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0 Introduction

In differential geometry, smooth manifolds can be classified according to their de Rham
cohomology classes, which also provide topological information of the manifold. The aim
of this dissertation is to study the de Rham cohomology for foliated differential forms
of a smooth foliated manifold and to develop tools for the computation of the so called
foliated de Rham cohomology. Among these results, there is a Kiinneth formula for
foliated de Rham cohomology ([Ber11]), which states a connection of the foliated de Rham
cohomology of the product foliation on the product manifold of foliated manifolds with
the cohomology of its factors. Trying to relax the requirements of this theorem leads us to
the SK-Theory, developed by D. Vogt to investigate the splitting of exact sequences in the
category of Fréchet spaces. We show that the Cartan-differential is an SK-homomorphism
by using strictness of projective spectra. Unfortunately, this proof does not transfer to the
foliated Cartan-differential in general, which would be required for a generalization of the
Kiinneth formula. At least, there is a sufficient condition to guarantee that the foliated
Cartan-differential is an SK-homomorphism.

To achieve these results, an interaction of different mathematical areas is needed. The
reader should have a basic understanding of category theory and functors. Apart from
that, knowledge about topology, differential geometry, homological algebra and functional
analysis is recommended. Anyhow, we are making an effort to explain everything for a
reader, who has no extensive background.

Let us begin with a motivation and an overview of each chapter. Some definitions
are mentioned, without being written out in detail, to give the reader a first impression of
the presented theories. For details we always refer to the considered chapter.

We start with the definition of smooth manifolds and smooth maps between smooth
manifolds in the preliminaries. Without further saying, all manifolds are assumed to be
connected. After that, we introduce smooth vector bundles and smooth sections in chapter
2, which are frequently used in differential geometry. The most elementary smooth vector
bundle is the tangent bundle of a smooth manifold. Smooth sections of the tangent bundle
are precisely vector fields. Further important examples of vector bundles are constructed
out of the tangent bundle, for example the cotangent bundle or the alternating k-tensor
bundle of the tangent bundle. The sections of this bundle are differential k-forms, which
are probably the most interesting objects in differential geometry. One can imagine
differential k-forms at each point of a smooth manifold as a signed (sub-)volume function
acting on k£ many tangent vectors of the tangent space at the considered point. There is
also the Cartan differential d, which is a linear map that sends a differential k-form to
some k + 1-form. Since the composition d o d is always zero, the Cartan differential is a
coboundary operator of the cochain complex given by differential k-forms. It therefore
allows the definition of the de Rham cohomology.

Thus, concerned by the wideness of applications of smooth vector bundles and sections,
we study them mostly abstractly in chapter 2. A smooth R-vector bundle of rank N
consists of a smooth surjective map m : £ — M between smooth manifolds such that all



preimages E, := 7 '({z)} are N-dimensional R-vector spaces and all points x € M have
a smooth local trivialization, which is a certain diffeomorphism, defined on some open
neighbourhood U of z onto U x RY. In 2.1, we define morphisms between smooth vector
bundles and form the category of smooth vector bundles. We deduce a local representation
of vector bundle morphisms and show that a transition function between smooth local
trivializations is also smooth.

Next, we introduce smooth sections and frames of smooth vector bundles in 2.2. A smooth
local section of a vector bundle 7 : £ — M is a smooth right inverse ¢ : U — E of
the projection map m, defined on some open U C M, i.e. m o 0 = idy. An ordered tuple
(01,...,0n) of smooth local sections o; : U — E is called a frame, if o4(z),...,on(2)
form a basis of E, for all x € U. An equivalent condition for smooth vector bundles on
frames instead of smooth local trivializations follows. A frame allows locally a unique
representation of a local section and similar to a change of basis in linear algebra, there
is change of frames between frames over the same open set. Locally, smooth sections are
isomorphic as vector spaces to smooth functions. Later, we will use this isomorphism to
define a topology on the local (and also global) sections, which will make the space of
sections into a Fréchet space.

Chapter 2.3 is dedicated to the constructions of smooth vector bundles. The main tool for
the verification of a smooth vector bundle is the Vector Bundle Construction Lemma. We
introduce the subbundle of a smooth vector bundle and the quotient bundle of a smooth
vector bundle by a subbundle. Whereas the definition of a subbundle easily implies that
it is a smooth vector bundle, the verification of the quotient bundle as a smooth vector
bundle is more subtle and involves the Vector Bundle Construction Lemma. To construct
more vector bundle from old ones, we adopt an abstract approach from [Eur| and [Tan14],
where the vector bundles are induced by so called manifold-enriched functors. As an
application, we obtain that the dual bundle and the (alternating) k-tensor bundle of a
smooth vector bundle is also a smooth vector bundle.

We consider the category VB, of smooth vector bundles over a fixed base space M in
2.4 and remark that it is not an abelian category. After classifying the homomorphisms
in VB, we define a short exact sequence of smooth vector bundle over M. If one of the
equivalent assertions of the Splitting Lemma is satisfied, we say that the exact sequence
splits. By the previous work, we can show that every short exact sequences of vector
bundles over the same base space M splits.

In 2.5 we want to build a functor from VB, to Fréchet, the category of Fréchet spaces
with continuous and linear maps by assigning the space of smooth sections to a given
smooth vector bundle over M. So first of all, we equip the space of smooth sections
I'(M, E) with a directed system of seminorms such that it becomes a Fréchet space. This
structure is induced locally by the Fréchet space of smooth functions in Euclidean space.
We also provide certain continuity criteria to obtain the continuity of the pushforward
fe : (M, E) - T'(M,F), 0 — foo of asmooth vector bundle M-morphism f : £ — F.
Therefore, the section functor is indeed a covariant functor from VB,; to Fréchet. It
is also an exact functor, i.e. a short exact sequence of vector bundles is send to a short
exact sequence of Fréchet spaces, which also splits by functoriality since the short exact



sequences of vector bundles over M splits. We end up this chapter by an isomorphism
between the section of a quotient bundle and the quotient space of the spaces of sections,
which will be used later to show that two alternative definitions of foliated differential
forms are isomorphic.

We proceed with the main chapter 3 about foliated differential forms and foliated
cohomologies. Foliated manifolds generalize the concept of manifolds in the sense that
each manifold M can be made into a foliated manifold by its one leaf foliation F = {M}.
In general, a smooth (p, q)-foliated manifold is a smooth manifold M together with
a foliation F = {L,}aecwr on M, which is a decomposition of M into connected and
disjoint p-dimensional submanifolds L, called leaves. The foliation is locally modelled
on the decomposition of an open V' x W C RP x R? into its cosets V' x {¢} where ¢ runs
through W. Besides the trivial one leaf foliation, there is also always the discrete foliation
F ={{z}:xz € M} by points of M.

Foliations are closely related to the solvability of systems of first-order differential
equations. For instance, the integral manifolds of a non-vanishing vector field X, which
are the images of the integral curves of X, are forming a (1,n — 1)-foliation on an
n-dimensional manifold M. Here, an integral curve of a vector field X on M (passing
through x € M) is a smooth map u : I — M satisfying v/(t) = X, on some open
interval I (and u(ty) = x for some ¢, € I). Hence, integral curves are the solutions of a
system of first-order ordinary differential equations and their existence is guaranteed by
the Picard-Lindeldf Theorem. A non-vanishing vector field X on M is a global frame of an
one-dimensional subbundle of the tangent bundle of M, such that this subbundle is equal
to the so called foliated tangential subbundle of the foliation induced by X, given
by the disjoint union of the tangent spaces of the leaves of the foliation. More general,
consider pointwise linearly independent vector fields X!, ..., X? of M, where p < n. These
vector fields span a p-dimensional subbundle of TM, denoted by span{X?', ..., X?}. The
Frobenius Theorem states that there is an underlying smooth (p,n — p)-foliation F of
M such that its foliated tangential subbundle is equal to span{X?!, ..., X?} if and only
if this subbundle is inwvolutive. That means, for all smooth sections X and Y in the
subbundle E = span{X*, ..., X?} of TM, their Lie-bracket [X,Y]: M — TM, which is
pointwise defined to be the derivation' [X,Y|.(f) = Xo(Yo(f)) — Yo(Xo(f)) for x € M
and f € C>(M), is also a section in the subbundle E of TM or equivalently [X*, X7] can
be written as a linear combination of X!, ..., X? for all i # j. The involutivity condition
arises as a generalization of the commutativity of partial derivatives. In that case, the
underlying foliation F consists of the integral manifolds of X', ..., XP?, which are the
images of smooth maps v : W C RP — M on open domains W C RP solving the system
of first-order partial differential equations 2% (z) = X;(x) (1t =1,...,p). These connections
are illustrated in Examples 3.2.2.

We start in 3.1 with the definition of foliations and continue with transverse maps to
a foliation, which allows to pullback a foliation of the target manifold to produce more

1See 2.1.4 (3) for a definition of the tangent space as derivations.



examples of foliations by old ones. In particular, a smooth submersion is transverse to any
foliation on the target manifold and the pullback foliation of the discrete foliation yields a
foliation of the domain manifold, given by the connected components of the level sets of
the submersion. Locally, every foliation is of that type. For the existence of the pullback
foliation, we use the Local Submersion Theorem, which is based on the Inverse Function
Theorem. We list some examples of foliations.

Next, we want to define the foliated differential forms of a foliated manifold in 3.2. Recall,
the disjoint union of the tangent spaces of all leaves gives rise to a smooth subbundle T'F
of the tangent bundle of M, which is called the foliated tangential subbundle. Using
the constructions of chapter 2, we can build further vector bundles as the normal bundle,
which is the quotient bundle of the tangent bundle by the foliated tangential subbundle.
Moreover, we can define the dual bundle and more general the alternating k-tensor bundle
of the foliated tangential subbundle, which we call the foliated alternating k-tensor
bundle. As we clarify, it can be seen as a quotient bundle of the alternating k-tensor
bundle of the tangent bundle by a subbundle, called the k-annihilator of T F. This
observation gives rise to two alternative definitions of foliated differential forms, namely
the smooth sections of the foliated alternating k-tensor bundle and the quotient space of
differential forms by the subspace of sections of the annihilator of T'F, respectively. We
show that both constructions end up with isomorphic Fréchet spaces.

As differential forms can be better understood by the Cartan-differential, which allows
a local representation, we are also interested to obtain a similar exterior derivative for
foliated differential forms in 3.3. Aside from that, the Cartan-differential is used to
build the de Rham cohomology of manifolds, which we want to generalize for foliated
manifolds. The definition of the so called foliated Cartan-differential dr is based on
the differential of an R-valued smooth function defined on a smooth manifold and the
inclusion morphism iz : TJF — T'M of smooth vector bundles over M. The existence
and uniqueness of the foliated Cartan-differential is shown including the most important
properties of dr such as the commutativity with pullbacks of foliated maps, a local
representation and the coboundary property dr o dx = 0.

This allows the definition of the so called foliated de Rham cohomology in 3.4 similar
to the definition of the (classical) de Rham cohomology. By the coboundary operator
property, Im(d% ') C QF(M, F) is a subspace of the vector space Ker(d%) C QF(M, F),
such that we can define the kth foliated de Rham cohomology group of a foliated
manifold as the quotient space H*(M,F) = Ker(dy)/im(dk1). The term group is common
since in homological algebra (co)homologies classes are principally just groups, but we
are actually dealing with vector spaces. Because of dimensional reasons, we can conclude
that H*(M,F) = 0if k < 0 or k > p for a (p, q)-foliated manifold. Further, H°(M, F)
is the space of leafwise constant functions, i.e. the space of smooth R-valued functions
on M such that the restriction to any leaf is constant. For the product manifold of
connected smooth manifolds F' x T foliated by Fr(F) = {F x {t} : t € T}, we obtain
H(F x T, Fr(F)) = C>=(T), which is of course not a finite dimensional vector space. The
leafwise constant functions can vary on the transversal manifold. We proceed with induced
cohomology maps of smooth foliated maps, defined as the pullback of smooth foliated
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maps on the equivalence classes. Together with the assignment (M, F) — H¥(M,F),
we obtain a functor from the category FolMfld of smooth foliated manifolds with
smooth foliated maps to the category Vectr of R-vector spaces with linear maps, the so
called foliated de Rham functor. This yields the foliated diffeomorphism invariance
of the foliated de Rham cohomology, i.e. if f : (M,F) — (N,G) is a smooth foliated
diffeomorphism between smooth manifolds, then H*(M, F) = H*(N,G) for all k € N.
The classical de Rham cohomology is even a homotopy invariance. This is not true for
the foliated de Rham cohomology as we see in an example, even if the homotopy map is
foliated. Nevertheless, there is a stronger type of homotopy, called integrable homotopy,
which yields an invariance of the foliated de Rham cohomology. Two smooth foliated
maps f,g: (M,F) — (N,G) are integrable homotopic, if there is a smooth foliated map
H: (M xR, 7m(F)) = (N,G) such that H(z,t) = f(x)ift <0and H(z,t) =g(x)ift > 1
for all x € M. The important point is to consider the pullback foliation 7*(F) on M x R,
where m : M x R — M is the projection map, such that the leaves are given by {L£ x R}
for £ € F. As we have seen in the example before, the foliation {£ x {t} : £L € F,t € R}
on M x R does not yield a homotopy invariance. The proof of the integrable homotopy
invariance is then quite similar to the homotopy invariance of the de Rham cohomology. At
first, we show the existence of a homotopy operator h : Q*(M x R, 7*(F)) — QF1(M, F).
Then, we deduce that two smooth foliated maps which are integrable homotopic induce
the same cohomology maps between foliated de Rham cohomologies. Together with the
foliated de Rham functor, this gives the integrable homotopy invariance. We can use this
fact by proving a Poincaré Lemma for a star-shaped foliation by points. To be more
precise, let M be a star-shaped open subset of RP with center ¢ € M and N a smooth
manifold. Consider the M-foliation Fy(M) = {M x {y} : y € N} by points of N on
M x N, then {c} x N is an integrable deformation retract of (M x N, Fn(M)) and the
only non-zero foliated cohomology group is H*(M x N, Fx(M)) = C*°(N).

A very powerful tool to compute de Rham cohomologies is the Mayer-Vietoris Theorem,
which states a connection between the de Rham cohomology of a union U U V' and the
cohomologies of submanifolds U,V of some smooth manifold M as well as their inter-
section U NV ordered in a long exact sequence. We have to assume some transversality
conditions on the inclusion maps such that they become foliated maps and can conclude
a similar result for the foliated de Rham cohomology. However, open subsets satisfy
these assumptions. The long exact sequence is built from short exact sequences for each
k € N together with connecting maps obtained by the ZigZag Lemma (also known as
Snake Lemma). Once again, we consider the M-foliation Fy (M) by points of N on the
product manifold M x N, with the only assumption for M that it has a finite good
cover. A good cover consists of open sets such that all open sets and all finite non-empty
intersections of the cover are diffeomorphic to R™, if M is a manifold of dimension m.
Every smooth manifold has a good cover. If the manifold is compact, the good cover
may be chosen to be finite. The de Rham cohomology of a manifold, which has a finite
good cover, is finite dimensional. As we have seen, this is not the case for foliated de
Rham cohomology. Returning to the foliation Fn (M) on M x N, we can show with an
application of the Mayer-Vietoris Theorem that H*(M x N, Fx(M)) = H*(M) @ C*(N)
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for each £ € N, which generalizes the Poincaré Lemma for a star-shaped foliation by
points, since H°(M) = R and otherwise H*(M) = 0 for a star-shaped M by the (classical)
Poincaré Lemma. Since H*(S') = R for k = 0,1, we can easily compute the foliated
the Rahm cohomology of the torus T = S x S!, foliated by points of a circle, namely
H*(T? Fs:(SY)) = C°°(S?) for k =0, 1.

To achieve a generalization of the Mayer-Vietoris sequence that deals with more than two
open sets, we introduce the Cech complex, which is a cochain complex with a so called
cover operator ¢ as coboundary operator, depending on an open cover of (countably
many) sets and a presheaf. In short, a (Vectg-valued) presheaf 4 on a topological space X
is contravariant functor from the category Open(X) of open sets in X with inclusions as
morphisms to the category Vectr of R-vector spaces with linear maps. For instance, on a
smooth (foliated) manifold, there is the presheaf of (foliated) differential k-forms and the
presheaf of the kth (foliated) de Rham cohomology. Here, we need for the foliated versions
that the inclusion iy : U — M of an open subset U C M is transversal to any foliation F
on M, such that it becomes a foliated map iy : (U, Fly) — (M,F) with respect to the
pullback foliation F|; = 4f;(F). The Cech complex of an open cover U = (Uy)aecs with
values in the presheaf ¢ is defined by

¢
C%(Z/{,%) = H @G (ﬂ Uaj> for each ¢ € Ny.
j=0

ap<---<ay

Similar to the classical case of just smooth manifolds, we can show that the augmented
sequence of the Cech complex with values in the presheaf Ok of foliated differential k-
forms is exact, such that the Cech cohomology vanishes identically for this presheaf. The
two cochain complexes, the foliated de Rham complex and the Cech complex with values
in the presheaf Q% give rise to a double cochain complex, called the foliated Cech-de
Rham complex. As specified, one can build also a single cochain complex by forming the

discrete sums A7 = @ C*(U, Q%) over the anti-diagonal lines of the double complex and
k+e=j

setting Dw = 6w + (—1)*d%w for w € C*(U, Q%). We proceed with the generalized Mayer-
Vietoris principle, which tells us that the cohomology of the foliated Cech-de Rham complex
is isomorphic to the foliated de Rham cohomology. Analysing the proof and augmenting
the double complex by an initial row, we get by a consequence of the Poincaré Lemma for
a star-shaped foliation by points a further result for an underlying good cover: The Cech
cohomology with values in the presheaf of leafwise constant functions 45 of a good cover is
isomorphic to the Cech-de Rham cohomology and therefore also isomorphic to the foliated
de Rham cohomology. These isomorphisms does not seem to be explicitly discussed in the
literature. If one defines the Cech cohomology H*(M,%) of the whole manifold M as the
direct limit of the Cech cohomology of all covers, preordered by refinements, then we can
conclude by the previous result that H *(M,9%) is isomorphic to the foliated de Rham
cohomology since good covers are cofinal in the set of all covers of a manifold. Considering
the one leaf foliation of a smooth manifold, we also obtain these results for the (classical)
de Rham and Cech cohomologies.



In 3.6 we discuss the prospects of a Kiinneth formula for the foliated de Rham cohomology.
Formulas of the (co)homology of the product of two objects related to the (co)homologies
of the single objects are called a Kiinneth formula. The formula for the foliated the
Rham cohomology of (M x N, Fy(M)) suggests for foliated manifolds (M, F) and (N,¥):

HY(M x N,F x G)= @ H'(M,F)® H(N,G) for k € Ny
i+j=Fk

But as we remark, if the foliated cohomologies of both factors are not finite dimensional,
we have to substitute the algebraic tensor product ® by a topological tensor product @ in
order to expect a valid formula. Recall that the foliated de Rham cohomology was defined
as a quotient space of the kernel by the image according to the foliated Cartan-differential.
Only if dz has a closed image, the cohomology groups are Hausdorff and in particular a
Fréchet space, such that a topological tensor product can be defined. Fortunately, we are
actually dealing with nuclear Fréchet spaces in that case, such that the (in general different)
injective and projective topologies coincide on the algebraic tensor product. Nevertheless,
the image of dr is not closed in general as we see for the example of the Kronecker foliation
F, of the torus T? for a slope o which is a Liouville number. We compute the foliated de
Rham cohomologies in the cases of an irrational slope, which is a Liouville number or not.
We obtain H'(T?, F,) 2 R if « € R\ Q is not a Liouville number, but if « is a Liouville
number, H!(T? F,) is infinite-dimensional and non-Hausdorff, such that the image of dz,
is not closed, or equivalently dz, is no homomorphism. We present the Kiinneth formula in
two situations, which are shown in [Ber11]. The second version requires finite dimensionality
of the foliated de Rham cohomology of one factor and that the manifold of that factor is
compact. The proof uses a continuous right inverse of dx, which is guaranteed by a Splitting
Theorem in that case of an underlying compact manifold. d» would also have a continuous
right inverse, if one can show, that it is a so called SK-homomorphism. In that case, the
compactness of the underlying manifold is not required for the Kiinneth formula. We end
this chapter by presenting the Splitting theorems and the involved invariants (DN), (),
(DNloc) and (Qloc)'

As motivated in the third chapter, we are interested in the property of dz being an SK-
homomorphism in Chapter 4. In 4.1 we will introduce the SK-theory, developed by D. Vogt,
to investigate the splitting of exact sequences in the category Fréchet. In particular, we
are interested in the existence of a continuous linear right inverse of some continuous and
linear map between locally convex spaces. If that is the case, we observe a certain condition
in which the seminorm kernels play a central role. Hence, one is interested the induced
topology of the system of seminorm kernels, called the SK-topology. The observation
in the case of the existence of a continuous linear right inverse is then just the condition
to be a homomorphism with respect to the SK-topologies of the locally convex spaces,
which we will call an SK-homomorphism. We proceed with some compatibility properties
of the SK-topology and see in an example that the SK-topology of the quotient topology
can be strictly coarser than the quotient topology of the SK-topology. If the topologies
coincide on the quotient space formed by a closed subspace, this subspace is called an SK-
subspace and we give a characterization of that property. We prove that the k-annihilator
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of a foliated manifold is an SK-subspace of the space of differential k-forms, such that
the corresponding quotient map is an SK-homomorphism. Using the construction of the
foliated differential forms as quotient spaces, gives rise to an alternative foliated Cartan-
differential. Due to the fact that the composition g o f of SK-homomorphisms requires
Ker(g) € Im(f) to be also an SK-homomorphism, we can conclude, that the foliated
Cartan-differential dr : QF(M, F) — Q*F1(M, F) is an SK-homomorphism if the (k + 1)-
annihilator Q%'(M,F) is a subset of Im(d) C QF(M), the image of the (classical)
Cartan-differential and if d is an SK-homomorphism. Then we characterize d being an
SK-homomorphism and obtain a so called strictness condition on the kernel spectrum of
d, which we will verify later.

In 4.2 we introduce strictness of a general projective spectrum and also their projective
limits. A projective spectrum 2 = (X,,0") is a sequence (X, )nen of linear spaces
together with linear maps o)}, : X,, — X, the linking maps, satisfying o = idx, and
of oo = oF for k <n <m. 2 is called strict, if

Vne Ndm>nVl>m: o, (Xm) C oy (X).

Note that in that case, the subsets are actually equal by the linking map property. Hence,
one can think of the strictness condition to be a kind of eventual surjectivity of the linking
maps. The projective limit of a projective spectrum 2 is defined by

Proj(2") = {(l'n)neN € H X op(zy) = x, for all m > n}

neN

and we can characterize the strictness of 2" to the condition
VneNIm>n:o (X)) Co"(Proj(2)),

where ¢ : Proj(Z’) — X, denotes the projection onto the nth-component. Next we
investigate the effects of strict projective spectra in an exact sequence of projective spectra
for the remaining spectra. The image spectrum of a strict spectrum is also strict and if
the left and right projective spectrum is strict, then also the spectrum in the middle is
strict. To finally conclude, that the kernel spectrum of d is strict, it suffices to show the
strictness of the image spectrum of d and the strictness of the projective spectrum of de
Rham cohomology. The last strictness follows by a discrete Mittag-Leffler condition based
on the fact that for an open and relatively compact subset N of a smooth manifold M, the
restriction map ¢ : H*(M) — H¥(N) has finite dimensional image for each k € Ny. Here
we use a good cover of M, such that the compact closure N has a finite good cover and
the restriction ¢ factorizes through a finite dimensional de Rham cohomology. It should
be remarked that we can not transfer this result to foliated de Rham cohomology. Putting
everything together, we finally obtain that the kernel spectrum of d, the projective spectrum
of closed forms, is strict, such that d is indeed an SK-homomorphism. As explained before,
we can state the corollary, that dz : QF(M, F) — QF1(M, F) is an SK-homomorphism if
Qﬁr Y(M,F) C d(Q2*(M)) holds. We finish with a remark about the Cech cohomology of
leafwise constant functions, where we reject a nearby replacement for the finite dimensional
image of the restriction map ¢ between foliated de Rham cohomologies.



1 Preliminaries

Let X be a topological space. If X has a countable basis of topology, it is called second
countable. X is said to be locally Fuclidean of dimension n € N if for every point x € X
there is an open set U C X containing x, together with a homeomorphism ¢ : U — V
onto an open subset V' of R". In that case, (U, p) is called a chart. A second countable,
topological space with the Hausdorff property (different points can be separated by
disjunct neighbourhoods) that is locally Euclidean of dimension n is called a topological
manifold of dimension n. If (U, 1) and (Us, ps) are charts with U; N Uy # (), the so
called transition functions, ¢ := 9 0 @1 |oy@nnws) @ ©1(U1 N Uz) — @o(Uy N Us) and
3, defined analogously, are homeomorphisms between open subsets of R". We say two
charts (Uy, ¢1), (Us, o) are C™®-compatible if their transition functions p? and ¢} are of
class C*®°. A C'*-atlas on a topological manifold M is a collection {(Uy, pa) : o € I} of

pairwise C'*°-compatible charts such that M = (J U,. If the union of two C*-atlases is
acl
a C*-atlas we say the atlases are C°°-compatible. This defines an equivalence relation

on the C'*-atlases and an equivalence class of a C'*-atlas is called a smooth differential
structure on the manifold. A smooth manifold M of dimension n is an n-dimensional
topological manifold with a smooth differentiable structure and the charts of a C'**°-atlas
which represents the differentiable structure, are called smooth charts of M. We could
also require only C*-compatibility (k € N) of the charts such that we get a C*-atlas.
But a famous Theorem of Whitney tells us, that for each k¥ € N every C*-atlas contains
a C>-subatlas.? Therefore it is convenient to consider always smooth manifolds. In
general, a manifold needs not to be connected. But every manifold is a disjoint union
of its connected components, which are connected. If not other mentioned, we assume a
manifold to be connected.

A map f: M — M between smooth manifolds is called smooth, if for every = € M there
exist smooth charts (U, ) of M and (U, ) of M with z € U and f(U) C U such that
the coordinate representation ¢ o f oo~ : p(U) — @(U) between open sets of Euclidean
spaces is smooth. The space of smooth maps f : M — M will be denoted by C>*(M, M)
and we simply write C*°(M) for C*°(M,R).

2See [Whi36, Theorem 1].



2 Smooth Vector Bundles and Sections

Our aim in this chapter is to introduce smooth vector bundles and smooth sections, which
generalize smooth functions and provide therefore more applications in differential geo-
metry. First of all, we need to define a smooth vector bundle over a smooth manifold.
The reader should have in mind the example of the tangent bundle or the vector bundle
of alternating k-tensors on the tangent spaces of a manifold, which is also called vector
bundle of exterior k-forms. The sections of these bundles are precisely vector fields and
differential k-forms, respectively. After defining the space of smooth sections, we equip it
with a system of seminorms such that it becomes a Fréchet space.

2.1 Introduction of Smooth Vector Bundles
2.1.1 Definition (Smooth Vector Bundle)

Let M be an n-dimensional smooth manifold. A smooth R-vector bundle £ of rank N
over M is a triple (E, 7, M), where E is a smooth manifold and 7 : E — M is a surjective
smooth map (called projection) such that for every x € M:

(VB1) The set E, := 7 '({z}) C E (called fibre of E over z) has the structure of an
N-dimensional R-vector space and

(VB2) there exists a smooth local trivialization (U, ®) for z, i.e. U is an open neighbour-
hood of z and @ : 7 H(U) — U x RY is a diffeomorphism such that pr; o® = 7|—1
holds for the projection pr; : U x RY — U and further for every y € U, the restriction
®|p, is an isomorphism of E, onto {y} x RV = RV,

In that case, E is called the total space and M the base space of the bundle.
If there is a smooth local trivialization (M, ®), this ® is a smooth global trivialization
and we call £ a trivial vector bundle.

total space F

B, =7 '({a}) base space M

Figure 1: Trivial R-vector bundle of rank 1 over M = S*.
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2.1.2 Remark (Smooth Vector Bundles)

(1)

(2)

C-vector bundles are defined similarly by replacing R with C everywhere in the defi-
nition, but we will treat only real vector bundles and henceforth we omit the field in
the notation of a vector bundle.

If (U,®) is a smooth local trivialization and V' # () is an open subset of U, then
(V,®|-1(v)) is also a smooth local trivialization, which we will denote, by abuse of
terminology, simply as (V, ®). If {U,}ac is an open cover of M, we just write E, for
71 (U,), such that {E,}c.s is an open cover of E.

The dimension of the manifold £ has to be n + N since the open set 7=}(U) in F is
diffeomorphic to an open subset of R” x RY by the composition of smooth maps

I U) 2= U x RN % (U) x RY,

where (U, ¢) is a smooth chart of M and (U, ®) a smooth trivialization.

The projection 7 : E — M of a smooth vector bundle is necessarily a submersion
by (VB2), i.e. its differential® is surjective at each point. (For each x € M, there is
a smooth local trivialization (U, ®) such that for every v, € E,, we obtain dm, =
d (ﬂ]fl(U))W = d(pr; o®),,, which is a surjective map since pr; o® is a submersion.)

One may ask why (VB1) is required since (VB2) allows a way to equip the fibres with
a vector space structure induced by a trivialization ®. Concretely, define on a fibre E,
the operations u +v = @~ 1(®(u) + ®(v)) and r - v = &~ (rdP(v)), where u,v € F,,
r € R. This makes F, into a vector space but this vector space structure will be
different to the structure induced by another trivialization ¥ since ¢ and ¥ are not
linear as diffeomorphisms in general. However, Lemma 2.1.7 shows, that two smooth
trivializations with overlapping domains transform in terms of so called transition
functions.

In many examples, the total space is defined as a disjoint union of vector spaces over
all points of the base space M. The disjoint union of a collection {V, },ens of sets is
defined to be the set

|| ve=J{=} x Vi (2.1)

reM reM

Thus, for every v € || V, there is a unique v, € V, corresponding to a unique z € M
zeM
with v = (z,v,), such that we can identify v with v,. Themap 7 : | | V, — M, defined
zeM

3See Example 2.1.4, (3) for the definition.
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by v, +— x, is clearly surjective and is the canonical candidate for the projection map
of the bundle. Note that, even if all V,, are vector spaces, the total space has not yet a
structure of a smooth manifold and talking about smoothness or the differential of 7
is meaningless. It is part of the Vector Bundle Construction Lemma (2.3.2) to specify
these things.

Before giving examples, we introduce morphisms between smooth vector bundles.

2.1.3 Definition (Smooth Vector Bundle Morphism)

Let &g = (B, g, M) and & = (F,mp, M') be two smooth vector bundles. A pair (f, g) of
smooth maps f : E — F and g : M — M’ is called a smooth vector bundle morphism
from &g to {p if fo = fl|p, : Ex — Fy(p) is a linear map between the fibres for each x € M
and go g = mp o f holds, i.e. the following diagram commutes:

E—L.F

o |

M—Q>M/

The composition (fa,92) © (f1,91) = (f2 0 f1,92 © g1) of smooth vector bundle morphisms
(f1,q1) from &g to &p and (fa, go) from & to £ defines a smooth vector bundle morphism
from &g to &g. Together with this composition of smooth vector bundle morphisms, the
class of smooth vector bundles is a category which will be denoted by VB. So we have
the notion of isomorphisms and we use a characterization for the definition: A smooth
vector bundle morphism (f, g) from g to {r is a smooth vector bundle isomorphism
if f, g are diffeomorphisms and f, is an isomorphism of vector spaces for each x € M.
(ég and &g are isomorphic smooth vector bundles if and only if the manifolds F and F,
M and M’, respectively, are isomorphic as smooth manifolds and the corresponding fi-
bres are isomorphic as vector spaces. In that case, the rank of £g and {r has to be the same.)

If (f,idy) is a smooth vector bundle morphism between smooth vector bundles
(E,7g, M) and (F,7mp, M) over the same base space M, we call f a smooth vector
bundle M-morphism. The category of smooth vector bundles over a fixed base space
M and smooth vector bundle M-morphisms will be denoted by VBy,.

The rank of a smooth vector bundle M-morphism f is a function rank(f) : M — Ny,
which assigns to each x € M the dimension of the linear space f,(E.).

A smooth vector bundle M-morphism f (of necessarily constant rank) is called injective
(surjective, bijective, respectively) if f, is injective (surjective, bijective, respectively)
for all x € M.

12



2.1.4 Examples (Smooth Vector Bundles)

In the following, let M be a smooth n-dimensional manifold.

(1)

Trivial Vector Bundle:

The projection pr; : M x RN — M is smooth and (M x RY | pr;, M) is a trivial vector
bundle of rank N since the fibres are pr;'({z}) = {z} x RY = R" for each z € M
and the identity on M x R yields a smooth global trivialization. Moreover, a smooth
vector bundle £ = (F,mg, M) of rank N is trivial if and only if it is isomorphic to
(M x RN pr;, M). (For a smooth global trivialization ® : £ — M x RY the pair
(®,idps) defines a smooth vector bundle isomorphism and vice versa, if (f,g) is a
smooth vector bundle isomorphism from ¢ to (M x RY pr;, M), a smooth global
trivialization of E is given by f.)

Let A : M — R¥N be a smooth matrix-valued map, i.e. all entries are smooth
functions on M. Then, fq : M x RY — M x RE (2,)\) — (2, A(z))\) defines a
smooth vector bundle M-morphism between the trivial vector bundles.

