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Preface
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both in the same journal, Review of Economics. The unpublished third paper was writ-

ten as a co-authorship with Marc-Patrick Adolph, him being responsible for the cali-

bration part. In these three articles, all topics are interlinked and form a reasonable
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gether with Hamza Bennani and Matthias Neuenkirch, was published in the Journal of
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Motivation

Macroeconomists are interested in economic factors on a large scale, and therefore they

study the interactions between labor, capital, goods, and money from a country-level

point of view. Since the early circular flow diagrams, which were developed by Richard

Cantillon around 1730, economists have systematically tried to analyze the links be-

tween these economic aggregates. His work was partly based on John Locke’s quantity

theory of money, but Cantillon, in turn, influenced François Quesnay, who was famous

for his Tableau Économique, published in 1758. Early work in macroeconomics started

out by studying concrete market prices and quantities. However, in his Essai sur la

Nature du Commerce in Général, Cantillon also provided the foundations for a theory of

uncertainty.1 Almost 200 years later, economists like John Maynard Keynes and Frank

Knight revisited these same thoughts.

Generally in economic research, the term uncertainty occurs in three different con-

texts: model input, model output, and unknown probabilities. First, the usage of un-

certainty as a model input is reflected in the model’s projection, i.e., the point estimate

of the output. In principle, when uncertainty is high, the estimation should be more

conservative. In the three articles that follow, this is the single view we consider. Nev-

ertheless, insight can be gained by exploring the other two contexts. Second, as a

complementary approach to the first utilization, uncertainty concerning the model’s

output is reflected in confidence intervals around the point estimates. Of course, risky

statistical assumptions are sometimes needed to end up with plain probabilities. In

this type of work, in order to provide a variety of certain outcomes and to further com-

pare these results, model assumptions are slightly adjusted and parameter values are

widely changed. Third, Knightian uncertainty, in contrast to quantifiable risk, means

there are unknown probabilities assigned to possible events. Surely, this is the vaguest

concept, at best, placing the likelihood of events in a certain order.

Uncertainty in macroeconomic models is an issue that was not being considered

mathematically when formal modeling was in its infancy. Keynes extensively de-

scribed qualitative relationships, while Joseph A. Schumpeter, in the later chapters

of his last book History of Economic Analysis, collected and discussed the macroeco-

nomic formulas, which are still being taught in both introductory and intermediate

1Cantillon (1755) addresses this topic inter alia in chapter 13 (“The circulation and exchange
of goods, as well as the production of goods and of merchandise, are carried out in Europe by en-
trepreneurs in conditions of risk.”) He writes: “Master craftsmen [...] live under [...] uncertainty since
their customers may leave them from one day to the next. Self-employed entrepreneurs in the arts and
science [...] practice under the same uncertainty.”

3



economics courses in the 21st century.2 Back in the first half of the 20th century, a ma-

jor breakthrough occurred when statements were formulated about (i) the qualitative

relationship (positive or negative) between two economic factors, and (ii) how strong

this relation is. For example, when people receive more income, they consume more.

And, as a next step, how much more will they consume with the additional income?

It is conceivable that people would consume, say, half of the income gained, while the

rest could be used to increase their savings. This was one of the questions, Keynes was

interest in.

But when uncertainty comes into play, how are these stated relationships affected?

In 1738, Daniel Bernoulli published an article explaining, for the first time, why an

expected (subjective) outcome under uncertainty should be lower.3 In his work, he

already wrote about the principle of non-linear utility. Translated to macroeconomics,

this can also explain precautionary savings. Generally speaking, the prospect of a

variable outcome diminishes the subjective future outcome, which can be illustrated

by a few brief examples in modern times. First, in Mario Draghi’s “whatever it takes”-

speech about the Euro in 2012, he tried to make the situation more reliable or certain.

Second, in cases of uncertainty about credit bubbles, macroprudential regulation has

to come into play or has to be more rigorous. As a contrary approach, given the vari-

ability, there is the effect that one’s action have to be more severe when considering

lower outcomes. Therefore, third, in turbulent recessionary periods, the central bank’s

main financing rate should be lower when considering uncertainty. Forth, as a non-

economic example, doubts about the reliability of temperature measures—concerning

climate change—require us to take this issue even more seriously when accounting for

the effect of uncertainty. All this scales down to our inherent risk-aversion, at least at

the macro level, i.e., for the society as a whole.

In the modeling context, non-linearities and uncertainty go hand in hand. In fact,

the utility function’s curvature determines the degree of risk-aversion. This concept

is exploited in the first article of this thesis, which incorporates uncertainty into a

small-scale DSGE model. More specifically, this is done by a second-order approxi-

mation, while carrying out the derivation in great detail and carefully discussing the

more formal aspects. Moreover, the consequences of this method are discussed when

calibrating the equilibrium condition. The second article of the thesis considers the es-

2Keynes (1936, 249) starts chapter 20 by “Those who (rightly) dislike algebra will lose little by
omitting the first section of this chapter.” Schumpeter (1954, 1184) writes in the last paragraph of
his posthumously published (unfinished) manuscripts: “Keynes gave a mighty impulse [...]—almost all
work in macrodynamics now starts from a ‘dynamized’ form of his model.”

3A hundred years before the first widely recognized contributions to the field of microeconomics,
Bernoulli (1738) put forth the expected utility hypothesis.
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sential model part of the first paper and focuses on the (forward-looking) data needed

to meet the model’s requirements. A large number of uncertainty measures are uti-

lized to explain a possible approximation bias. The last article keeps to the same topic

but uses statistical distributions instead of actual data. In addition, theoretical (model)

and calibrated (data) parameters are used to produce more general statements. In this

way, several relationships are revealed with regard to a biased interpretation of this

class of models. In the following paragraphs, the respective approaches are explained

in more detail and also how they build on each other. Consequently, this dissertation,

consisting of three research papers, is divided in part one, two, and three.

Part 1: Quadratic Approximation

The first article takes up the method of higher-order approximation and derives a New

Keynesian model (as part of the DSGE family) in full detail. In general, when lin-

earizing the derived equations, a loss of information will be partly compensated by an

easier interpretation. However, from the start, the basic concepts and assumptions are

carefully explained with a focus on the parameters. Thus, the article is mainly theoret-

ical but uses numerical simulations to compare the purely linearized model with the

one containing uncertainty (i.e., variance) as a model variable. The calibration is done

following an extensive literature review to quantify possible values or ranges for all pa-

rameters. These are used to identify the equilibrium condition and, in turn, to obtain

the differences when comparing the models. Summarizing the results, nominal inter-

est rates are generally lower, taking uncertainty into account. The intuition behind

this result is relatively simple. The concavity of the aggregate utility function ensures

risk-averse households. The degree is determined by the elasticity of intertemporal

substitution, which plays a key role throughout the entire thesis. In times of great

uncertainty, households need compensation for the resulting disutility. In this simple

New Keynesian model, the nominal interest takes on this role.

Part 2: Internal and External Uncertainty

Part two narrows in on deriving the forward-looking IS curve (as part of the New

Keynesian model), taking it to a different direction by avoiding any Taylor expansion.

Furthermore, any changes that are made to the originally-derived model equations

are labeled approximation bias. In this context, this occurs by extracting parameters

from the expectation values (Jensen’s inequality) as it is common practice in the litera-

ture. In order to be consistent within the respective articles, the derivation of the Euler

equation is very similar to that in the first article. However, there are some differences.

The discount parameter is now time-varying, allowing for the conversion into a non-

constant real interest rate. The reason for this is to identify the Euler equation with
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possibly no (external) parameters but using interest rate data (real and nominal) and

forward-looking growth rates (Consensus Forecasts surveys) for the macroeconomic

indicators. At a later point, also the second parameter—the inverse of the elasticity of

intertemporal substitution—is potentially time-varying to allow for a structural break.

This parameter is determined by an own, maximum likelihood-type approach. For the

econometrics section, the difference of two versions, one with the mean forecasts and

one with the individual forecasts—used as a distribution to avoid any approximation—

is regressed on a variety of internal and external uncertainty measures. It is interesting

that some of these measures can be verified to have a significant impact on the approx-

imation bias. However, when using data on major economies with admittedly small

variation, the bias amounts to only ten basis points.

Part 3: The Extent of Jensen’s Inequality

Finally, the third article focuses on the same issue, asking the question: How large (in

basis points) can this difference become when converting the influencing factors into

parameters and testing a wide range of values—similar to the first article. This is a

more comprehensive approach to derive general results. The model setting is slightly

altered such that the resulting difference can be interpreted as growth rate differences.

By assuming log-normally distributed growth rates, an analytical solution is derived,

which describes the approximation bias depending on the second moment (i.e., uncer-

tainty) and the function’s curvature (i.e., the elasticity of intertemporal substitution).

To control for the variability, instead of inserting potential data points, the Consen-

sus Forecasts survey is utilized to calibrate a distribution of growth rates, further used

for Monte Carlo experiments. Augmenting the model by increasing the number of

variables gives an idea of how the bias reproduces in large-scale models. Finally, to

close the connection to part one, the last article is placed in the context of DSGE mod-

els, explaining their importance after the 2007–2008 financial crisis and their future

applications.

The central idea is that the approximation of a model’s equations suppresses un-

certainty as an input and, therefore, biases the results. Going beyond the content

of this thesis, this connects to the inherent question of whether “simple” macroeco-

nomic models can predict crisis scenarios. Additionally, using forward-looking data,

there are two possible problems: forecasts being mutually harmonized and recession-

ary events being underrepresented. Therefore, economic crises are difficult to predict

since the forecasts are designed in a way that, for example, the possibility of a stock

market crash is not reflected in (diminished) expected growth rates.
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Altogether macroeconomists build macroeconomic models, they teach and talk

about these, but they also bring attention to the possible caveats these models con-

tain, showing that they are probably right around the (curved) corner.
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Notational Remarks

(1) The original titles of the articles are too long as section names. These are now in

quotes at the beginning of each article directly under the new section title.

(2) The personal pronoun “We” (instead of “I”) is used throughout the articles for

consistency reasons since the third article is a collaboration and as a matter of

taste.

(3) “log(x)” always denotes the natural logarithm. “]0,1[” always denotes an open

interval (instead of “(0,1)”).

(4) For the conditional expectation, either Etxt+1 or Et[xt+1] is used. The latter case

arises when a better overview is needed.

(5) Only in the second article, “Std.Dev.” is used in this abbreviated form since it takes

an essential role and is frequently mentioned.

(6) On a few occasions, defined acronyms are spelled out to underpin the importance

at this point.

(7) Some acronyms are defined more than once since every article is considered to be

independent.

(8) The assignment of symbols is adjusted throughout the dissertation to minimize

the parallel usage of the same letter (e.g., i can be an index or the nominal interest

rate). Even then, the distinction is mostly ensured by subindices.

(9) References: To refer to an online-source, the DOI (Digital Object Identifier) is

preferred since it uniquely assigns the respective piece of literature to a string of

numbers. This works analogously to the ISBN. When this not possible (in case of a

corrupted number or an older book), JSTOR or Google Books is used. Other than

that, there are only a few exceptions (e.g., referring to the publisher’s website).
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1 Quadratic Approximation

“Calibrating the Equilibrium Condition of a
New Keynesian Model with Uncertainty”

Abstract

This paper presents a theoretical analysis of the simulated impact of uncer-

tainty in a New Keynesian model. In order to incorporate uncertainty, the basic

three-equation framework is modified by higher-order approximation resulting in

a non-linear (dynamic) IS curve. Using impulse response analyses to examine the

behavior of the model after a cost shock, we find interest rates in the version with

uncertainty to be lower in contrast to the case under certainty.

1.1 Introduction

For the last 20 years, the New Keynesian framework has been one of the workhorses

of macroeconomic analysis. The framework combines market frictions with optimiza-

tion behavior by the model’s agents, and, in its original construction, assumes perfect

foresight. However, the treatment of uncertainty is an important issue since its effect

can fundamentally change the prediction of these models.

This paper examines possible effects of uncertainty in a simple New Keynesian

model (NKM) augmented with stochastic terms and non-linearity that enters the model

through a second-order Taylor approximation regarding the IS curve. In line with the

literature (see, among others, the textbooks by Galí 2015 and Walsh 2010), cost shock

and demand shock are utilized for the New Keynesian Phillips curve (NKPC) and the

forward-looking IS curve, respectively. Schmitt-Grohé and Uribe (2004) use second-

order approximation in neoclassical growth models. Bauer and Neuenkirch (2017)

were the first to use such a framework in the context of a NKM and found empirical

evidence that central banks, indeed, take the resulting uncertainty into account. More-

over, their paper provides strong arguments that linear macroeconomic models found

in monetary policy literature are less than optimal (see also Boneva et al 2016 and

Fernández-Villaverde et al 2011). The main contribution this paper offers is the anal-

ysis of how the economy evolves after cost shocks, and the extent to which persistence

plays a role.
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In order to extend the NKM, we include a quadratic approximation in all derived

equations. First, in the analytical part, demand and supply side (including monop-

olistic competition and price rigidity), where firms use second-order approximation

when setting the prices, yields the NKPC. Second, the forward-looking IS curve with

uncertainty follows from the households’ Euler equation. This method differs funda-

mentally from standard approaches. Finally, to close the model, a (standard) targeting

rule is derived by the central bank’s optimization under discretion.

After adding AR(1) processes to the derived equations, conditional expectations

and variances can be substituted by solving forward. Next, parameter values are se-

lected for the resulting equilibrium condition (or instrument rule) with the focus on

persistence and shock strength. A numerical simulation analyzes differences to the ba-

sic model. Finally, to examine the adjustment of macro variables in the medium term,

impulse responses are carried out and contrasted with the linear counterpart.1 In the

same vein, but without an explicit derivation of the uncertainty, De Paoli and Zabczyk

(2013) compare linear and non-linear models.

The remainder of this paper is organized as follows. Section 1.2 derives a basic ver-

sion of the NKM augmented with a quadratic IS curve. Section 1.3 expands this model

with shocks and discusses the resulting equilibrium condition. Section 1.4 carries out

the numerical simulation of both the static equilibrium condition and the dynamic

view of an impulse response analysis. Section 1.5 concludes.

1To keep the framework easily understandable, government, investments, money supply, and labor
markets are omitted. Consequently, neither money holdings nor working hours (or leisure time) will
enter the households’ utility function.
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1.2 New Keynesian Model with Uncertainty

1.2.1 New Keynesian Phillips Curve

For deriving the NKPC, two optimization problems involving private households and

firms are employed, leading to aggregated demand and supply. Furthermore, price

rigidity is modeled using the method introduced by Calvo (1983).2 From the Calvo

Pricing section on, the time index t is used because it is needed to make a distinction

between the different periods.

Demand and Supply Side

Consumers

On the demand side, the representative consumer can choose from a variety of goods

Cϕ which results in an aggregate consumption of C. Usually, the CES function is used

to model monopolistic competition, one of the two market frictions incorporated into

the NKPC:3

C =
(∫ 1

0
C

ε−1
ε
ϕ dϕ

) ε
ε−1

. (1.1)

Here, ϕ ∈ [0,1] can be viewed as a continuum of firms from 0 to 100%. The exponent

is a measure for the substitutability between the goods Cϕ, where ε represents the

elasticity of substitution.

A Hicksian-like optimization helps to solve for the demand curve by means of the

Lagrangian function:

L (Cϕ,λ) =
∫ 1

0
Pϕ ·Cϕ dϕ −λ

(∫ 1

0
C

ε−1
ε
ϕ dϕ

) ε
ε−1

−C

 . (1.2)

Since firms have pricing power, the representative consumer takes prices Pϕ as given.

Minimizing expenditures
∫
PϕCϕ with the constraint of a certain consumption level C

requires the following first-order conditions:4

∂L

∂Cτ
= Pτ −λC

− 1
ε

τ

(∫ 1

0
C

ε−1
ε
ϕ dϕ

) 1
ε−1

= 0. (1.3)

2This paper focuses on the standard approach. For non-linear versions of the Phillips curve see the
articles by Collard and Juillard (2001), Dolado et al (2005), and Schaling (2004).

3Dixit and Stiglitz (1977) developed this approach. Although they used a discrete sum and no
integral, they received the same results.

4Note that τ denotes a continuum of derivatives.
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Differentiating with respect to λ provides the constraint, Eq.(1.1). Rearranging condi-

tion (1.3) and defining λ ≡ P as the aggregated price level yields

Cτ =
(
P
Pτ

)ε
C, (1.4)

the demand for good τ .5 The aggregated price level can be described by substituting

this in Eq.(1.1). Rearranging the formula gives us:

P =
(∫ 1

0
P 1−ε
ϕ dϕ

) 1
1−ε

. (1.5)

The lack of investment and governmental spendings in this model leads to Yτ = Cτ .

Each firms’ production Yτ will be consumed completely by private households and

hence Y = C.

Firms

Because any single firm is too small to directly influence other prices or productions,

each firm takes the aggregated demand function and the aggregated price level P as

given. It chooses its own price Pτ and faces the typical (real) profit maximization prob-

lem

max
Pτ ,Yτ

{PτYτ
P
−K(Yτ )

}
(1.6)

with the cost function K(.). Using Eq.(1.4), the first-order condition is straightforward

and leads to

P ∗τ =
( ε
ε − 1

)
K ′(Yτ ) · P , (1.7)

an important result that states that the optimal price P ∗τ equals the nominal marginal

costs and a mark-up bigger than one for all ε > 1.6 Log-linearizing and using the fact

that the long-run marginal costs equal the multiplicative inverse of the firms’ mark-up

(Kss = 1− ε−1) yields

p∗τ − p = ψyτ , (1.8)

5When the consumption constraint is relaxed by one unit, total consumption expenditures (see Galí
2015, 53) will increase to (C + 1)P = CP + P , where P is the amount by which the optimum will change.
This is exactly the information the Lagrange multiplier λ contains. See Appendix A.1 for the missing
steps in this paragraph.

6See Appendix A.2 for the missing steps.

12



where ψ is a parameter for the long-run cost elasticity and, therefore, log deviations

of marginal costs from their long-run trend are assumed to be linear.7 Inserting the

log-version of Eq.(1.4) gives

p∗τ − p =
(

ψ

1 +ψε

)
y. (1.9)

Making use of ŷ, the GDP growth rate around the steady state, as an approximation

for y and using χψ ∈ [0,1[ as a summarizing parameter, Eq.(1.9) yields

p∗τ − p = χψŷ, (1.10)

a description of the steady state output growth rate, depending on price level growth

and microeconomic behavior. The next section introduces a non-optimal price setting

scheme which replicates the actual observed economic patterns.8

Calvo Pricing

Nominal rigidities, the second market friction in the basic NKM, are implemented

through the assumption that the firms’ infrequent price adjustment follows an exoge-

nous Poisson process.9 This implies that all firms have a constant probability (φ) of

being unable to update their price in each period with φ ∈ [0,1[ (i.e., φ = 0 in the

absence of price rigidity). It is crucial that price setters do not know how long the

nominal price will remain in place. Only the expected value is known due to probabil-

ities that are all equal and constant for all firms and periods. This implies a probability

of φj for having today’s same price in j periods, so the average expected duration be-

tween price changes will be 1/(1−φ).

From this point forward, the time index t will be used because more than one period

is being considered. Simultaneously, the firm index τ is no longer important since it

is sufficient to calculate with a share of firms φ (or 1 −φ). Hence, p∗τ ≡ p∗t and p ≡ pt.
When qt is the price that firms set in period t (provided they are able to do so), the

following applies:

qt =
pt −φpt−1

1−φ
⇒ Etqt+1 =

Etpt+1 −φpt
1−φ

. (1.11)

7Note that lower case letters denote the log value of a variable in capital letters minus their long-run
log value, e.g., y = log(Y )− log(Yss). See Appendix A.3 for the missing steps.

8See the survey by Taylor (1999), that came to abundant evidence. See also Galí (2015, 7–8) for a
literature overview.

9Calvo (1983) originally wrote his article in continuous time. However, using discrete periods im-
mensely helps the clearness and is more realistic with regard to how firms actually operate. Moreover,
Calvo (1983, 396–397) shows the equivalence of both approaches.
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Because firms act on the probability of not being able to adjust prices in future

periods, they attempt to establish a price qt that is not necessarily the optimal price

p∗t , derived in the previous section. Also, in the presence of price rigidities, qt , p∗t
generally holds.

To reveal the mechanics behind the staggered price setting, it is convenient to ver-

bally treat pt and qt as level variables. Strictly speaking, firms set price growth paths

in the following optimization problem rather than maximizing a discounted profit as

the difference between revenue and costs.10 In the following, the optimal reset price,

determined by the discounted sum of future profits, is derived through a quadratic ap-

proximation of the per-period deviation from maximum-possible profit with % ∈ [0,1[,

the discount factor over an infinite planning horizon. Therefore, firms minimize their

loss function, the discounted deviations from p∗t over all t:

min
qt

Et

k ∞∑
j=0

%jφj
(
qt − p∗t+j

)2


 . (1.12)

The parameter k > 0 enters the loss function multiplicatively and indicates all exoge-

nous factors that will influence the costs of not setting the optimal price in each pe-

riod.11 The first-order condition is

∂
∂qt

= Et

2k ∞∑
j=0

(%φ)j(qt − p∗t+j)

 = 0. (1.13)

After rearranging and expressing q through p with Eq.(1.11), it follows that

pt −φpt−1 = %φ(Etpt+1 −φpt) + (1−φ)(1− %φ)p∗t (1.14)

only contains parameters and variants of the variable p.12 Expressing p through π,13

as well as isolating (p∗t − pt) and replacing it with the result in Eq.(1.10), gives

πt = %Etπt+1 +
χψ(1−φ)(1− %φ)

φ
ŷt. (1.15)

10See Walsh (2010, 241–242) for the use of level variables in Calvo pricing.
11Note that it can also come up as an additive term or any other positive monotonic transformation

and does not alter the results.
12See Appendix A.4 for the missing steps.
13

pt − pt−1 = logPt − logPss − (logPt−1 − logPss) = log
(
Pt
Pt−1

)
= log(1 +πt) ≈ πt .
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In a final step, a summarizing parameter κ > 0 for all parameters, multiplied with

ŷt, will be defined. This yields the NKPC:14

πt = %Etπt+1 +κŷt. (1.16)

Both the expected inflation rate Etπt+1 and the GDP growth rate around the steady

state ŷt (or output gap) have a positive impact on πt since %,κ > 0. Moreover, the slope

of the NKPC (κ), depends on all four parameters (%,ψ,ε, and φ) of this section.15

1.2.2 The Quadratic IS Curve

‘The objective’ is to derive an Euler equation via maximizing utility with a dynamic

budget constraint. Initially, it is not necessary to formulate an explicit utility func-

tion. On the contrary, the general marginal utility provides a better insight into the

intertemporal mechanics. The only specific assumption is not taking money, work-

ing hours or any other possible utility-gainer into consideration. The utility func-

tion solely relies on consumption, thus, households maximize their intertemporal dis-

counted utility

max
Ct

Et

 ∞∑
s=t

%s−tU (Cs)


 . (1.17)

Taking into account an intertemporal budget constraint with prices and the interest

rate it, the maximization problem leads to the Euler equation

U ′(Ct) = % · (1 + it) ·Et
[
Pt ·U ′(Ct+1)

Pt+1

]
, (1.18)

revealing the intertemporal relationship of the marginal utility out of consumption.16

Marginal utility in period t equals the counterpart in t+1, corrected by discount factor,

nominal interest rate, and the ratio of current and expected future price level. Assum-

ing it rises, marginal utility in t would also rise relative to period t + 1. Given the

diminishing marginal utility property and, therefore, concavity, consumption will be

higher in the future.17

14In contrast to the IS curve discussed in the next section, the NKPC is still linear. Simulations in
Matlab show that the effect of a non-linear NKPC is rather small. That is why our focus on uncertainty
relies on the IS curve.

15Depending on the exact model, the slope of the NKPC can have a slightly different meaning, e.g.,
Walsh (2010, 336) uses a measure for the firm’s real marginal costs instead of the output gap.

16See Appendix A.5 for the missing steps.
17Note that present consumption could also increase because of the income effect.

15



One convenient formulation for such a function is U (Ct) = (1−γ)−1 · (C1−γ
t −1) with

γ > 0 implying 1/γ as the intertemporal elasticity of substitution (EIS). Substituting

this in the Euler equation gives

Y
−γ
t = % · (1 + it) ·Et

Pt ·Y −γt+1

Pt+1

 , (1.19)

when recalling the market clearing condition Y = C. The long-run real interest rate r

enters the equation through % since it equals 1/% − 1.18

Quadratic Approximation

Eq.(1.19) can be prepared for quadratic approximation by inserting 1/(1 + r) for %,

treating t-measurable variables as constants for the conditional expectation, rearrang-

ing, and taking logs:

log
(

1 + r
1 + it

)
= logEt

[(
Yt+1

Yt

)−γ]
− logEt

[
Pt+1

Pt

]
. (1.20)

Ignoring Jensen’s inequality is equivalent to first-order Taylor series expansions of both

logarithm and exponential function. Furthermore, the right side of Eq.(1.20) can be

written as

' Et

[
log

((
Yt+1

Yt

)−γ)]
−Et

[
log

(
Pt+1

Pt

)]
(1.21)

and thereby be expressed in growth rates:19,20

Et[−γ log(1 + ỹt+1)]−Et[log(1 +πt+1)]. (1.22)

Instead of linearizing, the logarithm will be represented by a second-degree poly-

nomial:21

≈ Et
[
−γ

(
ỹt+1 −

1
2
ỹt+1

2
)]
−Et

[
πt+1 −

1
2
π2
t+1

]
(1.23.1)

= −γEtỹt+1 +
γ

2
Etỹt+1

2 −Etπt+1 +
1
2

Etπ
2
t+1 (1.23.2)

= γŷt −γEtŷt+1 +
γ

2
Etỹt+1

2 −Etπt+1 +
1
2

Etπ
2
t+1. (1.23.3)

18The relation follows from the steady state Euler equation. See Galí (2015, 132) for a more complex
definition of the long-term real interest rate.

19See Appendix A.6 for the missing steps.
20Note that the use of the actual GDP growth rate ỹt+1 in Eq.(1.22) is merely for clarity. The relation-

ship between ỹt+1 and ŷt+1 is: ŷt+1 ≈ ỹt+1 + ŷt .
21See Appendix A.7 for more detail.
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Bringing together the linearized form of the left side in Eq.(1.20) yields the quadratic

IS curve:

ŷt = Etŷt+1 −
1
γ

(it − r −Etπt+1)− 1
2γ

Etπ
2
t+1 −

1
2

Etỹt+1
2. (1.24)

Referring to the original graphical IS relation (in the ŷ/i–space), the curve shifts to

the right if the long-term real interest rate r, the output gap expectations Etŷt+1 or

the inflation expectations Etπt+1 rise. However, the slope will rise and the curve be-

comes flatter if the intertemporal elasticity of substitution (1/γ) rises. The second-

order terms have a negative effect on ŷt. However, Eq.(1.24) is not in reduced form

since the last term still contains ŷt. The formula for the conditional variance, can be

utilized to show the second moments’ influence in detail:22

ŷt = Etŷt+1 −
1
γ

(it − r −Etπt+1)− 1
2γ

Vartπt+1 −
1
2

Vartỹt+1

− 1
2γ

(Etπt+1)2 − 1
2

(Etỹt+1)2. (1.25)

In a first step, looking only at the variances and solving for the interest rate yields

it = −γŷt + r + Etπt+1 +γEtŷt+1 −
1
2

Vartπt+1 −
γ

2
Vartŷt+1 − . . . , (1.26)

which states that uncertainty would shift the curve to the left compared to the original

IS curve.23 Considering the second moment, there are two additional effects namely

expected output gap growth affects the slope and a variation of the curve’s shape. That

is because the last term of Eq.(1.25) contains ŷt and ŷt
2:

−1
2

(Etŷt+1 − ŷt)2 = −1
2

(Etŷt+1)2 + Etŷt+1 · ŷt −
1
2
ŷt

2. (1.27)

Larger values for Etŷt+1 result in a (slightly) flatter IS curve and vice versa. Figure

1.1 illustrates the shift, the different slope, and the quadratic form.

22The following applies for a random variable z:

Vartzt+1 = Etz
2
t+1 − (Etzt+1)2 ⇔ Etz

2
t+1 = (Etzt+1)2 + Vartzt+1.

23Note that Vart ỹt+1 ≈ Vart(ŷt+1− ŷt) = Vart ŷt+1 because ŷt is t-measurable and constants (in period t)
do not affect Vart .
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ŷt

it linearized IS

slope: −σ + σE
t ŷt+1

1.

quadratic IS
2.

Figure 1.1: 1. Shift of the locus and a change in the slope (for Et ŷt+1 > 0). 2. The quadratic
form.

Inserting everything in Eq.(1.26) gives

it =−
γ

2
ŷt

2 + (γEtŷt+1 −γ)ŷt + r + Etπt+1 +γEtŷt+1 −
1
2

Vartπt+1 −
γ

2
Vartŷt+1

− 1
2

(Etπt+1)2 −
γ

2
(Etŷt+1)2. (1.28)

In the quadratic IS formula, γ is the only parameter besides r. When examining the

effects of a variation in γ on the derived curve, it is useful to recapitulate the mean-

ing of 1/γ . The EIS measures the strength of the relationship between it and ŷt+1/ŷt

(also yt+1/yt and Ct+1/Ct). A positive EIS implies a positive relationship. Also, if it
rises, there is a negative effect on ŷt due to the substitution effect. If the EIS increases

(decreases) the relationship gets stronger (weaker) and the IS curve’s slope should be

flatter (steeper). Hence, increasing γ should lead to a steeper IS curve. The effect is

indeed a more concave and steeper curve. Additionally, it shifts to the left (right) if

uncertainty is relatively high (low) in comparison to the expected values.
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1.2.3 Targeting Rule under Discretion

The central bank takes Phillips and IS curves as given and seeks to optimally set the

interest rate for period t. Therefore, the central bank’s targeting rule will be derived

by minimizing the discounted loss function over all periods24

min
π, ŷ

Et

 ∞∑
s=t

%s−t
(
(πs −π∗)2 + δŷs

2
)
 (1.29)

resulting in the standard targeting rule under discretion:25

δŷt = −κπt ⇔ ŷt = −κ
δ
πt. (1.30)

Every difference between the inflation rate and the central bank’s target π∗ results

in a loss.26 Also, every output gap leads to a loss but is reduced by a weighting factor

δ, normally smaller than one. Squaring ensures that higher deviations yield dispropor-

tionately higher losses and the optimized variables will not vanish in the derivatives.

