W Universitét Trier

New Concise Extended Formulations for
Circular Structures in Optimization
Problems

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt am Fachbereich IV - Mathematik
der Universitat Trier.

Author: Berichterstatter:
Bernd Perscheid, MSc Prof. Dr. Sven de Vries
Prof. Dr. Eddie Cheng

Eingereicht am: 02. Juli 2020
Disputation am: 09. September 2020

Contents

German summary (Zusammenfassung)

Preface

1 Introduction

1.1
1.2

Our contribution
Fundamentals and notation
1.2.1 Graphs & digraphs
1.2.2 Polyhedra & linear programming .
1.2.3 The maximum stable set problem .
1.2.4 The maximum clique problem . . .

2 Stable sets: inequalities, polytopes, and perfectness

2.1

2.2

Valid inequalities & polytopes

2.1.1 The edge constrained stable set polytope

2.1.2 The odd cycle polytope
2.1.3 The clique polytope
2.1.4 The 1-wheel polytope
2.1.5 More classes of inequalities
Perfectness of graphs

3 Separation algorithms for stable set relaxations

3.1

3.2
3.3

3.4

Solving shortest path problems
3.1.1 Graph algorithms
3.1.2 Linear programming
Separation of the odd cycle inequalities .
Separation of the 1-wheel inequalities . . .
3.3.1 The algorithm of de Vries

3.3.2 The algorithm of Cheng and Cunningham

More separation algorithms and heuristics

15
16
16
17
19
21
27
29

33
36
36
37
38
39
40
41
43

iii

4 Extended formulations of stable set relaxations 44

4.1 Extended formulations 44
4.2 The odd cycle polytope 45
4.2.1 A direct approach 46

4.2.2 Yannakakis’ formulationo o000 46

4.2.3 A smaller extended formulationo 47

4.2.4 Comparison of Q¥¢(G) and Q9 (G) 49

4.2.5 Numerical results oo 49

4.3 The 1-wheel polytope 52
4.3.1 An extended formulation for arbitrary graphs 52

4.3.2 An extended formulation for dense graphs 55

5 Compact extended relaxations for the BoxQP 57
5.1 The BoxQP o o 57
5.2 A-odd cycle inequalities for the BQP 59
5.3 Separation & extended formulation L L. 61
5.4 Numerical experiments Lo 65

6 Integer solutions for the p-median problem 74
6.1 The p-median polytope. 74
6.1.1 Relaxations of pMP(D) o . 75

6.1.2 Integrality of P,(D) 76

6.1.3 Integrality of POY(D), 79

6.2 An extended formulation of Pg) CD) .. o 80

7 Solving the maximum clique problem on sparse graphs 83
7.1 Maximum clique algorithms: a literature review 83
7.2 The algorithm of Pattabiraman et al. 86
7.3 Modifications and computational experiments 88
7.3.1 The upper degree approach 88

7.3.2 Applying greedy colorings L. 90

7.3.3 Computational results 99

8 Conclusion 102
Bibliography 104

iv

German summary (Zusammenfassung)

Viele N'P-schwere Optimierungsprobleme aus der klassischen Graphentheorie, wie beispiels-
weise das Stabile-Mengen-Problem oder das Cliquenproblem, wurden in den vergangenen
Jahrzehnten ausgiebig erforscht. Héaufig besteht die Problemstellung darin, eine optimale
Teilmenge der Knoten oder Kanten des zugrunde liegenden Graphen auszuwéhlen. Zur
Losung werden in der Regel direkte kombinatorische Methoden auf den Graphen angewandt.
Eine universelle und sehr einfache Methode ist die vollstandige Enumeration. Alle zuldssigen
Losungen werden dabei aufgelistet und die beste davon wird schlussendlich ausgewéhlt.
Aufgrund der meist groflen Anzahl an zulédssigen Losungen kann dieses Verfahren durch
geschicktes Ausschliefen bestimmter Suchbereiche wahrend der Ausfiihrung héufig erheblich
beschleunigt werden. Alternativ konnen graphentheoretische Probleme auch als ganzzahlige
lineare Programme formuliert werden, deren optimale Losung dann eine optimale Losung
flir das urspriingliche Problem liefert.

Um ein ganzzahliges lineares Programm zu 16sen, lassen sich zunéchst die Ganzzahligkeits-
bedingungen relaxieren. Anschliefflend werden Ungleichungen gesucht, welche fraktionale
Ecken des fiir die Relaxierung zulassigen Bereichs, aber keine ganzzahligen Punkte ab-
schneiden. Im Idealfall fithrt dies zu einer vollstdndigen Beschreibung der konvexen Hiille
aller zuldssigen Punkte des ganzzahligen linearen Programms. Leider ist das Finden einer
vollstandigen Beschreibung selbst fiir den Fall, dass die entsprechende konvexe Hiille lediglich
polynomiell viele Facetten hat, meist viel zu aufwendig. Daraus ergibt sich das Ziel, die
schwache Relaxierung des ganzzahligen linearen Programms durch das Hinzufiigen starker,
fiir die konvexe Hiille aller ganzzahligen zulassigen Punkte giiltiger Ungleichungen bestméog-
lich zu verstarken.

Viele Klassen giiltiger Ungleichungen sind exponentiell grof. Ein einfaches Beispiel hier-
fiir sind die ungeraden Kreisungleichungen des Stabile-Mengen-Problems, da ein Graph
exponentiell viele ungerade Kreise enthalten kann. Gliicklicherweise lasst sich manchmal
in polynomieller Zeit tiberpriifen, ob ein gegebener Punkt mindestens eine von exponentiell
vielen Ungleichungen verletzt. Dies ist beispielsweise fiir die ungeraden Kreisungleichungen
des Stabile-Mengen-Problems der Fall. Ein solches Verfahren wird Separations-Algorithmus
genannt. Existiert ein solcher, so existiert auch eine lineare Formulierung, die einen be-
stimmten Punkt genau dann enthélt, wenn dieser keine der entsprechenden Ungleichungen

verletzt.

Diese Arbeit lasst sich inhaltlich in zwei Abschnitte unterteilen, wobei der erste Ab-
schnitt den grofiten Teil dieser Arbeit bildet. Darin werden insbesondere neue erweiterte
Formulierungen fiir das Stabile-Mengen-Problem, fiir das allgemeine nichtkonvexe quadrati-
sche Programm mit Box-Bedingungen, sowie fiir das p-Median-Problem vorgestellt. Eine
allgemein bekannte erweiterte Formulierung fiir das Ungerade-Kreis-Polytop des Stabile-
Mengen-Problems wird durch eine neue erweiterte Formulierung verbessert. Weiterhin
werden verschiedene neue erweiterte Formulierungen fiir das allgemeine 1-Rad-Polytop des
Stabile-Mengen-Problems vorgestellt. Die sogenannten A-ungeraden Kreisungleichungen
des nichtkonvexen quadratischen Programms mit Box-Bedingungen kénnen dazu dienen,
eine schwache Relaxierung deutlich zu verstiarken. Hierflir wird ebenfalls eine erweiterte For-
mulierung konstruiert und dessen Stiarke anhand numerischer Experimente veranschaulicht.
Fiir die Gerichtete-Ungerade-Kreis-Relaxierung des p-Median-Problems sind einige hinrei-
chende Bedingungen bekannt, welche Ganzzahligkeit der Ecken garantieren. Sind diese
Bedingungen erfiillt, so lasst sich das p-Median-Problem mit einer neuen erweiterten For-
mulierung in polynomieller Zeit 16sen.

Der zweite Abschnitt dieser Arbeit widmet sich einem bekannten, sehr schnellen Algo-
rithmus zum Finden einer gréfiten Clique in sehr grofien, diinn besetzten Graphen. Drei
modifizierte Versionen dieses Verfahrens werden hergeleitet und anhand numerischer Expe-
rimente mit dem urspriinglichen Algorithmus verglichen. Dabei wird eine deutliche Laufzeit-
Verbesserung durch eine dieser neuen Versionen erzielt. Die Stdrken der iibrigen beiden
neuen Versionen kommen mit zunehmender Dichte des zugrunde liegenden Graphen zum
Tragen.

Preface

One refereed publication was written, which appears as de Vries et al. (2019) in the bibliogra-
phy. Besides that, two additional articles are available on www.optimization-online.org
and appear as de Vries and Perscheid (2019) and de Vries and Perscheid (2020) in the bib-
liography. My contribution to all of the three articles mentioned above makes up the major
part of their content. Therefore, they are integrated into this thesis and their main results
are presented in Chapters 4 and 5.

Chapter

Introduction

Many NP-hard optimization problems that originate from classical graph theory, such as
the maximum stable set problem and the maximum clique problem, have been extensively
studied over the past decades and involve the choice of a subset of edges or vertices. There
usually exist combinatorial methods that can be applied to solve them directly in the graph.
The most simple method is to enumerate feasible solutions and select the best. It is not
surprising that this method is very slow oftentimes, so the task is to cleverly discard fruit-
less search space during the search. An alternative method to solve graph problems is to
formulate integer linear programs, such that their solution yields an optimal solution to the
original optimization problem in the graph.

In order to solve integer linear programs, one can start with relaxing the integer con-
straints and then try to find inequalities for cutting off fractional extreme points. In the
best case, it would be possible to describe the convex hull of the feasible region of the integer
linear program with a set of inequalities. In general, giving a complete description of this
convex hull is out of reach, even if it has a polynomial number of facets. Thus, one tries
to strengthen the (weak) relaxation of the integer linear program best possible via strong
inequalities that are valid for the convex hull of feasible integer points.

Many classes of valid inequalities are of exponential size. For instance, a graph can have
exponentially many odd cycles in general and therefore the number of odd cycle inequalities
for the maximum stable set problem is exponential. It is sometimes possible to check in
polynomial time if some given point violates any of the exponentially many inequalities. This
is indeed the case for the odd cycle inequalities for the maximum stable set problem. If a
polynomial time separation algorithm is known, there exists a formulation of polynomial
size that contains a given point if and only if it does not violate one of the (potentially
exponentially many) inequalities.

1.1 Our contribution

This thesis can be divided into two parts. The first part is the main part and it contains
various new results. We present new extended formulations for several optimization prob-
lems, i.e. the maximum stable set problem, the nonconvex quadratic program with box
constraints and the p-median problem. In the second part we modify a very fast algorithm
for finding a maximum clique in very large sparse graphs. We suggest and compare three
alternative versions of this algorithm to the original version and compare their strengths
and weaknesses.

The maximum stable set problem plays a central role in this thesis. We give an overview
and a deeper insight into several different relaxations containing specific inequalities in
Chapter 2. Some very useful separation algorithms, e.g. for the odd cycle and the 1-wheel
inequalities for the stable set polytope, are summarized in Chapter 3. These methods are
fundamental for what we present in Chapter 4: a new smaller extended formulation of the
odd cycle polytope and two new extended formulations of the 1-wheel polytope.

For approximating the feasible region of the nonconvex quadratic program with box con-
straints (BoxQP), it can be useful to construct a linear relaxation. Unfortunately, it turns
out to be a very weak approximation in general. However, it can be strengthened by the
so-called A-odd cycle inequalities. We construct an extended formulation for these inequal-
ities in Chapter 5. Next, we extend relaxations of the nonconvex quadratic program with
box constraints for our numerical experiments. Thereby, we confirm the strength of our
formulation by showing that much of the optimality gap can be closed with the extended
relaxations.

Chapter 6 deals with the p-median problem. We first summarize some remarkable results
concerning properties of the underlying digraph that ensure integrality of the directed odd
cycle relaxation. Then, we present our new extended formulation that can be used to solve
the p-median problem in this case in polynomial time.

Chapters 26 focus on linear relaxations for several optimization problems and our main
contribution is the construction of extended formulations. In contrast, Chapter 7 deals
with enumerative branch-and-bound algorithms for the maximum clique problem. After
giving an overview on existing algorithms and strategies, we present three modified versions
of a fast algorithm for very large sparse graphs. We demonstrate by our computational
experiments that one of them improves the original version. Moreover, we expect that the
slower versions that employ vertex colorings are more efficient if the graph is more dense.

1.2 Fundamentals and notation

This section provides an introduction into basic knowledge in graph theory which will be
relevant throughout the thesis. Furthermore, we briefly introduce basic terminology to
polyhedra and linear programming. The notation we introduce is partially equal or slightly
different to the notation that can be found in literature. For a broader overview on fun-
damentals in graph theory, we refer the reader to Diestel (2010), Grotschel et al. (1988),

Gross and Yellen (2004), Gross and Yellen (2005), Jungnickel (2013), Schrijver (2003), and
Tutte (2001). A detailed introduction to linear programming is given for instance by Schrij-
ver (1986). Plenty of theory on polytopes, that are important for linear programming, is
provided by Ziegler (2007).

The maximum stable set problem and the maximum clique problem are classical NP-
hard problems, c.f. Garey and Johnson (1979). We consider aspects of both of these graph
theoretical problems in this thesis. Therefore, they are defined and an integer linear pro-
gramming formulation for each of them is given in this section.

1.2.1 Graphs & digraphs

A graph is an ordered triple G = (V, E, V). The elements in the set V are called vertices
and the elements in the set E are called edges. The set of unordered pairs of vertices in V/,
twice the same vertex included, is denoted by V. Then, ¥ : E — V® is an incidence
function which maps every edge in E to an element in V(). For each edge e € E there exist
u,v € V with ¥U(e) = uv = vu. The cardinality of V is denoted by n and the cardinality of
FE' is denoted by m. We restrict ourselves to graphs where n and m are finite. Sometimes,
e.g. when vertices are denoted as tuples or as numbers, we use the notation {u, v} instead
of uv. We say that e is incident to u and v, or u and v are incident to e. If two edges are
incident to the same vertex, they are also called incident. Furthermore, two vertices v and
v are adjacent to each other, if there exists an edge being incident to both of them. We
call u a neighbor of v and v a neighbor of u. The set of all neighbors of u is denoted by
N(u), i.e. all vertices w € V with vw € E. An edge e with ¥(e) = wu is called loop. Edges
which are incident to the same pair of vertices are said to be parallel. In this case, the pair
of vertices is connected by multiple edges. The degree of a vertex v, denoted by deg(v), is
the number of edges that are incident to v, where loops are counted twice. We define

d(G) == min{deg(v) : v € V'}.

For the sake of simplicity and easier reading, graphs without multiple edges are defined by
the tuple (V, E). Then, edges can be identified with the vertices they are incident to and
the function ¥ can be recovered. Thus, e = wv = vu is an unambiguous assignment. If
there exists a graph isomorphic to G, which is embedded into the plane without any edges
crossing, we say that G is planar.

We define digraphs, where the orientation of the connection between every pair of vertices
matters, analogously to graphs. A digraph is an ordered triple D = (V, A, ¥). The elements
in the set V are again the wertices and the elements in the set A are called arcs. The
incidence function ¥ : A — V x V maps every arc a € A to an ordered pair of vertices in
V. For each arc a € A there exist u,v € V with ¥(a) = (u,v), where u is the tail and v
is the head of a. Then a is said to be incident to u and v. Arcs which are incident to the
same pair of vertices u,v € V are said to be parallel if either u or v is the tail for each of
those arcs. A pair of arcs, that are incident to the same pair of vertices u,v € V, is called
antiparallel if u is the tail of one of these arcs and the head of the other one. An arc a with

U(a) = (u,u) is a loop.

Similarly to graphs, we can clearly determine arcs in a given digraph D = (V, A) without
any function W if we do not have parallel arcs. Notice that antiparallel arcs are permitted
in this representation of D.

Paths, walks, cycles

A finite sequence P = (vg, €1,v1,€2,02, ..., €, vk) with k > 0, where vertices and edges are
alternating and every edge e; € P is incident to v;_1 and v;, is a walk. P is a path if v; # v;
whenever ¢ # j. In order to emphasize the start and end point of P, we call the respective
walk /path a vg-vg-walk/path. A walk P with vy = vy is a closed walk and if additionally all
vertices except vy and v in P are distinct, P is a cycle. Moreover, we call a cycle with k
vertices a k-cycle and use the notation Cj.

A finite sequence P = (vg,ai,vi,ag,ve,...,ak,v) with k& > 0 and alternating vertices
and arcs, where v;_1 is the tail and v; is the head for every arc a; € P, is a diwalk. Dipaths
are defined analogously to paths in the undirected case. We say that a diwalk/dipath P is
a vo-vg-diwalk/dipath if we want to point out that vy is the start and vy is the end point
of P. A closed diwalk is a diwalk with vy = v. If all vertices except vy and v in P are
distinct, P is called directed cycle or short dicycle.

In the following chapters we often refer to the number of edges/arcs that are contained in
the sequence P. Therefore, a walk/path/cycle is said to be odd if the number of (possibly
multiply counted) edges is odd. It is called even elsewise. A diwalk/dipath/dicycle is said
to be odd, if the number of (possibly multiply counted) arcs is odd, and even otherwise.

If the underlying object is a digraph and this is clear from the context, we omit the prefix
“di” for shorter notation. In this case, we consider diwalks/dipaths/dicycles when speaking
about walks/paths/cycles.

The number of edges that are contained in P is the length of P. Let us denote the edge
set of P by Ep. Given some weight function w : E — R for a graph G = (V, E), the weight
of P is a sum of its edge weights and hence

'U}(Ep) = Z Wij -

ijEEp

This definition is applied analogously to the directed case. We use the term shortest instead
of minimum weight, e.g. a shortest cycle is a minimum weight cycle.

Special classes of graphs and digraphs

We say that a graph G is simple, if it has no parallel edges and no loops. G is connected, if
for every pair u,v € V with u # v there exists a u-v-path.

A graph G is complete, if for all u,v € V with u # v the edge uv is contained in E exactly
once. D is a complete digraph, if the arc set A consists of both arcs (u,v) and (v,u) for
every pair u,v € V with u # v.

If the vertex set V of G can be partitioned into two sets V; # () and V5 #) such that
there does not exist any edge connecting two vertices out of the same set, then G is called
bipartite.

For a given simple graph G = (V, E), the graph G = (V, E) obtained by having uv € E
if and only if uv ¢ F is the complementary graph of G.

Let G1 = (V1, E1) and Gg = (Va, E3) be graphs with V3 C V5 and E; C Ey. Then G is
called a subgraph of Go. If uv € E7 whenever u,v € Vi and uv € Es, then G is the induced
subgraph G[V1] of G by Vi. If the induced subgraph G; of Gy by V; is a cycle, we call this
cycle chordless in Ga.

A digraph D = (V, A) is called oriented, if (u,v) € A implies (v,u) ¢ A for every arc
(u,v) € A.

Stable sets, cliques, colorings

When considering stable sets, cliques, and colorings, we always refer to (undirected) graphs
throughout this thesis.

A stable set S C V has the property that uv ¢ E for every pair u,v € S. S is called
mazximal stable set if there does not exist any vertex v € V\\S such that S U {v} is a stable
set. If S is a stable set and there exists no stable set in G with cardinality greater than
|S|, then S is a mazimum stable set. If we are given a weight function w : V" — R, for
the vertices in G, a stable set with the largest sum of weights among all stable sets in G is
a weighted mazimum stable set. We denote the incidence vector of a stable set S C V by
2% € {0,1}V, where ¥ = 1 if i € S and x7 = 0 otherwise.

A subset K C V is a clique if uv € E for every pair u # v € K. In other words, the
induced subgraph of G by K is complete. In order to emphasize that a clique has k vertices,
we call it a k-clique and use the notation K. K is called mazimal cligue if there does not
exist any vertex v € V\K such that K U {v} is a clique. If K is a clique and there is no
clique in G with cardinality greater than |K|, then K is a mazimum clique. If we are given
a weight function w : V' — R, for the vertices in G, a clique with the largest sum of weights
among all cliques in G is a weighted mazimum clique.

We call an assignment of colors to the vertices of G a (vertex) coloring if one color is
assigned to each vertex and adjacent vertices are colored differently. Notice that in literature
this is often called a proper vertex coloring. We consider colorings as a function ¢: V — C
with C C N such that c¢(u) # c(v) for all wv € E. Without loss of generality we assume
that C = {1,...,k} for some sufficiently large k. If ¢ is surjective, we call ¢ a k-coloring. In
other words, exactly k different colors appear in a k-coloring in G. Let us denote the set of
vertices colored with color i is by V;. Then V = V3 U ... UV}, and each Vj is a stable set in
G. Thus, a coloring is a partition of V into disjoint stable sets. A graph is called k-colorable
if there exists a coloring that uses exactly k colors. Obviously, if G is k-colorable, then G is
as well [-colorable for all [> k + 1. A k-coloring is an optimal coloring if and only if G is
not (k — 1)-colorable.

Stability number, clique number, and chromatic number

In this section, the stability number a(G), the clique number w(G), and the chromatic
number x(G) are defined. In the following chapters we occasionally make use of relationships
between these numbers in a graph.

Let w: V — Ry be any weighting of the vertices in G. Then

a(G,w) == max {Z w(v) : S CV is a stable set in G}

vES

denotes the maximum weight of a stable set in G. Determining «(G,w) is N'P-hard, even
in the special case when the weight of all vertices is identical and without loss of generality
equal to one, cf. Garey and Johnson (1979). If w(v) = 1 for every v € V and S* is a
maximum stable set, we call
a(G) = Z 1=15%
veES*
the stability number of G, which equals the cardinality of a maximum stable set in G.
Analogously, we define

w(G,w) = max{z w(v) : K CV is a clique in G} ,

veK

the maximum weight of a clique in G. If w(v) =1 for every v € V and K* is a maximum
clique, then
w(@) = > 1=|K"
veEK*
is the cardinality of a maximum clique in G. We call w(G) the clique number of G.

The chromatic number of a graph refers to colorings, which refer to the neighborhood
of vertices. Hence, weightings of vertices are unimportant. The chromatic number x(G) is
defined as

X(G) :=min{k € N: G is k-colorable} .

Notice that every x(G)-coloring is an optimal coloring in G.

1.2.2 Polyhedra & linear programming

A polyhedron is a convex set P := P(A,b) = {x € R" : Az < b} C R™ with A € R™*"
and b € R™, i.e. it is the intersection of finitely many closed halfspaces of the form {z €
R™ : ofz < §} for some non-zero vector a € R™ and some number § € R. The system
Az < b is a shorthand for the m many linear inequalities a; .o < b; where i € {1,...,m}.
If a polyhedron P is bounded in the sense that is does not contain a ray {x +ty : t > 0} for
some fixed x € P and y # 0, it is called a polytope.

An inequality a; . < b; is redundant for the system Az < b if it is implied by the other

10

inequalities in the system. Notice that one redundant inequality can be removed without
changing the set of feasible points of Az < b. However, it can make other redundant
inequalities for the same system irredundant for the reduced system.

Let P be a polyhedron. An inequality o’z < ¢ is valid for P if it is fulfilled by all points
x € P. Any set of the form FF = PN{z € R" : a’z = §} where o’z < § is a valid inequality
for P is a face of P. Every face F' of P with dim(F) = dim(P) — 1 is a facet of P. In other
words, facets are faces of a polyhedron, except the polyhedron itself, of highest dimension.
A vector x € P is an extreme point of P if there does not exist any pair of points y,z € P
with y # x # z such that x = Ay + (1 — A\)z for any A € [0,1].

For finitely many points x1,...,xx € R", kK € N,

k
conv({xl,...,xk}) = {/\1x1+...+/\kxkZ)\iZOViE{l,...,k}, Z)\Z‘:1}
=1

is the convex hull of the set {z1,...,x}. Every polytope P is equal to the convex hull of
its extreme points. A polytope is called integral if it has only integer extreme points.

Linear programming concerns the problem of maximizing or minimizing a linear function
over a polyhedron. In an integer linear program, we additionally have the constraint that
feasible points must have integer components. We sometimes use the shorthand LP and IP,
respectively, for linear and integer linear programs. Since these programs are optimization
problems, we use the term (integer) linear optimization problem simultaneously.

1.2.3 The maximum stable set problem
The mazimum stable set problem (MSSP) is the problem of finding a weighted maximum

stable set in G = (V,E). It can easily be formulated as the integer linear optimization
problem

max E WXy

S%
st. x;+x; <1 Vijekl (MSSP)
r; € {0,1} VieV,

where w : V' — R is a weighting of the vertices in G. The feasible set of this optimization
problem consists of the characteristic vectors of all stable sets in G. Let S be a stable set
in G. Two vertices cannot be simultaneously present in S if they are connected by an edge.
This is guaranteed by the inequalities x; + z; < 1 for all ij € E. We have :UZS =1ifie S
and @7 = 0 otherwise. We assume w(v) = 1 for every v € V as a special case of the MSSP.
The objective function then maximizes over the cardinality of all stable sets in G and hence
finds a maximum stable set in G.

11

1.2.4 The maximum clique problem

The mazimum clique problem (MCP) is the problem of finding a weighted maximum clique
in G = (V, E). Many different equivalent formulations are known, see Bomze et al. (1999).
One simple intuitive formulation as an integer linear optimization problem is

max E Wi Tg

i€V
st. x+ax; <1 VijeFE (MCP)
z; € {0,1} VieV

where w : V' — R is a weighting of the vertices in G. This formulation is almost equal to
our above formulation of the MSSP. The inequality x; + z; < 1 for all ij € E ensures that
if two vertices ¢ and j are not connected by an edge, they cannot be simultaneously present
in a clique. Since a stable set in a given graph G is a clique in G, this is not surprising.
As for the MSSP, we assume w(v) = 1 for every v € V as a special case of the MCP and
therefore find a maximum clique when solving it.

12

Chapter

Stable sets: inequalities, polytopes, and
perfectness

The set of feasible solutions for many every day problems can be expressed as stable sets
in a given graph G = (V, E). Let us for example think about the following situation: We
are given a social network with n people and we plan to carry out an experiment on how
groups of people interact if no one knows each other very well. Every single person in the
social network be represented by a vertex in V' and two vertices are adjacent if and only if
these two people are connected in the social network. Then every potential test group for
our experiment is equivalent to a stable set in G. In particular, a largest possible test group
can be determined by finding a maximum stable set in G. Another thing we could ask for
is, if there exists a subset of k people that qualifies as a candidate for a test group. Or in
other words: Is the stability number a(G) at least k7

Besides direct applications of stable sets for modeling and solving practical problems,
constraints in many more complex optimization problems can have a structure associated
with stable sets. For example, the airline crew scheduling problem with base constraints

n

min E Cj:Ej

j=1
st. Az =1 (SPB)
di < Dx < dy
z;e{01} ¥Yji=1,...n,

where A € {0,1}™*" dy,do € Q¢ and D € Q‘f", is studied by Hoffman and Padberg
(1993).

The set packing polytope conv{z € R" : Az <1,z € {0,1}"} constitutes a major part of
the constraint set of (SPB). Hoffman and Padberg (1993) analyze (SPB) by considering the
intersection graph G4 = (Va, E4) of matrix A, see Padberg (1973), where V4 = {1,...,n}

13

for the column set of A and the set E4 contains an edge wv if and only if ay + as ﬁ 1.
Every pair of adjacent vertices in G 4 represents two columns that cannot be concurrently
present in the set packing polytope and vice versa. It follows directly that every valid binary
packing must be a stable set.

The task of finding a maximum stable set is NP-hard. Therefore it is unlikely that there
exists a formulation of polynomial size for the stable set polytope

STAB(G) = conv {xs €{0,1}V : S C V is a stable set in G},

the convex hull of the solution space of the MSSP.

In this chapter, we present different types of inequalities which are valid for STAB(G)
and define polytopes PX(G) arising from the polynomial size edge constrained stable set
polytope P¥(G), which has a simple description with polynomially many inequalities. We
obtain different polytopes PX(G) by adding at least one additional class of stable set in-
equalities to P¥(G). Hence, STAB(G) C PX(G) C PE(G). Most of these polytopes PX(G)
are specified by an exponential number of valid inequalities in general. However, the sep-
aration problem, cf. Definition 3.1, for some of them can be solved in polynomial time.
Furthermore, we recapitulate some definitions and results on the “perfectness” of graphs.
We also give examples for graph classes that belong to certain sets of perfect graphs.