Restricted Vector Bundle:

Let £ = (E,mg, M) be a smooth vector bundle of rank N and () # U C M be open.
Define By = n5'(U) and 7g, = 7|g, : Ey — U, then we obtain a smooth vector
bundle {|y = (Ey, 7g,, U) of rank N, called the restriction of £ to U. The pair of
inclusions ig, : By — E and iy : U — M defines a smooth vector bundle morphism
from |y to & since the following diagram commutes:

E
-
M

For another non-empty open subset V' C U of M, we obtain ({|y)|lv = &|v by
75 (V) C 7' (U). Note that for a smooth local trivialization (U, ®) of E, the restric-
ted vector bundle on U is a trivial vector bundle. This relation enables an auspicious
strategy for working with vector bundles. More precisely, given an open cover (U, )aco
of M such that there are smooth local trivializations (U,, ®,) of E, we can work on
the restricted trivial vector bundles, where things are typically easier to handle. Ho-
pefully, we can use a partition of unity subordinate to the open cover to get global
results. But, in order to obtain well defined objects for the original vector bundle, we
have to verify that the constructions are independent of the choice of trivializations.
For that purpose, the transition functions between local trivializations (Lemma 2.1.7)
are significant.

Given a smooth vector bundle M-morphism between vector bundles (E, g, M) and
(F,mp, M), we simply write fy; for the restriction f|g, : Ey — Fp, which is a
smooth vector bundle U-morphism between the restricted vector bundles. Further, if
{Uq}acr is an open cover of M, we write f,, for the restriction of f to E, = 7= 1(U,).

LBy
Ey —
TRy

U+>
129
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(3) Tangent Bundle:
The tangent bundle of a smooth manifold is a prime example of a smooth vector
bundle in differential geometry. Other important vector bundles are constructed out
of it, e.g. (4) and (5). For a detailed introduction including alternative definitions,
we refer to [Leel3, Chapter 3, p. 50ff., p. 65ff., p. 71f. and Proposition 10.4, p. 252].
A linear function v, : C*°(M) — R is called a derivation at x € M if it satisfies for
all f,g e C*(M)

ve(f9) = f(@)va(g) + g(z)va(f). (2.2)

The set of all derivations at x € M is defined to be the tangent space T, M of z. It
has the structure of an n-dimensional R-vector space. Define

TM=||T.M and 7y :TM = M, (z,v,) — .

xeM

To see that T'M is a smooth manifold, note that once we have chosen a smooth chart
(U, = (x',...,2™)) of M, we get canonically a basis of the tangent space T, M for
each = € U by the partial derivatives -2 ) (¢ =1,...,n). The ith partial derivative is

Ozt
—1
8(332' (f):% . Define for 7= 1 (U) = | | T. M:

T p(z) zelU

defined for f € C*°(M) by

@7 HU) — o(U) x R, (x, Zvi(x)axi = (o(x),v1(2), ..., va(2)), (2.3)

=1

= (z,01(x), .. vn(2)). (2.4)

d: 7Y (U) = U xR", (:v, sz(x)aiz
i=1

T

By running through a smooth atlas (Ua, ¥a)ace 0f M, we receive a smooth atlas
(771 (Uy), o) of TM and a family of smooth local trivializations (U, @4 )ac- The
coordinate representations of 7,; corresponding to these charts are obviously smooth.
Hence, (T M, 1y, M) is a smooth R-vector bundle of rank n, called the tangent
bundle of M.

For a smooth map F': M — N between smooth manifolds and x € M define

dF, : T,M — TN, by dFy(v)(f) = va(f o F), (2.5)

where v, € T, M and f € C*°(N). This even defines a smooth map dF : TM — TN,
called the differential, derivative or pushforward of F' and is sometimes denoted
by F,. Moreover, the diagram



commutes, such that (dF, F') is a smooth vector bundle morphism from (7'M, 75, M)
to (TN, 7y, N). The smooth map F' is called an immersion (a submersion, resp.),
if dF, is injective (surjective, resp.) for every z € M.

(4) Cotangent Bundle
The cotangent bundle is the dual bundle* of the tangent bundle. For each z € M,
the cotangent space T M is defined as (T, M)*, the (algebraic) dual space of T, M,
namely the set of linear functions from 7, M to R.®> Let T*M be the disjoint union of
TXM over x € M and 7 : T*M — M the canonical projection. Then (T*M,m, M) is
a smooth vector bundle of rank n, called the cotangent bundle of M. For a detailed
introduction, we refer to [Leel3, Chapter 11].

(5) Vector Bundle of Exterior k-Forms /Alternating k-Tensor Bundle:
Let k € N. For z € M denote by AF(T*M) the space of multilinear alternating®
functions w, : (T,M)* — R and by A¥(T*M) the disjoint union of all A*(T*M).
Together with the canonical projection 7 : A¥(T*M) — M, we will see in Corollary
2.3.13 (c) that this defines a smooth vector bundle of rank (}), called vector bundle
of exterior k-forms or alternating k-tensor bundle. We list some special cases:

A(T*M) = M x R, since A°(TM) =R for all x € M; (2.6)
AN T*M) =T*M, since alternation in one argument is no constraint; (2.7)

A¥(T*M) = M x {0}, if k > n, since thenA*(T*M) = {0} for all z € M. (2.8)

As we have seen in example 2.1.4 (1), a smooth matrix-valued map induces a smooth
vector bundle M-morphism between trivial vector bundles. Vice versa, we will show in
Lemma 2.1.6, every smooth vector bundle M-morphism is locally induced by a smooth
matrix-valued map. The following Lemma allows one to assume an open cover consisting
of domains of charts and also local trivializations.

2.1.5 Lemma (Domains of Local Trivializations and Charts)

Let (E,m, M) be a smooth vector bundle of rank N. Then there is a countable locally finite
open covering (U;);er of M such that:

(DTC) For each i € I there are a smooth local trivialization ®; : 7=1(U;) — U; x RY of E
over U; and a smooth chart ¢; : U; = W; CR" of M.

Proof. The (VB2)-property yields an open covering (V,).ens of M together with local
trivializations ®, of E over V,. Since M is a separable locally compact metrizable space
as a manifold, there exists a countable locally finite open covering (U;);cr of M, which is

4See Corollary 2.3.13 (a).

®The notation T} M for (T, M)* seems unnecessary but turns out to be useful to keep further expressions
(as in the alternating k-tensor bundle) simpler without the brackets.

6The value of the function changes its sign whenever two arguments are permuted, see Remark 2.3.8.
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finer than (V,)zenr, i.e. for every i € I there is some V, with U; C V,.” Further, we can
assume that each V; is the domain of a chart of M. (For each open covering of a differential
manifold there exists a countable locally finite finer open covering consisting of domains
of charts.)® So, for each i € I, there is a chart ¢; : U; — W; C R". Because (U;)sc; is finer
than (V,)zenr, there is for each ¢ € I a V, containing U;. Hence 7~ (U;) C 7 !(V,) and
;= Pylr-1(vy) : 7 H(U;) = U; x RY defines a smooth local trivialization of E over U;. [
2.1.6 Lemma (Local Representations of Vector Bundle M/-Morphisms)

Let (E,7g, M) and (F,7r, M) be smooth vector bundles of rank N and L, respectively.
Moreover, let U C M be open such that there are

(1) a chart (U, ¢) of M,
(2) a smooth local trivialization (U, ®g) of E over U and
(3) a smooth local trivialization (U, ®r) of F over U.

For a smooth vector bundle M-morphism f : F — F, there is a smooth matrix-valued
map Ay : U — RN gatisfying

dpofodt(w,\) = (v, Af(z)A) on U x RY, (2.9)
where each A;(z) is unique according to the standard basis of RY and R, respectively.

Proof.
We have the following commutative diagram for f; = f|7rEI(U) and fy = ®p o fy o ®L:

T (U) — i (U)

5l UxRVN—UxRE |mr
fu
pr,j lprf
U U

In particular, pr;o fu =pr ; holds, such that there is a smooth function v : U x RY — RE
satisfying fy(x,\) = (z,7(z,\)). For every fixed z € U, the map A — ~(z,\) from RV
to R¥ is linear since fU is a composition of fibrewise linear maps. Hence, according to
the standard basis of RY and R”, respectively, there is a unique matrix Ay (x) € RE*XN
representing A > y(z, \), i.e. fu(z, A) = (z, As(x)A). The entries (Af(x))i; = mi(y(x, ;)
are smooth maps from U to R, since each projection 7; : RY — R onto the i-th coordinate
is smooth, such that A; : U — RN is indeed a smooth map. ]

"This general topological result can be found in [Die76, 12.6.1].
8See [Die72, 16.1.4].
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2.1.7 Lemma (Existence of Transition Functions between Localizations)

Let (E,mg, M) be a smooth vector bundle of rank N. For any two smooth trivializations
(U, ®) and (V, V) with UNV # () there exists a unique smooth map 7: UNV — GL(R, N)
such that the composition @ o U~ : (UNV) x RY — (UNV) x RY is given by

DoV (z,\) = (z,7(z)N), (2.10)
In that case, we call 7 the transition function between ® and V.

Proof. Since U NV # () is open and the restrictions of ® and ¥ to U NV are smooth local
trivializations of E, we can assume U =V = U NV without loss of generality. The identity
idg : E — FE is clearly a vector bundle M-morphism. Hence, by Lemma 2.1.6, there is a
unique smooth map 7 : U — R¥*¥ satisfying:

doVU(z,\)=Doidgol (z,\) = (z,7(x)))

Smooth local trivializations are fibrewise linear isomorphisms, such that the representing
matrix 7(x) is invertible for each x € U. O

2.1.8 Remark (Transition Function)

(1) Note that the transition function between W and ® is given by the pointwise inverse
matrix 7(z)~!, if 7 is the transition function between ® and V.

(2) For any finite dimensional R-vector space V of dimension N, the space End(V') of
endomorphisms on V is a finite dimensional R-vector space of dimension N? and hence
a smooth manifold.” The set Aut(V') of automorphisms, the isomorphisms from V' into
V', is an open subset of End(V') and therefore also a smooth manifold. A choice of
basis of V' induces a diffeomorphism between Aut(V') and GL(R, N) by building the
representation matrix w.r.t. the chosen basis. Hence, we can replace the target space
of a transition function 7 by Aut(V) and write 7(z)()\) instead of the matrix vector
multiplication in (2.10).

2.2 Smooth Sections and Frames of Vector Bundles
2.2.1 Definition (Smooth Sections and Frames of Vector Bundles)

Let £ = (E, 7, M) be a smooth vector bundle of rank N over a smooth n-dimensional
manifold M and let U C M be an open subset.

(a) A smooth local section o : U — FE of ¢ is a smooth right inverse of the projection
m, i.e. m oo = idy. Addition and scalar multiplication, defined pointwise in the cor-
responding fibre, make the set of smooth local sections of F over U into an R-vector

9See Example 2.3.10 (1) for more details.
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space, which will be denoted by I'(U, E'). Further, the pointwise multiplication in the
corresponding fibre with a smooth function ¢ : U — R is again a smooth local section,
such that ['(U, E) can also be seen as a module over the ring of smooth functions
C*(U). Elements of I'(M, E) are called smooth global sections of .

(b) A frame of E over U is an ordered tuple (0;)L; = (01,...,0n) of smooth local
sections o; € I'(U, E), such that o1(x), ...,on(z) form a basis of £, for each z € U. In
that case, we will write (U, (¢;)IL,) for a frame of E.

(c) Let (U, (0;)7,) and (V, (;)}-,) be frames of E with non-empty intersection U NV If
the map 7 : U NV — GL(R, N), given pointwise by the transition matrix from the
basis (0;(x)), to (g;(x));L, for z € UNV, is a smooth map, then we call 7 a change
of frames from (0;)IL, to (¢;)}_,. For every € UNV, the transition matrix yields

N
for each vector v =Y Mo;(z) € E, a representation
j=1
N ,ul Al
v = Z,ukgk(x), where | @ | =7(x) | : |. (2.11)

Local trivializations are naturally connected with local frames such that we can express
conditions on trivializations equivalently in terms of frames:

2.2.2 Lemma (Equivalent Conditions on Frames Instead of Trivializations)
Let (E,m, M) be a smooth vector bundle of rank N.

(a) (1) If (U, ®) is a smooth local trivialization of E, then o; = ®7!(-,¢;) defines a
frame of ' over U, the so called associated frame of ®, where e; denotes the
jth unitvector in R,

(2) If (U, (05)7,) is a frame of E, then
N
O (U) = U xRN, D Noj() = (2, M., AY) (2.12)
j=1
defines a smooth local trivialization over U, which we call the associated
trivialization of (o;)},.
In particular, the condition (VB2) of 2.1.1 is equivalent to

(VB2’) For every x € M there is a frame (o)L, of E over some open neighbourhood
UC M of z.

Moreover, this shows that a vector bundle (E, 7, M) is trivial if and only if there is
a global frame of E over M.
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(b) Let (U, ®) and (V, ¥) be smooth local trivializations of E with UNV # () and denote
their associated frames by (V, (o; = W~'(-, ¢;))I;) and (U, (g; = ®7'(-, ¢;))7,).
Then 7: U NV — GL(R, N) is the transition function between ® and V¥ if and only
if 7 is the change of their associated frames from (o;)}_; to (¢;)}L,. In particular, a

change of frames with overlapping domains always exists and is unique.

Proof. (a) (1) The smoothness of o; : U = E, o;(x) = ®*(z,¢;) is inherited from ®~*
and since ®~!(z, e;) € E, for each z € U, it follows that 7o c; = idy. The restriction @|z,
is a linear isomorphism for fixed = € U, such that (o;(x))}; is a basis of E, if and only if
®|p, maps it to a basis of {z} x RN = RY, which is true since (®|g, (0;(x)) = (z,¢;)),
is a basis of {z} x RV,

N
(2) @: 7N (U) = UxRY, 3 Noj(x) — (z, M, ..., \N) is bijective because o1 (), ..., o5 ()
j=1
is a basis of E, for each x € U. In addition, ®|g, is a linear isomorphism of £, onto

{y} x RN 2 RY for each y € U and 7; 0 ® = 7 holds for the projection 77 : U x RY — U.
So if we can show, that ® is a diffeomorphism, it is already a local trivialization of E.
Due to bijectivity, it suffices to show that ® is locally a diffeomorphism. Thus, we choose
for x € U a local trivialization (V,¥) of E such that z € V C U and we will verify
that U o @], g~ is a diffeomorphism from V x R¥ to itself. Since each composition
Voo;:V —V xRY is smooth, there are smooth functions 0]1, s ajv : V' — R such that
Woo;(y) = (y,0;(y),-..,oN(y)). The map S : V — GL(R, N), defined by (S(y));.¢ = o5(y)
is well defined because ¥ o g1(y), ..., U o on(y) is a basis of {y} x RY 2 RN and S is also
smooth because all entries are smooth. Since o;(y) = ®~!(x, ¢;), the commutative diagram

¢._1|V><]RN

V x RN (V) 2 V x RN
\%4
shows, that on V x R¥,
Wod 'y, A, AY) = (3, (SN, (2.13)

where A = [A\!, ..., A¥]" and (-)7 denotes the (smooth) matrix transposition, such that the
smoothness follows.
Matrix inversion is also smooth (Cramer “s rule), thus we obtain on V x RY smoothness of
the inverse
- _ T
(Vo @ )y, iy ™) = (5, (S (W)1)")

Y

where p = [pt, ..., V]
(b) Let 7 : UNV — GL(R,N) be the transition function between ® and WU, hence

N
DoV x,\) = (z,7(zx)A) on (UNV)xRY. Fixx € UNV and v = Y Mo(z). Since
=1

=
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U|,! is linear and o;j(z) = ¥~!(z, ¢;) by definition, we obtain

v =0 ( ZA%) = 0Nz, \). (2.14)

For p* = (7(z)A\)*, the kth-coordinate of 7(z)\, we get

v=30"0(PoU ) (z,)) =0 (z,7(x)A) = > _(T(x)N)or(z) =D pFor(x). (2.15)

k=1

Otherwise, let 7 be a change of frames from (0;)}"; to (g;);2,. Then, for z € UNV, we
N

have U~1(z,¢e;) = 0(z) = > (7(x)e;)*or(z). By linearity of ®|g,, this gives
k=

DoV (e <x,z z)e;) 0| g, (o (z ))) = (m,Z(T(x)ej)kek> : (2.16)

k=1

—

It already implies ® o ¥ (z,\) = (z,7(z)A) on (UNV) x RY, since ®p, o ¥|! is linear
from {z} x R¥ to itself. In particular, existence and uniqueness of change of frames with
overlapping domains follows by Lemma 2.1.7. [

2.2.3 Lemma (Representation of Smooth Local Sections)

Let (E,m, M) be a smooth vector bundle of rank N.

(a) A frame (U, (0;)IL,) of E is a basis of the C*°(U)-module I'(U, E),

i.e. every v € I'(U, F') has a unique representation

N
= Z fjo; with smooth functions f; : U — R. (2.17)
(b) Let 7: UNV — GL(R, N) be a change of frames from ((o;)}_;, U) to ((¢;)}2,, V) with
N N
UNV #0. Every v =3 fjo; € (UNV, E) can be written as v = > g;0;, where
j=1 J=1
S

: : ] is defined pointwise as matrix-vector-multiplication and consists of
gn fn
smooth functions g; : U NV — R.

(%51
A

Proof. (a) Let (U, ®) be the associated trivialization of (U, (0;)}_;) and pr; : U x RN — R,
(z, AL, -+ AN) — M be the projection onto the jth-coordinate. For v € T'(U, E) define
fj = prjo® o, such that f; is smooth as composition of smooth functions. Furthermore,
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N
for each x € U there are unique A\',...,\Y € R with v(z) = > Mo;(z). By linearity
j=1

of ®|p, it follows, that ® o y(z) = Y M®|g, (0;(x)) = (z, A, ..., \V). Hence, we obtain
fi(x) =pr;(z, A, .., AN) = M as required.
(b) This follows immediately by definition of a change of frames and part (a). O

2.2.4 Lemma (Smooth Sections are Locally Isomorphic to Smooth Functions)

Let (E,m, M) be a smooth vector bundle of rank N and let U C M be open such that
there are

(1) a chart (¢,U) of M and
(2) a smooth local trivialization (®g,U) of E over U.

Then T'(U, E) and C*(¢(U),RY) are isomorphic R-vector spaces by the linear maps

Tg :T(UE) = C(p(U),RY), o probgooop ! andits inverse  (2.18)
Tyt C%(p(U),RY) 5 T(U,E),  grs B3 o (idy x(g0 ), (219)
where pr;; denotes the projection of U x RY onto RY.

Proof. Both functions are well defined, since all involved functions are smooth and
o Ty (g) = pryo(idy x (g0 ¢)) = idy (2.20)

holds. The vector space structure on I'(U, E') is defined pointwise in each fibre such that
the linearity of T and T already follows by the fibrewise linearity of ®g. So it remains
to show the inversion identities:

T o Ty'(9) = prj;o®ro (P50 (idy x(go @) o =prjo(ptg) =g  (2:21)

TE_1 oTg(o) = CDEl o (idy x(pr;;o®gocop o ©) (2.22)
= (I)El © ((ﬂ-E © U)7prll O(I)E O O') ﬂ-E:péI odp (I)El o) (I)E 00 =0. (223)
O

2.3 Constructions of Smooth Vector Bundles
In this subsection we present some useful tools to construct smooth vector bundles.
The following lemma can be found in [Leel3, Lemma 1.35, p.21] and will be used

in the proof of the Vector Bundle Construction Lemma to equip the total space with the
structure of a smooth manifold. We will skip the proof.
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2.3.1 Smooth Manifold Chart Lemma

Let M be a set and {U,}acr @ collection of subsets of M together with injective maps
Yo : Uy = R™ satisfying:

1) va(Us) and ¢, (U, NUg) are open in R” for each o, § € 7.

3) M is covered by countably many of the sets U,.

(1) ¢
(2) pao <p6 c03(Ua NUg) = 0a(Uy N Up) is a diffeomorphism whenever U, N Ug # 0.
(3)
(4)

For all distinct x,y € M, either there exists some U, containing x and y or there exist
disjoint sets U,, Ug with x € U, and y € Ug.

Then M has a unique smooth manifold structure such that A = {(U,, ps) : @ € &} is a
C*°-atlas.

The next lemma can be found in [Leel3, Lemma 10.6, p.253] and is a very import-
ant tool to construct smooth vector bundles.

2.3.2 Vector Bundle Construction Lemma
Let M be a smooth manifold and F' = || FE,, where E, is a p-dimensional R-vector space

zeM
for each x € M. Define 7 : E — M by n(v,) = z if v, € E,. Further, suppose there are

(1) an open cover {U, }aeco of M;

(2) a bijective map @, : 771(U,) — U, x R? for each o € & such that the restriction to
each £, (x € U,) is a linear isomorphism from £, to {z} x R = RP?;

(3) for each a, f € & with U, 3 = U, NUsz # (), a smooth map 7 : U, 3 — GL(R, p) such
that the composite map ®, 0 ®5" from (Us,s) X RP to itself has the form

Dy 0 Byt (2, A) = (z,7(2)N). (2.24)

Then F has a unique smooth manifold structure such that (F,m, M) becomes a smooth
vector bundle of rank p with smooth local trivializations given by @, (« € ).

Proof. For each x € M, choose some U, containing x and choose a smooth chart (V;, ¢,)
of M such that x € V,, C U,. Set V, = (V) € R", where n is the dimension of M and
define @, : 7 1(V,) = V, x RP by @, = (¢, X idgs) 0 Dy, i.e.

deRp

7 V,) 22V, x RPPZEE T« RP.
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We will verify the conditions of the Smooth Manifold Chart Lemma 2.3.1 to show, that
the collection {(77!(V,), ¢.) : * € M} makes E into a smooth manifold.

@, is bijective as a composition of bijective maps. The images @, (77 1(V,) = ¢,(V,) x RP
and @, (7 (V) N7 4(V,)) = (Ve NV,) x R? are open for all z,y € M. Further, if
7 (V) naY(V,) =71V, NV,) #0, we obtain for 8 € & with V,, C Ug:

Ga 0 @y = (po X idrp) 0 (Pq © @El) o (g X idge) " (2.25)

Hence, ¢, o 95;1 is smooth as a composition of smooth maps. Since {V, : € M} has a
countable subcover {V, : x € I}, {m~!(V,) : « € I} is a countable subcover of E. If u,v € E
lie in the same fibre E,, then it follows that already u,v € m~1(V}). Otherwise u € E, and
v € B, for distinct z,y € M. Then, by the Hausdorff property of M, we can choose disjoint
open neighbourhoods V. of x and V,, of y, respectively, such that 7—!(V) and 7~ *(V},) are
disjoint neighbourhoods of u and v, respectively. Thus E has the structure of a smooth
manifold induced by the C*-atlas {(7~*(V,), %) : © € M}. Note that the coordinate
representation of @, with respect to the charts (771(V,), @,) of E and (V, x R?, ¢, X idgs)
of V, xIRP is the identity map, such that ®, is smooth. 7 is also smooth since the coordinate
representation ¢, o 7o ¢! maps (A, i) € ¢, (Vi) X R? to A € ¢,(V,), which is smooth.
Moreover, ®, maps E, to {z} x RP  such that 7; o &, = 7 follows and ®,, is by hypothesis
linear on the fibres. Hence @, is indeed a smooth local trivialization of E. O

For a given smooth vector bundle (E, 7, M), we have seen in Example 2.1.4 (2) how we can
get by restriction a bundle over a smaller base space. The definition of a subbundle tells us
when we can get a bundle over a smaller total space. It is indeed a smooth vectorbundle
as clarified in Lemma 2.3.5.

2.3.3 Definition (Subbundle)

Let & = (E,m, M) be a smooth vector bundle of rank N and G C E. The triple (G, 7|g, M)
is called a (smooth) p-subbundle of ¢ if:

(SB1) For each x € M, the set G, = E, NG is a p-dimensional R-subspace of E,.

(SB2) Each x € M has a smooth local trivialization ® : 77 3(U) — U x RY of F over an
open neighbourhood U of z such that ®(7~1(U) N G) = U x R? x {0 € RV~P}.

Note that by Lemma 2.2.2 (a), (SB2) is equivalent to the following condition in terms of
local frames:

(SB2’) For each x € M, there is frame {0;}}_, of E over some open neighbourhood U € M
of x such that {o;}}_, is a frame of G over U.

In order to give a few examples, we introduce the kernel and image vector bundle of a
smooth vector bundle M-morphism, which is only well-defined if the rank of the morphism,
defined in Definition 2.1.3, is constant:
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2.3.4 Definition (Kernel and Image Vector Bundle)

Consider a smooth vector bundle M-morphism f from an N-ranked vector bundle g to
&p. Then, Ker(f) defined as the disjoint union of all Ker(f,) with the canonical projection
defines an (N — r)-subbundle of £g if and only if rank(f) is constant of value r. Similarly,
Im(f) defined as the disjoint union of all Im(f,) together with the canonical projection is
an r-subbundle of ¢z if and only if rank(f) is constant of value r.

2.3.5 Lemma (Properties of a Subbundle)

Let (G, 7|g, M) be a p-subbundle of a smooth vector bundle (E, 7, M) of rank N over the
smooth n-dimensional manifold M. Then

(a) G is a smooth (n + p)-dimensional embedded submanifold of the smooth (n + N)-
dimensional manifold F, i.e.:

(SM) Each g € G has a chart (V, 1) in E with g € V such that ¢ : V — R"™ satisfies
YV NG) =(V)N (R x {0 € RVN-P})

(b) (G, 7|, M) is a smooth vector bundle of rank p.

(¢) The inclusion i : G — E, defined fibrewise by i, : G, — E,, y — vy, is an injective
smooth vector bundle M-morphism and has a left inverse smooth vector bundle M-
morphism ¢ : F — G, i.e. o1 =idg.

(d) The transition function 7 : U NV — GL(R, N) between local trivializations ¢ and ¥
according to (SB2) has the form

, (2.26)

where A: UNV — GL(R,p), B:UNV — GL(R,N —p) and C : U NV — RP*(N-p)
are smooth maps.

Proof. (a) As mentioned in Remark 2.1.2 (1), £ has necessarily dimension n+ N. Imitating
the proof of 2.1.5 using (SB2) instead of (VB2), one gets a countable open covering (U, )ae.or
of M such that for each a € o7 there are a smooth chart ¢, : U, — W, C R" of M and
a diffeomorphism @, : E, — U, x RY with ®,(G,) = U, x R? x {0 € RY"P} where
E,=7"1U,) and G, = 7T|51(Ua). Since U, is diffeomorphic by the chart ¢, to some open
set W, C R", we obtain a diffeomorphism ¥, = (¢, Xidgn)o®, : E, — W, x RY C RV,
such that U, (G,) = U, (Ey) N (R x {0 € R¥?}). {E,}acr is an open covering of E
since 7 is continuous. In particular, each ¢ € G C FE is contained in some FE, and the
corresponding diffeomorphism V¥, is a chart with the required property.

(b) (SB1) gives (VB1) with fibre dimension p and (VB2’) follows immediately by (SB2’).
(¢) The inclusion i : G — FE is clearly continuous because of m o7 = m|g, such that
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iY77 (U)) = 771 ¢(U) for every open U C M. Moreover, i is smooth since the coordinate

representations are inclusions between open subsets of R"*? and R"*", which are smooth.
Further, ¢ is injective because the restrictions i, = i|g, : G, — E, are injective and linear
as well for all x € M, such that ¢ is indeed an injective smooth vector bundle M-morphism.
For the construction of a left inverse, consider an open cover {U,}aecr of M, such that
{G. = 7|5 (U,)} is an open cover of G. Define i; : R? — RP x {0 € R¥"P}, X\ (), 0) and
pr;: RY — RP) (uy, ..., un) = (pa, ..., 1) such that

iropr; : RY — R? x {0 € RY "7} and 47 o pr; [rex {0y = idrex o} - (2.27)

For a € &, there is a smooth local trivialization ®, : £, — U, x RY according to (SB2),
hence ®,(G,) = U, x R? x {0}. Define £, = ®_' o (idy, x(i;opr;))o®,). Then, by (2.27),
l, is amap from FE, to G, satisfying ¢, 0i, = £, |, = idg,. As a composition of continuous
and smooth maps, /, is also continuous and smooth. Moreover, ¢, is linear on each fibre
E, for x € U, and 7|g o {, = m holds. For a partition of unity {xa}ac subordinate to the

open cover {Uy, }acw, define £ = >~ x,l,. It is easy to check by the properties of each £,
acd
that ¢ is a smooth vector bundle M-morphism and foi = > x,idg, = idg.
aEed
(d) For x € UNV, consider 7(z) as a block matrix

o= ) 66 22%)

where A(z) € RP*?, B(x) € RW-=P*WN=p) (C(x) € RP*NV=P) and D(x) € RWV=P)*p All
block matrices are smooth functions on UNV because all entries are smooth and if D(x) = 0
for all z € UNV, it follows that A(x) and B(z) are regular on U NV since 7(x) is regular.
Note that for local trivializations ® and ¥ according to (SB2), the restriction of ® o U~! to
(UNV)xRPx {0} maps to (UNV)xRP x {0}. Hence, because of ®o¥~(z, \) = (z,7(x)\),
this already implies D(z) =0 on UNV. O

Given a subbundle of a smooth vector bundle, we can form a quotient bundle, defined
fibrewise by the quotient vector spaces. It is indeed a smooth vector bundle as we see in
Lemma 2.3.7.

2.3.6 Definition (Quotient Bundle)

Let (G, 7|g, M) be a p-subbundle of a smooth vector bundle (E,m, M) of rank N.

Define E/g = || EoG, and 7 B Eg — M, v, — z if v, € Ez/q,. Moreover, define
zeM
q: E — Ejg, where q|g, is the quotient map of E, onto Euz/q,.

(E/G, 7 gy, M) is called the quotient bundle of (E,, M) by (the subbundle) (G, 7|, M)
and ¢ is called the quotient bundle map. This is justified by the following result.
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2.3.7 Lemma (Properties of a Quotient Bundle)

Let (G, 7|, B) be a smooth p-subbundle of a smooth N-ranked vector bundle (E,w, B).
Then:

(a) The quotient bundle (£/G, 7 g, M) is a smooth R-vector bundle of rank N — p.

(b) The quotient bundle map ¢ is a surjective smooth vector bundle M-morphism and it
has a smooth vector bundle M-morphism right inverse r : E/g — FE, i.e. gor = id Jopes

Proof.

(a) We will verify the conditions of the Vector Bundle Construction Lemma. We choose an
open cover {Uy}acs of M together with smooth local trivializations ®, : E, — U, x RY
according to (SB2), i.e.

Do (Gy) = Uy x RP x {0 € RV P}, (2.29)

Define pr;; @ RY — RN (A, .., A\v) = (M1, Ay) and ip @ RV P — RN
(1, ooy in—p) > (0, ..., 0, i1, ..., fiv—p), such that

pry; oirr = idgn—p and (2.30
irpopry t RY = {0 € R} x RN P (A, ., An) = (0,00, 0, Ay, ooy A). (2.31)

For fixed o € &7, define the map f, = (idy, X pr;;) o @, : E, — U, x RY7P. By (2.29),
the restriction f, = f,|g, is constant on equivalence classes of Esz/q, for each x € U,, such
that there is a linear map ¥, , : Euyg, — {z} x RV7? satisfying ¥, , 0 q|g, = fa|g, for
each z € U,. This defines a map (¥, : E/g), = Uy x RN7P by \Ila|Er/Gz = ¥, , such that

U, 0qy = fo = (idy, X pr;;) o P, on E,. (2.32)
Moreover, ¥, is bijective, where its inverse is given by U ! = ¢, o0®_ 1o (idy, xirs). Indeed,

VooW, = (V,0q)o0®, o (idy, xirs)

“2) (idy, % pryp) 0 (By 0 @31) o (idy, xir)
. . 2.30) .
= idy, x(pr;;oisr) (2230 idy, xgv-» -

For the other identiy, it sufficies to show \Il;1 oV, oq, = id(gy), 0¢a on E, since g, is
surjective for all z € U,. Therefore, define g, = ®_' o (idy, x(i;7 o pry;)) © @y, such that
U-loW,0q, =G0 g on E,. For x € U, and v, € E,, we obtain by fibrewise linearity,

Ga(Ve) — v, = .1 ((idy, x(i77 0 pry;)) © Py (ve) — Pul(v,)) (2.33)
= ®_(idy, x(is; o pry; —iden)) (@ (v,)) € Ga, (2.34)

because (i;r o pry; —idgy) maps to R? x {0} by (2.31) and ®_;}(U, x R? x {0}) = G,.
Hence, we obtain ¥,' o U, 0 ¢, = ¢o © go = id(s), ©¢a o0 E,. In addition, g, = ga|,
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is constant on equivalence classes of Eux/q, for each x € U, by (2.29) such that there is
a fibrewise linear map r, : (E/q)a — E, satisfying r, 0 ¢, = go on E,, which implies
(o © Ty = id(E/G)a.lo To sum up, for each @ € &7, we have a bijective map ¥, such that
for all z € U,, the restriction to Eu/g, is a linear isomorphism onto {z} x RN-P = RN-7,
Now, for o, 8 € o with U, g = U, NUp # 0, the transition function 7 between @, and ®4

A(x) Céiﬂ by Lemma 2.3.5 (d). Hence, we

according to (SB2) is of the form 7(x) = [ 0 B

obtain for (z,)\) € Uy s x RN 7P,

Voo Wyl (z,\) = (s 0q)o®y'((idy, , Xirr)(z, ) (2.35)
= (i, , x pry) 0 ®q 0 @5 (2, (0, 1)) (2.36)
— (idu, , % prys) (w,7(2) [}]) = (@, B2, (2.37)

where B : U, 3 — GL(R, N — p) is a smooth map by Lemma 2.3.5 (d) such that all condi-
tions of the Vector Bundle Construction Lemma are satisfied and therefore ( E/q, m Efp: M)

is a smooth vector bundle of rank N — p with smooth local trivializations {(Uy, V4) }acw -
(b) The quotient bundle map ¢ : E — E/q is surjective since it is surjective on each fibre.
Consider an open cover {U, }ac of M and for each o € o7 the map r, as in part (a), then
we have the following commutative diagrams for each o € &7

E—" E/g (BlG)o —— Ea
ﬂt lﬂ'E/G (nE/G)al jﬂ'
MTM>M Ua idu, Ua

Hence, ¢ is continuous because of q_l(ﬂg/lc(U)) = (mgjz 0 q) " H(U) = = }(U) for any open
U C M. Analogously, r, is also continuous. To check smoothness, we recall that for a
C*-atlas of M, consisting of charts ¢, : U, — V, C R", a C"*°-atlas of E is given by charts
Pa = (pa X idgn) 0 @,. As we can see in the proof of the Vector Bundle Construction
Lemma, b, = (pa X idgn-p) 0 U, defines a chart of an C'*-atlas of E/g, where &, and U,
are smooth local trivializations of the underlying bundles as in part (a). The corresponding
coordinate representation of ¢ becomes

7;04 0¢q© 95;1 = (o X idpn-5) 0 (V4 0 ga) 0 ((pa X idgn) o (I)a)il (2.38)
(232 (0o X idgn—p) o (idy, X pry) o Pqo @t o (o x idgn) (2.39)
= (¢a © 9y ") X pryy = idy, X pryy, (2.40)

which is truly a smooth map from V,, x RY to V, x RN=P.