Moreover, it makes the loss function symmetrical.27

Although the optimal interest rate is not explicitly given, all relationships between

the macroeconomic variables are derived. The process is as follows: the nominal inter-

est rate has an effect on the output gap (IS curve), which, in consequence, affects the in-

flation rate (NKPC). Furthermore, Eq.(1.30), the “leaning against the wind” condition,

implies a countercyclical monetary policy intended to stabilize prices and eventually

contract the economy. The degree of this contraction increases in κ and decreases in δ,

the weight on output stabilization.

Finally, Eqs.(1.16), (1.25), and (1.30) can lead to a forward-looking Taylor type rule

(with uncertainty added). Plugging Eq.(1.30) into Eq.(1.16) gives

−δ
κ
ŷt = %Etπt+1 +κŷt ⇔ ŷt = − κ

δ+κ2 · %Etπt+1, (1.31)

24The loss function can be derived by a second-order approximation of the households’ welfare loss,
first introduced by Rotemberg and Woodford (1999, 54–61). It can also be found in the textbooks by
Galí (2015), Walsh (2010), and Woodford (2003b). In a similar vein, Kim et al (2008, 3410) argue that
utility-based welfare effects of monetary policy should include second-order or even higher-order terms.

25See Appendix A.8 for the missing steps.
26Note that π∗ = 0 as it does not change the essential findings.
27See Nobay and Peel (2003, 661) for an asymmetric loss function (Linex form) that becomes

quadratic in a special case.
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which can be utilized for Eq.(1.25):

it = r +
(
1 +

%κγ

δ+κ2

)
Etπt+1 +γEtŷt+1 −

1
2

Vartπt+1 −
γ

2
Vartŷt+1

− 1
2

(Etπt+1)2 −
γ

2
(Etŷt+1 − ŷt)2. (1.32)

When examining the coefficients on first and second moments, the parameters γ , δ,

κ, and % have to be taken into account. Larger values for κ and % increase the weight

on expected inflation, whereas larger values for γ increase not only the weight on

expected inflation, but on expectation and uncertainty concerning the output gap

growth, as well.28 Following Bauer and Neuenkirch (2017), the squared expected

inflation rate and the squared expected output gap growth rate should not be over-

interpreted here, as it takes very small values for advanced economies.

Ultimately, the difference between this approach and the conventionally derived

Taylor rules lies in the negative variance term that Bauer and Neuenkirch (2017, 105–

107) empirically confirmed for uncertainty in future inflation rates where central banks

lower the interest rate for higher values of Vartπt+1. Branch (2014, 1042–1044) also

adds variances in an empirical model for a Taylor rule. He estimates negative coef-

ficients with a more significant (and more negative) value for the coefficient on the

inflation variance.

The NKPC, the IS curve, and the targeting rule were all derived by second-order

approximations. However, this implements uncertainty only in the IS curve since Pt+1

and Yt+1 are non-t-measurable. Thus, besides the quadratic terms of the IS curve, all

derivations follow standard approaches.

28The increasing relationship holds for δ = 0.25 (independent of % and γ) if κ < 0.5, which can be
assumed (see Appendix A.11).
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1.3 Persistent Shocks and Equilibrium Condition

This section adds stochastic terms to the derived curves and solves these forward to a

reduced form solution for the nominal interest rate.

1.3.1 Adding Persistent Stochastic Shocks

Given the possibility that unforeseen events might interrupt the normal economic

process (e.g., inventions, cold winters, higher oil prices, wars), stochastic shocks (in

reduced-form) will be added to the existing relationships. The realistic feature of a

certain duration of the event that will dwindle over time can be modeled by means of

stationary AR(1) processes:29

et = ξet−1 + ζt, (1.33.1)

ut = νut−1 + εt. (1.33.2)

The coefficients of the shocks in period (t − 1), ξ,ν ∈ ]0,1[, declare the percentage

impact of shocks that carries over to the subsequent period. Additional assumptions

are normally distributed error terms with an expected value equal to zero, that is,

ζt ∼N (0,σ2
e ) and εt ∼N (0,σ2

u ), which are also serially uncorrelated.

Adding Eq.(1.33.1) to the NKPC, Eq.(1.16), can be described as a cost shock, a cost-

push shock or an inflation shock and adding Eq.(1.33.2) to the IS curve, Eq.(1.25), in-

dicates a taste shock, a demand shock or fluctuations in the flexible-price equilibrium

output level (Walsh 2010, 352):30

πt = %Etπt+1 +κŷt + et, (1.34.1)

ŷt = Etŷt+1 −
1
γ

(it − r −Etπt+1)− 1
2γ

Etπ
2
t+1 −

1
2

Etỹt+1
2 +ut. (1.34.2)

1.3.2 Equilibrium Condition

A standard approach is chosen to substitute expectations through forward solving.

Inserting the targeting rule (1.30) into the stochastic NKPC yields

πt = %Etπt+1 −
κ2

δ
πt + et ⇔ πt =

%δ

δ+κ2 Etπt+1 +
δ

δ+κ2 et. (1.35)

29For instance, Clarida et al (2000, 170) are also assuming a stationary AR(1) process in the context
of a NKM.

30See Galí (2015, 128) for a further discussion of cost shocks, the type that will be most important
throughout the remainder of the paper.
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Devising the same formula for t + 1 and substituting πt+1 gives

πt =
%δ

δ+κ2 Et
[ %δ

δ+κ2Et+1[πt+2] +
δ

δ+κ2 et+1

]
+

δ

δ+κ2 et. (1.36)

With Et[Et+n[π]] = Et[π] and Et[et+n] = ξnet, future expectations and shocks will

leave the equation:

πt =
( %δ

δ+κ2

)2
Et[πt+2] +

%δξ

δ+κ2 ·
δ

δ+κ2 et +
δ

δ+κ2 et. (1.37)

After (n− 1) iterations, the equation converts to

πt =
( %δ

δ+κ2

)n
Et[πt+n] +

δ

δ+κ2 et

n−1∑
j=0

( %δξ
δ+κ2

)j
. (1.38)

Developing n towards infinity, and making use of the formula for the infinite geo-

metric series, leaves only parameters and the cost shock:

πt =
δ

δ+κ2 et ·
δ+κ2

δ+κ2 − %δξ
. (1.39)

Rearranging and setting θ = (κ2 + (1− %ξ)δ)−1 as an auxiliary parameter results in the

equilibrium conditions for πt and ŷt:31

πt =
δ

κ2 + (1− %ξ)δ
· et = δθet (1.40.1)

and ŷt =
−κ

κ2 + (1− %ξ)δ
· et = −κθet. (1.40.2)

Determine the expectation values analogously:32

Etπt+1 = δθEtet+1 = δξθet (1.41.1)

and Etŷt+1 = −κθEtet+1 = −κξθet. (1.41.2)

Solution without Uncertainty

In a first step, we solve for the target interest rate

it = r −γŷt +γEtŷt+1 + Etπt+1 +γut, (1.42)

31See also Clarida et al (1999, 1680) for a comparison of these results to those under commitment.
32Etet+1 = Et [ξet + ζt+1] = ξEtet + Etζt+1︸ ︷︷ ︸

=0

= ξet .
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which can be rewritten with the equilibrium conditions (1.40.2), (1.41.1), and (1.41.2):

it = r +γκθet −γκξθet + δξθet +γut. (1.43)

Simplifying results in

it = r + ((1− ξ)γκ+ ξδ)θet +γut (1.44)

and finally setting χξ > 0 as a summarizing parameter gives

it = r +χξet +γut, (1.45)

a reduced-form solution for the nominal interest rate that describes the static equi-

librium behavior under optimal discretion. The central bank’s optimized interest rate

in period t can be expressed through the long-run real interest rate and both shocks,

which are weighted by a composition of parameters. Since these coefficients are pos-

itive, larger shocks correspond to higher interest rates.33 Galí (2015, 133–134) refers

to this equation type as instrument rule. In contrast to targeting rules (see Eq.(1.30),

“practical guides for monetary policy”), Eq.(1.45) is not easy to implement.34 It re-

quires real-time observation of variations in the cost-push shock and knowledge of the

model’s parameters, including the efficient interest rate r.

Model with Uncertainty

After including the second-order terms, however, Eq.(1.45) will be examined theo-

retically in order to understand how shocks and persistence correspond to it in the

equilibrium.

The basic procedure is to solve the IS curve for the interest rate and replace all

variables with shocks. The difference between this approach and standard approaches

is the quadratic terms, thus lower interest rates should be expected. Beginning with

the expected value of the squared inflation (Etπ
2
t+1), Eq.(1.40.1) in period t + 1 gives

πt+1 = δθet+1 = δθ (ξet + ζt+1) , (1.46)

by using the former shock definition with persistence and a normally distributed error

term. Therefore,

Etπ
2
t+1 = Et

[
(δθ)2 (ξet + ζt+1)2

]
= (δθ)2Et

[
ξ2e2

t + 2ξetζt+1 + ζ2
t+1

]
, (1.47)

33See also Walsh (2010, 364) for a more detailed discussion.
34The paper by Svensson and Woodford (2005) discusses the “targeting” vs. “instrument” topic in

more detail.
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where the middle term equals zero, since et can be treated as a constant in Et and

Etζt+1 = 0. Inserting the variance, again with Eq.(22), yields

(δθξ)2e2
t + (δθ)2

(
Vartζt+1 + (Etζt+1)2

)
. (1.48)

The variance is defined as σ2
e and hence,

Etπ
2
t+1 = (δθ)2

(
ξ2e2

t + σ2
e

)
. (1.49)

Doing the same for the expected value of the squared output growth rate (Etỹt+1
2 =

Et(ŷt+1 − ŷt)2),35 Eq.(1.40.2) in period t + 1 gives

ŷt+1 = −κθet+1 = −κθ (ξet + ζt+1) (1.50)

and therefore,

Et(ŷt+1 − ŷt)2 = (κθ)2
(
(1− ξ)2e2

t + σ2
e

)
. (1.51)

The equilibrium condition under uncertainty is now

it = r +χξet −
1
2

((
(1− ξ)2γκ2 + ξ2δ2

)
θ2e2

t +
(
γκ2 + δ2

)
θ2σ2

e

)
+γut (1.52)

and finally setting χe > 0 and χγ > 0 as summarizing parameters gives

it = r +χξet −
1
2

(
χee

2
t +χγσ

2
e

)
+γut, (1.53)

a reduced-form solution for the nominal interest rate that describes the static equilib-

rium behavior under uncertainty.36 Compared to the approach in Clarida et al (1999),

a negative term and an additional parameter
(
σ2
e

)
enters the condition. The term en-

tails a generally lower interest rate level. Moreover, a larger cost shock variance also

corresponds to lower values for it, an essential result.37

35Note that the output gap can also be replaced by the inflation rate with the standard targeting rule
(1.30) to obtain the same results. See Appendix A.10 for the missing steps.

36Going one step further, et and ut could be replaced by the error terms:

it = r +χξ
∞∑
k=0

ξkζt−k −
1
2

χe
 ∞∑
k=0

ξkζt−k

2

+χγσ
2
e

+γ
∞∑
k=0

νkεt−k .

This visualizes the past (known) shocks that are discounted by ξ and ν.
37The equation in its static form does not directly contain ν and σ2

u . This is due to the simplified
targeting rule and the resulting assumption that ŷ and π can be represented only through cost shocks.
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1.4 Numerical Simulation

Table 1.1 shows the baseline (BL) values and the overall range used when taking all

simulations into account.38 Every value is assumed to be obtained on a quarterly basis.

In order to cover even extreme scenarios, et initially ranges from −0.5% to 2.5%.

Parameter BL Calibration Applied Range Description

% 0.99 0.99 Discount factor

κ 0.04 0.01 - 0.25 Slope of the NKPC

γ 1 0.5 - 5 Reciprocal value of the EIS

δ 0.25 0.25 Weight on output fluc.

ξ 0.6 - 0.8 0.6 - 0.85 Cost shock persistence

σ2
e 10−4 5 · 10−5 - 5 · 10−4 Cost shock variance

et −0.005 - 0.025 −0.005 - 0.025 Cost shock

Table 1.1: Overview of all Parameters

1.4.1 Equilibrium Condition

In the baseline calibration, shown in Table 1.1, % = 0.99, κ = 0.04, γ = 1, δ = 0.25,

σ2
e = 10−4, ξ reaches from 0.6 to 0.8 and et from −0.5% to 2%. Since ν and σ2

u play no

role when the central bank acts under discretion, ut is assumed to be zero. The optimal

interest rate would react one-to-one and there would be no gain of further insights.

Figure 1.2 shows the results of the model with uncertainty using a variety of persis-

tence and cost shock combinations. The interest rate takes values from −1.1% to 10.2%.

It is assumed that negative interest rates are possible and that the zero lower bound

does not represent an obstacle. Indeed, central banks can raise a tax on deposits made

by commercial banks.39 When the model calibrates negative values for it, it could also

be interpreted as an unconventional policy (i.e., quantitative easing) by the monetary

authorities.40 The lowest interest rates occur hand-in-hand with highly persistent neg-

ative cost shocks, a fairly extreme scenario since the only major developed country to

have faced deflationary tendencies over a prolonged period of time is Japan. But even

in the latter case, the negative cost shocks were closer to zero. As expected, the highest

38See Appendix A.11 for parameter discussion and literature review.
39The concise paper by Bassetto (2004) derives a framework in which the central bank commits to

negative nominal interest rates and discusses the equilibrium condition in such a situation.
40The Wu and Xia (2016) shadow rate does exactly that and is negative since mid-2009 for the federal

funds rate.
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Figure 1.2: Corresponding interest rate in the equilibrium condition. Horizontal axes: Persis-
tence ξ and cost shock et. Vertical axis: Interest rate it.

values come with large cost shocks. For a low persistence, regardless of the shocks, the

resulting interest rate varies very little.

Model Comparison

To isolate the partial effect of the parameters, the interest rate differences after sub-

tracting the values with (see Figure 1.2) and without uncertainty are shown, whereas

values for it are always higher in the latter case. Due to small interest rate differences,

the vertical axis in Figures 1.3 to 1.6 is scaled in basis points (100 basis points = one

percentage point).

Figure 1.3 gives a broad overview on the effect of uncertainty. There is a signifi-

cant amount of persistence/shock combinations that support the estimations by Bauer

and Neuenkirch (2017). In particular, highly persistent shocks affect the interest rate

outcome in the equilibrium behavior. In this case, the interest rate difference reaches

from 10 to 60 basis points. Figure 1.4 can be understood as a cross section of Figure

1.3 with ξ = 0.8, a realistic assumption when reviewing the literature, such as Smets

and Wouters (2003). It reveals, as one of the main findings from a theoretical point of

view, that accounting for uncertainty results in lower policy rates, even during tran-

quil times. A black line is drawn at 25 basis points to roughly show the empirical

conclusion by Bauer and Neuenkirch (2017, 109).41

41Note that Bauer and Neuenkirch (2017) have no assumption regarding the level of shock persis-
tence.
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Figure 1.3: Differences between both cases (with and without uncertainty) in the equilibrium
condition. Horizontal axes: Persistence ξ and cost shock et. Vertical axis: Difference of interest
rate it in basis points.

Figure 1.4: Differences between both cases (with and without uncertainty) in the equilibrium
condition (ξ = 0.8). Horizontal axis: Cost shock et. Vertical axis: Difference of interest rate it
in basis points.

1.4.2 Impulse Response Analysis

First, we examine the macro variables’ short- and medium-term adjustments in the

newly derived framework. In a subsequent step, the latter will be compared to the

basic NKM.
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Figure 1.5: Dynamic responses to a cost shock by 100 basis points. Horizontal axes: Timeline
in quarters. Vertical axes: Responses of it, et, πt, Etπt+1, ŷt, and Et ŷt+1 for ξ ∈ {0.6,0.7,0.8} in
basis points.

Figure 1.5 shows the adjustment over time to the steady state in the baseline case

(see Table 1.1). The dashed lines indicate the scenarios of (relatively) high and low

persistent shocks. In these scenarios, the upper (lower) course corresponds to the high

(low) persistence for the nominal interest rate, the shock strength, and the (expected)

inflation rate. The opposite is the case with regard to the (expected) output gap. All

values adjust normally, but with quantitative differences if the level of persistence is

varied. In the median case, the nominal interest rate has to be raised by almost 2.5%

and should then sluggishly adjust to the steady state (depending on the real interest

rate). The inflation rate and output gap follow their respective expectation values.

The initial inflation rate is ranged between 2.5% and 5%, and the output gap starts at

around −0.5%.
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Model Comparison

Similar to Section 1.4.1 the following graphics show the “gap” in it when accounting

for uncertainty.

Figure 1.6: Comparing dynamic responses to a cost shock by 100 basis points with ξ = 0.75.
Horizontal axes: Timeline in quarters. Vertical axes: Difference of interest rate it (with and
without uncertainty) in basis points.

Figure 1.6 compares the NKM with and without uncertainty and shows the result-

ing differences of the nominal interest rate in each case. In addition, different scenar-

ios are positioned opposite each other: Slope of the NKPC with 0.01 (black dotted)

and 0.25 (dashed), EIS with 0.5 (black dotted) and 5 (dashed), shock persistence with

0.85 (black dotted) and 0.6 (dashed), shock variance with 5 · 10−4 (black dotted) and

5 ·10−5 (dashed). The cases with high shock persistence and high shock variance play a

very important role showing a difference of up to 30 and 40 basis points, respectively.

Also, with a very flat Phillips curve (in contrast to a steep NKPC) an effect comes to

light (around 10 basis points). Comparable effects can be observed in the different EIS

cases, but variations in elasticity play a negligible role. Although these examples in-

dicate that there is no obligatory difference between the model with uncertainty and

without uncertainty, (highly) persistent shocks and, in particular, increasing levels of

uncertainty show distinctive variations.
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1.5 Conclusions

This theoretical paper explores a variety of situations in which uncertainty is incorpo-

rated in the New Keynesian framework. The analysis focuses on how the equilibrium

behaves when confronted with a wide range of parameter values. Our analysis reveals

several points of interest. First, interest rates are generally lower when taking uncer-

tainty into account. Under reasonable assumptions, accounting for uncertainty leads

to lower interest rates of roughly 25 basis points. Second, when there is a higher degree

of cost shocks (positive or negative) and shocks are more persistent, this difference in

interest rates increases. We also show that a steeper NKPC decreases the impact of

uncertainty. Third, over time, the impact of uncertainty on the nominal interest rate

decreases and the adjustment critically depends on the degree of persistence. Our

theoretical analysis also confirms the results found in the empirical literature.

There are some open avenues left for future research. First, a targeting rule de-

rived under commitment could be taken into account. Second, due to the negative

interest rate in the equilibrium and because of the more prominent role of unconven-

tional monetary policy in recent years, the model could include a zero lower bound

when considering this type of policy. Third, calibrating the shock variance and the

underlying distribution, which is essential for the resulting uncertainty, might also be

considered as an additional topic to explore.
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A.1 Consumers – Calculation Steps

∂L /∂Cτ can be obtained by using the chain rule:

Pτ −λ
ε

ε − 1

(∫ 1

0
C

ε−1
ε
ϕ dϕ

) ε
ε−1−1

· ε − 1
ε
C

ε−1
ε −1
τ︸        ︷︷        ︸

derivative of sub-function

= 0 (A1.1)

⇔ Pτ −λ
(∫ 1

0
C

ε−1
ε
ϕ dϕ

) 1
ε−1

·C−
1
ε

τ = 0. (A1.2)

First, exponentiate the integral with ε and 1/ε for rearranging the first-order con-

dition. Then insert C from the constraint. It follows that

Pτ = λC
− 1
ε

τ C
1
ε ⇔ Pτ = λ

(
C
Cτ

) 1
ε

(A2.1)

⇔ Pτ
λ

=
(Cτ
C

)− 1
ε

⇔
(Pτ
λ

)−ε
=
Cτ
C
. (A2.2)

To obtain Eq.(1.5), solve Eq.(1.4) for Cτ and insert the result for all firms in the

constraint, Eq.(1.1):

C =


∫ 1

0

((
Pϕ
P

)−ε
C

) ε−1
ε

dϕ


ε
ε−1

⇔ C =
(1
P

)−ε
C

(∫ 1

0
P 1−ε
ϕ dϕ

) ε
ε−1

(A3.1)
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⇔ P −ε =
(∫ 1

0
P 1−ε
ϕ dϕ

) ε
ε−1

⇔ P =
(∫ 1

0
P 1−ε
ϕ dϕ

) 1
1−ε

. (A3.2)

A.2 Firms – Calculation Steps

Eq.(1.6) can be written in more detail. Using Eq.(1.4) with Y and rearranging leads to

max
Pτ

{(Pτ
P

)1−ε
Y −K

((Pτ
P

)−ε
Y

)}
. (A4)

The first-order condition is now straightforward, using the chain rule:

∂
∂Pτ

= (1− ε)
(Pτ
P

)−ε
· Y
P
−K ′(Yτ ) · (−ε)

(Pτ
P

)−ε−1
· Y
P

= 0. (A5)

Simplifying and denoting the optimal price with P ∗τ yields

(ε − 1)
(P ∗τ
P

)−ε
= K ′(Yτ ) · ε

(P ∗τ
P

)−ε−1
(A6.1)

⇔ 1 =
( ε
ε − 1

)
K ′(Yτ )

(P ∗τ
P

)−1
(A6.2)

⇔ P ∗τ =
( ε
ε − 1

)
K ′(Yτ ) · P . (A6.3)

However, perfect substitutes let the monopolistic structure vanish and show the typi-

cal polypolistic result:

lim
ε→∞

( ε
ε − 1

)
K ′(Yτ ) · P = K ′(Yτ ) · P = P ∗τ . (A7)

Now, with a cost function in real terms of quantities Yτ defined as

K(Yτ ) =
cvar
ψ + 1

Y
ψ+1
τ + cf ix, (A8)

where cf ix are the fix costs, cvar is a measure for the variable costs and ψ represents the

elasticity of marginal costs, Eq.(1.7) becomes a micro-funded AS curve that takes the

form of a power function:

P ∗τ =
( ε
ε − 1

)
cvarY

ψ
τ · P . (A9)

A.3 Log-Linearization

It is convenient to use log-linearized variables instead of level variables in order to

solve the model analytically. Also, some interpretations of the results, in terms of
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elasticity and growth rates, become quite useful. So both Eq.(1.4) and Eq.(A9) can be

approximated through log-linearization around the steady state. Thus, the approxi-

mation becomes more precise with small growth rates. However, some preparation is

necessary. Let Z be a state variable that can change over time and Zss its long-term

value. When defining

z ≡ logZ − logZss, (A10)

z becomes a good approximation of ẑ, the growth rate around the steady state. Also, a

first-order Taylor approximation “in reverse” shows the relationship between z and ẑ:

ẑ ≈ log(1 + ẑ) = log
(
1 +
Z −Zss
Zss

)
= logZ − logZss. (A11)

Furthermore, in the steady state, long-term values for individual variables are by

definition the same as for those on aggregated level, thus Zτss = Zss. The state would

otherwise include endogenous forces. And finally, the long-run marginal costs equal

the multiplicative inverse of the firms’ mark-up:42

cvarY
ψ
ss =

ε − 1
ε
. (A12)

An explanation is the long-run version of Eq.(A9) and hence Pτss = Pss. Now this can

be applied to the previous results. First, Eq.(1.4), the AD curve will be log-linearized.

Taking logs, expanding with the log long-term values, and using (A10) gives

logYτ = logY + ε(logP − logPτ ) (A13.1)

⇔ logYτ − logY = −ε(logPτ − logP ) (A13.2)

⇔ logYτ − logYss − (logY − logYss) = −ε(logPτ − logPss − (logP − logPss)) (A13.3)

⇔ yτ − y = −ε(pτ − p) (A13.4)

⇔ yτ = −εpτ + εp+ y, (A13.5)

a linearized AD curve in terms of growth rates with the slope of −1/ε. A higher elastic-

ity of substitution would result in a flatter curve, so a change in the firm’s price growth

pτ would have a stronger effect on production growth yτ .

Next, with the use of (A12), the AS curve type Eq.(A9), can be rewritten in a similar

way:

logP ∗τ = log
( ε
ε − 1

)
+ logcvar +ψ logYτ + logP (A14.1)

42Other authors simply define this property, see e.g., Galí (2015, 57).
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⇔ logP ∗τ − logP = log
( ε
ε − 1

)
+ logcvar +ψ (logYτ − logYss + logYss) (A14.2)

⇔ p∗τ − p = ψyτ + log
( ε
ε − 1

)
+ logcvar +ψ logYss (A14.3)

⇔ p∗τ − p = ψyτ + log
(
cvarY

ψ
ss

)
− log

(ε − 1
ε

)
(A14.4)

⇔ p∗τ − p = ψyτ + log

 cvarY ψss(ε − 1)/ε

︸           ︷︷           ︸
=0

. (A14.5)

The latter expression shows the assumption that the log deviations of marginal

costs from their long-run trend values are linear in the amount of ψ. When the firm’s

optimized price growth p∗τ is equal to the aggregated price growth p, then there is no

growth in the firm’s production.

Having log-linearized both demand and supply side, Figure A1 sums up.

yτ

pτ

p

slope: ψ

p+
y

ε

εp+ y

slope: −1/ε

ψy

1 + εψ
+ p

y

1 + εψ

Figure A1: Graphical results of households’ and firms’ static optimization.

Finally, inserting (A13.5) in (A14.5) combines all the results and gives

p∗τ − p = ψ(−εp∗τ + εp+ y) (A15.1)
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⇔ p∗τ − p = −ψε(p∗τ − p) +ψy (A15.2)

⇔ (1 +ψε)(p∗τ − p) = ψy (A15.3)

⇔ p∗τ − p =
(

ψ

1 +ψε

)
y. (A15.4)

A.4 Calvo Pricing – Calculation Steps

Dividing the first-order condition by 2k, using the fact that qt is t-measurable, and

expanding the sum gives

∞∑
j=0

(%φ)jqt −
∞∑
j=0

(%φ)jEtp
∗
t+j = 0. (A16)

Excluding qt from the sum, using the formula for an infinite geometric series, and

multiplying by (1− %φ) gives

qt = (1− %φ)
∞∑
j=0

(%φ)jEtp
∗
t+j . (A17)

Again, using t-measurability (Etp∗t = p∗t) and excluding the first summand provides a

sum from j = 1 to infinity that can be substituted in a subsequent step:

qt = (1− %φ)

 ∞∑
j=1

(%φ)jEtp
∗
t+j + p∗t

 . (A18)

Furthermore, Eq.(A17) can be rewritten for t + 1 (since firms optimize in each pe-

riod),

Etqt+1 = (1− %φ)
∞∑
j=1

(%φ)j−1Etp
∗
t+j (A19.1)

⇔ %φEtqt+1 = (1− %φ)
∞∑
j=1

(%φ)jEtp
∗
t+j , (A19.2)

for eliminating the sum in (A18):

qt = %φEtqt+1 + (1− %φ)p∗t . (A20)
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Inserting condition (1.11) leads to the expression

pt −φpt−1

1−φ
= %φ

Etpt+1 −φpt
1−φ

+ (1− %φ)p∗t (A21.1)

⇔ pt −φpt−1 = %φ(Etpt+1 −φpt) + (1−φ)(1− %φ)p∗t , (A21.2)

that only contains parameters and variants of the variable p. Then, with the definition

of (A10) and first-order Taylor expansion, the inflation rate π can be expressed through

differences of p. In the same way, the conditional expectation value for period t+1 can

be expressed with

Etpt+1 − pt ≈ Etπt+1. (A22)

Since this approximation is sufficiently exact for small values of π, an equality sign

will be used for all following calculations. Now (A21.2) can be rearranged to insert

approximations π and Eq.(A22):

φ(pt − pt−1) = %φ(Etpt+1 −φpt) + (1−φ)(1− %φ)p∗t − (1−φ)pt (A23.1)

⇔ πt = %Etπt+1 +
(1−φ)(1− %φ)

φ
p∗t −

1−φ
φ

pt + %(1−φ)pt. (A23.2)

A.5 Intertemporal Optimization – Calculation Steps

The optimization problem has the constraint

Ct · Pt +Bt+1 =Wt + (1 + it−1) ·Bt, (A24)

where Wt is the nominal wage and Bt the nominal value of bonds. The latter provides

the link between two periods. Depending on the definition of the interest rate, the

period can vary. Here it has been chosen in a way so that the interest from period t

enters the Euler condition. Dynamic Programming uses the additively separable utility

function and the envelope theorem to set up optimality conditions for two consecutive

periods. The procedure can be divided into three parts. The first part is to write a

value function, the Bellman equation. Under the assumption that the second term of

the expanded utility

U (Ct) + Et

 ∞∑
s=t+1

%s−t−1U (Cs)

 (A25)

is maximized in period t, the Bellman equation is

V (Bt) ≡max
Ct
{U (Ct) + %V (Bt+1)} . (A26)
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The expected value vanishes since Bt+1 is determined by variables in period t in the

constraint. Differentiating with respect to Ct gives the first-order condition

d
dCt

U (Ct) + %
d
dCt

V (Bt+1) =U ′(Ct) + %V ′(Bt+1) · dBt+1

dCt
= 0, (A27)

which results in

U ′(Ct) = Pt%V
′(Bt+1). (A28)

Eq.(A28) relates the marginal utility to the marginal value in the following period, the

time preference, and prices in the same period. Therefore, a higher % and Pt results in

a lower Ct.

