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Acknowledgements

I would like to thank Prof. Ekkehard Sachs, my supervisor, for his many suggestions

and constant support during this research. I am also thankful to Prof. John A. Burns for

making a special trip to Trier to serve as examiner.

During work on this thesis I was employed as a research associate for Prof. Dieter Sad-

owski in the Dept. of Economics at the University of Trier. A special measure of gratitude

is due Prof. Sadowski for providing ample research time and moral encouragement. On

a related note, I wish to thank my colleagues at the University of Trier and the Institute

for Labor Law and Labor Relations (IAAEG), especially Dipl.-Vw. Tanja Machalet and

Anne Besslich, for maintaining a friendly working environment.

I am deeply indebted to my wife, Petra, and our children, Helena, Michael, Matthew

and Hannah for their patience and support during the many long hours I spent working

on this thesis.

Finally, I wish to thank Dipl.-Wirtsch.-Math. Bärbel Bender, who read through the

final manuscript and made many helpful suggestions.

Trier, Germany Bret Kragel
May 20, 2005



ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Notation and Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Domain Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Vector-valued Distributions . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 Domain Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Condition of Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . 12

2 A Flow Control Problem 15
2.1 The Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Weak Formulation of the Navier-Stokes Problem . . . . . . . . . . . 17

2.1.2 Homogeneous Boundary Conditions . . . . . . . . . . . . . . . . . . 17

2.1.3 Inhomogeneous Boundary Conditions . . . . . . . . . . . . . . . . . 18

2.2 A Velocity Tracking Problem with Boundary Control . . . . . . . . . . . . . 19

2.2.1 Structure of Flow Control Problems . . . . . . . . . . . . . . . . . . 19

2.2.2 An Abstract Control Problem . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Model Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Numerical Solution of the Navier-Stokes System . . . . . . . . . . . . . . . . 23

2.3.1 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Solution of the Nonlinear Systems . . . . . . . . . . . . . . . . . . . 27

3 The Streamline Diffusion Method 29

3.1 The Necessity of Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Sources of Instabilities in Standard Finite Element Methods . . . . . 31

3.2 The SDFEM for Linear Convection-Diffusion Problems . . . . . . . . . . . . 33

3.2.1 A Typical Application of Streamline Diffusion . . . . . . . . . . . . . 34

3.2.2 Extensions to Nonconforming Elements . . . . . . . . . . . . . . . . 40

3.3 SDFEM for Navier-Stokes Problems . . . . . . . . . . . . . . . . . . . . . . 41

4 Proper Orthogonal Decomposition 45

4.1 Mathematical Formulation of the POD . . . . . . . . . . . . . . . . . . . . . 46
4.1.1 Construction of the POD Basis . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Properties of the POD Basis . . . . . . . . . . . . . . . . . . . . . . 49

iii



4.1.3 The Dimension of the POD Subspace . . . . . . . . . . . . . . . . . 51
4.2 Error Estimates for POD Methods . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Perturbation Analysis of the POD Approximation Error . . . . . . . 52
4.2.2 The Effect of Spatial Discretizations on the POD Basis . . . . . . . 54
4.2.3 Error Estimate for POD Approximations . . . . . . . . . . . . . . . 56

4.3 Numerical Analysis of POD Basis and Model Behavior . . . . . . . . . . . . 58
4.3.1 Dependence of the Eigenvalues on the Snapshot Density . . . . . . . 59
4.3.2 Dependence of the Eigenvalues on the Spatial Discretization . . . . . 59
4.3.3 Convergence of the POD Basis . . . . . . . . . . . . . . . . . . . . . 60
4.3.4 Influence of Streamline Diffusion on the POD Basis . . . . . . . . . 61

5 The Streamline Diffusion POD Model 77
5.1 The POD-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 The Galerkin POD Projection . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 Error Measures for the POD-Based Model . . . . . . . . . . . . . . . 80
5.1.3 Numerical Analysis of POD-Based Model . . . . . . . . . . . . . . . 81
5.1.4 Effect of Stabilization on the POD-Based Model . . . . . . . . . . . 82

5.2 The Streamline Diffusion POD Model . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 Motivation and Formulation of the Model . . . . . . . . . . . . . . . 84
5.2.2 Numerical Analysis of the Streamline Diffusion POD Model . . . . . 87

5.3 Gradient Information for the Model Control Problem . . . . . . . . . . . . . 88
5.3.1 Gradient Information via the Adjoint Method . . . . . . . . . . . . . 91
5.3.2 Numerical Example for the Adjoint Derivatives . . . . . . . . . . . . 91

5.4 Some Remarks on the SDPOD Model . . . . . . . . . . . . . . . . . . . . . 92

6 The Trust-Region SDPOD Method 93
6.1 A Recursive Trust-Region Method for Multilevel Optimization . . . . . . . 94
6.2 Multilevel Optimization with SDPOD-Based Models . . . . . . . . . . . . . 99

Conclusion 107

A Derivation of the Reduced-Order Models 109
A.1 Derivation of the Standard POD-Based Model . . . . . . . . . . . . . . . . 109
A.2 Derivation of the SDPOD Model . . . . . . . . . . . . . . . . . . . . . . . . 112
A.3 Derivation of the Adjoint Equation . . . . . . . . . . . . . . . . . . . . . . . 114
A.4 Calculation of the ODE Coefficients . . . . . . . . . . . . . . . . . . . . . . 115

iv



Chapter 1

Introduction

1.1 Motivation

The usual numerical approaches to the solution of partial differential equations, such as

finite elements and finite differences, can lead to large algebraic systems that are difficult

to handle computationally. This is especially true of time-dependent processes, in which

the systems resulting from the spatial discretization must be solved at each time step.

These difficulties have led researchers to develop low-order models, such as the proper

orthogonal decomposition (POD), that can describe the system of interest using a relatively

small number of degrees of freedom. POD has been used successfully in a wide range of

applications (cf. [3, 6, 7, 9, 41, 47, 72, 103, 126, 127, 149]) and continues to be an area of

intense research interest (cf. [71, 94, 97, 98, 119, 120, 148, 147, 146]).

One of the more promising applications of the proper orthogonal decomposition is

the optimal control of systems in which the dependence of the system state on control

variables — often denoted by φ and g, respectively — is described by a partial differential

equation. The goal of the optimal control problem is the minimization of a cost functional

J (g) = J (φ(g), g), which may take any number of forms depending on the desired control

action (see Section 2.2). In principle, one would like to replace the state equation(s) φ(g)

with a POD-based model φ̂(g) that can be solved with much less computational effort than

needed for the high-order solution process. If the model φ̂(g) accurately represents the

action of system φ(g) throughout the optimization process, then the model optimal control

problem Ĵ (g) = J (φ̂(g), g) can in theory be solved cheaply. In reality, some difficulties

arise.

The main difficulty with POD-based methods as applied to optimal control problems

is the issue of model fidelity. POD-based models for the state equations are derived from

data provided by experiment or direct numerical simulation (DNS), making the ability

of these models to accurately represent the system state dependent on the underlying

problem data (e.g., initial and boundary conditions and Reynolds number). In order to

guarantee fidelity, the model must be periodically reset during the optimization process

(cf. [3, 41, 55, 56]). This requires renewed – and computationally expensive – high-order

1



2 1 Introduction

solution of the state equations.

Fahl [41] attempted to solve this quandary by embedding the optimization process

in a trust-region POD (TRPOD) approach. The TRPOD method begins with a high-

order solution of the state equations using some initial control g0. A POD-based model

derived from the high-order solution is then used to solve the optimal control problem,

generating a potential optimal control gnew, with the set of admissible controls limited to

some ”trusted” neighborhood ‖gnew − g0‖ ≤ △0 of g0, where △0 is known as the trust-

region radius. A new high-order solution is subsequently generated using the updated

control, and the actual decrease J (g0)−J (gnew) in the cost functional achieved using the

high-order solver is compared to the decrease Ĵ (g0)− Ĵ (gnew) predicted by the model. If

the ratio

ρ =
J (g0) − J (gnew)

Ĵ (g0) − Ĵ (gnew)

is sufficiently large, the trust-region radius is decreased, left constant or increased depend-

ing on the size of ρ, a new POD-based model is generated using the updated high-order so-

lution of the state equation, and the control problem is resolved using the new POD-based

model. If ρ is too small, the new high-order solution is rejected, the trust-region radius

is decreased and the optimal control problem is resolved using the original POD-based

model. This process continues until convergence to a local stationary point is achieved.

Making the usual trust-region assumptions on the cost functional J and the model Ĵ
(cf. [35, 138]), along with conditions needed to ensure consistency between the gradients of

the objective and model problems (see also [19, 26, 27]), Fahl was able to prove convergence

of the TRPOD method to a local stationary point.

The TRPOD approach is quite sensible, but still requires repeated high-order solution

of the state equations. In this sense, it would be advantageous if one could acquire the

information for POD basis generation and augmentation with less computational effort.

For data generated by numerical simulation this might be accomplished by using coarser

grids to compute approximate solutions, which can then be used as starting points for

optimization on finer grids (cf. [10, 11, 15, 58]). Since the coarser grids may still require

considerable computational effort, it makes sense to extend the POD approach to the

coarser grids as well. We propose to significantly improve the TRPOD approach by using

recursive trust-region methods, recently introduced by Gratton et al. [57], combined with

POD methods on coarse and fine grids. These methods have the potential to reduce the

computational effort required for solving optimal control problems such as those discussed

above, while maintaining the guaranteed convergence of trust-region methods. As far as

we know, this work is the first attempt to combine the recursive trust-region methodology

with POD-based models derived from numerical data at various mesh refinement levels.

The idea outlined above has immediate intuitive appeal; however, some theoretical

and practical difficulties quickly become apparent. On the theoretical side, the conver-

gence proof for the recursive trust-region methodology [57] is restricted to quadratic model
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functions of the form

mk(xk + s) = f(xk) + (∇xf(xk), s) +
1

2
(s,∇xxf(xk) s),

where f : R
n 7→ R is the twice continuously differentiable objective function, and xk ∈ R

n

is the current iterate in the k-th optimization step. Nevertheless, we believe the theory

can be extended to more general model functions as was done for nonrecursive trust-region

procedures by Toint [138], Carter [26] and Conn et al. [35], and applied by Fahl to the

TRPOD approach as described above (see also [19, 25, 27, 87, 88]).

On the practical side, it is well-known that mixed convection-diffusion problems with

dominant convection may suffer from numerical instability problems (cf. Chapter 3) that

can lead to oscillations in the solution and failure of the high-order numerical solution

procedure to converge. This problem can be eliminated either by resorting to finer grids,

which we wish to avoid, or by utilizing some sort of stabilization, e.g., upwinding or

streamline diffusion. Though both techniques are sufficient to stabilize the solution, we are

especially interested in the streamline diffusion finite element method (SDFEM), because

of its better theoretical convergence properties and because it is naturally formulated as a

Petrov-Galerkin method, which allows easy incorporation into the POD-based model. It

turns out though, that these stabilization procedures result in POD basis functions that are

incompatible with the standard POD-based reduced-order model, as we will demonstrate

in Section 5.1. As a remedy, in Section 5.2 we suggest and experiment with approaches

for incorporating the stabilization action into the reduced-order model. We show that the

resulting procedure leads to a POD-based model that is tuned to the high-order solver,

so that models derived from rougher discretizations can be used with confidence. As far

as we know, this thesis introduces the idea of adding stabilization from the high-order

numerical solution process to the POD-based model.

1.2 Outline

In this section, we present a structural overview of the contents of this thesis.

Section 1.3 reviews some standard and specialized function spaces and notation we will

need later for the theoretical treatment of the Navier-Stokes equations and related prob-

lems. Section 1.4 closes the introductory chapter by extending the concept of condition

– well-known for matrices themselves – to the eigenvalues and eigenvectors of Hermitian

matrices.

In Chapter 2 we present an optimal control problem that will serve as the basis for

numerical testing of our POD methods in later chapters. We will concentrate on the

velocity-tracking problem for fluid flow in a bounded two-dimensional region of R
2, in

which the system state, denoted here by u, is determined from the boundary control g by
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solution of the nonstationary viscous incompressible Navier-Stokes equations

ut − ν△u + u · ∇u + ∇p = 0 in (0, T ] × Ω

∇ · u = 0 in (0, T ] × Ω

u = g on [0, T ] × Γ

u(0,x) = u0(x) in Ω,

(1.1)

where u0 is the initial condition, Γ denotes the boundary of Ω and [0, T ] is some time

period of interest. The objective of the velocity tracking problem is to drive a candidate

velocity field to some given target velocity ud ∈ (0, T ] × Ω by appropriately controlling

the velocity along a portion of the flow domain boundary. This objective is reflected in

the minimization of the cost functional

J (u(g),g) =
1

2
‖u − ud‖2

L2(0,T ;L2(Ω)) . (1.2)

Section 2.1 introduces a weak formulation of (1.1) and gives conditions on g, u0 and Γ

that ensure the existence of a unique weak solution of (1.1). In Section 2.2 we consider

an abstract formulation of the velocity tracking problem due to Gunzburger/Manservisi

[65], and state a theorem from the same guaranteeing the existence of a solution to the

problem.

We close Chapter 2 with a description of FEATFLOW, a finite element solver developed

by Turek [141] for the numerical solution of the incompressible Navier-Stokes equations

in two and three dimensions. The discretization process is separated in space and time.

Semi-discretization in time leads to a generalized stationary Navier-Stokes problem with

prescribed boundary values for each time step. The stationary problems are discretized

using piecewise rotated bilinear shape functions on a quadrilateral mesh. The solution

procedure for the resulting algebraic systems is described briefly in Section 2.3.3.

Chapter 3 introduces stabilization methods required for the numerical solution of

convection-diffusion problems with dominant convection. Section 3.1 begins with a simple

example illustrating how instabilities of purely numerical character can arise for such prob-

lems. The example is then supplemented by a more detailed examination of a situation

involving the discretization of the linearized Navier-Stokes equations. In the remainder of

the chapter we discuss some methods for stabilizing the numerical solution procedure, be-

ginning in Section 3.2 with a streamline diffusion method for a linear convection-diffusion

problem. We study the application of streamline diffusion to convection-diffusion prob-

lems for two reasons. First, although most of the work in this thesis will concern the

Navier-Stokes equations, the modified POD methods we introduce in Chapter 5 are also

applicable to convection-diffusion problems. Second, application of streamline diffusion to

such problems is conceptually and technically simpler than is the case for Navier-Stokes

equations. In this way, we can introduce the main features of streamline diffusion without

turning a short chapter into a long one. In Section 3.3 we extend the discussion to the

Navier-Stokes equations by describing an interesting streamline diffusion formulation from
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Tobiska/Verfürth [137] for the generalized Navier-Stokes equations. This is followed by a

detailed description of the streamline diffusion method implemented in the FEATFLOW

solver mentioned earlier.

Chapter 4 is dedicated to an extensive discussion of proper orthogonal decomposition.

Generally speaking, the POD method uses data – a so-called snapshot ensemble ui ∈ H,

i = 1, . . . , n from some solution space H – generated either experimentally or from the

numerical solution of the system of interest, to build an orthonormal system of basis

elements that reflect the salient characteristics of the expected solution. In the context of

fluid flow problems, the dynamical system of interest is subsequently projected onto the

POD basis – the Galerkin POD method – to derive a POD-based model for the system.

We begin the discussion of POD methods in Section 4.1, where the POD basis is derived

from a minimization problem based on the approximation error between the snapshot

ensemble and the projection of the snapshots onto the POD basis – a procedure that is

well-known from the canonical POD literature (cf. [13, 72, 126]). In Section 4.1.1 we

introduce methods for computing the POD basis from the snapshot ensemble. We will use

the so-called method of snapshots introduced by Sirovich [126] that allows computation

of the POD basis vectors ψi, i = 1, . . . , p, by solving the eigenvalue problem for the

correlation matrix K, defined by Kij = (ui, uj), 1 ≤ i, j ≤ n, and setting

ψi =
1√
λi

n∑

j=1

vijuj , i = 1, . . . , p (1.3)

where p ≤ n is the rank of K, λi, i = 1, . . . , p, are the positive eigenvalues of K and vi,

i = 1, . . . , p, the corresponding eigenvectors with components vij , j = 1, . . . , n.

In the last part of Section 4.1 we note some of the interesting properties of the POD

basis, emphasizing its superiority to other linear decompositions of the space spanned by

the snapshots. Finally, we note that the eigenvalues in (1.3) often decline rapidly, with a

large measure of the information or energy in the snapshots captured by a small number

of eigenvalues. In this case, the POD basis can be truncated, resulting in a significant

decrease in model order with little loss in fidelity.

As discussed above, we are interested in building and using POD-based models gener-

ated from numerical simulations on meshes of various courseness/fineness. In this sense,

it would be comforting to have some idea how well the POD-based models derived from

coarse meshes approximate the models derived from finer meshes. Though it appears

that little research has been done in this area to date, Kunisch, Volkwein and Hinze

([91, 93, 92, 147, 71]) have produced some initial results, which we review in Section 4.2.

Specifically, we are interested in three separate but related phenomena:

1. The dependence of the POD basis on the intervals at which the POD snapshots are

taken (Section 4.2.1).

2. The dependence of the POD basis on the spatial discretization of the domain Ω

(Section 4.2.2).



6 1 Introduction

3. Error estimates for Galerkin POD methods (Section 4.2.3).

In Section 4.2.1 we state a proposition from Kunisch/Volkwein [91, 93] on the convergence

of the POD eigenvalues as the time intervals between the POD snapshots become smaller,

or equivalently, as the number of snapshots becomes larger. Section 4.2.2 reviews some

results from Volkwein concerning the dependence of the correlation matrix K on the finite

element mesh parameter h. Section 4.2.3 gives some error bounds from Kunisch/Volkwein

[92] for the Galerkin POD procedure.

In Section 4.3 we perform extensive numerical testing of the results of Section 4.2 at

Reynolds numbers of Re = 100, Re = 400, Re = 10, 000 and Re = 20, 000. These results

indicate that at lower Reynolds numbers POD-based models derived from data generated

on course meshes will likely provide good approximations for POD-based models derived

from finer meshes. This is not so clear at Re = 10, 000 and Re = 20, 000, suggesting the

need for trust-region methodology to guide the optimization process.

Chapter 5 deals directly with POD-based models for the Navier-Stokes equations. In

the Navier-Stokes context, the POD method assumes that the velocity can be written as

a linear combination of the POD basis functions. In Section 5.1 a Galerkin POD-based

reduced-order model is formulated for the driven cavity problem described in Section 2.2.3

by expanding the velocity field into a linear combination of the POD basis of Section 4.1,

resulting in a model of the form

u(t,x) = un(x) + γ(t)uc(x) +

m∑

i=1

yi(t)Ψi(x), (1.4)

where u denotes the system velocity, uc is a reference velocity field, γ is the boundary

control along the top of the cavity, un is the average of the snapshots and the coefficients

(or modes) yi, i = 1, . . . , m, are determined from a system of ordinary differential equations

arising from the projection of the Navier-Stokes equations onto the POD basis.

Numerical testing in Section 5.1 reveals that the streamline diffusion needed to stabilize

the high-order Navier-Stokes solution procedure used for the generation of the snapshot

ensemble results in POD basis functions that are incompatible with the standard POD-

based reduced-order model for the Navier-Stokes equations. Consider, for instance, Figure

1.1 on Page 7. The graphic on the left compares the first mode y1 of a POD-based

model derived from numerical data at Reynolds number Re = 10, 000, where streamline

diffusion was used for stabilization, with the direct projection of the snapshot ensemble

onto the corresponding POD basis vector. As explained in Section 5.1, the curves should be

superimposed on one another if the POD-based model is accurate; however, this is clearly

not the case in the figure. This dissonance can even result in the failure of the ordinary

differential equation solver to converge, as illustrated in the right graphic of Figure 1.1,

making it impossible to compute the modes yi in (1.4). Clearly, the POD-based model

(1.4) is useless if the modes cannot be determined.
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As a remedy, in Section 5.2 we suggest and experiment with approaches for incorpo-

rating the stabilization action into the reduced-order model. We show that the resulting

procedure, which we call streamline diffusion POD (SDPOD), leads to a POD-based model

that is tuned to the high-order Navier-Stokes solver, so that models derived from rougher

discretizations can be used with confidence. For use in the optimization process, we derive

gradient information for our POD-based models in Section 5.3 using the adjoint method.

We begin Chapter 6 by presenting a recursive multilevel trust-region method recently

suggested and analyzed by Gratton et al. [57]. The method is constructed using quadratic

model functions, so the method and the accompanying theoretical analysis are not directly

applicable to POD-based model functions. Nevertheless, since nonrecursive trust-region

methods have successfully been adapted to more general model functions, including POD-

based models (cf. [26, 35, 41, 138]), we are hopeful that the theoretical results from

the recursive procedure can be adapted to the SDPOD-based models as well. We limit

ourselves to numerical tests at Reynolds numbers of Re = 400 and Re = 10, 000. The

results, which are detailed in Section 6.2, are encouraging.

Appendix A provides a detailed derivation of the POD-based models of Chapter 5,

showing how they can be computed using the finite element basis functions of the high-

order Navier-Stokes solver. The derivations are relatively straightforward, but laborious.
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Figure 1.1: Projected and predicted modes at Re = 10, 000 using streamline diffusion in
the Navier-Stokes solver. In the graphic on the left, the POD modes are inaccurate when
generated on a 49× 49 mesh. The graphic on the right shows how the ODE solver fails to
converge for snapshots generated on a 13 × 13 mesh.

1.3 Notation and Function Spaces

In this section we present some notation and results from functional analysis that will

be used frequently in the sequel. More detailed information and discussion can be found

in Adams [2], Ciarlet [32], Dautray/Lions [37] and Lions/Magnaes [100], and the first
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chapters of the books by Girault/Raviart [51], Grisvard [60], Showalter [125] and Temam

[129].

1.3.1 Function Spaces

For a function u : R
n → R and α = (α1, . . . , αn) ∈ N

n
0 , we set

|α| =

n∑

i=1

αn and ∂αu =
∂|α|u

∂xα1
1 . . . ∂xαn

n
.

We adopt the usual notation for the gradient and Laplace operators

∇u = (∂u/∂x1, . . . , ∂u/∂xn) and ∆u =
n∑

i=1

∂2u

∂x2
i

,

respectively. For vector-valued functions u = (u1, . . . , un) we define the divergence opera-

tor ∇· by

∇ · u =

n∑

i=1

∂ui

∂xi

so that ∇ · (∇u) = ∆u for real-valued functions.

1.3.2 Domain Regularity

We denote by Ω a bounded connected open subset of R
n with boundary Γ. The boundary

Γ is called Lipschitz-continuous (or Lipschitz), if Γ is locally the graph of a Lipschitz

function. We say Γ is of class Cr, with r ≥ 1 to be specified, if Γ is a manifold of

dimension n − 1 of class Cr. The boundary is of class Cr,1 if it is of class Cr and the

derivative of order r is Lipschitz continuous. In all cases we assume that Ω is locally on

one side of Γ.

In general, we would like to work with Lipschitz-continuous boundaries as these al-

low domains with corners, which are standard in nearly all applications; however, such

domains are insufficient for rigorous study of boundary value problems with nonhomo-

geneous boundary conditions, which require more regularity on the boundary. Where

necessary, we approximate the domain of interest with a domain meeting the regularity

demands of the theoretical treatment.

1.3.3 Sobolev Spaces

For any open bounded subset Ω ⊆ R
n, we denote by Lp(Ω) the space of R-valued functions

on Ω, for which
(∫

Ω |u|p dx
)1/p

< ∞. For m ∈ N0 and 1 ≤ p ≤ ∞, we denote the usual

Sobolev spaces by

Wm,p = {u ∈ Lp(Ω) | ∂αu ∈ Lp(Ω) ∀ |α| ≤ m}.
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These become Banach spaces when outfitted with the norms

‖u‖m,p,Ω =

(
∑

|α|≤m

∫

Ω
|∂αu|p dx

)1/p

, for p < ∞

and

‖u‖m,p,Ω = max
|α|≤m

(

ess sup
x∈Ω

|∂αu|
)

, for p = ∞.

We can also define the seminorm

|u|m,p,Ω =

(
∑

|α|=m

∫

Ω
|∂αu|p dx

)1/p

, for p < ∞,

with the corresponding modification for p = ∞.

Treatment of boundary conditions requires the introduction of Sobolev spaces of frac-

tional order. The notation and theory needed to introduce these spaces coherently is

extensive. We refer the reader to the thorough exposition by Grisvard [60, Sections 1.3-

1.4], in which the notion of Sobolev spaces is extended to nonintegral values of m.

For p = 2 we denote the space Wm,2(Ω) by Hm(Ω) dropping the subscript p = 2 from

the notation for the norm and seminorm. With the scalar product

(u, v)m,Ω =
∑

|α|≤m

∫

Ω
∂αu ∂αv dx,

Hm(Ω) becomes a Hilbert space. We denote the space of continuous functions defined in

Ω by C0(Ω) and set

Cm(Ω) = {u ∈ C0(Ω) | ∂αu ∈ C0(Ω) ∀ |α| ≤ m}.

We will often suppress Ω from the notation, as the domain of interest will usually be known.

For vector-valued functions u : Ω → R
d, d ≥ 2, we add a superscript to the notation for

the vector-valued counterparts of the function spaces defined above; e.g., L2(Ω)d for the

space of square-integrable R
d-valued functions. We shall use H−m(Ω) to denote the dual

space of Hm
0 (Ω), which is normed by

‖f‖−m,Ω = sup
v∈Hm

0 (Ω)

v 6=0

(f, v)m,Ω

‖v‖m,Ω

. (1.5)

If the domain Ω is connected and bounded in at least one direction, then for each nonneg-

ative integer m, there exists a constant c = c(m, Ω) > 0 such that the Poincaré-Friedrichs

inequality

‖v‖m,Ω ≤ c |v|m,Ω ∀ v ∈ Hm
0 (Ω) (1.6)

holds. The inequality (1.6) implies that the mapping v 7→ |v|m,Ω is a norm on Hm
0 (Ω),

equivalent to ‖·‖m,Ω.
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We will repeatedly – often without mention – make use of Young’s inequality

ab ≤ σ
ap

p
+ σ−q/p bq

q
, (1.7)

which holds for all a, b, σ > 0 and all p ∈ (1,∞) with q = p/(p − 1).

Specialized Sobolev Spaces

For the derivation of weak or variational formulations for Navier-Stokes problems in two

and three dimensions (d=2,3), we will also require the divergence-free spaces

H(Ω) = {v ∈ L2(Ω)d | ∇ · v = 0, v · n = 0 on Γ},
V(Ω) = {v ∈ H1

0 (Ω)d | ∇ · v = 0},
W(Ω) = {v ∈ L2(Ω)d | ∇ · v = 0},

and the space

L2
0(Ω) = {q ∈ L2(Ω) |

∫

Ω
q dx = 0},

where n denotes the outward normal at the boundary Γ (see Girault/Raviart [51] or

Temam [129] for detailed discussion of these spaces).

For bounded open sets Ω of class C2, we define the spaces

H2
curl(Ω) = {v ∈ H1(Ω)d | ∇ · v = 0,

∫

Γ
v · n dx = 0},

H1
n(Γ) = {g ∈ H1(Γ)d |

∫

Γ
g · n dx = 0} and

H1
n0(Γ) = H1

0 (Γ) ∩ H1
n(Γ).

Note that H2
curl(Ω) is a closed subspace of H1(Ω)d, while H1

n(Γ) and H1
n0(Γ) are closed

subspaces of H1(Γ)d (cf. Dautray/Lions [37]). We drop the superscript d for the spaces

H2
curl(Ω), H1

n(Γ) and H1
n0(Γ) as we have only limited use for them and the dimension of the

space will be clear from the context and their definition in terms of H1(Ω)d and H1(Γ)d.

The Trace Theorem

We now describe the sense in which functions in Sobolev spaces can be restricted to the

boundary of the domain. In particular, we wish to know how smooth the boundary data

must be in order for a function in Hm(Ω) to assume this data. Denoting by γ the operator

defined by γu = u |Γ for u and Γ smooth enough, we have the following result from

Grisvard [60, Theorem 1.5.1.2]:

Theorem 1.1. Let Ω be a bounded open subset of R
n with a Ck,1 boundary Γ. Assume

that s − 1/2 is not an integer, s ≤ k + 1, s − 1/2 = l + σ, 0 < σ < 1 with l ∈ N0. Then

the mapping

u 7→
{

γu, γ
∂u

∂n
, . . . , γ

∂lu

∂nl

}

,
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which is defined for u ∈ Ck,1(Ω), has a unique continuous extension as an operator from

Hs(Ω) onto
l∏

j=0

Hs−j−1/2(Γ),

with a right continuous inverse. In particular, we have

γ : H1(Ω) 7→ H1/2(Γ).

1.3.4 Vector-valued Distributions

For T > 0 and some Banach space X with norm ‖·‖X , we denote the Bochner space of

measureable functions u : [0, T ] → X for which
∫ T
0 ‖u(τ)‖p

X dτ < ∞ by Lp(0, T ; X). The

space Lp(0, T ; X) is itself a Banach space with respect to the norm

‖u‖Lp(0,T ;X) =







(∫ T
0 ‖u(τ)‖p

X dτ
)1/p

, 1 ≤ p < ∞
ess sup
τ∈(0,T )

‖u(τ)‖X , p = ∞.

Similarly, we denote by C([0, T ];X) the space of continuous functions from [0, T ] into X,

and by Cm([0, T ];X) the space of m-times continuously differentiable functions from [0, T ]

into X. These are likewise Banach spaces for the norms

‖u‖C([0,T ];X) = ess sup
τ∈[0,T ]

‖u(τ)‖X ,

‖u‖Cm([0,T ];X) =

m∑

i=1

∥
∥∂iu/∂ti

∥
∥

C([0,T ];X)
.

We need to extend these spaces somewhat for the theory of Navier-Stokes equations. To

this end, we define for r, s ≥ 0 and Q = (0, T ) × Ω the anisotropic Sobolev spaces

Hr,s(Q) = L2(0, T ; Hr(Ω)) ∩ Hs(0, T ; L2(Ω)),

with the norm

‖u‖Hr,s(Q) = (‖u‖2
L2(0,T ;Hr(Ω)) + ‖u‖2

Hs(0,T ;L2(Ω)))
1/2.

The spaces Hr,s(S) and Hr,s(Sc) are defined analogously for S = (0, T ) × Γ and Sc =

(0, T ) × Γc (cf. Lions/Magnaes [100, Vol. II, Chapter 4]).

1.3.5 Domain Decompositions

For finite element discretizations, we will need appropriate decompositions of the domain

Ω into triangles or quadrilaterals. Following Roos et al. [122], we denote by T h a family

of decompositions of the domain Ω into quasiuniform meshes with polyhedral elements
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T ∈ T h. Let Eh(T ) denote the set of all edges of an element T ∈ T h with Eh = ∪
T∈T h

Eh(T ),

and set

hT = sup
x,y∈T

|x − y| for each T ∈ T h,

hE = sup
x,y∈E

|x − y| for each E ∈ Eh.

Then the quasiuniformity of the triangulation T h implies that the ratio hT /hE is bounded

independently of h, T and E. For any E ∈ Eh with E = T1∩T2, T1, T2 ∈ T h and q ∈ L2(Ω)

with q |Ti∈ C(Ti), i = 1, 2, let the jump [q]E and average AEq across and along an edge

E ∈ Eh be defined by

[q]E(x) :=







lim
t→+0

q(x + tnE) − lim
t→+0

q(x − tnE) E 6⊂ Γ

− lim
t→+0

q(x − tnE) E ⊂ Γ
, (1.8)

and

AEq(x) :=







1
2

(
lim

t→+0
q(x + tnE) + lim

t→+0
q(x − tnE)

)
E 6⊂ Γ

1
2

(
lim

t→+0
q(x − tnE)

)
E ⊂ Γ

, (1.9)

where nE is a normal unit vector on edge E and x ∈ E. For E ⊂ Γ the orientation of nE

is outward with respect to Ω, otherwise nE has an arbitrary but fixed orientation.

