x)− u(x + z))φ(‖y‖])dy.

Because u is assumed to be smooth, we can approximate the difference (u(x)−u(x+z))
by the Taylor polynomial

−(u(x)− u(x + z)) =
∑
|α|≤n

zα

α!d
αu(x) +O(δn),

where α denotes a multi-index and n ∈ N. We then obtain

−Lδu(x) = −2
∑
|α|≤n

∫
Bδ,•(0)

(zα

α!d
αu(x) +O(δn)

)
φ(‖z‖])dz.

Recognizing that all polynomials zα for odd |α| are odd functions, we find that their
product with the kernel vanish identically under the integral by statement i) in Lemma
7.1.2. Also, for the kernel φ(‖z‖]),

−2O(δn)
∫
Bδ,•(0)

φ(‖z‖])dz = −2KδO(δn)O(δ−2) = KδO(δn−2).

For |α| = 2, we obtain from parts i) and iii) of Lemma 7.1.2 that

−
d∑
i=1

(Hu(x))ii
∫
Bδ,•(0)

z2
i φ(‖z‖])dz

=
(∫

Bδ,•(0)
z2

1 φ(‖z‖])dz
)

d∑
i=1
− (Hu(x))ii = −Kδ∆u(x),

noting that all first order terms in {zα : |α| = 2} are odd functions. For other even
orders |α| = m we find that

−2
∑
|α|=m

∫
Bδ,•(0)

zα

α!d
αu(x)φ(‖z‖])dz = O(δm−2).
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Thus, terms of order higher than n = 4 can be neglected and O(δ2) is the highest rate
we can expect.
ii) For the nonlocal bilinear form Aδ(·, ·), we can write

Aδ(u, v) =
∫

Ω∪ΩI

∫
(Ω∪ΩI)∩Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx

=
∫

Ω

∫
Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx

+
∫

ΩI

∫
Ω∩Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx.

Because u and v are supported in Ω second summand becomes∫
ΩI

∫
Ω∩Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx

=
∫

ΩI

∫
Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx,

where we identity u, v with their zero extensions to all of Rd. Thus, we obtain

Aδ(u, v) =
∫

Ω∪ΩI

∫
Bδ,•(x)

(u(x)− u(y))(v(x)− v(y))φ(x,y)dydx

=
∫

Ω∪ΩI

∫
Bδ,•(0)

(u(x)− u(z + x))(v(x)− v(z + x))φ(‖z‖])dzdx.

Because u and v are assumed to be smooth, we can approximate the difference −(u(x)−
u(z+x)) by the Taylor polynomial −(u(x)−u(x+z)) = ∇u(x) ·z+ 1

2zTHu(x)z+O(δ2)
and analogously for v. Thus, we obtain

Aδ(u, v) =
∫

Ω∪ΩI

∫
Bδ,•(0)

(
∇u(x)T z + 1

2zTHu(x)z +O(δ2)
)

·
(
∇v(x)T z + 1

2zTHv(x)z +O(δ2)
)
φ(‖z‖])dzdx.

We next expand the brackets and analyze the resulting terms. By part i) of Lemma
7.1.2 all the first-order terms as well as the first-order terms multiplied by second-order
terms vanish identically. For example, we find

O(δ2)∇u(x)T
∫
Bδ,•(0)

z φ(‖z‖])dz = 0,

and ∫
Bδ,•(0)

∇u(x)T z
(1

2zTHv(x)z
)
φ(‖z‖])dz = 0.

Furthermore, we obtain

O(δ2)
∫

Ω∪ΩI

∫
Bδ,•(0)

zTHu(x)z φ(‖z‖])dzdx = KδO(δ2)
∫

Ω∪ΩI
∆u(x)dx,
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O(δ2)
∫

Ω∪ΩI

∫
Bδ,•(0)

zTHv(x)z φ(‖z‖])dzdx = KδO(δ2)
∫

Ω∪ΩI
∆v(x)dx

and

O(δ4)
∫

Ω∪ΩI

∫
Bδ,•(0)

φ(‖z‖])dzdx = KδO(δ4)O(δ−2)|Ω ∪ ΩI |

as well as ∫
Ω∪ΩI

∫
Bδ,•(0)

(1
2zTHu(x)z

)(1
2zTHv(x)z

)
φ(‖z‖])dzdx

= KδO(δ2)1
4
∑
i,j,k,l

∫
Ω∪ΩI

H ij
u (x)Hkl

v (x)dx.

Finally, by part iii) of Lemma 7.1.2 we find∫
Ω∪ΩI

∫
Bδ,•(0)

∇u(x)T z ∇v(x)T z φ(‖z‖])dzdx

=
∫

Ω∪ΩI
∇u(x)T

( ∫
Bδ,•(0)

zzTφ(‖z‖])dz
)
∇v(x)dx = Kδ

∫
Ω∪ΩI

∇u(x)T∇v(x)dx.

All in all we therefore obtain

K−1
δ Aδ(u, v) =

∫
Ω∪ΩI

∇u(x)T∇v(x)dx +O(δ2) =
∫

Ω
∇u(x)T∇v(x)dx +O(δ2).

We do not achieve a higher convergence rate when using higher-order Taylor polynomials
because then, e.g., first-order terms meet third-order terms, which only give a rate of
O(δ2).
iii) As in i) we identify u, v by their zero extension to Rd and can consider

Aδ(u, v) =
∫

Ω∪ΩI

∫
Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx.

Because we have the triangulation T h of Ω ∪ ΩI , we can further write

Aδ(u, v) =
∑
Ej

∑
Ej ′

∫
Ej

∫
Ej ′∩Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx.

Without loss of generality let δ � hT h , such that all elements Ej only interact with their
neighboring elements. Thus we have

Aδ(u, v) =
∑
Ej

∫
Ej

∫
(Ej∪EjI)∩Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx,

where EjI denotes the interaction domain corresponding to Ej . Now let us consider the
problem element-wise. By partitioning an element δ into Ein and Eout, where Eout :=
E ∩Bδ,•(∂E) and Ein := E\Eout (see Figure 7.1), we obtain∫

E

∫
(E∪EI)∩Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx
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=
∫
Ein

∫
Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx

+
∫
Eout

∫
(E∪EI)∩Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx

= T1 + T2.

Ein

Eout

Figure 7.1: Illustration of the subsets Eout := E ∩Bδ,•(∂E) and Ein := E\Eout.

Let us first consider T1. Since x, z ∈ E we can consider the Taylor series expansion
−(u(x)− u(x + z)) = ∇u(x)T z + 1

2zTHu(x)z +O(δ2) leading to

T1 =∫
Ein

∫
Bδ,•(0)

(
∇u(x)T z + zTHu(x)z

2 +O(δ2)
)
·

·
(
∇v(x)T z + zTHv(x)z

2 +O(δ2)
)
φ(‖z‖])dzdx

=
∫
Ein

∫
Bδ,•(0)

∇u(x)T z∇v(x)T zφ(‖z‖])dz

+
∫
Ein

∫
Bδ,•(0)

∇u(x)T z
(1

2zTHv(x)z
)
φ(‖z‖])dz

+O(δ2)
∫
Ein

∫
Bδ,•(0)

∇u(x)T zφ(‖z‖])dz

+
∫
Ein

∫
Bδ,•(0)

∇v(x)T z
(1

2zTHu(x)z
)
φ(‖z‖])dz

+
∫

Ω∪ΩI

∫
Bδ,•(0)

(1
2zTHu(x)z

)(1
2zTHv(x)z

)
φ(‖z‖])dzdx

+O(δ2)1
2

∫
Ω∪ΩI

∫
Bδ,•(0)

zTHu(x)z φ(‖z‖])dzdx

+O(δ2)
∫
Ein

∫
Bδ,•(0)

∇v(x)T zφ(‖z‖])dz
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+O(δ2)
∫

Ω∪ΩI

∫
Bδ,•(0)

zTHv(x)z φ(‖z‖])dzdx

+O(δ4)
∫

Ω∪ΩI

∫
Bδ,•(0)

φ(‖z‖])dzdx.

Because all first-order terms and products of first-order terms and third-order terms
vanish identically under the integral by Lemma 7.1.2 i), we obtain

K−1
δ T1 =

∫
Ein
∇u(x)T∇v(x)dz +O(δ2)1

4
∑
i,j,k,l

∫
Ω∪ΩI

H ij
u (x)Hkl

v (x)dx

+O(δ2)
∫

Ω∪ΩI
∆u(x)dx +O(δ2)

∫
Ω∪ΩI

∆v(x)dx +O(δ4)O(δ−2)|Ω ∪ ΩI |

=
∫
Ein
∇u(x)T∇v(x)dz +O(δ2).

Since |E\Ein| = O(δ) (and the gradients may be constant) we thus find that

T1 = Kδ

( ∫
K
∇u(x)T∇v(x)dz +O(δ)

)
.

Now let us consider the second term T2. Here, we integrate over the boundary of the
elements and we can no longer apply the same Taylor expansion argument to u(x)−u(z),
because the convex combination of x and z may now cross the boundary of E and the
gradient is allowed to have jumps there. We can get around this by developing the Taylor
series around a point on the boundary. More precisely, let xp denote the orthogonal
projection of x onto an edge of E which is intersected by the convex combination of x
and z. We have that ‖xp − x‖ < δ, since xp lies in the ball around x. Further, by
splitting the integral over (E ∪ EI) into a sum of integrals over neighboring elements
E ′, it is clear that xp only depends on x, which is crucial here. We now consider the
expansions

u(x) = u(xp) +∇u(xp)T (x− xp) +O(δ)
uI(z) = u(xp) +∇uI(xp)T (z− xp) +O(δ).

The subscript on uI indicates that z may also lie in the interaction domain of E , implying
that ∇uI(xp) and ∇u(xp) depend on the element from which one we approach the limit.
Now, we subtract both lines and exploit that z− xp = z− x + x− xp, which gives

u(x)− uI(z) = (∇u(xp)−∇uI(xp))T (x− xp)−∇uI(xp)T (z− x) +O(δ).

We apply the same procedure to the function v. Let us define

du(xp) := ∇u(xp)−∇uI(xp), gu(xp) := ∇uI(xp)

and the same for v. Inserting this into the expression for T2 yields

T2 =
∫
Eout

∫
(E∪EI)∩Bδ,•(x)

(u(x)− u(z))(v(x)− v(z))φ(‖x− z‖])dzdx
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=
∫
Eout

∫
(E∪EI)∩Bδ,•(x)

(
du(xp)T (x− xp)− gu(xp)T (z− x) +O(δ)

)
·

·
(
dv(xp)T (x− xp)− gv(xp)T (z− x) +O(δ)

)
φ(‖x− z‖])dzdx

=
∫
Eout

du(xp)T (x− xp)dv(xp)T (x− xp)
∫
Bδ,•(x)

φ(‖x− z‖])dzdx

−
∫
Eout

du(xp)T (x− xp)gv(xp)T
∫
Bδ,•(x)

(z− x)φ(‖x− z‖])dzdx

+O(δ)
∫
Eout

du(xp)T (x− xp)
∫
Bδ,•(x)

φ(‖x− z‖])dzdx

−
∫
Eout

dv(xp)T (x− xp)gu(xp)T
∫
Bδ,•(x)

(z− x)φ(‖x− z‖])dzdx

+
∫
Eout

gu(xp)T
(∫

Bδ,•(x)
(z− x)(z− x)Tφ(‖x− z‖])dz

)
gv(xp)dx

−O(δ)
∫
Eout

gu(xp)T
∫
Bδ,•(x)

(z− x)φ(‖x− z‖])dzdx

+O(δ)
∫
Eout

dv(xp)T (x− xp)
∫
Bδ,•(x)

φ(‖x− z‖])dzdx

−O(δ)
∫
Eout

gv(xp)T
∫
Bδ,•(x)

(z− x)φ(‖x− z‖])dzdx

+O(δ2)
∫
Eout

∫
Bδ,•(x)

φ(‖x− z‖])dzdx.

By Lemma 7.1.2, we then have∫
Bδ,•(x)

(z− x)φ(‖x− z‖])dz = (0, . . . , 0)

and ∫
Bδ,•(x)

(z− x)(z− x)Tφ(‖x− z‖])dz = KδId

as well as ∫
Bδ,•(x)

φ(‖x− z‖])dz = KδO(δ−2)

and ∫
Eout

dx = O(δ),

so that we obtain

Kδ
−1T2 = O(δ−2)

∫
Kout

du(xp)T (x− xp)dv(xp)T (x− xp)dx

+O(δ)O(δ−2)
∫
Kout

du(xp)T (x− xp)dx +
∫
Kout

gu(xp)T gv(xp)dx

+O(δ)O(δ−2)
∫
Kout

dv(xp)T (x− xp)dx +O(δ2)O(δ−2)O(δ).
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Recalling that ‖x− xp‖2 = O(δ) and |Eout| = O(δ), we can estimate this by |Kδ
−1T2| ≤

O(δ). Finally, by summing up over all elements we obtain the estimate.

Remark 7.2.2. On a fixed grid, (iii) in Proposition 7.2.1 implies that the difference
between any of the entries of the nonlocal and local stiffness matrices K−1

δ Aδ and A0,
respectively, is O(δ).

As a consequence of Proposition 7.2.1 we obtain the following result concerning
convergence of the operator with respect to the L2(Ω) norm.
Corollary 7.2.3 (L2 convergence). For all u ∈ C∞0 (Ω∪ΩI) with support in Ω we find

‖K−1
δ Lδu−∆u‖L2(Ω) −→

δ→0
0.

Proof. Let u ∈ C∞0 (Ω ∪ ΩI) with support in Ω. Then by Proposition 7.2.1 i) we have
shown the pointwise convergence of the function −K−1

δ Lδu to −∆u as δ → 0. In order to
apply the dominated convergence theorem we further need an integrable upper bound.
For this purpose let us consider, as in the proof of Proposition 7.2.1, the Taylor expansion

−Lδu(x) = −Kδ∆u(x) +O(δ4)
∫
Bδ,•(0)

φ(‖y‖])dy.

Because u ∈ C∞0 with support in the bounded domain Ω, we find a constant C(u) > 0
independent of x such that | − ∆u(x)| ≤ C(u). Due to the definition of the scaling
constant Kδ, we can further find a constant C ′ > 0 such that∫

Bδ,•(0)
φ(‖y‖])dy ≤ KδC

′δ−2.

Thus

| −K−1
δ Lδu(x)| ≤ C(u) + C ′′(u)δ4C ′δ−2 = C(u) + C ′′(u)C ′δ2 ≤ C(u) + C ′′(u)C ′

where the last inequality follows because δ � 1. As the right-hand side is independent
of x and δ, we find

sup
δ∈(0,1]

sup
x∈Ω
| −K−1

δ Lδu(x)| <∞.

7.3 Convergence results for weak solutions

The results of Section 7.2 state the convergence of the nonlocal operator and bilinear form
to their local counterparts. In this section, we show the L2-convergence of the nonlocal
weak solution uδ(x) to the local weak solution u0(x) as δ → 0. For this purpose we need
to provide additional results which enable us to invoke the same convergence proof as in
[85, Theorem 2.5] which in this paper is established for the “standard” case

γδ(x,y) = φ(‖x− y‖2)χBδ,2(x)(y). (7.3)

Crucial for the convergence proof in [85] are two results, a uniform nonlocal Poincaré
inequality and a compactness result. For convenience, we recall these results.
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Lemma 7.3.1 (Uniform Poincaré inequality [85, Lemma 3.2]). There exists a con-
stant Cp > 0 such that ‖u‖2L2(Ω) ≤ Cp|||u|||δ for all δ ∈ (0, 1] and u ∈ L2

c(Ω ∪ ΩI).

Lemma 7.3.2 (Compactness result [85, Lemma 3.3]). Given a sequence {δn}n such
that δn → 0 as n→∞, we denote by un ∈ V n

c (Ω ∪ ΩI) the associated nonlocal solution.
If supn |||un||| < ∞, then there exists a subsequence (unj )j and a function u∗ ∈ H1

0 (Ω)
such that unj → u∗ in L2(Ω).

In order to make these results applicable to our more general case, i.e., to the kernel
(7.1), we have to estimate the energy norm induced by such a kernel against the energy
norm induced by the standard kernel (7.3). The following lemma is devoted to this aim.
Note that an additional monotonicity assumption is invoked.

Lemma 7.3.3. Let γδ(x,y) be as in (7.1) and assume that φ : (0,∞)→ R is monoton-
ically decreasing. Then, there exists a kernel γ′δ(x,y) = γ′δ,2,2(x,y) with∫

Rd
z2

1γ
′
δ(‖z‖2)dz = 1

and a constant C > 0 independent of δ such that

|||u|||′ ≤ C|||u|||,

where ||| · |||′ and ||| · ||| denote the energy norms induced by the kernels γ′δ and γδ,
respectively. For instance ||| · ||| =

√
A(·, ·).

Proof. Because we consider homogeneous volume constraints, we can identify the asso-
ciated nonlocal solutions with their zero extension to all of Rd. From the assumptions,
it follows that there exist constants c1 ≥ 1 and c2 < 1 such that
• either the norms have already the desired property to exploit the monotonicity of φ or
we have to increase ‖ · ‖2, so that

φ(c1‖z‖2) ≤ φ(‖z‖]),

and
• we want to consider a ‖ · ‖2-ball which is contained in the ‖ · ‖]-ball, so that

χBc2δ,2(x)(y) ≤ χBδ,•(x)(y) or equivalently c2Bδ,2(0) ⊂ Bδ,•(0).