In the next part, the envelope theorem is used to differentiate the value function

(by inserting the optimized C∗t ) with respect to the costate variable Bt:

V (Bt) =U (C∗t ) + %V (Bt+1) (A29.1)

⇒ dV
dBt

=%V ′(Bt+1) · dBt+1

dBt
(A29.2)

⇔ V ′(Bt)=%V
′(Bt+1) · (1 + it−1). (A29.3)

Eq.(A29.3) reveals the relationship of the marginal value functions.

In a third and last step, the first-order condition (A28) can be used to replace the

value functions in Eq.(A29.3) with the marginal utility in both periods t and t − 1:

U ′(Ct−1)
Pt−1%

=% · U
′(Ct)
Pt%

· (1 + it−1) (A30.1)

⇒ U ′(Ct)
Pt

=% · (1 + it) ·Et
[
U ′(Ct+1)
Pt+1

]
. (A30.2)

The time shift yields the Euler condition.

A.6 Jensen’s Inequality – Calculation Steps

f (EX) ≥ E[f (X)] holds for concave functions, i.e., the logarithm and Jensen’s inequality

still holds for the conditional expected value. Since the function’s curvature is suffi-

ciently small, the accuracy is comparable to log-linearization for small growth rates.

Moreover, the exactness increases for larger values because of (log(x))′′→ 0 for increas-

ing x. However, resulting values will always be underestimated.

logEt

[
Zt+1

Zt

]
= logEt

[
exp

(
log

(
Zt+1

Zt

))]
≈ logEt

[
1 + log

(
Zt+1

Zt

)]
(A31.1)
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= log
(
1 + Et

[
log

(
Zt+1

Zt

)])
≈ Et

[
log

(
Zt+1

Zt

)]
. (A31.2)

A.7 Second-Order Taylor Approximation

The Taylor series (in R) helps in finding a polynomial to substitute a certain function

f (x) (i.e., exponential, logarithm, etc.) around a point x0. The generalized formula of

the degree n in the compact sigma notation is

T
f
n (x | x0) =

n∑
j=0

f (j)(x0)
j!

(x − x0)j , (A32)

where f (j) denotes the jth derivative with f (0) = f as a special case. Thereby, larger

values for n give better approximations of the original function f (x). In (1.23.1), f (x) =

log(1 + x) and n = 2. Formula (A32) simplifies to

T
f
2 (x | x0) = log(1 + x0) +

1
1 + x0

(x − x0)− 1
2(1 + x0)2 (x − x0)2. (A33)

The result in (1.23.1) appears with x0 = 0 and ỹt+1 (πt+1 respectively) as the argu-

ment of the function:

log(1 + ỹt+1) ≈ ỹt+1 −
1
2
ỹt+1

2. (A34)

A.8 Standard Targeting Rule – Calculation Steps

The Lagrangian has to be differentiated with respect to ŷt, πt, and it, since the central

bank sets the nominal interest rate:

L (πt, ŷt, it) = Et

 ∞∑
s=t

%s−t
(
π2
s + δŷs

2
)
−υs(πs − %πs+1 −κŷs)

−ωs
(
ŷs − ŷs+1 +

1
γ

(is − r −πs+1) +
1

2γ
π2
s+1 +

1
2
ỹs+1

2
). (A35)

The first-order conditions are:

∂L

∂πt
= 2πt −υt = 0 (A36.1)

∂L

∂ŷt
= 2δŷt +υtκ −ωt(1 + ŷt −Etŷt+1) = 0 (A36.2)

∂L

∂it
= −ωt

γ
= 0. (A36.3)
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Condition (A36.2) follows with Eq.(1.27). From condition (A36.3) follows that ωt = 0,

hence the minimized loss will not change if the IS curve shifts, as the central bank

can counteract it one by one through resetting the nominal interest rate. Combining

(A36.1) and (A36.2), the standard targeting rule under discretion arises.

A.9 Optimal Interest Rate for Positive Inflation Targets

When the Lagrangian attains the “leaning against the wind” condition, it is extended

with π∗ (as in Eq.(1.29), the loss function). Therefore, the standard targeting rule

changes to

πt −π∗ = −δ
κ
ŷt, (A37)

whereby the optimal output gap,

ŷt = −
%κ

δ+κ2 Etπt+1 +
π∗κ

δ+κ2 , (A38)

comprises an additional term. After inserting Eq.(A38) in the IS curve, the interest rule

also has an additional (negative) term. This would lead to a generally lower interest

level.

A.10 Equilibrium Condition – Calculation Steps

Eqs.(1.51) and (1.52) in more detail:

Et(ŷt+1 − ŷt)2 = Et
[
((−κθ) (ξet + ζt+1)− (−κθ)et)

2
]

(A39.1)

= Et
[
(−κθ)2 (ξet + ζt+1 − et)2

]
(A39.2)

= (−κθ)2Et
[
((ξ − 1)et + ζt+1)2

]
(A39.3)

= ((−κθ)(ξ − 1))2 e2
t + (−κθ)2

(
Vartζt+1 + (Etζt+1)2

)
(A39.4)

= κ2θ2(ξ − 1)2e2
t +κ2θ2σ2

e (A39.5)

= (κθ)2
(
(1− ξ)2e2

t + σ2
e

)
(A39.6)

and

it = r +χξet −
1
2

(δθ)2
(
ξ2e2

t + σ2
e

)
−
γ

2
(κθ)2

(
(1− ξ)2e2

t + σ2
e

)
+γut (A40.1)

= r +χξet −
1
2

(
(δθ)2ξ2e2

t + (δθ)2σ2
e +γ(κθ)2(1− ξ)2e2

t +γ(κθ)2σ2
e

)
+γut (A40.2)
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= r +χξet −
1
2

((
(1− ξ)2γκ2 + ξ2δ2

)
θ2e2

t +
(
γκ2 + δ2

)
θ2σ2

e

)
+γut. (A40.3)

A.11 Parameter Discussion

Eq.(1.45) includes all parameters of the model.43 This subsection gives a brief overview

over possible values, which are used to graphically depict the equilibrium conditions.

The discount parameter % is typically close to unity. Galí (2015, 67) and Rotemberg

and Woodford (1997, 321) set % equal to 0.99 (quarterly), whereas Jensen (2002, 939)

uses this under an annual interpretation. Walsh (2010, 362) also sets it to 0.99. Galí

and Gertler (1999, 207) estimate a value of 0.988. To keep the framework close to the

actual interest setting of the central bank, all calculations are carried out quarterly and

% will be set to 0.99.

The slope of the NKPC κ takes values close to zero and usually lower than unity.

Roberts (1995, 982) estimates in his original NKPC article κ ≈ 0.3. On a quarterly basis,

Walsh (2010, 362) sets 0.05, Galí and Gertler (1999, 13) estimate 0.02, and McCallum

and Nelson (2004, 47) suggest 0.01−0.05. Jensen (2002, 939) calibrates an annual value

of 0.142, whereas Clarida et al (2000, 170) set 0.3 (yearly) and give a range of 0.05 to

1.22 in the literature. In the baseline simulation, κ is set to 0.04.44

Woodford (2003a, 165) states that a value of 1 is customary in the RBC literature

for γ , the multiplicative inverse of the EIS (see, e.g., Clarida et al 2000, 170, Galí 2015,

67, Yun 1996, 359). A slightly larger value (1.5) is set by Jensen (2002, 939) and Smets

and Wouters (2003, 1143) estimate 1.4. An insightful metadata study by Havranek et

al (2015) estimates a mean EIS of 0.5 (γ = 2) across all countries. However, they report

that more developed countries have a higher EIS (lower γ). Therefore, γ will be set to

unity.

The weight on output fluctuations δ is set to 0.25 in almost all the literature (see,

e.g., Walsh 2010, 362, McCallum and Nelson 2004, 47, Jensen 2002, 939). The latter

reports values from 0.05 to 0.33 in other papers. Thus, δ = 0.25 will also be assumed

for the simulation.

Walsh (2003, 275) allows values up to 0.7 for ξ, the cost shock persistence. Clarida

et al (2000, 170) set 0.27 (yearly) and Galí and Rabanal (2004, 48) estimate 0.95. Gen-

erally, Smets and Wouters (2003, 1142–1143) estimate persistencies of 0.8 and higher,

which is confirmed by Smets and Wouters (2007). Thus, ξ will be treated as a variable

in the range of 0.6− 0.85. The smallest value 0.6 implies 0.1296 on an annual basis.

43Note that variances σ2
e and σ2

u are only indirectly included.
44Note that this implies κ = 0.16 on a yearly basis.
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For the standard deviation of a cost shock, Sims (2011, 17) sets 0.01 (σ2
e = 10−4),

Jensen (2002, 939) sets 0.015 (σ2
e = 2.25 · 10−4), and Galí and Rabanal (2004, 48) es-

timate 0.011 (σ2
e = 1.21 · 10−4). McCallum and Nelson (2004, 47) set an annualized

standard deviation of 0.02 (σ2
e = 4 · 10−4). The conservative value of 10−4 will be taken

for the simulation.
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2 Internal and External Uncertainty

“Non-Linearities and the Euler Equation:
Does Uncertainty have an Effect on the Approximation

Quality?”

Abstract

Deriving a forward-looking Euler equation, this paper compares two fully iden-

tified non-linear versions. The difference (or bias) between them stems from an

approximation by extracting parameters from the expectation values (Jensen’s in-

equality) as it is common practice in the literature. Furthermore, the model is com-

pletely identified using Consensus Forecasts data for the expectations, inflation-

indexed bonds as a proxy for the long-run real interest rate, and estimates for the

elasticity of intertemporal substitution. Regression analyses using data for three

major economies reveal that the difference between the two Euler versions can be

explained by uncertainty in the data itself and external uncertainty measures. The

results confirm a connection between theoretical and empirical higher-order mo-

ments in economic models.

2.1 Introduction

Motivated by the shortcomings of economic policies, Lucas (1976) famously criticized

modeling approaches at that time for the lack of agents’ adaption possibility. This re-

sulted in the implementation of expectations and, therefore, forward-looking behavior.

In addition, since the 1980’s, macroeconomic models have been obtained by more and

more elegant and sophisticated derivations (see the paper by Kydland and Prescott

(1982) as a starting point). In many cases, a microeconomic foundation has been used

to derive relationships like the Euler equation or the Phillips curve via intertemporal

optimization.

However, bringing data to the model as intended by theory is oftentimes a diffi-

cult task. For example, log-linearizing level variables to receive growth rates already

imply Taylor approximation, which can fundamentally change the derived equations.

Schmitt-Grohé and Uribe (2004), for instance, solve dynamic stochastic general equi-

librium (DSGE) models up to second-order, showing the result being thereupon robust

to volatility, the second moment of exogenous shocks. Zeldes (1989) and Blanchard
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and Mankiw (1988) examine the deviation of certainty equivalence in the context of

consumption models, emphasizing the importance of higher-order moments.

As another approach, since the triumph of rational expectations, expectation values

almost always turn into actual values added by an error term. This skips the step of

finding appropriate, forward-looking data. However, this technique adds assumptions

which risk to dilute the explanatory power of the actual equations when they become

in fact backward-looking. In his meta-study, Lovell (1986) challenges the acceptance

of the rational expectations hypothesis as “stylized fact” by reviewing empirical ev-

idence and discussing theoretical research. Considering these concerns, two facets

are important with regard to applied macroeconomic modeling in general and to our

work in particular: (i) preserving the functional form, i.e., no linearization, and (ii)

using forecast data for expectations in an economic model.

Nevertheless, when using forecast values in connection with non-linearities, an-

other issue arises: Jensen’s inequality (see Jensen 1906). A concave (convex) function

evaluated at the mean of possible outcomes is larger (smaller) than the mean of func-

tional values at these possible outcomes. In contrast to our paper, Jensen was not

interested in the magnitude of the inequality, but rather describes the difference (of

functional values) in a qualitative way.1 As a new contribution to the literature, we ex-

plicitly calculate the difference (from here on called “bias” or “residuals”) and explain

it by measures for higher-order moments. For this purpose, we utilize the consumption

Euler condition, parameterized by the elasticity of intertemporal substitution (EIS),

which was subject to a large variety of research. The next paragraph gives an overview

in terms of approximation quality.

The first article using the log-linearized Euler equation relating to consumption

was written by Hall (1988). Back then, approximating made sense to estimate equa-

tions due to limited computational power. Starting around 2000, concerns grew that

flattening out higher-order moments would not catch the underlying interdependen-

cies well enough, i.e., precautionary savings (described by the utility function’s con-

vexity) and prudence (described by the change in the utility function’s curvature). In a

more recent paper, Gomes and Paz (2013) discuss the weak instrument problem when

estimating the linear form. They partly overcome this issue by using a weighted in-

terest rate scheme. The theoretical paper by Ludvigson and Paxson (2001) reaches the

same result, namely, the instrument variable approach cannot completely fix the er-

1Behavioral finance (or decision theory) studies a similar question by finding a different value, the
certainty equivalent, as the non-linear (utility) function’s argument such that the inequality disappears.
The well-known work by Pratt (1964) labels this—the difference between mean value and certainty
equivalent—risk premium. Hence, the central issue is the change in the function’s argument.
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ror in linear Euler equations. Attanasio and Low (2004) examine simulated log-linear

equations which are significantly biased when discount rates are high.

Taking this into account and concretizing the aforementioned concept regarding

expectations, we focus on (i) avoiding approximations and (ii) preserving expectation

values.2 The latter can be achieved using suitable data from the Consensus Forecasts

(CF), which provide monthly projections (e.g., GDP growth, inflation, ...) from a vari-

ety of economic and financial institutions. This allows to replace the random variables

in the model’s expectation values by individual forecasts and, further, compare this re-

sult with a version using the mean values only. To form a bigger picture, this is done for

the United States (US), the United Kingdom (UK), and the Euro Area (EA), separately.

For the nominal interest rate, the short-term interbank rates: Effective Federal Funds

Rate (EFFR), Sterling Overnight Index Average (SONIA), and Euro Overnight Index

Average (EONIA) are utilized for US, UK, and EA, respectively. Inflation-indexed

bonds serve as proxy for the long-run real interest rate. To fully identify the model, the

(time-varying) EIS parameters are derived by a maximum likelihood-type estimation.

Regarding the combination of Jensen’s residuals and uncertainty, Carroll and Kim-

ball (1996) confirm the link between a concave consumption function and income un-

certainty. Going one step further, we regress the bias (stemming partly from consump-

tion) on a variety of uncertainty measures, using mostly region-specific covariates

since there are three different economies involved. These measures can be divided into

uncertainty stemming from the CF data (internal) and from external sources, includ-

ing stock market and oil price volatility, financial/systematic stress, and uncertainty

indices by Baker et al (2016), Jurado et al (2015), and Rossi and Sekhposyan (2015,

2017). Both internal and external uncertainty measures can be consulted to explain

the bias, confirming the connection between theoretical and empirical higher-order

moments in non-linear, forward-looking models. Yet, the bias’ magnitude is relatively

small (up to 10 basis points) but closes the gap in the literature that examines this kind

of approximation.

The remainder of this paper is organized as follows. Section 2.2 derives the for-

ward-looking Euler equation from scratch and illustrates the consequence when ex-

tracting non-linear relationships out of an expectation value. Section 2.3 introduces

the data and presents measures for forecasts, interest rates, and uncertainties. Section

2.4 proposes the method to capture the EIS, calculates the Euler equation’s bias, re-

gresses this on uncertainty measures, and discusses the results. Section 2.5 concludes.

2As a warning example: approximation is already involved when we define the EIS. Elasticities
are always %-changes on %-changes. However, in ceteris paribus analysis, we typically change the
underlying interest rate by one percentage point. Therefore, the effect that is actually described should
be somewhat smaller than the true value for the EIS.
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2.2 Derivation: Euler Equation

The derivation follows the standard expected utility framework and is similar to the

approach by Attanasio and Weber (1989). Common to the DSGE literature, the Euler

equation in the context of a New Keynesian framework can also be found in the book

by Galí (2015). To specify the aggregated utility, we do not take money, working hours,

or any other possible utility-gainer into consideration. It solely relies on consumption,

hence, households maximize their intertemporal discounted utility:

max
Ct

Et

 ∞∑
s=t

%s−ts U (Cs)


 . (2.1)

Taking into account an intertemporal budget constraint with prices and the nomi-

nal interest rate it, the maximization problem leads to the Euler equation

dU (Ct)
dCt

= %t · (1 + it) ·Et
[
Pt
Pt+1

dU (Ct+1)
dCt+1

]
, (2.2)

revealing the intertemporal relationship of the marginal utility depending on con-

sumption.3 Marginal utility in period t equals the expected counterpart in t + 1, cor-

rected by a discount factor, nominal interest rate, and the ratio of current and expected

future price level. Assuming it rises, marginal utility in t would also rise relative to

period t+1. Given the diminishing marginal utility property and, therefore, concavity,

consumption will be higher in the future.4

Replacing the households’ utility, U (Ct), with the flexible CRRA function provides

a constant EIS (= γ−1).5 Furthermore, taking the (time-varying) long-run real interest

rate as a proxy for the inverse discount factor changes the Euler equation to:

C
−γ
t =

1 + it
1 + rt

·Et

Pt ·C−γt+1

Pt+1

 . (2.3)

Rearranging for both growth rates, πt+1 (inflation) and ct+1 (consumption growth),

yields:

1 = (1 + it) · (1 + rt)
−1 ·Et

[
(1 +πt+1)−1 · (1 + ct+1)−γ

]
. (2.4)

3See Appendix B.1 for the missing steps.
4Note that present consumption could also increase because of the income effect.
5Another way is to use the more exotic exponential function (CARA) or the recursive Epstein-Zin

(1989) preferences, where the current utility depends also on the expected, future utility. However, in
the latter case, this link is already closed by means of the interest rates in the Euler condition. Moreover,
depending on γ , the CRRA changes to root-, hyperbola-, or log-utility. See Appendix B.2 for more detail.
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Solving for the expectation values and converting the equation to a stochastic version,

that is, including an error term, provides

εt = (1 + it) · (1 + rt)
−1 ·

([
(1 + Et[πt+1])−1 +∆π

]
·
[
(1 + Et[ct+1])−γ +∆c

]
+Cov

)
, (2.5)

with εt ∼N (1,σ2) andCov as the covariance of the transformed growth rates regarding

inflation and consumption.6 ∆π and ∆c stand for the residuals in Jensen’s inequality.

Figure 2.1 illustrates these (by means of the inflation expression), that is, the func-

tion value with the expectation value as input subtracted by the expected value of the

function.

(1 +πt+1)−1

π1
t+1

πt+10 Et[πt+1]

Et[(1 +πt+1)−1]

(1 + Et[πt+1])−1

π2
t+1

∆π

Figure 2.1: The residual in Jensen’s inequality (∆π) in a case with two observations, π1
t+1 and

π2
t+1. The solid line shows the derived hyperbola regarding inflation from Eq.(2.4). (The scale

is distorted due to illustrative reasons, i.e., ∆π is relatively small in the data.)

In the following, we will derive measures for ∆π, ∆c, and Cov out of the CF data.

For this purpose, the random variables ct+1 and πt+1 are replaced by individual fore-

casts. This renounces the stochastic component to be able to explicitly calculate the

residuals.7 Thus, these variables coming from a macroeconomic level are met with

firm-level expectations.

6The normal distribution property is met when assuming the model conditions are satisfied
and the relationship is not systematically biased due to omitted variables. Cov corresponds to
Cov

[
(1 +πt+1)−1, (1 + ct+1)−γ

]
, which arises from the algebraic formula for the variance in terms of the

covariance: Cov[X,Y ] = E[X ·Y ]−E[X] ·E[Y ].
7Implementing proxies that are truly forward-looking by adding an error term, i.e., Eit[πt+1] + error,

would bring forth further questions about the forecast error distribution. See Rossi and Sekhposyan
(2015, 2017) for an examination of these forecast errors. Also, the authors built indices out of the
distributions, which are used later in this paper.
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2.3 Data

2.3.1 Consensus Forecasts

The data for expected consumption growth and inflation stem from the Consensus

Forecasts G-7 & Western Europe, which include monthly predictions by economic and

financial institutions for both the current and immediately following year using sur-

veys.8 Therefore, the one-year-ahead forecasts are constructed by the mean values of

the individual institutions and a weighting scheme depending onM (month), counting

from 1 to 12:

Et[growtht+1|M] =
13−M

12
·Et,M[growtht] +

M − 1
12

·Et,M[growtht+1], (2.6)

where growtht+1 ∈ {ct+1;πt+1}.9 In the country-specific data sets, consumption growth

is referred to as the real %-change of personal consumption (US), household consump-

tion (UK), and private consumption (EA). Inflation consists of the %-change of con-

sumer prices (US and EA) and retail prices (UK). To apply these data to the Euler

equation but yet avoid any approximation, ∆π and ∆c in Eq.(2.5) are calculated using

the individual predictions.10 The covariance of (transformed) inflation and consump-

tion growth, in the same equation, is measured in each period also relying on the

individual level.

For the US and UK, the first observations start in 10/1989, whereas the EA data

start in 01/1999.11 The Consensus Forecasts end in 12/2018. Figures 2.2 and 2.3

show expected growth rates over time for all three economies. The graphic containing

consumption growth identifies the US’ saving and loans crisis in 1991, spilling over

to the UK, which was amplified by the subsequent impact of the Lawson Boom (along

with high bank rates due to rising inflation). The UK’s downturn in 1999 reflected

public concerns about New Labour policies at that time. US forecasts in 2000 go along

with the dot-com bubble’s burst, with an additional sharp decrease shortly after the

9/11 disaster. All countries simultaneously decreased their expectations in 2008 due

8In contrast to the IMF’s World Economic Outlook (published twice a year) and the ECB’s Survey
of Professional Forecasters (quarterly data), Consensus Economics publishes its forecasts on a monthly
basis, which rapidly increases the number of observations. This counteracts the limited time horizon for
EA data and several interest rates (e.g., EONIA) and hence, allows to consider time-varying parameters.

9For example, January data sets contribute 100% of the current year forecasts since the publishing
dates are at the beginning of the month while the surveys are filled out in the previous month.

10There is no additional weighting for single, firm-level forecasts. See Figure 2.1 for the illustration
of the ∆’s.

11However, the interval 01/1999 – 11/2002 is composed of GDP-weighted forecasts for France, Ger-
many, Italy, Netherlands, and Spain. See Appendix B.4 for a detailed discussion of the weighting
scheme.
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Figure 2.2: One-year ahead consumption growth mean forecasts, Et[ct+1], for US (green), UK
(red), and EA (blue). Note: EA forecasts start in 01/1999.

to the financial crisis—the UK even falling down to −2%. The EA experienced a major

decline in 2012/13 as part of the euro crisis. However, the rates for all three regions

stabilized in recent years.

0%

1%

2%

3%

4%

5%

6%

7%

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Figure 2.3: One-year ahead inflation mean forecasts, Et[πt+1], for US (green), UK (red), and EA
(blue). Note: EA forecasts start in 01/1999.

Figure 2.3 shows the UK’s rising expected inflation due to the Lawson Boom in

1990 and a decline in the next three years. This is followed by stable rates for all

economies around 1.5% to 3%. Two further events caused a simultaneous decrease.
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First, in 2008, there was the financial crisis with US firms expecting even negative

inflation. Second, at the end of 2014, there was the massive drop in oil prices with

the three regions incipiently on different levels of inflation and only the EA expecting

deflationary tendencies.

2.3.2 Interest Rates

Nominal interest rates in the model are represented by the overnight interbank rates:

the EFFR (US), SONIA (UK), and EONIA (EA). Thus, it stands for the effective short-

run averaged (or weighted) nominal interest. Since all rates are available on a daily

basis, end of month values are taken to match the CF’s beginning of the month values.

Figure 2.4, showing the nominal rates over time, reveals the initially higher levels
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Figure 2.4: Nominal interest rates, it, for US (green), UK (red), and EA (blue). Note: UK (EA)
rates start in 01/1997 (01/1999).

and more pronounced short-term volatility.12 After a sharp decrease in 2001 (dot-com

bubble), the US rate regained its previous level over the next five years. Starting in

2007/08, the consequence of the financial crisis is reflected in all three time series.

12The short-term fluctuations (US: until 2000, UK: 2000 – 2004) are also due to the volatile end of
month values. Using an average version, however, shows no substantial differences to the results in
Section 2.4.2. To be in line with other (uncertainty) measures, we stick to the end of month values.
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In the process, the Fed took the leading action whilst central banks around the world

aggressively cut rates. Several years near the zero lower bound, the EONIA even goes

below 0% starting in 2015.13 From 2017 on, there is a successive increase in US market

rates reflecting the Fed’s recent interest rate hiking cycle.

As defined in Eq.(2.3), the time-varying discount parameter, %t, turns into the real

interest rate, rt. Instead of simply using a static expression, as is sometimes done in

the literature, e.g., r = 2%, inflation-indexed bonds serve as a proxy for the discount

factor, allowing for a change over time.14 To model a preferably long duration but, at

the same time, considering the availability in each country, a ten-year time horizon is

chosen. The Federal Reserve and the Bank of England provide the Treasury inflation-

indexed securities and gilt-edged securities, respectively, on a daily basis. Again, as

for the nominal rates, end of month values or last available values per month are cal-

culated. As an exception, since the ECB only provides their government benchmark

bond yields as monthly averages, end of month values cannot be used in this case.15

Figure 2.5 shows the real interest rates over time. UK and EA rates appear to be down-

ward trending, falling negative in recent years. Similarly, the US passed through a

period around 2012/13 where rates dropped below 0%. The most significant increase

is represented by the EA’s spike in 2009 associated with the sovereign debt crisis.

13Market rates started to become negative in mid-2014. However, end of month values remained
positive until 2015.

14One can interpret the long-run real rate as the Taylor rule’s intercept (output equaling its potential
while experiencing stable inflation) and thus, it is possible to estimate. However, this can be subject to
severe limitations (see Laubach and Williams 2003). When bringing data to the theory, rt is typically
compared to inflation-indexed bonds (see Hamilton et al 2016). Gürkaynak et al (2010) give an insight
into how these bonds are constructed for the US.

15Note that interpolation is not an option to not violate the model assumptions by including (partly)
future values.
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Figure 2.5: Real interest rates, rt, for US (green), UK (red), and EA (blue). Note: US (EA) rates
start in 01/2003 (01/1991).

Appendix B.5 lists the descriptive statistics of both CF data and interest rates.

2.3.3 Uncertainty Measures

At a second stage, uncertainty measures are supposed to explain the Euler equation’s

bias resulting from Jensen’s inequality. These measures can be divided into internal

(out of the CF data) and external measures. Table 2.1 gives an overview, whereas Tables

B3–B6 provide descriptive statistics and correlation matrices.

Some additional notes regarding variable construction are worth mentioning. In

the case of daily or weekly availability, end of month values are taken. The stock

market’s range variable consists of monthly averages but it also enables the capturing

of intra-day movement. In general, the weekly St. Louis FSI is normalized. After

taking end of month values, the standardization is retained. Only the measures by

Rossi and Sekhposyan (2015, 2017) and Ahir et al (2018) are originally constructed on

a quarterly basis and hence, are interpolated.16

16For the forecast uncertainty, values always refer to the first month of the respective quarter. The
WUI is based on the Economist Intelligence Unit country reports, typically published at the beginning
of the quarter. Therefore, the reference month for Q1 should be December, etc. Cubic splines are used
for interpolation.
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Description Availability

Std.Dev. of CF’s individual forecasts US/UK/EA
(GDP, Consumption, Inflation)

Std.Dev. of stock market indices US/UK/EA
(S&P 500, FTSE 100, Euro Stoxx 50)

Average daily range of stock market indices in % US/UK/EA
(S&P 500, FTSE 100, Euro Stoxx 50)

Stock market volatility (VIX, VFTSE, VSTOXX) US/UK/EA

Std.Dev. of oil prices (WTI, Brent) US/UK/EA

Financial stability indicator (St. Louis FSI, CLIFS) US/UK/EA

Economic policy uncertainty by Baker et al (2016) (EPU) US/UK/EA

Monetary policy uncertainty by Baker et al (2016) (MPU) US

Macroeconomic and financial uncertainty by Jurado et al (2015) US

Composite indicator of systemic stress by the ECB (CISS) EA

Forecast uncertainty by Rossi and Sekhposyan (2015, 2017) US/EA
(GDP, Inflation)

World uncertainty index by Ahir et al (2018) (WUI) US/UK/EA

Table 2.1: CLIFS stands for country-level index of financial stability and is constructed for the
EA using a weighting scheme using GDP data. Brent oil is assigned to both the UK and EA,
whereas the WUI is a single index, assigned to all regions.
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2.4 Econometric Approach and Results

2.4.1 Elasticity of Intertemporal Substitution

Since the first study on Euler equations in economics by Hall (1978), an extensive

literature covers how to capture the EIS as one of the parameters in this optimality

condition. When quantifying the EIS, Beaudry and van Wincoop (1996) provide ev-

idence that the parameter is smaller, but close to 1.0 for the US. The meta-analysis

by Havranek et al (2015) shows a typical value range of 0.5–0.7 across all studies for

the US, 0.3–0.5 for the UK, and 0.1–0.3 for the EA. However, in this meta-study, the

standard deviation of the estimates (excluding outliers), as reported by the 33 studies

published in the top five general interest economics journals, is relatively large, even

reaching negative territory.

Most studies use log-linear approximations (see Carroll (2001), who criticizes this

in the context of consumption Euler equations), while others prefer generalized meth-

ods of moments (GMM) as an estimation method to preserve the non-linearities. Our

approach uses simple normality tests, exploiting a grid of γ-values where the parame-

ter can be found. The idea is to utilize and account for the paper’s unique setting when

estimating the EIS instead of simply taking values the literature suggests.

