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Abstract: Although gravitropism forces trees to grow vertically, stems have shown to prefer specific
orientations. Apart from wind deforming the tree shape, lateral light can result in prevailing inclination
directions. In recent years a species dependent interaction between gravitropism and phototropism,
resulting in trunks leaning down-slope, has been confirmed, but a terrestrial investigation of such factors
is limited to small scale surveys. ALS offers the opportunity to investigate trees remotely. This study shall
clarify whether ALS detected tree trunks can be used to identify prevailing trunk inclinations. In particular,
the effect of topography, wind, soil properties and scan direction are investigated empirically using linear
regression models. 299.000 significantly inclined stems were investigated. Species-specific prevailing
trunk orientations could be observed. About 58% of the inclination and 19% of the orientation could be
explained by the linear models, while the tree species, tree height, aspect and slope could be identified as
significant factors. The models indicate that deciduous trees tend to lean down-slope, while conifers tend
to lean leeward. This study has shown that ALS is suitable to investigate the trunk orientation on larger
scales. It provides empirical evidence for the effect of phototropism and wind on the trunk orientation.

Keywords: LiDAR; ALS; stem detection; tree inclination; phototropism; gravitropism; wind distortion

1. Introduction

1.1. Motivation

The study by Lamprecht et al. [1] has unintentionally revealed a preferred orientation of ALS detected
spruce and beech trunks within a 0.5 ha study site. This result raises the question whether ALS could be
used to investigate the underlying cause of the orientation of tree trunks on larger scales. If so, tree trunk
detection using ALS might be a powerful tool to address the species specific growth and inclination
characteristics in response to site conditions, topography and wind.

1.2. Causes for Tree Inclination

Gravitropism describes the gravitative growth characteristics of plants. In particular, the trunk of a
tree grows contrarily to the gravitative field, while the roots follow the gravitative field [2]. By asymmetric
growth, trees are able to actively control their inclination. Lateral incidence of light, competition for light,
continuous wind, or sudden disturbances like landslides, snow break or storms can cause a tree to deviate
from gravitropism.
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Phototropism causes plants to reorient their growth towards or against a light source [3,4]. Since trees
try to maximize light absorption, a lateral incidence of light—as given in the mid-latitudes—is expected
to result in trees inclined towards the equator. This effect has been verified for 256 Cook pines located
around the globe by Reference [5].

Matsuzaki et al. [6] show that the stem inclination of trees can be actively influenced by the position
of a fixed light source. In their experiment 90% of 212 investigated trees were inclined in down-slope
direction, while a significant species dependent correlation between phototropism and gravitropism could
be observed. The cause of this effect seems to be related to phototropism triggered by an uneven light
supply in sloped terrains. In up-slope direction, the hill and the surrounding trees standing higher up the
slope tend to cover the incidence of light, while in down-slope direction the lower standing trees facilitate
light penetration. Ishii and Higashi [7] postulate that also understory trees adapt their trunk inclination for
best possible utilization of the available light. Using a numeric model, they find a significant correlation
between slope and trunk inclination for understory trees, but no effect for canopy trees at two test sites of
evergreen trees with an area of 0.5 ha and 0.4 ha respectively.

In addition to phototropism, also soil movements and landslides can cause trees to incline with the
slope gradient. The soil movements typically result in trees inclined downhill or uphill. Typically the trees
try to recover gravitropism by asymmetric growth, resulting in bent stems with eccentric radii [8].

Wind is one of the major sources of mechanical loading on plants [9]. The complex interaction between
the forest structure and the terrain results in small scale turbulences preventing a realistic prediction of the
wind drag of a specific tree [9,10]. But, in general, a tree does not topple or uproot if the elastic restoring
forces of the stem and roots can resist the combined wind and gravitational forces [9]. In consequence,
trees grow adaptively and realign their structure to minimize wind drag, but maximize light capture.
A continuous wind drag can make a tree realign its foliage permanently, resulting in windswept trees
with foliage allocation in the prevailing leeward direction. Windswept crowns reduce the wind drag
significantly and reduce the risk of stem or root damage [9,11]. Telewski [12] argue that the windswept
growth is more likely the product of biomechanical properties than of a physiological thigmotropic
growth response.

Nicoll and Ray [13] observe an adaptive growth of the root system of Sitka spruce in response to wind
or site conditions. The roots of 100 randomly selected trees were characterized by an increase of structural
root mass on the leeward compared to the windward side. Nicoll and Ray [13] conclude that the resulting
asymmetric rooting structure reduces the tree’s vulnerability to windthrow. There are also indicators that
a large proportion of branches in the total tree mass increases the windthrow risk of trees significantly [14].
In consequence, species with a low allocation of branch mass should be particularly resistant to wind.

Apart from the strength of the trunk, the root plate morphology, soil type and soil moisture define
the resilience of a tree to external forces [15]. Also the rooting depth controls the anchoring of a root
in the soil [16]. The numeric models of Fourcaud et al. [17] indicate that in clay-like soils, the rooting
depth defines the root-soil plate and consequently the anchor strength. In sand-like soils, the shape of
the rooting system determines the shape and size of the soil-root plate [17]. The results also indicate
that the mechanical stress introduced by wind is highest in the superficial roots and the leeward roots.
The soil moisture is an important factor that controls the resistive forces of the roots [10]. Heavy rainfalls
accompanying storm events can weaken the anchoring of rooting systems and make trees vulnerable to
toppling [10,15].

1.3. Stem Detection Using ALS

In recent years several methods for extracting tree stems using ALS have been developed [1,18–23].
Due to differing objectives, differing ALS acquisition designs and differing investigated forest types and
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structures, the accuracy of the trunk detection methods is hard to compare. In comparison to classic ALS
driven tree crown delineation (see Reference [24]), all methods are able to extract vertical linear structures
with a high reliability, and the precision of the tree positions is high. In general, two types of detection
methods can be distinguished, heuristic methods and methods taking advantage of machine-learning
techniques. With the downside of requiring training data, methods based on machine learning are expected
to be transferable on stands and ALS data with various characteristics. Heuristic methods can be applied
without training data, but are typically hard to parameterize and are typically not robust to differing forest
characteristics.

The method of Lu et al. [18] takes advantage of the ALS intensity values to isolate points associated
with trunks from leaf-off deciduous trees. The extracted points are used for a three-dimensional bottom-up
trunk-growing process, while the assignment is controlled by a three dimensional and a planar distance
threshold. To avoid false positives, the trunk length and the maximum height of the lowest trunk point
are controlled by threshold values. Furthermore the identified trunks are used for crown delineation of
20 plots with a total area of 3.2 ha and an average point density of 10 points/m2. The method achieves a
detection rate of 84% and a precision of 97%.

Lamprecht et al. [1] identify tree trunks by creating ALS point cloud segments using a Divide &
Conquer approach. Points associated with tree trunks are isolated from the canopy by estimating the
crown base height and 3D-clustering. A principal axis is fitted to each cluster using a deterministic
modification of the LO-RANSAC approach. The algorithm provides a vector model for each trunk
detection, with attributes like root position, inclination angle and the compass direction. A validation
with 109 TLS-measured trees in a plot of 0.5 ha and an average ALS point density of 7.7 points/m2 has
shown a detection rate of 84% and a precision of 95%, while an RMSE of the trunk roots of 0.78 m could
be observed.