Some results require that G has some properties. Parallel edges except one and vertices
which are incident to loops are not important for the MSSP. If some of them exist, we could
transform G into a simple graph by deleting them. Finding a maximum stable set in an
unconnected graph G is equal to finding a maximum stable set in every component of G.
Thus, we make the following assumption when considering the MSSP.

Assumption 2.1. Every graph G = (V, E) we consider is simple and connected. Moreover,

E#0.

2.1 Valid inequalities & polytopes

In this section, we present and analyze linear inequalities that are valid for STAB(G). Since
it is out of reach to describe STAB(G) by a system of linear inequalities in general, we
give approximations via different polytopes PX(G). When speaking about optimization, we
always refer to the linear program

max E T;

eV
st. =€ PY(Q).

2.1.1 The edge constrained stable set polytope

A very simple idea to start with is replacing the integrality constraints z; € {0,1} for the
vertex variables z; for all ¢ € V' in the MSSP by their linear relaxation. This already yields

14

two classes of valid inequalities for STAB(G):

0<z; <1 VieV (trivial inequalities) (2.17)
zi+x; <1 Vije E (edge inequalities) (2.2)

Due to Assumption 2.1, we only consider simple, connected graphs with E # (). Therefore,
G is not an isolated vertex and it is sufficient to replace (2.1’) by

r; >0 VieV (2.1)

since the upper bound 1 for every x; is implied by the corresponding edge inequality z;+z; <
1 in combination with x; > 0 if ¢ is connected to any other vertex j € V.
The edge constrained stable set polytope

PE(GQ) = {z € R" : z satisfies (2.1) and (2.2)}

is the linear relaxation of the solution space of the MSSP and of polynomial size. It consists
of just n + m inequalities.
We define

(@) = max {sz tx € PE(G)} ,
%

the objective value of an optimal solution for P¥(G), the relaxed MSSP.

Remark 2.2. Let G be a graph. Then o (G) > 2 holds.

One can easily check this by considering the vector z = (%, ceey %)T € R", which does not
violate any inequality describing P¥(G).

We now want to analyze cases in which P¥(G) = STAB(G). Grétschel et al. (1988) show
in Proposition 9.1.3 and their subsequent remark the following property:

Theorem 2.3. PY(G) is equal to STAB(G) if and only if G is bipartite.

Therefore, the edge constrained stable set polytope P¥(G) has extreme points which are
infeasible for STAB(G) if G is not bipartite.

Example 2.4. Let G be a complete graph. Obviously, a maximum stable set is given by a

single vertex. Hence, for the stability number a(G) = 1 holds. We have seen that o (G) > 2

by Remark 2.2. This extreme evample shows how that the ratio a®(G)/a(G) can be greater
n

or equal than 5 and thus, that PE(G) may be a very weak approzimation of STAB(G) in
general.

2.1.2 The odd cycle polytope

In Section 2.1.1, we have seen that P¥(G) = STAB(G) for every bipartite graph. A minimal
example graph G for having P¥(G) D STAB(G) is an odd cycle with just three vertices
(which is also a clique). More general, no odd cycle can occur in a bipartite graph.

15

Lemma 2.5. Fvery graph with n > 2 is bipartite if and only if it contains no odd cycle.

This leads us to another class of valid stable set inequalities. Let G be an odd cycle,
for example a 5-cycle as in Figure 2.1(a). One optimal solution for the MSSP, i.e. a stable
set with cardinality 2, is highlighted by the red vertices. Figure 2.1(b) shows a fractional
extreme point in P¥(G). The objective value of this point is %, which is greater than 2.

In general, at most half of the vertices in G rounded down can be concurrently present
in a stable set for any odd cycle. Thus, inequalities

-1
Z:):i < |C‘2 V odd cycles C (odd cycle inequalities) (2.3)
ieC
are valid for STAB(G), cf. Grotschel et al. (1988, Chapter 9). Padberg (1973) introduces

these inequalities for the odd holes, which are chordless odd cycles and thus a subset of the
odd cycles.

(a) An optimal solution for the (b) A fractional extreme point in
MSSP. PE(@).

Figure 2.1: Stable sets in a 5-cycle.

The odd cycle polytope
POY(Q) = {z € R" : x satisfies (2.1), (2.2), and (2.3)},

arises from adding the odd cycle inequalities (2.3) to the edge constrained stable set poly-

tope. We illustrate this exemplarily for a 5-cycle in Figure 2.1(b), where x = (%, %, %, %, %)T €

PE(Q) is excluded from PPC(G) by an odd cycle inequality.

In contrast to PF (@), the polytope POC(G) may be given by exponentially many inequal-
ities, since the number of (odd) cycles in a graph is exponential in the number of edges.
Arman and Tsaturian (2017) present an exponential upper bound and provide examples of
graphs to the reader, where the number of cycles is 1.37™ for sufficiently large m. Although
there could be an exponential number of odd cycles in G, one finds an optimal solution for

16

POC(@) in polynomial time with an extended formulation. We will present three different
extended formulations of P9%(G) in Chapter 4.

We define
(@) == max {Z T x € POC(G)}
eV
analogously to o (G). Because every odd cycle includes at least 3 vertices, a trivial lower
bound on a®®(G) can be explicitly given.

,...,%)T € P9YG). Hence,

ol

Remark 2.6. For any graph G, we have x = (
a%%(@) > 2 holds.

2.1.3 The clique polytope

Since a clique in a graph is a complete subgraph and the stability number of a complete
graph is 1, a stable set can contain at most one vertex of a clique. Consequently, another
exponential class of valid inequalities for the stable set polytope, which was introduced by
Padberg (1973), is given by the clique inequalities:

Z x; <1 V cliques K (clique inequalities) (2.4)
€K

The corresponding clique polytope is defined as
PE(G) = {x € R" : x satisfies (2.1) and (2.4)}.

Obviously, every edge in G is a 2-clique. This implies that the edge inequalities (2.2) are a
subset of the clique inequalities (2.4). Therefore, we just have to add inequalities for cliques
of size at least 3 to P¥(Q).

Let G be a 4-clique. Onme of four optimal solutions for the MSSP is depicted in Fig-
ure 2.2(a). Again, we consider the vector « € R" with z; = § for all i € V, which is feasible
for P¥(G), see Figure 2.2(b). This vector yields a total value of 2 with respect to the
objective function of the MSSP. Now, one can argue that this is not a feasible point for the
odd cycle polytope in Section 2.1.2 as it is cut off by every single odd cycle inequality from
the four 3-cycles that appear as subgraphs in G. The vector x = (%, %, %, %)T, illustrated in
Figure 2.2(c), is feasible for PP¢(G). It yields an objective value of 3, which is larger than
1. In general, there are points in POC(G) that violate the clique inequalities for cliques K
with |K| > 4.

17

(a) An optimal solution for (b) A fractional extreme (¢) A fractional extreme
the MSSP. point in PP(G). point in P9Y(Q).

Figure 2.2: Stable sets in a 4-clique.

We define
(@) = maX{in tx € PK(G)}

eV
as the optimal objective value of the optimization problem over the clique polytope. In
contrast to the edge constrained stable set polytope and the odd cycle polytope, we do not
have any fixed vector for an arbitrary graph G, which satisfies all clique inequalities and
might provide a higher objective value than a(G).

Remark 2.7. Let n be an arbitrary, fired number. There is no better lower bound than
1 for o™ (G) which is valid for all graphs G with n vertices, since Y,y x; < 1 is a valid
clique inequality for the complete graph.

Next, we take a closer look at the number of clique inequalities that appear in the de-
scription of PX(G). Unfortunately, there may exist exponentially many cliques in a graph.
Anyway, we can hope that we do not require an inequality for each clique in G.

Example 2.8. Let G be a complete graph. Then every nonempty subset of V' is a clique.
Although we have 2™ — 1 inequalities in this case, every clique inequality Y, p x; < 1 for
K C V is dominated by Yoy, vi < 1, because x; > 0 for all i € V' are valid inequalities for
PE(G). Therefore, 3 ,c\, ; < 1 is the only facet inducing clique inequality of PX(G).

A more general and even stronger result was proven by Padberg:

Theorem 2.9. (Padberg, 1973) Let K be a clique. Then the inequality Y ;- x; < 1 defines
a facet of STAB(G) if and only if K is a maximal clique in G.

This leads to the questions of how many maximal cliques can exist in a graph and if the
number of maximal cliques is polynomially bounded from above. Moon and Moser (1965)
have shown, that every graph has at most 3"/3 maximal cliques and that this bound is
attained by some graph.

18

One of the best algorithms in practice to list all maximal cliques was introduced by
Bron and Kerbosch (1973). Fortunately, there exist several graph classes, where we are
able to list all maximal cliques in polynomial time. These graph classes, such as complete
graphs, triangle-free graphs, and chordal graphs, have only a few maximal cliques which
can be listed efficiently, cf. Rosgen and Stewart (2007). In their recent work “A linear
time algorithm for maximal clique enumeration in large sparse graphs”, Yu and Liu (2017)
present an algorithm to enumerate all maximal cliques in graphs with special properties in
linear time. Significant parameters for the execution time have to be small and this is the
case if the given graph is large and sparse enough.

For general graphs, Grotschel et al. (1981) show that it is not possible to optimize over
PX(@G) in polynomial time. Hence, we are not able to derive an extended formulation for
PX(G) with polynomially many variables and inequalities as for P9¢(Q).

Theorem 2.10. (Grétschel et al., 1988, Theorem 9.2.9) The optimization problem for
PX(@G) is N'P-hard.

Let us compare the odd cycle inequalities from the previous section to the clique inequal-
ities. At first glance, the clique inequalities seem to be much stronger in general. In fact,
this is not true. For example, if the largest clique in G is a 2-clique, then x = (%, e %)T
is feasible for PX(G). Consider the 5-cycle in Figure 2.1(b), where an odd cylce inequality
is required to ensure that there exists an integer optimal solution for the relaxation of the
MSSP, such as the solution in Figure 2.1(a). If G has many odd cycles and no clique of
size greater or equal than 3, an optimal point in PX(G) will provide a much higher objec-
tive value than an optimal point in PP (@). Conversely, we have seen by the example in
Figure 2.2(c) that one clique inequality might be better than a few odd cycle inequalities.

In the next section we will see that in general there exist z € PPY(G) N PX(G) with
x ¢ STAB(G).

2.1.4 The 1-wheel polytope

An important class of valid stable set inequalities was introduced by Cheng and Cunningham
(1997). Before we present and explain the different types of 1-wheel inequalities, let us
consider a small, simple example for the sake of motivation.

Figure 2.3(a) shows a graph where one (of five) optimal integral solution is highlighted.
We can certify its optimality by reasoning that if the vertex in the middle belongs to a
stable set S, it must be the only one and if any other vertex belongs S, there is a cycle
inequality that only allows for one more vertex to belong to S.

The fractional solution = = (x1, 2,3, 24, T5,6) = (%, %, %, %, %, %)T, where x1 is the
variable for the vertex with degree 5, is shown in Figure 2.3(b). Here, the objective value
is) ey i = %, which is larger than 2. We can see in the three figures below that no
odd cycle inequality and no clique inequality is violated by x. Notice that we have five
different 3-cycles as in Figure 2.4(a), which are as well cliques, five different 5-cycles as in
Figure 2.4(c) and the 5-cycle in Figure 2.4(b) in this 1-wheel. Each of the corresponding odd

cycle inequalities, except the inequalities for odd cycles as given in Figure 2.4(c), is fulfilled

19

WO

(a) An optimal solution for the (b) A fractional extreme point in
MSSP. P9°(@) N P¥(@G), whose coordinates
are in {%, %}

Figure 2.3: Stable sets in a 1-wheel.

with equality. The slack of the respective inequality for every odd 5-cycle that includes xq
is %

We can generalize this example to any odd cycle with an additional vertex which is
adjacent to every vertex of the odd cycle.

Tav vl

(a) (b) (c)

Figure 2.4: Odd cycle and clique inequalities that are not violated.

Let C be an odd cycle, h ¢ C, and every vertex of C' be connected to h by an edge. Then
the inequality

C|-1 C|-1
5 $h+EZCxi< 5 (2'5)

is valid for the stable set polytope. If x, = 1 or the odd cycle inequality for C' is satisfied
with equality, there is no slack for the corresponding inequality (2.5).

20

Inequalities (2.5) are just a small subclass of the 1-wheel inequalities. Therefore, we
define the class of 1-wheels, Cheng and Cunningham (1997) have introduced. We slightly
deviate from their notation and use an equivalent definition to keep our notation consistent
throughout this thesis. Moreover, we recapitulate their results with regard to valid stable
set inequalities for these 1-wheels.

Definition 2.11. (de Vries et al., 2019, Definition 3.1) A graph W with vertices Vyy =
CUSURU{h} is called simple 1-wheel if W can be constructed in the following way:

1. C =A{vy,...,vo41} is the vertex set of an odd cycle;
2. the edges vih are added for alli=1,...,2k+ 1;

3. some of the edges vih are (multiply) subdivided and S is constituted by the inner
vertices of the subdivisions of these edges;

4. some of the the edges viviy1 are (multiply) subdivided and R is constituted by the inner
vertices of the subdivisions of these edges;

5. every cycle h—...—v;— ... —viy1 — ... — h of W, which does not include any vertex

v e C\ {vi,vit1}, is odd.

We use the convention vogio = v1 and call the vertex h the hub and the elements in C' the
spoke ends.

An example is given in Figure 2.5, where C' = {v1,v9,v3,v4,v5}, S = {s1, 2, S3, 54, S5}
and R = {ry,ro,73,74}.

Figure 2.5: A simple 1-wheel.

21

Definition 2.12. Let W be a simple 1-wheel. For everyi € {1,...,2k + 1}, we denote the
spoke path connecting the hub h to v; via zero or more vertices in S by Py, ,,. Analogously,

the rim path connecting the spoke end v; to vi11 via zero or more vertices in R is denoted
by Pvi,vz'+1 :

The vertices in C are partitioned into

E ={v; € C: Py, is of even length (in the number of edges)},

which are called even spoke ends, and

O :={v; € C: Py, is of odd length (in the number of edges)},

which are called odd spoke ends.

Every vertex of a simple 1-wheel belongs to exactly one of the sets £, O, S, R, {h}.

In the example in Figure 2.5, the odd cycle C' = {v1, v2,v3,v4,v5} is partitioned into & =
{vs,v4,v5} and O = {v1,v9}.

Cheng and Cunningham (1997) show that the 1-wheel inequalities

2k+1
kxh—kavi—l—Zazv—i— Z xv§k+|5|+|§|+|g’ (14)
=1 vel vESUR
pAR S| + |R| + O] + 1
B+ Dap+ Y ap+ > 2+ > zp<k+ 5 (Ig)
i=1 ve@ vESUR

for simple (and, as we will see, nonsimple) 1-wheels are valid for STAB(G) and they give
sufficient conditions for them to be facet-inducing for STAB(G).

(a) Stable set Si.

(b) Stable set Ss. (c) Stable set Ss.

Figure 2.6: Stable sets in a 1-wheel.

Example 2.13. Consider the simple 1-wheel in Figure 2.5. The right hand side of both
inequalities (I4) and (Ig) is 8. A mazimum stable set in this simple 1-wheel has cardinality

22

7. The stable sets Sy in Figure 2.6(a) and Sy in Figure 2.6(b) are mazimum stable sets,
whereas the stable set S3 in Figure 2.6(c) is maximal, but not a mazimum stable set. For
the incidence vectors of S and Ss, inequalities (14) and (Ig) are fulfilled with equality. The
incidence vector of the mazimum stable set Sy leaves a slack of 1 to inequality (I4) and
fulfills (Ig) with equality.

The simple 1-wheels defined in Definition 2.11 are themselves a subset of a much larger
class of graphs:

Definition 2.14. A nonsimple 1-wheel is a graph constructed by identifying (zero or more)
pairs of nonadjacent vertices of a simple 1-wheel.

Identifying vertices may yield parallel edges. They are irrelevant for stable set problems
and hence every parallel edge but one can be removed. Notice that simple 1-wheels can be
considered to be a special case of nonsimple 1-wheels.

In contrast to simple 1-wheels, £, O, S and R are multisets for nonsimple 1-wheels and one
or more pairs of nonadjacent vertices can belong to more than one of these multisets. After
the identification of vertices and addition of the respective coefficients, valid inequalities
(I4) and (Ip) arise for STAB(G).

Figure 2.7: A nonsimple 1-wheel.

Example 2.15. The nonsimple 1-wheel in Figure 2.7 is obtained by the identification of
the pairs {vi, sa}, {s1,s3}, and {rq,ss} of the simple 1-wheel in Figure 2.5. The odd closed
walk a, c,vs, c, h,a originates from the odd face cycle vy,74,vs, S5, h, v1.

Since simple 1-wheels are a special case of nonsimple 1-wheels, where each vertex can
only belong to just one of the sets £, O, S and R, we use the general term I-wheel in what
follows.

23

With regard to inequalities (I4), the variable x, for v € £ appears twice on the left hand
side. The same holds for the variable z, for v € O in inequalities (Ig). Therefore, we would
have to be aware if vertex v belongs to £ or O. Fortunately, there is a very useful result
from de Vries (2015), which makes things become easier.

Lemma 2.16. (de Vries, 2015, Lemma 8 and /) Every (14)-inequality is representable by
an (I'y)-inequality. Every (Ig)-inequality on a I1-wheel without odd spokes of length 1 is
representable by an (I)-inequality.

Notice that & =) for the (I’;)-inequalities implies that every spoke end belongs to O.
For the (Ip)-inequalities, the set O is empty and therefore every spoke end is in €. Thus,
we call the inequalities

2k+41
S R
bt 3wt Y m <k (1)
i=1 vESUR
odd 1-wheel inequalities and the inequalities
2k+1
S Rl +1
(k4 Dt 3 o+ Y wp< ks DTS (1)
=1 vESUR

even 1-wheel inequalities. Every 1-wheel inequality in G (except the (Ig)-inequalities for
1-wheels where at least one spoke is a single edge) is satisfied if no odd and no even 1-wheel
inequality is violated due to Lemma 2.16. Hence, we will restrict ourselves to satisfying (I’)
and (Ip).

We define the odd 1-wheel polytope as
PY4(@) = POY(G) n {z € R™ : z satisfies every inequality (I’4)}

= {z € R" : z satisfies (2.1), (2.2), (2.3), and every (I4)}

and the even 1-wheel polytope as
PY5(@) = PP°(G) n {z € R : z satisfies every inequality (I)}

= {z € R" : z satisfies (2.1), (2.2), (2.3), and every (Ip)} .
The 1-wheel polytope

PY(@) = P"A(G) n PV5(G) C PYY(G)

is constituted by the inequalities that describe P?“(G) and additionally all odd and even
1-wheel inequalities. We denote the objective value of an optimal solution when optimizing

24

over the 1-wheel polytope by

(@) = max {Z T x € PW(G)} ;

icV
similarly to the previously defined alphas.

Lemma 2.17. The vectorz = (1,..., i)T is in PYV(Q) for any graph G. Thus, o'V (G) >

holds.

w3

Proof. Remark 2.6 implies that z = (i, cee i)T € PPY(G). Therefore, our task is to prove
that no odd or even 1-wheel inequality is violated. Substituting this vector into (Iy) yields
1 1 1 |S| + | R
—-k+-(2k+1)+ - < _—
4k+4(k+)+4(\SUR])_k+ 5
3 1 2(]S|+ |R]) — |SUR|
k<
<— 4l<:+ 1= k+ 4
1 1 2(|S|+ |R|) — |S UR|
- < -k .
— 11 + 4
If we substitute x into (Ij), we get
1 1 1 S|+ |R|+1
Z(k+1)+1(2k+1)+1(|SUR!) §k+||+‘2|
1 _
— §k+7§k+2(\sy+ym) |ISUR|+2
4 2 4
1 1 2(IS|+|R|) —|SUR|+2
- < -k
— 5=1 + 1
1 2(|S|+|R]) = |SUR
— O§1k+ (151 Q | ‘.

Both inequalities are fulfilled for every k& > 1 and arbitrary S and R. Hence, z € PV (G)
and the validity o'V (G) > ¥ follows immediately. O

Remark 2.18. A j-clique is a (simple) 1-wheel where k =1 and S = R = (). Consequently,
aW(G) = (G) =1="2 if G is a 4-clique. This shows that the lower bound on o' (G) in
Lemma 2.17 is tight.

2.1.5 More classes of inequalities

The classes of inequalities presented in the previous sections are central to this thesis.
Nevertheless, there exist more classes that have been studied in the last decades. Therefore,
we mention some of them that also have been of interest and that can define facets of
STAB(G). However, we forego defining polytopes that include some of these inequalities,
as we do not investigate separation algorithms or extended formulations for them.

25

Padberg (1973) and Nemhauser and Trotter (1974) consider odd holes in G. An odd cycle
C is an odd hole if and only if the subgraph induced by the vertices of C remains an odd
cycle.

Definition 2.19. (Padberg, 1973; Nemhauser and Trotter, 1974) Let C' be an odd hole.
Then its complement C is called odd antihole.

We generalize this definition and call the complement of an odd cycle also an odd antihole.
It is easy to see that the inequalities

Z x; <2 V odd antiholes C (odd antihole inequalities) (2.6)
ieC

are valid stable set inequalities. If one vertex of C' belongs to a stable set, there are only
two more candidates in C left. As these two vertices share an edge, only one of them can
be present in this stable set.

The web inequalities and the antiweb inequalities are also valid for STAB(G). They are
introduced and analyzed by Trotter (1975). Webs and antiwebs are defined as follows.

Definition 2.20. Let p > 2 and 1 < q < g. Then the graph W (p,q) with vertex set
Viv(pq) = {1,--.,p} and edge set

Ew(pqg = {ij cje{i+q,...,1—q (modn)} Vie VW(p,q)}
1s called web.

The modulo function in the definition of the edge set may produce the vertex sequence
k,...,l with k > [. In this context we define it as the sequence k,...,p,1,...,1[, similar to
the notation of cycles.

Definition 2.21. Let W(p, q) be a web. The complement W (p, q) is called antiweb.

The web inequalities are defined as

Z < q v webs W (p, q) (web inequalities) (2.7)

iEVW(p,q)

and generalize other inequalities from the previous sections. A web W (p, 1) for example is
a p-clique, the web W(k 4 1,k) is a k-cycle and a web W (k + 1,2) is an odd antihole with
k vertices for any integer k > 2, cf. Coniglio and Gualandi (2014).

Moreover,
Z x; < {pJ V antiwebs W (p, q) (antiweb inequalities) (2.8)
EVI (p,g) 1

are as well valid stable set inequalities.

26

For each of the three graph classes we consider in this section, we present an example in
Figure 2.8. These graph classes yield further valid inequalities for STAB(G). A maximum
stable set for each graph in Figure 2.8 is given by the red vertices.

7

(a) Odd antihole C (|C| = 7). (c) Antiweb W (8, 3).

Figure 2.8: Maximum stable sets in odd antiholes, webs, and antiwebs.

A very general class of inequalities for stable sets in G are the rank inequalities that were
introduced by Chvétal (1975):

Z z; < a(G[U]) VUCV (rank inequalities) (2.9)
€U
They bound the number of vertices in a subset U C V' that can be concurrently present in
a stable set .S in G by the stability number of the induced subgraph of G by U.

The rank inequalities are a very large class of inequalities as one can imagine that induced
subgraphs of G can be graphs like odd cycles, cliques, 1-wheels, webs or anything else. For an
extensive analysis we recommend the work of Coniglio and Gualandi (2014), who present
the first formulation for the separation problem of these inequalities as a bilevel integer
program.

2.2 Perfectness of graphs

It may be useful to classify graphs that allow solving the MSSP in polynomial time. In
this section, we show that specific polytopes PX(G) are equal to the stable set polytope
STAB(G) for some given graph classes. We recapitulate some results on classes that have
been studied extensively in the past. Moreover, we define two new classes.

Definition 2.22. (Grétschel et al., 1988, Chapter 9) A graph G is called
a) t-perfect, if STAB(G) = P9Y(G),

b) perfect, if STAB(G) = PX(G),

27

¢) h-perfect, if STAB(G) = P°Y(G) N PK(G).

We will see in Chapter 3 (and hence in Chapter 4) that the MSSP for t-perfect graphs can
be solved in polynomial time. For example, the following graphs are t-perfect, cf. Grotschel
et al. (1988):

e Bipartite graphs.

e Almost bipartite graphs.

e Series-parallel graphs.

e Nearly bipartite planar graphs.

A sufficient condition for a graph to be t-perfect was proven by Gerards and Schrijver
(1986):

Theorem 2.23. (Gerards and Schrijver, 1986, Corollary 2) If a graph G does not contain
a subdivision of K4 as a subgraph, such that each of the four cycles that include exactly three
vertices with degree 3 is odd, then G is t-perfect.

Remark 2.24. The excluded subgraphs of Theorem 2.23, that cannot occur in t-perfect
graphs, are just simple 1-wheels with |C| = 3.

The maximal clique enumeration algorithm of Yu and Liu (2017) can be used to describe
PX(G) with polynomially many linear constraints if the underlying graph is sufficiently
large and sparse. Hence, we obtain that the MSSP is polynomially solvable for perfect
graphs if they fulfill both properties. By using orthonormal representation constraints, see
for example Grotschel et al. (1988), one can show that the MSSP can be solved in polynomial
time for every perfect graph, even if the graph is not large and sparse.

Theorem 2.25. The MSSP for perfect graphs is solvable in polynomial time.

This follows directly by Corollary 9.3.32 of Grotschel et al. (1988), who also give, amongst
others, the following examples for perfect graphs:

Bipartite graphs.

Line graphs of bipartite graphs.

Interval graphs.
e Triangulated graphs.
e The complements of the above mentioned graphs.

For a detailed analysis of these and some more classes of perfect graphs, we refer the
reader to Golumbic (2004).

We now present a simple example for an h-perfect graph that is neither t-perfect nor
perfect. For this purpose, we use the following very useful observation.

28

Remark 2.26. Let G1 = (V1, E1) and Gy = (Va, E2) be two vertex and edge disjoint graphs.
Furthermore, let S1 and So be mazimum stable sets in Gy and Gg, respectively. If S; U Sp
is a stable set in H = (V3 U Vo, By U Ey U E3) where E3 is a set of additional edges, then
S1 U Sy is a maximum stable set in H.

Example 2.27. Consider the graph G arising from connecting a 4-clique and a 5-cycle by
a single edge. Obviously, a(G) = 3, see Remark 2.26. This graph is neither t-perfect nor
perfect. The vector x = (%, %, %, %,0, 1,0,0, 1)T for example, see Figure 2.9(a), is in the

odd cycle polytope. It is not in STAB(G), as the objective value for the mazimum stable set
problem is % > 3. On the other hand, y = (0, 1,0,0, %, %, %, %, %)T 1s in the clique polytope,
see Figure 2.9(b). The objective value for the mazximum stable set problem provided by y is
% > 3 and this implies PX (G) D STAB(G). For verification that G is h-perfect, we computed
the minimal V-representation of POC(G) N PX(G) with the Parma Polyhedra Library of
Python, cf. Bagnara et al. (2016) and showed that all vertices of the polytope are integral.
Since all variables are bounded between 0 and 1, we get PP (G) N PX(G) = STAB(G). An
extreme point z with an objective value of 3 for the maximum stable set problem is presented

in Figure 2.9(c).

(a) = € PP°(Q) (b) y € PX(G) (c) z € PPY(G)n PX(@)

Figure 2.9: An h-perfect graph.