Consulting Havranek et al (2015) for possible values for the EIS, the grid for γ−1

reaches from 0.01 to 10, adjusting the step fineness such that there are 1,000 equidis-

tant steps overall. Out of Eq.(2.5), the residuals in the error term, ut, are tested for

normality for each γ−1. In this maximum likelihood-type approach, the normal dis-

tribution property is met when assuming the model conditions are satisfied and the

relationships are not systematically biased due to omitted variables. This results in

a maximal p-value, which, given that it is large enough to not reject the H0 of non-

normality, indicates a likely value for the EIS. For normality tests, we chose Jarque-

Bera for its simplicity and Lilliefors since it is a more complex Kolmogorov-Smirnov

test.17 In addition, we allow for a time-varying γτ , choosing the global financial crisis

for all regions as the break point, resulting in 71/143/119 (120/120/120) observations

in the first (second) sample for US/UK/EA.18 For inference, bootstrapping is utilized,

that is, resampling with replacement by keeping randomly 90% of the original data

points for 1000 runs.

17In contrast to Jarque-Bera, Kolmogorov-Smirnov is a non-parametric test. As a goodness of fit test,
it quantifies the distance between the empirical distribution function and the cumulative distribution
function (of the normal distribution).

18Rolling window analysis indicates the end of 2008 (as the only structural break for all regions) as a
good compromise in terms of complexity and a sufficient amount of observations for each time interval.
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As in Table 2.2, both tests cannot reject the H0 of normality in any of the cases and

show substantial differences in the point estimates before and after the financial crisis.

Compared to Havranek et al (2015), the pre-crisis results are similarly graded: 0.3–

0.5 (US), 0.5–0.7 (UK), and 1.1–1.3 (EA). This implies that a change in interest rates

drives the future aggregated consumption somewhat stronger than presumed by most

articles. Post-crisis figures reaching above 1 for the UK and up to 3 for the US and

the EA, accompanying a decrease in the utility function’s curvature in recent years.

Furthermore, in most cases, p-values show notable spikes in the indicated EIS-regions,

being close to zero otherwise.

Pre-crisis sample (until 2008) Post-crisis sample (2009 – 2018)

Normality Test EIS p-value 95% interval EIS p-value 95% interval

US

Jarque-Bera 0.51 0.60 [0.39,0.63] 3.06 0.76 [2.40,3.72]

Lilliefors 0.33 0.72 [0.09,0.57] 2.60 0.19 [1.77,3.43]

UK

Jarque-Bera 0.70 0.65 [0.56,0.85] 1.87 0.73 [1.46,2.28]

Lilliefors 0.54 0.14 [0.40,0.68] 1.28 0.21 [1.06,1.50]

EA

Jarque-Bera 1.34 0.47 [1.15,1.53] 3.00 0.87 [2.25,3.75]

Lilliefors 1.11 0.40 [0.73,1.49] 2.95 0.12 [2.00,3.90]

Table 2.2: Results for the US, UK, and EA depending on max. p-values. Inference via boot-
strapping (1000 runs) assuming t-distributed point estimates.

To eventually fully identify the Euler equation, and thereupon calculating and ex-

amining Jensen’s bias in the next section, we choose the average across the normality

test estimates for the EIS. However, since a change in γ (or curvature) entails a mono-

tone transformation of the approximation quality, moderately different values do not

affect the fundamental results of the main regression.
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2.4.2 Approximation Bias

When comparing Euler equations, we do not evaluate the actual error as in the research

by Lettau and Ludvigson (2009) but rather using another version by inserting the mean

forecast values from Eq.(2.6) directly into the equation

εJt = (1 + it) · (1 + rt)
−1 ·

([
(1 + Et[πt+1])−1

]
·
[
(1 + Et[ct+1])−γ

]
+Cov

)
, (2.7)

dropping the Jensen residuals, ∆π and ∆c. Subtracting this from Eq.(2.5),

biast = εt − ε
J
t > 0, (2.8)

results in a variable being strictly positive due to strict convexity in both functions.19

Lastly, this leads to the main regression equation

biast = β0 + β1σ
CF
t + β2Xt−1 + εbiast , (2.9)

allowing for an intercept which, from a theoretical point of view, should be zero when

controlling for higher-order moments. Vectors β1 and β2 contain slope parameters

regarding CF uncertainty and external uncertainty, respectively.

Tables 2.3–2.5 show the main results for the three regions. Newey and West (1987)

standard errors are used across models M1 to M3.20 For all countries, M3 denotes

the full model, M2 is a variant excluding the CF’s standard deviation concerning GDP

due to the high correlation with its consumption growth counterpart, and M1 is an

even smaller model dropping the (insignificant) stock market variables. Starting with

the CF measures, the consumption growth Std.Dev. for the US (insignificant in the

full model) becomes significant after dropping the GDP Std.Dev. In general, internal

uncertainty has a higher impact on the bias than the other variables, usually five to

ten times larger. Interestingly, the UK’s inflation Std.Dev. is not significant in any

model. However, other uncertainty measures out of the CF’s data could fill this gap

since the GDP Std.Dev is highly significant. The WUI has a positive impact for the

US and in most constellations for the EA. Oil price movement is highly significant

19Note that the value of γ will determine the bias’ magnitude. Since γ is closely associated with the
curvature of one of the approximated expressions, the following expression necessarily holds:

dE[biast]
dγ

> 0.

To not bias the point estimates due to the structural break, we adjust the conditional means which,
however, is not germane since we are interested in the variation of the bias-variable.

20Controlling for autoregressive error terms indicates highly significant serial correlation up to order
2, with other lags occasionally being significant at the 10% level.
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US M1 M2 M3

β0 −0.00 −0.00 −0.00
(0.01) (0.01) (0.01)

GDP Std.Dev. 0.44**
(0.21)

Consump. Std.Dev. 0.55** 0.57*** 0.34
(0.24) (0.20) (0.22)

Infl. Std.Dev. 0.41*** 0.44*** 0.40***
(0.12) (0.14) (0.15)

S&P Std.Dev. 0.00 0.00
(0.00) (0.00)

S&P Range 0.04 0.05
(0.07) (0.07)

VIX −0.00 −0.00
(0.00) (0.00)

WTI Std.Dev. 0.04*** 0.04*** 0.04***
(0.01) (0.01) (0.01)

STLFSI 0.06* 0.05 0.06
(0.03) (0.04) (0.04)

EPU 0.02 0.02 0.01
(0.03) (0.04) (0.04)

MPU −0.00 −0.01 −0.00
(0.02) (0.03) (0.03)

Macro 0.13 0.09 0.07
(0.61) (0.68) (0.72)

Finance −0.41 −0.19 −0.56
(0.43) (0.44) (0.46)

Forecast −0.03 −0.03 −0.01
(0.09) (0.10) (0.10)

WUI 0.12*** 0.12*** 0.14***
(0.03) (0.03) (0.03)

R
2

0.69 0.69 0.69
AIC −241.72 −238.78 −241.72
BIC −203.75 −191.31 −191.08
Observations 175 175 175

Table 2.3: The measures by Baker et al (2016) and Ahir et al (2018), namely EPU, MPU, and
WUI, are divided by 100 to better fit the scales of the other external uncertainty variables.
All covariates are demeaned. AIC: Akaike information criterion; BIC: Bayesian information
criterion. ***/**/* denote significance at the 1%/5%/10% level.

for the US, possibly illustrating their dependencies on oil. In the reduced model, the

CLIFS’ size for the UK is similar to the CF measures since their range is also compa-

rable. Nevertheless, the typical interpretation—an increase by one unit—should not

be overemphasized. With the weakly significant WUI for the UK, there is also a puz-

zling result, not fitting into the narrative. Finally, the forecast uncertainty with respect
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UK M1 M2 M3

β0 0.00 0.00 0.00
(0.01) (0.01) (0.01)

GDP Std.Dev. 0.42***
(0.15)

Consump. Std.Dev. 0.98*** 0.80*** 0.63***
(0.18) (0.11) (0.16)

Infl. Std.Dev. −0.04 0.04 0.08
(0.18) (0.10) (0.16)

FTSE Std.Dev. −0.00 −0.00
(0.00) (0.00)

FTSE Range 0.10 0.10
(0.06) (0.06)

VFTSE 0.00 0.00
(0.00) (0.00)

Brent Std.Dev. 0.04 0.03* 0.02
(0.03) (0.01) (0.02)

CLIFS 0.48** 0.16 0.20
(0.19) (0.16) (0.19)

EPU 0.02 0.00 0.00
(0.02) (0.02) (0.01)

WUI −0.10* −0.05* −0.04
(0.05) (0.03) (0.03)

R
2

0.66 0.71 0.72
AIC −188.32 −187.15 −198.01
BIC −160.18 −149.57 −157.02
Observations 249 225 225

Table 2.4: The measures by Baker et al (2016) and Ahir et al (2018), namely EPU and WUI, are
divided by 100 to better fit the scales of the other external uncertainty variables. All covari-
ates are demeaned. AIC: Akaike information criterion; BIC: Bayesian information criterion.
***/**/* denote significance at the 1%/5%/10% level.

to GDP is significant for the EA across all specifications, which could partly account

for the institutions’ priorities when participating in the CF’s surveys. However, it is

difficult to determine the quantitative impact relative to other variables due to the

non-standardized scales.21

21In order to not exaggerate the interpretation of uncertainty, we refrained from standardizing the
covariates in terms of their respective standard deviations.
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EA M1 M2 M3

β0 −0.00 −0.00 −0.00

(0.00) (0.00) (0.01)

GDP Std.Dev. −0.21

(0.22)

Consump. Std.Dev. 0.29*** 0.36*** 0.49**

(0.09) (0.12) (0.22)

Infl. Std.Dev. 0.50*** 0.38*** 0.41***

(0.07) (0.12) (0.09)

ESTOXX Std.Dev. 0.00 0.00

(0.00) (0.00)

ESTOXX Range 0.04 0.03

(0.06) (0.05)

VSTOXX −0.00 −0.00

(0.00) (0.00)

Brent Std.Dev. −0.01 −0.01 −0.01

(0.00) (0.00) (0.01)

CLIFS 0.05 −0.09 −0.00

(0.11) (0.19) (0.15)

EPU 0.03 0.01 0.01

(0.02) (0.02) (0.02)

CISS 0.04 0.02 0.03

(0.06) (0.08) (0.08)

Forecast Infl. 0.08 0.09 0.11

(0.07) (0.08) (0.08)

Forecast GDP 0.10** 0.12** 0.12*

(0.04) (0.05) (0.06)

WUI 0.07 0.09** 0.09**

(0.04) (0.04) (0.04)

R
2

0.56 0.57 0.57

AIC −276.41 −277.44 −277.95

BIC −240.35 −231.55 −228.77

Observations 196 196 196

Table 2.5: The measures by Baker et al (2016) and Ahir et al (2018), namely EPU and WUI, are
divided by 100 to better fit the scales of the other external uncertainty variables. All covari-
ates are demeaned. AIC: Akaike information criterion; BIC: Bayesian information criterion.
***/**/* denote significance at the 1%/5%/10% level.
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2.5 Conclusions

In this paper, we derived a forward-looking consumption Euler equation in two, slight-

ly different versions. First, the functional form was completely preserved when bring-

ing data to the theory. This includes the usage of individual forecasts by inserting

them into the expectation value without ignoring Jensen’s inequality. Second, exactly

this concept is ignored while using mean forecasts, replacing all expectation values.

Subtracting both Euler versions, the resulting bias was then regressed on a variety of

(lagged) uncertainty measures to control for the connection between theoretical and

empirical higher-order moments.

Our analysis sheds some light on this kind of approximation. First, uncertainties

with respect to inflation forecasts better explain the approximation bias than their

counterparts regarding consumption growth. Second, uncertainty stemming from the

data itself, the cross-sectional Std.Dev., plays a predominant role, exceeding the ex-

planatory power of the external sources. Third, in the latter group of covariates, the

World Uncertainty Index by Ahir et al (2018) and oil price volatility (both for the US),

the ECB’s financial stability indicator (for the UK), and the forecast uncertainty index

regarding GDP by Rossi and Sekhposyan (2017) (EA) show a significant impact, which

can also refer to the surveyed institutions’ priorities when the Consensus Forecasts

were conducted.

As open avenue, implementing the individual forecasts as truly forward-looking by

adding an error term was not considered in the current paper. Carrying out research

on the distribution of these errors could reflect the model’s assumptions more appro-

priately. The bias in our setting was relatively small, rarely exceeding 10 basis points.

Further research, both theoretical and empirical, can investigate the bias’ quantity in

a variety of models. This brings up a question to address in future research: Ulti-

mately, to what extent does the data structure play a role such that the residuals are

significantly large to bias estimated parameters?
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B.1 Euler Equation – Calculation Steps

The optimization problem uses the constraint

Ct · Pt +Bt+1 =Wt + (1 + it−1) ·Bt, (B1)

withWt as the nominal wage and Bt as the nominal value of bonds. The latter provides

the link between two periods. Depending on the definition of the interest rate, the

horizon can vary. Since the right-hand side of Eq.(B1) represents the disposable income

in period t, Bt is the investment by households starting in period t − 1 by the interest-

bearing condition it−1.

Dynamic Programming uses the additively separable utility function and the en-

velope theorem to set up optimality conditions for two consecutive periods. The pro-

cedure can be divided into three parts. The first part is to write a value function, the

Bellman equation. Under the assumption that the second term of the expanded utility

U (Ct) +Et

 ∞∑
s=t+1

%s−t−1
s U (Cs)

 (B2)

is maximized in period t, the Bellman equation is

V (Bt) ≡max
Ct
{U (Ct) + %tV (Bt+1)} . (B3)

The expected value vanishes since Bt+1 is determined by variables in period t in the

constraint. Differentiating with respect to Ct gives the first-order condition

dU (Ct)
dCt

+ %t
dV (Bt+1)
dBt+1

dBt+1

dCt
= 0, (B4)
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which results, when including Eq.(B1), in

dU (Ct)
dCt

= Pt%t
dV (Bt+1)
dBt+1

. (B5)

Eq.(B5) relates the marginal utility to the marginal value in the following period, the

time preference, and prices in the same period. Therefore, a higher %t and Pt results in

a lower Ct.

In the next part, the envelope theorem is used to differentiate the value function

(by inserting the optimized C∗t ) with respect to the costate variable Bt:

V (Bt) = U (C∗t ) + %tV (Bt+1) (B6.1)

⇒ dV (Bt)
dBt

= %t
dV (Bt+1)
dBt+1

· dBt+1

dBt
(B6.2)

⇔ dV (Bt)
dBt

= %t
dV (Bt+1)
dBt+1

· (1 + it−1). (B6.3)

Eq.(B6.3) reveals the relationship of the marginal value functions.

In a third step, the first-order condition (B5) can be used to replace the value func-

tions in Eq.(B6.3) with the marginal utility in both periods t and t − 1:

dU (Ct−1)
dCt−1

1
Pt−1%t−1

= %t ·
dU (Ct)
dCt

1
Pt%t
· (1 + it−1) (B7.1)

⇒ dU (Ct)
dCt

= %t · (1 + it) ·Et
[
Pt
Pt+1

dU (Ct+1)
dCt+1

]
. (B7.2)

The time shift yields the Euler condition.

B.2 Constant Relative Risk Aversion – Utility Function

The CRRA-function,

U (C) =
C1−γ − 1

1−γ
, γ > 0, (B8)

transforms into a root-, log-, or inverse hyperbolic-form, depending on the value of γ .

For γ ∈ ]0,1[, a root-function appears, for example the square root:

U (C | γ = 0.5) = 2(
√
C − 1). (B9)
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Log-utility (γ = 1) can be considered as a special case since l’Hôpital’s rule is needed

to reveal the ratio between the limit values in numerator and denominator:

U (C | γ = 1) = lim
γ→1

C1−γ − 1
1−γ

= lim
γ→1

log(C) ·C1−γ · (−1)
−1

= log(C). (B10)

Finally, a hyperbolic-form, mirrored at the abscissa, emerges for γ > 1:

U (C | γ = 2) =
C−1 − 1
−1

= − 1
C

+ 1. (B11)

Note that for all cases, a positive utility is only assured if more than one unit is con-

sumed.

B.3 Covariances of Transformed Random Variables

The idea is to show the substantial difference in the correlation after transforming two

random variables (RV’s). Figure B1 compares the correlation of repeated draws be-

tween two (i) normally-distributed and (ii) the inverse of normal-distributed RV’s. In-

verting the variables as transformation is chosen because it is relatively simple and ba-

sically matches the non-linearities in Eq.(2.5). Per repetition, 30 RV’s are drawn since

this roughly corresponds to the number of observations per cross-section, presented in

Section 2.3. We calculate the correlation as standardized covariance, otherwise outliers

would distort the density function.

-0.5 0.0 0.5

0
.0

0
.5

1
.0

1
.5

2
.0

-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

Figure B1: Resulting correlation with 105 repetitions, each with 30 draws. Distributions:
Standard-Normal (left) and inverted Standard-Normal (right).
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While the second moments are equal (Std.Dev. = 0.2), the kurtosis shows a funda-

mental difference: 2.8 (non-transformed) vs. 8.1 (transformed).

B.4 Euro Area – Weighting Scheme

Weighting of EA countries (France, Germany, Italy, Netherlands, and Spain) is con-

ducted from January 1999 to November 2002. Seasonal- and calendar-adjusted real

GDP data from Eurostat show that these five countries contribute around 86% to the

EA’s GDP. Over time, there is a slight downward trend and a minor structural break

in 2001 when Greece joined the euro zone. Quarterly GDP data are converted to a

monthly basis via linear interpolation. The weighting scheme is as follows:

µEA =
5∑
i=1

κiE[Yi] = E[λY ], (B12)

where κi are GDP-weights with
∑5
i=1κi = 1 and λ, the firm level weights for each

country (depending also on number of firms: λi = (N/Ni) · κi), is needed to insert

the individual forecasts directly into the expectation value, i.e., E[(1 +λY )−γ ].

Using this method for the period after 11/2002 shows no substantial difference,

when comparing with the actual values for the EA.
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B.5 Descriptive Statistics

Euler Equation Data Mean (%) Std.Dev. (pp) Min. (%) Max. (%)

Personal Consumption (US) 2.52 0.87 -1.17 4.49

Household Consumption (UK) 1.92 1.08 -1.95 3.97

Private Consumption (EA) 1.31 0.84 -0.53 2.88

Consumer Prices (US) 2.46 0.87 -0.66 5.2

Retail Prices (UK) 3.01 1.14 0.44 7.55

Consumer Prices (EA) 1.62 0.53 -0.02 3.01

Effective FFR (US) 3.07 2.55 0.04 9.52

SONIA (UK) 3.02 2.53 0.16 8.61

EONIA (EA) 1.7 1.7 -0.36 5.16

Inflation-Indexed Security (US) 1.07 0.89 -0.79 3.14

Inflation-Indexed Bond (UK) 1.82 1.75 -1.68 5.08

Gov. Benchmark Bond Yield (EA) 2.74 1.98 -1 7.02

Table B1: Consumption and price level measures are represented as one-year ahead expected
growth rates.

CF Uncertainty Mean Std.Dev. Min. Max. CV

GDP Std.Dev. (US) 0.3 0.11 0.13 0.7 0.37

GDP Std.Dev. (UK) 0.37 0.12 0.17 0.76 0.32

GDP Std.Dev. (EA) 0.27 0.14 0.08 0.7 0.51

Consumption Std.Dev. (US) 0.29 0.1 0.11 0.77 0.34

Consumption Std.Dev. (UK) 0.48 0.17 0.18 1.12 0.36

Consumption Std.Dev. (EA) 0.31 0.15 0.12 0.7 0.49

Prices Std.Dev. (US) 0.28 0.1 0.11 0.92 0.35

Prices Std.Dev. (UK) 0.33 0.17 0.1 1.12 0.5

Prices Std.Dev. (EA) 0.24 0.18 0.06 0.77 0.76

Table B2: Consensus Forecasts uncertainty measures are based on the one-year ahead expected
growth rates. The last column shows the coefficient of variation.
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Uncertainty Measures Mean Std.Dev. Min. Max. CV

S&P 500 Std.Dev. (US) 18.85 14.41 1.42 111.41 0.76

FTSE 100 Std.Dev. (UK) 79.76 49.35 11.09 335.78 0.62

Euro Stoxx 50 Std.Dev. (EA) 55.37 40.31 4.75 245.33 0.73

S&P Avg. Daily Range (US) 1.24 0.69 0.37 6.62 0.55

FTSE Avg. Daily Range (UK) 1.28 0.67 0.53 5.95 0.52

EStoxx Avg. Daily Range (EA) 1.69 0.84 0.6 5.88 0.5

VIX (US) 19.29 7.42 9.51 59.89 0.38

VFTSE (UK) 19.19 7.68 9.55 54.15 0.4

VSTOXX (EA) 23.93 8.81 11.99 61.34 0.37

WTI Std.Dev. (US) 1.64 1.35 0.15 11.29 0.82

Brent Std.Dev. (UK/EA) 1.64 1.31 0.16 10.79 0.8

St.Louis FSI (US) 0 1 -1.53 4.71 -

CLIFS (UK) 0.12 0.09 0.01 0.56 0.78

Weighted CLIFS (EA) 0.12 0.08 0.03 0.42 0.66

EPU (US) 113.79 43.05 44.78 284.25 0.38

EPU (UK) 119.66 68.77 24.04 558.22 0.57

EPU (EA) 131.35 61.48 45.3 433.28 0.47

MPU (US) 106.14 50.84 12.8 362.44 0.48

Macro Uncertainty (US) 0.91 0.05 0.85 1.15 0.05

Financial Uncertainty (US) 0.98 0.05 0.91 1.13 0.05

Systemic Stress (EA) 0.18 0.16 0.02 0.8 0.92

Forecast Uncertainty (US) 0.73 0.13 0.49 1.01 0.17

Forecast Inf. Uncertainty (EA) 0.75 0.14 0.45 1.02 0.18

Forecast GDP Uncertainty (EA) 0.75 0.14 0.51 1 0.19

World Uncertainty Index 122.63 37.67 63.76 250.52 0.31

Table B3: The last column shows the coefficient of variation, only differing by a small amount
across related variables. CLIFS is an index of financial stability by the ECB. EPU and MPU are
the Baker et al (2016) uncertainty measures. Macroeconomic and Financial Uncertainty are the
indices by Jurado et al (2015). Systemic Stress is an indicator provided by the ECB. Originally,
the Forecast Uncertainty data by Rossi and Sekhposyan (2015, 2017) are standardized such that
the maximum is 1. Slightly larger values in our data are due to interpolation. Interestingly,
there is no or weak negative correlation between these measures. The correlation between
all other related variables across regions is as expected: positive and significant (available on
request). The World Uncertainty Index comes from the paper by Ahir et al (2018).
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B.6 Correlation – Uncertainty Measures

US S&P S&PR VIX WTI FSI EPU MPU Macro Fin. Rossi

S&P 1 - - - - - - - - -

S&PR 0.6 1 - - - - - - - -

VIX 0.49 0.9 1 - - - - - - -

WTI 0.45 0.45 0.37 1 - - - - - -

FSI 0.11 0.68 0.67 0.08 1 - - - - -

EPU 0.45 0.39 0.39 0.32 -0.04 1 - - - -

MPU 0.23 0.07 0.06 -0.04 -0.08 0.48 1 - - -

Macro 0.36 0.63 0.6 0.59 0.55 0.23 -0.06 1 - -

Fin. 0.46 0.76 0.83 0.31 0.64 0.3 -0.02 0.65 1 -

Rossi 0.03 0.14 0.19 -0.08 0.17 0.16 0.05 0.1 0.18 1

WUI 0.13 -0.28 -0.29 0.14 -0.62 0.44 0.37 -0.21 -0.36 0.08

Table B4: S&P and WTI are the monthly standard deviations. S&PR are monthly averages of
the daily range in percent (S&P 500). FSI is the St. Louis Financial Stress Index. EPU and
MPU are the Baker et al (2016) uncertainty measures. Macro (Macroeconomic Uncertainty)
and Fin. (Financial Uncertainty) are the uncertainty measures by Jurado et al (2015). Rossi is
the forecast uncertainty by Rossi and Sekhposyan (2015). WUI is the World Uncertainty Index
by Ahir et al (2018). Numbers in bold denote significance at the 5% level.

UK FSTE FSTER VFTSE Brent CLIFS EPU

FSTE 1 - - - - -

FSTER 0.76 1 - - - -

VFTSE 0.65 0.93 1 - - -

Brent 0.39 0.43 0.28 1 - -

CLIFS 0.38 0.56 0.6 0.32 1 -

EPU 0.2 0.21 0.13 0.17 0.18 1

WUI 0 -0.11 -0.26 0.18 -0.18 0.59

Table B5: FTSE and Brent are the monthly standard deviations. FSTER are monthly averages
of the daily range in percent (FTSE 100). CLIFS is an index of financial stability by the ECB.
EPU is the Baker et al (2016) uncertainty measure. WUI is the World Uncertainty Index by
Ahir et al (2018). Numbers in bold denote significance at the 5% level.
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EA EStoxx EStoxxR VStoxx Brent CLIFS EPU CISS INF GDP

EStoxx 1 - - - - - - - -

EStoxxR 0.7 1 - - - - - - -

VStoxx 0.62 0.92 1 - - - - - -

Brent 0.32 0.2 0.18 1 - - - - -

CLIFS 0.4 0.72 0.75 0.31 1 - - - -

EPU 0.15 0.15 0.13 0.29 0.14 1 - - -

CISS 0.37 0.59 0.61 0.48 0.79 0.15 1 - -

INF -0.12 -0.21 -0.21 0.31 -0.05 0.11 0.06 1 -

GDP 0.27 0.24 0.25 0.27 0.28 -0.12 0.36 -0.1 1

WUI -0.1 -0.13 -0.14 0.18 -0.16 0.78 -0.12 0.18 -0.38

Table B6: EStoxx and Brent are the monthly standard deviations. EStoxxR are monthly av-
erages of the daily range in percent (ESTOXX 50). CLIFS is an index of financial stability by
the ECB. EPU is the Baker et al (2016) uncertainty measure. INF and GDP are forecast error
measures by Rossi and Sekhposyan (2017). WUI is the World Uncertainty Index by Ahir et al
(2018). Numbers in bold denote significance at the 5% level.
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3 The Extent of Jensen’s Inequality

“Evaluating the Approximation Bias in
Forward-Looking DSGE Models”

Abstract

Occurring in non-linear, forward-looking models, we evaluate a source of error

of the type: E[f (X)] ≈ f (E[X]). Since the difference is negligible in typical DSGE

models, we explore settings in which this can become a liability. For that purpose,

an illustrative model containing growth rates, calibrated via Consensus Forecasts

(CF), is utilized in a way that the magnitude of the inequality can be determined in

basis points. In a simulation-based analysis, we investigate the accuracy depending

on the empirical standard deviation and the function’s curvature. Our findings

show that the difference is reaching up to 25 or 30 basis points. In addition, we

analytically solve for a baseline case, showing that the difference depends on the

standard deviation in a quadratic way. Finally, the number of variables and the

correlation between them is taken as further influence on the approximation bias.

In cases with over five highly-correlated variables, a difference of over 25 basis

points can be reached. As a general result, the bias’ relation is nearly linear to

the data’s (co)variance and exponential to both the curvature and the number of

variables. Taking this source of error into account, the economist’s attention should

be on how a model is built and not so much on the data itself. This can be important

especially for large-scale models.

3.1 Introduction

In a recent article, Lindé (2018) discusses the usefulness of DSGE models in policy

analyses in the aftermath of the 2007–2008 financial crisis. Despite weaknesses in

these models, he argues that improved versions will play an important role for a long

time to come—at least for smaller policy institutions. He explains that DSGE models

are advantageous for smaller entities because more sophisticated models are extremely

costly, requiring both advanced human resources and full data access and availability.

This usefulness extends to central banks in developing and emerging countries, yet to

a lesser degree to central banks in developed countries. Therefore, smaller institutions

are reliant upon well-known workhorses in the process of building up their technical

analysis apparatus. In the same vein, by discussing challenges when evaluating these
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models, Fernández-Villaverde et al (2016), Schorfheide (2013), and Christiano et al

(2011) highlight their (future) importance. This underpins the potential of further

scrutinizing models from the “simpler” DSGE family.

In our work, we add another puzzle piece by examining situations in which for-

ward-looking behavior encircles a non-linear transformation. In the time dimensional

context of DSGE models, the conditional expectation usually spans from one period

to the next after solving for the first-order conditions. Moving on by log-linearizing,

the non-linearities typically resolve and only the function’s parameters—multiplied

by an expectation value containing growth rates—remain.1 This method is utilized in

many studies, whereby Fernández-Villaverde (2010) and Sbordone et al (2010) provide

a good introduction. As a consequence, models obtain the certainty equivalence prop-

erty. This sophisticates or suppresses the impact of second (and higher) moments like

risk, volatility, or uncertainty.2 These are measures that play an important role in fi-

nancial crisis scenarios. To fix this, higher-order approximations are a practicable way,

but how exactly to incorporate the additional moments can be arbitrary. Avoiding this

caveat, in a scenario alike, is equivalent to considering Jensen’s inequality.3 To account

for this, we label any changes that are made to the originally derived model equations,

approximation bias.

