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     Abstract 
  Aim :    Climate change is expected to cause mountain species to shift their ranges to 
higher elevations. Due to the decreasing amounts of habitats with increasing eleva-
tion, such shifts are likely to increase their extinction risk. Heterogeneous mountain 
topography, however, may reduce this risk by providing microclimatic conditions that 
can buffer macroclimatic warming or provide nearby refugia. As aspect strongly in-
fluences the local microclimate, we here assess whether shifts from warm south-
exposed aspects to cool north-exposed aspects in response to climate change can 
compensate for an upward shift into cooler elevations.  
  Location :    Switzerland, Swiss Alps.  
  Methods :    We built ensemble distribution models using high-resolution climate data 
for two mountain-dwelling viviparous ectotherms, the Alpine salamander and the 
Common lizard, and projected them into various future scenarios to gain insights into 
distributional changes. We further compared elevation and aspect (northness) of cur-
rent and predicted future locations to analyse preferences and future shifts.  
  Results :    Future ranges were consistently decreasing for the lizard, but for the sala-
mander they were highly variable, depending on the climate scenario and threshold 
rule. Aspect preferences were elevation-dependent: warmer, south-exposed mi-
croclimates were clearly preferred at higher compared to lower elevations. In terms 
of presence and future locations, we observed both elevational upward shifts and 
northward shifts in aspect. Under future conditions, the shift to cooler north-ex-
posed aspects was particularly pronounced at already warmer lower elevations.  
  Main conclusions :    For our study species, shifts in aspect and elevation are comple-
mentary strategies to mitigate climatic warming in the complex mountain topogra-
phy. This complements the long-standing view of elevational upward shift being their 
only option to move into areas with suitable future climate. High-resolution climate 
data are critical in heterogeneous environments to identify microrefugia and thereby 
improving future impact assessments of climate change.   

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fddi.13146&domain=pdf&date_stamp=2020-08-26
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        1  |   INTRODUC TION 

 Recent anthropogenic climate change is globally affecting all 
biota (Parmesan,  2006 ; Root et al.,  2003 ; Walther et al.,  2002 ; 
Wiens,  2016 ). A common response of species to changes in environ-
mental conditions is a spatial shift of their distributions to track suit-
able climates (Chen, Hill, Ohlemüller, Roy, & Thomas,  2011 ; Lenoir, 
Gégout, Marquet, Ruffray, & Brisse,  2008 ; Parmesan & Yohe,  2003 ). 
Upslope distributional shifts have been observed in mountain areas 
across the globe, resulting in complex changes in high-elevation com-
munities (Freeman, Lee-Yaw, Sunday, & Hargreaves,  2018 ; Gottfried 
et al.,  2012 ; Menéndez, González-Megías, Jay-Robert, & Marquéz-
Ferrando,  2014 ; Pauli et al.,  2012 ; Steinbauer et al.,  2018 ). Under the 
assumption that surface area decreases monotonically as species 
move up mountain sides and elevation shifts are limited by moun-
tain summits, the resulting loss of area of occupancy is expected to 
threaten species with extinction (Freeman, Scholer, Ruiz-Gutierrez, 
& Fitzpatrick,  2018 ; La Sorte & Jetz,  2010 ; Wilson et al.,  2005 , but 
see Elsen & Tingley,  2015 ). 

 However, mountains exhibit a complex topography and factors 
like aspect affect the local temperature and water balance and lead 
to heterogeneous microclimates at small spatial scales, which often 
differ starkly from the regional climate (Austin & van Niel,  2011 ; 
Dobrowski,  2011 ; Scherrer & Körner,  2011 ; Winkler et al.,  2016 ). 
These microclimates can locally buffer against the effects of re-
gional warming, offer stepping stones for migration or provide suit-
able alternative habitats within short distances and hence weaken 
the impact of climate change and may even prevent an upslope shift 
(Kulonen et al.,  2017 ; Meineri & Hylander,  2017 ; Opedal, Armbruster, 
& Graae,  2015 ; Scherrer & Körner,  2011 ; Suggitt et al.,  2018 ). Thus, 
as an alternative scenario, mountain species may move to nearby 
locations with suitable microclimates (e.g., cool north-exposed lo-
cations) instead of migrating upward to avoid, for example rising 
temperatures. 

 In the Northern Hemisphere, south-exposed locations are asso-
ciated with higher maximum temperatures, shorter duration of snow 
cover, longer warm seasons and more evaporation than north-ex-
posed ones (Dobrowski,  2011 ). As the local preference of a certain 
aspect of a species can change with elevation (i.e. different regional 
climatic regimes), distributional shifts towards cooler north-ex-
posed locations might be more likely at lower elevations (warmer 
temperature regime), while at higher elevations (cooler tempera-
ture regime) warmer south-exposed locations might be preferred 
(Dobrowski,  2011 ). Despite the fact that fine-scale microclimatic 
features may influence the distribution of species, analyses of cli-
mate change effects often have a coarse spatial scale. For instance, 
the spatial resolution of input data of most species distribution mod-
els (SDM) (generally 1 km or 10 km for larger extents) is orders of 

magnitude larger than the size of animals under study (Potter, Arthur 
Woods, & Pincebourde,  2013 ). Understanding how climate change 
impacts species at a fine scale—the scale at which microclimatic vari-
ability may buffer against the effects of climate change—is a critical 
step to take for climate change biology, as data availability is still 
limiting high-resolution analyses (Kearney et al.,  2014 ; Lembrechts, 
Nijs, & Lenoir,  2019 ; Potter et al.,  2013 ; Suggitt et al.,  2018 ). 

