
Competitive Analysis of Scheduling
Problems and List Accessing

Problems

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt dem Fachbereich IV - Mathematik
der Universität Trier.

Author:
Yida Zhu, MSc

Berichterstatter:
Prof. Dr. Sven de Vries

Dr. habil. Jan Pablo Burgard

Prof. Dr. Leonhard Frerick

October 23, 2019

Contents

1 Introduction 1

2 Competitive Analysis of Scheduling Problems 3
2.1 Notation . 4

2.1.1 Graham Notation . 4
2.1.2 Notation in Mathematical Programming 7

2.2 Known Complexity Result and Related Algorithms 8
2.2.1 Known Result of Total Completion Time Related Scheduling Prob-

lem . 9
2.2.2 Known Result of Due Date Related Scheduling Problems 19

2.3 Competitive Result in the Online Environment 23
2.4 Computer Experiments . 29

2.4.1 The Implementation of Algorithms for Scheduling Problems . . . 30
2.4.2 Online Experiments . 33
2.4.3 Offline Experiments . 38
2.4.4 From Scheduling Problems to List Accessing Problem 40

3 Competitive Analysis of List Accessing Problems 41
3.1 Notation . 42
3.2 Background on the Optimal Offline Algorithm 43
3.3 Deterministic Algorithms for the List Accessing Problem 49
3.4 Bounds for Competitiveness of Deterministic Online Algorithms 50
3.5 Randomized Algorithms for the List Accessing Problem 60
3.6 Bounds for Competitiveness of Randomized Online Algorithms 63

4 Closer Randomized Analysis of BIT 74
4.1 Uniform Distribution . 74

4.1.1 The Expected Cost and Variance of CBIT(b, I) 74
4.1.2 The Distribution of Bit Values . 78

4.2 General Independent and Identical Distributions 87
4.2.1 The Expected Preceding Indicator 87
4.2.2 EB[δxx′(B, I)]-invariant Partition 92

ii

4.2.3 The Remainder Rxx′(Im) and the Expected Cost of BIT 96
4.3 Locality Reference . 100

5 Computer Experiments and Average Case Analysis of List Accessing
Problems 104
5.1 The Implementation of Algorithms for List Accessing Problem 104

5.1.1 Deterministic Algorithms TRANS, MTF, FC, and TS 105
5.1.2 Randomized Algorithms RMTF, BIT, COMB 107
5.1.3 Constructing Optimal Solutions for Small Instances by Integer

Programming . 110
5.2 Expected Cost and Competitive Ratio on Small Instances 114

5.2.1 Optimal Algorithm . 114
5.2.2 Deterministic Algorithms . 115
5.2.3 Randomized Algorithms . 116

5.3 Performance on i.i.d. Generated Request Sequences 119

Bibliography 124

iii

Chapter 1
Introduction

An optimization problem consists of a set of instances together with the associated ob-
jective function value (cost or profit) which depends on the instance. For every instance,
an algorithm must produce a sequence of decisions that will have an impact on the final
objective function value. In the case of a deterministic algorithm, all of its decisions are
made only based on the knowledge of the instance. Hence the objective function value
depends only on the instance. By contrast, the objective function value of the result
of a randomized algorithm1 is further influenced by the random choices made by the
algorithm.

An algorithm ALG is called offline, if the instance is completely known before ALG
produces any decision. Otherwise, it is said to be online, i.e. a part of information about
the instance is revealed step by step and ALG has to make decisions every time after
the knowledge is updated.

Competitive analysis, suggested by Sleator and Tarjan (1985), is a method invented
for analyzing online algorithms, in which the performance of an online algorithm is com-
pared to the performance of an optimal offline algorithm. More precisely, let CALG(Ins)
denote the returned cost after solving the instance Ins with algorithm ALG. An optimal
algorithm OPT is characterized by COPT(Ins) ≤ CALG(Ins) for all instances Ins and all
algorithms for this problem.

Definition 1.1. A deterministic online algorithm is c-competitive, if there exists a
positive constant c ≥ 1 such that for every instance Ins:

CALG(Ins) ≤ c · COPT(Ins).

As one can imagine, one of the challenges in the aspect of competitive analysis is to
bound the cost of the unknown optimal algorithm. In this thesis, two online optimization
problems, scheduling and list accessing, are considered where the competitive analysis
is commonly applied as a measure of performance.

In Chapter 2, we introduce the measure “competitive ratio” by considering scheduling
problems. As a decision making process, scheduling problems play an important role

1see Section 3.5 for instance.

1

in many real world environments. Roughly speaking, an instance of one scheduling
problem consists of a set of machines, a set of jobs and an objective function. The
decision maker determines when to process which job on which machine in order to
optimize the objective function. To name a few examples, machines may be processing
unit in a computing environment, crew members of an airline company, or real machines
in a workshop. The corresponding jobs may be executions of computer programs, flights
that should be served by the crew members, and operations in a production process.

Two classes of scheduling problems are considered together with the known algorithms
and their performance. During this chapter we will see that one key for solving scheduling
problem in these two classes well is to find a good order of the jobs and finish the jobs in
that order. At the end of this chapter, we provide the results of computer experiments,
which reveal the strength of different algorithms descripted in this chapter. We end this
chapter by pointing out that the list accessing problem shares this key property with
scheduling problems.

The list accessing problem was originally considered by Sleator and Tarjan (1985)
when they proposed the concept of competitive analysis. An instance of the list accessing
problem consists of a list of distinct elements, a sequence of requests to elements in the
list and the objective of minimizing the cost of serving the request sequence. Finding
the requested element incurs a cost depending on where it is in the list, rearranging the
list incurs a cost depending on the list order before and after the rearrangement. The
decision maker determines how to rearrange the list after serving each request to achieve
the minimal cost. List accessing algorithms are typically applied in the context of data
compression, as will be explained in Chapter 3 and 4.

In Chapter 3, we introduce two classical proof techniques, the potential function
method and the list factoring technique, to deepen the understanding of competitive
analysis. Both techniques can be applied to prove that the competitive ratio of BIT, the
central randomized online algorithm for list accessing problems, is bounded by 1.75. By
analyzing the proof of the potential function method closely, this chapter ends with a
conjecture of how to find a better bound for BIT. Such bounds are typically approached
only by large instances.

To establish an overview, Chapter 4 focuses on average case analysis for small in-
stances, where the requests are i.i.d. variables. A new closed formula for the expected
cost of BIT, one of the best known algorithms for list accessing problem, are derived.

Finally, the last chapter describes computer experiments to support the results in
Chapter 3 and 4. Since the problem itself is NP-hard, only small instance are consid-
ered for competitive analysis (as the optimal solution has to be computed explicitly).
For larger instances, we compare the performance of different algorithms on empirical
instance directly with each other.

2

Chapter 2
Competitive Analysis of Scheduling
Problems

In general, scheduling problems can be understood as the problem of allocating resources
over time to perform a set of tasks. Tasks have a set of different characteristics and they
compete for common resources individually. In addition, different criteria may be taken
into account to measure the quality of the performance of a set of tasks.

It is easy to imagine that scheduling problems emerge frequently in real-world situa-
tions.

Example 2.1. Consider an exam in which every wrong answer is penalized with minus
points. The resource to be allocated is the time. Tasks are the questions to be answered
during the exam and the measurement is the score.

Example 2.2 (Pinedo,2012). One of the functions of a multi-tasking computer operating
system is to schedule the time that the CPU devotes to the different programs that have
to be executed. The resource is the CPU time. Tasks are the programs waiting for being
executed. Roughly speaking, the aim is to finish the calculations of as many important
programs as early as possible.

During this chapter, we use these two examples to illustrate the competitive analysis
of scheduling problems. This chapter is organized as follows: Section 2.1 introduces two
possibilities to model Example 2.1 and 2.2 formally. Section 2.2 presents the known
results about these two models, including complexity, known algorithms and their per-
formance in an online environment. In the last section, we provide computer codes to
simulate the scheduling process with different characteristics to test the algorithms and
support the results proposed in this chapter.

3

2.1 Notation

2.1.1 Graham Notation

Definition 2.3. A job j is a task presented to the decision maker which has to be
processed on a machine m for a certain period of time. The set of jobs is denoted by
J and the set of machines is denoted by M . A schedule is an assignment of jobs to
machines over the time horizon.

Due to the widespread applicability, jobs and machines usually come up with addi-
tional attributes or constraints and there exist different objectives which may be con-
sidered. Usually, every machine is able to process at most one job and every job may
be processed by at most one machine simultaneously. A schedule is said to be feasible,
if these requirements and all constraints arising from the concrete problem are fulfilled.
For the purpose of understanding competitive analysis, Definition 2.4 introduces only a
limited set of necessary attributes, constraints and objective functions for this chapter1.

Definition 2.4. Depending on the application, a scheduling problem is equipped with

• a single machine, if only one machine is available,

• identical machines, if more than one machines are available with the same
efficiency.

Each job j is equipped with the following attributes:

• The release time rj is the point in time, from which the job j is available to be
processed,

• the processing time pj is the amount of time needed to process the job j,

• the due date dj is the point in time, from which the job j is no more available to
be processed, and

• the weight wj is a priority factor, denoting the importance of job j relative to
other jobs.

Once a machine m starts to process a job j at the point in time t, that job begins to accu-
mulate time units until pj is reached or the process is interrupted by the decision maker.
If the latter case is allowed, the scheduling problem is said to be preemptive. Otherwise,
the problem is non-preemptive and machine m is serving j until j is finished (the
point in time t+ pj).

• The completion time cj is the point in time, when j is finished.

1We refer to Pinedo (2012) and Blazewicz et al. (2014) for a comprehensive list of attributes of
scheduling problems.

4

• The unit penalty uj indicates if the job j is finished late, i.e.

uj =

{
1, if cj > dj,

0, otherwise.

Remark 2.5. Notice that the attributes rj, pj, dj, wj are determined completely by the
job, while cj and uj also depend on the applied schedule. Capital letters are used in the
literature to indicate this dependency. In later chapters, random variables are used in
some analysis, which are usually denoted with capital letters too. To avoid ambiguity,
completion time and unit penalty are denoted with lower cases in this chapter.

In Example 2.1, only one machine2, namely the student himself, is available. Every
question j is considered as a job with the following attributes:

• The release time rj = 0 is the point in time when the exam starts for all j in this
case,

• the processing time pj is the time the student needs to solve the question j,

• the due date dj is the point in time when the exam ends for all j, and

• the weight wj is the score for answering the question j correctly.

The aim is to achieve the highest score, or equivalently, to minimize the weighted sum

of unit penalty
∑
j∈J

ωjuj, i.e. the sum of points of those questions which are not finished

in time.

Question j Time pj (min.) Points wj
1 30 3
2 30 3
3 35 4

Table 2.1: The attributes for Example 2.1

Example 2.6. Consider Example 2.1: The exam takes 60 minutes and consists of three
questions. Given the attributes in Table 2.1, schedules can be visualized via a box chart,
see Figure 2.1, where the color indicates if the question is finished in time. This chart
is also known as Gantt chart.

2A few assumptions are necessary to ensure the formal correctness of this example: We assume that
the student is conservative (i.e. he answers only those questions at which he knows the correct answer
to avoid the penalty for wrong answers) and honest (i.e. he does not try to cheat by copying the
answer from other students). Furthermore, we assume that the time needed to solve a question is
known beforehand.

5

c1 = 30, u1 = 0 c2 = 60, u2 = 0 c3 = 95, u3 = 1

d = 60t = 0

(a) The schedule of finishing the first two questions but
failed to answer the third question in time.

c3 = 35, u3 = 0 c1 = 65, u1 = 1 c2 = 95, u2 = 1

d = 60t = 0

(b) The schedule of finishing the third question but failed
to answer other two questions in time.

Figure 2.1: Possible schedules for doing exam.

Example 2.7. In Example 2.2, the set M of machines is the set of available CPUs.
Every program j is considered as a job with the following attributes:

• The release time rj is the point in time when the user executes that program j,

• the processing time pj is the time needed to finish the calculation required by j,

• the due date is not present in this example, and

• the weight wj is the score of importance for the user of finishing j.

The aim is to finish as many important programs as early as possible, this can be imple-

mented as to minimize the sum of weighted completion time
∑
j∈J

ωjcj.

Graham et al. (1979) introduce a three field notation α | β | γ to denote all relevant
information of a scheduling problem where

• the field α includes the attributes of machines,

• the field β includes the relevant attributes of jobs, and

• the field γ includes the optimality criteria.

For instance: Example 2.1 can be denoted as 1 | dj = d |
∑

j∈J ωjuj
3, where 1 indicates

that this is a single machine problem and dj = d indicates that the due dates are constant
(not depended on j). If the specification rj is not provided in the β field, then all jobs
are released at the beginning. Example 2.2 can be denoted as Pm | rj, prmp |

∑
j∈J ωjcj,

where Pm indicates that there are m parallel machine available and rj indicates that
the release time may be different and prmp is an abbreviation of preemptive. Certainly,
maximizing both of these objective functions is not meaningful (as they are unbounded
from above), the term “minimizing” is omitted here in the γ field. This notation, known
as “Graham notation”, is commonly used in the literature.

3Formally, preemption (switching to another question before finishing the current one) is allowed
during the exam. But this is not a successful strategy from the experience, and is thus excluded by
a conservative student.

6

2.1.2 Notation in Mathematical Programming

A large class of scheduling problems is known to be NP-hard, including Example 2.1
and 2.2. Mathematical programming is a commonly used tool to solve or approximate
such NP-hard scheduling problems. For instance, the scheduling problem arising from
Example 2.1 can be formulated as follows.

Lemma 2.8. Consider an instance of the scheduling problem arising from Example 2.1.
A schedule can be presented as a binary vector (xmjt)m∈M,j∈J,t∈[d] where the value of xmjt
is equal to 1 if and only if machine m begins to process job j at the point in time t. In
the case of Example 2.1, the quantifier ∀m ∈M is omitted as there is only one machine
available. A schedule (xjt)j∈J,t∈[d] is feasible if and only if the following constraints are
satisfied: ∑

j∈J xjt ≤ 1 ∀t ∈ [d] (2.1a)

xjt = 0 ∀t > d− pj (2.1b)∑
t∈[d] xjt ≤ 1 ∀j ∈ J (2.1c)

pj(xjt − 1) +
∑

j′∈J\{j}
∑t+pj−1

k=t+1 xj′k ≤ 0 ∀j ∈ J, t ∈ [d] (2.1d)

xjt ∈ {0, 1} ∀j ∈ J, t ∈ [d] (2.1e)

The constraints (2.1a) ensure that, simultaneously, only one question is assigned to the
student 4. In order to finish question j in time, the student has to start to answer j no
later than d− pj, constraints (2.1b) prohibit starting to answer a question too late.

The no-preemption-rule is expressed by constraints (2.1c) and (2.1d): By (2.1c), every
question can be started at most once. If the student begins to answer j at the point in
time t, then he is not able to start another question j′ for the following pj time units,
i.e. xjt = 1 implies xj′k = 0 for all other questions j′ and the entire period of time
k ∈ {t+ 1, · · · , t+ pj − 1}. Thus, we have

xjt + xj′k ≤ 1 ∀j ∈ J, t ∈ [d]∀j′ ∈ J − j, k ∈ {t+ 1, · · · , t+ pj − 1} (2.2)

(2.1d) can be obtained by applying (2.1a) on the sum5 of (2.2) over all j′ ∈ J − j and
k ∈ {t+ 1, · · · , t+ pj − 1}.

It remains to present the unit penalty uj using xmjt. Notice that, by (2.1b), a question
j will be finished in time if and only if it is started early enough during the exam, i.e.

uj =

{
0,

∑d−pj
k=1 xjk = 1,

1, otherwise,

4In general, if there is more than one machine available, it is necessary to add
∑

m∈M xmjt ≤ 1 for all
j ∈ J, t ∈ [d] to ensure that the same job is assigned to at most one machine.

5 Replacing a set of constraints with their sum leads to a weaker formulation in general. However,
together with binary constraint, (2.1d) and (2.2) are actually equivalent.

7

or equivalently, uj = 1−
∑d−pj

k=1 xjk. Therefore, the scheduling problem

1 | dj = d |
∑
j∈J

ωjuj

can be formulated as

minimize
∑
j∈J

ωj(1−
d−pj∑
k=1

xmjk)

subject to (2.1a), (2.1b), (2.1c), (2.1d), (2.1e)

2.2 Known Complexity Result and Related

Algorithms

In complexity theory, a distinction is made between optimization problems and decision
problems. The question raised in a decision problem requires either a “Yes” or a “No”
answer. For example, 1 | dj = d |

∑
j∈J ωjuj is an optimization problem to minimize the

total weighted unit penalty. For any given z, one may also ask if it is possible to find
a schedule such that the objective value is no more than z. We call the latter problem
the decision version associated with the optimization problem 1 | dj = d |

∑
j∈J ωjuj.

A fundamental concept in complexity theory is the concept of problem reduction. To
reduce one problem to another, one provides a constructive transformation6 mapping
any instance of the first problem into an equivalent instance of the second, such that
any algorithm that solves the second problem can be converted to an algorithm that
solves the first problem. For example, it is easy to see that the decision version of an
optimization problem can be reduced to the optimization problem itself: To answer the
question if there exists a schedule with∑

j∈J

ωjuj ≤ z,

one may consider the optimization problem 1 | dj = d |
∑

j∈J ωjuj and calculate the
optimal value z∗ using some algorithm. Clearly, the answer to the decision version is
“Yes” if z∗ < z and “No” if otherwise. Thus, if there exists an efficient algorithm to
solve one scheduling problem (as an optimization problem) optimally, then this algorithm
efficiently solves its decision version. Informally, the scheduling problem is at least as
hard as its decision version7.

Very often, one scheduling problem can be reduced to another scheduling problem

6Technically, the existence of a polynomial-time-transformation between these two problems is required
in order to define the reducibility entirely. We refer to Karp (1972) for a formal correct definition.

7Actually, the converse is also true: The decision version of scheduling problem is at least as hard as
the optimization problem itself, see Garey and Johnson (2002)

8

that allows further restrictions, e.g. the problem 1 | dj = d |
∑

j∈J ωjuj is a special case
of (can be reduced to) 1 | dj |

∑
j∈J ωjuj. We denote this reducibility by

1 | dj = d |
∑
j∈J

ωjuj ∝ 1 | dj |
∑
j∈J

ωjuj.

More general, since dj = d is a special case of dj, we have the reducibility

α | β, dj = d | γ ∝ α | β, dj | γ

for any environment α, β, γ. This fact is denoted simply by dj = d ∝ dj.
In this section, we present various chains of reducible scheduling problems to establish

an overview of the models arising from Example 2.1 and 2.2. In the manner of complexity,
either efficient algorithms or a reduction from NP-complete problems are provided.

The following NP-complete decision problems are important from the scheduling point
of view.

Definition 2.9 (Knapsack problem). Given a set {1, . . . , n} of n items, each with a
weight wi and a value vi, along with a maximum weight capacity W and a given target
value v, it is to answer if the target value v is achievable without violating the weight
capacity w, i.e. if there exists a subset S ⊆ [n] such that∑

i∈S

wixi ≤ W and
∑
i∈S

vixi ≥ v

Definition 2.10 (Partition problem). Given n positive integers a1, . . . , an and define

b =
1

2

n∑
i=1

ai.

It is to answer if there exists a subset S ⊆ [n] such that∑
i∈S

ai = b.

2.2.1 Known Result of Total Completion Time Related
Scheduling Problem

In this subsection, we discuss the complexity of total completion time related scheduling
problems. We distinguish the cases where

• either a single machine (1) or identical machines (Pm) are available,

• if preemption (prmp or non-prmp) and different release time (pj = 0 or pj) are
present, and

9

• whether an unweighted (
∑

j∈J cj) or a weighted (
∑

j∈J ωjcj) sum of completion
times is the objective.

It is easy to see that the following reductions hold:

1 ∝ Pm, (denoted by in Figure 2.2)

rj = 0 ∝ rj, (denoted by in Figure 2.2)∑
j∈J

cj ∝
∑
j∈J

ωjcj. (denoted by in Figure 2.2)

In total of 16 different scheduling problems can be obtained by combining these envi-
ronments, we enumerate these 16 problems in Table 2.2.

1 1| prmp |
∑

j∈J cj 5 1| prmp |
∑

j∈J ωjcj
2 1|rj, prmp |

∑
j∈J cj 6 1|rj, prmp |

∑
j∈J ωjcj

3 1| |
∑

j∈J cj 7 1| |
∑

j∈J ωjcj
4 1|rj|

∑
j∈J cj 8 1|rj|

∑
j∈J ωjcj

9 Pm| prmp |
∑

j∈J cj 13 Pm| prmp |
∑

j∈J ωjcj
10 Pm|rj, prmp |

∑
j∈J cj 14 Pm|rj, prmp |

∑
j∈J ωjcj

11 Pm| |
∑

j∈J cj 15 Pm| |
∑

j∈J ωjcj
12 Pm|rj|

∑
j∈J cj 16 Pm|rj|

∑
j∈J ωjcj

Table 2.2: Enumeration of total completion time related scheduling problems.

The complexity of these 16 problems can be summarized as directed graphs, see Figure
2.2. Vertices are numbered and present the scheduling problem according to Table 2.2,
the color of vertices indicates the complexity of that corresponding problem, red for NP-
hard and green for a problem in P. Arcs always direct from one problem to its reduction.
For instance, the dashed edge from vertex 7 to 15 indicates the reduction

1 | |
∑
j∈J

ωjcj ∝ Pm | |
∑
j∈J

ωjcj

from the P-problem 1 | |
∑

j∈J ωjcj to the NP-problem Pm | |
∑

j∈J ωjcj. Every directed
path is a chain of reductions.

10

1

2

6

5

9

10

14

13

(a) Complexity hierarchy of preemptive scheduling problems listed
in Table 2.2.

3

4

8

7

11

12

16

15

(b) Complexity hierarchy of non-preemptive scheduling problems
listed in Table 2.2.

Figure 2.2: Three simple graphs

In order to verify the complexities shown in Figure 2.2, it suffices to show that problems
2, 5, 9, 7, 11 are in P and problems 4, 6, 10, 13, 15 are NP-hard.

11

Reduction from NP complete problems

The decision version of problems 4, 6, 10, 13, and 15 can be reduced from partition prob-
lem. We summarize the basic idea of these reductions here.

Lemma 2.11 (Lenstra et al.,1977). Consider the scheduling problem 1 | |
∑

j∈J ωjcj. If,
in a given instance, we have ωj = pj for every j ∈ J , then the objective value

∑
j∈J ωjcj

is a constant, independent of the chosen schedule.

Proof. In general, a schedule in this environment can be seen as an order of J . Whenever
the machine is available, it takes the first job according to this order which has not been
processed at that point in time.

As the release times of all jobs are equal to 0, it does not make sense to have idle
time, that is, a period of time when the machine does not process any job. For a given
schedule A, we enumerate the jobs according to the corresponding order and derive the
following equations:

cj =

j∑
i=1

pi ∀ j ∈ [n]

and hence the resulting objective value is equal to

∑
j∈J

ωjcj =
∑
j∈[n]

ωj

(
j∑
i=1

pi

)
.

Assuming that ωj = pj for every j ∈ J , it is thus to show that

∑
j∈[n]

ωπ(j)

(
j∑
i=1

pπ(i)

)
=
∑
j∈[n]

ωj

(
j∑
i=1

pi

)

holds for all permutation π ∈ Sn. Since the symmetric group Sn is generated by trans-
positions (σi)i∈[n−1] where σi = (i, i + 1), it suffices to show the equation for all σi. We
apply the standard pairwise exchange technique to prove this equation for σ1, the other
equations can be obtained by using exactly the same proof.

Consider another schedule B with the order (2, 1, 3, 4, . . . , n). Figure 2.3 illustrates
these two schedules in Gantt chart. Beginning from the third job, all completion times
in both schedules are identical. Thus, it only remains to show that ω1p1 +ω2(p1 + p2) =
ω2p2 + ω1(p1 + p2) which is equivalent to

ω2p1 = ω1p2

which is satisfied trivially by the assumption ωj = pj.

To illustrate the common idea, we apply Lemma 2.11 to construct the reduction from
partition problem to P2 | |

∑
j∈J ωjcj. This is, as the number of available machines is

more restricted, certainly a special case of Problem 15: Pm| |
∑

j∈J ωjcj.

12

Job 1 Job 2 Job 3, 4, . . .

(a) Schedule A.

Job 2 Job 1 Job 3, 4, . . .

(b) Schedule B.

Figure 2.3: Schedule A and B of Lemma 2.11

Lemma 2.12 (Lenstra et al.,1977).

Partition ∝ P2 | |
∑
j∈J

ωjcj.

Proof. Given positive integers a1, . . . , an, define b = 1
2

∑n
i=1 ai.

Consider the Problem P2 | prmp |
∑

j∈J ωjcj, for each ai we construct a job whose

processing time pi and weight ωi are both equal to ai. Define z =
∑

i,j∈[n],i≤j aiaj − b2.
We claim that this partition problem has a “Yes”-answer if and only if there exists a
schedule where

∑
j∈J ωjcj = z.

For each subset S ⊆ [n] we can construct a schedule A(S) where the jobs in S are
assigned to the first machine and jobs in [n] − S are assigned to the second machine.
We compare the objective value of A(S) with the trivial schedule A([n]) where all jobs
are assigned to the first machine (see Figure 2.4).

By Lemma 2.11, the order in which a machine processes these jobs is irrelevant and
the objective value of A([n]) is equal to

∑
i,j∈[n],i≤j pipj. The completion times of jobs in

S are exactly the same in both schedules, whereas jobs in [n] − S are finished
∑

j∈S pj
earlier according to A(S) than according to A([n]). Hence the objective value of A(S)
is equal to

∑
i,j∈[n],i≤j

pipj −

(∑
j∈S

pj

)
·

 ∑
j∈[n]−S

ωj

 =
∑

i,j∈[n],i≤j

aiaj −

(∑
j∈S

aj

)
·

 ∑
j∈[n]−S

aj

 .

As
(∑

j∈S aj

)
+
(∑

j∈[n]−S aj

)
=
∑

j∈[n] aj = 2b, the product
(∑

j∈S aj

)
·
(∑

j∈[n]−S aj

)
is less than or equal to b2, Therefore, the objective value of A(S) is greater than or equal
to z for all S. The equation holds if and only if

∑
j∈S aj = b, which is, if and only if the

partition problem has a “Yes”-answer.

The construction idea presented in the proof of Lemma 2.12 can be extended to reduce
partition problem to Problem 4, 6 and 10. We refer to the corresponding references in
the first half of Table 2.3 for a proof in full detail.

Given an arbitrary instance (M,J) of Problem 15: Pm | |
∑

j∈J ωjcj, i.e. a set M of
machines and a set J of jobs together with their processing times and weights, every
schedule of this instance can also be interpreted as a schedule of the same instance (M,J)

13

Machine 1

Machine 2

Job in S

Job in [n]− S

(a) Schedule A(S).

Machine 1

Machine 2

Job in S Job in [n]− S

(b) Schedule A([n]).

Figure 2.4: Schedule A(S) and A([n]) of Lemma 2.12

Id Problem reduced from partition Reduction
4 1 | rj |

∑
j∈J cj Kan (2012)

6 1 | rj, prmp |
∑

j∈J ωjcj Labetoulle et al. (1984)

10 Pm | rj, prmp |
∑

j∈J cj Du et al. (1990)

13 Pm | prmp |
∑

j∈J ωjcj Problem 15

15 Pm | |
∑

j∈J ωjcj Lenstra et al. (1977)

Id Problem solvable in polynomial time Algorithm
2 1|rj, prmp |

∑
j∈J cj SRPT, Schrage (1968)

5 1| prmp |
∑

j∈J ωjcj Problem 7

7 1| |
∑

j∈J ωjcj WSPT, Smith (1956)

9 Pm| prmp |
∑

j∈J cj Problem 11

11 Pm| |
∑

j∈J cj SPT, Conway et al. (2003)

Table 2.3: The complexity results of problems from Table 2.2.

of Problem 13: Pm | prmp |
∑

j∈J ωjcj. Thus, the optimal objective value v15 of (M,J)
in Problem 15 is obviously an upper bound of the optimal objective value v13 of (M,J)
in Problem 13. Interestingly, McNaughton (1959) shows that v15 cannot be reduced by
allowing preemption, meaning that v15 = v13. By applying Lemma 2.12, Problem 13 is
also NP-hard.

Furthermore, this result of McNaughton also applies to Problem 7 and Problem 11,
since they can be considered as special case of Problem 15. Thus, if Problem 7 and
Problem 11 can be solved efficiently, then Problem 5 and Problem 9 can also be solved
efficiently.

Offline Algorithms SPT and its Variants

It remains to show that Problem 2, 7, and 11 can be solved efficiently. The second half
of Table 2.3 summerizes the optimal offline algorithms for these three problems.

One of the most often used general strategies for solving scheduling problems is list

14

scheduling algorithm, whereby a priority list of the available jobs is maintained, and
at each step the first available machine is assigned to process the first available job
according to that priority list. In particular, all algorithms used in the second half of
Table 2.3 are list algorithms.

Definition 2.13. Let Shortest Processing Time first (short: SPT) denote the
algorithm which always assigns the job j with the minimal pj among all available jobs to
a machine m as soon as m is idle.

In the case that weights of jobs are present, let Weighted Shortest Processing
Time first (short: WSPT) denote the variant of SPT where jobs are assigned according
to

pj
ωj

instead of pj.

In the case that preemption and release time are present, let Shortest Remaining
Processing Time first (short: SRPT) denote the variant of SPT where jobs are
assigned according to the remaining processing time.

SPT and WSPT update the priority list whenever some machine m becomes available.
Compared to this, SRPT also updates its priority list at every point in time whenever a
job is released in addition. By such occasions, the job, which has the longest remaining
processing time among all jobs already assigned to a machine, will be replaced by the first
available job (is able to be processed but not assigned to any machine) according to the
priority list.

Example 2.14. Consider an instance of Problem 14: Pm|rj, prmp |
∑

j∈J ωjcj with 2
machines and 4 jobs, see Table 2.4 for the attributes of these jobs. The schedule provided
by SPT, WSPT, and SRPT are illustrated in Figure 2.5.

At t = 0, two machines are available. SPT and SRPT share the same priority list
(1, 2, 3), whereas WSPT has a list (3, 1, 2). Job 4 is excluded from these priority lists
initially as it is still not released. SPT, WSPT, and SRPT assign the first two jobs
according to their own priority list to available machine 1 and 2. Most assignments in
this example are in this fashion.

The only preemption happens at t = 1, when Job 4 is released. SRPT updates the
priority list to (4, 1, 2, 3). Since job 1 and 2 are assigned with the remaining processing
time 2 and 3 respectively, job 3, which has the longest remaining processing time 6, is
interrupted and replaced by job 4.

Job Release time Processing time Weight
1 0 3 3
2 0 4 4
3 0 7 8
4 1 1 2

Table 2.4: Attributes of jobs in Example 2.14.