To the best of our knowledge, there is no literature dealing with this specific prob-

lem. There are, however, a large number of articles dealing with workarounds, e.g.,

Sargent (1987) and Ljungqvist and Sargent (2012), or sophisticated approximation

methods, e.g., Judd (1998) and Aruoba et al (2006).4 Two main reasons could account

for Jensen’s inequality being underrepresented in macroeconomics. First, the resulting

error (or approximation bias) is very small in the context of DSGE models. Nonethe-

less, we aim to see the whole picture and examine several scenarios with a wide variety

of parameter values. This gives a good impression in which situations caution is ad-

vised. Second, it is challenging (or almost impossible) to find a whole distribution

of future values to bring the model to the data as originally intended. In this case,

we argue that there is no necessity to have raw data at hand. It is sufficient to cali-

brate certain parameters concerning the data and to translate model assumptions into

1E.g., Et[(Xt+1/Xt)η]⇒ logEt[(Xt+1/Xt)η] ≈ ηEt[x̂t+1].
2See the technical paper by Straub and Ulbricht (2019) for a discussion on the connection between

theoretical and empirical second moments.
3Note that ignoring Jensen’s inequality as an approximation technique is different from (non-linear)

Taylor expansion. We show this in Section 3.2.
4Sargent (1987, 32) resolves the future consumption (in the context of the Euler condition) at time

t+ 1 into variables in time t, with the interest rate as a stochastic element that can be overcome with the
unconditional expectation value. Aruoba et al (2006, 2484) compare several approximation methods
for Euler equations, among them perturbation up to order five.
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parameters. Therefore, we build a small-sized model that could be part of an Euler

condition or a similar intertemporal connection, which can be found in every DSGE

model—for instance in Christiano et al (2011, 290) and Schorfheide (2013, 219). In

this framework, we derive an analytical solution describing the approximation bias,

interpreted in basis points. To assess the variability of the theoretical results we also

conduct Monte Carlo (MC) simulations.

Emerging from a slightly altered Jensen’s inequality—for a cleaner economic inter-

pretation—the illustrative model consists of two terms of weighted (or transformed)

growth rates, f (Et[grt+1]) and Et[f (grt+1)].5 The first term simply contains the expected

growth rate transformed by a non-linear function. The same function weights the

future growth rates in the second term and only afterwards the expectation value is

calculated. Subtracting these terms results in the approximation bias measured in

basis points. Also, the future growth rates follow a log-normal distribution in our

baseline case and an inverted-beta distribution in a robustness check. We will cover

this in more detail in the next section. In a final step, we increase the number of

variables to emulate large-scale models. Prominent references in this context are the

IMF’s Global Projection Model (Carabenciov et al 2013) and the ECB-Global (Dieppe

et al 2018). The latter contains over 800 parameters.

In our model, the different parameters can be assigned to five categories: (i) first

moments of the future growth rates, (ii) second moments of the future growth rates,

(iii) the curvature of the non-linear function, (iv) the number of variables or the model

size, and (v) the number of possible future states or the number of drawn random

variables (RV’s) per repetition in the MC simulation. Although the mean plays an im-

portant role in the analytical solution, the impact of realistic values is negligible. The

second moments, consisting of the standard deviation in a univariate case and the cor-

relation in a multivariate case, show a mixed picture. While the latter plays a minor

role, even counteracting the bias for negatively correlated variables, large values for

the standard deviation produce a serious approximation bias. The third category, the

degree of curvature, can be associated with risk aversion or elasticity measures in an

economic context.6 In our model, for a realistic range of values, the outcome is very

similar to the impact of the standard deviation. Augmenting the model in a multi-

plicative way, we add variables to check the influence of the model’s size. By including

ten variables when assuming a weak, positive correlation in the data, we find a similar

result to that of large values for standard deviation and curvature. Except for the last

5Note that the growth rates, gr, will be centered around unity.
6See Bollerslev et al (2011), Chetty (2006), and Morin and Suarez (1983) for a discussion of the

practical application and estimation of the level of risk aversion.
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category (the number of future states), the simulated distributions of the approxima-

tion bias draw a similar picture, with a constant increase in their second moment and a

weak, right-tail property. Increasing the number of (potential) future states, however,

decreases the third moments of the initially heavily skewed distributions toward zero.

Also, the distributions contract slowly to ideal values of the analytical solution.

As a general result, the approximation bias’ relation is nearly linear to the data’s

(co)variance and exponential to both the curvature and the number of variables. More-

over, the mean of the simulated distributions converges to the analytical result from

below when allowing for more possible future states. In most setups, the bias is smaller

than ten basis points, which confirms the insignificant role of this issue in the litera-

ture. However, taking up the focus on frontier markets as a cost-efficient usage for

DSGE models, some of the discussed parameters can become significantly large and,

therefore, justify a closer examination.

The remainder of this paper is organized as follows. Section 3.2 explains Jensen’s

inequality more carefully and how it is used to establish our illustrative model. In

addition, the non-linear function and the utilized distributions are introduced. Sec-

tion 3.3 derives an analytical solution for the baseline case, subsequently discussing

and interpreting the results. Section 3.4 presents the data and the calibration method.

Section 3.5 shows the simulation results, depending on uncertainty (standard devi-

ation), the degree of non-linearity (curvature), number of future states (number of

drawn RV’s), correlation (covariance), and model size (number of variables). Section

3.6 concludes.
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3.2 Theoretical Framework

3.2.1 Preliminary Consideration

Apart from the actual, numerical difference, Jensen’s inequality is well studied in the

sole mathematical context.7 Shifting into economical terrain, decision theory in par-

ticular examines how the expectation value has to be altered such that an equal sign

can be applied:

E[f (X)] = f (E[X] + x̃), (3.1)

where x̃ stands for the risk premium, which can be positive or negative, depending on

the curvature of the non-linear function, f . In contrast, we aim to describe the actual

degree of the inequality. To account for this difference, we define

E[f (X)] = f (E[X]) +∆X (3.2.1)

⇔ ∆X = E[f (X)]− f (E[X]), (3.2.2)

where the LHS of Eq.(3.2.1) shows the actual value and the RHS shows the approx-

imated value plus the bias. When f is convex (concave) the residual ∆ is positive

(negative).

Considering approximation techniques in general, only first-order Taylor expan-

sion makes Jensen’s inequality redundant. The second-order version already leaves a

distinction between E[f (X)] and f (E[X]) for non-linear functions. Although—after a

quadratic approximation—both expressions contain a measure for the curvature, the

latter is always smaller for convex functions.8 For this reason, to not dilute the results

by other approximations, our model originates from the basic inequality.

Going one step further, a juxtaposition of Jensen and Taylor helps to visualize the

methodology. Therefore, Figure 3.1 compares both sources of inaccuracy. Due to

graphical clarity, the expectation values are stemming from only two points on the

function, respectively. However, taking a (continuous) distribution does not change

the basic result. To further depict the difference, one could imagine an additional

curve (as the dashed line on the right side) passing through the intersections of the

compatible dotted lines, showing a smaller difference the less curved the black line is

(left to right). In this example, this holds true even when the range of the xi increases

from left to right. Also, in contrast to the second-order Taylor polynomial (Figure 3.1,

7Jensen’s inequality for convex functions is: f (E[X]) ≤ E[f (X)]. See, for example, Mitrinović et al
(1993) for an examination of continuous and multivariate versions and the connection to other inequal-
ities.

8See Appendix C.1 for the proof, taking advantage of the inequality of arithmetic and geometric
means (AM-GM).
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E[x1] E[x2] E[x3] x0

Figure 3.1: On the left side (Jensen), the approximation bias (∆) is displayed as the vertical
difference between the non-linear function (black line) and the intersection of the compatible
dotted lines. On the right side (2nd-order Taylor), the difference between the black and dashed
line shows the inaccuracy. (The three expectation values and the evaluation point, x0, are
arbitrarily chosen.)

right side, dashed line), the ∆ are always negative with the sign depending on the func-

tion’s concavity. In the Taylor example, the sign of the deviation is ambiguous, having

an exact result only around x0, with equal slope and curvature. On the other hand, in

the Jensen case, a rule of thumb for accuracy is more complicated, such as the “small

deviation” around the steady state (x0) or ±5% growth rates when log-linearizing.

3.2.2 An Illustrative Model

As typically found in Euler equations, we isolate the non-linear, forward-looking part

and, for the purpose of generality, apply growth rates to it.9 Also, even when renounc-

ing log-linearization in DSGE models, they can be implemented in a straightforward

way.10 This goes hand in hand with the data availability of future rates from the CF

data for the subsequent calibration. Moreover, we assume a log-normal distribution,

following the approach by Black and Scholes (1973) and Merton (1973).11 As an alter-

native, the inverted beta distribution is used, also being restricted with a lower bound

9A simple version, including the marginal utility with respect to consumption and the interest rate
as an intertemporal connection is as follows: dU/dCt = it ·Et[dU/dCt+1].

10E.g., Et[(Xt+1/Xt)η] = Et[(1 + x̂t+1)η].
11More precisely, the Black-Scholes formula requires log-normally distributed returns to price op-

tions in a relatively simple manner. In a similar context, the distribution is first mentioned by Samuel-
son (1965). The obvious normal distribution is problematic since there is no lower bound (for growth
rates) and, defined on R, the expression E[Xη] (η ∈ N) is challenging to solve and requires many cases or
complex functions. This is not practical for an analytical solution.
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(i.e., being non-symmetric), which is appropriate for the data structure. Notwithstand-

ing the usage of growth rates, the expression E[X] as the arithmetic mean (instead of

the geometric mean) is reasonable since the rates are not consecutive but cross sec-

tional.

In line with most (consumption) Euler conditions, the CRRA utility function pro-

vides a flexible functional form for the non-linearities. As a result of this and because

the expressions typically stem from first-order conditions, we use the marginal utility

for f (X):

f (X) =
1

(1 +X)γ
, where F(X) =

1
1−γ

·
(
(1 +X)1−γ − 1

)
+C0, γ > 0. (3.3)

The general antiderivative F(X) in Eq.(3.3) is formulated in a way that for γ = 1 the

function collapses to log-utility, a case common to the literature (see, e.g., Clarida et al

2000, 170, Galí 2015, 67, Yun 1996, 359).

Figure 3.2 captures these assumptions in a single coordinate system, showing the

approach to evaluate Jensen’s inequality. Starting next to the lower bound, the marginal

f (X); likelihood

0 XE[X]−100%

Figure 3.2: The model is tailored to growth rates due to a lower bound. Shown as schematic
representation, values are drawn from a distribution (dashed curve) to insert into the non-
linear function (black curve), f (X).

utility or revenue from growth rates is the highest, monotonically decreasing for larger

values. Not depending on the curvature parameter, the intercept equals the neutral
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value of one describing a situation without growth. In the following, we refer to the

transformation result as weighted, inverse growth rates.12

Three of the model’s decisive parameters are visualized in the graphics: the curva-

ture in the hyperbola and the mean and variance in the density function. The latter

predefines the probability by which values X, the growth rates, are drawn to insert

into f (X). Hence, the domain of the density function (support of X) has to be a subset

of the inverse image of f (X).

On the basis of Eq.(3.2.2), the plain concept, we change two components for a more

intuitive and meaningful economic interpretation. First, this is done by switching

the biased and the un-approximated value by changing the order of the difference (or

multiplying by −1) and second, by adding a composite function g(y) to obtain a growth

rate difference,

∆g(X) = g ◦ f (E[X])− g(E[f (X)]). (3.4)

Applied only after the situation in Figure 3.2, g(y) acts as a monotone transforma-

tion of Jensen’s inequality that flips the unequal sign. Since f (X) is already invert-

ing the growth rates, setting g(y) = y−1 produces re-inverse, weighted (γ) growth to

counteract the initial transformation. Combining the slight deviations from Eq.(3.2.2)

makes ∆g(X) positive.13

Pouring the preceding considerations into one equation results in

bias(X) = 104 ·
(
(E[1 +X])γ −E[(1 +X)−γ ]−1

)
, (1 +X) ∼ logN

(
µ,σ2

)
, (3.5)

the approximation bias measured in basis points when multiplying the RHS of Eq.(3.5)

by 104. Moreover, f (X) = (1 + X)−γ is the derivative (marginal utility) of the CRRA

(isoelastic) utility function with γ as the curvature and γ−1 as the elasticity of intertem-

poral substitution (EIS). Furthermore, X follows a horizontally shifted log-normal dis-

tribution with a lower bound of −1. This meets the characteristics of growth rates

with their minimum possible value of −100% and no upper bound. However, the ac-

tual parameter constellation concentrates the probability mass relatively tight around

their mean value slightly larger than zero. Ultimately, using a continuous distribution

enables us to derive simple, analytical results for the approximation bias.

12Weighting growth (as a relative number, expressing the change in absolute numbers) by means of
an exponent works analogously to weighting absolute numbers multiplicatively with coefficients. Here,
the approximate log-transformation can be misleading since growth rates oftentimes appear to have a
coefficient or to be addable.

13Without g(y), the interpretation as growth rate difference would include first-order Taylor expan-
sion and, thus, would be similar. See Appendix C.2 for the proof and numerical examples.
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3.3 Analytical Solution

In this section, we derive a function, depending on the first two moments and the cur-

vature-parameter, which is able to predict the approximation bias. Therefore, we use

the framework of Eq.(3.5) with the X now labeled as growth to address the economic

setting. This distinction is also made to first draw from a standard-normal distribution

and subsequently transform into log-normally distributed RV’s. The advantage is to

keep track of the parameters of the latter distribution. The conditional expectation

operator accounts for the time series context. Initially, we specify the expected bias,

bias(µ,σ ,γ) = E
[
104 ·

(
(1 + Et[growtht+1])γ︸                    ︷︷                    ︸

(1): approximated

−Et [(1 + growtht+1)−γ ]−1︸                        ︷︷                        ︸
(2): unbiased

)]
, (3.6)

where growth = exp(α + βZ)− 1 and Z ∼N (0,1). This makes growth, the growth rates,

a log-normally distributed RV with a lower bound of −1 (or −100%). Three notational

aspects are worth mentioning. First, we drop the time indices for more clearness.

Second, we further simplify by setting m = 1 + µ, defining m as the centered mean,

thus, centering the growth rates around 1. Third, there is the risk to confound the

transformation parameters, α and β, and the targeted moments, µ and σ , since they are

approximately the same size.14 The following formulas show the connection between

log-normal parameter and moments:

α = log(m)− log
(√

1 + (σ/m)2
)

(3.7.1)

β =
√

log(1 + (σ/m)2) (3.7.2)

m = exp(α + β2/2) (3.7.3)

σ2 = exp
(
2α + β2

)
·
[
exp

(
β2

)
− 1

]
. (3.7.4)

The key step relies on the moment generating function of the normal distribution.15

By inserting the distribution expression in the approximated (1) and the unbiased (2)

terms of Eq.(3.6), the stochastic source Z becomes apparent but immediately cancels

out:

(1) : E[exp(α + βZ)]γ =exp(γα) ·E[exp(βZ)]γ =exp(γα) · exp(γβ2/2) (3.8.1)

14Note that the assignment of Greek letters is different from most sources for the reason mentioned
above and for being in accordance with the parameter designation of the inverted beta distribution, also
used in this article.

15E
[
etZ

]
= et

2/2, t ∈ R (see Appendix C.3 for the proof).
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(2) : E[exp(α + βZ)−γ ]−1=exp(γα) ·E[exp(−γβZ)]−1=exp(γα) · exp(−(γβ)2/2). (3.8.2)

This replaces all RV’s by parameters only and ensures that no stochastic part is re-

maining. Re-merging the function without inserting µ/m and σ yet using summarizing

parameters gives a first impression of the functional form regarding the curvature:

bias(γ) = 104 ·Aγ
(
Bγ −B−γ

2)
, (3.9)

with A = exp(α) ≈ 1 and B = exp(β2/2) > 1. Writing the function in the shape of

Eq.(3.6) gives

bias(α,β,γ) = 104 ·
(
exp(α + β2/2)γ − exp(α −γβ2/2)γ

)
. (3.10)

When using Eqs.(3.7) to replace α and β, we can take advantage of the inverse function

(exponential and logarithm, square and square root) to arrive at the main function:

bias(m,σ,γ)

= 104 ·
(
mγ − exp

(
log(m)− log

(√
1 + (σ/m)2

)
−γ log

(√
1 + (σ/m)2

))γ)
(3.11.1)

= 104 ·

mγ −mγ ·
 1√

1 + (σ/m)2

γ ·  1√
1 + (σ/m)2

γ2 (3.11.2)

= 104 ·mγ ·

1−
(

m
√
m2 + σ2

)γ(γ+1)
 . (3.11.3)

Factoring out mγ , such that the first term in the outer brackets becomes one, focuses

on the second term stemming from the unbiased expression. To get more insight,

Eq.(3.11.3) can be separately examined from the perspective of both moments and

curvature. The bias depending on m and σ with γ = 1 (corresponds to log-utility)

heavily reduces the complexity:

bias(m,σ | γ = 1) = 104 ·m
(
1− m2

m2 + σ2

)
= 104 · mσ2

m2 + σ2 . (3.12)

Eq.(3.12) shows a nearly quadratic relationship with regard to σ (since m2� σ2), cor-

rected by m, the centered mean. This non-trivial result is plausible considering the

schematic representation in Figure 3.2. Shifting the distribution to the right (increas-

ing m) decreases the approximation bias since the function becomes less curved. A

wider distribution (large σ ) spreads the probability mass over the non-linear func-

tion in a manner that the approximation bias becomes larger. However, as mentioned
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above, there is no stochastic element left in the formulas. Finally, an upper bound

can be found by applying l’Hôpital’s rule, limσ→∞ bias(σ | m) = 104 ·m, revealing a

maximum deviation of 100pp, again, corrected by m.

Consulting an economic interpretation, term (1) from Eq.(3.6) stays at the mean

value since it does not consider any uncertainty. However, term (2), the inverse of

the “marginal utility,” converges towards zero. This shows, via a roundabout route,

the negative relationship between uncertainty and utility. Moreover, it shows that in

an economic model a function’s curvature artificially replaces the actual real-world

higher-order moments, stemming from the data.

Shifting the focus to γ , Eq.(3.11.3) with r =
√
m2 + σ2 reveals the fraction as the

crucial term, approaching zero when γ is increasing:

bias(γ) = 104 ·mγ ·
[
1− (m/r)γ(γ+1)

]
. (3.13)

Eq.(3.13) has some simple properties. When σ approaches zero then r approaches m

and the bias vanishes. Also, for positive growth rates, there is no upper bound since

limγ→∞ bias(γ | m > 1) does not exist. It is easy to show that bias(0) = bias(−1) = 0 and

for γ ∈]−1,0[ the bias becomes negative. Although mathematically correct, this would

break the models framework (γ > 0) and dilute the interpretation. Therefore, for a con-

cave version, by multiplying the function by −1 (mirroring on the abscissa), a negative

sign can be factored out, such that the bias-function stays the same otherwise.16

Putting everything together, Figure 3.3 graphically presents the findings concern-

ing the function bias(µ,σ ,γi), with γ as a parameter in levels (i.e., different opacity-

levels). Taking the mathematical curvature instead of the EIS highlights the theoretical

aspect. The ranges for the parameters are relatively large to show a broader picture.

The realistic ranges will be introduced in the next sections.

16See Appendix C.4 for additional investigations concerning this function.
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Figure 3.3: Theoretical approximation bias depending on all parameters with γi ∈ {1,1.5,2}
represented in the different planes. Horizontal axes: σ ∈ [0.001,0.04] and µ ∈ [−0.05,0.2].
Vertical axis: Growth rate difference in basis points.

Figure 3.3 shows how the impact of m on the bias changes with γ . The under-

most plane reveals a slightly negative relationship, whereas the intermediate plane

constantly remains close to a 50bp difference (max. σ ) for all m. In contrast, for γ = 2

(uppermost plane) the relationship becomes positive. In each case, the absolute effect

of m (conditional on large σ and γ) is rather small.
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3.4 Data and Calibration

After the analytical solution, the next step is to check whether the assumptions are

also fulfilled in the empirical data. This can be done by checking whether the RV’s,

which is growth in the previous section, are log-normally distributed. The final aim is

to get a realistic range of parameters/moments to work with when there is no or insuf-

ficient raw data available. For the empirical tests, we use CF data from the Consensus

Economics surveys. They provide projections on a series of macroeconomic indicators

(e.g., GDP growth and inflation measures) that are mainly collected from companies

in the finance sector. The data sets are issued on a monthly basis and display the

forecasts for the current and upcoming year. Originally, the survey started in October

1989, whereas our data reach to June 2019, resulting in a total of 357 months. The

observations start with estimations for the G-7 countries. From 1995 on, the number

of countries for which there are forecasts available are successively expanded. There-

fore, the time horizon for these countries is significantly shorter. The method and

calibration results are introduced for US data due to a high availability in the number

of observations. For the US, the minimum number of forecast observations per month

is 19, the maximum is 33, and on the average is 27 per month.17 Subsequently, we

use existing data for frontier or emerging markets with a sufficient amount of obser-

vations (Egypt, Nigeria, and South Africa) to account for the possible application of

DSGE models as stated in the introduction.

Since the variables’ meaning is changing from month to month due to a varying

forecast horizon, the values from the current period and the next year shall be com-

bined into another variable:

Et[xt+1|M] =
13−M

12
·Et,M[xt] +

M − 1
12

·Et,M[xt+1]. (3.14)

Consequently, a weighting scheme as in Eq.(3.14) is constructed to combine the fore-

casts. With the weighting scheme, it is also ensured that the viewed future time hori-

zon is always 12 months. The examined variable of the CF data set is the consumer

price (%-change) forecast, which is equivalent to an inflation measure.

Several normality tests are run on the adjusted data for consumer price. This is

done due to the requirement in Section 3.3 that Z is normally distributed. The ob-

served variables xt need to be rearranged to

zt = log(xt + 1) (3.15)

17Based on these numbers, N—which represents the number of drawn variables—is initially fixed to
30 in Section 3.5.

80



and zt is checked on normality. If the normality test approves the hypotheses and zt is

normally distributed, the observed variables are log-normally distributed.

We use four different tests including Jarque-Bera (J-B), Shapiro-Wilk (S-W), Ander-

son-Darling (A-D), and Lilliefors (LF). The results can be seen in Table 3.1. In 85%

of the observations, the J-B test cannot reject the H0 of non-normally distributed vari-

ables.

Norm. p-value
Test Min 25thcentile Median 75thcentile Max

J-B 0 0.225 0.478 0.718 0.998

S-W 1.95 · 10−5 0.126 0.308 0.615 0.989

A-D 8.06 · 10−5 0.102 0.290 0.549 0.991

LF 1.68 · 10−4 0.089 0.312 0.592 0.999

Table 3.1: Normality test results for inflation forecasts (US).

As the normality tests show sufficient results, the observed variables shall be log-

normally distributed. Now, the calibration of the distribution on the weighted obser-

vations can be run. We use a non-linear least square model to solve this issue. The

drawn variables are shifted by a subtraction of one to fit the observations:

xshift = xdraw − 1, (3.16)

where xdraw ∼ logN (µ,σ2) are the drawn pseudo-observations from the log-normal

distribution. Forecasts can also contain negative values, i.e., negative growth for con-

sumer prices or other macroeconomic indicators, which cannot be drawn in a log-

normal distribution. This can be solved by the shift. For this we calculate the mean

squared error, MSE, between the observations and the shifted variables by

MSE =
1
N
· (xobs − xshift)

2, (3.17)

where xobs are the observed variables and N is the number of observations. The target

is to minimize MSE and to find the optimal parameters µ and σ2 of the distribution.

The start-parameters of the log-normal distribution in the calibration are chosen in

respect of µobs and σ2
obs of the observed variables. From every parameter we go ten

predefined equidistant steps in every direction. This builds a grid

C1 = {µ1,lower, ..,µ1,obs, ..,µ1,upper} × {σ2
1,lower, ..,σ

2
1,obs, ..,σ

2
1,upper} ∈ R

2, (3.18)
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where µ1,lower = µ1,obs−10·step1 and µ1,upper = µ1,obs+10·step1 and step1 is the equidis-

tant step. The same calculation is done with the variance, but the step size can differ

from the one used for the mean. As a result, there are 212 = 441 possible parameter

combinations (µ,σ2) ∈ C1.

At every combination, as many random variables are drawn as observations we

have in these respective time periods. The MSE of the drawn and observed variables

at every combination point is calculated. The parameter combination with the lowest

MSE is chosen as the new optimal point (µ∗1,σ
2∗
1 ) ∈ C1.

In the next step, we again go from this optimal point ten equidistant steps in every

direction with the difference that the steps are with a factor 10 smaller than before.

They can be calculated by the following method:

stepi =
step1

10i−1
. (3.19)

The new grid is of the form:

C2 = {µ2,lower, ..,µ
∗
1, ..,µ2,upper} × {σ2

2,lower, ..,σ
2∗
1 , ..,σ

2
2,upper} ∈ R

2. (3.20)

So, we assure that the grid is getting finer. The least MSE in this step forms the new

optimal point (µ∗2,σ
2∗
2 ) ∈ C2. These steps are repeated until we reach a sufficiently

predefined small error term and the resulting parameters are (µ∗opt,σ
2∗
opt). The results

are the specific parameters of both distributions, which are transformed to µ and σ2

using Eqs.(3.7) from Section 3.3 and Eqs.(C16) from Appendix C.6. The calibration

results for two distribution functions (log-normal and inverted beta) are displayed in

Table 3.2, whereas the calibration method for the inverted beta is nearly the same as

for the log-normal distribution. The only difference is the shift of the drawn variables

from Eq.(3.16) by 0.01. This ensures that the inverted beta distribution also generates

negative values.18

18Due to the characteristics of the inverted beta distribution a larger shift is not feasible. A significant
part of the probability mass is concentrated at the lower bound, which is in this case the shift, and this
would mainly result in negative values. The mass can be stretched by changes in the parameters of the
distribution but this would deliver an unreasonable large σ .
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Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

log-norm.

µopt −0.0032 0.0191 0.0246 0.0320 0.0420 0.0239 1.09·10−6

σopt 0.0001 0.0001 0.0002 0.0007 0.0060 0.0027 1.09·10−6

inv. beta

µopt 0.0061 0.0233 0.0275 0.0322 0.0556 0.0239 4.56·10−5

σopt 0.0011 0.0023 0.0028 0.0036 0.0262 0.0027 4.56·10−5

Table 3.2: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on inflation forecasts.

In the first column, the two variables, which are the focus of our calibration, are

shown. The following five columns focus on the results of the calibration. It shows de-

scriptive statistics for the 357 months. The next column switches from the calibrated

to the observed variables in the CF data set. In each of the 357 months, the mean

and the standard deviation of the observed variables are calculated. This delivers 357

empirical values for both moments. The median of the two calculated moments is dis-

played in the respective row. Consequently, the results for the median of the observed

variables are the same for both distribution methods because the viewed data set is the

same. The mean error that arises from the calibration can be found in the last column.

Focusing on the mean error, the log-normal distribution is clearly better in fitting the

observed variables. Regarding the estimation of µopt, the log-normal distribution gives

a better fit than the inverted beta distribution. This is mainly due to the concentration

of probability mass at the lower bound of the inverted beta distribution. The picture

changes when fitting σopt. Here the log-normal distribution underestimates the stan-

dard deviation whereas the inverted beta distribution gives a better fit. Nonetheless,

it is noticeable that the inverted beta distribution sometimes generates relatively large

values for the standard deviation.

For comparison purposes and due to a potentially high interest in DSGE models for

emerging/frontier markets, we now focus on forecasts of consumer prices for Egypt,

Nigeria, and South Africa.19 Other countries that are classified in these markets are

not available in the data set. Due to a low number of forecasts per month—in contrast

to developed countries, e.g., the US—quarterly data is used. The observations start in

Q1 2008, which results in a time horizon of 46 quarters. The minimum number of

19The classification regarding frontier and emerging markets is taken from MSCI. This is a provider
of equity market indexes that uses a classification for different markets.
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forecast observations per quarter is six for Nigeria in Q1 2008, the maximum is 57 for

South Africa in Q4 2016, and the average is 22. The average is built considering all

three countries.

The previous adjustment to rearrange all variables on a 12 months time horizon

is also done for the monthly variables as mentioned in Eq.(3.14). In the following

normality test, the adjusted variables in a whole quarter are checked for normal distri-

bution. The results can be seen in Tables 3.3–3.5. In all countries, the J-B test results

support normally distributed random numbers in more than 65% of the cases. In

Egypt and Nigeria, normally distributed random numbers are supported in even more

cases, amounting to 90%.

Norm. p-value
Test Min 25thcentile Median 75thcentile Max

J-B 4.62 · 10−7 0.256 0.449 0.578 0.996

S-W 0 0.037 0.241 0.417 0.843

A-D 0 0.018 0.138 0.328 0.858

LF 0 0.027 0.114 0.300 0.980

Table 3.3: Normality test results for inflation forecasts (Egypt).

Norm. p-value
Test Min 25thcentile Median 75thcentile Max

J-B 8.21 · 10−11 0.397 0.562 0.682 0.900

S-W 0 0.053 0.219 0.523 0.951

A-D 0 0.018 0.146 0.344 0.865

LF 5.32 · 10−6 0.039 0.151 0.281 0.779

Table 3.4: Normality test results for inflation forecasts (Nigeria).

Norm. p-value
Test Min 25thcentile Median 75thcentile Max

J-B 7.99 · 10−15 0.028 0.371 0.648 0.947

S-W 1.69 · 10−5 0.004 0.103 0.391 0.756

A-D 1.05 · 10−6 0.004 0.087 0.342 0.883

LF 5.37 · 10−6 0.003 0.088 0.402 0.851

Table 3.5: Normality test results for inflation forecasts (South Africa).
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The normality tests again show sufficient results for the three countries analyzed.

So the same calibration can be run for the log-normal distribution and inverted beta is

again used as a robustness check. The method of the calibration stays the same. The

results can be seen in Tables 3.6–3.7.

Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

Egypt

µopt 0.0804 0.0965 0.1075 0.1193 0.2033 0.1057 2.88·10−4

σopt 0.0054 0.0073 0.0085 0.0106 0.0179 0.0134 2.88·10−4

Nigeria

µopt 0.0591 0.0972 0.1094 0.1224 0.1507 0.1088 1.30·10−4

σopt 0.0055 0.0080 0.0106 0.0131 0.0341 0.0096 1.30·10−4

S. Africa

µopt 0.0464 0.0523 0.0576 0.0612 0.0852 0.0571 4.03·10−5

σopt 0.0047 0.0062 0.0072 0.0088 0.0136 0.0035 4.03·10−5

Table 3.6: Calibration results when assuming CF data follow a log-normal distribution. The
calibration is run on a quarterly basis for the rolling window-adjusted observations on inflation
forecasts.

Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

Egypt

µopt 0.0899 0.1029 0.1135 0.1321 0.2176 0.1057 3.57·10−4

σopt 0.0060 0.0107 0.0143 0.0209 0.0361 0.0134 3.57·10−4

Nigeria

µopt 0.0763 0.1002 0.1162 0.1284 0.1519 0.1088 1.41·10−4

σopt 0.0004 0.0070 0.0099 0.0135 0.0269 0.0096 1.41·10−4

S. Africa

µopt 0.0492 0.0547 0.0588 0.0632 0.0875 0.0571 6.19·10−5

σopt 0.0022 0.0030 0.0035 0.0047 0.0125 0.0035 6.19·10−5

Table 3.7: Calibration results when assuming CF data follow a inverted beta distribution. The
calibration is run on a quarterly basis for the rolling window-adjusted observations on inflation
forecasts.
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The results deliver the same picture as for the US. The log-normal distribution

generates lower error terms compared to the inverted beta distribution. However, all

errors are relatively close to each other. Additionally, the median of µopt is quite close

to the median of the observed variables. In the inverted beta distribution, µopt is not

as good as in the log-normal distribution, but σopt is better fitted.20

Summarizing, none of the distributions are clearly better in fitting the CF data

set. Due to the slightly better error term for the log-normal distribution in the US

and other aspects, e.g., multivariate distributions, we focus on log-normal for further

analysis. Due to the above results for four different countries, the baseline scenario in

the next section consists of µ = 0.06 and σ = 0.01 as fixed parameters.

20Similar results can be seen for the calibration of the GDP forecasts in the CF data set. This, and α
and β for the distributions for both variables can be found in Appendices C.7 and C.8.
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3.5 Monte Carlo Simulation

The simulation section takes up the calibration results and conducts several simple MC

experiments. Thereby, expectation value and variance become stochastic, enabling us

to check how this variability influences the findings of Section 3.3. We orientate at the

following sequence.

1. Specify the parameters in Eq.(3.5): µ,σ ,γ , and N (in the multivariate case also n,

the number of variables, and ρ, the correlation).

2. Calculate the bias, also Eq.(3.5), by drawing N random variables, following a

log-normal distribution. Repeat this 105 times to obtain a bias-distribution.

3. Alter one of the parameters and repeat step 2. As soon as the parameter has

covered a certain range, jump to step 4.

4. Graphically show the results as boxplots in a x-y-diagram with the varying pa-

rameter on the x-axis and the bias on the y-axis.

There is little variation when the first moment takes different values with a change in

bias significantly lower than 1bp.21 Hence, µ is constantly set to 0.06, a happy medium

regarding the calibrated means. We set N to 30 since this matches the typical number

of firms participating in the CF survey. Increasing this number will not result in a

substantial difference. However, we examine this in more detail in Appendix C.15. We

use 105 repetitions to make sure the obtained distributions already converged.

The boxplots, which are uncommon in this context, depict the non-parametric char-

acteristics of a distribution as described in Mcgill et al (1978). The lower (upper) hinge

of the box presents the first (third) quartile, while the middle line presents the median,

the second quartile. This gives a good impression concerning the distribution’s skew-

ness. The lines extending vertically from the boxes (whiskers) expand both hinges by

the interquartile range, multiplied by 1.5. As an orientation, when using a normal

distribution, outliers larger (smaller) than the upper (lower) extreme account for only

0.35% of the probability mass. This value will be somewhat larger since bias > 0 and,

thus, the simulated distributions are likely to be asymmetric with the mean not equal-

ing the median. Although outliers are excluded for graphical clearness in the following

figures, we check for their share not being too large (< 2%) as justification to use the

standard boxplots.22

21See Appendix C.9 examining the derivative ∂bias/∂µ in detail.
22This keeps the interpretation simple and is in line with Hubert and Vandervieren (2008, 5191). In

their article, they propose adjusted boxplots accounting for skewed data when outliers exceed 5%.
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Throughout this section, the following scheme is used to describe the results. The

simulated distributions are analyzed in terms of the first three moments, the best fit-

ting parametric distribution relating to outliers, and the relationship between the me-

dians and the varying parameters. Regressing the median-bias on the parameters ex-

tents the analytical results and accounts for the approximation bias’ immanent skew-

ness.23

3.5.1 Standard Deviation

According to Eq.(3.12), we take the standard deviation, a measure for the data’s uncer-

tainty, as the first varying parameter, whereas γ is held to one. The calibrated σ ’s range

from 0.001 to 0.032. We choose 20 values starting from nearly zero up to a maximum

value of 0.04, which is larger than calibration suggests to account for the possible bias

in long-term forecasts. In this extreme scenario, with µ = 0.06, growth rates of 10%

are quite realistic since the 68–95–99.7 rule applies approximately for the log-normal

distribution.24 Figure 3.4 shows the results.
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Figure 3.4: Simulations with 105 repetitions each (log-normal distribution with µ = 0.06, N =
30, and a lower bound of −1). Resulting distributions of the approximation bias are shown as
boxplots. Horizontal axis: Standard deviation (σ ). Vertical axis: Growth rate difference in basis
points (bias).

23To not overload Section 3.3, we include the median analysis in the simulation part only and, at the
same time, using the advantage of the graphical analysis.

24Despite the distribution being truncated and skewed, this approximation holds very accurate, e.g.,
when σ = 0.06, the probability mass inside the 3σ -interval lowers by only 0.1pp to 99.6%.
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The values originating from Eq.(3.12) are augmented by distributions for each σ ,

illustrating the sensitivity to small samples. The first twelve boxplots (including σ =

0.024) are of marginal relevance being strictly under 10bp. However, with a larger

standard deviation the bias is increasing and averages 15bp for the extreme scenario,

even reaching up to 25bp. Figure 3.4 also reveals that bias-predictions with increas-

ing σ become more and more inaccurate (increasing interquartile range). Moreover,

empirical analysis of the simulation data shows that the variance of the simulated dis-

tributions increases proportional to the σ ’s. The distributions’ skewness is consistently

positive with the deviation of mean and median located slightly over 2% (i.e., always

less than one basis point).25 Cullen and Frey (1999) analysis shows that the resulting

distributions best fit to a gamma distribution.26 This means, in turn, that for every

σ there are theoretically around 1% outliers larger than the upper extreme. This also

holds empirically. Most interesting, the relationship between σ and the approxima-

tion bias (median) is quadratic with an R2 of almost 100% when running regression

analysis. The detailed results are shown in Appendix C.10.27

The intuition behind the relationship can be outlined by a simple case where f

from Eq.(3.2.1) is the convex function f (X) = X2:

E[X2] = (E[X])2 + Var[X] = (E[X])2 + σ2
X . (3.21)

Here, the residual (∆X) consists of the squared standard deviation.28 For this exam-

ple, in contrast to the analytical derivation, X does not necessarily follow a specific

distribution. Nevertheless, we also check for the accuracy of a second-order Taylor

expansion with regard to Eq.(3.12):

T bias2 (σ | σ0 = 0) = 104 · σ2/m. (3.22)

The isolated quadratic part describes the relationship sufficiently enough up to σ =

0.16.29

25E[(mean −median)/median | σ ] = 2.35%. In line with the our own calculations, the medcouple, a
normalized or robust measure for the skewness reaching from −1 to 1, is only around 0.08.

26More comprehensive non-parametric tests (e.g., Kolmogorov–Smirnov) are avoided to keep the
framework simple. The classification merely serves to check whether theoretical and empirical values
are roughly the same.

27Also in Appendix C.10, we show similar results for the CARA function but hereinafter, for the lack
of substantial difference, we stick to the CRRA function.

28With the binomial formula: Var[X] = E[X2] − E[X]2. Note the close connection between Jensen’s
inequality and our model (Appendix C.2).

29Appendix C.11 shows this in more detail. See also Appendix C.12, further examining the approxi-
mation bias in terms of a ratio between the approximated and the un-biased term.
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3.5.2 Curvature – Elasticity – Risk Aversion

The second varying parameter accounts for the degree of non-linearity of f from

Eq.(3.3). In an attempt to interpret this property as general as possible, this can be

described by the curvature, typically defined as the amount by which a curve devi-

ates from being a straight line. By defining γ as curvature of f (1 + x), the relative risk

aversion equals:

RRAf = −(1 + x) · f ′′/f ′ = 1 +γ. (3.23)

Concerning this interpretation of γ , Meyer and Meyer (2005) assemble slightly dif-

ferent versions of risk aversion to make them comparable and Chiappori and Paiella

(2011) conduct an in-depth analysis of risk aversion using panel data.

As mentioned earlier, f (1 + x) is understood as the marginal utility, satisfying the

economical situation. In this case, the inverse, γ−1, can be interpreted as elasticity.

Additionally, in a time-varying context, γ−1 stands for the EIS. For the sequence of γ ,

applied to the study, we orientate at Meyer and Meyer (2005, 260) by starting slightly

above zero (0.25) and going up to 5 (i.e., γ−1 ∈ [0.2,4]). Figure 3.5 shows the simulation

results analogous to the previous subsection.30
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Figure 3.5: Horizontal axis: Curvature (γ). Vertical axis: Growth rate difference in basis points.

30From an economical point of view, the horizontal axis should increase with the EIS, which is shown
in Appendix C.14.
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Almost identical to Figure 3.4, boxplots one to twelve are hardly exceeding the

10bp line. The outcomes are breaking this line for an EIS of 1/3 and lower. The average

bias is increasing over 15bp for a curvature of 5 (relative risk aversion of 6), with almost

30bp at the upper extreme. The interquartile range is increasing with larger curvature.

Similarly, the variance is proportionate to the curvature. Investigating skewness and

possible parametric distributions show the same results as with a varying σ . However,

for the largest value of γ , outliers make up for almost 2%. The relationship of x and y

is approximately bias ∼ γ2.31 Also, in terms of pure elasticities, log(bias) ∼ log(γ), the

regression’s goodness-of-fit edges up to R2 = 0.99. This allows for the interpretation

of a %-change caused by a 1% increase. In this case, the system is relative elastic

with a log-coefficient of around 1.67. Analogous to the σ -version but less accurately,

the quadratic relationship can be described by a second-order Taylor expansion for

γ ≤ 0.9:

T bias2 (γ | γ0 = 0) = 104 · log(r/m)
[
log

(
e
√
m3/r

)
γ2 +γ

]
. (3.24)

In contrast to Eq.(3.22), with the standard deviation as variable, Eq.(3.24) should only

be used for a certain range of realistic values.32 Overall, an exponential link is prefer-

able when characterizing the relation between curvature and approximation bias.

3.5.3 Number of States – Sample Size

The parameter N , in terms of the simulation procedure, is the sample size per repe-

tition. So far, N equaled 30 to represent the available number of forecasts in the CF

data sets. Economically, N designates the number of possible future states. For the

generic case of N = 1, there is only one outcome and, therefore, no uncertainty. This

makes Jensen’s inequality redundant. WhenN is approaching infinity, the approxima-

tion bias converges to the analytical finding. Since both scenarios are not reasonable,

we vary N from 1 to 20 and examine how the result is driven by uncertainty regarding

different prospective outcomes.33

When N is increasing, the variance in the repetitions vanishes. However, for small

N , the variance is not exploding. Figure 3.6 depicts the baseline case (µ = 0.06, σ =

0.01, γ = 1) for a sample size reaching from 1 to 20.

31See Appendix C.10 for more detail by using regression analysis.
32See Appendix C.13 for more detail.
33In a different context, for example, N can be seen as the number of political parties at an election.

When N is small, the future outcome of their economic policies is still not clear but easier to anticipate.
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Figure 3.6: Baseline case. Dashed line depicts the theoretical mean value. Horizontal axis:
Sample size (i.e., number of states N ). Vertical axis: Growth rate difference in basis points.

With an increasing number of states, the distributions are contracting around the

dashed line—the theoretical value—slightly below 1bp. For N = 1 there cannot be

any difference, being in a situation with no uncertainty. Due to the zero lower bound,

the distributions are initially heavily skewed. Graphically, this becomes apparent for

N = 2, when the mean stays at 50% of the dashed line, while the median is only close to

25%. Interestingly, until four states are reached, the upper extreme is increasing and,

thereupon, slowly decreasing. As to be expected, the magnitude is extremely small.
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Figure 3.7: Baseline case with varying σ and two states, i.e. N = 2. Horizontal axis: Standard
deviation (σ ). Vertical axis: Growth rate difference in basis points.

Figure 3.7 replicates Figure 3.4 (varying σ ) but only drawing two RV’s, respectively.

All distributions are skewed with a median-bias reaching only up to 3bp. An impor-
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tant question comes up, that is, which measure (mean or median) to choose when

describing the approximation bias in a situation with few outcomes. On the one hand,

most scenarios are negligible, on the other hand, (right-tail) outliers are still present.

For σ = 0.04, the upper extreme is almost as large as in Figure 3.4.

In the model context, N is not interacting with other parameters or variables. Put

differently, a parameter constellation other than the baseline case in Figure 3.6 does

not alter the behavior for increasing N . In Appendix C.15, we explain in more detail

how the convergence to the theoretical value solely depends on the sample size.

3.5.4 Multivariate Functions

To further exploit our model, we increase the number of variables (n), which also leads

to the correlation (ρ) as an additional parameter. Simple Euler equations already in-

clude variables like consumption (growth) and price (growth). They should also (the-

oretically) contain information about how these variables are interacting (i.e., their

co-movement).34 Large-scale DSGE models like the ECB-Global, the IMF’s Global

Projection Model, and further adjusted versions can contain dozens of variables and

hundreds of parameters.

For higher-order Taylor expansions, Collard and Juillard (2001) examine models

of the form: Et[f (xt+1, yt+1, ...)] = 0, for non-linear f . Still, our approach focuses on

Jensen’s inequality.35 Taking up on Eq.(3.5) for the baseline case (γ = 1) and multi-

plicatively expanding by another variable gives

bias(X,Y ) = 104 ·
(
E[1 +X] ·E[1 +Y ]−E

[
(1 +X)−1(1 +Y )−1

]−1
)
, (3.25)

assuming that both X and Y are log-normal. Multiplying the new variable Y , instead

of a different transformation, preserves the model’s structure and replicates the way

most (un-approximated) Euler equations work. The factor to produce growth rate dif-

ferentials stays at 104 since multiplying centered growth rates results in a new growth

rate, combining the others. This works analogously to adding level data in the same

unit of measure. Figure 3.8 explores how the correlation between two variables affects

the approximation bias.

34See, e.g., An and Schorfheide (2007, 118), including four variables in the context of a medium-scale
DSGE model.

35See also Mitrinović et al (1993, 4), dealing with multivariate functions, f (Rn), in the context of
Jensen’s inequality.
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Figure 3.8: Baseline case with two variables. Horizontal axis: Correlation (ρ). Vertical axis:
Growth rate difference in basis points. Technical note: The correlation between RV’s ∼ N (0,1)
is preserved when transforming into the log-normal form. Also, when drawing from aN (0,1),
the correlation equals the covariance.

The bias’ magnitude is extremely small, reaching from 1 to 3. For negative cor-

relation values up to −0.5, the standard deviation of the simulated distributions re-

mains approximately the same, linearly increasing thereafter. The skewness is rather

low with 0.46 on average. A gamma distribution can describe the individual results,

however, with changing shape and scale parameters for different correlation values.

Outliers account for approximately 1% in the case with maximum correlation. The

relationship appears to be linear with negative correlation counteracting the bias.

Similar to Eq.(3.21), a special case can heuristically illustrate the rationale behind

the linear relation. Again, take f from Eq.(3.2.1) to a bivariate environment: f (X,Y ) =

X ·Y .

E[X ·Y ] = E[X] ·E[Y ] + Cov[X,Y ] = E[X] ·E[Y ] + (σXσY ) ·Corr[X,Y ]. (3.26)

In this case, the residual ∆XY comprises the correlation times a coefficient (the stan-

dard deviations).36

36With the binomial formula: Cov[X,Y ] = E[X · Y ] + E[X] · E[Y ]. Note that the correlation is the
standardized covariance: Corr[X,Y ] = Cov[X,Y ]/

(√
Var[X] ·

√
Var[Y ]

)
.
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As a last step, pushing forward to a more comprehensive form, the quantity of

variables ought to be reflected in the formula. Thus, modifying the model the same

way as accomplished in Eq.(3.25) leads to

bias(X1, ...,Xn) = 104 ·

 n∏
i=1

E[1 +Xi]−E

 n∏
i=1

(1 +Xi)
−1


−1 , (3.27)

a generalized version with n variables. Specifying n = 5 and, for simplicity, assuming

the same correlation between all these variables, Figure 3.9 reveals a similar pattern as

in the bivariate case.37
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Figure 3.9: Baseline case with n = 5 variables. Horizontal axis: Correlation (ρ). Vertical axis:
Growth rate difference in basis points.

The distribution indicators are similar and a nearly linear relationship reaches from

the minimum to the maximum correlation value. For five highly correlated variables

(ρ = 0.95), the bias roughly averages at 15bp, with outliers over 25bp. In this scenario,

compared to Figure 3.8, the relationship is still linear, but the slope is larger (approxi-

mately 1.15bp per 0.1 ρ-step).

Finally, Figure 3.10 varies the number of variables while slightly deviating from the

BL case. Since high growth rates for a large number of macroeconomic variables are

37It is interesting to note that in this case a covariance matrix cannot be positive definite, which is
required. In other words, there is no combination of values possible where the overall correlation is
always negative.
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unrealistic, we switch to the calibrated mean for the US (µ = 2.5%).38 As an additional

assumption, the variables are mildly correlated (ρ = 0.1).
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Figure 3.10: Baseline case with on overall correlation of ρ = 0.1. Horizontal axis: Number of
variables (n). Vertical axis: Growth rate difference in basis points.

For ten or less variables, the average bias is not surpassing the 25bp mark. Thus,

these situations can be compared to the extreme scenarios in Figures 3.4 and 3.5. For

n = 20, an average bias of over 50bp is reached and outliers of almost 1pp are possible.

The standard deviation increases over proportionately and the skewness stays at 0.5.39

Distribution analysis, again, points towards gamma distributed residuals and outliers

account for 1%. There is a predominant quadratic relationship since the exponential

coefficient is significant but basically zero as shown in the regression table in Appendix

C.10.

To recapitulate, Appendix C.16 provides a general overview of all figures shown in

this section and the multiple-planes figure in Section 3.3.

38For µ = 6%, values of over 2pp will be reached.
39Medcouple averages at 0.08 and the %-deviation of mean and median averages at 2%.
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3.6 Conclusions

This mostly theoretical paper explores a source of error in the context of macroeco-

nomic models. Occurring in intertemporal Euler equations, Jensen’s inequality is typi-

cally ignored when bringing the model to the data. Therefore, we set up an illustrative

framework to compare the expected outcome of a non-linear function with the func-

tional value of the expected argument consisting of growth rates. Being interested in

the magnitude, this difference is constructed in a way that it can be measured in ba-

sis points, thereupon designated as approximation bias. Since, in the prevalent DSGE

family, this bias is rather small, we evaluate parameter constellations in which the

difference becomes apparent.

First, we derive analytical solutions with assumptions typical for DSGE models

and growth rates, subsequently calibrating first and second moments for the US and

emerging markets from forward-looking Consensus Forecasts data. Second, we test

the variability in a simulation-based analysis and examine resulting distributions for

a wide range of parameter values. Third, we further extend the model to check for the

multivariate influence and, thus, correlation among variables. Throughout the article,

we focus on translating model parameters into economical factors.

To generalize the results, we track down five separate factors, describing the func-

tional relationship relative to the bias. The approximation bias increases (i) quadrat-

ically to uncertainty, (ii) exponentially to both the overall risk aversion and (iii) the

model size, (iv) inversely proportional to the number of future states, and (v) linear

to variables’ co-movement. On the other hand, the first moments, mean and median,

march to a different drummer by switching the sign of their influence depending on

the curvature. However, this influence is negligible.

In absolute terms, when uncertainty is high, growth rates are overestimated up to

25 basis points. Consequently, a corresponding interest rate, adjustable by the central

bank, should generally be lower when accounting for the approximation bias. Expect-

ing a future scenario consisting of three possible states only, the bias’ mean remains

low, yet its distribution will be heavily skewed. Accordingly, when including only a

few variables, the correlation among them will not be an issue, with negative values

even counteracting the bias. Lastly, considering a large number of variables, overesti-

mation mattered the most, with outliers even reaching one percentage point.

Our findings are important for large-scale model users like central banks in major

economies where a possible error can add up and significantly bias the predictions.

They also matter for institutions in emerging economies, which are more and more

97



adopting DSGE models. We showed, in particular, that in situations with large uncer-

tainty the bias cannot be ignored.

This groundwork provides a rich field for future research. To avoid the approxi-

mation when the bias is potentially large, examining density forecasts as in Rich and

Tracy (2010) are of particular interest. Finally, putting all findings together, a Kalman-

like filter to transform times series could be established to circumvent the issue. An

expected difference to the actual values depending on the identified factors could be

derived, including simulation-based confidence intervals.
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C.1 Approximating Jensen’s Inequality by Quadratic Taylor Series

Since linearizing causes the inequality to vanish, we check for its relevance after con-

ducting second-order (multivariate) Taylor expansion. In contrast to the first-order

version, the function’s curvature is not ignored. Our proof is presented for the convex

version in an illustrative, special case with two real numbers a and b, where a < b:

f (a) + f (b)
2

≥ f
(
a+ b

2

)
(C1)

We set µ(a,b) = (a+ b)/2 as the arithmetic mean and, therefore, µ0(a0,b0) as the center

point. The LHS is additive separable and can be piece-wise differentiated. Interpreting

the RHS as a composite function f (µ(a,b)) helps to keep track after the first step since

cross-derivatives have to be considered. Carrying out a quadratic Taylor expansion on

both sides of Eq.(C1), by using arguments a and b, yields:

T LHS2 (µ(a,b)) =
1
2

[
f (a0) + f ′(a0)(a− a0) +

1
2
f ′′(a0)(a− a0)2
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+f (b0) + f ′(b0)(b − b0) +
1
2
f ′′(b0)(b − b0)2

]
(C2.1)

T RHS2 (µ(a,b)) =f (µ0) +µ′(a0) · f ′(µ0)(a− a0) +µ′(b0) · f ′(µ0)(b − b0)

+
1
2

(f ◦µ)′′aa(µ0)(a− a0)2 +
1
2

(f ◦µ)′′bb(µ0)(b − b0)2

+ (f ◦µ)′′ab(µ0)(a− a0)(b − b0) (C2.2)

Without a loss of generality the approximation can be centered at the origin: a0 = b0 =

0 and f (0) = 0. Rearranging—by using the binomial theorem—and simplifying the

expressions—by setting f ′(0) = f ′0 , f ′′(0) = f ′′0 , and µ(a,b) = µ to save space—gives:

T LHS2 (µ(a,b)) =
1
2

[
f ′0 · (a+ b) +

1
2
f ′′0 · (a

2 + b2)
]

= f ′0 ·µ+ f ′′0 ·µ− f
′′

0
ab
2

(C3.1)

T RHS2 (µ(a,b)) =
1
2
f ′0 · a+

1
2
f ′0 · b+

1
8
f ′′0 · a

2 +
1
8
f ′′0 · b

2 +
1
4
f ′′0 · ab = f ′0 ·µ+

1
2
f ′′0 ·µ

2 (C3.2)

Bringing back both expressions in the inequality form reveals the difference by means

of the convexity property and the AM-GM inequality:

f ′0 ·µ+
1
2
f ′′0 ·µ

2 +
1
2
f ′′0 (µ2 − ab︸ ︷︷ ︸

> 0

) ≥ f ′0 ·µ+
1
2
f ′′0 ·µ

2. (C4)

After a quadratic approximation on both sides, the inequality still holds.

C.2 Definition of the Approximation Bias

Modifying Eq.(3.2.2) will not fundamentally change the model’s results but will lead

to a clearer interpretation of ∆. The idea is to show the resemblance of (i) the difference

of two growth rates and (ii) the reversed difference of their inverses. The latter can be

approximated by first-order Taylor expansion to result in the actual difference. In the

context of a DSGE model’s first-order condition (i.e., the Euler equation) combined

with the derivative of the CRRA function, we calculate the inverse of growth rates,

weighted by the parameter γ :

un-approximated: gr−1
w = E

[
1

(1 +X)γ

]
; biased: gr−1

w,b =
1

(1 + E[X])γ
(C5)

We use the indices w for weighted and b for biased in connection with growth rates

gr. Additionally, gr is centered around one, representing negative (positive) growth
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for values smaller (larger) than one. Expressed as its magnitude, the plain Jensen’s

inequality gives a differential of inverted growth rates:

b̃ias = gr−1
w − gr−1

w,b =
1

grw · grw,b
(grw,b − grw), (C6)

which is positive for convex functions. Also, the first-order (multivariate) Taylor ex-

pansion of this expression is equivalent to the simple difference grw,b − grw:

T b̃ias1 (grw, grw,b), at the center point: gr0 = (1,1) (C7.1)

⇒ b̃ias(1,1) + b̃ias
′
grw(1,1) · (grw − 1) + b̃ias

′
grw,b(1,1) · (grw,b − 1) = grw,b − grw. (C7.2)

Therefore, we use these re-inverses directly for a cleaner interpretation. This changes

Eq.(3.2.2) in a way that the plain difference is not only a linearized approximation but

the actual research subject. To draw a closer connection, several numerical examples

illustrate the similar outcome. Figure C1 reveals the discrepancies depending on the

grw–level and an approximation bias of 10/25/50bp. The deviations, stemming from

the fraction in Eq.(C6), are multiplied by 104, thus, being measured in bp.
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Figure C1: Comparing the difference (grw,b−grw) for 10/25/50bp and the corresponding bias in
Eq.(C6) depending on the level of growth. Horizontal axis: Weighted growth rate grw. Vertical
axis: Growth rate difference in basis points.
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C.3 Moment Generating Function: Proof

Performing the critical step E[exp(−γβZ)]⇒ exp((γβ)2/2) to drop the stochastic source,

the moment generating function for the (standard) normal distribution is utilized:

M(t) = E
[
etZ

]
= et

2/2, Z ∼N (0,1). (C8)

To proof this relationship, the law of the unconscious statistician (LOTUS) is needed

to write out the composition regarding the expectation value in terms of an integral:

E
[
etZ

]
=

∫
R
etx · 1
√

2π
e−x

2/2dx =
1
√

2π

∫
R
e−

1
2 (x2−2tx)dx. (C9)

Expanding the exponent for a binomial formula and factoring out the constant gives

E
[
etZ

]
=

1
√

2π

∫
R
e−

1
2 (x2−2tx+t2−t2)dx = et

2/2 · 1
√

2π

∫
R
e−

1
2 (x−t)2

dx︸                  ︷︷                  ︸
= 1

. (C10)

Finally, since the area of a horizontally shifted (by t) standard normal distribution is

still one, Eq.(C8) emerges.

C.4 Analytical Solution – Additional Inspection

To obtain a clearer picture of the auxiliary parameter r, the geometric approach in

Figure C2 can help.

m

σr

Figure C2: Graphical representation of the two moments and the auxiliary parameter r.

Without factoring out mγ , the connection to the originating Eq.(3.6) becomes un-

mistakable. Simultaneously increasing the curvature,

lim
γ→∞

bias(γ | m > 1) = 104 ·
[
mγ︸︷︷︸
→∞

−mγ · (m/r)γ
2+γ︸           ︷︷           ︸

→ 0

]
, (C11)

shows at the first underbrace the bias growing exponentially, whereas the second ex-

pression, after a maximum at γ = log(m2/r)/ log(r2/m2), converges quadratic–exponen-

tially towards zero. In a special case with m = 1 and therefore µ = 0 and r =
√

1 + σ2,
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the average growth equals 0%. Here, the second term, stemming from the unbiased ex-

pression can be transformed into sums for σ < 1 and γ ∈ N by means of the geometric

series and triangular numbers:

bias(σ,γ) = 104 ·
[
1− (1/r)γ

2+γ
]

(C12.1)

= 104 ·

1− ( 1
1 + σ2

)γ(γ+1)
2

 (C12.2)

= 104 ·

1−
 ∞∑
i=0

(−1)iσ2i


∑γ
i=1 i

 . (C12.3)

C.5 Algebraic Formula for the Variance

Typically shown by the binomial theorem, an alternative way to point out equality of

the variance formula,

Var[X] = E[X2]− (E[X])2, (C13)

works analogously to the approach in Section 3.3. Inserting the distribution formula

and its mean, µ, leads to

Var[X] = E[exp(α + βZ)2]−µ2 (C14.1)

= exp(2α) ·E[exp(2βZ)]−µ2 = exp(2α) · exp((4β2)/2)−µ2

=

 µ√
1 + (σ/µ)2

2

· exp(β2)2 −µ2 =
(

µ2

1 + (σ/µ)2

)
· (1 + (σ/µ)2)2 −µ2

= µ2 · (1 + (σ/µ)2)−µ2 = σ2, (C14.2)

confirming the centered second moment for the log-normal distribution.

C.6 Inverted Beta-Distribution – Parameters

Similarly to Eqs.(3.7), log-normal case, we aim to solve for the parameters of the in-

verted beta (or beta prime) distribution. Being more unknown than the log-normal

distribution, we show this in more detail. The moment-generating function (see, e.g.,

Keeping 1962, 84),

E[Xη] =
η∏
i=1

α + i − 1
β − i

, η ∈ N and η < β, (C15)
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draws the connection between raw moments and parameters. The latter have to be

written in terms of µ and σ to translate the grid in Eq.(3.18) into α and β. As claimed

in Eq.(C15), η has to be smaller than β and, therefore, β has to be sufficiently large.