Since the 1-wheels as described in Section 2.1.4 do not belong to the class of h-perfect
graphs in general, we introduce two new graph classes. Remember that P (G) € P9Y(G)
by the definition of the 1-wheel polytope.

Definition 2.28. A graph G is called
a) w-perfect, if STAB(G) = PV (G),

29

b) hw-perfect, if STAB(G) = PV (G) n PX(G).

This definition implies that 1-wheels are w-perfect. Due to Lemma 2.17, o'V (G) > g > 1
for k > 4. Thus, a k-clique with k > 4 cannot be w-perfect. We now want to give an
example of a graph which is neither h-perfect nor w-perfect, but hw-perfect.

Example 2.29. Let G be the graph that arises from connecting a simple 1-wheel with
|C| =5, S=0, and R =10 to a 5-clique by an edge. Notice that a(G) =3 by Remark 2.26,
since at most two vertices of this simple 1-wheel and at most one vertex of this clique can be
concurrently present in the same stable set, and a stable set with cardinality 3 is presented in
Figure 2.10(c). The graph G is not h-perfect, because x = (%, %, %, %, %, %, %, %, %, %, %)T €
POC(G)N PX(G) with an objective value of % > 3 for the maximum stable set problem, see
Figure 2.10(a). G is not w-perfect, since we allow x; = i for all i in the 5-clique in absence
of the clique inequalities. The vector y = (%, %, %, i, %, 0,1,0,0,0, l)T € PY(Q) provides an
objective value of % > 3 for the mazimum stable set problem, see Figure 2.10(b).

(a) z € P°°(G)n PX(Q) () y € PV (@) (c) z € PY(G) N PX(Q)

Figure 2.10: An hw-perfect graph.

30

Chapter

Separation algorithms for stable set
relaxations

This chapter covers separation algorithms for the odd cycle inequalities and the 1-wheel
inequalities of the stable set polytope, which form the basis for the extended formulations
we present in Chapter 4. We first show how shortest path problems can be solved with linear
programs, as the separation algorithms we present are based on the weight of shortest paths
in specific auxiliary graphs. Next, we explain how the separation problem for the odd cycle
inequalities can be solved in polynomial time. Thereafter, two different polynomial time
separation algorithms for the 1-wheel inequalities are presented. The separation algorithm
of de Vries (2015) is preferable if the underlying graph G is sparse or has a medium density.
The separation algorithm of Cheng and Cunningham (1997) is competitive if G is very
dense. Finally, we provide an overview of separation algorithms and heuristics for further
stable set inequalities.

Definition 3.1. Given two polytopes PX and P with PX C P, the separation problem for
PX and a given vector T € P is to give a valid inequality of PX that is violated by T if one
exists.

Grotschel et al. (1981) show that there exists a polynomial time algorithm for a given
linear optimization problem if and only if the associated separation problem can be solved
in polynomial time. We will use this general relation between separation and optimization
for the construction of extended formulations that are presented in Chapter 4.

In many stable set relaxations, the violation of an inequality by a given Z is equivalent
to some conditions to the underlying graph G or to some auxiliary graph arising from
G. For this purpose, we define products of graphs/digraphs, which can be a very useful
class of auxiliary graphs. Hammack et al. (2011) define, analyze, and use different types
of graph products, which are mainly restricted to the undirected case. We require the so-
called categorical graph product and extend the definition given by them to digraphs and to
combinations of graphs and digraphs.

31

(a) G (b) H () Gx H

Figure 3.1: The categorical product of an undirected 3-cycle and an edge.

Definition 3.2. The categorical product G x H of

a) two graphs G = (Vg,Eq) and H = (Vyu,En) is given by the vertex set
Vaxa = Vo x Vi and the edge set Egxg = {{(u,z), (v,7)} : wv € Eg and ij € EH},

b) a graph G = (Vg,Eq) and a digraph F = (Vp, Ap) is given by the vertex set
Vaxr = Va x Vi and the arc set Agxp = {((u,z), (v,7)) : wv € Eg and (i,j) € AF},

¢) two digraphs D = (Vp,Ap) and F = (Vp,Ap) is given by the wverter set
Vboxp = Vp x Vg and the arc set Apxp = {((w,1),(v,5)) : (w,v) € Ap and (i,5)
€ AF}

Remember, we refer to edges when using the notation ij (or {4,j} if necessary) and to
arcs when writing (i,7). A vertex in the categorical product of graphs/digraphs contains
two arguments. Consequently, {(u,?), (v,)} denotes an edge between vertices (u,i) and
(v,7), whereas ((u,1), (v,7)) is an arc with tail (u,) and head (v, 7).

An example of the categorical product of two graphs as defined in Definition 3.2a) is
given in Figure 3.1, where G is a cycle with 3 vertices and H is a single edge, i.e. G x H =

(Voxus Egxm) with Vaxpg = {(a, 0), (a,1),(b,0),(b,1), (¢, 0), (c, 1)} and

Egxn = {{(a,0), (b, 1)}, {(a,0), (¢,)}, {(a, 1), (b,0)},{(a, 1), (¢, 0)},
{(5,0), (e, 1)}, {(b,1), (¢, 0)}}.

Figure 3.2 shows an example of the categorical product of a graph and a digraph, see
Definition 3.2b), where G is again a cycle with 3 vertices as in the previous example and F
is a single arc.

32

®©
(b) F

(a) G

(c) GXF

Figure 3.2: The categorical product of an undirected 3-cycle and an arc.

The vertex set of G x F is Vaxr = {(a,0), (a,1), (b,0), (b, 1), (¢,0), (c, 1)} and its arc set
Agxr = {((aa 0)7 (b7 1))7 ((a7 0)7 (Ca 1))7 ((b7 0)7 (a7 1))7 ((b7 0)7 (Ca 1))7
((c,0), (a, 1)), ((c,0), (b, 1)) }-

In Figure 3.3, we illustrate the categorical product of a graph and a digraph as defined
in Definition 3.2c), where D is dicycle with 3 vertices and F' is a single arc.

@ — e
¥

@ @
®
(b) F

(a) D (c) DxF

Figure 3.3: The categorical product of a directed 3-cycle and an arc.

33

In this example, we have Vpxr = {(a,0), (a,1), (b,0), (b, 1), (c,0),(c,1)} and
AD><F = {((aa O)v (ba 1))7 ((b’ O)’ (C> 1))? ((Ca 0)7 (CL, 1))}

The separation algorithms we present in what follows all have a similar structure. First,
an auxiliary graph with certain edge or arc weights is constructed. Next, the weight of a
shortest path is computed, whose weight has to be compared to given values to solve the
corresponding separation problem. Remember, we do not refer to minimum length but to
minimum weight when using the term shortest for paths, walks or cycles.

3.1 Solving shortest path problems

In this section, we give an overview on shortest path algorithms that can be applied di-
rectly to graphs/digraphs and show how shortest path problems can be solved via linear
programming methods.

3.1.1 Graph algorithms

Depending on the structure of the underlying graph/digraph, the algorithm with the best
running time should be chosen for finding shortest paths. We collect some efficient algo-
rithms that can be found for example in Even (2012), Jungnickel (2013), and Schrijver
(2003).

Let G = (V, E) be a graph whose edges have uniform weights, w.l.o.g. w;; = 1 for every
ij € E, and let v € V be fixed. Then the algorithm of Moore finds shortest paths from v to
each vertex in G in O(n + m) time.

For a given digraph D = (V, A) with w;; > 0 for every (i,j) € A, Dijkstra’s algorithm in
its original form finds shortest paths from one start vertex v € V to every vertex in D in
O(n?). Notice that this running time can be improved to O(nlogn+m) by using Fibonacci
heaps. If we are interested in shortest paths between all pairs of vertices, we could run this
algorithm n times, which consumes O(n?logn + nm) runtime.

In contrast to Dijkstra’s algorithm, the Bellman-Ford method can be applied to digraphs
with possibly negative arc weights if there does not exist any cycle that has negative total
weight. It has complexity O(nm) if we want to compute the distances from a fixed vertex
v € V to each vertex in D. If we ask for shortest paths between every pair of vertices in D,
we could run the Bellman-Ford method n times. This would consume O(n?m) runtime.

In the case that the underlying digraph is not extremely sparse, that is we do not have
m < n, we would prefer the Floyd-Warshall algorithm which has complexity O(n?).

For a broad overview on shortest path algorithms we refer the reader to Schrijver (2003).
They also compare running times and explain how the algorithms mentioned above work.

34

3.1.2 Linear programming

We show how shortest path problems on a digraphs D = (V, A) without negative weight
cycles can be solved with linear programs. Both versions, which are related to each other
by duality, are presented by Ahuja et al. (1993). If we are given a graph G = (V, E) instead
of a digraph and all edge weights are nonnegative, we can solve shortest path problems in
G by replacing every edge uv € E by two antiparallel arcs (u,v) and (v,u). If G has at
least one edge with negative weight, this would produce at least one negative weight cycle
in the constructed digraph.

Let s and ¢ be fixed vertices in V. We are able to find a shortest s-t-path by solving the
minimum cost flow problem

min E Wi T4j5

(i,j)€A
1, 1=s
s.t. Z Tij — Z rii=49—-1, 1=t (MCF-SP)
Jj: (ij)eA J: (GA)eA 0, i€V \{s,t}

This linear program can be interpreted as sending one unit of flow from s to ¢ through
the network. The variables z;; represent the traffic on arc (¢, j) and obviously have to be
nonnegative. The other constraints ensure that one unit leaves the source s, one unit arrives
at the sink ¢ and that the flow conservation property is fulfilled. A solution of this minimum
cost flow problem then gives the weight of a shortest s-t-path.

Using a dual relation proposed by Ahuja et al. (1993), the optimal value of the linear
program

max Ys
st. yss=0 (DMCF-SP)

ysj§y5i+wij V(Z7J)GA
also gives the weight of a shortest s-t-path. Notice that strictly speaking the objective is to

maximize yst — Yss Where yss = 0 due to the first constraint. In the case that no s-t-path
exists, ys is unbounded.

The following system of (in)equalities arises from (DMCF-SP) and has feasible points if
and only if the weight of all s-t-paths is at least c:

Yss = 0
Ysj < Ysi + Wy V(i,j)e A (F-SP)
Yst >c

35

3.2 Separation of the odd cycle inequalities

In this section, we explain how to separate the potentially exponentially many odd cycle
inequalities, cf. Section 2.1.2, of the stable set polytope in polynomial time. This method is
described by Grotschel et al. (1988) in their proof of Lemma 9.1.11. We recapitulate their
idea while using a more detailed description.

For the separation of the odd cycle inequalities, we assume z € [0,1]" fulfills the edge
inequalities (2.2), that is Z € P¥(G), which can be easily verified by substituting Z into all
2n 4+ m inequalities. We define weights w;; := 1 — Z; — Z; for every edge ¢j € E, which are
obviously nonnegative since € P¥(G) and hence #; + Z; < 1. Let C be an odd cycle in
G. The corresponding odd cycle inequality

Zfz‘ < ’C|2_ !

ieC

of POY(Q) is equivalent to

13‘0’_223_7@': Z (1—.2?7;—53'): Z Wy :I’U_](EC).

ieC ijeEc ijeEC
This leads to the following statement.

Corollary 3.3. Let T € PE(G). All odd cycle inequalities are fulfilled by T if and only if
every odd cycle C' has weight w(E¢) at least 1.

Therefore, computing a shortest odd cycle in G with respect to edge weights w suffices
to solve the separation problem for the odd cycle inequalities. The first polynomial time
algorithm on this problem was given by Grotschel and Pulleyblank (1981). They find a
shortest odd cycle containing ij € E by computing a shortest even path between ¢ and
j. Applying this procedure to every edge ij € E, they compute m odd cycles and choose
the shortest among these. We use an alternative approach and describe how to find a
shortest odd cycle in G as presented in Grotschel et al. (1988, Chapter 8.3). Besides that,
we interpret their construction through the concept of categorical graph products.

Consider the categorical product of G = (Vg, Eq) and H = (Vy, Ey) with Vg = {0,1}
and Ey = {{0,1}}. An example is given in Figure 3.1, where G is a 3-cycle.

For every edge ij in G, we assign the weight w;; to the edges {(,0), (4,1)} and {(7,1), (5,0)}
in G x H. Since all edge weights w are nonnegative, shortest paths in G x H can be com-
puted efficiently, for instance with the algorithm of Dijkstra (1959). Then the weight of a
shortest odd cycle in G can be found in the following way: Compute a shortest path between
vertices (4,0) and (7,1) in G x H for every i € Vi, then choose (one of) the shortest among
these paths. The weight of this path is equal to the weight of a shortest odd cycle in G.
Checking whether this weight is at least 1 solves the separation problem for the odd cycle
inequalities.

A shortest path between a pair (i,0) and (¢, 1) of vertices in G x H corresponds to an odd
closed walk in G, which can be an odd cycle, e.g. the 3-cycle (a,b,c,a) in G arises from the

36

(a,0)-(a, 1)-path in Figure 3.4(a). In general, this odd closed walk in G needs not necessarily
be itself an odd cycle in G, even if we consider a shortest of all shortest (i,0)-(i,1)-paths
for i € Vg.

& L9 @ @

@ {, @
O
", R4
" s?
&
S
R *,
@ .’

) @ @

(Q @

PN

@ &

(a) (b)

Figure 3.4: Shortest (a,0)-(a, 1)-paths in G x H.

For example, the (a,0)-(a, 1)-path in Figure 3.4(b) yields the odd closed walk (a, b, ¢, d, b, a)
in G, which is not a cycle. In our example, this is a (b,0)-(b, 1)-path, which corresponds to
the odd cycle (b, c,d,b) in G. In general, if a shortest (i, 0)-(i, 1)-path does not give an odd
cycle in G, there exists a subpath between (u,0) and (u, 1) in G x H for some u € V', whose
weight is equal to the weight of a shortest (¢,0)-(4, 1)-path and which gives an odd cycle in
G. It cannot have less weight, since this would contradict the minimality of the weight of
the (4,0)-(7, 1)-path. Moreover, the nonnegative edge weights ensure that its weight cannot
exceed the weight of the (i,0)-(i, 1)-path.

3.3 Separation of the 1-wheel inequalities

A polynomial time separation algorithm for a small subclass of the 1-wheel inequalities,
which are defined in Section 2.1.4, is presented by Grotschel et al. (1988). This subclass
includes all simple 1-wheels where S = R = (), cf. Definition 2.11. Cheng and Cunningham
(1997) extend this result to separate all 1-wheel inequalities. A few years later, de Vries
(2015) presents a faster separation algorithm. He describes how to check if z € PVA(Q)
and if # € P"5(G) in polynomial time. This procedure involves computing the weights
of shortest walks in auxiliary graphs. Using a categorical graph product, he improves the
O(n*) running time of the separation algorithm for 1-wheel inequalities by Cheng and
Cunningham (1997) and achieves an overall running time of O(n?m + n3logn). In contrast
to the algorithm of Cheng and Cunningham, there is a dependence on the density of the
graph because of the parameter m instead of the n2-term.

37

3.3.1 The algorithm of de Vries

For the separation of the 1-wheel inequalities, we require Z € P°?%(G) and the weights of
shortest odd and even walks between pairs of vertices u,v € V with respect to edge weights
w;; = 1 —Z; —Z; for every ij € F have to be known. Thus, we use the separation algorithm
for odd cycles to determine such weights of shortest odd and even walks (the latter having
at least two edges), respectively, from vertex u to vertex v in G. We denote them by fu,

and Gy, respectively. Let Piv be a shortest odd walk between vertices v and v for fixed z.
Then Pq}v is defined as the set of its interior vertices, i.e., the vertices on this path except
the start and end point. Similarly, for a shortest even walk Pgm we denote the set of interior

vertices by]5371). We can determine f and g via

fuv: Z wljzl—i‘u—{i‘v+|ﬁu17v’—22jl and

ijEPL , i€Pl,
_ _ _ _ 20 _
Juv = E Wi =1 =2y — Ty + | P, — 2 g Z;.
ijEPY , i€P?,

We consider the categorical product of the underlying graph G for the maximum stable
set problem and F, where F' is the digraph with vertex set {0,1,2,3,4,5} and arc set
{(0,1),(1,2),(2,1),(2,3),(3,4),(4,5),(5,4), (5,0),(0,3),(3,0) }, see Figure 3.5.

@\j‘ O————=[
Figure 3.5: Digraph F for the construction of Dy,.

Then, for every fixed h € V as a candidate for the hub of a 1-wheel, D, = (V},,T'},) := GXF
consists of arcs ((u,1), (v, 7)) for every edge wv in G and every arc (7,) in F.

Notice that a walk Z in D;, induces simultaenous walks Zg in G and Zp in F'. The walk
Z¢ is just a usual walk and is going to represent the entire rim C'U R of the 1-wheel while
the walk Zp makes sure that all the parity conditions on the rim are fulfilled. Spoke ends
of a wheel are represented in F' by the vertices 0 and 3. A walk of a single edge between
two spoke ends uses in F' the arc (0,3) or (3,0). On the other hand a truly subdivided
walk between two spoke ends v; and v;4+1 yields in F' a walk from 0 to 1 to 2 (then maybe
a couple times back to 1 and 2) and finally to 3 or similarily in F' from 3 via 4 and 5 to 0.

38

Next we define weights as by de Vries (2015), that ensure that the weight of a rim walk is
represented correctly in this product.
For every vertex h € V and arc ((u,1), (v,j)) € I', we define the following arc weights

—~Ah —~Bh .
wuivj and wui'uj'
—Ah —Ah - 7 _ _
Wyow3 = Wy3wd = Jhu + fro — Ty — Ty
- Ah _ -Ah _ ¢ _ _ _
Wyov1 = Wy3vd = fru +1 =2y — 22, — Ty,
_Ah AR ; L (3.1)
Wy203 = Wys00 = fhv +1—-2%y — Ty +Tp
-Ah _ -Ah _ -Ah _ -Ah __ — —
Wylv2 = Wy2p1l = Wydps = Wysps = 2(1 = Ly — .Tv)
Bh _ _Bh L \
Woy0p3 = Wy3v0 = Ghu T Gho — Tu — Ty
—Bh —Bh — _ _ _
Wyopl = Wy3ps = Jhu 1 — Ty — 2Ty — Ty
—Bh —_Bh _ L (3.2)
Wy2y3 = Wyseo = Gho + 1—2Zy — Ty + Ty
-Bh __ -Bh _ -Bh __ -Bh __ = =
Wy1v2 = Wy2p1l = Wydes = Wysus = 2(1 - Ly — SCU) Y,

The superscript Ah refers to the 1-wheel inequalities of type (I;) with & fixed as a hub
and Bh refers to (I). The weights of all arcs but those of the fourth type in (3.1) and (3.2)
depend on h. These weights are taken from the arc weight construction of de Vries (2015),
in order to state the following technical lemma that will be central in the proof of our main
theorem.

Lemma 3.4. (de Vries, 2015, Corollary 11) For a graph G and & € P9C(G), there is a
violated inequality (I'y) with hub h and rim starting in v if and only if Dy, contains a walk
from (v,0) to (v,3) of weight less than 2 — 2%, with respect to w*. There is a violated
inequality (I) with hub h and rim starting in v if and only if Dy, contains a walk from (v, 0)

to (v,3) of weight less than 2%y, with respect to w5".

As mentioned, the representation property in Lemma 2.16 ensures that satisfying all
(I'y)-inequalities and all (I)-inequalities is sufficient to satisfy all (I4)-inequalities and all
(Ip)-inequalities for 1-wheels without spokes of length 1.

3.3.2 The algorithm of Cheng and Cunningham

The separation algorithm of Cheng and Cunningham (1997) is competitive with the algo-
rithm of de Vries (2015) for dense graphs. However, there are direct combinatorial methods
that are fast in practice for dense graphs with m = Q(n?), since finding a maximum stable
set in a given graph G is equivalent to finding a maximum clique in its complementary graph
G. A literature overview on efficient algorithms for the maximum clique problem, especially
when applied to sparse graphs, is presented in Chapter 7. Nevertheless, we recapitulate
the separation algorithm of Cheng and Cunningham for the (I4)-inequalities in this section
and additionally apply the idea of representing every (I 4)-inequality by an (I’y)-inequality,
see Lemma 2.16. This allows for constructing a more compact extended formulation in

39

Chapter 4. A separation algorithm for the (Ig)-inequalities can be constructed similarly.
Our notation will slightly deviate from Cheng and Cunningham’s.

Let 7 € PPY(G) and again w;; = 1 — &; — z; for every ij € E. For every pair u,v € V,
we compute the weight of shortest odd and even walks, respectively, from vertex u to v
and denote them by fu, and Guy. Let h € V be fixed. We now show how to ensure that
every (I4)-inequality for 1-wheels with hub A is fulfilled by Zz. First, a complete auxiliary
graph H = (Viz, Ey) with loops is constructed where Vi := VO U V¢ is the union of two
disjoint copies of V. In general, 1-wheels consist of odd and even spoke ends. The vertex
set VO represents all potential odd spoke ends, whereas V¢ represents all potential even
spoke ends. Since all face cycles of a simple 1-wheel are odd, the parity of the rim path
between spoke ends v; and v;,; depends on their belonging to V€ and V¢, respectively. For
instance, if v; is an odd spoke end and v;11 is an even spoke end of some simple 1-wheel W
in GG, the rim path that belongs to the cycle h — ... —v; — ... —v;41 — ... — h in W must
be even. This gives an impression on why there are three different types of edge weights to
define. Thus, weights

%_hi+%fhj+ﬁj+%a_ji+%ij—l Vi, jeve
@ = S LGni + 3905 + fij — 3T — 375 Vi, jeVe
Loni+ A+ gy - Sm+ iz -1 Vieve jev©

are defined for the edges ij € Er. They have a very useful property which is important to
be able to apply shortest path algorithms to H.

Lemma 3.5. (Cheng and Cunningham, 1997, Lemma 3.6) All edge weights in H are non-
negative, i.e. ﬁ)lhj >0 forallij € Ey.

As mentioned above, H is a complete graph with loops. Usually, loops are not important
for shortest paths or walks if their weight is nonnegative. For our purposes, the parity of a
walk is relevant and sometimes a loop can be used to change the parity cheap enough to be
part of the walk. The next lemma is very important for Theorem 3.7.

Lemma 3.6. (Cheng and Cunningham, 1997, Lemma 3.7) For every loop ii € Eg, the
inequality QI)Z > 1—Zp holds.

The following theorem states an equivalent condition for the auxiliary graph H to satis-
fying all (I4)-inequalities where h is the hub of the respective 1-wheel. It enables to solve
the separation problem for all (I 4)-inequalities in polynomial time.

Theorem 3.7. (Cheng and Cunningham, 1997, Theorem 3.8) If C is a minimum-weight
odd cycle in H, then no inequality of the form (I4) with hub h is violated by T if and only
if w"(Ec) > 1 — &y,

Applying this procedure for every h € V' as a candidate for a hub of a 1-wheel solves the
separation problem.

40

Lemma 2.16 allows for saving some running time. Every (I4)-inequality can be repre-
sented by an (I’;)-inequality. Thus, it is not necessary to treat any vertex as a potential
even spoke end since we may assume £ = (). The vertex set Vi = VO of the complete
auxiliary graph H with loops now is just one copy of V. Accordingly, we only need the first
type of edge weights wfj from above in H, that is

1 1- - 1_ 1_ ..
wlhjZifhi+§fhj+fij+§xi+§xj—1 Vi,j€ V.

3.4 More separation algorithms and heuristics

Beyond the previous results, which are important for the extended formulations in Chap-
ter 4, there exist a lot of more separation algorithms for various classes of stable set inequal-
ities.

A polynomial time separation algorithm for a relaxation of the stable set polytope in-
cluding all clique, odd cycle, odd antihole, and 1-wheel inequalities for simple 1-wheels
where S = R = () is given by Lovédsz and Schrijver (1991). Cheng (1998) shows how to
separate the so-called generalized bicycle wheel inequalities of the cut polytope, which are
closely related to the 1-wheel inequalities. He demonstrates the strength of the generalized
bicycle wheel inequalities beyond the odd cycle inequalities with numerical experiments.
Although he applies separation algorithms to the cut polytope, these results are relevant
for the stable set polytope, since there exists a transformation between valid inequalities for
the cut polytope and the stable set polytope. Giandomenico and Letchford (2006) present
a separation algorithm for all web inequalities. The antiweb inequalities and the 1-wheel
inequalities are extended to the so-called antiweb-wheel inequalities by Cheng and de Vries
(2002). Additionally, they give a separation algorithm for them.

Although we do not consider separation heuristics here, we want to mention some of them
that can be very efficient. Nemhauser and Sigismondi (1992) present a strong algorithm
using cutting planes from clique and lifted odd hole inequalities. A separation heuristic for
the rank inequalities is presented by Rossi and Smriglio (2001).

Giandomenico et al. (2009, 2013) and Rebennack et al. (2011) show how to generate
strong cutting planes and propose branch-and-cut algorithms for the maximum stable set
problem. They substantiate their strength with extensive computational results.

41

Chapter

Extended formulations of stable set
relaxations

In this chapter, we present extended formulations of the odd cycle polytope PY¢(G) and
for the 1-wheel polytope P" (G). We compare the number of variables and inequalities of
our new extended formulation of PP“(G) to two other formulations and demonstrate its
strength by our computational results. Moreover, we construct two different formulations for
the 1-wheel polytope PV (G), which arise from the separation algorithm of de Vries (2015)
and that are fast for sparse or medium dense graphs. Additionally, an extended formulation
of the odd 1-wheel polytope PWA(QG), that arises from the separation algorithm of Cheng
and Cunningham (1997), is presented. The intersection of the extended formulation of
PYA(G) with an extended formulation of PV5 (@), which can be constructed analogously,
is another extended formulation of P" (G). We prefer this formulation for dense graphs.

4.1 Extended formulations

In an instance of the linear integer optimization problem, a well approximating LP relaxation
may have an exponential number of inequalities. The idea of an extended formulation is to
add new variables to the original variables and construct an LP with a polynomial number
of linear constraints, which can be used to find an optimal solution to the original LP. If an
extended formulation for a given LP exists, the projection of one of its optimal solutions in
the original variables yields an optimal solution to the original LP.

A detailed introduction to extended formulations is given by Conforti et al. (2010), which
we highly recommend to gain deep insights into this topic.

Definition 4.1. Let P C R" be a polyhedron. The polyhedron Q C R™™™ js an extended
formulation of P if there exists a projection of Q) into R™ yielding P.

For illustration, we visualize the benefits extended formulations potentially have by an
example.

43

Figure 4.1: P is the projection of Q.

Example 4.2. Figure 4.1 shows a polyhedron P C R? with six facets. The polyhedron
Q C R3 has only five facets and its projection into R?, depicted by the red arrow, yields P.

If a given LP has polynomially many variables and inequalities, it can be solved in poly-
nomial time via the ellipsoid method, see Grotschel et al. (1981). Although many classes of
valid inequalities of the stable set polytope are known that have exponential size, there ex-
ist polynomial time separation algorithms for some of them. Carr and Lancia (2002) prove
that for an exponential size LP, optimization with a polynomial size extended formulation
is possible if and only if it is possible to state a separation algorithm as a polynomial size
LP.

A method for generating linear extended formulations by using cutting plane methods is
developed by Martin (1991), who beyond that gives the first polynomial size formulation
of the spanning tree problem. For an extensive insight into the theoretical background of
problems it can be applied to, we refer the reader to Lancia and Serafini (2014). Moreover,
Kaibel (2011) presents results on extension techniques and lower bounds on the extension
size.

The method of Martin is used for various combinatorial optimization problems. Goe-
mans and Myung (1993), for example, apply it to Steiner tree formulations. Lancia and
Serafini (2011) use this approach to develop a compact extended formulation for the max
cut problem. Quadratic size extended formulations for independence polytopes of graphic
and cographic matroids by application of this method are presented by Kaibel et al. (2016).