 Here, we assessed the fine-scale impact of climate change on 
the distributions of two ectothermic vertebrate species. Using data 
from the Swiss Alps, we built SDM based on fine-scale environmen-
tal data and projected them into multiple future climate scenarios 
to examine whether the study species respond to climate change 
through upslope shifts or through shifts in aspect or both. Climate 
change can have particularly strong impacts on ectotherms, in which 
body temperature and physiology are heavily related to external 
temperature, especially if they are viviparous (Buckley, Hurlbert, 
& Jetz,  2012 ; Deutsch et al.,  2008 ; Dillon, Wang, & Huey,  2010 ; 
Hoffmann, Chown, & Clusella-Trullas,  2013 ; Sinervo et al.,  2010 ). 
We focused on the Alpine salamander ( Salamandra atra ) and the 
Common lizard ( Zootoca vivipara ). The former is endemic to the Alps 
while the latter has a wide geographic range; both often co-occur in 
syntopy in the study area. As both species are viviparous, they are 
independent of special requirements for reproduction, such as the 
fine-scale distribution of water bodies in case of the Alpine salaman-
der or specific egg deposition sites in the case of the Common lizard 
(Dely & Böhme,  1984 ; Guex & Grossenbacher,  2004 ). Such a depen-
dency of specific breeding sites might limit the ability of the species 
to respond to climate change. The Alpine salamander is considered 
to be vulnerable to climate warming due to its restricted distribution 
in a climate change sensitive area, its preference of cool humid hab-
itats and low dispersal ability (Rabitsch et al.,  2010 ; Schlumprecht 
et al.,  2010 ). Rising temperatures may also have negative impacts 
on populations of the Common lizard due to more restricted activ-
ity periods, declined juvenile dispersal or decreased adult survival 
(Bestion, Teyssier, Richard, Clobert, & Cote,  2015 ; Massot, Clobert, 
& Ferrière,  2008 ; Wang, Ma, Shao, & Ji,  2017 ).  

   2  |   METHODS 

   2.1 |  Species distribution data 

 Species presence data were obtained from info fauna—karch, the 
Swiss Amphibian and Reptile Conservation Programme (Schmidt & 
Zumbach,  2019 ). For the period 2000 to 2015, out of ca. 21,000 
sampled locations in the dataset, we obtained 2,051 presences of 
the Alpine salamander between 419 and 2,642 m a.s.l. (mean ele-
vation 1,347 m a.s.l.), and 4,561 presences of the Common lizard 

   K E Y W O R D S 

aspect ,    climate change ,    ectotherms ,    microrefugia ,    mountain topography ,     Salamandra atra  , 
   species distribution modelling ,    Switzerland ,    thresholds ,     Zootoca vivipara     
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between 372 and 2,849 m a.s.l. (mean 1,330 m a.s.l.) which we used 
for analyses (Figure  1 ).   

   2.2 |  Environmental data 

 We used fine-scale climate data for Switzerland with a spatial res-
olution of 100 m and a yearly temporal resolution. Climate maps 
were spatially interpolated from national "MeteoSchweiz" climate 
station data using Daymet (Thornton, Running, & White,  1997 ). It 
covered current conditions (1977–2006, hereafter "2000" period). 
In addition, two future periods (2041–2070, hereafter "2050" pe-
riod; 2071–2100, hereafter "2080" period) for three different cli-
mate models and two representative greenhouse gas concentration 
pathways (rcp 4.5 and 8.5) were calculated, resulting in 12 future 
scenarios (Appendix  S2 : Table  A1 ). Future projections were gen-
erated using model data from the EURO-CORDEX set of climate 
projections (Jacob et al.,  2014 ) and using the delta change method 
(Anandhi et al.,  2011 ). To this end, we downloaded EURO-11 data 
that is available at a ca. 12.5° spatial resolution, calculated anoma-
lies at this coarse resolution between the current period and the 
two future periods, downscaled the anomalies to a 100-m spatial 
resolution (cf. Guisan, Thuiller, & Zimmermann,  2017 ), and added 
the anomalies to the current period climate data. The three regional 
climate models (RCMs) from which we used EURO-11 model runs 
from CORDEX were as follows: CCLM (Rockel, Will, & Hense,  2008 ), 
Hirham (Christensen, Christensen, Machenhauer, & Botzet,  1998 ) 
and RACMO (van Meijgaard et al.,  2012 ). Of the yearly means of 
temperature and precipitation, we calculated 30-year averages 