Indeed, this is given in the calibration. For η = 1 and η = 2, the mean and the second

central moment are

E[X] = µ =
α

β − 1
and (C16.1)

E[X2]−E[X]2 = σ2=
α(α + β − 1)

(β − 2)(β − 1)2 , (C16.2)

respectively. First, replacing α in Eq.(C16.2) with Eq.(C16.1) and solving for β leads to

σ2 =
µ(β − 1)(µ(β − 1) + β − 1)

(β − 2)(β − 1)2 =
µ(µ+ 1)
(β − 2)

(C17.1)

⇔ β = 2 +
µ+ 1
σ2 µ. (C17.2)

Second, solving Eq.(C16.1) for α and replacing β with Eq.(C17.2) leads to

α = µ
(
µ(µ+ 1)
σ2 + 2− 1

)
= µ+

µ+ 1
σ2 µ2. (C18)

C.7 Parameter Results for US Inflation Forecasts

To obtain a better insight into the connection of the parameters, Table C1 displays the

results of the calibration before conversion. The conversion of α and β is done by using

Eqs.3.7 and Eqs.C16.

Parameter Min 25thcentile Median 75thcentile Max

log-norm.

α −0.0032 0.0189 0.0243 0.0315 0.0411

β 0.0001 0.0001 0.0002 0.0007 0.0057

inv. beta

α 0.1000 61.408 101.75 157.17 444.60

β 14.908 2301.5 3587.5 5372.9 18505.8

Table C1: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on inflation forecasts.
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For the log-normal distribution, the resulting values are close to the values after

conversion. The α and β values for the inverted beta distribution are more widespread.

This is a direct consequence of two characteristics of the distribution. The first one is

that negative values are not drawn which can be overcome by a shift. The second—

more crucial—point is the high probability mass at the left end of the distribution

which can only be overcome by large values for α and β. A side effect of these values

is a large spread of drawn variables which results in the higher error values compared

to the log-normal distribution.

C.8 Calibration Results for US GDP Forecasts

The same tests and calibration as in Section 3.4 is run with the GDP growth forecast

as observed variable. The time horizon is the same but the focus is only on the US and

not on the frontier markets.

As before, we start with a normality test to check whether the log GDP forecast

variables are normally distributed. The results can be seen in Table C2. In more than

75% of the observations, the J-B test cannot reject the H0 of non-normally distributed

variables.

Norm. p-value
Test Min 25thcentile Median 75thcentile Max

J-B 0 0.146 0.525 0.763 0.999

S-W 6.99 · 10−6 0.099 0.339 0.635 0.993

A-D 4.95 · 10−5 0.081 0.314 0.578 0.989

LF 2.54 · 10−4 0.085 0.334 0.641 0.994

Table C2: Normality test results for GDP growth forecasts (US).

As the results of the normality tests are sufficient, the calibration can be run. The

results are presented in Table C3.
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Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

log-norm.

µopt −0.0178 0.0192 0.0259 0.0320 0.0420 0.0260 1.18·10−5

σopt 0.0001 0.0001 0.0001 0.001 0.0022 0.0027 1.18·10−5

inv. beta

µopt 0.0052 0.0255 0.0293 0.0329 0.2832 0.0260 2.26·10−4

σopt 0.0013 0.0022 0.0029 0.0039 0.1397 0.0027 2.26·10−4

Table C3: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on GDP growth forecasts.

Compared to the results from the calibration of inflation forecasts, we can identify

the same pattern. Whereas the log-normal distribution fits µ really good, the error in

σ is larger. The inverted beta distribution shows a contrary picture with a good fit in

σ and bad fit in µ. Nevertheless, the log-normal distribution again has a lower error.

At last, the direct parameters resulting from the calibration before the conversion into

µ and σ are presented in Table C4.

Parameter Min 25thcentile Median 75thcentile Max

log-norm.

α −0.0179 0.0190 0.0256 0.0315 0.0411

β 0.0001 0.0001 0.0001 0.0001 0.0022

inv. beta

α 0.1021 62.681 120.30 182.10 676.98

β 15.079 2117.6 3919.9 6210.9 19782.2

Table C4: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on GDP growth forecasts.

The structure of the results is close to the one from the inflation forecasts. The re-

sulting values from the log-normal distribution are close to the values after conversion

and the α and β values for the inverted beta distribution are more widespread.
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C.9 Impact of the Mean on the Approximation Bias

In the following, derivatives are used to evaluate the effect of µ on the approximation

bias. Sticking to Eq.(3.11.3), the centered growth (m) is utilized. Nevertheless, the

constant transformation, m = 1 +µ, ensures equivalent derivatives:

∂bias
∂µ

≡ ∂bias
∂m

. (C19)

Since the absolute values of the approximation bias heavily depend on σ and γ

(see Figure 3.3), it is difficult to draw conclusions concerning the impact of µ. We

differentiate the bias-function to account for the change depending on a change in

the mean growth rate. Using the product and chain rule, (...) refers to the part not

changing:

∂bias
∂m

= 104 ·
[
γmγ−1(...) +mγ

(
γ(γ + 1)

2

(
1 +

σ2

m2

)−γ(γ+1)
2 −1

· (−2σ2m−3)
)]

(C20.1)

= 104 ·γmγ−1
[
(...)− (γ + 1)

(
1 +

σ2

m2

)−γ(γ+1)
2 −1

· σ
2

m2

]
(C20.2)

= 104 ·γmγ−1
[
1−

(
1 + σ2/m2

)−γ(γ+1)
2

(
1 +

(1 +γ)σ2

m2 + σ2

)]
. (C20.3)

Testing the baseline scenario for extreme µ-values:

∂bias
∂m

(µ = −5% | BL) ≈ −1.2 =∧ −0.012bp/pp (C21.1)

∂bias
∂m

(µ = 20% | BL) ≈ −0.8 =∧ −0.008bp/pp (C21.2)

The interpretation is a change in basis point (e.g., an increase of the bias) caused by a

1pp increase of the mean growth. For the BL case, the change at the upper and lower

bound is basically zero. Testing maximum values for σ and γ :

∂bias
∂m

(µ = −5% | σ = 0.04,γ = 1) ≈ −17.6 =∧ −0.176bp/pp (C22.1)

∂bias
∂m

(µ = 20% | σ = 0.04,γ = 1) ≈ −11.1 =∧ −0.111bp/pp (C22.2)

∂bias
∂m

(µ = −5% | σ = 0.01,γ = 5) ≈ 40.6 =∧ 0.406bp/pp (C22.3)

∂bias
∂m

(µ = 20% | σ = 0.01,γ = 5) ≈ 64.8 =∧ 0.648bp/pp (C22.4)
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Even for the maximum values, the change is significantly under 1bp. This makes it

uninteresting to further examine µ as a varying parameter in the simulations.

C.10 Regression Outputs

Accompanying the MC simulations in Section 3.5, we regress the median-bias on the

varying parameters, respectively. Using the median instead of the mean is interest-

ing when facing skewed data and since there are already theoretical solutions in some

cases for the mean. Also, this goes hand in hand with Figures 3.4–3.10 which display

the standard boxplots. However, despite the mean being always larger, there are no

substantial differences. As a robustness check, we also present regression results—in

the same vein—for both the CARA function and the inverted beta distribution. Start-

ing with the main results, Table C5 shows five regressions for four parameters.

Term bias(σ ) bias(γ) logbias(γ) bias(ρ) logbias(n)

const. −0.002 −0.265*** −0.121*** 1.903*** −0.146***
(0.004) (0.062) (0.002) (0.000) (0.001)

linear 0.003 −0.109* 0.009*** 0.066***
(0.004) (0.054) (0.000) (0.001)

quadr. 0.890*** 0.679*** −0.000 −0.000***
(0.001) (0.010) (0.000) (0.000)

log 1.575*** 1.022***
(0.002) (0.002)

log- 0.155***
quadr. (0.002)

R
2

1 0.99 1 1 1
Std.Err. 5.46 · 10−3 8.31 · 10−2 6.39 · 10−3 1.18 · 10−3 1.05 · 10−3

Obs. 20 20 20 20 20

Table C5: Second moment measures (σ and ρ) are multiplied by 100. ***/**/* denote signifi-
cance at the 1%/5%/10% level.

Multiplying σ and ρ by 100 accounts for the typical step size when referring to

one increment. Therefore, the first regression column predicts an increase in the bias

by 2 · 0.89 × 100 · σ1 when increasing the standard deviation by 0.01 at a level of σ1.

Since the other estimates are extremely small and insignificant, they are not absorbing

explanatory power from the quadratic term. Also, explaining basically 100% of the
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dependent variable’s variation confirms the (nearly) quadratic relationship discussed

in Section 3.3.

The second column draws a different picture since the model artificially shifts the

parabola’s vertex to the forth quadrant. In addition, the quadratic term is smaller than

in the σ -case, probably underestimating the effect for larger values. Alternatively, in

the third column, estimating the elasticity (1.575) increases the explanatory power.

However, the effect cannot be isolated and the relationship is still more complex, ex-

pressed by the significant squared log-coefficient. The intercept comes into play if γ =

1 (log-utility) and indicates a positive bias close to zero. Without the squared term, the

elasticity would be somewhat larger (1.665), the intercept insignificant, and R
2

= 0.99.

Column four confirms the linear relationship regarding the correlation between

two variables. Staying at 1.9bp without any correlation, a 0.01-step results in a sig-

nificant change that is basically zero. However, for more than two variables, Figure

3.9 points out an increase in the slope while preserving the linear connection. In

the last column, a roughly unit elastic relationship emerges, reinforced by the lin-

ear term, which effects an increase of 6.6% for every additional variable. For n = 1,

logbias = −0.08, which perfectly matches the baseline result of just below 1bp visible

in Figure 3.6.

As seen in Table C6, the above numbers are mostly confirmed in our robustness

check. Therefore, for both the inverted beta (instead of log-normal) and the CARA (in-

stead of CRRA) we renounce examining the multivariate part, which is non-trivial for

the multivariate inverted beta-distribution. The first two columns are basically equal

to column one and three in Table C5. In the CARA case, the quadratic coefficient is

somewhat smaller (varying σ ) and the elasticity is slightly larger (varying γ). Math-

ematically, in the log-utility case (γ = 1) and after applying the inversion g(y), the

marginal CRRA-function is only a first-order Taylor expansion of the CARA around

zero: 1 + x ≈ ex. However, the simpler CRRA-function better fits into our model as-

sumptions and is used frequently in the literature.

109



Term biasbeta(σ ) logbiasbeta(γ) biasCARA(σ ) logbiasCARA(γ)

const. −0.010 −0.120*** −0.002 −0.699***
(0.007) (0.002) (0.004) (0.003)

linear 0.019** 0.005
(0.008) (0.004)

quadr. 0.885*** 0.499***
(0.002) (0.001)

log 1.575*** 2.077***
(0.002) (0.003)

log- 0.156*** 0.043***
quadr. (0.002) (0.003)

R
2

1 1 1 1
Std.Err. 9.91 · 10−3 5.97 · 10−3 5.16 · 10−3 8.51 · 10−3

Obs. 20 20 20 20

Table C6: σ is multiplied by 100 to account for the typical step size. ***/**/* denote signifi-
cance at the 1%/5%/10% level.

C.11 2nd-Order Taylor Series for Eq.(3.12)

In addition to the regression analysis, we check for accuracy whether the relationship

can be titled “quadratic” for a realistic range of σ , from a theoretical point of view.

Approximating around σ0 = 0 is chosen for simplicity, although this is the smallest

possible value, and therefore it cannot be the optimal center point. It turns out that

this approximation is sufficient for eligible values. However, as an extension, we also

choose center points larger than zero to check how the formula changes and to clarify

the mechanics behind the Taylor series. The following function has to be constructed

from Eq.(3.12):

T2(σ | σ0) = bias(σ0) + bias′(σ0)(σ − σ0) +
1
2
bias′′(σ0)(σ − σ0)2. (C23)

First and second derivatives are:

bias′(σ ) = 104 2m3σ

(m2 + σ2)2 ⇒ bias′(0) = 0 (C24.1)

bias′′(σ ) = 104 2m3(m2 − 3σ2)
(m2 + σ2)3 ⇒ bias′′(0) = 104 · 2m−1 (C24.2)
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This ends in a simple quadratic relationship corrected by m, the centered mean:

T2(σ | σ0 = 0) = 104 · σ2/m (C25)

Compared to the accurate solution, second-order Taylor expansion overestimates

the bias when the standard deviation is increasing from the center point. Taking the

classical log-linearizing of growth rates as a reference point, a growth rate of 5% leads

to a deviation of almost 2.5%:40

5%
log(1.05)

− 1 ≈ 2.48% (C26)

Using this benchmark in terms of Eqs.(3.12) and (C25) gives

T2(σ = 0.167)
bias(σ = 0.167)

− 1 ≈ 2.48%. (C27)

Since 0.167 is roughly four times larger than the maximum value chosen in the simula-

tion, we can conclude that the quadratic approximation is sufficient. Nevertheless, as

further extension, using a center points greater than zero, Table C7 gives an impression

of how the accuracy changes over the σ ’s.

Center point −2.5% <%-difference < 2.5% Difference at σ = 0.01

σ0 min σ max σ ∆bp

0.005 0.001 0.168 0

0.010 0.001 0.169 0

0.015 0.002 0.171 0

0.020 0.004 0.173 −0.001

0.025 0.005 0.176 −0.002

0.030 0.007 0.180 −0.007

0.035 0.009 0.184 −0.015

0.040 0.011 0.188 −0.029

0.045 0.014 0.192 −0.052

0.050 0.016 0.196 −0.085

Table C7: For σ values smaller (larger) than σ0 the theoretical bias is underestimated (overes-
timated).

405% would be the approximation and log(1.05) the correct expression (in a non-linear equation).
Therefore, the percentage deviation is standardized by the latter term.
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With a larger center point, the maximum σ -value increases at which the approxi-

mation is sufficient. However, this gained accuracy does not compensate the simulta-

neously increasing minimum σ -value, with σ0 = 0.04 already surpassing the baseline

case. The latter is further examined in the last column, showing the absolute difference

in basis points. This difference is still very small, not reaching a tenth of a basis point.

Therefore, from a practical point of view, even when the center point is not optimal,

the approximation error is negligible.

C.12 Jensen’s Inequality as Ratio

Formulating the problem as a ratio gives the advantage of a simpler formula. Initially,

the factor 104 gets redundant, cancelling out due to the fraction. Also, in this case, the

function g(y) only switches denominator and numerator, resulting in a ratio > 100%:

biasr(m,σ,γ) =
(1 + Et[growtht+1])γ

Et[(1 + growtht+1)−γ ]−1 =
mγ

mγ ·
(

m√
m2+σ2

)γ(γ+1)
(C28.1)

=
(

m
√
m2 + σ2

)−γ(γ+1)

=

√m2 + σ2

m

γ(γ+1)

=
(
1 +

σ2

m2

)γ(γ+1)
2

. (C28.2)

Additionally, the formula reduces to squared expressions for all parameters while the

curvature remains in the exponent. Given positive integer values for γ , the formula

can be written in a discrete form as

biasr(m,σ,γ) =
(
1 + (σ/m)2

)∑γ
i=0 i =

γ∏
i=1

(
1 + (σ/m)2

)i
, (C29)

a product which factors only consist of 100% plus a squared coefficient of variation

weighted by integer exponents. Figure C3 depicts Eq.(C29) for several curvature val-

ues, revealing a deviation, even for extreme scenarios, by only a few percent.
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Figure C3: Comparing the Jensen ratios for γi ∈ {1,2,3,4,5} and varying σ/m. Lines are ordered
from lightgray (γ = 1) to darkgray (γ = 5). Horizontal axis: Coefficient of variation (σ/m).
Vertical axis: Ratio of growth rates in %.

C.13 2nd-Order Taylor Series for Eq.(3.13)

The following function has to be constructed from Eq.(3.13):

T2(γ | γ0) = bias(γ0) + bias′(γ0)(γ −γ0) +
1
2
bias′′(γ0)(γ −γ0)2. (C30)

Analogous to Eq.(C25), the center point, γ0, equals zero. The first derivative is calcu-

lated by the product rule, the chain rule, and the log-rule to switch the sign:

bias′(γ) = 104
[
log(m)mγ ·

(
1− (m/r)γ(γ+1)

)
+mγ · (− log(m/r))(m/r)γ(γ+1)(2γ + 1)

]
= 104 ·mγ

[
log(m) ·

(
1− (m/r)γ(γ+1)

)
+ log(r/m)(m/r)γ(γ+1)(2γ + 1)

]
= 104 ·mγ

[
log(m) + (m/r)γ(γ+1) ·

(
log(r/m)(2γ + 1)− log(m)

)]
(C31.1)

⇒ bias′(0) = 104 · log(r/m) (C31.2)

Applying the product rule twice, with [...] and (...) for the parts not differentiated, gives

bias′′(γ) = 104
[
log(m)mγ · [...]+

mγ ·
(
log(m/r)(m/r)γ(γ+1)(2γ + 1) · (...) + (m/r)γ(γ+1) · 2log(r/m)

) ]
= 104 ·mγ

[
log(m) · [...] + log(r/m)(m/r)γ(γ+1)(2− (2γ + 1)(...))

]
(C32.1)
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⇒ bias′′(0) = 104 · [log(m) · log(r/m) + log(r/m) · (2− (log(r/m)− log(m)))]

= 104 · log(r/m)
(
2log(m) + 2− log(r/m)

)
= 104 · log(r/m)

(
2log(m) + 2log(e) + log(m/r)

)
= 104 · 2log(r/m) log

(
me
√
m/r

)
. (C32.2)

Putting the derivatives together leads to a quadratic equation without intercept and

similar coefficients for the linear and the quadratic term:

T2(γ | γ0 = 0) = 104 · log(r/m)
[
log

(
e
√
m3/r

)
γ2 +γ

]
(C33)

Compared to the accurate solution, second-order Taylor underestimates the bias when

the curvature is increasing from the center point. Using the benchmark in Eq.(C26) in

terms of Eqs.(3.13) and (C33) gives∣∣∣∣∣ T2(γ = 0.9)
bias(γ = 0.9)

− 1
∣∣∣∣∣ ≈ 2.49%. (C34)

This corresponds to a curvature up to 0.9 and, thus, slightly smaller than the baseline

case. In terms of the economic interpretation, the quadratic Taylor-series is accurate

enough for EIS-values larger than 1.1. Following the meta-study by Havranek et al

(2015), this includes not even half of the scenarios. Hence, in contrast to the σ -version

in Appendix C.11, we would not refer to this relationship as quadratic. For reason-

able values, the relationship is exponential with approximately constant elasticities,

∂ log(bias)/∂ log(γ).
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C.14 Simulation with the Elasticity of Intertemporal Substitution
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Figure C4: Horizontal axis: EIS (γ−1). Vertical axis: Growth rate difference in basis points.

Appearing like the distorted mirror image of Figure 3.5, the graphic shows a significant

impact for EIS = 0.2 only.

C.15 Convergence for Large Samples

We show how the empirical bias approaches the analytical bias by means of the vari-

ance formula, Var[X] = E[X2] − E[X]2, a special case of Jensen’s inequality. This ex-

ample is particularly traceable since the analytical bias consists of σ2 only. Therefore,

this case specifies the function f but shows the results being not dependent on the mo-

ments or the distribution, provided that the required moments are defined. The setup

is as follows:

lim
N→∞

E

 1
N

N∑
i=1

x2
i −

 1
N

N∑
i=1

xi


2 = σ2, xi ∼ i.i.d.(µ,σ2) (C35)

We claim that the %-difference to σ2 for finite N is always negative and approaches

this value in the form of a hyperbola:

E
[

1
N

∑N
i=1x

2
i −

(
1
N

∑N
i=1xi

)2
]
− σ2

σ2 = − 1
N

(C36)
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The interpretation in percent is convenient since for N = 1 the value stays at −100%

and approaches 0% for N →∞. Eq.(C36) can be simplified by using E[xi · xj] = E[xi] ·
E[xj] + Cov[xi ,xj] as the key step:

⇒ 1
N

N∑
i=1

E[x2
i ]− 1

N 2 E


 N∑
i=1

xi


2 = σ2 − σ

2

N
(C37.1)

⇔ µ2 + σ2 − 1
N 2 E

[
(x1 + ...+ xN )2

]
= σ2 − σ

2

N
(C37.2)

⇔ N 2µ2 −E

 N∑
i=1

x2
i + 2

N−1∑
i=1

xi · N∑
j=1+i

xj


 = −Nσ2 (C37.3)

⇔ N 2µ2 −N (µ2 + σ2)− 2E
[
x1x2 + x1x3 + · · ·+ x1xN︸                        ︷︷                        ︸

(N − 1) terms

+

x2x3 + x2x4 + · · ·+ x2xN︸                        ︷︷                        ︸
(N − 2) terms

+ · · ·+ xN−1xN︸  ︷︷  ︸
1 term

]
= −Nσ2 (C37.4)

⇔ N 2µ2 −Nµ2 − 2
N (N − 1)

2
µ2 = 0. � (C37.5)

From Eq.(C37.4) to Eq.(C37.5), the i.i.d.-property ensures that Cov[xi ,xj] = 0. The

fraction in the last step, N (N − 1)/2 = 1 + 2 + ... + (N − 1), equals the total amount of

terms xixj .

Interpreting N as the amount of states, in which the future economy can be situ-

ated, the analytical bias has to be corrected downwards by (N − 1)/N . E.g., for two

possible states, the bias has only half the size as analytically derived.
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C.16 Overview: Figures

Figure µ σ γ ρ n N ∼max. ∆bp

3.3 −5%-20% 0.001-0.04 1.5/2/2.5 – 1 ∞ 70

3.4 6% 0.002-0.04 1 – 1 30 25

3.5 6% 0.01 0.25-5 – 1 30 30

3.6 6% 0.01 1 – 1 1-20 2

3.7 6% 0.002-0.04 1 – 1 2 25

3.8 6% 0.01 1 −0.95-0.95 2 30 5

3.9 6% 0.01 1 0-0.95 5 30 30

3.10 2.5% 0.01 1 0.1 1-20 30 90

Table C8: Overview for all figures using varying parameters. µ (= m − 1) and σ designate the
growth rates’ mean and standard deviation, respectively. γ reflects the non-linear function’s
curvature. ρ is the correlation between two or more variables. n counts the number of variables
in the model. N stands for the sample size. The last column shows the maximum differences
in basis points of the respective figure.
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β Second parameter of distribution (log-normal and inverted beta)

βi Parameters (“bias” equation, i ∈ {0,1,2})
γ(τ) Curvature / reciprocal value of the EIS / risk aversion (τ ∈ {1,2})
δ Weighting on output gap in loss function

∆i Residuals of Jensen’s inequality / growth rate differential (i ∈ {c,π,x})
ε Elasticity of substitution

ε
(i)
t Error terms (Euler condition and “bias” equation, i ∈ {J,bias})
εt Error term of demand shock

ζt Error term of cost shock

η Exponent in examples

θ Auxiliary parameter

κ Slope of NKPC

κi (Aggregated) GDP weights (i ∈ {1, . . . ,5})
λ Lagrange multiplier

λi GDP weights on individual level (i ∈ {1, . . . ,5})
µ(EA) Mean

ν Demand shock persistence

ξ Cost shock persistence

πt Inflation

π∗ Inflation target

%(t) Discount factor / time preference

ρ Correlation

σ(i) / σ2
(i) Standard deviation / variance

τ Firm index; time index (alternative)

υs Lagrange multipliers

ϕ Variable of integration

φ Price stickiness

χi Summarizing parameters (i ∈ {ψ,y,π,ξ,e,σ })
ψ Parameter in cost function

ωs Lagrange multipliers

Table 1: Greek Symbols α – ω. Note: Similar meanings are separated by “/”.
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Symbol Explanation

a Real number in proof

A Auxiliary parameter

b Real number in proof; index (“biased”)

B Auxiliary parameter

Bt Bonds

c Constants in cost function (cf ix, cvar)

ct Consumption growth

C0 Constant of integration

C(t) Consumption

et Cost shock

f (.) Non-linear function / marginal utility

F(.) CRRA utility function

g(.) Model transformation

gr(i) (Weighted) growth rate

i Index variable

it Nominal interest rate

j Index variable

k Cost parameter in Calvo pricing

K(.) Cost function

m Centered mean (1 + µ)

M Index of months

n Number of variables / model size

N Number of forecasters / number of draws / number of future states

Ni Number of forecasters in a specific country (i ∈ {1, . . . ,5})
p(t) Log-linearized price around the steady state

Pi Price / price level

qt Calvo price

r Auxiliary parameter; index (“ratio”)

r(t) Long-run real interest rate

R Range (stock market uncertainty measure)

s Index variable

t Time index; argument of moment generating function

Ti(.) ith-order Taylor expansion

Table 2: Latin Symbols a – T . Note: Similar meanings are separated by “/”.
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Symbol Explanation

ut Demand shock

U (.) Utility function

V (.) Value function (Bellman equation)

w Index (“weighted”)

Wt Wage

x(i) Variable or parameter in examples; growth rate forecasts

x̃ Risk premium

X Random variable (log-normally distributed)

Xt−1 Data matrix (“bias” equation)

y Argument of g(.)

y(τ) Log-linearized output growth rate around the steady state

ŷ(t) Growth rate of output gap around the steady state

ỹ(t) Output growth rate

Y Random variable (log-normally distributed)

Y(i) Output

Y(i) Data for weighting scheme

z Growth rate of Z in log-linearization example

ẑ Growth rate around the steady state

zt Random variable / transformed CF data (tested for normality)

Z Random variable (normally distributed)

Z(t) Variable in Examples

Table 3: Latin Symbols u – Z.
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Acronym Explanation

A-D Anderson-Darling (Test)

AD Aggregated Demand

AIC Akaike Information Criterion

AM Arithmetic Mean

AR Autoregressive

AS Aggregated Supply

BIC Bayesian Information Criterion

BL Baseline

bp Basis point(s)

CARA Constant Absolute Risk Aversion

CES Constant Elasticity of Substitution

CF Consensus Forecasts

CISS Composite Indicator of Systemic Stress

CLIFS Country-Level Index of Financial Stress

CRRA Constant Relative Risk Aversion

DSGE Dynamic Stochastic General Equilibrium

EA Euro Area

ECB European Central Bank

EFFR Effective Federal Funds Rate

EIS Elasticity of Intertemporal Substitution

EONIA Euro Overnight Index Average

EPU Economic Policy Uncertainty

FSI Financial Stability Indicator

FTSE Financial Times Stock Exchange (Index)

G-7 Group of Seven

GDP Gross Domestic Product

GM Geometric Mean

GMM Generalized Method of Moments

IMF International Monetary Fund

IS Investment/Saving

J-B Jarque-Bera (Test)

Table 4: Acronyms A – J.
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Acronym Explanation

LF Lilliefors (Test)

LHS Left-hand side

LOTUS Law of the Unconscious Statistician

MATLAB Matrix Laboratory

MC Monte Carlo (Simulation)

ML Maximum Likelihood

MPU Monetary Policy Uncertainty

MSCI Morgan Stanley Capital International

NKM New Keynesian Model

NKPC New Keynesian Phillips Curve

pp Percentage point(s)

Qi Quarter, i ∈ {1,2,3,4}
RBC Real Business Cycle

RHS Right-hand side

RRA Relative Risk Aversion

RV Random Variable

S-W Shapiro-Wilk (Test)

S&P Standard & Poor’s

SONIA Sterling Overnight Index Average

ss Steady state

UK United Kingdom

US United States

VFTSE Volatility Financial Times Stock Exchange (Index)

VIX Volatility Index

VSTOXX Volatility (Euro) Stoxx (Index)

WTI West Texas Intermediate (Oil price)

WUI World Uncertainty Index

Table 5: Acronyms L – W.
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Summary (Deutsche Zusammenfassung)

Die Dissertation “Uncertainty in Macroeconomic Models” ist kumulativ verfasst, be-

stehend aus drei einzelnen Fachartikeln. Der zentrale Begriff Uncertainty wird im Fol-

genden mit Ungewissheit übersetzt, da Unsicherheit im ökonomischen Kontext bereits

in der mikroökonomischen Entscheidungstheorie eine Rolle spielt.1

Obwohl die Dissertationsschrift aus in sich abgeschlossenen Kapiteln zusammen-

gesetzt ist, bauen diese thematisch aufeinander auf und werden zudem in der Ein-

leitung (Motivation) miteinander verwoben. Das Hauptmotiv, die Approximation von

Modellgleichungen, zieht sich als roter Faden durch die gesamte Arbeit. Es wird dis-

kutiert, inwiefern sich Approximationsmethoden erweitern lassen, aber auch wie sich

deren Folgen auswerten lassen. Der Diskussion folgt zum einen die theoretische Um-

setzung mithilfe formaler Herleitungen und Simulationen (1. und 3. Kapitel), zum an-

deren die praktische Anwendung mithilfe von Regressionsanalysen (2. Kapitel). Die

empirische Grundlage bilden Prognosedaten der Consensus Forecasts (CF) und eine

Vielzahl von Ungewissheitsmaßen.

1. Quadratische Approximierung

Der erste Artikel “Calibrating the Equilibrium Condition of a New Keynesian Mo-

del with Uncertainty” behandelt die Kalibrierung der Gleichgewichtsbedingung in ei-

nem um Ungewissheit erweiterten Neu-Keynesianischen Modell (NKM). Das grundle-

gende Modell, bestehend aus drei Gleichungen, wird zunächst detailliert hergeleitet

und um Ungewissheit erweitert. Es wird ausführlich auf die essenziellen Teile eines

dynamisch-stochastischen allgemeinen Gleichgewichtsmodells (DSGE) eingegangen,

da es sich hier um den Überbegriff eines NKMs handelt. Dieser Modellklasse liegt ein

mikroökonomisches Fundament zugrunde, da die Gleichungen jeweils per Optimie-

rungskalkül hergeleitet werden. Dies berücksichtigt implizit die Anpassung der Wirt-

schaftssubjekte an eine Veränderung der makroökonomischen Variablen, z.B. durch

Wirtschaftspolitik, letztlich um der Lucas-Kritik Genüge zu leisten.

Die nächsten Abschnitte fassen die Herleitung zusammen und betrachten nach-

einander Unternehmen, private Haushalte sowie die Zentralbank, welche zusammen

einen vollständigen Wirtschaftskreislauf bilden.

