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Summary 
Agricultural monitoring is necessary. Since the beginning of the Holocene, human agricultural 

practices have been shaping the face of the earth, and today around one third of the ice-free land 

mass consists of cropland and pastures. While agriculture is necessary for our survival, the 

intensity has caused many negative externalities, such as enormous freshwater consumption, the 

loss of forests and biodiversity, greenhouse gas emissions as well as soil erosion and degradation. 

Some of these externalities can potentially be ameliorated by careful allocation of crops and 

cropping practices, while at the same time the state of these crops has to be monitored in order 

to assess food security. Modern day satellite-based earth observation can be an adequate tool to 

quantify abundance of crop types, i.e., produce spatially explicit crop type maps. The resources to 

do so, in terms of input data, reference data and classification algorithms have been constantly 

improving over the past 60 years, and we live now in a time where fully operational satellites 

produce freely available imagery with often less than monthly revisit times at high spatial 

resolution. At the same time, classification models have been constantly evolving from 

distribution based statistical algorithms, over machine learning to the now ubiquitous deep 

learning. 

In this environment, we used an explorative approach to advance the state of the art of crop 

classification. We conducted regional case studies, focused on the study region of the Eifelkreis 

Bitburg-Prüm, aiming to develop validated crop classification toolchains. Because of their unique 

role in the regional agricultural system and because of their specific phenologic characteristics 

we focused solely on maize fields. 

In the first case study, we generated reference data for the years 2009 and 2016 in the study 

region by drawing polygons based on high resolution aerial imagery, and used these in 

conjunction with RapidEye imagery to produce high resolution maize maps with a random forest 

classifier and a gaussian blur filter. We were able to highlight the importance of careful residual 

analysis, especially in terms of autocorrelation. As an end result, we were able to prove that, in 

spite of the severe limitations introduced by the restricted acquisition windows due to cloud 

coverage, high quality maps could be produced for two years, and the regional development of 

maize cultivation could be quantified. 

In the second case study, we used these spatially explicit datasets to link the expansion of biogas 

producing units with the extended maize cultivation in the area. In a next step, we overlayed the 

maize maps with soil and slope rasters in order to assess spatially explicit risks of soil compaction 

and erosion. Thus, we were able to highlight the potential role of remote sensing-based crop type 

classification in environmental protection, by producing maps of potential soil hazards, which can 

be used by local stakeholders to reallocate certain crop types to locations with less associated 

risk. 

In our third case study, we used Sentinel-1 data as input imagery, and official statistical records 

as maize reference data, and were able to produce consistent modeling input data for four 

consecutive years. Using these datasets, we could train and validate different models in spatially 
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and temporally independent random subsets, with the goal of assessing model transferability. We 

were able to show that state-of-the-art deep learning models such as UNET performed 

significantly superior to conventional models like random forests, if the model was validated in a 

different year or a different regional subset. We highlighted and discussed the implications on 

modeling robustness, and the potential usefulness of deep learning models in building fully 

operational global crop classification models. 

We were able to conclude that the first major barrier for global classification models is the 

reference data. Since most research in this area is still conducted with local field surveys, and only 

few countries have access to official agricultural records, more global cooperation is necessary to 

build harmonized and regionally stratified datasets. The second major barrier is the classification 

algorithm. While a lot of progress has been made in this area, the current trend of many appearing 

new types of deep learning models shows great promise, but has not yet consolidated. There is 

still a lot of research necessary, to determine which models perform the best and most robust, 

and are at the same time transparent and usable by non-experts such that they can be applied 

and used effortlessly by local and global stakeholders. 
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1 Introduction 

1.1 The Agricultural Sector 

1.1.1 Global Dynamics of the Agricultural Sector 

Human societies began to transform the landscapes they inhabited millennia before the advent 

of concrete, cars and combine harvesters. There is archaeological and palaeoecological evidence 

of forest cleanings, megafaunal extinctions and human induced soil erosion at least since the late 

Pleistocene (Ellis et al. 2013). By the beginning of the Holocene, 12,000 years ago, transformative 

land use practices like cultivation and domestication were adopted by all human societies (Ellis 

et al. 2021). Later on, in more advanced civilizations such as the Roman cultures, the idea of the 

noble human transforming wild and unorganized natural landscapes into cleanly structured 

lands of plenty evolved. It established itself deeply within the European ideology and was 

consequently spread around the globe through the paths of imperialism (Kirch 2005). 

The transformation of landscapes has continued ever since, albeit with greatly varying speed in 

different areas of the world. In the last 3 centuries, wildlands with little or no human influence 

receded from around 50% of the ice-free global landmass to around 25%. As a result, the majority 

of earth’s biosphere is now covered by croplands, rangelands and settlements (Ellis, Beusen, and 

Goldewijk 2020). In the year 2000, the global amount of cropland area is estimated to be around 

15 million km², which accounts for 12% of the ice-free land area. Pastures and rangelands are 

even more land-intensive at 28 million km² and about 22% of global land mass (Ramankutty et 

al. 2008). Between 1985 and 2005 alone, the global agricultural area increased by 1.53 million 

km² (Foley et al. 2011).  

1.1.2 Negative Externalities of the Agricultural Sector 

Landscape transformations on this scale do not occur without a cost. Croplands, pastures and 

settlements are not simply added to our ecosystem, they are replacing preceding land cover types. 

This is usually accompanied by a trade-off of ecosystem services and natural resources, where 

forest production and habitat biodiversity is sacrificed for the sake of yield maximization (Foley 

et al. 2005). The issues that arise on a global scale are manifold. Some non-exhaustive examples 

are: 

Freshwater resources are consumed and transformed irreversibly. Agriculture withdraws 

around 3,800 km³ of freshwater per year, which is 76% of the total human consumption. Yet, the 

global water cycle is not only altered by directly removing resources from the system. Rivers and 

lakes are also changed by chemical inputs, temperature and riverbed alterations as well as 

harvesting and agriculture (Carpenter, Stanley, and Vander Zanden 2011) 

Forests are especially impacted for various reasons. Firstly, they are, as a natural land cover type, 

one of the major targets of land cover transitions and often replaced by other cover types such as 

agriculture. Secondly, other cover types depend on forest resources such as timber. As a result, 

agricultural activities and timber production have caused an estimated loss of 7 to 11 million km² 

of forests in the past 300 years (Foley et al. 2005). From 2000 to 2012 alone, 2.3 million km² of 
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forests were cleared, while only 0.8 million km² were gained. This is especially problematic in the 

tropics, where the forest loss is still increasing by around 2000 km² per year (Hansen et al. 2013). 

Global rapid loss of biodiversity has been widely reported, with species extinction rates at least 

10 times higher than the average during the past 10 million years (IPBES 2019). Though this is 

driven by various other human factors like climate change, pollution and direct exploitation, Land 

cover changes are a major factor as well. One example are oil palm plantations, which are 

considered one of the largest contributors to global deforestation. The land cover transformation 

from rain forest to oil palm plantation reduces the animal density and diversity by roughly 50% 

(Barnes et al. 2014). 

Changes in land use also have a large impact on climate change. Between 1750 and 2011, 

changes in land use released between 100 and 240 Petagrams of carbon into the atmosphere, 

mainly due to deforestation. It is therefore the second largest contributor to the global 

Greenhouse Gas concentration behind fossil fuel combustion (Ciais et al. 2013). In 2010, 

Agriculture, Forestry and Other Land Use (AFOLU) accounted for 24% of all global greenhouse 

gas emissions, roughly 11.76 billion tons of CO2 equivalent (Parry 2015). 

Soil erosion and degradation as a direct consequence of agricultural land use has been causing 

the decline of entire civilizations since at least 4000 years, when salt and silt accumulated as a 

side effect of large scale irrigation systems in what is now the Iraq (Thorkild 1958). 

Contemporarily, many different physical, chemical and organic threats to soil ecosystem 

functions are described and analyzed in global frameworks (FAO & ITPS 2015). In 2012 alone, an 

estimated 35.9 billion tons of soil were lost to erosion globally (Borrelli et al. 2017). Though soil 

erosion rates are generally very high on croplands compared to other land cover types, it can be 

influenced significantly by crop management and environmental protection policies (Wuepper, 

Borrelli, and Finger 2020) 

1.1.3 Feeding the World 

The previously described externalities cannot be completely avoided. We need food to survive. 

Of the roughly 2900 calories the average human consumes each day in 2017, only about 1.2% are 

fish and seafood. The remaining 98.8% are produced by agricultural systems, with cereals alone 

accounting for 45%. Agriculture, while economically rather insignificant at only 4% of the global 

GDP, employs 27% of the global workforce, and feeds every single human on earth (FAO 2020). 

Though the monetary value of the sector is relatively low, while the percentage of people 

employed by it is shrinking, human society cannot exist without planetary scale agriculture and 

gradual changes in food availability can cause largescale political instability (Soffiantini 2020). 

The precise extent to which our agricultural systems are able to support us, has been subject of 

heated academic discussions for a very long time. The World population conference in Geneva in 

1927 (List et al. 1995) started to coin the term overpopulation which was later often 

instrumentalized. At the time, world population was about 2 billion, long before the works of 

Malthus and the Club of Rome. In 2020, two or three years from when the world population will 

hit 8 billion (United Nations, Department of Economic and Social Affairs 2019), 768 millions of 
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people are undernourished. While the absolute and relative number of undernourished people 

have been in a steady decline since 2005, both numbers started to plateau after 2010 around 600 

million or 8 % of the global population. After a slow increase in the past decade, 2020 saw a very 

sharp increase of this number of more than 100 million undernourished people (Food and 

Agriculture Organization of the United Nations 2021). While COVID-19 played a huge role by 

causing market disruptions and economic decline in households (Laborde et al. 2020), the key 

drivers behind the increase of undernourished people are climate extremes, conflicts and 

economic downturns which often occur in combination. Especially the increasing amounts of 

severe droughts in many countries in Africa have caused changes in trade flows from export to 

import, which triggered economic decline in already low-income countries, which in turn results 

in a decline in food security. 

1.1.4 Agricultural Monitoring and Earth Observation 

The previous paragraphs can be summarized as one big positive and one big negative aspect of 

planetary scale agriculture: Feeding the world and at the same time degrading its ecosystems. 

Striking a sustainable balance between these two does not come naturally. Options that benefit 

the community as a whole might at the same time not be the easiest and most profitable for the 

individual farmer. This phenomenon is called “Tragedy of the Commons” (Hardin 1968), a special 

case of the Prisoners Dilemma where informed individuals could theoretically produce the 

optimal outcome if they cooperated. Practically, since there is no communication, individuals 

don’t act altruistically, and the consequence is the worst possible outcome for everybody: 

reduction and eventual depletion of natural habitats as direct consequence of overuse and 

exploitation. 

In the following manuscript, we will argue that earth observation (EO) through remote sensing 

(RS) in general, and land use/ land cover change (LULCC) classification in particular, can be an 

essential part of the solution to this dilemma. The aforementioned externalities of LULCC can be 

quantified, and risks can be allocated in spatial context through careful, consequent and global 

monitoring (Estoque 2020). At the same time we can observe the productivity of our agricultural 

systems to adjust to the consequences of climate change, most notably the increase of severe 

drought events.  

This is only possible because of a constant increase in quality of RS products over the last decades, 

as a consequence of better algorithms, better sensors, and better data availability. The 

improvements that enabled LULCC monitoring on the level which we are used today will be 

described in the following section.  

1.2 Advancements in Remote Sensing based Agricultural Land Use Monitoring 

1.2.1 Advancements in Satellite Remote Sensing Hardware 

1.2.1.1 Advancements in passive Satellite Remote Sensing 

Considering Satellite Imagery, we can simplify sensor characteristics in trade-offs between sensor 

resolution (often described as spatial, spectral and temporal) and data availability. High spatial 

resolution was technically possible since the early days of the space age, since analogue film was 
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used to take the images, which were then physically dropped and recovered. The CORONA 

project, conducted by the US under the Keyhole Program between 1960 and 1972 is one of the 

first imaging satellite mission (Philip et al. 2002). Spatial resolutions were as high as 2m, which 

is relatively high even by modern day standards, but availability was very limited in many ways. 

Since these were military missions, mostly images from certain areas in Russia, China and the 

Middle East were acquired. Additionally, the images were only declassified in the nineties. 

The next step into satellite-based earth observation was the Landsat program. In its now almost 

50-year history, it perfectly represents the advancements achieved in Satellite Remote Sensing in 

a nutshell: 

• Spatial resolution has increased quickly from about 80m on the Multispectral Scanner 

(MSS) to 30m on the Thematic Mapper (TM) (Wulder et al. 2019). From there it has 

plateaued, and it is still the resolution of most bands in the Operational Land Imager (OLI) 

of Landsat 8 and Landsat 9 (NASA 2019). 

• Spectral resolution has increased as more bands have been added and the configuration 

has changed since the original MSS. 

• Temporal Resolution has started out with an 18-day revisit cycle, which changed to 16 

days on Landsat 4. Since the orbit of Landsat 9 is similar to Landsat 8, but with an 8-day 

offset, the revisit cycle will be effectively cut in half, since the sensors are very similar. 

• Data availability massively increased. After a severe price reduction from around 4000 

USD in the 80s to about 600 USD per scene in the 90s, a new distribution policy made the 

entire Landsat archive as well as all newly acquired images available for free starting in 

January 2008 (Woodcock et al. 2008). 

In contrast to wide swath operational satellite missions that acquire images continuously, there 

are commercial satellites and satellite constellations that acquire images on a much narrower 

swath, but with a much higher spatial resolution. One of the first examples for commercial remote 

sensing satellites is the US based IKONOS, which launched in 1999 and had a multispectral sensor 

with a 4m resolution (1m panchromatic) (Ünsalan and Boyer 2011). In the last 20 years many 

similar satellites were launched by different countries, with multispectral resolution in the range 

of single digit meters, and panchromatic resolutions often around or below one meter, with 

WorldView-3 even as low as 0.3 m (Toth and Jóźków 2016). Theoretical revisit times are usually 

very low, and some satellites can acquire multiple images per day from a single site. Since swath 

widths are so narrow, sometimes as low as 2 km (SkySat), specific orders have to be placed in 

advance to make use of these high revisit times. While these orders usually cost money, using 

already acquired and archived images from these commercial programs is sometimes free for 

scientific use (Borg 2014). As a consequence, the data availability for these kinds of satellites is 

slightly misleading. While revisit times are theoretically very high, they usually cannot be used 

for intensive time series analysis, unless the potentially very costly data acquisition is planned 

many years in advance. 
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On the opposite end of the swath width spectrum are sensors like the Moderate Resolution 

Imaging Spectroradiometer (MODIS) which is on board of the Terra (1999) and Aqua (2002) 

Satellites (Wenxue, Jianwen, and Pei 2020). While the spatial resolution is very low (1 km in most 

bands), it provides 36 spectral bands ranging from 459 up to 14385 nm. But its most prominent 

feature is a uniquely high data availability, as a result of the very high swath width of 2300 km, 

and a revisit time of two observations per day. As a consequence, it provides a freely available 

very dense time series of highly refined earth observation products like surface temperature and 

vegetation indices. There are other sensors with a similar focus on high swath and low spatial 

resolution, like AVHRR with a 1km pixel size and 3000 km swath (cf. (Loveland et al. 2000)). They 

often have a focus on meteorology, where low revisit times and the coverage of large areas are 

more important than high spatial detail. Nonetheless, these sensors can still be used for large 

scale vegetation monitoring, especially where long term time series are needed. 

Apart from MODIS, there have been other platforms exploring the use of an increased number of 

bands with a decreased average bandwidth, starting with Hyperion, launched in 2000 (Vangi et 

al. 2021). The sensor had 196 bands with a 10 nm bandwidth and was operating until 2017. For 

more than 10 years, since its launch it had been the only operating spaceborne hyperspectral 

imager covering the spectral range from 400 to 2500 nm. Even today there are only very few 

hyperspectral sensors operating (e.g., the Italian PRISMA (Labate et al. 2009), the Japanese HISUI 

(Matsunaga et al. 2017)), and the characteristics in terms of spatial resolution (around 30 m), 

swath width (around 30 km) are comparable. In comparison to multispectral satellite remote 

sensing, the evolution of hyperspectral sensors has been rather slow, mainly due to technical 

challenges and low signal to noise ratios (Transon et al. 2018). 

In 2015 and 2017, Sentinel 2A and B were launched by ESA, marking the beginning of a new era 

in global land surface monitoring. Their 13 bands, with resolutions ranging from 10 m to 60 m, 

were specifically designed to guarantee continuity with Landsat imagery, while their 290 km 

swath and twin constellation enables a revisit time of 5 days for most areas around the globe 

(Drusch et al. 2012). The sensor is specifically designed with LULCC classification in mind, and 

many studies with this topic were published since its launch (Phiri et al. 2019). The low revisit 

time specifically enables the use of dense vegetation index time series, which give a detailed 

perspective on the phenology of the vegetation cover, which can then be used to use state of the 

art classification algorithms (Campos-Taberner et al. 2020). The sensor is the current state of the 

art for production of large-scale land cover mapping, as a direct consequence of its high-quality 

sensor characteristics, low revisit time and free data access under the Copernicus program (ESA 

2014). 

1.2.1.2 Advancements in active Satellite Remote Sensing 

Active sensors in the microwave ranges above 1mm wavelength use synthetic apertures (SAR) in 

order to detect signals that were sent by the instrument and reflected back by ground objects 

(Toth and Jóźków 2016). While surface reflections in the visible and near infrared (VNIR) 

domains are determined mostly by the biochemical composition of objects (e.g., chlorophyll), the 

long waves in the microwave domain interact with objects in complex ways that depend heavily 
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on the relative length of the wave and the object geometry. As a consequence, SAR sensors are 

classified in subdomains called bands, with very different properties concerning the objects they 

interact with and are penetrating and reflecting from, and thusly very different application 

possibilities. They have letter designations, and range from wavelengths of 1cm up to 1m. In 

general the bands are following the pattern of short wave, low penetration, high spatial resolution 

on one end, to long wave, high penetration and low spatial resolution on the other (NASA 2020). 

The most popular bands in spaceborne SAR are the L band (15 – 30 cm), the C band (3.8 – 7.5 cm) 

and the X band (2.4 – 3.8 cm). The L band was historically used in the first spaceborne SAR 

sensors, starting with SEASAT (USA) in 1978 (Gade 2015). It can be used for large scale 

geophysical mapping, and mostly penetrates vegetation cover. As a consequence it is especially 

suitable to observe through the canopy, for example, mapping floods covered by standing 

vegetation (Tsyganskaya et al. 2018). C and X band sensors are the most common SAR types, with 

the European Space Agencies (ESA) European Remote Sensing Satellite (ERS) starting in 1992, 

Canada’s Radarsat in 1995, Germany’s TanDEM-X in 2010 and again ESA’s Sentinel-1 (Tsai et al. 

2019) in 2014. The penetration capabilities within these bands are moderate, and the 

applications in vegetation monitoring largely depend on the vegetation density (Tsyganskaya et 

al. 2018).  

With optical remote sensing, only one very well understood parameter is derived for a given 

wavelength, the reflectance which is ratio of incoming versus reflected energy. In SAR remote 

sensing, there are many more factors to consider. Within a given wavelength there are multiple 

polarization modes, which describe the horizontal or vertical polarization of the incoming and 

receiving signals. The results are unitless backscattering coefficients with different polarization, 

the amplitudes of the signals, influenced by sensor characteristics like wavelength, polarization 

and incidence angle, as well as surface characteristics like roughness and dielectric properties. 

Advanced processing techniques like interferometry and polarimetry are able process the 

backscattering amplitude and phase into more useful information. Interferometry uses the phase 

shift in radar signals to produce very high resolution surface models, and can be used to detect 

even small changes of ground height after earthquakes and landslides (Xu, Xu, and Wen 2018). 