and standard deviations (SD) for all periods, which are suggested 
as relevant predictors of distributions for amphibians and reptiles 
(Buckley & Jetz,  2007 ; Clusella-Trullas, Blackburn, & Chown,  2011 ). 
More proximal variables relevant for our study like solar radiation, 
soil temperature (also temperatures under the snow cover in the 
winter) were unfortunately not available in our analysis. However, 
air temperature is a proxy for these variables; for example, higher 
temperatures in southern expositions come along with more solar 
radiation in these locations and vice versa. In our study area future 
minimum, median and maximum values of average temperatures 
increased in all scenarios, with maximum average temperatures 
increasing between 2 and  5 °C. For average precipitation, the fu-
ture scenarios mostly showed lower maximum values and stable or 
slightly increasing minimum and median values. Temperature SD 
revealed spatial patterns of a lower-resolution grid for the future 
climate models. Therefore, we dropped this variable and used only 
average temperature, average precipitation and precipitation SD 
as variables (pairwise Pearson    r  < .8; Appendix  S2 : Table  A2 ). We 
additionally calculated MESS (multivariate environmental similar-
ity surface) maps for the future predictors to assess the extent of 
model extrapolation, which can be problematic (Elith, Kearney, & 
Phillips,  2010 ). For the analysis of elevation patterns and aspect, 
we used a 100-m resolution digital elevation model (Bundesamt für 
Landestopografie swisstopo,  2018 ). Aspect was calculated using 
ArcMap 10.2.1. As aspect is a circular variable and as we emphasize 
to contrast northern to southern exposition, we transformed it into 
“northness” (cos(aspect)), which is scaled from −1 (south-exposed) 
to 1 (north-exposed) (Guisan, Weiss, & Weiss,  1999 ; Lassueur, Joost, 
& Randin,  2006 ).  

  F I G U R E   1                    Presence locations and 
elevation density plots (presence vs. 
background locations) of the Alpine 
salamander ( Salamandra atra,   n  = 2,051) 
and the Common lizard ( Zootoca vivipara,  
 n  = 4,561) 
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   2.3 |  Species distribution modelling 

 We used an ensemble approach with three SDM algorithms to ac-
count for variation among modelling algorithms (Araújo & New,  2007 ; 
Watling et al.,  2015 ). We used boosted regression trees (BRT) (Elith, 
Leathwick, & Hastie,  2008 ), generalized additive models (GAM) 
(Guisan, Edwards, & Hastie,  2002 ) and Maxent (Phillips, Anderson, 
Dudík, Schapire, & Blair,  2017 ; Phillips, Anderson, & Schapire,  2006 ). 
The modelling was done in R 3.4.3 (R Core Team,  2017 ) using the 
packages “dismo” (v1.1-4, Hijmans, Phillips, Leathwick, & Elith,  2017 ), 
“gam” (v1.16, Hastie,  2018 ) and “maxnet” (v0.1.2, Phillips,  2017 ) (see 
Appendix  S2  for model specifications). 

 We ran each model ten times, which was enough to capture the 
environmental background variability (Appendix  S2 : Table  A3 ). In 
each run, we randomly used 75% of the presences for model training 
and the remaining 25% as test presences. To account for a possible 
sample selection bias, we choose the target-group background ap-
proach for the selection of pseudo-absence and (in Maxent) back-
ground points (Phillips et al.,  2009 ). That is, we randomly chose 
10,000 background points for model training and 2,500 as test 
points out of the ca. 21,000 sampled locations (which share the 
possible sample bias of presences) (Barbet-Massin, Jiguet, Albert, & 
Thuiller,  2012 ). In each replicate run, we then projected the models 
into the different future scenarios. Finally, for current and future pre-
dictions we calculated the mean of all replicates within and between 
algorithms to get our final ensemble suitability maps (from now on 
we refer to these ensemble maps when talking about suitability 
maps) (Marmion, Parviainen, Luoto, Heikkinen, & Thuiller,  2009 ). 
For model evaluation, we present test AUC (area under the receiver 
operating characteristic curve) as a threshold-independent accuracy 
metric. Although it is rather a measure of how restricted a distribu-
tion is than a measure of performance, AUC is useful to compare 
model outputs for the same species in the same study region (Lobo, 
Jiménez-Valverde, & Real,  2008 ; Merow, Smith, & Silander,  2013 ). 
We additionally calculated sensitivity, specificity and TSS (true skill 
statistic) (Allouche, Tsoar, & Kadmon,  2006 ) as a threshold-depen-
dent metric using the maximizing the sum of (test) sensitivity and 
specificity (maxSSS) threshold rule (Liu, Newell, & White,  2016 ; Liu, 
White, Newell, & Pearson,  2013 ).  