1Bei der Entscheidung unter Unsicherheit spielen auch psychologische Faktoren eine Rolle. Inwie-
fern dies auch auf die Makroökonomie übertragen werden kann, ist nicht Gegenstand dieser Arbeit. Um
die Unterscheidung zu gewährleisten, wird dementsprechend der Begriff Ungewissheit verwendet.
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Die erste Gleichung stellt eine Verbindung zwischen Preisentwicklung und Wirt-

schaftswachstum her. Im Zusammenspiel von monopolistischem Angebot und zeitlich

verzögerter Preisanpassung seitens der Unternehmen wird die Neu-Keynesianische

Phillipskurve (NKPC) hergeleitet. Diese beiden Marktfriktionen bilden den Kern des

NKMs. Die NKPC folgt im Allgemeinen der Standardherleitung und bildet den linea-

ren Zusammenhang zwischen Produktionslücke (ŷt) und Inflation (πt) zum Zeitpunkt

t ab:2

πt = %Etπt+1 +κŷt. (1)

Mithilfe des Diskontfaktors (%) wird die Inflationserwartung gewichtet. Der positive

Sammelparameter κ setzt sich zusammen aus %, der Substitutionselastizität bzgl. der

Konsumgüter, der langfristigen Kostenelastizität der Unternehmen und einem Para-

meter bzgl. Calvo Pricing, dem Anteil der Unternehmen, die ihre Preise nur verzögert

anpassen können. Ausgehend von der Annahme, dass Produktionswachstum und Ar-

beitslosenquote negativ miteinander korreliert sind, bildet Gl.(1) mit einem κ > 0 den

Zusammenhang analog zur klassischen Phillipskurve ab.

Die Herleitung der zweiten Gleichung, der IS-Kurve, stellt die eigentliche Erweite-

rung des Modells dar. Ausgehend von einer intertemporalen Optimierung der Haus-

halte unter Berücksichtigung einer Budgetbeschränkung ergibt sich die Euler-Glei-

chung hinsichtlich des Konsums. Eine ausführlich beschriebene und mit Graphiken

verdeutlichte Taylor-Approximation zweiten Grades sorgt dafür, dass die Komponen-

te der Ungewissheit in der Modellgleichung erhalten bleibt. Konkret findet sich die

bedingte Varianz der zukünftigen Produktionslücke und der Inflation additiv in der

nun quadratischen IS-Kurve wieder:3

ŷt = Etŷt+1 −
1
γ

(it − r −Etπt+1)− 1
2

Vartŷt+1 −
1

2γ
Vartπt+1 + . . . (2)

Die Produktionslücke zum heutigen Zeitpunkt entspricht der erwarteten Version, kor-

rigiert um die gewichtete Differenz der Fischer-Gleichung (it ≈ r+Etπt+1) und den Ein-

fluss der Ungewissheit. Der Parameter γ , welcher eine Schlüsselrolle in der gesamten

Dissertation spielt, bezeichnet den Kehrwert der intertemporalen Substitutionselasti-

zität und steht in enger Verbindung mit der Krümmung der aggregierten Nutzenfunk-

tion. Die beiden Varianzen in Gl.(2) stellen somit einen zusätzlichen negativen Einfluss

auf ŷt dar.

2Die Variable ŷt ist definiert als die prozentuale Abweichung vom effizienten Produktionsniveau,
welches zur Markträumung bzgl. Angebot und Nachfrage führt. Insbesondere drückt ŷt > 0 einen Nach-
frageüberschuss aus.

3Zur anschaulichen Zwecken weicht die Formel geringfügig von der Darstellung im eigentlichen
Artikel ab.
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Die dritte Gleichung schließt das Modell und folgt aus einem simplen Optimie-

rungsverhalten der Zentralbank, welches zu einem angestrebten Verhältnis von ŷt und

πt führt:

δŷt = −κπt. (3)

Die Zielvorgabe richtet sich hier nach Inflation und Produktion, während sie den be-

reits erwähnten Sammelparameter κ und den Gewichtungsfaktor δ beherbergt. Als

einen Spezialfall von Gl.(3) sei die Gleichheit ŷt = πt = 0 hervorzuheben, welche ver-

deutlicht, dass eine Stabilisierung der Wirtschaft im Vordergrund steht.4

Das Zusammenfügen der drei Gleichungen ergibt eine Taylor-Regel (erweitert um

Ungewissheit), welche, nach dem Zinssatz aufgelöst, der Zentralbank eine konkre-

te Handlungsanweisung geben kann. Ziel ist es jedoch, eine gesamtwirtschaftliche

Gleichgewichtsbedingung abzuleiten. Aus diesem Grund werden NKPC und IS-Kurve

zunächst um ein stochastisches Element erweitert, und zwar einem Kosten- bzw. ei-

nem Nachfrageschock (et bzw. ut). Um eine gewisse Persistenz abzubilden, werden

beide Schocks als AR(1)-Prozess modelliert.5 Durch geeignetes Umformen können nun

die makroökonomischen Variablen (ŷt und πt) und deren bedingte Momente im stati-

schen, langfristigen Gleichgewicht durch Parameter und Schocks dargestellt werden.

Es ergibt sich schließlich eine Gleichung, welche den nominalen Zinssatz beschreibt:

it = r +χξet −
1
2

(
χee

2
t +χγσ

2
e

)
+γut. (4)

Realer (r) und nominaler (it) Zinssatz werden hier in eine direkte Beziehung gesetzt,

korrigiert um den Einfluss der Schocks. Wiederum bilden die χi positive Sammelpa-

rameter, bestehend aus den bereits eingeführten Größen. Der Einfluss der Ungewiss-

heit findet sich in den quadratischen Termen wieder, dem quadrierten Kostenschock

und deren Varianz σ2
e . Eine Zentralbank, welche den Nominalzins unmittelbar setzen

könnte, würde Kosten- und Nachfrageschocks zunächst mit höheren Zinsen beantwor-

ten, um den Inflationsdruck auszugleichen. Zusätzlich kommt allerdings ein negativer

Effekt hinzu, welcher aus e2
t und der unbedingten Varianz besteht. Eine Version von

Gl.(4) mit dem unbedingten Erwartungswert verdeutlicht diese Verbindung:6

E[it] = r −
χe +χγ

2
σ2
e . (5)

Somit liegt E[it] im Gleichgewicht (geringfügig) unterhalb von r, wobei Etπt+1 = 0.

4Zudem wird der Fall mit einem Inflationsziel größer Null diskutiert, mit dem Ergebnis, dass sich
die grundlegende Aussage nicht ändert.

5Der stochastische Anteil ist standardmäßig i.i.d.N (0,σ2).
6Mit der binomischen Formel gilt: Var[et] = E[e2

t ]−E[et]2.
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Die Herleitung der Gleichgewichtsbedingung Gl.(4) dient im Weiteren als Aus-

gangspunkt für einen Vergleich mit der Modellversion ohne Ungewissheit. Das Ziel

ist es, die Differenz für ein breites Spektrum an Parameterkonstellationen zu quantifi-

zieren. Die Kalibrierung erfolgt mithilfe einer umfassenden Literaturrecherche, beste-

hend aus jeweils mehreren Quellen pro Parameter inklusive einer Meta-Analyse bzgl.

γ . Hieraus formt sich ein Baseline-Szenario und mögliche Bandbreiten an realistischen

Werten.7 Der Kostenschock nimmt eine Sonderstellung ein, da für das Hauptergeb-

nis sowohl die Stärke [−0.005,0.025] als auch die Persistenz [0.6,0.8] variabel gehalten

werden, um seinen Einfluss als Ebene (Abbildung 1) zu visualisieren.8 In Bereichen ge-

ringer Schockstärke bzw. -persistenz macht die Differenz nur ungefähr 10 Basispunkte

aus. Bei einer gleichzeitigen Annäherung an die Maximalwerte werden Unterschiede

von über 50 Basispunkten erreicht.

Abbildung 1: Differenz der Gleichgewichtsbedingung zwischen beiden Modellversionen (mit
und ohne Ungewissheit). Horizontale Achsen: Persistenz und Kostenschock. Vertikale Achse:
Differenz des Zinssatzes it in Basispunkten.

Neben weiteren numerischen Untersuchungen auf statischer Basis, zeigen Impuls-

Antwort-Analysen den Effekt der Ungewissheit über die Zeit. Dabei werden nach ei-

nem Kostenschock (et = 0.01) sowohl die Auswirkungen auf die (erwarteten) Makro-

variablen als auch die Modelldifferenz bei extremen Parametereinstellungen, z.B. ei-

ne flache und eine steile NKPC, verglichen. Letzteres Beispiel zeigt, dass eine steilere

NKPC die Auswirkung von Ungewissheit verringert.

7Das Baseline-Szenario besteht aus: γ = 1, δ = 0.25, κ = 0.04, % = 0.99, σ2
e = 10−4. Bspw. entspricht

demnach der negative Term in Gl.(5), der absolute Anteil der Ungewissheit, ungefähr 10 Basispunkten.
8Es zeigt sich, dass der Nachfrageschock in der Differenz keine Rolle spielt.
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Zusammenfassend lässt sich sagen, dass Zinssätze unter Berücksichtigung der Un-

gewissheit im Allgemeinen niedriger sind. Obwohl das Ausmaß entscheidend vom

Grad der Persistenz abhängt, hat dies numerisch, bei durchschnittlicher Parameter-

konstellation, eine Auswirkung von ungefähr 25 Basispunkten. Die theoretische Ana-

lyse bestätigt zudem die Ergebnisse der empirischen Literatur.9 Schließlich bleibt fest-

zuhalten, dass, trotz langwieriger Herleitung, die Intuition hinter dem Ergebnis eine

einfache ist. Die konkave Krümmung der aggregierten Nutzenfunktion, deren Grad

durch γ bestimmt wird, sorgt für risikoaverse Haushalte. In Zeiten großer Ungewiss-

heit braucht es einen Ausgleich für den resultierenden Disnutzen. In diesem simplen

Neu-Keynesianischen Modell nimmt der Nominalzins diese Rolle ein.

2. Interne und Externe Ungewissheit

Der zweite Artikel “Non-Linearities and the Euler Equation: Does Uncertainty have an

Effect on the Approximation Quality?” betrachtet eine nicht-lineare Euler-Gleichung

und untersucht den Effekt von Ungewissheit auf die Approximationsgüte. Anknüp-

fend an den ersten Teil der Dissertation, wird die Herleitung der Euler-Gleichung

nochmals im Detail aufgegriffen. Der grundlegende Unterschied ist jedoch der voll-

ständige Verzicht auf Taylor-Approximationen.10 Es wird gezeigt, dass selbst die nicht-

lineare Version die Intention der Herleitung nicht in Gänze widerspiegeln muss. Dieser

Unterschied wird berechnet und im Anschluss als abhängige Variable per Regressions-

analyse untersucht. Dabei dienen interne Ungewissheit (die Standardabweichung der

Variablen) und eine Reihe von externen Ungewissheitsmaßen als Regressoren.

Die Herleitung mündet zunächst in der unverzerrten Version der Euler-Gleichung

hinsichtlich des Konsums, welche im darauffolgenden Schritt approximiert wird:

1 + rt
1 + it

= Et
[
(1 + ct+1)−γ · (1 +πt+1)−1

]
≈ (1 + Etct+1)−γ · (1 + Etπt+1)−1. (6)

Das Verhältnis der um Eins zentrierten (realen und nominalen) Zinssätze entspricht

einem bedingten Erwartungswert über transformierte Wachstumsraten. Darin findet

sich der marginale Nutzen abhängig vom zukünftigen Konsumwachstum (ct+1), multi-

pliziert mit dem Kehrwert der um Eins zentrierten zukünftigen Inflation.11 Durch das

Verschieben des Erwartungswertes direkt vor die Wachstumsrate, um beispielsweise

9Siehe auch Bauer and Neuenkirch (2017).
10Die Gleichung wird somit nicht als Polynom dargestellt, sondern in ihrer ursprünglichen nicht-

linearen Form belassen.
11Es wurde die flexible isoelastische Nutzenfunktion (CRRA) genutzt. Außerdem wurden Konsum

und Preisniveau aus den Perioden t und t + 1 jeweils in Wachstumsraten umgeformt.
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subsequent geeignete Prognosedaten (Etct+1 und Etπt+1) zu verwenden, wird die Glei-

chung auf zwei Arten verändert. Zunächst wird die Kovarianz der transformierten

Zufallsvariablen, ct+1 und πt+1, übergangen.12 Des Weiteren wird durch das Vertau-

schen von Erwartungswert und nicht-linearer Transformation Jensen’s Ungleichung

ignoriert. In makroökonomischen Modellen kommt dies vor allem vor, wenn in der

dynamischen Betrachtungsweise von einer Periode zur nächsten der bedingte Erwar-

tungswert nicht-lineare Variablentransformationen überspannt, wie z.B. Et[U (Ct+1)].

Gemeint ist hier der erwartete Nutzen zum Zeitpunkt t abhängig vom zukünftigen

Konsum. Anhand des zweiten Faktors im Erwartungswert in Gl.(6), welcher die Infla-

tionsrate beinhaltet, wird die Problematik verdeutlicht: Et[(1+πt+1)−1] ≥ (1+Etπt+1)−1.

Abbildung 2 zeigt, inwiefern sich die Differenz ∆π anhand von zwei Werten errechnen

bzw. darstellen lässt.

(1 +πt+1)−1

π1
t+1

πt+10 Et[πt+1]

Et[(1 +πt+1)−1]

(1 + Et[πt+1])−1

π2
t+1

∆π

Abbildung 2: Schematische Darstellung von Jensen’s Ungleichung anhand der konvexen Funk-
tion (1 +πt+1)−1 .

Durch die Beschaffenheit der monatlichen CF Daten, welche Individualprognosen

für eine Reihe von Instituten, vorwiegend aus dem Finanzsektor, bereitstellt, wird ver-

sucht dieses Problem zu umgehen. Diese Querschnittsdaten dienen jeweils als Grund-

lage für die zukünftigen Werte ct+1 und πt+1. Somit bleibt die funktionale Form bei der

Verwendung von Daten in der theoretischen Modellgleichung vollständig erhalten.

Wenn nun Daten als Proxy-Variablen für it, rt, Etct+1 und Etπt+1 verwendet werden,

um wiederum die Gleichung zu identifizieren, ergibt sich eine weitere approximierte

Form. Die Differenz dieser beiden Euler-Versionen wird untersucht, indem versucht

12Allerdings wird auf die (transformierte) Kovarianz kontrolliert. Die Werte werden verwendet, sind
allerdings sehr klein (≈ 10−6) und spielen im Weiteren keine Rolle.
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wird, sie durch interne Ungewissheit (die Standardabweichung der Variablen) und ei-

ne Reihe von externen Ungewissheitsmaßen zu erklären.

Um die Zentrierung über eine länderspezifische Problematik hinaus zu gewähr-

leisten, werden mit den USA, Großbritannien und der Euro-Zone parallel Daten drei

großer Volkswirtschaften verwendet. In den Datensätzen sind erwartete Wachstums-

raten für das aktuelle und das folgende Jahr vorhanden. Die zusätzliche Gewichtung

der Prognosedaten erfolgt monatsweise, damit sich der Erwartungswert jeweils über

ein Jahr erstreckt:

Et[growtht+1|M] =
13−M

12
·Et,M[growtht] +

M − 1
12

·Et,M[growtht+1]. (7)

Der aktuelle Monat wird mit M bezeichnet und dient ausschließlich der Gewichtung.

Die Nominalzinsdaten für die drei Regionen setzen sich aus den kurzfristigen Zin-

sen auf dem Interbankenmarkt zusammen, welche zwar eine gewisse Variabilität auf-

weisen, allerdings maßgeblich von der Geldpolitik der Zentralbanken getrieben wer-

den. Die Renditen von inflationsindexierten Anleihen werden jeweils als Proxy-Varia-

ble für die schwer zu messende langfristige, reale Zinsrate angenommen. Damit ist es

möglich Gl.(6) auf Datenbasis zu beschreiben.

Nach der Identifizierung der Euler-Gleichung wird γ geschätzt, indem für eine

Bandbreite an möglichen Werten die Residuen der Euler-Gleichung auf Normalität ge-

testet werden. Die Nullhypothese der Tests entspricht der Normalverteilung. Dement-

sprechend ist es günstig, die Hypothese nicht abzulehnen, was wiederum eine schwä-

chere Aussage impliziert. Da hohe p-Werte trotzdem ein deutlicher Indikator sind,

wird jener γ-Wert, welcher das Maximum generiert, als der Wahrscheinlichste ange-

nommen, analog zur Maximum-Likelihood-Methode.

Die nun resultierenden Approximationsfehler sind relativ klein (bis zu 10 Basis-

punkte), sollen jedoch mittels Ungewissheit erklärt werden. Das sind zum einen die

internen Ungewissheitsmaße, bestehend aus der Standardabweichung der genutzten

Variablen und der des Produktionswachstums in den CF Datensätzen.13 Die externen

Ungewissheitsmaße dagegen setzen sich zusammen aus Maßen bzgl. der Börse (z.B.

Volatilitätsindex), makroökonomischer Unsicherheit (z.B. Economic Policy Uncertain-

ty) oder der Finanzstabilität (z.B. Composite Indicator of Systemic Stress). Für alle drei

Regionen werden insgesamt 25 verschiedene Zeitreihen verwendet.14

13Aufgrund eines etwaigen Simultanitätsproblems sei darauf hingewiesen, dass diese hauptsächlich
zur Kontrolle der theoretischen Überlegung dienen.

14Alle Zeitreihen wurden zunächst auf Monatsbasis konvertiert. Im Falle von höheren Frequenzen
wurden die Werte zum Ende des Monats genommen, um sich den Umfragezeiträumen der CF anzupas-
sen. Zeitreihen mit geringerer Frequenz wurden interpoliert.
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Die Regressionsergebnisse zeigen signifikante Ergebnisse für die meisten internen

Ungewissheitsmaße. Diese nehmen eine vorherrschende Rolle ein und übersteigen die

Erklärungskraft der externen Daten. In dieser Gruppe zeigen der Weltunsicherheits-

index und die Ölpreisvolatilität (beide für die USA), der Indikator für die Finanzsta-

bilität der EZB (Großbritannien) und ein Unsicherheitsindex bzgl. des Bruttoinlands-

produkts (Euro-Zone) einen signifikanten, positiven Einfluss. Die letztgenannten Er-

gebnisse können sich jedoch auch auf die Prioritäten der befragten Institute bei der

Durchführung der CF Umfragen beziehen. Letztlich zeigt sich, dass selbst in den ge-

ringfügigen Approximationfehlern noch ein gewisser Erklärungsgehalt steckt. Eine

sich anschließende Frage ist, unter welchen Bedingungen diese Fehler größere Aus-

maße annehmen können.

3. Das Ausmaß von Jensen’s Ungleichung

Der abschließende Teil “Evaluating the Approximation Bias in Forward-Looking DS-

GE Models” behandelt die Evaluation des Approximationsfehlers in, um Erwartungen

erweiterten, DSGE Modellen. Zunächst wird die Relevanz von DSGE Modellen erör-

tert, mit der Schlussfolgerung, dass diese aufgrund der großen Bekanntheit und relativ

kostengünstigen Implementierung, insbesondere für kleinere bis mittelgroße Institu-

tionen oder generell für Entwicklungsländer, interessant sein können.

Thematisch schließt sich dieser Artikel dem zweiten Teil an, erweitert den me-

thodischen Ansatz allerdings an zwei Punkten. Erstens werden die Ergebnisse nicht

durch den Einsatz von Wachstumsprognosen aus den CF Datensätzen gespeist. Viel-

f (X); Wahrscheinlichkeitsdichte

0 XE[X]−100%

Abbildung 3: Grenznutzen und Verteilungsfunktion.
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mehr dienen die Daten zur Kalibrierung von Verteilungen, die genutzt werden um

allgemeinere Aussagen zu generieren. Abbildung 3 stellt diese Vorgehensweise sche-

matisch dar. Mithilfe der Verteilungsfunktion werden Wahrscheinlichkeiten generiert

um als Argument der nicht-linearen Funktion f (X) zu dienen. Zweitens wird die De-

finition des Approximationsfehlers zwar beibehalten, die Ausgestaltung des Modells

wird jedoch genauer beschrieben. Statt der Euler-Gleichung als Ganzes wird der ent-

scheidende Teil isoliert und leicht variiert. Dies ist mit dem Ziel verbunden, in der

letztlichen Auswertung eine Fehler-Differenz zu messen, welche konkret als Differenz

von Wachstumsraten interpretiert werden kann. Wie zuvor werden die Ergebnisse in

Basispunkten dargestellt. Die zentrale Formel, ein illustratives Modell, hergeleitet aus

Jensen’s Ungleichung in Verbindung mit einer intertemporalen Verhaltensgleichung,

beschreibt den Approximationsfehler

bias(X) = 104 ·
(
(E[1 +X])γ −E[(1 +X)−γ ]−1

)
, (1 +X) ∼ logN

(
µ,σ2

)
, (8)

bestehend aus der Differenz von gewichteten Wachstumsraten und einer angenomme-

nen Verteilung der Argumente X. Damit ist X explizit eine Zufallsvariable, welche ei-

ner Log-Normalverteilung folgt. Die verwendete Funktion folgt aus der Ableitung der

isoelastischen Nutzenfunktion (CRRA) und generiert somit einen marginalen Nutzen,

ausgehend von den Wachstumsprognosen.15 In diesem Modell spielen drei Parameter

eine Rolle: Die Krümmung der nicht-linearen Funktion, ausgedrückt durch γ und die

beiden zentralen Momente der Verteilung, µ und σ2.

Bezogen auf die vorhandene Literatur ist die Wahl der Verteilung naheliegend. Ge-

nerell ist es allerdings nicht offensichtlich, eine passende Verteilung zu finden. Da es

sich bei X um Wachstumsraten handelt, muss diese Verteilung um Null zentriert sein,

eine untere Grenze aufweisen und eine gewisse Schiefe zulassen. Außerdem darf die

Verschiebung der Wahrscheinlichkeitsmasse nicht zu unerwünschten Nebeneffekten

führen, wie einer zu großen Standardabweichung. Hier gilt es zudem die Balance zu

halten zwischen einer geringen Anzahl an Parametern und einer zu hohen Komplexi-

tät.16

Um das Ausmaß der Differenz in Gl.(8) zu bestimmen, wird sowohl ein mathema-

tischer, als auch ein statistischer Ansatz gewählt, welche sich beidseitig ergänzen. In

der analytischen Lösung wird zunächst der Erwartungswert der transformierten Zu-

15Dies ist weit verbreitet in der Fachliteratur, allerdings wird im Appendix auch mit einer Alternati-
ve, der CARA-Nutzenfunktion gearbeitet.

16Aufgrund der Definition auf einem halboffenen Intervall, analog zur Log-Normalverteilung, wird
die invertierte Beta-Verteilung als Alternative herangezogen und im Kalibrierungskapital ausführlich
diskutiert.

144



fallsvariablen bestimmt. Es stellt sich heraus, dass die stochastischen Einflüsse in der

Gleichung vermieden werden können und ein deterministisches Ergebnis erzielt wird:

bias(µ,σ ,γ) = 104 · (1 +µ)γ ·

1−
 1 +µ√

(1 +µ)2 + σ2

γ(γ+1) . (9)

In Gl.(9) zeigt sich, dass der Approximationsfehler in einem verketteten quadratischen

bzw. exponentiellen Zusammenhang zu den bereits erwähnten Parametern steht. Bei-

spielsweise bei dem vereinfachten Fall von γ = 1, wirkt sich die Standardabweichung

näherungsweise quadratisch auf den Fehler aus, da 1 +µ� σ gilt:

bias(µ,σ | γ = 1) = 104 ·
(1 +µ) · σ2

(1 +µ)2 + σ2 . (10)

Eine konkrete Einordnung dieser funktionalen Zusammenhänge wird im Appendix

ausführlich diskutiert und berechnet. Exemplarisch sei an dieser Stelle eine Taylor-

Approximierung zweiten Grades bezogen auf σ hervorgehoben, welche nach exakt de-

finierten Kriterien eine hinreichende Genauigkeit bis σ = 0.16 bietet. Das anschlie-

ßende Kapitel, welches die Kalibrierung der Momente ausgehend von Prognosedaten

behandelt, zeigt, dass dieser Wert in jedem Fall eine nicht zu überschreitende Höchst-

grenze darstellt.

Die verwendeten, länderspezifischen Daten aus den CF Prognosen beziehen sich

zum einen auf die USA, da hier die beste Verfügbarkeit gewährleistet ist, und werden

monatsweise getestet. Dies entspricht gleichzeitig der Veröffentlichungsfrequenz der

CF. Damit außerdem die Situation in Schwellen- bzw. führenden Entwicklungsländern

(frontier markets) berücksichtigt wird, werden die im gleichen Datensatz verfügbaren

Staaten Ägypten, Nigeria und Südafrika hinzugenommen. Wegen der geringeren An-

zahl an Prognosen erfolgt die Verwendung der Querschnitte quartalsweise. Im Ver-

gleich zu den USA, mit einem gesamten Zeithorizont von 30 Jahren, stehen nun etwa

10 bis 20 Jahre zur Verfügung.

Um die Annahme von log-normalverteilten Zufallsvariablen zu untermauern, wer-

den die Werte zunächst logarithmiert und schließlich auf Normalität geprüft. Dabei er-

folgt die Umwandlung in erwartete Wachstumsraten, welche sich konstant über einen

einjährigen Zeithorizont erstrecken, analog zu Gl.(7) im vorherigen Artikel. Es zeigt

sich, dass im Schnitt bei einem Anteil von ungefähr 80% der Fälle (bzw. Querschnitte)

die Nullhypothese von nicht-normalverteilten Zufallsvariablen beibehalten wird. Un-

serer Meinung nach untermauert dies die Annahme der Log-Normalverteilung in einer

Weise, dass die Verwendung zumindest nicht abgelehnt werden kann. Zudem bewegt

sich die Größe der einzelnen Querschnitte teilweise im einstelligen Bereich. Typischer-
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weise werden jedoch ca. 20 bis 30 Prognosen pro Monat bzw. Quartal erreicht. Die

kalibrierten Werte der Standardabweichung, als Maß für Ungewissheit, reichen von

knapp über Null bis knapp unter 0.04. Dementsprechend wird ein Wert von σ = 0.01

für das Baseline-Szenario und eine Bandbreite von 0.002 bis 0.04 für die folgenden

Simulationen bestimmt. Der Mittelwert schwankt stark in Abhängigkeit vom betrach-

teten Land. In den USA können die Raten leicht im negativen Bereich liegen, während

in den anderen Ländern im Maximum über 20% erreicht werden können. Wir ent-

scheiden uns hier für einen Kompromiss von µ = 6%, allerdings zeigt sich, dass die

Höhe des Erwartungswertes kaum einen Einfluss auf den Approximationsfehler hat.

Dies wird anhand von numerischen Beispielen ausführlich erläutert.

Die Simulationen überprüfen schließlich zum einen die analytischen Ergebnisse

mithilfe der kalibrierten Werten auf ihre Variabilität und zum anderen kann das Mo-

dell leicht erweitert werden, selbst wenn sich eine analytische Lösung als nicht prak-

tikabel erweist. Konkret werden weitere Variablen dem Modell hinzugefügt. Selbst

wenn eine analytische Herleitung theoretisch möglich wäre, erfolgt lediglich die nu-

merische Auswertung, da diese Erweiterung starke Annahmen an das Modell hinzu-

fügt und nur einen Ausblick geben soll. Diese Annahmen beziehen sich vor allem auf

die multiplikative Erweiterung, dargestellt für den Fall mit zwei Variablen:

bias(X,Y | γ = 1) = 104 ·
(
E[1 +X] ·E[1 +Y ]−E

[
(1 +X)−1(1 +Y )−1

]−1
)
. (11)

Der entscheidende Vorteil ist jedoch die Analyse der Approximationsfehler als Ver-

teilung abhängig von den jeweiligen Parameterwerten. Hier zeigt sich, dass eine ge-

wisse Schiefe vorherrscht, die intuitiv mit der unteren Grenze von Null erklärt wer-

den kann. Abbildung 4 zeigt den Fall einer variable Standardabweichung (als Proxy-

Variable für Ungewissheit), wobei für große Werte eine mittlere Differenz von ca. 15

Basispunkten erreicht wird. Die Variation von γ (0.25 – 5) führt zu ähnlichen Ergeb-

nissen.

Zusammenfassend lässt sich festhalten, dass der Approximationsfehler linear auf

die Varianz und die Korrelation mehrerer Wachstumsvariablen reagiert und exponen-

tiell auf die Krümmung und die Größe des Modells. Trotz des unterschiedlichen funk-

tionalen Zusammenhangs kann bei den angenommenen Maximalwerten von σ und

γ jeweils mit Approximationsfehlern von ca. 25 Basispunkten gerechnet werden. Im

gesamten Kontext zeigt sich jedoch, dass die verwendeten Daten eine geringere Rolle

spielen als letztlich die Ausgestaltung bzw. die Größe des Modells. Der Artikel schließt

mit dem Vorschlag eines Daten-Filters, welcher parameterabhängig die Nutzung von
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Abbildung 4: Simulation mit 100.000 Wiederholungen pro Parameterausprägung. Abszisse:
Standardabweichung. Ordinate: Differenz der Wachstumsraten in Basispunkten.

Erwartungswerten korrigieren könnte, um einer Verzerrung der Ergebnisse entgegen-

zuwirken.

Resümierend bleibt die Frage offen, ob die exakte Interpretation von Modellglei-

chungen in der Makroökonomie eine Rolle spielen sollte. Falls diese Frage positiv be-

antwortet wird, so zeigt diese Arbeit, inwiefern der praktische Einsatz die Resultate

verzerren kann.
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La perfection est atteinte, non pas

lorsqu’il n’y a plus rien à ajouter, mais

———— | | ———— retirer.

− Antoine de Saint-Exupéry
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