Polarimetric SAR uses different decomposition techniques to analyze the scattering matrix of SAR 

images, and derives parameters such as the entropy, which is a measure that can be directly 

interpreted as the randomness of the scattering (Moreira et al. 2013). These parameters are much 

more interpretable, and correlate well with other crop phenology parameters (Prudente et al. 

2019). They can be used in further classification and modeling steps, as well as inversion of crop 

growth models. 

1.2.2 Advancements in Satellite Remote Sensing Software 

Progress in the availability of satellite remote sensing imagery has not only happened on the 

hardware side. Since the beginning of the 21st century, services like GloVis (Houska and Johnson, 

A.P. 2012) and the Earth Explorer (USGS 2013) by the US Geological Survey (USGS) provide access 

to satellite imagery. They feature visualizations of imagery and footprints as well as search 

queries based on location, sensor and time frame. Based on these search queries, access URLs can 
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be produced, and the low-level satellite data products can then be downloaded and further 

processed locally.  

Today, the functionality of online platforms has completely shifted from purely browsing 

datasets, to infrastructure offering tools for all parts of the remote sensing toolchain, ranging from 

dataset selection, data preprocessing and processing, algorithm application, analysis, and finally 

visualization, presentation and dissemination. These are private and proprietary platforms, that 

offer free as well as paid services. The Sentinel Hub for example, allows free browsing and 

download of Sentinel, Landsat and MODIS datasets. In addition, paid access enables RESTful API 

and more advanced data processing (Gomes, Queiroz, and Ferreira 2020). The Google Earth 

Engine (GEE) offers its complete functionality for free, though commercial licenses exist to 

increase processing capacities. It offers a complete cloud computing package on top of a massive 

data catalogue, all of which is freely accessible through a JavaScript code editor (Gorelick et al. 

2017). Besides these spatial service platforms that provide solutions for the complete remote 

sensing toolchain, it is also now much easier to integrate data access in existing toolchains 

through APIs, packages and frameworks. Through open source packages available in the most 

popular data science programming languages R and python, data from freely available sensors 

like MODIS, Landsat and Sentinel-1/-2 can be queried and downloaded directly from scripts, to 

integrate seamlessly into any existing program (Murray et al. 2010; Ranghetti et al. 2020). As a 

consequence, data access to the most popular modern sensors is now easier than ever, with many 

different options integrated into accessible online platforms as well as powerful programming 

language APIs. 

Besides the literal access of data, data preprocessing has historically been a major barrier in 

remote sensing. It kept non-remote sensing scientists from using remote sensing data, since it is 

not always clear which preprocessing level is adequate. It also usually involves many different 

steps accounting for sensor, atmospheric and topographic effects, and thusly introduces lots of 

potential for errors even before any analysis algorithm is applied (Young et al. 2017). Here the 

user now has many different options. Firstly, a lot of platforms like the GEE offer the datasets in 

different processing levels, ranging from raw level 1 data, to atmospherically corrected surface 

reflectances with cloud masks. Secondly, high quality preprocessing frameworks like FORCE 

(Frantz 2019) or SEN2COR (Louis et al. 2016) are freely available and can be included seamlessly 

in any kind of satellite data analysis.   

1.2.3 Advancements in Reference Data 

High quality and high sample size reference data is crucial for every supervised modeling 

approach in general. Remote sensing classification models in particular need georeferenced in 

situ data that contains either point or polygon geometry as well as a class label for a given time 

stamp. Historically a lot of this data was generated with field level surveys, meaning that the 

researchers had to get out by car, go to the sites and record geometry as well as labels themselves. 

This approach is very expensive, and also means that the reference data is clustered in one area 

defined by the driving range. Another downside is that researchers can only get reference data 

starting from the year the research starts, since they cannot retroactively see what was on a given 
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field a year ago. A cheaper alternative that also deals with this problem is to directly approach 

farmers and ask permission to use their personal records, since they often have to keep track of 

their parcels and respective crops. This bears the risk that reference data is highly spatially 

clustered or correlated in other ways, since farmers often use similar crop types or are equal in 

other farming practices. 

While large scale, balanced reference datasets remain a major challenge in machine learning, the 

advent of big data brought a lot of advancements in this area. In the last decades, many different 

remote sensing-based global land cover products have been developed, starting with the 

GLC2000 product, a global 1km by 1km map based on the Spot Vegetation sensor (Bartholomé 

and Belward 2005). More recent, products include ESAs Copernicus Land Cover Layers, with a 

much better spatial resolution at 100 m, and yearly availability (Buchhorn et al. 2020). Most of 

these global products use the FAOs classification scheme with 22 land cover classes (Pérez-Hoyos 

et al. 2017). For the purpose of agricultural monitoring, these classes are too broad, and much 

more specific thematic detail is necessary, especially the crop type (Tsendbazar, de Bruin, and 

Herold 2015). With the massive spread of machine learning the need for large scale training and 

benchmarking data intensified, and global labeled datasets are now available. BigEarthNet (cf. 

(Sumbul et al. 2019)) for example offers 590,326 Sentinel-2 sample patches, with CORINE Land 

Cover (CLC) based labels. These classes offer some information about the crop, and distinguish 

certain very unique crop types such as olives and rice, but other crops are just summarized under 

non-irrigated and irrigated arable land (Copernicus Land Monitoring Service 2010). CropHarvest 

(see (Tseng et al. 2021)) is another set of labeled Sentinel-1 and -2 products. Here the focus is 

solely agriculture, and 348 granular labels from around the globe were used to specify the type 

of crop or pasture in a detailed way. The reference data was collected from regional and global 

datasets with public licenses. The labels could not be perfectly harmonized between the regions, 

and some regions are not covered by the highly granular classes, e.g., Australia, East Asia, or only 

sparsely covered like Europe and South America. (Laso Bayas et al. 2017) used a crowd-based 

approach to generate 36000 labeled sample geometries. Though most of the 80 voluntary 

participants were from North America, Europe and India, they were able to produce well 

distributed samples from all around the globe. 

The vast majority of referenced data for detailed agricultural monitoring exists on national or 

regional level. In the European Union, accurate field level records have to exist as part of the 

Common Agricultural Policy. Farmers have to report to the Land Parcel Identification System 

(LPIS), which offers a spatially and temporally dense dataset of crop types (Bailly et al. 2018; 

Giordano et al. 2018). While LPIS data is not generally available to the public, the National 

Agricultural Statistics Service in the United States offers crop type data records ranging back to 

1997 (NASS 2009) which can be accessed online and used as reference for crop modeling (Csillik 

et al. 2019). An alternative to statistical records is to use data that is independent from the remote 

sensing imagery, but still gives information about the ground cover and crop type. One example 

is the evaluation of street level imagery. Platforms like Mapillary (d’Andrimont et al. 2018) 

provide a dense database with geotagged and timestamped ground level imagery, which can then 
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be used to identify land use or even crop types by means of crowd funding, image based machine 

learning or manual image classification. 

To summarize, remote sensing researchers have many different ways to access field data, 

compared to the situ surveys that have been done historically. Especially on regional levels in 

North America and Europe, geometrically and thematically dense training sets are available. 

Globally, the agricultural structure is very heterogenous, in terms of what is grown and how it is 

recorded. As such, the available reference data is still sparse, and denser recordings of in situ data 

will be required in the future. Nonetheless, researchers have various different options to access 

reference data to train the models. In the next section we will outline how these models have 

evolved from pixel-based statistical classifiers to deep learning-based object detection. 

1.2.4 Advancements in Supervised Classification Algorithms 

Historically, Maximum Likelihood Classification (MLC) has been the most popular classification 

algorithm in Remote Sensing. It is a parametric statistical algorithm, which means it is based on 

the assumption of a particular distribution for the values of each band and a given class, which is 

usually the gaussian distribution (Sisodia, Tiwari, and Kumar 2014). Based on this multivariate 

distribution, a given pixel takes the most likely class. As one of the first classification methods, 

this algorithm has been successfully employed for the classification of crops based on satellite 

imagery since the 1980s (see also (Dawbin and Evans 1988; Ulaby, Li, and Shanmugan 1982; 

Zenzo et al. 1987)),  and still sees frequent use today. In comparison to more modern approaches, 

it brings a lot of advantages. It is very transparent and the decision-making process can be 

comprehended with very minimal prior knowledge. The training process is also very simple, and 

consists solely of the estimation of the distribution parameters, which is just the variable means 

and the variable covariance matrix. The training of the model also requires no hyperparameters, 

and thusly requires no expert knowledge by the researcher. The only major drawback of the 

approach is the strict requirement of a particular probability distribution. 

Though the groundwork for machine learning was laid much earlier (Rosenblatt 1958), two 

major milestone papers were published in 1995. Cortes and Vapnik (Cortes and Vapnik 1995) 

published their works which led to the Support Vector Machines (SVM) we know today, at the 

same time as Ho  (Ho 1995), which led to the Random Forest (RF) classifier (Breiman 2001). A 

decade later, these machine learning techniques were beginning to be widely implemented in 

remote sensing classification research, while they both had their peak between 2013 and 2018 

(Sheykhmousa et al. 2020). One reason for this popularity was that the increase in classification 

performance compared to statistical classifiers. Many studies specifically compared machine 

learning algorithms like RF and SVM with classical MLC (Mondal et al. 2012; Nitze, Schulthess, 

and Asche 2012), and in further review studies (Khatami, Mountrakis, and Stehman 2016; Yu et 

al. 2014) it was proven that this modern approach showed significant improvements compared 

to Maximum Likelihood. Another advantage of these models is that they do not rely on specific 

distributions of the predictors, which makes them much more flexible. However, they do require 

varying degrees of expert knowledge, mainly due to the introduction of hyperparameters. These 

hyperparameters can be considered as second order model parameters. The first order model 
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parameters are optimized in model training e.g., the distribution parameters in MLC or the 

coefficients in a linear model. Second order model parameters have to be selected by the expert 

building the model. Their influence on model performance, and therefore the effort that needs to 

be put into optimization varies greatly from model to model. This tunability is generally 

considered to be lowest in RF models, and highest in SVM models where the kernel function and 

coefficients have a large influence on model performance (Probst, Boulesteix, and Bischl 2019). 

Another factor is interpretability of modeling results, which means the degree of understanding 

a human can have about why a model made a decision in favor of a specific class. In simple 

machine learning models, like a decision tree, this can be very transparent as the boundaries for 

a given variable can be accessed directly. In more complex models, such as SVMs, this is not as 

straightforward, which is why they are also called “black box models”. The development of 

machine learning algorithms in the past has been strongly pointing towards high performance, 

low interpretability models, which require an increasing amount of expert knowledge to build 

and train (Sheykhmousa et al. 2020). 

Assuming that each pixel is independent from all other pixels is a direct violation of the first law 

of geography (Tobler 1970). Two major approaches have been pursued to deal with this problem 

and acknowledge the spatiality of remote sensing raster data. Firstly, we can use a pixel-based 

classifier to produce an a priori predicted class, and then update the classification based on the 

immediate context. An early example of this are probability relaxation concepts (cf. (Zenzo et al. 

1987)), where class probabilities were updated iteratively based on class compatibilities of the 

neighborhood. The second major approach is to split the classification into two parts. An image 

segmentation, and an object classifier. Early implementations of this are for example the 

Extraction and Classification of Homogenous Objects (ECHO) algorithm, which used an iterative 

cell merging approach to segment the image, and a maximum likelihood classifier to classify the 

resulting object. This approach eventually culminated in the Geographic Object-Based Image 

Analysis (GEOBIA) which rose in popularity around and after 2010 (Hossain and Chen 2019). 

While many approaches for the image segmentation part exist, the commercial solution 

eCognition is the most popular, and used in about half of all GEOBIA related publications (see 

(Blaschke 2010)). After the segmentation, features are extracted and non-spatial classification 

models are applied, like decision trees (Li et al. 2015) or SVMs (Peña et al. 2014). 

Convolutional Neural Networks (CNN) solve the problem of spatiality in a very direct way, by 

incorporating neighborhood information with kernel convolutions on nested spatial levels (Chen 

et al. 2018). They were originally developed by Yann Lecun in the Nineties (cf. (Lecun and Bengio 

1995), but it took over a decade until the computational capabilities were enough to develop the 

complex models with millions of parameters (e.g. (Krizhevsky, Sutskever, and Hinton 2012)) that 

are everywhere today (Ma et al. 2019). CNNs are only one of the many factors that enabled the 

sudden rise of popularity of neural networks at the end of the last decade. Techniques like 

perceptrons (Rosenblatt 1958) and backpropagation (Rumelhart, Hinton, and Williams 1986) 

were around for a long time, but it took until the availability of large scale labeled training 

datasets like ImageNet (Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and Li, K. and Fei-Fei 
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2009) coincided with the advancement of modern Graphics Processing Units (GPUs) in personal 

computers, for deep learning to get widely accepted as the toolset of the future. Today, many well 

established deep learning-based approaches exist, specifically in the case of agricultural 

monitoring and land use mapping. The most suitable deep learning approach for land use 

mapping is semantic segmentation, where each pixel of a given input image or extracted patch-

like array is assigned a class or label, which in this case could be a crop or land use type. Image 

segmentation is the most common approach in vegetation monitoring related remote sensing 

literature. The most popular algorithms have an encoding part of the model, which takes the input 

data and gradually transforms it with convolutional layers, and a decoding part, which takes the 

previous steps in the other direction and fuses them together to a fully connected output layer 

with the desired class probabilities for each pixel (Zhang, Tang, and Zhao 2021). Examples include 

SegNet (Badrinarayanan, Kendall, and Cipolla 2017) and U-Net (Ronneberger, Fischer, and Brox 

2015) which is widely used in the remote sensing community (see (Garg et al. 2019; Khan, Fraz, 

and Shahzad 2021)). The advantage here is that spatiality is considered in a very flexible way, due 

to the cascading nature of the encoders. Neighborhood is not only defined by a 3 by 3 kernel, but 

by an efficient learner who is looking for connections on many levels. 

A simple statistical model has usually 2 parameters per class, which are directly estimated on the 

empirical distributions. If there is a lot of overlap between the value distributions of two classes, 

e.g., pastures and wheat fields are both relatively green at the same time, there is not much that 

can be done about it, from the model building experts’ perspective. In machine learning the expert 

can chose different kernel functions, adjust hyperparameters to increase or decrease overfitting. 

In deep learning, an arbitrary amount of model architectures exists, because layers can be 

connected and nested freely. Additionally, each individual layer comes with hyperparameters like 

input shape, activation function and number of output kernel filters, on top of arbitrarily complex 

data augmentation techniques, that can extend a limited amount of training data. As a 

consequence, right now, the performance of deep learning models is mostly limited by the model 

building experts’ knowledge, rather than the capabilities of the models themselves. In theory, 

modelling agricultural growth and crop type is well within the capabilities of modern 

classification algorithms, and near-real-time satellite imagery is available globally for free. 

1.3 Current Trends in Remote Sensing Based Crop Classification 

While the previous section described the advancements of satellite based agricultural modeling 

in a broader historical sense, the following section aims to describe much more recent trends in 

detail. With this goal in mind, a large sample of recent case studies has been reviewed. For each 

year, starting from 2015, the first 20 google scholar results with the search query “crop type 

classification remote sensing” have been screened. From these 140 search results, 41 have been 

excluded because of various reasons. Most of these were not focused on satellite based remote 

sensing, or were review papers. The 99 articles that were left were systematically analyzed, with 

a focus on study area, input data and the classification algorithm. 

Most articles covered by this review focus on a single study area. China (20 articles), USA (15 

articles), Germany (10 articles) and Spain (8 articles) are the most popular study areas, while 
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with very few exceptions smaller subsets of these countries were analyzed. One such exception 

is a recent study by (Blickensdörfer et al. 2021), where crops in the entire country of Germany 

were classified in 2017, 2018 and 2019. While the exact footprints of the studies were not 

available in most cases, there still seemed to be a clear trend towards bigger areas in more recent 

years which is very plausible considering the increasing availability of datasets. Within this 

sampled subset of the literature body of the past 7 years, only 4 articles covered study areas 

including more than one country. Two connected studies (cf. (J. Inglada et al. 2015; Jordi Inglada 

et al. 2015)) have been conducted in 2015 and used simulated Sentinel-2 datasets to classify 

crops from 12 different test sites which were part of the Joint Experiment for Crop Assessment 

and Monitoring (JECAM) network (cf. (JECAM 2015)). Another study from 2019 (cf. (Defourny et 

al. 2019)) applied ESAs Sen2-Agri product, which aims to classify crops based on Sentinel-2 

operationally for entire countries, to Ukraine, Mali and South Africa. (Rustowicz et al. 2019) 

specifically focused on two countries in Sub-Saharan Africa with its agricultural structure 

focusing on smallholder farms. While the overall sizes of the study areas seemed to be increasing, 

there was no clear trend towards the development of regional transferability of models. 

 

Figure 1: Input data used in crop classification 

The remote sensing input data in the analyzed years is illustrative for the immense success of the 

Copernicus program (see Figure 1). Starting from 2018, the majority of crop classification studies 

use either optical Sentinel-2 or SAR Sentinel-1 imagery, often even both, and they almost 

completely replaced other sensors. This is largely due to the fact that data from these sensors is 

of high spectral, temporal and spatial resolution, as well as available around the globe for free 



Introduction 

13 
 

(see section 1.2.1.). The temporal aspect is especially important, since most of the studies in the 

sample use time series datasets, as a result of the dynamic nature of agricultural vegetation 

growth. This trend, which was already apparent in 2015 increased further in the last seven years, 

and in 2020 there was only a single article which did not use time series data. 

Considering the reference data, there is a clear regional gap. Studies conducted in China 

exclusively rely on field surveys to determine the standing crops. Studies conducted in Europe 

also do these kinds of surveys, but additionally use cadaster data in the form of LPIS (see 1.2.3). 

Studies conducted in the USA exclusively use CDL data, which has proven to be a very rich source 

in agricultural monitoring. It is particularly beneficial here, since it enables a long term temporal 

scope which would never be possible with manual ground truth acquisitions. As a consequence, 

these are the only long term studies in the sample, covering over a decade of agricultural 

development based on MODIS (cf. (Massey et al. 2017)) or Landsat data (cf. (Cai et al. 2018)). This 

shows the enormous potential of operationally available satellite imagery in conjunction with 

long term georeferenced labels, while at the same time highlighting the main limitation of studies 

where no institutional long-term records are public, which is the case in most countries.  

Another consequence of this is that the transferability of models is rarely analyzed. Since regional 

field surveys are expensive, and traveling would make them even more so, assessing the 

generalization requires usually a collaborative effort and is very rare, as seen in the JECAM 

studies. Generalization across multiple years is even more difficult, because it would require long 

term studies. Therefore, this is also rare, and the only case studies in the sample which test 

performance between years are studies where long term official records like CDL and LPIS exist 

(cf.  (Johnson and Mueller 2021)). 
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Figure 2: Classifiers used in published articles 

The development of classification algorithms in the analyzed sample of published articles 

illustrates the unbroken popularity of machine learning models in the current remote sensing 

community. Particularly Random Forests and Support Vector Machines are used in the majority 

of all publications, and very often even in this exact combination. While the role of statistical 

models, mostly consisting of the Maximum Likelihood Classifier, is certainly minor, they have not 

completely vanished and show a constant but low usage through the past 7 years. Deep learning 

models show a very sharp increase in usage in the past 5 years in particular, though there is a 

notable low number in the year 2021. Of these deep learning models, many variations and 

architectures are used, most notably CNNs and Recurrent Neural Networks, as well as 

combinations and variations of both. In comparison, the machine learning models consist mostly 

of SVMs and RFs. 

In addition to the classification algorithm, we checked if the models had any spatial component 

(see also section 1.2.4). From the 99 studies in our sample, 70 did not have a spatial component, 

and treated each pixel as an independent vector, mostly to feed into a machine learning classifier. 

Some studies enhanced the raw pixel values with parcel based extracted texture features (e.g. 

(Inglada et al. 2016)) or included neighborhood information with Conditional Random Fields (e.g. 