10We will construct a right inverse r of ¢ in (ii) using 7.
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Since 74 0 o = go = P, 0 (idy, X (is7 o pry;)) 0 Do, We obtain,

@aoraoiﬁojl:@aorao\lfglo(goglxidRN_p) ( )
= Gaorao Ut o (p," X idgy-r) (242)
= Pa 0 (Ta ©qa) © CI);1 o (idy, xijy) o ((,0;1 X idpn-») (2.43)
= @a 0 ;" 0 (¢t x (irr o (pryyoinr))) (2.44)
= (Pa X idgn) 0 Bg 0 O 0 (9" X ipr) = idy, Xipr, (2.45)

which is a smooth map from V,, x R¥N=? to V,, x RY. Let (Ya)acw be a smooth partition of
unity subordinate to {U, }acw, then r = >~ x,7, defines a smooth map r : E/g — E such

acA
that q o r = idg), Indeed, since the partition of unity is locally finite, the identity follows
pointwise by linearity of ¢ on each fibre and ¢, o r = id(gy), for each a € <. O

In order to verify that the dual bundle or (alternating) k-tensor bundle is indeed a vector
bundle, we want to use an abstract approach to construct vector bundles from old ones,
induced by so called manifold-enriched functors. This procedure is adopted from [Eur],
which is based on lecture notes by Hiro Lee Tanaka [Tan14]. We start with a remark about
the vector space of alternating tensors, including definitions and an induced basis.

2.3.8 Remark (Alternating Tensors)

For k € Ny and an R-vector space V' of dimension NN, the vector space of alternating
k-tensors A*(V*) is the set of alternating multilinear functions v : V¥ — R. Alternating
means that the function changes its sign whenever two arguments are interchanged. The R-
vector space structure is defined by pointwise addition and pointwise scalar multiplication.
Note that A°(V*) = R and A*(V*) = {0} for kK > N. Further, A}(V*) = V* is just the
(algebraic) dual space of V. We refer to [Leel3, p. 350 ff.] for details and summarize a few
facts. Let IF (V) be the set of increasing multi-indices I = (iy, ..., ;) of length k < N i.e.
1<iy <..<ip < N.If{by,..,bn} is abasis of V and {b7, .., by } is its dual basis, we define
for I = (iy,...,7) € I .(N) a so called elementary alternating tensor 5’ € A*(V*) by

by (v1) -+ b7 (vk)
Bl (v, ..., vp) = det : : . (2.46)
by (v1) - b (vr)

The family {3} ;c;x (y) constitutes a basis of A¥(V*), hence A*(V*) is of dimension (})).

2.3.9 Definition (Manifold-Enriched Category and Functor)

(a) A category C is called manifold-enriched if for any two objects A, B € Obj(C),
the set of morphisms Mor(A, B) has a structure of a smooth manifold.
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(b) A functor .% between two manifold-enriched categories C and C' is called manifold-
enriched if for any two objects A, B € Obj(C), the mapping f — Z(f)

Fap:Mor(A, B) — Mor(F#(A), #(B)) it .# is covariant, (2.47)
Fap:Mor(A, B) — Mor(#(B), #(A)) it Z is contravariant, respectively, (2.48)

is smooth.

2.3.10 Example (Manifold-Enriched Categories and Functors)

(1) For our purpose, the category of interest is Vect:® consisting of finite dimensional
R-vector spaces as objects and linear maps as morphisms with the usual composition.
Note that Mor(V,W) = {f : V. — W linear } is again a finite dimensional vector
space and therefore it has the structure of a smooth manifold. To be more precise,
let (ay,...,a,) be a basis of V and (by, ..., b,) a basis of W. Then, the linear functions
Yig oV = W, yi;(v) = aj(v)b; for i = 1,..,n and j = 1,...,m define a basis of
Mor(V, W), where a} denotes the jth basis vector of the dual basis of (ai,...,an).
Hence, dim(Mor(V, W)) = dim(V') - dim(W). Further, f € Mor(V, W) has the unique
representation f = Y > Ai;vi; with 7/,(f) = Ai; € R. The map

i=1j=1

T2 MOI"(‘/, W) - Rn.m? Qp(f) = (Pflk,l(f% -"7’7:;,1(]6)7 "'77>1k,m<f)7 -~-7’YZ,m(f)) (2'49)

defines a linear bijection. Starting with different bases of V' and W, one obtains a
C*°-compatible chart for ¢ since the transition functions are linear, hence continuous
and smooth. Thus, Mor(V, W) is indeed a smooth manifold of dimension n - m.

(2) Let V,W be finite dimensional R-vector spaces and f : V — W be a linear map.
The following (contravariant) functors from Vect? to itself are manifold-enriched:

(i) Dual Functor .Z#*
F*(V)=V*={p:V — R linear} (dual vector space), dim(V*) = dim(V);
FHf)=[f* W= V* f*(¢) = o f (transposed, pullback).

(ii) k-Tensor Functor .7}
FEV) = ®"(V*) = {p: V¥ — R multilinear}, dim(®"(V*)) = dim(V)*;
FEL) =1 @ (W) = @ (V) ['(w) : VE = R,
defined by f*(w)(v1, ..., vx) = w(f(v1), ..., f(vr)) (pullback).
(iii) Alternating k-Tensor Functor.Z*
FFV) = A*(V*) = {u: V¥ = R alternating multilinear}, dim(A*(V*)) = (4™"));
FE(f) = AFW*) = ARV, f*(w) : VE =S R,
defined by f*(w)(vy, ..., vx) = w(f(v1), ..., f(vg)) as in (ii) (pullback).

The pullbacks are linear and the (global) representative of the mapping f — % (f) from
Mor(V, W) to Mor(.% (W), .% (V)) corresponding to the (linear) charts in (1) are also linear
and therefore continuous and smooth in all cases.
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2.3.11 Remark (Motivation of Manifold-Enrichment)

The next theorem shows, that we can extend a manifold-enriched functor between Vecth®
to a functor between VBj;, the category of smooth vector bundles over a fixed base
space M with smooth vector bundle M-morphisms. So far, one wonders why we require
in Definition 2.3.9 a smooth manifold structure on the set of morphisms and smoothness
of the map assignment by a functor since in our examples, the set of morphisms are finite
dimensional vector spaces and the map assignments are linear maps between these vector
spaces. The key point is that Aut(R”Y) is not a vector (sub)space but an open submanifold
of Mor(RY,R") such that the restriction of the map

Fen gy - Mor(RY, RY) — Mor(Z (RY), 7 (RY)) (2.50)

to Aut(RY) is also a smooth map.

2.3.12 Theorem (Extension of a Manifold-Enriched Functor)

Let . be a manifold-enriched functor from Vectf? to Vectf?:.
(a) Let & = (E,mg, M) be a smooth vector bundle of rank N. Then .7 (F) = || Z#(E,)

zeM
has a unique topology and smooth structure such that .7 (§) = (Z(F),m, M) is a

smooth vector bundle of rank dim(.% (RY)), where 7 denotes the canonical projection.

(b) Let f be a vector bundle M-morphism from {g to &p.
(1) If Z is covariant, the map F(f) : F({g) — F ({r) defined fibrewise by

F (e Az} x F(Ey) = {x} X F(F), (2,0) = (2, F(f2)(v)), (2.51)

is smooth and a vector bundle M-morphism.
(2) If Z is contravariant, the map .7 (f) : .Z ({r) — -7 ({g) defined fibrewise by

F(f)e {x} x F(F,) = {a} x F(E,), (z,w) — (x, F(f)(w)), (2.52)
is smooth and a vector bundle M-morphism.

In this way, .# extends to a functor from VB,; to VB,, for a fixed base space M, i.e. the
assignment preserves composition and identity morphisms.

Proof. (a) The proof is an application of the Vector Bundle Construction Lemma 2.3.2.
Let (Uy)acw be a cover of M such that there is a smooth local trivialization (U,, ®,) of E
for each o € 7. In particular, the restrictions

(®0)s : By — {2} x RN 2 RY (2.53)
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(treated with target space RY in the following) are isomorphisms of vector spaces for all
a € o, x € U,. Define

v - F(Pa)z), %f F ?s Covariant;‘ (2.54)
’ F((®,);1), if Z is contravariant.

By functoriality, ¥, , : Z#(E,) — Z(R") is also an isomorphism of vector spaces for
all « € & and z € U,. Now, we define Z(®,) : 771 (U,) — U, x F(RY) fibrewise by
F (Do) : {2} x F(E,) = {z} x Z(RY), (z,v,) = (2,¥, (vy)). Then F(d,) is linear on
each fibre and bijective. If U, 3 = U, N Uz # () for some «, 3 € o7, there are the smooth
transition functions 75,75 @ Usg — Aut(RY) according to Remark 2.1.8 (2). Since
Ty g8 | aug@y) © Aut(RY) — Aut(F(RY)) is smooth as a restriction of a smooth map to
an open submanifold, we obtain the smooth composition 7, 5 : U, g — Aut(Z(RY)),

FRN BN | Aut®N) © Tag,  if F is covariant;
T =9 5 I , (2.55)
FRN BN | Aut(®Y) © Tha,  if F is contravariant.
Then, for € U, 3 and w € RY, we obtain
F (Do) 0 F(0p) " (1, w) = F(Pa)u(z, U5 (w)) = (2, V0, (V5,) (w))) (2.56)
= (2, Tap(z)(w)). (2.57)

(b) Except the smoothness, it is easy to check, that % (f) is a vector bundle M-morphism.

We only show the smoothness if .# is contravariant. Let (U, ®g) and (U, ®r) be smooth

local trivializations of £g and &, respectively. Under the notations of (a), the composition

F(Pp)o F(f)o F () ' : U x F(RY) - U x F(RY), (2.58)

(2, 0) 5 (2, F(@)71) 0 F(f2) 0 F (D)) (w)) (2.50)

is clearly smooth where the domain and range are considered as product manifolds, such
that the smoothness of % (f) follows.

Let g be another M-morphism between £r and {;. We obtain .#(go f) = F#(g) o Z(f) if

if

F is covariant just by definition as well as .Z (go f) = .Z(f) o .Z (g) if .F is contravariant.
Further, the identity on g is mapped to the identity on % ({g). O

2.3.13 Corollary (Smooth Vector Bundles)

Let &€ = (E,mg, M) be a smooth vector bundle of rank N and k& € Ny. Under the notations
of Theorem 2.3.12 and Example 2.3.10, we obtain the following smooth vector bundles

(a) Z*(&) of rank N, called the dual bundle of ¢;
(b) FE(€) of rank N*| called the k-tensor bundle of ¢;
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(c) FE(&) of rank (7)), called the alternating k-tensor bundle of ¢.
Moreover, if f : E — F'is a smooth vector bundle M-morphism between smooth vector
bundles over M, the pullback of alternating k-tensors f* : A¥(F*) — A*(E*), defined
fibrewise by

Fr(wa) (1, oy v) = wWo(fo(v1), ooy fo(vr)), where z € M, w, € A*(F), v; € E,,
(2.60)

is a smooth vector bundle M-morphism and of constant rank, if f is of constant rank.

2.4 Short Exact Sequences of Vector Bundles
2.4.1 Remark (No Abelian Category)

The category VB, consisting of smooth vector bundles over the same base space M as
objects and smooth vector bundle M-morphisms as morphisms is not an abelian category
since kernels and images only exist if the M-morphism has constant rank. Note that the
composition of M-morphisms with constant ranks does not have constant rank in general:
For example, let I = (0,1) and ¢ : I — R be a smooth function equal to 0 on (0, %) and
equal to 1 on (2 1). Define A, B : I — R?>*2 by

3
p (1= 1
A= [o ( . )1 and B = | {] (2.61)
Then fa, fp: IXR? — I XR?, fa(t,z) = (t, A(t)x) and fp(t,z) = (¢, B(t)z)) define vector
bundle morphisms of constant rank 1 between the trivial vector bundle I x R?, but f40 fg

0
does not have constant rank, since fa o fg(t,z) = (¢, A(t)B(t)x) and A(t)B(t) = g ol
Thus, all M-morphisms with constant rank do not serve as morphisms of a category.
However, the M-morphisms with constant rank are the homomorphisms of VB ;:

2.4.2 Lemma (Vector Bundle Homomorphisms)

Let f: E — F be a smooth vector bundle M-morphism of constant rank d between two
smooth vector bundles (F,7g, M) and (F,7g, M). Then, f is a homomorphism in the
category VB,,;. This means that the induced bijection

f: Efker(f) — Im(f) (2.62)

is an isomorphism of smooth vector bundle M-morphisms, i.e. ( f ,idys) is a smooth vector
bundle isomorphism.

Proof. For ease of notation, denote f with ¢g. Then, for each # € X, the linear map
Gz EefKer(f,) = Im(f2), g2([vz])) = fo(vs) is an isomorphism of vector spaces such that
there is a linear inverse g, '. This defines a map ¢! : Im(f) — E/Ker(f) satisfying the
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inversion equalities and 7 0 ¢~ = 7 since 7y = 7p o g. To check smoothness, consider
an open subset U C M such that there are a smooth chart (U, ) of M and a smooth
local trivializations (®g,U) and (®p,U) over both bundles. By Lemma (2.1.6) of local
representation, there is a smooth function A, : U — R%? satisfying

drogod,(z,\) = (,A,(x)-\) on U x R%. (2.63)

In particular, A, maps to GL(R, d) because each g, is an isomorphism of vector spaces.
Hence, we obtain by inverting:

Ppogtod(x, \) = (z,(Ay(x)) " - A\) on U x R (2.64)

Since the inversion of a matrix is a smooth map from GL(R, d) to itself as a consequence
of Cramer’s Rule, we have a smooth map A,-1 : U — GL(R, d), A,-1(z) = (Ay4(z)) ", such
that the coordinate representations of g~! are smooth. ]

2.4.3 Definition (Short Exact Sequence of Smooth Vector Bundles over M)
A sequence

fk+2

fE! Ek—l f* Ek frEt Ek—i—l

(%)

consisting of total spaces of smooth vector bundles over the same base space M together
with smooth vector bundle AM-morphisms is called a sequence of smooth vector
bundles over M. Such a sequence is called exact at E*, if f¥ and f**! are of constant
rank and satisfy Im(f*) = Ker(f*™), i.e. Im(f*) = Ker(f*!), for each x € M. The
sequence () is called exact if it is exact at each total space.

Denote the trivial vector bundle M x {0} simply by 0. A sequence of smooth vector

bundles over M E- . 9. ¢ o is called short.

Note that a smooth vector bundle M-morphism f : E — F' is injective (resp. surjective)!!

if and only if . p_ S p (resp. gL, p__. () is an exact sequence.

By abuse of language, we call the total space of a smooth vector bundle over M a
smooth vector bundle.
2.4.4 Splitting Lemma

Consider a short exact sequence of smooth vector bundles over M

f

0 E F2.q 0.

The following assertions are equivalent:

" This means that all f, are injective (resp. surjective), see Definition 2.1.3.
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(a) ¢ has a right inverse in VB, i.e. there is a smooth vector bundle M-morphism

r:G— F with gor =idg.

(b) f has a left inverse in VB, i.e. there is a smooth vector bundle M-morphism

(:F — E with fo f =idg.

(c) There is a smooth vector bundle M-morphism P : F — F' (of constant rank), which
is a projection, i.e. P o P = P such that Im(P) = Ker(g) = Im(f).

(d) There is a complemented smooth vector bundle of Ker(g) = Im(f), i.e. a subbundle H
of F with Ker(g) N H = M x {0} and Ker(g) + H = F such that the map

S: Ker(g) x H = F, (&) = £+, (2.65)
is a smooth isomorphism of M-morphisms.

If one of the equivalent conditions is satisfied, we say that the exact sequence of vector
bundles over M E-l.r 9. ¢ o splits.

Proof. Throughout this proof, we call a smooth vector bundle M-morphism just an M-
morphism and the projection M-morphism in (c) just an M-projection.

(a) = (c) Define @ = r o g, then @ is an M-morphism of constant rank because ¢ is
surjective and further Q o Q = ro(gor)og = Q. Since r is injective as a right inverse
of g, we obtain Ker(Q) = Ker(g) because it holds fibrewise. Then P = idp —(@) is again an
M-projection with Im(P) = Ker(Q) = Ker(g).

(c) = (a) The restriction glke(p) : Ker(P) — G is bijective:

Let x € M and v € Ker(g,) N Ker(P,) = Im(P,) N Ker(P,), such that there is p € F,
with P,(u) = v and P,(v) =0 € F,, hence v = P(u) = Po P(u) = P(v) =0 € F, yields
injectivity. For p € G, there is o0 € F, with g,(0) = 0. Moreover,

92:(0) = gu(Pe(0)) + gu(0 — Pu(0)) = gu(0 — Pr(0)) (2.66)

and (0 — P,(0)) € Ker(P,), which yields surjectivity. So, g|ker(p) is an isomorphism of
M-morphisms by Lemma 2.4.2, such that r = gielr(P) : G — Ker(P) is an M-morphism
and satisfies g o r = idg.

(b) = (c) Define P = f o/, then P is analogously an M-projection of constant rank and
the surjectivity of ¢ as a left inverse, implies Im(P) = Im(f) = Ker(g).

(c) = (b) Since f is injective and of constant rank, the induced bijection f : E — Im(f)
is an isomorphism of M-morphisms such that f~' : Im(f) — FE is an M-morphism of
constant rank. Define ¢ = f~! o P such that ¢ is an M-morphism of constant rank. Due
to Im(P) = Im(f), we obtain P(f(u)) = f(u) for all 4 € E and therefore also ¢ o f(v) =
FHUP(f() = f o f(u) = pon E.

(¢) = (d) Define H = Ker(P), then H is a subbundle of F. By the projection property,
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PoP = P, it follows by fibrewise inspection that M x {0} = Im(P)NKer(P) = Ker(g)NH
and Ker(g) + H = Im(P) + Ker(P) = F holds, where addition is fibrewise defined. In
particular, for every x € M each v, € F, has a unique representation v, = &, + 7, with
& € Ker(g,) and 7, € H, such that S : Ker(g) x H — F, ({,n) — u + v is bijective
and linear on each fibre. The addition in F', defined fibrewise, is also smooth such that S
is a bijective M-morphism and consequently an isomorphism of M-morphisms by Lemma
2.4.2. The inverse is given by T : F' — Ker(g) x H, v — (P(v),v — P(v)).

(d) = (¢) Fix © € M. Every v, € F, can be uniquely written as v, = &, + 1, with
& € Ker(g,) and n, € H, since Ker(g,) and H, are algebraically complemented vector
spaces. Moreover, the linear map P, : F, — F,, v, — & if v, = & + n,, is a projection
with Im(P,) = Ker(g,) such that the induced map P : F' — F is also a projection
and has constant rank. On the other hand, P is the first component of the M-morphism
S~ F — Ker(g) x H such that P is also an M-morphism. O

2.4.5 Lemma (Splitting of Short Exact Sequence)

Every short exact sequence () E- L. 9. ¢ o of smooth vector bundles over
M splits.

Proof. Since f is injective and ¢ is surjective, there are natural smooth isomorphisms of
M-morphisms by Lemma 2.4.2:

f:E—TIm(f) and §: Ffker(q) — G, (2.67)

where Im(f) = Ker(g) is a subbundle of F'. Therefore it is sufficient to show the splitting
of the canonical short exact sequence ( E—t.p_1¢ F/ o for a subbundle

E of a smooth vector bundle F' with the inclusion morphism ¢ and the quotient morphism
q. But this is clear by Lemma 2.3.5 or 2.3.7. [

2.5 Functor of Sections

For a fixed base space M, we want to construct a functor from VB,;, the category of
smooth vector bundles over M with smooth vector bundle M-morphisms to Fréchet, the
category of Fréchet spaces with linear and continuous maps as morphisms. The functor
will preserve exact sequences (Lemma 2.5.15). In that case, a short exact sequence of
vector bundles that splits, yields a short exact sequence of Fréchet spaces that also splits
by functoriality.

First of all, we have to equip the R-vector space of sections with a system of seminorms
such that it becomes a Fréchet space. This will be part of the next subsection. By Lemma
2.2.4, we already know that, under a choice of chart and trivialization, smooth sections are
locally isomorphic as R-vector spaces to smooth functions of an open domain of some R”
to some RY. This enables, at least locally, a way to define seminorms on smooth sections,
inherited by seminorms of smooth functions, which induce a Fréchet topology. However,
in order to construct a well defined topology on sections over arbitrary open subsets of
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a manifold, we have to verify that the induced topology is independent of the choices of
charts and trivializations. It will be reasonable to start with the Fréchet space of smooth
functions on an open domain of R".

The order of a multi-index @ = (az, ..., a,) € Nj is defined by |a| = )" «;.
j=1

Further, define for @ € Nj and a smooth function f € C*°(V,R) on some open V' C R"
the a-partial derivative evaluated at x € V' by

o0 ()

(c) —
f ($> 8x1---8xn

(2.68)

xT

2.5.1 Remark (Fréchet Space of Smooth Functions)

(1) Let V' C R" be open. For a compact set K C V and a number ¢ € Ny, the maximal
order of multi-indices involved, define

areo(f) = sup {|f(z)| 12 € K,a € Ny, |a| < ¢} (2.69)

on C*(V,R). The system Qy = {qxs : K C V compact, { € Ny} of seminorms is

equivalent to the countable system of seminorms Qv ((Kj);en,) = {qx;.¢ : J, £ € No},

where (K);en, is a compact exhaustion of V, i.e. K; C K;,; CV are compact such

that V = |J K. (Every compact K C V is contained in some K;). Therefore, the
J€No

induced topology does not depend on the choice of exhaustion and is metrizable. It

is well known that these seminorms induce a Fréchet topology on C°°(V,R).1?

A countable product of Fréchet spaces is a Fréchet space with respect to the product
topology. Further, C°°(V,RY) is isomorphic to the product (C*(V,R))N by f — (fr)i,
such that we obtain:

(2) Under the same notations as in (1), C*°(V,R") equipped with the system of semi-
norms OV ((K;);) = {qx,, : J,¢ € No} defined by

i) =sw{ mox 0@ e e Kol <eb )

is also a Fréchet space. Further, Qf = {qx, : K C V compact, { € No} is an
equivalent system of seminorms, such that the induced topology is independent of
the choice of exhaustions.

For later applications, we are interested in the continuity of certain linear operators bet-
ween spaces of smooth functions. Instead of struggling with formulas for (mixed) partial
derivatives, we will use a continuity criterion, which is an application of the closed graph
theorem.

12We refer to [MV97, Examples 5.18 (4)] for instance.
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2.5.2 Lemma (Continuity-Criterion)

Let X,Y, Z be Fréchet spaces and I : Y — Z be an injective continuous map.
Then a linear map 7' : X — Y is continuous if and only if ] o T : X — Z is continuous.

Proof. Suppose I o T is continuous. The map J : X x Y — X x Y, (z,y) — (z,1(y))
is continuous (with respect to the product topology) since [ is continuous. Because Z is
in particular a Hausdorff-space, the graph of the continuous function I o T', denoted by
graph(l o T'), is closed. Hence, the following set is also closed:

J (graph(I o T)) = {(z,y) € X x Y : (2,I(y)) € graph(I o T} (2.71)
={(z,y) e X xY : I(y) = I(T(x))} (2.72)
={(z,y) € X xY :y="T(x)} = graph(7T). (2.73)

The continuity of T follows now by the closed graph theorem. The other implication is
trivially true since compositions of continuous functions are continuous. ]

2.5.3 Lemma (Continuity of an Induced Operator)

Let V C R*"beopen, N, L € Nand A : V — RE*Y a smooth map (all entries are smooth R-
valued functions). Then the induced linear map Sy : C°(V,RY) — C=(V,RL), f — Suf
defined by pointwise matrix-vector-multiplication S f(y) = A(y) - f(y), is continuous.

In particular, if A:V — GL(R, N) is smooth, the induced map S, is an isomorphism of
Fréchet spaces.

Proof. Endow C(V,RLY) = {f : V — RL : f continuous} with the system of seminorms
{q[L(’O : K C V compact}. As in the smooth case, C'(V,R¥) is isomorphic to the product
(C(V,R))~, which is a Fréchet space as a finite product of the Fréchet spaces C(V,R) 3.
The inclusion I : C*°(V,RF) — C(V,RE), f + f is clearly continuous such that we only
have to verify the continuity of I o Sy : C*(V,RY) — C(V,RF) due to the Continuity-
Criterion, Lemma 2.5.2.

.....

respectively. For a matrix B € R¥*N_ denote its operatornorm by

1Bllop = sup{[[BAllz : A € RY, [[A|x < 1}, (2.74)
such that

1B st < 1B lop [\l for all A € BV, (2.75)
Let K C V be compact, then

cx = sup{[[A(Y)]lop : y € K} <00 (2.76)

13]MV97], Examples 5.18 (2) for instance.
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by continuity of A : V — R¥*Y and we obtain:

dro(I 0 Sa(f)) = sup{l|Saf(y)llmaxs : y € K} (2.77)
= sup{[|A(y) - f(Y)llmax.r 1 y € K} (2.78)
< sup{[|AW)llop [1f W)llmax,v = y € K} (2.79)
< ck P%,o(f)- (2.80)

Thus, the continuity of S4 has been proven.

Note that if B : V — R¥*M i5 another smooth map, the pointwise product defines a
smooth map AB : V. — RFM AB(x) = A(x) - B(x) and Sy 0 Sp = Sup holds. In
the special case of a smooth map A : V' — GL(R, N), the pointwise inverse matrix map
A7V — GL(R, N) is also smooth by Cramer’s Rule. Their induced linear continuous
maps satisfy S4 0 S4-1 = Sy, which is the identity on C>(V,RY). O

2.5.4 Lemma (Continuity of the Pullback of Smooth Functions)

Let ¢ : V — W be a smooth map between open sets V' C R™ and W C R™.

The pullback ¢* : C®(W,RY) — C>®°(V,RY), o*f = f o ¢ is linear and continuous.

For another smooth map v : U — V on U C R open, we have 1* o ¢* = (¢ 0)* and id},
is the identity on C>(V,RY).

In particular, the pullback of a diffeomorphism is an isomorphism of Fréchet spaces.

Proof. The linearity of ¢* is clear. As in the proof of Lemma 2.5.3, by Lemma 2.5.2 it
suffices to show the continuity of I o p* : C®(W,RY) — C(V,RY), where I denotes the
continuous inclusion from C*(V,RY) into C(V,RY). Let K C V be compact, then

ol f) =sup { max |l s o € K} (2.8)

-----

=q0).0(f)- (2.82)

Since ¢ is continuous, p(K) is compact, which shows the continuity of I o ¢*. Just by defi-
nition, *o@* = (o))" and idy = idgee(y ey follow and imply for a diffeomorphism ¢ and
its inverse 1) = ¢! the inverse identities, such that the pullback becomes an isomorphism
of Fréchet spaces. ]

We refer to [MV97, Chapter 24| for the concept of projective topologies on locally convex
spaces. It can be seen as a generalization of the product topology or the subspace topology
and allows to define a topology on a common domain of a family of linear maps, which map
to (possible different) locally convex spaces. The projective topology is also called initial,
weak or limit topology. We consider only R-vector spaces.
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2.5.5 Definition/Remark (Projective Topology)

A vector space X, together with a family of locally convex spaces (X;);e; and linear maps
i X — X; (i € I), is called a projective system, if for each € X \ {0}, there is an
i € I with m;(x) # 0. If P; denotes a system of seminorms on X;, we call

PR((Pi)ier) = {p = maxp; o 7; : J C I finite, p; € PZ} : (2.83)

the system of projective seminorms of the projective system (7 : X — X;);¢; inherited
by (P:)ier- It induces a locally convex topology on X, the so called projective topology.

We call © : X — [[ Xi, 2 — (m;(2))ies the evaluation map of a projective system. It is
1€]
an isomorphism of topological vector spaces onto its image with respect to the projective

topology on X and the subspace topology of the product topology on ©(X), respectively.
(O is clearly linear and injective by the defining property of the projective system. The
continuity of © and ©71 : ©(X) — X follows just by definition of the seminorms.)

The projective topology on X is therefore the coarsest topology such that all maps m; are
continuous.

2.5.6 Definition (Local Choice and Seminorms on Local Sections)
Let £ = (E, 7, M) be a smooth vector bundle of rank N over a smooth n-manifold M.
(a) We will call Y = (U, ¢, @, (K;)jen,) a local choice of ¢ (over U), if

(LC1) U C M is open;

(LC2) (U, ) is a smooth chart of M;

(LC3) (U, ®) is a local trivialization of E over U;
(LC4) (Kj)jen, is a compact exhaustion of p(U) C R".
)

b) For a local choice U = (U, p, @, (K;);en,) of &, we define a system of seminorms on
J7/73€No

I'(U, E) by
Pu = PR(QY 11 ((K;)jeno)) = {p5e = ak, 00 Tv + 4, £ € No}, (2.84)

where Ty @ T(U,E) — C>®(p(U),RY) denotes the isomorphism of vector spaces
according to Lemma (2.2.4) induced by (U, ) and (U, ®).

2.5.7 Lemma (Fréchet space of Local Sections)

Let U = (U, p, ®, (K;)jen,) be a local choice of a smooth vector bundle (£, w, M).
Then (I'(U, E), Py) is a Fréchet space.
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Proof. Denote by Ty : T'(U, E) — C*®(p(U),RY) the isomorphism of vector spaces accor-
ding to Lemma (2.2.4) induced by (U, ¢) and (U, ®). Since Ty is in particular injective, it
defines a projective system. By definition, P, is the system of projective seminorms of the
projective system Ty : T(U, E) — C*®(p(U), RY) inherited by Qg(U)((Kj)j). Moreover, the
evaluation map © is just Ty, which is also surjective. Hence, we have an isomorphism of
topological vector spaces Ty : (T'(U, E), Pu) — (C*(p(U),RY), QJ ;). Since Py is counta-
ble and (C>(p(U),RY), Qg(U)((Kj)j)) is a Fréchet space, we can follow the assertion. [

The induced topology does not depend on the choice of the compact exhaustion of ¢(U),
since Py is equivalent to {pf , = qi ;0 Ty : K € @(U) compact, £ € No}. But we also have
to check, whether the topology depends on the choice of chart and trivialization, which
will be expressed in a lemma:

2.5.8 Lemma (Independence of Local Choices)

Let Uy = (U, Pa, Pa, (KF)jen,) and Us = (U, ¢g, Pp, (Kf)jeNo) be local choices of a smooth
vector bundle (E, 7, M) over an open subset U C M. Then Py, and Py, are equivalent
systems of seminorms on I'(U, E).

Proof. We already know that the transition map ¢ = ¢z 0 o, ! from ¢, (U) to ps(U)
is a diffeomorphism, such that its pullback is an isomorphism between Fréchet spaces
(©8) = C®(pp(U),RY) — C®(pa(U),RY), f + fo ¢l by Lemma 2.5.4. Thus,
an(U)(Kf)jeNo and QgB(U)(K Jﬁ )jen, are equivalent systems of seminorms. Therefore the
projective topology on I'(U, E) is independent of the compact exhaustion.

It remains to show, that id : (I'(U, E),Py,) — (I'(U, E),Py,) is an isomorphism of
Fréchet spaces. Denote by T, and 7 the isomorphisms of Lemma 2.2.4 corresponding
to @, Py and g, Pg, respectively. In addition, they are isomorphisms of Fréchet spaces
onto C®(p(U),RY) and C*(pz(U), RY), respectively. Hence, we have the following com-
mutative diagram with isomorphisms of Fréchet spaces in the columns:

(D(U, ), Pu,) — L~ (N(U, B), P,

Tal |

C(ea(U), RY) C(pp(U), RY)

C(pa(U), RY).

Therefore, it suffices to show that S? = (¢2)* o Ts o T; ! is an isomorphism of Fréchet
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spaces. We compute for f € C(p,(U),RY):

Tso T, (f) =pryyo®go (T,'(f)) o 9051 (2.85)
=pryo®g 0 (" o (idy X(f 0 ¢a))) 0 95" (2.86)
=pryo(®@go®.t) o (w5t x (f o ¢f)). (2.87)

Using the transition function 77 : U — GL(R, N) between ®5 and ®,, according to Lemma
2.1.7, we obtain for y € ¢, (U):

Ts 0 T, (F)(y) = 72(05" (v) - F(95 (). (2.88)

Applying the pullback (©?)*, gives

SUf(y) =i (e5" 0 @h(y)) - f(©5 o Wily)) (2.89)
=72(0a" () - [ (). (2.90)

For V = ¢, (U), the composition A = 77 0 -1 : V — GL(R, N) is smooth. By Lemma
2.5.3, the induced map S, = S? is an isomorphism of Fréchet spaces.

