e, o ——
“\‘;:1'0 ¥ EH¢

\ Universitat Trier

Pre-Shape Calculus

a Unified Framework for
Mesh Quality and Shape Optimization

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt am Fachbereich IV - Mathematik
der Universitat Trier von

Daniel Luft

im September 2021

Gutachter: Prof. Dr. Volker H. Schulz
Prof. Dr. Michael Hintermiiller






Abstract

In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.

To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.

A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.

We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.

We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.

Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.

All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.






Zusammenfassung

Ubliche Formoptimierungsverfahren basieren hiufig auf Verformungen des Berechnungs-
netzes, welche in der Regel zu einer Verringerung der Netzqualitat oder sogar zu dessen
Zerstorung fiithren.

Wir formulieren einen geeigneten theoretischen Rahmen mittels sogenannter Praform-
rdume, um das Auftreten solcher Komplikationen zu vermeiden. Dies ermdoglicht eine
einheitliche Theorie der Formoptimierung und von Problemen im Zusammenhang mit
der Parametrisierung und Netzqualitdt. Damit verfolgen wir einen Freiform-Ansatz zur
Formoptimierung, im Gegensatz zu parametrischen Ansétzen, die mogliche Formen ein-
schrianken. Wir definieren das Konzept der Priformableitungen, und leiten zugehorige
Struktur- und Kalkiiltheoreme her, welche die klassische Formoptimierung und das zuge-
horige Formkalkiil verallgemeinern. Tangentiale und Normalenrichtungen flieen beide in
Préaformableitungen mit ein, im Gegensatz zu klassischen Formableitungen, welche aus-
schliefllich Normalenrichtungen auf Formen beinhalten. Techniken der klassischen Form-
optimierung und das zugehorige Formkalkiil lassen sich in diese Theorie tibertragen, und
sind in allgemeiner Formulierung fiir zukiinftige Referenz zusammengetragen.

Eine Problemklasse zur Sicherstellung der Netzqualitat wird eingefiihrt, welche durch
Verwendung der Praformableitungen losbar ist. Diese Problemklasse erlaubt eine nicht-
uniforme Adaptierung des Form- und des gesamten Rechennetzes, welche durch den
Nutzer spezifizierbar ist. Sie kann als Regularisierung zur simultanen Optimierung klas-
sischer Formoptimierungsgréfien und der Netzqualitdt dienen. Existenz regularisierter
Losungen wird garantiert, und es wird gezeigt, dass zugehorige optimale Praformen
den optimalen Formen des urspriinglichen Formoptimierungsproblems entsprechen, wobei
diese zusatzlich die durch den Nutzer vorgeschriebene Parameterisierung erfiillen.

Wir prasentieren Modifizierungen von Formgradientensystemen, welche ein simultanes
numerisches Optimieren von Formen bei gleichzeitiger Verbesserung der Netzqualitét
bewerkstelligen. Weiterhin wird die Konsistenz der modifizierten Gradientensysteme
sichergestellt. Der numerische Rechenaufwand unserer Techniken ist begrenzt, da kein
zusétzliches Losen moglicherweise groferer (nicht-)linearer Systeme fiir regularisierte Form-
gradienten nétig wird. Wir implementieren und vergleichen diese Regularisierungen der
Praformgradienten fiir ein 2D-Problem, welches anfallig flir Zerstorung des Netzes ist.
Da unser Zugang nicht von der Art abhéngt, mit der Formgradienten dargestellt werden,
verwenden und vergleichen wir Darstellungen von Praformgradienten mittels schwacher
linearer Elastizitats- und schwacher quasilinearer p-Laplace-Gleichungen.

Weiterhin fiihren wir einen Quasi-Newton-ADM inspirierten Algorithmus fiir Netz-
qualitdt ein, welcher hinreichende nutzerspezifizierte Adaptierung des Netzes gewéhrleistet.
Dieser ist zuséatzlich zu den Techniken der simultanen Netzregularisierung anwendbar.

Unabhangig von den Techniken zur Netzregularisierung, betrachten wir Formopti-
mierungsprobleme, welche durch elliptische variationelle Ungleichungen erster Ordnung
beschrinkt sind, d.h. sogenannte Hiirden-Probleme. Im Allgemeinen lassen sich keine
iiblichen notwendigen Optimalitdtsbedingungen fiir solche semi-glatten Formoptimierungs-
probleme formulieren. Unter geeigneten Annahmen beweisen wir Existenz und Konver-
genz von Adjungierten, welche zu glatten Regularisierungen der variationellen Ungleich-
ungsbeschrankung gehoéren. Auflerdem leiten wir Formableitungen fiir das regularisierte
Problem her, und beweisen deren Konvergenz zu einem Grenzobjekt. Basierend auf dieser
Analyse, entwickeln wir einen effizienten Optimierungsalgorithmus, welchen wir numerisch
testen.

Alle vorhergehenden Techniken der Praformregularisierung werden an einem beispiel-
haften Formoptimierungsproblem getestet, welches durch eine variationelle Ungleichung
beschrankt ist. Hierbei entwerfen wir passende Zielgroflen zur verbesserten Netzadap-
tierung an sich veréndernde eingebettete Formen, und zur Adaptierung an Rénder der
zur variationellen Ungleichungsbeschrankung gehorigen aktiven Menge.
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the contribution from the author of this work is given by [7, Sec. 2.1.2], and corre-
sponding numerical implementations and figures described and found therein.
Findings of [122] are given in chapter 8. They are adapted to fit the more general
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work. In particular, shapes in this work are allowed to have boundaries themselves.
Both [120] and [121] are accepted for publication in the journal Control and Cyber-
netics 2021.

All figures, tables and numerical implementations presented in this work, including
those which are also found in the works [7, 122, 120, 121], are made by the author
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Glossary of Spaces and
Object Collections

Be(M,R™*1) Space of smooth shapes, abbreviated by B
C°(M) Space of continuous functions
C>(M) Space of smooth functions

C>®(M,\"T*M) Space of smooth volume forms on M

C (D, R™ 1) Space of smooth vector fields vanishing on ¢(M) U 9D

0,0(M

Ck((p1§4 )) Space of k-times differentiable functions with continuous k’th
derivative

CO1(M) Space of Lipschitz functions

CF(M) Space of k-times differentiable functions with k’th continuous
derivative having Holder coefficient «

C§° (M) Space of smooth functions vanishing at M

C(M) Space of smooth functions with compact support

H*(D,R"H1) Space of s-times weakly differentiable vector fields with square-

integrable weak derivatives

H(D,R™H1) Space of s-times weakly differentiable vector fields vanishing on

0D with square-integrable weak derivatives

H§ o(M) (D,R"*+1)  Space of s-times weakly differentiable vector fields vanishing on
i U 0D with square-integrable weak derivatives

L>(D) Space of essentially bounded functions
Lr(D) Space of p-integrable functions
T, Diff (p(M)) Tangent space of fiber at p, vertical bundle component of

T, Emb(M, R"+1)

T, Emb(M,R""!)  Tangent space of pre-shape space at ¢ € Emb(M,R"*!)
Trp)Be Tangent space of shape space at 7(y), horizontal bundle com-

ponent of T}, Emb(M,R"*1)

8

derivatives in L? (D)

Natural numbers

Real numbers

Nr®EzzZzz9 =

bundle representation

H" Half-space of R™

P(R™1) Power set, collection of all subsets of R™*!
Diff (M) Group of smooth diffeomorphisms of M
Diff®(M) Group of homeomorphisms of M

Space of k-times weakly differentiable functions with weak

n+1-dimensional open hold-all domain, usually a subset of R*+1
n-dimensional manifold, perhaps with boundary oM

Space of normal vector fields, horizontal bundle representation

Set of admissible shapes as sets, a subset of P(R™*1)
Space of tangential vector fields parallel to boundaries, vertical



Diﬁw(M)(D)

Emb(M, R"+1)
Embg ), (M, R"+1)

Gr(M,R™+1)

int(D)
vol (M)
D
)
oD

Group of H*-Sobolev diffeomorphisms of M

Group of H?-diffeomorphisms of M preserving volume form w

Group of orientation preserving smooth diffeomorphisms of M

Group of smooth diffeomorphisms of M preserving volume form
w

Group of smooth diffeomorphisms of D, which leave ¢ (M) U ID
pointwise invariant

Pre-shape space, collection of smooth embeddings

Pre-shape space with invariant boundary, collection of smooth
embeddings which leave M pointwise invariant

Nonlinear Grassmannian, collection of all submanifolds of R™+!
of diffeomorphism class M

Interior of D

Space of smooth volume forms on M with same orientation and
total volume as w

Closure of D

Nonnegative first orthant of R™

Boundary of D



Glossary of Objects

D¢ Jacobian matrix of ¢

D7y Covariant derivative of ¢

Dr¢ Tangential derivative of ¢ on a subset

T; Domain perturbation

U (Pre-)shape gradient, or open subset of a base space

V.W Vector fields

a(-, ) Form for (pre-)shape gradient representations

a(-,-) Bilinear form featured in state equations

¥ Curve

Af Laplacian of f

p Diffeomorphism

K Mean curvature

n Outer unit normal vector field, or dimension

N Outward pointing unit normal vector field for manifolds with
boundary oM

P Obstacle

DJ Pre-shape derivative of J

D2y Pre-shape Hessian of J

D J Pre-shape material derivative of J

m Fiber bundle projection

r Right-hand side of state equations

q,q° Externally defined parameterization tracking targets

r Shape

%) Pre-shape

p* Pullback of differential forms via ¢

DT Shape derivative of J

DT Shape material derivative of J

T Tangent unit vector field

3 Pre-shape functional

M 4D Pre-shape parameterization tracking functionals

J Shape functional

10) Pre-shape for the hold-all domain D

df Differential of pushforward of tangent vectors via f

A Tangential vector via velocity of ~

1y Indicator function of A

L Lagrangian function

Lyw Lie derivative of w in direction V'

Vrf Tangential gradient of f on a subset

Vf Gradient of f

w Volume form

PrHé,WU Projection operator mapping H! (D, R"*1) — H(%,@(M) (D, R*+1)

xii



TI'X

det D7
div(V)
diVF(V)
div,, (V)
divyr(V)
max(0, a)
max- (o)

sign(a)
sign(«)
supp V
tr(A)
vol(D)
i
g9
gN

gT

Trace operator for functions onto X

Jacobian determinant of D7¢

Divergence of V

Tangential divergence of V' on a subset

Divergence of V' with respect to volume form w
Tangential f-divergence of V' on a subset

Maximum function of 0 and «

Smoothed version of maximum function max(0, o) with smooth-
ing parameter vy

Derivative of max(«)

Heaviside step function

Support of V

Trace of matrix A

Lebesgue measure of D

Pre-shape parameterization tracking target densities
Initial densities for parameterization tracking
Normal pre-shape derivative component

Tangential pre-shape derivative component
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Chapter 1

Introduction

Shape optimization is an active research area at the border of theoretical and applied
mathematics. Not only is it a subject concerned with spaces and objects of astound-
ing structural richness, but also a key tool for industrial applications. To give some
examples, shape optimization is used in the design of turbomachinery (cf. [7, 8, 66]),
superconductors (cf. [109]), wing configurations of aircrafts (cf. [97, 153, 156]),
acoustic devices (cf. [157]), pharmaceutical applications (cf. [165, 140]), electrical
motors (cf. [59]) and for electrical impedance tomography (cf. [48, 107]).

In most practical scenarios of shape optimization, it is inevitable to use numeri-
cal techniques to construct desired optimal shape solutions. The quality of solutions
is strongly linked to the representation of shapes and computational domains. A
large family of shape optimization methods is based on discretization of shapes and
hold-all domains by meshes, similar to those found in finite element computations.
It is common to pursue a design process, in which the coordinates of the domain and
shapes are updated in each iteration. These techniques are sometimes denoted as
mesh-morphing algorithms. In particular, they permit application of shape deriva-
tive based techniques, such as shape gradient descents in various styles, or shape
quasi-Newton methods.

A fundamental, perhaps unavoidable, problem of mesh-morphing routines is the
possible degeneration or destruction of the computational mesh after sufficiently
many or large deformations. This particularly affects many shape optimization
problems of interest, which have a constraint, such as a partial differential equation
or a variational inequality. A key component of reliable solutions to these is the
quality of the computational mesh. For example, it is well-known that poor quality
of elements affect the stability, convergence, and accuracy of finite element and
other solvers due to poorly conditioned stiffness matrices (cf. [163]). Therefore, an
accurate solution of underlying model problems on degenerated meshes, and thus
of the entire shape optimization problem, is hard or next to impossible.

Goals of This Work A main goal of this work is to design shape optimiza-
tion techniques, which ensure desired mesh quality. These should come with little
additional numerical cost, be compatible with other different shape optimization
techniques found in the literature, and not interfere with the original problem. The
techniques we develop do not involve changes in mesh topologies, and particularly
avoid remeshing or mesh refinements.

To handle this task, we propose an abstract framework for shape optimization
using so-called pre-shape spaces. This setting is suitable to formalize two seemingly
unrelated classes of problems. For one, pre-shape spaces are suitable to state shape
optimization problems. On the other hand, they can also be used to pose parameter-
ization or mesh quality problems. The novelty of our approach is to simultaneously
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situate both shape optimization, and mesh quality optimization in a single uni-
fied framework. For these spaces, we can derive a pre-shape calculus, generalizing
classical shape calculus. Pre-shape spaces are suitable to state a class of so-called
pre-shape parameterization tracking problems, which can act as regularizers for
shape optimization problems. These problems are used to achieve specified, per-
haps non-uniform, cell volume distributions of the hold-all domain and the shape
mesh. Shapes are permitted to have boundaries, and can have arbitrary integer
codimension with respect to their ambient space. In specialized cases, this problem
class yields numerical algorithms similar to so-called deformation methods, which
reallocate nodes of numerical meshes according to target element volumes. With
their pre-shape derivatives, we formulate efficient routines for shape optimization
problems, which at the same time optimize quality of the surface mesh representing
the shape, and of the volume mesh representing the hold-all domain.

These regularizations are implementable in existing numerical routines solely
by adding additional pre-shape derivative terms on the right-hand sides of shape
gradient representations. This ensures that shape gradient systems neither increase
in size, nor become nonlinear. Also, our approach does not depend on the left-hand
side, which can be any sufficient bi- or nonlinear form. The user is free to choose
his preferred shape gradient representation, with our mesh quality regularization
approach employable in addition. Pre-shape techniques presented in this work are
applicable to general problems, and do not interfere with the original shape opti-
mization problem.

We also design a second, complementary mesh quality routine inspired by the
alternating directions method (ADM). This routine can be applied on top of the
regularized shape gradient systems, and permits application of efficient optimization
techniques, such as (quasi-)Newton methods. With these techniques, desired surface
and surrounding volume mesh quality are ensured during shape optimization with
mesh morphing, while optimal shapes stay invariant.

Further, we examine tracking type shape optimization problems constrained by
elliptic variational inequalities of first kind. The results concerning their regulariza-
tions, shape derivatives, and convergence behaviors can stand on their own, and are
not necessarily linked to pre-shape techniques. However, to highlight the applicabil-
ity and flexibility of our pre-shape techniques, we design a mesh quality regulariza-
tion technique tailored for the application to shape optimization under variational
inequalities. These methods adapt the mesh for higher resolution of areas with in-
teresting features of the constraint, and are not just applicable for VI-constrained
shape optimization problems, but adaptable for general shape optimization.

Structure of This Work The outline of this work is as follows. Selected parts
of this work are found in [122; 120, 121, 7], and are published or accepted for
publication at the time writing.

First, we give a literature overview of related works in the remainder of this
introduction. In chapter 2, we collect theoretical background material not related
to shape optimization. Then, in chapter 3, we give a brief introduction to selected
aspects of shape optimization. In particular, we highlight our application of so-
called Steklov-Poincaré metrics for optimization of turbomachinery in the context
of BMBF project GivEn.

Chapter 4 is divided into two parts. In section 4.1, we give an introduction
to shape and pre-shape spaces in the context of infinite dimensional differential ge-
ometry, relate their tangent bundles, and give some notes on topology. Thereafter,
the remainder of this work consists of our own results. Section 4.2 begins with
definitions of pre-shape functionals and corresponding pre-shape derivatives. We
show that shape differentiable functionals are pre-shape differentiable, and derive a
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structure theorem for pre-shape derivatives in style of the Hadamard-Zolésio theo-
rem. Corresponding pre-shape calculus rules, in particular using pre-shape material
derivatives, are collected, and also hold in the specialized case of shape calculus.

After establishing the general theory of pre-shape calculus, we study the pre-
shape parameterization tracking problem class in chapter 5. We show existence
of solutions for each shape, perhaps with boundary, in the pre-shape space in sec-
tion 5.1, and give a discussion on generalizations for shapes of arbitrary codimen-
sion, embedded in nonlinear ambient spaces. Following this, we show some general
properties of the parameterization tracking problem concerning finite point sets in
section 5.2.1. Then, we focus on the non-uniqueness of solutions in section 5.2.2, and
characterize locally neighboring solutions by use of f-divergences and Euler-Arnold
flows induced by L?-metrics on the fibers of pre-shape spaces. The pre-shape deriva-
tive of the parameterization tracking problem is derived and analyzed in section 5.3.
We harness the pre-shape derivative structure to show that a weaker notion of van-
ishing pre-shape derivative is in fact a sufficient condition for global optimality of
parameterization tracking. Building on this, we present a first numerical imple-
mentation in section 5.4, which shows how the parameterization tracking problem
can be used to achieve desired mesh qualities. After this numerical intermezzo, we
derive a closed expression for its pre-shape Hessian in section 5.5, and discuss its
properties in solutions.

In chapter 6, we build the theory for simultaneous shape and mesh quality
optimization using pre-shapes. Particularly, we start with regularization of meshes
representing the shapes in section 6.1. Then, we propose a modified parameteriza-
tion tracking problem for hold-all domains in section 6.2.1, which permits invari-
ance of embedded shapes. We prove existence of solutions, and formulate a shape
and volume mesh regularized bilevel version of shape optimization problems. An
existence result for the regularized bilevel problem is provided in section 6.2.2, con-
sistency of pre-shape gradient systems is guaranteed, and invariance of solutions to
the underlying original shape optimization problem is shown.

Numerical implementations of these mesh quality regularization techniques are
shown in chapter 7. We pose a model problem in section 7.1, and describe how
point densities and their pre-shape material derivatives for pre-shape parameteri-
zation tracking are constructed. The various pre-shape gradient systems for mesh
quality regularization are discussed in section 7.1.3. In particular, we highlight
the flexibility of our approach by applying it to linear elasticity and quasilinear
p-Laplacian shape gradient representations. Several unregularized and regularized
shape optimization procedures are implemented, and the comparative results are il-
lustrated and discussed in section 7.2. Also, the pitfalls of more direct approaches for
pre-shape regularizations are numerically highlighted in section 7.3 and section 7.4,
and compared to our proposed methods.

In chapter 8, we take a slight detour from pre-shape calculus techniques, and
focus on a tracking type shape optimization problem class constrained by elliptic
variational inequalities (VI) of first kind. Regularization techniques are shown,
which permit existence results for adjoints and shape derivatives. Convergence of
these objects is shown for vanishing regularizations, and are put into numerical
practice.

Finally, we combine all previous results in chapter 9, and provide a customized
pre-shape regularization target for VI-constrained shape optimization problems.
An ADM inspired pre-shape regularization algorithm featuring L-BFGS methods
for mesh quality is proposed in section 9.2, which is also applicable outside the
frame of VI-constrained shape optimization, and can be combined with all previous
techniques. We numerically compare our approaches for the VI-constrained shape
optimization problem in section 9.3.

An outlook on potential topics for further research is presented in chapter 10.
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1.1 Literature Review

In this section, we collect literature on techniques and subjects related to this work.
This list is by no means exhaustive, but should make it easier for the reader to
contextualize this work, and to evaluate its significance. For the pre-shape reg-
ularization techniques for mesh quality, we consider two categories of literature.
First non-shape optimization results, with techniques for mesh adaptation having
relations to our approach, or being special cases of our approach. And second,
shape optimization techniques for mesh quality, which try to achieve similar goals
as our strategies, but are different in their way of achieving this. Then we also
consider literature related to our approach for shape optimization under variational
inequalities.

The techniques for pre-shape parameterization tracking we introduce in sec-
tion 5.1 have their roots in a result by Moser [134] from 1965. Essentially, Moser’s
theorem guarantees existence of diffeomorphisms on manifolds, which give rise to
specified volume forms via pullbacks. This results was extended to Riemannian
manifolds with boundary by Banyaga in [10], and then refined in [39] by Dacorogna
and Moser. In [39], several different analytical techniques guarantee existence and
regularity for PDEs involving the Jacobian determinant. Also, Moser’s existence
theorem is extended to manifolds with corners by Bruveris, Michor et al. in [28],
which includes the cases of simplicial complexes and polyhedric meshes. These exis-
tence theorems lay the foundation of so-called mesh deformation methods, and also
play a role for some results of this work. Deformation methods redistribute mesh
vertices, such that a target cell volume is achieved, while preventing mesh tangling.
This method was pioneered in [112] by Liao and Anderson. It is a special case of
our results, in the sense, that it correspond to uniform cell volume allocations.

In [19], Bochev, Liao and dela Pena introduce a deformation method by looking
at Euler-Lagrange equations of several different functionals, in order to track for
element volume distributions. A divergence equation is formulated, and an addi-
tional curl condition is imposed to provide existence and uniqueness of deformation
directions for the case of Lipschitz domains without reentrant corners in 2 and 3 di-
mensions. The generated vector fields are used to implement an ODE, which gives
a mesh deformation with desired volume allocation properties for a fixed mesh.
These results also apply to non-uniform cell volume allocations. In [114], Liao et
al. apply the deformation method developed in [19] to steady state Euler equa-
tions to adapt meshes for better resolution of interfaces and shocks. The authors of
[31] look at a deformation law to achieve volume concentrations of cells measured
by Jacobians, which is given by advection flows generated via minimization of a
least squares functional. [29] extend these methods to time dependent problems by
looking at a least-squares formulation for deformations to track the element volume
distribution of meshes at various points in time. These techniques can be related to
the pre-shape parameterization tracking problem in section 5.1 for the special case
of invariant Euclidean domains, i.e. mesh quality optimization of codimension zero
shapes, which are left fixed, and where no shape optimization takes place.

The techniques in [112, 19, 114, 29] are not directly suitable for simultaneous
shape optimization, because they do not guarantee invariance of optimal shapes,
since the mesh nodes are unrestricted in their movement to achieve desired cell vol-
umes. Moreover, they need to solve an additional PDE and ODE to generate the
mesh deformation for a fixed mesh. Also, they are not stated for manifolds, i.e. are
not directly applicable to the regularization of surface meshes arising in shape opti-
mization. The regularizations with the pre-shape parameterization tracking in chap-
ter 5 and chapter 6 do not suffer from these drawbacks. In particular, we do not rely
on solution of additional (non-)linear systems, PDEs or ODEs. Instead, we modify
right-hand sides of shape gradient systems, such that the underlying mesh is simul-
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taneously increasing quality and reducing the shape optimization objective. The
non-uniqueness characterization of solutions to pre-shape parameterization track-
ing via L?-metrics on diffeomorphism groups and Euler flows in section 5.2.2 can
be related to the curl condition in [19] for the special case of uniform targets, no
shape optimization taking place, and Euclidean domains.

Mesh deformation methods are also encountered in mesh generation, as in [185],
where a higher order element mesh generation algorithm is derived by combining
a local refinement technique with the deformation method on variable domains. It
uses a div-curl system and techniques similar to [19, 29].

In [43], Delzanno and Finn propose a framework for mesh deformation methods
by using a tracking type objective functional with additional terms. They show
connections to LP-Monge-Kantorovich and LP-Monge-Ampeére problems. Also, an
LP-fluid dynamic formulation, in which a density obeying a continuity equation is
advected, is shown to be equivalent to LP-Monge-Kantorovich deformation methods.
These results are not posed in the context of shape optimization, and as such are not
immediately suitable for the same reasons just discussed for [19, 114, 29]. However,
they are interesting, since we also recover connections of our techniques to optimal
transport on manifolds at the end of section 5.1.

In [180, 68, 69], Turek et al. employ deformations methods originating in [19]
to design moving mesh strategies for solution of differential equations. The authors
of [180] show how alternating solution of flow equations by a multigrid fictitious
boundary method, and application of a deformation method similar to [112], yields
an efficient algorithm for simulation of particle flows. In [68], a deformation method
is proposed, which generalizes techniques from [112] by introducing a function ¢
capturing the volume distribution of the initial mesh. Then, a divergence equation
with additional constraint is solved, giving a vector field used to assemble an ODE.
Solving this ODE results in the desired mesh deformation at final time.

On Euclidean domains and the special case of optimization in so-called fibers
of pre-shape spaces, our method computes mesh deformations related to those in
[68], but with methods of pre-shape calculus. In contrast to [68], this does not
require alternating solutions of ODEs for mesh deformations. Instead, we can apply
our techniques on gradient systems, which could be interpreted as a deformation
method working simultaneously with shape optimization descents. Also, techniques
of [180, 68, 69] are not directly suitable to optimization of manifold meshes.

The work [69] builds on [68] by introducing a multigrid approach to speed up
calculation of mesh deformations, which has a runtime growing only linearly with
the problems size. In chapter 9, we take a different route, because our mesh quality
problem is posed in the context of pre-shape spaces. This permits application of
shape quasi-Newton methods for mesh quality increase.

[60] use optimization methods based on condition numbers and reference Jaco-
bians of elements on non-planar surface meshes as criteria to increase mesh quality.
[123] design an optimization method using a gradient descent for penalty functions
based on Jacobians of mesh elements in order to improve mesh quality, while check-
ing for validity of node placements.

There are also techniques for mesh quality, which are not related to Moser’s
theorem and the resulting deformation methods previously discussed. For example,
[53] explores the use of Laplacian smoothing combined with local Delaunay retri-
angulation to improve mesh quality. [54] develops various algorithms to increase
mesh quality by combining local Laplacian smoothing together with optimization of
mesh quality criteria, such as dihedral angles or aspect ratios, in different ways. In
[164], mesh warping algorithms for unstructured tetrahedric meshes are enhanced
by determining weights for a deformation using an interior point method. Based on
the new locations and previous weights, a linear system is solved to determine final
nodal positions, which in total mimics effects of locally weighted Laplacian smooth-
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ing. The authors of [184] use a combination of smoothing based and geometric flow
optimization to improve quality of quadrilateral and hexahedral manifold meshes,
while preserving geometric features. In particular, it is based on diffusions on the
shape modeled by the Laplace-Beltrami operator.

These approaches differ considerably from our approach, since they are not

directly applicable to shape optimization due to possible deformation of embedded
shapes. Further, the use of mesh smoothing techniques does not allow for specified
mesh quality targets, which is possible with the techniques explored in section 5.1
and further chapters.
We explicitly emphasize, that our methods are not related to mesh untangling and
-relaxation, edge swapping or remeshing strategies such as [54, 55, 2, 98]. By their
nature, these type of methods are based on a discrete setting, as opposed to our
methods based on a continuous framework.

The following literature falls under the category of shape optimization techniques
to achieve better mesh quality, or are related to these.

In [145], Onyshkevych and Siebenborn develop a method for shape optimiza-
tion, which modifies gradient representations of shape derivatives. The boundary
formulation of the shape derivative is used as a Neumann condition on the shape
to assemble a system incorporating a nonlinear advection term to represent a shape
gradient in volume formulation. This formulation advects nodes of the volume mesh
in order to mitigate element degeneration, and requires solution of a nonlinear sys-
tem to construct the shape gradient. Advection parameters have to be chosen a
priori.

In [75], Haubner, Siebenborn and Ulbrich develop an approach to shape optimiza-
tion using the method of mappings to guarantee non-degenerate deformations of
meshes is presented. For this, the shape optimization problem is regarded as an
optimization in function spaces. A penalty term for the Jacobian determinants of
deformations is added, which leads to a non-smooth optimality system. Deforma-
tions computed by solving this system have less tendency to degenerate volumes of
cells.

In the work [49], Etling, Herzog, Loayza-Romero and Wachsmuth enhance mesh
morphing routines for shape optimization by correcting the invalidity of the Hadamard
theorem due to discretization of the problem. The correction for degenerate steps
requires a restriction of deformation directions based on normal fields of shapes,
which leads to larger linear systems for shape gradients due to the additional con-
straints.

In [155], Schmidt applies mesh smoothing inspired by centroidal Voronoi reparam-
eterization to construct a tangential vector field to correct degenerate surface mesh
cells. For correction of volume mesh cell degeneration, a shape gradient representa-
tion featuring a nonlinear advection term is used, where the integrand of the shape
derivative in boundary formulation acts as a Neumann condition on the shape.
Construction of the advection term relies on solution of an Eikonal equation with
respect to the shape.

In contrast to techniques proposed in this work, no node or target cell volume
allocation are possible with the approaches found in [145, 75, 155, 49]. User spec-
ified gradient representations are also not valid in general, or require modification
of techniques. Numerical costs are higher in comparison, since the modification of
left-hand sides of shape gradient representations in [145] and [155] result in non-
linear systems. Corrected discrete shape gradient representations in [49] result in
significantly larger linear systems compared to standard shape gradient representa-
tions. Our techniques have approximately the same numerical expense as the chosen
shape gradient representation, since only right-hand sides of gradient systems are
modified.

In order to mitigate roughness of shape gradients and resulting degeneration of
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meshes, Schulz, Siebenborn and Welker construct shape gradient representations
by use of Steklov-Poincaré metrics in [161, 159]. As an example, they propose the
weak linear elasticity metric, giving a more regular shape gradient representation
by solution of a linear system with volume formulations of shape derivatives.

In [40], Deckelnick, Herbert and Hinze employ shape descent directions in the
Wh>°_topology, which are related to shape gradient representations with the oo-
Laplacian. Numerical results show enhanced convergence properties for a shape
optimization problem on star-shaped domains, especially enhancing resolution of
corners. The authors of [135] build on [40], and propose shape gradient represen-
tations using the strong formulation of the nonlinear p-Laplacian equation. The
system is solved via Picard iterations, and numerical results in the context of fluid
dynamics suggest better suitability of p-Laplacian represented shape gradients for
large deformations, particularly for optimal shapes with corners.

Our approaches are compatible with those of [161, 159, 135], and can in fact be
used in addition to any type of shape gradient representation. To highlight this, we
use pre-shape gradient representations similar to those of [161, 159, 135] in numerical
applications of our techniques found in section 5.4, chapter 7 and section 9.3.

In [84], Hiptmair and Paganini view shape optimization as optimization over
an admissible set of vector fields with sufficiently small norms, which represent
diffeomorphisms of the shape and domain by a perturbation of identity approach.
This results in a method that uses nested trial spaces to represent shapes via B-
splines, and does not rely on a moving mesh approach. The framework of this
approach is related to our work, since we situate shape optimization in the context
of pre-shape spaces, which have the diffeomorphism groups of domains discussed in
[84] as special cases.

In [78], Herzog and Loayza-Romero construct a Riemannian metric for the man-
ifold of planar triangular meshes with given fixed connectivity, which makes the
space geodesically complete. They propose a mesh morphing routine by geodesic
flows, which uses the Hamiltonian formulation of the geodesic equation solved with
symplectic numerical integrators. Numerical experiments in [78] suggest that cell
aspect ratios are bounded away from zero, and thus avoid mesh degradation during
deformations.

Outside the context of shape optimization, Laurain and Walker [108] design a
method for shape/mesh morphing by approximating a given flow of shapes with
mean-curvature flows respecting volume-preservation.

As we propose regularization techniques for elliptic VI-constrained shape opti-
mization problems in chapter 8, we give a selected literature overview on this and
related topics.

By usage of tools of modern analysis, such as monotone operators in Banach
spaces, significant results on properties of solution operators of variational inequal-
ities have been achieved since the 1960s by Brézis, Stampacchia and Lions [26, 27,
113]. Bonnans and Tiba [22] deal with control problems of variational inequali-
ties governed by semilinear elliptic operators. Optimality conditions are derived
via smoothing methods, and convergence of the regularized state and control for
vanishing smoothing are shown. Liu and Rubio [115, 116] present existence re-
sults for shape optimization problems which can be reformulated as optimal control
problems. In [104], Kocvara and Outrata study shape optimization of 2D elasto-
plastic bodies, where the shape is simplified to a graph such that one dimension
can be written as a function of the other. The non-trivial existence of solutions of
VI-constrained shape optimization problems is discussed in [41, 168]. For exam-
ple, in [168, Ch. 4], shape derivatives of elliptic variational inequality constrained
problems are presented in the form of solutions to again variational inequalities.
Ito and Kunisch [93] discuss optimality conditions for optimal control problems
constrained by elliptic variational inequalities via a primal-dual penalty approach.
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Under sufficient assumptions, existence of Lagrange multipliers and convergence of
solutions of the penalized problems to the original problem are shown, and a primal-
dual active set strategy is devised. In [79], Hintermiller considers least-squares
problems constrained by variational inequalities in bilevel formulations. Primal-
dual penalization techniques from [93] are extended, and so-called complementarity
functions are used to allow formulation of optimality systems in form of equali-
ties. In [138, 139], Mysliriski proposes and applies level-set methods to graph-like
two-dimensional contact problems. Hintermiiller [80] extends [79] by building on
the concept of C-stationarity to avoid problems from low regularity multipliers.
With this, an active-set method with feasibility restoration is developed. Instead
of using penalty techniques, Hintermiiller and Kopacka [81] relax complementarity
constraints of VI-constrained optimal control problems. Then, Moreau-Yosida type
regularizations are applied, and a semi-smooth Newton method is proposed to solve
the regularized subproblems. In [83], Hintermiiller and Surowiec avoid the use of
penalization or relaxations techniques as found in [81, 79], and directly derive opti-
mality conditions to VI-constrained optimal control problems by use of variational
analysis. Hintermiiller and Laurain [82] present a regularization approach to the
computation of shape and topological derivatives in the context of elliptic varia-
tional inequalities, circumventing the numerical problems in [168, Ch. 4]. Schiela
and Wachsmuth [152] look at optimal control problems constrained by elliptic VI,
which are regularized and smoothed to give semilinear elliptic PDE. Sharp conver-
gence estimates and optimality conditions of regularized solutions are derived. In
[35], Christof, Clason, Meyer and Walther analyze optimal control problems con-
strained by semilinear and semi-smooth elliptic equations, which similarly arise for
variational inequalities of first kind. They give descriptions of subdifferentials, and
of necessary optimality conditions via smoothing techniques. In [76], Heinemann
and Sturm perform a sensitivity analysis for a class of semilinear variational in-
equalities, a strong convergence property is shown for the material derivative, and
state-shape derivatives are established under regularity assumptions. Brett, Elliott,
Hintermiiller and Lobhard [25] consider adaptive mesh refinement techniques for
tracking type optimal control problems constrained by elliptic variational inequal-
ities. These are based on a refinement indicators constructed via error of the reg-
ularized and unregularized objective functional and mismatch in complementarity
of primal variables and their multipliers. In [109], Laurain, Winckler and Yousept
examine shape optimization of superconductors, with physics governed by curl-curl
variational inequalities of second kind with L!-nonlinearities. State equations are
regularized, and existence and closed formulations of respective shape derivatives
are provided. In [57], Fiihr, Schulz and Welker devise a shape optimization method
based on an ad-hoc smoothing of a variational inequality of first kind based on
[94]. The authors of [57] observed that the performance of this algorithm strongly
depends on the tightness of the obstacle. This problem does no longer arise with
the strategy developed in chapter 8. The solution algorithm gets even faster, the
more degrees of freedom are constrained by the obstacle.



Chapter 2

Background Material

Before we delve into the theory of pre-shape calculus and its application to mesh
quality optimization during shape optimization, we collect some preliminary results
from various areas of mathematics in this chapter. Of course, we cannot give a
complete overview of all definitions and techniques we employ throughout this work,
so we limit ourselves to a selection of these. We begin by defining so-called Fréchet
spaces. For an introduction to Banach, Hilbert and Sobolev spaces, we refer the
reader to [147, 175, 50]. Essentially, Fréchet spaces are metrizable, complete, locally
convex vector spaces (cf. [175, App. A.3]).

Definition 1 (Fréchet Spaces). Let F' be a vector space, perhaps infinite dimen-
sional. Consider a countable family | -|s: F — [0,00) of semi-norms, i.e.

(i) o~ fls = lal - |f|s for all f € F, a €R

(i) |f +gls <|fls +1gls for all f,g € F.

Additionally assume
f#0 = |f|s#0 for some s € N.

Then F is a metric space with distance function

s f—dgls
Zz i (2.1)

We say (F,d) is a Fréchet space, if it is complete with respect to the distance
function defined in equation (2.1). Further, convergence with respect to d(-,-) is
equivalent to

lfn=1fls =0 forn—oo foral |-]|s.

The most important examples of Fréchet spaces in this work are the spaces of
smooth functions C*° (M) on compact manifolds M. The discussion of topologies
on these spaces is postponed to section 4.1. In the following, we define maps which
preserve the smooth structure of Fréchet spaces. This definition is a special case,
where a more general definition for so-called convenient vector spaces holds (cf. [105,
Ch. 1.1.13]).

Definition 2 (Diffeomorphisms of Fréchet Spaces). Let F' be a Fréchet space, and
U,V C F be open subsets. Consider a map p: U — V.

We call p a C*-diffeomorphism of U and V', if p is k-times Fréchet-differentiable
and bijective with k-times Fréchet-differentiable inverse p~'. If this property holds
for k = oo, we say p is a smooth or C*-diffeomorphism of U and V.
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The next definition describes structure preserving maps for topological spaces
(cf. [111, App. A]).

Definition 3 (Homeomorphisms of Topological Spaces). Let X andY be topological
spaces. Consider a map p: X — Y.

Then we say p is a homeomorphism, if it is continuous and bijective with con-
tinuous inverse p=1.

In the following definition, we give a description of the nonlinear spaces we
consider in this work. The definition of topological and smooth manifolds, perhaps
with boundary or corners, is found in [111, Ch. 1, Ch. 16], whereas the infinite
dimensional definitions are found in [71, Ch. 2.1].

Definition 4 (Manifolds). Let M be a topological space. Then we say M is an
n-dimensional topological manifold, if

(i) M is a Hausdorfl space, i.e. for every pair of distinct points p,q € M, there
are disjoint open sets U,V C M, such thatp e U and qeV

(ii) M is second countable, i.e. its topology has a countable basis

(ii) M is locally Euclidean or modeled on R™, i.e. for allp € M, we can find
open U C M and V C R", and a homeomorphism p: U — V.

We call such a homeomorphism p for p € M a chart centered in p. A collection
of charts with domains U covering M is called an atlas for M. Two charts p1 and
p2 with domains U; and Us are smoothly compatible of C*-regularity, if either
U NUy;=@, or pyopy: U NUy = Uy NUs is a C*-map.

A topological manifold M is said to be C*-regular, if there exists an atlas for
M, consisting of smoothly compatible charts of C*-reqularity. For k = oo, we say
M is a smooth or C°°-manifold.

We say M is a

e manifold with boundary, if R™ in (%ii) is replaced by the half-space
H" := {(x1,...,2,) € R": z, >0}

e manifold with corners, if R™ in (iii) is replaced by the nonnegative orthant
R:L_ ={(z1,...,2,) €ER": 1 >0,...,2, >0}

e Hilbert manifold, if R™ in (iii) is replaced by a Hilbert space H with its un-
derlying topology

e Banach manifold, if R™ in (iii) is replaced by a Banach space B with its
underlying topology

e Fréchet manifold, if R™ in (iii) is replaced by a Fréchet space F with its
underlying topology

e Sobolev manifold, if R™ in (iii) is replaced by a Sobolev space W with its
underlying topology.

For the case of manifolds with boundary or corners, open subsets of the mod-
eling spaces H" C R" and Ri C R™ are elements of the relative topology. We
mention this, because by definition, open subsets of manifolds M with bound-
aries or corners can have boundaries themselves. An example is the relative open
half ball B;(0) N H". Also notice, that connected finite-dimensional topological
manifolds are automatically path-connected (cf. [111, Prop. 1.11]). Further, for
infinite-dimensional manifolds M, the choice of topology on the modeling space is
non-trivial. Topologies in the context of Fréchet spaces are discussed in section 4.1.
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We also remind the reader, that a map f: M — N is C*(M, N), if its local repre-
sentations via charts is C* for appropriate modeling vector spaces.

Next, we describe a certain class of manifolds, the so-called fiber bundles. These
are of great importance in this work, as infinite dimensional pre-shape spaces carry
a natural fiber bundle structure. This structure is also reflected in the pre-shape
calculus we develop in later chapters. Put simply, fiber bundles are manifolds, which
locally look like product manifolds. The following definition is found in [105, Ch. 37]
and [111, Ch. 10.37].

Definition 5 (Fiber Bundles). Let E, F and B be smooth manifolds. We say E is
a smooth fiber bundle over B with standard fiber F, if there is a surjective smooth
map m: E — B, with the property that for every x € B, there exists a neighborhood
U C B of z, and a diffeomorphism ®: n=*(U) — B x F, such that

W(U)CE L UxSCBxF
/ (2.2)
w1 m
UcCB

commutes. Here, m1: B x F' — B 1is the projection onto the first component. We
call the spaces E total space, B base space and F' standard fiber. Also, we call
m: E — B canonical projection, and a pair (U, ®) fiber chart or local trivialization.

In order to derive a sufficient calculus for shape and pre-shape spaces, we provide
a concept for directions on manifolds M. At the same time, these can serve as a
local linearization of M (cf. [111, Ch. 3]).

Definition 6 (Tangent Spaces and Tangent Bundles). Let M be a smooth manifold,
perhaps with smooth boundary. For p € M and an interval I C R containing
0, consider smooth curves y1,y2: I — M with v1(0) = p = 72(0). Define an
equivalence relation of curves by

d

(fo'Yl)(O):g‘t:O(fo’YQ)(O) VfeC®(M,R). (2.3)

~ = —
Y1~ 72 dt f=0
An equivalence class [7y] for p is called a tangent vector at p, and the collection of
equivalence classes T, M is called tangent space at p. It has a vector space structure,
and its elements v € T,M act as derivations on functions f € C°(M,R) by

@) = 2

= G o) (2.4)

The collection of tangent spaces TM := I_IMTpM forms a smooth fiber bundle
pe

over the base space M with standard fiber T, M, and a smooth canonical projection
m: TM — M mapping vy € T,M — p.

The linearization of maps between manifolds is called differential. In the liter-
ature, it is often denoted as the pushforward of a map, as it permits to transfer
tangential vectors from one manifold to another. It also contains information about
the well-behavedness of maps between manifolds. The following definition is found
in [111, Ch. 3, Prop. 3.6].

Definition 7 (Differential of Manifold Maps). Consider two smooth manifolds M
and N, perhaps with smooth boundaries. Let F': M — N be a smooth map.
Then its differential in p € M is the map

dFy: T,M — Tp)N (2.5)
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defined by its action on tangential directions v € T,M and functions f € C*°(N,R)
via

dF, (%) (f) = 3(f o F) (D). (2.6)

It is linear and satisfies the chain rule.
With this collection of differential geometric concepts, we slightly shift our focus,
and collect some results from functional analysis, which are used in our study of

shape optimization constrained by variational inequalities. The next definitions are
found in [148, Ch. 3.1.1, App. A, Lem. 10.4] and [50, Ch. 6.2.1].

Definition 8 (Monotone and Coercive Operators). Let B be a real, reflexive Banach
space, and denote by (-,-)p its duality product. Consider an operator A: B — B*,
possibly nonlinear. We say A is monotone, if

(Az — Ay,x —y)p >0  Vax,yeB. (2.7)

The operator A is strictly monotone, if inequality (2.7) is a strict inequality for all
x #£y. We say A is coercive, if
A
im < ‘T7:17>B
lzllz—o0  [lz]| 5

=00 Vx € B. (2.8)

For a real Hilbert space H, a bilinear form a: H x H — R is called coercive, or
elliptic, if there exists a constant K > 0, such that

a(z,z) > K - ||z||3 vV € H. (2.9)

With these properties of operators on function spaces, we can give two existence
theorems. The first result is the lemma of Lax-Milgram, which is of interest for
linear elliptic equations, and is found in [148, App. A, Lem. 10.4] and [50, Ch. 6.2,
Thm. 1].

Theorem 1 (Lemma of Lax-Milgram). Let H be a real Hilbert space with a coercive,

bounded, possibly non-symmetric, bilinear form [-,-]: H x H — R. Then for every
bounded functional f € H*, there exists a unique u € H, such that
[u,v] = f(v) Vv e H. (2.10)

The second existence result is the Browder-Minty theorem. It considers semilin-
ear equations, where the nonlinearity stems from a monotone operator. We state a
specialized case, the general case for so-called hemicontinuous operators is found in
[148, Ch. 3.1.1, Thm. 1.5].

Theorem 2 (Browder-Minty Theorem). Let X be a separable, reflexive and real
Banach space with its dual space X*. Consider a coercive, monotone and continuous
operator A: X — X*. Then for all b € X*, the solution set to

Az =b (2.11)

is monempty, closed, bounded and convex. Further, if A is strictly monotone, then
the solution © € X is unique.

These existence results will serve us in our study on variational inequalities.
For a class of so-called pre-shape parameterization tracking problems, we rely on
different, perhaps lesser known existence results of so-called pull-back equations. An
extensive treatise on pull-back equations is given in [38]. The origin of the following
collection of theorems is found in [134] due to Moser from 1965. It affirmatively
answers the question, whether there exist diffeomorphisms, such that a prescribed
volume form on a manifold can be constructed via pull-back of another given volume
form. We rely on several different versions of this theorem, and begin by stating its
nonlinear PDE version from [38, Thm. 10.1].
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Theorem 3 (Dacorogna-Moser Theorem I). Let Q C R"™! be a bounded, connected
and open domain. For k >0 and o € (0,1), let 9 have C*+2%-Hélder reqularity.
Let f: Q — (0,00), g: Q — (0,00) be C**(Q)-regular functions.

Then there exists a diffeomorphism p: Q — Q with C*T1(Q)-regularity, such
that

9(p(x)) -det Dp(x) = A- f(x)  VreQ (2.12)

p(x) Vo € 09,

where A= [,9/ [ f-

Notice that due to occurrence of the Jacobi determinant, equation (2.12) is a
nonlinear partial differential equation. Also, the Dacorogna-Moser theorem does
not provide uniqueness of solutions. In fact, non-trivial cases of equation (2.12)
always possess multiple solutions.

The next version is due to Bruveris, Michor et al. [28], and generalizes Moser’s
theorem to manifolds with corners. This includes the important case of simplicial
complexes, and thus holds for most meshes used in numerical computations. In
the following, we say a point x € M is a corner of codimension ¢ > 0, if x lies
in the intersection of ¢ distinct coordinate hyperplanes. We denote by 9d7M the
set of all corners of codimension g. Notice that by this definition, the boundary
OM of a manifold with corners is not necessarily a manifold with corners itself. A
counterexample is M = [0, 1]?, which is problematic at the corners. The following
result also holds for non-orientable manifolds, if volume forms are replaced by den-
sities. Also, we abuse notation by using the same symbols for volume forms and
their local coefficient functions. For an introduction to differential volume forms
and integration on manifolds, we refer the reader to [111, Ch. 14-16].

Theorem 4 (Dacorogna-Moser Theorem for Manifolds with Corners). Let M be a
compact, connected, smooth, oriented, n-dimensional manifold with corners. Let f
and g be smooth and positive volume forms on M with fM f= fM g.

Then there exists a diffeomorphism p: M — M, such that its pull-back satisfies
p*(g) = f. Locally, this means

9((p(x)) - det Dp(x) - day A -+ Adxy = fz) - dayg A Aday,. (2.13)

Moreover, p can be chosen as the identity on OM if and only if f =g on d9M for
all g > 2.

The demanded equality f = g on 9?M for all ¢ > 2 is natural, since corners
are invariant under diffeomorphisms (cf. [111, Prop. 16.20]). We provide another
version of the Dacorogna-Moser theorem, which holds on more general domains.
This version gives explicit knowledge of where the solution p acts as the identity.
However, to achieve this, it sacrifices additional regularity gain of solutions p found
in theorem 3. The following version is a special case of [39, Thm. 7]. It is im-
portant, that it also holds for domains with lower dimensional boundaries, where
isolated points can be added or removed, and even cusps are permitted ([39, Ap-
pendix and Remarks on Condition (H})]). In the following, Diff*(Q) denotes the
set of C*-diffeomorphisms of Q, with the special case of homeomorphisms for k = 0
(cf. definition 2, definition 3).

Theorem 5 (Dacorogna-Moser Theorem II). Let Q C R™*! be a connected, bounded
and open Lipschitz domain. For k > 0, consider f,g € C*(£,(0,00)), such that
f+ %, g —|—% are bounded. Further assume

| o= [ gan (2.14)
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Then there exists a p € Diff*(Q) N Diff®(Q), such that for every open subset

E C Q the equality
/ gdz = / fdz (2.15)
p(E) E

holds, with p(x) = x for all x € 9. Moreover, if supp(f — g) C Q, then supp(p —
idg) C Q.

Notice that the functions f and g only need to have C*-regularity on the open
set Q, and not on its closure Q. Also, the general case of continuous f and g is
permitted. The solution p € Diff*(Q) N Diff®(Q) is differentiable on the interior,
but extends only continuously to a homeomorphism on the boundary 02. We
remind the reader, that equation (2.15) holds for all open subsets E C 2, and is
a weaker version of equation (2.12). This weak formulation is necessary, since f
and g are not necessarily differentiable, which is mandatory to formulate the strong
problem in equation (2.12). However, if f and g have at least C'-regularity in €,
then equation (2.15) for all open subsets E C (1 is equivalent to equation (2.12)
with p € Diff*(Q) N Diff°(Q) and A = 1. This can be seen by application of the
transformation formula to equation (2.15), which gives

[ slota)) et D) de = [ o 216)
E E

for all open subsets E C €.

We leave the area of existence results for equations, and give the so-called Jacobi
formula for determinants of derivatives (cf. [175, p. 7, p. 29]). It is a practical tool
in matrix analysis, but we also apply it for calculation of a pre-shape derivatives in
section 5.3.

Proposition 1 (Jacobi’s Formula for Determinants of Derivatives). Let A(t) €
R™ "™ pe a differentiable curve of n x n-matrices. Then

% det (A(t)) = tr <Adju (A(t)) iA(t)) , (2.17)

where Adju (A(t)) is the adjugate matriz of A(t), and tr(-) is the trace operator for
matrices.

Lastly, we cover the celebrated Jordan-Brouwer theorem, which describes the
topology of Euclidean spaces separated by manifolds (cf. [70, p. 89]). We emphasize
the crucial property of M to have no boundary.

Theorem 6 (Jordan-Brouwer Theorem). Let M C R™*! be a compact, connected
n-dimensional manifold without boundary.

Then its complement in R"T1 consists of two connected open sets D™ and D"t
Moreover, D is a compact manifold with boundary D" = M.

We finished our collective endeavor on general results from various areas, and
start with the introduction of shape optimization.



Chapter 3

Introduction to Shape
Optimization and Shape
Calculus

Shape optimization is the discipline of mathematical optimization concerned with
the control of geometric quantities under given conditions. This should not be
confused with topological optimization, which deals with the control of topological
properties, such as the number and placement of holes in a given geometrical object
(cf. [167, 16] and the references therein). Topological optimization is not the focus
of this work. Instead, we use an approach, which fixes a prototype manifold M, such
that shapes which arise in optimization are from the same homeomorphism class.
This means that all shapes from a (pre-)shape space share the same topological
properties as M. In particular, number of holes and connectedness are fixed a
priori.

3.1 Shape Calculus

In this section, we accumulate some basics on shape optimization and its calculus.
We also highlight, how some recent developments in shape optimization are incorpo-
rated in modern industrial applications. These results were provided by the author
during his involvement in the BMBF project GivEn, in cooperation with Siemens
Power and Gas/Corporate Technology, the German Aero Space Center (DLR) and
the University of Wuppertal. The results are partly published in [7, Ch. 2.1], and
presented in this work for other GivEn members to reference.

Before we can pursue shape optimization, it is necessary to specify, what we
mean by a 'shape’. There are several theories, which precisely formulate the notion
of shapes. For the introduction of general shape calculus, we use the framework of
[42] by Delfour and Zolésio. From this perspective, shapes are simply seen as subsets
of a specified ambient space. The corresponding definition of shape functionals,
which serve as objectives in shape optimization problems, is found in [42, Ch. 4.3,
Def. 4.1]. We use a specialized version, which looks at shape functionals as maps
into R, instead of considering general topological vector spaces as image spaces.

Definition 9 (Shape Functionals via Sets). Consider a nonempty hold-all domain
D C R**Y, and its power set P(D) :={T': T CD}.
Then, for an admissible set of shapes A C P(D), the function

J: A—=R (3.1)
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is called set-theoretic shape functional over the admissible set A.

Due to its generality, such a formalization of shape functionals has to rely on
techniques with general applicability, such as those from geometric measure theory.
Even in this case, the set of admissible shapes has to be restricted. Otherwise,
highly pathological shapes, such as sets with non-integer Hausdorff dimension, or
even non-Lebesgue measurable sets are permitted. Therefore, we specialize this
framework in chapter 4 by choosing specific sets of admissible shapes A. This
specialization allows us to use techniques from differential geometry, which we then
use to extend shape calculus to pre-shape calculus.

In the general setting of definition 9, a prototypical shape optimization problem
is of the form

&1}41 J(T). (3.2)
There are multiple ways to tackle these problems. A large number of shape op-
timization algorithms utilize derivatives to achieve this. However, since shapes
I' e A C P(D) are in general just sets, their collection does not possess a vector
space structure. There is no canonical addition or scalar multiplication available,
which in particular prohibits direct formulation of difference quotients. Hence, the
common definitions for Gateaux or Fréchet derivatives from functional analysis are
not applicable. A possible way to circumvent this issue is the introduction of domain
perturbations and so-called shape derivatives. Throughout this work, we adopt this
perspective, and frame our algorithms in light of domain-derivative based methods.
Methods to construct domain perturbations include the perturbation of identity ap-
proach, and velocity methods, both found in [42, Ch. 4.3.2]. With shape functionals
at hand, we can define shape derivatives via the perturbation of identity as in [42,
Ch. 4.3.2] and [161, Ch. 2.1].

Definition 10 (Shape Derivatives). Let J be a shape functional with admissible
set A C P(R™Y). Consider a set Ty € A and a direction V € CF(R"T1 R L),
The perturbation of identity of I'g in direction V is defined as

Dyi={az+t-V(z): €Ty} (3.3)
fort € [0,7] and some T > 0. If the limit

ry)—-Jgr
DJ(To)[V] := lim M. (3.4)
t—0 t
exists, and is linear and bounded as a function of V', then we call it shape derivative

for J at Ty in direction V.

A structural description of shape derivatives is given by the Hadamard-Zolésio
theorem. Its key insight is, that only perturbations of the shape in its normal
directions influence the value of the shape derivative. According to [42, Ch. 9,
Rem. 3.2], in the year 1907, Hadamard used displacements along the normal to
the boundary of a C'">°-domain to compute the derivative of the first eigenvalue of a
clamped plate. The structure theorem for shape functionals on open domains with a
C*+1_boundary is due to Zolésio [186] in 1979. Its version in [42, Ch. 9.3.4, Thm. 3.6]
deals with shape derivatives of general open or closed sets  C R"*!, which is a
significantly larger class of shapes compared to smooth ones. In the following, we
state the case for shapes I' € A, which are compact, sufficiently smooth, and which
can be interpreted as boundaries of open domains. This suffices, since we assume
similar regularity in later chapters of our studies. The following theorem is found
in [42, Ch. 9.3.4, Cor. 1].
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Theorem 7 (Hadamard-Zolésio Structure Theorem). Let  C R™™! be an open
set, such that its boundary T is compact and has C*+l-regularity. Denote by
n € CF(I,R*H1) its unique outer unit normal vector field. Consider a shape differ-
entiable shape functional J .

Then there exists a scalar valued distribution ¢ € C*(T',R)*, such that

DI(D)[V] = <gN, <n,Trp(V)>2>Ck(F’R)* YV € CHR™L R, (3.5)

where Trp: CF(R* 1 R — CF(I,R™*Y) is a trace operator. Further, if g is
representable as a function in L'(T,R), then DJ has the boundary formulation

DJ)[V] :/gN (n,Trp(V)), ds YV e CFR"TH R, (3.6)
T

We emphasize, that the Hadamard-Zolésio theorem is a result concerning the
support of shape derivatives. Since the shape derivative is a general linear and
continuous functional acting on directions V € CF(R"1 R"*1) it is in general
only representable as a distribution ¢?. Only in special cases, which consist of
many applications in practice, the distribution ¢/ can be represented as a classical
function in style of a Riesz representative. If this is the case, the duality product
from equation (3.5) can be written as a boundary integral with participating nor-
mal components of V' as seen in equation (3.6). In such a scenario, the function
representative of g is often called the shape gradient of DJ (cf. [159]). Hence,
under the mentioned conditions, the representation of shape derivatives DJ by use
of boundary integrals as in equation (3.6) is termed boundary formulation. In con-
trast to this, it is often easier to derive a so-called volume representation, where the
shape derivative DJ is represented as a volume integral on the hold-all domain, or
codimension zero subsets thereof.

There are multiple approaches to guarantee shape differentiability of shape func-
tionals J. Among them, there is the material derivative approach (cf. [17]). We
develop a related, more general calculus for so-called pre-shapes in chapter 4. To
avoid redundancy, we postpone the introduction of shape calculus rules featuring
material derivatives to chapter 4, where they occur as a special case. Another
method to guarantee existence of shape derivatives is the averaged adjoint approach
found in [172, Ch. 7, Thm. 7.1], which is an extension of the Corea-Seeger theorem
from [37]. Since we apply the averaged adjoint theorem in chapter 8, we state it in
a version suiting our situation in the following.

For PDE-constrained shape optimization problems, a common technique to de-
rive optimality conditions or shape derivatives is by use of the Lagrangian (cf. [160]).
Let us consider a constrained shape optimization problem with objective J: FE x
A— R, ie.

min J(y,T")
reA (3.7)
s.t. e(T,y) =0,

where F is a Banach space and e: A x E — R is an equality constraint. The
associated Lagrangian function is given by

L:AxEXF =R, (L,y,p) = J@T)+ (p,eT,y), (3.8)

where F' is the dual space to E, and (-, ) its duality pairing. Differentiation with
respect to y gives the so-called adjoint equation, whereas differentiation with respect
to shape I' results in an expression for the shape derivative.
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The averaged adjoint theorem from [172, Ch. 7, Thm. 7.1] is stated with respect
to a retracted version of the Lagrangian in equation (3.8). For a direction V' with
sufficient regularity, transformations

T;:D—>D, a—ax+t-V(z) (3.9)

are bijective mappings of the hold-all domain D C R"*! for sufficiently small
7>t > 0. Then for a I' € A, the shape Lagrangian is given for some 7 > 0 as

G: [077_] XEXF— R? (t7y7p) = G(tvyap) = ‘C(thoTt_lvpoTt_l)v (310)

where I'; is a perturbed shape, and T[l the corresponding retraction to the reference
domain D. The shape Lagrangian serves as a tool to guarantee existence of shape
derivatives by the following theorem (cf. [172, Ch. 7, Thm. 7.1]). An exemplary
application can be found in [109, Ch. 4].

Theorem 8 (Averaged Adjoint Theorem). Consider a constrained shape optimiza-
tion problem (3.7). Fiz a shape T € A C P(D) in the hold-all domain D C R™".
Let G: [0,7] X E X F — R be the corresponding shape Lagrangian. Denote by

X(t) ::{yGE: %G(t,y,O;ﬁ)zO VﬁEF} (3.11)

the set of retracted state solutions for perturbed domains and shapes at time t €
[0,7]. Fory' € X(t) and y° € X (0), introduce the set of averaged adjoints

1
Y (t,yt,9°) = {q eF: / %G(t,syt—k(l—s)yo,q;g) ds=0 VyeFk } (3.12)
0

Let the following assumptions hold
(H0) X (t) is single valued for all t € [0,7], and the map
s G(t,sy' + (1—s)y%p) (3.13)

is absolutely continuous and

S (%G(t, sy' + (1—s)y’ ;) (3.14)

is well-defined and belongs to L*(0,1)
(H1) for allt € [0,7] and all (y,p) € E x F, the derivative %G(t,y,p) exists

(H2) for all t € [0,7], the set Y(t,y',y?) is nonempty and Y (t,y°,y°) is single-
valued

(H3) for p® € F and any sequence {t,}nen of non-negative natural numbers con-
verging to zero, there is a subsequence {t,, }ren and p'™x € Y (tn,,y'"*,y°),

such that 9 9
lim Gt ptre ) = 2 0 50, 1

Then J is shape differentiable with shape derivative given by

d

DI IVI= 5,

7]
G(taytvp) = aG(anOapO)a (316)

for all p € F and the solution to the adjoint equation p° € Y (0,4°,4°).
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In chapter 8, we also make use of identity
T
D(f o T)W = Df(T) DLW = Vf(T) DLW = (DTIV(T)) W, (3.17)

for functions f: D — R used in [172]. It implies
(Vf)oTy =DI; "V (foTy). (3.18)

Let us assume we have a shape derivative in closed form, or one derived by
automatic differentiation. The question arises, how to apply it in order to solve a
shape optimization problems as in equation (3.2) or equation (3.7). A straightfor-
ward, and perhaps naive approach would be to use the degrees of freedom of a finite
element representation of D7, or ¢V, as directions for a deformation. However, we
have seen in theorem 7, that the shape derivative DJ or its boundary represen-
tation via ¢V can have distributional character. This means shape derivatives are
numerically not suitable for direct application as descent directions, as roughness
of the deformation could lead to destruction of the mesh. An example for such
roughness of an L2-representation of shape derivatives in an industrial application
is seen in figure 3.1 (b) and (d) of the next section.

A possible remedy for this situation is the introduction of so-called Steklov-
Poincaré type metrics as pioneered in [161]. One key idea is to use a bilinear
form a(-,-) in order to represent the shape derivative DJ as a gradient vector field
on the hold-all domain, while gaining additional regularity of the gradient, such
as higher smoothness. In light of theorem 7, the authors of [161] define a metric
on the space of normal vector fields on a shape I' in the Sobolev setting, which
is motivated by a Neumann-to-Dirichlet map. This comes from the observation,
that the distributional representation ¢V of a shape derivative DJ (T") with support
solely on normal vector fields can serve as a Neumann boundary condition on I'. Let
us assume bounded shapes T’ with C'-regularity, and ¢ € H —3 (T',R). Consider a
symmetric and coercive bilinear form

a(-,-): H' (R* R x HY (R R - R, (3.19)

the outer unit normal vector field n on T', and the Sobolev trace operator (cf. [50,
Ch. 5.5))

Tryp: HY (R R — HE (D, R, (3.20)
Then the solution vector field U € H(R"! R""1) of the variational problem

a(U,V) =gV <<n, Tr|p(V)>2> YV € HE(R™H R (3.21)

is called shape gradient representation of DJ(T') by a(+,-). The projected Neumann-
to-Dirichlet map from [161, Ch. 3.2] with respect to a(-,-) is then given by

SP: H™%(I,R) = H2(I,R), ¢ = (n, Trjp(U)),, (3.22)

where U is the solution of equation (3.21). The projected Neumann-to-Dirichlet
map can be used to define Steklov-Poincaré metrics on the tangent bundle of certain
spaces of shapes. However, we do not go into details, as the techniques of this work
do not rely on the choice of specific Riemannian metrics on shape or pre-shape
spaces. We postpone the introduction of shape spaces and their respective tangent
bundles to chapter 4. This allows to have a clearer derivation without redundancies,
since they are naturally connected to the construction of pre-shape spaces and their
tangent bundles.

A key property of the shape gradient representation via bilinear forms a(-,-) is
the additional gain of regularity. Under the mentioned assumptions, it amounts to
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represent the distribution ¢ € H~2(I',R) of D.J as a vector field U € H(R"+!,R)
via the primal space. Thus the shape gradient representation U is more suitable
for mesh morphing based descent algorithms than the shape derivative DJ(T).
The choice of Steklov-Poincaré metrics is flexible, in the sense, that metrics do not
need to have an immediate connection to the state equations of PDE-constrained
shape optimization problems at hand (cf. [135, 145]). Further, such a procedure
can be used, even when there is no available boundary formulation of DJ as in
equation (3.6). Assuming enough regularity, we can see this with the Hadamard-
Zolésio theorem 7 via

a(U,V) = gN(<n, Tr|p(V)>2) =DJ()[V] YV e HY(R™ R (3.23)

Compared to boundary formulations, the volume formulation is also advantageous
in the context of finite element representations. This was studied for an elliptic
problem by Hiptmair et al. in [85]. Using piecewise linear Lagrangian finite element
approximations to state and adjoint variables, they find that the approximation
error of the shape derivative by a discrete volume formulation scales O(h?) in mesh
width h, whereas the error scales only O(h) for boundary formulations.

3.2 Industrial Application of Steklov-Poincaré
Metrics

During his participation in the BMBF project GivEn (Shape Optimization for Gas
Turbines in Volatile Energy Networks, FKZ: 05M18UTA), the author of this work
developed the software package TRASOR (TRACE Shape Optimization Routine)
for non-parametric shape optimization of turbo-machinery using Steklov-Poincaré
metrics. This was done in cooperation with the University of Wuppertal, the Ger-
man Aerospace Center (DLR), and Siemens Power and Gas/ Corporate Technology.
BMBF project GivEn pursues research on the multi-objective and multi-physics
free-form optimization of turbo geometries. The following results are published in
[7, Ch. 2.1].