The bottom-up approach of Shendryk et al. [20] uses full-waveform ALS data to delineate individual
trees using tree trunks as seeding points. In extension to Lu et al. [18], next to an intensity filter, the ALS
pulse width is used to filter points associated with trunks in range of 1 and 10 m above ground. Finally,
a three-dimensional Euclidean clustering is applied to identify individual trunks. Using 38 reference plots
within a forest of a complex structure with a total area of 3.4 ha, the algorithm has been applied to ALS data
sets of two different point densities. By doubling the point density from 12 points/m2 to 24 points/m2,
the tree detection rate increased from 56% to 67%, while the precision diminished from 62% to 61%.

Polewski et al. [19] propose free shape context descriptors to detect dead tree trunks in ALS point
clouds. After a segmentation of the point cloud, a principal axis is fitted to each cluster using the
M-estimator Sample Consensus method. For each axis, 3D free shape context descriptors are derived.
After training and optimizing the shape descriptors with a genetic approach on an ALS tile of 1× 1 km2

with a point density of 30 to 40 points/m2, the algorithm is able to distinguish dead tree trunks from lining
trees. The algorithm achieves an accuracy of 84.2% for 208 dead trunks and 340 living trees. The correctness
of the principal axis is not discussed by the authors.

Amiri et al. [21] enhance the method of Polewski et al. [19] for identifying individual tree stems
using high density ALS point clouds. With a Random Forest Classifier, points associated with tree stems
are classified using 3D shape descriptors, covariance features and the normalized height. Initial linear
segments are created based on points associated with the stems. These are merged to individual stems
by hierarchical clustering. To describe a stem, a line is fitted by orthogonal distance regression and
energy minimization. For two plots of 0.7 ha and 1.8 ha and an average point density of 300 points/m2,
the method achieved a classification accuracy of up to 86% for 196 reference stems.

Most recently, Windrim and Bryson [22] publish new approaches to automatically detect trees and
reconstruct stems using supervised deep machine learning methods using high resolution ALS point
clouds. After detecting individual trees, points associated with the tree stems are extracted based on
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machine learning using voxel convolutions or neural networks. Finally segmented models of the main
stems are fitted to gain information on the tree height, diameter, taper and sweep. The analysis has been
conducted on 25 plots with an ALS point density of 300 points/m2 up to 700 points/m2 and 447 reference
trees. The proposed methods achieve an overall tree detection accuracy of 77% up to 96% and an IoU
(Intersection over Union) for stem detection of up to 52%.

As Chen et al. [23] have shown, trunk detections can be used to improve individual tree segmentation.
Similarly to Lamprecht et al. [1] points associated with the tree trunks are identified by estimating the
crown base height. Trunks are derived by a two-dimensional mean shift clustering using a flat kernel
function with a bandwidth associated with the trunk diameter. Using the identified trunks as initial
points, the mean shift individual tree segmentation could be improved significantly. The analysis has been
conducted for 20 reference plots with a total area of 1.8 ha, an average ALS point density of 15 points/m2

and 1779 reference trees.
Although the SkelTre method, developed by Bucksch et al. [25], is able to derive a point skeleton

from any point cloud, it has been designed to derive the three dimensional structure of trees—inherently
providing information on the stem orientation—based on high density laser scans. The algorithm creates
an initial graph based on an octree [26], while a robustness criterion ensures an appropriate linkage of the
graph’s edges even for noisy input point clouds. By labelling each edge with its direction, the octree-graph
is locally reduced to achieve a Reeb-graph [27]. Finally, the graph is embedded to the original point cloud
to provide localized information on the skeleton.

1.4. Related Work

A systematic analysis of the ALS-derived trunk inclination and orientation angles is given
by Razak et al. [28], which investigates the effect of landslides using high density ALS in an alpine region.

As base data, they use a point cloud with an average point density of 170 points/m2 and an approximate
area of about 1.3 km2. They delineate the tree crowns using the TreeVaW [29] algorithm, which achieves
an overall accuracy of 84.8% using 560 terrestrially measured reference trees. The tree inclination θ and
tree orientation φ have been derived with the SkelTre method [25] which tends to over-predict both
variables. A regression model of the form θ = a + b · θALS achieves an R2 of 0.77. With a model of the form
φ = a + b · φALS—which violates the cyclic character of the compass angles—they observe R2 values of up
to 0.83 at a reference height of 1.3 m. They find that trees located in landslide zones are more inclined and
dispersed at different orientations compared to the control group.

2. Objectives

The studies presented in Section 1.3 focus on the detection of tree stems within study areas smaller
than 2 km2 only. To the knowledge of the authors no evaluation of the trunk inclination and orientation
properties—in particular on larger scales—has been carried out so far. In the given study the following
hypotheses are evaluated empirically to verify whether the ALS detected tree trunks show systematic
inclination patterns, and whether these patterns match the known causes for tree inclination:

Hypothesis 1. Preferred stem orientations can be found using ALS derived trunk vectors.

Hypothesis 2. Trunks preferentially lean down-slope.

Hypothesis 3. The tree inclination and orientation depend on tree species.

Hypothesis 4. Trunks preferentially lean leeward.
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Hypothesis 5. The scan direction does not affect the observed trunk inclination and orientation.

Hypothesis 6. Soil properties, like soil type and moisture, affect the trunk inclination.

3. Materials and Methods

3.1. Study Area

The study area of Hunsrück-Hochwald National Park with an area of 105 km2 is located in
Rhineland-Palatinate and Saarland, Germany (Figure 1). From its southwestern extent it follows a
low mountain range for about 30 km to its northeastern extent (see Figure 2). Its moderate climate of
the mid-latitudes results in good conditions for sustainable forestry. The area is dominated by 44.9%
European beech (Fagus silvatica) and 33.2% Norway spruce (Picea abies), 10.0% Sessile oak (Quercus petraea),
8.2% pine (Pinus sylvestris) and 3.6% Douglas fir (Pseudotsuga menziesii). Less common are European larch
(Larix decidua), European white birch (Betula pendula) and other species. The soil substrate is dominated by
quarzites and shales of the Devonian, and sandstone and mudstone of the Permian [30].

Figure 1. Overview map of the study area Hunsrück-Hochwald National Park.
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Figure 2. Tree species distribution within the study area Hunsrück-Hochwald National Park (left) and
digital elevation model derived from ALS point clouds (right). The ALS point clouds have been provided
by LVermGeo, while the tree species classification is the result of Stoffels et al. [31]. Coordinates are shown
in ETRS89/UTM system (EPSG 25832).

3.2. Data

3.2.1. ALS Data

The ALS data used in this study has been acquired during nine flights from 24 March to 7 April 2015
using a Riegl Q560 [32] under leaf off conditions. The flights have been strictly conducted in east-west,
or west-east direction with an average swath width of about 200 m (Figure 3). The mean altitude has
been about 600 m resulting in a footprint diameter of about 0.3 m and an average pulse density of
11.2 pulses/m2. The 220 ALS tiles have been provided by the state surveying and geoinformation service
of Rhineland-Palatinate (LVermGeo) in the form of pre-classified (ground, vegetation and other classes)
.las-files with an extent of 1 × 1 km each. Each ALS point is labeled with its GPS timestamp expressed as
second of week. For each flight the GPS tracks have been provided in .csv format.