(Note that if id : (I'(U, E), Py, ) — (I'(U, E), Py,) is a continuous map, it is already an
isomorphism of Fréchet spaces by the open mapping theorem. To achieve this, one can
show the continuity of S?. However, by the previous results, this is not much less work
than showing that it is already an isomorphism of Fréchet spaces.) O

2.5.9 Definition (Seminorms on the Space of (Global) Sections)

Let £ = (E, 7, M) be a smooth vector bundle of rank N over a smooth n-manifold M.
(a) We call Uy = (Us)acs a cover of local choices of £ over M, if

(CLCL) Uy = (Ua, Pa Pas (KF')jen,) 1s a local choice of £ over an open subset U, € M
for each a € o
(CLC2) M = | U.,.

acd

Another cover of local choices Vg = (Vg = (V3, Y3, Ug, <L§>j€N0)>5€gj of £ over M is
called a local choice refinement of U/, if

(LCR) for each v € o7, there is a subset B, C A such that Vg, = (Vs,)s,e2, is a cover
of local choices of the restricted vector bundle |y, over U, and Z = |J HB..
acd
(b) Let Uy = (Uy)acr a cover of local choices of & over M. For each a € &7 define
the restriction map ¢* : I'(M,E) — T'(U,, E), 0 — oly, = 0 o i4, where ¢, de-
notes the smooth inclusion of U, into M. The restriction maps and Fréchet spaces
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(I(Ua, E), Py,) make I'(M, E) into a projective system. For U,,, we define Py, to
be the system of projective seminorms inherited by (P, )ace, 1-€.

Prty =PR((Pu)acer) (2.91)

= {pjlﬂl maxp]a . : [ C o finite, jo, l, € Ny for all a € I} . (2.92)

2.5.10 Lemma (Topology Invariant Under Refinement)

Let V4 be a local choice refinement of a cover U,, of local choices of £ over M. Then the
systems of seminorms Py, and Py, on I'(M, E) are equivalent.

Proof. We will show:

(1) ,PR((,PV@a)aeﬂ) = Pva;

(2) tU = (U,p,?,(K;)jen,) is a local choice of a vector bundle § = (E,m, M) over U
and U, = (Uy)acwr 1s a cover of local choices of |y = (Ey, mg,,U) over U, then Py
and Py, are equivalent.

Then we can conclude that Py, and Py, are equivalent for each a € &7. It is easy to see,
that two systems of projective seminorms inherited by equivalent systems of seminorms
are again equivalent. Therefore, Py, and PR((Py,,_ )acs) = Py, are equivalent.

(1) After applying the definitions and using 0% o ¢® = ¢’ a seminorm of
PR((Pvy, )ace) is given by pr,).., = max max p;; p ogﬂa for finite subsets J C &,
I, C %, and jg,,lp, € Ny foralla € J and 3, € Ia. Deﬁne I = aUJ]a. Then I C A
is finite and p(1,),. maxp]ﬁ 05 © o’ € Py,. )
Othersides, a seminorm of Py, is given by pjl o ﬁaxp o o” for a finite subset
I C % and jg,lg € Ny. Since I C |J £, is finite, there is a finite subset J C o,

aEed

such that I C |J A,. We divide I into subsets I, =1\ [ U %’@> C %,, which
acJ a£Be]

are also finite. Then, we obtain p! , = p.).c, € PR((Pyy, )acw)-
(2) Let I C o be finite and j,,l, € Ny for all a € I. The finite union K = |J Kj, is

acl
a compact set in U such that there is a j € Ny with K C K. For £ = max Ly, We
aec

clearly have pf , (o) = ma}(p?“e 0 0%(0) < pje(o) for all 0 € I'(U, E).
i ac ata 7

Otherwise, let j, ¢ € Ny be arbitrary. The compactness of K; CU = |J U, yields a
acd
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finite subset I C o7 with K; C |J U,. For a € I, define

acl

Ka=K\| | Us]- (2.93)
pel\{a}

Each K, is a compact subset of U,, since it is a closed subset of a compact set in a
Hausdorft space. Hence, there is a j, € Ny with K, C Kj_ for each a € I. Setting
l, = { for o € I, we now obtain p;(0) < ma;cp?ae op*(c) on I'(U, E).

ae asta

2.5.11 Lemma (Fréchet Space of Global Sections)

Let Uy = Ua = (Ua; Pas Pa; (K5)jen, ) )aces be a cover of local choices of § = (E,m, M)
over M. Then, (I'(M, E), Py, ) is a Fréchet space.
In particular, (T'(M, ) Pu.,) is isomorphic to the Fréchet space:

Xu, = {(aa)a@/ € H LUy, E) : 04|, 5 = 08lu, , for all (o, 8) € OD(@{)} . (2.94)

acd

where OD(&) = {(a,8) € & x & : Upp = U, N Uz # 0} denotes the set of indices
with overlapping domains and the topology on Xj, is the subspace topology of the product
topology.

Proof. According to Lemma 2.5.7, each space of local sections I'(U,, E), equipped with

Py, is a Fréchet space. Hence, the countable product [ (I'(U,, E), Py, ) of local sections
acd
is also a Fréchet space with respect to the product topology, induced by the projections

T - H P(UﬂaE) - F(UCX7E>7 (O-B>B€,Qi = Oq.
Bed
By definition, Py, is PR((Pu,)acw), the system of projective seminorms inherited by

(Pu,,)ace - Therefore, the evaluation map Oy, : ['(M, E) — [[ ['(Ua, E), 0 = (0%(0))acw
acd
is a linear homeomorphism onto its image, which is equal to Xj,,.

(Im(©y,, ) is contained in Xy, since restrictions commute. If otherwise (0, )ace is an ele-
ment of Xy, the mapping x +— o0,(z) if © € U,, yields a well defined smooth section
o € I'(M, E). Indeed, for any other 8 € & with x € U, the local sections o, and og are
equal on the open intersection U, g = U, N Up.)

We will show, that X;,, is a closed subspace of the product space. By restricting to a
non-empty intersection U, g = U, N Ug, we receive charts (Us g, Pu), (Uas, $3) and trivia-
lizations (U, g, @o), (Ua., @3). Further, (K®f) en, = (' (K24 ﬂwgl(Kf+k))j€NO defines
a compact exhaustion of U, g, where k = min{j € Ny : ¢ ' (K$) N @El(Kf) # (0}. So

ug,ﬁ = (Uaﬂv Pas &)Om (¢a<[~(;7ﬁ))j€N0) and uaﬁ,ﬁ = (Ua,ﬁ> @ﬁv éﬁ? (Qbﬁ(k}xﬂ))jeNo) (295)
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are local choices of £ over U, g. The maps,

027+ (N(Uas E), Pu,) = (T(Uayp, E), Pus )y 0o = Galu, s = 0a 01055 (2.96)

05"+ (T(Us, E), Py,) = (T(Uayp, E),Pys ), 05 0plu, , = 050 g (2.97)

are continuous. (Indeed, for p;{j’ﬁ
P;{?’ﬁ(gg’ﬂ(a)) < ijik,Z(U) for all 0 € I'(U,, E) since géa(f(jo‘ﬁ) C K%\ The continuity
of Qgﬁ follows analogously.) But, by Lemma 2.5.8, Pugﬁ and Pu,aﬁ are equivalent, such

. U, .
€ 73’;,13} 5 the seminorm p;, € Py, satisfies

that they induce the same topology on I'(U, 3, E'). Now, we can write X, , as a countable
intersection of kernels of continuous and linear functions, which are closed subspaces:

Xu, = ﬂ Ker(o®" o 7, — gg’ﬁ o Tg). (2.98)
(a,8)€O0OD()

Hence, Im(©y,,) is a Fréchet space with respect to the subspace topology of the product

topology on [[ I'(U,, E). Since 6y, is a homeomorphism onto its image, (I'(U, E), Py)
acd
is also a Fréchet space. O

2.5.12 Lemma (Independence of the Topology of Sections)

Let £ = (E, 7, M) be a smooth vector bundle over M. Two covers of local choices

Uy = Ua = (Ua, a; Pa; (Kf)jENo))aeﬂv Vg = (Vﬁ - (Vﬁ’?wﬁv W, (L?)jGNO))ﬁE«%’ (2.99)
over M induce equivalent systems of seminorms Py, and Py, on I'(M, E).

Proof. We will construct local choice refinements of U, and Vg, respectively. By restricting
to a non-empty intersection W, 3 = U, N V3, we receive charts (W, g, Pa); (Wa s, %3, ) and
trivializations (Wy 5, @), (Wa., s, ). Moreover, K;"ﬁ = @, (K ﬂ@/}/gl(Lerk) defines a
compact exhaustion of W, 5 for k = min{j € Ny : ¢ '(K#) N wﬁ_l(Lf) # (}. Hence,
S,B = (Waﬁa Pas (i)ow (@a(Kfﬁ))jeNo) and Wg,ﬁ = (Waﬁ? szﬁv qjﬁ’ (@Z)ﬁ(f(;'xﬁ))jENO)
(2.100)

are local choices of £ over W, 5 for all (o,) € (o, AB) = {(a,f) € F X B : Wyop =
U, N Vs # 0}. Moreover, for fixed a € & define B, = {f € B : (o,p) € (,B)}
and for fixed § € & define @ = {a € & : (a,p) € (o, PB)}, respectively. Then,
W 5 = WS 5)(ap)e(r,) is a local choice refinement of U, such that by Lemma 2.5.10,
Py, and Pyye  are equivalent systems of seminorms on I'(M, E). Analogously, Py, and

PW;??,@ are eqflivalent. Finally, by Lemma 2.5.8, ngﬁ and ngﬁ are equivalent for each

(o, B) € (o, A), such that their corresponding system of projecti’ve seminorms Py . and
Pz _ are also equivalent. O
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2.5.13 Remark (Comparison to Smooth Functions on Euclidean Space)

As we have seen in the construction of the Fréchet space structure on global sections, all
seminorms arise [ocally only from compact exhaustions of typically small open sets, on which
smooth trivializations and charts exist. This is a difference to the Fréchet space structure of
C*>*(V) for any open V' C R”. In this case, the seminorms arise from a compact exhaustion
of the whole set V', such that one might call this situation semi-global in difference to the
local origin of the Fréchet space of global sections.

2.5.14 Remark (Section Functor)

A smooth vector bundle (E,m, M) of rank N gives rise to the Fréchet-space of sections
['(M, E) by the previous lemmas. For a smooth vector bundle M-morphism f : £ — F|
define the pushforward f, : I'(M,E) — I'(M,F) by f.(c) = f o o. Since the vector
space structure of sections is defined pointwise in each fibre and f restricts to a linear
map on each fibre, the linearity of f, follows. For the continuity, suppose an open cover
(Us)acwr of M such that there are a chart (U,, p,) of M and smooth local trivializations
(Uy, @) of E and (U,, V,,) of F, respectively. Locally, we have the following commutative
diagram for V,, = ¢,(U,) € R™ and (fa)* = Tra© (fa)« 0 Tb?jl7 where Tb?jl and Tr, are
the isomorphisms of Lemma (2.2.4):

U, E) (a)» (U, F)
TE,al lTF,a
C®(Vy, RY) —— C>(V,, RF)

By construction of the topology on spaces of sections, we obtain that f, is continuous if
and only if (f,), is continuous from C*(V,, RY) to C(V,, RY) for all a € <. To show
this, Lemma 2.1.6 gives a smooth map Ay, : U, — R¥*V satisfying U, o f, 0 & (z,\) =
(z, Ay, (z) - \) on U, x RY. Using all the definitions, we obtain for g € C*=(V,,R") and
yeVy,

(fa)<(9)(¥) = (Tra o (fa)s 0 T a(9))(y) = (A, 09 )(y) - 9(y). (2.101)

Since Ay, o'V, — RN is smooth, we obtain the continuity of (fa)* by Lemma 2.5.3
for each o € & and consequently the continuity of the push-forward f,

For another smooth vector bundle M-morphism h : F' — G, we clearly have (hof), = h,of.
and further, the identity is also preserved. To summarize, we have constructed a covariant
functor from VB, to Fréchet, the category of Fréchet spaces with continuous and linear
maps.
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2.5.15 Lemma (Section-Functor is Exact)
f

Let 0 E F2-@ 0 be a short exact sequence of smooth vector bundles
over M, then the sequence of Fréchet spaces with linear and continuous maps,

0——=TD(M,E) L~ T(M,F)-2~T(M,G) —0, (2.102)

is exact and splits.

In particular, if (E,7g, M) is a subbundle of (F,7r, M), we obtain for the canonical se-
quence, consisting of the inclusion morphism 7 and the quotient morphism ¢, a short exact
sequence that splits:

0——=TI(M, E) —“=T(M, F) —2-~T(M, F/g) —=0. (2.103)

Proof. We show the exactness:

(1) Let o € Ker(f,), i.e. o € I(M, E) with f,(0) = 0. Then 0 = f,(0)(z) = f(o(z)) for
every x € M, such that o(z) = 0 on M, by injectivity of f.

(2) Now, let o € Im(f,), i.e. there is p € I'(M, E) with 0 = f.(0) = f o 0. Then, we have
g«(0) =go fop=0¢€TI'(M,G) since Im(f) = Ker(g), which yields Im(f,) C Ker(g.). For
o € Ker(g.), we obtain 0 = g.(0)(z) = g(o(z)), such that o(z) € Ker(g,) = Im(f,) for
every v € M. Pick a frame {g;}%_, of E/ over some open subset U C M. Then {f o g;} is a

p
frame of Im(f) by injectivity of f such that o|y has a local representation oy = Y \;foo,
j=1

p
for some smooth functions A\; € C*(U,R). Define gy = > A;0;, then gy € I'(U, E) with
j=1

f«(0) = oy by fibrewise linearity of f. Moreover, for an open cover (Uy)ac 0f M such that
there is a frame of E over each U,. Pick a smooth locally finite partition of unity (xa)aco
subordinate to (U,)aecw. The preceding shows that there are g, € T'(U,, E) satisfying
f+(0a) = v, Since supp(xa) € U, we can extend each x,0, smoothly by zero outside of

U, and obtain a smooth section o = >  xa0. € ['(M, E) with f.(0) = 0.

acd
(3) By an analogously partition of unity argument, it is sufficient to show the surjectivity
of g, locally. So let U be an open subset of M such that {O‘j}év:l is a frame of F' over U

where {0;}%_, is a frame of Ker(g)(@ Im(f)) over U. Hence, {r; = g o ajw};v;lp defines

a frame of G over U since g is surjective. Every 7y € T'(U, G) has a local representation

N—p N+p
Tv = Y, A\;j7; with smooth functions A\; € C*°(U,R) such that oy = > A0, defines a
j=1 j=1

smooth section in I'(U, F') satisfying g o oy = 7 by fibrewise linearity.

Lemma 2.4.5 yields the splitting of 0 JoEiy = e, 0, such that there are a
left inverse M-morphism ¢ : F' — FE of f and a right inverse M-morphism r : F' — E of
g. By functoriality, we obtain that /, is a left inverse of f, and r, is a right inverse of g,
respectively. [
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2.5.16 Lemma (Sections of Quotient bundle and Quotient of Sections)

Let (E, 7, M) be a subbundle of a smooth vector bundle (F, 7p, M).

Then I'(M, E) is a closed subspace of I'(M, F') and I'(M, F/g) is an isomorphic Fréchet
space of I'(M, F)/r(ar, E). Moreover, the quotient map ¢ : I'(M, F) — I'(M, F)/r(ar, B) has a
linear and continuous right inverse 7.

Proof. The short exact sequence (2.103) implies I'(M, E) = Im(i.) = Ker(g.), which is
a closed subspace since ¢, is continuous. Therefore, I'(M,F)(ar E) is a Fréchet space
and the surjective linear and continuous quotient map ¢ : I'(M, F') — T(M, F)/r(ar, E) is
a topological homomorphism with Ker(q) = I'(M, E) = Ker(q,). Further, the sequence
(2.103) splits, such that there are linear and continuous maps /, a left inverse of i,, and
T4, a right inverse of ¢,. This gives the following commutative diagram with short exact
sequences of Fréchet-spaces in each row:

T qx
0——~T(M,E) _ " T(M,F) (M, Flp) —0. (2.104)
C. =
1id ] id
0—=T(M,E)__ T(M,F)—% "(M.F)fr(r, ) —> 0

é*

Since /¢, is also a left inverse of i, in the lower sequence, the Splitting Lemma (2.4.4)
gives a linear and continuous right inverse 7 : I'(M, F)/r(p, E) — I'(M, F) of ¢. The linear
and continuous compositions ¢ o r, and ¢, o 7 are inverse functions, such that we have an
isomorphism of Fréchet spaces between I'(M, F/g) and I'(M, F)/r(ar, E). O
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3 Forms and Cohomology of Foliated Manifolds

3.1 Introduction of Smooth Foliations

We refer to [Leel3, Chapter 5, p. 98 ff.] for an introduction of smooth submanifolds and
collect some basics. An immersed submanifold of a smooth manifold M is the image of
an injective immersion f : N — M, i.e. a smooth injective map between smooth manifolds
such that the differential df, at each z € N is injective *. The topology of an immer-
sed submanifold may be different from the subspace topology inherited from M. If f is a
topological embedding, such that its image has the subspace topology of M, the image of
f is called an embedded submanifold. Locally, an immersed submanifold looks like an
embedded one, but globally they can look different.

The idea of a foliation is a decomposition of a manifold into disjoint connected immersed
submanifolds of a fixed dimension, called leaves of the foliation. Locally, this decomposi-
tion can be seen in charts as (lower dimensional) parallelized surfaces. Roughly speaking,
a book as a 3-dimensional object is decomposed by its 2-dimensional pages as leaves.
Foliations arise in differential geometry as collections of solutions of (underdetermined)
systems of differential equations if they satisfy an integrability condition, known as invo-
lutivity. This connection is described by the Frobenius Theorem, named after Ferdinand
Georg Frobenius. As John Milnor has recommended,!® a more appropriate name would be
Deahna-Clebsch-Frobenius Theorem. We will not go into details, but refer to [Mil70] or
[Leel3, Chapter 19| for an elaboration. However, we include an example of a first-order
partial differential equation to illustrate the importance of foliations in that area.

3.1.1 Definition (Smooth Foliation)

Let M be a smooth manifold and F = {£, },c» be a partition of M into disjoint, connec-
ted, immersed k-dimensional submanifolds of M. A (smooth) foliated chart (U, y) is
a diffeomorphism ¢ : U — V x W between open subsets U C M, V C RP and W C R?
with the following property: For each o € &/ and each connected component (U N L,)? of
U N L, there exists a constant ¢2 € W C R? such that o((U N L,)?) =V x {?}.

We call (M, F) a (smooth) (p,q)-foliated manifold if each point has a foliated chart,
where p is called the dimension of the foliation and ¢ the codimension. In this case, the
partition F = {L, }ac is called a (smooth) foliation of M and L, is called a leaf of F.
Since {L,}acw is a partition of M into disjoint sets, each x € M is contained in exactly
one leaf, which will be denoted by F,. Hence, the mapping x — F, from M — F is a
function that satisfies F, = F, if and only if  and y lie in the same leaf. We call this the
leaf function of F.

A smooth foliated map f : (M,F) — (N, G) between smooth foliated manifolds is a
smooth map f : M — N such that the image of each leaf of F is contained in some
leaf of G, i.e. for every F' € F there is some G € G such that f(F) C G or equivalently,

1See also Examples 2.1.4 (3) for the introduction of an immersion.
15See [Mil70, p. 10].
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f(.FI) - gf(g;) for all x € M.

Note that every smooth manifold M of dimension m is also a smooth (m, 0)-dimensional
foliation, given by one leaf M itself. But we could also define a smooth (0, m)-foliation by
points of M, i.e. {{z}:x € M}. In order to construct more interesting foliations, we start
with transversal maps, which allow to pull back a foliation from the target manifold.

3.1.2 Definition (Transverse Map to a Foliation)

A smooth map f: M — N between smooth manifolds is called transverse to a smooth
foliation G of N if

Tf(z)N = Tf(m)gf(m) + dfw(TmM) for all x € M. (31)
Here, df : TM — TN is the differential'® of f, defined fibrewise df, : T,M — Ty N by
dfs(v2)(g9) = ve(go f) for v, € T,M and g € C*(N). (3.2)

Note that the sum does not to be a direct sum in the definition. Moreover, if M = dim(M ),
n = dim(N) and G is a (p, q)-foliation of N, the existence of a transverse map f: M — N
to G implies

n < p+m and therefore ¢ =n —p < m. (3.3)

3.1.3 Remark (Submersion)

If f: M — N is a submersion, then df, is surjective (or equivalently of full rank dim(V))
at each point x € M, such that f is clearly transverse to any foliation of N. If m > n,
the projection map pr;; : R™™" x R" — R", (z,y) — y is a submersion. The following
result states that each submersion can be transformed locally into a projection by a dif-
feomorphism, which is a consequence of the Inverse Function Theorem'”. It is called the
Local (or Canonical) Submersion Theorem and we use it to proof Proposition 3.1.5.
The Local Submersion Theorem is a special case of the so called Rank Theorem!'®, where
f : M — N needs to be a smooth map such that the differential df : TM — TN has a
constant rank.

3.1.4 Theorem (Local Submersion Theorem)

Let V' C R™ and W C R? be open sets. If f : V — W is a submersion (at z € V),
then there exist open subsets V C V C R™, W; C R™79, W, C R? (with z € V) and a
diffeomorphism x : W7 x Wy — V such that

f o r(wy,wy) = wy for all (wy,we) € Wy x Wa. (3.4)

16See also Examples 2.1.4 (3).
17See [Leel3, Theorem C.34, p. 657 for instance.
18See [Leel3, Theorem 4.12, p. 81] for instance.
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Proof. Since f is a submersion, ¢ < m necessarily. The Jacobian matrix Vf(z) at x € Vis a

(¢xm)-matrix of rank ¢ with entries (ai(:z:)) (t=1,...q,5=1,...,m). Thereis a (linear)
L

diffeomorphism 7 : R™ — R™, given by a change of basis such that f = for: 77 4(V) - W

is a submersion and the left (¢ x g)-block of its Jacobian matrix at & = 771(x),

fi -
(0%( )> 1<ij<q7 &

g: T’I(V) — R™ by g(z1, ..., Tm) = (Tg41, ...,xm,f(:cl, s Tg))- (3.6)

is regular. Now, we define

For the projection pr;; : R™~% x R? — R?, pr;;(a,b) = b, we get f= pr;; og. Further, g is
smooth and its Jacobian matrix at Z is given by

Vg(z) = [191 I”(L)*q} , which is invertible with inverse (Vg(%))™ = [L,?,q AO 1] . (3.7)
Therefore, the Inverse Function Theorem yields an open neighbourhood U C 7=4(V) of &
such that g|y is a diffecomorphism. In particular, ¢g(U) is open. Hence, there are open sets
W, € R™ % and W, C RY such that g(Z) € Wy x Wy C g(U). U = (gly) (W) x WQ) cU
is open in R™ with # € U and g| is also a diffeomorphism. Moreover, k = 70 (g|5) "' is a
diffeomorphism between open sets from Wy x Wy onto V = 7(U) with 2 = 7() € V. By
f o7 =pr;;og, we finally obtain

f o k(wy,wy) = wy for all (wy,wy) € Wy x Wa. (3.8)

]

3.1.5 Proposition (Pullback Foliation of a Transverse Map)

Let M be a smooth manifold of dimension m and (N, G) a smooth (p, ¢)-foliation. Further,
let f: M — N be a smooth map transverse to G.

Then, there is a smooth (m — g, ¢)-foliation f*(G) of M, called the pullback foliation
of f induced by G. The leaves are given by the connected components of the preimages
YL ={y € M : f(y) € L}, where L ranges over the leaves of G which intersect the
image f(M) C N.

Proof. Let @ € M, ¢y : Uy — Vi be a chart of x and (¢85, ¢%) : Uv — WP x W7 be a
foliated chart of (NN, G) with f(x) € Uy. By shrinking the domain of v¢5;, we can assume
Uy € f71(Uy). The second component function of the foliated chart, % : Uy — W% C R,
is a submersion and since f is transverse to G, the composition ¢ o f|;-1,) is also a

submersion. Further, f = V4 o floy, oy + Var € R™ — W9 C RY is a submersion
between open subsets, such that the Local Submersion Theorem 3.1.4 provides open sets
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Vir C Vas C R™, Wy x Wy € R™ 7 x R? with ¢y () € Vi and a smooth diffeomorphism
Kk Wi x Wy — V) satisfying

fo K(wy, ws) = wy for all (wy,wy) € Wi x Wh. (3.9)

Set Ups = 171 (Var) and ¢ = ko, We will verify, that (U, ) is a foliated chart for
x of an (m — q, q)-foliation of M. ¢ is a diffeomorphism as composition of diffeomorphisms.
Fix a leaf £ € G. If f~1(£) N Uy = 0, there is nothing to show. Otherwise, let y € Uy,
with f(y) € L. Then, there is a (unique) pair (wy,ws) = ¢(y) € Wi x Wy satisfying

wy = f o k(wi,wy) = foduly) =1%o f(y) (3.10)

If [Uy N f~1(£)]™ is a connected component, then by f(Uy N f~1(£)) € Uy N £ and
the continuity of f, the image, f([Un N f~1(£)]*) is connected in Uy N £ and therefore
contained in some connected component [Uy N £]%®) on which % is of a constant value
?@) ¢ W9 C RY. Together with (3.10), this gives o([Up N f7H(L)]*) = Wy x {P@}. O

3.1.6 Corollary (Foliations of Submersions)

Let S : M — N be a submersion between smooth manifolds of dimension m and n, thus
m > n necessarily. Then, there is a smooth ((m — n),n)-foliation of M, given by the
connected components of the level sets S™!({c}) = {z € M : S(z) = ¢} as leaves, where ¢
ranges over the image S(M) C N.

Proof. Let G = {{y} : y € N} be the (0,n)-foliation by points of N. Since S is a submer-
sion, it is also transverse to G. By proposition 3.1.5, the pullback foliation S*(G) is the
desired foliation on M. ]

Note that every p-foliation of an m-dimensional manifold M is locally given by the connec-
ted components of the level sets of a submersion. More precisely, define for a foliated chart
p:U =V xW CRP xR™P the map Sy = prjyop : U — W, where pr;; is the pro-
jection of V' x W onto W. Then Sy is a submersion as a composition of submersions and
S5 ({el}) = o (o7 ({e£)) = 7' (V x {ef}) = (U N La)" for any @ and B.

3.1.7 Examples (Foliations)

(1) Foliation by Points
Let M and N be smooth manifolds of dimension m and n, respectively.
Then Fn(M) = {M x {y} : y € N} is a smooth (m,n)-foliation on the product
manifold M x N, called the M-foliation by points of N. A foliated chart is given
by (V' x W, (¢ o my, 9 o my)), where 7y, my, are the projections from V' x W, (V) p)
and (W, 1) are smooth charts of M and N, respectively.
Note that each smooth (p, ¢)-foliation (M, F) is locally isomorphic to a V-foliation by
points of W with open subsets V' C RP and W C R? by a foliated chart ¢ : U — V xW
of (M, F).
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(2) Foliation induced by Submersion:

Let S : R?\ {0} — R, S(z,y) = xy. Then, S is a submersion since at each point
(z,y) € R?\ {0} the differential dS(,,) : R* — R is given by

dS(ay) (a,b) = 0:5(x, y)a + 0,5(x, y)b = ya + b, (3.11)

which has rank 1. Thus, the connected components of the level sets {(x,y) : zy = ¢}
(c € R) of S induce a foliation on R?\ {0}.

%

Figure 2: Foliation of the level sets of (z,y) — zy on R?\ {0}.

(3) Pullback Foliation

Let (M, F) be a smooth (p,q)-foliation and 7 : M x R — M the projection map,
which is a submersion. Then, the pullback foliation 7*(F) on M x R is given by
{LxR: L e F}. We will need this specific foliation on the product manifold M x R
later for a type of homotopy. It satisfies the following property:

(%) For any ¢t € R the smooth injective inclusion map J; : M — M X R, x +— (x,t) is
also a foliated map from (M, F) to (M x R, 7*(F)).

Restricted Foliation

Let S be a smooth immersed submanifold of a smooth manifold M. If the inclusion
is S — M is transverse to a (p, q)-foliation F of M, then F|y = i§(F), given by
the connected components of all leaf intersections with S, is a (s — ¢, ¢)-foliation of
S, where s denotes the dimension of the manifold S. Note that, if U C M is an open
subset, then diy : T,U — T,M is an isomorphism for each x € U (e.g. by [Leel3,
Proposition 3.9]). In this case, the inclusion is transversal to any foliation of M.
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(5) Foliation of the Tangent Bundle:
Let (M, F) be a smooth (p, q)-foliated manifold. Then, (T'M,7;,(F)) is a smooth fo-
liated manifold of dimension (2p + ¢,¢q). (By Remark 2.1.2 (4), 7oy : TM — M is a
submersion as the projection of a smooth vector bundle. The manifold dimension of
TM is 2(p + q) and Proposition 3.1.5 yields the assertion.)

3.2 Foliated Differential Forms

In this chapter, let F = {L,}aco be a smooth (p, ¢)-foliation on an n-dimensional manifold
M and k € Ny. Recall that a differential form w € QF(M) is a section of the alternating
k-tensor bundle of the tangent bundle of M, i.e. w, = w(z) : (T,M)* — R is a multilinear
alternating map for every x € M. A O-form is just a C* function M — R. The C>-
topology provides QF(M) with the structure of a Fréchet space.

There are two ways to introduce the so called smooth foliated differential k-forms on a
foliated manifold.!® We will show that both constructions will lead to isomorphic Fréchet
spaces.

3.2.1 Definition (Some Vector Bundles Induced By a Foliation)

(a) Foliated Tangential Subbundle
All leaves are immersed submanifolds of dimension p, such that we can identify the
tangent space T,F, with a p-dimensional subspace of T, M for each x € M. Define

TF = || T.F, and 7 = 7p|rx. Then (T'F, 77, M) is a p-subbundle of the n-rank
zeM
tangent bundle (7'M, 1y, M), called the foliated tangential subbundle of (M, F).

(b) Transversal Bundle
The quotient bundle (T'F*, 72, M) = (TM/rF, TrMp s M) of the tangent bundle by
the foliated tangential p-subbundle is called the transversal or normal bundle of
M and has rank n — p.

(c) Foliated Alternating k-Tensor Bundle

Applying the alternating k-tensor functor (see Corollary 2.3.13 (c)) to the folia-
ted tangential subbundle, we obtain the foliated alternating k-tensor bundle
(A®(T*F), A¥(m), M) of rank (¥). The inclusion M-morphism ¢ : TF — TM induces
a restriction map i* : A¥(T*M) — AF(T*F) by its pullback, which is a smooth
vector bundle M-morphism with constant rank (Z) Hence, ¢* is surjective and its
image vector bundle is the foliated alternating k-tensor bundle. By Lemma 2.4.2; it
is isomorphic to the quotient bundle of (A¥(T*M),A¥(x), M) by the kernel vector
bundle of ¢*. This motivates the following vector bundle:

Y Compare to [Ber01] and [Ber11].
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(d) k-Annihilator
Define the k-annihilator of T'F to be the kernel vector bundle of the smooth vector
bundle M-morphism ¢* : A*(T*M) — A*(T*F), which is the pullback of the inclusion
M-morphism ¢ : T'F — T'M. To be more precise, define

A (T MaTF) = | | AN(T;MAT,F,), where

zeM

N (T MuT, F) ={w e N (T M) w(vr, ov) =0 Yor, .o vy € TLF} (2 € M),

For k = 0, we set A°(T*MLuT,F,) = {0} such that A°(T*MLTF) = M x{0}. Together
with the canonical projection, it is a smooth ((Z) — (Z))—subbundle of the (Z)—ranked
smooth vector bundle (A*(T*M), A¥(r), M).

Foliations arise in the solvability theory of differential equations. We refer to [Leel3, Chap-
ter 19] for a general elaboration and illustrate the connections between foliations and
systems of differential equations in some examples.