   2.4 |  Threshold selection 

 As our aim was to compare elevation and northness of current and 
future locations of the study species, we first had to define when a 
current location became unsuitable and where the closest and there-
fore most likely future destination was located. To do the former, we 
transformed suitability maps into binary presence–absence maps. 
This can be a critical step, as these transformed maps can heavily 
depend on the choice of threshold (Fielding & Bell,  1997 ; Merow 
et al.,  2013 ; Nenzén & Araújo,  2011 ). We thus used four threshold 
rules in our analysis to study whether the results were consistent 
between them. The threshold dependency issue is often neglected 

(but see Nenzén & Araújo,  2011 ; Steen, Sofaer, Skagen, Ray, & 
Noon,  2017 ); therefore, we present our approach here in detail. We 
used two “standard” threshold rules, which are applicable to the en-
tire study area, and a more biologically justified location-dependent 
approach in two implementations. As standard rules, we chose the 
average suitability at presence locations (“avg_suit”) ( S. atra : 0.407, 
 Z. vivipara : 0.467) and the maximizing the sum of test sensitivity and 
specificity (“maxSSS”) threshold rules, which both perform well even 
for presence-only data (Liu, Berry, Dawson, & Pearson,  2005 ; Liu 
et al.,  2013 ; Nenzén & Araújo,  2011 ; Steen et al.,  2017 ). To calculate 
the maxSSS threshold, as in model evaluation, we randomly chose 
25% of the presences and 2,500 pseudo-absences (background 
points) and extracted the suitability scores at these locations in 100 
replicates. The R package “presenceabsence” (v1.1.9, Freeman & 
Moisen,  2008 ) was employed to calculate the maxSSS threshold for 
each replicate; we chose the median value as our final threshold ( S. 
atra : 0.35,  Z. vivipara : 0.34). 

 In these approaches, one threshold value is applied to every grid 
cell of the study area to define whether the species is present or 
absent therein. These threshold rules inevitably lead to false-neg-
ative current predictions of actual presence locations with suitabil-
ity scores below this threshold value, which biases the downstream 
analyses (cf. distribution of current suitability at presence locations 
in Appendix  S1 : Figures  A2  and  A3 ). All studies using SDM to calcu-
late range changes in species have these caveats, and this approach 
is generally accepted as it is the only way to calculate binary pres-
ence–absence maps. To avoid these conceptual caveats, we propose 
an additional approach that focuses on a location-dependent loss of 
relative suitability. We defined a location as unsuitable if the future 
suitability was lower than a certain percentage of its current suit-
ability. Due to the probabilistic nature of predictions, this might be 
biologically more reasonable than calculating one universal thresh-
old value for all presence locations. If there are erroneous pres-
ences in the data set (e.g. misidentifications, migrating individuals 
in unsuitable locations), this approach might give them more weight. 
However, as our study species are very unique, have small home 
ranges and as we used a very large number of observations, errone-
ous presences are very unlikely to occur in our data. We considered 
two thresholds to define unsuitable conditions: a decrease of more 
than 20% (“0.8_suit”) and a more conservative decrease of more 
than 40% (“0.6_suit”) of the current suitability of each presence lo-
cation. As this approach calculates a different threshold value for 
every presence location (and only them), it cannot be used to calcu-
late binary presence–absence maps.  

   2.5 |  Data analysis 

 Our final analysis included the following steps and was done for each 
threshold and climate scenario, respectively. We first compared 
current and future suitability at each presence location to identify 
which locations were predicted to become unsuitable. For these lo-
cations, we looked for the nearest predicted suitable location, which 
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we assumed to be the most likely destination. This approach might 
include highly improbable situations where species have to cross 
inaccessible terrain or barriers (valleys or mountain tops) to reach 
that nearest suitable location. However, due to our large number of 
presences and the resulting distances, these cases are not likely to 
affect our main conclusions, which describe overall trends. We then 
extracted elevation and northness of the new location and calcu-
lated the horizontal distance to the original location. This 1st-Near-
est Neighbour analysis was done using the “knnLookup” function 
of the R package “searchtrees” (v0.5.2, Becker,  2012 ). For locations 
predicted to remain suitable, neither elevation nor aspect shift was 
recorded. 

 We used a Wilcoxon signed rank-test to examine the potential 
shift in the distributions of current and future elevation and north-
ness for the entire data set (paired data). For further analysis of 
northness patterns, we additionally divided the data set into lower 
and higher elevation locations to account for a possible relation-
ship between aspect preferences and elevation (Dobrowski,  2011 ). 
We ran a linear model on the current data to test for a dependency 
between northness and elevation. We then used an elevation of 
1,700 m to separate lower and higher elevations, which represents 
the transition zone of the montane and alpine zone of the central 
Alps (which is not constant throughout its north–south profile) 
(Veit,  2002 ). When comparing northness between high-elevation 
and low-elevation locations within climate models or between 
current and future periods, we used a Wilcoxon rank sum-test (un-
paired data). We additionally ran Anderson–Darling (AD) tests to 
compare the shapes of these distributions. We chose this test, as 
it is more sensitive towards differences at the tails of distributions, 
which are of special interest in comparing northness distributions 
compared to, for example the Kolmogorov–Smirnoff test (Engmann 
& Cousineau,  2011 ). To assess the impact of climate change on the 
geographical distributions of our study species, we ran some further 
analyses. We calculated Schoener ' s  D  (“dismo” package) (Rödder 
& Engler,  2011 ; Warren, Glor, & Turelli,  2008 ), a measure of niche 
overlap, to compare the similarity of current and future SDM pre-
dictions in geographical space. Finally, future range changes in the 
binary predictions ((occupied future grid cells/occupied current grid 
cells)–1) were calculated for the maxSSS and avg_suit threshold rules 
(the other threshold rules cannot be used to build binary maps)).   