4.2 The odd cycle polytope

In this section, we present our results from the article “A smaller extended formulation for
the odd cycle inequalities of the stable set polytope”, see de Vries and Perscheid (2020). We
compare three different extended formulations that can be used to optimize over P°%(G) in
polynomial time. The first one arises naturally from the separation procedure in Section 3.2
in combination with the ideas of Section 3.1.2. The second one is the well-known extended

44

formulation from Yannakakis (1991). The third formulation is more efficient as it combines
the strengths of the definition of the other two formulations.

4.2.1 A direct approach

A natural approach to obtain an extended formulation of the odd cycle polytope PP¢(G)
is to use the idea at the end of Section 3.1.2 and adapt it to every pair (4,0) and (¢, 1) with
i € V in the categorical graph product G x H from Section 3.2, where H = (Vy, Ep) with
Vg = {0,1} and Ef = {{0, 1}} The linear program for solving shortest path problems
requires a digraph, hence we replace every edge by two antiparallel arcs. We define Agx g =
{((4,7),(4,8)) : {(4,7), (4, 5)} € Egxp }. For every edge ij in G, we have {(,0), (j,1)} and
{(3,1),(4,0)} in Egxg and hence |Egxmg| = 2m. Thus, |Agxm| = 4m. Since shortest
(7,0)-(i, 1)-paths in G x H have the same weight as shortest odd cycles in G through 1,
they should have weight at least 1, see Corollary 3.3. Thus, with ¢ = 1 in (F-SP) from
Section 3.1.2:

OC(G) = {(x,y) € R" x R : (2,y) satisfies (2.1), (2.2), and (4.1)—(4.3)}

with
Yirir = 0 ViEV,TE{O,l} .
Yirjs < Yirkt + Wktjs v ((kat)a (.]7 8)) € Agxn, 1€V, 1€ {07 1} (42)
Yioi1 > 1 VieV

is an extended formulation of PO¢(Q).

We compare the number of variables and inequalities of all extended formulations that
are presented in this section. If we fix variables as constants, such as the y;;- in equations
(4.1), we do not count them as variables and the respective equations are not counted as
inequalities.

Remark 4.3. The extended formulation QOOC(G) requires n+4n® — 2n = 4n? — n variables
and has n +m + 8mn +n = 8mn + m + 2n inequalities.

4.2.2 Yannakakis’ formulation

The following polyhedron is a well-known extended formulation of P?%(G), due to Yan-
nakakis (1991), which uses less variables and inequalities than Q5 (G). For easier counting
of inequalities, we define A = {(i,7) : ij € E} and use it for inequalities (4.4)—(4.6) in
contrast to the original formulation of Yannakakis (if, for example, variable f;; is involved
for edge ij € E, then ij simultaneously produces an inequality for variable fj;). Then
|A| = 2m, since for every edge ij we have (i,j) € A and (j,4) € A.

(@) = {(z, f,g) € R™ x R™ x R : (z, f,g) satisfies (2.1) and (4.4)-(4.7)}

45

with

0< fi; <1—x; — v (i,j) € (4.4)
fij < fik + Gkj V(i,k) €A jEV (4.5)
9ij < fir + fj v (i, k:) €A jeV (4.6)
fii>1 Vi (4.7)

The edge inequalities (2.2) are implied by inequalities (4.4) in QP¢(G), because 0 <
1 — x; — x; is equivalent to z; + x; < 1 for all edges ij € E. Inequalities (4.4), (4.5), and
(4.6) imply that f;; is bounded from above by the weight of a shortest odd walk between
two vertices ¢ and j, whereas g;; is bounded from above by the weight of a shortest even
walk using at least two edges between vertices i and j. Finally, inequalities (4.7) ensure
that all odd cycle inequalities hold.

Remark 4.4. Yannakakis’ formulation Q?C(G) from above requires 2n® +n variables and
has n 4+ 4m + 2mn + 2mn + n = dmn + 4m + 2n inequalities.

4.2.3 A smaller extended formulation

Analogously to Q¢¢(G), we add variables f,g € R"™ to the original variables z € R"
for our new extended formulation Q9 (G) and define A = {(i,5) : ij € E}. The set of
(in)equalities of Q¥ (G) combines the benefits of QY (G) and QY (G) with the idea that
the variables that represent the weight of shortest even closed walks can be fixed to 0.

OC(@) == {(z, f,9) € R" x R" x R : (x, f, g) satisfies (2.1) and (4.8)—(4.11)}

with
gii = 0 VieV (4.8)
fij < gik + 11—z — V(kj)ed iV (4.9)
9ij < fik +1—ap —x; Vi(kj)eAd ieV (4.10)
fii > 1 VieV. (4.11)

Notice that the edge inequalities are automatically fulfilled in the formulation above. How-
ever, this is less obvious than in the formulation QY (G):

Lemma 4.5. The edge inequalities (2.2) are implied by the set of inequalities of Q9 (G).

Proof. Let uv € E be some edge for which we want to show that x, +x, < 1 holds. Consider
inequalities (4.9) with ¢ = k = v and j = v. Then we have

fuvgguu“‘l_xu_xv-

46

For inequalities (4.10), let ¢ = j = v and k = v. Thus,
Juu < fuo +1 =2y — Ty
With gy, = 0 by equations (4.8), adding both inequalities from above yields

fuv < fuv + 2(1 — Ty — xl})y

which simplifies to
Ty + Ty < 1. L]

Theorem 4.6. Q9°(G) is an extended formulation of POY(G).

Proof. Let # € PPY(G). We show that there exist f and g so that (7, f,3) € QY°(G)
holds. All inequalities (2.1) occur in both polytopes and they are not violated by z. Assign
the nonnegative weight w;; = 1 — Z; — Z; to every edge ¢j € E and hence to every arc
(i,j) € A. Furthermore, define f;; for all i,j € V and g;; for all i,j € V as the weights
of shortest odd and even walks, respectively, between vertices ¢ and j in G (assign a large
value to the corresponding variable if no such walk exists). Therefore, the variables f and
g are symmetric, i.e. ﬁj = fﬂ and g;; = g;; for all ¢,57 € V. Notice that, because there are
no cycles with negative weight, a shortest even walk for every ¢ € V to itself can simply use
zero edges and therefore has weight 0. This ensures that equations (4.8) hold. It is easy
to see that inequalities (4.9) and (4.10) are not violated either due to the construction of f
and g. These inequalities can be interpreted as follows: The weight of shortest odd or even
walks from vertex ¢ to j cannot exceed the weight of a shortest walk of the opposite parity
from i to k plus the weight of the arc (k, 7).

Inequalities (2.3) are satisfied by z. This is, as mentioned above, equivalent to every odd
cycle C having weight w(E¢) at least 1. Observe that f; is the weight of a shortest odd
closed walk starting in ¢ € V. If this walk is not a cycle, there always exists an odd cycle
with weight less or equal to the weight of a shortest odd closed walk. However, this cycle
does not necessarily include vertex ¢, but its weight has to be as well greater or equal to 1.
Therefore f;; > 1 holds for every i € V.

For the converse, let (Z,f,g) € QYY(G). No edge inequality is violated by Z, see
Lemma 4.5. Inequalities (4.8), (4.9), and (4.10) ensure that f;; and g;; are bounded from
above by the weights of shortest odd and even walks, respectively, between vertices ¢ and j.
Thus, the value fj; is lower or equal than the weight of a shortest odd cycle through vertex
i. Since f; > 1 for every i € V by inequalities (4.11), no odd cycle inequality is violated
and hence z € POY(G). O]

Remark 4.7. Formulation Q9 (G) requires just n+2n?—n = 2n? variables and n+2mn+
2mn + n = 4mn + 2n inequalities.

47

4.2.4 Comparison of QY°(G) and Q9°(G)

Both formulations QP (G) and QY¢(G) use the same variables f and g and they are
extended formulations of PP“(G). One wonders about their relation: Is one polyhedron a
subset of the other one? Before we show why this is not the case, we point out one special
property of the variables gy in QPY(G).

Lemma 4.8. Let (z, f,) EiQIOC(G) and gij = Gij for all 1,5 € V with i # j. Then for all
gu in the interval [0,2min{ fy, : (I, k) € A}] with | € V we have (z, f,§) € QY (G).

Proof. For each | € V the variable g; occurs in inequalities (4.5), i.e. fi; < fu + gu if
j =k = 1. Therefore it is bounded from below by zero and there is no tighter lower bound
given by the set of inequalities. On the other hand the variable g;; is bounded from above by
inequalities (4.6) when i = j = [. In this case we obtain g; < fix + fr for every (I, k) € A.
We have 2min{ fix, fui} < fix + frr for all (I,k) € A and there is no upper bound that is
smaller than fjz + fy. Therefore (z, f,) € QPY(G). O

Theorem 4.9. In general, QY% (G) € Q9 (G).

Proof. Let wlo.g. =0 and f = 1. Then gy = 2 is feasible for all [€ V, since gy = 2 €
[0,2min{fi : (I,k) € A} = [0,2], cf. Lemma 4.8. All the other variables g;; with i # j can
attain every value from the interval [0,2]. It follows that (z, f,g) € QP (G). Moreover,
gu = 2 for all [€ V violates inequalities (4.8) and thus (z, f, g) € Q9¢(G). O

Theorem 4.10. In general, Q¢ (G) € Q9% (G).

Proof. Consider (Z, f,g§) withz =0,5 =0, fi; = 1foralli € V,and f;; = —1foralli,j € V
with i # j. Then (z, f,g) € QY°(Q), but (z, f,) ¢ QP (G), since inequalities (4.4) restrict
variables f;; to be nonnegative if (i, j) € A. O

All the extended formulations presented in Sections 4.2.1, 4.2.2, and 4.2.3 are of polyno-
mial size, although their efficiency differs significantly.

Corollary 4.11. The MSSP fort-perfect graphs can be solved with each formulation Q(?C(G),
Q?PY(@), and Q9 (G) in polynomial time.

4.2.5 Numerical results

To complement the theoretical results for the extended formulations QS (G), QP (G), and
9C(G) of the odd cycle polytope PPC(G), some numerical experiments are performed.
We use CPLEX v. 12.8.0.0 as an LP solver for an extensive set of test instances. These
instances are generated randomly with the graph generator fast_gnp_random_graph from the
Python package NetworkX, see Hagberg et al. (2008). The input data are the number of
vertices n and a probability p for each pair i and j of vertices in G to share an edge. We
tabulate the graphs with respect to n and the expected density d (that equals p). For each
pair of parameters n and d we consider, we compute the average CPLEX running time for
optimizing over any extended formulation of P?%(G) on 100 different test instances.

48

By Remark 2.6, 2 = (3,..., %)T € POY(@) for any graph G. Since & ¢ STAB(G) if there
exists some clique K in G with |K| > 4, as it violates the clique inequality for K, it is more
likely that & € STAB(G) in sparse than in dense graphs. Therefore, the odd cycle polytope
might be a better approximation of STAB(G) if G is sparse. For illustration, we report the

optimality gap
¥ —z

gap(z) == x 100,

where z* is the objective value of an optimal solution of the maximum stable set problem
and z is the objective value of an optimal solution of some relaxation. For every set of
test instances, the average gap of z%(G) and 29¢(G), the objective values arising from
optimizing over PF(G) and PP (@), respectively, is additionally given in Tables 4.1, 4.2,
and 4.3.

The polyhedron Q§°(G) has about twice as many variables as Q¢ (G) and Q9¢(G),
respectively. Furthermore, its coefficient of the dominating term mn for the number of in-
equalities is twice that of the two other polyhedra. In a first step, we confirm the hypothesis
that optimizing over OOC(G) consumes much more running time than optimizing over each
of the other polyhedra we consider.

Table 4.1: Average running time of Q5 (@), Q99 (@), and QS (G) with the barrier method; each number
is computed as the average over 100 instances.

Barrier method

Average gap (%) Average CPU (s)
n | ao) | @) | 090 | 9@ | 9°©) |)
5 0.83 0.03 80.14 1.04 1.12
50 10 15.09 0.61 79.89 2.08 2.11
15 29.25 4.28 82.20 2.99 2.58
20 40.24 12.58 84.99 3.82 3.48

The dual simplex method is the default method in CPLEX for solving linear programs.
Unfortunately, even for n = 50 it was not possible to find optimal solutions with Q5 (G)
in reasonable time. The barrier method (we permit up to 32 threads for parallelization for
our experiments) turns out to be by far the best method available for our purposes. We
can see in Table 4.1 that the average CPU time is many times higher for Q9¢(G) than for
QPY(G) and Q9Y(G), respectively. Therefore, we restrict our computational study to the
running times of solving Q¥ (G) and QY (G) thereafter.

Let rt(PX(G)) be the running time in seconds consumed by optimizing over the stable
set relaxation PX(G). We define

_ 1t(QPY(G)) — rt(QFY(G))
6(QYY(G))

p(G) : x 100,

that displays how much time is proportionately saved by the relaxation QQOC(G) in com-
parison to the relaxation Q¢ (G).

49

Table 4.2: Average running time of Q¥¢(G) and QS (G) with the dual simplex method; each number is
computed as the average over 100 instances.

Dual simplex method

Average gap (%) Average CPU (s)

n |4 | 6 | 090 || @90 | @800 | p(E)

5 0.83 0.03 1.11 1.06 5%
50 10 15.09 0.61 18.52 3.15 | 83 %
15 29.25 4.28 162.23 4.64 | 97 %
20 40.24 12.58 563.51 588 | 99 %

We solved all the problems for n = 50 with the dual simplex method. Table 4.2 shows
the average running time over 100 instances for every density d € {5,10,15,20}. We obtain
that the dual simplex method gets really slow on larger instances when optimizing over
Q?C(G). The worst running time among all single test instances consumed by optimizing
over QPY(G) is 1,152 seconds, whereas optimizing over Q¥ (G) never took more than 11
seconds.

Table 4.3: Average running time of QY°(G) and Q9 (@) with the barrier method; each number is com-
puted as the average over 100 instances.

Barrier method
Average gap (%) Average CPU (s)
no | d(%) || 2P(G) | 2996) || QPC(G) | QF9(G) | p(G)
5 0.83 0.03 1.04 112 | 8%
50 10 15.09 0.61 2.08 211 | -1 %
15 29.25 4.28 2.99 258 | 14 %
20 40.24 12.58 3.82 3.48 9 %
5 5.65 0.18 4.13 3.82 8 %
75 10 28.86 5.34 8.42 6.46 | 23 %
15 43.23 16.52 12.33 9.43 | 24 %
20 52.72 29.08 15.48 11.76 | 24 %
5 14.35 0.97 12.08 9.67 | 20 %
100 10 38.82 13.41 22.95 16.05 | 30 %
15 51.96 28.04 33.29 22.33 | 33 %
5 21.93 3.51 25.28 22.01 | 13 %
125 10 45.68 20.21 50.96 37.88 | 26 %
15 57.86 36.78 70.70 53.19 | 256 %
5 28.52 7.74 53.64 35.57 | 34 %
150 10 50.95 26.75 97.90 59.84 | 39 %
15 62.27 43.40 146.67 88.88 | 39 %
5 33.34 11.36 86.99 62.09 | 29 %
175 10! 55.16 32.81 163.67 100.74 | 38 %
5 38.02 15.22 147.53 86.08 | 42 %
200 10 58.84 38.28 275.46 139.82 | 49 %

As the dual simplex method turns out to be much slower than the barrier method for
optimizing over Q?C(G) and Q2OC(G), respectively, we tried to solve all problems for n €

!Three test instances were excluded, because the time limit of 3,600 seconds was reached while solving
?C(@). Nevertheless, Q9 (@) was solved in less than 90 seconds for each of the excluded instances.

50

{50, 75,100, 125,150,175,200} with the barrier method. Up to 32 threads are used for
parallelization and the time limit is set to 3,600 seconds. The results are given in Table 4.3.
The time limit was only exceeded by three test instances with n = 175 when optimizing
over QPY(G). Among all remaining test instances that were solved with the barrier method,
the worst running time was 307 seconds when using QY“(G) and 212 seconds when using

9°(G).

To conclude, the barrier method performs better than the dual simplex method on both
formulations QP¢(G) and Q9 (G). Furthermore, optimizing over QY (G) is much faster
than optimizing over QY¢(G).

4.3 The 1-wheel polytope

Two different separation algorithms for the 1-wheel inequalities of the stable set polytope
are described in Chapter 3. Except for dense graphs, the separation algorithm of de Vries
(2015) is preferable as it has the better asymptotic runtime bound. This section provides two
alternative compact extended formulations of the 1-wheel polytope PV (G) that arise from
the algorithm presented in Section 3.3.1. Moreover, we show how to construct a compact
extended formulation based on the separation algorithm of Cheng and Cunningham (1997),
which is recapitulated in Section 3.3.2. This separation algorithm refers to the odd 1-wheel
inequalities and therefore the formulation we present is an extended formulation of the odd
1-wheel polytope P4(G) D PV (G).

4.3.1 An extended formulation for arbitrary graphs

In what follows, the core results of our manuscript “An extended formulation for the 1-wheel
inequalities of the stable set polytope”, see de Vries et al. (2019), are presented. Besides
the formulation Q}"(G), which is introduced and analyzed in our article, we additionally
introduce an alternative formulation QY (G). We will see that the construction of Q" (G) is
related to the formulation QP (G) for the odd cycle polytope, whereas QY (G) follows the
notion of our extended formulation Q9 (G) from Section 4.2.3. Both formulations Q' (G)
and ng (G) are of polynomial size and imply the odd cycle inequalities as well as the odd
and even 1-wheel inequalities.

Remember that the I1-wheel polytope is defined as PV (G) = PYA(G) n PY5(G) C
POC(@). Regarding the separation algorithm of de Vries, Lemma 3.4 requires Z € P9¢(G).
Thus, we start with inequalities (2.1) and (4.4)—(4.7), which constitute the polynomial size
extended formulation QY“(G). Then we extend it further to derive Q1 (G), an extended
formulation of the 1-wheel polytope PY(G). For this purpose we introduce arc variables
w;j‘iﬁj and wfﬁ,j for every vertex h € V and all O(m) arcs ((u,), (v, 7)) € I'y, in the categorical
graph product Dj,. Just as for the variables w;; in the extended formulation for odd cycles,
they are defined as substitutes for larger expressions, which makes the representation of
QY (G) much shorter and clearer. We define them similarly to (3.1) and (3.2) dependent

onz, f, and g:

51

Ah Ah

Wyov3 = Wy3wo = Jru + o — Tu — Ty

wzﬁ)};)l = wﬁ?;}ffA = fou+1—m2y =22y — 1 (4 12)
Wiy = Wiy = faw + 1= 2@y — Ty + 2, '
wJuAI}Z;Q = wig}ul = wﬁi;s = qu5]Z4 = 2(1 —zy — 3)

wzlj(})lvfi = wzlj3h110 = Ghu T Ghv — Tu — Ty

wf(})lvl = wg?ilv4 = Ghut+ 11—y — 22y — 2 (4 13)
w52hv3 = wfgvo = Ghw +1—21y — 2y + T3 ‘
Wty = Wyt = Wegys = Wity = 2(1 — zy — 1)

The variables f and g in QY% (G) are constrained by inequalities in . As in Section 4.2.2,
they are bounded from above by the weights of shortest odd and even walks, respectively,

in G with respect to w;; = 1 —x; —x;. Although the variables w7} . and w5/ ; can obviously

take negative values for (7,7) ¢ {(1,2),(2,1), (4,5),(5,4)}, de Vries (2015) shows that Dy,
contains no cycle with negative (total) weight.

Theorem 4.12. Consider the 1-wheel polytope
PY(G) = {z € R" : x satisfies (2.1), (2.2), (2.3), (I’4), and (I)}.
Then an extended formulation QY (G) of PV (G) is given by

QU(G) = {(w, £,9,p™,p°) € R x R™ x R™ x R¥"™ » R
(z, f,9,p™, pP) satisfies (2.1), (4.4)-(4.7), and (4.14)-(4.19)}

with wAl . and wBl . defined as in (4.12) and (4.13) and

v wivj
P < wih Y (u,4),(v,5)) €Th, hEV (4.14)
pfﬁjj < wf{f)j vV ((u,i),(v,7)) €Ty, heV (4.15)
sz’};j < pfilfuk +P£Zvj V ((u,3), (w, k) € T, (v,5) €Vy, eV (4.16)
Dt < Dhtiok + Photio; V ((u,7), (w, k) € T, (v,j) € Vi, hEV (4.17)
pih > 2 2, VoeV, heV (4.18)
pEr L > 2y, YveV, heV. (4.19)

Remark 4.13. Our formulation QY (G) requires 72n® +2n% 4+n variables. Notice that w™"
and wB" can be replaced by their definition involving only the variables z, f, and g. The
number of inequalities is n + 4m + 2mn + 2mn + n + 20mn + 20mn + 120mn? + 120mn? +
n? +n? = 240mn? + 44mn + 2n? + 4m + 2n.

We now prove that the extended formulation Q}/V(G) of the 1-wheel polytope P (G), as
given above, is correct.

52

Proof of Theorem 4.12. We first show that P (G) C proj,(Q} (G)). Let # € PV (G). We
construct f, g, p, and p® so that (z, f, g, 74, p®) € QY (G): Define fij for alli,j € V and
gij for all 4,7 € V with i # j as the weights of shortest odd and even walks, respectively,
between vertices i and j in G (if no such path exists, then assign a large value to the
corresponding variable). In particular, this implies fu = fﬂ and g;; = gj;. With these
definitions, inequalities (2.1), and (4.4)—(4.6) are fulfilled. Let gy = 2min{wy, : lk € E}
for every vertex [€ V. Then gy is exactly the weight of a shortest even closed walk in G
using at least two edges. Here, we use that 2 min{w@y, : Ik € E} = 2min{fi; : lk € E} since
fik = fur-

These weights occur as terms in some arc weights wuZ . with h = u or h = v. Assigning
the weights to the respective variables is feasible for QOC() and for Q1 (G) by Lemma 4.8.
For every h € V and for every pair (u, i) and (v, j) of vertices in Dy, define puw ; as the weight
of a shortest walk in Dy, from (u,4) to (v,) with respect to arc weights wA”. Since there is
no cycle of negative weight in Dh, the shortest walks exist although arc weights in D}, can
be negative. Analogously, define puwj as the weight of a shortest walk in Dy, from (u, i) to
(v,7) with respect to arc weights wB". Then pfﬁ]] and puw] fulfill inequalities (4.14)—(4.17).

Since z € PV (@) satisfies inequalities (2.3), which is equivalent to w(E¢c) > 1 for all
odd cycles C, fi; > 1 for every i € V. Therefore, inequalities (4.7) are not violated.
Moreover z € PY(G) does not violate any inequality (I’y) or (I). It follows directly
that piirs > 2 — 23, and phy, > 27, for every h,v € V due to Lemma 3.4. Thus,
the inequalities (4.18) and (4.19) are not violated. Hence, (z, f,g,p4,p") € QW (G) and
therefore PV (G) C proj, (Q1V (Q@)).

Now it remains to show that proj,(QY(G)) < PW(G). Let (z,f,3,p" ")
€ QY (G). By inequalities (4.4)—(4.6) the variables f;; and g;; are bounded from above
by the weight of a shortest odd and even walk, respectively, between vertices ¢ and j in G.
Moreover, inequality (4.7) is satisfied for every i € V. Therefore, every odd cycle has weight
at least 1. This is equivalent to the condition that no odd cycle inequality in x is violated
by Z.

The variables puwj are bounded from above by the weight of a shortest walk with re-
spect to arc variables w" between vertices (u,i) and (v,) in Dy, by inequalities (4.16)
together with inequalities (4.14). Analogously, the variables puw are bounded from above
by the weight of a shortest walk between vertices (u, i) and (v, j) in Dy, with respect to arc
variables w?" by inequalities (4.15) and (4.17). Since all inequalities (4.18) are satisfied by
(z, f,g,p*,5%), no (I '1)-inequality in z is violated by Z due to Lemma 3.4. Similarly, all
inequalities (4.19) are satisfied by (z, f, g, p*, p°). This implies that no (I)-inequality in
is violated by Z. It follows that Z € P (G) and therefore proj, (QV (G)) € PV (G). O

An alternative extended formulation of the 1-wheel polytope can be given by using a
direct application of (F-SP) from Section 3.1.2 and adding the inequalities that arise for
variables pA" and pB" to QQOC(G). The structure of the extension then is similar to the
structure of QY¢(G). An advantage of this alternative formulation QY (G) is that it has
less variables and inequalities than QY (G).

53

Theorem 4.14. An alternative extended formulation of the 1-wheel polytope PV (G) is
given by
QW (G) = {(x, f, 9,0, pP) € R" x R x R™ x R x R307" .
(z, f, 9,0, pP) satisfies (2.1), (4.8)—(4.11), and (4.20)—(4.25)}

with wuwj and wB

defined as in (4.12) and (4.13) and

uw]

P =0 YV (u,i) €Vy, hEV (4.20)
Pajui =0 YV (u,i) € Vi, hEV (4.21)
pm] < Dok + Wit ¥ ((w, k), (v,) € Tn, (u,i) € Vi, hEV (4.22)
puw] < Ponore + Wolksj V ((w, k), (v,5)) € Thy (u,i) € Vi, h eV (4.23)
Phes > 2 — 2a VveV, heV (4.24)
Phts = 22 VoeV, heV. (4.25)

We omit the proof of correctness for Theorem 4.14 here, as it would be straightforward
to the proof of Theorem 4.12 in combination with the proof of Theorem 4.6.

Remark 4.15. The extended formulation QY (G) requires n + 2n? + 72n3 —n — 12n% =
72n3 — 10n? variables. Notice that w" and wB" can be replaced by their definition that
include the variables x, f, and g. The number of inequalities is n 4+ 2mn + 2mn + n +
120mn? + 120mn? + n? + n? = 240mn? + 4mn + 2n? + 2n.

4.3.2 An extended formulation for dense graphs

If the underlying graph is very dense and we want to optimize over the 1-wheel polytope
PW (@) in polynomial time with a linear program, we can derive an extended formulation
that is based on the separation algorithm from Cheng and Cunningham as presented in
Section 3.3.2. We give such an extended formulation Q"A(G) of the odd 1-wheel polytope
PWA(@G). An extended formulation Q"%(G) of the even 1-wheel polytope P"5(G) can be
constructed similarly and combining Q4 (G) and Q"5(G) yields an extended formulation
of the 1-wheel polytope PV (G).

We define Ay = {(i,7) : ij € Eg} for easier counting of inequalities in Theorem 4.16,
where Ep is the edge set of the auxiliary graph H = (Vp, Efy) from the separation algorithm
in Section 3.3.2. Then |Ay| = n?, since H is a complete graph with loops and we have
(i,j) € Ag for every i, j € Vy including the case i = j.

Theorem 4.16. An extended formulation QVA(G) of the odd 1-wheel polytope PVA(G) is
given by

QVA(G) = {(x, £.9.p.q) ER" x R x R" x R™ x R" :
(z, f,9,p, q) satisfies (2.1), (4.8)-(4.11), and (4.26)—(4.29) }

54

with

=0 Vi heV (4.26)
Pl < aly, + wi V (k,j) € Ay, i,heV (4.27)
s < Pl + Wiy V (k,j) € A, i,heV (4.28)
ph>1—ay Vi hev, (4.29)

where wzj s a shorthand notation for %fhk + %fhj + frj + %xk + %xj — 1.