Remark 2.15. Due to the common spirit of SPT, WSPT, and SRPT, Lemmas 2.16,
2.17 and 2.18 apply the same proof technique “pairwise exchange” to characterize optimal

15

Machine 1

Machine 2

(a) SPT Schedule.

Machine 1

Machine 2

(b) WSPT Schedule.

Machine 1

Machine 2

(c) SRPT Schedule.

Figure 2.5: Schedule produced by SPT, WSPT, and SRPT.

schedules in the corresponding problems, e.g. an optimal schedule of Problem 7 must
follow WSPT-rule. Since all of SPT,WSPT, SRPT are deterministic, the schedules
produced by them are unique (apart from a permutation of jobs with the equal processing
time, processing time by weight or the remaining processing time at any point in time
t), a characterization of optimal schedule is thus equivalent to a proof of optimality of
the corresponding algorithm.

Lemma 2.16 (Smith,1956). Problem 7: 1 | |
∑

j∈J ωjcj can be solved optimally by using
WSPT rule.

Proof. Given an arbitrary instance of 1 | |
∑

j∈J ωjcj with n jobs and consider an arbi-
trary schedule A violating WSPT. We enumerate the jobs by the order of how A assigns
them to machines, and let z be the number of ordered pairs (ji, ji′) of jobs violating the
WSPT-rule, i.e. pi

ωi
>

pi′
ωi′

but i < i′. In particular, there must exist a job jk, such that

(jk, jk+1) violates the WSPT-rule, see Figure 2.6a.

jk jk+1 jk+2, , jk−1

(a) A Schedule A violating WSPT-rule.

jk+1 jk jk+2, , jk−1

(b) Improved Schedule A′.

Figure 2.6: Schedules in Lemma 2.16

We show that A can be improved by exchanging the jobs jk and jk+1 on its schedule.
Let A′ denote the schedule after this exchange, see Figure 2.6b. Obviously, the com-
pletion time of all jobs other than jk and jk+1 are identical in both schedules. We thus
restrict our focus to the contributions to objective value from jobs jk and jk+1.

16

By deleting the first k − 1 common initial jobs, it suffices to show that

ωkpk + ωk+1(pk + pk+1) > ωk+1pk+1 + ωk(pk + pk+1)

which is equivalent to pk
ωk
> pk+1

ωk+1
after resorting the terms. This inequality holds trivially

by the assumption that A violates WSPT-rule.
Therefore, any schedule with z > 0 is not optimal. In contraposition, an optimal

schedule must follow WSPT-rule.

Lemma 2.17 (Conway et al.,2003). Problem 11: Pm | |
∑

j∈J cj can be solved optimally
by using SPT rule.

Proof. Consider an instance of Pm | |
∑

j∈J cj with n jobs and an optimal schedule A.
The job set J can be partitioned according to A as follows:

J =
⋃̇

m∈M
{j ∈ J |A assigns j to machine m}.

Let Jm denote the set of jobs assigned to machine m. For the sake of a clear indexing,
we add a number of dummy jobs with processing time 0 to each machine such that
every machine receives an equal number of jobs, say q = |Jm| = d nme for all m ∈M . All
dummy jobs are processed at the point in time t = 0, resulting in a completion time of 0
(see Figure 2.7 for an illustration). Hence the objective value is not influenced and thus
the problem as well as the assumed optimality of A remains unchanged.

Machine 1

Machine 2

Machine 3

(a) Black points present jobs
assigned by A.

Machine 1

Machine 2

Machine 3

(b) Grey points present
added dummy jobs.

Figure 2.7: Adding dummy jobs to given schedule.

Let A′ denote the schedule after adding dummy jobs and jm,k denote the k-th job

assigned to machine m by A′. It is easy to see that the cm,k =
∑k

l=1 pm,l, i.e. the
completion time of the job jm,k is equal to the sum of processing times of the first k jobs
assigned to m. Thus, the contribution zm =

∑
j∈Jm cj to objective value from machine

m is equal to
q∑
l=1

(q + 1− l)pm,l. (2.4)

Observe that increasing (decreasing) the processing time pm,k by p results in an in-
crease (decrease) of zm by (q − k)p. Hence we conclude:

• Exchanging the k-th job on one machine m with the k-th job on another machine
m′ (the green double arrow in Figure 2.7b) does not influence the objective value
at all.

17

To see this let p = |pm,k−pm,k′|. Since the contribution of one machine is increased
by (q − k)p and the contribution of the other machine is decreased by the same
amount, the sum of them remains unchanged.

• The optimality of A′ implies that pm,k is no smaller than pm′,k−1 for all m′ ∈M .

Since otherwise, say pm′,k−1−pm,k = p > 0, one can exchange jm,k with jm′,k−1 (the
red double arrow in Figure 2.7b) so that zm + zm′ is decreased by p, contradicting
the optimality of A′. In particular, the number of jobs assigned to one machine
is at most one more than the number assigned to another machine. After adding
dummy jobs, this can be seen easily by exchanging one real job with one dummy
job (the red double arrow in Figure 2.8) and applying exactly the same argument
as above.

Machine 1

Machine 2

Machine 3

Figure 2.8: Unbalanced assignment is not optimal.

Furthermore, from Lemma 2.16 we know that the jobs in Jm must be assigned in a
SPT-fashion. Therefore, every optimal schedule, after adding dummy jobs if necessary,
must admit to the following property:

pm,k ≤ pm′,k+1 ∀m,m′ ∈M,k = 1, . . . , q − 1

where m′ may be the same as m. In other words, an optimal schedule must follow
SPT-rule apart from a permutation of jobs in R(k) where

R(k) = {jm,k |m ∈M}.

Lemma 2.18 (Pinedo,2012). Problem 2: 1 | rj, prmp |
∑

j∈J cj can be solved optimally
by using SRPT rule.

Proof. Similar to the proof of Lemma 2.16, we prove that every optimal schedule A must
follow SRPT rule by showing if SRPT is violated, then the schedule can be improved.

Without loss of generality we may assume that, according to A, the machine does not
take any idle time as long as there is still a job available. Since otherwise we may assign
one available job to the machine to trivially reduce the objective value. Let t be the
earliest point in time when SRPT is violated. Let pj,t denote the remaining processing
time of j at the point in time t. Then there exist two available jobs j and j′ such that
pj,t > pj′,t and A assigns j to the machine. Let cj and cj′ denote the completion times
of j and j′ according to A respectively.

We adjust A to an alternative schedule A′ in the following way:

• A′ imitates every preemption and assignment from A of jobs other and j, j′,

18

• A′ imitates every preemption and assignment from A of jobs j, j′ up to t, and

• after t, A′ assigns only j′ to the machine whenever either j or j′ is assigned to the
machine by A until j′ is finished at the point in time c′j′ ,

• after j′ is finished, A′ assigns only j to the machine whenever either j or j′ is
assigned to the machine by A until j is finished at the point in time c′j.

Since the adjusted time intervals are all used by A to process either j or j′, it is easy to
see that the total length of these intervals are equal to pj+pj′ in both schedules and thus
max{cj, cj′} = max{c′j, c′j′}. Since A assigns the job j with longer remaining processing
time to the machine for a period of time, min{c′j, c′j′} = c′j′ is certainly smaller than
min{cj, cj′}. Therefore, the sum of completion times according to A′ is less then the
sum of completion times according to A.

2.2.2 Known Result of Due Date Related Scheduling Problems

Being a rather complicated objective function, most research on
∑

j∈J ωjuj-related
scheduling problems focuses on the single machine environment. In this subsection,
we discuss the complexity of some variants of 1 | dj = d |

∑
j∈J ωjuj. We distinguish the

following cases:

• if individual due dates (dj = d or dj) are present, and

• if the weight of the jobs (
∑

j∈J uj or
∑

j∈J ωjuj) is considered.

19

20

18

17

Problem in P

NP-hard problem

∑
j∈J uj

∑
j∈J ωjuj

dj = d dj

Figure 2.9: Complexity hierarchy of problems listed in Table 2.5.

19

It is easy to see that the following reductions hold:

dj = d ∝ dj, (denoted by in Figure 2.9)∑
j∈J

uj ∝
∑
j∈J

ωjuj. (denoted by in Figure 2.9)

A total of 4 different scheduling problems can be obtained by combining these environ-
ments, we enumerate these 4 problems in Table 2.5.

17 1|dj = d|
∑

j∈J uj 19 1|dj = d|
∑

j∈J ωjuj
18 1|dj|

∑
j∈J uj 20 1|dj|

∑
j∈J ωjuj

Table 2.5: Enumeration of due date related scheduling problems.

Similar as in the previous section, we summarize the complexity of these four problems
in Figure 2.9. In order to verify the complexities shown in this graph, it suffices to show
that Problem 18 is in P while Problem 19 is NP-hard.

Reduction from NP complete problem

Lemma 2.19 (Pinedo,2012).

Knapsack problem ∝ 1 | dj = d |
∑
j∈J

ωjuj

Proof. The reduction identifies the parameters of knapsack problem and 1 | dj = d |
∑

j∈J ωjuj
to each other, see Table 2.6.

1 | dj = d |
∑

j∈J ωjuj Knapsack

Common due date d Weight capacity W
Question j item i

Time pj Weight wi
Points ωj Value vi

Table 2.6: Identification of parameters in Example 2.1 and Knapsack.

Optimal Offline Algorithms for 1|dj|
∑

j∈J uj

The optimal algorithm for 1|dj|
∑

j∈J uj is a variation of a list algorithm EDD.

Definition 2.20. Let Earliest Due Date first (short: EDD) denote the algorithm
which always assigns the job j with the minimal dj among all available jobs to a machine
m as soon as m is idle.

20

Input: A set {j1, j2, . . . , jn} of jobs sorted by EDD.
Output: A set Jn ⊆ {j1, j2, . . . , jn}.

1 J = ∅, J c = {j1, j2, . . . , jn} and Jd = ∅;
2 for k = 1 : n do
3 Add jk to J ;
4 Delete jk from J c;
5 if

∑
j∈J pj > dk then

6 Add l to Jd where pl = maxj∈J{pj};
7 Delete l from J ;

8 end
9 Set Jk = J ;

10 end
11 Return Jn.

Algorithm 1: Algorithm for Problem 18.

In words the algorithm can be described as follows: After each iteration, set J presents
a set of jobs which can be finished in time by executing them in an EDD-fashion, set
J c presents the jobs which are not considered yet and set Jd contains the jobs each of
which will fail to meet its due date in the final schedule. The jobs are added to J in
an EDD-manner. If including job j implies that it cannot be finished in time (Line 5),
then the job with the longest processing time in J will be discarded.

The output Jn itself is a subset of the given job set. The corresponding schedule
assigns jobs in Jn to the machine in an EDD-manner.

Lemma 2.21 (Moore,1968). Problem 18: 1|dj|
∑

j∈J uj can be solved optimally by using
Algorithm 1.

For the sake of clarity, the proof is divided into two lemmas following Pinedo (2012).
We introduce the following terminologies during this proof: Let N = {j1, . . . , jn} denote
the job set. A subset S ⊆ N is feasible if the schedule, which assigns j ∈ S in an
EDD-manner to the machine, is able to finish all j ∈ S in time. A feasible set is optimal
in N , if its cardinality is maximal among all feasible subset of N .

Lemma 2.22. For all k = 1, . . . , n holds that Jk from Algorithm 1 is feasible.

Proof. Observe that, as long as the if-check in Line 5 is false uninterruptedly (before
the first true occurs), jobs in J can be finished in time in an EDD-manner. Consider
the case where the if-check is true for the first time, i.e.

∑
j∈Jk−1+jk

pj > dk for the k-th
iteration. Let jl denote the job being deleted from J at Line 7. Essentially, it is enough
to show that ∑

j∈J ′
pj ≤ dk

where J ′ = Jk−1 + jk − jl. This inequality is a conclusion from the definition of pl,

21

minimality of k and the fact that jobs are sorted by EDD:∑
j∈J ′

pj = pk − pl +
∑
j∈Jk−1

pj

≤
∑
j∈Jk−1

pj [pl is maximal in J]

≤ dk−1 [k is chosen minimal]

≤ dk [Jobs are sorted EDD]

Lemma 2.23. After the k-th iteration, there exists an optimal subset S ⊆ N avoiding
all jobs being deleted by Algorithm 1 sofar.

Proof. We apply induction to prove this lemma. The claim is trivial for k = 1. Assume
it is true for k − 1, i.e. there exists an optimal J ′ ⊆ Jk−1 ∪ {jk, jk+1, . . . , jn}, We may
further assume that a job q ∈ Jk−1 is deleted during the k-th iteration which is contained
in J ′, for otherwise the set J ′ itself fulfills all requirements to complete the induction.

The fact “q is deleted” implies that the set Jk−1 + jk is not feasible, thus any feasible
set is not able to comprise Jk−1 + jk. In particular, we find r ∈ Jk−1 + jk with r /∈ J ′.
Consider the set J ′′ = J ′+ r− q. Certainly, J ′′ does not include any deleted jobs deleted
in the first k-iterations. As its cardinality is equal to another optimal set J ′, it only
remains to show that J ′′ is feasible.

Notice that J ′ ∩ {jk, jk+1, . . . , jn} = J ′′ ∩ {jk, jk+1, . . . , jn}, thus it suffices to show
J ′′ ∩ {j1, . . . , jk−1} is feasible and to finish them consumes less time in total than to
finish jobs in J ′ ∩ {j1, . . . , jk−1}.

The feasibility is a direct consequence of J ′′ ∩ {j1, . . . , jk−1} ⊆ Jk−1. For the latter
condition note that job q is deleted in the k-th iteration, its processing time pq must be
greater than or equal to all jobs in Jk−1 + jk. In particular, we have pr ≤ pq. Hence we
have ∑

j∈J ′′∩{j1,...,jk−1}

pj =
∑

j∈(J ′+r−q)∩{j1,...,jk−1}

pj

= pr − pq +
∑

j∈J ′∩{j1,...,jk−1}

pj

≤
∑

j∈J ′∩{j1,...,jk−1}

pj.

In other words, Algorithm 1 produces a feasible subset of the first k jobs after the k-th
iteration, which always can be extended into an optimal set. Therefore, the optimality
of Jn is a trivial consequence from this two properties.

22

2.3 Competitive Result in the Online Environment

Notice that all algorithms we introduced in the previous sections assume that the infor-
mation (e.g. number of jobs, their attributes rj, pj, dj, ωj and so on) about the problem
are completely known in advance. In an online environment, the information about job
j are (partially) revealed to the decision maker only when j is released.

Definition 2.24 (Pinedo,2012). In an online scheduling problem, the following
restrictions apply additionally:

• The decision maker becomes aware of the existence of a job only when the job is
released and presented to him,

• jobs released at the same point in time t are presented one after each other, the
number of jobs released at t is known to the decision maker only after the last one
of them has been presented,

• the processing time of a job becomes known only when the job has been finished.

In the case that individual weight ωj or release time rj are involved in the problem,

• the weight of a job becomes revealed when the job is presented to the decision maker,
whereas

• the number of not yet released jobs is unknown to him at any point in time.

Example 2.25. Recall SPT-schedule presented in Figure 2.5a with the attributes in
Table 2.4. The knowledge revealed to the decision maker along the time can be visualized
as shown in Figure 2.10.

Machine 1

Machine 2

Time axis

r1, ω1

r2, ω2

r3, ω3

t = 0

r4, ω4

t = 1

p1

t = 3

p2

p4

t = 4

p3

t = 11

Figure 2.10: Revealed knowledge about jobs over time.

Due to this lack of information, the cost of an offline optimal algorithm OPT is not
achievable by an online algorithm ALG in most of the cases. Instead of asking if an
algorithm is optimal, one compares the cost of ALG with the cost of OPT (as defined
in Definition 1.1).

In competitive analysis, an algorithm ALG performs not well if it is not competitive
at all, i.e. for any c there exists an instance Insc such that CALG(Insc) is greater than
c · COPT.

23

Consider Example 2.1 and the related Problem 19: 1|dj = d|
∑

j∈J ωjuj. Recall from
Lemma 2.19 that knapsack problem can be reduced to Problem 19. In the online version
of Problem 19, the questions are presented to the student one after each other and the
student must decide if he is going to work on the currently presented question before
another question is revealed to him. This online environment can be extended to the
optimization version of knapsack problem too. In Marchetti-Spaccamela and Vercellis
(1995), the authors have shown that no deterministic online algorithm is competitive for
the online knapsack problem. Their proof can be used directly to show the same result
for Problem 19.

Lemma 2.26 (Marchetti-Spaccamela and Vercellis,1995). Given an arbitrary deter-
ministic online algorithm ALG of Problem 19 and any positive integer n, there exists an
instance Ins such that CALG(Ins) ≤ n · COPT(Ins)

Proof. Consider the following two instances of Problem 19:

• Ins1 consists of only one job j with processing time pj = 1, weight ωj = 1 and the
common due date is d = 1,

• Ins2 consists of two jobs j, j′ with equal processing time pj = pj′ = 1, different
weights ωj = 1, ωj′ = n and the same common due date d = 1.

Obviously, OPT will finish j if Ins1 is presented and j′ if Ins2 is presented. Recall the
objective function is

∑
j∈J ωjuj, whence we have COPT(Ins1) = 0 and COPT(Ins2) = 1.

Due to the restriction of online environment, ALG is not able to differentiate Ins1 and
Ins2 at the point in time when j is presented. Since ALG is deterministic, its decision
whether to process or refuse j while solving Ins1 must be the same as its decision while
solving Ins2.

In the case that ALG decides to process j, it is easy to see that ALG is not able to
process j′ in Ins2, whence CALG(Ins2) = n and we deduce that ALG is no better than
n-competitive. If ALG refuses to process j, then a unit penalty ωjuj is incurred in Ins1.
Notice that OPT is able to achieve an objective value of 0 in this case. Thus, the cost
CALG(Ins1) cannot be bounded by c · COPT(Ins1) for any c.

To summarize, no matter which decision is made by ALG after j is presented, there
exists an instance to assure that ALG is no better than n-competitive.

While negative results can be proved by providing critical instances, the positive
results require certain knowledge about the optimal offline algorithms. Consider Problem
9: Pm| prmp |

∑
j∈J cj. The proof of Lemma 2.17 can be adjusted to show that Problem

9 can be solved optimally using SRPT-rule. Since, in the online version of Problem
9, the processing time is not known in advance, this list scheduling algorithm is not
applicable. However, it is possible to imitate the idea of SRPT by applying preemptions
frequently.

Definition 2.27. Let Round Robin (short: RR) denote the algorithm which cycles
through the list of presented jobs, giving each job a fixed unit of processing time in turn.

24

Example 2.28. To clarify RR precisely, we involve the release time environment for
this example. Consider the problem P2| prmp, rj|

∑
j∈J cj with four jobs, see Table 2.7

for their attributes. RR maintains a list of presented jobs (Table 2.8) and distributes the
processing time among these jobs as shown in Figure 2.11a.

Job Release time Processing time
1 0 4
2 0 3
3 1.5 1.5
4 2 2.5

Table 2.7: Jobs in Example 2.28.

Point in time
List of presented jobs

before assignment after assignment
0 (1,2) ()
1 (1,2) ()

1.5 (3) (3)
2 (3,4,1,2) (1,2)
3 (1,2,3,4) (3,4)
4 (3,4,1) (1)
5 (1,4) ()

Table 2.8: List of presented jobs over time.

Machine 1

Machine 2

Time axis
1 2 3 4 5 6

c2 c3 c4 c1

(a) RR Schedule.

Machine 1

Machine 2

Time axis
1.5 3 5.5

c2,c3 c1,c4

(b) SRPT Schedule.

Figure 2.11: The schedules in Example 2.28.

Remark 2.29. In words the rule of how RR maintains the list of presented jobs can be
summarized as follows:

Once a job is released, it is appended immediately to the list. At the begin of each
time unit, RR stops all machines and appends the interrupted jobs to the end of the list.
Thereafter, the first 2 jobs on the list are assigned to machines.

Notice that for a set of jobs with the same release time, RR ensures that at all times
any two uncompleted jobs have received an equal amount of processing time or one job has

25

received just one time unit more than the other. Roughly speaking, RR tries to detect the
job with shortest (remaining) processing time by equally distributing the processing time
among all presented jobs, while SRPT focuses on finishing jobs with shortest remaining
processing time as early as possible. If the time unit is small in comparison to the
processing times of the jobs, it is easy to see that RR finishes the jobs in the same order
as SRPT apart from a permutation of jobs with identical processing times.

Lemma 2.30 (Pinedo,2012). If the time unit is small in comparison to the processing
times of the jobs, i.e. minj∈J pj � 1, RR is 2-competitive for Problem Pm| prmp |

∑
j∈J cj.

Proof. We show that RR is no better than 2-competitive by providing a critical instance.
To hit RR as hard as possible, consider a set J of nm jobs, each of which has an identical
integer processing time p. For the sake of clarity, let cj,ALG denote the completion time
of job j according to the algorithm ALG.

It is easy to see that SPT finishes m jobs at each point in time of p, 2p, . . . , np, thus
the objective value is equal to

∑
j∈J

cj,SPT =
n∑
k=1

mkp =
n(n+ 1)

2
mp.

In comparison to this, RR partitions every job into p parts and assigns the k-th part of
a job to a machine only if the (k − 1)-th part of all jobs are finished. We deduce that
before the (p − 1)-th parts of all jobs are finished, RR is not able to completely finish

any job, meaning that cj,RR > nm(p−1)
m

= n(p − 1), thus the objective value of RR can
be bounded by ∑

j∈J

cj,RR > n(p− 1) · nm = n2m(p− 1).

Hence we conclude that RR is no better than 2-competitive.
To show that RR is no worse than 2-competitive consider any given instance with

job set J = {j1, . . . , jn}. Assume that the processing time of these jobs j ∈ J satisfies
p1 ≥ p2 ≥ · · · ≥ pn and partition the job set J according to the index of j as follows:

J =

d n
m
e⋃

l=1

R(l) =

d n
m
e⋃

l=1

{pk | (l − 1)m < k ≤ lm}.

In words, R(1) contains j1, . . . , jm (the firstm longest jobs), R(2) contains jobs jm+1, . . . , j2m

(the second m longest jobs), and so on. Hence, recall the proof of Lemma 2.17, R(1) is
the set of the last job assigned to each machine by SPT, R(2) is the set of the second
last job assigned to each machine by SPT, and so on, see Figure 2.12 for an illustration.

26

Machine 1

Machine 2

.

..

Machine m

· · ·

· · ·

· · ·

R(1)R(2)

Figure 2.12: Illustration of R(l).

Thus, one can rewrite Equation (2.4) to obtain

∑
j∈J

cj,SPT =

d n
m
e∑

l=1

∑
j∈R(l)

lpj. (2.5)

Consider now the objective value
∑n

k=1 ck,RR of RR. Since the time unit of RR is small,
the jobs in J are completed in the reverse order of their processing time. In particular,
at the point in time cm+1,RR, all jobs jm+1, jm+2, . . . , jn are already finished. It only
remains to process jk with a remaining processing time of pk − pm+1 for k = 1, . . . ,m.
Certainly, as we have m machines for m jobs, further preemptions are not necessary. It
is easy to see that

ck,RR = cm+1,RR + pk − pm+1 (2.6)

for k = 1, . . . ,m.
Similarly, a recursive formula of ck,RR can be deduced:

ck,RR − ck+1,RR =
k

m
(pk − pk+1) (2.7)

for m < k < n and
cn,RR =

n

m
pn (2.8)

for k = n. To see Equation (2.7), observe the point in time ck+1,RR when jm+1 is
finished. Since jk has a remaining processing time of pk − pk+1, we know that, until
its completion time ck,RR, every job receives a period of processing time equal to this
amount. As there are still k uncompleted jobs, we have to distribute a total processing
time of k(pk−pk+1) to m machines. Thus, (2.7) holds. Equation (2.8) can be established
by the same argument. Eliminating the recurrence yields for k > m

ck,RR
(2.7),(2.8)

=
k

m
pk +

1

m

n∑
l=k+1

pl. (2.9)

27

Hence we have

ck,RR
(2.6)
= cm+1,RR + pk − pm+1

(2.9)
=

m+ 1

m
pm+1 +

(
1

m

n∑
l=m+2

pl

)
+ pk − pm+1

= pk +
1

m

n∑
l=m+1

pl (2.10)

for k ≤ m. By Equations (2.9) and (2.10), the objective value of RR is equal to

∑
j∈J

cj,RR =
m∑
k=1

pk +
n∑

k=m+1

2k − 1

m
pk. (2.11)

Thus, the case n ≤ m is not interesting as the objective value of RR is equal to the
objective value of SPT. To find the worst case, we assume n > m.

Consider the job jk ∈ R(l) for some l > 1. By the definition of R(l) we know that
k ≤ lm, leading to the inequality

2k − 1

m
pk < 2lpk.

Hence the summation
∑n

k=m+1
2k−1
m
pk can be bounded by

n∑
k=m+1

2k − 1

m
pk <

d n
m
e∑

l=2

∑
j∈R(l)

2lpj. (2.12)

Therefore, we conclude∑
j∈J cj,RR∑
j∈J cj,SPT

(2.5),(2.11)
=

∑m
k=1 pk +

∑n
k=m+1

2k−1
m
pk∑d n

m
e

l=1

∑
j∈R(l) lpj

(2.12)
<

∑
j∈R(1) pj +

∑d n
m
e

l=2

∑
j∈R(l) 2lpj∑d n

m
e

l=1

∑
j∈R(l) lpj

< 2.

Fortunately, the offline optimal algorithm for Problem 9 is known. In most cases, the
cost of the optimal algorithm can only be bounded by another known algorithm or by a
relaxation of the original problem. This issue will be discussed and treated in the next
chapter.

28

2.4 Computer Experiments

In this section, we want to study and compare, empirically, the performance of the
algorithms descripted in this chapter. Besides RR, EDD and the variations of SPT,
we also include the two commonly used heuristics FIFO and RO, which serve only for
comparison.

Definition 2.31. Let First In First Out (short: FIFO) denote the algorithm which
always assigns the job j with the minimal rj among all available jobs to a machine m as
soon as m is idle.

Let Random Order (short: RO) denote the algorithm which chooses uniformly one
job j from the set of all currently available jobs and assigns j to a machine m as soon
as m is idle.

Computer codes in Julia (version 1.0.2) are used to simulate the scheduling process
and to visualize this comparison. The framework is summarized in Algorithm 2. More
precisely, J presents a set of jobs j with release time j.r, processing time j.p, remaining
processing time j.rp, due date j.d, weight j.ω, and completion time j.c (which is equal
to 0 initially). The number of available machines is denoted by m and the limit T is a
trivial bound of time unit needed for solving this instance.

Input: J , m, T , and the applied algorithm ALG.
Output: The completion time j.c for j ∈ J .

1 J1 = J ; J2 = J3 = J4 = ∅; Temp = ∅; LRR = empty list;
2 t = 0;
3 for j ∈ J do
4 j.c = 0;
5 end
6 while t < T and |J4| < |J | do
7 Temp = {j ∈ J1 | j.r == t};
8 J1 = J1\Temp; J2 = J2 ∪ Temp;
9 Temp = {j ∈ J2 | j.d < t};

10 J2 = J2\Temp;
11 ALG reorganizes the job to machine assignment if necessary;
12 t = t+ 1;
13 for j ∈ J3 do
14 j.rp = j.rp− 1;
15 end
16 Temp = {j ∈ J3 | j.rp == 0};
17 J3 = J3\Temp; J4 = J4 ∪ Temp;
18 for j ∈ Temp do
19 j.c = t;
20 end

21 end
22 return j.c for j ∈ J .

Algorithm 2: Simulation of scheduling

29

In our case,

T =

{
maxj∈J{j.d}, if due date is present,

maxj∈J{j.r}+
∑

j∈J j.p, otherwise.

The simulation returns the completion time cj of every job in J according to ALG. For
the sake of simplicity, we assume that all attributes of jobs are given in integer value.
At any point in time t, J is partitioned into four disjoint subsets:

• the set J1(t) of unreleased jobs,

• the set J2(t) of available jobs,

• the set J3(t) of jobs which have been processed by some machine, and

• the set J4(t) of finished jobs.

In unambiguous cases, the dependence on t is omitted.
In words, Temp in Line 7 consists of jobs each of which is released at the beginning of

this time unit, the code at Line 8 moves them from the set of unreleased jobs to the set
of available jobs. Temp in Line 7 consists of jobs whose due date are not met, the code
at Line 10 removes them from the set of available jobs. Thereafter, ALG considers all
available information and reorganizes the job to machine assignment. During this time
unit, the remaining processing time j.rp of every assigned job j is decreased by 1. At
the end of a time unit, jobs are marked as “finished” if the remaining processing time
has reached 0 during this time unit. These jobs are removed from the machine (Line
17), and their completion times are recorded.

Once the completion time of all jobs are computed, it is straightforward to evaluate
the objective value. The corresponding codes are omitted.

2.4.1 The Implementation of Algorithms for Scheduling
Problems

The algorithms SPT, WSPT, SRPT, EDD, RR, and FIFO, RO are considered in this
section. At any point in time, each of them maintains a priority list which is a permu-
tation of J2. The main difference between these algorithms is when and how to update
their priority lists, see Table 2.9 for a summary.

In the offline environment, ALG has access to the complete input and all variables gen-
erated during the process (J1, J2, J3, J4, Temp and t). If online environment is present,
J and J1 are not revealed to ALG. Furthermore, recall from Definition 2.24 that j.p
and j.rp are not known for j ∈ J2∪̇J3. Since the first three algorithms SPT,WSPT,
and SRPT require j.p or j.rp to determine their priority list, they are only applicable
in an offline environment. The other algorithms can be implemented in offline or online
environment.

30

ALG When to update Rule
SPT |J2| > 0 ∧ |J3| < m j.p

WSPT |J2| > 0 ∧ |J3| < m j.p/j.ω
SRPT (|J2| > 0 ∧ |J3| < m) or (t = j.r for some j ∈ J) j.rp

RR At the begin of every time unit Example 2.28
EDD |J2| > 0 ∧ |J3| < m j.d
FIFO |J2| > 0 ∧ |J3| < m j.r
RO |J2| > 0 ∧ |J3| < m random

Table 2.9: Timing and rule of updating priority list.

Offline algorithms SPT,WSPT, and SRPT

Input: The set J2 of available jobs, the set J3 of jobs which are in progressing,
and the number of machines m.

Output: J2 and J3 after SPT rearranges the job to machine assigment.
1 while |J2| > 0 and |J3| < m do
2 j = argminj∈J2 j.p;

3 J2 = J2 − j; J3 = J3 + j;

4 end
5 return J2, J3.

Algorithm 3: SPT.
SPT moves one job with the shortest processing time from J2 to J3 as long as there

are still available jobs (|J2| > 0) and available machines (|J3| < m), see Algorithm 3.
The code of WSPT can be obtained by replacing the j.p in Line 2 with j.p

j.ω
.