TRASOR features are tested on a Q3D model of the low-pressure turbine cas-
cade T106A designed by MTU Aero Engines (cf. [88]). The state equations consist
of multiple systems of coupled equations. The exterior flow around the blade is gov-
erned by a compressible and Reynolds averaged Navier-Stokes equation (RANS) in
a rotational frame of reference. The equations are Favre averaged and the result
closed by means of turbulence models. On the turbine blade itself, thermal and
mechanical stresses are present, which influence the longevity of the material. The
mechanical part is described by a linear elasticity equation on the turbine blade, to-
gether with a Laplace equation for the thermic component. Also, a cooling channel
is incorporated in the geometry, whose role is to increase life expectancy by mitiga-
tion of stresses induced by extensive heating of the blade (cf. [7, Ch. 2.2]). The heat
flow is modeled as a one-dimensional flow with parametric models for friction and
heat transfer, similar to the work in [127] and [174]. The thermo-mechanic equa-
tions are coupled to the exterior Navier-Stokes flow via Robin boundary conditions
of the pressure and temperature (cf. [7, Ch. 2.3.2]). For a more detailed discussion
of the modeling approach, see [7].

For the T106A and the described multi-physics model, the TRASOR tool al-
lows the user to freely choose from a multitude of objective functionals for (multi-
criterial) shape optimization. They include quantities of the Navier-Stokes flow,
such as pressure ratios of in- and outlet, coefficients for entropy rise, discharge an-
gle at the tip of the blade, and more. For an exhaustive list, we refer the reader to
[62]. An important ambition of GivEn is the incorporation of the life expectancy of
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the turbine blade. This feature is described by the so-called low cycle fatigue (LCF).
Essentially, the LCF objective functional used in GivEn gives a quantification of
life expectancy of the turbine blade under load. Damage mechanisms surrounding
the low cycle fatigue, and their probabilistic relation to shape optimization can be
found in [141, 52, 169] and [66, 18, 21, 20]. The LCF objective value is derived as an
integral quantity of the local deterministic numbers of life cycles over the turbine
blade, depending on displacements of the ceramic material coming from the linear
elasticity equation (cf. [66, 67, 124, 65]).

The software package TRASOR is built on several solver bundles connected by
an interface in Python 2.7 and 3.5. One major package is TRACE 9.2, provided
by the German Aerospace Center (DLR). It permits simulation of interior flows
in turbomachinery. Assuming stationarity of the Navier-Stokes equations, which
are spatially discretized using the finite volume method, a steady state solution
method is obtained in TRACE by pseudo-time marching. The TRASOR software
provides shape gradient representations using Steklov-Poincaré metrics based on
shape sensitivities derived by the DLR software package adjoint TRACE. The pack-
age adjointTRACE itself uses automatic differentiation of Lagrangians associated
to the respective objectives chosen by the user (cf. [149, 8, 15]). Associated discrete
adjoints require a solution of linearized problems backward in time.

TRASOR interfaces with FEniCS 2017.2.0 [4, 117], which is a Python based
finite element software for solution of differential equations based on weak formula-
tions. It utilizes the Unified Form Language (UFL, [3]), Automated Finite Element
Computing (DOLFIN, [118, 119]) and the Portable, Extensible Toolkit for Scien-
tific Computation (PETSc, [9]) as a linear algebra backend. Various solver options,
including CG, GMRES, PETCs’s built in LU solver and preconditioning using in-
complete LU and Cholesky, SOR or algebraic multigrid methods are available in
FEniCS, and thus applicable in TRASOR. FEniCS/PETSc also offer the possibility
to parallelize finite element solving, making the Steklov-Poincaré gradient calcula-
tion scalable in processor number. For the user specified objectives, the TRACE
generated or Steklov-Poincaré represented gradients are then applicable for a steep-
est descent algorithm for optimization of the T106A via mesh morphing.

In order to calculate shape gradients represented by Steklov-Poincaré metrics via
FEniCS, we created a mesh conversion pipeline from structured quadrilateral meshes
in CGNS format prescribed by TRACE to unstructured meshes in HDF5 format
feasible for FEniCS. As FEniCS 2017.2.0 used at this time was not fully capable
of supporting hexahedral and quadrilateral elements , hexahedral and quadrilateral
elements used in TRACE are partitioned to conforming tetrahedral and triangular
elements respecting the structured TRACE mesh. The conversion process from
TRACE to FEniCS mesh, including the data formats, is given by the following
steps and tools (cf. [154, 119])

TRACE.cgns POST TRACE.dat ""2%°® FERiCS.msh ...

DOLFIN

. (3.24)
. X2 FEniCS.xdmf/-.h5 ~ == FEniCS mesh.

To represent the discrete TRACE generated mesh sensitivities Daq Jgiser @S a
Steklov-Poincaré gradient, a sufficient metric a(-,-) has to be chosen. In light of
[161], the linear elasticity model in weak formulation is employed in TRASOR.
Additional regularity for the resulting gradients is given by increasing smoothness
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through solution of the system

/ o(U) 1 €(V) dz = DaaJaisee L) [V] YV € Hj (Dexe, R™ )
Dext

U=0 on 1—‘lllﬂlet/Outlet

(3.25)
o(U) = ATr(e(U))I + 2pe(U)

(V)= 3 (VV +9V7),

where A € R, u € R are the so called Lamé parameters. This is an explicit example
of the abstract system seen in equation (3.23). If D is the entire duct including the
shape of the turbine blade I', then Dgyy = D\ T' is the external computational
domain where the fluid dynamics takes place. The inlet and outlet of the cascade
are given as I'tyiet/Outlet, and are forced to stay invariant. Continuous Galerkin type
elements of order one are used for target and test spaces in the FEniCS subroutine
conducting the shape gradient calculation. Algorithm 3.1 shows the prototypical
version of the steepest descent implemented in TRASOR, including the Steklov-
Poincaré gradient representation. For the objectives entropy rise and low-cycle-

1 Set flow parameters in TRACE.cgns, optimization parameters and targets in
TRASOR.py

2 Build TRASOR file architecture

3 Assemble and load FEniCS data from TRACE.cgns

4 while [|Uy|| > esphape do:

5 Flow simulation and (AD) checkpoint creation using TRACE

6 Calculate mesh sensitivities by automatic differentiation using
adjoint TRACE
7 Pass mesh sensitivities to FEniCS setup
8 Generate Steklov-Poincaré gradient in FEniCS:
Calculate Lamé-Parameters
10 Solve linear elasticity problem (3.25) for Uy
11 Extract target and flow values to update protocols and .pvd/.vtu files

12 Deform FEniCS mesh using FEniCS Steklov-Poincaré gradient and
Arbitrary Lagrangian-Eulerian (ALE)

13 Create TRACE _deformation.dat files from FEniCS Steklov-Poincaré
gradient

14 Deform TRACE mesh using PREP

Algorithm 3.1: TRASOR algorithm using Steklov-Poincaré metrics.

fatigue (LCF), an exemplary comparison between TRACE and Steklov-Poincaré
gradients generated via TRASOR is shown in figure 3.1. For the LCF objective,
several linear interpolation steps are used to transport data from the FEniCS and
TRACE CFD meshes to the non-consistent thermo-mechanic mesh of the blade
and its interior, and vice versa. The TRACE gradient is generated by solving a
linear elasticity mesh smoothing system with Dirichlet boundaries being the lattice
sensitivities DaqJ (Qext), whereas the Steklov-Poincaré gradient is calculated by
solving a linear elasticity system in weak formulation (3.25) with Lamé parameters
A = 0 and constant u > 0. We clearly see the roughness of TRACE generated
gradients in figure 3.1 (b) and (d), highlighting their distributional character. On
the other hand, their linear elasticity representations in figure 3.1 (a), (c), (e) and (f)
admit increased smoothness, both on the turbine blade and the volume mesh.
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(a) Steklov-Poincaré gradient (b) TRACE sensitivity CoefEntropyRise
CoefEntropyRise

(c) Steklov-Poincaré gradient LCF (d) TRACE sensitivity LCF

(e) Volume Steklov-Poincaré gradient (f) Volume Steklov-Poincaré gradient LCF
CoefEntropyRise

Figure 3.1: Several gradients on the surface and volume mesh of the T106A with
various representations and objective functionals. (a) Steklov-Poincaré gradient
CoefEntropyRise scaled by 2-10%. (b) TRACE sensitivity CoefEntropyRise scaled
by 5-10° (c) Steklov-Poincaré gradient LCF scaled by —1 - 10!3. (d) TRACE
sensitivity LCF scaled by —2.5 - 101, (e) Volume Steklov-Poincaré gradient Co-
efEntropyRise scaled by 2.5-10°. (f) Volume Steklov-Poincaré gradient LCF scaled
by —1-10'3.



Chapter 4

General Theory of Pre-Shape
Calculus

So far, we have regarded shape optimization as optimization over a specified col-
lection of admissible sets A C P(D). The generality of viewing shapes only as
sets is restrictive. Working in this scenario requires use of techniques, which hold
in respective generality, for example those of geometric measure theory. From an
applicational point of view, PDE-constrained shape optimization is also not easily
situated in this general shape framework. Existence and regularity theory become
increasingly difficult for pathological shapes, if possible at all. Hence, in this chap-
ter, we restrict the admissible set of shapes A C P(D) to those, which satisfy enough
regularity to form specific classes of shape spaces. We stay in this framework for
the rest of this work.

The shape space approach permits applicability of various tools from infinite di-
mensional differential geometry. An attractive consequence of this approach is, that
it naturally permits to regard shapes with their parameterizations at the same time.
In this continuous framework, we associate the information contained in embeddings
simultaneously to shapes and their parameterizations. After discretization, the con-
tinuous embedding serves as a descriptor for the mesh configuration representing
the shape. Such a framework serves as the key to derive an extension of shape cal-
culus, which captures variation in both shapes and their parameterizations. This
pre-shape calculus is the basis to modify numerical routines in such a way, that they
optimize mesh quality, without interfering with the shape optimization taking place.
We pursue a first optimize, then discretize approach. For an excellent overview of
shape spaces we refer to [12], from which we borrow several definitions and results
for shape spaces in the following. A more recent introduction can be found in [130].

This chapter is split into two major parts. First, in section 4.1, we collect
relevant material on shape and pre-shape spaces, their tangential bundles, and
some notes on topology. Then, in section 4.2, we begin with our own contribution
by introducing a calculus on pre-shape spaces. In particular, we define pre-shape
derivatives, highlight their structure and relation to shape derivatives as introduced
in background chapter 3, and collect respective calculus identities. This serves as
a foundation for later chapters, where we put pre-shape calculus for mesh quality
control into practice.

For the rest of this chapter, let M C R""!' be an n-dimensional, oriented,
connected and compact C*°-submanifold, perhaps with smooth boundary, if not
stated otherwise. In this chapter we work with the Euclidean ambient space R**1.
However, the results of this chapter are valid, when R"*! is replaced by a bounded,
connected and open domain D C R"*! with smooth boundary.
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4.1 Shape and Pre-Shape Spaces

There are many types of shapes spaces with different geometric properties. Ex-
amples include the spaces B; and B; y of immersed and freely immersed shapes.
These spaces form so called Riemannian orbifolds with and without singular points
(cf. [34, 13], [12, Ch. 3.1]). We do not rely on these large spaces in this work, as
self-intersecting shapes are included in B; and B; y. Another shape space is BY/2,
consisting of continuous H'/?-shapes of Sobolev regularity. Due to low regularity
of the shapes, this space is not a manifold, but has a more general diffeological
structure (cf. [182]). Moreover, there is the possibility to use finite dimensional
parameterizations of shapes, such as B-spline representations found in [24]. This
specializes shape optimization to the case of finite dimensional optimization in a
parameter space. However, the price to be paid for such an approach is a limitation
of achievable shapes. For this work, we choose to rely on the space B., which we
introduce in this section (cf. [12, Ch. 3.1], [131, 130, 61]). This approach can be
seen as a compromise between the set theoretic approach introduced in section 3.1,
and the finite dimensional parametric approach. It permits enough structure to
derive a feasible theory for parameterized shapes, while still staying in the context
of free-form optimization, without severe restriction of permissible shapes.

Two main classes of objects in this work are embeddings and diffeomorphisms of
manifolds. With these, we can formalize the notion of parameterized shapes. They
are also instrumental in the construction of the shape space B.. An introduction to
these classes of mappings in a differential geometric context is found in [111, Ch. 4]

Definition 11 (Embeddings and Diffeomorphisms of Manifolds). Let M be a smooth
manifold, perhaps with boundary. We say p: M — R"*! is a C*-embedding, if
@ is smooth and injective, has an injective differential for all p € M, and is a
homeomorphism onto its image. The collection of C°°-embeddings is denoted by

Emb (M, R”H) = {ga e C™ (M, ]R"'H) D pisa Coo-embeddz'ng}. (4.1)

Further, we say p: M — M is a C*°-diffeomorphism of M, if p is bijective and
smooth, and has a smooth inverse p—t. The collection of C*®-diffeomorphisms is

denoted by
Diff (M) := {p €eC®(M,M): pisa Cw—diﬁ”eomorphism}. (4.2)

Notice that for compact manifolds M, a smooth and injective ¢: M — R"*!
with injective differential for all p € M is necessarily a homeomorphism onto its
image (cf. [111, Prop. 4.22 (c)]). Since we only study shapes represented as compact
manifolds, the last demanded property is in fact automatically fulfilled, and thus
redundant to the definition of embeddings. Also, if M has a non-trivial boundary
OM , an embedding ¢ necessarily maps its boundary onto the boundary of the image,
ie. p(OM) = 9(p(M)).

Topologies for C* (M , N ) For the introduction of the manifold of shapes B., we
have to stick with C'*°-regularity. However, notice that the pre-shape calculus we
introduce is valid for the Holder-regularity setting. We model shape and pre-shape
spaces based on infinite dimensional spaces of smooth functions. Hence there are
several different choices to equip them with topologies. Let us consider a smooth
manifold N, which acts as the ambient space, where R?T! can serve as a special
example. Usually, the chosen topology depends on the task at hand. The following
topologies are examples from coarse to increasingly fine. There is the compact-open
C*°-topology, whose basis is formed by the union of topologies induced by inclusion
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operators iy: C®°(M,N) — C¥(M,N), where C¥(M, N) are equipped with their
compact-open/weak C*-topologies. This topology is also called weak C'*°-topology
in the literature. If the Banach spaces C*(M, N) are equipped with their strong C*-
topologies, i.e. those induced by their respective norms, the topology resulting from
the above construction is called the strong C*°-topology. Confusingly, terms for this
topology vary in the literature. Depending on the author, this is denoted as the
Whitney C*°-topology or Mather C*°-topology (cf. discussion in [92]). The basis of
the strong C*°-topology distinguishes smooth functions up to derivatives of bounded
order. A refinement of the strong C'*°-topology (cf. [92]) gives the so-called very
strong C'*°-topology. It is in some sense a natural topology for the C'°*°-framework,
since its basis captures information of derivatives of functions up to unbounded
order. In [129], Michor introduces a further refinement of the very strong C*°-
topology, which is sometimes called the fine very strong C'*°-topology. It permits a
manifold structure on C*° (M, N) for possibly non-compact M. We want to mention,
that in [71] Omori uses the term ILH-C*-topology (inverse limit of Hilbert C'>°-
topology) for the topology on C*° (M, N) induced by the inverse limit of the chain
of C¥(M, N). This topology is the initial topology with respect to inclusions, i.e.
the coarsest topology making iz : C*(M, N) — C*(M, N) continuous embeddings.
Thus it depends on the topologies chosen on C*(M, N).

For this work it is important to notice, that all previously mentioned topologies
coincide for the case of compact manifolds M. Hence, we can denote the topology
on the spaces of embeddings and diffeomorphisms simply by C*°-topology (cf. [86,
Ch. 2]). If still more descriptive names are used, we do so to emphasis the topology
used in the source of the argument or technique at hand. We refer the interested
reader to [87] for a brief, and [86, Ch. 2] and [105] for in-depth introductions to this
topic.

The C*°-framework also affects the topological group structure of Diff (M). It
might be tempting to work in the more special setting of Hilbert or Banach spaces.
However, notice the following. For H?-diffeomorphisms of Sobolev regularity with
s > m%% + 1, the space Diff*(M) is a Hilbert manifold, so in some sense nicer
than the Fréchet manifolds Diff(M) and Emb(M,R"*1). As a drawback Diff*(M),
are only topological groups, not having Lie structure. This is rooted in the fact
that the composition operator from the left fails to be smooth, while composition
from the right is smooth (cf. a- and w-lemmas [166, Ch. 2], [47, Ch. 2]). On a
more general note, the Banach space setting for modeling parameterization groups
of compact manifolds as Lie groups is too restrictive. In 1978, Omori showed that
every Banach-Lie group acting effectively, transitively and smoothly on a compact
manifold must be a finite dimensional Lie group (cf. [144, Thm. B]). This reduces
modeling possibilities when Lie structure is desired. For Diff (M), this is not the
case. It is indeed a Lie group in the sense of Omori, since C'*°-regularity holds for
group actions. We emphasize, that constructions of shape spaces B? with C*-, C*:
or Hf-regularity do not yield manifold structures, which is only the case for C'*°-
regularity. Instead, resulting spaces only possess a diffeological structure, which
can be viewed as a generalization of manifold structures (cf. [182]). This means
that there is a trade-off when choosing regularity. Either Banach/Hilbert manifold
structure or Lie group structure are achieved for the diffeomorphism groups. Still,
there is enough structure on Diff(M) to carry over some techniques from Hilbert
spaces, as it can be constructed as an inverse limit of Hilbert manifolds Diff*(M) of
Sobolev regularity s > dim(M) + 5. Hence Diff (M) is called an ILH-Lie group by
Omori ([71]). In particular, a generalized formulation of the implicit function theo-
rem holds in this setting (cf. [71, Ch. 1.6]). We employ some of these techniques in
section 5.2.2. For an overview and discussion of infinite dimensional diffeomorphism
groups, the reader might refer to [166, Ch. 2] and [71].
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Shape and Pre-Shape Spaces via Fiber Bundles With the collection of
embeddings Emb(M,R"*!) at hand, we can define the space B, of unparameterized
C*°-shapes in R"*! (c¢f. [61, 105, 12, 132]). The following definition is in fact a
theorem, whose proof demands sophisticated techniques of differential geometry in
infinite dimensions. The proof for the case of compact M without boundary can be
found in [105, Thm. 44.1], while the non-trivial boundary case was first proved in
[61, Thm. 2.2]. Notice, that the following definition and its assertions require the
C*>°-framework.

Definition 12 (Shape Space B.(M,R"1)). Let M be an n-dimensional compact,
connected and oriented C*-submanifold of R™"*', perhaps with smooth boundary.
Then the shape space B.(M,R"*1) is defined as the quotient

Be(M,R™1) := Emb (M,R"*") / Diff (M), (4.3)

where the group of C*°-diffeomorphisms Diff (M) acts on the right. The associated
projection is called canonical projection m, and is given by

(o) == {¢ € Emb (M, R™*') : 3p € Diff(M) s.t. ¢ = v op} e B (44)

The shape space B.(M,R"*1) is a smooth Fréchet manifold.

Depending on the context, the resulting space B.(M,R"*+1) is also called nonlin-
ear Grassmannian (cf. [61]) or differentiable Chow-variety (cf. [128]). Its elements
can be regarded as unparameterized shapes of R"*! of diffeomorphism class M
(cf. [61, Thm. 2.2]). The term nonlinear Grassmannian is motivated by the fact,
that there is a bijection

B: Be(M,R*"") — Gr (M,R"""), [p] = (M) C R, (4.5)

where Gr(M,R"*1) is the set of all smooth submanifolds I' C R™*! that are C'°°-
diffeomorphic to M. This means we have two different interpretations of shapes
I' € Bo(M,R™"1). The first views I' = [¢] as an equivalence class of embeddings with
the same image, while the second sees I' C R"*! as a set with submanifold structure
diffeomorphic to M. For our work it is important to distinguish between these
interpretations. Hence we denote the collection of embeddings with identical image
manifold by m(¢) € Be.(M,R"1) as in equation (4.4). We write p(M) C R*T1
when we mean the set interpretation of a shape.

In the following, we abbreviate B.(M,R"*1) by B?, still having the implicit
relation to the manifold M and its dimension in mind. To acquire intuition about
B, a graphical visualization is given in figure 4.1. This space can be equipped with
various metrics, which means shape optimization can be regarded as optimization on
an infinite dimensional Riemannian manifold (cf. [158]). For an exemplary collection
of metrics on shape spaces, we refer the reader to [132, 12]. Questions regarding
different choices of metrics on shape spaces and diffeomorphism groups is still an
active area of research. There are phenomena apparent in infinite dimensional
Riemannian geometry, which are not present in finite dimensions. For example,
equipping B” with an L2-metric induces vanishing geodesics. In [131], Michor and
Mumford give a vivid description of this situation:

"The picture that emerges for these infinite dimensional manifolds is
quite interesting: there are simple expressions for the Christoffel symbols
and curvature tensor, the geodesic equations are simple and of hyper-
bolic type and, at least in the case of plane curves, the geodesic spray
exists locally. But the curvature is positive and unbounded in some high
frequency directions, so these spaces wrap up on themselves arbitrarily
tightly, allowing the infimum of path lengths between two given points
[, i.e. shapes,] to be zero.’
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Cases for other metrics and spaces are discussed in [11] and [14]. In this work, we
do not rely on the specific choice of a Riemannian metric on shape and pre-shape
spaces.

Figure 4.1: Tllustration of a path in the shape space B" for M = S*.

For our purposes it is not enough to view shape optimization as optimization
in B". Instead, we base our framework on optimization in Emb(M,R"*!). This
permits us to exploit additional structures induced by the action of Diff (M). The
authors of [12, Ch. 1.1] call Emb(M,R"*!) a pre-shape space, an expression we use
for the techniques we derive in this work. We give a definition of pre-shape spaces
and summarize several of their properties. A graphical sketch of a pre-shape space
can be seen in figure 4.2.

Definition 13 (Pre-Shape Space Emb(M,R"*1) as a Fiber Bundle). Let M C
R be an n-dimensional compact, connected and oriented C> -submanifold, per-
haps with smooth boundary.

Then we call Emb(M,R"*1) a pre-shape space. The space Emb(M,R"*1) is q
smooth Fréchet manifold and an open subset of C°°(M,R"*1). It forms a smooth
fiber bundle with base space B.(M,R"*1) and standard fiber Diff(M) (cf. defini-
tion 5). The canonical projection 7 from equation (4.4) acts as the bundle projec-
tion.

As with the definition of B}, the definition of pre-shape spaces is actually a
theorem, whose proof for the empty boundary case can be found in [105, Thm. 44.1].
A proof that Emb(M,R""1) is an open Fréchet-submanifold of C°°(M,R"*!) is
found in [129, Prop. 5.3]. The formation of fiber bundle structure in the nonempty
boundary case is a main result of [61, Thm. 2.2]. Notice that the term pre-shape
space is used differently depending on the literature. For example, the authors of
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[101] use this term for the space of labeled landmarks which are equivalent under
translation and scaling.

Elements ¢ € Emb(M,R™*!) can be interpreted as parameterized shapes in
the ambient space R"*1, whereas elements of Diff (M) acting on the right can be
seen as reparameterizations. The standard fiber Diff (M) acts as a prototype for
parameterizations of shapes ¢(M), which can be seen via the isomorphism

Diff (M) = Diff (p(M)) by i,: prspopop™t Vo€ Emb (MR"). (4.6)

Therefore the application of bundle projection 7 from equation (4.4) to a parameter-
ized shape ¢ € Emb(M, R" 1) gives the collection 7(¢) of all C*°-parameterizations
corresponding to the shape ¢(M) in R™+1,

We remind the reader, that a fiber bundle is a manifold, which locally looks like
a product space U x S, where U corresponds to the base space, and S corresponds
to the standard fiber (cf. definition 5). In our context, this means the pre-shape
space Emb(M,R"*1) is the collection of parameterized shapes, which locally looks
like a product ’Shape’x’Parameterization’. However, this relationship holds only
locally, and the global structure of the pre-shape space Emb(M, R"*1) is much more
complex. The situation is graphically sketched in figure 4.2.

These fibers permit us to not just view the shape itself, but also to distinguish
various types of discretizations and associated numerical meshes. We make use of
this by formulating objective functionals for mesh quality, such that desired parame-
terizations of shapes are minimizers in their corresponding fibers. Even further, the
concept of pre-shape spaces provides a framework to control the parameterization
of hold-all domains, i.e. volume meshes, during shape optimization.

Remark 1 (Shapes and Pre-Shapes in Non-Euclidean Spaces). We want the reader
to notice the generality, under which our framework holds. In definition 12 and
definition 13, we demanded M to be a submanifold of R™"! with codimension 1.
The sole purpose of this restriction is to suit our numerical applications in shape
optimization. Definitions and properties guaranteed in definition 12 and defini-
tion 13 are also valid for embeddings Emb(M, N), where N is a finite dimensional
C>-manifold without boundary, and M is a compact C*°-manifold of dimension
dim(N) > dim(M), perhaps with smooth boundary (cf. [61, Thm. 2.2]). Notice that
connectedness and orientability are not necessary. Corresponding shape spaces B,
then consist of shapes embedded in the manifold N .

Even more general, definitions and properties of Emb(M, N) and B.(M,N) are
still true for M being a so called compact Whitney manifold germ and N being a
smooth manifold of dimension dim(N) > dim(M) (cf. [130, Ch. 7.2]). In particular,
this encompasses manifolds M with corners and closed subsets M C R™ 1 with dense
interiors and Lipschitz boundaries (cf. [130, Ch. 4.3]). However, in this generality,
Fréchet spaces and manifolds have to be replaced by Frolicher spaces and manifolds.
These are spaces, whose smooth structure is essentially determined by compatibility
conditions for given sets of smooth curves and real functions (cf. [105, Ch. V.23]).
The pre-shape calculus developed in this work can be extended to these more general
ambient spaces N and model manifolds M .

Remark 2 (Manifold M as an Initial Shape in Optimization). From numerical
perspective, the model manifold M C R™t! can be regarded as an initial or starting
iterate for a shape optimization routine. In this situation, there is a canonical refer-
ence element p;q € Emb(M, R" 1) which is the identity operator embedding M into
R+, Choosing the initial shape M fizes the pre-shape space Emb(M,R"*1), and
therefore determines the topological properties of feasible shapes. The fiber m(piq)
corresponds to the possible choices of parameterizing M. In the discrete setting,
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Figure 4.2: Depiction of the pre-shape space Emb(M,R"*!) for M = S'. To
illustrate the parameterization interpretation of fibers 7(y), the same four points
are mapped from M to ¢;(M).

this amounts to possible discretizations of the continuous initial shape. Thinking
this way, shape optimization and change of parameterizations take place relative to
the fized chosen reference shape with parameterization p;q.

The Tangential Bundles TB” and T Emb(M,R"*!) As we want to formulate
an analogue of shape calculus in Emb(M, R"*!), a characterization of the tangen-
tial bundles 7 Emb(M,R"*1) and TB" and their relations is required. A brief
introduction to these is found in [61, Ch. 2.2.3], and a detailed discussion in [105].

Before we turn to the bundles TB? and T Emb(M,R"1), let us first consider
vector bundles for finite dimensional submanifolds M C R™*! with boundary. In
the nonempty boundary case, the tangent spaces T), M and the tangent bundle T M
are defined identically as in the empty boundary case (cf. definition 6). As M is a
submanifold of R**!, the inclusion map i, : M — R™*! gives a natural partition of
the tangential bundle TR™*! (cf. [111, Lem. 10.34, Cor. 10.35]). We call the vector
bundle TM~* normal bundle of M with respect to R**!, where the normal vector
spaces are defined as quotients of tangent spaces

T,M*+ :=T,R"™/T,M  Vpe& M. (4.7)

On M C R™t! the tangential bundle of the ambient space TR"™*! splits into the
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normal bundle 7'M+ and the tangential bundle 7'M, i.e.
TR =T, M & T,M+  VYpec M. (4.8)

In Euclidean space, this corresponds to the fact that vectors on M split into two
orthogonal components with respect to the Euclidean scalar product. In the inte-
rior of M, the first component is parallel, i.e. tangential to M, while the second
component is normal to M. However, notice that for n-dimensional manifolds M
with boundary, all tangent spaces T, M for all p € M are of dimension n (cf. [111,
Prop. 3.12]). This includes the tangent spaces at the boundary T,M for p € OM.
To grasp the situation on M, we further refine the splitting. The same procedure
as before can be performed for the boundary 0M, which itself is a submanifold of
M. This yields

T,M = T,0M & T,0M*  VYpec oM. (4.9)

Notice that this decomposition is intrinsic to M, meaning that the normal bundle
TOM* consists of vectors, which are orthogonal to M and tangential to M. In
particular, T,0M~ is of dimension 1. We can now rewrite the decomposition of
TR"™*! on the submanifold M as

TR =21 Ml @ T,0M*+ @ T,M*+  Vpec M, (4.10)

where T, M I denotes the space of vectors tangential to M for p in the interior and
tangential to M and M for p € M. Notice that T,0M* is non-trivial only for
p € OM. In the following, we refer to vectors from T M| as tangential vectors that
are parallel to M. Decomposition (4.10) tells us that the spaces of normal vectors
on M are one-dimensional in the interior, and two-dimensional on the boundary
oM.

This decomposition carries over to the infinite dimensional tangential bundles
TB? and T Emb(M,R"*!). Since we assume M to be compact, [105, Thm. 42.17,
comment above Lemma 42.5] gives us a characterization of the tangent bundle of
C>(M,R"*1) by

TC™ (M, R™) = ¢ (M, TR" ). (4.11)

As mentioned in definition 13, the pre-shape space Emb (M, R"*1) is an open subset
of C°°(M,R"*1). Therefore relation (4.11) also characterizes the tangential bundle
T Emb(M,R™*1). In particular, for the respective tangent spaces we have

T, Emb (M,R""') = CZ(p(M),R"™) Vo € Emb (M,R"*). (4.12)

The fiber bundle structure of Emb(M,R"*1) canonically extends to its tangential
bundle (cf. [105, Ch. 37.2.1], [61, Ch. 2.2.3]). This happens by use of the pushforward
of the bundle projection

Trw: TEmb (M,R"™") = TB, V—dn(V). (4.13)

It is surjective by construction of B as a quotient manifold, meaning that = is a
submersion. This leads to a decomposition of the tangent bundle of the total space
T Emb(M,R""1) into the so called vertical bundle, which is defined as ker T'r C
T Emb(M,R"*1), and the horizontal bundle (cf. [105, 29.9.], [12, Ch. 2.2], [61,
Ch. 2.2.3]). Thus we obtain

T, Emb (M,R"™") = T, Bl & T, Diff (p(M)) Ve € Emb (M,R"""), (4.14)

for every p € Diff (o(M)). Here, the tangential bundle of the base space TBY asso-
ciates to the horizontal bundle, whereas the tangential bundle of fibers represents
the vertical bundle.
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Since we only deal with compact and orientable n-dimensional submanifolds
M, the existence of smooth outer unit normal vector-fields n on (M) C R*+!
is guaranteed. Also, let us denote the outward facing unit normal vector field
orthogonal to n on dp(M) by nyary. In the following, let (-,-)2 denote the L2
scalar products on dp(M) or p(M). We can associate the spaces of the horizontal
bundle via

Ty Be' = Nowary ® Noary, (4.15)

where the space of outward facing normal vector fields on dp(M) is given by

Nag(ar) = {h € Coo(ago(M),R"H) ch=a-ngn, a € C"O(&p(M)JR) }7
(4.16)
and space of outer normal vector fields on (M)

Ny = { h € C=(p(M),R™) : h=a-n, a € C®(o(M),R) }.  (4.17)

This is the characterization of tangential bundles of the shape spaces B]' by normal
vector fields. Notice that the first component of relation (4.15) vanishes if M has
no boundary. The spaces associated to the vertical bundle can be described by

T, Diff (p(M)) = T, (4.18)

where the space of tangential vector fields parallel to dp(M) is defined as

Tomy == {h c C“(gp(M),R”H) : {n,h)2 =0 on (M) and (ng,(ar), h)2 =0 on dp(M) }
(4.19)
These tangential vector fields are elements of the vertical bundle, whereas the nor-
mal vector fields constitute the horizontal bundle part. We visualize the situation
for tangential bundles in figure 4.3 and figure 4.4.

Figure 4.3: Tllustration of a tangential vector from TB? for M = S'.
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(o)

P2 (M)

v € T,,, Emb(M,R"+1)
s o(M)

801\‘

Figure 4.4: Tllustration of tangential vectors from 7 Emb(M,R"*!) with pure
vertical components for M = S'. Note that four points are added to illustrate
the parameterization interpretation of fibers m(y).
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4.2 Pre-Shape Calculus

Now we are in possession of a formalized definition of shapes and their correspond-
ing parameterizations in form of embeddings. In this section, we begin with the
introduction of our own results by deriving a suitable calculus for pre-shapes. We
are inspired by shape derivative formulations presented in chapter 3, where direc-
tions act as perturbations of domains. The pre-shape derivatives we define in this
section are based on families of pre-shapes via perturbation of the image space.
Their relation to classical shape derivatives is highlighted. In particular, we give
a structure theorem generalizing the Hadamard-Zolésio theorem 7. Shape calculus
and sensitivity analysis of classical shape optimization (cf. [96, Ch. 3], [17]) carries
over to pre-shape spaces naturally.

With definition 9, we have a set-theoretic version of shape functionals J: A C
P(R™!) — R. Throughout the rest of this work, we restrict the admissible set of
shapes to

A= Gr (MR™) = 8(B.(MR")), (4.20)

where Gr(M,R™1) is the nonlinear Grassmannian as described after definition 12,
and 3: Be(M,R" ™) — Gr(M,R""1) is the bijection from equation (4.5). We can
canonically associate every equivalence class w(p) € Bl with its set interpretation
©(M) € Gr(M,R""1) of the nonlinear Grassmannian, which motivates the following
definition.

Definition 14 (Shape Functionals via Shape Spaces and Pre-Shape Function-
als). Let M C R"! be an n-dimensional, compact, connected and oriented C°-
submanifold, perhaps with smooth boundary. Consider the shape space Bl and the
pre-shape space Emb(M, R™+1).
Then a function
J: Bl =R (4.21)

is called shape functional. A function
J: Emb (M,R""!) - R (4.22)
is called pre-shape functional.

Since we rely on functions J: B} — R throughout the rest of this work, we
use the short term ’shape functional’ for them. On the other hand, the more gen-
eral functions J: A C P(R"™!) — R are termed ’set-theoretic shape functionals’.
The nomenclature pre-shape functional for functions as in (4.22) is motivated by
regarding Emb (M, R"*!) as a pre-shape space, e.g. as done by Michor et al. in [12,
Ch. 1.1]. Since optimization is classically taking place in shape spaces, as opposed
to pre-shape spaces, we have to investigate their correspondences and relations. For
this, the following definition comes in handy. It is motivated by the construction of
the shape space Bl in definition 12.

Definition 15 (Shape Functionality). Let J be a pre-shape functional and let ¢ €
Emb(M,R"*1). We say J has shape functionality in ¢, if it is consistent with the
fiber projection, i.e.

Jpop)=3(p)  Vpe Diff(M). (4.23)
If 3 has shape functionality for all o € Emb(M,R"*!) we say J has shape func-

tionality.

In order to give optimality criteria for the pre-shape optimization problems, and
to formulate according optimization algorithms, we introduce a domain derivative
for Emb(M,R"*1). Tt is desirable that such a pre-shape derivative is compatible
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with the classical Eulerian shape derivative from definition 10. Hence, we do not
choose a standard Fréchet or Gateaux derivative formulation on C°°(M,R"*!) for
this endeavor, as directions for which we differentiate would correspond to tangential
vectors of the space Emb(M, R"*1) only. Instead, we want directions on the whole
ambient space V € C°°(R"*1 R"*1) to be permissible, which is natural in numerical
shape optimization by deformation of the hold-all domain.

Definition 16 (Perturbation of Identity and Pre-Shape Derivatives). Consider
a pre-shape functional J, not necessarily having shape functionality. Let ¢ €
Emb(M,R"1) and V € C®(R*L,R"*1). Then the family of functions

pri=p+t-Vop (4.24)

is called perturbation of identity of ¢ in direction V' for ¢t € [0, 7] and some T > 0.

The limit o) — 3(0)
~ . —

DJ()[V] := lim ) — AP

t—0 t

(4.25)

is called pre-shape derivative of J at ¢ € Emb(M,R"Y) in direction V, if it exists
and is linear and bounded in V.

We want to remind the reader, that C°°-regularity for pre-shapes is not necessary
to introduce the concept of pre-shape derivatives. Instead, the same definition can
be adapted for embeddings ¢ of Sobolev- or Holder-regularity. In these cases, test
functions and directions V' need to have according regularity.

We also emphasize that pre-shape derivatives are distinctively different to classi-
cal shape derivatives as in definition 10, and should not be confused with each other.
The difference quotients employed for their definitions use completely different types
of objects. Recall that the perturbation of identity for shapes at 'y € R™*! in di-
rection V € C°(R"H1 R"*1) is defined via equation (3.3). It gives a curve of sets,
in contrast to the perturbation of identity for pre-shapes in equation (4.24), which
is a curve of functions in Emb(M, R"+1).

Despite their difference, the perturbation of identity for pre-shapes (4.24) is
naturally related to the perturbation of identity for shapes w(yp) € BZ. This can be
seen by the following reasoning. For arbitrary V € C°°(R"*! R"*+1) the mapping
¢ as in (4.24) is in C°°(M,R"*1). Since Emb(M,R"*!) is an open submanifold
of C>°(M,R™*1) with respect to the C*°-topology (cf. [105, Thm. 44.1] and p. 25),
¢y is an element of Emb(M,R"*1) for ¢ € [0,7] with 7 > 0 small enough. For such
small perturbations, the bundle projection 7: Emb(M,R"™1) — B is applicable.
The resulting curve of equivalence classes can then be associated with a curve of
shapes in the nonlinear Grassmannian via § as in (4.5). Formally, this means

pi(M) = (Bom)(pr) = o(M): (4.26)

for all ¢ € [0,7] with 7 > 0 small enough. We emphasize that ¢;(M) are the
application of the pre-shape perturbations of identity to M, while p(M); is the
shape perturbation of identity of the shape p(M) as in definition 10.

Remark 3 (Pre-Shape Derivatives as Differentials). The pre-shape derivative from
equation (4.25) can be understood as a differential for J at ¢ € Emb(M,R"*1) on
the open submanifold Emb(M,R"1) in C°(M,R"*) (cf. [105, Ch. 28.15]). This
stems from the assumed linearity and boundedness of the pre-shape derivative in
addition to their existence. In other words, for each V € C®(R"!1 R"H1) there
exist V € T, Emb(M, R L), such that the pre-shape derivative can be seen as the

application of a corresponding tangent vector V to J, i.e.

DI(@)[V] = d3(p)[V]. (4.27)
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This is true, since the perturbation of identity from equation (4.24) defines a rep-
resentative curve in the equivalence class of the tangent vector V. Of course, the
correspondence of V. and V is not unique, which is made precise in structure theo-

rem 9 (i).

Remark 4 (General Perturbations of Pre-Shapes). For the definition of pre-shape
derivatives via equation (4.25), we are not limited to families of perturbed embed-
dings p; € Emb(M,R"Y) given by the perturbation of identity as in equation (4.24).
Instead, any sufficiently reqular flow given by operators

Gyt Emb (M,R"™) — Emb (M,R"™), Gy = idgmp(arrn+1) (4.28)

gives rise to similar families of embeddings p; := Gi(p). We emphasize that Gy
define a flow in the space of pre-shapes Emb(M,R"Y), which should not to be
confused with diffeomorphisms or flows of the image space R 1.

The flow on Emb(M,R""1) generated by the velocity method can serve as an
example here. If the according semiderivative in equation (4.25) is demanded to
exist and to be independent of choice of velocities that are identical at t = 0, we get
a pre-shape derivative analogue of the Hadamard semiderivatives as found in [42,
Ch. 4, Def. 3.2 and comments therein]. Such a notion of (pre-)shape derivatives is
stronger than the one based on perturbations of identity, as it demands that the limit
in equation (4.25) does not depend on the way @; approaches ¢ for t — 0. Notice
that this depends on the topology of the pre-shape spaces. If the limits in equa-
tion (4.25) are linear and bounded, then the Hadamard derivative satisfies the chain
rule, whereas the derivative based on perturbations of identity as in definition 16
does not in general.

The next proposition shows the relationship of classical shape- and pre-shape
differentiability.

Proposition 2 (Shape Differentiability Implies Pre-Shape Differentiability). Let
J: B} — R be a shape functional.
Then it has a canonical extension to a pre-shape functional

J: Emb (M,R™') = R, ¢+ J(n(y)), (4.29)

where 7 is the bundle projection from definition 13. Further, there is a one-to-
one correspondence of shape functionals J and pre-shape functionals J with shape
functionality.

Additionally, if J is shape differentiable in the sense of definition 10, then its
extension J is pre-shape differentiable.

Proof. One-to-one correspondence of pre-shape functionals with the property of
shape functionality as in definition 15 and classical shape functionals as in (4.21)
comes from the following. On the one hand, every canonical extension J of a classical
shape functional J as in (4.29) has shape functionality by definition (4.4) of 7. On
the other hand, every pre-shape functional J with shape functionality gives rise
to a well-defined shape functional J fulfilling (4.29). This holds, since the fibers
() are the disjoint orbits of ¢ by Diff (M) acting from the right, which makes 3
constant on fibers by the definition 15 of shape functionality.

Next, we prove that shape differentiability implies pre-shape differentiability
of the pre-shape extension. For this, assume that J is shape differentiable. Let
us fix a ¢ € Emb(M,R"*!). Now we can use a case analysis for directions V €
C>° (R R"*1) either being tangential or normal at ¢(M). With this, we show
existence of the pre-shape derivative D(J o7)(p): C®°(R*" 1 R*"1) — R as in
(4.25) for all V € C°(R"*1 R"*1) as well as its linearity and boundedness.
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We recur that the fiber bundle projection 7 naturally defines a fiber bundle pro-
jection on the tangent bundle T as in (4.13), which is linear and bounded. This
lets us use decomposition (4.14) of the tangent bundle 7"Emb(M, R"*!) into hori-
zontal and vertical component. Every tangent vector of Emb(M, R"*1) is uniquely
representable as a sum of both parts. Hence it is sufficient to show existence of
equation (4.25) for tangent vectors in T, Diff (p(M)) and T,B} separately. This
enables us to use that J o 7 is constant on fibers.

For the first case, let V € C>(R"* R""!) be such that Vo ¢ € To. By
definition of the pre-shape derivative with the perturbation of identity as in equa-
tion (4.24), we have

d

DT em@VI= g .

(T om)(pt) = o (T om), (4.30)

with ¢o € T Emb(M,R"*!) being the tangent vector representing V o ¢ € Toar).
The perturbed curves ¢; are generally not running in fibers, i.e. there is at > 0 such
that 7(p;) # 7(p) in any open neighborhood of ¢. Instead, we can choose a different
representative curve @, for g, such that ¢ = ¢, @y = ¢o and 7(@:) = 7(¢) in an
open neighborhood of ¢. This means @; is running through the same fiber as ¢.
Such a choice can be made, since Emb(M,R"*!) is open and locally trivializable,
as it is a fiber bundle (cf. definition 13 and definition 5). Thus we find an open set
U C B, such that W := 7= }(U) C Emb(M,R"*1) is an open neighborhood of ¢y
with a diffeomorphism trivy: W — U x S. The set U corresponds to the base space
and S to the standard fiber Diff (M). For sufficiently small ¢ > 0, we can write

trivy (o) = (ug, St) (4.31)
for some u; € U and s; € S. Now we construct the desired curve by setting
Gy = triv ! (uo, st). (4.32)

By construction, the desired properties are verified, in particular ¢y = ¢o due to
equation (4.14) and 7(@;) = w(po) for all ¢ € [0, 7] small enough. This shows that
¢ stays in the same fiber as g in an open neighborhood W of . This proves the
first case via

D(T om)(@)V] = ¢o(T o)

= @o(T o)
d -

— &\t:o(j o7)(¢t) (4.33)
d

- @\t:o‘j(w(%))

=0.

For the second case, we consider the horizontal bundle. It splits into spaces of
normal vectors on OM and M according to relation (4.15). The following argument
is applicable to both components separately, which then gives the result for all
vector fields corresponding to the horizontal bundle. Let V € C°°(R"+1 R"*1) be
such that Vo € N,y and V o ¢ is non-trivial. If a curve of embeddings ¢; runs
along a fiber, i.e. m(p:) = m(¢pp) for all ¢ > 0, then ¢ is in the vertical bundle part
of TEmb(M,R"*1) by its definition as ker T'r. By choosing a representing curve
@y for V o o, combined with non-triviality of V o ¢, we see that 7(¢;) cannot be
constant around a sufficiently small open neighborhood of . Since 7 is continuous,
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@t defines a non-constant curve m(@;) in BY. Thus
DT em)(@)V] = ¢p(T o)

= %ltzoj(vr(@t)) (4.34)

=DJ (7(¢0))[V].

The pre-shape derivative in equation (4.34) is well defined, because existence of the
last term in equation (4.34) is guaranteed by the assumption of shape differentia-
bility of J: B} — R.

For a general V € C°°(R"™ R"™1) we combine this case study with decompo-
sition (4.14), to get

D(J om)(9)[V] = ¢o(J o)
= (&' + el ) (T om)
=@ (Tom) + @) (T o)
=DJ (r(¢))[V] +0,

where ¢)" € T, Emb(M,R"*!) is the horizontal, and ] € T, Emb(M, R"+1) the
vertical component of the tangent vector associated to V o . Therefore, the pre-
shape derivative D(J o m)(p)[V] exists for all ¢ € Emb(M,R""!) and all V €
C°°(R™*1 R™*1). Linearity and boundedness of D(J o7)(¢)[V]in V is seen due to
J om being constant on fibers, and linearity and boundedness of the shape derivative
DJ by assumption and definition 10. O

With proposition 2, we can situate classical shape optimization problems in the
context of optimization in pre-shape spaces Emb(M, R™"*1) for suitable manifolds
M. But first, we observe that a unique solution ¢(M) of a shape optimization
problem has multiple parameterizations in general. For shape optimization prob-
lems posed in the pre-shape space Emb(M,R"*1), this leads to non-uniqueness of
solutions, which at first might seem like a disadvantage. However, due to non-
uniqueness up to elements in the solution fiber 7(y), it is possible to demand ad-
ditional properties for the pre-shape solution. This gives several opportunities to
enhance numerical shape optimization routines, while at the same time narrowing
down the amount of non-uniqueness of pre-shape solutions to a reasonable level.
We exploit this idea in later chapters. For example, increasing mesh quality while
not changing the shape at hand can be viewed as a condition posed on a shape
optimization problem selecting a pre-shape in a given fiber.

Proposition 2 also offers a possibility to transfer results concerning shape differ-
entiability of classical shape functionals to the pre-shape setting, without the need
for new proofs. In particular, existence of stationary points in B! is carried over to
Emb(M,R"1) as existence of stationary fibers. Hence, proposition 2 shows that
pre-shape optimization is in some sense a canonical generalization of classical shape
optimization.

In the following, we give a characterization of the pre-shape derivative in the
style of the Hadamard-Zolésio theorem 7. For introductions and facts concerning
the use of distributions, the reader can consult [147, Rem. 6.2, Def. 6.22, Def. 6.34,
Thm. 7.10, Ex. 7.12] and [89, Ch. 2]. A slight difference of our formulation com-
pared to theorem 7 is, that we use distributions supported on vector fields, instead
of a distribution on scalar valued functions. This is a necessity in the pre-shape
setting, since multiple linearly independent tangential directions on shapes ¢(M)
can exist. For the classical Hadamard-Zolésio theorem 7, it suffices to consider only
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the coefficients of the single outer unit normal direction of vector fields on a hyper-
surface. In the following, we denote by C°(R™ ! R"*1) the space of smooth vector
fields on R™*! with compact support and assume the strong C*>-topology. Also,
we abbreviate (g7, V) oo (mnt1 gnt1y= by (g, V) for readability, being aware of the
duality product suiting the distribution g € C°°(R"*1 R"*1)* (cf. remark 7). We
use trace operators to indicate restrictions, which is overkill for smooth functions,
but acts as a hint for generalization to the Sobolev setting.

Theorem 9 (Structure Theorem for Pre-Shape Derivatives). Let M C R+

be a compact, connected and oriented n-dimensional C°-submanifold, perhaps

with smooth boundary. Consider a pre-shape differentiable pre-shape functional

J: Emb(M,R"*Y) — R, not necessarily having shape functionality. Let ¢ €

Emb(M,R"*1). Denote by n the outer unit normal vector field of the shape p(M),

and by nyary the outward pointing unit normal vector field with respect to Op(M).
Then the following holds:

(i) The support of DF(p) is given by

supp DJ(p) C {V € C® (R R™) 1 (M) NsuppV # @}. (4.35)

(ii) There exist continuous linear functionals ¢ : C®°(R"T!' R*"*1) — R and
g7 C®(R"1 R"1) = R depending on ¢, which are distributions with com-
pact support on (M), such that

DI()[V] = (¢V, V) + (g7, V) WV € C® (R R, (4.36)
Moreover,
supp ¢V C supp DI () N { Ve C® (R R™)  Tr,an V] € Noan

or Trjauan)[V] € Nop(ar) }
(4.37)

and

suppg’ C supp DJ(¢) N {V eC™ (R"+1,R”+1) s Trioon V] € Toon },
(4.38)
where Triyapy: C°(R™H R — C%(o(M),R™1) is a trace operator,
NW(M) and Nﬁw(M) are normal spaces as in equation (4.17) and equa-
tion (4.16), and T,(ar) is the tangential space as in equation (4.19).

(iii) If 3 has shape functionality, then for all p € Emb(M,R"*Y), we have g7 =0
and

DI(p)[V] =DJI (n(¢))[V] vV € C°(R* R*), (4.39)

where J: Bl — R is the natural shape functional corresponding to J by
Jom=73. In particular, gV corresponds to the distribution of the classical
Hadamard-Zolésio theorem 7.

(iv) If for all ¢ € Emb(M,R""1) the pre-shape derivative vanishes in tangential
directions on p(M) parallel to dp(M), i.e.

@J(@)[V} =0 VYWeC™ (RnJrl,RnJrl) with TI“W(M) [V} S 7;,(]\/[), (4.40)

then J is locally constant on each fiber in Emb(M,R"*1). If additionally J is
constant under change of orientation and M € {S*, S?, 83}, then J has shape
functionality.
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Proof. Let J: Emb(M,R"*1) — R be a pre-shape differentiable pre-shape func-
tional and fix a ¢ € Emb(M,R"*!) for the rest of this proof.

For (i), let V € C°°(R"*1, R"*1) be such that ¢(M)Nsupp V = @. Consider the
perturbation of identity ¢; for V of ¢ as in equation (4.24). By o(M)NsuppV = &,
we have Vogp = 0, resulting in ¢, = ¢ being constant in ¢. This yields DJ(¢)[V] =0
via the difference quotient in equation (4.25), which immediately gives us (i).

Now let us consider assertion (ii). We follow reasoning of [42, Ch. 9.3.4, Cor. 1] to
some extent, where Banach spaces C*(R"*! R"*1) are considered. By (i), the pre-
shape derivative DJ(p): C°(R" T R™"*1) — R is a linear functional with compact
support as in relation (4.35). Hence we do not lose information by restricting the
space of permissible test functions V to C2°(R™T1 R"*1). This gives a distribution
g € D'(R™1 R™*1) with compact support in the sense of [89, Def. 2.1.1], such that

DI(P)V] = (9, V)prmnirgntry YV € CZ (R R™1). (4.41)

Since we found the support of DJ(p) in (i), we also have that the support of g is on
©(M). By [89, Thm. 2.3.1], and as continuity is demanded for DJ () by definition,
we see that the pre-shape derivative is also a distribution with compact support on
the domain C>°(R"T1 R+,

We can define §7 and ¢ as the restriction of g to either vertical or horizontal
directions of C*°(p(M),R"*1), recurring on decomposition (4.14) of the tangent
bundle in horizontal and vertical components. These are again distributions with
compact support (cf. [89, Ch. 2.2]). By use of [89, Thm. 2.2.5] via compactness of
(M), we can uniquely extend the distributions g7 and 7V by zero to the entire
domain C*°(R™*! R"*1). Denote the extended distributions by g7 and g respec-
tively. By construction, we see that both distributions are supported on compact
w(M), with relation (4.38) and (4.37) satisfied. Due to their unique extension by
zero, and values of §7 and § coming from restrictions of DJ (p) to vertical and
horizontal components, we see that equation (4.36) is also satisfied by construction,
giving us (ii).

For (iii), let J have shape functionality. Let us consider an arbitrary direction
V e C°(R", R™1) parallel to p(M), i.e. Tri,oan[V] € Tpan. We can follow
analogous arguments as in the proof of proposition 2, giving us a curve ¢, in the
fiber 7(p) generating DJ(p)[V] for a given ¢. As ¢; is running on the fiber of ¢,
and since J has shape functionality (cf. definition 15) in ¢ by assumption, J(p¢)
is constant for all ¢. By definition of the pre-shape derivative in equation (4.25),
we have DJ(¢)[V] = 0. This holds for all directions V' € C°(R"*! R"*!) parallel
to ¢(M). Hence by decomposition equation (4.36), together with support relations
(4.37) and (4.38) , we have g7 = 0.

Further, vanishing of g7 implies that equation (4.36) reduces to

DJ(p)[V] =gV, V) WV e C®R R, (4.42)

We can use proposition 2, and see that shape functionality of J leads to a well
defined shape differentiable shape functional J: B’ — R with J o = J. As the
vertical part of V has no impact on DJ(¢)[V], we can find a horizontal curve ¢,
generating DJ(¢)[V]. The representative ¢; either creates a trivial curve m(p;) in

B!, which leads to equation (4.39) being 0 on both sides, or a non-trivial curve
m(py) in B?. If w(p¢) is non trivial, we have
DI(r(@)VI= & T(rle)) = = Ie)=DIRV]  (443)
dt|i=0 dti=0

for the shape derivative DJ (w(p)) and pre-shape derivative ©J(y), resulting in
equation (4.39). Together with equation (4.42), and by association of ¢(M) with
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m(p) € BZ, this also shows that gV corresponds to the distribution taking co-
efficients of normal components from the Hadamard-Zolésio theorem 7, giving us
(iii).

It remains to proof (iv), so let us assume equation (4.40) to be true. We show
that J is locally constant on each fiber. Let us fix a ¢ € Emb(M, R""1) and define

G, Diff(M) — Emb(M,R"*), p = pop, (4.44)

the action of Diff (M) from the right on the fixed element . As Diff(M) =
Emb(M, M), the structure group Diff (M) itself is an open manifold of the vec-
tor space C*°(M, M) equipped with the fine very strong C*°-topology (cf. [105,
Thm. 43.1], p. 25). This makes it possible to apply the concept of differentials for
G,. Thus, for local constancy of J in each fiber, it is sufficient to show that the
differential d(J o G,)(p) is zero for all p € Diff (M), where

JoGy: Diff(M) — Emb(M,R""!) = R (4.45)

This is true, since we have that ©J(¢) is linear and continuous for all ¢ €

Emb(M,R""1), as G, describes the action of the regular Lie group Diff(M). This

in turn allows for an application of the mean value theorem to give local constancy.
For this, we see that

0 — T, Diff(M) “¥ T (,) Emb(M,R™1) 3T, (1 BP0 (4.46)

is a short exact sequence, i.e. Im(dG,) = ker(dm). This is true by the following
argumentation. For the differential we have dG,(p) = Dy o p for all p € Diff (M),
and for directions V' € T, Diff (M) the chain rule yields

N d d -

dGy(p)[V] = QPP = Delo) gy o= (Deop)V, (4.47)

with a curve p; on Diff(M) representing V. This in turn makes G, an immersion,
since Dy is injective by ¢ being an embedding. Since G, defines an immersion of
Diff (M) onto a fiber of Emb(M, R" 1), it makes dG,, an isomorphism of T}, Diff (M)
and its image Im(dG,(p)) = Ty (ar). Also, drg, (o) = TW\TGMp) Emb(M,Rn+1) 18 linear,
and sends the vertical space to zero. We therefore have Im(dG,) = ker(dm) by
definition of the vertical space (cf. equation (4.13)). This gives the exactness of the
short sequence (4.46). Hence we get

Tr(dGy,(p)) = dmodGy(p) =0, (4.48)

which means that dG,(p)[V] can be associated to an element of the vertical space
ker(T'm,) = T,y for all directions V € T,Diff(M) via (4.14) and (4.18). By
interpreting the pre-shape derivative as a differential (cf. equation (4.27)), we dif-
ferentiate with respect to p and use the chain rule for differentials to arrive at

d(30Gy)(p)[V] = dd( 0 p) [dG, (o) [V]]

=DJ(pop)[VT]
=0,

where V7 € C®(R"1 R"*1) is a vector field associated to dG.,(p)[V] according
to equation (4.27). Assumption (4.40) then gives the last equality to zero.

This true for all ¢ € Emb(M,R"1), all p € Diff(M) and all V € T, Diff(M).
Therefore J is locally constant on each fiber in Emb(M, R"*1), which is the first part
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of (iv). Additionally, if M € {S*,5?% 53}, then several topological results partly
proved and conjectured by Smale (cf. [166, Thm. 13.14{]) tell us that Diff(M) has
homotopy type of the orthogonal group O(n), n € {2,3,4} accordingly. The orthog-
onal group O(n) itself has two connected components, one consisting of elements
with determinant 1, corresponding to SL(n), and one for element with determinant
—1. Hence Diff (M) also has two connected components, corresponding to orienta-
tion preserving and reversing diffeomorphisms. If J is assumed to be invariant under
change of orientation on each fiber, we have that local constants on each connected
component are equal. In this case J is constant on each fiber, which implies that J
has shape functionality, finally concluding the proof. O

Theorem 9 gives an intuitive way to understand the pre-shape derivative from
definition 16 and the relation of shape functionals and pre-shape functionals. Part
(i) of theorem 9 has the same meaning as in the classical Hadamard-Zolésio structure
theorem for shape derivatives. Namely, deformations of the hold-all domain only
influence the pre-shape functional if they deform the shape o(M).

The difference to classical shape derivatives is illustrated in equation (4.36),
where the effect of deformations on the objective is split into normal and tangential
components. The normal part ¢ can be understood as the shape optimization part
of ©J, i.e. J depending on the change of interface (M). This is also reflected by
the structure of its support given in relation (4.37), which states that only directions
deforming ¢(M) in normal direction have an effect on V. Notice that on points
of the boundary 0y (M), there is one more degree of freedom for normal directions
compared to the interior of ¢(M). On the other hand, g7 is interpretable as the
part of ©J sensitive to reparameterizations of the shape (M), which is shown by
the structure of its support in relation (4.38). Only vector fields that are parallel to
(M) play arole, i.e. vector fields tangential to (M) and dp(M). In classical shape
optimization, tangential vectors are always in the kernel of the shape derivative.
But in the more general pre-shape case, both normal and tangential components
can have a combined non-trivial effect.

The influence of tangential and normal directions on J is also reflected in theo-
rem 9 (iii) and (iv). Pre-shape functionals J with shape functionality have vanishing
tangential part g7 of the pre-shape derivative ©J, meaning that they are only sup-
ported by normal components of the deformation field V € C°(R**! R**1), This
coincides with classical shape optimization theory. On the other hand, if ’shape
derivatives’ are not found to vanish in tangential directions, the ’shape functional’
at hand is actually a true pre-shape functional. Such behavior is the case for pre-
shape functionals for mesh quality optimization we develop in the next chapters.

Remark 5 (Structure Theorem for Arbitrary Codimension Shapes in Euclidean
Space). In the proof of theorem 9, we did not rely on the specific codimension of
shapes (M) C R except in decomposition (4.14), where tangential vectors of
the pre-shape space are decomposed into horizontal and vertical components. In
fact, decomposition (4.14) into wvertical and horizontal bundles and their respec-
tive descriptions are valid for model manifolds M of dimension dim(M) < n + 1
(cf. [61, Thm. 2.2]). Therefore the proof for theorem 9 applies to pre-shape spaces
Emb(M, R"*1) with model manifolds of dimension dim(M) < n + 1, where smooth
boundaries OM are also permitted. Normal spaces NS@(M) and tangential spaces
Toary as in (4.17) and (4.19) have to be adjusted for the number of linearly inde-
pendent normal and tangent vectors. If for ezample Emb([0,1],R3) is considered,
the space ./\/;,(M) contains normal vector fields on embedded lines, where there are
at least two linearly independent normal vectors for each point on ¢([0,1]). On the
other hand, T,y consists of vector fields tangential to the curve ¢([0,1]), which
vanish on its end points dp([0,1]) = {p(0), v (1)}.
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The classical Hadamard-Zolésio theorem 7 is generalized in [173, Thm. 5.5]
for shapes being bounded and topologically closed C*T1-submanifolds of R™1 with
nonempty interior. For the case of C*°-shapes and an objective J with shape func-
tionality, i.e. vanishing tangential component of the pre-shape derivative as by the-
orem 9, the results of [173, Cor. 4.2] coincide with theorem 9.

Remark 6 (Shape Functionality and Vanishing Tangential Pre-Shape Derivative
Component are not Equivalent). In theorem 9 (iii) we see, that shape functionality
implies that the pre-shape and shape derivatives coincide. Perhaps surprisingly, the
opposite is not true in general. Vanishing tangential component of pre-shape deriva-
tives do not imply shape functionality of pre-shape functionals J. Only the slightly
weaker notion of locally constant pre-shape functionals J described in theorem 9
(iv) holds. The issue stems from the peculiar fact, that orientable, connected mani-
folds M can give rise to multiple connected components of Diff (M). For the cases
M € {S',82, 53}, these correspond to orientation preserving and reversing diffeo-
morphisms of M (c¢f. [111, Ch. 15]), which we have used at the end of the proof for
theorem 9 (iv). The existence of multiple connected components in Diff (M) makes
fibers in Emb(M,R"*1) non-connected. For n = 1 and M without boundary, the
only permitted case is S* (cf. [58]), for which the last assertion of theorem 9 (iv)
holds.

The more general case is way more complex, and multiple connected components
can indeed arise. FEven for orientable, connected, compact surfaces the situation
regarding their diffeomorphism group Diff (M) is non-trivial and needs sophisticated
techniques, such as mapping class groups and the Nielsen- Thurston-Classification
theorem (cf. [51]). The situation for diffeomorphism groups of manifolds with di-
mension greater two is still not completely understood, and subject of extensive
research at the time writing this work. Also, for dimensions n > 3 there are cases
of closed and orientable M, where no orientation reversing diffeomorphisms exist
(cf. [186]). This makes the situation for Diff (M) even more obscure. However, this
phenomenon does not occur in dimensions n < 2.

The peculiarity regarding connected components of Diff (M), and thus of fibers in
Emb(M,R"*1), plays a role in the design of numerical techniques. Non-appropriate
construction of J or initialization of pre-shape optimization routines leads to mesh
iterates, which leave the starting component of their fibers in Emb(M,R"t1) C
Imm(M,R"Y) to reach optimality. For example, this happens when covariant
derivatives are assembled without care for coherent orientation of local tangential
orthonormal bases. The pre-shapes thus become true immersions, which at the dis-
crete level materializes in self intersections of the mesh. This can finally lead to
destruction of the mesh, rendering it useless for further computations.

In numerical applications, we give remedy to this by staying on the connected
component of the identity. As M is considered a subset of the hold-all domain,
the initial mesh of the starting shape can be interpreted as the trivial embedding
(cf. remark 2). Therefore, by choosing small step sizes for mesh morphing and
prohibiting self-intersecting mesh configurations, it is guaranteed that we stay on
the connected component of the identity.

Remark 7 (Impact of the C*°-Setting). The general version of the Hadamard-
Zolésio theorem 7 is formulated in the context of C*-regularity for shapes and ac-
cording C*+-vector fields V' on the hold-all domain (cf. [42, Ch. 9.8.4]). Since
CHLY(R™1 R 1Y) are Banach spaces, working with their continuous duals is con-
venient, as the authors of [42] display. Their resulting structure theorem states
existence of distributions of certain finite order (cf. [42, Ch. 9.3.4, Rem. 3.1]).
Hence a version of the pre-shape derivative structure theorem 9 (i) and (i) for
directions from the Banach spaces CF(R"1, R"*1) holds with an analogous proof,
with adaptation of definition 16 to respective directions.
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The formulations used in the pre-shape derivative structure equation (4.36) are
partly owed to the unbounded domain R" 1 for vector fields V in the C>®-setting.
The continuous and linear functional DJ(p) takes arguments from the Fréchet
space O (R R" 1) equipped with the topology induced by the semi-norms of
CHR™ L R 1), From the discussion in [89, Thm. 2.5.1], we know that the set
of distributions with compact support D'(R"1 R" 1) is identical to the continuous
dual space of C°°(R™ 1 R 1) with the strong topology defined by the respective
semi-norms. The first part of the proof of (ii) justifies to call DF a distribution in
the sense of Hormander [89, Def. 2.1.1]. It is permissible, since DJF can be restricted
to C (R R™1) due to its compact support on the shape (M) proved in rela-
tion (4.35) of (i). To sharpen cautiousness of the reader, we emphasize that the con-
tinuous dual of C*°(R"T R 1) has no dual norm analogue as in Banach spaces,
does neither form a Banach space, nor a Fréchet space with its weak™-topology, and
is not metrizable. In general, the pre-shape derivative DF(p) cannot be represented
via integrals on (M) similar to the boundary formulation equation (3.6).

The combined use of material and shape derivatives found in classical shape
optimization and structural sensitivity analysis literature (cf. [17, Def. 1, Def. 2],
[96, Ch. 3.3.1]) showed useful for practical calculations. In particular, through
the application of material derivatives, it is often straightforward to derive closed
expressions for shape derivatives of integral quantities. Our next task is to extend
the notion of material derivatives from the classical context to pre-shapes, and to
formulate calculus rules which harness their benefits.

Definition 17 (Pre-Shape Material Derivative). Let M C R"! be a compact,
connected and oriented n-dimensional C*°-manifold. Consider a family of functions
{fo: R" = R} pepmb(m,rn+1). For a direction V. e C(R" T R"), we define
the pre-shape material derivative in zo € R**! by

D f(@)VI(wo) =77 for(@r), (4.49)

dt e

if the limit exists. Here, @, is the perturbation of identity for pre-shapes (cf. equa-
tion (4.24)), and xy = xo +t - V(x0) is a perturbed point.