Proof. We first prove that PVA(G) C proj, (Q"A(G)). For & € PYA(G), we can find f, g,
p, and @ so that (Z, f,3,p,q) € @VA(G). Define fi; and g;; for all 4,5 € V as the weights
of shortest odd and even walks, respectively, between vertices ¢ and j in G. Assign a large
value to the corresponding variable if no such walk exists. Observe that shortest even walks
use zero edges. Due to symmetry we have fij = sz and g;; = gji. Inequalities (2.1) and
(4.8)(4.10) are fulfilled. Moreover, inequalities (4.11) are not violated since z € PVA(G)
satisfies inequalities (2.3), which is equivalent to w(E¢) > 1 for every odd cycle C in G and
hence f;; > 1 for every i € V holds.

We define ﬁ?j and (jzhj, respectively, as the weight of a shortest odd and even walk with
respect to edge weights @w" in H between vertices i and j. These walks exist by the absence
of negative edge weights, cf. Lemma 3.5, and the fact that H is a complete graph with loops.
This choice of ﬁ?j and (jlhj is obviously feasible for inequalities (4.26)—(4.28). Theorem 3.7
implies that all (I4)-inequalities are fulfilled if and only if @w"(E¢) > 1 — Z, for every odd
cycle C'in H and every hub A € V. This is equivalent to ﬁﬁ- > 11—z for every i € V and
every hub h € V|, i.e. inequalities (4.29) are fulfilled.

For the converse, we show that proj,(Q"A(G)) C PYA(G). Let (z, f,3,D,q) € QVA(G).
The variables f;; and g;; are bounded from above by the weight of a shortest odd and even
walk, respectively, between vertices i and j in G. Inequalities (4.8)—(4.10) imply the edge
inequalities, cf. Lemma 4.5, and inequalities (4.11) ensure that every odd cycle in G has
weight at least 1. Thus, no odd cycle inequality (2.3) in z is violated by Z.

Furthermore, inequalities (4.26)—(4.28) ensure that p?j and qzhj are bounded from above by
the weight of a shortest odd and even walk, respectively, between vertices ¢ and j in H with
respect to edge variables w”. Notice that every edge variable w?k appears on the right hand
side of inequalities (4.27) and (4.28), which allows p?j and q?j to attain the highest possible
value if the respective f in the definition of w;?k attain the values of shortest odd walks in
G. Inequalities (4.29) are satisfied by (z, f,g,p,q) for all i € V and for every hub h € V.
Hence, the weight of a shortest odd cycle C' in H has weight @w"(E¢) at least 1—Zy, for every
h € V. By Theorem 3.7, no (I 4)-inequality is violated by # and finally z € PYA(G). O

Remark 4.17. The extended formulation QVA(G) requires n+2n?+2n®—n—n? = 2n34+n?
variables. Notice that w" can be replaced by their definition including the variables x and f.
The number of inequalities is n+2mn+2mn+n+n?+n*+nt+n? = 2n* +4mn+2n2+2n.

55

Chapter

Compact extended relaxations for the
BoxQP

The N'P-hard nonconvex quadratic program with box constraints (BoxQP) is a computa-
tionally challenging optimization problem. A very weak relaxation of the BoxQP is given
by the McCormick relaxation. However, it can be strengthened with Chvatal-Gomory cuts
for the Boolean Quadric Polytope (BQP) to obtain a very strong relaxation. All Chvatal-
Gomory cuts for the BQP are dominated by the so-called A-odd cycle inequalities, which
form an exponential class of inequalities in general.

This chapter covers the results from our manuscript Tight compact extended relaxations
for nonconvex quadratic programming problems with box constraints, see de Vries and Per-
scheid (2019). We present new compact extended relaxations for the A-odd cycle inequali-
ties of the BoxQP. This permits to optimize over relaxations that contain the A-odd cycle
inequalities without being reliant on repeated calls to separation algorithms. In a compu-
tational study, we verify the strength of our new compact extended relaxations and show
that we can significantly reduce the optimality gap of the BoxQP, even with a plain linear
program.

5.1 The BoxQP

Bonami et al. (2018) show how the nonconvex quadratic programming problem with box
constraints, which is defined as

1

min §xTQ:r +cl'x

st. [<z<u (BoxQP)
Q € R™"™, @ symmetric,

can be solved effectively via linear programming techniques. Without loss of generality we

o7

assume [= 0 and u = 1, because [and u are finite.

Let N denote the set {1,...,n} and
E:={(i,j) € Nx N :i#j, Qij #0}.
Notice that if the ordered pair (i,j) is in E C N x N, then (j,i) € E because of the

symmetry of Q).

Bonami et al. first obtain a convex relaxation of the BoxQP with a linear objective
function. This linearization induces nonlinear constraints, which are replaced by the so-
called McCormick inequalities, see McCormick (1976). The resulting weak linear relaxation
of the BoxQP is given by

min Z Qij Xij + % Z QiiYi + Z Cil

(i.j)€E iEN iEN
st. x;>Y;>2x;—1 VieN
Y; >0 VieN (LP)
v > X Y (i,j) € E
;> Xy >xi+xj—1 vV (i,j) e E
Xij =20 v (i,j) € E.

Furthermore, it can be strengthened to

min Z Qi Xij +% Z QiiYi + % Z Quixy + Zcz‘ﬂfi

(i.5)€E iEN~ iENT iEN
st. x;,>Y; Vie N~
T > Xij V(i,j) €E (QPr2)
x> Xij > w+ay— 1 v (i,j) € E
X;; >0 YV (i,j) € E
1>2;>0 Vi€ N,

where NT :={i € N:Q;; >0} and N~ :={i € N : Q;; < 0} partition N. Although QP 2
has a convex quadratic objective and only linear constraints apart from that, solving the
pure LP 4 is much faster in practice. However, QP ,2 provides better lower bounds for the
BoxQP.

Cutting planes from the Boolean Quadric Polytope

BQP = conv (BQPLP N (Z” X Z'E‘)) :

58

where
BQPLY = {(x,X) e R" x RIPI: min{xz;, z;} > X;; > max{0,z; + x; — 1}
v (i,j) € B},

can be used to turn LPs and QP 2, respectively, into a very strong relaxation of the
BoxQP. In particular, these efficient cuts are Chvatal-Gomory cuts

ol Az > [a’b], «€RT,

Moreover, all Chvatal-Gomory cuts for the BQP are 0 — %—Chvétal—Gomory cuts (i.e.,
a € {0, 3}™), see Bonami et al. (2018). Caprara and Fischetti (1996) show that separating
O—%—Chvétal—Gomory cuts is N'P-hard in general. However, Koster et al. (2009) study ways
to separate them effectively in practice. Fortunately for our purposes, all 0 — %—Chvétal—
Gomory cuts of the BQP can be separated in polynomial time, as they are all dominated
by the A-odd cycle inequalities, which is also proven by Bonami et al. (2018).

Boros et al. (1992) provide an extended formulation for the A-odd cycle inequalities
for the BQP by adding O(n?) variables and O(n?) inequalities. We present an extended
formulation in Section 5.3 which has also O(n?) variables and just O(|E|n) inequalities. It
is much more compact for sparse matrices @, since we have |E| < n? in this case.

5.2 A-odd cycle inequalities for the BQP
The McCormick inequalities, cf. McCormick (1976), for the BQPX? imply
0<az; <1 VieN,

since 0 < X;; < x; and z; +x; — 1 < o for all (4,j) € E. If we combine the McCormick
inequalities X;; > 0 and X;; > x; + x; — 1, we have

2X1—.TZ—SU]+1ZO (A”)
Analogously, adding up z; > X;; and xz; > X;; yields
—QXZ‘J' + i+ > 0. (BU)

To obtain additional cuts for the BQP, combinations of (A4;;)- and (B;;)-inequalities can be
useful. Let E4 C E be the set of all (4,) for which we use inequality (A;;). Define the
set B4 as the set that contains an edge ij for every (1,7) € EA. The sets EP and EP are

defined analogously. We combine (4;;)- and (B;;)-inequalities such that |E4| is odd and
EA U EP is a cycle.

Definition 5.1. A cycle AU EP with EA, EB C F is called A-odd cycle if |E4| is odd.

59

Figure 5.1: An A-odd cycle with |E“4| = 3.

In contrast to the odd cycle inequalities of the stable set polytope, the cycle EA U EB
may be of arbitrary parity. Let

N4 C N : vertices incident to exactly two edges in B4,

NB C N : vertices incident to exactly two edges in EB.

Remark 5.2. Adding inequality (Ai;) to (Bji) eliminates variable x;.

Example 5.3. Let (guh)a (ha 7’)7(%])7(]5 k;)a (kag) € k. If we add up (Agh)’ (Ahi), (Alj)7
(Bji), and (Byg), see Figure 5.1, we get

Q(Xgh + Xpi + Xij — Xjk — ng) — 2(.%'h + .%'»L) +2x,+3 > 0.
Subtracting 3 and dividing by 2 yields
3
Xgn + Xni + Xij — Xjio = Xpg —an — @i t 2 2 =5

and as all variables on the left hand side are integral, we are able to round up the fractional
constant on the right hand side to

Xgh + Xni + Xij — Xji — Xig —xn — i + 2 > —1.

In general, adding up inequalities for a cycle E4 U EB yields

(i,j)€EA (i,j)EEB iENA icNB

60

Subtracting |E4| and dividing by 2 yields

A
dooXi— Y Xy Y mit Y am>-— |E‘

(i,j)€EA (i,j)EEB iENA iCNB

In the case |E4| is odd, we can strengthen this inequality, cf. Bonami et al. (2018), to

Xy > Xy- meule_[|EW

(i,j)eEA (i,j)EEB iENA iENB

which is equivalent to

dooXy—) Xy- Zxﬁle_——ul

(i,j)eEA (i,j)eEB iENA iENB

and yields after another transformation

(i,4)€EA (i,j)€EB iENA iENB

Definition 5.4. Inequalities (5.1) are called A-odd cycle inequalities.

5.3 Separation & extended formulation
For inequalities (A;;) and (B;;), we define

w‘}l 2Xij —xi —xj + 1, (5.2)
w = -2Xi; + z; + z;. (5.3)
Notice that wiA}- and wg do not depend on some particular Z or X. They are variables
restricted by the given equations and obviously nonnegative. We can interpret them as the
slack of inequalities (A;;) and (B;j).

The following construction is similar to the separation algorithm for the cut polytope
presented by Barahona and Mahjoub (1986). Nevertheless, we give a detailed explanation
on how the separation problem for the A-odd cycle inequalities of the BQP can be solved.

Let G = (Vg, Eg) be the simple graph with Vg = N and Eg = {ij : ,(4,1) €
E}. Consider the digraph F' = (Vp, Ap) with vertex set Vp = {0,1} and arc set Ap =
{(0,0), (0,1),(1,0),(1,1) } as given in Figure 5.2. The categorical graph product H =
(Voxr, Agxr) of G and F is given by the vertex set Vgxr = N x {0,1} and the arc set
Agxr = {((i,r),(j,s)) : ij € Eg and (r,s) € Ap}.

61

(0) €

Figure 5.2: Digraph F'.

Now we assign arc variable wg‘- to the arcs ((¢,7),(j,1 —r)) € Agxr and wﬁ to the arcs
((¢,7),(j,7)) € Agxr for all 7 € {0, 1}. Figure 5.3 shows the structure of H for a given edge

ij € Eq.
W;;
(0= >(j.9
@) —()
W;;

Figure 5.3: The categorical graph product of an edge ij and F. Antiparallel arcs are graphically represented
by double-headed arrows.

Whenever we use an (A;;)-inequality for an edge ij € Eg, an arc with arc variable wg‘]‘-
in the product graph H is used and the second index of a vertex in H changes from 0 to 1
or from 1 to 0. Otherwise, using a (B;;)-inequality for an edge ij € Eg corresponds to an
arc with arc variable wﬁ in H and the second index does not change. We call a walk and a

path, respectively, A-odd if the number of arcs with assigned arc variable wf} is odd.

Lemma 5.5. Every (u,r)-(v,s)-walk in H corresponds to an A-odd u-v-walk in G if and
only if r # s.

Proof. Let r,s € {0,1} with r # s. Then for every (u,r)-(v,s)-walk in H, the sum over
all arc variables includes an odd number of variables w;‘} since the second index does not
change when using variables wg . The construction of variables w{} that relate to inequalities
(A;j;) yields that the corresponding u-v-walk in G is A-odd. Analogously, the corresponding

u-v-walk in G is A-even if r = s. O

Lemma 5.6. Let (u,r) # (v,s). If a shortest (u,r)-(v, s)-walk in H has weight [, then there
exists a (u,r)-(v, s)-path in H of weight .

62

Proof. Let P be a shortest A-odd (u,r)-(v, s)-walk in H with weight [. If P is a path, then
there is nothing to show. Otherwise, there exists a closed walk through some vertex (w, t) in
P with weight < 0. Since all the edge variables in H are nonnegative, this closed walk has
weight 0. Notice that it is A-even, since for every walk starting and ending in vertex (w,t),
the second index alternates an even number of times between 0 and 1. Therefore, removing
this walk from P does not change [or the parity of E4. Removing all closed walks from P

yields an A-odd (u,r)-(v, s)-path in H of weight . O

Lemma 5.7. The weight of a shortest A-odd cycle in G is equal to the weight of a shortest
(1,0)-(i,1)-path in H among all i € N.

Proof. Notice first that the weight of a shortest (¢,0)-(4, 1)-path in H is equal to the weight
of a shortest (i,1)-(7,0)-path in H because of arcs and arc weights being symmetric. Let
P be a shortest (i,0)-(i, 1)-path of all (i,0)-(4, 1)-paths in H with i € N. If the first index
of all vertices except (i,0) and (7, 1), which serve as start and end point, on P is different,
then there is nothing to show. Otherwise, if for some j both vertices (j,0) and (4, 1) lie on
P, the subpath between (j,0) and (j, 1) cannot have more weight than P as we do not have
negative arc weights. Conversely, the subpath between (j,0) and (j,1) cannot have less
weight than P by the assumption of P being one of the shortest of all (7,0)-(7, 1)-paths in
H with i € N. Without loss of generality we can replace P by a shortest (j,0)-(j,1)-path.
Successively, we end up in the first case. O

Lemma 5.8. Given (z,X) € BQP*. Then (z,X) wiolates an A-odd cycle inequality if
and only if there exists a path P from (i,0) to (i,1) in H for some i € N of w-weight less
than 1.

Proof. Let EA U EPB be the edge set of a cycle C' in G whose A-odd cycle inequality is
violated by (z, X). Then

2 Z (XZ]-F%)— Z XZ]_Z‘%Z—’_ZQ?Z < 1.
(i,5)EEA (i,j)EEB iENA ieENB

by inequality (5.1). The left hand side can be transformed to

Z (QXZ-]- +1—x;— j?j) + Z (—QXZ']‘ + z; +i'j) ,
(i,5)eEA (i,j)eEB

since 7; is eliminated for all edge pairs ¢j and jk, where one of these edges appears in EA
and the other in EZ, see Remark 5.2. This equals

> T+ D, @]

(ij)eE4 (i,)eEP

and because |E4| is odd, there exist two paths from (7,0) to (i,1) and from (i,1) to (i,0)

63

in H for all i € C, that add up the same w;‘]‘. and 1[;5 as given above. Thus, the weight of
each of these paths is less than 1.

For the converse, consider a path from (7,0) to (i,1) in H with weight less than 1.
Analogously, there exists an A-odd cycle in G of equal weight. O

With Lemmas 5.5, 5.6, 5.7, and 5.8, we can state the following theorem:

Theorem 5.9. For fived (%, X), the separation problem for the A-odd cycle inequalities of
the BQP can be solved by computing the weight of a shortest odd path from (i,0) to (i,1)
in H for every i € N. If every and hence the shortest of these paths has weight at least 1,
then (Z,X) does not violate any A-odd cycle inequality.

Theorem 5.9 allows for solving the separation problem for the A-odd cycle inequalities
of the BQP with a linear program. In Section 3.1.2, we have seen how to solve shortest
path problems with a special case of the dual minimum cost flow problem (DMCF-SP). We
apply this technique of Ahuja et al. (1993) and consider for fixed ¢ € N the linear program

max fioil
s.t. fioio =0
fiojs < fiokt + QIJ/?]- V(k,j)eE, s,t€{0,1}, s#t
fiojs < fiokt + QDkBj V(k,j)eE, s,t€{0,1}, s=t
with
u_J,?j: 2ij—i'k—i’j+l,
ﬁlkBj = —Qij + Xk + Z;.

Notice that we partition the inequalities into two types. Both of them bound the weight
of a shortest (7,0)-(7, s)-path from above by the weight of any (i,0)-(j, s)-path where the
last arc is fixed. The first type of inequalities ensures that the last arc on the path has arc
weight w;;‘j whenever s # t in order to arrive at vertex (7, s). Contrarily, we have to use arcs
with arc weight u’;,?j whenever s = t.

If the objective value of a solution of this LP is greater or equal than 1 for every i € IV,
then (z, X) fulfills all A-odd cycle inequalities of the BQP.

Of course, instead of solving n optimization problems, we can be formulate a feasibility
problem with a similar technique as for the transformation from (DMCF-SP) to (F-SP) in
Section 3.1.2. Using this idea, we obtain the following compact extended formulation that
enforces all A-odd cycle inequalities. Notice that x and X as well as w are variables in
contrast to what we have in the separation LP from above.

64

Theorem 5.10. The linear system

firir =0 VieN, re{0,1} (5.4)
firjs < firkt + wiy V (k,j)€E, i€ N, rs,tec{0,1}, s#t (5.5)
firjs < fart + Wi V(kj)eE, icN, rstec{01}, s=t (506)
fioir >1 VieN (5.7)

together with equations (5.2) and (5.3) is an extended formulation for the (potentially ex-
ponentially many) A-odd cycle inequalities of the BQP and therefore provides a relaxation
for the BQP.

Proof. Let (z,X) € BQPX?. Then the weights @4 and @” are explicitly given by equations
(5.2) and (5.3).

We first show that if inequalities (5.1) are fulfilled by (Z, X), then for every pair (i,7) and
(j,8) in Vgxr there exists fi,js such that (z, X, f) is feasible for inequalities (5.4)—(5.7).
Define fi,;s as the weight of a shortest (4, 7)-(j, s)-path in H if such a path exists. Otherwise,
assign a large value to JFM s- Inequalities (5.4) are obviously fulfilled, as shortest paths from a
vertex to itself have weight 0 in digraphs where all arc weights are nonnegative. Inequalities
(5.5) and (5.6) express that the weight of a shortest (i,7)-(j,s)-path cannot exceed the
weight of an (i,7)-(j, s)-path where the last arc is fixed, which is always true. Finally,
Lemma 5.8 ensures that inequalities (5.7) are fulfilled.

Conversely, let (Z, X, f) be feasible for inequalities (5.4)—(5.7). Then fi.; = 0 for every
i € N and r € {0,1} by equations (5.4), which is equal to the weight of a shortest path from
vertex (i,7) in H to itself. Consider the case (k,t) = (i,r) in inequalities (5.5) and (5.6).
For every (i,j) € E, variables fj,js are bounded from above by arc variables w{} if r # s.
Moreover, variables f;;s are bounded from above by arc variables wg if r = s. Taking those
cases for inequalities (5.5) and (5.6) into account, where (k,t) # (i,7), every variable fi,;s
is bounded from above by the weight of a shortest path from (i,7) to (j,s) in H. Thus, for
every vertex pair (i,7) and (j,s) in H, the value fijs is lower or equal than the weight of
a shortest path from (i,7) to (j,s) in H. Since fi; is lower or equal than the weight of a
shortest (i,0)-(4,1)-path in H and fi;1 > 1 for i € N, every shortest (i, 0)-(i, 1)-path in H
has weight at least 1. This holds for every ¢ € N and therefore all A-odd cycle inequalities
(5.1) are fulfilled by (7, X), see Lemma 5.8. O

Remark 5.11. Our extended A-odd cycle formulation in Theorem 5.10 requires 4n? ad-
ditional variables f, whereas the w?- and wB-defining equations can be replaced by their
definition in terms of x and X . In total, 8| E|n + n inequalities are added. Notice that fipir
foralli € N and r € {0,1} are just constant numbers.

5.4 Numerical experiments

For their computational study, Bonami et al. (2018) use CPLEX and add 0 — %—Chvzital—
Gomory cuts heuristically to the weak relaxations LPaq and QP A2, respectively, from

65

Section 5.1. They apply this method for the 99 BoxQP test instances of Vandenbussche and
Nemhauser (2005), Burer and Vandenbussche (2009), and Burer (2010). Our contribution
is to compute the bounds that arise from exact A-odd cycle separation for the pure linear
program LP 4. To this end, we add the extended relaxation from Theorem 5.10 to the
constraint set of LP s and solve the resulting LP with CPLEX v. 12.8.0.0 on the same
benchmark set. Adding the extended relaxation from Theorem 5.10 to QP 542 gives a convex
quadratic program with a large amount of variables and inequalities. Although solving these
QPs in reasonable running time does not seem to be promising, we compute the solutions
for all instances with n < 40 whose density is not too high.
The optimality gap is defined as

ZBoxQP — %
z

gap(z) = x 100,

where zpoxqp is the optimal objective value of the BoxQP and z is the optimal objective
value of the considered relaxation.

We denote the bounds arising from LPas and QP 42, respectively, by zaq and zpe.
For LP p strengthened with inequalities (5.2)—(5.7) we use the notation LP%,. The bound
arising from an optimal solution of LP§ , is denoted by z} ;. Analogously, we use the notation
232 for the bound arising from an optimal solution of QP$., which is the extension of
QPMQ .

Table 5.1 is similar to Table 9 of Bonami et al. (2018), which also includes the columns
ZBoxQPs #M, and zpq2. The bounds provided by the relaxations LPaq and QP 42, respec-
tively, where 0 — %—Chvétal—Gomory cuts of the BQP are added heuristically, are replaced
by the values 2%, and zj‘\/lg that arise from exact separation. Notice that the bounds z/'le
are at least as strong as the bounds z3,. However, computing 2§, was only possible in
reasonable time for instances with n € {20,30} and for half of the instances with n = 40.

The first number in the name of the test instance is equal to n, i.e., the number of variables
of the BoxQP. Moreover, the second number expresses the percentage of non-zeros in Q.
The third number enumerates different test instances that have similar parameters.

Table 5.1: Bounds for BoxQP relaxations. All values in columns za, zp2, and zpoxqp were taken from
the computational study of Bonami et al. (2018).

66

Name ZM Zp2 2 2542 ZBoxQP
spar020-100-1 -1,066.00 -1,038.38 -706.50 -706.50 -706.50
spar020-100-2 -1,289.00 -1,258.38 -880.25 -867.14 -856.50
spar020-100-3 -1,168.50 -1,142.00 -772.00 -772.00 -772.00
spar030-060-1 -1,454.75 -1,430.00 -730.06 -714.21 -706.00
spar(030-060-2 -1,699.50 -1,668.25 -1,385.50 -1,379.18 -1,377.17
spar030-060-3 -2,047.00 -2,006.50 -1,323.56 -1,305.97 -1,293.50
spar030-070-1 -1,569.00 -1,547.25 -703.86 -688.50 -654.00

spar030-070-2
spar030-070-3
spar030-080-1
spar030-080-2
spar030-080-3
spar(030-090-1
spar030-090-2
spar030-090-3
spar030-100-1
spar030-100-2
spar030-100-3
spar040-030-1
spar040-030-2
spar040-030-3
spar040-040-1
spar040-040-2
spar040-040-3
spar040-050-1
spar040-050-2
spar040-050-3
spar040-060-1
spar040-060-2
spar040-060-3
spar040-070-1
spar040-070-2
spar040-070-3
spar040-080-1
spar040-080-2
spar040-080-3
spar040-090-1
spar040-090-2
spar040-090-3
spar040-100-1
spar040-100-2
spar040-100-3
spar050-030-1
spar050-030-2
spar050-030-3

-1,940.25
-2,302.75
-2,107.50
-2,178.25
-2,403.50
-2,423.50
-2,667.00
-2,538.25
-2,602.00
-2,729.25
-2,751.75
-1,088.00
-1,635.00
-1,303.25
-1,606.25
-1,920.75
-2,039.75
-2,146.25
-2,357.25
-2,616.00
-2,872.00
-2,917.50
-3,434.00
-3,144.00
-3,369.25
-3,760.25
-3,846.50
-3,833.00
-4,361.50
-4,376.75
-4,357.75
-4,516.75
-5,009.75
-4,902.75
-5,075.75
-1,858.25
-2,334.00
-2,107.25

-1,888.25
-2,251.12
-2,072.00
-2,158.12
-2,376.25
-2,385.12
-2,622.75
-2,499.38
-2,541.50
-2,698.88
-2,703.75
-1,067.00
-1,617.75
-1,297.12
-1,575.50
-1,895.75
-2,017.25
-2,120.88
-2,334.88
-2,603.00
-2,817.88
-2,872.62
-3,386.12
-3,070.12
-3,323.00
-3,724.50
-3,788.62
-3,775.38
4,311.12
-4,325.50
-4,304.38
-4,453.38
-4,932.12
-4,855.25
-5,017.25
-1,837.75
-2,324.62
-2,093.75

-1,321.75
-1,695.00

-988.93
-1,597.00
-1,813.50
-1,296.50
-1,478.00
-1,494.00
-1,235.38
-1,260.50
-1,541.50

-839.50
-1,431.50
-1,086.00

-856.82
-1,428.00
-1,193.00
-1,157.00
-1,435.50
-1,658.00
-1,390.40
-2,014.00
-2,454.50
-1,605.00
-1,867.50
-2,444.00
-1,838.50
-1,952.50
-2,561.50
-2,135.50
-2,123.29
-2,540.00
-2,487.50
-2,146.25
2,192.17
-1,324.50
-1,669.00
-1,461.00

-1,315.82
-1,677.00

-967.73
-1,597.00
-1,809.78
-1,296.50
-1,470.64
-1,494.00
-1,227.38
-1,260.50
-1,524.07

-839.50
-1,429.36
-1,086.00

-847.93
-1,428.00
-1,179.26
-1,154.73
-1,432.04
-1,653.63
-1,365.00
-2,006.03
-2,454.50

-1,313.00
-1,657.40

-952.73
-1,597.00
-1,809.78
-1,296.50
-1,466.84
-1,494.00
1,227.12
-1,260.50
-1,511.05

-839.50
-1,429.00
-1,086.00

-837.00
-1,428.00
-1,173.50
-1,154.50
-1,430.98
-1,653.63
-1,322.67
-2,004.23
-2,454.50
-1,605.00
-1,867.50
-2,436.50
-1,838.50
-1,952.50
-2,545.50
-2,135.50
-2,113.00
-2,535.00
-2,476.38
-2,102.50
-1,866.07
-1,324.50
-1,668.00
-1,453.61

67

68

spar050-040-1
spar050-040-2
spar050-040-3
spar050-050-1
spar050-050-2
spar050-050-3
spar060-020-1
spar060-020-2
spar060-020-3
spar070-025-1
spar070-025-2
spar070-025-3
spar070-050-1
spar070-050-2
spar070-050-3
spar070-075-1
spar070-075-2
spar070-075-3
spar080-025-1
spar080-025-2
spar080-025-3
spar080-050-1
spar080-050-2
spar080-050-3
spar080-075-1
spar080-075-2
spar080-075-3
spar090-025-1
spar090-025-2
spar090-025-3
spar090-050-1
spar090-050-2
spar090-050-3
spar090-075-1
spar090-075-2
spar090-075-3
spar100-025-1
spar100-025-2

-2,632.00
-2,923.25
-3,273.50
-3,536.00
-3,500.50
4,119.75
-1,757.25
-2,238.25
-2,098.75
-3,832.75
-3,248.00
-4,167.25
-7,210.75
-6,620.00
-7,522.00

-11,647.75

-10,884.75

-11,262.25
-4,840.75
-4,378.50
-5,130.25
-9,783.25
-9,270.00

-10,029.75

-15,250.75

-14,246.50

-14,961.50
-6,171.50
-6,015.00
-6,698.25

-12,584.00

-11,920.50

-12,514.00

-19,054.25

-18,245.50

-18,929.50
-7,660.75
-7,338.50

-2,580.62
-2,891.88
-3,236.00
-3,506.25
-3,467.12
-4,052.12
-1,745.50
-2,230.00
-2,081.00
-3,788.88
-3,232.88
-4,148.38
-7,151.12
-6,573.88
-7,473.88
-11,578.12
-10,793.38
-11,162.38
-4,829.12
-4,351.00
-5,102.88
-9,696.62
-9,205.50
-9,967.25
-15,154.75
-14,146.62
-14,860.88
-6,135.25
-5,978.38
-6,681.88
-12,522.38
-11,851.38
-12,452.50
-18,944.50
-18,132.50
-18,823.50
-7,611.38
-7,303.12

-1,411.00
-1,753.50
-2,094.50
-1,409.72
-1,776.81
-2,138.34
-1,212.00
-1,925.50
-1,483.00
-2,545.00
-1,888.50
-2,819.25
-3,356.00
-3,296.00
-4,306.50
-5,003.67
-4,504.92
-4,862.75
-3,157.00
-2,361.62
-3,101.00
-4,025.80
-4,450.50
-4,961.27
-6,601.92
-5,953.17
-6,584.00
-3,423.78
-3,550.65
-4,299.00
-5,468.90
-5,404.36
-6,230.59
-7,944.92
-7,334.75
-7,908.50
4,116.48
-3,906.07

-1,411.00
-1,745.76
-2,094.50
-1,198.41
-1,776.00
-2,106.10
-1,212.00
-1,925.50
-1,483.00
-2,538.91
-1,888.00
-2,812.28
-3,252.50
-3,296.00
-4,306.50
-4,655.50
-3,865.15
-4,329.40
-3,157.00
-2,312.34
-3,090.88
-3,448.10
-4,449.20
-4,886.00
-5,896.00
-5,341.00
-5,980.50
-3,372.50
-3,500.29
-4,299.00
-5,152.00
-5,386.50
-6,151.00
-6,267.45
-5,647.50
-6,450.00
-4,027.50
-3,892.56

spar100-025-3 -7,942.25 -7,894.75 -4,459.25 ~ -4,453.50
spar100-050-1 | -15,415.75 -15,341.75 -6,366.84 ~ -5,490.00
spar100-050-2 | -14,920.50 -14,814.62 -6,504.93 - -5,866.00
sparl00-050-3 | -15,564.25 -15,480.12 -7,031.72 ~ -6,485.00
sparl00-075-1 | -23,387.50 -23,277.12 -9,551.75 ~ -7,384.20
sparl00-075-2 | -22,440.00 -22,307.00 -8,826.42 ~ -6,755.50
sparl00-075-3 | -23,243.50 -23,109.62 -9,614.25 ~ -7,554.00
sparl25-025-1 | -12,251.00 -12,184.75 -6,118.03 ~ -5,572.00
sparl25-025-2 | -12,732.00 -12,662.62 -6,401.29 - -6,156.06
sparl25-025-3 | -12,650.75 -12,627.50 -6,923.00 - -6,815.50
sparl125-050-1 | -24,993.00 -24,880.25 -10,879.42 ~ -9,308.38
sparl125-050-2 | -24,810.50 -24,669.38 -10,273.75 ~ -8,395.00
sparl25-050-3 | -24,424.50 -24,308.00 -10,032.50 ~ -8,343.91
sparl125-075-1 | -38,202.00 -38,058.12 -16,053.67 ~ -12,330.00
sparl25-075-2 | -37,466.75 -37,341.38 -15,088.58 ~-10,382.47
sparl125-075-3 | -36,202.25 -36,033.00 -13,917.67 - -9,635.50

In Table 5.2, we list the optimality gap for every relaxation LPa¢, QP a2, LP%,, and
QPS> on every test instance, except for those QP j» that were not solved.