Then, we introduce the auxiliary kernel

γ′δ(x,y) := 1
K ′δ

φ(c1‖z‖2)χBc2δ,2(x)(y),

where
K ′δ :=

∫
Rd
z2

1φ(c1‖z‖2)χBc2δ,2(0)(y)dz =
∫
Bc2δ,2(0)

z2
1φ(c1‖z‖2)dz

≤
∫
Bδ,•(0)

z2
1φ(‖z‖])dz = Kδ.
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Then, by construction, γ′δ(x,y) = γ′δ(‖x − y‖2),
∫
Rd z

2
1γ
′
δ(‖z‖2)dz = 1, and γ′δ(x,y) ≤

Kδ
K′
δ
γδ(x,y). We therefore find that

|||u|||′ ≤ Kδ

K ′δ
|||u|||.

In order to verify the latter, let us consider u : Rd → R with u ≡ 0 on Rd\Ω and
|||u||| <∞. Then we find

|||u|||′2 =
∫

Ω∪Ω′
δ

∫
Ω∪Ω′I

(u(x)− u(y))2γ′δ(x,y)dydx

=
∫

Ω

∫
Ω

(u(x)− u(y))2γ′δ(x,y)dydx + 2
∫

Ω
u(x)2

∫
Ω′I
γ′δ(x,y)dydx

≤ Kδ

K ′δ

∫
Ω

∫
Ω

(u(x)− u(y))2γδ(x,y)dydx + 2Kδ

K ′δ

∫
Ω
u(x)2

∫
Ω′I
γδ(x,y)dydx

≤ Kδ

K ′δ

∫
Ω

∫
Ω

(u(x)− u(y))2γδ(x,y)dydx + 2Kδ

K ′δ

∫
Ω
u(x)2

∫
ΩI
γδ(x,y)dydx

= Kδ

K ′δ
|||u|||2,

where the last inequality follows from Ω′I ⊂ ΩI since c2Bδ,2(0) ⊂ Bδ,∗(0) due to the
choice of c2. To complete the proof, we show that

Kδ

K ′δ
=

∫
Bδ,•(0) z

2
1φ(‖z‖])dz∫

Bc2δ,2(0) z
2
1φ(c1‖z‖2)dz

can be bounded above by some constant independent of δ. For this purpose we first
note that we can choose c1 and c2 above in such a way that c1c2 ≤ 1. This is due
to the fact that c1 can be bounded (due to norm equivalences) and depending on that
bound we can then choose c2 sufficiently small. Consequently, φ(c1c2‖z‖2) ≥ φ(‖z‖2)
due to the monotonicity assumption on φ. Furthermore, due to the norm equivalences,
we can choose a bounded c3 ≥ 1 independent of δ such that Bδ,•(0) ⊂ c3Bδ,2(0) and
φ(c3‖z‖]) ≤ φ(‖z‖2). Combining all these considerations we find

K ′δ =
∫
Bc2δ,2(0)

z2
1φ(c1‖z‖2)dz = cd+2

2

∫
Bδ,2(0)

z2
1φ(c1c2‖z‖2)dz

≥ cd+2
2

∫
Bδ,2(0)

z2
1φ(‖z‖2)dz

and also

Kδ =
∫
Bδ,•(0)

z2
1φ(‖z‖])dz ≤

∫
c3Bδ,2(0)

z2
1φ(‖z‖])dz = cd+2

3

∫
Bδ,2(0)

z2
1φ(c3‖z‖])dz

≤ cd+2
3

∫
Bδ,2(0)

z2
1φ(‖z‖2)dz.
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Thus, we find that

Kδ

K ′δ
≤ cd+2

3
cd+2

2
=: C(d, •, ], 2) = C

which defines an upper bound for this quotient that is independent of δ.

With the help of this result, it is straightforward to see that Lemmata 7.3.1 and 7.3.2
also hold for the nonstandard case. Thus, these two results together with Proposition
7.2.1 and Corollary 7.2.3, provide the necessary foundations for the following theorem,
whose proof proceeds in complete analogy to the one in [85, Theorem 2.5] for the “stan-
dard” case and therefore is omitted here.

Theorem 7.3.4 (Convergence of weak solutions). With the same assumptions as
in Lemma 7.3.3, we obtain

‖uδ − u0‖L2(Ω) → 0 as δ → 0.

7.4 Example scaling constants

The following lemma provides the correct scaling constant Kδ for several combinations
of kernels and ball types which is necessary for concrete numerical computations.

Lemma 7.4.1. Let the kernel γδ(x,y) be as in (7.1), Kδ be as in (7.2) and let Φ(r)
denote the first antiderivative of the kernel function φ(r). Then,

i) for the the ‖ · ‖2-ball and φ radial with respect to the ‖ · ‖2-norm

Kδ = bd
d

∫ δ

0
φ(r)rd+1dr with

d 1 2 3 4 5

bd 2 π 4
3π

1
2π

2 8
15π

2
.

ii) for φ ≡ 1 (see Figure 7.2 for an illustration in 1d) and

a) the ‖ · ‖1-ball, Kδ = 2d+1

(d+ 2)!δ
d+2

b) the ‖ · ‖2-ball, Kδ = bd
d+ 2δ

d+2

c) the ‖ · ‖∞-ball, Kδ = 2d

3 δ
d+2

iii) a few examples for d = 2

a) φ radial with respect to ‖ · ‖1-norm and ‖ · ‖1-ball

Kδ =
∫
Bδ,1(0)

z2
1φ(‖z‖1)dz = 2 · 2

(
δ3

3 Φ(δ)−
∫ δ

0
s2Φ(s)ds

)
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b) φ radial with respect to ‖ · ‖2-norm and ‖ · ‖2-ball

Kδ =
∫
Bδ,2(0)

z2
1φ(‖z‖2)dz = 3 · π

(
δ3

3 Φ(δ)−
∫ δ

0
s2Φ(s)ds

)

c) φ radial with respect to ‖ · ‖∞-norm and ‖ · ‖∞-ball

Kδ =
∫
Bδ,∞(0)

z2
1φ(‖z‖∞)dz = 4 · 4

(
δ3

3 Φ(δ)−
∫ δ

0
s2Φ(s)ds

)

d) φ radial with respect to ‖ · ‖2-norm and ‖ · ‖∞-ball

Kδ = π

∫ δ

0
φ(r)r3dr + 4

( ∫ π/4

0
cos(θ)2

∫ δ/ cos(θ)

δ
φ(r)r3drdθ

+
∫ π/2

π/4
cos(θ)2

∫ δ/ sin(θ)

δ
φ(r)r3drdθ

)
.

Note that the assumption φ ≡ 1 is without loss of generality.

Proof. i) We apply the transformation Φ: [0, π]d−2 × [0, 2π]× [0, δ]→ Bδ,2(0), where

Φ(θ, r) := r


cos(θ1)

sin(θ1) cos(θ2)
...

sin(θ1) sin(θ2) · · · sin(θd−2) cos(θd−1)
sin(θ1) sin(θ2) · · · sin(θd−1)


with | det Φ(θ, r)| = rd−1∏d−2

i=1 sin(θi)d−i−1. Thus by Lemma 7.1.2 iii) we obtain

dKδ =
∫
Bδ,2(0)

zT zφ(‖z‖2)dz

=
∫ π

0
. . .

∫ π

0

∫ 2π

0

∫ δ

0
Φd(θ, r)2φ(r)rd−1

d−2∏
i=1

sin(θi)d−i−1drdθd−1 . . . dθ1

=
( ∫ δ

0
φ(r)rd+1dr

)(∫ π

0
. . .

∫ π

0

∫ 2π

0

( d−1∏
i=1

sin(θi)
)2 d−2∏

i=1
sin(θi)d−i−1dθd−1 . . . dθ1

)
.

Now it remains to compute the second factor. We find

bd :=
∫ π

0
. . .

∫ π

0

∫ 2π

0

(
d−1∏
i=1

sin(θi)
)2 d−2∏

i=1
sin(θi)d−i−1dθd−1 . . . dθ1

=
(∫ 2π

0
sin(θd−1)2dθd−1

)
·
d−2∏
i=1

∫ π

0
sin(θ)d−i+1dθ = π

d−2∏
i=1

∫ π

0
sin(θ)d−i+1dθ.
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Further, by applying formulas for integrating powers of trigonometric functions we obtain

∫ π

0
sin(x)kdx =


(
k−1
k

k−3
k−2 · · ·

1
2

)
π : k even(

k−1
k

k−3
k−2 · · ·

2
3

)
2 : else.

For different k we find for example
k 2 3 4 5∫ π

0 sin(x)kdx π 4
3

3
8π

2 16
15

Finally, by building the product up to (d− 2) we find the values for bd presented in the
lemma.
iia) We can show that

Kδ =
∫
Bδ,1(0)

z2
1dz = 2d

∫ δ

0

∫ s1

0
· · ·
∫ sd−1

0
s2
ddsd . . . ds1,

which can be computed with the help of the following formula (which is a consequence
of Fubini’s Theorem)∫ δ

0

∫ s1

0
· · ·
∫ sd−1

0
f(sd)dsd . . . ds1 = 1

(d− 1)!

∫ δ

0
(δ − t)d−1f(t)dt.

Here f(t) = t2 and thus

Kδ = 2d

(d− 1)!

∫ δ

0
(δ − t)d−1t2dt.

Applying integration by parts twice leads to the stated result.
iib) This is a special case of i).
iic) Here we have

Kδ =
∫
Bδ,∞(0)

z2
1dz = 2d

∫ δ

0
· · ·
∫ δ

0
s2

1dsd . . . ds1 = 2dδd−1 δ
3

3 .

iiia) Here

Kδ =
∫
Bδ,1(0)

z2
1φ(‖z‖1)dz = 4

∫ δ

0

∫ δ−s

0
s2φ(s+ t)dtds = 4

∫ δ

0
s2
∫ δ

s
φ(t)dtds

= 4
∫ δ

0
s2 (Φ(δ)− Φ(s)) ds = 4

(
δ3

3 Φ(δ)−
∫ δ

0
s2Φ(s)ds

)
.

iiib) This is a special case of i) and we can rewrite it in analogy to the other cases with
the help of partial integration

Kδ = π

∫ δ

0
φ(r)r3dr = π

(
s3Φ(s)|δ0 −

∫ δ

0
3s2Φ(s)ds

)
= π

(
δ3Φ(δ)− 3

∫ δ

0
s2Φ(s)ds

)
.
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Chapter 7. Vanishing nonlocality for general norm induced balls

iiic) We apply the transformation Φ(θ, r) := (s, t) such that Bδ,∞(0)
= {Φ(s, t) : s, t ∈ (−δ, δ)} and |det dΦ(s, t)| = 1 and only integrate over the first (posi-
tive) quadrant. Thus we obtain

Kδ =
∫
Bδ,∞

z2
1φ(‖z‖∞)dz = 4

∫ δ

0

∫ δ

0
s2φ(max {s, t})dtds

= 4
∫ δ

0

∫ s

0
s2φ(s)dtds+ 4

∫ δ

0

∫ δ

s
s2φ(t)dtds

= 4
∫ δ

0
s3φ(s)ds+ 4

∫ δ

0
s2(Φ(δ)− Φ(s))ds

= 4
(
s3Φ(s)|δ0 −

∫ δ

0
3s2Φ(s)ds

)
+ 4δ

3

3 Φ(δ)− 4
∫ δ

0
s2Φ(s)ds

= 4δ3Φ(δ)− 12
∫ δ

0
s2Φ(s)ds+ 4δ

3

3 Φ(δ)− 4
∫ δ

0
s2Φ(s)ds

= 16
(
δ3

3 Φ(δ)−
∫ δ

0
s2Φ(s)ds

)
.

iiid) First we partition the domain of integration which yields

Kδ =
∫
Bδ,∞(0)

z2
1φ(‖z‖2)dz =

∫
Bδ,2(0)

y2
1φ(‖z‖2)dz +

∫
Bδ,∞(0)\Bδ,2(0)

z2
1φ(‖z‖2)dz.

We apply the same procedure as in the proof of Lemma 6.1.5 with the difference that
we have to partition the domain into 4 instead of 8 equal pieces now due to the presence
of the term z2

1 . We obtain∫
Bδ,∞(0)\Bδ,2(0)

z2
1φ(‖z‖2)dz

=4
(∫ π/4

0

∫ u1(θ)

δ
cos(θ)2φ(r)r3drdθ +

∫ π/2

π/4

∫ u2(θ)

δ
cos(θ)2φ(r)r3drdθ

)

where u1(θ) = δ/ cos(θ) and in the same way we can derive u2(θ) = δ/ sin(θ), again by
intersecting “rays” with the boundary of Bδ,∞(0). More precisely,

u2(θ) := ‖r(θ) ∩ {(0, δ) + λ(δ, 0) : λ ∈ (0, 1)} ‖2

where
r(θ) = {λ(cos(θ), sin(θ)) : λ ≥ δ} .
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Figure 7.2: A one-dimensional example of a truncated constant kernel
γ(|x|) = Kδ

−1χ|x|<δ, which is scaled according to ii) in Lemma 7.4.1 for δ ∈
{0.5, 0.25, 0.125, 0.0625}. As δ → 0 this kernel approaches the Dirac delta func-
tion.

7.5 Numerical examples

We provide two numerical examples illustrating the theoretical results given in Proposi-
tion 7.2.1. In all our tests we discretize the weak form of the nonlocal equation by the
finite element method using continuous piecewise linear basis functions.

Example 1. Let Ω = (0, 3), γ = 3
2δ3χ(x−δ,x+δ)(y), and δ ∈ {0.1 · 2−i : i = 0, . . . , 9}.

For fixed functions u, v, we investigate the convergence behavior of |Aδ(u, v)− a0(u, v)|
as δ → 0.

Row (a) in Table 7.1 corresponds to case (i) of Proposition 7.2.1 since u and v are
C∞ functions. As predicted, we observe a convergence rate of 2.001; this rate is obtained
by a linear fit of the data. Row (b) corresponds to case (iii) of the same lemma since
u and v are piecewise smooth functions. In general, we should expect only a first-order
convergence rate. However, an examination of the proof of Proposition 7.2.1 given in
Section 7.2 shows that the overall rate of 1 relies on the regularity of the gradients. In
example (b) either u or v is zero outside of [1, 2], i.e., T2 (from the proof of Proposition
7.2.1 iii)) convergences to 0 with a rate higher than 1. Thus, the convergence depends
on T1, given by

K−1
δ T1 =

∫ 2−δ

1+δ
∇u(x)T∇v(x)dx +O(δ2).

Because ∇u(x)T∇v(x) is not constant for u and v in (b), in fact u′(x) ∼
√
x, we find

that
K−1
δ T1 =

∫ 2−δ

1+δ
u′(x)v′(x)dx+O(δ2)→

∫ 2

1
u′(x)v′(x)dx

with a rate higher than 1, namely 1.5. In fact, in our experiment, we observe a rate
of 1.498. Row (c) also corresponds to case (iii), but in this case we consider functions
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(a)
u(x) =

{
e

−1
1−(x−1)2 x ∈ [0, 2]

0 else

v(x) =
{
e

−1
1−(x−2)2 x ∈ [1, 3]

0 else

(b)

u(x) =


x x ∈ [0, 1]

(2− x)
3
2 x ∈ (1, 2]

0 else

v(x) =


(x− 1)2 x ∈ [1, 2]
(3− x)3 x ∈ (2, 3]
0 else

(c) u(x) =


x x ∈ [0, 1]

(2− x)
3
2 x ∈ (1, 2]

0 else

v(x) = u(x)

Table 7.1: Plots of u(x) (red) and v(x) (blue).

whose gradients are constant in [0, 1]. Therefore the best we can obtain is a rate of 1;
in fact, we observe a rate of 1.012.

Example 2. We consider the nonlocal problem (2.1) on the domain Ω = (0, 1)2 with
a kernel γ(x,y) = 1

Cδ,•
χBδ,•(x)(y) for ‖ · ‖1-, ‖ · ‖2-, and ‖ · ‖∞-balls, a constant source

term f ≡ 1, and homogeneous Dirichlet data g ≡ 0. We discretize the problem with P1
elements on a uniform grid of size h = 1/8 for several interaction radii δ ∈ {0.1·2−i : i =
0, . . . , 6} and compare the resulting stiffness matrices and weak solutions to their local
counterparts. The results are presented in Table 7.2. As shown in Lemma 7.2.1 we
observe a rate of 1 as δ → 0.
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7.5. NUMERICAL EXAMPLES 139

Ball ‖Aδ −A0‖F |uδ − u0|H1
0 (Ω)

`∞ 0.926 1.007
`2 0.940 1.062
`1 0.967 0.999

Table 7.2: Convergence rates as δ → 0 derived as linear fit of the measurements.
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Chapter 8

Shape optimization for identifying
interfaces in nonlocal models

Shape optimization problems which are constrained by partial differential equations are
of interest in many fields of application [69, 51, 76, 77] and particularly for inverse
problems where the parameter to be estimated, e.g., the diffusivity in a heat equation
model, is assumed to be defined piecewise on certain subdomains. Given a rough picture
of the configuration, shape optimization techniques can be successfully applied to identify
the detailed shape of these subdomains [73, 71, 72, 92].