3.2.2. Terrain and Canopy Models

Both a terrain and a canopy model are derived for each ALS tile by filtering points representing the
surface in a first step and applying a Delaunay triangulation in a second step. The triangulation allows for
a linear interpolation of the elevation within the given tile. In detail, to identify points representing the
terrain, the points classified as ground are thinned with a duplicate point filter identifying local minima
with a radius of 0.8 m (see filters.surface of Lamprecht [33]). Similarly, to identify points representing the
canopy, the points classified as vegetation are thinned with the same duplicate point filter extracting local
maxima with a radius of 0.8 m.

3.2.3. Scan Direction

Since the ALS points do not contain information on the scan direction, it is calculated using the
supplementary GPS files. For each point of interest, the two GPS coordinates with minimum time
difference are selected. Based on the time difference, the acquisition coordinate is interpolated as the
linearly weighted average of both GPS coordinates. With this interpolated GPS coordinate, the line of sight
(scan vector) linking the position of the laser scanner and the point of interest is derived.
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3.2.4. Tree Species

To receive information on the tree species, the high resolution forest information layers
of Stoffels et al. [31] are used. This data set provides information on the five most common tree
species—European beech, Douglas fir, Sessile and Pedunculate oak, Scots pine and Norway spruce—in
a spatial resolution of 5 × 5 m2. Except for the most southwestern area, the classification layer covers the
study area completely, while an overall classification accuracy of about 76% is achieved.

3.2.5. Wind

Complex forests with dynamically restructuring trees in combination with hilly terrains make a
deterministic prediction of the time and spatial scale dependent wind flow, eddies and turbulences
practically impossible [9]. Thus, in this study, only the effect of the prevailing wind direction is
considered. The daily wind direction and wind speed datasets of the TRY project [34] are used as
base data. These provide information at a reference height of 10 m above ground and a spatial resolution of
10 km × 10 km. To represent the prevailing wind direction and wind speed, in this study the wind vectors
are averaged over a 15 year period from January 1998 to December 2012. As Figure 4 illustrates, in the
study area the wind is typically directed from West-South-West at average wind speeds below 2.1 m/s.
In the Northwest of the study site, the wind turns to the Southwest.
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Figure 3. ALS flight lines and study area Hunsrück-Hochwald National Park. Coordinates are shown in
ETRS89/UTM system (EPSG 25832).
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Figure 4. Fifteen year average (1989–2012) of the wind direction and wind speed in the study area (left)
and wind rose diagram of the same area and time window (right). Both figures have been derived from
daily wind models provided by Krähenmann et al. [34]. Coordinates are shown in ETRS89/UTM system
(EPSG 25832).

3.2.6. Soil Properties

To inspect the influence of the soil, the official soil region map of Germany [35] is used. Since the
given soil classification does not allow for a spatially explicit distinction between different soil types,
the dominating soil substrates are extracted as illustrated in Figure 5 (left). In addition to the soil
type, an ecological site classification [30]—provided by the state forest service of Rhineland-Palatinate
(Landesforsten RLP)—is used to investigate the effect of soil moisture on the trunk inclination. One product
of the ecological site classification is a soil moisture classification with 12 soil moisture regimes. In general,
the study area is well supplied with water. The given regimes are re-sampled to three classes dry, moist and
very moist as illustrated in Figure 5 (right).

3.3. Methods

3.3.1. Stem Detection

For the given study, a stem detection algorithm has been developed, which shall identify vertical
linear structures most probably representing stems. To limit the computational effort and be independent
from training data, heuristics are used to identify points associated with the stems. The algorithm
is organized in three steps: point filtering (identifying points below canopy form vertical lines),
clustering (identifying individual trunks) and vector fitting (fitting a regression vector to each trunk).
A fundamental parameter of the algorithm is the radius R. Since this parameter should be in the scale of
the minimum expected trunk distance, R is set to 0.9 m by expert decision.

3.3.1.1. Point Filtering

The trunk detection algorithm developed for the given study assumes that ALS points arranged
in isolated vertical lines close to the ground represent tree trunks. To facilitate the isolation of linear
structures, in a first step a duplicate point filter is applied to all points classified as vegetation (Figure 6, left).
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In detail, the filter sweeps from top to bottom, while for each point currently observed, all points within
radius R are removed. In a second step, only points with less than two neighbors within radius 2·R
remain (Figure 6, center). In particular volumetric structures—like tree crowns—are removed by this filter,
because the previously applied duplicate point filter ensures point distances of at least R. The previous
filters tend to retain isolated points at the fringe of tree crowns. Thus, a vertical orientation of neighbored
points needs to be ensured. For each point, the closest two neighboring points are investigated, while the
z-axis is scaled by factor 2 to prefer a vertical assignment. If the horizontal extent of the three points is less
than R, all three points remain (Figure 6, right).
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Figure 5. Dominating soil substrates (left) and soil moisture regimes (right) in the study area.
Coordinates are shown in ETRS89/UTM system (EPSG 25832).
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Figure 6. A duplicate point filter with filtering radius R is applied to points associated with vegetation
(left). The resulting filtered point cloud serves as the input for a density filter (center). Points with more
than 3 neighboring points within radius R are omitted. Working principle of the vertical line filter with
maximum horizontal distance R and z-axis scaled by factor 4 (right).

3.3.1.2. Clustering

To identify isolated lines in the previously filtered point clouds, the points are clustered. The clustering
algorithm sweeps from bottom to top (Figure 7, left). A point is assigned to the most frequent cluster of its
neighboring points within radius 1.5·R. If no neighboring point has already been assigned to a cluster,
the point defines a new cluster. To take into account the vertical structure of the trunks, the z-axis is scaled
by factor 1/4 before applying the clustering. To remove remaining linear structures in the top of the trees
with no connection to the ground, only clusters with a gap to the ground min(h) smaller 0.6·max(h) are
retained, while h represents the height above ground for each point of the cluster. To use the full number
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of available trunk points, all original ALS points with distance less than R to any of the cluster points
define the final cluster.

3.3.1.3. Vector Fitting

A regression vector is fitted to each previously identified trunk cluster. Since the clustering algorithm
tends to retain dispersed points at the bottom of the tree crowns, these points might distort the vector
orientation. Thus, a consensus set is created by applying the MSAC [36] approach with threshold R to
all point pair combinations of a cluster. The first Eigenvector of the consensus set represents the desired
regression vector (Figure 7, center). Consensus sets with less than 4 points are omitted.

Based on the regression vector, a local coordinate system with the axes v, z and a is defined
(Figure 7, right). The origin of the coordinate system corresponds to the average coordinate of the trunk
points, while the Eigenvector defines the v-axis. The a-axis is oriented perpendicular to the regression
vector and the global z-axis. Finally, the z-axis is oriented perpendicular to the global x- and z-axis.