3.2.2 Examples (Connections of Foliations to Differential Equations)

Consider a vector field X on a smooth manifold M of dimension n. For each point x € M,
there is some open interval I and a smooth map u : I — M such that for all ¢ € I, the
equation X, = u'(t)(€ T,y M) holds, and u(ty) = = is satisfied for some ¢, € I by [Leel3,
Proposition 9.2 |. This w is called an integral curve of X through the point x € M and
the image of u is called an integral manifold of X at x € M. If the vector field X
vanishes nowhere, it spans a one-dimensional subbundle of T'M over M which is equal to
the foliated tangential subbundle of an (1,n — 1)-foliation, where the leaves are given by
the mazimal integral manifolds of X. For instance, to find the integral curve u : I — R2

u(t) = (z(t),y(t)) of the vector field X on R? defined by X = y2 — xa%, we have to solve

ou ou
t —

%er’( )@y‘ (3.12)

Xt pey = u'(t) = 2'(1)
Comparison of coefficients yields the equivalent system of first-order ordinary differential
equations

(1) = y(t), y'(t) = —=(t). (3.13)

The solutions are z(t) = asin(t) + bcos(t) and y(t) = acos(t) — bsin(t) with constants
a,b € R. If we want to obtain the integral curve through (zo,yo) € R? w(0) = (b,a)
yields a = yp and b = xy. The maximal interval of u can be chosen to be R and the
integral manifold through (zg,yo) € R*\ {(0,0)} is a circle through that point with center
(0,0), which is a one-dimensional manifold. The integral manifold through (0,0), where
the vector field vanishes, is just the origin, which is a zero-dimensional manifold. So X
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induces a (1, 1)-foliation only on R? \ {(0,0)} given by circles. For each parameter ¢t € R,
we can define the flow ¢, : R? — R? of X at time t € R by setting

oi(x,y) = (ysin(t) + z cos(t), y cos(t) — x sin(t)). (3.14)

Intuitively, the flow of X tells us that a particle (z,y) € R? at time t, = 0 is moved to the
coordinates ¢ (z,y) after time ¢ by the impact of X. For a higher dimensional foliation,
we consider M = R? and two vector fields X and Y defined by

90 4,9 y=2 .9 (3.15)

X = o y@z dy 0z

X and Y are pointwise linearly independent vector fields on R3. Hence, the span of X
and Y, denoted by span{X, Y}, defines a 2-subbundle of TR3. The question whether the
span of these two vector fields arise as the foliated tangential subbundle of some (2,1)-
foliation of R? is answered by the Frobenius Theorem. The answer is affirmative if and
only if the subbundle span{X,Y} is involutive, which means that the Lie-bracket [A, B]
of any two vector fields A, B € I'(M,span{X,Y}) in span{X, Y}, defined pointwise by
[A, Bl.(f) = Ax(B.(f)) — B:(A.(f)) for x € M and f € C*°(M), is again a section of
span{X,Y}. Equivalently, [X,Y] can be written as a linear combination of X and Y. In
our example, we can compute

0? 0 0? 0? 2

0x0y + 0z + Y020z + y(?y(?z + Wor

XoY = =YoX, (3.16)

such that X and Y even commute, which is equivalent to [X,Y] = 0. To obtain the
underlying foliation of span{ X, Y}, we form the flows ¢, 1, : R® — R? of the corresponding
vector fields and get a parametrization of the integral manifold through (z,y, z) € R? by the
function ®(s,t) = 15 0 pi(x,y, 2), defined on Ix x Iy, where Ix and Iy are the (maximal)
open intervals of the integral curves corresponding to X and Y, respectively. Note that
the flows of X and Y commute if and only if the vector fields X and Y commute, see for
instance [Leel3, Theorem 9.44]. In the case, 0 # [X,Y] € T'(M,span{X,Y}), one has to
find vector fields X and Y which generate Span{X Y} and commute, in order to compute
a parametrization of the integral manifolds®. In our example, we can calculate the integral
curves and flows of X and Y through (z,y, 2) € R? to be:

u,v: R — R3, u(t) = (t+x,y,yt + 2), v(s) = (z,s +y,xs+ z), (3.17)
P s R R p(n,y,2) = (gt +2), dolny,2) = (x5 +y, o5 +2) (3.18)

for t,s € R. Hence, ® : R? — R?, &(s,t) = 0p4(w,y,2) = (t+x,5+y, (t+1)s +yt + 2)
yields a parametrization of the integral manifold through (z,y,2) € R3.

20Compare to [Leel3, Example 19.14].
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3.2.3 Definition (Foliated Differential k-Forms)

(a) Define Q%(M, F) to be the Fréchet space of sections of the foliated alternating k-tensor
bundle A*(T*F):

OF(M,F) =T (M, Ak(T*f)> . (3.19)

(b) Consider A*(T*MLTF), the k-annihilator of TF and i* : A*(T*M) — AK(T*F),
defined in Definition 3.2.1 (d). Applying the section functor (Remark 2.5.14), we ob-
tain the continuous pushforward (i*), : QF(M) — QF(M, F). The space of sections
QF (M, F) =T(M,\*(T*MLTF)) is exactly the kernel of (¢*), and therefore a closed

subspace of the Fréchet space QF(M). Now, we define the quotient space
Oy (M, F) = Q" (M)t (u, F), (3.20)

which is also a Fréchet space.

3.2.4 Lemma (Isomorphic Constructions of Foliated Forms)

There is an isomorphism of Fréchet spaces between QF (M, F) and QF(M,F) for each
k € Ny.

Proof. For k = 0 both spaces are C*(M), so assume k € N. As we have mentioned
in Definition 3.2.1 (c), the induced bijection of the surjective smooth vector bundle M-
morphism ¢ = i* : A¥(T*M) — A*(T*F),

o AT M)k (P pruTF) — AF(T*F) (3.21)

is an isomorphism of smooth vector bundle M-morphisms by Lemma 2.4.2. By applying
the section functor, the pushforward g. : T'(M, A*(T*M)/\k (= puTrF)) — QF(M,F) is
an isomorphism of Fréchet spaces. Further, I'(M, A(T*M)/\k(7+prurF)) is an isomorphic
Fréchet space of Q"(M)jok (v, 7) = Qf, (M, F) by Lemma 2.5.16, which completes the
proof. ]

3.2.5 Example (Foliated Forms on a Foliation Induced by Submersions)

Consider a submersion S : U — R" of an open set U C R, We know by Lemma 3.1.6
that a 1-dimensional foliation F on U is given by the connected components of the level
sets as leaves. It is well known, that the gradients of the component functions Sy, ..., S,
are orthogonal to these level sets. For simplification we suppose that the Euclidean norm
of the gradients in each point of U is equal 1. Fix any £ € U. Then there is a unique
leaf F¢ (a connected component of a level set) which contains . The cross product of
11(§) == VS1(€),...,vn(€) := VS,(§) complements these vectors to a basis of the (n + 1)
dimensional tangent space T¢U. So v,11(§) = v1(§) X -+ - X 1,(€) is an orthonormal basis
of the 1-dimensional tangent space T¢F.
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We obtain a basis of T;U, the dual space of T¢U, by building the dual basis v*(¢), ..., v (€)
of the basis v1(£), ..., Un+1(§) (such that v (v;(£)) = d; ;).

In this way, we receive for each £ € U a basis v'(), ..., v"*!(§) of T{U, such that v"*(¢)
is an orthonormal basis of T¢ F¢. Therefore a foliated 1 form w can be represented as the
product of some C*°-function A : U — R with the 1-form v"*!:

QNU,F)={w=Av"T: e C®U)} (3.22)
Thus Qf,,(U, F) is isomorphic to C*°(U) by A " — X. We can compute the quotient map
n+1
QYU) — QL,(U, F) as a projection w + {(w, ")yl = (Z wj(V”“)j) Z4any

j=1
n+1

If w=dg =) 0;g for some g € C>°(U), we obtain by using the projection and isomor-
j=1

- n+1
phism above a differential operator d : C*(U) — C>(U), g — Z( "), 9,9, such that

the following diagram commutes:

0, (U, F) 2= 0L, (U, F)

C=(U) C(

U).

Here, the upper map dr : Q%,(U, F) — Qk,(U, F) is the composition ¢' o d of the quotient
map ¢! : QYU, F) — QL,(U, F) and the Cartan-differential d : C>°(U) — QY(U).

Hence, Q4(M, F)fim(dy) is Hausdorff if and only if the differential operator d (with com-
ponents of ™! as non constant coefficients) has closed range.
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3.3 Foliated Cartan-Differential

Next, we want to define an exterior derivative between foliated differential forms similar
to the Cartan-differential between differential forms. If one uses the spaces Qf (M, F),
defined as quotient spaces (Definition 3.2.3 (b)) and ¢**! denotes the quotient map from
QM) onto QEYY(M, F), a linear and continuous map dz : 2 : fol*(M, F) — QF (M, F)
is induced by the composition ¢"**! o d. This dr is well-defined since the composition is
constant on equivalence classes of Qf (M, F) because the Cartan-differential d commutes
with restrictions, which are pullbacks of inclusions of the leaves. It might be reasonable to
achieve also a foliated Cartan-differential between the foliated differential forms QF(M, F)
obtained by Definition 3.2.3 (a). We will do this elementary without using the just defined
dr and the isomorphism between the two ways of definition to avoid forming quotient spaces
completely. Our approach is based on the introduction of the classical Cartan-differential
that can be found in [Leel3, Exterior Derivatives, p. 362 ff.]. As a positive side effect, we
obtain the classical Cartan-differential between differential forms by considering the trivial
one-leaf foliation £ = {M}.

3.3.1 Remark (Differential of a Smooth Function)

Recall, the differential of a smooth function f : M — R on a smooth manifold is a
smooth section df of the cotangent bundle T*M, i.e. df € Q'(M) defined by

(df )z(ve) = v (f) for z € M and a derivation v, € T, M. (3.23)
If (U, (x',...,2")) is a chart of M, the coordinate representation of df is:

i
— ox

df v = da’, (3.24)

where dx’ is the differential of the ith-coordinate function z‘. Furthermore, (dz!, ..., dz")

is a frame of T*M over U which is dual to the frame (%, - &%) of TM over U in the
sense, that dz* (%) = 6;; on U.*! The coordinate representation yields therefore also the

continuity of d : C*°(M) — QY(M).

Involving the wedge product, one gets also a frame of the exterior k-form vector bundle
A¥(T*M) over U?2 such that a 1-forms dz can be seen as an elementary building block of
differential forms. Besides, the differential of a function enables a definition of the exterior
derivative in terms of local representations. Since T'F is a subbundle of T'M, it is quite
natural to look at the restriction of df and expect similar results for the theory of foliated
forms.

2'We refer to [Leel3, Chapter 6, p.132 ff.] for details.
22The frame consists of elementary alternating tensors (Remark 2.3.8) built of a frame and its dual
frame.
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3.3.2 Definition (Foliated Differential of a Smooth Function)

Denote by iz : T'F — T'M the inclusion of T'F, which is a smooth injective vector bundle
M-morphism. The foliated differential drf : M — T*F of a smooth function f : M — R
is defined as the pushforward?® of the pullback of ipr evaluated at df:

(drf) = (izF)(df) = ipF o df, ie. (3.25)
(drf)e(ve) = va(flx,) for x € M and a derivation v, € T, F,. (3.26)

It follows by Remark 2.5.14, that dr : C>®(M) — Q'(M, F) is continuous and linear even
by definition.

3.3.3 Proposition (Local Representation of the Foliated Differential)
Let (U, (x!,...,2™)) be a smooth foliated chart of (M, F) and f € C°°(M), then

(dxf)lu Z

(3.27)

Moreover, (U,drx!,...,drxP) is a frame of T*F.

Proof. The foliated chart induces the frame (U, {% le) of TF. Define sections \!, ..., \P :
U — T*F by the equations N (5%) = & ; for 4,j = 1, ..., p. To be precise, N,(v,) = g;(z)

p .
forr e Uandv = Z 9j5 € D(U,TF), such that A is a smooth section of 7*F. Moreover,
(AL ..., AR) is the dual basis of (52 for each x € U, such that (U {MYr_))is a
frame of T*F. Since drf € I'(M, T*F) = QY(M, F), we obtain dxf|y = Z ¢;N for some

z)’ 78:1:1’ )

component functions ¢; € C*°(U), which we can compute by ¢;(x) = (d;f) (aﬂ) = % .
for x € U. Finally, the foliated differential of a local coordinate yields

' p
(drx')|y =

j=1

p
— Z(SW\J’ =\ (3.28)
j=1

Therefore, (U, dzz?, ...,drxP) is the dual frame of ( (U {dwz i 1)) and in particular a
frame of T*F over U. ]

A frame of T*F allows one to construct a frame of A*(T*F) using the wedge-product for
foliated forms, which is defined pointwise. This constructed frame will be the same as the
elementary alternating k-tensors described in Remark 2.3.8 for frames instead of just a
basis.?* This gives the following corollary.

2See Remark 2.5.14 (section functor).
24See [Leel3, Proposition 14.11 (d), p. 356] for instance.
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3.3.4 Corollary (Local Representation of Foliated Forms)
Let (U, (z!,...,2™)) be a smooth foliated chart of (M, F) and denote
drx’ = (drz™) A ... A (dpx'™) (3.29)

for a (not necessarily increasing) multi-index I = (iy, ..., i) € {1, ..., p}*.
Then (U, {drx} e (p)> is a local frame of A*(T*F) and w € QF(M, F) has the local
representation

w|U= Z wr d]:ZL’I, (330)
Ieli’f‘c(p)
where w; € C(U) is given by w;(z) = w, (32 b 8%’9‘90)'

Differential forms can be pulled back by smooth functions. In order to pull back
foliated forms, one needs smooth foliated maps, which are the morphisms in the category
of foliated manifolds. Recall that, under the notation of leaf functions, a foliated map

f:(M,F)— (N,G) needs to satisfy:
Ve e M : f(Fy) C G (3.31)

where F, € F denotes the leaf with x € F, and Gy(;) € G denotes the leaf with f(z) € Gy.

3.3.5 Definition (Pushforward and Pullback of Foliated Maps)
Let f: (M,F)— (N,G) be a smooth foliated map between foliated manifolds.
(a) The pushforward f. : TF — TG of the foliated map f is defined by

(fo)e : ToFe = Ti)Gp)s (fo)e(va)(g) = ve(go flz.), (3.32)

where F,, € F denotes the leaf containing x € M, Gy(,,) € G denotes the leaf contai-
ning f(x) (and therefore also f(F,)), v» € T F, is a derivation and g € C*°(G ().
(Alternatively, f. could be defined in terms of derivatives of curves through x by
(f:)z(+(0)) = (f ©v)'(0), where v is a smooth curve in F, with v(0) = z.)

(b) The pullback f*: QF(N,G) — QF(M,F) of the foliated map f is defined by

ffg=gof, ingQO(N,g) = C*™(N), (3.33)
(f*w)ﬂc = (f*);(wf(:c)); ifwe Qk(Nag)’ re M, (3'34)
(f*)*(wf(:r))(’/aiv ey Vf) = wf(x)((f*%(yi)’ SE3) (f*)x(’/f)) for Vi S PV (3.35)

Here, (f.)5 + A* (Ty)Grw)) — A" (T,F,) is the pullback map of the linear map
(fe)e : TrFz = TG ), which we already know from example 2.3.10 (2) (iii).

60



3.3.6 Lemma (Properties of Foliated Pullback)
Let f: (M,F)— (N,G) be a smooth foliated map between foliated manifolds. Then:
(a) dx(f*g) = f*(dgg) for all g € C(N).

(b) If (V.9 = (y',...,y"**)) is a smooth foliated chart of the (r, s)-foliated manifold (N, G),
we have the following local representation of f*: QF(N,G) — QF(M, F)

P grdey™ ANdgy™ | = > (gro f)dr(y™ o f) A Adr(y* o f).

Ierk (r) Icrk (r)

inc inc

(3.36)

(c) If g: (N,G) — (P,H) is another smooth foliated map, then
(go f) = f"og" (3.37)
and id}; is the identity map on QF(M, F).
Proof. (a) Let g € C*°(N), x € M and v, € T, F(x). We obtain

(dr(f"9)s(ve) = dr(g o f)a(va) (3.38)
=vz((g0 f)lx), (3.39)
and on the other hand
(f*(dgg))a(va) = f*((dgg) () (Va) (3.40)
— (dg) ) ()2 () (3.41)
= (f)2(va)(9glgs,) (3.42)
= a9l © 7)), (3.43)

which is the same since f(F,) C Gy for a foliated map f.
(b) Since f* is linear and f*(wAn) = (f*w)A(f*n) for foliated forms on (NN, G), the formula

follows by (a) using f*(dgy’) = dx(f*y’) = dx(y’ o f).

(c) If k£ = 0, this is clear, hence assume k > 0. Note that the pushforward satisfies ((g o
M)z = (9) @) © (fe)e for © € M. The alternating k-tensor functor of example 2.3.10 (2
(iii) is contravariant and yields therefore, ((g o f).); = (fu); © (9:)},)- For n € QF(P,H),
we get

(9o /) m)e = (g0 H)i(eran) = (f)7 ((9) 7 (latr@n)) (3.44)

= (f)z((g" ) sw) = (f(g™n))as (3.45)

which gives (go f)* = f*og*. Ifidy : (M, F) — (M, F) is the identity, the pushforward
(idpr)s : TF — TF is the identity on TF and therefore, id}, is the identity map on
QOF(M, F). O

In order to define a Cartan-differential for arbitrary foliated forms, we consider first the
local case of a foliation and collect some properties.
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3.3.7 Definition (Local Version of Foliated Cartan-Differential)

Let V C RP, W C R? be open subsets and (z?, ..., z?) the Euclidean basis of R?. Consider
on V x W the V-foliation F = Fy (V) = {V x {w} : w € W} by points of W. For
w € QF(V x W, Fi(V)) we have the representation

w= Z wr drx! (3.46)

Ielk (p)

inc

and define the foliated Cartan-differential dr : Q%(V x W, F) — Q¥ 1(V x W, F) by

drw=Y_ (drwi) A (dra"), (3.47)

Ielk (p)

inc

On Q°(V x W, F) = C°(V x W), dr is given by the foliated differential of definition 3.3.2.

3.3.8 Proposition (Properties of Local Foliated Cartan-Differential)
In the setting of definition 3.3.7 the following holds:
(a) dr: QF(V x W, F) — QFY(V x W, F) is R-linear.
(b) fw e Q¥(V x W, F) and n € QYV x W, F), then
dr(wAn) = (drw) A+ (=1)"w A (den). (3.48)

(C) d]:Od]: =0.

(d) The foliated Cartan-differential commutes with pullbacks of foliated maps: )
If VC RP, W C RY are open, F = F;(V) is the V-foliation by points of W and
f:(VxW,F)— (VxW,F)is asmooth foliated map, then

F(dp) = dr(F ) for p e QX(V x W, F). (3.49)

Proof. (a) The linearity follows by definition and linearity of the foliated differential on
smooth functions.

(b) By linearity, it will be sufficient to show (b) for w = wy drx! € QF(V x W, F) and
n=mnydrx’ € QY(V x W, F). Note that the product rule for functions yields

dr(wimy) = drwr ny + wr drn;. (3.50)

Next, we show dz(w; drz’) = (drw) A(drz’) for a (not necessarily increasing) multi-index
I € {1,...,p}*. If I contains repeated indices, both sides are 0. Otherwise, there exists a
permutation ¢ sending I to an increasing multi-index K € I*_(p) such that drz! =
sgn(o)dr2® and we obtain

dr(wy drz") = sgn(o)dr(wr drz™) = sgn(o)(drwr) A (draz™) = (drwr) A (drz’). (3.51)
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Now, we can compute

dr(wAn) = dz((wr drz’) A (ny dra’)) (3.52)
= dr(wrmy (dra’) A (dra?)) (3.53)
= (drwr ny +wr drng) A (drz') A (dpa’) (3.54)
= (drwr) A (drz") A (ng dx”?) + dzng A (wr drz’) A (drz”) (3.55)
= (drw) An+ (=) w A (drns A drx”) (3.56)
= (drw) A+ (=1)"w A (dFn). (3.57)

(c) For f € C®(V x W) =Q%V x W, F) we obtain by Schwarz’s Theorem,

p
dr(drf) = dF ( gxf dfﬂl?]> (3.58)
j—l
= Z Z Waﬂ A (dra?) (3.59)
7j=1 =1
0? 02 : ;
Z <3xi(‘;xi B ij(:)fx) (dr') 1 (d70?) = 0. (3.60)
1<i<j<p

In particular, dr(drz')) = 0. More generally, we show dz(drz’) = 0 for I € I (p) by
induction over k. Assume this is the case for £ — 1, then by the anti-derivation property
(b), we obtain for I = (iy, ...,i) € IE.(p) and J = (g, ..., ix) € ¥ (p),

mc

d]:(d]:l’l) = d]:((d]:l’“) VAN (d]:l'J)) (361)
= d]:(d]:.l’il) AN (d].‘l"]) - (d].-x“) AN d]:(d]:ZL‘J) =0. (362)
Together with (b) this yields for w = wy da! € Q¥(V x W, F),
d}'(d}'(JJ) = d]: ((d]:bd]) AN (d]:iL’I)) (363)
= d]:(d]:Cd[) A (CZ]:.%I) — (d]:(d[) N CZ]:(d]:.TI) =0. (364

By linearity of dz, (c) follows.
(d) Denote the Euclidean basis of R by (y*, ...,4”). Again by linearity, it sufficies to consider
only forms p = uy dy’ € QF(V x W, F). We get by Lemma 3.3.6 (a)

F(dzp) = f*((dzpr) A (dzy)) (3.65)
=dr(pro f)Nde(y™ o f) A ... Ndx(y™ o f). (3.66)
On the other hand, Lemma 3.3.6 (b) yields
=dr(pro f)Ndr(y™ o f) A ... Ndx(y™ o f). (3.68)
[
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3.3.9 Theorem (Existence and Uniqueness of Foliated Cartan-Differential)

Let (M, F) be a smooth (p, q)-foliated manifold. For each k € Ny there is a unique map
dr : Q¥ (M, F) — QFY(M, F), called the foliated Cartan-differential, satisfying:

(a) dr is R-linear.
(b) If w e QF¥(M, F) and n € Q°(M, F), then
dr(wAn) = (drw) A+ (=1)*w A (den). (3.69)

(C) d]: ®) d]: =0.
(d) For k =0, dr is the foliated differential of definition 3.3.2.
(e) For k > 1 and a foliated chart (U, (z',...,x™)) of (M, F), dr is locally given by

d]: Z wfd;xl = Z (d]:bd])/\(d]:xl). (370)

I€I® (p) Ielf (p)

inc inc

(f) dr is continuous.

(g) The foliated Cartan-differential commutes with pullpacks of foliated maps:
If f:(M,F)— (N,G) is a smooth foliated map between smooth foliated manifolds,
then

f*(dgp) = dr(f*p) for pe Q%(N,G). (3.71)

Proof. We start with existence. If w € QF(M, F) and ¢ : U — V x W is a foliated chart of
(M, F), then (o) w|y € QF(V x W, Fy-(V)) and we define the foliated Cartan-differential
by

(drw)lo = " dry, () ((¢7") wlv)- (3.72)

For well-definition, suppose ¢ : U — V x W is also a foliated chart of (M, F). Then 1)o@}

is a foliated diffeomorphism from (V x W, Fy (V) to (V x W, F;7(V)). Proposition 3.3.8
(d) and (¢ o ™) o (h71)" = (p71)" yields

oo™ )dr (W) wlv) = dryor)((¢™) wlv)- (3.73)
Together with ¢* o (¢ o p~1)* = ¢*, we obtain
Vg (D7) wl) = 9 dr o) (¢ W) (3.74)

Now, properties (a)-(d) follow by definition and proposition 3.3.8 (a)-(c).
Before proving the remaining properties, we show that dr is already uniquely defined.

64



Suppose d is any map satisfying properties (a)-(d). Then d is locally determined, i.e. if
wi,wy € QF(M,F) satisfy wi|y = ws|y on some open U C M, then (dw)|y = (dws)|v.
Let x € U be arbitrary and y € C°°(M) be a bump function which is identically 1 on
some open neighbourhood of = with supp(x) C U. For n = w; — ws we obtain that x7 is
identically 0 everywhere. By properties (b) and (d): 0 = d(xn) = dzx A n + xdn. Using
x(z) =1, (drx), = 0 and (a), we get (dw1)|, — (dwa), = (dy))s = 0.

Let w € Q¥(M, F) and (U, = (x1,...,2™)) be a foliated chart of (M, F) such that

w\U: Z wId]:.TI. (375)

Telk (p)

inc

For any x € U and a bump function y € C*°(M) which is identically 1 on an open
neighbourhood V' C U of z with supp(x) C U, we can extend w;|y and z'|y to global
smooth functions @y, 7' € C®(M). Setting dr3! = dzi A --- A dzi' € QF(M, F) for a
multi-index I = (iy, ..., ), we obtain

=Y Grdri' € QM F) with &y = w|y. (3.76)

Ielk (p)

inc

By (b)-(d), it follows that d(w; dxZ') = (dr@r) A (dz'). Since d is locally determined,
this gives with (a) for the evaluation in x

(dw)e = (d@)e = Y (drwi)s A (dFa'),. (3.77)

Ielk (p)

inc

Since x € U was arbitrary, we have proven uniqueness and (e).
The continuity of dz follows by (e). To see this elementary, use the representation
of drw; and compute the component functions of (dw)|y with respect to the frame

<U, {drz’} _ppn (p)). These component functions are less than p many plus and minus

combinations of some % such that the order of differentiation is only increased by one.
Hence, increasing the maximal differentiation order of a seminorm by one and setting the
continuity constant equals p will yield continuity locally, which suffices to show for (f).

To prove (g), let ¢ : U — V x W and ¢ : U — V x W be smooth foliated charts of (M, F)
and (N, G), respectively. The coordinate representation 1o fop™! is then a smooth foliated
map from (V x W, Fy (V) to (V x W, Fy3,(V)) such that we can apply 3.3.8 (d). Together

with (3.72) twice, this gives for w € Q¥(N,G) on U N f~HU):

F(dgw) = Furds, (67 0) (3.78)
o (Yo fow ) ds oy (67Yw) (3.79)

= ¢ dr, () (Yo fop ) () w) (3.80)

= ' dre (™) frw) (3.81)

= dr(f*w). (3.82)

]
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3.3.10 Corollary (Connection with Cartan-Differential)

Considering the one leaf foliation {M} of a smooth manifold M, there exists a unique
map d : QF(M) — QF (M) with likewise properties (a)-(g) of Theorem 3.3.9, called the
(classical) Cartan-differential.

If (M, F) is a foliated manifold and of = (i%7), : Q¥(M) — QF(M,F) denotes the push-
forward (as in the definition of the section functor) of the pullback of alternating k-tensor
bundles, i~ : A¥(T*M) — A*(T*F), the following diagram commutes:

Qk(]\/[) d Ok+1 (M)

N [

QK (M, F) —= Q1 (M, F).

Proof. The existence and uniqueness of d is a consequence of the considered special case
of a one leaf foliation since foliated differential forms are just differential forms. For the
second part, let (M, F) be a foliated manifold. Since each leave L, of F is contained in
M, the identity map idy, : (M, F) — (M,{M?}) is a smooth foliated map. Its pushforward
(idps)« : TF — T'M is just the inclusion morphism iz of vector bundles and its pullback
id;, : QF(M) — QF(M, F) agrees with the (section functor) pushforward of the pullback
of iz : A¥(T*M) — A*(T*F), such that ¢* = id}; and we obtain the commutativity of
the diagram as a special case of Theorem 3.3.9 (g). ]
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3.4 Foliated De Rham Cohomology

The de Rham cohomology of a smooth manifold is a useful tool to classify smooth manifolds
and gives information about their geometry and topology as well. Although, the foliated de
Rham cohomology will not be that illuminative for foliated manifolds, we will develop tools
to compute the foliated cohomology in some cases. The main results in this chapter are the
integrable homotopy invariance (Corollary 3.4.9), the Poincaré Lemma (Lemma 3.4.10), the
Mayer-Vietoris Theorem for foliated cohomology (Theorem 3.4.11) and Theorem 3.4.14 to
compute the foliated de Rham cohomology of foliations by points.

3.4.1 Definition (Foliated de Rham Cohomology)

Let (M, F) be a smooth (p,q)-foliated manifold. A foliated k-form w € QF(M,F) with
drw = 0 will be called closed. A foliated k-form n € QF(M,F) will be called exact if
there is a foliated (k — 1)-form pu € Q¥ (M, F) with n = dru. We define the spaces of
closed and exact foliated k-forms by

ZF(M, F) = Ker(dr : Q5(M, F) — Q" (M, F)) = {closed k-forms on (M, F)}, (3.83)
B¥(M, F) = Im(dr : Q" Y(M, F) — QF(M, F)) = {exact k-forms on (M, F)}.  (3.84)

Both are R-vector spaces by linearity of dz. If k < 0 or k > p, QF(M, F) is just the zero
space such that ZP(M, F) = QP(M, F) and B°(M, F) = 0, in particular. Since drodr = 0,
we have B¥(M,F) C ZF(M, F), i.e. every exact form is closed. This allows the definition
of the kth foliated de Rham cohomology group of (M, F) to be the quotient vector
space

H¥(M, F) = 25(M, F)/gr (01, F). (3.85)

(It is indeed an R-vector space and in particular a group under its addition. But most
cohomology theories produce only groups, such that we use the traditional term of a co-
homology group and keep in mind, that we are dealing with vector spaces.)

If k<0 ork>p,it follows H*(M,F) =0 by Q¥(M, F) = 0.

Further, H'(M, F) = Z°(M, F) = {f € C>*(M) : f|. is constant for each L € F}.

(Since % =0 for j = 1,...,p in every foliated chart (U, (z',...,2™)) and leaves are connec-

ted.)

3.4.2 Example (Foliation by Points)

Let F' and T be (connected) smooth manifolds of dimension p and g, respectively. Consider
the F-foliation Fr(F) = {F x {t} :t € T} by points of T on F' x T. Then,

H(F x T, Fr(F)) = C=(T). (3.86)

(The smooth projection 7 : F'xT — T, (x,t) — t between manifolds induces the pullback
w5 C®(T) — C(F xT), g = g o mp. This map is linear and also injective since mp
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is surjective. We show Im(7}) = HO(F x T, Fr(F)). If g € C>(T), then g o mr|pxyy 1S
of constant value g(t) for each t € T. Otherwise, if f € C°°(F x T) such that f|p.
is of constant value ¢; for each t € T, we can define a smooth map g : T — R by
g(t) = ¢ satisfying g o mp = f. Hence, 7} is an isomorphism of vector spaces from C'*(T)
to HY(F x T, Fr(F)).)

3.4.3 Proposition (Induced Cohomology Maps and Foliated de Rham Functor)

For a smooth foliated map f : (M,F) — (IV,G) between smooth foliated manifolds, the
pullback f* : Q¥(N,G) — QF(M,F) maps Z¥(N,G) into Z¥(M,F) and B*(N,G) into
B%(M, F). This gives rise to a well-defined linear map between cohomologies

f*:H*(N,G) — H*(M, F), f*lw] = [fw], (3.87)

called induced cohomology map. Together with the assignment (M, F) — H*(M, F),
this defines a contravariant functor, called foliated de Rham functor, from the category
FolMfld of smooth foliated manifolds with smooth foliated maps to the category Vecty
of R-vector spaces with linear maps, i.e.

(a) if g : (N,G) — (P,H) is another smooth foliated map, then
(go f)* = fog": H(P,H)— H*(M,F) (3.88)

(b) and id}; is the identity map on H*(M, F).

Proof. By naturality with pullbacks (proposition 3.3.9 (g)), we obtain for w € Z¥(N,G),
dr(f*w) = f*(dgw) = 0 and if n € Q*"Y(N,G), then f*(dgn) = dx(f*n) € B¥(M,F) since
f*n € QFY(M, F). Further, if & = w+dgn € Z¥(N,G), then [f*@] = [f*w+d(f*n)] = [f*w].
Thus, the induced cohomology map is well defined. (a) and (b) follow by Lemma 3.3.6
(c). O

3.4.4 Corollary (Foliated Diffeomorphism Invariance)

If f:(M,F) — (N,G) is a smooth foliated diffeomorphism between smooth foliated
manifolds, then

H*(M,F) = H*(N,G) for all k € Ny. (3.89)

Proof. For every k € Ny, the induced cohomology maps of f and its inverse are isomor-
phisms of vector spaces by proposition 3.4.3 (a) and (b). O

The de Rham groups of homotopy equivalent manifolds (without a foliation) are also iso-
morphic (as vector spaces). Regarding the next example, even a smooth foliated homotopy
map will not yield an invariance. We need a stronger type of homotopy, which we will call
integrable homotopy. This type of homotopy was introduced by Haefliger, [Hae71] and
named homotopy intégrable by El Kacimi-Alaoui, [KA83]. We will show, that integrable
homotopic maps induce the same cohomology maps. For that purpose, we use a homotopy
operator.
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3.4.5 Example (Foliated De Rham Cohomology Not a Homotopy Invariance)

Consider M = S' x R with the S*-foliation F); = Fg(S') by points of R and S = S* x {0}
with the 1-leaf foliation Fg = {S}. Then, S is a deformation retract of M but

H*(M, Fp) =2 C*(R) 2R = H*(S, Fg) for k=0, 1. (3.90)

Proof. Denote the inclusion from S into M by ig and let r : M — S, r(z,s) = (z,0). Then,
roig = idg and we show, that igor is homotopic to idy;. Let be ¢» € C*°(R) with 1(t) = 0
if t <0and(t)=1ift > 1. Define H : M x R — M by H((z,s),t) = (z,9(t)s) such
that H((z,s),t) = (2,0) = igor(z,s) for t <0 and H((z,5),t) = (2,5) = idpm(z,s) for
k > 1. Note that H is a smooth map and if one considers the foliation G = {S* x {(s,#)} :
(s,t) € R*} on M x R, H is also a foliated map between (M x R, G) — (M, Fys), mapping
the leaf ST x {(s,t)} into the leaf S* x {¢(t)s}. In summary, S is a deformation retract of
M, where the used homotopy map is also a smooth foliated map.

The map f : (S, Fs) — (S',{S'}), f(2,0) = z is clearly a smooth foliated diffeomorphism
such that H*(S, Fg) = H*(S') = R for k = 0, 1 because the foliated de Rham cohomology
of the 1-leaf foliation is just the usual de Rham cohomology. On the other hand, we know
HO(M, Fyr) = C*(R) by example 3.4.2. For k = 1, we refer to the later result 3.4.14. [

3.4.6 Definition (Integrable Homotopy)

(a) Let f,g: (M, F) — (N,G) be smooth foliated maps between smooth foliated manifolds
and let 7 : M x R — M be the projection map. We call f integrable homotopic to
g, if there is a smooth foliated map H : (M x R, 7*(F)) — (N, G) such that

H(z,t) = f(x), ift <0 and (3.91)
H(z,t)=g(z), ift>1. (3.92)
In this case, H is called an integrable homotopy from f to g.

(b) Two smooth foliated manifolds (M, F) and (N, G) will be called integrable homo-
topy equivalent if there exist two smooth foliated maps f : (M, F) — (N,G) and
g:(N,G) — (M, F) such that go f is integrable homotopic to id; and fog is integrable
homotopic to idy. Then, f and g are called integrable homotopy inverse.

(c) Let (M,F) be a smooth foliated manifold and S a smooth immersed submanifold of
M such that the inclusion map ig : S — M is transverse to F, i.e. for all z € S, we
have T, M = d ig(T,S) + T, F,. A smooth foliated map r : (M, F) — (S, F|s) will be
called an integrable deformation retraction if ig and r are integrable homotopy
inverse, where Fl|g = i5(F) is the considered foliation on S, given by the connected
components of all leaf intersections with S. In this case, S is called an integrable
deformation retract of (M, F).