In this chapter we transfer the problem of parameter identification into a nonlocal
regime. Here, the parameter of interest is given by the kernel which specifies the nonlocal
convection-diffusion model. We assume that the kernel is defined piecewise with respect
to certain disjoint subdomains Ωi ⊂ Ω with smooth boundaries. Since the kernel is a
two-point function accounting for interactions between two possibly disjoint points, it
has to interrelate all subdomains. Thus, such a kernel is naturally composed of certain
partial kernels γij each accounting for nonlocal interactions between one of the possible
combinations of two subdomains Ωi × Ωj . We refer to such a kernel as mixed kernel in
the remainder. A nonlocal convection-diffusion model defined through a mixed kernel
depends on the interfaces between the respective subdomains. Under the assumption
that we know the rough setting but are lacking in details, we can apply the techniques
developed in the aforementioned papers to identify those interfaces.

For this purpose we formulate a shape optimization problem which is constrained
by an interface-dependent nonlocal convection-diffusion model. Here, we do not aim at
investigating conceptual improvements of existing shape optimization algorithms. On
the contrary, we want to study the applicability of established methods for problems of
this type. Thus this chapter can be regarded as a feasibility study where we set a focus
on the numerical implementation.

The realization of this plan basically requires two ingredients both of which are
worked out in this chapter. First, we need to define a reasonable interface-dependent
nonlocal model and provide a finite element code which discretizes a variational for-
mulation thereof. Second, we need to derive the shape derivative of the corresponding
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Chapter 8. Shape optimization for identifying interfaces in nonlocal models

nonlocal bilinear form which is then implemented into an overall shape optimization
algorithm.

This leads to the following organization of the present chapter. In Section 8.1 we for-
mulate the shape optimization problem including an interface-dependent nonlocal model.
Once established, we briefly recall basic concepts from the shape optimization universe
in Section 8.2. Then, an individual section, namely Section 8.3, is devoted to the task
of computing the shape derivative of the nonlocal bilinear form since this represents a
novelty in the current literature. Along the way we have to further specialize the kernel
and therefore remark some properties of the resulting nonlocal model at the end of this
section. Finally we present numerical illustrations in Section 8.4 corroborating theoret-
ical findings and close this chapter with a summarizing section including an outline for
future investigations in this field.

8.1 Problem formulation

Let Ω ⊂ Rd denote a bounded domain. We assume that this domain is partitioned into
a simply connected interior subdomain Ω1 ⊂ Ω with boundary Γ := ∂Ω1 and a domain
Ω2 := Ω\Ω1. Thus we have Ω = Ω(Γ) = Ω1∪̇Γ∪̇Ω2, where ∪̇ denotes the disjoint union.
Figure 8.1 illustrates this situation. In the following, the boundary Γ of the interior
domain Ω1 is called the interface and is assumed to be an element of an appropriate
shape space; see also Section 8.2 for a related discussion. Now suppose we are given
certain measurements ū : Ω→ R on the domain Ω, which we assume to follow a nonlocal
model of the form (2.1) with a kernel γ, a forcing term f and Dirichlet data g = 0. We
assume that the system parameters of the model, or more specific the kernel, account for
anisotropic diffusion and convective effects induced by the interface Γ. Thus we think
of the interface as being variable and consider a kernel γ = γΓ : Rd×Rd → R and also a
forcing term f = fΓ : Ω→ R which both depend in a way on the interface. Then, given
the data ū we aim at identifying the interface Γ for which the nonlocal solution u(Γ)
corresponding to the kernel γΓ and the right-hand side fΓ is the “best approximation”
to the measurements.

Ω1

Ω2

Γ

Figure 8.1: An example interface configuration.
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8.1. Problem formulation

Mathematically spoken, we formulate an optimal control problem with a tracking-
type objective functional where the interface Γ, modeled as a shape, represents the
control variable. We now assume Ω := (0, 1)2 and ū ∈ L2(Ω) and introduce the following
nonlocally constrained shape optimization problem

min
Γ

J(u,Γ)

s.t. AΓ(u, v) = `Γ(v) for all v ∈ Vc(Ω ∪ ΩI).

The objective functional is given by

J(u,Γ) := j(u,Γ) + jreg(Γ) := 1
2

∫
Ω

(u− ū)2 dx + ν

∫
Γ

1ds.

The first term j(u,Γ) is a standard L2 tracking-type functional “projecting” the data on
the set of reachable solutions, whereas the second term jreg(Γ) is known as the perimeter
regularization, which is commonly used in the related literature to overcome possible ill-
posedness of optimization problems [9]. The constraint equation is the homogeneous
weak formulation (3.7) of the nonlocal convection-diffusion problem with defining forms

AΓ(u, v) := (−LΓu, p)L2(Ω) and `Γ(v) := (fΓ, v)L2(Ω), (8.1)

where LΓ denotes the interface-dependent nonlocal convection-diffusion operator

−LΓu(x) :=
∫
Rd

(u(x)γΓ(x,y)− u(y)γΓ(y,x)) dy.

We postpone the definition of an appropriate energy space Vc(Ω ∪ ΩI) until the end of
this section.

Remark 8.1.1. For simplicity, we consider homogeneous Dirichlet data g = 0 in this
chapter. In this case we find L = LΩ according to the splitting defined in (3.1). Thus,
by adding some appropriate zero terms, the nonlocal bilinear form as defined in (3.5)
coincides with the definition given in (8.1), which reads as

AΓ(u, v) =
∫

Ω
(−LΓu) vdx =

∫
Ω
v

∫
Rd

(
uγΓ − u′γ′Γ

)
dydx. (8.2)

Since throughout this chapter we need to manipulate the nonlocal bilinear form a couple
of times, for the ease of illustration it is advantageous to use representation (8.2) despite
potential zero evaluations of the integrand.

The operator LΓ depends on the interface Γ through the kernel γΓ : Rd × Rd → R.
According to (2.23), by defining

α(x,y) := (x− y)
‖x− y‖2

, ΘΓ(x,y) := γsΓ Id, µΓ(x,y) := −γaΓα,
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Chapter 8. Shape optimization for identifying interfaces in nonlocal models

we find that

LΓu := D(ΘΓGu)−D(µΓu). (8.3)

We consider a mixed kernel accounting for anisotropic diffusivity ΘΓ and convectivity
µΓ induced by the interface in the following way

γΓ(x,y) =


γ11(x,y) : (x,y) ∈ Ω1 × Ω1
γ22(x,y) : (x,y) ∈ (Ω2 ∪ ΩI)× Ω2
γ12(x,y) : (x,y) ∈ Ω1 × (Ω2 ∪ ΩI)
γ21(x,y) : (x,y) ∈ (Ω2 ∪ ΩI)× Ω1.

(8.4)

We can write this more concisely as

γΓ(x,y) =
∑

i,j=1,2
γij(x,y)χΩi×Ωj (x,y),

where we suppress an explicit designation of the interaction domain ΩI by redefining

Ω2 := (Ω ∪ ΩI)\Ω1.

By recalling the definition γsΓ = 1
2(γΓ + γ′Γ) we find for the symmetric part of this kernel

γsΓ(x,y) =
∑

i,j=1,2

(γij + γ′ji)
2 χΩi×Ωj (x,y).

Thus, if γii = γ′ii, γ12 = γ′21 and γ′12 = γ21, then we have γ = γs implying that the mixed
kernel is symmetric in such cases. Further we assume that each of the partial kernels γij
is truncated by the same family of interaction sets satisfying (S1) and (S2) from Section
3.2, so that we can consider

γΓ(x,y) = φΓ(x,y)χS(x)(y),

for some appropriate interface-dependent kernel function φΓ. The associated nonlocal
bilinear form (8.2) is then given by

AΓ(u, v) =
∫

Ω
v(x)

∫
Rd

(u(x)γΓ(x,y)− u(y)γΓ(y,x))dydx

=
∑

i,j=1,2

∫
Ωi
v(x)

∫
Ωj∩S(x)

(u(x)φij(x,y)− u(y)φji(y,x)) dydx,

for u, v ∈ Vc(Ω ∪ ΩI). Since there are mixed kernels γΓ, for which the nonlocal bilinear
form AΓ is not necessarily coercive (we later provide an example in (8.28)), we cannot
define ||| · ||| as in (3.6).

Along the optimization process we also need to consider the adjoint operator L∗Γ of
the nonlocal convection-diffusion operator LΓ with respect to the L2(Ω) inner product.
We find

L∗Γv(x) =
∫
Rd

(v(y)− v(x))γΓ(x,y)dy,
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which, with the above definitions of the parameters ΘΓ and µΓ, can be written as

L∗Γv(x) = DΘΓGv −
∫
Rd
GvTµΓ dy.

This duality is an immediate consequence of the relation D∗ = −G when applied to (8.3).
Note that if the kernel is symmetric, i.e., if γaΓ = 0, then the operator is self-adjoint, i.e.,
L∗Γ = LΓ. The associated bilinear form is given by

A∗Γ(v, u) = (−L∗Γv, u)L2(Ω) =
∫

Ω
u(x)

∫
Rd

(v(x)− v(y)) γΓ(x,y)dydx

=
∑

i,j=1,2

∫
Ωi
u(x)

∫
Ωj∩S(x)

(v(x)− v(y))φij(x,y)dydx.

By the definition of the adjoint operator we have

A∗Γ(v, u) = (−L∗Γv, u)L2(Ω) = (v,−LΓu)L2(Ω) = AΓ(u, v) = A′Γ(v, u). (8.5)

Remark 8.1.2. Relation (8.5) also implies that the nonlocal stiffness matrix A∗ corre-
sponding to the adjoint bilinear form A∗Γ is simply the transpose of the nonlocal stiffness
matrix A corresponding to the primal bilinear form AΓ, since

a∗kj = A∗(ϕk, ϕj) = A(ϕj , ϕk) = ajk.

Note that we choose the same finite-dimensional finite element spaces for ansatz func-
tions ϕk and test functions ϕj. Consequently we only need a routine which assembles one
of the stiffness matrices. Since for a symmetric kernel the operator takes the form of the
adjoint operator, we implement a routine assembling the stiffness matrix corresponding
to the adjoint bilinear form.

For the forcing term we assume a dependency on the interface in the following way

fΓ(x) :=
{
f1(x) : x ∈ Ω1

f2(x) : else,
(8.6)

where we assume that fi ∈ H1(Ωi). The right-hand side of the constraint equation is
then given by

`Γ(v) =
∫

Ω
fΓv dx =

∫
Ω1
f1v dx +

∫
Ω\Ω1

f2v dx. (8.7)

Our ultimate goal is to solve the shape optimization problem with derivative-based
optimization methods. For this purpose it is necessary to require a certain regularity
level for the weak solutions of the variational problems corresponding to the primal as
well as the adjoint nonlocal bilinear form. In Chapter 3 however, we have pointed out,
that for certain kernels we cannot expect a smoothing of the data at all. In fact, for
the class of integrable kernels considered in Subsection 3.3.1 there is generally no gain
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of regularity; see the discussion at the end of this subsection. That is why we regularize
our problem by perturbing the nonlocal operator with a “small” Laplacian which is
independent of the interface (isotropic diffusivity). The new bilinear form governing the
constraint equation then reads as

ÃΓ(u, v) := AΓ(u, v) + cperA
loc(u, v)

:= (−LΓu, v)L2(Ω) + cper(−∆u, v)L2(Ω)

=
∑

i,j=1,2

∫
Ωi
v

∫
Ωj∩S(x)

(
uφij − u′φ′ji

)
dydx + cper

∫
Ω
∇uT∇v dx.

(8.8)

We choose a small perturbation parameter cper > 0, which in practice does not signifi-
cantly affect the nonlocal model, but theoretically guarantees sufficient regularity of state
and adjoint variables. It is therefore reasonable to define the energy space Vc(Ω∪ΩI) to
consist of weakly differentiable functions with support in Ω. Specifically, we define

(Vc(Ω ∪ ΩI), ||| · |||) :=
(
H1
c (Ω ∪ ΩI), | · |H1(Ω)

)
,

where
H1
c (Ω ∪ ΩI) :=

{
u ∈ H1(Ω ∪ ΩI) : u = 0 on ΩI

}
and

|u|H1(Ω) :=
√
Aloc(u, u).

By considering zero extensions we find that H1
c (Ω ∪ ΩI) is equivalent to the standard

space H1
0 (Ω). Throughout the remainder of this Chapter we now consider the perturbed

or regularized shape optimization problem

min
Γ

J(u,Γ)

s.t. ÃΓ(u, v) = `Γ(v) for all v ∈ Vc(Ω ∪ ΩI).
(8.9)

In Figure 8.2 the nonlocal counterpart to what is depicted in Figure 8.1 is illustrated.
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Ω1

Ω2

ΩI

Γ

x

Figure 8.2: An example for the interface configuration in the nonlocal setting.
Compared to Figure 8.1, we additionally have the interaction domain ΩI . Also, the
dashed lines parallel to the interface Γ, forming some sort of tube, can be considered
a nonlocal interface

ΓI := {y ∈ Ω: y ∈ S(x) for some x ∈ Γ} .

Within this tube we find that nonlocal interactions occurring within the interaction
set, in this figure an Euclidean ball centered at x, are weighted differently according
to the mixed kernel; this is indicated by the different colors used to fill the ball. More
precisely, let us consider the depicted x ∈ Ω1. If y is located in Ω2, then the partial
kernel function φ12 is activated (see the blueish colored area of the ball). Whereas if
y ∈ Ω1 then the kernel function φ11 quantifies nonlocal interactions (see the reddish
portion of the ball). Thus these partially differently weighted interactions close to
the interface induce convective effects.

8.2 Basic concepts in shape optimization

For solving the constrained shape optimization problem (8.9) we want to use the same
shape optimization algorithms as they are developed in [73, 71, 70] for problem classes
that are comparable in structure. Thus, in this section we briefly introduce the basic
concepts and ideas of the therein applied shape formalism, which are sufficient enough to
understand and realize the numerical implementation of these methods. For a rigorous
introduction to shape spaces, shape derivatives and shape calculus in general, we refer
to the monographs [31, 82, 92].
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8.2.1 Notations and definitions

Based on our perception of the interface, we now refer to the image of a simple closed
and smooth curve as a shape, i.e., the spaces of interest are subsets of

A :=
{

Γ := ϕ(S1) : ϕ ∈ C∞(S1,Ω) injective; ϕ′ 6= 0
}
. (8.10)

By the Jordan curve theorem [50] such a shape Γ ∈ A divides the plane into two (simply)
connected components with common boundary Γ. One of them is the bounded interior,
which in our situation can then be identified with Ω1.
Functionals J : A → R which assign a real number to a shape are called shape functionals.
Since this chapter deals with minimizing such shape functionals, i.e., with so-called
shape optimization problems, we need to introduce the notion of an appropriate shape
derivative. To this end we consider a family of mappings Ft : Ω → Rd with F0 = id,
where t ∈ [0, T ] and T > 0, which transform a shape Γ into a family of perturbed shapes
{Γt}t∈[0,T ], where Γt := Ft(Γ) with Γ0 = Γ. Here the family of mappings {Ft}t∈[0,T ] is
described by the perturbation of identity, which for a smooth vector field V ∈ Ck0 (Ω,Rd),
k ∈ N, is defined by

Ft(x) := x + tV(x).

We note that for sufficiently small t ∈ [0, T ] the mapping x 7→ tV(x) defines a con-
traction on Ω implying that Ft is injective, and thus Γt ∈ A. Then the Eulerian or
directional derivative of a shape functional J at a shape Γ in direction of a vector field
V ∈ Ck0 (Ω,Rd), k ∈ N, is defined by

DJ(Γ)[V] := d

dt

∣∣∣∣
t=0+

J(Ft(Γ)) = lim
t↘0

(J(Ft(Γ))− J(Γ))
t

. (8.11)

If DJ(Γ)[V] exists for all V ∈ Ck0 (Ω,Rd) and V 7→ DJ(Γ)[V] is in the dual space(
Ck0 (Ω,Rd)

)∗
, then DJ(Γ)[V] is called the shape derivative of J [92, Definition 4.6].

For demonstration purposes and later use we compute the shape derivative of the
right-hand side, i.e., of the shape functional

Γ 7→ `Γ(v) =
∫

Ω1
f1vdx +

∫
Ω\Ω1

f2vdx,

with `Γ defined in (8.7) and a fixed test function v ∈ Vc(Ω ∪ ΩI). Therefore, let V ∈
Ck0 (Ω,Rd), then due to Ω(Ft(Γ)) = Ft(Ω1)∪̇Ft(Γ)∪̇Ft(Ω\Ω1) we find for the perturbed
functional

`Ft(Γ) =
∫
Ft(Ω1)

f1vdx +
∫
Ft(Ω\Ω1)

f2vdx. (8.12)

Now let us representatively consider the first summand in (8.12). According to the
definition of the directional derivative (8.11) we now have to compute variations in t. To
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effect this computation, we first shift the time dependency from the domain of integration
to the integrand by applying the transformation formula. This yields∫

Ft(Ω1)
f1vdx =

∫
Ω1
f1(Ft(x))v(Ft(x)) |det dFt(x)| dx.

Now, we invoke the theorem about differentiating parameter integrals, which allows us
to interchange the order of differentiation and integration. We obtain

d

dt

∣∣∣∣
t=0+

∫
Ω1
f1(Ft(x))v(Ft(x)) |det dFt(x)| dx

=
∫

Ω1

d

dt

∣∣∣∣
t=0+

(f1(Ft(x))v(Ft(x)) |det dFt(x)|) dx.