Table 5.2: Optimality gap for BoxQP relaxations.

Name gap(znm) gap(zp2) gap(zi) gap(zi,2)
spar020-100-1 33.72 31.96 0.00 0.00
spar020-100-2 33.55 31.94 2.70 1.23
spar020-100-3 33.93 32.40 0.00 0.00
spar030-060-1 51.47 50.63 3.30 1.15
spar030-060-2 18.97 17.45 0.60 0.15
spar030-060-3 36.81 35.53 2.27 0.95
spar030-070-1 58.32 57.73 7.08 5.01
spar030-070-2 32.33 30.46 0.66 0.21
spar030-070-3 28.03 26.37 2.22 1.17
spar030-080-1 54.79 54.02 3.66 1.55
spar030-080-2 26.68 26.00 0.00 0.00
spar030-080-3 24.70 23.84 0.21 0.00
spar030-090-1 46.50 45.64 0.00 0.00
spar030-090-2 45.00 44.07 0.76 0.26
spar030-090-3 41.14 40.23 0.00 0.00

69

70

spar030-100-1
spar030-100-2
spar030-100-3
spar040-030-1
spar040-030-2
spar040-030-3
spar040-040-1
spar040-040-2
spar040-040-3
spar040-050-1
spar040-050-2
spar040-050-3
spar040-060-1
spar040-060-2
spar040-060-3
spar040-070-1
spar040-070-2
spar040-070-3
spar040-080-1
spar040-080-2
spar040-080-3
spar040-090-1
spar040-090-2
spar040-090-3
spar040-100-1
spar040-100-2
spar040-100-3
spar050-030-1
spar050-030-2
spar050-030-3
spar050-040-1
spar050-040-2
spar050-040-3
spar050-050-1
spar050-050-2
spar050-050-3
spar060-020-1
spar060-020-2

52.84
53.82
45.09
22.84
12.60
16.67
47.89
25.65
42.47
46.21
39.29
36.79
53.95
31.30
28.52
48.95
44.57
35.20
52.20
49.06
41.64
51.21
51.51
43.88
50.57
57.12
63.24
28.72
28.53
31.02
46.39
40.28
36.02
66.11
49.26
48.88
31.03
13.97

51.72
53.30
44.11
21.32
11.67
16.28
46.87
24.67
41.83
45.57
38.71
36.47
53.06
30.23
27.51
47.72
43.80
34.58
51.47
48.28
40.96
50.63
50.91
43.08
49.79
56.70
62.81
27.93
28.25
30.57
45.32
39.63
35.28
65.82
48.78
48.02
30.56
13.65

0.67
0.00
1.98
0.00
0.17
0.00
2.31
0.00
1.63
0.22
0.31
0.26
4.87
0.49
0.00
0.00
0.00
0.31
0.00
0.00
0.62
0.00
0.48
0.20
0.45
2.04
14.88
0.00
0.06
0.51
0.00
0.44
0.00
14.99
0.05
1.51
0.00
0.00

0.02
0.00
0.85
0.00
0.03
0.00
1.29
0.00
0.49
0.02
0.07
0.00
3.10
0.09
0.00

spar060-020-3
spar070-025-1
spar070-025-2
spar070-025-3
spar070-050-1
spar070-050-2
spar070-050-3
spar070-075-1
spar070-075-2
spar070-075-3
spar080-025-1
spar080-025-2
spar080-025-3
spar080-050-1
spar080-050-2
spar080-050-3
spar080-075-1
spar080-075-2
spar080-075-3
spar090-025-1
spar090-025-2
spar090-025-3
spar090-050-1
spar090-050-2
spar090-050-3
spar090-075-1
spar090-075-2
spar090-075-3
spar100-025-1
spar100-025-2
spar100-025-3
spar100-050-1
spar100-050-2
spar100-050-3
spar100-075-1
spar100-075-2
spar100-075-3
spar125-025-1

29.34
33.76
41.87
32.51
54.89
50.21
42.75
60.03
64.49
61.56
34.78
47.19
39.75
64.76
52.00
51.28
61.34
62.51
60.03
45.35
41.81
35.82
59.06
54.81
50.85
67.11
69.05
65.93
47.43
46.96
43.93
64.39
60.68
58.33
68.43
69.90
67.50
54.52

28.74
32.99
41.60
32.21
54.52
49.86
42.38
59.79
64.19
61.21
34.63
46.85
39.43
64.44
51.67
50.98
61.09
62.25
59.76
45.03
41.45
35.66
58.86
54.55
50.60
66.92
68.85
65.73
47.09
46.70
43.59
64.22
60.40
58.11
68.28
69.72
67.31
54.27

0.00
0.24
0.03
0.25
3.08
0.00
0.00
6.96
14.20
10.97
0.00
2.09
0.33
14.35
0.03
1.52
10.69
10.28
9.17
1.50
1.42
0.00
5.79
0.33
1.28
21.11
23.00
18.44
2.16
0.35
0.13
13.77
9.82
7.78
22.69
23.46
21.43
8.92

71

sparl25-025-2 51.65 51.38 3.83 -
spar125-025-3 46.13 46.03 1.55 -
spar125-050-1 62.76 62.59 14.44 -
spar125-050-2 66.16 65.97 18.29 —
spar125-050-3 65.84 65.67 16.83 -
spar125-075-1 67.72 67.60 23.20 -
spar125-075-2 72.29 72.20 31.19 —
spar125-075-3 73.38 73.26 30.77 -

Let d be the percentage of non-zeros in). An instance is called sparse, medium, or dense,
if d < 40%, 40% < d < 60%, or d > 60%, respectively. Moreover, we divide these classes
further into small (n € {20,30,40}), medium (n € {50,60,70}), large (n € {80,90}), and
gumbo (n € {100,125}).

The set of small test instances is partitioned into 6 sparse, 9 medium dense, and 27 dense
instances. Table 5.3 specifies how much of the optimality gap is closed by the A-odd cycle
inequalities when adding them to LP%, and QP ;», respectively.

Density gap(zm) gap(zamz) gap(z34) gap(z},:)
Sparse 28.02 27.11 0.69 0.30
Medium 38.15 37.24 1.37 0.61
Dense 44.43 43.50 1.44 -

Table 5.3: Average optimality gap for instances with n € {20, 30,40}. Time limit is exceeded when solving
QP;\AQ for dense instances with n = 40.

The average optimality gap of LP o, QP 2, and LP$,,, respectively, for all medium, large,
and jumbo instances is visualized graphically in Figure 5.4.

We obtain that the pure linear relaxation LP x4 together with the A-odd cycle inequalities
closes by far more of the optimality gap than the quadratic relaxation QP ,s2 without the
A-odd cycle inequalities, regardless of the choice of the size n or the density d. Moreover,
the impact of the A-odd cycle inequalities increases when decreasing the density of Q.
Especially on sparse instances, the optimality gap is reduced tremendously by using the
relaxation LPY .

72

70

60

50

40

30

20

10

lepulQrueliry, | | mf

T T T T T T T T T
Sparse Medium Dense Sparse Medium Dense Sparse Medium Dense

n € {50, 60,70} n € {80,90} n € {100,125}

Figure 5.4: Average optimality gap by category.

73

Chapter

Integer solutions for the p-median problem

Let D = (V, A) be a digraph, where every arc (i,j) € A has an associated cost ¢;;. The
p-median problem is to select p vertices and assign every of the n — p remaining vertices
i € V to a selected vertex j via an arc (i,j) € A such that the sum of costs yielded by the
selection and the assignment of nonselected vertices is minimized. This problem is NP-
hard, even if the network has a simple structure, e.g. it is planar or the maximum vertex
degree is 3, see Kariv and Hakimi (1979). Furthermore, Baiou et al. (2013) prove that
even under the strong restriction that D is triangle-free (that is D does not contain any
directed 3-cycle as a subgraph), it remains A/P-hard in general. The p-median problem was
extensively studied since the early 1960’s and is related to the well-known uncapacitated
facility location problem. Reese (2006) summarizes literature on solution methods for the
p-median problem that include several heuristics, enumeration methods, LP relaxations,
and IP formulations.

The p-median polytope is the convex hull of integer points for the p-median problem. A
linear relaxation of the p-median polytope that includes the directed odd cycle inequalities
is given by Baiou and Barahona (2008). Moreover, they show that in the very special case
of D being Y-free, which will be defined below, their relaxation is of polynomial size and
it is sufficient to completely describe the p-median polytope. Baiou and Barahona (2016)
extend their analysis of the effect of the directed odd cycle inequalities applied to the p-
median problem by considering oriented digraphs. They specify subgraphs whose absence
in D guarantees that the directed odd cycle relaxation is equal to the p-median polytope.

6.1 The p-median polytope

In this section, some important results on the p-median polytope, that are necessary for
our extended formulation in Section 6.2, are summarized. All these results are cited from
articles by Baiou and Barahona (2008, 2011, 2016). We mainly use their notation and
only make small adjustments in order to achieve consistency throughout all chapters of this
thesis.

75

The p-median problem can be formulated as the integer linear optimization problem

min E CijTij

(i,j)€A
s.t. Zyz =p (6.1)
eV
vit Y, wi=1 VieV (6.2)
Ji(i,5)eA
Tij < Yj V(i,j) € A (6.3)
y; €{0,1} VieV (6.4
zi; € {0,1} Y (4,5) € A, (6.5)

see Baiou and Barahona (2008). In literature, we sometimes have additional costs caused
by assigning positive values to the vertex variables. These costs) ;i diyi, where d; is the
cost for selecting vertex ¢ € V| then have to be added to the objective function.

Remark 6.1. An optimal solution for the p-median problem could be derived from an op-
timal solution of the system where the binary constraints (6.5) are replaced by 0 < x5 <1
for every (i,5) € A. An arc variable z;; can only be greater than 0 if y; = 0 and y; = 1,
respectively, by equations (6.2) and inequalities (6.3) in combination with constraints (6.4).
If the value of an arc variable z;; is fractional, there must be at least one arc variable x;j
with k # j which also takes a fractional value because of equations (6.2). Moreover, we
have c;j = ¢, since otherwise this would contradict optimality. Then we are able to set
xij =1 and x;, = 0 for all arcs (i,k) € A with k # j. Applying this procedure until there is
no fractional value for any variable x anymore yields an optimal solution for the p-median
problem. Hence, any vertex of a relazation for the p-median problem whose y-variables are
integral is integral.

However, as Balou and Barahona, we work with the formulation from above that contains
constraints (6.5) in this chapter.

As the convex hull of feasible points of the p-median problem, we obtain the so-called
p-median polytope

pMP(D) == conv{(z,y) € R™ x R" : (x,y) satisfies (6.1)—(6.5)} .

6.1.1 Relaxations of p MP(D)

The natural linear relaxation for the p-median problem is denoted by P,(D) and given
by replacing constraints (6.4) and (6.5), respectively, by 0 < y; < 1 for every i € V and
0 < x;; <1 for every (i,j) € A. However, it is not necessary to bound any variable x or y
from above by 1, since the nonnegativity constraints of all variables x and y together with
equations (6.2) imply y; < 1 for every ¢ € V and x;; < 1 for every (i,j) € A. Thus, we

76

define
P,(D) = {(z,y) € R™ x R" : (z,y) satisfies (6.1)-(6.3), (6.6), and (6.7)}
with

yi =20 VieV
T4 >0 W (Z,]) € A. (67)

Baiou and Barahona (2008) show that the (directed) odd cycle inequalities

Acl—1
Z xij < ‘OL V directed odd cycles C (6.8)
(ivj)eAC

are valid for pMP(D). This enables strengthening the relaxation P,(D), which is of poly-
nomial size, by adding these inequalities to P,(D). We denote the resulting polytope by

PpOC(D) ={(z,y) € R™ x R™: (x,y) satisfies (6.1)—(6.3) and (6.6)—(6.8)} .

As there may be exponentially many (directed) odd cycles in D, this formulation is not
polynomial in general.

Before we present an extended formulation of Pz? ¢(D) in Section 6.2, we want to point
out some conditions to D that are sufficient for P,(D) and PI?C(D), respectively, to be
integral. Then, the respective formulation equals the p-median polytope p MP(D).

6.1.2 Integrality of P,(D)

We now summarize some results of Balou and Barahona (2011), who extensively analyze
P,(D). They show that the absence of specific subgraphs of D is equivalent to P,(D) being
integral. This allows us to classify digraphs for which we can solve the p-median problem
in polynomial time with this simple formulation.

Some of the critical subgraphs for P,(D) are explicitly given in Figure 6.1. Fractional
extreme points for the case that D is one of the digraphs Hi, Ho, H3, or Hy, where p = 3
for Hy and Hs, and p = 2 for H3 and Hy, are highlighted in Figure 6.2. Every arc variable x
takes the value %, which we illustrate graphically with dashed arcs. As usual, the proportion
of red color within each vertex indicates the value of the corresponding variable y. In all of
the four digraphs, the value of y; is either % or 1 for every vertex i € V.

Another general class of subgraphs with a more complicated structure is very important
for relaxations of the p-median polytope. This class is constituted by the so-called weak
Y -cycles. These subgraphs are not isomorphic to a specific digraph as the four digraphs Hj,

Hs, H3, and Hy are. They are extensions of weak cycles, which we are going to define first.

Definition 6.2. Given a digraph D = (V, A), we call a subgraph C of D a weak cycle if
replacing every arc (u,v) € C by an edge uv yields an undirected cycle. We partition C' into

7

78

(a) Hi

VAVAY;
$

(b) H: (c) Hs (d) Ha

Figure 6.1: Critical subgraphs for relaxations of the p-median polytope.

V4
h 3

®o<-O<---8

A
g:

D
=

Figure 6.2: Fractional extreme points of P, (D).

C°, C*, and C?:
o C° contains all vertices v which are the tail of two arcs in C,

o C! contains all vertices v which are the tail of one arc in C and the head of another
arc in C,

o C? contains all vertices v which are the head of two arcs in C.
Moreover, a weak cycle is called g-odd if |C'| +|C?| is odd.

By means of the vertex partition C = C°UC'UC? of a weak cycle C, we are able to give
the following definition.

Definition 6.3. A weak cycle C is called a weak Y-cycle if for every i € C? there is an
arc (i,§) € A with j € V' \ C°.

D

(a) (b)

Figure 6.3: A g-odd weak cycle and a g-odd weak Y-cycle in D.

An example of a g-odd weak Y-cycle is given in Figure 6.3(b). It is the same g-odd weak
cycle as in Figure 6.3(a), but we additionally have the information that there exist arcs
(vs,u1) and (vs,u2) in D. Notice that v3,vs € C? and uy,us ¢ C° = {va,v4}.

Theorem 6.4. (Baiou and Barahona, 2011, Theorem 2) For any digraph D = (V, A), the
polytope Py(D) is integral for any integer p if and only if

e D does not contain any of the digraphs Hy, Ho, Hs, nor Hy as a subgraph, and

e D does not contain a g-odd weak Y -cycle C' and an arc (i,) with i,j ¢ C.

79

6.1.3 Integrality of PP“(D)

Some first observations regarding the relaxation PpO ¢(D) were made by Baiou and Barahona
(2008). They consider the restriction of D being Y-free and show that this implies PI? (D)
being integral. Similarly, Balou and Barahona (2016) analyze critical subgraphs of D for
the general case. They prove that Ppo ¢(D) is integral if and only if none of those subgraphs
is present in D. In the further course of this section, we summarize interesting results from
both articles mentioned above.

Definition 6.5. A digraph D is Y-free if D is oriented and it does not contain the subgraph

Y of Figure 6.4.

O

Figure 6.4: The subgraph Y.
The property of D being Y-free is a very strong restriction. However, this permits the
following characterization.

Theorem 6.6. (Baiou and Barahona, 2008, Theorem 20) If D is Y -free then PpOC(D) is
integral for all p.

Remark 6.7. The number of odd cycles in Y -free digraphs is polynomially bounded since
each arc in those digraphs can belong to at most one cycle.

Theorem 6.6 suggests that the converse does not hold, i.e. integrality of PpOC(D) does
not imply D is Y-free. Indeed, we can easily confirm this with a much stronger result.
Theorem 6.8 provides equivalent conditions to PY“(D) being integral.

Theorem 6.8. (Baiou and Barahona, 2016, Theorem 3) Let D = (V,A) be triangle-free
and oriented. The polytope PZ?C(D) 1s integral for any integer p if and only if

e D does not contain any of the digraphs H1 nor Hs as a subgraph, and

e D does not contain a nondirected g-odd weak Y -cycle C' and an arc (i,5) withi,j ¢ C.

80

For proving integrality of PI?C(D) for triangle-free, oriented digraphs, only subgraphs
Hi, Hy, and nondirected g-odd weak Y-cycles are important due to Theorem 6.8. The
subgraphs Hs and Hy, which are important for Theorem 6.4, cannot be present in D since
Hj is not triangle-free and Hy is not oriented. The reason not to care about directed g-odd
weak Y-cycles is that the polytope Ppo ¢(D) includes the odd cycle inequalities (6.8).

6.2 An extended formulation of PpOC(D)

Let (Z,y) € Py(D). For every odd cycle C' in D, the odd cycle inequality

B Aol —1
> s PO

of PpO ¢(D) is equivalent to

1<|Acl—-2 > zy= Y, (1-2zy5)= > (1-2;—z3) = o(Ao).
(i.5)€Ac (i.4)€Ac J:(1.9),(G,k)E€AC
Hence, every odd cycle C' in D must have weight w(A¢) at least 1. This gives rise to two
different separation algorithms for the odd cycle inequalities (6.8) of the p-median polytope,
cf. Baiou and Barahona (2008).

The first one uses an auxiliary graph, which is the linegraph of D. It has a vertex (i, j)
for every arc (7, j) € A and two vertices (i, j) and (k,[) are connected by an arc ((7,), (k,1))
if and only if j = k. Then we can define arc weights w;;, = 1 — Z;; — T for every arc
((,7), (4,k)) in the linegraph of D.

Lemma 6.9. All arc weights w;;j, in the linegraph of D are nonnegative.

Proof. Consider two consecutive arcs (7, j) and (j, k) in D. From equations (6.2) we obtain

yj=1- Z Zji

l:(,)eA

and together with Z;; < y; from inequalities (6.3) we have

Ty <1- Z Tl

LGl EA

which is equivalent to

Ogl—:iij—@k— Z i‘jl.
l:(4,l)eA
1k

Hence 1 — Z;; — Z;; > 0 because Z; > 0 for all (j,1) € A. dJ

81

Thus, the separation algorithm for the odd cycle inequalities of the p-median polytope
applied to the linegraph of D with weights w;;;, is equivalent to the separation algorithm for
the odd cycle inequalities of the stable set polytope. Since the linegraph of D has a vertex
for every arc in D, we would have to compute m shortest paths in the categorical graph
product of the linegraph of D and H = (Vi, Ey) with Vi = {0,1} and Eyy = {{0,1}} from
Section 3.2.

Baiou and Barahona (2008) give an alternative separation algorithm for the odd cycle
inequalities of the p-median polytope, which uses arc weights w;; = 1 — 2Z;; for every arc
(i,7) € A and only requires computing n shortest paths in the categorical graph product of
D and H = (Vy, Ey) with Vi = {0,1} and Ey = {{0,1}}. In contrast to the separation
algorithm for the odd cycle inequalities of the stable set polytope, arc weights can be
negative. Fortunately, this does not cause a problem.

Lemma 6.10. (Baiou and Barahona, 2008, Lemma 2) The auziliary graph D x H has no
cycle with negative weight.

The proof follows directly from Lemma 6.9 and the fact that the weight w(A¢) of every
cycle C' can be given as the sum of nonnegative arc weights.

We use this separation algorithm for the construction of an extended formulation QI?C (D)
of the polytope P]? ¢(D), which is closely related to Q9 (G) of the odd cycle polytope for
the maximum stable set problem. Notice that giving an extended formulation by following
the construction of QY (G) is not possible for our purposes here, since the arc weights
wi; = 1 — 2x;; in D can be negative.

We define

Q9°(D) = {(z,y, f,g) €R™ x R" x R™ x R™ : (z,y, f, g) satisfies
(6.1)—(6.3), (6.6), (6.7), and (6.9)—(6.12) }
with
gii =0 VieV (6.9
fij < gik + 1 — 2y V(k,j)eA ieV (6.10
Gij < fzk +1-— 2$kj v (k‘,]) S A, 1eV (6.11
fi>1 VieV (6.12
for the relaxation PpOC(D) of the p-median polytope p MP (D).
Theorem 6.11. QZ?C(D) is an extended formulation of PZ?C(D).

Proof. Let (Z,7) € PpOC(D). We show that there exist f and g so that (Z,7, f,g) € QI?C(D)
holds. All inequalities (6.1)-(6.3), (6.6), and (6.7) occur in both polytopes and they are not
violated by (Z,y). Assign the weight w;; = 1 — 2Z;; to every arc (i,j) € A. Furthermore,
define f;; for all 4,5 € V and g;; for all 4,5 € V as the weights of shortest odd and even
walks, respectively, from vertex i to vertex j in D (assign a large value to the corresponding

82

variable if no such walk exists). Notice that, because there are no cycles with negative
weight, a shortest even walk for every ¢ € V to itself can simply use zero arcs and therefore
has weight 0. This ensures that equations (6.9) hold. It is easy to see that inequalities (6.10)
and (6.11) are not violated either due to the construction of f and g. These inequalities can
be interpreted as follows: The weight of shortest odd or even walks from vertex ¢ to vertex
j cannot exceed the weight of a shortest walk of the opposite parity from vertex ¢ to vertex
k plus the weight of the arc (k, 7).

Inequalities (6.8) are satisfied by (Z,y). This is, as mentioned above, equivalent to every
odd cycle C having weight w(Ac) at least 1. Observe that f;; is the weight of a shortest
odd closed walk starting in ¢ € V. If this walk is not a cycle, there always exists an odd
cycle with weight less or equal to the weight of a shortest odd closed walk. However, this
cycle does not necessarily include vertex i, but its weight has to be as well greater or equal
to 1. Therefore f;; > 1 holds for every i € V.

For the converse, let (Z,7, f,3) € QEC(D). Inequalities (6.9), (6.10), and (6.11) ensure
that f;; and g;; are bounded from above by the weights of shortest odd and even walks,
respectively, from vertex i to vertex j. Thus, the value f;; is lower or equal than the weight
of a shortest odd cycle through vertex i. Since f;; > 1 for every i € V by inequalities (6.12),
no odd cycle inequality is violated and hence (Z,y) € Pz? (D). O

Remark 6.12. The extended formulation QZ?C(D) of PZ?C(D) requires m +mn +2n? —n =
m + 2n? wariables. It has just 2mn + n additional inequalities compared to the natural
relazation P,(D), which ensure that all odd cycle inequalities are fulfilled.

With Theorem 6.8, we can state the following consequence.

Corollary 6.13. The p-median problem can be solved in polynomial time with the linear
formulation QI?C(D) for every digraph D = (V, A) and integer p if D fulfills every of the
following criteria:

e D is triangle-free,
e D is oriented,
e D does not contain any of the digraphs Hy nor Hy as a subgraph, and

e D does not contain a nondirected g-odd weak Y -cycle C and an arc (i,7) withi,j ¢ C.

83

Chapter

Solving the maximum clique problem on
sparse graphs

As a central topic of this thesis, we study the maximum stable set problem, in particular
for sparse instances. In Chapter 2, several inequalities are introduced that are valid for
the stable set polytope. Many of them, such as the odd cycle inequalities and the 1-wheel
inequalities, are the stronger the sparser the underlying graph G is. For dense graphs, the
clique inequalities for maximal cliques are stronger. However, optimizing over the clique
polytope ist N'P-hard, see Theorem 2.10.

Fortunately, we can solve the maximum stable set problem on dense graphs via fast,
direct methods. Every stable set in a given graph G is a clique in its complementary graph
G. Therefore, we can find a maximum stable set in G by finding a maximum clique in G.
Since a dense graph implies a sparse complementary graph, we focus on maximum clique
algorithms that are fast when applied to sparse graphs in this chapter.