Recall from example 3.1.7, (3), that 7%(F) = {£L x R: £ € F} satisfies:

(%) For any t € R the smooth injective inclusion map J; : M — M X R, z — (x,t) is
also a foliated map from (M, F) to (M x R, 7*(F)).
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3.4.7 Proposition (Existence of a Homotopy Operator)

Let (M, F) be a smooth (p, q)-foliated manifold and = : M x R — M the projection map.
Then, for each k € Ny there is a linear map h : QF(M xR, 7*(F)) — Q¥ 1(M, F) satisfying

d]:o h+ho dﬂ-*(]:) = Jik - J{)k, (393)

where J3, J; @ QF(M x R, 7*(F)) — QF(M,F) are the foliated pullback maps of the
inclusion maps mentioned in (x) and Q7'(M,F) = {0} by convention. Such a map h is
called a homotopy operator between Jy and .J;.

Proof. (1) We start with the local version.

Let V C RP, W C R? be open subsets and (z?, ..., z?) the Euclidean basis of R?. Consider
on M =V x W the V-foliation F = Fy (V) = {V x {w} : w € W} by points of W. Then,
m(F) ={V x {w} xR : w € W} is the pullback foliation on M x R. If f € C*(M x R),
set h(f) = 0. For k € N, any w € QF(M xR, 7*(F)) can be written as a linear combination
of the following two types of k-forms:

() @ =adeFz™ A Adppa'™, where a € C°(M x R);
(B) B=0bdept Ndesmx™ A -+ Adps(myx-1, where b € C°(M x R).

1

We set h(a) = 0 and h(B) = [b(-,t)dt dpe(7 T A -+ A dpe(pyz=1 € QF1(M, F). Define
0
h: QF(M x R, 7*(F)) — Q*Y(M, F) by linear extension. Then,
1

9f 4
ot

0
—fodi—foldo=(Jr = J)f), if feC®MxR). (3.95)

Further, dz o h(a) = 0 and

(droh+hoder)(f) = dt = f(-,1) = f(-0) (3.94)

aa 1 ) * *
h o dﬂ.*(]:)<05) = /adt dﬂ-*(]:)l'“ FANKIRIRIVAN dﬂ*(}‘)xzk = (Jl — J0>(Oé) (396)

0
Moreover, J;(5) = J§(B) = 0 and

c% , . ,
d]: © h(ﬁ) = Z @dt dﬂ*(]:)xj AN dﬂ*(]:)l’“ VANREIWAN Z’lk*l, (397)
J=17 \
ob l—1
hod,r*(]:)(@) =h 8$J d ZL‘ /\d t/\d ]:)ZL‘ LA /\dﬂ*(]_‘)l’ - (398)
7j=1
p . . .
Z (/O %dt) ﬂ*(]:)ilj'j A\ dﬁ*(]_-)x“ VAYREIIVAN dﬂ*(]:)xlkfl, (3.99)
7j=1
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where the minus sign comes from dq+7)2? A dps(7)t = —dpe(r)t A do=(7)27. Hence, (3.93)
follows in the considered special case.

(2) Before we treat the global case, we look at foliated transition functions:
Let V,V CRP, W, W C R? be open sets and 7 : (V x W, Fy (V) — (V x W, F;(V)) be
a foliated diffeomorphism. Then,

Fr(VxW xR, 7 (Fw (V) = (Vx W xR, T (Fw(V), T(u,v,t) = (1(u,v),1)
(3.100)

defines a foliated diffeomorphism, where 7 and 7 denote the projections onto V' x W and
V x W, respectively. Moreover, we get on QF(V x V x R, #(Fy;,(V))) for each k € Ny:

T"oh=hofT" (3.101)

Indeed, on smooth functions, both sides are 0. 7* maps k-forms of type o to k-forms
of type « such that in this case also both sides are 0. As well, 7" preserves k-forms of
type [ and it is easy to compute the component function of both sides equal fol b(p(+),t)dt.

(3) Now, consider the global case. Define h : QF(M x R, 7*(F)) — Q¥1(M,F) in
terms of foliated charts, i.e. if ¢ : U — V x W is a foliated chart of (M, F), we set

(h(@)ly = ¢* o ho (1) (Wluxr)- (3.102)

Here, ¢ : U xR — V x W x R, ¢(x,t) = (¢(x),t) and h on the right side is the map
from (1). For well-definition, suppose there is another foliated chart ¢ : U — V x W.
Since 7 = o' is a foliated diffeomorphism as desired in (2), (3.101) gives together with

o) = ()"

T o ho () (wluxe) = ho (¢ (Wluxr)- (3.103)
We obtain by ¢* o (1) o p=1)* = o*,
Y oho () (wluxr) = ¢ o ho (7 (wuxw)- (3.104)

To prove (3.93), it sufficies to show the identity on open sets of a foliated atlas. Again, let
¢ :U — V x W be a foliated chart of (M, F). Denote the inclusions of the local case by
J; - U — U x R, the projection from V x W x R onto V x W by # and set F = Fy (V).
Then, ¢~ o Jop(z) = ¢~ Hp(x),t) = (z,t) = J,(z) for x € U and t € R. Since the foliated
differential commutes with pullbacks, we obtain for w € Q*(M x R, 7*(F)),

(dr o h(w) + h o ey ()| = dr((h(w))]1) + (h 0 de(ry ()] (3.105)
= (drog*) o ho (37 (Wluxr) +¢" 0 ho (¢ 0 dpr()(@luxe)  (3.106)

— oo (d;oh—i—hodﬁ* ﬁ)) (6™ (@loxw) (3.107)

2y <J1 J5) o (F7) @loe) = (i = ) (@louw) (3.108)

= ((J7 = Jg) (W) v (3.109)

]
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3.4.8 Proposition (Cohomology Maps of Integrable Homotopic Maps)

Let f,g: (M,F) — (IN,G) be smooth foliated maps between smooth foliated manifolds.
If f is integrable homotopic to g, then for every k£ € Ny, the induced cohomology maps f*
and g* from H*(N,G) to H*(M, F) are equal.

Proof. At first, we show the assertion for the inclusion maps Jy, J; : M — M x R.
Let w € QF(M x R, 7*(F)) be closed, i.e. dq+x)(w) = 0. The homotopy operator h of
proposition 3.4.7 yields

T3 (w) = Ji(w) = dr(h(w)) + h(de (7)) = dr(h(w)) € BX(M, F), (3.110)

because h(w) € QF(M, F). Hence, the induced cohomology maps are equal.
Now, let H : (M x R, 7*(F)) — (N,G) be an integrable homotopy from f to g. Since
f=HolJyand g = H o Jy, we get by funtoriality (proposition (3.4.3),

fr=JioH =JioH =g (3.111)
O

3.4.9 Corollary (Integrable Homotopy Invariance)
If (M, F) and (N, G) are integrable homotopy equivalent smooth foliated manifolds, then
H*(M,F) = H*(N,G) for all k € Ny. (3.112)
In particular, if S is an integrable deformation retract of (M, F), then
H*(M, F) = H*(S, Flg) for all k € Ny. (3.113)

Proof. There exist smooth foliated maps f : (M, F) — (N,G) and g : (N,G) — (M, F)
such that g o f is integrable homotopic to id); and f o g is integrable homotopic to idy.
The preceding proposition and proposition 3.4.3 imply

frogi=1(go f)" = (idy)" = idgerr) and (3.114)
g oft=(fog)=(>GdyN)" = idpe(ng) - (3.115)
If S is an integrable deformation retract of (M, F), then (S, F|s) and (M, F) are in parti-
cular integrable homotopy equivalent. ]

3.4.10 Lemma (Poincaré Lemma for Star-Shaped Foliation by Points)

Let M be a star-shaped open subset of R” with center ¢ € M and let N be a g-dimensional
smooth manifold. Then, {¢} x N is an integrable deformation retract of (M x N, Fy(M))
and

C=(N) ifk=0;

3.116
{0} otherwise. ( )

H*(M x N, Fx(M)) =2 H*({c} x N, Fn({c})) = {
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Proof. We will verify S = {c} x N as an integrable deformation retract of (M x N, Fy(M)).
The inclusion ig : S — M x N is transversal to Fy (M) since the differential of ig is injec-
tive and its g-dimensional image of T{., ({c} x N) interesects the p-dimensional foliated
tangent space T{c) (M x {y}) only at zero for each point (c,y) of S. The induced foliation

is(Fn(M)) is just Fy({c}) = {{(c,y)} : y € N}. Define
ri (M x N, Fy(M)) = (5, Fn({c})) by r(z,y) = (¢,y). (3.117)

Then, r is a smooth foliated map and satisfies roig(c,y) = (¢,y) = idg(c,y) on S. In order
to define an integrable homotopy from ig o 7 to idy«n, let ¢ : R — [0, 1] be a smooth
function which is equal to 0 on (—o0,0] and to 1 on [1,00). Denote the projection from
(M x N) xR to M x N by m and define

H: (M x N) x R, 7" (Fn(M))) — (M x N, Fx(M)) by (3.118)
H((z,y),t) = (c+ o(t)(z — ¢),y). (3.119)

Since M is star-shaped, H is well-defined. It is also a smooth foliated map satisfying

H((z,y),t) = (¢,y) =igor(c,y)if t <0 and (3.120)
H((z,y),t) = (z,y) = idpyun if t > 1. (3.121)

Thus, S is an integrable deformation retract of (M x N, Fx(M)) and H*(M x N, Fyx(M))
is isomorphic to H*(S, Fyx({c})) for each k € Ny. Moreover, (S, Fx({c})) is diffeomorphic
to the smooth foliated manifold (N, {{y} : y € N}) of dimension 0, such that for £ > 1 all
foliated cohomology groups are {0} and for £ = 0, we have

H(N,{{y} :y € N}) = {f € C™(N) : f|gy is constant for each y € N} = C=(N).
(3.122)

]

One powerful tool for computing the de Rham cohomology is the Mayer-Vietoris Theorem.
If U and V' are submanifolds of some smooth manifold M, the theorem connects the de
Rham cohomology of the union U UV with the cohomologies of U and V' involving also
the cohomology of their intersection U NV, ordered in a long exact sequence. In [KA83]
there is a version of a foliated Mayer-Vietoris Theorem for two submanifolds of M which
have the same boundary such that this boundary is transverse to the foliation F on M
and admits a tubular neighbourhood such that the boundary is an integrable deformation
retract of that neighbourhood. Our version needs some assumptions of transversality but is
applicable in more general situations. The proof is similar to the unfoliated case with a few
replacements. Basically, one needs an induced foliation on the submanifolds such that the
inclusion becomes a smooth foliated map. As we clarify in Remark 3.4.12, the assumptions
are satisfied for open submanifolds and we can also obtain the classical Mayer-Vietoris
Theorem for (unfoliated) smooth manifolds.
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3.4.11 Theorem (Mayer-Vietoris for Foliated Cohomology)

Let (M, F) be a smooth foliated manifold. Further, let U and V' be immersed submanifolds
of M with U UV = M such that the inclusion maps satisfy

(1) iy : U — M and iy : V — M are transverse to F;
(2) Y : UNV — U is transverse to F|y;

(3) V' :UNV — V is transverse to F|y.

Then, for each k € Ny, there is a linear map 6 : H*(U NV, Flyny) — H(M, F) such
that the following sequence of vector spaces, called foliated Mayer-Vietoris sequence,
is exact:

(1

g MLF) Y i, Fly) @ BV, Fly) S B O AV Fluey)

(iU)*—(iv)*

iy Py,

—6>Hk+1(M, ]_-> ch—f—l(U -F’U) Hk"'l(v, F‘V)

Proof. We have the following commutative diagram of smooth foliated inclusion maps:

; (U, Flv) |
N
(UNV, Fluav) (M, F)
(V. Flv)

This gives for each k£ € Ny the following commutative diagram of foliated pullbacks:

QF(U, Fly)
QOF (M, F) QMU NV, Fluay)
QHV. Flv)

Notice that the diagram has been mirrored due to the contravariance. Define for each
k € Ny the linear maps

f=is @iy QY M, F) = QXU Fly) @ Q°(V, Flv),
fw) = (iy(w), 17 (w)) = (v, wy) and

g = (") = (")) : Q"U, Flv) @ Q(V, Flv) = QU NV, Fyev)
9, v) = (@) () = ) (v) = ploav — v]vay-

We will show, that the short sequence



(%) 00— QF(M, F) —L= Q"U, Flp) ® QF(V, Flv) —2=Q*(U NV, Flyay) —=0

is exact.
[ is injective: f(w) = (0,0) yields w|y = 0 and w|y = 0 such that w = 0 since UNV = M.
Im(f) = Ker(g): C follows by

(go fw) = (") = (") (wlo, wly) = wlvny — wlunr = 0. (3.127)

Now, suppose (u,v) € Q¥(U, Fly) ® QF(V, Fly) satisfies g(u, v) = 0. Then p|yny = v|pny
and we can define a foliated k-form on M = U UV by

W= {“ on U, (3.128)

vonV,

such that f(w) = (w|y,w|v) = (i, v).
g is surjective: Let be n € QU NV, Flyay) and let {pp, oy} be a smooth partition of
unity subordinate to the open cover {U, V'}. Define

unv, - unv,
u:{wvn on : pun on : (3.120)

and v =
0 on U \ supp(pv), 0 on V' \ supp(¢uv).

Note that on (U NV) \ supp(¢y), where both definitions of u overlap, they both are zero.
Hence p € QF(U, F|y) and analogous v € QF(V, F|y). Finally, we obtain

g(p,v) = pluav — vluav = pvn — (—pun) = 1. (3.130)

Therefore, the exactness of the sequence (x) has been proven. Since pullbacks commute
with the foliated differential, we obtain the short exact sequence in foliated de Rham
cohomology with induced cohomology maps

i* Bi* iU *_ Z‘V *
() 00— H5(M, F) X HYU, Fly) @ BV, Flv) " L HY U AV, Flyay) — 0.

The Zigzag Lemma® (also known as Snake Lemma), which is proved by diagram chasing,
yields now the linear connecting maps

§: HY(U NV, Fluav) — H (M, F), (3.131)

such that the Mayer-Vietoris sequence of foliated cohomology is exact. ]

258ee [Leel3, Lemma 17.40, p. 461] for instance.
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3.4.12 Remark (Foliated Mayer Vietoris Sequence)

(1) If U,V C M are open subsets, then all required inclusions in (1)-(3) are transversal for
any foliation of their target manifold. Indeed, if 2 : U — M is the inclusion of an open
subset U C M, the map di, : T,U — T, M, di,(v:)(g9) = v.(g o), where v, € T,U
and g € C°°(M) is an isomorphism for each z € U by [Leel3, Proposition 3.9, p. 56].
Even if U = 0, this holds since otherwise there would be some z € () at which point
the differential is no isomorphism.

(2) The connecting linear map § : H*(UNV, Flyav) — H*(M, F) in the Mayer-Vietoris
sequence of foliated cohomology can be described as follows:
By surjectivity, for each n € Z*¥(U NV, Flyny), there are p € QF(U, Fly) and
v € QF(V, Fly) such that n = plyny — v|uav. Then §[n] = [o], where o € QFL(M, F)
is equal to dr|, ¢ on U and to dg|,v on V. Note that on U NV, both definitions agree
since 0 = dr, v 1t — driyoy V- I {u, @v} is @ smooth partition of unity subordinate to
{U,V'}, it is possible to take u = pyn and v = —pyn, both extended by zero outside
of the supports of ¢y and ¢y, respectively. This is a consequence of a characterization
of the connecting linear map of the Zigzag Lemma and coincides with the unfoliated
case. For instance, see [Leel3, Lemma 17.40 and Corollary 17.42].

(3) If we consider the one leaf foliation F = {M} of M, all inclusions of (1)-(3) are trans-
versal and we obtain the classical Mayer-Vietoris sequence of (unfoliated) de Rham
cohomology.

3.4.13 Remark (Good Cover of a Manifold)

A good cover (U,)aes of a smooth manifold M of dimension n is a collection of open sets
U, such that all sets and all finite non-empty intersections U,, N ... N U,, of the cover are
diffeomorphic to R™. By [BT82, Theorem 5.1, p.42], every smooth manifold has a good cover
and if the manifold is compact, the good cover may be chosen to be finite. Moreover, if a
smooth manifold has a finite good cover, then its de Rham cohomology is finite dimensional.
(This can be proved by an induction on the cardinality of a good cover together with the
Mayer-Vietoris sequence and the Poincaré Lemma, see [BT82, Proposition 5.3.1, p.43].
Another proof uses an isomorphism between the de Rham cohomology and the Cech-
cohomology of a good cover together with the observation that the Cech-cohomology of a
finite cover is finite dimensional. We obtain this result later by Corollary 3.5.15.)

3.4.14 Theorem (Foliated Cohomology of Foliation by Points)

Let M and N be smooth manifolds of dimension p and ¢, respectively. Assume M has a
finite good cover (and consequently a finite dimensional de Rham cohomology), then

H*(M x N, Fn(M)) = H*(M) @ C®(N) for each k € N, (3.132)

where H*(M) denotes the usual de Rham cohomology group of the smooth manifold M.
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Proof. The proof is inspired by the proof of the Kiinneth Formula for (unfoliated) de Rham
cohomology that can be found in [BT82, p.47 ff.].

Let Fpy = {M} be the smooth (p,0)-foliation of M and Fy = {{y} : v € N} be the
smooth (0, g)-foliation of N, such that the projections my; and 7wy from (M x N, Fy(M))
onto (M, Fy) and (N, Fy), respectively, are smooth foliated maps. For k,¢ € Ny with
k > ¢, this allows the definition of

O OF(M, Far) x QF 4N, Fy) = QYM x N, Fx(M)), (1, v) = (1) Ay (v).
(3.133)

Note that Q*(M, Fyy) = QF(M) for all k € Ny, Q°(N, Fy) = C*(N) and QY(N, Fy) = {0}
for all £ > 1 because Fy is of dimension 0. Moreover, ©*? is bilinear such that the universal
property of the tensor product induces an R-linear map

UF QM) @ CP(N) = Q5 (M x N, Fx(M)), p® f = myy (1) Ay (f) = 7 (f) ()
(3.134)

Next, define d : Q¥(M) @ C®(N) — Q¥1(M) @ C>°(N) by d(u® f) = (dp) ® f for each
k € Ny, where d : QF(M) — QF(M) is the Cartan-differential on k-forms. Hence, d is
linear and satisifes dod = 0 such that we obtain cohomology groups H*(M)®C*(N), which
are also R-vector spaces. Since the (foliated and unfoliated) Cartan-differential commutes

with pullbacks, we can compute for pu ® f € QF(M) ® C*(N),
G o (i ® f) = mhef () = T f Ay (Thet) = dryon 0 V(U@ f). (3.135)
Therefore, we receive for each k£ € Ny a linear map in cohomology
Tk HY (M) @ C%(N) — H* (M, xN, Fyr(N)), [1] @ f = [WF(n® f)]. (3.136)

We will show, that U* is an isomorphism. If M is a star-shaped open subset of R?, this
is just the Poincaré Lemma for foliated cohomology. This can be used together with the
Mayer-Vietoris sequence of a good cover, requiring a finite good cover for an induction
argument. Let U,V C M be open subsets such that we have the exact Mayer-Vietoris
sequence

- HYUUV) > HYU)e H* (V) > HYUNV) = - (3.137)

Tensoring with the vector space C*°(N) preserves exactness. Moreover, U x N and V x N
are open subsets of M x N, such that the Mayer-Vietoris sequence of foliated cohomology
is exact. This gives the following diagram with exact rows,

ci——> HYUUV)® C®(N) —— (H¥(U) @ C®°(N)) & (H*(V) ® C*®°(N)) —— H*(UNV)® C*®(N) —— - -~

lq,k j\l,k@\l,k jq,k

co = HR((UUV) x N,FN(UUV)) > H¥U x N,FN(U)) @ H*(V x N,Fn(V)) = H(UNV)x N,FNUNV))) > -
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and it is also commutative. This follows essentially by the commutativity of the (foliated)
Cartan-differential with pullbacks. However, the square containing the connecting linear
maps of the Mayer-Vietoris sequences,

HYUNV) @ C®(N) 9 e ([ U V) @ C(N)

\I/kl l\l}kJrl

HY(UNV)x N, Fx(UNV))) —2= HFL(UUV) x N, Fy(U U V),

requires a closer look. Let {¢, ¢y} be a smooth partition of unity subordinate to the open
cover {U,V} and let [n]® f € H*(UNV)® C*®(N), then by Remark 3.4.12 (2), 4[] = [4],
where & = d(¢yn) on U and 6 = d(—¢yn) on V (extended by zero outside the supports
of ¢y and @y, respectively). Hence,

Vo (Beid) ([ @ f) = VN © ) = 7 ()i (6)] (3.138)

[ (Dmiodevn)] on U
i (Do (d(—pum)]  on V.

Since {7}, 1 (¢v), 7oy (pv)} is a smooth partition of unity subordinate to the open cover
{UXx N,V x N} of (UUV) x N, we obtain again by Remark 3.4.12 (2)

80 W ([ @ f) = dlmx (f)miy ()] = [o], (3.140)

where o is given on U by

d
3.139
: (3.139)

dry ) (mouv (ev) Tn () v () = 7 () dry ) (v (9vn) (3.141)
= 7n(f) muv (d(evn)). (3.142)

At the first step, we used the antiderivation property together with dz, (73 (f)) = 0 and
the commutativity of pullbacks with products. Analogously, ¢ is given on V' by

dry W) (Tpov (—ev) TN (F) Touv (1) = T () dry @) (Thov (—eum)) (3.143)

= 75 (f) v (d(=pun))- (3.144)

Thus, the square diagram commutes and therefore also the huge diagram with the long
exact rows is commutative. By the Five Lemma, it suffices to prove that U* is an iso-
morphism for U,V and U NV, then it is also true for U U V. Therefore, by induction on

the cardinality L of a finite good cover {U;}!_; of M, we can conclude together with the
Poincaré Lemma for star shaped foliations by points, that

Ur: Y (M) @ C®(N) — H*(M, xN, Fy (N)) (3.145)

is an isomorphism for each k € Ny, if M has a finite good cover. O

Proposition III.1a of [KA83] states the same formula of Theorem 3.4.14 without assuming
a finite good cover. The proof requires some knowledge about spectral sequences which we
could avoid.
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3.4.15 Example (Torus Foliated by Points of a Circle)

Consider the torus T? = S! x S1. The leaves of a S'-foliation by points of S! are either
{z} x S for x € St or S' x {y} for y € S', depending over which factor we parametrize.
However, both foliations are isomorphic in the sense that ® : T? — T2, ®(x,y) = (y, ) is
a diffeomorphism which is also a foliated map with respect to mentioned foliations. Since
St is compact, such that it has a finite good cover and its non-zero de Rham cohomology
groups are H*(S') 2R (k = 0,1), we obtain by Theorem 3.4.14

H*(T? Fs1(SY)) = H*(S') @ C>(S*) = C*°(S?) for k=0, 1. (3.146)

In Example 3.6.2 we consider more interesting foliations of the torus.

3.5 Cech Cohomology and Generalized Mayer-Vietoris

We want to generalize the Mayer-Vietoris sequence of just two open sets to a cover of
countable many open sets. This generalization will involve foliated forms restricted to
intersections of finitely many open sets of the cover. These spaces arise as special cases of
the so called Cech complex, which is a differential complex depending on an open cover
of a topological space and a presheaf.

3.5.1 Definition (Presheaf, Cech complex and Cover Operator)

(a) In general, a (Vectg-valued) presheaf ¢ on a toplogical space X is a contravariant
functor from the category Open (X), consisting of open sets in X as objects and
inclusions of open sets as morphisms to the category Vectg, consisting of R-vector
spaces and R-linear maps as morphisms. This means, if V' C U are open sets in X,
then ¢ assigns to the inclusion

iV = U (3.147)
an R-linear map, called restriction
o, =9(Y) : 9(U) - 4(V) (3.148)
satisfying oy = 9(i},) = idg(vy and if W C V C U are all open in X, then
oy =9 (iy) =9 iy oiyy) =G (i) oY (iy)) = oV © oy (3.149)

A morphism of presheaves, f : 4 — %, is a natural transformation between
functors from Open (X) to Vectg. To be precise, for every open U C X, there
is a linear function fy : 4 (U) — %(U) such that for all inclusions of open sets
iV, : V' — U the following diagram with restrictions is commutative:

G (U) a0 (U)

(@)} |
G(V) == %(V)
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A morphism of presheaves, f : ¥4 — %, is called an isomorphism of presheaves,
if it is a natural isomorphism between functors, i.e. fy : % (U) — %(U) is an
isomorphism of vector spaces for all open U C X and we call ¢4, and % isomorphic
presheaves in that case.

For a fixed R-vector space A, the so called trivial presheaf associated to A is the
presheaf which associates to every open set of X the vector space A and to every
inclusion V' C U of open sets the identity map id4 on A. If a presheaf is isomorphic
to the trivial presheaf associated to A, we call it a constant presheaf associated
to A. Moreover, we call a presheaf ¢ a locally constant presheaf associated to
A, if every x € X has an open neighbourhood U C X such that ¢|y, defined on
Open(U), is a constant presheaf associated to A.

Let U = (Uy)aes be an open cover of a topological space X, where J is an ordered
countable set. For £ € Ny and «ay, ..., ap € J, we write

l
Ung.ocp = ﬂU and Uy gy = ﬂ (3.150)

7=0

LS.

J?é

Let ¢ be a presheaf on X. For ¢ € Ny define the /-cochains of the cover U with values
in the presheaf 4 by

H g(Uaow,ae)a (3.151)

ap<...<ay

where all indices of type a and «; are supposed to be in J without further mentio-
ning. Each inclusion from U, into X induces a restriction ggf(a. We define the global
restriction map to be r : 4(X) — CO(U,¥Y) by (rw)s = 05 (w) for all a € J.
Further, we denote for i € {0, ..., (} the inclusion map from Uy, o, into Un,.. 4, .a,
by 0¢. This induces a restriction map

6r =9(00) G Uag...nc) = G Ung...c0p)- (3.152)
Now, we define for ¢ € Ny the cover operator
s C' U9 — CTH UL D) (3.153)

which maps an f-cochain w € CY(U,¥) with entries Wagoy € 9 (Ung....,) tO an
{ + 1-cochain 6w € C**1(U,¥) where the entries are given by the alternating sum
of restrictions

¢
a07 RIC 7T R Z 6€+1 wao,“.,o?i,...,aprl), (3154)

=0

(0'w)

where the hat on «; indicates that this index is omitted. As we will show below,
the cover operator is a coboundary operator (6°*! o 6 = 0) of the cochain complex
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C*U,9) = @ CHU,¥Y), which we will call the Cech complex of the cover U
€Ny
with values in the presheaf ¢. Further, we denote by

HU,9) =D H U, 9) where H' (U, 9) = Ker(6" )i (5), (3.155)

£eNy

the Cech cohomology of the cover U with values in the presheaf ¢.

3.5.2 Lemma (Cover Operator Is a Coboundary Operator)
In the setting of 3.5.1 (b), the cover operator satisfies 6°*! o §° = 0 for each ¢ € Nj,.

Proof. Let w € C*(U,%4). For ease of notation, we denote the following entry of w with two
omitted indices by

ei,j - Wao ,,,,, 021 ,,,,, dj ,,,,, Q42 lf 0 S Z < j S g + 2 (3156)

Using the definition of 6°, we compute for j € {0, ..., ¢ + 2}

Jj—1 £+1
(6°W)agrotyarss = P _(—1)16 (1) +Z 116 (e;.041) (3.157)
=0
Jj—1 2042
= (=1 eg) = D (=1)'6  (ega). (3.158)
i=0 i=j+1

Of course, for j = 0 the first sum vanishes as well as the second sum vanishes for j = ¢+ 2.
Together with the linearity of (5f+2, we get

+2
(8 (8N aosarers = (=167 (8 aapy i) (3.159)
§=0
42 j-1 +2 (41
:ZZ 'L+]5€+2 5£+1 e ) Z Z z+]§£+2 (5£+1(6"))
(2 ] 750
Jj=1 =0 j=0 i=j+1
= > (UG ) = Y (DTSR (eg0)
0<i<j<t+2 0<j<i<l+2
=Y, (3.160)
since 672(6; (e;4)) = QZZEZZH% """ " (ejq) = 6,785 (e;4)) in the last sum. O
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3.5.3 Examples (Presheaves)

(1)

(Presheaf of Sections)

Consider a smooth vector bundle (E, 7, M) over a smooth manifold M. For an open
subset U C M, the space of smooth sections I'(U, F) is an R-vector space (even a
Fréchet space). If 45 : V' C U is an inclusion of open sets, the restriction map given by
the pullback, of; = (i¥%)* : T(U, E) — T(V, E), of;(0) = 0 0¥, = o|y, is a (continuous)
linear map. The linking properties of the restrictions also satisfied, such that we have
defined a (even a Fréchet-valued) presheaf on M, called the presheaf of sections of
E over M and denoted by I'g. Each point x € M has an open neighbourhood U C M
such that I'(U, E) is isomorphic (even as Fréchet spaces) to C*°(R", RY) by Lemma
2.2.4 using smooth charts diffeomorphic to R™, where N is the rank of F and n the
dimension of the manifold M. Hence, I'|g is a locally constant presheaf associated to
C>(R™, RY). It is only a constant presheaf, if there is a global smooth chart and the
vector bundle is trivial. We want to emphasize two presheaves of sections:

(Presheaf of Differential Forms)

Let M be a smooth manifold and £ € Ny. We denote the presheaf of sections of
the alternating k-tensor bundle A¥(T*M) over M by QF and call it the presheaf of
differential k-forms on M.

(Presheaf of Foliated Differential Forms)

This is the most important example for us and we repeat the definition of the presheaf
of sections in this situation. Consider a smooth foliated manifold (M, F). Since every
open set U C M is transversal to the foliation F, we can pullback the foliation F by
the inclusion map iy : U — M, such that Fl|y = i};(F) is a foliation on U and the
inclusion becomes a smooth foliated map. For each k € Ny we can define a presheaf
Q% on M by setting Q%(U) = QF(U, Fly) for an open set U C M and if i}, : U — V
is an inclusion of open sets, then Q% (i) = (i¥;)* : Q%(V) — Q% (U) is the restriction
of foliated k-forms, given by the pullback of the foliated inclusion map. We call Q%
the presheaf of foliated differential k-forms. Note that we obtain for the trivial
foliation F = {M } on a manifold M the same presheaf as in (2).

(Presheaf of (foliated) de Rham Cohomology)

Let (M, F) be a smooth foliated manifold and k& € Ny. As in (3), for an open subset
U C M, (U, Fly) is a smooth (p, q)-foliated manifold and we define H%(U) to be
the kth foliated de Rham cohomology group H*(U, F|y), which is a vector space as
we know. Moreover, we set H%(i¥) = (iY)* : HL(U) — H%(V), which is the linear
induced cohomology map of the inclusion i} : V' — U of open sets. This defines the
presheaf HY of the kth foliated de Rham cohomology. Further, if F = {M}
is the trivial foliation on M, we omit the sub index F since we obtain the classical
unfoliated de Rham cohomology and call H* the presheaf of the kth de Rham
cohomology.
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3.5.4 Remark (Convention for Arbitrary Indices)

..........

increasing indices in J. By the following convention, we can allow more general indices of
any order, even with repetitions.
Convention: Whenever two indices are changed, the entry become its negative, hence

W a,..B,.. = —W. . 8,.. ...+ 3.161
B, Bty (

As a consequence, an entry with repeated indices is 0. Otherwise, there is a permutation
o which puts ay, ..., ay in an increasing order o, () < ... < (e such that

Wag,...ae = SGN(T) Way gy .aps)- (3.162)

Note that this convention is consistent with the definition of the cover operator ¢.

3.5.5 Lemma (The Generalized Mayer-Vietoris Sequence)

Let (M, F) be a smooth foliated manifold and & = (U, )aecs an open cover of M indexed by
a countable ordered set J. The sequence of the Cech complex with values in the presheaf
of foliated differential k-forms, augmented by the global restriction map r (see 3.5.1, (b)
for definition),

0= QM) 5 COU, Q%) 5 a0k 5 G2, k) = - (3.163)

is exact. In other words, the Cech cohomology with values in the presheaf of foliated
differential k-forms vanishes identically.

Proof. 1f the restriction of a foliated global form is constantly zero on every set of the open
cover, the global form must be constantly zero. Hence, r is injective.
We show §° o r = 0. Let w € Q% (M) be a global foliated form, then

(50<Tw))ao,a1 = 53((7“(,0)&1) - 5%((“"))&0) (3164)
Uao,al Uozl U(Jto,al Uao
= 0yt ooy (W) = ope ™ e ox ™ (w) = 0. (3.165)

Therefore, Im(r) C Ker(6°). If 1 = (pta)acs € Ker(6°), then piq|u, , = pslu, , for all a <
in J with U, 5 # (. Hence, u defines a global foliated form w € Q% (M) with r(w) = p such
that we can conclude Im(r) = Ker(d°).