The trunk root is defined as the intersection point between the regression vector and the terrain model.
Each trunk vector provides its inclination or zenith angle tθ , referring to the angular deviation of the stem
from the vertical orientation (0◦). The orientation or azimuth tφ refers to the compass direction of the stem,
defined as the clockwise planar deviation from the North (0◦).
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Figure 7. The filtered point cloud serves as the input for the clustering algorithm (left). A point is assigned
to the most frequent class of its neighboring points within radius 1.5·R. To prefer linear structures, the z-axis
is scaled by factor 1/4. A regression vector is fitted to each trunk cluster (center). Implausible vectors are
omitted from further analyses. Each regression vector defines a local coordinate system, with axes v, z and
a (right). The black dots represent the trunk points, while the red dot corresponds to the trunk root.

3.3.1.4. Vector Uncertainty

Using its local coordinate system, the residuals ε of a trunk vector fitted to n points are split up in a
vertical εz and a horizontal εa component (see Figure 7, right). Similar to a two dimensional regression
line, the standard error of the inclination sez is calculated with Equation (1). Accordingly, the standard
error sea gives information on the uncertainty of the trunk azimuth.

SE =

1
n−2

n
∑

i=1
ε2

i

n
∑

i=1
(xi − x)2.

(1)

Similar to the two dimensional regression, the inclination tθ is assumed to follow the Student’s
t-distribution with tn − 2 degrees of freedom. The p-value tp is calculated according to Equation (2).
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The function Fν (x) corresponds to the cumulative distribution function of the Student’s t-distribution
with test value x and ν degrees of freedom.

tp = 2 · P(Tθ ≤ tθ) = 2 · Ftn−2

(
− sin(tθ)

tsez

)
. (2)

3.3.2. Trunk Features

To evaluate the hypotheses, each detected trunk is labeled with its inherent vector features and the
attributes of the data layers. To increase readability, a set of an arbitrary higher order property is derived
by a function f (t) and t ∈ T according to Equation (3). Each trunk t is characterized by the inclination
angle tθ and the compass orientation tφ of its three-dimensional regression vector. Its root is defined by
the intersection point between its vector and the DEM. The attributes tsez and tsea give information on the
uncertainty of the vector in inclination direction and compass direction respectively (see Section 3.3.1.4).
Using tsez the p-value tp of the trunk inclination is derived (see Equation (2)).

Tf(t) = {f (t) | ∀ t ∈ T}. (3)

Features related to the ALS properties are aggregated from the points used to fit the trunk vectors.
In particular, the scan vectors are averaged and split up into a vertical scan angle scan_zenith and a
horizontal scan direction scan_azimuth. In addition, the horizontal (scan_horizontal_std) and vertical
(scan_vertical_std) standard deviations of the scan vector are calculated.

The tree species, soil moisture and soil substrate classes are assigned by intersecting the trunk root
coordinates with their raster cell or polygon. The wind direction and wind speed for each trunk is
determined by a Cressman interpolation [37] of the wind vector rasters with a radius of 1 km.

The site aspect, slope and elevation are derived for each trunk by inspecting the seven terrain points
closest to the trunk root. Due to the planar character of the ground points, their third Eigenvector provides
the aspect and slope, while the elevation is extracted from their average z-coordinate.

As a measure of phototropism, the relative direct solar radiation solar_direct is calculated for each tree
according to Gassel [38] using Equation (A1) (see Appendix A). The radiation is calculated for each tree
based on its geographic latitude, site aspect and slope assuming solar noon at mid of summer. The effect
of the site aspect and slope on the relative direct solar radiation is illustrated in Figure 8.

3.3.3. Regression Models

To analyze underlying causes for stem inclination, for each trunk t its inclination tθ is predicted
using weighted least squares regression. Weighted regression is used to suppress biases caused by very
frequent trunk inclinations and orientations. Only attributes potentially causally related to the inclination
are considered to derive the predicted inclination tθ̂ . Next to the variables of interest (slope, tree height,
tree species, wind speed, soil moisture, soil substrate and scan angle), attributes associated with the
uncertainty of the trunk vectors (tse_z, tse_a and tn) are considered since they might relate to random effects.

To make qualitative statements on potential underlying causes for specific inclination directions,
the trunk orientation tφ is assumed to be a linear combination of two dimensional explanatory vectors.
To implement this concept, each directed variable defines an explanatory vector as illustrated in
Equation (4), while for each trunk its orientation is modeled by creating pairwise coupled equations
according to Equation (5). By multiplying scalar variables with these vectors, interaction terms can also
be considered. Solving the given equation system using weighted least squares regression provides the
desired regression coefficients which are used to calculate the predicted trunk orientation tφ̂.
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Figure 8. Relative direct solar radiation depending on site aspect for differing site slopes at solar noon in
summer at a geographic latitude of 50◦N.

Please note that the signs of the regression coefficients give information on the direction of the
underlying effects. The coefficient −csouth—corresponding to a directed intercept—shall allow for a
systematic inclination to the South.

terrainx = sin(slope) · sin(aspect) terrainy = sin(slope) · cos(aspect)

solarx = solar_direct · sin(aspect) solary = solar_direct · cos(aspect)

windx = wind_speed · sin(wind_direction) windy = wind_speed · cos(wind_direction)

scanx = cos(scanθ) · sin(scanφ) scany = cos(scanθ) · cos(scanφ)

(4)

sin(φ) = cterrain · terrainx + csolar · solarx + cwind · windx + cscan · scanx + εx

cos(φ) = −csouth + cterrain · terrainy + csolar · solary + cwind · windy + cscan · scany + εy.
(5)

To avoid biases caused by the uneven frequency of the observed stem orientations, the equations of
the regression models are weighted by the p-value of the trunk inclination tp times the inverse circular
density of the trunk orientation. The density of the trunk orientation is determined by a kernel density
estimation using the bandwidth selection procedure of Sheather and Jones [39].

3.3.4. Feature Selection

To pre-select relevant features, the trunk inclination as well as the orientation are modeled with
Random Forest regressors of 500 trees and 50,000 randomly selected trunks. The default parametrization
of the ranger package for R [40] is used. Missing numeric values are filled by mean imputation,
while categorical values are imputed by random sampling of the non-missing values. Attributes with
low feature importance are neglected for further analyses. After identifying the most relevant features,
several knowledge driven linear models are fitted, while equations with missing values are omitted
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(see Section 4.5). This iterative procedure shall guarantee the selection of robust knowledge driven models
to reveal potential underlying causes for the trunk inclination.

Due to the circular character of the orientation, the model residuals tend to be bimodally distributed.
Also the inclination model tends to violate the homoscedasticity assumption. To still be able to make
qualitative statements on the effects, the confidence intervals of the regression coefficients are empirically
determined by bootstrapping. Each regression model is fitted 10,000 times to differing random samples
of 1% of the training dataset. Finally the inclination and orientation models are fitted to the full training
dataset. Model coefficients not significantly differing from zero (99% significance level, respectively 98%
confidence interval) are discarded, or interaction terms are added. Factorial variables are omitted, if the
coefficients of at least two categories do not differ significantly (99% significance level, respectively 80%
confidence interval of each coefficient).