The careful reader might notice the similarity of classical shape and pre-shape
material derivatives. However, the main difference is a possible dependence of func-
tions f on parameterizations of shapes and domains they are defined for. This
is expressed by the larger index class for the family {f,},cgmb(a,rn+1). In con-
trast, only families with smaller index classes { fr }rep» are permitted for classical
material derivatives. Still, both notions coincide if the pre-shape functional has
shape functionality, as we see in the upcoming corollary 1 resulting from structure
theorem 9.

Remark 8 (Pre-Shape Material Derivatives under Weaker Assumptions). The
definition of the material derivative can be generalized to functions and domains
of weaker regularity, such as Sobolev functions and open subset Q C R"T1 with
Lipschitz boundaries. A necessity for this comes from the fact, that state solu-
tions from PDE-constrained shape optimization problems need a well-defined mate-
rial derivative for semsitivity analysis to be applicable. This can be done in the
same manner as with the classical shape material derivative (cf. [96, p. 111]).
Also, the family {f,: R*™t — R} scEmb(a,rnt1) does not need to be defined for
all o € Emb(M,R™Y), but only in an open neighborhood of a po. The neigh-
borhood solely needs to contain the set of all perturbations ¢; of wog generated by
V € C®(R" Y R for sufficiently small t > 0, for which the material derivative
s taken.
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Remark 9 (Relating Pre-Shape Material and Pre-Shape Derivatives). It is im-
portant that the family {f,: R R} eEmb(a,rn+1) can be seen as a function
f: Emb(M,R"™1) x R"*1 — R. Thus the pre-shape material derivative defined in
equation (4.49) is the total derivative of the one parameter family f(p¢, x¢). In the
first component, the perturbation of identity for pre-shapes comes into play, which
differs from the classical shape material derivative. By application of the chain rule,
this leads to the decomposition of pre-shape material derivatives

D f(9) [V =Df(P)IVI+ VIV, (4.50)

where D f(p)[V] is the pre-shape derivative of f in ¢ in direction V. It is an
extension of the classical material derivative formula, for example given by Haslinger
and Mdkinen in [96, p. 111, (8.89)].

Before we examine some exemplary pre-shape derivatives and their decomposi-
tions, we formulate a simple corollary, which connects classical material derivatives
to their pre-shape versions.

Corollary 1 (Decomposition of Pre-Shape Material Derivatives).

Let f: Emb(M,R" 1) xR — R be pre-shape differentiable in the first and smooth
in the second argument. Fiz o € Emb(M,R"™1) and V € C>®(R" T} R" ). Then
the pre-shape material derivative decomposes to

D f(P) V] = (¥, V) + (", V) + VILV, (4.51)

where gV and g7 are distributions with supports as in relation (4.37) and (4.38). If
f has shape functionality, then the corresponding shape dependent function f: Be X
R — R satisfies )

D f(P)V] = Dinf (m()) [V] (4.52)

for all o € Emb(M,R"1). In this case, the pre-shape and classical material deriva-
tive coincide.

Lastly, suppose f: B, x R*1 5 R is shape differentiable in the first argument.
Then it is also pre-shape differentiable, and its pre-shape material derivative is
equivalent to its classical material derivative.

Proof. To get equation (4.51), we simply use formula (4.50) and apply decomposi-
tion (4.36) from the structure theorem 9 to the occurring pre-shape derivatives for
fixed zo € Rt

Assume f has shape functionality in the first argument (cf. definition 15). Its
corresponding shape function is given by f: B xR — R with f(-,-) = f(7r()7 ).
We can now apply part (iii) of theorem 9 to decomposition equation (4.51) and see

D f(e) V] = (g, V) + VIV (4.53)

Since ¢ corresponds to the distribution from the classical Hadamard theorem,
the right-hand side of equation (4.53) equals the classical material derivative
D f () V] )

For the last part, assume f: B? x R"™1 — R is shape differentiable. From
proposition 2 we know that the pre-shape extension f (w(+),-) is indeed pre-shape
differentiable. Also, f(m(-),-) has shape functionality by construction. So we can
apply the previous arguments to see equation (4.52), which shows the last assertion.

O

Structure theorem 9, proposition 2 and corollary 1 guarantee validity of classical
shape calculus formulae and results in the context of pre-shapes. Pre-shape calculus
can be applied to objects from shape optimization, if they are associated with their
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corresponding pre-shape counterparts. This leads to the same derivatives, and thus
optimization methods. Even further, it is possible to apply pre-shape calculus
to mixed shape and pre-shape problems, where the shape part is treated just as
if shape calculus was applied. The key difference is, that a pre-shape component
would otherwise be non-accessible. In the following, we show some simple examples.
Technically more involved applications follow in chapter 5 and thereafter.

Example 1 For a fixed target pre-shape ¢ € Emb(S!,R?), let us define a pre-

shape optimization problem by
. 1
min -
p€Emb(S! R2) 2

[ 169 = o) ds =30 (1.54)

The pre-shape functional J measures the difference of a target ¢ to another param-
eterized shape .

Its pre-shape derivative can be calculated for directions V € C*°(R?,R?) by
elementary techniques

~ d 1 _
DAV = 5,3 ., lee— ol ds

1 d
Z*/ — {p+t-Vop—pg,p+t-Vop—g)ds (4.55)
2 St dt‘t:o

[ o
S1

We can choose S with canonical parameterization as a starting pre-shape by con-

sidering
pia: ' CR? - R?, (i;) — (i;) : (4.56)

In order to formulate the decomposition as in equation (4.36) of the structure the-
orem, we need the outer unit normal vector field and an oriented unit tangential
vector field, which for S* are given by

n: St — R (:Cl) — (IE1> , 7: St = R? (xl) — <x2> . (4.57)
To ) 2 Z1

Now we can examine the problem for several different parameterized target shapes
@ € Emb(S',R?). First, we can consider rescaling by a factor a € (0, 00), which
lets S' contract or expand. The according target is given by

_. ol 2 1 NE2
p: 5" — R, (m)»—)a (m) (4.58)

Using equation (4.55), the pre-shape derivative at the identity becomes

DI (pia)[V] = /51(1 —a)-(n,V)s ds. (4.59)
This shows that rescaling of S* has vanishing parameterization part g7 = 0, whereas
the remaining shape component ¢V is in the style of the classical Hadamard-Zolésio
representation given above. In particular, only vector fields V' acting in normal
direction are supported.

Next, let us consider a rotation of the circle. For this, we let o € [0,27) and
consider target rotations

pstom (1) () S () e
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Plugging this into equation (4.55) and doing some reformulations, the according
decomposition becomes

D3(pia)[V] = /

(1 —cos(a)) - (n, V)2 ds —|—/ sin(a) - (1, V)2 ds. (4.61)
S1

S1

Here we see both components of the pre-shape derivative decomposition. The first
corresponds to the horizontal part gN , and the second to the vertical part g7 .
Notice that the horizontal component vanishes exactly for trivial rotations, whereas
the vertical one also vanishes for the reflection at origin in case o = 7.

Finally, we can translate S' by some fixed z € R?, which gives a target

@: ST - R?, @;) — <2) + 2. (4.62)

The decomposition of the pre-shape derivative at the identity becomes

23(wa)lV] = |

(n,2z)a - (n,V)a ds +/ (1,2)2 - (1,V)a ds, (4.63)
Sl

Sl

where the decomposition into ¢V and ¢7 depends on normal and tangential com-
ponents of z on S*.

Remark 10 (Pre-Shape Material Derivatives on Moving Boundaries). The use of
pre-shape material derivatives makes sense for families of differentiable functions on
varying domains {f,: ¢(M) — R}, cpmb(m,rrt1) depending smoothly on ¢. This
works, since the term f,, (x;) involved in the limit D, f(p)[V] is well-defined. For
an xo € (M), an easy check with definition 16 of the perturbation of identity for
pre-shapes shows

2y = a0 +1-V(wo) = (¢~ H(x0)) +1- Voo (z0)) = pe (0™ (20)) € pe(M).
(4.64)
However, in this case there is no decomposition for D, f(p) as in equation (4.50),
since T ¢ (M) and xog ¢ pi(M) in general. Nevertheless, it remains possible to
derive closed formulae for these types of material derivatives in some cases, which
we achieve in section 5.3.

Next, we give a summary of several useful pre-shape calculus rules. For this,
we remind the reader that the tangential divergence for an n-dimensional smooth
submanifold M C R"*! is defined as (cf. [42, Ch. 9.5.2])

divp: C°(R™ R — C*(M,R), V = div(V)y — (DVn,n)z,  (4.65)

where n is the outer unit normal vector field on M. Due to proposition 2 and corol-
lary 1, the following rules are also true for shape derivatives and shape functionals.

Corollary 2 (Pre-Shape Calculus Rules). Let f,g: Emb(M,R"*!) x R**! — R
be pre-shape differentiable in the first and smooth in the second argument, and let
h:R — R be smooth. Let  C R™ ! be an open, bounded domain with Lipschitz
boundary, and let T' be an n-dimensional C™-submanifold of R"*1. Consider ¢ €
Emb(M,R"*1) and V € C(R" 1 R*"*1). Then the following rules for pre-shape
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and material derivatives apply

(i) Dmf()V] =Df()IVI+ VIV
(i) Dm(f-9)@V]  =Dmf(O)V]-gp + fo - Dmyg(e)[V]
(iir) Dm(ho f)@)V] = Dh(fo)Om[f()[V]

(iv) ( / fodz = /Q D f(@V] +div(V) - [, da

:/@f((p)[V] dx—}—/ fo - (V) ds
Q o0
(v) @(/F]% ds) V] :A@mf(w)[V]+din(V)~f¢ ds

(i) Du(VI)V]  =V(Dmf(@IV]) - VVIVY,
with divp (V) being the tangential divergence of V on T.

Proof. Let the assumptions stated above hold. Identity (i) was already discussed
in corollary 1.

The product and chain rule (ii) and (iii) are simple consequences of the definition
of the pre-shape material derivative in equation (4.49).

For (iv), the conditions for [77, Thm. 5.2.2] apply by considering f,, (x;) as a
function of ¢ > 0. Alternatively, since we assumed Lipschitz boundary for €2, the
change of variable formula is applicable, and the standard proof found in [96, p. 112,
Lem. 3.3] can be used as well.

For (v), computations as in [77, Thm. 5.4.17] or [42, Ch. 9.4, Thm. 4.3] can be
made.

For (vi), the calculations for [17, Ch. 4, Eq. 2.14] give the desired equality. [

Remark 11 (Weakening Assumptions for Pre-Shape Calculus Rules). The formu-
lae provided in corollary 2 hold in greater generality.

In particular, the chain rule (iii) can be stated for Fréchet differentiable operators
h on Banach spaces of continuous functions with help of [42, Ch. 9, Thm. 2.5].
However, care must be taken if structure theorems and resulting calculus rules are
derived (cf. remark 7).

The first equality of formula (iv) for wvolume integrals can be stated for
Q which are merely measurable, and pre-shape differentiable families of class
{f, € WEHR™ M R) Y yepmb(ar,re+1y by use of [77, Thm. 5.2.2]. However, the sec-
ond equality in (iv) requires Q0 to be an open set with Lipschitz boundary (cf. [77,
Ch. 5.3.2, Rmk.]).

Formula (v) for boundary integrals can be generalized to compact submanifolds
I' ¢ R" of Cl-regularity and pre-shape differentiable families of class {f, €
WEHR™ 1 R)} pepmb(ar,re+1y by use of [77, Thm. 5.4.17].

Finally, (vi) also applies to functions f, of Sobolev-regularity. For this,
the definition of the pre-shape material derivative needs to be adapted, e.g.
as in [96, p. 111]. Notice that in this generality, it is additionally neces-
sary that pre-shape material derivatives have weak derivatives, e.g. by requiring
Dnlf,)[V] € WHL (R, R).

So far, we have considered first order pre-shape derivatives. It is of course
possible to extend this concept to higher order pre-shape derivatives. In particular,
we introduce and derive a pre-shape Hessian for an elaborate example in section 5.5.



Chapter 5

The Pre-Shape
Parameterization Tracking
Problem

Our completed general study of pre-shape spaces and their calculus in chapter 4
provides us with the necessary tools to discuss the main model problem class of this
work. The aim of this chapter is to introduce and study the so-called class of pre-
shape parameterization tracking problems posed in Emb(M,R™*1). This problem
class enables us to adapt the overall cell volume distribution of meshes represent-
ing various shapes and hold-all domains. The target cell volumes are allowed to
be non-uniform, and are specifiable via functions f. Throughout this chapter, we
study the parameterization tracking problem class without combined application to
shape optimization problems. Later chapters build on this, and apply the parame-
terization tracking problem to simultaneously optimize mesh quality, while solving
shape optimization problems in pre-shape spaces. We emphasize, that the tech-
niques we develop do not involve changes in mesh topologies, and particularly avoid
remeshing or mesh refinements. However, they can be combined with refinement
and remeshing approaches.

We motivate the problem class in the special case of 1-dimensional shapes, then
we state the general version of the pre-shape parameterization tracking functional
in the ambient space R™*!. An existence result is formulated, where non-unique so-
lutions to parameterization tracking can be found in every fiber of Emb(M, R"1).
We also discuss a generalization for arbitrary codimension shapes in nonlinear ambi-
ent spaces. The characterization of solutions is deepened in section 5.2.2, where we
relate non-unique optimal parameterizations of a fixed shape by use of flows obeying
Euler-Arnold equations on the shape. As a necessary pre-requisite for this charac-
terization, we provide additional decompositions of pre-shape spaces Emb(M, R"*1)
and their tangential bundle structures. Once this is done, we start using our pre-
shape calculus tools developed in chapter 4. We derive the pre-shape derivative
of the parameterization tracking problem in section 5.3, which turns out to pro-
vide sufficient conditions for global optimality. This also serves as an example of a
non-trivial problem, whose pre-shape derivative is not a classical shape derivative,
and thus not tractable by shape calculus. The pre-shape derivative decomposi-
tion in light of structure theorem 9 is given, and connection of its components to
deformation methods and minimal surfaces is discussed. Some first numerical imple-
mentations of parameterization tracking without application to shape optimization
problems are highlighted in section 5.4. Going one step further in section 5.5, we
give a closed form of the pre-shape Hessian, particularly in solutions.



50 5.1. Introduction and Existence of Solutions to Parameterization Tracking

5.1 Introduction and Existence of Solutions to Pa-
rameterization Tracking

In this section we define the pre-shape parameterization tracking problem, and give
sufficient conditions for existence of solutions in each fiber of the pre-shape space. A
main goal of this work is to construct regularizations for shape optimization routines,
which enable us to control the quality of meshes involved. Hence we want to achieve
generality of the classes of pre-shapes for which our techniques apply. In particular,
existence of boundaries, dimensions of meshes, i.e. applicability to volume or surface
manifolds, should be no limitations. At the end of this section, we discuss a possible
generalization of parameterization tracking for shapes with arbitrary codimension
and boundaries embedded in open manifolds as ambient spaces.

Before proposing a pre-shape parameterization tracking problem in R"*!, we
introduce an equivalent problem for the special case Emb(S!,R?) of the unit circle
embedded in the plane R? and the associated space of shapes BL. We then introduce
necessary structures to generalize this problem for embeddings of n-dimensional,
orientable, connected and compact manifolds M C R™*!, possibly with nonempty
boundary OM.

Our approach for the simple case Emb(S!, R?) is motivated by several studies on
shape analysis for curves in Euclidean spaces (cf. [170, 177, 99]). The authors of [170]
construct metrics and corresponding geodesics on spaces of open and closed curves
in R"*1. They rely on the so-called square-root velocity representation 4/ \/m of a
given curve v: I — R™"! on a parameter interval I C R. The motivational insight
for this technique is that ~ is defined up to translation by its unit speed vector
4/1¥| and speed || (cf. [170, Ch. III. A.], [110, Def. 4.3]). Both quantities uniquely
determine 4.

At first glance, it might seem appropriate to track parameterizations directly,
e.g. as in example 1 of section 4.2. It turns out not to be feasible to directly track
a parameterization. Instead, we focus on |¥| as a proxy for parameterizations, since
do not want to change the associated shape. If we specify a family of target speeds
or elastic parts f, € C°°(S,(0,00)), which we let depend on the parameterized
shape +, an according tracking type problem takes the form

2
n{n(g)% /S (B - £9) s, (5.1)

If f, is chosen fixed for each fiber, i.e. to be given for each shape a priori, the
underlying shape of v is not relevant for minimizing problem (5.1). This comes from
the observation that only scaling of the speed direction % is mandatory to match f,.
The direction modulo scaling is determined by the shape of v(S!), which we want to
remain invariant. In general, the objective of problem (5.1) does not possess shape
functionality. Also, it has optimal values for each possible shape v(S!) represented
as m(y) € Bl. These are desirable properties for combining problem (5.1) with
classical shape optimization objectives, because solving problem (5.1) can give a
pre-shape in the fiber of the optimal shape of the classical shape objective.

Before we further elaborate on this, we introduce necessary vocabulary and
notation to generalize problem (5.1) to Emb(M, R"™1) for more general M.

First, we introduce the concept of local frames, which are local orthonormal bases
of tangential vectors on M (cf. [111, Ch. 8]). For an open subset U C M, a smooth
local frame is a tuple of dim(M) tangential vector fields 7 := (71, ..., 75 ), such that
for each p € U, the tangential vectors 7;(p) € T, M are linearly independent. In case
of manifold M with boundary, the subset U is relatively open, and a chart takes
it diffeomorphically to the upper half space H" C R"™. If we have a Riemannian
metric on M, e.g. a metric induced by the Euclidean metric of the ambient space for
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submanifolds M C R"*! then we can additionally demand 7(p) = (71(p), - - -, T (p))
to be orthonormal with respect to the Riemannian metric for all p € U. In this case
we call the frame (71, ..., 7,) a local orthonormal frame. Note that local orthonormal
frames always exist, by application of the Gram-Schmidt algorithm in tangential
spaces (cf. [111, Lem. 8.13]).

To achieve a natural and numerically tractable formulation of the pre-shape
parameterization tracking problem, we also introduce the covariant derivative. For
this, we use similar definitions as in [42, Ch. 9.5.6], which we modify to our situation
using local orthonormal frames. Given a ¢ € Emb(M,R"Y), let 7: U — (TM)"
be a smooth local orthonormal frame on U C M, and let 7%: V — (T'p(M))™ be a
local orthonormal frame on V' C ¢(M). Without loss of generality, we can assume
V = ¢(U), since we can choose V N ¢(U). Then we define the local covariant
derivative representation for ¢ in p € U under choice of frames 7 and 7% by

<D<m(p)ﬁf (<p(p))>2 <D<PTn(p),Tf (</9(:0))>2
D7oiy(p) == : : . (5.2)
<D<P7'1 (), 7¢ (¢(p)) >2 - <D@Tn (p), 7 (w(p))>

2

where Dy is the Jacobian matrix of ¢ and (-,-)2 the Euclidean scalar product
of R"™1. For p € OM, we remind the reader that the tangential space T, M
is dim(M) dimensional, and not dim(M) — 1 dimensional (cf. [111, Prop. 10.4]).
This is simply due to the definition of tangential vectors via curves on M, which
in particular means that the outward pointing normal vector nas(p) is in T,M
for p € OM. Note that such a np(p) always exists and is unique (cf. [111,
Prop. 15.33]). Hence a local orthonormal basis of a frame in vicinity of OM may
look like (71(p), ..., Tn-1(p),na(p)) if evaluated in p € IM.

We also want to make clear that the covariant derivative D7¢ should not be
mistaken for the tangential derivative Dr¢p, which is given via outer unit normal
vector fields n™ on M as (cf. [42, Ch. 9.5.2])

Dry = Dy — Den™ (nM)T. (5.3)

In elementary terms, the covariant derivative D¢ of a map ¢: M C R**!1 —
R™*! can be locally derived by changing bases representing the Jacobian D¢ to
(71, oy Tyn™) and (77, ..., 7%, n#M)) "and then crossing out row n+1 and column
n+ 1. Here, n™ and n?™) are outer unit normal vector fields with respect to M
and ¢(M), which must not be confused with outward pointing normal vectors n s
and n,(pr) on boundaries M and dp(M).

Using the introduced notation, we can now reformulate tangential speed tracking
problem (5.1). It is useful to associate parameterizations of a v € Emb(S*, R?) to
its velocity vector field in direction of a unit tangential vector field 7 € C°°(S!, T'S*)
with appropriate sign via

4(s) = Dy(s)1(s) Vs S (5.4)

The choice of a smooth section of unit tangents is not unique, and essentially cor-
responds to the choice of an orientation for the curve I'(7). For higher dimensional
shapes, the situation regarding choice of unit tangential vector fields is further com-
plicated, see remark 6. Since determinants act trivially in dimension 1, we can
rephrase the functional from problem (5.1) by using equation (5.4) and the local
representation of covariant derivatives (5.2) with orthonormal frames, to get

L (@1 =) s= [ (lae D)1= £,) a5 (59
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Dropping the absolute value for the determinant, this offers a possibility to gener-
alize problem (5.1) to higher dimensional manifolds by using volume forms instead
of speed as a proxy to parameterization. For general manifolds, this takes the form
of

. , 2
cpEEmlI)I(lll\/r[l,R""'l)/M (det D7o(s) — fu(s))” ds. (5.6)

Such a formulation does not resort to perhaps unnatural constructions using mul-
tiple speed functions to mimic problem (5.1). Here f,: M — R is the coeffi-
cient function of the target volume form, which might explicitly depend on ¢ €
Emb(M,R"*1). Due to the quadratic nature of the objective function in prob-
lem (5.6), it is clear that a sufficient condition for optimality is given by

det D¢ = f,. (5.7)

Notice, that this can be interpreted as an equality of smooth volume forms as in
Moser’s theorem 4. For a thorough introduction to differential and volume forms,
we refer the reader to [111, Ch. 14-16].

Having numerical implementations in mind, we are also interested in the case
where boundaries of shapes M are left pointwise invariant. We define the pre-shape
space of embeddings suitable for this as

Embgs (M, R™H) := {gp € Emb (M,R"™) : o(p) =p Vpe M } (5.8)

For numerical routines, this means that a specified boundary M of the start-
ing shape is left fixed, i.e. prohibiting change of the boundary shape and pa-
rameterization. The interior of the shape is still allowed to be deformed and to
change its parameterization. Vector spaces and tangent bundles appropriate for
Embgp (M, R™*1) consist of vector fields which vanish on the boundary M.

The following reformulation of problem (5.6) is tweaked by two alterations, while
still preserving globally optimal solutions analogously. First, we incorporate a pos-
itive function g™ : M — (0,00), which in practice represents the cell volume dis-
tribution of the initial mesh of M. The second alteration formulates the objective
functional on shapes ¢(M) instead of M, which is realized by using pullbacks of
inverses 1. These act as pushforwards of volume forms from M to o(M). This
reformulation makes numerical implementation more convenient, since integrals and
pre-shape derivatives can be evaluated on current mesh iterates. The next theo-
rem gives the definition, well-definedness and existence of solutions of the pre-shape
parameterization tracking problem.

Theorem 10 (Pre-Shape Parameterization Tracking Problem and Existence The-
orem). Let M C R"! be an n-dimensional, oriented, connected and compact C*°-
submanifold, possibly with nonempty boundary OM of C*-reqularity. Further, let
gM: M — (0,00) and f,: (M) — (0,00) be C®-functions. Let f have shape
functionality. Additionally, let

/ fo(s) ds = / g™ (s) ds Vo € Emb (M, R"*1). (5.9)
(M) M
Then the optimization problem

1 M 1 -1 2

= . det D ~ fols)) d 5.10

et ins [ (6097 0D )~ 9) A (310
is called pre-shape parameterization tracking problem. It is well-defined and in-
dependent of choice of local orthonormal frames T on M and 7% on o(M). There
exists a global C*-solution to problem (5.10) in each fiber w(yp). For a fized fiber
() and a given global solution ¢ € 7w(yp), the following assertions are equivalent



5. The Pre-Shape Parameterization Tracking Problem 53

(i) @ € m(p) is a global solution to (5.10)
(i) relations
(9™ o@™!) - det D¢ = f, = (¢ 0p!) -det DG om (M)
are fulfilled

(iii) there is a p € Diff(o(M)), preserving the volume coefficient function fz on
o(M), such that p = po @ is a global solution.

If OM is non-trivial, then for every ¢ € Emb(M,R"*1) there is a global solution
@ € m(p), such that Ploar = wjonr- In particular, if problem (5.10) is stated over the
space of embeddings Embgys (M, R"1) leaving OM pointwise invariant, all previous
statements remain valid.

Proof. The main ingredient of the existence proof is the Dacorogna-Moser theo-
rem 4, which guarantees existence of solution for equations of pullback-type on
manifolds involving volume forms.

Let M C R"*! be an n-dimensional, orientable, connected and compact C>°-
submanifold, possibly with nonempty boundary dM of C°°-regularity. Fix an ori-
entation for M and let ¢ € Emb(M,R"*1). Consider local orthonormal frames 7
and 7¥ on M and (M) with respect to the Riemannian metric induced by the Eu-
clidean ambient space. We see that the integrand in problem (5.10) is well-defined.
This is due to the embedding property of . It is in particular an immersion, which
makes D7¢ € GL(n,R) and thus det D"¢~! non-trivial. Independence of choice
of orientated local orthonormal bases inducing the covariant derivative is also clear
(cf. equation (5.2)), since an orientation preserving change of orthonormal base can
be realized by multiplications with orthogonal matrices B, B € SO(n). By the de-
terminant product rule, the Jacobian determinant det D" ¢ remains invariant under
such a change of base. Further, if no global orthonormal frame exists, we can use
a partition of unity, which covers ¢(M) with open domains for local orthonormal
frames. Then linearity of integrals lets us apply the previous argument about the
change of orthonormal bases, which guarantees well-definedness and independence
of choice of local orthonormal frames of problem (5.10).

Next, we come to existence of solutions to the pre-shape parameterization prob-
lem (5.10) in each fiber 7(p). Let us fix an arbitrary ¢ € Emb(M,R""1). Since
each fiber (i) is isomorphic to the standard fiber Diff (M), we can without loss of
generality assume ¢ € m(p) to be orientation preserving, since we otherwise pick an
orientation preserving representative from the connected component of the identity
of the same fiber (cf. remark 6). In the following, we construct a global solution
¢ € m(p).

To apply the Dacorogna-Moser theorem 4, we define an equation of pullback-
type with volume forms on ¢(M) represented by their local coefficient functions.
More specifically, we look for a p € Diff (p(M)) solving

foop-detDp=gMop ™t -det D"~ on o(M). (5.11)

Due to normalization assumption (5.9), an application of the transformation formula

reveals
/ Mo . det DTt ds = / gM ds = / fo ds. (5.12)
(M) M (M)

Hence to the rule for determinants of inverses, and D7 ¢ having full rank by ¢ €
Emb(M,R"1), we see that det D"¢~! is non-vanishing. Moreover, Jacobian de-
terminants can be locally expressed as a polynomials, which ensures that the right-
hand side is C*°-regular due to C*-regularity of ¢! and ¢g™. Since M is a con-
nected and compact C°°-manifold, the shape ¢(M) has these properties as well.
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Because f, and gM are strictly positive by assumption, and since the inverse Ja-
cobian determinant is strictly positive due to the inverse determinant formula, and
¢ € Emb(M,R"*1) being an orientation preserving embedding, the coefficient func-
tions in equation (5.11) are all strictly positive. This means we have checked the
necessary prerequisites to apply the Dacorogna-Moser theorem 4. Existence of an
orientation preserving p € Diff (p(M)) solving equation (5.11) is guaranteed. Point-
wise invariance of dp(M) is also guaranteed due to 99M = & for g > 2, since M is
a manifold with boundary by assumption.

Now we construct a solution for problem (5.10) by setting @ (= pop €
Emb(M,R"*1). First, we see that p := ¢! o ¢ defines a C'*°-diffeomorphism
on M. Since ¢ = ¢ o p by construction, we know by definition of the equivalence
relations of fibers (4.4) that ¢ € 7(¢). By equivalent reformulation of the defining
pullback equation (5.11) for p via the formula for inverse determinants, and use of
the product rule for determinants, we check

g ot -det DT = gM o (pog) Tt -det DT(po )
=g optoptdetDTp top - det D5t
= (¢Mop ' -detDTp ) opt - det D!
= f@,

Since the objective functional of problem (5.10) is of quadratic nature, and ¢ € 7(¢p)
with f, having shape functionality, this indeed shows that ¢ is a global minimizer.
As the construction of p did not rely on explicit choice of the fiber, we can analo-
gously construct global solutions for ¢ coming from any fiber of Emb(M, R™+1).

Next we show the three equivalences characterizing the solutions in each fiber
7(p). For this, let ¢, € (¢) be global solutions to problem (5.10). Since for each
fiber there is a global solution satisfying equation (5.13) as previously shown, both
@ and ¢ satisfy

(5.13)

gMop Tt det DT = fi=fo=gMop ! -det D"o7 on p(M), (5.14)

where the second equality holds by the shape functionality assumption of f,. This
gives the equivalence of (i) and (ii).

For the last equivalence we set p := ¢ o ¢!, and see that this defines a diffeo-
morphism p € Diff (p(M)) with po ¢ = @. The diffeomorphism p indeed preserves
the volume form f, - ds, due to

feop-detDp=f,o0p0p ' -det D7 (pop™ )
=(gMop™' -detD"p ) opop !t -det D"po gt - det DT

1
_ M ~—1 . T 2 ~—1 T ~—1
=g" o —detDTgbogZ*l det D"pop det D"
= gM o @_1 - det DT(ﬁ_l
= fs@'

Here we used the rule for inverses of determinants, shape functionality of f,, and
that ¢ and ¢ are global solutions in the same fiber, which therefore satisfy equa-
tion (5.14). Analogous arguments can be used to show that for a global solution
@, an f,-volume preserving diffeomorphism p € Diff(p(M)) gives another global
solution ¢ := po @ in the same fiber. This establishes equivalence of (i) and (ii) and
(iii).

The last two assertions of theorem 10 only concern the case of nonempty bound-
ary OM. We take a look at the solution construction of ¢ := po ¢ with p coming
from the Dacorogna-Moser theorem 4 applied to equation (5.11). It guarantees
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pointwise invariance of the boundary p|a,ar) = ida,(ar), because we have no higher
order corners, i.e. d9M = & for ¢ > 2 by assumption. So by construction, our
solutions already satisfy the desired movement of the boundary

PloM = Plag(M) © PloM = PloM -

This also shows the last assertion concerning solutions which leave M invariant.
Namely, such a construction of global solutions in particular applies to the special
case of p € Embyy (M, R*) € Emb(M,R"*1), which concludes the proof. O

Remark 12 (Case of Open Domains with Holder Regularity). Ezistence and well-
definedness results from theorem 10 also hold in the general context of bounded
and connected open domains M with C**-Hélder regularity. For given k € N and
€ (0,1), if M and f, and g™ have C*F_regularity, and OM has C*+t2%-reqularity,
then solutions ¢ with C*t1%_reqularity exist in each fiber. For this, we can apply
the Dacorogna-Moser theorem 3. This includes those cases of Sobolev-regularity,
which satisfy necessary requirements for embedding theorems into Holder spaces.

Remark 13 (Existence Result for Arbitrary Codimension Manifolds M with Cor-
ners). FExistence theorem 10 of solutions to the pre-shape parameterization tracking
problem is stated for manifolds M with or without boundaries. The Dacorogna-
Moser theorem 4 by Bruveris, Michor et al. also holds for the case of manifolds
M with corners, not restricted by their dimension. As Moser’s theorem is the cen-
tral ingredient for the proof of theorem 10, its generalization stated in theorem 4 is
suitable to extend the statements of theorem 10 to arbitrary codimension manifolds
with corners.

For this, an additional assumption is needed. Namely, for all ¢ > 2, we need the
pointwise equality

fo(x) = g™ (¢ (2)) - det D"~ () Vo € dp(M). (5.15)

This means f, and g™ have to be consistent on boundaries with codimension g > 2
of embedded shapes o(M). If this is guaranteed, then the proof of theorem 10 carries
over to manifolds with corners. In practice, when continuous Galerkin representa-
tions are used, this can be achieved by constructing the target f,, such that its
degrees of freedom on boundaries with codimension q > 2 are set according to equa-
tion (5.15). Notice that g™ is not a free parameter, in the sense, that it is already
determined by the initial mesh configuration. Hence, the target f, is also predeter-
mined on corners by choice of the initial mesh and the mesh configuration of current
shape optimization iteration.

Remark 14 (Normalization Condition is no Obstruction for Targets f,). Assump-
tion (5.9) is simply a normalization requirement on f,. From practical perspective,
fo can be defined using a given integrable function f,: (M) — (0,00) via

M
fpom w9 A (5.16)
Jocury fio ds
trivially fulfilling assumption (5.9).

If the target f, is chosen such that the normalization condition (5.9) is not
fulfilled, solutions to problem (5.10) might still exist. However, the property that
solutions exist in each fiber, and thus existence of optimal parameterizations for
each given shape (M), are lost in general. Using a more heuristic point of view,
depending on whether fM gM is greater or smaller fw(M) fo, @ gradient flow gen-
erated by solving problem (5.10) locally shrinks or blows up the shape @(M) in
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normal direction to compensate for the difference. This changes the shape, and the
fiber (@) of p(M) is left in the process. In section 7.3, we capture a related effect in
numerical implementations using steepest descents involving the normal components
of the pre-shape derivative to the parameterization tracking problem (5.10).

We have introduced the pre-shape parameterization tracking by looking at a
low-dimensional special case inspired by shape analysis of elastic curves. It is also
possible to give an alternative motivation for the pre-shape parameterization prob-
lem related to methods for time dependent PDE found in [29, 31, 68]. In these
articles, the authors introduce so-called mesh deformation methods, which track
for a specified target cell volume f by changing coordinates of nodes. These meth-
ods are part of the family of moving mesh strategies for adaptive solution of time
dependent PDEs. From this point of view, we can interpret the pre-shape parame-
terization tracking problem (5.10) as a least-squares formulation of the deformation
method for element volume optimization on manifolds. As we took a slight twist to
formulate problem (5.10) using inverse Jacobians, we have a different interpretation
of optimal ¢ and targets f, compared to mentioned deformation methods for PDE.
In our case, f, describes the desired local density of mesh vertices, and the positive
function g™ : M — (0,00) acts as the node distribution of the initial mesh. On
the other hand, the authors of [29, 31, 68] use targets f to describe the local cell
volume. For this reason, the aforementioned authors incorporate reciprocals of f
in their formulas, instead of reciprocals of Jacobians. Still, both formulations are
related by inverting the solutions, Jacobians and targets.

Pre-Shape Parameterization Tracking for Shapes with Arbitrary Codi-
mensions in Nonlinear Ambient Spaces, and Relation to Pullback Equa-
tions and Optimal Transport

To formulate the pre-shape parameterization problem (5.10), we have restricted
ourselves to the setting of M C R"™! being an n-dimensional submanifold. This is
perhaps the most common case in practice, which does not rely on more advanced
differential geometric techniques for numerical implementations, such as retractions
or exponential maps. In light of remark 1, we can generalize pre-shape parame-
terization tracking problem (5.10) to pre-shape spaces Emb(M, N) with ambient
spaces N, which are general C'°°-manifolds of finite dimension without bound-
ary. Then for compact, connected and oriented C'°°-manifolds M of any dimen-
sion dim(M) < dim N, perhaps with smooth boundary dM, the pre-shape space
Emb(M, N) is a Fréchet-fiber bundle over the base space B.(M, N) as described in
definition 5 (cf. [61, Thm. 2.2]). Hence, by appropriate use of differential geomet-
ric concepts, we can state parameterization tracking problem (5.10) in this more
general setting.

For this, the concept of differential forms is suitable, since determinants and
coefficient functions featured in equation (5.10) can be naturally interpreted in terms
of volume forms and pullbacks. An excellent introduction to this topic is found in
[111]. In the following, we reiterate some facts on volume forms for manifolds M of
dimension m. Let C*°(M, N"™T*(M)) denote the space of all smooth m-forms, i.e.
smooth sections of the bundle of m’th exterior powers A" (T M) with base space
M. As m is the dimension of M, these smooth differential forms are called top-forms
and correspond to smooth volume forms on M. A side effect of using volume forms
for integration on manifolds is the occurrence of negative volume, which depends
on the chosen orientation of M. To remedy this, either the concept of densities on
manifolds (cf. [111, Ch. 16]) can be regarded or, as we do, by restricting ourselves
to embeddings leaving a chosen orientation invariant. The latter is natural in the
context of numerical implementation, since it is an automatic consequence of mesh
morphing with sufficiently small step sizes. This corresponds to staying on the
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identity component of fibers (cf. remark 2 and remark 6). Hence we remind the
reader that, if necessary, the concept of density and volume forms can be swapped.

There is only a limited freedom of choice for volume forms on manifolds, since
A" (T; M) is one-dimensional (cf. [111, Ch. 14]). This makes the space of smooth
volume forms C* (M, A™T*(M)) isomorphic to C*°(M,R). In local coordinates,
this means every volume form w € C*°(M, A™T*(M)) can be rewritten with a
local coefficient function f € C*°(M) to give

w=f-dzy A Aday,. (5.17)

Next, we introduce pullbacks of volume forms, which are related to the transforma-
tion formula in Rt (cf. [111, Prop. 14.20]). As we are only interested in volume
forms, we do not introduce pullbacks for general differential forms. Suppose that
P and (Q are smooth m-dimensional manifolds for a moment, and that we have a
smooth mapping F': P — . The pullback of a volume form w € C* (Q, AT (Q))
locally represented as w = f - dy; A --+ A dy,, is then given by

F*(w)=foF-det DF -dxzy A--- Aday, (5.18)

where det DF is the Jacobian determinant of F' represented in respective local co-
ordinates. If an oriented manifold M exhibits a Riemannian metric (-,-)* then
there is a canonical volume form for (-, -} corresponding to the chosen orientation
(cf. [111, Prop. 16.45, Ex. 16.46]). In particular, this is the case for m-dimensional,
oriented submanifolds of R"*! with the metric i*((-, ->Rn+1) induced by the Eu-
clidean scalar product via pullback of the inclusion i: M — R"*!. Since we assumed
M c R™! in theorem 10, the formulation of pre-shape parameterization tracking
problem (5.10) is implicitly stated with respect to the induced Riemannian metric
*((-, )" and its corresponding volume form.

Let us substitute the Euclidean ambient space R"*! with a general finite di-
mensional C*°-manifold N without boundary equipped with a Riemannian met-
ric (-,-)N. We equivalently reformulate problem (5.10) using pullbacks in the fol-
lowing. The reader is reminded of the more general dimensionality assumption
dim(M) < dim(N) for M C N made in the beginning of this paragraph, permit-
ting general codimensions. What we get is an abstract pre-shape parameterization
tracking-type problem for volume forms

2

S VAT v L ‘
weEnIfﬂ(I}w,mzH(‘p )(g W(“<"'>N)) fo igan (@) L2(p(M), AT (9(M)))]

(5.19)
where dipr: M — N and igag): (M) — N represent inclusions, and wy. .y~
is the volume form on N induced by the Riemannian metric (-,-). Here,

Il - l2 (o), Am T (o(ar))) is the norm for square integrable volume forms on ¢ (M),
which is defined in analogy to the L?-norm. In this context, the choice of g™ : M —
(0,00) is equivalent to the choice of a positive volume form wys = g™ - %, (w. yx)
on M. This means (o~ 1)* (g™ - i, (w(..y~)) is the volume form on ¢(M), which
is created by pushing the initial volume form ¢ - i%, (UJ(,7_>N) of M forward to
©(M) by using the pullback of the inverse (o~ !)*. The necessary normalization

condition (5.9) is then restated as
/ fgo -i:;(M) (CU(.’.)N) = / gM 'ﬁ\/l (OJ<.’.>N) VQD S Emb(M, N) (5.20)
p(M) M

It demands that the weighted total volumes on (M) and M, which are both in-
duced by the Riemannian metric of the surrounding space IV, coincide. In practice,
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the normalization condition (5.20) can be achieved simply by proceeding as in re-
mark 14.

Following this line of thought, it is possible to show an analogue of theorem 10
for the abstract problem (5.19). Arguments made in the proof of theorem 10 can
be followed one by one, when objects introduced in this paragraph are used. In
particular, computations regarding coefficient functions and Jacobian determinants
are replaced by direct computations with volume forms and their pullbacks. The
crucial ingredient is again the general Dacorogna-Moser theorem 4 formulated for
volume forms.

A sufficient condition for global optimality for the abstract problem (5.19) is
given by

2 (f@ () (W<-,->N)> = g™ i (W) (5.21)

Notice that f, occurs on the left-hand side, since we have used ¢! in the formula-

tion of problem (5.19). Condition (5.21) demands that, if the volume form induced
by the ambient space i;(M) (w<_),>N) on an embedded shape (M) C N weighted
by f, is pulled back to M, then it should coincide with the initial volume form

g™ i3 (w(. yv) on M. Equivalently, the pushforward (¢~1)* of the initial volume

g™ i, ((JJ<.,_>N) on M redistributes the volume induced by the ambient space on
(M) according to the target weight f,,. This more abstract framework also shows,
why equation (5.11) from the proof of theorem 10 is termed an equation of pullback-
type. Since we have existence of globally optimal solutions to equation (5.19), such
solutions necessarily satisfy optimality criterion (5.21). Thus, solving the pre-shape
parameterization tracking problem essentially constructs a solution to the pullback
equation (5.21). Put differently, pre-shape calculus and optimization techniques
can be used to solve differential equations of general pullback-type. As far as the
author is aware, such an approach is not found in the current literature. We refer
the interested reader to [38] for a thorough introduction to these large classes of
nonlinear problems.

Another different perspective on pre-shape parameterization tracking becomes
apparent, when expressions of volume forms are interpreted as measures on mani-
folds M. In particular, integration with respect to the induced Riemannian volume
of submanifolds M C R"*! coincides with integration using the m-dimensional
Lebesgue and Hausdorff measures on M, as can be seen by using a partition of
unity and [111, Prop. 16.5, Prop. 16.8] with isometries as chart mappings. With
the measure interpretation, the formulation of the abstract parameterization track-
ing problem (5.19) restricted to a fiber m(¢) C Emb(M, N) can be viewed as an
optimal transport problem in Monge formulation with constant cost function. The
measures u¥™) and pM are associated with fo -i:;(Mf (w(.,yv) and gM (W)
Formally, the corresponding optimal transport problem in Monge formulation on
M over the fiber m(pg) then reads (cf. [150, Problem 1.1])

min /M Cr(o) (T () dp™

pET (o)
St ou (MM) = M)

with cost function cy(y,)(z,y) =1 for all z € M and y € ¢(M). Here, the pushfor-
ward of measures @, can be associated to the pullback of volume forms of the inverse
(p~1)*. We see that in this context, the normalization condition in equation (5.20)
simply means that both measures can be interpreted as probability measures after
appropriate rescaling with the same factor. This problem is in some sense a degen-
erate optimal transport, since it only amounts to the selection of a feasible mapping
¢, i.e. that its pushforward of g™ iy (W, g~ ) results in f¢~i;(M) (w<.’_>N). There is
no further restriction to the non-unique embeddings which satisfy such a property.

(5.22)
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This point of view offers the possibility to extend the pre-shape parameterization
tracking problem (5.19), such that a specific ¢ € 7(pg) amongst those with the
correct volume redistribution is selected. Criteria for selection can be implemented
as cost functions cr(,y): M X @(M) — (0,00) for problem (5.22). This collection
of optimal transport problems for each fiber can be stated over the fiber bundle
Emb(M, N) to yield a generalized pre-shape parameterization tracking problem.
Even further, different versions of such optimal transport problems for pre-shapes,
such as their LP-Monge-Ampere or LP-Monge-Kantorovich formulations in light of
[43] or [72], can be stated. A comparison of resulting pre-shape derivatives and
numerical routines for mesh quality could certainly be of interest. Exploring this is
beyond the scope of this work, but opens possibilities for further research.

5.2 Properties of the Pre-Shape Parameterization
Tracking Problem

5.2.1 Pre-Shape Parameterization Tracking and Finite Point
Sets

Before we pursue the application of pre-shape calculus to the parameterization
tracking problem (5.10), we derive some of its properties using different methods.
The insights are of a more general type, and in part result in enhanced theoret-
ical understanding of techniques we apply in the numerical sections. The next
proposition shows that there is a sufficiently large amount of possibilities to model
movement of mesh nodes by choice of the target f, for the parameterization tracking
problem.

Proposition 3 (Mesh N-Transitivity for Parameterization Tracking Problems).
Let M C R"™! be a compact, connected, oriented C*-submanifold of dimension
n > 2 without boundary, and let gM: M — (0,00) be smooth. Let N € N and
Py = (x1,...,xN) C M be an ordered collection of distinct points. Further denote

by
AP = { Proy = (1, oyn) C M) CR™ : m(g) € Br ) (5.23)

a family of distinct and ordered N-point collections for all shapes o(M) arising in
BIY(M).

Then there exists a family of C*-functions f,: p(M) — (0,00) satisfying the
assumptions of theorem 10, and global solutions ¢ € 7w(p) to problem (5.10) in each
fiber w(p) € BT, such that

e’

¢(Prr) = Pry)- (5.24)

Proof. The proof is essentially a consequence of the N-transitivity property of the
group of smooth diffeomorphisms with compact support Diff.(M) (cf. [133]). This
property states that for given ordered sets of points (z1,...,2n), (P1,...,Pn) C M,
there is a p € Diff (M), such that p(x;) = p; for each i. By assumption, M is
a compact, connected C*°-manifold with dim(M) > 2, so we have Diff.(M) =
Diff (M) and N-transitivity for each N € N.

Let N € N be fixed. Consider ordered point collections for all shapes A as in
equation (5.23), and a given initial point collection Py = (z1,...,25) C M. Fix a
shape 7(y) € Bl and a corresponding point collection Py = (y1,...,yn) € AP
We choose an arbitrary embedding ¢ € 7(p) in the fiber of the fixed shape. By
the embedding property, our assumptions on the manifold M also hold for ¢(M).
Since Diff (M) = Diff (p(M)) are isomorphic (cf. relation (4.6)), we also have that
Diff (p(M)) acts N-transitively on ¢(M).
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We apply ¢: M — (M) to (x1,...,2N), which results in ordered vertices
(p(z1),..-,0(zN)) C @(M). Now we are in the position to use N-transitivity of
Diff (¢(M)), which gives existence of a p € Diff (o(M)) with

(p(p(), - p(p(@n))) = (91, ) = Pagey © 9(M). (5.25)

We define the possible solution candidate as ¢ := p o ¢, and see that ¢ €
Emb(M,R"*1). As we work with submanifolds of R"*! we can set the target
for parameterization tracking as f, := ¢™ op~!-det D"¢~! for all ¢ € 7(), where
gM: M — (0,00) is given initially.

We now check the necessary assumptions made on f, in theorem 10. Since M is
orientable, we can choose suitable orientations of local orthonormal frames, which
gives f, > 0. This is strengthened to f, > 0, because we have g™ > 0and ¢ €
Emb(M, R"*!). The latter also guarantees f, € C*°(M), as Jacobian determinants
of smooth functions are smooth. Normalization assumption (5.9) is checked by
application of the transformation formula. The arguments and constructions do
not depend on the choice of fiber (M), and hence can be carried out to construct
[, for all fibers and point collections in A”. We also have shape functionality for f,,,
as we have set f, to the same function for all embeddings in their respective fibers
7(¢). This shows all necessary assumptions to use f,, as a target for problem (5.10).
Since we can plug f, into relation (ii) of theorem 10, we also verify that ¢ are global
minimizers by construction, concluding the proof. O

In the following discussion, we associate meshes with collections of ordered point
sets. Proposition 3 shows, that the selection of a target f, for pre-shape parame-
terization tracking provides enough modeling possibilities to achieve desired mesh
configurations without changing the discretized shapes. Of course, in practice this
holds only up to discretization errors. Let us say that, for a given starting shape I'
of a shape optimization procedure, we have a corresponding mesh Pr, representing
T'y. Now, a user specifies desired discretizations for all shapes that could possibly
arise during the optimization procedure. He does so by collecting the correspond-
ing mesh node coordinates in P, (ys). Proposition 3 guarantees that for each shape,
there is a target f,, such that the desired nodal coordinates are achieved by a so-
lution ¢ of the parameterization tracking problem (5.10). We reiterate that the
desired parameterizations ¢ exist in all fibers of shapes. This is a necessary prop-
erty for construction of numerical algorithms that do not interfere with the shape
optimization procedures. Here, the only assumption made on the target meshes
P,(ary is to have a fixed number of vertices N, and that the mesh topologies are
consistent with the starting mesh. If mesh morphing is applied to realize the shape
optimization routine, these assumptions are automatically valid, since number of
nodes and mesh topology do not change under valid mesh deformations. Techniques
such as remeshing or edge swapping in general result in inconsistent node numbers
or mesh topologies. However, beware that proposition 3 is a purely theoretical exis-
tence result, and does not offer a constructive way to find target functions f,, such
that desired shape discretizations are realized.

We also notice that, although an appropriate f, exists for any given shape dis-
cretization P, the pre-shape solution corresponding to the discretization P, yr)
is in general not the only global optimum in the fiber of ¢(M). Instead, there
are multiple global solutions in each fiber, which give rise to different meshes for
the same shape. In particular, this means we have no guarantee that a pre-shape
¢, which realizes the specified target mesh coordinates, is selected during a pre-
shape optimization routine for parameterization tracking problem (5.10). Still, the
connection of pre-shape parameterization tracking to optimal transport (cf. p. 56)
might offer an opportunity to select such specified parameterizations ¢ by imposing
additional constraints via the transport cost c,.
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Remark 15 (N-Transitivity in Dimension 1). The case dim(M) =1 is not treated
in proposition 3, since N-transitivity for diffeomorphism groups only holds for
dim(M) > 2. Howewver, every compact, connected C°°-manifold M of dimension
1 is either diffeomorphic to the circle S' or a closed interval of R (cf. [58]). Thus,
if the orderings of point collections Py and Py(apy are assumed to agree, the same
result as in proposition 3 holds for the one dimensional case. In practice, this cor-
responds to consistent node connectivities of the initial and desired meshes.

The next proposition describes a property of pre-shape parameterization track-
ing, which is reflective of its behavior for meshes with different resolutions. In some
sense, this can be viewed as an analogue of approximate mesh independence for
solutions, and thus for numerical techniques we propose in later chapters.

Proposition 4 (Weak*-Convergence of Point Sets under Solutions of Pre-Shape
Parameterization Tracking). Assume the setting of theorem 10. Further, let gM
and f, be normalized to one, i.e.

/ fo(s)ds=1= / gM(s) ds Vo € Emb (M,R"*1). (5.26)
p(M) M

Let {VM} nyen be a sequence of point collections, such that VI € M and VM| = N.
Further, let

1 weak™

N Z 6z L gMds  for N — oo, (5.27)

ZEEVK,W

where 8, are Dirac measures in x.

Then, for every fiber m(¢) C Emb(M,R"*1) and every global solution ¢ € ()
to the parameterization tracking problem (5.10), the point collections {V} } yen are
weak” -convergent to the target f,, i.e.

1 weak™
N Z dp(a) Y fods for N — oo. (5.28)

zeV M

Proof. Let all the assumptions stated in proposition 4 hold. We fix a fiber 7(¢). By
assumption, the conditions to apply theorem 10 are met. This guarantees existence
of global solutions to (5.10) in each fiber of Emb(M,R"™1). Let ¢ € m(¢) be such
a global solution.

We use equation (5.26) to show that weak*-convergence is preserved while push-
ing the measures of concern forward by diffeomorphisms. For this, note that the
pushforward of a Dirac measure by a measurable bijection ®: X — Y is given by

(@) (62) ({}) = 6:(27' (%) = ban(ay ({1)- (5.29)

Let h € C%(p(M)) be an arbitrary continuous function on ¢(M). Then
1 el a1
hd NZ(X;,(@ = hopo d(cp ) NZ(SJ;
o(M) zevM (M) zevM
1
= [ hopd| = 0z
fres (N 2 >

wEVJG/’

—>/ (hocﬁ)-gMds for N — oo,
M
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where we also used continuity of h o ¢ and assumption (5.27). On the other hand,
we can use normalization condition (5.9) to see

/M (ho cﬁ) g™ ds = L(M) ((,2)71)*(ho - gM ds)
s

:/ h-(g™o@!) det DT ! ds
p(M)

= / h- fo ds,
p(M)

where we used that ¢ is a global solution to (5.10) characterized by theo-
rem 10 (ii). Since h € C°(p(M)) was arbitrary, this results in the desired weak*-
convergence (5.28). O

Before we interpret proposition 4, we emphasize that normalization condi-
tion (5.26) is not more restrictive than the normalization condition (5.9) found
in theorem 10. In fact, we can rescale both g™ and fo by the same scalar without
changing underlying solutions to the optimization problem (5.10). Hence, if condi-
tion (5.9) holds, we can assume normalization of g and fo to 1 without restriction
of generality. A normalization to 1 lets g™ and f, act as densities of probability
measures on M and ¢(M). Hence, these densities can be interpreted as the local
vertex count relative to the total number of mesh vertices.

To give an interpretation of weak*-convergences (5.27) and (5.28), we can use
the following analogy. Let us assume we start a (pre-)shape optimization routine in
a shape corresponding to the manifold M, which is discretized by a mesh using N
vertices. We associate this mesh with the normed sum of Dirac measures featured in
proposition 4. Then, let us pretend that we use a mesh adaptation strategy, which
gives increased local refinement of the underlying mesh. As the resolution of discrete
representations of M increases for N — oo, the vertices start to locally accumulate.
In the limit, the normalized local vertex count is converging to a density function,
which shows how many vertices arise during refinement in different areas of M. Such
a mesh limiting process is illustrated in figure 5.1. From this perspective, f, can be
seen as the refinement rule for meshes discretizing shapes ¢(M). Analogously, g™
is the initial point density, which describes a discretization rule by which we choose
the location of new vertices on the initial mesh of M, if we were to refine. Therefore,
proposition 4 tells us that minimizing (5.10) redistributes the vertices of discretized
shapes according to a target vertex distribution approximately independent of the
number of vertices, for sufficiently fine meshes.

Since the number of mesh vertices is constant during standard shape optimiza-
tion routines with mesh morphing, no convergence of point densities to ¢™ can
be witnessed. Hence a discrete representation of ¢ has to be estimated via the
mesh discretization used in applications. For this, special care must be taken, since
the outcome of the redistribution of vertices is crucially influenced by the choice of
gM. We address a possible choice for g™ regarding numerical implementation in
section 5.4.

The growing amount of possibilities to locate N labeled points according to a
prescribed distribution is the cause of non-unique solutions of problem (5.10). As N
grows to infinity, characterization (iii) from theorem 10 shows that global solutions
in each fiber are obtained by letting the (f, ds)-volume-invariant diffeomorphisms
act on a fixed global solution ¢ € m(p). In the discretized setting, this particularly
means that the parameterization tracking problem (5.10) does neither recognize
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@{Qﬁoﬁﬁ

N—o00
¥ X s = fo ds

mEVlf,”

Figure 5.1: Tllustration of normed Dirac distributions weak*-converging towards a
limiting measure for growing N. The normed Dirac distributions can be interpreted
as meshes with according vertices, while growing N increases their refinement, re-
sulting in convergence to an infinitesimal mesh analogue f, ds.

labeled mesh vertices, nor mesh topology or connectivities. Rather, its minimiz-
ers consist of parameterizations, which result in meshes of specified relative local
resolution according to f,. This means the collection of volume-preserving diffeo-
morphisms can be interpreted as a symmetry group of each shape ¢(M), which
leaves configuration of point distributions prescribed by f, invariant. We explore
this in the next subsection, where we relate global solutions in fibers by L?-metrics
on volume-preserving diffeomorphism groups and Euler flows.

5.2.2 Characterization of Solutions by Diffeomorphism
Groups and Euler Flows

In section 5.1, we have established an existence result for embeddings, which solve
the pre-shape parameterization tracking problem (5.10) globally. It is perhaps un-
satisfactory, that no result for uniqueness in each fiber is given in theorem 10.
In this subsection, we study how these non-unique global solutions relate to each
other. Also, we see how L?-metrics on fibers of pre-shape spaces can serve as a tool
to further understand the general structure of pre-shape spaces. Our approach is
motivated from the following observation. As a consequence of the divergence the-
orem, we know that the divergence operator for vector fields on manifolds measures
the local volume change of their induced flows (cf. [111, Prop. 16.33]). In particu-
lar, divergence-free vector fields induce flows which preserve the volume. From our
abstraction of the parameterization tracking problem in (5.19), we know that its
global solutions induce volume forms on manifolds according to a prescribed target
density f,. It is then natural to ask, under which condition the target volume form
is preserved by induced flows of vector fields. An answer can be given by considering
general divergences, defined using Lie-derivatives with respect to volume forms. In
this subsection, we give associated definitions. For submanifolds of R”*1, we relate
these volume form specific divergences to so-called tangential f-divergences. Then
we see, that vector fields with vanishing tangential f,-divergence induce flows that
preserve the optimality of the parameterization tracking problem. In particular, this
gives a local relationship of non-unique solutions in a given fiber. Put differently,
with a suitable L?-metric on fibers of the pre-shape space depending on f,, we find
that corresponding geodesics leave the parameterization tracking problem (5.10)
minimal in f-divergence free directions. Note that other authors, e.g. as in [47],
use the term Hy-metric in this context.

To make this rigorous, and to fit the context of pre-shape spaces, we use tech-
niques involving infinite dimensional diffeomorphism groups of manifolds originating
from geometric mechanics. First results of this branch of mathematics were made
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in the sixties by Russian mathematician Vladimir Arnold (cf. [6]), who related mo-
tions of incompressible ideal fluids to geodesics in the groups of volume-preserving
diffeomorphisms. In the early seventies, this theory was developed further, with
important contributions made by David Ebin and Jerrold Marsden (cf. [47]), and
Hideki Omori (cf. [142, 143, 71]). The main result of this subsection states, that
for a given global solution ¢ to (5.10), all neighboring global solutions in its fiber
m(p) can be constructed via flows on the corresponding shape @(M) satisfying
the incompressible Euler equations with zero force and tangential f-divergence free
initial velocity. In this subsection, we stay in the C'*°-context. Still, notice that
following results and formulations are true in the Hélder and Sobolev setting, and
for nonlinear ambient spaces. We give remarks at suitable places indicating such
modifications.

Relating Different Concepts of Divergences The notion of divergence with
respect to volume forms builds on Lie derivatives, which are defined as follows
(ct. [175, p. 77]).

Definition 18 (Lie Derivative of k-Forms). Let M be a smooth manifold and

w e C°(M,\"T*M) a smooth k-form on M. For a smooth vector field V &
C>*®(M,TM), the Lie derivative of w in direction V' is given by

d .
Lywy = &h&:oq}t (wa, () Vp e M, (5.30)

where ®f is the pullback of the flow ®,: M — M generated by V satisfying
bi(p) = V(®i(p)) with o(p) =p (5.31)

forallp e M.

Notice that this definition of a Lie derivative does not rely on the introduction
of a Riemannian metric, or even a connection on the manifold M. For this reason,
the following definition of divergence suits our purposes, since it is only based on
a given volume form w on M (cf. [166, Ch. 3.3], [111, Ch. 9], [175, Ch. 2.2], [47,
p. 123]).

Definition 19 (Divergence on Manifolds by Volume Forms). Let M be a smooth, n-
dimensional manifold. Consider a smooth volume form w € C®°(M, N\"T*M) and
let V.e C®(M,TM) be a smooth tangential vector field. Then the w-divergence of
V' is the unique smooth function div,(V): M — R defined by the relation

Lyw =div,(V) - w. (5.32)

We have introduced different concepts for divergences on manifolds , namely the
tangential definition (4.65) , and the more abstract definition 19. For the next main
result, we use the more abstract definition, as they involve volume forms. Still, to
let these results carry over to the computationally feasible setting, we relate these
notions to the numerically more practical tangential definitions.

Consider M C R™*! to be a smooth, compact, n-dimensional submanifold of
R+, Let us equip R"*! with the Euclidean metric (-, ->R"+1. Now define a metric
on M via the pullback of the inclusion map iy : M C R*T1 — R**L. For VW €
T, M, choose a local orthonormal frame of the form (7y,...,7,,n) at p € M C R"*!

with respect to (-, ->R"+1, where n is the outer unit normal vector field on M. Then
the metric is locally represented as

Rn+1

i (605 ) (VW) = (ding (V) ding (W) (5.33)
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It induces a Riemannian volume form, which we denote by w™ := i%, (w(,7.>Rn+1 ).
Due to injectivity of the inclusion map, we can define an inverse on its image, the
restriction map denoted by Z'X/[l with abuse of notation. The differentials of both
maps have local representation as (n + 1) x n, respectively n x (n + 1)-matrices

Lo Lo
dipg=1|" " |, diyf=1|: .. o (5.34)
0o ... 1 0 1 0
0 ... 0
with respect to the orthonormal frames (r,...,7,) C (TM)" and
(T15.+ s Tnyn) C (TR 17T We can now locally relate the tangential divergence

divp: C° (R R"*1) — C°°(M,R) and the divergence div,m: C*°(M,TM) —
C>(M,R) on M defined by the Euclidean induced volume w™ (cf. definition 19).
For V € C°°(R*"*L R"™1) and W € C°°(M,TM), the formal expressions involved
are

dive(V) = divm (dz';;v) and  divym (W) = divp (diMW). (5.35)

Hence, from the numerical perspective, the tangential divergence is the divergence
on M with respect to the volume form induced by the Euclidean metric of R™*!,
Notice that dij;W can be smoothly extended in normal directions on tubular neigh-
borhoods of the compact and C*®-regular M C R"*!, which makes application of
divp: C®°(R*L R 1) — C°°(M,R) well-defined. The theoretical justification for
this is, that tangential and orthogonal bundles can be embedded in Euclidean spaces,
and that for every embedded submanifold in Euclidean space, we have existence of
tubular neighborhoods (cf. [111, Thm. 6.24]). Then, as a consequence of the Tietze-
Urysohn extension theorem (cf. [137, Thm. 35.1]) and the Whitney approximation
theorem (cf. [111, Thm. 6.26, Cor. 6.27]), we have guaranteed smooth extendability
in normal directions.

Next, we give a conversion formula for the tangential definitions of divergences
under arbitrary volume forms on shapes, which are feasible for numerical compu-
tations. Since we could not find such a derivation in the literature, we give one
ourselves. For this, let us consider a smooth, orientable, compact n-dimensional
submanifold M C R"*!. The next calculations are valid, if the prototype man-
ifold M is replaced by shapes (M) with ¢ € Emb(M,R"*1). After we choose
an orientation on M, we can express all orientation respecting and non-vanishing
volume forms w € C®°(M, \"T*M) as f -w™, with positive coefficient functions
f e C>®(M,(0,00)). As discussed for generalization of parameterization tracking
in section 5.1, these correspond to the choice of targets f, in theorem 10 for each
fiber of Emb(M,R"*1). In following, we need Cartan’s formula for Lie derivatives
from exterior calculus ([111, Thm. 14.35], [175, Ch. 1, Prop. 13.1]), which is given
by

Lyw = d(ivw) + iy (dw), (5.36)

where ¢y, denotes the operator inserting V', also known as the interior product.
With definition 19 of divergences on manifolds via Lie derivatives of volume forms,
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we get a conversion formula for div,. and div,a by
v ot (V) - (£ -6) = £y (£ )
= a(iv(f-w™M)) +iv(a(s-wM))
= d(iv(f-w™)) +0
—d(ipv (@) +ipv(a@™))

= ﬁf.v(wM)
= dinM (f . V) : OJIW,

(5.37)

for all V.€ C°(M,TM). Here, we used Cartan’s formula for equalities two and
five, and that exterior derivatives vanish for volume forms at equalities three and
four. Notice that this computation does not rely on the choice of metric on M.
This conversion formula serves as a motivation to define a so-called tangential f-
divergence via the standard tangential divergence for f € C*°(M, (0, 00)) by setting

divyp(V) = % divp(f-V) YV e C®(R"TH R, (5.38)
We can now express divergences in the tangential calculus framework, which are not
induced by the Euclidean metric of the ambient space. At the same time, tangen-
tial f-divergences are compatible with the intrinsically defined divergences via Lie
derivatives from definition 19. In particular, for constant f, we recover the standard
tangential divergence divp. Since f is non-vanishing, we get the relationship

V is tangential f-divergence free < f -V is tangential divergence free.  (5.39)

Further, the definition of tangential f-divergence does not depend on the scaling of
feC>®(M,(0,00)). More formally, for all ¢ > 0, it holds

divy,r(V) =divesr(V) VYV € C=(R™ R, (5.40)

A graphical visualization of a divergence and f-divergence free vector field is shown
in figure 5.2.

Splitting of Diffeomorphism Groups and Pre-Shape Spaces by Volume
Forms With the definition of tangential f-divergence, we have a characterization
of vector fields that leave a volume form f - w™ invariant. Next, we select several
results made by Ebin and Marsden from their seminal paper [47] concerning Euler
flows via diffeomorphism groups and volume forms. For excellent sources about
infinite dimensional Lie group theory, we refer the reader to the compilations by
Omori [71] and Smolentsev [166].