Input: The set J2 of available jobs, the set J3 of jobs which are in progressing,
and the number of machines m.

Output: J2 and J3 after SRPT rearranges the job to machine assigment.
1 if t == j.r for some j ∈ J2 then
2 J2 = J2 ∪ J3; J3 = ∅;
3 while |J2| > 0 and |J3| < m do
4 j = argminj∈J2 j.rp;

5 J2 = J2 − j; J3 = J3 + j;

6 end

7 else
8 while |J2| > 0 and |J3| < m do
9 j = argminj∈J2 j.rp;

10 J2 = J2 − j; J3 = J3 + j;

11 end

12 end
13 return J2, J3.

Algorithm 4: SRPT.

31

The advantage of preemption allows SRPT to change the job to machine assignment
more often than SPT and WSPT. Theoretically, SRPT can check the remaining process-
ing time j.rp for j ∈ J2∪̇J3 at any point in time and update its priority list accordingly.
However, it is easy to see that a check between two consecutive release times does not
change the priority list. Thus, it suffices to update the priority list of SRPT when some
job is released (t = j.r) or there are available jobs and idle machines.

Online algorithms RR,EDD,FIFO, and RO

The code of EDD, FIFO, and RO can be obtained from the code of SPT by replacing
argminj∈J2 j.p in Line 2 in Algorithm 3 with, respectively, argminj∈J2 j.d, argminj∈J2 j.r
and a random job from J2. RR is slightly more complicated. In order to share the
processing time fairly, RR should give higher priority to those jobs which are either
newly released or which have not been processed since the begin of the last time unit.
For this purpose, RR maintains a list LRR which is empty initially and gets updated in
each iteration, see Algorithm 5 for the rule of updating LRR.

Input: The priortiy list LRR, the current time t, the number of machines m,
the set J2 of available jobs, and the set J3 of jobs which are in progressing.
Output: Updated LRR, J2, J3 after RR rearranges the job to machine

assigment.
1 for j ∈ J2 do
2 if t == j.r then
3 append!(LRR, j);
4 end

5 end
6 for j ∈ J3 do
7 append!(LRR, j);
8 end
9 J2 = J2 ∪ J3; J3 = ∅;

10 while |J2| > 0 and |J3| < m do
11 j = popfirst!(LRR);
12 J2 = J2 − j; J3 = J3 + j;

13 end
14 return LRR, J2, J3.

Algorithm 5: RR.
LRR can be partitioned into three consecutive sub-sequences: The first one consists of

the jobs which are already released before the last time unit and were not assigned to
any machine at the beginning of the last time unit (Input LRR). The second one consists
of the jobs, which are released at the beginning of this time unit (for loop at Line 2).
The last one consists of the jobs, each of which is assigned to a machine during the last
time unit and interrupted at the beginning of this time unit (for loop at Line 6).

After updating LRR, RR assigns the first m jobs in LRR to machines (while loop at
Line 10). Certainly, jobs, which were processed recently, are not preferred in comparison

32

to other jobs in LRR.

2.4.2 Online Experiments

In this subsection, we compare the performance of RR with SRPT. Notice that RR is
designed to detect short jobs and finish them early. In other words, RR should perform
well if the processing times of jobs vary considerably. To support this claim, we apply
χ2-distributions and uniform distribution to generate four sets of instances.

More precisely, 200 instances are generated for each set, where each instance consists
of 50 jobs. Their release times are uniformly distributed over the first 50 time units
(including 0). A constant p is predefined as the expected processing time.

In the first three sets, the χ2-distributions with degree i = 1, 2, 3 are applied, respec-
tively, to generate pj: for each j and i = 1, 2, 3 let xj be a realization of χ2

i , then pj
is defined to be xj · p/i (such that the expected processing times are independent on
the degree of χ2 distributions). In the last set, the processing times of jobs are chosen
uniformly from {1, . . . , 2p− 1}.

Certainly, χ2
1 is going to generate more jobs with short processing times than other

distributions. Thus, we expect that RR performs well on the set where the processing
times of jobs in that set was generated by χ2

1.
First consider Problem 2: 1|rj, prmp |

∑
j∈J cj. By Lemma 2.18, SRPT is optimal for

the offline variant. The experiments reveal that the quality of schedules produced by
RR depends considerably on the applied distribution. Figures 2.13 and 2.14 present the
density graph of cost and competitive ratio of RR in comparison to other algorithms. In
all experiments, the competitive ratio of RR is pretty stable and near 2, this observation
supports Lemma 2.30. RR benefits from these short jobs and out-performs FIFO and
RO when χ2

1 is applied.
Similar results are obtained in Pm environment, e.g. Figures 2.15 and 2.16 present the

performance of RR in P4 environment where all other attributes of jobs are generated
in the same way as before. Notice that SRPT is no longer optimal, thus Figure 2.16
serves only as a comparison between RR and SRPT, instead of a competitive ratio as
defined in Definition 1.1.

We observe that the quality of schedules produced by RR decreases from the first to
the last set. Therefore, we may conclude that RR performs much better on instances
where the processing times of jobs vary considerably.

33

200000 400000 600000

1×10⁻⁵

2×10⁻⁵

ROFIFORRSRPT
Algorithm

(a) pj distributed according to χ2
1.

200000 400000 600000

1×10⁻⁵

2×10⁻⁵

ROFIFORRSRPT
Algorithm

(b) pj distributed according to χ2
2.

200000 400000 600000

1×10⁻⁵

2×10⁻⁵

ROFIFORRSRPT
Algorithm

(c) pj distributed according to χ2
3.

200000 400000 600000

1×10⁻⁵

2×10⁻⁵

ROFIFORRSRPT
Algorithm

(d) pj distributed uniformly.

Figure 2.13: Performance of several algorithms in single machine online environment.

34

1.5 2.0 2.5 3.0 3.5

20

40

60

80

100
ROFIFORR

Algorithm

(a) pj distributed according to χ2
1.

1.5 2.0 2.5 3.0 3.5

20

40

60

80

100
ROFIFORR

Algorithm

(b) pj distributed according to χ2
2.

1.5 2.0 2.5 3.0 3.5

20

40

60

80

100
ROFIFORR

Algorithm

(c) pj distributed according to χ2
3.

1.5 2.0 2.5 3.0 3.5

20

40

60

80

100
ROFIFORR

Algorithm

(d) pj distributed uniformly.

Figure 2.14: Competitive ratio of several algorithms in single machine online environment.

35

50000 100000 150000

0.00005

0.00010

0.00015
ROFIFORRSRPT

Algorithm

(a) pj distributed according to χ2
1.

50000 100000 150000

0.00005

0.00010

0.00015
ROFIFORRSRPT

Algorithm

(b) pj distributed according to χ2
2.

50000 100000 150000

0.00005

0.00010

0.00015
ROFIFORRSRPT

Algorithm

(c) pj distributed according to χ2
3.

50000 100000 150000

0.00005

0.00010

0.00015
ROFIFORRSRPT

Algorithm

(d) pj distributed uniformly.

Figure 2.15: Performance of several algorithms in P4 online environment.

36

1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60
ROFIFORR

Algorithm

(a) pj distributed according to χ2
1.

1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60
ROFIFORR

Algorithm

(b) pj distributed according to χ2
2.

1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60
ROFIFORR

Algorithm

(c) pj distributed according to χ2
3.

1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60
ROFIFORR

Algorithm

(d) pj distributed uniformly.

Figure 2.16: “Competitive ratio” of several algorithms in P4 online environment.

37

2.4.3 Offline Experiments

In this subsection, Problem 20: 1|dj|
∑

j∈J ωjuj is considered. We compare EDD with
WSPT to analyze their own advantage.

The instances were randomly generated as follows8:
For each instance, a set J of 50 jobs are generated. For each job j ∈ J , the processing

time pj and the weight ωj was generated from the uniform distribution over {1, . . . , 100}
and {1, . . . , 10} respectively.

Instance classes of varying hardness were generated by using different uniform distri-
butions for generating the due dates. For a given relative range of due dates RDD ∈
{0.1, 0.2, 0.5} and a given average tardiness factor TF ∈ {0.1, 0.2, 0.5} a due date dj
for each job j was randomly generated from the uniform distribution over {bp(1 −
TF−RDD /2)c, dp(1−TF + RDD /2)e}, where p =

∑
j∈J pj. It is easy to see that RDD

controls the variance of dj. To see the influence of TF, let us assume that RDD = 0
(hence, all jobs share a common due date d = p(1 − TF)) and consider the following
cases.

• In the case TF = 0, i.e. d is equal to the sum of the processing time of all jobs.

Thus, any schedule, which does not allow idle time of machines, is able to finish
all jobs in time. In particular, all of WSPT, EDD, FIFO, and RO achieve an
objective value 0.

• In the other extreme case TF = 1, the common due date is 0.

Since the processing time of j is positive, no job can be finished in time.

Therefore, TF can be interpreted as a control parameter, which influences the number
of delayed jobs. 50 instances were generated for each of the pairs of values of RDD and
TF, yielding 450 instances. The algorithms WSPT and EDD are applied to solve these
instances. See Figure 2.17 for their performances.

First, consider Figures 2.17g and 2.17h, where EDD is able to achieve the best possible
objective value 0. Certainly, the schedule produced by EDD is able to finish all jobs in
time. In such cases, the weights of jobs do not influence the optimal objective value,
meaning that Problem 20: 1|dj|

∑
j∈J ωjuj is similar to Problem 18: 1|dj|

∑
j∈J uj. By

Lemma 2.21, EDD produces the optimal schedule.
By fixing TF in Figure 2.17, one can see that the performance of EDD approaches or

surpasses the performance of WSPT while RDD grows. The reason is that EDD benefits
from the variability of dj, which is incurred by large RDD. Informally, the less jobs OPT
has to delay, the better EDD performs in comparison to other algorithms.

In all other cases, WSPT outperforms EDD. The advantage of WSPT in comparison
to other algorithms grows in step with the value of TF. A large value of TF means that
a certain amount of jobs will be delayed. In other words, the decision maker may find

8 The design of experiments comes from: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

wtinfo.html. Their experiments focus on the objective function “total weighted tardiness”. How-
ever, we have found that the same design is also good at visualizing the difference of performances
between WSPT and EDD for Problem 20.

38

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

WSPT useful if the system is often overloaded, i.e. there are enough jobs waiting for
processing at any point in time.

0 20 40 60
0.00

0.05

0.10

0.15

0.20

0.25
ROFIFOEDDWSPT

Algorithm

(a) RDD = 0.1,TF = 0.1.

0 50
0.00

0.05

0.10

0.15
ROFIFOEDDWSPT

Algorithm

(b) RDD = 0.1,TF = 0.2.

0 50 100 150
0.00

0.01

0.02

0.03

0.04

0.05
ROFIFOEDDWSPT

Algorithm

(c) RDD = 0.1,TF = 0.5.

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25
ROFIFOEDDWSPT

Algorithm

(d) RDD = 0.2,TF = 0.1.

0 50
0.00

0.05

0.10

0.15
ROFIFOEDDWSPT

Algorithm

(e) RDD = 0.2,TF = 0.2.

0 50 100 150
0.00

0.01

0.02

0.03

0.04
ROFIFOEDDWSPT

Algorithm

(f) RDD = 0.2,TF = 0.5.

0 20 40 60
0.0

0.5

1.0
ROFIFOEDDWSPT

Algorithm

(g) RDD = 0.5,TF = 0.1.

0 50
0.0

0.5

1.0
ROFIFOEDDWSPT

Algorithm

(h) RDD = 0.5,TF = 0.2.

0 50 100 150
0.00

0.01

0.02

0.03

0.04

0.05
ROFIFOEDDWSPT

Algorithm

(i) RDD = 0.5,TF = 0.5.

Figure 2.17: Performances of WSPT, EDD, FIFO, and RO in offline environment.

39

2.4.4 From Scheduling Problems to List Accessing Problem

Since the offline environment is applied, it is possible to create the priority list of WSPT
at t = 0. The contribution from a job to the objective value is related to the position of
that job in the priority list. More precisely,

• jobs with a high priority have a smaller chance to make a contribution to the
objective function than the jobs with a low priority, if total unit penalty related
objective function is applied,

• the jobs with a high priority make less contribution to the objective function than
the jobs with a low priority, if total completion time related objective function is
applied.

Informally, this can be thought of as we have a linked list of the jobs. The contribu-
tion from a job to the total cost in the scheduling problem corresponds to the cost of
locating that job in the list. Scheduling algorithms considered in this chapter can be
interpreted as algorithms which maintains a list, such that the total search cost is mini-
mized. This similarity leads to the list accessing problem which was originally considered
by Sleator and Tarjan (1985) when they proposed the concept of competitive analysis.
Actually, some scheduling problems can be formulated as list accessing problems. After
introducing the necessary terminologies, this similarity is presented in Remark 3.22.

40

Chapter 3
Competitive Analysis of List Accessing
Problems

The minimization problem list accessing problem, which may also be called list update
problem, is considered in this chapter. As introduced in Chapter 1, this problem may
find its application in the context of data compression.

Example 3.1 (Bentley et al.,1986). Consider the following simple “telegraph” message:

THE CAR ON THE LEFT HIT THE CAR I LEFT.

Sender and receiver maintain identical word lists. The list is initially empty. To transmit
the word W , the sender looks it up in the list. If it is present in the first position, the
sender transmits 1, which the receiver decodes by writing the element in that position of
the list. If W is not in the list of N words, the sender reacts as though it were in the
N+1-th position and sends the integer N+1 followed by the word W (which the receiver
expects because N + 1 is greater than the size of the current list). The message above
will be compressed into the following code:

1THE 2CAR 3ON 1 4LEFT 5HIT 1 2 6I 4.

In comparison to other words, the word “THE” is used most frequently in this message.
Certainly, assigning “THE” to the first position of the word list reduces the total time
needed to translate the code back into plain text. Indeed, sorting the words by their
frequency is one of the algorithms for the list accessing problem, which will be defined
in Section 3.3.

We organize this chapter as follow: Section 3.1 introduces some common terminologies
to define list accessing problem formally. We focus on online algorithms of this problem
and their competitiveness. Section 3.2 provides overview of the known results about the
optimal algorithm OPT, which is required for the calculating of the competitive ratio.
In the remaining sections of this chapter, we are going to study the known algorithms
of list accessing problem and analyze their competitive ratios.

41

3.1 Notation

Definition 3.2. A list is a finite ordered sequence L = (xi)i=1,...,n of distinct list el-
ements, the support L = {x1, . . . , xn} is the set of elements of L. A list element x
is at the position i of L if and only if the initial segment (x1, . . . , x) has length i. A
list element x precedes another list element x′ in L, if and only if the initial segment
(x1, . . . , x

′) of L includes x.
A request y for some list element in L is an element from L. A request sequence

I of L is an ordered sequence of requests to some list element in L. An instance (L, I)
of the list accessing problem consists of an initial list L together with a request sequence
I = (yj)j=1,...,m of L.

Occasionally, the same element can be referred in different ways which may be in-
volved, as shown in Example 3.3. For the sake of clarity and simplicity, we assume the
following notation during this chapter: Unless otherwise specified, list elements in L
and requests in I are indexed by i and j respectively. Summations in this chapter are
typically indexed by k. In unambiguous cases, the dependence on L is omitted.

Example 3.3. Let L = (1, 3, 2) and I = (2, 3, 2, 3). The first request y1 in I is asking
for 2, which is the list element x3 in position 3 of L. To refer to this element 2, we use
either y1 if we are talking about an element of the request sequence, or x3 if the element
in the list is considered.

Notice that 2 is requested twice (y1 = y3 = 2) within the same request sequence I,
whereas xi = xi′ is prohibited for different i, i′ by definition of the list.

There are four possible actions to update the data structure which are considered in
literature: transposition, accessing, insertion and deletion. We focus on the static list
accessing problem, where only the transpositions and accessing are considered.

Definition 3.4. Let L = (xi)i=1,...,n be a list.
For some list element x′ ∈ {x2, . . . , xn}, the action transposition T (x, x′) exchanges

the positions of the element x′ with its direct predecessor x in L. The list after transpo-
sition is denoted by T (x, x′)(L) or simply T (L) in unambiguous cases.

Clearly T (x, x′) is applicable to L if and only if x, x′ are list elements in L and x is
the direct predecessor of x′ in L. A chain Ts ◦ · · · ◦ T1 is well defined in L if and only if
the term Tk+1 is well defined in the list Tk(Tk−1(. . . T1(L) . . .)) for all k ∈ {1, . . . , s− 1}.

For some request y ∈ {x1, . . . , xn}, the action accessing y in L compares list elements
with y in the order of L. The accessing is completed as soon as the position i is found
with xi = y.

Remark 3.5. Since L contains only different elements, the position i of any y ∈ L is
unique for every request.

The order of list elements in the list remains unchanged during an access, while trans-
positions always change this order. Since the well definedness of T (x, x′) depends on the
positions of x and x′ in the current list, a chain T = Ts ◦ · · · ◦T1 of transpositions is not
commutative in general, as shown in the Example 3.6.

42

Example 3.6. Let L = (1, 3, 2). The chain T = T (1, 2) ◦ T (1, 3) is well defined: The
first transposition T (1, 3) changes L to L′ = T (1, 3)(L) = (3, 1, 2). At this point in time,
the second transposition T (1, 2) is well defined in the current list L′, thus the chain T is
well defined and reorganizes L to L′′ = (3, 2, 1).

Consider the chain T ′ = T (1, 3) ◦ T (1, 2), the transposition T (1, 2) is not well defined
in L, as the list elements x1 = 1 and x3 = 2 are not consecutive in L.

Unless otherwise specified, the term T (x, x′) is used for applicable transpositions.
To solve an instance (L, I), one has to access all requests y in the order of I. The

cost incurred during this process depends on the applied cost model. In most of the
literature the following standard cost model is applied.

Definition 3.7. In the standard cost model, accessing an element x at the position
i incurs a cost of i.

It is possible to reorganize the list at any point in time using transpositions. Immedi-
ately after accessing x′, any sequence of transpositions moving x′ forward (say T (·, x′))
is free. Therefore, x′ can be moved without any cost to any position closer to the front
of the list. Every other well defined transposition is designated as paid transposition and
incurs a cost of 1.

The aim of the list accessing problem is to minimize the sum of costs incurred by
accessings and paid transpositions while serving a request sequence I.

3.2 Background on the Optimal Offline Algorithm

Since the competitiveness compares online algorithms to OPT, a study of OPT is nec-
essary. This section provides a brief overview.

In general, as shown by Ambühl (2017) (which is a representation of a conference
talk of the same author in 2000), it is NP-hard to find OPT. A trivial upper bound is
given by enumerating all possible pairs of permutations of the list and calculating the
cost of each pair. This concept leads to a complexity of O(m · (n!)2) where n and m,
respectively, is the length of the list and request sequence. However, considering certain
subsets of the set of all optimal algorithms can reduce this complexity. The next few
lemmas characterize an optimal algorithm in such a subset.

As shown by Reingold and Westbrook (1996), the paid transpositions can be necessary
in order to realize the optimal cost.

Example 3.8 (Reingold and Westbrook,1996). Let L = (1, 3, 2) and I = (2, 3, 2, 3).
One can reorganize L to L′′ = (3, 2, 1) by applying the chain T (1, 2) ◦ T (1, 3) of paid
transpositions, which incurs a cost of 2.

If no additional transposition is applied on L′′, accessing all requests in I incurs a cost
of 6 in total, meaning that 8 is an upper bound of the optimal cost, whereas the following
case by case analysis shows that any algorithm without paid transpositions induces a cost
of at least 9.

43

We first remark an easy observation: For any two different requests y and y′, the cost
of accessing (y, y′) in L is at least the sum of their positions in L.

Denote the access cost of yj by aj. As paid transpositions are prohibited, we have
a1 = 3 immediately.

Consider the case that no free transposition is applied between accessing y1 and y2, i.e.
the current list after accessing y1 is given by (1, 3, 2). Then the cost a2 + a3 of accessing
(y2, y3) is at least 5. As aj ≥ 1, we conclude that

∑4
j=1 aj ≥ 9.

Otherwise, in the case that free transpositions are applied before accessing y2, we must
have that 3 is in position 3 of the current list, whence a2 = 3. Without paid transposition,
the cost a3 + a4 of accessing (y3, y4) is at least 3, no matter at which positions these
requests are. Thus, the same inequality

∑4
j=1 aj ≥ 9 holds.

Therefore, the cost of serving I is at least 9 without paid transposition, meaning that
the paid transpositions are necessary in order to attain the optimal cost.

Moreover, it is shown that free exchanges are not necessary for an optimal algorithm.

Proposition 3.9 (Reingold and Westbrook,1996). Given any algorithms ALG for the
list accessing problem, there exists an algorithm ALG′ which makes no free exchanges
and produces costs equal to the costs of ALG.

In the same work, the authors present an exact algorithm with complexity of O(2n ·
(n−1)!·m). A result of Pietzrak (2001) is reported in Divakaran (2014) with a complexity
of O(n3 · n! ·m) . Presently, the best known algorithm, consuming O(n2 · (n − 1)! ·m)
to find an OPT, is reported in the preprint by Divakaran (2014).

The key of reducing the complexity is to consider exact algorithms that perform only
specific actions. Let L = (xi)i=1,...,n be a list and assume that xi is just requested. A
chain of transpositions made just prior to the access is called a subset transfer, if it
moves a subset of {x1, . . . , xi−1}, possibly containing gaps, to just behind xi in such a
way that the relative position of list elements in this subset remains unchanged. After
accessing xi, an element transfer is a sequence of (paid as well as free) transpositions
involving xi.

Example 3.10. Let L = (1, 2, 3, 4) and assume that the list element 4 was just requested.
Before accessing 4, a chain of transpositions reorganizing L into L′ = (2, 4, 1, 3) is a
subset transfer regarding the subset {1, 3}. After accessing 4, the chain T = T (4, 3) ◦
T (4, 1) of transpositions reorganizing L′ into L′′ = (2, 1, 3, 4) is an element transfer.

More precisely, a subset transfer first splits the support of an initial segment Linit =
(x1, . . . , xi−1) into two disjoint subsets L1 and L2. Then two lists L1 and L2 are con-
structed in a order preserving manner using the elements in L1 and L2 respectively.
In the end, the original list L is reorganized into (L1, xi, L2, xi+1, . . . , xn). An element
transfer can move the requested element xi to any position in the list. While the minimal
chain for an element transfer can be uniquely determined trivially, a minimal chain of
transpositions to transfer a subset behind xi can be found using Lemma 3.15 or Lemma
3.17. The proof of both lemmas uses the notion of inversion, which plays a central
rule in this chapter. After we define it in a formal way, we introduce some lemmas to
understand the relation between inversion and transpositions.

44

Definition 3.11. Let L,L′ be two lists with L = L′. An ordered pair (x, x′) of two
different list elements x, x′ ∈ {x1, . . . , xn} is an inversion regarding (L,L′) if and only
if x precedes x′ in L and the converse is true in L′.

Notice that the notation of inversion is ordered. An ordered pair (x, x′) is an inversion
regarding (L,L′) if and only if its reverse pair (x′, x) is an inversion regarding (L′, L).

Example 3.12. Let L = (1, 3, 2) and L′ = (3, 2, 1). Then (1, 2) and (1, 3) are the only
two inversions regarding (L,L′). Notice that the ordered pairs (2, 1) and (3, 1) are not
inversions regarding (L,L′) but regarding (L′, L).

In other words, inversions are those pairs of list elements whose relative position has
changed from L to L′. In the case that L′ = T (L), a change of the relative position
is only possible if the transposition involving these two corresponding list elements is
contained in T .

Lemma 3.13. Let L be a list and x, x′ be two different list elements of L where x
precedes x′. Let T = Ts ◦ Ts−1 ◦ . . . T1 be a well defined chain of transpositions of L
and denote L′ = T (L). Then (x, x′) is an inversion regarding (L,L′) if and only if the
transposition T (x, x′) is included in T exactly one time more than T (x′, x).

Proof. For k ∈ {1, . . . , s} let Lk denote the list Tk ◦ · · · ◦ T1(L) and L0 = L. Then there
exists a k such that x′ precedes x for the first time, i.e. the smallest k where x precedes
x′ in Lk−1 but x′ precedes x in Lk. Since every transposition moves the list elements by
at most one position, the transposition Tk is certainly T (x, x′).

Notice that T (x′, x) is not a valid choice for T1, . . . , Tk−1 as x precedes x′ in all of
L0, . . . , Lk−1. If there is any l > k with Tl = T (x′, x), then x precedes x′ in Ll. One can
apply the argument above again to force an index l < l′ ≤ s with Tl′ = T (x, x′).

Therefore, the transposition T (x, x′) occurs always one more time in T than T (x′, x)
does.

In particular, the following corollary is the special case of Lemma 3.13, where T
consists only of one transposition T (x, x′).

Corollary 3.14. Let L and L′ be two lists sharing the same support. Then every trans-
position T = T (x, x′) in L either creates or eliminates exactly one inversion.

More precisely, if (x, x′) is an inversion regarding (L,L′), then (x, x′) is no longer an
inversion regarding (T (L), L′) and if (x, x′) is not an inversion regarding (L,L′), then
(x′, x) becomes an inversion regarding (T (L), L′).

Proof. The last two claims follow directly from the definition of transposition and inver-
sion. The less trivial part is to show the first claim: Only exactly one inversion involving
x and x′ can be either created or eliminated.

Notice, by the definition of transposition, that x is the direct predecessor of x′ in L.
Thus, it suffices to show that

1. inversions regarding (L,L′) other than (x, x′) remain inversions after transposition,

45

2. no other inversion than (x′, x) can be created.

Let T1 be a chain of transpositions converting L to L′. Then, it is easy to see that
T2 = T (x′, x) ◦ T is a well defined chain of transpositions converting T (L) to L′.

Consider a pair (x, x′) of list elements different to (x, x′), i.e. {x, x′} 6= {x, x′}. Hence
we have that T1 includes exactly as many T (x, x′) and T (x′, x) as T2 does. By Lemma
3.13, this means that either (x, x′) is an inversion regarding both of (L,L′) and (T (L), L′)
or it is not regarding both of (L,L′) and (T (L), L′). This completes the proof.

If there are inversions between (L,L′), there exists a transposition to eliminate exactly
one of them.

Lemma 3.15. Let L and L′ be two lists sharing the same support. Then there exists an
inversion regarding (L,L′) if and only if there exist two consecutive list elements x, x′ in
L such that (x, x′) is an inversion regarding (L,L′).

Proof. The necessity is trivial. Since there exists an inversion regarding (L,L′), there
must be some position where L and L′ differ from each other. For the sufficiency let
i be the first position where xi 6= x′ = L′i. For the sake of clarity, we number the list
elements according to their position in L.

x1 ... xi−1 xi ... x x′ xi′+1 ... xnL

x1 ... xi−1 x′

i

i′

L′ ...

Notice that the position of x′ in L, say i′, must be after i as it is assumed that xi 6= x′ and
the common initial segment (x1, . . . , xi−1) certainly does not include x′. Let x denote
the direct predecessor of x′ in L. It is then easy to see that the pair (x, x′) is an inversion
regarding (L,L′). Indeed, as lists do not contain duplications, the direct predecessor x
is not included in the initial segment (x1, . . . , xi−1, x

′) of L′. Hence x′ must precede x in
L′. Therefore, we have that x precedes x′ in L and the converse is true in L′.

Remark 3.16. Actually, the same argument applies also to each list element in the
sublist (xi, . . . , xi′−2) in L, i.e. the pair (x, x′) is an inversion regarding (L,L′) for every
x ∈ {xi, . . . , xi′−2}.

Lemma 3.17 (Reingold and Westbrook,1996). Let L and L′ be two lists sharing the
same support. The number of inversions between L and L′ equals the minimum number
of transpositions needed to convert L to L′.

46

Proof. We use an inductive argument on the length of the lists. For lists with length 1
the result is obvious, as there are no inversions possible. We assume that x is in position
1 in L and in position i 6= 1 in L′. Otherwise, one can delete the maximal common
initial segment from both list without changing the set of inversions.

Let us number the list elements according to their position in L′, i.e. there exists
a permutation τ such that L′ = (x1, x2, . . . , xn), L = (xτ(1), xτ(2), . . . , xτ(n)) and x =
xτ(1) = xi.

Consider the chain T = T (x1, x) ◦ T (x2, x) ◦ · · · ◦ T (xi−1, x) which moves x = xi to
the front of L′.

By Corollary 3.14 and Remark 3.16, applying T eliminates i − 1 inversions, namely
the pair (x, xk) for every k ∈ {1, . . . , i}. Therefore, the number of inversions decreases
by i−1. We end up with two lists L and T (L′), where the first element of both lists is x.
Deleting the common initial segment and applying the inductions hypothese completes
the proof.

Lemma 3.17 can be used to construct a minimal chain of transpositions to achieve
given subset transfers.

Input: L = (x1, . . . , xn), L′ = (x′1, . . . , x
′
n) with L = L′

Output: Minimal chain T such that T (L) = L′

1 T = ∅;
2 while L 6= L′ do
3 Find the smallest i with xi 6= x′i;
4 Find the position i′ > i with xi′ = x′i;
5 T = T (xi, xi′) ◦ · · · ◦ T (xi′−1, xi′) ◦ T ;
6 L = T (L).

7 end

Algorithm 6: Find a minimal chain of transpositions.

For given L and I, one trivial method to find the optimal solution is enumeration.
Construct a weighted complete m-partite graph Gopt = (V,E) as illustrated in Figure 3.1.
The vertex set V is a disjoint union of m+ 1 independent vertex sets (Vk)k=0,...,m where
V0 contains only one vertex v0 presenting the initial list L, and any other independent
set Vk consists of n! vertices representing n! permutations of L. For v ∈ V , let Lv denote
the list represented by v. The weight of an edge uv between Vk and Vk′ is equal to
the minimal cost to reorganize Lu to Lv, providing that yk was just accessed. These
weights can be calculated using Algorithm 6. Then, an optimal solution to serve I can
be found by finding a shortest path from V0 to Vm. The main contribution of Reingold
and Westbrook (1996) is to show that there exists a shortest path avoiding a certain
subset of edges.

Theorem 3.18 (Reingold and Westbrook,1996). There exists an optimal offline algo-
rithm that performs only subset transfers.

In other words, one may drop all edges uv from Figure 3.1, where Lv is not obtainable

47

V0

V1 V2 Vm−1 Vm

Figure 3.1: Enumeration to find the optimal solution.

from Lu via subset transfer. Thus, the complexity of finding an optimal offline algorithm
is reduced.

Divakaran claimed to reduce this cardinality further. Based on an optimal solution
obtained by using only subset transfers, Divakaran (2014) attempts to rearrange the
transpositions in such a way that the list is reorganized initially before the first accessing
and only element transfers are applied subsequently.

The corresponding complexity to construct a graph, assuming that only subset trans-
fers and element transfers are applied, is given by Lemma 3.19.