   3  |   RESULTS 

   3.1 |  Distribution modelling and future changes 

 All SDM performed well for both species (test AUC > 0.77, Appendix 
 S2 : Table  A3 ). The modelled response curves corresponded to bio-
logical expectations (see Section  4 ) and were consistent across mod-
els (Appendix  S2 : Figures  A1–A7 ). While both average precipitation 
and average temperature contributed similarly to the salamander 
models, lizard models were mainly influenced by average tempera-
ture (Appendix  S2 : Figures  A1–A8 ). SDM predictions for all periods 

and scenarios are presented in Figures  A9–A14  (Appendix  S2 ). MESS 
maps revealed that only small areas were outside training conditions 
for most scenarios (Appendix  S2 : Figures  A15–A26 ). Suitability at the 
presence locations decreased for both study species in almost every 
future scenario (Table  1 ). When applying the thresholds, the propor-
tion of locations with unsuitable future conditions were strongly de-
pendent on the threshold rule. The 0.6_suit threshold was the most 
conservative, while the avg_suit rule leads to the highest number of 
unsuitable locations. Differences between thresholds were smaller 
and less variable for the lizard models. For locations that became un-
suitable under future conditions, in most cases suitable future loca-
tions were only a couple of kilometres away (Appendix  S1 : Tables  A1  
and  A2 ). For instance, the median third quartile of these distances 
over all future scenarios and thresholds was 1.4 km (± 1.0 km SD) 
for the Alpine salamander and 5.0 km (± 5.7 km SD) for the Common 
lizard. When using Schoener ' s  D  to assess the similarity between 
current and future predictions, we found strong heterogeneity, with 
some predictions showing high similarity, and others showing mod-
erate dissimilarity (Table  2 ). The conversion of the continuous maps 
into binary maps revealed different range change patterns among 
scenarios and study species, with partly large differences between 
thresholds (Table  2 ). For the Alpine salamander, in half of the sce-
narios the suitable area increased (by up to 194%), while it decreased 
in the other half (by up to 85%). In contrast, binary maps showed an 
overall decrease in suitable area for all scenarios (by 9% – 40%) for 
the lizard.    

   3.2 |  Shifts in elevation and aspect 

 We found significant future shifts in elevation (for the paired data) 
and changes in its distribution between current and future loca-
tions in almost every scenario for both study species (Appendix 
 S1 : Tables  A4  and  A5 ). The effect of these shifts on the overall el-
evation distribution heavily depended on the climate scenario, the 
period and especially the threshold rule (Figures  2  and  3 , Appendix 
 S3 : Figures  A2–A13 ). While for the most conservative scenarios and 
thresholds, there was no or only a slight upward shift at the lower 
range limit, in the extreme cases lower ranges shifted up to 750 m 
upwards for  S. atra , even up to 1,100 m for  Z. vivipara  (Appendix  S1 : 
Table  A3 ). We also observed a shift of northness under all the fu-
ture scenarios and thresholds for both species (Appendix  S1 : Tables 
 A4  and  A5 ). Overall, northness distributions differed also for all 
scenarios for both species, except a few scenarios for  S. atra . The 
elevation-dependent analysis of northness revealed some more de-
tailed patterns (Appendix  S3 : Figures  A2–A13 ). The linear regres-
sions between northness and elevation were highly significant for 
both species, but they explained almost no variance of the current 
data (adj.  r  2  around .03 for both species). When comparing the dis-
tributions of northness of locations at lower (< 1,700 m) and higher 
(> 1,700 m) elevations, they differed within almost every scenario 
and for every threshold (Appendix  S1 : Tables  A6–A7 ). At current 
lower elevation locations, salamanders showed no aspect preference, 
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while south-exposed locations were preferred at higher elevations 
(Figure  2 , Appendix  S3 : Figure  A1 ). The lizards preferred southern 
expositions at both elevations, though north-exposed locations were 
relatively more frequent at lower elevations (Figure  3 , Appendix  S3 : 
Figure  A1 ). When accounting for elevation in the analysis between 
periods, the differences at lower elevations caused the northness 
differences observed for lizards (Appendix  S1 : Table  A9 ). Under fu-
ture conditions at lower elevations, lizards were no longer associated 
with south-exposed locations, but northern expositions became as 
or even more frequent (cf. Figure  3 , Appendix  S3 : Figures  A8–A13 ). 
For the salamander models, these differences between elevations 
were less pronounced and more scenario and threshold dependent. 
For some scenarios, the northness distributions of future locations 
differed also from current locations at higher elevations, while for 
some scenarios no differences could be seen even at lower eleva-
tions (Appendix  S1 : Table  A8 ). In contrast to current conditions, for 
most scenarios at low elevations salamanders were more frequent 
at northern expositions in future periods (cf. Figure  2 , Appendix  S3 : 
Figures  A2–A7 ). Contrary to most lizard models, at higher elevations 
the salamanders in some scenarios also occupied northern exposi-
tions as often or even preferred them to south-exposed locations.     