It can be shown that [53, Section 4.6]

d

dt

∣∣∣∣
t=0+

|det dFt(x)| = div V(x).

Also, let us define the derivative of a function v : Ω→ R in direction of V by

Dmv(x) := v̇(x) := d

dt

∣∣∣∣
t=0+

v(Ft(x)) = ∇v(x)TV(x).

For functions v, which do not explicitly depend on the shape, Dmv is equivalent to what
is called the material derivative. For their general definition and more details we refer
to the literature, e.g., [61]. Due to the following product rule

Dm(vw) = Dm(v)w + vDm(w),

we obtain∫
Ω1

d

dt

∣∣∣∣
t=0+

(f1(Ft(x))v(Ft(x)) |det dFt(x)|) dx =
∫

Ω1

(
ḟ1v + f1v̇

)
+ f1v div V dx.

All in all, by applying this procedure to the second summand we arrive at

D(`Γ(v))[V] =
∫

Ω1
(ḟ1v + f1v̇) + f1v div V dx +

∫
Ω\Ω1

(ḟ2v + f2v̇) + f2v div V dx

=
∫

Ω
ḟΓvdx +

∫
Ω
fΓv div V dx + `Γ(v̇),

(8.13)
where ḟΓ has to be understood piecewise according to the definition of fΓ (8.6). Below,
we proceed in the same manner to derive the shape derivative of the nonlocal bilinear
form.
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8.2.2 Optimization approach: Formal Lagrangian

Let us assume that for each admissible shape Γ there exists a unique solution u(Γ) of
the constraint equation, i.e., u(Γ) satisfies ÃΓ(u(Γ), v) = `Γ(v) for all v ∈ Vc(Ω ∪ ΩI).
Then we can consider the reduced problem

min
Γ

Jred(Γ) := J(u(Γ),Γ).

In order to employ derivative based minimization algorithms we need to derive the shape
derivative of the reduced objective functional Jred. By formally applying the chain rule
we obtain

DJred(Γ)[V] = DuJ(u(Γ),Γ)DΓu(Γ)[V] +DΓJ(u(Γ),Γ)[V],

where Du and DΓ denote the partial derivatives of the objective J with respect to the
state variable u and the control Γ, respectively. In applications we typically do not have
an explicit formula for the control-to-state mapping u(Γ), so that we cannot analytically
quantify the sensitivity of the unique solution u(Γ) with respect to the interface Γ. Thus,
a formula for the shape derivative DΓu(Γ)[V] is unattainable. A common approach to
still access this derivative is to consider the associated adjoint equation; see, e.g., [92].
More precisely, by introducing an adjoint variable v (also called Lagrange multiplier),
we define the so-called Lagrange functional, or Lagrangian, as

L(u,Γ, v) := J(u,Γ) + ÃΓ(u, v)− `Γ(v)

and aim to find a saddle point (u,Γ, v), such that, for all variations (du,V, dv),

0 = DvL(u,Γ, v)[dv] = ÃΓ(u, dv)− `Γ(dv), (state)
0 = DuL(u,Γ, v)[du] = Ã∗Γ(v, du) + (u− ū, du)L2(Ω), (adjoint)
0 = DΓL(u,Γ, v)[V] = DΓJ(u,Γ)[V] +DΓÃΓ(u, v)[V]−DΓ`Γ(u, v)[V]. (design)

By inserting the definition (8.8) of the perturbed bilinear form ÃΓ = AΓ + cperA
loc

and exploiting that Aloc is symmetric, i.e., Aloc = (Aloc)∗, and does not depend on the
interface, so that DΓA

loc = 0, we find

0 = DvL(u,Γ, v)[dv] = AΓ(u, dv) + cperA
loc(u, dv)− `Γ(dv), (state)

0 = DuL(u,Γ, v)[du] = A∗Γ(v, du) + cperA
loc(v, du) + (u− ū, du)L2(Ω), (adjoint)

0 = DΓL(u,Γ, v)[V] = DΓJ(u,Γ)[V] +DΓAΓ(u, v)[V]−DΓ`Γ(u, v)[V]. (design)
(8.14)

The partial shape derivative of the Lagrangian DΓL(u,Γ, v)[V] evaluated in a saddle
point (u(Γ),Γ, v(Γ)) then serves as shape derivativeDJred(Γ)[V] of the reduced objective
functional. This has to be proven in each specific setting. In the related literature this is
typically done by an application of a theorem of Correa and Seeger [92, Theorem 4.18],
which states the differentiability of a min-max function, in our case the Lagrangian.
Here, we assume that the prerequisites of this theorem hold.
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8.2. Basic concepts in shape optimization

The first two equations of the system (8.14), namely the state and adjoint equation,
are standard and can be found, e.g., in [30, Section 3.3]. In our situation they imply

AΓ(u, dv)− `Γ(dv) = −cperAloc(u, dv), (state)
A∗Γ(v, du)− `∗(du) = −cperAloc(v, du), (adjoint)

where under abuse of notation we define

`∗(q) := −
∫

Ω
(u− ū)q dx.

The third equation in (8.14), i.e., the design equation, involves the shape derivative
and therefore needs careful examination. In fact, the crucial task is the computation
of the occurring shape derivatives which then enable us to implement suitable shape
optimization algorithms. The shape derivatives of the objective functional and the right-
hand side are standard and we recall below the formulas from the pertinent literature;
see also (8.13). However the shape derivative of the system model, in particular the
shape derivative of the nonlocal bilinear form is nonstandard and cannot yet be found
in literature. That is why we devote Section 8.3 to this task.

We end this subsection by inserting the already available shape derivatives of the
objective functional and the right-hand side into the design equation of the saddle point
system (8.14). Since we only consider transformation vector fields V ∈ Ck0 (Ω,Rd) which
are zero on the boundary, we find that the tracking-type functional j(u,Γ) = 1

2
∫

Ω(u −
ū)2 dx does not react on such variations, i.e., j(u,Γ) = j(u, Ft(Γ)) for all t > 0 and
consequently

DΓj(u,Γ)[V] = 0 for all V ∈ Ck0 (Ω,Rd).
The shape derivative of the regularization term is an immediate consequence of [92,
Theorem 4.13] and is given by

Djreg(u,Γ)[V] = ν

∫
Γ

divΓ V ds = ν

∫
Γ

div V− nT∇Vn ds,

where n denotes the outer normal of Ω1. The shape derivate of the right-hand side `Γ
has been computed in (8.13). Finally, for an interface Γ, let u = u(Γ) and v = v(Γ) solve
the state and adjoint equation given in (8.14), respectively, then by inserting the shape
derivative formulas derived so far into the design equation of the saddle point system
(8.14), we obtain

DJred(Γ)[V]
= DΓL(u,Γ, v)[V]
= DΓJ(u,Γ)[V] +DΓAΓ(u, v)[V]−DΓ`Γ(u, v)[V]

= ν

∫
Γ

divΓ V ds+DΓAΓ(u, v)−
(∫

Ω
ḟΓv dx +

∫
Ω
fΓv div V dx + `Γ(v̇)

)
.

(8.15)

If ν = 0 and fΓ is piecewise constant with respect to the interface, this expression further
reduces to

DJred(Γ)[V] = DΓAΓ(u, v)−
(
`Γ(v̇) +

∫
Ω
fΓv div V dx

)
.
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Chapter 8. Shape optimization for identifying interfaces in nonlocal models

It remains to derive an explicit formula for the shape derivative of the nonlocal bilinear
form AΓ; see Section 8.3.

8.2.3 Optimization algorithm

Let us assume for a moment that we have an explicit formula for the shape derivative
of the reduced objective functional (8.15). We now briefly recall the techniques devel-
oped in [73] and describe how to exploit this derivative for implementing gradient based
optimization methods or even Quasi-Newton methods, such as L-BFGS, to solve the
constrained shape optimization problem (8.9).

Talking about gradients requires the notion of an inner product, or more generally a
Riemannian metric. Unfortunately, shape spaces typically do not admit the structure of a
linear space. However, in particular situations it is possible to define appropriate quotient
spaces, which can be equipped with a Riemannian structure. For instance consider the
set A introduced in (8.10). Since we are only interested in the image of the defining em-
bedding, a re-parametrization thereof does not lead to a different shape. Consequently,
two curves that are equal modulo (diffeomorphic) re-parametrizations define the same
shape. This conception naturally leads to the quotient space Emb(S1,Rd)/Diff(S1, S1),
which can be considered an infinite-dimensional Riemannian manifold [58]. This exam-
ple already intimates the difficulty of translating abstract shape derivatives into discrete
optimization methods; see, e.g., the thesis [93] on this topic. A detailed discussion of
these issues is not the intention of this chapter and we now outline Algorithm 2.

The basic idea can be intuitively explained in the following way. Starting with an
initial guess Γ0, we aim to iterate in a steepest-descent fashion over interfaces Γk until
we reach a “stationary point” of the reduced objective functional Jred. The interface Γk
is encoded in the finite element mesh and transformations thereof are realized by adding
vector fields U : Ω→ Rd (which can be interpreted as tangent vectors at a fixed interface)
to the finite element nodes which we denote by Ωk. Thus, the essential part is to update
the finite element mesh after each iteration by adding an appropriate transformation
vector field. For this purpose, we use the solution U(Γ) : Ω(Γ) → Rd of the so-called
deformation equation

aΓ(U(Γ),V) = DJred(Γ)[V] for all V ∈ H1
0 (Ω(Γ),R2). (8.16)

The right-hand side of this equation is given by the shape derivative of the reduced
objective functional (8.15) and the left-hand side denotes an inner product on the vector
field space H1

0 (Ω,R2). In the view of the manifold interpretation, we can consider aΓ as
inner product on the tangent space at Γ, so that U(Γ) is interpretable as the gradient
of the shape functional Jred at Γ. The solution U(Γ) : Ω → R2 of (8.16) is then added
to the coordinates Ωk of the finite element nodes.
A common choice for aΓ is the bilinear form associated to the linear elasticity equation
given by

aΓ(U,V) =
∫

Ω(Γ)

σ(U) : ε(V) dx,
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8.2. Basic concepts in shape optimization

for U,V ∈ H1
0 (Ω,R2), where

σ(U) := λtr(ε(U))I + 2µε(U) (8.17)

and

ε(U) := 1
2(∇U +∇UT )

are the strain and stress tensors, respectively. Deformation vector fields V which do not
change the interface do not have an impact on the reduced objective functional, so that

DJred(Γ)[V] = 0 for all V with supp(V) ∩ Γ = ∅.

Therefore, the right-hand side DJred(Γ)[V] is only assembled for test vector fields whose
support intersects with the interface Γ and set to zero for all other basis vector fields.
This prevents wrong mesh deformations resulting from discretization errors as outlined
and illustrated in [71]. Furthermore, λ and µ in (8.17) denote the Lamé parameters
which do not need to have a physical meaning here. It is more important to understand
their effect on the mesh deformation. They enable us to control the stiffness of the
material and thus can be interpreted as some sort of step size. In [70], it is observed that
locally varying Lamé parameters have a stabilizing effect on the mesh. A good strategy
is to choose λ = 0 and µ as solution of the following Poisson equation

−∆µ = 0 in Ω
µ = µmax on Γ
µ = µmin on ∂Ω.

(8.18)

Therefore µmin, µmax ∈ R influence the step size of the optimization algorithm. A small
step is achieved by the choice of a large µmax. Note that aΓ then depends on the interface
Γ through the parameter µ = µ(Γ) : Ω(Γ)→ R.
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Algorithm 2: Shape optimization algorithm
1 Initialize: γΓ, fΓ,Γ0, ū, k = 1
2 while ‖DJred(Γk)‖ > tol do
3 Interpolate ū onto the current finite element mesh Ωk

4 Assemble ÃΓ and solve state and adjoint equation (8.15)
5 → u(Γk), v(Γk)
6 Compute the mesh deformation
7 Assemble shape derivative
8 DJred(Γk)[V] = DΓL(u(Γk),Γk, v(Γk))[V] (8.15)
9 Set DJred(Γk)[V] = 0 for all V with supp(V) ∩ Γk = ∅

10 Compute locally varying Lamé parameter by solving (8.18)
11 Assemble linear elasticity aΓk and solve the deformation equation (8.16)
12 → Uk

13 Perform L-BFGS update if curvature condition is satisfied, otherwise choose
gradient

14 → Ũk

15 Backtracking line search (with parameters α = 1, τ, c ∈ (0, 1))
16 while Jred(Γk − αŨk) ≥ cJred(Γk) do
17 α = τα

18 end while
19 → αk
20 Update mesh
21 Ωk+1 = Ωk − αkŨk(Ωk) =

{
x− αkŨk(x) : x ∈ Ωk

}
22 k = k + 1
23 end while

How to perform the limited memory L-BFGS update in Line 13 of Algorithm 2 within
the shape formalism is investigated in [72, Section 4]. Here, we only mention that the
therein examined vector transport is approximated with the identity operator, so that
we finally treat the gradients Uk : Ωk → Rd as vectors in Rd|Ωk| and implement the
standard L-BFGS update [70, Section 5].

8.3 Nonlocal shape optimization

In Section 8.2 we have depicted the optimization methodology that we follow in this chap-
ter to numerically solve the constrained shape optimization problem (8.9). As pointed
out, the missing piece to implement the respective algorithmic realization presented in
Subsection 8.2.3 is the shape derivative of the nonlocal bilinear form. We now compute
this derivative for a certain class of mixed kernels and insert this formula into the sad-
dle point system (8.14) in order to determine the shape derivative DJred(Γ)[V] of the
reduced objective functional, which is used in Line 8 of the optimization Algorithm 2.
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8.3.1 Shape derivative of the nonlocal bilinear form

For a fixed pair of state and adjoint variables (u, v) we have to consider the shape
functional

Γ 7→ AΓ(u, v) =
∑

i,j=1,2

∫
Ωi
v(x)

∫
Ωj∩S(x)

(u(x)φij(x,y)− u(y)φji(y,x)) dydx.

For a given vector field V ∈ Ck0 (Ω,Rd) we now want to compute its shape derivative,
which is defined by

DΓAΓ(u, v)[V] = d

dt
t=0+

AFt(Γ)(u, v).

Due to Ft(Ω ∪ ΩI) = Ft(Ω1) ∪ Ft(Γ) ∪ Ft(Ω2) we find for the perturbed bilinear form

AFt(Γ)(u, v) =
∑

i,j=1,2

∫
Ft(Ωi)

∫
Ft(Ωj)∩S(x)

ψij(x,y)dydx,

where we define

ψij(x,y) := ψij,(u,v)(x,y) := v(x) (u(x)φij(x,y)− u(y)φji(y,x)) .

We aim to proceed in the same double-stage fashion as we have done to calculate the
shape derivative of the right-hand side `Γ in Subsection 8.2.1. Thus we first apply
transformation formula in order to shift the dependency on the parameter t from the
domain of integration to the integrand and then interchange the order of differentiation
and integration. Since we deal with a double integral, let us first apply transformation
formula to the outer integral, which yields

AFt(Γ)(u, v) =
∑

i,j=1,2

∫
Ωi

∫
Ft(Ωj)∩S(Ft(x))

ψij(Ft(x),y) |det dFt(x)| dydx. (8.19)

Now we are confronted with the following difficulty. We cannot straightforwardly ap-
ply transformation formula a second time to the inner integral due to the complicated
integration domain Ft(Ωj) ∩ S(Ft(x)). In order to proceed in this way we would either
need to represent this domain as Ft(Ωj)∩S(Ft(x)) = Ft(M(x)) for some appropriate set
M(x) or, after changing the order of differentiation and integration only for the outer
integral, we would need to compute variations in t for the function

t 7→
∫
Ft(Ωj)∩S(Ft(x))

ψij(Ft(x),y) |det dFt(x)| dy.

In a general setting it is not straightforward to derive analytically tractable formulas for
one of the two tasks. Therefore, in the following we restrict to a specific class of mixed
kernels which avoid this difficulty. Before doing so, we first need to uncover a relation
between the shape derivative of the adjoint bilinear form and the shape derivative of the
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original bilinear form, which proves useful to identify such kernels. Recall that we have
A∗Γ = A′Γ, see (8.5), so that we find for the corresponding perturbed bilinear forms

AFt(Γ)(u, v) = A∗Ft(Γ)(v, u),

where

A∗Γ(u, v) =
∑

i,j=1,2

∫
Ωi

∫
Ωj∩S(x)

v(x) (u(x)− u(y))φij(x,y)dydx.

Therefore, if we can find an expression for the shape derivative of A∗Γ(u, v) we simulta-
neously have one for AΓ(u, v) ensured by the relation

d

dt
t=0+

AFt(Γ)(u, v) = d

dt
t=0+

A∗Ft(Γ)(v, u). (8.20)

The crucial advantage of considering the adjoint bilinear form with regard to our goal
relies on the fact that it only involves the partial kernels φij with unswapped arguments.

We are now in a position to identify tractable mixed kernels. In fact, for a kernel
which depends on the interface only through its first argument, so that φij = φii, we
find

A∗Γ(u, v) =
∑
i=1,2

∑
j=1,2

∫
Ωi

∫
Ωj∩S(x)

ψ∗ij(x,y)dydx =
∑
i=1,2

∫
Ωi

∫
S(x)

ψ∗ii(x,y)dydx, (8.21)

where we abuse notation and define

ψ∗ij(x,y) := v(x) (u(x)− u(y))φij(x,y).

