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Preface

This doctoral thesis was submitted at the department IV (Economics, Social

Sciences, Mathematics, and Informatics) for obtaining the degree doctor re-

rum politicarum (Dr. rer. pol.). It is written cumulative, containing three

separate articles. The first and third paper were written as a co-authorship

with Christian Bauer in the first and Tobias Kranz in the third. Christian

Bauer was responsible for the methodology and several examination ideas,

and Tobias Kranz for the theoretical framework and the Monte Carlo simu-

lations. All topics are interlinked in these three papers and form a reason-

able structure, which will be explained in detail.

This thesis starts with a motivation of the topic, followed by the three

separate articles. Every article represents a chapter of the thesis. A german

summary – as prescribed in the promotion regulation – can be found at the

end.

The articles were written between 2017 to 2020, simultaneously working

as a research and teaching assistant at the Chair of Monetary Economics at

the University of Trier.
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Motivation

The European Union (EU) and especially the European Monetary Union (EMU) have

undertaken many actions towards a complete political, economic, and fiscal union.

Whereas the political and the economic union are on a good way, e.g. with a common

parliament and common trade negotiations, the fiscal union is still a theoretical con-

cept yet to be fully implemented. There is a common currency with the Euro, which

leads to a strong connection between the countries, and one central bank responsible

for this currency, the European Central Bank (ECB). The Euro is the link between the

countries in the EMU, but a common budget or fiscal authority and a common bond

issuance scheme are missing, which is necessary to complete a fiscal union. These

missings have been a point of criticism ever since the EMU started with the introduc-

tion of the Euro in 1999, but had been neglected in its first years.

Only a few years after the introduction of the Euro in January 1999 as demand

deposit and in January 2002 as cash, a large housing/real estate bubble grew in the

subprime mortgage market of the USA and had its peak in the bankruptcy of Lehman

Brothers in 2008. The impact on the European market became visible a few years later

in several countries such as Greece through bailouts granted to banks which had in-

vested in structured mortgage products in the US. The mortgage products depreciated

throughout the crisis and were written off afterwards. The depreciation led to the

necessity for the affected countries to rescue the involved banks as higher risk pro-

visions burden the balance sheets. As a consequence, the European sovereign debt

crisis evolved because it became unclear whether all countries could serve their debt.

A flight to relatively safe bonds, e.g. German bonds, began and as a result, several sup-

port programmes started, e.g. for Greece and Portugal, through the European Stability

Mechanism. In this context, the previously mentioned criticism got more attention,

because a fiscal union might have previously predicted these difficulties or could have

easier resolved the issues.

A second crucial issue that can be resolved by issuing Eurobonds is the sovereign-

bank nexus. Banks primarily hold sovereign debt of the countries they are incorpo-

rated in. If countries must rescue banks in a financial crisis and have difficulties to

serve their debt afterwards, the value of their bonds will depreciate. As a consequence,

these banks need new equity, and a spiral starts to spin. A fiscal union with several

control mechanisms such as fiscal surveillance and a common bond issuance scheme

might have been in a better position to handle the crisis.

One of the central requirements to reach a full fiscal union and to complete the

EMU is the implementation of a common debt instrument. With the introduction of
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the Euro, the idea of this instrument came up. The Giovannini Group (2000) per-

formed the groundwork. In their work and with Eurobonds per se, the countries shall

no longer be solely responsible for their debt issuance. The discussion of the desig-

nated shape of the envisioned common debt instrument is highly political due to the

beforementioned sovereign debt crisis and its necessary support packages. A wide

range of possibilities were discussed and Claessens et al. (2012) and the Securities

Industry and Financial Markets Association (2008) give an overview of these possi-

bilities. Delpla and von Weizsäcker (2010) drew another possibility with two types

of bonds. The first type is the “blue bond” with a common liability which are issued

up to 60% of the GDP. The Stability and Growth Pact inspires this threshold. The

second type is “red bonds” who are issued for every debt above 60% of the GDP for

every country. The countries have to issue the bonds on their own liability. Never-

theless, the focus turned towards structured products in the form of an Asset-Backed

Security (ABS). By their construction (Pooling & Tranching of assets) and their han-

dling of liability (transfer to the capital market), ABS mitigate the problems of other

approaches. These approaches have a common liability which can violate the “no-

bailout”-clause and the resulting rating of the bonds is not secured. However, a cer-

tain aversion against ABS products still exists. Collateral Default Obligations (CDOs),

a subgroup of ABS products and a key factor for the financial crisis in 2008/2009, are

the reason for this criticism.

The introduction of a novel, not yet established type of product such as structured

Eurobonds comes with uncertainty, hurdles, and various questions to overcome. Many

of the questions are concerning their feasibility and are of legal nature, e.g. how to han-

dle budget authorities. Nevertheless, there is a great chance to diminish several nega-

tive effects such as too large common liability or “moral hazard” because the product

can be conceptualised and constructed from scratch. Several ideas to issue Eurobonds

have been developed, but their consequences, e.g. on the capital market, and the sen-

sitivity have not been examined yet. The quantification of these two aspects is the aim

of this work.

The effects under investigation can be split up into two phases, a pre- and a post-

introduction phase. The first chapter focuses on the pre-introduction phase by ana-

lysing the sensitivity of the gains, which can be achieved by issuing structured Eu-

robonds. In this chapter, the focus lies on the optimal design for issuance. The basis is

an ABS approach. The cost of higher joint liability, which is represented by a model-

inherent trust fund, and the sensitivity towards several factors such as the risk-free

interest rate are analysed.
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It turns out that the realised gains are highly connected to the risk-free interest rate

and the recovery rate. Whereas the recovery rate effect is strictly positive, the interest

rate effect is mixed, dependent on the trust fund size. In this context, the choice of the

joint liability – or the capitalisation of the trust fund – can be crucial to maximising

the gains. In particular, the right choice depends on the current risk-free interest rate

and ranges between 9% and 18%.

These results are important for the political discussion because the two parame-

ters – risk-free interest rate and recovery rate – determine the optimal joint liability.

The question regarding the liability is essential in every Eurobond discussion, and the

results in this chapter can help to determine an optimal construction. Also, the simu-

lation in this chapter points out that an issuance through a supranational organisation,

e.g. the European Stability Mechanism (ESM), can be advantageous. The choice of the

common liability has a direct impact on the resulting structure, which consequently

has a severe impact on the post-introduction phase. Especially, in an uncertain context

where the risk-free interest rate and the recovery rate might change in the future, the

variation of the joint liability might be important.

The second chapter evaluates a post-introduction scenario. Legal challenges that

arise from the introduction are neglected here and afterwards because the focus lies

on the economic perspective. The introduction of structured Eurobonds and its im-

pact on exchange rates is the subject of this chapter. This analysis of the impact on

exchange rates has its origin in the assumption that the Euro will be a reserve currency,

as highlighted in the Green Paper of the European Commission (2011). This position

as a reserve currency is assumed because an equivalent to the US T-Bill market will

exist due to Eurobonds, and it strengthens the investor attraction towards the Euro.

A complete replacement of single-level national bonds through structured Eurobonds

would deliver a new yield curve. Thus, the current connection between exchange rate

predictability and changes in the yield curve is analysed to quantify the impact of this

shock. As a result, the Euro would depreciate against the US-Dollar and appreciate

against British Pound, Swiss Franc, and Chinese Renminbi. Since the depreciation

against the US-Dollar is counter-intuitive, a subset, excluding the time around the re-

cent financial crisis, is examined. The effect stays the same four all four currency pairs.

When a trade-weighted exchange rate of all four currency pairs is calculated, the Euro

would appreciate.

A ride to “normal” monetary policy might have stronger influences because the

yield curve heavily depends on the central bank refinancing rates and expectations. A

prediction of this can be connected with severe errors which over- or underestimate the

real exchange rate impact. This prediction error could have several next-round effects,
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e.g. on trade and stock prices, which might also be of interest for further examinations.

The results of this chapter confirm the assumption of a strengthening of the Euro as

an international reserve currency.

Finally, the third chapter leaves the field of structured Eurobonds and sets its focus

on an approximation bias as a result of the use of Jensen’s Inequality in DSGE models.

This error occurs in non-linear, forward-looking models, which are also used by the

ECB and the IMF, e.g. ECB-Global and IMF’s Global Projection Model, as discussed by

Dieppe et al. (2018) and Carabenciov et al. (2013). Two different solutions to measure

this bias are presented – an analytical and a numerical. The analytical solution can be

used when the dataset is sufficient in its quality and size. The bias can be calculated

with deterministic factors derived from the dataset. If the dataset is not sufficient, a

numerical solution – especially a Monte Carlo simulation – is useful. For this purpose,

the Consensus Forecasts survey is used, which consists of forecasts given by several

capital market institutions regarding macroeconomic factors. A calibration against

the dataset is run to receive the distribution parameters for two distributions. They

are used in the following Monte Carlo simulation. This simulation shows that the

bias, which arises from Jensen’s Inequality, can reach values around 25 basis points

and should not be neglected – especially for large-scale models, such as the above

mentioned ECB-Global. A correction of the results in these models would have a direct

impact on the inflation forecast of the ECB. Therefore, their choice of the refinancing

rate might change. A resulting adjustment, e.g. of the refinancing rate of the ECB,

will change the risk-free interest rate and therefore the yield curve. Both changes do

have a significant impact on the results of the two previous chapters. The change of

the risk-free interest rate influences the first chapter, where the optimal choice of joint

liability is connected to this rate. Since the yield curve is also changing, an impact on

the exchange rates will also be observable. The two factors – yield curve and risk-free

interest rate – are of central importance to determine the impact on exchange rates

and the optimal choice of common liability, and they are affected by the choice of the

refinancing rate of the central bank.

The central goal of this work is to quantify the impact of several macroeconomic

factors on the issuance of structured Eurobonds and its following effect. It shall shed

some light on the considerations needed before Eurobonds are issued as a structured

product. Moreover, this dissertation is meant to sensitise policymakers regarding the

effect of Eurobonds on exchange rates and several second-round effects, e.g. the impact

on trade. Another purpose is to highlight the circumstances when a financial crisis

with a high level of uncertainty is present. An independent institution such as the

ECB should account for this uncertainty. An adjustment of the interest rate would be

8



the consequence. This uncertainty needs to be accounted for in the effects of structured

Eurobonds.

After all, it is on policymakers to decide whether or not they are in favour to in-

troduce Eurobonds. There are many effects – some of them might be negative – that

need to be accounted for. Nevertheless, to complete the fiscal union of the EMU, it is

inevitable to issue Eurobonds, as a structured product or not.
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1 Sensitivity of Structured Eurobonds

Limited Joint Liability in Structured
Eurobonds: Pricing the political costs

Abstract

We introduce an analytical tool to study the effects of ABS-based Eurobonds.

Our approach allows to optimise the degree of jointness and therefore could over-

come the huge and emotionally influenced political obstacle of joint liability. The

approach is stable over time. Interest savings reach 0.5 percentage points de-

pending on the degree of joint liability even in the current economic environment.

Based on an optimal degree of joint liability between 9% and 18% of each countries

individual share, we can price the political cost of joint liability. In the sensitivity

analysis, we examine different scenarios as, e.g. a PIIGS bond and an EU-6 bond

which are all beneficial for each country as well as the community. Due to risk

diversification, countries with high-interest load are most profitable for the com-

munity. Summarising, structured Eurobonds could be a stable, very beneficial and

political feasible tool for a European fiscal system.

Keywords: Structured Eurobonds, Joint Liability, Fiscal Union, EMU, Sovereign

Debt, ABS

1.1 Introduction

Since the beginning of the European Monetary Union (EMU), there is an ongoing dis-

cussion about a fiscal union to complete and stabilise the economic union. This discus-

sion was fueled by the persistent crisis, which makes joint or coordinated fiscal policies

a necessary stabilising pillar of the economic union. One of the most debated options

is the common issuance of sovereign bonds of all countries in the EMU, the so-called

Eurobonds.

There is as much literature on the political, macroeconomic, fiscal and stabilising

advantages of the different proposals of Eurobonds as there is on the political and

economic dangers of joint liabilities, moral hazard, and redistributions. To our knowl-

edge, none of these approaches is tested on its quantitative sensitivity to the most typ-

ical political and economic stress situations. Nor are there quantitatively supported

studies trying to optimise and price the degree of joint liabilities which seems to be a

political tabu. Our paper aims to fill this gap.
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In this paper, we want to shape a discussion about the optimal degree of joint liabil-

ity in structured Eurobond approaches. While preserving the general macroeconomic

and fiscal advantages of Eurobonds, structured approaches as in Hild et al. (2014) and

Bauer and Herz (2019) (Brunnermeier et al. (2016) can be easily extended as well) al-

low for varying the degree of joint liability. We analyse how the degree of joint liability

affects the efficiency and stability of Eurobonds. Thus, we can price the different de-

grees of jointness to facilitate political debates on the optimal design of a Eurobond

system. Also, we analyse how structured approaches react to (1) political stress, e.g.

the drop out of one member, (2) two speed scenarios, i.e. “Euro-Sub-Group Bonds”,

such as PIIGS or EU6, (3) the global financial situation, and (4) the issuance of short

term bonds. Structured Eurobonds yield explicitly more interest than single country

sovereign bonds. These interest gains serve in our paper to quantify the advantages of

Eurobonds. Furthermore, these interest gains can be distributed in different ways, e.g.

allowing for compensation of AAA countries for the political and economic costs of

joint liability. These costs lead to a discussion on the optimal degree of joint liability

and compensation. Besides, suitable distributions increase the internal stability and

reduce moral hazard.

The rest of the paper is structured as follows. Section 1.2 gives the theoretical back-

ground on the advantages and disadvantages of Eurobonds, in general, and structured

Eurobonds, in particular. Section 1.3 has a look at the data and methodology. In Sec-

tion 1.4, we discuss the optimal degree of joint liabilities, while Section 1.5 presents

different settings and robustness checks. Section 1.6 concludes our findings.

1.2 Theoretical Background

The Giovannini Group (2000) has published first ideas of joint issuance of sovereign

bonds. The variety of approaches proposed after that is wide. The Securities Industry

and Financial Markets Association (2008) and Claessens et al. (2012) give overviews

of the proposals. The suggestions range from partial to full joint refinancing and vary

in several other aspects, including the degree of joint liability. Boonstra (2005) intro-

duced the possibility to use a fund for issuance and a much-noticed approach has been

given by Delpla and von Weizsäcker (2010) who differentiate between the issuance of

blue (Eurobonds) and red (national) bonds.

The discussion of joint issuance shows that besides strengthening the connection

between member countries, joint bonds reduce interest expenses and deepen the mar-

ket for sovereign bonds. Another purpose is to create an equivalent to the US-American

T-Bill market and supply the financial markets with an Eurozone wide yield curve.
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More advantages are higher liquidity in the sovereign bond market and a higher vol-

ume of EMU-wide AAA-rated bonds. Eurobonds might even be able to stop the sove-

reign-bank nexus. Also, some authors claim that the role of the Euro as an interna-

tional reserve currency will be strengthened after the introduction of Eurobonds.1

Besides the many advantages, the introduction of Eurobonds is confronted with

several difficulties. One of the most significant political barriers to the introduction of

Eurobonds is the “joint liability - moral hazard” problem. Usually, in the political de-

bate issuing bonds with joint liabilities comes down to the argument “We [the ‘strong’

countries] will have to pay for your [the ‘weak’ countries’] debt.” E.g., in Septem-

ber 2011 German Chancellor Angela Merkel said in the German Parliament that Eu-

robonds are only a “communitisation of debt” and a “way into a debt union”. One year

later she said that Eurobonds would not be established “as long as I live”. Another part

of the debate is the “moral hazard” argument. This states that ‘weak’ countries, mean-

ing high-interest countries, could easily increase debt as (a) they have the opportunity

to do it at lower interest rates and (b) the individual repayment or default decision is

influenced by the potential of externalisation of negative default effects. The individ-

ual repayment or default decision transforms from a merely internal economic to an

intergovernmental political bargaining process.

Of course, joint liability means an additional risk and thus hard financial costs, and

there is a serious academic and political discussion about the moral hazard involved

in Eurobonds. The debate, whether common issuance will set negative incentives for

countries with refinancing problems, e.g. through a financial crisis, is controversial.

More stable countries, e.g. Germany, fear a situation in which they de facto have to pay

for countries which use Eurobonds as a cross-financing instrument. This means that

countries with refinancing problems can borrow money from the capital market in a

higher volume than in a single issuance scheme. This advantage is due to a good rating

and a high nominal amount which allows borrowing money at a low-interest rate and

the effect of one country needing more money is not crucial for the whole Eurobond

scheme. If they cannot repay the debt, they default and the other countries in the

Eurobond system, e.g. the more stable countries and especially their taxpayers, have

to repay the debt of the defaulted country. The joint liability of Eurobonds is widely

seen as the demise of a common budget authority. Also, the design of the Eurobond

system has to account for defaults of single countries to prevent negative impacts on

the credibility of the system itself with a subsequent probability of super-contagion-

like effects.

1See for example the Green paper on stability bonds of the European Commission (2011).
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On the national level, after the introduction of Eurobonds, the decreasing liquidity

in the remaining sovereign country-specific bonds will be challenging for the fiscal au-

thorities. Also, the uncertainty in rating single country bonds increases when liquidity

is low in the remaining individual markets. Due to lower liquidity, existing bondhold-

ers will face some liquidity premia which lowers their yield. Also, new issuances will

be more costly for emitting countries - if they don’t want to be part of the Eurobond

programme - since the demand is lower with existing Eurobonds.

Nearly all of these problems, however, can be addressed by a proper design of the

Eurobonds. Previously mentioned literature and overview papers have highlighted

the arising problems and proposed adequate solutions. Although theory unanimously

argues in favour of Eurobonds, the issuance is accompanied by uncertainty in a crisis

and discomfort against the unknown. Nonetheless the European Commission (2017)

highlights in their current Reflection Paper of the on the Deepening of the Economic

and Monetary Union, the necessity of common issuance to deepen the bond market

in the EMU. Mcevoy (2016) links public support of the EU to the level of economic

expectations. Thus, the positive economic effects of Eurobonds can raise expectations

on economic conditions and therefore support the public opinion of both Eurobonds

themselves and the European Union in general.

1.2.1 Structured Eurobonds

The European Commission suggests Eurobonds as one element to solve the current

debt crisis and to prevent new adverse situations in the European Monetary Union.

The above mentioned Reflection Paper of the European Commission indicates a

theoretically supported preference for structured products to introduce Eurobonds.

Hild et al. (2014) and Brunnermeier et al. (2016) propose Asset-Backed Security (ABS)

approaches to construct Eurobonds. To construct an ABS, a Special Purpose Vehicle

(SPV) has to buy a portfolio of bonds of all participating countries. To avoid additional

uncertainty and issuer risks, these portfolios must be filled with physical bonds and

not through synthetic contracts such as credit default swaps (CDS). Collateral Default

Obligations (CDOs) are a special type of ABS which uses sovereign bonds as collateral.

Longstaff and Rajan (2008), Coval et al. (2009), and Coval et al. (2009b) give a deeper

explanation of CDOs, their pricing and the correlation effects. After this pooling of

assets, tranches with different risk and interest payments are emitted. The diversifi-

cation and tranching effects are attributed to a correlation less than one between the

countries of the EMU. Essentially, both approaches use similar techniques with slight

but nevertheless fundamental differences. While Brunnermeier et al. (2016) propose
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only two tranches, “European Safe Bonds” (ESBies) and “European Junior Bonds” (EJ-

Bies), Hild et al. (2014) allow for a more optimised tranching. The advantages of both

ABS-approaches are a reduction of the negative aspects mentioned above. Market liq-

uidity will be improved due to the different tranches, and the volume of AAA sovereign

bonds in Europe will strongly increase. Additionally, Hild et al. (2014) allow varying

the degree of joint liability. This is achieved by using a reserve fund to absorb first

losses in case of default. Joint liability is limited to this fund which has an optimal

size of 10% to 15% of the nominal volume of emitted debt. Losses that exceed this

size will cause depreciation of the junior tranches.2 Besides the above named political

and macroeconomic advantages of Eurobonds in general, the structure generates a sig-

nificant interest gain, which (in the approach of Hild et al. (2014)) can be distributed

among all participating countries. The new emitted tranches have a lower average

interest rate than the weighted average of the single issuance interest rates of partici-

pating countries since sovereign yield curves clearly show the market’s risk aversion.

The probably largest hindrance to this approach is the limited credibility of the struc-

ture and the associated interest spread, which is to be expected. An implementation

via a supranational organisation, such as the ESM, would solve this problem, ensure

low issuer risk and high-interest savings for the participants. Also, when single level

country bonds vanish, it will be challenging to determine the interest rates to be paid

in by participating countries.3

This design, in combination with an ABS product, prevents the above mentioned

negative aspects of Eurobonds concerning “moral hazard” and joint liability. Prop-

erly designed structured Eurobonds have two features that would allow overcoming

these problems. Firstly, the degree of joint liability is not a binary black and white

choice but a continuous variable which can be optimised to balance out efficiency and

stability. Secondly, the interest advantage over single issuance is an explicit income

stream which can be distributed among all participants. By proposing two exempli-

fied distributions of this interest gain, we show that high rated low-interest countries

like Germany also profit financially from participation. In the empirical part, we will

analyse the trade-offs between varying degrees of joint liability, financial profitabil-

ity, and political costs. A discussion on the topic of structured Eurobonds can also be

found in the feasibility study of the ESRB (2018). Different possibilities of Eurobonds

in various configurations are portrayed as well as advantages and disadvantages. These

possibilities are also thematised by van Riet (2017).

2Formally, the joint liability can be lowered until even zero although this extreme would dramati-
cally reduce the efficiency of the structure as we will show in the next chapter. Hild et al. (2014) clarify
the model of structured Eurobonds in a SPV as well as the cascading effects.

3Few technical problems to be expected during the conversion can certainly be handled.
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1.3 Methodology and Data

1.3.1 Methodology

Our analysis follows the model introduced by Hild et al. (2014). A SPV is estab-

lished, which buys a portfolio of bonds of the participating countries and sells dif-

ferent tranches with different interest rates to the capital market. A trust fund (in the

benchmark model 10% of the issued nominal volume) absorbs first losses and invests

the capital at the risk-free interest rate. If a country defaults and the cash flows cannot

be served, the trust fund steps in while the recovered nominal value is transferred to

the trust fund and the country drops out of the scheme.

The probability of default of every country is calculated using the method of Stur-

zenegger and Zettelmeyer (2010). They use CDS-spreads and recovery rates to cal-

culate the default probability. As a benchmark, we use a fixed recovery rate of 50%.

Other possible methods to calculate a default probability have been shown by Polito

and Wickens (2015) and Bi (2012). In the first article, the authors use a rolling-window

VAR model while in the second risk premia are matched to default probabilities in a

closed economy model. Polito and Wickens (2015) mainly focus their analysis on the

possibility of countries to repay their debt by tax revenues and Bi (2012) uses a model

with several macroeconomic factors. Since none of them presents a connection to the

recovery rate, we stick to the method of Sturzenegger and Zettelmeyer (2010) and as-

sume that the market appropriately displays the default probability. When structured

Eurobonds substitute the whole single issuance bonds, a derivation of the default prob-

ability by CDS-spreads is impossible. In this case, the other two methods presented

above might be more appropriate. In addition, the contingent claims approach by

Merton (1974) can be used.4 As structured Eurobonds generate gains and improve the

fiscal situation of all countries, their default probability will get better.

We apply the strongest possible parameter values for contagion effects to present

the most conservative model. For this, we assume the highest possible correlation

without violating the default probabilities of every participating country. This means

that if one country defaults all countries with a higher default probability also default.

Also, we do not allow a member to come back into the SPV after defaulting once. If a

country defaults, it drops out of the SPV, and the recovered nominal is transferred to

the trust fund.

In this paper, we present results for a period of ten years to model long-term re-

financing. After this time, the remaining capital in the trust fund is redistributed to

4An overview of credit risk models for sovereigns can be found by Gray and Malone (2008).
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the non-defaulted countries. We allow for two different distribution methods of the

net surplus, even or relative, although other distribution schemes are possible to set

political incentives. In this context, an even distribution means that the net surplus

is allocated according to the individual debt level. In the relative case, the funds are

distributed in relation to the interest payments. The first method is better for coun-

tries with high nominal volume and low-interest rates, i.e. AAA countries, whereas the

second method is advantageous for countries with a high-interest burden, e.g. PIIGS

countries. Therefore, it is a political topic to decide between the methods of distri-

bution. The direct economic advantage, i.e. the average interest reduction for the

debtors, is independent of this distribution. But the indirect benefits, e.g. higher eco-

nomic stability through repayment schemes based on prudential economic policies or

low budget deficits, do indeed depend on the outcome of the political bargaining pro-

cess defining the distribution schemes.

We run Monte Carlo simulations to find the structure, calculate the extra costs, and

gains/losses. The simulation is done with m=100,000 loops.

1.3.2 Data

For the calculation, we need the yields of the government bonds of every single mem-

ber country of the EMU to calculate the individual interest rate. We additionally re-

quire the CDS-spreads for different rating classes to calculate the interest outflows

from the SPV to the capital market. We thus include the issuer risk assigned to non-

sovereign bonds into our model. Since these spreads are not available for every single

possible rating, we use a spline interpolation to approximate the few that are missing.

The 10-year CDS-spreads for every member country are taken to derive their probabil-

ity of default. These datasets and the rating of every member country are taken from

Reuters Datastream for the end of August 2018, the end of December 2012 and the end

of December 2008. The three dates are chosen to represent current circumstances, the

European sovereign debt turmoil and the financial crisis starting in 2008, respectively.

The individual interest rates of every participating country can be found in Table A1

in the Appendix. Sovereign debt and GDP to calculate the emitted volume of debt

are also taken for the end of June 2018 or the latest possible date from Eurostat, the

European Statistical Office.

16



1.4 Optimal degrees of joint liability

The initial trust fund volume is a crucial determinant of both the political bargain-

ing process and the economic advantages of structured Eurobonds. The trust fund is

equivalent to the degree of joint liability every country is willing to choose. The main

implications of a larger trust fund are (1) an increased security buffer for the investors

resulting in a more efficient tranching and lower average interest rates, (2) an increase

of the void interest payments of the participating countries as the trust fund share is

also credit financed and (3) an increase of the risk of the participating countries to lose

money in case of a default of a member and thus a potential rise in moral hazard. The

net financial effect of the trust fund for the participants is nonlinear in the size of the

trust fund and also depends on other parameters such as the global economic situa-

tion and the recovery rate. In the efficiency optimum, the positive marginal interest

rate reduction is offset by the marginal financing cost of the trust fund. The political

and economic risk is an additional argument in the political bargaining process that

determines the realisation of the trust fund size. The deviation from the optimum is

the political price for the joint liability risk.

First, we examine the effects of the trust fund on nominal gain and interest rate

advantages generated by Eurobonds. In Figure 1.1 we have a look at three benchmark

trust fund shares - 5%, 10%, and 20% - and their impact on the nominal gains as a

function of the recovery rate and the risk-free interest rate. In all scenarios, the re-

covery rates have a qualitatively similar positive effect. The sensitivity to the recovery

rate, however, decreases with the trust fund size, since a larger trust fund stabilises

the repayment cash flow and thus enhances the structuring. The effect of the risk-free

interest rate is dependent on several factors. It is neither strictly positive nor strictly

negative. For low recovery rates, the effect is negative with decreasing gains for grow-

ing interest rates. For higher recovery rates, we can observe a change and the effect

is strictly positive for increasing interest rates. The respective reversal point in the

recovery rate is dependent on the initial trust fund share. For a trust fund of 5% the

reversal takes place at a recovery rate of 40% whereas for a 20% trust fund share this

point is at a 20% recovery rate. These different reversal points can be explained by the

interest generated within the trust fund, which depends on the risk-free interest rate.

Also, a larger initial trust fund can even bear losses when the recovery rate is low. In

this case, the sensitivity to the risk-free interest rate decreases with the trust fund size.

For an assumed total issuance of 10% of GDP, the gains reach from 3.63 billion Euro

to 69.46 billion Euro. These extremes both happen in a 5% trust fund and 6% risk-free

interest rate scenario with the recovery rate ranging from 0% to 80%.
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Figure 1.1: Nominal gains in a structured Eurobonds scenario with different trust fund shares
over a grid of several recovery values as well as risk-free interest rates.

For recovery rates below 60%, gains rise with the initial trust fund share but this

effect is reversed for higher recovery rates. The marginal effect of the trust fund share

on the average rating of the structure declines while the individual countries’ marginal

interest rate burden to finance it remains constant.

We also see that excess returns of the Eurobonds are closer to each other for low

risk-free interest rate and diverge stronger for higher values. For low-interest rates the

differences range only from 4.19 to 6.31 billion Euro, i.e. the structure is not sensitive

w.r.t. the trust fund share in a low-interest rate environment. The model does also

support the possibility of negative risk-free interest rates. Even in this environment,

the structure delivers gains, e.g. 42.87 billion Euro for a trust fund of 50% and a risk-

free interest rate of -0.5%.5

5Exact results for negative risk-free interest rates are available upon request.
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Figure 1.2: Interest rate difference in a structured Eurobonds scenario with different trust fund
shares over a grid of several recovery values as well as risk-free interest rates.

The results highlighted in Figure 1.2 present the interest savings of structured Eu-

robonds, i.e. the net gains displayed in Figure 1.1 less the financing cost of the trust

fund. We see that the topmost layer, which is representing the 20% initial trust fund

rate, has the flattest slope and the lowest layer (5%) the steepest slope. Low trust fund

structures are more sensitive to changes in the recovery rate and risk-free interest rates.

This interest advantage (of a smaller initial trust fund) is decreasing with higher re-

covery rates because the risk structures and thus the tranching converges with growing

recovery rates.

We turn to optimise the trust fund size w.r.t. the countries’ net gain. We use a

benchmark recovery rate of 50%6 and vary the trust fund shares between 5% and 30%.

Figure 1.3 shows the results.7 Since a total issuance of 10% of the GDP is assumed, this

6Meyer et al. (2019) and Cruces and Trebesch (2013) estimate haircut sizes of 44% and 40%, respec-
tively. This haircut size is equivalent to a recovery rate of 56% and 60%. We use a more conservative
assumption and fix the recovery rate at 50%.

7Robustness checks with 40% and 60% recovery rate can be found in the Appendix.
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implicates a liability between 0.5% and 3% of the GDP. As a consequence, the liability

ranges from 5.5 million Euro for Malta in the 5% trust fund scenario to 9.79 billion

Euro for Germany in the 30% trust fund scenario.

Figure 1.3: Sensitivity of gains for different trust fund shares in a fixed recovery rate scenario
where it is fixed to 50%.

We see that the net gain as a function of the trust fund share is nonlinear, asym-

metrically inverse U-shaped and has a unique maximum. In Figure 1.4, we see that,

dependent on the risk-free interest rate, the optimal trust fund size is between 12%

and 16%. It starts at 12% in a 0% interest rate scenario and jumps to 16% at 1% in-

terest rate. The jump can be explained by gains that are close to each other, and they

are building a flat plain in this area. Afterwards, it is steadily declining to 12% again,

which is reached at a risk-free interest rate of 5.6%.
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Figure 1.4: Sensitivity of the optimal initial trust fund share in respect to the risk-free interest
rate with a fixed recovery rate of 50%.

In the boom scenario (6% risk-free interest rate), gains reach a maximum of 53

billion Euro with an initial trust fund of 12% and decline to 42.5 billion Euro for an

initial trust fund of 30%. In the global recession or post-crisis scenario with a risk-free

interest rate of 0% an optimal gain is also reached for a trust fund of 12%. However,

the sensitivity is lower. The optimal gain is 45 billion Euro and declines to 40 billion

Euro for a 30% trust fund choice. The results are also absolutely supported for other

recovery rates (see the Appendix). The main difference lies in the optimal choice of

the trust fund size. For 40% recovery, it varies between 14% and 18% and for 60%

recovery between 9% and 13%.

Summarising, the recovery rate increases the monetary advantages of structured

Eurobonds, whereas the risk-free interest rate has a mixed effect. The higher the trust

fund share, the higher is the interest advantage and the lower is the sensitivity of gains

to the recovery rate and the global economic situation. But in the current low-interest

rate environment, the structure is not sensitive w.r.t. the trust fund share, i.e., in and

after a global recession, it appears not advantageous to have a high degree of joint

liability. On the other hand, when interest rates return to normal levels again, in-

terest advantages of structured Eurobonds would decrease, and the decline is faster,
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the lower the degree of joint liability. In the same instant, interest increases deterio-

rate the economic situation of struggling members potentially reducing their expected

recovery rate and thus inducing a very steep reduction of the structured Eurobonds’

advantages if the level of joint liability is low. It might currently appear reasonable to

establish structured Eurobonds with a very low degree of joint liability, e.g. 5% or less

since there are only little losses in efficiency compared to higher joint liabilities. This

parametrisation certainly is politically much easier feasible and eventually the only

way to overcome current reservations against such structures in the northern coun-

tries. However, only sufficiently high degrees of joint liabilities, 10% to 15%, ensure

that the system remains significantly advantageous (in financial terms) if the global

economic situation returns to normal. The efficiency of structured Eurobonds, i.e. the

net gain, which equals the interest advantage less the financing cost for the trust fund,

depends on the size of the trust fund. The optimal degree of joint liability lies between

10% and 15%, dependent on the recovery rate and the risk-free interest rate. However,

the efficiency losses between the optimum and more extreme cases, such as 5% or 30%,

are quite moderate and remain below 20% of the maximal gains. The results indicate

that optimising common liability has positive effects on the gains of structured Eu-

robonds and the stability of these gains to economic shocks despite the political costs

that might arise.

1.5 Alternative scenarios and Robustness checks

In this section, we present some alternative scenarios and robustness checks for struc-

tured Eurobonds and give a brief overview on the effects. This includes country subsets

and variations in macro- and country-specific factors. An extensive explanation and

more robustness checks can be found in the Appendix.

1.5.1 EMU-wide with different introduction dates

Firstly, we vary the general economic environment by altering the time for the intro-

duction of structured Eurobonds. As in the benchmark case, we look at an EMU-wide

introduction where every country is participating, and 10% of GDP is issued. The

three different scenarios where the dates for introduction are August 2018, December

2012 and December 2008, respectively, yield heterogeneous results for the structures

and the gains. Changes in three factors mainly drive the differences in the results. The

first factor is the risk-free interest rate, the second is the CDS-spreads, which changes

the default probability of the countries, and the third is the interest rate spread every
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country and the SPV have to pay. Whereas the results are positive for 2012 and 2018,

they can get negative in 2008. The net gains reach from 0.72% of issued nominal for

Germany to 20.97% for Greece dependent on the time of issuance and distribution

method (relative and even). The negative results in 2008 are due to a growing issuer

risk which pushes the interest paid by the SPV. The negative results can be overcome

when a supranational institution like the ESM issues the structured Eurobonds. When

this can be achieved, the interest rate is decreasing, and the losses turn into gains again.

These are well distributed through all countries and above 1.5% for every one of them.

1.5.2 Country subsets

Next, we focus on several country subsets with an introduction in 2018. The subsets

consist of an EMU-wide introduction without (1) Italy or (2) Germany, an introduction

in only (3) the so-called PIIGS-countries and (4) the EU-6 countries, the founders of

the European Economic Community. In case (1) the proceeds drop significantly. The

maximum gain that can be reached is for Greece, with 5.01% of the issued nominal,

and the lowest is for Germany with 0.16%. This shows that the inclusion of a relatively

high share of low rated countries such as Italy has substantial advantages for other par-

ticipating countries due to the average cash inflow. Case (2) draws a contrary picture.

Here the gains rise. The average rating of the structure decreases only very little since

the trust fund can easily bear first losses. Therefore the structure’s capital outflows

are significantly reduced due to a lower nominal volume (Germany has a share of ap-

proximately 29%) while the inflows stay nearly the same since the German interest

payments would have been very low. Summarising, the diversification and tranching

effects of structured Eurobonds imply a high relevance of the participation of low rated

countries for the advantageousness of this financing instrument. Top-rated countries

such as Germany, on the other hand, are less important for the economic performance

of structured Eurobonds, but undoubtedly inevitable for their political credibility.

In case (3), gains grow significantly compared to our base scenario. The average

rating of the structure declines but the interest rate differential stemming from the

diversification effect is stronger than the rating effect. The proceeds reach from 4.27%

for Ireland to 22.62% for Greece. Savings per year can reach 1.2% of issued nominal

for all of the five participating countries in the even distribution scheme. Case (4)

shows the best average rating with 97% rated AA or better. However, the gains are, on

average, seven basis points lower than in the baseline scenario due to the already high

average rating of the participants. This result supports the notion that the countries
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which founded the predecessor of the European Union can again play a pioneering role

in establishing new European cointegration measures like common debt financing.

1.5.3 Shorter duration

A possibility to introduce structured Eurobonds and to make them politically more

feasible is to choose a shorter duration. An advantage is that countries with aversions

against structured Eurobonds, e.g. Germany, might be more interested in a shorter

commitment period. Therefore, we vary the duration and calculate the gains for a one-

and two-year duration. As a consequence of negative risk-free interest rates, only the

even distribution is evaluated. It produces gains and losses for some countries for a

one-year duration. The total profits amount to 0.3 billion Euro. In this case, a new

distribution method might be appropriate to avoid losses for a single country.

For a two-year duration, the total gains rise to 3.98 billion Euro, which is a signif-

icant rise compared to the one-year duration. When the even distribution method is

used, all countries gain from the issuance of structured Eurobonds. Therefore, this

distribution method is appropriate for short term bonds with more than one-year du-

ration.

1.5.4 Comparison

All of these alternative scenarios show the robustness of the model. We can also see

that even with small country-subsets gains can be achieved and that they are some-

times larger than for an all Euro-area scenario. Italy, as a large low rated country, has

a crucial impact on the gains as can be seen in the calculation where Italy is missing.

Politically it might be more feasible to start with a subset of the Euro-area and extend

afterwards. As we see, there will be no economic disadvantages with a smaller initial

group, and the process is open for other countries to join after realising the advan-

tages. It might also be more feasible to start with a shorter duration. In this case, it

is crucial to choose the even distribution method or to implement a completely new

method since some countries face losses otherwise.

Also, capital market trust and fiscal discipline indirectly determine the economic

efficiency of structured Eurobonds, as is shown in the results regarding the sensitivity

to the risk-free interest rate and recovery rate. A high fiscal discipline can boost both

capital market trust and the expected recovery rate.
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1.6 Conclusion

The European Commission pushes forward the joint issuance on sovereign bonds as a

vehicle to deepen integration and foster financial stabilisation in the European Mon-

etary Union. Although the refinancing costs in the EMU are low even now, we show

that an ABS-approach yields fiscal advantages for all participating countries.

We optimise the size of the trust fund share, i.e. the degree of joint liability, with

respect to the efficiency of the structure. Higher joint liability not necessarily results

in higher gains. But higher degrees of joint liability are more resistant against changes

in the recovery rate as well as the risk-free interest rate. We also show that for typical

recovery rates, the optimal range of joint liability varies between 10% and 15%.

Also, under the global economic circumstances in 2018, the issuance of structured

Eurobonds creates gains for participating countries between 1% to nearly 14%, de-

pending on the distribution scheme. Even if structured Eurobonds would have been

established during the government bond crisis or a global financial crisis, they would

still have had positive effects.