(Kenduiywo, Bargiel, and Soergel 2018)). The most popular approach to include spatial context 

was the CNN, which was used in a total of 15 studies, mainly in 2019 and 2020. 
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In summary, deep learning, while very popular in the past 5 years, has not yet taken hold in the 

remote sensing community, in the same way as machine learning models have. This is mostly 

evident since no particular architecture is proven to be superior, and there is still a lot of room to 

assess robustness and performance in comparison to more established algorithms. 

1.4 Thesis Objectives and Structure 

1.4.1 Thesis Objectives 

The premises of this thesis are the following three conclusions of the preceding sections: 

o Yearly monitoring of crop type with high spatial resolution is a crucial factor in global 

environmental protection as well as food security. 

o Yearly monitoring of crop type with high spatial resolution is reasonably achievable with 

currently freely available satellite imagery. There is a clear consensus that Sentinel-1 and 

-2 are capable of delivering adequate input data to classify crop types. 

o The algorithms which could achieve this are very capable but not mature enough. There 

is high research demand to explore details in: 

o The composition of reference data 

o The preprocessing of input data 

o The model type and architecture 

The following thesis describes an explorative approach to advance the state of the art of crop 

classification. Regional case studies are conducted, aiming to develop validated crop classification 

toolchains. Because of its unique role in the regional agricultural system and because of its 

specific phenologic characteristics we will focus solely on maize fields. The specific objectives and 

research questions are the following: 

1. Explore capabilities and practical limitations of optical remote sensing-based crop 

classification 

1.1. Can optical remote sensing data be used for operational crop classification? 

Though optical remote sensing data has been extensively used to classify land cover, it 

has some severe limitations in terms of temporal resolution. This could prove to be a 

crucial issue, since individual crops follow a specific phenological cycle which might be 

missed if the window for image acquisition is not met. This objective aims to verify this 

limitation by applying the classification to as many years as possible, and check if it is 

still possible to quantify crop extent. 

1.2. Can high resolution imagery be used to generate reference data? While high 

resolution imagery is often widely available, the feasibility of using it to replace in situ 

field surveys depends on other factors as well. The crop needs to be well distinguishable 

from other crops, and the imagery also needs to meet a consistent acquisition window. 

This objective aims to assess these practicalities in a specific regional setting. 

1.3. How can the problem of residual autocorrelation be addressed? While established 

machine learning classifiers are able to distinguish crop types based on pixel values, they 

are usually treating each observation as independent. Since pixels are spatially 
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dependent, a solution must be found to deal with the spatial dependency and 

autocorrelation.  

2. Explore regional applications of crop classification 

2.1. Can binary crop classification be used to link the expansion of biogas producing 

units to extended maize cultivation? In a setting where no official records are available 

to the researcher, remote sensing-based crop classification can be used if spatially 

explicit vegetation cover is needed. Keeping in mind the limitations in terms of 

availability, we explore the question whether biogas plants are a major driver behind the 

extension of maize cultivation in the region. 

2.2. Can binary crop classification in combination with existing soil data be used to 

identify spatially explicit soil hazard potential? While the first objective focusses on 

the usefulness of remote sensing-based crop classification data considering the 

limitations in terms of availability over a longer period of time, this objective highlights 

the usefulness with respect to the high spatial resolution. We establish an approach to 

estimate soil hazard potential in the form of erosion, which inherently requires high 

spatial resolution of the vegetation cover product as well as the 3D surface model.  

3. Explore spatial and temporal transferability of upcoming state of the art models 

3.1. Can operational SAR time series be used to classify maize? Optical remote sensing 

imagery will always be limited by acquisition gaps. If regional and temporal 

transferability of crop classification models is the ambition, SAR time series are one 

major way to get datasets in a consistent way across multiple years. Though there is some 

information loss in contrast to optical sensors, because SAR imagery has no information 

about canopy pigments, we analyse the hypothesis that the development of the SAR 

backscatter coefficient as a function of phenology is sufficient to distinguish maize pixels. 

3.2. Are state of the art convolution based neural networks superior to established 

pixel-based machine learning classifiers in terms of spatial and temporal 

generalization? The main objective is to assess the spatial and temporal generalization 

of classification algorithms. As such, a randomized framework is necessary that trains 

many models and measures performance in different regions and years. The resulting 

gap in classification performance will be used to assess and compare model 

transferability for a subset of machine learning and deep learning classifiers. 

1.4.2 Thesis Structure 

The presented objectives will be worked on in three different studies. The first two studies are 

connected by the same crop classification dataset, while the third study is about the exact same 

study region, but analyzes a different dataset. 

Chapter 2, Remote Sensing Based Binary Classification of Maize. Dealing with Residual 

Autocorrelation in Sparse Sample Situations deals with objective one. An optical remote sensing 

pipeline is established, and reference data to classify maize in the study region of Eifelkreis 

Bitburg-Prüm is generated. 
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Chapter 3, Implications of Bioenergy Cropping for Soil: Remote Sensing Identification of Silage 

Maize Cultivation and Risk Assessment Concerning Soil Erosion and Compaction deals with 

objective two. The datasets from the first study are used in a case study about the expansion of 

bioenergy in the study region, and the associated risks in the form of soil erosion and compaction. 

Chapter 4, Field Geometry and the Spatial and Temporal Generalization of Crop Classification 

Algorithms—A Randomized Approach to Compare Pixel Based and Convolution Based Methods 

deals with objective three. With better and more dense input imagery, crop labels based on 

statistical records, as well as new optimized image segmentation algorithms based on deep 

learning, the situation in the same study area is reassessed with a more ambitious modeling 

approach. The introduction of modeling scopes serves as a toolset to focus on model 

transferability, as a major milestone towards an operational and global crop classification 

framework. 

Chapter 5 will summarize the main findings of each of the three studies, as well as describe an 

outlook into potential future research scenarios. 
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2 Remote Sensing Based Binary Classification of Maize. 

Dealing with Residual Autocorrelation in Sparse Sample 

Situations 
 

Gilcher, M., Ruf, T., Emmerling, C., & Udelhoven, T. (2019). Remote sensing based binary 

classification of maize. Dealing with residual autocorrelation in sparse sample situations. Remote 

Sensing, 11(18), 1–18. 
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Abstract: In order to discuss potential sustainability issues of expanding silage maize cultivation in
Rhineland-Palatinate, spatially explicit monitoring is necessary. Publicly available statistical records
are often not a sufficient basis for extensive research, especially on soil health, where risk factors like
erosion and compaction depend on variables that are specific to every site, and hard to generalize
for larger administrative aggregates. The focus of this study is to apply established classification
algorithms to estimate maize abundance for each independent pixel, while at the same time
accounting for their spatial relationship. Therefore, two ways to incorporate spatial autocorrelation of
neighboring pixels are combined with three different classification models. The performance of each
of these modeling approaches is analyzed and discussed. Finally, one prediction approach is applied
to the imagery, and the overall predicted acreage is compared to publicly available data. We were
able to show that Support Vector Machine (SVM) classification and Random Forests (RF) were able to
distinguish maize pixels reliably, with kappa values well above 0.9 in most cases. The Generalized
Linear Model (GLM) performed substantially worse. Furthermore, Regression Kriging (RK) as an
approach to integrate spatial autocorrelation into the prediction model is not suitable in use cases
with millions of sparsely clustered training pixels. Gaussian Blur is able to improve predictions
slightly in these cases, but it is possible that this is only because it smoothes out impurities of the
reference data. The overall prediction with RF classification combined with Gaussian Blur performed
well, with out of bag error rates of 0.5% in 2009 and 1.3% in 2016. Despite the low error rates, there is
a discrepancy between the predicted acreage and the official records, which is 20% in 2009 and 27%
in 2016.

Keywords: crop classification; spatial autocorrelation; Regression Kriging

1. Introduction

1.1. Motivation

Expanded silage maize cultivation, as a direct consequence of Germany’s energy turnaround
and more precisely the governmentally guaranteed feed-in-tariffs [1,2], comes with several potentially
negative externalities. The high management intensity of silage maize and the elevated threat of
soils towards erosion, observed losses of agrobiodiversity as well as the trend towards monotonous
landscape structures are calling the sustainability of such cultivation systems into question [3].
Consequently, spatially explicit monitoring is necessary, which may facilitate a risk assessment towards
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erosion rates. Defining critical limits for soil erosion may help to make silage maize cultivation subject
to conditions of erosion protection methods to distinctly reduce the risk of soil loss or exclusion of
highly vulnerable sites. Moreover, such analysis may be used to support political decisions. Although
these kinds of datasets are tracked by administrative bodies on the state level, they are rarely available
to researchers. Thus, land-use classification approaches using optical remote sensing imagery could
allow for a more independent and conclusive research. While the paper by Ruf [4] focuses more on the
application and the implications of such an analysis, this paper addresses the major methodological
obstacles from this study, which are very specific for spatially explicit pixel based classification of
satellite imagery.

1.2. Monitoring Land Use Dynamics with Pixel Based Classification of Optical Remote Sensing Imagery

Land cover classification is one of the most popular applications for remote sensing scientists.
Yu et al. [5] analyzed the popularity of land cover classification algorithms, and assessed that the
majority of publications used the Maximum Likelihood (ML) classification, which is comparatively
simple and widely implemented in remote sensing software packages. At the same time, more
advanced classification algorithms like Support Vector Machines (SVM) and ensemble based methods
perform land cover classification considerably better. A meta study analyzing the performance of
supervised pixel-based classification algorithms specifically focusing on studies where performances
of algorithms were compared to compute a quantitative synthesis of 266 articles [6]. It specifically
identified SVMs, Neural Networks (NN) and Random Forest (RF) classifiers as superior to statistical
tools like ML classification. However, the median differences of Overall Accuracy (OA) between SVM,
NN and RF were all less than 2% or equal, which means that these rather modern machine-learning
algorithms performed comparably in most cases.

In contrast to a complete landcover classification of a certain region, in this study, only the
detection of maize fields was of importance. This means that only one class exists on a conceptual
level, and therefore only one type of training data. One approach to deal with this problem is to
adjust the classification algorithm. For instance, several adjusted versions exist of the SVM algorithm,
which was initially conceived as a binary classifier [7]. Another approach is to sample from the
unlabeled observations, to get two sets of training data, which are either positive or unlabeled, which
is why this approach is called PU learning [8]. The downside here is that the unlabeled observations
can contain a varying amount of positive pixels. Since the reference data are generated based on
orthophotos (see Section 2.3), the distinction of maize and other pixels can be made quite clearly;
therefore, two classes can be produced. One of these classes is very homogeneous (maize), the other is
very heterogeneous and can contain pixels like pastures which are very close to maize, and bare soil
which is very different from maize.

The intended pixel based classification of the multispectral imagery misspecifies the problem
insofar, as it treats each pixel independently. Every observation is a numeric vector, consisting
of a number of reflectance values from the satellite imagery, and a categorical dependent variable
that indicates the presence of maize at that particular location. The location itself, along with the
implications of proximity and neighborhood to other pixels, is not included. Since maize fields are on
average between 0.5 and 2 hectares, which is much larger than a single pixel, the presence of maize in
one pixel increases the probability of maize for all pixels in close proximity. This phenomenon is called
spatial autocorrelation [9].

There are many different angles from which this issue can be approached [10], beginning with the
sample selection [11] and sample refinement [12], via the classification algorithm itself [13] and ending
with adjustments made post-classification [14]. In spite of that, spatial relationships are still rarely
analyzed in remote sensing classification research. The aforementioned review papers on classification
of remote sensing imagery ([5,6]) do not cover the topic at all. Another recent review paper [15]
specifically on RF based classifiers only mentions the issue of spatially autocorrelated training data.
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Therefore, while many different ways exist to incorporate spatial relationships of pixels, their usage is
not widespread and most applications are still aspatial.

1.3. Objectives

This study aimed to establish a validated toolchain to prove the suitability of optical remote
sensing as a primary source to monitor the prevalence of maize in a given region, which
has potential sustainability implications for medium scale regions. For this purpose, well
understood and performant classification algorithms were employed in conjunction with two different
methods to incorporate pixel relationships with their immediate neighborhood. This includes the
following objectives:

1. Systematic assembly of reference data for the study area:
To produce uniformly distributed reference data, aerial images from 2009 and 2016 were used to
digitize maize and non-maize polygons for the entire study region. For both years, two kinds of
reference datasets have been produced. A sparse dataset, with a minimum of six polygons per
25 km2, covers the entire study area. Additionally, five dense datasets for 1.5 by 1.5 km subsets
were produced, where all fields were digitized manually.

2. The preprocessing of remote sensing imagery:
In the given years, two RapidEye scenes from late August were available. The tiles were
preprocessed, in order to get one multispectral observation for each pixel of the study area.

3. Small scale model evaluation:
The dense reference dataset for the five subsets was then used to analyze and optimize model
behavior on a small scale. Three classification techniques (Generalized Linear Model, Random
Forests, Support Vector Machines) were combined with two methods to account for spatial
autocorrelation (Simple Kriging, Gaussian Blur).

4. Medium scale model application for the entire dataset:
The optimized modeling approach was then trained with the sparse medium scale reference
dataset, and applied to the entire region. Performance was analyzed and results were aggregated
and visualized.

2. Materials and Methods

2.1. Study Area

The study was conducted in the “Eifelkreis Bitburg-Prüm” (in the following referred to as ‘study
area’), which is an administrative district in the southwest of Germany, bordering Luxembourg
and Belgium. It has a size of 1627 km2 and mostly consists of low mountain ranges, with a slow
gradient in elevation from roughly 300 masl. in the south up to around 700 masl. in the northern
part of the study area. Its population is sparsely distributed, and the rural landscape mostly consists
of a considerable share of forests, while 53.2% of the total area is used by agriculture (Statistisches
Landesamt Rheinland-Pfalz [16]).The agriculture of the region is mostly pastureland, with some cereals,
and a substantial increase in silage maize cultivation during the past 20 years. This increase coincides
with the progressive installation of biogas plants, starting with a first plant built in 2000, to 57 plants
with a total installed capacity of 19,152 kW in the year 2016 [17]. As a result, the study area now shows
the highest capacity of agricultural biogas producing units in Rhineland-Palatinate. The comparatively
homogeneous rural structure in conjunction with the clear regional shift in cultivation strategies as a
direct consequence of policymaking offers a unique opportunity to illustrate the capabilities of optical
remote sensing in detecting land cover changes.

2.2. Image Data

The selection of image datasets was constrained by requirements of resolution, availability,
phenology window, cloud coverage and time frame, since reference data was only available in 2009
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and 2016 (see Section 2.3). The spatial resolution has to be adequate, with many fields smaller than
a few hectares. The RapidEye Science Archive [18] offers a unique opportunity to researchers by
providing multispectral imagery for research projects. RapidEye is a constellation of five satellites in a
630 km sun-synchronous orbit, with a nadir Ground Sampling Distance of 6.5 m, which is orthorectified
to a pixel size of 5 m. The sensor has three bands in the visible range, one red edge band, as well as one
band in the near infrared range [19]. The revisit time of approximately six days increases the chances
to get imagery on cloud free days, while the general timing window of the phenologic cycle of maize is
met. Of all the crops used in the study area, maize reaches the peak vegetation cover the latest, around
the end of August. At that time, rape and cereals have typically been already harvested, and maize is
largely the only agricultural crop still standing [20]. This leaves a timing window of about four weeks
between mid-August until mid-September.

Within these constraints, two scenes in late August could be identified, in the years 2009 and 2016.
They were entirely cloud free, with only negligible amounts of missing pixels in the far northwest
in 2009. The imagery was provided as 25 by 25 km tiled Level 3A Geotiffs, which means they were
orthorectified and radiometrically corrected. These tiles were then atmospherically corrected based
on the 5S algorithm [21] with the software AtCPro (Version 6.0, Department of Remote Sensing and
Geoinformatics, Trier, Germany) [22,23], mosaicked and cropped. In the atmospheric correction
process, a digital elevation model (DEM) [24] was used to compensate for topographic effects. It was
also used in the prediction models, since elevation has a significant influence on local climate and
therefore phenology. After the atmospheric correction, the mosaic was masked in two steps. Firstly, this
was to only include pixels within the borders of the study area (Nomenclature of Territorial Units for
Statistics (NUTS)-3 Region Eifelkreis Bitburg Prüm). Secondly, this was to exclude roads, settlements
and forests, i.e., only contain pixels in agricultural use (agricultural areas acc. to the German land
appraisal, provided by the LGB-RLP).

2.3. Reference Data

Since the classification of around 87,000 hectares of agricultural land requires a large amount
of evenly distributed training data, a visual survey approach was chosen, based on Google Earth
aerial imagery (see Figure 1). The high resolution aerial images were used to identify maize fields,
which was feasible because of the unique texture of grown maize fields. Their shape was then roughly
digitized on top of the RapidEye images. At the same time, polygons were digitized with no maize
fields inside. To guarantee an even distribution of training fields across the study site, it was split in
subdivisions using a 9 by 12 grid, with each cell spanning 5 by 5 km. The main goal was to select a
small set of no less than three polygons for both maize and non-maize land cover types separately.
This was not always possible, especially since some cells around the fringes of the study area were
mostly covered by forests. In addition, some cells in the east and west of the scene in 2016 were left
empty because there was no high-resolution Google Earth imagery available for that date. Overall,
around 2500 polygons were digitized for both years combined, amounting to over 1000 hectares of
maize fields per year. This is a substantial percentage of the overall acreage, and should guarantee that
the selected pixels were representative for the entire study area. In the following sections, this dataset
is referred to as sparse medium scale reference.

To analyze spatial autocorrelation and use it to the classifiers’ advantage, smaller subsets have
been digitized independently from the grid based sparse reference dataset, but still based on the
high-resolution imagery. For each of both years, five 1.5 km by 1.5 km squares were subsetted.
They specifically included mostly pixels without settlements and very little roads, so that most pixels
were covered either by maize, bare soil or vegetation different from maize. These ten square subsets
were then digitized completely, aside from transitional pixels on the edges of fields and dirt roads. This
lead to dense datasets with a moderate amount of overall observations, which were used to monitor
spatial correlation effects especially for the model probability residuals. In the following sections, this
dataset is referred to as dense small scale reference.
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Figure 1. RapidEye coverage of the study area and manual digitization of reference data. The left
column shows the two RapidEye scenes. The middle column shows the high resolution aerial imagery,
and some digitized polygons. The green polygons are maize fields and the red polygons are a mixture
of mostly bare soil and green lands. The right column shows the distribution of digitized area for
each cell.

2.4. Modeling

2.4.1. Modeling Overview

The main goal of this study was to find ways to deal with spatial autocorrelation of residuals in
the context of independent pixel based predictions. To achieve this, the modeling process was split
up in two parts. The first part was the independent pixel based model, where a probability for a
given pixel to be maize was estimated based on the covariates for this particular pixel, disregarding all
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neighboring pixels. The second part took the spatial autocorrelation between neighboring pixels into
account, and adjusted the probabilities for a given pixel accordingly.

2.4.2. Spatial Autocorrelation

Every observation is a numeric vector, consisting of five reflectance values from the satellite
imagery, the altitude of the DEM, and a categorical dependent variable, which indicates the presence
of maize at that particular location. The location itself, along with the implications of proximity and
neighborhood to other pixels were not included. The Regression Kriging approach [25] allows for
using spatial autocorrelation to the advantage of the classification process. By splitting each modelling
problem into an independent pixel based modeling part (deterministic) and a spatial part (stochastic),
many different pixel based modeling approaches can be combined with the Simple Kriging (SK) of
their residuals, and therefore incorporate inherent spatial effects in an otherwise spatially independent
modelling approach. The most common way to describe the relationship of probabilities being
increasingly similar with proximity is the variogram. The empirical variogram describes the variance
between pairs of observations with a fixed distance [26]. Figure 2 shows five different variograms from
the small-scale digitized sites in 2016 (see Section 2.3). On all five sites, the variance increases steadily
for the first few hundred meters, and plateaus at a distance between 300 and 500 m.