1.4 Condition of Eigenvalues and Eigenvectors

Given a vector norm ‖·‖ on C
n, the operator (matrix) norm of square matrix A ∈ C

n,n is

defined by

‖A‖ := max
x ∈ C

n

x 6= 0

‖Ax‖
‖x‖ .

For an invertible matrix A ∈ C
n,n the condition number is defined by

cond(A) = ‖A‖
∥
∥A−1

∥
∥ ≥ 1.

The condition number of matrix is a well-known concept used in studying the sensitivity

of solutions of systems of linear equations to perturbations in the system data (matrix

coefficients and right-hand side), and can be found in any book on numerical linear algebra

(cf. Demmel [38] or Meyer [105]).

When considering the suitability of POD-based surrogate models derived from numer-

ical data acquired from rough spatial discretizations, we will have occasion to examine

the stability of the eigenvectors and eigenvalues of symmetric matrices in the presence of

perturbations in the matrix coefficients. This will require extension of the concept of con-

dition number to eigenvalues and eigenvectors. Summarizing the discussion in Chatelin



1.4 Condition of Eigenvalues and Eigenvectors 13

[30], we (very) briefly motivate the use of the term condition as applied to eigenvalue

problems.

Consider a simple eigenvalue λ ∈ C of a matrix S ∈ C
n,n with associated left and right

eigenvectors φ ∈ C
n and ψ ∈ C

n; that is,

(A − λI)φ = ψT (A − λI) = 0. (1.10)

The eigenvectors φ and ψ can be chosen so that ‖φ‖2 = ψT φ = 1. Then the spectral

projection operator P , projecting C
n onto the subspace spanned by φ, is given by P =

φψH , and there exists a generalized inverse S ∈ C
n,n of (A − λI) relative to the spectral

projection P :

S(A − λI) = (A − λI)S = I − P.

Now, let the perturbation H be given, and set A′ := A+H, where ε = ‖H‖2 is assumed to

be small. Then λ and φ are approximate eigenelements for A′, and the associated residual

vector for A′ is given by

A′φ − λφ = (A′ − A)φ = Hφ.

The following theorem gives some perturbation bounds for the eigenvalues and eigenvectors

of A′ (see Chatelin [30, Chapter 1, Theorem 1.7]).

Theorem 1.2. Set ε′ = ‖Hφ‖2. Then ε′ ≤ ε, and if ε is small enough, there exists a

simple eigenvalue λ′ of A′ with an eigenvector φ′ normalized by ψHφ′ = 1, such that

λ′ = λ + ψHHφ + O(ε2) and (1.11)

φ′ = φ − SHφ + O(ε2). (1.12)

From (1.11) we get

∣
∣ψT Hφ

∣
∣ ≤ ε′ ‖ψ‖2 and

∣
∣λ′ − λ

∣
∣ ≤ ε′ ‖ψ‖2 + O(ε2). (1.13)

So, considering the definition of H, we can say that λ is ill-conditioned if ‖ψ‖2 is large.

In this sense, ‖ψ‖2 is a condition number for λ when ψ is normalized by ψHφ = ‖φ‖2 = 1;

hence ‖ψ‖2 ≥ 1. Note that in the symmetric case, we have ψ = φ and, as a result,

‖ψ‖2 = ‖φ‖2 = 1 in (1.13), meaning that the simple eigenvalues of Hermitian matrices are

well-conditioned.

From (1.12) we get
∥
∥φ′ − φ

∥
∥

2
≤ sε′ + O(ε2),

where we have set s := ‖S‖2. We see that φ is ill-conditioned if s is large, so that s is

a condition number for φ. Furthermore, it can be shown (cf. [30]) that s = 1/d(λ) for

Hermitian matrices, where

d(λ) = min
µ∈σ(A)\λ

|λ − µ| , (1.14)

with σ(A) denoting the spectrum of A. Thus, the only source of ill-conditioning for Hermi-

tian matrices with simple eigenvalues is the presence of close eigenvalues. We call 1/d(λ)
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the condition number for the eigenvectors of Hermitian matrices with simple eigenvalues,

the latter being well-conditioned with a condition number of 1.

We note that the above analysis does not apply to multiple eigenvalues; that is, eigen-

values with algebraic multiplicity greater than one. The above results will prove sufficient

for our purposes. We refer the reader to [30] for deeper analysis, including the case of

multiple eigenvalues (see also Golub [53, Section 7.2] or Meyer [105, Section 7.3]).



Chapter 2

A Flow Control Problem

Though the reduced-order methods presented in detail later in this work are generally

adaptable to any type of problem in which the accuracy of the numerical solution is

dependent on the order of the discretization, we are especially interested in flow con-

trol problems for which the system state is described by partial differential equations of

mixed convection-diffusion type. Such problems suffer from certain numerical difficulties

on coarse grids making them ideal for robust testing of our methods. In the following,

we discuss flows governed by the especially challenging nonstationary viscous incompress-

ible Navier-Stokes equations, also known as the evolution Navier-Stokes equations. These

equations describe the state of the optimal control problem we shall use in our numerical

investigations.

Optimal control problems involving the Navier-Stokes equations have been studied ex-

tensively, resulting in a vast literature on the subject (cf. Gunzburger [61], Sritharan [128]

and Gad-al-Hak et al. [49]). In particular, optimal control problems for the stationary

Navier-Stokes problem with boundary controls have been investigated, e.g., by Hou, Gun-

zburger and Svobodny [75, 74], Burkardt/Peterson [23], Desai/Ito [39], Heinkenschloss [69]

and Hou/Ravindran [76, 77]. The more difficult and interesting case of flow control prob-

lems involving the nonstationary Navier-Stokes equations with distributed and boundary

controls has been considered, e.g., by Abergel and Temam [1], Fattorini/Sritharan [42, 43],

Manservisi [104], Fursikov et al. [48], Berggren [12], Gunzburger/Manservisi [63, 65, 64],

Hinze/Kunisch [70], Bewley et al. [18, 17, 16], Li et al. [99] and Ulbrich [143].

In Section 2.1 we formulate the Dirichlet problem for the Navier-Stokes equations,

introduce the functional framework needed for the derivation of variational formulations

of the Navier-Stokes equations and discuss the existence, uniqueness and regularity of

solutions. Section 2.2 presents a control problem – the driven cavity problem – that will

serve as the model problem for numerical testing throughout this thesis. In Section 2.3,

we present and discuss in some detail the software package we will utilize to generate

numerical solutions of the driven cavity problem.

15
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2.1 The Navier-Stokes Equations

Consider a bounded domain Ω ⊂ R
2 with boundary Γ of class C2 and T > 0. Assuming

only Dirichlet boundary conditions, possibly effected only over some subset Γc ⊂ Γ, the

two-dimensional time-dependent Navier-Stokes equations for incompressible viscous fluid

flows are given by

ut − ν∆u + u · ∇u + ∇p = f in (0, T ] × Ω, (2.1)

∇ · u = 0 in (0, T ] × Ω, (2.2)

u = g on [0, T ] × Γc, (2.3)

u = 0 on [0, T ] × (Γ \ Γc), (2.4)

u(0,x) = u0(x) in Ω, (2.5)

where u(t,x) and p(t,x) denote the unknown two-dimensional velocity field and the pres-

sure, respectively. The known problem data of this initial boundary-value problem are the

body force per unit mass f(t,x), the kinematic viscosity ν > 0, the initial velocity u0(x),

and the boundary velocity g(t,x). Note that the pressure p in (2.1) can be determined

only up to a constant. This constant can be fixed by choosing a pressure p whose mean

value is zero, i.e.,
∫

Ω p dx = 0.

In view of the incompressibility condition (2.2) and in order to obtain the appropriate

regularity for the solution of the Navier-Stokes system, we require the control g to effect

zero mass flow across the boundary and match the initial flow u0 at time t = 0. To this

end, we assume the compatibility conditions

∫

Γc

g · n dx = 0, (2.6)

where n is the unit outward normal vector on Γ, and

g |t=0= u0 |Γc . (2.7)

The two-dimensional velocity field u and the pressure field p in the momentum equation

(2.1) are coupled through the incompressibility constraint or continuity equation (2.2),

where the condition

∇ · u =
∂

∂x1
u1 +

∂

∂x2
u2 = 0

describes the conservation of mass. The term u · ∇u in the momentum equation is known

as the convective part, and is defined by

u · ∇u =

(

u1
∂

∂x1
u1 + u2

∂
∂x2

u1

u1
∂

∂x1
u2 + u2

∂
∂x2

u2

)

.
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2.1.1 Weak Formulation of the Navier-Stokes Problem

To derive an appropriate weak or variational formulation for the problem (2.1)-(2.5), we

will use the function spaces of Section 1.3. The usual bilinear and trilinear forms associated

with the d-dimensional Navier-Stokes equations are defined by

a(u,v) =
d∑

i=1

∫

Ω
∇ui · ∇vi dx ∀ u,v ∈ H1(Ω)d, (2.8)

b(u, q) = −
∫

Ω
q∇ · u dx ∀ u ∈ H1(Ω)d, ∀ q ∈ L2(Ω) (2.9)

and

n(u,v,w) =

∫

Ω
(u · ∇v) · w dx ∀ u,v,w ∈ H1(Ω)d. (2.10)

2.1.2 Homogeneous Boundary Conditions

We begin by considering Problem 2.1 with the homogeneous boundary conditions

g(t,x) = 0 for t ∈ [0, T ],x ∈ Γ (2.11)

(equivalently Γc = ∅). In the Navier-Stokes context, this corresponds to the case in

which the flow is driven exclusively by body forces. Though less interesting than the

case of boundary-driven flow, the homogeneous boundary conditions are easier to handle

mathematically and existence and uniqueness results for this problem are well-known in

the canonical Navier-Stokes literature (cf. Ladyzhenskaya [95], Girault/Raviart [50] or

Temam [131, 129]).

By multiplying both sides of (2.1) by a divergence-free test function v ∈ V and inte-

grating over Ω, we derive the following variational or weak formulation for the problem

(2.1)-(2.5) with Γc = ∅, for which d = 2.

Problem 2.1. Find u ∈ L2(0, T ;V) such that

(ut,v) + νa(u,v) + n(u,u,v) = (f ,v) ∀ v ∈ V (2.12)

u(0) = u0. (2.13)

Note that the pressure has been eliminated by embedding the incompressibility constraint

into the space V of test functions and using integration by parts so that (∇p,v) = −(p,∇·
v) = 0 for all v ∈ V. As customary, we call a function u ∈ L2(0, T ;V) that satisfies (2.12)-

(2.13) a weak solution of the homogeneous Navier-Stokes problem (2.1)-(2.5) with Γc = ∅.

For Problem 2.1 we have the following result from Temam [130, Theorem III.2.1],

which holds for a Lipschitz-continuous boundary Γ.
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Theorem 2.2 (Temam). Given f ∈ H and u0 ∈ H there exists a unique solution of

Problem 2.1 satisfying

u ∈ L2(0, T ;V) ∩ C([0, T ];H) ∀T > 0. (2.14)

Furthermore, u is analytic in t with values in H2(Ω)2 ∩ V for t > 0, and the mapping

u0 → u(t)

is continuous from H into H2(Ω)2 ∩ V, ∀ t > 0. Finally, if u0 ∈ V, then

u ∈ L2(0, T ; H2(Ω)2 ∩ V) ∩ C([0, T ];V) ∀T > 0. (2.15)

Theorem 2.2 presents some difficulties from a practical point of view due to the embed-

ding of the incompressibility constraint in the function space V. In principle, one could

discretize the divergence-free space V using solenoidal elements (cf. Cuvelier et al. [36]);

however, such elements are difficult to construct and program, so that it is customary to

use separate spaces for the velocity and pressure as described in the next section.

2.1.3 Inhomogeneous Boundary Conditions

As stated above, the divergence-free function spaces are not practical for numerical approx-

imations. For this reason, we shall extend the results of Theorem 2.2 for nonhomogeneous

boundary conditions and f = 0 by considering the following mixed finite element formu-

lation for the Navier-Stokes equations (2.1)-(2.5), which can be found in Manservisi [104]

or Gunzburger/Manservisi [65].

Problem 2.3. Find u ∈ L2(0, T ; H1(Ω)2) and p ∈ L2(0, T ; L2
0(Ω)) such that

(ut,v) + νa(u,v) + n(u,u,v) + b(v, p) = 0 ∀ v ∈ H1(Ω)20 (2.16)

b(u, q) = 0 ∀ q ∈ L2
0(Ω) (2.17)

(u, s)Γ = (g(t,x), s)Γc ∀ s ∈ H−1/2(Γ)2, (2.18)

u = 0 x ∈ Γ \ Γc (2.19)

u(0,x) = u0(x), (2.20)

where g ∈ H1,1(Sc) ∩ L2(0, T ; H1
n0(Γc)) and u0 ∈ H2

curl
(Ω).

We call a solution pair (u, p) ∈ L2(0, T ; H1(Ω)2) × L2(0, T ; L2
0(Ω)) of Problem 2.3 a

weak solution of the Navier-Stokes equations with Γc 6= ∅.

If u is a solution of Problem 2.1 then it is also a weak solution of Problem 2.3. Con-

versely, if u satisfies Problem 2.3 then it also satisfies Problem 2.1 in the distributional

sense on (0, T ). Moreover, if g and u0 are given as above, then it can be shown (cf. Dau-

tray/Lions [37]) that there exists a unique weak solution (u, p) of Problem 2.3 such that

u ∈ L∞(0, T ;W) ∩ L2(0, T ; H1(Ω)2) and ut ∈ L2(0, T ; H−1(Ω)2); that is, it is a.e. equal

to a continuous function.

The following result is proved in Manservisi [104, Theorem 5.3].
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Theorem 2.4 (Manservisi). Let Ω ⊂ R
2 be of class C2, and let g ∈ H1/2,1(S) satisfy

the compatibility conditions ∫

Γ
g · n dx = 0 (2.21)

and

g(0,x) = u0 |Γ . (2.22)

Then there exists a unique u ∈ L2(0, T ; H1(Ω)2)∩L∞(0, T ; L2(Ω)2) and a p ∈ L2(0, T ; L2
0(Ω))

that solve the nonhomogeneous Navier-Stokes problem

(ut,v) + νa(u,v) + n(u,u,v) + b(v, p) = 0 ∀ v ∈ H1
0 (Ω)2

b(u, q) = 0 ∀ q ∈ L2
0(Ω)

u = g(t,x) ∀x ∈ Γ

u(0,x) = u0(x)

(2.23)

for almost all t ∈ (0, T ). Moreover,

‖u‖2
L2(0,T ;H1(Ω)2) + ‖u‖2

L∞(0,T ;L2(Ω)) ≤ K ‖g‖2
H1/2,1(S) , (2.24)

where K is independent of g.

The proof of Theorem 2.4 proceeds by proving the existence of a solution ũ of a linear

Stokes problem with the boundary conditions and initial conditions of (2.23). Setting

û = u − ũ leads to a Navier-Stokes problem with homogeneous boundary conditions,

which can be shown to be solvable by the usual methods for homogeneous problems. The

theorem then follows from u = û + ũ.

2.2 A Velocity Tracking Problem with Boundary Control

We introduce in this section our model control problem, the classic driven cavity problem

with flow inside the cavity described by the Navier-Stokes equations.

2.2.1 Structure of Flow Control Problems

To help fix notation and assist in the mathematical formulation, we begin with a short

review of the general structure of flow control problems as described by Gunzburger [62].

The variables of an optimal flow control problem can generally be divided into two classes,

the state variables and the control variables (or design parameters). As one might surmise

based on the terminology, the state variables (often denoted by φ) describe the system

state, which is determined by the action of the control variables. The effect of the control

variables on the system state is typically described mathematically in flow problems by

flow equations of the form F (φ, g) = 0. Some states of interest for systems described

by the Navier-Stokes equations are the system velocity u, pressure p, temperature τ and

process time T . Some typical controls for Navier-Stokes systems include boundary controls
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(denoted here by g), such as some kind of prescribed boundary velocity or heating controls

at the boundary; distributed controls, such as heat sources or magnetic fields; and shape

controls, such as leading or trailing edge flaps in airfoil design, moveable walls, propeller

pitch, etc. The type of flow problem (inviscid or viscous flow, compressible or incompress-

ible flow, stationary or time-dependent flow, etc.) that one is working with is reflected in

the relationship between the control variables and the system state as described by the

flow equations. Often, the problem variables are also bound by some a priori constraints,

e.g., physical or budget constraints, which are expressed mathematically by constraint

equations of the form C(φ, g) ≤ 0.

The objective of a flow control problem is expressed mathematically in terms of a cost

functional J (φ, g), which is to be minimized under the constraints described by the flow

equations. The cost functional is sometimes written in the form

J (φ, g) + β ‖g‖γ ,

with the second part of the functional β ‖g‖γ designed to achieve regularization for the

control problem, that is, to balance the control costs against the actual control objective.

Judicious choices for the parameters β, γ and the norm on g can simultaneously limit

the size of the control and obtain states such that the value of J is small. Some of the

more popular formulations include tracking-type objectives (cf. Gunzberger/Manservisi

[65]), drag minimization (cf. Fursikov et al. [48]), vorticity reduction and flow mixture

objectives.

We are especially interested in a certain tracking-type objective. Letting u denote the

flow velocity, ud some prescribed desired velocity field and g the boundary velocity, we

can formulate the flow tracking or velocity tracking problem

J (u,g) =
1

2
‖u − ud‖2

L2(0,T ;L2(Ω)) , (2.25)

where we have assumed some of the notation of the previous section. Note that the

boundary control does not appear explicitly in the right-hand side of the objective (2.25);

the effect of the boundary control on the objective functional manifests itself indirectly

through the flow equations. One could also modify this formulation to match the flow on

only part of the domain, on some surface of the domain, or at a particular time point,

e.g., the terminal velocity profile.

2.2.2 An Abstract Control Problem

Similar to the situation for the Navier-Stokes system, we wish to ensure in this section

that we can formulate a well-posed optimal flow control problem with a tracking-type

objective of the form (2.25). This requires specification of the space Ud of admissible

target velocities and the space Ad of admissible solutions if we are to form a coherent
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problem. We say that ud is in Ud if

ud = ud(t,x) ∈ C([0, T ];H1(Ω)2) and

Fud
(t,x) ∈ L∞(0, T ; L2(Ω)2),

(2.26)

where Fu = ut − ν∆u + u · ∇u. The space Ad, consisting of the state and control

spaces, can be characterized using the results of Section 2.1.3: Given u0 ∈ H2
curl(Ω) and

ud ∈ Ud, the triple (u, p,g) is called an admissible solution for the optimal control problem

if (u, p,g) ∈ L2(0, T ; H1(Ω)2)×L2(0, T ; L2
0(Ω))×H1,1(Sc)∩L2(0, T ; H1

n0(Γc)) is a solution

of (2.23), the control g satisfies the compatibility conditions (2.21) and (2.22), and the

functional J (u,g) is bounded.

The optimal control problem can now be formulated as follows (cf. [65]):

Problem 2.5. Given u0 ∈ H2
curl

(Ω) and ud ∈ Ud, find (u, p,g) ∈ Ad such that the control

g minimizes the cost functional

J (u,g) =
α

2

∫ T

0

∫

Ω
(u − ud)

2 dx dt +
β

2

∫ T

0

∫

Γc

(|g|2 + β1 |gt|2 + β2 |gx|2) dx dt (2.27)

with α, β, β1, β2 > 0.

As discussed in the previous section, the goal of Problem 2.5 is the minimization of

the term involving (u − ud)
2, where ud is the desired flow field. The second term serves

to bound the control function and facilitate the proof of an optimal control. The positive

constants β1 and β2 are necessary to ensure g ∈ H1,1(Sc).

The cost functional (2.27) is clearly bounded below and weakly lower semicontinuous.

A detailed proof of the following existence theorem can be found in [65], where similar to

Theorem 2.4 the proof is facilitated by first considering for the flow equations the solution

ũ of a related linear Stokes problem, which is then used to transform the control problem

with inhomogeneous flow equations to one with homogeneous flow equations.

Theorem 2.6. Given T > 0 and u0 ∈ H2
curl

(Ω), there exists a solution (u, p,g) ∈ Ad of

Problem 2.5.

2.2.3 Model Control Problem

As a model problem for the methods proposed in this work, we consider the classical

problem of driven cavity flow in two dimensions, which has been used extensively in the

study of reduced-order models involving the Navier-Stokes equations (see Peterson [114],

Ito/Ravindran [79], Allan [5], Fahl [41], Cazemier et al. [28] and Jørgensen et al. [86]).

All simulations will be performed using the two-dimensional driven cavity problem;

that is, a fluid-filled square cavity of unit dimension in the two-dimensional plane, bounded

by rigid walls at x1 = 0, x1 = 1 and x2 = 0 and open at the top (x2 = 1). The boundary

conditions are given by g = (g1, g2)
T ≡ (0, 0)T on the sides and bottom, with the velocity

g = (g1, g2)
T along the top of the cavity driving the flow inside. For time-dependent
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problems, it is necessary for the POD-based model to assume that g(t,x) can be written

in the separable form

g(t,x) = γ(t)h(x). (2.28)

The spatial velocity profile along the top of the cavity for our model problem will be

h(x) ≡ (1, 0)T representing a purely tangential force along the top of the cavity. The

time-dependent boundary profile γ(t) and the simulation time T will vary according to our

testing requirements and other problem parameters. One such parameter is the Reynolds

number Re, defined by Re = ŪL/ν, where Ū is a measure of the mean velocity, L is the

characteristic length of the domain and ν is the kinematic viscosity. For the cavity of unit

dimension with γ ≡ 1.0 we have Re = 1/ν.

For convenience, computations will be carried out on uniform meshes of varying fineness

(coarseness), ranging from the 4× 4 (h ≈ 3.33334× 10−1) mesh shown in Figure 2.1 up to

193 × 193 (h ≈ 5.20833 × 10−3) meshes, where h denotes the mesh width. Results from

experiments with nonuniform grids adding refinement in the boundary areas resulted in

no substantial differences with the results reported for uniform grids. The finer grids are

constructed from the 4× 4 grid by connecting the midpoints of the quadrilaterals of each

succeeding grid, thus maintaining uniformity and halving the mesh width h at each new

refinement level. As described in Section 2.3.2, we will be using quadrilateral elements

0 1/3 2/3 1
0

1/3

2/3

1

x
1
−axis

x 2−
ax

is

Discretization: 4 × 4 (h=1/3)

Figure 2.1: The 4 × 4 discretization of the driven cavity problem. The velocity nodes are
marked with small circles on the element edges, the pressure nodes with a solid dot at the
element centers.

with rotated bilinear shape functions for the velocity and piecewise constant functions for
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the pressure approximation. These elements are discussed in greater detail in Section 2.3.2;

however, we summarize here in Table 2.1 the resulting complexity data, i.e. the degrees

of freedom (dof ), for our specific grids: The nodal values for the pressure are taken at the

center of the element (cell, quadrilateral) faces, so that dof(pressure) = nel, where nel is

the number of elements or quadrilaterals. Since we are using rotated elements, the nodal

values for the velocity are taken on the element edges, so that the for the velocity we have

dof(vel) = 2 ∗
√

nvt ∗ (
√

nvt − 1), where nvt denotes the number of grid vertices. The

total degrees of freedom for each grid is then given by dof = 2 · dof(vel)+ dof(pressure).

Mesh 4 × 4 7 × 7 13 × 13 25 × 25 49 × 49 97 × 97 193 × 193

h 1/3 1/6 1/12 1/24 1/48 1/96 1/192
nel 9 36 144 576 2,304 9,216 36,864
nvt 16 49 169 625 2,401 9,409 37,249
dof(vel) 24 84 312 1,200 4,704 18,624 74,112
dof 57 204 768 2,976 11,712 46,464 185,088

Table 2.1: Degrees of freedom information for the discretization of the two-dimensional
driven cavity problem at various levels of refinement.

2.3 Numerical Solution of the Navier-Stokes System

For the numerical simulation of the Navier-Stokes equations we utilized FEATFLOW,

a finite element solver developed by Turek1 [141] for the incompressible Navier-Stokes

equations. Following Turek [141], [142] and Rannacher [117] and the sources cited therein,

we give a brief summary of the solution process.

The discretization process is separated in space and time. Semi-discretization in time

leads to a generalized stationary Navier-Stokes equation with prescribed boundary values

for each time step. These are discretized in space using finite element methods leading

to a coupled system of nonlinear equations, which are solved using a discrete projection

scheme that decouples the computation of velocity and pressure.

2.3.1 Temporal Discretization

The usual time-stepping schemes for time-dependent differential equations applied to the

Navier-Stokes equations result in a scheme of the following type, where we suppress bound-

ary conditions to simplify notation.

Given the current solution un := u(tn) for velocity and pn := p(tn) for pressure at time

tn, and the time step τ = tn+1 − tn, solve

u − un

τ
+ θ[−ν∆u + u · ∇u] + ∇p = gn+1, ∇ · u = 0 in Ω (2.29)

1The FEATFLOW package and documentation are available at http:\\www.featflow.com.



24 2 A Flow Control Problem

for u = un+1 and p = pn+1, where the right-hand side is given by

gn+1 = θfn+1 + (1 − θ)fn − (1 − θ)[−ν∆un + un · ∇un]. (2.30)

The parameter θ ∈ [0, 1] defines a group of so-called one-step-θ-schemes. Due to the

inherent stability problems of explicit time-stepping schemes (θ = 0) one usually opts for

an implicit scheme, such as the Backward-Euler (BE) (θ = 1), or Crank-Nicolson (CN)

(θ = 1/2), both of which have well-known advantages and disadvantages. The Crank-

Nicolson scheme, for instance, is second-order accurate, allowing for large time steps when

the solution is smooth, but is not strongly A-stable, making it susceptible to oscillations

when the solution is non-smooth. The Backward Euler, on the other hand, is strongly

A-stable, but only first-order accurate (cf. [36, 96, 116, 117]).

The temporal discretization in FEATFLOW is accomplished using a variation of the

fractional-step-θ-scheme first proposed by Glowinski et al. [52] and Bristeau et al. [21].

Given the current solution un := u(tn) for velocity at time tn and θ chosen appro-

priately, each (macro) time step τ = tn+1 − tn is split into three consecutive subintervals

[tn, tn+θ), [tn+θ, tn+(1−θ)) and [tn+(1−θ), tn+1] of length θτ , (1 − 2θ)τ and θτ , respectively.

The solution un+1 at time tn+1 is obtained via intermediate solutions un+θ and un+(1−θ)

at times tn+θ and tn+(1−θ), respectively.

Specifically, setting θ = 1 −
√

2
2 , θ′ = 1 − 2θ, α = 1−2θ

1−θ and β = 1 − α, the following

three nonlinear saddle point problems are discretized in space and solved for each time

level (with θ̃ = αθτ = βθ′τ):

[I + θ̃N (un+θ)]un+θ + θτ∇pn+θ = [I − βθτN (un)]un + θτ fn (2.31)

∇ · un+θ = 0,

[I + θ̃N (un+(1−θ))]un+(1−θ)+θ′τ∇pn+(1−θ) (2.32)

= [I − αθ′τN (un+θ)]un+θ + θ′τ fn+(1−θ)

∇ · un+(1−θ) = 0,

[I + θ̃N (un+1)]un+1+θτ∇pn+1 (2.33)

= [I − βθτN (un+(1−θ))]un+(1−θ) + θτ fn+(1−θ)

∇ · un+1 = 0,

where for convenience we have combined the diffusive and convective terms by setting

N (u)u = −ν∆u + u · ∇u. Note that the body forces are treated fully explicitly in (2.31)

and (2.33) but implicitly in (2.32), while the pressure is treated fully implicitly throughout.

This time discretization scheme combines the advantages of some traditional implicit

schemes; rigorous analysis of the fractional-step-θ-scheme for the given choices of the
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parameters θ, α and β have shown it to be strongly A-stable, as is the Backward-Euler

scheme, and second-order accurate, as is the Crank-Nicolson scheme (see Müller-Urbaniak

[108], Klouček/Rys [90], Müller, et al. [107], Rannacher [117]).

In order to simplify the description of the spatial discretization in the following section,

we note now that each of the problems (2.31)-(2.33) can be written in the form of a

generalized stationary Navier-Stokes problem

αu − ν∆u + u · ∇u + ∇p = f , ∇ · u = 0. (2.34)

2.3.2 Spatial Discretization

For the spatial discretization of (2.34) the finite element method is used. To this end,

let T h be a regular decomposition of the domain Ω into convex quadrilaterals T ∈ T h,

with hT denoting the diameter of element T and h the maximum of all hT for T ∈ T h

as described in Section 1.3.5. Based on this decomposition, finite-dimensional subspaces

Vh ⊂ H1
0 (Ω)2 and Qh ⊂ L2

0(Ω) are utilized to form the following discrete variational

formulation of the stationary problem (2.34) (with α = 1 and homogeneous boundary

conditions for notational simplicity):

Find uh ∈ Vh and ph ∈ Qh, such that

(uh,vh) + νa(uh,vh) + n(uh,uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh (2.35)

b(uh, qh) = 0 ∀ qh ∈ Qh (2.36)

with the terms a(·, ·), b(·, ·) and n(·, ·, ·) as defined in (2.8)-(2.10).

To ensure that (2.35)-(2.36) is a stable approximation to (2.34) as h → 0 the spaces Vh

and Qh must be chosen to fulfil the inf-sup or Babuška-Brezzi stability condition

inf
qh∈Qh

{

sup
vh∈Vh

b(vh, qh)

‖∇vh‖0 ‖qh‖0

}

≥ γ > 0, (2.37)

with a constant γ that is independent of h. This ensures that solutions of (2.35)-(2.36)

are uniquely determined in Vh × Qh and stable (cf. Girault/Raviart [51, Theorem I.4.1]

and Cuvelier et al. [36, Section 7.2]).

The finite element used by FEATFLOW is the 2D variant of the so-called Q̃1/Q0-

element, a quadrilateral adaptation of the triangular Stokes element of Crouzeix-Raviart

(see Cuvelier et al. [36] or Girault/Raviart [50]) that uses piecewise rotated bilinear shape

functions (spanned by < x2
1 − x2

2, x1, x2, 1 >) for the velocities and piecewise constant

functions for the pressure approximation. The nodal points for the velocity are located at

the midpoints of the cell edges with the nodal points for the pressure located at the center

of the cell.

The parametric version of the Q̃1/Q0-element is constructed using a reference element

T̂ = [0, 1]2 in coordinates (x̂1, x̂2), with the nodal points at the coordinates m̂1 = (0,−1),
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m̂2 = (1, 0), m̂3 = (0, 1) and m̂4 = (−1, 0) as shown in Figure 2.2. The rotated bilinear

finite element functions are constructed on the reference element by finding functions

φ̂i ∈ span{x̂2
1 − x̂2

2, x̂1, x̂2, 1}, i = 1, . . . , 4 such that φ̂i(m̂i) = δij for i, j = 1, . . . , 4. Easy

calculations then give

φ̂i(x̂1, x̂2) =







1
4 − 1

2 x̂2 − 1
4(x̂2

1 − x̂2
2) for i = 1

1
4 + 1

2 x̂1 + 1
4(x̂2

1 − x̂2
2) for i = 2

1
4 + 1

2 x̂2 − 1
4(x̂2

1 − x̂2
2) for i = 3

1
4 − 1

2 x̂1 + 1
4(x̂2

1 − x̂2
2) for i = 4

The so-constructed basis functions are then mapped from T̂ onto a general quadrilateral

T by the transformation φ : T̂ → T , defined by

ψ(x̂1, x̂2) =
1

2
[(q2 − q1)x̂1 + (q4 − q1)x̂2 + (q4 + q2)],

where q1, . . . , q4 are the vertices of T as illustrated in Figure 2.2.

x̂1

x̂2

q̂1
q̂2

q̂3q̂4

m̂1

m̂2

m̂3

m̂4
ψT−→

q1

q2

q3

q4

m1

m2

m3

m4

Figure 2.2: The transformation ψT : T̂ → T from the reference element T̂ (left) to the
general quadrilateral T (right).