Finally, using scenarios without Italy and Germany, we show the importance of low

rated participants for creating a large share of the interest inflow. In the case of the

dropout of Italy, the overall surplus would shrink by over 80%. Dropouts of high rated

countries, such as Germany, lead to significant improvements of the surplus because

their average rating is better than the average rating of the structure, i.e. they pay less

interest than refinancing costs are, and the improvement of the structure has a smaller

effect.
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Appendix A

A.1 Collateral Default Obligations

Collateral Default Obligations (CDOs) are a special type of Asset-Backed Securities

(ABS). They are built of a portfolio of loans which is bought by a Special Purpose

Vehicle (SPV). The SPV buys the portfolio and structures it into different tranches. The

ratings of these tranches depend on the default risk and correlation of the underlying

credit facilities. In our case, the SPV buys sovereign bonds. Since the ratings of the

tranches are different, their cash flow from interest payments are also different. The

highest-rated tranche typically receives a rating of AAA - the best possible rating - and

faces the lowest interest payments. The lowest rated tranche has to pay the highest

interest rate. Investors in the lowest-rated part of the CDO are first to suffer losses,

whereas investors in the AAA part are last to do so. The lowest rated tranche, called

“equity tranche”, often remains in the holdings of the SPV.

A deeper explanation of CDOs, their pricing and the correlation effects can be

found by Longstaff and Rajan (2008), Coval et al. (2009), and Coval et al. (2009b). An

exact clarification of structured Eurobonds in a SPV, as well as the cascading effects,

can be found by Hild et al. (2014).
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A.2 Financial Data

Country Interest Rate 2008 Interest Rate 2012 Interest Rate 2018

Belgium 4.63% 2.05% 0.70%
Germany 4.01% 1.31% 0.33%
Estonia 4.32% 2.41% 0.78%
Ireland 4.69% 4.56% 0.86%
Greece 4.94% 11.92% 4.40%
Spain 4.59% 5.27% 1.49%
France 4.34% 2.00% 0.69%
Italy 4.88% 4.51% 3.24%
Cyprus 4.60% 7.00% 2.30%
Latvia 6.60% 3.24% 0.80%
Lithuania 6.11% 4.00% 1.20%
Luxembourg 4.84% 1.43% 0.47%
Malta 4.82% 3.79% 1.50%
Netherlands 4.34% 1.49% 0.45%
Austria 4.44% 1.75% 0.55%
Portugal 4.72% 7.05% 1.92%
Slovenia 5.21% 5.03% 0.95%
Finland 4.37% 1.51% 0.52%
Slovakia 4.77% 3.92% 0.79%

Table A1: Interest Rates per country

A.3 Optimal degrees of joint liability

A crucial and very much political topic is the choice of the initial trust fund volume

or, to put it precisely, the trust fund’s percentage share of the whole nominal volume.

The choice displays the joint liability every country is willing to enter. We examine the

effects of different trust fund shares on the nominal gain as well as the interest rate

differential of the complete EMU. At first, we have a look at three different possible

trust fund shares - 5%, 10% and 20% - and their impact on the nominal gains. The

results are presented in Figure A1. The gain can be understood as a function of the

degree of joint liability since a higher joint liability is connected with a higher trust

fund share and a higher trust fund share is equivalent to a better average rating of

the structure. The attributable profit resulting from this connection is also highly

dependent on the chosen initial trust fund share. On the other hand, political costs are

also directly related to joint liability. Higher liability delivers higher moral hazard. In

this case, we assume an issuing of 10% of the GDP with structured Eurobonds. The

effects of variations in the risk-free interest rate and recovery rates are the same for all

three possibilities of trust fund shares. The gain reaches from 3.63 billion Euro in a
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5% trust fund scenario with 0% recovery rate and 6% risk-free interest rate to 69.46

billion Euro with a 5% trust fund, 80% recovery rate and 6% risk-free interest rate. It

is remarkable that the lowest, as well as the highest gains, are achieved with a trust

fund share of 5%. We can see this in Figure A1 where the other two layers are not as

sensitive to the variables “risk-free interest rate” and “recovery rate” as the 5% layer.

Figure A1: Nominal gains in a structured Eurobonds scenario with different trust fund shares
over a grid of several recovery values as well as risk-free interest rates.

We have to split our observations into different areas of interest. When we face

recovery rates below 60%, the gains depend strongly on the initial trust fund share.

Here we can conclude that the higher the trust fund share is, the higher the profits

are. As long as the recovery value is between 60% and 75%, structured Eurobonds

with an initial trust fund of 10% will deliver the highest gains. At last, when recovery

values are above the 75% threshold the 5% trust fund will generate the highest profits.

This can be explained by a declining effect of the trust fund rate on the average rating

of the structure. Also, the interest rate burden is growing for every country due to

their payment on the total debt. Notably, the results for a low risk-free interest rate
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are close to each other whereas they diverge stronger for higher values in the interest

rate. The differences for low-interest rates range from 4.19 to 6.31 billion Euro. These

differences are an indication that the system is not sensitive to the trust fund share in

a low-interest rate environment. The 5% trust fund share is relatively sensitive to a

change in the recovery value or the risk-free interest rate. The results mentioned above

can be combined with Figure A2.

Figure A2: Interest rate difference in a structured Eurobonds scenario with different trust fund
shares over a grid of several recovery values as well as risk-free interest rates.

We can see that the topmost layer, which is representing the 20% initial trust fund

rate, has the flattest growth and the lowest layer (5%) the steepest growth. It is no-

ticeable that the difference is decreasing for higher recovery rates with a fixed risk-free

interest rate. This decreasing difference is due to converging structures for different

trust fund rates with growing recovery rates. The 20% trust fund layer is the topmost

because the reached structure is better than for the 10% case. As a result, the interest

rate from the SPV to the investors is lower and the capital inflows from the EMU coun-

tries to the SPV stay the same. Besides, it is relevant to remark that for lower recovery
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rates, especially below a rate of 40%, the jump in the interest difference from a 5% to

10% trust fund share is lower than from a 10% to a 20% share. This is in line with the

results from Figure A1. For higher recovery rates, e.g. 65%, it is the reverse and the

jump in the interest difference from 5% to 10% is higher than from 10% to 20%. The

first increase in the trust fund share from 5% to 10% is enough to offset the cost of joint

liability, which is reflected in the higher interest payments from every country, against

the higher interest payments of the SPV. The second jump in the trust fund share from

10% to 20% is not enough to offset the additional payments of every country against

the advantages of a larger joint liability. Due to this, the gains for a 10% trust fund

share are above the ones in a 20% scenario. We also have to mention that the inter-

est differences are converging for higher recovery values. This can be explained by a

declining effect of structuring in the ABS-approach and a declining effect of the trust

fund.

Figure A3: Sensitivity of gains for different trust fund shares in a fixed recovery rate scenario
where it is fixed to 50%.
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Now we want to analyse at which trust fund rate we can reach the maximum gain

when the recovery rate is fixed. We start with a fixed recovery rate of 50% and initial

trust fund shares between 5% and 30%. The result can be seen in Figure A3.

We can conclude that the gain is a parabola function of the trust fund share. The

gains are rising from a trust fund share of 5% until we reach a maximum of 52.94

billion Euro with an initial trust fund of 12% and a risk-free interest rate of 6%. Af-

terwards, the gains are declining for higher trust fund shares. It is noticeable that the

decline is getting stronger, the larger the initial trust fund is. For comparison, we take

a look at a trust fund of 30% and a risk-free interest rate of 6%. Here, the gain is 42.48

billion Euro which is about 10 billion Euro or 20% smaller than in the optimal sce-

nario. We also want to examine the profits arising from higher political costs which

is equivalent to higher trust fund shares and common liability every country wants to

enter. In a 5% trust fund scenario with a risk-free interest rate of 6%, the gain is 46.56

billion Euro. In our optimal scenario, that has a higher common liability and therefore

higher political costs, the gains are about 6 billion Euro or 13% higher. Also, we want

to evaluate the results for a lower risk-free interest rate with a value of 0%. The results

are staying the same with an optimal gain for a trust fund of 12%, but the sensitivity is

lower. The optimal gain is 45.31 billion Euro in this case and declines to 40.30 billion

Euro or about 11% for the maximal observed trust fund choice of 30%. In a low trust

fund case of 5% the gains are 42.66 billion Euro which is 2.65 billion Euro or 6% lower

than in the optimal case. The results indicate that a higher common liability can have

positive effects on the gains of structured Eurobonds despite the political costs that

might arise.

The optimal choice can be seen in Figure A7. It starts at 12% in a 0% interest

rate scenario and jumps to 16% at 1% interest rate. Afterwards, it is again steadily

declining down to 12% which is reached at a risk-free interest rate of 5.6%.

The results are also supported for other recovery rates. The structure of the gains

can be seen in Figures A4 and A5, and the optimal choice of the initial trust fund size

in Figures A6 and A8.

Again, the connection between the trust fund share and the gains is parabola-like.

It is noticeable that the optimal trust fund share is changing for different recovery

values. When the recovery rate is fixed at 40% the optimal trust fund is between 14%

and 18% of the issued nominal volume. When the recovery rate grows to 60%, the

picture is changing with an optimal share between 9% and 13%. From these findings,

we can conclude a negative connection between the fixed recovery rate and the optimal

trust fund share, representing the common liability.8 We can explain this connection

8The link is also supported for other fixed recovery rates. They can be delivered upon request.
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Figure A4: Sensitivity of gains for different trust fund shares with a fixed recovery rate scenario
at 40%.

with a higher average rating resulting from structuring. Due to this, the impact of the

trust fund share on the average rating is highly dependent on the recovery rate. The

higher the recovery rate is, the lower the trust fund share is allowed to be to reach the

optimal outcome. A further increase of the trust fund share brings with it an additional

interest burden that is higher than the advantage from a better rating.

We start with a more in-depth examination of the results for a fixed recovery rate

of 40%. As mentioned before, the optimal share is around 15% and we can see that the

impact of the right choice of the initial trust fund share can be crucial. A lower trust

fund with an initial volume of 5% delivers gains which are about 10 billion Euro or

21% lower than in the optimal scenario with gains of 47.28 billion Euro in the highest

interest rate case. When the initial trust fund rises to 30%, we face a drop in the

profits to 40.2 billion Euro, which is equivalent to a decline of 7.08 billion Euro or

nearly 15%. The effects in a lower interest rate scenario are the same but not as strong
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Figure A5: Sensitivity of gains for different trust fund shares with a fixed recovery rate scenario
at 60%.

as in the recently discussed case. The optimal gain is now 40.45 billion Euro and the

decline on both ends is about 3 billion Euro which is equivalent to 7.5%.

In a 60% recovery rate scenario, the gains for higher common liability do generate

an advantage of 3.43 billion Euro or 6.2% when the trust fund grows from 5% to 10%.

On the other hand, when the common liability grows above 10% to 30%, the gains

decrease from 58.45 billion Euro to 44.81 billion Euro, which is equivalent to a decline

of 23.4%. This occurs at a risk-free interest rate of 6%. Again, the differences in the

results for a low-interest rate scenario are not as large when compared to the higher

interest rates. The gains resulting from a higher joint liability, which is equivalent to

higher political costs, rise from 46.75 to 47.99 billion Euro which is a rise of 2.7%.

Also, when the common liability grows above this optimal share of 10% to 30%, the

gains decline to 42.58, which is equivalent to a decrease of 11.3%.
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Figure A6: Sensitivity of the optimal initial trust fund share in respect to the risk-free interest
rate with a fixed recovery rate of 40%.

Figure A7: Sensitivity of the optimal initial trust fund share in respect to the risk-free interest
rate with a fixed recovery rate of 50%.
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Figure A8: Sensitivity of the optimal initial trust fund share in respect to the risk-free interest
rate with a fixed recovery rate of 60%.

Summarised, this points at a crucial political question of how large the initial trust

fund has to be chosen. The larger the initial trust fund, the larger is the common

liability, but due to a decreasing effect of improvement in the average rating of the

structure, the effect of a rising trust fund share declines. The gains do not rise infinitely

when the common liability increases. It can be seen that the profits are more sensitive

to changes in the parameters the lower the common liability is. Also, the gains depend

on recovery values. When we focus on the results for an optimal trust fund share

with a fixed recovery rate, the gains are higher for higher recovery values whereas

the optimal trust fund share is lower. This is a direct consequence of higher nominal

volumes that flow into the trust fund after default. When we combine these insights,

an optimal trust fund share would be between 10% and 15% with lower sensitivity in

a low risk-free interest rate scenario.

A.4 EMU-wide introduction

Now we assume an introduction of structured Eurobonds where every member coun-

try is participating in August 2018, a time of low-interest rates and yields at the

sovereign bond markets. Table A2 displays the resulting structure from the Monte

Carlo simulation. This structure stays the same independent from the distribution
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scheme. It only changes when the data or considered countries change. The AAA

tranche represents the main part of the structure. Here, the advantages of the trust

fund and correlation effects can be seen. With the end of July ratings, we have three

countries with an AAA rating which are representing 36.27% of the GDP of the whole

EMU. In this structure, the AAA-part is nearly 74%, more than double the volume.

Also, the lowest-rated tranche receives an A rating whereas the lowest rating in the

EMU is at B.

Tranche Thickness Rating Interest Rate

Tranche I 73.99% AAA 0.56%
Tranche II 4.15% AA+ 0.65%
Tranche III 13.81% AA 0.85%
Tranche IV 2.24% AA- 0.99%
Tranche V 3.63% A+ 1.17%
Tranche VI 2.14% A 1.32%

Table A2: The structure for an introduction of structured Eurobonds for the whole EMU. The
first column displays the thickness of the tranche, the second the rating, and the third shows
the interest rate that is paid by every tranche to the capital market.

We want to have a closer look at the two distribution schemes where the extra

costs and the initial funding are subtracted from the trust fund before distribution and

the remaining capital is distributed with an even or a relative distribution. We again

assume an issuing of 10% of the GDP with structured Eurobonds. This delivers a total

volume of 1,240.81 billion Euro and an AAA-rated nominal of 918.08 billion Euro.

For comparison, the total nominal volume of AAA-rated debt in the EMU is 2,540.9

billion Euro for the end of June 2018. The results of the Monte Carlo simulation and

the distribution methods can be seen in Table A3. In column 2, the portion of every

country of the whole nominal can be seen, and column 3 displays the nominal net gain

after subtraction of the extra costs in billion Euro. The next columns are showing the

gain in relation to the nominal in total and per year. In parenthesis are the results for

the even distribution.

In a relative distribution scheme, there are some advantages for lower-rated coun-

tries. On the other hand, this changes when the distribution scheme changes to an

even distribution. For better comparison, we use as a reference Germany, France, and

Italy. With a change of the distribution method, the nominal net gain rises from 2.62

to 12.59 (4.83 to 8.92) for Germany (France) which is equivalent to an increase of 2.75

(1.61) percentage points relative to nominal. The gain for Italy falls from 21.62 to 7.18

billion Euro. This decline is equivalent to a decrease of 7.57 percentage points. On the

other hand, the yearly interest savings for Italy are 1.08% in the relative distribution.
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Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 3.95% 0.94 (1.70) 1.93% (3.50%) 0.19% (0.34%)
Germany 29.26% 2.62 (12.59) 0.72% (3.47%) 0.07% (0.34%)
Estonia 0.24% 0.06 (0.09) 2.27% (3.60%) 0.22% (0.35%)
Ireland 2.66% 0.81 (1.16) 2.46% (3.51%) 0.24% (0.35%)
Greece 1.61% 3.12 (0.73) 15.82% (3.67%) 1.46% (0.36%)
Spain 10.40% 5.98 (4.63) 4.62% (3.58%) 0.45% (0.35%)
France 20.47% 4.83 (8.92) 1.90% (3.51%) 0.19% (0.35%)
Italy 15.39% 21.62 (7.18) 11.33% (3.76%) 1.08% (0.37%)
Cyprus 0.16% 0.16 (0.08) 7.68% (3.70%) 0.79% (0.37%)
Latvia 0.24% 0.07 (0.11) 2.35% (3.58%) 0.23% (0.35%)
Lithuania 0.40% 0.17 (0.17) 3.67% (3.61%) 0.34% (0.36%)
Luxembourg 0.48% 0.07 (0.21) 1.15% (3.49%) 0.12% (0.34%)
Malta 0.08% 0.06 (0.05) 4.78% (3.73%) 0.46% (0.37%)
Netherlands 6.53% 0.91 (2.84) 1.12% (3.49%) 0.11% (0.35%)
Austria 3.30% 0.59 (1.43) 1.44% (3.49%) 0.14% (0.34%)
Portugal 1.69% 1.33 (0.78) 6.21% (3.65%) 0.62% (0.36%)
Slovenia 0.40% 0.14 (0.18) 2.89% (3.64%) 0.28% (0.36%)
Finland 2.01% 0.33 (0.87) 1.33% (3.48%) 0.13% (0.34%)
Slovakia 0.73% 0.22 (0.34) 2.30% (3.59%) 0.24% (0.35%)

Table A3: The results for an introduction of structured Eurobonds in the whole EMU. The first
column displays the stake every country has at the nominal volume, the second the nominal
net gain, the third shows the nominal net gain in relation to the debt, and the last column the
yearly savings from the third column. In parenthesis are the results for the even distribution.

This is equivalent to a reduction of the effective interest rate from 3.24% to 2.16%. In

the even distribution scheme, the yearly savings are only 0.37%, but they are growing

for a high rated Germany from 0.07% to 0.34% p.a. This would turn the effective in-

terest rate for Germany from 0.33% into -0.01%, a negative interest rate. This effect is

a result of the different interest rates paid by the SPV and the countries. The SPV has

to pay 0.65% to the investors, whereas the countries are on average paying 1.13% to

the SPV. A part of the difference is used to pay the additional costs resulting from the

higher nominal volume. The remaining cash is transferred into the trust fund where

it is interest-paying with the risk-free interest rate. All countries can have gains in an

environment of low-interest rates.

In the next step, we want to show that the ABS-structure is stable for other dates

of introduction. We start by focussing on the end of 2012, a peak of the European

sovereign debt crisis. Naturally, the default probabilities of nearly all countries are

higher and the risk-free interest rate is higher at 1.31% compared to 0.33% in 2018.

We use the same assumptions as before with 10% of GDP issuing and 10% initial trust
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fund volume. Due to different values of the default probability, the structure changes.

This can be seen in Table A4.

Tranche Thickness Rating Interest Rate

Tranche I 47.89% AAA 2.06%
Tranche II 4.88% AA+ 2.11%
Tranche III 13.62% AA 2.21%
Tranche IV 8.46% AA- 2.29%
Tranche V 7.73% A+ 2.39%
Tranche VI 1.84% A 2.48%
Tranche VII 3.35% A- 2.66%
Tranche VIII 6.66% BBB+ 2.95%
Tranche IX 5.55% BBB 3.26%

Table A4: The structure for an introduction of structured Eurobonds for the whole EMU in
2012. The first column displays the thickness of the tranche, the second the rating, and the
third shows the interest rate that is paid by every tranche to the capital market.

In comparison to the results for 2018, we can see that the number of tranches grows

from six to nine with a sharp drop in the thickness of the AAA tranche. This drop is a

result of higher CDS-spreads and finally higher default probabilities. The interest rate

of every tranche grows due to a higher risk-free and individual interest rate.

Noticeable is that the thickness of smaller tranches is growing compared to the

evaluation for 2018. In 2018 a considerable part of the nominal volume is concentrated

in the AAA and AA tranches with approximately 88%. Now the AAA and AA tranche

only represent nearly 62%, a decline of 26 percentage points. The gains for every

country with the two distribution schemes can be seen in Table A5.

At first, we ascertain that the gains remain positive for every country. The stakes

change but the differences are negligible. The profits are more diversified in the rela-

tive distribution than in the first case. This is a result of a higher level of the risk-free

interest rate and more uniform interest spreads that have to be paid by the countries.

As a result, higher-rated countries such as Germany have received higher net gains.

Nonetheless countries with problems in the sovereign debt crisis, e.g. Greece and Por-

tugal, have more significant gains than in the first case. This can be seen in the rela-

tive net gain which is about 20.97% for Greece and 10.32% for Portugal compared to

15.82% (6.21%) for Greece (Portugal) in 2018. The effective interest rate for Portugal

is reduced by 0.97% per year. As before the gains are shifting when we use the even

distribution. Higher rated countries now face higher net gains and the interest rate

reduction per year is 0.33%. This will reduce the interest burden for Germany from

1.31% to 0.98%.
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Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 3.93% 0.84 (1.43) 1.94% (3.31%) 0.19% (0.33%)
Germany 28.00% 3.10 (10.13) 1.01% (3.31%) 0.10% (0.33%)
Estonia 0.18% 0.05 (0.07) 2.46% (3.36%) 0.24% (0.33%)
Ireland 1.83% 1.14 (0.70) 5.83% (3.58%) 0.55% (0.35%)
Greece 1.92% 4.46 (0.76) 20.97% (3.57%) 1.94% (0.35%)
Spain 10.61% 8.28 (4.32) 7.16% (3.74%) 0.69% (0.37%)
France 21.23% 4.44 (7.76) 1.91% (3.35%) 0.19% (0.33%)
Italy 16.38% 10.59 (6.71) 5.91% (3.74%) 0.58% (0.37%)
Cyprus 0.18% 0.21 (0.08) 9.70% (3.56%) 0.95% (0.35%)
Latvia 0.18% 0.09 (0.09) 3.71% (3.46%) 0.37% (0.34%)
Lithuania 0.37% 0.18 (0.13) 4.78% (3.40%) 0.44% (0.34%)
Luxembourg 0.46% 0.06 (0.16) 1.16% (3.31%) 0.11% (0.33%)
Malta 0.09% 0.04 (0.03) 4.77% (3.77%) 0.37% (0.37%)
Netherlands 6.59% 0.88 (2.36) 1.23% (3.30%) 0.12% (0.32%)
Austria 3.20% 0.55 (1.16) 1.55% (3.29%) 0.16% (0.32%)
Portugal 1.74% 1.93 (0.70) 10.32% (3.73%) 0.97% (0.37%)
Slovenia 0.37% 0.27 (0.15) 6.74% (3.71%) 0.66% (0.36%)
Finland 2.01% 0.28 (0.73) 1.24% (3.28%) 0.13% (0.32%)
Slovakia 0.73% 0.38 (0.28) 4.66% (3.40%) 0.46% (0.34%)

Table A5: The results for an introduction of structured Eurobonds in the whole EMU in 2012.
The first column displays the stake every country has at the nominal volume, the second the
nominal net gain, the third shows the nominal net gain in relation to the debt, and the last
column the yearly savings from the third column. In parenthesis are the results for the even
distribution.

Now we want to evaluate the third scenario with an introduction at the end of 2008

when the financial crisis was at its peak. As before the default probabilities of the

countries are changing and the ABS have a new structure. This can be seen in Table

A6.

We now have eight tranches and all are rated BBB or better, which is equivalent

to an investment-grade rating for every tranche. The nominal debt is 1,070.67 billion

Euro. We also have a sharp rise in the risk-free interest rate up to 1.58%9 and the differ-

ent tranches also have higher interest rate burdens. The risk-free interest rate is now

chosen as the yield of the 10 year US-bond because it is lower than the German yield

and displays a lower risk. Besides, the default probability of the participating coun-

tries cannot be calculated with the CDS-spreads for every country due to the market

turmoils in the financial crisis. In these cases, we again use an approach of Sturzeneg-

ger and Zettelmeyer (2010) who calculate the default probability with the yield spread

9The interest rate is adjusted with the CDS-spread for the US due to the financial crisis and to wipe
out the risk premium.
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Tranche Thickness Rating Interest Rate

Tranche I 39.50% AAA 2.57%
Tranche II 6.44% AA+ 2.70%
Tranche III 12.26% AA 3.01%
Tranche IV 13.81% AA- 3.23%
Tranche V 6.78% A+ 3.52%
Tranche VI 6.37% A 4.35%
Tranche VII 9.91% A- 5.24%
Tranche VIII 4.93% BBB 6.10%

Table A6: The structure for an introduction of structured Eurobonds for the whole EMU in
2008. The first column displays the thickness of the tranche, the second the rating, and the
third shows the interest rate that is paid by every tranche to the capital market.

of every country over the risk-less yield. The results of the Monte Carlo simulation can

be seen in Table A7.

In comparison to the first two scenarios (introduction in 2012 and 2018), the av-

erage effect is lower. It is noticeable that the minimum gain is 1.57% for Germany in

a relative distribution scheme which is higher than in the two cases before. On the

other hand, the highest profit is 4.73% for Latvia compared to 15.82% and 20.97% for

Greece in 2018 and 2012, respectively. The gains are better distributed, independent

of the chosen distribution method. It can be seen that only Lithuania and Latvia have

gained above 4% in a relative distribution. These small average gains are a result of

well-distributed credit spreads and similar default probabilities of the participating

countries. The capital inflows from the countries to the SPV, which are only deter-

mined by government bond yields, reach 3.66%. On the other hand, the capital out-

flows from the SPV, which are determined by CDS-spreads, to the capital market are

3.20%, which is only 0.46% below the inflows.

We draw two crucial conclusions. Firstly, a long-term refinancing through an ABS-

approach in this way might not be optimal in a crisis. Short-term refinancing could be

more efficient. Secondly, the trust in structured Eurobonds or the assigned issuer risk

determines the effectivity and stability of the approach. Introducing Eurobonds by a

supranational organisation such as the ESM, ECB or a newly formed institution would

eliminate this market risk. Thus, interest rates paid by the SPV to the capital market

would be determined by sovereigns that have the same rating and significantly reduce

the structures interest outflow.
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Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 3.64% 0.89 (0.86) 2.27% (2.20%) 0.23% (0.22%)
Germany 26.62% 4.48 (6.03) 1.57% (2.12%) 0.16% (0.21%)
Estonia 0.19% 0.06 (0.04) 3.32% (2.34%) 0.30% (0.21%)
Ireland 1.96% 0.64 (0.51) 3.04% (2.43%) 0.30% (0.24%)
Greece 2.52% 0.99 (0.65) 3.69% (2.43%) 0.36% (0.24%)
Spain 11.58% 2.93 (2.79) 2.36% (2.25%) 0.23% (0.22%)
France 20.74% 4.27 (4.72) 1.93% (2.13%) 0.19% (0.21%)
Italy 16.91% 5.43 (4.39) 2.99% (2.42%) 0.30% (0.24%)
Cyprus 0.18% 0.07 (0.05) 3.13% (2.37%) 0.33% (0.25%)
Latvia 0.28% 0.13 (0.06) 4.73% (2.37%) 0.42% (0.21%)
Lithuania 0.37% 0.15 (0.09) 4.02% (2.40%) 0.37% (0.22%)
Luxembourg 0.37% 0.13 (0.09) 2.95% (2.17%) 0.30% (0.22%)
Malta 0.09% 0.02 (0.02) 3.38% (2.35%) 0.23% (0.16%)
Netherlands 6.63% 1.59 (1.66) 2.24% (2.33%) 0.22% (0.23%)
Austria 3.08% 0.83 (0.78) 2.53% (2.40%) 0.25% (0.24%)
Portugal 1.87% 0.49 (0.44) 2.46% (2.23%) 0.24% (0.22%)
Slovenia 0.37% 0.15 (0.09) 3.44% (2.21%) 0.36% (0.23%)
Finland 2.06% 0.46 (0.46) 2.13% (2.11%) 0.21% (0.20%)
Slovakia 0.65% 0.23 (0.17) 3.12% (2.33%) 0.32% (0.24%)

Table A7: The results for an introduction of structured Eurobonds in the whole EMU in 2008.
The first column displays the stake every country has at the nominal volume, the second the
nominal net gain, the third shows the nominal net gain in relation to the debt, and the last
column the yearly savings from the third column. In parenthesis are the results for the even
distribution.

A.5 Country subsets

In the last chapter, we have required that every country of the EMU participates in the

structured Eurobonds programme. Since some countries might disagree to participate,

due to country-specific jurisdiction or other reservations, we have a look at a country

subset to work out their possible advantages of this programme. We focus on four

different scenarios. We start by evaluating the advantages or disadvantages if a single

country drops out. In the first scenario, we establish Eurobonds without Italy. This

shall contribute to the discussion about the current uncertainty about Italian debt and

government deficit. Also, the growth in Italy has been down in the last years. Thus, the

government deficit can be a crucial factor for non-participating. In the second scenario,

we analyse the EMU without Germany. The primary purpose of this construction is

to see whether Germany can draw direct financial advantages from participation. It

is inspired by the resistance of German authorities against common Eurobonds. For

better comparison, we only evaluate the scenario of 2018.
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We start with a scenario where all countries are participating, besides Italy. This

is close to the case that was discussed in the previous chapter. Since a country with

a lower rating and higher default probability is not in the issuance scheme, we can

expect a better overall rating in the structure than in the case with all EMU countries.

The results of the Monte Carlo simulation support this. The resulting structure can

be seen in Table A8. When we compare this with the structure in Table A2, we can

see that the thickness of the tranches with a rating of AA or better is increasing and

the thickness of the lower-rated tranches is decreasing. In addition, the A tranche

drops. As a result, we receive a better average rating. On the other hand, the complete

volume drops from 1,240.8 billion Euro to 1,050 billion Euro with an absolute decline

from 916.5 billion Euro to 790.3 billion Euro in the AAA-tranche from the whole EMU

to this scenario.

Tranche Thickness Rating Interest Rate

Tranche I 75.27% AAA 0.56%
Tranche II 5.83% AA+ 0.65%
Tranche III 17.44% AA 0.85%
Tranche IV 1.10% AA- 0.99%
Tranche V 0.36% A+ 1.17%

Table A8: The structure for an introduction of structured Eurobonds for EMU countries ex
Italy.

We can see in the results, which are displayed in Table A9, that the gains for all

countries are strongly declining although the overall rating is better. Nevertheless, ev-

ery country has a nominal net gain. In this case, we focus on the impact on Germany

and Greece, as they are representing a high and low rated country, and we compare

it with the results from the whole EMU scenario from Table A3. The nominal net

gain for Germany drops from 2.62 (12.59) billion Euro to 0.57 (2.13) billion Euro in a

relative (even) distribution. This is a reduction of 10 billion Euro or 80% of the nom-

inal gain in the even distribution. The interest rate reduction decreases from 0.07%

(0.34%) in the whole EMU scenario to 0.02% (0.06%) for a relative (even) distribution

in this scenario. We can conclude that the gains for Germany are even lower for their

advantageous distribution where the nominal net gain is 2.13 billion Euro than for the

relative distribution in the whole EMU scenario where they would receive 2.62 billion

Euro.

The same effect can be seen for the gains of Greece. They are also reduced from

3.12 (0.73) billion Euro to 0.99 (0.15) billion Euro in the relative (even) distribution

scheme, which is a drop of 70% (80%). The interest rate savings per year are reduced

from 1.46% (0.36%) to 0.49% (0.07%). Contrary to the German case, Greece could
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have more gains in this subset and the relative distribution in comparison to the whole

EMU scenario with an even distribution.

Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 4.67% 0.26 (0.29) 0.54% (0.60%) 0.05% (0.06%)
Germany 34.57% 0.57 (2.13) 0.16% (0.59%) 0.02% (0.06%)
Estonia 0.29% 0.02 (0.02) 0.70% (0.61%) 0.06% (0.06%)
Ireland 3.14% 0.24 (0.20) 0.72% (0.61%) 0.07% (0.06%)
Greece 1.90% 0.99 (0.15) 5.01% (0.74%) 0.49% (0.07%)
Spain 12.29% 1.83 (0.85) 1.42% (0.66%) 0.14% (0.07%)
France 24.19% 1.37 (1.56) 0.54% (0.61%) 0.05% (0.06%)
Cyprus 0.19% 0.05 (0.01) 2.34% (0.66%) 0.25% (0.07%)
Latvia 0.29% 0.02 (0.02) 0.74% (0.70%) 0.07% (0.07%)
Lithuania 0.48% 0.05 (0.03) 1.14% (0.69%) 0.11% (0.07%)
Luxembourg 0.57% 0.02 (0.04) 0.29% (0.59%) 0.03% (0.06%)
Malta 0.10% 0.02 (0.01) 1.46% (0.65%) 0.18% (0.07%)
Netherlands 7.71% 0.23 (0.49) 0.29% (0.60%) 0.03% (0.06%)
Austria 3.90% 0.16 (0.25) 0.39% (0.60%) 0.04% (0.06%)
Portugal 2.00% 0.41 (0.14) 1.90% (0.66%) 0.19% (0.07%)
Slovenia 0.48% 0.04 (0.03) 0.89% (0.71%) 0.09% (0.07%)
Finland 2.38% 0.09 (0.15) 0.35% (0.60%) 0.04% (0.06%)
Slovakia 0.86% 0.07 (0.07) 0.72% (0.69%) 0.08% (0.07%)

Table A9: The results for an introduction of structured Eurobonds in the whole EMU ex Italy.
In parenthesis are the results for the even distribution.

Different reasons can explain the sharp decline of the gains. The main reason is

that the average interest rate paid by the SPV does not significantly decrease due to

the absence of Italy. The total interest paid is lower since the total volume is lower,

but the capital inflows from Italy are missing which is roughly 40% of total interest

inflows. The average interest rate paid by the SPV in the whole EMU scenario is 0.65%,

which is nearly AA+. In the now viewed scenario, we have an average interest rate of

0.62%. So, the payments from the SPV to the capital market are only slightly lower.

On the other hand, the capital inflows from all countries are significantly lower. If

no country defaults, the average interest rate paid by the countries is 1.123% which is

equivalent to capital inflows into the SPV of 14.82 billion Euro per year in the whole

EMU scenario. In the scenario without Italy the average interest rate of the countries

is only 0.745% representing 8.64 billion Euro. This is a decline of 6 billion Euro per

year which is not transferred to the trust fund. We can conclude that Italy would

face approximately 40% of the interest burden in the whole EMU scenario under the

current circumstances. A minor issue is that the trust fund has a lower initial volume

and due to this, the compound interest effect is weaker.
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The combination of these two factors results in lower gains. In the whole EMU

scenario we have a total net profit of approximately 43 billion Euro which drops to 7

billion Euro without Italy. We conclude that a common issuance with all countries is

preferable and high rated countries can have higher gains if they work together with

lower-rated countries.

Now, we focus on the case without Germany, the country with the lowest default

probability. The effect is contrary to the one we have calculated for the issuance with-

out Italy. The structure is getting worse with eight tranches ranging from AAA to

BBB+. The main volume is concentrated in the AAA tranche with 60% and the whole

amount is 878.21 billion Euro.10 The average interest rate paid by the structure is

0.73%, a small increase from 0.65% paid in the whole EMU scenario. The main reason

for the positive effect on the structure and afterwards on the gains can be found in

the average interest rate paid by the countries to the SPV. The average interest is now

at 1.46% compared with 1.13% in the whole EMU scenario. Due to the high inflows

versus relatively low outflows, the trust fund stores a high volume and defaults can be

better compensated.

This leads to the counterintuitive conclusion that a participation of Germany might

be disadvantageous in a low-interest rate, relatively stable environment. The main

reason is that although almost the entire German share increases the volume of the

AAA tranche, the interest paid by Germany is still much less than the structure pays

on its AAA tranche because there is an additional issuer risk included in the interest

payments of the SPV. The net effect of German participation thus is negative. Also,

the marginal effects of diversification and tranching are decreasing with the number

of countries. Therefore, the positive effects induced by Germany are diminished by

the large group. For political reasons and the market’s perception of the structures

credibility, an inclusion of Germany is mandatory.

We also evaluated two other subsets. These are the so-called PIIGS countries and

EU6. They confirm the results we have seen so far.

In the next step, we have a closer look at the PIIGS countries introducing Eurobonds

in 2018 and at the peak of the sovereign debt crisis in 2012. We start with the results

for 2018.

The resulting structure can be seen in Table A10. Two interesting issues shall be

mentioned. Although no involved country has an AAA rating, a tranche with this

rating remains in the structure. Besides this, it is only 19 percentage points smaller

than the one containing all EMU-countries. Second, the number of tranches increases

10The results can be presented upon request.
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to eight with the second greatest thickness besides the AAA tranche concentrated in

the lowest-rated tranche. The nominal total volume in this subset is 394.17 billion

Euro.

Tranche Thickness Rating Interest Rate

Tranche I 54.55% AAA 0.56%
Tranche II 2.35% AA+ 0.65%
Tranche III 4.97% AA 0.85%
Tranche IV 4.56% AA- 0.99%
Tranche V 6.78% A+ 1.17%
Tranche VI 5.99% A 1.32%
Tranche VII 7.01% A- 1.54%
Tranche VIII 13.81% BBB+ 1.72%

Table A10: The structure for an introduction of structured Eurobonds for PIIGS countries in
2018.

The results for an even and relative distribution can be seen in Table A11. The

results for all countries are getting better compared to a system involving all countries

of the EMU. In this selection, Spain and Italy are representing more than 80% of the

nominal volume.

Country Stake at nom. Nom. net gain Rel. net gain Savings rel. to nom. p.a.

Ireland 8.37% 1.41 (4.17) 4.27% (12.67%) 0.42% (1.20%)
Greece 5.07% 4.47 (2.50) 22.65% (12.63%) 2.04% (1.18%)
Spain 32.73% 9.88 (16.47) 7.64% (12.73%) 0.74% (1.21%)
Italy 48.46% 32.71 (24.74) 17.15% (12.97%) 1.59% (1.23%)
Portugal 5.33% 2.15 (2.75) 10.02% (12.82%) 0.98% (1.24%)

Table A11: The results for an introduction of structured Eurobonds through government debt
crisis countries in 2018. In parenthesis are the results for the even distribution.

Now, we focus on 2012 as the introduction year. This leads to the following struc-

ture displayed in Table A12.

The nominal volume drops to 354.25 billion Euro and we can see that the thickness

of the AAA-tranche declines from 54.58% to 34.72% in this scenario compared to an

introduction in 2018. Also, it is noticeable that the lowest-rated tranche is the second

thickest, and nearly 40% of the whole nominal is concentrated in the two lowest-rated

tranches with a rating of BBB+ and BBB.

The results can be seen in Table A13. For every distribution method, the relative

gain is above 10% and the savings per year in relation to the nominal are consistently

above 1.6%. The impact of the different distribution schemes is the same as above.

In an even scheme, the countries with higher extra costs, here Greece and Italy, are
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Tranche Thickness Rating Interest Rate

Tranche I 34.72% AAA 2.06%
Tranche II 5.35% AA+ 2.11%
Tranche III 5.14% AA 2.21%
Tranche IV 0.14% AA- 2.29%
Tranche V 5.21% A+ 2.39%
Tranche VI 4.66% A 2.48%
Tranche VII 5.56% A- 2.66%
Tranche VIII 14.84% BBB+ 2.95%
Tranche IX 24.39% BBB 3.26%

Table A12: The structure for an introduction of structured Eurobonds for PIIGS countries in
2012.

having a higher gain than others. Contrary to this, we see in a relative distribution

scheme that countries with lower extra costs have a higher relative gain.

Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Ireland 5.65% 3.43 (4.27) 17.58% (21.86%) 1.95% (2.08%)
Greece 5.93% 12.65 (4.29) 59.54% (20.19%) 4.82% (1.87%)
Spain 32.75% 24.48 (25.45) 21.19% (22.03%) 1.93% (2.00%)
Italy 50.53% 31.35 (39.49) 17.49% (22.03%) 1.61% (2.00%)
Portugal 5.36% 5.62 (4.03) 30.02% (21.54%) 2.62% (1.94%)

Table A13: The results for an introduction of structured Eurobonds through government debt
crisis countries in 2012. In parenthesis are the results for the even distribution.

Now, we observe the effect of an issuance by the founding members of the Euro-

pean Union, the European Economic Community. These are Belgium, France, Italy,

Luxembourg, Netherlands, and Germany. As before the structure, represented by the

thickness of the tranches, is changing with a higher weighting of the high rated ones

and the nominal volume is now 943.74 billion Euro. The structure for an introduction

in 2018 can be seen in Table A14. 97% of the structure is rated AA or better. This good

average rating will result in lower interest costs than in the cases before.