   4  |   DISCUSSION 

   4.1 |  Distribution modelling and future changes 

 Our high-resolution SDM performed well and reflected the biology 
of our study species. Temperature was the strongest predictor of the 
distribution of the Common lizard, which is a diurnal reptile requiring 
sun for thermoregulation. On the other hand, precipitation was more 
or equally important for the Alpine salamander, which is a mostly 
nocturnal amphibian strongly dependent on humid conditions 
(Werner, Lötters, Schmidt, Engler, & Rödder,  2013 ). Precipitation SD 
did not have a strong impact on the distributions of our study spe-
cies. This might be an effect of the independency from small water 
bodies or their ability to withdraw into crack systems and crevices 
to shield negative effects of, for example drought, a possible nega-
tive manifestation of a high precipitation variability in humid loca-
tions. Under future conditions, the suitability generally decreased 
for both species, indicating a possible negative impact of climate 
change (Table  1 ). Currently, global emissions are tracking the trajec-
tory of the rcp85 greenhouse gas concentration scenario (Sanford, 
Frumhoff, Luers, & Gulledge,  2014 ). In these scenarios, the lower 

 Species  Climate scenario 

 Proportion of presences with unsuitable future 
conditions 

 Current 
suitability  0.6_suit  maxSSS  0.8_suit  avg_suit 

  S. atra   rcp45_CC_CLM_2050  0.23  0.10  0.14  0.13  0.18 

  S. atra   rcp45_EC_DMI_2050  0.91  0.49  0.74  0.79  0.85 

  S. atra   rcp45_EC_KNMI_2050  0.97  0.57  0.84  0.87  0.94 

  S. atra   rcp85_CC_CLM_2050  0.65  0.18  0.33  0.34  0.44 

  S. atra   rcp85_EC_DMI_2050  0.87  0.38  0.63  0.69  0.76 

  S. atra   rcp85_EC_KNMI_2050  0.94  0.52  0.77  0.82  0.88 

  S. atra   rcp45_CC_CLM_2080  0.42  0.17  0.23  0.25  0.28 

  S. atra   rcp45_EC_DMI_2080  0.80  0.23  0.49  0.52  0.62 

  S. atra   rcp45_EC_KNMI_2080  0.91  0.49  0.71  0.74  0.83 

  S. atra   rcp85_CC_CLM_2080  0.71  0.38  0.45  0.54  0.57 

  S. atra   rcp85_EC_DMI_2080  0.96  0.77  0.88  0.91  0.94 

  S. atra   rcp85_EC_KNMI_2080  0.95  0.73  0.84  0.89  0.89 

  Z. vivipara   rcp45_CC_CLM_2050  0.83  0.25  0.29  0.41  0.51 

  Z. vivipara   rcp45_EC_DMI_2050  0.76  0.30  0.32  0.40  0.44 

  Z. vivipara   rcp45_EC_KNMI_2050  0.76  0.33  0.35  0.43  0.48 

  Z. vivipara   rcp85_CC_CLM_2050  0.72  0.30  0.32  0.39  0.44 

  Z. vivipara   rcp85_EC_DMI_2050  0.74  0.36  0.37  0.46  0.49 

  Z. vivipara   rcp85_EC_KNMI_2050  0.77  0.44  0.44  0.55  0.57 

  Z. vivipara   rcp45_CC_CLM_2080  0.77  0.32  0.34  0.46  0.51 

  Z. vivipara   rcp45_EC_DMI_2080  0.72  0.31  0.33  0.39  0.44 

  Z. vivipara   rcp45_EC_KNMI_2080  0.79  0.47  0.48  0.59  0.61 

  Z. vivipara   rcp85_CC_CLM_2080  0.82  0.61  0.61  0.70  0.73 

  Z. vivipara   rcp85_EC_DMI_2080  0.83  0.67  0.67  0.74  0.76 

  Z. vivipara   rcp85_EC_KNMI_2080  0.88  0.78  0.80  0.84  0.87 

  TA B L E   1           Proportions of current 
presence locations with predicted 
unsuitable future conditions with respect 
to species, climate scenario, current 
suitability and different thresholds (see 
Section 2 for definitions). 
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elevations were predicted to become unsuitable at the end of the 
century for both species at the northern range edges, and the cen-
tres of their distributions were predicted to shift more or less south-
wards. However, for the majority of the current locations suitable 
alternatives were only a few kilometres away and could be coloniz-
able by the study species, justifying the use of these future locations 
in our analysis. When assessing the binary future range changes in 
our models, the results were rather different between our study 
species (Table  2 ). While for the Common lizard, a minor range loss 
was consistently predicted for all scenarios, the predicted Alpine 
salamander ranges varied drastically between large gains (+194%) 
and losses (−85%), suggesting a strong uncertainty on the potential 
effects of climate change on this species (but see the next para-
graph). This variation is unexpected given that climate variables were 
highly correlated between future scenarios (Pearson    r  > .98 for be-
tween-scenario correlations pairs of average temperature and pre-
cipitation) (but see Braunisch et al.,  2013 ). The differences between 
the study species are explainable by the different species-specific 
variable contributions to the models, which represents a different 
model complexity. Models for the Alpine salamander were mainly 
based on two more or less equally contributing variables, resulting 
in more complex predictions, while mean temperature was a single 

strong predictor for the Common lizard. The diverse predictions for 
the Alpine salamander highlight the strong impact of the complex 
microclimatic conditions in the mountains on distribution models 
and the need of high-resolution data for climate change risk assess-
ments. For instance, when information on these fine-scale condi-
tions is missing, future SDM projections using coarse resolution data 
(~20 km) suggested a consistent range loss for the Alpine salaman-
der (Beierkuhnlein, Jentsch, Reineking, Schlumprecht, & Ellwanger, 
 2014 ). We did not explicitly build a coarse resolution SDM with our 
data for comparison, as a spatial resolution of 1 km or larger just is 
not plausible in an environment, where you can have over 1,000 m 
elevation differences in such a grid size.  

