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Abstract: Up-to-date information about the type and spatial distribution of forests is an essential
element in both sustainable forest management and environmental monitoring and modelling.
The OpenStreetMap (OSM) database contains vast amounts of spatial information on natural features,
including forests (landuse=forest). The OSM data model includes describing tags for its contents,
i.e., leaf type for forest areas (i.e., leaf_type=broadleaved). Although the leaf type tag is common,
the vast majority of forest areas are tagged with the leaf type mixed, amounting to a total area of 87%
of landuse=forests from the OSM database. These areas comprise an important information source to
derive and update forest type maps. In order to leverage this information content, a methodology
for stratification of leaf types inside these areas has been developed using image segmentation on
aerial imagery and subsequent classification of leaf types. The presented methodology achieves an
overall classification accuracy of 85% for the leaf types needleleaved and broadleaved in the selected
forest areas. The resulting stratification demonstrates that through approaches, such as that presented,
the derivation of forest type maps from OSM would be feasible with an extended and improved
methodology. It also suggests an improved methodology might be able to provide updates of leaf
type to the OSM database with contributor participation.

Keywords: OpenStreetMap; open data; image segmentation; GEOBIA; region growing; forest type
mapping; aerial imagery

1. Introduction

A key factor for sustainable forest management and forest monitoring is the availability of
up-to-date and high spatial resolution information on the state of forest ecosystems. Earth observation
data, as well as techniques and methodologies of geoinformatics, can provide valuable contributions
to these information needs, while also being suitable in respect to the trade-off between spatial details,
update cycles and production costs. As new earth observation data is being released and made publicly
accessible, the integration of different data sources and data fusion leads to an increased quality of
forest type products [1–6]. Considering the required spatial detail and the usability of these products in
local forest studies, accurate mapping of the spatial distribution of forest types remains a challenge [3,6].
Open spatial datasets covering forest and forest-related information are available on continental scale
for Europe through the Copernicus Land Monitoring Service (https://land.copernicus.eu/), e.g., CORINE
Land Cover (CLC) datasets (with broadleaved, needleleaved and mixed forest classes) and High Resolution
Layers (HRL) on tree cover density, dominant leaf type and forest type. Datasets covering only selected
areas are e.g., Urban Atlas (UA) for selected urban areas. According to these examples, European-wide
datasets are either in a resolution that is induced by the underlying satellite data (i.e., Sentinel-2 and
Landsat for HRL leads to a spatial resolution of 20 m) or provided with a minimum mapping unit
(MMU) not sufficient in a local context (i.e., CLC with 25 ha MMU). UA is produced for specific regions
with 2 to 2.5 m spatial resolution and a MMU of 1 ha, but only includes a general forest class without
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further information on leaf type. Local datasets can be of high spatial and thematic detail, but are
rarely accessible by the public.

Very high resolution (VHR) imagery based on aerial or satellite acquisitions are a huge asset
for forest inventories. Due to the acquisition in regular intervals for whole states and countries,
aerial imagery remains an important data source [7–9], while VHR satellite imagery captivates with
additional spectral information [10,11]. Due to the high spatial resolution in the sub-meter scale and the
option to derive textural parameters, aerial imagery and VHR satellite imagery constitute important
image source [9,12–14]. Additionally, advances in processing VHR imagery further increase the
potential. One of such advances is the field of geographic object-based image analysis (GEOBIA) [15].
In GEOBIA, image segmentation and classification procedures are used to delineate homogenous
image segments for analysis. GEOBIA has its strength especially on VHR imagery, as objects tend
to be larger than the pixel. Using GEOBIA, processing is based on segments instead of individual
pixels [15–18]. Methods of GEOBIA have proven to be superior to traditional pixel-based classification
in spatially high resolution imagery as they lead to a large reduction of the salt-and-pepper effect of
many pixel-based classification methods [15,19,20]. The integration of existing vector information
(e.g., existing land parcels) has been identified as an advantageous information source that can be used
as constraints in the segmentation process in GEOBIA to control the segmentation process with a focus
on detecting differences inside already known units [15,21–24].

Since access to official forest databases is often limited or only available for state owned forests,
open datasets become more and more important. As such, volunteered geographic information
(VGI) can play a vital role in further advancing GEOBIA concepts. VGI is gaining more and more
attention in research and publications, as well as for administrative and commercial applications,
and interest has risen over the past decade [25–27]. The integration of VGI and remote sensing offers
new options in image processing that need to be explored [28]. In respect to vector boundaries fit to
be used in the segmentation stage of GEOBIA, OpenStreetMap (OSM) constitutes an extensive data
source. Since its creation in 2004, the OSM database and its active contributors have grown steadily
to create a detailed map of the world as open data [29–31]. OSM geometry in combination with the
associated, describing tags contributes to global information needs for many different sectors (e.g., road
networks, building footprints or land use/land cover (LULC) information [23,32–39]). With spatially
high resolution, cross-border data-consistency and its free availability, OSM has been able to surpass
the data quality of administrative datasets in areas with continuous and active contribution [40,41].
Especially for cross-border studies, the constraints of administrative LULC datasets can constitute
problems concerning the cross-border availability, consistency and currency of the investigated
features [3].