Table A15 displays the gains for every country. Germany, France, and Italy have the

main stake of nominal debt, representing more than 85%. The results are similar to the

results when all countries of the Monetary Union are participating in the programme.

Again, every country has a positive effect from enrolling at the Eurobond programme

and does not fall beyond a 1% gain in relation to nominal volume, except for Germany.

This can be a hint that it is possible to introduce structured Eurobonds as a test only

in some countries at the beginning and widen the circle afterwards without lowering

the gains. On the contrary, the gains will rise if more countries are participating.
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Tranche Thickness Rating Interest Rate

Tranche I 78.46% AAA 0.56%
Tranche II 3.27% AA+ 0.65%
Tranche III 15.37% AA 0.85%
Tranche IV 0.64% AA- 0.99%
Tranche V 0.64% A+ 1.17%
Tranche VI 1.28% A 1.32%
Tranche VII 0.34% A- 1.54%

Table A14: The structure for an introduction of structured Eurobonds for founding members.

Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 5.19% 0.86 (1.47) 1.78% (3.02%) 0.18% (0.30%)
Germany 38.46% 2.32 (10.85) 0.64% (2.99%) 0.06% (0.31%)
France 26.91% 4.56 (7.70) 1.75% (3.03%) 0.17% (0.30%)
Italy 20.24% 20.43 (6.32) 10.71% (3.31%) 1.02% (0.33%)
Luxembourg 0.64% 0.07 (0.18) 1.05% (2.99%) 0.10% (0.30%)
Netherlands 8.58% 0.83 (2.45) 1.01% (3.00%) 0.10% (0.30%)

Table A15: The results for an introduction of structured Eurobonds through founding mem-
bers.

The results are showing that even during the sovereign debt crisis the most prob-

lematic countries could have gained and gains would have been higher than in the

whole EMU scenario. They would have more advantages when starting without the

higher-rated countries. This is supported by the results we have seen in a scenario

where all countries besides Germany are participating. Lower-rated countries drive

the gains for high rated countries whereas the higher-rated ones preserve the stability.

A.6 Shorter duration

In this case, we go back to the baseline scenario with an issuance in 2018 with all

countries of the EMU participating, a trust fund rate of 10% and a recovery rate of

50%. The only difference is that the duration of the structured Eurobonds is chosen

as one and two years. As a consequence, the default probability is calculated by using

the one- and two-year CDS spread, and the risk-free interest rate is determined by the

one- and two-year bond yield. For a one-year time horizon, the risk-free interest rate is

-0.64% and is derived from the German bond. In the two year scenario, the yield of the

Netherlands bond is lower and has a value of -0.59%. Figure A16 shows the resulting

structures for the two durations. As a consequence of the shorter time horizon and

the lower default probability, the average rating is increasing compared to the baseline
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scenario. For a two year duration, the average rating is getting worse relative to the

one-year duration, but it is still better than in the baseline scenario. The thickness of

the AAA tranche is above 93% in both scenarios. Due to a negative risk-free interest

rate and a relatively low credit spread for the tranches, the structure delivers negative

yields for the capital market.

Tranche Thickness 1 Year (2 Years) Rating Yield 1 Year (2 Years)

Tranche I 93.86% (93.44%) AAA -0.60% (-0.54%)
Tranche II 5.86% (0.61%) AA+ -0.58% (-0.51%)
Tranche III 0.29% (5.94%) AA -0.55% (-0.45%)

Table A16: The structure for an introduction of structured Eurobonds with a shorter duration.

The results of the simulation for both durations can be seen in Tables A17 and A18.

Because some countries face negative interest rates, it is better to stick with the even

distribution. In the relative distribution, the interest burden is used to calculate the

individual repayment scheme. With negative interest rates, some countries do not face

interest burdens, and therefore we focus on the even distribution.

For a duration of one year, many countries face losses and the total gain of struc-

tured Eurobonds is only 0.3 billion Euro. With this distribution method, the lower

(higher) rated countries have positive (negative) results, and in the even distribution,

this is reversed.

The results are increasing for a longer duration with a gain of 3.98 billion Euro,

more than ten times the result for a one-year issuance. In an even distribution scheme,

all countries realise gains. Also, the results are getting better for all countries com-

pared to the one year time horizon.

A reason for the negative results for short durations is that the interest-bearing

effect of the trust fund is not present, primarily due to a negative risk-free interest

rate. In addition, the spread for every tranche of the structure is low. Nevertheless,

some countries with a higher risk, e.g. Italy and Greece, have a relatively higher yield

and therefore their additional costs are larger than their gains.

Therefore, an issuance of structured Eurobonds with a shorter duration can also

produce gains. But with a short duration, e.g. one year, a new distribution method

needs to be implemented to ensure that every country realises gains from structured

Eurobonds.
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Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 3.95% -0.003 -0.01% -0.01%
Germany 29.26% -0.057 -0.02% -0.02%
Estonia 0.24% 0.001 0.04% 0.04%
Ireland 2.66% -0.001 -0.00% -0.00%
Greece 1.61% 0.034 0.17% 0.17%
Spain 10.40% 0.032 0.03% 0.03%
France 20.47% -0.016 -0.01% -0.01%
Italy 15.39% 0.303 0.16% 0.16%
Cyprus 0.16% 0.003 0.14% 0.14%
Latvia 0.24% -0.000 -0.00% -0.00%
Lithuania 0.40% 0.001 0.02% 0.02%
Luxembourg 0.48% -0.001 -0.02% -0.02%
Malta 0.08% 0.000 0.00% 0.00%
Netherlands 6.53% -0.011 -0.01% -0.01%
Austria 3.30% -0.005 -0.01% -0.01%
Portugal 1.69% 0.011 0.05% 0.05%
Slovenia 0.40% 0.002 0.00% 0.00%
Finland 2.01% -0.003 -0.01% -0.01%
Slovakia 0.73% 0.000 0.00% 0.00%

Table A17: The results for an introduction of structured Eurobonds in the whole EMU with
a duration of one year in 2018. The first column displays the stake every country has at the
nominal volume, the second the nominal net gain, the third shows the nominal net gain in
relation to the debt, and the last column the yearly savings from the third column. The gains
are distributed according to the even distribution.
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Country Stake at nom. Nom. net gain Rel. net gain Gain rel. to nom. p.a.

Belgium 3.95% 0.14 0.29% 0.14%
Germany 29.26% 1.01 0.28% 0.14%
Estonia 0.24% 0.01 0.31% 0.16%
Ireland 2.66% 0.10 0.30% 0.15%
Greece 1.61% 0.09 0.48% 0.24%
Spain 10.40% 0.42 0.32% 0.16%
France 20.47% 0.73 0.29% 0.14%
Italy 15.39% 0.89 0.47% 0.23%
Cyprus 0.16% 0.01 0.42% 0.21%
Latvia 0.24% 0.01 0.30% 0.15%
Lithuania 0.40% 0.02 0.32% 0.16%
Luxembourg 0.48% 0.02 0.28% 0.14%
Malta 0.08% 0.01 0.32% 0.16%
Netherlands 6.53% 0.23 0.28% 0.14%
Austria 3.30% 0.12 0.28% 0.14%
Portugal 1.69% 0.08 0.35% 0.18%
Slovenia 0.40% 0.02 0.31% 0.16%
Finland 2.01% 0.07 0.28% 0.14%
Slovakia 0.73% 0.03 0.31% 0.15%

Table A18: The results for an introduction of structured Eurobonds in the whole EMU with
a duration of two years in 2018. The first column displays the stake every country has at the
nominal volume, the second the nominal net gain, the third shows the nominal net gain in
relation to the debt, and the last column the yearly savings from the third column. The gains
are distributed according to the even distribution.
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2 Effects of Structured Eurobonds

The Impact of Structured Eurobonds on
Exchange Rates

Abstract

This paper discusses the impact of the introduction of structured Eurobonds

on exchange rates. We will concentrate on the connection between five currency

pairs (Euro vs. US-Dollar, Swiss Franc, British Pound, Japanese Yen, and Chinese

Renminbi), but the analysis can as well be used for every other foreign currency

compared to the Euro. The impact is analysed in a context where Eurobonds are

issued through an Asset-Backed Security (ABS). The issuance results in a new yield

curve for the European Monetary Union (EMU). As previous research has shown,

there exists a link between the relative shape of yield curves to each other and

exchange rate changes. Therefore, I compare the European yield curve with the

counterparts mentioned above and evaluate their link to the exchange rates. This

comparison is made for both scenarios, with and without structured Eurobonds. It

will be shown that after the introduction of structured Eurobonds, the European

yield curve would experience a sudden change. This abrupt change in the yield

curve results in a depreciation of the Euro against the US-Dollar. The depreciation

is in a range of 1.07% to 3.57% in the following 12 months. In contrast, the Euro

will appreciate against the other three significant foreign currencies, ranging from

0.53% for Chinese Renminbi to 5.37% for British Pound. The magnitude of this

effect depends on the structure as well as the time of issuance.

Keywords: Structured Eurobonds, Exchange Rates, Yield Curves

2.1 Introduction

Since the beginning of the European Monetary Union (EMU), the discussion on deep-

ening the sovereign bond markets is vivid. Many different possibilities have been de-

bated to achieve this. One of these is the common issuance of bonds for all countries

in the EMU, the so-called Eurobonds.

The Giovannini Group (2000) published first ideas and they have been evolved un-

til today. The different approaches reach from only issuing a part of the needed debt to

a whole refinancing through Eurobonds with varying strengths of liabilities.11 Besides

11For a more in-depth insight into the various possibilities, see Claessens et al. (2012).
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strengthening the connection between member countries, the bonds can help reducing

interest expenses of countries as well as deepening the market of sovereign bonds. The

European Commission (2017) also highlights this in their actual Reflection Paper on

the Deepening of the Economic and Monetary Union. Another purpose is to build an

equivalent to the US-American T-Bill market to receive more investor attraction and

to have bonds that are as liquid as US-American T-Bills. On the other hand, there are

some disadvantages. One of them, which is prominent in political and scientific dis-

cussions, is “moral hazard”. There is a controversial debate about whether common

issuance will set negative incentives for countries which have had refinancing prob-

lems in the financial and Euro debt crisis. Another issue is the question of liability in

case of default. More stable countries, e.g. Germany, fear a situation in which they have

to pay for other countries which might use Eurobonds as a cross-financing instrument.

Hild et al. (2014) and Brunnermeier et al. (2016) developed new approaches for Eu-

robonds to reduce the disadvantages mentioned above. They use structured products

- especially Asset-Backed Securities (ABS) - to construct Eurobonds. The advantage

of both ABS-approaches is a reduction of the negative aspects that are the reason for

moral hazard. Due to the different tranches and the set-up of an ABS, the liquidity will

improve and the liability will be reduced. Since ABS products and especially Collat-

eral Default Obligations (CDOs) have been the reason for the recent financial crisis, in-

vestors have some aversion against this product. Also, their complexity might prevent

institutional investors from investing in them. Therefore, the issuance of structured

Eurobonds might be more difficult or connected with significant interest spreads that

cancel out the advantages. One of the main differences between both approaches is

that the one outlined by Brunnermeier et al. (2016) allows for two tranches, the “Eu-

ropean Safe Bonds” (ESBies) and “European Junior Bonds” (EJBies), whereas, Hild et

al. (2014) do not have a specific number of tranches.

Some authors, e.g. the European Commission (2011) in their Green Paper, claim

that the role of the Euro as an international reserve currency will be strengthened after

the introduction of Eurobonds. This paper aims to have a closer look at the impact on

the exchange rate between the Euro and relevant foreign currencies.

My calculation is based on the method used by Chen and Tsang (2013), who ex-

amined several currency pairs with the Nelson-Siegel model, which was developed by

Nelson and Siegel (1987). This model is used to describe yield curves with a non-linear

approach. The current yield curve of the Euro Area, which is calculated and published

by the European Central Bank (ECB), is the benchmark for the following examinations.

Yields of bonds issued by member countries are weighted relative to their capital com-

mitment at the ECB to construct the European yield curve. Using this data from the
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European Central Bank, I found a significant link for different factors, mainly slope

and curvature, and exchange rate predictability. The slope factor is the most robust of

the three factors for the Euro against the US-Dollar (USD) because it is significant for

every time horizon above one month whereas for other countries the other two factors

are of major interest. After this analysis of the current yield curve and its connection

to the exchange rate, I use tranches of Hild et al. (2014) to create a new yield curve for

the EMU after the (theoretical) introduction of structured Eurobonds. This new yield

curve and the resulting impact on the exchange rate is influenced by the issuance date

and the structure of the ABS-model. The introduction represents a shock on the yield

curve with an abrupt downward shift and is an extension to the method of Chen and

Tsang (2013) because they rely on current yield curves and a shock is not taken into

account. I focus on two settings for the structure, a conservative and a progressive one.

These are characterised by different assumptions – made by Hild et al. (2014) – regard-

ing the correlation of default probabilities between EMU countries. In the progressive

setting, the correlation is lower than in the conservative setting and results in a better

average rating of the structure. In a conservative setting, the appreciation of the Euro

is 0.53% and ranges to 5.37% in a progressive structure in the following 12 months

after introduction against British Pound (GBP), Swiss Franc (CHF), and Chinese Ren-

minbi (CNY). Against US-Dollar, the Euro will face a depreciation of 1.70% to 3.56% in

the following 12 months after issuance, again dependent on the structure and issuance

date. For Japanese Yen (JPY), no significance can be found for any time horizon and

therefore, an impact cannot be determined. These specific five foreign currencies were

chosen for several reasons. The USD was selected because the currency pair EUR/USD

is the most traded pair worldwide, GBP, JPY, and CHF are the following most traded

counter currencies with EUR as involved currency. A list of the most traded currency

pairs can be found in the Triennial Central Bank Survey of the Bank for International

Settlements (2019). At last, CNY is chosen due to its rising impact on world trade

as well as its increasing economic importance. To the best of my knowledge, there is

no recent work that tries to measure the impact of structured Eurobonds on exchange

rates. My paper attempts to fill this gap.

The next sections are structured as follows. Section 2.2 provides a theoretical back-

ground. Section 2.3 describes the data, shows the actual link between the yield curves

and the exchange rate and will describe the new yield curve after the issuance of struc-

tured Eurobonds. In Section 2.4, the main results, which is the impact of the new yield

curve on the exchange rate, are presented, while in Section 2.5, several robustness

checks are discussed. Section 2.6 concludes the findings.
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2.2 Theoretical Background of Eurobonds

Eurobonds are considered one possibility to solve the debt crisis and to manage the

sovereign-bank nexus as outlined by several European institutions, e.g. the ESRB

(2018). They could also be helpful to prevent a new adverse situation in the Euro-

pean Monetary Union. The Giovannini Group (2000) first established the idea of a

coordinated debt issuance who offer different hypotheses for elaboration. The con-

cepts got more specified by Boonstra (2005) who introduced the possibility to use a

special fund for issuance. Several concepts of Eurobonds have been outlined by the

Securities Industry and Financial Markets Association (2008) and by Eijffinger (2011).

With the start of the financial crisis, the “flight to safety” started and the ideas of Eu-

robonds got more detailed. As a consequence, de Grauwe and Moesen (2009) proposed

a system to challenge the arising liquidity premium with the issuance of Eurobonds by

the European Investment Bank. These bonds shall be backed by all EMU countries and

can help to reduce interest burdens for high interest-paying countries. They identified

the liquidity premium as the main driver for the increasing yield differences between

the EMU member countries. Other authors, e.g. Issing (2009), illustrated the negative

aspects arising from the implementation of Eurobonds. A greater problem in the con-

cept of Eurobonds is moral hazard which arises of the joint liability. There is a viable

risk that some countries might use Eurobonds as an instrument to refinance them at a

low-interest rate to have an excessive budget spending. Afterwards, they default and

leave the remaining countries on their own to repay the debt.

Delpla and von Weizsäcker (2010) has given a much-noticed approach. They pro-

posed a system with two different types of Eurobonds. Every debt up to a threshold

of 60% of the individual national GDP can be issued together through so-called “blue

bonds”. The threshold has its origin in the Stability and Growth Pact (SGP) of the

EMU. Every country will issue needed debt above 60% on its own. They are called

“red bonds”. The speciality of this construction is a joint liability, higher liquidity, and

seniority of blue bonds against red bonds. Due to the features of blue bonds, partici-

pating countries have significantly lower interest payments on their debt. Delpla and

von Weizsäcker (2010) assume that such a construction will gain positive incentives

on discipline because red bonds will admonish countries to get under the threshold.

A greater problem in this construction is the “no-bailout” clause of the Maastricht

Treaty which will be violated in case of default. This method was picked up by Gopal

and Pasche (2011) who assume issuing of blue bonds by an European Central Agency

to refinance 80% of every countries debt. The method of Delpla and von Weizsäcker

(2010) was also examined by Baglioni and Cherubini (2016) who use 40% as threshold.
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They analyse how much cash collateral is needed to construct risk-free senior bonds.

The German Council of Economic Experts (2012) discussed a reverse method. They

suggest a system where sovereign debt above a threshold of 60% is transferred into a

special debt redemption fund with joint liability. The threshold is also chosen with re-

spect to the SGP. The debt will be transferred in a multi-annual process. Every country

has to pay a part of its transferred volume to the fund year by year. This mechanism

ensures that the fund is closed after a fixed time horizon of 25 years. Every country

will be below or just at a 60% debt-to-GDP ratio after the closing of this fund.

Another approach was to use the mechanics of the so-called “Brady Bonds”, who

played a crucial role in the Latin American debt crisis in the 1980s. Economides and

Smith (2011) propose “Trichet Bonds”, named after the president of the ECB at this

time, as another possibility. The mechanism is identical with the difference that the

collateral is not a 30-year zero-coupon US bond but rather a 30-year zero-coupon bond

issued by the ECB.

All of the approaches mentioned above to implement Eurobonds would face diverse

challenges in the legal framework of the EMU. Another crucial point is the budget au-

thority of the German Parliament over their budget. This authority has been a blocker

in the past. Basu (2016) shows how to solve some of the legal obstacles that arise with

Eurobonds. A further investigation shall not be included in this work.

One way to deal with some issues, especially the moral hazard problematic, and

still reach the benefits of common issuance is to create “Structured Eurobonds”. They

have the same aim as the above mentioned Eurobonds, e.g. to reduce the interest bur-

den and stabilize bond markets, but they diminish the negative aspects drastically.

Two methods have been developed, first by Hild et al. (2014) and then by Brunner-

meier et al. (2016). The introduction of Eurobonds through a structured product is

also favoured by the European Commission (2017), as mentioned in their current Re-

flection Paper. Essentially, both approaches use similar techniques with slight but

nevertheless fundamental differences. Both use an ABS-approach to creating a new

bond. The outstanding and newly raised debt of every country is pooled together by

an SPV, e.g. a fund. This SPV restructures the pooled bonds into new tranches with

other ratings than the original bond ratings. This effect is attributed to a correlation

of less than one between the countries of the EMU. Hild et al. (2014) discusses the

correlation effect and structuring through an SPV.

The newly issued tranches have a lower implied default probability than the weigh-

ted average of the current default probability of participating countries. One main dif-

ference between the two approaches is the number of tranches. While Brunnermeier

et al. (2016) present a model restricted to two tranches, European Safe Bonds (ESBies)
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and European Junior Bonds (EJBies), Hild et al. (2014) have some more possibilities,

ranging from two to more tranches. They use a reserve fund or trust fund to absorb

first losses in case of default. This fund has a predefined size, e.g. 10% of the nom-

inal volume of issued debt. The trust fund bears interest, and if a country defaults

the recovered value is transferred to the trust fund. Losses that extend the size of the

trust fund will cause depreciation and default of the junior tranches. Due to this con-

struction with an ABS product, the above mentioned negative aspects of Eurobonds

concerning “moral hazard” and joint liability can be prevented. Joint liability is lim-

ited to the initial payment to the trust fund. A direct consequence of this approach

is the emergence of a new yield curve in the EMU, whose impact on FX rates is of

significant interest in this work.

An extended discussion on the topic of structured Eurobonds with several simula-

tions can be found in the feasibility study of the ESRB (2018). Different possibilities

of Eurobonds with their advantages and disadvantages are discussed there. These are

also thematised by van Riet (2017).

2.3 Data and Methodology

2.3.1 Data

To fit the Nelson-Siegel model, yield data of the associated countries is needed. Also,

the exchange rate between the base currency (Euro) and different foreign currencies

(US-Dollar, British Pound, Chinese Renminbi, Swiss Franc, and Japanese Yen) mea-

sured as foreign currency price per unit of Euro is necessary. The sample consists of

end-of-month data from September 2004 to February 2018, resulting in 162 observa-

tions. The zero-coupon yields with maturities of 3, 6, 12, 24, 36, 60, 84, 120, 240 and

360 months for the United States and China as well as the exchange rate are down-

loaded from Thomson Reuters Datastream. For Switzerland, the United Kingdom and

Japan, the yield data consists of the same maturities extended by 48, 72, 96, 108 and

180 months and is also downloaded from Thomson Reuters Datastream. Yield data for

the same maturities of the EMU are taken from the European Central Bank’s statistical

database. The yield data for every member country of the EMU is also downloaded

from Thomson Reuters Datastream. This data is used for the construction of the yield

curves of the EMU after issuance of structured Eurobonds. Figure 2.1 shows several

yield curves of EMU member countries and it can be seen that the yield curve of the

EMU lies between the French and Spanish one, but is closer to the Spanish. It is rep-

resenting a nearly AA yield curve. The German yields are the lowest since they have
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Figure 2.1: EMU member and US yield curves for End of February 2018 Data.

the best possible rating from rating agencies and highest liquidity. For comparison

and calculation purposes, the expectations of market participants are also taken into

account. Therefore, a Consensus Forecasts dataset is used. To construct these explicit

dataset market participants are asked what exchange rates they expect several months

in the future.

The next steps also require several macroeconomic data. The GDP and debt statis-

tics of every country in the EMU are taken from Eurostat, the European Statistical

Office. The latest available datasets for these two variables are from December 2017.

Also, the commitment which every country of the EMU has at the capital stock of the

ECB is needed. The value is also provided and calculated by the ECB, and they use two

key figures, one is the ratio of GDP of every country to the GDP of the whole EMU, and

the other one is the ratio of population. The ECB calculates this ratio of commitment

every five years or after the accession of a new country in the European Union and the

last time it was adjusted was in January 2014. At last, trade information (imports and

exports) for the European Union are downloaded from Eurostat for 2017. This infor-
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mation is later used to calculate a synthetic exchange rate to measure the impact on

the Euro weighted by the trade partners.

2.3.2 Current Connection between Yield Curve and Exchange Rates

The yield curve links the yield of bonds to their maturity. Diverse work has shown that

information about future macroeconomic conditions can be derived from this curve.

Ang et al. (2006) use its information to forecast GDP growth, and Dewachter and Lyrio

(2006) can connect it to the business cycle and the central banks’ monetary stance. The

yield curves of the US and the EMU with the end of February 2018 data can be seen in

Figure 2.1. The current US yield curve is above the EMU curve due to a higher interest

rate level in the US which is a non-neglecting driver of the level of the yield curve.

Since this curve has a non-linear character, different models have been designed

to fit the yields. The model developed by Nelson and Siegel (1987) is a prominent

method to describe yield curves. Their model has an exponential character and is of

the following form,

y(m) = Lt + St

(
1− e−λm

λm

)
+Ct

(
1− e−λm

λm
− e−λm

)
, (2.1)

where y(m) describes the yield to maturity or the continuously compounded zero-

coupon nominal yield of a bond with m months to maturity. The variables Lt,St and

Ct represent level, slope and curvature of the yield curve at an observation time t. One

benefit of the model is the feasibility to describe different kinds of yield curves, rang-

ing from normal over humped to inverted curves. The parameter λ is crucial to the

strength of exponential decay in St and Ct. λ is set to 0.0609 as a standard value in

the literature.12 The impact of a non-fixed value of λ will be discussed in Appendix

B.1. There it is shown that the assumption of a fixed value of λ does not have a neg-

ative impact on the results. It can be seen from Eq.(2.1) that the components have a

different impact over time. While the level factor is a constant linear part, the slope is

more relevant in the short term and decays rapidly whereas the curvature gets more

relevant in the midterm and decays to zero in the long term. The choice of λ = 0.0609

implies a maximum impact of the curvature factor at m = 30.

12A discussion on the choice of λ can be found in Diebold and Li (2006b).
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Chen and Tsang (2013) have found a link between the exchange rate predictability

and the relative shape of associated yield curves. They make use of the Nelson-Siegel

model and its linearity to formulate a model with a small alteration,

y(m)− y∗(m) = LRt + SRt

(
1− e−λm

λm

)
+CRt

(
1− e−λm

λm
− e−λm

)
+ εt, (2.2)

where y(m) describes the home yield, in this framework the European yield, and y∗(m)

the foreign yield. LRt ,S
R
t , and CRt are the relative Nelson-Siegel factors and εt is the

fitting error resulting from the least square model.13 A discussion of the interaction of

the three Nelson-Siegel factors, several macroeconomic indicators and their impact on

future movements in the respective yield curve can be found in Diebold and Li (2006).

At first, the relative Nelson-Siegel factors are estimated with Eq.(2.2) for every ob-

servation in the sample. Figure 2.2 illustrates the EUR/USD exchange rate against the

relative Nelson-Siegel factors. As we can see in this figure, the level and slope factor

are hardly varying over time, whereas the curvature factor has a higher volatility. Two

interesting breaks can be seen here. The slope factor drops in 2009 which can be ex-

plained with the financial crisis because the slope is an indicator of economic growth.

Afterwards, it is slowly increasing due to some recovery in the USA. Another break can

be seen at the end of the year 2011 for the level factor. There was one of the peaks of

the European debt crisis where a higher level is characteristic. Also, the US yield faced

a downward shift in this time horizon. Since the US yield curve is subtracted from the

EMU curve, the resulting relative factor has a fast growth. However, our attention is

not on a current link but rather on the influence on future exchange rate changes.

In the first step, we want to have a closer look at the link between the relative factors

and exchange rate changes. To do so, we use the same linear regression as Chen and

Tsang (2013),

∆st+m = βm,0 + βm,1L
R
t + βm,2S

R
t + βm,3C

R
t +ut+m, (2.3)

where ∆st+m is the annualized relative difference of the exchange rate at time t looking

mmonths into the future. LRt ,S
R
t , andCRt are the parameters resulting from the Nelson-

Siegel model presented in Eq.(2.2)14. Due to overlapping data when m > 1, the error

term on the left-hand side will be a moving-average process and the resulting estimates

will be biased. To overcome the autocorrelation, one possibility is to use a covariance

estimator developed by Newey and West (1987). In small samples this estimator rejects

13The relative Nelson-Siegel factors can be used due to the linearity of the Nelson-Siegel model. An
empirical evaluation where the three factors are estimated for every country and differences between
them are calculated afterwards, can be found in Appendix B.2.

14An examination of the impact of every single relative Nelson-Siegel parameter on the exchange rate
predictability can be found in Appendix B.3.
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Figure 2.2: Time series of Nelson Siegel factors and exchange rate EUR/USD.
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too often and therefore a rescaled t-statistic, where t is adjusted by multiplying with

1/
√
m, is used. This method is developed by Moon et al. (2004) and Valkanov (2003).15

Table 2.1 shows diverse descriptive statistics on the different relative Nelson-Siegel

factors for all foreign currencies. It is noticeable that the standard deviation in the

Nelson-Siegel parameters grows from level to curvature, as observed in Figure 2.2.

This can be explained by the long yield horizon, which is relevant for the level factor.

On the other hand, slope and curvature are more influenced by short or medium-term

changes.

Minimum Median Mean Maximum Std.Dev

Panel A: US-Dollar
Level -1.143 -0.175 0.019 2.236 0.808
Slope -2.025 -0.052 -0.126 2.431 0.955
Curvature -4.710 0.515 -0.054 6.031 2.246

Panel B: British Pound
Level -0.909 0.079 0.204 2.141 0.577
Slope -3.032 -0.837 -0.815 0.637 0.764
Curvature -5.764 0.848 -0.461 5.934 2.401

Panel C: Chinese Renminbi
Level 0.389 2.328 2.214 3.547 0.676
Slope -3.276 -1.649 -1.285 1.381 1.404
Curvature -4.009 0.258 -0.288 2.693 1.958

Panel D: Swiss Franc
Level 0.819 1.532 1.915 3.947 0.739
Slope -3.417 -0.963 -1.043 0.450 1.003
Curvature -5.576 -1.926 -1.996 1.373 1.398

Panel E: Japanese Yen
Level 0.181 2.335 2.219 3.950 0.668
Slope -3.428 -1.655 -1.292 1.465 1.410
Curvature -4.311 0.191 -0.323 3.540 1.955

Table 2.1: Descriptive statistics for the three different Nelson-Siegel factors out of 162 obser-
vations per factor and foreign currency.

The results for all currency pairs show large differences in the combination which

relative Nelson-Siegel factor is relevant for which time horizon. These are displayed

in the Tables 2.2 and 2.3. It can be seen that the impact of the different factors on the

exchange rates is varying over time and some factors are significant only for special

time horizons.

A significant connection between the relative slope factor and future changes of

Euro/US-Dollar can be identified in panel A of Table 2.2. This connection can be

15A discussion on this challenge can be found by Chen and Tsang (2013).
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Panel A: US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -2.836 -4.824 -4.431 -3.818 -3.127 -2.232
(-0.552) (-1.129) (-1.039) (-0.970) (-1.030) (-0.714)

Slope -4.462 -6.640** -6.950** -5.309** -4.118** -3.398*

(-1.341) (-2.388) (-2.488) (-2.035) (-2.057) (-1.658)
Curvature 1.638 1.279 0.751 0.199 0.009 -0.387

(0.912) (0.837) (0.480) (0.133) (0.008) (-0.316)

R2 0.016 0.087 0.184 0.250 0.362 0.355

Panel B: British Pound
Level -9.064 -11.436* -10.917* -9.915 -7.572 -4.429

(-0.847) (-1.730) (-1.806) (-1.601) (-1.189) (-0.714)
Slope 1.390 -7.018* -6.805* -5.756 -4.118 -1.714

(0.223) (-1.831) (-1.953) (-1.644) (-1.132) (-0.504)
Curvature 1.606 1.752 1.504 1.087 0.348 -0.448

(0.692) (1.217) (1.136) (0.797) (0.248) (-0.332)

R2 0.009 0.054 0.135 0.216 0.238 0.276

Panel C: Non-Overlapping US-Dollar
Level -3.626 -4.323

(-0.759) (-0.835)
Slope -6.388* -6.034*

(-2.197) (-1.988)
Curvature 0.816 0.475

(0.493) (0.264)

R2 0.034 0.038

Table 2.2: The connection of different Nelson-Siegel factors and their predictive power for
exchange rate changes with the currency pairs EUR/USD and EUR/GBP. The significance levels
are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis below the factor, the rescaled
t-statistic is displayed.

found for each observed period besides the one-month horizon. This delay is a result

of some response time on changes in macroeconomic factors in the yield curve as well

as the exchange rate. The level and the curvature factor are not significant for any

time horizon. The results can be interpreted as follows: A one percentage point in-

crease in the relative slope factor predicts a 3.40% annualized depreciation of the Euro

in the following 24 months. This increase in the relative slope factor is equivalent to a

steeper US yield curve relative to the European curve. Here, the growth expectations

of the United States are increasing. The annualized effect of this factor decreases over

time. This decrease can be explained by the declining impact of current expectations

and information as well as new effects occurring in longer horizons. For British Pound

(panel B of Table 2.2), the only factors that are significant for different time horizons
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Panel A: Chinese Renminbi
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level 0.529 -0.877 -2.145 -2.265 -1.767 -1.713
(0.179) (-0.348) (-0.835) (-0.936) (-0.857) (-0.772)

Slope -0.799 -0.506 -0.248 0.423 0.586 0.449
(-0.494) (-0.372) (-0.182) (0.342) (0.580) (0.450)

Curvature 1.005 0.985 1.566* 1.365* 0.643 0.413
(0.937) (1.095) (1.753) (1.678) (0.972) (0.632)

R2 0.009 0.009 0.101 0.186 0.149 0.126

Panel B: Swiss Franc
Level -5.517 0.787 1.687 1.876 2.881 4.418

(-1.006) (0.145) (0.305) (0.363) (0.548) (0.736)
Slope -5.520 0.394 1.326 1.128 1.979 3.210

(-1.202) (0.092) (0.304) (0.279) (0.488) (0.705)
Curvature 1.381 1.313 1.550 2.134* 1.729 1.064

(0.992) (0.966) (1.125) (1.696) (1.419) (0.820)

R2 0.011 0.007 0.067 0.255 0.317 0.277

Panel C: Japanese Yen
Level -3.800 -4.542 -3.289 -4.099 -3.040 -3.675

(-0.506) (-0.596) (-0.407) (-0.495) (-0.365) (-0.466)
Slope -4.196 -2.672 -1.816 -2.189 -2.449 -3.574

(-1.193) (-0.748) (-0.479) (-0.564) (-0.631) (-0.981)
Curvature 1.214 1.004 0.304 1.057 1.466 2.425

(0.491) (0.400) (0.112) (0.370) (0.493) (0.830)

R2 0.011 0.012 0.014 0.027 0.033 0.159

Table 2.3: The connection of different Nelson-Siegel factors and their predictive power for
exchange rate changes with the currency pairs EUR/CNY, EUR/CHF and EUR/JPY. The signif-
icance levels are *10 percent; ** 5 percent and *** 1 percent. In parenthesis below the factor,
the rescaled t-statistic is displayed.

are the relative level and slope factor. In this case, a one percentage point increase

in the relative level factor predicts a 10.92% annualized appreciation of the Pound

in the following six months. Here, the whole yield curve of the European Monetary

Union shifts one percentage point up relative to the UK one. We will focus on the

six months time horizon in the upcoming analysis. The results for Chinese Renminbi

(panel A in Table 2.3) only imply a significance in the relative curvature factor. This

connection shows up for time horizons of six months and twelve months, where it is

significant at a 10% level. Swiss Franc (panel B in Table 2.3) is only significant for a

12-month horizon. Here the relative curvature factor is the primary driver of exchange

rate predictions. A one percentage point rise in the relative curvature factor will lead

to a 2.13% rise of the exchange rate in a 12-month horizon, which is equivalent to an
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appreciation of the Euro against the Swiss Franc. At last, the Japanese Yen (panel C

in Table 2.3) shows no significance for any time horizon. As a consequence, exchange

rate changes cannot be predicted by using the yield curve or the Nelson-Siegel factors,

respectively. Therefore, an evaluation of the impact of the issuance of structured Eu-

robonds on the exchange rate EUR/JPY is not possible and the Yen is excluded from

further considerations. Nevertheless, the Yen is crucial because it is the third most

traded currency in combination with the Euro. The R2 in the regression of all remain-

ing four foreign currencies show mixed pictures. Whereas it is growing with the time

horizon for GBP, it reaches its highest value at 18 months for USD and CHF, and at 12

months for CNY. The maximum of the R2 is between 0.185 and 0.362, dependent on

the foreign currency and the time horizon.

We also look at non-overlapping data to show the robustness of this regression with

the rescaled t-statistic. They are constructed for 3 and 6 months in the future by only

looking at the end of quarter and semi-annual data. They are displayed in panel C of

Table 2.2, but only for US-Dollar as foreign currency. If longer horizons are examined,

there are some problems with the number of observations. We have 54 observations for

quarterly and 27 observations for semi-annual data. For longer horizons with one year

or more, we only have 13 or fewer observations left. This will reduce the explanatory

power of the test. The relative slope factor delivers values close to the shown values

in panel A. The other currencies are showing the same picture and are therefore not

included in the table.

2.3.3 Estimation of New Yield Curves

The next step in finding the impact of structured Eurobonds on exchange rates is to es-

timate the shape of the yield curve after the introduction of a new bond system through

an ABS-approach. We look at three different structures which have been calculated by

Hild et al. (2014) and build new yield curves for every one of these. An overview of

the structures and their tranches can be found in Table 2.4.

Since the rating of every tranche, as well as the thickness, are fixed, we can uti-

lize them to calculate the new yield curves. The countries with the same rating build

a benchmark curve for their respective rating, e.g. Germany, Luxembourg, and the

Netherlands are the constituents of the AAA benchmark curve. Their particular im-

pact on this curve is dependent on a macroeconomic factor, e.g. their GDP. The result-

ing curve for every rating is afterwards connected with the respective tranche in the

structure. To construct the new yield curve for structured Eurobonds the yield curves

for every tranche – or rating – will be weighted with the thickness of the tranche.
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Tranche Thickness Rating Interest Rate

Panel A: Conservative Structure
Tranche I 56.63% AAA 2.9%
Tranche II 9.35% AA- 3.5%
Tranche III 9.42% A 4.3%
Tranche IV 20.01% BBB+ 5.3%
Tranche V 4.59% BBB 6.3%

Panel B: Ordinary Structure
Tranche I 85.07% AAA 2.9%
Tranche II 7.38% AA- 3.5%
Tranche III 2.96% A 4.3%
Tranche IV 4.59% BBB+ 5.3%

Panel C: Progressive Structure
Tranche I 95.41% AAA 2.9%
Tranche II 2.94% AA 3.5%
Tranche III 1.65% A 4.3%

Table 2.4: The different structures which were calculated by Hild et al. (2014).

To estimate the new curve, we use three different calculation methods or macroe-

conomic indicators (ECB capital commitment, GDP, and Debt) and show that they

deliver similar results. The first method is inspired by the actual way to calculate the

European yield curve using the commitment of every country at the capital stock of

the ECB. The AAA yield curve, e.g., is built using the yield curves of the correspond-

ing countries. Their weighting in the ECB capital stock is normalized to the sum of

the capital stock for all countries having the same rating. With this normalization, we

receive their weighting in the benchmark curve for the AAA tranche. The yields for

every maturity of a benchmark curve can be calculated using the equation

yR(m) =
n∑
i=1

INDi∑n
j=1 INDj

· yi(m), (2.4)

where n is dependent on the number of countries with the same rating. INDi is the

value of the chosen macroeconomic indicator for country i, so INDi∑n
j=1 INDj

describes the

weighting of country i in the benchmark curve. Finally, yi(m) is the yield of the corre-

sponding country and yR(m) describes the yield with m months to maturity and rating

R. This method can be used to build a benchmark curve for every rating.

This method is also used for the two other macroeconomic indicators. The second

indicator is the ratio of the single country GDP to the GDP of the whole EMU. At last,

we will use the debt ratio of every country to the entire debt of the EMU. One advantage

of the second and third estimator is that they can be adjusted every quarter with the
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release of new data sets whereas the capital commitment – as mentioned earlier – is

only calculated every five years or after the accession of a new country in the European

Union.

Now that we have the benchmark curve for every rating, we use the weighted sum

of all benchmark curves to calculate the new yield curve. We apply the equation

y(m) =
l∑
k=1

TR(k) · yR(m), (2.5)

where l is the number of tranches with different ratings and TR(k) the thickness of the

representative tranche with rating R. This method is used for three different structures

which are based on varying assumptions, e.g. regarding the correlation of the EMU-

countries. Due to the assumptions made to calculate the structures, they are named

Conservative, Ordinary, and Progressive throughout the following empirical analysis.

2.4 Impact on Exchange Rates

2.4.1 Conservative Structure

This structure implies a yield curve which is different from the current one, but great

swings are not expected. This assumption can also be validated in Figure 2.3, which

shows the actual yield curve and a new one build by the method of ECB-commitment

for February 2018.16

In the short term, both curves are close to each other, but in the long run with

maturities above eight years, the values are diverging more.17 In the previous chapter

it was mentioned that a consequence of a steeper yield curve in the Eurozone would

mean an appreciation of the Euro against the US-Dollar. Since it is flatter in this case,

we will face a depreciation of the Euro against the US-Dollar. In comparison, for the

British Pound, the long-term level is lower and the lower relative Nelson-Siegel level

delivers an appreciation of the Euro.