Figure 2. Variograms of five different sites in 2016. The points show the empirical variance of data
points for the given distances. The bold lines show the fitted spherical models for each of the sites.
The horizontal lines indicate the sill of the model, while the vertical lines indicate the range.

2.5. Research Design

The research design (see Figure 3) consisted mainly of three parts. The first part included all
the preprocessing steps that were necessary to establish the datasets, to train, validate and apply the
model. The results were the raster files with the predictors, a small scale reference dataset with dense
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polygons for the five subsets (see Section 2.3), and a medium scale dataset with sparse polygons for
the entire study area, each of which were available for both years.

Figure 3. Research design. 1 : Preprocessing. The left side of the diagram shows the two major
preprocessing steps of atmospheric correction and manual digitization, based on the given datasets
shown in the black rectangles. 2: Modelbuilding. The prediction model and spatial treatment were
chosen with an extensive algorithm comparison based on the small scale reference data. The medium
scale dataset was used to evaluate itself by mapping prediction residuals and adjusting critical areas.
3: Application. The prediction model and the chosen spatial treatment was then applied to the final
medium scale dataset, and the results were aggregated based on municipalities.

The second part of the research design, was the actual modeling. It was split into two distinct parts:

1. Small scale model evaluation
2. Visual evaluation and optimization of the medium-scale grid based sparse digitization of maize

and non-maize polygons

In the first step, three different model types were compared, in combination with three (two + one
control classification with independent pixels) different approaches to deal with spatial autocorrelation.
The pixel based model types used were firstly the Generalized Linear Model (GLM) with binomial
error distribution, also called Logistic Regression. Since the monitoring of maize occurrence is a
binary classification problem, the GLM is a transparent and robust statistical approach that can then be
compared to the two state-of-the-art machine-learning techniques of SVM and RF (also sometimes
referred to as ranger, after the implementation algorithm in R). All three algorithms have the advantage
that they are able to output probabilities, which is important to apply the techniques to reduce residual
autocorrelation. Hyperparameters were not tuned at this stage because gridsearches would greatly
inflate the runtime. Therefore, standard hyperparameters were used, with a radial SVM kernel. The
classification probabilities predicted by these algorithms were then combined with three approaches of
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dealing with residual autocorrelation. The first approach was a control treatment, focusing on the extent
of the residual autocorrelation with just independent pixel based predictions. The second approach
was the Gaussian blurring, where the probability of each pixel is a weighted sum of surrounding pixel
based on a Gaussian kernel function. The third approach was Regression Kriging where the residuals
of initially predicted probabilities are interpolated with Simple Kriging. The three classification models
were chosen because they are popular, well understood and generally very performant, both in runtime
and in accuracy. The RK approach was chosen to test one demanding geostatistical model (RK) which
solves the problem of residual autocorrelation in an explicit way. It was compared to the very simple
and runtime-economical Gaussian blurring.

Since clustering of training samples is a problem in Regression Kriging [25], another layer was
added to the research design, as illustrated in Figure 4. The computation of these models, even in the
context of these smaller subsamples is very time-consuming, which means that training samples have
to be drawn randomly. For each individual run, 1000 sample pixels were drawn, 500 being maize, and
500 being not maize. The rest of the, on average, roughly 55,000, reference pixels were used to validate
that particular model run. In order to truly test the applicability of the Regression Kriging approach,
this clustering was simulated by randomly picking five polygons with and five polygons without
maize to draw the random sample of 1000 training pixels from. This resampling was done 50 times
for each combination of factors, which led to a total of 9000 model runs. For each run, performance
indicators were computed to assess model performance. Additionally, the variogram objects were
stored in order to visualize the spatial autocorrelation of residuals for each of the influencing factors.

Figure 4. Uniform versus clustered sampling.

The second step of the model building process was the visual evaluation and optimization
of the Medium-scale grid based sparse digitization of maize and non-maize polygons. Once the
suitability of pixel based models was established in step 1, these were used to map uncertainty by
visualizing probabilities that deviate substantially from 0 or 1. In cases where many of these pixels
were clustered together, mistakes in digitizing the polygons were likely, and each of these cases was
investigated closely.

Once a cleaned up reference dataset was finalized, a suitable model was applied to the predictor
raster datasets. Since the predicted pixels are not useful enough on their own, statistics were aggregated
on two levels. One single total area was computed for each year, in order to compare these predicted
values to official data [27]. This is another important step to validate the prediction beyond the
performances measured with the training data. Aside from performance measures purely based on the
training data like kappa, error rates, sensitivity and specificity, independent official records are used to
test model plausibility. In a last step, the maize area was aggregated spatially based on municipality
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polygons [28], and relative values were calculated by dividing the maize area by the total agricultural
area of each individual administrative unit.

3. Results

3.1. Small Scale Model Evaluation

Of the theoretical 9000 model computations, 8747 had meaningful outputs. This difference is
a result of the clustered resampling because, in some resampling cases, the variogram could not be
fit successfully, thus the Residual Kriging could not be performed. Figure 5 illustrates one random
example of these runs. On this particular transect, two problematic areas with high residuals were
identified. A closer look showed that these were small patches with less vegetation cover in the big
field in the middle, which showed spectral properties closer to soil or grass.

Figure 5. Example result of subset 2–2009–Random Forest (a) The high-resolution aerial image can be
seen in the background, with the reference polygons for maize (green) and non-maize (red) on top. The
blue line indicates the location of a transect, which is used to plot values in a 2D plot in (b). (b) The
transect plot shows reflectance values for all five bands. In this plot, maize can be easily identified by
looking at the peaks in the NIR band. (c) Probabilities of the random forest prediction are shown, with
the green values being close to 1, and the red values being close to zero. (d) This 2D transect plot shows
the probabilities and residuals along the transect.

All complete cases are summarized in Table 1, where the average kappa values for both years and
sampling approaches were aggregated by the model. The kappa value is used to assess classification
performance purely based on its popularity. Overall Accuracy was computed as well, with very similar
results. To analyze the algorithms further, especially their impact on residual autocorrelation, empirical
residual variograms were computed for all model residuals. A spherical model was then fitted to
all empirical variograms, and the parameters were aggregated based on model type and sampling
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approach for both years. While most of the fitted variograms showed no substantial nugget effect, the
partial sill can be used to describe the impact of proximity on residual probabilities (see Table 2).

Table 1. Average kappa of small scale model runs.

Approach Uniform—2009 Clustered—2009 Uniform—2016 Clustered—2016

glm 0.865 0.760 0.781 0.631
glm + blur 0.906 0.791 0.846 0.668
glm + sk 0.941 0.765 0.918 0.637

ranger 0.930 0.766 0.897 0.65
ranger + blur 0.958 0.784 0.937 0.668
ranger + sk 0.947 0.769 0.923 0.645

svm 0.931 0.769 0.893 0.678
svm + blur 0.949 0.784 0.925 0.694
svm + sk 0.964 0.779 0.949 0.666

average pure 0.909 0.765 0.857 0.653
average blur 0.938 0.786 0.902 0.677
average sk 0.951 0.771 0.930 0.650

average glm 0.904 0.772 0.848 0.645
average ranger 0.945 0.773 0.919 0.655

average svm 0.948 0.777 0.922 0.679

average total 0.932 0.774 0.896 0.660

Table 2. Averaged partial sills—fitted spherical variogram.

Approach Uniform—2009 Clustered—2009 Uniform—2016 Clustered—2016

glm 0.0290 0.0642 0.0433 0.0865
glm + blur 0.0276 0.0617 0.0387 0.0821
glm + sk 0.0088 0.0639 0.0124 0.0872

ranger 0.0152 0.0613 0.0168 0.0753
ranger + blur 0.0148 0.0599 0.0165 0.0724
ranger + sk 0.0092 0.0605 0.0100 0.0763

svm 0.0168 0.0673 0.0186 0.0787
svm + blur 0.0163 0.0657 0.0172 0.0754
svm + sk 0.0052 0.0660 0.0071 0.0824

The kappa value is ranging from −1 to 1, and is intended to describe the performance of the
prediction, with higher values indicating better performance. The partial sill, defined as the difference
between the minimum and maximum variance of the fitted semivariogram, is intended to measure the
residual autocorrelation of the prediction. It describes the difference in variability between two points
that are close, and two points that are far away. Since we aimed to minimize spatial autocorrelation,
lower values were preferred. As a first observation, all kappa values were reasonably high, ranging
from 0.631 to 0.964. Furthermore, all partial sills were reasonably low, ranging from 0.0052 to 0.0872,
which means that the difference in variance between points that are nearby and points that are far
away is never above 0.1. There was also a significant difference between the two years, with the
classification of the 2016 dataset having consistently lower kappa values and higher partial sills. RF
and SVM classification performed substantially better than the GLM.

3.2. Visual Evaluation and Optimization of the Medium-Scale Grid Based Sparse Digitization of Maize and
Non-Maize Polygons

The small scale model evaluation has shown that both SVM and RF classification were suitable to
perform the necessary binary classification of maize and non-maize pixels. Since the RF approach does
not rely on extensive hyperparameter tuning as much as the SVM, it is used in the further process.
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In the next step, classification was performed without the Gaussian Blur on the dataset, with all bands
and elevation as predictors of maize. Elevation was used as a proxy of the climatic conditions, which
change slightly from north to south (see Section 2.1). Afterwards, errors in the training polygons were
visualized as red pixels in a raster format, and as a circle in the center of each polygon with the size
indicating the number of error pixels in each polygon. The size of the circles was used to get a good
indicator of areas with critical error levels from the large scale view of the entire map, while the red
pixels can then be used to get a detailed view of the spatial distribution in each digitized polygon.
Once a problematic polygon is identified, the field ID can be used to track the polygon in the reference
datasets and make adjustments if necessary.

In the example of Figure 6, fields with the number 39, 565 and 36 appeared to be problematic.
The misclassifications in 39 and 36, maize pixels that are classified as non-maize, were vague in shape,
and upon closer look were just maize pixels which have some bare soil showing because of worse
growth conditions. These pixels were fine to be digitized that way because they were part of the
inherent heterogeneity of the crop. The errors in field 565, however, non-maize pixels that were
classified as maize, had a clear edge, which seemed to be part of a field to the north of the polygon.
Upon closer look, it was clear that these pixels were actually maize pixels, and that polygon 565 was
too large. With over 2500 digitized polygons, mistakes like this were quite common, but they could be
easily identified and corrected with this approach.

Figure 6. Digitization errors. The green and black polygons represent the digitized reference areas.
The red circles indicate the number of misclassifications for any given polygon, while red pixels
illustrate the location and spatial pattern of these misclassifications.

3.3. Pixel Based Mapping of Maize for the Entire Study Area

After the modeling approach was established, and the reference dataset was reevaluated, the
RF classification and Gaussian Blur was applied to the entire region. The RF hyperparameters of
mtry (number of variables used in a tree) and ntree (number of trees) were tested but had very little
influence on model performance. Roughly 35 million pixels were classified, amounting to a total of
87,406 hectares of agricultural area. The performances are reported below in Table 3. The error rates
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are Out-Of-Bag (OOB) meaning that these are the fractions of trees that were not trained with a given
pixel, and predicted it incorrectly. Error rates and Kappa values were consistently good, while the
classification in 2009 performed better than 2016, which was already a pattern in Section 3.1. Specificity
was approximately 1, which means that there are very little false positives. Sensitivity, on the other
hand, was quite a bit lower, which means that a lot of maize pixels went undetected. The total area of
all maize pixels was then compared to official records [27], which showed an underestimation of 20%
in 2009 and 27% in 2016. This discrepancy was substantially larger than the validation of the reference
data would suggest.

Table 3. Overall classification results.

Year Error Kappa Spec. Sens. Area (ha) Area (ha) Rel. Diff. Abs. Diff.
(OOB) Estimated Official (%) (ha)

2009 0.005 0.97 1 0.97 7305 9147 20 1842
2016 0.013 0.93 1 0.91 8447 11496 27 3049

In a final step, the prediction rasters were aggregated based on municipality polygons, and
relative percentages were calculated based on the ratio of maize area and agricultural area for any given
municipality. The final result (see Figure 7) was then mapped as the changes in relative percentages of
maize area for a given municipality. This way, specific key regions could be separated from most areas
with very little relative changes. Furthermore, a closer look at the prediction raster gave a detailed
picture of the development in certain regions—for instance, the red area south of Prüm, where relative
changes were larger than 20%, and many larger maize fields defined the landscape in 2016.

Figure 7. Changes in maize abundance. The six smaller images are true color RapidEye composites,
with predicted maize fields in green. The map of the study area shows differences in the percentage of
maize fields of the total agricultural area.
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4. Discussion

4.1. Small Scale Model Evaluation

Key finding 1: RF and SVM perform similarly well, and comparatively better than GLM.

Both SVM and RF classification performed substantially better than the GLM, with Kappa values
usually well above 0.9 in the case of uniform sampling distribution. This aligned well with the findings
of methodical classification reviews, as described in Section 1.2, which mostly pointed out the strength
of machine learning classifiers in comparison to statistical tools, which usually rely on assumptions
about the distributions of the covariates. RF and SVM do not rely on these kind of assumptions, and
are able to optimize nonlinear separation problems. While the maize class was mostly homogeneous
(see also Section 2.3), the non-maize class consisted of pixels as diverse as bare soil, which is very
dark in the infrared, and vegetation pixels like pastureland, which is quite bright in the infrared. This
leads to possible bimodal distributions for some of the covariates, which is not a problem for machine
learning algorithms.

The choice made towards RF classification done later in the study was mostly practical because
of the more complex hyperparameter tuning SVMs require. While RFs also have hyperparameters,
they are not as critical, optimizing them is rather a trade-off between performance and runtime, as
opposed to over and underfitting the training data. This is usually the case when optimizing the cost
parameter in Support Vector Classification. It is quite possible that a finely tuned SVM classification
might have led to better results, as would have other potentially more intricate machine learning
algorithms. The conclusion is not that RF classification is the best possible approach, but rather that it
is highly adequate—in particular, since it is questionable if a perfect classification is possible or even
desirable due to natural noise in the training data (see also Section 2.3).

Key finding 2: Regression Kriging increases performance and decreases spatial autocorrelation when samples
are uniformly distributed, but not when they are clustered.

The RK approach worked as intended when samples were uniformly distributed, and was able
to produce the highest kappa values, as well as very flat variogram models with the lowest overall
sills. When clustered sampling was simulated, Kappa values did not improve as much and were even
worse in comparison to the pure pixel based classifier. The same can be said for the estimated sills of
the variogram models, where little to no improvement could be measured. That observation in itself
was no surprise, since clustering of samples has been indicated as a problem by [14] as well.

Figure 8 shows why this is the case. Simple Kriging heavily alters the results in the direction
of high residuals that are nearby, and does almost nothing for uncertain pixels if there are no high
residuals around.

The results also showed that the classification performance was generally a lot worse in the
clustered case, meaning that residuals are much higher. This is because five polygons were chosen
in each run and each class, some of which were potentially very small or not representative for other
reasons. Therefore, while in the clustered and uniform case, the same number of training pixels
was drawn each run; the overall variability, especially of the maize training data, was potentially
distinctly lower.
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Figure 8. Transect of maize probabilities. In both plots, the solid blue lines indicate the predicted
probabilities along the same transect. Training pixels are visualized with the black dots, uniform on the
left, clustered on the right. The light blue line with the longer dashes shows the probabilities adjusted
with the Simple Kriging. The difference is very large near large residuals. When no residuals are
present, or when residuals are close to zero, Regression Kriging and glm probabilities are very similar.
Gaussian blur probabilities, indicated by the lines with shorter dashes, work independently.

Key finding 3: Gaussian Blur increases performance and decreases spatial autocorrelation when samples are
uniformly distributed and when they are clustered.

Clustered samples are not as problematic for the Gaussian Blur approach, since all neighboring
pixels influence the probability equally depending on their distance, and not on whether they contain
high residuals, or residuals at all. Only slight adjustments were made, as is shown in Figure 8.
This mostly improved the classification result by removing noise in the training data, and only slightly
decreased sills but for both clustered and uniform samples. It is likely that the decreased sills were a
result of overall lower residuals, and that the Gaussian Blur does not lower residual autocorrelation at
all in itself. The two issues of model performance and residual autocorrelation were hard to isolate,
since it was not possible to change one without the other.

4.2. Pixel Based Mapping of Maize for the Entire Study Area

Key finding 1: Classification of both years performs quite well, but 2009 is better than 2016.

Maize is generally easy to classify, since most agricultural areas in the region were either bare
soil, harvested cereal fields and pastures or still growing maize in late august. Difficulties arose when
drought stress severely influenced pigments and vegetation cover in maize. Analysis of red and near
infrared reflectances in both years, as shown in Figure 9, suggested that the training pixels of maize
in 2016 contained substantially more soil and less chlorophyll content, since it is spectrally more
heterogeneous. The figure also illustrates the distribution of false negatives and false positives of the
out of bag predictions. It shows that, in both years, false negatives and false positives look surprisingly
similar, with no real indication as to why model performance was worse in 2016.
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Figure 9. Spectral comparison of maize pixels 2009–2016.

This issue is ultimately impossible to deal with while using optical remote sensing alone, since it
relies on the pigments of vegetation cover. Even if algorithms were applied to the satellite imagery to
detect inhomogeneities in the spectra, excluding them would exclude a potentially large amount of
total maize area in dry areas.

Key finding 2: Disparity in estimated area and statistical records is substantially larger than validated modeled
performances suggest.

In Section 3.3, the estimated maize abundances were validated in two ways by comparing them to
the reference, and by comparing them to the statistical record. Since the difference between estimation
and reference was by far smaller than the difference between the estimation and the statistical record,
there must be additional inconsistencies to consider. The disparity between the estimation necessarily
consisted of two parts, error of the classification and error of the statistical data. The potential sources
for errors in the classification were discussed above. The exact methodology of statistical records
is unknown, but relies on farmers self-reporting their cultivation types based on the polygons of
their fields. However, as mentioned in Section 2.3, some fields were missing a substantial amount of
vegetation cover due to drought and other crop failures, so there naturally was a difference between
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area with active maize vegetation cover versus area declared as maize by the farmer. This difference is
very hard to determine, since the statistical record is not transparent and the data that it’s based on is
unavailable to researchers and the public. However, based on what is known about the quality of our
estimation, it is likely that that the classification was closer to the truth than the statistical record.

5. Conclusions and Outlook

This study has shown that optical remote sensing is an adequate tool to monitor maize abundance
in a spatially explicit way. Reference data could be generated reliably and efficiently by digitizing digital
orthophotos. Optical remote sensing imagery could then be used to predict maize fields for any given
pixel. To take the spatial relationships of all these pixels into account, we used two different approaches
to incorporate spatial autocorrelation into our model. Regression Kriging, while very capable in theory,
is not as beneficial when reference data are highly clustered. It is also technically not feasible when the
sample count is very high, since it scales cubically. Gaussian Blur can help with residual noise, and
scales only linearly, but is ultimately no systematic solution to the problem of residual autocorrelation.
While we were not able to present a perfect way to deal with residual autocorrelation, we still
underlined the importance of thorough residual analysis, since spatial classification has reliability
indicators beyond overall accuracy measures or kappa values. The performance of machine learning
classifiers on independent observations is well understood, but how to incorporate spatial relationships
is still up for discussion. Combining pixels to objects and treating them as discrete entities might
be a direct solution to the problem, known as Object Based Classification. It relies on segmentation
techniques and high spatial resolution since homogeneous pixels are grouped together and treated
as objects, while their aggregated attributes are then used with traditional classifiers like SVMs and
Neural Networks [29]. Alternatively, computer vision approaches like Convolutional Neural Networks
can be used to detect objects in remote sensing imagery, by computing additional kernel based feature
layers [30].