Especially in studies focusing on land cover and natural features, OSM data have been of recent
interest. Schultz et al. (2017) [41] and Yang et al. (2017) [42] produced regional land use maps using
training data from OSM in supervised classifications of earth observation data. Yang (2019) [43] uses
a similar approach to derive a land cover classification using OSM as training data and subsequently
assesses forest fragmentation through the incorporation of OSM road networks. Upton et al. (2015) [44]
combine OSM data with administrative forest data to estimate access to forest recreational services.
Limitations in using OSM in these studies have mainly been due to data gaps for natural and land use
features that needed to be filled in by additional data sources or by low contribution activity towards
LULC features.

Luxembourg pursues an open (spatial) data policy and was therefore chosen as the study area
due to the availability of several critical datasets (e.g., infrared aerial imagery and surface objects from
the official carto-/topographic database), which can be used as input data for stratification as well
as reference data for validation. A preliminary visual data review of OSM in Luxembourg showed
that the mapping of the land use class forest is complete and of spatially high accuracy. Nevertheless,
a further stratification into thematic valid subdivisions is often missing, as only half of the forest
areas in Luxembourg have been tagged with additional information on leaf type (i.e., broadleaved
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or needleleaved). The prominence of forest areas with the leaf type mixed is seen as problematic.
Given there is a lack of guidance on minimum mapping units in OSM, tagging a large forest area as
mixed is technically correct, if the forest area is composed of patches of broadleaved and needleleaved
forest. Unfortunately, this way of tagging is ambiguous as it is not able to describe the stratification of
the leaf types broadleaved and needleleaved inside the forest polygons. True mixed forest areas would
generally be hard to delineate into stratified subdivisions as the mix of needleleaved and broadleaved
forest type makes it hard to identify boundaries between the forest types. Data exploration showed
that the polygons tagged as mixed forests in OSM include many areas that are comprised of visually
recognizable stands of different forest types. A delineation of forest types would thus increase the
spatial and thematic detail in the OSM database. A detailed delineation of forest types with information
on their leaf types could also increase the potential of using and integrating OSM data in land cover
classifications, planning and modelling.

In order to increase the applicability of OSM data for forest research and applications, subdivisions
of forest relations need to be mapped and those subdivisions need to be enriched with thematic content
(i.e., broadleaved and needleleaved). Accurate mapping of the spatial distribution of forest types in
a spatial detail that is fit to be used in regional or local studies could be achieved by the integration of
OSM data and remote sensing data and methods.

Based on the information needs and the map product requirements, the following research
question has been defined: Is it possible to use OSM data and aerial imagery to create, upgrade,
update and spatialize forest type maps?

In order to start answering this overarching question, the present study takes a first step in
investigating already present OSM forest polygons that could further be stratified into broadleaved or
needleleaved forest stands. Several technical challenges in the processing chain have to be solved to
achieve this:

1. Separation of forest types based on region growing segmentation and aerial imagery inside
existing vector boundaries.

2. Classification of derived segments.
3. Upgrade of OpenStreetMap geometries through spatial and thematic subdivisions of forest type.

OSM data is used regularly in studies, e.g., to update existing datasets [45,46] or to create new
datasets based on OSM data [41–43], but rarely do these projects generate feedback to the OSM database.
Ideally, the investigation would result in an assessment of the feasibility to use GEOBIA to identify
subdivisions of existing OSM forest polygons that can subsequently be integrated back into the OSM
database with updated keys on leaf_type. On a more basic level, the feasibility study will result in an
estimation of the spatial and thematic content in OSM mixed forest polygons for the investigated area
and be able to show the opportunities waiting to be further explored using OSM natural/land use data.

2. Study Area

Forests cover 940 km2 of Luxembourg (see Figure 1), which is 36% of the country’s land area with
roughly two thirds of the forest area being covered by broadleaved forests [3]. The most representative
tree species are: European beech (Fagus sylvatica L.), sessile oak and pedunculate oak (Quercus petraea
(Matt.) Liebl.; Quercus robur L.), Norway spruce (Picea abies (L.) H. Karst.), European hornbeam (Carpinus
betulus L.) and Douglas fir (Pseudotsuga menziesii (Mirbel) Franco) [47,48].

Luxembourg’s public data portal (https://data.public.lu/en) offers a large variability of geographic
datasets useful for the investigation of forest ecosystems, i.e., aerial imagery (RGB and infrared in
20 cm × 20 cm spatial resolution), digital elevation models and datasets on different aspects (i.e., forest
areas) from the official carto-/topographic database [49]. The acquisition of the 2018 aerial imagery
took place with flights on the 2nd of July, 8th of July, 27th of July and 5th of August [50]. Additional
information from the Administration of cadaster and topography include a flight altitude of 3000 m
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and a native ground sampling distance of 0.20 m. The data is supplied in JPEG2000 format with 8 bit
radiometric resolution [50,51].

Data analysis of OpenStreetMap relations and ways showed that forest areas in Luxembourg
tagged with key=value pair landuse=forest cover an area of 812 km2, showing that substantial amounts
of forest areas in Luxembourg are also represented in the OSM database. Disparities between the
two databases are due to forests in the OSM database carrying different tags, like natural=wood
or leisure=park. Additionally, there are areas in the official carto-/topographic database that are
administratively forests, but do not comprise forest cover at present. Some of these areas are not tagged
as forests in the OSM database as the data is constructed by visual inspection of satellite imagery.