Eq.(2.2) is again used to calculate the relative Nelson-Siegel factors with the now

emerged EMU yield curve and the US yield curve. In the next step, the relative factors

of the new curve need to be compared with the relative factors of the current curve for

16Using the three indicators (ECB capital commitment, GDP, and debt) as well as Eqs.(2.4) and (2.5),
we get slightly different yield curves which cannot be visualized appropriately. The differences can only
be seen in the calculation results.

17A consequence will be a relatively higher slope and lower level factor because we take differences
as we have seen in Eq.(2.2).
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Figure 2.3: The current EMU and two newly constructed yield curves assuming a conservative
and progressive structure for End of February 2018 Data.

January and February 2018 using the three methods of construction. This is presented

in Tables 2.5 and 2.6.

The first column of the table is listing the different Nelson-Siegel factors and in

brackets, the method of calculation for the currency pair EUR/USD. The following

column presents the calculated values using the current EMU yield curve from the

ECB, followed by the values of our newly calculated yield curve after the introduction

of the structured Eurobonds. At last, the difference between both values is highlighted.

Panel A shows the results for January and panel B for February 2018. As it can be seen

in the calculation results, the difference between the three methods of construction –

ECB commitment, GDP ratio and debt ratio – is marginal. The same can be seen for

the three other examined currencies and is therefore not included here. Due to this

fact, we only evaluate the calculation method regarding the ECB-commitment in this

and the following chapter, because it is in line with the actual method of calculation

of the EMU yield curve. Table 2.6 displays the other three foreign currencies and has

the same setup as Table 2.5.

It is noticeable that the difference in the level is always negative and in the other

two factors – slope and curvature – nearly always positive. Only for Swiss Franc, the

difference in the slope factor is negative. This picture can be explained with the char-

acteristics of the three structures. Due to the better average rating, the yield curve is
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Factor Current Values New Values Difference

Panel A: January 2018
Level (ECB) -0.651 -0.969 -0.318
Slope (ECB) -0.991 -0.790 0.202
Curvature (ECB) -4.711 -4.261 0.449

Level (GDP) -0.651 -0.967 -0.316
Slope (GDP) -0.991 -0.793 0.199
Curvature (GDP) -4.711 -4.264 0.446

Level (Debt) -0.651 -0.967 -0.316
Slope (Debt) -0.991 -0.794 0.198
Curvature (Debt) -4.711 -4.264 0.447

Panel B: February 2018
Level (ECB) -0.836 -1.136 -0.300
Slope (ECB) -1.044 -0.824 0.220
Curvature (ECB) -4.433 -4.052 0.381

Level (GDP) -0.836 -1.135 -0.299
Slope (GDP) -1.044 -0.824 0.220
Curvature (GDP) -4.433 -4.064 0.369

Level (Debt) -0.836 -1.136 -0.300
Slope (Debt) -1.044 -0.824 0.219
Curvature (Debt) -4.433 -4.065 0.368

Table 2.5: The effect of introducing structured Eurobonds in a conservative structure on the
exchange rate EUR/USD and under different building methods of the new yield curve. The
introduction months are January and February 2018.

lower at the long end, so the relative Nelson-Siegel factor decreases. Also, a flatter

EMU yield curve explains the increased slope and curvature.

As mentioned above, the predominant parameter for the US-Dollar is the relative

slope factor. The other factors do not explain exchange rate movements for any time

horizon. The impact of introducing structured Eurobonds is dependent on the issuing

month. With issuing month January, the effect on the relative slope factor is about

0.20. This impact can be explained with a lower growth expectation relative to the US

economy resulting from the flatter yield curve. As a consequence, the Euro will face a

depreciation.

For the following month, the impact of issuing structured Eurobonds on the relative

slope factor is greater, and it reaches 0.22. To calculate its impact on the exchange rate,

the following formula is used:

∆s24 = β24,2 · (S
R,New
0 − SR,Curr0 )︸                ︷︷                ︸

Difference in Table 2.5

. (2.6)
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Panel A: January 2018
Factor Current Values New Values Difference

Panel A.1: British Pound
Level 0.221 -0.123 -0.344
Slope -0.930 -0.712 0.218
Curvature -2.471 -1.936 0.534

Panel A.2: Chinese Renminbi
Level -2.059 -2.394 -0.335
Slope -1.627 -1.411 0.216
Curvature -3.705 -3.214 0.491

Panel A.3: Swiss Franc
Level 1.343 1.255 -0.087
Slope -0.835 -0.934 -0.100
Curvature -2.284 -1.591 0.693

Panel B: February 2018
Panel B.1: British Pound
Level 0.295 -0.006 -0.301
Slope -1.016 -0.796 0.220
Curvature -3.111 -2.728 0.383

Panel B.2: Chinese Renminbi
Level -1.995 -2.298 -0.304
Slope -1.484 -1.261 0.223
Curvature -3.561 -3.172 0.389

Panel B.3: Swiss Franc
Level 1.268 1.208 -0.060
Slope -0.852 -0.945 -0.093
Curvature -1.761 -1.144 0.617

Table 2.6: The effect of introducing structured Eurobonds in a conservative structure on the
exchange rate EUR/GBP, EUR/CNY and EUR/CHF. The introduction months are January and
February 2018.

∆s24 is the estimated 24-month impact of an issuance of structured Eurobonds on

the exchange rate EUR/USD, β24,2 is the calculated current 24-month connection of

a change in the slope factor. This value can be found in Panel A of Table 2.2. We can

conclude an annualized impact of -0.69% in January and -0.75% in February on the

exchange rate for a two-year horizon. As we have taken the exchange rate in Dollar

price per unit, the Euro faces an annualized depreciation of 0.69% respectively 0.75%

in the following 24 months. For a better comparison between the four different foreign

currencies, the focus will lie on a twelve-month time horizon for USD, CHF, and CNY,

because it is the only horizon with significant factors for each of these currencies. GBP
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is only significant in shorter time horizons, and therefore we focus on the six-month

horizon.

This delivers an impact of -1.07% in January and -1.17% in February on the ex-

change rate EUR/USD in the following year after the introduction of structured Eu-

robonds. The difference in the calculated impact is due to monthly changes in the

yield curves of the US and the EMU countries. This impact is the sole effect of issu-

ing structured Eurobonds. The next step is to combine it with market expectations

which are derived from the Consensus Forecasts dataset. It implicates a depreciation

of the Euro of -0.80% in January and an appreciation of 0.36% in February 2018 in the

upcoming 12 months. To calculate the market expectation after the issuance of struc-

tured Eurobonds, we have to add the sole effect, which is a depreciation of the Euro,

to the market expectation. In sum, after the (theoretical) introduction of structured

Eurobonds a depreciation of -1.87% and -0.81% is being predicted.

When we are evaluating British Pound, the focus is on the change of two Nelson-Siegel

factors, level and slope. Eq.(2.6) and the following calculations have to be altered here

to fulfil the changed requirements of significant parameters. The impact of issuing

structured Eurobonds in January will be an annualized rise of 2.27% of the exchange

rate in the following six months, which is equivalent to an appreciation of the Euro.

Contrary to the results for the US-Dollar the effect is weaker for February 2018 with

an impact of 1.79%.18 The same direction of impact can be seen for Chinese Renminbi.

The effect is weaker than the one for British Pound with 0.67% for January and drops

to 0.53% if structured Eurobonds would have been issued in February 2018. At last,

we take a closer look at the impact on Swiss Franc, which is only determined by the

relative curvature factor. The effect is 1.48% for January and weakens to 1.32% in

February. A look at the forecasts from market participants for January and February

shows that an appreciation of the Euro against British Pound, Chinese Renminbi, and

Swiss Franc was predicted. The issuance of structured Eurobonds would have boosted

this estimation. The combination of both observations – the sole effect of the issuance

of structured Eurobonds and estimations of market participants – also delivers an ap-

preciation of the Euro. The appreciation is 4.57% (2.17%) / 2.54% (3.05%) / 3.15%

(4.22%) for GBP / CNY / CHF in January (February).

The next step is to combine the impacts to get a full effect on exchange rates. There-

fore, we use trade statistics of the European Union and exclude the United Kingdom.

The imports and exports of these countries for 2017 represent more than 45% of the

complete trades of the European Union. The largest share in imports is China, with

18The sole influence in the following six months is 1.13% and 0.89% in January and February, respec-
tively. For comparison purposes the annualized value is taken.
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19.1% of the whole imports of the EU. USA is the country with the most exports from

the EU, amounting to 17.3%. Now, the impact of every single country is weighted by

its share on the trade with the EU. As a result, we get an effective trade exchange rate.

The individual impact can be seen in Table 2.7.

Country Imports (in Million) Exports (in Million)

United States 257,265.1 376,166.8
United Kingdom 186,246.3 295,399.5
China 386,311.3 234,438.9
Switzerland 110,727.4 149,843.0

Total 940,550.1 1,055,848.2

Country Import (in % of Total) Exports (in % of Total)

United States 27.35% 35.63%
United Kingdom 19.80% 27.98%
China 41.07% 22.20%
Switzerland 11.77% 14.19%

Table 2.7: The trade balances of the four countries with significant results for exchange rate
changes. The first panel shows the absolute import and export statistics. The second panel sets
the individual volume in result to the total of the four countries.

Here the individual value of imports and exports is set in relation to the total val-

ues for all four countries. Combining the above-calculated impact on exchange rates

with the individual trade-related share of the four countries delivers an appreciation of

the Euro. In January the Euro would appreciate 0.61% independent from the weight-

ing scheme and in February between 0.39% and 0.41%. The depreciation from the

EUR/USD is not enough to offset the appreciations from the three other currency pairs.

After all, the isolated impact of issuing structured Eurobonds would be that the

Euro faces a depreciation against the US-Dollar in a conservative structure whereas

it would appreciate against the three others in a range from -1.17% to 2.27%. The

different effect for the USD is also a consequence of its unique role as a reserve currency

in the global economy.
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2.4.2 Progressive Structure

Now, we want to have a closer look at a structure with even lower correlations than

in the conservative structure shown in the previous section.19 In this case, the BBB+

tranche is being dropped, leaving only three tranches. The AAA tranche now repre-

sents more than 95% of the total issuance. We can see the structure in panel C of Table

2.4. Due to the structure of the tranches, the new yield curve will be nearly an AAA

curve which is close to the current German one. The newly created yield curve in this

structure can be seen in Figure 2.3. We see a flattened yield curve with only small

changes in the short horizon in comparison to the previous curve but with a larger

downward shift for the long horizon. This will influence the different Nelson-Siegel

factors and will result in an even stronger exchange rate impact.

This assumption is proven by the numerical results which can be seen in Table 2.8.

The setup of the table is the same as in the previous section. The differences in crucial

factors are rising in absolute values.

The shock of introducing structured Eurobonds in January or February on the rel-

ative slope factor for US-Dollar would be 0.62 and 0.67, respectively. This delivers an

effect of -3.31% to -3.57% on the exchange rate against the US-Dollar. In this case, the

Euro will again face a depreciation of 3.31% to 3.57% the following 12 months after

introducing structured Eurobonds. This is equivalent to an increase of the effect by

more than two percentage points compared to the results from the conservative struc-

ture. Adding the expectations from market participants does not change the picture,

and the Euro is still facing a depreciation of 4.11% in January and 3.21% in February.

As in the previous section, the other foreign currencies would depreciate against

the Euro. The effect is stronger than in the previous scenario, now ranging from 4.72%

to 5.37% for British Pound, which is more than three percentage points higher than in

the conservative structure. For Chinese Renminbi, the impact is 1.74% and 1.43% for

an introduction in January and February, respectively. The picture is the same for Swiss

Franc with a stronger impact in January (3.27%) and a decline in February (2.74%).

This reflects a growth of more than one percentage point for Chinese Renminbi and

nearly two percentage points for Swiss Franc. This strong impact can be explained by

the drop of nearly 25% in the BBB tranches and an increase of nearly 40% in the AAA

tranche. The addition of the market expectations in the Consensus Forecasts dataset

delivers 7.67% (5.10%) / 3.61% (3.95%) / 4.94% (5.64%) for GBP / CNY / CHF in

January (February).

19An examination of an ordinary structure with higher assumed correlations than in this case, but
lower than in the conservative structure, can be found in Appendix B.4. The results lie between the ones
of the conservative and progressive structure.
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Panel A: January 2018
Factor Current Values New Values Difference

Panel A.1: US-Dollar
Level -0.651 -1.504 -0.853
Slope -0.991 -0.367 0.624
Curvature -4.711 -3.499 1.211

Panel A.2: British Pound
Level 0.221 -0.669 -0.890
Slope -0.930 -0.291 0.639
Curvature -2.471 -1.098 1.372

Panel A.3: Chinese Renminbi
Level -2.059 -2.938 -0.879
Slope -1.627 -0.982 0.645
Curvature -3.705 -2.432 1.273

Panel A.4: Swiss Franc
Level 1.343 0.710 -0.633
Slope -0.835 -0.513 0.321
Curvature -2.284 -0.753 1.531

Panel B: February 2018
Panel B.1: US-Dollar
Level -0.836 -1.691 -0.855
Slope -1.044 -0.372 0.672
Curvature -4.433 -3.369 1.064

Panel B.2: British Pound
Level 0.295 -0.549 -0.844
Slope -1.016 -0.356 0.660
Curvature -3.111 -2.061 1.050

Panel B.3: Chinese Renminbi
Level -1.995 -2.841 -0.847
Slope -1.484 -0.818 0.665
Curvature -3.561 -2.516 1.045

Panel B.4: Swiss Franc
Level 1.268 0.665 -0.603
Slope -0.852 -0.505 0.347
Curvature -1.761 -0.477 1.284

Table 2.8: The effect of introducing structured Eurobonds in a progressive structure on the
exchange rate EUR/USD, EUR/GBP, EUR/CNY and EUR/CHF. The introduction months are
January and February 2018.
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We again build a trade-weighted exchange rate. As before, the Euro would appre-

ciate, and the other three currency pairs would offset the impact on the exchange rate

of EUR/USD. The effect ranges from 1.17% to 1.26% in January and 0.76% to 0.87% in

February. On average, the Euro would appreciate more than 1% in this structure and

a trade-related exchange rate.

2.5 Robustness check

2.5.1 Introduction Time

We can observe that the impact on the exchange rates crucially depends on the time

of introduction of structured Eurobonds. The effect can be more than 0.5 percentage

points larger if Eurobonds are issued in January compared to February. Therefore, a

historical analysis with several introduction months is examined. The focus lies on

the past twelve months and simulates an introduction every month, starting in March

2017. The connection between changes of the relative Nelson-Siegel factors and ex-

change rates is fixed to the results displayed in Tables 2.2 and 2.3. We again assume

an issuance with a conservative structure because the progressive structure does not

change the direction of the impact and only makes it stronger.

For the examination, the minimum, mean, and maximum of changes in the relative

Nelson-Siegel factors are built. This can be seen in Table 2.9. It can be seen that

for US-Dollar, British Pound, and Chinese Renminbi, the changes in the factors are

similar. For Swiss Franc, the changes are smaller. This is due to a relatively steady

yield curve in Switzerland in the observed time horizon. In other countries, there are

larger changes in the yield curves, and they are moving in similar directions.

Now, we evaluate the impact of the changes on the exchange rates. The previous

results are confirmed by the changes obtained for more introduction times. It can be

concluded that the effect on the exchange rate of EUR/USD is between -0.61% and

-1.50% with an average change of -1.16% in the past twelve months. The minimum is

reached in April 2017 and the maximum in September 2017. In every month, the Euro

would face a depreciation. The results for January and February 2018 are close to the

average value.

The Euro will again appreciate against the other three foreign currencies. The min-

imum annualized impact for British Pound is 1.79% with an introduction in February

2018 and can increase up to 3.67% for an introduction in April 2017 with an average

value of 2.79%. It can be seen that the results for January and February 2018 obtained

above are at the lower bound for the last twelve months. Therefore, the previous es-
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Factor Min. Change Mean Change Max. Change

Panel A: USD
Level -0.300 -0.373 -0.411
Slope 0.155 0.218 0.283
Curvature 0.381 0.616 0.893

Panel B: GBP
Level -0.301 -0.390 -0.444
Slope 0.117 0.226 0.307
Curvature 0.383 0.675 0.959

Panel C: CNY
Level -0.304 -0.389 -0.430
Slope 0.128 0.230 0.297
Curvature 0.389 0.655 0.931

Panel D: CHF
Level 0.002 -0.057 -0.121
Slope -0.058 -0.131 -0.258
Curvature 0.303 0.506 0.693

Table 2.9: The effect of introducing structured Eurobonds in a conservative structure on all
four significant foreign currencies. The introduction months are March 2017 to February 2018.
It displays the minimum, mean, and maximum change in the relative Nelson-Siegel factors.

timation is conservative. The same can be seen for Chinese Renminbi. The minimum

effect is 0.53% in February 2018, and it reaches a maximum of 1.27% in April 2017

with an average change of 0.92%. The results for January and February 2018 are again

at the lower bound.

Against Swiss Franc, the Euro will also appreciate. The minimum annualized im-

pact is 0.65% for an introduction in August 2017and reaches 1.48% for an introduction

in February 2018. The average effect is 1.11%. The results for January and February

2018 are at the upper bound of the last twelve months.

As in the previous chapters, a trade-weighted exchange rate is consulted to measure

an effective exchange rate. In every month the Euro will appreciate. The minimum

impact in the last twelve months is 0.39%, and the maximum is 1.27%, with an average

of 0.74%. Both the maximum and the minimum are reached when the import shares

are used as weights. The minimum is reached for an introduction in February 2018

and the maximum for April 2017. Therefore, the results in the previous chapters are

conservative because the effect of the issuance of structured Eurobonds would have

been stronger in the preceding months.
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2.5.2 Uncertainty measure

Besides the impact of the relative yield curve on the exchange rate, we also like to have

a view on a global uncertainty measure which can be an additional explanation of the

exchange rate shift. For this, the CBOE Volatility Index (VIX), which is calculated

daily by the Chicago Board Options Exchange, will be used. It represents the implied

volatility of options on the S&P 500 index. The S&P 500 index consists of the 500

largest US companies with respect to their market capitalization.20 Regression (2.2) is

modified by adding the VIX and results in

y(m)− y∗(m) = LRt + SRt

(
1− e−λm

λm

)
+CRt

(
1− e−λm

λm
− e−λm

)
+ δ1V IX + εt. (2.7)

Data for the VIX is taken from Reuters Datastream for the same time horizon as for the

yield curves resulting in 162 observations. For the regression, we again use month-end

data. This delivers the connection displayed in Table 2.10.

Euro / US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -10.031* -8.064* -8.197* -6.169 -4.224 -3.879
(-1.851) (-1.786) (-1.933) (-1.567) (-1.338) (-1.378)

Slope -9.391*** -8.893*** -9.561*** -6.917*** -4.865** -4.531**

(-2.652) (-2.994) (-3.410) (-2.637) (-2.325) (-2.371)
Curvature 0.777 0.865 0.276 -0.076 -0.114 -0.568

(0.442) (0.576) (0.191) (-0.055) (-0.100) (-0.541)
VIX 1.455*** 0.659* 0.751** 0.477 0.222 0.336

(3.366) (1.828) (2.261) (1.518) (0.884) (1.464)

R2 0.082 0.138 0.317 0.366 0.416 0.532

Table 2.10: The effect of uncertainty, measured by the index VIX, beside the Nelson-Siegel
factors on the exchange rate changes. The significance levels are * 10 percent; ** 5 percent and
*** 1 percent. In parenthesis below the factor, the rescaled t-statistic is displayed.

The relative slope factor is now highly significant for every time horizon, and the

values for this factor are higher than in the baseline case presented in Section 2.3.2.

Also, the VIX and the level factor are significant for every time horizon below 12

months. The VIX can describe the higher significance of both factors. As the level and

the slope of a yield curve are explaining long-term interest rate and country growth ex-

pectations, an uncertainty measure smooths out these disturbances. The R2 reaches a

maximum of 0.532 in this particular scenario with the VIX as an additional parameter.

20Although it is a specific US index, the VIX can be used as a measure for global uncertainty due to
spillover effects from the US stock market to others.
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The higher values of the slope factor are a hint that the first evaluations are too

conservative. The connection between the Nelson-Siegel factors and the exchange rate

becomes stronger, and thus, the shocks after introducing structured Eurobonds will

have a stronger impact. To emphasize this, the exchange rate influence in a conserva-

tive structure is calculated. The effect on the other structure is the same. We can see

an effect of the slope factor of -6.917 in the regression results displayed in Table 2.10

for a 12-month horizon. Since this does not influence the change of the EMU yield

curve, the difference in Table 2.5 to find the change in the slope factor can be used.

The impact on the factor is between 0.20 and 0.22. This leads – with Eq.(2.6) – to an

exchange rate effect between -1.38% and -1.52% which is higher than in the setting of

the previous chapter. Again, this sole effect predicts a depreciation of the Euro against

the US-Dollar. The regression for the other three foreign currencies delivers similar

results. R2 is growing compared to the examination in the baseline scenario. For CHF

and CNY, the curvature factor loses its significance for every time horizon. In the 12-

month horizon, the rescaled t-statistic shows that the curvature factor is close to the

10% significance level. Also, the sign and the strength of value are nearly the same

compared to the baseline scenario. Therefore, the effect on the exchange rate stays the

same.

The level factor loses its significance for GBP but is close to the 10% significance

level in a 6-month horizon. With this included, the direction of the impact on the

exchange rate stays the same. When the focus is only on the slope as the remaining

significant factor, the impact reverts and the Euro will depreciate.

We can conclude that the inclusion of this uncertainty measure increases the ex-

planatory power of the regression.21 Besides, it supports our findings and the direction

of the effect on exchange rates. However, the effect is stronger in this scenario which

might be explained by the impact of the uncertainty measure on the three Nelson-

Siegel factors. For a more conservative estimation, the baseline scenario shall be con-

sulted.

2.5.3 Post Lehman Default

In the previous results, we have seen that the Euro is only depreciating against the

US-Dollar. This is counter-intuitive to the original assumption that the Euro will be

strengthened in its role as a reserve currency. A subsample with a shorter time horizon

that drops the more distant past might be more accurate in this context. To shed some

21An alternative uncertainty measure with the Global, European, and US EPU by Baker et al. (2016)
was also tested. It supports the previous results gained by including the VIX, but the R2 is slightly
lower. Nevertheless, the sign of impact is not changing and is therefore not discussed in more detail.
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light on this issue, the focus now lies on the time after Lehman Brothers defaulted

in September 2008. We start the time horizon in December 2009 and again end in

February 2018. Since the time horizon starts in December 2009 with more than a year

past the Lehman default, the negative effects that arise solely from the financial crisis

can be nearly omitted. In December 2009 the interest rates in the USA were low, but

they rose to an ordinary value by February 2018. In contrast, the interest rates in the

Eurozone continue to be low. The analysis is again run for all five foreign currencies.

JPY is included to check whether it gains some significance in the smaller sample.

The connection between the exchange rate and the yield curve needs to be recalcu-

lated. The results can be seen in Tables 2.11 and 2.12.

Panel A: US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -16.499* -14.065* -12.812 -12.641 -7.136 -1.231
(-1.830) (-1.757) (-1.629) (-1.492) (-0.853) (-0.121)

Slope -17.716** -14.924** -14.218** -14.794* -9.226 -2.488
(-2.416) (-2.222) (-2.068) (-1.855) (-1.176) (-0.264)

Curvature 2.901 1.943 1.259 0.615 0.050 -0.206
(1.317) (1.010) (0.692) (0.364) (0.033) (-0.13)

R2 0.029 0.111 0.199 0.313 0.243 0.015

Panel B: British Pound
Level -22.742** -14.473 -14.470* -12.922 -9.233 -3.263

(-2.099) (-1.608) (-1.685) (-1.472) (-1.011) (-0.340)
Slope -17.947** -13.297* -12.998* -11.940 -7.688 -2.159

(-2.034) (-1.792) (-1.796) (-1.551) (-0.946) (-0.256)
Curvature 1.192 0.230 0.314 -0.071 -0.389 -0.953

(0.621) (0.141) (0.196) (-0.040) (-0.213) (-0.550)

R2 0.019 0.073 0.166 0.265 0.242 0.256

Table 2.11: The connection of different Nelson-Siegel factors and their predictive power for
exchange rate changes with the currency pair EUR/USD and EUR/GBP. The significance levels
are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis below the factor, the rescaled
t-statistic is displayed.

There are several changes in the connection of the Nelson-Siegel parameters to the

exchange rate in comparison to Tables 2.2 and 2.3. For USD, the level factor gets sig-

nificant for a one- and three-month horizon and the slope factor is now significant for

every time horizon up to 12 months. The factors are larger in absolute values than in

the previous setting, e.g. the impact of the slope changes from -5.309 to -14.794 in

a 12-month horizon. In the case of GBP, the level and slope factor gain significance

for the one-month horizon, but the level factor loses its significance in the 3-month

horizon. The factors are again larger in absolute values. CNY loses its significance
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Panel A: Chinese Renminbi
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -7.929 -5.026 -3.205 -2.995 -2.324 -2.146
(-1.445) (-0.947) (-0.576) (-0.571) (-0.553) (-0.511)

Slope -5.278 -2.515 -0.494 1.119 1.798 1.497
(-1.023) (-0.512) (-0.098) (0.235) (0.479) (0.413)

Curvature 4.749 2.671 1.897 2.943 2.234 1.424
(1.554) (0.946) (0.674) (1.130) (1.088) (0.694)

R2 0.028 0.035 0.047 0.215 0.388 0.348

Panel B: Swiss Franc
Level -9.573 -2.580 1.029 0.961 1.591 3.296

(-1.218) (-0.317) (0.127) (0.141) (0.261) (0.578)
Slope -10.084 -2.934 1.430 1.069 1.543 3.302

(-1.345) (-0.366) (0.186) (0.167) (0.275) (0.652)
Curvature 2.347 3.085 3.170* 3.177** 2.619* 1.829

(1.263) (1.608) (1.664) (2.003) (1.895) (1.454)

R2 0.029 0.048 0.145 0.365 0.471 0.508

Panel C: Japanese Yen
Level -17.262 -3.579 3.650 1.381 8.867 6.042

(-1.407) (-0.375) (0.208) (0.079) (0.523) (0.412)
Slope -25.062 -6.630 -1.778 -5.403 3.290 2.785

(-1.465) (-0.375) (-0.097) (-0.290) (0.184) (0.180)
Curvature -0.001 -0.030 -1.847 -1.351 -0.505 1.500

(-0.003) (-0.010) (-0.525) (-0.375) (-0.139) (0.295)

R2 0.025 0.007 0.027 0.080 0.135 0.293

Table 2.12: The connection of different Nelson-Siegel factors and their predictive power for
exchange rate changes with the currency pair EUR/CNY, EUR/CHF, and EUR/JPY. The signif-
icance levels are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis below the factor,
the rescaled t-statistic is displayed.

for every time horizon and is therefore excluded from the examination of this sub-

sample. Nevertheless, it is observable that the signs of the factors are the same and

as a consequence, it would deliver an appreciation of the Euro. For CHF, the curva-

ture factor grows in significance and reaches the 10% significance level also for a 6-

and 18-months horizon. JPY stays insignificant for every time horizon and is therefore

again excluded in the further examinations. For better comparability, we again focus

on the 12 months horizon for USD and CHF, and on the 6-months horizon for GBP.

An introduction of structured Eurobonds in a conservative structure is assumed. The

differences in the Nelson-Siegel factors are the same as before and can be seen in Table

2.5 and 2.6.
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An introduction in January delivers an impact of -2.99%. This is again equivalent

to a depreciation of the Euro against the US-Dollar. The effect increases for an in-

troduction in February where the impact -3.25%.22 The other two foreign currencies

– GBP and CHF – show the same picture as in the full-sample case. The Euro would

face an annualized appreciation of 2.15% (1.50%) in January (February) against British

Pound. This is slightly lower than in the baseline case. The effect is stronger for CHF.

Here the Euro would appreciate 2.20% (1.96%) in January (February), which is nearly

one percentage point larger than in the baseline case. Ultimately, it is notable that the

direction of the effect stays the same for every of the foreign currency.

For a complete examination of this sample split, we also focus on the era where the

Lehman default is included. The sample now starts in September 2004 and reaches to

November 2009, which is contrary to the first part. Again, the first examination is on

the connection between the Nelson-Siegel factors and the exchange rate predictability.

Every currency pair loses significance for several time horizons besides of Japanese

Yen compared to the full sample. The US-Dollar stays significant in the level factor,

but only in a three and six-month horizon. The sign stays the same and implies a

depreciation of the Euro. In the case of British Pound, the level factor is not significant

for any time horizon, and the slope is significant for one month and curvature for

three months. The factors are positive and an introduction of structured Eurobonds

would shift the yield curve in a way that both factors rise and as a result, the Euro

would appreciate. Swiss Franc is not significant for any time horizon. Nevertheless,

the sign for the curvature factor stays the same compared to the baseline case for a

twelve-month horizon, which is an indicator that the Euro would again appreciate. The

curvature factor remains significant for Chinese Renminbi in a twelve-month horizon

but is insignificant for the six-month horizon. The sign stays the same as before, but the

factor decreases. Therefore, the Euro would again appreciate, but the effect is smaller

than before.

A contrary picture can be seen for the Japanese Yen. In the previous cases, the cur-

rency has not been significant for any time horizon. In this subsample, the level factor

is significant for every time horizon beside one month. The focus lies on the twelve-

month horizon for a better comparison to the previously obtained results. Here, the

regression delivers a connection of -23.267 between changes in the relative level factor

and exchange rate changes. Therefore, if the relative level decreases by one percent,

the Euro would appreciate by 23.267%. In the conservative structure, the level factor

22An introduction through the other structure also delivers a depreciation of the Euro. The maximum
value is -9.94% in a progressive structure with an introduction in February.
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would change by -0.55 and -0.48 in January and February, respectively. This delivers

an impact of 12.77% and 10.19% on the currency pair EUR/JPY and is equivalent to

an appreciation of the Euro. The effect is again stronger for the progressive structure

with an appreciation of the Euro of 20.42% and 19.52%. Due to the large impact and

the fact that the currency pair shows only significance in this special subsample, the

validity is to be seen as critical and is therefore not displayed in detail. Nevertheless,

it indicates that the Euro would also appreciate against Japanese Yen when structured

Eurobonds will be issued.

2.6 Conclusion

An issuance of structured Eurobonds through an ABS-approach would not only influ-

ence the European sentiment but would also have a severe impact on capital markets.

The fragmentation of sovereign bond markets in the European Monetary Union would

vanish, and the interest burden of every single country would be reduced. The impact

of an introduction on the FX market has not yet been examined although the strength-

ening of the Euro resulting from a new bond system was mentioned in recent research

references.

Using the Nelson-Siegel model and previous methods established by Chen and

Tsang (2013), we can find a significant connection between exchange rate predictabil-

ity and the relative yield curve of the European Monetary Union and other countries.

This connection is significant in all Nelson-Siegel factors. When Eurobonds are issued

with an ABS-approach, an issuance on a country level is not necessary and individual

yield curves are no longer existing. As a consequence, a new yield curve on an EMU-

level would replace the current one. Dependent on the structure of issuance, the shape

will be different, ranging from a nearly AAA yield curve to a mixed yield curve near

to an AA curve, e.g. like for Belgium or Spain. The new yield curve causes a shock by

influencing the relative Nelson-Siegel factors. This shift has an impact between -1.07%

and -3.57% on the exchange rate of Euro against US-Dollar, dependent on the structure

and time of introduction of structured Eurobonds. The impact describes a depreciation

of the Euro against US-Dollar in the following 12 months. The other three examined

foreign currencies – British Pound, Chinese Renminbi and Swiss Franc – will face de-

preciation, ergo the Euro will appreciate. The strength of this effect also depends on

issuing time and structure. It will reach an impact between 0.53% and 5.37% in the

following 12 months after the issuance of structured Eurobonds. The Japanese Yen was

also examined, but it has not shown significance for any time horizon.
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A post-crisis sample is also analysed. Here, the direction of the effect stays the

same and grows in its strength. In the end, it seems very likely that the Euro faces an

appreciation against every foreign currency, but not the US-Dollar. This might be a

consequence of the unique position of the US-Dollar in the exchange rate market and

as a reserve currency.
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Appendix B

B.1 Modified Lambda

The choice of λ as 0.0609 in the Nelson-Siegel model is influenced by Diebold and Li

(2006b) and Chen and Tsang (2013). At this value, the maximum impact of λ on the

curvature is at 30 months. As we see in the regression results, the curvature factor is

only relevant in predicting the exchange rate for CNY and CHF. Other authors such

as Afonso and Martins (2012) do not choose a global value, but a local value for every

observation time. This value is a result of the least square model. Using this approach

for the model from Eq.(2.2) with the European and US yield curve, the median value

for λ is 0.0380. This value implies a maximum loading of the curvature factor at a

maturity of 47 months, and it is slower increasing than in the baseline choice. Also,

the loading of the slope factor is less rapidly decreasing, which implies a longer effect

of this factor. Both factors are getting similar after 80 months in the baseline case and

after 145 months in this case. This can also be seen in Figure B1. Here, the different

impact on the Nelson-Siegel factor is presented.

Figure B1: Factor impact with λ = 0.0609 and λ = 0.038.

Now the value of 0.0380 is used to calculate the three Nelson-Siegel factors for

Eq.(2.2) with the European and US yield curve. Following this, we use the linear re-

gression (2.3) with the new λ and the exchange rate to find a link between the pre-
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dictability of exchange rates and the change of the three factors. The results are dis-

played in Table B1. We focus on the examination of US-Dollar as foreign currency

because the results for the other currencies are showing the same characteristics and

are therefore not explicitly displayed here.

Euro / US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -4.712 -5.835 -5.538 -4.565 -3.526 -2.503
(-0.906) (-1.354) (-1.295) (-1.158) (-1.158) (-0.792)

Slope -3.522 -5.779** -6.328** -5.016* -3.977** -3.482*

(-1.099) (-2.147) (-2.329) (-1.951) (-2.011) (-1.705)
Curvature 2.548 2.055 1.673 0.879 0.474 0.026

(1.592) (1.525) (1.226) (0.676) (0.461) (0.024)

R2 0.022 0.098 0.202 0.268 0.376 0.360

Table B1: The connection of different Nelson-Siegel factors and their predictive power for
exchange rate changes for EUR/USD. Now there is a new chosen λ=0.0380. The significance
levels are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis below the factor, the
rescaled t-statistic is displayed.

Comparing these results with the results from Table 2.2, we can see that the signif-

icance in the slope factor is getting weaker for 12 months, but it remains significant.

We will again mainly focus on the slope factor as a predictive instrument. Although

the values are changing, the value for our main significant factor – slope – is close to

the one generated with the original value of λ in the longest horizon of 24 months.

Also, the sign of the factor is the same, so a change in the yield curve will have the

same effect on the exchange rate as we have examined before. The focus lies only on

the conservative and progressive structure since they are representing two extreme

positions in the model. The yield curves are again built using the ECB-capital commit-

ment as macroeconomic indicator. This calculation method ensures consistency and

comparability between the computed outcomes.

As before, the λ needs to be recalculated when the new yield curve evolves after the

issuing of structured Eurobonds. The non-linear least square model delivers an opti-

mal value of λ for the composed yield curve in the conservative structure of 0.0426 for

January and 0.0458 for February. Results for the conservative structure are presented

in panel A of Table B2.

In the first columns, the current (without structured Eurobonds) and new values

(with structured Eurobonds) calculated with the optimal values of λ are shown. As

above mentioned, the values are 0.0426 (Jan.) and 0.0458 (Feb.) for these columns.

After this, the difference between both values is shown and for comparison purposes

in the last column, the results from the initial λ presented in Table 2.5. Comparing
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Factor Current Values New Values ∆: Mod. λ ∆: λ = 0.0609

Panel A: Cons. Structure

Panel A.1: Jan. 2018
Level -0.359 -0.923 -0.564 -0.318
Slope -1.569 -1.059 0.510 0.202
Curv. -4.064 -3.676 0.388 0.449

Panel A.2: Feb. 2018
Level -0.570 -1.136 -0.566 -0.300
Slope -1.581 -0.986 0.595 0.220
Curv. -3.741 -3.607 0.134 0.381

Panel B: Prog. Structure

Panel B.1: Jan. 2018
Level -0.359 -1.381 -1.022 -0.853
Slope -1.569 -0.625 0.944 0.624
Curv. -4.064 -3.312 0.752 1.211

Panel B.2: Feb. 2018
Level -0.570 -1.591 -1.021 -0.855
Slope -1.581 -0.586 0.995 0.672
Curv. -3.741 -3.199 0.542 1.064

Table B2: The effect of introducing structured Eurobonds in a conservative and progressive
structure on the exchange rate EUR/USD. The introduction months are January and February
2018.

the values and differences, it can be seen that the relative factors are changing, but the

sign of the differences stay the same. Finally, the shift in the relative slope factor is

getting stronger with the modified λ. Since the sign of the shift and the regression pa-

rameters presented in Table B1 are the same as in the baseline case, there will also be

a depreciation of the Euro against US-Dollar in the following 12 months after the in-

troduction of structured Eurobonds. When the focus lies on the results for a 12-month

horizon, the original impact is a 1.07% depreciation for January. With the modified λ,

the depreciation reaches 2.56% due to the relative slope factor for an introduction in

January. The same pattern can be observed for the following introduction month. The

difference in the slope factor is higher than in January. As a consequence, the impact

will be higher. The original λ has a depreciation of 1.17% as a consequence. With

the modified λ, a depreciation of 2.98% in the following 12 months can be concluded.

Now we want to examine the progressive structure and test whether the modification

has the same effect on the exchange rate.

In this case, the non-linear least square model delivers an optimal value of λ for the

composed yield curve in the progressive structure of 0.0464 for January and 0.0483 for
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February. The values for λ change – compared to the conservative structure – due to

a new composition of the yield curve and therefore a new shape. Panel B of Table B2

shows the results. When the results of the original and modified λ – as highlighted

in the last two columns of Table B2 – are compared, the differences in the level factor

are close to each other and for the curvature factor are vast. The difference in the

slope factor is still our main factor of interest. Since the signs are the same, there

will also be a depreciation of the Euro against the US-Dollar. We initially found a

depreciation of 3.31% for January and 3.57% for February in the following 12 months

after introducing structured Eurobonds. In the modified setting, the effect is even

stronger. Here, an impact of 4.74% and 4.99% on the exchange rate can be observed.

Therefore, the original choice of λ as 0.0609 delivers more conservative results

since the absolute value of the annualized depreciation is lower than in the case with

a modified λ.

B.2 Linearity of relative Nelson-Siegel Factors

The impact of an alternative way to calculate the relative Nelson-Siegel factors – when

not exploiting the linearity of the model – shall be presented here. In Section 2.3.2 the

equation

y(m) = Lt + St

(
1− e−λm

λm

)
+Ct

(
1− e−λm

λm
− e−λm

)
is introduced as Nelson-Siegel model. Chen and Tsang (2013) make use of the linearity

of the model to construct

y(m)− y∗(m) = LRt + SRt

(
1− e−λm

λm

)
+CRt

(
1− e−λm

λm
− e−λm

)
+ εt

and connect it to exchange rate changes by a linear regression. To check for robustness

of the calculation of the relative factors, another way shall be discussed here.