Consequently, perturbations of the interface only affect the outer integral and thereby
avoiding the central difficulty arising in the general setting (8.19) pointed out in the
beginning of this subsection. More precisely, for points x within the interaction domain
ΓI of the interface we do not have to cope with partially weighted balls S(x). In Figure
8.3 we find a zoom-in onto to the nonlocal interface illustrating the difference between
the general setting and this specialized setting.
Now let us have a look at the perturbed adjoint bilinear form (see also (8.21)). Applying
transformation formula to the outer integral yields

A∗Ft(Γ)(u, v) =
∑
i=1,2

∫
Ωi

∫
S(Ft(x))

ψ∗ii(Ft(x),y) |det dFt(x)| dydx.

We now assume that the family of interaction sets is translation invariant, so that
S(Ft(x)) = Ft(x) + S(0). Then we find

A∗Ft(Γ)(u, v) =
∑
i=1,2

∫
Ωi

∫
S(0)

ψ∗ii(Ft(x), Ft(x) + y) |det dFt(x)| dydx.
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Figure 8.3: Zoom-in to the interface Γ (blue line) for a general mixed kernel (left)
and for a kernel with interface-dependency only in x. Here, both are truncated by
an Euclidean ball of radius δ > 0. The fundamental difference in the right situation
relies on the fact, that for points within the nonlocal interface (i.e., for points within
the dashed lines) nonlocal interactions are now weighted by the same partial kernel
as indicated by the colors used to fill the balls.

Finally, computing the time derivative by interchanging the order of differentiation and
integration and assuming that the partial kernels φii are differentiable, finally leads to

DΓA
∗
Γ(u, v)[V] = d

dt
t=0+

A∗Ft(Γ)(u, v)

= d

dt
t=0+

∑
i=1,2

∫
Ωi

∫
S(0)

ψ∗ii(Ft(x), Ft(x) + y) |det dFt(x)| dydx

=
∑
i=1,2

∫
Ωi

∫
S(0)

d

dt
t=0+

(
ψ∗ii(Ft(x), Ft(x) + y) |det dFt(x)|

)
dydx

=
∑
i=1,2

∫
Ωi

∫
S(x)

(∇xψ
∗
ii(x,y) +∇yψ

∗
ii(x,y))T V(x) + ψii(x,y) div V(x)dydx.

(8.22)

We want to remark that the transformation formula is applicable since the perturbations
Ft are diffeomorphic and the integrands are integrable. The theorem about the differen-
tiation of parameter integrals is applicable since the integrands are piecewise H1 on the
subdomains, because we consider the perturbed nonlocal model. We proceed computing
the gradients of the integrand. Recalling that ψ∗ii(x,y) = v(x) (u(x)− u(y))φii(x,y) we
find

∇xψ
∗
ii(x,y)

= ∇v(x)(u(x)− u(y))φii(x,y) + v(x)∇u(x)φii(x,y) + v(x)(u(x)− u(y))∇xφii(x,y)

and

∇yψ
∗
ii(x,y) = −v(x)∇u(y)φii(x,y) + v(x)(u(x)− u(y))∇yφii(x,y).
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Thus by combining these two formulas we arrive at

∇xψ
∗
ii(x,y) +∇yψ

∗
ii(x,y) =∇v(x)(u(x)− u(y))φii(x,y)

+ v(x)(∇u(x)−∇u(y))φii(x,y)
+ v(x)(u(x)− u(y)) (∇xφii(x,y) +∇yφii(x,y)) .

By inserting this expression into (8.22) we find

DΓA
∗
Γ(u, v)[V]

=
∑
i=1,2

∫
Ωi

∫
S(x)

(∇xψ
∗
ii +∇yψ

∗
ii)
T V + ψii div V dydx

=
∑
i=1,2

(∫
Ωi

∫
S(x)
∇vTV(u− u′)φii dydx

+
∫

Ωi

∫
S(x)

v(∇u−∇u′)TVφii dydx

+
∫

Ωi

∫
S(x)

v(u− u′) (∇xφii +∇yφii)T V dydx

+
∫

Ωi

∫
S(x)

v
(
u− u′

)
φii div V dydx

)
= A∗Γ(u, v̇) +A∗Γ(u̇, v)

+
∑
i=1,2

∫
Ωi

∫
S(x)

v(u− u′) (∇xφii +∇yφii)T V dydx

+
∑
i=1,2

∫
Ωi

∫
S(x)

v
(
u− u′

)
φii div V dydx.

Then by (8.20) we eventually arrive at

DΓAΓ(u, v)[V] = AΓ(u̇, v) +AΓ(u, v̇)

+
∑
i=1,2

∫
Ωi

∫
S(x)

u(v − v′) (∇xφii +∇yφii)T V dydx

+
∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div V dydx.

(8.23)

Further simplifications arise in the case of piecewise smooth and radial kernel functions
φii(x,y) = φii(‖x− y‖2). Here, we find

∇xφii(x,y) = φ′ii(‖x− y‖2)1
2

1
‖x− y‖2

2(x− y) · 1 = φ′ii(‖x− y‖2) x− y
‖x− y‖2
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and similarly

∇yφii(x,y) = −φ′ii(‖x− y‖2) x− y
‖x− y‖2

.

Thus, we have ∇xφii(x,y) +∇yφii(x,y) = 0 and therefore

DΓAΓ(u, v)[V] = AΓ(u̇, v) +AΓ(u, v̇) +
∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div V dydx.

For reasons of clarity let us summarize all the assumptions on the kernel that we have
formulated on the way to arrive at the shape derivative (8.23):

• Interface dependency only in x. We assume that the mixed kernel depends on
the interface solely through its first argument, i.e., we consider kernels of the form

γΓ(x,y) =
{
γ11(x,y) : x ∈ Ω1
γ22(x,y) : x ∈ Ω2 = (Ω ∪ ΩI)\Ω1.

(8.24)

• Truncation by translation invariant interaction sets. We require the partial ker-
nels to be truncated by the same family of interaction sets {S(x)}x∈Rd , which we
assume to be translation invariant, i.e., S(x) = x + S(0).

• Differentiability of partial kernels. We assume that the partial kernels φii, i = 1, 2,
are weakly differentiable.

8.3.2 Shape derivative of the reduced objective functional

Finally, it remains to insert expression (8.23) into equation (8.15) in order to derive an
expression for the shape derivative of the reduced objective functional. We obtain

DJred(Γ)[V] = ν

∫
Γ

divΓ V ds−
(∫

Ω
ḟΓv dx +

∫
Ω
fΓv div V dx + `Γ(v̇)

)
+AΓ(u, v̇) +AΓ(u̇, v) +

∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div V dydx

+
∑
i=1,2

∫
Ωi

∫
S(x)

u(v − v′) (∇xφii +∇yφii)T V dydx.

By exploiting both, the state and adjoint equation (8.15), as well as AΓ(u̇, v) = A∗Γ(v, u̇),
we obtain

DJred(Γ)[V] = ν

∫
Γ

divΓ V ds−
∫

Ω
ḟΓv dx−

∫
Ω
fΓv div V dx

− cperAloc(u, v̇) + `∗(u̇)− cperAloc(v, u̇)

+
∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div V dydx

+
∑
i=1,2

∫
Ωi

∫
S(x)

u(v − v′) (∇xφii +∇yφii)T V dydx.

(8.25)
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Now we exploit the following formula for the shape derivative of the local bilinear form
(see, e.g., [92, Theorem 4.21])

DΓA
loc(u, v)

= Aloc(u, v̇) +Aloc(u̇, v) +
∫

Ω
∇uT∇v div Vdx−

∫
Ω
∇uT

(
∇V +∇VT

)
∇vdx.

Since Aloc is independent of the interface, so that DΓA
loc(u, v) = 0, we obtain

−
(
Aloc(u, v̇) +Aloc(u̇, v)

)
=
∫

Ω
∇uT∇v div Vdx−

∫
Ω
∇uT

(
∇V +∇VT

)
∇vdx.

By inserting this equation into (8.25) we eventually arrive at

DJred(Γ)[V] = ν

∫
Γ

divΓ V ds−
∫

Ω
ḟΓv dx−

∫
Ω
fΓv div V dx + `∗(u̇)

+ cper

(∫
Ω
∇uT∇v div Vdx−

∫
Ω
∇uT

(
∇V +∇VT

)
∇vdx

)
+
∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div V dydx

+
∑
i=1,2

∫
Ωi

∫
S(x)

u(v − v′) (∇xφii +∇yφii)T V dydx.

(8.26)

If fΓ is piecewise constant, i.e., fi = const, ν = 0, and if the partial kernel functions φii
are radial, this further simplifies to

DJred(Γ)[V] =−
∫

Ω
fΓv div V dx−

∫
Ω

(u− ū) ∇uTV dx

+ cper

(∫
Ω
∇uT∇v div V dx−

∫
Ω
∇uT

(
∇V +∇VT

)
∇vdx

)
+
∑
i=1,2

∫
Ωi

∫
S(x)

u
(
v − v′

)
φii div Vdydx.

We observe that, if ν = 0 and u = ū, then `∗(·) = 0, which implies
v = (−L∗Γ)−1(u− ū) = 0, and thus DJred(Γ)[V] = 0 in a saddle point where u = ū.
In other words, if there is a shape Γ so that ū = u(Γ), then this shape is a stationary
point of the reduced objective functional.

8.3.3 Some thoughts on the unperturbed nonlocal model

In this subsection we want to highlight some aspects of the unperturbed nonlocal inter-
face problem with the specialized kernel from (8.24), i.e.,

γΓ(x,y) = γ11(x,y)χΩ1(x) + γ22(x,y)χΩ2(x)
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8.3. Nonlocal shape optimization

= (φ11(x,y)χΩ1(x) + φ22(x,y)χΩ2(x))χS(x)(y).

Let us insert this kernel into the bilinear form AΓ and partition the domain of integration
Ω× (Ω ∪ ΩI) according to the subdomains Ω1 and Ω2 = (Ω ∪ ΩI)\Ω1. We obtain

AΓ(u, v) =
∫

Ω1

∫
Ω1
v(uγ11 − u′γ′11)dydx +

∫
Ω1

∫
Ω2
v(uγ11 − u′γ′22)dydx

+
∫

Ω2

∫
Ω1
v(uγ22 − u′γ′11)dydx +

∫
Ω2

∫
Ω2
v(uγ22 − u′γ′22)dydx.

By an application of Fubini’s theorem we further find

AΓ(u, v)

=

∑
i=1,2

∫
Ωi

∫
Ωi
v(uγii − u′γ′ii)dydx

+
∫

Ω1

∫
Ω2

(v − v′)(uγ11 − u′γ′22)dydx

=

∑
i=1,2

∫
Ωi

∫
Ωi∩S(x)

v(uφii − u′φ′ii)dydx

+
∫

Ω1

∫
Ω2∩S(x)

(v − v′)(uφ11 − u′φ′22)dydx.

(8.27)
The bilinear form

(u, v) 7→
∫

Ωi

∫
Ωi∩S(x)

v(uγii − u′γ′ii)dydx,

can be associated with a nonlocal model posed on the nonlocal interior
◦
Ωi :=

Ωi\ (Ωi ∩ ΓI) of Ωi with interaction domain (Ωi ∩ ΓI) and kernel γii. The last sum-
mand ∫

Ω1

∫
Ω2∩S(x)

(v − v′)(uφ11 − u′φ′22)dydx

=
∫

Ω1∩ΓI

∫
Ω2∩ΓI∩S(x)

(v − v′)(uφ11 − u′φ′22)dydx

can then be interpreted as the coupling between these two nonlocal models.

Counterexample for the coercivity of AΓ

Let us consider the simple piecewise constant kernel

γΓ(x,y) :=
{
c1 : x ∈ Ω1

c2 : x ∈ Ω2

and a piecewise constant function u : Ω ∪ ΩI → R defined by

u(x) :=
{
u1 : x ∈ Ω1

u2 : x ∈ Ω2.
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Then by (8.27) we find that

AΓ(u, u) =
∑
i=1,2

∫
Ωi

∫
Ωi∩S(x)

u(uφii − u′φ′ii)dydx

+
∫

Ω1

∫
Ω2∩S(x)

(u− u′)(uφ11 − u′φ′22)dydx

= (u1 − u2)(u1c1 − u2c2)
∫

Ω1

∫
Ω2∩S(x)

dydx.

Hence, if we choose ui and ci in such a way that

1 < u1
u2

<
c2
c1

we find

(u1 − u2)(u1c1 − u2c2) < 0 (8.28)

implying that AΓ(u, u) < 0 so that the nonlocal bilinear form for this kernel is not
coercive.

Remark 8.3.1. As a consequence of (8.28) we cannot rely on the Lax-Milgram theorem
for establishing a well-posedness result for the nonlocal interface problem without further
assumptions on the kernel.

Towards a well-posedness proof via Fredholm alternative

Let us assume that the partial kernels are integrable in such a way that
∫
Rd γ(x,y)dy

exists for all x ∈ Ω, then we can rewrite the nonlocal convection-diffusion operator as

−LΓu(x) =
∫
Rd

(uγΓ − u′γ′Γ)dy = u

∫
Rd
γΓdy−

∫
Rd
u′γ′Γdy =: h(x)u(x)−Ku(x),

where we define the function h : Ω→ R by

h(x) =
∫
Rd
γΓ(x,y)dy =

h1(x) :=
∫
S(x) φ11(x,y)dy : x ∈ Ω1

h2(x) :=
∫
S(x) φ22(x,y)dy : else

and the operator K : L2(Ω ∪ ΩI)→ L2(Ω ∪ ΩI) by

Ku(x) :=
∫
Rd
u′γ′Γdy =

∫
Ω1
u(y)γ11(y,x)dy +

∫
Ω2
u(y)γ22(y,x)dy.

In order to further specify the operator K let us assume γii ∈ L2(Ω ∪ ΩI × Ω ∪ ΩI) so
that ∫

Ω∪ΩI

∫
Ω∪ΩI

γ2
Γdydx =

∫
Ω1

∫
Ω∪ΩI

γ2
11dydx +

∫
Ω2

∫
Ω∪ΩI

γ2
22dydx <∞
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which implies γΓ ∈ L2(Ω ∪ ΩI × Ω ∪ ΩI). In this case, K : L2(Ω ∪ ΩI) → L2(Ω ∪ ΩI) is
well defined and compact; a so-called Hilbert-Schmidt operator [94, Section VI.6]. Con-
sequently, we can interpret the nonlocal convection-diffusion operator LΓ as a compact
perturbation of a scalar multiple of identity which in turn allows us to apply Fredholm
theory. In particular, the Fredholm alternative teaches us that the surjectivity of such
operators is already implied by their injectivity. In other words, if the homogeneous
equation LΓu = 0 has the unique solution u = 0, then LΓu = f has a unique solution
for all f ∈ L2(Ω). Thus, by applying Fredholm alternative to our specific setting, we
find the following sufficient condition for the well-posedness of our interface problem:

h(x)u(x) =
(∫

Ω1
u(y)γ11(y,x)dy +

∫
Ω2
u(y)γ22(y,x)dy

)
for all x ∈ Ω

⇒ u = 0.

The derivation of sufficient conditions on the kernel for this statement to hold is left to
future work.

Regularity of solutions

In order to gain some deeper insights into the nonlocal interface problem at hand we
want to highlight two properties that potential solutions necessarily satisfy. For this
purpose we make the following assumptions.

• We assume that the interaction sets are translation invariant.

• We assume that the partial kernel functions are radial with respect to some norm
‖ · ‖ in Rd so that φii(x,y) = φii(‖x − y‖) > 0. We further require that φii(‖ · ‖)
is continuous on the closure of S(0) and thereby uniformly continuous.

• We assume that the solution is square integrable, i.e., u ∈ L2(Ω).

• For the the forcing term f , we assume that fi is continuous on Ωi with continuous
extension to Ωi.

In this case we find that h is piecewise constant because

hi =
∫
S(x)

φii(‖x− y‖)dy =
∫
S(0)

φii(‖z‖)dz.

Since the kernel functions are assumed to be positive we have hi > 0 and we find for
x ∈ Ωi that the homogeneous solutions takes the form

ui(x) := u|Ωi(x) = 1
hi
Ku(x). (8.29)

We now show that x 7→ Ku(x) is continuous on Ω, so that ui, for i = 1, 2 is continuous
on the respective subdomain Ωi. Therefore let ε > 0 and x,y ∈ Ω, then

|Ku(x)−Ku(y)| =
∣∣∣∣∫

Ω1
u(z)γ11(‖x− z‖)dz +

∫
Ω2
u(z)γ22(‖x− z‖)dz
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−
∫

Ω1
u(z)γ11(‖y− z‖)dz +

∫
Ω2
u(z)γ22(‖y− z‖)dz

∣∣∣∣
≤
∑
i=1,2

∫
Ωi∩S(x)

|u(z)| |φii(‖x− z‖)− φii(‖y− z‖)| dz

≤
∑
i=1,2

∫
S(x)
|u(z)| |φii(‖x− z‖)− φii(‖y− z‖)| dz.

For ‖y−x‖ < δ we find by the triangle inequality that |‖x−z‖−‖y−z‖| < δ for z ∈ S(x).
Due to the uniform continuity of φii(·) we find for some εi > 0 a corresponding δi > 0
such that, for ‖x− y‖ < δi, and for all z ∈ S(x),

|φii(‖x− z‖)− φii(‖y− z‖)| < εi

and therefore ∑
i=1,2

∫
S(x)
|u(z)| |φii(‖x− z‖)− φii(‖y− z‖)| dz

<
∑
i=1,2

εi

∫
S(x)
|u(z)|dz ≤

∑
i=1,2

εi

√
|Ω|‖u‖L2(Ω)

≤ max {ε1, ε2} 2‖u‖L2(Ω)

√
|Ω|.