3.3.5. Training and Validation

The trunk detection algorithm of Section 3.3.1 is applied to all ALS tiles of the study area. Since border
effects might affect the detection of trees at the edges of the tiles, all trunks with distance below 5 m to
the tile extends are disregarded for further analyses. Trunk vectors with a high vector uncertainty can
lead to an inaccurate inclination and orientation. If the inclination error exceeds the inclination angle,
the trunk orientation can even topple. These effects have the potential to cover systematic orientation
patterns, since they appear as noise. For this reason only significantly inclined trunks—tθ significantly
different from zero—are further investigated. The remaining trunk detections form the set T. Of the data
set, 70% is used for training Tt and 30% for validation Tv.

The accuracy of the trunk inclination prediction tθ̂ is assessed with the ordinary coefficient of
determination R2. To adress the accuracy of the modelled orientation tφ̂—in addition to the ordinary R2

provided by the regression model—the angular residuals Tεφ := Tε◦(tφ ,tφ̂)
(see Equation (6)) are examined.

The mean direction Tεφ [41], as well as the circular standard deviation σTεφ
[41] describe the location and

dispersion of the circular data. Based on the orientation vector ~φ = (sin(φ), cos(φ)) (cf. Equation (5)),
the average variance explained by each directed explanatory variable is calculated to assess its explanatory
power. The explained variance of a directed explanatory variable ~E =

(
Ex, Ey

)
with regression coefficient

cE corresponds to the scalar product cE~E · ~φ.

ε◦ (α, β) = (α− β + 180) % 360− 180. (6)

4. Results

4.1. Stem Detection

In total 1,147,633 stems have been detected, while 846,851 stems have been located within the study
area. The partial coverage of the ground data results in missing data within the borders of the study area
for soil moisture (10.6%) and tree species (11.5%). Since the given study shall provide a proof of concept
only, only the plausibility is checked instead of an accuracy assessment of the stem detection. In particular,
a strongly species-dependent detection rate might affect the results, since it would indicate problems of
extracting the linear structures under certain stand characteristics.

Table 1 illustrates the percentage of area covered by each tree species (see Section 3.2.4) compared to
the amount resulting from the stem detection. A chisquared goodness-of-fit test indicates that the detected
species differ significantly from the species distribution provided by the classification layer. In particular,
the amount of spruce and beech detections are higher than the area, while Douglas, oak and pine are
under-represented by the stem detection. Since the surface area does not provide information on the actual
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stand density, no final conclusion on detection rates can be drawn. But, since the algorithm seems not to
fail entirely for a specific species, the detected trunks seem to be suitable for further analyses.

Table 1. Comparison of surface area with the amount of detected stems.

Beech Douglas Oak Pine Spruce

Area of classification layer 36.8% 11.4% 13.9% 9.8% 28.1%
Number of detected stems 40.7% 6.5% 11.5% 8.3% 32.9%

4.2. Selection of Trunks

Figure 9 illustrates the effect of the p-value tp on the trunk inclination and orientation. By selecting
significantly inclined trees only, the probability of an erroneous trunk orientation—due to randomly
inclined observations—is reduced. Per definition, with decreasing significance levels, preferably trunks
with high inclination angles are selected (Figure 9, left). Also with decreasing significance levels, a preferred
South orientation of the trunks is revealed (Figure 9, right). To gain clean data, the authors have decided to
choose a significance level of 1% resulting in a data set T of 299.000 trunks.
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Figure 9. Density plots of the trunk inclination (left) and trunk orientation (right) grouped by differing
significance levels of the trunk inclination. For each group, the mean trunk orientation is marked with
a cross.

4.3. Stand Characteristics

Figure 10 illustrates the site aspect, scan direction and observed trunk inclination for all significantly
inclined trunks. Due to the orientation of the mountain range, most sites are oriented to South-East or
North-West. With less than 3%, trees on slopes with an inclination greater than 25◦ are rare. The regular
ALS flight pattern causes the trunks to mostly be scanned from the North or the South. 95% of the trunks are
inclined less than 15◦. The trunks preferably lean to South-Southeast, with an average orientation of about
171.7◦ and a circular standard deviation of 94.2◦. A Watson’s test for circular uniformity [42,43] confirms
that the trunk orientation differs highly significantly from a uniform distribution, supporting Hypothesis 1.
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Figure 10. Site aspect in relation to slope (left), scan compass direction in relation to the scan zenith angle
(center) and trunk orientation in relation to the trunk inclination (right).

Table 2 shows that regardless of tree species about 67% to 74% of the detected trunks are located on
Quarzite sites and about 26% to 32% are located on mixed Quarzite & Shales sites. The portion of trunks
located on pure Shales is minor. 82% to 86% of the trunks are located on moist sites. About 15% of the
beech and spruce can be found on very moist sites, while about 10% of the Douglas and pine are located on
very moist sites. With 10%, oak can preferably be found on dry sites rather than on very moist sites.

Table 2. Distribution of soil properties by tree species.

Tree Species
Soil Property Beech Douglas Oak Pine Spruce

Soil substrate
Quarzite 73.5% 72.2% 70.7% 68.8% 67.4%

Quarzite & Shales 26.2% 27.5% 27.8% 30.5% 32.4%
Shales 0.3% 0.3% 1.5% 0.6% 0.2%

Soil moisture
dry 3.1% 5.4% 10.0% 5.6% 3.7%

moist 82.2% 84.3% 85.8% 83.4% 81.8%
very moist 14.7% 10.3% 4.2% 11.0% 14.4%

Figure 11 shall highlight potential species specific site characteristics, which might affect the modeling
procedure. Although the local wind regime is characterized by topography and forest structure, the mean
wind direction indicates an almost similar general wind exposition for all tree species. The spatial
distribution of the trees lead to a species dependent site aspect. In general, the orientation of the mountain
range results in most of the trees facing North-West, respectively South-East. Beech and Douglas tend to be
located on sites facing South-East, while spruce and pine can mostly be found on sites facing North-West.

4.4. Preliminary Analysis

Figure 12 illustrates the Pearson’s product moment correlation coefficients of the trunk features.
For the directed variables, the circular variant [42,43] is used. A strong correlation between the trunk
inclination (zenith) and variables associated with the vector uncertainty is given. With increasing
uncertainty—high sez, high sea, low n—high inclination angles can occur at random. The negative
correlation of the tree height with the trunk inclination might be caused by the increased vector uncertainty.
The trunk orientation is positively correlated with the site aspect. A slight negative correlation with the
wind direction and a slight positive correlation with the scan direction can be found. But, these apparent
correlations could be caused by coincidence due to the orientation of the mountain range and the
stripe-wise ALS scanning pattern.
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Figure 11. Density of the tree trunks for the explanatory variables wind direction (left), site aspect (center)
and scan direction (right) grouped by tree species.
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Figure 12. Pearson’s product moment correlation coefficients for scalar variables (left) and directed
variables (right).

As Figure 13 and Table 3 illustrate, the observed trunk inclination and orientation depend on the tree
species. A Kruskal-Wallis rank sum test indicates significant differences of the average inclination between
the species. More interestingly, the trunk orientations between the species differ highly significantly.
In particular, deciduous trees tend to lean to the South, while conifers tend to lean to the East. The first
observation is an indicator for phototropism, the latter might be caused by wind.