The factors for the two involved countries, e.g. Lt and L∗t, are calculated using

Eq.(2.1) and LR,Lt is determined by forming the difference,

LR,Lt = Lt −L∗t , (B1)

where LR,Lt is the linear relative level factor. It has the same meaning as the level factor

in the previous sections but the notation is slightly changed to avoid confusion. The

focus of the examination lies on the currency pair EUR/USD, with US-Dollar again in

the role of the foreign currency marked with the asterisk. Descriptive statistics for the
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different Nelson-Siegel factors and the difference ∆ = LRt − L
R,L
t , where LRt is a result of

Eq.(2.3), can be found in Table B3.

Minimum Median Mean Maximum Std.Dev

Panel A: Factors from Eq.(B1)
Level -1.210 -0.148 0.062 2.411 0.812
Slope -1.777 0.015 0.052 2.662 0.958
Curvature -5.158 -0.259 -0.580 5.191 2.269

Panel B: ∆ = LRt −L
R,L
t

Level -0.213 -0.059 -0.043 0.162 0.083
Slope -0.694 -0.183 -0.179 0.165 0.137
Curvature -0.265 0.458 0.826 2.054 0.418

Table B3: The descriptive statistics for the three different Nelson-Siegel factors out of 162
observations.

Panel B shows that the difference between both methods is minimal for the level

factor, is growing – but still small – for slope and has its peak for the curvature. The

results give a hint that especially the slope is often higher when using the approach

from Eq.(B1), and the curvature, on the other hand, is higher when applying Eq.(2.2).

The same regression as in Eq.(2.3) is run with LR,Lt , SR,Lt , and CR,Lt instead of the original

relative Nelson-Siegel factors. The results of this calculation can be seen in Table B4.

Euro / US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level -3.612 -4.394 -4.499 -3.295 -2.091 -1.216
(-0.706) (-1.029) (-1.056) (-0.838) (-0.689) (-0.398)

Slope -5.023 -6.566** -6.880** -5.367** -4.157** -3.489*

(-1.530) (-2.379) (-2.475) (-2.066) (-2.085) (-1.748)
Curvature 1.997 1.169 0.824 0.005 -0.413 -0.818

(1.117) (0.764) (0.523) (0.003) (-0.346) (-0.676)

R2 0.002 0.087 0.186 0.254 0.364 0.386

Table B4: The relative Nelson-Siegel factors are calculated the alternative way as displayed in
Eq.(B1). The significance levels are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis
below the factor, the rescaled t-statistic is displayed.

In comparison to the results in panel A of Table 2.2, it is noticeable that the slope

factor does not lose any significance. It is significant for every time horizon besides one

month. The main point of interest is that neither the sign nor the size of the slope factor

– which is the main factor in this evaluation – is changing compared to the previous

results. The difference in the slope factor to the previous results is not larger than 0.1

points for any significant time horizon. Also, R2 has a similar size as in the baseline
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case. Thus, we can conclude that the direction of the impact of the introduction of

structured Eurobonds stays the same. Nevertheless, it is a bit stronger because the

connection is slightly larger in absolute values.23

B.3 Regression results of single Nelson-Siegel factors

The connection of every relative Nelson-Siegel factor with the exchange rate shall be

examined isolated here. For a detailed analysis, we focus on the connection between

them and the currency pair Euro and US-Dollar, as displayed in Figure 2.2. The focus

again lies on the impact on the exchange rate change.

Therefore, Eq.(2.3) is split into

∆st+m = β1
m,0 + βm,1L

R
t +u1

t+m,

∆st+m = β2
m,0 + βm,2S

R
t +u2

t+m,

∆st+m = β3
m,0 + βm,3C

R
t +u3

t+m.

(B2)

The time horizons for m are the same as in the previous analysis. The results are

presented in Table B5.

Euro / US-Dollar
1 Month 3 Months 6 Months 12 Months 18 Months 24 Months

Level 1.544 -0.331 -0.671 -1.447 -1.512 -1.483
(0.412) (-0.101) (-0.194) (-0.432) (-0.532) (-0.503)

R2 0.001 0.001 0.001 0.008 0.025 0.036

Slope -4.077 -5.758** -6.032** -4.333* -3.298 -2.719
(-1.293) (-2.166) (-2.240) (-1.682) (-1.593) (-1.265)

R2 0.004 0.076 0.158 0.181 0.238 0.214

Curvature 1.115 0.423 0.087 -0.315 -0.425 -0.659
(0.821) (0.348) (0.066) (-0.236) (-0.367) (-0.551)

R2 0.004 0.002 0.000 0.004 0.009 0.043

Table B5: The relative Nelson-Siegel factors are calculated the alternative way as displayed in
Eq.(B2). The significance levels are * 10 percent; ** 5 percent and *** 1 percent. In parenthesis
below the factor, the rescaled t-statistic is displayed.

They support the observed connection, which can be seen in panel A of Table

2.2, for the multi-linear regression from Eq.(2.3) between the relative yield curve –

or rather the relative Nelson-Siegel factors – and the exchange rate trend. The only

23The result and its implications remain the same for the three other foreign currencies. The results
can be delivered upon request.
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parameter, which remains significant, is the slope, but it is only significant for three

time horizons (3 months / 6 months / 12 months). The other two parameters do not

show any significance and their R2 is very low. In the single parameter connection, the

slope factor seems to be the main parameter in driving the exchange rate trend for the

currency pair Euro and US-Dollar.

The results for the other foreign currencies are mixed. Whereas GBP and CNY lose

all of their significance for every time horizon and factor, CHF remains significant in

the curvature parameter for a 12- and 18-months horizon. The curvature is also the

main describing parameter to calculate the impact of the introduction of structured

Eurobonds on the exchange rate EUR/CHF in our baseline case. Besides the loss of

significance for some relevant parameters, their sign stays the same compared to the

previous regression, when all Nelson-Siegel parameters were included. This is another

confirmation that the results and the direction of the impact on the exchange rates are

correct.

B.4 Evaluation of Ordinary Structure

The ordinary structure is the baseline scenario in the work of Hild et al. (2014). This

structure is built with less rigorous restrictions on the correlation than the conservative

structure. The structure is presented in panel B of Table 2.4. Compared with the

conservative structure, the BBB tranche drops out and the AAA tranche grows above

85% thickness. Figure B2 presents the yield curve shape in this structure compared to

the actual one.

Due to the greater thickness of the AAA part, this yield curve has a lower long-

term level and when the other yield curves are subtracted from it, the relative level

factor will decrease. The similar values in the short term can be explained with the

expansive monetary policy of the ECB, which suppresses individual risk premium.

Because the level factor is again lower than in the actual yield curve, we expect an

appreciation of the Euro against British Pound. Since the level factor is also lower

than in the conservative structure, the effect will be stronger than before. The relative

Nelson-Siegel factors and the results for January and February can be seen in Table B6.

It can be seen that the differences in the relative Nelson-Siegel factors are getting

greater than when using the conservative structure. They range between 0.55 and

0.60 for the relative slope factor with US-Dollar as foreign currency. Following this

result, an impact of -2.92% to -3.16% on the exchange rate can be concluded. This also

represents a depreciation of the Euro against the US-Dollar the following 12 months

after introducing structured Eurobonds.
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Panel A: January 2018
Factor Current Values New Values Difference

Panel A.1: US-Dollar
Level -0.651 -1.408 -0.757
Slope -0.991 -0.441 0.550
Curvature -4.711 -3.636 1.075

Panel A.2: British Pound
Level 0.221 -0.572 -0.793
Slope -0.930 -0.363 0.567
Curvature -2.471 -1.249 1.221

Panel A.3: Chinese Renminbi
Level -2.059 -2.841 -0.782
Slope -1.627 -1.057 0.570
Curvature -3.705 -2.572 1.133

Panel A.4: Swiss Franc
Level 1.343 0.807 -0.536
Slope -0.835 -0.586 0.249
Curvature -2.284 -0.904 1.380

Panel B: February 2018
Panel B.1: US-Dollar
Level -0.836 -1.592 -0.755
Slope -1.044 -0.449 0.595
Curvature -4.433 -3.496 0.937

Panel B.2: British Pound
Level 0.295 -0.452 -0.748
Slope -1.016 -0.430 0.586
Curvature -3.111 -2.190 0.921

Panel B.3: Chinese Renminbi
Level -1.995 -2.744 -0.749
Slope -1.484 -0.894 0.589
Curvature -3.561 -2.641 0.921

Panel B.4: Swiss Franc
Level 1.268 0.761 -0.507
Slope -0.852 -0.579 0.273
Curvature -1.761 -0.606 1.155

Table B6: The effect of introducing structured Eurobonds in an ordinary structure on the ex-
change rate EUR/USD, EUR/GBP, EUR/CNY and EUR/CHF. The introduction months are Jan-
uary and February 2018.
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Figure B2: The European and newly constructed Yield Curve with an ordinary structure for
End of February 2018 Data.

The same can be seen for the other three foreign currencies where the direction of

impact is the same as before, but now the impact is stronger. It grows to 4.80% in

January and 4.17% in February for British Pound, which is more than two percentage

points greater than in the conservative structure. The impact on CNY is rising to 1.55%

in January and 1.26% in February, which is about 0.5 percentage points higher than

for a conservative structure. As before the Euro would face an appreciation. The same

picture is drawn for Swiss Franc with impacts of 2.94% and 2.47%. Several factors

drive the drop on the impact from January to February, which can be seen for every

foreign currency. One is the change in the foreign yield curves, and the other is changes

in the yield curves of the components of the new curve in the EMU. The two factors

sum up and result in this drop in the impact. The same pattern can be seen for the

conservative structure and the progressive structure.

As in the previous sections, we also look at the trade-related exchange rate. Com-

bining the trade shares of the four relevant countries with their impact on the exchange

rate delivers an appreciation of the Euro. This appreciation is in a range of 1.06% to

1.13% in January and 0.67% to 0.77% in February. On average, it is slightly below 1%.

Nevertheless, in this combination, the depreciation of the Euro against the US-Dollar

is offset.
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3 The Extent of Jensen’s Inequality

Evaluating the Approximation Bias in
Forward-Looking DSGE Models

Abstract

Occurring in non-linear, forward-looking models, we evaluate a source of error

of the type: E[f (X)] ≈ f (E[X]). Since the difference is negligible in typical DSGE

models, we explore settings in which this can become a liability. For that purpose,

an illustrative model containing growth rates, calibrated via Consensus Forecasts

(CF), is utilized in a way that the magnitude of the inequality can be determined in

basis points. In a simulation-based analysis, we investigate the accuracy depend-

ing on the empirical standard deviation and the function’s curvature. Our findings

show that the difference is reaching up to 25 or 30 basis points. Also, we analyti-

cally solve for a baseline case, showing that the difference depends on the standard

deviation in a quadratic way. Finally, the number of variables and the correlation

between them is taken as a further influence on the approximation bias. In cases

with over five highly-correlated variables, a difference of over 25 basis points can

be reached. As a general result, the bias’ relation is nearly linear to the data’s

(co)variance and exponential to both the curvature and the number of variables.

Taking this source of error into account, the economist’s attention should also be

on how a model is built and not only on the data itself. This can be important,

especially for large-scale models.

Keywords: Consensus Forecasts, Expectations, Growth Rates, Jensen’s Inequal-

ity, Non-Linearity, Uncertainty.

3.1 Introduction

In a recent article, Lindé (2018) discusses the usefulness of DSGE models in policy

analyses in the aftermath of the 2007–2008 financial crisis. Despite weaknesses in

these models, he argues that improved versions will play an important role for a long

time to come—at least for smaller policy institutions. He explains that DSGE models

are advantageous for smaller entities because more sophisticated models are extremely

costly, requiring both advanced human resources and full data access and availability.

This usefulness extends to central banks in developing and emerging countries, yet to
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a lesser degree to central banks in developed countries. Therefore, smaller institutions

are reliant upon well-known workhorses in the process of building up their technical

analysis apparatus. In the same vein, by discussing challenges when evaluating these

models, Fernández-Villaverde et al. (2016), Schorfheide (2013), and Christiano et al.

(2011) highlight their (future) importance. This underpins the potential of further

scrutinizing models from the “simpler” DSGE family.

In our work, we add another puzzle piece by examining situations in which for-

ward-looking behaviour encircles a non-linear transformation. In the time dimen-

sional context of DSGE models, the conditional expectation usually spans from one

period to the next after solving for the first-order conditions. Moving on by log-

linearizing, the non-linearities typically resolve and only the function’s parameters—

multiplied by an expectation value containing growth rates—remain.24 This method

is utilized in many studies, whereby Fernández-Villaverde (2010) and Sbordone et al.

(2010) provide a good introduction. As a consequence, models obtain the certainty

equivalence property. This sophisticates or suppresses the impact of second (and

higher) moments like risk, volatility, or uncertainty.25 These are measures that play

an important role in financial crisis scenarios. To fix this, higher-order approximations

are a practical way, but how exactly to incorporate the additional moments can be ar-

bitrary. Avoiding this caveat, in a scenario alike, is equivalent to considering Jensen’s

inequality.26 To account for this, we label any changes that are made to the originally

derived model equations, approximation bias.

To the best of our knowledge, there is no literature dealing with this specific prob-

lem. There are, however, a large number of articles dealing with workarounds, e.g.

Sargent (1987) and Ljungqvist and Sargent (2012), or sophisticated approximation

methods, e.g. Judd (1998) and Aruoba et al. (2006).27 Two main reasons could ac-

count for Jensen’s inequality being underrepresented in macroeconomics. First, the

resulting error (or approximation bias) is very small in the context of DSGE models.

Nonetheless, we aim to see the whole picture and examine several scenarios with a

wide variety of parameter values. This gives a good impression in which situations

caution is advised. Second, it is challenging (or almost impossible) to find a whole

24E.g., Et[(Xt+1/Xt)η]⇒ logEt[(Xt+1/Xt)η] ≈ ηEt[x̂t+1].
25See the technical paper by Straub and Ulbricht (2019) for a discussion on the connection between

theoretical and empirical second moments.
26Note that ignoring Jensen’s inequality as an approximation technique is different from (non-linear)

Taylor expansion. We show this in Section 3.2.
27Sargent (1987, 32) resolves the future consumption (in the context of the Euler condition) at time

t+ 1 into variables in time t, with the interest rate as a stochastic element that can be overcome with the
unconditional expectation value. Aruoba et al. (2006, 2484) compare several approximation methods
for Euler equations, among them perturbation up to order five.
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distribution of future values to bring the model to the data as originally intended. In

this case, we argue that there is no necessity to have raw data at hand. It is sufficient to

calibrate certain parameters concerning the data and to translate model assumptions

into parameters. Therefore, we build a small-sized model that could be part of a Euler

condition or a similar intertemporal connection, which can be found in every DSGE

model—for instance in Christiano et al. (2011, 290) and Schorfheide (2013, 219). In

this framework, we derive an analytical solution describing the approximation bias,

interpreted in basis points. To assess the variability of the theoretical results we also

conduct Monte Carlo (MC) simulations.

Emerging from a variant of Jensen’s inequality—for a cleaner economic interpreta-

tion—the illustrative model consists of two terms of weighted (or transformed) growth

rates, f (Et[grt+1]) and Et[f (grt+1)].28 The first term contains the expected growth rate

transformed by a non-linear function. The same function weights the future growth

rates in the second term and only afterwards, the expectation value is calculated. Sub-

tracting these terms results in the approximation bias measured in basis points. Also,

the future growth rates follow a log-normal distribution in our baseline case and an

inverted-beta distribution in a robustness check. We will cover this in more detail in

the next section. In a final step, we increase the number of variables to emulate large-

scale models. Prominent references in this context are the IMF’s Global Projection

Model (Carabenciov et al. 2013) and the ECB-Global (Dieppe et al. 2018). The latter

contains over 800 parameters.

In our model, the different parameters can be assigned to five categories: (i) first

moments of the future growth rates, (ii) second moments of the future growth rates,

(iii) the curvature of the non-linear function, (iv) the number of variables or the model

size, and (v) the number of possible future states or the number of drawn random

variables (RV’s) per repetition in the MC simulation. Although the mean plays an

important role in the analytical solution, the impact of realistic values is negligible.

The second moments, consisting of the standard deviation in a univariate case and

the correlation in a multivariate case, show a mixed picture. While the latter plays a

minor role, even counteracting the bias for negatively correlated variables, large values

for the standard deviation produce a serious approximation bias. The third category,

the degree of curvature, can be associated with risk aversion or elasticity measures

in an economic context.29 In our model, the outcome is very similar to the impact

of the standard deviation. Augmenting the model in a multiplicative way, we add

28Note that the growth rates, gr, will be centered around one.
29See Bollerslev et al. (2011), Chetty (2006), and Morin and Suarez (1983) for a discussion of the

practical application and estimation of the level of risk aversion.
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variables to check the influence of the model’s size. By including ten variables when

assuming a weak, positive correlation in the data, we find a similar result to that of

large values for standard deviation and curvature. Except for the last category (the

number of future states), the simulated distributions of the approximation bias draw

a similar picture, with a constant increase in their second moment and a weak, right-

tail property. Increasing the number of (potential) future states, however, decreases

the third moments of the initially heavily skewed distributions toward zero. Also, the

distributions contract slowly to ideal values of the analytical solution.

As a general result, the approximation bias’ relation is nearly linear to the data’s

(co)variance and exponential to both the curvature and the number of variables. More-

over, the mean of the simulated distributions converges to the analytical result from

below when allowing for more possible future states. In most setups, the bias is smaller

than ten basis points, which confirms the insignificant role of this issue in the litera-

ture. However, taking up the focus on frontier markets as a cost-efficient usage for

DSGE models, some of the discussed parameters can become significantly large and,

therefore, justify a closer examination.

The remainder of this paper is organized as follows. Section 3.2 explains Jensen’s

inequality more carefully and how it is used to establish our illustrative model. Also,

the non-linear function and the utilized distributions are introduced. Section 3.3 de-

rives an analytical solution for the baseline case, subsequently discussing and inter-

preting the results. Section 3.4 presents the data and the calibration method. Section

3.5 shows the simulation results, depending on uncertainty (standard deviation), the

degree of non-linearity (curvature), number of future states (number of drawn RV’s),

correlation (covariance), and model size (number of variables). Section 3.6 concludes.
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3.2 Theoretical Framework

3.2.1 Preliminary Consideration

Apart from the actual, numerical difference, Jensen’s inequality is well studied in the

sole mathematical context.30 Shifting into economic terrain, decision theory, in partic-

ular, examines how the expectation value has to be altered such that an equal sign can

be applied:

E[f (X)] = f (E[X] + x̃), (3.1)

where x̃ stands for the risk premium, which can be positive or negative, depending on

the curvature of the non-linear function, f . In contrast, we aim to describe the actual

degree of the inequality. To account for this difference, we define

E[f (X)] = f (E[X]) +∆X (3.2.1)

⇔ ∆X = E[f (X)]− f (E[X]), (3.2.2)

where the LHS of Eq.(3.2.1) shows the actual value and the RHS shows the approxi-

mated value plus an error term. Later, we will refer to this term as bias. When f is

convex (concave) the residual ∆ is positive (negative).

Considering approximation techniques for f in general, only first-order Taylor ex-

pansion makes Jensen’s inequality redundant. The second-order version already leaves

a distinction between E[f (X)] and f (E[X]) for non-linear functions. Although—after a

quadratic approximation—the original and the proxied expressions contain measures

for the curvature, the latter is always smaller for convex functions.31 For this reason,

to not dilute the results by other approximations, our model originates from the basic

inequality.

30Jensen’s inequality for convex functions is: f (E[X]) ≤ E[f (X)]. See, for example, Mitrinović et al.
(1993) for an examination of continuous and multivariate versions and the connection to other inequal-
ities.

31See Appendix C.1 for the proof, taking advantage of the inequality of arithmetic and geometric
means (AM-GM).
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E[x1] E[x2] E[x3] x0

Figure 3.1: On the left side (Jensen), the approximation bias (∆) is displayed as the vertical
difference between the non-linear function (black line) and the intersection of the compatible
dotted lines. On the right side (2nd-order Taylor), the difference between the black and dashed
line shows the inaccuracy. (The three expectation values and the evaluation point, x0, are
arbitrarily chosen.) The black line is the graph of the function f (x) = (−1) · (1

3 + x)−1 + 3. The
dashed line represents the 2nd-order Taylor around x0 of this function.

Going one step further, a juxtaposition of Jensen and Taylor helps to visualize the

methodology. Therefore, Figure 3.1 compares both sources of inaccuracy. Due to

graphical clarity, the expectation values are stemming from only two points on the

function, respectively. However, taking a (continuous) distribution does not change

the basic result. To further depict the difference, one could imagine an additional

curve (as the dashed line on the right side) passing through the intersections of the

compatible dotted lines, showing a smaller difference the less curved the black line is

(left to right). In this example, this holds true even when the range of the xi increases

from left to right. Also, in contrast to the second-order Taylor polynomial (Figure 3.1,

right side, dashed line), the ∆ are always negative with the sign depending on the func-

tion’s concavity. In the Taylor example, the sign of the deviation is ambiguous, having

an exact result only around x0, with equal slope and curvature. On the other hand,

when Jensen’s inequality is applied, a rule of thumb for accuracy is more complicated,

such as the “small deviation" around the steady state (x0) or ±5% growth rates when

log-linearizing.
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3.2.2 An Illustrative Model

As typically found in Euler equations, we isolate the non-linear, forward-looking part

and, for the purpose of generality, apply growth rates to it.32 Also, even when re-

nouncing log-linearization in DSGE models, the growth rates can be implemented in

a straightforward way.33 This implementation goes hand in hand with the data avail-

ability of future rates from the CF data for the subsequent calibration. Moreover, we

assume a log-normal distribution, following the approach by Black and Scholes (1973)

and Merton (1973).34 As an alternative, the inverted beta distribution is used, also

being restricted with a lower bound (i.e., being non-symmetric), which is appropriate

for the data structure. Notwithstanding the usage of growth rates, the expression E[X]

as the arithmetic mean (instead of the geometric mean) is reasonable since the rates

are not consecutive but cross-sectional.

In line with most (consumption) Euler conditions, the CRRA utility function pro-

vides a flexible, functional form for the non-linearities. As a result of this and because

the expressions typically stem from first-order conditions, we use the marginal utility

for f (X):

f (X) =
1

(1 +X)γ
, where F(X) =

1
1−γ

·
(
(1 +X)1−γ − 1

)
+C0, γ > 0. (3.3)

The general antiderivative F(X) in Eq.(3.3) is formulated in a way that for γ = 1 the

function collapses to log-utility, a case common to the literature (see, e.g. Clarida et al.

2000, 170, Galí 2015, 67, Yun 1996, 359).

Figure 3.2 captures these assumptions in a single coordinate system, showing the

approach to evaluate Jensen’s inequality. It displays the marginal utility f (X) and a

probability function from which the random variables X are drawn. Starting next to

the lower bound, the marginal utility or revenue from growth rates is the highest,

monotonically decreasing for larger values. Not depending on the curvature param-

eter, the intercept for X = 0, which is 1 for every γ , equals the neutral value of one

32A simple version, including the marginal utility with respect to consumption and the interest rate
as an intertemporal connection is as follows: dU/dCt = it ·Et[dU/dCt+1].

33E.g., Et[(Xt+1/Xt)η] = Et[(1 + x̂t+1)η].
34More precisely, the Black-Scholes formula requires log-normally distributed returns to price op-

tions in a relatively simple manner. In a similar context, the distribution is first mentioned by Samuel-
son (1965). The obvious normal distribution is problematic since there is no lower bound (for growth
rates) and, defined on R, the expression E[Xp] is hard to solve and requires many cases or complex
functions. This is not practical for an analytical solution.
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describing a situation without growth. In the following, we refer to the transformation

result as weighted, inverse growth rates.35

f (X); likelihood

0 XE[X]−100%

Figure 3.2: The model is tailored to growth rates due to a lower bound. Shown as schematic
representation, values are drawn from a distribution (dashed curve) to insert into the non-
linear function (black curve), f (X).

Three of the model’s decisive parameters are visualized in the graphics: the curva-

ture in the hyperbola and the mean and variance in the density function. The latter

predefines the probability by which values X, the growth rates, are drawn to insert

into f (X). Therefore, the image of X needs to be a subset of the domain of f .

Based on Eq.(3.2.2), the plain concept, we alter the equation for a more intuitive

and meaningful economic interpretation. At first, we have to show that 1
E[f (X)] is the

growth rate in the model. As stated in the introduction, E[f (X)] is the expected value of

weighted future growth rates. They are weighted by the above introduced f (X). Due

to the structure of the marginal utility, building the inverse is just a transformation

back to growth rates.36

For the alteration of the concept, we make use of Jensen’s inequality and the mar-

ginal utility:

f (E[X]) ≤ E[f (X)] (3.4.1)

⇔ E[f (X)]−1 ≤ f (E[X])−1 (3.4.2)

35Weighting growth (as a relative number, expressing the change in absolute numbers) by means
of an exponent works analogously to weighting absolute numbers multiplicatively with coefficients.
Here, the approximate log-transformation can be misleading since growth rates often appear to have a
coefficient or to be addable.

36The interpretation as growth rate difference can also be derived with first-order Taylor expansion
and, thus, would be similar. See Appendix C.2 for the proof and numerical examples.
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⇔ f (E[X])−1−E[f (X)]−1 ≥ 0 (3.4.3)

⇔ f (E[X])−1−E[f (X)]−1 ≥ bias(X)︸  ︷︷  ︸
≥ 0

(3.4.4)

⇔ bias(X) = (1 + E[X])γ −E[(1 +X)−γ ]−1 (3.4.5)

Pouring the preceding considerations into one equation results in

bias(X) = 104 ·
(
(E[1 +X])γ −E[(1 +X)−γ ]−1

)
, (1 +X) ∼ logN

(
µ,σ2

)
, (3.5)

the approximation bias measured in basis points (bp) when multiplying the RHS of

Eq.(3.5) by 104. f (X) = (1 +X)−γ is the derivative (marginal utility) of the CRRA (isoe-

lastic) utility function with γ as the curvature and γ−1 as the elasticity of intertempo-

ral substitution (EIS). X follows a horizontally shifted log-normal distribution with a

lower bound of −1. This meets the characteristics of growth rates with their minimum

possible value of −100% and no upper bound. However, the actual parameter con-

stellation concentrates the probability mass relatively tight around their mean value

slightly larger than zero. Ultimately, using a continuous distribution enables us to

derive simple, analytical results for the approximation bias.
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3.3 Analytical Solution

In this section, we derive a function, depending on the first two moments and the cur-

vature-parameter, which is able to predict the approximation bias. Therefore, we use

the framework of Eq.(3.5) with the X now labeled as growth to address the economic

setting. This distinction is also made to first draw from a standard-normal distribution

and subsequently transform into log-normally distributed RV’s. The advantage is to

keep track of the parameters of the latter distribution. The conditional expectation

operator accounts for the time series context. Initially, we specify the expected bias,

bias(µ,σ ,γ) = E
[
104 ·

(
(1 + Et[growtht+1])γ︸                    ︷︷                    ︸

(1): approximated

−Et [(1 + growtht+1)−γ ]−1︸                        ︷︷                        ︸
(2): unbiased

)]
, (3.6)

where growth = exp(α + βZ)− 1 and Z ∼N (0,1). This makes growth, the growth rates,

a log-normally distributed RV with a lower bound of −1 (or −100%). Three notational

aspects are worth mentioning. First, we drop the time indices for more clearness.

Second, we further simplify by setting m = 1 + µ, defining m as the centered mean,

thus, centering the growth rates around 1. Third, there is the risk to confound the

transformation parameters, α and β, and the targeted moments, µ and σ , since they are

approximately the same size.37 The following formulas show the connection between

log-normal parameter and moments:

α = log(m)− log
(√

1 + (σ/m)2
)

(3.7.1)

β =
√

log(1 + (σ/m)2) (3.7.2)

m = exp(α + β2/2) (3.7.3)

σ2 = exp
(
2α + β2

)
·
[
exp

(
β2

)
− 1

]
. (3.7.4)

The key step relies on the moment generating function of the normal distribution.38

By inserting the distribution expression in the approximated (1) and the unbiased (2)

terms of Eq.(3.6), the stochastic source Z becomes apparent but immediately cancels

out:

(1) : E[exp(α + βZ)]γ = exp(γα) ·E[exp(βZ)]γ = exp(γα) · exp(γβ2/2) (3.8.1)

37Note that the assignment of Greek letters is different from most sources for the reason mentioned
above and for being in accordance with the parameter designation of the inverted beta distribution, also
used in this article.

38E
[
etZ

]
= et

2/2, t ∈ R (see Appendix C.3 for the proof).
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(2) : E[exp(α + βZ)−γ ]−1 = exp(γα) ·E[exp(−γβZ)]−1 = exp(γα) · exp(−(γβ)2/2).

(3.8.2)

This replaces all RV’s by parameters only and ensures that no stochastic part is re-

maining. Re-merging the function without inserting µ/m and σ yet using summarizing

parameters gives a first impression of the functional form regarding the curvature:

bias(α,β,γ) = 104 ·
(
exp(α + β2/2)γ − exp(α −γβ2/2)γ

)
. (3.9)

When using Eqs.(3.7) to replace α and β, we can take advantage of the inverse function

(exponential and logarithm, square and square root) to arrive at the main function:

bias(m,σ,γ)

= 104 ·
(
mγ − exp

(
log(m)− log

(√
1 + (σ/m)2

)
−γ log

(√
1 + (σ/m)2

))γ)
(3.10.1)

= 104 ·

mγ −mγ ·
 1√

1 + (σ/m)2

γ ·  1√
1 + (σ/m)2

γ2 (3.10.2)

= 104 ·mγ ·

1−
(

m
√
m2 + σ2

)γ(γ+1)
 . (3.10.3)

Factoring out mγ , such that the first term in the outer brackets becomes one, focuses

on the second term stemming from the unbiased expression. To get more insight,

Eq.(3.10.3) can be separately examined from the perspective of both moments and

curvature. The bias depending on m and σ with γ = 1 (corresponds to log-utility)

heavily reduces the complexity:

bias(m,σ | γ = 1) = 104 ·m
(
1− m2

m2 + σ2

)
= 104 · mσ2

m2 + σ2 . (3.11)

Eq.(3.11) shows a nearly quadratic relationship with regard to σ (since m2� σ2), cor-

rected by m, the centered mean. This non-trivial result is plausible considering the

schematic representation in Figure 3.2. Shifting the distribution to the right (increas-

ing m) decreases the approximation bias since the function becomes less curved. A

wider distribution (large σ ) spreads the probability mass over the non-linear func-

tion in a manner that the approximation bias becomes larger. As mentioned above,

there is no stochastic element left in the formulas and it can be calculated with de-

terministic values. Finally, an upper bound can be found by applying l’Hôpital’s rule,

limσ→∞ bias(σ |m) = 104 ·m, revealing a maximum deviation of 100 percentage points,

again, corrected by m.
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Consulting an economic interpretation, term (1) from Eq.(3.6) stays at the mean

value since it does not consider any uncertainty. However, term (2), the inverse of

the “marginal utility,” converges towards zero. This shows, via a roundabout route,

the negative relationship between uncertainty and utility. Moreover, it shows that in

an economic model a function’s curvature artificially replaces the actual real-world

higher-order moments, stemming from the data.

Rearranging Eq.(3.10.3) with r =
√
m2 + σ2 delivers

bias(γ) = 104 ·mγ ·
[
1− (m/r)γ(γ+1)

]
. (3.12)

This reveals the fraction as the crucial term, approaching zero when γ is increasing.

γ is the exponent in two parts of the equation, but due to the multiplication in the

exponent of the fraction and the smaller basis (m/r), its impact is larger in the fraction.

Eq.(3.12) has some simple properties. When σ approaches zero then r approaches m

and the bias vanishes. Also, for positive growth rates, there is no upper bound since

limγ→∞ bias(γ | m > 1) does not exist. It is easy to show that bias(0) = bias(−1) = 0 and

for γ ∈]− 1,0[ the bias becomes negative.39

Putting everything together, Figure 3.3 graphically presents the findings concern-

ing the function bias(µ,σ ,γi), with γ as a parameter in levels (i.e., different opacity-

levels). Taking the mathematical curvature instead of the EIS highlights the theoretical

aspect. The ranges for the parameters are relatively large to show a broader picture.

The realistic ranges will be introduced in the next sections.

39γ > 0 is required for a meaningful economic interpretation. See Appendix C.4 for additional inves-
tigations concerning this function.
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Figure 3.3: Theoretical approximation bias depending on all parameters with γi ∈ {1,1.5,2}
represented in the different planes. The higher the layer, the larger is γi . Horizontal axes:
σ ∈ [0.001,0.04] and µ ∈ [−0.05,0.2]. Vertical axis: Growth rate difference in basis points.

Figure 3.3 shows how the impact of m and σ on the bias changes with γ . The

undermost plane reveals a slightly negative relationship between m and bias, whereas

in the intermediate plane a constant relationship between m and bias is observable. It

remains close to a 50bp difference for the maximum σ = 0.04 for all m. In contrast, for

γ = 2 (uppermost plane) the relationship between m and the bias becomes positive for

larger σ . In each case, the absolute effect of m (conditional on large σ and γ) is rather

small. The effect of σ is strictly positive for all γi and increases for larger values of γi .
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3.4 Data and Calibration

After the analytical solution, the next step is to check whether the assumptions are

also fulfilled in the empirical data. This can be done by checking whether the RV’s,

which is growth in the previous section, are log-normally distributed. The final aim is

to get a realistic range of parameters/moments to work with when there is no or insuf-

ficient raw data available. For the empirical tests, we use CF data from the Consensus

Economics surveys. They provide projections on a series of macroeconomic indicators

(e.g., GDP growth and inflation measures) that are mainly collected from companies

in the finance sector. The data sets are issued monthly and display the forecasts for the

current and upcoming year. Initially, the survey started in October 1989, whereas our

data reach to June 2019, resulting in a total of 357 months. The observations start with

estimations for the G-7 countries. From 1995 on, the number of countries for which

there are forecasts available is successively expanded. Therefore, the time horizon for

these countries is significantly shorter. The method and calibration results are intro-

duced for US data due to high availability in the number of observations. For the US,

the minimum number of forecast observations per month is 19, the maximum is 33,

and on the average is 27 per month.40 Subsequently, we use existing data for fron-

tier or emerging markets with a sufficient amount of observations (Egypt, Nigeria, and

South Africa) to account for the possible application of DSGE models as stated in the

introduction.

Since the variables’ meaning is changing from month to month due to a different

forecast horizon, the values from the current period and the next year shall be com-

bined into another variable:

Et[xt+1|m] =
13−m

12
·Et,m[xt] +

m− 1
12
·Et,m[xt+1]. (3.13)

Consequently, a weighting scheme as in Eq.(3.13) is constructed to combine the fore-

casts. With the weighting scheme, it is also ensured that the viewed future time hori-

zon is always 12 months. The examined variable of the CF dataset is the consumer

price (%-change) forecast, which is equivalent to an inflation measure.

Several normality tests are run on the adjusted data for consumer price. This is

done due to the requirement in Section 3.3 that Z is normally distributed. The ob-

served variables xt need to be rearranged to

x̃t = log(xt + 1) (3.14)

40Based on these numbers, N—which represents the number of drawn variables—is initially fixed to
30 in Section 3.5.
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and x̃t is checked on normality. If the normality test approves the hypotheses and x̃t is

normally distributed, the observed variables are log-normally distributed.

We use four different tests, including Jarque-Bera (J-B), Shapiro-Wilk (S-W), Ander-

son-Darling (A-D), and Lilliefors (LF). The results can be seen in Table 3.1. In 85% or

55 of the 357 observations, the J-B test cannot reject theH0 of non-normally distributed

variables.

Norm. p-value
Test < 10% < 5% < 1%

J-B 55 39 24

S-W 73 44 15

A-D 86 57 15

LF 93 60 18

Table 3.1: Normality test results for inflation forecasts (US). It displays the number of obser-
vation points that reject the H0 of non-normally distributed variables out of 357 observations.

As the normality tests show sufficient results, the observed variables shall be log-

normally distributed. Now, the calibration of the distribution on the weighted obser-

vations can be run. We use a least square model with a grid of possible parameters

to solve this issue. The drawn variables xdraw, which are random variables from the

log-normal distribution, are shifted by a subtraction of one to fit the observations:

xshift = xdraw − 1, (3.15)

where xdraw ∼ logN (µ,σ2). Forecasts can also contain negative values, i.e., nega-

tive growth for consumer prices or other macroeconomic indicators, which cannot be

drawn in a log-normal distribution. This can be solved by the shift. For this we calcu-

late the mean squared error, MSE, between the observations and the shifted variables

by

MSE =
1
N
· (xobs − xshift)

2, (3.16)

where xobs are the observed variables or the variables from the CF dataset. N is the

number of observations or the number of variables xobs and xshift, respectively. To

match the two sets of variables, they are sorted by their value. The target is to mini-

mize MSE and to find the optimal parameters µ and σ2 of the distribution. The start-

parameters of the log-normal distribution in the calibration are chosen in respect of
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µobs and σ2
obs of the observed variables. From every parameter we go ten predefined

equidistant steps in every direction. This builds a grid

C1 = {µ1,lower, ..,µ1,obs, ..,µ1,upper} × {σ2
1,lower, ..,σ

2
1,obs, ..,σ

2
1,upper} ∈ R

2, (3.17)

where µ1,lower = µ1,obs−10·step1 and µ1,upper = µ1,obs+10·step1 and step1 is the equidis-

tant step. The same calculation is done with the variance, but the step size can differ

from the one used for the mean. As a result, there are 212 = 441 possible parameter

combinations (µ,σ2) ∈ C1.

At every combination, as many random variables are drawn as observations we

have in these respective periods. The MSE of the drawn and observed variables at

every combination point is calculated. The parameter combination with the lowest

MSE is chosen as the new optimal point (µ∗1,σ
2∗
1 ) ∈ C1.

In the next step, we again go from this optimal point ten equidistant steps in every

direction with the difference that the steps are with a factor 10 smaller than before.

They can be calculated by the following method:

stepi =
step1

10i−1
. (3.18)

The new grid is of the form:

C2 = {µ2,lower, ..,µ
∗
1, ..,µ2,upper} × {σ2

2,lower, ..,σ
2∗
1 , ..,σ

2
2,upper} ∈ R

2. (3.19)

So, we assure that the grid is getting finer. The least MSE in this step forms the new

optimal point (µ∗2,σ
2∗
2 ) ∈ C2. These steps are repeated until we reach a sufficiently

predefined small error term and the resulting parameters are (µ∗opt,σ
2∗
opt). The results

are the specific parameters of both distributions, which are transformed to µ and σ2

using Eqs.(3.7) from Section 3.3 and Eqs.(C16) from Appendix C.6. The calibration

results for two distribution functions (log-normal and inverted beta) are displayed in

Table 3.2, whereas the calibration method for the inverted beta is nearly the same as

for the log-normal distribution. The only difference is the shift of the drawn variables

from Eq.(3.15) by 0.01. This ensures that the inverted beta distribution also generates

negative values.41

41Due to the characteristics of the inverted beta distribution a larger shift is not feasible. A significant
part of the probability mass is concentrated at the lower bound, which is in this case the shift, and this
would mainly result in negative values. The mass can be stretched by changes in the parameters of the
distribution but this would deliver an unreasonable large σ .

107



Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

log-norm.

µopt −0.0032 0.0191 0.0246 0.0320 0.0420 0.0239 1.09·10−6

σopt 0.0001 0.0001 0.0002 0.0007 0.0060 0.0027 1.09·10−6

inv. beta

µopt 0.0061 0.0233 0.0275 0.0322 0.0556 0.0239 4.56·10−5

σopt 0.0011 0.0023 0.0028 0.0036 0.0262 0.0027 4.56·10−5

Table 3.2: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on inflation forecasts.