Thus we can choose εi so that

|Ku(x)−Ku(y)| ≤ max {ε1, ε2} 2‖u‖L2(Ω)

√
|Ω1| < ε

for ‖x − y‖ < δ := min {δ1, δ2}, which states the desired continuity property. We also
want to point out that for x ∈

◦
Ωi = Ωi\(Ωi ∩ ΓI), we find

Ku(x) =
∫
S(x)

u(y)φii(‖x− y‖)dy =
∫
Rd
u(y)φii(‖y− x‖)χS(0)(y− x)dy,

so that K restricted to the nonlocal interior
◦
Ωi of Ωi is a convolution operator in our

setting. A consequence of the continuity of Ku is the piecewise continuity of the homo-
geneous solution u; more precisely by (8.29) we find that ui is continuously extendable
on Ωi. Due to the assumption on f , we also find that the inhomogeneous solution uf is
piecewise continuous due to the relation

ufi = 1
hi

(fi −Ku) .

We now derive the second property, namely, if the kernels γii differ “significantly”, then
we find that the potential solution u must have a jump discontinuity along the interface.
To this end, let x̄ ∈ Γ. Further let us consider two sequences

{
xin
}
n∈N ⊂ Ωi converging
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to x̄, where each is approaching x̄ from either Ω1 or Ω2. Due to the continuity of ufi we
find

uf (xin) −→ ūfi = 1
hi

(fi −Ku(x̄)) (n→∞)

and therefore ∣∣∣ūf1 − ūf2 ∣∣∣ =
∣∣∣∣(f1(x̄)

h1
− f2(x̄)

h2

)
+
( 1
h1
− 1
h2

)
Ku(x̄)

∣∣∣∣ .
Thus, unless the fi are chosen such that

f1(x̄) = h1
h2
f2(x̄) +Ku(x̄)

(
h1
h2
− 1

)
we find that ∣∣∣ūf1 − ūf2 ∣∣∣ > 0

implying that the limits from either sides are not the same and u has a jump discontinuity
across the interface.

Example in 1d

For illustration purposes we want to present a numerical example in 1d, which confirms
the theoretical assertions above. In the one-dimensional setting the interface reduces
to a single point, but as a cross section, the problem still captures all the features of
the higher dimensional counterpart and therefore serves as a representative study case.
We now consider Ω = (0, 1) as well as norm induced interaction sets with interaction
horizon δ > 0 and an interface point a ∈ (0, 1) which splits Ω∪ΩI = (−δ, 1 + δ) into two
subdomains Ω1 := (−δ, a) and Ω2 := (a, 1 + δ). Let us choose the kernel

γa(x, y) = (φ1(x, y)χΩ1(x) + φ2(x, y)χΩ2(x))χ|x−y|<δ

where
φ1(x, y) = 0.1cδ

and
φ2(x, y) = cδ

(
1−

( |x− y|
δ

)2)
with cδ := 3

2δ3 and an interaction horizon δ = 0.05. We further choose a = 0.5, fi = 1
and homogeneous Dirichlet data g = 0. Then all of the above assumptions are satis-
fied. Namely, the partial kernels γi are positive, radial and uniformly continuous on the
translation invariant interaction sets. The partial forcing terms are also continuous on
the respective subdomains. We solve the constraint equation from (8.9) with continuous
piecewise linear basis functions on a uniform grid of size h = 0.00025. The results are
presented and commented in Figure 8.4.
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Chapter 8. Shape optimization for identifying interfaces in nonlocal models

Nonlocal interface problem in 1d

Figure 8.4: The plots show the finite element solution uh of the nonlocal interface
problem posed on Ω = (0, 1). In the top row on the left-hand side we have the un-
perturbed version (cper = 0), i.e., a pure nonlocal model and on the right-hand side
the perturbed version with parameter cper = 0.001, i.e., a “small” Laplacian −cper∆
is added to the nonlocal operator. The plot below is a zoom onto the nonlocal in-
terface for the perturbed case. We first observe the predicted jump discontinuity
at the interface point a = 0.5. Since we employ continuous basis functions this
entails a slightly oscillating behavior for the unperturbed finite element solution.
Although only mildly perturbed, this singular behavior is smoothened for the reg-
ularized finite element solution. Furthermore, let us interpret both solutions in the
light of the introductory Section 2.1. First of all note that we have a nonlocal
diffusion model on both sides of the interface, whereas close to the interface we ob-
serve convective effects. Since we employ the same source term fi = 1 for i = 1, 2,
particles are produced at the same rate on both sides. However by the choice of
the partial kernel functions φii we observe a slower diffusion of particles on Ω1, i.e.,
on left-hand side of the interface, than on Ω2, i.e., on the right-hand side of the
interface. Therefore, the mass density u of particles on subdomain Ω1 = (−0.1, 0.5)
is larger than the one on Ω2 = (0.5, 1.1). Particles within the nonlocal interface
(a− δ, a+ δ) = (0.45, 0.55) experience an imbalanced motivation to move, thereby
provoking the convective effects.
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8.4 Numerical experiments

In this section, we want to put the above derived formula (8.26) for the shape derivative
of the reduced objective functional into numerical practice.

In all of the following numerical examples we choose the kernel

γΓ(x,y) = (φ1(x,y)χΩ1(x) + φ2(x,y)χΩ2(x))χBδ,∞(x)(y),

where
φ1(x,y) = 1

1000cδ

and

φ2(x,y) = 100cδ

(
1−

(‖y− x‖∞
δ

)2)

with scaling constant cδ := 3
4δ4 and an interaction horizon δ = 0.1. We note that

both partial kernels are radial and they are truncated by ‖ · ‖∞-balls so that Ω ∪ ΩI =
[−δ, 1 + δ]2. We choose homogeneous Dirichlet data g = 0 and as right-hand side a
piecewise constant function

fΓ(x) = 100χΩ1(x) + χ(Ω\Ω1)(x),

i.e., f1 = 100 and f2 = 1. We do not use a perimeter regularization, i.e., we choose
ν = 0, so that we can make use of the formula (8.26) for the shape derivative of the
reduced objective functional. We employ continuous piecewise linear basis functions on
triangular grids for the discretization of the nonlocal constraint equation. For a detailed
discussion on the assembly of the nonlocal stiffness matrix we refer to Chapter 4. Here we
only want to amplify how to implement a mixed kernel. During the mesh generation each
triangle is labeled according to its subdomain affiliation. Thus, whenever we integrate
over a pair of two triangles, we can read out the labels (i, j) and choose the corresponding
atomic kernel γij .

The data ū is generated as solution u(Γ) of the constraint equation associated to
a target shape Γ. Thus the data is represented in a finite element basis and for the
interpolation task in Line 3 of Algorithm 2 we solely need to translate between (non-
matching) finite element grids (we use scipy.interpolate.griddata for this). In all
examples below the target shape Γ is chosen to be a circle of radius 0.25 centered at
(0.5, 0.5).

We now present three different examples which differ in the choice of the initial guess
Γ0 and perturbation parameter cper. They are presented and described in the Figures
8.5, 8.6 and 8.7. In each plot of the aforementioned Figures the red line represents the
target interface Γ. The black line represents the initial guess and the blue ones the
shape iterates. For the second and third example we also used a re-meshing technique.
More precisely, as outlined in Chapter 4, the assembly of the nonlocal stiffness matrix is
very expensive from a computational perspective. Therefore, since we have to assemble
the nonlocal system not only for solving the state and adjoint equation in Line 4 of
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Algorithm 2, but also potentially several times for performing the backtracking line
search in Line 16, Algorithm 2 is clearly a costly endeavor for the nonlocally constrained
shape optimization problem at hand. In order to ease the computational effort we
therefore first compute a fixed number of iterations on a coarse grid, then re-fine the
mesh and use the interpolated iterate from the coarse grid onto the fine grid as a “warm-
start” for the computations on the fine grid. We stop the final iteration when a sufficient
decrease of the norm of the shape gradient is achieved.

Example 1

Figure 8.5: We have chosen a mild perturbation parameter cper = 0.0001. The
optimization algorithm terminated after 35 iterations. In the top row from left to
right the reader finds the initial interface (black) as well as the iterates 1 and 2
(blue). Followed by the iterates 3 and 4 and the final shape in the bottom row. The
finite element mesh for Ω ∪ΩI (note that ΩI is not depicted in the image) consists
of 7008 triangles with maximum diameter h = 0.05 and 3032 interior nodes in Ω, so
that the stiffness matrix is an element of R3032×3032. As desired, we find that the
blue iterates finally converge from the black initial shape to the red target shape.

We have implemented Algorithm 2 into a fully self-contained Python program in-
cluding the assembly of the nonlocal stiffness matrix. The finite element meshes are
generated with the free software Gmsh. As already alluded to, the overall optimization
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Example 2

Figure 8.6: We have chosen cper = 0.001. We run 25 iterations on the coarse grid
and show in the upper row from left to right the initial configuration (black) as well
as iterate 10 and the final iterate 25 (blue). The coarse grid consists of 870 triangles
for Ω ∪ ΩI (note that ΩI is not depicted in the image) with a maximum diameter
h = 0.14 and 408 interior nodes in Ω. We then perform the optimization on the fine
grid, which ended after 32 iterations. In the bottom line the reader finds the initial
interpolated interface (blue), iterate 4 and the solution after iteration 32. The fine
grid consists of 6826 triangles with maximum diameter h = 0.04 and 3186 interior
nodes, so that the stiffness matrix is in R3186×3186. We find that the blue iterates
finally converge to the red target shape.

program is computationally very expensive due to the fact that we have to assemble the
nonlocal stiffness matrix several times; see Line 4 and Line 16. Therefore, in order to
keep computation times acceptable we assemble the nonlocal stiffness matrix by using
approximate interaction sets. More precisely, we choose the approximation Example
2 from the numerical experiment described in Subsection 6.3.1, i.e., we integrate over
whole triangles whose barycenter lie within the interaction set S(x), here the ‖ · ‖∞-ball.
The overall optimization program still runs a couple of hours. It is important to mention
that computation times and the performance of Algorithm 2 in general are very sensi-
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Example 3

Figure 8.7: For this more complex experiment we had to choose a larger regu-
larization parameter cper = 0.1. We perform 50 iterations on the coarse grid and
show in the upper row from left to right the initial configuration (black) as well as
iterate 18 and the final iterate 50 (blue). The coarse grid consists of 768 triangles
for Ω ∪ ΩI with a maximum diameter h = 0.21 and 359 interior nodes in Ω. We
then perform the optimization on the fine grid, which ended after 55 iterations. In
the bottom line the reader finds the initial interpolated interface (blue), iterate 10
and the solution after iteration 55. The fine grid consists of 3924 triangles with
maximum diameter h = 0.08 and 1789 interior nodes, so that the stiffness ma-
trix is an element of R1789×1789. In this example, we do not exactly fit the target
shape. In fact, on the lower left-hand side of the last shape iterate, a thin “bump”
is formed. Different choices for the perimeter regularization ν and the initial Lamé
parameter µmax have led to similar corrupted simulations. We conjecture that these
observations are due to pure discretization artefacts; see the related remarks in the
concluding Section 8.5.

tive to the choice of parameters and may strongly vary, which is why reporting exact
computation times is not very meaningful at this stage. Particularly delicate choices are
those of the system parameters including the kernel (diffusion and convection) and the
forcing term, which both determine the identifiability of the model. But also the choice
of Lamé parameters to control the step size, specifically µmax (we set µmin = 0 in all
experiments, since we want the boundary of Ω to be fixed).
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In order to make the algorithm more robust against an unfavorable choice of Lamé
parameters, we have additionally implemented a dynamical adaption of µmax. In the
first phase of the optimization we typically have a larger distance between the state
variable u(Γk) and the target data ū. This leads to larger gradients and thus to mesh
deformations of larger magnitude. An ideal choice of Lamé parameters would lead to an
adequate stiffness of the mesh, which does not necessitate the backtracking line search
in Line 16 and thereby would save costly assemblies of the nonlocal stiffness matrix.
On the other hand, in a later phase of the algorithm, when the state variables u(Γk)
are closer to the data ū, mesh deformations decrease in magnitude and a stiff mesh
resulting from a to largely chosen µmax would lead to a stagnation of the algorithm.
With these deliberations in mind, we perform a heuristic adaption of µmax subsequent
to the backtracking line search in the following way. We count the number of rounds of
the while loop in Line 16, i.e., how often the step-size is downscaled through α = τα.
A large number of rounds is an indication for potentially too large mesh deformations
and we upscale µmax; and vice-versa. Furthermore, we expand this procedure by a
second measure to avoid unnecessary line search steps and thereby assemblies of the
nonlocal stiffness matrix. As already pointed out, mesh deformations may be large in
the early phase of the algorithm. Especially in the case of system parameters with high
interface-sensitivity in combination with an inconveniently small µmax which reinforces
this behavior. Thus, such mesh deformations Ũk of high magnitude lead to destroyed
meshes if only mildly downscaled and an evaluation of the reduced objective functional
Jred(Γk − αŨk), which requires the assembly of the nonlocal stiffness matrix, becomes
a pointless computation. In order to avoid such computations we first perform a line
search depending on two simple mesh quality criteria. More precisely, we downscale the
step size, i.e., α = τα, until the resulting interface Γk − αŨk does not intersect itself
(self_intersect = False) and all finite element nodes of the resulting mesh Ωk−αŨk

are a subset of Ω (out_of_omega = False). Here self_intersect and out_of_omega
denote the boolean output of the two routines, which test for these mesh quality crite-
ria. All in all, the backtracking line search in Line 16 of Algorithm 2 is substituted by
the modified line search outlined in Algorithm 3. Throughout our experiments we have
chosen the following set of parameters for Algorithm 3:

µmax = 20, nup = 1, ndown = 4, cup = 1.2 and cdown = 0.8.

Also observe that we exploit the line search counter i in Algorithm 3 as a heuristic
measure for the necessity of a potential restart of the overall optimization. In fact,
it may happen from time to time that the L-BFGS updates “get stuck” and fail in
determining a descent direction. This may result in a multiple downscaling to satisfy
the line search criterion. Thus, if this is the case, we delete the L-BFGS memory (we
store at most m = 15 vectors in our experiments) and restart the overall optimization
with the current iterate as new initial guess. Although often motivated by the aim of
saving memory storage, restart procedures are a common option in optimization software
[67, 25, 80]. In addition to that, we can use the number of restarts as additional break
criterion. In our computations we initiate a restart if the step size had to be downscaled

171



Chapter 8. Shape optimization for identifying interfaces in nonlocal models

more than seven times, i.e., nrestart = 8 in Algorithm 3 and allow for at most 3 such
restarts before we terminate the optimization; even if the gradients have not reached a
sufficient decrease.

Algorithm 3: Modified line search with mesh quality check, dynamical adaption
of µmax and restart criterion
1 Additional parameters: nup, ndown, nrestart ∈ N, cup > 1, cdown < 1
2 i = 0
3 Linesearch depending on mesh quality
4 while (self_intersect or out_of_omega) do
5 α = τα
6 i = i+ 1
7 end while
8 Linesearch depending on objective functional
9 while Jred(Γk − αŨk) ≥ cJred(Γk) do

10 α = τα
11 i = i+ 1
12 end while
13 Adaption of µmax
14 if i ≥ nup then
15 µmax = cupµmax
16 end if
17 if i ≤ ndown then
18 µmax = cdownµmax
19 end if
20 Restart criterion
21 if i ≥ nrestart then
22 → restart overall optimization

8.5 Concluding remarks and future work

We have conducted a study for shape optimization problems which are constrained by
nonlocal system models. We have proven through numerical experiments the applica-
bility of established shape optimization techniques for which the shape derivative of the
nonlocal bilinear form represents the crucial ingredient. During this feasibility study we
have uncovered a couple of interesting challenges, which are purely attributable to the
involvement of nonlocality, such as the consideration of truncated kernels or the lack of
regularity of nonlocal weak solutions. All in all, this chapter is only a first step along the
exploration of the interesting field of nonlocally constrained shape optimization prob-
lems and many open questions surfaced during our studies. Therefore, we end this final
chapter by listing a selection of open problems, which we consider being important for

172



8.5. Concluding remarks and future work

further investigations and which we aim to address in future work.
Rigorous analysis of the saddle point system. It remains to establish a rigorous

justification for the consideration of the reduced objective functional as is done in Sub-
section 8.2.3. As already alluded to, a common approach is to apply the theorem of
Correa and Seeger and a proof for its applicability in our setting needs to be delivered
subsequently.

Rigorous analysis of the (unperturbed) nonlocal interface problem. We conjecture
that the unperturbed nonlocal interface problem is well-posed and we aim to present a
rigorous proof for the existence of a (weak) solution. Furthermore, the pure nonlocal
model with such an interface-dependent mixed kernel can be interpreted as the coupling
of two nonlocal models and it is important to gain a deeper understanding of the un-
derlying physics. In this regard the consideration of different interaction sets for the
different atomic kernels is also of interest since it would contribute to an increase of
generality.