   4.2 |  Thresholding caveats 

 The conversion of continuous maps into binary ones using threshold 
values is extremely challenging. When comparing the future range 
change between binary maps, the differences between the climate 
scenarios and threshold rules varied strongly and inconsistently 
compared to the similarity of the original continuous model outputs 
(measured by Schoener ' s  D ) (Table  2 ). For instance, for the Alpine 

 Species  Climate scenario  Schoener ' s  D  

 Range change (%) 

 maxSSS 
 avg_
suit 

  S. atra   rcp45_CC_CLM_2050  0.823  102  194 

  S. atra   rcp45_EC_DMI_2050  0.735  −26  −27 

  S. atra   rcp45_EC_KNMI_2050  0.783  −70  −85 

  S. atra   rcp85_CC_CLM_2050  0.799  49  77 

  S. atra   rcp85_EC_DMI_2050  0.724  14  31 

  S. atra   rcp85_EC_KNMI_2050  0.742  −33  −46 

  S. atra   rcp45_CC_CLM_2080  0.787  78  147 

  S. atra   rcp45_EC_DMI_2080  0.781  19  33 

  S. atra   rcp45_EC_KNMI_2080  0.732  −27  −39 

  S. atra   rcp85_CC_CLM_2080  0.668  47  100 

  S. atra   rcp85_EC_DMI_2080  0.606  −44  −46 

  S. atra   rcp85_EC_KNMI_2080  0.564  −25  −16 

  Z. vivipara   rcp45_CC_CLM_2050  0.816  −17  −40 

  Z. vivipara   rcp45_EC_DMI_2050  0.800  −11  −16 

  Z. vivipara   rcp45_EC_KNMI_2050  0.782  −12  −18 

  Z. vivipara   rcp85_CC_CLM_2050  0.792  −10  −17 

  Z. vivipara   rcp85_EC_DMI_2050  0.774  −10  −12 

  Z. vivipara   rcp85_EC_KNMI_2050  0.738  −15  −23 

  Z. vivipara   rcp45_CC_CLM_2080  0.787  −14  −28 

  Z. vivipara   rcp45_EC_DMI_2080  0.787  −9  −9 

  Z. vivipara   rcp45_EC_KNMI_2080  0.726  −18  −25 

  Z. vivipara   rcp85_CC_CLM_2080  0.667  −18  −28 

  Z. vivipara   rcp85_EC_DMI_2080  0.642  −16  −16 

  Z. vivipara   rcp85_EC_KNMI_2080  0.573  −27  −34 

  TA B L E   2           Similarity of current 
and projected continuous and binary 
suitability maps (Schoener ' s  D  vs. 
percentage range change) with respect to 
species, climate scenario and threshold. 
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salamander we found the strongest differences between the binary 
projections of the present and the rcp45_CC_CLM_2050 projection 
(102% / 194% range increase), but their continuous model outputs 
were very similar ( D  = 0.823). The strongest range loss (rcp45_EC_
KNMI_2050, 70% / 85% range decrease) was also accompanied by a 
rather high Schoener ' s  D  value ( D  = 0.783). Similarly, when directly 
compared, the continuous maps of these two most extreme sce-
narios were highly similar ( D  = 0.837). On the other hand, the most 
dissimilar continuous projection (rcp85_EC_KNMI_2080,  D  = 0.564) 
showed the smallest salamander range change in all predictions. This 
suggests that projections using highly correlated climate scenarios 
can lead to extremely different binary results and that standard pro-
cedure of omitting these models in beforehand can drastically mask 
the variability of predictions. Furthermore, it particularly shows that 

thresholding can be very problematic, as the message of the result-
ing binary maps can be contrary to the corresponding continuous 
maps (i.e. the actual model output) and thereby misleading. 

 We therefore share the view of Merow et al. ( 2013 ) to avoid 
thresholding whenever possible. It masks the probabilistic nature 
of predictions and the various uncertainties already associated 
with future predictions (Braunisch et al.,  2013 ; Peterson, Cobos, 
& Jiménez-García,  2018 ; Steen et al.,  2017 ; Wenger et al.,  2013 ). 
When thresholding is essential for a certain research question, it can 
be useful applying multiple threshold rules, which should be care-
fully chosen based on the existing literature (Jiménez-Valverde & 
Lobo,  2007 ; Liu et al.,  2005 ,  2016 ; Nenzén & Araújo,  2011 ; Steen 
et al.,  2017 ). Furthermore, we strongly advise to compare the sim-
ilarity of current and projected binary suitability maps with the 

  F I G U R E   2                    Violin plots of elevation 
and northness (for lower and higher 
elevations) of  S. atra  locations for 
current (“2000”) and future periods 
and thresholds (a–d), exemplary for the 
rcp85_EC_DMI scenario. a: 0.6_suit, b: 
maxSSS, c: 0.8_suit, d: avg_suit. Maximum 
width of violin plots is proportional 
to the sample size. Elevation is shown 
in m a.s.l.. Northness is scaled from 1 
(north-exposed) to −1 (south-exposed). 
Horizontal lines represent the first, 
second and third quartiles 
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similarity of the corresponding continuous maps (as in Table  2 ) to 
assess the ecological plausibility of the binary range differences.  