In the first column, the two variables, which are the focus of our calibration, are

shown. The following five columns focus on the results of the calibration and show

descriptive statistics for the 357 months. The next column switches from the cali-

brated to the observed variables in the CF data set. In each of the 357 months, the

mean and the standard deviation of the observed variables are calculated. This deliv-

ers 357 empirical values for both moments. The median of the two calculated moments

is displayed in the respective row. Consequently, the results for the median of the ob-

served variables are the same for both distribution methods because the viewed data

set is the same. The mean error that arises from the calibration can be found in the last

column. Focusing on the mean error, the log-normal distribution is better in fitting the

observed variables. Regarding the estimation of µopt, the log-normal distribution gives

a better fit than the inverted beta distribution. This is mainly due to the concentration

of probability mass at the lower bound of the inverted beta distribution. The picture

changes when fitting σopt. Here the log-normal distribution underestimates the stan-

dard deviation, whereas the inverted beta distribution gives a better fit. Nonetheless,

it is noticeable that the inverted beta distribution sometimes generates relatively large

values for the standard deviation.

For comparison purposes and due to a potentially high interest in DSGE models for

emerging/frontier markets, we now focus on forecasts of consumer prices for Egypt,

Nigeria, and South Africa.42 Other countries that are classified in these markets are

not available in the data set. Due to a low number of forecasts per month—in contrast

to developed countries, e.g., the US—quarterly data is used. The observations start in

Q1 2008, which results in a time horizon of 46 quarters. The minimum number of

42The classification regarding frontier and emerging markets is taken from MSCI. This is a provider
of equity market indexes that uses a classification for different markets.
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forecast observations per quarter is six for Nigeria in Q1 2008, the maximum is 57 for

South Africa in Q4 2016, and the average is 22. The average is built considering all

three countries.

The previous adjustment to rearrange all variables on a 12 months time horizon

is also done for the monthly variables as mentioned in Eq.(3.13). In the following

normality test, the adjusted variables in a whole quarter are checked for normal distri-

bution. The results can be seen in Tables 3.3–3.5. In all countries, the J-B test results

support normally distributed random numbers in more than 65% of the cases. In

Egypt and Nigeria, normally distributed random numbers are supported in even more

cases, amounting to 90%.

Norm. p-value
Test < 10% < 5% < 1%

J-B 4 3 1

S-W 15 14 4

A-D 19 14 10

LF 22 14 9

Table 3.3: Normality test results for inflation forecasts (Egypt). It displays the number of ob-
servation points that reject theH0 of non-normally distributed variables out of 46 observations.

Norm. p-value
Test < 10% < 5% < 1%

J-B 4 3 3

S-W 16 11 6

A-D 18 14 11

LF 19 14 8

Table 3.4: Normality test results for inflation forecasts (Nigeria). It displays the number of
observation points that reject the H0 of non-normally distributed variables out of 46 observa-
tions.
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Norm. p-value
Test < 10% < 5% < 1%

J-B 16 12 10

S-W 23 18 14

A-D 25 19 15

LF 24 19 16

Table 3.5: Normality test results for inflation forecasts (South Africa). It displays the num-
ber of observation points that reject the H0 of non-normally distributed variables out of 46
observations.

The normality tests again show sufficient results for the three countries analyzed.

So the same calibration can be run for the log-normal distribution and inverted beta

is again used as a robustness check. The method of calibration stays the same. The

results can be seen in Tables 3.6–3.7.

Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

Egypt

µopt 0.0804 0.0965 0.1075 0.1193 0.2033 0.1057 2.88·10−4

σopt 0.0054 0.0073 0.0085 0.0106 0.0179 0.0134 2.88·10−4

Nigeria

µopt 0.0591 0.0972 0.1094 0.1224 0.1507 0.1088 1.30·10−4

σopt 0.0055 0.0080 0.0106 0.0131 0.0341 0.0096 1.30·10−4

S. Africa

µopt 0.0464 0.0523 0.0576 0.0612 0.0852 0.0571 4.03·10−5

σopt 0.0047 0.0062 0.0072 0.0088 0.0136 0.0035 4.03·10−5

Table 3.6: Calibration results when assuming CF data follow a log-normal distribution. The
calibration is run on a quarterly basis for the rolling window-adjusted observations on inflation
forecasts.
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Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

Egypt

µopt 0.0899 0.1029 0.1135 0.1321 0.2176 0.1057 3.57·10−4

σopt 0.0060 0.0107 0.0143 0.0209 0.0361 0.0134 3.57·10−4

Nigeria

µopt 0.0763 0.1002 0.1162 0.1284 0.1519 0.1088 1.41·10−4

σopt 0.0004 0.0070 0.0099 0.0135 0.0269 0.0096 1.41·10−4

S. Africa

µopt 0.0492 0.0547 0.0588 0.0632 0.0875 0.0571 6.19·10−5

σopt 0.0022 0.0030 0.0035 0.0047 0.0125 0.0035 6.19·10−5

Table 3.7: Calibration results when assuming CF data follow a inverted beta distribution. The
calibration is run on a quarterly basis for the rolling window-adjusted observations on inflation
forecasts.

The results deliver the same picture as for the US. The log-normal distribution

generates lower error terms compared to the inverted beta distribution. However, all

errors are relatively close to each other. Additionally, the median of µopt is quite close

to the median of the observed variables. In the inverted beta distribution, µopt is not

as good as in the log-normal distribution, but σopt is better fitted.43

Summarizing, none of the distributions is clearly better in fitting the CF data set.

Due to the slightly better error term for the log-normal distribution in the US and

other aspects, e.g. multivariate distributions, we focus on the log-normal distribution

for further analysis. Due to the above results for four different countries, the baseline

scenario in the next section consists of µ = 0.06 and σ = 0.01 as fixed parameters.

43Similar results can be seen for the calibration of the GDP forecasts in the CF data set. This, and α
and β for the distributions for both variables can be found in Appendices C.7 and C.8.
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3.5 Monte Carlo Simulation

The simulation section takes up the calibration results and conducts several simple MC

experiments. Thereby, expectation value and variance become stochastic, enabling us

to check how this variability influences the findings of Section 3.3. We orientate at the

following sequence.

1. Specify the parameters in Eq.(3.5): µ,σ ,γ , and N (in the multivariate case also ρ

and n).

2. Calculate the bias, also Eq.(3.5), by drawing N random variables, following a

log-normal distribution. Repeat this 105 times to obtain a bias-distribution.

3. Alter one of the parameters and repeat step 2. As soon as the parameter has

covered a certain range, jump to step 4.

4. Graphically show the results as boxplots in a x-y-diagram with the varying pa-

rameter on the x-axis and the bias on the y-axis.

There is little variation when the first moment takes different values with a change in

bias significantly lower than 1bp.44 Hence, µ is constantly set to 0.06, a happy medium

regarding the calibrated means. We set N to 30 since this matches the typical number

of firms participating in the CF survey. Increasing this number will not result in a

substantial difference. However, we examine this in more detail in Appendix C.15. We

use 105 repetitions to make sure the obtained distributions already converged.

The boxplots, which are uncommon in this context, depict the non-parametric char-

acteristics of a distribution as described in Mcgill et al. (1978). The lower (upper) hinge

of the box presents the first (third) quartile, while the middle line presents the median,

the second quartile. This gives a good impression concerning the distribution’s skew-

ness. The lines extending vertically from the boxes (whiskers) expand both hinges by

the interquartile range, multiplied by 1.5. As an orientation, when using a normal

distribution, outliers larger (smaller) than the upper (lower) extreme account for only

0.35% of the probability mass. This value will be somewhat larger since bias > 0 and,

thus, the simulated distributions are likely to be asymmetric with the mean not equal-

ing the median. Although outliers are excluded for graphical clearness in the following

figures, we check for their share not being too large (< 2%) as justification to use the

standard boxplots.45

44See Appendix C.9 examining the derivative ∂bias/∂µ in detail.
45This keeps the interpretation simple and is in line with Hubert and Vandervieren (2008, 5191). In

their article, they propose adjusted boxplots accounting for skewed data when outliers exceed 5%.
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Throughout this section, the following scheme is used to describe the results. The

simulated distributions are analyzed in terms of the first three moments, the best fit-

ting parametric distribution relating to outliers, and the relationship between the me-

dians and the varying parameters. Regressing the median-bias on the parameters ex-

tents the analytical results and accounts for the approximation bias’ immanent skew-

ness.46

3.5.1 Standard Deviation

According to Eq.(3.11), we take the standard deviation, a measure for the data’s uncer-

tainty, as the first varying parameter, whereas γ is held to one. The calibrated σ ’s range

from 0.001 to 0.032. We choose 20 values starting from nearly zero up to a maximum

value of 0.04, which is larger than calibration suggests accounting for the possible bias

in long-term forecasts. In this extreme scenario, with µ = 0.06, growth rates of 10%

are quite realistic since the 68–95–99.7 rule applies approximately for the log-normal

distribution.47 Figure 3.4 shows the results.
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Figure 3.4: Simulations with 105 repetitions each (log-normal distribution with µ = 0.06, N =
30, and a lower bound of −1). Resulting distributions of the approximation bias are shown as
boxplots. Horizontal axis: Standard deviation (σ ). Vertical axis: Growth rate difference in basis
points (bias).

46To not overload Section 3.3, we include the median analysis in the simulation part only and, at the
same time, using the advantage of the graphical analysis.

47Despite the distribution being truncated and skewed, this approximation holds very accurate, e.g.,
when σ = 0.06, the probability mass inside the 3σ -interval lowers by only 0.1 percentage point to 99.6%.
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The values originating from Eq.(3.11) are augmented by distributions for each σ ,

illustrating the sensitivity to small samples. The first twelve boxplots (including σ =

0.024) are of marginal relevance being strictly under 10bp. However, with a larger

standard deviation the bias is increasing and averages 15bp for the extreme scenario,

even reaching up to 25bp. Figure 3.4 also reveals that bias-predictions with increasing

σ become more and more inaccurate (increasing interquartile range). The distribu-

tions’ skewness is consistently positive with the deviation of mean and median located

slightly over 2% (i.e., always less than one basis point).48 The right skewness was ex-

pected due to the usage of a log-normal distribution. Cullen and Frey (1999) analysis

shows that the resulting distributions best fit to a log-normal distribution, which can

be expected by construction, but also to a gamma distribution. This means, in turn,

that for every σ there are theoretically around 1% outliers larger than the upper ex-

treme. This also holds empirically. Most interesting, the relationship between σ and

the approximation bias (median) is quadratic with an R2 of almost 100% when running

regression analysis. The detailed results are shown in Appendix C.10.49

The intuition behind the relationship can be outlined by a simple case where f

from Eq.(3.2.1) is the convex function f (X) = X2:

E[X2] = (E[X])2 + Var[X] = (E[X])2 + σ2
X . (3.20)

Here, the residual (σ2
X), which was ∆X in Eq.(3.2.1), consists of the squared standard

deviation.50 For this example, in contrast to the analytical derivation, X does not nec-

essarily follow a specific distribution. Nevertheless, we also check for the accuracy of

a second-order Taylor expansion with regard to Eq.(3.11):

T bias2 (σ | σ0 = 0) = 104 · σ2/m. (3.21)

The isolated quadratic part describes the relationship sufficiently enough up to σ =

0.16.51

48E[(mean −median)/median | σ ] = 2.35%. In line with our own calculations, the medcouple, a nor-
malized or robust measure for the skewness reaching from −1 to 1, is only around 0.08.

49Also in Appendix C.10, we show similar results for the CARA function but hereinafter, for the lack
of substantial difference, we stick to the CRRA function.

50With the binomial formula: Var[X] = E[X2] − E[X]2. Note the close connection between Jensen’s
inequality and our model (Appendix C.2).

51Appendix C.11 shows this in more detail. See also Appendix C.12, further examining the approxi-
mation bias in terms of a ratio between the approximated and the un-biased term.
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3.5.2 Curvature – Elasticity – Risk Aversion

The second varying parameter accounts for the degree of non-linearity of f from

Eq.(3.3). In an attempt to interpret this property as general as possible, this can be

described by the curvature, typically defined as the amount by which a curve devi-

ates from being a straight line. By defining γ as curvature of f (1 + x), the relative risk

aversion equals:

RRAf = −(1 + x) · f ′′/f ′ = 1 +γ. (3.22)

Concerning this interpretation of γ , Meyer and Meyer (2005) assemble slightly dif-

ferent versions of risk aversion to make them comparable and Chiappori and Paiella

(2011) conduct an in-depth analysis of risk aversion using panel data.

As mentioned earlier, x is understood as growth and f (1 + x) is understood as the

marginal utility, satisfying the economical situation. In this case, the inverse, γ−1, can

be interpreted as elasticity. Additionally, in a time-varying context, γ−1 stands for the

EIS. For the sequence of γ , applied to the study, we orientate at Meyer and Meyer

(2005, 260) by starting slightly above zero (0.25) and going up to 5 (i.e., γ−1 ∈ [0.2,4]).

Figure 3.5 shows the simulation results analogous to the previous subsection.52
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Figure 3.5: Horizontal axis: Curvature (γ). Vertical axis: Growth rate difference in basis points.

52From an economic point of view, the horizontal axis should increase with the EIS, which is shown
in Appendix C.14.
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Almost identical to Figure 3.4, boxplots one to twelve are hardly exceeding the

10bp line. The outcomes are breaking this line for an EIS of 1/3 and lower. The average

bias is increasing over 15bp for a curvature of 5 (relative risk aversion of 6), with almost

30bp at the upper extreme. The interquartile range is increasing with larger curvature.

Similarly, the variance is proportionate to the curvature. Investigating skewness and

possible parametric distributions show the same results as with a varying σ . However,

for the largest value of γ , outliers make up for almost 2%. The relationship of x and y

is approximately bias ∼ γ2.53 Also, in terms of pure elasticities, log(bias) ∼ log(γ), the

regression’s goodness-of-fit edges up to R2 = 0.99. This allows for the interpretation

of a %-change caused by a 1% increase. In this case, the system is relatively elastic

with a log-coefficient of around 1.67. Analogous to the σ -version but less accurately,

the quadratic relationship can be described by a second-order Taylor expansion for

γ ≤ 0.9:

T bias2 (γ | γ0 = 0) = 104 · log(r/m)
[
log

(
e
√
m3/r

)
γ2 +γ

]
. (3.23)

In contrast to Eq.(3.21), with the standard deviation as variable, Eq.(3.23) should only

be used for a certain range of realistic values.54 Overall, an exponential link is prefer-

able when characterizing the relation between curvature and approximation bias.

3.5.3 Number of States – Sample Size

The parameter N , in terms of the simulation procedure, is the sample size per repe-

tition. So far, N equalled 30 to represent the available number of forecasts in the CF

data sets. For the generic case of N = 1, there is only one outcome and, therefore, no

uncertainty. This makes Jensen’s inequality redundant. When N is approaching infin-

ity, the approximation bias converges to the analytical finding. Since both scenarios

are not reasonable, we vary N from 1 to 20 and examine how the result is driven by

uncertainty regarding different prospective outcomes.55

When N is increasing, the variance in the repetitions vanishes. However, for small

N , the variance is not exploding. Figure 3.6 depicts the baseline case (µ = 0.06, σ =

0.01, γ = 1) for a sample size reaching from 1 to 20.

53See Appendix C.10 for more detail by using regression analysis.
54See Appendix C.13 for more detail.
55In a different context, for example, N can be seen as the number of political parties at an election.

When N is small, the future outcome of their economic policies is still not clear but easier to anticipate.
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Figure 3.6: Baseline case. Dashed line depicts the theoretical mean value. Horizontal axis:
Sample size (i.e., number of states N ). Vertical axis: Growth rate difference in basis points.

With an increasing number of states, the distributions are contracting around the

dashed line—the theoretical value—slightly below 1bp. For N = 1 there cannot be any

difference, being in a situation with no uncertainty. Due to the zero lower bound, the

distributions are initially heavily skewed. This becomes apparent for N = 2 when the

median is close to 25%, but the mean stays at 50% of the dashed line, which can be

seen in the results of the simulation. Interestingly, until four states are reached, the

upper extreme is increasing and, thereupon, slowly decreasing. As to be expected, the

magnitude is extremely small.
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Figure 3.7: Baseline case with varying σ and two states, i.e. N = 2. Horizontal axis: Standard
deviation (σ ). Vertical axis: Growth rate difference in basis points.
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Figure 3.7 replicates Figure 3.4 (varying σ ) but only drawing two RV’s, respectively.

All distributions are skewed with a median-bias reaching only up to 3bp. An impor-

tant question comes up, that is, which measure (mean or median) to choose when

describing the approximation bias in a situation with few outcomes. On the one hand,

most scenarios are negligible, on the other hand, (right-tail) outliers are still present.

For σ = 0.04, the upper extreme is almost as large as in Figure 3.4.

In the model context, N is not interacting with other parameters or variables. Put

differently, a parameter constellation other than the baseline case in Figure 3.6 does

not alter the behavior for increasing N . In Appendix C.15, we explain in more detail

how the convergence to the theoretical value solely depends on the sample size.

3.5.4 Multivariate Functions

To further exploit our model, we increase the number of variables (n), which also leads

to the correlation (ρ) as an additional parameter. Simple Euler equations already in-

clude variables like consumption (growth) and price (growth). They should also (the-

oretically) contain information about how these variables are interacting (i.e., their

co-movement).56 Large-scale DSGE models such as the ECB-Global, the IMF’s Global

Projection Model, and further adjusted versions can contain dozens of variables and

hundreds of parameters.

For higher-order Taylor expansions, Collard and Juillard (2001) examine models

of the form: Et[f (xt+1, yt+1, ...)] = 0, for non-linear f . Still, our approach focuses on

Jensen’s inequality.57 Taking up on Eq.(3.5) for the baseline case (γ = 1) and multi-

plicatively expanding by another variable gives

bias(X,Y ) = 104 ·
(
E[1 +X] ·E[1 +Y ]−E

[
(1 +X)−1(1 +Y )−1

]−1
)
, (3.24)

assuming that both X and Y are log-normal. Multiplying the new variable Y , instead

of a different transformation, preserves the model’s structure and replicates the way

most (un-approximated) Euler equations work. The factor to produce growth rate dif-

ferentials stays at 104 since multiplying centered growth rates results in a new growth

rate, combining the others. This works analogously to adding level data in the same

unit of measure. Figure 3.8 explores how the correlation between two variables affects

the approximation bias.

56See, e.g., An and Schorfheide (2007, 118), including four variables in the context of a medium-scale
DSGE model.

57See also Mitrinović et al. (1993, 4), dealing with multivariate functions, f (Rn), in the context of
Jensen’s inequality.
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Figure 3.8: Baseline case with two variables. Horizontal axis: Correlation (ρ). Vertical axis:
Growth rate difference in basis points. Technical note: The correlation between RV’s ∼ N (0,1)
is preserved when transforming into the log-normal form. Also, when drawing from aN (0,1),
the correlation equals the covariance.

The bias’ magnitude is extremely small, reaching from 1 to 3bp. For negative cor-

relation values up to −0.5, the standard deviation of the simulated distributions re-

mains approximately the same, linearly increasing thereafter. The skewness is rather

low with 0.46 on average. A gamma distribution can describe the individual results,

however, with changing shape and scale parameters for different correlation values.

Outliers account for approximately 1% in the case with maximum correlation. The

relationship appears to be linear with negative correlation counteracting the bias.

Similar to Eq.(3.20), a special case can heuristically illustrate the rationale behind

the linear relation. Again, take f from Eq.(3.2.1) to a bivariate environment: f (X,Y ) =

X ·Y .

E[X ·Y ] = E[X] ·E[Y ] + Cov[X,Y ] = E[X] ·E[Y ] + (σXσY ) ·Corr[X,Y ]. (3.25)

In this case, the residual ∆XY comprises the correlation times a coefficient (the stan-

dard deviations).58

58With the binomial formula: Cov[X,Y ] = E[X · Y ] + E[X] · E[Y ]. Note that the correlation is the
standardized covariance: Corr[X,Y ] = Cov[X,Y ]/

(√
Var[X] ·

√
Var[Y ]

)
.
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As a last step, pushing forward to a more comprehensive form, the quantity of

variables ought to be reflected in the formula. Thus, modifying the model the same

way as accomplished in Eq.(3.24) leads to

bias(X1, ...,Xn) = 104 ·

 n∏
i=1

E[1 +Xi]−E

 n∏
i=1

(1 +Xi)
−1


−1 , (3.26)

a generalized version with n variables. Specifying n = 5 and, for simplicity, assuming

the same correlation between all these variables, Figure 3.9 reveals a similar pattern as

in the bivariate case.59
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Figure 3.9: Baseline case with n = 5 variables. Horizontal axis: Correlation (ρ). Vertical axis:
Growth rate difference in basis points.

The distribution indicators are similar and a nearly linear relationship reaches from

the minimum to the maximum correlation value. For five highly correlated variables

(ρ = 0.95), the bias roughly averages at 15bp, with outliers over 25bp. In this scenario,

compared to Figure 3.8, the relationship is still linear, but the slope is larger (approxi-

mately 1.15bp per 0.1 ρ-step).

Finally, Figure 3.10 varies the number of variables while slightly deviating from

the baseline case. Since high growth rates for a large number of macroeconomic vari-

59It is interesting to note that in this case a covariance matrix cannot be positive definite, which is
required. In other words, there is no combination of values possible where the overall correlation is
always negative.
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ables are unrealistic, we switch to the calibrated mean for the US (µ = 2.5%).60 As an

additional assumption, the variables are mildly correlated (ρ = 0.1).
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Figure 3.10: Baseline case with on overall correlation of ρ = 0.1. Horizontal axis: Number of
variables (n). Vertical axis: Growth rate difference in basis points.

For ten or fewer variables, the average bias is not surpassing the 25bp mark. Thus,

these situations can be compared to the extreme scenarios in Figures 3.4 and 3.5. For

n = 20, an average bias of over 50bp is reached, and outliers of almost one percent-

age point are possible. The standard deviation increases over proportionately and

the skewness stays at 0.5.61 Distribution analysis, again, points towards gamma-

distributed residuals and outliers account for 1%. There is a predominant quadratic

relationship since the exponential coefficient is significant but basically zero as shown

in the regression table in Appendix C.10.

To recapitulate, Appendix C.16 provides a general overview of all figures shown in

this section and the multiple-planes figure in Section 3.3.

60For µ = 6%, values of over 2 percentage points will be reached.
61Medcouple averages at 0.08 and the %-deviation of mean and median averages at 2%.
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3.6 Conclusion

This mostly theoretical paper explores a source of error in the context of macroeco-

nomic models. Occurring in intertemporal Euler equations, Jensen’s inequality is typi-

cally ignored when bringing the model to the data. Therefore, we set up an illustrative

framework to compare the expected outcome of a non-linear function with the func-

tional value of the expected argument consisting of growth rates. Being interested in

the magnitude, this difference is constructed in a way that it can be measured in ba-

sis points, thereupon designated as approximation bias. Since in the prevalent DSGE

family, this bias is rather small, we evaluate parameter constellations in which the

difference becomes apparent.

First, we derive analytical solutions with assumptions typical for DSGE models

and growth rates, subsequently calibrating first and second moments for the US and

emerging markets from forward-looking Consensus Forecasts data. Second, we test

the variability in a simulation-based analysis and examine resulting distributions for

a wide range of parameter values. Third, we further extend the model to check for

the multivariate influence and, thus, the correlation among variables. Throughout the

article, we focus on translating model parameters into economic factors.

To generalize the results, we track down five separate factors, describing the func-

tional relationship relative to the bias. The approximation bias increases (i) quadrat-

ically to uncertainty, (ii) exponentially to both the overall risk aversion and (iii) the

model size, (iv) inversely proportional to the number of future states, and (v) linear

to variables’ co-movement. On the other hand, the first moments, mean and median,

march to a different drummer by switching the sign of their influence depending on

the curvature. However, this influence is negligible.

In absolute terms, when uncertainty is high, growth rates are overestimated up to

25 basis points. Consequently, a corresponding interest rate, adjustable by the central

bank, should generally be lower when accounting for the approximation bias. Expect-

ing a future scenario consisting of three possible states only, the bias’ mean remains

low, yet its distribution will be heavily skewed. Accordingly, when including only a

few variables, the correlation among them will not be an issue, with negative values

even counteracting the bias. Lastly, considering a large number of variables, overesti-

mation mattered the most, with outliers even reaching one percentage point.

Our findings are important for large-scale model users such as central banks in

major economies where a possible error can add up and significantly bias the predic-

tions. They also matter for institutions in emerging economies, which are more and
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more adopting DSGE models. We showed, in particular, that in situations with large

uncertainty the bias cannot be ignored.

This groundwork provides a rich field for future research. To avoid the approxi-

mation when the bias is potentially large, examining density forecasts as in Rich and

Tracy (2010) are of particular interest. Finally, putting all findings together, a Kalman-

like filter to transform times series could be established to circumvent the issue. An

expected difference to the actual values depending on the identified factors could be

derived, including simulation-based confidence intervals.
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Appendix C

C.1 Approximating Jensen’s Inequality by Quadratic Taylor Series

Since linearizing causes the inequality to vanish, we check for its relevance after con-

ducting second-order (multivariate) Taylor expansion. In contrast to the first-order

version, the function’s curvature is not ignored. Our proof is presented for the convex

version in an illustrative, special case with two real numbers a and b, where a < b:

f (a) + f (b)
2

≥ f
(
a+ b

2

)
(C1)

We set µ(a,b) = (a+ b)/2 as the arithmetic mean and, therefore, µ0(a0,b0) as the center

point. The LHS is additive separable and can be piece-wise differentiated. Interpreting

the RHS as a composite function f (µ(a,b)) helps to keep track after the first step since

cross-derivatives have to be considered. Carrying out a quadratic Taylor expansion on

both sides of Eq.(C1), by using arguments a and b, yields:

T LHS2 (µ(a,b)) =
1
2

[
f (a0) + f ′(a0)(a− a0) +

1
2
f ′′(a0)(a− a0)2

+f (b0) + f ′(b0)(b − b0) +
1
2
f ′′(b0)(b − b0)2

]
(C2.1)

T RHS2 (µ(a,b)) =f (µ0) +µ′(a0) · f ′(µ0)(a− a0) +µ′(b0) · f ′(µ0)(b − b0)

+
1
2

(f ◦µ)′′aa(µ0)(a− a0)2 +
1
2

(f ◦µ)′′bb(µ0)(b − b0)2

+ (f ◦µ)′′ab(µ0)(a− a0)(b − b0) (C2.2)

Without a loss of generality the approximation can be centered at the origin: a0 = b0 =

0 and f (0) = 0. Rearranging—by using the binomial theorem—and simplifying the

expressions—by setting f ′(0) = f ′0 , f ′′(0) = f ′′0 , and µ(a,b) = µ to save space—gives:

T LHS2 (µ(a,b)) =
1
2

[
f ′0 · (a+ b) +

1
2
f ′′0 · (a

2 + b2)
]

= f ′0 ·µ+ f ′′0 ·µ− f
′′

0
ab
2

(C3.1)

T RHS2 (µ(a,b)) =
1
2
f ′0 · a+

1
2
f ′0 · b+

1
8
f ′′0 · a

2 +
1
8
f ′′0 · b

2 +
1
4
f ′′0 · ab = f ′0 ·µ+

1
2
f ′′0 ·µ

2 (C3.2)

Bringing back both expressions in the inequality form reveals the difference by means

of the convexity property and the AM-GM inequality:

f ′0 ·µ+
1
2
f ′′0 ·µ

2 +
1
2
f ′′0 (µ2 − ab︸ ︷︷ ︸

> 0

) ≥ f ′0 ·µ+
1
2
f ′′0 ·µ

2. (C4)
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After a quadratic approximation on both sides, the inequality still holds.

C.2 Definition of the Approximation Bias

Modifying Eq.(3.2.2) will not fundamentally change the model’s results but will lead

to a clearer interpretation of ∆. The idea is to show the resemblance of (i) the difference

of two growth rates and (ii) the reversed difference of their inverses. The latter can be

approximated by first-order Taylor expansion to result in the actual difference. In the

context of a DSGE model’s first-order condition (i.e., the Euler equation) combined

with the derivative of the CRRA function, we calculate the inverse of growth rates,

weighted by the parameter γ :

un-approximated: gr−1
w = E

[
1

(1 +X)γ

]
; biased: gr−1

w,b =
1

(1 + E[X])γ
(C5)

We use the indices w for weighted and b for biased in connection with growth rates

gr. Additionally, gr is centered around one, representing negative (positive) growth

for values smaller (larger) than one. Expressed as its magnitude, the plain Jensen’s

inequality gives a differential of inverted growth rates:

b̃ias = gr−1
w − gr−1

w,b =
1

grw · grw,b
(grw,b − grw), (C6)

which is positive for convex functions. Also, the first-order (multivariate) Taylor ex-

pansion of this expression is equivalent to the simple difference grw,b − grw:

T b̃ias1 (grw, grw,b), at the center point: gr0 = (1,1) (C7.1)

⇒ b̃ias(1,1) + b̃ias
′
grw(1,1) · (grw − 1) + b̃ias

′
grw,b(1,1) · (grw,b − 1) = grw,b − grw. (C7.2)

Therefore, we use these re-inverses directly for a cleaner interpretation. This changes

Eq.(3.2.2) in a way that the plain difference is not only a linearized approximation but

the actual research subject. To draw a closer connection, several numerical examples

illustrate the similar outcome. Figure C1 reveals the discrepancies depending on the

grw–level and an approximation bias of 10/25/50bp. The deviations, stemming from

the fraction in Eq.(C6), are multiplied by 104, thus, being measured in bp.
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Figure C1: Comparing the difference (grw,b−grw) for 10/25/50bp and the corresponding bias in
Eq.(C6) depending on the level of growth. Horizontal axis: Weighted growth rate grw. Vertical
axis: Growth rate difference in basis points.

C.3 Moment Generating Function: Proof

Performing the critical step E[exp(−γβZ)]⇒ exp((γβ)2/2) to drop the stochastic source,

the moment generating function for the (standard) normal distribution is utilized:

M(t) = E
[
etZ

]
= et

2/2, Z ∼N (0,1). (C8)

To proof this relationship, the law of the unconscious statistician (LOTUS) is needed

to write out the composition regarding the expectation value in terms of an integral:

E
[
etZ

]
=

∫
R
etx · 1
√

2π
e−x

2/2dx =
1
√

2π

∫
R
e−

1
2 (x2−2tx)dx. (C9)

Expanding the exponent for a binomial formula and factoring out the constant gives

E
[
etZ

]
=

1
√

2π

∫
R
e−

1
2 (x2−2tx+t2−t2)dx = et

2/2 · 1
√

2π

∫
R
e−

1
2 (x−t)2

dx︸                  ︷︷                  ︸
= 1

. (C10)

Finally, since the area of a horizontally shifted (by t) standard normal distribution is

still one, Eq.(C8) emerges.
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C.4 Analytical Solution – Additional Inspection

To obtain a clearer picture of the auxiliary parameter r, the geometric approach in

Figure C2 can help.

m

σr

Figure C2: Graphical representation of the two moments and the auxiliary parameter r.

Without factoring out mγ , the connection to the originating Eq.(3.6) becomes un-

mistakable. Simultaneously increasing the curvature,

lim
γ→∞

bias(γ | m > 1) = 104 ·
[
mγ︸︷︷︸
→∞

−mγ · (m/r)γ
2+γ︸           ︷︷           ︸

→ 0

]
, (C11)

shows at the first underbrace the bias growing exponentially, whereas the second ex-

pression, after a maximum at γ = log(m2/r)/ log(r2/m2), converges quadratic–exponen-

tially towards zero. In a special case with m = 1 and therefore µ = 0 and r =
√

1 + σ2,

the average growth equals 0%. Here, the second term, stemming from the unbiased ex-

pression can be transformed into sums for σ < 1 and γ ∈ N by means of the geometric

series and triangular numbers:

bias(σ,γ) = 104 ·
[
1− (1/r)γ

2+γ
]

(C12.1)

= 104 ·

1− ( 1
1 + σ2

)γ(γ+1)
2

 (C12.2)

= 104 ·

1−
 ∞∑
i=0

(−1)iσ2i


∑γ
i=1 i

 . (C12.3)

C.5 Algebraic Formula for the Variance

Typically shown by the binomial theorem, an alternative way to point out equality of

the variance formula,

Var[X] = E[X2]− (E[X])2, (C13)

works analogously to the approach in Section 3.3. Inserting the distribution formula

and its mean, µ, leads to

Var[X] = E[exp(α + βZ)2]−µ2 (C14.1)
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= exp(2α) ·E[exp(2βZ)]−µ2 = exp(2α) · exp((4β2)/2)−µ2

=

 µ√
1 + (σ/µ)2

2

· exp(β2)2 −µ2 =
(

µ2

1 + (σ/µ)2

)
· (1 + (σ/µ)2)2 −µ2

= µ2 · (1 + (σ/µ)2)−µ2 = σ2, (C14.2)

confirming the centered second moment for the log-normal distribution.

C.6 Inverted Beta-Distribution – Parameters

Similarly to Eqs.(3.7), log-normal case, we aim to solve for the parameters of the in-

verted beta (or beta prime) distribution. Being more unknown than the log-normal

distribution, we show this in more detail. The moment-generating function (see, e.g.,

Keeping 1962, 84),

E[Xp] =
p∏
i=1

α + i − 1
β − i

, p ∈ N and p < β, (C15)

draws the connection between raw moments and parameters. The latter have to be

written in terms of µ and σ to translate the grid in Eq.(3.17) into α and β. As claimed

in Eq.(C15), p has to be smaller than β and, therefore, β has to be sufficiently large.

Indeed, this is given in the calibration. For p = 1 and p = 2, the mean and the second

central moment are

E[X] = µ =
α

β − 1
and (C16.1)

E[X2]−E[X]2 = σ2=
α(α + β − 1)

(β − 2)(β − 1)2 , (C16.2)

respectively. First, replacing α in Eq.(C16.2) with Eq.(C16.1) and solving for β leads to

σ2 =
µ(β − 1)(µ(β − 1) + β − 1)

(β − 2)(β − 1)2 =
µ(µ+ 1)
(β − 2)

(C17.1)

⇔ β = 2 +
µ+ 1
σ2 µ. (C17.2)

Second, solving Eq.(C16.1) for α and replacing β with Eq.(C17.2) leads to

α = µ
(
µ(µ+ 1)
σ2 + 2− 1

)
= µ+

µ+ 1
σ2 µ2. (C18)
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C.7 Parameter Results for US Inflation Forecasts

To obtain a better insight into the connection of the parameters, Table C1 displays the

results of the calibration before conversion. The conversion of α and β is done by using

Eqs.(3.7) and Eqs.(C16).

Parameter Min 25thcentile Median 75thcentile Max

log-norm.

α −0.0032 0.0189 0.0243 0.0315 0.0411

β 0.0001 0.0001 0.0002 0.0007 0.0057

inv. beta

α 0.1000 61.408 101.75 157.17 444.60

β 14.908 2301.5 3587.5 5372.9 18505.8

Table C1: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on inflation forecasts.

For the log-normal distribution, the resulting values are close to the values after

conversion. The α and β values for the inverted beta distribution are more widespread.

This is a direct consequence of two characteristics of the distribution. The first one is

that negative values are not drawn which can be overcome by a shift. The second—

more crucial—point is the high probability mass at the left end of the distribution

which can only be overcome by large values for α and β. A side effect of these values

is a large spread of drawn variables which results in the higher error values compared

to the log-normal distribution.

C.8 Calibration Results for US GDP Forecasts

The same tests and calibration as in Section 3.4 is run with the GDP growth forecast

as the observed variable. The time horizon is the same, but the focus is only on the US

and not on the frontier markets.

As before, we start with a normality test to check whether the log GDP forecast

variables are normally distributed. The results can be seen in Table C2. In more than

75% of the observations, the J-B test cannot reject the H0 of non-normally distributed

variables.
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Norm. p-value
Test < 10% < 5% < 1%

J-B 78 64 39

S-W 90 54 11

A-D 98 62 19

LF 102 73 29

Table C2: Normality test results for GDP growth forecasts (US). It displays the number of
observation points that reject the H0 of non-normally distributed variables out of 357 observa-
tions.

As the results of the normality tests are sufficient, the calibration can be run. The

results are presented in Table C3.

Para- Obs. Mean
meter Min 25thcentile Median 75thcentile Max Median Error

log-norm.

µopt −0.0178 0.0192 0.0259 0.0320 0.0420 0.0260 1.18·10−5

σopt 0.0001 0.0001 0.0001 0.001 0.0022 0.0027 1.18·10−5

inv. beta

µopt 0.0052 0.0255 0.0293 0.0329 0.2832 0.0260 2.26·10−4

σopt 0.0013 0.0022 0.0029 0.0039 0.1397 0.0027 2.26·10−4

Table C3: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on GDP growth forecasts.

Compared to the results from the calibration of inflation forecasts, we can identify

the same pattern. Whereas the log-normal distribution fits µ really good, the error in

σ is larger. The inverted beta distribution shows a contrary picture with a good fit in

σ and bad fit in µ. Nevertheless, the log-normal distribution again has a lower error.

At last, the direct parameters resulting from the calibration before the conversion into

µ and σ are presented in Table C4.
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Parameter Min 25thcentile Median 75thcentile Max

log-norm.

α −0.0179 0.0190 0.0256 0.0315 0.0411

β 0.0001 0.0001 0.0001 0.0001 0.0022

inv. beta

α 0.1021 62.681 120.30 182.10 676.98

β 15.079 2117.6 3919.9 6210.9 19782.2

Table C4: Calibration results (US) when assuming CF data follow a log-normal and inverted
beta distribution, respectively. The calibration is run on a monthly basis for the rolling
window-adjusted observations on GDP growth forecasts.

The structure of the results is close to the one from the inflation forecasts. The re-

sulting values from the log-normal distribution are close to the values after conversion

and the α and β values for the inverted beta distribution are more widespread.

C.9 Impact of the Mean on the Approximation Bias

In the following, derivatives are used to evaluate the effect of µ on the approximation

bias. Sticking to Eq.(3.10.3), the centered growth (m) is utilized. Nevertheless, the

constant transformation, m = 1 +µ, ensures equivalent derivatives:

∂bias
∂µ

≡ ∂bias
∂m

. (C19)

Since the absolute values of the approximation bias heavily depend on σ and γ (see

Figure 3.3), it is difficult to conclude the impact of µ. We differentiate the bias-function

to account for the change depending on a change in the mean growth rate. Using the

product and chain rule, (...) refers to the part not changing:

∂bias
∂m

= 104 ·
[
γmγ−1(...) +mγ

(
γ(γ + 1)

2

(
1 +

σ2

m2

)−γ(γ+1)
2 −1

· (−2σ2m−3)
)]

(C20.1)

= 104 ·γmγ−1
[
(...)− (γ + 1)

(
1 +

σ2

m2

)−γ(γ+1)
2 −1

· σ
2

m2

]
(C20.2)

= 104 ·γmγ−1
[
1−

(
1 + σ2/m2

)−γ(γ+1)
2

(
1 +

(1 +γ)σ2

m2 + σ2

)]
. (C20.3)
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Testing the baseline scenario for extreme µ-values:

∂bias
∂m

(µ = −5% | BL) ≈ −1.2 =∧ −0.012bp/pp (C21.1)

∂bias
∂m

(µ = 20% | BL) ≈ −0.8 =∧ −0.008bp/pp (C21.2)

The interpretation is a change in basis point (e.g., an increase of the bias) caused by

a 1 percentage point increase of the mean growth. For the BL case, the change at the

upper and lower bound is basically zero. Testing maximum values for σ and γ :

∂bias
∂m

(µ = −5% | σ = 0.04,γ = 1) ≈ −17.6 =∧ −0.176bp/pp (C22.1)

∂bias
∂m

(µ = 20% | σ = 0.04,γ = 1) ≈ −11.1 =∧ −0.111bp/pp (C22.2)

∂bias
∂m

(µ = −5% | σ = 0.01,γ = 5) ≈ 40.6 =∧ 0.406bp/pp (C22.3)

∂bias
∂m

(µ = 20% | σ = 0.01,γ = 5) ≈ 64.8 =∧ 0.648bp/pp (C22.4)

Even for the maximum values, the change is significantly under 1bp. This makes it

uninteresting to further examine µ as a varying parameter in the simulations.