Lemma 3.19 (Reingold and Westbrook,1996, Divakaran,2014). The following state-
ments hold for every k = 1, . . . ,m− 1:

1. There are (2n − 1) · (n− 1)! pairs of vertices u ∈ Vk and v ∈ Vk+1, such that Lv is
obtainable from Lu via subset transfer.

2. There are n · n! pairs of vertices u ∈ Vk and w ∈ Vk+1, such that Lw is obtainable
from Lu via element transfer.

To summarize, this line of research focuses on considering a subgraph G′opt induced
by a subset E ′ ⊆ E where the length of shortest V0, Vm-path in G′opt remains the same
as in Gopt.

In general, the exponential dependence on n restricts its use in practice, even though
the calculation of the weights of E ′ (as well as in E) can be done highly parallel.

For the restricted case when the list is short, we can state the following lemma.

Lemma 3.20 (Folklore). The following algorithm achieves the optimal cost on every
request sequence with a list of length two: Whenever the next two requests ask for the
last element in the current list, move it to the front via free transposition after the first
access. Otherwise do nothing.

One may also restrict the possible actions. A deterministic algorithm is static if it
reorganizes L before the first access and never applies any free or paid transposition
thereafter. Certainly, there are only n! static algorithms for a list with length n. The
best algorithm among these n! algorithms can be characterized as follows.

48

Lemma 3.21 (Folklore). For any instance (L, I), the following static offline algorithm
achieves the optimal cost within the set of static algorithms: Reorganize the list in non-
increasing order in terms of request frequencies in I.

Remark 3.22. Static list accessing algorithms are similar to list scheduling algorithms if
one ignores the transposition costs. Let L = (1, 2, 3) be a list and I = (3, 2, 3, 2, 2, 3, 1, 1)
be a request sequence of L. Consider the static list accessing algorithm which resort L
into L′ = (2, 3, 1) at the beginning.

Observe that the contribution to the total accessing cost of a list element x is equal
to its position in L′ times the number of requests to x in I. In other words, whenever
x is requested, every list element before x in the list contributes one unit of cost to the
total accessing cost. Now consider Problem 3: 1| |

∑
j∈J cj (see Table 2.2). For each list

element x we generate a job jx with a processing time px equal to the number of requests
to x in I. The static list accessing algorithm above corresponds to the list scheduling
algorithm with the priority list (j1, j3, j2) which is the reverse order of L′. Then, the
total completion time is equal to

p1 + (p3 + p1) + (p2 + p3 + p1) = p2 + p3 · 2 + p1 · 3.

The right hand side can be interpreted as the sum of costs of accessing list element 2 p2

times, accessing list element 3 p3 times, and accessing list element 1 p1 times.
It is easy to see that the optimal static offline algorithm in Lemma 3.21 corresponds

to SPT which is also optimal for Problem 3, see Lemma 2.17.

The understanding of the behaviors of some optimal algorithms turns out to be useful
for designing good deterministic online algorithms, as will be discussed in section 3.3.

3.3 Deterministic Algorithms for the List Accessing

Problem

In this section, four deterministic online algorithms TRANS, MTF, FC, and TS for
the list accessing problem are introduced and analyzed. Most algorithms solving list
accessing problems are either variants of one of these four algorithms or a hybrid version
of two of them.

Definition 3.23. Let Transpose (short: TRANS) denote the algorithm which always
applies exactly one free transposition, i.e. after accessing x, the position of x is exchanged
with its direct predecessor in the current list.

Let Move To the Front (short: MTF) denote the algorithm which always applies all
free transpositions, i.e. after accessing x, x is moved to the first position of the current
list.

The algorithm Frequency Count (short: FC) reorganizes the list after each accessing
such that the list elements are ordered in non-increasing order of their frequencies. More
precisely, FC maintains a counter for each list element recording the number of access

49

Request TRANS MTF FC TS
List Cost List Cost List Cost List Cost

Init. (1 2 3) 0 (1 2 3) 0 (1 2 3) 0 (1 2 3) 0
3 (1 3 2) 3 (3 1 2) 3 (3 1 2) 3 (1 2 3) 3
2 (1 2 3) 6 (2 3 1) 6 (3 2 1) 6 (1 2 3) 5
3 (1 3 2) 9 (3 2 1) 8 (3 2 1) 7 (3 1 2) 8
2 (1 2 3) 12 (2 3 1) 10 (3 2 1) 9 (2 3 1) 11
2 (2 1 3) 14 (2 3 1) 11 (2 3 1) 11 (2 3 1) 12
3 (2 3 1) 17 (3 2 1) 13 (2 3 1) 13 (2 3 1) 14
1 (2 1 3) 20 (1 3 2) 16 (2 3 1) 16 (2 3 1) 17
1 (1 2 3) 22 (1 3 2) 17 (2 3 1) 19 (1 2 3) 20

Table 3.1: The behavior of algorithms on instance L = (1, 2, 3) and I = (3, 2, 3, 2, 2, 3, 1, 1)

of this element. All counters are initialized with 0 and increased by 1 after each access.
Immediately after updating a frequency counter, the accessed element is moved to the
position corresponding to its counter.

The algorithm Timestamp (short: TS) moves the accessed list element x directly in
front of the first element in the current list that was accessed at most once since the last
request to x. If such an element does not exist or if x is requested for the first time,
nothing is done.

Remark 3.24. Let L = (1, 2, 3) be a list and I = (3, 2, 3, 2, 2, 3, 1, 1) be a request se-
quence of L. The lists maintained by TRANS, MTF, FC, and TS are summarized in
Table 3.1.

Although it is proven in Proposition 3.9, that the optimal algorithms may avoid any
free transposition, these four well known online deterministic algorithms rely heavily on
free transpositions. Indeed, since FC checks the frequency after every access, the only
counter which was changed since last check is the counter of the requested list element.
Thus, FC moves actually only the requested element to some earlier position in the list.
As the counter increases, this list element may either be moved forward or stay at its
position. The other three algorithms trivially apply only free transpositions.

Recall the two actions introduced in Section 3.2, i.e. element transfer and subset trans-
fer. The actions of these algorithms are actually special cases of element and subset
transfer.

3.4 Bounds for Competitiveness of Deterministic

Online Algorithms

In terms of the competitiveness, no deterministic algorithm can be better than 2-
competitive. In Irani (1991), the next theorem is attributed to Karp and Raghavan.

Theorem 3.25 (Karp and Raghavan). For the static list accessing problem with a list of
n elements, deterministic online algorithms have a competitive ratio of at least 2− 2

n+1
.

50

Proof of Borodin and El-Yaniv (2005). Let (L, I) be an instance of the list accessing
problem with n list elements and m requests. Consider any deterministic online algo-
rithm ALG. Define I such that immediately before ALG accesses yj, the list element
xi = yj is always in the last position of the current list. This is possible as ALG is
deterministic. Certainly, ALG incurs a cost of mn.

The lower bound of the competitiveness of ALG is found by using an averaging tech-
nique over the set of static algorithms. For any permutation σ ∈ Sn let ALGσ be the
static algorithm reorganizing L to σ(L). By Lemma 3.17, the cost of this reorganization

is at most n(n−1)
2

. Consider the set {ALGσ}σ∈Sn of static algorithms. We first calculate
the sum of the cost CALGσ(I) for all σ ∈ Sn. Notice that any list element x, and hence also
any request y, is in position k in exactly (n− 1)! lists of {σ(L)}σ∈Sn for all k = 1, . . . , n.

Thus, the accessing of any element costs (n − 1)! · (1 + 2 + · · · + n) = (n − 1)! · n(n+1)
2

in total. Since this cost is not dependent on when or which element is requested, we
conclude that these n! static algorithms incur together access costs of m(n− 1)! · n(n+1)

2

and paid transposition costs of at most n! · n(n−1)
2

. By taking the average, there must
exist one σ∗ such that

CALGσ∗ (L, I) ≤ m(n+ 1)

2
+
n(n− 1)

2
.

Therefore, the competitive ratio of ALGσ approaches 2mn
m(n+1)

= 2 − 2
n+1

for a large m
relative to n, which converges to 2 for large n.

The algorithms TRANS and FC are not competitive for any finite c, i.e. in the worst
case, the ratio CTRANS(I)

COPT(I)
and CFC(I)

COPT(I)
can be arbitrary large, as we show in the next

example.

Example 3.26. Let L = (x1, . . . , xn) be a list. We determine lower bounds for the
competitive ratio by comparing the performance of TRANS and FC on individual request
sequence I with MTF.

By the optimality of OPT, the cost COPT(I) of applying OPT is certainly less or equal
to the cost of applying MTF. Thus, we know that

CALG(I)

CMTF(I)
≤ CALG(I)

COPT(I)

is a lower bound of competitive ratio of any algorithm ALG.
Observe that MTF benefits from immediately repeated requests to the same list element.

Let Ik be the request sequence that repeatedly requests item xk for n times for k = 1, . . . , n.
For TRANS consider the request sequence In. TRANS exchanges the position of xn

with its direct predecessor after each access, thus reduces the access cost by 1 for every
request, leading to costs of n(n−1)

2
. In comparison to TRANS, consider the algorithm

MTF. The first request incurs costs of n. Before the second access, the list element xn
is moved to the first position and thus every subsequent access costs only 1. Hence we

51

have CMTF(I) = 2n− 1. We obtain a lower bound

CTRANS(I)

COPT(I)
≥ CTRANS(I)

CMTF(I)
=
n · (n+ 1)

4n− 2
= O(n).

For FC consider the request sequence I = (I1, I2, . . . , In). On the one hand, note that
the counter of xi is always less than or equal to all counters of x1, . . . , xi−1 during the
entire process. Hence, FC does not reorganize the list at all. Thus, we have CFC(I) =

n + 2n + · · · + n2 = n · n(n+1)
2

. On the other hand, the cost of serving Ik using MTF is

equal to k+n−1 for every k = 1, . . . , n. Therefore, MTF incurs costs of
n∑
k=1

(k+n−1) =

n(n− 1) + n(n+1)
2

. We obtain a lower bound of CFC(I)
COPT(I)

:

CFC(I)

COPT(I)
≥ CFC(I)

CMTF(I)
=
n(n+ 1)

3n− 1
= O(n).

In both cases, the lower bound grows indefinitely.

In contrast to the worst case performance of TRANS and FC, the algorithms MTF
and TS are both 2-competitive which is because of Theorem 3.25 best possible.

Theorem 3.27 (Sleator and Tarjan,1985). Algorithm MTF is 2-competitive.

Beginning with the list L = (xi)i=1,...,n, we imagine that MTF and OPT are running
side by side for solving the same instance (L, I). To avoid ambiguity, let LMTF and LOPT

denote the lists maintained by algorithm MTF and OPT respectively. The process of
serving one request yj is split into several steps as follows.

1. request yj arrives,

2. MTF accesses yj in the list LMTF,

3. OPT accesses yj in the list LOPT,

4. MTF performs free transpositions (if any),

5. OPT performs free transpositions and paid transpositions (if any).

Among them, the steps 2, 3, and 5 incur costs. In the original proof, the cost of MTF is
bounded from above using a potential function Φ, which is defined via the notion of in-
versions. Recall that a pair of list elements (x, x′) is an inversion regarding (LMTF, LOPT)
if and only if x precedes x′ in LMTF and the converse is true in LOPT.

Remark 3.28. For every inversion (x, x′) regarding (LMTF, LOPT), the algorithm MTF
has to pay 1 more unit in order to reorganize the LMTF to LOPT. This is a measure of
the distance between LMTF and LOPT in terms of the number of transpositions needed to
convert one to the other.

52

All inversions in the proof of Theorem 3.27 are with respect to (LMTF, LOPT). For the
sake of simplicity, this dependence on concrete lists is omitted.

Proof of Theorem 3.27 of Borodin and El-Yaniv (2005). Since MTF does not use paid
transpositions, the cost of MTF is incurred only by accessing the requests y, denoted by

CMTF(I) = CA
MTF(I).

By Proposition 3.9, we may assume that OPT does not use free transpositions, the
cost of OPT is the sum of the costs of accessing y and the costs of paid transpositions
performed before accessing y, denoted by

COPT(I) = CA
OPT(I) + CP

OPT(I).

For the 2-competitiveness, it is sufficient to show that:

CA
MTF(I) ≤ 2 · CA

OPT(I)− 1 + CP
OPT(I).

Let I be a given request sequence of L. Assume that the requested list element x(= y)
is in the i-th position in LMTF and at i′-th position in LOPT at the moment of step 1. In
other words, CA

MTF(y) = i and CA
OPT(y) = i′.

Every list element x preceding x in LOPT or LMTF must be exactly one of the next
three types:

• x precedes x in both of LMTF and LOPT, let z count the number of such x.

• (x, x) is an inversion, let g count the number of such x.

• (x, x) is an inversion, let h count the number of such x.

Figure 3.2 illustrates one possible partition.

• • • • • • x •

i

(a) LMTF after step 1.

• • • • x • • •

i′

(b) LOPT after step 1.

Figure 3.2: Lists in the proof of Theorem 3.27.

53

Claim: The following relations hold:

z + g = i− 1

z + h = i′ − 1

i ≤ i′ + g

i′ ≤ i+ h

Proof: The first two equations are trivial. One of the inequalities is also trivial depending
on the sign of i− i′. Assume that i ≥ i′. Since h is non-negative, the inequality i′ ≤ i+h
obviously holds. The remaining inequality can easily be derived from the equations.

i− i′ =i− 1− (i′ − 1)

=z + g − z − h
=g − h ≤ g,

which is equivalent to i ≤ i′ + g. In the case i′ ≥ i, the proof works analogously by
switching the role of g and h. �

Consider the amortized costs a(y) = CA
MTF(y) + Φ5(y) − Φ1(y) where Φk(y) is the

number of inversions after step k during serving request y. Notice that we have the
equation

CA
MTF(I) =

∑
y∈I

CA
MTF(y) =

∑
y∈I

a(y) + Φ1(y1)− Φ5(ym)

where Φ1(y1) = 0 since MTF and OPT begins with the same list and Φ5(ym) ≥ 0. Thus,
in order to prove

CA
MTF(I) ≤ 2 · CA

OPT(I)− 1 + CP
OPT(I),

it is sufficient to show that

a(y) ≤ 2 · CA
OPT(y)− 1 + CP

OPT(y)

holds for all y.
Before Step 5, the only actions changing the list order are the free transpositions of

MTF. Since x is moved to the front in LMTF, no list element can precede it anymore.
Hence, all inversions counted by g are eliminated, whereas all list elements counted by z
become inversions together with x before the transpositions of OPT (Step 5). Thus, we
conclude that Φ4 − Φ1 = z − g. During Step 5, every transposition of OPT can create
at most one inversion by Corollary 3.14, meaning that Φ5 − Φ4 = CP

OPT(y). Therefore,

54

the amortized costs a(y) are bounded from above by

a(y) =i+ z − g + CP
OPT(y)

=i+ (i− g − 1)− g + CP
OPT(y)

=2(i− g)− 1 + CP
OPT(y)

≤2i′ − 1 + CP
OPT(y)

=2 · CA
OPT(y)− 1 + CP

OPT(y)

Theorem 3.29 (Albers,1998). The algorithm TS is 2-competitive.

The standard proof of Theorem 3.29 makes use of the projective property.

Definition 3.30. Let (L, I) be an instance of the list accessing problem. For any pair
of list elements x, x′ let Lxx′ and Ixx′, respectively, denote the projection of L and I onto
{x, x′}. More precisely, one constructs Lxx′ by deleting elements other than x, x′ from
L and preserving the relative position of x and x′. The request sequence Ixx′ can be
obtained in the same way. Similar to the normal context, duplication is allowed in Ixx′.

An algorithm ALG satisfies the projective property if the relative position of any two
list elements x, x′, when ALG is applied on (L, I), is the same as when ALG is applied
to (Lxx′ , Ixx′).

The analysis of projective algorithms applies the so called partial cost model.

Definition 3.31. In the partial cost model, accessing an element x at the position
i incurs a cost of i − 1. The transposition cost is defined in the same way as in the
standard cost model.

The advantage of the partial cost model is that the costs incurred by projective algo-
rithms are characterized easily and the upper bounds in the partial cost model applies
naturally in the standard cost model.

Remark 3.32. Let CP
ALG(I) and CS

ALG(I) denote the cost incurred by algorithm ALG
in partial and standard cost model, respectively. Then we have

CP
ALG(I) = CS

ALG(I)−m,

as every access in the partial model costs 1 less than in the standard model.
Notice that the cost model may influence the behavior of optimal strategy in general.

Let OPTP and OPTS, respectively, denote the optimal strategy in the partial and stan-
dard cost model. Although it is not clear if OPTP coincides with OPTS, we have at
least

CP
OPTP

(I) ≤ CP
OPTS

(I)

by considering OPTS as an arbitrary algorithm, which is certainly not able to beat the
optimal algorithm OPTP in the partial cost model.

55

Assume that ALG is c-competitive in the partial cost model. Then we have

CS
ALG(I) =CP

ALG(I) +m

≤c · CP
OPTP

(I) +m

≤c · CP
OPTS

(I) +m

<c · (CP
OPTS

(I) +m)

=c · CS
OPTS

(I)

Thus, the upper bounds for competitiveness in the partial cost model apply also in the
standard cost model. In a similar way, on can show that every lower bound in the
standard cost model applies also in the partial cost model, but the converse statement
requires individual analysis.

Usually, the lower bound for competitiveness of ALG is provided together with a par-
ticular instance. Due to the lack of knowledge about OPT, ALG is compared to another
well understood algorithm, typically to MTF, and the bound is established by

CS
ALG(I)

CS
OPT(I)

≥ CS
ALG(I)

CS
MTF(I)

,

cf. 3.26.
Assume that we are able to show a lower bound d of the competitiveness of ALG in

the partial cost model, i.e. we have

CP
ALG(I)

CP
OPT(I)

≥ CP
ALG(I)

CP
MTF(I)

≥ d

for some request sequence I. In the standard cost model, we want to bound

CS
ALG(I)

CS
MTF(I)

=
CP

ALG(I) +m

CS
MTF(I) +m

.

As long as the cost CP
ALG(I) is of the order of O(m2), the constant difference m disappears

by increasing the length of the request sequence (and possibly together with the length of
list), see the proof of Lemma 3.44 for instance.

Lemma 3.33 (Borodin and El-Yaniv,2005). Let ALG be an online projective list access-
ing algorithm which does not use paid transpositions. Then we have for every instance
(L, I)

CALG(I) =
∑

x,x′∈L,x 6=x′
CALG(Lxx′ , Ixx′).

Proof. We first show that if I contains only one request, i.e. I = (x), then

CALG(x) =
∑

x,x′∈L,x 6=x′
CALG(Lxx′ , Ixx′).

56

Notice that the request sequence Ixx′ = (x)xx′ is empty if x /∈ {x, x′}, thus∑
x,x′∈L,x 6=x′

CALG(Lxx′ , Ixx′) =
∑

x,x′∈L,x 6=x′,x∈{x,x′}

CALG(Lxx′ , Ixx′) =
∑

x∈L,x 6=x

CALG(Lxx, x).

Consider the set Z = {x ∈ L |x precedes x in L}.
On the one hand, as ALG does not use paid transpositions, the cost CALG(x) is equal

to the cost of accessing x. By the definition of the partial cost model, this cost is equal
to the number of list elements preceding x in L, i.e. |Z|.

On the other hand, the relative position of x and x in L is the same as initially in
Lxx, thus x ∈ L precedes x in Lxx if and only if x ∈ Z, meaning that

CALG(Lxx, x) = 1Z(x) =

{
1, if x ∈ Z,
0, otherwise.

Therefore, we have∑
x,x′∈L,x 6=x′

CALG(Lxx′ , Ixx′) =
∑

x∈L,x 6=x

CALG(Lxx, x) = |Z| = CALG(x).

Notice that CALG(Lxx, x) = 1Z(x) holds if and only if the relative position of x and
x in L is the same as in Lxx. Since ALG is projective, this statement holds even after
accessing x. Therefore, the proof for I having arbitrary length can be obtained by
applying the argument for the case I = (x) inductively.

In order to calculate the cost incurred by a projective algorithm ALG on instance
(L, I), it is sufficient to consider the cost incurred by ALG on sub-instances (Lxx′ , Ixx′).
The cost incurred by OPT can be analyzed in a similar way.

Define the projected algorithm OPTP as follows: OPTP operates on
(
n
2

)
instances

(Lxx′ , Ixx′) simultaneously for all x, x′ ∈ L, x 6= x′. Whenever OPT applies a transposi-
tion T (x, x′) or T (x′, x) in L, OPTP applies the same, free as well as paid, transposition
in Lxx′ . Whenever OPT accesses an element x in L, OPTP accesses this x in all lists
Lxx′ where x ∈ L, x 6= x′. Let COPTP (Lxx′ , Ixx′) denote the cost (for accessing and paid
transposition) incurred by OPTP in the sub-list Lxx′ .

Obviously, the relative position of x and x′ in the list L maintained by OPT always
coincides with the relative position in the list Lxx′ maintained by OPTP . Consequently,
we have:

• Whenever OPT pays one unit for a paid transposition, OPTP pays one unit in
exactly one of these

(
n
2

)
sub-lists,

• whenever OPT pays k units for accessing an element in the (k + 1)-th position in
L, OPTP pays 1 unit in those k sub-lists Lxx′ where x′ precedes x in L.

57

Therefore, we have

COPT(I) =
∑

x,x′∈L,x 6=x′
COPTP (Lxx′ , Ixx′).

Notice that OPT is not projective in general: The projected version OPTP does not have
to be optimal on the sub-instance (Lxx′ , Ixx′). To see the difference, we recall Example
3.8 and Lemma 3.20.

By Example 3.8 we know that OPT (and thus also the projected OPTP) is forced
to use paid transpositions on some instance (L, I), whereas Lemma 3.20 states that the
optimal algorithm on instance (Lxx′ , Ixx′) may avoid paid transpositions completely.

Nevertheless, the following inequality holds

COPT(Lxx′ , Ixx′) ≤ COPTP (Lxx′ , Ixx′).

This inequality can be used to bound the competitive ratio of projective algorithms.

Corollary 3.34 (Borodin and El-Yaniv,2005). Let ALG be an online projective list
accessing algorithm which does not use paid transpositions. If the inequality

CALG(Lxx′ , Ixx′) ≤ c · COPT(Lxx′ , Ixx′)

holds for every pair (x, x′) of different list elements, then ALG is c-competitive.

Proof.

CALG(I) =
∑

x,x′∈L,x 6=x′
CALG(Lxx′ , Ixx′)

≤
∑

x,x′∈L,x 6=x′
c · COPT(Lxx′ , Ixx′)

≤
∑

x,x′∈L,x 6=x′
c · COPTP (Lxx′ , Ixx′)

=c · COPT(I)

Roughly speaking, the projective property of ALG allows one to break the list and re-
quest sequence into sub-lists and sub-sequences consisting of only two different elements
and compares the behavior as well as the costs of ALG to the costs of OPT in the sub
instance. Most algorithms in this chapter are projective. In particular:

Lemma 3.35. TS is projective.

Proof. The proof is straightforward. TS changes the relative position of x, x′ in Lxx′ if
and only if the latter element in Lxx′ , say x, is requested and x′ is requested at most
once since the last request to x in Ixx′ . This is the case if and only if x is requested
and x′ is requested at most once since the last request to x in I. Since x′ might not be
the first element which precedes x in L and was requested at most once since the last

58

request to x in I, it is possible that TS moves x much more forward than to the position
of x′. Nevertheless, x precedes x′ in both lists.

Therefore, TS changes the relative position of x, x′ in Lxx′ , if and only if TS changes
the relative position of x, x′ in L. This observation completes the proof.

Remark 3.36. We give an outline of the proof of Theorem 3.29 here and refer to
the proof in Borodin and El-Yaniv (2005) for details. Lemma 3.35 shows that TS is
projective. Thus, we apply Corollary 3.34 and compare only the terms CTS(Lxx′ , Ixx′)
with COPT(Lxx′ , Ixx′) for every distinct pair x, x′ of list elements of L. One can further
partition Ixx′ into sub-sequences, called phases, each of which has one of the forms in
Table 3.2 with the last sub-sequence as an exception, which might be a proper prefix of
one of these six forms.

Phase type I TS OPT Phase type II
(x)ix′x′ 2 1 (x′)ixx

(x)i(x′x)kx′x′ 2k k + 1 (x′)i(xx′)kxx
(x)i(x′x)kx 2k − 1 k (x′)i(xx′)kx′

Table 3.2: The phase cost of TS and OPT in the partial cost model.

Recalling Lemma 3.20, the optimal algorithm is fully understood when the list has only
two elements, This allows an easy calculation of the costs of TS and OPT for each of
these six forms. The competitive ratio for each phase converges to 2 for large k. This
observation completes the proof of Theorem 3.29.

Among the algorithms proposed in this section, TRANS is the only one without
the projective property. The algorithm TRANS was favored in average cost analysis
rather than in worst case analysis (like competitiveness in the deterministic case). In
average cost analysis, it is assumed that a request sequence is generated randomly using
a (typically i.i.d.) stochastic distribution over list elements, and the expected cost of an
algorithm is measured. It was expected that the asymptotic behavior of TRANS should
be better than MTF, yet MTF converges much faster than TRANS. For details see
Hester and Hirschberg (1985) and Rivest (1976). There is one intuitive argument for
TRANS: once the list is in a balanced order, say a decreasing order in terms of request
frequencies (as in Lemma 3.21), TRANS will not disturb this order dramatically by only
applying one transposition each time. However, if MTF is applied, every occasionally
requested low-probability element will be moved to the front and causes costs much
larger than TRANS as the access costs of subsequent requests will be increased.

The same decreasing order is also attained by FC asymptotically. FC can be seen as
an adaptive imitation of the offline algorithm S-OPT in Lemma 3.21. Indeed, its total
cost converges to the total cost of S-OPT for i.i.d. distributions. However, FC draws
much less attention compared to other projective algorithms.

Until TS was presented, MTF was the only known deterministic algorithm with a
competitive ratio of 2. By combining these two algorithms, El-Yaniv (1996) and Schulz

59

(1998) introduce different families of infinitely many 2-competitive deterministic online
algorithms. Since 2-competitiveness is already best possible in the deterministic case
with respect to competitive analysis, further research focuses on other measures than
competitiveness or on their randomized versions. It is possible to decrease the competi-
tive ratio of an online algorithm to less than 2 by applying randomized techniques, but
the measure “competitiveness” is no longer strict in the sense of worst case analysis,
which we introduce and analyze in Section 3.5.

3.5 Randomized Algorithms for the List Accessing

Problem

The first randomized online algorithm beating the 2-competitiveness is SPLIT, intro-
duced by Irani (1991). SPLIT uses the idea of MTF with a competitiveness of 1.9375.
This ratio was beaten three yeas later by BIT (due to Reingold et al. (1994)), having ra-
tio 1.75, which is again a modification of MTF. Thereafter, hybrid algorithms have been
developed to further decrease the ratio. To date, the best randomized online algorithm
(in terms of competitiveness) is COMB from Albers et al. (1995), which successfully
combines BIT and TS to achieve a competitive ratio of 1.6.

In order to measure the behavior of a randomized algorithm, one has to extend the
notion of c-competitiveness.

In the deterministic case, the inequality in Definition 1.1 must hold for every instance
(L, I). This can be interpreted as if there exists a malicious adversary with full knowledge
of the deterministic algorithm. The adversary always produces such a crucial instance
(L, I) such that CALG(I)

COPT(I)
is maximized.

In the randomized case, uncertainty produced by algorithms makes it difficult to
identify which request sequence is the crucial one. Standard literature provides two
different kinds of adversaries. An oblivious adversary must construct the instance in
advance based only on the description of the online algorithm but before any moves are
made. An adaptive adversary can issue requests based on the online algorithms answers
to previous ones. The difference between these two kind of adversaries is illustrated in
Example 3.38 using the algorithm RMTF.

Definition 3.37. Let Randomized MTF (short: RMTF) denote the algorithm choosing
equally one of the following two actions after each access:

1. Move the accessed list element to the first position.

2. Do nothing.

Example 3.38. Let L = (1, 2, 3) be a list and assume that RMTF is applied to solve the
list accessing problem on L. In order to maximize the cost of RMTF, an adversary will
always try to request the last element in the current list. This is not possible in general
for oblivious adversaries, as they do not observe the random choice made by RMTF.
There are two request sequences with length 2 which might achieve the maximum cost of

60

6: The request sequence (3, 3) incurs a cost of 6 if RMTF decides to do nothing, or a
cost of 4 if 3 is moved to the front. Thus, the crucial request sequence (from an oblivious
adversary) with length 2 will be (3, 2) with an expected cost of 1

2
· (6 + 5) = 5.5.

Compared to this, an adaptive adversary requests the element 3 at the first round and
waits for the coin flipping result of RMTF. The request sequence provided at the end is
either (3, 2) or (3, 3) depending on whether RMTF reorganizes the list. In both case, the
total cost RMTF has to pay is always 6.

The information about the random choice made by randomized algorithm increases
the power of adversary significantly. By using an averaging technique similar as in the
proof of Theorem 3.25, Reingold et al. (1994) prove that there always exists a crucial
request sequence I, such that the cost incurred by any online algorithm against an
adaptive adversary is at least 2 times the cost of an offline optimal algorithm serving I.

Thus, we restrict our view to the analysis of oblivious adversary.

Definition 3.39. A randomized online algorithm RALG, distributed over a set {ALGk}
of deterministic online algorithms, is c-competitive against an oblivious adversary for
some c ≥ 1, if

EK [CALGk(I)] ≤ c · COPT (I)

holds for all instances (L, I). Here, the expression EK [CALGk(I)] denotes the expectation
with respect to the probability distribution K over {ALGk} which defines RALG.

It is important to observe that the competitive ratio against an oblivious adversary
is not a worst case measure. By taking the expectation, it is closer to the average
competitive ratio of a set of deterministic algorithms, as mentioned in Kamali and López-
Ortiz (2013).

To understand the concept of {ALGk}, we compare RMTF with algorithm BIT, which
is another well known variant of MTF proposed by Reingold et al. (1994).

Definition 3.40. Let L = (xi)i=1,...,n be a list and I be a request sequence of L. Before
serving I, the algorithm BIT assigns an initial bit value bx ∈ {0, 1} for each x ∈
{x1, . . . , xn} independently and uniformly. The bit setting b(L) = (bxi)i=1,...,n is the
sequence of bit values of elements in L.

After accessing x, the corresponding bit value bx will be complemented (bx ← 1− bx).
Then BIT moves x to the front if and only if bx = 1.

Instead of flipping a coin every time when a list element is accessed, the algorithm
BIT alternates between moving the accessed list element to the first position and “Do
nothing”.

Although BIT and RMTF seem to be similar, the sets {BITk} and {RMTFk} differ
significantly from each other. More importantly, these two algorithms differ from each
other in terms of competitive ratio1.

1See Section 3.6 for details.