   4.3 |  Shifts in elevation and aspect 

 Fine-scale projections of species response to climate change 
showed both upward and northward shifts in alpine landscapes. 
When comparing current and future locations, these two strate-
gies were not mutually exclusive, as there was both a northward 
shift in aspect and an upward shift in elevation. Regression analysis 
indicated a linear relationship between northness and elevation for 
both species (likely due to the high number of presences), but it did 
not explain any of the variance in the data. However, comparing 

distributions of low and high elevations showed that the associa-
tion of certain aspects indeed varies with elevation. At current 
conditions, both the Alpine salamander and the Common lizard 
preferred warmer microclimates on southern expositions at high 
elevations. At lower elevations, the association with south-exposed 
locations was weaker. This pattern suggests that the occupation of 
cool, north-facing microclimates is a strategy for dealing with warm 
conditions, so we expect an even more pronounced pattern under 
future warming conditions. In fact, in most future scenarios, a shift 
in the distribution of both species towards cooler north-exposed 
locations was predicted, especially at low elevations. This clearly 
indicates that many southern slopes at lower elevations may be-
come too warm and/or too dry in the future. At higher elevations, 
however, this pattern is weaker, with some predicted northward 

  F I G U R E   3                    Violin plots of elevation 
and northness (for lower and higher 
elevations) of  Z. vivipara  locations for 
current (“2000”) and future periods 
and thresholds (a–d), exemplary for the 
rcp85_EC_DMI scenario. a: 0.6_suit, b: 
maxSSS, c: 0.8_suit, d: avg_suit. Maximum 
width of violin plots is proportional 
to the sample size. Elevation is shown 
in m a.s.l.. Northness is scaled from 1 
(north-exposed) to −1 (south-exposed). 
Horizontal lines represent the first, 
second and third quartiles 
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shifts of the salamander and the lizard even showing no response 
to future warming. These results show that climate change re-
sponse of biota in complex mountain topography is also complex 
and that high-resolution data are needed to identify terrain-based 
microrefugia that can mitigate the effect of climate change (Bennie, 
Wilson, Maclean, & Suggitt,  2014 ; Dobrowski,  2011 ; Meineri 
& Hylander,  2017 ; Potter et al.,  2013 ). So far, it has been shown 
that microclimates in mountains buffer regional warming and 
provide nearby suitable habitats, especially for plants (and some 
insects) (Kulonen et al.,  2017 ; Meineri & Hylander,  2017 ; Opedal 
et al.,  2015 ; Scherrer & Körner,  2011 ; Suggitt et al.,  2018 ). Our 
new study highlights the need to consider microclimate variation 
in SDM to more realistically assess the effect of climate change on 
ectothermic vertebrates which are usually less mobile and highly 
dependent on the microclimate and the existence of nearby refugia 
compared to endothermic species with often larger home ranges 
(Bennie et al.,  2014 ; Ficetola et al.,  2018 ; Potter et al.,  2013 ).   

   5  |   CONCLUSIONS 

 The limited potential of cold-adapted high mountain species, of 
which many are even mountain endemics, to respond to climate 
change is of major concern to conservationists. It is essentially 
based on the long-standing view that elevational upward shift is 
their main response to warming (Marris,  2007 ; Moritz et al.,  2008 ; 
Parmesan,  2006 ; Wilson et al.,  2005 ). Using high-resolution SDM 
data and an exceptional large numbers of precise locations, we show 
for the first time that the responses to climate change in two al-
pine vertebrate species may also be much more complex than previ-
ously thought (Kulonen et al.,  2017 ; Opedal et al.,  2015 ; Scherrer 
& Körner,  2011 ; Suggitt et al.,  2018 ). Both upward and northward 
shifts may occur, with aspect preferences being highly dependent 
on elevation and vice versa, as a shift from a warmer southern to 
a cooler northern aspect is not decoupled from elevational shifts. 
For most current locations of our two study species, there exist 
suitable and nearby alternative locations. Therefore, the negative 
effects of climate change might be mitigated, at least partially, by 
the complex topography of the mountains, so an upward movement 
may not necessarily be the only option (Suggitt et al.,  2018 ). Our 
study also implies that the use of high-resolution data is critical to 
identify suitable microrefugia and thereby improving impact assess-
ment of climate change. This will make SDM projections to future 
climate change scenarios more realistic and may be of particular im-
portance to ectothermic species, such as all invertebrates, whose 
home ranges are smaller than the extent of microclimatic variation.  
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