The resulting element pair is nonconforming, since the shape functions are not con-

tinuous along the cell edges. We note that the spaces spanned by these nonconforming

elements are not truly a subset of H1
0 (Ω)×L2

0(Ω); nevertheless, we will continue to denote

these spaces as above by Vh and Qh. The Q̃1/Q0-element is known to satisfy the discrete

inf-sup condition (2.37) on fairly general meshes [118]. More extensive analysis of the

Q̃1/Q0-element can be found in Rannacher/Turek [118] and Turek [139], [140].

Selection of the desired nodal bases {v1
h, . . . ,vN

h } ⊂ Vh for the velocity space and

{q1
h, . . . , qM

h } ⊂ Qh for the pressure space leads in the usual manner to the following

large-scale system of nonlinear equations, which must be solved at each time step:

Mu + νAu + N(u)u + Bp = f (2.38)

BTu = 0, (2.39)
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where u ∈ R
2N , p ∈ R

M and f ∈ R2N are now understood to be vectors resulting from the

spatial discretization, M is the mass matrix, A is the stiffness matrix, B is the gradient

matrix, −BT is the divergence matrix, N(·) is the nonlinear transport matrix and f is the

discretized load vector.

2.3.3 Solution of the Nonlinear Systems

Summarizing the preceding sections, the discretization in space and time leads to a discrete

coupled system of nonlinear equations for each time substep; that is, given un at time tn,

a time step τ , and constants ϑ1, . . . , ϑ4 that depend on the substep, solve for u = u(tn +τ)

and p = p(tn + τ) the system

S(u) + τBp = g (2.40)

BTu = 0, (2.41)

where we have set

S(u) = [M + ϑ1τ(νA + N(u))]u, (2.42)

g = [M − ϑ2τ(νA + N(un))]un + ϑ3τ f + ϑ4τ f
n, (2.43)

with fn = f(tn) and f = f(tn + τ).

The details of the procedure used to solve (2.40)-(2.41) are not absolutely essential for

the remainder of this thesis, but we will give a brief summary in the interest of complete-

ness.

For large Reynolds numbers and small time steps τ , we have the following statement

from [140] pertaining to the operator S and the matrix M:

S = M + O(τ).

Thus, S can be interpreted as a nonsymmetric and nonlinear, but well-conditioned per-

turbation of the mass matrix M for small τ . This fact builds the essential basis for the

following discrete projection scheme used in FEATFLOW:

Given the pressure pn at time tn and a time step τ :

Step 1. Solve the nonlinear transport diffusion equation

S(ũ) = g − τBpn (2.44)

to obtain the intermediate velocity ũ.

Step 2. Using the divergence of ũ as the right-hand, solve for q the discrete Poisson problem

BT M−1
l Bq =

1

τ
BT ũ,
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where the lumped mass matrix Ml serves as a preconditioner.

Step 3. Update p = pn + q and calculate

u = ũ − τM−1
l Bq.

As described in [140], the above method is an operator splitting method similar to those

proposed by Chorin [31] or Van Kan [144] (see also Prohl [115]), that decouples the com-

putation of u and p. Step 3 essentially projects the intermediate velocity field ũ, which is

not necessarily divergence-free, onto a divergence-free subspace such that u satisfies the

discrete incompressibility constraint.

The solution of the nonlinear system (2.44) is achieved using an adaptive fixed point

defect correction method that is described in detail in [142]. The resulting linear systems

are solved using multigrid methods.



Chapter 3

The Streamline Diffusion Method

This chapter is dedicated to stabilization methods required for the numerical solution

of convection-diffusion problems with dominant convection. Section 3.1 begins with a

simple example illustrating how instabilities of purely numerical character can arise for

such problems. The example is then supplemented by a more detailed examination of a

situation involving the discretization of the linearized Navier-Stokes equations. In Sections

3.2-3.3 we discuss some methods for stabilizing the numerical solution procedure, choosing

the so-called streamline diffusion technique for more detailed analysis. Because of its

conceptual simplicity relative to the case for the Navier-Stokes equations, we use the linear

convection-diffusion problem to introduce the streamline diffusion method in Section 3.2,

then extend the discussion to the Navier-Stokes equations in Section 3.3.

3.1 The Necessity of Stabilization

We begin by examining instabilities in a simple one-dimensional transport-diffusion prob-

lem before moving on to an analysis of instabilities in more sophisticated problems.

3.1.1 A Simple Example

At medium and high Reynolds numbers, it is well-known that standard Galerkin finite

element solutions for mixed transport-diffusion equations may suffer from numerical in-

stabilities caused by dominance of convective terms if the exact solution is not smooth

enough (cf. Fries/Matthies [46]).

Consider for example (cf. Brooks/Hughes [22]) the one-dimensional convection-diffusion

problem

−νu′′ + u′ = 0 in Ω = (0, 1)

u(0) = 0, u(1) = 1,
(3.1)

with ν > 0, which has the exact solution u(x) = (1 − ePe)−1(1 − exPe), where Pe = 1/ν

is the global Peclét number. The problem (3.1) is an example of a singularly perturbed

problem with a boundary layer at x = 1 (cf. Roos et al. [122] for more examples and

29
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discussion of singularly perturbed problems). For ν → 0 the exact solution approaches a

function that is discontinuous at x = 1.

To illustrate the numerical difficulties caused by the boundary layer for small ν, we

apply the standard Galerkin finite element method with piecewise linear basis functions

on a uniform mesh with mesh constant h to (3.1), resulting in a system of equations

− ν

h2
(ui+1 − 2ui + ui−1) +

1

2h
(ui+1 + ui−1) = 0, i = 1, . . . , N − 1,

u0 = 0, uN = 1,
(3.2)

which may be solved for the values ui of the finite element approximation uh at the grid

points xi = ih, i = 0, 1, . . . , N , with x0 = 0 and xN = 1. Note that this system may also

be interpreted as a finite difference scheme with central differences used for the convective

term u′.

Similar to an argument in Cuvelier et al. [36] (see also [106]), one can show using

difference equations that the solution to the system (3.2) is given by

ui = (1 − (ξ/η)i)(1 − (ξ/η)N )−1, (3.3)

with ξ = −ν − h/2 and η = −ν + h/2. Since ξ is always negative, the sign of (3.3) will

depend on the sign of η. For η < 0 the solution ui will clearly be positive for all ξ 6= η.

For η > 0 we have ξ/η < −1, and the solution will display oscillatory behavior. To avoid

these oscillations, the grid spacing h must be chosen such that

η = −ν + h/2 < 0 ⇔ h

2ν
< 1, (3.4)

where h/2ν is the local Peclét number. At higher Peclét numbers (small ν), the resulting

grids lead to algebraic systems of equations that are computationally intractable, especially

for problems in two or three dimensions. In this sense, classical discretization methods

fail.

The situation is illustrated in Figure 3.1, where we have plotted the exact solution of

(3.1) with ν = 1/100 against two solutions of the numerical approximation (3.2). Choosing

h = 1/10 >> ν leads to large oscillations even far from the boundary layer at x = 1,

while setting h = ν — which fulfils condition (3.4) — results in an accurate numerical

approximation.

The condition (3.4) on h is too severe to be practicable at higher Reynolds numbers.

One simple method for alleviating this difficulty is to avoid the situation completely by

adding artificial diffusion to the problem formulation, that is, by replacing the term νu′′ in

(3.1) by hu′′. The resulting Galerkin formulation fulfils condition (3.4) making it stable,

and as h > ν becomes smaller, the modified problem approaches the original problem.

The drawback of this method is twofold: It introduces a diffusion term acting in the

direction perpendicular to the streamline direction (crosswind diffusion), so that a sharp

jump across a streamline will be smeared out, and the added term (h − ν)u′′ makes the

method at best first order accurate, even for smooth solutions (cf. [122]).
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Figure 3.1: The exact solution of (3.1) compared with the numerical solution (3.3) for
h = 1/10 and h = ν.

3.1.2 Sources of Instabilities in Standard Finite Element Methods

Before introducing more effective stabilization methods for convection-diffusion equations,

we take a deeper look at the stability and convergence of standard finite element methods.

Following Tobiska [135], we consider the Stokes equation with a convection term

−ν∆u + b · ∇u + ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γ

(3.5)

in a bounded polyhedral domain Ω ⊂ R
2 where f ∈ L2(Ω)2 and b ∈ H1(Ω)2 ∩ L∞(Ω)2

with ∇·b = 0, and the assumptions, definitions and notation of Section 1.3.5 hold. Using

the spaces V := H1
0 (Ω)2 and Q := L2

0(Ω) and setting X := V × Q, the weak formulation

of problem (3.5) can be written:

Find u ∈ V and p ∈ Q such that

ν(∇u,∇v) + (b · ∇u,v) − (p,∇ · v) = (f ,v) ∀v ∈ V,

(q,∇ · u) = 0 ∀ q ∈ Q.
(3.6)

Or equivalently:

Find a pair [u, p] ∈ X such that

a([u, p], [v, q]) = (f ,v) ∀ [v, q] ∈ X, (3.7)

where the bilinear form a(·, ·) : X 7→ R is defined by

a([u, p], [v, q]) = ν(∇u,∇v) + (b · ∇u,v) − (p,∇ · v) + (q,∇ · u).
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The pressure can be eliminated from (3.6) by introducing

W = {v ∈ V | (q,∇ · v) = 0 ∀ q ∈ L2
0(Ω)},

a subspace of the divergence-free functions. The space W allows us to split the problem

(3.5) into subproblems of the form:

Find u ∈ W such that

ν(∇u,∇v) + (b · ∇u,v) = (f ,v) ∀v ∈ W (3.8)

for the velocity, and (with a known velocity):

Find p ∈ Q such that

(p,∇ · v) = ν(∇u,∇v) + (b · ∇u,v) − (f ,v) ∀v ∈ W⊥ (3.9)

for the pressure.

Indeed, if [u, p] is a solution pair of (3.7) then u clearly solves (3.8). Conversely, the

Lax-Milgram theorem and the positivity of the bilinear form

ν(∇v,∇v) + (b · ∇v,v) ≥ ν |v|21 ∀v ∈ V

guarantee the existence of a unique solution u to (3.8). The unique solvability of (3.9),

and therewith (3.6), is now a consequence of the Babuška-Brezzi condition

inf
q∈Q

sup
v∈V

(q,∇ · v)

‖q‖0 |v|1
≥ γ > 0, (3.10)

which holds for the space X (cf. Girault/Raviart [51, Lemma I.4.1 and Theorem I.5.1]).

Let Vh ⊂ V and Qh ⊂ Q be two families of finite element spaces corresponding to the

family T h of partitions of Ω as described in Section 1.3. The discrete conforming finite

element method corresponding to (3.7) reads

Find a pair [uh, ph] ∈ Xh := Vh × Qh such that

a([uh, ph], [vh, qh]) = (f ,vh) ∀ [vh, qh] ∈ Xh. (3.11)

If one assumes the discrete version of (3.10) with a mesh-independent parameter γ > 0,

then (3.11) obviously admits a stable unique solution; however, not all sets of finite element

spaces Vh and Qh satisfy (3.10) with a constant γ that is independent of the mesh size

h. The next result, which was proved in [135], gives some approximation estimates that

demonstrate the dependence of the approximation error on the diffusion constant ν —

as was demonstrated numerically for a simple problem in the earlier example — and the

failure of condition (3.10) to hold uniformly in h.
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Theorem 3.1. Let the condition (3.10) be fulfilled with a constant γh that may depend on

h. Then problem (3.11) has a unique solution [uh, ph], which satisfies the stability estimate

ν (|uh|1 + γh ‖ph‖0) ≤ c ‖f‖−1 (3.12)

and the error estimates

ν |u − uh|1 ≤ κ1 inf
vh∈Vh

|u − vh|1 + κ2 inf
qh∈Qh

‖p − qh‖0 (3.13)

‖p − ph‖0 ≤ κ3 inf
vh∈Vh

|u − vh|1 + κ4 inf
qh∈Qh

‖p − qh‖0 , (3.14)

and the constants κ1, . . . , κ4 behave like

κ1 ∼ c
(
1 +

1

γh

)
, κ2 ∼ c,

κ3 ∼ c
1

νγh

(
1 +

1

γh

)
, κ4 ∼ c

(
1 +

1

γh
+

1

νγh

)

for ν → 0 and/or γh → 0.

We see from the stability inequality (3.12) that stability breaks down for both velocity

and pressure in the presence of dominate convection, but only the pressure is destabi-

lized by the failure to bound γh away from 0. Nevertheless, in order to achieve a stable

formulation for mixed finite element spaces, one must obviously deal with both difficulties.

There are a number of methods available for dealing with the difficulties outlined in

Theorem 3.1. Several upwind methods leading to algebraic systems with M-matrices have

been proposed and studied (e.g., Ohmori/Ushijima [113] or Roos et al. [122]); however,

these also contain a large amount of artificial diffusion leading to a restricted order of

convergence. Good stability properties and better theoretical convergence can be achieved

using the streamline diffusion and Galerkin least squares methods. We will concentrate

on the streamline diffusion method, which as its name implies, adds an artificial diffusion

term acting only in the streamline direction. It turns out that this provides sufficient

stabilization to reduce oscillations in the standard Galerkin method while avoiding the

artificial crosswind diffusion that causes difficulties with the upwind methods. We refer

to Lube [101] for a description of a related Galerkin least squares method.

3.2 The SDFEM for Linear Convection-Diffusion Problems

In the streamline diffusion finite element method (SDFEM), introduced by Hughes/Brooks

[78, 22], an artificial diffusion operator is added to the convective term in a tensorial form

so as to act only in the streamline direction. Since its introduction, streamline diffusion has

been applied to a variety of stationary and time-dependent convection-diffusion problems.

For conforming finite elements, theoretical and numerical investigations have demonstrated
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a near optimal O(hk+1/2) order of L2-convergence for piecewise polynomials of degree k

(cf. Nävert [110], Johnson et al. [82, 84], Roos et al. [122], Niijima [111], Tobiska/Verfürth

[137] or Zhou [150]).

Assumptions

We will assume throughout the remainder of this section that Ω ⊂ R2 is a bounded, poly-

hedral domain with boundary Γ, and that T h is a family of quasiuniform decompositions

of Ω as described in Section 1.3. Moreover, let Vh ⊂ V := H1
0 (Ω) be a conforming finite

element space consisting of piecewise polynomials of degree k, that is,

Vh = {vh ∈ V : vh

∣
∣
T
∈ Pk(T ) ∀T ∈ T h}. (3.15)

If u ∈ Hk+1(T )2 for k ≥ 1, then it can be shown (cf. Ciarlet [32]; Clément [33]) that its

interpolant Ihu from Vh satisfies the approximation properties

|u − Ihu|m,T ≤ Chk+1−m |u|k+1,T for m = 0, 1, 2 (3.16)

on each T ∈ T h, and the inverse estimates

‖∆vh‖0,T ≤ µh−1
T |vh|1,T ∀vh ∈ Vh (3.17)

and

‖vh‖∞ ≤ ζh−κ ‖∇vh‖0 ∀ vh ∈ Vh, (3.18)

where κ > 0 and the constants µ and ζ are independent of T and h.

3.2.1 A Typical Application of Streamline Diffusion

For orientation, we summarize a streamline diffusion method presented in Roos et al.

[122] for a stationary linear convection-diffusion problem. The convergence analysis and

proofs can be found in the cited references; nevertheless, we include them here for the

following exemplary problem to facilitate the general discussion of variants and extensions

that follows. Consider the problem

Lu := −ν∆u + b · ∇u + cu = f in Ω (3.19)

u = 0 on Γ, (3.20)

where ν > 0, and b, c, and f are sufficiently smooth and satisfy the assumption

inf
x∈Ω

(

c(x) − 1

2
∇ · b(x)

)

≥ c0 > 0. (3.21)

We will call a function u ∈ V that satisfies

aG(u, v) := ν(∇u,∇v) + (b · ∇u + cu, v) = (f, v) ∀v ∈ V (3.22)
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a weak solution of (3.19)-(3.20). Note that under the assumption (3.21) the existence of a

unique solution of the problem (3.22) follows easily from the Lax-Milgram theorem.

The standard discrete Galerkin finite element formulation for (3.22) reads:

Find uh ∈ Vh such that

aG(uh, vh) = (f, vh) ∀vh ∈ Vh. (3.23)

As we saw in Section 3.1, this formulation may suffer from numerical instabilities in

the presence of dominant convective terms. The SDFEM operates by adding weighted

residuals to the usual Galerkin finite element methodas follows: Under the assumptions

on the problem data, a solution u ∈ V of (3.22) obviously satisfies Lu = f in L2(Ω), and

we can conclude that if ψ(v) ∈ L2(Ω) ∀ v ∈ V for some transformation ψ, then

aG(u, v) +
∑

T∈T h

(Lu − f, ψ(v))T = (f, v) ∀v ∈ V, (3.24)

where (·, ·)T denotes the inner product in L2(T ). Note that since in general ∆uh /∈ L2(Ω),

but ∆uh ∈ L2(T ) for each T , we must calculate the term ∆u in Lu element by element.

Using (3.24), we formulate the following streamline diffusion finite element method :

Find uh ∈ Vh such that

ah(uh, vh) = lh(vh) ∀vh ∈ Vh, (3.25)

where

ah(u, v) := ν(∇u,∇v) + (b · ∇u + cu, v)

+
∑

T∈T h

(−ν∆u + b · ∇u + cu, ψ(v))T , (3.26)

lh(u, v) := (f, v) +
∑

T∈T h

(f, ψ(v))T (3.27)

and

ψ(v) |T := δTb · ∇v ∀ T ∈ T h. (3.28)

Remark 3.2. (i) Note that because of (3.24) the formulation (3.25)-(3.28) is consistent

for u ∈ H2(Ω) in the sense that a solution of (3.25) is also a solution of (3.23), i.e., the

projection property

ah(u − uh, vh) = 0 ∀vh ∈ Vh (3.29)

holds for the SDFEM. This fact makes it possible to obtain convergence properties that

are superior to the classical artificial diffusion methods, which add a perturbation to the

solution.

(ii) The streamline diffusion method (3.25)-(3.28) can also be derived by multiplication

of (3.22) with test functions of the form vh + δTb · ∇vh, that is, (3.25)-(3.28) can be
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interpreted as a Petrov-Galerkin method, in which the test functions belong to a space

which is different from the space of trial functions Vh where the discrete solution uh is

sought.

(iii) By setting

ψ(vh) |T := δT (−ν∆vh + b · ∇vh + cvh)T ∀ T ∈ T h (3.30)

in (3.28), we obtain a Galerkin least squares method (cf. [101]).

The correct choice of the local damping parameter (SD-parameter) δT in (3.28) is critical

for optimal convergence of the streamline diffusion model. We will provide more discussion

of this parameter later in this section; for now, in order to facilitate analysis of the stability

and convergence properties of (3.25)-(3.28), we set

c∞ = sup
x∈Ω

|c(x)|

and assume

0 < δT ≤ 1

2
min

(
c0

c2∞
,

h2
T

νµ2

)

(3.31)

for each T ∈ T h.

We can now prove error estimates for (3.25)-(3.28) in the norm

‖|v|‖2 := ν |v|21 + c0 ‖v‖2
0 +

∑

T∈T h

δT ‖b · ∇v‖2
0,T .

The choice of norm is motivated by the following stability property of the bilinear form

(3.25).

Lemma 3.3. Let Vh be the finite element space defined by (3.15) and assume the control

parameter δT satisfies (3.31). Then the discrete bilinear form ah is coercive on Vh, i.e.,

ah(vh, vh) ≥ C0 ‖|vh|‖2 ∀vh ∈ Vh, with C0 =
1

2
. (3.32)

Proof. Setting uh = vh in (3.26) and using partial integration and (3.21), we find that

ah(vh, vh) = ν(∇vh,∇vh) + ((c − 1

2
∇ · b)vh, vh)

+
∑

T∈T h

δT (−ν∆vh + b · ∇vh + cvh,b · ∇vh)T

≥ ν |vh|21 + c0 ‖vh‖2
0 +

∑

T∈T h

δT ‖b · ∇vh‖2
0,T

+
∑

T∈T h

δT (−ν∆vh + cvh,b · ∇vh)T

≥ ‖|vh|‖2 −
∣
∣
∣
∣

∑

T∈T h

δT (−ν∆vh + cvh,b · ∇vh)T

∣
∣
∣
∣
.
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The inverse estimate (3.17) and the conditions on δT imply

νδT ‖∆vh‖2
0,T ≤ 1

2
|vh|21,T ∀vh ∈ T h,

so that using Young’s inequality (1.7), the assumptions on δT and the inverse estimate

(3.17), we have
∣
∣
∣
∣

∑

T∈T h

δT (−ν∆vh + cvh,b · ∇vh)T

∣
∣
∣
∣

≤
(

∑

T∈T h

ν2δT ‖∆vh‖2
0,T

)1/2( ∑

T∈T h

δT ‖b · ∇vh‖2
0,T

)1/2

+

(
∑

T∈T h

δT ‖cvh‖2
0,T

)1/2( ∑

T∈T h

δT ‖b · ∇vh‖2
0,T

)1/2

≤
∑

T∈T h

ν2δT ‖∆vh‖2
0,T +

∑

T∈T h

δT c2
∞ ‖vh‖2

0,T +
1

2

∑

T∈T h

δT ‖b · ∇vh‖2
0,T

≤ ν

2
|vh|21 +

c0

2
‖vh‖2

0 +
1

2

∑

T∈T h

δT ‖b · ∇vh‖2
0,T ,

which delivers the desired result.

We may now derive an error estimate that shows the convergence of the streamline

diffusion method for the appropriate choice of the parameter δT . Using Ihu to denote the

interpolant from Vh to the exact solution u, we first split the error into two parts using

the triangle inequality

‖|u − uh|‖ ≤ ‖|u − Ihu|‖ + ‖|Ihu − uh|‖ . (3.33)

Now, for the error between uh and the interpolant Ihu, we have:

Lemma 3.4. Let uh ∈ Vh be a solution of (3.25)-(3.28). Then we have the error estimate:

‖|Ihu − uh|‖2 = ν |Ihu − uh|21 + c0 ‖Ihu − uh‖2
0 +

∑

T∈T h

δT ‖b · ∇(Ihu − uh)‖2
0,T

≤ Chk

(
∑

T∈T h

λT |u|2k+1,T

)

, (3.34)

if u ∈ V ∩ Hk+1(Ω), k ≥ 1. Furthermore, the constant C is independent of ν, and the

parameter λT = λT (ν, hT , δT ) is given by

λT = ν + δT + δ−1
T h2

T + h2
T . (3.35)

Proof. Setting ϑh := Ihu−uh, and using the coercivity (3.32) and the projection property

of the bilinear form, we have

1

2
‖|Ihu − uh|‖2 ≤ ah(Ihu − u, ϑh) + ah(u − uh, ϑh)

= ah(Ihu − u, ϑh).
(3.36)
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We now set ηh := Ihu − u and estimate ah(ηh, ϑh) term by term, using the interpolation

properties (3.16) for u ∈ V ∩ Hk+1(Ω). For the first term, we have

|ν(∇ηh,∇ϑh)| ≤ ν1/2 |ηh|1 ν1/2 |ϑh|1
≤ Cν1/2hk |u|k+1 ‖|ϑh|‖ .

(3.37)

Using integration by parts, the second term can be split into two terms

(b · ∇ηh + cηh, ϑh) = ((c −∇ · b)ηh, ϑh) − (b · ∇ϑh, ηh), (3.38)

which are estimated as follows:

|((c −∇ · b)ηh, ϑh)| ≤
∑

T∈T h

|((c −∇ · b)ηh, ϑh)T |

≤ C
∑

T∈T h

‖ηh‖0,T ‖|ϑh|‖

≤ C

(
∑

T∈T h

‖ηh‖2
0,T

)1/2

‖|ϑh|‖

≤ Chk

(
∑

T∈T h

h2
T |u|2k+1,T

)1/2

‖|ϑh|‖ ,

and similarly,

|(b · ∇ϑh, ηh)| ≤
∑

T∈T h

δ
1/2
T ‖b · ∇ϑh‖0,T δ

−1/2
T ‖ηh‖0,T

≤ Chk

(
∑

T∈T h

δ−1
T h2

T |u|2k+1,T

)1/2

‖|ϑh|‖ .

The streamline diffusion term is estimated by
∣
∣
∣
∣

∑

T∈T h

(−ν∆ηh + b · ∇ηh + cηh, δTb · ∇ϑh)T

∣
∣
∣
∣

≤ C
∑

T∈T h

δ
1/2
T (ν ‖∆ηh‖0,T + ‖∇ηh‖0,T + ‖ηh‖0,T )δ

1/2
T ‖b · ∇ϑh‖0,T

≤ C
∑

T∈T h

δ
1/2
T (νhk−1

T + hk
T + hk+1

T ) |u|k+1,T δ
1/2
T ‖b · ∇ϑh‖0,T

≤ C

(
∑

T∈T h

(ν2δT h2k−2
T + δT h2k

T + δT h2k+2
T ) |u|2k+1,T

)1/2

‖|ϑh|‖

≤ C

(
∑

T∈T h

(ν + δT )h2k
T |u|2k+1,T

)1/2

‖|ϑh|‖ ,

where we have used ν2δT ≤ Cνh2
T , which follows from (3.31). Combining the above

estimates and dividing both sides of (3.36) by ‖|ϑh|‖ results in

‖|ϑh|‖ ≤ Chk

(
∑

T∈T h

(ν + δT + δ−1
T h2

T + h2
T ) |u|2k+1,T

)1/2

, (3.39)

which proves the assertion.
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To obtain the best possible rate of convergence from (3.39), we must somehow balance the

terms ν, δT and δ−1
T . For the choice

δT ∼
{

hT for ν < hT (dominant convection)

h2
T /ν for ν ≥ hT (dominant diffusion)

(3.40)

we get the following global error estimate for the streamline diffusion finite element

method.

Theorem 3.5. Under the assumptions of Lemma 3.3 and with δT chosen according to

(3.40), the solution uh of the SDFEM satisfies

‖|u − uh|‖ ≤ C(ν1/2 + h1/2)hk |u|k+1 . (3.41)

Proof. It follows from (3.39) and (3.40) that

‖|Ihu − uh|‖ ≤ C(ν1/2 + h1/2)hk |u|k+1 . (3.42)

Moreover, using the interpolation estimates (3.16) for ηh = u − Ihu, we have

‖|ηh|‖ =
(
ν |ηh|21 + c0 ‖ηh‖2

0 +
∑

T∈T h

δT ‖b · ∇ηh‖2
0,T

)1/2

≤ Chk

(
∑

T∈T h

(ν + h2
T + δT ) |u|2k+1

)

,

which combined with ν + h2
T + δT ≤ λT , (3.42) and (3.33) results in (3.41).

Remark 3.6. (i) For the more interesting convection-dominated case, we have ν < hT and

δT ∼ hT , so that

‖|u − uh|‖ ≤ Chk+1/2 |u|k+1 . (3.43)

Looking at the interpolation errors

‖u − Ihu‖0 ≤ Chk+1 |u|k+1 and |u − Ihu|1 ≤ Chk |u|k+1 , (3.44)

we see that the L2-error is half a power of h from being optimal, while the L2-error of the

derivative in the streamline direction is in fact optimal.

(ii) A more exact analysis of the approximation error (3.33) yields the choice

δT =

{

δ0hT if PeT > 1, (dominant convection),

δ1h
2
T /ν if PeT ≤ 1, (dominant diffusion),

(3.45)

for δT , where

PeT :=
‖b‖0,∞,T hT

2ν

denotes the local (mesh) Peclét number and δ0 and δ1 are positive constants (cf. Lube

[101]). This choice is still not optimal, since the constants δ0 and δ1 must be determined.

In general, the optimal choice of δT remains an open problem (see below).
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3.2.2 Extensions to Nonconforming Elements

The SDFEM formulation (3.25)-(3.28) assumed conforming finite element spaces. John et

al. [81] showed that the O(hk+1/2) convergence rate of (3.44) could be preserved for a class

of nonconforming elements by adding certain jump terms to the bilinear form; however,

because the error analysis relied on the existence of a conforming finite element subspace

within the nonconforming approximation space, the method could not be used for the Q̃1

rotated quadrilateral elements described in Section 2.3.2. The following extension to the

Q̃1 elements was made by John et al. in [80] through the use of more flexible jump terms.

Find uh ∈ Vh 6⊂ V , such that for all vh ∈ Vh

ah(uh, vh) = lh(vh), (3.46)

where the bilinear form ah and the linear form lh are given by

ah(uh, vh) :=
∑

T∈T h

(

ν(∇uh,∇vh)T + (b · ∇uh + cuh, vh)T (3.47)

+ (−ν∆uh + b · ∇uh + cuh, δTb · ∇vh)T

)

(3.48)

+
∑

E∈E

∫

E
b · nE [uh]E AEvh dγ (3.49)

+
∑

E∈E

∫

E

∣
∣b · nE

∣
∣[uh]E [vh]E dγ, (3.50)

lh(vh) := (f, vh) +
∑

T∈T h

δT (f,b · ∇vh)T . (3.51)

Though more involved because of the jump terms, the coercivity and convergence proofs

are otherwise identical to those for the conforming case. We refer the reader to [80] for

details, proofs and analysis.

On the Choice of the SD-Parameter δT .

The development of the SDFEM and related methods has progressed rapidly over the last

25 years. A comprehensive account of the material on the best choice of δT could fill a

monograph by itself. We will content ourselves with providing a very short summary of

some of the results in this area along with references to further literature on the subject.

Fries/Matthies [46] have reviewed some stabilization methods for convection-dominated

problems, including an extensive discussion of methods for deriving δT . For one-dimensional

problems of the form

−νu′′ + bu′ = 0

with constant coefficients, the optimal value of

δT =
h

2b

(

coth

(
bh

2ν

)

− 2ν

bh

)

=
h

2b

(

coth (Pe) − 1

Pe

)

, (3.52)
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where h is the mesh size, can be calculated and yields the so-called Il’in-Allen-Southwell-

scheme, which is nodally exact. Moreover, the value of δT in (3.52) is independent of

boundary conditions and dependent on the relative positions of the two neighboring nodes

only [122]. Fries/Matthies [46] summarize several methods for obtaining (3.52), all of which

involve knowledge of the exact solution. Practically speaking, it can be advantageous

from a computational point of view to replace the optimal version (3.52) of δT with an

approximation that can be computed more quickly (cf. [124, 45, 44, 133, 132, 134, 46] and

the references contained therein).

The optimal choice of the streamline diffusion parameter δT for linear convection-

diffusion problems in higher dimensions remains an open problem, depending on the par-

ticular problem and on the numerical method used to approximate the solution, with a

variety of methods used to make the choice [46]; however, based on the mathematical anal-

ysis in the literature one generally finds δT = O(h2) for the diffusion-dominated case and

δT = O(h) for the more interesting convection-dominated case. Note that (3.40) conforms

with these results.

Remark 3.7. Referring to (3.40), we note that the streamline diffusion parameter δT can

in principle be chosen independently of T ∈ T h, while maintaining the theoretical con-

vergence properties of Theorem 3.4. Such a choice will likely be suboptimal compared to

(3.45), but simplifies the implementation and is advantageous from the standpoint of the

modified POD methods we will present later.

3.3 SDFEM for Navier-Stokes Problems

We now turn our attention to a nonlinear convection-diffusion problem, the Navier-Stokes

equations. Compared to the linear convection-diffusion problems of Section 3.2, the

Navier-Stokes equations present additional difficulties, not just because of their nonlin-

ear nature, but because of additional sources of numerical instabilities associated with the

incompressibility condition as well. As mentioned in Section 2.1, finite element approx-

imations of Navier-Stokes problems generally use mixed finite element methods; that is,

different finite element spaces for the velocity and pressure approximations. Numerical os-

cillations in such mixed methods might be generated not only by the presence of dominant

convection, such that for the local Reynolds number ReT

ReT := ν−1 ‖u‖0,∞,T hT > 1, (3.53)

holds, but also by inappropriate combinations of velocity/pressure interpolation functions

that do not satisfy the Babuška-Brezzi condition (3.10) with a mesh independent constant

γ.