61

Example 3.41. Let L = (1, 3, 2) and I = (2, 3, 2, 3).
The set {BITk} can be represented by {0, 1}n. In this example, every element in
{0, 1}3 can be identified with a bit setting made by BIT. Assume that BIT assigned
(0, 1, 0) ∈ {0, 1}3 as bit setting to L. Then the elements x1 = 1 and x3 = 2 will be moved
to the front after they are requested odd times, whereas x2 = 3 will be moved to the front
after it is requested even times.

The set {RMTFk} can be represented by {0, 1}m. In this example, every element in
{0, 1}4 can be identified with a set of four random choices made by RMTF. Assume
that RMTF has decided to move the first accessed and the last accessed element to the
front, no matter which list element is requested. Then this decision can be encoded by
(1, 0, 0, 1) ∈ {0, 1}4.

Corollary 3.42. For given L and I with |L| = n and |I| = m, we have |{BITk}| = 2n

and |{RMTFk}| = 2m. Both randomized algorithms use a discrete uniform distribution
to draw from the corresponding set of deterministic algorithms.

Proof. The cardinalities of {BITk} and {RMTFk} follow immediately from the identi-
fication in Example 3.41. Since BIT and RMTF produce their decisions uniformly, it
is easy to see that a discrete uniform distribution is applied on {BITk} and {RMTFk},
respectively.

RMTF and BIT essentially only use the idea of MTF. They can be seen as a com-
bination of MTF and “Do nothing”. In the same work in which BIT is proposed,
Reingold et al. (1994) generalize the idea of when to “Do nothing”, resulting in a family
of randomized algorithms, called COUNTER. Roughly speaking, a COUNTER(s, S)-
algorithm maintains an integer value from {0, 1, . . . , s − 1} for every list element. The
set S is a subset of {0, 1, . . . , s − 1}. Similar to BIT, the counter of x is decreased by
1 after every access to x. The move to the front action will be triggered whenever the
corresponding counter has reached a number in the set S. It is easy to see that BIT is
actually a COUNTER(2, {0})-algorithm.

Remark 3.43. The advantage of “Do nothing” can be explained as follows: MTF per-
forms poorly if every list element is requested only once in a reversed order as the initial
list, say I = (xn, xn−1, . . . , x1). To serve I, “Do nothing” is indeed the optimal strategy.
Conversely, the crucial request sequence against “Do nothing” is In = (xn, . . . , xn) where
MTF behaves optimal.

The improvement of the competitive ratio from MTF to BIT results actually from the
somehow “complementary” performance of these two behaviors.

Beyond MTF with “Do nothing”, this observation motivates hybrid algorithms with
ALG1 and ALG2, such that ALG2 performs well on the request sequences incurring a

high ratio
CALG1

(I)

COPT(I)
and vice versa.

62

3.6 Bounds for Competitiveness of Randomized

Online Algorithms

Proposition 3.44 (Borodin and El-Yaniv,2005). The algorithm RMTF is not better
than 2-competitive in expectation.

The original proof in Borodin and El-Yaniv (2005) involves the request sequence

I = (I ln, I
l
n−1, . . . , I

l
1),

where I li is the sub-sequence consisting of l requests to the same list element xi. We call
such a sub-sequence a block.

To prove the lower bound of competitiveness of RMTF, Borodin and El-Yaniv (2005)
compare the performance of RMTF to the performance of MTF, similar as in Example
3.26. The cost CMTF(I) can be calculated explicitly as follows.

Corollary 3.45 (Borodin and El-Yaniv,2005). The cost of applying MTF to serve I is
equal to CMTF(I) = n(n+ l − 1).

Proof. By the behavior of MTF, the requested element xk in I lk is actually in the last
position of L when xk is requested for the first time in I lk. Since the cost CMTF(Ik) is
constant n+ l − 1 for every k = 1, . . . , n, we have CMTF(I) = n(n+ l − 1).

For RMTF, Borodin and El-Yaniv (2005) write on page 27 (notation adjusted):

For large l, with high probability, algorithm RMTF will move xi to the front
while RMTF services the segment (xi)

l. On average, xi is moved to the front
at the second request. Hence, the expected cost for RMTF to serve I is at
least 2n2 + 2nl − 2n.

We have observed that this estimation is not really precise for small instances.

Example 3.46. First consider the cases n = l = 2, i.e. we have the instance (L =
(x1, x2), I = (x2, x2, x1, x1)). We use the identification in Example 3.41 to denote the
random choices of RMTF. It is possible that some decisions of RMTF do not influence
the overall cost. In order to simplify the case analysis, we use ∗ instead of 0, 1 to indicate
such decisions.

E.g. the tuple (1, 0, 1, ∗) denotes the set {(1, 0, 1, 0), (1, 0, 1, 1)} of two decisions, each
of which moves the first and third accessed element to the front, but leaves the second
accessed element where it is. It is easy to see that before the fourth accessing, the list is
(x1, x2) and thus the overall cost will be 2 + 1 + 2 + 1 = 6, no matter whether RMTF
moves the last requested element to the front or not.

We partition {0, 1}4 into the following subsets:

{0, 1}4 = (0, 0, ∗, ∗)∪̇(0, 1, 0, ∗)∪̇(0, 1, 1, ∗)∪̇(1, ∗, 0, ∗)∪̇(1, ∗, 1, ∗).

63

The probability and the corresponding incurred cost of these subsets are given in Table
3.3a. Further consider the case n = 2, l = 3, where a similar subdivision is given by

{0, 1}6 =(0, 0, 0, ∗, ∗, ∗)
∪̇(0, 0, 1, 0, 0, ∗)∪̇(0, 0, 1, 0, 1, ∗)∪̇(0, 0, 1, 1, ∗, ∗)
∪̇(0, 1, ∗, 0, 0, ∗)∪̇(0, 1, ∗, 0, 1, ∗)∪̇(0, 1, ∗, 1, ∗, ∗)
∪̇(1, ∗, ∗, 0, 0, ∗)∪̇(1, ∗, ∗, 0, 1, ∗)∪̇(1, ∗, ∗, 1, ∗, ∗)

together with the corresponding probability and cost in Table 3.3b.

Subset (0, 0, ∗, ∗) (0, 1, 0, ∗) (0, 1, 1, ∗) (1, ∗, 0, ∗) (1, ∗, 1, ∗)
Probability 1/4 1/8 1/8 1/4 1/4

Cost 6 8 7 7 6

(a) L = (x1, x2), I = (x2, x2, x1, x1).

Subset (0, 0, 1, 0, 0, ∗) (0, 0, 1, 0, 1, ∗) (0, 0, 1, 1, ∗, ∗) (0, 0, 0, ∗, ∗, ∗)
Probability 1/32 1/32 1/16 1/8

Cost 12 11 10 9
Subset (0, 1, ∗, 0, 0, ∗) (0, 1, ∗, 0, 1, ∗) (0, 1, ∗, 1, ∗, ∗)

Probability 1/16 1/16 1/8
Cost 11 10 9

Subset (1, ∗, ∗, 0, 0, ∗) (1, ∗, ∗, 0, 1, ∗) (1, ∗, ∗, 1, ∗, ∗)
Probability 1/8 1/8 1/4

Cost 10 9 8

(b) L = (x1, x2), I = (x2, x2, x2, x1, x1, x1).

Table 3.3: The cost of RMTF for small example instances.

We omit their calculations here, since the numbers in Table 3.3 can be verified easily.
It is then easy to see that the expected cost of RMTF for the cases n = l = 2 and
n = 2, l = 3 is 6.625 and 9.28125 respectively, whereas the lower bound in Borodin and
El-Yaniv (2005) offers 12 and 16, respectively.

Notice that Example 3.46 does not refute the lower bound in Borodin and El-Yaniv
(2005), as large l is assumed for its validity. Still, this motivates a closer analysis to find
the minimal l and n such that the estimation holds. We provide an explicit calculation
of the expected cost of RMTF, which, strangely, leads to an upper bound 2n2 + ln− 2n
being less than the back of an envelope lower bound from Borodin and El-Yaniv (2005).
For the sake of clarity, we divide the calculation into several lemmas. Until end of this
calculation, the expectations are calculated over {RMTFk}, i.e. all possible decisions
made by RMTF.

Lemma 3.47. The expected cost E[CRMTF(I ln)] of serving the first block in I is equal to
2n+ l − 2− 2n−2

2l
.

64

Proof. If xn is moved to the front while serving I ln, let j be the smallest index at which
RMTF decides to move xn to the front after accessing the j-th request in I ln. Obviously,
the first j accesses cost n and other accesses, independent on the random decisions of
RMTF after the j-th decision, only cost 1. It is easy to see that the probability of this

event is equal to
(

1
2

)j
for all j = 1, . . . , n. In the case xn is not moved to the front until

the end of serving I ln, which has a probability of
(

1
2

)l
, the cost incurred by RMTF is

equal to nl.
Therefore, we have the following equation:

E[CRMTF(I ln)] =nl ·
(

1

2

)l
+

l∑
j=1

(nj + 1 · (l − j)) ·
(

1

2

)j

=
1

2l
nl + l ·

l∑
j=1

1

2j
+ (n− 1) ·

l∑
j=1

j

2j

2

=
1

2l
nl + l

(
1− 1

2l

)
+ (n− 1)

(
2− l + 2

2l

)
=

(
1− 1

2l

)
· (l + 2n− 2)− l

2l
(n− 1) +

1

2l
nl

=

(
1− 1

2l

)
(2n− 2) + l − l

2l
− nl

2l
+

l

2l
+
nl

2l

=2n+ l − 2− 2n− 2

2l
.

Let LRMTF
k denote the list maintained by RMTF after serving the k-th block I ln−k+1.

Certainly, the list LRMTF
k may differ from L depending on the decision made by RMTF.

Recall that the notion CALG(L, I) is defined to be the cost of serving the instance (L, I)
using the algorithm ALG. In the case that the initial list is not L = (x1, . . . , xn), it is
provided explicitly.

Remark 3.48. Consider the list LRMTF
1 . With a probability of 1−

(
1
2

)l
, the list element

xn is moved to the front while serving I ln. In such a case, the list order before serving
the next block I ln−1 is

LRMTF
1 = (xn, x1, x2, · · · , xn−1).

Notice that the element xn−1, requested by the next block I ln−1, is again the last element
in the list immediately before serving I ln−1. Hence, the cost of serving the next block
remains unchanged.

E[CRMTF(LRMTF
1 , I ln−1) |xn is in position 1 after serving I ln] = E[CRMTF(L, I ln)].

2 Consider the function f(x) = 1
2

l∑
j=1

xj . Notice that
l∑

j=1

j
2j is actually equal to d

dxf(1
2). Thus, this

term can be calculated by adjusting and differentiating the formula of geometric series for f , see for
instance Heuser (2013).

65

If xn is still in the last position after serving I ln, then, since it is not requested there-
after, it remains in the last position even after serving I, i.e. one can simply delete xn
from the list without changing the cost. More precisely,

E[CRMTF(LRMTF
1 , I ln−1)) |xn is in position n after serving I ln]

=E[CRMTF((x1, . . . , xn), I ln−1)]

=E[CRMTF((x1, . . . , xn−1), I ln−1)].

Lemma 3.47 can be applied to the instance (L = (x1, . . . , xn−1), I ln−1) to observe

E[CRMTF((x1, . . . , xn−1), I ln−1)] = 2(n− 1) + l − 2− 2(n− 1)− 2

2l
.

We can see that if xn was not moved to the front, RMTF pays

2n+ l − 2− 2n− 2

2l
−
(

2(n− 1) + l − 2− 2(n− 1)− 2

2l

)
= 2

(
1− 1

2l

)
less in average.

In general, we call a block I lk regular if xk is moved to the front while serving I lk.
Otherwise we call it singular. Obviously, every block has a probability of 1

2l
of being

singular. The analysis in Remark 3.48 reveals that the number of singular and regular
blocks influences the list order as well as the expected cost of the blocks thereafter. To
analyze this influence we assume some realization of the decisions of RMTF and consider
LRMTF
k .

Lemma 3.49. Consider the set {xn−k, . . . , xn} of list elements which are already ac-
cessed before serving I ln−k−1. Let Sreg, Ssing ⊆ {xn−k, . . . , xn} be the subset of list elements
whose corresponding block is regular and singular, respectively. Then we have

LRMTF
k = (Ŝreg, x1, x2, . . . , xn−k−1, Ŝsing),

where Ŝreg and Ŝsing are the (index-increased) ordered sets of Sreg and Ssing, respectively.

Proof. By the definition of Sreg, every element xr ∈ Sreg has been moved to the first
position after serving I lr. At this point in time, xr precedes all list elements other than
itself. If some list element x precedes xr in LRMTF

k , then xt must be moved to the front
after serving I lr. Thus, we know xt ∈ Sreg and the block I lt is served later than I lr, or
equivalently t < r, meaning that the elements in Sreg are ordered in an index-increased
order in LRMTF

k .
Furthermore, every element in Sreg precedes all elements in L\Sreg, since elements in

L\Sreg have never been moved forward while serving the initial segment (In, In−1, . . . , In−k).
It only remains to show that the relative position of elements x, x′ ∈ L\Sreg in LRMTF

k

is the same as in L. Let T be the chain of transpositions applied by RMTF while
serving the first k blocks, i.e. LRMTF

k = T (L). Recall from Lemma 3.13: In order to

66

change the relative position of (x, x′), the chain T has to contain T (x, x′) or T (x′, x)
at least once. By the definition, all transpositions applied by RMTF only move the
accessed elements forwards. In other words, every transposition in T involves at least
one element in Sreg. As x, x′ ∈ L\Sreg, the transpositions T (x, x′) and T (x′, x) are not
included in T . Therefore, the relative position of (x, x′) in LRMTF

k = T (L) remains the
same as in L.

With the list order provided in Lemma 3.49, we can calculate the expected cost of
serving one block explicitly.

Lemma 3.50. The expected cost of serving the (k + 1)-th block is given by

E[CRMTF(LRMTF
k , I ln−k−1)] = E[CRMTF(L, I ln)]− k

2l
· 2
(

1− 1

2l

)
.

Proof. We first claim that there are k
2l

singular blocks within the first k blocks in ex-
pectation. Indeed, since every block has a probability 1

2l
of being singular independent

on each other, the number of singular blocks is binomially distributed with a success
probability of 1

2l
. From Lemma 3.49 we know that

LRMTF
k = (Ŝreg, x1, x2, . . . , xn−k−1, Ŝsing),

where the expected cardinality of Ssing is equal to k
2l

. By Remark 3.48 we have

CRMTF(LRMTF
k , I ln−k−1) =E[CRMTF((Ŝreg, x1, x2, . . . , xn−k−1), I ln−k−1)]

=E[CRMTF(L, I ln)]− k

2l
· 2
(

1− 1

2l

)
.

Corollary 3.51.

E[CRMTF(L, I)] = 2n2 + nl − 2n− n(n− 1)

2l

(
3− 1

2l

)
.

Proof. This corollary is a direct consequence from Lemma 3.50. Let LRMTF
0 denote the

67

initial list L. Then we have

E[CRMTF(L, I)] =
n−1∑
k=0

E[CRMTF(LRMTF
k , I ln−k)]

=nE[CRMTF(L, I ln)]−
n−1∑
k=0

k

2l
· 2
(

1− 1

2l

)
=nE[CRMTF(L, I ln)]− n(n− 1)

2l

(
1− 1

2l

)
=n(2n+ l − 2− 2n− 2

2l
)− n(n− 1)

2l

(
1− 1

2l

)
=2n2 + nl − 2n− n(n− 1)

2l

(
3− 1

2l

)
.

Thus, the expected cost of RMTF is less than 2n2 +nl− 2n for all n and l. Neverthe-
less, by combining the result of Corollary 3.51 and 3.45, we conclude that the quotient
E[CRMTF(I)]
CMTF(I)

converges to 2 for n� l. This result coincides with the proposition in Borodin

and El-Yaniv (2005).
Recall from Theorem 3.27 that the randomization technique by RMTF does not im-

prove the competitiveness at all. In contrast, the competitive ratio of BIT is somewhere
between 1.625 and 1.75. With Lemma 3.53, Reingold et al. (1994) prove the upper
bound. The lower bound is provided in Example 3.55.

Theorem 3.52 (Reingold et al.,1994). The algorithm BIT is at least 1.75-competitive
against an oblivious adversary.

Lemma 3.53 (Reingold et al.,1994). For any list element x and any k ∈ N, the bit
value bx that occurs directly after event k is equally likely to be 0 or 1, is independent of
the position of x in LOPT, and is independent of bx of every other list element x′.

The same proof technique is applied to Theorem 3.52 as in the proof of Theorem 3.27.
Recall that LBIT and LOPT, respectively, denote the list maintained by BIT and OPT.
The standard proof splits the process of serving a request into five steps.

1. request yj arrives,

2. BIT accesses yj in the list LBIT,

3. OPT accesses yj in the list LOPT,

4. BIT performs free transpositions (if any),

5. OPT performs free transpositions and paid transpositions (if any).

Step 2 increases the cost of BIT, steps 3 and 5 increase the cost of OPT, and steps 4
and 5 reorganize the list which may change the value of the potential function.

68

The intuition of the potential function in the randomized case is still to capture the
potential cost of reorganizing LBIT to LOPT, see Remark 3.28. Since BIT is randomized,
the potential function has to be modified. For any given inversion (x, x′) regarding
(LBIT, LOPT), the weight w(x, x′) is defined as the number of accesses to x′ before x′

passes x in LBIT. In other words, w(x, x′) = bx′ + 1. Correspondingly, the potential
function is defined by

Φ(LBIT, LOPT) =
∑

(x,x′) is inversion

w(x, x′).

Remark 3.54. In the proof of Theorem 3.52, steps 2 to 5 of every request will be
regrouped into different events such that each action (access or transposition) belongs
to exactly one event. Let cBIT,k and cOPT,k, respectively, denote the change of cost of

BIT and OPT during the event k. It is then easy to see CBIT(I) =
∑K

k=1 cBIT,k and

COPT(I) =
∑K

k=1 cOPT,k where the number K of events depends on the number of paid
transpositions made by OPT.

For an event k, let Φk denote the value of the potential function after event k. Since
both algorithms BIT and OPT start with the same list, there are no inversions before
the first event and hence we let Φ0 = 0. The amortized cost of an event k is defined by

ak = cBIT,k + Φk − Φk−1

leading to

CBIT(I) =
K∑
k=1

cBIT,k =

(
K∑
k=1

ak

)
− ΦK + Φ0 ≤

K∑
k=1

ak,

as ΦK is non-negative by definition.
Therefore, in order to prove the 7

4
-competitiveness of BIT, it is sufficient to show

ak ≤ 7
4
· cOPT,k for every event k.

Recall from Proposition 3.9, that OPT may avoid free transpositions. Based on the
proof of Theorem 3.52 in Borodin and El-Yaniv (2005), we next present a simplified
version where one of the cases for bx becomes trivial.

Proof of Theorem 3.52. Let I be a given request sequence of L. Assume that the j-th
requested list element x = yj is in the i-th position in LBIT and at i′-th position in LOPT

at the time of step 1. For the sake of clarity, we number the list element according to
their position in LOPT.

Notice that before step 3, the situation is exactly the same as in the proof of Theorem
3.27. In particular, the same claim holds here.
Claim: Let g and h, respectively, be the number of inversions (·, x) and (x, ·), and let z
be the number of list elements preceding x in both of LBIT and LOPT. Then the following

69

relations hold:

z + g = i− 1 (3.1)

z + h = i′ − 1 (3.2)

i ≤ i′ + g (3.3)

i′ ≤ i+ h (3.4)

Consider steps 2, 3, and 4 together as one event. Let LBIT
4 denote the list maintained

by BIT after this event, see Figure 3.3. Notice that list LBIT
4 depends on the bit value

bx before BIT accesses x.

... x

i

...

(a) LBIT after step 1, LBIT
4 if bx = 1.

...x

i

...

(b) LBIT
4 if bx = 0.

x1 ... xi′−1 x

i′

xi′+1 ... xn

(c) LOPT after step 1 and after step 4.

Figure 3.3: Lists in the proof of Theorem 3.52.

The amortized cost of this event is defined as

ak = cBIT,k + ∆Φ,

where ∆Φ = Φ(LBIT
4 , LOPT)− Φ(LBIT

1 , LOPT).
To analyze ∆Φ, we express the change as ∆Φ = A + B + C where A,B, and C are

random variables: A is the contribution of new inversions created, B is the (negative)
contribution of eliminated inversions, and C is the contribution from inversions which are
already inversions regarding (LBIT

1 , LOPT) and remain inversions regarding (LBIT
4 , LOPT),

but change their weight from 2 to 1.
Claim: All inversions counted by A,B, and C are either of the form (·, x) or (x, ·).
Proof: Consider a pair of list elements x′, x′′, where x /∈ {x′, x′′}. Notice that the list
LBIT

4 is obtained by applying a chain of free transpositions (·, x) on LBIT
1 . Clearly, the

transpositions T (x′, x′′) and T (x′′, x′) are not included. By Lemma 3.13, the relative
position of list elements x′ and x′′ remains unchanged after applying these free trans-
positions. Hence, (x′, x′′) is an inversion regarding (LBIT

1 , LOPT) if and only if it is an
inversion regarding (LBIT

4 , LOPT). Thus, the pair (x′, x′′) is not counted by A and B. It
can neither be counted by C, since the weight of (x′, x′′) can only be changed if the bit
value bx′′ is changed, whereas x is the only element whose bit value is changed during
this event. �

70

Claim:
B + C = −g (3.5)

Proof: First consider the inversions (·, x) counted by g.
In the case bx = 1, the list element x remains in position i, meaning that LBIT

4 = LBIT.
After BIT accesses x, the bit value bx is decreased from 1 to 0. Hence, inversions (·, x)
reduce their weight from 2 to 1 and consequently C = −g. Since the list order is exactly
the same after this event as before, we conclude that B = 0.

In the case bx = 0, the list element x is moved to the front of LBIT
4 . All inversions

(·, x) counted by g are eliminated and no inversions (x, ·) can be eliminated, as no list
element precedes x in LBIT

4 . Clearly, we have C = 0 and B = −g. �
By the equations (3.3) and (3.5), the expectation of amortized cost over all bit settings

can be written as

E[ak] = E[cBIT,k + ∆Φ] = E[i+ A− g] ≤ E[i′ + g + A− g] = i′ + E[A]. (3.6)

Claim:

E[A] ≤ 3

4
· (i′ − 1) (3.7)

Proof: The list LBIT
4 depends on bx, which is a Bernoulli random variable with p = 1

2
by

Lemma 3.53. We give an upper bound for E[A] in both cases and show that the mean
of these two upper bounds is less than or equal to 3

4
· (i′ − 1).

In the case bx = 1, we have LBIT
4 = LBIT

1 . The lists maintained by both algorithms are
exactly the same. Thus, A = 0. In the case bx = 0, x is moved to the first position in
LBIT

4 and thus precedes all other list elements, see Figure 3.3. Every created inversion
must consist of a pair (x, x) where x precedes x in LOPT. Clearly, such x belongs to
{x1, ..., xi′−1}. By Lemma 3.53, the weight w(x, x) is discrete uniformly distributed over
{1, 2}. Hence, we conclude

E[A|bx = 0] ≤
i′−1∑
k=1

E[w(x, xk)] =
i′−1∑
k=1

(
1

2
· 1 +

1

2
· 2
)

=
3

2
(i′ − 1). (3.8)

Since bx is uniformly distributed on {0, 1}, Equation (3.8) completes the proof:

E[A] ≤ 1

2
· 0 +

1

2
· 3

2
· (i′ − 1) ≤ 3

4
(i′ − 1). (3.9)

�
Recall the assumption that the request yj = x is in the i′-th position in LOPT and

therefore, the access cost cOPT,k of OPT is equal to i′. Then we have

E[ak] = i′ + E[A] ≤ 7

4
· i′ − 3

4
<

7

4
cOPT,k. (3.10)

It remains to analyze the paid transpositions of OPT. Consider a single paid trans-
position T (x′, x′′) in step 5 as an event. The change cBIT,k of the BIT cost is certainly 0,

71

whereas cOPT,k is equal to 1. It is easy to see that (x′, x′′) is the only possible inversion
which may be created during this event. Again by Lemma 3.53, the weight w(x′, x′′) is
uniformly distributed oner {1, 2}, hence:

E[ak] = E[cBIT,k + ∆Φ] ≤ 0 + E[A] = 0 +

(
1

2
· 1 +

1

2
· 2
)

=
3

2
<

7

4
· cOPT,k. (3.11)

To sum up, we conclude that the amortized cost ak is less than or equal the 7
4
· cOPT,k

for all events k. The proof is completed by Remark 3.54.

Example 3.55 (Albers and Mitzenmacher,1997). Define the request sequences R1 and
R2 for L = (x1, . . . , xn) as follows:

R1 = (x1, x2, . . . , xn, I
l
1, I

l
2, . . . , I

l
n), R2 = (n, n− 1, . . . , 1, I ln, I

l
n−1, . . . , I

l
1),

where I lk is a sequence of l requests to the same list element xk. Albers and Mitzenmacher
(1997) prove that BIT achieves only a competitive ratio larger than 13

8
on a crucial request

sequence which request R1 and R2 alternatively.
For a detailed proof we refer to the original work of Albers and Mitzenmacher (1997).

If one analyzes the proof of Theorem 3.52 further, we end up with Conjecture 3.56.

Conjecture 3.56. Using the notation in the proof of Theorem 3.52, an example request
sequence I of better lower bounds for BIT may be found by considering those sequences,
which have the following properties in as many requests as possible:

1. If x is requested, then i′ ≤ i.

This means that accessing x costs OPT less than BIT.

2. The entire initial segment of LOPT up to x is contained in the initial segment of
LBIT up to x.

This reduces the gap of Inequality (3.8).

3. OPT does not apply too many paid transpositions.

As shown in the proof, events consisting of one paid transposition has a competitive
ratio of only 1.5.

Besides of “Do nothing”, it is possible to combine the idea of MTF with other al-
gorithms. For combinations of algorithms from COUNTER, a tight lower bound 12

7
of

competitive ratio is provided in Albers and Mitzenmacher (1997). For combinations of
projective algorithms, a tight lower bound 8

5
of competitive ratio is achieved by COMB.

Before any request of request sequence I is revealed, the randomized algorithm COMB
chooses one of the following algorithms

• BIT with a probability of 80%, and

• TS with a probability of 20%

72

to serve I.

Theorem 3.57 (Albers et al.,1995). The algorithm COMB is at least 1.6-competitive
against an oblivious adversary in the partial cost model.

The list factoring technique, used in Remark 3.36 to prove Theorem 3.29, can be
applied to prove Theorem 3.57.

Recall that the proof of Theorem 3.29 relies on the projective property of TS, which
is only defined for deterministic algorithms. We first extend this definition to the ran-
domized case.

Definition 3.58. A randomized online algorithm RALG, distributed over a set {ALGk}
of deterministic online algorithms, is projective if and only if ALGk is projective for all
k.

Obviously, Corollary 3.34 applies also for randomized projective algorithms.

Corollary 3.59. Let RALG be an online projective list accessing algorithm which does
not use paid transpositions. If the inequality CRALG(Lxx′ , Ixx′) ≤ c·COPT(Lxx′ , Ixx′) holds
for every pair (x, x′) of different list elements, then RALG is c-competitive.

Remark 3.60. Observe that BIT is a randomized algorithm distributed over the set
{MTF, “Do nothing”}. It is easy to see that MTF and “Do nothing” are both projective.
Hence, BIT is projective. Being a randomized algorithm distributed over {BIT,TS},
COMB inherits the projective property from BIT and TS. This observation can be used
to prove Theorem 3.57, which is pretty similar to Remark 3.36. We give an outline here.

Recall from Remark 3.36 that Ixx′ can be partitioned into phases. Similar as for Table
3.2, we calculate the cost incurred by BIT for serving each phase. It is easy to see that

Phase type I TS BIT OPT Phase type II
(x)ix′x′ 2 3

2
1 (x′)ixx

(x)i(x′x)kx′x′ 2k 3
2
k + 1 k + 1 (x′)i(xx′)kxx

(x)i(x′x)kx 2k − 1 3
2
k + 1

4
k (x′)i(xx′)kx′

Table 3.4: The phase costs of TS and OPT in the partial cost model.

the weighted sum of TS and BIT is bounded by 8
5

times of the cost of OPT for large k,
as claimed in Theorem 3.57.

To see the correctness of the values in Table 3.4, we refer to the proof in Borodin and
El-Yaniv (2005) in section 2.4.

Furthermore, randomized projective algorithms can not be better than 8
5
-competitive:

Theorem 3.61 (Ambühl et al.,2010). Randomized projective online algorithms for list
accessing problem are no better than 8

5
-competitive in the partial cost model.

73

Chapter 4
Closer Randomized Analysis of BIT

This chapter focuses on the stochastic analysis of BIT. Request sequences considered
in this chapter consist of requests which are i.i.d. over the set of list elements. In
Section 4.1, uniform distribution is used to generate requests. It turns out that the cost
of BIT can be simulated by throwing a fair die several times and counting the sum of
the resulting points, independent of the initial bit setting. A further analysis of the
distribution of bit values is performed in this section, resulting in an improved version
of Conjecture 3.56. In Section 4.2, a formula for the expected cost of BIT is developed
for request sequences generated by discrete distribution. The last section of this chapter
provides a brief view of a more general case, which occurs naturally in the context of
data compression.

4.1 Uniform Distribution

4.1.1 The Expected Cost and Variance of CBIT(b, I)

Lemma 4.1. Let L be a list of length n and Im be the set of all possible access sequences
with length m. Let CBIT(b, I) be the cost of applying BIT with bit setting b = b(L) to
serve I ∈ Im. Then the equation∑

I∈Im

CBIT(b, I) =
1

2
n(n+ 1) ·mnm−1

holds for all possible bit settings b = b(L).

Proof. We prove the claim by induction over m.
For the base case m = 1, observe that

∑
I∈I1 CBIT(b, I) =

∑
l∈LCBIT(b, l) is the sum

of costs of requesting every element from L separately. It is easy to see that∑
x∈L

CBIT(b, (x)) =
1

2
n(n+ 1).

74

For the inductive step assume that the claim holds for some integer m. The set Im+1

can be partitioned into disjoint subsets:

Im+1 =
⋃̇

I∈Im
{J = (I, l) | l ∈ L},

i.e. the sequences in Im+1 are categorized by its first m requests. In order to avoid
possible ambiguities, the sequences in Im+1 are denoted by J .

For any J ∈ {(I, l) | I ∈ Im, l ∈ L}, the cost CBIT(b, J) is simply equal to CBIT(b, I)
plus the cost of finding l in L′, where L′ is the list after serving I on L. Hence the
summation

∑
J∈{(I,l) | l∈L}CBIT(b, J) is just equal to |{(I, l) | l ∈ L}| · CBIT(b, I) plus the

sum of costs of finding every element in L′ separately, similar as in the base case. This
observation leads to the equation∑

J∈{(I,l) | l∈L}

CBIT(b, J) =
∑
l∈L

CBIT(b, (I, l)) = nCBIT(b, I) +
1

2
n(n+ 1).