It remains to be shown that Ker(6"') C Im(6%) for £ € Ny. Let (Xa)aes be a smooth
partition of unity subordinate to the open cover {U, }qecs. Suppose w is an (¢ + 1)-cocycle,
ie. we O (U, 0%) with 6“7'w = 0. We define a cochain 7 € C*(U, Q%) by

7-OlO ----- ag — ZX& Wa,ozo ..... ayp (3166)



where we use the convention above for non increasing indices. We compute,

0+1
(5£T)a0 77777 Q41 - Z<_1>Z7—a0 ..... 021 ..... Qyp41 (3167)
i=0
0+1
= Xo D _(—1)Waapiaris- (3.168)
aed =0
Since w is a cocycle,
+1
0= (0""Waao,ars = Wagmars + 3 (=1 Waag,diaes (3.169)
=0
Finally,
(667)040 ,,,,, opp1 — ZXQ Wag,...,apr1 — Wag,...,apq - (3170)
aeJ

]

Combining the foliated de Rham complex and the Cech complex with values in the presheaf
of foliated forms will lead us to a double complex:
3.5.6 Definition (Foliated Cech-de Rham Complex and Cohomology)

Define the spaces

o) for k. 0 € Ny, (3.171)

.....

consisting of the ¢-cochains of the cover U/ with values in the foliated k-forms.
The cover operator 6 : K¥* — K***1 as horizontal operator and the foliated Cartan-
differential dr : K** — KF1¢ as vertical operator turn C*(U, Q%) = @ K into a

k,0eNg
double complex, called the foliated Cech-de Rham complex.
By setting
D: P K- P K" Dw=dw+(-1)drwif we KM, (3.172)
k4t=j kt-t=j+1

the double complex can be made into a single cochain complex consisting of the anti-

diagonal lines A7 = @ K** of the double complex together with D as coboundary
k+l=j

operator. For j € Ny define the jth foliated Cech-de Rham cohomology group by

H%{C’*(L{,Q})} — Ker(D: A7 — AjH)/im(D DAL s Ad). (3.173)
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K20 | g2t | g2

Kl,o KLl Kl,?

K0,0 K071 K0’2

[

l
Figure 3: The foliated Cech-de Rham double complex.

A D-cocycle w € A7 is a sum w = >, wh® with w** € K** and Dw = 0, which is
k=]
equivalent to

drw’® =0, 0w = (1) drw 1 and dw™ = 0. (3.174)

A D-coboundary 1 € A7 isasum n = >, 7% with n®* € K** such that there exists
k+0=j
w € A7~ with Dw = 5, which is equivalent to

0 = (=1 dpw’ ™0, Pt = 6w 4 (—1)FdrwF T and %7 = 6w (3.175)

We call w € A D-cohomologous to @ € A7, if w and & differ by a D-coboundary, i.e.
there is some n € A7~! with w — @ = Dn).

The exactness of all rows of the double complex (Lemma 3.5.5) yields the following lemma.

3.5.7 Lemma (D-Cohomologous Cocycles and Coboundaries)

Consider the foliated Cech-de Rham complex C*(U, Q%) = @ K", then:
k,£eNg
(1) Every D-cocycle w = Y. wh* € Al is D-cohomologous to a D-cocycle @ € K70 C A7,
k+e=j
consisting only of a top component.
(2) If the D-coboundary w = Dv € K7° C A7 of v € A’~! has only a top component, then
v is D-cohomologous to some 7 € K7~10 which has only a top component and satisfies

Dv = w.
Proof. (1) Set wp = w. Ifw; = 3. wh' € A7 is a D-cocycle, then since 6w~ = 0 there

k+i=j
k>i

is by d-exactness a jy; € K%~ C A" with dp; = w’~". Then w1 = w; — Dy is
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D-cohomologous to w; and of the form w;; = > wffl. Iterating this procedure at most

k+0=j
k>it+1

: i1 :
j-times, any D-cocycle w € A7 is D-cohomologous to © = w — D (Z ui> € K7 where
i=0

;€ K1,
(2) Set vy =v. If; = > VR for 0 <i < j— 1 satisfies Dy; = w, then
k+i=j—1
k>
0= (Dv)"" =5 4 (1) ey = gy (3.176)
Thus, by d-exactness, there is some p; € K% ~=2 with du; = v*9="1. Now, v, = v; — Dy
satisfies Dv;;1 = Dv; = w. Moreover, v;,1 is D-cohomologous to v; and of the form
Vien= Y. U fl. [terating this procedure at most (j — 1)-times, we end up with
kti=j—1
7;2#1
j—2
v=vj1=v-—2D (Z ui> € K710 satisfying Do = Du. (3.177)
i=0
O

In [BT82, Proposition 8.8, p. 96] it is shown that the de Rham cohomology is isomorphic to
the Cech-de Rham cohomology. This is also true for the corresponding foliated cohomologies
by a similar proof using Lemmas 3.5.5 and 3.5.7.

3.5.8 Theorem (Generalized Mayer-Vietoris Principle)

The restriction map 7 : Q% (M) — C*(U, 2%), defined for k € Ny by the global restriction
map 7 : Q%(M) — C%(U, Q% ), induces an isomorphism between the foliated de Rham co-
homology and the foliated Cech-de Rham cohomology, i.e. for each j € Ny the cohomology
map * : HI(M, F) — HL{C*(U,Q%)} is an isomorphism of vector spaces.

Proof. Since §° o7 = 0 on each Q% (M) and dr commutes with restrictions, we obtain
Dor=(—1)fdror=(—1)*rodr on Q%(M). (3.178)

Hence, r maps dr-cocycles to D-cocycles and dz-coboundaries to D-coboundaries,
respectively such that r induces for each j € Ny a linear map between cohomologies
. HI(M,F) — HL{C*U,%)}. We augment the double complex by an initial column
consisting of global foliated forms such that all rows of the augmented double complex are
exact by Lemma 3.5.5.
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(1)

LA

0 _.QQ(M’]:) _r, K20| g21| K22

1
0 —Q (M,F) o | KL gt g2

0 —q'(r,F) L= | goo| gO1| K02

[
Figure 4: The augmented foliated Cech-de Rham double complex.

r* is surjective:

Let w € A7 be a D-cocycle. By Lemma 3.5.7 (1) there is some D-cocycle @ € K79
which is in the same D-cohomology class as w. Since dw = 0, Lemma 3.5.5 yields
@ € Q(M,F). Moreover, drw = 0 such that @ is a dz-cocycle with 7*([0]4,) =
©]p = [w]bp.

r* is injective:

Let be p € (M, F) with dru = 0 satisfying r(u) = Dv for some v € A7~!. Since
the D-coboundary n = Duv is in particular a D-cocycle, Lemma 3.5.7 (1) yields a
D-cohomologous coboundary with only a top component 77 = Div € K0, satisfying
r(u) = Dv. By Lemma 3.5.7 (2) we can assume 7 € K710 having only a top
component. Now 6 = 0 gives a global form A\ € Q/~'(M, F) with r(\) = 7, such
that

r(p) = Do = Dor()\) =r((=1)"'dz()\)). (3.179)

Since r is injective, u = dz((—1)?7!\) is a dz-coboundary.

3.5.9 Remark (General Argument for Augmented Double Complex)

Combining Lemma 3.5.7 and Theorem 3.5.8, we have proven:

If all the rows of a double complex, augmented by an initial column, are exact, then the
D-cohomology of the double complex is isomorphic to the cohomology of the initial column
of the augmented double complex.

By switching the indices of the double complex and changing the horizontal and vertical
operator, we get a similar result:

If all the columns of a double complex, augmented by an initial row, are exact, then the
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D-cohomology of the double complex is isomorphic to the cohomology of the initial row of
the augmented double complex.

We can augment the Cech-de Rham complex by an initial row. Note that the follo-
wing presheaf of leafwise constant smooth functions is just H%, the presheaf of the zeroth
foliated de Rham cohomology, defined in Examples 3.5.3 (d).

3.5.10 Definition (Cech Complex of Leafwise Constant Functions)
If (M, F) is a smooth foliated manifold, we define a presheaf on M by

GE(U) = Ker(dg, : Q(U, Fly) = C=(U) = Q' (U, Fly)) € C=(U), (3.180)

which is the space of leafwise constant smooth functions on U. Further, if i/ : V — U
is an inclusion of sets, then ¥(i¥)) = (i{))* : Ker(dz,) — Ker(dz,) is the restriction
of smooth functions. It is well-defined since dz commutes with restrictions. We call 45
the presheaf of leafwise constant smooth functions. The Cech complex C’*(L{ ,9k)
of an open cover U = (U,)aes with values in the presheaf of leafwise constant smooth
functions augments the Cech-de Rham complex by an initial row such that each inclusion

CHU,94)) — C'U, Q%) is injective.

3.5.11 Lemma (Exact Columns under Good Covers)

U = (Uy)aes is a good cover, then the augmented columns of the Cech-de Rham complex
are exact. To be precise, for each ¢ € Ny, the following sequence is exact:

0— CUU,G) — CHU,0%) B CU U0 B CWU,0%) 5 (3.181)

Proof. The exactness at CHU, %) and C*(U, Q%) is clear by definiton. For k € N, the
failure of exactness at C*(U, Q%) is measured by the cohomology

I 2 Uaoci: Flon, o) (3.182)

Since all sets of the good cover and their finite non-empty intersections are contractible,
we obtain by the Poincaré Lemma 3.4.10, that the cohomology vanishes for & € N. Hence,
the sequence above is exact. O

Combining the last results, we get:
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3.5.12 Theorem (Foliated Cohomology Isomorphic to Cech Cohomology)

Let (M, F) be a smooth foliated manifold and U = (U, )aes a good cover of M, indexed by
a countable ordered set J. Then, the foliated de Rham cohomology of (M, F) is isomorphic
to the Cech cohomology of the good cover with values in the presheaf of leafwise constant
smooth functions, i.e. for each j € Ny we have

HI(M, F) = HL{C*(U, Q%) = H (U, 9¥). (3.183)

Proof. By Remark 3.5.9, Lemma 3.5.11 yields an isomorphism between each HI(U,9X%)
and HL{C*(U, %)}, which is isomorphic to H?(M, F) by Proposition 3.5.8. O
3.5.13 Definition/Remark (Direct Limit of Cech-Cohomology)

Recall, an open cover U = (U,)aes of M is called a refinement of another open cover
V = (V3)ger of M, if for each o € J, there is a § € I with U, C V. This relation defines a
partial order on OC(M), the system of all open covers of M. Since two open covers always
have a refinement given by the intersections, OC(M) together with the partial order given
by refinements, is a directed set. If I/ is a refinement of )V, then there is a well-defined map
in cohomology, induced by inclusions:

& H*(V,9F) — H* (U, 95). (3.184)

This makes { H*(U, 9%) }ucoc(m into a direct system of groups and we define H*(M, 4X)
to be the direct limit of this system:

HI (M, 95) = uegg(lM) HI U, 9F). (3.185)

Since every open cover has a refinement, which is a good cover (the good covers are cofinal
in the set of all covers of a manifold)?®, we receive the following corollary of Theorem 3.5.12:

3.5.14 Corollary (Cech-Cohomology of Space)
Let (M, F) be a smooth foliated manifold. Then, for every good cover U of M, we have
HI (M, %5) = HI (U, 95) = H (M, F). (3.186)

We can also obtain results for the unfoliated case, which can be found in [BT82, Theorem
8.9 and Corollary 8.9.3, p. 98-99:

268ee [BT82, Corollary 5.2, p. 43].
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3.5.15 Corollary (De Rham and Cech Cohomology in Unfoliated Case)

If U is a good cover of a smooth manifold M, then its (unfoliated) de Rham cohomology
HJ(M) is isomorphic to H7(U,R), the Cech cohomology of the good cover with values in
the presheaf of locally constant functions.

Moreover, if U is a finite good cover, then H*(M) is finite dimensional.

Proof. We consider the trivial 1-leaf foliation F = {M} on M. Then the Cech complex of
leafwise constant functions C(U, %) is the Cech complex with values in the presheaf of
locally constant functions C(U,R) and we receive the first assertion by Theorem 3.5.12.
Further, for a finite good cover, it is easy to see, that H* (U, R) is finite dimensional, such
that H*(M) must be also finite dimensional. O

3.6 Kiinneth Formula For Foliated Cohomology

If we consider two foliated smooth manifolds (M, F) and (N, G), then there is a foliation
F x G given by the products of leaves on the product manifold M x N. A statement relating
the (co)homology of a product of two objects with the (co)homology of these objects is
called a Kiinneth formula. The formula of Theorem 3.4.14 suggestes

HY(M x N,F x G)= @ H'(M,F)® H(N,G) for k € N,. (3.187)
i+j=k

We have to be careful. If we consider the discrete foliation F = {{z} : © € R} of R, then
H°(R, F) = C*(R). Since F x F = {{(x,y)} : (z,y) € R?} is the discrete foliation on R?,
we have HO(R* F x F) = C*(R?). But the injection C*(R) @ C*(R) — C*(R?) is not
surjective. The function f(x,y) = exp(zy) can not be written as a finite linear combination
of functions in C*(R) @ C*°(R), for example.?” Only if we consider a so called topological
tensor product ©, we get an isomorphism between C*°(R)®C>(R) and C*(R?). In general,
we have no topology yet on the cohomology to build a topological tensor product. The
coboundary operator dz is a linear and continuous map from QF(M, F) to QFF1(M, F),
which are Fréchet spaces. Since Ker(dx) is a closed subpsace, it is also a Fréchet space. But
the quotient spaces of the cohomology are only Fréchet spaces if dr has closed image which
is by the open mapping theorem equivalent to d» being a homomorphism. In general, this
does not have to be the case as we see in Example 3.6.2 for a slope o which is a Liouville
number. A Liouville number is an irrational number o € R\ Q such that for all £ € Ny
there are relatively prime numbers m,n € Z,n > 2 satisfying

1
[nf*

(3.188)

m
oSl <
n

For example Liouville’s constant . 107* is a Liouville number. We need the following
k=1
characterization of a Liouville number for Example 3.6.2.

27See [MSE17] for a contradiction to such a representation.
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3.6.1 Lemma (Characterization of a Liouville Number)
An irrational number a € R\ Q is a Liouville number if and only if

1

VEkeNImneZ n>2:|lan+m| < ———rrp.
(In] + [m])

(3.189)

Proof. (Let be k € N. If (3.189) holds, then there are some m,n € Z, n > 2 such that we
obtain after dividing by n for m = —m

o < ! <2 (3.190)
n| o n(n[+mpkE - nk ‘

The other implication is more subtle. Let a be a Liouville number and k£ € N. Choose
¢ € N such that 2° > |a|*. The Liouville condition yields for j + 1 > 3k + ¢ + 1 some
m,n € Z, n > 2 satisfying |an —m| < n™7. (Note that we can assume o and m to have the
same sign for j sufficiently large.) If an < m, then m —an < 1/2, such that n > m%m >0
follows. Since n|m —1/2| > |m| for all m € Z, n > 2, we can conclude n? > |Z|. Otherwise,
an > m and in particular n? > ’%| Since n® > n 4+ n? for n > 2, we finally obtain for

m = —m

- 1 1 1
lan+m| < — <

S (| (S e (3.191)

where the last inequality follows by an estimation based on the binomial theorem and
nt > 2° > |a|* by the choice of ¢

nE

ne(\n\ + \m/a|)k > nfth 4 ]m\kW > \n\k + \m[’“ (3.192)

O

3.6.2 Example (Kronecker Foliation of the Torus)

The torus T? = S x S can be obtained as a quotient space R?/z2 where z,y € R? are
equivalent if x — y € Z2. More figurative, one can glue the opposite edges of a rectangle
R = [0,1])? together along the same orientations, such that one can imagine T? as the
surface of a round tire or a donut. Consider the foliation of R? (or R) by parallel lines of
a fixed slope o € R. This induces a foliation F, on T?, called Kronecker foliation of
the torus. (The translation of a line in R? by a pair of integers represents the same set in
R?/72 as the originally line.) The leaves of JF, are images of curves twisting spirally around
the torus, given by {ya0(t) = (e, e®"*?) : t € R} as 0 ranges over R (or just [0,2n)). If
a € Q, the curves are closed and the leaves of F, are circles. (For o = 0, we obtain the
St-foliation of T? by points of S, see Example 3.4.15.) Otherwise, if & € R\ Q, the curves
are not closed, such that each leaf is a dense line on the torus.?® Smooth functions on T?

28Gee [Leel3, Example 19.18 (Foliations) (e), p. 502].
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which are constant on these dense leaves are constant on T?, such that H°(M, F,) = R for
an irrational a. Surprisingly, the first foliated de Rham cohomology H'(T?, F,) is not the
same for all irrational numbers . As we see below, if & € R\ Q is not a Liouville number,
HY(T?, F,) R, i.e. the first foliated cohomology is 1-dimensional and Hausdorff. But if
« is a Liouville number, H*(T?, F,) is infinite-dimensional and non-Hausdorff. (In that
case, the image of dr can not be closed or equivalently be a homomorphism between
Fréchet spaces.)

The present author was not able to find a proof of the result as stated, by following the
references [MS06] and [Hae80] given in [Berll]. Hence, we include a detailed proof, also
based on the work of Greenfield and Wallach, who considered global hypoellipticity of a
constant coefficient differential operator P on the torus in [GW72]. P is said to be globally
hypoelliptic on T? if for any g € C*(T?) and a distribution f € D'(T?) with Pf = g
already follows that f € C*°(T?). They proved for an irrational number « that the vector
field P = Dy — aD, is globally hypoelliptic if and only if « is not a Liouville number.
There is also mentioned a connection to the work of Herz on divergence. Herz showed in
[Her70, Example 1] that the Lie algebra of derivations induced by constant multiples of
vector fields, locally given by L = O‘a% + 5 8%, has a closed divergence if and only if % is
not a Liouville number. Both articles considered the Fourier expansions and deduced a
system of equations for the Fourier coefficients, which is solvable depending on whether
the slope is a Liouville number or not.

A C*>-atlas on T? is given by smooth charts of the following type, referred to as
standard coordinates, which are the inverse of the most natural local parametrization of
the torus: (z,y) : U — I x I, is a diffeomorphism from an open set U C T? onto a rectangle
with open intervals I; of length shorter than 27 as edges such that 7; o 27(r) = € and
mrr oy t(s) = € for the projections 7y, 77 : T? — SL.

There is a global vector field X € T'(T?, T'T?) with local representation X |y = a% + aa%,
such that the leaves of F, are exactly the images of the integral curves of the vector field
X e 0(t) = X5 ) (€ Ty yT?) for all t € R. In particular, X is a global frame of
the foliated tangent bundle T'F,. Now, there is the global coframe £* = (X®)* dual to X?,
which is a global frame of T*F, satisfying £*(X®) =1 on T?. In standard coordinates, £
is the foliated differential of the first coordinate = : U — R, i.e. £*|y = dx,x because for
any z € U,

ay 0 0
(dx).(XT) = dx, <%L> + adx, (8_y

) =1 (3.193)

and by definition, we have dz, = i} od on C*(T?). Hence, for each w € Q'(T?, F,) there
is some f € C*(T?) with w = f - &% Since F, is a (1,1)-foliation of T?, every foliated
1-form is already closed. Moreover, w = f - £* is exact, if there is some g € C*°(T?) with
f-&* =dzr,g=X(g)-£*, which is equivalent to f = X“(g). On the other hand, we can
consider f, g € C*°(T?) as smooth functions from R? to R with f((u,v) + k) = f((u,v)),
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g((u,v) + k) = g((u,v)) for all (u,v) € R? and x € Z?. Their Fourier expansions

flu,0) =" f(m,n) ™) and g(u,v) = Y g(m,n) ™) (3.194)

m,neL m,nel
yield the characterization of f = X“(g) by the system of equations
f(m,n) = 2wi(m + an)j(m,n) for (m,n) € Z*, or equivalently by (3.195)

A

A f(mv n) 2 ¢
__Jmn) Z d —0. 1
g9(m,n) Smilm +an) (m,n) € Z7\ {(0,0)} and f(0,0) =0 (3.196)
Hence, w = f - £ is exact if and only if £(0,0) = 0 and §(m,n) = f(m,n)(27i(m + an)) ™!
are the Fourier coefficients for (0,0) # (m,n) € Z? of a smooth function g € C>(T?), i.e.
for each 7 € N there is a C' > 0 such that
|/ (m,n)| ¢

—————— = |g(m,n)| < ——— — for sufficiently large |m/|, |n|. 3.197
e = lm ) € ylaxge [l [nl.  (3.197)

We refer to [Gra08, Chapter 3] for details about Fourier analysis on the torus.

(1) « € R\ Q is not a Liouville number:
Let be f € C*(T?) with f(0,0) = 0. The negation of (3.189) yields some k € N such
that |an +m| > (In| + |m|)~* for all m,n € Z,n > 2. Let j € N. Since f € C>(T?),
its Fourier coefficients satisfy for i = j + k and some constant C' > 0 the inequalities
|f(m,n)| < C(Im| + |n|)~ for |m|, |n| sufficiently large. This gives

o(m, )] = G < ol | ) (3.198)
< Q (Im] + |n])* _ ¢ (3.199)

21 (Im[ + [nf)* (Im| + [nl)?

for |m|,|n| sufficiently large and C' = % Thus, there is solution g € C*°(T?) of
X(g) = f, such that f-&* € Q' (M, F,) is exact whenever fyo = 0.
If 0 # fo,, then f must be constant on T? since otherwise

foo :T[f = /027r /027r fe™ e®)dr ds =0 (3.200)

by the fundamental theorem of calculus and the 2w-periodicity of ¢ — e®. Therefore,
HY(T? F,) 2 R if a is not a Liouville number.

(2) a« € R\ Q is a Liouville number:
According to (3.189), there is a sequence (my,np)reny € (Z2\ {(0,00})" such that
lany, + my| < (|ng| + |mx|)~". For each ¢ € N,

fo(u,v) = Z |lany + my,| V¢ e2ritmiutnin) (3.201)
keN
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defines a smooth function f; € C*°(T?). Indeed, let be j € N and k > ¢ - j, then

1 1
< N
(Jrw] + [ )¥¢ = (|| + [myg])?

| fe(mp, )| = omg + my |/ < (3.202)

But X (g,) = f, has no solution g, € C*(T?) for any ¢ € N, because

N | ﬂz(mk, nk)l 1 1 k(1—1/¢)
| e(mk’nk” 27r|omk + mk| 27r|omk + mk|1—1/f - 27T(|nk| | k|)

(3.203)

does not even tend to zero. By linearity of the Fourier transformation, it suffices to
verify that ( fg : Z? — C)gen is linearly independent to obtain linearly independence
of the family (f;)sen. Denote ¢, = |ang + mg| > 0 for each k£ € N and let J C N be
a finite subset. If A, € R for ¢ € J such that > )\gﬁ = 0, we obtain

teJ
0= Z by, fg(mk,nk) = Z by, c,lg/z for each k € N. (3.204)
ted Led
Hence, for each j € J,
1_1
A== > Mo ’foreach k€N (3.205)

teJ\{j}

One can show by induction on the cardinality of J that \; is constant for each £ € N
only if all Ay for ¢ € J\ {j} (and consequently also \;) are zero. We have shown
that there are infinitely many linearly independent functions f, € C°°(T?) such that
the closed 1-forms f, - € € QY(M, F,) are not exact. Consequently, H'(T? F,) is
infinite-dimensional if « is a Liouville number.

3.6.3 Remark (Topological Tensor Product)

To enable a topological tensor product for the Kiinneth formula, we need the Hausdorff-
property, such that we require dx to be a homomorphism. As clarified in [Berl1, p. 259 ff.],
QOF(M, F) is a nuclear Fréchet space. Subspaces and quotient spaces by closed subspaces
of nuclear spaces are also nuclear.? If one factor is a nuclear Fréchet space, the two natu-
ral ways to construct a topological tensor product will yield the same topological tensor
product, which we denote by ©.%°

298ee [Tre67, Proposition 50.1, p. 514].
30See [Tre67, Theorem 50.1, p.511].
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3.6.4 Definition (Topological Tensor Product Cochain Complex)

Let E = (E7,d}) en, and F = (F7, d}) en, be two cochain complexes consisting of nuclear
Fréchet spaces with coboundary operators dj, and dJ, respectively, which are all homomor-
phisms. The topological tensor product cochain complex EQF is defined by

(E&FY = @) E*&F (3.206)
k+t=j
with coboundary operator D7 = 3" d%&@idpe +(—1)F idgr @db.
k=)

In [Berll] it is shown that there is a Kiinneth formula for foliated de Rham coho-
mology in two situations:

3.6.5 Theorem (Kiinneth Formula for Foliated Cohomology)
Let (M, F) and (N, G) be two smooth foliated manifolds.

(1) If d and dg are homomorphisms, then

HI(M x N,F xG) = @ H*M,F)®H'(N,Q). (3.207)

kH=j

(2) If the foliated de Rham cohomology of one factor is finite dimensional and the un-
derlying manifold of that factor is compact, then the Kiinneth formula with only the
(algebraic) tensor product is valid

HI(M x N,F x G) = @ H"M, F)oH'(N,G). (3.208)

k+0=j

For (2), the proof requires a continuous right inverse of the foliated Cartan differential on
the compact manifold, which is obtained by using the following splitting theorem of exact
sequences of Fréchet spaces, Theorem 3.6.7. It can be found in [MV97, Theorem 30.1, p.
378] and uses the properties (DN) and (Q2) of Fréchet spaces, which we will now define 3!.
We also present the closely related properties (DNy,.) and (£2,.) which are used in Theorem
3.6.8 and can be found in [Vog04, Definition 2.1 and Definition 2.4, p. 815 f.]

3.6.6 Definition (Properties (DN), (€2), (DN)j, and (£2)5,¢ )

A Fréchet space X with an increasing fundamental system of seminorms (|| - [|,,)nen is said
to have property

(DN) if there is a so called dominating norm ||-|| on X, which is a continuous norm such
that for every k € N there are K € N and C > 0 satisfying || - |2 < O - || || - l|x;

31Gee [MV97, Definition, p. 359 and p. 367]
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() if for every k € N there is some m € N such that for every n € N there are 0 < 0 < 1
and C' > 0 such that the dual seminorms satisfy || - ||, < C (|| - 1) (|| - 1I7)%:

(DN)ioc if for every n € N the quotient map ¢, : X — X/Ker(|| - ||,,) factorizes through a Fréchet
space Y with property (DN), i.e. there are linear and continuous maps f : X — Y
and ¢ : Y — XfKer(| - |,,) With ¢, = g o f;

() if X has property (€2) and for every k € N there are some K € N, K > k and a
Fréchet space Z with property (2) such that Ker(|| - ||x) € Z C Ker(|| - [|x) with
continuous inclusions.

Note that ()0 is a stronger property than (2) while (DN). is weaker than (DN).

3.6.7 Theorem (Splitting Theorem)

Let E, F,G be Fréchet-Hilbert spaces and let 0 — F' — G — E — 0 be a short exact
sequence of continuous linear maps. If F has property (DN) and F' has property (£2), then
the sequence splits.

We refer to [Berll, p. 270 ff.] why this theorem is applicable. In short, by the compactness

of the manifold, the foliated differential forms are isomorphic, as a topological vector

space, to the Schwartz space s = {(z;);en : Y |7;]%7?* < 0o Vk € N} which satisfies the
j=1

invariants (DN) and (). If the manifold is not compact, then the foliated differential

k-forms are isomorphic as topological vector spaces to s, which does not any more satisfy
the property (DN). But sV satisfies the properties (DNj,.) and (£,.).>? In this situation,
another splitting theorem®® might be applicable, if one can show that the foliated Cartan
differential is an SK-homomorphism:

3.6.8 Theorem (Splitting Theorem)

et 0 - G - FE 2 F - 0 be an exact sequence of nuclear Fréchet spaces and A
an SK-homomorphism. If F' has property (DNj..) and G has property (€,.), then the
sequence splits.

We will have a closer look at the splitting theory and SK-properties in the next
chapter.

32[Vog04, Lemma 2.2 and Lemma 2.5, p. 815 ff.].
33[Vog04, Theorem 3.5, p. 820].
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4 Splitting Theory

4.1 SK-Topology

A locally convex space X is a vector space over R (or C) with a directed system of semi-
norms P, i.e. for each p,q € P there is r € P with r > p and r > ¢, such that the topology
T, induced by the seminorm balls B,(z,¢) ={y € X : p(x—y) <e} (p € P, v € X, € > 0),
is Hausdorff or equivalently for each = € X \ {0} there is p € P with p(z) # 0. Of course,
every p € P is continuous with respect to this topology and the set CS(X) of all continuous
seminorms generates the same topology such that P is often assumed to be the system of
all continuous seminorms on X, which we will denote by CS(X). Note that CS(X) is a
directed system since finite sums of continuous seminorms are continuous seminorms. We
refer to [Vog04] and [Meil0] for an introduction of the presented SK-theory in this chapter.

4.1.1 Motivation

Let f: X — Y be a continuous linear map between locally convex spaces X and Y. In
general, a (linear) right inverse R : Im(f) — X of f will not be continuous. But, if we
consider a continuous linear right inverse R, then for each p € CS(X) there is ¢ € CS(Y')
such that ¢ > po R on Im(f). Hence,

Ker(g) NIm(f) € {y € Im(f) : p(R(y)) = 0} = f({z € X : p(z) = 0}) = f(Ker(p)).
(4.209)

Therefore, the condition
Vp € CS(X)dq e CS(Y) : Ker(q) NIm(f) C f(Ker(p)) (4.210)

is necessary for the existence of a continuous linear right inverse of f. Moreover, since f is
a continuous linear map, we obtain,

Vg € CS(Y)3dp(=qo f) € CS(X) : f(Kerp) C Kerg. (4.211)

In both observations, the kernels of seminorms play a central role, such that it is advisable
to study the system of seminorm kernels SK(X) = {Ker(p) : p € CS(X)}. This collection
is stable under finite intersections by adding seminorms but fails to be stable under unions,
hence it is not a topology yet. However, we can construct the coarsest topology containing
SK(X), the so called SK-topology, such that the seminorm kernels are neighbourhoods
of zero. The condition (4.211) is then just the continuity of f with respect to the SK-
topologies. In that case, f is a homomorphism with respect to the SK-topologies iff (4.210)
holds. We collect these considerations in the following definition:
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4.1.2 Definition (SK-Topology)

Let X,Y be locally convex spaces and f : X — Y be a linear map.

(a) The topology,
TS ={U C X : Vo € U3Ip e CS(X) with x + Ker(p) C U}, (4.212)

induced by the system of seminorm kernels SK(X) = {Ker(p) : p € CS(X)}, is called
the SK-topology of X.

(b) f is called SK-continuous, if

Vg e CS(Y)3dp e CS(X) : f(Kerp) C Kerg. (4.213)

(c) f is called an SK-homomorphism, if it is SK-continuous and

Vp € CS(X)Jqe CS(Y) : Ker(q) NIm(f) C f(Ker(p)). (4.214)

4.1.3 Lemma (SK-Topology and Additive Hausdorff-Group)

Let X be a locally convex space. Then 75K is a topology on X such that SK(X) is a base
of 0-neighbourhoods. Moreover, (X, 75K, +) is a topological Hausdorff group, i.e. the maps
+: X xX =X (z,y)»z+yand —: X - X, v +— —x are continuous with respect to
T5K and (X, T5%) is a Hausdorff space.

If a system of seminorms P on X is equivalent to CS(X), then
T*={U C X :Yr € U3Ipec P with v + Ker(p) CU}. (4.215)

Proof. 0, X € T5% and the stability under unions follow straight from the definition of
T 5K, We have to verify that UNV € T5K for U,V € T3, For each x € U NV there are
p,q € CS(X) such that x4+ Ker(p) C U and = + Ker(q) C V. Then r = p+¢ € CS(X) and
Ker(r) = Ker(p) N Ker(q). Hence x + Ker(r) = (z 4+ Ker(p)) N (z 4+ Ker(q)) C U NV, such
that 75K is indeed a topology.

Let z,y € X and W € T 5K be a neighbourhood of x + y, then there is a p € CS(X) such
that (z + y) + Ker(p) C W. Since Ker(p) + Ker(p) C Ker(p), by the triangle inequality, it
follows that (z 4+ Ker(p)) + (y + Ker(p)) C (= + y) + Ker(p).

Let P be a system of seminorms which is equivalent to CS(X). It suffices to show, that
{Ker(p) : p € P} is equivalent to SK(X). Let p € P, then thereisa C' > 0 and a ¢ € CS(X)
with p < C ¢. Hence, Ker(q) € Ker(p). On the other hand, if ¢ € CS(X), then there is a
C >0andape P with ¢ < C p. Then Ker(p) C Ker(p). Therefore, the induced topologies
coincide. ]
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4.1.4 Lemma (Compatibility)

(a) Let (X, T;)ier be a family of locally convex spaces, then the SK-topology of the
product topology is the product topology of the SK-topologies,

(H 7;) =[] 7% (4.216)

i€l i€l

(b) Let Y be a subspace of a locally convex space (X,7T), then the SK-topology of the
relative topology is the relative topology of the SK-topology,

(Thy)™ = (T)Iy. (4.217)

(c) Let Y be a closed subspace of a locally convex space (X, 7T ), then the SK-topology
of the quotient topology is coarser than the quotient topology of the SK-topology,

(TX/Y)SK C(T%) x)y - (4.218)

(d) Let (X,7T) be alocally convex space, then the SK-topology is finer than the originally
topology T,

T CT5% (4.219)

Proof. (a) Let U C [] X; be a (I] 7;)%®-neighbourhood of zero. Then there is a continuos
icl el
seminorm p on [ X; with Ker(p) C U. The continuity yields a finite subset £ C I, C' > 0
el

and p; € CS(X;) for each i € F, such that

p((x;)ier) < Csup{pi(z;) : ¢ € E} for all (x;);er € HXi‘ (4.220)

i€l

Therefore, we obtain [] Ker(p;) x [] X; C Ker(p) C U, which implies that U is a

i€E i€I\E
(H 7;SK>—neighbourhood of zero.
iel
Vice versa, a (H 7;SK) -neighbourhood of zero U yields a finite set £ C I and p; € CS(Xj;)
iel
foreach i € I with [] Ker(p;)x [[ X; CU. Then, p((x;)icr) = sup{p:(z;) : i € E'} defines
S i€I\E
a continuous seminorm on [[ X; with Ker(p) C U.
i€l

(b) Let U C Y be a (T |y)% -neighbourhood of zero. Hence, there is a p € CS(X) with
Ker(ply) C U. Since Y N Ker(p) = Ker(p|y), this is equivalent to U being a (75K)|y-
neighbourhood of zero.
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(c) Let U C X/ be a (TX/Y)SK—neighbourhood of zero, hence there is p € CS(X) defining
p € CS(X}y) by p([z]) = inf{p(x + y) : y € Y} such that Ker(p) C U. For the quotient
map 7 : X — X/y, we obtain Ker(p) C 7= 1(U) such that 7=1(U) is a T ¥-neighbourhood
of zero and U is a (T 5K) X ,-neighbourhood of zero.