Improving shape related implementation parts. The third numerical example pre-
sented in Figure 8.7 leaves us with the question whether the remaining unmatching
“bump-like” part of the final iterate is a pure discretization artifact or ascribable to the
nonlocal model. Under the assumption that the unperturbed nonlocal model admits a
unique solution we have been able to show in Subsection 8.3.3 that this solution has a
jump discontinuity across the interface. Thus, by only mildly perturbing the nonlocal
operator with the Laplacian we still observe a steep gradient there. Thus the discretiza-
tion with continuous basis functions may lead to a slightly oscillating behavior of the
approximate finite element solution along the interface, which is not fully smoothened if
cper is chosen too small with respect to the kernel choice. Since the crucial contributions
to the shape derivative are determined at the interface, these oscillations may negatively
affect the performance of the optimization and may lead to degenerated solutions in
more complicated cases such as the one depicted in this example. In addition to that,
the problem may also be traced back to an inconvenient distribution chosen for the
Lamé parameter µ and thereby leading to an unfavorable stiffness of the mesh. All in
all, we are confident to prevent such misbehaviors by implementing discontinuous finite
element basis functions and by investigating better choices for the distribution of the
Lamé parameter µ; for the latter see also [70, Section 5].

Local limit. It is a well known fact that the nonlocal objects, such as the nonlo-
cal operator, bilinear form and especially the corresponding weak solution, converge to
appropriately chosen local counterparts as the interaction horizon vanishes δ → 0; see
Chapter 7. Since the foregoing shape formalism is thoroughly investigated for constraint
equations which are classical partial differential equations, it is interesting to investigate
the local limit for the unperturbed nonlocal interface problem and the associated shape
derivative. This is not only interesting in its own right but would also serve as a further
diagnostic tool for the reliability of the derived (nonlocal) shape derivative.

Shape derivative for general mixed kernels. As we have proceeded to compute
the shape derivative of the nonlocal bilinear we have restricted ourselves to a certain
class of mixed kernels due to partially weighted interaction sets. For a wider application
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spectrum it is of great importance to provide a method which enables us to numerically
solve shape optimization problems as in the present case which involve general mixed
kernels. This might require the application of shape optimization techniques other then
those used in this chapter; see the next point.

Investigation of different shape optimization techniques. It might be worth consid-
ering other numerical techniques to approach the shape optimization problem at hand.
One example would be the phase field approach; see [14, 13] and the references therein.
Also, considering sharp interfaces and local gradients in a nonlocal setting is conceptu-
ally not coherent with the nonlocal “philosophy” and a different conception of nonlocal
interface problems may lead to different optimization tools.

Nonlocal-to-local coupling. In mechanical applications a lot of effort has been put
in the study of nonlocal-to-local coupling. The aim is to benefit from the computa-
tional ease that (local) partial differential models come along with, but retain accuracy
in regions, where singular behaviors, such as cracks, are expected; see, e.g., [43] and the
references therein. However, this requires the a priori knowledge about where to opti-
mally apply the nonlocal model. Thus, it is of great importance to develop techniques
which enable the identification of these regions in a rather automatic manner. One
first step would be to formulate a shape optimization problem to identify the interface
between a local and a nonlocal model.

Choice of inner product. In order to determine the mesh deformation vector field,
i.e., the gradient, we solve equation (8.16), i.e., the linear elasticity equation. An optimal
choice for the inner product would be the one determined by the Hessian of the reduced
objective functional. Since we are considering nonlocally constrained optimization prob-
lems, it stands to reason to consider an inner product that is determined by a nonlocal
operator. This would add to the computational costs but could lead to a faster and
potentially grid-independent convergence behavior.
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Chapter 9

Conclusion and outlook

In this thesis we have treated the nonlocal Dirichlet problem with volume constraints
given in (2.1) from a modeling and analytical perspective, we have extensively discussed
its discretization via the finite element method and finally formulated and numerically
solved a shape optimization problem to identify an interface-dependent kernel. We have
thereby set a focus on truncated kernels of the form

γ(x,y) = φ(x,y)χS(x)(y) (9.1)

for interaction sets S(x) which can be sandwiched between two Euclidean balls and for
which the indicator function χS(x)(y) is symmetric. Although the case S(x) = Rd is of
interest, e.g., in the fractional calculus, we mainly worked with finitely truncated kernels.
For the most part in the related literature only the case S(x) = Bδ,2(x) is treated. Thus
the consideration of more general interaction sets naturally gives rise to the question,
whether established analytical results are transferable to kernels of type (9.1) involving
such interaction sets. In this regard me we have made the following contributions to the
analysis and modeling aspect:

• Well-posedness. We have proved the well-posedness for a variational formulation
of problem (2.1) for two prominent kernel classes, namely integrable kernels (Sub-
section 3.3.1) and a certain type of singular kernels which are closely related to
fractional diffusion (Subsection 3.3.2).

• Comparison framework. We have considered two nonlocal models, which solely
differ in the choice of the kernel. We have derived estimates for the difference in
bilinear forms (Corollary 6.1.1) and the difference in weak solutions (Proposition
6.1.4). A focus has been set on the comparison of kernels which solely differ in
their interaction sets. In particular we have derived precise integrals to effect the
comparison of Euclidean balls and ‖ · ‖∞-balls for various radii choices (Lemma
6.1.5).

While specializing to norm induced interaction balls, so that we can consider the size of
the interaction sets as varying parameter, we have documented the following asymptotic
results:
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• Infinite horizon. We have shown that solutions corresponding to nontruncated
kernels converge to solutions corresponding to related truncated kernels as the
interaction horizon increases. For illustration purposes we have considered the
fractional Poisson problem (Lemma 6.2.3). In order to make this statement relevant
for numerical practice we have computed the related integrals (Lemma 6.2.2).

• Vanishing horizon. We have shown that nonlocal operators and weak solutions
converge to their local counterparts as the interaction horizon vanishes (Proposition
7.2.1 and Theorem 7.3.4). We thereby allowed for kernels which are truncated by
any norm induced interaction sets and which are characterized by kernel functions
φ that are radial with respect to any norm. The crucial estimate to translate
between the general and the standard case has been derived in Lemma 7.3.3. For
numerical purposes we have derived precise integral respresentation for associated
scaling constants (Lemma 7.4.1).

The latter results have been achieved by translating the general kernel into a standard
kernel by deriving appropriate estimates and computing related integrals.

These analytical results then have served as a necessary foundation for subsequent
numerical investigations of the computational benefits that nonstandard interaction sets
come along with, in particular polyhedral and approximate interaction sets. We have
served the discretization aspect in the following way.

• Detailed description. We have explained in detail the discretization of problem
(2.1) via the finite element method including related challenges and the benefits
of polyhedral interaction sets. We have documented useful representations for the
entries of the nonlocal stiffness matrix based on the support of the basis functions
(see (4.13) and (4.18)) and we have derived a fully discretized version thereof
(4.28).

• Approximate interaction sets. We have introduced the notion of approximate in-
teraction sets in Section 4.4 with a further investigation in Section 6.3 concerning
their effect on the finite element error (Corollary 6.3.2).

• Structure exploiting method. Under appropriate assumptions on the kernel and the
domain, we have introduced a finite element discretization, which yields multilevel
Toeplitz stiffness matrices (Theorem 5.1.2). We have explained the computational
advantages, which have enabled us to solve three-dimensional problems (Subsection
5.3.1).

In the final Chapter 8 we have formulated a shape optimization problem which is
constrained by a nonlocal equation of type (2.1).

• Problem formulation. We have introduced a nonlocal convection-diffusion model,
which is determined by an interface-dependent kernel (see (8.4)). In order to iden-
tify the interface from given measurements we formulate an optimization problem
which is constrained by the nonlocal model at hand and where the control, i.e.,
the interface, is modeled as a shape.
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• Shape derivative. We have derived the shape derivate of the nonlocal bilinear form
(see (8.23)), which was necessary to deduce an expression for the shape derivative
of the associated reduced objective functional (see (8.15)).

• Numerical realization. We have implemented a shape optimization algorithm and
presented three numerical study cases.

All in all, nonlocal models with a finite range of interactions enrich our modeling
spectrum and present useful alternative as well as supplemental approaches to classical
differential equations. However, their numerical discretization for application-oriented
problems is challenging. In this regard, it should be our ultimate goal to develop efficient
discretization techniques, which enable us to solve nonlocal equations on complex three-
dimensional domains. Therefore, we see great potential in approximate interaction sets
which only necessitate the integration over whole elements. In future work, we therefore
aim at extending the analysis of their effect on the quadrature error and thus on the
finite element error. It is desirable to find an approximation approach, which does not
result in a significant deterioration of the finite element error.

Clearly, solving the constraint equation is a necessary prerequisite for optimization
problems which, e.g., enable the identification of related parameters in the model of
interest. Thus, a computationally tractable assembly routine to generate the discretized
system is of great importance. Besides this, the particular shape optimization problem
discussed in Chapter 8 has led itself to many challenging and interesting problems as
outlined in the concluding Section 8.5. In the near future, besides the necessary de-
velopment of a rigorous analytical foundation for the introduced problem at hand, we
also want to put an emphasized focus on applying the gathered insights to nonlocal-to-
local coupling problems as they provide a promising alternative approach for easing the
discretization of nonlocal models.
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Appendix A

Implementation details for the
Toeplitz solver

In this appendix we aim to provide further details on the implementation of the Toeplitz
solver presented in Chapter 5.

A.1 Entries of the stiffness matrix

We analyze the entries
akj = a(vkj),

with vkj from (5.6), of the stiffness matrix Ah more closely and derive a representation
which can be efficiently implemented.

We first characterize the domain of integration occurring in the integral in a(vkj).
Let us define

Ŝkj := (vkj + Ŝ),

then (
Ŝc × Ŝc ∪ Ŝckj × Ŝckj

)c
=
(
Ŝc × Ŝc

)c
∩
(
Ŝckj × Ŝckj

)c
=
(
(Ŝ × Ŝ) ∪ (Ŝc × Ŝ) ∪ (Ŝ × Ŝc)

)
∩
(
(Ŝkj × Ŝkj) ∪ (Ŝckj × Ŝkj) ∪ (Ŝkj × Ŝckj)

)
=(C × C) ∪ (Dk × C) ∪ (C ×Dk) ∪ (Dj × C) ∪ (Ŝc ∩ Ŝckj × C) ∪ (Dj ×Dk)
∪ (C ×Dj) ∪ (Dk × Ŝkj) ∪ (C × Ŝc ∩ Ŝckj),

where we set

C := Ŝ ∩ Ŝkj , Dk := Ŝ ∩ Ŝckj and Dj := Ŝc ∩ Ŝkj .

According to (5.7) we obtain, by exploiting the symmetry of the integrand,

2akj/h2d =
∫
Ŝ∩Ŝkj

∫
Ŝ∩Ŝkj

F (x,y; vkj)dydx
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+ 2
∫
Ŝ∩Ŝkj

∫
Ŝc
kj
∩Ŝ
F (x,y; vkj)dydx

+ 2
∫
Ŝ∩Ŝkj

∫
Ŝkj∩Ŝc

F (x,y; vkj)dydx

+ 2
∫
Ŝ∩Ŝkj

∫
Ŝc∩Ŝc

kj

F (x,y; vkj)dydx

+ 2
∫
Ŝ∩Ŝc

kj

∫
Ŝc∩Ŝkj

F (x,y; vkj)dydx,

where F (x,y; z) = (ϕ̂(y − z) − ϕ̂(x − z))(ϕ̂(y) − ϕ̂(x))γ(hy, hx). Note that this
representation holds for a general setting without assuming (A1) and (A2) (see also
(4.18)).

From now on we also assume that the interaction horizon δ is larger or equal the
diameter of the domain Ω, such that Ω ⊂ Bδ,∞(x) for all x ∈ Ω, i.e., δ ≥ diam(Ω) =
||b−a||2. Thus we do not have to deal with partially covered elements (see the discussion
in Subsection 4.3.2). This coincides with the application to space-fractional diffusion
problems where we aim to model δ →∞ (see Section 6.2).

Furthermore, since we can construct the whole stiffness matrix Ah from its first row
Rh, it is convenient to introduce the following Ld-dimensional vectors:

singk := h2d
∫
Ŝ∩Ŝk

∫
Ŝ∩Ŝk

F (x,y;EL(k))dydx

+ 2h2d
∫
Ŝ∩Ŝk

∫
Ŝc
k
∩Ŝ
F (x,y;EL(k))dydx

+ 2h2d
∫
Ŝ∩Ŝk

∫
Ŝk∩Ŝc

F (x,y;EL(k))dydx,

radk := 2h2d
∫
Ŝ∩Ŝk

∫
(Ŝ∪Ŝk)c

F (x,y;EL(k))χBδ,∞(hx)(hy)dydx,

disk := 2h2d
∫
Ŝ∩Ŝc

k

∫
Ŝc∩Ŝk

F (x,y;EL(k))dydx,

for 0 ≤ k < Ld, where
Ŝk := Ŝ0k = EL(k) + Ŝ.

Since xk0 = xk−x0
h = EL(k), we have

Rh = sing + rad + dis
2 .

As we see in the subsequent program, each of these vectors requires a different numerical
handling which justifies this separation. In these premises we point out, that on the one
hand we may touch possible singularities of the kernel function along the integration in
singk. On the other hand, the computation of radk may require the integration over a
“large” domain if δ →∞ (e.g. fractional kernel). Both are numerically demanding tasks
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and complicate the assembling process. In contrast to that, the computation of disk
turns out to be numerically viable without requiring a special treatment. However, we
fortunately find

Ŝ ∩ Ŝk = ∅ ⇒ singk = 0 = radk.

Hence, it is worth identifying those indices k and treat them differently in the assembling
loop. Therefore, from Ŝ =

⋃̇2d
i=0(�− vi) we deduce that

Ŝ ∩ Ŝk 6= ∅ ⇔ ∃ 0 ≤ i < 2d : k = EL(vi).

As a consequence, we only have to compute singk and radk for

k ∈ idx0 :=
{
EL(vi) : 0 ≤ i < 2d

}
.

We can cluster these indices even more. For that reason let us define on idx0 the
equivalence relation

k ∼ j :⇔ ∃ permutation matrix P ∈ RLd×Ld : E−L(k) = PE−L(j).

Then due to Remark 5.1.3 we have to compute the values singk and radk only for

k ∈ idxks := {[j]∼ : j ∈ idx0} .

In order to make this more precise, we figure out that the quotient set can further be
specified as

idxks =
{

[EL(z)]∼ : z ∈ S
}
,

where

S := {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1)} ⊂
{
vi : 0 ≤ i < 2d

}
with |S| = d+ 1 ≤ 2d. With other words, we group those vi which are permutations of
one another. The associated indices 0 ≤ i < 2d are thus given by{

E2e(z) : z ∈ S
}

=: idxis.

In addition to the preceding considerations, we also want to partition the integration
domains Ŝ ∩ Ŝk, Ŝ ∩ Ŝck and Ŝc ∩ Ŝk, where k ∈ idxks , into cubes (�− vν), such that we
can express the reference basis function ϕ̂ with the help of the element basis functions
ψ̂i. This is necessary in order to compute the integrals in a vectorized fashion and obtain
an efficient implementation. Let us start with

Ŝ ∩ Ŝk, where k = EL(vi) for 0 ≤ i < 2d

such that Ŝk = vi + Ŝ. Then we define the set

Di :=
{

0 ≤ µ < 2d : �− vµ ∈ Ŝ ∩ Ŝk
}

=
{

0 ≤ µ < 2d : ∃ κ : vµ + vi = vκ
}
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Ŝ ∩ Ŝk

Ŝ ∩ Ŝck

Ŝc ∩ Ŝk
v1

v0

v3

v2

Di = {0}

{0, 1, 2, 3} \Di = {1, 2, 3}

Dc
i = {0, 1, 2}

Figure A.1: Illustration of the index sets for d = 2, i = 3.

=
{

0 ≤ µ < 2d : (vµ + vi)j < 2 for all 0 ≤ j < d
}
.

Since Ŝ =
⋃̇2d
i=0(�− vi), we find that

Ŝ ∩ Ŝk =
⋃
ν∈Di

(�− vν).

Hence, we readily recognize that

Ŝ ∩ Ŝck =
⋃

ν∈{0,...,2d−1}\Di
(�− vν).

Similarly, we can derive a set Dc
i , such that

Ŝc ∩ Ŝk = vi +
⋃
ν∈Dci

(�− vν).

Figure A.1 illustrates the latter considerations and in Table A.1 these sets are listed for
dimensions d ∈ {1, 2, 3}, respectively.
With this at hand, we can now have a closer look at the vectors sing, rad and dis and
put them into a form which is suitable for the implementation.

A.1.1 Vector “sing”

Let i ∈ idxis, such that EL(k) = vi. Since Ŝ ∩ Ŝk =
⋃
ν∈Di �−vν , we can transform the

first integral in sing as follows∫
Ŝ∩Ŝk

∫
Ŝ∩Ŝk

F (x,y;EL(k))dydx =
∑
ν∈Di

∑
µ∈Di

∫
�−vν

∫
�−vµ

F (x,y; vi)dydx
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d i ∈ idxis k = EL(vi) ∈ idxks Di Dc
i = {0 ≤ j < i} κ(Di, i)

1 0 0 (0, 1) ∅ (0, 1)
1 1 0 0 1

2 0 0 (0, 1, 2, 3) ∅ (0, 1, 2, 3)
2 p0 (0, 1) (0, 1) (2, 3)
3 p0 + p1 0 (0, 1, 2) 3

3 0 0 (0, 1, 2, 3, 4, 5, 6, 7) ∅ (0, 1, 2, 3, 4, 5, 6, 7)
4 p0 (0, 1, 2, 3) (0, 1, 2, 3) (4, 5, 6, 7)
6 p0 + p1 (0, 1) (0, 1, 2, 3, 4, 5) (6, 7)
7 p0 + p1 + p2 0 (0, 1, 2, 3, 4, 5, 6) 7

Table A.1: Index sets for the implementation.