OpenStreetMap entities can be described with several tags and further investigation of the tags
showed that forests are often additionally tagged with a leaf_type tag. The majority of forest areas
is tagged with the leaf_type value mixed (50% of around 3600 forest polygons). Those OSM mixed
forest polygons amount to an area of 703 km2, therefore comprising 87% of the whole OSM forest
area. OSM broadleaved forest polygons cover 87 km2 and OSM needleleaved forest polygons cover
22 km2. Although leaf_type with the value mixed is technically correct in most of the cases, it misses
the potential of OSM to delineate forest types with more detailed tagging of leaf_type=broadleaved
or needleleaved in high spatial detail. This information would deliver spatially explicit information
that would enrich the database. Subsequently, this information could be used as training data for
classifications or as validation data for other forest type maps.
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Figure 1. Overview of the forests from the official carto-/topographic database in the Grand Duchy of
Luxembourg and close-ups of a forest area from the database compared to OSM Landuse Forest and
the nIR-orthophoto from 2018.

Intersection of the OSM forest polygons with forest polygons from the official carto-/topographic
database of Luxembourg resulted in a 785 km2 agreement for forest location. An intersection based
on the leaf-type information present in both databases shows a high discrepancy between the two
databases. It again shows the high prevalence of OSM forest polygons with leaf type mixed as they
encompass 84% of broadleaved and 86% of needleleaved from the official carto-/topographic database.
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A substantial amount of forest type information is not mapped in the OSM forest polygons with the
leaf type mixed, which shows a stratification of leaf types inside the detailed OSM-geometry could
provide a valuable contribution to the upgrade and update of forest type maps.

3. Materials and Methods

The entire processing chain (Figure 2) was developed exclusively in open-source software and
using open-access data sources. This was deemed very important as the whole data processing can
be reproduced by using the mentioned tools, which might encourage similar studies. It is also the
prerequisite to be able to unrestrictedly access and to make the results publicly available. Open source
software provides access to the latest algorithms and to the underlying source code, which makes it
possible to adapt processes as required for specific tasks.
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3.1. Selection of OSM Relations

OpenStreetMap vector data with landuse=forest and leaf_type=mixed tags have been acquired using
the Overpass Turbo API (http://overpass-turbo.eu/) [52]. Areas crossing the administrative boundary
of Luxembourg have subsequently been discarded, as other data sources are only available inside the
country’s boundaries. Inconsistencies between the OSM database and the official carto-/topographic
database could be investigated in the leaf type mixed classes, which are highly overestimated by the
OSM database. This discrepancy is due to the digitization of large polygons in the OSM database,
which have a mean size of 37 ha. OSM mixed forest polygons also occupy 87% of the whole forest area,
showing that these areas are of large size in tendency. A total of 21 of the larger OSM forest polygons
(127 ha to 1365 ha) with the leaf-type value mixed have been selected all over Luxembourg in order to
investigate the readiness of the approach in consideration of different ecological stand conditions as
well as forest management schemes (Figure 3). These large mixed forest polygons are subsequently
used as boundaries in the image segmentation (compare Figure 2).

http://overpass-turbo.eu/


ISPRS Int. J. Geo-Inf. 2020, 9, 499 6 of 20
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 21 

 

 
Figure 3. Selected OpenStreetMap (OSM) mixed forest polygons and their location in the Grand 
Duchy of Luxembourg. 

3.2. Image Segmentation inside OSM Forest Polygons 

Region growing approaches have proven to perform well in the segmentation of natural 
features, like forests, where hard edges might not be present [53–55]. The segmentation of the aerial 
imagery has therefore been carried out with a region growing algorithm implemented in the GRASS 
GIS i.segment.gsoc module [56]. Region growing algorithms are based on a similarity measure that is 
calculated for neighboring segments and the most similar neighbors are subsequently merged. The 
segmentation initializes with each pixel being set as a segment. The merging of individual segments 
is controlled by a threshold parameter, describing the allowed level of dissimilarity between segments. 
Therefore, the threshold inherently determines the size of resulting segments as it indicates the 
maximum difference under which two different segments will still be merged. The calculation of the 
similarity measure as used in the i.segment.gsoc module is shown in equation 1. The parameters to be 
adjusted in the segmentation module are the threshold, radioweight and smoothweight [57]. 𝑣 𝑟𝑎𝑑𝑖𝑜𝑤𝑒𝑖𝑔ℎ𝑡 ∗ ℎ𝑐𝑜𝑙𝑜𝑟  1 𝑟𝑎𝑑𝑖𝑜𝑤𝑒𝑖𝑔ℎ𝑡 ∗ ℎ𝑠ℎ𝑎𝑝𝑒 (1) 

Radioweight establishes the weight of color and shape towards the calculated difference between 
segments. If the calculated value v between two segments is below the given threshold, segments will 
be merged. As soon as no further merges can be made, the parameter minsize forces small segments 
to be merged with their most similar neighbor, even if the value v is larger than the specified threshold. 
The parameter smoothweight can be adapted in order to put more weight on either smoothness or 
compactness of the segments in the hshape contribution of the similarity measure (Equation (1)). 