Corresponding to the exceptional challenges presented by the numerical solution of

the Navier-Stokes equations, a large number of streamline diffusion methods have been

proposed and analyzed over the last 30 years. The number and technical complexity of
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the approaches is such that we must content ourselves here with no more than a cursory

review of the proposed methods.

We begin by citing a small number of the many streamline diffusion techniques that

have been introduced and studied for the incompressible Navier-Stokes equations, then

move on to a (slightly) more detailed description of some formulations that are of particu-

lar interest to us. Some of the earliest work in this area was done by Johnson/Saranen [83],

who suggested a streamline diffusion formulation for the time-dependent two-dimensional

Navier-Stokes equations, assuming exactly divergence-free discrete velocity fields. Hansbo/Szepessy

[67] later introduced and analyzed a streamline diffusion method for the incompressible

Navier-Stokes equations in the velocity-pressure formulation. In [102], Lube and Tobiska

circumvented exact divergence-free velocity fields by utilizing a nonconforming stream-

line diffusion finite element method. The review by Tezduyar [132] provides an extensive

summary of some of the other early work in this area.

A Streamline Diffusion Formulation for the Stationary Navier-Stokes Problem

Building on work by Tobiska/Lube [136], Tobiska/Verfürth [137] proposed a streamline

diffusion technique for the generalized stationary Navier-Stokes equations:

θ̃u − ν∆u + u · ∇u + ∇p̃ = f̃ in Ω

∇ · u = 0 in Ω

u = 0 on Γ,

(3.54)

where Ω is a bounded polyhedral domain in R
d, d = 2, 3, with boundary Γ and f̃ ∈ L2(Ω)d.

This formulation of the Navier-Stokes problem is of special interest because it allows

treatment of the case in which the stationary problem is obtained by the time discretization

of a nonstationary Navier-Stokes problem (see Section 2.1). The following summary follows

closely the expositions in [137] and [122].

By setting p̃ = νp, f̃ = νf , θ̃ = θν and λ = ν−1 in (3.54), we obtain the scaled form

θu − ∆u + λu · ∇u + ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γ

(3.55)

of the Navier-Stokes equations, which is better suited to the approximation of nonsingular

branches of solutions to nonlinear problems [20].

The generalized spaces used for the continuous problem are V := H1
0 (Ω)d for the

velocity and Q := L2
0(Ω) := {q ∈ L2(Ω) | (q, 1) = 0} for the pressure. Using these spaces,

the standard weak formulation of problem (3.55) is:

Find a pair [uλ, pλ] ∈ V × Q such that

a([uλ, pλ], [v, q]) = (f ,v) ∀ [v, q] ∈ V × Q, (3.56)
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where

a([uλ, pλ], [v, q]) = θ(uλ,v) + (∇uλ,∇v) + λ(uλ · ∇uλ,v) − (pλ,∇ · v) + (q,∇ · uλ).

The following SDFEM for (3.55) is obtained by testing the momentum equation against

test functions of the form λu ·∇v+∇q and adding least-squares control of the divergence:

Find a pair [uh,λ, ph,λ] ∈ Vh × Qh such that

aδ,α([uh,λ , ph,λ ], [vh, qh]) = lδ(uh,λ,vh) ∀ [vh, qh] ∈ Vh × Qh, (3.57)

where

aδ,α([uh,λ, ph,λ],[vh, qh]) = a([uh,λ, ph,λ], [vh, qh])

+ δ
∑

T∈T h

h2
T (θuh,λ − ∆uh,λ + λuh,λ · uh,λ + ∇ph,λ, λuh,λ · ∇vh + ∇qh)T

+ δ
∑

E∈Eh

hE([ph,λ]E , [qh]E)E + αδ(∇ · uh,λ,∇ · vh)

and

lδ(uh,λ,vh) = (f ,vh) + δ
∑

T∈T h

h2
T (f , λuh,λ · ∇vh + ∇qh)T .

The values α ≥ 0, δ > 0 denote parameters that are independent of h and must be

chosen to satisfy δ ≤ 1
2µ−2 and δθh2 ≤ 1

2 , where µ is the constant from the inverse

estimate (3.17). The pressure jumps across interelement boundaries are needed to allow

discontinuous pressure approximations.

Analysis by Tobiska/Verfürth [137] shows that the velocity-pressure formulation (3.57)

is sufficient to stabilize both the instability caused by dominant convection and the insta-

bility resulting from velocity/pressure approximations that do not fulfill condition (3.10);

thus (3.57) allows arbitrary combinations of velocity and pressure spaces. The following

existence and uniqueness result holds.

Theorem 3.8 (Tobiska/Verfürth). There is a constant ζ, independent of h and λ, such

that the problem (3.57) admits at least one solution [uh,λ, ph,λ] provided

λh1−κ



‖f‖2
−1 + δ

∑

T∈T h

h2
T ‖f‖2

0,T





1/2

≤ ζ,

with κ from (3.18). Moreover, the solution of (3.57) is unique provided λ is sufficiently

small.

Remark 3.9. Note that in contrast to the scalar linear convection-diffusion problem studied

in Section 3.2, the streamline diffusion parameter δ in (3.57) is independent of the local

Reynolds number. We refer to [137]) for additional thoughts on the appropriate choice of

δ for the scheme (3.57).
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The FEATFLOW SDFEM Implementation

Since the FEATFLOW implementation relies on nonconforming elements, the stream-

line diffusion method used must be tailored to these elements. By modifying a Galerkin

least-square finite element method introduced by Lube [101] for the stationary Navier-

Stokes equations, Schreiber/Turek [123, 142] formulated a least-square streamline diffusion

method for the nonconforming Q̃1/Q0-element, in which a residual term is added to the

momentum equation in the discrete formulation of the stationary Navier-Stokes problem

as follows:

Find uh ∈ Vh := H1
0 (Ω)2 and ph ∈ Qh := L2

0(Ω), such that

νa(uh,vh) + n(uh,uh,vh) + b(vh, ph)

+
∑

T∈T h

(−ν∆uh + uh · ∇uh − f , ψ(uh,vh))|T = (f ,vh) ∀vh ∈ Vh (3.58)

b(uh, qh) = 0 ∀ qh ∈ Qh. (3.59)

We note that multiplying the perturbation ψ of the test function with the residual term

−ν∆uh + uh · ∇uh − f ensures consistency since the modified problem is also satisfied by

the continuous solution. Now, choosing

ψ(uh,vh)|T = δTuh · ∇vh + γT (−ν∆vh) ∀ T ∈ T h (3.60)

gives extra control over gradients in the streamline direction, and using the special char-

acteristics (∆vh = 0, ∇q = 0) of the Q̃1/Q0-element and assuming f = 0 leads to the

following discrete streamline diffusion formulation of the stationary Navier-Stokes prob-

lem:

Find uh ∈ Vh and ph ∈ Qh, such that

νa(uh,vh) + ñ(uh,uh,vh) + b(vh, ph) = 0 ∀vh ∈ Vh (3.61)

b(uh, qh) = 0 ∀ qh ∈ Qh, (3.62)

where

ñ(uh,vh,wh) = n(uh,vh,wh) +
∑

T∈T h

δT (uh · ∇vh,uh · ∇wh)|T . (3.63)

For the choice of the local damping parameter δT , Turek [142] recommends the value

δT = δ · hT

‖ u ‖Ω
· 2ReT

1 + ReT
, (3.64)

where ReT = ‖u‖T ·hT /ν is the local Reynolds number, ‖u‖T is an averaged velocity value

over the quadrilateral T , hT denotes a ”local mesh width,” ‖u‖Ω is the maximum velocity

norm on Ω, ν is the viscosity and δ is a parameter to be chosen by the user, with typical

values between 0.1 and 2.0.



Chapter 4

Proper Orthogonal Decomposition

Accurate direct numerical simulation (DNS) of fluid flows governed by the nonstationary

Navier-Stokes equations requires fine spatial discretization, leading in general to very large

nonlinear systems, which must be solved at each time step. The resulting computational

complexity makes it difficult to use DNS in settings (optimal control, optimization, etc.)

that require repeated solution of the Navier-Stokes equations to determine the system

state. This has led researchers to seek reduced-order models (ROM) that can serve as

low-dimensional approximations to the discretized Navier-Stokes equations.

One method for generating low-order models that has been studied extensively (e.g.,

Holmes et al. [72], Sirovich [126], Aubry [8]) is the proper orthogonal decomposition (POD),

known in other contexts as principle components analysis, Karhunen-Loève decomposition

or the method of empirical eigenfunctions. Generally speaking, the POD method uses data

generated either experimentally or from the numerical solution of the system of interest

to build an orthonormal system of basis elements that reflect the salient characteristics

of the expected solution. The POD basis elements are optimal in the sense that they

capture more of the system energy than any other admissible basis of the same dimension.

POD is especially attractive as a method for deriving low-order models because it is

in its nature a linear procedure, though it makes no assumptions about the linearity

of the problem to which it is applied. POD has been used successfully in a range of

applications including control theory, signal analysis and feedback design. Some recent

examples include Leibfritz/Volkwein [97, 98] and Volkwein [147], and the examples cited

therein.

In the Navier-Stokes context the POD method assumes that the velocity can be written

as a linear combination of the POD basis functions. To determine the coefficients of this

linear expansion, the dynamical system is projected onto the POD basis, resulting in a

nonlinear system of ordinary differential equations that can be solved to determine the

coefficients of the representation. The optimal correlation of the POD basis elements with

properties of the flow field results in a considerable reduction in the degrees of freedom

needed to represent the flow as compared to other techniques, e.g., finite-element methods,

where the basis functions are uncorrelated with the physical properties of the system being

45
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simulated.

We begin the discussion of POD methods in Section 4.1, where the POD basis is

derived from a minimization problem based on the approximation error between the snap-

shot ensemble and the projection of the snapshots onto the POD basis. A procedure for

calculating the POD basis is presented and certain characteristics of the POD basis, such

as its superiority to other linear decompositions of the snapshot ensemble, are discussed.

Since we are interested in using POD-based models derived from data acquired from finite

element approximations on meshes at differing refinement levels, we study certain con-

vergence aspects of the Galerkin POD model in Section 4.2, backing up the theoretical

results with extensive numerical testing in Section 4.3.

4.1 Mathematical Formulation of the POD

The introduction of the proper orthogonal decomposition in this section is based primarily

on presentations by Berkooz et al. [13], Holmes et al. [72], Sirovich [126] and Volkwein

[145].

Consider a real separable Hilbert space H endowed with the scalar product (·, ·)H and

corresponding norm ‖·‖H = (·, ·)1/2
H . Given an ensemble of elements (or snapshots) ui ∈ H,

i = 1, . . . , n (with p = dim{u1, . . . , un} ≥ 1) we seek an orthonormal basis {ψj} of the

subspace Hn = span{u1, . . . , un} that is optimal in the sense that all finite-dimensional

representations of the form

vm =

m∑

j=1

ajψj , 1 ≤ m ≤ p ≤ n

describe an ”average” element of Hn better than than any other representation of the

same dimension in any other basis. If we understand average here to mean an arithmetical

average, we can make a precise mathematical formulation of the POD as follows.

If {ψj}p
j=1 is any orthonormal basis for Hn then for any m ∈ {1, . . . , p} we can express

the projection ûi of each member of the snapshot ensemble {ui}n
i=1 onto the space spanned

by {ψj}m
j=1 as

ûi =
m∑

j=1

(ui, ψj)Hψj , i = 1, . . . , n. (4.1)

The essence of POD lies in choosing the basis so that for every m ∈ {1, . . . , p} the mean

square error between the ensemble elements and the sum (4.1) is minimized. This leads

to the following problem formulation for the derivation of the POD basis.

Problem 4.1. Find an orthonormal basis {ψj}p
j=1 of Hn that solves the minimization

problem

min
ψ1,...,ψm

n∑

i=1

ωi

∥
∥ui −

m∑

j=1

(ui, ψj)Hψj

∥
∥

H
s.t. (ψi, ψj) = δij (4.2)

for all 1 ≤ i, j ≤ m, 1 ≤ m ≤ p and ωi > 0, i = 1, . . . , n.
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A solution of (4.2) is called a POD basis of rank m. With the weights chosen according

to ωi = 1/n, i = 1, . . . , n, we recover the usual notion of the arithmetic average; however,

other choices, such as the length of the time interval for data generated at discrete time

points, will also be of interest (see Section 4.2.1).

4.1.1 Construction of the POD Basis

To calculate the POD basis we follow Kunisch/Volkwein [93] and define the operator

Un ∈ L(Rn, H) by

Una :=
n∑

i=1

ωiaiui for a = (a1, . . . , an)T ∈ R
n, (4.3)

where L(Rn, H) denotes the space of bounded linear operators from R
n into H. If R

n is

endowed with the inner product

〈a, b〉Rn :=
n∑

i=1

ωiaibi for a, b ∈ R
n, (4.4)

then it is easily seen by

(
Una, w

)

H
=

(
n∑

i=1

ωiaiui, w
)

H
=

n∑

i=1

ωiai

(
ui, w

)

H
, a ∈ R

n, w ∈ H,

and (4.4) that the adjoint U∗
n ∈ L(H, Rn) is given by

U∗
nw := ((u1, w)H , . . . , (un, w)H)T ∀w ∈ H. (4.5)

With the above notation, the autocorrelation operator Rn := UnU∗
n ∈ L(H) is given by

Rnw =
n∑

i=1

ωi(w, ui)Hui, ∀w ∈ H. (4.6)

Example 4.2. Consider n > 0 elements u1, . . . , un from the Hilbert space H = L2(Ω),

where Ω is a bounded domain in R
d, d ∈ N. Then the autocorrelation operator Rn is

given by

Rnw(x) =
n∑

i=1

ωi(w, ui)Hui(x)

=
n∑

i=1

ωi

(∫

Ω
w(x′)ui(x

′) dx′
)

ui(x)

=

∫

Ω
k(·, x′)w(x′) dx′ ∀w ∈ H,

where the kernel

k(x, x′) =
n∑

j=1

ωiuj(x)uj(x
′)

is known as the averaged autocorrelation function.
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The solution of Problem 4.1 is contained in the following theorem from Volkwein [145].

Theorem 4.3. There exists a complete orthonormal basis {ψj}j∈N for H and a sequence

{λj}j∈N of nonnegative real numbers, such that

Rnψj = λjψj , with λ1 ≥ · · · ≥ λp > 0 and λj = 0 for j > p (4.7)

and Hn = span{ψj}p
j=1. Moreover, {ψj}m

j=1 is a POD basis of rank m for 1 ≤ m ≤ p, that

is, {ψj}p
j=1 solves Problem 4.1, and the accumulated mean square error (truncation error)

for each partial sum is given by the POD representation error

ǫ(m) :=
n∑

i=1

ωi

∥
∥ui −

m∑

j=1

(ui, ψj)Hψj

∥
∥2

H
=

p
∑

j=m+1

λj , (4.8)

where λm+1, . . . , λp are the smallest p − m eigenvalues of Rn.

Proof. We give a short sketch of the detailed proof in [145]. By formulating and solving

the Lagrangian of the constrained minimization problem (4.2) for any m ∈ {1, . . . , p}, one

derives the necessary optimality conditions

Rnψj = λjψj for j = 1, . . . , m (4.9)

(see also [72]). The operator Rn can be shown to be bounded, self-adjoint, nonnega-

tive and compact, so that the Hilbert-Schmidt theorem (cf. Reed/Simon [121, Theorem

VI.16]) guarantees existence of a complete orthonormal basis {ψj}j∈N for H and a sequence

{λj}j∈N, such that

Rnψj = λjψj , λ1 ≥ λ2 ≥ · · · and λj → 0 for j → ∞. (4.10)

The assertion (4.7) results from the degeneracy of Rn (rank Rn = p). The proof that the

set (4.10) is sufficient to solve Problem 4.1 is straightforward, but technical; we refer the

reader to [145].

The derivation of the error formula uses the relation

n∑

i=1

ωi |(ui, ψj)H |2 = λj ∀j ∈ N, (4.11)

which follows from (4.10) and the definition of Rn. It follows that

n∑

i=1

ωi

∥
∥ui −

m∑

j=1

(ui, ψj)Hψj

∥
∥2

H

=
n∑

i=1

ωi

(

‖ui‖2
H −

m∑

j=1

|(ui, ψj)H |2
)

=

n∑

i=1

ωi

( p
∑

j=1

|(ui, ψj)H |2 −
m∑

j=1

|(ui, ψj)H |2
)
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=

p
∑

j=m+1

n∑

i=1

ωi |(ui, ψj)H |2

=

p
∑

j=m+1

λj ,

The Method of Snapshots

The procedures of Theorem 4.3 present some difficulties. Even if, as will be motivated

in Section 4.1.3, only a small number of basis functions are necessary to represent the

function or flow in question, we must still solve an eigenvalue problem (4.9) of order equal

to that of the original problem. One possibility lies in using iterative numerical procedures,

Lanczos methods for instance (see Fahl [40]), that allow extraction of the eigenvectors

corresponding to only the largest eigenvalues – those capturing the most system energy –

at reduced computational cost; however, for situations in which the number of observations

in the POD ensemble is much smaller than the dimension of the space from which the

observations are extracted, the so-called method of snapshots, introduced by Sirovich [126],

provides an efficient and elegant method for calculating all positive eigenvalues and the

corresponding eigenfunctions.

Recalling the definition of the autocorrelation operator (4.6), we define the weighted

correlation matrix Kn := U∗
nUn ∈ R

n×n, which can be written as

(Kn)ij = ωj(ui, uj)H . (4.12)

The matrix Kn is clearly symmetric positive semi-definite with rank p, and Problem 4.1

can now be solved by utilizing the following theorem, a proof of which can be found in

[72] or [145].

Theorem 4.4. Let λ1, . . . , λp > 0 be the positive eigenvalues of the weighted correlation

matrix Kn and v1, . . . , vp the corresponding eigenvectors. A POD basis of rank m ≤ p is

given by

ψi =
1√
λi

n∑

j=1

vijuj , i = 1, . . . , m (4.13)

where vij is the j-th component of vi, and the POD representation error is given by (4.8).

The eigenvalue problem for Kn can be solved numerically. For ensembles drawn from

an infinite dimensional Hilbert space, the elements of Kn must themselves be computed

by numeric quadrature.

4.1.2 Properties of the POD Basis

In this section we summarize some of the properties of POD that make it attractive from

the standpoint of reduced-order modeling. As above, we will be interested only in finite
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dimensional POD subspaces and will formulate our results accordingly, but the theory and

comments of this section can also be extended to the ideal case of infinite data sets (cf.

Holmes, et al. [72]).

Span of the POD Basis

From Theorem 4.3, we have Hn = span{u1, . . . , un} = span{ψ1, . . . , ψp}, where {ui}n
i=1 is

the snapshot ensemble and {ψi}p
i=1 is the maximal POD basis, so that every member of

the original snapshot ensemble can be reconstructed as a linear combination of the POD

basis, and conversely, the POD basis elements can be expressed as linear combinations of

the snapshots. The second observation is especially encouraging since it implies that any

property of the snapshots that is preserved under linear combination is inherited by the

POD basis functions. This includes such features as incompressibility and linear boundary

conditions. Furthermore, since p ≤ n, the POD basis will generally use fewer – sometimes

far fewer – elements to represent the space spanned by the snapshots.

Optimality of the POD Basis

Generalizing the discussion somewhat, we follow Holmes et al. [72] and suppose we have

some time dependent signal u(t, x) mapping into some Hilbert space H for each t, which

we wish to approximate linearly with respect to an arbitrary orthonormal basis {φj(x)}p
j=1

spanning a finite dimensional subspace of H:

u(t, x) =

p
∑

j=1

bj(t)φj(x); (4.14)

for instance, a Fourier series approximation for the solution of a time-dependent partial

differential equation (cf. Haberman [66]).

Now, if the φj(x) are dimensionless, then the coefficients bj(t) carry the dimension of

the quantity u. If, for instance, u(t, x) denotes the velocity in a flowfield and 〈·〉 denotes

an averaging operation with respect to t, which is assumed to commute with the inner

product (·, ·)H , then the average kinetic energy per unit mass for the flow field is given

(with slight abuse of notation) by

1

2

〈
(u(t, x), u(t, x))H

〉
=

1

2

〈
p

∑

j=1

p
∑

k=1

bj(t)bk(t)(φj(x), φk(x))H

〉

=
1

2

p
∑

j=1

〈
bj(t)bj(t)

〉

so that the average kinetic energy in the j-th mode is given by 1
2〈b2

j (t)〉.
The following proposition, the proof of which can be found e.g., in Berkooz et al. [13],

establishes the optimality of the POD decomposition.
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Proposition 4.5. Let {ψj}p
j=1 denote the orthonormal POD basis and {λj}p

j=1 the asso-

ciated set of eigenvalues. If

u(t, x) =

p
∑

j=1

aj(t)ψj(x)

is the decomposition of u(t, x) with respect to the POD basis, then the following hold:

1) 〈aj(t)ak(t)〉 = δjkλj, i.e. the POD coefficients are uncorrelated.

2) For every 1 ≤ m ≤ p, we have

m∑

j=1

〈aj(t)aj(t)〉 =
m∑

j=1

λj ≥
m∑

j=1

〈bj(t)bj(t)〉. (4.15)

This proposition shows that the POD basis is optimal among all linear decompositions

in the sense that, for a given number of modes, the projection on the subspace used for

modeling will capture the most kinetic energy in the average sense implied by the operator

〈·〉.
Remark 4.6. Proposition 4.5 also implies that the eigenvalues λj associated with the POD

basis give a measure of the mean system energy captured by the associated eigenfunction,

or as stated by Sirovich [126], that the eigenvalue λj , j ∈ 1, . . . , p measures in a certain

sense the average relative time spent by the dynamical system along the ψj-axis. As a

result, one can expect the sum of the eigenvalues to equal the mean system energy. The

eigenvalues typically fall rapidly toward zero, so that most of the energy is captured by

the largest m ≪ p positive eigenvalues, which allows further reduction in the order of the

POD model through truncation of the POD representation (see Subsection 4.1.3).

4.1.3 The Dimension of the POD Subspace

As indicated in Remark 4.6, we can control the accuracy and order of the POD model —

equivalently, the dimension of the POD basis — by the choice of m in (4.8). The choice

of the POD dimension is usually based on some sort of heuristic, the most popular being

the so-called energy method [126]. By choosing m such that

∑m
i=1 λi

∑p
i=1 λi

≥ ē, (4.16)

where ē is a predetermined percentage of the system energy, we achieve a further reduction

in the dimension of our model with little or no loss in fidelity. Typical choices for ē range

from 98− 99.9% (see e.g., [97, 98, 103, 7, 55, 13]). Some justification for this procedure is

given in Chatelin [30], where it is proved that while cond(λ) = 1 for an eigenvalue of the

symmetric matrix Kn, the condition number of the corresponding eigenvector v is given

by

cond(v) = 1/d(λ), where d(λ) := min
µ∈σ(Kn)\λ

|µ − λ| , (4.17)



52 4 Proper Orthogonal Decomposition

and σ(Kn) denotes the set of positive eigenvalues of Kn. Since small eigenvalues will neces-

sarily be close together, we can expect the eigenvectors corresponding to small eigenvalues

to be numerically instable, so that dropping them from the POD basis may actually result

in improved model fidelity as opposed to using the full set of positive eigenvalues.

A discussion of other truncation criteria based on the numerical rank of Kn can be

found in Hansen [68].

4.2 Error Estimates for POD Methods

As indicated in Chapter 1, we are interested in using POD models generated from numer-

ical data of of widely differing quality. In this spirit, we wish to assess the dependence of

the approximation properties of POD methods on changes in the discretization parameters

of the high-order numerical solution process. Though it appears that little research has

been done to date in this area, Kunisch, Volkwein and Hinze ([91, 93, 92, 147, 71]) have

produced some initial results, which we review in this section.

Let us first choose a (relatively general) example problem and fix some notation. We

shall consider the nonstationary Navier-Stokes problem (2.1)-(2.5) of Section 2.1, and its

Galerkin finite element approximation, which was discussed in Section 2.3. In the interest

of brevity, the notation of Chapter 2 will be assumed in as far as practicable. We will be

interested in three separate but related phenomena:

1. The dependence of the POD basis on the intervals at which the POD snapshots are

taken (Section 4.2.1).

2. The dependence of the POD basis on the spatial discretization of the domain Ω

(Section 4.2.2).

3. Error estimates for Galerkin POD methods (Section 4.2.3).

4.2.1 Perturbation Analysis of the POD Approximation Error

We begin by assuming the snapshot ensemble is taken directly from the spatial solution

space of interest, that is, without any spatial discretization error1, and investigate the

dependence of the eigenvalues {λi}i∈N on the temporal density of the snapshots. To this

end, we divide the interval [0, T ] for a given n ∈ N into a grid 0 = τ0 < τ1 < · · · < τn = T ,

where τ0, . . . , τn are the time points at which the snapshots are taken. We set △τj =

τj − τj−1, j = 1, . . . , n with τmax = max{△τ1, . . . ,△τn} and τmin = min{△τ1, . . . ,△τn}.
Our primary interest lies in the behavior of the error term ǫ(m) =

∑p
j=m+1 λj for △τ → 0,

i.e. n → ∞.

1In this sense, ”solution space of interest” refers not only to infinite dimensional spaces, such as L
2(Ω),

but also to finite dimensional vector spaces resulting from the spatial discretization of an infinite dimen-
sional space.
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Consider the bounded linear operator U : L2(0, T ; R) → H defined by

Uπ :=

∫ T

0
π(τ)u(τ) dτ for π ∈ L2(0, T ; R), u ∈ L2(0, T ; H).

Analogue to the situation in Section 4.1.1, the adjoint U∗ : H → L2(0, T ; R) is given

(pointwise) by

(U∗w)(τ) = (w, u(τ))H for w ∈ H,

and for the autocorrelation operator R = UU∗ ∈ L(H) we have

Rw =

∫ T

0
(w, u(τ))Hu(τ) dτ for w ∈ H.

Now, if we choose the weights in (4.2) according to

ω0 =
△τ1

2
, ωj =

△τj+1 + △τj

2
, j = 1, . . . , n − 1, and ωn =

△τn

2
(4.18)

and set

In(u) =
n∑

j=0

ωj

∥
∥u(τj) −

m∑

k=1

(u(τj), ψk)Hψk

∥
∥2

H
=

p
∑

j=m+1

λj , (4.19)

I(u) =

∫ T

0

∥
∥u(τ) −

m∑

k=1

(u(τ), ψk)Hψk

∥
∥2

H
dτ (4.20)

then In(u) is the trapezoidal approximation for the integral I(u), and for all u ∈ C(0, T ; H),

we have limn→∞ In(u) = I(u). Likewise, with the weights chosen according to (4.18),

the finite dimensional operator Rn is the trapezoidal approximation to R and if uτ ∈
L2(0, T ; H) we have limn→∞ ‖Rn −R‖L(H).

The following proposition extending the results of Theorem 4.3 to R and giving per-

turbation bounds for the eigenvalues of Rn was proved in [93].

Proposition 4.7 (Kunisch/Volkwein). There exists a complete orthonormal basis {ψj}∞j=1

for H and a sequence {λj}∞j=1 of nonnegative numbers such that

Rψj = λjψj , with λ1 ≥ λ2 ≥ · · · and lim
j→∞

λj = 0, (4.21)

and
∫ T
0 ‖u(τ)‖2

H dτ =
∑∞

j=1 λj for u ∈ C(0, T ; H).

Moreover, if we let {λn
j }∞j=1 denote the sequence (4.7) from Theorem 4.3 and choose a

fixed m ∈ N such that λm 6= λm+1, then

lim
△τ→0

∞∑

j=1

λn
j =

∞∑

j=1

λj , (4.22)

lim
△τ→0

λn
j = λj , for 1 ≤ j ≤ m, (4.23)
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and if
∑∞

j=m+1 λj > 0, there exists a ̟1 > 0, such that

(4.24)
∞∑

j=m+1

λn
j ≤ 2

∞∑

j=m+1

λj for △τ ≤ ̟1. (4.25)

Finally, for m as chosen above, there is a ̟2 > 0, such that

p(n)
∑

j=m+1

∣
∣(ψn

j , u0)H

∣
∣2 ≤ 2

∞∑

j=m+1

|(ψj , u0)H |2 for △τ ≤ ̟2, (4.26)

where u0 is the snapshot taken at time t0.

4.2.2 The Effect of Spatial Discretizations on the POD Basis

Consider the Galerkin approximation of an infinite dimensional Hilbert space H by a

family of finite dimensional subspaces Hh given by

Hh = span{ϕ1, . . . , ϕN}, N ∈ N,

where the set {ϕ1, . . . , ϕN} is linearly independent in H, and the mesh parameter h =

h(N) > 0 is a measure of the mesh size with accumulation point zero. We define the

family {Πh}h by

Πhu =
N∑

i=1

N∑

j=1

(M−h)ij(u, ϕj)Hϕi ∀u ∈ H,

where Mh = ((ϕi, ϕj)H)N
i,j=1 ∈ R

N×N denotes the finite element mass matrix in Hh, and

M−h its inverse. It is easily seen that Πh is the bounded orthogonal projection of H onto

Hh for each h > 0 (cf. [147]). It is worth emphasizing here that N is the order of the

finite element discretization, and we have h → 0 for N → ∞, while n denotes the number

of snapshots, which shall remain constant in this section.

Assume now that a fixed number of snapshots {u1, . . . , un} are taken from H at n > 0

fixed time points in [0, T ]. Each member ui of the ensemble is approximated in Hh by the

projection of itself onto the space Hh:

uh
j = Πhuj ∈ Hh, j = 1, . . . , n. (4.27)

Using the sets {u1, . . . , un} and {uh
1 , . . . , uh

n}, define the family {K(h)}h of matrices by (cf.

(4.12))

(K(h))ij = ωj(u
h
i , uh

j )H and

(K(0))ij = Kij = ωj(ui, uj)H

(4.28)

for {u1, . . . , un} ∈ H. Then the results of Section 4.1.1, including Theorem 4.4, apply and

we have the following proposition from Volkwein [147], giving a sufficient condition for the

right-continuity of K(h) at h = 0.



4.2 Error Estimates for POD Methods 55

Proposition 4.8 (Volkwein). If the family of restrictions {Πh}h is pointwise convergent

in H, that is,

lim
h→0

Πhu = u ∀u ∈ H, (4.29)

then the family {K(h)}h defined in (4.28) is right continuous at h = 0. Moreover, if there

is an ǫ > 0 such that

max
1≤j≤m

∥
∥
∥Πhuj − uj

∥
∥
∥

H
= O(hǫ) for h → 0, (4.30)

then

‖K − K(h)‖2 = O(hǫ) for h → 0, (4.31)

where ‖·‖2 denotes the spectral norm for matrices.

Proof. With k := arg max
1≤i≤m

ωi ‖ui‖H we have

‖K − K(h)‖2 ≤ ‖K −K(h)‖∞ = max
1≤i≤m

m∑

j=1

∣
∣
∣Kij −Kh

ij

∣
∣
∣

≤ max
1≤i≤m

ωi

m∑

j=1

(
∣
∣
∣(ui, uj − Πhuj)

∣
∣
∣ +

∣
∣
∣(ui − Πhui, uj)

∣
∣
∣

)

≤ max
1≤i≤m

ωi

m∑

j=1

(
‖ui‖H

∥
∥
∥uj − Πhuj

∥
∥
∥

H
+

∥
∥
∥Πhuj

∥
∥
∥

H

∥
∥
∥ui − Πhui

∥
∥
∥

H

)

≤ ‖uk‖H

m∑

j=1

∥
∥
∥uj − Πhuj

∥
∥
∥

H
+ m ‖uk‖H

∥
∥
∥Πh

∥
∥
∥
L(H,Hh)

∥
∥
∥ui − Πhui

∥
∥
∥

H
.

It follows from (4.29) that
∥
∥Πh

∥
∥

H
is bounded for all u ∈ H, so that according to the

principle of uniform boundedness (cf. Reed/Simon [121, Theorem III.9]) there is a constant

C > 0 such that
∥
∥Πh

∥
∥
L(H,Hh)

≤ C for all h. Hence, we have

lim
h→0

‖K − K(h)‖2 = 0.