In their celebrated 1970 paper, Ebin and Marsden (cf. [47, Thm. 5.1, Thm. 8.6],
[105, Thm. 43.7], [71, Ch. 8, Thm. 1.2]) extended a homeomorphism result of Omori
(cf. [142]), which deals with the structure of diffeomorphism groups Diff (M), to a
diffeomorphism one by use of Moser’s theorem. Particularly, they showed that for
a given compact, oriented C°°-manifold M, perhaps with smooth boundary, and a
given fixed volume form w € C*°(M, \" T*M), the group Diff , (M) of orientation
preserving diffeomorphisms splits diffeomorphically to

Diff, (M) = Diff, (M) x vol} (M). (5.41)

Here,
Diff,, (M) = {p e Diff (M) : p*(w) =w } (5.42)
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(a) Tangential f-divergence free V (b) Tangential divergence free V

Figure 5.2: Divergence free vector fields on a sphere with radius 0.3 and center
(0.5,0.5,0.5). Picture (a) uses a coefficient of volume form f = 10(x — 0.5)% + 1,
while (b) uses f = 1, both depicted in green color. Since f is constant for (b), its
color axis is reversed for visibility.

is the group of w-preserving diffeomorphisms of M, and

vol! (M) = {w e C™ (M, /\” T*M) : @ >0 and /M@ = /Mw} (5.43)

is the set of smooth volume forms with the same orientation and total volume as w.
The choice of volume form w is arbitrary. Thus, this splitting result gives a whole
variety of possible ways to represent Diff ; (M). As argued in [61, Ch. 4], this result
also holds for the group Diff(M), when vol} (M) is replaced by the set of volume
forms vol, (M) with the same total integral as w up to a difference in sign.
To fit our situation, w can be chosen as
Forw?M) = Cib ) (w<,’w+1),

which is the Euclidean induced volume form on (M) weighted by a density f,
already encountered in abstract problem (5.19). With the characterization of so-
lutions to the parameterization tracking problem from theorem 10, we see that
optimization in a fiber is essentially taking place for the components of ¢ in
VOl};_ww( w (@(M)). The non-uniqueness in each fibers is created by the remain-

ing structure Diff ;_,-u (p(M)), which is reflected exactly by characterization (ii)
and (iii) of equivalent solutions from theorem 10.

We know that fibers satisfy the isomorphism m(p) = Diff (p(M)) (cf. defini-
tion 13, isomorphism (4.6)). Also, we are aware that Diff (¢(M)) decomposes into
multiple disjoint connected components. Two such collections of components are the
orientation preserving diffeomorphisms Diff | (p(M)), and potentially orientation re-
versing ones Diff_ (¢(M)). To fulfill characterization theorem 10 (ii) of solutions
to (5.10), global minimizers have to be orientation preserving embeddings, since
otherwise negative Jacobians would conflict equality due to ¢™ > 0 and fo > 0.
Given a global solution ¢ € w(y) to the pre-shape parameterization tracking prob-
lem (5.10), we state the set of solutions in the fiber using diffeomorphism groups.
With characterization (iii) of theorem 10, the space of solutions in the fiber 7(¢p) is
given by

Diff ;e (9(M))o@ := {po¢ : p € Diffy_eon (p(M)) } C 7(¢) C Emb (M, R™1).
(5.44)
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Before we can state the main result of this subsection, we need to clear the
situation concerning Riemannian metrics on diffeomorphism groups. A main result
of Ebin and Marsden made in [47, Ch. 9, Ch. 10, Ch. 14] is, that for a given
Riemannian metric (-, -)™ on a sufficiently smooth, compact and finite-dimensional
manifold M, perhaps with boundary, flows which obey the Euler equations on M
for a perfect fluid can be constructed using geodesics on the group of w-volume
preserving diffeomorphisms of Diff,, (M). In this framework, the flow equations
are often referred to as Euler-Arnold equations. The authors of [47] work in the
context of weakly differentiable diffeomorphisms in Hilbert manifolds Diﬂz« S (M)

of order s > dimT(M) +1 (cf. [47, Thm. 9.1, Thm. 9.6]), which is owed to the Sobolev
embedding theorems. These spaces are completions of Diff,, M) with respect

to Sobolev norms || || s, and thus enlargements of it. Also, théy do not form groups
of Lie-type (see discussion in remark 7 and p. 25). For these groups, the H'- or
L?-metric at p € Diﬂi(( (M) is defined as

(- .>J\l(

7A>Iw

(Vo) /M (V (@), W (@)@ (5.45)

for V,W € T, Diff;, ‘ >M( ) ={V € H*(M,R"1) : Tpiges () © V = p}. In [47,
Thm. 9.1, Thm. 9. 6 Ch. 9 Important Remark], Ebin and Marsden show that this
indeed deﬁnes a weak Riemannian metric. By weak Riemannian metric, we mean
that the metric is injective as a map from the tangent bundle to the cotangent
bundle, but not necessarily surjective (cf. [132]). It gives a well-defined Riemannian
exponential map on a neighborhood of the zero section of TDifff,« e (M), whose

geodesics are flows of Euler-Arnold equations (cf. [47, Problem 15.1 and following]).
In this setting, uniqueness of solutions to Euler-Arnold equations is guaranteed for
s > dim(M) + 1 (cf. [47, Thm. 15.2]). The Riemannian exponential must not be
mlstaken with the group exponentials of lefs o (M), which are not surjective in
a neighborhood of the identity. Due to this mﬁmte dimensional phenomenon, it does
not connect all local pairs of diffeomorphisms in general (cf. [47, Ch. 9 Important

Remark]). For our situation, this means the group exponentials of Difff,(_ o (p(M))
are not suitable to locally connect solutions of (5.10) in a fiber (). Y

For the following theorem and proof, notice that ¢ € Emb(M,R"*!) denotes
a global solution, and takes the role of ¢ from theorem 10 for readability. Also,
we denote by V,u the covariant derivative of w in direction u with respect to
a Riemannian metric, i.e. its Levi-Civita connection, and by ’grad’ the gradient
defined with respect to a Riemannian metric.

Theorem 11 (Characterization of Equivalent Solutions to Shape Parameterization
Tracking by Euler Flows). Assume the setting of theorem 10. Let ¢ be a global
solution to the pre-shape parameterization tracking problem (5.10) and (M) its
corresponding shape.

Then there exists a Riemannian metric (- ~>“’(M)>f with corresponding volume
form w?MI on (M), such that for every vector field V € C®°(R™1 R*1) par-
allel to the boundary Op(M) with vanishing tangential f,-divergence

divy, r(V) =0, (5.46)
there exists a T > 0 and a unique time-dependent tangential wvector field

u(t,z): (—7,7) x (M) — To(M), parallel to dp(M) and smooth in int(p(M)),
and p(t,x): (—7,7) X p(M) = R, such that the incompressible Euler equations on
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©(M) without external force

Ot 95001 1) = a0 ()

diveon.s (u) =0 (5.47)
1
up = d%(M)V\w(M)
uy parallel to dp(M)

are satisfied (cf. equation (5.38)). Further, u; defines a flow ®;: p(M) — (M),
such that for all t € (—7,7), the embeddings (P, o p) € w(p) are global solutions
to (5.10) in the fiber of @(M).

For the converse, let s > dimT(M) + 1. Then there exists an open neighborhood U
of ¢ in the space of all solutions in the same fiber Diff ;. ,cn) (0(M)) o ¢ endowed
with the C™-topology (cf. p. 25), such that the following property holds. For every
¢ € U, we can find a direction V € H*(R"TY R"1) tangential to (M) and
parallel to dp(M), satisfying vanishing f-divergence equation (5.46), and unique
H?-solutions u; and p; to the Euler equations (5.47), such that ®1 09 = @ is a
global C™-solution to (5.10) with the flow @y in Diffj}wwo(m(@(M)) generated by
ug. The restrictions of such directions Vi, ar) all correspond to a unique direction
Ve H¥(p(M), Tp(M)).

If OM is empty, then the unique initial velocity V is smooth, i.e. V €
C=(p(M),Tp(M)) and the flow ®; is in Diff ;0 (0(M)).

Proof. For the proof we proceed in multiple steps. First, let us assume the set-
ting of theorem 10 and fix a global solution ¢ to the pre-shape parameterization
tracking problem (5.10), which exists by theorem 10. We explicitly construct a
Riemannian metric on the shape ¢(M) using solution ¢, which corresponds to the
target volume form f, -w?M) Then, we use techniques by Ebin and Marsden [47]
to define a Riemannian metric on the space of solutions in the fiber 7(y), with
geodesics of regularity corresponding to Euler flows on ¢(M). These give us local
C*°-diffeomorphisms on the solution space by the exponential map of the weak Rie-
mannian metric, which we use to connect a given local pair of global minimizers.
For the last part of the second assertion, owed to the C*°-regularity setting, we use
techniques developed by Omori in [71].

Let us first construct an appropriate volume form on ¢(M). Since M is assumed
to be a submanifold of R"*!, we can equip M with a Riemannian metric (-,-)™
induced via pullback of the Euclidean metric, which itself induces a corresponding
volume form we denote by w?. Now we use global solution characterization (ii) of
theorem 10, and rearrange it by use of pullbacks and g™ > 0 to get

gMopt. (ga_l)*(wM) = fo- w?M) - on o(M) (5.48)

as an equality of volume forms. This motivates the definition of a map
()P0 = (M 0 o) (671) ()M ) s To(M) x Tp(M) 5 R, (5.49)

We see that (-,-)?(M):f indeed defines a Riemannian metric for ¢(M), as (g™ o

¢~1)" is positive, non-vanishing and ¢! is a diffeomorphism when restricted to

©(M). Next, we show that the volume form w?*):f coincides with f, - w?™). We
can see this by the following two identities. First, we can characterize coeflicients
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g?p.(M)’f i.i=1....n corresponding to (-, - e(M),f by use of local coordinates
(%] sJ yeey

(55°77) oy, = 0o ((m*«-, 7" [ ;D

.....

1,7=1,..., n

(M —1\2 1 0 O\M (5.50)
= (gMop™) <<dcp Fuy e axj> N
3,j=1,...,;n

= (gMosfl)z-D@*T(gfj”) Dy,

i,7=1,...n

where D¢~! is the local representation of dy~! by a Jacobian matrix, and

(gfj‘([)i7j:1,_..7n a local coefficient matrix of (-,-)™. Next, by using the formula for
pullbacks [111, Prop. 14.20] and description of volume forms induced by Riemannian
metrics in local coordinates [111, Prop. 15.31], we get

wfM):f — \/det ((QE(M)’f)i,jzl,...,n) ~dzy Ao ANdzg,

det ((gM o @—1)2 -Dp=T (gll\f) D<p—1> cdzy A--- Aday,
i,j=1,...,n

=1,...,

= gM o gpfl . (det (Dcpfl) . \/det (g%{)m‘:l,...,n sdxg A A dxn>
=gMop ™t () (W)
= [, .ww(M)7

(5.51)

where we also used rules for determinants of transposes and products for the third
equality, and motivating equation (5.48) for the last equality.

With a sufficient metric on (M), we can formulate the Euler equations (5.47).
Next, we focus on constructing parameterization tracking solutions by use of Euler
flows. The authors of [47] work in the context of Hilbert manifolds Diff*(p(M)).
Hence we cannot simply reuse their results, but have to make modifications to suit
our C'*°-context.

With the Riemannian metric from equation (5.49) on ¢(M), we can define a

Riemannian metric on Diff}  .an (@(M)) for s > m%% + 1. The according
bilinear form is
H (M), f
(VW) "= / - (V(@), W) - wgth s (5.52)
%)

for V,\W € T,Diff] ,an.;(p(M)). From a technical perspective, if dp(M) is
nonempty and vectors in outward normal direction are regarded, it is necessary
to work with the tangent bundle of the double of ¢(M) (cf. [111, Ex. 9.32]). How-
ever, we are only interested in directions parallel to dp(M), and can hence avoid
this. Since Diff ,on).5 (0(M)) C Diff] oan.s (0(M)), equation (5.52) also defines an
identical bilinear form on Diff ., (@(M)). With [47, Thm. 10.2], we see that this
is indeed a weak Riemannian metric with an exponential map defined on a neigh-
borhood of the zero section of T Diff ,,(a).s (¢(M)), since the authors of [47] first
proof necessary properties for C*°-regular vector fields, and then apply a density
argument to get the results for H®-regular ones. In this context, the neighborhood
is an element of the Hy-topology, which is the one induced by the distance function
to equation (5.52), and is coarser than the C*°-topology (cf. [166, Ch. 5.1]).

Let us consider a V € C°(R""! R"™1) tangential to ¢(M) and parallel to
the boundary Op(M), which fulfills equation (5.46) of vanishing tangential f,-
divergence. By condition (5.46), we see that V|,(a;) corresponds to a unique
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element V € Tia,pry Diff e, s (p(M)).  This is true, since Diff (p(M)) splits
as in relation (5.41), and thus also induces a splitting of its tangential bundle
T'Diff  (¢(M)). The factor corresponding to Tiq,,,,, Diff e, s (9(M)) consists ex-
actly of f,-divergence free tangential vector fields on (M) parallel to dp(M),
because these form the Lie algebra of Diff o) s (@(M)) (cf. [47, Thm. 4.2], [166,
Thm. 3.20)).

Since (M) is compact, this gives a geodesic ®: (—7,7) — Diff o) s (0(M))
to metric (5.52) in direction V for some 7 > 0, Its existence is guaranteed
by [47, Thm. 10.2]. Also, this construction works for all V satisfying equa-
tion (5.46) by a rescaling argument for V inserted in the exponential, since the
corresponding exponential map is defined on a neighborhood of the zero section
of TDiff o5 (p(M)). This defines a solution to the incompressible Euler equa-
tions (5.47) (cf. [47, Thm. 14.4, Remarks below Problem 15.1 and Remark 15.3]),
in the sense, that the geodesic @, is the flow to the solution velocity field u;. Exis-
tence of solutions u; and p; of the incompressible Euler equations (5.47) on compact
manifolds (M), with u; parallel to Op(M), associated to ®; is guaranteed by [47,
Thm. 15.2].

Since the weak Riemannian metric (5.52) is constructed on Hilbert manifolds for
s > dimT(M) +1, the geodesic ®; might only consist of H?*-diffeomorphisms of ¢(M).
However, the solutions ¢ of (5.10) have C*°-regularity. Since ¢(M) is smooth and
compact, and zero force is used, we can use the last assertion of regularity result
[47, Thm. 15.2(i)] for all s > dlmT(M) + 1. This gives C*°-regularity of ®; for all
t € (—7,7). The same holds on the interior int(p(M)) for solution u; of the Euler
equations (5.47) (cf. [47, Thm. 15.2(iii)]), which is special to the C'*°-situation, and
perhaps not true for H?*-regularity. Summing up, the geodesic @, is a curve of C'*°-
diffeomorphisms in Diff ,o(a),s ((M)). Therefore, a composition with the given
global solution yields C*°-embeddings in the same fiber ($;0¢p) € 7(yp). Since Py is
smooth and a curve of w?M)-f_preserving diffeomorphisms, all embeddings crossed
by (®;0¢) are also solutions to (5.10) by equation (5.51) and theorem 10 (iii). This
gives us the first set of assertions of theorem 11.

For the second part of theorem 11, we construct a neighborhood of ¢ in the
space of solutions, such that for every solution therein we can find a unique w?)-f-
divergence free V, for which the solution can be reached via the flow corresponding
to the solution of the Euler equations (5.47). Let s > d”%(M) + 1, and OM perhaps
nonempty. By the covering theorem in [47, Thm. 15.2 (vii)], we have existence of
an open neighborhood U C Diff (. (@(M)) of the identity, such that for every
p € U, we can find unique initial conditions V € H*(p(M), T(M)) for the Euler
equations (5.47), with the associated flow to the solution u; achieving ®; = p.

Now we turn to the solution space. In [166, Ch. 2], the ILH-C*°-topology
on Diff(M) is defined as the minimal topology, such that all embeddings
Diff omy.s (M) — Diff} .. (M) are continuous. This means that the H®-
topologies are coarser than the C'*°-topology on Diff . ().s (M). By using the bi-
jection (p — po ), we map Diff .n),5 (p(M)) onto the solution space of the fiber
(). This induces a C*°-topology on the solution space Diff, .n).s (p(M)) o .
Since U is a neighborhood of the identity id,(ary, this gives a C°°-neighborhood of
the given solution ¢

U := (U N Diff o (ay, (go(M))) o C Diff o) s (gp(M)) 0.

By construction, for every ¢ € U, we get a unique p = ¢ o ol e U and unique

V€ Tia,,y Diff o). s (9(M)), such that

Py op=expiq,,,(V)op=pop=¢ (5.53)
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for the geodesic ®; on Diff] . .; (p(M)) to the Hy-metric (5.52) with initial values
by =V and &, = id,(ary. With previous arguments, the geodesic flow ®; corre-
sponds to the flow of u;, which is the unique velocity solution of Euler system (5.47).
Any vector field V € C°° (R, R"*1) which is tangential to ¢ (M) and parallel to
dp(M), and whose restriction V|,(as) corresponds to v, gives the same solution to
the Euler system (5.47). In particular, such V € C°°(R™*! R"*1) necessarily fulfills
fo-divergence condition (5.46). This proves the first part of the second assertion of
theorem 11 for given global solution ¢.

For the last part of the second assertion of theorem 11, we assume M to
have empty boundary OM. We apply techniques from [71] by Omori. Consider
Diffy_ e (¢(M)) as an ILH-Lie group endowed with the ILH-C*°-topology of
the chain of Sobolev spaces

{ Diﬁ‘;@‘wgz(ﬂf) (QD(M)) : seN,s > dlmTUW) +1 }

We can do this with results summarized in [166, Ch. 2.2, Thm. 3.6]. Since
©(M) has empty boundary, we have that the first and second order differen-
tials of the Riemannian exponential map defined by equation (5.52) satisfy a
linear estimate (cf. [71, Ch. 6.1, Eq. (L.I'), Ch. 16 Thm. 1.2]). This permits
the use of regularity result [71, Ch. 6.1, Thm. 1.4] for the Riemannian exponen-
tial map on the ILH-group Diff (p(M)) corresponding to equation (5.52). With
this, the exponential map to equation (5.52) is a local C°°-diffeomorphism of
Tia,ar Diffyean s (0(M)) and Diff o). s (p(M)). In particular, we find a C°-

neighborhood U € Diff ,an).s (@(M)) of the identity, such that for every p € U,
we can find a unique V € Tia,pry Diffecn. s (p(M)) with expidv(M)(f/) = p. Since
we can identify Tia,,,, Diffemn.r (¢(M)) with the space of smooth f,-divergence-
free vector fields, which are tangential on ¢(M) and parallel to Op(M) (cf. [47,
Thm. 4.2]), we get C*°-regularity of sufficient initial velocities V' € C°°(R"+1 R"T1)
fulfilling f,,-divergence freeness condition (5.46). The first part of theorem 11 guar-
antees that the associated flow @, is in Diff jo(m),s.

Finally, all previous arguments did not depend on the specific choice of global
solution ¢ € Emb(M,R"*1), nor on the structure of corresponding fibers (i), and
therefore hold for all global solutions in Emb(M, R™*1). O

Remark 16 (Validity for Holder and Sobolev Settings, and General Nonlinear
Ambient Spaces). The results of the Euler characterization theorem 11 for locally
similar solutions remains valid for C*®-Hélder reqular embeddings with k > 1 and
a € (0,00) (cf. [47, Rem. 12.2, Rem. 15.3]). The assertions are also true for
Sobolev embeddings of H?®-regularity with s > dimT(M) + 1. Howewver, if boundaries
are non-trivial, they have to satisfy C°°-reqularity for similar results to hold in
Hélder and Sobolev settings. Also notice that the flows ®; are only guaranteed to
have C*-regularity in time t, even for the C*-setting (cf. [47, Thm. 15.2]).

Further, for the proof of theorem 11, we used abstract differential geometric
techniques. The proof does neither rely on the ambient space to be R™"1, nor to
have shapes of codimension one. Hence theorem 11 holds analogously for the ab-
stract formulation (5.19) of the pre-shape parameterization tracking problem, with
corresponding assumptions made at p. 56 and following.

At first, we discuss some elements of the proof to theorem 11, and then give
interpretations and its implications to solution of parameterization tracking in the
paragraphs thereafter.

The second assertion of the Euler characterization theorem states that there
is a local one to one correspondence of initial velocities for Euler flows without
force and solutions of the parameterization tracking problem in each fiber. The
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key element of the proof is, that Euler flows correspond to geodesics of the Hy-
metric (5.45) defined on the volume preserving diffeomorphisms Diff ;.. (p(M))
on shapes. In this framework, the second assertion becomes the property of the
associated Hp-exponential map to be a local diffeomorphism. It is the C*°-regularity
of diffeomorphisms and pre-shapes, which makes the second part of theorem 11
rather delicate.

This stems from the fact, that Ebin and Marsden [47] use results for geodesic
sprays to prove the local diffeomorphism property of the exponential map on Banach
manifolds Diff;@, wean) (p(M)) for s > dimT(M) + 1. They rely on the inverse function
theorem as used in [106, Ch. 4, Thm. 4.1]. However, the inverse function theorem is
no longer valid in general Fréchet spaces, and thus also not for manifolds modeled
by these. In particular, it does not apply for the group of C'°°-diffeomorphisms,
even for compact manifolds. Hence mimicking the proof in [47, Thm. 12.1] to prove
necessary properties in theorem 11 fails at this point of argument.

It is not straightforward to use regularity results of Euler flows from [47,
Thm. 15.2] to prove the second assertion of theorem 11. Since we have zero force
in the Euler equations (5.47), it is tempting to apply the covering property [47,
Thm. 15.2 (vii)] for H*®-regular solutions. For each s > dimT(M) + 1, the covering
property gives an open es-ball of the identity in Diff} .. (¢(M)), such that there
is a unique starting condition V with H*-regularity connecting the identity and
every p € Diff? .5 (@(M)) in the e-ball by the H*-flow to the velocity solving the
Euler equations. Even by choosing a p with C'°*°-regularity in such a ball, we only
get H#-regularity of the flow for s < oo, since inf{es : s > dimT(M) +1} > 0 is not
guaranteed in general. Hence different arguments are needed.

There are two alternatives to the inverse function theorem in the context of
Fréchet spaces, namely the Nash-Moser theorem and ILH-/ILB-normal inverse func-
tion theorems. The Nash-Moser theorem was rigorously elaborated by Hamilton in
[73]. Tt offers a possibility to apply an inverse function theorem on so-called tamed
Fréchet spaces, which includes the case of our interest. However, to apply the Nash-
Moser theorem, invertibility of the differential of the exponential map at the identity
is not enough. Instead, it is necessary to provide invertibility on a neighborhood of
the identity, which seems rather tedious, considered that we are dealing with the
differential of the exponential map of the weak Riemannian metric (5.52). Hence
we choose to use results from Omori [71], which uses the technical setting of inverse
limit Hilbert/Banach spaces. As we are naturally situated in this setting, we use
calculations for local invertibility of the Hy-exponential map provided by Omori.
The key argument of Omori is an inverse function theorem for so-called ILH-normal
mappings applied at the identity element of Diff . (u).r (0(M)) and the correspond-
ing zero section of the tangential bundle ([71, Ch. 1, Thm. 6.5]). Omori’s version of
the inverse function theorem of Fréchet spaces generated as inverse limits offers the
attractive feature, that only invertibility of the differential at the point of interest
is needed, much in line with the inverse function theorem in Banach spaces. As a
caveat, it is not suited to deal with the situation of loss of derivatives, which does
not happen in the C*°-framework. When loss of derivatives occurs, the approach
via tamed spaces by Hamilton is favorable.

We emphasize, that the result [71, Ch. 16, Thm. 1.2] from Omori is provided only
for the case of empty boundary dp(M). Hence, theorem 11 has two parts for the
second assertion, which differentiate between the nonempty and empty boundary
cases. Also notice, that for the case with nonempty boundary dp(M), the second
part of theorem 11 does not provide a direction, for which ®;o¢ are solutions for all £.
We cannot apply the first part from theorem 11 to achieve this, since C*°-regularity
of the unique initial velocity V is not guaranteed. Provided such a regularity results
holds, the last part of theorem 11 can be extended to the nonempty boundary case.
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Remark 17 (Different Metrics on Diff(¢(M))). The proof of theorem 11 em-
ploys an Hy-metric on Diff j,can. s (@(M)) in style of [47]. However, the choice
of an Hy-metric is rather arbitrary, and was made solely because the resulting
geodesic equations correspond to Euler flows, which have a well-established requ-
larity theory. Weak Riemannian metrics on Diff ooy, 5 (0(M)) for similar results
as in theorem 11 need two crucial properties. The weak metric needs to induce
an exponential map that gives a local diffeomorphism of a meighborhood of zero in
T Diff oy, (p(M)) and a neighborhood of the identity in Diff o), s (0(M)). Also,
the associated geodesic equations need to leave the target volume form f, - (M)
inwvariant. The corresponding geodesic flows can be of different type, but still locally
connect solutions of the parameterization tracking problems by the arguments made
in the proof of theorem 11. Many weak Riemannian metrics on shape spaces and pre-
shape fibers naturally satisfy these properties. For ezample, choosing an HL-metric
on certain subgroups of Diff Lo, s (@(M)) gives the so-called Lagrangian averaged
Euler equations (LAE-equations) without external force (cf. [166, Ch. 7.4], [125]).
For the special case of bounded, open domains @(M) C R™ 1 with smooth boundary,
a divergence-free initial velocity V' and volume-preserving diffeomorphisms leaving
the boundary Op(M) pointwise fized, these equations take the form

%(1 —a® A)up + (ug - V) (1= a® - A)uy + o - (Vut)TAut = Vp:

div (u¢) =0
Uy = \%
us =0 on dp(M),

(5.54)

where A denotes the Laplace operator.

Numerical Construction of Equivalent Solutions Next, we discuss some
aspects concerning numerical simulations of equivalent solutions in light of theo-
rem 11. In order to construct equivalent solutions, an explicit solution ¢ of pa-
rameterization tracking problem (5.10) needs to be computed. With this solution,
and g™ : M — (0,00) chosen a priori, the metric to theorem 11 can be constructed
explicitly by the bilinear form

()= (g o ) D7 (¢7) DT (7). (5.55)

where D7%~! have to be computed according to equation (5.2). Note that an
inversion of D¢ is not necessary, as ¢! is readily available by storing the ver-
tex coordinates of starting and last iteration meshes. The differential operators
div,s,em) and Ve M) can be computed using Christoffel symbols from the local
coefficients of the Riemannian metric (cf. [110, Ch. 13.1]). This makes the Euler
equations (5.47) implementable, and in turn equivalent solutions to the numerically
achieved optimal ¢ constructible by using resulting flows as described in theorem 11.

If equivalent meshes are the only interest, it is easier to use relationship (5.39)
to numerically construct equivalent solutions of the parameterization tracking prob-
lem. By this, we can avoid the use of the Riemannian metric constructed in the
proof of theorem 11. Since the target f, is known a priori, we can transform so-
lutions of Euler equations with respect to the metric of the ambient space, and
construct solutions thereby.

Given a tangential divergence free vector field V' parallel to dp(M), we can solve
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the Euler equations

0
&Ut + (Ut ‘ VF)(Ut) = Vrpe

divp (u) =0 (5.56)
uo = Vip(ar)
ug parallel to Op(M).

The involved differential operators are readily available, and need neither knowl-
edge of a solution ¢ to the parameterization tracking problem, nor calculations via
Christoffel symbols. This makes the formulation with respect to the Euclidean in-
duced metric in system (5.56) more feasible than system (5.47). Local existence
and regularity of solutions are guaranteed by [47, Thm. 15.2]. Since divr(us) = 0
for all t € [0,7) and some 7 > 0, we set

1
ul = = . (5.57)

By construction, u{ is tangentially f,-divergence free. The flow @{ (M) = (M)
associated to utf can be used to construct solutions in the fiber 7w(¢). Indeed, given
a solution ¢ € m(p), we see that CID,{ o ¢ are global solutions to parameterization
tracking, as they preserve the target volume form f, - w?M) (cf. theorem 10, defini-
tion 19). Nevertheless, it is still necessary to have a solution ¢ € () to construct

equivalent neighboring solutions in a fiber.

Interpretation with Regard to Solution of Parameterization Tracking In
this paragraph, we discuss some intuitive interpretations of theorem 11. For this, let
us assume the setting of discretized shapes. The discretization is usually realized by
representing the underlying manifold by a mesh, i.e. a simplicial complex. Then a
solution to the pre-shape parameterization tracking problem (5.10) in the discretized
setting is a mesh with target configuration described by f.

We can solve the incompressible Euler equations (5.47) for some given initial
velocity V' on an optimal mesh configuration. This gives a time dependent velocity
field u¢, which in turn can be used to generate a flow on the shape. Now let the mesh
vertices act as particles in the Euler flow, while still leaving the mesh connections
and its topology intact. By such a flow of mesh vertices, a new mesh is generated
at every point in time ¢ for which the Euler flow exists. The first assertion of
theorem 11 guarantees that, up to discretization error, all resulting meshes achieve
the desired cell volume target f,. Also up to discretization error, the underlying
shape remains invariant in time, as the resulting pre-shapes stay in the fiber of the
corresponding shape.

The second part of theorem 11 strengthens this characterization, because all
locally similar meshes with optimal cell volume features can be constructed via
such flows. Interestingly, this means the degrees of freedom to design an optimal
mesh with respect to f,, for any given shape are in local one-to-one correspondence
with tangential f, - w?M)-divergence-free vector fields V € C=(3(M), T$(M)) , if
discretization error is neglected.

The structural descriptions of pre-shape spaces Emb(M, R"*1) used in the proof
of theorem 11 also transfer to the tangent bundle T"Emb(M,R"*1). As described
in [47, Thm. 4.2], the Lie algebra corresponding to Diff ,u (o(M)) consists of w?-
divergence free tangential vector fields on ¢(M) parallel to the boundary oM. If
we also consider the decomposition (4.14) of T Emb(M, R"*!) into horizontal and
vertical parts, we get a decomposition of vector fields V' € T,, Emb(M, R"*1). With
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slight abuse of notation, it is given as
V=an+W+X, (5.58)

for a unique a € C*(p(M),R) and the outer unit normal vector field n on (M), a
tangential f,,-w?M)-divergence free vector field W € C>(p(M), Tp(M)) parallel to
Op(M), and a conservative tangential vector field X € C*°(p(M),T(M)), which
can be described by a potential. Essentially, this decomposition is a combination
of the orthogonal decomposition into normal and tangential components , and an
additional Hodge-Helmholtz decomposition of the tangential part (cf. [162], [179,
Thm. 5.2], [175, Ch. 5, Prop. 8.2]), neglecting the harmonic component (cf. [47,
Cor. 7.3]).

If decomposition equation (5.58) is applied to the pre-shape gradient of the pa-
rameterization tracking problem, then each component has a different effect for the
optimization. The normal component corresponds to the shape optimization part
of the gradient, in line with the pre-shape derivative structure theorem 9. The
exact part X is a tangential vector field from T'voly .0 (¢(M)). This means
it amounts to compression and expansion of local volume measured in comparison
to f,. In a discrete setting, such components change local relative refinement of
a mesh by reallocation of vertices. In view of the Euler characterization of solu-
tions theorem 11, we see this component as the only relevant part of the gradient
for minimization of the pre-shape parameterization tracking functional (5.10). The
component W is the tangential f,-divergence free part of V. By examining equa-
tion (5.46) of the Euler flow characterization, we recognize that W can act as an
initial condition to the incompressible Euler equations (5.47) to generate equivalent
solutions in the solution space in a fiber of (M) (cf. equation (5.44)). This in turn
means, that vector fields from T'Diff .. (¢(M)) do not participate in the gra-
dient descents for the pre-shape parameterization tracking problem. In section 5.5,
we discover that the pre-shape Hessian to the parameterization tracking problem
is positive semidefinite in solutions. The directions amounting to the indefiniteness
are exactly the f,-divergence free vector fields. Hence, without use of pre-shape
calculus techniques, the findings of this subsection show that weak LZ-metrics on
the fibers of pre-shape spaces respect the structure of parameterization tracking
problems and its higher order pre-shape derivatives.

We also emphasize that the presented decomposition involves vector fields from
C>=(p(M),R™*1), but it can be extended to vector fields on the ambient space
or hold-all domain C°(R"*! R"*!l) by taking equivalence classes of traces on
o(M) c R™! with regard to equation (5.58). This can serve as an initial idea
for numerical methods to enforce uniqueness of the optimal parameterization in
each fiber for a given starting shape with parameterization ¢¢. By using descent
directions and subtracting their divy, r-free components on ¢(M), together with
applying sufficiently small steps, convergence to a fiberwise unique global minimum
depending on the initial data ¢y could be achieved. Such techniques can be seen as
a generalization of div-curl systems employed for deformation methods [185, 19, 29]
in the special framework of Euclidean domains in 2 or 3 dimensions and uniform
targets f. They can also be related to enforcement of irrotationality in mesh node
advections via minimization of quadratic penalty terms found in [31]. If seen in
the context of the abstract parameterization tracking formulation (5.19) and its
connection to optimal transport problems, relations explored in this subsection can
also be related to curl and divergence extraction techniques from [72], where op-
timal transport problems in Monge-Kantorovich formulation are solved for image
registration and warping. However, exploring these techniques and connections,
particularly to higher order methods, is beyond the scope of this work, and is left
for future research.
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5.3 Pre-Shape Derivative and Optimality Condi-
tions of Parameterization Tracking

So far, we gained insight into properties of the pre-shape parameterization tracking
problem (5.10) without use of pre-shape calculus. In this section, we turn our at-
tention to its pre-shape derivative. This serves several different purposes. For one,
it is of numerical interest, since a goal of this work is to construct effective algo-
rithms for improvement of mesh quality in shape optimization routines. The results
of proposition 3 and proposition 4 encourage us, as they guarantee sufficiently rich
modeling possibilities of desired mesh configurations. At the same time, the pa-
rameterization tracking problem (5.10) serves as a non-trivial example to illustrate
the application of pre-shape calculus techniques developed in chapter 4. In partic-
ular, we observe that its pre-shape derivative is not accessible via classical shape
calculus techniques. And lastly, we give sufficient global optimality conditions for
parameterization tracking via its decomposed pre-shape derivative.

In the following theorem, we leave the target functions f, general and only
assume enough regularity for existence of the pre-shape derivative. Later in this
section, we give an explicit construction of f,, while also ensuring existence of
its pre-shape material derivatives with a closed form (cf. equation (5.84)). In sec-
tion 9.1, we give another construction of f, tailored to shape optimization problems
constrained by variational inequalities.

Theorem 12 (Pre-Shape Derivative of the Parameterization Tracking Problem).
Let the assumptions of theorem 10 hold and denote by J™ the objective functional
of the pre-shape parameterization tracking problem (5.10). Also, assume enough
regularity for f,, such that pre-shape material derivatives exist.

Then, for fived o € Emb(M,R"*1) and V € C®(R"*1 R 1), the pre-shape
derivative to problem (5.10) is given by

n % . ((gM o1 det DTcp*1)2 - ff,) - divp(V)

3V (P)[V] = - /

+ (gM o (p_l - det DTtp_l — f¢> : gm(ftp)[v} ds,
(5.59)

where D, (f,) ts the pre-shape material derivative of f,, and divr is the tangential
divergence on @(M). The pre-shape derivative does not depend on the choice of
oriented local orthonormal frames 7 and 7% representing the covariant derivative
D.

Proof. For the proof we rely on pre-shape calculus rules established in chapter 4.
In particular, we make use of formulae found in corollary 2. Let the assumptions
made in theorem 10 hold. Fix a ¢ € Emb(M,R"!) and let V € C>°(R"H R*H1).

We begin by noticing, that the pre-shape material derivatives are well-
defined for families of differentiable functions on varying domains {f,: (M) —
R} ,eEmb(ar,rn+1) depending smoothly on ¢ (cf. remark 10). With this in mind, we
can apply corollary 2 (v) and the formula for inverse determinants to get

1 1 2
23" (9)[V] :/ 9m<2(9MO<P_1'dtDTO<P_1—f<p> >[V]
(M) il (5.60)
+1 divp(V) (gM o L. _ ot — f )2 ds.
2 det D7 v

For simplification of the material derivative of the integrand, we employ our as-
sumption on existence of material derivatives ©,,(f,), together with the chain and
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product rule for material derivatives (cf. corollary 2)

lov 1 12
9m<2<g M detDTcpogo f¢> Vi

_ 1 _ _
= (Voo Gap, o0 1—fw)'<®m<9Mw W Gerpmg o

_ <9M op L. m o g@—l) Dy (det DT o ) [V] - @m(fw)[V]> :

(5.61)
In the following, we examine the remaining material derivatives of equation (5.61),
except for ©,,,(f,)[V], as we let f, remain general. To avoid confusion, we remind

the reader that we are confronted with mappings h taking two arguments, one
explicitly being a pre-shape, making them operators of the form

h: Emb(M,R"™) x M = R, (p,p) = hy(p). (5.62)

We have the following relationship of embeddings and the domain perturbation T}
as in equation (3.9)

oi(p) = (Trop)(p) YpeM & (p7'oTy)(q) =¢ '(q) Vg (M), (5.63)

where ¢, is the perturbation of identity for pre-shapes for sufficiently small ¢ > 0
(cf. definition 16). If material derivatives of h are assumed to exist, equation (5.63)
leads to the following elementary but interesting identity

D (b 0 ™) [V] h(pe ™) =D (he) V]

(5.64)

h(¢t780;1 © Tt)

= dtje=o = dtj=o

Applying this to the first remaining material derivative in equation (5.61), we get
D (9™ 0™ )V =D (¢")[V]op™ =0, (5.65)

since gM is does not depend on choice of ¢ € Emb(M, R™+1).

We apply analogous techniques to the second material derivative. Hence, for
calculation of the material derivative of det D7 o ™!, it is sufficient to calculate
its pre-shape derivative. Since the flow (¢¢)ic(o,-] given by the perturbation of
identity in direction V is differentiable in ¢ (cf. equation (4.24)), we can employ
Jacobi’s formula from proposition 1 for the derivative of the determinant at ty5 = 0

_ d . _
D (det DTp o ™) [V] = <dt|t t det D <Pt> aa
=to

. - d - _ 5.66
=tr <Ad3u (D cpto)&“ . D @t> ot (5.66)
t=to

=0 (Adju (D™g) D™ (V o go)) o,
where Adju(-) is the adjugate matrix and tr(-) is the trace operator for matrices.

Knowing D7y is invertible for all p € M due to ¢ € Emb(M,R"™!), we can
use Cramer’s rule to express the adjugate in terms of inverses. We additionally
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use invariance of the trace operator under permutations of multiplicative order of
matrices, giving us

tr (Adju (D7) D(V o)) o9~ = tr ((det D7) - DT D7 (V 0 p) ) 0 7!
= (det D) oot -t ((an)’IDTV(@)an) o

= (detD7p) o ! tr (DTV(¢)> ot
T -1 :
T .
(detD <p) o~ -divp(V)

(5.67)

Using equation (5.65) and equation (5.67) in equation (5.61), and plugging the
resulting material derivative into equation (5.60), we arrive at

1
@:‘M V:/ g]\/fo 71~7O 717‘]('
(©)[V] ¢<M>( v qeDs °% ¢)
_ 1
_(_gMO(pl

i - divp(V) — Dm(fw)[V])
+ % divp (V) (gM op!

1
—— o0
det D7y

__ Mgt

- L(M) (g °¥ detDUpmp f“")

. 1<gMo¢—1.;og0_1+f)-din(V)-l—@ (f )[V] ds
2 det D7 ks 4

:,\/ 1 (gjwo<p*1.71 0()071>27f37 -din(V)
o(M) 2 det DTQO

1
D e ) VI as
(5.68)

90_1 — fw)z ds

n (gMOgOfl

After application of the inverse determinant formula, this is the desired pre-shape
derivative (5.59). The covariant derivative D7¢, and hence also the pre-shape
derivative (5.59), is independent of choice of orthonormal frames by similar rea-
soning as in the first part of the proof to theorem 10. O

Notice that the pre-shape derivative formula (5.59) applies to the case of shapes
with non-trivial boundary M. Since no integration by parts, or Stokes and Gauss
theorems were used in its derivation, there is no occurring boundary integral over
dp(M). We emphasize that the pre-shape derivative (5.59) is represented by an
integral over shapes ¢(M). Therefore it is a boundary formulation in style of
equation (3.6), and not a volume formulation. This is also the case, if the modeling
manifold M C R"*! is of dimension n + 1, e.g. for the parameterization tracking
of hold-all domains we pursue in later chapters. In such a scenario, the pre-shape
derivative equation (5.59) is represented as a volume integral, but is formally still
in boundary formulation.

We observe that DJM (¢)[V] is non-vanishing for vector fields V tangential to
@(M) in general. By structure theorem 9, vanishing pre-shape derivatives for tan-
gential directions indicate a functional which is almost of classical shape type. If
we take the form of pre-shape derivative (5.59) into account, this clearly means
the parameterization tracking problem (5.10) can neither be formulated as a shape
optimization problem, nor is it tractable by classical shape calculus.
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Decomposing the Pre-Shape Derivative In light of the structure theorem 9
for pre-shape derivatives, we can further refine the representation in equation (5.59)
by decomposition into normal and tangential components. Perhaps surprisingly, if
the user wants to optimize for mesh quality by using pre-shape derivative based pa-
rameterization tracking, it is not recommendable to use the full pre-shape derivative
found in equation (5.59). Instead, after decomposing the pre-shape derivative, it
turns out that the tangential component is sufficient to reach global optimality. We
further substantiate this observation with upcoming theorem 13 and in numerical
section 7.3. If a special case of the pre-shape derivative’s normal component is used
for descent algorithms, we recover numerical methods solving Plateau’s problem
by constructing minimal surfaces (cf. [45, 146, 46]). In some sense orthogonal to
this, the use of tangential components gives algorithms resembling the deformation
method for optimization of mesh quality (cf. [112, 19, 68, 31]).

To derive this decomposition, we employ the following informal relationship
between the tangential divergence and the mean curvature k for hypersurfaces for
V € C®°(R™1 R"1) (cf. [110, Def. 4.23]). Orthogonality of tangential gradients
Vr((n,V)2) and the outer unit normal vector field n yield

divp ((n,V)2-n) = (Vp<n,V>2)Tn+<n, V)g-divp(n) = dim(M)-(n,V)s-k. (5.69)

Let us briefly assume f,: R"*! — R to map from the whole ambient space, which
simplifies using normal derivatives of f, for the decomposition. With this, and the
assumption of f, to have shape functionality, we can refine equation (5.59) to

D3M() V] = (g, V) + (gL, V) WV e CT®R"R", (5.70)
with shape component

dim(M
<gg/7v> — /Lp(]w) % . ((gM o @71 . detDT<p71)2 N f«i) K- <n,v>2

+ (gM o <p71 - det DT<,071 - f#’) : (%ff “(n, V)2 + D(f@[V]) ds

(5.71)

and parameterization component

1
(97.V) =~ /«:(M) 5 (0" o™ et D7) = f2) dive (V = (0, V)2 m)

+ (gM op t.det DTt — f¢> - VFfZ;V ds.
(5.72)

Here, D(f,) is the classical shape derivative of f,. The first integral corresponds to
the classical shape derivative component gN of the pre-shape derivative decompo-
sition (4.36). It acts solely on directions normal on ¢(M). The second integral acts
on tangential directions, and therefore corresponds to the parameterization part g7
from structure equation (4.36). Notice that we abuse notation, since technically
V —(n, V)2 -n is not necessarily a smooth function. Nevertheless, its trace on (M)
can be arbitrarily extended in normal directions to evaluate tangential divergences,

as these do not depend on normal directions. For a target f,(z,y,2) = ﬁ -
P (M)
and a sphere centered at (0.5,0.5,0.5), a graphical visualization of a pre-shape gra-
dient for the parameterization tracking problem (5.10) and its decomposition is
shown in figure 5.3.
If Op(M) is nonempty, the normal part in equation (5.71) is not the complete

shape component ¢V from theorem 9, as it solely acts on vector fields in outer
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normal direction n. To be complete, it also needs to take directions V into ac-
count, which point into outward normal direction n,p on dp(M). While it is
possible to extract a boundary integral on dp(M) by applying Stokes theorem to
equation (5.72), the remaining integral over p(M) still acts on outward normal
directions. Hence a further decomposition using function representations of distri-
butions is not straightforward, if possible at all, since decompositions of V' need
to have enough smoothness for respective differential operators to be applicable.
However, we point out that the tangential component (5.72) involves the complete
parameterization part g7 from structure theorem 9, even for non-trivial boundaries
OM. While equation (5.71) vanishes for all V' tangential to p(M) and parallel to
dp(M), we see that g7 from equation (5.72) is left to act on these vector fields.

(a) Normal component representing the (b) Tangential component representing
classical shape part the parameterization part

(¢) Complete pre-shape gradient in (d) Slice through zy-plane at center of
volume mesh representation complete volume pre-shape gradient

Figure 5.3: Negative pre-shape gradient of 3™ on a sphere scaled by 0.02. The
target vertex density f,(z,y,2) = ﬁ -z is depicted in color. Color shifting
@ (M)

towards red means higher vertex allocation is desired. Gradient are represented by
a weak linear elasticity equation.

The Normal Component and Minimal Surfaces For illustration, let us devi-
ate from normalization condition (5.9), and choose a degenerate target f, = 0 and
constant g™ = 1. Let us assume the setting, where we leave boundaries M invari-
ant, i.e. » € Embyy (M, R"H1). Corresponding vector fields V acting as directions
are restricted to those, which vanish on M.
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In this situation the classical shape derivative component of DI (¢) is given
by

(@)= |

o (det DT<,0_1(S))2 -k(s) - (V(s),n(s)), ds. (5.73)

Since ¢ is an embedding, and M is compact, according Jacobians are bounded and
non-vanishing. In our special situation, this means the horizontal component of the
pre-shape derivative in equation (5.73) vanishes exactly for shapes with vanishing
mean curvature k. Put differently, the pre-shapes of minimal surfaces and their
higher dimensional analogues are exactly the stationary points for this horizontal
component.

By this observation, a gradient ascend using normal component (5.73) resembles
an algorithm for evolutionary surfaces proposed by Dziuk. In [45], Dziuk solves
Plateau’s problem by approximating a mean curvature flow. Note that an ascend is
necessary, since our formulation of the pre-shape parameterization tracking problem
involves inverse Jacobians, which is connected to Plateau’s problem by

max det DT (s 2 ds & min / det D7 p(s)]| ds.
o iy [ (D) s i e D7)
(5.74)

With the connection to Plateau’s problem, we gain insight into qualitative prop-
erties of a steepest descent using the complete pre-shape derivative. Briefly stated, if
less vertices are desired at a location, the gradient descent in normal direction tends
to blow up the shape, increasing distances of neighboring vertices. If more vertices
are desired it tends to locally flatten the shape, driving the nodes together. This
shows that, in general, parameterization tracking with its full pre-shape derivative
distorts a shape in normal direction. Hence it is not directly suitable for regular-
ization of shape optimization routines, as it might interfere by changing optimal
shapes of the underlying shape optimization problem.

Use of the tangential pre-shape derivative component from equation (5.72) leads
to algorithms similar to the mesh deformation methods from [112, 68, 31]. We use
it to construct various regularization methods for shape optimization problems, but
postpone their discussion to chapter 6 and chapter 7. Also, the just described effect
of normal components is captured in the numerical comparison study of parame-
terization tracking with the full pre-shape derivative and its tangential component
in section 7.3.

Optimality Conditions via Pre-Shape Derivatives Now that we have a
closed pre-shape derivative formula available, we can use it to derive additional
important properties of the parameterization tracking problem. The next result
shows that stationary points in each fiber are already global solutions. In other
words, necessary optimality conditions for parameterization tracking are in fact
already sufficient.

Theorem 13 (Characterization of Global Solutions by Fiber Stationarity). Let as-
sumptions of theorem 12 be satisfied. Then the following statements are equivalent:

(i) ¢ € Emb(M,R"*1) is a fiber stationary point of problem (5.10), i.e.

DIM()VI=0 YV e C® (R R with T, V] € Toan,
(5.75)
where Ty, (ary is the space of tangential vector fields on (M) parallel to dp(M)
(cf. equation (4.19)).
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(i) ¢ is a global solution to equation (5.10), and in particular it satisfies

Mo l.det DTt = fo on p(M). (5.76)

(iii) the complete pre-shape derivative of IM wvanishes in ¢, i.e.
O3 (p)[VI=0  VV e C® (R R, (5.77)
Additionally, its normal component g@f vanishes in .

The necessary first order condition regarding only directions V' tangential to (M)
and parallel to Op(M) is already a sufficient condition for a global minimum to JM.

Proof. Let us assume the setting of theorem 12. We show equivalence of all asser-
tions by a circular argument ’(i) = (i1) = (iii) = (7).

As a start, we prove (i) = (i1)’. Let us assume (i) by fixing a ¢ €
Emb(M,R"*1) satisfying fiber stationarity equation (5.75). With the pre-shape
derivative formula from theorem 12, we apply an integration by parts on man-
ifolds (cf. [175, Ch. 2.2, Prop. 2.3]) for a direction V € C(R"*1 R"*1) with
Tripa)[V] € To(ar), and shape functionality of f,, to get

23" (p)[V]

:_/( 1 (6" 09" det D7™1)* = f2) - dive(V)
.

M) 2
/¢<M>

T
:/(M) ((gM o t-det DT 1) - V(g™ ot -det D) — f,, - vpfg,) 1%
%}

+ (gM o @71 - det D‘r(pil — fzp) D (fsa)[v] ds

T
-Vp((gM o !.det DT<,071)2 — f;) v

N | =

_ (gM opl. det DTt — fg,) Ve fIV ds

T
_ ((gM ol det DY) - Vrf, — f,- fow) V ds

T
:/ <(9M o~ !.det D7<p_1) : (Vr (gM ot det DT@_l) — Vrf¢)> V ds.
(M)
(5.78)
Due to assumption (5.75) of fiber stationarity, we know equation (5.78) equals zero

for all V. € C°°(R"*! R"*!) tangential on ¢(M) and parallel to the boundary
Op(M), so we get

(gM ot det DTgo_l) . (Vp (gM ot det DT<p_1) — Vrfw) =0 in int p(M).

(5.79)
We have g™ > 0 by assumption, which together with non-vanishing determinant
by ¢ € Emb(M,R"*1) implies

Vr(gMop ™ -det D7~ — f,) =0 in int p(M). (5.80)

Since involved functions have continuous derivatives, and as theorem 13 assumes
M to be smooth and connected, we can derive constancy of the involved term, i.e.
there exists a ¢ € R, such that

gMop ™t det DT = f,+c on ¢(M). (5.81)
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Using normalization assumption (5.9) in combination with the transformation for-
mula, we see that the discussed constant is 0. As we have the assumptions of
theorem 10, we can apply the first equivalence from its characterization of global
solutions in fibers, which proves assertion (ii).

Next, we show implication ’(i¢) = (i#i)’. Assuming (i7), we can use the
explicit pre-shape derivative formula from theorem 12. We see that the two inte-
grands of DIM (¢)[V] in equation (5.59) featuring g o ¢~ - det D"¢~! and f,
are zero for all directions V' € C°°(R"*! R"*1). This gives equation (5.77). The
same argument applies for the tangential component g;_ involved in equation (5.72),
which therefore vanishes. For shapes with non-trivial boundary, continuity of the
pre-shape derivative and a sequence of vector fields tangential to (M), which are
fixed in outward normal direction and progressively vanishing on the interior, yields
vanishing of the normal component gﬁf as well. Hence we achieve (ii7).

Lastly, we immediately see that ’(i4i) = (¢)’. The complete vanishing of the
pre-shape derivative in equation (5.77) particularly implies its vanishing for direc-
tions V tangential to ¢(M) and parallel to Op(M). This is fiber stationarity (5.75)
for ¢, concluding the proof. O

Theorem 13 essentially states, that there are no stationary points other than
global solutions to the pre-shape parameterization tracking problem (5.10). In fact,
we have a sufficient optimality criterion via the tangential component of its pre-
shape derivative. This strongly resembles the situation for convex optimization
problems, which usually involves optimization in a vector space. Clearly, this is not
the case for parameterization tracking, as optimization for this problem is situated
on the infinite dimensional manifold Emb(M,R"*1). There also exist notions of
convex functions on Riemannian manifolds, such as those found in [178, Ch. 3].
However, these notions depend on geodesics, and as such require the choice of
a Riemannian metric. If not stated otherwise, the proofs of our results do not
involve a Riemannian metric on Emb(M,R"*!) so we abstain from calling the
parameterization tracking problem (5.10) a convex problem, despite having certain
characteristic features of one.

Notice that theorem 13 also guarantees existence of stationary points ¢ with
respect to the pre-shape derivative in each fiber of Emb(M, R"*1). Since stationary
points are global solutions, we can simply use existence theorem 10 for this. Ad-
ditionally, theorem 13 shows that optimization with the tangential component gz
of pre-shape derivative (5.59) can be sufficient to reach a globally optimal solution
for (5.10). And perhaps surprisingly, the normal component of the pre-shape deriva-
tive vanishes automatically, when the tangential component is zero. This feature
permits design of regularizations for shape optimization problems, with the prop-
erty to leave optimal shapes invariant, while at the same time finding an optimal
parameterization of respective shapes.

A Class of Externally Defined Targets f, As we have left the target f,
unspecified during derivation of the pre-shape derivative (5.59), we now give an
constructive example, which can be implemented in numerical routines. By its
specification, non-uniform target cell volumes can be achieved by minimizing the
parameterization tracking objective. In [56], local sensitivities for minimization of
the approximation error of linear elliptic second order PDE are derived and used
to refine computational meshes. Also, [30] studies various target functions for mesh
deformation methods in 2D by using elliptic and eigenvalue methods, e.g. to ensure
certain coordinate lines of the mesh. Amongst other examples, this shows possible
demand for non-uniform adaptation of computational meshes.

To construct sufficient targets f,, we have to satisfy normalization condi-
tion (5.9) for guaranteed existence of solutions. One way to accomplish this, is
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by defining f,, using a given globally defined function ¢: R"** — (0,00). By as-
suming H?2-regularity for ¢, existence of pre-shape derivatives and their closed form
as in equation (5.59) is guaranteed. The according target vertex density on a shape
©(M) is then given by

M q
fsoz:ffMg ”

M9, 5.82
Con Qe ds 0D (552

which is well-defined due to the trace theorem for Sobolev functions (cf. [50,
Ch. 5.5)).

Next, we calculate D,,(f,)[V] for a given V € C>(R"1, R"*1), which exists,
since we have g, () € H! (gp(M)) For this, we apply pre-shape calculus rules
established in corollary 2. Since the function q: R"*! — (0,00) is defined on the
entire ambient space, we can make direct use of structure corollary 1 for pre-shape
material derivatives. In the following calculation, we avoid to explicitly write re-
strictions for readability. Together with the fact that ¢ and ¢™ do not depend on
©, this gives

D (fo) V]
o, [ g™ A5
_©m<f¢<M>qu q) \4
- (f@(M)qu)z ®<[D(M)qd )[V] q+f¢(M)qu Dm(9)[V]

M
g ds .
) _(ffMd)2 . /(M) (:Dm(q)[V] +dive(V) -q) ds-q
p() 495) ¢
L hgtds
Joony @ ds
fM gM ds

(f(p(M) q d5)2

(2@ +v4"V)
. / (VqTV + (divr ((n,V)2-n)
p(M)

M q
+ divp (V = <n,V>2on)> q ds~q+M-VqTV
Joarya ds

fMgM ds 0q

T (ads) </<M)m<n,v>2+divr<<n,v>z~n> “qds
o(a) 198 v

M
d
+/ dive(q-V) ds> g AT Gy
p(M)

Joary @ ds
Md 0
:_fMgS2.</ (§+dim(M)-n~q)~<naV>2dS
(fsa(M)qu) p(ar) MO
fMgM ds T
+/ - {nyan, V) d5>~q+'vq v,
Ao (M) 0 ? fso(M)qu

(5.83)

where the last equality comes from an application of the divergence theorem with
outward pointing normal ngp on dp(M) (cf. [175, Ch. 2.2, Thm. 2.1]), and or-
thogonality of tangential gradients and outer normal vectors. Note that we slightly
abuse notation for normal and tangential components of V' using (n,V)s - n and
V —(n,V)a-n. Here, & is the mean curvature for hypersurfaces as in equation (5.69).
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We summarize the calculation, and restate the pre-shape material derivative iden-
tity for future reference

M q
0, (V] = - L (/ (29 1 dim(a1) - - q) - (n. V)2 ds
(f@(M)qu) w(ar) NI
Jo g™ ds T
+/ q-{n Vi, ds| g+ +— Vg V.
oot (nen), V), ) Lo ds
(5.84)

For constant ¢: R"™ — (0, 00), not necessarily equal to 1, the pre-shape material
derivative (5.84) simplifies to

@m(ﬁp)[V]z—M. (dim(M)-/ K- (n,V)a ds

2
1ds (M)
(fga(M) ) ® (5.85)

+/ <n¢(M),V>2 ds |.
Op(M)

This highlights the role of the boundary integrals on (M) and dp(M) in light of
the horizontal bundle directions from equation (4.15). They capture the influence of
the normalization operator in equation (5.82), when the shape ¢(M) is deformed.
If we deform (M) in outer normal direction n, then the sign of the pre-shape
material derivative depends on the scalar curvature. Essentially, if we locally blow-
up or flatten (M), then the total volume of the resulting shape becomes larger, or
smaller respectively. Thus the normalization in equation (5.82) decreases the global
values of f, for enlargement, or increases them for the case of flattening. The
second way to deform the shape, is to stretch or contract it in outward pointing
normal direction. If V' points in direction n,(yr), we stretch the shape in outward
normal direction, and the pre-shape material derivative has negative sign. Again,
this makes sense, since the value of f, has to decrease by normalization on a shape
with higher total volume.

For directions V tangential on ¢(M) and parallel to dp(M), the pre-shape
material derivative (5.84) simplifies to

D (fo) V] = f(Ml)qu-quTV. (5.86)
©

This reflects, that movement of points on a shape in tangential directions parallel to
boundaries leaves the shape unchanged, and thus the normalization factor stays the
same as well. Since targets defined by external functions as in equation (5.82) satisfy
shape functionality, only the tangential gradient of f,: (M) — R participates in
the pre-shape material derivative for tangential directions parallel to boundaries.

Remark 18 (Preserving Initial Node Distributions). A target f,, as defined in equa-
tion (5.82) prescribes a node distribution for meshes of shapes only depending on the
shape itself and its location in the ambient space. Thus q: R"™ — (0,00) defines
the shape parameterization through extrinsic factors, which could stem from PDEs
or other external influences, and can be modeled according to these. In contrast to
this, it also might be beneficial to make the prescribed verter distribution of meshes
for shapes dependent on intrinsic features. The shape optimization procedure might
depend on material parameters located at the vertices of a discretized shape (M)
at hand. Lamé parameters of linear elastic equations or diffusion coefficients from
heat equations solved on the shape o(M) can serve as examples. For such prob-
lems, material parameters change during mesh morphing depending on the shape.
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Hence it might be desired to either let an initially given mesh vertex configuration
be preserved, or to reach a prescribed one depending on the desired distribution of
intrinsic material properties of the modeled shape.

One way to preserve an initial vertex configuration, is to model a target point
distribution fw by

for=fMop ™ Yy c Emb(M,R™), (5.87)

where we use fM: M — (0,00) as a given intrinsic target point distribution in
the starting mesh for M (cf. remark 2). Then, equation (5.87) preserves the point
distributions of different meshes arising during optimization relative to f* chosen
at the beginning. When looking at the existence theorem 10 for the parameterization
tracking problem, this might seem like a case not covered. This objection comes from
observing, that f, varies in the fiber of a fized shape, since the point distributions
are modeled on intrinsic features of the mesh. However, we can modify the initial
point distribution ¢™ by replacing it with

M g
With this substitution, and by choosing f, to be constant, we remain in the frame-
work of existence theorem 10. This guarantees existence for solutions to parameter-
ization tracking, and existence of pre-shape derivatives given in theorem 12, while
achieving the goal of intrinsic modeling of vertex allocation. The special case of
gM =1 then leads to an algorithms, which tries to preserve the relative initial mesh
node distribution.

5.4 Numerical Tests of Parameterization Tracking
Involving Pre-Shape Derivatives

With the pre-shape derivative formula for parameterization tracking and its decom-
position, we can implement some first numerical examples. In this intermezzo, we
take a look at solo applications of parameterization tracking, i.e. no underlying
shape optimization problem is regularized. The more involved cases of simultane-
ous shape optimization and mesh quality regularization are discussed in chapter 6,
chapter 7 and chapter 9.

In order to test parameterization tracking, we present three implementations of
pre-shape gradient descent methods. For this, we use the open-source finite-element
software FEniCS (cf. [117, 4]). Construction of meshes is done via the free meshing
software Gmsh (cf. [63]). We use a single core of an Intel(R) Core(Tm) i3-8100
CPU at 3.60 GHz featuring 16GB RAM. The single core runs at 800 MHz while
the code is executed on a virtual machine.

The following three implementations solve the parameterization tracking prob-
lem (5.10) by using the tangential component of the pre-shape derivative seen in
decomposition equation (5.70). The solution process features a simple backtracking
line search, which scales the initial gradient of the current iteration U; according to
a given factor ¢, and rescales it by 0.5 if no sufficient decrease in J is apparent. In
the following, we denote the open and bounded computational hold-all domain by
D. In order to apply a descent algorithm, we are in need of pre-shape gradients. As
discussed in chapter 3, there is a multitude of non-equivalent choices to represent
derivatives as gradients in infinite dimensions. We choose a bilinear form inspired
by the weak formulation of the linear elasticity as proposed in [161], which gives
us H'-regularity of pre-shape gradients. Additionally, we add a zero order term,
and only use the shear component of the linear elasticity featuring the second Lamé
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parameter feas. For weights apg, a2z > 0, the pre-shape gradient U is calculated
by solving its representing system

aLE - / pelas - €(U) s e(V) dz +apz - (U, V) p2rntry = <gz;, V) vV € Hj(D,R™1)
)

e(U) = %(VUT +VU)
(V) = %(VVT +VV)
U=0 on JD,

(5.89)

where gZ; is the tangential pre-shape derivative component of DFM (p) given as in
equation (5.72). For pimax, imin > 0, the second Lamé parameter fiq.s is chosen as
the solution of the Laplace problem

_A/’(‘elas =0 in D
Helas = Hmax on (P(M) (590)
Helas = Mmin on 0D.

Solving equation (5.89) on the entire hold-all domain D gives us a volume repre-
sentation U of the tangential pre-shape derivative component g;r. The pre-shape
gradient system (5.89) is assembled in FEniCS and solved with a sparse LU method
from PETSc used as a linear algebra backend.

The first example shows an application of the parameterization tracking prob-
lem to improve the quality of a given hold-all domain D = [0,1]> € R2. This is
realized by using an unstructured 2D volume mesh created via Gmsh featuring 4262
triangular cells and 2212 nodes. We distort the mesh quality of this unstructured

meSh by applylng

as a deformation to the interior D, leaving the boundary 0D fixed. The deformed
initial mesh ¢o(D) is depicted in figure 5.4 (a). Notice that in this scenario, the
initial model M is given by the hold-all domain D = [0, 1]? with non-trivial boundary
D itself. We enforce invariance of the hold-all boundary 0D. Hence, there is no
normal component of the pre-shape derivative in this case, as the codimension of
D C R? is zero.

To formulate the parameterization tracking problem (5.10), we need to specify
an initial point distribution g™ and target f,. For the first example, we choose a

constant target
1

- Jpldz’

This makes a uniform cell volume distribution of the hold-all domain the target.
The initial point distribution g is represented by using a continuous Galerkin
Ansatz with linear elements. Degrees of freedom are situated at the mesh vertices,
and set to the average of inverses of surrounding cell volumes, i.e.

" 1 1
9" pi) = 57 T
() |Ci] el Joldx

Here, p; is a mesh vertex and C; is the set of its neighboring cells C'. The resulting
function is normed to satisfy the demanded normalization condition (5.9) of the
parameterization tracking problem. The initial point distribution estimated by this
procedure is shown in figure 5.4 (a).

Je (5.92)

(5.93)
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With both ¢™ and f, specified, the target JM and its tangential pre-shape
derivative component gz can be assembled. For the gradient representation, we use
weights apg = 0.02 and a2 = 1. Lamé parameters are fimax = fmin = 1, resulting
in constant fielas = 1. An initial scaling factor of ¢ = 0.01 for the negative gradient
during line search is applied. The method successfully exits after 37.07s and 45
iterations, achieving the required relative improvement of J™ by 3-1073. Results
of the pre-shape gradient descent using the tangential component of the pre-shape
derivative and the described methodology are shown in figure 5.4 (b) and figure 5.6.

Our second example uses the exact same parameters as in the first example. In
particular, the starting mesh and its initial volume distribution g™ are the same
as in the first example, and illustrated in figure 5.4 (a). To show the general
applicability of parameterization tracking, we replace the uniform target f, from
equation (5.92) by a more complicated non-uniform target

f[0,1] f[O,l] g™ (z,y) dz dy
Jiom Jiom 2+ cos (527 (@ = 0.35)2 42+ (y — 0.4)?) ) dudy

f<p:

: <2 + cos (5 2 ((z—035)2+2- (y — 0.4)2))>.
(5.94)

The pre-shape gradient descent for this non-uniform target achieves convergence
after 38.12s and 46 iterations, achieving a relative improvement of J* by 3-1073.
We visualize an intermediate mesh, and the final mesh in figure 5.4 (c) and (d). The
target function values 3 (¢;) and pre-shape gradient norms are shown in figure 5.6.
Interestingly, the intermediate mesh (c) looks like a superposition of the final and
initial meshes (d) and (a). This is essentially an illustration of snapshots from a
discretized flow in Diff(D). We see in figure 5.4 (d), that the prescribed non-uniform
cell volume distribution is achieved, even though the initial mesh in figure 5.4 (a)
has degenerate cells distributed on vertical lines.