GEOBIA workflows most commonly rely on testing of different parameters and a visual 
estimation if the segmentation is suitable to solve the presented delineation problem. Automated 
procedures have been developed in order to find the best parameters for segmentation. The 
unsupervised parameter optimization (USPO) implemented in the GRASS GIS module i.segment.uspo 
[58] is such an automated procedure. This unsupervised optimization is based on the research of 
Espindola et al. (2006) [59] using within-segment homogeneity (an area weighted variance, WV) and 
between-segment heterogeneity (Moran’s I measure for spatial autocorrelation, MI) to evaluate the 
overall goodness of segmentations based on different parameter combinations. WV and MI values for 

Figure 3. Selected OpenStreetMap (OSM) mixed forest polygons and their location in the Grand Duchy
of Luxembourg.

3.2. Image Segmentation inside OSM Forest Polygons

Region growing approaches have proven to perform well in the segmentation of natural features,
like forests, where hard edges might not be present [53–55]. The segmentation of the aerial imagery
has therefore been carried out with a region growing algorithm implemented in the GRASS GIS
i.segment.gsoc module [56]. Region growing algorithms are based on a similarity measure that
is calculated for neighboring segments and the most similar neighbors are subsequently merged.
The segmentation initializes with each pixel being set as a segment. The merging of individual
segments is controlled by a threshold parameter, describing the allowed level of dissimilarity between
segments. Therefore, the threshold inherently determines the size of resulting segments as it indicates
the maximum difference under which two different segments will still be merged. The calculation of
the similarity measure as used in the i.segment.gsoc module is shown in Equation (1). The parameters
to be adjusted in the segmentation module are the threshold, radioweight and smoothweight [57].

v = radioweight× hcolor + (1− radioweight) × hshape (1)

Radioweight establishes the weight of color and shape towards the calculated difference between
segments. If the calculated value v between two segments is below the given threshold, segments will
be merged. As soon as no further merges can be made, the parameter minsize forces small segments to
be merged with their most similar neighbor, even if the value v is larger than the specified threshold.
The parameter smoothweight can be adapted in order to put more weight on either smoothness or
compactness of the segments in the hshape contribution of the similarity measure (Equation (1)).

GEOBIA workflows most commonly rely on testing of different parameters and a visual estimation
if the segmentation is suitable to solve the presented delineation problem. Automated procedures
have been developed in order to find the best parameters for segmentation. The unsupervised
parameter optimization (USPO) implemented in the GRASS GIS module i.segment.uspo [58] is such
an automated procedure. This unsupervised optimization is based on the research of Espindola et al.
(2006) [59] using within-segment homogeneity (an area weighted variance, WV) and between-segment
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heterogeneity (Moran’s I measure for spatial autocorrelation, MI) to evaluate the overall goodness of
segmentations based on different parameter combinations. WV and MI values for each segmentation
are scaled according to the maximum and minimum WV and MI values of all segmentations.
The segmentation with the highest sum of the scaled values is chosen as the best segmentation.
Johnson et al. (2015) [60] further enhanced this optimization by introducing the F-measure, which can
be used to give either within-segment homogeneity or between-segment heterogeneity more weight
through a parameter α. The parameter α has been set to the value 2 to find optimal segmentations
where within-segment homogeneity is given more weight than between-segment heterogeneity [60].
This is based on the assumption that oversegmentation is generally preferred to undersegmentation.
In most segmentation procedures, oversegmentation allows more options for post-processing of the
segments (e.g., classification, merging) [58,61]. The USPO code has been transferred from the function
i.segment.uspo to be used in combination with the i.segment.gsoc module.

The USPO has been developed to select the best segmentation parameter combinations based on
different regional subsets in a larger image and choosing the lowest optimal segmentation parameter
for segmentation of the whole scene [58]. In the presented study, the regions themselves are bound by
the OSM geometry of mixed forest polygons and therefore are used as subsets to determine the best
threshold parameter per forest polygon. The OSM forest polygons are imported and segmentations are
run subsequently using each OSM forest polygon as mask for the segmentation algorithm. The analysis
of the best parameter set was focused on the threshold parameter, while holding radioweight and
smoothweight constant at the defaults of 0.9 and 0.5, respectively. Considering comparability between
the segmented OSM forest polygons, this local optimization is not ideal. On the other hand, a global
threshold is not fit to optimize the segmentation on all OSM forest polygons due to the different
spatial contexts (e.g., surrounding topography, forest management schemes or different ecological
stand conditions).

Very high resolution R/G/B and IR aerial imagery has been used as segmentation input in order to
be able to compare the resulting segmentations based on the omission or inclusion of an infrared band.
The aerial images have been resampled to a lower resolution (original 0.2 m × 0.2 m to 2 m × 2 m)
due to processing costs, appropriateness for intended target objects and according to the desired
minimum segment size. As the target objects are not individual trees, but should constitute forest areas
with homogenous leaf-type, 2 m × 2 m resolution leads to segments that are of high spatial detail in
delineating the target objects. The original resolution of 0.2 m × 0.2 m would lead to smaller variations
in the forest areas to be aggravated. These small variations would lead to unpredictable behavior in the
last step of the region growing procedure as the minsize parameter leads to aggregation of 12,500 pixels
in order to arrive at the minimum size of 0.05 ha. This is also the most processing cost-intensive part of
the region growing procedure as several iterations might be necessary to arrive at the minimum size.
The minimum mapping unit has been set to 0.05 ha, which is the lower boundary of the UNFCCC
forest definition [62].