The second assertion is now obvious.

Note that if the snapshot set from H is linearly independent, then K(0) will be positive

definite, while the matrices K(h), h > 0 will in general be only positive semidefinite. If

(4.29) holds, however, K(h) will be positive definite for sufficiently small h, and the set

{Πhuj}n
j=1, where {u1, . . . , un} is the snapshot set from H, will necessarily be linearly

independent.

As was mentioned in Section 4.1.3, the condition of the eigenvectors of the family {Kh}
depends on the gap of the corresponding eigenvalues. This is made more precise in the

following theorem, which also gives a perturbation bound on the eigenvalues. See Demmel

[38] for a proof.
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Theorem 4.9. For any i ∈ {1, . . . , n} let λi and λi(h) represent the i-th eigenvalue of

K and K(h), respectively. Then |λi − λi(h)| ≤ ‖K(0) −K(h)‖2, and if (4.29) and (4.30)

hold it follows that

|λi − λi(h)| = O(hǫ) for h → 0. (4.32)

For any i ∈ {1, . . . , n} let ψi and ψi(h) represent the i-th eigenvector of K and K(h),

respectively. Then

1

2
sin(2θi) ≤

‖K −K(h)‖2

min
i6=j

|λj − λi|
if min

i6=j
|λj − λi| > 0 (4.33)

and
1

2
sin(2θi) ≤

‖K −K(h)‖2

min
i6=j

|λj(h) − λi(h)| if min
i6=j

|λj(h) − λi(h)| > 0, (4.34)

where θi denotes the acute angle between ψi and ψi(h).

4.2.3 Error Estimate for POD Approximations

Consider the solution u(t,x) of the weak formulation (2.1) of the Navier-Stokes problem

(2.1)-(2.5) with homogeneous boundary conditions and set H = H, V = V, where H,V

denote the divergence-free spaces of Subsection 1.3.3. Using the POD basis of Section 4.1

for the spatial approximation and the backward Euler method for time stepping, we wish

to get a feel for the error we can expect from the Galerkin POD method of projecting the

Navier-Stokes equations onto the POD basis and solving the resulting system of ordinary

differential equations for u. Following the discussion of Kunisch/Volkwein [92], assume

we have used a snapshot set S = {u(τ0), . . . ,u(τn)} ⊂ V ⊂ H taken at the time points

{τ0, . . . , τn} given in Section 4.2.1 to generate a POD basis {ψ1, . . . , ψl}, l ≤ p = dimS,

spanning some subspace Hl = span{ψ1, . . . , ψl} of the space spanned by the snapshots.

For some m ∈ N we introduce the time grid

0 = t0 < t1 < · · · < tm = T (4.35)

with intervals △tj = tj − tj−1, j = 1, . . . , m, and set tmax = max{△t1, . . . ,△tm} and

tmin = min{△t1, . . . ,△tm}. We assume that tmax/tmin is uniformly bounded with respect to

m and relate the time discretizations {τj}n
j=0 and {tj}m

j=0 by defining σn = arg max{#τk̂ |
1 ≤ k ≤ m}, where the symbol # denotes the frequency of occurrence and τk̂ is chosen

according to k̂(tk) = arg min{|tk − τj | | 0 ≤ j ≤ n} for each k = 1, . . . , m.

The Galerkin POD problem consists of finding a sequence {ũk}m
k=0 in Hl, which satisfies

(ũ0, ψ)H = (u0, ψ)H ∀ψ ∈ Hl (4.36)

and

(Dm
t ũk, ψ)H + νa(ũk, ψ) + n(ũk, ũk, ψ) = (f , ψ)H (4.37)
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for all ψ ∈ Hl and k = 1, . . . , m, where the operator Dm
t is defined by

Dm
t ũk =

ũk − ũk−1

△tk
. (4.38)

The following theorem, which is proved in [92], establishes existence results for the sequence

{ũk}m
k=0.

Theorem 4.10 (Kunisch/Volkwein). For every k = 1, . . . , m there exists at least one

solution ũk of (4.37), and if tmax is sufficiently small, the sequence {ũk}m
k=0 is uniquely

determined.

We now turn to the derivation of an error estimate for

m∑

k=0

βk ‖ũk − u(tk)‖2
H , (4.39)

where u(tk) is the solution of (2.1) at the time instances t0, . . . , tm and the weights βk are

chosen according to

β0 =
△t1
2

, βk =
△tk+1 + △tk

2
, k = 1, . . . , m − 1, and βm =

△tm
2

. (4.40)

We state the following error estimate for (4.39), which was proved in [92].

Theorem 4.11. Assume that ut ∈ L2(0, T ; V ) and utt ∈ L2(0, T ; H) hold, and that tmax

is sufficiently small. Then there exist constants2 cα and C, with C depending on T but

independent of the grids {τi}n
i=0 and {ti}m

i=0, such that

m∑

k=0

βk ‖ũk − u(tk)‖2
H

≤ C

p
∑

i=l+1

(

|(ψi,u0)|2V +
σn

τmin

( 1

tmin

+ tmax

)
λi

)

+ Cσntmaxτmax ‖ut‖2
L2(0,T ;V )

+ Cσn(1 + c2
α)tmax

(
τmax ‖ut‖2

L2(0,T ;H) + (tmax + τmax) ‖utt‖2
L2(0,T ;H)

)
.

(4.41)

For the special case that the time grids coincide, that is, n = m and tj = τj, j = 1, . . . , m,

we have

m∑

k=0

βk ‖ũk − u(tk)‖2
H

≤ C(1 + c2
α)t2

max
‖utt‖2

L2(0,T ;H)

+ C

( p
∑

i=l+1

(
|(ψi, u0)V |2 +

( 1

t2
min

+ 1
)
λi

)
+ t2

max
‖ut‖2

L2(0,T ;V )

)

.

(4.42)

2The constant cα results essentially from the fact that H
1
0 (Ω) is continuously embedded into L

2(Ω) (cf.
[92]).
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Remark 4.12. Note that if the number of POD elements used coincides with the dimension

of S, then (4.42) takes the form

m∑

k=0

βk ‖ũk − u(tk)‖2
H ≤ Ct2max

(
(1 + c2

α) ‖utt‖2
L2(0,T ;H) + ‖ut‖2

L2(0,T ;V )

)
. (4.43)

This eliminates the troublesome term 1/t2min, but does not allow truncation of the POD

basis, which is one of the primary benefits of using the POD approach. Keeping this in

mind, we will truncate the POD basis as described in Section 4.1.3, but for optimization

purposes we will need some mechanism to ensure the fidelity of our model. This will be

the subject of Chapter 6.

We note that Kunisch/Volkwein [92, Corollary 4.11] suggest that better convergence

properties can be achieved for (4.39) by adding difference quotients to the snapshot set

prior to calculating the POD basis (see also [73]). We have not yet experimented with this

approach, but may do so in future work.

Remark 4.13. We note that it is also interesting to examine the effect the Reynolds number

has on the error estimates of Theorem 4.11. The estimates (4.41) and (4.42) are derived in

[93] for more general nonlinear evolution equations (see also [130]). Careful examination of

this derivation shows that for Navier-Stokes problems the system viscosity ν gets ”hidden”

in the constant cα, such that cα = cβ/ν, where cβ is now independent of ν. Looking at

(4.42), for instance, we see that any reduction in ν must be accompanied by a proportional

reduction in tmax in order to maintain the order of the error estimate.

4.3 Numerical Analysis of POD Basis and Model Behavior

The theoretical results of Section 4.2 provide some indication that the Galerkin POD

method based on finite element approximations at different discretization levels will con-

verge satisfactorily for finer discretizations. Before proceeding, we wish to do some nu-

merical testing of this assertion. For this purpose, we solved the driven cavity problem

of Section 2.2.3 at Reynolds numbers of 100, 400, 10, 000 and 20, 000 for various tem-

poral and spatial discretizations. The range of the spatial discretizations was the same

for all Reynolds numbers, with simulations carried out on uniform meshes with fineness

(coarseness) ranging from a very coarse 4× 4 (h = 0.3334) mesh to a 97× 97 (h = 0.0104)

mesh. Since the dynamics of the problem vary considerably with changes in Reynolds

numbers, we used a simulation time of T = 5 seconds at Re = 100 and Re = 400, and

T = 20 seconds at Re = 10, 000 and Re = 20, 000. The temporal velocity profile used in

all cases was γ(t) ≡ 1.0 (cf. (2.28)). The temporal discretizations used for generating the

snapshot ensembles also varied according to Reynolds number and are described in more

detail below.

It may be noted that a POD basis can be computed for either the entire velocity field
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spanned by the snapshots u(τ1), . . . ,u(τn), or for its fluctuating part

u(τ1) − un, . . . ,u(τn) − un, (4.44)

where un = (1/n)
∑n

i=1 u(τi). In fact, it is common in the literature to use only the

fluctuating portion of the velocity field in the construction of the POD basis, and we will

follow this tradition in later sections; however, since the average velocity field un depends

on the discretization level, using the set (4.44) would make the POD bases computed

from different discretization levels incomparable. For this reason, we have based the POD

computations in this section on the entire velocity field.

4.3.1 Dependence of the Eigenvalues on the Snapshot Density

We begin by studying the dependence of the eigenvalues on the snapshot density. For each

value of the Reynolds number we fix the spatial discretization (using the 97×97 (h=0.0104)

mesh) and compare the behavior of the first five eigenvalues of Kn for uniformly distributed

snapshot ensembles. Simulation time at Re = 100 and Re = 400 was 5 seconds, with

snapshot density ranging from n = 4 to n = 536 for Re = 100, and n = 6 to n = 815

for Re = 400. Simulation time at Re = 10, 000 and Re = 20, 000 was 20 seconds, with

snapshot density ranging from n = 4 to n = 600.

Table 4.1 on Page 62 displays the values of the first five eigenvalues λ1, . . . , λ5 for

Re = 100. Convergence is rapid; indeed, assuming that the values for n = 536 are very

close to the correct values, n = 4 snapshots already appears to be sufficient for good

approximation of the first eigenvalue λ1, and n = 134 yields a decently small relative error

across the table. The situation is displayed graphically in Figure 4.1 for the first three

(left) and five (right) eigenvalues with λ1 scaled to improve the visual display.

Figures 4.2 to 4.4 and Tables 4.3, 4.5 and 4.7 on Pages 63 to 65 contain similar analysis

for Reynolds numbers 400, 10, 000 and 20, 000, respectively, with results similar to those

for Re = 100. It is interesting to note that the number of snapshots needed for eigenvalue

convergence remains on the order of about 100, even for higher Reynolds numbers with

longer simulation times. This is no doubt due in part to the well-behaved boundary control

used here, but it is simple enough to add additional snapshots should it become necessary

to do so. In any event, from a numerical point of view, the method of snapshots gives us

considerable flexibility as to the choice of n.

4.3.2 Dependence of the Eigenvalues on the Spatial Discretization

Moving to the effect of the spacial discretization, the theoretical results of Section 4.2.2

are confirmed by Figures 4.5, 4.6, 4.7 and 4.8 on Pages 66 to 69, where the values of

‖K(h)‖ and ‖K(h) −K(0)‖ are plotted against h for Re = 100 to Re = 20, 000. Note that

we have assumed K(h = 0.0104) for K(0). We have also included some additional curves

generated at Re = 100 and Re = 400 with streamline diffusion used in the numerical
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solution process. The addition of streamline diffusion appears to cause an increase in

‖K(h)‖ with the effect more pronounced at Re = 400.

Tables 4.9, 4.11, 4.13 and 4.15 display the dependence of the eigenvalues and eigen-

vectors on the spatial discretization. The results, which were generated using the finest

temporal discretization for each Reynolds number, are encouraging. The largest eigenval-

ues converge rapidly in all cases, though λ4 and λ5 are still somewhat unsettled on the

97 × 97 mesh at Re = 20, 000.

Eigenvector Condition

Tables 4.2, 4.4, 4.6 and 4.8 on Pages 62 to 65, respectively, display the dependence on

the snapshot density of the condition (calculated according to (4.17)) of the eigenvec-

tors ψ1, . . . , ψ5 corresponding to λ1, . . . , λ5. As one would expect, the dependence of

the eigenvector condition on snapshot density mirrors the behavior of the corresponding

eigenvalues. As the eigenvalues become smaller from left to right, the condition of the

eigenvectors deteriorates. As seen in Tables 4.1, 4.3, 4.5 and 4.7, the eigenvalues generally

become somewhat larger with increasing snapshot density; this is reflected in the condition

of the corresponding eigenvectors, where the condition improves with increasing snapshot

density.

The results of Tables 4.10, 4.12, 4.14 and 4.16 are slightly more interesting. Since the

eigenvalues generally become smaller with increasing mesh refinement (Tables 4.9, 4.11,

4.13 and 4.15), the condition of the corresponding eigenvectors deteriorates with finer

meshes; that is, better finite element approximations.

4.3.3 Convergence of the POD Basis

It is common in the literature to use quiver diagrams for the display of POD basis vectors,

and we follow this custom to some extent; however, it would be difficult to judge the

convergence of the POD bases using such displays. For this reason, we concentrate on the

velocity norms along a diagonal running from the lower left corner (x1 = x2 = 0.0) of the

driven cavity to the upper right corner (x1 = x2 = 1.0). Consider for example Figure 4.9

on Page 70 reporting results for Re = 100. The quiver diagrams for the first three POD

basis vectors – generated on the 49 × 49 mesh – are provided on the left for reference,

while the velocity norms on the diagonal are displayed on the right for the 13×13, 25×25,

49 × 49 and 97 × 97 meshes. The nice behavior of the POD basis is obvious at Re = 100,

the results for Re = 400 being nearly as good in Figure 4.10.

We see considerably slower convergence at Re = 10, 000 in Figure 4.11 on Page 72,

though the curves for the 49 × 49 and 97 × 97 meshes bear decent resemblance. Similar

results hold in Figure 4.12 at Re = 20, 000.

The slower convergence of the POD basis functions at higher Reynolds numbers is no

cause for alarm, as even the high-order solver is bound to require more degrees-of-freedom

to capture the essential system character at higher Reynolds numbers. Nevertheless, if
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we wish to use rougher discretizations in a recursive multilevel optimization scheme using

POD-based models, then these results underscore the need for some type of mechanism

to guide the process and ensure that we can ”trust” our model.

4.3.4 Influence of Streamline Diffusion on the POD Basis

In Tables 4.17 and 4.18 on Page 74, we evaluate the behavior of the eigenvalues in the

presence of streamline diffusion at Re = 100 and Re = 400 using the 97 × 97 mesh. For

each Reynolds number we generated three numerical solutions of the driven cavity problem

with γ(t) ≡ 1.0 and the streamline diffusion parameter δ set to 0.0, 0.5 and 1.0. Note

that it was not necessary to use streamline diffusion to obtain a solution at these Reynolds

numbers, but we hope that by adding stabilization at lower Reynolds numbers we can gain

some insight into the effect of streamline diffusion on the POD data at higher Reynolds

numbers.

As can be seen in Table 4.17, at Re = 100 the addition of streamline diffusion to the

high-order solution process has little effect on the eigenvalues of the correlation matrix.

The first three eigenvalues capture 99.9% of the system energy at all three values of δ.

The effect is somewhat more noticeable at Re = 400 in Table 4.18. Five eigenvalues

are now needed to capture 99.9% of the system energy, and we see clearly that the largest

eigenvalues decrease in value with increases in δ.

Table 4.19 on Page 75 lists some eigenvalues for Re = 10, 000, with snapshots generated

from simulations using various amounts of streamline diffusion: δ ∈ {0.2, 0.5, 1.0, 2.0}. The

value δ = 0.0 is not included because the corresponding high-order solution process did

not converge without stabilization.

The character of the eigenvalue distribution in the columns of Table 4.19 is considerably

different from that of Table 4.18. We now need about 20 eigenvalues to capture 99.9% of

the system energy. Across the table, however, we see that fewer eigenvalues are required

to capture a given percentage of the system energy at higher values of δ – as was the case

for the lower Reynolds numbers. The results for Re = 20, 000 in Table 4.20 are similar to

the results for Re = 10, 000.
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Figure 4.1: First three eigenvalues plotted against the snapshot density (left). The first
eigenvalue was scaled to enhance visual comparability. Closeup for the first five eigenvalues
(right).

Eigenvalues: Re = 100 on a 97 × 97 mesh

n △τ λ1 λ2 λ3 λ4 λ5

4 1.19e-0 2.8097e-1 2.7371e-3 6.0085e-5 4.6816e-7 0
8 5.97e-1 2.6939e-1 4.1447e-3 2.2225e-4 1.3276e-5 3.5281e-7
16 2.98e-1 2.6221e-1 4.8895e-3 4.0386e-4 4.3825e-5 3.2535e-6
33 1.49e-1 2.6786e-1 5.3366e-3 5.6121e-4 8.0612e-5 1.0276e-5
67 7.46e-2 2.7052e-1 5.5101e-3 6.5248e-4 1.1070e-4 1.9273e-5
134 3.73e-2 2.6937e-1 5.5392e-3 6.9067e-4 1.2923e-4 2.7157e-5
268 1.86e-2 2.6877e-1 5.5449e-3 7.0527e-4 1.3903e-4 3.2724e-5
536 9.32e-3 2.6847e-1 5.5447e-3 7.0999e-4 1.4323e-4 3.5888e-5

Table 4.1: Dependence of the first five eigenvalues on the number of snapshots.

Eigenvector condition: Re = 100 on a 97 × 97 mesh

n △τ ψ1 ψ2 ψ3 ψ4 ψ5

4 1.19e-0 3.5940 3.7353e+2 1.6773e+4 2.1360e+6 ∞
8 5.97e-1 3.7700 2.5494e+2 4.7851e+3 7.7378e+4 2.8926e+6
16 2.98e-1 3.8860 2.2292e+2 2.7774e+3 2.4647e+4 3.3119e+5
33 1.49e-1 3.8091 2.0940e+2 2.0807e+3 1.4217e+4 1.0923e+5
67 7.46e-2 3.7733 2.0585e+2 1.8457e+3 1.0936e+4 6.0715e+4
134 3.73e-2 3.7903 2.0624e+2 1.7811e+3 9.7963e+3 4.5062e+4
268 1.86e-2 3.7988 2.0662e+2 1.7660e+3 9.4066e+3 3.9019e+4
536 9.32e-3 3.8032 2.0683e+2 1.7644e+3 9.3154e+3 3.6855e+4

Table 4.2: Dependence of eigenvector condition on snapshot density.
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Figure 4.2: First three eigenvalues plotted against the snapshot density (left). The first
eigenvalue was scaled to enhance visual comparability. Closeup for the first five eigenvalues
(right).

Eigenvalues: Re = 400 on a 97 × 97 mesh

n △τ λ1 λ2 λ3 λ4 λ5

6 7.85e-1 1.7663e-1 8.1930e-3 1.4760e-3 3.0136e-4 4.3156e-5
12 3.92e-1 1.6898e-1 8.2472e-3 1.6426e-3 4.2448e-4 9.9954e-5
25 1.96e-1 1.7424e-1 8.7656e-3 1.8527e-3 5.3831e-4 1.4824e-4
50 9.82e-2 1.7204e-1 8.6970e-3 1.8799e-3 5.7487e-4 1.7188e-4
101 4.91e-2 1.7326e-1 8.7923e-3 1.9186e-3 6.0201e-4 1.8909e-4
203 2.45e-2 1.7387e-1 8.8352e-3 1.9342e-3 6.1314e-4 1.9729e-4
407 1.23e-2 1.7416e-1 8.8553e-3 1.9406e-3 6.1749e-4 2.0077e-4
815 1.80e-3 1.7431e-1 8.8650e-3 1.9435e-3 6.1927e-4 2.0224e-4

Table 4.3: The dependence of the first five eigenvalues on the number of snapshots.

Eigenvector condition: Re = 400 on a 97 × 97 mesh

n △τ ψ1 ψ2 ψ3 ψ4 ψ5

6 7.85e-1 5.9368 1.4887e+2 8.5129e+2 3.8728e+3 2.4949e+4
12 3.92e-1 6.2212 1.5141e+2 8.2088e+2 3.0813e+3 1.3214e+4
25 1.96e-1 6.0431 1.4465e+2 7.6076e+2 2.5635e+3 9.5022e+3
50 9.82e-2 6.1218 1.4668e+2 7.6625e+2 2.4814e+3 8.4810e+3
101 4.91e-2 6.0799 1.4548e+2 7.5952e+2 2.4217e+3 7.9299e+3
203 2.45e-2 6.0593 1.4490e+2 7.5695e+2 2.4047e+3 7.7464e+3
407 1.23e-2 6.0491 1.4461e+2 7.5575e+2 2.3996e+3 7.6956e+3
815 1.80e-3 6.0440 1.4447e+2 7.5513e+2 2.3978e+3 7.6841e+3

Table 4.4: Dependence of eigenvector condition on snapshot density.
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Figure 4.3: First three eigenvalues plotted against the snapshot density (left). The first
eigenvalue was scaled to enhance visual comparability. Closeup for the first five eigenvalues
(right).

Eigenvalues: Re = 10, 000 on a 97 × 97 mesh

n △τ λ1 λ2 λ3 λ4 λ5

4 4.26e-0 2.2683e-1 3.1206e-2 1.2204e-2 6.5189e-3 0
9 2.13e-0 2.4920e-1 3.1751e-2 1.2835e-2 5.3429e-3 3.7146e-3
18 1.07e-0 2.4129e-1 3.0357e-2 1.2655e-2 4.6461e-3 3.6597e-3
37 5.33e-1 2.4657e-1 3.1188e-2 1.3002e-2 4.9124e-3 3.7334e-3
75 2.67e-1 2.4917e-1 3.1585e-2 1.3157e-2 5.0561e-3 3.7696e-3
150 1.33e-1 2.4806e-1 3.1428e-2 1.3142e-2 4.9929e-3 3.7862e-3
300 6.67e-2 2.4751e-1 3.1348e-2 1.3133e-2 4.9615e-3 3.7941e-3
600 3.33e-2 2.4723e-1 3.1308e-2 1.3128e-2 4.9458e-3 3.7980e-3

Table 4.5: The dependence of the first five eigenvalues on the number of snapshots.

Eigenvector condition: Re = 10, 000 on a 97 × 97 mesh

n △τ ψ1 ψ2 ψ3 ψ4 ψ5

4 4.26e-0 5.1117 5.2626e+1 1.7587e+2 1.7587e+2 ∞
9 2.13e-0 4.5986 5.2865e+1 1.3347e+2 6.1416e+2 1.0139e+3
18 1.07e-0 4.7408 5.6490e+1 1.2485e+2 1.0138e+3 1.0138e+3
37 5.33e-1 4.6428 5.4987e+1 1.2361e+2 8.4815e+2 8.4815e+2
75 2.67e-1 4.5957 5.4263e+1 1.2343e+2 7.7734e+2 8.3301e+2
150 1.33e-1 4.6159 5.4685e+1 1.2270e+2 8.2870e+2 8.2870e+2
300 6.67e-2 4.6261 5.4899e+1 1.2236e+2 8.5662e+2 8.5662e+2
600 3.33e-2 4.6312 5.5006e+1 1.2220e+2 8.7120e+2 8.7120e+2

Table 4.6: Dependence of eigenvector condition on snapshot density.
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Figure 4.4: First three eigenvalues plotted against the snapshot density (left). The first
eigenvalue was scaled to enhance visual comparability. Closeup for the first five eigenvalues
(right).

Eigenvalues: Re = 20, 000 on a 97 × 97 mesh

n △τ λ1 λ2 λ3 λ4 λ5

4 4.26e-0 1.4972e-1 1.7922e-2 1.2409e-2 7.2100e-3 0
9 2.13e-0 1.6113e-1 1.8992e-2 1.0914e-2 6.5076e-3 4.6565e-3
18 1.07e-0 1.5747e-1 1.7572e-2 1.0533e-2 5.4926e-3 4.4281e-3
37 5.33e-1 1.6051e-1 1.8222e-2 1.0696e-2 5.6329e-3 4.6682e-3
75 2.67e-1 1.6200e-1 1.8556e-2 1.0787e-2 5.7275e-3 4.7744e-3
150 1.33e-1 1.6151e-1 1.8419e-2 1.0769e-2 5.6776e-3 4.7667e-3
300 6.67e-2 1.6126e-1 1.8350e-2 1.0760e-2 5.6532e-3 4.7625e-3
600 3.33e-2 1.6113e-1 1.8316e-2 1.0755e-2 5.6412e-3 4.7603e-3

Table 4.7: The dependence of the first five eigenvalues on the number of snapshots.

Eigenvector condition: Re = 20, 000 on a 97 × 97 mesh

n △τ ψ1 ψ2 ψ3 ψ4 ψ5

4 4.26e-0 7.5872 1.8137e+2 1.9233e+2 1.9233e+2 ∞
9 2.13e-0 7.0350 1.2379e+2 2.2693e+2 5.4022e+2 5.4022e+2
18 1.07e-0 7.1479 1.4206e+2 1.9838e+2 9.3937e+2 9.3937e+2
37 5.33e-1 7.0276 1.3288e+2 1.9748e+2 1.0366e+3 1.0366e+3
75 2.67e-1 6.9713 1.2871e+2 1.9761e+2 1.0491e+3 1.0491e+3
150 1.33e-1 6.9885 1.3072e+2 1.9638e+2 1.0978e+3 1.0978e+3
300 6.67e-2 6.9973 1.3174e+2 1.9580e+2 1.1226e+3 1.1226e+3
600 3.33e-2 7.0017 1.3225e+2 1.9552e+2 1.1350e+3 1.1350e+3

Table 4.8: Dependence of eigenvector condition on snapshot density.
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Re = 100 (δ = 0.0) △τ = 9.32e − 3
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Figure 4.5: The dependence of ‖K(h)‖2 on the spatial discretization (left). The dependence
of the first three eigenvalues on the spatial discretization (right). The first eigenvalue was
scaled to enhance visual comparability.

Eigenvalues: Re = 100 with △τ = 9.32e − 3

Discr. h λ1 λ2 λ3 λ4 λ5

4 × 4 0.3333 5.3120e-1 5.3446e-3 3.3574e-4 6.2351e-6 2.6919e-7
7 × 7 0.1667 3.2724e-1 6.0473e-3 7.8542e-4 6.1517e-5 4.9349e-6

13 × 13 0.0833 2.8141e-1 5.4279e-3 9.1214e-4 1.6466e-4 2.8621e-5
25 × 25 0.0417 2.7173e-1 5.4549e-3 7.3788e-4 1.6146e-4 4.4240e-5
49 × 49 0.0208 2.6933e-1 5.5273e-3 7.1332e-4 1.4476e-4 3.6911e-5
97 × 97 0.0104 2.6847e-1 5.5447e-3 7.0999e-4 1.4323e-4 3.5888e-5

Table 4.9: The dependence of the eigenvalues on the underlying spatial discretization
(Re = 100; n = 536; △τ = 9.32e − 3; T = 5).

Eigenvector condition: Re = 100 with △τ = 9.32e − 3

Discr. h ψ1 ψ2 ψ3 ψ4 ψ5

4 × 4 0.3333 1.9016 1.9964e+2 3.0348e+3 1.6761e+5 3.8954e+6
7 × 7 0.1667 3.1133 1.9004e+2 1.3813e+3 1.7673e+4 2.2029e+5

13 × 13 0.0833 3.6233 2.2144e+2 1.3378e+3 7.3505e+3 4.0403e+4
25 × 25 0.0417 3.7555 2.1199e+2 1.7348e+3 8.5304e+3 2.9348e+4
49 × 49 0.0208 3.7906 2.0772e+2 1.7588e+3 9.2716e+3 3.6184e+4
97 × 97 0.0104 3.8032 2.0683e+2 1.7644e+3 9.3154e+3 3.6855e+4

Table 4.10: The dependence of eigenvector condition on the spatial discretization.
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Re = 400 (δ = 0.0) △τ = 1.80e − 3
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Figure 4.6: The dependence of ‖K(h)‖2 on the spatial discretization (left). The dependence
of the first three eigenvalues on the spatial discretization (right). The first eigenvalue was
scaled to enhance visual comparability.

Eigenvalues: Re = 400 with △τ = 1.80e − 3

Discr. h λ1 λ2 λ3 λ4 λ5

4 × 4 0.3333 5.2783e-1 1.7237e-3 6.3999e-5 1.0067e-6 3.4037e-8
7 × 7 0.1667 2.6487e-1 3.0994e-3 6.3881e-4 2.9402e-5 2.0058e-6

13 × 13 0.0833 1.7799e-1 4.8720e-3 1.2378e-3 2.9308e-4 5.9545e-5
25 × 25 0.0417 1.6771e-1 6.4319e-3 1.4393e-3 4.7813e-4 1.5707e-4
49 × 49 0.0208 1.7178e-1 8.1731e-3 1.7578e-3 5.6094e-4 1.8632e-4
97 × 97 0.0104 1.7431e-1 8.8650e-3 1.9435e-3 6.1927e-4 2.0224e-4

Table 4.11: The dependence of the eigenvalues on the underlying spatial discretization
(Re = 400; n = 815; △τ = 1.80e − 3; T = 5).

Eigenvector condition: Re = 400 with △τ = 1.80e − 3

Discr. h ψ1 ψ2 ψ3 ψ4 ψ5

4 × 4 0.3333 1.9007 60250e+2 1.5874e+4 1.0280e+6 2.9805e+7
7 × 7 0.1667 3.8200 40639e+2 1.6409e+3 3.6500e+4 5.4229e+5

13 × 13 0.0833 5.7763 27516e+2 1.0584e+3 4.2820e+3 2.0418e+4
25 × 25 0.0417 6.2003 20029e+2 1.0403e+3 3.1147e+3 8.9542e+3
49 × 49 0.0208 6.1118 15587e+2 8.3548e+2 2.6693e+3 8.5078e+3
97 × 97 0.0104 6.0440 14447e+2 7.5513e+2 2.3978e+3 7.6841e+3

Table 4.12: The dependence of eigenvector condition on the spatial discretization.
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Re = 10, 000 (δ = 1.0) △τ = 3.33e − 2
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Figure 4.7: The dependence of ‖K(h)‖2 on the spatial discretization (left). The dependence
of the first three eigenvalues on the spatial discretization (right). The first eigenvalue was
scaled to enhance visual comparability.

Eigenvalues: Re = 10, 000 with △τ = 3.33e − 2

Discr. h λ1 λ2 λ3 λ4 λ5

4 × 4 0.3333 4.4084e-0 6.2470e-2 9.4315e-3 2.6997e-3 3.6433e-4
7 × 7 0.1667 2.2509e-0 7.6103e-2 1.8461e-2 6.9158e-3 2.0123e-3

13 × 13 0.0833 9.8323e-1 4.8692e-2 1.4811e-2 4.6239e-3 1.7416e-3
25 × 25 0.0417 4.3699e-1 2.0706e-2 9.3454e-3 3.8202e-3 2.1111e-3
49 × 49 0.0208 2.5047e-1 2.0159e-2 9.3025e-3 3.9830e-3 2.7625e-3
97 × 97 0.0104 2.4723e-1 3.1308e-2 1.3128e-2 4.9458e-3 3.7980e-3

Table 4.13: The dependence of the eigenvalues on the underlying spatial discretization
(Re = 10, 000; n = 600; △τ = 3.33e − 2; T = 20).

Eigenvector condition: Re = 10, 000 with △τ = 3.33e − 2

Discr. h ψ1 ψ2 ψ3 ψ4 ψ5

4 × 4 0.3333 0.2301 1.8853e+1 1.4854e+2 4.2819e+2 3.3027e+3
7 × 7 0.1667 0.4597 1.7348e+1 8.6614e+1 2.0393e+2 1.4216e+3

13 × 13 0.0833 1.0700 2.9515e+1 9.8158e+1 3.4695e+2 1.1494e+3
25 × 25 0.0417 2.4021 8.8020e+1 1.8098e+2 5.8509e+2 1.0764e+3
49 × 49 0.0208 4.3418 9.2111e+1 1.8798e+2 8.1934e+2 8.1934e+2
97 × 97 0.0104 4.6312 5.5006e+1 1.2220e+2 8.7120e+2 8.7120e+2

Table 4.14: The dependence of eigenvector condition on the spatial discretization.