Therefore, we can rewrite
∑

J∈Im+1
CBIT(b, J) as

∑
J∈Im+1

CBIT(b, J) =
∑
I∈Im

∑
J∈{(I,l) | l∈L}

CBIT(b, J)

=
∑
I∈Im

(
n · CBIT(b, I) +

1

2
n(n+ 1)

)
=n ·

(∑
I∈Im

CBIT(b, I)
)

+ |Im| ·
1

2
n(n+ 1)

=n · 1

2
n(n+ 1) ·mnm−1 + nm · 1

2
n(n+ 1) [by induction hypothesis]

=
1

2
n(n+ 1) · (m+ 1)nm

For a uniformly distributed random variable I ∈ Im, Lemma 4.1 offers the expectation
of CBIT(b, I) and states that this expectation is independent of the initial binary setting
b(L). As one can see in the proof of Lemma 4.1, this independence relies on the symmetry
of the uniform distribution of I ∈ Im.

Remark 4.2. Let L = (x1, . . . , xn) be a list, and let Im denote all length m sequences of
requests of L. Consider the cost of BIT for serving a uniform random request sequence
I ∈ Im. Since I is arbitrarily chosen from Im, every request yj is distributed uniformly
over {x1, . . . , xn}. Thus the position of yj in the list before accessing yj, say L(j−1) =
(xj−1

1 , xj−1
2 , . . . , xj−1

n), is also uniformly distributed along the list, i.e. P (yj = xj−1
k) = 1

n

holds for all k = 1, . . . , n. Recall the cost of accessing the k-th element in the list is k.
Hence, the cost of accessing yj is uniformly distributed on {1, . . . , n}.

Note that the key argument “yj is distributed uniformly on {x1, . . . , xn}” depends
neither on the bit setting nor on the order of list elements in the current list L(j−1).

75

Therefore, one can conclude that the cost of accessing every request in I is uniformly
distributed over {1, . . . , n}.

In other words, the cost of serving yj can be seen as the number of throwing a fair die
with n faces. Similarly, the cost of serving I is the sum of n dice.

Lemma 4.1 is then an immediate consequence from this argument: The expectation of
serving one request is equal to n+1

2
, hence serving a sequence of m requests costs m(n+1)

2
.

Therefore, the sum
∑
I∈Im

CBIT(b, I) over all possible request sequences is given by

∑
I∈Im

CBIT(b, I) = |Im| ·
m(n+ 1)

2

= nm · m(n+ 1)

2

=
1

2
n(n+ 1) ·mnm−1.

Corollary 4.3. Let L = (x1, . . . , xn) be a list and let Y be a random request sequence
chosen uniformly from Im. Then the cost C = CBIT(Y) of serving Y using BIT is a
random variable with support RC = {m,m+ 1, . . . , nm}. The probability distribution of
C is given by:

P (C = z) =
1

nm
·
dmax∑
k=0

(−1)k ·
(
m

k

)
·
(
z − nk − 1

m− 1

)
where z is an integer in RC and dmax is defined as b z−m

n
c.

The expectation of C is equal to m(n+1)
2

.

Proof. Since BIT does not use paid transpositions, the costs of BIT are incurred by
accessing. Certainly, the overall cost of accessing m requests is bounded by m and nm,
where only the first or the last element in the current list is requested respectively.

By Remark 4.2, it suffices to determine the distribution of the sum of rolling dice. This
can be done using a combinatorial approach. Assume that we have z identical objects
(corresponds to the sum of rolling dice) together with m distinct bins (corresponds to
the number of dice), each of which is identified to a number from 1 to m. The aim is to
arrange these objects into bins in such a way that every bin contains at least 1 object
and at most n objects (the capacity of bins corresponds to the number of faces of a die).
It is to determine the number of such arrangements. This number can be calculated
using a modified version of the well known stars and bars method.
Claim: There are

(
z−1
m−1

)
possibilities to arrange z identical objects into m distinct bins

such that every bin contains at least 1 object.
Proof: Consider the case that empty bins are not allowed. View the z stars as fixed
objects in a line defining m− 1 gaps between stars, in each of which there may or may
not be one bar (a bin partition).

∗ ∗ ∗ ∗ ∗ ∗ ∗

76

A configuration is obtained by choosing m− 1 of these gaps to actually contain a bar.

∗ ∗ ∗ ∗ ∗ ∗ ∗

Therefore, there are
(
z−1
m−1

)
possible configurations. �

Notice that some of these
(
z−1
m−1

)
arrangements may violate the capacity n of bins.

For any i ∈ {1, . . . ,m} let A{i} denote the set of those arrangement having bin i
with more than n objects. Hence the set

⋃
i∈{1,...,m}A{i} consists of those arrangements

violating the cardinality constraint. Thus, the desired number is equal to(
z − 1

m− 1

)
−
∣∣∣∣ ⋃
i∈{1,...,m}

A{i}

∣∣∣∣ =

(
z − 1

m− 1

)
−

m∑
k=1

(−1)k−1
∑

S⊆{1,...,m},|S|=k

∣∣∣∣⋂
i∈S

A{i}

∣∣∣∣
by the principle of inclusion and exclusion.

For S ⊆ {1, . . . ,m} let AS denote the set of those arrangement having every bin in
S ⊆ {1, . . . ,m} with more than n objects. Obviously, we have

⋂
i∈S A{i} = AS. The

cardinality of AS can be determined by the stars and bars method.
Claim: There are

(
z−|S|n−1
m−1

)
ways to pack z identical objects into m distinct bins such

that every bin contains at least 1 object and every bin in S contains at least n + 1
objects.
Proof: The proof is straightforward. After packing bins in S with n objects, it remains
to pack z−|S|n objects into all m bins, the number of different possibilities is

(
z−|S|n−1
m−1

)
by the stars and bars method. �

Thus, the desired number of arrangements is equal to(
z − 1

m− 1

)
−
∣∣∣∣ ⋃
i∈{1,...,m}

A{i}

∣∣∣∣ =

(
z − 1

m− 1

)
−

m∑
k=1

(−1)k−1
∑

S⊆{1,...,m},|S|=k

|AS|

=

(
z − 1

m− 1

)
−

m∑
k=1

(−1)k−1

(
m

k

)(
z − kn− 1

m− 1

)
Certainly, it is not possible to have more than dmax = b z−m

n
c bins violating the capacity

constraint. Therefore, we conclude

P (C = z) =
1

nm
·
dmax∑
k=0

(−1)k ·
(
m

k

)
·
(
z − n · k − 1

m− 1

)
.

Remark 4.4. The analysis in this section relies only on these two important properties:

• Requests are i.i.d., and

• The costs of serving I is equal to the sum of the cost of accessing requests in I.

Thus the argument in Remark 4.2 actually applies to any deterministic online algorithms
ALG without paid transpositions.

77

4.1.2 The Distribution of Bit Values

Recall Conjecture 3.56, BIT does not perform well if the entire initial segment of LOPT up
to the requested element is contained in the initial segment of LBIT up to that element.
In order to make the conjecture more precise, it is intuitive to take a closer look at the
initial segment of BIT. The proof of this subsection is provided at its end.

For list-length n = 3 and length of request sequence m = 10, we have generated all 310

request sequences with 10 requests and tested BIT with all 23 bit settings. The vector

v = (0.69, 0.49, 0.32)

denotes the probability of the bit value being equal to 1 in the corresponding position
after serving an arbitrary request sequence I with BIT.

Given a list L and request sequence I of L with |L| = n and |I| = m. Let xji denote
the list element in position i in LBIT

j , which is the list maintained by BIT after the j-th

access, and let bji be the bit value of xji , where i ∈ {1 . . . , n} and j ∈ {0, . . . ,m}. Notice
that P (b0

i = 0) = P (b0
i = 1) = 1

2
holds by definition of BIT for all i ∈ {1 . . . , n}.

Remark 4.5. By definition of BIT and the assumption that all possible request sequences
with length 10 are tested, we have the following facts:

• the equation P (bji = 1) + P (bji = 0) = 1 holds for all i and j,

• the incoming request yj+1 is uniformly distributed over {x : x ∈ L}, independent
of the value of bji for all i and j,

• the bit values bji−1 and bji are independent for all i and j.

After careful case by case analysis, one can deduce that:

P (bj+1
1 = 1) =P (bj1 = 1) · P (yj+1 6= xj1)

+ P (bj1 = 0) ·
(
P (yj+1 = xj1) +

n∑
s>1

P (yj+1 = xjs) · P (bjs = 0)
)

(4.1)

and

P (bj+1
i = 1) =P (bji−1 = 0 ∧ bji = 0) · 0

+ P (bji−1 = 1 ∧ bji = 1) · P (yj+1 6= xji)

+ P (bji−1 = 1 ∧ bji = 0) ·
(
P (yj+1 = xji) +

∑
s>i

P (yj+1 = xjs) · P (bjs = 0)
)

+ P (bji−1 = 0 ∧ bji = 1) ·
(∑
s<i

P (yj+1 = xjs) +
∑
s>i

P (yj+1 = xjs) · P (bjs = 1)
)

(4.2)

hold for i = 2, . . . , n and j = 0, . . . ,m− 1.

78

Equation (4.1) states that in the step j + 1, the bit value bj+1
1 of the list element in

the first position, is going to be 1 if and only if one of the following three cases occurs
in the last step j:

• bj1 was 1, and any list element but not the first is requested,

• bj1 was 0, and the first list element is requested,

• bj1 was 0, and some list element is requested which will be moved to the front.

Equation (4.2) states that in the step j + 1, the bit value bj+1
i of the list element xji , is

going to be 1 if and only if one of the following cases occurs in the last step j:

• bji−1 and bji were 1, and some list element x 6= xji is requested,

• bji−1 was 1 and bji was 0, and

- either xji is requested,

- or some list element is requested which will be moved to the front, so that xji−1

becomes xj+1
i ,

• bji−1 was 0 and bji was 1 and some list element is requested so that xji remains xj+1
i ,

i.e.

- either some list element is requested which is preceding xji ,

- or some list element behind xji is requested which will not change its position
in the list LBIT

j+1.

Equations (4.1) and (4.2) allow us to derive a recursive formula describing the distri-
bution of bit values 0 and 1 in the list during the progress of list accesses. In the sake
of simplicity, let pji and qji denote the probability P (bji = 1) and P (bji = 0) respectively,
and let pj0 = 1 for all j for technical reasons.

Lemma 4.6. The recursive formula1

n · (pj+1
i − pji−1) = −pji−1 · p

j
i + (pji−1 − p

j
i) · (1− i−

n∑
s>i

pjs) (4.3)

holds for all i = 1, . . . , n and j = 0, . . . ,m− 1.

Now we can analyze the probability pji for specified i and j. Recall that the bit value
and requests are uniformly distributed over {0, 1} and {x : x ∈ L} in our experiment,
thus the expectation of the sum of bit values must remain constant n

2
, as shown in the

next lemma.

1This formula is also confirmed by our computer experiment, a closed formula is developed using
another approach, see Section 5.1.2.

79

Lemma 4.7. The equation
n∑
i=1

pji = n/2

holds for all j = 0, . . . ,m.

In other words, we have EI,K [
∑n

i=1 b
j
i] = EI,K [

∑n
i=1 bxi] = n

2
, i.e. the expectation of∑n

i=1 b
j
i over all BITk and all request sequences I with fixed list length n is exactly n

2
at

any point in time. Due to the symmetry, we can deduce that EI,K [bxi] = 1
2
. Notice that

this is not equivalent to EI,K [bji] = 1
2
, as EI,K [bxi] fixes the list element instead of the

position. To see this difference, we claim that the first list element is much more likely
to be 1 than to be 0.

Corollary 4.8. The inequality pj1 >
1
2

holds for all j = 1, . . . ,m.

Certainly, Corollary 4.8 constradicts the statement ∀I ∀j = 1, . . . ,m : EK [bj1] = 1
2
.

Actually, the computer experiment reveals that probability of bji being equal to 1 is
related to the position i. Lemma 4.9 supports this observation.

Lemma 4.9. For all j = 0, . . . ,m, the sequence (pji)i=1,...,n is monotonically non-
increasing.

Remark 4.10. Combining the result in Lemma 4.9 and Corollary 4.8, we conclude that
the closer the position i is to the front, the larger is the probability of bji being equal to 1.

In Lemma 4.11, the partial sum of bit values of the list is studied. Lemma 4.7 is a
special case where i = n.

Lemma 4.11. For all j = 0, . . . ,m and i = 1, . . . , n we have
∑i

s=1 p
j
s ≥ i

2
. This holds

with equality only if i = n or j = 0.

In other word: Beginning from x1 and up to xi, the expected number of list elements
x such that bx = 1 is always more than i

2
, unless the requested element xi is the last one

in the current list.
In further experiments with small request sequences, similar behavior like pj1 is ob-

served for all pji with i < 2
5
n, while the counter part pji <

1
2

is true for i > 2
5
n. The open

question arises if pji is monotonic in j. We end this section by strengthening Conjecture
3.56 with the knowledge of the distribution of bit values 0 and 1.

Remark 4.12. Recall from Conjecture 3.56 that the following properties indicate a re-
quest sequence I with a small competitive ratio CBIT(I)

COPT(I)
:

• If x is requested, its position in LOPT should be before its position in LBIT,

• the entire initial segment of LOPT up to x should be contained in the initial segment
of LBIT up to x, and

• OPT should apply as few paid transpositions as possible.

80

Based on the knowledge of the distribution of bit values, we know that

• A paid transposition changing the bit value (1, 0) to (0, 1) has a higher probability
to generate an inversion. Thus, such transpositions should be favored, if OPT has
to apply some paid transpositions.

Proof of Results in Section 4.1.2

Proof of Lemma 4.6. We first prove that the equation

n · (pj+1
i − pji) = −pji−1 · p

j
i + (pji−1 − p

j
i) · (n− i+ 1−

n∑
s>i

pjs) (4.4)

holds by distinguishing the case i = 1 and i > 1.

For i = 1, recall Equation 4.1:

P (bj+1
1 = 1) =P (bj1 = 1) · P (yj+1 6= xj1)

+P (bj1 = 0) ·
(
P (yj+1 = xj1) +

n∑
s>1

P (yj+1 = xjs) · P (bjs = 0)
)

=
n− 1

n
· P (bj1 = 1) +

1

n
· P (bj1 = 0) +

1

n
· P (bj1 = 0) ·

n∑
s>1

P (bjs = 0).

By applying the notations of pji , q
j
i and reordering terms, we have

n · (pj+1
1 − pj1) =− pj1 + qj1 + qj1 ·

n∑
s>1

qjs

=− pj1 + qj1 ·
(
1 +

n∑
s>1

(1− pjs)
)

=− pj1 + (1− pj1) · (n−
n∑
s>1

pjs)

=− pj0 · p
j
1 + (pj0 − p

j
1) · (n−

n∑
s>1

pjs).

81

For i > 1, recall Equation 4.2:

P (bj+1
i = 1) =P (bji−1 = 0 ∧ bji = 0) · 0

+P (bji−1 = 1 ∧ bji = 1) · P (yj+1 6= xji)

+P (bji−1 = 1 ∧ bji = 0) ·
(
P (yj+1 = xji) +

∑
s>i

P (yj+1 = xjs) · P (bjs = 0)
)

+P (bji−1 = 0 ∧ bji = 1) ·
(∑
s<i

P (yj+1 = xjs) +
∑
s>i

P (yj+1 = xjs) · P (bjs = 1)
)

=
n− 1

n
· P (bji−1 = 1) · P (bji = 1)

+P (bji−1 = 1) · P (bji = 0) ·
(1

n
+

1

n
·
∑
s>i

P (bjs = 0)
)

+P (bji−1 = 0) · P (bji = 1) ·
(i− 1

n
+

1

n
·
∑
s>i

P (bjs = 1)
)
.

By applying the notations of pji , q
j
i and reordering terms, we have

pj+1
i =

n− 1

n
· pji−1 · p

j
i +

1

n
· pji−1 · q

j
i +

1

n
· pji−1 · q

j
i ·
∑
s>i

qjs

+qji−1 · p
j
i · (

i− 1 + n− i
n

− 1

n
·
∑
s>i

qjs)

=
n− 1

n
· (pji−1 · p

j
i + qji−1 · p

j
i) +

1

n
· pji−1 · q

j
i +

1

n
· (pji−1 · q

j
i − q

j
i−1 · p

j
i) ·

n∑
s>i

qjs

=
n− 1

n
· pji +

1

n
· pji−1 · q

j
i +

1

n
· (pji−1 − p

j
i) ·

n∑
s>i

qjs.

Reordering terms yields

n · (pj+1
i − pji) = −pji−1 · p

j
i + (pji−1 − p

j
i) · (n− i+ 1−

n∑
s>i

pjs).

Hence Equation 4.4 holds. Equation 4.3 can be obtained by moving all summands
with factor n to the left hand side.

Proof of Lemma 4.7. We prove this lemma by induction over j.

Case j = 0. By definition of BIT, we have p0
i = 1

2
for all i, thus the equation holds

trivially.

82

Case j > 0. Assume that the claim holds for some j. Then it is sufficient to show that:

n∑
i=1

pj+1
i −

n∑
i=1

pji = 0.

Let u(i, j) = (1− i) · (pji−1− p
j
i) and v(i, j) = (pji−1− p

j
i) ·
∑n

s=i+1 p
j
s. Then Equation 4.4

can be reformulated as follows:

n · (pj+1
i − pji) = n · (pji−1 − p

j
i)− p

j
i−1 · p

j
i + u(i, j) + v(i, j).

Hence we conclude

n(
n∑
i=1

pj+1
i −

n∑
i=1

pji) = n ·
n∑
i=1

(pji−1 − p
j
i)−

n∑
i=1

pji−1 · p
j
i +

n∑
i=1

u(i, j)−
n−1∑
i=1

v(i, j).

By applying the induction hypothesis, it is easy to see that

n∑
i=1

u(i, j) = 0 · pj0 +
n−1∑
i=1

pji − (n− 1) · pjn

= −n
2

+ n · pjn. (4.5)

Recall that pj0 is defined to be equal to 1. Thus the telescoping sum n ·
∑n

i=1(pji−1−p
j
i) =

n · (pj0 − pjn) is equal to n − n · pjn. Together with Equation 4.5, we deduce that it is
sufficient to show:

n∑
i=1

pji−1 · p
j
i +

n−1∑
i=1

v(i, j) =
n

2
. (4.6)

83

By careful index shifting, the term
∑n−1

i=1 v(i, j) can be further simplified:

n−1∑
i=1

v(i, j) =
n−1∑
i=1

(pji−1 ·
n∑

s=i+1

pjs)−
n−1∑
i=1

(pji ·
n∑

s=i+1

pjs)

= pj0 ·
n∑
s=2

pjs +
n−1∑
i=2

(pji−1 ·
n∑

s=i+1

pjs)−
n−1∑
i=1

(pji · p
j
i+1 + pji ·

n∑
s=i+2

pjs)

=
n∑
s=2

pjs −
n−1∑
i=1

pji · p
j
i+1 +

n−1∑
i=2

(pji−1 ·
n∑

s=i+1

pjs)−
n−2∑
i=1

(pji ·
n∑

s=i+2

pjs)

=
n∑
s=2

pjs −
n−1∑
i=1

pji · p
j
i+1 +

n−2∑
k=1

(pjk ·
n∑

s=k+2

pjs)−
n−2∑
i=1

(pji ·
n∑

s=i+2

pjs)

= −pj1 +
n

2
−

n−1∑
i=1

pji · p
j
i+1

= −pj0 · p
j
1 +

n

2
−

n−1∑
i=1

pji · p
j
i+1

=
n

2
−

n−1∑
i=0

pji · p
j
i+1

=
n

2
−

n∑
i=1

pji−1 · p
j
i

This equation confirms Equation 4.6. Therefore, the induction step is established.

Proof of Corollary 4.8. The recursive formula 4.3 in case i = 1 is

n · (pj+1
1 − pj0) = −pj0 · p

j
1 + (pj0 − p

j
1) · (1− 1−

n∑
s>1

pjs).

Recall that pj0 are defined to be equal to 1 for all j. Together with Lemma 4.7, we deduce

n · (pj+1
1 − 1

2
) =

n

2
− pj1 −

n∑
s>1

pjs + pj1 ·
n∑
s>1

pjs

=
n

2
−

n∑
s=1

pjs + pj1 ·
n∑
s>1

pjs

= pj1 ·
n∑
s>1

pjs > 0.

Proof of Lemma 4.9. We proof this lemma by induction over j.

84

Case j = 0. By definition of BIT, we have p0
i = 1

2
for all i, thus the claim is trivial.

Case j > 0. To avoid the trivial case, we may assume that the list length n > 1.
Remark that the notation pji , q

j
i are defined as P (bji = 0), P (bji = 0) receptively,

whence the equation pji + qji = 1 holds for all i, j. Assume that (pji)i=1,...,n is monotonic
non-increasing for some j. Hence, the sequence (qji)i=1,...,n is monotonic non-decreasing.

Recall Equation 4.3:

n · (pj+1
i − pji−1) = −pji−1 · p

j
i + (pji−1 − p

j
i) · (1− i−

n∑
s>i

pjs),

from which the following equation can be derived:

n · (pj+1
i − pj+1

i+1) = n · (pji−1 − p
j
i) + (1− i) · (pji−1 − p

j
i) + i · (pji − p

j
i+1)

− pji−1 · p
j
i + pji · p

j
i+1 − (pji−1 − p

j
i) ·

n∑
s=i+1

pjs + (pji − p
j
i+1) ·

n∑
s=i+2

pjs

= (n+ 1) · (pji−1 − p
j
i)− i · (p

j
i−1 − 2 · pji + pji+1)− pji−1 · p

j
i

− pji−1 ·
n∑

s=i+1

pjs + 2 · pji ·
n∑

s=i+1

pjs − p
j
i+1 ·

n∑
s=i+2

pjs

= (n+ 1) · (pji−1 − p
j
i)− i · (p

j
i−1 − 2 · pji + pji+1)− pji−1 · p

j
i + (pji+1)2

− pji−1 ·
n∑

s=i+1

pjs + 2 · pji ·
n∑

s=i+1

pjs − p
j
i+1 ·

n∑
s=i+1

pjs

= (n+ 1) · (pji−1 − p
j
i)− p

j
i−1 · p

j
i + (pji+1)2

− (i+
n∑

s=i+1

pjs) · (p
j
i−1 − 2 · pji + pji+1).

In the case pji−1 − 2 · pji + pji+1 ≥ 0, estimate i +
∑n

s=i+1 p
j
s from above by replacing

every psi with 1:

n · (pj+1
i − pj+1

i+1) ≥ (n+ 1) · (pji−1 − p
j
i)− p

j
i−1 · p

j
i + (pji+1)2 − n · (pji−1 − 2 · pji + pji+1)

= n · (pji − p
j
i+1) + pji−1 − p

j
i − p

j
i−1 · p

j
i + (pji+1)2

= (n− 2) · (pji − p
j
i+1) + pji−1 + pji − 2 · pji+1 − p

j
i−1 · p

j
i + (pji+1)2

≥ pji−1 + pji − 2 · pji+1 − p
j
i−1 · p

j
i + (pji+1)2

= −(1− pji−1) · (1− pji) + (1− pji+1)2

= (qj1+1)2 − qji−1 · q
j
i .

As (qji)i=1,...,n is monotonic non-decreasing in i, we conclude that pj+1
i − pj+1

i+1 ≥ 0.

In the case pji−1 − 2 · pji + pji+1 < 0, estimate i +
∑n

s=i+1 p
j
s from below by replacing i

85

with
∑i

s=1 p
j
s:

n · (pj+1
i − pj+1

i+1) ≥ (n+ 1) · (pji−1 − p
j
i)− p

j
i−1 · p

j
i + (pji+1)2 − (pji−1 − 2 · pji + pji+1)

n∑
s=1

pjs

≥ n · (pji−1 − p
j
i)− p

j
i−1 · p

j
i + (pji+1)2 − n

2
· (pji−1 − 2 · pji + pji+1)

=
n

2
· (2 · pji−1 − 2 · pji − p

j
i−1 + 2 · pji − p

j
i+1)− pji−1 · p

j
i + (pji+1)2

4.7
= (pji−1 − p

j
i+1) ·

n∑
s=1

pjs − p
j
i−1 · p

j
i + (pji+1)2

= −pji−1 · p
j
i + (pji+1)2 + (pji−1 − p

j
i+1) · (pji + pji+1)

+ (pji−1 − p
j
i+1) ·

n∑
s<i,s>i+1

pjs

= (pji−1 − p
j
i) · p

j
i+1 + (pji−1 − p

j
i+1) ·

n∑
s<i,s>i+1

pjs

By the induction hypothesis, both factors pji−1 − p
j
i and pji−1 − p

j
i+1 are positive, hence

we conclude that pj+1
i − pj+1

i+1 ≥ 0.

Therefore, the sequence (pj+1
i)i=1,...,n is monotonic non-increasing in either cases, the

induction step is established.

Proof of Lemma 4.11. The equation for the case j = 0 is trivial, as p0
i = 1

2
holds for all

i = 1, . . . , n. Let j > 0 be given. By Lemma 4.9, there exists an index k ∈ {1, . . . , n}
(depending on j) such that pjs ≥ 1

2
and pjt <

1
2

hold for all s ≤ k and t > k respectively.
By Corollary 4.8, it is easy to see that

∀i ≤ k :
i∑

s=1

pjs >
i

2
.

As the case i = n is already established by Lemma 4.7, it remains to show that the
inequality holds for all i with k < i < n.

For this case we claim first that the sequence

A = (ai)i=k,...,n := (
i∑

s=1

pjs −
i

2
)i=k,...,n

of partial sums is monotonic decreasing. Indeed, the subtraction of any sequence member∑i
s=1 p

j
s − i

2
with its successor is equal to 1

2
− pji+1, which is positive since i+ 1 > k and

hence pji+1 <
1
2
. A simple inductive argument completes the proof of the claim.

86

Hence the monotonic decreasing sequenceA begins with positive member ak =
∑k

s=1 p
j
s−

i
2

and ends with an =
∑n

s=1 p
j
s− n

2
= 0. Therefore, we must have ai > 0 for all k < i < n,

which is equivalent to the desired inequality.

4.2 General Independent and Identical Distributions

In this section we analyze the behavior of BIT on request sequences generated by a
general discrete distribution DP .

Definition 4.13. A discrete distribution is a probability distribution whose sample space
is the set of n distinct elements {x1, . . . , xn}. A vector P = (p1, . . . , pn) is the parameter

of one discrete distribution if
n∑
i=1

pi = 1 and pi ∈ (0, 1) holds for all i = 1, . . . , n. The

probability function is given by
f(X = xi) = pi

i.e. each pi represents the probability of seeing xi as realization of DP .

4.2.1 The Expected Preceding Indicator

The expected cost of BIT involves two independent random decisions: the requests in
request sequence and the bit setting. We have to expand our notation in order to describe
this expectation precisely.

Definition 4.14. Let L = (x1, . . . , xn) be a list and P = (p1, . . . , pn) be the parameter
of a discrete distribution DP .

We keep the usage of I for a deterministic request sequence. The letter b denotes a
deterministic bit setting of L, since the cost of BIT depends also on bit settings, we use
CBIT(L, b, I) to denote the cost of serving (deterministic) I ∈ Im using BIT together with
a (deterministic) bit setting b ∈ {0, 1}n. In the case I = ∅, we define CBIT(L, b, ∅) = 0.

For any integer z ≤ m the request sequence I[z] is the consecutive initial part (y1, . . . , yz)
of I. Then, the cost of accessing the j-th request is given by

∆jCBIT(L, b, I) = CBIT(L, b, I[j])− CBIT(L, b, I[j−1]).

For two list elements x, x′ of L, the preceding indicator of x, x′ is defined by

δxx′(L, b, I) =

{
1, if x strictly precedes x′ after serving I,

0, otherwise.

Upper letters Y = (Yj)j=1,...,m and B = (Bi)i=1,...,n are used for random request se-
quence and random bit setting respectively. Bi follows uniform distribution over {0, 1}n
and Yj follows discrete distribution DP over L. The expected cost of (serving a request

87

sequence length m generated by P using) BIT is defined as

EYj∼DP ,Bi∼Uni[CBIT(L,B, Y)] =
∑

I∈Im,b∈{0,1}n
Pr(Y = I and B = b) · CBIT(L, b, I),

the expected cost EYj∼DP ,Bi∼Uni[∆jCBIT(L,B, Y)] of the j-th request and the expected
preceding indicator EYj∼DP ,Bi∼Uni[δxx′(L,B, Y)] are defined in the same way.

In order to keep the notations clear, the specification L and BIT of the cost and
the preceding indicator as well as the distribution of Yj, Bi indexed by the expectation
operator are omitted if it is clear from the context. If expectation of Y and B occurs in
the same line of calculations, we use, respectively, EY and EB and omit the corresponding
distributions.

Remark 4.15. By the definition of BIT, the random request sequence Y and random
bit setting B are chosen independently. Hence we have

Pr(Y = I and B = b) = Pr(Y = I) · Pr(B = b)

and may represent E[C(B, Y)] as follows.

EB,Y [C(B, Y)] =
∑

I∈Im,b∈{0,1}n
Pr(Y = I and B = b) · CBIT(L, b, I)

=
∑
I∈Im

Pr(Y = I) ·

 ∑
b∈{0,1}n

Pr(B = b) · CBIT(L, b, I)


=
∑
I∈Im

Pr(Y = I) · EB[CBIT(L,B, I)]

For the expected cost of the j-th request we obtain

EB,Y [∆jC(B, Y)] =
∑

I∈Im,b∈{0,1}n
Pr(Y = I and B = b) ·∆jC(b, I)

=
∑
I∈Im

Pr(Y = I) · EB[∆jC(B, I)].

Observe that ∆jC(b, I) actually does not depend on the realization (yj+1, . . . , ym). By

88

applying the i.i.d. assumption of Y , we may further derive

EB,Y [∆jC(B, Y)] =
∑

I′∈Ij ,I′′∈Im−j

Pr(Y = (I ′, I ′′)) · EB[∆jC(B, I ′)]

=
∑
I′∈Ij

Pr(Y[j] = I ′) ·

 ∑
I′′∈Im−j

Pr(Y[m]\[j] = I ′′)

EB[∆jC(B, I ′)]

=
∑
I′∈Ij

Pr(Y[j] = I ′) · 1 · EB[∆jC(B, I ′)]

=
∑
I′∈Ij

Pr(Y[j] = I ′) · EB[∆jC(B, I ′)].

For the expected preceding indicator we have similar calculation.

E[δxx′(B, Y)] =
∑

I∈Im,b∈{0,1}n
Pr(Y = I and B = b) · δxx′(b, I)

=
∑
I∈Im

Pr(Y = I) · EB[δxx′(B, I)]

Notice that E[δxx′(B, Y)] presents the probability of x preceding x′ after serving a random
request sequence Y .