3.3. Selection of Training Areas for Classification

As the whole processing chain is based on open data and open software, the training data has
been derived directly from the OSM database. It was deemed an important part of the processing
chain to focus on an approach that could be operationally employed using the information from the
OSM database, without the need to find training data from different sources or to manually construct
them out of the aerial imagery. Checking different approaches to derive training data from OSM may
give some indication as to whether it is feasible to use already digitized forest polygons from the OSM
database or if incorrect keys or rough digitization can become a problem. Concerning the temporal
discrepancy between the OSM database and the acquisition of the aerial images, an inspection of the
history of OSM forest polygons showed that there is active contribution concerning land use features
in the study area and that existing land use features are continuously updated.
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Training data was derived by selecting those OSM forest polygons, which include the leaf_type
needleleaved or leaf_type broadleaved values. This also assures that the training and target datasets are
spatially independent from each other, as polygons are distributed over the whole area of Luxembourg
and the training polygons are spatially separate from the OSM mixed forests in which the segments
are subsequently classified. Two different training approaches were tested to find out, if a manual
selection of appropriate training areas would lead to substantially better classification accuracies than
an automated selection. The amount of training areas for each forest type derived by those approaches
is recorded in Table 1.

An automatic approach was used to derive all the OSM forest polygons tagged as broadleaved or
needleleaved between 0.1 ha and 10 ha, without further checking if those tags are appropriately set.
The second approach included manual inspection of OSM Forest polygons by consulting the spatially
high resolution aerial imagery. Only those polygons that were tagged appropriately have been kept for
training. Table 1 shows that the manual checking significantly reduced the amount of training areas.

Table 1. Number of training polygons for respective leaf-type derived through automatic and manual
selection from the OpenStreetMap database in Luxembourg.

Leaf Type Automatic Manual

broadleaved 1205 522
needleleaved 771 453

3.4. Classification

Classifications in GEOBIA workflows are based on resulting segments instead of pixels.
Those segments need to be enriched with additional data, as the result from the segmentation
carries no information in addition to the geometric properties. Preparation for the classification was
carried out in GRASS GIS by calculating zonal statistics on additional thematic information for each of
the segments. The list of calculated variables consists of the radiometric values from the aerial imagery
(R/G/B/nIR mean and standard deviation) as well as selected texture measures, which can be derived
directly from the aerial images.

Using texture in a GEOBIA classification has shown to be an important additional feature to
discriminate forest types and leads to increased classification accuracies [16,63,64]. The perception
of an object and discrimination of objects is largely driven by texture and spatial information [15,65].
A successful employment of texture parameters in the classification demands for parameters (window
size and sampling distance) to be optimized according to the features that are intended to be detected
(e.g., forest stands instead of individual trees). Following the authors in Feng et al. (2015) [66],
the green band has been used to calculate the texture measures with a window size of 7 and a sampling
distance of 1. Texture measures have been calculated with the GRASS GIS module r.texture [67]
which implements developed algorithms on grey level co-occurrence matrices of Haralick et al. [65,68]
using 1 m × 1 m aerial imagery. Texture measures have been selected following recommendations
of a practical guideline for GLCM feature selection [69] and thus Inverse Difference Moment (IDM),
Angular Second Momentum (ASM), Correlation (COR), Entropy (ENT) have been selected as the
texture measures to be used in the classification.

Mean and standard deviation for each band of the aerial image and the mean for the selected
texture measures have been calculated for all polygons of the training setups (automatic and manual)
and for all segments resulting from the segmentation setups (RGB, RGBnIR).

Classification was carried out using the Random Forest classifier [70] with R package Caret in R
3.6.2. [71]. For a complete overview and review of the Random Forest classifier and its use in remote
sensing, refer to Belgui and Drăguţ (2016) [72]. The Random Forest classifier has been used successfully
in GEOBIA studies and has shown lower sensitivity concerning the selection of features to be used in
the classification [73]. Another advantage of the Random Forest classifier (e.g., over Support Vector
Machines) is that fewer parameters have to be set and better results can be achieved on multi-source
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data [72]. Random Forests can also be used to estimate variable importance. Estimation of variable
importance is implemented in the R package Caret for different classifiers. In the case of Random
Forest, out-of-bag (OOB) samples are used to estimate variable importance and to estimate internal
model errors. All models were trained using 10-fold cross-validation with 5 times repetition and using
a grid search to tune the parameter mtry, which determines the number of randomly sampled variables
to be used at each split of the model. Additionally, due to unbalanced leaf-type classes, especially
in the automatic training area selection, a resampling procedure has been used to down sample the
majority class (broadleaved).