The maximum clique problem has been studied extensively in the past and is still a very
active research topic today. Many research results have led to a lot of publications dealing
with various aspects of this problem. There exist plenty of fast algorithms, especially for
sparse graphs and real-world graphs. Our contribution is to improve the algorithm of
Pattabiraman et al. (2013). We illustrate the effect of the modifications we apply in a
computational study.

7.1 Maximum clique algorithms: a literature review

A very simple idea that comes into mind for solving the maximum clique problem in a given
graph G = (V, E) is complete enumeration. Without having any information about the edge
set F, every set in the power set of V' except the empty set can potentially be a maximum
clique in G. For every such candidate set U C V of the vertices in G, one could check if
uv € E for every pair u,v € U.

The clique decision problem is one of the 21 original N'P-complete problems of Karp

85

(1972): In general, we are not able to check in polynomial time whether there exists a
clique of size at least k in a given graph G unless P = N'P. This implies that the maximum
clique problem is N'P-hard.

Most algorithms for the maximum clique problem employ a branch-and-bound approach.
Branching is used to systematically partition the search space for solution candidates. Fruit-
less search space can be discarded by pruning based on previously computed bounds. These
bounds are very important for the performance of the algorithm. Usually, the size of the
largest clique found so far is used as a lower bound for the clique number w(G), whereas
various techniques to compute upper bounds (globally for w(G) and as well for possible
clique sizes at each branching node in the branching tree) can be applied.

One of the first promising branch-and-bound algorithms for the maximum stable set
problem was introduced by Carraghan and Pardalos (1990). It starts with an ordering
U1, V2,. ..,y of the vertices in G such that deg(v;) < deg(v;) for every 1 < i < j < n.
Then a depth first search is applied starting from vertex v; to find a largest clique in G that
contains v1. Thereafter, a depth first search starting from vertex vs is applied to the induced
subgraph of G by V' \ {v1}. This procedure continues for all vertices vy and the respective
subgraph of G that is induced by V' \ {v1,...,v5_1}. The pruning strategy can be expressed
in the following words: Check at each depth how many vertices are left as candidates to
enlarge the current clique and backtrack whenever this number plus the depth (which is
equal to the size of the current clique) is not greater than the size of the largest clique found
so far. Carraghan and Pardalos (1990) observe that their initial ordering of the vertices by
increasing degree is beneficial on dense graphs and that their algorithm is faster on sparse
graphs when no vertex ordering is performed. A general advantage of this algorithm is that
it allows for parallelization, which is useful to reduce the computational time.

A very good algorithm for random graphs and for DIMACS benchmark graphs from the
2nd DIMACS Implementation Challenge, see Johnson and Trick (1996), is the algorithm
of Ostergard (2002). In contrast to the algorithm of Carraghan and Pardalos (1990), the
ordering of vertices is reversed. First, cliques with vertex v, in the subgraph of GG induced
by V' \ {v1,...,v,—1} are considered, which is obviously the unique 1-clique {v,}. This
procedure continues for vertex v,_1 and the subgraph of G induced by V' \ {v1,...,v,-2}
and so on. Finally, cliques in G including vertex v; are considered. One idea behind this
reversal is the following. The size of the best clique found so far can just be improved by 1
during the search at each step i € {1,...,n} when considering cliques that include vertex
v; € V. If such an improvement is made, one can immediately continue with vertex v;_1. A
modified pruning strategy in addition to the reversal makes this algorithm faster than the
algorithm of Carraghan and Pardalos (1990). In order to further improve the performance,
Ostergérd (2002) initially uses a degree-based greedy coloring and then orders the vertices
according to their color classes. Beyond the efficiency of this algorithm to find a maximum
clique in G, it allows to find all maximum cliques with a few small modifications.

Vertex colorings can be very useful to get bounds for the size of maximum cliques in a
given graph. Notice that all vertices must be colored differently in any clique. One of the
first algorithms which is essentially based on colorings, is presented by Babel (1991). It has
turned out to be fast on arbitrary graphs. Besides computing bounds by using colorings,

86

branching rules are defined that use the information of these colorings. Babel (1991) shows
that it has polynomial running time for a few graph classes such as linear running time
for planar graphs. Later, Tomita and Seki (2003) present an algorithm that uses colorings
and vertex ordering techniques to compute upper bounds. An improved version of their
algorithm is given by Konc and Janezi¢ (2007). Using dynamically varying bounds, it is
significantly faster than the previous version.

Another useful characteristic number in graph theory for computing bounds in maximum
clique algorithms is defined by Seidman (1983):

Definition 7.1. The k-core of a graph G, if one exists, is the largest subgraph H of G such
that 6(H) > k.

The k-core of G, for example, can be directly used to find upper bounds on the clique
number w(G). If G has no k-core, it cannot have a clique with more than k vertices. One
can define the core number of a vertex with the definition from above, which is sometimes
also called the coreness of a vertex, see Alvarez-Hamelin et al. (2005).

Definition 7.2. The core number of a vertex v € V', denoted by k(v), is the largest integer
number such that v belongs to the k(v)-core of G. The largest core number (v) among all
v €V is denoted by k(G).

Abello et al. (1999) make use of bounds relying on k-cores in their algorithm. They are
able to solve the maximum clique problem on graphs with millions of vertices, such as on
a graph with more than 53 million vertices and more than 170 million (partially multiple)
edges arising from telecommunications traffic data. A more recent, parallel maximum clique
algorithm is proposed by Rossi et al. (2014). It starts with finding a large clique heuristically,
which can enable for prunings at low depths in the branching tree. Thereafter, colorings
and cores are used for aggressive pruning. Another algorithm that is based on k-cores is
presented by Verma et al. (2015). After computing bounds, they employ the method of
Ostergard (2002). Two further interesting methods that rely on core-based bounds are
presented by San Segundo et al. (2016, 2017), respectively. Both of them are designed
for extremely large and sparse graphs and employ sparse encoding of adjacencies in G for
speed-ups. The latter of the two algorithms is a parallelized version of the first one.

In this chapter, we focus on the algorithm of Pattabiraman et al. (2013), as it is really
simple to implement and its strength does not depend on reordering vertices or computing
potentially expensive bounds during the process. Some examples for frameworks where it
is used are the following. Meghanathan (2015) determines the size of a maximal clique
containing vertex v for every vertex v € V with an adjusted version of the algorithm. He
then analyzes the distribution of maximal clique sizes in real-world and in random networks.
Moreover, a similar approach is used by Meghanathan (2016) for an extensive analysis of the
correlation between the size of a maximal clique and the so-called centrality metrics. Besides
that, Gollub et al. (2017) make use of the original version of the maximum clique method of
Pattabiraman et al. for efficient and reliable place recognition, which is an important task
for enabling fully autonomous driving. This emphasizes the relevance of fast and simple
algorithms for detecting a maximum or all maximal cliques.

87

A very interesting analysis of maximum clique algorithms, that were published prior to
the publication of his work, is presented by Prosser (2012). He shows that the performance
strongly depends on implementation techniques and that details can have enormous impact
on the running time. Therefore, a comparison where all of the considered algorithms are
implemented in the java programming language is drawn.

Although the maximum clique problem is a challenging problem in general and there are
still unsolved benchmark instances on graphs with only 1,000 vertices, it can often be solved
very fast in practice. Walteros and Buchanan (2018) address this discrepancy and observe
that the running time strongly correlates with the difference between the clique number
and the upper bound generated by the largest k£ such that G has a k-core. They call it
the clique-core gap and show that it is often 0, 1, or 2 on real-life instances, whereas the
clique core-gap of unsolved synthetic benchmark instances is on a three-digit level or even
higher. They additionally point out that instances with small clique-core gaps are always
easy to solve, whereas hard instances must have large clique-core gaps. Apart from this,
their algorithm, which they apply for their computational experiments, is competitive with
the best state-of-the-art algorithms in literature for instances with a clique-core gap of less
than 100. Furthermore, it does not necessarily have a bad performance if the clique-core
gap is 100 or more.

7.2 The algorithm of Pattabiraman et al.

As mentioned in the literature review, a lot of fast algorithms for the maximum clique
problem were introduced since 1990. Pattabiraman et al. (2013) propose an algorithm
that is very fast on sparse graphs and has a simple structure. They additionally present a
heuristic, which runs many orders of magnitude faster than their algorithm and performs
very well on their test set of large and sparse graphs. It can obviously not provide acceptable
or even optimal solutions for arbitrary graphs in general. As we aim at optimal solutions,
the heuristic is not dealt with here.

We assume that we are given an adjacency list for every vertex of G, where the vertices are
listed in increasing order due to their index. Therefore, we use the convention that for every
i€ {l,...,n}, the set N(v;) of all neighbors of vertex v; is stored in a list which maintains
the same order. Otherwise, we would do preprocessing to achieve this order, which would
not be critical for the running time of the algorithm. Furthermore, we assume that we select
the vertices in increasing order by their index when iterating over N(v;) for i € {1,...,n}
in any for-loop. This is usually done anyway by the implementation, for example if N (v;)
is stored in a list accessed from first to last. These few assumptions are necessary for some
of the modifications we make in the upcoming section.

Algorithm 1 is the original algorithm of Pattabiraman et al. with a small adjustment. In
line 9 of the subroutine CLIQUE(G, U, size) we do not choose any vertex from U but the
vertex with the smallest index instead. This does not produce additional computational
costs because the vertex we choose is the vertex that was added first among the remaining
vertices in U. Notice that the order in which vertices are added to U in line 9 of the main

88

routine MAXCLIQUE(G, [b) is determined by the order in which we access the vertices of
N(v;) in line 6 and hence preserves the increasing order.

Algorithm 1

The maximum clique algorithm of Pattabiraman et al. (2013) with a fixed rule for choosing
w in line 9 of the subroutine CLIQUE(G, U, size).

Input: G = (V, E), lower bound [b

Output: Size of a maximum clique

1: procedure MAXCLIQUE(G, 1b)

2 max < lb

3 for i =1ton do

4 if deg(v;) > max then > Pruning 1
5: U<+ 0
6

7
8

9

for each v; € N(v;) do
if j > ¢ then > Pruning 2
if deg(v;) > max then > Pruning 3
: U+~UuU {Uj}
10: CLIQUE(G,U,1)

1: procedure CLIQUE(G, U, size)

2 if U =0 then

3 if size > max then

4: max < size

5: return

6 while |U| > 0 do

7 if size + |U| < maz then > Pruning 4
8 return

9: vj < argmin{i : v; € U}

10: U+ U\{’Uj}

11: N'(vj) ={v : vy € N(vj) and deg(v;) > max} > Pruning 5
12: CLIQUE(G,U N N'(vj), size + 1)

As an input parameter, Algorithm 1 requires a lower bound [b for the size of a maximum
clique in G, whose default value is 0. We are able to set Ib to 2 if E # () or to any other
number if we have any certificate that a clique of the respective value exists. Throughout,
the variable max stores the size of the best clique found so far and the variable size states
the depth of the search which is the size of the clique that is considered currently. When
the algorithm terminates, the value maz equals the clique number w(G).

There are five pruning opportunities in the algorithm. Three of them appear in the
main routine and the other two in the subroutine. The procedure MAXCLIQUE(G, Ib)
consecutively searches for cliques that contain a fixed vertex v; for i € {1,...,n} and
vertices whose index is greater than i. Pruning 1 immediately discards vertex v; if the

89

number of its neighbors is lower than the size of the largest clique found so far. If vertex v;
cannot be ruled out at this step, a candidate list U C N(v;) is built. Pruning 2 excludes
vertices with a lower index, since this avoids computing cliques that have been considered
previously. When searching for the size of the largest clique including vertex v;, we already
have considered all candidates that include vertex v; for all j € {1,...,7 — 1}. The second
requirement for a candidate vertex to be added to U is that it has enough neighbors. Thus,
its degree also has to be at least equal to max, see Pruning 3. The remaining prunings
appear in the procedure CLIQUE(G, U, size). Pruning 4 causes backtracking if the current
clique’s size plus the number of candidates in U to enlarge this clique does not exceed the
size of the best clique found so far. If we do not track back at this point, we choose v;, the
vertex with the lowest index from U, to extend the current clique. The set N’(v;) then is
given by the neighbors of v; that have a sufficient high degree, see Pruning 5. Intersected
with U, it yields the set of all candidates to further enlarge the current clique. The algorithm
continues with calling CLIQUE(G,U N N'(v;), size+ 1). Again, we can assume that N’(v;)
and U N N'(v;) maintain the increasing order of elements with respect to their indices.

We recognize that every pruning uses information which is already available at the time
it is called: max and size are variables; index, neighborhood, and degree of all vertices are
known right from the start of the algorithm; the cardinality of U is either known or easy to
determine.

7.3 Modifications and computational experiments

Our aim is to reduce the running time of Algorithm 1 while maintaining its simplicity. The
vertex degree is used in Pruning 1, 3, and 5 to discard fruitless search space. We suggest
to use alternative parameters for each vertex to replace the vertex degree in the appropriate
pruning steps. These parameters should be very quick to compute once before the algorithm
starts and the replacement of the vertex-degree-based prunings should be possible with not
more than a few adjustments.

7.3.1 The upper degree approach

The main idea of Algorithm 1 is that the current clique, possibly the empty set, can only
be enlarged with vertices that have a sufficient high degree. Let us say we are starting with
vertex v; and try to improve the largest clique found so far. As we consider vertices in
increasing order regarding their indices, we previously have considered all candidates for a
maximum clique that contain one (or more) of the vertices vy, ...,v;—1. During the ongoing
search, the degree of some of the remaining candidates v;, . . . , v, might be sufficiently large to
not be pruned, but adjacencies to vertices from the set {vy,...,v;_1} are actually irrelevant.
Hence, we do not only require every vertex vj € {v;,...,v,} to have a sufficient number of
neighbors in V, but it must have enough neighbors in the set {v;,...,v,}.

Definition 7.3. The upper degree of vertex v; € V with respect to the initial ordering,

90

denoted by degT(vi), 1s given by the number of neighbors of v; whose index is greater than i:

degT(vi) = |N(v;) N {vit1, -, v}

The upper neighborhood of vertex v; is the set of vertices in N(v;) N {vit1, ...

,Un}-

Algorithm 2

A modification of Algorithm 1 that uses the upper degree of vertices for prunings whenever

possible.
Input: G = (V, E), lower bound [b
Output: Size of a maximum clique

1: procedure MAXCLIQUE(G, Ib)
2 max < lb

3 for : =1 ton do

4 if deg'(v;) > maz then

5: U<+

6 k<1

7 for each v; € N(v;) do
8 if j > i then

9: if &+ deg'(v;) > maz then
10: U+~UuU {Uj}
11: k«—k+1
12: CLIQUE(G,U,1)

1: procedure CLIQUE(G, U, size)
2 if U =0 then

3 if size > max then

4: mazx <— size

5: return

6 while |U| > 0 do

7 if size + |U| < max then
8
9

return

: vj < argmin{i : v; € U}
10: U+ U\{Uj}
11: N 0
12: k+1
13: for each v; € N(v;) do
14: if [> j then
15: if size + k + deg'(v;) > maz then
16: N’%N’U{vl}
17: k< Fk+1
18: CLIQUE(G,U N N’ size + 1)

> Pruning 1

> Pruning 2
> Pruning 3

> Pruning 4

> Pruning b5a
> Pruning 5b

91

In Algorithm 2, every pruning based on the vertex degree in Algorithm 1 is replaced by
a stronger condition that uses the upper degree. Pruning 1 allows replacing deg(v;) by
deg'(v;) without any adjustment to be made. Every vertex whose index is greater than i
and which is in the neighborhood of v; is a candidate for an improvement. On the contrary,
Pruning 3 needs to be adjusted. When the elements in N(v;) whose index is greater than
1, see line 7 and 8 of Algorithm 2, are considered, we assume that this happens in increasing
order. The first vertex we pick in line 7 and that survives Pruning 2, say v;, requires
a sufficient number of neighbors with a higher index to be a candidate for improvement.
Because the current clique we consider already includes vertex v;, a clique that improves the
best clique found so far, which has cardinality max, must consist of at least max — 1 more
vertices together with v;. If this is the case, we put it into the candidate set U. Notice that
the presence of vertex v; is the reason for initializing variable k& with value 1. While running
the for-loop in line 7, every vertex must have as many neighbors with a higher index such
that it could improve the best clique found so far together with v;, itself, and all candidates
that are currently present in U. Variable k increases by 1 whenever a vertex is added to U
and hence ensures that Pruning 3 works correctly. In order to similarly adjust Pruning 5,
it is divided into Pruning 5a and 5b. In Algorithm 1, we add all vertices v; to N'(v;) which
are in the neighborhood of v; and concurrently have a sufficient high degree. Notice that we
recently added vertex v; to the current clique which previously had the size stored in the
variable size. Again, due to the order in which we consider vertices in the neighborhood set,
we only require vertices with a higher index as candidates for improvement, see Pruning
5a. We denote this candidate set by N’ and a vertex v; is added to N’ if and only if the
union of the current clique (which already includes vertex v;), all vertices in N’, and the
vertices in the upper neighborhood of v; has more vertices than the best clique found so far.
Variable k encodes the number of vertices that are currently present in N’ U {v;}, as the
variable size has not been updated yet while v; has been added to the current clique.

All in all, we do not take adjacencies to discarded vertices into account anymore with our
modified prunings in Algorithm 2, but we have an additional cost in contrast to Algorithm 1,
which is caused by computing the upper degree for every vertex in the graph. Nevertheless,
applying this preprocessing is quick and worthwhile. We will verify this with our numerical
results in Section 7.3.3.

7.3.2 Applying greedy colorings

We have strengthened three of the five pruning steps from Algorithm 1 by replacing the
vertex degree conditions by upper vertex degree conditions in the previous section. Next,
we further improve the strengths of Pruning 1, 3, and 5 by choosing another number which
is determined for each vertex v in G. Among several possibilities, the number of different
colors that are assigned to the neighbors of v by a coloring in G seems to be promising
when trying to find strong bounds that can be determined in reasonable time. Thus, we
restrict ourselves to coloring-based bounds in what follows. Finding the chromatic number
in a given graph G is an N'P-hard problem and we are not able to find an optimal coloring
in GG in reasonable time in general. Therefore, we are interested in an approximation of an

92

optimal coloring which has an acceptable approximation quality.

Matula et al. (1972) define a sequential coloring as a coloring of vertices {v1,...,v,} in
G, where color 1 is assigned to v; and each succeeding vertex is colored with the smallest
color number such that a feasible coloring is maintained when assigning a color to v,. Since
this is a greedy strategy, we simply call it a greedy coloring.

The approximation quality of a greedy coloring depends on the order in which the vertices
are colored. For every graph G, there exists an ordering of the vertices such that a greedy
coloring gives an optimal coloring in G, cf. Husfeldt (2015). Mitchem (1976) compares algo-
rithms that all apply greedy colorings, but differ in how the vertices are ordered previously.
He shows that for each of these algorithms, there exist graphs such that they behave arbi-
trarily bad. Johnson (1974) illustrates that a graph providing a worst case example is the
crown graph, see Figure 7.1(a) and 7.1(b).

(a) An optimal coloring. (b) A worst case greedy coloring.

Figure 7.1: Two different greedy colorings depending on the vertex ordering.

For even n, we define the vertex set of the crown graph to be V = {vy,... ,vn/Q} U
{u1, ..., up o} It is bipartite and vertex v; is adjacent to vertex u; if and only if i # j.
In our example, we have n = 10. An optimal coloring uses two colors and is achieved by
the ordering v1,...,vs5,u1,...,us for the greedy coloring. Otherwise, it is possible that a
greedy coloring uses § = 5 colors. This is the case if the vertex ordering is for instance
VL, ULy - - -, Vs, Us-

The number of colors that are used by a greedy coloring is an upper bound for the clique
number w(G), since every vertex in a clique needs to be colored with a different color. Our
aim is to replace the vertex degree conditions by information we get from greedy colorings,
so we are searching for an upper bound on the size of cliques that contain a specific vertex.
Every vertex v € V has a different color than its neighbors. If some of the neighbors of v

93

share the same color, they are definitely not connected by an edge and hence at most one
of these vertices can be concurrently present in a clique together with vertex v.

Lemma 7.4. Let G be colored with an arbitrary coloring. The size of any clique containing
a specific vertex v of G cannot exceed the number of different colors in N(v) by more than
1.

Proof. Let v be a vertex in GG. All vertices in a clique have to be colored with a different
color, since vertices with the same color are not connected by an edge. Therefore, the
number of different colors in N(v) is an upper bound for the size of cliques in N(v). Vertex
v itself has a different color than all of its neighbors and enlarges cliques in N(v) by 1. [

Every vertex in Figure 7.1(a) has just one color in its neighborhood, so 2 is an upper
bound on the maximal clique size for each vertex. This upper bound is 5 for every vertex in
Figure 7.1(b). Although this is the worst bound possible with respect to coloring bounds,
it is not worse than the degree bound. We certainly hope to get much better bounds in
practice.

Let us consider another small graph, which has no uniform structure like the crown graph.
The priority of the colors we use is 1 =blue, 2 =red, 3 =yellow, 4 =green, and 5 =orange as
in the crown graph example. We maintain this order for all upcoming examples.

Figure 7.2: A greedy coloring. Vertices are sorted in increasing order regarding their index: vy, ..., v1s.

In the graph in Figure 7.2, the order in which the vertices are colored via a greedy coloring
is v1,...,v13. We obtain that we use five different colors in total, so that we can bound
w(G) from above by 5. Taking a closer look at some vertices, we see that we get a tight

94

upper bound of 2 for vertex v; and a bad upper bound of 5 for vertex v12. As a vertex itself
has a different color than its neighbors, the upper bound for this vertex regarding the clique
size is the number of different colors we find in its neighborhood plus 1.

®

Figure 7.3: A greedy coloring: Vertices are sorted in decreasing order regarding their index: vis,...,v1.

Figure 7.3 shows the same graph as Figure 7.2, but the vertices are colored in reverse
order, i.e. vis,...,v;. By chance, we get the same upper bound for w(G), but different
bounds for the maximal clique sizes that contain specific vertices. The upper bound for the
maximal clique size containing vertex v; is now 5, whereas vertex vi2 just has the colors
blue and yellow in its neighborhood, so the upper bound for vys is 3.

We have applied two greedy colorings to the same graph with two different vertex order-
ings. The vertices are sorted in increasing and decreasing order, respectively, concerning
their indices. We have seen that for vertices v; and vi2, we get varying bounds. The idea is
now to choose the best bound for each vertex.

V1 | V2 | V3 | V4 | VU5 | Vs | Ur | U8 | V9 | V10 | V11 | V12 | V13

ubl 21213121313]|3]|2]|4 5) 2) 5)
ub2 5131413513334 4 2 3 3
min{ubl,ub2} || 2 | 2 | 3|2 |33 |3 |2 |4 4| 2 3 | 3

Table 7.1: Bounds that arise from the greedy colorings in Figures 7.2 and 7.3.

As we observe in Table 7.1, we are able to improve every upper bound of 5 in this example.

95

Additionally, we often have a difference of 1 or 2 in the columns when comparing values of
ubl and ub2, which are the upper bounds that arise from the forward coloring visualized in
Figure 7.2 and the backward coloring visualized in Figure 7.3, respectively. Upper bound
ubl delivers good bounds for lower indexed vertices and bad bounds for higher indexed
vertices. Moreover, the reverse is true for ub2. The reason should be that at the end of each
coloring we have less degrees of freedom and are forced to use higher order colors for the
vertices we color last.

Next, we want to compare the bounds we get by the two primitive greedy colorings to
the bounds that an optimal coloring provides.

Figure 7.4: An optimal coloring. A greedy coloring with vertex order v1, v13, v12, V2, . .., v11 yields the same
coloring.

An optimal coloring is presented in Figure 7.4. Notice that it is achieved by a greedy
coloring when the vertex order is v1,v13, v12, V2, ..., v11. In contrast to the greedy colorings
from above, we only use the colors blue, red, and yellow. Hence, the maximum clique size
w(G) is bounded by 3. We are interested in how strong the “cheap” vertex bounds obtained
from the combination of ubl and ub2 are, compared to the vertex bounds we get from an
optimal coloring.

Table 7.2 shows that the combined information we get from uwbl and wb2 is competitive
with the bounds ub3 of the optimal coloring in Figure 7.4. For some vertices the bounds
are better, for others they are worse. However, none of these bounds differs by more than 1
for each vertex v € V here. Another interesting observation regarding the example is that
the majority of the bounds is tight. Notice that no upper bound can be lower than the size
of a largest clique including the respective vertex.

96

Up | V2 | U3 | V4| Vs | Ve | U7y | U8 | Vg | V10| V11 | V12 | V13
degree 613|513 |513]3|4]6]|5 2 5 5
min{ubl, ub2} 2121312333244]|2]|3]S3
ub3 3121312332 |3]|3]3 2 3 3
largest cliquesize | 2 | 2 [3 | 2 |3 |2 |2 |2 |3]| 3 2 3 3

Table 7.2: Bounds that arise from the greedy colorings in Figures 7.2 and 7.3.

Algorithm 3

A modification of Algorithm 1 that uses the number of colors in the neighborhood of vertices

for prunings whenever possible.
Input: G = (V, E), lower bound [b
Output: Size of a maximum clique

1: procedure MAXCLIQUE(G,1b)

2 max < lb

3 for : =1 ton do

4 if nen(v;) > max then

5: U«0

6 for each v; € N(v;) do

7 if j > ¢ then

8 if nen(v;) > max then
9: U+~UuU {’Uj}

10: CLIQUE(G,U,1)

1: procedure CLIQUE(G, U, size)
2 if U = () then

3 if size > max then

4: max $— size

5: return

6 while |U| > 0 do

7 if size + |U| < max then
8
9

return
: vj < argmin{i : v; € U}
10: U + U\{Uj}
11: N'(vj) ={v : v € N(vj) and ncn(v;) > max}
12: CLIQUE(G,UQN’(Uj),SiZ€+ 1)

> Pruning 1

> Pruning 2
> Pruning 3

> Pruning 4

> Pruning 5

In order to modify the algorithm of Pattabiraman et al. (2013), we generalize the idea

97

from the example above and introduce the following notation.

Definition 7.5. Let the vertices of G be colored by one or more greedy colorings. The
number of colors in the neighborhood of vertex v; € V', denoted by nen(v;), is the minimal
number of different colors that are assigned to vertices in the neighborhood N (v;) of vertex
v; among all greedy colorings performed.

If exactly one coloring is used, the number of colors in the neighborhood is also known
as the saturation degree and is used for example in the maximum clique algorithm of Babel
(1991). Therefore, we can consider our approach as a generalization of the saturation degree.

We substitute the degree by the number of colors in the neighborhood in Pruning 1, 3,
and 5 of Algorithm 1 to obtain Algorithm 3. Applying one or more greedy colorings as a
preprocessing of Algorithm 3 is not for free and can be the bottleneck of its running time.
We will go into detail in the upcoming section where we compare all the algorithms we
suggest. The number of colors in the neighborhood of a vertex can be substantially lower
than its degree and thus can deliver a much better bound for the size of a clique containing
this vertex.

Amongst others, we randomly generated many large graphs with an average vertex degree
of 4 and 20, respectively, for our experiments in Section 7.3.3. For these graphs, the average
number of colors in the neighborhood of the vertices with an average degree of 4 is just 2
when applying one forward and one backward coloring. Moreover, the average number of
colors in the neighborhood of the vertices in graphs with an average vertex degree of 20
is 7. Even in the graph in Figures 7.2-7.4, which has only 13 vertices, we have significant
deviations, see Table 7.2.

We have deduced two types of changes that can be implemented to strengthen three of five
prunings in Algorithm 1. The first one is to still consider some kind of degree of each vertex
while only taking neighbors with a higher index into account. This is possible because of
the ordering in which clique candidates are enumerated. Thus, Algorithm 2 works correctly.
The second type of changes, which we made to formulate Algorithm 3, is to use stronger
bounds for each vertex than the degree bounds. An upper bound for some vertex relies on
the number of different colors assigned to all of its neighbors. Clearly, both modifications
can be combined.