C.10 Regression Outputs

Accompanying the MC simulations in Section 3.5, we regress the median-bias on the

varying parameters, respectively. Using the median instead of the mean is interest-

ing when facing skewed data and since there are already theoretical solutions in some

cases for the mean. Also, this goes hand in hand with Figures 3.4–3.10 which display

the standard boxplots. However, despite the mean being always larger, there are no

substantial differences. As a robustness check, we also present regression results—in

the same vein—for both the CARA function and the inverted beta distribution. Start-

ing with the main results, Table C5 shows five regressions for four parameters.
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Term bias(σ ) bias(γ) logbias(γ) bias(ρ) logbias(n)

const. −0.002 −0.265*** −0.121*** 1.903*** −0.146***
(0.004) (0.062) (0.002) (0.000) (0.001)

linear 0.003 −0.109* 0.009*** 0.066***
(0.004) (0.054) (0.000) (0.001)

quadr. 0.890*** 0.679*** −0.000 −0.000***
(0.001) (0.010) (0.000) (0.000)

log 1.575*** 1.022***
(0.002) (0.002)

log- 0.155***
quadr. (0.002)

R
2

1 0.99 1 1 1
Std.Err. 5.46 · 10−3 8.31 · 10−2 6.39 · 10−3 1.18 · 10−3 1.05 · 10−3

Obs. 20 20 20 20 20

Table C5: Second moment measures (σ and ρ) are multiplied by 100. ***/**/* denote signifi-
cance at the 1%/5%/10% level.

Multiplying σ and ρ by 100 accounts for the typical step size when referring to

one increment. Therefore, the first regression column predicts an increase in the bias

by 2 · 0.89 × 100 · σ1 when increasing the standard deviation by 0.01 at a level of σ1.

Since the other estimates are extremely small and insignificant, they are not absorbing

explanatory power from the quadratic term. Also, explaining basically 100% of the

dependent variable’s variation confirms the (nearly) quadratic relationship discussed

in Section 3.3.

The second column draws a different picture since the model artificially shifts the

parabola’s vertex to the forth quadrant. In addition, the quadratic term is smaller than

in the σ -case, probably underestimating the effect for larger values. Alternatively, in

the third column, estimating the elasticity (1.575) increases the explanatory power.

However, the effect cannot be isolated and the relationship is still more complex, ex-

pressed by the significant squared log-coefficient. The intercept comes into play if γ =

1 (log-utility) and indicates a positive bias close to zero. Without the squared term, the

elasticity would be somewhat larger (1.665), the intercept insignificant, and R
2

= 0.99.

Column four confirms the linear relationship regarding the correlation between

two variables. Staying at 1.9bp without any correlation, a 0.01-step results in a sig-

nificant change that is basically zero. However, for more than two variables, Figure

3.9 points out an increase in the slope while preserving the linear connection. In
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the last column, a roughly unit elastic relationship emerges, reinforced by the lin-

ear term, which effects an increase of 6.6% for every additional variable. For n = 1,

logbias = −0.08, which perfectly matches the baseline result of just below 1bp visible

in Figure 3.6.

As seen in Table C6, the above numbers are mostly confirmed in our robustness

check. Therefore, for both the inverted beta (instead of log-normal) and the CARA (in-

stead of CRRA) we renounce examining the multivariate part, which is non-trivial for

the multivariate inverted beta-distribution. The first two columns are basically equal

to column one and three in Table C5. In the CARA case, the quadratic coefficient is

somewhat smaller (varying σ ) and the elasticity is slightly larger (varying γ). Math-

ematically, in the log-utility case (γ = 1) and after applying the inversion g(y), the

marginal CRRA-function is only a first-order Taylor expansion of the CARA around

zero: 1 + x ≈ ex. However, the simpler CRRA-function better fits into our model as-

sumptions and is used frequently in the literature.

Term biasbeta(σ ) logbiasbeta(γ) biasCARA(σ ) logbiasCARA(γ)

const. −0.010 −0.120*** −0.002 −0.699***
(0.007) (0.002) (0.004) (0.003)

linear 0.019** 0.005
(0.008) (0.004)

quadr. 0.885*** 0.499***
(0.002) (0.001)

log 1.575*** 2.077***
(0.002) (0.003)

log- 0.156*** 0.043***
quadr. (0.002) (0.003)

R
2

1 1 1 1
Std.Err. 9.91 · 10−3 5.97 · 10−3 5.16 · 10−3 8.51 · 10−3

Obs. 20 20 20 20

Table C6: σ is multiplied by 100 to account for the typical step size. ***/**/* denote signifi-
cance at the 1%/5%/10% level.

C.11 2nd-Order Taylor Series for Eq.(3.11)

In addition to the regression analysis, we check for accuracy whether the relationship

can be titled “quadratic" for a realistic range of σ , from a theoretical point of view.

Approximating around σ0 = 0 is chosen for simplicity, although this is the smallest
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possible value, and therefore it cannot be the optimal center point. It turns out that

this approximation is sufficient for eligible values. However, as an extension, we also

choose center points larger than zero to check how the formula changes and to clarify

the mechanics behind the Taylor series. The following function has to be constructed

from Eq.(3.11):

T2(σ | σ0) = bias(σ0) + bias′(σ0)(σ − σ0) +
1
2
bias′′(σ0)(σ − σ0)2. (C23)

First and second derivatives are:

bias′(σ ) = 104 2m3σ

(m2 + σ2)2 ⇒ bias′(0) = 0 (C24.1)

bias′′(σ ) = 104 2m3(m2 − 3σ2)
(m2 + σ2)3 ⇒ bias′′(0) = 104 · 2m−1 (C24.2)

This ends in a simple quadratic relationship corrected by m, the centered mean:

T2(σ | σ0 = 0) = 104 · σ2/m (C25)

Compared to the accurate solution, second-order Taylor expansion overestimates

the bias when the standard deviation is increasing from the center point. Taking the

classical log-linearizing of growth rates as a reference point, a growth rate of 5% leads

to a deviation of almost 2.5%:62

5%
log(1.05)

− 1 ≈ 2.48% (C26)

Using this benchmark in terms of Eqs.(3.11) and (C25) gives

T2(σ = 0.167)
bias(σ = 0.167)

− 1 ≈ 2.48%. (C27)

Since 0.167 is roughly four times larger than the maximum value chosen in the simula-

tion, we can conclude that the quadratic approximation is sufficient. Nevertheless, as

further extension, using a center points greater than zero, Table C7 gives an impression

of how the accuracy changes over the σ ’s.

625% would be the approximation and log(1.05) the correct expression (in a non-linear equation).
Therefore, the percentage deviation is standardized by the latter term.
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Center point −2.5% <%-difference < 2.5% Difference at σ = 0.01

σ0 min σ max σ ∆bp

0.005 0.001 0.168 0

0.010 0.001 0.169 0

0.015 0.002 0.171 0

0.020 0.004 0.173 −0.001

0.025 0.005 0.176 −0.002

0.030 0.007 0.180 −0.007

0.035 0.009 0.184 −0.015

0.040 0.011 0.188 −0.029

0.045 0.014 0.192 −0.052

0.050 0.016 0.196 −0.085

Table C7: For σ values smaller (larger) than σ0 the theoretical bias is underestimated (overes-
timated).

With a larger centre point, the maximum σ -value increases at which the approxi-

mation is sufficient. However, this gained accuracy does not compensate the simulta-

neously increasing minimum σ -value, with σ0 = 0.04 already surpassing the baseline

case. The latter is further examined in the last column, showing the absolute difference

in basis points. This difference is still very small, not reaching a tenth of a basis point.

Therefore, from a practical point of view, even when the centre point is not optimal,

the approximation error is negligible.

C.12 Jensen’s Inequality as Ratio

Formulating the problem as a ratio gives the advantage of a simpler formula. Initially,

the factor 104 gets redundant, cancelling out due to the fraction. Also, in this case, the

function g(y) only switches denominator and numerator, resulting in a ratio > 100%:

biasr(m,σ,γ) =
(1 + Et[growtht+1])γ

Et[(1 + growtht+1)−γ ]−1 =
mγ

mγ ·
(

m√
m2+σ2

)γ(γ+1)
(C28.1)

=
(

m
√
m2 + σ2

)−γ(γ+1)

=

√m2 + σ2

m

γ(γ+1)

=
(
1 +

σ2

m2

)γ(γ+1)
2

. (C28.2)
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Additionally, the formula reduces to squared expressions for all parameters while the

curvature remains in the exponent. Given positive integer values for γ , the formula

can be written in a discrete form as

biasr(m,σ,γ) =
(
1 + (σ/m)2

)∑γ
i=0 i =

γ∏
i=1

(
1 + (σ/m)2

)i
, (C29)

a product which factors only consist of 100% plus a squared coefficient of variation

weighted by integer exponents. Figure C3 depicts Eq.(C29) for several curvature val-

ues, revealing a deviation, even for extreme scenarios, by only a few percent.

100

101

102

103

104

0.01 0.02 0.03 0.04 0.05

Figure C3: Comparing the Jensen ratios for γi ∈ {1,2,3,4,5} and varying σ/m. Lines are ordered
from lightgray (γ = 1) to darkgray (γ = 5). Horizontal axis: Coefficient of variation (σ/m).
Vertical axis: Ratio of growth rates in %.

C.13 2nd-Order Taylor Series for Eq.(3.12)

The following function has to be constructed from Eq.(3.12):

T2(γ | γ0) = bias(γ0) + bias′(γ0)(γ −γ0) +
1
2
bias′′(γ0)(γ −γ0)2. (C30)

Analogous to Eq.(C25), the center point, γ0, equals zero. The first derivative is calcu-

lated by the product rule, the chain rule, and the log-rule to switch the sign:

bias′(γ) = 104
[
log(m)mγ ·

(
1− (m/r)γ(γ+1)

)
+mγ · (− log(m/r))(m/r)γ(γ+1)(2γ + 1)

]
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= 104 ·mγ
[
log(m) ·

(
1− (m/r)γ(γ+1)

)
+ log(r/m)(m/r)γ(γ+1)(2γ + 1)

]
= 104 ·mγ

[
log(m) + (m/r)γ(γ+1) ·

(
log(r/m)(2γ + 1)− log(m)

)]
(C31.1)

⇒ bias′(0) = 104 · log(r/m) (C31.2)

Applying the product rule twice, with [...] and (...) for the parts not differentiated, gives

bias′′(γ) = 104
[
log(m)mγ · [...]+

mγ ·
(
log(m/r)(m/r)γ(γ+1)(2γ + 1) · (...) + (m/r)γ(γ+1) · 2log(r/m)

) ]
= 104 ·mγ

[
log(m) · [...] + log(r/m)(m/r)γ(γ+1)(2− (2γ + 1)(...))

]
(C32.1)

⇒ bias′′(0) = 104 · [log(m) · log(r/m) + log(r/m) · (2− (log(r/m)− log(m)))]

= 104 · log(r/m)
(
2log(m) + 2− log(r/m)

)
= 104 · log(r/m)

(
2log(m) + 2log(e) + log(m/r)

)
= 104 · 2log(r/m) log

(
me
√
m/r

)
. (C32.2)

Putting the derivatives together leads to a quadratic equation without intercept and

similar coefficients for the linear and the quadratic term:

T2(γ | γ0 = 0) = 104 · log(r/m)
[
log

(
e
√
m3/r

)
γ2 +γ

]
(C33)

Compared to the accurate solution, second-order Taylor underestimates the bias when

the curvature is increasing from the center point. Using the benchmark in Eq.(C26) in

terms of Eqs.(3.12) and (C33) gives∣∣∣∣∣ T2(γ = 0.9)
bias(γ = 0.9)

− 1
∣∣∣∣∣ ≈ 2.49%. (C34)

This corresponds to a curvature up to 0.9 and, thus, slightly smaller than the baseline

case. In terms of the economic interpretation, the quadratic Taylor-series is accurate

enough for EIS-values larger than 1.1. Following the meta-study by Havranek et al.

(2015), this includes not even half of the scenarios. Hence, in contrast to the σ -version

in Appendix C.11, we would not refer to this relationship as quadratic. For reason-

able values, the relationship is exponential with approximately constant elasticities,

∂ log(bias)/∂ log(γ).
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C.14 Simulation with the Elasticity of Intertemporal Substitution
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Figure C4: Horizontal axis: EIS (γ−1). Vertical axis: Growth rate difference in basis points.

Appearing like the distorted mirror image of Figure 3.5, the graphic shows a significant

impact for EIS = 0.2 only.

C.15 Convergence for Large Samples

We show how the empirical bias approaches the analytical bias by means of the vari-

ance formula, Var[X] = E[X2] − E[X]2, a special case of Jensen’s inequality. This ex-

ample is particularly traceable since the analytical bias consists of σ2 only. Therefore,

this case specifies the function f but shows the results being not dependent on the

moments or the distribution, provided that the required moments are defined. The

set-up is as follows:

lim
N→∞

E

 1
N

N∑
i=1

x2
i −

 1
N

N∑
i=1

xi


2 = σ2, xi ∼ i.i.d.(µ,σ2) (C35)
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We claim that the %-difference to σ2 for finite N is always negative and approaches

this value in the form of a hyperbola:

E
[

1
N

∑N
i=1x

2
i −

(
1
N

∑N
i=1xi

)2
]
− σ2

σ2 = − 1
N

(C36)

The interpretation in percent is convenient since for N = 1 the value stays at −100%

and approaches 0% for N →∞. Eq.(C36) can be simplified by using E[xi · xj] = E[xi] ·
E[xj] + Cov[xi ,xj] as the key step:

⇒ 1
N

N∑
i=1

E[x2
i ]− 1

N 2 E


 N∑
i=1

xi


2 = σ2 − σ

2

N
(C37.1)

⇔ µ2 + σ2 − 1
N 2 E

[
(x1 + ...+ xN )2

]
= σ2 − σ

2

N
(C37.2)

⇔ N 2µ2 −E

 N∑
i=1

x2
i + 2

N−1∑
i=1

xi · N∑
j=1+i

xj


 = −Nσ2 (C37.3)

⇔ N 2µ2 −N (µ2 + σ2)− 2E
[
x1x2 + x1x3 + · · ·+ x1xN︸                        ︷︷                        ︸

(N − 1) terms

+

x2x3 + x2x4 + · · ·+ x2xN︸                        ︷︷                        ︸
(N − 2) terms

+ · · ·+ xN−1xN︸  ︷︷  ︸
1 term

]
= −Nσ2 (C37.4)

⇔ N 2µ2 −Nµ2 − 2
N (N − 1)

2
µ2 = 0. (C37.5)

From Eq.(C37.4) to Eq.(C37.5), the i.i.d.-property ensures that Cov[xi ,xj] = 0. The

fraction in the last step, N (N − 1)/2 = 1 + 2 + ... + (N − 1), equals the total amount of

terms xixj .

Interpreting N as the amount of states, in which the future economy can be situ-

ated, the analytical bias has to be corrected downwards by (N − 1)/N . E.g., for two

possible states, the bias has only half the size as analytically derived.
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C.16 Overview: Figures

Figure µ σ γ ρ n N ∼max. ∆bp

3.3 −5%-20% 0.001-0.04 1.5/2/2.5 – 1 ∞ 70

3.4 6% 0.002-0.04 1 – 1 30 25

3.5 6% 0.01 0.25-5 – 1 30 30

3.6 6% 0.01 1 – 1 1-20 2

3.7 6% 0.002-0.04 1 – 1 2 25

3.8 6% 0.01 1 −0.95-0.95 2 30 5

3.9 6% 0.01 1 0-0.95 5 30 30

3.10 2.5% 0.01 1 0.1 1-20 30 90

Table C8: Overview for all figures using varying parameters. µ (= m − 1) and σ designate the
growth rates’ mean and standard deviation, respectively. γ reflects the non-linear function’s
curvature. ρ is the correlation between two or more variables. n counts the number of variables
in the model. N stands for the sample size. The last column shows the maximum differences
in basis points of the respective figure.

141



References
Afonso, A. and Martins, M.M.F. (2012). ‘Level, slope, curvature of the sovereign yield

curve, and fiscal behaviour’. Journal of Banking & Finance Vol. 36, No. 6, pp. 1789–

1807.

An, S. and Schorfheide, F. (2007). ‘Bayesian Analysis of DSGE Models’. Econometric

Reviews Vol. 26, No. 2-4, pp. 113–172.

Ang, A., Piazzesi, M. and Wie, M. (2006). ‘What Does the Yield Curve Tell us about

GDP Growth?’. Journal of Econometrics Vol. 131, No. 1-2, pp. 359–403.

Aruoba, S.B., Fernández-Villaverde, J. and Rubio-Ramírez, J.F. (2006). ‘Comparing So-

lution Methods for Dynamic Equilibrium Economies’. Journal of Economic Dynamics

and Control Vol. 30, No. 12, pp. 2477–2508.

Baglioni, A. and Cherubini, U. (2016). ‘Eurobonds: A quantitative approach’. Review of

law and economics Vol. 12, No. 3, pp. 507–521.

Baker, S., Bloom, N. and Davis, S.J. (2016). ‘Measuring Economic Policy Uncertainty’.

The Quarterly Journal of Economics Vol. 131, No. 4, pp. 1593–1636.

Bank for International Settlements (2019). ‘Triennial Central Bank Survey: Foreign

exchange turnover in April 2019’. Basel, Available at: https://www.bis.org/

statistics/rpfx19_fx.pdf Accessed March 01, 2020.

Basu, K. (2016). ‘The economics and law of sovereign debt and risk sharing: Some

lessons from the Eurozone crisis’. Review of law and economics Vol. 12, No. 3, pp.

495–506.

Bauer, C. and Herz, B. (2019). ‘Reforming the European Stability Mechanism’. JCMS

https://doi.org/10.1111/jcms.12951

Bi, H. (2012). ‘Sovereign default risk premia, fiscal limits, and fiscal policy’. European

economic review Vol. 56, No. 3, pp. 389–410.

Black, F. and Scholes M. (1973). ‘The Pricing of Options and Corporate Liabilities’.

Journal of Political Economy Vol. 81, No. 3, pp. 637–654.

Bollerslev, T., Gibson, M. and Zhou, H. (2011). ‘Dynamic Estimation of Volatility Risk

Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities’.

Journal of Econometrics Vol. 160, No. 1, pp. 235–245.

142

https://www.bis.org/statistics/rpfx19_fx.pdf
https://www.bis.org/statistics/rpfx19_fx.pdf


Boonstra, W. (2005). ‘Proposals for a better stabiliy pact’. Intereconomics : review of

European economic policy Vol. 40, No. 1, pp. 4–9.

Brunnermeier, M., Langfield, S, Pagano, M., Reis, R., van Nieuwerburgh, S. and

Vayanos, D. (2016). ‘ESBies: Safety in the tranches’. Discussion paper series / Centre

for Economic Policy Research Financial economics, international macroeconomics

and finance and monetary economics and fluctuations, No. DP 11537.

Carabenciov, I., Freedman, C., Garcia-Saltos, R., Laxton, D., Kamenik, O. and

Manchev, P. (2013). ‘GPM6 - The Global Projection Model with 6 Regions’. IMF

Working Paper No. 13/87, pp. 1–78.

Chen, Y. and Tsang, K.P. (2013). ‘What Does the Yield Curve Tell Us about Exchange

Rate Predictability?’. Review of Economics and Statistics Vol. 95, No. 1, pp. 185–205.

Chetty, R. (2006). ‘A New Method of Estimating Risk Aversion’. American Economic

Review Vol. 96, No. 5, pp. 1821–1834.

Chiappori, P.A. and Paiella, M. (2011). ‘Relative Risk Aversion is Constant: Evidence

from Panel Data’. Journal of the European Economic Association Vol. 9, No. 6, pp. 1021–

1052.

Christiano, L.J., Trabandt, M. and Walentin, K. (2011). ‘DSGE Models for Monetary

Policy Analysis’. Handbook of Monetary Economics Vol. 3, pp. 285–367.

Claessens, S., Mody, A. and Vallée, S. (2012). ‘Paths to eurobonds’. IMF Working Paper

No. 12/172.

Clarida, R., Galí, J. and Gertler, M. (2000). ‘Monetary Policy Rules and Macroeconomic

Stability: Evidence and Some Theory’. Quarterly Journal of Economics Vol. 115, No.

1, pp. 147–180.

Collard, F. and Juillard, M. (2001). ‘A Higher-Order Taylor Expansion Approach to

Simulation of Stochastic Forward-Looking Models with an Application to a Nonlin-

ear Phillips Curve Model’. Computational Economics Vol. 17, pp. 125–139.

Coval, J., Jurek, J.W. and Stafford, E. (2009). ‘Economic catastrophe bonds’. The Amer-

ican economic review Vol. 99, No. 3, pp. 628–666.

Coval, J., Jurek, J.W. and Stafford, E. (2009b). ‘The economics of structured finance’.

The journal of economic perspectives Vol. 23, No. 1, pp. 3–25.

Cruces, J.J. and Trebesch, C. (2013). ‘Sovereign defaults: The price of haircuts’. Ameri-

can Economic Journal: Macroeconomics Vol. 5, No. 3, pp. 85–117.

143



Cullen, A.C. and Frey, H.C. (1999). ‘Probabilistic Techniques in Exposure Assessment: A

Handbook for Dealing with Variability and Uncertainty in Models and Inputs’. (Springer

US).

Del Negro, M., Schorfheide, F., Smets, F. and Wouters, R. (2007). ‘On the Fit of New

Keynesian Models’. Journal of Business and Economic Statistics Vol. 25, No. 2, pp. 123–

143.

Delpla, J. and von Weizsäcker, J. (2010). ‘The Blue Bond proposal’. Policy Brief

2010/03, May (Brussels: Bruegel).

Dewachter, H. and Lyrio, M. (2006). ‘Macro Factors and the Term Structure of Interest

Rates’. Journal of Money, Credit and Banking Vol. 38, No. 1, pp. 119–140.

Diebold, F.X. and Li, C. (2006). ‘Forecasting the term structure of government bond

yields’. Journal of Econometrics Vol. 130, No. 2, pp. 337–364.

Diebold, F.X., Rudebusch, G.D. and Borağan Aruoba, S. (2006b). ‘The macroeconomy

and the yield curve: A dynamic latent factor approach’. Journal of Econometrics Vol.

131, No. 1-2, pp. 309–338.

Dieppe, A., Georgiadis, G., Ricci, M., Van Robays, I. and van Roye, B. (2018). ‘ECB-

Global: Introducing the ECB’s Global Macroeconomic Model for Spillover Analysis’.

Economic Modelling Vol. 72, pp. 78–98.

Economides, N. and Smith, R.C. (2011). ‘Trichet bonds to resolve the european

sovereign debt problem’. Working Paper 11-01, January (New York: NET Institute).

Eijffinger, S.C.W. (2011). ‘Eurobonds: Concepts and implications’. European Parlia-

ment, IP/A/ECONNT/2011-01, March.

European Systemic Risk Board (2018). ‘Sovereign bond-

backed securities: a feasibility study’. Available at:

https://www.esrb.europa.eu/pub/task_force_safe_assets/html/index.en.html.

Accessed March 01, 2020.

European Commission (2011). ‘Green Paper on the feasibility of introducing stability

bonds’. COM (2011) 818.

European Commission (2017). ‘Reflection paper on the deepening of the economic and

monetary union’. COM (2017) 291.

Fernández-Villaverde, J. (2010). ‘The Econometrics of DSGE Models’. SERIEs Vol. 1,

pp. 3–49.

144



Fernández-Villaverde, J., Rubio-Ramírez, J. F. and Schorfheide, F. (2016). ‘Solution and

Estimation Methods for DSGE Models’. Handbook of Monetary Economics Vol. 2, pp.

527–724.

Galí, J. (2015). ‘Monetary Policy, Inflation, and the Business Cycle’, 2nd Edition, (Prince-

ton University Press, Princeton, NJ)

German Council of Economic Experts (2012). ‘Nach dem EU-Gipfel: Zeit für

langfristige Lösungen nutzen’. Special Reports No. 75379.

Giovannini Group (2000). ‘Co-ordinated public debt issuance in

the Euro area: Report of the Giovannini Group’. Available at:

https://ec.europa.eu/economy_finance/publications/pages/publication6372_en.pdf.

Accessed March 01, 2020.

Gopal, M. and Pasche, M. (2011). ‘Market-based Eurobonds without cross-

subsidisation’. Working papers on global financial markets No. 37.

de Grauwe, P. and Moesen, W. (2009). ‘Gains for all: A proposal for a common euro

bond’. Intereconomics Vol. 44, No. 3, pp. 132–135.

Gray, D. and Malone, S.W. (2008). ‘Macrofinancial risk analysis’, 1st Edition, (Wiley

finance series, Chichester, UK)

Havranek, T., Horvath, R., Irsova, Z., and Rusnak, M. (2015). ‘Cross-Country Hetero-

geneity in Intertemporal Substitution’. Journal of International Economics Vol. 96, No.

1, pp. 100–118.

Hild, A.M.D., Herz, B. and Bauer, C. (2014). ‘Structured eurobonds: Limiting liability

and distributing profits’. JCMS Vol. 52, No. 2, pp. 250–267.

Hubert, M. and Vandervieren, E. (2008). ‘An Adjusted Boxplot for Skewed Distribu-

tions’. Computational Statistics and Data Analysis Vol. 52, No. 12, pp. 5186–5201.

Ibragimov, M., Ibragimov, R. and Walden, J. (2015). ‘Heavy-Tailed Distributions and

Robustness in Economics and Finance.’ Lecture Notes in Statistics Vol. 214, Springer

International Publishing, Switzerland.

Issing, O. (2009). ‘Why a common eurozone bond isn’t such a good idea’. Center for

Financial Studies, White Paper No. III.

Judd, K.L. (1998). ‘Numerical Methods in Economics’. (Cambridge: MIT Press)

145



Keeping, E.S. (1962). ‘Introduction to Statistical Inference’. (D. Van Nostrand Co., Prince-

ton, NJ)

Lindé, J. (2018). ‘DSGE Models: Still Useful in Policy Analysis?’. Oxford Review of Eco-

nomic Policy Vol. 34, No. 1–2, pp. 269–286.

Longstaff, F.A. and Rajan, A. (2008). ‘An empirical analysis of the pricing of collateral-

ized debt obligations’. The journal of finance Vol. 63, No. 2, pp. 529–563.

Ljungqvist, L. and Sargent, T.J. (2012). ‘Recursive Macroeconomic Theory’. (Cambridge:

MIT Press).

Mcevoy, C. (2016). ‘The role of political efficacy on public opinion in the European

Union’. JCMS Vol. 54, No. 5, pp. 1159–1174.

Mcgill, R., Tukey, J.W. and Larsen, W.A. (1978). ‘Variations of Box Plots’. The American

Statistician Vol. 32, No. 1, pp. 12–16.

Merton, R.C. (1973). ‘The Theory of Rational Option Pricing’. Bell Journal of Economics

and Management Science Vol. 4, No. 1, pp. 141–183.

Merton, R.C. (1974). ‘On the Pricing of Corporate Debt: The Risk Structure of Interest

Rates’. Journal of Finance Vol. 29, No. 2, pp. 449–470.

Meyer, D.J. and Meyer, J. (2005). ‘Relative Risk Aversion: What Do We Know?’. The

Journal of Risk and Uncertainty Vol. 31, pp. 243–262.

Meyer, J., Reinhart, C.M. and Trebesch, C. (2019). ‘Sovereign bonds since Waterloo’.

CESifo working paper, Category 7 No. 7506.

Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. (1993). ‘Classical and New Inequalities in

Analysis’ (Kluwer Academic Publishers, Dordrecht)

Moon, R., Rubia, A. and Valkanov, R. (2004). ‘Long-Horizon Regressions When the Pre-

dictor Is Slowly Varying’. University of California, San Diego working paper (2004).

Morin, R.A. and Suarez, A.F. (1983). ‘Risk Aversion Revisited’. The Journal of Finance

Vol. 38, No. 4, pp. 1201–1216.

Nelson, C.R. and Siegel, A.F. (1987). ‘Parsimonious Modeling of Yield Curves’. The

Journal of Business Vol. 60, No. 4, pp. 473–489.

Newey, W.K. and West, K.D. (1987). ‘A Simple, Positive Semi-Definite, Heteroskedas-

ticity and Autocorrelation Consistent Covariance Matrix’. Econometrica Vol. 55, No.

3, pp. 703–708.

146



Polito, V. and Wickens, M.R. (2015). ‘Sovereign credit ratings in the European Union:

A model-based fiscal analysis’. European Economic Review Vol. 78, issue C, pp. 220–

247.

Razali, N.M. and Wah, Y.B. (2011). ‘Power Comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling Tests’. Journal of Statistical Modeling and

Analytics Vol. 2, No. 1, pp. 21–33.

Rich, R. and Tracy, J. (2010). ‘The Relationship among Expected Inflation, Disagree-

ment, and Uncertainty: Evidence from Matched Point and Density Forecasts’. The

Review of Economics and Statistics Vol. 92, No. 1, pp. 200–207.

Samuelson, P.A. (1965). ‘Rational Theory of Warrant Pricing’. Industrial Management

Review Vol. 6, No. 2, pp. 13–31.

Sargent, T.J. (1987). ‘Dynamic Macroeconomic Theory’ (Cambridge: Harvard University

Press)

Sbordone, A.M., Tambalotti, A., Rao, K. and Walsh, K.J. (2010). ‘Policy Analysis Using

DSGE Models: An Introduction’. Economic Policy Review Vol. 16, No. 2, pp. 23–43.

Schorfheide, F. (2013). ‘Estimation and Evaluation of DSGE Models: Progress and

Challenges’. In D. Acemoglu, M. Arellano, and E. Dekel (eds) Advances in Eco-

nomics and Econometrics: Tenth World Congress (Cambridge: Cambridge Univer-

sity Press), pp. 184–230.

Securities Industry and Financial Markets Association (2008). ‘A Common

European Government Bond’. Discussion paper, September. Available at:

https://www.sifma.org/resources/research/afme-sifma-a-common-european-

government-bond-discussion-paper/. Accessed March 01, 2020.

Shapiro, S.S. and Wilk, M.B. (1965). ‘An Analysis of Variance Test for Normality (Com-

plete Samples)’. Biometrika Vol. 52, No. 3/4, pp. 591–611.

Straub, L. and Ulbricht, R. (2019). ‘Endogenous Second Moments: A Unified Approach

to Fluctuations in Risk, Dispersion, and Uncertainty’. Journal of Economic Theory Vol.

183, pp. 625–660.

Sturzenegger, F. and Zettelmeyer, J. (2010) ‘Sovereign credit ratings in the European

Union: A model-based fiscal analysis’ (Cambridge: MIT Press)

Valkanov, R. (2003). ‘Long-Horizon Regressions: Theoretical Results and Applica-

tions’. Journal of Financial Economics Vol. 68, No. 2, pp. 201–232.

147



van Riet, A. (2017). ‘Adressing the safety trilemma: a safe sovereign asset for the euro-

zone’. ESRB Working Paper Series No. 35.

Yun, T. (1996). ‘Nominal Price Rigidity, Money Supply Endogeneity, and Business Cy-

cles’. Journal of Monetary Economics Vol. 37, No. 2, pp. 345–370.

148



Lists of Figures and Tables

List of Figures
1.1 Nominal gains for different trust fund shares . . . . . . . . . . . . . . . 18

1.2 Interest rate difference for different trust fund shares . . . . . . . . . . . 19

1.3 Sensitivity of gains w.r.t. the trust fund share . . . . . . . . . . . . . . . 20

1.4 Optimal trust fund share w.r.t. the risk-free interest rate . . . . . . . . . 21

A1 Nominal gains for different trust fund shares . . . . . . . . . . . . . . . 28

A2 Interest rate difference for different trust fund shares . . . . . . . . . . . 29

A3 Sensitivity of Gains for a fixed Recovery Rate . . . . . . . . . . . . . . . 30

A4 Sensitivity of Gains for a fixed Recovery Rate . . . . . . . . . . . . . . . 32

A5 Sensitivity of Gains for a fixed Recovery Rate . . . . . . . . . . . . . . . 33

A6 Optimal trust fund share w.r.t. the risk-free interest rate . . . . . . . . . 34

A7 Optimal trust fund share w.r.t. the risk-free interest rate . . . . . . . . . 34

A8 Optimal trust fund share w.r.t. the risk-free interest rate . . . . . . . . . 35

2.1 Diverse Yield Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Time series of Nelson-Siegel factors . . . . . . . . . . . . . . . . . . . . . 60

2.3 Yield Curves for Conservative and Progressive Structure . . . . . . . . . 67

B1 Factor impact with λ = 0.0609 and λ = 0.038. . . . . . . . . . . . . . . . 83

B2 Yield Curve for Ordinary Structure . . . . . . . . . . . . . . . . . . . . . 91

3.1 Comparison: Jensen’s Inequality – Second-Order Taylor . . . . . . . . . 97

3.2 Approach to Evaluate Jensen’s Inequality . . . . . . . . . . . . . . . . . . 99

3.3 Analytical Results (Multiple Planes) . . . . . . . . . . . . . . . . . . . . . 104

3.4 MC Simulation: Standard Deviation . . . . . . . . . . . . . . . . . . . . . 113

3.5 MC Simulation: Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6 MC Simulation: Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.7 MC Simulation: Standard Deviation (N = 2) . . . . . . . . . . . . . . . . 117

3.8 MC Simulation: Correlation (n = 2) . . . . . . . . . . . . . . . . . . . . . 119

3.9 MC Simulation: Correlation (n = 5) . . . . . . . . . . . . . . . . . . . . . 120

3.10 MC Simulation: Number of Variables . . . . . . . . . . . . . . . . . . . . 121

C1 Comparison of Growth Rate Differentials . . . . . . . . . . . . . . . . . . 126

C2 Graphical Representation of Auxiliary Parameter . . . . . . . . . . . . . 127

C3 Comparison of Jensen Ratios . . . . . . . . . . . . . . . . . . . . . . . . . 137

C4 MC Simulation: EIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

1 Gewinn-Sensitivität bei verschiedenen Sicherheitenfonds-Größen . . . 156

2 Gewinn-Sensitivität mit EQ = 50% . . . . . . . . . . . . . . . . . . . . . 157

149



3 Optimaler Sicherheitenfonds in Abhängigkeit des Zinssatzes . . . . . . 158

4 MC Simulation: Multivariater Fall . . . . . . . . . . . . . . . . . . . . . . 166

150



List of Tables
A1 Interest Rates per country . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A2 Structure for EMU-wide introduction in 2018 . . . . . . . . . . . . . . . 36

A3 Results for EMU-wide introduction in 2018 . . . . . . . . . . . . . . . . 37

A4 Structure for EMU-wide introduction in 2012 . . . . . . . . . . . . . . . 38

A5 Results for EMU-wide introduction in 2012 . . . . . . . . . . . . . . . . 39

A6 Structure for EMU-wide introduction in 2008 . . . . . . . . . . . . . . . 40

A7 Results for EMU-wide introduction in 2008 . . . . . . . . . . . . . . . . 41

A8 Structure for EMU without Italy . . . . . . . . . . . . . . . . . . . . . . . 42

A9 Results for EMU without Italy . . . . . . . . . . . . . . . . . . . . . . . . 43

A10 Structure for PIIGS countries in 2018 . . . . . . . . . . . . . . . . . . . . 45

A11 Results for PIIGS countries in 2018 . . . . . . . . . . . . . . . . . . . . . 45

A12 Structure for PIIGS countries in 2012 . . . . . . . . . . . . . . . . . . . . 46

A13 Results for PIIGS countries in 2012 . . . . . . . . . . . . . . . . . . . . . 46

A14 Structure for EU-6 in 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A15 Results for EU-6 in 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A16 Structure for shorter duration . . . . . . . . . . . . . . . . . . . . . . . . 48

A17 Results for a one year duration . . . . . . . . . . . . . . . . . . . . . . . . 49

A18 Results for a two year duration . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Descriptive Statistics of relative Nelson-Siegel factors . . . . . . . . . . . 61

2.2 Connection: Nelson-Siegel factors and foreign currency (USD, GBP) . . 62

2.3 Connection: Nelson-Siegel factors and foreign currency (CNY, CHF, JPY) 63

2.4 Different Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Change of Nelson-Siegel factors in cons. structure (USD) . . . . . . . . . 68

2.6 Change of Nelson-Siegel factors in cons. structure (GBP, CNY, CHF) . . 69

2.7 Trade statistics of the four relevant countries . . . . . . . . . . . . . . . . 71

2.8 Change of Nelson-Siegel factors in prog. structure (USD, GBP, CNY, CHF) 73

2.9 Change of Nelson-Siegel factors in several months . . . . . . . . . . . . 75

2.10 Connection: Nelson-Siegel Factors and Exchange Rates under Uncertainty 76

2.11 Impact of Nelson-Siegel factors in post Lehman sample (USD, GBP) . . 78

2.12 Impact of Nelson-Siegel factors in post Lehman sample (CNY, CHF, JPY) 79

B1 Connection: Nelson-Siegel factors and EUR/USD for modified λ . . . . 84

B2 Change of Nelson-Siegel factors in cons. structure with modified λ . . . 85

B3 Descriptive Statistics for linear Nelson-Siegel factors . . . . . . . . . . . 87

B4 Connection: Linear Nelson-Siegel factors and Exchange Rates . . . . . . 87

B5 Connection: Single relative Nelson-Siegel factor and EUR/USD . . . . . 88

151



B6 Change of Nelson-Siegel factors in ord. structure (USD, GBP, CNY, CHF) 90

3.1 Normality Test for Inflation Forecasts (US) . . . . . . . . . . . . . . . . . 106

3.2 Calibration Results Inflation (US) . . . . . . . . . . . . . . . . . . . . . . 108

3.3 Normality Test for Inflation Forecasts (Egypt) . . . . . . . . . . . . . . . 109

3.4 Normality Test for Inflation Forecasts (Nigeria) . . . . . . . . . . . . . . 109

3.5 Normality Test for Inflation Forecasts (S. Africa) . . . . . . . . . . . . . . 110

3.6 Calibration Results Log-Norm. (Emerging Markets) . . . . . . . . . . . . 110

3.7 Calibration Results Inv. Beta (Emerging Markets) . . . . . . . . . . . . . 111

C1 Calibration Results: Inflation Parameters (US) . . . . . . . . . . . . . . . 129

C2 Normality Test GDP Growth (US) . . . . . . . . . . . . . . . . . . . . . . 130

C3 Calibration Results GDP Growth (US) . . . . . . . . . . . . . . . . . . . . 130

C4 Calibration Results: Parameter GDP Growth (US) . . . . . . . . . . . . . 131

C5 Regression Results: Median . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C6 Regression Results: Inv.Beta and CARA . . . . . . . . . . . . . . . . . . . 134

C7 Varying Center Point for 2nd-Order Taylor . . . . . . . . . . . . . . . . . 136

C8 Overview: Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

152



Summary (Deutsche Zusammenfassung)

Die Dissertation “Structured Eurobonds - Optimal Construction, Impact on the Euro

and the Influence of Interest Rates” ist kumulativ verfasst, bestehend aus drei ein-

zelnen Fachartikeln. Obwohl die Dissertationsschrift aus drei in sich abgeschlossenen

Kapiteln zusammengesetzt ist, sind diese, wie in der Motivation beschrieben, thema-

tisch miteinander verbunden.