Our third example applies the parameterization tracking problem to a sphere
in the hold-all domain D = [0,1]> C R®. It acts as the modeling manifold M, and
its initial parameterization yg is given by the identity embedding into the hold-all
domain. The initial shape is a structured triangular surface mesh approximating a
sphere centered in (0.5,0.5,0.5) with radius 0.3 constructed via Gmsh. It consists
of 6240 triangular cells and 3122 vertices on the surface. The sphere is embedded
in a hold-all domain consisting of 21838 tetrahedric cells and 4059 nodes. For the
third example, we prescribe a non-uniform surface cell volume distribution given by

z 1

N (1405 sin(10-27-2)).  (5.95
fe Z ﬁp(M)l"'%'Sin(lO'%T'x)ds ( + sin( T x)) ( )

The target function is of the form (5.82), which permits use of the material derivative
formula (5.84) to assemble the tangential component of pre-shape derivative. At
the same time, it satisfies normalization condition (5.9). We set the initial vertex
distribution to a constant

w__1 5.96

! Julds (5:96)

In order to calculate covariant derivatives and associated Jacobian determinants,
a Gram-Schmidt algorithm is applied to construct local tangential orthonormal
bases. The condition 71 X 75 = n is enforced for all points of the shape to achieve a
consistent orientation of tangential orthonormal frames. We choose weights apg =
0.02 and a2 = 1, and Lamé parameters pmax = 30 and pmi, = 5 for the gradient
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(¢c) Intermediate mesh (M) for non- (d) Final mesh @46(M) for non-uniform tar-
uniform target get

Figure 5.4: (a) Initial point distribution g™ depicted by color on the distorted
initial mesh ¢o(M). (b) Final mesh ¢45(M) for the uniform target after 45 descent
steps. (c) Intermediate mesh g(M) for the non-uniform target after 6 descent
steps. (d) Final mesh ¢46(M) for the non-uniform target after 46 descent steps.
For (b) - (d), associated node densities g™ o ;' - det Dp; ! at respective steps are
shown in color.

representation. The line search employs an initial scaling factor ¢ = 0.001 for the
negative gradient. For this scenario, the gradient representation of the pre-shape
derivative, and the resulting surface mesh with its associated vertex distribution
are depicted in figure 5.5. The method successfully exits after 1256.78s and 48
iterations, with a required relative improvement of J™ by 5-1072. Target function
values M (;) and pre-shape gradient norms are shown in figure 5.6. In light of
theorem 13, we see that the gradient norms and objective values J™(p;) both
converge by using only the tangential component g7 of ®JM. Also, the shape of
the sphere is left invariant, which is not the case if normal components or the full
pre-shape derivative (cf. figure 5.3) are used.
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(a) g™ and ~U on ¢o(M) (b) g™ 0 pig' - det Dipyg" on pas(M)

Figure 5.5: (a) Constant initial point distribution g™ and negative pre-shape gra-
dient of the tangential component g7 represented via equation (5.89) on the initial
surface mesh o (M) scaled by 0.03.

(b) Resulting surface mesh ¢45(M) after 48 pre-shape gradient descent iterations
with associated point distribution g™ o <p281 - det D<p281 shown in color.
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Figure 5.6: (a) Values for the parameterization tracking functional 3 (¢;) of iter-
ates ¢; for the tangential pre-shape derivative component based steepest descent
method. Values for the 3D sphere case are scaled by 3.

(b) L?-norms ||Us]| 2(p gn+1) of the gradient representations U; of pre-shape deriva-
tives for each iterate y;. Gradient norms for the 3D sphere case are scaled by 25 to
fit in the graph.
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5.5 The Pre-Shape Hessian of Parameterization
Tracking Problems

After our brief numerical intermezzo, we introduce pre-shape Hessians in this sec-
tion. A closed formula for the pre-shape Hessian of the parameterization tracking
problem is derived in theorem 14, and its features are discussed.

We want to have a pre-shape Hessian, which coincides with the shape Hessian
when applied to shape functionals. Therefore, we use a formulation inspired by the
shape Hessian definition of Delfour and Zolésio in [42, Ch. 9, Def. 6.1].

Definition 20 (Pre-Shape Hessian). Let J: Emb(M,R"™!) — R be pre-shape dif-
ferentiable. Denote by o}V the perturbation of identity for pre-shapes in direction
W e C®° (R R"™1). Let ¢ € Emb(M,R™1Y). If the limit

~ W o ~
923(90)[‘/] W] := }g% 2 (% )[V]t 2l - a\tzo

23Vl (5.97)

exists for all V,W € C(R"TY R"*1), and it is bilinear and continuous in V and
W, then we say J is twice pre-shape differentiable in ¢ with pre-shape Hessian
D23(p)-

The derivation of the following pre-shape Hessian formula for parameterization
is slightly involved. However, it is still worthwhile to have a closed form pre-shape
Hessian, since it can enable implementation of more powerful numerical solution
methods for mesh quality optimization. In particular, we show that the closed form
simplifies in solutions, giving the possible opportunity to use the resulting form as a
preconditioner, e.g. for L-BFGS methods. We reaffirm previous findings by positive
semidefiniteness of the pre-shape Hessian in solutions. Indefiniteness in solutions
can be characterized via tangential f,-divergence free vector fields, which gives a
connection to results from section 5.2.2.

Theorem 14 (Pre-Shape Hessian of the Parameterization Tracking Problem). Let
the assumptions of theorem 12 hold. Suppose that second order pre-shape material
derivatives for f, exist. Consider the outer unit normal vector field n on o(M).
Then the pre-shape Hessian of the pre-shape parameterization tracking problem is
given by

23M (@) [V][W]
:/ (f¢~divF(V) +©m(f¥,)[V]) : (fgp - divp (W) +©m(f¢)[W})
(M)

+% . ((gM o™t det D7<p_1)2 - fz) <divr(V) -divp (W) — divp (DV - W)
— <(DV + DVT) -n,Vr(W,n)s — Drn - W>2>

- (gM op~l.det DTp — f¢,> D (@m(fw)[v]) (W] ds.
(5.98)

Proof. Let us assume the setting of theorem 12, and f, to have second order pre-
shape material derivatives. Fix ¢ € Emb(M,R"™1) and V,W € C>=(R"! R*+1).
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We begin by applying corollary 2 to the first order pre-shape derivative (5.59)

D23 () VW]

:©<_A(M)

+ (gM op l.det DT ! — fq,) D (fo)[V] ds) (W]

. ((gM o (p_l - det DT@_1)2 — fz) . leF(V)

N =

= 7/ Do (1 . ((gM ot det DTgpfl)2 — fg) .divF(V)> (W] (5.99)

+ D, <(gM “l.det D7t — f¢> ~©m(f¢)[V]> (W]
5 (gM “1.det DT 1) — f2) - divp(V) - divp (W)
v (g “1.det D! — fw) D (f) [V] - dive(W) ds.

We proceed by finding closed expressions for the two occurring material deriva-
tives. First, let us consider the term with the material derivative featuring divp (V).
Product and chain rules from corollary 2 lead to

@m (; . ((gM o Sp_l -det DTQO_l)z - fi) . leF(V)> [W}

- (gM o1 (det D7<p*1)2) Do (g™ 0 1) W] - divp(V)
4 ((gM ° 80_1)2 - det Drw—l) D (det D7) W] - divp(V) (5.100)
— fo D (£,) W] - dive(V)

+ % (g™ 09 - det D7) = f2) - D, (dive (V) [W].
In the following, we tackle each component in this material derivative individually.
By assumption, g™ : M — (0, 00) is defined independent of ¢. Thus equation (5.65)
from the first pre-shape derivative proof can be applied. Hence the first term with
D (gM 0~ 1)[W] vanishes. We leave the third term involving the material deriva-
tive of f, as is, due to generality of f,.

Now we focus on the second term involving the tangential Jacobian expression.
To apply arguments from the proof of theorem 12, we transform the Jacobian with
the formula for inverse determinants

1
m DT -1 = ~m |\ T~ -1
) (det %) )[W] ) <detDTgpo<p )[W]

1

=— D (det DT “Hw

(et D)z o o1 © Dm(det DTpo ™) [W] (5.101)

1 - _ .

- (det D7p)2 0 =1 -(detD pvoy 1) - divp (W)

= —det D7~ ! - divp(W).

Here we combined several arguments from the proof of theorem 12, including equa-
tion (5.66) and equation (5.67), which we do not restate again to avoid redundancy.

Before we take care of the pre-shape material derivative of the tangential di-
vergence D, (divp(V))[W], we introduce some necessary derivative identities. For
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vector fields defined independently of ¢, we can use the chain rule for the material
derivative and remark 10 for material derivatives on moving boundaries, to see

oV d
Do (871) (W](zo) = @t:ODV(wt)m(wt)

. (5.102)
= I ) 4 Dy ()W),
With arguments analogous to [44, Lem. 3.2], and remark 10, we have
D (n)[W] = =V (W,n)2 + Dprn - W. (5.103)

Now we can derive the material derivative for the tangential divergence. We
have to be careful during manipulation of terms involving the normal derivative, as
objects participating might be not well defined in normal directions. In particular,
the outer unit normal n: (M) — R"*! is defined solely on the parameterized
shape, and not on an open neighborhood of it. Still, with the reasoning of remark 10,
we can proceed while avoiding non-defined expressions

D, (dive (V) [W] = Dy, (div(V)) [W] - @m(< al,n>2) W]

an
— D(div(V))W — <®m(g—‘;)[W],n>2 — <‘Z\—Z,®m(n)[W}>2
— div(DV - W) — <8Dg7n'w,n>2

—{(DV -0 W) (T W)
= divp(DV - W) + <8ma/7n'W,n> = <8Dgin'w7n>2

—{(DV + DV )2, ()W)

2
= divp(DV - W) + <(DV + DV )0, Vi (W,n)s — Dpn - W>2.
(5.104)
Notice that we have used Schwarz’s theorem in the third line, as well as the pre-
viously derived identities from equation (5.102) and equation (5.103) for terms in-
volving the material derivative of normals.
Combined application of this formula, together with vanishing of

D (gM o ™1 [W], generality of D,,(f,)[W], and equation (5.101), to equa-
tion (5.100) yields

D (1 . ((gM o ! det D'rga*l)2 — f;) -divr(V)> (W]
_ _(gM oo 1. det DT<p_1)2 ~divp(V) - divp (W) — f, '®m<fga)[W] -divp(V)

+ = ((gM o 1. det DT@_1)2 — f;)(din (DV . W)

+ <(DV +DV") - n,Vr(W,n)s — Drn - W>2>.
(5.105)

We shift our attention to the second material derivative occurring in equation (5.99).
But this one is easier, since we can use the same arguments applied to the previous
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material derivative, and because we do not need to differentiate divergence terms.
We apply assumed existence of the second order pre-shape material derivative of
fo, and leave respective terms general, to get

D ((gM o ' -det DTt — f¢) .i)m(fw)[v]> 4
- <®m (6" o™ )W]-det D" + gM 07! - Dy (det D7) W]
=D (£)W]) - D (£, IV]

+ (gM opt.det DTt — fq,) D (i)m (fgp)[V])[W]
= — (gM o<p_1 -det D" ) divp(W) - (ftp)[ ]
— D (f) W] - Do (f) [V]

(Mot det DTt — f@) D (Com(fw)[v])[W].
(5.106)

Now that we computed the necessary material derivatives, we plug them into equa-
tion (5.99) to arrive at

D2M (@) [VIIW]
= /(M) — (gM ot det D‘fgofl)2 -divp(V) - divp(W) — f, '@m(fga)[W} -divp(V)

L (ot e nrpty - fi)-(divF(DV W)

+ <(DV + DVT) -n,Vr(W,n)s — Drn - W>2>

( M o<p71 -det DT ) divp(W) - © (fgo)[ ]
= D (fo) W] Do (£ V]
+ (gl\/f o @71 - det D‘r(pil ) @m <©7n fap ) ]
+% ( 1. det D7) ) divr (V) - divp (W)
+ (gM opt.det D! — ) D (fp) V] - divp (W) ds
1 -1 T, —1 2 i
= — /LF(M) 5 ((g detD ) + f@) lep(V) . leF(W)
—fo (@m V] dive (W) + Do (£,) W] - dive(V))
= D (f) W] Do (£) [V]
+% ((gM “t-detDTp )2f3)'<divr(DV~W)

+ <(DV +DVT) -0, Vr(W,n)s — Drn - W>2>

+ (gM ol det DTt — f¢> D (’Dm(fw) [V]) W] ds
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= /LF(M) (f(p ~divp(V) + D, (f¢>[V]> . (fw -divp (W) + gm(fw)[WD

% . ((gM ol det DT 1)? - fg). (divF(V) - divp (W) — divp(DV - W)

_ <(DV +DVT) - n,Vp(W,n); — Drn - W>2>

~ (909 aet DT = 1) - Dou (D (£,) V1) W] ds,

where we used a binomial expansion in the last equality, while paying attention to
the minus sign in front of the integral, to get the final form of the pre-shape Hessian
as in equation (5.98). Notice that no integration by parts or Stokes theorem was
used, meaning no boundary integrals occur. O

By inspecting the pre-shape Hessian (5.98), we notice occurrence of non-
symmetric terms. It is of course possible to symmetrize these terms and use a
modified version of the Hessian. Such a symmetrized version might not necessar-
ily give additional benefits if used in a higher order optimization method. This is
because, with the next corollary, we see that the pre-shape Hessian is indeed sym-
metric in solutions to the parameterization tracking problem. So it could be argued,
that removing non-symmetric terms in numerical applications to have a symmetric
pre-shape Hessian has validity.

Remark 19 (Implementation of the Pre-Shape Hessian with First Order Elements).
The pre-shape Hessian (5.98) of the parameterization tracking problem involves al-
most only terms featuring derivatives of order lower than 2. Only the two terms
involving divp(DV - W) and Dy, (D (f,)[V])[W] potentially have second order
derivatives with respect to V and f,. These two terms are part of the discussed
asymmetric pre-shape Hessian terms. Nevertheless, we can use partial integrations
to derive formulae only featuring first order derivatives. Taking the first term as an
example, this boils down to

1

- /(M) 5 (9" 0w et D7)’ — £2) - dive(DV - W)
©

T
:/(M) ((QM ot det DTgp_l) . VF(gM o1 det DT(P—:[) - Vrfg;) (DV - W)
©

/Bso(M)

where ny(ary s the outward pointing unit normal vector field on Op(M). This
procedure enables implementation of the pre-shape Hessian in numerical routines by
use of first order elements only.

. ((gM o (p_l -(iE}tZl)TsD_l)2 - ff;) : <DV ’ WnW(M)>2 ds,

N | =

In the following, we denote by ¢ € Emb(M,R"*1) a fiber stationary point of the
parameterization tracking problem, and omit the usual tilde notation for readability.
We remind the reader that by theorem 13, such an embedding is a global solution.

Corollary 3 (Pre-Shape Hessian in Fiber Stationary Points). Let the assumptions
from theorem 12 hold. Consider f, such, that it has second order pre-shape material
derivatives. Let ¢ € Emb(M,R"*Y) be a fiber stationary point of parameterization
tracking problem (5.10) (cf. equation (5.75)), and let n be the outer unit normal
vector field on o(M).



5. The Pre-Shape Parameterization Tracking Problem 97

Then, for all V,W € C°(R"*1 R"*1) the pre-shape Hessian to (5.10) at ¢ has
the form

D%MmeWFiLMKh«mMW+©mMMW)(&dMNW+©mMMWD%-
(5.107)
In particular, the pre-shape Hessian is positive semidefinite at p, i.e.
DM (PVIIV]I=0 YV e C® (R R, (5.108)

Additionally, for all directions V™ tangential to o(M), not necessarily parallel to
Op(M), the pre-shape Hessian at ¢ satisfies

D23M(p) [VT] W] = / - f2-divy, o (VT) -divy, . (W7) ds, (5.109)
o]
where divy, r is the tangential f,-divergence on (M) (cf. equation (5.38)). Fur-
ther, it holds
D23M (@) [VT][VT] =0 (5.110)
for all tangential f,-divergence free vector fields V7. For other tangential vector
fields on (M), the pre-shape Hessian is strictly positive.

Proof. This corollary is a consequence of a combined application of the closed form
pre-shape Hessian (5.98) and characterization of fiber stationary points as global
minima from theorem 13. Let us assume the setting of theorem 12 and let f,
have second order pre-shape material derivatives. Consider a fiber stationary point
¢ € Emb(M,R"*1). Existence of a fiber stationary point is guaranteed, since these
are characterized exactly as global minimizers by theorem 13, for which we can
apply the existence theorem 10.

Characterization of fiber stationary points ¢ in theorem 13 (ii) also gives rela-
tion (5.76). Using relation (5.76), and the resulting equality for their corresponding
squares, in the closed formula for the pre-shape Hessian (5.98), we immediately get
expression (5.107), as all integrands of the pre-shape Hessian (5.98) except for the
first vanish. At this stage, positive semidefiniteness of D23M (i) is seen directly by

oM VIV = [
(M)
for all directions V' € C>°(R" 1, R *1).

Next, we derive reformulation (5.109) of the pre-shape Hessian in tangential
directions using the tangential f,-divergence. For this, we decompose the involved
factors of the integrand in equation (5.107) by corollary 2 (i), which gives

. . 0

fo-dive(V)+D,, (f¢)[V] = f¢~d1vF(V)+©f¢[V]+$-<n, V>2—|—fo$V. (5.112)
Let V™ € C*°(R"*!,R"1) be a direction tangential to ¢(M), but not necessarily
parallel to dp(M). By assumption of theorem 10, we have that f, has shape func-
tionality. Hence the structure theorem 9 (iii) for pre-shape derivatives guarantees,
that the pre-shape derivative © f, can be naturally restated as a shape derivative,
and is supported only on normal directions. With this in mind, we insert a tangen-
tial direction V7 into equation (5.112) to get

fordive (V) 40 () [VT] = fo-dive (V) + Ve fIVT = dive (f,-V7). (5.113)

With this, we get equation (5.109) by application of formula (5.38) for the tangential
fo-divergence and strict positivity of f,. The last statement of corollary 3 concern-
ing vanishing and strict positive definiteness of D?JM (¢)[V7][V"] for tangential
directions follows directly from equation (5.109). O

(fw -divp(V) + 33771(‘;‘«,)[V])2 ds >0 (5.111)
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With formula (5.107), corollary 3 gives a vast simplification of the pre-shape
Hessian (5.98) to the pre-shape parameterization tracking problem in solutions. We
clearly see, that the resulting bilinear form is symmetric, which means that occurring
non-symmetric terms of the pre-shape Hessian indeed vanish near solutions.

The pre-shape Hessian (5.107) in solutions can be used as a preconditioner for
systems arising in algorithms for parameterization tracking in shape optimization.
It is reasonable to focus on tangential directions in the preconditioning process, as
the general interest for parameterization tracking is to find better mesh configura-
tions, while still leaving the shape at hand invariant. For this task, formula (5.109)
for the pre-shape Hessian in solutions for tangential directions is appropriate. To
make it more practical for numerical implementations, we can substitute the tangen-
tial f,-divergence via its definition (5.38), to have terms featuring only tangential
divergences. This gives the bilinear form

WV, W) ) = L oy 0 V) dive(f, W) s, (5.114)

which equals the pre-shape Hessian in solutions for tangential directions. It can be
used to precondition Newton-systems, for Hesse-approximations as used in L-BFGS
algorithms, or as a bilinear form for enhanced gradient descent algorithms (cf. [161,
159]). For these applications, it is important to be aware of the semidefiniteness
coming from tangential f,-divergence-free directions V € C*°(R"+1 R"1).

From theoretical perspective, the special form of the pre-shape Hessian for pa-
rameterization tracking in tangential directions seen in equation (5.109) fits to the
results in section 5.2.2, which characterize equivalent solutions via Euler flows with
tangential f,-divergence free initial velocities from L?-metrics on fibers. The tan-
gential f,-divergences weighted by the target f, are the major components of the
Hessian in solutions. Characterization theorem 11 and its discussion show, that ex-
actly the vector fields with vanishing tangential f, -divergence are in correspondence
to the neighboring solutions leaving a shape invariant. Hence it is not surprising,
that the last part of corollary 3 states semidefiniteness of the pre-shape Hessian in a
solution exactly for these local solution generating directions. We remark that the
results concerning equivalent solutions via tangential f,,-divergence free vector fields
and Euler flows do not rely on pre-shape calculus. At the same time, structures
from this type of solution characterization are obviously apparent in the pre-shape
Hessian.



Chapter 6

Regularizing Shape
Optimization Problems by
Parameterization Tracking

The main goal of this chapter is to introduce a theory for regularization of shape op-
timization problems by pre-shape parameterization tracking. This allows to simul-
taneously adapt shape and hold-all domain meshes to specified cell volume targets,
while solving the underlying shape optimization problem. We reiterate, that tech-
niques we develop do not involve changes in mesh topologies, and particularly avoid
remeshing or mesh refinements. However, they can be combined with refinement
and remeshing approaches.

For our endeavor, we rely on the key observation, that shape optimization prob-
lems can be extended to pre-shape spaces Emb(M,R™*1). The fiber bundle struc-
ture offers an opportunity to modify the problem, such that the original shape
solution is maintained, while at the same time an optimal parameterization from
the solution fiber is selected. This gives rise to several different regularized shape
optimization routines to achieve target mesh quality. Procedures and numerical im-
plementations using our techniques are discussed in chapter 7, after we establish the
theory for regularization by pre-shape parameterization problem tracking problems
in this chapter.

Our approaches need to satisfy three properties. On the one hand, they must not
interfere with the original shape optimization problem, i.e. leave the optimal shape
or even intermediate shapes invariant. On the other hand, to be practically feasible,
the mesh quality regularization approaches should not increase computational cost
significantly. In particular, no additional solution of linear systems should be nec-
essary if compared to standard shape gradient descent algorithms. And lastly, our
approach should not depend on the form of gradient representations, such as linear
elasticity or p-Laplacian ones, making it more versatile. We achieve all mentioned
properties for the simultaneous shape and volume mesh quality regularizations of
this work.

For their introduction, we proceed in multiple steps. First, in section 6.1, we an-
alyze the case where quality of the mesh representing the shape is optimized. This
amounts to increasing quality of the (hyper-)surface shape mesh (M) embedded
in the volume hold-all domain . We resituate shape optimization problems in
pre-shape spaces, where they can be modified by parameterization tracking to yield
regularized pre-shape optimization problems. Then, in section 6.2, we build on the
surface mesh case by also demanding increased volume mesh quality of the hold-all
domain . With this, we gain the opportunity to control both the volume and the
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shape mesh quality at the same time. We provide sufficient spaces for pre-shapes
¢ representing volume meshes D, in order to not interfere with shape optimization.
With these spaces, the fully regularized problem can be formulated as a bilevel
pre-shape optimization problem. We provide existence of solutions ¢, such that
an optimal pre-shape of the regularized shape optimization problem corresponds to
its unregularized solution, while having optimal shape mesh quality with regard to
the parameterization tracking problem. For this solution, existence of an optimal
volume parameterization ¢ of the hold-all domain is guaranteed, which leaves the
optimal shape ¢(M) invariant. Then, we provide modified pre-shape gradient sys-
tems, which permit simultaneous shape and mesh quality optimization by a single
gradient system. In particular, we show consistency of this gradient system with the
fully regularized problem. This serves as the foundation to formulate a simultane-
ous shape optimization and parameterization tracking algorithm. The discussion of
this algorithm and results from numerical implementations using a model problem
are given in the next chapter 7.

If not stated otherwise, we assume M C R"*! to be an n-dimensional, oriented,
connected and compact C'°°-manifold, perhaps with smooth boundary M. To suit
the context of numerical applications, we look at ambient spaces D C R**! which
are open, connected and oriented n + 1-dimensional C*°-submanifolds. Also, we
assume the closures D to have smooth boundaries 9D, in case the boundaries are
nonempty. The according pre-shape space Emb(M,D) consists of all shapes em-
bedded into the interior of . Previous statements about fiber-bundle structure,
pre-shape calculus, and existence of solutions to parameterization tracking all re-
main valid. Also, the associated shape spaces B}’ are well-defined, and are the
base space of Emb(M, D) (cf. [61, Thm. 2.2]). Regularizations for the shape mesh
discussed in section 6.1 do not rely on a bounded hold-all domain D. However,
regularization techniques for the hold-all domain D in section 6.2 indeed require its
boundedness.

6.1 Simultaneous Shape Mesh Quality and Shape
Optimization

In this section we formulate a regularized shape optimization problem to track for
desired shape mesh quality using pre-shape calculus. Throughout chapter 6, we
take a look at a general prototype shape optimization problem

1}2}3% J(T). (6.1)
We only assume that the shape functional J: B’ — R is first order shape differen-
tiable.

In the following, we reformulate problem (6.1) in the context of pre-shape op-
timization by use of the canonical projection 7: Emb(M,D) — B. We remind
the reader, that the canonical projection m maps each pre-shape ¢ € Emb(M,D) to
an equivalence class w(¢) = I' € B?, which consists of all parameterizations of the
same shape ¢(M) in D. Via the nonlinear Grassmannian (4.5), we can associate
every () with its set interpretation ¢(M) C D of the shape. With proposition 2,
the pre-shape formulation of problem (6.1) takes the form

i . 6.2

el (T om)(p) (6.2)

It is important to notice, that proposition 2 guarantees pre-shape differentiability

of the extended target functional of problem (6.2), since we assumed J to be shape
differentiable.
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All necessary ingredients are laid out to formulate a regularized version of the
general shape optimization problem (6.1). For a” > 0, we add the parameterization
tracking functional in style of a regularizing term to pre-shape reformulation (6.2),
which gives the shape reqularized problem

. T M
epin (Tom)(p)+a” -3 (¢). (6.3)

By proposition 2 and theorem 12, we know that the regularized objective of the
initial shape optimization problem in (6.3) is pre-shape differentiable. This is foun-
dational, because it means a pre-shape gradient system for the shape regularized
problem (6.3) can be formulated.

The pre-shape derivative DJM (p)[V] of the parameterization tracking prob-
lem is well-defined for weakly differentiable directions V' € H(D, R"*!) (cf. equa-
tion (5.59)). By assuming the same for the shape derivative DJ of the original
problem (6.1), we can create a pre-shape gradient system for (6.3) using a weak
formulation with H'-functions. Given a symmetric and positive definite bilinear
form a(-,-), such a system takes the form

~M

U7 V) =DIM)V] + o {g), V) + a" (g7, V) ¥V e Hj(D,R"™).

(6.4)
Here, gﬁf and gﬁf are the components from the decomposition of DJM () in equa-
tion (5.70). We use a fracture a(-,-) to distinguish the form for the gradient rep-
resentation from bilinear forms a(-,-) arising in state equations of later chapters.
With T' = m(p), the right-hand side of equation (6.4) is indeed a full pre-shape
gradient for the objective of problem (6.3). This stems from the fact, that the pre-
shape extension J o 7 has shape functionality by construction, which makes the
pre-shape derivative D(J o 7) equal to the shape derivative DJ by application of
structure theorem 9 (iii). Notice, that it is not necessary to have bilinearity or sym-
metry of a(-,-). There are various approaches for shape gradient representations,
which employ nonlinear equations with shape derivatives as right-hand sides. For
example, the strong formulation of the quasilinear p-Laplacian equation as found
in [135] can serve as a tool to represent shape gradients with beneficial properties
for optimization.

The full pre-shape gradient system (6.4) can be used to achieve simultaneous
solution of the shape optimization problem and parameterization tracking for the
shape mesh. It is not required to solve an additional linear system to create a
mesh quality regularized descent direction U7 9 M, since the original shape gradient
system to problem (6.1) is modified by adding the two force terms gV and ¢7. We
also see, that calculation of a descent direction U +3" Via the single combined
system (6.4) corresponds to a calculation with two separate steps. More specifically,
the direction U7 +3" equals the combined direction U7 +U3"" of the shape gradient
U7 and pre-shape gradient U3, which solve the decoupled systems

a(U7,V)=DJg@)[V] VV e Hj(D,R") (6.5)
and
a(UJM,V) =a’- <gtjp>/’ V> +a”- <g;—7 V> vV e H(% (D7Rn+1)' (6'6)

However, gradient system (6.4) is not suitable for derivative based shape optimiza-

tion. Application of U +3" peither leaves intermediate nor optimal shapes of the
underlying shape optimization problem invariant. This issue comes from involve-
ment of the shape component g{;[ of the pre-shape derivative to the parameteriza-
tion tracking objective JM (cf. equation (5.71)). It acts solely in normal directions,
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therefore altering shapes by interfering with the shape derivative D.J of the original
problem. We numerically capture and examine this effect in section 7.3.

For this reason, we deviate from the full gradient system (6.4), and use a modified
system

a(U,V)=DID)V]+a - {(g],V) VvV e H;(DR"). (6.7)

We project the pre-shape derivative DJM onto its tangential part, which is real-
ized by simply removing the shape component ¢ from the right-hand side of the
gradient system. By this, we still have the numerical advantage of solving a sin-
gle gradient system, while also achieving invariance of optimal and intermediate
shapes. Of course, invariance is only guaranteed up to discretization errors. From a
classical shape optimization perspective, this stems from considering equation (6.7)
as a shape gradient system with additional force term ¢”, which acts on directions
V in the kernel of the classical shape derivative D.J7. We recur, that Hadamard’s
theorem 7 and the structure theorem 9 for pre-shape derivatives identify directions
tangential to shapes I' to be in the kernel of DJ(T"). In the pre-shape setting, we
interpret these directions as vector fields corresponding to the fiber components of
Emb(M,D).

We sum up and justify the use of the pre-shape regularized problem (6.3) and its
modified gradient system (6.7), by providing existence of solutions and consistency
of the modified gradients with the regularized problem.

Theorem 15 (Shape Regularized Problems). Let D C R""! be an n + 1-
dimensional, open, connected and oriented C*°-submanifold, such that its closure
D has a smooth boundary OD. Assume M C D to be an n-dimensional, oriented,
connected and compact C*°-manifold, perhaps with smooth boundary. Let shape
optimization problem (6.1) be shape differentiable and have a minimizer T' € B,
For shape parameterization tracking, let us assume functions g™ : M — (0,00) and
for (M) — (0,00) to be smooth, fulfill the normalization condition (5.9), and f
to have shape functionality.

Then there exists a ¢ € w(p) =T C Emb(M,D) minimizing the shape regular-
ized problem (6.3).

The modified pre-shape gradient system (6.7) is consistent with the full pre-shape
gradient system (6.4) and the shape gradient system of the original problem (6.5),
in the sense that

U=0 < U/ =0 and U7 = 0. (6.8)

In particular, if UI+3t =0 is satisfied, the necessary first order conditions for the
shape regularized problem (6.3) and the original problem (6.1) are satisfied as well.

Proof. For the existence of solutions to the shape regularized problem (6.3), let
us assume there exists a minimizer I' € BY to the original problem (6.1). By
construction of the shape space B via equivalence relation (4.4), there exists a
@ € Emb(M, D), such that T' = (). So the set of pre-shapes 7(p) acts as a set of
solution candidates for the shape regularized problem (6.3). Since we require shape
functionality of f, and normalization condition (5.9), theorem 10 for solutions to
parameterization tracking guarantees existence of a global minimizer for J™ in every
fiber of Emb(M, D). In particular, we can find such a ¢ in 7(®). From the last
assertion of theorem 10, we also have J™ (¢) = 0. Additionally, since M > 0 due
to the quadratic nature of the parameterization tracking objective, we have that ¢
is a solution to the shape regularized problem (6.3).

Next, we prove the non-trivial direction * = ’ for consistency of gradient sys-
tems in the sense of equivalence relation (6.8). Let us assume we have a pre-shape
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gradient U = 0, which stems from the modified system (6.7). This immediately
results in
DIMD)V]+a™-(g],V)=0 VvV e HjDR"M). (6.9)

However, due to the structure theorem 9 for pre-shape derivatives, we know that
the supports of shape derivative DJ(T") and the pure pre-shape component gg are
orthogonal. Hence

DJM)[V]=0 and o™ -(g],V)=0  VV € Hj(D,R""). (6.10)

This is the first order condition for equation (6.1), in particular giving U7 = 0.

It remains to show that the first order condition for the regularized problem (6.3)
is satisfied, and that the complete gradient achieves U +3" = . Essentially, this is
a special case of theorem 13, which characterizes global solutions of parameterization
tracking by fiber stationarity. From the second equation (6.10) combined with
structure theorem 9 (ii), we see that ¢ € Emb(M,D) is a fiber stationary point.
Hence theorem 13 states that ¢ is already a global minimizer of J™, and satisfies
the corresponding necessary first order condition. Even more, theorem 13 gives
vanishing of DJM (¢) and g{;/ . Therefore, the right-hand side of the full gradient
system equation (6.4) is zero, resulting in a vanishing full gradient U7+3" = 0.

Implication "<’ holds by the fiber stationarity characterization as well. Since
vanishing of the shape gradient U7 gives DJ(I') = 0, the full pre-shape derivative

DIM(p) must be zero if the full pre-shape gradient U< 3" = 0. Then the fiber
stationarity characterization theorem 13 tells us that both gz and gﬁf vanish for ¢,
which proves the remaining direction of equivalence (6.8). O

With theorem 15 we can rest assured that optimization algorithms, which use
the tangentially regularized gradient U from equation (6.7) leave stationary points
of the original problem invariant. Vanishing of the modified gradient U indicates
that we have a stationary shape I' = 7(¢), whose pre-shape ¢ has desired cell vol-
ume allocation f,. Of course, this is only true up to discretization error. We also
see that the modified gradient system (6.7) captures the same information as the
shape gradient system (6.5) and full pre-shape gradient system (6.4) combined. This
might seem counterintuitive at first, especially since necessary information is con-
tained in one instead of two gradient systems. However, by application of pre-shape
calculus to derive the fiber stationarity characterization theorem 13, we recognize
this circumstance as a consequence of the special structure of regularizing functional
JM . The fact that pre-shape spaces are fiber spaces with locally orthogonal tangen-
tial bundles for parameterizations and shapes is a fundamental prerequisite to this.
We discuss numerical results comparing optimization with standard shape gradients
from equation (6.5) and gradients regularized by modified shape parameterization
tracking from equation (6.7) in chapter 7.

Remark 20 (Equivalent Bilevel Formulation of the Regularized Problem). It is also
possible to formulate the shape mesh reqularization as a nonlinear bilevel problem
min M (

pEEmb(M,D) 80)

s.t. w(p) = argmin J(T). (6.11)
reBy

The lower level shape optimization problem restricts the set of feasible solution pre-
shapes of the upper level problem. Intuitively, solving bilevel problem (6.11) amounts
to solving the lower level problem for a shape I', and then to select an optimal
parameterization ¢ € I' = w(p) € Bl in the fiber corresponding to the optimal
shape. If a solution to the lower level shape optimization problem exists, a solution
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@ to the upper level problem exists as well, because global minimizers exist in every
fiber of Emb(M,D) by theorem 10.

The bilevel formulation motivates the modified gradient system (6.7) in a consis-
tent manner. For this, we can take the perspective of nonlinear bilevel programming
as in [151]. In finite dimensions, the authors of [151] propose a way to calculate a
descent direction by solving a bilevel optimization problem derived from the original
problem. We remind the reader, that we formulated our systems as gradient systems
and not descent directions, hence a change of sign compared to systems for descent
directions in [151] occurs. Also notice that the additional constraint w(p) =T for
the feasible set of solutions has to be added to formulate our bilevel problem in the
style of [151]. We can proceed with a symbolic and non-rigorous calculation fol-
lowing [151, Ch. 2] by using relations (it) and (iii) from structure theorem 9 for
pre-shape derivatives, the fact that M does not explicitly depend on T of the sub-
problem, and that J does not explicitly depend on ¢ of the upper level problem.
This yields a bilevel problem for the gradient U to bilevel problem (6.11)

ma; M U
UGH&(DVR"}l),HUHSl I @lY]

s.t. UN = arg max DJ () [W],
WeH; (DR ), W] <1

(6.12)

where UN is the component of U normal to T. In [151, Ch. 3], a descent method
is applied to problem (6.12) by alternating computation of U,é\/ and Uy,.

For our situation, a gradient U,iv for the lower level problem of (6.12) corre-
sponds to U7 solving the shape gradient system (6.5). With this, the lower level
constraint fizes the normal component of U to be the shape derivative of the original
problem (6.1). By decomposing U = U7 + UN into tangential and normal direc-
tions, we see that the fized normal component makes DI (©)[UN] =0 a constant
not relevant for the upper level problem. This lets us rewrite the system as

: T T
U
UTeH&<D§3}fl),nmns1<g“’ )
st UN = pJ (6.13)
U=UT +UV.

We see that minimization of the tangential component gl in problem (6.13) is not
restricted by its constraints. Hence it can be decoupled. By considering an additional
factor o™ > 0, this leads to a gradient system

a(UT,V)=a" (g7, V) VWV eH;(DR"). (6.14)

With the same orthogonality arguments made for systems (6.5) and (6.6), a separate
computation of UY and UT as in the general case found in [151] is not necessary.
The gradient U = UT +UN for the bilevel problem (6.11) can be calculated by a sin-
gle system, which coincides exactly with the modified gradient U from system (6.7).
With theorem 15, this means using the modified pre-shape gradient U as a descent
direction in fact solves the bilevel problem (6.11), the regularized problem (6.3), and
the original shape problem (6.1) at the same time.
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6.2 Simultaneous Volume Mesh Quality and
Shape Optimization

In this section, we introduce the necessary machinery for a regularization strategy
of volume meshes representing the hold-all domain ID. We incorporate our previous
results, which makes simultaneous optimization of shape and volume mesh quality
possible. The regularization for the volume mesh representing the ambient space
is designed, such that embedded shapes (M) C D are left invariant. As before,
we show a way to calculate modified pre-shape gradients without need to solve
additional (non-)linear systems compared to standard shape gradient calculations.

6.2.1 Volume Parameterization Tracking Problem with In-
variant Shapes

In the previous sections we focused on tracking of the parameterization of shapes
@(M), for which we regarded Emb(M, D) as a Diff (M )-fiber bundle. This was nec-
essary in order to distinguish the shape and parameterization aspects, and to show
that, in some sense, they are naturally orthogonal and do not conflict each other.
The pre-shape space Emb(M,D) is of course not suitable to model the hold-all do-
main, since it describes shapes ¢(M) C D combined with their parameterization.
Therefore we need a second, different pre-shape space to represent the hold-all do-
main . The situation is further complicated, since we have to account for optimiza-
tion of shapes (M) embedded in D. Care must be taken, since we have to avoid
that optimal hold-all pre-shapes deform embedded shapes. In particular, we need
to pay attention to the topological situation regarding the complement of the shape
D\ (M), which we make precise in this section. The ambient space does, except
for the embedded shape, not explicitly influence the objective functional J of the
underlying shape optimization problem. This is reflected by structure theorem 9, as
the pre-shape derivative ©(J o 7) has no support on the ambient space, but solely
on the shape ¢(M). Hence we can pose a volume parameterization tracking prob-
lem on the ambient space, and use the resulting pre-shape derivative to complement
the derivatives of the shape optimization objective ©(J o 7) and the surface mesh
pre-shape parameterization tracking target 3.

As in the previous section 6.1, we assume the ambient space to be a connected,
open and oriented C*®°-manifold D C R"*!, such that D has a smooth boundary
OD. In addition, we demand boundedness of . We have trivial codimension of
D in R™*! due to openness of D. This means a suitable pre-shape space for the
volume mesh parameterization tracking is Emb(D, D) = Diff(D), where regularity
of diffeomorphisms corresponds to regularity of D and the boundary 0. Note that
Diff (D) has trivial fiber bundle structure, which means that we are in the special
case of optimization in a single fiber. With this, the existence theorem 10 for the
pre-shape parameterization tracking problem holds, under the same assumptions,
in the case of

min 1/D (gD 0¢ Y (x) det Do~ (z) — fg(;v))2 dz =: 3%(¢). (6.15)

$EDiff (D) 2

Notice that Moser’s theorem 4 also holds for manifolds with corners (cf. [28,
Thm. 7]), and in particular on meshes modeled as simplices. Also, even though
D has a boundary, Diff(D) is an ILH-Lie group (cf. [166, Thm. 3.19]). The func-
tions fg: D — (0,00) and ¢g°: D — (0,00) have the same interpretation as in the
hypersurface case. Also, shape functionality of fP is an empty condition, since
optimization for the volume mesh takes place in a pre-shape space Diff(D) with a
single fiber.
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It is natural to demand, that the shape of the hold-all domain should be left
invariant. According directions for shape derivatives and gradient systems are there-
fore vanishing on dD. Because diffeomorphisms map boundaries onto boundaries
(cf. [111, Thm. 2.18]), the structure theorem 9 for pre-shape derivatives tells us
that a pre-shape differentiable functional J°: Diff(D) — R always has trivial shape
component ¢V = 0 of DJP for such directions. In particular, this means ordinary
shape calculus is not applicable for functionals of this type. Further, we mention
that there is no need to use local orthonormal frames to represent the covariant
derivative D7, which is the case for shapes that are embedded submanifolds.

We do not want the resulting hold-all pre-shape ¢ € Diff (D) to interfere with the
shape optimization or pre-shape parameterization tracking of the embedded shapes
@©(M) C D. This is not guaranteed for all ¢ € Diff(D), since ¢(p(M)) # ©(M)
in general. Hence, we have to restrict the space of possible pre-shapes for D. A
suitable class of diffeomorphisms are those, which leave a given shape p(M) C D
and the hold-all boundary dD pointwise invariant, i.e.

Diffar) (D) = { ¢ € Diff (D) : 6(p) =p Vp € p(M)UID }. (6.16)

If ¢(M) has empty boundary, then Diff (5 (ID) is an ILH-Lie subgroup of Diff(D),
and the vector fields corresponding to its Lie-Algebra are vector fields vanishing
on (M) U 8D (cf. [166, Ch. 3.6]). Also notice, that Diff,(r (D) has volume
invariant diffeomorphism as a subgroup, which leave a given shape (M) fixed
(cf. [166, Thm. 3.20, Thm. 3.21]). This means the decomposition in divergence and
divergence-free components with regard to non-unique solutions to volume track-
ing problem (6.15) in analogy to equation (5.58) applies. Thus, results from sec-
tion 5.2.2 carry over to the invariant submanifold case, under the modification that
vector fields vanish on the invariant submanifold ¢(M) C D. The author is not
aware of such a result for the case of ¢ (M) with non-trivial boundary dp(M). Nev-
ertheless, we can avoid reliance on the Lie group structure, and regard Diff ;5 (D)
simply as a feasible subset of Diff (D). As the corresponding vector fields vanish on
0D and ¢(M), we have an effect on the numerical techniques we develop in this
section. More precisely, a projection of resulting vector fields using equation (6.15)
becomes necessary to leave the boundary and shape invariant. The associated space
of vector fields is given by

Ce iy (DR = {V € C3°(D,R™1) 1 Tr (V) =0 } (6.17)

where Tri, ) (V) is the trace of V on ¢(M). We use an analogous definition for
Sobolev functions Hé o (M) (D,R"“), which is permissible via the Sobolev trace

theorem (cf. [50, Ch. 5.5]).

Now we possess a pre-shape space suitable to model reparameterizations of the
hold-all domain D, which can leave a given shape (M) invariant. Next, we formu-
late an analogue of parameterization tracking problem (6.3), which tracks for the
volume parameterization of the hold-all domain. Let us fix a ¢ € Emb(M,D) and
the corresponding shape (M) C D. In the following, we demand less restrictive
regularity properties for volume parameterizations. Instead of smoothness on the
entire domain D, we only demand smoothness on the interior D \ ¢(M), exclud-
ing the invariant shape. Instead, only continuity and bijectivity are demanded on
invariant shapes. In light of [39], we denote the associated space of pre-shapes by
Diff (D \ ¢(M)) N Diff ,(py (D). In this case, the volume parameterization tracking
problem takes the form

1
min =
SEDIfE (D\p(M))NDiff , (a1 (D) 2

/D (gD o H(x)-det Do~ (z) — fE(M) (Jc))2 dz. (6.18)
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oD oD

Dout

Figure 6.1: Example of a hold-all domain D C R2. The left picture shows the case
¢ € Emb(S!,D), the right picture the case ¢ € Emb([0,1],D). Notice that the set
©(M) can be associated to a shape I' € BT

Notice that the objective functional is still well defined, since ¢ is bijective and differ-
entiable up to a set of measure zero. There are several similarities and differences
of volume parameterization tracking problem (6.18) and shape parameterization
tracking problem (5.10). Both pre-shape functionals track for a parameterization
dictated by a target f, and both feature a function g describing the initial pa-
rameterization. The volume tracking functional JP differs from JM by featuring
a volume integral, instead of a surface one. Also, the covariant derivative of the
Jacobian determinant in J is just the Jacobian matrix of ¢~

The two most important differences concern their sets of feasible solutions and
targets f. The volume target fE’(M) does not depend on the pre-shape ¢ for
the hold-all domain D, but instead depends on the shape ¢(M), which is left to
be invariant. Letting fP depend on the shape of D does not make sense, since
Diff (D \ ¢(M)) N Diff ,(a7) (D) consists only of one fiber, as the shape of D re-
mains invariant. Hence there is a dependence of both the feasible set of pre-shapes
Diff (D \ ¢(M)) N Diff,(pr) (D) and the target fE(M) on the shape ¢(M), because
we desire (M) to stay unaltered. For this reason, the shape invariant problem
version (6.18) differs from volume parameterization tracking problem (6.15) to such
an extent, that theorem 10 does not cover existence of solutions to problem (6.18),
even under general conditions discussed in remark 13. This makes it necessary to
formulate a result guaranteeing existence of solutions for volume parameterization
tracking problem (6.18) with invariant shapes under appropriate conditions. In
particular, we have to make distinctions depending on whether M has a nonempty
boundary or not. The following theorem has two parts, where respective situations
are illustrated in figure 6.1.

Theorem 16 (Existence of Solutions for the Volume Parameterization Tracking
Problem with Invariant Shapes). Assume D C R™*! to a bounded, connected, open
and oriented n+1-dimensional C>-manifold, such that D has smooth boundary OD.
Let M be an n-dimensional, oriented, connected and compact C*-submanifold of
D. Fiz a ¢ € Emb(M,D) generating a shape p(M) C D. Let g°: D — (0,00) be a
C>-function.
(i) Let M C D be closed, i.e OM be empty. Denote by ]D)fo" and ID);“t the disjoint
inner and outer components of D partitioned by o(M). Let fE(M) : D — (0,00)
be C*°-regular on D\ p(M). Further assume the normalization conditions

/, fE(M) dr = / gD dr  and / fE(M) dz Z/ gD dz. (6.19)
DZVZL DZL Dg“ Dowul
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Then there exists a C°°-solution ¢ € Diff¢(M)(ﬁ) globally minimizing prob-
lem (6.18), with

(9%0¢™")-det DG~" = f2 5y onD\@(M) and ¢(p)=p Vpe am(w(M)»
6.20

(i) Let M C D have a non-trivial C*-boundary OM. Consider a target

fE(M): D — (0,00), which is C*®-regular on D\ (M) and continuous on

D, such that

Trion) (Foan) = Tripn (6°)  and  Triap (foan) = Trjon (6°)  (6.21)

and the normalization condition

/fE(M) dz = / g° dx (6.22)
D D

holds.

Then there exists a global minimizer ¢ € Diff(D \ @(M)) N Diff,(rr)(D) for
problem (6.18) satisfying (6.20), which in particular leaves p(M) invariant.

Proof. Let the assumptions on D € R"*! and M C D be true. Let us start with
the first scenario, and assume M to have empty boundary OM. The main idea for
this case is to decompose D into interior and exterior, and to pose two uncoupled
parameterization tracking problems, which can be tackled by the Dacorogna-Moser
theorem separately.

We fix a ¢ € Emb(M, D), and see that (M) C D is an n-dimensional, orientable,
connected and compact C*°-submanifold of D as well. With (M) being a connected
and compact submanifold of D with codimension 1, the celebrated Jordan-Brouwer
theorem 6 guarantees existence of open and disjoint inner ]D)i; and outer ]D);’,“t of D
separated by ¢(M). Next, let ¢® and f:?( M) be as described, in particular satisfying
normalization conditions (6.19). With existence of a separated inner and outer, we
can decouple volume tracking problem (6.18) into two independent subproblems

min 3Din (pin) and min

in €DIfF i (D) bout EDIfE yyous (Do)

3% (Gou)- (6.23)

apin

Both problems do not feature invariant submanifolds in the interior anymore, since
DX = (M) and DY = (M) U dD. Thus interior and exterior are both C*-
manifolds with C*°-boundaries. With this, and the two required normalization
conditions (6.19), we are in position to apply existence theorem 10 with regard
to remark 13 for both independent subproblems (6.23). This gives us two C°-
diffeomorphism ¢y, € Diff oDin (]])Tgl) and dout € Diff gpou (W), which globally solve
the problems (6.23). In particular, they satisfy

(gDoqgi;l)-det Dq@i;l = fB(M) on ]D)i; and (gDoqggult)det Dé;}t = fE(M) on ID)(;“t.

(6.24)
We define a global solution candidate for problem (6.18) by setting
é:= dou(®)  for z € Do (6.25)
®in () for z € D™.

It is clear that ¢ is a bijection. Also, ¢ is the identity on dD U ©(M), which is
the second property of (6.20). We know that ¢, is C*°-regular on ]D)g‘, and that
Pous is C-regular on Dort. With this, and bin = Gout = 0 on (M), we get that
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q} has C-regularity on the entire hold-all domain I. In combination, this means
¢ € Diff (1) (D). With equation (6.24), we also get the first assertion of (6.20).
Finally, we can use equation (6.20) to see that J%(¢) = 0, since (M) is a set of
measure zero. Due to quadratic nature of problem (6.18), we have 3P > 0, which
tells us that qg is a global solution. Since we did not use any special property of ¢,
the argumentation holds for all ¢ € Emb(M, D) and gives part (i) of theorem 16.

Next, let us handle part (ii) of the theorem. For this, we assume a nonempty
C>-boundary OM. Let an fE)(M): D — (0,00) as describend in part (ii) of the
theorem be given. Let us fix a ¢ € Emb(M,D). The main idea is to apply the
Dacorogna-Moser theorem 5 on general domains to the complement set D\ p(M).

We see that (M) inherits all properties demanded for M. In particular, it is an
orientable, connected, compact and n-dimensional C'*°-submanifold of D with C'*°-
boundary. Because D is an open manifold, and d¢(M) is nonempty, and both D
and ¢(M) are connected, we can use [86, p. 108] to see that D\ ¢(M) is connected.
Since ¢(M) is a closed set with respect to the Euclidean topology, we get that
D\ ¢(M) is connected and open. By assumption, we have continuity of fg)( M) On D.
Since D is compact, the function fﬂg( ay is bounded on D. In particular, it attains
its minimum and maximum values in (0,00). Therefore fE( M) and its reciprocal
1/ fE( ay are both bounded on D\ ¢(M). The same argumentation holds for q°.
Since we have C'*°-regularity of D and ¢(M) and their boundaries, and because
we have assumed normalization condition (6.22), we can apply the Dacorogna-
Moser theorem 5 for general domains to D\ ¢(M). This guarantees existence of a
¢ € Diff(D\p(M))NDiff 5p (D) solving the weak formulation (2.15). Further, because
we have assumed consistency condition (6.21) of fg’( A and g® on the shape and
boundary, we have supp( fE( M)~ g°) € D\ ¢(M). In this case, theorem 5 gives
supp(¢ —idy) C D\ p(M). This means ¢ is the identity on ODUp(M), i.e. it leaves
the hold-all boundary and the shape invariant. By setting q; = ¢~_1, we verify that
¢ € Diff(D \ ¢(M)) N Diff ,(pr) (D). Also, the C*-regularity of ¢ on D\ (M), a
transformation formula, and ¢ solving equation (2.15) give

/E (P 0¢) -det Dp~' dzx = /E foo Az (6.26)

for all open subsets E C D\ ¢(M). Due to this, and because ¢! is the identity on
0D and (M), the solution candidate ¢ achieves both relations in (6.20). Again,
quadratic nature of JP tells us that ¢ is a global solution to the volume parameteri-
zation tracking problem (6.18). Since we did not use any special property of ¢, the
argumentation holds for all ¢ € Emb(M, D), and gives part (ii) of theorem 16. O

For guaranteed existence of optimal solutions ¢ € Diff(D\ ¢(M)) N Diff (1) (D)
to volume parameterization tracking with invariant shapes (6.18), it is necessary
to assume normalization conditions (6.19) or (6.22), depending on the topological
situation. To aid the reader, these are visualized in figure 6.1. A closed invariant
shape (M) C D acts as a boundary, which partitions the hold-all domain into
inner and outer. As we require solutions ¢ to leave p(M) pointwise invariant, the
diffeomorphism ¢ is not allowed to transport volume from outside to inside and
vice versa. Hence, in general, a single normalization condition on the entire hold-
all domain D of type (5.9) is not sufficient for existence of solutions. A direct
application of Dacorogna and Moser’s theorem to (6.15) yields a ¢ € Diff(D), which
possibly transports volume across ¢ (M), which we have to prohibit if (M) is left
to be invariant. As the total inner and outer volume change with varying ¢(M),
we have to require normalization condition (6.19) for each ¢(M) separately.

If ¢(M) has a boundary, we have seen in the proof of theorem 16 (ii) that it does
not separate ID. Hence volume can be transported in D without crossing ¢(M). This
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is the reason that a single normalization condition (6.22) on I is necessary for the
non-trivial boundary OM case. However, since the complement D \ (M) was left
general, we need consistency assumption (6.21). Essentially, it lets the integrand of
the parameterization tracking problem (6.18) vanish for the identity on ¢(M) and
0D, which guarantees the desired invariance of shapes and the outer boundary.

In both cases, the target fE M) has to depend on ¢(M), even though the shape
of D stays the same. This needs to be taken into account when designing targets
fP for numerical applications, which we discuss in section 7.1.2.

Remark 21 (Generality of Invariant Shapes). In ezistence theorem 16, we have
required the invariant shape to have the formulation o(M) for some ¢ € Emb(M, D).
This is solely due to the context of optimization problem (6.1) posed for shape spaces
Bl'. It is absolutely possible to use any compact and connected submanifold I' C D
as an invariant shape for volume tracking problem (6.18).

In particular, we can also consider any shape in FEuclidean space with codi-
mension greater than one, as discussed at section 5.1. In this case, [90, Ch. IV,
Thm. IV4 and Cor. 1] tells us that the complement of an embedded manifold
M C R*"! with dim(M) < n — 1 cannot separate R"*! into an inside and out-
side. In fact, the complement R"1\ M has only a single connected component.
Hence, for shapes with codimension greater equal two, either with or without bound-
aries, we are in the situation of theorem 16 (ii). In particular, no normalization
on the inside and outside as in assumption (6.19) is necessary. This means having
two normalization conditions is special to the situation of codimension one shapes
without boundaries.

Even more general, any closed set I' C D with respect to the Fuclidean topology,
such that its complement in D satisfies condition (Hy) from [39, p. 14, Appendiz],
can be left invariant during parameterization tracking for the volume mesh. This
includes the case of non-connected sets without specific dimension, which can be
locally described as the graph of a Lipschitz function, with isolated added or re-
moved points. If they partition D into multiple connected components, necessary
normalizations analogous to (6.19) have to be taken into account. And if the invari-
ant shape is irregular, consistency assumption (6.21) is needed. Then existence of
¢ € Diff(D\T')N¢ € Diffr(D) globally solving the volume parameterization tracking
problem (6.18), and leaving T invariant, is still guaranteed for such a general T'.

As we want to regularize shape optimization routines, we need to explicitly spec-
ify the pre-shape derivative to the volume parameterization tracking problem (6.18).
This means that neither the formulation (6.18) in the context of classical shape op-
timization, nor the derivation of a derivative using classical shape calculus are possi-
ble. Since the form of JP is similar to 3™, we can mimic the steps from theorem 12,
which we do not restate to avoid redundancy. Then, the pre-shape derivative of
DI in decomposed form as in structure theorem 9 is given by

3 ()[V] = (g}, V) +{g].V) ¥V eCF DR, (6.27)
with normal component
(g, V)y=0 (6.28)

and tangential component
1
(g], V) =— / 5 ((gD o ¢~ - det Dg™1)* — E(Mf) - div(V)

D
(6.29)
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As previously mentioned, we signify a duality pairing by (-, -). It is also important to
see that the restriction of Diff (D) to Diff ,(ar)(ID) does not influence the form of pre-
shape derivative DJ”. Further restriction to Diff (D \ ¢(M)) N Diff ,(ar) (D) leaves
the integral still well defined, as non-defined areas are sets of measure zero. In-
stead, it influences the space of associated directions V' by restricting C>° (D, R"*1)
to Cgio( M) (D, R"*1). This stems from the relationship of tangential bundles of dif-
feomorphism groups with invariant submanifolds (cf. [166, Thm. 3.18]). There is
also another subtle difference of DJP and ©J. Namely, the pre-shape material
derivative D, ( fﬂg( M)) featured in equation (6.29) depends on the invariant shape
©(M) C D instead of the volume pre-shape ¢, which means equation (5.84) is not
correct in this situation. We compute a correct material derivative for fE( M) in sec-

tion 7.1.2. It is straightforward to formulate a pre-shape gradient system for DJ°
from (6.18) in the style of section 6.1 using Sobolev functions. For a symmetric,
positive-definite bilinear form a(-,-), it takes the form

a(U,V) =a? - D3°(G)[V] WV € HE o (D, R™Y). (6.30)

6.2.2 Simultaneous Shape and Volume Mesh Regularization
for Shape Optimization

At this point, we have a suitable pre-shape space to represent different parameteri-
zations of hold-all domains D, which leave a given shape (M) C D invariant. Also,
we are able to guarantee existence for global minimizers to the volume version of
parameterization tracking problem (6.18) for invariant shapes ¢(M). In this sub-
section, we incorporate the volume mesh quality regularization simultaneously with
shape optimization and shape mesh quality regularization.

To formulate a regularized version of the original shape optimization prob-
lem (6.1), we have to keep the involvement of different types of pre-shapes in mind.
We emphasize, that the pre-shapes ¢ € Emb(M,D) and ¢ € Diff(D \ ¢(M)) N
Diff a1y (D) correspond to the different shapes ¢ (M) and D. This is also illustrated
by looking at the pre-shapes as maps

¢0:M —D and ¢:D—D. (6.31)

For this reason, we cannot simply proceed by adding J° in style of a regularizer to
increase volume mesh quality. This signifies a main difference in application of shape
mesh quality regularization via J™ and volume mesh quality regularization via JP.
To circumvent this issue, we formulate the shape and volume mesh regularized
optimization problem with a bilevel approach. We have already seen in remark 20,
that simultaneous shape parameterization tracking and shape optimization can be
put into the bilevel framework. In fact, this turned out to be equivalent to the
added regularizer approach from equation (6.3) with regard to resulting pre-shape
gradient systems.

Let us consider weights a”,a™ > 0. We formulate the simultaneous shape and
volume mesh regularization of shape optimization problem (6.1) as

min N A (%)
$EDIFF(D\ (M) Diff (17, (D)
¢ an y (6.32)
st. o= argmin (Jom)(p)+a™-J
¢E€Emb(M,D)

().

Of course, the bilevel problem (6.32) can be formulated for o® = 1 without loss
of generality. To stay coherent with section 6.1 in regard of pre-shape gradient
systems, which feature weighted force terms, we prefer to formulate problem (6.32)
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with a factor a® > 0. In contrast to shape regularized problems (6.3) and (6.11),
the simultaneous shape and volume mesh quality regularized problem (6.32) is not
minimizing for one pre-shape, but for two different pre-shapes ¢ € Emb(M,D) and
¢ € Diff(D \ ¢(M)) N Diff,(ar) (D). The lower level problem is solved by a pre-
shape ¢, which corresponds to the actual parameterized shape solving the shape
mesh regularized optimization problem (6.3). On the other hand, the upper level
problem looks for a pre-shape ¢, which corresponds to the parameterization of the
hold-all domain D with specified volume mesh quality. The set of feasible solutions
Diff (D \ ¢(M)) N Diff ,(ar) (D) to the upper level problem depends on the lower level
problem, because the optimal shape ¢(M) from the lower level problem is demanded
to stay invariant.

In the remainder of this section, we propose a regularized pre-shape gradient sys-
tem, which is suitable for simultaneous shape and volume mesh quality optimization
during shape optimization. We prove a corresponding existence and consistency re-
sult for the fully regularized problem. As in section 6.1, we change the regularity
of directions from C> to H', as it is more suitable for numerical application. We
remind the reader that the pre-shape derivative DJP(¢)[V] is defined for directions
V € H}(D,R"1) (cf. equation (6.27)). A criterion for successful application of
volume mesh regularization for shape optimization routines has to leave optimal or
intermediate shapes (M) invariant. If DJP(¢)[V] is used for regularizing the gra-
dient in style of an added force term for general directions V € HE (D, R"*1) as in
equation (6.7), it could in general alter shapes and interfere with shape optimization.
We display such unwanted effects in a numerical study in section 7.4, and compare
them to the approach of this subsection. Also, it is not possible to put Dirichlet con-
ditions on (M), or to use a restricted space of test functions as in equation (6.30).
Doing so would prohibit shape optimization itself, because the shape derivative D.J
of the original problem has support exactly on the shapes p(M). Hence, we have
to modify DJP, such that general directions V € H{(D,R"*!) are applicable as
test functions, while the shape at hand is preserved. To resolve this problem, we
introduce a projection

Pr D H'(D,R™) = Hg o) (D, R, (6.33)

0, (M)

which is demanded to be the identity on H; W(M)(D,]R”H). We leave the opera-
tor projecting a given direction V' € H*(D,R"*!) onto H; w(M)(D7R"+1) general.
Suitable options include the projection via solution of a least squares problem
. 1
Pry (V) := arg min §||W - V||§11(D7]Rn+1). (6.34)

1
0.2 (M) WeH, Rn+1)

1
0,00y (D

In practice, it is feasible to construct a projection (6.33) by using a finite element
representation of V', and setting degrees of freedom of basis functions on the dis-
cretization of ¢(M) to zero. With this projection operator, we can modify the
pre-shape derivative ®JP to suit directions V € H&,¢(M)(Dv R™*1) associated to the
feasible hold-all pre-shape space Diff (D \ p(M)) N Diff 57y (D).

Now we can formulate a fully regularized pre-shape gradient system suitable for
simultaneous shape mesh quality, volume mesh quality, and shape optimization. We
motivate the combined gradient system by the same formal calculations as in the
bilevel formulation for shape quality regularization discussed in remark 20. Given
a symmetric, positive-definite bilinear form a(-,-), the pre-shape gradient system
takes the form

(V)] vV e Hy(D,R"),
(6.35)

a(U,V) =DIM)V] + (g V) + a”D3%(¢) [Pryy _

(M)
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where g;,r is the tangential pre-shape derivative component (5.72) for shape regu-
larization, and DJ (T') is the shape derivative of the original shape objective with
I' = 7(p). Notice that the fully regularized pre-shape gradient system (6.35) looks
similar to the shape gradient system (6.5) of the original problem, differing only
by two added force terms on the right-hand side. These forces can be thought of
as regularizing terms to the original shape gradient. In practice, this means simul-
taneous shape and volume mesh quality improvement for shape optimization only
needs adding of two terms on the right-hand side of the gradient system.

Theorem 17 (Shape and Volume Regularized Problems). Let shape optimization
problem (6.1) be shape differentiable and have a minimizer I' € BY. For shape
and volume parameterization tracking, let the assumptions of both theorem 15 and
theorem 16 be true.

Then there exists a ¢ € w(p) =T C Emb(M,D), and a ¢ € Diff(D \ ¢(M)) N
Diff,(ap (D), minimizing the shape and volume reqularized bilevel problem (6.32).

The fully regularized pre-shape gradient U from system (6.35) is consistent with
the modified shape reqularized gradient U from system (6.7) and volume tracking

pre-shape gradient v’ from system (6.30), in the sense that
U=0 < U=0and US =0. (6.36)

In particular, if U = 0 is satisfied, the necessary first order conditions for the
volume tracking problem (6.18), the shape tracking regularized problem (6.3), and
the original problem (6.1) are all satisfied simultaneously.

Proof. Let the assumptions of theorem 17 be given. This includes all assumptions
made on M and D, and functions gM , gD, fos fg)( M) summarized in theorem 15 and
theorem 16. Fix a solution I" € BY to the original problem (6.1). With theorem 15
for shape regularized problems, we have guaranteed existence of a solution ¢ €
m(p) =T C Emb(M,D) to the lower level problem of (6.32), which coincides with
the shape regularized problem (6.3). Let us select such a solution ¢ € Emb(M, D).
This fixes the set of solution candidates Diff(D \ ¢(M)) N Diff,(5r) (D). Then, ex-
istence theorem 16 for volume tracking with invariant shapes provides a pre-shape
¢ € Diff (D \ ¢(M)) N Diff ,(5r)(D), which solves the upper level problem of (6.32)
while leaving (M) invariant. This proves existence of solutions to the shape and
volume regularized bilevel problem (6.32).

For consistency relation (6.36) of pre-shape gradients, we first prove =’
by assuming U = 0. The right-hand side of the shape and volume regular-
ized gradient system (6.35) consists of three added functionals DJ(T), gz, and

DIP(p)[Prp (1)]. Since we have U = 0, the combined right-hand side of

o, M
system (6.35)w(va)nishes for all directions V' € H&)W(M) (D,R™*1). By the struc-
ture theorem 9 for pre-shape derivatives, the functionals DJ(T") and gZ are sup-
ported only on directions V' not vanishing on ¢(M), because their underlying pre-
shape space is Emb(M, D). This implies vanishing of DJ°(¢) [PrHé,w(M)(')] for all
V € H}(D,R"™1). Therefore the right-hand side of the solo volume tracking sys-
tem (6.30) vanishes as well, and thus we have U Y Then, the remaining part
DJ(T)+a™-g! vanishes for all V € Hj (D, R"™) as well, which immediately yields
U = 0 by the shape tracking regularized system (6.7).

For ’'<’, let us assume U = U3 = 0. Since U vanishes, we see from shape
tracking regularized system (6.7), that DJ(T) + a7 - gl has to vanish for all V' €
H}(D,R"*1).  And because U3 = 0, the volume tracking pre-shape derivative
DJP vanishes for all V € H(}W(M)(D,R”H). Considering the projection operator,
this means DJP(¢) [P (+)] vanishes for all V € H}(D,R"*!). Together, the

s (M)
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complete right-hand side of the fully regularized system (6.35) vanishes, which gives
U = 0, and establishes consistency relation (6.36).