The main technical limitation of this approach was the reliance on the reflectance of sunlight
on leaf pigments. Firstly, this means there is simply no data when clouds cover the area of interests,
which severely limits the availability of imagery, and makes it impossible to produce a time series
for larger areas. Secondly, this makes it hard to include mostly brown or yellow canopies that are
under severe drought stress. One way to deal with this is to use active microwave remote sensing with
the combination of synthetic aperture radar (SAR) with optical remote sensing techniques. Due to
the wavelength ranges of SAR sensors, they are mostly unaffected by clouds and other atmospheric
attributes that are problematic for optical remote sensing. This enables the composition of gapless time
series, not only from year to year, but with many observation points within one year [31].
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Abstract: Energy transition strategies in Germany have led to an expansion of energy crop cultivation
in landscape, with silage maize as most valuable feedstock. The changes in the traditional cropping
systems, with increasing shares of maize, raised concerns about the sustainability of agricultural
feedstock production regarding threats to soil health. However, spatially explicit data about silage
maize cultivation are missing; thus, implications for soil cannot be estimated in a precise way.
With this study, we firstly aimed to track the fields cultivated with maize based on remote sensing
data. Secondly, available soil data were target-specifically processed to determine the site-specific
vulnerability of the soils for erosion and compaction. The generated, spatially-explicit data served
as basis for a differentiated analysis of the development of the agricultural biogas sector, associated
maize cultivation and its implications for soil health. In the study area, located in a low mountain
range region in Western Germany, the number and capacity of biogas producing units increased by
25 installations and 10,163 kW from 2009 to 2016. The remote sensing-based classification approach
showed that the maize cultivation area was expanded by 16% from 7305 to 8447 hectares. Thus,
maize cultivation accounted for about 20% of the arable land use; however, with distinct local
differences. Significant shares of about 30% of the maize cultivation was done on fields that show
at least high potentials for soil erosion exceeding 25 t soil ha−1 a−1. Furthermore, about 10% of the
maize cultivation was done on fields that pedogenetically show an elevated risk for soil compaction.
In order to reach more sustainable cultivation systems of feedstock for anaerobic digestion, changes in
cultivated crops and management strategies are urgently required, particularly against first signs of
climate change. The presented approach can regionally be modified in order to develop site-adapted,
sustainable bioenergy cropping systems.

Keywords: biomethantion; biogas; environmental impact; land use; risk assessment; soil manage-
ment strategy

1. Introduction

The cultivation of energy crops on arable land aiming to substitute fossil fuels has
significantly increased during the past decade [1]. In the course of Germany’s energy
transition strategy, numerous farmers have taken the opportunity to integrate agricultural
energy production as a second mainstay with long-term governmentally guaranteed feed-
in-tariffs [2,3].

Since silage maize was identified to be the most economically important crop for
anaerobic digestion under temperate conditions, the cultivation area for energy crops
has been significantly expanded; in Germany for example, from 200,000 to more than
900,000 hectares (ha) in the last decade [4–8]. However, introducing energy crops as
a substrate for anaerobic digestion has implied changes in the traditional, cereal, and
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grassland dominated agricultural system. As a consequence, the share of silage maize in
crop rotations has increased and it is being cultivated on arable land, which has formerly
never been used for the growing of row crops.

In the course of rising awareness about negative externalities associated with energy
crop cultivation, the sustainability of silage maize cultivation has become a lively debate.
Aspects, such as depletion of soil organic matter, which would certainly counteract the
carbon dioxide saving targets, loss of agrobiodiversity, and the increased vulnerability of
maize stands to soil erosion and compaction, are currently discussed, mainly based on
statistical data about expanded silage maize cultivation [9–12]. However, using statistical
data referring to large-scale areas like national territories or federal states to describe
changes in the agricultural system and to evaluate consequences for the environment is
hardly helpful and largely ignores contributing factors governed by site-specific conditions.
For example, the erosion potential depends on the cultivated crop and specific management
operations like tillage intensity but also on the terrain inclination, texture-governed soil
erodibility, slope length, and erosivity of rainfall. Thus, a fact-based debate about hazards
and implications of silage maize cultivation necessarily requires spatially-explicit data of
the cultivated areas and additional information, including soil and climatic data, as well as
structural parameters of the landscape and the agroecosystem. Simultaneously, such an
approach requires to be conducted on a scale that allows matching spatially heterogeneity
of environmental factors.

The present study aimed to reach conclusions on the implications of expanded silage
maize cultivation for soil threats, particularly erosion and compaction in a low mountainous
agricultural region. However, spatially-explicit census data were not available. Thus, firstly,
a model application for detecting maize cultivation using RapidEye satellite images (Planet
Labs Inc., San Francisco, CA, USA) was established for the years 2009 and 2016. We
hypothesized that the established remote sensing-based classification approach allows
tracking changes in the maize cultivation area with progressing expansion of agricultural
biogas producing units (BPU). Therefore, additional data sources like statistical data and
registers about BPUs were systematically screened. Secondly, a target-specific analysis
of existing soil data was conducted to (i) identify pedotopes that are susceptible for soil
compaction during harvest of silage maize in late autumn and (ii) to model the susceptibility
of the soils for erosion by water (hereinafter referred to as ‘erosion’). In order to achieve
the overarching goal of this study, the results of the maize classification and the evaluation
of the hazard potential caused by maize cultivation on the soil resource were combined.
We hypothesized that the increased demand of feedstocks for anaerobic digestion led to
pressure on soil resources and an expansion of the maize cultivation on sites that appear
not suitable in a sustainable manner.

2. Materials and Methods
2.1. Characterization of the Study Area

The study was conducted in the administrative district ‘Eifelkreis Bitburg-Prüm’
(in the following referred to as ‘study area’), which is located in the Federal State of
Rhineland-Palatinate in the southwestern part of Germany. The rural nature of the study
area is underlined by a population density of 59.8 inhabitants km−2 and the dominance of
agricultural land use, which accounts for 53.2% of the total area [13]. The study area was
selected because statistical data indicate an intense development of the biogas sector from
two BPUs in the year 2000 to 62 BPUs in the year 2016; associated with a distinct increase
in silage maize cultivation (Figure 1) [14–16].
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Figure 1. Development of the land-use (cereals excluding silage maize) and of the agricultural
structure in the study region during the last decades based on census data [14,15].

The study area has a size of 1626 km2 and spans an inclined plateau; the elevation
climbs from 300 to 550 m a.s.l. in a south–north direction and peaks in the northern parts
with hills of nearly 700 m a.s.l. The plateau is pervaded by numerous deep valley incisions
with the main flow direction to the south. This pattern leads to a wavy, tightly structured
landscape [17,18].

As a result of the elevation profile, the climatic conditions in the study area show
a large latitudinal gradient (see Supplementary Material Table S1). Its southernmost
parts are influenced by the viticultural climate of the Moselle valley with mild winters
(mean annual temperature (MAT): 9.0 ◦C; mean annual precipitation (MAP): 861 mm a−1),
whereas the northern part shows a harsh low mountain range climate with distinctly
lower MAT, as well as cold and long-lasting, precipitation-rich winters (MAT: 7.0 ◦C;
MAP: 1250 mm a−1) [19]. This general pattern is disrupted by the deep valleys which are
characterized by considerably milder winters and warmer summers.

In the northern part of the study area, Devonian rocks are dominating whereas in the
southern part, a small-scale co-existence of Triassic and Jurassic rocks can be found which
are moreover partially overlaid by varying amounts of Quaternary sediments (loess) [20].
From these parent materials, in the northern part of the study area, silty to clayey Regosols
and Cambisols developed. Soils that developed from Lower Triassic sediment rocks in the
central and eastern part of the study area can be classified as sandy and clayey Regosols and
Cambisols with alternating levels of loess. The small scale variability of parent materials in
the southern part results in a mosaic of soils; the textures are mainly silt-loam, occasionally
sandy and clayey. A wide range of soil types are present: Regosols, Cambisols, Stagnosols,
Luvisols, and Vertisols whereby the both last mentioned soil types frequently tend to show
signs of stagnant water [20–22].

Due to the gradient in climatic conditions and soils, the agricultural land in the
northern part of the study area was traditionally dominated by grassland use whereas the
more southern parts were characterized by cereal-based crop cultivation. Grain maize is
not cultivated in the study area.

2.2. Remote Sensing Based Classification of Maize Fields

Farmers themselves, as well as governmental bodies, generally track crop types for
cultivated areas very thoroughly. This kind of data is, unfortunately, rarely available
to the public, nor to researchers, mostly because of privacy issues. Surveying the crop
types manually by going out to the field or by asking farmers to access their records
leads to a sparse or heavily spatially biased set of reference data. In order to have spatial
explicit data about silage maize cultivation at hand, a remote sensing-based classification
was conducted.
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2.2.1. Selection and Pre-Processing of Remote Sensing Data

The classification approach was designed for a binary classification of maize and
non-maize cultivation. The availability of suitable, gap-free coverages of the entire study
area was of vital importance. The acquisition window was limited by the phenologic
cycle of maize, which reaches the peak vegetation cover around the end of August. Using
earlier imagery would result in emerging maize fields that show large soil fractions, while
after August, there is the potential of early harvests. The third major constraint was the
availability of high-resolution aerial photos on GoogleEarth, since these were used to
produce reference data. After reviewing all available products, two RapidEye scenes in
2009 and 2016 met all three requirements. These two scenes were then atmospherically
corrected based on the 5S algorithm [23] using the software AtCPro [24,25] and mosaicked
together to one single image per year. A flowchart showing the steps of data processing
and modeling is presented as Supplementary Material Figure S1.

2.2.2. Preparation of Reference Data

Since the classification of around 87,000 hectares of agricultural land requires a large
amount of uniformly distributed training data, a visual survey approach was pursued.
Based on GoogleEarth aerial imagery, it was trivial to distinguish maize fields from other
agricultural crops, mostly cereals, and grassland. This is because maize is a high-growing
row crop and has thus a very apparent texture which facilitates visual object recognition.

To guarantee an even distribution of training fields across the study area, it was split
in subdivisions with 9 by 12 grids, with each cell spanning 5 by 5 km (Figure 2). The main
goal was to select a representative set of training fields with at least three polygons, each
with and without maize in every grid. Overall 2566 polygons were digitized for both years
combined, amounting to almost 2000 hectares of maize fields per year. This represents
about 20% of the overall acreage; the grid-cell approach in selecting training field should
guarantee that the selected pixels are representative for the entire study area.

2.2.3. Pixel-Based Classification of Imagery

The classifications of all, roughly, 35,000,000 RapidEye pixels was done individually
for both years using the random forest implementation of the ranger package in R pro-
gramming language version 3.3.2 [26,27]. The random forest approach is a classifier that is
based on the votes of randomly generated decision trees [28]. This particular approach was
chosen because it scales well with a high number of features, as well as observations [27].
Furthermore, it is widely used for pixel-based land cover classification, because of its high
accuracy and insensitivity to overfitting [29]. The classifications of both years trained with
relatively high out-of-bag Cohens kappa values (index derived from expected agreement
by chance, and observed agreement of classification with ground truth), but the classifier
showed a slightly weaker performance in 2016 (Table 1). The high sensitivity values (true
positive rate: quotient of pixels correctly classified as maize and pixels that are truly maize)
mean that essentially all digitized maize fields where identified. The comparatively low
specificity (true negative rate: quotient of pixels correctly classified as nonmaize and pixels
that are truly nonmaize) indicates that there were a lot of false positives, meaning pixels
that were classified as maize, but digitized as non-maize. After the classification with
ranger, the probabilities where smoothed with a Gaussian kernel (see also Supplementary
Material Figure S1). In a nutshell, the Gaussian kernel is a probability function. In the pro-
cess of classifying a certain pixel, it takes into account the classification of the surrounding
pixels in order to reduces the amount of noise in the prediction.
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Table 1. Summary of parameters specifying the efficiency of the selected approach for classification
of maize fields.

Year Sensitivity Specificity Kappa

2009 >0.99 ~0.97 ~0.97
2016 >0.99 ~0.91 ~0.93

2.3. Agricultural Biogas Producing Units

As defined in our hypotheses, we assumed that agricultural biogas plants are the
main drivers for expanded silage maize cultivation. To be able to relate silage maize
cultivation and feedstock demands, the locations of all agricultural BPUs, as well as their
installed capacities in the course of time, were compiled based on (i) administrative data,
(ii) ‘grey’ directories, and (iii) surveys of plant operators from third parties for internal use
(references cannot be stated due to confidentiality agreement) due to the fact that no dataset
was complete and up-to date, and contradictory data existed. The installed capacities of
combined heat and power units located at remote places to supply local demands were
ascribed to the digestion units since the demand for substrates is given there.
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2.4. Determining of Pedotopes Susceptible for Compaction during Maize Harvesting

Soils that are particularly susceptible for soil compaction, with respect to maize
harvesting operations in late autumn typically belong to the classes of Stagnosols and
Planosols. These soils show horizons with very low permeability for water in the subsoil
(‘Sd’ or ‘Bg’ horizon, acc. to [30] and [31], respectively) and tend to show waterlogging
resulting from abundant autumn precipitation and low evaporation rates. Thus, in the
period of silage maize harvesting, i.e., in late autumn, Stagnosols and Planosols frequently
show high soil water contents resulting in low mechanical carrying capacities. These
circumstances commonly result in serious soil compaction and structural damages caused
by the heavy equipment used for silage maize harvesting.

For the purpose of this study, we performed a risk assessment for the soils concerning
their vulnerability for soil compaction. Classification of soil types was based on the site
specific sequence of soil horizons recorded in the framework of German land appraisal,
which still represents the data basis for soils with the highest resolution and coverage
(national law on farm land appraisal: [32]). The size of soil units in this framework is
about one hectare. The sequence of the soil horizons was compared to a self-developed,
predefined classification key using RStudio programming language version 3.3.2 [26]. In
case that the sequence of soil horizons was in compliance with the key, a soil type was
classified. Sequences of soil horizons that were not listed in the key were, as far as they
were interpretable and meaningful, manually added to the key in iterative steps (flowchart
of the classification presented as Supplementary Material Figure S2). However, data were
only available for 55.3% of the agricultural area and for 36.3% the data basis was sufficient
for soil type classification. For further analysis, soil types were grouped according to their
specific vulnerability for soil compaction during harvesting operations of silage maize in
late autumn as shown in Table 2.

Table 2. Classification of soil types regarding their susceptibility for soil compaction during harvest-
ing operations of silage maize.

Susceptibility for Soil
Compaction Soil Types

High Stagnosols, Planosols

Medium

• Transition soil types that show stagnic or gleyic properties but
are not assigned to the class of Stagnosols or Planosols such as
e.g., stagnic Cambisols, stagnic Fluvisol or stagnic Anthrosols.

• Soils that are influenced by groundwater like Gleysols

Low All other soil types

2.5. Determining of Site-Specific Susceptibility for Soil Erosion by Water

Natural proneness of the agricultural sites for soil erosion (Enat) was modeled on
pixel basis (grid resolution: 5 m × 5 m) according to [33], using a simplified version of the
universal soil loss equation (USLE) [34]. Modeling was done using ESRIs ArcMap 10.5.
Input variables were:

• Slope factor (S): Slopes were calculated based on a digital elevation model with a
resolution of 5 m (DEM5) provided by the [17]. The slope allowed calculating the
slope factor using equation 7 given in [33].

• Soil erodibility factor (K): Derived from the soil texture of the topsoil determined in
the framework of the German land appraisal. Textures were then assigned to K factors
and corrected by soil skeleton and organic carbon contents using Equations (3)–(6),
given in [33]. Values of the K factor for the study area with a raster resolution of 5 m by
5 m were provided by the State Office for Geology and Mining Rhineland Palatinate.

• Rainfall and runoff factor (R): R factors were calculated using the following regression
equation: R = 0.0788 * mean annual precipitation (in mm) * −2.82 which was valid
for the Federal Republic of Germany. Values of the R factor for the study area with a
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raster resolution of 1 km by 1 km were provided by the State Office for Geology and
Mining Rhineland Palatinate.

S, K, and R factors were multiplied for each raster cell. Enat values were classified
using the scheme presented in Table 3. Compared to the [33], the classes of erosion potential
were considerably enlarged in order to take into account the fact that the study region is
located in a low mountain region (consider also Figure 7).

Table 3. Assignment of calculated soil losses (Enat) to classes of erosion potential.

Soil Erosion Potential Soil Loss acc. to Enat
t ha−1 a−1

Very low <5
Low 5–10

Medium 10–25
High 25–50

Very high >50

2.6. Data Analysis and Mapping

The analysis of data was done using RStudio programming language version 3.3.2 [26]
and ArcMap 10.5 (ESRI Inc.). Maps were created using ArcMap 10.2.

3. Results and Discussions
3.1. Maize Classification

The classification approach to detect silage maize cropping sites has estimated a
cultivation area of 7305 ha in 2009 and 8447 ha in 2016. In contrast to that, the official
statistical records state values of 9147 ha and 11,496 ha in 2009 and 2016, respectively [15].
This means that the classifier underestimated the total maize cultivation area by roughly
2000 (2009) and 3000 ha (2016) compared to the official statistics (Table 4).

Table 4. Results of the silage maize classification approach using remote-sensing data compared to statistical data.

Year

Remote-Sensing
Based Approach Statistical Data Difference between stat. Data and Remote-Sensing

Based Approach

ha ha ha %

2009 7305 9147 −1842 −20.1
2016 8447 11496 −3049 −26.5

The substantial ‘underestimation’ of the classifier compared to the statistical data can
be traced back to different methodological approaches. Whereas statistical data are field
based, the remote-sensing classification approach provides pixel-based results. Thus, areas
in the maize fields exhibiting spots of bare soil due to late sowing dates, erosion processes,
damages by wild boars, and weak field emergence were (correctly) not classified as maize
but were included in the official statistics as maize (Figure 3).

Moreover, due to the south to north gradient in vegetative development (see Supple-
mentary Material Table S1), there is a quite short time slot suitable for classification based
on optical satellite images. This weakness of the chosen approach could be overcome by us-
ing radar data, which makes image recording independent from cloud coverage. Moreover,
a complete time series of maize cultivation sites would also allow answering the questions
of mono-cultural growth of silage maize. However, for the years of this investigation, no
suitable data, such as nowadays, e.g., provided by the Sentinel 2 platforms, were available.
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Figure 3. Visual clarification of different approaches of maize classification. Data included in the
official statistics include the whole area of the maize field as shown by the dashed lines including large
spots of bare soil as visible in the aerial photo. In contrast, the remote sensing-based classification
approach only classifies pixel as ‘maize’ that are in fact maize-covered as shown by the prediction in
green colour in the RapidEye composite.