Remark 4.16. The objective of this section is to calculate the expected cost E[C(B, Y)].
Since the analysis relies on the projective property of BIT, the partial cost model is
applied here. The main idea of this section can be outlined as follows.

• Cost depends on the relative position of pairs of list elements.

Since BIT does not apply paid transpositions, the cost ∆jC(b, I) is only incurred by
accessing. The accessing cost of yj is equal to the number of list element x′ 6= yj,
which preceds x immediately before accessing it. Formally, we have

∆jC(b, I) =
∑
x′∈L

δx′yj(b, I[j−1])

and hence

C(b, I) =
m∑
j=1

∆jC(b, I) =
m∑
j=1

∑
x′∈L

δx′yj(b, I[j−1]). (4.7)

A similar result holds in expectation, as will be shown in Lemma 4.17.

• The relative position of x and x′ depends on the last three requests in Ixx′.

89

Recall from Definition 3.30 that the relative position of any two list elements x, x′

can be determined easily: Let (Lxx′ , Ixx′) denote the instance obtained from (L, I)
by deleting every x /∈ {x, x′} from both of L and I. Then, the relative position
of x, x′ after serving I with BIT, is the same as the relative position of x, x′ after
serving Ixx′ with BIT.

Given the last three requests of Ixx′, Lemma 4.18 provides the probability of x
preceding x′ after serving I.

• The last three requests in Ixx′ depend on the parameter P of the discrete distribu-
tion.

Remark 4.20 describes how the last three requests of Ixx′ are distributed in {x, x′}3

depending on P .

Lemma 4.17. We have the following relation between the expected cost, the expected
cost of each accessing and the expected preceding indicator:

E[C(B, Y)] =
m∑
j=1

E[∆jC(B, Y)] =
m∑
j=1

∑
x∈L

Pr(Yj = x) ·
∑
x′∈L

E[δx′x(B, Y[j−1])]. (4.8)

Proof. These two equations are inherited from Equation (4.7).
For the first equation we claim that∑

I∈Im

Pr(Y = I) ·∆jC(b, I) =
∑
I′∈Ij

Pr(Y[j] = I ′) ·∆jC(b, I) (4.9)

holds for all b ∈ {0, 1}n and all j = 1, . . . ,m. Indeed, since ∆jC(b, I) does not depend
on the realization of (Yj+1, . . . , Ym), one can apply the i.i.d. assumption of Y to deduce∑

I∈Im

Pr(Y = I) ·∆jC(b, I)

=
∑

I′∈Ij ,I′′∈Im−j

Pr (Y = (I ′, I ′′)) ·∆jC(b, I)

=
∑
I′∈Ij

Pr(Y[j] = I ′) ·

 ∑
I′′∈Im−j

Pr ((Yj+1, . . . , Ym) = I ′′)

 ·∆jC(b, I)

=
∑
I′∈Ij

Pr(Y[j] = I ′) ·∆jC(b, I).

Hence we apply Equation (4.7) and (4.9) to complete the proof of the first equation in

90

Equation (4.8).

E[C(B, Y)] =
1

2n

∑
b∈{0,1}n

∑
I∈Im

Pr(Y = I) · C(b, I)

=
1

2n

∑
b∈{0,1}n

∑
I∈Im

Pr(Y = I) ·
m∑
j=1

∆jC(b, I) Equation (4.7)

=
1

2n

∑
b∈{0,1}n

m∑
j=1

∑
I∈Im

Pr(Y = I) ·∆jC(b, I)

=
1

2n

m∑
j=1

∑
b∈{0,1}n

∑
I′∈Ij

Pr(Y[j] = I ′) ·∆jC(b, I) Equation (4.9)

=
m∑
j=1

E[∆jC(B, Y)]

For the second equation it suffices to show

E[∆jC(B, Y)] =
∑
x∈L

∑
x′∈L

Pr(Yj = x) · E[δx′x(B, Y[j−1])] (4.10)

for all j = 1, . . . ,m. We claim that the following equation of conditional expectations

E[∆jC(B, Y) |B = b] =
∑
x∈L

∑
x′∈L

Pr(Yj = x) · E[δx′x(B, Y[j−1]) |B = b] (4.11)

holds for all b ∈ {0, 1}n and all j = 1, . . . ,m. To see this, we apply the i.i.d. assumption

91

of Y to derive

E[∆jC(B, Y) |B = b] =
∑
I∈Ij

Pr(Y[j] = I) ·∆jC(b, I)

=
∑

(I′,x)∈Ij

Pr(Y[j] = (I ′, x)) ·

∑
x′∈L

δx′x(b, I
′)


=
∑

I′∈Ij−1

∑
x∈L

Pr(Y[j−1] = I ′) · Pr(Yj = x) ·
∑
x′∈L

δx′x(b, I
′)

=
∑
x∈L

Pr(Yj = x) ·
∑

I′∈Ij−1

Pr(Y[j−1] = I ′)
∑
x′∈L

δx′x(b, I
′)

=
∑
x∈L

∑
x′∈L

Pr(Yj = x) ·
∑

I′∈Ij−1

Pr(Y[j−1] = I ′) · δx′x(b, I ′)

=
∑
x∈L

∑
x′∈L

Pr(Yj = x) · E[δx′x(B, Y[j−1]) |B = b].

Therefore, the second equation in Equation (4.7) is a direct consequence from Equation
(4.10) which can be obtained by taking the mean over b ∈ {0, 1}n on both side of
Equation (4.10). The proof is complete.

Thus, an analytical presentation of expected preceding indicator

E[δxx′(B, Y)] =
∑
I∈Im

Pr(Y = I) · EB[δxx′(B, I)]

for all m is sufficient for the purpose of calculating the expected cost of BIT.

4.2.2 EB[δxx′(B, I)]-invariant Partition

Determining EB[δxx′(B, I)] for every I is rather complicated. Similar to the partition
technique in the proof of Lemma 4.1, we investigate a partition

Ik =
⋃̇

a∈A
Pa

such that for the most Pa we have

∀I, I ′ ∈ Pa : EB[δxx′(B, I)] = EB[δxx′(B, I
′)].

Such a partition reduces the complexity of calculating the expected preceding indicator
since

E[δxx′(B, Y)] =
∑
a∈A

Pr(Y ∈ Pa) · EB[δxx′(B, I
(a))]

92

where I(a) ∈ Pa is an arbitrary representative of the part Pa.
We first extend a well known result, which is commonly used in the proof of Theorem

3.57, to reveal that the expected preceding indicator depends actually only on a small
part of requests rather than the entire sequence.

Lemma 4.18. Given an instance (L, I) and a pair x, x′ of distinct list elements, such
that Ixx′ contains at least three requests. Then, after serving I with BIT, the relative
position of x and x′ depends only on the last three requests of Ixx′.

More precisely, let I tailxx′ be the last three requests of Ixx′, and let Iheadxx′ denote the (pos-
sibly empty) complement of I tailxx′ in Ixx′, i.e. Ixx′ = (Iheadxx′ , I

tail
xx′). After serving I, the

relative position of x and x′ depends only on I tailxx′ as follows:

P (x precedes x′ after serving I) =


1, if I tailxx′ = (x, x, x),
1
2
, if I tailxx′ = (x, x, x′),

3
4
, if I tailxx′ = (x, x′, x),

1, if I tailxx′ = (x′, x, x).

The probabilities for the other four cases I tailxx′ ∈ {(x′, x′, x′), (x′, x′, x), (x′, x, x′), (x, x′, x′)}
can be obtained easily by changing the role of x and x′.

Remark 4.19. By the projective property of BIT, it suffices to prove Lemma 4.18 for
the instance (Lxx′ , Ixx′) where Ixx′ = (Iheadxx′ , I

tail
xx′). Let L′xx′ denote the current list after

serving Iheadxx′ . It is important to distinguish the influence of Iheadxx′ to the order of L′xx′
from the its influence to the bit setting of L′xx′.

The list order of L′xx′ may be influenced or even determined directly by Iheadxx′ . E.g. if
the last two requests of Iheadxx′ are (x, x), then the list order of L′xx′ is certainly (x, x′),
independent of the initial list Lxx′ and its bit setting. Thus the probability of x preceding
x′ after serving Iheadxx′ depends on the distribution followed by Iheadxx′ .

However, by the definition of BIT, both bx and bx′ distribute uniformly over {0, 1},
independent of Iheadxx′ .

Proof of Lemma 4.18. The cases Itail
xx′ ∈ {(x, x, x), (x′, x, x)} are trivial as after the last

two consecutive requests, the requested element x is in the first position for sure.
The equation for the case Itail

xx′ = (x, x′, x) can be proven by a straightforward case
analysis, see Table 4.1.

List order after accessing Itail
xx′ = (x, x′, x)

(bx, bx′) L′xx′ = (x, x′) L′xx′ = (x′, x)
(0, 0) (x′, x) (x′, x)
(0, 1) (x, x′) (x, x′)
(1, 0) (x, x′) (x, x′)
(1, 1) (x, x′) (x, x′)

Table 4.1: List order after accessing (x, x′, x).

93

By Remark 4.19, the bit setting b distributes uniformly over {0, 1}2. Whether or not
x precedes x′ in L′xx′ , we always have that x precedes x′ with a probability of 3

4
after

serving Itail
xx′ . Thus, it is not necessary to consider the influence of Ihead

xx′ on the list order
of L′xx′ .

The remaining case Itail
xx′ = (x, x, x′) can be verified similarly. Since x is in the first

position for sure before the last request to x′, the probability of x′ preceding x is equal
to the probability of x′ being moved to the front after the last access, which is equal to
1
2
. Obviously, the probability of x being in the front is 1− 1

2
= 1

2
.

Recall the definition of the expected preceding indicator for two arbitrary distinct list
elements x, x′:

E[δxx′(B, Y)] =
1

2n

∑
I∈Im

∑
b∈{0,1}n

Pr(Y = I) · δxx′(b, I)

where

δxx′(b, I) =

{
1, if x precedes x′ after serving I,

0, otherwise.

Given such x, x′, Lemma 4.18 suggests to regroup I ∈ Im according to the last three
requests in Ixx′ . More precisely, for J ∈ {x, x′}3 define

Im(J) = {I ∈ Im | Itail
xx′ = J}, Rxx′(Im) = {I ∈ Im | 3 > |Ixx′|}.

Then Im can be partitioned as follows:

Im =

(⋃̇
J∈{x,x′}3

Im(J)

)
∪̇Rxx′(Im)

and it is proven in Lemma 4.18 that E[δxx′(B, I)] = 1
2n

∑
b∈{0,1}n

δxx′(b, I) is constant for

every I in the same Im(J). Thus we may pick any representative I(J) from Im(J) and
obtain ∑

I∈Im(J)

∑
b∈{0,1}n

Pr (Y = I) · δxx′(b, I) =
∑

I∈Im(J)

Pr (Y = I) · E[δxx′(B, I
(J))]

=Pr (Y ∈ Im(J)) · E[δxx′(B, I
(J))].

94

Therefore, we derive

E[δxx′(B, Y)] =
1

2n

∑
I∈Im

∑
b∈{0,1}n

Pr(Y = I) · δxx′(b, I)

=
∑

J∈{x,x′}3
Pr (Y ∈ Im(J)) · E[δxx′(B, I

(J))]

+
∑

I∈Rxx′ (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxx′(b, I). (4.12)

On the right hand side, the terms Pr(Y ∈ Im(J)) for every J ∈ {x, x′}3 and Pr(Y =
I) · δxx′(b, I) for I ∈ Rxx′(Im) are not revealed yet. The terms Pr(Y ∈ Im(J)) can be
determined in a combinatorial way.

Remark 4.20. Let Yxx′ denote the random sub-sequence obtained from Y by deleting
all requests different from x and x′. The notion Y tail

xx′ is defined similarly to I tailxx′ . By the
i.i.d. assumption of Y , the number of requests to x, x′ follows a binomial distribution,
i.e.

Pr(|Yxx′ | = k) =

(
m

k

)
(px + px′)

k · (1− px − px′)m−k.

Thus Pr(Y ∈ Im(J)) can be rewritten as:

Pr(Y ∈ Im(J)) =
m∑
k=3

Pr(|Yxx′ | = k) · Pr(Y tail
xx′ = J | k = |Yxx′ |).

To understand the term Pr(Y tail
xx′ = J | k = |Yxx′ |), consider the situation where we have

an unfair coin with x and x′ on both sides. Yxx′ is the random variable of the result of
flipping this coin k times. Y tail

xx′ = J is the event such that the last three result are exactly
J . Again by the i.i.d. assumption, each flipping has a probability px

px+px′
of being x, thus

we have

Pr(Y tail
xx′ = J | k = |Yxx′|) =

p
αx(J)
x · pαx′ (J)

x′

(px + px′)3

where αx(J) and αx′(J) denote, respectively, the count of x and x′ in J . Therefore, we
conclude

Pr (Y ∈ Im(J)) =
m∑
k=3

(
m

k

)
(px + px′)

k · (1− px − px′)m−k ·
p
αx(J)
x · pαx′ (J)

x′

(px + px′)3

=
m∑
k=3

(
m

k

)
(px + px′)

k−3 · (1− px − px′)m−k · pαx(J)
x · pαx′ (J)

x′ .

Thus the first part of the right hand side of Equation (4.12) is done.

95

Lemma 4.21.∑
J∈{x,x′}3

Pr(Y ∈ Im(J)) · E[δxx′(B, Y) |Y ∈ Im(J)]

=
m∑
k=3

(
m

k

)
(px + px′)

k−3 · (1− px − px′)m−k ·
(
p3
x +

9

4
p2
xpx′ +

3

4
pxp

2
x′

)
.

Proof. We summarize the result of Lemma 4.18 and Remark 4.20 in Table 4.2. The
desired equation is an immediate consequence of this table.

J p
αx(J)
x · pαx′ (J)

x′ E[δxx′(B, Y) |Y ∈ Im(J)]
(x, x, x) p3

x 1
(x, x, x′) p2

x · px′ 1/2
(x, x′, x) p2

x · px′ 3/4
(x′, x, x) p2

x · px′ 1
(x, x′, x′) px · p2

x′ 0
(x′, x, x′) px · p2

x′ 1/4
(x′, x′, x) px · p2

x′ 1/2
(x′, x′, x′) p3

x′ 0

Table 4.2: The expected value of preceding indicator and corresponding probability for Im(J).

4.2.3 The Remainder Rxx′(Im) and the Expected Cost of BIT

It remains to determine the cost of
∑

I∈Rxx′ (Im)

∑
b∈{0,1}n

Pr(Y = I)·δxx′(b, I). Recall from the

definition that Rxx′(Im) consists of those request sequences I in Im whose corresponding
sub-sequence Ixx′ contains at most two requests. It turns out that in Rxx′(Im), the value
of E[δxx′(B, I)] depends actually on the initial order of x, x′ in L. We are forced to
subdivide Rxx′(Im) further according to the length of Ixx′

R
(k)
xx′(Im) = {I ∈ Im | k = |Ixx′ |}

for k = 0, 1, 2. The corresponding E[δxx′(B, I) | I ∈ R(k)
xx′(Im)] has to be calculated more

carefully.

Lemma 4.22. Enumerate the list element according to their initial position in L and

96

consider the pair xs and xt of list elements for some s 6= t. Then we have∑
I∈Rxsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I) =

(
m

0

)
(1− ps − pt)m

+

(
m

1

)
(1− ps − pt)m−1 ·

(
ps +

1

2
pt

)
+

(
m

2

)
(1− ps − pt)m−2 ·

(
p2
s +

5

4
pspt

)
if s < t and∑

I∈Rxsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I) =

(
m

1

)
(1− ps − pt)m−1 · 1

2
ps

+

(
m

2

)
(1− ps − pt)m−2 ·

(
p2
s +

3

4
pspt

)
otherwise.

Proof. Since the case s > t can be obtained from the case s < t simply by changing the
role of xs and xt, we assume without loss of generality that s < t.

Consider the case s < t, we first apply the formula in Remark 4.20 and conclude

Pr
(
Y ∈ R(k)

xsxt(Im)
)

=

(
m

k

)
(ps + pt)

k · (1− ps − pt)m−k.

In the case k = 0, both of xs and xt are not requested overall, hence xs precedes xt after
serving I and thus E[δxsxt(B, Y) |Y ∈ R(0)

xsxt] = 1. Therefore,∑
I∈R(0)

xsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I) =

(
m

0

)
· (1− ps − pt)m. (4.13)

In the case k = 1, the list element xt precedes xs after serving I if and only if it
has received a bit value 0 when BIT assigned bit values at the beginning and has
been requested in I. This event happens with a probability of 1

2
· pt
ps+pt

and hence

E[δxsxt(B, Y) |Y ∈ R(1)
xsxt] = 1− 1

2
· pt
ps+pt

. Therefore,

∑
I∈R(1)

xsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I)

=

(
m

1

)
· (ps + pt)(1− ps − pt)m−1 ·

(
1− 1

2
· pt
ps + pt

)
=

(
m

1

)
· (1− ps − pt)m−1 ·

(
ps +

1

2
pt

)
. (4.14)

97

For the case k = 2, a table similar to Table 4.2 is given here to keep the overview.

Ixsxt Pr(Yxsxt = Ixsxt |Y ∈ R
(2)
xsxt) E[δxx′(B, Y) |Yxsxt = Ixsxt]

(xs, xs) p2
s/(ps + pt)

2 1
(xs, xt) ps · pt/(ps + pt)

2 1/2
(xt, xs) ps · pt/(ps + pt)

2 3/4
(xt, xt) p2

t/(ps + pt)
2 0

Table 4.3: The expected value of preceding indicator and corresponding probability for R
(2)
xsxt .

We still have to verify the numbers in Table 4.3. Indeed, results in column Pr(Yxsxt =

Ixsxt |Y ∈ R
(2)
xsxt) are direct consequences of Remark 4.20. In the third column, the cases

(xs, xs) and (xt, xt) are trivial. The other two cases can be argued in the same way as
in the proof of Lemma 4.18. Therefore,∑

I∈R(2)
xsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I)

=

(
m

2

)
· (ps + pt)

2(1− ps − pt)m−2 ·
(

p2
s

(ps + pt)2
· 1 +

pspt
(ps + pt)2

· 5

4
+

p2
t

(ps + pt)2
· 0
)

=

(
m

2

)
· (1− ps − pt)m−1 ·

(
p2
s +

5

4
pspt

)
. (4.15)

The desired equation for the case s < t can be observed by summing the Equations
(4.13), (4.14) and (4.15).

Consider the case s > t, i.e. xt precedes xs initially. From the calculation above we
know that ∑

I∈Rxsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxtxs(b, I)

=

(
m

0

)
(1− ps − pt)m · 1

+

(
m

1

)(
(1− ps − pt)m−1 · (ps + pt)

) pt + 1
2
ps

ps + pt

+

(
m

2

)(
(1− ps − pt)m−2 · (ps + pt)

2
) p2

t + 5
4
pspt

(ps + pt)2

Since exactly one of δxsxt(b, I) and δxtxs(b, I) is equal to 1. for given b and I, we may

98

substitute δxsxt(b, I) with 1− δxtxs(b, I) to conclude:∑
I∈Rxsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · δxsxt(b, I)

=
∑

I∈Rxsxt (Im)

∑
b∈{0,1}n

Pr(Y = I) · (1− δxtxs(b, I))

=

(
m

0

)
(1− ps − pt)m · (1− 1)

+

(
m

1

)(
(1− ps − pt)m−1 · (ps + pt)

)(
1−

pt + 1
2
ps

ps + pt

)
+

(
m

2

)(
(1− ps − pt)m−2 · (ps + pt)

2
)(

1−
p2
t + 5

4
pspt

(ps + pt)2

)
=

(
m

1

)
(1− ps − pt)m−1 · 1

2
ps

+

(
m

2

)
(1− ps − pt)m−2 ·

(
p2
s +

3

4
pspt

)
Corollary 4.23. Given positive integer m′ < m, two indices s 6= t ∈ [n] and a parameter
P of a discrete distribution, we define the constant

α(m′, s, t) =

(
m′

0

)
(1− ps − pt)m

′

+

(
m′

1

)
(1− ps − pt)m

′−1 ·
(
ps +

1

2
pt

)
+

(
m′

2

)
(1− ps − pt)m

′−2 ·
(
p2
s +

5

4
pspt

)
+

m′∑
k=3

(
m′

k

)
(ps + pt)

k−3 · (1− ps − pt)m
′−k ·

(
p3
s +

9

4
p2
spt +

3

4
psp

2
t

)

if s < t and

α(m′, s, t) =

(
m′

1

)
(1− ps − pt)m

′−1 · 1

2
ps

+

(
m′

2

)
(1− ps − pt)m

′−2 ·
(
p2
s +

3

4
pspt

)
+

m′∑
k=3

(
m′

k

)
(ps + pt)

k−3 · (1− ps − pt)m
′−k ·

(
p3
s +

9

4
p2
spt +

3

4
psp

2
t

)

99

if s > t. Then the following claim is true.
For a random request sequence Y ′ with m′ requests, the expected preceding indicator

E[δxsxt(B, Y)] of a pair xs, xt of distinct list element is equal to α(m′, s, t).

Proof. This claim follows immediately from Equation (4.12), Lemma 4.21 and Lemma
4.22.

Theorem 4.24. Let L be a list of length n and let P = (pi)i=1,...,n be a parameter of
a discrete distribution over the support [n]. Given a sequence Y of m random requests
generated by DP , the expected cost of serving Y using BIT is given by

E[C(B, Y)] =
m∑
j=1

∑
s∈[n]

ps ·
∑
t∈[n]

α(j − 1, t, s).

Proof. This theorem is a direct consequence from Equation (4.8) and Corollary 4.23.

4.3 Locality Reference

The next generalization is to drop the i.i.d. restriction, leading to the locality of reference
property.

Informally, a request sequence exhibits locality of reference if, at any time, the newly
requested item is likely to be requested again in the near future. In other words, a
consecutive sub-sequence requesting only one list element, called run, is more likely to
be present in such request sequences (e.g. the blocks considered in Lemma 3.47 are runs).

In the context of data compression, Burrows-Wheeler Transformation (short: BWT)
is applied to transform a plain text into a string of characters. The string after permuta-
tion contains more/longer runs, meaning that it is easier to compress and transmit the
transformed string than the original plain text. At the end of this section, we provide
an example to illustrate the basic idea of BWT and refer to Adjeroh et al. (2008) for
details.

The existing results with the aspect of locality of reference utilize two different tech-
niques to analyze the influence of the locality of reference: factoring technique (see
Remark 3.36) and bijective analysis.

Instead of comparing online algorithms with OPT, bijective analysis is a method
comparing two online algorithms ALG1 and ALG2 directly. Roughly speaking, the
bijective analysis aims to pair the request sequences for ALG1 and ALG2 using a bijection
in such a way that the cost of ALG1 on input I is no more than the cost of ALG2 on
the image of I, for all request sequences I ∈ Im of the same length m. In this case,
intuitively, ALG1 is no worse than ALG2.

In Angelopoulos et al. (2008), the locality of reference is parameterized by the number
of distinct requests within a consecutive sub-sequence of I with a fixed length. In
the deterministic case, by applying the bijective analysis, authors point out that MTF
outperforms all other deterministic online algorithms with increasing of the locality of
reference.

100

In Albers and Lauer (2008), the locality of reference is parameterized by runs. De-
pending on how many requests the run itself and the run before contains, runs are further
categorized into different types. In the randomized case, Albers and Lauer (2008) pro-
vided upper bound of CBIT(B, I) which is parameterized by the number of different runs.
We refer to Albers and Lauer (2008) for details.

To the best of my knowledge, an expected cost EP [CBIT(B, Y)] is unknown in this
aspect. Bijective analysis in Angelopoulos et al. (2008) applies only if the probability
distribution is preserved under the bijection f . More precisely, only if for every I we
have P (Y = I) = P (Y = f(I)). The analysis in Albers and Lauer (2008) has assumed a
fixed request sequence I. Although, a further study on the relation between the applied
probability distribution and the expected number/length of runs may lead to a bound
of EP [CBIT(B, Y)], where Y is a random request sequence with the locality of reference
property.

Example 4.25 (Adjeroh et al.,2008). A permutation σ ∈ Sn is a circular shift if

σ(k) =

{
n, if k = 1,

k − 1, if 1 < k ≤ n.

Given a string s with n characters, all images of s under circular shifts, i.e. all strings
in {σk(s) | k = 1, . . . , n}, are called cyclic rotations of s.

Consider the word “BANANA$”, where $ indicates the end of a word. BWT can be
divided into three steps as follow.

1. Generate the set of cyclic rotations of “BANANA$” and save these rotations into
a matrix (Figure 4.1a).

2. Sort the rows by the left-to-right lexicographic order (Figure 4.1b). Let MBWT

denote the resulting matrix.

3. The Burrows-Wheeler Transform of “BANANA$” is defined as the last column of
MBWT (Figure 4.1c).

B A N A N A $
A N A N A $ B
N A N A $ B A
A N A $ B A N
N A $ B A N A
A $ B A N A N
$ B A N A N A

(a) Unsorted cyclic rotations.

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

(b) Sorted cyclic rotations.

A
N
N
B
$
A
A

(c) Burrows-Wheeler trans-
form of “BANANA”

Figure 4.1: Burrows-Wheeler transformation.

101

Given the string “ANNB$AA” transformed by BWT (the last column of MBWT),
one can sort this string in lexicographic order to recover the first column of MBWT

immediately (Figure 4.2a). Observe that:

• In the same row i of MBWT, the character MBWT
i,1 follows the character MBWT

i,n in
the original string “BANANA$” in a cyclic manner. The same is true for any two
consecutive column in MBWT, i.e.:

MBWT
i,k = σ(MBWT

i,k+1) ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , n− 1},

where σ is the circular shift in Sn.

• For any character c, the i-th occurrence of c in the last column MBWT
·,n corresponds

to the i-th occurrence of c in the first column MBWT
·,1 . E.g., both of the first A in

the last column (MBWT
1,7) and the first A in the first column (MBWT

2,1) correspond to
the last A in the original string.

Provided that the receiver has known the first and the last column of MBWT, these two
observations can be used to reconstruct original message efficiently, see Figure 4.2.

$ A1

A1 N1

A2 N2

A3 B
B $
N1 A2

N2 A3

(a) Enumerate duplicated char-
acters.

$ A1

A1 N1

A2 N2

A3
σ−→ B

B $
N1 A2

N2 A3

(b) Reconstruct the circular shift
σ

$
σ→ A1

σ→ N1
σ→ A2

σ→ N2
σ→ A3

σ→ B
σ→ $

(c) The original message can be obtained in the re-
verse order by repeatedly applying σ on the last
charater $.

Figure 4.2: Reverse Burrows-Wheeler transformation.

Recall the telegraph message

THE CAR ON THE LEFT HIT THE CAR I LEFT $

considered in Example 3.1. BWT transforms this message into the following string of
words

LEFT $ HIT ON THE THE CAR I THE LEFT CAR

The sender and receiver may agree with any list accessing algorithm to maintain a word
list. This string of words will be translated further into code according to the applied
algorithm and transmitted from the sender to receiver thereafter. E.g., it can be translated
into

102

1LEFT 2$ 3HIT 4ON 5THE 1 6CAR 7I 3 7 4,

if MTF is applied to maintain the word list. Table 4.4 illustrates how the word list is
updated step by step. Note that a new word is appended to the list when it is requested
for the first time. Certainly, it will be moved to the front by MTF immediately after it
is introduced. Thus, new words always appear in the first position of the lists in Table
4.4. Once the code is transmitted, the receiver can reconstruct the string or words using

Request y Word list after accessing y Transmitted word
1LEFT (LEFT) LEFT

2$ ($, LEFT) $
3HIT (HIT, $, LEFT) HIT
4ON (ON, HIT, $, LEFT) ON

5THE (THE, ON, HIT, $, LEFT) THE
1 (THE, ON, HIT, $, LEFT) THE

6CAR (CAR, THE, ON, HIT, $, LEFT) CAR
7I (I, CAR, THE, ON, HIT, $, LEFT) I
3 (THE, I, CAR, ON, HIT, $, LEFT) THE
7 (LEFT, THE, I, CAR, ON, HIT, $) LEFT
4 (CAR, LEFT, THE, I, ON, HIT, $) CAR

Table 4.4: The word list maintained by MTF.

Table 4.4. The original message can be obtained by applying the reverse BWT to the
string or words.

103

Chapter 5
Computer Experiments and Average Case
Analysis of List Accessing Problems

In this chapter, we want to study and compare the performance of the algorithms pro-
posed in Chapter 3. For small instances, an IP is developed to find the optimal solution,
allowing an explicit calculation of competitive ratio of given algorithms. For larger
instances, we compare the performance of different algorithms on empirical request se-
quences directly with each other.

The computer language Julia (version 1.0.2) is used for these experiments.

5.1 The Implementation of Algorithms for List

Accessing Problem

Each list L consists of two arrays A and B. The first one A = (x)x∈L denotes the current
arrangement of list elements, the second one B = (ax)x∈L records an additional attribute
for each list element. The implementation of B depends on the applied algorithm, e.g.
it is used to store the frequency count (Int) in FC, the bit value (Boolean) in BIT etc..

Two basic functions “find” and “move” are implemented for access and transposition.
Given a list element x ∈ L, find(L, x) returns the position of x in A, which is equal to
the cost of accessing x. Given two positions s and t with s > t, move(L, s, t) rearranges
the list L such that the list element x originally in position s (in A) and its attribute
(in B) are moved to position t, while the relative order of other elements in L remains
unchanged, see Figure 5.1 for an illustration of the effect of move(L, s, t). This function is
called whenever the algorithm decides to apply a chain of free transpositions. Enumerate
the list element according to their position in L immediately before calling move, the
effect of move(L, s, t) to L is equivalent to the chain T (xt, xs) ◦ · · · ◦ T (xs−1, xs).

104

x

st

(a) Before move(L, s, t).

x

st

(b) After move(L, s, t).

Figure 5.1: Illustration of move(L, s, t).

5.1.1 Deterministic Algorithms TRANS, MTF, FC, and TS

Since these four algorithms do not apply paid transpositions, the cost function is simply
the sum of outputs of find(·, ·). To simulate them, it suffices to imitate how they update
the list after accessing a request.

TRANS and MTF do not require the aid of B.

Input: List L and request x in position s of L.
Output: Updated list L′

1 if s > 1 then
2 L′ = move(L, s, s− 1);
3 end

Algorithm 7: Updating rule of TRANS

Input: List L and request x in position s of L.
Output: Updated list L′

1 L′ = move(L, s, 1);

Algorithm 8: Updating rule of MTF

FC maintains B to denote the number of requests to the corresponding element.