=
∑
ν∈Di

∑
µ∈Di

∫
�

∫
�
F (x− vν ,y− vµ; vi)dydx.

By definition of Di we have for µ ∈ Di that

vµ + vi = vκ(µ,i) with κ(µ, i) = E2e(vi + vµ)

and since

F (x− vν ,y− vµ; vi)
=(ϕ̂(y− vκ(µ,i))− ϕ̂(x− vκ(ν,i)))(ϕ̂(y− vµ)− ϕ̂(x− vν))γ(h(y− vµ), h(x− vν))

we find due to (5.3) that

∑
ν∈Di

∑
µ∈Di

∫
�

∫
�
F (x− vν ,y− vµ; vi)dydx

=
∑
ν∈Di

∑
µ∈Di

∫
�

∫
�

((ψ̂κ(µ,i)(y)− ψ̂κ(ν,i)(x))(ψ̂µ(y)− ψ̂ν(x)))γ(h(y− vµ), h(x− vν))dydx.

We separate the case µ = ν since the kernel may have singularities at (x,y) with x = y
and therefore these integrals need a different numerical treatment. At this point we find
that ∑

ν∈Di

∫
�

∫
�

((ψ̂κ(ν,i)(y)− ψ̂κ(ν,i)(x))(ψ̂ν(y)− ψ̂ν(x)))γ(hy, hx)dydx

=|Di|
∫
�

∫
�

((ψ̂i(y)− ψ̂i(x))(ψ̂0(y)− ψ̂0(x)))γ(hy, hx)dydx.

This simplification follows from some straightforward transformations exploiting assump-
tion (A2) and the fact that each element basis function ψ̂ν can be expressed by ψ̂0 through
the relation ψ̂ν ◦ gν = ψ̂0, where gν(x) := vν + Rνx for an appropriate rotation matrix
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Rν . With this observation we also find that the other two integrals in sing are equal,
i.e., ∫

Ŝ∩Ŝk

∫
Ŝc
k
∩Ŝ
F (x,y;EL(k))dydx =

∫
Ŝ∩Ŝk

∫
Ŝk∩Ŝc

F (x,y;EL(k))dydx.

By exploiting again that Ŝ∩Ŝk =
⋃
ν∈Di �−vν and thus Ŝ∩Ŝck =

⋃
ν∈{0,...,2d−1}\Di �−vν

we obtain∫
Ŝ∩Ŝk

∫
Ŝc
k
∩Ŝ
F (x,y;EL(k))dydx

=−
∑
ν∈Di

∑
µ∈{0,...,2d}\Di

∫
�

∫
�
ψ̂κ(ν,i)(x)(ψ̂µ(y)− ψ̂ν(x))γ(h(vν − vµ), h(x− y))dydx.

Note that by definition of Di we have that for µ ∈
{

0, . . . , 2d
}
\Di there is no κ ∈{

0, . . . , 2d
}
such that vµ + vi = vκ and therefore ϕ̂(y− (vµ + vi)) = 0 for all y ∈ �. All

in all we have

singk/h
2d =

|Di|
∫
�

∫
�

((ψ̂i(y)− ψ̂i(x))(ψ̂0(y)− ψ̂0(x)))γ(hy, hx)dydx

+
∑
ν∈Di

 ∑
µ∈Diµ6=ν

∫
�

∫
�

((ψ̂κ(µ,i)(y)− ψ̂κ(ν,i)(x))(ψ̂µ(y)− ψ̂ν(x)))

· γ(h(vµ − vν), h(y− x))dydx

−4
∑

µ∈{0,...,2d}\Di

∫
�

∫
�
ψ̂κ(ν,i)(x)(ψ̂µ(y)− ψ̂ν(x))γ(h(vµ − vν), h(y− x))dydx

 .
~Long live Manissi!

A.1.2 Vector “rad”

Let i ∈ idxis, such that EL(k) = vi. Proceeding as above we obtain

radk = 2h2d
∫
Ŝ∩Ŝk

∫
(Ŝ∪Ŝk)c

F (x,y; vi)dydx

= 2h2d ∑
ν∈Di

∫
�
ψ̂ν(x)ψ̂κ(ν,i)(x)

∫
(Ŝ∪Ŝk)c

γ(h(x− vν), hy)(hy)dydx.

Let us define

Pν(x) :=
∫

(Ŝ∪Ŝk)c
φ(h(x− vν), hy)χBδ,∞(h(x−vν))(hy)dy, (A.1)
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where we consider γ(x,y) = φ(x,y)χBδ,∞(x)(y). Again, we can use ψ̂ν ◦gν = ψ̂0 in order
to show by some straightforward transformations that∫

�
ψ̂0(x)ψ̂i(x)P0(x)dx =

∫
�
ψ̂ν(x)ψ̂κ(ν,i)(x)Pν(x)dx

for all ν ∈ Di. Hence, we arrive at

radk = 2h2d|Di|
∫
�
ψ̂0(x)ψ̂i(x)P0(x)dx.

A.1.3 Vector “dis”

Now we distinguish between the case where radk and singk are zero and the complement
case. First let i ∈ idxis, such that E−L(k) = vi, then we find

disk := 2h2d
∫
Ŝc
k
∩Ŝ

∫
Ŝk∩Ŝc

F (x,y;E−L(k))dydx

= −2h2d ∑
ν∈{0,...,2d}\Di

∑
µ∈Dci

∫
�

∫
�
ψ̂µ(y)ψ̂ν(x)γ(h(vµ − vν − vi), h(y− x))dydx.

Now let k 6= E−L(vi) for any 0 ≤ i < 2d, then Ŝck ∩ Ŝ = Ŝ and Ŝk ∩ Ŝc = Ŝk such that

disk =2h2d
∫
Ŝ

∫
Ŝk
F (x,y;E−L(k))dydx

=− 2h2d
∫
Ŝ

∫
Ŝk
ϕ̂(y + E−L(k))ϕ̂(x)γ(h(y + E−L(k)), hx)dydx.

Since by definition Ŝk = E−L(k) + Ŝ and Ŝ =
⋃̇2d
i=0(�− vi), we obtain

disk

=− 2h2d ∑
0≤ν<2d

∑
0≤µ<2d

∫
�

∫
�
ψ̂ν(x)ψ̂µ(y)γ(h(vµ − E−L(k)− vν), h(y− x))dydx.

All in all we conclude that, if k = EL(vi), then

disk
−2h2d

=
∑

ν∈{0,...,2d}\Di

∑
µ∈Dci

∫
�

∫
�
ψ̂ν(x)ψ̂µ(y)γ(h(vµ − vν − E−L(k)), h(y− x))dydx.
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Elsewise we have

disk
−2h2d

=
∑

0≤ν<2d

∑
0≤µ<2d

∫
�

∫
�
ψ̂ν(x)ψ̂µ(y)γ(h(vµ − vν − E−L(k)), h(y− x))dydx.

A.1.4 Source term

We compute fh ∈ RLd by

fhk =
∫

Ω
fϕkdx

=hd
2d−1∑
ν=0

∫
�
f(xk + h(v− vν))ψ̂ν(v)dv

=hd2d
∫
�
f(xk + hv)ψ̂0(v)dv,

~Danke G.N.!!

where the last equality follows again from considering ψ̂ν ◦ gν = ψ̂0.

A.2 Numerical computation of the integrals

In this section we want to point out how we numerically handle the occurring integrals.

A.2.1 Nonsingular integrals

We mainly have to compute integrals of the form∫
�

∫
�
g(x,y)dydx,

where � = [0, 1]d and g : Rd × Rd → R is a (typically smooth) function, which we
assume to have no singularities in the domain � × �. We approximate the value of
this integral by employing a n-point Gauss-Legendre quadrature rule in each dimension.
More precisely, we built a d-dimensional tensor grid X ∈ Rd×nd with associated weights
Wsingle ∈ Rnd , such that

∫
� g(x,y)dy ≈

∑nd−1
i=0 g(x, Xi)Wsinglei for x ∈ X. Finally, we define

the arrays

V := (X, X, . . . , X) ∈ Rd×n
2d
,
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Q := (X0, . . . , X0, X1, . . . , X1, . . . , Xnd−1, . . . , Xnd−1) ∈ Rd×n
2d

with associated weights Wdouble ∈ Rn2d , such that we finally arrive at the following quadra-
ture rule: ∫

�

∫
�
g(x,y)dydx ≈

n2d−1∑
i=0

g(Vi, Qi)Wdoublei =
(
g(V, Q) · Wdouble

)
.sum().

A.2.2 Singular integrals

The kernel function may come along with singularities at (x,y) with x = y (see, e.g., the
fractional kernel (6.24)). Therefore we start with a general observation, which paves the
way for numerically handling these singularities. Let g : Rd × Rd → R be a symmetric
function, i.e., g(x,y) = g(y,x), and let us further define the sets

M := {(x,y) ∈ �×� : yd ∈ [0, xd]}

and
M ′ := {(x,y) ∈ �×� : (y,x) ∈M} .

Then it is straightforward to show that M ∪M ′ = �×� and

M ∩M ′ = {(x,y) ∈ �×� : xd = yd}

=
{

(vd−1, z, wd−1, z) ∈ R2d : (vd−1, wd−1, z) ∈ [0, 1]2d−1
}
,

such that λ2d(M ∩M ′) = 0. Hence, we find that∫
�×�

gdλ2d =
∫
M∪M ′

gdλ2d =
∫
M
gdλ2d +

∫
M ′
gdλ2d −

∫
M∩M ′

gdλ2d

=
∫
M
gdλ2d +

∫
M ′
gdλ2d.

From the symmetry of g we additionally deduce that∫
M
gdλ2d =

∫
M ′
gdλ2d

and therefore we finally obtain∫
�×�

gdλ2d = 2
∫
M
gdλ2d.

This observation can now be applied to the singular integrals occurring in the vector
sing such that∫

�

∫
�

((ψ̂i(y)− ψ̂i(x))(ψ̂0(y)− ψ̂0(x)))γ(hy, hx)dydx

=2
∫

[0,1]d

∫
[0,1]d−1×[0,xd−1]

((ψ̂i(y)− ψ̂i(x))(ψ̂0(y)− ψ̂0(x)))γ(hy, hx)dydx.
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The essential advantage of this representation relies on the fact that the singularities
are now located on the boundary of the integration domain. Thus, we do not evaluate
the integrand on its singularities while using quadrature points which lie in the interior.
We extend the one-dimensional adaptive (G7,K15)-Gauss-Kronrod quadrature rule to d-
dimensional integrals by again tensorizing the one-dimensional rule. Moreover, in order
to take full advantage of the Gauss-Kronrod quadrature, we divide the set [0, 1]d−1 ×
[0, xd−1] into 2d−1 disjoint rectangular subsets such that the singularity x is located at a
vertex. The latter partitioning reinforces the adaptivity property of the Gauss-Kronrod
quadrature rule.

A.2.3 Integrals with large interaction horizon

Now we discuss the quadrature of

P0(x) =
∫

(Ŝ∪Ŝk)c
φ(hx, hy)χBδ,∞(hx)(hy)dy

= (1/hd)
∫

(S0∪Sk)c
φ(hx,y− (a + he))χBδ,∞(hx)(y− (a + he))dy

from (A.1).

Remark A.2.1. By the time this code has been implemented, the author was not aware
of the implementation recipe suggested in Remark 6.2.4, so that a coarsening strategy is
considered in the following to cope with the difficulty to numerically integrate over large
integration domains.

We carry out two simplifications for the implementation, which are mainly motivated
by the fact that γ(x,y)→ 0 as y →∞ for kernels such as the fractional Laplace kernel.
First, since h→ 0, we set

Bδ,∞(hx) = Bδ,∞(0).

Especially when δ is large and h small, this simplification does not significantly affect
the value of the integral. Second, we employ the || · ||∞-norm for the ball Bδ,∞(0) instead
of the || · ||2-norm. This is justified in Section 6.2. Hereby we can use our quadrature
rules for rectangular elements. Consequently, we are concerned with the quadrature of
the integral ∫

Bδ,∞(a+h)\(S0∪Sk)
φ(hx,y− (a + he))dy

for x ∈ X. For this purpose, we define the box

B :=
d−1∏
i=0

[ai − λ, ai + λ]

for a constant δ ≥ λ > 2h such that (S0 ∪ Sk) ⊂ B and we partition

Bδ,∞(a + h) = B ∪Bδ,∞(a + he)\B.
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Thus, we obtain

P0(x)hd ≈
∫
B\(S0∪Sk)

φ(hx,y− (a + he))dy +
∫
Bδ,∞(a+he)\B

φ(hx,y− (a + he))dy.

We discretize B with the same elements which we used for Ω. This is convenient for two
reasons. On the one hand we capture the critical values of the kernel, which in case of
singular kernels typically decrease as y→∞. On the other hand, we have to leave out
the integration over (S0 ∪ Sk), which then can easily be implemented since we use the
same discretization. However, this results in Nd

2, where N i
2 = 2λ/h, hypercubes with

base points

yj := (a − λe) + hE−N2(j)

such that

∫
B\(S0∪Sk)

φ(hx,y)dy =
Nd

2 −1∑
j=0,j /∈Ri

∫
yj+he�

φ(hx,y− (a + he))dy

= hd
Nd

2 −1∑
j=0,j /∈Ri

∫
�
φ(λe + h(e− E−N2(j)), h(y− x))dy,

where Ri contains the indices for those elements, which are contained in (S0 ∪Sk). This
set can be characterized as

Ri :=
{

0 ≤ j < Nd
2−1: yj + h� ⊂ (S0 ∪ Sk)

}
.

Note that by definition we have S0 = a + h(e +
⋃

0≤ν<2d � − vν) and since E−L(k) =
vi for k ∈ idxks such that xk = a + h(e + vi) we know that

Sc0 ∩ Sk = a + h(e + vi +
⋃
ν∈Dci

�− vν).

Hence,

(yj + h�) ⊂ (S0 ∪ Sk)⇔ yj = a + h(e− vν) for 0 ≤ ν < 2d

or yj = a + h(e + vi − vν) for ν ∈ Dc
i .

Since yj = a − λe + hE−N2(j) we find by equating yj with these requirements that

Ri =
{
EN2(e− vν + λh−1e) : 0 ≤ ν < 2d

}
∪
{
EN2(e + vi − vν + λh−1e) : ν ∈ Dc

i

}
.

Now we discuss the quadrature of the second integral∫
Bδ,∞(a+he)\B

φ(hx,y− (a + he))dy
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for x ∈ X. Since we want to apply the algorithm to fractional diffusion, we have to get
around the computational costs that occur when δ is large. In order to alleviate those
costs we follow the idea in [33] and apply a coarsening rule to discretize the domain
Bδ,∞(a + he)\B. Assume we have a procedure which outputs a triangulation (z, ĥ) of
Bδ,∞(a + he)\B consisting of N3 hyperrectangles with base points zj ∈ Rd and sides of
length ĥj ∈ Rd. Then we obtain

∫
Bδ,∞(a+he)\B

φ(hx,y− (a + he))dy =
N3−1∑
j=0

∫
zj+ĥj�

φ(hx,y− (a + he))dy

=
N3−1∑
j=0

ĥdj

∫
�
φ(−zj + a + he, ĥjy− hx)dy.

All in all we thus have

radk ≈ 2|Di|h2d
Nd

2 −1∑
j=0,j /∈Ri

∫
�

∫
�
ψ̂0(x)ψ̂i(x)φ(λe + h(e− E−N2(j)), h(y− x))dydx

+ 2|Di|hd
N3−1∑
j=0

ĥdj

∫
�

∫
�
ψ̂0(x)ψ̂i(x)φ(−zj + a + he, ĥjy− hx)dydx.

~10x p.WE, good birdbox!

This leaves space for discussion concerning the choice of an optimal coarsening rule.
We use the following simple approach in our code: We decompose Bδ,∞(a + he)\B into
(3d − 1) d-dimensional hyperrectangles surrounding the box B. Then we build a tensor
grid by employing in each dimension the coarsening strategy

v + iqhmine,

where v is a vertex of B, q ≥ 1 the coarsening parameter and hmin > 0 a minimum grid
size. By concatenating all arrays we obtain a triangulation (z, ĥ) of Bδ,∞(a + he)\B.

A.3 Final remarks

Depending on the dimension, we only have to adapt the index sets idxis, idxks , Di and
Dc
i , the implementation of the quadrature rules discussed above and the 2d element basis

functions. The rest can be implemented in a generic way. In addition to that, we framed
above the relevant representations for implementing the assembly of the first row.
Furthermore, along the assembling process of the first row, we first compute the more
challenging (d+ 1) entries

2Rh
k = singk + radk + disk for k ∈ idxks .
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Here we parallelize the computations of the integrals in radk over the base points yj for
the box B and zj for the coarsening strategy. For the remaining Ld−(d+ 1) indices we
have that

2Rh
k = disk

and we can simply parallelize the loop over
{

0 ≤ k < Ld
}
\idxks .
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