3.2. Extent and Changes in Silage Maize Cultivation in the Study Area

In 2009 and 2016, 8.4 and 9.7% of the agricultural area were covered with maize,
respectively. By the fact that more than 50% of the agricultural area was grassland and
the size of arable land was increased from 36,610 ha to 42,439 ha in the same period
(Figure 1), the share of silage maize on arable land amounted to about 20% in both years.
However, large regional differences were observed (Figure 4). In 14 (2009) and 15 (2016)
municipalities, silage maize was not cultivated. In the municipality with the highest
share of silage maize, the cultivation area accounted for 29.9 (2009) and 34.2% (2016) of
the agricultural area. Unfortunately, the share of arable land on the agricultural area is
currently not available at municipal level, resulting in an inaccuracy in describing the
relative proportion of silage maize cultivation in landscape.
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land use based on the municipalities of the study area. Moreover, the location and size of the biogas producing units (BPU)
is presented.
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The changes in silage maize cultivation at municipal level apparently correlate with
newly constructed or increased installed capacity of existing BPUs. Although, silage
maize cultivated as feedstock for BPUs cannot be gathered separately from silage maize
cultivated as fodder for ruminant production, there is evidence that the demands of BPUs
are the drivers for expanded cultivation. The cattle stock in the study area steadily declines
for around three decades (Figure 1). Moreover, regardless the final uses of the silage
maize, the effects on soils are similar as there is no difference in the cultivation system.
Figure 5 also implies that the feedstock sources for a certain BPU overlapped the borders
of municipalities. Hot spots of increased silage maize cultivation and BPU capacity from
2009 to 2016 were detected in municipalities in the north-western part of the study region.
These municipalities also showed the highest shares of silage maize on agricultural soil use
in 2016 (Figure 4).
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3.3. Maize Cultivation on Pedotopes Susceptible for Soil Compaction

Overall, 36.3% or 31,706 ha of the total agricultural area could be classified according to
their susceptibility for soil compaction (Figure 6). Under the assumption that available data
are representative for the whole study area, this would mean that 90.7, 7.0, and 2.3% show a
low, medium, and high vulnerability for soil compaction, respectively (Table 5). Although
the approach for classification of soils that are particularly vulnerable for compaction was
suitable for an unbiased derivation of soil types from sequences of soil horizons given
in the data of Germanys’ land appraisal, the final results were not satisfying at all. The
dataset was incomplete, since numerous soil profile descriptions were not available in
a digital form or do not exist (M. Goldschmitt, Landesamt für Geologie und Bergbau
Rheinland-Pfalz, personal communication, 02.07.2015). Moreover, lots of site descriptions
showed apparent mistakes; thus, a classification was also not possible for these sites.
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Figure 6. Representation of the susceptibility of the agricultural sites for soil compaction during
harvesting action of silage maize. ‘Classification not possible’ refers to sites for which the soil profile
descriptions showed apparent mistakes. When soil profile descriptions were not existing or not
available in digital form, they were categorized as ‘No data available’. Areas shown in white colour
are non-agricultural sites.

Table 5. Parameters specifying the quality of the data basis for the soil type classification approach. Assignment of the
agricultural area as well as maize cultivation in 2009 and 2016 to the classified susceptibility for soil compaction.

Agricultural Area Maize
2009

Maize
2016

ha % ha % ha %

Total 87,422 100 7305 100 8447 100

Classifiable 31,706 36.3 2867 39.2 3249 38.5

Vulnerability for soil compaction
Low 28,758 90.7 2567 89.5 2997 92.2

Medium 2226 7.0 252 8.8 195 6.0
High 722 2.3 48 1.7 57 1.8

Based on the authors’ knowledge about soil type distribution in the study area, it
appears that the soil profile descriptions from German land appraisal poorly represent the
spatial heterogeneity of soil types. This becomes evident from large areas characterized
as a single soil type and may result from the fact that the soil units in the framework of
the German land appraisal should have a size of about one hectare (M. Beck, valuator of
land appraisal in the Federal District of St. Wendel, personal communication, 18.10.2018).
Likely, this particularly leads to an underestimation of Stagnosols, which show a patchy,
small-scale distribution in low-mountain regions, particularly in dips, on planes, and
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at foots of slopes [35,36], which may not be well represented in the soil valuation units.
Thirdly, the borders of the local authorities (thick lines in Figure 6) also mark breaking lines.
It may be hypothesized that this indicates different pedological knowledge of the land
valuators. Generally, valuators of land appraisal in Germany are no experts in soil science
and may thus overlook redoximorphous features indicating stagnant water in soils [32].

In contrast to other approaches that coupled soil physical and hydrological models to
derive information about the trafficability of soils in the course of time [37], the approach
used in this study used a single information base aiming to conclude for the potential
susceptibility for compaction based on specific soil types associated with harvesting op-
erations of silage maize. Thus, the amount of input data necessary to conclude for soil
types is much lower compared for example to the approach of [38], who used pedotransfer
functions and data about bulk density and the pre-compression stress in order to estimate
the soil compaction hazard. Furthermore, sophisticated modeling approaches of the soils’
carrying capacity at specific points of time were not meaningful in this case because of
(i) the insufficient data basis, (ii) the large size of study area, and (ii) the impossibility to
validate the modelled data. Moreover, such approaches would add a temporal dimension
to the data analysis as soil water contents show a high temporal dynamics.

However, similar to the concept perused in this study, also the more sophisticated
approach of [38] does not allow deriving time-resolved maps of the risk for soil compaction.

As a result of the fragmentary data basis (Section 3.3, Figure 6), less than 40 %, or
2867 (2009) and 3249 ha (2016), of silage maize cultivation could be overlapped with the
map of soil compaction risk (Table 5). Thereof, 8.8 (2009) and 6.0% (2016) were cultivated
on soils with a medium risk for compaction and slightly less than 2.0 % in both years on
soils showing a high risk for compaction. Extrapolated to the whole study area, this would
mean that approximately 500 to 600 ha of silage maize cultivation was done on soils that
show a medium risk for soil compaction during silage maize harvesting. Another 150 to
160 ha of silage maize was grown on sites that are highly susceptible for compaction; both
assuming that the available data are representative for the whole study area.

Due to the above mentioned deficiencies in raw data, these values should be regarded
as a rough estimate. Furthermore, by extrapolating to the whole study area, the spatial
explicit character of the study approach gets lost. Nonetheless, the presented example
impressively shows the difficulties in conducting rather simple risk evaluations due to lim-
itations in suitable and available input data. Although comprehensive soil maps exist, they
were also finally based on the same basis of data and regionalized by geostatistical methods.
Thus, subject to these conditions, more complex and virtually more precise methods, such
as pedotransfer functions, are therefore currently not applicable in a landscape context.

To reduce the risk for soil compaction, a substitution from silage maize to perennial
energy crops (PECs) can be suggested. In this aspect the benefits of PECs result from
(i) earlier harvesting under dryer soil conditions and (ii) the permanent, intense routing
system both enhancing the carrying capacity of the soil [39,40].

3.4. Natural Susceptibility of the Soils for Erosion and Threats to Soil Due to Maize Cultivation

The modeling of the natural susceptibility of the soils for erosion processes revealed a
small-scale pattern typical for the conditions in a low mountain landscape with a mean
Enat value of 31.1 t ha−1 a−1 (Figure 7). A total of 20% of the agricultural sites were
classified to have a low or very low susceptibility for soil erosion with natural erosion
rates <10 t ha−1 a−1 (Table 6). At the same time, nearly 50% of the agricultural area were
classified to have a high to very high susceptibility for soil erosion (Enat > 25 t ha−1 a−1).
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Table 6. Assignment of the total agricultural area as well as maize and non-maize (all agricultural soil uses except maize)
cultivation in 2009 and 2016 to the classified natural soil erosion potential (Enat).

Erosion Potential
Agricultural Area

2009 2016

Maize Non-Maize Maize Non-Maize

ha % ha % ha % ha % ha %

Very low 8335 9.5 724 10.4 7611 9.5 791 9.7 7545 9.5
Low 9268 10.6 1034 14.8 8233 10.2 1147 14.1 8121 10.2

Medium 29,414 33.7 3045 43.6 26,369 32.8 3508 43.2 25,906 32.7
High 25,126 28.8 1846 26.5 23,280 29.0 2249 27.7 22,877 28.9

Very high 15,256 17.5 330 4.7 14,926 18.6 426 5.3 14830 18.7

The rainfall (‘R’) factor showed, similar to the topography (‘S’) factor, a distinct south
to north gradient finally leading to a high natural soil erosion potential throughout the
northern part of the study region. In contrast to that, the erodibility of the soils (K factor)
in the southern part of the study region is considerably elevated due to higher silt contents
of the soils. Nonetheless, in the southern part, the susceptibility for soil erosion is generally
lower than in the northern part resulting from the more gentle slopes. For the arable land in
Rhineland Palatinate, [41] calculated mean actual erosion rates (Enat values multiplied by
the cropping management factor C) of 11.2 ± 22.9 t ha−1 a−1. Thus, the values calculated
for the study region appear valid considering the low mountain character of the study
region and the large standard deviation stated by [41].
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In 2009 and 2016, more than 30% of the total silage maize cultivation was done on sites
showing at least a high potential for soil erosion, whereby the area of silage maize cultivated
on these sites increased from 2176 to 2675 ha. The mean Enat value of fields cultivated with
silage maize increased from 21.1 to 21.9 t ha−1 a−1. Thus, it can be concluded that the silage
maize cultivation was distinctly expanded on sites that show high or very high erosion
potential—sites that are subject to the cross compliance regulations of the European Union
(CCwater1: Enat 15–27.5 t ha−1 a−1; CCwater2: Enat > 27.5 t ha−1 a−1) and national laws in
order to ‘prevent soil erosion’ [42–44].

Finally, this indicates that the cultivation of silage maize is done largely ignoring
the site conditions. On the one hand, this confirms the statement of [45] that “farmers
clearly did not consider erosion in their management decisions like field size or selection of
crops”. On the other hand, it expresses the scarcity of suitable agricultural land. Political
incentives for feedstock cultivation have made a crucial contribution to expand silage
maize cultivation to inadequate sites thus raising external costs of bioenergy production.
Although no data about the specific management practice are available, strategies to
prevent soil erosion are to our experience no common practice in the study area. For
example, undersown crops, minimum tillage methods, or changes in cultivated crops may
potentially reduce soil erosion rates by factors between two and ten [33,46,47].

Even worse, against the background of progressing climate change, with increased
frequency and intensity of heavy precipitation events, particularly in spring [48], when
maize fields show mostly bare soil, the calculated values for soil erosion rates are likely
no more than a conservative estimate. In particular, the erosivity of the rainfall seems to
be a weak point in soil erosion modeling likely leading to a significant underestimation of
the currently prevailing erosion rates. Recent research has shown that presently used rain
erosivity factors significantly underestimate the conditions by (i) methodological reasons
and (ii) resulting from climate changes. Firstly, state of the art methods (rain radar), have
revealed that R factors are about 60% higher than those presently used [49], which were
based on the analysis of ombrometers with a limited spatial data density [50]. Secondly, in
the course of climate change, erosivity of the rainfall has significantly increased compared
to data collection periods of [49] or [51] as a result of (i) higher change of thunderstorms,
(ii) larger size of the drops, (iii) reduced wind speed, and, thus, (iv) larger amounts of
precipitation per rain event [52]. Accordingly, [52] state that rain erosivity increases by a
rate of 10% every 6 years.

Summarizing, cultivation of silage maize at sites that show a high susceptibility for
soil erosion, as presented in Table 6, was underpinned, on one hand, by observing a huge
number of maize fields that visibly showed signs of erosion in aerial photos (Figure 3) and
on the other hand by the discrepancy of the maize cultivation area compared to statistical
data by remote-sensing based classification approach (Table 5). Areas of bare soil, like areas
of erosion, transport, and accumulation, were classified as non-maize pixels due to the soil
signal (Figure 3).

4. Conclusions

This spatial study depicts an illustrative example in which way political measures,
such as subsidies, may influence the agricultural land-use implying negative consequences
for soil health. The additional demand for feedstocks in the study area has led to land-
use pressure and significant problems in sustaining soil health in the study region. The
combination of remote sensing-based maize classification and target-specific analysis of
the soils’ vulnerability allowed for a spatially explicit estimation of the site-specific hazard
potential. Unfortunately, the data quality for estimating the risk for soil compaction
was insufficient to a large extent. Nonetheless, soil erosion seems to represent the more
important threat to soil health. However, by the fact that eroded patches and areas with
weak field emergence were not detected as maize by the classification, the results certainly
present conservative estimates, particularly when considering the predicted impacts of
climate change.
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The chosen approach to identify the site-specific vulnerability for soil compaction and
erosion presents a valuable tool for decision support, aiming for a strategically planned and
thus more sustainable energy crop cultivation. It can be used to initiate countermeasures
in order to meet the demands of both valuable feedstock production and soil protection, as
well as to sensitize farmers for the long-term consequences of soil degradation. A further
development of the presented concept may support farmers in their crop selection and
management strategy, e.g., in the form of a smartphone app. However, the availability of
comprehensive and small-scale valid soil data presents the bottleneck of the approach.

In the long term, sustaining or improving soil health is inevitable in order to maintain
the production function of agricultural soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
45X/10/2/128/s1, Table S1: Characterization of the climatic gradient present in the study area
on the basis of long-term mean monthly temperature and precipitation data (1981–2010) of three
meteorological stations located in the southern, central, and northern part of the study area. Data
derived from German Meteorological Service (2018). Figure S1: Flowchart explaining the steps and
methods for the remote sensing based classification of maize fields acc. to [53]. Figure S2: Flowchart
explaining the steps for classification of soil types based on site-specific sequences of soil horizons.
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Abstract: With the ongoing trend towards deep learning in the remote sensing community, classical
pixel based algorithms are often outperformed by convolution based image segmentation algorithms.
This performance was mostly validated spatially, by splitting training and validation pixels for
a given year. Though generalizing models temporally is potentially more difficult, it has been a
recent trend to transfer models from one year to another, and therefore to validate temporally. The
study argues that it is always important to check both, in order to generate models that are useful
beyond the scope of the training data. It shows that convolutional neural networks have potential
to generalize better than pixel based models, since they do not rely on phenological development
alone, but can also consider object geometry and texture. The UNET classifier was able to achieve
the highest F1 scores, averaging 0.61 in temporal validation samples, and 0.77 in spatial validation
samples. The theoretical potential for overfitting geometry and just memorizing the shape of fields
that are maize has been shown to be insignificant in practical applications. In conclusion, kernel
based convolutions can offer a large contribution in making agricultural classification models more
transferable, both to other regions and to other years.

Keywords: deep learning; sentinel 1; image segmentation

1. Introduction
1.1. State of the Art

The remote sensing community in general, and the land use/land cover (LULC)
classification community in particular, is currently in a stage where potential applications
seem endless [1], high resolution satellite imagery at national levels is available for free [2],
and sophisticated classification algorithms perform better with each new generation [3].
This is especially true for the field of agricultural crop classification, where many studies
were published in the past 5 years, that implemented one of many different iterations of
deep learnig algorithms. In these studies, the model input has been rather stable, mostly
consisting of multispectral global sensors like Landsat [4], Synthetic Aparture Radar (SAR)
satellites like Sentinel-1 [5] and very high resolution optical sensors like Gaofen [6] as well
as combinations of optical and SAR sensors [7]. The SAR domain has seen some advances
in data processing techniques, where the phase information of polarimetric radar imagery
can be used to derive parameters of the scattering. Parameters like anisotropy/entropy [8]
and double bounce/surface/volume scattering [9] can be used to classify LULC and even
radar based vegetation indices can be derived [10]. While there were some advances in the
processing of the input datasets, model algorithms have almost completely switched from
traditional machine learning and classical neural network algorithms, over Convolutional
Neural Networks (CNN) and autoencoders [11] towards advanced derivates of the CNN
approach like UNET [12] or the Recurrent Neural Network (RNN) approach like Long
Short Term Memory (LSTM) models [13].
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Another visible trend in the past 5 years, is that an increasing number of papers start
to assess temporal model generalization. In the beginning, for example in case studies
in India [14], the Ukraine [15] and Brazil [16], validation data was split spatially. This
means that pixels or fields from one single scene, or one single mosaick were taken out
of the training dataset and split into two or three sets of training, validation and testing
samples. Cai et al. [17] were successfully able to test the temporal transferability of a
Neural Network based corn and soybean classifier. They used long term Landsat derived
vegetation index time series, and were able to predict years that were not part of the
training datasets with high accuracy. Momm, ElKadiri and Porter [18] also used Landsat
NDVI time series to classifiy crop types in the United States, and systematically tested
models based on 2005 data with data from the year 2000 and vice versa. Zhang et al. [6]
went a different approach and did not rely on index based phenlogy curves. They used
high resolution satellite imagery to delineate cropland and non-cropland in several chinese
regions, while testing both spatial and temporal transferability of their CNN models. The
temporal transferability was tested by applying models from 2016 to 2017, and the spatial
transferability was tested on different regions. Ajadi et al. [19] classified soybean and corn
crops in brasil based on a composite of optical and SAR imagery, and also tested spatial and
temporal transferability of their models by testing a model trained in summer 2017–2018
with a dataset from summer 2018–2019 and from a different state.

Though there is a clear trend in these case studies, to value transferability considera-
tions in model assessment, recent review papers focused on the topics of deep learning
in remote sensing and crop classification [20–22] do not cover transferability considera-
tions at all. Olofsson et al. [23] mention the importance of stratified randomization in
the sampling process, but do not specificy the nature of these strata any further. Though
generalization has been an important concept in remote sensing based classifaction for
more than a decade [24], and strategies exist to asses it on a technical level (sampel splitting,
crossvalidation), there is no clear definition or discussion about the way the validation and
testing datasets need to be different from the training datasets, in order to say that a model
generalizes well.

1.2. Objectives

The goal of this study is to add to this discussion by introducing a novel way to frame
the model validation process. It will be described by a number of different scopes on a
similarity spectrum where distance is implied, but not quantifiable. Its premise will be, that
a high performance classification in the closest scope (within-scene) is achievable by many
different simple and complex algorithms, but is not enough to evaluate a models usefulness.
Good performance in scopes that are very far from the training scopes on the other hand
are increasingly impossible, as summarized in the No Free Lunch Theorem [25,26]. The
concept of temporal and spatial validation scopes will be used to compare the transferability
and generalization of classical pixel based algorithms to contemporary convolution based
approaches in the context of remote sensing analysis, using the example of binary maize
classification. The quantification and localization of silage maize expansion has been
shown to be a very important part of the environmental monitoring process in southwest
Germany [27]. While pixel based statistical and machine learning algorithms are well suited
to classify agricultural use based on optical remote sensing imagery [28], a reliable modeling
approach that is able to classify across the entire region and for any given year is still not
yet identified. In this study, we try to take advantage of the aforementioned progress in
the field of deep learning and CNNs, while at the same time using multitemporal SAR
composites as a way to consistently acquire data for the entire study region for 4 years
from 2016 to 2019. While many studies were able to produce deep learning models with
high performance and highlight their superiority over classifcal machine learning, a fully
randomized design is going to improve the understanding of how well this translates to
improved performance in out of training samples. The goals of this study in more detail:
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1. Input Data:
In order to validate temporal transferability, there is a requirement for consistency
between years. For this reason, Sentinel-1 scenes will be processed in a way to generate
monthly average based timeseries to reflect crop phenology.

2. Validation Scopes:
Scopes will be defined as subsets of the entire dataset. Aside from the training
scope, there will be scopes that test spatial and temporal transferability, as well as both
combined. To check for potential overfitting of field shapes and memory effects, special
within geometry scopes will be defined and tested for predictive inconsistencies.

3. Model Training and Evaluation:
Based on the defined scopes, 500 sets of samples are randomly drawn. Two represen-
tative pixel based and two representative convolution based classifiers are trained,
and the model performances are measured for each scope independently. Finally, the
sampled model performances are evaluated with parameter free U-tests, in order to
infer which algorithms perform better in any given scope.

2. Materials and Methods
2.1. Study Area

The administrative district “Eifelkreis Bitburg-Prüm” (in the following referred to
as ‘study area’, see Figure 1) has been shown to be a perfectly suitable region for crop
classification studies before [28]. It is located in the center of Europe, but still shows very
little segmentation by settlements, and offers a comparatively homogenous landscape
dominated by agriculture (about 53% of the total area [29]) and forests. While there
is an altitude gradient from south to north (from 300 masl. to 700 masl.) and some
larger population hotspots, agricultural fields in general and maize in particular are still
distributed almost uniformly across the entire study area. Therefore, the area is ideal for a
study like this, where lots of subsets are randomized that should be comparable in spatial
structure and land use, but not so similar, that model transferability would be trivial.

Figure 1. The figure shows an overview of the study area. The background shows a RapidEye true
color composite from 2016.
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2.2. Classification Algorithms

The selection of algorithms to apply and validate in the presented study, is char-
acterized by theoretical and practical considerations. The goal is to have a small set of
both pixel based and convolution based classifiers, that give a realistic representation of
classical as well as state of the art implementations in the field. The focus of this study is
to provide conceptual considerations about model transferability, rather than developing
and optimizing novel implementations. Thusly, for each modeling approach, one basic
implementation, and one advanced iteration was selected (see also Table 1).