Input: List L and request x in position s of L.
Output: Updated list L′

1 B[s] = B[s] + 1;
2 p = 0;
3 for t = 1 : s− 1 do
4 if B[t] > B[s] then
5 p = t;
6 end

7 end
8 if p = 0 then
9 L′ = move(L, s, 1);

10 else
11 L′ = move(L, s, p+ 1);
12 end

Algorithm 9: Updating rule of FC

105

Immediately after accessing the s-th element, FC updates the counter B[s] and finds
the largest position t such that B[t] > B[s] (i.e. the element in position t is requested
more often than the element in position s). If such t exists, FC applies move(L, s, t+ 1);
Otherwise, x is the most accessed element in the list1, and thus FC applies move(L, s, 1).

TS is slightly more complicated than the other three approaches. Instead of an array
of integers, TS needs an array of pairs of integers to make its decision. More precisely,
TS initializes a pair of integers [a

(1)
x , a

(2)
x] = [0, 0] for each list element x and maintains

it so that the indices of the last two requests to x are recorded, e.g. after accessing
I = (x3, x2, x2, x3, x2, x3, x1, x1), the list element x2 has the attribute [3, 5], indicating
that the last two requests to x2 are the third and the fifth request in I.

Input: List L and request yj = x in position s of L.
Output: Updated list L′

1 a
(1)
x = a

(2)
x ;

2 a
(2)
x = j;

3 if a
(1)
x == 0 then

4 L′ = L;
5 else
6 for t = 1 : s− 1 do

7 if a
(2)
xt < a

(1)
x or a

(1)
x′ < a

(1)
x < a

(2)
x′ < a

(2)
x then

8 L′ = move(L, s, t+ 1);
9 break;

10 else
11 L′ = L;
12 end

13 end

14 end

Algorithm 10: Updating rule of TS

Immediately after accessing x, TS updates [a
(1)
x , a

(2)
x] and tries to find the smallest

t < s such that

• xt has not been requested since the last request to x (a
(2)
xt < a

(1)
x) or

• xt has been requested only once since the last request to x (a
(1)
xt < a

(1)
x < a

(2)
xt <

a
(2)
x).

where xt denotes the list element in position t of L. If such t exists, TS moves x to the
position immediately after t.

1This happens typically when FC processes the first request in I.

106

5.1.2 Randomized Algorithms RMTF, BIT, COMB

The codes of COMB and RMTF refer simply to the code of MTF, TS, and BIT together
with a suitable random number generator. Compared to this, the code of BIT is different.

Using Markov Chain to Simulate BIT

A state of BIT can be presented as a combination of the order of the list together
with the corresponding bit setting (L = [L[1], L[2]]). Since the order of the list is a
permutation of L, the state space N(L) can be presented by Sn × {0, 1}n. An element
s = (σ, (bi)i∈[n]) ∈ Sn × {0, 1}n corresponds to the list L(s) = σ(L) together with a bit
setting b(s) = (bi)i∈{1,...,n}. Each request is interpreted as an action that changes the
states. The notion s → s′ is used if there exists a sequence I = (xj)j=1,...,m of requests
such that: the state (L(s), b(s)) will be changed by BIT to (L(s′), b(s′)) after serving
I. In particular, if the sequence consists only of one element x, this can be specified
by s

x→ s′. State spaces can be visualized using graphs, e.g. Figure 5.2 illustrates the

x2 x1

(1, 1)

s8

x2 x1

(1, 0)

s7

x1 x2

(1, 1)

s4

x1 x2

(0, 1)

s2

x2 x1

(0, 1)

s6

x2 x1

(0, 0)

s5

x1 x2

(1, 0)

s3

x1 x2

(0, 0)

s1

Figure 5.2: State space N(L = (x1, x2))

graph G(L) of state space N(L) where L = (x1, x2). The red and green arcs indicate the
next state if x1 and x2 are accessed respectively. The code of BIT maintains an array
As = [As[1], . . . , As[n]] for each state s where As[i] indicates the next state if the list
element i is accessed from state s. Then, the matrix (As)s∈N(L) is used to calculate the
cost and resulting list of BIT to process a given request sequence.

As a side effect, this simulation idea can be used to derive a direct formula of pji in
Section 4.1.2. Recall from Section 4.2 that P = (px)x∈L is a parameter of a discrete
distribution. Then, the transition matrix is defined as follows:

M(P)ij =

{
px ∃x : si

x→ sj

0 otherwise

107

Notice that the uniform distribution discussed in Section 4.1 is a special case where
px = 1

n
for all x ∈ L. As every state s corresponds to exactly one column/row in

the transition matrix, we omit the index of s and use es to denote the unit vector
corresponding to that state. The probability of moving from state s to t after m actions
(m requests) is given by

eTs ·M(P)m · et.

Since the algorithm BIT chooses uniformly one state s from the set

SBIT := {id} × {0, 1}n,

the row vector

vBIT =

(
1

|SBIT|
·
∑
s∈SBIT

es

)T

presents the distribution of the initial states.

Example 5.1. Let L = (x1, x2). Every state has two actions: The red and green edges
indicate a request to x1 and x2 respectively, and share a Bernoulli distribution with
p = 0.5. This process is illustrated in Figure 5.2. We first list the state space S2×{0, 1}2:

s1 = ((12), (0, 0)), s5 = ((21), (0, 0)),

s2 = ((12), (0, 1)), s6 = ((21), (0, 1)),

s3 = ((12), (1, 0)), s7 = ((21), (1, 0)),

s4 = ((12), (1, 1)), s8 = ((21), (1, 1)).

Consider the uniform distribution, i.e. P = (1
2
, 1

2
), we present the matrix M(1

2
, 1

2
) ex-

plicitly:



s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 1
2

0 0 0 1
2

0
s2

1
2

0 0 1
2

0 0 0 0
s3

1
2

0 0 0 0 0 0 1
2

s4 0 1
2

1
2

0 0 0 0 0
s5 0 0 1

2
0 0 0 1

2
0

s6 0 0 0 0 1
2

0 0 1
2

s7 0 0 0 1
2

1
2

0 0 0
s8 0 0 0 0 0 1

2
1
2

0


= M(1

2
, 1

2
).

E.g. the state s3 consist of a list L(s3) = (x1, x2) where x1 and x2 get the bit values 1
and 0 respectively. If we request x2, the bit value of x2 is changed to 1, and will be moved
to the front, which is the state s8 = ((21), (1, 1)). This event is denoted by s3

x2→ s8, it
has the probability eT3 ·M(1

2
, 1

2
) · e8 to be realized if the current state is s3.

The set of initial states is given by

SBIT := {id} × {0, 1}2 = {s1, s2, s3, s4},

108

from which BIT chooses one uniformly random. It is easy to see that

vBIT = (0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0).

Furthermore, the state space can be written as a disjoint union

S2 × {0, 1}2 = {s2, s3, s6, s7}∪̇{s1, s4, s5, s8}

according to the parity of the sum of the bit values from a state. Certainly, every request
either adds or subtracts exactly one from this sum, hence every arc crosses this partition.
Thus

• the graph in Figure 5.2 is bipartite,

• there exists a permutation of states such that the matrix M(1
2
, 1

2
) has a block struc-

ture.

M(P) =

(
0 M ′

M ′′ 0

)
These two observations hold for any P .

Recall from Section 4.1.2 that pji = P (bji = 1) = E[bji] presents the expectation of
the bit value in position i in the list after the j-th request provided that bit setting
and requests are chosen uniformly. In Section 4.1.2, pji can only be determined via a
recursive formula. Lemma 5.2 represents pji in the Markov chain context.

Lemma 5.2. Let b(s)i denote the i-th bit value in the bit setting b(s). Then we have

pji = vBIT ·M(P)j ·
∑

s:b(s)i=1

es.

109

Proof.

E[bji] =
∑
t∈SBIT

P (t is chosen as initial state) ·
∑

s∈N(L)

P (t→ s after j-th requests) · b(s)i


=
∑
t∈SBIT

 1

2n

∑
s:b(s)i=1

P (t→ s after j-th requests)


=
∑
t∈SBIT

 1

2n

∑
s:b(s)i=1

eTt ·M(P)j · es


=
∑
t∈SBIT

 1

2n
eTt ·M(P)j ·

 ∑
s:b(s)i=1

es


=

(∑
t∈SBIT

1

2n
eTt

)
·M(P)j ·

 ∑
s:b(s)i=1

es


= vBIT ·M(P)j ·

∑
s:b(s)i=1

es.

5.1.3 Constructing Optimal Solutions for Small Instances by
Integer Programming

One may also generalize the idea of simulating BIT to design an IP for finding OPT for
small instances. Recall the enumeration method to find the optimal solution, illustrated
in Figure 3.1. In this section, an IP corresponding to the idea of enumeration is developed
to permit a calculation of optimal offline algorithms for small instances. Some results of
these IPs for a list of three elements are summarized in Table 5.1.

length of I worst I OPT cost BIT cost (worst/mean/best) performance
3 (3 2 1) 6 9/7.5/6 1.25
4 (3 2 1 1) 7 12/9/7 1.29
5 (3 2 2 1 1) 9 15/11.5/9 1.28
6 (3 2 1 2 1 1) 10 15/12.75/11 1.27

Table 5.1: BIT vs OPT

• The cost of BIT for given I is depending on the initial sequence of bit values of
the list elements. There are 8 different initial sequences, each of which incurs a
possibly different cost after accessing all elements in I. The column “BIT cost”
reports the worst/mean/best of these 8 costs.

• The performance is defined as the mean of the cost of BIT cost divided by the cost
of OPT, using the terminology from competitive analysis.

110

E.g. the I = (32211) is one request sequence with the largest performance 1.25 among
all request sequences with length 5. The optimal cost for accessing I is equal to 9, while
the BIT needs 11.5 in average. The best and worst initial sequence leads to a cost of 9
and 15 respectively.

In what follows we consider the case n = 3,m = 6 to explain how this IP works.
The aim is to find one optimal solution for every I ∈ I6 of L = (x1, x2, x3). We first
enumerate all possible permutations of L:

L(1) = (x1, x2, x3),

L(2) = (x1, x3, x2),

L(3) = (x2, x1, x3),

L(4) = (x2, x3, x1),

L(5) = (x3, x1, x2),

L(6) = (x3, x2, x1).

The matrix C denotes the cost of finding a list element in each of these six lists, see
Figure 5.3. More precisely, the entry cst denotes the cost of accessing the element xt in



x1 x2 x3

L(1) 1 2 3
L(2) 1 3 2
L(3) 2 1 3
L(4) 3 1 2
L(5) 2 3 1
L(6) 3 2 1

 =: C = (cij).

Figure 5.3: cost matrix C of access.

list L(s). It is then easy to see that the cost of accessing yj = xt in list L(i) is equal to

eTi · C · et

where ei and et are the i-th and t-th unit vector with dimension 6 and 3 respectively.

111



(123) (132) (213) (231) (312) (321)

(123) 0 1 1 2 2 3
(132) 1 0 2 3 1 2
(213) 1 2 0 1 3 2
(231) 2 3 1 0 2 1
(312) 2 1 3 2 0 1
(321) 3 2 2 1 1 0

 = M (0)

(a) Reordering cost before the first access.



(123) (132) (213) (231) (312) (321)

(123) 0 1 1 2 2 3
(132) 1 0 2 3 1 2
(213) 0 1 0 1 2 2
(231) 0 1 0 0 1 1
(312) 1 0 2 2 0 1
(321) 1 0 1 1 0 0

 = M (1)

(b) Reordering cost after accessing x1.



(123) (132) (213) (231) (312) (321)

(123) 0 1 0 1 2 2
(132) 0 0 0 1 1 1
(213) 1 2 0 1 3 2
(231) 2 3 1 0 2 1
(312) 1 1 1 0 0 0
(321) 2 2 1 0 1 0

 = M (2)

(c) Reordering cost after accessing x2.



(123) (132) (213) (231) (312) (321)

(123) 0 0 1 1 0 1
(132) 1 0 2 2 0 1
(213) 1 1 0 0 1 0
(231) 2 2 1 0 1 0
(312) 2 1 3 2 0 1
(321) 3 2 2 1 1 0

 = M (3)

(d) Reordering cost after accessing x3.

Figure 5.4: Reordering cost matrices.

The optimal costs of reordering one list to another are recorded in matrices M (i),
see Figure 5.4. More precisely, the cost of reordering list L(i) to L(i′) (using only paid
transpositions) is given by mi,i′ in M (0), which can be determined by applying Lemma
3.17 and Algorithm 6. If xi is just accessed, then the corresponding cost can be found
in the matrix M (i) for i ∈ {1, 2, 3}.

E.g. suppose request y = x2 is just accessed from the list (x3, x2, x1) = L(6) and the

112

optimal algorithm reorders L(6) to (x1, x2, x3) = L(1), then the cost of paid transpositions
arising from this sorting is given by eT6 ·M (2) · e1.

Let X = (Xij)i,j∈[6] ∈ {0, 1}6,6 where the j-th column vector X(j) of X is a unit vector
in R6 indicating the list chosen by OPT before accessing the j-th request. Then, the list
accessing problem with L = (x1, x2, x3) and I ∈ I6 can be formulated as:

minimize eT1 ·M (0) ·X(1) +
5∑
s=1

XT
(s) ·M (Is) ·X(s+1) +

6∑
t=1

X(t) · C · eIt

subject to
6∑
i=1

Xij = 1 ∀j = 1, . . . , 6

Xij ∈ {0, 1} ∀i, j = 1, . . . , 6

OPT may decide to reorder the list before accessing any requests (e.g. S-OPT in Lemma
3.21 applies such reordering). At this point in time, no free transposition is available,
hence the cost of reordering the initial list (represented by e1) to the favor of OPT
(represented by X(1)) is given by eT1 ·M (0) ·X(1).

Notice that the reordering cost thereafter depends on the latest accessed list element,
as some of the transpositions become free. Given a set of lists chosen by OPT (repre-
sented by X(1), . . . , X(6)), the second term

∑5
s=1X

T
(s) ·M (Is) ·X(s+1) comprises the cost

of reordering after every access, where Is is the index of the list element corresponding
to the request ys, e.g. if y1 = x3, then I1 = 3. The last term X(t) · C · eIt provides the
cost of accessing. The index It are defined similar as Is in the second term.

This is a quadratic problem in Xij ∈ {0, 1} for i, j ∈ [6]. To keep the objective function
linear, one can use the standard linearization by replacing each product Xs,j ·Xt,j+1 with
one auxiliary variable zstj and adding the conditions

zstj ∈ {0, 1}
zstj ≤ Xs,j

zstj ≤ Xt,j+1

zstj ≥ Xs,j +Xt,j+1 − 1

into the model.

Remark 5.3. This IP is best suited for small instances. For general n = |L| and
m = |I|, the size of C and M are n! · n and (n!)2 · n. The model itself needs (n!) · m
variables and (n!)2 · (m− 1) auxiliary variables with constraints in the same order.

It is possible to apply Proposition 3.9 and Theorem 3.18 to further reduce the size.

In the next section, we use the implementations introduced so far to examine the
performance of algorithms proposed in this thesis. In Subsection 5.2, these algorithms
are compared with OPT. We have to restrict the size of the instance, since it is harder
to calculate the cost of OPT as n and m grow. Subsection 5.3 compares these algorithms
directly with each other. By omitting the calculation of OPT, we are able to test these
algorithms on larger instances.

113

5.2 Expected Cost and Competitive Ratio on Small

Instances

5.2.1 Optimal Algorithm

Using the IP developed in Section 5.1.3, the value of COPT (I) can be computed precisely
for small n and m. In Figure 5.5, the optimal cost COPT (I) is plotted for the case n = 3, 4
with m = 6, 8. More precisely, we consider a list L with n elements and generate all
request sequences I ∈ Im. Instances (L, I) are grouped by the optimal cost COPT (I)
(represented by the x axis) and the y axis represents the number of I belonging to each
group.

OPT cost

5 10 15

0

50

100

150

200

250

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(a) n = 3,m = 6

OPT cost

10 15

0

500

1000

1500

2000

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(b) n = 3,m = 8

OPT cost

5 10 15

0

500

1000

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(c) n = 4,m = 6

OPT cost

10 15 20

0

5.0×10³

1.0×10⁴

1.5×10⁴

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(d) n = 4,m = 8

Figure 5.5: OPT cost for small instances.

114

5.2.2 Deterministic Algorithms

The cost of OPT, TRANS, MTF, FC and TS for serving I ∈ Im are presented in Figure
5.6 for n = 3, 4 with m = 6, 8. Recall from the Remark 4.4, that the mean and variance
of these four algorithms are exactly the same, as one can observe in the figures.

Cost

5 10 15 20

OPT
TRANS
MTF
FC
TS

Algorithm

0

50

100

150

200

250

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(a) n = 3,m = 6

Cost

10 20

OPT
TRANS
MTF
FC
TS

Algorithm

0

500

1000

1500

2000

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(b) n = 3,m = 8

Cost

10 20

OPT
TRANS
MTF
FC
TS

Algorithm

0

500

1000

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(c) n = 4,m = 6

Cost

10 20 30

OPT
TRANS
MTF
FC
TS

Algorithm

0

5.0×10³

1.0×10⁴

1.5×10⁴

#
R

e
q
u
e
st

 S
e
q
u
e
n
ce

(d) n = 4,m = 8

Figure 5.6: Cost of deterministic algorithms for small instances.

We have further considered the competitive ratio CALG(I)
COPT(I)

which is used to define the
competitiveness. Figure 5.7 presents the densities of this quotient over Im.

115

C_Quotient

1.0 1.5 2.0

TRANS
MTF
FC
TS

Algorithm

0

1

2

3

4

5

6

7

(a) n = 3,m = 6

C_Quotient

1.0 1.5 2.0

TRANS
MTF
FC
TS

Algorithm

0

1

2

3

4

5

6

7

(b) n = 3,m = 8

C_Quotient

1.0 1.5 2.0

TRANS
MTF
FC
TS

Algorithm

0

1

2

3

4

5

6

7

(c) n = 4,m = 6

C_Quotient

1.0 1.5 2.0

TRANS
MTF
FC
TS

Algorithm

0

1

2

3

4

5

6

7

(d) n = 4,m = 8

Figure 5.7: Competitive ratio of deterministic algorithms for small instances.

5.2.3 Randomized Algorithms

The density of the expected cost of RMTF, BIT, and COMB over their corresponding
random choices2 in comparison to the cost of OPT are presented in Figure 5.8. Recall
from Example 3.41 that the set of random choices of RMTF and MTF can be identified

2The request sequence is already determined, the expectation is only over the random choices of the
randomized algorithms.

116

with {0, 1}m and {0, 1}n respectively. More precisely,

• the expected cost of RMTF is equal to 1
2m

(∑
L[2]∈{0,1}m

CRMTF(L[2], I)

)
,

• the expected cost of BIT is equal to EB[CBIT(B, I)] (see Section 4.2), and

• the expected cost of COMB is equal to 4
5
EB[CBIT(B, I)] + 1

5
CTS(I).

x1

0 10 20 30

RMTF
BIT
COMB

Algorithm

0.0

0.1

0.2

0.3

0.4

(a) n = 3,m = 6

x1

0 10 20 30

RMTF
BIT
COMB

Algorithm

0.0

0.1

0.2

0.3

0.4

(b) n = 3,m = 8

x1

0 10 20 30

RMTF
BIT
COMB

Algorithm

0.0

0.1

0.2

0.3

0.4

(c) n = 4,m = 6

x1

0 10 20 30

RMTF
BIT
COMB

Algorithm

0.0

0.1

0.2

0.3

0.4

(d) n = 4,m = 8

Figure 5.8: Cost of randomized algorithms for small instances.

117

We have further considered the competitive ratio CALG(I)
COPT(I)

. Figure 5.9 presents the den-
sities of this quotient over Im.

C_Quotient

0.9 1.0 1.1 1.2 1.3 1.4

RMTF
BIT
COMB

Algorithm

0

5

10

(a) n = 3,m = 6

C_Quotient

0.9 1.0 1.1 1.2 1.3 1.4

RMTF
BIT
COMB

Algorithm

0

5

10

(b) n = 3,m = 8

C_Quotient

0.9 1.0 1.1 1.2 1.3 1.4

RMTF
BIT
COMB

Algorithm

0

5

10

(c) n = 4,m = 6

C_Quotient

0.9 1.0 1.1 1.2 1.3 1.4

RMTF
BIT
COMB

Algorithm

0

5

10

(d) n = 4,m = 8

Figure 5.9: Competitive quotient of randomized algorithms for small instances.

118

5.3 Performance on i.i.d. Generated Request

Sequences

Proposed algorithms are compared directly to each other in this subsection. Notice that
in the previous subsection, all possible decisions of randomized algorithms are considered
(for the purpose of calculating the expected cost), whereas these decisions are generated
randomly in this subsection.

To assess the influence of list length and number of requests to the cost of algorithms,
the experiments are subdivided into groups according to the parameters of tested in-
stances, see Table 5.2. Each of these groups is equipped with either a uniform distribu-
tion U or a discrete distribution DP where certain list elements (20%) are requested at a
high frequency (80%) and the other list elements share 20% chance of being requested.

Group # List elements # Requests # Tests
1 n = 25 m ∈ {100, 200, . . . , 3000} 10
2 n ∈ {1, 2, . . . , 50} m = 2000 10
3 n = 26 m ∈ {100, 200, . . . , 3000} 10

Table 5.2: Parameters of instances in different groups.

Each experiment is indicated by the ID of the groups it uses together with the dis-
tributions which is applied to generate the request sequences, e.g. in Experiment 1-U
(considered in Figure 5.10a) consists instances defined as follows:

• The length n of the list L is fixed by 25.

• For each m ∈ {100, 200, . . . , 3000}, 10 instances is generated, each of which con-
tains m requests.

• The requests are are uniformly distributed over the support of L.

The first observation is that the cost of solving an instance increases linearly with the
length n of the list and the length m of the request sequence, respectively. In the
case that uniform distribution is applied, all algorithms perform almost equally well.
However, if some list elements are favored by the discrete distribution DP , TRANS
and FC out-performs other algorithms. Their advantages compared to other algorithms
increase in step with the size of the instance. On the other hand, MTF and RMTF incur
the largest costs for solving large instances.

Discrete Distribution of the letter frequency in English

In the context of data compression, the frequencies of letters in English texts is a discrete
distribution of particular interest. Peter Norvig provides3 this distribution based on the
Google book data.

3See https://norvig.com/mayzner.html

119

https://norvig.com/mayzner.html

#Requests/100

10 20 30

TRANS
MTF
FC
TS
RMTF
BIT
COMB

Algorithm

0

1×10⁴

2×10⁴

3×10⁴

4×10⁴

C
o
st

(a) Experiment 1-U

#Requests/100

10 20 30

TRANS
MTF
FC
TS
RMTF
BIT
COMB

Algorithm

0

5.0×10³

1.0×10⁴

1.5×10⁴

2.0×10⁴

C
o
st

(b) Experiment 1-P

#List-Elements

10 20 30 40 50

TRANS
MTF
FC
TS
RMTF
BIT
COMB

Alg

0

1.0×10⁴

2.0×10⁴

3.0×10⁴

4.0×10⁴

5.0×10⁴

6.0×10⁴

C
o
st

(c) Experiment 2-U

#List-Elements

10 20 30 40 50

TRANS
MTF
FC
TS
RMTF
BIT
COMB

Alg

0

1×10⁴

2×10⁴

3×10⁴

C
o
st

(d) Experiment 2-P

Figure 5.10: Experiment.

120

#Request/100

10 20 30

TRANS
MTF
FC
TS
RMTF
BIT
COMB

Algorithm

0

1×10⁴

2×10⁴

3×10⁴

C
o
st

Figure 5.11: Experiment 3-P1.

We have generated further instances using this distribution, denoted by P1, provided
by Peter Norvig and the statistics of Wikipedia4. More precisely, we assume that an
article contains 640 words with an average length of 4.79 letters (about 3000 letters).

The Experiment 3-P1 considers instances (L, I) where the length of L (alphabet) is
equal to 26, each request sequence I (random generated “article”) contains 3000 requests
(letters), which are distributed over L following DP1 .

A total of 10 request sequences are generated. Figure 5.11 presents the result of
Experiment 3-P1, which is similar to the result of Experiment 1-P . More precisely, one
can use Julia-packages5 to fit a mixed model, which reveals that the cost

• FC will increase the total cost by 722.5 for every 100 letters in expectation.

• MTF and RMTF will increase the total cost by 917.0 for every 100 letters in
expectation.

4see https://de.wikipedia.org/wiki/Wikipedia:Statistik
5E.g. MixedModels.jl from https://github.com/dmbates/MixedModels.jl

121

https://de.wikipedia.org/wiki/Wikipedia:Statistik
https://github.com/dmbates/MixedModels.jl

Bibliography

Adjeroh, D., Bell, T., and Mukherjee, A. (2008). The Burrows-Wheeler Transform::
Data Compression, Suffix Arrays, and Pattern Matching. Springer Science & Business
Media.

Albers, S. (1998). Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing, 27(3): 682–693.

Albers, S. and Lauer, S. (2008). On list update with locality of reference. In International
Colloquium on Automata, Languages, and Programming, 96–107. Springer.

Albers, S. and Mitzenmacher, M. (1997). Revisiting the counter algorithms for list
update. Information processing letters, 64(3): 155–160.

Albers, S., Von Stengel, B., and Werchner, R. (1995). A combined bit and timestamp
algorithm for the list update problem. Information Processing Letters, 56(3): 135–139.

Ambühl, C. (2017). Offline list update is np-hard. SIGACT News Online Algorithms
Column 31, 48: 68–82.

Ambühl, C., Gärtner, B., and von Stengel, B. (2010). Optimal projective algorithms for
the list update problem. CoRR, abs/1002.2440, 16.

Angelopoulos, S., Dorrigiv, R., and López-Ortiz, A. (2008). List update with locality
of reference. In Latin American Symposium on Theoretical Informatics, 399–410.
Springer.

Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. (1986). A locally adaptive
data compression scheme. Communications of the ACM, 29(4): 320–330.

Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., and Weglarz, J. (2014). Handbook on
scheduling. Springer.

Borodin, A. and El-Yaniv, R. (2005). Online computation and competitive analysis.
Cambridge University Press.

122

Conway, R. W., Maxwell, W. L., and Miller, L. W. (2003). Theory of scheduling. Courier
Corporation.

Divakaran, S. (2014). An optimal offline algorithm for list update. arXiv preprint
arXiv:1404.7638.

Du, J., Leung, J. Y.-T., and Young, G. H. (1990). Minimizing mean flow time with
release time constraint. Theoretical Computer Science, 75(3): 347–355.

El-Yaniv, R. (1996). There are infinitely many competitive-optimal online list accessing
algorithms. Hebrew University of Jerusalem.

Garey, M. R. and Johnson, D. S. (2002). Computers and intractability, volume 29. wh
freeman New York.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1979). Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Annals
of discrete mathematics, volume 5, 287–326. Elsevier.

Hester, J. H. and Hirschberg, D. S. (1985). Self-organizing linear search. ACM Computing
Surveys (CSUR), 17(3): 295–311.

Heuser, H. (2013). Lehrbuch der Analysis. Springer-Verlag.

Irani, S. (1991). Two results on the list update problem. Information Processing Letters,
38(6): 301–306.

Kamali, S. and López-Ortiz, A. (2013). A survey of algorithms and models for list update.
In Space-Efficient Data Structures, Streams, and Algorithms, 251–266. Springer.

Kan, A. R. (2012). Machine scheduling problems: classification, complexity and compu-
tations. Springer Science & Business Media.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of
computer computations, 85–103. Springer.

Labetoulle, J., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1984). Preemptive schedul-
ing of uniform machines subject to release dates. In Progress in combinatorial opti-
mization, 245–261. Elsevier.

Lenstra, J. K., Kan, A. R., and Brucker, P. (1977). Complexity of machine scheduling
problems. In Annals of discrete mathematics, volume 1, 343–362. Elsevier.

Marchetti-Spaccamela, A. and Vercellis, C. (1995). Stochastic on-line knapsack prob-
lems. Mathematical Programming, 68(1-3): 73–104.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management
Science, 6(1): 1–12.

123

Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management science, 15(1): 102–109.

Pinedo, M. (2012). Scheduling. Springer.

Reingold, N. and Westbrook, J. (1996). Off-line algorithms for the list update problem.
Information Processing Letters, 60(2): 75–80.

Reingold, N., Westbrook, J., and Sleator, D. D. (1994). Randomized competitive algo-
rithms for the list update problem. Algorithmica, 11(1): 15–32.

Rivest, R. (1976). On self-organizing sequential search heuristics. Communications of
the ACM, 19(2): 63–67.

Schrage, L. (1968). Letter to the editor–a proof of the optimality of the shortest remain-
ing processing time discipline. Operations Research, 16(3): 687–690.

Schulz, F. (1998). Two new families of list update algorithms. In International Sympo-
sium on Algorithms and Computation, 100–109. Springer.

Sleator, D. D. and Tarjan, R. E. (1985). Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2): 202–208.

Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2): 59–66.

124

	Introduction
	Competitive Analysis of Scheduling Problems
	Notation
	Graham Notation
	Notation in Mathematical Programming

	Known Complexity Result and Related Algorithms
	Known Result of Total Completion Time Related Scheduling Problem
	Known Result of Due Date Related Scheduling Problems

	Competitive Result in the Online Environment
	Computer Experiments
	The Implementation of Algorithms for Scheduling Problems
	Online Experiments
	Offline Experiments
	From Scheduling Problems to List Accessing Problem

	Competitive Analysis of List Accessing Problems
	Notation
	Background on the Optimal Offline Algorithm
	Deterministic Algorithms for the List Accessing Problem
	Bounds for Competitiveness of Deterministic Online Algorithms
	Randomized Algorithms for the List Accessing Problem
	Bounds for Competitiveness of Randomized Online Algorithms

	Closer Randomized Analysis of `39`42`"613A``45`47`"603ABIT
	Uniform Distribution
	The Expected Cost and Variance of C`39`42`"613A``45`47`"603ABIT(b,I)
	The Distribution of Bit Values

	General Independent and Identical Distributions
	The Expected Preceding Indicator
	EB[xx'(B,I)]-invariant Partition
	The Remainder Rxx'(Im) and the Expected Cost of `39`42`"613A``45`47`"603ABIT

	Locality Reference

	Computer Experiments and Average Case Analysis of List Accessing Problems
	The Implementation of Algorithms for List Accessing Problem
	Deterministic Algorithms `39`42`"613A``45`47`"603ATRANS, `39`42`"613A``45`47`"603AMTF, `39`42`"613A``45`47`"603AFC, and `39`42`"613A``45`47`"603ATS
	Randomized Algorithms `39`42`"613A``45`47`"603ARMTF, `39`42`"613A``45`47`"603ABIT, `39`42`"613A``45`47`"603ACOMB
	Constructing Optimal Solutions for Small Instances by Integer Programming

	Expected Cost and Competitive Ratio on Small Instances
	Optimal Algorithm
	Deterministic Algorithms
	Randomized Algorithms

	Performance on i.i.d. Generated Request Sequences

	Bibliography