These observations are in accordance with Table 4, which summarizes the amount of trunks inclined
in the explanatory directions. About 70% of the deciduous trunks are inclined to the South, compared to
54% of the conifers. About 64% of the conifers lean leeward, compared to 41% of the deciduous trees
(cf. Hypothesis 4).

Table 3. Inclination and orientation of the significantly inclined trunks for different species.

Beech Douglas Oak Pine Spruce Average

Tθ 6.14◦± 0.01◦ 7.11◦± 0.05◦ 5.71◦± 0.02◦ 6.28◦± 0.03◦ 5.77◦± 0.02◦ 6.14◦± 0.01◦

Tφ 187.7◦± 0.3◦ 115.1◦± 1.6◦ 182.9◦± 0.8◦ 112.9◦± 1.4◦ 99.0◦± 0.6◦ 171.7◦± 0.3◦
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Figure 13. Influence of the tree species on the trunk inclination (left) and trunk orientation (right).
The deciduous trees tend to lean to the South, while the conifers tend to lean to the East. The orientation
follows the site aspect, while a general trend to the South can be observed.

Table 4. Amount of trees inclined with a specific explanatory variable for different groups.

Inclination Direction
Group Southward Down-Slope Leeward in Scan Direction

Species

Beech 70.8% 77.2% 39.9% 40.3%
Douglas 56.2% 60.5% 61.0% 50.4%

Oak 65.5% 74.1% 44.5% 42.9%
Pine 54.5% 63.4% 58.8% 43.1%

Spruce 53.6% 51.8% 67.5% 53.7%

Species Type Conifer 54.3% 56.3% 64.1% 50.2%
Deciduous 69.6% 76.5% 40.9% 40.9%

Root System
Flat 53.6% 51.8% 67.5% 53.7%

Heart 69.7% 75.9% 41.6% 41.1%
Tap 61.6% 70.3% 49.6% 43.0%

Total 66.0% 71.3% 46.8% 43.3%

Supporting Hypothesis 2, Table 4, shows that 71 % of the trees are inclined down-slope. The effect
of the terrain is highlighted in Figure 14. In general, increasing inclinations of slopes result in increased
inclination angles, while the orientation follows the site aspect systematically with a general trend to the
South. This observation is in accordance with the interaction between the site aspect and phototropism,
since a site facing to the sun facilitates light capture compared to a site facing to the North.

Figure 15 illustrates that this effect is highly species dependent. Beech and oak seem to be highly
affected by the interaction between phototropism and the terrain, while the site aspect has almost no
influence on the orientation of spruce.
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Figure 14. Influence of the slope on the tree inclination (left) and effect of the aspect on the trunk
orientation (right).
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Figure 15. Effect of the site aspect on differing tree species.

Table 4 also indicates an effect of the scan direction on the observed trunk orientation (Hypothesis 5).
But, the regular ALS flight pattern in combination with the uneven distribution of the tree species in the
mountain range makes an autocorrelation with the scan direction highly probable. The same is true for a
potential autocorrelation between the other explanatory variables. In consequence, for final conclusions
the regression models are investigated.
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4.5. Regression Models

4.5.1. Trunk Inclination

Figure 16 illustrates the feature selection procedure with the feature importances of the Random
Forest regressor and six linear regression models with differing features and interaction terms. Table 5
provides information on the partial and total R2 of all six linear models. With an out of the bag R2 of 0.594,
the Random Forest regressor performs slightly better than the linear models, with R2 values ranging from
0.570 to 0.590.
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Figure 16. Permutation feature importance of the Random Forest regressor (left) and regression coefficients
of selected linear trunk inclination models (right). The coefficients are scaled by 3

√ to display them in the
same plot. The given 98% and 80% confidence intervals are based on bootstrapping.

The coefficients of the control variables sez and sez—both associated with the uncertainty of the
trunk vectors—are significantly different from zero for all linear models, and dominate the models by
their explanatory power. The variable sez is positively correlated with the trunk zenith angle, since with
increasing uncertainty large zenith angles can occur at random. The tree height is negatively correlated to
the trunk inclination, which might either be caused by the uncertainty of the vectors or by the need of tall
trees to align vertically to avoid toppling.

Despite its low explanatory power with just about 2% of variance explained, the slope inclination
is positively correlated with the trunk inclination. Supporting Hypothesis 2, this is a first indicator for a
terrain dependent inclination of the trunks. In contrast to Hypothesis 5, a slight, but significant negative
correlation between the scan direction and the inclination angle can be observed.
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The models imply that none of the factors tree species, soil substrate or soil moisture affect the
trunk inclination significantly. Based on the given data, the mean wind speed as well as the direct solar
radiation seem not to influence the trunk inclination significantly. In addition, the control variables n and
scan_vertical_std seem not to affect the trunk inclination.

Table 5. Total R2 and partial R2 per regression coefficient of the linear trunk inclination models. Coefficients
significantly different from zero are marked in bold. Significant inter group differences are marked in italics.

Zenith 1 Zenith 2 Zenith 3 Zenith 4 Zenith 5 Zenith 6

(Intercept) 0.010 0.000 0.000 0.096
se_z 0.308 0.314 0.312 0.312 0.311 0.307
se_a 0.020 0.021 0.025 0.025 0.025 0.024
n 0.002 0.003
scan_horizontal_std 0.009 0.010 0.011 0.011 0.011 0.010
scan_vertical_std 0.000 0.000
scan_zenith 0.001 0.001
wind_mean_speed 0.000 0.000
solar_direct 0.001 0.001
height 0.076 0.067 0.074 0.074 0.075 0.083
slope 0.018 0.013 0.013 0.013 0.013 0.018
species:moisture:soil_substrate 0.004 0.004
species 0.001 0.098
moisture 0.000
soil_substrate 0.001

Total R2 0.573 0.590 0.586 0.581 0.578 0.570

4.5.2. Trunk Orientation

Figure 17 as well as Tables 6 and 7 illustrate the feature selection procedure for modeling the trunk
orientation. The Random Forest regressor achieves an adjusted R2 of about 0.27 while the circular standard
deviation is about 62◦. It identifies the terrain and solar—as the composites of the site aspect and the slope
inclination, respectively direct solar radiation—as the driving factors for the trunk orientation. It also
identifies the wind—as the combination of the prevailing wind direction and speed—and the scan direction
as important explanatory variables. Except for the tree species, the non-directed parameters achieve a
lower feature importance, while the soil moisture as well as the soil substrate have a minor contribution
to the model. With adjusted R2 values ranging from 0.13 to 0.18, as well as circular standard deviations
ranging from 76◦ to 83◦, the linear models achieve less accurate results than the Random Forest regressor.
But, up to about 19% of the variance can be explained by the linear models.