Table 1. Overview of modeling algorithms.

Approach Pixel Based Convolution Based

basic ranger FCNN
advanced xgboost UNET

Machine learning classifiers like Support Vector Machines and Random Forests have
long been proven to be superior to statistical techniques like Maximum Likelihood (cf. [1]),
and are well suited for binary land use classification tasks. Each single observation is a
multivariate vector of independent variables, while the dependent variable is a binary
outcome. Random Forest classifiers (cf. [30]) are particularly useful in the context of this
study, because there are very few and mostly inconsequential hyperparameters required.
It is a well established algorithm, and many different implementations exist. Within the
context of this study, ranger was used, a well optimized and popular implementation
of the random forest algorithm (cf. [31]). In addition to ranger, the Extreme Gradient
Boosting (XGBoost, cf. [32]) algorithm was selected, to represent a more state of the art
ensemble based machine learning method. It is very prominent in contemporary remote
sensing studies (see [33,34]), well optimized for large datasets and implementations exist
for R (cf. [35]). Both algorithms are representative for the two major resampling strategies
in ensemble based machine learning, boosting and bagging [36,37]. Both aim to reduce
variance in weak learners (i.e., single trees) by training many learners on resampled datasets,
but boosting focusses more on reducing bias by iteratively adjusting new models to the
residuals of the previous models [38].

In contrast to the aforementioned pixel based machine learning classifiers, Convolu-
tional Neural Networks (CNN, cf. [39]) are able to derive arbitrary spatial features with
kernel convolutions. With the rising popularity of deep learning algorithms since roughly
2016, they quickly saw widespread use in remote sensing applications, and are the most
frequently applied deep learning algorithm by a big margin (cf. [21]). One simple way
to implement a CNN is to stack many convoluted layers on top of each other, and merge
them with a sigmoid activated fully connected output layer. This simple fully connected
convolutional network (FCNN) is used as a baseline neural network in this study. It is
implemented in keras (see [40]). A vast amount of neural network architectures have been
developed and applied in the field of image analysis. In this study, the U-Net architecture
(cf. [41]) has been chosen, because it is able to process geometric relationships on multiple
levels. It has its origin in medical image segmentation, and uses a nested succession of
downsampling with maxpooling layers, as well transposed convolutions to upsample to
the original resolution again. Due to this varying and flexible implementation of scale, it is
especially suited to make use of field geometries in large scale datasets.

Optimizing models in terms of tuning hyperparameters requires advanced strategies
like grid search, which in turn rely on measuring validation performance. Since the main
focus of this study is to illustrate that measuring validation performance is not trivial and
involves a clear definition of scope, the same reasoning has to be applied when optimizing
parameters for model tuning. The focus is not to optimize the performance of a model
in a given scope, the focus is to compare performances of models when changing scope.
Therefore, default hyperparameters were kept whenever possible. If not, models were
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optimized manually, by trying out different combinations on a larger subset in order to
find parameters that give good training results. The ranger model performed well out
of the box, and the default parameters (number of trees and number of variables in each
split) were kept. The xgboost model comes with additional hyperparameters specific to the
chosen booster. We were also able to keep the default parameters of the tree booster here,
since they performed well on the training data.

Hyperparameter selection for deep learning algorithms is much more complicated,
since they can have arbitrary complexity in the network architecture, while each part of
the network can have parameters and functions to adjust. The shape of the input tensor
is the first part of the architecture that needs to be defined, and is the same for both fcnn
and unet. It is defined by the dimensions of the input dataset, and the edgesize of one
sample cell. We decided to set the edgesize rather small, to keep the number of layers
low. The edgesize has to have 2 as multiple factors to allow for downsampling in the unet
algorithm, so 32 was chosen in both convolution based algorithms. The rest of the fcnn
model is rather simple. In total, 20 convolution layers with rectified linear unit activation
functions were found to be enough to segment the input images. These layers were then
combined in a final sigmoid activated output layer. The unet model was initialized with
10 convolution layers before the first downsampling step, and four downsampling steps
with 50% dropout layers total. In addition to the model specific hyperparameters, the
training of a deep learning algorithm itself is defined by an additional set of parameters
as well as the optimizer and the loss function. We again tested several approaches with a
training subset of the study area and found that the very common RMSprop optimizer in
combination with a binary crossentropy loss function worked well. Both models were then
trained with a batch size of 10, for 150 epochs.

2.3. Data Sources
2.3.1. Reference Data

As a direct result of the common agricultural policy of the European Union, all
administrative units are keeping track of field geometries and crops in their municipalities.
The integrated administration and control system (InVeKos [42]) is used to register all
official records, in exhaustive geodatasets. In this study, we use shapefiles from 2016 till
2019 each containing roughly 50,000 discrete field geometries. The field geometries have
distinct registered crop types, of which around 100 different types exist in the area. Of these
crop types, the ones that cover the different type of maize were selected, converted to a
binary variable, and rasterized in a grid aligned to the image data (see Figure 2).

2.3.2. Image Data

The focus of this study is the transferability of image based models on a regional scale,
both temporally and spatially. Consequently, SAR imagery is well suited as a prediction
input. While it is much harder to interpret visually and the signal of the phenology
is not as clear as in the reflectances of a vegetation spectrum, it is largely unaffected
by atmospheric conditions. While it is affected by topography and soil water content,
monthly timeseries can be derived consistently, which show distinct temporal patterns
for certain crop types [43]. Along with the benefit of temporal consistency, SAR imagery
comes with other downsides, most importantly the complete lack of information about
leaf pigments [22] and generally lower ground sampling distance (GSD). The sensor used
in this study is the C-band SAR mounted on the Sentinel-1 satellites A and B. We used
the ground range detected (GRD) product with the instrument mode interferometric wide
swath. GRD imagery provides the advantage of speckle and noise reduction through
multi-looking (5 looks in this case), at the cost of losing the phase information of the signal,
as well as an increased GSD. We used the level 1 GRD high resolution product with vertical
transmit/horizontal receive polarization, which has a GSD of 10 m [44]. VH crosspolarized
SAR data benefits from the increasing interaction of transmitted and received waves, as the
canopy height develops [45]. The data was processed in and downloaded from the google
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earth engine (GEE, cf. [46]). GEE Sentinel-1 datasets are pre-processed by the Sentinel-1
Toolbox, which means that thermal noise removal, radiometric calibration and terrain
correction algorithms were applied. Since the Sentinel-1 constellation has a revisit time
of roughly 6 days, and 12 days in 2016 because there was only Sentinel-1 A, monthly
means could be computed for every single pixel. This lead to a consistent 12 band image
with 10 m GSD for all 4 years. In a last step, each image was scaled. Figure 3 shows the
distributions of both classes in the images. Though SAR is invariant to pigment features of
the canopy, even on this aggregated level the growth curve of maize, starting around June
and ending in September/October, is visible. One example year is visualized in Figure 2,
where the maize fields have a distinct green/turquoise hue, which indicates a peak in
Augst/September, as opposed to the red crops which are also visible.

Figure 2. The figure shows an overview of input data. The left side shows an RGB composite of three different monthly
means from the Sentinel-1 input data. The right side shows a rasterized version of all maize fields from the the InVeKos
dataset with a RapidEye RGB composite in the background.
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Figure 3. The figure shows distribution density estimates of the 12 monthly means for 4 years, split
by maize (turquoise) and nonmaize (red) pixels.

2.4. Research Design
2.4.1. Spatiotemporal Generalization

The basis of this study is a repeated resampling of 5 by 5 km tiles (500 by 500 pixels) by
changing location within the Eifelkreis Bitburg-Prüm, and the year ranging from 2016–2019.
One sample contains a total of 4 tiles, from two different locations (hereafter called m and
k), and two different years (hereafter called year 1 and year 2). For each run, all models are
trained based on tile m_1 (see Table 2). From this tile, 500 sample cells with 32 by 32 pixels
are drawn, while overlap is explicitly allowed. The result is a 500 × 32 × 32 × 12 tensor that
is used as an input for the deep learning models. Since the cell shape is irrelevant for the
pixel based algorithms, the input is then reshaped into observation rows with 12 variables.
As a consequence of the input cell overlap, a lot of the observations are identical, so the
amount unique observations is much lower than 500 × 32 × 32. Based on this sample, the
four models are trained and all four tiles are then predicted.

For the pixel based models, this prediction is simple. Since each pixel is treated
independently, it is just a prediction with 250,000 observations and 12 variables. The
convolution based predictions are a bit more complex, since inputs are not pixels, but cells.
To predict a complete tile, each pixel is treated as a corner pixel of a cell, which creates
overlap for pixels that are not at the borders of a tile. The predictions are then averaged for
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each pixel based on the values of all cells including that given pixel. As a consequence, the
input datasets for pixel based and convolution based methods are not directly comparable
since the raw amount of input data is, by virtue of nature, much higher for the convolution
based algorithms.

Each tile then represents one of four basic generalization scopes. Tile m_1 represents
the training scope. It still has pixels not sampled in the actual training dataset, but they are in
close proximity and from the same year. Tile k_1 represents spatial generalization. Its dataset
is from the same year, but the field geometry is relatively independent. Tile m_2 is at the
exact same location as m_1 but from a different year, and the validation scope is therefore
called temporal. Field geometries are not always identical, but changes are very minor. Tile
k_2 represents spatiotemporal validation, because it is different in both location and year.

2.4.2. Geometrical Generalization

Kernel convolutions, which are the basis of CNNs, compute artificial features based
on a given neighborhood. This means, that features like angled edges and texture can be
included in the semantic segmentation optimized by the perceptrons. These features can
be summarized as “geometry” of the field, and add an entirely new set of information
to an observation, that pixel based algorithms cannot include. This layer of information
can be useful in the classification of agricultural fields, because they are often defined by
long straight edges and comparatively similar in size. It can also be harmful in temporal
generalization, because in a field with a very specific shape, crop types can change from
year to year, while the shapes stay mostly the same.

This problem is visualized in Figure 4, where training cells were artificially generated
with a very specific star shape. Pixels that are known to be maize are randomly drawn
from the image data and used to fill the star. Pixels that are known to be not maize are used
to fill the rest of the cell, as well as an additional artificial control cell. The star shaped cells
are then used to train a UNET CNN as well as a ranger classification model. The figure
shows one prediction of a training cell, and a control cell for each classifier. The training
prediction works well for both models, and the star shape is clearly visible. The control
cell however, contains no pixels from maize fields, and the ranger classifier shows only
a small amount of noise and misclassified pixels. The UNET classifier however, shows
almost the exact same picture, which means that it was overfitting the geometry of the
field, and seemingly did not include the numeric information of the pixel features at all.

Figure 4. The figure is visualizing geometric overfitting by training based on an artificial sample
with a star shaped maize field (top row) and validating on an artificial sample without maize
(bottom row).

This artificial example is very far from field conditions, and overfitting of this kind
would be easily detectable in simple crossvalidation or split-data validation samplings.
It is still possible that the perceptrons could show a similar memory effect when trained
on maize fields with unique geometric features. If the model is validated with spatial
validation, just with image data from another location, this overfitting will not be apparent,
because the classifier will never see the same shape again. If validated with temporal
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validation datasets, which contain the very same field from another year, the geometry will
be the same, but the pixel features and potentially the crop type are different. A convolution
based classifier could potentially be more likely to classify this as a maize field, because
it has been trained to classify this geometry, albeit with different pixel features, as maize
before. A pixel based classifier is invariant to the geometry, and therefore the classification
result should not be biased.

Resampling from a large dataset spanning an entire region for multiple years, provides
the unique opportunity to specifically assess this kind of overfitting problems. Thusly,
we introduce four additional scopes, that are a subset of the temporal scope defined in
Table 2 since they only apply to tile m_2, which has the same geometry but data from a
different year. One caveat of this approach is that the geometry between two years is not
exactly the same. There are some differences between polygon geometries from all four
years, but they are usually very minor, and this simplification should have little impact
on the overall conclusion of the study. The scopes themselves are described in Figure 5.
The scope bothmaize includes fields that have been maize in the training year, and still are
maize in the validation year, while the scope frommaize includes fields that were maize, but
are not anymore.

Figure 5. The figure describes the geometric scopes for the validation approach. Assuming the same
geometry in a different year, there are four possible scenarios.

The scope tomaize includes fields that have not been maize in the training year, and
changed to maize in the validation year, while the scope neithermaize includes fields that
are not maize in both the training and validation year. Conceptually the performances in
the bothmaize and tomaize scopes should be similar, as well as the performances of frommaize
and neithermaize.

2.4.3. Performance Metrics

Binary classification is a concept known in many different domains, and as such, a
large amount of classification performance metrics exist. All of them have in common, that
they are based on the confusion matrix (CM) (cf. [47]). Overall accuracy is a metric directly
derived from the CM, but has the problem that it is misleading if the no information rate
is high, i.e., if there is a large imbalance between the two classes. Other base metrics, like
sensitivity/specificity and precision/recall give a better idea of the overall performance
because they are not focused on the diagonal of the CM. Additionally, there are higher level
metrics like Cohens kappa and the F1 score. Cohens kappa has been very popular in remote
sensing publications in the past, but has been heavily criticized (cf. [23,48]). It has also the
problem that it is a very domain specific metric, and implementations in contemporary
deep learning frameworks is not common. In this study, F1 (see Tables 2 and 3) will be used
as a comprehensive and widespread higher level metric, in addition to the base metrics
precision and recall. In some geometric scopes there are no true positives or negatives,
therefore sensitivity and specificity will be reported if applicable.
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Table 2. Overview of Validation Scopes.

Tiles Handle Metrics

m_1 training F1/Precision/Recall
m_2 temporal F1/Precision/Recall
k_1 spatial F1/Precision/Recall
k_2 spatiotemporal F1/Precision/Recall
m_2 bothmaize Sensitivity
m_2 tomaize Sensitivity
m_2 frommaize Specificity
m_2 neithermaize Specificity

Table 3. Overview of Comparison Scopes.

Comparison Handle Metrics

training-temporal temporal F1/Precision/Recall
training-spatial spatial F1/Precision/Recall

training-spatiotemporal spatiotemporal F1/Precision/Recall
bothmaize-tomaize tomaize Sensitivity

neithermaize-frommaize frommaize Specificity

In a final step, Mann–Whitney U-tests will be used to compare the performances of
each model against each other. Since the metrics used range from 0 to 1, they are not
normally distributed, therefore a nonparametric two sample test will be used to test the
alternative, that a given test yields better results on average than the test it is compared
against. Between the geometric scopes, two sided tests will be used in oder to test the null
hypothesis that bothmaize and tomaize yield on average similar performances. In other
words, that the sensitivity of maize fields is indifferent to the status of that particular field
in training.

3. Results
3.1. Illustrative Sample Run

Figures 6 and 7 show the input data of one sample run. Tile m shows a heterogenous
landscape, structured by riverbeds and disperse forest areas. It has a moderate amount of
maize fields compared to tile k, which shows a very high density of maize fields divided
into small sections in the north, and a dense forest in the south. The fields in tile k are also
very regularly shaped compared to the fields in tile m.

Figure 6. The figure shows the spatial distribution of training cells in a tile. A substantial amount
of overlap is visible and necessary, since cells that contain the same field but slightly translated still
provide new information to the classifiers. For the pixel based algorithms only unique pixels were
counted, in this 207,595 observations, roughly 84% of the entire tile.
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Figure 7. The figure shows a sample for one complete run. The two rows show tile m and k.
Columns 1 and 3 show false color composites of the 12 band monthly mean Sentinel-1 images.
Columns 2 and 4 show the position of the maize pixels in white.

All four algorithms predicted the training tile m_1 rather well (see Figure 8), and
did not miss any of the fields. The pixel based classifiers produce spatially rather evenly
distributed residuals. The residuals produced by the convolution based algorithms are
more clustered and are often missing entire fields or sections of fields. Sometimes the
residuals of both FCNN and UNET form clearly structured spatial patterns around fields,
indicating that the geometry of the reference data is slightly bigger than the prediction.
Overall none of the four classifiers are able to adequately perform the binary segmentation
in the second tile k, especially in the second year. However, there are some minor differences
in how the classifiers predict, and it is not obvious which one performs better. To asses
this, this random sample was repeated 500 times, and the results were summarized in the
upcoming section.

3.2. Spatiotemporal Generalization

Table 4 and Figure 9 show the model summaries of all 500 resampling runs, grouped
by algorithm and validation scope. They show a very clear pattern of differences for the
four different scopes. In the training scope, all four classifiers are able to achieve relatively
high F1 scores (mostly above 0.75), with relatively low standard deviations (below 0.05).
In all the other scopes, performances are both much lower on average, and much more
varied. The spatial scope has still relatively high scores, ranging from 0.68 (ranger) to
0.77 (UNET), and also much higher standard deviations. The temporal validation scopes
show even lower performances, while spatiotemporal scopes show the lowest overall
performances, and the highest variability. In general, the true positive rate, or recall, seems
to be a big problem in most models. While still above 0.9 for the pixel based models,
and above 0.8 for the convolution based models, the detection rates drop mostly below
0.5 in the temporal and spatiotemporal validation scopes (see Table 5). The algorithm
ranger detects on average just about one third (36.6%) of maize pixels in the spatiotemporal
validation scope. Precision rates (see Table 6) in comparison are much higher, and also
much less variable within models, between models, and between scopes. This means that
false positives are rather uncommon with all four classifiers (see also Figure 8). XGBoost
seems to have the highest false positive rate, and performs considerably worse than the
other classifiers, and ranger in particular.
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Figure 8. The figure shows a result for a complete run. The four different scopes are shown in the
columns, while the model predictions and residuals are shown in the rows. The prediction pixels
are colored in white (predicted to be maize) and black (predicted to be not maize). The residuals are
colored in white (false negative), black (false positive) and grey (true positive or true negative).
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The same pattern, spatial generalization being better than temporal, and temporal
generalization being better than spatiotemporal, can be observed when just looking at the
differences in scores (see Figure 9). The validation score differences show, compared to the
absolute performance scores, relatively low standard deviations. Both pixel based methods
and both convolution based methods show similar value ranges in the spatial comparison
scope, with convolution based methods losing much less performance. The performance
difference in the temporal and spatiotemporal validation is much higher, and the difference
between all models gets more pronounced.
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Figure 9. The figure shows boxplots for all three performance metrics plus the performance difference between scopes.
Boxplots are grouped by scope and colored by model.
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Table 4. Summary Spatiotemporal Generalization—F1.

Ranger (SD) Xgboost (SD) FCNN (SD) UNET (SD)

training (F1) 0.965 (0.014) 0.944 (0.025) 0.853 (0.045) 0.875 (0.038)
temporal (F1) 0.489 (0.171) 0.488 (0.156) 0.553 (0.183) 0.612 (0.189)

spatial (F1) 0.679 (0.115) 0.674 (0.106) 0.738 (0.109) 0.771 (0.102)
spatiotemporal (F1) 0.45 (0.191) 0.449 (0.172) 0.508 (0.204) 0.561 (0.216)

Table 5. Summary Spatiotemporal Generalization—Recall.

Ranger (SD) Xgboost (SD) FCNN (SD) UNET (SD)

training (RC) 0.95 (0.024) 0.925 (0.035) 0.832 (0.054) 0.854 (0.105)
temporal (RC) 0.393 (0.182) 0.409 (0.173) 0.479 (0.209) 0.539 (0.231)

spatial (RC) 0.6 (0.145) 0.615 (0.136) 0.701 (0.146) 0.738 (0.163)
spatiotemporal (RC) 0.366 (0.196) 0.38 (0.184) 0.443 (0.224) 0.495 (0.251)

Table 6. Summary Spatiotemporal Generalization—Precision.