4.3 Numerical Analysis of POD Basis and Model Behavior 69

Re = 20, 000 (δ = 1.0) △τ = 3.33e − 2
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Figure 4.8: The dependence of ‖K(h)‖2 on the spatial discretization (left). The dependence
of the first three eigenvalues on the spatial discretization (right). The first eigenvalue was
scaled to enhance visual comparability.

Eigenvalues: Re = 20, 000 with △τ = 3.33e − 2

Discr. h λ1 λ2 λ3 λ4 λ5

4 × 4 0.3333 4.4267e-0 6.3045e-2 9.5293e-3 2.7142e-3 3.6614e-4
7 × 7 0.1667 2.3021e-0 8.2415e-2 1.9453e-2 7.4972e-3 2.1164e-3

13 × 13 0.0833 1.0620e-0 5.2310e-2 1.3947e-2 5.2133e-3 1.4197e-3
25 × 25 0.0417 4.3365e-1 2.4901e-2 1.0272e-2 4.8256e-3 2.7500e-3
49 × 49 0.0208 2.1597e-1 1.0904e-2 4.7713e-3 1.8123e-3 1.0199e-3
97 × 97 0.0104 1.6113e-1 1.8316e-2 1.0755e-2 5.6412e-3 4.7603e-3

Table 4.15: The dependence of the eigenvalues on the underlying spatial discretization
(Re = 20, 000; n = 600; △τ = 3.33e − 2; T = 20).

Eigenvector condition: Re = 20, 000 with △τ = 3.33e − 2

Discr. h ψ1 ψ2 ψ3 ψ4 ψ5

4 × 4 0.3333 0.2301 1.8853e+1 1.4854e+2 4.2819e+2 3.3027e+3
7 × 7 0.1667 0.4597 1.7348e+1 8.6614e+1 2.0393e+2 1.4216e+3

13 × 13 0.0833 1.0700 2.9515e+1 9.8158e+1 3.4695e+2 1.1494e+3
25 × 25 0.0417 2.4021 8.8020e+1 1.8098e+2 5.8509e+2 1.0764e+3
49 × 49 0.0208 4.3418 9.2111e+1 1.8798e+2 8.1934e+2 8.1934e+2
97 × 97 0.0104 4.6312 5.5006e+1 1.2220e+2 8.7120e+2 8.7120e+2

Table 4.16: The dependence of eigenvector condition on the spatial discretization.
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Figure 4.9: The dependence of the first three POD basis functions on the underlying
spatial discretization at Re = 100. On the left, the velocity quiver diagram for each POD
basis function taken on the 49 × 49 mesh. On the right, the velocity norms at various
discretization levels on the mesh diagonal running from the lower left to the upper right
of the cavity.
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Figure 4.10: The dependence of the first three POD basis functions on the underlying
spatial discretization at Re = 400. On the left, the velocity quiver diagram for each POD
basis function taken on the 49 × 49 mesh. On the right, the velocity norms at various
discretization levels on the mesh diagonal running from the lower left to the upper right
of the cavity.
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Figure 4.11: The dependence of the first three POD basis functions on the underlying
spatial discretization at Re = 10, 000. On the left, the velocity quiver diagram for each
POD basis function taken on the 49×49 mesh. On the right, the velocity norms at various
discretization levels on the mesh diagonal running from the lower left to the upper right
of the cavity.
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Figure 4.12: The dependence of the first three POD basis functions on the underlying
spatial discretization at Re = 20, 000. On the left, the velocity quiver diagram for each
POD basis function taken on the 49×49 mesh. On the right, the velocity norms at various
discretization levels on the mesh diagonal running from the lower left to the upper right
of the cavity.
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δ = 0.0 δ = 0.5 δ = 1.0

i λi % energy λi % energy λi % energy

1 2.6848e-1 97.65551 2.6760e-1 97.66589 2.6675e-1 97.67584
2 5.5447e-3 99.67233 5.4990e-3 99.67281 5.4549e-3 99.67328
3 7.0999e-4 99.93058 7.0621e-4 99.93055 7.0255e-4 99.93053
4 1.4324e-4 99.98268 1.4274e-4 99.98264 1.4224e-4 99.98261
5 3.5888e-5 99.99573 3.5800e-5 99.99571 3.5710e-5 99.99569
6 8.7553e-6 99.99892 8.7617e-6 99.99891 8.7659e-6 99.99890
7 2.1752e-6 99.99971 2.1864e-6 99.99971 2.1966e-6 99.99970
8 5.7641e-7 99.99992 5.8131e-7 99.99992 5.8580e-7 99.99992
9 1.5228e-7 99.99997 1.5382e-7 99.99997 1.5524e-7 99.99997

10 3.9219e-8 99.99999 3.9691e-8 99.99999 4.0133e-8 99.99999
15 1.3507e-10 99.99999 1.3902e-10 99.99999 1.4285e-10 99.99999
20 1.6886e-14 99.99999 1.7626e-14 99.99999 1.8371e-14 99.99999

Table 4.17: Effect of streamline diffusion on POD basis at Re = 100 using a 97 × 97
mesh. Some characteristic eigenvalues of the POD for a velocity field in a two-dimensional
driven cavity with different levels of streamline diffusion. The right column for each value
of the streamline diffusion parameter δ shows the relative energy projected onto the first
i eigenfunctions.

δ = 0.0 δ = 0.5 δ = 1.0

i λi % energy λi % energy λi % energy

1 1.7431e-1 93.68490 1.7184e-1 93.97388 1.6945e-1 94.21630
2 8.8650e-3 98.44931 8.3859e-3 98.55980 7.9717e-3 98.64843
3 1.9435e-3 99.49384 1.7908e-3 99.53915 1.6658e-3 99.57459
4 6.1927e-4 99.82666 5.6010e-4 99.84545 5.1250e-4 99.85953
5 2.0224e-4 99.93536 1.7943e-4 99.94358 1.6183e-4 99.94951
6 7.2105e-5 99.97411 6.2656e-5 99.97784 5.5664e-5 99.98046
7 2.8412e-5 99.98938 2.4219e-5 99.99108 2.1221e-5 99.99226
8 1.1502e-5 99.99556 9.6008e-6 99.99633 8.2931e-6 99.99687
9 4.7844e-6 99.99813 3.8904e-6 99.99846 3.2932e-6 99.99870

10 2.0343e-6 99.99923 1.6284e-6 99.99935 1.3514e-6 99.99945
15 2.1952e-8 99.99999 1.9760e-8 99.99999 1.7549e-8 99.99999
20 1.9428e-10 99.99999 1.9755e-10 99.99999 1.9455e-10 99.99999

Table 4.18: Effect of streamline diffusion on POD basis at Re = 400 using a 97 × 97
mesh. Some characteristic eigenvalues of the POD for a velocity field in a two-dimensional
driven cavity with different levels of streamline diffusion. The right column for each value
of the streamline diffusion parameter δ shows the relative energy projected onto the first
i eigenfunctions.
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δ = 0.5 δ = 1.0 δ = 2.0

i λi % energy λi % energy λi % energy

1 2.6235e-1 80.03557 2.4723e-1 79.98697 2.2717e-1 84.20407
2 3.1856e-2 89.75400 3.1308e-2 90.11608 2.1233e-2 92.07430
3 1.2788e-2 93.65549 1.3128e-2 94.36356 7.9807e-3 95.03242
4 6.7911e-3 95.72727 4.9458e-3 95.96369 5.0936e-3 96.92044
5 3.4055e-3 96.76620 3.7980e-3 97.19246 2.6443e-3 97.90059
6 3.1998e-3 97.74238 2.5314e-3 98.01146 1.3961e-3 98.41806
7 1.7054e-3 98.26267 1.2340e-3 98.41072 1.1502e-3 98.84442
8 1.2146e-3 98.63322 1.0937e-3 98.76458 8.9123e-4 99.17476
9 9.4429e-4 98.92129 7.9792e-4 99.02273 5.8731e-4 99.39245

10 7.0587e-4 99.13663 6.6877e-4 99.23909 3.9792e-4 99.53995
15 2.4443e-4 99.69824 1.8868e-4 99.76622 9.4337e-5 99.88854
20 7.8879e-5 99.89547 5.8986e-5 99.92398 2.3552e-5 99.97226

Table 4.19: Effect of streamline diffusion on POD basis at Re = 10, 000 using a 97 × 97
mesh. Some characteristic eigenvalues of the POD for a velocity field in a two-dimensional
driven cavity with different levels of streamline diffusion. The right column for each value
of the streamline diffusion parameter δ shows the relative energy projected onto the first
i eigenfunctions.

δ = 0.5 δ = 1.0 δ = 2.0

i λi % energy λi % energy λi % energy

1 1.6451e-1 73.85283 1.6113e-1 76.80181 1.4958e-1 80.43133
2 2.6146e-2 85.59026 1.8316e-2 85.53209 1.6924e-2 89.53111
3 1.1505e-2 90.75515 1.0755e-2 90.65847 7.6280e-3 93.63255
4 4.9892e-3 92.99488 5.6412e-3 93.34724 3.9044e-3 95.73191
5 3.1183e-3 94.39473 4.7603e-3 95.61611 2.0691e-3 96.84447
6 2.5374e-3 95.53380 2.1188e-3 96.62599 1.6454e-3 97.72922
7 2.1729e-3 96.50925 1.4895e-3 97.33596 1.2085e-3 98.37901
8 1.6613e-3 97.25502 1.0290e-3 97.82641 7.1080e-4 98.76120
9 1.0501e-3 97.72646 9.1137e-4 98.26079 4.4922e-4 99.00274

10 7.5787e-4 98.06667 7.4397e-4 98.61539 3.9553e-4 99.21542
15 3.3340e-4 99.06608 2.2144e-4 99.40427 1.2568e-4 99.75685
20 1.6381e-4 99.54175 8.8454e-5 99.74533 3.7295e-5 99.91673

Table 4.20: Effect of streamline diffusion on POD basis at Re = 20, 000 using a 97 × 97
mesh. Some characteristic eigenvalues of the POD for a velocity field in a two-dimensional
driven cavity with different levels of streamline diffusion. The right column for each value
of the streamline diffusion parameter δ shows the relative energy projected onto the first
i eigenfunctions.



76 4 Proper Orthogonal Decomposition



Chapter 5

The Streamline Diffusion POD

Model

As was discussed in the introduction and outline, the fidelity of POD-based models is

dependent on the problem data used to generate the model. If the problem data (e.g.,

boundary conditions, Reynolds number or boundary geometry) change, then the accuracy

of the POD-based model is compromised. This is obviously problematic in applications

to optimal control using boundary controls, where the boundary conditions evolve during

the optimization process. The need for periodic updating of the POD-based model in

such applications is well-established in the POD literature, and a variety of problem-

dependent methods have been proposed to ameliorate this difficulty. In order to guarantee

convergence to an optimal solution, Fahl [41] used a trust-region framework for a driven

cavity problem, replacing the entire snapshot set when necessary based on information

from the trust-region procedure. Afanasiev/Hinze [3] used distributed controls to study

the optimal control of wake flow in a channel with a circular cylinder. As the control profile

generated by the POD-based model evolved, the model was periodically updated by solving

the full high-order problem with the updated control, adding the new snapshots to the

snapshot set, and subsequently generating a new POD-based model. Graham et al. [55]

studied the use of POD methods to generate optimal control strategies for incompressible

unsteady wake flow behind a circular cylinder at a Reynolds number of 100, with the goal of

controlling vortex shedding behind the cylinder via cylinder rotation. The applicable range

of the POD basis functions generated with the cylinder driven at a frequency corresponding

to that of natural vortex separation was extended by the addition of generalized basis

functions from an enhanced snapshot set, generated by exciting the flow in the high-order

model with representative control action and different initial conditions. Nevertheless, the

model had to be periodically reset during the optimization process.

Common to all of these basis augmentation methods is the need to repeatedly solve the

full Navier-Stokes equations, which is precisely what reduced-order methods are supposed

to avoid. In this sense, it would be advantageous if one could acquire the information for

POD basis generation and augmentation with less computational effort. For data gener-
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ated by DNS this might be accomplished by using coarser grids to compute approximate

solutions, which can then be used as starting points for optimization on finer grids (cf.

[10, 11, 15, 58]). Since the coarser grids may still require considerable computational effort,

it makes sense to extend the POD approach to the coarser grids as well.

The intuitive appeal of this idea notwithstanding, before this procedure can be evalu-

ated in the fluid flow context, another complication must be dealt with. It is well-known

that mixed convection-diffusion problems with dominant convection may suffer from nu-

merical instability problems (cf. Chapter 3) that can lead to oscillations in the solution

and failure of the numerical procedure to converge. This problem can be eliminated either

by resorting to finer grids, which we wish to avoid, or by adding some sort of stabilization,

e.g., upwinding or streamline diffusion. Though both techniques are sufficient to stabilize

the solution, we are especially interested in the streamline diffusion finite element (SD-

FEM), because of its better theoretical convergence properties and because it is naturally

formulated as a Petrov-Galerkin method, allowing easy incorporation into the POD-based

model.

In Section 5.1, a POD-based reduced-order model is formulated for the driven cavity

problem described in Section 2.2.3 by projecting the Navier-Stokes equations onto the

POD basis of Section 4.1. Numerical testing reveals that the streamline diffusion needed

to stabilize the high-order Navier-Stokes solution procedure used for the generation of the

snapshot ensemble results in POD basis functions that are incompatible with the standard

POD-based reduced-order model. As a remedy, in Section 5.2 we suggest and experiment

with approaches for incorporating the stabilization action into the reduced-order model.

We show that the resulting procedure leads to a POD-based model that is tuned to the

high-order Navier-Stokes solver, so that models derived from rougher discretizations can

be used with confidence.

5.1 The POD-Based Model

Before we can project the Navier-Stokes equations onto our POD basis, we must resolve

some issues concerning the form of the reduced-order model. First, if the model is to be

useful, it must have some way of simulating the boundary conditions of the Navier-Stokes

problem. Second, in order to maintain consistency with the Navier-Stokes equations,

the reduced-order model must reflect the incompressible nature of the flow. Finally, it

is advantageous during the construction of the model if the POD basis functions satisfy

homogeneous boundary conditions.

Assuming that the boundary conditions can be written in the form

g(t,x) = γ(t)h(x), (5.1)

we can accomplish all objectives by means of the control function method (cf. Burns/Ou

[24] or Graham et al. [55]), in which the snapshots are modified by subtracting a suitable
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reference field from each snapshot prior to the generation of the POD basis. The refer-

ence field must be divergence-free and satisfy both the homogeneous and inhomogeneous

boundary conditions of the Navier-Stokes problem, but is otherwise arbitrary. An admis-

sible reference field uc can easily be generated by solving the Navier-Stokes problem with

γ(t) ≡ 1 in (5.1). The snapshot set then takes the form

vi = ui − γ(t)uc i = 1, . . . , n. (5.2)

Furthermore, it is also convenient to subtract the resulting mean flow field un = 1
n

∑n
i=1 vi

from the snapshots prior to generating the POD basis. This modified snapshot set1

wi = ui − γ(t)uc − un i = 1, . . . , n (5.3)

is then used to generate a POD basis according to one of the methods of Section 4.1.1.

One can easily see that the POD basis elements generated from the modified snapshots

are divergence-free and homogeneous, and the velocity expansion

u(t,x) = un(x) + γ(t)uc(x) +
m∑

i=1

yi(t)Ψi(x) (5.4)

satisfies the boundary conditions of the problem.

5.1.1 The Galerkin POD Projection

After extracting the homogeneous and divergence-free POD basis from the snapshot data

and selecting the number m of POD basis elements desired for the reduced-order model

(5.4), we determine the coefficients yj(t), j = 1, . . . , m by projecting the momentum

equation
∂u

∂t
− ν∆u + u · ∇u + ∇p = 0 (5.5)

onto the POD basis and solving the resulting system of ordinary differential equations.

In order to simplify the following discussion, and because our model problem uses only

boundary controls, we have set f = 0 in (5.5), though a nonzero value can easily be

accommodated by the model.

The Galerkin projection
(

∂u

∂t
,Ψj

)

= − (u · ∇u,Ψj) − (∇p,Ψj) + ν (∆u,Ψj) (5.6)

of (5.5) onto the POD basis leads to a system

ẏ(t) = M0 + γ(t)M1 + γ2(t)M2 + γ̇(t)Mc

+ M3y + γ(t)M4y + M5(y,y) (5.7)

of ordinary differential equations, with vectors M0, M1, M2, Mc ∈ R
m, matrices M3,

M4 ∈ R
m,m and a bilinear term M5(y,y) : R

m,m → R
m. The details of this derivation,

which are straightforward but rather laborious, can be found in Appendix A.

1We ask the reader’s forgiveness for the abuse of notation regarding un, which has been used to denote
the average flow field, as well as the n-th snapshot.
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5.1.2 Error Measures for the POD-Based Model

In order to obtain a numerical measure for the ability of the reduced-order model to

accurately simulate the Navier-Stokes equations we need two measures: One for the ability

of the truncated POD basis to represent the snapshot data, and a similar measure for the

reduced-order model. To this end, we essentially follow Graham et al. [55] and consider

three velocity fields: The field u(t,x) generated by the original snapshots, the predicted

field ũ(t,x) generated by the reduced-order model (5.4), and the projected field û(t,x),

defined by direct projection of the snapshots onto the POD basis.

According to Theorem 4.3 the truncated POD basis is optimal in the sense of (4.7) for

modeling the snapshot ensemble though there will be some error due to the truncation;

thus, the projected field

û(t,x) = un(x) + γ(t)uc(x) +
m∑

i=1

ŷi(t)Ψi(x) (5.8)

with the modes

ŷi(t) = (u − un(x) − γ(t)uc(x),Ψi), (5.9)

differs from the field u(t,x) depending only on the degree of the truncation. To measure

this error, we define the absolute projection error

Êabs = (u − û,u − û) (5.10)

and the relative projection error

Êrel =
(u − û,u − û)

‖u − un‖2 . (5.11)

In contrast to the direct projection, the error for reduced-order model

ũ(t,x) = un(x) + γ(t)uc(x) +
m∑

i=1

yi(t)Ψi(x) (5.12)

with the POD modes yi(t) will be greater since the POD modes must satisfy the system

(5.7). To measure the error for the reduced-order model, we define the absolute prediction

error

Ẽabs = (u − ũ,u − ũ) (5.13)

and the relative prediction error

Ẽrel =
(u − ũ,u − ũ)

‖u − un‖2 . (5.14)

Remark 5.1. The value of û will always be smaller than ũ; however, if the reduced-order

model is optimal for the given snapshots, the projected modes should match the predicted

modes, and the projected and the predicted errors should be equal. We note that similar

error measures can be defined for the individual POD basis functions by adjusting the

range of the indices in the sums of (5.8) and (5.12).
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Figure 5.1: Velocity profile for model problem.

In addition to the temporally local errors described above, we define two global mea-

sures of error in the sense of (4.8); the average reconstruction error for the POD basis,

EPROJ =
1

n

n∑

i=1

‖ui − ûi‖ , (5.15)

and the average simulation error for the POD-based reduced-order model,

EPOD =
1

n

n∑

i=1

‖ui − ũi‖ . (5.16)

Remark 5.1 also applies to these global measures.

5.1.3 Numerical Analysis of POD-Based Model

To test the basic POD-based model we used the driven cavity problem described in Section

2.2.3 with simulation time T = 20 seconds to generate 100 snapshots at uniform time

intervals of 0.2 seconds at Reynolds number Re = 400. For the time-dependent boundary

profile (see (2.28) and Figure 5.1) we used

γ(t) =
1

2
+

3

π

[

sin (πt/20) +
1

3
sin (3πt/10)+

1

5
sin (5πt/10) +

1

7
sin (7πt/10) +

1

9
sin (9πt/10)

]

.

(5.17)

Nine basis functions were sufficient to capture 99.9% of the flow energy. The first three

projected and POD (predicted) modes are plotted in Figure 5.2, where there appears to be
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Figure 5.2: First three predicted and projected modes at Re = 400.

very good agreement. A more exact analysis is provided by absolute and relative errors,

which are depicted in Figures 5.3 and 5.4 on Page 83. The time profile of the predicted

error mirrors that of the projected error, with the predicted error as expected slightly

larger. Both the absolute and relative errors are of the same order for the predicted and

projected errors, indicating that the POD-based reduced-order model is nearly optimal

for representing the space spanned by the snapshot ensemble.

5.1.4 Effect of Stabilization on the POD-Based Model

To test the effect of streamline diffusion on the POD-based model, we set δ = 1.0 in

(3.64) and again solved the model problem at Reynolds number Re = 400, generating 100

snapshots at intervals of 0.2 seconds. Note that it was not necessary to add streamline

diffusion to solve the Navier-Stokes equations at Re = 400, and we do so only for illustra-

tive purposes. In Figure 5.5 on Page 84 the first projected and POD (predicted) modes

are compared. We see from the obvious difference between them that the resulting basis

functions are no longer optimal for low-order simulation of the Navier-Stokes problem.

Table 5.1 presents the results for POD-based models generated from numerical simula-

tions with various levels of streamline diffusion added, the streamline diffusion parameter

ranging from δ = 0.0 to δ = 2.0. In every case, nine basis functions were sufficient to

capture about 99.9% of the system energy. It is noteworthy that the percentage of system

energy captured by the first nine basis functions increases steadily with increasing stream-

line diffusion, reflecting the action of the added stabilization on the system dynamics. As

expected, the average reconstruction error EPROJ declines as the fraction of system energy
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Figure 5.3: Absolute error at Re = 400.
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Figure 5.4: Relative error at Re = 400.

captured by the basis functions increases; however, as the streamline diffusion parameter

increases, the average simulation error EPOD increases rapidly. While EPROJ and EPOD are

of the same order with no streamline diffusion added, EPOD is about two orders of ten

greater than EPROJ for δ ≥ 1.0. The compatibility between the POD basis functions and

the standard POD reduced-order model deteriorates with increasing streamline diffusion,

such that POD-based model and the high-order numerical solver are no longer ”in tune”

with each other.

The effect becomes even more pronounced at higher Reynolds numbers for which some

sort of stabilization is necessary if the numerical solution procedure is to converge. In

Figure 5.6 on Page 85 we present the results for δ = 1.0 and Re = 10, 000, again on a

49 × 49 mesh.

This incongruence between the POD basis and the dynamical system can become

catastrophal as is illustrated in Figure 5.7, where the projected and predicted modes for

a POD basis generated using γ(t) ≡ 1.0 with δ = 1.0 and Re = 10, 000 on a 13× 13 mesh

are presented. The ODE solver for the predicted modes failed to converge for this simple

example, with the solver terminating at about 19 sec. POD-based models are clearly

useless if one cannot solve (5.7) for the coefficients yi(t).

5.2 The Streamline Diffusion POD Model

The numerical results of Section 5.1.3 show that the POD basis generated by the standard

POD-based model may not be optimal for deriving a reduced-order model for the Navier-

Stokes problem when stabilization, such as streamline diffusion, is required during the

numerical solution of the Navier-Stokes equations. The solution produced by the solver

including the stabilization term converges to the true solution at finer discretizations,

but if we are interested in using rougher discretizations, we must somehow modify the

POD-based model to account for the stabilization. In this section we modify the Galerkin
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Figure 5.5: Projected and predicted modes at Re = 400 with streamline diffusion added
in the Navier-Stokes solver (δ = 1.0).

δ m %Energy EPROJ EPOD

0.00 9 99.86 1.69833 e-5 3.63561 e-5
0.05 9 99.87 1.62830 e-5 4.61308 e-5
0.10 9 99.87 1.56084 e-5 6.84643 e-5
0.20 9 99.88 1.43345 e-5 1.54284 e-4
0.50 9 99.90 1.11760 e-5 7.21537 e-4
1.00 9 99.92 7.80152 e-6 2.07090 e-3
2.00 9 99.94 4.58066 e-6 4.78961 e-3

Table 5.1: Deterioration of model accuracy with increasing streamline diffusion parameter
at Re = 400 on a 49 × 49 mesh.

projection so that our model more accurately reflects the action of the Navier-Stokes

solver, thus improving compatibility between the solver and the model.

5.2.1 Motivation and Formulation of the Model

The essential difference between the usual discrete formulation (2.35)-(2.36) of the Navier-

Stokes problem and the problem solved by our solver consists of the stabilization term in

(3.64). After extracting snapshots for a given discretization of the Navier-Stokes equations,

we seek to harmonize the solver and the POD-based model by adding an approximation of

the streamline diffusion term to the Galerkin projection. This is accomplished by replacing

(5.6) with
(

∂u

∂t
,Ψj

)

= − (u · ∇u,Ψj) + ν (∆u,Ψj) − δT (u · ∇u,u · ∇Ψj) , (5.18)
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Figure 5.6: First POD modes diverge in
presence of streamline diffusion.
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Figure 5.7: ODE system fails to converge.

where δT = δT (u, T h) is a local weighting parameter corresponding to (3.64) that depends

on the local velocity and discretization used to solve the Navier-Stokes equations. We call

(5.18) the streamline diffusion POD (SDPOD) model.

This leads, after considerations analogous to those of Section 5.1.1, to the system

ẏj(t) = −ν (∇u,∇Ψj) − γ̇(t) (uc,Ψj) − (u · ∇u,Ψj)

−δT (u · ∇u,u · ∇Ψj) , j = 1, . . . , m.
(5.19)

for the coefficients yj(t) of (5.4).

The term δT as used by FEATFLOW (see (3.64)) presents difficulties for the SDPOD

model because it depends on the local Reynolds number, that is, it depends nonlinearly

and locally on the velocity u(t,x) = un(x) + γ(t)uc(x) +
∑m

i=1 yi(t)Ψi(x), making it

impossible to separate the temporal variables from the spatial variables, which we must

do if we are to achieve a true reduced-order model. However, an easy reformulation of δT

gives

δT = δ · hT

‖ u ‖Ω
· 2ReT

1 + ReT

= δ · hT

‖ u ‖Ω
· 2‖u‖T ·hT

ν

1 + ‖u‖T ·hT

ν

= δ · 2hT

‖ u ‖Ω
· ‖ u ‖T ·hT

ν+ ‖ u ‖T ·hT
−→
ν→0

δ · 2hT

‖ u ‖Ω
,

so that for reasonably large Reynolds numbers we can replace δT with

δm
T = δ · 2hT

‖ u ‖Ω
, (5.20)

and expect to get a reasonable approximation to the streamline diffusion term in our

model.
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Replacing δT with δm
T and substituting the velocity expansion (5.4) into the modified

Galerkin projection (5.20) we get the system

ẏ(t) = M0 + γ(t)M1 + γ2(t)M2 + γ̇(t)Mc + M3y + γ(t)M4y + M5(y,y)

+ δm
T

[
Mδ

0 + γ(t)Mδ
1 + γ2(t)Mδ

2 + Mδ
3y + γ(t)Mδ

4y

+ Mδ
5(y,y) + γ3(t)Mδ

6 + γ2Mδ
7y + γ(t)Mδ

8(y,y) + Mδ
9(y,y,y)

]
, (5.21)

where the new terms, including the vectors Mδ
0, Mδ

1, Mδ
2, Mδ

c, Mδ
6 ∈ R

m, the matrices

Mδ
3, Mδ

4, Mδ
7 ∈ R

m,m, the bilinear terms Mδ
5(y,y), Mδ

8(y,y) : R
m,m → R

m and the

trilinear term Mδ
9(y,y,y) : R

m,m,m → R
m are derived in Appendix A.

Remark 5.2. To understand why the inclusion of the high-order stabilization term to the

Galerkin POD projection is necessary, let us consider the difference between the systems

(5.7) and (5.21), which are used to determine the modes of the POD-based and SDPOD-

based models, respectively. Subtracting the right-hand side of (5.7) from the right hand

side of (5.21), we obtain the system

ẏ(t) = δm
T

[
Mδ

0 + γ(t)Mδ
1 + γ2(t)Mδ

2 + Mδ
3y + γ(t)Mδ

4y

+ Mδ
5(y,y) + γ3(t)Mδ

6 + γ2Mδ
7y + γ(t)Mδ

8(y,y) + Mδ
9(y,y,y)

]
(5.22)

for determining the difference between the models. Note that (5.22) is itself a nonlinear

system of ordinary differential equations (cf. [59, 89, 85]), so that even for finer meshes

(small h) we have no guarantee that the modes of the standard POD-based model will

be compatible with the POD basis generated from the snapshot ensemble, especially for

longer simulation periods (large T ). Moreover, even if the difference between the standard

POD modes and the Fourier coefficients of the direct projection of the snapshots onto the

POD basis is small, it might still be sensible to go ahead and use the SDPOD method;

if one is willing to tolerate a certain error, then this might be better used for further

truncation of the POD basis, which reduces the size of the ODE system.

Remark 5.3. Use of (5.20) in an optimization context is complicated by the fact that

‖ u ‖Ω is not differentiable. For this reason we have further simplified (5.20) by recording

the values of ‖ u ‖Ω during the high-order solution process along with the snapshots and

using the recorded values in the SDPOD model. This simplification might result in some

deterioration of model fidelity if used for optimization, but for Reynolds numbers large

enough to require stabilization, we do not expect the deterioration to be significant.

Remark 5.4. It should be noted that the difficulties presented by the local dependence of

the parameter δT on the velocity are not all that restrictive in general. To begin with,

in many cases of interest the streamline diffusion parameter is not, in fact, dependent on

the local Reynolds number as was the case for the SDFEM approach of Section (3.3) (see

also [135]). Moreover, where the parameter δT does depend locally on the velocity, it may

be possible to modify the underlying SDFEM approach without significantly impairing

convergence. Finally, if all else fails, we can always resort to an approximation of the sort

used above.
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5.2.2 Numerical Analysis of the Streamline Diffusion POD Model

To assess the ability of the enhanced basis functions to represent the space spanned by

the snapshots, we ran simulations of the Navier-Stokes problem at Re = 10, 000 over

a range of discretizations with the streamline diffusion parameter set to δ = 1.0. One

hundred snapshots were generated at each level, and enough basis functions were chosen

at each level to ensure that 99.9% of the system energy was captured. As the discretization

becomes finer, both the SDFEM and classical FEM methods converge in theory to the true

solution so that one would expect the absolute error of the standard POD-based model to

continue declining with finer discretizations.

Figure 5.8 on Page 89 plots the absolute error for the standard POD Model with POD

bases generated at the various levels of discretization. As expected, the error falls rapidly

as the discretization becomes finer. Nevertheless, even on a 97 × 97 mesh the absolute

error reaches values of about Ẽabs ≈ 2× 10−2. In contrast, the corresponding error for the

SDPOD model is less than 10−5 at all times and for all discretizations. The average error is

illustrated in Table 5.2 for all levels of discretization. The projection error ranges between

10−6 and 10−5 for all levels, with no discernable pattern, which is not surprising since

we would expect this error to be dependent on the amount of system energy captured by

the basis functions, which is constant here. The simulation errors for the SDPOD models

are also as expected; since the SDPOD model has been tuned to the high-order system

used to generate the snapshots and basis functions, the values for ESDPOD mirror those of

EPROJ quite closely, being only slightly higher. The values for EPOD appear to improve

somewhat on average with finer discretizations, but the pattern is not as clear as one

might have expected. This reflects our general experience; in experiments with various

settings of mesh refinement level, streamline diffusion parameter δ, energy captured and

number of snapshots, we found that the results for the standard POD method were fairly

unpredictable.