In accordance with the Random Forest regressor, with up to 14.7% of the variance explained by
interactions with the vectors terrain and solar (see Azimuth 6), the linear models identify the aspect as
the variable with most explanatory power. As Figure 17 illustrates, the trees tend to lean down-slope,
while significant species dependent differences can be found (terrain:species, solar:species). In detail,
deciduous trees gain a positive solar coefficient, while the coefficient for conifers does not differ significantly
from zero (see solar:species_type). Although a general tendency of the trunk orientation to the South could
be found in Section 4.4, the effect is not significant. Also a grouping by tree species (south:species) does not
reveal any significant effects. In consequence, the observed South inclination of the trunks (compare Figure
14) is probably the result of the interactions with the site aspect. The high explanatory power of the vectors
solar—representing the relative direct solar radiation—and terrain are indicators for the interaction between
phototropism and the terrain as the driving factor for the observed South-inclination of the trunks.

With up to 3.2% variance explained, the prevailing wind direction and speed (wind) have a significant
species dependent effect on the trunk orientation (wind:species). In particular, conifers tend to lean leeward,
while the models imply that beech tend to lean windward.



Remote Sens. 2020, 12, 3744 21 of 29

In accordance with the results of the trunk inclination modeling (Section 4.5.1), the tree height has a
significant effect on the trunk orientation. In particular, it intensifies the species depending leeward or
windward orientation (wind:species:height) of the trunks.

With 0.8% to 0.9% of variance explained by the vector scan, the LiDAR scan direction has a minor
but significant and robust effect on the trunk orientation for all six linear models. The model coefficients
imply that the trunk vectors are systematically inclined towards the direction of acquisition. But, this effect
might still be an artifact of the systematic scanning pattern.
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Figure 17. Permutation feature importance of the Random Forest regressor (left) and regression coefficients
of selected linear trunk orientation models (right). The coefficients are scaled by 3

√ to display them in the
same plot. The given 98% and 80% confidence intervals are based on bootstrapping.
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Table 6. Average explained variance per regression coefficient for the linear trunk orientation models.
Coefficients significantly different from zero are marked in bold. Significant inter group differences are
marked in italics. Measures are based on the training data set Tt.

Azimuth 1 Azimuth 2 Azimuth 3 Azimuth 4 Azimuth 5 Azimuth 6

terrain 8.9%
terrain:species 8.5% 8.3% 8.4% 8.5% 8.5%
solar 4.1%
solar:species 6.2% 6.3% 6.3% 6.1%
solar:species_type 6.2%
wind −0.1%
wind:species 2.9% 3.2% 3.2%
wind:species:height 3.6% 3.6%
south 0.3% −0.1%
south:species 0.5%
scan 0.9% 0.8% 0.8% 0.8% 0.8% 0.8%

Total 14.0% 18.8% 18.5% 18.6% 19.1% 19.1%

Table 7. Accuracy metrics of the trunk orientation prediction tφ̂ (coefficient of determination R2,
mean angular deviation Tεφ , circular standard deviation σTεφ

and the amount of trunks inclined with
the model T|εφ |<90◦ ). The metrics are based on the training data set Tt.

RF Azimuth 1 Azimuth 2 Azimuth 3 Azimuth 4 Azimuth 5 Azimuth 6

R2 0.271 0.127 0.178 0.177 0.178 0.184 0.181
Tεφ 0.1◦ −1.0◦ −3.6◦ −1.2◦ −0.4◦ 0.1◦ −0.1◦

σTεφ
61.8◦ 82.7◦ 77.3◦ 76.9◦ 76.7◦ 76.4◦ 76.4◦

T|εφ |<90◦ 82.8% 71.9% 74.7% 75.0% 75.0% 75.3% 75.3%

Table 8 highlights that the explanatory power of the vectors strongly depends on tree species.
In particular, with 22.6% of the variance explained, the orientation of deciduous trees can be modeled
more accurately than the orientation of the conifers with only 10.7%. In detail, the orientation of the
deciduous trees (beech and oak) is driven by interactions with the site aspect resulting in about 20% of
the variance explained by terrain:species and solar:species_type, while with about 2% the wind has a minor,
but significant contribution.

In contrast, with 11.1% the orientation of the spruce is driven by the interaction of the tree height
with wind, while the site aspect has no significant effect. In general, the effect of solar is not significant for
conifers, while the terrain is only significant for pine. For Douglas and pine, the interaction of tree height
with wind has a considerable effect on the trunk orientation.

Table 8. Average explained variance per regression coefficient of the regression model Azimuth 6 depending
on tree species. The measures are based on the validation data set Tv. If applicable, coefficients significantly
different from zero are highlighted in bold.

Beech Douglas Oak Pine Spruce Conifer Deciduous Total

terrain:species 11.4% 3.2% 9.8% 5.7% 0.3% 2.2% 11.1% 8.4%
solar:species_type 9.0% 0.2% 8.0% 0.3% 0.0% 0.1% 8.8% 6.1%
wind:species:height 2.0% 5.7% 0.6% 4.1% 11.1% 8.3% 1.7% 3.7%
scan 1.2% 0.0% 0.8% 0.8% −0.4% −0.0% 1.1% 0.8%

Total 23.7% 9.1% 19.2% 10.9% 11.0% 10.7% 22.7% 19.0%

Although the orientation of the trunks has been used to weight the linear equations, Figure 18 reveals
that the predicted orientation tφ̂ is not fully independent from the observed orientation tφ. In particular,



Remote Sens. 2020, 12, 3744 23 of 29

trunks inclined to the South-South-East and the East-North-East axes show the lowest residuals. In addition,
the accuracy of the model depends on the tree species and site aspect, while the effect of the scan direction
is minor.
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Figure 18. Residuals of the linear trunk orientation model Azimuth 6 depending on observed trunk
orientation (top-left), tree species (top-right), site aspect (bottom-left) and scan direction (bottom-right).

5. Discussion

The given study demonstrates that ALS detected tree trunks show preferred vector orientations
(Hypothesis 1). In particular, most of the trunks lean down-slope (Hypothesis 2) and a general tendency
to the South can be observed. The linear regression models imply that this interaction is highly species
specific (Hypothesis 3) and strongest for sites facing to the South, but diminishes for sites directed away
from the sun. Almost 20% of the predicted orientation of the beech is related to the site aspect, compared to
about 0% for spruce. These observations are in alignment with the expected species dependent interaction
between phototropism and tilted terrains as investigated by Matsuzaki et al. [6]. In the given study,
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the interaction between the site aspect and the direct solar radiation is suitable to explain the observed
South orientation of the trunks.

With 11.1% (spruce), 5.7% (Douglas) and 4.1% (pine) of the variance explained by the interaction
between tree species and tree height with the dominant wind direction and speed, the conifers tend to lean
leeward (Hypothesis 4). With only 2.0% for beech and 0.6% for oak, this effect is minor for deciduous trees.
These results are in alignment with Gardiner et al. [9] and Fourcaud et al. [17], since in particular spruce
are highly vulnerable to wind drag due to their compact crown shape and their flat roots. By adaptive
growth of the roots [9,13] and reducing the wind-drag by realigning the crown shape, the wind resistance
is increased [9,11]. Both effects might cause the observed leeward orientation of the stems.

No significant effect of the soil substrate as well as the soil moisture on the tree inclination can be
found in the given study. Since soil characteristics [16] and soil moisture [9,44] have been expected to
influence the resistance against toppling of trees, the given results are contrary to Hypothesis 6.