Der Fokus liegt bei den ersten beiden Kapiteln auf strukturierten Eurobonds, vor

allem deren Sensitivität hinsichtlich verschiedener Variablen und Einfluss auf den

Wechselkursmarkt. Das dritte Kapitel beschäftigt sich mit Approximationsfehlern in

DSGE Modellen und der Kalibrierung von Verteilungen. Die Approximationsfehler

haben einen großen Einfluss auf Eurobonds, insbesondere im Hinblick auf die von

makroökonomischen Faktoren abhängige Sensitivität.

1. Sensitivität strukturierter Eurobonds

Der erste Artikel “Limited Joint Liability in Structured Eurobonds: Pricing the po-

litical costs” setzt sich mit den politischen Kosten und Gewinnmöglichkeiten einer

beschränkten gemeinsamen Haftung bei strukturierten Eurobonds auseinander. Unter

Eurobonds versteht man in diesem Kontext63 die gemeinsame Verschuldung der Län-

der der Europäischen Währungsunion (EWU), wohingegen in der aktuellen Praxis na-

hezu ausschließlich auf einzelstaatlicher Ebene Anleihen emittiert werden.64 Für die

Einführung von Eurobonds gibt es verschiedene Modelle, welche nahezu allen teilneh-

menden Staaten Zinsvorteile verschaffen sollen. Staaten mit einer sehr guten Bonität

können gegebenenfalls keine direkten Zinsvorteile erwirtschaften, aber es wäre mit

einer Stärkung der EWU sowie einer geringeren Liquiditätsprämie verbunden. Aller-

dings wird das moralische Risiko als sehr hoch eingeschätzt. Unter moralischem Risiko

wird insbesondere das Risiko einer Querfinanzierung von Staaten, welche einen hohen

Zinssatz zahlen müssen, durch Staaten mit einem besseren Rating beziehungsweise ei-

nem niedrigen Zinssatz verstanden. Da für das Funktionieren und die Akzeptanz der

Eurobonds eine gemeinsame Haftung als elementar angesehen wird, besteht die Ge-

fahr einer höheren Schuldenaufnahme durch Staaten, welche sich durch Eurobonds

günstiger finanzieren können.65

63Eurobonds werden im nicht-europäischen Kontext auch als Anleihen, welche nicht in der nationa-
len Währung begeben werden, verstanden.

64Hier wird von aktuellen Praktiken wie beispielsweise den Anleihen des Europäischen Stabilitäts-
mechanismus (ESM) abgesehen.

65Zusätzlich gibt es noch verschiedene juristische Hürden, auf welche hier aber nicht weiter einge-
gangen werden soll.
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Die Emission von Eurobonds über strukturierte Produkte – hiermit sind insbeson-

dere forderungsbesicherte Wertpapiere gemeint – sind eine Möglichkeit, um die oben

genannten Vorteile von Eurobonds zu konservieren und die Nachteile zu reduzieren.

Hierzu werden die einzelstaatlichen Anleihen von einer Zweckgesellschaft aufgekauft.

Im Anschluss werden von dieser Zweckgesellschaft wiederum Anleihen in verschie-

denen Tranchen mit unterschiedlichem Rating emittiert, um die Kosten des Aufkaufs

der einzelstaatlichen Anleihen zu decken. Der Mittelwert des Ratings der Tranchen

und die damit einhergehende durchschnittliche Zinslast ist geringer als die Zinslast

der bereits bestehenden Anleihen. Dies ist eine Folge von Diversifikationseffekten.

Zu dem Ansatz der Emission durch ein strukturiertes Produkt gibt es verschiedene

Arbeiten, welche im Kern ein gleiches Modell vorschlagen, aber in der Ausgestaltung

verschiedene Möglichkeiten aufzeigen. So variiert die Anzahl der emittierten Tran-

chen zwischen zwei und einer nicht fixierten Zahl. Eine weitere Modifikation ist die

Etablierung eines Sicherheitenfonds, welcher mit einem gewissen Anteil des emittier-

ten Nominals kapitalisiert wird. Dieser Fonds könnte im Falle von Staatspleiten erste

Verluste auffangen. Er übernimmt die ausgefallenen Zahlungen und bildet eine Art

Puffer, bevor einzelne Tranchen der strukturierten Eurobonds ausfallen. Durch diese

Konstruktion wird die gemeinsame Haftung drastisch reduziert. Sie wird auf das Vo-

lumen des Sicherheitenfonds beschränkt und das übrige Risiko auf den Kapitalmarkt

transferiert, da bei der Insolvenz eines Staates und der Ausnutzung des Sicherheiten-

fonds die Kuponzahlungen und endfällige Tilgung der Junior-Anleihen gegebenenfalls

nicht bedient werden können. In diesem Fall erleidet der Investor Verluste und die üb-

rigen Staaten müssen diese Zahlung nicht leisten. Die Emission mit einer zusätzlichen

Einführung eines Sicherheitenfonds, welcher initial mit einem fixierten Anteil des No-

minals – z.B. 10% – ausgestattet wird, wird in diesem Artikel simuliert.66

Eine Konsequenz der Konstruktion mit einem Sicherheitenfonds ist eine Verbesse-

rung des durchschnittlichen Ratings der Struktur, allerdings mit einem abnehmenden

Effekt. Die Problematik ist, dass eine höhere Kapitalisierung des Fonds eine zusätzli-

che Zinslast aufruft, da er im Rahmen der Emission von strukturierten Eurobonds mit

kapitalisiert wird und die Staaten hierfür die Zinslast tragen müssen. Ab einem ge-

wissen Volumen überwiegen die negativen Effekte einer zusätzlichen Kapitalisierung

die positiven Effekte aus einem verbesserten durchschnittlichen Rating und dem nied-

rigeren durchschnittlichen Zins. Zusätzlich geht mit einem größeren Volumen eine

deutlich erhöhte gemeinsame Haftung einher, was sich als politische Kosten nieder-

schlägt. Die Untersuchungsfrage ist nun, welches Volumen beziehungsweise welche

66Siehe zu dem Modell insbesondere Hild et al. (2014).
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initiale Kapitalisierung des Sicherheitenfonds – wie im obigen Beispiel 10% – unter

verschiedenen Parametervariationen optimal ist.

Die Parameter, welche für die Analyse variiert werden, sind der risikolose Zinssatz

und die Erlösquote der Staaten. Der risikolose Zinssatz ist relevant für die zu leisten-

den Zinszahlungen der Staaten wie auch der Zweckgesellschaft. Er schlägt sich zusätz-

lich im Sicherheitenfonds nieder, da das hierin enthaltene Kapital zu diesem Zinssatz

verzinst wird. Die Erlösquote spiegelt den Anteil am Nominal wider, welcher nach ei-

ner Insolvenz noch an den Investor zurückgezahlt werden kann. Der Wert hat in dem

Modell sowohl einen direkten Einfluss auf die Ausfallwahrscheinlichkeit, als auch auf

die Kapitalzuflüsse an den Sicherheitenfonds im Falle einer Insolvenz. Der Einfluss auf

die Ausfallwahrscheinlichkeit resultiert aus der Berechnungsmethodik ebenjener.

Es wird die Gleichung

AW =
CDSP rämie

1−EQ
(1)

angewendet, wobei AW für die Ausfallwahrscheinlichkeit und EQ für die Erlösquote

steht. Der Wert CDSP rämie resultiert aus den Prämien von am Kapitalmarkt gehandel-

ten Credit Default Swaps, welche – aufgrund ihrer Wirkungsweise – eine Versicherung

gegen eine Insolvenz darstellen. Eine Änderung von EQ hat somit einen inversen Ein-

fluss auf AW . Auf die Kapitalzuflüsse des Sicherheitenfonds wirkt die Erlösquote in

der Form, dass bei einer Insolvenz eines Staats sein nominaler Anteil direkt mit dieser

Quote in den Sicherheitenfonds fließt. Die Veränderung der Kapitalzuflüsse aus In-

solvenzen ist somit ebenfalls ein Punkt, der einen großen Einfluss auf den Erfolg von

strukturierten Eurobonds haben kann.

Für die Basis-Analyse wird angenommen, dass strukturierte Eurobonds im Juli

2018 eingeführt worden wären und eine Laufzeit von 10 Jahren haben. Die Sensiti-

vität hinsichtlich der beiden Parameter – risikoloser Zinssatz und Erlösquote – bei

verschiedenen initialen Sicherheitsfondsgrößen kann in Abbildung 1 gesehen werden.

Es zeigt sich, dass die Sensitivität mit wachsender Größe des Sicherheitenfonds

abnimmt und insbesondere bei niedrigeren Erlösquoten eine höhere initiale Kapita-

lisierung vorteilhaft ist. Bei höheren Erlösquoten kann es hingegen sinnvoll sein, mit

einer niedrigeren Kapitalisierung zu starten. Eine Veränderung im risikolosen Zins-

satz hat ebenfalls einen Einfluss auf den Gewinn. Dieser ist allerdings nicht eindeutig.

Während bei einer niedrigen Startkapitalisierung und einer geringen Erlösquote ein

negativer Zusammenhang zwischen dem risikolosen Zinssatz und dem Gewinn be-

steht, ändert sich dies ins Positive, wenn entweder die initiale Kapitalisierung oder die

Erlösquote anwachsen.
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Abbildung 1: Sensitivität der Gewinne aus der Emission von strukturierten Eurobonds unter
der Annahme verschiedener initialer Sicherheitenfonds-Größen.

Als nächstes stellt sich die Frage wie stark der Gewinn bei einer fixierten Erlösquo-

te in Abhängigkeit von der Sicherheitenfondsgröße und dem risikolosen Zinssatz ist.

Dies wird in Abbildung 2 visualisiert, in welcher die Quote auf 50% fixiert wird.67

Der Gewinn ist somit eine inverse und U-förmige Funktion in Abhängigkeit der in-

itialen Sicherheitenfonds-Kapitalisierung. In Konsistenz zu dem vorherigen Ergebnis

ist der Gewinn aufgrund der Erlösquote von 50% positiv vom risikolosen Zinssatz ab-

hängig. Hinsichtlich der Größe des Sicherheitenfonds gibt es allerdings eine kritische

Größe bis zu welcher der Gewinn steigt und im Anschluss wieder fällt. Die optima-

le Größe ist auch abhängig vom risikolosen Zinssatz, allerdings ist der Effekt keinen

extremen Schwankungen unterworfen, wie es in Abbildung 3 zu sehen ist.

Die optimale initiale Sicherheitenfonds-Kapitalisierung bewegt sich bei einer Er-

lösquote von 50% zwischen 12% und 16%. Auffällig ist, dass bei einem risikolosen

67Die 50% orientieren sich an historisch beobachteten Erlösquoten von insolventen Staaten. Eine
genauere Analyse kann bei Meyer et al. (2019) und Cruces and Trebesch (2013) gefunden werden.
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Abbildung 2: Sensitivität der Gewinne aus der Emission von strukturierten Eurobonds unter
der Annahme einer fixierten Erlösquote von 50%.

Zins von 0% die optimale Kapitalisierung bei 12% liegt, danach auf 16% springt, um

im Anschluss kontinuierlich – nur unterbrochen von kleinen Ausschlägen – wieder zu

sinken. Bei einem risikolosen Zins von 6% ist die optimale Startkapitalisierung wie-

der bei 12%. Der Sprung bei niedrigen risikolosen Zinssätzen liegt daran, dass die

Gewinne nur marginale Differenzen bei einer Variation des Zinssatzes in dieser Höhe

aufweisen. Mit einem wachsenden risikolosen Zinssatz wird das Kapital im Sicher-

heitenfonds höher verzinst und dadurch entsteht ein größerer Puffer, um mögliche

Staatsinsolvenzen abzufangen. Das Modell profitiert von einem Zinseszins-Effekt.

Neben der Wahl der optimalen Sicherheitenfondsgröße und deren Sensitivität hin-

sichtlich makroökonomischer Parameter, wird auch die Einführung zu verschiedenen

historischen Zeitpunkten – 2008 und 2012 – sowie verschiedenen Subgruppen disku-

tiert. Für diese Analysen wird der Sicherheitenfonds bei einem Wert von 10% fixiert.68

68Für verschiedene Erlösquoten hat sich ein optimaler Wert zwischen 9% und 18% ergeben. Da die
ersten Analysen von Hild et al. (2014) auf einen Wert von 10% durchgeführt wurden, soll dieser hier
ebenfalls angewendet werden.
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Abbildung 3: Die optimale initiale Sicherheitenfonds-Kapitalisierung in Abhängigkeit vom
risikolosen Zinssatz.

Die Simulationen für 2008 und 2012 zeigen, dass das Modell stabil bleibt und unver-

ändert Gewinne generiert.

Hervorzuheben ist insbesondere, dass es für zwei Subgruppen – EWU ohne Italien

und PIIGS-Staaten – im Vergleich zum Basisszenario mit einer Einführung im Jahre

2018 zu einer starken Änderung der Gewinne kommt. In einem Szenario ohne Italien

sind die Erlöse stark rückläufig. Dies ist insbesondere auf zwei Faktoren zurückzu-

führen. Zum einen ändert sich das durchschnittliche Rating der emittierten Tranchen,

beziehungsweise des Zinssatzes, nur marginal im Vergleich zum Basisszenario, und

zum anderen sind die Zinszahlungen an die Zweckgesellschaft deutlich verringert. Im

Basisszenario trägt Italien ungefähr 40% der gesamten Zinszahlungen an die Zweckge-

sellschaft. Diese beiden Faktoren sorgen für den Rückgang der Erlöse aus der Emission

von strukturierten Eurobonds. Eine Emission ausschließlich durch die PIIGS-Staaten

– Portugal, Italien, Irland, Griechenland und Spanien – haben einen konträren Effekt.

Hier verschlechtert sich das durchschnittliche Rating der Struktur und damit einher-

gehend steigt der zu zahlende Zinssatz. Dennoch bleibt ein großer Teil mit dem besten

Rating, nämlich AAA, übrig, obwohl keiner der beteiligten Staaten dieses Rating hat.

Die Aufwertung wird ausschließlich durch den Diversifikationseffekt erreicht. Zusätz-

lich bleibt das Zinsvolumen beziehungsweise der durchschnittliche Zinssatz, der von

den beteiligten Staaten gezahlt wird, hoch. Durch diese Faktoren wird vergleichswei-
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se viel Geld im Sicherheitenfonds gelagert und verzinst. Dies führt am Ende zu einer

hohen Auszahlung an die fünf beteiligten Staaten, sodass sie – je nach Verteilung – zwi-

schen 4,27% und 22,65% ihres eingesetzten Nominalvolumens an Gewinnen erzielen

können. Zusätzlich wurde die Emission für kurze Laufzeiten betrachtet, wobei die Er-

gebnisse insbesondere bei sehr kurzen Laufzeiten für diverse Staaten auch negativ sein

können. Dennoch werden weiterhin Gewinne generiert, der Verteilungsmechanismus

müsste allerdings adjustiert werden.

In allen Konstellationen – Zeitpunkt der Einführung und teilnehmende Staaten –

stellt sich heraus, dass das Modell der strukturierten Eurobonds hinsichtlich der po-

sitiven Resultate beständig ist. Die Höhe schwankt zwar, Gewinne werden aber un-

abhängig vom risikolosen Zinssatz und der Erlösquote generiert. Die einzigen Para-

meter, welche von der Politik oder den Entscheidungsträgern beeinflusst werden kön-

nen, sind die der initialen Sicherheitenfonds-Kapitalisierung und der teilnehmenden

Staaten. Die Generierung von Erlösen ist stark davon abhängig, wie viel gemeinsa-

me Haftung die Staaten einzugehen bereit sind. Zu viel gemeinsame Haftung kann

den Effekt auch umkehren. Außerdem hat sich herausgestellt, dass keine vollständige

Teilnahme der gesamten EWU notwendig ist und auch Subgruppen positive Resultate

erreichen. Es würde also die Möglichkeit bestehen, zuerst mit einer kleinen Gruppe zu

starten, beispielsweise den Gründungsländern der Europäischen Wirtschaftsgemein-

schaft, und den Teilnehmerkreis später zu erweitern.

2. Einfluss auf Wechselkurse

Der zweite Artikel “The Impact of Structured Eurobonds on Exchange Rates” setzt

sich mit dem Einfluss einer Emission von strukturierten Eurobonds auf verschiedene

Wechselkurse auseinander.

Zuerst wird im Artikel der Begriff der strukturierten Eurobonds ausführlich erläu-

tert und auf die bereits bestehenden Bestrebungen einer Etablierung solcher Instru-

mente innerhalb der EWU verwiesen. Die Emission mithilfe eines strukturierten Pro-

dukts wird in diesem Artikel angenommen, was ebenfalls von der Europäischen Kom-

mission angeregt wird. Zusätzlich wird die Stärkung des Euro als Reservewährung als

eine Folge der Emission von Eurobonds hervorgehoben. Dies wird beispielsweise im

Grünbuch über die Durchführbarkeit der Einführung von Stabilitätsanleihen der Eu-

ropean Commission (2011) herausgestellt. Der Einfluss auf den Euro wird im Rahmen

dieses Artikels unter Annahme einer Emission von strukturierten Eurobonds quanti-

fiziert.
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Zur Formalisierung einer Zinskurve wird das Nelson-Siegel Modell verwendet. Aus

diesem können drei Parameter – Level, Steigung und Krümmung – extrahiert und ver-

schiedene makroökonomische Effekte, beispielsweise Inflationserwartungen oder er-

wartetes BIP-Wachstum, erklärt werden. Zusätzlich gibt es die Möglichkeit, die Wech-

selkursentwicklung zwischen zwei Währungen anhand der Änderung der zugehörigen

Zinskurven beziehungsweise der hieraus resultierenden Nelson-Siegel Faktoren zu be-

stimmen. Um dies zu bewerkstelligen, müssen die relativen Nelson-Siegel Faktoren

über die Gleichung

y(m)− y∗(m) = LRt + SRt

(
1− e−λm

λm

)
+CRt

(
1− e−λm

λm
− e−λm

)
+ εt (2)

und einer kleinste Quadrate Methode bestimmt werden. Hierbei beschreibt y(m) die

inländische Rendite (im Folgenden ist hier immer die EWU gemeint) und y∗(m) die

ausländische Rendite. LRt ,S
R
t und CRt stehen für die relativen Nelson-Siegel Faktoren

Level, Steigung und Krümmung.

Im Anschluss können die relativen Nelson-Siegel Faktoren mit den beobachteten

Wechselkursänderungen in Verbindung gesetzt werden. Dies wird mithilfe einer li-

nearen Regression, angewendet auf die Gleichung

∆st+m = βm,0 + βm,1L
R
t + βm,2S

R
t + βm,3C

R
t +ut+m, (3)

bewerkstelligt, wobei ∆st+m die Änderung des Wechselkurses zum Zeitpunkt t für m

Monate in die Zukunft darstellt. Die Regression liefert für vier von fünf untersuchten

Gegenwährungen – US-Dollar, Britischer Pfund, Schweizer Franken und Chinesische

Renminbi – signifikante Ergebnisse. Für Japanischen Yen können keine signifikanten

Ergebnisse beobachtet werden. Insbesondere für den einjährigen Horizont haben drei

Währungspaare mindestens einen – wenn auch unterschiedlichen – signifikanten Fak-

tor, weshalb sich die folgende Analyse auf diesen Horizont fokussiert. Bei Britischen

Pfund ist im sechsmonatigen Horizont ein signifikanter Faktor vorhanden, sodass der

Fokus bei dieser Währung auf dem kürzeren Horizont liegt.

Zusätzlich wird angenommen, dass im Rahmen der Einführung von strukturierten

Eurobonds die einzelstaatlichen Anleihen vom Kapitalmarkt komplett verschwinden.

Eine direkte Folge hiervon wäre, dass die Zinsstrukturkurven einzelner Staaten nicht

mehr vorhanden sind und durch eine Zinskurve für die gesamte EWU ersetzt wer-

den. Aktuell gibt es bereits eine Zinskurve für die EWU, welche von der Europäischen

Zentralbank (EZB) berechnet wird. In diese fließen die Zinskurven der einzelnen Mit-

gliedsstaaten gewichtet ein. Die Gewichtung ist von der Kapitalstruktur der EZB und
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den Anteilen der jeweiligen Staaten an dieser abhängig. Die Anteile der Staaten be-

rechnen sich aus deren Bevölkerung und dem BIP.

Die neue EWU-Zinskurve wird sich von der aktuellen unterscheiden und primär

durch die erreichte Struktur beziehungsweise den emittierten Tranchen der struktu-

rierten Eurobonds definiert. In diesem Artikel wird die Zinskurve unter Verwendung

dreier verschiedener Indikatoren (EZB-Kapitalstruktur, BIP und Schuldenstände) be-

rechnet. Im ersten Schritt wird für jedes einzelne Rating die Zinsstrukturkurve be-

rechnet. Dafür wird die Gleichung

yR(m) =
n∑
i=1

INDi∑n
j=1 INDj

· yi(m), (4)

verwendet, wobei yR(m) für die m-monatige Rendite zum Rating R, n für die Anzahl

der Staaten mit dem entsprechenden Rating und IND für den gewählten der drei vor-

her genannten Indikatoren steht. yi(m) beschreibt in diesem Kontext die länderspezi-

fische m-monatige Rendite. Um die finale Zinskurve zu erhalten, müssen die Zinskur-

ven für die einzelnen Ratings nach einer festen Gewichtung kombiniert werden. Diese

Gewichtung ist von den Anteilen der Tranche mit dem entsprechenden Rating an der

gesamten Struktur abhängig.

In der Literatur werden verschiedene Strukturen präsentiert, der Fokus liegt hier

allerdings auf zwei Extremfällen.69 Diese zeichnen sich dadurch aus, dass die Kor-

relation zwischen den Staaten – einer der Hauptgründe für die Strukturierung von

Anleihen – in einem Fall als sehr hoch und im anderen als geringer angesehen wird.

Im ersten Fall hat dadurch die AAA-Tranche, also die Tranche mit dem besten Rating,

einen Anteil von ca. 56,63% an der gesamten Emission und beim zweiten Fall steigt

dieser auf 95,41% an.70 Aus diesem Grund nimmt die entstehende Zinsstrukturkurve

verschiedene Formen an. Während sie beim ersten Fall nur leicht unterhalb der aktu-

ellen Kurve liegt, ist der Abstand beim zweiten Fall deutlich größer.

Bei der Analyse des Einflusses der Emission von strukturierten Eurobonds hat sich

gezeigt, dass sich dieser nur hinsichtlich der Stärke unterscheidet. Ob der Euro auf-

oder abwertet bleibt in beiden Fällen oder Strukturen identisch. Dies ist auch unab-

hängig vom Einführungszeitpunkt, wobei eine Emission im Januar und Februar 2018

simuliert wird. Der Euro würde gegenüber dem US-Dollar abwerten und den anderen

drei Währungen (Britischer Pfund, Schweizer Franken und Chinesischer Renminbi)

aufwerten. Der Effekt auf den Euro in den zwölf Monaten nach Emission von struktu-

rierten Eurobonds bewegt sich zwischen -3,57% (vs. US-Dollar) und 5,37% (vs. Briti-

69Siehe hierzu insbesondere Hild et al. (2014).
70Im Juli 2018 haben drei Staaten in der EWU ein AAA-Rating und repräsentieren ca. 36,3% des BIP.
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schen Pfund). Insgesamt ergibt sich also ein gemischtes Bild, welches den Erwartungen

einer Stärkung des Euro als Reservewährung nicht genügt. Die Erwartung ist nämlich,

dass eine Aufwertung in allen Währungspaaren zu finden sein wird. Es ist wichtig zu

betonen, dass es sich hierbei um einen isolierten Effekt handelt und zusätzliche Effek-

te, welche einen Einfluss auf den Wechselkurs haben können, ausgeschlossen werden.

Um die Abwertung beim Wechselkurs des Euro gegen den US-Dollar zu analysie-

ren, wird zusätzlich ein reduzierter Zeithorizont betrachtet. Dieser beginnt ein Jahr

nach der Pleite von Lehman Brothers in den USA. Hiermit kann der unmittelbare Ein-

fluss der Finanzkrise bzw. deren Verwerfungen exkludiert werden. Es stellt sich heraus,

dass sich an der Richtung des Effekts, das heißt einer vorher betrachteten Abwertung

oder Aufwertung, nichts ändert, sondern diese sogar verstärkt wird. Zusätzlich wird

auch noch ein handelsgewichteter Wechselkurs betrachtet bei welchem die Einflüsse

auf die vier Wechselkurse in Abhängigkeit des Handelsvolumens gewichtet werden.

Bei Anwendung dieser Methode kann immer eine Aufwertung des Euro betrachtet

werden.

Insgesamt lässt sich folgern, dass die Emission von strukturierten Eurobonds eine

Aufwertung des Euro zur Folge hätte. Gegenüber dem US-Dollar würde sich allerdings

eine Abwertung ergeben. Das Ziel einer Stärkung des Euro als Reservewährung wäre

zumindest hinsichtlich des Wechselkurses teilweise erfolgreich.

3. Unsicherheiten als Resultat von Jensens Ungleichung

Im dritten Artikel “Evaluating the Approximation Bias in Forward-Looking DSGE Mo-

dels” wird der Approximationsfehler, welcher durch Anwendung von Jensens Unglei-

chung in um Erwartungen erweiterten DSGE Modellen entsteht, untersucht. Das Feld

der strukturierten Eurobonds aus den ersten beiden Artikeln wird somit verlassen.

Dennoch haben die Ergebnisse einen direkten Einfluss auf die vorherigen Resultate.

In einem ersten Schritt werden DSGE Modelle und ihre Relevanz für die Analyse

makroökonomischer Veränderungen dargestellt. Der Einfluss von zweiten (oder hö-

heren) Momenten einer Verteilung, welche insbesondere während einer Finanzkrise

große Auswirkungen haben können, werden bei der Log-Linearisierung der Model-

le unterdrückt. Durch eine Approximation höheren Grades kann diese Problematik

umgangen werden, aber hier stellt sich die Frage der Darstellung im Modell bezie-

hungsweise der Lösung. Eine Möglichkeit besteht in der Anwendung von Jensens Un-

gleichung. Der Fehler, welcher hierdurch entsteht, soll in diesem Artikel quantifiziert

werden.
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Von der Euler-Gleichung, welche in DSGE Modellen wichtig ist, wird der nicht-

lineare und in die Zukunft schauende Teil isoliert betrachtet. Der nicht-lineare Teil

der Euler-Gleichung kann in Form einer isoelastischen Nutzenfunktion behandelt wer-

den. Für die makroökonomischen Variablen, hier im speziellen Inflationsraten, und

deren späteren Kalibrierung werden Daten von Consensus Forecasts (CF) genutzt.

Für diese Variablen, welche im Kontext des Artikels als Zufallsvariablen angesehen

werden, wird eine Log-Normalverteilung angenommen. Durch weitere Berechnungen

stellt sich die Gleichung

bias(X) = 104 ·
(
(E[1 +X]γ )−E[(1 +X)−γ ]−1

)
, (1 +X) ∼ logN

(
µ,σ2

)
, (5)

wobei X eine log-normalverteilte Zufallsvariable und γ die Krümmung der isoelasti-

schen Nutzenfunktion ist, als die zentrale Gleichung zur Berechnung des Fehlers (bias)

dar. Die Auswertung des Fehlers wird mit zwei Varianten, analytisch und mithilfe von

Monte Carlo Simulationen, durchgeführt.

Zur Herleitung des analytischen Ergebnisses wird Gl.(5) zu

bias(µ,σ ,γ) = E[104 ·
(
(E[1 + growtht+1]γ )−E[(1 + growtht+1)−γ ]−1

)
] (6)

umgeschrieben und gelöst. Hier entspricht growtht+1 der log-normalverteilten Zufalls-

variablen aus dem ursprünglichen Problem. Da Zufallsvariablen enthalten sind, muss

zum Ermitteln der Lösung der Erwartungswert gebildet werden. Durch Anwendung

der momenterzeugenden Funktion für die Normalverteilung kann die stochastische

Komponente aus der Gleichung entfernt werden, sodass ausschließlich ein determi-

nistischer Zusammenhang zurückbleibt. Dieser wird durch

bias(µ,σ ,γ) = 104 · (1 +µ)γ ·

1−
 1 +µ√

(1 +µ)2 + σ2

γ(γ+1) (7)

beschrieben. Dabei entspricht µ dem Mittelwert und σ der Standardabweichung der

Verteilung. Bei ausreichend guten empirischen Datensätzen können die hieraus abge-

leiteten Parameter bereits zur Bestimmung des Fehlers eingesetzt werden. Wenn diese

allerdings nicht ausreichend sind, muss eine Monte Carlo Simulation durchgeführt

werden. Für die Simulation müssen Parameter vorliegen, welche anhand einer Kali-

brierung erzielt werden können. Dies gibt eine Bandbreite möglicher Parameter vor.

Bevor zur Monte Carlo Simulation übergegangen wird, wird mit einer Datenana-

lyse und der Kalibrierung begonnen. Die Kalibrierung wird zuerst anhand der USA
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durchgeführt. Damit sich die Variablen unabhängig vom betrachteten Monat verglei-

chen lassen können, müssen diese mithilfe der Gleichung

Et[xt+1|m] =
13−m

12
·Et,m[xt] +

m− 1
12
·Et,m[xt+1] (8)

harmonisiert werden. Hierdurch wird die Variable immer im einjährigen Horizont be-

trachtet. Damit die nächsten Schritte durchgeführt werden können, muss die Anfor-

derung hinsichtlich der Log-Normalverteilung der Zufallsvariablen aus dem analyti-

schen Teil überprüft werden. Die harmonisierten Zufallsvariablen aus Gl.(8) werden

adjustiert und anschließend mithilfe verschiedener Tests hinsichtlich einer Normal-

verteilung in jedem Monat überprüft. Es zeigt sich, dass die Annahme der Normal-

verteilung der adjustierten und somit die Log-Normalverteilung der harmonisierten

Zufallsvariablen nicht abgelehnt werden kann.

Aufgrund der Ergebnisse kann nun eine Kalibrierung der Zufallsvariablen an der

Log-Normalverteilung vorgenommen werden. Für diese wird auf die kleinste Quadra-

te Methode zurückgegriffen, wobei die Differenz zwischen den Variablen aus dem CF

Datensatz und den Gezogenen aus der Log-Normalverteilung gebildet und minimiert

wird. Die Parameter für die Log-Normalverteilung werden aus einem Gitter gewählt,

welches pro Iterationsschritt feiner wird und schlussendlich eine optimale Parame-

terkombination liefert. Für eine Robustheitsanalyse wird die Kalibrierung auch für

die inverse Betaverteilung durchgeführt. Es zeigt sich, dass der Fehler aus der zweiten

Verteilung größer ist als derjenige aus der Log-Normalverteilung. Die gleichen Schritte

wie für die USA werden ebenfalls für Ägypten, Nigeria und Südafrika durchgeführt.

Diese drei Länder sind die einzigen im CF Datensatz, welche den Schwellenländern

oder dem frontier-Markt zugeordnet werden können. Der frontier-Markt enthält Län-

der, die auf dem Weg zum Schwellenland sind. Für Institute solcher Staaten könnte

die Analyse von zusätzlicher Relevanz sein, da die Datenlage hier häufig noch nicht

so gut wie in westlichen Industrienationen ist. Dies zeigt sich bereits im CF Daten-

satz, in welchem die monatlichen Beobachtungen nicht mehr für eine Analyse und

Kalibrierung ausreichen und deshalb auf eine quartalsweise Betrachtung umgestellt

werden muss. Im Schnitt gibt es hier 22 Beobachtungen pro Quartal und die Prü-

fung, ob die Zufallsvariablen log-normalverteilt sind, liefert ähnliche Ergebnisse wie

bei den USA. Bei der Kalibrierung zeigt sich wieder, dass die Log-Normalverteilung

besser als die inverse Betaverteilung ist. Während sich der Parameter für den Mittel-

wert bei den USA zwischen -0,0032 und 0,042 und die Standardabweichung zwischen

0,0001 und 0,006 bewegt hat, ist bei diesen Nationen die Bandbreite größer. Hier liegt

der Mittelwert zwischen 0,0464 und 0,2033 und die Standardabweichung zwischen
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0,0047 und 0,0341. Um diesen unterschiedlichen Bandbreiten und dem größeren In-

teresse der Schwellenländer Rechnung zu tragen, wird in der folgenden Monte Carlo

Simulation der Parameter µ auf 0,06 und die Standardabweichung σ auf 0,01 in einem

Basisszenario fixiert. Aufgrund der Beobachtungen pro Monat respektive Quartal wird

die Anzahl der pro Monte Carlo Schritt gezogenen Zufallsvariablen auf 30 fixiert.

Es werden nacheinander verschiedene Fälle simuliert, wobei immer die gleiche Vor-

gehensweise genutzt wird. Zuerst werden die verwendeten Parameter spezifiziert, an-

schließend die Zufallsvariablen – standardmäßig 30 Stück – 100.000 Mal gezogen und

in Gl.(5) eingesetzt. Daraufhin wird der zu untersuchende Parameter variiert und wie-

der die Monte Carlo Simulation durchgeführt. Die Ergebnisse werden anschließend

anhand einer grafischen Darstellung interpretiert.

Den Anfang bildet eine Variation der Standardabweichung. Der Fehler beziehungs-

weise bias bewegt sich zwischen einem Wert nahe bei Null für eine Standardabwei-

chung von 0,002 und 25 Basispunkte (bp) für einen Wert von 0,04. Zur Bestimmung

des Zusammenhangs wurde eine Regression durchgeführt, welche einen quadratischen

Zusammenhang liefert. Als nächstes wird die Krümmung – gemessen durch den Pa-

rameter γ – in einem Intervall von 0,25 bis 5 variiert. Die Ergebnisse sind sehr nahe

an den vorherigen mit dem Unterschied, dass der maximale bias bei circa 30 bp liegt.

Die Regression zeigt wieder, dass ein nahezu quadratischer Zusammenhang vorliegt.

Eine weitere Analyse behandelt die Anzahl der gezogenen Zufallsvariablen pro Monte

Carlo Simulation, wobei 1 bis 20 Variablen simuliert werden. Es zeigt sich, dass mit

einer steigenden Zahl von Zufallsvariablen das numerische Ergebnis schnell an das

analytische aus Gl.(7) konvergiert.

Eine weitere wichtige Analyse behandelt multivariate Funktionen, welche die zu-

sätzliche Betrachtung der Korrelation notwendig machen. Dies ist vor allem im Hin-

blick auf große DSGE Modelle wie dem ECB-Global oder dem IMF Global Projection

Model von Relevanz.71 Hierdurch ändert sich die ursprüngliche Ausgangsproblematik

(5) zu

bias(X,Y ) = 104 ·
(
E[1 +X] ·E[1 +Y ]−E

[
(1 +X)−1(1 +Y )−1

]−1
)
, (9)

im zweidimensionalen Fall, beziehungsweise zu

bias(X1, ...,Xn) = 104 ·

 n∏
i=1

E[1 +Xi]−E

 n∏
i=1

(1 +Xi)
−1


−1 (10)

71Siehe hierzu insbesondere Dieppe et al. (2018) und Carabenciov et al. (2013).

165



im mehrdimensionalen Problem. Im zweidimensionalen Fall ist die Differenz relativ

klein mit Werten zwischen 1 und knapp 3 bp für Korrelationen zwischen -0,95 und

0,95. Der Zusammenhang ist in diesem Fall linear.

Das Bild ändert sich drastisch, wenn die Anzahl der verschiedenen Zufallsvaria-

blen erhöht wird und es sich somit um den multivariaten Fall handelt. Für den Fall,

dass es fünf verschiedene Zufallsvariablen gibt, deren Korrelation von 0 bis 0,95 vari-

iert wird, ergibt sich wieder ein linearer Zusammenhang. Allerdings bewegt sich der

Fehler nun in einem Bereich von 5 bis 15 bp, mit Ausreißern bis 25 bp. Bei Fixierung

der Korrelation auf einen Wert von 0,1 und ausschließlicher Variation der Anzahl der

verschiedenen Zufallsvariablen bis zu einer Anzahl von 20 werden die Differenzen

noch größer. Hier werden Ergebnisse von über 50 bp mit Ausreißern bei 90 bp erreicht,

was in Abbildung 4 zu sehen ist. Bei dieser Konstellation liegt wieder ein quadratischer

Zusammenhang vor.
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Abbildung 4: Simulation im multivariaten Fall mit einer Korrelation von ρ = 0,1. Horizontale
Achse: Anzahl der Variablen. Vertikale Achse: Differenz der Wachstumsraten in Basispunkten.

Insgesamt zeigt sich, dass der Fehler von einigen Parametern, z.B. der Standardab-

weichung oder der Größe des Modells, beeinflusst werden kann. Insbesondere in einer

Situation mit einer hohen Ungewissheit, beispielsweise einer Finanzkrise, kann dieser

Einfluss nicht vernachlässigt werden. Durch die Anwendung der Ungleichung kann

insgesamt eine Überschätzung der Wachstumsrate – hier der Inflationsrate – von 25

bp erreicht werden. Wenn dies beispielsweise von der EZB, welche Modelle mit vielen

Variablen betreibt, zusätzlich in die Berechnung mit einbezogen wird, dann müssten

die entsprechenden Zinssätze angepasst werden.

Hier lässt sich der eingangs genannte Zusammenhang zu den anderen beiden Ar-

tikeln deutlich erkennen. Eine Adjustierung der Zinssätze der EZB würde zu zwei
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zusammengehörenden Szenarien führen. Hierbei handelt es sich (1) um eine Verrin-

gerung des risikolosen Zinssatzes und somit ebenfalls um eine (2) Veränderung der

Zinsstrukturkurve. Die Zinsstrukturkurven der Mitgliedsstaaten hängen vom risiko-

losen Zins ab, welcher von EZB über ihren Hauptrefinanzierungssatz gesteuert werden

kann. Die Änderung von (1) hätte einen direkten Einfluss auf den Gewinn, welcher

durch strukturierte Eurobonds generiert werden könnte, wie auch auf die gemein-

same Haftung, welche eingegangen werden sollte. Eine Änderung der Zinskurve (2)

kann zusätzlich dafür sorgen, dass der Einfluss auf die Wechselkurse eine andere Grö-

ßenordnung annimmt. Dies hängt allerdings stark davon ab inwieweit andere Staaten,

z.B. die USA, beziehungsweise die darin ansässigen Zentralbanken, ebenfalls eine Än-

derung des Leitzinses vornehmen.

Schlussendlich liegt es an der Europäischen Währungsunion ob sie eine gemein-

same Haltung zu Eurobonds und insbesondere strukturierten Eurobonds finden kön-

nen. Falls es hierzu kommen sollte, können anhand dieser Arbeit einige Effekte wie die

Wirkung des risikolosen Zinssatzes auf die optimale gemeinsame Haftung analysiert

werden, die vor der Einführung und vor den finalen Ausgestaltungen bewertet wer-

den müssen. Zusätzlich werden die Folgen auf die Wechselkurse dargestellt, welchen

bei der Eurobond-Konstruktion Rechnung getragen werden sollte. Des Weiteren bietet

sich die Möglichkeit, eine Änderung des Zinssatzes der Zentralbanken aufgrund der

Ergebnisse aus dem dritten Artikel in die Evaluation mit einfließen zu lassen.
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