The last assertion concerning necessary optimality conditions for volume track-
ing problem (6.18), shape tracking problem (6.3), and the original problem (6.1)
is a consequence of consistency relation (6.36). If U = 0, we immediately get

U = 0, which implies the necessary first order condition for volume tracking via
system (6.30). Consistency relation (6.36) and vanishing U = 0 also give U = 0.
Therefore the last part of theorem 15 for shape regularized problems states that
necessary first order conditions for shape tracking regularized problem (6.3) and
the original problem (6.1) are satisfied as well. O

Theorem 17 for shape and volume regularized problems is of great importance for
practical applications, since it guarantees the existence of solutions to the fully reg-
ularized problem (6.32) for a given shape optimization problem. It also tells us, that
the shape T solving the original problem (6.1) remains unchanged by the shape and
volume regularization. This is due to the two following properties. For one, it stems
from guaranteed existence of a minimizing pre-shape ¢ in the fiber 7(¢) correspond-
ing to the optimal shape I'. And secondly, the optimal pre-shape ¢ representing the
parameterization of the hold-all domain ID comes from Diff (ID\ (M )) NDiff,(ar) (D),
which means it leaves the optimal shape ¢(M) pointwise invariant. Furthermore,
theorem 17 justifies the use of pre-shape gradient system (6.35) modified by force
terms for shape and volume regularization. This gives a practical and straightfor-
ward applicability of shape and volume regularization strategies for shape optimiza-
tion problems.

Remark 22 (Domains and Targets with Lower Regularity Assumptions). The set-
ting of C'*°-smoothness is taken, because it is necessary to have a meaningful defini-
tion of a shape space BY. However, results of theorem 15 and theorem 17 concerning
existence of optimal parameterizations ¢ and ¢ for regularized problems (6.3) and
(6.32), their reqularization strategies featuring the modified pre-shape gradient sys-
tems (6.7) and (6.35), and consistency (15) remain valid for the case of open and
bounded Lipschitz domains D, and f® and ¢° with C'-regularity in the interior
D\ o(M). Associated normalization and consistency conditions in respective exis-
tence theorems need to be verified nevertheless. In case D consists of multiple con-
nected components, normalization conditions are necessary for each component. Of
course, resulting optimal pre-shapes have lower regularity correspondingly (cf. theo-
rem 5).

Remark 23 (Numerical Feasibility). Our second criterion for a good regulariza-
tion strategy, which demands low additional numerical cost for reqularizations, is
achieved. Calculation of a regularized gradient via (6.35) is numerically feasible,
since it does not require additional solves of (non-)linear systems if compared to
the standard shape gradient system (6.5). In fact, the shape and volume regularized
pre-shape gradient is a combination of three gradients

U=07+UT +UY, (6.37)

coming from the original gradient system (6.5), modified solo shape tracking sys-
tem (6.14), and solo volume tracking system (6.30). Instead of solving three systems
separately, our approach permits a combined solution of only one system with the
exact same size of the shape gradient system (6.5) to the original problem.

Also, we see that our approach does not depend on the form a(-,-) to represent
gradients, because we solely modify the right-hand side of gradient system (6.35) to
achieve demanded mesh qualities. In particular, we numerically test our approach
for different representations in chapter 7. To show the versatility of modified gra-
dient systems, we use the weak formulation of linear elasticity motivated by [161],
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and a nonlinear p-Laplacian approach inspired by [135]. Together with invariance
of the optimal and intermediary shapes, all three criteria for a satisfactory mesh
regularization technique mentioned in the introduction of chapter 6 are achieved.

Remark 24 (Applicability of Shape and Volume Regularization for General Shape
Optimization Problems). We emphasize, that we did not need any specific structure
of the original shape optimization problem (6.1) to apply shape or volume mesh qual-
ity regqularizations. The only assumptions are shape differentiability and existence
of an optimal shape for J. This means the shape and volume mesh regulariza-
tion via parameterization tracking functionals IM and JP are applicable for many
meaningful shape optimization problems. In particular, PDE-constrained shape op-
timization problems can be reqularized by this approach, which we discuss by an
example in chapter 7. FEven more, we apply extended volume regularization for
shape optimization problems constrained by variational inequalities in chapter 9.
The structure of modified gradient systems (6.35) stays the same for different shape
optimization objectives J and their constraints. It is solely the shape derivative
DJ on the right-hand side which changes depending on the shape problem objective.
With regard to remark 23, this permits choice of various different left-hand sides
to represent pre-shape gradients accustomed to the problem, in combination with
reqularization strategies presented in this chapter.

Remark 25 (Volume Mesh Quality Regularization without Shape Regularization).
1t is of course possible to regularize a shape optimization problem (6.1) for wvol-
ume mesh quality only, neglecting shape mesh parameterization tracking. In this
scenario, the regularized problem takes the bilevel formulation

min B al . JD(QS)
$€Diff(D\I)NDiffr (D)

s.t. I' = argmin J(T).
reBr

(6.38)

In this case it is not necessary to use the pre-shape expansion (6.2) of the original
shape optimization problem. Instead, we associate I' € B with its set interpretation
via the nonlinear Grassmannian (4.5).

A result similar to theorem 17 can be formulated for the volume regularized prob-
lem (6.38) by pursuing analogous arquments. In particular, the volume regularized
pre-shape gradient system is of the form

a(U7,V) = DID)V] + o -03°(9)[Pryy (V)] YV € Hy(D,R™).

01~<P(M)
(6.39)
Also, the according consistency of gradients is given by
U =0 < U7 =0 and UY =0, (6.40)

for shape gradient U of the original system (6.5) and the pre-shape gradient Us”
of solo volume tracking system (6.30). If Ui+’ = 0, the necessary first order

conditions for the original problem (6.1) and volume regularized problem (6.18) are
both satisfied.



Chapter 7

Implementation of Shape and
Volume Mesh Quality
Regularizations

In this chapter, we put the different mesh quality regularization approaches to the
test. For this, we conceive a shape optimization problem with an elliptic PDE-
constraint, which is prone to mesh degeneration. The theoretical results of shape
and volume regularization for shape optimization problems in chapter 6 are given in
an abstract setting, where the involved objects remain general. In this chapter, sys-
tems and functionals are stated explicitly, so that the user can apply regularizations
by referencing the exemplary problem as a guideline.

In section 7.1, we elaborate the process of regularizing a model problem. We
also propose an additional modification for simultaneous shape and volume regu-
larization, which allows for tangential movement of the boundary of the hold-all
domain 9D to increase mesh quality. Thereafter, we present numerical results in
section 7.2, which compare several (un-)regularized optimization approaches. We
test two different gradient representations and four regularizations of gradients by
a standard gradient descent algorithm with a backtracking line search, totaling in
7 different approaches. The two gradient representations are given by the weak
form of linear elasticity as found in [161], and a weak p-Laplacian representation
inspired by [135] and studies found in [40]. The p-Laplacian approach discussed in
[135] uses a strong formulation, which is solved using Picard iterations. We choose
a different route, and employ a weak formulation with a regularization term, which
is solved using Newton’s method. The author of this work is not aware of such an
approach in the current literature. Then, the different routines tested employ the
unregularized, the shape regularized, the shape and volume regularized, and the
shape and volume regularized gradient with varying outer boundary.

After this major study, we perform two minor studies to check for various possi-
ble mistakes a user can make while implementing pre-shape parameterization track-
ing as a regularizer. In section 7.3, we compare shape mesh regularizations near
solutions of the shape optimization problem defined in section 7.1. The first method
uses the full pre-shape gradient DJM found in equation (5.59). The second method
uses our suggested approach, which only features its tangential component g7 found
in equation (5.72). The second study in section 7.4 uses similar setup, but takes
a focus on the volume mesh regularization. We examine the effect of a naive ap-
proach, which uses the direct volume reformulation of pre-shape parameterization
tracking (6.15) over Diff(D). This is compared to the approach, which uses the
regularizing problem (6.18) stated over Diff(D \ ¢(M)) N Diff ,(pp) (D).
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]D)out

oD

Figure 7.1: Hold-all domain D = D™ U M UD°" with initial circular shape M and
target shape I't#18,

7.1 Model Problem and Application of Pre-Shape
Mesh Quality Regularization

7.1.1 Model Problem Formulation and Regularization

In this subsection, we formulate a model problem to test our pre-shape regulariza-
tion strategies. For this, we choose a tracking type shape optimization problem in
two dimensions, constrained by a Poisson equation with varying source term. To
highlight the difference of shape and pre-shape calculus techniques, we formulate the
model problem in two ways. First, we use the classical shape space framework. The
second reformulation uses the pre-shape setting, where pre-shape parameterization
tracking regularizers can be added.
To start, we set the model manifold for shapes and the hold-all domain to

M = 5% o5 and D = [0,1] x [0,2.35)]. (7.1)

The model manifold M C D is a sphere with radius 0.35 centered in (0.5,0.5),
consisting of 63 surface nodes and 63 edges. It is embedded in the interior of the
hold-all domain D, which is given by a rectangle [0,1] x [0,2.35] with non-trivial
boundary dD. The hold-all domain D consists of 1402 nodes and has 741 volume
cells. The situation is illustrated in figure 7.1. This problem is not easy for standard
shape gradient descents, because solution requires a large deformation at a single
local region of the initial shape. To make it even harder, the mesh is locally refined
near the shape. Thus nearby cells are especially prone to degeneration by large
deformations.

Notice that the manifold M acts as an initial shape for the optimization routines.
This approach is always applicable, i.e. the manifold M for the pre-shape space
Emb(M,D) can always be picked as the initial shape (cf. remark 2). With this, the
corresponding starting pre-shape is the identity ida;: M — D.

For the elliptic constraint of the shape optimization problem, we employ a piece-
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wise constant source term varying dependent on the shape

ri € R for x € Dout

) (7.2)
ro € R for x € D™,

o) (T) = {

A perimeter regularization with parameter v > 0 is added as well. Perimeter
regularizations are frequently used to overcome ill-posedness of inverse problems.
For example, [5] investigates the regularization and numerical solution of geomet-
ric inverse problems related to linear elasticity. Combining this, the model shape
optimization problem takes the form

1 —12
1 — —
lllllé / \y y| d.I‘+V/ ds

st. —Ay=rr inD
y=0 on JdD.

(7.3)

Notice that we abuse notation, and associate I' € B} with its set valued interpreta-
tion via ¢(M) for I € w(p) = I'. To calculate the target ¥ € H*(ID) of this problem,
we use the source term (7.2) and solve the Poisson problem for the target shape
pictured in figure 7.1. Problem (7.3) is formulated with the classical shape space
approach, since the control variable I' stems from the shape space B'. It represents
the abstract shape optimization problem (6.1) from the theoretical chapter 6.

Next, we reformulate problem (7.3) using pre-shapes, which permits addition of
the regularizing term 3™ for shape mesh quality with parameter o™ > 0, i.e.

1
min f/|y—g|2d:1c+u/ 1ds
peEmb(M,D) 2 Jp o(M)

T

o _ . 2
+7 (gMocp L.det D7y 1—f¢> ds (7.4)
o(M)

st. —Ay=rymn in D
y=20 on JD.
The combined shape and volume mesh quality regularized problem is given by

formulating a bilevel problem with volume regularizing objective JP as the upper
level problem, and lower level problem (7.4), i.e.

aP

2
min B —/ (gDong*l -det D¢~ 1 —fE(M)> dz
$€DIff(D\@(M))NDiff,(ary(B) 2 Jp

1
s.t. ¢ = argmin 7/\y—y|2dx+u/ 1ds
p€Emb(M,D) 2 Jp (M)
™ 2
+ %/ (gM opl.det DTt — fw) ds
(M)

st. —Ay=ryy) in D
y=20 on JD.

(7.5)

We remind the reader that, despite its intimidating form, bilevel problem (7.5)
has guaranteed existence of solutions and simplified pre-shape gradient systems by
theorem 17. The same is true for the shape regularized problem (7.4) by theorem 15.

7.1.2 Construction of Initial and Target Node Densities

To explicitly construct the regularizing terms, we need initial node densities
g™: M — (0,00) of the starting shape and ¢g°: D — (0,00) of the initial hold-all
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domain configuration. Also, we need to specify target node densities f, and fff( M)
which describe the cell volume structure of optimal meshes representing (M) and
D.

Our approach is to represent the initial point distributions ¢ and ¢” with a
continuous Galerkin Ansatz featuring linear elements similar to the numerical study
in section 5.4. Degrees of freedom are situated at the mesh vertices, and set to the
average of inverses of surrounding cell volumes, i.e.

1 1

cecC

In the shape case g = g™, a vertex p is part of the initial discretized shape M,
and C is the set of its neighboring cells C' in M. For 1-dimensional M, cells C
correspond to edges, whereas for 2-dimensional M to faces. In the volume mesh
case g = g7, p is a vertex of the initial discretized hold-all domain D, and C is the
set of its neighboring volume cells C' in D.

Next, we specify a way to construct target parameterizations f, and fE( M)
together with their pre-shape material derivatives. We use our results from sec-
tion 5.3, and define a target for shape parameterization tracking f, by a global
target field ¢ € H%(D, (0,00)). As argued in the last part of section 5.3, we can

define
i = S gM ds
)

. . 7.7
o(ar) Ao(ar) ds o0 (71

With this construction, the target parameterization of (M) depends on its location
and shape in D, as ¢: D — (0, 00) is allowed to vary on the entire domain. Also, it
satisfies the necessary normalization condition (5.9) for existence theorem 10.

The according material derivative is derived in equation (5.83). Because p(M)
has empty boundary in our example, it has closed form

DO (fe) V]
—- sl %0 ai Jar g™ ds
__W./(M) (%—i_dlm(M).H'q) “(n,V)a2ds-q + W.VQTV.
(7.8)

Here, n is the outer unit normal vector field on ¢(M), and & is the mean curvature
as in equation (5.69). Notice that equation (7.8) includes both normal and tangen-
tial components. However, only its tangential component is needed if regularized
gradient systems (6.7) and (6.35) are used. We explicitly state right-hand sides to
gradient systems for our exemplary problem in section 7.1.3.

As we are dealing with closed shapes ¢(M) modeled by M = 5?0?55’0'5), we are
in the situation (i) of existence theorem 16 for volume regularization with invari-
ant shapes. For a volume target fﬂg( M) We therefore have to satisfy the separate
normalization conditions (6.19) to guarantee existence of solutions.

We propose to use a field ¢°: D — (0, 00) defined on the hold-all domain. Then
an according target can be defined as

fmin g]D dz
_—r . q
D fm; q° dx
Foy =4 fiw o an
e T . D
fDout qv dz q
7

for x € ]D)i;}
(7.9)
for z € ]D)g“t.

This is different to the construction of targets f, for embedded shapes, since the
function fE( M) changes dependent on (M), in order to guarantee normalization
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condition (6.19) on the two disconnected components of the hold-all domain. It
cannot vary due to change of the shape of I, which remains fixed. This stays in
contrast to the situation for ¢(M) C D, which can change its position in D. Also
notice that fg’( M) 38 defined in equation (7.9) can be non-continuous on the shape
w(M). However, in existence and consistency results theorem 16 (i) and theorem 17
for closed shapes, we have not demanded continuity or smoothness of fg’( M) Oon the

complete domain ID. Smoothness of fg( M) is only demanded on the disconnected
components of the complement D\ ¢(M).

Now we derive the pre-shape material derivative D, ( fg’( an)V] for H}-
directions. These directions are not forced to vanish on the shape ¢(M), which
is later needed to assemble combined gradients systems with V' acting as test func-
tions. This poses a difficulty for its derivation, because the partitioning depends on
the pre-shape ¢ € Emb(M,D), but not on ¢ € Diff ;5 (D). The situation is de-
picted in figure 6.1. Let us fix a ¢ € Emb(M, D) and compute on the outer domain
D" with pre-shape calculus rules from corollary 2. We write D" instead of D"

for slightly improved readability, having its pre-shape dependence in mind. Then

Dm (f:B)(M)) [V]pout

=D, (fDOUt . qD> \4

f]D)out qD dx

1 .
- m . /]D)out <© (gD) [V] + v(gD)TV + le(V) ’ gH))) dSC N qD
f]Dout QD dx D DN T ' N §
a m ' /DOut (@(q VI +V(¢”) V +div(V) - q ) dz - q
Dout
D
out g dx
m (D@ +V(@)V)
Dout
! / s (D D fDout g® dx / b 5
= . div (¢® - V) dz - ¢® — =22~ . div (¢ V) da - g
fDO“t qD 4 o ( ) (f]D)Out qD dl‘)Q Dout ( )
f out gD dz T
Fas V@)V
1 f out gD d:r
T oo P dz /E,DW(M) (9D - m 'qD) (npou, VY, ds - ¢°
f out gD dz T
e Y@
1 f out gD dﬂ:
- M-/(M) (gw,m.qn),<n¢(M)7V>2ds.qD
oue @ out
f out gD dz T
Foas V@)V

(7.10)

Here, npoeu is the outer unit normal vector field on 9D = dD U (M), and ny(ar
is the outer unit normal vector field on ¢(M). In particular, we used that ¢® and
¢ do neither explicitly depend on ¢ nor on ¢, which lets their pre-shape derivatives
vanish. Also, we applied the divergence theorem and used Visp = 0. Notice the
change of sign for the first summand of the last equality, due to npouwt = —n, () on
©(M). Combined with an analogous computation on the interior D' with boundary



7. Implementation of Shape and Volume Mesh Quality Regularizations 121

OD™ = (M), we get the pre-shape material derivative

1 D _ Jping"dz p D
Tom &° dw : fw(M) (g - fg;n P dr q ) : <TL¢(M)7V>2 ds-q

fDin gD dz D\T .
; +m'V(Q)V forz cD
D (foon)V] = 1 S . ’
—mfcp(M) (g _m.q )<ntp(M)7V>2 dSq
” —
- % : V(QD)TV for x € Dout,
(7.11)

This pre-shape material derivative is interesting from a theoretical perspective, since
it is an example of a derivative depending on the shape of a submanifold p(M) C D,
and not on the pre-shapes of the higher dimensional D on which fg)( M) is defined.
Also, we see that the sign of boundary integral on ¢(M) depends on whether the
inside or outside of D is regarded. This nicely reflects that moving ¢(M) adds
volume on one side, and takes it away from the other. We remind the reader,
that normal directions n,yr) are not normal directions associated to the shape of
D. They are supported on the interior of D, and hence correspond to the vertical
component of Diff(D).

7.1.3 Pre-Shape Gradient Systems

In numerical shape optimization, raw shape derivatives are not ideally suited for
performance of optimization steps, be it gradient or quasi-Newton or other types of
routines. This owes to the distributional character of shape derivatives, which are
linear, bounded functionals on the space of vector functions with certain regularity
on the hold-all domain, or the shape itself, respectively. The same applies to pre-
shape derivatives, including the ones for parameterization tracking functionals, as
they are distributions as well. Hence, it is beneficial to transport these functionals
into the primal space, which is the vector function space on which they operate. For
shape derivatives, this type of gradient representation can for example be achieved
by using Steklov-Poincraé metrics as discussed in chapter 3. Since the authors
of [161] use them in the context of classical shape optimization, which exploits
the representation of shape derivatives via use of outer normal vector fields on
hypersurfaces of R"*!, we need to restate them to fit our use of normal, tangential
and volume vector fields at the same time.

To compute pre-shape gradients U, we need suitable forms a(-,-). The systems
for our gradients are of prototypical formulation

a(U, V) = RHS(p, ¢)[V] VH}(D,R™)

7.12
U =BC on 0D. ( )

In our numerical implementations, we test two different forms a(-, ) and four differ-
ent right-hand sides. We abbreviate the right-hand sides by RHS (¢, ¢)[V] depending
on pre-shapes ¢ € Emb(M,D), ¢ € Diff(D\ ¢(M)) NDiff,(5r)(D) and test functions
V', and boundary conditions by BC. First, we consider the weak formulation of the
linear elasticity equation with zero first Lamé parameter inspired by [159]

/ 1 e(U) s (V) dz = RHS(p, 9)[V] WV € HL(D,R™)

e(U) = %(VU +VUT) (7.13)
e(V) = %(vv +vvT)
U=0 on JD.
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To give a physical interpretation, the choice of Lamé parameter p enables control
of the stiffness of the grid. Larger local values of u lead to more stiffness of the
mesh by locally decreasing the size of the gradient U, whereas lower local p does
the opposite.

As the second form for gradient representations, we consider the weak formula-
tion of the vector valued p-Laplacian equation. In particular, the representation of
the weak p-Laplacian is neither symmetric nor bilinear, but is rather of unsymmet-
ric and quasilinear nature. Since systems stemming from the p-Laplacian have the
issue to be indefinite, we employ a standard regularization by adding a parameter
e > 0. To make a comparison with the linear elasticity equation (7.13) viable, we
use a local weighting p: D — (0, 00) in the quasilinear form, which is then given by

/u' (52+VU:VU)
D

p__
2

1
VU : VV dz = RHS(p, ¢)[V]  VV € HY(D,R")

U=0 on OD.
(7.14)

It is reported in [135], that the p-Laplacian gradient representation has particular
advantages in resolution of sharp edges or kinks of optimal shapes. Illustration of
this is not the goal of this work. We emphasize, that the p-Laplacian approach
discussed in [135] uses a strong formulation, which is solved using Picard iterations.
Since we use the weak formulation with a regularization term in equation (7.14),
Newton’s method is available for solution. This means we achieve higher order of
convergence compared to the Picard iteration method found in [135]. The author
of this work is not aware of such an approach in the current literature.

For our numerical examples, we choose the local weighting u as the solution of
Laplace problem

—Ap=0 inD
U= Hmax OI @(M) (7.15)
U= fmin on ID

for fmax, min > 0. In the context of linear elasticity equation (7.13), it can be
interpreted as the so-called second Lamé parameter.

Remark 26 (Sufficiency of Linear Elements for Pre-Shape Regularization). To
apply the pre-shape reqularization approaches presented in this work, it is completely
sufficient to use continuous linear elements to represent involved functions. As we
can see in the pre-shape derivative formulas (5.72) and (6.29), the highest order
of featured derivatives is one. This is important for practical application, since
shape and volume mesh quality reqularization of shape gradient systems does not
increase required order of elements. An exception is the unusual case, where zero
order elements are used to represent shape gradients. All following systems are built
using first order continuous Galerkin elements in FEniCS.

Next, we need the shape derivative of the PDE-constrained tracking type shape
optimization objective J. It can be derived by a Lagrangian approach using stan-
dard shape or pre-shape calculus rules (cf. [160]), giving

DJ (n(y))[V] = /D —(y—y)Vy'V -y (VV + V) Vp

1 (7.16)
+div(V) (5(y = 9)° + V¥ Vp —rpanp) dr.
Here, p is the adjoint solving the adjoint system
—Ap=—(y—y) inD
p=—(y—9) (717)

p=20 on JD.
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It is straightforward to derive the shape derivative of the perimeter regularization
JPerim which takes the form

DIPE™ (n(0))[V] = / dive (V) ds, (7.18)
(M)
where divp (V) is the tangential divergence of V on o(M).

In the following, we give four right-hand sides, which represent various regular-
ization approaches to calculate pre-shape gradients. They correspond to the unreg-
ularized shape gradient, the shape regularized pre-shape gradient, the shape and
volume regularized pre-shape gradient, and the shape and volume regularized pre-
shape gradient with free tangential outer boundary dD. We let V € H} (D, R™+1).

For the unregularized shape gradient, the right-hand side of the gradient sys-
tem (7.12) takes the standard form

RHS (¢, )[V] = DI (n(9)) V] + v - DT ™ ((p))[V]
= / —(y—-9Vy'V-vy (VV +VVT)Vp
D

1
+ div(V) (5(;, )2+ VyTVp — m,(M)p) dz + v - / . divr(V) ds.
@
(7.19)

In this case, the respective boundary condition for the gradient system is simply a
Dirichlet zero condition BC = 0.

Next, we give the right-hand side for the shape reqularized pre-shape gradient.
For shape parameterization tracking, we employ a target f, given by a globally
defined function q: D — (0,00) (cf. equation (7.7)), which in combination yields

RHS(p, ¢)[V]
=DJ (m(¢))[V]+ v - DI (n(0))[V] + o™ - (9], V)

= / —(y—9Vy'V -y (VV +VVT)Vp
D

1
+ div(V) <f(y — y)2 +VyT'vVp — rw(M)p> de +v- / divp (V) ds

2 (M)
M d 2
—a” / % . ((gM op! -detDT%fl)2 - (fMgids : Q) ) ~divp (V = (n, V)2 - n)
(M) Joary 2 ds
+ (gM o t.det DTt — fMg i -q) . fMg i VgtV ds.
fw(M)qu fso(M)qu

(7.20)

The boundary condition is Dirichlet zero, i.e. BC = 0. In order to assemble the
shape regularization (g&V)7 it is necessary to compute the tangential Jacobian
det DT ~!. In applications, this means storing the vertex coordinates of the initial
shape is necessary. Then, ¢! can be calculated simply as the difference of initial
shape node coordinates to the current ones. Hence there is no need to invert matrices
to calculate D7p~!. We give a reminder that D7 is the covariant derivative, and
must not be confused with the tangential derivative (cf. equation (5.2)). In the
case of an n-dimensional manifold ¢ (M), the covariant derivative is a n X n-matrix,
whereas the tangential derivative is (n+1) x (n+1). The use of covariant derivatives
requires to calculate local orthonormal frames, which can be done by standard or
stabilized Gram-Schmidt algorithms. Knowing this, the computation of Jacobian
determinants is inexpensive, since matrices from applications are of size smaller
3 x 3.
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Building on equation (7.20), we can construct the right-hand side for the shape
and volume regularized pre-shape gradient. For this, we use a volume tracking target
fE(M) defined by a field ¢”: D — (0,00) as in equation (7.9). This gives

RHS(p, ¢)[V]
= Dj(w(gp)) V]i+v- D g Perim (w(cp)) V]+a™- <gl, V> + o 23%(¢) V]

= / —(y -9V V -y (VV + VVT)Vp
D

. 1 _ .
+ div(V) (i(y — )2+ Vy'Vp - rw(M)p) de +v- /(M) divp(V) ds
@

M d 2
o’ / 1 <(gM 0@ ' det D)% — <7fMg i q) ) ~dive (V = (n, V)2 - n)
e (M)

2 Joan 4 ds
) ]\ld ]Md
+gMop ™t -det DTt — Sy 9" ds gl Jar 9™ ds VTV ds
Joan ads Joan ads
1 _ 2 (JpemwgPodt-det Dot dz 2 )
—aP. /DOuc 5 ((gD o¢~ ! det D¢ 1) _ ( D [SreET: ,qD) div (PrH&,w(AI)(V))
. D -1, D —1
+ gDoé‘l-detD¢—1—fD"“ g °¢” detD¢ dx.qD
Jpour ¢° dz
fDout g?o¢ - det Do da T
. fDOuc q® dx ' V(q ) PrHé,w(m(V) dz
1 _ 12 (JpmgPooTt-det Dot dx 2\
_aD . /Dm 5 . <(gD ’ ¢ 1 et D¢ 1) - ( - f]n;in qD dz .qD> - div (Perl),sa(AD (V))
D —1 —1
B 41 S JpmgPod ' detDoMdr
-det D - .
+ (g LX) et Do fDin P ds
f][])in gD o (b_l - det D(b_l dz o\ T
. Jpin ¢° dz V() Pra o, (V) do
(7.21)

The last two integrals correspond to the regularizer for volume parameterization
tracking. As in previous cases, the corresponding Dirichlet condition is given by
BC = 0. All previous remarks on assembling the right-hand side are still valid. Ad-
ditionally, it is necessary to store coordinates of the entire initial hold-all domain.
With these, the volume pre-shape ¢! can be calculated as the difference of initial
to current coordinates of the volume mesh. For volume regularization, calculation
of Jacobian determinants det D¢~! does not require local orthonormal frames via
Gram-Schmidt algorithms, as no covariant derivatives are featured. It is very im-
portant to use a correct normalization for ¢” to ensure existence of solutions. This is
necessary, since in practical applications, an optimization step leads to change of the
underlying shape, and thus also of inner and outer components of ID. Therefore, the
upper level problem of the fully regularized bilevel formulation (7.5) changes after
each mesh morphing step. Hence it is not enough to simply estimate ¢g° once in the
beginning. Either, g® needs to be estimated by equation (7.6) in every iteration for
which the shape of ¢(M) changes. Or g is replaced by g” o =1 - det D¢p—1, which
is motivated by the transformation rule. We have decided for the latter, which can
be seen in the last two terms of equation (7.21). This also needs to be taken into
account when calculating JP, e.g. for line search. As explained in section 6.2.2, it
is necessary to use a projection Pr HY o, (V) for directions of the volume regular-
ization, if shapes are enforced to stay invariant. The projection can be realized by

setting the degrees of freedom of the finite element representation of V', which are
located at the shape ¢(M), to zero. This leads to vanishing of the first term of
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D( E(M))[V} (cf. equation (7.11)), which does not occur in equation (7.21).

Lastly, the right-hand side for a shape and volume regularized pre-shape gradient
with free tangential outer boundary is given by equation (7.21) as well. However,
instead of employing Dirichlet zero boundary conditions, we permit the boundary
0D to move tangentially. For this, we set

BCy =% - Uz on 9D, (7.22)

for a scaling factor o > 0. Here, U2 is the L?-representation of tangential
components of DJP(¢). Notice that in practice, this does not require solution of
an additional PDE, since the tangential values of DJ”(¢) can be extracted directly
from its finite element representation. We remind the reader that this is more of
a heuristic approach, which leaves room for refinement and rigorous formulation in
future works.

7.2 Numerical Results and Comparison of
Algorithms

In this section we present computational results of unregularized and various pre-
shape regularized gradient descents for the model shape optimization problem (7.3).
We propose algorithm 7.1, which is a modified gradient descent method with a back-
tracking line search featuring regularized pre-shape gradients. We present 7 different
implementations. The first 4 feature the linear elasticity representation from equa-
tion (7.13) with unregularized, shape regularized, shape and volume regularized,
and shape and volume regularized free tangential outer boundary right-hand sides.
The other 3 feature the regularized p-Laplacian representation from equation (7.14)
with unregularized, shape regularized, and shape and volume regularized right-
hand sides. For the p-Laplacian representation, we dismiss the free tangential outer
boundary version, since solving it requires a modified Newton’s method, and hence
slight additional implementational effort. Both the linear elasticity equation (7.13)
and the regularized p-Laplacian equation (7.14) involve a local weighting function
u stemming from Laplace equation (7.15) inspired by [159]. The two approaches
for these metrics without any type of pre-shape regularization are denoted as their
"Vanilla’ versions. For implementations, we use the open-source finite-element soft-
ware FEniCS (cf. [117, 4]). Meshes are constructed via the free meshing software
Gmsh (cf. [63]). We perform our calculations using a single Intel(R) Core(TM)
i5-3210M CPU @ 2.50GHz featuring 6GB of RAM.

Algorithm 7.1 is essentially a steepest descent with a backtracking line search.
The regularization procedures for shape and volume mesh quality take place by
modifying the right-hand sides of gradient systems as described in section 7.1.3.
However, we pinpoint some important differences of algorithm 7.1 compared to a
standard gradient descent for shape optimization.

First, notice that the initial mesh coordinates are stored in order to calculate
¢, ' and ¢, '. We have to store the surface mesh coordinates of M for shape
regularization, or the complete initial volume mesh coordinates of Dy when vol-
ume regularization takes place. This corresponds to setting initial pre-shapes to
po = idps and ¢g = idp,. We emphasize, that in both cases, there is no need to
store more information than initial vertex coordinates. In particular, this means
mesh-connectivity and other topological data concerning the initial mesh do not
contribute to storage cost. This owes to the fact, that pre-shape derivatives are
evaluated in the current shape and volume mesh iterates due to use of retractions
gM o <p;1 - det DTgagl and ¢° o ¢,;1 - det D(;S,zl in the formulas. Since the current
mesh coordinates are necessarily stored in a standard gradient descent, ap,;l and
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qb,;l can be calculated as mesh coordinate differences. Calculating these inverse
embeddings amounts to a matrix difference operation, and therefore is of negligible
computational burden. Estimating initial vertex distributions ¢™ and ¢ needs to
be done only once at the beginning of our routine. Hence it does not contribute to
computational cost in a significant way.

If shape regularization is partaking in the gradient system, it is necessary to
compute and store local tangential orthonormal frames 7y of the initial shape M.
Together with calculation of local tangential orthonormal frames 7, for the current
shape ¢y (M), these are used to assemble the covariant Jacobian determinant for
the regularized right-hand side of the gradient systems. Since this is done for each
new iterate g, it indeed increases computational cost. If required, this can be mit-
igated by parallel computing, since tangential orthonormal bases can be calculated
simultaneously for all points p € @i (M). In higher dimensions, care must be taken
to achieve a coherent orientation of local tangential orthonormal frames. For the
example of surface meshes, this can be achieved by imposing (73,1 X T.2,m)2 = 1,
where 7 is the outer unit normal vector field on the surface.

Another difference to standard steepest descent methods concerns the condition
of convergence in line 6 of algorithm 7.1. It features two convergence conditions,
namely sufficient decrease in either the absolute or relative norm of the pre-shape
gradient, and sufficient decrease of relative values for the original shape objective
J. We use this approach, since several objective functionals participate simultane-
ously in formation of pre-shape gradients Uy. If shape or volume regularization take
place, they influence the size of gradients depending on the mesh configuration. In
order to compare different (un-)regularized gradient systems, we use this criterion
to guarantee the same decrease of the original problem’s objective for all strategies.
The line search checks for a sufficient decrease of the combined objective function-
als matching the gradient regularizations. This can be interpreted as a weighted
descent for multi-criteria optimization, where the multiple objectives are J and the
regularizations M and JP.

Furthermore, we mention the difference of our two tested gradient representation
forms a(-,) acting as left-hand sides. The weak linear elasticity representation
from equation (7.13) leads to a linear system, which is solvable by use of standard
techniques such as the CG-method. However, the weak p-Laplacian equation (7.14)
is increasingly nonlinear for larger p > 2. This significantly increases computational
cost and burden of implementation, since Newton’s method requires multiple linear
system solves. Also, systems are possibly indefinite if regularization parameter £ > 0
is too small. If chosen too large, we pay for positive definiteness by overregularizing
the gradient systems. In order to achieve convergence of Newton’s method for the
p-Laplacian, we use gradients from the previous shape optimization step as an initial
guess.

Remark 27 (Integrating Shape and Volume Regularization in Existing Solvers).
Implementing shape and volume reqularization with the pre-shape approach does not
require a large overhead, if an existing solver for the shape optimization problem of
concern is available. Tt solely requires accessibility of gradient systems (7.12) and
mesh morphing to update meshes and shapes. With this, assembling and adding
regularization terms in style of equation (7.20) or equation (7.21) to existing right-
hand sides is all that needs to be done. This does not affect the user’s choice of
preferred metrics a(-,-) to represent gradients. This is highlighted by our implemen-
tation and comparison of reqularizations for the linear elasticity and the nonlinear
p-Laplacian metrics. From this perspective, algorithm 7.1 is an in-depth explanation
how right-hand side modifications of gradient systems are assembled.

For a meaningful comparison of the 7 mentioned approaches, we use the same
parameters for the problem throughout. Parameters for the source term ry ) of
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1 Set starting domain Dy and shape po(M), save according vertex coordinates
for future computations

2 Choose pre-shape regularizations by setting a”™,a® > 0

3 Set shape and volume targets ¢, ¢”: D — (0, 00)

4 Estimate initial point distributions g for ¢q(M) and ¢® for Dy according to
equation (7.6)

5 Calculate local orthonormal tangential bases 7 for each vertex of ¢o(M)
using Gram-Schmidt orthonormalization, save them for future iterations

7‘7(“%)) > e do:

I (n(e))

7 Assemble right-hand side of pre-shape gradient system (7.12):

Solve for state solution yj, via equation (7.3)

6 while (HUk” > g4ps and Hgﬁ“ > 5re1> or

9 Solve for adjoint solution pj via equation (7.17)

10 Calculate local orthonormal tangential bases 7#* for each vertex of
vr(M) with same orientation as 79 using Gram-Schmidt
orthonormalization

11 if o7 =0 and o = 0: Assemble RHS(¢x, 1) according to
equation (7.19)

12 elif o™ # 0 and o = 0: Assemble RHS(iy, ¢r) according to
equation (7.20)

13 elif a™ # 0 and oP # 0: Assemble RHS(iy, ¢r) according to
equation (7.21)

14 Solve for pre-shape gradient Uy:

15 Calculate local weighting parameters p by solving equation (7.15)

16 if linear elasticity:

17 Assemble left-hand side a(-, -) by equation (7.13) and solve by

preconditioned CG-method

18 elif p-Laplacian:

19 Use preconditioned Newton’s method to solve equation (7.12) with

left-hand side a(-, ) by equation (7.14)

20 Perform a line search to get a sufficient descent direction Uy:

21 U m Uy,

22 while
T (m(pr + Uk o or)) + o™ - 3™ (ox + Ur 0 p1) + - 3% (¢ + Uy 0 i)

23 > J(n(er)) + a7 - 3¥(or) + a7 - 37(¢x) do:

24 ﬁk +~— 0.5 ﬁk

25 Perform updates:

26 Prt1 = i+ Ug o gy,

27 Prt1 < ¢+ Uk 0 ¢y,

Algorithm 7.1: Simultaneous shape and volume regularized shape optimiza-
tion.
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the PDE-constraint in equation (7.17) are chosen as r; = —1000 and 75 = 1000. The
scaling factor for perimeter regularization is v = 0.00001. Parameters to calculate
local weightings p via Laplace equation (7.15) are pimax = 1 and pimin = 0.05 for all
approaches. The stopping criteria for all routines tested remain the same. Specifi-
cally, the tolerance for relative decrease of gradient norms is €., = 0.001, absolute
decrease of gradient norms e, = 0.00001, and relative main objective decrease
E;Zl = 0.0005. If shape regularization is employed, it is weighted with o™ = 1000
and uses a constant target ¢ = 1. This enforces a uniform distribution of surface
cell volumes of shapes. For volume regularization, the weighting is o® = 100 with a
constant ¢® = 1, which also enforces uniform volume cells of the hold-all domain. If
we permit free tangential movement of the outer boundary via equation (7.22), we
choose a weighting parameter a®® = 250. In case of the p-Laplacian representation,
we choose a parameter p = 6. Its regularization parameter is chosen as ¢ = 8 for
the unregularized, and the shape and volume regularized routines. If solo shape
regularization without volume regularization takes place, we have to increase the
p-Laplacian regularization to € = 9.5. This is necessary, since at some point lower
values for ¢ result in indefinite systems during descent with p-Laplacian gradients.

We compare relative values of 7, 3™ and JP, which are illustrated in figure 7.3.
Here, 3™ is interpretable as the deviation of the shape mesh from a surface mesh
with equidistant edges. Similarly, J° can be understood as the deviation of the
volume mesh from a volume mesh with uniform cell volumes. Since a change of
mesh coordinates leads to different qualities of finite element solutions to the PDE-
constraint of model problem (7.3), the regularizations implicitly affect the original
objective J. Hence, we also measure distance of shapes @i (M) to the target shape
by a distance function

dist (g (M), T¥18) = / max s — plla ds. (7.23)
i (M) PELTE

This gives us a geometric value for convergence of our algorithms in figure 7.3 (b),
complementing the value of objective functionals for our results.

Figure 7.2: Initial mesh Dy = [0,1] x [0,2.35] with embedded initial shape M =
S?df"; 0.5)- The mesh is locally refined near M, and the bottle like target shape [tare
is included as well.

The times for all optimization runs are presented in table 7.1. Final meshes
with volume node densities are seen at the end of this section in figure 7.4, and
with zoom in figure 7.5. Graphics with shape node densities are found in figure 7.6.
Results for the objectives and distances to the target shape are found in figure 7.3.

From figure 7.3 (a) and (b), we see that all 7 methods converge. They all min-
imize the original shape objective J, and the geometric mesh distance (7.23) to
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‘ LE Vanilla LE Tang LE VolTang LE VolTang Free p-L Vanilla p-L Tang p-L VolTang

total time 49.0s 345.4s 199.9s 320.7s 135.4s 316.5s 325.8s
avg. time/step 1.2s 2.5s 2.6s 2.8s 2.4s 2.0s 4.6s
number steps 41 137 7 114 55 155 70

Table 7.1: Total times, averaged times per step and number of steps for all 7
methods.

the target shape (cf. figure 7.2). Seeing the geometrical mesh distance being min-
imized for all methods, we have confirmation that the optimal shape of original
problem (7.3) is left invariant by our pre-shape regularizations. Also, convergence
to the optimal shape is not affected by the choice of regularization and gradient rep-
resentation via a(-,-). Given a fixed a(-,-), we see in figure 7.3 (a), that the shape
objective values J for regularized routines vary only slightly from the unregularized
one. This means intermediate shapes oy (M) are left nearly invariant by all regular-
ization approaches. We witness that the p-Laplacian representation (7.14) gives a
pre-shape gradient descent with slightly slower convergence compared to the linear
elasticity (7.13). However, one should keep in mind that the shapes considered here
have rather smooth boundary, whereas the p-Laplacian approach is favorable to
tackle shape optimization problems with non-smooth optimal shapes.

From table 7.1, we see that the fastest method in both time and step count is
the unregularized approach with the linear elasticity representation. All regular-
ized approaches need more steps for convergence, since the convergence condition
features sufficient minimization of the gradient norms. As shape and volume track-
ing objectives 3™ and JP participate in this condition, the optimization routine
continues to optimize for mesh quality, despite a sufficient reduction of the origi-
nal objective J. This can be verified in figure 7.3. Notice that additional volume
regularization did not considerably increase average computational time per step
for the linear elasticity approach. The times for approaches featuring shape regu-
larization can be improved by computing tangential orthonormal bases in parallel.
We relied on rather inefficient but convenient implementations of these by solving
several projection problems using FEniCS.

From table 7.1, we see that the unregularized p-Laplacian approach for p = 6
needs more steps to convergence compared to a linear elasticity based descent.
Average time per step is higher too, since nonlinear gradient systems need to be
solved. This approach needs careful selection of regularization parameter ¢ > 0
for equation (7.14), since the mesh quality degrades quickly for our problem. This
makes calculation of gradients by Newton’s method difficult, since conditioning of
systems and indefiniteness are an issue at some point of the shape optimization
routine. Computational times were slightly faster on average for the shape regular-
ized p-Laplacian gradient compared to the unregularized p-Laplacian gradient. We
amount this to faster convergence of the Newton method, since we needed to employ
a higher regularization parameter € = 9.5 for the shape regularized routine. This
also explains longer computational times for the volume regularized p-Laplacian,
since the same regularization parameter ¢ = 8 as in the unregularized approach is
permissible, but more Newton iterations are necessary. Since the shape regular-
ization takes place simultaneously with volume regularization, a lower permissible
regularization € indicates that volume regularization improves condition of linear
systems.

Notice that the final shapes for all volume regularized routines, i.e. those seen
in figure 7.6 (c), (d) and (g) are slightly non-symmetric, even though the initial
and target shapes in figure 7.2 are symmetric. Because the volume mesh for the
hold-all domain is generated in unstructured way by Gmsh, its cells are not mirror



130 7.2. Numerical Results and Comparison of Algorithms
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Figure 7.3: Relative values for three objective functionals 7, 3 and J, and mesh
distance to the target shape for gradient descents using 7 different (un-)regularized
pre-shape gradients and representations.

symmetric with respect to the (0.5, y)-axis. As all regularizations do not alter the
node connectivity, while trying to achieve uniform cell volume distribution, a slight
non-symmetry of final iterates is created due to the initial non-symmetry of the
unstructured volume mesh topology.

To analyze quality of the shape mesh for all routines, we provide the relative
value of the shape parameterization tracking target 3™ in figure 7.3 (c). It measures
deviation of the current shape mesh ¢y (M) from a uniform surface mesh. Also, the
pushed forward surface node densities g™ o @,:1 - det DTgp,Zl for final shapes of all
routines are seen in figure 7.6. Their reciprocal values can be interpreted as the local
surface cell volume, i.e. edge lengths. The colors in figure 7.6 highlight variation of
node densities on the shape meshes, where a uniform color indicates approximately
equidistant surface nodes. The starting mesh seen in figure 7.2 features an ap-
proximately uniform surface mesh. For both the unregularized linear elasticity and
the unregularized p-Laplacian approach, we see in figure 7.3 (c), that 3™ increases
during optimization. This means surface mesh quality deteriorates if no regular-
ization takes place. For respective final shapes, this is visualized in figure 7.6 (a)
and (e). There we clearly see an expansion of surface cell volumes at the top of final
shapes. All other routines involve a shape regularization by J™. In figure 7.3 (c),
it is visible that for these routines, the deviation J¥ from uniform surface meshes
increases initially. Once surface mesh quality becomes sufficiently bad, the shape
parameterization takes effect and corrects quality until approximate uniformity is
achieved. Convergence of JM is clearly visible for all shape regularized methods in
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figure 7.3 (c). Also, we see an approximately uniform color of g™ o @,;1 -det DUplzl
for respective final shapes in figure 7.6, which indicates a nearly equidistant sur-
face mesh for the shape regularized routines. As a caveat, we see in figure 7.4
and figure 7.5 (b) and (f), that shape regularization without volume regularization
decreases quality of the volume mesh surrounding the shape. This happens, since
surface vertices are transported from areas with low edge length at the bottom to
areas with high edge length at the top, while node connectivity remains unchanged.
In case no volume regularization takes place, node coordinates from the hold-all
domain are not corrected for this change. Nevertheless, if a remeshing strategy
is employed for shape optimization including shape regularization, the improved
surface mesh quality leads to a superior remeshed domain. Such routines are an
interesting subject for further works.

In figure 7.3 (d), relative values of the volume parameterization tracking func-
tional JP are depicted for each routine. We interpret these values as a measure for
non-uniformity of the volume mesh I. The local node densities g” o ¢! - det D¢~ !
for complete hold-all domains are depicted in figure 7.4, zoomed versions are found
in figure 7.5. From figure 7.3 (d), we see that all non-volume regularized routines
have significantly higher value of JP. Values even increase for the p-Laplacian rep-
resentation, while there is a slight decrease for the linear elasticity. Notice that the
initial mesh is locally refined near the shape M, which naturally increases the initial
value of 3P for a uniform target. As already discussed, we see in figure 7.3 (d), that
shape regularized approaches reduce quality of the volume mesh even further when
compared to unregularized approaches. The decrease of mesh quality is especially
visible in zoomed pictures figure 7.5 (a), (b), (e) and (f). We see that for these
approaches, volume cells near the shape are compressed to such an extent, that
their volumes nearly vanish. Also, the cell volume distribution for unregularized
and shape regularized approaches varies largely, which can be seen in figure 7.4 (a),
(b), (e) and (f). If volume regularization J® is applied, we see in figure 7.3 (d), that
convergence for JP takes place independently of the specific gradient representation
form a(-,-). This is apparent when looking at the volume node densities in fig-
ure 7.4 (c), (d) and (g). Further, we see in the zoomed pictures from figure 7.5 (c),
(d) and (g), that severe compression of cells neighboring the top of final shapes is
resolved by volume regularization. Volume cells inside the neck of final shapes are
still more or less compressed for all approaches. The interior cell volume cannot
be transported through the shape, since it is forced to stay invariant. Since the
mesh topology is not changed during the optimization routine, there is also limited
possibility to redistribute the cell volumes inside the shape. This situation could
be remedied by cell fusion, edge swapping, or remeshing strategies, which is beyond
the scope of this work. Finally, we highlight the difference of volume regularizations
with and without free tangential outer boundary dD. If figure 7.4 (¢) and (d) are
compared, we see that the nodes on the outer boundary 0D changed position for
routine (d). Indeed, the cell volume distribution is more uniform for free outer
boundary routine (d), which is visualized by less variation of color. This leads to
even lower values of J”, which can be pinpointed in the graph of figure 7.3 (d).
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(a) LE Vanilla (b) LE Tang

(e) p-L Vanilla (f) p-L Tang

(g) p-L VolTang

Figure 7.4: Final meshes of linear elasticity (LE) and p-Laplacian (p-L) approaches.
Color depicts the value of g®o¢~!-det D¢~!, which is interpretable as the density of
allocated volume mesh vertices. More constant value corresponds to more uniform
hold-all cell volumes.



(¢) LE VolTang (d) LE VolTang Free

(g) p-L VolTang

Figure 7.5: Zoom of final meshes of linear elasticity (LE) and p-Laplacian (p-L)
approaches at the top of the shape. Color depicts the value of g 0 ¢~ - det D¢,
which is interpretable as the density of allocated volume mesh vertices. More con-
stant value corresponds to more uniform hold-all cell volumes.
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and p-Laplacian (p-L) approaches.
—1, which is interpretable as the density

(LE)
of allocated shape mesh vertices. Its reciprocal gives the averaged local edge length.
More constant value corresponds to more uniform shape mesh.

Figure 7.6: Final meshes of linear elasticity
Color depicts the value of g™ op™!-det D™¢
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7.3 Shape Mesh Regularization via Full and Tan-
gential Pre-Shape Derivatives

In this section, we compare numerical application of the full pre-shape derivative
DIM of the parameterization tracking problem (5.10) for shape meshes with use
of its tangential component g7 . We derived the pre-shape derivative of J™ in sec-
tion 5.3, and explicitly decomposed it into shape and parameterization components
in equation (5.70). For regularization of gradient systems in section 7.1.3, we solely
used the tangential component g7 of the pre-shape derivative DJM. This ensures
invariance of optimal and intermediate shapes for the original shape optimization
problem. We used theoretical arguments to justify this approach, which are formal-
ized in theorem 15.

To further underpin this theoretical motivation, we numerically test gradient
descents with the full pre-shape derivative DJM as found in equation (5.59), and
its tangential component g7 as given in equation (5.72). Since these techniques
serve as the basis of regularized shape optimization routines to achieve a target
shape mesh quality, it is interesting to observe their behavior near solutions of
an underlying original shape optimization problem. As an example, we make use
of the previously studied PDE-constrained tracking type problem (7.3). We use
an unregularized shape gradient descent for J to deform the shape and volume
mesh. Once we see sufficient convergence, the shape and volume meshes of the last
iterate near the solution are saved. The shape and volume meshes generated in this
fashion are then used as the initial guess for a pre-shape gradient descent for JM.
In other words, we activate shape regularizations near the solution of the original
shape optimization problem, without further optimizing the shape objective 7. The
target f, is a uniform surface edge length distribution, i.e. we choose ¢ = 1.

The pre-shape gradients are represented using the bilinear form of a weighted
weak linear elasticity with zero order terms as in equation (5.89) from section 5.4,
with weighting parameters o = 0.025 and a2 = 1. Bilinear forms featuring only
higher order derivatives, such as weak linear elasticity, result in pre-shape gradients
which are not perfectly tangential to the surface of shapes. This comes from the
convolutive and smoothing effect of their corresponding solution operators. The nu-
merical implementations described in section 7.1.3 and section 7.2 do not need zero
order terms in the bilinear form for gradient representation, as parameterization
tracking for the shape mesh is combined with the original shape optimization prob-
lem. Errors from not exactly tangential directions of the shape regularization are
corrected in normal direction by the shape derivative D.J of the underlying shape
optimization problem. Interestingly, uniqueness of shape solutions lets DJ act as
a kind of penalty term, forcing discrete gradients of g7 solely to act in tangential
directions. As we want to study the isolated effect of full pre-shape derivatives of
shape parameterization tracking near solutions, we cannot include D.J as a force
term. Hence zero order terms in the bilinear form are helpful, as these leave tangen-
tial and normal directions orthogonal. We use parameters pimax = 1 and pipmin = 0.05
to calculate a local weighting p via Laplace equation (7.15). A backtracking line
search as found in algorithm 7.1 is employed. The gradients of each iteration are
normed and initially rescaled by an initial factor of 0.01 for line search, which itself
employs a rescaling parameter of 0.5 for the backtracking.

To capture the influence of parameterization tracking with full and tangential
pre-shape derivatives on the original shape optimization problem, we look at two
quantities. First, we examine the relative value J(m(p;))/T (M) of the original
shape objective. Secondly, we check for geometric influence on the shape by cal-
culating the distance of intermediate shapes @;(M) to the target shape with the
distance function (7.23). Of course, we also track the relative shape parameteriza-
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tion tracking values 3 (¢;) /3™ (o), which should be minimized to give the desired
uniform vertex distribution of the shape mesh. The results are shown in figure 7.7.
Initial and target shapes, as well as the resulting shapes and meshes for the full pre-
shape derivative ©JM and its tangential component g7 are illustrated in figure 7.8.
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Figure 7.7: (a) Relative objective values 3™ (p;)/3 (¢o) of shape parameteri-
zation tracking problem (5.10). The starting pre-shape o near the solution is
constructed by a standard shape gradient descent for problem (7.3). (b) Relative
objective values J(m(v;))/J (M) with respect to starting shape M = 586520.5) of
initial shape gradient descent. (c) Mesh distance of ¢;(M) and target shape T'*?'8
(cf. equation (7.23) and figure 7.8 (¢)).

In figure 7.7 (a), we clearly see convergence of both pre-shape gradient descents,
the first featuring the full pre-shape derivative ®J, and the second using only
its tangential component ¢g7. This result reflects characterization theorem 13 of
solutions to shape parameterization tracking by fiber stationarity, which states that
vanishing full pre-shape derivative ®J™ and vanishing tangential component g7
are both equivalent sufficient criteria for a global minimizer of J™. The full and
tangential pre-shape derivatives generate descent directions, which are sufficient
for convergence to approximately the same objective values. However, looking at
figure 7.7 (b) and (c), we identify significant influence of the full pre-shape deriva-
tive ®JM on the shapes and objective values of the underlying shape optimization
problem. The shape seen in figure 7.8 (a) clearly differs from the shape near the op-
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(a) Full pre-shape derivative DJ™ (b) Tangential pre-shape derivative g’

(c) Start and target shapes

Figure 7.8: Meshes of iteration 160 of pre-shape gradient descents for shape pa-
rameterization tracking problem (5.10). The starting mesh near the solution is
constructed by using a standard shape gradient descent for problem (7.3).

timal solution depicted in figure 7.8 (c), but shows the desired uniform edge length
distribution. This also confirms the behavior of the pre-shape derivatives normal
component gN described in section 5.3. The edge lengths at the upper tip of the
starting shape are too long for uniformity, and due to positive local curvature x at
the top of the shape, the outer normal component of DJ acts by locally shrinking
the shape in this area to compensate large edge length. On the other hand, edge
lengths at the bottom of the shape are too small. Hence positive curvature x leads
to expansion of the shape in the outer normal direction by ¢?V. This effect is visi-
ble by comparing shapes seen in figure 7.8 (a) and (c). Full pre-shape derivatives
DIM of parameterization tracking are therefore not suitable for regularization in
the context of shape optimization. On the other hand, as seen in figure 7.7 (b) and
(c), the gradient descent with the tangential component g7 shows negligible change
in both the relative shape objective value and distance to the optimal shape. This
means the starting shape near the optimum of 7 is left approximately invariant by
this approach.

The findings numerically substantiate our approaches for shape mesh quality
regularization made in section 6.1 and section 7.1.3. Also, this highlights the impor-
tance of having a decomposition of pre-shape derivatives as guaranteed by structure
theorem 9. Although it might seem counter-intuitive at first, users unfamiliar with
pre-shape techniques need to be careful to not apply the full pre-shape derivative
DIM . Instead, it is critical to implement its tangential component g7 to successfully
regularize shape optimization routines for desired shape mesh quality.
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7.4 Comparing Direct and Shape Invariant Vol-
ume Parameterization Tracking

In this section, we examine two different approaches to volume mesh regulariza-
tion. The first one is the 'naive’ approach, which simply transfers the parame-
terization tracking problem formulation (5.10) to the volume case with pre-shapes
from Emb(D,D) = Diff(D) seen in problem (6.15). We compare this approach
to the one we proposed in section 6.2, which changes the volume parameteri-
zation tracking problem into formulation (6.18) to leave a given shape invari-
ant. Contrasting the first formulation, the second one features the feasible set
Diff (D \ ¢(M)) N Diff,(5r)(D) of diffeomorphisms acting as the identity operator
on a shape ¢(M) C D. Since this approach might seem overly technical at first,
although it is justified theoretically in section 6.2, we underpin its correctness for
shape optimization by numerical findings.

This comparison is approached by a setup similar to the shape regularization
comparison study from section 7.3. We employ a shape gradient descent to com-
pute a shape and volume mesh iterate near the solution of the underlying shape
optimization problem (7.3). The shape created by this process is labeled I'4a, since
the shape gradient descent used 42 steps. Then we apply two pre-shape gradient
descents starting in I'y5. The first solves the volume tracking problem (6.15), and
the second descent solves the volume tracking problem (6.18) with invariant shapes.
By this we mimic the situation in practice, where volume mesh regularization is ap-
plied to shape optimization near solutions. The created starting mesh for volume
parameterization tracking and the target shape are visualized in figure 7.10 (c).
Readers should take special notice of the nearly complete degeneration of volume
cells near the upper tip of the shape. As an invariant shape for the second approach,
we choose the shape ¢o(M) = T'yo near the optimum seen in figure 7.10 (¢). Of
course, appropriate targets for cell volumes need to be chosen for each case. Here
we choose a uniform cell volume target by setting ¢” = 1.

We emphasize, that due to the difference in feasible sets of both approaches, the
corresponding targets f(]f are different. For the first problem, the suitable target is
of type (5.82), where objects for ¢ are of course substituted by those for ¢. For the
second approach, formulation (7.9) is correct. They inevitable differ, since different
normalization conditions are necessary for existence of solutions. Respective condi-
tions are given in equation (5.9) for the direct regularization, and in equation (6.19)
for the shape invariant one. In particular, this leads to different pre-shape material
derivatives of target volume distributions (cf. equation (5.84) and equation (7.11)),
which in turn give different pre-shape derivatives ®JP for the two approaches.

The rest of the setup for our comparison study is similar to section 7.3, with
the only difference that no zero order terms are used for the bilinear form a(-,-) to
represent pre-shape gradients. These are not necessary, since there is no need to
enforce descent directions to be tangential on a shape. The featured bilinear form is
given by the weighted weak formulation of the linear elasticity equation (7.13), and
is used for both volume regularization approaches. For our analysis, we record the
influence of both formulations on the underlying shape optimization objective 7,
the difference of intermediate shapes to the target shape measured by the distance
function (7.23), and the relative values for the volume parameterization objective
JP (cf. equation (6.18)). The results are portrayed in figure 7.9, whereas exemplary
intermediate meshes and shapes are seen in figure 7.10 (a) and (b).

In figure 7.9 (a), we observe convergence of the volume parameterization ob-
jectives JP for both approaches, which means volume meshes are becoming more
uniform during the process. This is seen in figure 7.10 (a) and (b), where we em-
phasize the regeneration of cell quality near the upper tip of the shape. Notice,
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Figure 7.9: (a) Relative objective values J%(¢;)/3°(¢0) of volume parameteriza-
tion tracking problems (6.15) and (6.18). The starting volume parameterization ¢q
and shape I'yo near the solution are constructed by using a standard shape gra-
dient descent for shape optimization problem (7.3). (b) Relative objective values
J(¢i(T42))/T (M) with respect to starting shape M = S?djn’;oﬁ) of the initial shape
gradient descent. (c) Mesh distance of ¢;(T42) and target shape I'**' (cf. equa-
tion (7.23) and figure 7.10 (c)).

that the relative objective value J°(¢;)/JP(¢o) for the shape invariant approach
is significantly higher than for the non-invariant approach. This stems from the
mesh topology of the initial mesh seen in figure 7.10 (c). Due to the connectivity
of vertices in the upper inside part of the shape, a shape invariant approach is
only able to correct volume distributions up to a certain level. As this approach
leaves the shape invariant, no expansion of cell volume in this area is possible.
Otherwise the shape would blow up by expansion in the process. This is exactly
what happens with the non-invariant approach, which is seen in figure 7.10 (a),
explaining the lower volume tracking objective value. However, this is also the rea-
son why we observe significant increase in both the relative shape objective value
J(¢:(T42))/ T (M) of the underlying shape problem and the distance to the target
shape I'*'8. This is seen in the graphs figure 7.9 (b) and (c). We also witness
a change of shape in figure 7.10 (a), where the shape resulting by application of
hold-all domain diffeomorphisms ¢ € Diff(D) is noticeably different to the nearly
optimal starting shape seen in figure 7.10 (c). For the shape invariant approach
with ¢ € Diff (D\ p(M)) NDiff ,(ar) (D), the distance of starting and target shapes is
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(c) Start and target shapes

Figure 7.10: Meshes of iteration 160 of pre-shape gradient descents for direct and
shape invariant volume parameterization tracking problems (6.15) and (6.18). The
starting mesh near the solution is constructed by using a standard shape gradient
descent for problem (7.3).

left exactly unchanged. This differs from the tangential shape regularization case,
which leaves the shape only approximately invariant due to numerical errors in tan-
gential movement coming from the discretization. Nevertheless, we witness a subtle
change of the relative shape objective in figure 7.9 (b). Because evaluation of the
shape objective J is based on a finite element computation of its PDE-constraint,
a change of the volume mesh also effects the values of the state solution y.

These findings confirm the necessity to use a shape invariant formulation for
volume mesh regularization as proposed in section 6.2 and section 7.1.3. This is
required in the context of shape optimization, since otherwise volume regulariza-
tion can interact with the underlying shape optimization problem, and sabotage
its convergence. If pre-shape techniques are applied outside the context of shape
optimization, where invariance of subdomains is perhaps not mandatory, then it
could of course be reasonable to use the non-invariant formulation to fully harness
free movement of mesh vertices.



Chapter 8

Shape Optimization
Problems Constrained by
First Order Variational
Inequalities

In this chapter, we stir away from the study of pre-shapes and mesh regulariza-
tion to study a certain class of shape optimization problems. For this, examine a
generalized version of model problem (7.3) from chapter 7, with a larger class of
state equations. More specifically, we consider tracking type shape optimization
problems constrained by variational inequalities (VI) of the first kind, so-called ob-
stacle problems. Applications are manifold, and arise, whenever shape dependent
state values are not allowed to exceed certain constraints. We can envision a heat
equation depending on a shape, where the temperature is not allowed to surpass a
certain threshold. This example corresponds to the model problem that we formu-
late in section 8.1. Applications of general VI’s include contact problems in solid
state mechanics, viscoplasticity and network equilibrium problems, and thus a wide
range of industrial problems (cf. [102, 32, 36, 64]). For a literature review concern-
ing variational inequality constrained shape optimization, we refer the reader to
section 1.1. The results of this chapter are published in [122].

Constraints of shape optimization problem in the form of VIs are challenging,
since classical constraint qualifications for deriving Lagrange multipliers generically
fail. Therefore, not only the development of stable numerical solution schemes, but
also derivation of suitable first order optimality conditions is an issue. The structure
of this chapter is as follows. In section 8.1, we formulate the elliptic VI-constrained
shape optimization model with general coefficients. Standard necessary optimality
conditions cannot be formulated in a straightforward manner for semi-smooth shape
optimization problems in general. We aim at optimality conditions in the flavor of
those, which are concerned of VI-constrained optimal control problems found in
[80, 81, 83]. Therefore, we regularize the VI-constraint, such that it results in a
semilinear PDE. We remind the reader that, when we speak of regularization in this
context, it has no connection with the mesh regularization methods of the previous
chapters featuring pre-shapes. Under appropriate assumptions, we provide existence
of adjoints resulting from the regularized variational inequalities, and prove their
convergence in section 8.2. Then we show existence of shape derivatives to the
fully regularized problem, and establish their convergence to a limiting object for
vanishing regularization in section 8.3. In section 8.4, we formulate an algorithm to
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solve the model problem based on our analytical results, and discuss results from
the numerical implementation. The presented algorithm for VI-constraint shape
optimization does no longer depend on the ad-hoc smoothing strategies found in
[57]. The authors of [57] observe, that the performance of this algorithm strongly
depends on the tightness of the obstacle. Such a problem does no longer arise
with the strategy developed in the present chapter. On the contrary, our algorithm
performs better for more degrees of freedom constrained by the obstacle.

8.1 First Order VI-Constrained Tracking Type
Shape Optimization Problems

Let D ¢ R™*! be a bounded and open domain, such that its closure D has a smooth
boundary 0D. As n € N refers to the dimension of embedded shapes, we have n = 1
or n = 2 for typical applications. For the study in this chapter, we restrict ourselves
to shapes modeled by closed and connected n-dimensional manifolds M C D, i.e. we
assume empty boundary M. As argued in theorem 16 (i) with the Jordan-Brouwer
theorem 6, the domain is partitioned into an outside and inside component. Because
the results in this chapter are separate from the previously introduced pre-shape
techniques, we abuse notation and write I' € BY instead of ¢(M), when we mean
a shape in its set interpretation. As in previous chapters, we denote by D" C D
the outer domain, and by D' C D the interior domain with boundary oD* = T'.
This means that we have a decomposition D" LI D" UT = D. We remind the
reader, that when I' changes, the subdomains D™, D°"* C I change accordingly. In
the following, we also refer to the shape I' as the interface, in contrast to the outer
boundary 0D, which we assume to be fixed.

Let us recall the shape functional from the model problem (7.3). For v > 0, this
tracking type objective can be written as

; 1
J(y,T) 4 JFerim(T) .= 5/}@@—@\2 dx+V/Fl ds. (8.1)

Instead of the Poisson equation, which acts as the PDE-constraint found in prob-
lem (7.3), we look at the more general obstacle type variational inequality constraint

a(y,v —y) = (re,v = Y)pepy Y0 € K= {v € Hi(D): v(z) < 4(z) in ]DD}. (8.2)

Here, y € K is the solution of the VI, rp € L?(D) is explicitly dependent on the
shape. Moreover, a(-,-) is a general strongly elliptic, i.e. coercive and symmetric
bilinear form

a: Hy(D) x HY(D) — R

(y,v) — / Zai,jaiyajv + Zdi (&-yv + y@iv) + byv dz, (8:3)
Dy i

defined by coefficient functions a; j,d;,b € L*(D), fulfilling the weak maximum
principle. Notice, that the results of this chapter still remain correct if symmetry
of a(+,-) is dropped as an assumption by modifications of proofs.