3.5. Validation

Forest type polygons from the official carto-/topographic database of Luxembourg have been
used as the basis for validation. The official forest type polygons also comprise a forest type mixed.
This forest type has been removed completely from the validation strategy. Mainly, this information is
not easy to translate and to incorporate with the presented approach. Additionally, only 15% of the
forest area from the official carto-/topographic database belong to this type. Since the validation data is
provided as polygons, a sampling strategy had to be defined to carry out the validation. The chosen
sampling strategy is to use a 50 m × 50 m regular point grid that has been superimposed over the extent
of Luxembourg. This approach was chosen as it is independent from the outcome of the segmentation
and is therefore able to give the best comparison between the different setups. The regular grid
validation ensures that difficult spatial conditions (e.g., segments at the border of the OSM forest
polygons or segments with a high proportion of shadow in the aerial image) are represented in the
accuracy measures.

4. Results

4.1. Image Segmentation inside OSM Forest Polygons

Segmentations have been carried out on 2 m × 2 m spatial resolution aerial imagery (RGB) and on
nIR-aerial imagery (RGBnIR). A comparison of segmentations for OSM mixed forest polygon No. 4
based on RGB and on RGBnIR in 2 m × 2 m resolution is presented in Figure 4. It is apparent that
oversegmentation is prevalent in both cases, which makes it hard to see the differences at a larger
scale. Close-ups of a part of the area are therefore presented. Those close-ups reveal a problem when
using RGB imagery. In comparison to the single-date RGBnIR imagery, a single-date RGB-image might
not able to distinguish between broadleaved and needleleaved forests in the segmentation procedure
(see Figure 4c,e). Due to the overflights in July and August, the radiometric response of broadleaved
and needleleaved forest stands is not disparate enough to be distinguished in the segmentation process
of RGB imagery. Most of the segments in the RGB segmentation grow over the boundaries of forest
stands with different leaf types. This is also noticeable in a visual comparison of the segmentation
using RGB and false color representation as backgrounds (see Figure 4c,d). The incorporation of the
near Infrared in the segmentation process shows a much more promising result as broadleaved and
needleleaved stands have been separated more successfully. Still, the segmentation on RGBnIR is not
without flaws, as is visible from the arrow indication in close-up Figure 4e, where a segment of mainly
broadleaved species grew into a coniferous stand.
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As the optimal threshold for segmentation was derived by the unsupervised parameter
optimization approach, a plot of the F-measure based on the segmentation of nIR-aerial imagery
can be investigated in Figure 5. The plot shows the value of the F-measure based on scaled
intra-segment homogeneity and inter-segment heterogeneity for segmentations using different
thresholds. Taking a look at forest area No. 4 again, the F-measure plot shows the best segmentation
could be derived with a threshold of 0.46. In Figure 6, close-ups of segmentation derived by the optimal
threshold, by a lower threshold (0.44) and on a higher threshold (0.49) can be compared. Figure 6b
shows that the optimal threshold for segmentation is also visually well suited for the task of forest
stratification based on leaf type. Additionally, the lower threshold shows that oversegmentation is not
necessarily a criterion to dismiss a segmentation as visually it compares well with the segmentation
from the optimal threshold. In Figure 6c on the other hand, the segmentation result of the higher
threshold shows undersegmentation, resulting in broadleaved and needleleaved stands that have not
been well separated.
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4.2. Classification and Validation

Classification of the derived segments has been carried out with a Random forest classifier in
R using the Caret package. Different training setups (automatic and manual) and available features
(with mean and standard deviation for radiometric features (RGB+nIR) and mean for textural features
(Texture)) have been used to train the models to derive their impact on internal model accuracy.
Models built on RGB features lead to the lowest model accuracies (70% automatic, 77% manual),
while inclusion of the near Infrared leads to higher model accuracies, especially in the manual
training setup (78% automatic, 91% manual). The inclusion of the texture features leads to higher
accuracies in all setups (2–6%), while leading to the highest increase for the manual RGB setup (6%).
Variable importance plots for each training setup using all features (RGB+nIR+Texture) additionally
confirm the importance of the inclusion of nIR information as well as the texture measures (Figure 7).

Subsequently, models trained on RGB and RGB+Texture were used to classify the segments
derived from RGB aerial imagery, while the segments derived from RGBnIR aerial imagery have been
classified with the models trained with the inclusion of the nIR band (see Table 2). Classification
accuracies derived through confusion matrices show the same pattern for each training setup, where
the inclusion of texture measures increases the accuracy slightly. Comparison of accuracies between
the training setups show that classifications based on the automatic training setup reach slightly higher
accuracies based on segments derived from RGB aerial imagery, while the manual training setup
reaches higher accuracies based on segments derived from RGBnIR aerial imagery.
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Table 2. Classification accuracies and kappa coefficient using different input variables and
training setups.

Segmentation

RGB (n = 19,925) RGB + nIR (n = 36,008)
Input Variables

RGB RGB + Texture RGB + nIR RGB + nIR + Texture

Training
Setup

Automatic
Accuracy 0.73 0.77 0.80 0.84

Kappa 0.41 0.46 0.51 0.60

Manual
Accuracy 0.71 0.73 0.83 0.85

Kappa 0.38 0.41 0.57 0.62

According to the best performing forest type classification (RGB+nIR+Texture) with an overall
accuracy of 85%, the selected OSM mixed forest areas comprise 70 km2 of broadleaved and 26 km2

of needleleaved forest in total. Figure 8 shows size comparisons for broadleaved and needleleaved
forest areas between classification and the official carto-/topographic database for each selected OSM
forest area (compared with Figure 3). The comparison shows good agreement for many of the selected
forest areas. The tendency of higher values for areas derived from the classification stems from
mixed forest areas in the official carto-/topographic database. Since there is no mixed class in the
classification procedure, the area that would be mixed forest in the official database is redistributed
to broadleaved and needleleaved forest in the classification. Some of the selected forest areas are
chosen to be investigated in more detail, i.e., forest area number 10 showing good agreement and
forest area number 8 showing good agreement in the broadleaved class, but large overestimation of
the needleleaved class. This is also reflected by the classification accuracies for these particular areas,
where forest area number 10 reaches an overall accuracy of 92% while forest area number 8 reaches
only 74% overall accuracy.