(d) Let U € X be a T-neighbourhood of zero. Then, there are an € > 0 and a p € CS(X)
with B,(0,e) = {z € X : p(x) < ¢} C U. Therefore, Ker(p) C U follows, such that U is a
T 3K neighbourhood of zero. O

4.1.5 Remarks/Examples

(1) (SK-Theory for Normed Spaces)
If X has a norm || - || € CS(X), then {0} is a 7 5K-neighbourhood of zero, since
Ker(|| - [|) € {0}. Therefore, 75K is the discrete topology on X. On the other hand,
if 75K is the discrete topology on X, then there is a p € CS(X) with Ker(p) C {0},
such that p is indeed a norm on X.
If Y has anorm |[|-|| € CS(Y), then every & € L(X,Y) is already an SK-homomorphism
because,

{0} =Ker || - || nIm(P) C d(Ker(p)) for every p € CS(X). (4.221)

(2) (Topological homomorphism that is no SK-homomorphism)
Consider the linear function

O C®([~1,1]) = RY ®(f) = (f™(0))nens- (4.222)

By a classical Theorem of E. Borel**, ® is a surjective map. Since ® is a map between

Fréchet spaces it is also a topological homomorphism by the open mapping theorem.
Since [—1, 1] is compact, there is a continuous norm on C'*([—1, 1]), given by

If1l := sup{|f(2)] : v € [-1,1]}. (4.223)
Assume ® is an SK-homomorphism, then there is a ¢ € CS(RY0) satisfying
Ker(q) € ®(Ker || - [|)) = {0}. (4.224)

Hence, ¢ would be a continuous norm. But there is no norm on RMo:
A fundamentalsystem of seminorms on RY is given by (py)ren, defined by

Pr((Zn)new,) = sup{|z;| : ¢ =0, ..., k}. (4.225)

So the continuity of ¢ yields a C > 0 and a k € Ny with ¢ < C pp on RY. But for
n>k+1and (e,); = 0, (i € Ny), we obtain a contradiction,

q(en) > 0= C pr(ey). (4.226)

34For instance, see [MV97, Proposition 26.29.]
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More generally, we have seen, a surjective map ® € L(X,Y) can not be an SK-
homomorphism, if the domain has a norm but the range does not. Further, the quo-
tient space of C*°([—1,1]) by its closed subspace Ker(®) is an example, where the
SK-topology of the quotient topology is strictly coarser than the quotient topology of
the SK-topology.

4.1.6 Lemma (Characterization of SK-Homomorphism)

Let f : X — Y be a linear and continuous map between locally convex spaces (X, Tx) and
(Y, Ty). The following assertions are equivalent:

(a) f is an SK-homomorphism.

(b) f:X — Im(f) is an SK-homomorphism.

(c) For all p € CS(X) there is ¢ € CS(Y) with f~!(Ker(q)) C Ker(p) + Ker(f).
Proof.

(a)=(b): Let p € CS(X), then there is ¢ € CS(Y") with Ker(¢) N (Im(f)) C f(Ker(p). But then
qlm(r) € CS(Im(f)) satisfies Ker(q|m(py) NIm(f) = Ker(¢q) NIm(f) C f(Ker(p)).

(b)=(c) Let p € CS(X), then there is a g|im(y) € CS(Im(f)) induced by ¢ € CS(Y") satisfying
Ker(q) N Im(f) = Ker(glmp)) NIm(f) C f(Ker(p)). For z € f~'(Ker(q)) we know
f(x) € Ker(q)NIm(f) C f(Ker(p)), such that there is a & € Ker(p) with f(z) = f(Z).
Hence, x = 7 + (z — &) € Ker(p) + Ker(f).

(c)=(a) Let p € CS(X), then there is a ¢ € CS(X) with f~!(Ker(q)) C Ker(p) + Ker(f).
Applying f yields already Ker(q) NIm(f) C f(Ker(p)).

]

4.1.7 Lemma (Composition of SK-Homomorphisms)

Let f: X — Y and g : Y — Z be linear and continuous maps between locally convex
spaces. If f and g are SK-homomorphisms and Ker(¢g) C Im(f), then g o f is an SK-
homomorphism.

Proof.
It follows by Ker(g) C Im(f) that

g(V)Nng(Im(f)) € g(VNIm(f)) for VCY. (4.227)

(For v € V and o € X with z = g(v) = g(f(x)) it follows, that v — f(z) € Ker(g) C Im(f).
So, there is a € X with f(a) = v— f(x) such that v = f(a+2z) € Im(f)NV and g(v) = z.)
Now start with p € CS(X), then the SK-property of f yields an r € CS(Y") satisfying

Ker(r) NIm(f) C f(Ker(p)). (4.228)
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By the SK-property of g, there is ¢ € CS(Z) with

Ker(q) NIm(g) C g(Ker(r)). (4.229)
Further, since Im(g o f) = g(Im(f)) C Im(g), we obtain
Ker(q) N Im(g o f) € g(Ker(r)) ng(Im(f))  © g(Ker(r) NIm(f)) € go f(Ker(p)).
(4.230)
]

4.1.8 Lemma (SK-Homomorphism Criterion)

Consider the following commutative diagram of linear and continuous maps between locally
convex spaces:

x-1.z7. (4.231)

| A

Y

If f is an SK-homomorphism and h is surjective, then g is an SK-homomorphism.

In particular, if Y is a closed subspace of X, and f : X — Z is a linear and continuous
SK-homomorphism that is constant on equivalence classes of X/y, then the induced linear
and continuous map f : Xfy — Z is an SK-homomorphism.

Proof. Let be p € CS(Y'), then there is r € CS(X) with
h(Ker(r)) € Ker(p) (4.232)
since h is SK-continuous. Because f is an SK-homomorphism, there is ¢ € CS(Z) satisfying
Ker(q) NTm(f) € f(Ker(r)). (4.233)
The surjectivity of h and f = g o h implies Im(f) = Im(g) and we obtain
Ker(q) N 1m(g) € g(h(Ker(r))) € g(Ker(p)), (4.234)

such that g is an SK-homomorphism. Finally, the special case follows immediately for g
being the surjective quotient map from X to X/y. O

Next, we want to characterize the closed subspaces Y of a locally convex space (X, T),

SK
such that (TX/Y> = (T5K) Xy holds. We call such a subspace an SK-subspace.
For p € CS(X) we set

T, ={U C X :VxeU3de>0such that B,(x,e) CU}. (4.235)
7, is a topology on X induced by the system of p-balls and for a subset S C X, we denote
by S” the closure of S with respect to the topology 7. For instance {0} " = Ker(p).
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4.1.9 Lemma (Characterization SK-Subspaces)

Let Y be a closed subspace of a locally convex space (X,7). Then the following are
equivalent:

() (Txy) = (T x,

(b) For every p € CS(X) there is a ¢ € CS(X) with Y ! C Ker(p) + Y.

(¢) The quotient map 7 : X — X/y is an SK-homomorphism.
Proof. Every p € CS(X) induces a p € CS(X/y) by setting p([z]) = inf{p(x +y) :y € Y}.

Then:

() 7 (Ker(p)) C Ker(p) + Y.

(Let x € X \ 'Y with p(n(z)) = 0 and suppose = ¢ Ker(p). Since p is T,-continuous, its

p

kernel is 7,-closed (Ker(p) = Ker(p) *). Hence there is an ¢ > 0 with B,(z, e) NKer(p) = 0.
But since p(w(z)) = 0, there is a y € Y with p(z — y) < € and we obtain a contradiction.)

(a)=(b)

Let p € CS(X). Since p € CS(Xfy), we get for Ker(p) € (T)g?/y an U € (TSK)X/Y
with U C Ker(p) by (a). Then, 771 (U) € 75X by definition of the quotient topology,
such that there is a ¢y € CS(X) with Ker(gy) C 7 *(U). If we set ¢ = ¢y o 7, then
g € CS(X) and Y € Ker(q). Since, Ker(q) * = Ker(q), we obtain

Y ? C Ker(q) = Ker(gy o ) = 7 (Ker(qp)) (4.236)
(é) Ker(qo) +Y C 7 H(U) C 7 *(Ker(p)) (4.237)
(é) Ker(p) + Y. (4.238)

Let p € CS(X). By (2), there is a ¢ € CS(X) with Y? C Ker(p) + Y. Then,
Ker(g) C (Y ?). (Otherwise there is a z € X with §(w(z)) = 0 and z ¢ Y . The
last condition yields an € > 0 with B,(z,e) N F = (. But this is a contradiction to
g(m(x)) = 0, because thereis ay € Y with p(z+y) < e.) This yields the SK-condition,

Ker(§) € (Y ) C n(Ker(p)). (4.239)

By 4.1.4 (c¢), we have only to show (TSK)X/Y C (TX/Y)SK. Let U be a (TSK)X/Y-

neighbourhood of zero. Then, 7= *(U) is a T >¥-neighbourhood of zero, such that
there is a p € CS(X) with Ker(p) C 7~ (U). By (3), there is a ¢ € CS(X/y) with
Ker(q) C n(Ker(p)) C U. Hence, U is a (TX/Y)SK—neighbourhood of zero.

[

We will verify that the closed subspace Q% (M, F) = T'(M,A*(T*MULTF)) of Q*(M) is
an SK-subspace. The sections in the k-annihilator vector bundle were used to give an
isomorphic construction of the foliated differential k-forms. See 4.1.10 and 3.2.3 for details.
At first, we deal with the local situation:
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4.1.10 Lemma (k-Annihilator Criterion)

Let F = {L,}acs be a p-foliation of an n-manifold M and let (X1,..., X,) be a frame of
TM over some open set U C M such that (X,_p41, ..., X,,) is a frame of T'F over U.
For any compact L C U and pr o € CS(QF(M)), defined by

pro(w) = sup{|ws(Xn—p1(2), ..., Xpn(x))| : © € L}, (4.240)

we have the following inclusion:

PL,o
)

{w e QM) : supp(w) C Int(L)} N Q¥ (M, F C QF (M, F), (4.241)

)pL

where Q% (M, F ® denotes the closure of QF (M, F) in Q"(M) wrt T,,,.

Proof. For any w € Q%(M), the local representation on U is given by

W|U = Z Ciy .. iy, (W)dX” VANPRRVAN dXz
1< <...<ip<n
where ¢;, ; (w) € C*(U) is defined by ¢;, ;, (w)(x) = we (X, (2), ..., Xi, (7).
If w € Q% (M, F), we have i%w = 0 for each inclusion i, : £, — M. So the local represen-
tation becomes

(4.242)

k?

n—p
wly = dX; N0, (4.243)
j=1
Wlth Qj = Z Cjiz-..ik (Cd)de VANPAN dsz € Qk_l(U)

J<ig<...<ip<n
On the other hand, if V' C U is open and w € QF(M) with supp(w) C V has a local
representation on V' of the form (4.243), it is also an element of Q% (M, F).

Now let L C U be compact and w € Q% (M, F) "0 Wwith supp(w) C Int(L).

So there is a sequence (w,)ren € Qi(M, F)N such that pro(w, —w) — 0 for r — oo,

ie. ¢, i (wr) = ¢y i (w) uniformly on L for all ordered indices 1 < iy < ... < i < n.

But since w, € Qi(M, F), we obtain ¢;, ; (w) = lim ¢;, ; (w,) = 0 for all iy > n —p by
r—00

(4.243). Thus,

Olniny = Y, Cipiy (@)AXiy A= AdXGy (4.244)

1< << <n

n—p

J=1 j<ig<--<ip<n

n—p

J<ig<--<ip<n

]
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4.1.11 Proposition (k-Annihilator is an SK-Subspace)

Let F = {L4}aecw be a p-foliation of an n-manifold M. Then Q% (M, F) is an SK-subspace
of QF(M) for any k € Nj.

Proof. For p € CS(QF(M)) there is some finite set I such that for every i € I there are

(1) a frame {X}}7_, of TM over some open U; € M, such that {X}}7_ ., is a frame of
TF over U,

(2) a compact subset K; C U; and an order of differentiation ¢; € Ny,

such that p = max{pg,,, : i € I'}. Recall, that pg,,, is defined for w € Q¥(M) by its local

representation w|y, = > ¢ (W)dX] A ANdX] with smooth coefficients on U,
' 1<ii <. <ig<n

T G

i (W) (@) = wa (X[ (), ..., X] (2)), such that

Pt (w) = sup{sup{|D*(c} ., w))(@)|: € K;, |a| <4} 1<y <+ <ip <n}.
(4.247)

Let L; C U; be compact with K; C Int(L;) for each i € I. Hence, ¢ = max{pp,o:i € I}
defines a continuous seminorm on Q*(M). The finite union K = |J K; is compact and
i€l
there is a finite partition of unity {¢; }:c; such that supp(p;) C Int(L;) and > ¢; = 1 on K.
i€l
We will show QF (M, F) " C Qk (M, F) + Ker(p): So let w € QF (M, F) ", i.c. w € QF(M)
and there is a sequence (w;),eny € Q% (M, F)N with ¢(w, —w) — 0 for r — oo. This means,
o (wp) = ¢

110k 110k

(w) uniformly on L; for each i € I. Because of > ¢; = 1 on K, we
il

obtain <1 > goi) w € Ker(p). By the decomposition

el

w= Z Yiw + (1 — Z %’) w, (4.248)

iel iel

it remains to show > pw € Qi(M , F). Since each ¢; is bounded and pr, o < g, it follows
il

that pr, o(@iwr —iw) — 0, ie. piw € Qf (M, F) % Moreover, supp(p;w) C Int(L;) such

that Lemma 4.1.10 yields p;w € QF (M, F) for each i € I, hence Y pw € Q¥ (M, F).

iel
Now, we have proven (b) of Lemma 4.1.9 and Qf (M, F) is an SK subspace. O

4.1.12 Remark (Alternative Foliated Cartan-Differential)

Originally, we were interested in the question if the foliated Cartan-differential is an SK-
homomorphism. If we use the definition Qf,(M, F) = Q“M)/k (v, F) of foliated forms as
quotient spaces and denote the quotient map by ¢* : (M) — QF (M, F), then since

¢ od: QF (M) — QEH (M, F) (4.249)
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is constantly zero on Qﬁ(M ,F) by i} od=doi}_, there is a linear continuous map
dr : Qg (M, F) = Q' (M, F) (4.250)

satisfying dr o q¢* = ¢"!' o d. Moreover, using the isomorphisms of Fréchet spaces
OF : QF (M, F) — QF(M,F), which exist by Lemma 3.2.4, dr = ®**! o dr o (®¥)!
holds. Since isomorphisms of Fréchet spaces are in particular sk-homomorphisms, we ob-
tain by Lemma 4.1.7 that dr is an SK-homomorphism if and only if dr is one.

By Lemma 4.1.8, dr is an SK-homomorphism if ¢**! o d is one. We already know that
q* is an SK-homomorphism for each & € Ny by the previous proposition. However, even
if d is an SK-homomorphism, Lemma 4.1.7 requires Q™ (M, F) = Ker(¢*™) C Im(d) to
conclude that the composition ¢**! o d is also an SK-homomorphism. Even if the inclusion
is not satisfied in general, we will investigate whether the (unfoliated) Cartan-differential
is an SK-homomorphism.

4.1.13 Remark (SK-Condition for Cartan-Differential)

Denote the set of open and relatively compact subsets of a manifold M by T..(M). An
open and relatively compact exhaustion of M is a sequence of sets M; € Ty.(M) such that
M; C Mjyy and M = |J M,. Every (relatively) compact set A C M is contained in some
jEN
— _ n
M, since A C |J M; yields an n € N with A C |J M; = M,. The kernel of a seminorm
jEN j=1
on spaces of C'°-sections consists of sections vanishing on some compact set A C M.
So, an equivalent system of zero neighbourhoods for the SK-topology is given by sections
that vanish on some open relatively compact set and the SK-homomorphism condition for

d: QF(M) — QF1(M) becomes
VU E Toe(M) 3V € Too(M) Vw € QF(M)
doly =0= 3 v € QM) : dw = dv and v|y = 0. (4.251)

4.1.14 Lemma (Characterization Cartan-Differential SK-Homomorphism)

Let M be a manifold with an open and relatively compact exhaustion (M;);en and k& > 0.
Then the following are equivalent:

(a) d: QF(M) — Q¥ 1(M) is an SK-homomorphism.
(b) VU € Toe(M) 3V € Teo( M) (U S V): 00 (25(V) C 0§l (2(M)).
(c) VneN Im=n: o (Q(Mn)) C oy ((M)).

Proof. (a) = (b): Let U € Ti(M), then there is W € Ti.(M) according to (4.251). Choose
V€ Tie(M) such that W C V and let x € C*(M) be a bump function with x| = 1
and supp(y) C V. For w € QF(V) define @ = yw € QF(M) such that do|w = dw|w = 0.
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By (4.251) there is v € QF(M) such that v|y = 0 and dv = dw. Set n = © — v, then
o) = @lo — vy = wly = o (w) and dn = do — dv = 0.
(b) = (c): Let n € N. For U = M, € T(M) there is V € T,(M) such that
oH(QE(V)) C 0%, (QF(M)). Now there is m > n with V. C M,, and by " = o} o o/,
it follows o7, (ngl(Mm)) € oy (ngl(v)) € on (ngl(M))
(c) = (a): Let U € T;o(M), then there is n € N such that U C M,,. For this n it exists
m > n such that V = M,, contains U and satisfies o7/ o of, (5 (V) C oY o o (5 (M)).
If dw|y = 0 for some w € QF(M), then wly € QF(V) and it exists n € QF(M) satisfying
wly = n|y. Setting v = w —n € QF(M) gives v|y = wly —nly = 0 and dv = dw — dn = dw
since 7 is closed.

]

The last condition (c), is a so called strictness condition of a projective spectrum induced
by an open and relatively compact exhaustion of the manifold. We will have a closer look
at the theory of projective spectra and the strictness condition to finally conclude that the
Cartan-differential is indeed an SK-homomorphism.

4.2 Projective Limit

The introduction of projective spectra and projective limits is based on [Wen03, Chapter
3]. As we have seen before, we are interested in a so called strictness condition which can
be defined for projective spectra and can be interpreted as a relaxation of the surjectivity
of the linking maps.

4.2.1 Definition (Projective Spectrum)

A projective spectrum 2 = (X, 0",) is a sequence (X,,)nen of linear spaces (over the
same scalar field) together with linear maps o7, : X,,, — X, for n < m such that o' = idy,
and oF o g = o for k <n <m.

A morphism f = (fp)nen : 2~ — ¥ between two projective spectra 2" = (X, o) and
% = (Y,,on) is a sequence of linear maps f, : X,, — Y,, such that f, o o', = o7, o f,, for

n < m, i.e. the diagram

Xn L Yn
Q%T TU%
Xm fT' Ym
commutes.
The composition of two morphisms f : (X, 0") = (Y,,0") and g : (Y, 0") — (Z,,7") is

defined by composing the components g o f = (g, © fy)nen-
We call # = (Y,,,0],) a subsequence of a projective spectrum 2" = (X,,,o7) if there

is a strictly increasing sequence (k(n))nen of natural numbers such that Y, = Xj,) and
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Qk(m A projective spectrum 2" = (X, of},) is called strict, if it satisfies
VneNdIm>nVIi>m: o (Xn) Cop(Xy). (4.252)

Notice that o} (X,) = o' (07" (Xe)) C o (X) is always satisfied for £ > m > n.
A short sequence of projective spectra

P AN Ny | (4.253)

is exact if it consists of short exact sequences of linear spaces such that the following
diagram is commutative for every m > n:

4.2.2 Lemma (Strictness-Invariance under Subsequences)

Let 2" = (X,, o) be a projective spectrum. Then the following are equivalent:
(a) 2 is strict;

(b) Every subsequence of 2 is strict;

(c¢) There is a strict subsequence of 2.

Proof.

(a) = (b) Let (k(n)),en be a strictly increasing sequence of natural numbers and let n € N.
The strictness of 2™ provides for k(n) € N an M € N such that glfv([n)(XM) C le(n)(Xg)
for every ¢ > M holds. Since the sequence is strictly increasing there is m > n such that
k(m) > M and for every £ > m it follows:

Oty (X)) = 034" (@) X)) € 03" (Xar) € 03] (Xnao)) - (4.254)

(b) = (c) is trivially true.

(c) = (a) Let (k(n))nen be a strictly increasing sequence of natural numbers such that the
corresponding subsequence of 2" is strict and let n € N. There is N € N with £(N) > n
and the strictness provides an M > N such that for m = k(M) > k(N) and every L > M:

Oy (Xm) = ieny © 0™ (Xm) C ey © Qk(L (X)) = orny (Xew) - (4.255)

Given ¢ > m there is some L > M with k(L) > ¢. Hence we obtain
O (Xom) € 0y (X)) = 0 (ki) (Xnn))) S 0f (Xo)- (4.256)
H
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4.2.3 Definition (Projective Limit)

For a projective spectrum 2~ = (X, ¢") we define its projective limit by

Proj 2" = li;n X, = {(wn)neN c H X, o0 () = x, for all m > n} . (4.257)

neN

We denote by ¢" : Proj 2~ — X, the projection onto the nth-component. For a morphism
f=(fa)nen : £ — % between two projective spectra, we set

Proj f : Proj 2" — Proj %', (xn)nen — (fu(2n))nen- (4.258)

4.2.4 Remark (Proj-functor)

The linking property of the restrictions implies that Proj 2 is the kernel of the linear map

U = \I/gf : H Xn — H Xna (xn)nEN = (xn - QZ+1($n+1>)n€N :

neN neN

Furthermore, Proj f is a well-defined linear map since f is a morphism of projective spectra
and for another morphism g = (g,)nen : % — 2 the composition Proj g o Proj f equals
Proj(g o f). In addition, Projids = idpysj 2 such that Proj is a covariant functor acting

on the category of projective spectra with values in the category of linear spaces.
If = (Xk(n), ngn))) is a subsequence of 2", there is a morphism f = (f,)nen : % — 2

m

defined by f,, = Ok(n) Xp(n) — Xy such that the induced map Proj f : Proj %" — Proj 2,

(Th(n) Jnen — (QZ(n) (xk(n))> is bijective where its inverse is given by ¢ : Proj 2~ —
neN
Proj %', (xn)nen — (Zk(n))nen. We can use this in the following:

4.2.5 Lemma (Mittag-Leffler Lemma of Algebra)
Let 2" = (X, o) be a projective spectrum. Then 2 is strict if and only if
VneN dm>n: o (X,) C 0" (Proj Z). (4.259)

Proof. Let n € N. Assume that (4.259) holds, then there is some m > n such
that o (X,,) € 0" (Proj Z"). So for every z, € X, there is y € ProjZ with
P (Tm) = yn = 0} (ye) for every ¢ > n since y € Proj Z". Hence 2 is strict.

(1) At first, we show that the condition (4.259) is satisfied if it holds for some sub-
sequence of 2. So let (k(n)),en be a strictly increasing sequence of natural numbers and

Y = (Xk(n),gl,zg"m))) such that:

VNeNdIMeN: QZEAN/[)) (Xwn)) C M) (Proj %) . (4.260)
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Let n € N. For N € N with k(N) > n there is M € N such that for m = k(M) > k(N):

0 (Xm) = i) (A (X)) € diw) (" (Proj#)). (4.261)
As mentioned before, there is a bijection Projf : Proj% — Proj 2, defined by
(Th(n))nen = (QZ(H)(xk(n))> . Moreover, o™ (Proj#%) = "™ (Proj f(Proj%)) =
neN
0" (Proj &) for each n € N such that (4.259) follows.

Now let 2 be strict. By passing to a subsequence, we can assume the strictness
condition in the following way:

VneN, £>n+1: on (Xpg1) C oy (Xo). (4.262)

Let n € N and put m =n+ 1. For z,, € X,,, and j € {1,...,n} define y; = ¢/, (z.,).

According to (4.262), we can construct inductively (z;);>n42 € [ X; such that
j2n+2

Q§+1(xj+1) = Q§+2(Ij+2) holds for every j > n. Sgtting y; = gjﬂ(xjﬂ) for j >n+1
defines an element y = (y;)jen € Proj 2" since g, ,(y;11) = y; for each j € N and it
satisfies 0"(y) = o' (). O

4.2.6 Lemma (Strictness of the Image of a Strict Projective Spectrum)

Let 2 L % — 0 be an exact sequence of projective spectra. If 2 is strict, then % is
also strict.

Proof. The strictness of 2 = (X,,, of,) implies for n € N
(1) dm>nVk>m: o (Xm) C op(Xk).

For y € Y,, there is z € X,, with y = f,,(x) because of the exactness. Consider the
following commutative diagram with exact rows for k > m:

X, In

om T
fm

Xy —Y,,—0

o
/i

Xy —> Y, ——=0.

1

So oy (y) = o (fm(2)) = fulen(2)) € ful(n(Xm)) ¢ Fa(0i(Xy)) = g (fu(Xr)) = UZ(Y%
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4.2.7 Lemma (Strictness-Criterion for the Middle)

Let 2 5 & % % 5 0 be an exact sequence of projective spectra. If 2" and 2 are strict,
then % is also strict.

Proof. We have to show the strictness condition for % = (Y,,, 07 ). So let n € N.
2 = (X, 0}') being strict implies

(1) Il>nVk>0: o(Xy) C op(Xy)
and for this ¢ the strictness of 2 = (Z,, 1) provides
(2) Im >0 NVk>m: 75 (Z,) C1(Z).

It suffices to show for &k > m and y € Y,, that ¢ (y) € o7 (Y%). Consider the following
commutative diagram with exact rows:

X, Iy g 0
o o 7
X, fe Y, ge 7 0
g m O—fVL T’V{L
f m am
o of" i
X, Sk Y, Ik 7 0

Then g¢(o7,(y)) = 73,(9m(y))

S
such that ge(o7, (y )) = T (9x(9))
So there is x € X, satisfying o

00—k & (2) = H(9u00) yields § € i
= (7). Therefore o’ (y) — or.(7) € Ker(ge) = Im(f).
fn(y) (fﬁ(@?) = fi(x). o
Hence o7,(y) — 03(y) = o} ( o1, (y) — o7 (9)) = [ul0}(z)) € fulof(Xe)) C
fn(0f(Xy)) and it exists ¥ € Xy with o (y) — 0£(~) ( 01 (Z)) = o (fx(7)). Finally
om(y) =op @+ fi(Z)) €0 ( k) O

I
eS:
—
=
/\

|| =
S~—

4.2.8 Lemma (Linking Maps With Finite Dimensional Images)

Let 2" = (X, 0f,) be a projective spectrum with finite dimensional images ¢!, (X,,) for all
m > n. Then % is strict.

Proof. Let n € N. Define z, = dim(o}(X%)) for k en (Zg)g>n is @ monotone de-
creasing sequence of natural numbers since o} (Xy) W Xk)) C ol (Xp) for k> m.
Hence there is m > n such that z; = z,, for all k Le. ol (Xm) = o (Xk) because

their dimensions agree. ]

> n th
= om0}
>m, i
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Recall that a good cover (U, )ac; of a smooth manifold M of dimension n is a collection
of open sets U, such that all sets and all finite non-empty intersections U,, N ... N U,, of
the cover are diffeomorphic to R"™. As mentioned in Remark 3.4.13, every smooth manifold
has a good cover and if the manifold is compact, the good cover may be chosen to be finite.
Moreover, if a smooth manifold has a finite good cover, then its de Rham cohomology is
finite dimensional by Corollary 3.5.15.

4.2.9 Lemma (Restrictions in Cohomology Got Finite Dimensional Image)

Let M be a smooth manifold and N C M be open and relatively compact. Then the
restriction o : H*(M) — H*(N) has finite dimensional image for each k € Nj.

Proof. Let (Uy)aer be a good cover of M. Since N is compact in M, there is a finite subset
E C I such that N C |J U,. Define V.= J U,. Then V is a submanifold of M with

ack aclE
a finite good cover, namely (U,)acr and consequently its de Rahm cohomologies H*(V)
are finite dimensional. Now ¢ : H*(M) — H¥(N) factorizes through the finite dimensional
space H*(V') such that ¢ has finite dimensional image. O

For k € Ny and a smooth manifold M, we denote the closed and exact k-forms by

QF (M) = Ker(d : QF(M) — QF1(M)) and (4.263)
QF (M) =TIm(d : Q"1 (M) — QF(M)). (4.264)

4.2.10 Examples (Strict Projective Spectra)

Let M be a smooth manifold and (M,,),en be an open and relatively compact exhaustion of

M, i.e. M,, C M open and realtively compact, M,, C M, ; foreachn € Nand M = |J M,,.
neN
Then the following projective spectra are strict for each k € Npy:

(1) (M), 0l);  (2) (QF (M), 0h);  (3) (HM(M,),0h);  (4) (Q8(M.,), o),

where o' denotes the restriction between the corresponding spaces, induced by the pullback
of the inclusion ¢" : M,, — M, for m > n.

Proof. (1) Let n € N, £ > n+1 and w € Q¥(M,, ;). For a bump function ¢ € C*(M)
with supp(¢) € M,,11 and |y, = 1 define n = (o w)]|p,. Then, n € Q(M,) and ¢, | (w) =
el = (99) , = 0F(0)

(2) The exterior derivatives d,, : Q*"Y(M,,) — QF (M,,) give rise to a morphism d = (d,)nen
of projective spectra such that (=1 (M,))nen = (8 (My))nen — 0 is exact. Now (1)
implies (2) by Lemma 4.2.6.

(3) The restriction ¢" : H*(M,,) — H*(M,) has finite dimensional image for each m > n
by Lemma 4.2.9. Hence the assertion follows by Lemma 4.2.8.

(4) For each n € N, the sequence 0 — QF (M,) — QF(M,) — H*(M,) — 0 with the
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inclusion and quotientmap is exact, such that there is an exact sequence of projective
spectra:

0— (ngx(Mn))TLEN — (Q]gl(Mn))neN — (Hk(MTL))neN — 0.

Thus, (QF(M,))nen is strict because of (2), (3) and Lemma 4.2.7.

cl

4.2.11 Theorem (Exterior Derivative is an Sk-Homomorphism)
Let M be a manifold and k € Ng. Then d : Q¥(M) — QF1(M) is an SK-homomorphism.

Proof. Let (M,),en be an open and relatively compact exhaustion of M. By example 4.2.10
and Lemma 4.2.5 we obtain:

VneN Im>n: g”m(Qfl(Mm)) Co" (Proj(Q](fl(Mn), Q"m)) )

The map ¢ : QY(M) — Proj(Q~(M,), o), w = (0% (w))nen is a bijection. Injectivity
follows by locality, i.e. if a form coincides on open sets, it coincides on their union and
surjectivity follows by glueing, using a partition of unity subordinate to (M,),en. Since
0" o ¢ = o}, we conclude

VneN3Im>n: o (QL(My,)) C oy (W(M)). (4.265)
Finally, d is an SK-homomorphism by Lemma 4.1.14. [

4.2.12 Corollary (Foliated Cartan-Differential SK-Homomorphism Criterion)

Let (M,F) be a smooth foliated manifold and k € No. If Q¥ (M, F) C d(Q"(M)) is
satisfied, then dr : QF(M, F) — QF (M, F) is an SK-homomorphism.

Proof. This follows by Remark 4.1.12 and the previous theorem. ]
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4.2.13 Remark (Cech Cohomology of Leafwise Constant Functions)

Asin 4.1.14, the foliated Cartan differential will be also an SK-homomorphism if the kernel
spectrum is strict. In the unfoliated case, we used the strictness of the projective spectrum
of the de Rham cohomology. Therefore, we showed that the linking/restriction maps got
finite dimensional images, which was basically a consequence of the fact, that the de Rham
cohomology is finite dimensional if there exists a finite good cover. The foliated de Rham
cohomology of a finite good cover is not finite dimensional in general and we need a repla-
cement. We would like to show:

If (M,F) is a smooth foliated manifold with finite dimensional foliated de Rham coho-
mology and P C N C M are relatively open and compact, then the restriction map
o: H*(N,F|n) — H*(P,F|p) has finite dimensional image.

If we consider the Kronecker foliation (Example 3.6.2) on the torus corresponding to an
irrational slope o which is not a Liouville number, then the foliated de Rham cohomology is
finite dimensional. But if we take a zylinder on T?, Z = {(¢'*, ") : a € (0,7), B € [0, 27]},
then it is an open and relatively compact subset of T?. A dense leaf on the torus is
cut into uncountable many lines by restricting to Z. (Z, F,|z) is foliated isomorphic to
(S! x R, Fg1(R)) such that we obtain by Theorem 3.4.14,

Cc(SY), ifk=0

4.266
0, else. ( )

Hk(Z,Fa’Z) = Hk<R) R 000(51) _ {

Hence, the restriction map ¢ : H*(T?, F,) — H*(Z, F,|7) can not be surjective for k = 0.
One wants also to know, what happens if we take a (finite) subset I C J and set V =
(Ua)aer- Then for each ¢ € Ny there is the projection map

= wOé() ..... g (4267)

7777 14

which satisfies o1 o §¢ = §% 0 p*. Hence it is a d-cochain map. The map

if ag,...,ap €1

OV, 9E) — CH UL, 95, T8 (1) = {“"0 """ o (4.268)

0, else .

is a right inverse of of, but it is not a d-cochain map: If exactly one index o is in J\ I and
QO ey Gy oy gy g € 1, then (60 THV))ag. o = (55“(%0 77777 Gsroaey, ) Which is in general not
0= (7106 (V))ay
to be surjective.

.....

77777 ars:- Therefore the induced map of ¢ in Cech-cohomology needs not
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