With the tracking-type objective 7, the shape I' is fitted to data measurements
y € HY(D) by its relation to the state solution y through the source term rr. As
in section 7.1, the second term JF™ in the objective function is a perimeter
regularization, which can serve as a regularization to ill-posedness of geometric
inverse problems.

In variational inequality (8.2), ¢ is denoted as the obstacle. It needs to be

an element of L{ (D), such that the set of admissible functions K is nonempty
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(cf. [168]). If additionally dD is Lipschitz, and ¢ € H!(D) with Yiop > 0, then
there is a unique solution to variational inequality (8.2) satisfying y € H} (D), given
that the assumptions from above hold (cf. [93, 103, 176]). Further, variational
inequality (8.2) can be equivalently expressed as

a(y,v) + (N, v)r2m) = (1, v) 12(D) Vv € Hy(D) (8.4)
A>0 inD
y < inD (8.5)

AMy—¢)=0 inD

for a A € L*(D).

An essential theoretical tool for the study of existence of solutions is the deriva-
tion of optimality conditions, which often rely on the formulation of an adjoint
equation. For shape optimization problems constrained by VlIs, this is an issue,
since it is not guaranteed that an adjoint state can be introduced in general (cf. [168,
Example in Ch. 1, Ch. 4]). Therefore we first investigate the model problem analyt-
ically in section 8.2, also in view of formulating a numerically applicable algorithm
in section 8.4.

8.2 Regularized State and Adjoint Equations

We assume the situation of section 8.1, which is also found in [94], giving us
A € L?(D). This in turn gives the possibility to summarize the complementar-
ity conditions (8.5) equivalently into a single condition of the form

A =max (0,A+c- (y —v)) for arbitrary ¢ > 0. (8.6)

The direct handling of general obstacle-type variational inequalities formulated as
in (8.4)-(8.5), with conditions (8.5) being equivalently substituted by equation (8.6),
poses several challenges. One challenge to solve equation (8.4) is the occurrence of
distributional numerical iterates for A in H~!(D) when an augmented Lagrangian
approach is applied to equation (8.4) constrained by equation (8.6), despite the
analytical solution A\ having L?-regularity. For a more detailed discussion of this,
see [94, p. 2]. In order to circumvent the occurrence of distributions in the solution
scheme, the authors of [93, 94] introduce a relaxation for relation (8.6) with a given
regularization parameter o € (0, 1)

A=a-max (0,A+ o (y—¢)) for arbitrary o > 0.
This in turn is equivalent to
)\:max((),;\—i—a (y—q/})),
if A\=0and ¢c = £% € (0,00). Here, A € L*(D) can be motivated by updates of
the augmented Lagrangian. The result is equation

a(yc,v)—l—(max (0,5\+c-(yc—z/})),v) = (rp,v)Lz(D) Yo € H} (D), (8.7)

L2(D)
which in the following is called regularized state equation. Explicit dependence on A
is avoided, making the resulting semilinear elliptic equation tractable, for example
by semi-smooth Newton methods (cf. [94]). Moreover, the authors of [94] prove
L?-convergence of the regularized multiplier max (0, Atc(ye— z/J)) to the original
A for their proposed semi-smooth Newton method.
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With problem (8.7), we are still left to solve a nonlinear semi-smooth problem.
This still gives rise to problems concerning existence of adjoints for the shape op-
timization problem. Smoothing strategies can be applied to render this problem
regular enough to show existence of adjoints. In light of [152] and [35], we pose the
following assumptions on the smoothed max-function, which from now on is called
max,: R — [0, 00), with respect to the smoothing parameter v > 0.

Assumption 1 (Smoothed max-Function).
(i) max, € C*(R,[0,00)) for all v >0

(i) there exists a function g: (0,00) — [0,00) with g(y) — 0 as v — oo, such that
| max, (z) — max(0,z)| < g(vy) for all z € R and for all v > 0

(i41) max’,(x) € [0,1] and monotonically nondecreasing for all x € R and all v > 0
(iv) max’ converges uniformly to 0 on (—oo,—d) and to 1 on (8,00) for all § >0
for v — oo.

To stay consistent with published literature [122], we denote by sign., the deriva-
tive of max, in the following. Notice that this is a slight misnomer, since the func-
tion sign, resembles the Heaviside function more than the actual sign function.
An example satisfying assumptions (1) is given in equation (8.57) of the numerical
section 8.4. Applying max, instead of max in equation (8.7) gives

a(y%c, v) + (max7 (;\ (Yo — 1/))) , v) (rp, v) L2(D) Vv € H} (D), (8.8)

2@

which we call fully reqularized state equation in the subsequent sections. Linearizing
the corresponding Lagrangian with respect to y, . results in the typical adjoint
equation (cf. [80, 152] in the context of optimal control)

a(p'y,m U) +c- (sign,y(;\ +c- (y'y,c — 1)) - Pres U)

L2(®) (8.9)
= 7(y%c -9, U)L2(]D)) Vv e H& (D)

As in [152], smoothness of the state equation (8.8) in y, . guarantees existence of

solutions to the linearized equation (8.9) for a given L?(D)-right-hand side, and

thus existence of adjoints in the case of the considered tracking-type objective func-

tional (8.1).

Next, we show that solutions of equation (8.8) converge strongly in H' to solu-
tions of (8.4)-(8.5) for 7,¢ — co. This is proven in [152] for stronger assumptions
on the smoothed function max, and under v = ¢ . Since we rely on the general case
v # ¢ for the proofs in ongoing discussions, we state an according result. The first
part of the following theorem is in analogy to [35, Lem. 4.2]. However, the difference
is that we consider general elliptic bilinear forms and, more importantly, a modified
argument in the maximum function resulting in different regularized state equa-
tions. These generalizations are necessary for our further analytical investigations
leading to a limit of the adjoint equations.

Proposition 5 (Existence and H!-Convergence of Regularized States). Consider
a bounded and open domain D C R™* ! with Lipschitz boundary. Assume a(-,-) to
be an elliptic bilinear form as in (8.3). Let rr € L*(D) and v,c > 0. Moreover,
assume ¥ € HY(D), X € L*(D) and let max,: R — R satisfy assumption 1. Let
Yv,cs Ye and y be solutions to equation (8.8), equation (8.7) and equation (8.4)-(8.5),
respectively.
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Then equation (8.8) and equation (8.7) possess unique solutions, satisfying
Yoy = Yo i H'(D)  for v — oo (8.10)

and
Ye =y in HY(D) for ¢ — occ. (8.11)

Proof. We prove statement (8.10) of the theorem. For a proof of statement (8.11),
we refer to [94, Thm. 3.1].

We start by ensuring the existence of solutions to equation (8.8) and equa-
tion (8.7). For this, we show that the Nemetskii-operator defined by

®,: H'(D) = L*(D), y+~ max,(A+c-(y—v)) (8.12)

is a monotone operator for all y,¢ > 0. Due to assumption 1, it is clear that
max,: R — R is a point-wise monotone function, implying that max.: L*(D) —
L*(D), y— max,(y) is a monotone operator (cf. definition 8). Since

U.: H'(D) = L*(D), y— A+c-(y — )

is an affine linear operator, and thus monotone, the composition max, o ¥, = @,
is also monotone. The same argument holds for the non-smoothed operator

®: H' (D) — L*(D), y— max(0,A+c- (y —1)).

Since the bilinear form af(-,-) is strongly elliptic by assumption, its corresponding
operator mapping H'(D) — H (D) is strictly monotone. Therefore, we can apply
the Browder-Minty theorem 2, which yields the existence of unique solutions to
equation (8.8) and equation (8.7) in H(D) for all rp € L?(D).

Next, we prove the second convergence (8.10). For fixed ¢ > 0, let y., . and y.
be solutions to equation (8.8) and equation (8.7), respectively. Assumption 1 (ii),
together with the monotonicity of ®, the coercivity of a(:,) with constant K > 0,
and y,.. — y. € H'(D) acting as a test-function, yield

0< K- [[yy.e — el B )
< a(yv,c —Yes Yy,e — yc)
< a(y'y,c —Yer, Yy, — yc)

+ (maX(O, Afec- (Yyye — ¢)) - max(O, Ate(ye - w)’y%C B yc) L2(D)

= (max(O, Ac- (Yyse — 1/’)) — Inaxy (;\ +c (Yye — Z/J))vy%c - yc) L2(D)

< /]D) ‘max(O,/_\ +c- (y'y,c - ¢)) - maX’Y(S‘ +c- (y’y,c - 1/’))‘ ’ |y’y,c - yc| dz

1
<g(7)-vol(D)= - ||y’y,c - yc”Hl(]D))a
which gives the desired convergence (8.10). O

After the following definition, we formulate the first main theorem of this chap-
ter concerning the convergence of adjoints corresponding to the fully regularized
problems. We also characterize the governing equation of the limit object.

Definition 21 (Regularly Decomposable Sets). Let D C Rt be a bounded, open
domain with Lipschitz boundary. A set A C I is called regularly decomposable, if
there exists an N € N and path-connected, bounded and open A; C D with Lipschitz

N _
boundaries 0A;, such that A = _LllAi is a disjoint union.
1=
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Theorem 18 (Convergence of Adjoints). Let D C R™*! for n < 3 be a bounded
and open domain with Lipschitz boundary. Moreover, let the following assumptions
be satisfied:

(i) We have v € HY(D), rr € L*(D), y € HY(D) and coefficient functions
a; j,d;,b € L>®(D) for equation (8.4)-(8.5)

(it) the active set A={x €D: y—1 >0} corresponding to equation (8.4)-(8.5)
is reqularly decomposable

(iii) the sets A, := {x eD: Ac-(ye—1) > 0} are reqularly decomposable, and
A.C A Ve > 0, (8.13)
where y. solves the regularized state equation (8.7)

(iv) the following convergence holds:

Hsignw(;\—l-o(y%c—w)) —sign(A+c: (ye—v)) HL1(1D>) —0 fory— oo. (8.14)

Then the adjoints p, . — p. converge strongly in H}(D) fory — oo for all ¢ > 0,
where p. is the solution to

a(pc,v)+c~/]lAc-pc-vdx:—/(yc—gj)mdx VveHé(D), (8.15)
D D

where 14, is the indicator function of A.. Moreover, there exists p € H—1(D),
which is representable as an H}-function given by the extension of p € HL(D '\ A)
toD, i.e.

p inD\A
= 8.16
P {0 in A, ( )

where p € HY(D\ A) is the solution of the elliptic problem

ap\ A (P, v) = —/D\A(y—y)-vdx Yo € Hi(D\ A), (8.17)

with
apya: Hy(D\ A) x Hy(D\ A) - R

(P, v) = / > i j0ip0jv + Y di(Dipv + po;v) + bpv da (8.18)
D\A 5 i

being the restriction of bilinear form a(-,-) to D\ A. The solutions p. of equa-
tion (8.15) converge strongly in H} (D) to the H}-representation of p.

Proof. Let us consider the fully regularized state and adjoint equation (8.8)
and (8.9) for v, ¢ > 0. Existence and uniqueness of smoothed states y, . are guaran-
teed by proposition 5. For the corresponding adjoints p- ., existence and uniqueness
are given by application of the Lax-Milgram theorem 1 to equation (8.9).

The proof consists of two main parts. First, we show the H'-convergence of the
smoothed to the non-smoothed regularized adjoint p. . — p. for v — co. Secondly,
we analyze the limit of PDE (8.15) for ¢ — oo, and prove that p. — p in H!(D) for
¢ — 00, where p is defined as in (8.16).
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We start to show the H'-convergence of the smoothed adjoints p, . — p. for
v — oo. The assumption (8.14) of L'-convergence of sign., (A + ¢ - (yy,c — ¥)) is
equivalent to LP-convergence for all p € [1,00) in our setting, since

HSign»y (5‘ +c- (y'y,c - 111)) - sign(j\ +c- (yc - 'L/))) ||Lp(]D))
< ||sign, (A + ¢+ (gy,e — %)) —sign(A + ¢+ (ye — ¥)) ||1L/1’ZD) —0 fory — oo

by monotony of the integral and assumption 1 (ii)-(iv). Denote by S, .: H} (D) —
H~1(D) the linear operator corresponding to the left-hand side of the smoothed
adjoint equation (8.9), and S.: H'(D) — H~!(D) the one to equation (8.15). We
establish convergence of S, . to S, in the operator norm.

Since we are in the situation D € R**! for n < 3, we have the following embed-
ding with embedding constant C' > 0 (cf. [1, Thm. 4.12 Part I, Case C])

H}(D) < L*(D) forn+1<4. (8.19)

We also apply Holder’s inequality, and use LP-convergence of signv(/_\—i— ¢ (Yy,e—))
for p = 2, as well as boundedness of sign, and sign, which yield

155, = Sellop

= sup sup c- ‘ ((signA/ (5\ +c (Yye — ¢)) - sign(S\ +c (ye— 1/1))) - g, h)
gEH} (D) he H} (D)
llgll=1 [nll=1

< sup sup c- Hsign,y(jx + ¢ (Yy,e — ) —sign(A+c- (ye — w))‘
gEHL (D) he H1 (D)
llgll=1 [lA]l=1

<C%.c- Hsign,y(jx +c- (yv,c - w)) - Sign(x +c- (Yo — w)))

L2(]DJ)‘

Ngllza) - 1Al 1)

L*(D)

— 0 for v — oo.
L2(D)

This is the desired convergence in the operator norm. By continuity of the inversion
Z:S +— S~!in the domain of invertible and bounded linear operators over non-
trivial Banach spaces (cf. [183, p. 237, Standard Example 9]), which is given in
our setting, convergence of the solution operators Sv_, L' — S in operator norm is
implied immediately. Combining this with the convergence of y, . — y. in H} (D)
established in proposition 5 gives

1Py,e = Pell a1 ()
= || = S5t @re =) + 57 (e = D) 3 o)
< [185e0ne =9 = 8o e = Dl o) + 1Sv0(ve =9) = 57 (e = )|y )
< HSJ,iHopHyw _ yCHHé(D) +|858 - sngopHyc - ﬂHHﬂl(D) —0 for vy — oo,

since [|S !llop can be bounded due to the previously established convergence in
operator norms.

Now we move to the second part of the proof, and analyze the limit of PDE (8.15)
for ¢ — co. We show that p. — pin H!(D) for ¢ — oo, where p is defined as in (8.16).
For this, we notice that our assumption concerning regular decomposability of A =
{z€D: y—1 >0} ensures that 9A = {x € D: y—1 = 0} forms a C*!-manifold
embedded in D. This in turn leads to well-definedness of the restricted bilinear form
ap\a(+,-), and the well-posedness of the variational problem (8.17). By application
of the Lax-Milgram theorem 1, we have a unique p € Hj (D) as in (8.16). Our next
step is to show

pe —p in H'(D) for ¢ — oo. (8.20)
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For this, we artificially constrain problem (8.15) to A C ID. Denote by a4(-,-) the
restriction of the bilinear form a(-,-) to A C D, defined in analogy to (8.18). The
corresponding restricted problem becomes

aA(qu?U) +C/

La, *Peia -vdx:—/(yc—g)mdx Vv € Hy(A), (8.21)
A

A

with the Dirichlet condition p. , = p. on dA. Dividing by ¢ > 0 gives an equivalent
equation, in the sense, that a solution p. , € H'(A) to equation (8.21) also solves

1 1 _

E~aA(pC‘A,v) +/ La, pe,-vde = _E/ (ye—7)-vde Vv € Hi(A). (8.22)

A A
The differential operator corresponding to the left-hand side of the equivalent equa-
tion (8.22) is given by
_ 1
SA,C: Hl(A) —H 1(A)a p= E : aA(p, ) + (]lAc e .)Lz(A)' (823)

Next, we show that the differential operators S4 . converge in the operator norm
I llop to the limit operator

Sa: H'(A) — H™'(A), p— (p, )2 (a)- (8.24)
Indeed, with assumption (8.13), we see

||SA7C - SAHOP

= sup sup
gEHG(A) heHj(A)
lgll=1 llnll=1

1
< sup  sup (@(Z”“M
i

1
f~aA(g,h)—/ g-hdx
c A\A.

gEH (A) REH; (A)
llgll=1  [lplI=1

L@ + Y_d;lli=m) + bl =)
J
Mollazgcay - Il ey

+V01(A\Ac)% Nlgllzacay - ||h||L4(A)>

]

! 1
s (Z”“i’j”“"@) + 2l ) + ”bHLOC(D)) +C? vol(A\ A,)?
J

— 0 for ¢ — o0,

due to embedding (8.19) and since vol(A\ A;) — 0 for ¢ — oo, which would other-
wise contradict y. — y in HZ (D). We can now apply a similar argument as in the
first part of the proof, namely the continuity of the inversion operator Z: S — S~1.
This gives convergence of the solution operators SZ}C — Syt in || - [Jop. Also no-
tice that we can obtain the sequence of solutions p. , by solving equivalent equa-
tion (8.22) with the corresponding right-hand sides —2(y. — ), instead of solving
the original equation (8.21). We also witness that the right-hand sides converge to
0 in H'(D) as ¢ — oo, as ¥, is H'-convergent by proposition 5. We conclude

1 )
0 < lpellmray = HSA,1c< i y)> HHl(A)

1 _ _ _ 1 _ _

< o H(SA,lc — 83" (e — y)HHl(A) + P 184" (ye = y)HHl(A) (8.25)
1

< = (1535 = 53 lop 1155 op) - (e =yl + 17l )

— 0 for ¢ — co.
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For the proof of convergence it remains to address the convergence of p. on
D\ A. We can artificially restrict equation (8.15) to D\ A by imposing the Dirichlet
boundary pep\ 4 = 0 on dA, since DA forms a C**-submanifold of D by the assumed
regular decomposability of the active set A (cf. definition 21). To distinguish the
corresponding bilinear forms, we denote the restricted bilinear form by ap\ (-, ).
Since the unrestricted bilinear form a(-,-) is strongly elliptic, coercivity for some
constant K > 0 also holds for ap\4(-,-). This, together with Holder’s inequality,
assumption A, C A for all ¢ > 0, and the fact that p. —p € H3(D\ A) can act as a
test function, gives

0 < K - [pe — pll7n o\ a)
< aD\A(pc - ﬁa Pe — 25)
= aD\A(pC7pC _ﬁ) - a’D\A(ZN)apC - ZN))

:—c-/D\AnAc-pc«pc—ﬁ) dm—/D\A(yc—y)(pc—ﬁ) d$+/D\A(y—y)(pc—z3) dz

/ (y - yc)(pc - ﬁ) dx
D\ A

< Mlye =yl ) lpe — Pl @)\ 4),
where p € H1(D\ A) is defined as in equation (8.17). This results in
pe —p in HY(D\ A) for ¢ — oo (8.26)

due to our assumptions and y. — y in H'(D) by proposition 5. Together with
convergence (8.25), this gives the desired convergence p. — p in H}(D). O

There are a few non-trivial assumptions in theorem 18, namely assumption (iii)
and (iv). In the following, we formulate two remarks in which we address these
assumptions (cf. remark 28 for (iii) and remark 29 for (iv)).

Remark 28 (Feasibility for Regularized VI). It is possible to fulfill assump-
tion (8.13) on inclusion of the active sets A. C A by choosing a sufficient A € L*(D).
More precisely, if we assume ¢ € H*(D), we can choose A := max (0, rp — Sv) with
S being the differential operator corresponding to the elliptic bilinear form a(-,-) in
(8.4). This guarantees feasibility ye, < Yo, <y < ¥ for all 0 < ¢1 < co (cf. [94,
Sec. 8.2]).

Remark 29 (L'-convergence of sign. ). Assumption (8.14) ensures that conver-
gence of sign, is compatible with convergence of Yy . for v — oo. We wverify this
assumption in the numerical section 8.4 for several demonstrative cases. In general,
this condition depends intimately on the concrete problem parameters of (8.4)-(8.5),
and the smoothing schemes employed to the max-function.

Remark 30 (Exploiting the Regularized Adjoint Limit Structure). The limit object
p € HY(D) of the adjoints p-.. as defined in (8.16) is the solution of an elliptic
problem (8.17) on a domain D\ A with topological dimension greater than 0. This can
be exploited in numerical computations, for instance by applying solvers harnessing
sparsity, or a fat boundary method for finite elements on domains with holes as
proposed in [126].

Remark 31 (Regularized Adjoint Limit is not an Adjoint). We remind the reader,
that p is not necessarily an adjoint to the original objective (8.1) constrained by
(8.4)-(8.5). It is merely a limiting object coming from the optimality conditions of
the problem with fully regularized constraint (8.8). For a discussion of a similar
phenomenon in context of optimal control, we refer the interested reader to [35,

Sec. 4.2].
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8.3 Shape Derivatives of Regularized
VI-Constrained Problems

In this section, we utilize the established convergence for the regularized state and
adjoint equations to derive results on shape derivatives of the shape optimization
problem constrained by the fully regularized state equation (8.8). In general, shape
derivatives of unregularized VI-constrained shape optimization problems do not
exist (cf. [168, Ch. 1.1]). Nevertheless, we can show existence of shape derivatives
for the shape optimization problem constrained by the fully regularized VI (8.8),
and prove their convergence.

In the following, we split the main results into two theorems. The first theo-
rem 19 discusses the existence and closed form of shape derivatives for the fully
regularized problem. The second theorem 20 covers convergence their for v, c — co.
Note that the objective functional and the shape derivative with respect to the reg-
ularized VI (8.8) depend on the parameters vy and ¢. To denote this dependency,
we use the notation 7, . and DJ, .(I") for the objective functional and its shape
derivative, respectively.

Theorem 19 (Shape Derivative of Smoothed VI-Constrained Tracking Type Prob-
lems). Assume the setting of section 8.1. Let the assumptions of theorem 18 hold.
Moreover, let M := (a; ;)i j=12,. n+1 be the matriz of coefficient functions to the
leading order terms of a(-,-) in (8.3). Assume Y. c,py.c € WHH(D), and a;j,b;,d €
L*D)NWI4(D) and A\, rr € HY(D). Furthermore, let Dy,(y.c), Din(py.c) € H (D)
for all v,c > 0.

Then the shape derivative of J, . defined in (8.1) constrained by a fully reqular-
ized VI (8.8) in direction V € Hg(D,R"*1) exists, and is given by

DJ,.(D)[V]
_ / (e~ 9) VIV = VL (VY M- VMV 4 MYV,
D
+ (VOTV) e Pre + e ((V47V) Vo = d7 (VY VD))
+ P ((VdTV)TVyw,c - dT(VVVyv,c))
+sign, (A +c- (yy.c =) - (VA=c- V) Vp, o — (D) [V] + VrEV) - po

. 1 \2
+div(V) - (§ (y%c - y) + 0Yy,cPry,c + Zai,jaiy%cajp%c
0,J

+ Z d; (aiy'ytcp'y,c + y’y,caip'y,c)

+ max, (/_\ +c (Yye— 1,/1))p,,7c - Tpp%c) dx .
(8.27)

Proof. Let us consider the shape optimization problem with objective J from
equation (8.1) constrained by the fully regularized state equation with parame-
ters v, ¢ > 0 as in equation (8.8). We fix a shape T' to derive corresponding shape
derivative. The first part of the proof consists of the existence of shape derivatives
DJ,. for all v,c > 0. In the second part, we derive a closed formulation with a
material derivative approach.

For the first part of proof, we employ the averaged adjoint theorem 8. Let
~,¢ > 0. To use the averaged adjoint approach, we first have to derive a closed form
of the shape Lagrangian. By definition, the Lagrangian function corresponding to
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our problem is given by

Loy (L, YycoDre) = (e — 9)° Az + a(yy e Pe)

+ DN | =
S|
3]

(maX’Y (5‘ +c- (y'y,c - 1/1))7107@) - (TF7p77C)L2(D)'

(8.28)

L2 (D)

Let us fix a deformation vector field V' and denote the deformed domains by
D, := T3(D) for deformation parameters ¢ € [0,7] and some 7 > 0 small enough,
such that the corresponding deformations T; are bijective (cf. equation (3.9)). For
the rest of the existence proof, we drop v, c as the subscripts of y, . and p, . for
readability purposes, still knowing we are in the fully regularized situation. The
shape Lagrangian is given as

G:[0,7] x Hy(D) x H}(D) = R, (t,y,p) = L(Ty,yo Ty ,poT, ") (8.29)

for the deformed domain ; and shape I'; resulting from application of the de-
formation T; in direction V parametrized by ¢ € [0,7] (cf. equation (3.10)). We
compute the retraction of the second order terms of the bilinear form a(-,-). Com-
putations for the other terms of the Lagrangian (8.28) follow in analogy. With the
transformation formula and equation (3.18), we have

/ V(yoT; ) MV(poT; ) dx:/
D

(V (yo T;l)TMV(p o T[l)) o T} - det(DT;) dx
D

= / (DTt_TVy)T(M o Tt)(DTt_TVp) -det(DT}) do
D

= / 2 (DT;l(M o Tt)DT;T)vp - det(DT}) dz.
D

(8.30)
In total, we have the shape Lagrangian
G(t,y,p)
-3 /D(y —goT)*-det(DT}) dz + /D vy" (DT; (M o T)DT; ™) Vp - det(DT;) do

+/ ((DT;l(d oT)) ' Vy-p+y- (DT (do Tt))TVp> -det(DT}) dz

D

+/(bOTt) ypdet(DTt) dI+/maX»Y (S\OTt+C (y—’l][}OTt>) pdet(Dﬂ) dz
D D

- /]D)(Trt oTy) p-det(DT}) d.
(8.31)

In the following, we prove the assumptions (HO)-(H3) needed to apply the averaged
adjoint theorem 8 to guarantee existence of shape derivatives. The first assumption
(HO) concerns well-behavedness of the shape Lagrangian (8.31). First notice that
the function in equation (8.31) is both differentiable in the state y and adjoint p.
Thus for the set of state solutions X (¢) as defined in equation (3.11), we have

X(t)={y'} cH)D) vtelo,r], (8.32)

with y' := y; 0T} being the retraction of the unique solution y; C HE(D;) of the fully
regularized state equation (8.8) on the deformed domain ;. The solution exists
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and is unique by the use of Minty-Browder’s theorem 2 as portrayed in the proof
of proposition 5.

Further, the shape Lagrangian for direction V' as a function of averaged states
inserted

0,1] = R, s+ G(t, sy’ + (1 —s)y%p) (8.33)
is absolutely continuous in s € [0,1]. For this, we make use of the fact that
LYD) — LP(D) forl1<p<qg<oo (8.34)

for bounded D C R™*!, with a constant depending on p and ¢, which comes by an
application of Holder’s inequality. Absolute continuity is satisfied, because we have
existing derivatives of the integrand due to assumption 1 (i), and integrability of
the integrand due to

[max, (A+c- (2 =) 1o )
< [jmas, (A + ¢+ (2 = 1)) = max (0, A+ ¢+ (2 = 1)) || o
[ max 0.3+ ¢ 2 = )| (8:35)
<vol@)2g(7) + M| oy + ¢ (2l gy + 1) < o0

for all A € L?(D) and all z € H}(D) as by assumption 1 (ii), and D being bounded.
Next, we use that the Jacobian determinants of Lipschitz transformations 7} are
uniformly bounded in ¢ € [0,7] by 0 < j < oo (cf. [172, Prop. 2.1]). The directional
derivative mapping

[0,1] = R, s+~ %G(t, syt + (1 —5)y°, p; gj) (8.36)

is therefore integrable for all § € H{ (D), since

oo

L1(0,1)

1
:/ ‘at(p, 7) +c- (sign,y(/\ oly+c- (Syt +(1- s)yo —o Tt)) “p- det(DTt),?]>L2(D)
0

+ ((Syt+(1_3)y0_gOTt) -det(DTt),g) ‘ds

L2(D)
1 — —_
g/wam%mmmm+owmmmmmm
0

+7- (SHytHHé(D) +(1 - S)HyOHHé(D) + ||Z7||L2(D))||Z7||H5(D) ds
=(Bi+c)-j- 1P a2 o) 191 212 ()

= ]- t ]- 0 — ~
3 (G g oy + 5100 s oy + N2 ) Ny oy < o

by Hoélder’s inequality, assumption 1 (iii), and a;(+, -) being the bilinear form defined
by retraction of a(-,-) from D; to D seen in equation (8.31), which is bound with
constants B; > 0. This, and the verification that G is an affine linear function in p,
gives us (HO).

Next, we consider the set of averaged adjoints as defined in equation (3.12). We
manipulate the averaged adjoint equation found in equation (3.12) by interchanging
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integrals
1o
0 :/ —G(t, sy + (1—5)y°, q;§) ds
o Oy
1

:/ at(Qa g) +c- (Sjgnw(j\ oly+c- (Syt + (1 — s)yo —o Tt)) -q- det(DTt),ﬂ)Lz(D)
0

+ ((Syt + (=8’ —goTy)- det(DTt)’g)L%D) @

1
=ay(q.9) + ¢ ((/ Sign,y(;\ oTy+c- (Syt +(1- s)yO — oTt)) ds) - det(DTy) - q’g)lP(D)
0

1, 1
+ ((ﬁyt + 59" —goT) - det(DT,), ) oy
(8.37)

which is an elliptic PDE with an additional positive L (ID)-coefficient function for
the zero’th order terms. By assumption 1 (iii), the additional coefficient term for
the zero’th order terms in the averaged adjoint equation (8.37) satisfies

1
0< / sign, (Ao Ty +c¢- (sy" + (1 — sy’ —1poTy)) ds <1 vVt € [0,7], (8.38)
0

which results in coercivity and boundedness of the corresponding bilinear form of
the averaged adjoint equation (8.37). This lets us apply the Lax-Milgram theorem 1,
resulting in existence of a unique solution for the averaged adjoint equation, which
we denote by ¢* € H}(D) for all ¢ € [0,7]. Thus we have the identity Y (¢,4%,9°) =
{¢'} C H}(D), which together with equation (8.32) ensures condition (H2). We
also notice, that the derivatives %G exist, and can be explicitly calculated after
application of the transformation theorem, giving us (H1).

To apply the averaged adjoint theorem 8, it remains to address (H3). We can
satisfy this requirement by application of [171, Lem. 4.1]. For this, we mimic parts
of the argumentation found in the proof of [171, Thm. 5.1] accustomed to our
situation. Consider the solutions y° € X(0) and ¢° € Y (0,4°,4°), and a sequence
(tn)nen C [0,7] converging to zero. First notice that we can use monotonicity
(cf. definition 8) of the Nemetskii operator from equation (8.12) of the concerning
semilinear state equation, to get

(max,y(j\—kc-(z—zb)),z)m(m) > (max,y()\—c-w),z)Lz(D) vz € L2(D). (8.39)

This in turn, together with the coercivity of the retracted bilinearform a,(-,-) with
constant K; > 0, inequality (8.35), and choosing y* € X(t) C HZ(D) as a test
function, gives us

0< ||?/tH§13(D) < Ki-a(y'y)

:Kt~/(rptoTt)-yt—maxv(j\oTt—l—o(yt—z/JoTt))~ytdx

IA
=
S~

(e, 0 ) -y —max, (Vo Ty -0 ) -y da

< Ky (HTFt © TtHL2(D) +|[max, (Ao Ty —c 4o Tt)HLz(D)) : HytHHg(D)

1 —_
<K;- a (||7“rt||L2(D) + [Jmax, (A — ¢ w)”pz(m)) : ||yt||H[}(]D)) < 00,

(8.40)
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where we used the inversion rule for determinants in the last inequality. Dividing
by ||yt||Hé(D), using the convergence T; to the identity for ¢ — 0, and by taking a
supremum, we achieve

1 - _
||ytHHé(D) < tes?tg} (5 K- (||rpt||Lz(D) + ||max, (A — ¢ w)”m@m))) =M < oo,
(8.41)

bounding the norms by a constant 0 < M < oo independent of ¢ € [0, 7], for 7 > 0
small enough. In the same line of argumentation we can confirm the boundedness
of Hqt||Hé ()~ For this, we apply the first inequality of (8.38) to get

0< o' 2y 0 < K1 - aud')

1
=—K;- <c~ (/0 sign., ()\ oTy+c-(sy' +(1—s)y’ —vo Tt)) ds - det(DT}) - ¢', qt) L2o)

1 1 B
+ ((§yt + 53/0 —yo Tt) . det(DTt)7qt)L2(D)>

< Ky (5' HytHHg(D) +J HyOHHg(D) + ||?7HL2(D)> : HthHg(D)'

By finally using inequality (8.41), we arrive at

ooy < 50 (K G0 5[0 gy o+ Iliz)) <0 (542
0 te{t,} 0
As we have established bound (8.41), the Banach-Alaoglu and Eberlein-Smulian
theorems permit us to choose a subsequence (t,,, )ken € (£n)nen, such that yine — 2
weakly in Hg(D) for k — oo and some z € H}(D). Further, we can uniformly and
independently of ¢,,, bound

[max, (Ao T} +c- (y' — ¢ OTt))HL?(D)

1 -1 < 1
< = vol@)2g() + e M+ =Xy + 5 e Il < oo,

<

by using inequalities (8.35) and (8.41). By boundedness of the coercive bilinear
forms a4(-,-), bound (8.41), and smoothness in max, by assumption 1 (i), we are
able to apply Lebesgue’s dominated convergence theorem to the retracted state
equations, giving us y, — yY weakly in H¢ (D) due to the uniqueness of solutions
in equation (8.32).

Applying the same routine due to bound (8.42), we can choose a subsequence of
{tn, }, which we again call {t,, } by abuse of notation, such that ¢'»+ — u weakly
in H}(D) for some v € Hi(D). Then uniform boundedness (8.38), the previously
established weak convergence y;, —— yY, and bound (8.42), yield applicability of
Lebegue’s theorem for ¢,, inserted in the averaged adjoint equation (8.37). For
k — o0, the limit equation of (8.37) is the fully regularized adjoint equation (8.9),
which has a unique solution by Lax-Milgram’s theorem 1. Hence gt»x — ¢° = Dvy,c €
Y (0,4°,4°) weakly in Hi (D) with the previously established weak convergence of
¢'+ and continuity of sign, by assumption 1 (i).

Now we have found a subsequence {t,,} C {t,}, such that ¢'"+ — ¢° weakly
in H}(D). Using the transformation theorem, the shape Lagrangian G(t,y", ¢+ )
from equation (8.29) can be stated as an integral in D with integrands that are
differentiable in ¢ € [0,7]. The derivative %G(t,y07qt"k) is weakly continuous in
its first and last argument, hence the weak convergence g'*» — ¢° implies condition
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(H3) from theorem 8. All assumptions (H0)-(H3) for the averaged adjoint theorem 8
are satisfied, finally guaranteeing existence of shape derivatives D7, . for all y,c > 0.

Now we move to the second part of the proof, where we derive the closed shape
derivative expression. For this, we stay in the context of this work, and apply
calculus rules established in chapter 4 (cf. remark 32). Note that equation (8.27)
and following integrals are well defined due to our assumptions on integrability
combined with (8.19) and dimension n < 4. By applying corollary 2 to the target
functional part of the Lagrangian (8.28) we get

D(% /D (y%c - 17)2d37) V]
= [ = 9) (P 0. )IV] = D@ V1) + 5 (V) (7.0~ 5)” da

= / (y'y,c - g),Dm (y’y,c) [V] dz + / _(y%c - g)VgTV + %le(V) (y’y,c - Q)Q dl‘,
’ ’ (8.43)

since the target i € L?(D) does not depend on the shape. Next, as similarly found
in [181], we calculate the shape derivative of the bilinear form a(-,-). To avoid
confusion with the active sets A and A, we call the coefficient matrix (a; ;);; of
the leading order parts of the bilinear form M. As before, we have

D (a (yw,c, pw,c)) V]

- ‘/]D) Dm (Zai,jaiy'y,cajp'y,c + Z dz (8iy'y,cp'y,c + y'y,caip'y,c) + by’y,cp’y,c) [V]
,J i

+ le(V) (Zai,jaiy'y,cajp'y,c + Z d1 (aiy'y,cp'y,c + y'y,caip'y,c) + by'y,cp'y,c)dx-
i,J i

(8.44)

We use linearity, chain rules, product rules and gradient identities for the material
derivative, as found in corollary 1 and corollary 2, to reformulate D,, (a(y%c, p%c)).
For readability, we analyze each term individually. We start with the leading order
terms, where we in particular use corollary 2 (vi), and that M does not depend on
shapes

Do (V42 MVps.c ) V]
T
= V(D (2.0) V1) MVpye = (TVTVy0) M Vps o+ Tyl (VM V) Vo

+ VYL MY Dy (p4,0) V]) = Tyl M (TVT V...

For the first order terms of a(-,-), we only compute y%CdTVp%c7 since calculations
are analogous for the second term by switching the roles of y, . and p, .. We get

Dy (Y,cd" Vps,e) [V]
= Dm (y'y,c) [V] ! dTvP'y,c + Yry,c (VdTV)TVp%c + y'y,chVDm (p’y,c) [V] - y'y,ch (VVVp)v

where we again use shape independence of the coefficient functions of a(+, -) together
with corollary 2. For the term of order zero, we apply the product rule for material
derivatives and shape independence of coefficient functions

D, (byw,cpv,c) [V] = (VbTV)y%Cp%c +b-Dp, (yw,c) [V} “Pye t0Yyc D (pv,C) [V]
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Combining these formulas by plugging them into equation (8.44), and collecting all
material derivatives of . and p, ., result in the shape derivative of the bilinear
form

D(a(y.c:p1.0) ) V]

= (D (1) V] pr.e) + (3.0 Do () V]
/Vyw VV M= VM-V+M-VVT)Vp,,

)

F e ( (Vd"V) Vpy. — dT(VV'Vp,.)
( (Vd"V) Yy, — dT (VVVy, c)) + (VBTV) Yy epoe

+ div(V) (Zal 0iY~,c0ipy.c + Z i (DiYy,cDrc + Yy cOiDr,c) + DYy D )d

The shape derivative of the term including max. is calculated by chain rule, which
is applicable since we have the assumption 1 (i) of a smooth max.,

D(/DmaX,y (;\ +c (Yye — 7@) *Drye dx) V]

:/ Dm(maX,y (5\ +c- (y'y,c - 1[1)) 'p'w) (V]
]D) —
+div(V) -maxy (A+ ¢+ (Yy,e — ) - Py,c dz
N /D signy (A + ¢+ (Yr.c = 1) DA+ ¢ (gr.e =) V] Prc

+ max- (5\ +c- (y'y,c - w)) . Dm (p'y,c) [V]
+div(V) -maxy (A+ ¢ (yy,c —¥)) - Py,c dz

= /D sign, (A+ ¢ (e = 1)) - (VATV + ¢ (D) [V] = VETV) ) -y

+ max, (5\ +c- (y%c - 7/))) : Dm(p'y,c)[v]
+ div(V) - max, (/_\ +c (Yye— 1/1)) “ Pye da,

where the last equality is due to D,,(A\)[V] = VATV and D,,(v)[V] = VyTV, as
X and v are invariant under perturbation of the domain by the problem definition.
The shape derivative of the last term in the Lagrangian (8.28) is given by a simple
product rule

D(/DTF Do dx) V] = /DDm(rp)[V] “Drye + 11 Do (py.c)[V] + div(V) - rp - py e d.

We now use the assumptions Dy, (Y+.c), Din(py,c) € HE (D). If we rearrange the terms
with Dy, (Yy,c) and Dy, (py,c), we can let Dy, (yy,c) and Dy, (p-,c) act as test functions
and apply the state equation (8.8) and adjoint equation (8.9). Therefore the terms
involving D, (y,.) and D, (p,,.) vanish. By adding the previously calculated shape
derivative components of the Lagrangian, the shape derivative D7, .(I')[V] as in
equation (8.27) is established. O

Remark 32 (Averaged Adjoint and Material Derivative Approaches). We proved
the assumptions of the averaged adjoint theorem § in the first part of the proof to
theorem 19 to have guaranteed existence of shape derivatives. Then we proceeded to
calculate the shape derivative using the material derivative approach to stay coherent
with the pre-shape calculus rules introduced in chapter 4. However, the averaged
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adjoint theorem 8 permits direct computation of the shape derivative via the shape
Lagrangian equation (8.31) and equation (3.16). More specifically, product and
chain rules, and det(DTp) = 1, yield

DJy.(T)[V]

1o}
= &G(Ov Yy,cs pw,c)

o
= =) (= goT,)d
/D(y% y) (3t|t:oyo t) x
vyl 9 DTN M oT)DT " )Vp, . d
+ b y’y’c(atu:o t (M oTy)DT; ) Pry,c AT

+ /D ((%M:ODT;l(d o Tt))TVyy,c *Pye T Yype (%\t:ODT;l(d o Tt))TVp%C> dz

0
+ /]D) (a‘t:[)b °© Tt) ' y’Y,C : p'y7c d.’L’

a _
* /IDJ (E\tzo max, (Ao Ty + ¢ (Yy,e — OTt))) Pre Ao

_ /D (%‘tzorrt oTt) Pre dz

0 1 N2
+ /]D) (&H:O det(DTt)> : (5 (y'y,c - y) + by’y,cp'y,c + sz:ai,jaz'y’y,c@jp'y,c
+ ) di(0iy cDryc + Yy, cOipy ) + maxy (A4 ¢ (Yy,e = ¥))Py.c — rrpy,c) da.

K2

(8.45)

By equation (3.9) and [171, Lem. 2.14], we exemplary have

0

o, DT Y (MoT)DT; " = -VV-M+VM-V-M-VVT, 9 goT, = Vi V.
t=0

Ot |t=0

The other terms follow by analogous computations.  Thus, after application
of product and chain rules, and Jacobi’s formula from proposition 1, equa-
tion (8.45) coincides with the shape derivative (8.27) from the material derivative
approach. This particularly shows, that the assumptions on material derivatives
Dy (Yy,e)s D (py,c) € HY(D) for all v,c > 0 in theorem 19 are not needed to have
the closed shape derivative expression (8.27).

Remark 33 (H!'-Material Derivatives). The assumption Dy, (y-,.) € Hg(D) and
Dy, (py,e) € Hg(D) in theorem 19 are solely needed to apply the material derivative
approach to achieve the closed form of the shape derivative.

To fulfill Dy, (y+.c) € HE (D), it is sufficient that y . € HZ(D). For example, this
reqularity can be ensured by additionally assuming a;; € Cl(D),d=0,b=0 for
the coefficients of the strongly elliptic bilinear form a(-,-), together with ¢» > 0 and
choosing A € L>(D). The latter two assumptions imply that the mazimal monotone
Nemetskii-operator (8.12) is equal to 0 for y, . = 0 and sufficiently large v,c > 0.
In combination with the former assumptions, [22, Thm. A.1.] can be applied to get
Yr,c € HE(D) for all sufficiently large v,c > 0.

The assumption Dp,(p+.c) € HY(D) in theorem 19 can be fullfilled, e.g., by as-
suming additional regularity a; ; € CY(D) of the leading coefficients of the bilinear
form a(-,-) and C?-regularity of the boundary OD. This, together with the fact that
c-sign (A + ¢ (yy.c — ) € L®(D) acts as part of the coefficient function of the
zero order terms, permits application of a reqularity theorem for linear elliptic prob-
lems from [50, p. 817, Thm. 4], which gives p, . € HZ(D). This in turn guarantees
Din(pr.c) € HL(D).
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Remark 34 (Approaches for Existence of Shape Derivatives). There are a multi-
ple options to prove shape differentiability of shape functionals, and to derive the
shape derivative of a PDE-constrained shape optimization problem. The min-max
approach [42, Ch. 10.5] and the theorem of Correa and Seeger [37, Thm. 2.1], the
chain rule approach [168], the Lagrange method of Céa [33], and the rearrangement
method [95] can be mentioned in this context. To prove existence of shape derivatives
DJ.c in theorem 19, we relied on the averaged adjoint approach via theorem 8. For
a more detailed discussion on this topic, we refer the reader to [171, Ch. 3, Ch. 4].

Next, we formulate the second main theorem of this section, which states the
convergence of the shape derivatives of the fully regularized problem.

Theorem 20 (Convergence of Shape Derivatives of Smoothed VI-Constrained
Tracking Type Problems). Assume the setting of the shape optimization prob-
lem formulated in section 8.1. Let the assumptions of theorem 18 hold and let
¢ € H*(D). Moreover, denote by M := (a; ;)i j=12.. nt1 be the matriz of coeffi-
cient functions to the leading order terms in (8.3).

Then, for all V € H}(D,R""1), the shape derivatives DT, .(D)[V] from (8.27)
converge to DJ(I)[V] for v,¢ — oo, where

/*(y*z?)~Vg7TV7VyT(VV~M7VM~V+M'VVT)Vp
D

+y- ((Va"V) " — d" (W Vp)) +p- (Vd'V) vy - d" (VY Vy))

+ (VOTV) -y -p— (Do) [V] + VrEV) - p (8.46)
. 1 _
+ le(V) . (5 (y%C — y)2 + Zaiﬂ-@iyajp
4,J

+ Z di (8;yp + ydip) + byp — Trp) dx + /A (¥ —19) Vo'V da.

Proof. We see that (8.27) already resembles (8.46) except for the three terms

To(V) = /Dsignw A+ (Yre =) - VATV - p, . da, (8.47)
(V) :=—c- /Dsigny Atec Wye—v) VYOIV p, . da (8.48)
Th(V) = /Ddiv(V) ‘maxy (A+ ¢+ (Yy,e — 1)) Py,e da. (8.49)

This means that showing convergence of DJ, . is equivalent to convergence of the
functionals Ty, T1, Ty : Hg (D, R"*1) — R, since all the other terms featured in (8.27)
converge due to p, . — p and y, . — y in H}(D) for y, ¢ — oo by proposition 5 and
theorem 18. First, we handle convergence of Ty for V € Hi (D, R"*1). We have

/ sign., (5\ +c (Yye— 11))) VATV “Pry,c dz

D (8.50)

- / sign( A+ ¢ (ye — ) - VATV - p. dz
D

for v — oo with assumption (iv) from theorem 18. With theorem 18 we also have
Pye = pin H'(D), and A, C A for all ¢ > 0, and pj4 = 0. This, together with
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Holder’s inequality, yields

/ ’sign(j\ +c(ye—)) - VATV ~pc‘ dx
D
< L. 'pCHLmD)) : HVS‘TVHB(D)

= H]lAc +(pe _p)HL?(D) ’ Hv;\TVHL?(]D))
< |lpe —;DHLZ(D) : HVXTVHLQ(D) — 0 for ¢ — o0,

which is the convergence of Tj to 0.

In order to tackle terms 77 and 75, we proceed in two steps. First, we show
convergence for T} and Ty as restricted operators on C§°(D, R"*1). Secondly, we
show by a continuity argument that convergence can be extended to Hg (D, R"1).

Let V € C5°(D,R™"1). By this, and our assumption ¢ € H?*(D), we have
div(V) - py.c € H}(D) and Vo7V € H}(D) for all v, ¢ > 0. This enables us to use
these functions as test functions for the state and adjoint equations, which leads to

M) = [ san, (- g 0) TV

= a(p'y,c, v'l/}TV) + (y'y,c -, V’L/)TV) L2(D)
— a(p7 VwTV) + (y -7, Vz/)TV)Lz(D) =: Tl(V) for v, c — oo

and

(V) = /D div(V) - maxy, (A + ¢ (Yy,c — ¥)) - py,c da

= - a(y’y,ap'y,c : diV(V)) + (TF7p'y,c : diV(V))Lz(D)

— — a(y,p . diV(V)) + (rp,p . div(V))Lz(D) =: TQ(V) for v,c — oo

due to theorem 18 and proposition 5.

Next, we lift the convergence from V € C§°(D,R"*1) to H}(D,R"™!) by con-
tinuous extension. Since C§°(D,R™*1) is a dense subspace of H}(D,R"*1), and
since the latter is the completion of the former by the || - || (p gn+1)-norm, it is
sufficient to show that the limits 77 (V;,) and T5(V;,) form a Cauchy sequence for a
given Cauchy sequence (V,,)nen C C5°(D, R"*1) under the || - | 12 (R +1)-nOIM. So
let (Vi)nen C C$°(D,R* M) with ||V, — Vil g g +1) — 0 for m,n — co. For the
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limit 7} we have
IT1(V) = Ty (Vi)
= |CL(p, va(Vn - Vm)) + (y - g’ Vq/}T(Vn - Vm))L2(D)|

< (Classlzm) + 2lldsllzo) + [bll=co))
| /D ;aip 0, (V4 (Vi = Vi)
+ 2(8¢p VYT (Ve = Vin) +p - 0: (VT (Vy, — Vm)))
4 p VT (Vi — Vi) dx‘ + /D (g —9) - VoI (Vs — V)| dz

= (Pllasllz=@) + Ylldsllz=m) + bl <))

1,J J

/DZ(@}) (@) (Viy = Vi) + VT 0;(V,, — Vm)))
+ Z(aip : va(Vn - Vm) —Oip- VwT<Vn - Vm))

40V (V= V) da + [ [0 =9) Vo (V= Vi) do

= (Z”%HLW(D) + > lldjll ) + ||b|\L°°<D))

,J J
Al azm) - C - <Z(||(3jV¢)T(Vn =Vl + ||V 0; (Vi — Vm)HLl(D))
%]
+ ([ Vet (v, — Vm)HLl(]DJ))
+C ¥lm @ - 1y — ¥llzw) Ve — Vil g 1)

<€ (Ylasslleem + sl + 1bllz=m) ) - 1Plyco)
,J J

Nll2 ) - 16 - Ve = Vil 3 gy
+C - [Yllm) - ly = dllzz) - Vo = Vinll gz sy = 0 for m,n — oo.
Here, we used integration by parts together with pjsp = 0 and (V,, — Vi) 1op = 0.
Also, we applied L?(D) < L'(D) with constant C' > 0 as in equation (8.34) due
to bounded D. Further, because D C R™*! for n < 3 by assumption, the constant
16 = (n+1)? is the maximal count of summands occuring in the sum over indices i
and j. It should not be confused with the running index for V,,. Thus, (71(V4))nen
forms a Cauchy sequence, and therefore gives a value for the continuous extension
of Ty for the limit of V,, in Hg (D, R™+).
For Ts, we use the same techniques, leading to
T2(Vi) — To(Vin)|
= ‘ — a(y,p ~div(V,, — Vm)) + (rp,p ~div(V;, — Vm))LQ(D)’
< (Pllasgliz=m + Y lld;llimw) + bl =)
i, J
A7-C -yl o) - 1Pl @) - Ve = Vinll gz @)
+C - rellzew) - 1Pl @) - Ve = Vil gp gnsry = 0 for m,n — oo,
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Notice that the constant 17 = 16 + 1 occurs, because the zero order terms of
the bilinear form are added as well. With the established inequalities, we have
convergence of 77 and 75 to the continuously extended limit objects, which we from
now on denote by Ty and Ty, for all V € H}(D,R"*!). Next, we simplify the sum
of these two limiting objects. Let V € C§°(D,R"*1). Then, by applying the state
equation and test function property of p-div(V) to get a term featuring A € L?*(DD),
we achieve

Ti (V) + Ta(V)
= alp, VITV) + (5= 7. 997V) 1)
—a(y,p-div(V)) + (rr,p- div(V))L2(D)
=ap\a(p, VY'V) + (y - 4, vaV)LQ(]D)\A)
+aa(p, VOIV) + (y =5, VUTV) gy + (Ap - div(V)) o)
= W -9 vaV) L2(A)

(8.51)

In the second to last equation, the first two summands vanish by using test function
properties of V4TV and p-div(V), and the defining equation of p from theorem 18.
The third and fifth term in the second to last equation vanish by pj4 = 0 due to
theorem 18, and complementary slackness of A € L?(D) and p € H'(D). Again, we
apply a continuity argument to gain this identity for all V € H} (D, R"*1). We see
that the limit object in (8.51) is exactly the missing term in the limit of the shape
derivatives D, .(I')[V] (cf. equation (8.46)). O

Remark 35 (Obstacle Explicitly Depending on Shapes and Jumping Source
Terms). Theorem 19 is also valid when the obstacle yr € H*(D) depends explicitly
on the shape T'. For theorem 20, it is additionally needed to assume Yr € H*(D) with
shape derivatives D(yr)[V] € HE(D). Weakly differentiable shape derivatives are
needed solely for the limiting argument of theorem 20. Then the shape derivatives
in equation (8.27) and equation (8.46) need to be modified accordingly by replacing
terms with VTV by D(¢r)[V] + VLV, Further, theorem 19 and theorem 20 re-
main valid for piecewise constant rr € L (D) depending on the shape D. For this
case, the proof can be adjusted by applying integral splitting techniques as found in
[181, Rem. 4.21, Thm. 4.23].

Remark 36 (Recovering Elliptic PDEs for Non-Binding Obstacles). By pushing the
obstacle ¥ to infinity, i.e. Y(x) T oo for all x € D, the state equation representing
the variational inequality (8.4) becomes a regular elliptic PDE. Its weak formulation
is then given by

a(yu 7}) = (7‘1“, U)Lz(D) Vv € H(}(D)

due to (8.5). This means that we encounter shape optimization problems with el-
liptic PDE-constraints. Formula (8.46) remains valid by applying A = &, giving a
shape derivative for a general elliptic problem. In particular, we recover the shape
derivative found in equation (7.16) of section 7.1.3 as a special case.

Remark 37 (Limit of Regularized Adjoints and Shape Derivatives as Optimality
Systems). The limiting object (8.46) is in general not the shape derivative of the
unregularized problem. It can be regarded as part of the limit system arising during
convergence of the optimality systems of the fully regularized problem. For readers
interested in a treatise on limiting systems of optimality systems in mnon-smooth
optimal control, we recommend [35]. The limiting objects of the convergence results
for adjoint variables and shape derivatives from theorem 18 and theorem 20 can
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be put into relation by conditions resembling C-stationarity, e.g., as found in [80,
Thm. 2.1] and [81, Def. 4.1].

Using our terminology, C-stationarity-like conditions hold if there 1is a
¢ € H-Y(D), such that the adjoint equation can be formulated in the form

a(p,v) + <£7U>H—1(]D>) = _((y - g)vv)Lz(D)' (852)

We can define such a £ € H=Y(D) by emulating the definition of p in (8.16), includ-
ing enforcement of the Dirichlet condition p =0 on A with Nitsche’s method using
boundary terms (cf. [100]). The state equation, corresponding complementarity con-
ditions, and the design equation, which in our setting can be viewed as the shape
derivative analogue (8.46), hold in analogy to the cited definition of C-stationarity.
The remaining conditions

(&P -1y =0 and p=0 ae. in{£>0}, (8.53)

by the definitions of & and p, are satisfied as well. It is worth mentioning that—to
knowledge of the author—no type of C-stationarity-like conditions for optimality of
VI-constrained shape optimization problems have been investigated or defined before.
Finding a framework for shape optimization to describe the type of these limiting
objects and optimality systems can be part of further research, and is beyond the
scope of this work.

8.4 Algorithmic and Numerical Aspects of
VI-Constrained Tracking Type Problems

In this section, we put the theoretical treatise from the previous sections into numer-
ical practice. We employ a steepest descent algorithm with backtracking line search,
in order to perform optimization procedures with various regularized and unregu-
larized versions of an exemplary variational inequality constraint. Also, we propose
a way to incorporate the unregularized approach in an algorithm, and compare it
to the different regularizations.

For convenience, we assume D C R?, and specialize the bilinear form a(-,-) of
the more general constraint (8.4) to a Laplacian version similar to chapter 7. The
model problem of this section then reads

1

Frggln §/D|y—37|2 dm—i—u-/rl ds (8.54)

s.t. / Vy Vo dz + (), V)r2(D) = / rrode Vo € H} (D)
D D
A>0 inD (8.55)
y<v inD
My—1v)=0 inD.
We use v = 107° for all computations in this section. As the right-hand side of

the state equation (8.55), we choose a piecewise constant source term rp € L (D)
defined by

() = —10 for x € Dut (8.56)
Y1000 for @ e Din, '

In order to calculate the fully regularized state and adjoint, we have to specify
a smoothed max.,, which satisfies assumption 1. For demonstrative purpose, we
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choose a similar smoothing procedure as in [94, Sec. 2], which is given by

max(0, z) for x € R\ [—%, %]

8.57
%332 + %m + % else. ( )

max, (x) = {

A different and more regular smoothing can be found in [152, Sec. 1]. Both men-
tioned smoothing techniques satisfy assumption 1. For the sake of completeness,
we also give the first derivative formula

0 for x € (—o0, —%)
sign, (z) = ¢ Yo + 3 for z € [—%, %] (8.58)
1 for x € (%,oo).

In this setting, the shape derivative limit (8.46) simplifies to
DJ()[V]

N S A o T
—/D (y—9)Vg'V —Vy" (VV +VV)Vp (8.59)

+div(V) (%(y — )+ Vyl'vp - Tpp) dz + /A(w — ) VTV da.

An analogous formula for the shape derivative (8.27) for the fully regularized equa-
tion holds as well. Notice that the shape derivative of the perimeter regularization
is also included in our computations (cf. equation (7.18)). We emphasize the sim-
ilarity of this shape derivative for the variational inequality constraint, and the
shape derivative of the elliptic PDE without obstacle found in equation (7.16) of
the previous chapter 7.

In the following numerical experiments, we consider two different obstacles

Y1(z) =0.5 and ho(x) = e 171, (8.60)

The calculations are performed in Python2.7 using the finite element package FEn-
iCS (cf. [4, 117]). As in previous chapters, meshes are generated via the free meshing
software Gmsh (cf. [63]). We choose a circle centered in (0.5,0.5) with radius 0.15
as the initial shape M. The computational mesh D = [0, 1]> C R? consists of 2184
vertices with 4 206 cells, having a maximum cell diameter of 0.0359 and a minimum
cell diameter of 0.018. This situation, including the kidney-like target shape I"*38,
is sketched in figure 8.1. The target data ij € H'(D) is computed by using the mesh
of the target interface to calculate a corresponding state solution of equation (8.55)
by the semi-smooth Newton method proposed in [94]. These are visualized in fig-
ure 8.2 for both obstacles 1y and ;. We apply the same semi-smooth Newton
method from [94] to calculate state variables y in the unregularized optimization
approach. The algorithm employed for the shape optimization is summarized in
algorithm 8.2.

For the regularized and smoothed states ., . and y., we use a Newton and semi-
smooth Newton method from the FEniCS library in order to solve the linear systems
assembled by using first order continuous Galerkin elements on the computational
meshes. All state calculations in our routines are performed with a stopping cri-
terion of eg4ate = 0.0003 for the error norms. In light of remark 28, we choose
A = max(0, 7 + At), which is possible due to sufficient regularity of ¥ and 5.
To ensure assumptions of theorem 18, theorem 19 and theorem 20, it is necessary
to fulfill

HsignAY (At (yye — ) —sign(A+ ¢ (ye — ¥)) HLI(D) — 0 fory—oco. (8.61)
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]_-\targ

Figure 8.1: Hold-all domain D = (0, 1)? with boundary dD, initial circular shape M
and target shape I'*a8,

target_sol
1.150e+00

o o
wm o
o &

o
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-5.000e-02

(a) g for 1 = 0.5 (b) g for ¢pg = e 17!
Figure 8.2: Solutions ¢ to the VI in the target shape.

To numerically verify this assumption, we calculate the corresponding norm using
various ¢ > 0 for both obstacles 1; and 13, on refined meshes having 212642
vertices and 423 682 cells, with maximum and minimum cell diameter of 0.0038 and
0.0015, respectively. The resulting convergence plot is found in figure 8.3. We
point out that as v — oo, the norm from (8.61) converges to an £ > 0 close to
0. This is due to numerical errors resulting from the state equation, because the
state solution determines the active set, which is needed to calculate the values of
sign and sign,. The functions, whose L'-norms are of interest, are illustrated in
figure 8.4 on a refined mesh. We observe that these functions, and hence the errors,
go to zero for ever finer mesh widths and more precisely calculated states 3, . and
y. This is supported by a mesh study, which successively evaluates the mentioned
L'-norms in the circular start shape on meshes generated by adaptive refinement
at the boundary of the active set for large v, ¢ > 0. The respective results are seen
in figure 8.5.

The adjoints p, . and p. are calculated by solving equation (8.9) and equa-
tion (8.15) with first order continuous elements by using the sparse LU method
from PETSc as a FEniCS linear algebra back-end. Calculation of the limit p of the
adjoints p, . as in equation (8.16) and equation (8.17) is performed in several steps.



8. Shape Optimization Problems Constrained by First Order Variational Inequalities 165

0.25
1

IIsigny = signl| .1
0.15 0.20
1 1

0.10
1

0.05
1

0.00
1

T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Y

Figure 8.3: Convergence plots for [|sign. (A+c- (yy,c —%)) —sign(A+c- (ye—v)) || 11 (m)
as a function of ~.

(a) v = 0.00075 (b) v = 0.009 (¢)y=10

Figure 8.4: Graphs of sign,, (At e (yy,e — ) —sign(A+c- (y. — ¢)) as functions
of x € D calculated on the refined target mesh with ¢ = 1000 and various v > 0,
indicating its convergence to zero for v — co.

First, a linear system corresponding to

~Ap=—(y—y) inD

8.62
p=20 on 0D ( )

is assembled without incorporating information from the active set A. Then, the
vertex indices corresponding to the points in the active set A={zx € D: y—v¢ > 0}
are collected by checking the condition

y(@) —¥(z) = —cact (8.63)

for some error tolerance €,.¢ > 0. The one-sided error bound with £,.; can be
incorporated due to our choice of \, since y is feasibly approximated by y; via
the semi-smooth Newton method from [94, Sec. 3.2], ie. y; < ¢ for all i € N
(cf. remark 28). After this, the collected vertex indices are used to incorporate
the Dirichlet boundary condition p = 0 on the entire active set A into the linear
system corresponding to (8.62). To solve the resulting system, we use the same
procedures as to solve for p,, . and p,, i.e. asparse LU method via PETSc as a linear
algebra back-end. An exemplary solution p of the unregularized adjoint equation
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Figure 8.5: Graphs of [[sign,, A+ ¢ (yye =) —sign(A+ ¢ (ye — ¥)) |1 (m) as
functions of the number of mesh vertices at the boundary dA of the active set,
calculated on refined meshes with ¢ = 10°, v = 108.
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Figure 8.6: Solution of the adjoint p at step 150 for the unregularized equation
(8.16) with obstacle ¢; = 0.5 and e,¢ = 1077.

is illustrated in figure 8.6. We point out that the active set, and consequently the
zero level set resulting from the Dirichlet conditions, can be observed in figure 8.6.

To calculate gradients U € H}(D,RR?) for for the steepest descent method, we
use a Steklov-Poincaré metric induced by the weak linear elasticity equation, as
proposed in [161]. More specifically, we assemble the shape derivatives given in
theorem 19 and theorem 20 as the right-hand side of the linear elasticity equation
introduced in equation (7.13) of section 7.1.3. Here, we choose the Lamé parameters
u as the solution of the Laplace problem (7.15) for fimax, tmin > 0. The same
physical interpretation of the Lamé parameter p via stiffness of the mesh material
described in section 7.1.3 applies in this context. For our calculations, we choose
Hmin = 0.0001 and ppax = 25 for ¥, and pmin = 0.0001 and pymax = 55 for ¢s. Also,
we set all right-hand side values of (7.13), which do not have a neighboring vertex
on the shape, to 0. For a more detailed discussion of this stabilization procedure,
we refer the reader to [161, 74].

We summarize our approach in algorithm 8.2 for the unregularized procedures,
which itself use a simple backtracking line search with sufficient descent criterion
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Figure 8.7: Shapes of steps 0, 50, 150, 320, 450, 750, 1200 of the unregularized
optimization procedure using €..¢ = 1072 and ¥ = 5e~**~!. The target shape is
represented by dotted lines, the starting shape is the centered circle.

1 U «— Uy

2 while J (g7, T5(Tk)) > 0.995 - 7 (yi, T'x) dos
3 U<+ 05-U

4 Dk+1 — TU(Dk)

5 Fk+1 — TU(Fk)

Algorithm 8.1: Backtracking line search. Uy denotes the shape gradient
calculated at the corresponding shape iterate I'y, in step number k. Tp(T'y) :=
{y € R?*: y =2+ U(x) for some x € T} is the deformation via U, and y
the state solution for Tp (I'y).

seen in algorithm 8.1. The regularized and smoothed procedures work analogously
by modifying the state, adjoint and shape derivative equations. The calculations
of py. and p. are straightforward and do neither need the previously discussed
additional steps, nor those outlined in algorithm 8.2, for the case of unregularized p.
Notice that we employ a safeguarding technique in the design of algorithm 8.2. This
stems from the fact, that the limit of shape derivatives DJ from equation (8.46)
is in general not the true shape derivative of the initial problem, see remark 37.
Hence, additional checks of the convergence criterion for the fully regularized shape
derivative DJ, . are performed after convergence by DJ. If no convergence is
detected by DJ, the regularized shape derivative D7, . is used to calculate a further
descent direction, as the latter is a true shape derivative for the smoothed problem
by theorem 19. Further, the safeguarding acts as a safety, when the adjoint limit
object py, is flawed due to erroneous allocation of the active set Ay as discussed with
condition (8.63). Since the smoothed model is not prone to this effect, it acts as a
substitute model for further gradient calculations.