As a confounding variable, the ALS acquisition direction shows a minor, but significant effect on the
observed trunk inclination and orientation. Since the systematic West-East flight pattern in combination
with the Southeast-Northwest orientation of the mountain range makes an auto-correlation with the
preferred South inclination highly probable, no final conclusion on Hypothesis 5 can be drawn in this study.

5.1. Strengths and Limitations

The high uncertainty of ALS detected trunk vectors results in hidden patterns. Even for the
significantly inclined trunks, more than half of the observed trunk inclination is associated with attributes
expressing the uncertainty of the vectors. As a consequence, a huge number of tree trunks need to be
identified to make qualitative statements on the underlying causes for trunk inclination and orientation.

To address this issue, the trunk detection method developed for this study is designed to rapidly
identify a majority of doubtless linear structures based on heuristics. Its simplicity allows for a full analysis
of the study area covering hundreds of square kilometers within a reasonable amount of time (in the
magnitude of several hours). By excluding all trunk vectors with an uncertain orientation, hidden patterns
can be revealed. Since the algorithm provides a biased sample of dominant trees—for example, by missing
trees of the understory—effects like those postulated by Ishii and Higashi [7] cannot be investigated by
this approach. To gain a deeper insight, an accuracy assessment of the trunk detection algorithm and an
analysis of the detection rates for different habitats should be applied for future studies. Additionally,
in this study the significance of the conclusions is limited to the tree trunks only. Statements on the
influence of the underlying causes on the shape and orientation of the tree crowns are inadmissible.

By predicting the trunk orientation using a linear combination of explanatory vectors, qualitative
statements on the effect directions can be drawn. The strength of this knowledge-driven approach lies in
its simplicity, since the orientation of the trunks is modeled as the sum of the explanatory vectors only.
In consequence the effects postulated by Gardiner et al. [9] and Matsuzaki et al. [6] can be empirically
confirmed in this study. A limitation of using a linear combination of vectors is given in its inability
to describe effects oblique to the vector directions. In consequence such effects can be described by an
interaction of the vectors only. To incorporate non linear interaction terms, a detailed prior knowledge on
the underlying causes is required. In addition to these conceptual limitations, the ordinary least squares
regression cannot achieve the mathematically optimal solution, since the model minimizes the residuals

εx + εy instead of ε =
√

ε2
x + ε2

y (see Equation (5)).
As an empirical pre-study to investigate the usefulness of ALS data to study the tree trunk inclination

and orientation, the input data is not optimal for a detailed thematic analysis. In particular, the geometric
resolution of the wind dataset used in this study is much too coarse to inspect the small-scale variation of
the wind direction and speed and their effect on the inclination of trees. But, due to the complex interaction
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between forests and the terrain [9], a sufficient accuracy on the individual tree level might still not be
achievable. Due to the low variability of the wind directions in the study area, it might correlate with
the trunk orientation by coincidence. Other factors influencing the wind-drag, like the forest structure,
tree spacing and site conditions [9] could not be considered in the given study.

The tree species classification map used in the given study shows some weaknesses in the investigated
area. In consequence, species dependent effects might have been covered due to miss-classified tree trunks.
The explanatory power of the soil moisture is limited due to the spatial resolution of the soil moisture map.
Also due to the spatial auto-correlation between slope inclination, soil moisture and tree species, potential
effects might have been covered. The soil substrate has not shown any significant effect on the trunk
inclination. This is probably caused by the low spatial resolution and the coarse class division, which give
poor information on the actual structural integrity of the soils. Again, more suitable input data and a
detailed geo-spatial analysis could reveal hidden effects.

Despite the weaknesses of the input data, for the first time—to the knowledge of the authors—the
given study can empirically confirm systematic trunk inclination patterns using ALS data. In particular,
several hypotheses on the trunk orientation can be addressed. Effects like the species dependent interaction
between phototropism in tilted terrains—as postulated by Matsuzaki et al. [6]—can be confirmed.

5.2. Future Research

Having shown that the ALS derived trunk orientations are in alignment with the current state of
knowledge on tree inclination, a transfer to other study areas seems promising. Trunk detection might
serve as a tool to empirically confirm assumptions on predominant tree orientations on large scales.
With more robust detection methods, the number of identified trunks and the accuracy of the trunk vectors
may be increased, allowing for more detailed analyses. In general, a focus should be set on the geo-spatial
analysis of the trunk inclination and orientation while comparing this information with terrestrial reference
data. In this manner, the investigation of the ALS derived trunk inclination and orientation may be used
to identify landslide areas and to estimate the potential wind drag to assess the risk of wind throw. In this
context, a supplementary detection of fallen trees and the investigation of storm events would provide
valuable information.

6. Conclusions

This study has shown that tree trunks detected using airborne laser scanning can provide information
on preferred stem inclination angles and directions. Although a significant proportion of the trunk
inclination variance is associated with the uncertainty of the fitted trunk vectors, an empirical analysis has
shown that the observed orientation of the significantly inclined trunks is in alignment with today’s state of
knowledge. In particular, weighted least squares regression models—describing the trunk orientation as a
linear combination of directed explanatory variables—have confirmed a highly species specific down-slope
inclination of the trunks. While the orientation of beech and oak is dominated by the site aspect—associated
with the interaction of phototropism and tilted terrains—the spruce tend to lean leeward. The orientation
of the conifers Douglas and pine seems to be driven by both, aspect and wind.

Given these results, the detection of tree trunks using airborne laser scans might be a promising tool
to investigate the effect of various influence factors on the tree inclination and orientation. In addition to
empirically confirming findings of fundamental research, the presented methods might be used to identify
landslides or to address the risk of wind throw on large scales.
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Airborne Laser Scanning
GPS Global Positioning System
IoU Intersection over Union
LiDAR Light Detection And Ranging
LVermGeo Landesamt für Vermessung und Geobasisinformation Rheinland-Pfalz
NNE North-North-East
ENE East-North-East
ESE East-South-East
SSE South-South-East
SSW South-South-West
WSW West-South-West
WNW West-North-West
NNW North-North-West
I Relative direct solar radiation.
δ Solar declination angle in ◦.
φg Geographic latitude in ◦.
τ Hour of the day.
β Slope of the surface in ◦.
γs Site aspect in ◦.
θ Declination angle ◦.
h True sun height ◦.
ĥ Apparent sun height ◦.
DOY Day of year.

Appendix A. Solar Radiation

In the given study, the relative direct solar radiation at a specific site I is calculated according to
Reference [38] using Equations (A1)–(A6):

I =
sin(θ)
sin(ĥ)

(A1)

θ = sin−1 (sin(h) · cos(β) + cos(h) · cos(γs − γ) · sin(β)) (A2)

h = sin−1
(

sin(φg) · sin(δ)− cos(φg) · cos(δ) · cos
(

2π

24
τ

))
(A3)

ĥ = h +
1.4705

3.0427 + h
− 0.0158 (A4)
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γ = sin−1

(
cos(δ) + sin

( 2π
24 τ
)

cos(h)

)
(A5)

δ = 0.7896

− 23.2559 · cos
(

2π ·DOY
365

+ 0.1582
)

− 0.3915 · cos
(

4π ·DOY
365

+ 0.0934
)

− 0.1764 · cos
(

6π ·DOY
365

+ 0.4539
)

(A6)
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