The best performing classifications (manual training with RGB+nIR+Texture) have been chosen
for a closer look. Table 3 shows the confusion matrix of the classification with additional information
on class accuracies (producer’s and user’s accuracies) and indication of quantity and allocation
disagreement in addition to overall accuracy and kappa statistic.
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Table 3. Confusion matrix and derived accuracies for RGB+nIR+Texture classification under the
manual training setup.

n = 33,742 Reference

Classification Broadleaved Needleleaved

Broadleaved 22,284 2136

Needleleaved 2899 6423

PAB: 0.88 PAN: 0.75 UAB:0.91 UAN: 0.69

OAA: 0.85 κ: 0.61 CAA: 0.82

Q: 0.02
A: 0.13

OAA: Overall Accuracy; κ: Cohens Kappa
CAA: Class-Averaged Accuracy;
Q: Quantity Disagreement; A: Allocation Disagreement

Figure 9 shows a spatial comparison of forest types from the official carto-/topographic database
and the best performing classification result for forest area number 10. The classification has generally
been successful to derive the correct forest types inside this particular OSM relation with good
agreement to the forest types from the official carto-/topographic database as can be seen in the
close-ups (blue and red box). It shows the workflow is able to delineate forest types in considerable
detail. A closer look into these areas shows that the probability for the segments to belong to the
broadleaved forest class is slightly over 50% in the red box close-up, while probabilities are much
higher in the blue box close-up. This shows the model was not able to classify the segments in the red
box with a high probability. The probability for needleleaved forest class is the remaining fraction to 1.

The result for forest area number 8 can be investigated in Figure 10. As indicated by the area
comparison from Figure 8, the classification largely overestimated needleleaved forest in this forest
area. Stands of broadleaved forest in the close-up have a low probability to belong to the broadleaved
forest class, which might be due to a high proportion of shadows leading to lower spectral values and
to confusion with needleleaved forest.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 21 
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5. Discussion

The presented work demonstrates a stratification of forest types inside larger OSM forest polygons
tagged with the leaf-type mixed. It could successfully be demonstrated that an open source and open
data workflow is suitable to derive this stratification and that it leads to promising results which
can further be built on. The workflow itself is easy to implement as the data and software needed is
openly available and can be replicated where similar data sources are available. It can be assumed the
workflow is transferable to other regions if high resolution imagery is available and a sufficient amount
of forest areas are correctly tagged in the OSM database. Problematic aspects could be determined
and improvements of the workflow need to be established for the approach to be developed further.
Particular aspects will be highlighted in the following sections.

5.1. Separation of Forest Types Based on Region Growing Segmentation and Aerial Imagery inside Existing
Vector Boundaries

Segmentation is a critical processing step in GEOBIA workflows, strongly influencing the possible
accuracy of the subsequent classification. The unsupervised parameter selection used to derive the
best segmentation parameter has worked well and could visually be verified in most cases. Due to the
results being specific for each of the selected forest area, very different thresholds might be selected
as the best segmentation parameter. The approach assures that each forest area is segmented based
on internal variations of the spectral values, but segmentations for different forest areas can thus
not be easily compared. Subsequently, this approach can lead to very small segments in a quite
uniform forest area. As uniform forest areas are further subdivided to small segments, the influence
of some problematic aspects of the aerial images, like shadow cast, increases and leads to many
misclassifications of shadows to needleleaved forest. Additional pre-processing of the aerial imagery
using smoothing algorithms might be able to reduce the creation of segments which mainly contain
shadow patches.

Concerning the input imagery, resampling to lower resolution (2 m × 2 m instead of 20 cm × 20 cm
original resolution) has the advantage of tackling the segmentation problem at the intended scale.
As the result should delineate homogenous forest patches and not individual tree crowns. In the same
way, a resolution of 10 m would be sufficient to delineate larger forest patches and a resolution of 30 m
and more could be used to delineate smaller landscape elements. Segmentation based on the original
spatial resolution could be used to delineate individual tree crowns, especially with integration of data
on crown height. Post-processing techniques would then be needed to group individual trees to derive
forest patches.

Additionally, the use of a single-date aerial image might not be ideal if the aerial image of the
target region has been derived in a period where broadleaved and needleleaved species are not well
distinguishable. The inclusion of a near infrared band highly increases the quality of the segmentation
as could be demonstrated. Possibilities to further improve the segmentation are inclusion of digital
surface and elevation models and the integration of remote sensing datasets (i.e., Sentinel-2) to include
temporal and phenological characteristics. The segmentation is presently evaluated on the input
imagery bands, but selected bands or additionally calculated indices could be used in order to find the
best segmentation parameter.