For each vertex in the graph in Figures 7.2-7.4, we compare the number of different
colors in its upper neighborhood with its upper degree, that we use for Algorithm 2, and
only consider cliques where the current vertex has the lowest index.

The bounds ubl’, ub2’, and ub3d’, respectively, in Table 7.3 arise from the forward, the
backward, and the optimal coloring in Figures 7.2, 7.3, and 7.4. Each of these bounds is
defined as the number of different colors that are used for the vertex itself and the vertices
in its upper neighborhood. The size of a largest clique containing vertex v;, i € {1,...,13},
and only vertices in its upper neighborhood is given in the last row of Table 7.3. Observe
that the upper degree bound is tight for vertices vo, v4, vg, . . ., v13, but not for the remaining
vertices. The bound ub3’ from the optimal coloring is tight except for v;. Choosing the
best bound from ubl’ and ub2’ yields a tight bound for every vertex. Obviously, the quality

98

V1 | V2 | V3 | Vg | VU5 | Vg | U7 | Vg | V9 | V1o | V11 | V12 | V13

upper degree 6124242223 3 1 2 1
ubl’ 21213121322 |2]3] 3 1 2 1

ub?2’ 51213124 (2]2|2]3] 3 1 2 1
min{ubl’, ub2'} 212131213 2]2|2]3] 3 1 2 1
ub3d’ 31213123 |2]2|2]3] 3 1 2 1

largest clique size 212131213 2]2|2]3] 3 1 2 1
with upper neighbors

Table 7.3: Bounds for the size of a largest clique where v; is the vertex with the lowest index, arising from
the greedy colorings in Figures 7.2, 7.3, and 7.4.

depends on the graph structure and we only use a tiny graph for illustration here. However,
it prompts us to apply this strategy when solving large instances.

Definition 7.6. Let the vertices of G be colored by one or more greedy colorings. The
number of colors in the upper neighborhood of vertexr v; € V, denoted by nen'(v;), is the
minimal number of different colors that are assigned to vertices in the upper neighborhood
N(vi)) N {vix1,...,vn} of vertex v; among all greedy colorings performed.

As a preprocessing of Algorithm 4 we have to perform one or more greedy colorings. For
each vertex v;, we just have to count how many different colors are assigned to vertices in
the set {vit1,...,v,}.

The information type of the upper degree and the number of colors in the upper neigh-
borhood is the same: It provides us a bound on how many neighbors of a vertex with a
higher index can be concurrently present in a clique together with the vertex itself. Thus,
we can simply replace every deg! by nen' in Algorithm 2 to obtain Algorithm 4.

99

Algorithm 4

A modification of Algorithm 1 that uses the number of colors in the upper neighborhood of
vertices for prunings whenever possible.

Input: G = (V, E), lower bound 1b

Output: Size of a maximum clique

1: procedure MAXCLIQUE(G, Ib)

2 maz < lb

3 for i =1 ton do

4 if nen'(v;) > max then > Pruning 1
5: U«

6 k<1

7 for each v; € N(v;) do

8 if 7 > ¢ then > Pruning 2
9: if &+ nch('Uj) > max then > Pruning 3
10: U+~UU {Uj}

11: k< k+1

12: CLIQUE(G,U, 1)

1. procedure CLIQUE(G, U, size)

2 if U =0 then

3 if size > max then

4 mazx < size

5: return

6 while |U| > 0 do

7 if size + |U| < max then > Pruning 4
8 return

9: vj < argmin{i: v; € U}
10: U+ U\{v;}
11: N 0
12: k<1
13: for each v; € N(v;) do
14: if [> j then > Pruning ba
15: if size + k +nen'(v) > max then > Pruning 5b
16: N+ N'U{y}
17: k+—k4+1
18: CLIQUE(G,U N N',size + 1)

100

7.3.3 Computational results

We already mentioned that the running time of a maximum clique algorithm highly depends
on the implementation technique. It should be pointed out that the source code of most
of the existing maximum clique algorithms in literature is insofar optimized as it uses fast
programming languages and appropriate techniques for accessing and saving data. The
goal of our computational study is to compare Algorithm 1 of Pattabiraman et al. (2013)
with our three modified Algorithms 2, 3, and 4 under fair conditions. Therefore, we have
implemented Algorithms 1-4 in Python and use the package NetworkX, see Hagberg et al.
(2008), for accessing and saving information of the graph.

When reading a graph from a file, we initially transform the information into an ordered
adjacency list. This process has almost no influence on the total running time. Of course,
the preprocessing, which has to be made to compute the upper degree for Algorithm 2,
the number of colors in the neighborhood for Algorithm 3, and the number of colors in
the upper neighborhood for Algorithm 4, might possibly be a crucial factor for the total
running time. Notice that we apply one forward and one backward coloring with respect to
the vertex order, when determining the number of colors in the (upper) neighborhood.

To have a representative set of large and sparse test instances, we randomly generated test
instances with the graph generator gnm_random_graph from NetworkX with fixed parame-
ters n and m. The parameter n takes several values between 1,000 and 50,000. Sparsity is
controlled by choosing m such that the expected average vertex degree is at most 20. A con-
sequence of this choice is that w(G) = 3 for most of the graphs and w(G) = 4 for the others.
Our study additionally includes nine test instances from the 2nd DIMACS Implementation
Challenge, which are relatively sparse.

Besides comparing the running time, we count the number of vertices that can be pruned
by Pruning 1 for each of the algorithms we consider. This should give us an impression of
how strong the respective pruning is. It is not very meaningful to count the vertices pruned
by Pruning 3 and 5 because they are not independent of Pruning 1. Whenever we prune
at an early stage, a lot of candidates for later prunings are eliminated.

For each pair of parameters n and m, ten test instances are randomly generated. Table 7.4
includes the average CPU times in seconds and the average numbers of nodes in the search
tree that are pruned during the enumeration process by Pruning 1. Moreover, the average
CPU times for Algorithms 3 and 4, respectively, without the running times consumed by
the preprocessing are presented in columns Algo3* and Algo4*. The reason to display them
separately is that Algorithms 3 and 4 get relatively slow on larger instances. Whenever an
algorithm is the fastest among Algorithms 14, its running time in the respective column is
given in bold numbers.

We can see that Algorithm 2 is the fastest one in every test set of ten instances. It is
many times faster than Algorithm 1 for every pair of parameters n and m. Unfortunately,
Algorithms 3 and 4 are not competitive against the others, although the prunings are much
stronger, which is indicated by the number nodes in the search tree pruned by Pruning
1 in the last four columns of the table. Their total running times are many times higher
than those of Algorithms 1 and 2, which is caused by computing the coloring-based bounds.

101

CPU (s) Pruning 1 nodes

n m Algol | Algo2 Algo3 Algod || Algo3* | Algod* Algol | Algo2 | Algo3 | Algo4
1,000 5,000 0.10 | 0.03 0.32 0.36 0.04 0.04 3 298 31 482
1,000 | 10,000 0.33 | 0.06 0.67 0.72 0.13 0.13 0 194 0 343
2,000 5,000 0.05 | 0.02 0.65 0.72 0.06 0.07 247 | 1,128 | 1,122 | 1,716
2,000 10,000 0.17 0.03 1.16 1.26 0.04 0.04 5 603 67 980
2,000 | 20,000 0.67 | 0.11 2.21 2.41 0.12 0.10 0 383 0 661
5,000 10,000 0.08 0.03 3.09 3.47 0.06 0.07 1,158 3,287 3,800 4,600
5,000 | 20,000 0.28 | 0.07 5.72 6.42 0.10 0.10 69 | 1,872 635 | 3,054
5,000 | 50,000 1.75 | 0.22 13.45 14.77 0.29 0.23 0 784 0| 1,243
10,000 | 20,000 0.17 | 0.07 12.45 14.01 0.12 0.14 2,357 | 6,600 | 7,668 | 9,280
10,000 | 50,000 091 | 0.16 28.37 31.60 0.16 0.15 28 | 3,007 368 | 4,914
10,000 | 100,000 3.81 | 0.47 54.48 60.40 0.58 0.44 0| 1,499 0| 2,353
20,000 | 50,000 0.50 | 0.15 60.95 67.90 0.11 0.15 2,449 | 11,275 | 11,261 | 17,142
20,000 | 100,000 1.95 0.33 114.95 128.61 0.37 0.34 57 5,983 716 9,809
20,000 | 200,000 8.14 | 1.03 221.92 249.03 1.32 1.00 0| 3,007 1] 4,725
50,000 | 100,000 0.99 | 0.43 332.87 372.26 0.23 0.29 || 11,709 | 32,976 | 38,378 | 46,406
50,000 | 200,000 335 | 0.74 677.56 753.80 0.59 0.56 665 | 18,661 | 6,423 | 30,659
50,000 | 500,000 || 22.14 | 3.00 | 1,669.73 | 1,902.06 3.52 2.64 0| 7,486 1| 11,764

Table 7.4: For randomly generated instances with fixed n and m, the average running times and the average
numbers of nodes in the search tree pruned by Pruning 1 over ten instances are presented.

Although there is potential for improvements by more efficient implementation techniques, it
is very unlikely to keep up with the two algorithms that are based on degree prunings. Even
if the preprocessing time would be 0 for Algorithms 3 and 4, they would not be significantly
faster than Algorithm 2 when applied to our set of test instances.

The question arises whether Algorithms 3 and 4 are useless in practice. Algorithm 1 is fast
on massive sparse graphs and, like our suggested modified algorithms, easy to implement.
We constructed an improved version, denoted by Algorithm 2, via substituting degree prun-
ings by upper degree prunings. If the underlying graph is more dense, Algorithms 1 and 2
get slower in general and coloring-based prunings may be much stronger than degree-based
prunings. Moreover, the preprocessing times of Algorithms 3 and 4 highly depend on the
number of vertices.

CPU (s) Pruning 1 nodes

Instance n m w(G) Algol Algo2 | Algo3 | Algod || Algol | Algo2 | Algo3 | Algod
c-fat200-1 200 1,534 12 0.01 | < 0.01 0.03 0.03 0 148 199 199
c-fat200-2 | 200 | 3,235 24 0.06 0.01 0.05 0.05 0 144 199 199
c-fat200-5 | 200 | 8,473 58 13.69 2.1 3.58 0.22 0 134 0 173
c-fat500-1 500 4,459 14 0.04 | < 0.01 0.14 0.17 0 399 499 499
c-fat500-2 | 500 | 9,139 26 0.33 0.05 0.28 0.34 0 359 499 499
c-fat500-5 | 500 | 23,191 64 63.26 9.77 0.74 0.82 0 337 499 499
p-hat300-1 | 300 | 10,933 8 10.47 0.74 1.45 0.95 0 28 0 56
p-hat500-1 | 500 | 31,569 9 178.88 12.53 24.00 12.94 0 43 0 75
p-hat700-1 | 700 | 60,999 11 957.16 69.99 | 127.70 | 69.65 0 56 0 99

Table 7.5: Instances from the 2nd DIMACS Implementation Challenge.

102

Table 7.5 includes DIMACS benchmark graphs with less than 1,000 vertices. These graphs
are synthetically constructed and contain (very) large cliques. The instance with the smallest
maximum clique among the instances from Table 7.5 is p_hat300-1 with w(G) = 8. For c-
fat500-5, which is the instance with the largest maximum clique, we have w(G) = 64. We
observe again that Algorithm 2 is many times faster than Algorithm 1 on every instance.
Interestingly, there are instances where Algorithms 3 and 4 are much faster. The largest
clique numbers among the instances we consider are 58 and 64, respectively, for c-fat200-5
and c-fat500-5. In both cases, Algorithm 4 is about ten times faster than Algorithm 2.

To draw a conclusion, our suggested Algorithm 2 works very well when applied to massive
sparse graphs. Having graphs with less vertices and a higher density, computing bounds
nen'(v) for every vertex v € V seems to be worthwhile. Then we prefer Algorithm 4, which
is given by substituting every deg! by nen' in Algorithm 2.

103

Chapter

Conclusion

In this thesis, we have presented new extended formulations for several optimization prob-
lems. Besides proving their correctness, computational experiments for some of them have
been performed to illustrate their strength or to compare the running time for solving them
to the running time of previously known formulations. Moreover, we were able to improve
a fast branch-and-bound algorithm for the maximum clique problem on very large sparse
graphs, which is simple to implement and hence predestined for practical use.

Some relaxations for the maximum stable set problem, such as the odd cycle polytope and
the 1-wheel polytope, can contain exponentially many inequalities that can be separated
in polynomial time. Then, a polynomial size extended formulation allows for optimizing
over the original exponential size formulation. An extended formulation of the odd cycle
polytope was given by Yannakakis (1991). We have introduced an alternative extended
formulation which has less inequalities and is faster in practice. Every instance in our
set of test instances was solved in no more than 212 seconds with our new formulation,
whereas some instances have not been solved within our time limit of an hour with the old
formulation. Moreover, we achieved average time savings of 24% over all test instances that
were solved by both formulations within the time limit. For the 1-wheel polytope of the
maximum stable set problem, that contains the odd and even 1-wheel inequalities, we have
presented the first compact extended formulation. It is based on the separation algorithm
of de Vries (2015). Furthermore, we have shown how to construct an extended formulation
based on the separation algorithm of Cheng and Cunningham (1997), which is competitive
on very dense graphs.

The A-odd cycle inequalities of the Boolean Quadric Polytope (BQP) can be used to
obtain a very strong relaxation of the nonconvex quadratic program with box constraints
(BoxQP). We have shown how to construct a tight compact extended relaxation for the
BoxQP by strengthening a weak linear relaxation for the BoxQP with our extended for-
mulation for the A-odd cycle inequalities. For illustration, we performed computational
experiments on a large benchmark set.

The odd cycle relaxation for the p-median problem contains the directed odd cycle in-

105

equalities and it is known to be integral if the underlying graph has specific properties. In
this case, one is able to solve the p-median problem in polynomial time. Therefore, we have
constructed an extended formulation of the polytope that contains all directed odd cycle
inequalities.

In the last part of this thesis, we have studied and improved an enumerative branch-and-
bound algorithm for the maximum clique problem, which is fast for very large sparse graphs.
We suggested three modifications and observed that one of them is many times faster than
the original version. The two remaining versions are based on bounds that originate from
greedy colorings instead of using degree based bounds. We prefer them if the underlying
graph has less vertices and a higher density.

106

Bibliography

Abello, J., Pardalos, P. M., and Resende, M. G. C. (1999). On maximum clique problems
in very large graphs. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 50: 119-130.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Applications
and Algorithms. Prentice-Hall, Upper Saddle River, New Jersey.

Alvarez-Hamelin, J. 1., Dall’Asta, L., Barrat, A., and Vespignani, A. (2005). k-core
decomposition: A tool for the visualization of large scale networks. arXiv preprint
arXiv:cs/0504107.

Arman, A. and Tsaturian, S. (2017). The maximum number of cycles in a graph with fixed
number of edges. arXiv preprint arXiv:1702.02662.

Babel, L. (1991). Finding maximum cliques in arbitrary and in special graphs. Computing,
46(4): 321-341.

Bagnara, R., Hill, P. M., Zaffanella, E., and Bagnara, A. (2016). Parma Polyhedra Library
1.2 User’s Manual. Samurai Media Limited, United Kingdom.

Baiou, M. and Barahona, F. (2008). On the p-median polytope of Y-free graphs. Discrete
Optimization, 5(2): 205-219.

Baiou, M. and Barahona, F. (2011). On the linear relaxation of the p-median problem.
Discrete Optimization, 8(2): 344-375.

Baiou, M. and Barahona, F. (2016). On the p-median polytope and the directed odd cycle
inequalities: Triangle-free oriented graphs. Discrete Optimization, 22: 206-224.

Baiou, M., Beaudou, L., Li, Z., and Limouzy, V. (2013). Hardness and algorithms for
variants of line graphs of directed graphs. In International Symposium on Algorithms and
Computation, 196-206. Springer.

Barahona, F. and Mahjoub, A. R. (1986). On the cut polytope. Mathematical programming,
36(2): 157-173.

107

Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum clique
problem. In Handbook of Combinatorial Optimization, 1-74. Springer.

Bonami, P., Giinliik, O., and Linderoth, J. (2018). Globally solving nonconvex quadratic
programming problems with box constraints via integer programming methods. Mathe-
matical Programming Computation, 10(3): 333-382.

Boros, E., Crama, Y., and Hammer, P. L. (1992). Chvétal cuts and odd cycle inequalities
in quadratic 0-1 optimization. STAM Journal on Discrete Mathematics, 5(2): 163-177.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9): 575-577.

Burer, S. (2010). Optimizing a polyhedral-semidefinite relaxation of completely positive
programs. Mathematical Programming Computation, 2(1): 1-19.

Burer, S. and Vandenbussche, D. (2009). Globally solving box-constrained nonconvex
quadratic programs with semidefinite-based finite branch-and-bound. Computational Op-
timization and Applications, 43(2): 181-195.

Caprara, A. and Fischetti, M. (1996). {0, 1/2}-Chvatal-Gomory cuts. Mathematical Pro-
gramming, 74(3): 221-235.

Carr, R. D. and Lancia, G. (2002). Compact vs. exponential-size LP relaxations. Operations
Research Letters, 30(1): 57-65.

Carraghan, R. and Pardalos, P. M. (1990). An exact algorithm for the maximum clique
problem. Operations Research Letters, 9(6): 375-382.

Cheng, E. (1998). Separating subdivision of bicycle wheel inequalities over cut polytopes.
Operations Research Letters, 23(1-2): 13-19.

Cheng, E. and Cunningham, W. H. (1997). Wheel inequalities for stable set polytopes.
Mathematical Programming, 77(2): 389-421.

Cheng, E. and de Vries, S. (2002). Antiweb-wheel inequalities and their separation problems
over the stable set polytopes. Mathematical Programming, 92(1): 153-175.

Chvétal, V. (1975). On certain polytopes associated with graphs. Journal of Combinatorial
Theory, Series B, 18(2): 138-154.

Conforti, M., Cornuéjols, G., and Zambelli, G. (2010). Extended formulations in combina-
torial optimization. 4OR, 8(1): 1-48.

Coniglio, S. and Gualandi, S. (2014). On the exact separation of rank inequalities for the
maximum stable set problem. http://www.optimization-online.org/DB_HTML/2014/
08/4514 .html. Accessed: 2020-05-11.

108

de Vries, S. (2015). Faster separation of 1-wheel inequalities by graph products. Discrete
Applied Mathematics, 195: 74-83.

de Vries, S., Friedrich, U., and Perscheid, B. (2019). An extended formulation for the
1-wheel inequalities of the stable set polytope. Networks, 75(1): 86-94.

de Vries, S. and Perscheid, B. (2019). Tight compact extended relaxations for
nonconvex quadratic programming problems with box constraints. http:///www.
optimization-online.org/DB_HTML/2019/09/7360.html. Accessed: 2020-05-11.

de Vries, S. and Perscheid, B. (2020). A smaller extended formulation for the odd cycle in-
equalities of the stable set polytope. http://www.optimization-online.org/DB_HTML/
2019/09/7365.html. Accessed: 2020-05-11.

Diestel, R. (2010). Graphentheorie. Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1): 269-271.

Even, S. (2012). Graph Algorithms. Cambridge University Press.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to NP-
completeness. WH Freeman and Company, San Francisco.

Gerards, A. M. and Schrijver, A. (1986). Matrices with the Edmonds—Johnson property.
Combinatorica, 6(4): 365-379.

Giandomenico, M. and Letchford, A. N. (2006). Exploring the relationship between max-cut
and stable set relaxations. Mathematical Programming, 106(1): 159-175.

Giandomenico, M., Letchford, A. N., Rossi, F., and Smriglio, S. (2009). An application of the
Lovész—Schrijver M(K,K) operator to the stable set problem. Mathematical Programming,
120(2): 381-401.

Giandomenico, M., Rossi, F., and Smriglio, S. (2013). Strong lift-and-project cutting planes
for the stable set problem. Mathematical Programming, 141(1-2): 165-192.

Goemans, M. X. and Myung, Y.-S. (1993). A catalog of Steiner tree formulations. Networks,
23(1): 19-28.

Gollub, M. G., Dubé, R., Sommer, H., Gilitschenski, I., and Siegwart, R. (2017). A par-
titioned approach for efficient graph—based place recognition. In Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst./Workshop Planning, Perception Navigat. Intell. Veh.

Golumbic, M. C. (2004). Algorithmic Graph Theory and Perfect Graphs. Elsevier.

Gross, J. L. and Yellen, J. (2004). Handbook of Graph Theory. CRC press.

109

Gross, J. L. and Yellen, J. (2005). Graph Theory and its Applications. CRC press.

Grotschel, M., Lovész, L., and Schrijver, A. (1981). The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2): 169-197.

Grotschel, M., Lovasz, L., and Schrijver, A. (1988). Geometric Algorithms and Combinato-
rial Optimization. Springer.

Grotschel, M. and Pulleyblank, W. R. (1981). Weakly bipartite graphs and the max-cut
problem. Operations Research Letters, 1(1): 23-27.

Hagberg, A., Swart, P., and Schult, D. (2008). Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Laboratory, New
Mexico. https://www.osti.gov/biblio/960616. Accessed: 2020-05-11.

Hammack, R., Imrich, W., and Klavzar, S. (2011). Handbook of Product Graphs. CRC
press.

Hoffman, K. L. and Padberg, M. (1993). Solving airline crew scheduling problems by
branch-and-cut. Management Science, 39(6): 657-682.

Husfeldt, T. (2015). Graph colouring algorithms. arXiv preprint arXiv:1505.05825.

Johnson, D. J. and Trick, M. A. (1996). Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathe-
matical Society, USA.

Johnson, D. W. (1974). Worst case behavior of graph coloring algorithms. In Proceedings of
the 5th Southeast Conference on Combinatorics, Graph Theory, and Computing, 513-527.

Jungnickel, D. (2013). Graphs, Networks, and Algorithms. Springer.

Kaibel, V. (2011). Extended formulations in combinatorial optimization. arXiv preprint
arXiv:1104.1025.

Kaibel, V., Lee, J., Walter, M., and Weltge, S. (2016). Extended formulations for indepen-
dence polytopes of regular matroids. Graphs and Combinatorics, 32(5): 1931-1944.

Kariv, O. and Hakimi, S. L. (1979). An algorithmic approach to network location problems.
I: The p-centers. SIAM Journal on Applied Mathematics, 37(3): 513-538.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer
Computations, 85—-103. Springer.

Kong, J. and Janezi¢, D. (2007). An improved branch and bound algorithm for the maximum
clique problem. MATCH Communications in Mathematical and in Computer Chemistry,
58: 569-590.

110

Koster, A. M., Zymolka, A., and Kutschka, M. (2009). Algorithms to separate {0, 1/2}-
Chvétal-Gomory cuts. Algorithmica, 55(2): 375-391.

Lancia, G. and Serafini, P. (2011). An effective compact formulation of the max cut problem
on sparse graphs. FElectronic Notes in Discrete Mathematics, 37: 111-116.

Lancia, G. and Serafini, P. (2014). Deriving compact extended formulations via LP-based
separation techniques. 4JOR, 12(3): 201-234.

Lovész, L. and Schrijver, A. (1991). Cones of matrices and set-functions and 0—1 optimiza-
tion. SIAM Journal on Optimization, 1(2): 166-190.

Martin, R. K. (1991). Using separation algorithms to generate mixed integer model refor-
mulations. Operations Research Letters, 10(3): 119-128.

Matula, D. W., Marble, G., and Isaacson, J. D. (1972). Graph coloring algorithms. In
Graph Theory and Computing, 109-122. Elsevier.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex pro-
grams: Part I — convex underestimating problems. Mathematical Programming, 10(1):
147-175.

Meghanathan, N. (2015). Distribution of maximal clique size of the vertices for theoretical
small-world networks and real-world networks. arXiv preprint arXiv:1508.01668.

Meghanathan, N. (2016). Correlation analysis between maximal clique size and centrality
metrics for random networks and scale-free networks. Computer and Information Science,
9(2): 41-57.

Mitchem, J. (1976). On various algorithms for estimating the chromatic number of a graph.
The Computer Journal, 19(2): 182-183.

Moon, J. W. and Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics,
3(1): 23-28.

Nemhauser, G. L. and Sigismondi, G. (1992). A strong cutting plane/branch-and-bound
algorithm for node packing. Journal of the Operational Research Society, 43(5): 443-457.

Nemhauser, G. L. and Trotter, L. E. (1974). Properties of vertex packing and independence
system polyhedra. Mathematical Programming, 6(1): 48-61.

()stergérd, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120(1-3): 197-207.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathematical
Programming, 5(1): 199-215.

111

Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, W.-k., and Choudhary,
A. (2013). Fast algorithms for the maximum clique problem on massive sparse graphs. In
International Workshop on Algorithms and Models for the Web-Graph, 156-169. Springer.

Prosser, P. (2012). Exact algorithms for maximum clique: A computational study. Algo-
rithms, 5(4): 545-587.

Rebennack, S., Oswald, M., Theis, D. O., Seitz, H., Reinelt, G., and Pardalos, P. M. (2011).
A branch and cut solver for the maximum stable set problem. Journal of Combinatorial
Optimization, 21(4): 434-457.

Reese, J. (2006). Solution methods for the p-median problem: An annotated bibliography.
Networks, 48(3): 125-142.

Rosgen, B. and Stewart, L. (2007). Complexity results on graphs with few cliques. Discrete
Mathematics and Theoretical Computer Science, 9(1).

Rossi, F. and Smriglio, S. (2001). A branch-and-cut algorithm for the maximum cardinality
stable set problem. Operations Research Letters, 28(2): 63-74.

Rossi, R. A., Gleich, D. F., Gebremedhin, A. H., and Patwary, M. M. A. (2014). Fast
maximum clique algorithms for large graphs. In Proceedings of the 23rd International
Conference on World Wide Web, 365-366.

San Segundo, P., Lopez, A., Artieda, J., and Pardalos, P. M. (2017). A parallel maximum
clique algorithm for large and massive sparse graphs. Optimization Letters, 11(2): 343—
358.

San Segundo, P., Lopez, A., and Pardalos, P. M. (2016). A new exact maximum clique
algorithm for large and massive sparse graphs. Computers & Operations Research, 66:
81-94.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons.

Schrijver, A. (2003). Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer Science & Business Media.

Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3):
269-287.

Tomita, E. and Seki, T. (2003). An efficient branch-and-bound algorithm for finding a
maximum clique. In International Conference on Discrete Mathematics and Theoretical
Computer Science, 278-289. Springer.

Trotter, L. E. (1975). A class of facet producing graphs for vertex packing polyhedra.
Discrete Mathematics, 12(4): 373-388.

112

Tutte, W. T. (2001). Graph Theory, Reprint of the 1984 Original, volume 21. Cambridge
University Press.

Vandenbussche, D. and Nemhauser, G. (2005). A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Mathematical Programming, 102(3): 559-575.

Verma, A., Buchanan, A., and Butenko, S. (2015). Solving the maximum clique and vertex
coloring problems on very large sparse networks. INFORMS Journal on Computing, 27(1):
164-177.

Walteros, J. L. and Buchanan, A. (2018). Why is maximum clique often easy in prac-
tice? http://www.optimization-online.org/DB_HTML/2018/07/6710.html. Ac-
cessed: 2020-05-11.

Yannakakis, M. (1991). Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43: 441-466.

Yu, T. and Liu, M. (2017). A linear time algorithm for maximal clique enumeration in large
sparse graphs. Information Processing Letters, 125: 35—-40.

Ziegler, G. M. (2007). Lectures on Polytopes, Updated Seventh Printing. Springer.

113