In our calculations, the safeguard was never activated by not finding a descent
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direction during the line search procedure. This indicates that the shape derivative
limit DJ acts as an appropriate shape derivative substitute for our examples, mak-
ing the safeguard for this purpose obsolete. Still, the safeguarding is activated at
convergence for coarse grids or imprecise calculations of the state yi, indicating a
non-neglectable difference in ||DJ7, || and || DJ||. In these cases, we witness false al-
location of the active set Ay as the cause, resulting in inaccurate py, and || DJ (T')].
However, for meshes with maximum cell diameter 0.01 or less, and error tolerance
Estate < 1077 for the state calculation, the errors in active set allocation are suffi-
ciently small, which leads to inactiveness of the safeguarding at convergence with
IDI T = DT, (T

1 Set meshes Dy, Ty and parameters \, v, ¢
2 while |DJ(T'k)|| > €shape O | DTy,c(L'k)|| > €shape do:
3 Calculate state yi with tolerance eggate

4 Calculate adjoint limit py:

5 Assemble adjoint system (8.62) neglecting the active set

6 Collect vertex indices of the active set by (8.63)

7 Implement Dirichlet conditions of the active set

8 Solve modified adjoint linear system

9 Calculate ||DJ(T'x)|| and shape gradient Uy:

10 Assemble gradient system (7.13)

11 Set DJ (I'x;)[V] = 0 on all vertices without support at interface I',
12 Solve for gradient Uy,

13 Perform backtracking line search algorithm 8.1 to get Uy,

14 if line search fails to give descent direction Uy or || DT (Tx)|| < €shape
15 Calculate fully regularized state 3. .

16 Calculate fully regularized adjoint p. .

17 Calculate | DJ,.(Tx)|l

18 if |DIy.c(Tk)|l > €shape:

19 Calculate fully regularized gradient U, . by DJ,,c(I'x)

20 Perform backtracking line search algorithm 8.1 with U, . to get Uy

21 ]D)k+1 — TUk (]D)k)
22 Fk+1 — TUk (Fk)

Algorithm 8.2: Shape optimization via limit systems for VI-constraints with
safeguard strategy.

Our findings concerning convergence of unregularized approaches with various
€act > 0, as well as regularized approaches with different parameters v > 0 and
¢ > 0, are displayed in figure 8.8 for obstacle ¢y = 0.5, and in figure 8.9 for
1y = 5e~*1~1, Morphed shapes arising during the optimization procedure are plot-
ted in figure 8.7 for the unregularized approach using .. = 1072, It can be seen
in the plots, that there is a vanishing difference between approaches using fully
regularized calculations with sufficiently large v and ¢, regularized ones with large
¢, and the unregularized one. For smaller regularization parameters v and ¢, the
solved state and adjoint equations begin to differ from the original problem, and
thus slow down convergence. For very small v and ¢, there is no convergence at all,
since regularized problems start to deviate from the original problem.

The convergence behavior of the unregularized method strongly depends on the
selection of the active set. When the state solution y is not calculated with sufficient
precision, the numerical errors lead to misclassification of vertex indices of the ac-
tive set A. Hence, wrong Dirichlet conditions are incorporated in the adjoint limit



8. Shape Optimization Problems Constrained by First Order Variational Inequalities 169

3e-02-
Method
- — — Fully Regularized 1
fe-02: > - =+ = Fully Regularized 2
WS
N Regularized 1
— A\ — Unregularized 1
0] AR U :
=] e~ -—=-= Unregularized 2
@
e
& 16-03-
1e-04- - ' ) ,
0 50 100 150 200
steps

Figure 8.8: Convergence plots of shape objective values J(I'x) for different regu-
larized and unregularized approaches for obstacle 11 = 0.5 using steepest descents.
Unregularized 1: €. = 107°. Unregularized 2: e.e = 1072. Regularized 1:
¢ = 10*. Fully Regularized 1: v = 0.75 and ¢ = 10*. Fully Regularized 2: v = 0.3
and ¢ = 10%.

system, creating errors in the adjoint limit p. This makes the gradient sensitive to
error for smaller €,.¢, as can be seen by the slight roughness of the target graphs
in figure 8.8 for e, = 107°. To compensate this, the condition to check for active
set indices (8.63) can be relaxed by increasing €, > 0. This increases likelihood
of correctly classifying the true active indices, while also increasing likelihood of
misclassification of inactive indices. Therefore a relaxation can lead to errors in
the adjoint increasing with e,., trading convergence levels for robustness. This is
visible in figure 8.8 and figure 8.9. Of course, this strategy gets less feasible for
highly oscillatory obstacles ¢ with associated states y, as well as state solutions
with large error tolerance egate. To circumvent this, it is sufficient to simply de-
crease error tolerance egate Of the state calculation. An exemplary result of this
is seen in figure 8.9 under Unregularized 1*, where we decreased the error toler-
ance to egtate = 107°. Nevertheless, additional decrease of egate comes with more
computational cost, whereas with increase of €, the robustness is paid by loss of
convergence levels and speed.

It is worth to mention, that implementing the unregularized state and adjoint
becomes especially numerically exploitable with higher resolution meshes and more
strongly binding obstacles 1, i.e. larger active sets A. This is possible by sparse
solvers due to the proposed incorporation of Dirichlet conditions on the active set.
An alternative to sparse solvers could be an application of the fat boundary method,
as found in [126], to the limiting adjoint system for p from theorem 18. Both
strategies are especially advantageous for large systems resulting from fine resolution
meshes, as both sparsity of systems, and accuracy of our method increase at the
same time. Such implementations could be envisioned as parts of future research.

So in contrast to the method proposed in [57], where performance slows down
for more active obstacle v, we do not notice unusual slowdown in performance with
the methods proposed in this chapter, and instead offer possibility of numerical
benefit from more binding obstacle .
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Figure 8.9: Convergence plots of shape objective values J(T'y) for different reg-
ularized and unregularized approaches for obstacle 1, = 5e~*'~! using steepest
descents. Unregularized 1*: €,o; = 1073, Unregularized 2: e,o¢ = 1072. Regular-
ized 1: ¢ = 10*. Fully Regularized 1: v = 0.75 and ¢ = 10*. Fully Regularized
2: v = 0.3 and ¢ = 10%. Unregularized 1* uses a lower tolerance egpqre = 107° for

the state calculation. Notice that regularized and fully regularized approaches for
v =0.75 and ¢ = 10* are almost indistinguishable.



Chapter 9

Custom Pre-Shape
Regularization for

VI-Constrained Shape
Optimization

In this chapter, we blend and enhance techniques of previous chapters, and apply
pre-shape parameterization tracking customized to shape optimization problems
constrained by variational inequalities of first kind. In [25], mesh adaptivity strate-
gies for tracking type optimal control problems constrained by elliptic variational
inequalities are discussed. We are not aware of such a result in the context of VI-
constrained shape optimization. Also, our approach does not build on remeshing
or mesh refinement. Instead, we use the pre-shape regularizations from chapter 6
to adapt meshes to the VI solely by the mesh morphing routines during shape op-
timization. Rather, partial remeshing or refinement strategies can be incorporated
in addition to the techniques we highlight in this chapter.

We focus on volume mesh regularization to illustrate the combined approach.
Shape mesh quality optimization can be dealt with analogously by using appropri-
ate terms as explained in section 7.1.3. So far, we defined a target cell volume ¢°
a priori, which gave us a regularization for shape optimization routines as studied
in section 7.2. This includes the uniform mesh target as an important special case.
However, this does not fully harness the capabilities of the pre-shape parameter-
ization tracking objective JP. Its formulation offers the possibility to incorporate
further information about desired cell volume allocation via its target f°, or ¢° re-
spectively. In particular, we can exploit the structure of underlying shape optimiza-
tion problems to which mesh quality regularization is applied. We demonstrate this
in section 9.1, by designing a target fP tailored to the VI-constrained tracking type
shape optimization problems, which we extensively discussed in chapter 8. Then,
in section 9.2, we introduce a second method inspired by the alternating directions
method (ADM). It permits us to exploit quasi-Newton methods for pre-shape regu-
larization, and can be applied in addition to simultaneous pre-shape regularization
strategies of chapter 6 and chapter 7. Finally, we compare this algorithm with the
simultaneous mesh quality and shape optimization algorithm 7.1 from chapter 7.
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9.1 Constructing a VI-Specific Cell Volume Target

There are several properties of variational inequalities, which can guide the design
process of appropriate meshes for their solution. One such interesting feature is
the boundary of the active set 0A of the VI, as it captures the switching of the
state regiment. The active set is of key interest for the case of obstacle problems,
particularly for calculation of limiting objects of sensitivities for shape optimization
(cf. theorem 18). It is also of interest outside the realm of tracking type objective
functionals, e.g. when optimal designs depend on good resolution of the active
region in contact problems. Hence we emphasize, that the techniques for mesh
quality regularization in this section can be applied to different problem classes by
slight modification. In particular, they are not limited to VI-constrained problems.

Following this train of thought, we design a target fP for the parameterization
tracking functional, which enforces a mesh adaptation for higher resolution of the
active set boundary 0A. We construct the target by application of a nonlinear
transformation to a signed distance function associated to dA C D. As we only
change the target fp by this, we can apply all techniques for regularization of
gradient systems presented in section 7.1.3. Given an obstacle ¥ > 0 of sufficient
regularity, let us assume we have a solution y to the variational inequality (8.2)
or its smoothly regularized problem (8.8). This automatically gives us the active
set A C D by checking for the corresponding inequality constraint y — ¢ > 0,
or A c- (Yy,c — ) > 0 respectively. Since we have numerical solutions for the
VI, it is unavoidable to have error in the fulfillment of the constraint imposed by
the obstacle. Therefore, we have to construct the numerical active set using a
relaxed formulation such as by condition (8.63). The numerical active set is then
used to infer the vertices of JA. With this, we can calculate a function ¥, which
approximates the signed distance function to the active set boundary 0A. For
some egix > 0 large enough, we do so by solving a regularized or stabilized Eikonal
equation

—EEik~A19—|-|V19| =1 D

9.1
J=0 onJdA. (9-1)

Of course, solving the unregularized Eikonal equation for eg; = 0 is favorable.
Several efficient numerical methods, such as the Fast Marching Algorithm, exist
for this task, and are compared in [91]. However, we prefer to use the regularized
version, since we can more easily integrate it into existing software structures. Ex-
istence and uniqueness of solutions ¥ € H?(D) N Hg (D) to the regularized Eikonal
equation (9.1) can be guaranteed by application of the Banach fix-point theorem
for large enough egj, > 0, since the absolute value is Lipschitz continuous (cf. [50,
Ch. 9]). In our implementations, we solve the regularized Eikonal equation by using
a semi-smooth Newton method. For this, the weak formulation of the regularized
Eikonal equation (9.1) is given by

EEik * / VTV dx +/ VVITVY v de = / vder Vv e Hy(D). (9.2)
D D D

The first variation of equation (9.2) in direction o € H*(D) is given by

1
ERik - Vf)TVvdm—/i-VﬁTVﬁ-vdx:O Yo e HYD). (9.3
Bk /]D) b VVITVY o(D). (9:3)

As an initial guess for the Newton method, we solve the Poisson problem

—egpik AY=1 inD

4
¥9=0 on 0A. (94)
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For the numerical implementations presented in this chapter, we use a relaxation
parameter of 0.5 for the Newton method. Also, we choose the regularization pa-
rameter gy = 10 - h2, . where h2_ is the maximum edge length of the current
mesh iterate. An exemplary illustration of a solution to the stabilized Eikonal
equation (9.1), featuring the active set boundary 0A, is seen in figure 9.1 (b).

Next, we construct a target f¥ by using the approximate signed distance function
1. The signed distance function itself lacks several properties to act as a target
for the pre-shape parameterization tracking problem (6.18). In general, it does
not fulfill necessary normalization conditions found in theorem 16 to guarantee
existence of solutions to volume mesh regularization. Also, the signed distance
function decreases in value with increasing proximity to 0A. This results in a target,
which decreases cell volume closer to 0A. We reverse this, meaning that more mesh
vertices should be allocated close to dA. And last but not least, the correspondence
of discrete cell volume allocation and the values of our target fP is non-trivial.
Hence we apply a nonlinear transformation, which gives us the opportunity to model
a desired variation in cell volume allocation.

We construct a nonlinear transformation with desired properties in the following.
First, as D is bounded, we can normalize the values of 9 to fit the reference interval

[0,1], i.e. apply

L: [0,max d(x)] — [0,1], z+~> . z. (9.5)

zeD max ¥(x)
zeD

At this point, there are multiple ways to transform the distances. Different trans-
formations F' result in different cell volume profiles. This means the user is free to
model a volume allocation fitting his task. For illustrative purpose, and given a set
of parameters p € R and «, 8,7, €Tvanst > 0, we choose a transformation inspired
by the density function of the generalized normal distribution

1
F(LL’) = (IL(m)—u\)ﬂ + €Transf- (96)
e ¥

Notice that our transformed target is strictly positive, which is necessary for well-
defined solutions to volume regularization (cf. theorem 16). The parameters serve
to model the cell volume allocations. An exemplary illustration of equation (9.6) for
a set of fixed parameters, for which volume mesh regularization results in a region
with high node density near 0 A, is visualized in figure 9.1. With this, we can finally
construct a meaningful cell volume target function. For the case of closed shapes
©(M), i.e. empty IM, the associated target is given by

fmié‘ ¢ (x) da
D W '
o(M) — Jpgue ¢ (x) da
m

Fod for x € ]D)g‘
(9.7)
-Fod formeD&“t.

Just as in section 7.1.2, this type of definition guarantees necessary normalization
conditions of fP on the inside and outside of a shape iterate ¢(M) C D. For shapes
with boundaries d¢(M), the construct is adapted to suit the conditions found in
theorem 16 (ii).

It is important to distinguish the shape (M) and active set boundary 9 A, which
obviously do not coincide in general. Also, we have discussed in remark 22, that
lower regularity of objects participating in the volume parameterization tracking
problem (6.18) is enough to guarantee existence of solutions. Hence, regularity of
solutions ¢ to the stabilized Eikonal equation is not threatening applicability of
volume mesh quality regularization with VI or shape specific targets.
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From a technical perspective, the pre-shape material derivative D, ( fE( M))[V]

seen in equation (7.11) is not correct for all directions V € H}(D,R"*!) in case
of the VI or shape specific target from equation (9.7) (cf. remark 39). However,
it coincides for all directions V' with vanishing normal component on (M), which
is in particular the case for all V' € H&w( M) (D,R™*1). We emphasize again, that

directions normal to (M) are in tangential or vertical component of T Diff(D), as
their support is a subset of the interior of D. For volume parameterization tracking,
the manifold of concern is . Thus only directions which change the shape of D, i.e.
directions normal to D, have components in the horizontal component of the fiber
bundle 7 Diff(D) (cf. equation (4.14)). The techniques presented in section 6.2.2,
which implement volume parameterization tracking with invariant shapes, are there-
fore valid for the VI-specific target. The previous pre-shape material derivative is
applicable in this scenario, since the employed modification projects the values of
test directions V' changing the shape of ¢ (M) to zero on ¢(M) (cf. equation (6.35)).
This means no extra care needs to be taken if VI or shape-specific targets are im-
plemented via approaches highlighted in section 6.2 and chapter 7.

35
— q_vol_transformation
30

25

20

0.0 02 04 06 08 10

(a) Transformation F (b) Signed distance function ¢

(c) Transformed signed distance F'(¢#) 2D (d) Transformed signed distance F'(9) 3D

Figure 9.1: Objects to construct a VI-specific target f}g’( M) (a) Transformation F
as in equation (9.6) for & = 5,8 = 8, ervanst = 1,0 = 0.1,7 = 0.25. (b) Solution
¥ of the weak stabilized Eikonal equation (9.2) for step 130 of algorithm 7.1 with
egik = 10 - Amax,130, and marked active set boundary A for the fully regularized
version of problem (8.54). (c) Transformed signed distance function F() via equa-
tion (9.6) and parameters of (a) on the resulting mesh for simultaneous volume
mesh regularization and shape optimization at step 130. For the initial mesh, see
figure 9.2 (a). (d) 3D view of the transformed signed distance function F(¢%).
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Remark 38 (Local Mesh Adaption for General Hypersurfaces). Our method to
construct customized cell volume targets for the active set boundary 0A is also ap-
plicable for general n-dimensional submanifolds N C . By replacing A with N,
and following the previous approach, volume mesh reqularization results in a mesh
with specified cell volumes depending on the distance to N C D. The submanifold
N then acts as the boundary for the Dirichlet condition of the stabilized Eikonal
equation (9.1). In particular, choosing N = (M) gives techniques, which adapt
the mesh according to the shapes which arise during shape optimization.

Remark 39 (Sensitivities for Pre-Shape Parameterization Tracking Constrained
by Eikonal Equations). Although it is not necessary to have the complete pre-shape
material derivative for target f2 from equation (9.7), which captures effects in di-
rections normal to @(M), it might still be calculated in closed form. This becomes
clear, when the volume parameterization tracking problem is formulated for a shape
specific target without shape optimization. For illustration, let ' C D be a closed
shape. Then such a formulation is given by

aP

2
min _ —/ (gD 0¢ Y(x) det Do~ (z) — T(z?)(x)) dz
HEDIff(D\D)NDIFL(D) 2 Jp

st. |V =1 inD

J9=0 onT.

(9.8)

Here, the transformation T is defined as the operator which maps ¥ to fP as in
equation (9.7). We clearly see that the target T'(9) implicitly depends on the shape
I' € D wvia the boundary condition of the constraining Fikonal equation. Therefore
formulation (9.8) shows, that volume parameterization tracking with a shape spe-
cific target can be regarded as a PDE-constrained pre-shape optimization problem.
From such a point of view, a Lagrangian for problem (9.8) can be constructed. Such
a Lagrangian can be used to produce an adjoint-like equation for the constraining
Fikonal equation with respect to the target J°. The sensitivity can be used to cal-
culate the pre-shape material derivative, which features influence of directions V
normal to T'. However, the fact that the absolute value is non-differentiable, and
since it can lead to occurrence of singularities in the sensitivity system, creates ad-
ditional difficulty. The situation becomes even more complex for volume parameter-
ization tracking with shape specific targets that are coupled with shape optimization
problems. If the shape optimization problem itself is constrained by a PDE or VI,
then the sensitivity systems are in fact partially or even fully coupled. As previously
explained, the full pre-shape material derivative is not needed for volume mesh reg-
ularization. Therefore it is not feasible to derive formulations for such sensitivities,
let alone to numerically implement solution procedures for them. However, from
theoretical perspective, a sensitivity analysis of equation (9.8) is an interesting ex-
ample of a geometric problem, which can be stated and analyzed in the context of
PDE-constrained pre-shape optimization.

Before we implement volume mesh regularization with the presented VI-specific
target, we introduce another method for mesh quality optimization during shape
optimization. This method allows us to use quasi-Newton methods for mesh quality
improvement, while avoiding, perhaps expensive, recomputations of targets fE( M)
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9.2 A Quasi-Newton-ADM Approach for Mesh
Quality and Shape Optimization

In chapter 7, we explored algorithms that simultaneously optimize shape and vol-
ume mesh quality, while solving a shape optimization problem. The simultaneous
approach showed the advantage of saving additional computational cost by calcu-
lating a modified shape gradient. In this section, we illuminate a different approach
inspired by the alternating directions method (ADM). We focus on volume mesh
regularizations. In its most basic sense, such an approach uses an alternating op-
timization of the shape objective J and the pre-shape parameterization tracking
functional J°. This would come with increased computational cost, which is why we
use a different formulation to limit additional numerical burden, and to guarantee
sufficient mesh quality.

We propose a modified ADM-inspired approach in the following. It does not
exclude the use of simultaneous optimization strategies previously discussed, but
can be either used in addition to, or instead of it. The full algorithm is depicted
in algorithm 9.1. Instead of alternating optimization for the shape objective, or its
simultaneous mesh quality regularized version, and the parameterization tracking
functional for mesh quality in every step, we prioritize the simultaneous shape and
mesh quality descent. In addition to the simultaneous shape and mesh quality
descent as discussed in algorithm 7.1, we perform optimization steps solely for the
parameterization tracking functional, if a condition for sufficient mesh quality is
violated. Namely, we monitor the absolute and the relative values of J” with respect
to the initial mesh. If these values rise above a specified upper boundary B > 0,
then an optimization subroutine for J” without the shape target J is triggered.
Optimization in this subroutine takes place until the absolute or relative values of
JP drop below a specified baseline B > 0, i.e. the mesh quality is sufficiently close
to the specified target adaptation fP, or a maximum number of subroutine steps
is reached. The descent direction for this is given via equation (6.30). With this
procedure, a minimum mesh quality B with respect to the specified cell allocation
fP is ensured for the entire optimization procedure.

In an infinite dimensional framework, algorithm 9.1 is unlikely to be trapped in
an infinite loop for this subroutine. This comes from theorem 13, which guarantees
that the only stationary points for J© are in fact globally optimal mesh parameter-
izations ¢ € Diff(D \ ¢(M)) N Diff ,(5r)(D) with J°(¢) = 0. However, since we are
dealing with discrete meshes, the mesh topology can in fact prohibit convergence to
a globally optimal parameterization. This strongly depends on the connectivity of
nodes, and is an interesting subject for future studies. Hence, care should be taken
to not choose B too close to 0.

As was the case for simultaneous pre-shape regularization and shape optimiza-
tion algorithm 7.1, pre-shape updates py4+1 and ¢g41 are computed as the coordi-
nate difference of mesh k& + 1 and the initial mesh. Mesh coordinate updates are
performed by simple addition of a descent direction U, i.e. z < z + U(x) In algo-
rithm 9.1, we have described the general case o, o > 0 for simultaneous shape and
volume mesh quality optimization, and shape optimization, complemented by condi-
tional individual volume parameterization tracking. Of course, a simplified version
of algorithm 9.1 for the case of shape optimization, which is complemented solely by
conditional individual volume parameterization tracking, also applies. Further, it is
not necessary to use VI-specific targets fP. If desired, a volume parameterization
tracking target fP based on independently prescribed cell volume allocation as de-
scribed in section 7.1.2 can be used. In such cases, gathering of active set boundary
nodes and/or solution of an Eikonal equation are not required for algorithm 9.1. If
variational inequalities have tightly binding obstacles ¢, shape optimization featur-
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1 Set starting domain Dy and shape po(M) =Ty, and save according vertex
coordinates for future computations

2 Set pre-shape and VI regularization parameters a”,aP, v, ¢ > 0, and L-BFGS
memory parameter L € N

3 Set shape tracking target ¢: D — (0, 00) and VI-specific volume target
parameters

4 Estimate initial point distributions g for ¢q(M) and ¢® for Dy according to
equation (7.6)

5 Calculate local orthonormal tangential bases 7 for each vertex of ¢o(M)
using Gram-Schmidt orthonormalization, and save them for future iterations

6 while (HUkH > gabs and HZ’SH > €re1) or % > ¢/, do:

Solve for state solution y;, via equation (8.8)
Collect vertices of active set boundary dA as in section 9.1

9 Solve stabilized Eikonal equation (9.2) for ¥ using semi-smooth Newton
method as described in section 9.1

10 Calculate VI-specific target f&( M) using transformation equation (9.7)

11 if gi%iﬁg > B:

12 Pr,0 < Dk

D

13 while (84 > B do:

14 Calculate and store pre-shape gradient UlD via equation (6.30)

15 Calculate shape L-BFGS direction SP via algorithm 9.2

16 Perform line search to get descent direction gP for JP and store it

17 Prit1 < Drg + SP 0 iy

18 Ok Pkit1

19 Assemble right-hand side of pre-shape gradient system (7.12):

20 Solve for adjoint py, via equation (8.9)

21 Calculate local orthonormal tangential bases 7%* for each vertex of
vr(M) with same orientation as 7y using Gram-Schmidt
orthonormalization

22 Assemble RHS(¢y, ¢1) according to equation (7.21) with DJ, . from
equation (8.27)

23 Solve for pre-shape gradient Ug:

24 Calculate local weighting parameters p by solving equation (7.15)

25 if linear elasticity:

26 Assemble left-hand side a(-, ) by equation (7.13) and solve by

preconditioned CG-method

27 elif p-Laplacian:

28 Use preconditioned Newton’s method to solve equation (7.12) with

left-hand side a(-, ) by equation (7.14)

29 Perform a line search to get a sufficient descent direction Uy:

30 U + m - Ug

31 while
T (o + Uk o @r)) + ™ - 3™ (o + Uk 0 0x) + o - 32 (¢ + Uy 0 ¢

32 > J(r(er)) +a” - 3¥(pr) + a7 - 3%(¢x) do:

33 Uk —0.5- Uk

34 Perform updates:

35 Pry1 ¢ i+ Uk o gy,

36 Gr+1 < Ok + U o g

Algorithm 9.1: VI-specific simultaneous shape and volume regularization
with quasi-Newton-ADM subroutines for volume parameterization tracking.
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ing limiting objects studied in chapter 8 can be of benefit. For such an approach,
the adjoint limit p features increasing sparsity for larger active sets (cf. theorem 18).
As a caveat, this also means the safeguarding strategy as described in algorithm 8.2
needs to be incorporated into algorithm 9.1, since the shape derivative limits from
theorem 20 do not in general provide descent directions.

There are multiple potential benefits offered by application of the modified
Quasi-Newton-ADM algorithm 9.1, which we list and discuss in the following.

Exactly Invariant Shapes A main benefit of a subroutine descent for volume
mesh quality is a guaranteed exact shape invariance, meaning coordinates of shape
mesh nodes remain unchanged. This opportunity comes from two requirements,
which are achieved for ADM algorithm 9.1. First, the shape objective J is not
participating in subroutines. And secondly, the subroutine optimizes J over the
class of pre-shapes Diff(D \ (M)) N Diff,(r) (D), which leave the shape ¢(M)
invariant. Hence to these two properties, the right-hand side of pre-shape gradient
systems of subroutines has no support on ¢(M). This offers the possibility to
implement Dirichlet zero conditions on ¢(M) C D. Such a condition is not possible
in a simultaneous approach, since we know from Hadamard’s theorem 7 that the
shape derivative D.J is supported in normal directions on ¢(M).

Sufficient Adaptation for Upcoming State Solutions Obviously, an ADM
approach can adapt the mesh to the state equation of the current shape, which is
then solved for the next shape optimization step. A simultaneous approach may
not adapt the mesh sufficiently well for the upcoming state solution, since it only
uses explicit information of the current mesh, and not of the upcoming mesh, where
the next state is computed. In some sense the situation for our current formulation
of simultaneous optimization resembles an explicit mesh adaptation algorithm. An
implicit one would adapt the mesh to the next shape iterate to come. The ADM
approach achieves this, but at the cost of not being able to simultaneously compute
a descent direction for 7.

Reduced Cost for Expensive Target Constructions If targets fE(M) are

expensive to construct, an extended optimization for the objective JP without shape
objective J does not need recomputation of fj? ) Which saves costs. Additionally,
computational cost is lower compared to a standard ADM approach, since volume
mesh optimization is taking place only when mesh quality is sufficiently bad.

For the case of a target f varying with distance to the active set 0A, or a
shape T" as in section 9.1, the main computational burden comes from solution of
additional Eikonal equations. The invariant shape ¢(M) for the subroutine stays the
same, which means solution of only one Eikonal equation is sufficient to compute
a target fE( M) During simultaneous mesh quality and shape optimization, the
shape ¢(M) changes in each iteration, because the shape derivative of the shape
objective is participating in gradient systems. Thus, for each step of unregularized
or simultaneous approaches, an Eikonal equation needs to be solved to adjust for
the new shape iterate.

Large Deformations and Their Corrections are Possible Another benefit of
an alternating approach comes from the scenario of large deformations of the shape
with a highly varying target cell volume f}z( M) at the same time. In such a case, the
stand-alone simultaneous approach using gradient descents becomes increasingly
difficult to apply, as descent directions are not always found.

The correction of mesh quality for large deformations and a highly varying cell
volume target f® becomes possible with the ADM algorithm 9.1. This comes from
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applicability of Dirichlet zero conditions on (M) for parameterization tracking
descent directions, which we previously discussed in this section. This is difficult
if volume regularized gradients are represented with forms a(-,-) featuring higher
order terms in the simultaneous approach. We suspect that the cause for this lies
in the smoothing effect of the solution operator of higher order gradient represen-
tations. If the forces ®JP and DJ are strongly opposing near the shape ¢(M),
then higher order representations a(-,-) lead to cancellation by smoothing, whereas
representations with lower order metrics lead to possible jumps of the gradient. In
both cases, we witness stagnation of optimization routines during line search, as no
permissible descent directions are computed. This cannot happen for the proposed
ADM inspired approach.

For small steps, e.g. near a solution, the difference of consecutive meshes is not as
large. Therefore an ADM approach is not favorable in this aspect when convergence
is taking place, since the simultaneous approach leads to approximately the same
benefits for mesh adaption at lower numerical cost.

Applicability of Quasi-Newton Methods Because the ADM algorithm 9.1
does not change the target fg’( M) and objective functional J° in subroutines, we can
apply quasi-Newton approaches for mesh quality optimization. We propose to use
a shape L-BFGS algorithm 9.2 instead of gradient descents in subroutines. Using
L-BFGS updates for the simultaneous approach is not straightforward, since the
objective JP of the volume parameterization tracking problem changes every time
the underlying shape ¢(M) is deformed. It is not immediately clear how to avoid
this, because p(M) needs to stay invariant under volume mesh adaptation, which
is ensured by suitable change of the target fE M) and the problem formulation. In
section 7.4, we presented a numerical study on the compromising effects of non-
invariant formulations of the volume mesh parameterization tracking problem on
shape optimization.

This difficulty does not occur for the subroutine case. Since the shape p(M)
remains fixed, the parameterization tracking functional J° also stays the same.
This gives applicability of a shape L-BFGS routine, with a coherent gradient and
descent history, without modifications. It requires storage of previous pre-shape
gradients and descent directions of the subroutine for a memory length parameter
L € N. Once the subroutine has sufficiently descended, the stored history can be
deleted, as the shape L-BFGS routine starts fresh for every triggered subroutine.
An algorithmic illustration of a shape version of the two loop L-BFGS recursion is
seen in algorithm 9.2. To ensure positive definiteness of L-BFGS updates, we check
for the so-called curvature condition. As we do not work in vector spaces, we resort
to pre-shape calculus formulations of the curvature condition, which are given by

@JD(¢k+1) [Sk] — @JD (¢k) [Sk] = a(Uk+1, Sk) — a(Uk, Sk) > 0. (9.9)

Here, U}, is the gradient given via equation (6.30), a(-,-) is the sufficient form to
represent the gradient, and Sj is the L-BFGS direction used for a descent in itera-
tion k. We check for the curvature condition, whenever an L-BFGS step is applied.
If the condition is not fulfilled, we resort to a gradient descent step, without update
of the history. When we have a satisfied curvature condition (9.9), but the gener-
ated direction fails to give a descent during line search, we delete the history and
proceed with a gradient descent. Then, for a successful gradient step, we begin a
fresh L-BFGS history. If no gradient descent can be achieved via line search, we
quit our optimization with a fail. In the context of pre-shape optimization, which
performs optimization on infinite dimensional manifolds, the L-BFGS algorithm
should use retractions to transport vector fields from one tangent space to another.
Otherwise, meaningful algebraic operations with vector fields are not guaranteed in
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general. However, as we are in the case of volume optimization, we have pre-shapes
¢ € Diff(D\ p(M))NDiff,(5r)(D) from a pre-shape space consisting of a single fiber.
This means the underlying shape D represented via pre-shapes ¢ is invariant. For
simplicity of the numerical implementation, we therefore decide to use retractions
Ts(U), which initializes the degrees of freedom of Ts(U) located in = + S(z) € D
with the values U(z) previously located in z € D. Put in another way, we simply
move the coordinates of DoFs corresponding to U in direction S to get Ts(U).

1 Z+«+UP

2 Y1 UID _TSl—lUID—I

3 for k=1-2,...,1—L:
4 Y. <—T5171 ...TSkYk
5 for k=1—-1,...,1—L:
6 Sk <_TSL,1 TSkSk
7 Pk a(Yi, Sp) ™!

8 a <—pk~a(5k,Z)

9 ZerakYk

a(Yi—1,51-1)
Z a(Yi_1,Yi—1) Z

11 for k=I1—-L,...,1—1:
12 By pr-a(Ya, 2)

13 Z<—Z+(ak—6k)~5k
14 S+ 7

=
o

Algorithm 9.2: Shape optimization version of the two loop L-BFGS algo-
rithm for volume parameterization tracking with memory length parameter
L € N. We write S := S,IEJ for readability, and remind the reader that these
are the directions previously applied for descent.

9.3 Implementation and Results

In this section, we implement algorithm 9.1 for two different targets f”, and compare
it to the unregularized and simultaneously regularized optimization algorithms. As
our base model problem, we use the tracking type shape optimization problem (8.54)
constrained by the obstacle problem (8.55) featuring the Laplace operator. For our
comparison study, the parameters and solution method for the VI-constraint are
the same for all approaches. The piecewise constant source term for the variational
inequality depends on the shape ¢(M) embedded in D = [0,1]%, and is given in
equation (8.56). We choose a constant obstacle 1) = 0.5 and a A = max(0, ry(ar) +
Av) = max(0,ry,(ar)) (cf. remark 28). The target 7 for the tracking type problem
is set to the solution of unregularized variational inequality (8.55) at the target
shape seen in figure 9.2 (a), i.e. we commit the so-called ’inverse crime’. It is
initially computed via the semi-smooth Newton method proposed in [94], and is
visualized in figure 8.2 (a). Further, we use the smoothly regularized state and
adjoint equation (8.8) and equation (8.9), with a smoothed maximum function
defined by equation (8.57), and its first derivative as in equation (8.58). In this
scenario, all assumptions for the theory built in chapter 8 are fulfilled. Particularly,
existence of smoothed states, adjoints and regularized shape derivatives D7, . are
guaranteed. Corresponding regularizing parameters are chosen as v =1 and ¢ = 10
throughout the entire study in this section. Also, the scaling parameter for the
perimeter regularization is chosen as ¥ = 0.00001 throughout the entire comparison
study. Its associated shape derivative is given in equation (7.18).
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As in section 7.2, calculations are performed in Python3.5 using the open-source
finite-element software FEniCS (cf. [117, 4]). Calculations are performed by a single
Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz featuring 6GB of RAM. Our un-
structured computational mesh is constructed via the free meshing software Gmsh
(cf. [63]), and is visualized in figure 9.2 (a). The starting shape M is a circle S?dft;),o.s)v
i.e. it has radius 0.15 and is centered at (0.5,0.5). Our discretization of the hold-all
domain D = [0, 1]? consists of 2 184 vertices and 4 206 triangular cells. For a consis-
tent comparison, the exact same computational mesh and initial shape are used for
all numerical approaches. The functions featured in all approaches are represented
by continuous linear elements on the aforementioned computational mesh.

The regularized state equation features the smoothed max,-function, which al-
lows us to apply a Newton method. Here, we demand an absolute and a relative
tolerance of 10~7 and 1079 for residuals of occurring semilinear regularized state
equations, at all steps for all (un-)regularized shape optimization approaches com-
pared. Corresponding adjoint equations and subproblems of the Newton method for
the state equation are solved using the PETSc linear algebra back-end in FEniCS.
In particular, we employ a CG-method preconditioned by an incomplete Cholesky
decomposition implemented in PETSc. Gradients, both for main- and subrou-
tine optimizations, are of abstract form (7.12), and represented using a weakly
formulated linear elasticity metric seen in equation (7.13). Corresponding Lamé
parameters p are generated by solution of Laplace problem (7.15) with parameters
tmin = 0.05 and ppmax = 1 for all routines. The gradient systems are solved via
the CG-method from PETSc, which is preconditioned by an incomplete Cholesky
decomposition. We remind the reader, that, as we use the fully regularized vari-
ational inequality of first kind and have met necessary conditions, the associated
shape derivative D7, . always exists by theorem 19 and is given by the closed for-
mulation in equation (8.27). This formulation of DJ, . is utilized for all following
optimization routines.

For our comparison, we track values similar to our study of the simultaneous
approach featuring linear elasticity and p-Laplacian gradient representations from
section 7.2. Namely, we collect the relative shape optimization objective values
J(T;)/T (M), and the geometric distance of the shape iterates I'; to the target
shape as defined in equation (7.23). As a convergence criterion, we require a relative
value of €, = 0.0038. This is the value at which the unregularized approach
does not find a descent direction in the line search routine, and therefore quits
the shape optimization. Moreover, we collect the relative values of the volume
parameterization tracking objective J°(¢;)/JP(¢o) for our two different targets f.
The values for the uniform target, and those of the VI-specific target, are depicted
separately. Also notice that the relative values for the unregularized routine are
included in each of the two graphs. Of course their values differ, as the corresponding
targets in the pre-shape objective functionals are different.

The Different Routines In the following, seven approaches to solve the pre-
sented VI-constrained shape optimization problem, and their corresponding param-
eters, are described in detail. We do not incorporate shape mesh regularization
techniques explored in section 6.1, as the number of methods to compare would
become too large for a clear discussion. Of course, shape mesh regularization can
be applied and compared in analogous fashion to volume mesh regularization imple-
mented in this section. For this reason, the underlying shape optimization problem
is formulated using shapes I' € BY instead of ¢ € Emb(M,D). Shapes ¢(M) oc-
curring in referenced descriptions of the following methods can simply be replaced
by I', and vice versa.

The first routine is the shape optimization approach using the variational in-
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equality regularization techniques established in chapter 8. It is the basis for all
other six methods, while also serving as a benchmark to which we compare the vol-
ume mesh quality enhancing routines. Throughout the rest of this section, we call
this routine the unregularized approach (Unreg.), as it does not feature any kind of
pre-shape regularization techniques. To avoid misconception, we remind the reader
that the unregularized approach still features regularizations for the variational in-
equality constraints. As we use the fully regularized state equation (8.8), we do not
have to rely on the safeguarding techniques proposed in algorithm 8.2. The shape
derivative DJ, . is the true shape derivative for the smoothed shape optimization
problem featuring equation (8.8) as a constraint (cf. theorem 19), which therefore
guarantees that shape gradients represented via linear elasticity metrics can serve as
descent directions. However, this also means we cannot exploit sparsity of adjoint
limit values induced by the obstacle (cf. theorem 18), which we do not necessarily
need for a comparison study on pre-shape mesh regularization techniques. The un-
regularized approach features a simple shape gradient descent using a backtracking
line search with rescaling parameter 0.5 and initial scaling of the normed shape
gradient by 0.01. The mentioned line search parameters are applied for all main
routines of forthcoming methods featuring the shape optimization objective, but
not necessarily for the line search in ADM subroutines if stated otherwise. Such a
small scaling is necessary, since initial shape gradients give descent directions de-
forming the hold-all domain near its boundary 0D to such an extend, that reliable
solution of the nonlinear state becomes impossible. Even for the rescaled approach,
this effect is still visible for the unregularized routines at the upper, lower and right
outer boundaries, and is pictured in figure 9.2 (b) and figure 9.3 (e).

The second routine involves volume mesh quality regularization using the simul-
taneous approach described in section 6.2 and section 7.1.3. In the following, we
abbreviate this approach as ’Sim. uni.” when necessary. It has a uniform volume
allocation target to correct degenerated cells coming from shape optimization. For
this, the target fP is constructed via equation (7.9) choosing ¢” = 1. Notice that
such an a priori cell volume allocation does not require solution of an Eikonal equa-
tion, as it is not specific to the variational inequality of the current shape iteration
T';. The right-hand side of the corresponding pre-shape gradient system is given
by equation (7.21) for o™ = 0, and uses the pre-shape material derivative given in
equation (7.11). The weighting of J” is chosen as a” = 0.01. Essentially, the simul-
taneous mesh quality optimization for uniform cell volumes and the unregularized
routine differ by the additional force term of - ®JP on the right-hand side of the
pre-shape gradient system. Notice, that construction of this additional force term
requires storage of the initial mesh node coordinates, which is not necessary for the
unregularized approach.

The third routine implements the alternating direction approach to guarantee
sufficiently uniform cell volume allocation. We identify it with the abbreviation
‘Grad. ADM uni.” when necessary. The unregularized approach serves as a basis,
while an additional subroutine for the volume version of pre-shape parameterization
tracking problem (6.18) is included, as seen in algorithm 9.1. Subroutine optimiza-
tion uses a pre-shape gradient descent, where the gradient is computed as the solu-
tion of equation (6.30) with o” = 1. In particular, the shape iterate I'; of the current
main routine is left invariant by implementing a Dirichlet zero boundary condition
on I'; C D. The line search parameters for the main routine are as explained before.
For the subroutine line search, we choose an initial scaling of 10. We observed that
this decreased time to convergence for the subroutine, whereas even larger initial
scalings resulted in more line search steps, decreasing overall performance. For the
main routine, the additional force term of - ®J® in the gradient system is omitted,
in order to purely evaluate performance of the ADM subroutine approach. As we
do not use surface mesh quality optimization, i.e. we set a” = 0, there is no need
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to calculate local tangential basis functions at shapes I'; in algorithm 9.1. Also, we
use an a priori defined target fP via ¢® = 1 in this routine, so there is no need
to perform solution of a stabilized Eikonal equation in the optimization main- or
subroutines. The initial volume mesh parameterization ¢, as seen in figure 9.2 (a),
has almost uniform cell volumes. Therefore we choose the upper bound of deviation
from the starting cell volume distribution as B = 1.3. When this tolerance level
is exceeded, the subroutine is triggered, which performs mesh quality optimization
until a decrease of J°(¢;)/JIP(¢o) below the level B = 0.3 is achieved. We limit the
amount of steps performed in each triggered subroutine to 25. If this number is
reached, one main routine iteration is performed, and conditions are checked again.

The fourth routine is an alternating direction approach featuring an L-BFGS
descent in the subroutine to achieve uniform cell volume allocation. It is abbreviated
by "L-BFGS ADM uni.” when appropriate. Instead of a gradient descent for JP, the
L-BFGS method, as introduced in algorithm 9.2, is performed in the subroutine.
We use a memory length of L = 3, and check for curvature conditions as described
in section 9.2. The initial scaling of L-BFGS search directions is set to 0.9. All other
parameters and settings of the fourth approach are identical to those of approach
three.

Approaches five to seven do not target uniform meshes, but instead rely on
Vl-specific cell volume targets as derived in section 9.1. They all require solu-
tion of a stabilized Eikonal equation to construct the VI-specific target fP via
the approximate signed distance function . To set according Dirichlet boundary
conditions, we solve the regularized variational inequality, and extract nodes partic-
ipating in the active set boundary 9 A via criterion (8.63) adapted to the smoothed
case with €, = 0.025. Then, we use a semi-smooth Newton method to solve its
stabilized weak formulation (9.2) as described in section 9.1. For this, we choose
the stabilizing parameter as egjk = 10 - Apax, Where hpax is the maximum edge
length of the current mesh iterate ¢;. The required absolute and relative residual
norms are 1077 and 107% respectively, while maximum number of Newton itera-
tions is limited to 70. Newton steps are damped by a scaling factor of 0.5. We
solve corresponding subproblems by applying a GMRES method implemented in
PETSc, which is preconditioned by an incomplete LU decomposition. Subsystem
solution is required to achieve absolute and relative residual norms of 1078 and
1077, with a maximum number of iterations set to 1000. With an approximate
signed distance function 9, a VI-specific target f? is constructed via equation (9.7)
by using transformation F' as in equation (9.6). The parameters for F' are set to
a=25,8=8, eranst = 1, 0 = 0.1, = 0.45 for routines five to seven.

The fifth approach features a simultaneous cell volume allocation specific to
the constraining variational inequality of the current iteration. We abbreviate this
approach by ’Sim. VI-sp.’. It is similar to approach two 'Sim. uni.’, with the crucial
difference that the target f for volume parameterization tracking is constructed
in a VI-specific manner as previously discussed. The volume mesh regularization
parameter is set to o® = 0.0025. All other parameters not discussed are identical
to those of approach two.

Approach six uses the modified ADM algorithm 9.1 with a VI-specific target
and a gradient descent in the subroutine. Therefore we denote it by 'Grad. ADM
VI-sp.”. Routine six is similar to routine three ’Grad. ADM uni.’, differing by the
Vl-specific target and associated computations. Parameters of approach six are the
same as in approach three, including initial line search scaling of 10 for pre-shape
gradients in the subroutine, with the following exceptions. The permitted amount
of rescales in each subroutine loop is set to 45. Also, the subroutine trigger is set
to B = 0.5, since the initial mesh is not adapted to the variational inequality. The
corresponding lower threshold parameter is set to B = 0.03, in order to permit
sufficient adaption of the mesh to the active set boundary 0A of the current main
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‘ Unreg. Sim. uni. Grad. ADM uni. L-BFGS ADM uni. Sim. VI-sp. Grad. ADM VI-sp. L-BFGS ADM VI-sp.

total time 453.2s 680.3s 1226.1s 408.2s 2383.3s 1765.4s 1660.2s
avg. time/step 3.5s 4.7s 10.5s 3.7s 17.9s 15.0s 14.0s
number steps 130 144 117 110 133 118 119
number subr. - - 32 3 - 2 1
avg. time/subr. - - 26.3s 22.9s - 24.3s 21.1s

Table 9.1: Total times, average times per step and number of steps for all 7 methods.
For ADM approaches, the number of subroutines triggered, and their average times
are included in total time and average time/step.

iteration.

Lastly, approach seven implements the full algorithm 9.1 with a VI-specific target
and an L-BFGS method, as depicted in algorithm 9.2, for the subroutine. The L-
BFGS memory length is L = 3, and the initial scaling of the subroutine line search
is set to 0.25. All other parameter are the same as in routine six.

Results and Interpretation The results of the different routines concerning the
shape objective J, the volume parameterization tracking functional J® for uniform
and VI-specific fP, and the geometric mesh distance to the target shape are depicted
in figure 9.4. Computational times of the main routines, and of subroutines if
ADM approaches are incorporated, can be referenced in table 9.1. The number of
subroutines triggered under an ADM regiment are found in table 9.1 as well. We
want to emphasize, that total times and average times per step include the times
of subroutines for the ADM case. Meshes of all routines at final iterations are
illustrated in figure 9.2, while intermediate meshes are depicted in figure 9.3.

All routines do not disturb the underlying shape optimization approach, which
is seen in figure 9.4 (a) by similarity of the graphs for the shape objective J. In par-
ticular, they all achieve a decrease of the relative shape objective value to the level
€rel = 0.0038, where the unregularized routine exits by finding no descent direction.
Mesh quality regularization leaves the shape objective J approximately unchanged.
Slight fluctuations can be explained by different mesh qualities, affecting the finite
element solutions of the VI-constraint. This indicates that our approaches achieve
the desired property of non-interference with the underlying problem by leaving
shapes invariant. Also, the mesh distances to the target in figure 9.4 (b) look simi-
lar, with the possible exception of the L-BFGS based ADM approach with uniform
target. The latter converges faster in geometric terms than the other routines,
which we did not expect based on the theory. Possible reasons for this increased
geometric convergence speed are still speculative, and part of further research.

Looking at the averaged times per step in table 9.1, we see that different vol-
ume mesh regularization techniques come with differing additional computational
times. It is noticeable that the unregularized approach takes only the second place
concerning total computational time, right after the L-BFGS based ADM approach
with uniform target. The lower number of steps required to achieve the demanded
relative shape objective value offers an explanation for this. We see that, if a scaled
gradient descent for the ADM approach is applied, the total time compared to an
L-BFGS approach is approximately tripled. This is reflected by the number of sub-
routines triggered. We have observed, that the first few shape optimization steps
are fairly large, which resulted in deteriorating mesh quality. When looking at fig-
ure 9.4 (c), this deterioration of mesh uniformity is captured by the initial spike of
3P for the unregularized shape optimization routine. The simultaneous mesh quality
and shape optimization routine continually decreases the non-uniformity, while the
triggered ADM approaches prevent an extreme rise in non-uniformity. The gradient
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based ADM approach needs significantly more subroutine steps to achieve the de-
sired mesh uniformity. This means it exhausts the fixed maximum number of steps
per subroutine, leading to more subroutines in total. This is seen in figure 9.4 (c)
by the zig-zagging mesh quality for the gradient subroutine, whereas the L-BFGS
based subroutine achieves jump-like decreases in mesh non-uniformity. Such fast
decreases therefore require a lower number of subroutines, while the gradient based
routine is not able to achieve the required mesh uniformity at once, explaining its
significantly longer total computational times.

Average times for mesh quality ADM subroutines are overall lower for the L-
BFGS subroutines compared to gradient ones. This is not a guaranteed finding,
due to the computational overhead of two-loop L-BFGS routines. However, since
the L-BFGS based methods converge significantly faster to demanded quality levels
B, while gradient methods need multiple full subroutines, the total amount of steps
needed for L-BFGS subroutines is much lower than those of gradient based ones.
Hence lower times for L-BFGS based mesh quality ADM routines stem from reduc-
tion of overall subroutine steps. If we take into account, that we have chosen initial
line search scaling of the gradient subroutine to enhance their convergence speed,
we recognize superiority of the L-BFGS based mesh quality approach compared to
gradient based ones. Unscaled gradient descents performed noticeably worse, being
the least effective type of algorithm. We also emphasize that the L-BFGS memory
length for these results was chosen as L = 3, which means additional storage and
computational costs of L-BFGS compared to gradient methods is limited. When
looking at the average computational time per main routine step, we see that the
unregularized method needs less time, which is expected. For the uniform case,
the simultaneous approach performs slightly slower than the L-BFGS based ADM
approach, but more than twice as fast as the gradient based ADM approach. This
possibly comes from our construction of regularized gradient systems, which is based
on multiple matrix and vector assemblations using UFL and FEniCS. We used these
rather inefficient routines, since they were convenient regarding implementation and
integration of our methods. Of course, multiple assemblations can be avoided by
investing more manual labor in the code, which can increase effectiveness of the
simultaneous approach even further. The possible decrease of its computational
time could make the simultaneous approach more competitive with the L-BFGS
base ADM approach.

In table 9.1, we observe that VI-specific routines need at least four times longer
than the unregularized routine to achieve our convergence criterion for relative shape
objective values €, = 0.0038. This is not surprising, since a stabilized Eikonal equa-
tion is solved to construct the VI-specific target for every main optimization step.
It is necessary for all three VI-specific mesh quality routines, either to calculate the
simultaneous descent directions, or to evaluate the condition triggering an ADM
subroutine. The ADM approach exploits that the shape I'y, and target fl]@k stay the
same during an entire subroutine, which reduces the number of Eikonal equations
needed to match the simultaneous approach, as is explained in section 9.2. In ta-
ble 9.1, we see that the ADM routines achieve even lower computational times per
step than the simultaneous approach for the VI-specific target, with the L-BFGS
based method slightly outperforming the scaled gradient method. This gives ex-
emplary evidence, that an ADM based mesh quality approach performs potentially
better than simultaneous approaches for targets which are expensive to compute.
On the other hand, times found in table 9.1 suggest that the simultaneous approach
could possibly compete with the L-BFGS ADM routine for targets that are simple
to evaluate, such as the uniform target. We suspect that the simultaneous approach
with the VI-specific target slightly suffered due to the line search criterion of the
main routine. This criterion is seen in algorithm 7.1, and checks for the weighted
sum of the main shape objective and the parameterization tracking objective. The
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algorithm could benefit from advanced line search techniques from multi-objective
optimization, which could be part of further research.

Relative values 32 (¢ ) /3P (¢o) for VI-specific targets f are seen in figure 9.4 (d).
For this target, J” can be interpreted as a measure for deviation from the specified
local adaptation of the mesh to the current active set boundary 0A. As the initial
cell volume distribution is uniform, and thus not adapted to the active set bound-
ary of the initial shape, the first value JP(¢g) is quite large. With this in mind,
we observe that the values of J° of the unregularized approach stay near its initial
value. This can be interpreted as the mesh staying unadapted to the variational
inequality throughout the first approach. The initial increase of adaptation can be
regarded as a consequence of initial large deformations, which compress cells near
the shape. As active set boundaries are close to the shape by nature of the jumping
source terms (8.56) and the obstacle ¢ = 0.5, this compression of cells leads to local
adaptation to the active set boundary as a byproduct. For VI-specific mesh regular-
ization approaches five to seven, we see significant decrease of J° in figure 9.4 (d),
which means the mesh is better adapted to the active set boundary. Both ADM
methods adapt the uniform initial mesh to the VI, and are not triggered later during
the main routines, because the mesh stays sufficiently adapted. Since the simulta-
neous approach incorporates an adaptation in every step, it also converges to zero,
achieving lower values than the ADM approaches in figure 9.4 (d).

In figure 9.2, we depict the final meshes and shapes of the compared approaches.
Also, we show intermediate meshes of the approaches for step 45 in figure 9.3. In
figure 9.3, we do not show the intermediate meshes of gradient based ADM methods,
as these are nearly identical to those of the L-BFGS based ADM approaches.

First, notice the almost uniform quality of the unstructured initial mesh de-
picted in figure 9.2 (a). The unregularized routine finishes after 130 steps without
finding further descent directions, where the according final mesh is depicted in (b).
Clearly, the initial uniform mesh quality is lost during unregularized shape opti-
mization. We emphasize, that strong degradation of cell quality is visible at the
upper, lower and right hold-all boundary 9ID. This might be one reason that the
unregularized routine quits at this point, since no reliable descent direction can
be computed. Nevertheless, we see that all routines, including the unregularized
one, manage to approximate the target shape depicted in figure 9.2 (a). For rou-
tines depicted in figure 9.2 (c), (d) and (e) with uniform cell volume targets, we
witness an increase in mesh quality compared to the unregularized routine seen in
(b). This is especially apparent at the hold-all boundary 9D. Unlike the unregu-
larized approach, there is no cell degeneration detectable for approaches featuring
uniform target. Although similar in their results, there is a small visible difference
in final mesh quality of the simultaneous and ADM based uniformity approaches.
The ADM approaches manage to redistribute more cells closer to the inner dent
of the final shape, which the simultaneous approach does not achieve to the same
extent. However, to accomplish this, the ADM approaches transport cells around
the kidney shape, which comes at the price of cell compression near the upper and
lower left hold-all boundary. We mention, that this could come from the difference
in convergence speeds for J° of the simultaneous and ADM methods. As seen in
figure 9.4, the simultaneous approach does not converge as fast as the ADM meth-
ods. This is visible in figure 9.3, where the mesh at iteration 45 of the simultaneous
approach in (a) has similar qualities as the unregularized approach seen in (e). The
meshes associated to the ADM approaches differ from these two, as we see no area
with strong associated cell degeneration in figure 9.3 (b). Such behavior is reflected
in the formulation of the ADM algorithm 9.1. When a threshold of non-uniformity
B is crossed, the ADM method is triggered to correct the mesh quality to a base
level B. Hence the mesh at step 45 seen in figure 9.3 (b) already shows uniform
qualities, as large initial deformations were corrected immediately, as seen by the
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graph of J%(#;)/3"(¢o) in figure 9.4 (c). When convergence for J” with uniform
target takes place, the resulting meshes exhibit the features of figure 9.2 (e). The
mentioned compression resulting from cell redistribution is unavoidable with mesh
deformation approaches, since they are essentially constrained by the mesh topol-
ogy. To remedy this, future work could either incorporate techniques altering the
mesh topology, such as cell fusions, edge swaps and partial refinement, or use con-
nectivity information at the discrete level to modify the parameterization tracking
approach.

For the VI-specific target routines five to seven, it does not make sense to ex-
amine the meshes solely for uniformity. Instead, we also look for local adaptation
near the boundary of the active set A, which in our examples is close or identical
to the shapes I';. In figure 9.2 (f), (g) and (h), we see higher node densities around
the shapes at final steps. However, the final mesh for the simultaneous approach
differs noticeably from those of the ADM approaches. In the simultaneous case (f),
the mesh vertices are more uniformly distributed around the shape and right side of
the hold-all domain. For the ADM approaches (g) and (h), the node densities are
localized closer around the shape, creating a zone which envelops the shape with
smaller sized cells. Also, this envelope is apparent during the entire optimization
approach, as can be seen by the intermediate mesh in figure 9.3 (d). As for the uni-
form target, the ADM approach guarantees a sufficiently adapted mesh throughout
the routine by checking for the subroutine trigger condition (cf. algorithm 9.1).
The results show that the VI-specific target, as constructed in section 9.1, is indeed
suitable for cell volume allocation depending on distances to a specified boundary.
Notice that the VI-specific approaches also diminish the degeneration of cells close
to the hold-all boundaries 0. These are apparent for the unregularized approach
figure 9.2 (b), but not in the same extent for figure 9.2 (f), (g) and (h).

The difference of resulting meshes concerning simultaneous and ADM ap-
proaches can be explained by the parameters of transformation F' used to construct
the VI-specific target via equation (9.6). As the variation of the target f° deter-
mines the allocation of cell volumes, we can manipulate the aggressiveness of local
adaptation. In fact, the mesh of the simultaneous approach seen in figure 9.2 (f)
corresponds closer to the given target than those of the ADM approaches. This
reflected by the lower relative values of J” in figure 9.4 (d) for the simultaneous
approach. However, we can change parameters of the target f°, such that the si-
multaneous approach yields optimal meshes similar to those of the ADM approaches
in figure 9.2 (g) and (h). We have tested this by changing the scaling parameter
of transformation equation (9.6) to o = 5, leaving all other parameters fixed. The
resulting target has higher variation than the one used for the study in this section,
leading to the final mesh seen in figure 9.1 (¢) for the simultaneous approach, with
the other parameters identical to approach five. In particular, this shows that the
user can achieve his desired node densities by choice of a sufficient target.

We notice that there is a stretching of cells taking place at the left of the kidney
shape dent. The VI-specific target demands to allocate more mesh vertices closer to
the shape boundary, which also includes the area at the outer domain close to the
dent. Moving vertices close to this boundary requires relatively large translations.
While this gives the enforced higher resolution of the active set boundary, it also
leads to the stretching effect due to limitations posed by node connectivity. As was
the case for the uniform approaches, these mesh topological phenomena occur at
the discrete level, and are not naturally taken into account by the continuous opti-
mization perspective. Incorporating information of mesh topology can be harnessed
to upgrade our algorithms, and is part of further research.
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(a) Initial mesh with target shape (b) Unregularized routine step 130

(¢) Simultaneous VolOpt uniform step 144  (d) Gradient ADM VolOpt uniform step 117

(e) L-BFGS ADM VolOpt uniform step 110 (f) Simultaneous VolOpt VI-sp. step 133

(g) Gradient ADM VolOpt VI-sp. step 118 (h) L-BFGS ADM VI-sp. step 119

Figure 9.2: Final meshes of various (un-)regularized volume mesh quality optimiza-
tion approaches for the VI-constrained problem.
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) Simultaneous VolOpt uniform ) L-BFGS ADM uniform
) Simultaneous VolOpt VI-sp. ) L-BFGS ADM VI-sp.

(e) Unregularized routine

Figure 9.3: Intermediate meshes at iteration 45 of various (un-)regularized volume
mesh quality optimization approaches for the VI-constrained problem.
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Figure 9.4: Results of the comparison study. (a) Relative values of the main shape
optimization objective J. (b) Mesh distance of shape iterates and target shape
dist(Tx, ['*8) (cf. equation (7.23)). (c) Relative values of volume parameterization
tracking objective J° for the uniform target f® = 1. Here, B = 1.3 and B = 0.3
for volume mesh quality subroutines. (d) Relative values of volume parameteriza-
tion tracking objective J° for the VI-specific target f2 as in equation (9.7). Here,
B =0.5 and B = 0.03 for volume mesh quality subroutines.



Chapter 10

Conclusion and Outlook

Achievements of This Work In the following, we give a summary of the novel
achievements in the field of shape optimization, which we derived throughout this
work. We

formulated a pre-shape optimization framework, enabling simultaneous for-
mulation of shape optimization problems, and problems concerning parame-
terization of shapes. This formulation was flexible enough to pose problems
for objects of different dimensions and with different boundary situations,
including the case of ambient space/hold-all domain meshes.

introduced the concept of pre-shape derivatives. We showed that shape dif-
ferentiable functionals are pre-shape differentiable, derived pre-shape calculus
rules extending shape calculus, and formulated a structure theorem extending
the Hadamard-Zolésio theorem.

defined the pre-shape parameterization tracking problem, provided existence
of solutions in each fiber, analyzed its properties with respect to point sets, and
gave a characterization of neighboring global solutions via L?-metrics in fibers
and Euler-Arnold-flows. We discussed its generalizations for pre-shapes of ar-
bitrary codimension, perhaps with boundary, embedded in nonlinear ambient
spaces, and implemented numerical examples generalizing the deformation
method for mesh quality.

derived the pre-shape derivative of the parameterization tracking problem,
interpreted its components in light of the structure theorem for pre-shape
derivatives, and used it to give a sufficient condition for global optimality via
fiber stationarity.

gave a closed expression for pre-shape Hessians to parameterization tracking,
provided a simplified closed expression in solutions, and related its semidefinite
directions to f-divergence free vector fields from the non-uniqueness charac-
terization in fibers.

showed how to use parameterization tracking to regularize shape optimization
problems for desired shape mesh quality, proving existence of regularized so-
lutions, leaving the original shape solution invariant. We provided sufficient
spaces for parameterization tracking of hold-all domains with invariant em-
bedded shapes, formulated simultaneous shape and volume regularized shape
optimization problems as bilevel pre-shape optimization problems, and pro-
vided existence of regularized solutions coinciding with optimal shapes of the
original problem.
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e provided shape gradient regularizations for simultaneous optimization of
shape and volume mesh quality, which did not depend on the structure of
underlying shape optimization problems, and allowed for general choice of
shape gradient representations. We proved consistency of regularized shape
gradients from modified reduced systems with pre-shape gradients of the re-
spective individual problems.

e gave an algorithm for simultaneous shape optimization and control of shape
and volume mesh quality, without need for additional gradient solves, and
invariance of intermediary and optimal shapes.

e implemented and compared various regularized routines for a PDE-
constrained model problem, using linear elasticity and quasilinear p-Laplacian
gradient representations. We also numerically analyzed the pitfalls of using
full pre-shape gradients for parameterization tracking of shapes, and use of
unsuitable spaces for parameterization tracking of hold-all domains.

e gave regularized formulations of tracking type shape optimization problems
constrained by elliptic variational inequalities of first kind, showed conver-
gence characterizations of states and adjoints under sufficient assumptions,
proved existence of regularized shape derivatives, calculated closed formula-~
tions for them, and showed their convergence to a limiting object.

e provided an algorithm taking advantage of established convergence relations
for fully regularized first order VI-constrained tracking type problems, and
implemented numerical examples for two different obstacles.

e designed a parameterization tracking target customized for shape optimization
under variational inequalities, which can also be applied to general shape
optimization problems.

e introduced an ADM-inspired pre-shape regularization algorithm, featuring L-
BFGS methods for mesh quality, which can be combined with all previous
techniques, including simultaneous shape and volume regularization for gen-
eral shape optimization problems. We implemented and compared previous
algorithms for parameterization tracking using VI-specific and uniform targets
for an exemplary VI-constrained shape optimization problem.

Further Research With the extensive coverage of pre-shape calculus and its
application to mesh quality regularizations in shape optimization, we actually see
this work as a starting point for further research in different directions. Pre-shape
calculus could be extended to nonlinear ambient spaces, which are open manifolds of
finite dimension themselves. This would require more differential geometric effort,
and could be achieved by using perturbations of identities and associated pre-shape
derivatives defined via retractions, or (weak) Riemannian or Lie group exponential
maps. An exemplary application could be mitigation of coastal erosion on the
world modeled by a spherical mesh. Even further, Whitney manifold germs as
model manifolds are of interest, since they permit shapes with interesting features,
such as corners and Lipschitz boundaries.

An immediate succession to the shape optimization regularizations via param-
eterization tracking is the design of targets f suited for the specific structure of
underlying problems. We have shown how such a design process can work in the
case of VI-constrained problems, but other problems coming from optimization in
elastoplasticity, contact problems, and computational fluid dynamics could all be
envisioned. A particularly interesting new case for pre-shape techniques could be
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mesh quality adaption for time dependent problems. Design of targets suiting ge-
ometric quantities of shapes and hold-all domains, such as their curvature, could
play a part in targets as well.

For VI-constrained shape optimization problems, better customized targets f for
the parameterization tracking regularization would certainly be rewarding. These
could incorporate the information on errors of the regularized and unregularized
objective functionals, and mismatch in complementarity of primal variables and
their multipliers, similar to refinement indicators found in [25].

Independent of pre-shape techniques, the question of convergence of optimal
shapes of the fully regularized VI-constrained shape optimization problem of chap-
ter 8 to an optimal shape of the unregularized problem remains an endeavor for
the future. Further, the study of general variational inequality constrained shape
optimization problems seems an area relatively unexplored. General objective func-
tionals, as well as variational inequality constraints of second order, or even quasi-
variational inequalities are certainly of interest. On a general note, a shape or
pre-shape calculus for non- or semi-smooth problems would be beneficial. It could
be used to carry over useful description of optimality conditions, e.g. by shape
analogues of Clarke-, Bouligand- or Mordukhovich-stationarity, which have been
fruitfully applied in the optimal control case.

The pre-shape parameterization tracking techniques and their gradient regular-
izations followed a first optimize, then discretize approach. They neglect discrete
information, such as the connectivity and topology of the discretized mesh. Tech-
niques based on the discrete setting could harness these properties, and be described
in the context of pre-shape optimization. Also, their convergence to the continu-
ous case, e.g. as hinted in section 5.2.1, could be explored. Our techniques do
not change mesh topologies, which also permits beneficial combination with partial
remeshing approaches in future applications.

Following this train of thought, exploring the relation of pre-shape parameter-
ization tracking and hypersingular discrete Riesz-energy with external forces as in
[23] could be of theoretical interest.

Numerical application of higher order parameterization tracking methods, such
as Newton methods or customized pre-shape gradient representations, featuring its
pre-shape Hessian from section 5.5, could also be an immediate next step.

On a more distant note, the connection of the abstract formulation of param-
eterization tracking in section 5.3 could be used to generate new regularization
classes. In particular, studying its connection to optimal transport problems, and
generalizations using LP-Monge-Kantorovich and LP-Monge-Ampere formulations
in pre-shape spaces in light of [43, 72] could be interesting pursuits.

The pre-shape setting could also be used to pose regularization problems unre-
lated to the parameterization tracking problem. With the generality of pre-shape
calculus developed in chapter 4, new regularizers for shape gradient systems in form
of their tangential pre-shape derivative components can be constructed analogously.
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