5.2. Classification of Derived Segments

As could be seen from the selection of training areas, the manual check of OSM forest polygons has
led to a decrease in training polygons. These polygons included forest areas that do not contain forest
cover in the aerial image of 2018 and forest areas with false tags, either large mixed forest polygons
tagged as broadleaved/needleleaved or mix-ups of broadleaved and needleleaved forests. It was
therefore expected that the manual training approach would subsequently lead to higher classification
accuracies. This could be confirmed, but the automatic and manual training approaches lead to very
similar classification accuracies, which might be explained by the still large amount of correctly tagged
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forest areas in the automatic approach and a larger sample size. The influence of the forests with false
tags could be too low to have substantial influence on the training performance. Good results could be
derived by training data being readily available for the study area of Luxembourg. This might not be
the case for areas where land cover digitization is less prominent or where forests are tagged as mixed
in their entirety.

As presented in Figure 10 for forest area 8, the best performing classification still led to
misclassifications of forest areas that are easily distinguishable visually, even if the segmentation led to
a good result. This indicates the model for classification should further be improved. The class accuracy
measures (Table 3), indicate remaining problems with the classification, especially with needleleaved
forest being the minority class. There are several reasons for misclassifications that could be identified
for official needleleaved forest classified as broadleaved forest:

• General stand border situations.
• Border situations with mixed forest.
• New growth needleleaved forests.
• Under-/Oversegmentation of structurally rich forest areas.

Problems with misclassifications of official broadleaved forests classified as needleleaved forests
are mainly due to high shadow proportion in open stand conditions. This could be solved by the
inclusion of a shadow class, but questions remain on how to handle the class for the final forest map,
as it does not give any thematic information. Other options should be explored, as i.e., Chen et al.
(2011) [14] used shadow fraction as additional input feature for classification of derived segments.

5.3. Upgrade of OpenStreetMap Geometries through Spatial and Thematic Subdivisions of Leaf Type

Concerning the presented approach, a reintegration of spatial and thematic subdivisions of forest
areas could not be achieved as the results of the previous processing steps need to be improved to
achieve a higher quality. Further developing the methodology might lead to subdivisions of forest type
fit to be integrated to OSM. Given a higher quality of subdivisions, a reintegration to OpenStreetMap
should include the involvement from OSM contributors. Trying to find strategies to reintegrate the
results back into the OSM database, a verification of OSM contributors might be a promising approach.
New approaches on data acquisition for OSM focus i.e., on AI-detected roads, which need to be verified
by OSM contributors to finally be included in the OSM database. Therefore, a possibility would be
to set up a project dedicated to invite contributors to identify and verify the detected leaf type for
subdivided forest areas. On the other hand, the presented methodology could also be integrated
in a scenario where regions with additional leaf-type content are indicated to guide contributors to
areas where detailed digitization of forest types would result in a spatial and thematic update of the
OSM database. An option for the presented approach would be to post-process only those segments
with high class probabilities for one of the forest type classes and integrate those areas back into the
OpenStreetMap database. Areas of low probabilities would remain as leaf-type mixed forest polygons.
In any case, a strategy to integrate the resulting segments into OSM has to be found and needs to
follow the OSM importing guidelines.

6. Conclusions

The resulting stratification demonstrates the derivation of forest type maps from OSM would be
feasible with an extended and improved methodology. The use of OSM-geometry in combination with
remote sensing data and methods might be able to provide valuable contributions to the information
need of accurate forest type maps. It also suggests an improved methodology might be able to provide
updates of leaf type to the OSM database with contributor participation. However, questions remain
as technical aspects in order to reintegrate the data into the OSM database have not been discussed
in detail. The presented approach only comes to its full potential given the high quality of OSM
contributions, covering a substantial amount of the investigated area to be able to derive training data.
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OSM Forests in Luxembourg are well digitized and are being updated regularly. It is also to show
the potential arising from opening state-funded datasets to the public and to integrate different data
sources for the best possible outcome. Concerning this, several open datasets remain untouched in the
present study and much potential still needs to be investigated (i.e., Sentinel-2 to derive phenological
information, incorporation of the digital elevation and surface models).

Integration of OSM into remote sensing workflows has a large potential to create, update, upgrade
and spatialize forest type maps. We could contribute a first look into this direction and promising first
results could be achieved. According to the results, the research question has to be answered in a more
differentiated way. Is it possible to use OSM data and aerial imagery to create, upgrade, update and
spatialize forest type maps? OSM can be used to create a forest type map where contribution is high
and where areas are present that are correctly tagged with their leaf types or can further be subdivided
to derive leaf types. To derive a forest type map for whole Luxembourg, all mixed forest areas need to
be processed and evaluated, broadleaved and needleleaved forest areas need to be checked for correct
leaf types and present forest cover and additional areas with tags like natural=wood, leisure=park, etc.,
would need to be included. The workflow that was presented is based on open source software and
open data, is easy to implement and can be transferred and reproduced in other regions. Upgrade and
update of the OSM forest types could at present not be achieved as the resulting classifications are not
of a quality that would allow a reintegration into the OSM database. Further improvement of this
workflow could result in a stratification of forest types which could then be confirmed by contributors
before being integrated into the OSM database.
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