Comparison with a Reference Solution

When the high-order numerical solver requires stabilization to guarantee a solution, the

results above confirm that the SDPOD method is more compatible with the resulting

POD basis than is the standard POD-based model. We now go a step further and test the

ability of the SDPOD model generated from rough discretizations to match the numerical

solution generated at finer discretizations. To this end, we used very fine time stepping

to generate a reference solution on a 193 × 193 grid at Re = 10, 000 using no stream-

line diffusion (δ = 0.0). We used the resulting data to generate a standard POD-based

model that could be used to test the convergence of the SDPOD modes. Figure 5.10

gives a graphical comparison of the first modes corresponding to the 7 × 7 and 97 × 97

discretizations. As was the case for the POD model in Section 5.1.3, the projected and

predicted modes for the SDPOD model cannot be distinguished. Further, it is apparent



88 5 The Streamline Diffusion POD Model

that the agreement between the SDPOD modes and the standard POD modes improves

for the finer discretization. This again reflects the convergence of the streamline-diffusion

finite element method. For the very rough 7 × 7 discretization, the SDPOD mode does

not match the first reference mode well, though it is significantly better than the first

mode from the standard POD-based model. For the 97 × 97 discretization, the SDPOD

mode agrees very well with the reference mode, while the standard POD mode, though

improved, nevertheless is still far from accurate.

By replacing u in the error measures defined in Section 5.1.2 with the restriction of the

solution derived from the 193× 193 mesh to the rougher grids, we can measure the ability

of the SDPOD and standard POD-based models to model the reference solution. Figure

5.11 on Page 90 plots the corresponding errors for the 7 × 7 and 97 × 97 discretizations,

with the solid black line depicting the reference mode generated from the 193× 193 mesh.

Even for the rougher discretization, the SDPOD model appears to be nearly as good as

the direct projection of the restricted reference snapshots onto the rougher POD basis.

The same is true for the 97× 97 discretization, with the standard POD-based model also

much improved, as expected. The results for all discretization levels are reported in Table

5.3, where the superscript indicates that the error measure is now with respect to the

reference solution.

5.3 Gradient Information for the Model Control Problem

We begin this section with some notational conventions. Since any element Ψ from the

space Hn spanned by the snapshot ensemble can be written as a linear combination

(
∑N

i=1 ΨiΦi(x)
∑N

i=1 Ψi+NΦi(x)

)

of the finite element basis functions Φi, i = 1, . . . , N , it is natural to identify Ψ with the

coefficient vector of its representation in the finite element basis (Ψ ∈ Hn ↔ Ψ ∈ R
2N ),

such that for Ψ,Θ ∈ Hn we can write

(Ψ,Θ)H = ΨMΘ = (Ψ,Θ)M,

where M ∈ R
2N,2N is the positive definite finite element mass matrix. Using this convention

we set ‖·‖M = (Ψ,Θ)
1/2
M .

Now, replacing the state equations in the velocity-tracking problem with either the

standard POD-based model of Section 5.1 or the SDPOD model leads to the model control

problem

min J (γ) =

∫ T

0
L(y(γ), γ, t) dt

s.t. ẏ = φ(y, γ, t),

(5.23)
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Figure 5.8: Absolute error for standard POD method.
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Figure 5.9: Absolute error for the SDPOD method.
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Discr. m %Energy EPROJ ESDPOD EPOD

4 × 4 5 99.9 8.4037 e-6 9.7677 e-6 1.8121 e-1
7 × 7 10 99.9 1.1408 e-5 1.3565 e-5 9.1854 e-2

13 × 13 15 99.9 6.6566 e-6 9.1258 e-6 9.8077 e-2
25 × 25 20 99.9 4.5393 e-6 7.4863 e-6 1.1682 e-2
49 × 49 24 99.9 3.6355 e-6 5.0878 e-6 7.4593 e-3
97 × 97 30 99.9 6.4540 e-6 9.2616 e-6 1.0731 e-2

Table 5.2: Comparison of model accuracy at various discretizations with streamline diffu-
sion parameter δ = 1.0 at Re = 10, 000.
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Figure 5.10: Comparison to a reference solution.
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Figure 5.11: Absolute error for standard POD and SDPOD methods for the 7 × 7 (left)
and 97 × 97 (right) meshes.
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Discr. m %Energy Eref
PROJ Eref

SDPOD Eref
POD

4 × 4 5 99.9 4.0061 e-3 1.5083 e-2 1.8089 e-1
7 × 7 10 99.9 5.1876 e-3 1.8422 e-2 9.0022 e-2

13 × 13 15 99.9 8.6752 e-3 1.6988 e-2 1.0369 e-1
25 × 25 20 99.9 8.5888 e-3 1.3514 e-2 2.0268 e-2
49 × 49 24 99.9 9.2043 e-3 1.3718 e-2 2.3441 e-2
97 × 97 30 99.9 8.7334 e-3 1.5802 e-2 2.1182 e-2

Table 5.3: Comparison of model to reference solution at various discretizations with
streamline diffusion parameter δ = 1.0 at Re = 10, 000.

where

L(y, γ, t) =
1

2
‖un + γ(t)(uc + ΦMc) + Φy(t) − ud‖2

M ,

φ(y, γ, t) is given by the right-hand side of (5.7) or (5.19) and Φ is the matrix with columns

consisting of the finite element coefficient vectors of the POD basis functions. We have

suppressed the regularization term for the boundary control here in order to simplify

notation and discussion.

5.3.1 Gradient Information via the Adjoint Method

The degrees of freedom in the discretized version of (5.23) are equal to the number of snap-

shots, making it advantageous to acquire gradient information using the adjoint method.

Since L and φ are continuously differentiable in y and γ, the gradient of J (γ) in

L2([0, T ]) is given by

(∇J (γ)(t)) = p(t)φγ(y(t), γ(t), t) + Lγ(y(t), γ(t), t)

where the adjoint variable p satisfies the terminal-value problem on [0, T ]

−ṗ(t) = p(t)φy(y(t), γ(t), t) + Ly(y(t), γ(t), t)

p(T ) = 0.

The derivation of Ly, Lγ , φy and φγ in terms of the POD basis is given in Appendix A.3.

5.3.2 Numerical Example for the Adjoint Derivatives

We generated target solutions ud of the driven cavity problem at Reynolds numbers of

Re = 400 and Re = 10, 000 on a 97 × 97 mesh using the velocity profile γ(t) of (5.17),

setting δ = 0.0 at Re = 400 and δ = 1.0 at Re = 10, 000, and taking 100 snapshots at

Re = 400 and 200 snapshots at Re = 10, 000. We used the velocity profile γ(t) ≡ 1.0

to generate an initial iterate for both problems and calculated gradient information for

(5.23) using both the adjoint method and finite differences. The resulting gradients are

compared in Figure 5.12 on Page 92. The analytical (adjoint) derivatives show excellent

agreement with the finite differences, but required much less computation time. The

adjoint derivatives also appear to be more stable for Re = 10, 000.
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Re = 400 (δ = 0.0)
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0 2 4 6 8 10 12 14 16 18 20
−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005
Finite differences
Analytical derivative

Figure 5.12: Comparison of gradient computed using the adjoint method with the gradient
computed using finite differences.

5.4 Some Remarks on the SDPOD Model

We have seen that stabilization methods for the convective term in the Navier-Stokes equa-

tions, which are necessary for obtaining a numerical solution at higher Reynolds numbers,

can lead to POD basis functions that are incompatible with the standard POD-based

model. The SDPOD method circumvents this difficulty by incorporating the stabilization

into the reduced-order model, resulting in increased compatibility between the model and

the high-order Navier-Stokes solver. Having overcome the model compatibility difficulties

we now have a reduced-order method, the SDPOD method, that is suitable for recursive

multilevel reduced-order optimization.

We also wish to emphasize that the idea behind SDPOD is not limited to the situation

we examine in our model problem. Note for instance that the model could easily be

extended to include the jump terms of (3.50). The same is true of the modified test

function (3.30), which yields a Galerkin least squares method (cf. [101]).



Chapter 6

The Trust-Region SDPOD

Method

In this chapter we seek to apply the methods developed in the earlier chapters to some

concrete optimal control problems at Reynolds numbers of Re = 400 and Re = 10, 000.

As was discussed at the beginning of Chapter 5, the fidelity of POD-based models de-

teriorates during the iterative optimization process, making it necessary to update the

model periodically. In order to avoid the computational expense of unnecessary updates,

it is desirable to have some sort of systematic procedure for determining when the current

POD-based model should be rejected and a new model computed. Furthermore, using

POD-based models generated from coarse finite element meshes, such as those described

in Chapter 5, amplifies the need for such a procedure, since – as indicated by the numerical

results of Chapters 4 and 5 – the stability properties of the POD basis may vary from one

mesh refinement level to the next, especially at higher Reynolds numbers.

The method of choice in [41] was the trust-region approach, where the method is

initiated with a high-order solution of the state equations using some initial control g0. A

POD-based model derived from the high-order solution is then used to solve the optimal

control problem, generating a potential optimal control gnew, with the set of admissible

controls limited to some ”trusted” neighborhood ‖gnew − g0‖ ≤ △0 of g0, where △0 is

known as the trust-region radius. A new high-order solution is subsequently generated

using the updated control, and the actual decease in the cost functional J (g0) −J (gnew)

achieved using the high-order solver is compared to the decrease Ĵ (g0)−Ĵ (gnew) predicted

by the model. If the ratio

ρ =
J (g0) − J (gnew)

Ĵ (g0) − Ĵ (gnew)

is sufficiently large, the trust-region radius is decreased, left constant or increased depend-

ing on the size of ρ, a new POD-based model is generated using the updated high-order

solution of the state equation, and the control problem is resolved using the new POD-

based model. If ρ is too small, the new high-order solution is rejected, the trust-region

radius is decreased and optimal control problem is resolved using the original POD-based

93
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model. The process continues until convergence to a local stationary point is achieved.

This approach is attractive; however, it still requires repeated high-order solution of

the state equations. In this spirit, we propose the use of recursive trust-region methods

in combination with the SDPOD method introduced in Chapter 5, with the objective of

significantly reducing the computational effort required during the solution of the optimal

control problem while ensuring convergence of the method. Note that the use of the

SDPOD method is required to ensure the POD method can be used at all at lower mesh

refinement levels (see Chapter 5).

In Section 6.1 we review a recursive multilevel trust-region method recently suggested

and analyzed by Gratton et al. [57]. The method is constructed using quadratic model

functions, so the method and the accompanying theoretical analysis are not directly appli-

cable to POD-based model functions. Nevertheless, since nonrecursive trust-region meth-

ods have successfully been adapted to more general model functions, including POD-based

models (cf. [26, 35, 41, 138]), we are hopeful that the theoretical results from the recursive

procedure can be applied to the SDPOD-based models as well (see also [19, 25, 27, 87, 88]).

In Section 6.2 we solve the velocity tracking problem at Reynolds numbers of Re = 400

and Re = 10, 000 using SDPOD-based models and a modified version of trust-region

methodology of Section 6.1.

6.1 A Recursive Trust-Region Method for Multilevel Opti-

mization

In the following discussion we borrow heavily from the first part of the paper by Gratton

et al. [57]. Consider the solution of the unconstrained optimization problem

min
x∈Rn

f(x), (6.1)

where f is a twice-continuously differentiable objective function which maps R
n into R

and is bounded below. Classical trust-region methods are iterative and, given an initial

point x0, produce a sequence {xk} of iterates (hopefully) converging to a local stationary

point for the problem; that is, to a point where g(x) := ∇xf(x) = 0. At each iterate xk,

classical trust-region methods build a model mk(xk + s) of f(xk + s), which is assumed to

be an adequate approximation of f(x) in a ”trust-region,” defined as a sphere of radius

△k > 0 centered at xk. A step sk is then computed that sufficiently reduces this model

within the trust-region. The objective function is computed at the trial point xk + sk and

this trial point is accepted as the next iterate if and only if the ratio

ρk =
f(xk) − f(xk + sk)

mk(xk) − mk(xk + sk)

is larger than a small positive constant η1. The value of the radius is then deceased if the

trial point was rejected, and increased or left unchanged if ρk is sufficiently large. In many
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practical trust-region algorithms, the model mk(xk + s) is quadratic and takes the form

mk(xk + s) = f(xk) + (gk, s) +
1

2
(s, Hks), (6.2)

where gk := ∇xf(xk), Hk is a symmetric n × n approximation of ∇xxf(xk) and (·, ·) is

the Euclidean inner product. Obtaining a sufficient decrease on this model then amounts

to (approximately) solving

min
‖s‖≤△k

mk(xk + s) = min
‖s‖≤△k

f(xk) + (gk, s) +
1

2
(s, Hks), (6.3)

where ‖·‖ is the Euclidean norm. Such methods provably converge to first-order critical

points whenever the sequence {‖Hk‖} is uniformly bounded above, i.e., when there is a

constant κH ≥ 1 such that 1+‖Hk‖ < κH for all k. A comprehensive discussion of classical

trust-region methods with quadratic model functions can be found in Conn et al. [35].

The impetus for the recursive trust-region approach is the desire to exploit alterna-

tive simplified expressions of the objective function that may exist. Specifically, assume

knowledge of a collection of functions {fi}r
i=0, where each fi is a twice continuously dif-

ferentiable function from R
ni to R (ni ≥ ni−1), such that nr = n and fr(x) = f(x) for all

x ∈ R
n. Assume also that for each i = 1, . . . , r, fi is ”more costly” to minimize than fi−1.

Note that in our case this is due to differences in the underlying mesh refinement levels;

correspondingly, a particular i will be referred to as a level, and the first subscript i in all

subsequent subscripted symbols will denote a quantity corresponding to the i-th level.

In order to establish an exploitable relationship between the functions fi−1 and fi,

assume that for each i = 1, . . . , r, there exists a full-rank linear operator Ri from R
ni

into R
ni−1 (the restriction) and another full-rank operator Pi from R

ni−1 into Rni (the

prolongation) such that

Pi = RT
i . (6.4)

The idea is then to use fr−1 to construct an alternative model hr−1 for fr = f in the

neighborhood of the current iterate that is cheaper to solve than (6.2), and to use this

alternative model to define the step in the trust-region algorithm whenever possible. If

more than two levels are available (r > 1), this can be done recursively, the approximation

process starting at level 0, where (6.2) is always used. For notational purposes, variables

are indexed with a double subscript i, k. The first, i, is the level index (0 ≤ i ≤ r) and

the second, k, the index of the current iteration within level i, and is reset to 0 each time

level i is entered.

Consider now some iteration k at level i (with current iterate xi,k) and suppose that

one decides to use the lower level model hi−1 based on fi−1 to compute a step. The first

task is to restrict xi,k to create the starting iterate xi−1,0 at level i − 1, that is

xi−1,0 = Rixi,k. (6.5)
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The lower level model is defined as the function

hi−1(xi−1,0 + si−1) := fi−1(xi−1,0 + si−1) + (vi−1, si−1), (6.6)

where

vi−1 = Rigi,k −∇xi−1fi−1(xi−1,0) (6.7)

with gi,k := ∇xihi(xi,k). By convention, set vr := 0, so that

hr(xr,0 + sr) = fr(xr,0 + sr) = f(x0 + s) and gr,k = ∇xrhr(xr,k) = ∇xf(xk) = gk.

The function hi therefore corresponds to a modification of fi by a linear term that

enforces the relation

gi−1,0 = ∇xi−1hi−1(xi−1,0) = Rigi,k. (6.8)

Because the technique involves minimizing hi at level i, this function must be bounded

below. This assumption is therefore made for every i = 0, . . . , r. The first order modifica-

tion (6.6) serves to ensure that the first-order behaviors of hi and hi−1 are coherent in a

neighborhood of xi,k and xi−1,0 respectively.

When entering some level i then, one wishes to (locally) minimize hi starting from xi,0.

At iteration k of this minimization, one first chooses between the models hi−1(xi−1,0+si−1)

and

mi,k(xi,k + si) = hi(xi,k) + (gi,k, si) +
1

2
(si, Hi,ksi), (6.9)

where the latter is a truncated Taylor series, in which Hi,k is a symmetric ni ×ni approx-

imation to the second derivatives of hi at xi,k, such that, for some κH ≥ 1

1 + ‖Hi,k‖ ≤ κH (6.10)

for all k and all i = 0, . . . , r. Once the model is chosen, a step si,k is computed that

generates a ”sufficient decrease” on this model within a trust-region defined by

Bi,k := {si | ‖si‖i ≤ △i,k}, (6.11)

for some trust-region radius △i,k > 0, where the norm ‖·‖i is level-dependent.

The ”sufficient decrease” of the model mi,k is understood here in its usual meaning for

trust-region methods, which is to say that si,k is such that

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ κred ‖gi,k‖min

[ ‖gi,k‖
1 + ‖Hi,k‖

,△i,k

]

(6.12)

for some constant κred ∈ (0, 1). This condition is known as the ”Cauchy point” condition

(see Conn et al. [35, Chapter 7]).

Finally, it may happen that gi,k lies in the nullspace of Ri, so that the current iterate

appears to be first-order critical for hi−1 in R
ni−1 while it is not for hi in R

ni . This can

be avoided by requiring

‖Rigi,k‖ ≥ κg ‖gi,k‖ and ‖Rigi,k‖ ≥ ǫg
i−1 (6.13)
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for some constant κg ∈ (0, 1), where ǫg
i−1 ∈ (0, 1) is a measure of the first-order criticality

that is judged sufficient at level i − 1.

To begin the algorithm, an initial trust-region radius for each level △s
i > 0 must be

defined, as well as level-dependent gradient norm tolerances ǫg
i ∈ (0, 1) and trust-region

tolerances ǫ△i ∈ (0, 1) for i = 0, . . . r. The algorithm’s initial data consists of the level

index i (0 < i < r), a starting point xi,0, the gradient gi,0 at this point, the radius △i+1

of the level i + 1 trust-region (by convention, △r+1 := ∞), the tolerances ǫg
i and ǫ△i , and

constants η1, η2, γ1 and γ2 satisfying the conditions

0 < η1 ≤ η2 < 1, and 0 < γ1 ≤ γ2 < 1.

We can now state the following recursive multilevel trust-region algorithm from Gratton

et al. [57, Algorithm 2.1].

Algorithm 6.1. RMTR(i, xi,0, gi,0, △i+1, ǫg
i , ǫ△i )

Step 0: Initialization.
Compute vi = gi,0 − ∇xifi(xi,0) and hi(xi,0). Set △i,0 = min [△s

i ,△i+1] and
k = 0.

Step 1: Model choice.
If i = 0 or if (6.13) fails, go to Step 3. Otherwise, choose to go to Step 2
(recursive step) or to Step 3 (Taylor step).

Step 2: Recursive step computation.

Call Algorithm RMTR(i − 1, Rixi,k, Rigi,k, △i,k, ǫg
i−1, ǫ△i−1) yielding an ap-

proximate solution xi−1,∗. Then define si,k = Pi(xi−1,∗ − Rixi,k), set δi,k =
hi−1(Rixi,k) − hi−1(xi−1,∗) and go to Step 4.

Step3: Taylor step computation.
Choose Hi,k in view of (6.10) and compute a step si,k ∈ R

ni that sufficiently
reduces the model mi,k (given by (6.9)) in the sense of (6.12) and such that
‖si,k‖i ≤ △i,k. Set δi,k = mi,k(xi,k) − mi,k(xi,k + si,k) and go to Step 4.

Step 4: Acceptance of the trial point.
Compute hi(xi,k + si,k) and define

ρi,k =
hi(xi,k) − hi(xi,k + si,k)

δi,k
. (6.14)

If ρi,k ≥ η1 then define xi,k+1 = xi,k + si,k; otherwise define xi,k+1 = xi,k.

Step 5: Termination.

Compute gi,k+1. If ‖gi,k+1‖ < ǫg
i or ‖xi,k+1 − xi,0‖i > (1 − ǫ△i )△i+1, then return

with the approximate solution xi,∗ = xi,k+1.

Step 6: Trust-region radius update.
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Set

△+
i,k =







[△i,k, +∞) if ρi,k ≥ η2,

[γ2△i,k,△i,k] if ρi,k ∈ [η1, η2),

[γ1△i,k, γ2△i,k] if ρi,k < η1.

(6.15)

and
△i,k+1 = min

[

△+
i,k,△i+1 − ‖xi,k+1 − xi,0‖i

]

. (6.16)

Increment k by one and go to Step 1.

Application to SDPOD-Based Models

We wish to consider the application of the above methodology to SDPOD-based models.

The application of nonrecursive trust-region methods to non-quadratic model functions is

well-established in the literature (cf. [26, 41, 138]), so we will concentrate on issues arising

from the recursion in Algorithm 6.1.

To begin with, we note that the restriction and prolongation operators (6.5) take on

a different context in the SDPOD approach. The restriction and prolongation of iterates

and gradients in (6.5), (6.7) and (6.8) are not directly useful since we are optimizing

with respect to the boundary velocity γ along the top of the driven cavity using constant

temporal discretization. Nevertheless, the gradients of the SDPOD-based model functions

will differ at different mesh refinement levels, so that some mechanism, similar to that of

(6.7), will be required to ensure coherence of the gradient information between models at

different levels. In addition, this difficulty is complicated by the fact that the conditions

f(xk) = m(xk) and ∇xf(xk) = ∇xm(xk), which are trivially fulfilled for quadratic model

functions, no longer hold for general model functions. This is usually handled by requiring

some sort of asymptotic consistency condition (cf. [19, 26, 41, 138]). We note that if

gradient information is available, gradient accuracy can sometimes be maintained using

so-called sensitivity-based scaling ([4, 29, 41]).

The usual approximation methods used for quadratic model functions in Step 3 of

Algorithm 6.1 are not applicable to general model functions. Instead, this step must

be replaced with a more general approximation that guarantees a so-called ”sufficient

decrease.” For nonrecursive trust-region methods, this can be accomplished by the step

determination algorithm proposed by Toint [138].

The rest of the algorithm should be applicable as is. Nevertheless, for our numeric

investigations in the next section we have chosen to allow the trust-region radius △i at

level i to exceed △i+1, resetting the radius when moving from level i to i + 1. This makes

the second termination condition of Step 5 superfluous.

For the choice of the trust-region parameters, Gratton et al. [57] suggest

η1 = 0.01, η2 = 0.95, γ1 = 0.05 and γ2 = 0.25,

and these are the choices we use in Section 6.2 (see also Gould et al. [54]). For the
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trust-region radius update (6.15), we choose

△+
i,k =







2△i,k if ρi,k ≥ η2,

△i,k if ρi,k ∈ [ηn, η2),
γ1+γ2

2 △i,k if ρi,k < η1.

(6.17)

Remark 6.2. We are aware that it would also be possible to apply here a variation of the

well-known continuation method of computational fluid dynamics (cf. [36]); that is, solving

the system on coarser meshes at a Reynolds number that doesn’t require stabilization, then

repeatedly increasing the Reynolds number in tandem with the mesh refinement, thus

circumventing the need for stabilization altogether. This idea holds promise for future

research and should be pursued; however, one must keep in mind that the method adds

an additional source of error, since one must now contend with both the coarseness of the

mesh and the use of the incorrect Reynolds number. Moreover, for problems at interesting

Reynolds numbers one will eventually need some sort of stabilization if unmanageably

large algebraic systems are to be avoided. In this case, Remark 5.2 applies.

6.2 Multilevel Optimization with SDPOD-Based Models

We performed numerical testing of the recursive trust-region method as applied to the

SDPOD method using data generated from the driven cavity problem at Re = 400 and

Re = 10, 000. No stabilization was used for the data generated at Re = 400, whereas

the streamline diffusion parameter was set to δ = 1.0 for Re = 10, 000 (see (3.64)). The

programm code of the Navier-Stokes solver FEATFLOW (see Section 2.3) was modified

to generate the POD basis and the coefficients of ordinary differential equations systems

(5.7) and (5.19) resulting from the Galerkin POD projection.

We once again used the discretizations of the previous chapters, mapping them now

to the recursion levels as shown in Table 6.1, which also gives the gradient tolerances ǫg
i

for each optimization level and problem. Note that we are somewhat more ”tolerant”

with the coarser meshes. The target velocity profile ud in the interior of the cavity was

generated at level 5 (97 × 97 mesh) using the target control velocity γd from (5.17) and

Figure 5.1. The initial control was set to γ0 ≡ −1.0, representing a steady force in the

”wrong” direction along the top of the driven cavity.

Level (i) Mesh ǫg
i (Re = 400) ǫg

i (Re = 10, 000)

0 4 × 4 3.0e − 3 1.0e − 1
1 7 × 7 3.0e − 3 1.0e − 1
2 13 × 13 3.0e − 3 1.0e − 1
3 25 × 25 3.0e − 3 1.0e − 1
4 49 × 49 1.0e − 3 1.0e − 3
5 97 × 97 1.0e − 3 1.0e − 3

Table 6.1: Mesh levels and gradient tolerances for Re = 400 and Re = 10, 000.
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We used MATLAB for the optimization of the SDPOD-based models. The ODE

systems were solved using the stiff ODE solver ode15s from the MATLAB ODE Suite

[109]. Solution time varied depending on the number of basis functions (equivalently, the

dimension of the ODE) and the character of the boundary control function. Some typical

values are given in Table 6.2 on Page 101. The time in in seconds required to solve the

ODE for the model coefficients and the associated adjoint problem for the derivative is

given for each mesh level along with the number of POD basis functions used. Clearly, the

solution time for the ODE systems grows rapidly with the number of equations; that is,

with the number of POD basis functions needed to capture 99.9% of the system energy.

Note that the solution time for the adjoint is more significant, not only because the solution

time for the adjoint was generally greater, but because the adjoint is solved multiple times

at each iteration of the optimization in order to approximate the Hessian. Note also that

it is inappropriate to compare these values with the time required for the generation of

solutions using the FEATFLOW solver, which is coded in the FORTRAN programming

language. The solution time for the ODE systems using an ODE solver implemented in

FORTRAN would certainly be significantly smaller than those produced by MATLAB.

The optimization itself was accomplished using the medium-scale version of fmincon from

the MATLAB Optimization Toolbox [34], which uses a sequential quadratic programming

method (cf. [14, 112]).

Finally, in the tables and figures of the following discussion we have adapted the

notation of Section 6.1 to our velocity tracking problem. The objective function is denoted

by f instead of J . At each level i and iteration k, the current solution iterate is denoted

by xi,k (x ↔ γ), the gradient by gi,k, the step by si,k. For convenience, we set

x− =

{

xi,k−1, if k > 1,

xi−1,kmax , otherwise,

where kmax is the maximum iteration of level i − 1. The number of POD basis functions

used is denoted by m, while tNS is the time in seconds required for the high-order Navier-

Stokes solution.

Let us begin with the optimization at Re = 400. The results at level 0 are displayed

in Figure 6.1 on Page 102 and the first 5 rows of Table 6.3 on Page 103. In the first

iteration, the POD-based model is generated from numerical data corresponding to the

initial control γ ≡ −1.0. Four POD basis functions are sufficient to capture 99.9% of

the system energy. The first step si,k is on the boundary of the trust-region; however,

since the ratio ρ0,1 ≈ 3.42/3.1 ≈ 1.1007 > η2 = 0.95, the trust-region is doubled for the

next iteration. Since the boundary velocity in the second iteration is relatively small in

the L2(0, T ) norm, only two POD basis functions are required to capture 99.9% of the

system energy (there is less energy to capture); however, the increased trust-region radius

allows rapid movement toward the optimal solution. At the fifth iteration on level 0, the

POD-based model satisfies the gradient constraint upon entering the optimization loop.



6.2 Multilevel Optimization with SDPOD-Based Models 101

Re = 400 Re = 10, 000

Level (i) m tODE tADJ m tODE tADJ

0 4 0.12 1.16 4 0.56 2.23
1 5 0.39 2.12 8 3.67 7.42
2 8 1.01 2.65 11 7.88 9.31
3 11 1.44 7.05 13 10.42 10.96
4 11 1.14 28.62 17 20.79 48.20
5 11 1.69 113.91 24 43.81 349.16

Table 6.2: Some typical values for the solution time of the ODE systems arising from the
Galerkin POD projection.

The optimization is terminated, the trust-region radius is reset, and we proceed to level

1. The remainder of the procedure is displayed in Figure 6.2 and Table 6.3 on Page 103

and can certainly be interpreted without additional comment. The final solution on level

5 was superimposed on the optimal solution, so we did not bother displaying it in Figure

6.2.

We also performed the simulation at Re = 400 using the standard nonrecursive trust-

region procedure. The results are depicted in Figure 6.3 and Table 6.4 on Page 104. Note

that we again suppressed the display of the fifth iterate, as it was indistinguishable from

the optimal solution. The nonrecursive procedure requires five high-order solutions of the

Navier-Stokes system, resulting in a total high-order computation time of approximately

272 minutes. Contrast this to the recursive case with total high-order computation time

of 152 minutes. Finally, as can surmised from the values in Table 6.1, the computational

effort required for the optimization procedure was also considerably less for the recursive

procedure. We have chosen not to report the full results here because the optimization was

performed using MATLAB, so as mentioned earlier, the values are not directly comparable

to the high-order solution times. By way of example, a typical optimization encompassing

18 iterations and requiring about 5 minutes at level 0 might take more than 80 minutes

are level 5.

The results for Re = 10, 000 are reported in Figure 6.5 and Table 6.5 on Page 105, and

Figure 6.5 and Table 6.6 on Page 106. The results are similar in nature to those reported

for Re = 400.
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Figure 6.1: The optimization iterates at level 0 for Re = 400.
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Figure 6.2: The optimization iterates at levels 1 to 4 for Re = 400.

i k △i,k ‖si,k‖ ‖gi,k‖ f(x−) m(x−) m(xi,k) ρi,k m tNS

0 1 1.00 1.00e-0 2.133e-1 5.23e-0 5.23e-0 2.13e-0 1.1007 4 6
0 2 2.00 1.19e-0 2.983e-4 1.81e-0 1.81e-0 2.45e-1 0.7763 2 6
0 3 2.00 1.86e-1 1.181e-3 5.96e-1 5.96e-1 5.54e-1 0.9642 4 6
0 4 4.00 4.64e-2 1.478e-3 5.57e-1 5.55e-1 5.51e-1 0.4854 3 6
0 5 4.00 — 1.281e-3 — — — — 3 6
1 1 1.00 4.31e-1 3.507e-4 4.88e-1 4.98e-1 4.97e-1 1.9853 5 14
1 2 2.00 — 3.518e-4 — — — — 5 14
2 1 1.00 2.92e-1 2.164e-3 2.50e-1 2.50e-1 2.18e-1 0.9989 8 48
2 2 2.00 — 2.374e-3 — — — — 7 48
3 1 1.00 7.16e-2 1.635e-3 4.73e-2 4.74e-2 4.55e-2 0.7238 11 182
3 2 2.00 — 1.469e-3 — — — — 11 182
4 1 1.00 1.38e-1 6.121e-4 1.84e-2 1.85e-2 3.17e-3 1.0104 11 733
4 2 2.00 8.59e-3 5.212e-4 2.87e-3 3.11e-3 3.06e-3 0.9465 11 730
4 3 2.00 — 5.960e-4 — — — — 11 731
5 1 1.00 5.78e-2 3.907e-4 3.21e-3 3.52e-3 3.43e-4 0.9942 11 3233
5 2 2.00 — 4.563e-4 — — — — 11 3191

Table 6.3: Tabular history of the recursive trust-region optimization process at Re = 400.
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Figure 6.3: The optimization iterates at level 5 for Re = 400.

i k △i,k ‖si,k‖ ‖gi,k‖ f(x−) m(x−) m(xi,k) ρi,k m tNS

5 1 1.00 1.00e-0 1.146e-1 2.76e-0 2.76e-0 5.06e-1 0.8220 6 3387
5 2 1.00 1.00e-0 1.209e-2 9.07e-1 9.06e-1 2.76e-1 1.4009 7 3214
5 3 2.00 1.89e-1 1.348e-3 2.32e-2 2.30e-2 1.55e-3 1.0649 10 3228
5 4 4.00 1.56e-2 9.057e-4 4.02e-4 6.30e-4 4.98e-4 0.8396 11 3239
5 5 4.00 — 8.446e-4 — — — — 11 3244

Table 6.4: Tabular history of the standard trust-region optimization process at Re = 400.
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Figure 6.4: The optimization iterates at levels 0, 3, 4 and 5 for Re = 10, 000.

i k △i,k ‖si,k‖ ‖gi,k‖ f(x−) m(x−) m(xi,k) ρi,k m tNS

0 1 1.00 1.00e-0 1.687e-1 5.69e-0 5.69e-0 1.52e-0 0.9990 4 6
0 2 2.00 3.91e-1 5.611e-2 1.52e-0 1.52e-0 1.17e-0 1.2248 3 6
0 3 4.00 3.61e-3 5.089e-2 1.09e-0 1.10e-0 1.09e-1 — 4 6
1 1 1.00 — 2.281e-2 — — — — 8 15
2 1 1.00 — 1.094e-2 — — — — 11 50
3 1 1.00 2.58e-1 3.572e-3 2.34e-1 2.34e-1 2.13e-1 0.3351 13 186
3 2 1.00 — 2.284e-3 — — — — 17 186
4 1 1.00 3.80e-1 1.480e-3 1.25e-1 1.25e-1 1.01e-1 0.7223 17 748
4 2 1.00 — 3.001e-3 — — — — 21 756
5 1 1.00 1.50e-1 5.135e-4 2.28e-2 2.27e-2 1.68e-2 2.4468 28 3193
5 2 2.00 6.32e-2 4.611e-4 8.32e-3 8.24e-3 7.58e-3 3.2435 26 3845
5 3 2.00 — 8.977e-4 — — — — 31 3161

Table 6.5: Tabular history of the recursive trust-region optimization process at Re =
10, 000.
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Figure 6.5: The optimization iterates at level 5 for Re = 10, 000.

i k △i,k ‖si,k‖ ‖gi,k‖ f(x−) m(x−) m(xi,k) ρi,k m tNS

5 1 1.00 9.97e-1 1.109e-2 5.75e-1 5.74e-1 1.33e-1 0.8141 24 3332
5 2 1.00 9.99e-1 5.841e-3 2.17e-1 2.17e-1 7.58e-2 1.2879 9 3147
5 3 2.00 2.48e-1 1.407e-3 3.54e-2 3.51e-2 8.43e-3 2.9592 29 3154
5 4 4.00 9.65e-3 7.025e-4 1.05e-2 1.04e-2 1.02e-2 27.507 31 3186
5 5 8.00 9.44e-3 6.920e-4 8.62e-3 8.56e-3 8.49e-3 3.1643 31 3142
5 6 16.0 — 6.550e-4 — — — — 31 3171

Table 6.6: Tabular history of the standard trust-region optimization process at Re =
10, 000.