Ranger (SD) Xgboost (SD) FCNN (SD) UNET (SD)

training (PR) 0.981 (0.008) 0.963 (0.018) 0.877 (0.046) 0.887 (0.039)
temporal (PR) 0.739 (0.132) 0.669 (0.137) 0.735 (0.139) 0.789 (0.124)

spatial (PR) 0.819 (0.101) 0.775 (0.109) 0.809 (0.105) 0.823 (0.096)
spatiotemporal (PR) 0.701 (0.177) 0.636 (0.174) 0.699 (0.177) 0.752 (0.171)

The statistical analysis in Table 7 shows that ranger is the superior classifier in the
training scope, and both pixel based classifiers are significantly better than the convlution
based models. In all other scopes, the convolution based classifiers perform significantly
better, with UNET being the most accurate of them. The difference between ranger and
xgboost is much less significant, than the difference between UNET and xgboost.

Table 7. Summary of Mann–Whitney U tests.

H1 Training Temporal Spatial Spatiotemporal

H1: ranger > xgboost 1.07 × 10−56 3.95 × 10−1 1.07 × 10−1 3.21 × 10−1

H1: ranger > FCNN 7.60 × 10−165 1.00 × 100 1.00 × 100 1.00 × 100

H1: ranger > UNET 5.44 × 10−163 1.00 × 100 1.00 × 100 1.00 × 100

H1: xgboost > ranger 1.00 × 100 6.05 × 10−1 8.93 × 10−1 6.79 × 10−1

H1: xgboost > FCNN 2.86 × 10−149 1.00 × 100 1.00 × 100 1.00 × 100

H1: xgboost > UNET 5.85 × 10−133 1.00 × 100 1.00 × 100 1.00 × 100

H1: FCNN > ranger 1.00 × 100 4.22 × 10−10 3.21 × 10−19 1.39 × 10−7

H1: FCNN > xgboost 1.00 × 100 1.55 × 10−11 1.20 × 10−24 5.51 × 10−9

H1: FCNN > UNET 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100

H1: UNET > ranger 1.00 × 100 3.31 × 10−29 3.94 × 10−42 1.89 × 10−21

H1: UNET > xgboost 1.00 × 100 5.87 × 10−32 2.33 × 10−49 2.94 × 10−24

H1: UNET > FCNN 3.88 × 10−19 1.09 × 10−8 1.43 × 10−8 8.63 × 10−7

3.3. Geometric Generalization

Figure 10 shows that the patterns established in the spatiotemporal generalization also
appear in sensitivity performances in maize fields, with the pixel based classifiers being
relatively similar, FCNN being much better, and UNET outperforming all of them. At the
same time, the value ranges and medians of the performances are very similar for the scopes
bothmaize and tomaize. The value ranges of the scopes nonmaize and frommaize are relatively
low, but nonmaize shows a much smaller variability, and a much more consistent specificity
(see also Table 8). From the geometric validation scopes, nonmaize is special in a way that it
is the only scope that contains pixels that are not agricultural. The fraction of these pixels is
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rather high (around 87% in comparison to 3/5/5% for bothmaize/tomaize/frommaize), and
they are at the same time much easier to discriminate. Looking at differences between the
algorithms, the specificity values show very little difference, mostly because most values
are consistently high. The right side of Figure 10 summarizes the performance metrics by
calculating the differences in performance for maize pixels (to maize) and nonmaize pixels
(from maize). This difference is around 0 in all cases, with again higher variance in the
sensitivities compared to the specificities.
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Figure 10. The figure shows a boxplot for the performance difference between scopes colored by model.

Table 8. Overview of Spatiotemporal Generalization Scopes.

Ranger (SD) Xgboost (SD) FCNN (SD) UNET (SD)

bothmaize (Sens) 0.386 (0.194) 0.402 (0.184) 0.471 (0.221) 0.532 (0.249)
tomaize (Sens) 0.396 (0.183) 0.412 (0.174) 0.485 (0.212) 0.543 (0.233)

nonmaize (Spec) 0.988 (0.011) 0.984 (0.013) 0.986 (0.013) 0.988 (0.013)
frommaize (Spec) 0.963 (0.042) 0.953 (0.045) 0.954 (0.053) 0.951 (0.063)

The statistical analysis (see Table 9) verifies that there is no significant difference
between the bothmaize and tomaize scope. This means, that none of the four classifiers of
maize fields is biased by the status of the field in the training year. If a field is maize in the
training year, its not more or less likely to be detected in the validation year than a field
that is not maize in the training year. On the other hand, the analysis shows significant
differences between the nonmaize and frommaize scope. This is again due to the fact that
nonmaize is special because of a much larger variety of pixels. The scope signifiance is
however relatively consistent for all four models.

Table 9. Summary of Mann–Whitney U tests—geoscopes.

H1 Ranger Xgboost FCNN UNET

H1: bothmaize != tomaize 3.35 × 10−1 3.48 × 10−1 4.05 × 10−1 6.95 × 10−1

H1: nonmaize != frommaize 2.93 × 10−32 1.21 × 10−41 2.37 × 10−29 3.01 × 10−32
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4. Discussion
4.1. Input Data

The focus of this study was to assess advantages of convolution based models in
model generalization. To find and optimize a novel combination of deep learning model
and multitemporal image data was outside of the scope of this study. Thusly, some sim-
plifications have been made which provide ample opportunity to improve the absolute
performances of the models, while at the same time preserving the relative differences
between the validation scopes. The Sentinel-1 imagery was processed out the box and
monthly averages were calculated. Improvements to data quality can be largely categorized
in three groups, noise reduction, adding information and reducing redundancy. Thermal
noise removal is already implemented in the Sentinel-1 Toolbox, but bias introduced by
different incidence angles could be corrected with empirical coefficients. Information could
simply be added, either from the same sensor but with a different cross-polarization mode,
or from other sensors with high revisit times like Sentinel-2. Furthermore and within
the SAR domain, data preprocessing algorithms like polarimetric decomposition could
be used to gain more information about the exact nature of the scattering. Furthermore,
finally, redundancy could be reduced with data transformation algorithms like the prin-
cipal component analysis or even implemented in the deep learning framework itself
with autoencoders.

One major caveat is that the drop in sensitivity/recall rates in all the validation scopes
was very high for most models. However, two counterpoints suggest that this is a modeling
problem and not an input data problem. First, the variability with a given model is high,
which indicates a strong random effect of tile selection, for both validation and training
tiles. Furthermore, high variability means that there is still a lot of potential to increase
model sensitivities by increasing the size of training datasets, which is easily possible by
several orders of magnitude. Secondly, the variability between models is very high, which
in a similar way suggest that there is potential to delineate maize fields, which could be
developed with further algorithm Improvements. As a consequence it can be concluded
that SAR imagery provides a good basis for temporally and spatially transferable crop
classification models.

4.2. Validation Scopes

Validating within the training scope is the most common step of each modeling process,
and for deep learning algorithms even required in each iteration as part of the loss function.
High performance in the training scope is necessary for each model, but not a sufficient
criterion for a useful model in most research contexts. All models in this study were able to
achieve reasonably high performances in the training scope, but the spatiotemporal scopes
were able to show a much more complete picture. Here, the convolution based algorithms
performed better by a very significant margin.

Changing the location or year of a sample is a simplification for changing the many
factors that result in a different phenology with the same crop type. These factors can
be anything, from different altitudes and microclimate in neighboring regions, different
precipitation and drought patterns in two years, to different management practices of
two farmers in fields right next to each other. Ideally, we would have complete spatial
information about all of them, and we would do a stratified sampling based on altitude,
water availability and crop management. While altitude and precipitation strata could be
implemented, crop management variables are nearly impossible to get for larger datasets
and multiple years. Furthermore, there are many more variables that needed to be ac-
counted for in a stratified sampling. Some of these factors are more likely to be different in
different years, while some of them are more likely to be different in different locations.
Consequently, changing both allows for a more complete assessment of model performance,
without the requirement of other spatial datasets necessary for a stratified sampling, a
concept that can be easily applied to other crop classification studies.
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The geometric scopes however, are most likely not very useful in other contexts.
They were only included to analyse a very specific aspect of convolution based classifiers,
and were not able to lead to any further conclusions. Potential overfitting and memory
problems could be also analysed with spatial validation scopes, but geometric scopes were
more precise in that regard.

4.3. Model Training and Evaluation

Since optimizing the absolute performance of the models was not the focus of the
study, the pixel based models in this study were trained with default hyperparameters
wherever possible, and it is expected that the impact on their performance is very low.
The same cannot be said about the convolution based models, where model performance
can be optimized by many different parameters, activation functions, choosing the right
optimizer and adjusting the network architecture. Wherever possible default parameters
were used, but there is without a doubt a lot of potential to find better models than the
ones used in this study. This does not affect the findings, but could in the future be used to
build on the validation framework established in this study.

Despite this limitation, we were able to show, that models are much more performant
if applied to different regions than compared to different years. In SAR remote sensing,
there are less reasons to assume this would be the case, compared to optical remote sensing
where the image acquisition is very time critical and sporadic because of atmospheric
constraints that apply much less to radar data. Instead we have consistent monthly means
that cover the entire year and are largely invariant to atmospheric conditions. However,
the phenology development curve is still potentially very different in different years
because of precipitation and sunlight. Additionally, there might be SAR specific factors that
cause short term fluctuations of the backscatter coefficients. Surface wetness, for example,
can cause short term spikes in VH backscatter of vegetation coverage [49]. Because of
these uncertainties, it is unclear if this particular finding can be transferred to other crop
classification applications. It is however, evidence that spatial validation (i.e., randomized
samples from one year) gives an incomplete picture of model transferability.

In addition we provide evidence that including field geometry (i.e., with convolutional
neural networks) is beneficial to model generalization. Pixel based models, while being
consistently more performant in the training subset, showed clearly less sensitivity to
maize pixels than the convolution based models, while at the same time being unable
to offer more precision as a tradeoff. Geometric overfitting has been shown to not be a
problem in any of the models. Though it cannot be ruled out that geometry based memory
effects could happen in certain models, there is still enough evidence that convolution
based models generalize much better, and it is hard to imagine future crop classification
research without it.

5. Conclusions

• SAR imagery provides a good basis for temporally and spatially transferable crop
classification models

Despite the simplifications made in the preprocessing of the datasets, and despite the
fact that it is also affected by topography and soil wetness, the information represented
by the SAR imagery was shown to be sufficient to detect between 95% (ranger) and 85%
(UNET) of maize fields in the training scope. The main benefits is independence from
atmospheric conditions and consistently available image products as a result. The main
drawback is insensitivity to leaf pigments, and therefore major limitiations in other aspects
of vegetation monitoring.

• Within a region, temporal generalization is harder than spatial generalization.

Most studies in the past have focused on spatial validation by splitting their training
datasets. With freely available datasets and a growing body of highly capable classifiers,
temporal generalization is a designated goal for a growing body of LULC classification
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research. We were able to highlight the importance of temporal validation, by showing
that there was a significant drop in model quality if a model was validated with data from
a different year, compared to data from a different region. F1 scores dropped to values
between 0.49 (xgboost) and 0.61 (UNET) in the temporal validation scope, compared to
values between 0.67 (xgboost) an 0.77 (UNET).

• Validation scopes can be helpful in assessing model quality

Analyzing these models showed that a comparatively high modeling performance
was achieved within the training scope, even though the amount of training samples was
relatively low. Switching scopes gave a much more complete picture. By analyzing the drop
in performance observed when validating with samples from these different scopes, some
algorithms were shown to be significantly more robust, even though their performance in
the training scope lower. Therefore, the concept of validation scopes has been proven to be
a helpful tool in assessing the quality of a model.

• Including field geometry is helpful and geometric overfitting is not a problem

The main goal of this study was to compare classical machine learning classifiers to
state of the art deep learning algorithms. By using a robust harmonized dataset for these
years, as well as a randomized, scope based sampling approach, we were able to show that
convolution based algorithms are clearly superior to pixel based algorithms. Albeit none
of the tested algorithms in this study was able to produce a well generalizable classifier, it
was shown that kernel based convlutions showed much more promise, and have potential
to be a stable entity in all future crop classification research.
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5 Synthesis 

5.1 Main Findings 

In the thesis at hand, we were able to progress the scientific field of remote sensing-based crop 

classification by: 

• adding onto the already existing body of evidence that operational crop mapping is 

practically achievable 

• elaborating on some very important technical details in terms of: 

o input data 

o post-processing of predictions 

o real world use of prediction maps 

o robustness of novel classification algorithms 

Objective 1: Explore capabilities and practical limitations of optical remote sensing-based crop 

classification 

In chapter 2 “Remote Sensing Based Binary Classification of Maize. Dealing with Residual 

Autocorrelation in Sparse Sample Situations”, we generated two sets of reference data for the 

years 2009 and 2016 in the study region Eifelkreis Bitburg-Prüm by drawing polygons based on 

high resolution aerial imagery. A sparse set covered the entire region with sample polygons and 

large unlabeled gaps in-between. Additionally, a second set of dense polygons was drawn for 

small square shaped subsets. The dense set was necessary to analyze residual autocorrelation, 

and evaluate the influence of Regression Kriging and Gaussian kernel filtering on model 

performance, while the best approach was used to train and apply random forest classification 

models on the sparse medium scale dataset, to get model predictions for the entire study area. 

We showed that in spite of clouds making it impossible to acquire images covering the entire area 

at a consistent phenological state for each individual year, we were able to produce two high 

quality dense prediction maps for about 87,000 hectares of agricultural land based on RapidEye 

imagery. Data from the years in-between were also available, but not cloud free. Another problem 

of optical remote sensing data is the reliance on consistent leaf pigmentation. Though we 

managed to get two scenes from a near perfect acquisition window, some fields with drought 

stress where not recognized because of the loss of chlorophyll.  

Additionally, the approach of using high resolution aerial imagery to label reference data showed 

great promise, but the success was highly dependent on data availability. It is a basic requirement 

that both the acquisition of the aerial, and of the satellite imagery have to be within the preferred 

window of phenological development. Though both data products rely on similar circumstances, 

mostly a cloud free late August or early September, this further narrows down the years in which 

this approach could feasibly be pursued.  

In addition to the input data, the chosen modeling approach has proven to be successful. Random 

forest classification has been able to distinguish maize with high accuracies. While Kriging was 
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able to deal with residual autocorrelation, Gaussian blur has proven to be much more practical. 

Firstly, it does not depend on a set of dense samples in the same way as regression kriging does 

to build up and predict errors based on variograms. Secondly, it is much more runtime efficient, 

since it is just a kernel function. 

Objective 2: Explore regional applications of crop classification 

In chapter 3 “Implications of Bioenergy Cropping for Soil: Remote Sensing Identification of Silage 

Maize Cultivation and Risk Assessment Concerning Soil Erosion and Compaction”, we used the 

spatially explicit maize predictions to assess potential negative externalities of political measures.  

We compared the location of newly constructed biogas producing units (BPU) with the ongoing 

expansion of maize fields in the study area of Eifelkreis Bitburg-Prüm. We were able to show that 

the increase in agricultural area covered by maize fields from 2009 to 2016 correlates with an 

increase in BPUs over that timeframe. Consequently, we were able to show that governmental 

subsidies for biogas production can introduce land use pressure and therefore act as a driver for 

major land use changes. 

In a next step we analyzed the implications of these artificially driven land use changes on soil 

health, specifically focused on soil compaction and soil erosion. The analysis in terms of 

compaction was severely limited by data availability, since plausible assessment of pedotope 

susceptibility to compaction was only possible for about one third of the total agricultural area. 

In spite of this limitation, about 195 hectares of maize fields with particularly high risk of soil 

compaction could be identified in 2016. The analysis of soil erosion potential was much more 

complete, since it was not as much limited by data availability, and only required a complete DEM 

to compute runoff potential. It was shown that, in 2016, 2677 hectares of maize were placed on 

soil with high or very high erosion potential, which could result in a net loss of potentially over 

25 tons per hectare per year. 

Objective 3: Explore spatial and regional transferability of upcoming state of the art models 

In chapter 4 “Field Geometry and the Spatial and Temporal Generalization of Crop Classification 

Algorithms—A Randomized Approach to Compare Pixel Based and Convolution Based Methods” the 

focus went back to more technical aspects of crop classification, based on newly available input 

data, and upcoming state of the art models. We built a consistent dataset based on monthly 

Sentinel-1 backscatter averages. As a result, we obtained 12-band images for four years between 

2016 and 2019 for the entire study area of Eifelkreis Bitburg-Prüm. In our sampling approach, 

we trained 500 models based on a random year and random 5 km by 5 km subsets of the study 

region, with different machine learning and deep learning classifiers. We then computed 

validation metrics for these different scopes, ranging from the same year and same location as 

the training data, to different year and different locations. 

We were able show that our monthly SAR composite provided a sufficient basis for crop 

classification, since the training performance was consistently high, averaging a recall of 0.95 

with the random forest classification. Additionally, we outlined several approaches to improve 
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the input data, such as incidence angle correction or the inclusion of optical imagery such as 

Sentinel-2. The main result of this objective is that convolution-based deep learning models 

showed a significant improvement of model generalization, both over time and space. Temporal 

generalization was more difficult in our study region, as performance decreased much more if a 

model was validated in a different year. While the average F1 score of random forest classification 

fell from 0.97 to 0.49 when generalized temporally, the scores of the UNET classifier only 

decreased from 0.88 to 0.61. Model performances from all scope/model combinations were 

compared with U-tests, which showed a significant superiority of all deep learning models over 

the machine learning models. The hypothesis that convolution-based models could overfit on 

field geometry was tested and could not be verified. 

5.2 Conclusion and Outlook 

In this study we showed substantial evidence that the past 60 years of advancements in 

environmental remote sensing paved the way for a time when operational global crop monitoring 

is technically possible, and this time is now. We outlined how advances in sensor hardware and 

data processing can give us crucial information about the canopy of standing vegetation with very 

good spatial and temporal resolution. In a medium-scale case study we showed how spatially 

explicit crop abundance data can be generated and validated based on freely available remote 

sensing satellite and aerial imagery. We gave an example of how this data can be used to assess 

regionally specific environmental risks in the form of soil compaction and erosion. We also 

introduced a novel way to structure validation data in distinct scopes, and used this framework 

to assess the generalization capabilities of upcoming state of the art classification algorithms. 

The two major bottlenecks towards an operational global crop model are reference data and 

model architecture. In situ field surveys are useful and sufficient for regional studies, but they 

cannot be used to produce models that are able to work well for different years, and even less so 

in different regions of the globe. Statistical records existent in European countries and the USA 

are great tools to assess temporal generalization, but are still regionally limited and might 

produce models that do not work at all in Asia or Africa, where the agricultural structure is quite 

different in terms of field geometries and phenology cycles. Generating agricultural labels based 

on high resolution imagery is feasible for certain crops that are highly distinguishable by texture, 

like maize, but many crops might not be detected by human vision as easily. While many tools 

exist, it is clear that establishing a globally stratified and harmonized dataset of crop type 

reference data can only be accomplished through international cooperation. First attempts at 

concerted efforts exist, and have been outlined in section 1.2.3, and it is clear that more steps are 

necessary in this direction, to counteract the heavy regional bias in crop classification research 

towards European countries, China and the USA. 

The improvement of modeling architecture in deep learning is the focus of research in many 

scientific fields, taking many different directions. Due to the fact that these models can get 

arbitrarily complex in terms of fitted parameters, and still show scaling in terms of performance, 

the consolidation of these architectures could potentially take very long. Specifically in the field 

of remote sensing, it is much too early to make predictions about the direction this development 
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will go, or how long it might take. A conceptually very simple modeling approach like random 

forests took decades to find its now very prominent place in the remote sensing community. Deep 

learning models in their current iteration have been around for not even one decade, and are 

more complex than any machine learning model, by several orders of magnitude. Given their 

ongoing popularity in many fields of science, engineering and general technology, it is important 

to not get overly optimistic about their role in this specific subset of remote sensing applications. 

Though, a steadily increasing body of research, this thesis included, implies that these algorithms 

are here to stay, and that they are a huge opportunity to improve satellite-based crop monitoring.  
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