Conclusion

The numerical solution of optimal control problems, in which the system state is described

by one or more partial differential equations, presents enormous computational difficulties

when the high-order (e.g., finite element methods) discretization of the system equations

leads to large algebraic systems. To alleviate this problem researchers have developed low-

order models, such as the proper orthogonal decomposition, that approximate the system

equations well, but can be solved with much less computational effort. Since POD-based

models are generated from data provided by the high-order numerical solution of the

system in question as described in Chapter 4, the fidelity of the model depends on the

problem data (boundary and initial conditions, Reynolds number, etc.), so that the model

must be periodically reset, requiring renewed high-order solution of the system.

In order reduce the high-order computational effort needed to repeatedly reset the

POD-based model, it would be advantageous if one could acquire the information for POD

basis generation and augmentation with less computational effort. For data generated

by DNS this might be accomplished by extending the POD approach to coarser grids to

compute approximate solutions, which can then be used as starting points for optimization

on finer grids. This idea is appealing; however, we saw in Chapter 5 that the high-order

stabilization required for solving certain partial differential equations of interest can lead

to the generation of POD basis functions that are incompatible with standard POD-based

models. As a remedy, we introduced the streamline diffusion POD method, which in

essence adds the high-order stabilization to the POD-based model, resulting in a model

that is fully compatible with the POD basis.

In Chapter 6 we introduced the idea of embedding the SDPOD-based models into

a multilevel recursive trust-region procedure. The initial numerical results indicate that

this method has the potential to significantly reduce the computational effort required

for solving optimal control problems, while maintaining the guaranteed convergence of

trust-region methods.
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Appendix A

Derivation of the Reduced-Order

Models

This appendix provides a detailed derivation of the reduced-order models of Chapter 5.

We begin with the standard POD-based model of Section 5.1, then extend the derivation

to the SDPOD model of Section 5.2. We assume that the Navier-Stokes problem has been

solved numerically and that a set of n snapshots of the flow field, u(ti,x), at times ti,

i = 1, . . . , n, were generated, from which a set of p ≤ n divergence-free and homogeneous

POD basis functions, Ψi, i = 1, . . . , p, has been extracted as described in Chapter 4. In

the case of the two-dimensional Navier-Stokes equations, each basis function takes the

form Ψ =
(
Ψ(1), Ψ(2)

)T
, with Ψ(j) : R

2 7→ R, j = 1, 2.

A.1 Derivation of the Standard POD-Based Model

In accordance with (5.4), the POD-based model assumes that the system velocity takes

the form of the linear expansion

u(t,x) = un(x) + γ(t)uc(x) +
m∑

i=1

yi(t)Ψi(x), (A.1)

where m ≤ p is the number of POD basis functions desired for the POD-based model, γ(t)

is the temporal component of the boundary velocity, uc is a reference flow field and un is

the average of the n snapshots after subtraction of the reference field.

Our goal in this section is to determine the unknown coefficients yi(t) in (A.1) by

projecting the momentum equation

∂u

∂t
− ν∆u + u · ∇u + ∇p = f (A.2)

onto the POD basis and solving the resulting system of ordinary differential equations.

In order to simplify the following discussion, and because our model problem uses only

boundary controls, we shall assume f = 0 in (A.2), though a nonzero value can easily be

accommodated by the model.
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The Galerkin projection of (A.2) onto the POD basis yields the identities

(
∂u

∂t
,Ψj

)

= − (u · ∇u,Ψj) − (∇p,Ψj) + ν (∆u,Ψj) , (A.3)

where Ψj is the j-th POD basis function, j = 1, . . . , m.

Setting (A.1) into the left-hand side of (A.3) and using the orthogonality of the POD

basis, we have

(
∂u

∂t
,Ψj

)

= γ̇(t) (uc,Ψj) +
m∑

i=1

ẏi(t) (Ψi,Ψj)

= γ̇(t) (uc,Ψj) + ẏj(t). (A.4)

Moreover, it is easily seen using partial integration and the divergence-free nature of the

POD basis that the pressure term (∇p,Ψj) = −(p,∇ · Ψj) drops out of the right-hand

side of (A.3). Finally, using Green’s formula we have

(∆u,Ψj) =

∫

Γ
Ψj

∂u

∂n
dx − (∇u,∇Ψj) . (A.5)

Inserting (A.4) and (A.5) into (A.3), and using the homogeneity of POD basis, the Galerkin

projection (A.3) can be written as

ẏj(t) = −ν (∇u,∇Ψj) − γ̇(t) (uc,Ψj) − (u · ∇u,Ψj) , j = 1, . . . , m. (A.6)

Expansion of the right-hand side. In order to obtain a true reduced-order model, we

must separate the right-hand side of (A.6) into spacial components that can be determined

a priori, and temporal components to be determined by solving the resulting system of

ordinary differential equations. For the first term (∇u,∇Ψj) in the right-hand side of

(A.6) we obtain

(∇u,∇Ψj) = (∇un + γ(t)∇uc +
m∑

i=1

yi(t)∇Ψi,∇Ψj)

= (∇un,∇Ψj) + γ(t)(∇uc,∇Ψj) +
m∑

i=1

yi(t)(∇Ψi,∇Ψj). (A.7)

The term (uc,Ψj) is already in reduced form, while the term (u · ∇u,Ψj) can be reduced

as follows:

(u · ∇u,Ψj) =

= ((un + γ(t)uc +
m∑

i=1

yi(t)Ψi) · (∇un + γ(t)∇uc +
m∑

k=1

yk(t)∇Ψk),Ψj)

= (un · ∇un,Ψj) + γ(t)(un · ∇uc,Ψj) +
m∑

k=1

yk(t)(un · ∇Ψk,Ψj)



A.1 Derivation of the Standard POD-Based Model 111

+ γ(t)(uc · ∇un,Ψj) + γ2(t)(uc · ∇uc,Ψj) + γ(t)
m∑

k=1

yk(t)(uc · ∇Ψk,Ψj)

+
m∑

i=1

yi(t)(Ψi · ∇un,Ψj) + γ(t)
m∑

i=1

yi(t)(Ψi · ∇uc,Ψj)

+
m∑

i=1

m∑

k=1

yi(t)yk(t)(Ψi · ∇Ψk,Ψj). (A.8)

Rearranging and collecting terms, and changing indices where convenient, we obtain

(u · ∇u,Ψj) = (un · ∇un,Ψj)

+ γ(t)[(un · ∇uc,Ψj) + (uc · ∇un,Ψj)]

+ γ(t)
m∑

i=1

yi(t)[(uc · ∇Ψi,Ψj) + (Ψi · ∇uc,Ψj)]

+ γ2(t)(uc · ∇uc,Ψj)

+

m∑

i=1

yi(t)[(un · ∇Ψi,Ψj) + (Ψi · ∇un,Ψj)]

+
m∑

i=1

m∑

k=1

yi(t)yk(t)(Ψi · ∇Ψk,Ψj). (A.9)

Substitution of (A.7) and (A.9) into (A.6) now leads to the desired system

ẏ(t) = M0 + γ(t)M1 + γ2(t)M2 + γ̇(t)Mc + M3y + γ(t)M4y + M5(y,y) (A.10)

of ordinary differential equations, where the vectors M0, M1, M2, Mc ∈ R
m, the matrices

M3, M4 ∈ R
m,m and the bilinear term M5(y,y) : R

m,m → R
m are given by

(M0)j = −[ν(∇un,∇Ψj) + (un · ∇un,Ψj)],

(M1)j = −[ν(∇uc,∇Ψj) + (un · ∇uc,Ψj) + (uc · ∇un,Ψj)],

(M2)j = −(uc · ∇uc,Ψj),

(Mc)j = −(uc,Ψj),

(M3)ji = −[ν(∇Ψi,∇Ψj) + (un · ∇Ψi,Ψj) + (Ψi · ∇un,Ψj)],

(M4)ji = −[(uc · ∇Ψi,Ψj) + (Ψi · ∇uc,Ψj)],

(M5(y,y))j = −yT (t)Qjy(t), with (Qj)ik = (Ψi · ∇Ψk,Ψj). (A.11)

Given initial conditions on the coefficient vector y = (y1, . . . , ym)T , and a prescribed time

history for γ, this system may be integrated forward in time to yield predicted values of

y; hence, predicted flow fields.
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Initial Conditions for the ODE

It remains to derive initial conditions for the system (A.10). Setting t = t0 in (A.1) and

reformulating gives

m∑

i=1

yi(t0)Ψi(x) = u(t0,x)
︸ ︷︷ ︸

=:ut0

− un(x) − γ(t0)uc(x). (A.12)

The Galerkin projection

m∑

i=1

yi(t0) (Ψi,Ψj) = (ut0 ,Ψj) − (un,Ψj) − γ(t0) (uc,Ψj) j = 1, . . . , m (A.13)

now yields

yj(t0) = (ut0 ,Ψj) − (un,Ψj) − γ(t0) (uc,Ψj) j = 1, . . . , m. (A.14)

Elimination of the first order term.

The term γ̇ in (A.10) is difficult to handle during optimization with the reduced-order

model. To eliminate this term we set

ỹ(t) := y(t) − γ(t)Mc (A.15)

and substitute y = ỹ + γMc in (A.1) and (A.10). This substitution changes the velocity

expansion to

u(t,x) = un(x) + γ(t)uc(x) +

m∑

i=1

(ỹi(t) + γ(t)(Mc)i)Ψi(x). (A.16)

Moreover, the substitution (A.15) eliminates the term γ̇(t)Mc in (A.10) leading to the

system

˙̃y = M0 + γM1 + γ2M2 + M3(ỹ + γMc)

+ γM4(ỹ + γMc) + M5((ỹ + γMc), (ỹ + γMc)) (A.17)

where the coefficient vector ỹ(t) can be determined by integrating (A.17) forward in time.

A.2 Derivation of the SDPOD Model

The SDPOD model is derived from the standard POD-based model by adding the term

δm
T (u·∇u,u·∇Ψj) to (A.6). Reduction of this term after substitution of (A.1) is somewhat

tedious, but concentrating first on the component u · ∇u using calculations analogous to

those used for (A.7) and (A.9) results in the following partial reduction:

(u · ∇u,u · ∇Ψj) = (un · ∇un,u · ∇Ψj)



A.2 Derivation of the SDPOD Model 113

+ γ(t)[(un · ∇uc,u · ∇Ψj) + (uc · ∇un,u · ∇Ψj)]

+ γ(t)
m∑

i=1

yi(t)[(uc · ∇Ψi,u · ∇Ψj) + (Ψi · ∇uc,u · ∇Ψj)]

+ γ2(t)(uc · ∇uc,u · ∇Ψj)

+

m∑

i=1

yi(t)[(un · ∇Ψi,u · ∇Ψj) + (Ψi · ∇un,u · ∇Ψj)]

+
m∑

i=1

m∑

k=1

yi(t)yk(t)(Ψi · ∇Ψk,u · ∇Ψj). (A.18)

Repetition of the above procedure for u · ∇Ψj and some rather laborious rearrangement
and collection of terms now completes the reduction:

(u·∇u,u · ∇Ψj) =

(un · ∇un,un · ∇Ψj)

+ γ(t)[(un · ∇un,uc · ∇Ψj) + (un · ∇uc,un · ∇Ψj) + (uc · ∇un,un · ∇Ψj)]

+ γ2(t)[(un · ∇uc,uc · ∇Ψj) + (uc · ∇un,uc · ∇Ψj) + (uc · ∇uc,un · ∇Ψj)]

+ γ3(t)(uc · ∇uc,uc · ∇Ψj)

+

m∑

i=1

yi(t)[(un · ∇un,Ψi · ∇Ψj) + (un · ∇Ψi,un · ∇Ψj)

+ (Ψi · ∇un,un · ∇Ψj)]

+ γ(t)
m∑

i=1

yi(t)[(un · ∇uc,Ψi · ∇Ψj) + (uc · ∇un,Ψi · ∇Ψj)

+ (uc · ∇Ψi,un · ∇Ψj) + (Ψi · ∇uc,un · ∇Ψj)

+ (un · ∇Ψi,uc · ∇Ψj) + (Ψi · ∇un,uc · ∇Ψj)]

+ γ2(t)

m∑

i=1

yi(t)[(uc · ∇Ψi,uc · ∇Ψj) + (Ψi · ∇uc,uc · ∇Ψj)

+ (uc · ∇uc,Ψi · ∇Ψj)]

+
m∑

i=1

m∑

k=1

yi(t)yk(t)[(un · ∇Ψi,Ψk · ∇Ψj) + (Ψi · ∇un,Ψk · ∇Ψj)

+ (Ψi · ∇Ψk,un · ∇Ψj)]

+ γ(t)
m∑

i=1

m∑

k=1

yi(t)yk(t)[(uc · ∇Ψi,Ψk · ∇Ψj) + (Ψi · ∇Ψk,uc · ∇Ψj)

+ (Ψi · ∇uc,Ψk · ∇Ψj)]

+
m∑

i=1

m∑

k=1

m∑

l=1

yi(t)yk(t)yl(t)(Ψi · ∇Ψk,Ψl · ∇Ψj). (A.19)

After adding the expanded terms to equation (A.10) and still more rearranging, we arrive

at the following system of ordinary differential equations:

ẏ(t) = M0 + γ(t)M1 + γ2(t)M2 + γ̇(t)Mc + M3y + γ(t)M4y + M5(y,y)

+ δm
T [Mδ

0 + γ(t)Mδ
1 + γ2(t)Mδ

2 + Mδ
3y + γ(t)Mδ

4y

+ Mδ
5(y,y) + γ3(t)Mδ

6 + γ2Mδ
7y + γ(t)Mδ

8(y,y) + Mδ
9(y,y,y)], (A.20)



114 A Derivation of the Reduced-Order Models

where the new terms, including the vectors Mδ
0, Mδ

1, Mδ
2, Mδ

c, Mδ
6 ∈ R

m, the matrices
Mδ

3, Mδ
4, Mδ

7 ∈ R
m,m, the bilinear terms Mδ

5(y,y), Mδ
8(y,y) : R

m,m → R
m and the

trilinear term Mδ
9(y,y,y) : R

m,m,m → R
m, are given by

(Mδ
0
)j = −(un · ∇un,un · ∇Ψj),

(Mδ
1
)j = −[(un · ∇un,uc · ∇Ψj) + (un · ∇uc,un · ∇Ψj) + (uc · ∇un,un · ∇Ψj)],

(Mδ
2
)j = −[(un · ∇uc,uc · ∇Ψj) + (uc · ∇un,uc · ∇Ψj) + (uc · ∇uc,un · ∇Ψj)],

(Mδ
3
)ji = −[(un · ∇un,Ψi · ∇Ψj) + (un · ∇Ψi,un · ∇Ψj) + (Ψi · ∇un,un · ∇Ψj)],

(Mδ
4
)ji = −[(un · ∇uc,Ψi · ∇Ψj) + (un · ∇Ψi,uc · ∇Ψj) + (uc · ∇un,Ψi · ∇Ψj)]

+ (uc · ∇Ψi,un · ∇Ψj) + (Ψi · ∇un,uc · ∇Ψj) + (Ψi · ∇uc,un · ∇Ψj)],

(Mδ
5
)j = −yT (t)Qδ

jy(t), with (Qδ
j)ik = (A.21)

[(un · ∇Ψi,Ψk · ∇Ψj) + (Ψi · ∇un,Ψk · ∇Ψj) + (Ψi · ∇Ψk,un · ∇Ψj)],

(Mδ
6
)j = −(uc · ∇uc,uc · ∇Ψj),

(Mδ
7
)ji = −[(uc · ∇uc,Ψi · ∇Ψj) + (uc · ∇Ψi,uc · ∇Ψj) + (Ψi · ∇uc,uc · ∇Ψj)],

(Mδ
8
)j = −yT (t)Rδ

jy(t), with (Rδ
j)ik = (A.22)

[(uc · ∇Ψi,Ψk · ∇Ψj) + (Ψi · ∇Ψk,uc · ∇Ψj) + (Ψi · ∇uc,Ψk · ∇Ψj)],

(Mδ
9
)j = −yT (t)

(
m∑

l=1

yl(t)Pδ
jl

)

y(t), with (Pδ
jl)ik = (Ψi · ∇Ψk,Ψl · ∇Ψj). (A.23)

The modification of Section A.1 can again be used to eliminate the term γ̇(t)Mc.

A.3 Derivation of the Adjoint Equation

As stated in Section 5.3, determination of the gradient of

J (γ) =

∫ T

0
L(y(γ), γ, t) dt

s.t. ẏ = φ(y, γ, t)

requires computation of the terms Ly, Lγ , φy and φγ . In this section we carry out the

algebraic reductions necessary to express Ly, Lγ , φy and φγ in terms of the POD basis

functions. With

L(y, γ, t) =
1

2
‖un + γ(t)(uc + ΦMc) + Φy(t) − ud‖2

M ,

where M is the finite element mass matrix, and Φ ∈ R
2N,m denotes the matrix with

columns consisting of the finite element coefficient vectors of the POD basis functions Ψi,

we have

Ly(y, γ, t) = ΦT M(un + γ(t)(uc + ΦMc) + Φy(t) − ud)

and

Lγ(y, γ, t) = (uc + ΦMc)
T M(un + γ(t)(uc + ΦMc) + Φy(t) − ud).
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Assuming the modification (A.15) has been made to eliminate the term γ̇(t)Mc, we set

z = y + γMc and have from (A.20)

φy(y, γ, t) = M3 + γM4 +
∂

∂y
M5(z, z) + δm

T [Mδ
3 + γMδ

4 +
∂

∂y
Mδ

5(z, z)

+ γ2Mδ
7 + γ

∂

∂y
Mδ

8(z, z) +
∂

∂y
Mδ

9(z, z, z)],

where the j-th rows of the derivatives of the multilinear forms are given by

( ∂

∂y
M5(z, z)

)

j
= −zT (Qj + QT

j ) with Qj from (A.11),

( ∂

∂y
Mδ

5
(z, z)

)

j
= −zT (Qδ

j + (Qδ
j)

T ) with Qδ
j from (A.21),

( ∂

∂y
Mδ

8
(z, z)

)

j
= −zT (Rδ

j + (Rδ
j)

T ) with Rδ
j from (A.22),

( ∂

∂y
Mδ

9
(z, z, z)

)

j
= −zT (P + PT ) − zT Pj z with P =

( m∑

l=1

ylPδ
jl

)

,

Pj =
(
Pδ

j1, . . . ,Pδ
jm

)
and Pδ

jl from (A.23),

and

φγ(y, γ, t) = M1 + 2γM2 + M3Mc + M4z + γM4Mc +
∂

∂γ
M5(z, z)

+ δm
T [Mδ

1 + 2γMδ
2 + Mδ

3Mc + Mδ
4z + γMδ

4Mc +
∂

∂γ
Mδ

5(z, z)

+ 3γ2Mδ
6 + 2γMδ

7 + γ2Mδ
7Mc + Mδ

8(z, z)

+ γ
∂

∂γ
Mδ

8(z, z) +
∂

∂γ
Mδ

9(z, z, z)],

where the j-th components of the derivatives of the multilinear forms are given by

( ∂

∂γ
M5(z, z)

)

j
= −zT (Qj + QT

j )Mc with Qj from (A.11),

( ∂

∂γ
Mδ

5
(z, z)

)

j
= −zT (Qδ

j + (Qδ
j)

T )Mc with Qj from (A.21),

( ∂

∂γ
Mδ

8
(z, z)

)

j
= −zT (Rδ

j + (Rδ
j)

T )Mc with Rδ
j from (A.22) and

( ∂

∂γ
Mδ

9
(z, z, z)

)

j
= −zT (P + PT )Mc − zT

( m∑

l=1

(Mc)lPδ
jl

)

z

with P =

( m∑

l=1

ylPδ
jl

)

and Pδ
jl from (A.23).

A.4 Calculation of the ODE Coefficients

To calculate the coefficients in (A.10) and (A.20) we expand the flow fields and POD basis

functions into their finite element representations, and use the underlying linearity to
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reduce the evaluation of the scalar product terms to problems involving the finite element

basis functions. These can then be evaluated using the code of the finite element solver.

These expansions require use of the identities

(Ψ,Φ) =
(

Ψ(1),Φ(1)
)

+
(

Ψ(2),Φ(2)
)

, (A.24)

(∇Ψ,∇Φ) =
2∑

µ=1

2∑

ν=1

(

∇µΨ
(ν),∇µΦ

(ν)
)

, (A.25)

(Ψ · ∇Φ,Υ) =
2∑

µ=1

2∑

ν=1

(

Ψ(µ)∇µΦ
(ν),Υ(ν)

)

, (A.26)

and

(Ψ · ∇Φ,Υ · ∇Λ) =
2∑

µ=1

2∑

ν=1

2∑

σ=1

(

Ψ(µ)∇µΦ
(σ), Υ(ν)∇νΛ

(σ)
)

, (A.27)

where Ψ,Φ,Υ,Λ : R
2 → R

2 are vector-valued with real-valued component functions

(Ψ = (Ψ(1),Ψ(2))T , for example), and ∇µ, µ = 1, 2 is the µ-th component of the gradient.

Expansion of the diffusive terms. The average flow field un for the POD snapshots

uj , j = 1, . . . , n is given by

un =
1

n

n∑

j=1

uj =
1

n

n∑

j=1

N∑

i=1

(
ujiΦi

uj(i+N)Φi

)

=
N∑

i=1

1

n

n∑

j=1

(
ujiΦi

uj(i+N)Φi

)

,

where N is the order of the finite element discretization and Φi, i = 1, . . . , N denote the

finite element basis functions1. By setting ui := 1
n

∑n
j=1 uji, i = 1, . . . , 2N the average

flow field can be written in terms of the finite element basis functions as

un =
N∑

i=1

(
uiΦi

ui+NΦi

)

. (A.28)

Similar arguments apply to the POD basis functions, which consist of linear combinations

of the POD snapshots as described in Chapter 4, so that using (A.25) we can write

(∇un,∇Ψj) =
(

∇1u
(1)
n ,∇1Ψ

(1)
j

)

+
(

∇1u
(2)
n ,∇1Ψ

(2)
j

)

+
(

∇2u
(1)
n ,∇2Ψ

(1)
j

)

+
(

∇2u
(2)
n ,∇2Ψ

(2)
j

)

=
N∑

i=1

N∑

l=1

[(ui∇1Φi, Ψjl∇1Φl) +
(
ui+N∇1Φi, Ψj(l+N)∇1Φl

)

+ (ui∇2Φi, Ψjl∇2Φl) +
(
ui+N∇2Φi, Ψj(l+N)∇2Φl

)
]

1We ask the reader’s forgiveness for the abuse of notation regarding un, which has been used to denote
the average flow field, as well as the n-th snapshot.
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=
N∑

i=1

N∑

l=1

[uiΨjl ((∇1Φi,∇1Φl) + (∇2Φi,∇2Φl))

+ ui+NΨj(l+N) ((∇1Φi,∇1Φl) + (∇2Φi,∇2Φl))]

=
N∑

i=1

ui

N∑

l=1

Ψjl (∇Φi,∇Φl) +
N∑

i=1

ui+N

N∑

l=1

Ψj(l+N) (∇Φi,∇Φl)

= uT
n

(
S O
O S

)

Ψj:

and, likewise,

(∇Ψi,∇Ψj) = ΨT
i:

(
S O
O S

)

Ψj:,

where un, Ψi:, Ψj: ∈ R
2N are coefficient vectors, and S = (∇Φi,∇Φj)1≤i,j≤N is the finite

element stiffness matrix.

Expansion of the convective term. Expansion of convective term is somewhat more

involved, as the final form of the representation depends on the order of summation. We

begin by using (A.26) to reduce the term to a linear combination of the finite element

basis functions.

(Ψi · ∇Ψk,Ψj) =
(

Ψ
(1)
i ∇1Ψ

(1)
k ,Ψ

(1)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(1)
k ,Ψ

(1)
j

)

+
(

Ψ
(1)
i ∇1Ψ

(2)
k ,Ψ

(2)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(2)
k ,Ψ

(2)
j

)

=
N∑

m=1

Ψim

N∑

p=1

Ψkp

N∑

n=1

Ψjn (Φm∇1Φp, Φn)

+
N∑

m=1

Ψi(m+N)

N∑

p=1

Ψkp

N∑

n=1

Ψjn (Φm∇2Φp, Φn)

+
N∑

m=1

Ψim

N∑

p=1

Ψk(p+N)

N∑

n=1

Ψj(n+N) (Φm∇1Φp, Φn)

+
N∑

m=1

Ψi(m+N)

N∑

p=1

Ψk(p+N)

N∑

n=1

Ψj(n+N) (Φm∇2Φp, Φn) .

By checking the other possibilities, one can easily confirm that it is computationally

advantageous to sum first over the index m. Taking the inner summation over m leads to

(Ψi · ∇Ψk,Ψj) = Ψ
(1)
k:

T

(

(
N∑

m=1

Ψim (Φm∇1Φp, Φn)
)

p,n

)

Ψ
(1)
j:

+ Ψ
(1)
k:

T

(

(
N∑

m=1

Ψi(m+N) (Φm∇2Φp, Φn)
)

p,n

)

Ψ
(1)
j:

+ Ψ
(2)
k:

T

(

(
N∑

m=1

Ψim (Φm∇1Φp, Φn)
)

p,n

)

Ψ
(2)
j:
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+ Ψ
(2)
k:

T

(

(
N∑

m=1

Ψi(m+N) (Φm∇2Φp, Φn)
)

p,n

)

Ψ
(2)
j:

= ΨT
k:

(
C(Ψi:) 0

0 C(Ψi:)

)

Ψj:

where

Cpn(Ψi:) =
N∑

m=1

Ψim (Φm∇1Φp, Φn) +
N∑

m=1

Ψi(m+N) (Φm∇2Φp, Φn) .

Expansion of the streamline diffusion term. The SDPOD model requires expansion

of the streamline diffusion term. We begin the expansion by using (A.27) to obtain

(Ψi·∇Ψk,Ψl · ∇Ψj)

=
(

Ψ
(1)
i ∇1Ψ

(1)
k ,Ψ

(1)
l ∇1Ψ

(1)
j

)

+
(

Ψ
(1)
i ∇1Ψ

(1)
k ,Ψ

(2)
l ∇2Ψ

(1)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(1)
k ,Ψ

(1)
l ∇1Ψ

(1)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(1)
k ,Ψ

(2)
l ∇2Ψ

(1)
j

)

+
(

Ψ
(1)
i ∇1Ψ

(2)
k ,Ψ

(1)
l ∇1Ψ

(2)
j

)

+
(

Ψ
(1)
i ∇1Ψ

(2)
k ,Ψ

(2)
l ∇2Ψ

(2)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(2)
k ,Ψ

(1)
l ∇1Ψ

(2)
j

)

+
(

Ψ
(2)
i ∇2Ψ

(2)
k ,Ψ

(2)
l ∇2Ψ

(2)
j

)

.

Use of the representations Ψ
(1)
i =

∑N
i′=1 Ψii′Φi′ and Ψ

(2)
i =

∑N
i′=1 Ψi(i′+N)Φi′ and rear-

rangement of terms leads to the sum

(Ψi · ∇Ψk,Ψl · ∇Ψj)

=
N∑

i′,k′,l′,j′=1

p1

(
Φi′∇1Φk′ , Φl′∇1Φj′

)
+ p2

(
Φi′∇1Φk′ , Φl′∇2Φj′

)
+

p3

(
Φi′∇2Φk′ , Φl′∇1Φj′

)
+ p4

(
Φi′∇2Φk′ , Φl′∇2Φj′

)
,

where

p1 =
[
Ψii′Ψkk′Ψll′Ψjj′ + Ψii′Ψk(k′+N)Ψll′Ψj(j′+N)

]
,

p2 =
[
Ψii′Ψkk′Ψl(l′+N)Ψjj′ + Ψii′Ψk(k′+N)Ψl(l′+N)Ψj(j′+N)

]
,

p3 =
[
Ψi(i′+N)Ψkk′Ψll′Ψjj′ + Ψi(i′+N)Ψk(k′+N)Ψll′Ψj(j′+N)

]
,

p4 =
[
Ψi(i′+N)Ψkk′Ψl(l′+N)Ψjj′ + Ψi(i′+N)Ψk(k′+N)Ψl(l′+N)Ψj(j′+N)

]
.

Finally, rearranging terms and switching in part to matrix notation, we can write

(Ψi · ∇Ψk,Ψl · ∇Ψj) = Ψ
(1)
k:

T
QΨ

(1)
j: + Ψ

(2)
k,:

T
QΨ

(2)
j,:

= ΨT
k:

(
Q 0
0 Q

)

Ψj:,

where

Qi′k′ =
N∑

i′,l′=1

Ψii′Ψll′
(
Φi′∇1Φk′ , Φl′∇1Φj′

)
+ Ψii′Ψl(l′+N)

(
Φi′∇1Φk′ , Φl′∇2Φj′

)

+ Ψi(i′+N)Ψll′
(
Φi′∇2Φk′ , Φl′∇1Φj′

)
+ Ψi(i′+N)Ψl(l′+N)

(
Φi′∇2Φk′ , Φl′∇2Φj′

)
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Initial condition terms. The initial conditions (A.14) require expansion of the terms

(ut0 ,Ψj), (un,Ψj) and (uc,Ψj), j=1,. . . ,m. These expansions clearly take the form

(ut0 ,Ψj) = uT
t0

(
M O
O M

)

Ψj:, (un,Ψj) = uT
n

(
M O
O M

)

Ψj: and

(uc,Ψj) = uT
c

(
M O
O M

)

Ψj:, j=1,. . . ,m,

where uT
t0 , u

T
n , uT

c , Ψj: ∈ R
2N are coefficient vectors, and M = (Φi, Φj)1≤i,j≤N is the finite

element mass matrix.
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